Merge branch 'linux-3.17' of git://anongit.freedesktop.org/git/nouveau/linux-2.6...
[deliverable/linux.git] / arch / xtensa / kernel / vectors.S
1 /*
2 * arch/xtensa/kernel/vectors.S
3 *
4 * This file contains all exception vectors (user, kernel, and double),
5 * as well as the window vectors (overflow and underflow), and the debug
6 * vector. These are the primary vectors executed by the processor if an
7 * exception occurs.
8 *
9 * This file is subject to the terms and conditions of the GNU General
10 * Public License. See the file "COPYING" in the main directory of
11 * this archive for more details.
12 *
13 * Copyright (C) 2005 - 2008 Tensilica, Inc.
14 *
15 * Chris Zankel <chris@zankel.net>
16 *
17 */
18
19 /*
20 * We use a two-level table approach. The user and kernel exception vectors
21 * use a first-level dispatch table to dispatch the exception to a registered
22 * fast handler or the default handler, if no fast handler was registered.
23 * The default handler sets up a C-stack and dispatches the exception to a
24 * registerd C handler in the second-level dispatch table.
25 *
26 * Fast handler entry condition:
27 *
28 * a0: trashed, original value saved on stack (PT_AREG0)
29 * a1: a1
30 * a2: new stack pointer, original value in depc
31 * a3: dispatch table
32 * depc: a2, original value saved on stack (PT_DEPC)
33 * excsave_1: a3
34 *
35 * The value for PT_DEPC saved to stack also functions as a boolean to
36 * indicate that the exception is either a double or a regular exception:
37 *
38 * PT_DEPC >= VALID_DOUBLE_EXCEPTION_ADDRESS: double exception
39 * < VALID_DOUBLE_EXCEPTION_ADDRESS: regular exception
40 *
41 * Note: Neither the kernel nor the user exception handler generate literals.
42 *
43 */
44
45 #include <linux/linkage.h>
46 #include <asm/ptrace.h>
47 #include <asm/current.h>
48 #include <asm/asm-offsets.h>
49 #include <asm/pgtable.h>
50 #include <asm/processor.h>
51 #include <asm/page.h>
52 #include <asm/thread_info.h>
53 #include <asm/vectors.h>
54
55 #define WINDOW_VECTORS_SIZE 0x180
56
57
58 /*
59 * User exception vector. (Exceptions with PS.UM == 1, PS.EXCM == 0)
60 *
61 * We get here when an exception occurred while we were in userland.
62 * We switch to the kernel stack and jump to the first level handler
63 * associated to the exception cause.
64 *
65 * Note: the saved kernel stack pointer (EXC_TABLE_KSTK) is already
66 * decremented by PT_USER_SIZE.
67 */
68
69 .section .UserExceptionVector.text, "ax"
70
71 ENTRY(_UserExceptionVector)
72
73 xsr a3, excsave1 # save a3 and get dispatch table
74 wsr a2, depc # save a2
75 l32i a2, a3, EXC_TABLE_KSTK # load kernel stack to a2
76 s32i a0, a2, PT_AREG0 # save a0 to ESF
77 rsr a0, exccause # retrieve exception cause
78 s32i a0, a2, PT_DEPC # mark it as a regular exception
79 addx4 a0, a0, a3 # find entry in table
80 l32i a0, a0, EXC_TABLE_FAST_USER # load handler
81 xsr a3, excsave1 # restore a3 and dispatch table
82 jx a0
83
84 ENDPROC(_UserExceptionVector)
85
86 /*
87 * Kernel exception vector. (Exceptions with PS.UM == 0, PS.EXCM == 0)
88 *
89 * We get this exception when we were already in kernel space.
90 * We decrement the current stack pointer (kernel) by PT_SIZE and
91 * jump to the first-level handler associated with the exception cause.
92 *
93 * Note: we need to preserve space for the spill region.
