Credit Jason Molenda as part of last ChangeLog entry.
[deliverable/binutils-gdb.git] / bfd / coff-h8300.c
1 /* BFD back-end for Renesas H8/300 COFF binaries.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5 Written by Steve Chamberlain, <sac@cygnus.com>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25 #include "libbfd.h"
26 #include "bfdlink.h"
27 #include "genlink.h"
28 #include "coff/h8300.h"
29 #include "coff/internal.h"
30 #include "libcoff.h"
31 #include "libiberty.h"
32
33 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
34
35 /* We derive a hash table from the basic BFD hash table to
36 hold entries in the function vector. Aside from the
37 info stored by the basic hash table, we need the offset
38 of a particular entry within the hash table as well as
39 the offset where we'll add the next entry. */
40
41 struct funcvec_hash_entry
42 {
43 /* The basic hash table entry. */
44 struct bfd_hash_entry root;
45
46 /* The offset within the vectors section where
47 this entry lives. */
48 bfd_vma offset;
49 };
50
51 struct funcvec_hash_table
52 {
53 /* The basic hash table. */
54 struct bfd_hash_table root;
55
56 bfd *abfd;
57
58 /* Offset at which we'll add the next entry. */
59 unsigned int offset;
60 };
61
62 static struct bfd_hash_entry *
63 funcvec_hash_newfunc
64 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
65
66 static bfd_boolean
67 funcvec_hash_table_init
68 (struct funcvec_hash_table *, bfd *,
69 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
70 struct bfd_hash_table *,
71 const char *));
72
73 static bfd_reloc_status_type special
74 (bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **);
75 static int select_reloc
76 (reloc_howto_type *);
77 static void rtype2howto
78 (arelent *, struct internal_reloc *);
79 static void reloc_processing
80 (arelent *, struct internal_reloc *, asymbol **, bfd *, asection *);
81 static bfd_boolean h8300_symbol_address_p
82 (bfd *, asection *, bfd_vma);
83 static int h8300_reloc16_estimate
84 (bfd *, asection *, arelent *, unsigned int,
85 struct bfd_link_info *);
86 static void h8300_reloc16_extra_cases
87 (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
88 bfd_byte *, unsigned int *, unsigned int *);
89 static bfd_boolean h8300_bfd_link_add_symbols
90 (bfd *, struct bfd_link_info *);
91
92 /* To lookup a value in the function vector hash table. */
93 #define funcvec_hash_lookup(table, string, create, copy) \
94 ((struct funcvec_hash_entry *) \
95 bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
96
97 /* The derived h8300 COFF linker table. Note it's derived from
98 the generic linker hash table, not the COFF backend linker hash
99 table! We use this to attach additional data structures we
100 need while linking on the h8300. */
101 struct h8300_coff_link_hash_table {
102 /* The main hash table. */
103 struct generic_link_hash_table root;
104
105 /* Section for the vectors table. This gets attached to a
106 random input bfd, we keep it here for easy access. */
107 asection *vectors_sec;
108
109 /* Hash table of the functions we need to enter into the function
110 vector. */
111 struct funcvec_hash_table *funcvec_hash_table;
112 };
113
114 static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
115
116 /* Get the H8/300 COFF linker hash table from a link_info structure. */
117
118 #define h8300_coff_hash_table(p) \
119 ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
120
121 /* Initialize fields within a funcvec hash table entry. Called whenever
122 a new entry is added to the funcvec hash table. */
123
124 static struct bfd_hash_entry *
125 funcvec_hash_newfunc (struct bfd_hash_entry *entry,
126 struct bfd_hash_table *gen_table,
127 const char *string)
128 {
129 struct funcvec_hash_entry *ret;
130 struct funcvec_hash_table *table;
131
132 ret = (struct funcvec_hash_entry *) entry;
133 table = (struct funcvec_hash_table *) gen_table;
134
135 /* Allocate the structure if it has not already been allocated by a
136 subclass. */
137 if (ret == NULL)
138 ret = ((struct funcvec_hash_entry *)
139 bfd_hash_allocate (gen_table,
140 sizeof (struct funcvec_hash_entry)));
141 if (ret == NULL)
142 return NULL;
143
144 /* Call the allocation method of the superclass. */
145 ret = ((struct funcvec_hash_entry *)
146 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
147
148 if (ret == NULL)
149 return NULL;
150
151 /* Note where this entry will reside in the function vector table. */
152 ret->offset = table->offset;
153
154 /* Bump the offset at which we store entries in the function
155 vector. We'd like to bump up the size of the vectors section,
156 but it's not easily available here. */
157 switch (bfd_get_mach (table->abfd))
158 {
159 case bfd_mach_h8300:
160 case bfd_mach_h8300hn:
161 case bfd_mach_h8300sn:
162 table->offset += 2;
163 break;
164 case bfd_mach_h8300h:
165 case bfd_mach_h8300s:
166 table->offset += 4;
167 break;
168 default:
169 return NULL;
170 }
171
172 /* Everything went OK. */
173 return (struct bfd_hash_entry *) ret;
174 }
175
176 /* Initialize the function vector hash table. */
177
178 static bfd_boolean
179 funcvec_hash_table_init (struct funcvec_hash_table *table,
180 bfd *abfd,
181 struct bfd_hash_entry *(*newfunc)
182 (struct bfd_hash_entry *,
183 struct bfd_hash_table *,
184 const char *))
185 {
186 /* Initialize our local fields, then call the generic initialization
187 routine. */
188 table->offset = 0;
189 table->abfd = abfd;
190 return (bfd_hash_table_init (&table->root, newfunc));
191 }
192
193 /* Create the derived linker hash table. We use a derived hash table
194 basically to hold "static" information during an H8/300 coff link
195 without using static variables. */
196
197 static struct bfd_link_hash_table *
198 h8300_coff_link_hash_table_create (bfd *abfd)
199 {
200 struct h8300_coff_link_hash_table *ret;
201 bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
202
203 ret = (struct h8300_coff_link_hash_table *) bfd_malloc (amt);
204 if (ret == NULL)
205 return NULL;
206 if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
207 _bfd_generic_link_hash_newfunc))
208 {
209 free (ret);
210 return NULL;
211 }
212
213 /* Initialize our data. */
214 ret->vectors_sec = NULL;
215 ret->funcvec_hash_table = NULL;
216
217 /* OK. Everything's initialized, return the base pointer. */
218 return &ret->root.root;
219 }
220
221 /* Special handling for H8/300 relocs.
