Don't handle BFD_RELOC_16 in XCOFF reloc_type_lookup
[deliverable/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2021 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38 #include "hashtab.h"
39
40 /* The data in the .debug_line statement prologue looks like this. */
41
42 struct line_head
43 {
44 bfd_vma total_length;
45 unsigned short version;
46 bfd_vma prologue_length;
47 unsigned char minimum_instruction_length;
48 unsigned char maximum_ops_per_insn;
49 unsigned char default_is_stmt;
50 int line_base;
51 unsigned char line_range;
52 unsigned char opcode_base;
53 unsigned char *standard_opcode_lengths;
54 };
55
56 /* Attributes have a name and a value. */
57
58 struct attribute
59 {
60 enum dwarf_attribute name;
61 enum dwarf_form form;
62 union
63 {
64 char *str;
65 struct dwarf_block *blk;
66 bfd_uint64_t val;
67 bfd_int64_t sval;
68 }
69 u;
70 };
71
72 /* Blocks are a bunch of untyped bytes. */
73 struct dwarf_block
74 {
75 unsigned int size;
76 bfd_byte *data;
77 };
78
79 struct adjusted_section
80 {
81 asection *section;
82 bfd_vma adj_vma;
83 };
84
85 struct dwarf2_debug_file
86 {
87 /* The actual bfd from which debug info was loaded. Might be
88 different to orig_bfd because of gnu_debuglink sections. */
89 bfd *bfd_ptr;
90
91 /* Pointer to the symbol table. */
92 asymbol **syms;
93
94 /* The current info pointer for the .debug_info section being parsed. */
95 bfd_byte *info_ptr;
96
97 /* A pointer to the memory block allocated for .debug_info sections. */
98 bfd_byte *dwarf_info_buffer;
99
100 /* Length of the loaded .debug_info sections. */
101 bfd_size_type dwarf_info_size;
102
103 /* Pointer to the .debug_abbrev section loaded into memory. */
104 bfd_byte *dwarf_abbrev_buffer;
105
106 /* Length of the loaded .debug_abbrev section. */
107 bfd_size_type dwarf_abbrev_size;
108
109 /* Buffer for decode_line_info. */
110 bfd_byte *dwarf_line_buffer;
111
112 /* Length of the loaded .debug_line section. */
113 bfd_size_type dwarf_line_size;
114
115 /* Pointer to the .debug_str section loaded into memory. */
116 bfd_byte *dwarf_str_buffer;
117
118 /* Length of the loaded .debug_str section. */
119 bfd_size_type dwarf_str_size;
120
121 /* Pointer to the .debug_line_str section loaded into memory. */
122 bfd_byte *dwarf_line_str_buffer;
123
124 /* Length of the loaded .debug_line_str section. */
125 bfd_size_type dwarf_line_str_size;
126
127 /* Pointer to the .debug_ranges section loaded into memory. */
128 bfd_byte *dwarf_ranges_buffer;
129
130 /* Length of the loaded .debug_ranges section. */
131 bfd_size_type dwarf_ranges_size;
132
133 /* Pointer to the .debug_rnglists section loaded into memory. */
134 bfd_byte *dwarf_rnglists_buffer;
135
136 /* Length of the loaded .debug_rnglists section. */
137 bfd_size_type dwarf_rnglists_size;
138
139 /* A list of all previously read comp_units. */
140 struct comp_unit *all_comp_units;
141
142 /* Last comp unit in list above. */
143 struct comp_unit *last_comp_unit;
144
145 /* Line table at line_offset zero. */
146 struct line_info_table *line_table;
147
148 /* Hash table to map offsets to decoded abbrevs. */
149 htab_t abbrev_offsets;
150 };
151
152 struct dwarf2_debug
153 {
154 /* Names of the debug sections. */
155 const struct dwarf_debug_section *debug_sections;
156
157 /* Per-file stuff. */
158 struct dwarf2_debug_file f, alt;
159
160 /* Pointer to the original bfd for which debug was loaded. This is what
161 we use to compare and so check that the cached debug data is still
162 valid - it saves having to possibly dereference the gnu_debuglink each
163 time. */
164 bfd *orig_bfd;
165
166 /* If the most recent call to bfd_find_nearest_line was given an
167 address in an inlined function, preserve a pointer into the
168 calling chain for subsequent calls to bfd_find_inliner_info to
169 use. */
170 struct funcinfo *inliner_chain;
171
172 /* Section VMAs at the time the stash was built. */
173 bfd_vma *sec_vma;
174 /* Number of sections in the SEC_VMA table. */
175 unsigned int sec_vma_count;
176
177 /* Number of sections whose VMA we must adjust. */
178 int adjusted_section_count;
179
180 /* Array of sections with adjusted VMA. */
181 struct adjusted_section *adjusted_sections;
182
183 /* Number of times find_line is called. This is used in
184 the heuristic for enabling the info hash tables. */
185 int info_hash_count;
186
187 #define STASH_INFO_HASH_TRIGGER 100
188
189 /* Hash table mapping symbol names to function infos. */
190 struct info_hash_table *funcinfo_hash_table;
191
192 /* Hash table mapping symbol names to variable infos. */
193 struct info_hash_table *varinfo_hash_table;
194
195 /* Head of comp_unit list in the last hash table update. */
196 struct comp_unit *hash_units_head;
197
198 /* Status of info hash. */
199 int info_hash_status;
200 #define STASH_INFO_HASH_OFF 0
201 #define STASH_INFO_HASH_ON 1
202 #define STASH_INFO_HASH_DISABLED 2
203
204 /* True if we opened bfd_ptr. */
205 bfd_boolean close_on_cleanup;
206 };
207
208 struct arange
209 {
210 struct arange *next;
211 bfd_vma low;
212 bfd_vma high;
213 };
214
215 /* A minimal decoding of DWARF2 compilation units. We only decode
216 what's needed to get to the line number information. */
217
218 struct comp_unit
219 {
220 /* Chain the previously read compilation units. */
221 struct comp_unit *next_unit;
222
223 /* Likewise, chain the compilation unit read after this one.
224 The comp units are stored in reversed reading order. */
225 struct comp_unit *prev_unit;
226
227 /* Keep the bfd convenient (for memory allocation). */
228 bfd *abfd;
229
230 /* The lowest and highest addresses contained in this compilation
231 unit as specified in the compilation unit header. */
232 struct arange arange;
233
234 /* The DW_AT_name attribute (for error messages). */
235 char *name;
236
237 /* The abbrev hash table. */
238 struct abbrev_info **abbrevs;
239
240 /* DW_AT_language. */
241 int lang;
242
243 /* Note that an error was found by comp_unit_find_nearest_line. */
244 int error;
245
246 /* The DW_AT_comp_dir attribute. */
247 char *comp_dir;
248
249 /* TRUE if there is a line number table associated with this comp. unit. */
250 int stmtlist;
251
252 /* Pointer to the current comp_unit so that we can find a given entry
253 by its reference. */
254 bfd_byte *info_ptr_unit;
255
256 /* The offset into .debug_line of the line number table. */
257 unsigned long line_offset;
258
259 /* Pointer to the first child die for the comp unit. */
260 bfd_byte *first_child_die_ptr;
261
262 /* The end of the comp unit. */
263 bfd_byte *end_ptr;
264
265 /* The decoded line number, NULL if not yet decoded. */
266 struct line_info_table *line_table;
267
268 /* A list of the functions found in this comp. unit. */
269 struct funcinfo *function_table;
270
271 /* A table of function information references searchable by address. */
272 struct lookup_funcinfo *lookup_funcinfo_table;
273
274 /* Number of functions in the function_table and sorted_function_table. */
275 bfd_size_type number_of_functions;
276
277 /* A list of the variables found in this comp. unit. */
278 struct varinfo *variable_table;
279
280 /* Pointers to dwarf2_debug structures. */
281 struct dwarf2_debug *stash;
282 struct dwarf2_debug_file *file;
283
284 /* DWARF format version for this unit - from unit header. */
285 int version;
286
287 /* Address size for this unit - from unit header. */
288 unsigned char addr_size;
289
290 /* Offset size for this unit - from unit header. */
291 unsigned char offset_size;
292
293 /* Base address for this unit - from DW_AT_low_pc attribute of
294 DW_TAG_compile_unit DIE */
295 bfd_vma base_address;
296
297 /* TRUE if symbols are cached in hash table for faster lookup by name. */
298 bfd_boolean cached;
299 };
300
301 /* This data structure holds the information of an abbrev. */
302 struct abbrev_info
303 {
304 unsigned int number; /* Number identifying abbrev. */
305 enum dwarf_tag tag; /* DWARF tag. */
306 bfd_boolean has_children; /* TRUE if the abbrev has children. */
307 unsigned int num_attrs; /* Number of attributes. */
308 struct attr_abbrev * attrs; /* An array of attribute descriptions. */
309 struct abbrev_info * next; /* Next in chain. */
310 };
311
312 struct attr_abbrev
313 {
314 enum dwarf_attribute name;
315 enum dwarf_form form;
316 bfd_vma implicit_const;
317 };
318
319 /* Map of uncompressed DWARF debug section name to compressed one. It
320 is terminated by NULL uncompressed_name. */
321
322 const struct dwarf_debug_section dwarf_debug_sections[] =
323 {
324 { ".debug_abbrev", ".zdebug_abbrev" },
325 { ".debug_aranges", ".zdebug_aranges" },
326 { ".debug_frame", ".zdebug_frame" },
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_info", ".zdebug_info" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_pubnames", ".zdebug_pubnames" },
334 { ".debug_pubtypes", ".zdebug_pubtypes" },
335 { ".debug_ranges", ".zdebug_ranges" },
336 { ".debug_rnglists", ".zdebug_rnglist" },
337 { ".debug_static_func", ".zdebug_static_func" },
338 { ".debug_static_vars", ".zdebug_static_vars" },
339 { ".debug_str", ".zdebug_str", },
340 { ".debug_str", ".zdebug_str", },
341 { ".debug_line_str", ".zdebug_line_str", },
342 { ".debug_types", ".zdebug_types" },
343 /* GNU DWARF 1 extensions */
344 { ".debug_sfnames", ".zdebug_sfnames" },
345 { ".debug_srcinfo", ".zebug_srcinfo" },
346 /* SGI/MIPS DWARF 2 extensions */
347 { ".debug_funcnames", ".zdebug_funcnames" },
348 { ".debug_typenames", ".zdebug_typenames" },
349 { ".debug_varnames", ".zdebug_varnames" },
350 { ".debug_weaknames", ".zdebug_weaknames" },
351 { NULL, NULL },
352 };
353
354 /* NB/ Numbers in this enum must match up with indices
355 into the dwarf_debug_sections[] array above. */
356 enum dwarf_debug_section_enum
357 {
358 debug_abbrev = 0,
359 debug_aranges,
360 debug_frame,
361 debug_info,
362 debug_info_alt,
363 debug_line,
364 debug_loc,
365 debug_macinfo,
366 debug_macro,
367 debug_pubnames,
368 debug_pubtypes,
369 debug_ranges,
370 debug_rnglists,
371 debug_static_func,
372 debug_static_vars,
373 debug_str,
374 debug_str_alt,
375 debug_line_str,
376 debug_types,
377 debug_sfnames,
378 debug_srcinfo,
379 debug_funcnames,
380 debug_typenames,
381 debug_varnames,
382 debug_weaknames,
383 debug_max
384 };
385
386 /* A static assertion. */
387 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
388 == debug_max + 1 ? 1 : -1];
389
390 #ifndef ABBREV_HASH_SIZE
391 #define ABBREV_HASH_SIZE 121
392 #endif
393 #ifndef ATTR_ALLOC_CHUNK
394 #define ATTR_ALLOC_CHUNK 4
395 #endif
396
397 /* Variable and function hash tables. This is used to speed up look-up
398 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
399 In order to share code between variable and function infos, we use
400 a list of untyped pointer for all variable/function info associated with
401 a symbol. We waste a bit of memory for list with one node but that
402 simplifies the code. */
403
404 struct info_list_node
405 {
406 struct info_list_node *next;
407 void *info;
408 };
409
410 /* Info hash entry. */
411 struct info_hash_entry
412 {
413 struct bfd_hash_entry root;
414 struct info_list_node *head;
415 };
416
417 struct info_hash_table
418 {
419 struct bfd_hash_table base;
420 };
421
422 /* Function to create a new entry in info hash table. */
423
424 static struct bfd_hash_entry *
425 info_hash_table_newfunc (struct bfd_hash_entry *entry,
426 struct bfd_hash_table *table,
427 const char *string)
428 {
429 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
430
431 /* Allocate the structure if it has not already been allocated by a
432 derived class. */
433 if (ret == NULL)
434 {
435 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
436 sizeof (* ret));
437 if (ret == NULL)
438 return NULL;
439 }
440
441 /* Call the allocation method of the base class. */
442 ret = ((struct info_hash_entry *)
443 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
444
445 /* Initialize the local fields here. */
446 if (ret)
447 ret->head = NULL;
448
449 return (struct bfd_hash_entry *) ret;
450 }
451
452 /* Function to create a new info hash table. It returns a pointer to the
453 newly created table or NULL if there is any error. We need abfd
454 solely for memory allocation. */
455
456 static struct info_hash_table *
457 create_info_hash_table (bfd *abfd)
458 {
459 struct info_hash_table *hash_table;
460
461 hash_table = ((struct info_hash_table *)
462 bfd_alloc (abfd, sizeof (struct info_hash_table)));
463 if (!hash_table)
464 return hash_table;
465
466 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
467 sizeof (struct info_hash_entry)))
468 {
469 bfd_release (abfd, hash_table);
470 return NULL;
471 }
472
473 return hash_table;
474 }
475
476 /* Insert an info entry into an info hash table. We do not check of
477 duplicate entries. Also, the caller need to guarantee that the
478 right type of info in inserted as info is passed as a void* pointer.
479 This function returns true if there is no error. */
480
481 static bfd_boolean
482 insert_info_hash_table (struct info_hash_table *hash_table,
483 const char *key,
484 void *info,
485 bfd_boolean copy_p)
486 {
487 struct info_hash_entry *entry;
488 struct info_list_node *node;
489
490 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
491 key, TRUE, copy_p);
492 if (!entry)
493 return FALSE;
494
495 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
496 sizeof (*node));
497 if (!node)
498 return FALSE;
499
500 node->info = info;
501 node->next = entry->head;
502 entry->head = node;
503
504 return TRUE;
505 }
506
507 /* Look up an info entry list from an info hash table. Return NULL
508 if there is none. */
509
510 static struct info_list_node *
511 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
512 {
513 struct info_hash_entry *entry;
514
515 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
516 FALSE, FALSE);
517 return entry ? entry->head : NULL;
518 }
519
520 /* Read a section into its appropriate place in the dwarf2_debug
521 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
522 not NULL, use bfd_simple_get_relocated_section_contents to read the
523 section contents, otherwise use bfd_get_section_contents. Fail if
524 the located section does not contain at least OFFSET bytes. */
525
526 static bfd_boolean
527 read_section (bfd * abfd,
528 const struct dwarf_debug_section *sec,
529 asymbol ** syms,
530 bfd_uint64_t offset,
531 bfd_byte ** section_buffer,
532 bfd_size_type * section_size)
533 {
534 const char *section_name = sec->uncompressed_name;
535 bfd_byte *contents = *section_buffer;
536
537 /* The section may have already been read. */
538 if (contents == NULL)
539 {
540 bfd_size_type amt;
541 asection *msec;
542 ufile_ptr filesize;
543
544 msec = bfd_get_section_by_name (abfd, section_name);
545 if (msec == NULL)
546 {
547 section_name = sec->compressed_name;
548 if (section_name != NULL)
549 msec = bfd_get_section_by_name (abfd, section_name);
550 }
551 if (msec == NULL)
552 {
553 _bfd_error_handler (_("DWARF error: can't find %s section."),
554 sec->uncompressed_name);
555 bfd_set_error (bfd_error_bad_value);
556 return FALSE;
557 }
558
559 amt = bfd_get_section_limit_octets (abfd, msec);
560 filesize = bfd_get_file_size (abfd);
561 if (amt >= filesize)
562 {
563 /* PR 26946 */
564 _bfd_error_handler (_("DWARF error: section %s is larger than its filesize! (0x%lx vs 0x%lx)"),
565 section_name, (long) amt, (long) filesize);
566 bfd_set_error (bfd_error_bad_value);
567 return FALSE;
568 }
569 *section_size = amt;
570 /* Paranoia - alloc one extra so that we can make sure a string
571 section is NUL terminated. */
572 amt += 1;
573 if (amt == 0)
574 {
575 /* Paranoia - this should never happen. */
576 bfd_set_error (bfd_error_no_memory);
577 return FALSE;
578 }
579 contents = (bfd_byte *) bfd_malloc (amt);
580 if (contents == NULL)
581 return FALSE;
582 if (syms
583 ? !bfd_simple_get_relocated_section_contents (abfd, msec, contents,
584 syms)
585 : !bfd_get_section_contents (abfd, msec, contents, 0, *section_size))
586 {
587 free (contents);
588 return FALSE;
589 }
590 contents[*section_size] = 0;
591 *section_buffer = contents;
592 }
593
594 /* It is possible to get a bad value for the offset into the section
595 that the client wants. Validate it here to avoid trouble later. */
596 if (offset != 0 && offset >= *section_size)
597 {
598 /* xgettext: c-format */
599 _bfd_error_handler (_("DWARF error: offset (%" PRIu64 ")"
600 " greater than or equal to %s size (%" PRIu64 ")"),
601 (uint64_t) offset, section_name,
602 (uint64_t) *section_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 return TRUE;
608 }
609
610 /* Read dwarf information from a buffer. */
611
612 static unsigned int
613 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
614 {
615 if (buf + 1 > end)
616 return 0;
617 return bfd_get_8 (abfd, buf);
618 }
619
620 static int
621 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
622 {
623 if (buf + 1 > end)
624 return 0;
625 return bfd_get_signed_8 (abfd, buf);
626 }
627
628 static unsigned int
629 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
630 {
631 if (buf + 2 > end)
632 return 0;
633 return bfd_get_16 (abfd, buf);
634 }
635
636 static unsigned int
637 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
638 {
639 if (buf + 4 > end)
640 return 0;
641 return bfd_get_32 (abfd, buf);
642 }
643
644 static bfd_uint64_t
645 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
646 {
647 if (buf + 8 > end)
648 return 0;
649 return bfd_get_64 (abfd, buf);
650 }
651
652 static bfd_byte *
653 read_n_bytes (bfd_byte * buf,
654 bfd_byte * end,
655 struct dwarf_block * block)
656 {
657 unsigned int size = block->size;
658 bfd_byte * block_end = buf + size;
659
660 if (block_end > end || block_end < buf)
661 {
662 block->data = NULL;
663 block->size = 0;
664 return end;
665 }
666 else
667 {
668 block->data = buf;
669 return block_end;
670 }
671 }
672
673 /* Scans a NUL terminated string starting at BUF, returning a pointer to it.
674 Returns the number of characters in the string, *including* the NUL byte,
675 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
676 at or beyond BUF_END will not be read. Returns NULL if there was a
677 problem, or if the string is empty. */
678
679 static char *
680 read_string (bfd * abfd ATTRIBUTE_UNUSED,
681 bfd_byte * buf,
682 bfd_byte * buf_end,
683 unsigned int * bytes_read_ptr)
684 {
685 bfd_byte *str = buf;
686
687 if (buf >= buf_end)
688 {
689 * bytes_read_ptr = 0;
690 return NULL;
691 }
692
693 if (*str == '\0')
694 {
695 * bytes_read_ptr = 1;
696 return NULL;
697 }
698
699 while (buf < buf_end)
700 if (* buf ++ == 0)
701 {
702 * bytes_read_ptr = buf - str;
703 return (char *) str;
704 }
705
706 * bytes_read_ptr = buf - str;
707 return NULL;
708 }
709
710 /* Reads an offset from BUF and then locates the string at this offset
711 inside the debug string section. Returns a pointer to the string.