94 */
95
96 .section .KernelExceptionVector.text, "ax"
97
98 ENTRY(_KernelExceptionVector)
99
100 xsr a3, excsave1 # save a3, and get dispatch table
101 wsr a2, depc # save a2
102 addi a2, a1, -16-PT_SIZE # adjust stack pointer
103 s32i a0, a2, PT_AREG0 # save a0 to ESF
104 rsr a0, exccause # retrieve exception cause
105 s32i a0, a2, PT_DEPC # mark it as a regular exception
106 addx4 a0, a0, a3 # find entry in table
107 l32i a0, a0, EXC_TABLE_FAST_KERNEL # load handler address
108 xsr a3, excsave1 # restore a3 and dispatch table
109 jx a0
110
111 ENDPROC(_KernelExceptionVector)
112
113 /*
114 * Double exception vector (Exceptions with PS.EXCM == 1)
115 * We get this exception when another exception occurs while were are
116 * already in an exception, such as window overflow/underflow exception,
117 * or 'expected' exceptions, for example memory exception when we were trying
118 * to read data from an invalid address in user space.
119 *
120 * Note that this vector is never invoked for level-1 interrupts, because such
121 * interrupts are disabled (masked) when PS.EXCM is set.
122 *
123 * We decode the exception and take the appropriate action. However, the
124 * double exception vector is much more careful, because a lot more error
125 * cases go through the double exception vector than through the user and
126 * kernel exception vectors.
127 *
128 * Occasionally, the kernel expects a double exception to occur. This usually
129 * happens when accessing user-space memory with the user's permissions
130 * (l32e/s32e instructions). The kernel state, though, is not always suitable
131 * for immediate transfer of control to handle_double, where "normal" exception
132 * processing occurs. Also in kernel mode, TLB misses can occur if accessing
133 * vmalloc memory, possibly requiring repair in a double exception handler.
134 *
135 * The variable at TABLE_FIXUP offset from the pointer in EXCSAVE_1 doubles as
136 * a boolean variable and a pointer to a fixup routine. If the variable
137 * EXC_TABLE_FIXUP is non-zero, this handler jumps to that address. A value of
138 * zero indicates to use the default kernel/user exception handler.
139 * There is only one exception, when the value is identical to the exc_table
140 * label, the kernel is in trouble. This mechanism is used to protect critical
141 * sections, mainly when the handler writes to the stack to assert the stack
142 * pointer is valid. Once the fixup/default handler leaves that area, the
143 * EXC_TABLE_FIXUP variable is reset to the fixup handler or zero.
144 *
145 * Procedures wishing to use this mechanism should set EXC_TABLE_FIXUP to the
146 * nonzero address of a fixup routine before it could cause a double exception
147 * and reset it before it returns.
148 *
149 * Some other things to take care of when a fast exception handler doesn't
150 * specify a particular fixup handler but wants to use the default handlers:
151 *
152 * - The original stack pointer (in a1) must not be modified. The fast
153 * exception handler should only use a2 as the stack pointer.
154 *
155 * - If the fast handler manipulates the stack pointer (in a2), it has to
156 * register a valid fixup handler and cannot use the default handlers.
157 *
158 * - The handler can use any other generic register from a3 to a15, but it
159 * must save the content of these registers to stack (PT_AREG3...PT_AREGx)
160 *
161 * - These registers must be saved before a double exception can occur.
162 *
163 * - If we ever implement handling signals while in double exceptions, the
164 * number of registers a fast handler has saved (excluding a0 and a1) must
165 * be written to PT_AREG1. (1 if only a3 is used, 2 for a3 and a4, etc. )
166 *
167 * The fixup handlers are special handlers:
168 *
169 * - Fixup entry conditions differ from regular exceptions:
170 *
171 * a0: DEPC
172 * a1: a1
173 * a2: trashed, original value in EXC_TABLE_DOUBLE_SAVE
174 * a3: exctable
175 * depc: a0
176 * excsave_1: a3
177 *
178 * - When the kernel enters the fixup handler, it still assumes it is in a
179 * critical section, so EXC_TABLE_FIXUP variable is set to exc_table.
180 * The fixup handler, therefore, has to re-register itself as the fixup
181 * handler before it returns from the double exception.
182 *
183 * - Fixup handler can share the same exception frame with the fast handler.
184 * The kernel stack pointer is not changed when entering the fixup handler.