222 We only come here for pcrel stuff and return normally if not an -r link.
223 When doing -r, we can't do any arithmetic for the pcrel stuff, because
224 the code in reloc.c assumes that we can manipulate the targets of
225 the pcrel branches. This isn't so, since the H8/300 can do relaxing,
226 which means that the gap after the instruction may not be enough to
227 contain the offset required for the branch, so we have to use only
228 the addend until the final link. */
229
230 static bfd_reloc_status_type
231 special (bfd *abfd ATTRIBUTE_UNUSED,
232 arelent *reloc_entry ATTRIBUTE_UNUSED,
233 asymbol *symbol ATTRIBUTE_UNUSED,
234 PTR data ATTRIBUTE_UNUSED,
235 asection *input_section ATTRIBUTE_UNUSED,
236 bfd *output_bfd,
237 char **error_message ATTRIBUTE_UNUSED)
238 {
239 if (output_bfd == (bfd *) NULL)
240 return bfd_reloc_continue;
241
242 /* Adjust the reloc address to that in the output section. */
243 reloc_entry->address += input_section->output_offset;
244 return bfd_reloc_ok;
245 }
246
247 static reloc_howto_type howto_table[] = {
248 HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
249 HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
250 HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
251 HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
252 HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
253 HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
254 HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
255 HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
256 HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
257 HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
258 HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
259 HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
260 HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
261 HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
262
263 /* An indirect reference to a function. This causes the function's address
264 to be added to the function vector in lo-mem and puts the address of
265 the function vector's entry in the jsr instruction. */
266 HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
267
268 /* Internal reloc for relaxing. This is created when a 16bit pc-relative
269 branch is turned into an 8bit pc-relative branch. */
270 HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
271
272 HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
273
274 HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
275
276 HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
277
278 HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
279 };
280
281 /* Turn a howto into a reloc number. */
282
283 #define SELECT_RELOC(x,howto) \
284 { x.r_type = select_reloc (howto); }
285
286 #define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
287 && H8300HNBADMAG(x) && H8300SNBADMAG(x))
288 #define H8300 1 /* Customize coffcode.h */
289 #define __A_MAGIC_SET__
290
291 /* Code to swap in the reloc. */
292 #define SWAP_IN_RELOC_OFFSET H_GET_32
293 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
294 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
295 dst->r_stuff[0] = 'S'; \
296 dst->r_stuff[1] = 'C';
297
298 static int
299 select_reloc (reloc_howto_type *howto)
300 {
301 return howto->type;
302 }
303
304 /* Code to turn a r_type into a howto ptr, uses the above howto table. */
305
306 static void
307 rtype2howto (arelent *internal, struct internal_reloc *dst)
308 {
309 switch (dst->r_type)
310 {
311 case R_RELBYTE:
312 internal->howto = howto_table + 0;
313 break;
314 case R_RELWORD:
315 internal->howto = howto_table + 1;
316 break;
317 case R_RELLONG:
318 internal->howto = howto_table + 2;
319 break;
320 case R_PCRBYTE:
321 internal->howto = howto_table + 3;
322 break;
323 case R_PCRWORD:
324 internal->howto = howto_table + 4;
325 break;
326 case R_PCRLONG:
327 internal->howto = howto_table + 5;
328 break;
329 case R_MOV16B1:
330 internal->howto = howto_table + 6;
331 break;
332 case R_MOV16B2:
333 internal->howto = howto_table + 7;
334 break;
335 case R_JMP1:
336 internal->howto = howto_table + 8;
337 break;
338 case R_JMP2:
339 internal->howto = howto_table + 9;
340 break;
341 case R_JMPL1:
342 internal->howto = howto_table + 10;
343 break;
344 case R_JMPL2:
345 internal->howto = howto_table + 11;
346 break;
347 case R_MOV24B1:
348 internal->howto = howto_table + 12;
349 break;
350 case R_MOV24B2:
351 internal->howto = howto_table + 13;
352 break;
