bfd/ChangeLog:
[deliverable/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
5 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
6 (gavin@cygnus.com).
7
8 From the dwarf2read.c header:
9 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
10 Inc. with support from Florida State University (under contract
11 with the Ada Joint Program Office), and Silicon Graphics, Inc.
12 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
13 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
14 support in dwarfread.c
15
16 This file is part of BFD.
17
18 This program is free software; you can redistribute it and/or modify
19 it under the terms of the GNU General Public License as published by
20 the Free Software Foundation; either version 3 of the License, or (at
21 your option) any later version.
22
23 This program is distributed in the hope that it will be useful, but
24 WITHOUT ANY WARRANTY; without even the implied warranty of
25 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
26 General Public License for more details.
27
28 You should have received a copy of the GNU General Public License
29 along with this program; if not, write to the Free Software
30 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
31 MA 02110-1301, USA. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libiberty.h"
36 #include "libbfd.h"
37 #include "elf-bfd.h"
38 #include "dwarf2.h"
39
40 /* The data in the .debug_line statement prologue looks like this. */
41
42 struct line_head
43 {
44 bfd_vma total_length;
45 unsigned short version;
46 bfd_vma prologue_length;
47 unsigned char minimum_instruction_length;
48 unsigned char maximum_ops_per_insn;
49 unsigned char default_is_stmt;
50 int line_base;
51 unsigned char line_range;
52 unsigned char opcode_base;
53 unsigned char *standard_opcode_lengths;
54 };
55
56 /* Attributes have a name and a value. */
57
58 struct attribute
59 {
60 enum dwarf_attribute name;
61 enum dwarf_form form;
62 union
63 {
64 char *str;
65 struct dwarf_block *blk;
66 bfd_uint64_t val;
67 bfd_int64_t sval;
68 }
69 u;
70 };
71
72 /* Blocks are a bunch of untyped bytes. */
73 struct dwarf_block
74 {
75 unsigned int size;
76 bfd_byte *data;
77 };
78
79 struct adjusted_section
80 {
81 asection *section;
82 bfd_vma adj_vma;
83 };
84
85 struct dwarf2_debug
86 {
87 /* A list of all previously read comp_units. */
88 struct comp_unit *all_comp_units;
89
90 /* Last comp unit in list above. */
91 struct comp_unit *last_comp_unit;
92
93 /* The next unread compilation unit within the .debug_info section.
94 Zero indicates that the .debug_info section has not been loaded
95 into a buffer yet. */
96 bfd_byte *info_ptr;
97
98 /* Pointer to the end of the .debug_info section memory buffer. */
99 bfd_byte *info_ptr_end;
100
101 /* Pointer to the bfd, section and address of the beginning of the
102 section. The bfd might be different than expected because of
103 gnu_debuglink sections. */
104 bfd *bfd_ptr;
105 asection *sec;
106 bfd_byte *sec_info_ptr;
107
108 /* A pointer to the memory block allocated for info_ptr. Neither
109 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the
110 beginning of the malloc block. This is used only to free the
111 memory later. */
112 bfd_byte *info_ptr_memory;
113
114 /* Pointer to the symbol table. */
115 asymbol **syms;
116
117 /* Pointer to the .debug_abbrev section loaded into memory. */
118 bfd_byte *dwarf_abbrev_buffer;
119
120 /* Length of the loaded .debug_abbrev section. */
121 bfd_size_type dwarf_abbrev_size;
122
123 /* Buffer for decode_line_info. */
124 bfd_byte *dwarf_line_buffer;
125
126 /* Length of the loaded .debug_line section. */
127 bfd_size_type dwarf_line_size;
128
129 /* Pointer to the .debug_str section loaded into memory. */
130 bfd_byte *dwarf_str_buffer;
131
132 /* Length of the loaded .debug_str section. */
133 bfd_size_type dwarf_str_size;
134
135 /* Pointer to the .debug_ranges section loaded into memory. */
136 bfd_byte *dwarf_ranges_buffer;
137
138 /* Length of the loaded .debug_ranges section. */
139 bfd_size_type dwarf_ranges_size;
140
141 /* If the most recent call to bfd_find_nearest_line was given an
142 address in an inlined function, preserve a pointer into the
143 calling chain for subsequent calls to bfd_find_inliner_info to
144 use. */
145 struct funcinfo *inliner_chain;
146
147 /* Number of sections whose VMA we must adjust. */
148 unsigned int adjusted_section_count;
149
150 /* Array of sections with adjusted VMA. */
151 struct adjusted_section *adjusted_sections;
152
153 /* Number of times find_line is called. This is used in
154 the heuristic for enabling the info hash tables. */
155 int info_hash_count;
156
157 #define STASH_INFO_HASH_TRIGGER 100
158
159 /* Hash table mapping symbol names to function infos. */
160 struct info_hash_table *funcinfo_hash_table;
161
162 /* Hash table mapping symbol names to variable infos. */
163 struct info_hash_table *varinfo_hash_table;
164
165 /* Head of comp_unit list in the last hash table update. */
166 struct comp_unit *hash_units_head;
167
168 /* Status of info hash. */
169 int info_hash_status;
170 #define STASH_INFO_HASH_OFF 0
171 #define STASH_INFO_HASH_ON 1
172 #define STASH_INFO_HASH_DISABLED 2
173 };
174
175 struct arange
176 {
177 struct arange *next;
178 bfd_vma low;
179 bfd_vma high;
180 };
181
182 /* A minimal decoding of DWARF2 compilation units. We only decode
183 what's needed to get to the line number information. */
184
185 struct comp_unit
186 {
187 /* Chain the previously read compilation units. */
188 struct comp_unit *next_unit;
189
190 /* Likewise, chain the compilation unit read after this one.
191 The comp units are stored in reversed reading order. */
192 struct comp_unit *prev_unit;
193
194 /* Keep the bfd convenient (for memory allocation). */
195 bfd *abfd;
196
197 /* The lowest and highest addresses contained in this compilation
198 unit as specified in the compilation unit header. */
199 struct arange arange;
200
201 /* The DW_AT_name attribute (for error messages). */
202 char *name;
203
204 /* The abbrev hash table. */
205 struct abbrev_info **abbrevs;
206
207 /* Note that an error was found by comp_unit_find_nearest_line. */
208 int error;
209
210 /* The DW_AT_comp_dir attribute. */
211 char *comp_dir;
212
213 /* TRUE if there is a line number table associated with this comp. unit. */
214 int stmtlist;
215
216 /* Pointer to the current comp_unit so that we can find a given entry
217 by its reference. */
218 bfd_byte *info_ptr_unit;
219
220 /* Pointer to the start of the debug section, for DW_FORM_ref_addr. */
221 bfd_byte *sec_info_ptr;
222
223 /* The offset into .debug_line of the line number table. */
224 unsigned long line_offset;
225
226 /* Pointer to the first child die for the comp unit. */
227 bfd_byte *first_child_die_ptr;
228
229 /* The end of the comp unit. */
230 bfd_byte *end_ptr;
231
232 /* The decoded line number, NULL if not yet decoded. */
233 struct line_info_table *line_table;
234
235 /* A list of the functions found in this comp. unit. */
236 struct funcinfo *function_table;
237
238 /* A list of the variables found in this comp. unit. */
239 struct varinfo *variable_table;
240
241 /* Pointer to dwarf2_debug structure. */
242 struct dwarf2_debug *stash;
243
244 /* DWARF format version for this unit - from unit header. */
245 int version;
246
247 /* Address size for this unit - from unit header. */
248 unsigned char addr_size;
249
250 /* Offset size for this unit - from unit header. */
251 unsigned char offset_size;
252
253 /* Base address for this unit - from DW_AT_low_pc attribute of
254 DW_TAG_compile_unit DIE */
255 bfd_vma base_address;
256
257 /* TRUE if symbols are cached in hash table for faster lookup by name. */
258 bfd_boolean cached;
259 };
260
261 /* This data structure holds the information of an abbrev. */
262 struct abbrev_info
263 {
264 unsigned int number; /* Number identifying abbrev. */
265 enum dwarf_tag tag; /* DWARF tag. */
266 int has_children; /* Boolean. */
267 unsigned int num_attrs; /* Number of attributes. */
268 struct attr_abbrev *attrs; /* An array of attribute descriptions. */
269 struct abbrev_info *next; /* Next in chain. */
270 };
271
272 struct attr_abbrev
273 {
274 enum dwarf_attribute name;
275 enum dwarf_form form;
276 };
277
278 #ifndef ABBREV_HASH_SIZE
279 #define ABBREV_HASH_SIZE 121
280 #endif
281 #ifndef ATTR_ALLOC_CHUNK
282 #define ATTR_ALLOC_CHUNK 4
283 #endif
284
285 /* Variable and function hash tables. This is used to speed up look-up
286 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
287 In order to share code between variable and function infos, we use
288 a list of untyped pointer for all variable/function info associated with
289 a symbol. We waste a bit of memory for list with one node but that
290 simplifies the code. */
291
292 struct info_list_node
293 {
294 struct info_list_node *next;
295 void *info;
296 };
297
298 /* Info hash entry. */
299 struct info_hash_entry
300 {
301 struct bfd_hash_entry root;
302 struct info_list_node *head;
303 };
304
305 struct info_hash_table
306 {
307 struct bfd_hash_table base;
308 };
309
310 /* Function to create a new entry in info hash table. */
311
312 static struct bfd_hash_entry *
313 info_hash_table_newfunc (struct bfd_hash_entry *entry,
314 struct bfd_hash_table *table,
315 const char *string)
316 {
317 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
318
319 /* Allocate the structure if it has not already been allocated by a
320 derived class. */
321 if (ret == NULL)
322 {
323 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
324 sizeof (* ret));
325 if (ret == NULL)
326 return NULL;
327 }
328
329 /* Call the allocation method of the base class. */
330 ret = ((struct info_hash_entry *)
331 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
332
333 /* Initialize the local fields here. */
334 if (ret)
335 ret->head = NULL;
336
337 return (struct bfd_hash_entry *) ret;
338 }
339
340 /* Function to create a new info hash table. It returns a pointer to the
341 newly created table or NULL if there is any error. We need abfd
342 solely for memory allocation. */
343
344 static struct info_hash_table *
345 create_info_hash_table (bfd *abfd)
346 {
347 struct info_hash_table *hash_table;
348
349 hash_table = (struct info_hash_table *)
350 bfd_alloc (abfd, sizeof (struct info_hash_table));
351 if (!hash_table)
352 return hash_table;
353
354 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
355 sizeof (struct info_hash_entry)))
356 {
357 bfd_release (abfd, hash_table);
358 return NULL;
359 }
360
361 return hash_table;
362 }
363
364 /* Insert an info entry into an info hash table. We do not check of
365 duplicate entries. Also, the caller need to guarantee that the
366 right type of info in inserted as info is passed as a void* pointer.