185 *
186 * - Fixup handlers can jump to the default kernel and user exception
187 * handlers. Before it jumps, though, it has to setup a exception frame
188 * on stack. Because the default handler resets the register fixup handler
189 * the fixup handler must make sure that the default handler returns to
190 * it instead of the exception address, so it can re-register itself as
191 * the fixup handler.
192 *
193 * In case of a critical condition where the kernel cannot recover, we jump
194 * to unrecoverable_exception with the following entry conditions.
195 * All registers a0...a15 are unchanged from the last exception, except:
196 *
197 * a0: last address before we jumped to the unrecoverable_exception.
198 * excsave_1: a0
199 *
200 *
201 * See the handle_alloca_user and spill_registers routines for example clients.
202 *
203 * FIXME: Note: we currently don't allow signal handling coming from a double
204 * exception, so the item markt with (*) is not required.
205 */
206
207 .section .DoubleExceptionVector.text, "ax"
208 .begin literal_prefix .DoubleExceptionVector
209 .globl _DoubleExceptionVector_WindowUnderflow
210 .globl _DoubleExceptionVector_WindowOverflow
211
212 ENTRY(_DoubleExceptionVector)
213
214 xsr a3, excsave1
215 s32i a2, a3, EXC_TABLE_DOUBLE_SAVE
216
217 /* Check for kernel double exception (usually fatal). */
218
219 rsr a2, ps
220 _bbci.l a2, PS_UM_BIT, .Lksp
221
222 /* Check if we are currently handling a window exception. */
223 /* Note: We don't need to indicate that we enter a critical section. */
224
225 xsr a0, depc # get DEPC, save a0
226
227 movi a2, WINDOW_VECTORS_VADDR
228 _bltu a0, a2, .Lfixup
229 addi a2, a2, WINDOW_VECTORS_SIZE
230 _bgeu a0, a2, .Lfixup
231
232 /* Window overflow/underflow exception. Get stack pointer. */
233
234 l32i a2, a3, EXC_TABLE_KSTK
235
236 /* Check for overflow/underflow exception, jump if overflow. */
237
238 bbci.l a0, 6, _DoubleExceptionVector_WindowOverflow
239
240 /*
241 * Restart window underflow exception.
242 * Currently:
243 * depc = orig a0,
244 * a0 = orig DEPC,
245 * a2 = new sp based on KSTK from exc_table
246 * a3 = excsave_1
247 * excsave_1 = orig a3
248 *
249 * We return to the instruction in user space that caused the window
250 * underflow exception. Therefore, we change window base to the value
251 * before we entered the window underflow exception and prepare the
252 * registers to return as if we were coming from a regular exception
253 * by changing depc (in a0).
254 * Note: We can trash the current window frame (a0...a3) and depc!
255 */
256 _DoubleExceptionVector_WindowUnderflow:
257 xsr a3, excsave1
258 wsr a2, depc # save stack pointer temporarily
259 rsr a0, ps
260 extui a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
261 wsr a0, windowbase
262 rsync
263
264 /* We are now in the previous window frame. Save registers again. */
265
266 xsr a2, depc # save a2 and get stack pointer
267 s32i a0, a2, PT_AREG0
268 xsr a3, excsave1
269 rsr a0, exccause
270 s32i a0, a2, PT_DEPC # mark it as a regular exception
271 addx4 a0, a0, a3
272 xsr a3, excsave1
273 l32i a0, a0, EXC_TABLE_FAST_USER
274 jx a0
275
276 /*
277 * We only allow the ITLB miss exception if we are in kernel space.
278 * All other exceptions are unexpected and thus unrecoverable!