712 Returns the number of bytes read from BUF, *not* the length of the string,
713 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
714 at or beyond BUF_END will not be read from BUF. Returns NULL if there was
715 a problem, or if the string is empty. Does not check for NUL termination
716 of the string. */
717
718 static char *
719 read_indirect_string (struct comp_unit * unit,
720 bfd_byte * buf,
721 bfd_byte * buf_end,
722 unsigned int * bytes_read_ptr)
723 {
724 bfd_uint64_t offset;
725 struct dwarf2_debug *stash = unit->stash;
726 struct dwarf2_debug_file *file = unit->file;
727 char *str;
728
729 if (buf + unit->offset_size > buf_end)
730 {
731 * bytes_read_ptr = 0;
732 return NULL;
733 }
734
735 if (unit->offset_size == 4)
736 offset = read_4_bytes (unit->abfd, buf, buf_end);
737 else
738 offset = read_8_bytes (unit->abfd, buf, buf_end);
739
740 *bytes_read_ptr = unit->offset_size;
741
742 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
743 file->syms, offset,
744 &file->dwarf_str_buffer, &file->dwarf_str_size))
745 return NULL;
746
747 str = (char *) file->dwarf_str_buffer + offset;
748 if (*str == '\0')
749 return NULL;
750 return str;
751 }
752
753 /* Like read_indirect_string but from .debug_line_str section. */
754
755 static char *
756 read_indirect_line_string (struct comp_unit * unit,
757 bfd_byte * buf,
758 bfd_byte * buf_end,
759 unsigned int * bytes_read_ptr)
760 {
761 bfd_uint64_t offset;
762 struct dwarf2_debug *stash = unit->stash;
763 struct dwarf2_debug_file *file = unit->file;
764 char *str;
765
766 if (buf + unit->offset_size > buf_end)
767 {
768 * bytes_read_ptr = 0;
769 return NULL;
770 }
771
772 if (unit->offset_size == 4)
773 offset = read_4_bytes (unit->abfd, buf, buf_end);
774 else
775 offset = read_8_bytes (unit->abfd, buf, buf_end);
776
777 *bytes_read_ptr = unit->offset_size;
778
779 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
780 file->syms, offset,
781 &file->dwarf_line_str_buffer,
782 &file->dwarf_line_str_size))
783 return NULL;
784
785 str = (char *) file->dwarf_line_str_buffer + offset;
786 if (*str == '\0')
787 return NULL;
788 return str;
789 }
790
791 /* Like read_indirect_string but uses a .debug_str located in
792 an alternate file pointed to by the .gnu_debugaltlink section.
793 Used to impement DW_FORM_GNU_strp_alt. */
794
795 static char *
796 read_alt_indirect_string (struct comp_unit * unit,
797 bfd_byte * buf,
798 bfd_byte * buf_end,
799 unsigned int * bytes_read_ptr)
800 {
801 bfd_uint64_t offset;
802 struct dwarf2_debug *stash = unit->stash;
803 char *str;
804
805 if (buf + unit->offset_size > buf_end)
806 {
807 * bytes_read_ptr = 0;
808 return NULL;
809 }
810
811 if (unit->offset_size == 4)
812 offset = read_4_bytes (unit->abfd, buf, buf_end);
813 else
814 offset = read_8_bytes (unit->abfd, buf, buf_end);
815
816 *bytes_read_ptr = unit->offset_size;
817
818 if (stash->alt.bfd_ptr == NULL)
819 {
820 bfd *debug_bfd;
821 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
822
823 if (debug_filename == NULL)
824 return NULL;
825
826 debug_bfd = bfd_openr (debug_filename, NULL);
827 free (debug_filename);
828 if (debug_bfd == NULL)
829 /* FIXME: Should we report our failure to follow the debuglink ? */
830 return NULL;
831
832 if (!bfd_check_format (debug_bfd, bfd_object))
833 {
834 bfd_close (debug_bfd);
835 return NULL;
836 }
837 stash->alt.bfd_ptr = debug_bfd;
838 }
839
840 if (! read_section (unit->stash->alt.bfd_ptr,
841 stash->debug_sections + debug_str_alt,
842 stash->alt.syms, offset,
843 &stash->alt.dwarf_str_buffer,
844 &stash->alt.dwarf_str_size))
845 return NULL;
846
847 str = (char *) stash->alt.dwarf_str_buffer + offset;
848 if (*str == '\0')
849 return NULL;
850
851 return str;
852 }
853
854 /* Resolve an alternate reference from UNIT at OFFSET.
855 Returns a pointer into the loaded alternate CU upon success
856 or NULL upon failure. */
857
858 static bfd_byte *
859 read_alt_indirect_ref (struct comp_unit * unit,
860 bfd_uint64_t offset)
861 {
862 struct dwarf2_debug *stash = unit->stash;
863
864 if (stash->alt.bfd_ptr == NULL)
865 {
866 bfd *debug_bfd;
867 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
868
869 if (debug_filename == NULL)
870 return NULL;
871
872 debug_bfd = bfd_openr (debug_filename, NULL);
873 free (debug_filename);
874 if (debug_bfd == NULL)
875 /* FIXME: Should we report our failure to follow the debuglink ? */
876 return NULL;
877
878 if (!bfd_check_format (debug_bfd, bfd_object))
879 {
880 bfd_close (debug_bfd);
881 return NULL;
882 }
883 stash->alt.bfd_ptr = debug_bfd;
884 }
885
886 if (! read_section (unit->stash->alt.bfd_ptr,
887 stash->debug_sections + debug_info_alt,
888 stash->alt.syms, offset,
889 &stash->alt.dwarf_info_buffer,
890 &stash->alt.dwarf_info_size))
891 return NULL;
892
893 return stash->alt.dwarf_info_buffer + offset;
894 }
895
896 static bfd_uint64_t
897 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end)
898 {
899 int signed_vma = 0;
900
901 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
902 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
903
904 if (buf + unit->addr_size > buf_end)
905 return 0;
906
907 if (signed_vma)
908 {
909 switch (unit->addr_size)
910 {
911 case 8:
912 return bfd_get_signed_64 (unit->abfd, buf);
913 case 4:
914 return bfd_get_signed_32 (unit->abfd, buf);
915 case 2:
916 return bfd_get_signed_16 (unit->abfd, buf);
917 default:
918 abort ();
919 }
920 }
921 else
922 {
923 switch (unit->addr_size)
924 {
925 case 8:
926 return bfd_get_64 (unit->abfd, buf);
927 case 4:
928 return bfd_get_32 (unit->abfd, buf);
929 case 2:
930 return bfd_get_16 (unit->abfd, buf);
931 default:
932 abort ();
933 }
934 }
935 }
936
937 /* Lookup an abbrev_info structure in the abbrev hash table. */
938
939 static struct abbrev_info *
940 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
941 {
942 unsigned int hash_number;
943 struct abbrev_info *abbrev;
944
945 hash_number = number % ABBREV_HASH_SIZE;
946 abbrev = abbrevs[hash_number];
947
948 while (abbrev)
949 {
950 if (abbrev->number == number)
951 return abbrev;
952 else
953 abbrev = abbrev->next;
954 }
955
956 return NULL;
957 }
958
959 /* We keep a hash table to map .debug_abbrev section offsets to the
960 array of abbrevs, so that compilation units using the same set of
961 abbrevs do not waste memory. */
962
963 struct abbrev_offset_entry
964 {
965 size_t offset;
966 struct abbrev_info **abbrevs;
967 };
968
969 static hashval_t
970 hash_abbrev (const void *p)
971 {
972 const struct abbrev_offset_entry *ent = p;
973 return htab_hash_pointer ((void *) ent->offset);
974 }
975
976 static int
977 eq_abbrev (const void *pa, const void *pb)
978 {
979 const struct abbrev_offset_entry *a = pa;
980 const struct abbrev_offset_entry *b = pb;
981 return a->offset == b->offset;
982 }
983
984 static void
985 del_abbrev (void *p)
986 {
987 struct abbrev_offset_entry *ent = p;
988 struct abbrev_info **abbrevs = ent->abbrevs;
989 size_t i;
990
991 for (i = 0; i < ABBREV_HASH_SIZE; i++)
992 {
993 struct abbrev_info *abbrev = abbrevs[i];
994
995 while (abbrev)
996 {
997 free (abbrev->attrs);
998 abbrev = abbrev->next;
999 }
1000 }
1001 free (ent);
1002 }
1003
1004 /* In DWARF version 2, the description of the debugging information is
1005 stored in a separate .debug_abbrev section. Before we read any
1006 dies from a section we read in all abbreviations and install them
1007 in a hash table. */
1008
1009 static struct abbrev_info**
1010 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash,
1011 struct dwarf2_debug_file *file)
1012 {
1013 struct abbrev_info **abbrevs;
1014 bfd_byte *abbrev_ptr;
1015 bfd_byte *abbrev_end;
1016 struct abbrev_info *cur_abbrev;
1017 unsigned int abbrev_number, bytes_read, abbrev_name;
1018 unsigned int abbrev_form, hash_number;
1019 size_t amt;
1020 void **slot;
1021 struct abbrev_offset_entry ent = { offset, NULL };
1022
1023 if (ent.offset != offset)
1024 return NULL;
1025
1026 slot = htab_find_slot (file->abbrev_offsets, &ent, INSERT);
1027 if (slot == NULL)
1028 return NULL;
1029 if (*slot != NULL)
1030 return ((struct abbrev_offset_entry *) (*slot))->abbrevs;
1031
1032 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
1033 file->syms, offset,
1034 &file->dwarf_abbrev_buffer,
1035 &file->dwarf_abbrev_size))
1036 return NULL;
1037
1038 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
1039 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
1040 if (abbrevs == NULL)
1041 return NULL;
1042
1043 abbrev_ptr = file->dwarf_abbrev_buffer + offset;
1044 abbrev_end = file->dwarf_abbrev_buffer + file->dwarf_abbrev_size;
1045 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1046 FALSE, abbrev_end);
1047 abbrev_ptr += bytes_read;
1048
1049 /* Loop until we reach an abbrev number of 0. */
1050 while (abbrev_number)
1051 {
1052 amt = sizeof (struct abbrev_info);
1053 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
1054 if (cur_abbrev == NULL)
1055 goto fail;
1056
1057 /* Read in abbrev header. */
1058 cur_abbrev->number = abbrev_number;
1059 cur_abbrev->tag = (enum dwarf_tag)
1060 _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1061 FALSE, abbrev_end);
1062 abbrev_ptr += bytes_read;
1063 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end);
1064 abbrev_ptr += 1;
1065
1066 /* Now read in declarations. */
1067 for (;;)
1068 {
1069 /* Initialize it just to avoid a GCC false warning. */
1070 bfd_vma implicit_const = -1;
1071
1072 abbrev_name = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1073 FALSE, abbrev_end);
1074 abbrev_ptr += bytes_read;
1075 abbrev_form = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1076 FALSE, abbrev_end);
1077 abbrev_ptr += bytes_read;
1078 if (abbrev_form == DW_FORM_implicit_const)
1079 {
1080 implicit_const = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1081 &bytes_read, TRUE,
1082 abbrev_end);
1083 abbrev_ptr += bytes_read;
1084 }
1085
1086 if (abbrev_name == 0)
1087 break;
1088
1089 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1090 {
1091 struct attr_abbrev *tmp;
1092
1093 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1094 amt *= sizeof (struct attr_abbrev);
1095 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1096 if (tmp == NULL)
1097 goto fail;
1098 cur_abbrev->attrs = tmp;
1099 }
1100
1101 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1102 = (enum dwarf_attribute) abbrev_name;
1103 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1104 = (enum dwarf_form) abbrev_form;
1105 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1106 = implicit_const;
1107 ++cur_abbrev->num_attrs;
1108 }
1109
1110 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1111 cur_abbrev->next = abbrevs[hash_number];
1112 abbrevs[hash_number] = cur_abbrev;
1113
1114 /* Get next abbreviation.
1115 Under Irix6 the abbreviations for a compilation unit are not
1116 always properly terminated with an abbrev number of 0.
1117 Exit loop if we encounter an abbreviation which we have
1118 already read (which means we are about to read the abbreviations
1119 for the next compile unit) or if the end of the abbreviation
1120 table is reached. */
1121 if ((size_t) (abbrev_ptr - file->dwarf_abbrev_buffer)
1122 >= file->dwarf_abbrev_size)
1123 break;
1124 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1125 &bytes_read, FALSE, abbrev_end);
1126 abbrev_ptr += bytes_read;
1127 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1128 break;
1129 }
1130
1131 *slot = bfd_malloc (sizeof ent);
1132 if (!*slot)
1133 goto fail;
1134 ent.abbrevs = abbrevs;
1135 memcpy (*slot, &ent, sizeof ent);
1136 return abbrevs;
1137
1138 fail:
1139 if (abbrevs != NULL)
1140 {
1141 size_t i;
1142
1143 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1144 {
1145 struct abbrev_info *abbrev = abbrevs[i];
1146
1147 while (abbrev)
1148 {
1149 free (abbrev->attrs);
1150 abbrev = abbrev->next;
1151 }
1152 }
1153 free (abbrevs);
1154 }
1155 return NULL;
1156 }
1157
1158 /* Returns true if the form is one which has a string value. */
1159
1160 static inline bfd_boolean
1161 is_str_attr (enum dwarf_form form)
1162 {
1163 return (form == DW_FORM_string || form == DW_FORM_strp
1164 || form == DW_FORM_line_strp || form == DW_FORM_GNU_strp_alt);
1165 }
1166
1167 /* Read and fill in the value of attribute ATTR as described by FORM.
1168 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1169 Returns an updated INFO_PTR taking into account the amount of data read. */
1170
1171 static bfd_byte *
1172 read_attribute_value (struct attribute * attr,
1173 unsigned form,
1174 bfd_vma implicit_const,
1175 struct comp_unit * unit,
1176 bfd_byte * info_ptr,
1177 bfd_byte * info_ptr_end)
1178 {
1179 bfd *abfd = unit->abfd;
1180 unsigned int bytes_read;
1181 struct dwarf_block *blk;
1182 size_t amt;
1183
1184 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1185 {
1186 _bfd_error_handler (_("DWARF error: info pointer extends beyond end of attributes"));
1187 bfd_set_error (bfd_error_bad_value);
1188 return info_ptr;
1189 }
1190
1191 attr->form = (enum dwarf_form) form;
1192
1193 switch (form)
1194 {
1195 case DW_FORM_ref_addr:
1196 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1197 DWARF3. */
1198 if (unit->version == 3 || unit->version == 4)
1199 {
1200 if (unit->offset_size == 4)
1201 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1202 else
1203 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1204 info_ptr += unit->offset_size;
1205 break;
1206 }
1207 /* FALLTHROUGH */
1208 case DW_FORM_addr:
1209 attr->u.val = read_address (unit, info_ptr, info_ptr_end);
1210 info_ptr += unit->addr_size;
1211 break;
1212 case DW_FORM_GNU_ref_alt:
1213 case DW_FORM_sec_offset:
1214 if (unit->offset_size == 4)
1215 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1216 else
1217 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1218 info_ptr += unit->offset_size;
1219 break;
1220 case DW_FORM_block2:
1221 amt = sizeof (struct dwarf_block);
1222 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1223 if (blk == NULL)
1224 return NULL;
1225 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end);
1226 info_ptr += 2;
1227 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1228 attr->u.blk = blk;
1229 break;
1230 case DW_FORM_block4:
1231 amt = sizeof (struct dwarf_block);
1232 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1233 if (blk == NULL)
1234 return NULL;
1235 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end);
1236 info_ptr += 4;
1237 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1238 attr->u.blk = blk;
1239 break;
1240 case DW_FORM_data2:
1241 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1242 info_ptr += 2;
1243 break;
1244 case DW_FORM_data4:
1245 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1246 info_ptr += 4;
1247 break;
1248 case DW_FORM_data8:
1249 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1250 info_ptr += 8;
1251 break;
1252 case DW_FORM_string:
1253 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read);
1254 info_ptr += bytes_read;
1255 break;
1256 case DW_FORM_strp:
1257 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1258 info_ptr += bytes_read;
1259 break;
1260 case DW_FORM_line_strp:
1261 attr->u.str = read_indirect_line_string (unit, info_ptr, info_ptr_end, &bytes_read);
1262 info_ptr += bytes_read;
1263 break;
1264 case DW_FORM_GNU_strp_alt:
1265 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1266 info_ptr += bytes_read;
1267 break;
1268 case DW_FORM_exprloc:
1269 case DW_FORM_block:
1270 amt = sizeof (struct dwarf_block);
1271 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1272 if (blk == NULL)
1273 return NULL;
1274 blk->size = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1275 FALSE, info_ptr_end);
1276 info_ptr += bytes_read;
1277 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1278 attr->u.blk = blk;
1279 break;
1280 case DW_FORM_block1:
1281 amt = sizeof (struct dwarf_block);
1282 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1283 if (blk == NULL)
1284 return NULL;
1285 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end);
1286 info_ptr += 1;
1287 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1288 attr->u.blk = blk;
1289 break;
1290 case DW_FORM_data1:
1291 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1292 info_ptr += 1;
1293 break;
1294 case DW_FORM_flag:
1295 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1296 info_ptr += 1;
1297 break;
1298 case DW_FORM_flag_present:
1299 attr->u.val = 1;
1300 break;
1301 case DW_FORM_sdata:
1302 attr->u.sval = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1303 TRUE, info_ptr_end);
1304 info_ptr += bytes_read;
1305 break;
1306 case DW_FORM_udata:
1307 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1308 FALSE, info_ptr_end);
1309 info_ptr += bytes_read;
1310 break;
1311 case DW_FORM_ref1:
1312 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1313 info_ptr += 1;
1314 break;
1315 case DW_FORM_ref2:
1316 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1317 info_ptr += 2;
1318 break;
1319 case DW_FORM_ref4:
1320 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1321 info_ptr += 4;
1322 break;
1323 case DW_FORM_ref8:
1324 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1325 info_ptr += 8;
1326 break;
1327 case DW_FORM_ref_sig8:
1328 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1329 info_ptr += 8;
1330 break;
1331 case DW_FORM_ref_udata:
1332 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1333 FALSE, info_ptr_end);
1334 info_ptr += bytes_read;
1335 break;
1336 case DW_FORM_indirect:
1337 form = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1338 FALSE, info_ptr_end);
1339 info_ptr += bytes_read;
1340 if (form == DW_FORM_implicit_const)
1341 {
1342 implicit_const = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1343 TRUE, info_ptr_end);
1344 info_ptr += bytes_read;
1345 }
1346 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1347 info_ptr, info_ptr_end);
1348 break;
1349 case DW_FORM_implicit_const:
1350 attr->form = DW_FORM_sdata;
1351 attr->u.sval = implicit_const;
1352 break;
1353 case DW_FORM_data16:
1354 /* This is really a "constant", but there is no way to store that
1355 so pretend it is a 16 byte block instead. */
1356 amt = sizeof (struct dwarf_block);
1357 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1358 if (blk == NULL)
1359 return NULL;
1360 blk->size = 16;
1361 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1362 attr->u.blk = blk;
1363 break;
1364 default:
1365 _bfd_error_handler (_("DWARF error: invalid or unhandled FORM value: %#x"),
1366 form);
1367 bfd_set_error (bfd_error_bad_value);
1368 return NULL;
1369 }
1370 return info_ptr;
1371 }
1372
1373 /* Read an attribute described by an abbreviated attribute. */
1374
1375 static bfd_byte *
1376 read_attribute (struct attribute * attr,
1377 struct attr_abbrev * abbrev,
1378 struct comp_unit * unit,
1379 bfd_byte * info_ptr,
1380 bfd_byte * info_ptr_end)
1381 {
1382 attr->name = abbrev->name;
1383 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1384 unit, info_ptr, info_ptr_end);
1385 return info_ptr;
1386 }
1387
1388 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1389 for a function. */
1390
1391 static bfd_boolean
1392 non_mangled (int lang)
1393 {
1394 switch (lang)
1395 {
1396 default:
1397 return FALSE;
1398
1399 case DW_LANG_C89:
1400 case DW_LANG_C:
1401 case DW_LANG_Ada83:
1402 case DW_LANG_Cobol74:
1403 case DW_LANG_Cobol85:
1404 case DW_LANG_Fortran77:
1405 case DW_LANG_Pascal83:
1406 case DW_LANG_C99:
1407 case DW_LANG_Ada95:
1408 case DW_LANG_PLI:
1409 case DW_LANG_UPC:
1410 case DW_LANG_C11:
1411 return TRUE;
1412 }
1413 }
1414
1415 /* Source line information table routines. */
1416
1417 #define FILE_ALLOC_CHUNK 5
1418 #define DIR_ALLOC_CHUNK 5
1419
1420 struct line_info
1421 {
1422 struct line_info * prev_line;
1423 bfd_vma address;
1424 char * filename;
1425 unsigned int line;
1426 unsigned int column;
1427 unsigned int discriminator;
1428 unsigned char op_index;
1429 unsigned char end_sequence; /* End of (sequential) code sequence. */
1430 };
1431
1432 struct fileinfo
1433 {
1434 char * name;
1435 unsigned int dir;
1436 unsigned int time;
1437 unsigned int size;
1438 };
1439
1440 struct line_sequence
1441 {
1442 bfd_vma low_pc;
1443 struct line_sequence* prev_sequence;
1444 struct line_info* last_line; /* Largest VMA. */
1445 struct line_info** line_info_lookup;
1446 bfd_size_type num_lines;
1447 };
1448
1449 struct line_info_table
1450 {
1451 bfd * abfd;
1452 unsigned int num_files;
1453 unsigned int num_dirs;
1454 unsigned int num_sequences;
1455 char * comp_dir;
1456 char ** dirs;
1457 struct fileinfo* files;
1458 struct line_sequence* sequences;
1459 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1460 };
1461
1462 /* Remember some information about each function. If the function is
1463 inlined (DW_TAG_inlined_subroutine) it may have two additional
1464 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1465 source code location where this function was inlined. */
1466
1467 struct funcinfo
1468 {
1469 /* Pointer to previous function in list of all functions. */
1470 struct funcinfo * prev_func;
1471 /* Pointer to function one scope higher. */
1472 struct funcinfo * caller_func;
1473 /* Source location file name where caller_func inlines this func. */
1474 char * caller_file;
1475 /* Source location file name. */
1476 char * file;
1477 /* Source location line number where caller_func inlines this func. */
1478 int caller_line;
1479 /* Source location line number. */
1480 int line;
1481 int tag;
1482 bfd_boolean is_linkage;
1483 const char * name;
1484 struct arange arange;
1485 /* Where the symbol is defined. */
1486 asection * sec;
1487 };
1488
1489 struct lookup_funcinfo
1490 {
1491 /* Function information corresponding to this lookup table entry. */
1492 struct funcinfo * funcinfo;
1493
1494 /* The lowest address for this specific function. */
1495 bfd_vma low_addr;
1496
1497 /* The highest address of this function before the lookup table is sorted.