367 This function returns true if there is no error. */
368
369 static bfd_boolean
370 insert_info_hash_table (struct info_hash_table *hash_table,
371 const char *key,
372 void *info,
373 bfd_boolean copy_p)
374 {
375 struct info_hash_entry *entry;
376 struct info_list_node *node;
377
378 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
379 key, TRUE, copy_p);
380 if (!entry)
381 return FALSE;
382
383 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
384 sizeof (*node));
385 if (!node)
386 return FALSE;
387
388 node->info = info;
389 node->next = entry->head;
390 entry->head = node;
391
392 return TRUE;
393 }
394
395 /* Look up an info entry list from an info hash table. Return NULL
396 if there is none. */
397
398 static struct info_list_node *
399 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
400 {
401 struct info_hash_entry *entry;
402
403 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
404 FALSE, FALSE);
405 return entry ? entry->head : NULL;
406 }
407
408 /* Read a section, uncompress it if necessary, and relocate it. */
409
410 static bfd_boolean
411 read_and_uncompress_section (bfd * abfd,
412 asection * msec,
413 bfd_boolean section_is_compressed,
414 asymbol ** syms,
415 bfd_byte ** section_buffer,
416 bfd_size_type * section_size)
417 {
418 /* Get the unrelocated contents of the section. */
419 *section_buffer = (bfd_byte *) bfd_malloc (*section_size);
420 if (! *section_buffer)
421 return FALSE;
422 if (! bfd_get_section_contents (abfd, msec, *section_buffer,
423 0, *section_size))
424 return FALSE;
425
426 if (section_is_compressed)
427 {
428 if (! bfd_uncompress_section_contents (section_buffer, section_size))
429 {
430 (*_bfd_error_handler) (_("Dwarf Error: unable to decompress %s section."),
431 bfd_get_section_name (abfd, msec));
432 bfd_set_error (bfd_error_bad_value);
433 return FALSE;
434 }
435 }
436
437 if (syms)
438 {
439 /* We want to relocate the data we've already read (and
440 decompressed), so we store a pointer to the data in
441 the bfd_section, and tell it that the contents are
442 already in memory. */
443 BFD_ASSERT (msec->contents == NULL && (msec->flags & SEC_IN_MEMORY) == 0);
444 msec->contents = *section_buffer;
445 msec->flags |= SEC_IN_MEMORY;
446 msec->size = *section_size;
447 *section_buffer
448 = bfd_simple_get_relocated_section_contents (abfd, msec, NULL, syms);
449 if (! *section_buffer)
450 return FALSE;
451 }
452
453 return TRUE;
454 }
455
456 /* Read a section into its appropriate place in the dwarf2_debug
457 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
458 not NULL, use bfd_simple_get_relocated_section_contents to read the
459 section contents, otherwise use bfd_get_section_contents. Fail if
460 the located section does not contain at least OFFSET bytes. */
461
462 static bfd_boolean
463 read_section (bfd * abfd,
464 const char * section_name,
465 const char * compressed_section_name,
466 asymbol ** syms,
467 bfd_uint64_t offset,
468 bfd_byte ** section_buffer,
469 bfd_size_type * section_size)
470 {
471 asection *msec;
472 bfd_boolean section_is_compressed = FALSE;
473
474 /* read_section is a noop if the section has already been read. */
475 if (!*section_buffer)
476 {
477 msec = bfd_get_section_by_name (abfd, section_name);
478 if (! msec && compressed_section_name)
479 {
480 msec = bfd_get_section_by_name (abfd, compressed_section_name);
481 section_is_compressed = TRUE;
482 }
483 if (! msec)
484 {
485 (*_bfd_error_handler) (_("Dwarf Error: Can't find %s section."), section_name);
486 bfd_set_error (bfd_error_bad_value);
487 return FALSE;
488 }
489
490 *section_size = msec->rawsize ? msec->rawsize : msec->size;
491
492 if (! read_and_uncompress_section (abfd, msec, section_is_compressed,
493 syms, section_buffer, section_size))
494 return FALSE;
495 }
496
497 /* It is possible to get a bad value for the offset into the section
498 that the client wants. Validate it here to avoid trouble later. */
499 if (offset != 0 && offset >= *section_size)
500 {
501 (*_bfd_error_handler) (_("Dwarf Error: Offset (%lu) greater than or equal to %s size (%lu)."),
502 (long) offset, section_name, *section_size);
503 bfd_set_error (bfd_error_bad_value);
504 return FALSE;
505 }
506
507 return TRUE;
508 }
509
510 /* VERBATIM
511 The following function up to the END VERBATIM mark are
512 copied directly from dwarf2read.c. */
513
514 /* Read dwarf information from a buffer. */
515
516 static unsigned int
517 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf)
518 {
519 return bfd_get_8 (abfd, buf);
520 }
521
522 static int
523 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf)
524 {
525 return bfd_get_signed_8 (abfd, buf);
526 }
527
528 static unsigned int
529 read_2_bytes (bfd *abfd, bfd_byte *buf)
530 {
531 return bfd_get_16 (abfd, buf);
532 }
533
534 static unsigned int
535 read_4_bytes (bfd *abfd, bfd_byte *buf)
536 {
537 return bfd_get_32 (abfd, buf);
538 }
539
540 static bfd_uint64_t
541 read_8_bytes (bfd *abfd, bfd_byte *buf)
542 {
543 return bfd_get_64 (abfd, buf);
544 }
545
546 static bfd_byte *
547 read_n_bytes (bfd *abfd ATTRIBUTE_UNUSED,
548 bfd_byte *buf,
549 unsigned int size ATTRIBUTE_UNUSED)
550 {
551 return buf;
552 }
553
554 static char *
555 read_string (bfd *abfd ATTRIBUTE_UNUSED,
556 bfd_byte *buf,
557 unsigned int *bytes_read_ptr)
558 {
559 /* Return a pointer to the embedded string. */
560 char *str = (char *) buf;
561
562 if (*str == '\0')
563 {
564 *bytes_read_ptr = 1;
565 return NULL;
566 }
567
568 *bytes_read_ptr = strlen (str) + 1;
569 return str;
570 }
571
572 /* END VERBATIM */
573
574 static char *
575 read_indirect_string (struct comp_unit * unit,
576 bfd_byte * buf,
577 unsigned int * bytes_read_ptr)
578 {
579 bfd_uint64_t offset;
580 struct dwarf2_debug *stash = unit->stash;
581 char *str;
582
583 if (unit->offset_size == 4)
584 offset = read_4_bytes (unit->abfd, buf);
585 else
586 offset = read_8_bytes (unit->abfd, buf);
587
588 *bytes_read_ptr = unit->offset_size;
589
590 if (! read_section (unit->abfd, ".debug_str", ".zdebug_str",
591 stash->syms, offset,
592 &stash->dwarf_str_buffer, &stash->dwarf_str_size))
593 return NULL;
594
595 str = (char *) stash->dwarf_str_buffer + offset;
596 if (*str == '\0')
597 return NULL;
598 return str;
599 }
600
601 static bfd_uint64_t
602 read_address (struct comp_unit *unit, bfd_byte *buf)
603 {
604 int signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
605
606 if (signed_vma)
607 {
608 switch (unit->addr_size)
609 {
610 case 8:
611 return bfd_get_signed_64 (unit->abfd, buf);
612 case 4:
613 return bfd_get_signed_32 (unit->abfd, buf);
614 case 2:
615 return bfd_get_signed_16 (unit->abfd, buf);
616 default:
617 abort ();
618 }
619 }
620 else
621 {
622 switch (unit->addr_size)
623 {
624 case 8:
625 return bfd_get_64 (unit->abfd, buf);
626 case 4:
627 return bfd_get_32 (unit->abfd, buf);
628 case 2:
629 return bfd_get_16 (unit->abfd, buf);
630 default:
631 abort ();
632 }
633 }
634 }
635
636 /* Lookup an abbrev_info structure in the abbrev hash table. */
637
638 static struct abbrev_info *
639 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
640 {
641 unsigned int hash_number;
642 struct abbrev_info *abbrev;
643
644 hash_number = number % ABBREV_HASH_SIZE;
645 abbrev = abbrevs[hash_number];
646
647 while (abbrev)
648 {
649 if (abbrev->number == number)
650 return abbrev;
651 else
652 abbrev = abbrev->next;
653 }
654
655 return NULL;
656 }
657
658 /* In DWARF version 2, the description of the debugging information is
659 stored in a separate .debug_abbrev section. Before we read any
660 dies from a section we read in all abbreviations and install them
661 in a hash table. */
662
663 static struct abbrev_info**
664 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash)
665 {
666 struct abbrev_info **abbrevs;
667 bfd_byte *abbrev_ptr;
668 struct abbrev_info *cur_abbrev;
669 unsigned int abbrev_number, bytes_read, abbrev_name;
670 unsigned int abbrev_form, hash_number;
671 bfd_size_type amt;
672
673 if (! read_section (abfd, ".debug_abbrev", ".zdebug_abbrev",
674 stash->syms, offset,
675 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size))
676 return NULL;
677
678 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
679 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
680 if (abbrevs == NULL)
681 return NULL;
682
683 abbrev_ptr = stash->dwarf_abbrev_buffer + offset;
684 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
685 abbrev_ptr += bytes_read;
686
687 /* Loop until we reach an abbrev number of 0. */
688 while (abbrev_number)
689 {
690 amt = sizeof (struct abbrev_info);
691 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
692 if (cur_abbrev == NULL)
693 return NULL;
694
695 /* Read in abbrev header. */
696 cur_abbrev->number = abbrev_number;
697 cur_abbrev->tag = (enum dwarf_tag)
698 read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
699 abbrev_ptr += bytes_read;
700 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
701 abbrev_ptr += 1;
702
703 /* Now read in declarations. */
704 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
705 abbrev_ptr += bytes_read;
706 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
707 abbrev_ptr += bytes_read;
708
709 while (abbrev_name)
710 {
711 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
712 {
713 struct attr_abbrev *tmp;
714
715 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
716 amt *= sizeof (struct attr_abbrev);
717 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
718 if (tmp == NULL)
719 {
720 size_t i;
721
722 for (i = 0; i < ABBREV_HASH_SIZE; i++)
723 {
724 struct abbrev_info *abbrev = abbrevs[i];
725
726 while (abbrev)
727 {
728 free (abbrev->attrs);
729 abbrev = abbrev->next;
730 }
731 }
732 return NULL;
733 }
734 cur_abbrev->attrs = tmp;
735 }
736
737 cur_abbrev->attrs[cur_abbrev->num_attrs].name
738 = (enum dwarf_attribute) abbrev_name;
739 cur_abbrev->attrs[cur_abbrev->num_attrs++].form
740 = (enum dwarf_form) abbrev_form;
741 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
742 abbrev_ptr += bytes_read;
743 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
744 abbrev_ptr += bytes_read;
745 }
746
747 hash_number = abbrev_number % ABBREV_HASH_SIZE;
748 cur_abbrev->next = abbrevs[hash_number];
749 abbrevs[hash_number] = cur_abbrev;
750
751 /* Get next abbreviation.
752 Under Irix6 the abbreviations for a compilation unit are not
753 always properly terminated with an abbrev number of 0.
