daily update
[deliverable/binutils-gdb.git] / bfd / coff-h8300.c
1 /* BFD back-end for Renesas H8/300 COFF binaries.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5 Written by Steve Chamberlain, <sac@cygnus.com>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "bfdlink.h"
28 #include "genlink.h"
29 #include "coff/h8300.h"
30 #include "coff/internal.h"
31 #include "libcoff.h"
32 #include "libiberty.h"
33
34 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
35
36 /* We derive a hash table from the basic BFD hash table to
37 hold entries in the function vector. Aside from the
38 info stored by the basic hash table, we need the offset
39 of a particular entry within the hash table as well as
40 the offset where we'll add the next entry. */
41
42 struct funcvec_hash_entry
43 {
44 /* The basic hash table entry. */
45 struct bfd_hash_entry root;
46
47 /* The offset within the vectors section where
48 this entry lives. */
49 bfd_vma offset;
50 };
51
52 struct funcvec_hash_table
53 {
54 /* The basic hash table. */
55 struct bfd_hash_table root;
56
57 bfd *abfd;
58
59 /* Offset at which we'll add the next entry. */
60 unsigned int offset;
61 };
62
63 static struct bfd_hash_entry *
64 funcvec_hash_newfunc
65 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
66
67 static bfd_reloc_status_type special
68 (bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **);
69 static int select_reloc
70 (reloc_howto_type *);
71 static void rtype2howto
72 (arelent *, struct internal_reloc *);
73 static void reloc_processing
74 (arelent *, struct internal_reloc *, asymbol **, bfd *, asection *);
75 static bfd_boolean h8300_symbol_address_p
76 (bfd *, asection *, bfd_vma);
77 static int h8300_reloc16_estimate
78 (bfd *, asection *, arelent *, unsigned int,
79 struct bfd_link_info *);
80 static void h8300_reloc16_extra_cases
81 (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
82 bfd_byte *, unsigned int *, unsigned int *);
83 static bfd_boolean h8300_bfd_link_add_symbols
84 (bfd *, struct bfd_link_info *);
85
86 /* To lookup a value in the function vector hash table. */
87 #define funcvec_hash_lookup(table, string, create, copy) \
88 ((struct funcvec_hash_entry *) \
89 bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
90
91 /* The derived h8300 COFF linker table. Note it's derived from
92 the generic linker hash table, not the COFF backend linker hash
93 table! We use this to attach additional data structures we
94 need while linking on the h8300. */
95 struct h8300_coff_link_hash_table {
96 /* The main hash table. */
97 struct generic_link_hash_table root;
98
99 /* Section for the vectors table. This gets attached to a
100 random input bfd, we keep it here for easy access. */
101 asection *vectors_sec;
102
103 /* Hash table of the functions we need to enter into the function
104 vector. */
105 struct funcvec_hash_table *funcvec_hash_table;
106 };
107
108 static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
109
110 /* Get the H8/300 COFF linker hash table from a link_info structure. */
111
112 #define h8300_coff_hash_table(p) \
113 ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
114
115 /* Initialize fields within a funcvec hash table entry. Called whenever
116 a new entry is added to the funcvec hash table. */
117
118 static struct bfd_hash_entry *
119 funcvec_hash_newfunc (struct bfd_hash_entry *entry,
120 struct bfd_hash_table *gen_table,
121 const char *string)
122 {
123 struct funcvec_hash_entry *ret;
124 struct funcvec_hash_table *table;
125
126 ret = (struct funcvec_hash_entry *) entry;
127 table = (struct funcvec_hash_table *) gen_table;
128
129 /* Allocate the structure if it has not already been allocated by a
130 subclass. */
131 if (ret == NULL)
132 ret = ((struct funcvec_hash_entry *)
133 bfd_hash_allocate (gen_table,
134 sizeof (struct funcvec_hash_entry)));
135 if (ret == NULL)
136 return NULL;
137
138 /* Call the allocation method of the superclass. */
139 ret = ((struct funcvec_hash_entry *)
140 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
141
142 if (ret == NULL)
143 return NULL;
144
145 /* Note where this entry will reside in the function vector table. */
146 ret->offset = table->offset;
147
148 /* Bump the offset at which we store entries in the function
149 vector. We'd like to bump up the size of the vectors section,
150 but it's not easily available here. */
151 switch (bfd_get_mach (table->abfd))
152 {
153 case bfd_mach_h8300:
154 case bfd_mach_h8300hn:
155 case bfd_mach_h8300sn:
156 table->offset += 2;
157 break;
158 case bfd_mach_h8300h:
159 case bfd_mach_h8300s:
160 table->offset += 4;
161 break;
162 default:
163 return NULL;
164 }
165
166 /* Everything went OK. */
167 return (struct bfd_hash_entry *) ret;
168 }
169
170 /* Initialize the function vector hash table. */
171
172 static bfd_boolean
173 funcvec_hash_table_init (struct funcvec_hash_table *table,
174 bfd *abfd,
175 struct bfd_hash_entry *(*newfunc)
176 (struct bfd_hash_entry *,
177 struct bfd_hash_table *,
178 const char *),
179 unsigned int entsize)
180 {
181 /* Initialize our local fields, then call the generic initialization
182 routine. */
183 table->offset = 0;
184 table->abfd = abfd;
185 return (bfd_hash_table_init (&table->root, newfunc, entsize));
186 }
187
188 /* Create the derived linker hash table. We use a derived hash table
189 basically to hold "static" information during an H8/300 coff link
190 without using static variables. */
191
192 static struct bfd_link_hash_table *
193 h8300_coff_link_hash_table_create (bfd *abfd)
194 {
195 struct h8300_coff_link_hash_table *ret;
196 bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
197
198 ret = (struct h8300_coff_link_hash_table *) bfd_malloc (amt);
199 if (ret == NULL)
200 return NULL;
201 if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
202 _bfd_generic_link_hash_newfunc,
203 sizeof (struct generic_link_hash_entry)))
204 {
205 free (ret);
206 return NULL;
207 }
208
209 /* Initialize our data. */
210 ret->vectors_sec = NULL;
211 ret->funcvec_hash_table = NULL;
212
213 /* OK. Everything's initialized, return the base pointer. */
214 return &ret->root.root;
215 }
216
217 /* Special handling for H8/300 relocs.