353 case R_MEM_INDIRECT:
354 internal->howto = howto_table + 14;
355 break;
356 case R_PCRWORD_B:
357 internal->howto = howto_table + 15;
358 break;
359 case R_MOVL1:
360 internal->howto = howto_table + 16;
361 break;
362 case R_MOVL2:
363 internal->howto = howto_table + 17;
364 break;
365 case R_BCC_INV:
366 internal->howto = howto_table + 18;
367 break;
368 case R_JMP_DEL:
369 internal->howto = howto_table + 19;
370 break;
371 default:
372 abort ();
373 break;
374 }
375 }
376
377 #define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
378
379 /* Perform any necessary magic to the addend in a reloc entry. */
380
381 #define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
382 cache_ptr->addend = ext_reloc.r_offset;
383
384 #define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
385 reloc_processing (relent, reloc, symbols, abfd, section)
386
387 static void
388 reloc_processing (arelent *relent, struct internal_reloc *reloc,
389 asymbol **symbols, bfd *abfd, asection *section)
390 {
391 relent->address = reloc->r_vaddr;
392 rtype2howto (relent, reloc);
393
394 if (((int) reloc->r_symndx) > 0)
395 relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
396 else
397 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
398
399 relent->addend = reloc->r_offset;
400
401 relent->address -= section->vma;
402 #if 0
403 relent->section = 0;
404 #endif
405 }
406
407 static bfd_boolean
408 h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
409 {
410 asymbol **s;
411
412 s = _bfd_generic_link_get_symbols (abfd);
413 BFD_ASSERT (s != (asymbol **) NULL);
414
415 /* Search all the symbols for one in INPUT_SECTION with
416 address ADDRESS. */
417 while (*s)
418 {
419 asymbol *p = *s;
420
421 if (p->section == input_section
422 && (input_section->output_section->vma
423 + input_section->output_offset
424 + p->value) == address)
425 return TRUE;
426 s++;
427 }
428 return FALSE;
429 }
430
431 /* If RELOC represents a relaxable instruction/reloc, change it into
432 the relaxed reloc, notify the linker that symbol addresses
433 have changed (bfd_perform_slip) and return how much the current
434 section has shrunk by.
435
436 FIXME: Much of this code has knowledge of the ordering of entries
437 in the howto table. This needs to be fixed. */
438
439 static int
440 h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
441 unsigned int shrink, struct bfd_link_info *link_info)
442 {
443 bfd_vma value;
444 bfd_vma dot;
445 bfd_vma gap;
446 static asection *last_input_section = NULL;
447 static arelent *last_reloc = NULL;
448
449 /* The address of the thing to be relocated will have moved back by
450 the size of the shrink - but we don't change reloc->address here,
451 since we need it to know where the relocation lives in the source
452 uncooked section. */
453 bfd_vma address = reloc->address - shrink;
454
455 if (input_section != last_input_section)
456 last_reloc = NULL;
457
458 /* Only examine the relocs which might be relaxable. */
459 switch (reloc->howto->type)
460 {
461 /* This is the 16/24 bit absolute branch which could become an 8 bit
462 pc-relative branch. */
463 case R_JMP1:
464 case R_JMPL1:
465 /* Get the address of the target of this branch. */
466 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
467
468 /* Get the address of the next instruction (not the reloc). */
469 dot = (input_section->output_section->vma
470 + input_section->output_offset + address);
471
472 /* Adjust for R_JMP1 vs R_JMPL1. */
473 dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
474
475 /* Compute the distance from this insn to the branch target. */
476 gap = value - dot;
477
478 /* If the distance is within -128..+128 inclusive, then we can relax
479 this jump. +128 is valid since the target will move two bytes
480 closer if we do relax this branch. */
481 if ((int) gap >= -128 && (int) gap <= 128)
482 {
483 bfd_byte code;
484
485 if (!bfd_get_section_contents (abfd, input_section, & code,
486 reloc->address, 1))
487 break;
488 code = bfd_get_8 (abfd, & code);
489
490 /* It's possible we may be able to eliminate this branch entirely;
491 if the previous instruction is a branch around this instruction,
492 and there's no label at this instruction, then we can reverse
493 the condition on the previous branch and eliminate this jump.
494
495 original: new:
496 bCC lab1 bCC' lab2
497 jmp lab2
498 lab1: lab1:
499
500 This saves 4 bytes instead of two, and should be relatively
501 common.