279 */
280
281 #ifdef CONFIG_MMU
282 .extern fast_second_level_miss_double_kernel
283
284 .Lksp: /* a0: a0, a1: a1, a2: a2, a3: trashed, depc: depc, excsave: a3 */
285
286 rsr a3, exccause
287 beqi a3, EXCCAUSE_ITLB_MISS, 1f
288 addi a3, a3, -EXCCAUSE_DTLB_MISS
289 bnez a3, .Lunrecoverable
290 1: movi a3, fast_second_level_miss_double_kernel
291 jx a3
292 #else
293 .equ .Lksp, .Lunrecoverable
294 #endif
295
296 /* Critical! We can't handle this situation. PANIC! */
297
298 .extern unrecoverable_exception
299
300 .Lunrecoverable_fixup:
301 l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
302 xsr a0, depc
303
304 .Lunrecoverable:
305 rsr a3, excsave1
306 wsr a0, excsave1
307 movi a0, unrecoverable_exception
308 callx0 a0
309
310 .Lfixup:/* Check for a fixup handler or if we were in a critical section. */
311
312 /* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave1: a3 */
313
314 /* Enter critical section. */
315
316 l32i a2, a3, EXC_TABLE_FIXUP
317 s32i a3, a3, EXC_TABLE_FIXUP
318 beq a2, a3, .Lunrecoverable_fixup # critical section
319 beqz a2, .Ldflt # no handler was registered
320
321 /* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave: a3 */
322
323 jx a2
324
325 .Ldflt: /* Get stack pointer. */
326
327 l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
328 addi a2, a2, -PT_USER_SIZE
329
330 /* a0: depc, a1: a1, a2: kstk, a3: exctable, depc: a0, excsave: a3 */
331
332 s32i a0, a2, PT_DEPC
333 l32i a0, a3, EXC_TABLE_DOUBLE_SAVE
334 xsr a0, depc
335 s32i a0, a2, PT_AREG0
336
337 /* a0: avail, a1: a1, a2: kstk, a3: exctable, depc: a2, excsave: a3 */
338
339 rsr a0, exccause
340 addx4 a0, a0, a3
341 xsr a3, excsave1
342 l32i a0, a0, EXC_TABLE_FAST_USER
343 jx a0
344
345 /*
346 * Restart window OVERFLOW exception.
347 * Currently:
348 * depc = orig a0,
349 * a0 = orig DEPC,
350 * a2 = new sp based on KSTK from exc_table
351 * a3 = EXCSAVE_1
352 * excsave_1 = orig a3
353 *
354 * We return to the instruction in user space that caused the window
355 * overflow exception. Therefore, we change window base to the value
356 * before we entered the window overflow exception and prepare the
357 * registers to return as if we were coming from a regular exception
358 * by changing DEPC (in a0).
359 *
360 * NOTE: We CANNOT trash the current window frame (a0...a3), but we
361 * can clobber depc.
362 *
363 * The tricky part here is that overflow8 and overflow12 handlers
364 * save a0, then clobber a0. To restart the handler, we have to restore
365 * a0 if the double exception was past the point where a0 was clobbered.
366 *
367 * To keep things simple, we take advantage of the fact all overflow
368 * handlers save a0 in their very first instruction. If DEPC was past
369 * that instruction, we can safely restore a0 from where it was saved
370 * on the stack.
371 *
372 * a0: depc, a1: a1, a2: kstk, a3: exc_table, depc: a0, excsave1: a3
373 */
374 _DoubleExceptionVector_WindowOverflow:
375 extui a2, a0, 0, 6 # get offset into 64-byte vector handler
376 beqz a2, 1f # if at start of vector, don't restore
377
378 addi a0, a0, -128
379 bbsi.l a0, 8, 1f # don't restore except for overflow 8 and 12
380
381 /*
382 * This fixup handler is for the extremely unlikely case where the
383 * overflow handler's reference thru a0 gets a hardware TLB refill
384 * that bumps out the (distinct, aliasing) TLB entry that mapped its
385 * prior references thru a9/a13, and where our reference now thru
386 * a9/a13 gets a 2nd-level miss exception (not hardware TLB refill).
387 */
388 movi a2, window_overflow_restore_a0_fixup
389 s32i a2, a3, EXC_TABLE_FIXUP
390 l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
391 xsr a3, excsave1
392
393 bbsi.l a0, 7, 2f
394
395 /*
396 * Restore a0 as saved by _WindowOverflow8().
397 */
398
399 l32e a0, a9, -16
400 wsr a0, depc # replace the saved a0
401 j 3f
402
403 2:
404 /*
405 * Restore a0 as saved by _WindowOverflow12().
