xtensa: add MMU v3 support
[deliverable/linux.git] / arch / xtensa / Kconfig
1 config FRAME_POINTER
2 def_bool n
3
4 config ZONE_DMA
5 def_bool y
6
7 config XTENSA
8 def_bool y
9 select HAVE_IDE
10 select GENERIC_ATOMIC64
11 select HAVE_GENERIC_HARDIRQS
12 select VIRT_TO_BUS
13 select GENERIC_IRQ_SHOW
14 select GENERIC_CPU_DEVICES
15 select MODULES_USE_ELF_RELA
16 select GENERIC_PCI_IOMAP
17 select ARCH_WANT_IPC_PARSE_VERSION
18 select ARCH_WANT_OPTIONAL_GPIOLIB
19 select CLONE_BACKWARDS
20 select IRQ_DOMAIN
21 select HAVE_OPROFILE
22 help
23 Xtensa processors are 32-bit RISC machines designed by Tensilica
24 primarily for embedded systems. These processors are both
25 configurable and extensible. The Linux port to the Xtensa
26 architecture supports all processor configurations and extensions,
27 with reasonable minimum requirements. The Xtensa Linux project has
28 a home page at <http://www.linux-xtensa.org/>.
29
30 config RWSEM_XCHGADD_ALGORITHM
31 def_bool y
32
33 config GENERIC_HWEIGHT
34 def_bool y
35
36 config GENERIC_GPIO
37 bool
38
39 config ARCH_HAS_ILOG2_U32
40 def_bool n
41
42 config ARCH_HAS_ILOG2_U64
43 def_bool n
44
45 config NO_IOPORT
46 def_bool n
47
48 config HZ
49 int
50 default 100
51
52 source "init/Kconfig"
53 source "kernel/Kconfig.freezer"
54
55 config MMU
56 def_bool n
57
58 config VARIANT_IRQ_SWITCH
59 def_bool n
60
61 menu "Processor type and features"
62
63 choice
64 prompt "Xtensa Processor Configuration"
65 default XTENSA_VARIANT_FSF
66
67 config XTENSA_VARIANT_FSF
68 bool "fsf - default (not generic) configuration"
69 select MMU
70
71 config XTENSA_VARIANT_DC232B
72 bool "dc232b - Diamond 232L Standard Core Rev.B (LE)"
73 select MMU
74 help
75 This variant refers to Tensilica's Diamond 232L Standard core Rev.B (LE).
76
77 config XTENSA_VARIANT_DC233C
78 bool "dc233c - Diamond 233L Standard Core Rev.C (LE)"
79 select MMU
80 help
81 This variant refers to Tensilica's Diamond 233L Standard core Rev.C (LE).
82
83 config XTENSA_VARIANT_S6000
84 bool "s6000 - Stretch software configurable processor"
85 select VARIANT_IRQ_SWITCH
86 select ARCH_REQUIRE_GPIOLIB
87 select XTENSA_CALIBRATE_CCOUNT
88 endchoice
89
90 config XTENSA_UNALIGNED_USER
91 bool "Unaligned memory access in use space"
92 help
93 The Xtensa architecture currently does not handle unaligned
94 memory accesses in hardware but through an exception handler.
95 Per default, unaligned memory accesses are disabled in user space.
96
97 Say Y here to enable unaligned memory access in user space.
98
99 source "kernel/Kconfig.preempt"
100
101 config MATH_EMULATION
102 bool "Math emulation"
103 help
104 Can we use information of configuration file?
105
106 config INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
107 bool "Initialize Xtensa MMU inside the Linux kernel code"
108 default y
109 help
110 Earlier version initialized the MMU in the exception vector
111 before jumping to _startup in head.S and had an advantage that
112 it was possible to place a software breakpoint at 'reset' and
113 then enter your normal kernel breakpoints once the MMU was mapped
114 to the kernel mappings (0XC0000000).
115
116 This unfortunately doesn't work for U-Boot and likley also wont
117 work for using KEXEC to have a hot kernel ready for doing a
118 KDUMP.
119
120 So now the MMU is initialized in head.S but it's necessary to
121 use hardware breakpoints (gdb 'hbreak' cmd) to break at _startup.
122 xt-gdb can't place a Software Breakpoint in the 0XD region prior
123 to mapping the MMU and after mapping even if the area of low memory
124 was mapped gdb wouldn't remove the breakpoint on hitting it as the
125 PC wouldn't match. Since Hardware Breakpoints are recommended for
126 Linux configurations it seems reasonable to just assume they exist
127 and leave this older mechanism for unfortunate souls that choose
128 not to follow Tensilica's recommendation.
129
130 Selecting this will cause U-Boot to set the KERNEL Load and Entry
131 address at 0x00003000 instead of the mapped std of 0xD0003000.
132
133 If in doubt, say Y.
134
135 endmenu
136
137 config XTENSA_CALIBRATE_CCOUNT
138 def_bool n
139 help
140 On some platforms (XT2000, for example), the CPU clock rate can
141 vary. The frequency can be determined, however, by measuring
142 against a well known, fixed frequency, such as an UART oscillator.