218 We only come here for pcrel stuff and return normally if not an -r link.
219 When doing -r, we can't do any arithmetic for the pcrel stuff, because
220 the code in reloc.c assumes that we can manipulate the targets of
221 the pcrel branches. This isn't so, since the H8/300 can do relaxing,
222 which means that the gap after the instruction may not be enough to
223 contain the offset required for the branch, so we have to use only
224 the addend until the final link. */
225
226 static bfd_reloc_status_type
227 special (bfd *abfd ATTRIBUTE_UNUSED,
228 arelent *reloc_entry ATTRIBUTE_UNUSED,
229 asymbol *symbol ATTRIBUTE_UNUSED,
230 PTR data ATTRIBUTE_UNUSED,
231 asection *input_section ATTRIBUTE_UNUSED,
232 bfd *output_bfd,
233 char **error_message ATTRIBUTE_UNUSED)
234 {
235 if (output_bfd == (bfd *) NULL)
236 return bfd_reloc_continue;
237
238 /* Adjust the reloc address to that in the output section. */
239 reloc_entry->address += input_section->output_offset;
240 return bfd_reloc_ok;
241 }
242
243 static reloc_howto_type howto_table[] = {
244 HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
245 HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
246 HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
247 HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
248 HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
249 HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
250 HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
251 HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
252 HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
253 HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
254 HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
255 HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
256 HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
257 HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
258
259 /* An indirect reference to a function. This causes the function's address
260 to be added to the function vector in lo-mem and puts the address of
261 the function vector's entry in the jsr instruction. */
262 HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
263
264 /* Internal reloc for relaxing. This is created when a 16-bit pc-relative
265 branch is turned into an 8-bit pc-relative branch. */
266 HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
267
268 HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
269
270 HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
271
272 HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
273
274 HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
275 };
276
277 /* Turn a howto into a reloc number. */
278
279 #define SELECT_RELOC(x,howto) \
280 { x.r_type = select_reloc (howto); }
281
282 #define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
283 && H8300HNBADMAG(x) && H8300SNBADMAG(x))
284 #define H8300 1 /* Customize coffcode.h */
285 #define __A_MAGIC_SET__
286
287 /* Code to swap in the reloc. */
288 #define SWAP_IN_RELOC_OFFSET H_GET_32
289 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
290 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
291 dst->r_stuff[0] = 'S'; \
292 dst->r_stuff[1] = 'C';
293
294 static int
295 select_reloc (reloc_howto_type *howto)
296 {
297 return howto->type;
298 }
299
300 /* Code to turn a r_type into a howto ptr, uses the above howto table. */
301
302 static void
303 rtype2howto (arelent *internal, struct internal_reloc *dst)
304 {
305 switch (dst->r_type)
306 {
307 case R_RELBYTE:
308 internal->howto = howto_table + 0;
309 break;
310 case R_RELWORD:
311 internal->howto = howto_table + 1;
312 break;
313 case R_RELLONG:
314 internal->howto = howto_table + 2;
315 break;
316 case R_PCRBYTE:
317 internal->howto = howto_table + 3;
318 break;
319 case R_PCRWORD:
320 internal->howto = howto_table + 4;
321 break;
322 case R_PCRLONG:
323 internal->howto = howto_table + 5;
324 break;
325 case R_MOV16B1:
326 internal->howto = howto_table + 6;
327 break;
328 case R_MOV16B2:
329 internal->howto = howto_table + 7;
330 break;
331 case R_JMP1:
332 internal->howto = howto_table + 8;
333 break;
334 case R_JMP2:
335 internal->howto = howto_table + 9;
336 break;
337 case R_JMPL1:
338 internal->howto = howto_table + 10;
339 break;
340 case R_JMPL2:
341 internal->howto = howto_table + 11;
342 break;
343 case R_MOV24B1:
344 internal->howto = howto_table + 12;
345 break;
346 case R_MOV24B2:
347 internal->howto = howto_table + 13;
348 break;
349 case R_MEM_INDIRECT:
350 internal->howto = howto_table + 14;
351 break;
352 case R_PCRWORD_B:
353 internal->howto = howto_table + 15;
354 break;
355 case R_MOVL1:
356 internal->howto = howto_table + 16;
357 break;
358 case R_MOVL2:
359 internal->howto = howto_table + 17;
360 break;
361 case R_BCC_INV:
362 internal->howto = howto_table + 18;
363 break;
364 case R_JMP_DEL:
365 internal->howto = howto_table + 19;
366 break;
367 default:
368 abort ();
369 break;
370 }
371 }
372
373 #define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
374
375 /* Perform any necessary magic to the addend in a reloc entry. */
376
377 #define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
378 cache_ptr->addend = ext_reloc.r_offset;
379
380 #define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
381 reloc_processing (relent, reloc, symbols, abfd, section)
382
383 static void
384 reloc_processing (arelent *relent, struct internal_reloc *reloc,
385 asymbol **symbols, bfd *abfd, asection *section)
386 {
387 relent->address = reloc->r_vaddr;
388 rtype2howto (relent, reloc);
389
390 if (((int) reloc->r_symndx) > 0)
391 relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
392 else
393 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
394
395 relent->addend = reloc->r_offset;
396 relent->address -= section->vma;
397 }
398
399 static bfd_boolean
400 h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
401 {
402 asymbol **s;
403
404 s = _bfd_generic_link_get_symbols (abfd);
405 BFD_ASSERT (s != (asymbol **) NULL);
406
407 /* Search all the symbols for one in INPUT_SECTION with
408 address ADDRESS. */
409 while (*s)
410 {
411 asymbol *p = *s;
412
413 if (p->section == input_section
414 && (input_section->output_section->vma
415 + input_section->output_offset
416 + p->value) == address)
417 return TRUE;
418 s++;
419 }
420 return FALSE;
421 }
422
423 /* If RELOC represents a relaxable instruction/reloc, change it into
424 the relaxed reloc, notify the linker that symbol addresses
425 have changed (bfd_perform_slip) and return how much the current
426 section has shrunk by.