502
503 Only perform this optimisation for jumps (code 0x5a) not
504 subroutine calls, as otherwise it could transform:
505
506 mov.w r0,r0
507 beq .L1
508 jsr @_bar
509 .L1: rts
510 _bar: rts
511 into:
512 mov.w r0,r0
513 bne _bar
514 rts
515 _bar: rts
516
517 which changes the call (jsr) into a branch (bne). */
518 if (code == 0x5a
519 && gap <= 126
520 && last_reloc
521 && last_reloc->howto->type == R_PCRBYTE)
522 {
523 bfd_vma last_value;
524 last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
525 input_section) + 1;
526
527 if (last_value == dot + 2
528 && last_reloc->address + 1 == reloc->address
529 && !h8300_symbol_address_p (abfd, input_section, dot - 2))
530 {
531 reloc->howto = howto_table + 19;
532 last_reloc->howto = howto_table + 18;
533 last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
534 last_reloc->addend = reloc->addend;
535 shrink += 4;
536 bfd_perform_slip (abfd, 4, input_section, address);
537 break;
538 }
539 }
540
541 /* Change the reloc type. */
542 reloc->howto = reloc->howto + 1;
543
544 /* This shrinks this section by two bytes. */
545 shrink += 2;
546 bfd_perform_slip (abfd, 2, input_section, address);
547 }
548 break;
549
550 /* This is the 16 bit pc-relative branch which could become an 8 bit
551 pc-relative branch. */
552 case R_PCRWORD:
553 /* Get the address of the target of this branch, add one to the value
554 because the addend field in PCrel jumps is off by -1. */
555 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
556
557 /* Get the address of the next instruction if we were to relax. */
558 dot = input_section->output_section->vma +
559 input_section->output_offset + address;
560
561 /* Compute the distance from this insn to the branch target. */
562 gap = value - dot;
563
564 /* If the distance is within -128..+128 inclusive, then we can relax
565 this jump. +128 is valid since the target will move two bytes
566 closer if we do relax this branch. */
567 if ((int) gap >= -128 && (int) gap <= 128)
568 {
569 /* Change the reloc type. */
570 reloc->howto = howto_table + 15;
571
572 /* This shrinks this section by two bytes. */
573 shrink += 2;
574 bfd_perform_slip (abfd, 2, input_section, address);
575 }
576 break;
577
578 /* This is a 16 bit absolute address in a mov.b insn, which can
579 become an 8 bit absolute address if it's in the right range. */
580 case R_MOV16B1:
581 /* Get the address of the data referenced by this mov.b insn. */
582 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
583 value = bfd_h8300_pad_address (abfd, value);
584
585 /* If the address is in the top 256 bytes of the address space
586 then we can relax this instruction. */
587 if (value >= 0xffffff00u)
588 {
589 /* Change the reloc type. */
590 reloc->howto = reloc->howto + 1;
591
592 /* This shrinks this section by two bytes. */
593 shrink += 2;
594 bfd_perform_slip (abfd, 2, input_section, address);
595 }
596 break;
597
598 /* Similarly for a 24 bit absolute address in a mov.b. Note that
599 if we can't relax this into an 8 bit absolute, we'll fall through
600 and try to relax it into a 16bit absolute. */
601 case R_MOV24B1:
602 /* Get the address of the data referenced by this mov.b insn. */
603 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
604 value = bfd_h8300_pad_address (abfd, value);
605
606 if (value >= 0xffffff00u)
607 {
608 /* Change the reloc type. */
609 reloc->howto = reloc->howto + 1;
610
611 /* This shrinks this section by four bytes. */
612 shrink += 4;
613 bfd_perform_slip (abfd, 4, input_section, address);
614
615 /* Done with this reloc. */
616 break;
617 }
618
619 /* FALLTHROUGH and try to turn the 32/24 bit reloc into a 16 bit
620 reloc. */
621
622 /* This is a 24/32 bit absolute address in a mov insn, which can
623 become an 16 bit absolute address if it's in the right range. */
624 case R_MOVL1:
625 /* Get the address of the data referenced by this mov insn. */
626 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
627 value = bfd_h8300_pad_address (abfd, value);
628
629 /* If the address is a sign-extended 16-bit value then we can
630 relax this instruction. */
631 if (value <= 0x7fff || value >= 0xffff8000u)
632 {
633 /* Change the reloc type. */
634 reloc->howto = howto_table + 17;
635
636 /* This shrinks this section by two bytes. */
637 shrink += 2;
638 bfd_perform_slip (abfd, 2, input_section, address);
639 }
640 break;
641
642 /* No other reloc types represent relaxing opportunities. */
643 default:
644 break;
645 }
646
647 last_reloc = reloc;
648 last_input_section = input_section;
649 return shrink;
650 }
651
652 /* Handle relocations for the H8/300, including relocs for relaxed
653 instructions.