143
144 config SERIAL_CONSOLE
145 def_bool n
146
147 config XTENSA_ISS_NETWORK
148 def_bool n
149
150 menu "Bus options"
151
152 config PCI
153 bool "PCI support"
154 default y
155 help
156 Find out whether you have a PCI motherboard. PCI is the name of a
157 bus system, i.e. the way the CPU talks to the other stuff inside
158 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
159 VESA. If you have PCI, say Y, otherwise N.
160
161 source "drivers/pci/Kconfig"
162
163 endmenu
164
165 menu "Platform options"
166
167 choice
168 prompt "Xtensa System Type"
169 default XTENSA_PLATFORM_ISS
170
171 config XTENSA_PLATFORM_ISS
172 bool "ISS"
173 depends on TTY
174 select XTENSA_CALIBRATE_CCOUNT
175 select SERIAL_CONSOLE
176 select XTENSA_ISS_NETWORK
177 help
178 ISS is an acronym for Tensilica's Instruction Set Simulator.
179
180 config XTENSA_PLATFORM_XT2000
181 bool "XT2000"
182 help
183 XT2000 is the name of Tensilica's feature-rich emulation platform.
184 This hardware is capable of running a full Linux distribution.
185
186 config XTENSA_PLATFORM_S6105
187 bool "S6105"
188 select SERIAL_CONSOLE
189 select NO_IOPORT
190
191 config XTENSA_PLATFORM_XTFPGA
192 bool "XTFPGA"
193 select SERIAL_CONSOLE
194 select ETHOC
195 select XTENSA_CALIBRATE_CCOUNT
196 help
197 XTFPGA is the name of Tensilica board family (LX60, LX110, LX200, ML605).
198 This hardware is capable of running a full Linux distribution.
199
200 endchoice
201
202
203 config XTENSA_CPU_CLOCK
204 int "CPU clock rate [MHz]"
205 depends on !XTENSA_CALIBRATE_CCOUNT
206 default 16
207
208 config GENERIC_CALIBRATE_DELAY
209 bool "Auto calibration of the BogoMIPS value"
210 help
211 The BogoMIPS value can easily be derived from the CPU frequency.
212
213 config CMDLINE_BOOL
214 bool "Default bootloader kernel arguments"
215
216 config CMDLINE
217 string "Initial kernel command string"
218 depends on CMDLINE_BOOL
219 default "console=ttyS0,38400 root=/dev/ram"
220 help
221 On some architectures (EBSA110 and CATS), there is currently no way
222 for the boot loader to pass arguments to the kernel. For these
223 architectures, you should supply some command-line options at build
224 time by entering them here. As a minimum, you should specify the
225 memory size and the root device (e.g., mem=64M root=/dev/nfs).
226
227 config USE_OF
228 bool "Flattened Device Tree support"
229 select OF
230 select OF_EARLY_FLATTREE
231 help
232 Include support for flattened device tree machine descriptions.
233
234 config BUILTIN_DTB
235 string "DTB to build into the kernel image"
236 depends on OF
237
238 config BLK_DEV_SIMDISK
239 tristate "Host file-based simulated block device support"
240 default n
241 depends on XTENSA_PLATFORM_ISS
242 help
243 Create block devices that map to files in the host file system.
244 Device binding to host file may be changed at runtime via proc
245 interface provided the device is not in use.
246
247 config BLK_DEV_SIMDISK_COUNT
248 int "Number of host file-based simulated block devices"
249 range 1 10
250 depends on BLK_DEV_SIMDISK
251 default 2
252 help
253 This is the default minimal number of created block devices.
254 Kernel/module parameter 'simdisk_count' may be used to change this
255 value at runtime. More file names (but no more than 10) may be
256 specified as parameters, simdisk_count grows accordingly.
257
258 config SIMDISK0_FILENAME
259 string "Host filename for the first simulated device"
260 depends on BLK_DEV_SIMDISK = y
261 default ""
262 help
263 Attach a first simdisk to a host file. Conventionally, this file
264 contains a root file system.
265
266 config SIMDISK1_FILENAME
267 string "Host filename for the second simulated device"
268 depends on BLK_DEV_SIMDISK = y && BLK_DEV_SIMDISK_COUNT != 1
269 default ""
270 help
271 Another simulated disk in a host file for a buildroot-independent
272 storage.
273
274 source "mm/Kconfig"
275
276 source "drivers/pcmcia/Kconfig"
277
278 source "drivers/pci/hotplug/Kconfig"
279
280 endmenu
281
282 menu "Executable file formats"
283
284 # only elf supported
285 config KCORE_ELF
286 def_bool y
287 depends on PROC_FS
288 help
289 If you enabled support for /proc file system then the file
290 /proc/kcore will contain the kernel core image in ELF format. This
291 can be used in gdb:
292
293 $ cd /usr/src/linux ; gdb vmlinux /proc/kcore
294
295 This is especially useful if you have compiled the kernel with the
296 "-g" option to preserve debugging information. It is mainly used
297 for examining kernel data structures on the live kernel.
298
299 source "fs/Kconfig.binfmt"
300
301 endmenu
302
303 source "net/Kconfig"
304
305 source "drivers/Kconfig"
306
307 source "fs/Kconfig"
308
309 source "arch/xtensa/Kconfig.debug"
310
311 source "security/Kconfig"
312
313 source "crypto/Kconfig"
314
315 source "lib/Kconfig"
316
317
This page took 0.057273 seconds and 6 git commands to generate.