427
428 FIXME: Much of this code has knowledge of the ordering of entries
429 in the howto table. This needs to be fixed. */
430
431 static int
432 h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
433 unsigned int shrink, struct bfd_link_info *link_info)
434 {
435 bfd_vma value;
436 bfd_vma dot;
437 bfd_vma gap;
438 static asection *last_input_section = NULL;
439 static arelent *last_reloc = NULL;
440
441 /* The address of the thing to be relocated will have moved back by
442 the size of the shrink - but we don't change reloc->address here,
443 since we need it to know where the relocation lives in the source
444 uncooked section. */
445 bfd_vma address = reloc->address - shrink;
446
447 if (input_section != last_input_section)
448 last_reloc = NULL;
449
450 /* Only examine the relocs which might be relaxable. */
451 switch (reloc->howto->type)
452 {
453 /* This is the 16-/24-bit absolute branch which could become an
454 8-bit pc-relative branch. */
455 case R_JMP1:
456 case R_JMPL1:
457 /* Get the address of the target of this branch. */
458 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
459
460 /* Get the address of the next instruction (not the reloc). */
461 dot = (input_section->output_section->vma
462 + input_section->output_offset + address);
463
464 /* Adjust for R_JMP1 vs R_JMPL1. */
465 dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
466
467 /* Compute the distance from this insn to the branch target. */
468 gap = value - dot;
469
470 /* If the distance is within -128..+128 inclusive, then we can relax
471 this jump. +128 is valid since the target will move two bytes
472 closer if we do relax this branch. */
473 if ((int) gap >= -128 && (int) gap <= 128)
474 {
475 bfd_byte code;
476
477 if (!bfd_get_section_contents (abfd, input_section, & code,
478 reloc->address, 1))
479 break;
480 code = bfd_get_8 (abfd, & code);
481
482 /* It's possible we may be able to eliminate this branch entirely;
483 if the previous instruction is a branch around this instruction,
484 and there's no label at this instruction, then we can reverse
485 the condition on the previous branch and eliminate this jump.
486
487 original: new:
488 bCC lab1 bCC' lab2
489 jmp lab2
490 lab1: lab1:
491
492 This saves 4 bytes instead of two, and should be relatively
493 common.
494
495 Only perform this optimisation for jumps (code 0x5a) not
496 subroutine calls, as otherwise it could transform:
497
498 mov.w r0,r0
499 beq .L1
500 jsr @_bar
501 .L1: rts
502 _bar: rts
503 into:
504 mov.w r0,r0
505 bne _bar
506 rts
507 _bar: rts
508
509 which changes the call (jsr) into a branch (bne). */
510 if (code == 0x5a
511 && gap <= 126
512 && last_reloc
513 && last_reloc->howto->type == R_PCRBYTE)
514 {
515 bfd_vma last_value;
516 last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
517 input_section) + 1;
518
519 if (last_value == dot + 2
520 && last_reloc->address + 1 == reloc->address
521 && !h8300_symbol_address_p (abfd, input_section, dot - 2))
522 {
523 reloc->howto = howto_table + 19;
524 last_reloc->howto = howto_table + 18;
525 last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
526 last_reloc->addend = reloc->addend;
527 shrink += 4;
528 bfd_perform_slip (abfd, 4, input_section, address);
529 break;
530 }
531 }
532
533 /* Change the reloc type. */
534 reloc->howto = reloc->howto + 1;
535
536 /* This shrinks this section by two bytes. */
537 shrink += 2;
538 bfd_perform_slip (abfd, 2, input_section, address);
539 }
540 break;
541
542 /* This is the 16-bit pc-relative branch which could become an 8-bit
543 pc-relative branch. */
544 case R_PCRWORD:
545 /* Get the address of the target of this branch, add one to the value
546 because the addend field in PCrel jumps is off by -1. */
547 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
548
549 /* Get the address of the next instruction if we were to relax. */
550 dot = input_section->output_section->vma +
551 input_section->output_offset + address;
552
553 /* Compute the distance from this insn to the branch target. */
554 gap = value - dot;
555
556 /* If the distance is within -128..+128 inclusive, then we can relax
557 this jump. +128 is valid since the target will move two bytes
558 closer if we do relax this branch. */
559 if ((int) gap >= -128 && (int) gap <= 128)
560 {
561 /* Change the reloc type. */
562 reloc->howto = howto_table + 15;
563
564 /* This shrinks this section by two bytes. */
565 shrink += 2;
566 bfd_perform_slip (abfd, 2, input_section, address);
567 }
568 break;
569
570 /* This is a 16-bit absolute address in a mov.b insn, which can
571 become an 8-bit absolute address if it's in the right range. */
572 case R_MOV16B1:
573 /* Get the address of the data referenced by this mov.b insn. */
574 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
575 value = bfd_h8300_pad_address (abfd, value);
576
577 /* If the address is in the top 256 bytes of the address space
578 then we can relax this instruction. */
579 if (value >= 0xffffff00u)
580 {
581 /* Change the reloc type. */