654
655 FIXME: Not all relocations check for overflow! */
656
657 static void
658 h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
659 struct bfd_link_order *link_order, arelent *reloc,
660 bfd_byte *data, unsigned int *src_ptr,
661 unsigned int *dst_ptr)
662 {
663 unsigned int src_address = *src_ptr;
664 unsigned int dst_address = *dst_ptr;
665 asection *input_section = link_order->u.indirect.section;
666 bfd_vma value;
667 bfd_vma dot;
668 int gap, tmp;
669
670 switch (reloc->howto->type)
671 {
672 /* Generic 8bit pc-relative relocation. */
673 case R_PCRBYTE:
674 /* Get the address of the target of this branch. */
675 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
676
677 dot = (link_order->offset
678 + dst_address
679 + link_order->u.indirect.section->output_section->vma);
680
681 gap = value - dot;
682
683 /* Sanity check. */
684 if (gap < -128 || gap > 126)
685 {
686 if (! ((*link_info->callbacks->reloc_overflow)
687 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
688 reloc->howto->name, reloc->addend, input_section->owner,
689 input_section, reloc->address)))
690 abort ();
691 }
692
693 /* Everything looks OK. Apply the relocation and update the
694 src/dst address appropriately. */
695 bfd_put_8 (abfd, gap, data + dst_address);
696 dst_address++;
697 src_address++;
698
699 /* All done. */
700 break;
701
702 /* Generic 16bit pc-relative relocation. */
703 case R_PCRWORD:
704 /* Get the address of the target of this branch. */
705 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
706
707 /* Get the address of the instruction (not the reloc). */
708 dot = (link_order->offset
709 + dst_address
710 + link_order->u.indirect.section->output_section->vma + 1);
711
712 gap = value - dot;
713
714 /* Sanity check. */
715 if (gap > 32766 || gap < -32768)
716 {
717 if (! ((*link_info->callbacks->reloc_overflow)
718 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
719 reloc->howto->name, reloc->addend, input_section->owner,
720 input_section, reloc->address)))
721 abort ();
722 }
723
724 /* Everything looks OK. Apply the relocation and update the
725 src/dst address appropriately. */
726 bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
727 dst_address += 2;
728 src_address += 2;
729
730 /* All done. */
731 break;
732
733 /* Generic 8bit absolute relocation. */
734 case R_RELBYTE:
735 /* Get the address of the object referenced by this insn. */
736 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
737
738 bfd_put_8 (abfd, value & 0xff, data + dst_address);
739 dst_address += 1;
740 src_address += 1;
741
742 /* All done. */
743 break;
744
745 /* Various simple 16bit absolute relocations. */
746 case R_MOV16B1:
747 case R_JMP1:
748 case R_RELWORD:
749 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
750 bfd_put_16 (abfd, value, data + dst_address);
751 dst_address += 2;
752 src_address += 2;
753 break;
754
755 /* Various simple 24/32bit absolute relocations. */
756 case R_MOV24B1:
757 case R_MOVL1:
758 case R_RELLONG:
759 /* Get the address of the target of this branch. */
760 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
761 bfd_put_32 (abfd, value, data + dst_address);
762 dst_address += 4;
763 src_address += 4;
764 break;
765
766 /* Another 24/32bit absolute relocation. */
767 case R_JMPL1:
768 /* Get the address of the target of this branch. */
769 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
770
771 value = ((value & 0x00ffffff)
772 | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
773 bfd_put_32 (abfd, value, data + dst_address);
774 dst_address += 4;
775 src_address += 4;
776 break;
777
778 /* A 16bit absolute relocation that was formerly a 24/32bit
779 absolute relocation. */
780 case R_MOVL2:
781 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
782 value = bfd_h8300_pad_address (abfd, value);
783
784 /* Sanity check. */
785 if (value <= 0x7fff || value >= 0xffff8000u)
786 {
787 /* Insert the 16bit value into the proper location. */
788 bfd_put_16 (abfd, value, data + dst_address);
789
790 /* Fix the opcode. For all the move insns, we simply
791 need to turn off bit 0x20 in the previous byte. */
792 data[dst_address - 1] &= ~0x20;
793 dst_address += 2;
794 src_address += 4;
795 }
796 else
797 {
798 if (! ((*link_info->callbacks->reloc_overflow)
799 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
800 reloc->howto->name, reloc->addend, input_section->owner,
801 input_section, reloc->address)))
802 abort ();
803 }
804 break;
805
806 /* A 16bit absolute branch that is now an 8-bit pc-relative branch. */
807 case R_JMP2:
808 /* Get the address of the target of this branch. */
809 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
810
811 /* Get the address of the next instruction. */
812 dot = (link_order->offset
813 + dst_address
814 + link_order->u.indirect.section->output_section->vma + 1);
815
816 gap = value - dot;
817
818 /* Sanity check. */
819 if (gap < -128 || gap > 126)
820 {
821 if (! ((*link_info->callbacks->reloc_overflow)
822 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
823 reloc->howto->name, reloc->addend, input_section->owner,
824 input_section, reloc->address)))
825 abort ();
826 }
827
828 /* Now fix the instruction itself. */
829 switch (data[dst_address - 1])