406 */
407
408 l32e a0, a13, -16
409 wsr a0, depc # replace the saved a0
410 3:
411 xsr a3, excsave1
412 movi a0, 0
413 s32i a0, a3, EXC_TABLE_FIXUP
414 s32i a2, a3, EXC_TABLE_DOUBLE_SAVE
415 1:
416 /*
417 * Restore WindowBase while leaving all address registers restored.
418 * We have to use ROTW for this, because WSR.WINDOWBASE requires
419 * an address register (which would prevent restore).
420 *
421 * Window Base goes from 0 ... 7 (Module 8)
422 * Window Start is 8 bits; Ex: (0b1010 1010):0x55 from series of call4s
423 */
424
425 rsr a0, ps
426 extui a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
427 rsr a2, windowbase
428 sub a0, a2, a0
429 extui a0, a0, 0, 3
430
431 l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
432 xsr a3, excsave1
433 beqi a0, 1, .L1pane
434 beqi a0, 3, .L3pane
435
436 rsr a0, depc
437 rotw -2
438
439 /*
440 * We are now in the user code's original window frame.
441 * Process the exception as a user exception as if it was
442 * taken by the user code.
443 *
444 * This is similar to the user exception vector,
445 * except that PT_DEPC isn't set to EXCCAUSE.
446 */
447 1:
448 xsr a3, excsave1
449 wsr a2, depc
450 l32i a2, a3, EXC_TABLE_KSTK
451 s32i a0, a2, PT_AREG0
452 rsr a0, exccause
453
454 s32i a0, a2, PT_DEPC
455
456 _DoubleExceptionVector_handle_exception:
457 addx4 a0, a0, a3
458 l32i a0, a0, EXC_TABLE_FAST_USER
459 xsr a3, excsave1
460 jx a0
461
462 .L1pane:
463 rsr a0, depc
464 rotw -1
465 j 1b
466
467 .L3pane:
468 rsr a0, depc
469 rotw -3
470 j 1b
471
472
473 ENDPROC(_DoubleExceptionVector)
474
475 /*
476 * Fixup handler for TLB miss in double exception handler for window owerflow.
477 * We get here with windowbase set to the window that was being spilled and
478 * a0 trashed. a0 bit 7 determines if this is a call8 (bit clear) or call12
479 * (bit set) window.
480 *
481 * We do the following here:
482 * - go to the original window retaining a0 value;
483 * - set up exception stack to return back to appropriate a0 restore code
484 * (we'll need to rotate window back and there's no place to save this
485 * information, use different return address for that);
486 * - handle the exception;
487 * - go to the window that was being spilled;
488 * - set up window_overflow_restore_a0_fixup as a fixup routine;
489 * - reload a0;
490 * - restore the original window;
491 * - reset the default fixup routine;
492 * - return to user. By the time we get to this fixup handler all information
493 * about the conditions of the original double exception that happened in
494 * the window overflow handler is lost, so we just return to userspace to
495 * retry overflow from start.
496 *
497 * a0: value of depc, original value in depc
498 * a2: trashed, original value in EXC_TABLE_DOUBLE_SAVE
499 * a3: exctable, original value in excsave1
500 */
501
502 ENTRY(window_overflow_restore_a0_fixup)
503
504 rsr a0, ps
505 extui a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
506 rsr a2, windowbase
507 sub a0, a2, a0
508 extui a0, a0, 0, 3
509 l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
510 xsr a3, excsave1
511
512 _beqi a0, 1, .Lhandle_1
513 _beqi a0, 3, .Lhandle_3
514
515 .macro overflow_fixup_handle_exception_pane n
516
517 rsr a0, depc
518 rotw -\n
519
520 xsr a3, excsave1
521 wsr a2, depc
522 l32i a2, a3, EXC_TABLE_KSTK
523 s32i a0, a2, PT_AREG0
524
525 movi a0, .Lrestore_\n
526 s32i a0, a2, PT_DEPC
527 rsr a0, exccause
528 j _DoubleExceptionVector_handle_exception
529
530 .endm
531
532 overflow_fixup_handle_exception_pane 2
533 .Lhandle_1:
534 overflow_fixup_handle_exception_pane 1
535 .Lhandle_3:
536 overflow_fixup_handle_exception_pane 3
537
538 .macro overflow_fixup_restore_a0_pane n
539
540 rotw \n
541 /* Need to preserve a0 value here to be able to handle exception
542 * that may occur on a0 reload from stack. It may occur because
543 * TLB miss handler may not be atomic and pointer to page table
544 * may be lost before we get here. There are no free registers,
545 * so we need to use EXC_TABLE_DOUBLE_SAVE area.