582 reloc->howto = reloc->howto + 1;
583
584 /* This shrinks this section by two bytes. */
585 shrink += 2;
586 bfd_perform_slip (abfd, 2, input_section, address);
587 }
588 break;
589
590 /* Similarly for a 24-bit absolute address in a mov.b. Note that
591 if we can't relax this into an 8-bit absolute, we'll fall through
592 and try to relax it into a 16-bit absolute. */
593 case R_MOV24B1:
594 /* Get the address of the data referenced by this mov.b insn. */
595 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
596 value = bfd_h8300_pad_address (abfd, value);
597
598 if (value >= 0xffffff00u)
599 {
600 /* Change the reloc type. */
601 reloc->howto = reloc->howto + 1;
602
603 /* This shrinks this section by four bytes. */
604 shrink += 4;
605 bfd_perform_slip (abfd, 4, input_section, address);
606
607 /* Done with this reloc. */
608 break;
609 }
610
611 /* FALLTHROUGH and try to turn the 24-/32-bit reloc into a 16-bit
612 reloc. */
613
614 /* This is a 24-/32-bit absolute address in a mov insn, which can
615 become an 16-bit absolute address if it's in the right range. */
616 case R_MOVL1:
617 /* Get the address of the data referenced by this mov insn. */
618 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
619 value = bfd_h8300_pad_address (abfd, value);
620
621 /* If the address is a sign-extended 16-bit value then we can
622 relax this instruction. */
623 if (value <= 0x7fff || value >= 0xffff8000u)
624 {
625 /* Change the reloc type. */
626 reloc->howto = howto_table + 17;
627
628 /* This shrinks this section by two bytes. */
629 shrink += 2;
630 bfd_perform_slip (abfd, 2, input_section, address);
631 }
632 break;
633
634 /* No other reloc types represent relaxing opportunities. */
635 default:
636 break;
637 }
638
639 last_reloc = reloc;
640 last_input_section = input_section;
641 return shrink;
642 }
643
644 /* Handle relocations for the H8/300, including relocs for relaxed
645 instructions.
646
647 FIXME: Not all relocations check for overflow! */
648
649 static void
650 h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
651 struct bfd_link_order *link_order, arelent *reloc,
652 bfd_byte *data, unsigned int *src_ptr,
653 unsigned int *dst_ptr)
654 {
655 unsigned int src_address = *src_ptr;
656 unsigned int dst_address = *dst_ptr;
657 asection *input_section = link_order->u.indirect.section;
658 bfd_vma value;
659 bfd_vma dot;
660 int gap, tmp;
661 unsigned char temp_code;
662
663 switch (reloc->howto->type)
664 {
665 /* Generic 8-bit pc-relative relocation. */
666 case R_PCRBYTE:
667 /* Get the address of the target of this branch. */
668 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
669
670 dot = (input_section->output_offset
671 + dst_address
672 + link_order->u.indirect.section->output_section->vma);
673
674 gap = value - dot;
675
676 /* Sanity check. */
677 if (gap < -128 || gap > 126)
678 {
679 if (! ((*link_info->callbacks->reloc_overflow)
680 (link_info, NULL,
681 bfd_asymbol_name (*reloc->sym_ptr_ptr),
682 reloc->howto->name, reloc->addend, input_section->owner,
683 input_section, reloc->address)))
684 abort ();
685 }
686
687 /* Everything looks OK. Apply the relocation and update the
688 src/dst address appropriately. */
689 bfd_put_8 (abfd, gap, data + dst_address);
690 dst_address++;
691 src_address++;
692
693 /* All done. */
694 break;
695
696 /* Generic 16-bit pc-relative relocation. */
697 case R_PCRWORD:
698 /* Get the address of the target of this branch. */
699 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
700
701 /* Get the address of the instruction (not the reloc). */
702 dot = (input_section->output_offset
703 + dst_address
704 + link_order->u.indirect.section->output_section->vma + 1);
705
706 gap = value - dot;
707
708 /* Sanity check. */
709 if (gap > 32766 || gap < -32768)
710 {
711 if (! ((*link_info->callbacks->reloc_overflow)
712 (link_info, NULL,
713 bfd_asymbol_name (*reloc->sym_ptr_ptr),
714 reloc->howto->name, reloc->addend, input_section->owner,
715 input_section, reloc->address)))
716 abort ();
717 }
718
719 /* Everything looks OK. Apply the relocation and update the
720 src/dst address appropriately. */
721 bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
722 dst_address += 2;
723 src_address += 2;
724
725 /* All done. */
726 break;
727
728 /* Generic 8-bit absolute relocation. */
729 case R_RELBYTE:
730 /* Get the address of the object referenced by this insn. */
731 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
732
733 bfd_put_8 (abfd, value & 0xff, data + dst_address);
734 dst_address += 1;
735 src_address += 1;
736
737 /* All done. */
738 break;
739
740 /* Various simple 16-bit absolute relocations. */
741 case R_MOV16B1:
742 case R_JMP1:
743 case R_RELWORD:
744 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
745 bfd_put_16 (abfd, value, data + dst_address);
746 dst_address += 2;
747 src_address += 2;
748 break;
749
750 /* Various simple 24-/32-bit absolute relocations. */
751 case R_MOV24B1:
752 case R_MOVL1:
753 case R_RELLONG:
754 /* Get the address of the target of this branch. */
755 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
756 bfd_put_32 (abfd, value, data + dst_address);
757 dst_address += 4;
758 src_address += 4;
759 break;
760
761 /* Another 24-/32-bit absolute relocation. */
762 case R_JMPL1:
763 /* Get the address of the target of this branch. */
764 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
765
766 value = ((value & 0x00ffffff)
767 | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
768 bfd_put_32 (abfd, value, data + dst_address);
769 dst_address += 4;
770 src_address += 4;
771 break;
772
773 /* This is a 24-/32-bit absolute address in one of the following
774 instructions:
775
776 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
777 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
778 "stc.w" and "mov.[bwl]"
779
780 We may relax this into an 16-bit absolute address if it's in
781 the right range. */
782 case R_MOVL2:
783 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
784 value = bfd_h8300_pad_address (abfd, value);
785
786 /* Sanity check. */
787 if (value <= 0x7fff || value >= 0xffff8000u)
788 {
789 /* Insert the 16-bit value into the proper location. */
790 bfd_put_16 (abfd, value, data + dst_address);
791
792 /* Fix the opcode. For all the instructions that belong to
793 this relaxation, we simply need to turn off bit 0x20 in
794 the previous byte. */
795 data[dst_address - 1] &= ~0x20;
796 dst_address += 2;
797 src_address += 4;
798 }
799 else
800 {
801 if (! ((*link_info->callbacks->reloc_overflow)
802 (link_info, NULL,
803 bfd_asymbol_name (*reloc->sym_ptr_ptr),
804 reloc->howto->name, reloc->addend, input_section->owner,
805 input_section, reloc->address)))
806 abort ();
807 }
808 break;
809
810 /* A 16-bit absolute branch that is now an 8-bit pc-relative branch. */
811 case R_JMP2:
812 /* Get the address of the target of this branch. */
813 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
814
815 /* Get the address of the next instruction. */
816 dot = (input_section->output_offset
817 + dst_address
818 + link_order->u.indirect.section->output_section->vma + 1);
819
820 gap = value - dot;
821
822 /* Sanity check. */
823 if (gap < -128 || gap > 126)
824 {
825 if (! ((*link_info->callbacks->reloc_overflow)
826 (link_info, NULL,
827 bfd_asymbol_name (*reloc->sym_ptr_ptr),
828 reloc->howto->name, reloc->addend, input_section->owner,
829 input_section, reloc->address)))
830 abort ();
831 }
832
833 /* Now fix the instruction itself. */
834 switch (data[dst_address - 1])
835 {
836 case 0x5e:
837 /* jsr -> bsr */
838 bfd_put_8 (abfd, 0x55, data + dst_address - 1);
839 break;
840 case 0x5a:
841 /* jmp -> bra */
842 bfd_put_8 (abfd, 0x40, data + dst_address - 1);
843 break;
844
845 default:
846 abort ();
847 }
848
849 /* Write out the 8-bit value. */
850 bfd_put_8 (abfd, gap, data + dst_address);
851
852 dst_address += 1;
853 src_address += 3;
854
855 break;
856
857 /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch. */
858 case R_PCRWORD_B:
859 /* Get the address of the target of this branch. */
860 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
861
862 /* Get the address of the instruction (not the reloc). */
863 dot = (input_section->output_offset
864 + dst_address
865 + link_order->u.indirect.section->output_section->vma - 1);
866
867 gap = value - dot;
868
869 /* Sanity check. */
870 if (gap < -128 || gap > 126)
871 {
872 if (! ((*link_info->callbacks->reloc_overflow)
873 (link_info, NULL,
874 bfd_asymbol_name (*reloc->sym_ptr_ptr),
875 reloc->howto->name, reloc->addend, input_section->owner,
876 input_section, reloc->address)))
877 abort ();
878 }
879
880 /* Now fix the instruction. */
881 switch (data[dst_address - 2])
882 {
883 case 0x58:
884 /* bCC:16 -> bCC:8 */
885 /* Get the second byte of the original insn, which contains
886 the condition code. */
887 tmp = data[dst_address - 1];
888
889 /* Compute the fisrt byte of the relaxed instruction. The
890 original sequence 0x58 0xX0 is relaxed to 0x4X, where X
891 represents the condition code. */
892 tmp &= 0xf0;
893 tmp >>= 4;
894 tmp |= 0x40;
895
896 /* Write it. */
897 bfd_put_8 (abfd, tmp, data + dst_address - 2);
898 break;
899
900 case 0x5c:
901 /* bsr:16 -> bsr:8 */
902 bfd_put_8 (abfd, 0x55, data + dst_address - 2);
903 break;
904
905 default:
906 abort ();
907 }
908
909 /* Output the target. */
910 bfd_put_8 (abfd, gap, data + dst_address - 1);
911
912 /* We don't advance dst_address -- the 8-bit reloc is applied at
913 dst_address - 1, so the next insn should begin at dst_address. */
914 src_address += 2;
915
916 break;
917
918 /* Similarly for a 24-bit absolute that is now 8 bits. */
919 case R_JMPL2:
920 /* Get the address of the target of this branch. */
921 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
922
923 /* Get the address of the instruction (not the reloc). */
924 dot = (input_section->output_offset
925 + dst_address
926 + link_order->u.indirect.section->output_section->vma + 2);
927
928 gap = value - dot;