830 {
831 case 0x5e:
832 /* jsr -> bsr */
833 bfd_put_8 (abfd, 0x55, data + dst_address - 1);
834 break;
835 case 0x5a:
836 /* jmp ->bra */
837 bfd_put_8 (abfd, 0x40, data + dst_address - 1);
838 break;
839
840 default:
841 abort ();
842 }
843
844 /* Write out the 8bit value. */
845 bfd_put_8 (abfd, gap, data + dst_address);
846
847 dst_address += 1;
848 src_address += 3;
849
850 break;
851
852 /* A 16bit pc-relative branch that is now an 8-bit pc-relative branch. */
853 case R_PCRWORD_B:
854 /* Get the address of the target of this branch. */
855 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
856
857 /* Get the address of the instruction (not the reloc). */
858 dot = (link_order->offset
859 + dst_address
860 + link_order->u.indirect.section->output_section->vma - 1);
861
862 gap = value - dot;
863
864 /* Sanity check. */
865 if (gap < -128 || gap > 126)
866 {
867 if (! ((*link_info->callbacks->reloc_overflow)
868 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
869 reloc->howto->name, reloc->addend, input_section->owner,
870 input_section, reloc->address)))
871 abort ();
872 }
873
874 /* Now fix the instruction. */
875 switch (data[dst_address - 2])
876 {
877 case 0x58:
878 /* bCC:16 -> bCC:8 */
879 /* Get the condition code from the original insn. */
880 tmp = data[dst_address - 1];
881 tmp &= 0xf0;
882 tmp >>= 4;
883
884 /* Now or in the high nibble of the opcode. */
885 tmp |= 0x40;
886
887 /* Write it. */
888 bfd_put_8 (abfd, tmp, data + dst_address - 2);
889 break;
890
891 case 0x5c:
892 /* bsr:16 -> bsr:8 */
893 bfd_put_8 (abfd, 0x55, data + dst_address - 2);
894 break;
895
896 default:
897 abort ();
898 }
899
900 /* Output the target. */
901 bfd_put_8 (abfd, gap, data + dst_address - 1);
902
903 /* We don't advance dst_address -- the 8bit reloc is applied at
904 dst_address - 1, so the next insn should begin at dst_address. */
905 src_address += 2;
906
907 break;
908
909 /* Similarly for a 24bit absolute that is now 8 bits. */
910 case R_JMPL2:
911 /* Get the address of the target of this branch. */
912 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
913
914 /* Get the address of the instruction (not the reloc). */
915 dot = (link_order->offset
916 + dst_address
917 + link_order->u.indirect.section->output_section->vma + 2);
918
919 gap = value - dot;
920
921 /* Fix the instruction. */
922 switch (data[src_address])
923 {
924 case 0x5e:
925 /* jsr -> bsr */
926 bfd_put_8 (abfd, 0x55, data + dst_address);
927 break;
928 case 0x5a:
929 /* jmp ->bra */
930 bfd_put_8 (abfd, 0x40, data + dst_address);
931 break;
932 default:
933 abort ();
934 }
935
936 bfd_put_8 (abfd, gap, data + dst_address + 1);
937 dst_address += 2;
938 src_address += 4;
939
940 break;
941
942 /* A 16bit absolute mov.b that is now an 8bit absolute mov.b. */
943 case R_MOV16B2:
944 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
945
946 /* Sanity check. */
947 if (data[dst_address - 2] != 0x6a)
948 abort ();
949
950 /* Fix up the opcode. */
951 switch (data[src_address - 1] & 0xf0)
952 {
953 case 0x00:
954 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
955 break;
956 case 0x80:
957 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
958 break;
959 default:
960 abort ();
961 }
962
963 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
964 src_address += 2;
965 break;
966
967 /* Similarly for a 24bit mov.b */
968 case R_MOV24B2:
969 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
970
971 /* Sanity check. */
972 if (data[dst_address - 2] != 0x6a)
973 abort ();
974
975 /* Fix up the opcode. */
976 switch (data[src_address - 1] & 0xf0)
977 {
978 case 0x20:
979 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
980 break;
981 case 0xa0:
982 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
983 break;
984 default:
985 abort ();
986 }
987
988 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
989 src_address += 4;
990 break;
991
992 case R_BCC_INV:
993 /* Get the address of the target of this branch. */
994 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
995
996 dot = (link_order->offset
997 + dst_address
998 + link_order->u.indirect.section->output_section->vma) + 1;
999
1000 gap = value - dot;
1001
1002 /* Sanity check. */
1003 if (gap < -128 || gap > 126)
1004 {
1005 if (! ((*link_info->callbacks->reloc_overflow)
1006 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1007 reloc->howto->name, reloc->addend, input_section->owner,
1008 input_section, reloc->address)))
1009 abort ();
1010 }
1011
1012 /* Everything looks OK. Fix the condition in the instruction, apply
1013 the relocation, and update the src/dst address appropriately. */
1014
1015 bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1016 data + dst_address - 1);
1017 bfd_put_8 (abfd, gap, data + dst_address);
1018 dst_address++;
1019 src_address++;
1020
1021 /* All done. */
1022 break;
1023
1024 case R_JMP_DEL:
1025 src_address += 4;
1026 break;
1027
1028 /* An 8bit memory indirect instruction (jmp/jsr).
1029
1030 There's several things that need to be done to handle
1031 this relocation.
1032
1033 If this is a reloc against the absolute symbol, then
1034 we should handle it just R_RELBYTE. Likewise if it's
1035 for a symbol with a value ge 0 and le 0xff.