1498 The highest address of all prior functions after the lookup table is
1499 sorted, which is used for binary search. */
1500 bfd_vma high_addr;
1501 /* Index of this function, used to ensure qsort is stable. */
1502 unsigned int idx;
1503 };
1504
1505 struct varinfo
1506 {
1507 /* Pointer to previous variable in list of all variables. */
1508 struct varinfo *prev_var;
1509 /* The offset of the varinfo from the start of the unit. */
1510 bfd_uint64_t unit_offset;
1511 /* Source location file name. */
1512 char *file;
1513 /* Source location line number. */
1514 int line;
1515 /* The type of this variable. */
1516 int tag;
1517 /* The name of the variable, if it has one. */
1518 char *name;
1519 /* The address of the variable. */
1520 bfd_vma addr;
1521 /* Where the symbol is defined. */
1522 asection *sec;
1523 /* Is this a stack variable? */
1524 bfd_boolean stack;
1525 };
1526
1527 /* Return TRUE if NEW_LINE should sort after LINE. */
1528
1529 static inline bfd_boolean
1530 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1531 {
1532 return (new_line->address > line->address
1533 || (new_line->address == line->address
1534 && new_line->op_index > line->op_index));
1535 }
1536
1537
1538 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1539 that the list is sorted. Note that the line_info list is sorted from
1540 highest to lowest VMA (with possible duplicates); that is,
1541 line_info->prev_line always accesses an equal or smaller VMA. */
1542
1543 static bfd_boolean
1544 add_line_info (struct line_info_table *table,
1545 bfd_vma address,
1546 unsigned char op_index,
1547 char *filename,
1548 unsigned int line,
1549 unsigned int column,
1550 unsigned int discriminator,
1551 int end_sequence)
1552 {
1553 size_t amt = sizeof (struct line_info);
1554 struct line_sequence* seq = table->sequences;
1555 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1556
1557 if (info == NULL)
1558 return FALSE;
1559
1560 /* Set member data of 'info'. */
1561 info->prev_line = NULL;
1562 info->address = address;
1563 info->op_index = op_index;
1564 info->line = line;
1565 info->column = column;
1566 info->discriminator = discriminator;
1567 info->end_sequence = end_sequence;
1568
1569 if (filename && filename[0])
1570 {
1571 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1572 if (info->filename == NULL)
1573 return FALSE;
1574 strcpy (info->filename, filename);
1575 }
1576 else
1577 info->filename = NULL;
1578
1579 /* Find the correct location for 'info'. Normally we will receive
1580 new line_info data 1) in order and 2) with increasing VMAs.
1581 However some compilers break the rules (cf. decode_line_info) and
1582 so we include some heuristics for quickly finding the correct
1583 location for 'info'. In particular, these heuristics optimize for
1584 the common case in which the VMA sequence that we receive is a
1585 list of locally sorted VMAs such as
1586 p...z a...j (where a < j < p < z)
1587
1588 Note: table->lcl_head is used to head an *actual* or *possible*
1589 sub-sequence within the list (such as a...j) that is not directly
1590 headed by table->last_line
1591
1592 Note: we may receive duplicate entries from 'decode_line_info'. */
1593
1594 if (seq
1595 && seq->last_line->address == address
1596 && seq->last_line->op_index == op_index
1597 && seq->last_line->end_sequence == end_sequence)
1598 {
1599 /* We only keep the last entry with the same address and end
1600 sequence. See PR ld/4986. */
1601 if (table->lcl_head == seq->last_line)
1602 table->lcl_head = info;
1603 info->prev_line = seq->last_line->prev_line;
1604 seq->last_line = info;
1605 }
1606 else if (!seq || seq->last_line->end_sequence)
1607 {
1608 /* Start a new line sequence. */
1609 amt = sizeof (struct line_sequence);
1610 seq = (struct line_sequence *) bfd_malloc (amt);
1611 if (seq == NULL)
1612 return FALSE;
1613 seq->low_pc = address;
1614 seq->prev_sequence = table->sequences;
1615 seq->last_line = info;
1616 table->lcl_head = info;
1617 table->sequences = seq;
1618 table->num_sequences++;
1619 }
1620 else if (info->end_sequence
1621 || new_line_sorts_after (info, seq->last_line))
1622 {
1623 /* Normal case: add 'info' to the beginning of the current sequence. */
1624 info->prev_line = seq->last_line;
1625 seq->last_line = info;
1626
1627 /* lcl_head: initialize to head a *possible* sequence at the end. */
1628 if (!table->lcl_head)
1629 table->lcl_head = info;
1630 }
1631 else if (!new_line_sorts_after (info, table->lcl_head)
1632 && (!table->lcl_head->prev_line
1633 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1634 {
1635 /* Abnormal but easy: lcl_head is the head of 'info'. */
1636 info->prev_line = table->lcl_head->prev_line;
1637 table->lcl_head->prev_line = info;
1638 }
1639 else
1640 {
1641 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1642 are valid heads for 'info'. Reset 'lcl_head'. */
1643 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1644 struct line_info* li1 = li2->prev_line;
1645
1646 while (li1)
1647 {
1648 if (!new_line_sorts_after (info, li2)
1649 && new_line_sorts_after (info, li1))
1650 break;
1651
1652 li2 = li1; /* always non-NULL */
1653 li1 = li1->prev_line;
1654 }
1655 table->lcl_head = li2;
1656 info->prev_line = table->lcl_head->prev_line;
1657 table->lcl_head->prev_line = info;
1658 if (address < seq->low_pc)
1659 seq->low_pc = address;
1660 }
1661 return TRUE;
1662 }
1663
1664 /* Extract a fully qualified filename from a line info table.
1665 The returned string has been malloc'ed and it is the caller's
1666 responsibility to free it. */
1667
1668 static char *
1669 concat_filename (struct line_info_table *table, unsigned int file)
1670 {
1671 char *filename;
1672
1673 if (table == NULL || file - 1 >= table->num_files)
1674 {
1675 /* FILE == 0 means unknown. */
1676 if (file)
1677 _bfd_error_handler
1678 (_("DWARF error: mangled line number section (bad file number)"));
1679 return strdup ("<unknown>");
1680 }
1681
1682 filename = table->files[file - 1].name;
1683 if (filename == NULL)
1684 return strdup ("<unknown>");
1685
1686 if (!IS_ABSOLUTE_PATH (filename))
1687 {
1688 char *dir_name = NULL;
1689 char *subdir_name = NULL;
1690 char *name;
1691 size_t len;
1692
1693 if (table->files[file - 1].dir
1694 /* PR 17512: file: 0317e960. */
1695 && table->files[file - 1].dir <= table->num_dirs
1696 /* PR 17512: file: 7f3d2e4b. */
1697 && table->dirs != NULL)
1698 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1699
1700 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1701 dir_name = table->comp_dir;
1702
1703 if (!dir_name)
1704 {
1705 dir_name = subdir_name;
1706 subdir_name = NULL;
1707 }
1708
1709 if (!dir_name)
1710 return strdup (filename);
1711
1712 len = strlen (dir_name) + strlen (filename) + 2;
1713
1714 if (subdir_name)
1715 {
1716 len += strlen (subdir_name) + 1;
1717 name = (char *) bfd_malloc (len);
1718 if (name)
1719 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1720 }
1721 else
1722 {
1723 name = (char *) bfd_malloc (len);
1724 if (name)
1725 sprintf (name, "%s/%s", dir_name, filename);
1726 }
1727
1728 return name;
1729 }
1730
1731 return strdup (filename);
1732 }
1733
1734 static bfd_boolean
1735 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1736 bfd_vma low_pc, bfd_vma high_pc)
1737 {
1738 struct arange *arange;
1739
1740 /* Ignore empty ranges. */
1741 if (low_pc == high_pc)
1742 return TRUE;
1743
1744 /* If the first arange is empty, use it. */
1745 if (first_arange->high == 0)
1746 {
1747 first_arange->low = low_pc;
1748 first_arange->high = high_pc;
1749 return TRUE;
1750 }
1751
1752 /* Next see if we can cheaply extend an existing range. */
1753 arange = first_arange;
1754 do
1755 {
1756 if (low_pc == arange->high)
1757 {
1758 arange->high = high_pc;
1759 return TRUE;
1760 }
1761 if (high_pc == arange->low)
1762 {
1763 arange->low = low_pc;
1764 return TRUE;
1765 }
1766 arange = arange->next;
1767 }
1768 while (arange);
1769
1770 /* Need to allocate a new arange and insert it into the arange list.
1771 Order isn't significant, so just insert after the first arange. */
1772 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1773 if (arange == NULL)
1774 return FALSE;
1775 arange->low = low_pc;
1776 arange->high = high_pc;
1777 arange->next = first_arange->next;
1778 first_arange->next = arange;
1779 return TRUE;
1780 }
1781
1782 /* Compare function for line sequences. */
1783
1784 static int
1785 compare_sequences (const void* a, const void* b)
1786 {
1787 const struct line_sequence* seq1 = a;
1788 const struct line_sequence* seq2 = b;
1789
1790 /* Sort by low_pc as the primary key. */
1791 if (seq1->low_pc < seq2->low_pc)
1792 return -1;
1793 if (seq1->low_pc > seq2->low_pc)
1794 return 1;
1795
1796 /* If low_pc values are equal, sort in reverse order of
1797 high_pc, so that the largest region comes first. */
1798 if (seq1->last_line->address < seq2->last_line->address)
1799 return 1;
1800 if (seq1->last_line->address > seq2->last_line->address)
1801 return -1;
1802
1803 if (seq1->last_line->op_index < seq2->last_line->op_index)
1804 return 1;
1805 if (seq1->last_line->op_index > seq2->last_line->op_index)
1806 return -1;
1807
1808 /* num_lines is initially an index, to make the sort stable. */
1809 if (seq1->num_lines < seq2->num_lines)
1810 return -1;
1811 if (seq1->num_lines > seq2->num_lines)
1812 return 1;
1813 return 0;
1814 }
1815
1816 /* Construct the line information table for quick lookup. */
1817
1818 static bfd_boolean
1819 build_line_info_table (struct line_info_table * table,
1820 struct line_sequence * seq)
1821 {
1822 size_t amt;
1823 struct line_info **line_info_lookup;
1824 struct line_info *each_line;
1825 unsigned int num_lines;
1826 unsigned int line_index;
1827
1828 if (seq->line_info_lookup != NULL)
1829 return TRUE;
1830
1831 /* Count the number of line information entries. We could do this while
1832 scanning the debug information, but some entries may be added via
1833 lcl_head without having a sequence handy to increment the number of
1834 lines. */
1835 num_lines = 0;
1836 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1837 num_lines++;
1838
1839 seq->num_lines = num_lines;
1840 if (num_lines == 0)
1841 return TRUE;
1842
1843 /* Allocate space for the line information lookup table. */
1844 amt = sizeof (struct line_info*) * num_lines;
1845 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
1846 seq->line_info_lookup = line_info_lookup;
1847 if (line_info_lookup == NULL)
1848 return FALSE;
1849
1850 /* Create the line information lookup table. */
1851 line_index = num_lines;
1852 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1853 line_info_lookup[--line_index] = each_line;
1854
1855 BFD_ASSERT (line_index == 0);
1856 return TRUE;
1857 }
1858
1859 /* Sort the line sequences for quick lookup. */
1860
1861 static bfd_boolean
1862 sort_line_sequences (struct line_info_table* table)
1863 {
1864 size_t amt;
1865 struct line_sequence *sequences;
1866 struct line_sequence *seq;
1867 unsigned int n = 0;
1868 unsigned int num_sequences = table->num_sequences;
1869 bfd_vma last_high_pc;
1870
1871 if (num_sequences == 0)
1872 return TRUE;
1873
1874 /* Allocate space for an array of sequences. */
1875 amt = sizeof (struct line_sequence) * num_sequences;
1876 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1877 if (sequences == NULL)
1878 return FALSE;
1879
1880 /* Copy the linked list into the array, freeing the original nodes. */
1881 seq = table->sequences;
1882 for (n = 0; n < num_sequences; n++)
1883 {
1884 struct line_sequence* last_seq = seq;
1885
1886 BFD_ASSERT (seq);
1887 sequences[n].low_pc = seq->low_pc;
1888 sequences[n].prev_sequence = NULL;
1889 sequences[n].last_line = seq->last_line;
1890 sequences[n].line_info_lookup = NULL;
1891 sequences[n].num_lines = n;
1892 seq = seq->prev_sequence;
1893 free (last_seq);
1894 }
1895 BFD_ASSERT (seq == NULL);
1896
1897 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1898
1899 /* Make the list binary-searchable by trimming overlapping entries
1900 and removing nested entries. */
1901 num_sequences = 1;
1902 last_high_pc = sequences[0].last_line->address;
1903 for (n = 1; n < table->num_sequences; n++)
1904 {
1905 if (sequences[n].low_pc < last_high_pc)
1906 {
1907 if (sequences[n].last_line->address <= last_high_pc)
1908 /* Skip nested entries. */
1909 continue;
1910
1911 /* Trim overlapping entries. */
1912 sequences[n].low_pc = last_high_pc;
1913 }
1914 last_high_pc = sequences[n].last_line->address;
1915 if (n > num_sequences)
1916 {
1917 /* Close up the gap. */
1918 sequences[num_sequences].low_pc = sequences[n].low_pc;
1919 sequences[num_sequences].last_line = sequences[n].last_line;
1920 }
1921 num_sequences++;
1922 }
1923
1924 table->sequences = sequences;
1925 table->num_sequences = num_sequences;
1926 return TRUE;
1927 }
1928
1929 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
1930
1931 static bfd_boolean
1932 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
1933 {
1934 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1935 {
1936 char **tmp;
1937 size_t amt;
1938
1939 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1940 amt *= sizeof (char *);
1941
1942 tmp = (char **) bfd_realloc (table->dirs, amt);
1943 if (tmp == NULL)
1944 return FALSE;
1945 table->dirs = tmp;
1946 }
1947
1948 table->dirs[table->num_dirs++] = cur_dir;
1949 return TRUE;
1950 }
1951
1952 static bfd_boolean
1953 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
1954 unsigned int dir ATTRIBUTE_UNUSED,
1955 unsigned int xtime ATTRIBUTE_UNUSED,
1956 unsigned int size ATTRIBUTE_UNUSED)
1957 {
1958 return line_info_add_include_dir (table, cur_dir);
1959 }
1960
1961 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
1962
1963 static bfd_boolean
1964 line_info_add_file_name (struct line_info_table *table, char *cur_file,
1965 unsigned int dir, unsigned int xtime,
1966 unsigned int size)
1967 {
1968 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1969 {
1970 struct fileinfo *tmp;
1971 size_t amt;
1972
1973 amt = table->num_files + FILE_ALLOC_CHUNK;
1974 amt *= sizeof (struct fileinfo);
1975
1976 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1977 if (tmp == NULL)
1978 return FALSE;
1979 table->files = tmp;
1980 }
1981
1982 table->files[table->num_files].name = cur_file;
1983 table->files[table->num_files].dir = dir;
1984 table->files[table->num_files].time = xtime;
1985 table->files[table->num_files].size = size;
1986 table->num_files++;
1987 return TRUE;
1988 }
1989
1990 /* Read directory or file name entry format, starting with byte of
1991 format count entries, ULEB128 pairs of entry formats, ULEB128 of
1992 entries count and the entries themselves in the described entry
1993 format. */
1994
1995 static bfd_boolean
1996 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
1997 bfd_byte *buf_end, struct line_info_table *table,
1998 bfd_boolean (*callback) (struct line_info_table *table,
1999 char *cur_file,
2000 unsigned int dir,
2001 unsigned int time,
2002 unsigned int size))
2003 {
2004 bfd *abfd = unit->abfd;
2005 bfd_byte format_count, formati;
2006 bfd_vma data_count, datai;
2007 bfd_byte *buf = *bufp;
2008 bfd_byte *format_header_data;
2009 unsigned int bytes_read;
2010
2011 format_count = read_1_byte (abfd, buf, buf_end);
2012 buf += 1;
2013 format_header_data = buf;
2014 for (formati = 0; formati < format_count; formati++)
2015 {
2016 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
2017 buf += bytes_read;
2018 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
2019 buf += bytes_read;
2020 }
2021
2022 data_count = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
2023 buf += bytes_read;
2024 if (format_count == 0 && data_count != 0)
2025 {
2026 _bfd_error_handler (_("DWARF error: zero format count"));
2027 bfd_set_error (bfd_error_bad_value);
2028 return FALSE;
2029 }
2030
2031 /* PR 22210. Paranoia check. Don't bother running the loop
2032 if we know that we are going to run out of buffer. */
2033 if (data_count > (bfd_vma) (buf_end - buf))
2034 {
2035 _bfd_error_handler
2036 (_("DWARF error: data count (%" PRIx64 ") larger than buffer size"),
2037 (uint64_t) data_count);
2038 bfd_set_error (bfd_error_bad_value);
2039 return FALSE;
2040 }
2041
2042 for (datai = 0; datai < data_count; datai++)
2043 {
2044 bfd_byte *format = format_header_data;
2045 struct fileinfo fe;
2046
2047 memset (&fe, 0, sizeof fe);
2048 for (formati = 0; formati < format_count; formati++)
2049 {
2050 bfd_vma content_type, form;
2051 char *string_trash;
2052 char **stringp = &string_trash;
2053 unsigned int uint_trash, *uintp = &uint_trash;
2054 struct attribute attr;
2055
2056 content_type = _bfd_safe_read_leb128 (abfd, format, &bytes_read,
2057 FALSE, buf_end);
2058 format += bytes_read;
2059 switch (content_type)
2060 {
2061 case DW_LNCT_path:
2062 stringp = &fe.name;
2063 break;
2064 case DW_LNCT_directory_index:
2065 uintp = &fe.dir;
2066 break;
2067 case DW_LNCT_timestamp:
2068 uintp = &fe.time;
2069 break;
2070 case DW_LNCT_size:
2071 uintp = &fe.size;
2072 break;
2073 case DW_LNCT_MD5:
2074 break;
2075 default:
2076 _bfd_error_handler
2077 (_("DWARF error: unknown format content type %" PRIu64),
2078 (uint64_t) content_type);
2079 bfd_set_error (bfd_error_bad_value);
2080 return FALSE;
2081 }
2082
2083 form = _bfd_safe_read_leb128 (abfd, format, &bytes_read, FALSE,
2084 buf_end);
2085 format += bytes_read;
2086
2087 buf = read_attribute_value (&attr, form, 0, unit, buf, buf_end);
2088 if (buf == NULL)
2089 return FALSE;
2090 switch (form)
2091 {
2092 case DW_FORM_string:
2093 case DW_FORM_line_strp:
2094 *stringp = attr.u.str;
2095 break;
2096
2097 case DW_FORM_data1:
2098 case DW_FORM_data2:
2099 case DW_FORM_data4:
2100 case DW_FORM_data8:
2101 case DW_FORM_udata:
2102 *uintp = attr.u.val;
2103 break;
2104
2105 case DW_FORM_data16:
2106 /* MD5 data is in the attr.blk, but we are ignoring those. */
2107 break;
2108 }
2109 }
2110
2111 /* Skip the first "zero entry", which is the compilation dir/file. */
2112 if (datai != 0)
2113 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
2114 return FALSE;
2115 }
2116
2117 *bufp = buf;
2118 return TRUE;
2119 }
2120
2121 /* Decode the line number information for UNIT. */
2122
2123 static struct line_info_table*
2124 decode_line_info (struct comp_unit *unit)
2125 {
2126 bfd *abfd = unit->abfd;
2127 struct dwarf2_debug *stash = unit->stash;
2128 struct dwarf2_debug_file *file = unit->file;
2129 struct line_info_table* table;
2130 bfd_byte *line_ptr;
2131 bfd_byte *line_end;
2132 struct line_head lh;
2133 unsigned int i, bytes_read, offset_size;
2134 char *cur_file, *cur_dir;
2135 unsigned char op_code, extended_op, adj_opcode;
2136 unsigned int exop_len;
2137 size_t amt;
2138
2139 if (unit->line_offset == 0 && file->line_table)
2140 return file->line_table;
2141
2142 if (! read_section (abfd, &stash->debug_sections[debug_line],
2143 file->syms, unit->line_offset,
2144 &file->dwarf_line_buffer, &file->dwarf_line_size))
2145 return NULL;
2146
2147 if (file->dwarf_line_size < 16)
2148 {
2149 _bfd_error_handler
2150 (_("DWARF error: line info section is too small (%" PRId64 ")"),
2151 (int64_t) file->dwarf_line_size);
2152 bfd_set_error (bfd_error_bad_value);
2153 return NULL;
2154 }
2155 line_ptr = file->dwarf_line_buffer + unit->line_offset;
2156 line_end = file->dwarf_line_buffer + file->dwarf_line_size;
2157
2158 /* Read in the prologue. */
2159 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2160 line_ptr += 4;
2161 offset_size = 4;
2162 if (lh.total_length == 0xffffffff)
2163 {
2164 lh.total_length = read_8_bytes (abfd, line_ptr, line_end);
2165 line_ptr += 8;
2166 offset_size = 8;
2167 }
2168 else if (lh.total_length == 0 && unit->addr_size == 8)
2169 {
2170 /* Handle (non-standard) 64-bit DWARF2 formats. */
2171 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2172 line_ptr += 4;
2173 offset_size = 8;
2174 }
2175
2176 if (lh.total_length > (size_t) (line_end - line_ptr))
2177 {
2178 _bfd_error_handler
2179 /* xgettext: c-format */
2180 (_("DWARF error: line info data is bigger (%#" PRIx64 ")"
2181 " than the space remaining in the section (%#lx)"),
2182 (uint64_t) lh.total_length, (unsigned long) (line_end - line_ptr));
2183 bfd_set_error (bfd_error_bad_value);
2184 return NULL;
2185 }
2186
2187 line_end = line_ptr + lh.total_length;
2188
2189 lh.version = read_2_bytes (abfd, line_ptr, line_end);
2190 if (lh.version < 2 || lh.version > 5)
2191 {
2192 _bfd_error_handler
2193 (_("DWARF error: unhandled .debug_line version %d"), lh.version);
2194 bfd_set_error (bfd_error_bad_value);
2195 return NULL;
2196 }
2197 line_ptr += 2;
2198
2199 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2200 >= line_end)
2201 {
2202 _bfd_error_handler
2203 (_("DWARF error: ran out of room reading prologue"));
2204 bfd_set_error (bfd_error_bad_value);
2205 return NULL;
2206 }
2207
2208 if (lh.version >= 5)
2209 {
2210 unsigned int segment_selector_size;
2211
2212 /* Skip address size. */
2213 read_1_byte (abfd, line_ptr, line_end);
2214 line_ptr += 1;
2215
2216 segment_selector_size = read_1_byte (abfd, line_ptr, line_end);
2217 line_ptr += 1;
2218 if (segment_selector_size != 0)
2219 {
2220 _bfd_error_handler
2221 (_("DWARF error: line info unsupported segment selector size %u"),
2222 segment_selector_size);
2223 bfd_set_error (bfd_error_bad_value);
2224 return NULL;
2225 }
2226 }
2227
2228 if (offset_size == 4)
2229 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end);
2230 else