929
930 /* Fix the instruction. */
931 switch (data[src_address])
932 {
933 case 0x5e:
934 /* jsr -> bsr */
935 bfd_put_8 (abfd, 0x55, data + dst_address);
936 break;
937 case 0x5a:
938 /* jmp ->bra */
939 bfd_put_8 (abfd, 0x40, data + dst_address);
940 break;
941 default:
942 abort ();
943 }
944
945 bfd_put_8 (abfd, gap, data + dst_address + 1);
946 dst_address += 2;
947 src_address += 4;
948
949 break;
950
951 /* This is a 16-bit absolute address in one of the following
952 instructions:
953
954 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
955 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
956 "mov.b"
957
958 We may relax this into an 8-bit absolute address if it's in
959 the right range. */
960 case R_MOV16B2:
961 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
962
963 /* All instructions with R_H8_DIR16B2 start with 0x6a. */
964 if (data[dst_address - 2] != 0x6a)
965 abort ();
966
967 temp_code = data[src_address - 1];
968
969 /* If this is a mov.b instruction, clear the lower nibble, which
970 contains the source/destination register number. */
971 if ((temp_code & 0x10) != 0x10)
972 temp_code &= 0xf0;
973
974 /* Fix up the opcode. */
975 switch (temp_code)
976 {
977 case 0x00:
978 /* This is mov.b @aa:16,Rd. */
979 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
980 break;
981 case 0x80:
982 /* This is mov.b Rs,@aa:16. */
983 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
984 break;
985 case 0x18:
986 /* This is a bit-maniputation instruction that stores one
987 bit into memory, one of "bclr", "bist", "bnot", "bset",
988 and "bst". */
989 data[dst_address - 2] = 0x7f;
990 break;
991 case 0x10:
992 /* This is a bit-maniputation instruction that loads one bit
993 from memory, one of "band", "biand", "bild", "bior",
994 "bixor", "bld", "bor", "btst", and "bxor". */
995 data[dst_address - 2] = 0x7e;
996 break;
997 default:
998 abort ();
999 }
1000
1001 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1002 src_address += 2;
1003 break;
1004
1005 /* This is a 24-bit absolute address in one of the following
1006 instructions:
1007
1008 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
1009 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
1010 "mov.b"
1011
1012 We may relax this into an 8-bit absolute address if it's in
1013 the right range. */
1014 case R_MOV24B2:
1015 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1016
1017 /* All instructions with R_MOV24B2 start with 0x6a. */
1018 if (data[dst_address - 2] != 0x6a)
1019 abort ();
1020
1021 temp_code = data[src_address - 1];
1022
1023 /* If this is a mov.b instruction, clear the lower nibble, which
1024 contains the source/destination register number. */
1025 if ((temp_code & 0x30) != 0x30)
1026 temp_code &= 0xf0;
1027
1028 /* Fix up the opcode. */
1029 switch (temp_code)
1030 {
1031 case 0x20:
1032 /* This is mov.b @aa:24/32,Rd. */
1033 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
1034 break;
1035 case 0xa0:
1036 /* This is mov.b Rs,@aa:24/32. */
1037 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
1038 break;
1039 case 0x38:
1040 /* This is a bit-maniputation instruction that stores one
1041 bit into memory, one of "bclr", "bist", "bnot", "bset",
1042 and "bst". */
1043 data[dst_address - 2] = 0x7f;
1044 break;
1045 case 0x30:
1046 /* This is a bit-maniputation instruction that loads one bit
1047 from memory, one of "band", "biand", "bild", "bior",
1048 "bixor", "bld", "bor", "btst", and "bxor". */
1049 data[dst_address - 2] = 0x7e;
1050 break;
1051 default:
1052 abort ();
1053 }
1054
1055 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1056 src_address += 4;
1057 break;
1058
1059 case R_BCC_INV:
1060 /* Get the address of the target of this branch. */
1061 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1062
1063 dot = (input_section->output_offset
1064 + dst_address
1065 + link_order->u.indirect.section->output_section->vma) + 1;
1066
1067 gap = value - dot;
1068
1069 /* Sanity check. */
1070 if (gap < -128 || gap > 126)
1071 {
1072 if (! ((*link_info->callbacks->reloc_overflow)
1073 (link_info, NULL,
1074 bfd_asymbol_name (*reloc->sym_ptr_ptr),
1075 reloc->howto->name, reloc->addend, input_section->owner,
1076 input_section, reloc->address)))
1077 abort ();
1078 }
1079
1080 /* Everything looks OK. Fix the condition in the instruction, apply
1081 the relocation, and update the src/dst address appropriately. */
1082
1083 bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1084 data + dst_address - 1);
1085 bfd_put_8 (abfd, gap, data + dst_address);
1086 dst_address++;
1087 src_address++;
1088
1089 /* All done. */
1090 break;
1091
1092 case R_JMP_DEL:
1093 src_address += 4;
1094 break;
1095
1096 /* An 8-bit memory indirect instruction (jmp/jsr).
1097
1098 There's several things that need to be done to handle
1099 this relocation.
1100
1101 If this is a reloc against the absolute symbol, then
1102 we should handle it just R_RELBYTE. Likewise if it's
1103 for a symbol with a value ge 0 and le 0xff.