546 */
547 xsr a3, excsave1
548 s32i a2, a3, EXC_TABLE_DOUBLE_SAVE
549 movi a2, window_overflow_restore_a0_fixup
550 s32i a2, a3, EXC_TABLE_FIXUP
551 l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
552 xsr a3, excsave1
553 bbsi.l a0, 7, 1f
554 l32e a0, a9, -16
555 j 2f
556 1:
557 l32e a0, a13, -16
558 2:
559 rotw -\n
560
561 .endm
562
563 .Lrestore_2:
564 overflow_fixup_restore_a0_pane 2
565
566 .Lset_default_fixup:
567 xsr a3, excsave1
568 s32i a2, a3, EXC_TABLE_DOUBLE_SAVE
569 movi a2, 0
570 s32i a2, a3, EXC_TABLE_FIXUP
571 l32i a2, a3, EXC_TABLE_DOUBLE_SAVE
572 xsr a3, excsave1
573 rfe
574
575 .Lrestore_1:
576 overflow_fixup_restore_a0_pane 1
577 j .Lset_default_fixup
578 .Lrestore_3:
579 overflow_fixup_restore_a0_pane 3
580 j .Lset_default_fixup
581
582 ENDPROC(window_overflow_restore_a0_fixup)
583
584 .end literal_prefix
585 /*
586 * Debug interrupt vector
587 *
588 * There is not much space here, so simply jump to another handler.
589 * EXCSAVE[DEBUGLEVEL] has been set to that handler.
590 */
591
592 .section .DebugInterruptVector.text, "ax"
593
594 ENTRY(_DebugInterruptVector)
595
596 xsr a0, SREG_EXCSAVE + XCHAL_DEBUGLEVEL
597 jx a0
598
599 ENDPROC(_DebugInterruptVector)
600
601
602
603 /*
604 * Medium priority level interrupt vectors
605 *
606 * Each takes less than 16 (0x10) bytes, no literals, by placing
607 * the extra 8 bytes that would otherwise be required in the window
608 * vectors area where there is space. With relocatable vectors,
609 * all vectors are within ~ 4 kB range of each other, so we can
610 * simply jump (J) to another vector without having to use JX.
611 *
612 * common_exception code gets current IRQ level in PS.INTLEVEL
613 * and preserves it for the IRQ handling time.
614 */
615
616 .macro irq_entry_level level
617
618 .if XCHAL_EXCM_LEVEL >= \level
619 .section .Level\level\()InterruptVector.text, "ax"
620 ENTRY(_Level\level\()InterruptVector)
621 wsr a0, excsave2
622 rsr a0, epc\level
623 wsr a0, epc1
624 movi a0, EXCCAUSE_LEVEL1_INTERRUPT
625 wsr a0, exccause
626 rsr a0, eps\level
627 # branch to user or kernel vector
628 j _SimulateUserKernelVectorException
629 .endif
630
631 .endm
632
633 irq_entry_level 2
634 irq_entry_level 3
635 irq_entry_level 4
636 irq_entry_level 5
637 irq_entry_level 6
638
639
640 /* Window overflow and underflow handlers.
641 * The handlers must be 64 bytes apart, first starting with the underflow
642 * handlers underflow-4 to underflow-12, then the overflow handlers
643 * overflow-4 to overflow-12.
644 *
645 * Note: We rerun the underflow handlers if we hit an exception, so
646 * we try to access any page that would cause a page fault early.