2231 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end);
2232 line_ptr += offset_size;
2233
2234 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end);
2235 line_ptr += 1;
2236
2237 if (lh.version >= 4)
2238 {
2239 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end);
2240 line_ptr += 1;
2241 }
2242 else
2243 lh.maximum_ops_per_insn = 1;
2244
2245 if (lh.maximum_ops_per_insn == 0)
2246 {
2247 _bfd_error_handler
2248 (_("DWARF error: invalid maximum operations per instruction"));
2249 bfd_set_error (bfd_error_bad_value);
2250 return NULL;
2251 }
2252
2253 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end);
2254 line_ptr += 1;
2255
2256 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end);
2257 line_ptr += 1;
2258
2259 lh.line_range = read_1_byte (abfd, line_ptr, line_end);
2260 line_ptr += 1;
2261
2262 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end);
2263 line_ptr += 1;
2264
2265 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2266 {
2267 _bfd_error_handler (_("DWARF error: ran out of room reading opcodes"));
2268 bfd_set_error (bfd_error_bad_value);
2269 return NULL;
2270 }
2271
2272 amt = lh.opcode_base * sizeof (unsigned char);
2273 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2274
2275 lh.standard_opcode_lengths[0] = 1;
2276
2277 for (i = 1; i < lh.opcode_base; ++i)
2278 {
2279 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end);
2280 line_ptr += 1;
2281 }
2282
2283 amt = sizeof (struct line_info_table);
2284 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2285 if (table == NULL)
2286 return NULL;
2287 table->abfd = abfd;
2288 table->comp_dir = unit->comp_dir;
2289
2290 table->num_files = 0;
2291 table->files = NULL;
2292
2293 table->num_dirs = 0;
2294 table->dirs = NULL;
2295
2296 table->num_sequences = 0;
2297 table->sequences = NULL;
2298
2299 table->lcl_head = NULL;
2300
2301 if (lh.version >= 5)
2302 {
2303 /* Read directory table. */
2304 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2305 line_info_add_include_dir_stub))
2306 goto fail;
2307
2308 /* Read file name table. */
2309 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2310 line_info_add_file_name))
2311 goto fail;
2312 }
2313 else
2314 {
2315 /* Read directory table. */
2316 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2317 {
2318 line_ptr += bytes_read;
2319
2320 if (!line_info_add_include_dir (table, cur_dir))
2321 goto fail;
2322 }
2323
2324 line_ptr += bytes_read;
2325
2326 /* Read file name table. */
2327 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2328 {
2329 unsigned int dir, xtime, size;
2330
2331 line_ptr += bytes_read;
2332
2333 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2334 line_ptr += bytes_read;
2335 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2336 line_ptr += bytes_read;
2337 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2338 line_ptr += bytes_read;
2339
2340 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2341 goto fail;
2342 }
2343
2344 line_ptr += bytes_read;
2345 }
2346
2347 /* Read the statement sequences until there's nothing left. */
2348 while (line_ptr < line_end)
2349 {
2350 /* State machine registers. */
2351 bfd_vma address = 0;
2352 unsigned char op_index = 0;
2353 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
2354 unsigned int line = 1;
2355 unsigned int column = 0;
2356 unsigned int discriminator = 0;
2357 int is_stmt = lh.default_is_stmt;
2358 int end_sequence = 0;
2359 unsigned int dir, xtime, size;
2360 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2361 compilers generate address sequences that are wildly out of
2362 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2363 for ia64-Linux). Thus, to determine the low and high
2364 address, we must compare on every DW_LNS_copy, etc. */
2365 bfd_vma low_pc = (bfd_vma) -1;
2366 bfd_vma high_pc = 0;
2367
2368 /* Decode the table. */
2369 while (!end_sequence && line_ptr < line_end)
2370 {
2371 op_code = read_1_byte (abfd, line_ptr, line_end);
2372 line_ptr += 1;
2373
2374 if (op_code >= lh.opcode_base)
2375 {
2376 /* Special operand. */
2377 adj_opcode = op_code - lh.opcode_base;
2378 if (lh.line_range == 0)
2379 goto line_fail;
2380 if (lh.maximum_ops_per_insn == 1)
2381 address += (adj_opcode / lh.line_range
2382 * lh.minimum_instruction_length);
2383 else
2384 {
2385 address += ((op_index + adj_opcode / lh.line_range)
2386 / lh.maximum_ops_per_insn
2387 * lh.minimum_instruction_length);
2388 op_index = ((op_index + adj_opcode / lh.line_range)
2389 % lh.maximum_ops_per_insn);
2390 }
2391 line += lh.line_base + (adj_opcode % lh.line_range);
2392 /* Append row to matrix using current values. */
2393 if (!add_line_info (table, address, op_index, filename,
2394 line, column, discriminator, 0))
2395 goto line_fail;
2396 discriminator = 0;
2397 if (address < low_pc)
2398 low_pc = address;
2399 if (address > high_pc)
2400 high_pc = address;
2401 }
2402 else switch (op_code)
2403 {
2404 case DW_LNS_extended_op:
2405 exop_len = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2406 FALSE, line_end);
2407 line_ptr += bytes_read;
2408 extended_op = read_1_byte (abfd, line_ptr, line_end);
2409 line_ptr += 1;
2410
2411 switch (extended_op)
2412 {
2413 case DW_LNE_end_sequence:
2414 end_sequence = 1;
2415 if (!add_line_info (table, address, op_index, filename, line,
2416 column, discriminator, end_sequence))
2417 goto line_fail;
2418 discriminator = 0;
2419 if (address < low_pc)
2420 low_pc = address;
2421 if (address > high_pc)
2422 high_pc = address;
2423 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2424 goto line_fail;
2425 break;
2426 case DW_LNE_set_address:
2427 address = read_address (unit, line_ptr, line_end);
2428 op_index = 0;
2429 line_ptr += unit->addr_size;
2430 break;
2431 case DW_LNE_define_file:
2432 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read);
2433 line_ptr += bytes_read;
2434 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2435 FALSE, line_end);
2436 line_ptr += bytes_read;
2437 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2438 FALSE, line_end);
2439 line_ptr += bytes_read;
2440 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2441 FALSE, line_end);
2442 line_ptr += bytes_read;
2443 if (!line_info_add_file_name (table, cur_file, dir,
2444 xtime, size))
2445 goto line_fail;
2446 break;
2447 case DW_LNE_set_discriminator:
2448 discriminator =
2449 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2450 FALSE, line_end);
2451 line_ptr += bytes_read;
2452 break;
2453 case DW_LNE_HP_source_file_correlation:
2454 line_ptr += exop_len - 1;
2455 break;
2456 default:
2457 _bfd_error_handler
2458 (_("DWARF error: mangled line number section"));
2459 bfd_set_error (bfd_error_bad_value);
2460 line_fail:
2461 free (filename);
2462 goto fail;
2463 }
2464 break;
2465 case DW_LNS_copy:
2466 if (!add_line_info (table, address, op_index,
2467 filename, line, column, discriminator, 0))
2468 goto line_fail;
2469 discriminator = 0;
2470 if (address < low_pc)
2471 low_pc = address;
2472 if (address > high_pc)
2473 high_pc = address;
2474 break;
2475 case DW_LNS_advance_pc:
2476 if (lh.maximum_ops_per_insn == 1)
2477 address += (lh.minimum_instruction_length
2478 * _bfd_safe_read_leb128 (abfd, line_ptr,
2479 &bytes_read,
2480 FALSE, line_end));
2481 else
2482 {
2483 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, line_ptr,
2484 &bytes_read,
2485 FALSE, line_end);
2486 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2487 * lh.minimum_instruction_length);
2488 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2489 }
2490 line_ptr += bytes_read;
2491 break;
2492 case DW_LNS_advance_line:
2493 line += _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2494 TRUE, line_end);
2495 line_ptr += bytes_read;
2496 break;
2497 case DW_LNS_set_file:
2498 {
2499 unsigned int filenum;
2500
2501 /* The file and directory tables are 0
2502 based, the references are 1 based. */
2503 filenum = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2504 FALSE, line_end);
2505 line_ptr += bytes_read;
2506 free (filename);
2507 filename = concat_filename (table, filenum);
2508 break;
2509 }
2510 case DW_LNS_set_column:
2511 column = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2512 FALSE, line_end);
2513 line_ptr += bytes_read;
2514 break;
2515 case DW_LNS_negate_stmt:
2516 is_stmt = (!is_stmt);
2517 break;
2518 case DW_LNS_set_basic_block:
2519 break;
2520 case DW_LNS_const_add_pc:
2521 if (lh.line_range == 0)
2522 goto line_fail;
2523 if (lh.maximum_ops_per_insn == 1)
2524 address += (lh.minimum_instruction_length
2525 * ((255 - lh.opcode_base) / lh.line_range));
2526 else
2527 {
2528 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2529 address += (lh.minimum_instruction_length
2530 * ((op_index + adjust)
2531 / lh.maximum_ops_per_insn));
2532 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2533 }
2534 break;
2535 case DW_LNS_fixed_advance_pc:
2536 address += read_2_bytes (abfd, line_ptr, line_end);
2537 op_index = 0;
2538 line_ptr += 2;
2539 break;
2540 default:
2541 /* Unknown standard opcode, ignore it. */
2542 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2543 {
2544 (void) _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2545 FALSE, line_end);
2546 line_ptr += bytes_read;
2547 }
2548 break;
2549 }
2550 }
2551
2552 free (filename);
2553 }
2554
2555 if (unit->line_offset == 0)
2556 file->line_table = table;
2557 if (sort_line_sequences (table))
2558 return table;
2559
2560 fail:
2561 while (table->sequences != NULL)
2562 {
2563 struct line_sequence* seq = table->sequences;
2564 table->sequences = table->sequences->prev_sequence;
2565 free (seq);
2566 }
2567 free (table->files);
2568 free (table->dirs);
2569 return NULL;
2570 }
2571
2572 /* If ADDR is within TABLE set the output parameters and return the
2573 range of addresses covered by the entry used to fill them out.
2574 Otherwise set * FILENAME_PTR to NULL and return 0.
2575 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2576 are pointers to the objects to be filled in. */
2577
2578 static bfd_vma
2579 lookup_address_in_line_info_table (struct line_info_table *table,
2580 bfd_vma addr,
2581 const char **filename_ptr,
2582 unsigned int *linenumber_ptr,
2583 unsigned int *discriminator_ptr)
2584 {
2585 struct line_sequence *seq = NULL;
2586 struct line_info *info;
2587 int low, high, mid;
2588
2589 /* Binary search the array of sequences. */
2590 low = 0;
2591 high = table->num_sequences;
2592 while (low < high)
2593 {
2594 mid = (low + high) / 2;
2595 seq = &table->sequences[mid];
2596 if (addr < seq->low_pc)
2597 high = mid;
2598 else if (addr >= seq->last_line->address)
2599 low = mid + 1;
2600 else
2601 break;
2602 }
2603
2604 /* Check for a valid sequence. */
2605 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
2606 goto fail;
2607
2608 if (!build_line_info_table (table, seq))
2609 goto fail;
2610
2611 /* Binary search the array of line information. */
2612 low = 0;
2613 high = seq->num_lines;
2614 info = NULL;
2615 while (low < high)
2616 {
2617 mid = (low + high) / 2;
2618 info = seq->line_info_lookup[mid];
2619 if (addr < info->address)
2620 high = mid;
2621 else if (addr >= seq->line_info_lookup[mid + 1]->address)
2622 low = mid + 1;
2623 else
2624 break;
2625 }
2626
2627 /* Check for a valid line information entry. */
2628 if (info
2629 && addr >= info->address
2630 && addr < seq->line_info_lookup[mid + 1]->address
2631 && !(info->end_sequence || info == seq->last_line))
2632 {
2633 *filename_ptr = info->filename;
2634 *linenumber_ptr = info->line;
2635 if (discriminator_ptr)
2636 *discriminator_ptr = info->discriminator;
2637 return seq->last_line->address - seq->low_pc;
2638 }
2639
2640 fail:
2641 *filename_ptr = NULL;
2642 return 0;
2643 }
2644
2645 /* Read in the .debug_ranges section for future reference. */
2646
2647 static bfd_boolean
2648 read_debug_ranges (struct comp_unit * unit)
2649 {
2650 struct dwarf2_debug *stash = unit->stash;
2651 struct dwarf2_debug_file *file = unit->file;
2652
2653 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2654 file->syms, 0,
2655 &file->dwarf_ranges_buffer, &file->dwarf_ranges_size);
2656 }
2657
2658 /* Read in the .debug_rnglists section for future reference. */
2659
2660 static bfd_boolean
2661 read_debug_rnglists (struct comp_unit * unit)
2662 {
2663 struct dwarf2_debug *stash = unit->stash;
2664 struct dwarf2_debug_file *file = unit->file;
2665
2666 return read_section (unit->abfd, &stash->debug_sections[debug_rnglists],
2667 file->syms, 0,
2668 &file->dwarf_rnglists_buffer, &file->dwarf_rnglists_size);
2669 }
2670
2671 /* Function table functions. */
2672
2673 static int
2674 compare_lookup_funcinfos (const void * a, const void * b)
2675 {
2676 const struct lookup_funcinfo * lookup1 = a;
2677 const struct lookup_funcinfo * lookup2 = b;
2678
2679 if (lookup1->low_addr < lookup2->low_addr)
2680 return -1;
2681 if (lookup1->low_addr > lookup2->low_addr)
2682 return 1;
2683 if (lookup1->high_addr < lookup2->high_addr)
2684 return -1;
2685 if (lookup1->high_addr > lookup2->high_addr)
2686 return 1;
2687
2688 if (lookup1->idx < lookup2->idx)
2689 return -1;
2690 if (lookup1->idx > lookup2->idx)
2691 return 1;
2692 return 0;
2693 }
2694
2695 static bfd_boolean
2696 build_lookup_funcinfo_table (struct comp_unit * unit)
2697 {
2698 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
2699 unsigned int number_of_functions = unit->number_of_functions;
2700 struct funcinfo *each;
2701 struct lookup_funcinfo *entry;
2702 size_t func_index;
2703 struct arange *range;
2704 bfd_vma low_addr, high_addr;
2705
2706 if (lookup_funcinfo_table || number_of_functions == 0)
2707 return TRUE;
2708
2709 /* Create the function info lookup table. */
2710 lookup_funcinfo_table = (struct lookup_funcinfo *)
2711 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
2712 if (lookup_funcinfo_table == NULL)
2713 return FALSE;
2714
2715 /* Populate the function info lookup table. */
2716 func_index = number_of_functions;
2717 for (each = unit->function_table; each; each = each->prev_func)
2718 {
2719 entry = &lookup_funcinfo_table[--func_index];
2720 entry->funcinfo = each;
2721 entry->idx = func_index;
2722
2723 /* Calculate the lowest and highest address for this function entry. */
2724 low_addr = entry->funcinfo->arange.low;
2725 high_addr = entry->funcinfo->arange.high;
2726
2727 for (range = entry->funcinfo->arange.next; range; range = range->next)
2728 {
2729 if (range->low < low_addr)
2730 low_addr = range->low;
2731 if (range->high > high_addr)
2732 high_addr = range->high;
2733 }
2734
2735 entry->low_addr = low_addr;
2736 entry->high_addr = high_addr;
2737 }
2738
2739 BFD_ASSERT (func_index == 0);
2740
2741 /* Sort the function by address. */
2742 qsort (lookup_funcinfo_table,
2743 number_of_functions,
2744 sizeof (struct lookup_funcinfo),
2745 compare_lookup_funcinfos);
2746
2747 /* Calculate the high watermark for each function in the lookup table. */
2748 high_addr = lookup_funcinfo_table[0].high_addr;
2749 for (func_index = 1; func_index < number_of_functions; func_index++)
2750 {
2751 entry = &lookup_funcinfo_table[func_index];
2752 if (entry->high_addr > high_addr)
2753 high_addr = entry->high_addr;
2754 else
2755 entry->high_addr = high_addr;
2756 }
2757
2758 unit->lookup_funcinfo_table = lookup_funcinfo_table;
2759 return TRUE;
2760 }
2761
2762 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2763 TRUE. Note that we need to find the function that has the smallest range
2764 that contains ADDR, to handle inlined functions without depending upon
2765 them being ordered in TABLE by increasing range. */
2766
2767 static bfd_boolean
2768 lookup_address_in_function_table (struct comp_unit *unit,
2769 bfd_vma addr,
2770 struct funcinfo **function_ptr)
2771 {
2772 unsigned int number_of_functions = unit->number_of_functions;
2773 struct lookup_funcinfo* lookup_funcinfo = NULL;
2774 struct funcinfo* funcinfo = NULL;
2775 struct funcinfo* best_fit = NULL;
2776 bfd_vma best_fit_len = 0;
2777 bfd_size_type low, high, mid, first;
2778 struct arange *arange;
2779
2780 if (number_of_functions == 0)
2781 return FALSE;
2782
2783 if (!build_lookup_funcinfo_table (unit))
2784 return FALSE;
2785
2786 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
2787 return FALSE;
2788
2789 /* Find the first function in the lookup table which may contain the
2790 specified address. */
2791 low = 0;
2792 high = number_of_functions;
2793 first = high;
2794 while (low < high)
2795 {
2796 mid = (low + high) / 2;
2797 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
2798 if (addr < lookup_funcinfo->low_addr)
2799 high = mid;
2800 else if (addr >= lookup_funcinfo->high_addr)
2801 low = mid + 1;
2802 else
2803 high = first = mid;
2804 }
2805
2806 /* Find the 'best' match for the address. The prior algorithm defined the
2807 best match as the function with the smallest address range containing
2808 the specified address. This definition should probably be changed to the
2809 innermost inline routine containing the address, but right now we want
2810 to get the same results we did before. */
2811 while (first < number_of_functions)
2812 {
2813 if (addr < unit->lookup_funcinfo_table[first].low_addr)
2814 break;
2815 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
2816
2817 for (arange = &funcinfo->arange; arange; arange = arange->next)
2818 {
2819 if (addr < arange->low || addr >= arange->high)
2820 continue;
2821
2822 if (!best_fit
2823 || arange->high - arange->low < best_fit_len
2824 /* The following comparison is designed to return the same
2825 match as the previous algorithm for routines which have the
2826 same best fit length. */
2827 || (arange->high - arange->low == best_fit_len
2828 && funcinfo > best_fit))
2829 {
2830 best_fit = funcinfo;
2831 best_fit_len = arange->high - arange->low;
2832 }
2833 }
2834
2835 first++;
2836 }
2837
2838 if (!best_fit)
2839 return FALSE;
2840
2841 *function_ptr = best_fit;
2842 return TRUE;
2843 }
2844
2845 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2846 and LINENUMBER_PTR, and return TRUE. */
2847
2848 static bfd_boolean
2849 lookup_symbol_in_function_table (struct comp_unit *unit,
2850 asymbol *sym,
2851 bfd_vma addr,
2852 const char **filename_ptr,
2853 unsigned int *linenumber_ptr)
2854 {
2855 struct funcinfo* each_func;
2856 struct funcinfo* best_fit = NULL;
2857 bfd_vma best_fit_len = 0;
2858 struct arange *arange;
2859 const char *name = bfd_asymbol_name (sym);
2860 asection *sec = bfd_asymbol_section (sym);
2861
2862 for (each_func = unit->function_table;
2863 each_func;
2864 each_func = each_func->prev_func)
2865 {
2866 for (arange = &each_func->arange;
2867 arange;
2868 arange = arange->next)
2869 {
2870 if ((!each_func->sec || each_func->sec == sec)
2871 && addr >= arange->low
2872 && addr < arange->high
2873 && each_func->name
2874 && strcmp (name, each_func->name) == 0
2875 && (!best_fit
2876 || arange->high - arange->low < best_fit_len))
2877 {
2878 best_fit = each_func;
2879 best_fit_len = arange->high - arange->low;
2880 }
2881 }
2882 }
2883
2884 if (best_fit)
2885 {
2886 best_fit->sec = sec;
2887 *filename_ptr = best_fit->file;
2888 *linenumber_ptr = best_fit->line;
2889 return TRUE;
2890 }
2891 else
2892 return FALSE;
2893 }
2894
2895 /* Variable table functions. */
2896
2897 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2898 LINENUMBER_PTR, and return TRUE. */
2899
2900 static bfd_boolean
2901 lookup_symbol_in_variable_table (struct comp_unit *unit,
2902 asymbol *sym,
2903 bfd_vma addr,
2904 const char **filename_ptr,
2905 unsigned int *linenumber_ptr)
2906 {
2907 const char *name = bfd_asymbol_name (sym);
2908 asection *sec = bfd_asymbol_section (sym);
2909 struct varinfo* each;
2910
2911 for (each = unit->variable_table; each; each = each->prev_var)
2912 if (! each->stack
2913 && each->file != NULL
2914 && each->name != NULL
2915 && each->addr == addr
2916 && (!each->sec || each->sec == sec)
2917 && strcmp (name, each->name) == 0)
2918 break;
2919
2920 if (each)
2921 {
2922 each->sec = sec;
2923 *filename_ptr = each->file;
2924 *linenumber_ptr = each->line;
2925 return TRUE;
2926 }
2927
2928 return FALSE;
2929 }
2930
2931 static struct comp_unit *stash_comp_unit (struct dwarf2_debug *,
2932 struct dwarf2_debug_file *);
2933 static bfd_boolean comp_unit_maybe_decode_line_info (struct comp_unit *);
2934
2935 static bfd_boolean
2936 find_abstract_instance (struct comp_unit *unit,
2937 struct attribute *attr_ptr,
2938 unsigned int recur_count,
2939 const char **pname,
2940 bfd_boolean *is_linkage,
2941 char **filename_ptr,
2942 int *linenumber_ptr)
2943 {
2944 bfd *abfd = unit->abfd;
2945 bfd_byte *info_ptr = NULL;
2946 bfd_byte *info_ptr_end;
2947 unsigned int abbrev_number, bytes_read, i;
2948 struct abbrev_info *abbrev;
2949 bfd_uint64_t die_ref = attr_ptr->u.val;
2950 struct attribute attr;
2951 const char *name = NULL;
2952
2953 if (recur_count == 100)
2954 {
2955 _bfd_error_handler
2956 (_("DWARF error: abstract instance recursion detected"));
2957 bfd_set_error (bfd_error_bad_value);
2958 return FALSE;
2959 }
2960
2961 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2962 is an offset from the .debug_info section, not the current CU. */
2963 if (attr_ptr->form == DW_FORM_ref_addr)
2964 {
2965 /* We only support DW_FORM_ref_addr within the same file, so
2966 any relocations should be resolved already. Check this by
2967 testing for a zero die_ref; There can't be a valid reference
2968 to the header of a .debug_info section.