1104
1105 Otherwise it's a jump/call through the function vector,
1106 and the linker is expected to set up the function vector
1107 and put the right value into the jump/call instruction. */
1108 case R_MEM_INDIRECT:
1109 {
1110 /* We need to find the symbol so we can determine it's
1111 address in the function vector table. */
1112 asymbol *symbol;
1113 const char *name;
1114 struct funcvec_hash_table *ftab;
1115 struct funcvec_hash_entry *h;
1116 struct h8300_coff_link_hash_table *htab;
1117 asection *vectors_sec;
1118
1119 if (link_info->output_bfd->xvec != abfd->xvec)
1120 {
1121 (*_bfd_error_handler)
1122 (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
1123 link_info->output_bfd->xvec->name);
1124
1125 /* What else can we do? This function doesn't allow return
1126 of an error, and we don't want to call abort as that
1127 indicates an internal error. */
1128 #ifndef EXIT_FAILURE
1129 #define EXIT_FAILURE 1
1130 #endif
1131 xexit (EXIT_FAILURE);
1132 }
1133 htab = h8300_coff_hash_table (link_info);
1134 vectors_sec = htab->vectors_sec;
1135
1136 /* First see if this is a reloc against the absolute symbol
1137 or against a symbol with a nonnegative value <= 0xff. */
1138 symbol = *(reloc->sym_ptr_ptr);
1139 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1140 if (symbol == bfd_abs_section_ptr->symbol
1141 || value <= 0xff)
1142 {
1143 /* This should be handled in a manner very similar to
1144 R_RELBYTES. If the value is in range, then just slam
1145 the value into the right location. Else trigger a
1146 reloc overflow callback. */
1147 if (value <= 0xff)
1148 {
1149 bfd_put_8 (abfd, value, data + dst_address);
1150 dst_address += 1;
1151 src_address += 1;
1152 }
1153 else
1154 {
1155 if (! ((*link_info->callbacks->reloc_overflow)
1156 (link_info, NULL,
1157 bfd_asymbol_name (*reloc->sym_ptr_ptr),
1158 reloc->howto->name, reloc->addend, input_section->owner,
1159 input_section, reloc->address)))
1160 abort ();
1161 }
1162 break;
1163 }
1164
1165 /* This is a jump/call through a function vector, and we're
1166 expected to create the function vector ourselves.
1167
1168 First look up this symbol in the linker hash table -- we need
1169 the derived linker symbol which holds this symbol's index
1170 in the function vector. */
1171 name = symbol->name;
1172 if (symbol->flags & BSF_LOCAL)
1173 {
1174 char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1175
1176 if (new_name == NULL)
1177 abort ();
1178
1179 sprintf (new_name, "%s_%08x", name, symbol->section->id);
1180 name = new_name;
1181 }
1182
1183 ftab = htab->funcvec_hash_table;
1184 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1185
1186 /* This shouldn't ever happen. If it does that means we've got
1187 data corruption of some kind. Aborting seems like a reasonable
1188 thing to do here. */
1189 if (h == NULL || vectors_sec == NULL)
1190 abort ();
1191
1192 /* Place the address of the function vector entry into the
1193 reloc's address. */
1194 bfd_put_8 (abfd,
1195 vectors_sec->output_offset + h->offset,
1196 data + dst_address);
1197
1198 dst_address++;
1199 src_address++;
1200
1201 /* Now create an entry in the function vector itself. */
1202 switch (bfd_get_mach (input_section->owner))
1203 {
1204 case bfd_mach_h8300:
1205 case bfd_mach_h8300hn:
1206 case bfd_mach_h8300sn:
1207 bfd_put_16 (abfd,
1208 bfd_coff_reloc16_get_value (reloc,
1209 link_info,
1210 input_section),
1211 vectors_sec->contents + h->offset);
1212 break;
1213 case bfd_mach_h8300h:
1214 case bfd_mach_h8300s:
1215 bfd_put_32 (abfd,
1216 bfd_coff_reloc16_get_value (reloc,
1217 link_info,
1218 input_section),
1219 vectors_sec->contents + h->offset);
1220 break;
1221 default:
1222 abort ();
1223 }
1224
1225 /* Gross. We've already written the contents of the vector section
1226 before we get here... So we write it again with the new data. */
1227 bfd_set_section_contents (vectors_sec->output_section->owner,
1228 vectors_sec->output_section,
1229 vectors_sec->contents,
1230 (file_ptr) vectors_sec->output_offset,
1231 vectors_sec->size);
1232 break;
1233 }
1234
1235 default:
1236 abort ();
1237 break;
1238
1239 }
1240
1241 *src_ptr = src_address;
1242 *dst_ptr = dst_address;
1243 }
1244
1245 /* Routine for the h8300 linker.
1246
1247 This routine is necessary to handle the special R_MEM_INDIRECT
1248 relocs on the h8300. It's responsible for generating a vectors
1249 section and attaching it to an input bfd as well as sizing
1250 the vectors section. It also creates our vectors hash table.