754 Exit loop if we encounter an abbreviation which we have
755 already read (which means we are about to read the abbreviations
756 for the next compile unit) or if the end of the abbreviation
757 table is reached. */
758 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer)
759 >= stash->dwarf_abbrev_size)
760 break;
761 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
762 abbrev_ptr += bytes_read;
763 if (lookup_abbrev (abbrev_number,abbrevs) != NULL)
764 break;
765 }
766
767 return abbrevs;
768 }
769
770 /* Read an attribute value described by an attribute form. */
771
772 static bfd_byte *
773 read_attribute_value (struct attribute *attr,
774 unsigned form,
775 struct comp_unit *unit,
776 bfd_byte *info_ptr)
777 {
778 bfd *abfd = unit->abfd;
779 unsigned int bytes_read;
780 struct dwarf_block *blk;
781 bfd_size_type amt;
782
783 attr->form = (enum dwarf_form) form;
784
785 switch (form)
786 {
787 case DW_FORM_ref_addr:
788 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
789 DWARF3. */
790 if (unit->version == 3 || unit->version == 4)
791 {
792 if (unit->offset_size == 4)
793 attr->u.val = read_4_bytes (unit->abfd, info_ptr);
794 else
795 attr->u.val = read_8_bytes (unit->abfd, info_ptr);
796 info_ptr += unit->offset_size;
797 break;
798 }
799 /* FALLTHROUGH */
800 case DW_FORM_addr:
801 attr->u.val = read_address (unit, info_ptr);
802 info_ptr += unit->addr_size;
803 break;
804 case DW_FORM_sec_offset:
805 if (unit->offset_size == 4)
806 attr->u.val = read_4_bytes (unit->abfd, info_ptr);
807 else
808 attr->u.val = read_8_bytes (unit->abfd, info_ptr);
809 info_ptr += unit->offset_size;
810 break;
811 case DW_FORM_block2:
812 amt = sizeof (struct dwarf_block);
813 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
814 if (blk == NULL)
815 return NULL;
816 blk->size = read_2_bytes (abfd, info_ptr);
817 info_ptr += 2;
818 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
819 info_ptr += blk->size;
820 attr->u.blk = blk;
821 break;
822 case DW_FORM_block4:
823 amt = sizeof (struct dwarf_block);
824 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
825 if (blk == NULL)
826 return NULL;
827 blk->size = read_4_bytes (abfd, info_ptr);
828 info_ptr += 4;
829 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
830 info_ptr += blk->size;
831 attr->u.blk = blk;
832 break;
833 case DW_FORM_data2:
834 attr->u.val = read_2_bytes (abfd, info_ptr);
835 info_ptr += 2;
836 break;
837 case DW_FORM_data4:
838 attr->u.val = read_4_bytes (abfd, info_ptr);
839 info_ptr += 4;
840 break;
841 case DW_FORM_data8:
842 attr->u.val = read_8_bytes (abfd, info_ptr);
843 info_ptr += 8;
844 break;
845 case DW_FORM_string:
846 attr->u.str = read_string (abfd, info_ptr, &bytes_read);
847 info_ptr += bytes_read;
848 break;
849 case DW_FORM_strp:
850 attr->u.str = read_indirect_string (unit, info_ptr, &bytes_read);
851 info_ptr += bytes_read;
852 break;
853 case DW_FORM_exprloc:
854 case DW_FORM_block:
855 amt = sizeof (struct dwarf_block);
856 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
857 if (blk == NULL)
858 return NULL;
859 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
860 info_ptr += bytes_read;
861 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
862 info_ptr += blk->size;
863 attr->u.blk = blk;
864 break;
865 case DW_FORM_block1:
866 amt = sizeof (struct dwarf_block);
867 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
868 if (blk == NULL)
869 return NULL;
870 blk->size = read_1_byte (abfd, info_ptr);
871 info_ptr += 1;
872 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
873 info_ptr += blk->size;
874 attr->u.blk = blk;
875 break;
876 case DW_FORM_data1:
877 attr->u.val = read_1_byte (abfd, info_ptr);
878 info_ptr += 1;
879 break;
880 case DW_FORM_flag:
881 attr->u.val = read_1_byte (abfd, info_ptr);
882 info_ptr += 1;
883 break;
884 case DW_FORM_flag_present:
885 attr->u.val = 1;
886 break;
887 case DW_FORM_sdata:
888 attr->u.sval = read_signed_leb128 (abfd, info_ptr, &bytes_read);
889 info_ptr += bytes_read;
890 break;
891 case DW_FORM_udata:
892 attr->u.val = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
893 info_ptr += bytes_read;
894 break;
895 case DW_FORM_ref1:
896 attr->u.val = read_1_byte (abfd, info_ptr);
897 info_ptr += 1;
898 break;
899 case DW_FORM_ref2:
900 attr->u.val = read_2_bytes (abfd, info_ptr);
901 info_ptr += 2;
902 break;
903 case DW_FORM_ref4:
904 attr->u.val = read_4_bytes (abfd, info_ptr);
905 info_ptr += 4;
906 break;
907 case DW_FORM_ref8:
908 attr->u.val = read_8_bytes (abfd, info_ptr);
909 info_ptr += 8;
910 break;
911 case DW_FORM_ref_sig8:
912 attr->u.val = read_8_bytes (abfd, info_ptr);
913 info_ptr += 8;
914 break;
915 case DW_FORM_ref_udata:
916 attr->u.val = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
917 info_ptr += bytes_read;
918 break;
919 case DW_FORM_indirect:
920 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
921 info_ptr += bytes_read;
922 info_ptr = read_attribute_value (attr, form, unit, info_ptr);
923 break;
924 default:
925 (*_bfd_error_handler) (_("Dwarf Error: Invalid or unhandled FORM value: %u."),
926 form);
927 bfd_set_error (bfd_error_bad_value);
928 return NULL;
929 }
930 return info_ptr;
931 }
932
933 /* Read an attribute described by an abbreviated attribute. */
934
935 static bfd_byte *
936 read_attribute (struct attribute *attr,
937 struct attr_abbrev *abbrev,
938 struct comp_unit *unit,
939 bfd_byte *info_ptr)
940 {
941 attr->name = abbrev->name;
942 info_ptr = read_attribute_value (attr, abbrev->form, unit, info_ptr);
943 return info_ptr;
944 }
945
946 /* Source line information table routines. */
947
948 #define FILE_ALLOC_CHUNK 5
949 #define DIR_ALLOC_CHUNK 5
950
951 struct line_info
952 {
953 struct line_info* prev_line;
954 bfd_vma address;
955 char *filename;
956 unsigned int line;
957 unsigned int column;
958 unsigned char op_index;
959 unsigned char end_sequence; /* End of (sequential) code sequence. */
960 };
961
962 struct fileinfo
963 {
964 char *name;
965 unsigned int dir;
966 unsigned int time;
967 unsigned int size;
968 };
969
970 struct line_sequence
971 {
972 bfd_vma low_pc;
973 struct line_sequence* prev_sequence;
974 struct line_info* last_line; /* Largest VMA. */
975 };
976
977 struct line_info_table
978 {
979 bfd* abfd;
980 unsigned int num_files;
981 unsigned int num_dirs;
982 unsigned int num_sequences;
983 char * comp_dir;
984 char ** dirs;
985 struct fileinfo* files;
986 struct line_sequence* sequences;
987 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
988 };
989
990 /* Remember some information about each function. If the function is
991 inlined (DW_TAG_inlined_subroutine) it may have two additional
992 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
993 source code location where this function was inlined. */
994
995 struct funcinfo
996 {
997 struct funcinfo *prev_func; /* Pointer to previous function in list of all functions */
998 struct funcinfo *caller_func; /* Pointer to function one scope higher */
999 char *caller_file; /* Source location file name where caller_func inlines this func */
1000 int caller_line; /* Source location line number where caller_func inlines this func */
1001 char *file; /* Source location file name */
1002 int line; /* Source location line number */
1003 int tag;
1004 char *name;
1005 struct arange arange;
1006 asection *sec; /* Where the symbol is defined */
1007 };
1008
1009 struct varinfo
1010 {
1011 /* Pointer to previous variable in list of all variables */
1012 struct varinfo *prev_var;
1013 /* Source location file name */
1014 char *file;
1015 /* Source location line number */
1016 int line;
1017 int tag;
1018 char *name;
1019 bfd_vma addr;
1020 /* Where the symbol is defined */
1021 asection *sec;
1022 /* Is this a stack variable? */
1023 unsigned int stack: 1;
1024 };
1025
1026 /* Return TRUE if NEW_LINE should sort after LINE. */
1027
1028 static inline bfd_boolean
1029 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1030 {
1031 return (new_line->address > line->address
1032 || (new_line->address == line->address
1033 && (new_line->op_index > line->op_index
1034 || (new_line->op_index == line->op_index
1035 && new_line->end_sequence < line->end_sequence))));
1036 }
1037
1038
1039 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1040 that the list is sorted. Note that the line_info list is sorted from
1041 highest to lowest VMA (with possible duplicates); that is,
1042 line_info->prev_line always accesses an equal or smaller VMA. */
1043
1044 static bfd_boolean
1045 add_line_info (struct line_info_table *table,
1046 bfd_vma address,
1047 unsigned char op_index,
1048 char *filename,
1049 unsigned int line,
1050 unsigned int column,
1051 int end_sequence)
1052 {
1053 bfd_size_type amt = sizeof (struct line_info);
1054 struct line_sequence* seq = table->sequences;
1055 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1056
1057 if (info == NULL)
1058 return FALSE;
1059
1060 /* Set member data of 'info'. */
1061 info->address = address;
1062 info->op_index = op_index;
1063 info->line = line;
1064 info->column = column;
1065 info->end_sequence = end_sequence;
1066
1067 if (filename && filename[0])
1068 {
1069 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1070 if (info->filename == NULL)
1071 return FALSE;
1072 strcpy (info->filename, filename);
1073 }
1074 else
1075 info->filename = NULL;
1076
1077 /* Find the correct location for 'info'. Normally we will receive
1078 new line_info data 1) in order and 2) with increasing VMAs.
1079 However some compilers break the rules (cf. decode_line_info) and
1080 so we include some heuristics for quickly finding the correct
1081 location for 'info'. In particular, these heuristics optimize for
1082 the common case in which the VMA sequence that we receive is a
1083 list of locally sorted VMAs such as
1084 p...z a...j (where a < j < p < z)
1085
1086 Note: table->lcl_head is used to head an *actual* or *possible*
1087 sub-sequence within the list (such as a...j) that is not directly
1088 headed by table->last_line
1089
1090 Note: we may receive duplicate entries from 'decode_line_info'. */
1091
1092 if (seq
1093 && seq->last_line->address == address
1094 && seq->last_line->op_index == op_index
1095 && seq->last_line->end_sequence == end_sequence)
1096 {
1097 /* We only keep the last entry with the same address and end
1098 sequence. See PR ld/4986. */
1099 if (table->lcl_head == seq->last_line)
1100 table->lcl_head = info;
1101 info->prev_line = seq->last_line->prev_line;
1102 seq->last_line = info;
1103 }
1104 else if (!seq || seq->last_line->end_sequence)
1105 {
1106 /* Start a new line sequence. */
1107 amt = sizeof (struct line_sequence);
1108 seq = (struct line_sequence *) bfd_malloc (amt);
1109 if (seq == NULL)
1110 return FALSE;
1111 seq->low_pc = address;
1112 seq->prev_sequence = table->sequences;
1113 seq->last_line = info;
1114 table->lcl_head = info;
1115 table->sequences = seq;
1116 table->num_sequences++;
1117 }
1118 else if (new_line_sorts_after (info, seq->last_line))
1119 {
1120 /* Normal case: add 'info' to the beginning of the current sequence. */
1121 info->prev_line = seq->last_line;
1122 seq->last_line = info;
1123
1124 /* lcl_head: initialize to head a *possible* sequence at the end. */
1125 if (!table->lcl_head)
1126 table->lcl_head = info;
1127 }
1128 else if (!new_line_sorts_after (info, table->lcl_head)
1129 && (!table->lcl_head->prev_line
1130 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1131 {
1132 /* Abnormal but easy: lcl_head is the head of 'info'. */
1133 info->prev_line = table->lcl_head->prev_line;
1134 table->lcl_head->prev_line = info;
1135 }
1136 else
1137 {
1138 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1139 are valid heads for 'info'. Reset 'lcl_head'. */
1140 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1141 struct line_info* li1 = li2->prev_line;
1142
1143 while (li1)
1144 {
1145 if (!new_line_sorts_after (info, li2)
1146 && new_line_sorts_after (info, li1))
1147 break;
1148
1149 li2 = li1; /* always non-NULL */
1150 li1 = li1->prev_line;
1151 }
1152 table->lcl_head = li2;
1153 info->prev_line = table->lcl_head->prev_line;
1154 table->lcl_head->prev_line = info;
1155 if (address < seq->low_pc)
1156 seq->low_pc = address;
1157 }
1158 return TRUE;
1159 }
1160
1161 /* Extract a fully qualified filename from a line info table.