647 */
648
649 #define ENTRY_ALIGN64(name) \
650 .globl name; \
651 .align 64; \
652 name:
653
654 .section .WindowVectors.text, "ax"
655
656
657 /* 4-Register Window Overflow Vector (Handler) */
658
659 ENTRY_ALIGN64(_WindowOverflow4)
660
661 s32e a0, a5, -16
662 s32e a1, a5, -12
663 s32e a2, a5, -8
664 s32e a3, a5, -4
665 rfwo
666
667 ENDPROC(_WindowOverflow4)
668
669
670 #if XCHAL_EXCM_LEVEL >= 2
671 /* Not a window vector - but a convenient location
672 * (where we know there's space) for continuation of
673 * medium priority interrupt dispatch code.
674 * On entry here, a0 contains PS, and EPC2 contains saved a0:
675 */
676 .align 4
677 _SimulateUserKernelVectorException:
678 addi a0, a0, (1 << PS_EXCM_BIT)
679 wsr a0, ps
680 bbsi.l a0, PS_UM_BIT, 1f # branch if user mode
681 rsr a0, excsave2 # restore a0
682 j _KernelExceptionVector # simulate kernel vector exception
683 1: rsr a0, excsave2 # restore a0
684 j _UserExceptionVector # simulate user vector exception
685 #endif
686
687
688 /* 4-Register Window Underflow Vector (Handler) */
689
690 ENTRY_ALIGN64(_WindowUnderflow4)
691
692 l32e a0, a5, -16
693 l32e a1, a5, -12
694 l32e a2, a5, -8
695 l32e a3, a5, -4
696 rfwu
697
698 ENDPROC(_WindowUnderflow4)
699
700 /* 8-Register Window Overflow Vector (Handler) */
701
702 ENTRY_ALIGN64(_WindowOverflow8)
703
704 s32e a0, a9, -16
705 l32e a0, a1, -12
706 s32e a2, a9, -8
707 s32e a1, a9, -12
708 s32e a3, a9, -4
709 s32e a4, a0, -32
710 s32e a5, a0, -28
711 s32e a6, a0, -24
712 s32e a7, a0, -20
713 rfwo
714
715 ENDPROC(_WindowOverflow8)
716
717 /* 8-Register Window Underflow Vector (Handler) */
718
719 ENTRY_ALIGN64(_WindowUnderflow8)
720
721 l32e a1, a9, -12
722 l32e a0, a9, -16
723 l32e a7, a1, -12
724 l32e a2, a9, -8
725 l32e a4, a7, -32
726 l32e a3, a9, -4
727 l32e a5, a7, -28
728 l32e a6, a7, -24
729 l32e a7, a7, -20
730 rfwu
731
732 ENDPROC(_WindowUnderflow8)
733
734 /* 12-Register Window Overflow Vector (Handler) */
735
736 ENTRY_ALIGN64(_WindowOverflow12)
737
738 s32e a0, a13, -16
739 l32e a0, a1, -12
740 s32e a1, a13, -12
741 s32e a2, a13, -8
742 s32e a3, a13, -4
743 s32e a4, a0, -48
744 s32e a5, a0, -44
745 s32e a6, a0, -40
746 s32e a7, a0, -36
747 s32e a8, a0, -32
748 s32e a9, a0, -28
749 s32e a10, a0, -24
750 s32e a11, a0, -20
751 rfwo
752
753 ENDPROC(_WindowOverflow12)
754
755 /* 12-Register Window Underflow Vector (Handler) */
756
757 ENTRY_ALIGN64(_WindowUnderflow12)
758
759 l32e a1, a13, -12
760 l32e a0, a13, -16
761 l32e a11, a1, -12
762 l32e a2, a13, -8
763 l32e a4, a11, -48
764 l32e a8, a11, -32
765 l32e a3, a13, -4
766 l32e a5, a11, -44
767 l32e a6, a11, -40
768 l32e a7, a11, -36
769 l32e a9, a11, -28
770 l32e a10, a11, -24
771 l32e a11, a11, -20
772 rfwu
773
774 ENDPROC(_WindowUnderflow12)
775
776 .text
This page took 0.046627 seconds and 5 git commands to generate.