2969 DW_FORM_ref_addr is an offset relative to .debug_info.
2970 Normally when using the GNU linker this is accomplished by
2971 emitting a symbolic reference to a label, because .debug_info
2972 sections are linked at zero. When there are multiple section
2973 groups containing .debug_info, as there might be in a
2974 relocatable object file, it would be reasonable to assume that
2975 a symbolic reference to a label in any .debug_info section
2976 might be used. Since we lay out multiple .debug_info
2977 sections at non-zero VMAs (see place_sections), and read
2978 them contiguously into dwarf_info_buffer, that means the
2979 reference is relative to dwarf_info_buffer. */
2980 size_t total;
2981
2982 info_ptr = unit->file->dwarf_info_buffer;
2983 info_ptr_end = info_ptr + unit->file->dwarf_info_size;
2984 total = info_ptr_end - info_ptr;
2985 if (!die_ref)
2986 return TRUE;
2987 else if (die_ref >= total)
2988 {
2989 _bfd_error_handler
2990 (_("DWARF error: invalid abstract instance DIE ref"));
2991 bfd_set_error (bfd_error_bad_value);
2992 return FALSE;
2993 }
2994 info_ptr += die_ref;
2995 }
2996 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2997 {
2998 bfd_boolean first_time = unit->stash->alt.dwarf_info_buffer == NULL;
2999
3000 info_ptr = read_alt_indirect_ref (unit, die_ref);
3001 if (first_time)
3002 unit->stash->alt.info_ptr = unit->stash->alt.dwarf_info_buffer;
3003 if (info_ptr == NULL)
3004 {
3005 _bfd_error_handler
3006 (_("DWARF error: unable to read alt ref %" PRIu64),
3007 (uint64_t) die_ref);
3008 bfd_set_error (bfd_error_bad_value);
3009 return FALSE;
3010 }
3011 info_ptr_end = (unit->stash->alt.dwarf_info_buffer
3012 + unit->stash->alt.dwarf_info_size);
3013 if (unit->stash->alt.all_comp_units)
3014 unit = unit->stash->alt.all_comp_units;
3015 }
3016
3017 if (attr_ptr->form == DW_FORM_ref_addr
3018 || attr_ptr->form == DW_FORM_GNU_ref_alt)
3019 {
3020 /* Now find the CU containing this pointer. */
3021 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
3022 info_ptr_end = unit->end_ptr;
3023 else
3024 {
3025 /* Check other CUs to see if they contain the abbrev. */
3026 struct comp_unit *u;
3027
3028 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
3029 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3030 break;
3031
3032 if (u == NULL)
3033 for (u = unit->next_unit; u != NULL; u = u->next_unit)
3034 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3035 break;
3036
3037 if (attr_ptr->form == DW_FORM_ref_addr)
3038 while (u == NULL)
3039 {
3040 u = stash_comp_unit (unit->stash, &unit->stash->f);
3041 if (u == NULL)
3042 break;
3043 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3044 break;
3045 u = NULL;
3046 }
3047
3048 if (attr_ptr->form == DW_FORM_GNU_ref_alt)
3049 while (u == NULL)
3050 {
3051 u = stash_comp_unit (unit->stash, &unit->stash->alt);
3052 if (u == NULL)
3053 break;
3054 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3055 break;
3056 u = NULL;
3057 }
3058
3059 if (u == NULL)
3060 {
3061 _bfd_error_handler
3062 (_("DWARF error: unable to locate abstract instance DIE ref %"
3063 PRIu64), (uint64_t) die_ref);
3064 bfd_set_error (bfd_error_bad_value);
3065 return FALSE;
3066 }
3067 unit = u;
3068 info_ptr_end = unit->end_ptr;
3069 }
3070 }
3071 else
3072 {
3073 /* DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8 or
3074 DW_FORM_ref_udata. These are all references relative to the
3075 start of the current CU. */
3076 size_t total;
3077
3078 info_ptr = unit->info_ptr_unit;
3079 info_ptr_end = unit->end_ptr;
3080 total = info_ptr_end - info_ptr;
3081 if (!die_ref || die_ref >= total)
3082 {
3083 _bfd_error_handler
3084 (_("DWARF error: invalid abstract instance DIE ref"));
3085 bfd_set_error (bfd_error_bad_value);
3086 return FALSE;
3087 }
3088 info_ptr += die_ref;
3089 }
3090
3091 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3092 FALSE, info_ptr_end);
3093 info_ptr += bytes_read;
3094
3095 if (abbrev_number)
3096 {
3097 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3098 if (! abbrev)
3099 {
3100 _bfd_error_handler
3101 (_("DWARF error: could not find abbrev number %u"), abbrev_number);
3102 bfd_set_error (bfd_error_bad_value);
3103 return FALSE;
3104 }
3105 else
3106 {
3107 for (i = 0; i < abbrev->num_attrs; ++i)
3108 {
3109 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
3110 info_ptr, info_ptr_end);
3111 if (info_ptr == NULL)
3112 break;
3113 switch (attr.name)
3114 {
3115 case DW_AT_name:
3116 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3117 over DW_AT_name. */
3118 if (name == NULL && is_str_attr (attr.form))
3119 {
3120 name = attr.u.str;
3121 if (non_mangled (unit->lang))
3122 *is_linkage = TRUE;
3123 }
3124 break;
3125 case DW_AT_specification:
3126 if (!find_abstract_instance (unit, &attr, recur_count + 1,
3127 &name, is_linkage,
3128 filename_ptr, linenumber_ptr))
3129 return FALSE;
3130 break;
3131 case DW_AT_linkage_name:
3132 case DW_AT_MIPS_linkage_name:
3133 /* PR 16949: Corrupt debug info can place
3134 non-string forms into these attributes. */
3135 if (is_str_attr (attr.form))
3136 {
3137 name = attr.u.str;
3138 *is_linkage = TRUE;
3139 }
3140 break;
3141 case DW_AT_decl_file:
3142 if (!comp_unit_maybe_decode_line_info (unit))
3143 return FALSE;
3144 *filename_ptr = concat_filename (unit->line_table,
3145 attr.u.val);
3146 break;
3147 case DW_AT_decl_line:
3148 *linenumber_ptr = attr.u.val;
3149 break;
3150 default:
3151 break;
3152 }
3153 }
3154 }
3155 }
3156 *pname = name;
3157 return TRUE;
3158 }
3159
3160 static bfd_boolean
3161 read_ranges (struct comp_unit *unit, struct arange *arange,
3162 bfd_uint64_t offset)
3163 {
3164 bfd_byte *ranges_ptr;
3165 bfd_byte *ranges_end;
3166 bfd_vma base_address = unit->base_address;
3167
3168 if (! unit->file->dwarf_ranges_buffer)
3169 {
3170 if (! read_debug_ranges (unit))
3171 return FALSE;
3172 }
3173
3174 ranges_ptr = unit->file->dwarf_ranges_buffer + offset;
3175 if (ranges_ptr < unit->file->dwarf_ranges_buffer)
3176 return FALSE;
3177 ranges_end = unit->file->dwarf_ranges_buffer + unit->file->dwarf_ranges_size;
3178
3179 for (;;)
3180 {
3181 bfd_vma low_pc;
3182 bfd_vma high_pc;
3183
3184 /* PR 17512: file: 62cada7d. */
3185 if (ranges_ptr + 2 * unit->addr_size > ranges_end)
3186 return FALSE;
3187
3188 low_pc = read_address (unit, ranges_ptr, ranges_end);
3189 ranges_ptr += unit->addr_size;
3190 high_pc = read_address (unit, ranges_ptr, ranges_end);
3191 ranges_ptr += unit->addr_size;
3192
3193 if (low_pc == 0 && high_pc == 0)
3194 break;
3195 if (low_pc == -1UL && high_pc != -1UL)
3196 base_address = high_pc;
3197 else
3198 {
3199 if (!arange_add (unit, arange,
3200 base_address + low_pc, base_address + high_pc))
3201 return FALSE;
3202 }
3203 }
3204 return TRUE;
3205 }
3206
3207 static bfd_boolean
3208 read_rnglists (struct comp_unit *unit, struct arange *arange,
3209 bfd_uint64_t offset)
3210 {
3211 bfd_byte *rngs_ptr;
3212 bfd_byte *rngs_end;
3213 bfd_vma base_address = unit->base_address;
3214 bfd_vma low_pc;
3215 bfd_vma high_pc;
3216 bfd *abfd = unit->abfd;
3217
3218 if (! unit->file->dwarf_rnglists_buffer)
3219 {
3220 if (! read_debug_rnglists (unit))
3221 return FALSE;
3222 }
3223
3224 rngs_ptr = unit->file->dwarf_rnglists_buffer + offset;
3225 if (rngs_ptr < unit->file->dwarf_rnglists_buffer)
3226 return FALSE;
3227 rngs_end = unit->file->dwarf_rnglists_buffer;
3228 rngs_end += unit->file->dwarf_rnglists_size;
3229
3230 for (;;)
3231 {
3232 enum dwarf_range_list_entry rlet;
3233 unsigned int bytes_read;
3234
3235 if (rngs_ptr + 1 > rngs_end)
3236 return FALSE;
3237
3238 rlet = read_1_byte (abfd, rngs_ptr, rngs_end);
3239 rngs_ptr++;
3240
3241 switch (rlet)
3242 {
3243 case DW_RLE_end_of_list:
3244 return TRUE;
3245
3246 case DW_RLE_base_address:
3247 if (rngs_ptr + unit->addr_size > rngs_end)
3248 return FALSE;
3249 base_address = read_address (unit, rngs_ptr, rngs_end);
3250 rngs_ptr += unit->addr_size;
3251 continue;
3252
3253 case DW_RLE_start_length:
3254 if (rngs_ptr + unit->addr_size > rngs_end)
3255 return FALSE;
3256 low_pc = read_address (unit, rngs_ptr, rngs_end);
3257 rngs_ptr += unit->addr_size;
3258 high_pc = low_pc;
3259 high_pc += _bfd_safe_read_leb128 (abfd, rngs_ptr, &bytes_read,
3260 FALSE, rngs_end);
3261 rngs_ptr += bytes_read;
3262 break;
3263
3264 case DW_RLE_offset_pair:
3265 low_pc = base_address;
3266 low_pc += _bfd_safe_read_leb128 (abfd, rngs_ptr, &bytes_read,
3267 FALSE, rngs_end);
3268 rngs_ptr += bytes_read;
3269 high_pc = base_address;
3270 high_pc += _bfd_safe_read_leb128 (abfd, rngs_ptr, &bytes_read,
3271 FALSE, rngs_end);
3272 rngs_ptr += bytes_read;
3273 break;
3274
3275 case DW_RLE_start_end:
3276 if (rngs_ptr + 2 * unit->addr_size > rngs_end)
3277 return FALSE;
3278 low_pc = read_address (unit, rngs_ptr, rngs_end);
3279 rngs_ptr += unit->addr_size;
3280 high_pc = read_address (unit, rngs_ptr, rngs_end);
3281 rngs_ptr += unit->addr_size;
3282 break;
3283
3284 /* TODO x-variants need .debug_addr support used for split-dwarf. */
3285 case DW_RLE_base_addressx:
3286 case DW_RLE_startx_endx:
3287 case DW_RLE_startx_length:
3288 default:
3289 return FALSE;
3290 }
3291
3292 if (!arange_add (unit, arange, low_pc, high_pc))
3293 return FALSE;
3294 }
3295 }
3296
3297 static bfd_boolean
3298 read_rangelist (struct comp_unit *unit, struct arange *arange,
3299 bfd_uint64_t offset)
3300 {
3301 if (unit->version <= 4)
3302 return read_ranges (unit, arange, offset);
3303 else
3304 return read_rnglists (unit, arange, offset);
3305 }
3306
3307 static struct varinfo *
3308 lookup_var_by_offset (bfd_uint64_t offset, struct varinfo * table)
3309 {
3310 while (table)
3311 {
3312 if (table->unit_offset == offset)
3313 return table;
3314 table = table->prev_var;
3315 }
3316
3317 return NULL;
3318 }
3319
3320
3321 /* DWARF2 Compilation unit functions. */
3322
3323 /* Scan over each die in a comp. unit looking for functions to add
3324 to the function table and variables to the variable table. */
3325
3326 static bfd_boolean
3327 scan_unit_for_symbols (struct comp_unit *unit)
3328 {
3329 bfd *abfd = unit->abfd;
3330 bfd_byte *info_ptr = unit->first_child_die_ptr;
3331 bfd_byte *info_ptr_end = unit->end_ptr;
3332 int nesting_level = 0;
3333 struct nest_funcinfo {
3334 struct funcinfo *func;
3335 } *nested_funcs;
3336 int nested_funcs_size;
3337
3338 /* Maintain a stack of in-scope functions and inlined functions, which we
3339 can use to set the caller_func field. */
3340 nested_funcs_size = 32;
3341 nested_funcs = (struct nest_funcinfo *)
3342 bfd_malloc (nested_funcs_size * sizeof (*nested_funcs));
3343 if (nested_funcs == NULL)
3344 return FALSE;
3345 nested_funcs[nesting_level].func = 0;
3346
3347 while (nesting_level >= 0)
3348 {
3349 unsigned int abbrev_number, bytes_read, i;
3350 struct abbrev_info *abbrev;
3351 struct attribute attr;
3352 struct funcinfo *func;
3353 struct varinfo *var;
3354 bfd_vma low_pc = 0;
3355 bfd_vma high_pc = 0;
3356 bfd_boolean high_pc_relative = FALSE;
3357 bfd_uint64_t current_offset;
3358
3359 /* PR 17512: file: 9f405d9d. */
3360 if (info_ptr >= info_ptr_end)
3361 goto fail;
3362
3363 current_offset = info_ptr - unit->info_ptr_unit;
3364 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3365 FALSE, info_ptr_end);
3366 info_ptr += bytes_read;
3367
3368 if (! abbrev_number)
3369 {
3370 nesting_level--;
3371 continue;
3372 }
3373
3374 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3375 if (! abbrev)
3376 {
3377 static unsigned int previous_failed_abbrev = -1U;
3378
3379 /* Avoid multiple reports of the same missing abbrev. */
3380 if (abbrev_number != previous_failed_abbrev)
3381 {
3382 _bfd_error_handler
3383 (_("DWARF error: could not find abbrev number %u"),
3384 abbrev_number);
3385 previous_failed_abbrev = abbrev_number;
3386 }
3387 bfd_set_error (bfd_error_bad_value);
3388 goto fail;
3389 }
3390
3391 if (abbrev->tag == DW_TAG_subprogram
3392 || abbrev->tag == DW_TAG_entry_point
3393 || abbrev->tag == DW_TAG_inlined_subroutine)
3394 {
3395 size_t amt = sizeof (struct funcinfo);
3396
3397 var = NULL;
3398 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3399 if (func == NULL)
3400 goto fail;
3401 func->tag = abbrev->tag;
3402 func->prev_func = unit->function_table;
3403 unit->function_table = func;
3404 unit->number_of_functions++;
3405 BFD_ASSERT (!unit->cached);
3406
3407 if (func->tag == DW_TAG_inlined_subroutine)
3408 for (i = nesting_level; i-- != 0; )
3409 if (nested_funcs[i].func)
3410 {
3411 func->caller_func = nested_funcs[i].func;
3412 break;
3413 }
3414 nested_funcs[nesting_level].func = func;
3415 }
3416 else
3417 {
3418 func = NULL;
3419 if (abbrev->tag == DW_TAG_variable
3420 || abbrev->tag == DW_TAG_member)
3421 {
3422 size_t amt = sizeof (struct varinfo);
3423 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3424 if (var == NULL)
3425 goto fail;
3426 var->tag = abbrev->tag;
3427 var->stack = TRUE;
3428 var->prev_var = unit->variable_table;
3429 unit->variable_table = var;
3430 var->unit_offset = current_offset;
3431 /* PR 18205: Missing debug information can cause this
3432 var to be attached to an already cached unit. */
3433 }
3434 else
3435 var = NULL;
3436
3437 /* No inline function in scope at this nesting level. */
3438 nested_funcs[nesting_level].func = 0;
3439 }
3440
3441 for (i = 0; i < abbrev->num_attrs; ++i)
3442 {
3443 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
3444 unit, info_ptr, info_ptr_end);
3445 if (info_ptr == NULL)
3446 goto fail;
3447
3448 if (func)
3449 {
3450 switch (attr.name)
3451 {
3452 case DW_AT_call_file:
3453 func->caller_file = concat_filename (unit->line_table,
3454 attr.u.val);
3455 break;
3456
3457 case DW_AT_call_line:
3458 func->caller_line = attr.u.val;
3459 break;
3460
3461 case DW_AT_abstract_origin:
3462 case DW_AT_specification:
3463 if (!find_abstract_instance (unit, &attr, 0,
3464 &func->name,
3465 &func->is_linkage,
3466 &func->file,
3467 &func->line))
3468 goto fail;
3469 break;
3470
3471 case DW_AT_name:
3472 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3473 over DW_AT_name. */
3474 if (func->name == NULL && is_str_attr (attr.form))
3475 {
3476 func->name = attr.u.str;
3477 if (non_mangled (unit->lang))
3478 func->is_linkage = TRUE;
3479 }
3480 break;
3481
3482 case DW_AT_linkage_name:
3483 case DW_AT_MIPS_linkage_name:
3484 /* PR 16949: Corrupt debug info can place
3485 non-string forms into these attributes. */
3486 if (is_str_attr (attr.form))
3487 {
3488 func->name = attr.u.str;
3489 func->is_linkage = TRUE;
3490 }
3491 break;
3492
3493 case DW_AT_low_pc:
3494 low_pc = attr.u.val;
3495 break;
3496
3497 case DW_AT_high_pc:
3498 high_pc = attr.u.val;
3499 high_pc_relative = attr.form != DW_FORM_addr;
3500 break;
3501
3502 case DW_AT_ranges:
3503 if (!read_rangelist (unit, &func->arange, attr.u.val))
3504 goto fail;
3505 break;
3506
3507 case DW_AT_decl_file:
3508 func->file = concat_filename (unit->line_table,
3509 attr.u.val);
3510 break;
3511
3512 case DW_AT_decl_line:
3513 func->line = attr.u.val;
3514 break;
3515
3516 default:
3517 break;
3518 }
3519 }
3520 else if (var)
3521 {
3522 switch (attr.name)
3523 {
3524 case DW_AT_specification:
3525 if (attr.u.val)
3526 {
3527 struct varinfo * spec_var;
3528
3529 spec_var = lookup_var_by_offset (attr.u.val,
3530 unit->variable_table);
3531 if (spec_var == NULL)
3532 {
3533 _bfd_error_handler (_("DWARF error: could not find "
3534 "variable specification "
3535 "at offset %lx"),
3536 (unsigned long) attr.u.val);
3537 break;
3538 }
3539
3540 if (var->name == NULL)
3541 var->name = spec_var->name;
3542 if (var->file == NULL && spec_var->file != NULL)
3543 var->file = strdup (spec_var->file);
3544 if (var->line == 0)
3545 var->line = spec_var->line;
3546 if (var->sec == NULL)
3547 var->sec = spec_var->sec;
3548 }
3549 break;
3550
3551 case DW_AT_name:
3552 if (is_str_attr (attr.form))
3553 var->name = attr.u.str;
3554 break;
3555
3556 case DW_AT_decl_file:
3557 var->file = concat_filename (unit->line_table,
3558 attr.u.val);
3559 break;
3560
3561 case DW_AT_decl_line:
3562 var->line = attr.u.val;
3563 break;
3564
3565 case DW_AT_external:
3566 if (attr.u.val != 0)
3567 var->stack = FALSE;
3568 break;
3569
3570 case DW_AT_location:
3571 switch (attr.form)
3572 {
3573 case DW_FORM_block:
3574 case DW_FORM_block1:
3575 case DW_FORM_block2:
3576 case DW_FORM_block4:
3577 case DW_FORM_exprloc:
3578 if (attr.u.blk->data != NULL
3579 && *attr.u.blk->data == DW_OP_addr)
3580 {
3581 var->stack = FALSE;
3582
3583 /* Verify that DW_OP_addr is the only opcode in the
3584 location, in which case the block size will be 1
3585 plus the address size. */
3586 /* ??? For TLS variables, gcc can emit
3587 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
3588 which we don't handle here yet. */
3589 if (attr.u.blk->size == unit->addr_size + 1U)
3590 var->addr = bfd_get (unit->addr_size * 8,
3591 unit->abfd,
3592 attr.u.blk->data + 1);
3593 }
3594 break;
3595
3596 default:
3597 break;
3598 }
3599 break;
3600
3601 default:
3602 break;
3603 }
3604 }
3605 }
3606
3607 if (high_pc_relative)
3608 high_pc += low_pc;
3609
3610 if (func && high_pc != 0)
3611 {
3612 if (!arange_add (unit, &func->arange, low_pc, high_pc))
3613 goto fail;
3614 }
3615
3616 if (abbrev->has_children)
3617 {
3618 nesting_level++;
3619
3620 if (nesting_level >= nested_funcs_size)
3621 {
3622 struct nest_funcinfo *tmp;
3623
3624 nested_funcs_size *= 2;
3625 tmp = (struct nest_funcinfo *)
3626 bfd_realloc (nested_funcs,
3627 nested_funcs_size * sizeof (*nested_funcs));
3628 if (tmp == NULL)
3629 goto fail;
3630 nested_funcs = tmp;
3631 }
3632 nested_funcs[nesting_level].func = 0;
3633 }
3634 }
3635
3636 free (nested_funcs);
3637 return TRUE;
3638
3639 fail:
3640 free (nested_funcs);
3641 return FALSE;
3642 }
3643
3644 /* Parse a DWARF2 compilation unit starting at INFO_PTR. UNIT_LENGTH
3645 includes the compilation unit header that proceeds the DIE's, but
3646 does not include the length field that precedes each compilation
3647 unit header. END_PTR points one past the end of this comp unit.