1162 The returned string has been malloc'ed and it is the caller's
1163 responsibility to free it. */
1164
1165 static char *
1166 concat_filename (struct line_info_table *table, unsigned int file)
1167 {
1168 char *filename;
1169
1170 if (file - 1 >= table->num_files)
1171 {
1172 /* FILE == 0 means unknown. */
1173 if (file)
1174 (*_bfd_error_handler)
1175 (_("Dwarf Error: mangled line number section (bad file number)."));
1176 return strdup ("<unknown>");
1177 }
1178
1179 filename = table->files[file - 1].name;
1180
1181 if (!IS_ABSOLUTE_PATH (filename))
1182 {
1183 char *dir_name = NULL;
1184 char *subdir_name = NULL;
1185 char *name;
1186 size_t len;
1187
1188 if (table->files[file - 1].dir)
1189 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1190
1191 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1192 dir_name = table->comp_dir;
1193
1194 if (!dir_name)
1195 {
1196 dir_name = subdir_name;
1197 subdir_name = NULL;
1198 }
1199
1200 if (!dir_name)
1201 return strdup (filename);
1202
1203 len = strlen (dir_name) + strlen (filename) + 2;
1204
1205 if (subdir_name)
1206 {
1207 len += strlen (subdir_name) + 1;
1208 name = (char *) bfd_malloc (len);
1209 if (name)
1210 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1211 }
1212 else
1213 {
1214 name = (char *) bfd_malloc (len);
1215 if (name)
1216 sprintf (name, "%s/%s", dir_name, filename);
1217 }
1218
1219 return name;
1220 }
1221
1222 return strdup (filename);
1223 }
1224
1225 static bfd_boolean
1226 arange_add (bfd *abfd, struct arange *first_arange,
1227 bfd_vma low_pc, bfd_vma high_pc)
1228 {
1229 struct arange *arange;
1230
1231 /* If the first arange is empty, use it. */
1232 if (first_arange->high == 0)
1233 {
1234 first_arange->low = low_pc;
1235 first_arange->high = high_pc;
1236 return TRUE;
1237 }
1238
1239 /* Next see if we can cheaply extend an existing range. */
1240 arange = first_arange;
1241 do
1242 {
1243 if (low_pc == arange->high)
1244 {
1245 arange->high = high_pc;
1246 return TRUE;
1247 }
1248 if (high_pc == arange->low)
1249 {
1250 arange->low = low_pc;
1251 return TRUE;
1252 }
1253 arange = arange->next;
1254 }
1255 while (arange);
1256
1257 /* Need to allocate a new arange and insert it into the arange list.
1258 Order isn't significant, so just insert after the first arange. */
1259 arange = (struct arange *) bfd_zalloc (abfd, sizeof (*arange));
1260 if (arange == NULL)
1261 return FALSE;
1262 arange->low = low_pc;
1263 arange->high = high_pc;
1264 arange->next = first_arange->next;
1265 first_arange->next = arange;
1266 return TRUE;
1267 }
1268
1269 /* Compare function for line sequences. */
1270
1271 static int
1272 compare_sequences (const void* a, const void* b)
1273 {
1274 const struct line_sequence* seq1 = a;
1275 const struct line_sequence* seq2 = b;
1276
1277 /* Sort by low_pc as the primary key. */
1278 if (seq1->low_pc < seq2->low_pc)
1279 return -1;
1280 if (seq1->low_pc > seq2->low_pc)
1281 return 1;
1282
1283 /* If low_pc values are equal, sort in reverse order of
1284 high_pc, so that the largest region comes first. */
1285 if (seq1->last_line->address < seq2->last_line->address)
1286 return 1;
1287 if (seq1->last_line->address > seq2->last_line->address)
1288 return -1;
1289
1290 if (seq1->last_line->op_index < seq2->last_line->op_index)
1291 return 1;
1292 if (seq1->last_line->op_index > seq2->last_line->op_index)
1293 return -1;
1294
1295 return 0;
1296 }
1297
1298 /* Sort the line sequences for quick lookup. */
1299
1300 static bfd_boolean
1301 sort_line_sequences (struct line_info_table* table)
1302 {
1303 bfd_size_type amt;
1304 struct line_sequence* sequences;
1305 struct line_sequence* seq;
1306 unsigned int n = 0;
1307 unsigned int num_sequences = table->num_sequences;
1308 bfd_vma last_high_pc;
1309
1310 if (num_sequences == 0)
1311 return TRUE;
1312
1313 /* Allocate space for an array of sequences. */
1314 amt = sizeof (struct line_sequence) * num_sequences;
1315 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1316 if (sequences == NULL)
1317 return FALSE;
1318
1319 /* Copy the linked list into the array, freeing the original nodes. */
1320 seq = table->sequences;
1321 for (n = 0; n < num_sequences; n++)
1322 {
1323 struct line_sequence* last_seq = seq;
1324
1325 BFD_ASSERT (seq);
1326 sequences[n].low_pc = seq->low_pc;
1327 sequences[n].prev_sequence = NULL;
1328 sequences[n].last_line = seq->last_line;
1329 seq = seq->prev_sequence;
1330 free (last_seq);
1331 }
1332 BFD_ASSERT (seq == NULL);
1333
1334 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1335
1336 /* Make the list binary-searchable by trimming overlapping entries
1337 and removing nested entries. */
1338 num_sequences = 1;
1339 last_high_pc = sequences[0].last_line->address;
1340 for (n = 1; n < table->num_sequences; n++)
1341 {
1342 if (sequences[n].low_pc < last_high_pc)
1343 {
1344 if (sequences[n].last_line->address <= last_high_pc)
1345 /* Skip nested entries. */
1346 continue;
1347
1348 /* Trim overlapping entries. */
1349 sequences[n].low_pc = last_high_pc;
1350 }
1351 last_high_pc = sequences[n].last_line->address;
1352 if (n > num_sequences)
1353 {
1354 /* Close up the gap. */
1355 sequences[num_sequences].low_pc = sequences[n].low_pc;
1356 sequences[num_sequences].last_line = sequences[n].last_line;
1357 }
1358 num_sequences++;
1359 }
1360
1361 table->sequences = sequences;
1362 table->num_sequences = num_sequences;
1363 return TRUE;
1364 }
1365
1366 /* Decode the line number information for UNIT. */
1367
1368 static struct line_info_table*
1369 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash)
1370 {
1371 bfd *abfd = unit->abfd;
1372 struct line_info_table* table;
1373 bfd_byte *line_ptr;
1374 bfd_byte *line_end;
1375 struct line_head lh;
1376 unsigned int i, bytes_read, offset_size;
1377 char *cur_file, *cur_dir;
1378 unsigned char op_code, extended_op, adj_opcode;
1379 bfd_size_type amt;
1380
1381 if (! read_section (abfd, ".debug_line", ".zdebug_line",
1382 stash->syms, unit->line_offset,
1383 &stash->dwarf_line_buffer, &stash->dwarf_line_size))
1384 return NULL;
1385
1386 amt = sizeof (struct line_info_table);
1387 table = (struct line_info_table *) bfd_alloc (abfd, amt);
1388 if (table == NULL)
1389 return NULL;
1390 table->abfd = abfd;
1391 table->comp_dir = unit->comp_dir;
1392
1393 table->num_files = 0;
1394 table->files = NULL;
1395
1396 table->num_dirs = 0;
1397 table->dirs = NULL;
1398
1399 table->num_sequences = 0;
1400 table->sequences = NULL;
1401
1402 table->lcl_head = NULL;
1403
1404 line_ptr = stash->dwarf_line_buffer + unit->line_offset;
1405
1406 /* Read in the prologue. */
1407 lh.total_length = read_4_bytes (abfd, line_ptr);
1408 line_ptr += 4;
1409 offset_size = 4;
1410 if (lh.total_length == 0xffffffff)
1411 {
1412 lh.total_length = read_8_bytes (abfd, line_ptr);
1413 line_ptr += 8;
1414 offset_size = 8;
1415 }
1416 else if (lh.total_length == 0 && unit->addr_size == 8)
1417 {
1418 /* Handle (non-standard) 64-bit DWARF2 formats. */
1419 lh.total_length = read_4_bytes (abfd, line_ptr);
1420 line_ptr += 4;
1421 offset_size = 8;
1422 }
1423 line_end = line_ptr + lh.total_length;
1424 lh.version = read_2_bytes (abfd, line_ptr);
1425 if (lh.version < 2 || lh.version > 4)
1426 {
1427 (*_bfd_error_handler)
1428 (_("Dwarf Error: Unhandled .debug_line version %d."), lh.version);
1429 bfd_set_error (bfd_error_bad_value);
1430 return NULL;
1431 }
1432 line_ptr += 2;
1433 if (offset_size == 4)
1434 lh.prologue_length = read_4_bytes (abfd, line_ptr);
1435 else
1436 lh.prologue_length = read_8_bytes (abfd, line_ptr);
1437 line_ptr += offset_size;
1438 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr);
1439 line_ptr += 1;
1440 if (lh.version >= 4)
1441 {
1442 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr);
1443 line_ptr += 1;
1444 }
1445 else
1446 lh.maximum_ops_per_insn = 1;
1447 if (lh.maximum_ops_per_insn == 0)
1448 {
1449 (*_bfd_error_handler)
1450 (_("Dwarf Error: Invalid maximum operations per instruction."));
1451 bfd_set_error (bfd_error_bad_value);
1452 return NULL;
1453 }
1454 lh.default_is_stmt = read_1_byte (abfd, line_ptr);
1455 line_ptr += 1;
1456 lh.line_base = read_1_signed_byte (abfd, line_ptr);
1457 line_ptr += 1;
1458 lh.line_range = read_1_byte (abfd, line_ptr);
1459 line_ptr += 1;
1460 lh.opcode_base = read_1_byte (abfd, line_ptr);
1461 line_ptr += 1;
1462 amt = lh.opcode_base * sizeof (unsigned char);
1463 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
1464
1465 lh.standard_opcode_lengths[0] = 1;
1466
1467 for (i = 1; i < lh.opcode_base; ++i)
1468 {
1469 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
1470 line_ptr += 1;
1471 }
1472
1473 /* Read directory table. */
1474 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
1475 {
1476 line_ptr += bytes_read;
1477
1478 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1479 {
1480 char **tmp;
1481
1482 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1483 amt *= sizeof (char *);
1484
1485 tmp = (char **) bfd_realloc (table->dirs, amt);
1486 if (tmp == NULL)
1487 goto fail;
1488 table->dirs = tmp;
1489 }
1490
1491 table->dirs[table->num_dirs++] = cur_dir;
1492 }
1493
1494 line_ptr += bytes_read;
1495
1496 /* Read file name table. */
1497 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
1498 {
1499 line_ptr += bytes_read;
1500
1501 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1502 {
1503 struct fileinfo *tmp;
1504
1505 amt = table->num_files + FILE_ALLOC_CHUNK;
1506 amt *= sizeof (struct fileinfo);
1507
1508 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1509 if (tmp == NULL)
1510 goto fail;
1511 table->files = tmp;
1512 }
1513
1514 table->files[table->num_files].name = cur_file;
1515 table->files[table->num_files].dir =
1516 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1517 line_ptr += bytes_read;
1518 table->files[table->num_files].time =
1519 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1520 line_ptr += bytes_read;
1521 table->files[table->num_files].size =
1522 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1523 line_ptr += bytes_read;
1524 table->num_files++;
1525 }
1526
1527 line_ptr += bytes_read;
1528