1036
1037 Otherwise it's a jump/call through the function vector,
1038 and the linker is expected to set up the function vector
1039 and put the right value into the jump/call instruction. */
1040 case R_MEM_INDIRECT:
1041 {
1042 /* We need to find the symbol so we can determine it's
1043 address in the function vector table. */
1044 asymbol *symbol;
1045 const char *name;
1046 struct funcvec_hash_table *ftab;
1047 struct funcvec_hash_entry *h;
1048 struct h8300_coff_link_hash_table *htab;
1049 asection *vectors_sec;
1050
1051 if (link_info->hash->creator != abfd->xvec)
1052 {
1053 (*_bfd_error_handler)
1054 (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
1055 link_info->hash->creator->name);
1056
1057 /* What else can we do? This function doesn't allow return
1058 of an error, and we don't want to call abort as that
1059 indicates an internal error. */
1060 #ifndef EXIT_FAILURE
1061 #define EXIT_FAILURE 1
1062 #endif
1063 xexit (EXIT_FAILURE);
1064 }
1065 htab = h8300_coff_hash_table (link_info);
1066 vectors_sec = htab->vectors_sec;
1067
1068 /* First see if this is a reloc against the absolute symbol
1069 or against a symbol with a nonnegative value <= 0xff. */
1070 symbol = *(reloc->sym_ptr_ptr);
1071 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1072 if (symbol == bfd_abs_section_ptr->symbol
1073 || value <= 0xff)
1074 {
1075 /* This should be handled in a manner very similar to
1076 R_RELBYTES. If the value is in range, then just slam
1077 the value into the right location. Else trigger a
1078 reloc overflow callback. */
1079 if (value <= 0xff)
1080 {
1081 bfd_put_8 (abfd, value, data + dst_address);
1082 dst_address += 1;
1083 src_address += 1;
1084 }
1085 else
1086 {
1087 if (! ((*link_info->callbacks->reloc_overflow)
1088 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1089 reloc->howto->name, reloc->addend, input_section->owner,
1090 input_section, reloc->address)))
1091 abort ();
1092 }
1093 break;
1094 }
1095
1096 /* This is a jump/call through a function vector, and we're
1097 expected to create the function vector ourselves.
1098
1099 First look up this symbol in the linker hash table -- we need
1100 the derived linker symbol which holds this symbol's index
1101 in the function vector. */
1102 name = symbol->name;
1103 if (symbol->flags & BSF_LOCAL)
1104 {
1105 char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 9);
1106
1107 if (new_name == NULL)
1108 abort ();
1109
1110 strcpy (new_name, name);
1111 sprintf (new_name + strlen (name), "_%08x",
1112 (int) symbol->section);
1113 name = new_name;
1114 }
1115
1116 ftab = htab->funcvec_hash_table;
1117 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1118
1119 /* This shouldn't ever happen. If it does that means we've got
1120 data corruption of some kind. Aborting seems like a reasonable
1121 thing to do here. */
1122 if (h == NULL || vectors_sec == NULL)
1123 abort ();
1124
1125 /* Place the address of the function vector entry into the
1126 reloc's address. */
1127 bfd_put_8 (abfd,
1128 vectors_sec->output_offset + h->offset,
1129 data + dst_address);
1130
1131 dst_address++;
1132 src_address++;
1133
1134 /* Now create an entry in the function vector itself. */
1135 switch (bfd_get_mach (input_section->owner))
1136 {
1137 case bfd_mach_h8300:
1138 case bfd_mach_h8300hn:
1139 case bfd_mach_h8300sn:
1140 bfd_put_16 (abfd,
1141 bfd_coff_reloc16_get_value (reloc,
1142 link_info,
1143 input_section),
1144 vectors_sec->contents + h->offset);
1145 break;
1146 case bfd_mach_h8300h:
1147 case bfd_mach_h8300s:
1148 bfd_put_32 (abfd,
1149 bfd_coff_reloc16_get_value (reloc,
1150 link_info,
1151 input_section),
1152 vectors_sec->contents + h->offset);
1153 break;
1154 default:
1155 abort ();
1156 }
1157
1158 /* Gross. We've already written the contents of the vector section
1159 before we get here... So we write it again with the new data. */
1160 bfd_set_section_contents (vectors_sec->output_section->owner,
1161 vectors_sec->output_section,
1162 vectors_sec->contents,
1163 (file_ptr) vectors_sec->output_offset,
1164 vectors_sec->_raw_size);
1165 break;
1166 }
1167
1168 default:
1169 abort ();
1170 break;
1171
1172 }
1173
1174 *src_ptr = src_address;
1175 *dst_ptr = dst_address;
1176 }
1177
1178 /* Routine for the h8300 linker.
1179
1180 This routine is necessary to handle the special R_MEM_INDIRECT
1181 relocs on the h8300. It's responsible for generating a vectors
1182 section and attaching it to an input bfd as well as sizing
1183 the vectors section. It also creates our vectors hash table.