3648 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
3649
3650 This routine does not read the whole compilation unit; only enough
3651 to get to the line number information for the compilation unit. */
3652
3653 static struct comp_unit *
3654 parse_comp_unit (struct dwarf2_debug *stash,
3655 struct dwarf2_debug_file *file,
3656 bfd_byte *info_ptr,
3657 bfd_vma unit_length,
3658 bfd_byte *info_ptr_unit,
3659 unsigned int offset_size)
3660 {
3661 struct comp_unit* unit;
3662 unsigned int version;
3663 bfd_uint64_t abbrev_offset = 0;
3664 /* Initialize it just to avoid a GCC false warning. */
3665 unsigned int addr_size = -1;
3666 struct abbrev_info** abbrevs;
3667 unsigned int abbrev_number, bytes_read, i;
3668 struct abbrev_info *abbrev;
3669 struct attribute attr;
3670 bfd_byte *end_ptr = info_ptr + unit_length;
3671 size_t amt;
3672 bfd_vma low_pc = 0;
3673 bfd_vma high_pc = 0;
3674 bfd *abfd = file->bfd_ptr;
3675 bfd_boolean high_pc_relative = FALSE;
3676 enum dwarf_unit_type unit_type;
3677
3678 version = read_2_bytes (abfd, info_ptr, end_ptr);
3679 info_ptr += 2;
3680 if (version < 2 || version > 5)
3681 {
3682 /* PR 19872: A version number of 0 probably means that there is padding
3683 at the end of the .debug_info section. Gold puts it there when
3684 performing an incremental link, for example. So do not generate
3685 an error, just return a NULL. */
3686 if (version)
3687 {
3688 _bfd_error_handler
3689 (_("DWARF error: found dwarf version '%u', this reader"
3690 " only handles version 2, 3, 4 and 5 information"), version);
3691 bfd_set_error (bfd_error_bad_value);
3692 }
3693 return NULL;
3694 }
3695
3696 if (version < 5)
3697 unit_type = DW_UT_compile;
3698 else
3699 {
3700 unit_type = read_1_byte (abfd, info_ptr, end_ptr);
3701 info_ptr += 1;
3702
3703 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3704 info_ptr += 1;
3705 }
3706
3707 BFD_ASSERT (offset_size == 4 || offset_size == 8);
3708 if (offset_size == 4)
3709 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr);
3710 else
3711 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr);
3712 info_ptr += offset_size;
3713
3714 if (version < 5)
3715 {
3716 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3717 info_ptr += 1;
3718 }
3719
3720 if (unit_type == DW_UT_type)
3721 {
3722 /* Skip type signature. */
3723 info_ptr += 8;
3724
3725 /* Skip type offset. */
3726 info_ptr += offset_size;
3727 }
3728
3729 if (addr_size > sizeof (bfd_vma))
3730 {
3731 _bfd_error_handler
3732 /* xgettext: c-format */
3733 (_("DWARF error: found address size '%u', this reader"
3734 " can not handle sizes greater than '%u'"),
3735 addr_size,
3736 (unsigned int) sizeof (bfd_vma));
3737 bfd_set_error (bfd_error_bad_value);
3738 return NULL;
3739 }
3740
3741 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
3742 {
3743 _bfd_error_handler
3744 ("DWARF error: found address size '%u', this reader"
3745 " can only handle address sizes '2', '4' and '8'", addr_size);
3746 bfd_set_error (bfd_error_bad_value);
3747 return NULL;
3748 }
3749
3750 /* Read the abbrevs for this compilation unit into a table. */
3751 abbrevs = read_abbrevs (abfd, abbrev_offset, stash, file);
3752 if (! abbrevs)
3753 return NULL;
3754
3755 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3756 FALSE, end_ptr);
3757 info_ptr += bytes_read;
3758 if (! abbrev_number)
3759 {
3760 /* PR 19872: An abbrev number of 0 probably means that there is padding
3761 at the end of the .debug_abbrev section. Gold puts it there when
3762 performing an incremental link, for example. So do not generate
3763 an error, just return a NULL. */
3764 return NULL;
3765 }
3766
3767 abbrev = lookup_abbrev (abbrev_number, abbrevs);
3768 if (! abbrev)
3769 {
3770 _bfd_error_handler (_("DWARF error: could not find abbrev number %u"),
3771 abbrev_number);
3772 bfd_set_error (bfd_error_bad_value);
3773 return NULL;
3774 }
3775
3776 amt = sizeof (struct comp_unit);
3777 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
3778 if (unit == NULL)
3779 return NULL;
3780 unit->abfd = abfd;
3781 unit->version = version;
3782 unit->addr_size = addr_size;
3783 unit->offset_size = offset_size;
3784 unit->abbrevs = abbrevs;
3785 unit->end_ptr = end_ptr;
3786 unit->stash = stash;
3787 unit->file = file;
3788 unit->info_ptr_unit = info_ptr_unit;
3789
3790 for (i = 0; i < abbrev->num_attrs; ++i)
3791 {
3792 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
3793 if (info_ptr == NULL)
3794 return NULL;
3795
3796 /* Store the data if it is of an attribute we want to keep in a
3797 partial symbol table. */
3798 switch (attr.name)
3799 {
3800 case DW_AT_stmt_list:
3801 unit->stmtlist = 1;
3802 unit->line_offset = attr.u.val;
3803 break;
3804
3805 case DW_AT_name:
3806 if (is_str_attr (attr.form))
3807 unit->name = attr.u.str;
3808 break;
3809
3810 case DW_AT_low_pc:
3811 low_pc = attr.u.val;
3812 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
3813 this is the base address to use when reading location
3814 lists or range lists. */
3815 if (abbrev->tag == DW_TAG_compile_unit)
3816 unit->base_address = low_pc;
3817 break;
3818
3819 case DW_AT_high_pc:
3820 high_pc = attr.u.val;
3821 high_pc_relative = attr.form != DW_FORM_addr;
3822 break;
3823
3824 case DW_AT_ranges:
3825 if (!read_rangelist (unit, &unit->arange, attr.u.val))
3826 return NULL;
3827 break;
3828
3829 case DW_AT_comp_dir:
3830 {
3831 char *comp_dir = attr.u.str;
3832
3833 /* PR 17512: file: 1fe726be. */
3834 if (! is_str_attr (attr.form))
3835 {
3836 _bfd_error_handler
3837 (_("DWARF error: DW_AT_comp_dir attribute encountered with a non-string form"));
3838 comp_dir = NULL;
3839 }
3840
3841 if (comp_dir)
3842 {
3843 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3844 directory, get rid of it. */
3845 char *cp = strchr (comp_dir, ':');
3846
3847 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3848 comp_dir = cp + 1;
3849 }
3850 unit->comp_dir = comp_dir;
3851 break;
3852 }
3853
3854 case DW_AT_language:
3855 unit->lang = attr.u.val;
3856 break;
3857
3858 default:
3859 break;
3860 }
3861 }
3862 if (high_pc_relative)
3863 high_pc += low_pc;
3864 if (high_pc != 0)
3865 {
3866 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
3867 return NULL;
3868 }
3869
3870 unit->first_child_die_ptr = info_ptr;
3871 return unit;
3872 }
3873
3874 /* Return TRUE if UNIT may contain the address given by ADDR. When
3875 there are functions written entirely with inline asm statements, the
3876 range info in the compilation unit header may not be correct. We
3877 need to consult the line info table to see if a compilation unit
3878 really contains the given address. */
3879
3880 static bfd_boolean
3881 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
3882 {
3883 struct arange *arange;
3884
3885 if (unit->error)
3886 return FALSE;
3887
3888 arange = &unit->arange;
3889 do
3890 {
3891 if (addr >= arange->low && addr < arange->high)
3892 return TRUE;
3893 arange = arange->next;
3894 }
3895 while (arange);
3896
3897 return FALSE;
3898 }
3899
3900 /* If UNIT contains ADDR, set the output parameters to the values for
3901 the line containing ADDR. The output parameters, FILENAME_PTR,
3902 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
3903 to be filled in.
3904
3905 Returns the range of addresses covered by the entry that was used
3906 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
3907
3908 static bfd_vma
3909 comp_unit_find_nearest_line (struct comp_unit *unit,
3910 bfd_vma addr,
3911 const char **filename_ptr,
3912 struct funcinfo **function_ptr,
3913 unsigned int *linenumber_ptr,
3914 unsigned int *discriminator_ptr)
3915 {
3916 bfd_boolean func_p;
3917
3918 if (!comp_unit_maybe_decode_line_info (unit))
3919 return FALSE;
3920
3921 *function_ptr = NULL;
3922 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
3923 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
3924 unit->stash->inliner_chain = *function_ptr;
3925
3926 return lookup_address_in_line_info_table (unit->line_table, addr,
3927 filename_ptr,
3928 linenumber_ptr,
3929 discriminator_ptr);
3930 }
3931
3932 /* Check to see if line info is already decoded in a comp_unit.
3933 If not, decode it. Returns TRUE if no errors were encountered;
3934 FALSE otherwise. */
3935
3936 static bfd_boolean
3937 comp_unit_maybe_decode_line_info (struct comp_unit *unit)
3938 {
3939 if (unit->error)
3940 return FALSE;
3941
3942 if (! unit->line_table)
3943 {
3944 if (! unit->stmtlist)
3945 {
3946 unit->error = 1;
3947 return FALSE;
3948 }
3949
3950 unit->line_table = decode_line_info (unit);
3951
3952 if (! unit->line_table)
3953 {
3954 unit->error = 1;
3955 return FALSE;
3956 }
3957
3958 if (unit->first_child_die_ptr < unit->end_ptr
3959 && ! scan_unit_for_symbols (unit))
3960 {
3961 unit->error = 1;
3962 return FALSE;
3963 }
3964 }
3965
3966 return TRUE;
3967 }
3968
3969 /* If UNIT contains SYM at ADDR, set the output parameters to the
3970 values for the line containing SYM. The output parameters,
3971 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
3972 filled in.