1529 /* Read the statement sequences until there's nothing left. */
1530 while (line_ptr < line_end)
1531 {
1532 /* State machine registers. */
1533 bfd_vma address = 0;
1534 unsigned char op_index = 0;
1535 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
1536 unsigned int line = 1;
1537 unsigned int column = 0;
1538 int is_stmt = lh.default_is_stmt;
1539 int end_sequence = 0;
1540 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
1541 compilers generate address sequences that are wildly out of
1542 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
1543 for ia64-Linux). Thus, to determine the low and high
1544 address, we must compare on every DW_LNS_copy, etc. */
1545 bfd_vma low_pc = (bfd_vma) -1;
1546 bfd_vma high_pc = 0;
1547
1548 /* Decode the table. */
1549 while (! end_sequence)
1550 {
1551 op_code = read_1_byte (abfd, line_ptr);
1552 line_ptr += 1;
1553
1554 if (op_code >= lh.opcode_base)
1555 {
1556 /* Special operand. */
1557 adj_opcode = op_code - lh.opcode_base;
1558 if (lh.maximum_ops_per_insn == 1)
1559 address += (adj_opcode / lh.line_range)
1560 * lh.minimum_instruction_length;
1561 else
1562 {
1563 address += ((op_index + (adj_opcode / lh.line_range))
1564 / lh.maximum_ops_per_insn)
1565 * lh.minimum_instruction_length;
1566 op_index = (op_index + (adj_opcode / lh.line_range))
1567 % lh.maximum_ops_per_insn;
1568 }
1569 line += lh.line_base + (adj_opcode % lh.line_range);
1570 /* Append row to matrix using current values. */
1571 if (!add_line_info (table, address, op_index, filename,
1572 line, column, 0))
1573 goto line_fail;
1574 if (address < low_pc)
1575 low_pc = address;
1576 if (address > high_pc)
1577 high_pc = address;
1578 }
1579 else switch (op_code)
1580 {
1581 case DW_LNS_extended_op:
1582 /* Ignore length. */
1583 line_ptr += 1;
1584 extended_op = read_1_byte (abfd, line_ptr);
1585 line_ptr += 1;
1586
1587 switch (extended_op)
1588 {
1589 case DW_LNE_end_sequence:
1590 end_sequence = 1;
1591 if (!add_line_info (table, address, op_index, filename,
1592 line, column, end_sequence))
1593 goto line_fail;
1594 if (address < low_pc)
1595 low_pc = address;
1596 if (address > high_pc)
1597 high_pc = address;
1598 if (!arange_add (unit->abfd, &unit->arange, low_pc, high_pc))
1599 goto line_fail;
1600 break;
1601 case DW_LNE_set_address:
1602 address = read_address (unit, line_ptr);
1603 op_index = 0;
1604 line_ptr += unit->addr_size;
1605 break;
1606 case DW_LNE_define_file:
1607 cur_file = read_string (abfd, line_ptr, &bytes_read);
1608 line_ptr += bytes_read;
1609 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1610 {
1611 struct fileinfo *tmp;
1612
1613 amt = table->num_files + FILE_ALLOC_CHUNK;
1614 amt *= sizeof (struct fileinfo);
1615 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1616 if (tmp == NULL)
1617 goto line_fail;
1618 table->files = tmp;
1619 }
1620 table->files[table->num_files].name = cur_file;
1621 table->files[table->num_files].dir =
1622 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1623 line_ptr += bytes_read;
1624 table->files[table->num_files].time =
1625 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1626 line_ptr += bytes_read;
1627 table->files[table->num_files].size =
1628 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1629 line_ptr += bytes_read;
1630 table->num_files++;
1631 break;
1632 case DW_LNE_set_discriminator:
1633 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1634 line_ptr += bytes_read;
1635 break;
1636 default:
1637 (*_bfd_error_handler) (_("Dwarf Error: mangled line number section."));
1638 bfd_set_error (bfd_error_bad_value);
1639 line_fail:
1640 if (filename != NULL)
1641 free (filename);
1642 goto fail;
1643 }
1644 break;
1645 case DW_LNS_copy:
1646 if (!add_line_info (table, address, op_index,
1647 filename, line, column, 0))
1648 goto line_fail;
1649 if (address < low_pc)
1650 low_pc = address;
1651 if (address > high_pc)
1652 high_pc = address;
1653 break;
1654 case DW_LNS_advance_pc:
1655 if (lh.maximum_ops_per_insn == 1)
1656 address += lh.minimum_instruction_length
1657 * read_unsigned_leb128 (abfd, line_ptr,
1658 &bytes_read);
1659 else
1660 {
1661 bfd_vma adjust = read_unsigned_leb128 (abfd, line_ptr,
1662 &bytes_read);
1663 address = ((op_index + adjust) / lh.maximum_ops_per_insn)
1664 * lh.minimum_instruction_length;
1665 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
1666 }
1667 line_ptr += bytes_read;
1668 break;
1669 case DW_LNS_advance_line:
1670 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
1671 line_ptr += bytes_read;
1672 break;
1673 case DW_LNS_set_file:
1674 {
1675 unsigned int file;
1676
1677 /* The file and directory tables are 0
1678 based, the references are 1 based. */
1679 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1680 line_ptr += bytes_read;
1681 if (filename)
1682 free (filename);
1683 filename = concat_filename (table, file);
1684 break;
1685 }
1686 case DW_LNS_set_column:
1687 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1688 line_ptr += bytes_read;
1689 break;
1690 case DW_LNS_negate_stmt:
1691 is_stmt = (!is_stmt);
1692 break;
1693 case DW_LNS_set_basic_block:
1694 break;
1695 case DW_LNS_const_add_pc:
1696 if (lh.maximum_ops_per_insn == 1)
1697 address += lh.minimum_instruction_length
1698 * ((255 - lh.opcode_base) / lh.line_range);
1699 else
1700 {
1701 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
1702 address += lh.minimum_instruction_length
1703 * ((op_index + adjust) / lh.maximum_ops_per_insn);
1704 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
1705 }
1706 break;
1707 case DW_LNS_fixed_advance_pc:
1708 address += read_2_bytes (abfd, line_ptr);
1709 op_index = 0;
1710 line_ptr += 2;
1711 break;
1712 default:
1713 /* Unknown standard opcode, ignore it. */
1714 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
1715 {
1716 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
1717 line_ptr += bytes_read;
1718 }
1719 break;
1720 }
1721 }
1722
1723 if (filename)
1724 free (filename);
1725 }
1726
1727 if (sort_line_sequences (table))
1728 return table;
1729
1730 fail:
1731 if (table->sequences != NULL)
1732 free (table->sequences);
1733 if (table->files != NULL)
1734 free (table->files);
1735 if (table->dirs != NULL)
1736 free (table->dirs);
1737 return NULL;
1738 }
1739
1740 /* If ADDR is within TABLE set the output parameters and return TRUE,
1741 otherwise return FALSE. The output parameters, FILENAME_PTR and
1742 LINENUMBER_PTR, are pointers to the objects to be filled in. */
1743
1744 static bfd_boolean
1745 lookup_address_in_line_info_table (struct line_info_table *table,
1746 bfd_vma addr,
1747 const char **filename_ptr,
1748 unsigned int *linenumber_ptr)
1749 {
1750 struct line_sequence *seq = NULL;
1751 struct line_info *each_line;
1752 int low, high, mid;
1753
1754 /* Binary search the array of sequences. */
1755 low = 0;
1756 high = table->num_sequences;
1757 while (low < high)
1758 {
1759 mid = (low + high) / 2;
1760 seq = &table->sequences[mid];
1761 if (addr < seq->low_pc)
1762 high = mid;
1763 else if (addr >= seq->last_line->address)
1764 low = mid + 1;
1765 else
1766 break;
1767 }
1768
1769 if (seq && addr >= seq->low_pc && addr < seq->last_line->address)
1770 {
1771 /* Note: seq->last_line should be a descendingly sorted list. */
1772 for (each_line = seq->last_line;
1773 each_line;
1774 each_line = each_line->prev_line)
1775 if (addr >= each_line->address)
1776 break;
1777
1778 if (each_line
1779 && !(each_line->end_sequence || each_line == seq->last_line))
1780 {
1781 *filename_ptr = each_line->filename;
1782 *linenumber_ptr = each_line->line;
1783 return TRUE;
1784 }
1785 }
1786
1787 *filename_ptr = NULL;
1788 return FALSE;
1789 }
1790
1791 /* Read in the .debug_ranges section for future reference. */
1792
1793 static bfd_boolean
1794 read_debug_ranges (struct comp_unit *unit)
1795 {
1796 struct dwarf2_debug *stash = unit->stash;
1797 return read_section (unit->abfd, ".debug_ranges", ".zdebug_ranges",
1798 stash->syms, 0,
1799 &stash->dwarf_ranges_buffer, &stash->dwarf_ranges_size);
1800 }
1801
1802 /* Function table functions. */
1803
1804 /* If ADDR is within TABLE, set FUNCTIONNAME_PTR, and return TRUE.
1805 Note that we need to find the function that has the smallest
1806 range that contains ADDR, to handle inlined functions without
1807 depending upon them being ordered in TABLE by increasing range. */
1808
1809 static bfd_boolean
1810 lookup_address_in_function_table (struct comp_unit *unit,
1811 bfd_vma addr,
1812 struct funcinfo **function_ptr,
1813 const char **functionname_ptr)
1814 {
1815 struct funcinfo* each_func;
1816 struct funcinfo* best_fit = NULL;
1817 struct arange *arange;
1818
1819 for (each_func = unit->function_table;
1820 each_func;
1821 each_func = each_func->prev_func)
1822 {
1823 for (arange = &each_func->arange;
1824 arange;
1825 arange = arange->next)
1826 {
1827 if (addr >= arange->low && addr < arange->high)
1828 {
1829 if (!best_fit ||
1830 ((arange->high - arange->low) < (best_fit->arange.high - best_fit->arange.low)))
1831 best_fit = each_func;
1832 }
1833 }
1834 }
1835
1836 if (best_fit)
1837 {
1838 *functionname_ptr = best_fit->name;
1839 *function_ptr = best_fit;
1840 return TRUE;
1841 }
1842 else
1843 {
1844 return FALSE;
1845 }
1846 }
1847
1848 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
1849 and LINENUMBER_PTR, and return TRUE. */
1850
1851 static bfd_boolean
1852 lookup_symbol_in_function_table (struct comp_unit *unit,
1853 asymbol *sym,
1854 bfd_vma addr,
1855 const char **filename_ptr,
1856 unsigned int *linenumber_ptr)
1857 {
1858 struct funcinfo* each_func;
1859 struct funcinfo* best_fit = NULL;
1860 struct arange *arange;
1861 const char *name = bfd_asymbol_name (sym);
1862 asection *sec = bfd_get_section (sym);
1863
1864 for (each_func = unit->function_table;
1865 each_func;
1866 each_func = each_func->prev_func)
1867 {
1868 for (arange = &each_func->arange;
1869 arange;
1870 arange = arange->next)
1871 {
1872 if ((!each_func->sec || each_func->sec == sec)
1873 && addr >= arange->low
1874 && addr < arange->high
1875 && each_func->name
1876 && strcmp (name, each_func->name) == 0
1877 && (!best_fit