1251
1252 It uses the generic linker routines to actually add the symbols.
1253 from this BFD to the bfd linker hash table. It may add a few
1254 selected static symbols to the bfd linker hash table. */
1255
1256 static bfd_boolean
1257 h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
1258 {
1259 asection *sec;
1260 struct funcvec_hash_table *funcvec_hash_table;
1261 bfd_size_type amt;
1262 struct h8300_coff_link_hash_table *htab;
1263
1264 /* Add the symbols using the generic code. */
1265 _bfd_generic_link_add_symbols (abfd, info);
1266
1267 if (info->output_bfd->xvec != abfd->xvec)
1268 return TRUE;
1269
1270 htab = h8300_coff_hash_table (info);
1271
1272 /* If we haven't created a vectors section, do so now. */
1273 if (!htab->vectors_sec)
1274 {
1275 flagword flags;
1276
1277 /* Make sure the appropriate flags are set, including SEC_IN_MEMORY. */
1278 flags = (SEC_ALLOC | SEC_LOAD
1279 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1280 htab->vectors_sec = bfd_make_section_with_flags (abfd, ".vectors",
1281 flags);
1282
1283 /* If the section wasn't created, or we couldn't set the flags,
1284 quit quickly now, rather than dying a painful death later. */
1285 if (!htab->vectors_sec)
1286 return FALSE;
1287
1288 /* Also create the vector hash table. */
1289 amt = sizeof (struct funcvec_hash_table);
1290 funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
1291
1292 if (!funcvec_hash_table)
1293 return FALSE;
1294
1295 /* And initialize the funcvec hash table. */
1296 if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1297 funcvec_hash_newfunc,
1298 sizeof (struct funcvec_hash_entry)))
1299 {
1300 bfd_release (abfd, funcvec_hash_table);
1301 return FALSE;
1302 }
1303
1304 /* Store away a pointer to the funcvec hash table. */
1305 htab->funcvec_hash_table = funcvec_hash_table;
1306 }
1307
1308 /* Load up the function vector hash table. */
1309 funcvec_hash_table = htab->funcvec_hash_table;
1310
1311 /* Now scan the relocs for all the sections in this bfd; create
1312 additional space in the .vectors section as needed. */
1313 for (sec = abfd->sections; sec; sec = sec->next)
1314 {
1315 long reloc_size, reloc_count, i;
1316 asymbol **symbols;
1317 arelent **relocs;
1318
1319 /* Suck in the relocs, symbols & canonicalize them. */
1320 reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1321 if (reloc_size <= 0)
1322 continue;
1323
1324 relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1325 if (!relocs)
1326 return FALSE;
1327
1328 /* The symbols should have been read in by _bfd_generic link_add_symbols
1329 call abovec, so we can cheat and use the pointer to them that was
1330 saved in the above call. */
1331 symbols = _bfd_generic_link_get_symbols(abfd);
1332 reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1333 if (reloc_count <= 0)
1334 {
1335 free (relocs);
1336 continue;
1337 }
1338
1339 /* Now walk through all the relocations in this section. */
1340 for (i = 0; i < reloc_count; i++)
1341 {
1342 arelent *reloc = relocs[i];
1343 asymbol *symbol = *(reloc->sym_ptr_ptr);
1344 const char *name;
1345
1346 /* We've got an indirect reloc. See if we need to add it
1347 to the function vector table. At this point, we have
1348 to add a new entry for each unique symbol referenced
1349 by an R_MEM_INDIRECT relocation except for a reloc
1350 against the absolute section symbol. */
1351 if (reloc->howto->type == R_MEM_INDIRECT
1352 && symbol != bfd_abs_section_ptr->symbol)
1353
1354 {
1355 struct funcvec_hash_table *ftab;
1356 struct funcvec_hash_entry *h;
1357
1358 name = symbol->name;
1359 if (symbol->flags & BSF_LOCAL)
1360 {
1361 char *new_name;
1362
1363 new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1364 if (new_name == NULL)
1365 abort ();
1366
1367 sprintf (new_name, "%s_%08x", name, symbol->section->id);
1368 name = new_name;
1369 }
1370
1371 /* Look this symbol up in the function vector hash table. */
1372 ftab = htab->funcvec_hash_table;
1373 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1374
1375 /* If this symbol isn't already in the hash table, add
1376 it and bump up the size of the hash table. */
1377 if (h == NULL)
1378 {
1379 h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
1380 if (h == NULL)
1381 {
1382 free (relocs);
1383 return FALSE;
1384 }
1385
1386 /* Bump the size of the vectors section. Each vector
1387 takes 2 bytes on the h8300 and 4 bytes on the h8300h. */
1388 switch (bfd_get_mach (abfd))
1389 {
1390 case bfd_mach_h8300:
1391 case bfd_mach_h8300hn:
1392 case bfd_mach_h8300sn:
1393 htab->vectors_sec->size += 2;
1394 break;
1395 case bfd_mach_h8300h:
1396 case bfd_mach_h8300s:
1397 htab->vectors_sec->size += 4;
1398 break;
1399 default:
1400 abort ();
1401 }
1402 }
1403 }
1404 }
1405
1406 /* We're done with the relocations, release them. */
1407 free (relocs);
1408 }
1409
1410 /* Now actually allocate some space for the function vector. It's
1411 wasteful to do this more than once, but this is easier. */
1412 sec = htab->vectors_sec;
1413 if (sec->size != 0)
1414 {
1415 /* Free the old contents. */
1416 if (sec->contents)
1417 free (sec->contents);
1418
1419 /* Allocate new contents. */
1420 sec->contents = bfd_malloc (sec->size);
1421 }
1422
1423 return TRUE;
1424 }
1425
1426 #define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1427 #define coff_reloc16_estimate h8300_reloc16_estimate
1428 #define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1429 #define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1430
1431 #define COFF_LONG_FILENAMES
1432
1433 #ifndef bfd_pe_print_pdata
1434 #define bfd_pe_print_pdata NULL
1435 #endif
1436
1437 #include "coffcode.h"
1438
1439 #undef coff_bfd_get_relocated_section_contents
1440 #undef coff_bfd_relax_section
1441 #define coff_bfd_get_relocated_section_contents \
1442 bfd_coff_reloc16_get_relocated_section_contents
1443 #define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1444
1445 CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
This page took 0.060282 seconds and 4 git commands to generate.