3973
3974 Return TRUE if UNIT contains SYM, and no errors were encountered;
3975 FALSE otherwise. */
3976
3977 static bfd_boolean
3978 comp_unit_find_line (struct comp_unit *unit,
3979 asymbol *sym,
3980 bfd_vma addr,
3981 const char **filename_ptr,
3982 unsigned int *linenumber_ptr)
3983 {
3984 if (!comp_unit_maybe_decode_line_info (unit))
3985 return FALSE;
3986
3987 if (sym->flags & BSF_FUNCTION)
3988 return lookup_symbol_in_function_table (unit, sym, addr,
3989 filename_ptr,
3990 linenumber_ptr);
3991
3992 return lookup_symbol_in_variable_table (unit, sym, addr,
3993 filename_ptr,
3994 linenumber_ptr);
3995 }
3996
3997 static struct funcinfo *
3998 reverse_funcinfo_list (struct funcinfo *head)
3999 {
4000 struct funcinfo *rhead;
4001 struct funcinfo *temp;
4002
4003 for (rhead = NULL; head; head = temp)
4004 {
4005 temp = head->prev_func;
4006 head->prev_func = rhead;
4007 rhead = head;
4008 }
4009 return rhead;
4010 }
4011
4012 static struct varinfo *
4013 reverse_varinfo_list (struct varinfo *head)
4014 {
4015 struct varinfo *rhead;
4016 struct varinfo *temp;
4017
4018 for (rhead = NULL; head; head = temp)
4019 {
4020 temp = head->prev_var;
4021 head->prev_var = rhead;
4022 rhead = head;
4023 }
4024 return rhead;
4025 }
4026
4027 /* Extract all interesting funcinfos and varinfos of a compilation
4028 unit into hash tables for faster lookup. Returns TRUE if no
4029 errors were enountered; FALSE otherwise. */
4030
4031 static bfd_boolean
4032 comp_unit_hash_info (struct dwarf2_debug *stash,
4033 struct comp_unit *unit,
4034 struct info_hash_table *funcinfo_hash_table,
4035 struct info_hash_table *varinfo_hash_table)
4036 {
4037 struct funcinfo* each_func;
4038 struct varinfo* each_var;
4039 bfd_boolean okay = TRUE;
4040
4041 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
4042
4043 if (!comp_unit_maybe_decode_line_info (unit))
4044 return FALSE;
4045
4046 BFD_ASSERT (!unit->cached);
4047
4048 /* To preserve the original search order, we went to visit the function
4049 infos in the reversed order of the list. However, making the list
4050 bi-directional use quite a bit of extra memory. So we reverse
4051 the list first, traverse the list in the now reversed order and
4052 finally reverse the list again to get back the original order. */
4053 unit->function_table = reverse_funcinfo_list (unit->function_table);
4054 for (each_func = unit->function_table;
4055 each_func && okay;
4056 each_func = each_func->prev_func)
4057 {
4058 /* Skip nameless functions. */
4059 if (each_func->name)
4060 /* There is no need to copy name string into hash table as
4061 name string is either in the dwarf string buffer or
4062 info in the stash. */
4063 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
4064 (void*) each_func, FALSE);
4065 }
4066 unit->function_table = reverse_funcinfo_list (unit->function_table);
4067 if (!okay)
4068 return FALSE;
4069
4070 /* We do the same for variable infos. */
4071 unit->variable_table = reverse_varinfo_list (unit->variable_table);
4072 for (each_var = unit->variable_table;
4073 each_var && okay;
4074 each_var = each_var->prev_var)
4075 {
4076 /* Skip stack vars and vars with no files or names. */
4077 if (! each_var->stack
4078 && each_var->file != NULL
4079 && each_var->name != NULL)
4080 /* There is no need to copy name string into hash table as
4081 name string is either in the dwarf string buffer or
4082 info in the stash. */
4083 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
4084 (void*) each_var, FALSE);
4085 }
4086
4087 unit->variable_table = reverse_varinfo_list (unit->variable_table);
4088 unit->cached = TRUE;
4089 return okay;
4090 }
4091
4092 /* Locate a section in a BFD containing debugging info. The search starts
4093 from the section after AFTER_SEC, or from the first section in the BFD if
4094 AFTER_SEC is NULL. The search works by examining the names of the
4095 sections. There are three permissiable names. The first two are given
4096 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
4097 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
4098 This is a variation on the .debug_info section which has a checksum
4099 describing the contents appended onto the name. This allows the linker to
4100 identify and discard duplicate debugging sections for different
4101 compilation units. */
4102 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
4103
4104 static asection *
4105 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
4106 asection *after_sec)
4107 {
4108 asection *msec;
4109 const char *look;
4110
4111 if (after_sec == NULL)
4112 {
4113 look = debug_sections[debug_info].uncompressed_name;
4114 msec = bfd_get_section_by_name (abfd, look);
4115 if (msec != NULL)
4116 return msec;
4117
4118 look = debug_sections[debug_info].compressed_name;
4119 if (look != NULL)
4120 {
4121 msec = bfd_get_section_by_name (abfd, look);
4122 if (msec != NULL)
4123 return msec;
4124 }
4125
4126 for (msec = abfd->sections; msec != NULL; msec = msec->next)
4127 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
4128 return msec;
4129
4130 return NULL;
4131 }
4132
4133 for (msec = after_sec->next; msec != NULL; msec = msec->next)
4134 {
4135 look = debug_sections[debug_info].uncompressed_name;
4136 if (strcmp (msec->name, look) == 0)
4137 return msec;
4138
4139 look = debug_sections[debug_info].compressed_name;
4140 if (look != NULL && strcmp (msec->name, look) == 0)
4141 return msec;
4142
4143 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
4144 return msec;
4145 }
4146
4147 return NULL;
4148 }
4149
4150 /* Transfer VMAs from object file to separate debug file. */
4151
4152 static void
4153 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
4154 {
4155 asection *s, *d;
4156
4157 for (s = orig_bfd->sections, d = debug_bfd->sections;
4158 s != NULL && d != NULL;
4159 s = s->next, d = d->next)
4160 {
4161 if ((d->flags & SEC_DEBUGGING) != 0)
4162 break;
4163 /* ??? Assumes 1-1 correspondence between sections in the
4164 two files. */
4165 if (strcmp (s->name, d->name) == 0)
4166 {
4167 d->output_section = s->output_section;
4168 d->output_offset = s->output_offset;
4169 d->vma = s->vma;
4170 }
4171 }
4172 }
4173
4174 /* If the dwarf2 info was found in a separate debug file, return the
4175 debug file section corresponding to the section in the original file
4176 and the debug file symbols. */
4177
4178 static void
4179 _bfd_dwarf2_stash_syms (struct dwarf2_debug *stash, bfd *abfd,
4180 asection **sec, asymbol ***syms)
4181 {
4182 if (stash->f.bfd_ptr != abfd)
4183 {
4184 asection *s, *d;
4185
4186 if (*sec == NULL)
4187 {
4188 *syms = stash->f.syms;
4189 return;
4190 }
4191
4192 for (s = abfd->sections, d = stash->f.bfd_ptr->sections;
4193 s != NULL && d != NULL;
4194 s = s->next, d = d->next)
4195 {
4196 if ((d->flags & SEC_DEBUGGING) != 0)
4197 break;
4198 if (s == *sec
4199 && strcmp (s->name, d->name) == 0)
4200 {
4201 *sec = d;
4202 *syms = stash->f.syms;
4203 break;
4204 }
4205 }
4206 }
4207 }
4208
4209 /* Unset vmas for adjusted sections in STASH. */
4210
4211 static void
4212 unset_sections (struct dwarf2_debug *stash)
4213 {
4214 int i;
4215 struct adjusted_section *p;
4216
4217 i = stash->adjusted_section_count;
4218 p = stash->adjusted_sections;
4219 for (; i > 0; i--, p++)
4220 p->section->vma = 0;
4221 }
4222
4223 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
4224 relocatable object file. VMAs are normally all zero in relocatable
4225 object files, so if we want to distinguish locations in sections by
4226 address we need to set VMAs so the sections do not overlap. We
4227 also set VMA on .debug_info so that when we have multiple
4228 .debug_info sections (or the linkonce variant) they also do not
4229 overlap. The multiple .debug_info sections make up a single
4230 logical section. ??? We should probably do the same for other
4231 debug sections. */
4232
4233 static bfd_boolean
4234 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
4235 {
4236 bfd *abfd;
4237 struct adjusted_section *p;
4238 int i;
4239 const char *debug_info_name;
4240
4241 if (stash->adjusted_section_count != 0)
4242 {
4243 i = stash->adjusted_section_count;
4244 p = stash->adjusted_sections;
4245 for (; i > 0; i--, p++)
4246 p->section->vma = p->adj_vma;
4247 return TRUE;
4248 }
4249
4250 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
4251 i = 0;
4252 abfd = orig_bfd;
4253 while (1)
4254 {
4255 asection *sect;
4256
4257 for (sect = abfd->sections; sect != NULL; sect = sect->next)
4258 {
4259 int is_debug_info;
4260
4261 if ((sect->output_section != NULL
4262 && sect->output_section != sect
4263 && (sect->flags & SEC_DEBUGGING) == 0)
4264 || sect->vma != 0)
4265 continue;
4266
4267 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
4268 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
4269
4270 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
4271 && !is_debug_info)
4272 continue;
4273
4274 i++;
4275 }
4276 if (abfd == stash->f.bfd_ptr)
4277 break;
4278 abfd = stash->f.bfd_ptr;
4279 }
4280
4281 if (i <= 1)
4282 stash->adjusted_section_count = -1;
4283 else
4284 {
4285 bfd_vma last_vma = 0, last_dwarf = 0;
4286 size_t amt = i * sizeof (struct adjusted_section);
4287
4288 p = (struct adjusted_section *) bfd_malloc (amt);
4289 if (p == NULL)
4290 return FALSE;
4291
4292 stash->adjusted_sections = p;
4293 stash->adjusted_section_count = i;
4294
4295 abfd = orig_bfd;
4296 while (1)
4297 {
4298 asection *sect;
4299
4300 for (sect = abfd->sections; sect != NULL; sect = sect->next)
4301 {
4302 bfd_size_type sz;
4303 int is_debug_info;
4304
4305 if ((sect->output_section != NULL
4306 && sect->output_section != sect
4307 && (sect->flags & SEC_DEBUGGING) == 0)
4308 || sect->vma != 0)
4309 continue;
4310
4311 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
4312 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
4313
4314 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
4315 && !is_debug_info)
4316 continue;
4317
4318 sz = sect->rawsize ? sect->rawsize : sect->size;
4319
4320 if (is_debug_info)
4321 {
4322 BFD_ASSERT (sect->alignment_power == 0);
4323 sect->vma = last_dwarf;
4324 last_dwarf += sz;
4325 }
4326 else
4327 {
4328 /* Align the new address to the current section
4329 alignment. */
4330 last_vma = ((last_vma
4331 + ~(-((bfd_vma) 1 << sect->alignment_power)))
4332 & (-((bfd_vma) 1 << sect->alignment_power)));
4333 sect->vma = last_vma;
4334 last_vma += sz;
4335 }
4336
4337 p->section = sect;
4338 p->adj_vma = sect->vma;
4339 p++;
4340 }
4341 if (abfd == stash->f.bfd_ptr)
4342 break;
4343 abfd = stash->f.bfd_ptr;
4344 }
4345 }
4346
4347 if (orig_bfd != stash->f.bfd_ptr)
4348 set_debug_vma (orig_bfd, stash->f.bfd_ptr);
4349
4350 return TRUE;
4351 }
4352
4353 /* Look up a funcinfo by name using the given info hash table. If found,
4354 also update the locations pointed to by filename_ptr and linenumber_ptr.
4355
4356 This function returns TRUE if a funcinfo that matches the given symbol
4357 and address is found with any error; otherwise it returns FALSE. */
4358
4359 static bfd_boolean
4360 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
4361 asymbol *sym,
4362 bfd_vma addr,
4363 const char **filename_ptr,
4364 unsigned int *linenumber_ptr)
4365 {
4366 struct funcinfo* each_func;
4367 struct funcinfo* best_fit = NULL;
4368 bfd_vma best_fit_len = 0;
4369 struct info_list_node *node;
4370 struct arange *arange;
4371 const char *name = bfd_asymbol_name (sym);
4372 asection *sec = bfd_asymbol_section (sym);
4373
4374 for (node = lookup_info_hash_table (hash_table, name);
4375 node;
4376 node = node->next)
4377 {
4378 each_func = (struct funcinfo *) node->info;
4379 for (arange = &each_func->arange;
4380 arange;
4381 arange = arange->next)
4382 {
4383 if ((!each_func->sec || each_func->sec == sec)
4384 && addr >= arange->low
4385 && addr < arange->high
4386 && (!best_fit
4387 || arange->high - arange->low < best_fit_len))
4388 {
4389 best_fit = each_func;
4390 best_fit_len = arange->high - arange->low;
4391 }
4392 }
4393 }
4394
4395 if (best_fit)
4396 {
4397 best_fit->sec = sec;
4398 *filename_ptr = best_fit->file;
4399 *linenumber_ptr = best_fit->line;
4400 return TRUE;
4401 }
4402
4403 return FALSE;
4404 }
4405
4406 /* Look up a varinfo by name using the given info hash table. If found,
4407 also update the locations pointed to by filename_ptr and linenumber_ptr.
4408
4409 This function returns TRUE if a varinfo that matches the given symbol
4410 and address is found with any error; otherwise it returns FALSE. */
4411
4412 static bfd_boolean
4413 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
4414 asymbol *sym,
4415 bfd_vma addr,
4416 const char **filename_ptr,
4417 unsigned int *linenumber_ptr)
4418 {
4419 const char *name = bfd_asymbol_name (sym);
4420 asection *sec = bfd_asymbol_section (sym);
4421 struct varinfo* each;
4422 struct info_list_node *node;
4423
4424 for (node = lookup_info_hash_table (hash_table, name);
4425 node;
4426 node = node->next)
4427 {
4428 each = (struct varinfo *) node->info;
4429 if (each->addr == addr
4430 && (!each->sec || each->sec == sec))
4431 {
4432 each->sec = sec;
4433 *filename_ptr = each->file;
4434 *linenumber_ptr = each->line;
4435 return TRUE;
4436 }
4437 }
4438
4439 return FALSE;
4440 }
4441
4442 /* Update the funcinfo and varinfo info hash tables if they are
4443 not up to date. Returns TRUE if there is no error; otherwise
4444 returns FALSE and disable the info hash tables. */
4445
4446 static bfd_boolean
4447 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
4448 {
4449 struct comp_unit *each;
4450
4451 /* Exit if hash tables are up-to-date. */
4452 if (stash->f.all_comp_units == stash->hash_units_head)
4453 return TRUE;
4454
4455 if (stash->hash_units_head)
4456 each = stash->hash_units_head->prev_unit;
4457 else
4458 each = stash->f.last_comp_unit;
4459
4460 while (each)
4461 {
4462 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
4463 stash->varinfo_hash_table))
4464 {
4465 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4466 return FALSE;
4467 }
4468 each = each->prev_unit;
4469 }
4470
4471 stash->hash_units_head = stash->f.all_comp_units;
4472 return TRUE;
4473 }
4474
4475 /* Check consistency of info hash tables. This is for debugging only. */
4476
4477 static void ATTRIBUTE_UNUSED
4478 stash_verify_info_hash_table (struct dwarf2_debug *stash)
4479 {
4480 struct comp_unit *each_unit;
4481 struct funcinfo *each_func;
4482 struct varinfo *each_var;
4483 struct info_list_node *node;
4484 bfd_boolean found;
4485
4486 for (each_unit = stash->f.all_comp_units;
4487 each_unit;
4488 each_unit = each_unit->next_unit)
4489 {
4490 for (each_func = each_unit->function_table;
4491 each_func;
4492 each_func = each_func->prev_func)
4493 {
4494 if (!each_func->name)
4495 continue;
4496 node = lookup_info_hash_table (stash->funcinfo_hash_table,
4497 each_func->name);
4498 BFD_ASSERT (node);
4499 found = FALSE;
4500 while (node && !found)
4501 {
4502 found = node->info == each_func;
4503 node = node->next;
4504 }
4505 BFD_ASSERT (found);
4506 }
4507
4508 for (each_var = each_unit->variable_table;
4509 each_var;
4510 each_var = each_var->prev_var)
4511 {
4512 if (!each_var->name || !each_var->file || each_var->stack)
4513 continue;
4514 node = lookup_info_hash_table (stash->varinfo_hash_table,
4515 each_var->name);
4516 BFD_ASSERT (node);
4517 found = FALSE;
4518 while (node && !found)
4519 {
4520 found = node->info == each_var;
4521 node = node->next;
4522 }
4523 BFD_ASSERT (found);
4524 }
4525 }
4526 }
4527
4528 /* Check to see if we want to enable the info hash tables, which consume
4529 quite a bit of memory. Currently we only check the number times
4530 bfd_dwarf2_find_line is called. In the future, we may also want to
4531 take the number of symbols into account. */
4532
4533 static void
4534 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
4535 {
4536 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
4537
4538 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
4539 return;
4540
4541 /* FIXME: Maybe we should check the reduce_memory_overheads
4542 and optimize fields in the bfd_link_info structure ? */
4543
4544 /* Create hash tables. */
4545 stash->funcinfo_hash_table = create_info_hash_table (abfd);
4546 stash->varinfo_hash_table = create_info_hash_table (abfd);
4547 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
4548 {
4549 /* Turn off info hashes if any allocation above fails. */
4550 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4551 return;
4552 }
4553 /* We need a forced update so that the info hash tables will
4554 be created even though there is no compilation unit. That
4555 happens if STASH_INFO_HASH_TRIGGER is 0. */
4556 if (stash_maybe_update_info_hash_tables (stash))
4557 stash->info_hash_status = STASH_INFO_HASH_ON;
4558 }
4559
4560 /* Find the file and line associated with a symbol and address using the
4561 info hash tables of a stash. If there is a match, the function returns
4562 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
4563 otherwise it returns FALSE. */
4564
4565 static bfd_boolean
4566 stash_find_line_fast (struct dwarf2_debug *stash,
4567 asymbol *sym,
4568 bfd_vma addr,
4569 const char **filename_ptr,
4570 unsigned int *linenumber_ptr)
4571 {
4572 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
4573
4574 if (sym->flags & BSF_FUNCTION)
4575 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
4576 filename_ptr, linenumber_ptr);
4577 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
4578 filename_ptr, linenumber_ptr);
4579 }
4580
4581 /* Save current section VMAs. */
4582
4583 static bfd_boolean
4584 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
4585 {
4586 asection *s;
4587 unsigned int i;
4588
4589 if (abfd->section_count == 0)
4590 return TRUE;
4591 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
4592 if (stash->sec_vma == NULL)
4593 return FALSE;
4594 stash->sec_vma_count = abfd->section_count;
4595 for (i = 0, s = abfd->sections;
4596 s != NULL && i < abfd->section_count;
4597 i++, s = s->next)
4598 {
4599 if (s->output_section != NULL)
4600 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
4601 else
4602 stash->sec_vma[i] = s->vma;
4603 }
4604 return TRUE;
4605 }
4606
4607 /* Compare current section VMAs against those at the time the stash
4608 was created. If find_nearest_line is used in linker warnings or
4609 errors early in the link process, the debug info stash will be
4610 invalid for later calls. This is because we relocate debug info
4611 sections, so the stashed section contents depend on symbol values,
4612 which in turn depend on section VMAs. */
4613
4614 static bfd_boolean
4615 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
4616 {
4617 asection *s;
4618 unsigned int i;
4619
4620 /* PR 24334: If the number of sections in ABFD has changed between
4621 when the stash was created and now, then we cannot trust the
4622 stashed vma information. */
4623 if (abfd->section_count != stash->sec_vma_count)
4624 return FALSE;
4625
4626 for (i = 0, s = abfd->sections;
4627 s != NULL && i < abfd->section_count;
4628 i++, s = s->next)
4629 {
4630 bfd_vma vma;
4631
4632 if (s->output_section != NULL)
4633 vma = s->output_section->vma + s->output_offset;
4634 else
4635 vma = s->vma;
4636 if (vma != stash->sec_vma[i])
4637 return FALSE;
4638 }
4639 return TRUE;
4640 }
4641
4642 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
4643 If DEBUG_BFD is not specified, we read debug information from ABFD
4644 or its gnu_debuglink. The results will be stored in PINFO.
4645 The function returns TRUE iff debug information is ready. */
4646
4647 bfd_boolean
4648 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
4649 const struct dwarf_debug_section *debug_sections,
4650 asymbol **symbols,
4651 void **pinfo,
4652 bfd_boolean do_place)
4653 {
4654 size_t amt = sizeof (struct dwarf2_debug);
4655 bfd_size_type total_size;
4656 asection *msec;
4657 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4658
4659 if (stash != NULL)
4660 {
4661 if (stash->orig_bfd == abfd
4662 && section_vma_same (abfd, stash))
4663 {
4664 /* Check that we did previously find some debug information
4665 before attempting to make use of it. */
4666 if (stash->f.bfd_ptr != NULL)
4667 {
4668 if (do_place && !place_sections (abfd, stash))
4669 return FALSE;
4670 return TRUE;
4671 }
4672
4673 return FALSE;
4674 }
4675 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
4676 memset (stash, 0, amt);
4677 }
4678 else
4679 {
4680 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
4681 if (! stash)
4682 return FALSE;
4683 }
4684 stash->orig_bfd = abfd;
4685 stash->debug_sections = debug_sections;
4686 stash->f.syms = symbols;
4687 if (!save_section_vma (abfd, stash))
4688 return FALSE;
4689
4690 stash->f.abbrev_offsets = htab_create_alloc (10, hash_abbrev, eq_abbrev,
4691 del_abbrev, calloc, free);
4692 if (!stash->f.abbrev_offsets)
4693 return FALSE;
4694
4695 stash->alt.abbrev_offsets = htab_create_alloc (10, hash_abbrev, eq_abbrev,
4696 del_abbrev, calloc, free);
4697 if (!stash->alt.abbrev_offsets)
4698 return FALSE;
4699
4700 *pinfo = stash;
4701
4702 if (debug_bfd == NULL)
4703 debug_bfd = abfd;
4704
4705 msec = find_debug_info (debug_bfd, debug_sections, NULL);
4706 if (msec == NULL && abfd == debug_bfd)
4707 {
4708 char * debug_filename;
4709
4710 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
4711 if (debug_filename == NULL)
4712 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
4713
4714 if (debug_filename == NULL)
4715 /* No dwarf2 info, and no gnu_debuglink to follow.