1878 || ((arange->high - arange->low)
1879 < (best_fit->arange.high - best_fit->arange.low))))
1880 best_fit = each_func;
1881 }
1882 }
1883
1884 if (best_fit)
1885 {
1886 best_fit->sec = sec;
1887 *filename_ptr = best_fit->file;
1888 *linenumber_ptr = best_fit->line;
1889 return TRUE;
1890 }
1891 else
1892 return FALSE;
1893 }
1894
1895 /* Variable table functions. */
1896
1897 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
1898 LINENUMBER_PTR, and return TRUE. */
1899
1900 static bfd_boolean
1901 lookup_symbol_in_variable_table (struct comp_unit *unit,
1902 asymbol *sym,
1903 bfd_vma addr,
1904 const char **filename_ptr,
1905 unsigned int *linenumber_ptr)
1906 {
1907 const char *name = bfd_asymbol_name (sym);
1908 asection *sec = bfd_get_section (sym);
1909 struct varinfo* each;
1910
1911 for (each = unit->variable_table; each; each = each->prev_var)
1912 if (each->stack == 0
1913 && each->file != NULL
1914 && each->name != NULL
1915 && each->addr == addr
1916 && (!each->sec || each->sec == sec)
1917 && strcmp (name, each->name) == 0)
1918 break;
1919
1920 if (each)
1921 {
1922 each->sec = sec;
1923 *filename_ptr = each->file;
1924 *linenumber_ptr = each->line;
1925 return TRUE;
1926 }
1927 else
1928 return FALSE;
1929 }
1930
1931 static char *
1932 find_abstract_instance_name (struct comp_unit *unit,
1933 struct attribute *attr_ptr)
1934 {
1935 bfd *abfd = unit->abfd;
1936 bfd_byte *info_ptr;
1937 unsigned int abbrev_number, bytes_read, i;
1938 struct abbrev_info *abbrev;
1939 bfd_uint64_t die_ref = attr_ptr->u.val;
1940 struct attribute attr;
1941 char *name = 0;
1942
1943 /* DW_FORM_ref_addr can reference an entry in a different CU. It
1944 is an offset from the .debug_info section, not the current CU. */
1945 if (attr_ptr->form == DW_FORM_ref_addr)
1946 {
1947 /* We only support DW_FORM_ref_addr within the same file, so
1948 any relocations should be resolved already. */
1949 if (!die_ref)
1950 abort ();
1951
1952 info_ptr = unit->sec_info_ptr + die_ref;
1953 }
1954 else
1955 info_ptr = unit->info_ptr_unit + die_ref;
1956 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
1957 info_ptr += bytes_read;
1958
1959 if (abbrev_number)
1960 {
1961 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
1962 if (! abbrev)
1963 {
1964 (*_bfd_error_handler) (_("Dwarf Error: Could not find abbrev number %u."),
1965 abbrev_number);
1966 bfd_set_error (bfd_error_bad_value);
1967 }
1968 else
1969 {
1970 for (i = 0; i < abbrev->num_attrs; ++i)
1971 {
1972 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
1973 info_ptr);
1974 if (info_ptr == NULL)
1975 break;
1976 switch (attr.name)
1977 {
1978 case DW_AT_name:
1979 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
1980 over DW_AT_name. */
1981 if (name == NULL)
1982 name = attr.u.str;
1983 break;
1984 case DW_AT_specification:
1985 name = find_abstract_instance_name (unit, &attr);
1986 break;
1987 case DW_AT_linkage_name:
1988 case DW_AT_MIPS_linkage_name:
1989 name = attr.u.str;
1990 break;
1991 default:
1992 break;
1993 }
1994 }
1995 }
1996 }
1997 return name;
1998 }
1999
2000 static bfd_boolean
2001 read_rangelist (struct comp_unit *unit, struct arange *arange,
2002 bfd_uint64_t offset)
2003 {
2004 bfd_byte *ranges_ptr;
2005 bfd_vma base_address = unit->base_address;
2006
2007 if (! unit->stash->dwarf_ranges_buffer)
2008 {
2009 if (! read_debug_ranges (unit))
2010 return FALSE;
2011 }
2012 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset;
2013
2014 for (;;)
2015 {
2016 bfd_vma low_pc;
2017 bfd_vma high_pc;
2018
2019 low_pc = read_address (unit, ranges_ptr);
2020 ranges_ptr += unit->addr_size;
2021 high_pc = read_address (unit, ranges_ptr);
2022 ranges_ptr += unit->addr_size;
2023
2024 if (low_pc == 0 && high_pc == 0)
2025 break;
2026 if (low_pc == -1UL && high_pc != -1UL)
2027 base_address = high_pc;
2028 else
2029 {
2030 if (!arange_add (unit->abfd, arange,
2031 base_address + low_pc, base_address + high_pc))
2032 return FALSE;
2033 }
2034 }
2035 return TRUE;
2036 }
2037
2038 /* DWARF2 Compilation unit functions. */
2039
2040 /* Scan over each die in a comp. unit looking for functions to add
2041 to the function table and variables to the variable table. */
2042
2043 static bfd_boolean
2044 scan_unit_for_symbols (struct comp_unit *unit)
2045 {
2046 bfd *abfd = unit->abfd;
2047 bfd_byte *info_ptr = unit->first_child_die_ptr;
2048 int nesting_level = 1;
2049 struct funcinfo **nested_funcs;
2050 int nested_funcs_size;
2051
2052 /* Maintain a stack of in-scope functions and inlined functions, which we
2053 can use to set the caller_func field. */
2054 nested_funcs_size = 32;
2055 nested_funcs = (struct funcinfo **)
2056 bfd_malloc (nested_funcs_size * sizeof (struct funcinfo *));
2057 if (nested_funcs == NULL)
2058 return FALSE;
2059 nested_funcs[nesting_level] = 0;
2060
2061 while (nesting_level)
2062 {
2063 unsigned int abbrev_number, bytes_read, i;
2064 struct abbrev_info *abbrev;
2065 struct attribute attr;
2066 struct funcinfo *func;
2067 struct varinfo *var;
2068 bfd_vma low_pc = 0;
2069 bfd_vma high_pc = 0;
2070
2071 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2072 info_ptr += bytes_read;
2073
2074 if (! abbrev_number)
2075 {
2076 nesting_level--;
2077 continue;
2078 }
2079
2080 abbrev = lookup_abbrev (abbrev_number,unit->abbrevs);
2081 if (! abbrev)
2082 {
2083 (*_bfd_error_handler)
2084 (_("Dwarf Error: Could not find abbrev number %u."),
2085 abbrev_number);
2086 bfd_set_error (bfd_error_bad_value);
2087 goto fail;
2088 }
2089
2090 var = NULL;
2091 if (abbrev->tag == DW_TAG_subprogram
2092 || abbrev->tag == DW_TAG_entry_point
2093 || abbrev->tag == DW_TAG_inlined_subroutine)
2094 {
2095 bfd_size_type amt = sizeof (struct funcinfo);
2096 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
2097 if (func == NULL)
2098 goto fail;
2099 func->tag = abbrev->tag;
2100 func->prev_func = unit->function_table;
2101 unit->function_table = func;
2102 BFD_ASSERT (!unit->cached);
2103
2104 if (func->tag == DW_TAG_inlined_subroutine)
2105 for (i = nesting_level - 1; i >= 1; i--)
2106 if (nested_funcs[i])
2107 {
2108 func->caller_func = nested_funcs[i];
2109 break;
2110 }
2111 nested_funcs[nesting_level] = func;
2112 }
2113 else
2114 {
2115 func = NULL;
2116 if (abbrev->tag == DW_TAG_variable)
2117 {
2118 bfd_size_type amt = sizeof (struct varinfo);
2119 var = (struct varinfo *) bfd_zalloc (abfd, amt);
2120 if (var == NULL)
2121 goto fail;
2122 var->tag = abbrev->tag;
2123 var->stack = 1;
2124 var->prev_var = unit->variable_table;
2125 unit->variable_table = var;
2126 BFD_ASSERT (!unit->cached);
2127 }
2128
2129 /* No inline function in scope at this nesting level. */
2130 nested_funcs[nesting_level] = 0;
2131 }
2132
2133 for (i = 0; i < abbrev->num_attrs; ++i)
2134 {
2135 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr);
2136 if (info_ptr == NULL)
2137 return FALSE;
2138
2139 if (func)
2140 {
2141 switch (attr.name)
2142 {
2143 case DW_AT_call_file:
2144 func->caller_file = concat_filename (unit->line_table,
2145 attr.u.val);
2146 break;
2147
2148 case DW_AT_call_line:
2149 func->caller_line = attr.u.val;
2150 break;
2151
2152 case DW_AT_abstract_origin:
2153 func->name = find_abstract_instance_name (unit, &attr);
2154 break;
2155
2156 case DW_AT_name:
2157 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2158 over DW_AT_name. */
2159 if (func->name == NULL)
2160 func->name = attr.u.str;
2161 break;
2162
2163 case DW_AT_linkage_name:
2164 case DW_AT_MIPS_linkage_name:
2165 func->name = attr.u.str;
2166 break;
2167
2168 case DW_AT_low_pc:
2169 low_pc = attr.u.val;
2170 break;
2171
2172 case DW_AT_high_pc:
2173 high_pc = attr.u.val;
2174 break;
2175
2176 case DW_AT_ranges:
2177 if (!read_rangelist (unit, &func->arange, attr.u.val))
2178 goto fail;
2179 break;
2180
2181 case DW_AT_decl_file:
2182 func->file = concat_filename (unit->line_table,
2183 attr.u.val);
2184 break;
2185
2186 case DW_AT_decl_line:
2187 func->line = attr.u.val;
2188 break;
2189
2190 default:
2191 break;
2192 }
2193 }
2194 else if (var)
2195 {
2196 switch (attr.name)
2197 {
2198 case DW_AT_name:
2199 var->name = attr.u.str;
2200 break;
2201
2202 case DW_AT_decl_file:
2203 var->file = concat_filename (unit->line_table,
2204 attr.u.val);
2205 break;
2206
2207 case DW_AT_decl_line:
2208 var->line = attr.u.val;
2209 break;
2210
2211 case DW_AT_external:
2212 if (attr.u.val != 0)
2213 var->stack = 0;
2214 break;
2215
2216 case DW_AT_location:
2217 switch (attr.form)
2218 {
2219 case DW_FORM_block:
2220 case DW_FORM_block1:
2221 case DW_FORM_block2:
2222 case DW_FORM_block4:
2223 case DW_FORM_exprloc:
2224 if (*attr.u.blk->data == DW_OP_addr)
2225 {
2226 var->stack = 0;
2227
2228 /* Verify that DW_OP_addr is the only opcode in the
2229 location, in which case the block size will be 1
2230 plus the address size. */
2231 /* ??? For TLS variables, gcc can emit
2232 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
2233 which we don't handle here yet. */
2234 if (attr.u.blk->size == unit->addr_size + 1U)
2235 var->addr = bfd_get (unit->addr_size * 8,
2236 unit->abfd,
2237 attr.u.blk->data + 1);
2238 }
2239 break;
2240
2241 default:
2242 break;
2243 }
2244 break;
2245
2246 default:
2247 break;
2248 }
2249 }
2250 }
2251
2252 if (func && high_pc != 0)
2253 {
2254 if (!arange_add (unit->abfd, &func->arange, low_pc, high_pc))
2255 goto fail;
2256 }
2257
2258 if (abbrev->has_children)
2259 {
2260 nesting_level++;
2261
2262 if (nesting_level >= nested_funcs_size)
2263 {
2264 struct funcinfo **tmp;
2265
2266 nested_funcs_size *= 2;
2267 tmp = (struct funcinfo **)
2268 bfd_realloc (nested_funcs,
2269 (nested_funcs_size * sizeof (struct funcinfo *)));
2270 if (tmp == NULL)
2271 goto fail;
2272 nested_funcs = tmp;
2273 }
2274 nested_funcs[nesting_level] = 0;
2275 }
2276 }
2277
2278 free (nested_funcs);
2279 return TRUE;
2280
2281 fail:
2282 free (nested_funcs);
2283 return FALSE;
2284 }
2285
2286 /* Parse a DWARF2 compilation unit starting at INFO_PTR. This
2287 includes the compilation unit header that proceeds the DIE's, but
2288 does not include the length field that precedes each compilation
2289 unit header. END_PTR points one past the end of this comp unit.