1184
1185 It uses the generic linker routines to actually add the symbols.
1186 from this BFD to the bfd linker hash table. It may add a few
1187 selected static symbols to the bfd linker hash table. */
1188
1189 static bfd_boolean
1190 h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
1191 {
1192 asection *sec;
1193 struct funcvec_hash_table *funcvec_hash_table;
1194 bfd_size_type amt;
1195 struct h8300_coff_link_hash_table *htab;
1196
1197 /* Add the symbols using the generic code. */
1198 _bfd_generic_link_add_symbols (abfd, info);
1199
1200 if (info->hash->creator != abfd->xvec)
1201 return TRUE;
1202
1203 htab = h8300_coff_hash_table (info);
1204
1205 /* If we haven't created a vectors section, do so now. */
1206 if (!htab->vectors_sec)
1207 {
1208 flagword flags;
1209
1210 /* Make sure the appropriate flags are set, including SEC_IN_MEMORY. */
1211 flags = (SEC_ALLOC | SEC_LOAD
1212 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1213 htab->vectors_sec = bfd_make_section (abfd, ".vectors");
1214
1215 /* If the section wasn't created, or we couldn't set the flags,
1216 quit quickly now, rather than dying a painful death later. */
1217 if (!htab->vectors_sec
1218 || !bfd_set_section_flags (abfd, htab->vectors_sec, flags))
1219 return FALSE;
1220
1221 /* Also create the vector hash table. */
1222 amt = sizeof (struct funcvec_hash_table);
1223 funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
1224
1225 if (!funcvec_hash_table)
1226 return FALSE;
1227
1228 /* And initialize the funcvec hash table. */
1229 if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1230 funcvec_hash_newfunc))
1231 {
1232 bfd_release (abfd, funcvec_hash_table);
1233 return FALSE;
1234 }
1235
1236 /* Store away a pointer to the funcvec hash table. */
1237 htab->funcvec_hash_table = funcvec_hash_table;
1238 }
1239
1240 /* Load up the function vector hash table. */
1241 funcvec_hash_table = htab->funcvec_hash_table;
1242
1243 /* Now scan the relocs for all the sections in this bfd; create
1244 additional space in the .vectors section as needed. */
1245 for (sec = abfd->sections; sec; sec = sec->next)
1246 {
1247 long reloc_size, reloc_count, i;
1248 asymbol **symbols;
1249 arelent **relocs;
1250
1251 /* Suck in the relocs, symbols & canonicalize them. */
1252 reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1253 if (reloc_size <= 0)
1254 continue;
1255
1256 relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1257 if (!relocs)
1258 return FALSE;
1259
1260 /* The symbols should have been read in by _bfd_generic link_add_symbols
1261 call abovec, so we can cheat and use the pointer to them that was
1262 saved in the above call. */
1263 symbols = _bfd_generic_link_get_symbols(abfd);
1264 reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1265 if (reloc_count <= 0)
1266 {
1267 free (relocs);
1268 continue;
1269 }
1270
1271 /* Now walk through all the relocations in this section. */
1272 for (i = 0; i < reloc_count; i++)
1273 {
1274 arelent *reloc = relocs[i];
1275 asymbol *symbol = *(reloc->sym_ptr_ptr);
1276 const char *name;
1277
1278 /* We've got an indirect reloc. See if we need to add it
1279 to the function vector table. At this point, we have
1280 to add a new entry for each unique symbol referenced
1281 by an R_MEM_INDIRECT relocation except for a reloc
1282 against the absolute section symbol. */
1283 if (reloc->howto->type == R_MEM_INDIRECT
1284 && symbol != bfd_abs_section_ptr->symbol)
1285
1286 {
1287 struct funcvec_hash_table *ftab;
1288 struct funcvec_hash_entry *h;
1289
1290 name = symbol->name;
1291 if (symbol->flags & BSF_LOCAL)
1292 {
1293 char *new_name;
1294
1295 new_name = bfd_malloc ((bfd_size_type) strlen (name) + 9);
1296 if (new_name == NULL)
1297 abort ();
1298
1299 strcpy (new_name, name);
1300 sprintf (new_name + strlen (name), "_%08x",
1301 (int) symbol->section);
1302 name = new_name;
1303 }
1304
1305 /* Look this symbol up in the function vector hash table. */
1306 ftab = htab->funcvec_hash_table;
1307 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1308
1309 /* If this symbol isn't already in the hash table, add
1310 it and bump up the size of the hash table. */
1311 if (h == NULL)
1312 {
1313 h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
1314 if (h == NULL)
1315 {
1316 free (relocs);
1317 return FALSE;
1318 }
1319
1320 /* Bump the size of the vectors section. Each vector
1321 takes 2 bytes on the h8300 and 4 bytes on the h8300h. */
1322 switch (bfd_get_mach (abfd))
1323 {
1324 case bfd_mach_h8300:
1325 case bfd_mach_h8300hn:
1326 case bfd_mach_h8300sn:
1327 htab->vectors_sec->_raw_size += 2;
1328 break;
1329 case bfd_mach_h8300h:
1330 case bfd_mach_h8300s:
1331 htab->vectors_sec->_raw_size += 4;
1332 break;
1333 default:
1334 abort ();
1335 }
1336 }
1337 }
1338 }
1339
1340 /* We're done with the relocations, release them. */
1341 free (relocs);
1342 }
1343
1344 /* Now actually allocate some space for the function vector. It's
1345 wasteful to do this more than once, but this is easier. */
1346 sec = htab->vectors_sec;
1347 if (sec->_raw_size != 0)
1348 {
1349 /* Free the old contents. */
1350 if (sec->contents)
1351 free (sec->contents);
1352
1353 /* Allocate new contents. */
1354 sec->contents = bfd_malloc (sec->_raw_size);
1355 }
1356
1357 return TRUE;
1358 }
1359
1360 #define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1361 #define coff_reloc16_estimate h8300_reloc16_estimate
1362 #define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1363 #define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1364
1365 #define COFF_LONG_FILENAMES
1366 #include "coffcode.h"
1367
1368 #undef coff_bfd_get_relocated_section_contents
1369 #undef coff_bfd_relax_section
1370 #define coff_bfd_get_relocated_section_contents \
1371 bfd_coff_reloc16_get_relocated_section_contents
1372 #define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1373
1374 CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
This page took 0.077434 seconds and 4 git commands to generate.