4716 Note that at this point the stash has been allocated, but
4717 contains zeros. This lets future calls to this function
4718 fail more quickly. */
4719 return FALSE;
4720
4721 debug_bfd = bfd_openr (debug_filename, NULL);
4722 free (debug_filename);
4723 if (debug_bfd == NULL)
4724 /* FIXME: Should we report our failure to follow the debuglink ? */
4725 return FALSE;
4726
4727 /* Set BFD_DECOMPRESS to decompress debug sections. */
4728 debug_bfd->flags |= BFD_DECOMPRESS;
4729 if (!bfd_check_format (debug_bfd, bfd_object)
4730 || (msec = find_debug_info (debug_bfd,
4731 debug_sections, NULL)) == NULL
4732 || !bfd_generic_link_read_symbols (debug_bfd))
4733 {
4734 bfd_close (debug_bfd);
4735 return FALSE;
4736 }
4737
4738 symbols = bfd_get_outsymbols (debug_bfd);
4739 stash->f.syms = symbols;
4740 stash->close_on_cleanup = TRUE;
4741 }
4742 stash->f.bfd_ptr = debug_bfd;
4743
4744 if (do_place
4745 && !place_sections (abfd, stash))
4746 return FALSE;
4747
4748 /* There can be more than one DWARF2 info section in a BFD these
4749 days. First handle the easy case when there's only one. If
4750 there's more than one, try case two: none of the sections is
4751 compressed. In that case, read them all in and produce one
4752 large stash. We do this in two passes - in the first pass we
4753 just accumulate the section sizes, and in the second pass we
4754 read in the section's contents. (The allows us to avoid
4755 reallocing the data as we add sections to the stash.) If
4756 some or all sections are compressed, then do things the slow
4757 way, with a bunch of reallocs. */
4758
4759 if (! find_debug_info (debug_bfd, debug_sections, msec))
4760 {
4761 /* Case 1: only one info section. */
4762 total_size = msec->size;
4763 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
4764 symbols, 0,
4765 &stash->f.dwarf_info_buffer, &total_size))
4766 return FALSE;
4767 }
4768 else
4769 {
4770 /* Case 2: multiple sections. */
4771 for (total_size = 0;
4772 msec;
4773 msec = find_debug_info (debug_bfd, debug_sections, msec))
4774 {
4775 /* Catch PR25070 testcase overflowing size calculation here. */
4776 if (total_size + msec->size < total_size
4777 || total_size + msec->size < msec->size)
4778 {
4779 bfd_set_error (bfd_error_no_memory);
4780 return FALSE;
4781 }
4782 total_size += msec->size;
4783 }
4784
4785 stash->f.dwarf_info_buffer = (bfd_byte *) bfd_malloc (total_size);
4786 if (stash->f.dwarf_info_buffer == NULL)
4787 return FALSE;
4788
4789 total_size = 0;
4790 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
4791 msec;
4792 msec = find_debug_info (debug_bfd, debug_sections, msec))
4793 {
4794 bfd_size_type size;
4795
4796 size = msec->size;
4797 if (size == 0)
4798 continue;
4799
4800 if (!(bfd_simple_get_relocated_section_contents
4801 (debug_bfd, msec, stash->f.dwarf_info_buffer + total_size,
4802 symbols)))
4803 return FALSE;
4804
4805 total_size += size;
4806 }
4807 }
4808
4809 stash->f.info_ptr = stash->f.dwarf_info_buffer;
4810 stash->f.dwarf_info_size = total_size;
4811 return TRUE;
4812 }
4813
4814 /* Parse the next DWARF2 compilation unit at FILE->INFO_PTR. */
4815
4816 static struct comp_unit *
4817 stash_comp_unit (struct dwarf2_debug *stash, struct dwarf2_debug_file *file)
4818 {
4819 bfd_size_type length;
4820 unsigned int offset_size;
4821 bfd_byte *info_ptr_unit = file->info_ptr;
4822 bfd_byte *info_ptr_end = file->dwarf_info_buffer + file->dwarf_info_size;
4823
4824 if (file->info_ptr >= info_ptr_end)
4825 return NULL;
4826
4827 length = read_4_bytes (file->bfd_ptr, file->info_ptr, info_ptr_end);
4828 /* A 0xffffff length is the DWARF3 way of indicating
4829 we use 64-bit offsets, instead of 32-bit offsets. */
4830 if (length == 0xffffffff)
4831 {
4832 offset_size = 8;
4833 length = read_8_bytes (file->bfd_ptr, file->info_ptr + 4,
4834 info_ptr_end);
4835 file->info_ptr += 12;
4836 }
4837 /* A zero length is the IRIX way of indicating 64-bit offsets,
4838 mostly because the 64-bit length will generally fit in 32
4839 bits, and the endianness helps. */
4840 else if (length == 0)
4841 {
4842 offset_size = 8;
4843 length = read_4_bytes (file->bfd_ptr, file->info_ptr + 4,
4844 info_ptr_end);
4845 file->info_ptr += 8;
4846 }
4847 /* In the absence of the hints above, we assume 32-bit DWARF2
4848 offsets even for targets with 64-bit addresses, because:
4849 a) most of the time these targets will not have generated
4850 more than 2Gb of debug info and so will not need 64-bit
4851 offsets,
4852 and
4853 b) if they do use 64-bit offsets but they are not using
4854 the size hints that are tested for above then they are
4855 not conforming to the DWARF3 standard anyway. */
4856 else
4857 {
4858 offset_size = 4;
4859 file->info_ptr += 4;
4860 }
4861
4862 if (length != 0
4863 && file->info_ptr + length <= info_ptr_end
4864 && file->info_ptr + length > file->info_ptr)
4865 {
4866 struct comp_unit *each = parse_comp_unit (stash, file,
4867 file->info_ptr, length,
4868 info_ptr_unit, offset_size);
4869 if (each)
4870 {
4871 if (file->all_comp_units)
4872 file->all_comp_units->prev_unit = each;
4873 else
4874 file->last_comp_unit = each;
4875
4876 each->next_unit = file->all_comp_units;
4877 file->all_comp_units = each;
4878
4879 file->info_ptr += length;
4880 return each;
4881 }
4882 }
4883
4884 /* Don't trust any of the DWARF info after a corrupted length or
4885 parse error. */
4886 file->info_ptr = info_ptr_end;
4887 return NULL;
4888 }
4889
4890 /* Hash function for an asymbol. */
4891
4892 static hashval_t
4893 hash_asymbol (const void *sym)
4894 {
4895 const asymbol *asym = sym;
4896 return htab_hash_string (asym->name);
4897 }
4898
4899 /* Equality function for asymbols. */
4900
4901 static int
4902 eq_asymbol (const void *a, const void *b)
4903 {
4904 const asymbol *sa = a;
4905 const asymbol *sb = b;
4906 return strcmp (sa->name, sb->name) == 0;
4907 }
4908
4909 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
4910 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
4911 symbol in SYMBOLS and return the difference between the low_pc and
4912 the symbol's address. Returns 0 if no suitable symbol could be found. */
4913
4914 bfd_signed_vma
4915 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
4916 {
4917 struct dwarf2_debug *stash;
4918 struct comp_unit * unit;
4919 htab_t sym_hash;
4920 bfd_signed_vma result = 0;
4921 asymbol ** psym;
4922
4923 stash = (struct dwarf2_debug *) *pinfo;
4924
4925 if (stash == NULL || symbols == NULL)
4926 return 0;
4927
4928 sym_hash = htab_create_alloc (10, hash_asymbol, eq_asymbol,
4929 NULL, xcalloc, free);
4930 for (psym = symbols; * psym != NULL; psym++)
4931 {
4932 asymbol * sym = * psym;
4933
4934 if (sym->flags & BSF_FUNCTION && sym->section != NULL)
4935 {
4936 void **slot = htab_find_slot (sym_hash, sym, INSERT);
4937 *slot = sym;
4938 }
4939 }
4940
4941 for (unit = stash->f.all_comp_units; unit; unit = unit->next_unit)
4942 {
4943 struct funcinfo * func;
4944
4945 comp_unit_maybe_decode_line_info (unit);
4946
4947 for (func = unit->function_table; func != NULL; func = func->prev_func)
4948 if (func->name && func->arange.low)
4949 {
4950 asymbol search, *sym;
4951
4952 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
4953
4954 search.name = func->name;
4955 sym = htab_find (sym_hash, &search);
4956 if (sym != NULL)
4957 {
4958 result = ((bfd_signed_vma) func->arange.low) -
4959 ((bfd_signed_vma) (sym->value + sym->section->vma));
4960 goto done;
4961 }
4962 }
4963 }
4964
4965 done:
4966 htab_delete (sym_hash);
4967 return result;
4968 }
4969
4970 /* Find the source code location of SYMBOL. If SYMBOL is NULL
4971 then find the nearest source code location corresponding to
4972 the address SECTION + OFFSET.
4973 Returns 1 if the line is found without error and fills in
4974 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
4975 NULL the FUNCTIONNAME_PTR is also filled in.
4976 Returns 2 if partial information from _bfd_elf_find_function is
4977 returned (function and maybe file) by looking at symbols. DWARF2
4978 info is present but not regarding the requested code location.
4979 Returns 0 otherwise.
4980 SYMBOLS contains the symbol table for ABFD.
4981 DEBUG_SECTIONS contains the name of the dwarf debug sections. */
4982
4983 int
4984 _bfd_dwarf2_find_nearest_line (bfd *abfd,
4985 asymbol **symbols,
4986 asymbol *symbol,
4987 asection *section,
4988 bfd_vma offset,
4989 const char **filename_ptr,
4990 const char **functionname_ptr,
4991 unsigned int *linenumber_ptr,
4992 unsigned int *discriminator_ptr,
4993 const struct dwarf_debug_section *debug_sections,
4994 void **pinfo)
4995 {
4996 /* Read each compilation unit from the section .debug_info, and check
4997 to see if it contains the address we are searching for. If yes,
4998 lookup the address, and return the line number info. If no, go
4999 on to the next compilation unit.
5000
5001 We keep a list of all the previously read compilation units, and
5002 a pointer to the next un-read compilation unit. Check the
5003 previously read units before reading more. */
5004 struct dwarf2_debug *stash;
5005 /* What address are we looking for? */
5006 bfd_vma addr;
5007 struct comp_unit* each;
5008 struct funcinfo *function = NULL;
5009 int found = FALSE;
5010 bfd_boolean do_line;
5011
5012 *filename_ptr = NULL;
5013 if (functionname_ptr != NULL)
5014 *functionname_ptr = NULL;
5015 *linenumber_ptr = 0;
5016 if (discriminator_ptr)
5017 *discriminator_ptr = 0;
5018
5019 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
5020 symbols, pinfo,
5021 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
5022 return FALSE;
5023
5024 stash = (struct dwarf2_debug *) *pinfo;
5025
5026 do_line = symbol != NULL;
5027 if (do_line)
5028 {
5029 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
5030 section = bfd_asymbol_section (symbol);
5031 addr = symbol->value;
5032 }
5033 else
5034 {
5035 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
5036 addr = offset;
5037
5038 /* If we have no SYMBOL but the section we're looking at is not a
5039 code section, then take a look through the list of symbols to see
5040 if we have a symbol at the address we're looking for. If we do
5041 then use this to look up line information. This will allow us to
5042 give file and line results for data symbols. We exclude code
5043 symbols here, if we look up a function symbol and then look up the
5044 line information we'll actually return the line number for the
5045 opening '{' rather than the function definition line. This is
5046 because looking up by symbol uses the line table, in which the
5047 first line for a function is usually the opening '{', while
5048 looking up the function by section + offset uses the
5049 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
5050 which will be the line of the function name. */
5051 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
5052 {
5053 asymbol **tmp;
5054
5055 for (tmp = symbols; (*tmp) != NULL; ++tmp)
5056 if ((*tmp)->the_bfd == abfd
5057 && (*tmp)->section == section
5058 && (*tmp)->value == offset
5059 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
5060 {
5061 symbol = *tmp;
5062 do_line = TRUE;
5063 /* For local symbols, keep going in the hope we find a
5064 global. */
5065 if ((symbol->flags & BSF_GLOBAL) != 0)
5066 break;
5067 }
5068 }
5069 }
5070
5071 if (section->output_section)
5072 addr += section->output_section->vma + section->output_offset;
5073 else
5074 addr += section->vma;
5075
5076 /* A null info_ptr indicates that there is no dwarf2 info
5077 (or that an error occured while setting up the stash). */
5078 if (! stash->f.info_ptr)
5079 return FALSE;
5080
5081 stash->inliner_chain = NULL;
5082
5083 /* Check the previously read comp. units first. */
5084 if (do_line)
5085 {
5086 /* The info hash tables use quite a bit of memory. We may not want to
5087 always use them. We use some heuristics to decide if and when to
5088 turn it on. */
5089 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
5090 stash_maybe_enable_info_hash_tables (abfd, stash);
5091
5092 /* Keep info hash table up to date if they are available. Note that we
5093 may disable the hash tables if there is any error duing update. */
5094 if (stash->info_hash_status == STASH_INFO_HASH_ON)
5095 stash_maybe_update_info_hash_tables (stash);
5096
5097 if (stash->info_hash_status == STASH_INFO_HASH_ON)
5098 {
5099 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
5100 linenumber_ptr);
5101 if (found)
5102 goto done;
5103 }
5104 else
5105 {
5106 /* Check the previously read comp. units first. */
5107 for (each = stash->f.all_comp_units; each; each = each->next_unit)
5108 if ((symbol->flags & BSF_FUNCTION) == 0
5109 || each->arange.high == 0
5110 || comp_unit_contains_address (each, addr))
5111 {
5112 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
5113 linenumber_ptr);
5114 if (found)
5115 goto done;
5116 }
5117 }
5118 }
5119 else
5120 {
5121 bfd_vma min_range = (bfd_vma) -1;
5122 const char * local_filename = NULL;
5123 struct funcinfo *local_function = NULL;
5124 unsigned int local_linenumber = 0;
5125 unsigned int local_discriminator = 0;
5126
5127 for (each = stash->f.all_comp_units; each; each = each->next_unit)
5128 {
5129 bfd_vma range = (bfd_vma) -1;
5130
5131 found = ((each->arange.high == 0
5132 || comp_unit_contains_address (each, addr))
5133 && (range = (comp_unit_find_nearest_line
5134 (each, addr, &local_filename,
5135 &local_function, &local_linenumber,
5136 &local_discriminator))) != 0);
5137 if (found)
5138 {
5139 /* PRs 15935 15994: Bogus debug information may have provided us
5140 with an erroneous match. We attempt to counter this by
5141 selecting the match that has the smallest address range
5142 associated with it. (We are assuming that corrupt debug info
5143 will tend to result in extra large address ranges rather than
5144 extra small ranges).
5145
5146 This does mean that we scan through all of the CUs associated
5147 with the bfd each time this function is called. But this does
5148 have the benefit of producing consistent results every time the
5149 function is called. */
5150 if (range <= min_range)
5151 {
5152 if (filename_ptr && local_filename)
5153 * filename_ptr = local_filename;
5154 if (local_function)
5155 function = local_function;
5156 if (discriminator_ptr && local_discriminator)
5157 * discriminator_ptr = local_discriminator;
5158 if (local_linenumber)
5159 * linenumber_ptr = local_linenumber;
5160 min_range = range;
5161 }
5162 }
5163 }
5164
5165 if (* linenumber_ptr)
5166 {
5167 found = TRUE;
5168 goto done;
5169 }
5170 }
5171
5172 /* Read each remaining comp. units checking each as they are read. */
5173 while ((each = stash_comp_unit (stash, &stash->f)) != NULL)
5174 {
5175 /* DW_AT_low_pc and DW_AT_high_pc are optional for
5176 compilation units. If we don't have them (i.e.,
5177 unit->high == 0), we need to consult the line info table
5178 to see if a compilation unit contains the given
5179 address. */
5180 if (do_line)
5181 found = (((symbol->flags & BSF_FUNCTION) == 0
5182 || each->arange.high == 0
5183 || comp_unit_contains_address (each, addr))
5184 && comp_unit_find_line (each, symbol, addr,
5185 filename_ptr, linenumber_ptr));
5186 else
5187 found = ((each->arange.high == 0
5188 || comp_unit_contains_address (each, addr))
5189 && comp_unit_find_nearest_line (each, addr,
5190 filename_ptr,
5191 &function,
5192 linenumber_ptr,
5193 discriminator_ptr) != 0);
5194
5195 if (found)
5196 break;
5197 }
5198
5199 done:
5200 if (functionname_ptr && function && function->is_linkage)
5201 *functionname_ptr = function->name;
5202 else if (functionname_ptr
5203 && (!*functionname_ptr
5204 || (function && !function->is_linkage)))
5205 {
5206 asymbol *fun;
5207 asymbol **syms = symbols;
5208 asection *sec = section;
5209
5210 _bfd_dwarf2_stash_syms (stash, abfd, &sec, &syms);
5211 fun = _bfd_elf_find_function (abfd, syms, sec, offset,
5212 *filename_ptr ? NULL : filename_ptr,
5213 functionname_ptr);
5214
5215 if (!found && fun != NULL)
5216 found = 2;
5217
5218 if (function && !function->is_linkage)
5219 {
5220 bfd_vma sec_vma;
5221
5222 sec_vma = section->vma;
5223 if (section->output_section != NULL)
5224 sec_vma = section->output_section->vma + section->output_offset;
5225 if (fun != NULL
5226 && fun->value + sec_vma == function->arange.low)
5227 function->name = *functionname_ptr;
5228 /* Even if we didn't find a linkage name, say that we have
5229 to stop a repeated search of symbols. */
5230 function->is_linkage = TRUE;
5231 }
5232 }
5233
5234 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
5235 unset_sections (stash);
5236
5237 return found;
5238 }
5239
5240 bfd_boolean
5241 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
5242 const char **filename_ptr,
5243 const char **functionname_ptr,
5244 unsigned int *linenumber_ptr,
5245 void **pinfo)
5246 {
5247 struct dwarf2_debug *stash;
5248
5249 stash = (struct dwarf2_debug *) *pinfo;
5250 if (stash)
5251 {
5252 struct funcinfo *func = stash->inliner_chain;
5253
5254 if (func && func->caller_func)
5255 {
5256 *filename_ptr = func->caller_file;
5257 *functionname_ptr = func->caller_func->name;
5258 *linenumber_ptr = func->caller_line;
5259 stash->inliner_chain = func->caller_func;
5260 return TRUE;
5261 }
5262 }
5263
5264 return FALSE;
5265 }
5266
5267 void
5268 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
5269 {
5270 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
5271 struct comp_unit *each;
5272 struct dwarf2_debug_file *file;
5273
5274 if (abfd == NULL || stash == NULL)
5275 return;
5276
5277 if (stash->varinfo_hash_table)
5278 bfd_hash_table_free (&stash->varinfo_hash_table->base);
5279 if (stash->funcinfo_hash_table)
5280 bfd_hash_table_free (&stash->funcinfo_hash_table->base);
5281
5282 file = &stash->f;
5283 while (1)
5284 {
5285 for (each = file->all_comp_units; each; each = each->next_unit)
5286 {
5287 struct funcinfo *function_table = each->function_table;
5288 struct varinfo *variable_table = each->variable_table;
5289
5290 if (each->line_table && each->line_table != file->line_table)
5291 {
5292 free (each->line_table->files);
5293 free (each->line_table->dirs);
5294 }
5295
5296 free (each->lookup_funcinfo_table);
5297 each->lookup_funcinfo_table = NULL;
5298
5299 while (function_table)
5300 {
5301 free (function_table->file);
5302 function_table->file = NULL;
5303 free (function_table->caller_file);
5304 function_table->caller_file = NULL;
5305 function_table = function_table->prev_func;
5306 }
5307
5308 while (variable_table)
5309 {
5310 free (variable_table->file);
5311 variable_table->file = NULL;
5312 variable_table = variable_table->prev_var;
5313 }
5314 }
5315
5316 if (file->line_table)
5317 {
5318 free (file->line_table->files);
5319 free (file->line_table->dirs);
5320 }
5321 htab_delete (file->abbrev_offsets);
5322
5323 free (file->dwarf_line_str_buffer);
5324 free (file->dwarf_str_buffer);
5325 free (file->dwarf_ranges_buffer);
5326 free (file->dwarf_line_buffer);
5327 free (file->dwarf_abbrev_buffer);
5328 free (file->dwarf_info_buffer);
5329 if (file == &stash->alt)
5330 break;
5331 file = &stash->alt;
5332 }
5333 free (stash->sec_vma);
5334 free (stash->adjusted_sections);
5335 if (stash->close_on_cleanup)
5336 bfd_close (stash->f.bfd_ptr);
5337 if (stash->alt.bfd_ptr)
5338 bfd_close (stash->alt.bfd_ptr);
5339 }
5340
5341 /* Find the function to a particular section and offset,
5342 for error reporting. */
5343
5344 asymbol *
5345 _bfd_elf_find_function (bfd *abfd,
5346 asymbol **symbols,
5347 asection *section,
5348 bfd_vma offset,
5349 const char **filename_ptr,
5350 const char **functionname_ptr)
5351 {
5352 struct elf_find_function_cache
5353 {
5354 asection *last_section;
5355 asymbol *func;
5356 const char *filename;
5357 bfd_size_type func_size;
5358 } *cache;
5359
5360 if (symbols == NULL)
5361 return NULL;
5362
5363 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
5364 return NULL;
5365
5366 cache = elf_tdata (abfd)->elf_find_function_cache;
5367 if (cache == NULL)
5368 {
5369 cache = bfd_zalloc (abfd, sizeof (*cache));
5370 elf_tdata (abfd)->elf_find_function_cache = cache;
5371 if (cache == NULL)
5372 return NULL;
5373 }
5374 if (cache->last_section != section
5375 || cache->func == NULL
5376 || offset < cache->func->value
5377 || offset >= cache->func->value + cache->func_size)
5378 {
5379 asymbol *file;
5380 bfd_vma low_func;
5381 asymbol **p;
5382 /* ??? Given multiple file symbols, it is impossible to reliably
5383 choose the right file name for global symbols. File symbols are
5384 local symbols, and thus all file symbols must sort before any
5385 global symbols. The ELF spec may be interpreted to say that a
5386 file symbol must sort before other local symbols, but currently
5387 ld -r doesn't do this. So, for ld -r output, it is possible to
5388 make a better choice of file name for local symbols by ignoring
5389 file symbols appearing after a given local symbol. */
5390 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
5391 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5392
5393 file = NULL;
5394 low_func = 0;
5395 state = nothing_seen;
5396 cache->filename = NULL;
5397 cache->func = NULL;
5398 cache->func_size = 0;
5399 cache->last_section = section;
5400
5401 for (p = symbols; *p != NULL; p++)
5402 {
5403 asymbol *sym = *p;
5404 bfd_vma code_off;
5405 bfd_size_type size;
5406
5407 if ((sym->flags & BSF_FILE) != 0)
5408 {
5409 file = sym;
5410 if (state == symbol_seen)
5411 state = file_after_symbol_seen;
5412 continue;
5413 }
5414
5415 size = bed->maybe_function_sym (sym, section, &code_off);
5416 if (size != 0
5417 && code_off <= offset
5418 && (code_off > low_func
5419 || (code_off == low_func
5420 && size > cache->func_size)))
5421 {
5422 cache->func = sym;
5423 cache->func_size = size;
5424 cache->filename = NULL;
5425 low_func = code_off;
5426 if (file != NULL
5427 && ((sym->flags & BSF_LOCAL) != 0
5428 || state != file_after_symbol_seen))
5429 cache->filename = bfd_asymbol_name (file);
5430 }
5431 if (state == nothing_seen)
5432 state = symbol_seen;
5433 }
5434 }
5435
5436 if (cache->func == NULL)
5437 return NULL;
5438
5439 if (filename_ptr)
5440 *filename_ptr = cache->filename;
5441 if (functionname_ptr)
5442 *functionname_ptr = bfd_asymbol_name (cache->func);
5443
5444 return cache->func;
5445 }
This page took 0.195857 seconds and 4 git commands to generate.