2290 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
2291
2292 This routine does not read the whole compilation unit; only enough
2293 to get to the line number information for the compilation unit. */
2294
2295 static struct comp_unit *
2296 parse_comp_unit (struct dwarf2_debug *stash,
2297 bfd_vma unit_length,
2298 bfd_byte *info_ptr_unit,
2299 unsigned int offset_size)
2300 {
2301 struct comp_unit* unit;
2302 unsigned int version;
2303 bfd_uint64_t abbrev_offset = 0;
2304 unsigned int addr_size;
2305 struct abbrev_info** abbrevs;
2306 unsigned int abbrev_number, bytes_read, i;
2307 struct abbrev_info *abbrev;
2308 struct attribute attr;
2309 bfd_byte *info_ptr = stash->info_ptr;
2310 bfd_byte *end_ptr = info_ptr + unit_length;
2311 bfd_size_type amt;
2312 bfd_vma low_pc = 0;
2313 bfd_vma high_pc = 0;
2314 bfd *abfd = stash->bfd_ptr;
2315
2316 version = read_2_bytes (abfd, info_ptr);
2317 info_ptr += 2;
2318 BFD_ASSERT (offset_size == 4 || offset_size == 8);
2319 if (offset_size == 4)
2320 abbrev_offset = read_4_bytes (abfd, info_ptr);
2321 else
2322 abbrev_offset = read_8_bytes (abfd, info_ptr);
2323 info_ptr += offset_size;
2324 addr_size = read_1_byte (abfd, info_ptr);
2325 info_ptr += 1;
2326
2327 if (version != 2 && version != 3 && version != 4)
2328 {
2329 (*_bfd_error_handler) (_("Dwarf Error: found dwarf version '%u', this reader only handles version 2, 3 and 4 information."), version);
2330 bfd_set_error (bfd_error_bad_value);
2331 return 0;
2332 }
2333
2334 if (addr_size > sizeof (bfd_vma))
2335 {
2336 (*_bfd_error_handler) (_("Dwarf Error: found address size '%u', this reader can not handle sizes greater than '%u'."),
2337 addr_size,
2338 (unsigned int) sizeof (bfd_vma));
2339 bfd_set_error (bfd_error_bad_value);
2340 return 0;
2341 }
2342
2343 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
2344 {
2345 (*_bfd_error_handler) ("Dwarf Error: found address size '%u', this reader can only handle address sizes '2', '4' and '8'.", addr_size);
2346 bfd_set_error (bfd_error_bad_value);
2347 return 0;
2348 }
2349
2350 /* Read the abbrevs for this compilation unit into a table. */
2351 abbrevs = read_abbrevs (abfd, abbrev_offset, stash);
2352 if (! abbrevs)
2353 return 0;
2354
2355 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2356 info_ptr += bytes_read;
2357 if (! abbrev_number)
2358 {
2359 (*_bfd_error_handler) (_("Dwarf Error: Bad abbrev number: %u."),
2360 abbrev_number);
2361 bfd_set_error (bfd_error_bad_value);
2362 return 0;
2363 }
2364
2365 abbrev = lookup_abbrev (abbrev_number, abbrevs);
2366 if (! abbrev)
2367 {
2368 (*_bfd_error_handler) (_("Dwarf Error: Could not find abbrev number %u."),
2369 abbrev_number);
2370 bfd_set_error (bfd_error_bad_value);
2371 return 0;
2372 }
2373
2374 amt = sizeof (struct comp_unit);
2375 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
2376 if (unit == NULL)
2377 return NULL;
2378 unit->abfd = abfd;
2379 unit->version = version;
2380 unit->addr_size = addr_size;
2381 unit->offset_size = offset_size;
2382 unit->abbrevs = abbrevs;
2383 unit->end_ptr = end_ptr;
2384 unit->stash = stash;
2385 unit->info_ptr_unit = info_ptr_unit;
2386 unit->sec_info_ptr = stash->sec_info_ptr;
2387
2388 for (i = 0; i < abbrev->num_attrs; ++i)
2389 {
2390 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr);
2391 if (info_ptr == NULL)
2392 return NULL;
2393
2394 /* Store the data if it is of an attribute we want to keep in a
2395 partial symbol table. */
2396 switch (attr.name)
2397 {
2398 case DW_AT_stmt_list:
2399 unit->stmtlist = 1;
2400 unit->line_offset = attr.u.val;
2401 break;
2402
2403 case DW_AT_name:
2404 unit->name = attr.u.str;
2405 break;
2406
2407 case DW_AT_low_pc:
2408 low_pc = attr.u.val;
2409 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
2410 this is the base address to use when reading location
2411 lists or range lists. */
2412 unit->base_address = low_pc;
2413 break;
2414
2415 case DW_AT_high_pc:
2416 high_pc = attr.u.val;
2417 break;
2418
2419 case DW_AT_ranges:
2420 if (!read_rangelist (unit, &unit->arange, attr.u.val))
2421 return NULL;
2422 break;
2423
2424 case DW_AT_comp_dir:
2425 {
2426 char *comp_dir = attr.u.str;
2427 if (comp_dir)
2428 {
2429 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2430 directory, get rid of it. */
2431 char *cp = strchr (comp_dir, ':');
2432
2433 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2434 comp_dir = cp + 1;
2435 }
2436 unit->comp_dir = comp_dir;
2437 break;
2438 }
2439
2440 default:
2441 break;
2442 }
2443 }
2444 if (high_pc != 0)
2445 {
2446 if (!arange_add (unit->abfd, &unit->arange, low_pc, high_pc))
2447 return NULL;
2448 }
2449
2450 unit->first_child_die_ptr = info_ptr;
2451 return unit;
2452 }
2453
2454 /* Return TRUE if UNIT may contain the address given by ADDR. When
2455 there are functions written entirely with inline asm statements, the
2456 range info in the compilation unit header may not be correct. We
2457 need to consult the line info table to see if a compilation unit
2458 really contains the given address. */
2459
2460 static bfd_boolean
2461 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
2462 {
2463 struct arange *arange;
2464
2465 if (unit->error)
2466 return FALSE;
2467
2468 arange = &unit->arange;
2469 do
2470 {
2471 if (addr >= arange->low && addr < arange->high)
2472 return TRUE;
2473 arange = arange->next;
2474 }
2475 while (arange);
2476
2477 return FALSE;
2478 }
2479
2480 /* If UNIT contains ADDR, set the output parameters to the values for
2481 the line containing ADDR. The output parameters, FILENAME_PTR,
2482 FUNCTIONNAME_PTR, and LINENUMBER_PTR, are pointers to the objects
2483 to be filled in.
2484
2485 Return TRUE if UNIT contains ADDR, and no errors were encountered;
2486 FALSE otherwise. */
2487
2488 static bfd_boolean
2489 comp_unit_find_nearest_line (struct comp_unit *unit,
2490 bfd_vma addr,
2491 const char **filename_ptr,
2492 const char **functionname_ptr,
2493 unsigned int *linenumber_ptr,
2494 struct dwarf2_debug *stash)
2495 {
2496 bfd_boolean line_p;
2497 bfd_boolean func_p;
2498 struct funcinfo *function;
2499
2500 if (unit->error)
2501 return FALSE;
2502
2503 if (! unit->line_table)
2504 {
2505 if (! unit->stmtlist)
2506 {
2507 unit->error = 1;
2508 return FALSE;
2509 }
2510
2511 unit->line_table = decode_line_info (unit, stash);
2512
2513 if (! unit->line_table)
2514 {
2515 unit->error = 1;
2516 return FALSE;
2517 }
2518
2519 if (unit->first_child_die_ptr < unit->end_ptr
2520 && ! scan_unit_for_symbols (unit))
2521 {
2522 unit->error = 1;
2523 return FALSE;
2524 }
2525 }
2526
2527 function = NULL;
2528 func_p = lookup_address_in_function_table (unit, addr,
2529 &function, functionname_ptr);
2530 if (func_p && (function->tag == DW_TAG_inlined_subroutine))
2531 stash->inliner_chain = function;
2532 line_p = lookup_address_in_line_info_table (unit->line_table, addr,
2533 filename_ptr,
2534 linenumber_ptr);
2535 return line_p || func_p;
2536 }
2537
2538 /* Check to see if line info is already decoded in a comp_unit.
2539 If not, decode it. Returns TRUE if no errors were encountered;
2540 FALSE otherwise. */
2541
2542 static bfd_boolean
2543 comp_unit_maybe_decode_line_info (struct comp_unit *unit,
2544 struct dwarf2_debug *stash)
2545 {
2546 if (unit->error)
2547 return FALSE;
2548
2549 if (! unit->line_table)
2550 {
2551 if (! unit->stmtlist)
2552 {
2553 unit->error = 1;
2554 return FALSE;
2555 }
2556
2557 unit->line_table = decode_line_info (unit, stash);
2558
2559 if (! unit->line_table)
2560 {
2561 unit->error = 1;
2562 return FALSE;
2563 }
2564
2565 if (unit->first_child_die_ptr < unit->end_ptr
2566 && ! scan_unit_for_symbols (unit))
2567 {
2568 unit->error = 1;
2569 return FALSE;
2570 }
2571 }
2572
2573 return TRUE;
2574 }
2575
2576 /* If UNIT contains SYM at ADDR, set the output parameters to the
2577 values for the line containing SYM. The output parameters,
2578 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
2579 filled in.
2580
2581 Return TRUE if UNIT contains SYM, and no errors were encountered;
2582 FALSE otherwise. */
2583
2584 static bfd_boolean
2585 comp_unit_find_line (struct comp_unit *unit,
2586 asymbol *sym,
2587 bfd_vma addr,
2588 const char **filename_ptr,
2589 unsigned int *linenumber_ptr,
2590 struct dwarf2_debug *stash)
2591 {
2592 if (!comp_unit_maybe_decode_line_info (unit, stash))
2593 return FALSE;
2594
2595 if (sym->flags & BSF_FUNCTION)
2596 return lookup_symbol_in_function_table (unit, sym, addr,
2597 filename_ptr,
2598 linenumber_ptr);
2599
2600 return lookup_symbol_in_variable_table (unit, sym, addr,
2601 filename_ptr,
2602 linenumber_ptr);
2603 }
2604
2605 static struct funcinfo *
2606 reverse_funcinfo_list (struct funcinfo *head)
2607 {
2608 struct funcinfo *rhead;
2609 struct funcinfo *temp;
2610
2611 for (rhead = NULL; head; head = temp)
2612 {
2613 temp = head->prev_func;
2614 head->prev_func = rhead;
2615 rhead = head;
2616 }
2617 return rhead;
2618 }
2619
2620 static struct varinfo *
2621 reverse_varinfo_list (struct varinfo *head)
2622 {
2623 struct varinfo *rhead;
2624 struct varinfo *temp;
2625
2626 for (rhead = NULL; head; head = temp)
2627 {
2628 temp = head->prev_var;
2629 head->prev_var = rhead;
2630 rhead = head;
2631 }
2632 return rhead;
2633 }
2634
2635 /* Extract all interesting funcinfos and varinfos of a compilation
2636 unit into hash tables for faster lookup. Returns TRUE if no
2637 errors were enountered; FALSE otherwise. */
2638
2639 static bfd_boolean
2640 comp_unit_hash_info (struct dwarf2_debug *stash,
2641 struct comp_unit *unit,
2642 struct info_hash_table *funcinfo_hash_table,
2643 struct info_hash_table *varinfo_hash_table)
2644 {
2645 struct funcinfo* each_func;
2646 struct varinfo* each_var;
2647 bfd_boolean okay = TRUE;
2648
2649 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
2650
2651 if (!comp_unit_maybe_decode_line_info (unit, stash))
2652 return FALSE;
2653
2654 BFD_ASSERT (!unit->cached);
2655
2656 /* To preserve the original search order, we went to visit the function
2657 infos in the reversed order of the list. However, making the list
2658 bi-directional use quite a bit of extra memory. So we reverse
2659 the list first, traverse the list in the now reversed order and
2660 finally reverse the list again to get back the original order. */
2661 unit->function_table = reverse_funcinfo_list (unit->function_table);
2662 for (each_func = unit->function_table;
2663 each_func && okay;
2664 each_func = each_func->prev_func)
2665 {
2666 /* Skip nameless functions. */
2667 if (each_func->name)
2668 /* There is no need to copy name string into hash table as
2669 name string is either in the dwarf string buffer or
2670 info in the stash. */
2671 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
2672 (void*) each_func, FALSE);
2673 }
2674 unit->function_table = reverse_funcinfo_list (unit->function_table);
2675 if (!okay)
2676 return FALSE;
2677
2678 /* We do the same for variable infos. */
2679 unit->variable_table = reverse_varinfo_list (unit->variable_table);
2680 for (each_var = unit->variable_table;
2681 each_var && okay;
2682 each_var = each_var->prev_var)
2683 {
2684 /* Skip stack vars and vars with no files or names. */
2685 if (each_var->stack == 0
2686 && each_var->file != NULL
2687 && each_var->name != NULL)
2688 /* There is no need to copy name string into hash table as
2689 name string is either in the dwarf string buffer or
2690 info in the stash. */
2691 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
2692 (void*) each_var, FALSE);
2693 }
2694
2695 unit->variable_table = reverse_varinfo_list (unit->variable_table);
2696 unit->cached = TRUE;
2697 return okay;
2698 }
2699
2700 /* Locate a section in a BFD containing debugging info. The search starts
2701 from the section after AFTER_SEC, or from the first section in the BFD if
2702 AFTER_SEC is NULL. The search works by examining the names of the
2703 sections. There are two permissiable names. The first is .debug_info.
2704 This is the standard DWARF2 name. The second is a prefix .gnu.linkonce.wi.
2705 This is a variation on the .debug_info section which has a checksum
2706 describing the contents appended onto the name. This allows the linker to
2707 identify and discard duplicate debugging sections for different
2708 compilation units. */
2709 #define DWARF2_DEBUG_INFO ".debug_info"
2710 #define DWARF2_COMPRESSED_DEBUG_INFO ".zdebug_info"
2711 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
2712
2713 static asection *
2714 find_debug_info (bfd *abfd, asection *after_sec)
2715 {
2716 asection * msec;
2717
2718 msec = after_sec != NULL ? after_sec->next : abfd->sections;
2719
2720 while (msec)
2721 {
2722 if (strcmp (msec->name, DWARF2_DEBUG_INFO) == 0)
2723 return msec;
2724
2725 if (strcmp (msec->name, DWARF2_COMPRESSED_DEBUG_INFO) == 0)
2726 return msec;
2727
2728 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
2729 return msec;
2730
2731 msec = msec->next;
2732 }
2733
2734 return NULL;
2735 }
2736
2737 /* Unset vmas for adjusted sections in STASH. */
2738
2739 static void
2740 unset_sections (struct dwarf2_debug *stash)
2741 {
2742 unsigned int i;
2743 struct adjusted_section *p;
2744
2745 i = stash->adjusted_section_count;
2746 p = stash->adjusted_sections;
2747 for (; i > 0; i--, p++)
2748 p->section->vma = 0;
2749 }
2750
2751 /* Set unique VMAs for loadable and DWARF sections in ABFD and save
2752 VMAs in STASH for unset_sections. */
2753
2754 static bfd_boolean
2755 place_sections (bfd *abfd, struct dwarf2_debug *stash)
2756 {
2757 struct adjusted_section *p;
2758 unsigned int i;
2759
2760 if (stash->adjusted_section_count != 0)
2761 {
2762 i = stash->adjusted_section_count;
2763 p = stash->adjusted_sections;
2764 for (; i > 0; i--, p++)
2765 p->section->vma = p->adj_vma;
2766 }
2767 else
2768 {
2769 asection *sect;
2770 bfd_vma last_vma = 0, last_dwarf = 0;
2771 bfd_size_type amt;
2772
2773 i = 0;
2774 for (sect = abfd->sections; sect != NULL; sect = sect->next)
2775 {
2776 bfd_size_type sz;
2777 int is_debug_info;
2778
2779 if (sect->vma != 0)
2780 continue;
2781
2782 /* We need to adjust the VMAs of any .debug_info sections.
2783 Skip compressed ones, since no relocations could target
2784 them - they should not appear in object files anyway. */
2785 if (strcmp (sect->name, DWARF2_DEBUG_INFO) == 0)
2786 is_debug_info = 1;
2787 else if (CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO))
2788 is_debug_info = 1;
2789 else
2790 is_debug_info = 0;
2791
2792 if (!is_debug_info && (sect->flags & SEC_LOAD) == 0)
2793 continue;
2794
2795 sz = sect->rawsize ? sect->rawsize : sect->size;
2796 if (sz == 0)
2797 continue;
2798
2799 i++;
2800 }
2801
2802 amt = i * sizeof (struct adjusted_section);
2803 p = (struct adjusted_section *) bfd_zalloc (abfd, amt);
2804 if (! p)
2805 return FALSE;
2806
2807 stash->adjusted_sections = p;
2808 stash->adjusted_section_count = i;
2809
2810 for (sect = abfd->sections; sect != NULL; sect = sect->next)
2811 {
2812 bfd_size_type sz;
2813 int is_debug_info;
2814
2815 if (sect->vma != 0)
2816 continue;
2817
2818 /* We need to adjust the VMAs of any .debug_info sections.
2819 Skip compressed ones, since no relocations could target
2820 them - they should not appear in object files anyway. */
2821 if (strcmp (sect->name, DWARF2_DEBUG_INFO) == 0)
2822 is_debug_info = 1;
2823 else if (CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO))
2824 is_debug_info = 1;
2825 else
2826 is_debug_info = 0;
2827
2828 if (!is_debug_info && (sect->flags & SEC_LOAD) == 0)
2829 continue;
2830
2831 sz = sect->rawsize ? sect->rawsize : sect->size;
2832 if (sz == 0)
2833 continue;
2834
2835 p->section = sect;
2836 if (is_debug_info)
2837 {
2838 BFD_ASSERT (sect->alignment_power == 0);
2839 sect->vma = last_dwarf;
2840 last_dwarf += sz;
2841 }
2842 else if (last_vma != 0)
2843 {
2844 /* Align the new address to the current section
2845 alignment. */
2846 last_vma = ((last_vma
2847 + ~((bfd_vma) -1 << sect->alignment_power))
2848 & ((bfd_vma) -1 << sect->alignment_power));
2849 sect->vma = last_vma;
2850 last_vma += sect->vma + sz;
2851 }
2852 else
2853 last_vma += sect->vma + sz;
2854
2855 p->adj_vma = sect->vma;
2856
2857 p++;
2858 }
2859 }
2860
2861 return TRUE;
2862 }
2863
2864 /* Look up a funcinfo by name using the given info hash table. If found,
2865 also update the locations pointed to by filename_ptr and linenumber_ptr.
2866
2867 This function returns TRUE if a funcinfo that matches the given symbol
2868 and address is found with any error; otherwise it returns FALSE. */
2869
2870 static bfd_boolean
2871 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
2872 asymbol *sym,
2873 bfd_vma addr,
2874 const char **filename_ptr,
2875 unsigned int *linenumber_ptr)
2876 {
2877 struct funcinfo* each_func;
2878 struct funcinfo* best_fit = NULL;
2879 struct info_list_node *node;
2880 struct arange *arange;
2881 const char *name = bfd_asymbol_name (sym);
2882 asection *sec = bfd_get_section (sym);
2883
2884 for (node = lookup_info_hash_table (hash_table, name);
2885 node;
2886 node = node->next)
2887 {
2888 each_func = (struct funcinfo *) node->info;
2889 for (arange = &each_func->arange;
2890 arange;
2891 arange = arange->next)
2892 {
2893 if ((!each_func->sec || each_func->sec == sec)
2894 && addr >= arange->low
2895 && addr < arange->high
2896 && (!best_fit
2897 || ((arange->high - arange->low)
2898 < (best_fit->arange.high - best_fit->arange.low))))
2899 best_fit = each_func;
2900 }
2901 }
2902
2903 if (best_fit)
2904 {
2905 best_fit->sec = sec;
2906 *filename_ptr = best_fit->file;
2907 *linenumber_ptr = best_fit->line;
2908 return TRUE;
2909 }
2910
2911 return FALSE;
2912 }
2913
2914 /* Look up a varinfo by name using the given info hash table. If found,
2915 also update the locations pointed to by filename_ptr and linenumber_ptr.
2916
2917 This function returns TRUE if a varinfo that matches the given symbol
2918 and address is found with any error; otherwise it returns FALSE. */
2919
2920 static bfd_boolean
2921 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
2922 asymbol *sym,
2923 bfd_vma addr,
2924 const char **filename_ptr,
2925 unsigned int *linenumber_ptr)
2926 {
2927 const char *name = bfd_asymbol_name (sym);
2928 asection *sec = bfd_get_section (sym);
2929 struct varinfo* each;
2930 struct info_list_node *node;
2931
2932 for (node = lookup_info_hash_table (hash_table, name);
2933 node;
2934 node = node->next)
2935 {
2936 each = (struct varinfo *) node->info;
2937 if (each->addr == addr
2938 && (!each->sec || each->sec == sec))
2939 {
2940 each->sec = sec;
2941 *filename_ptr = each->file;
2942 *linenumber_ptr = each->line;
2943 return TRUE;
2944 }
2945 }
2946
2947 return FALSE;
2948 }
2949
2950 /* Update the funcinfo and varinfo info hash tables if they are
2951 not up to date. Returns TRUE if there is no error; otherwise
2952 returns FALSE and disable the info hash tables. */
2953
2954 static bfd_boolean
2955 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
2956 {
2957 struct comp_unit *each;
2958
2959 /* Exit if hash tables are up-to-date. */
2960 if (stash->all_comp_units == stash->hash_units_head)
2961 return TRUE;
2962
2963 if (stash->hash_units_head)
2964 each = stash->hash_units_head->prev_unit;
2965 else
2966 each = stash->last_comp_unit;
2967
2968 while (each)
2969 {
2970 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
2971 stash->varinfo_hash_table))
2972 {
2973 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
2974 return FALSE;
2975 }
2976 each = each->prev_unit;
2977 }
2978
2979 stash->hash_units_head = stash->all_comp_units;
2980 return TRUE;
2981 }
2982
2983 /* Check consistency of info hash tables. This is for debugging only. */
2984
2985 static void ATTRIBUTE_UNUSED
2986 stash_verify_info_hash_table (struct dwarf2_debug *stash)
2987 {
2988 struct comp_unit *each_unit;
2989 struct funcinfo *each_func;
2990 struct varinfo *each_var;
2991 struct info_list_node *node;
2992 bfd_boolean found;
2993
2994 for (each_unit = stash->all_comp_units;
2995 each_unit;
2996 each_unit = each_unit->next_unit)
2997 {
2998 for (each_func = each_unit->function_table;
2999 each_func;
3000 each_func = each_func->prev_func)
3001 {
3002 if (!each_func->name)
3003 continue;
3004 node = lookup_info_hash_table (stash->funcinfo_hash_table,
3005 each_func->name);
3006 BFD_ASSERT (node);
3007 found = FALSE;
3008 while (node && !found)
3009 {
3010 found = node->info == each_func;
3011 node = node->next;
3012 }
3013 BFD_ASSERT (found);
3014 }
3015
3016 for (each_var = each_unit->variable_table;
3017 each_var;
3018 each_var = each_var->prev_var)
3019 {
3020 if (!each_var->name || !each_var->file || each_var->stack)
3021 continue;
3022 node = lookup_info_hash_table (stash->varinfo_hash_table,
3023 each_var->name);
3024 BFD_ASSERT (node);
3025 found = FALSE;
3026 while (node && !found)
3027 {
3028 found = node->info == each_var;
3029 node = node->next;
3030 }
3031 BFD_ASSERT (found);
3032 }
3033 }
3034 }
3035
3036 /* Check to see if we want to enable the info hash tables, which consume
3037 quite a bit of memory. Currently we only check the number times
3038 bfd_dwarf2_find_line is called. In the future, we may also want to
3039 take the number of symbols into account. */
3040
3041 static void
3042 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
3043 {
3044 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
3045
3046 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
3047 return;
3048
3049 /* FIXME: Maybe we should check the reduce_memory_overheads
3050 and optimize fields in the bfd_link_info structure ? */
3051
3052 /* Create hash tables. */
3053 stash->funcinfo_hash_table = create_info_hash_table (abfd);
3054 stash->varinfo_hash_table = create_info_hash_table (abfd);
3055 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
3056 {
3057 /* Turn off info hashes if any allocation above fails. */
3058 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
3059 return;
3060 }
3061 /* We need a forced update so that the info hash tables will
3062 be created even though there is no compilation unit. That
3063 happens if STASH_INFO_HASH_TRIGGER is 0. */
3064 stash_maybe_update_info_hash_tables (stash);
3065 stash->info_hash_status = STASH_INFO_HASH_ON;
3066 }
3067
3068 /* Find the file and line associated with a symbol and address using the
3069 info hash tables of a stash. If there is a match, the function returns
3070 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
3071 otherwise it returns FALSE. */
3072
3073 static bfd_boolean
3074 stash_find_line_fast (struct dwarf2_debug *stash,
3075 asymbol *sym,
3076 bfd_vma addr,
3077 const char **filename_ptr,
3078 unsigned int *linenumber_ptr)
3079 {
3080 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
3081
3082 if (sym->flags & BSF_FUNCTION)
3083 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
3084 filename_ptr, linenumber_ptr);
3085 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
3086 filename_ptr, linenumber_ptr);
3087 }
3088
3089 /* Find the source code location of SYMBOL. If SYMBOL is NULL
3090 then find the nearest source code location corresponding to
3091 the address SECTION + OFFSET.
3092 Returns TRUE if the line is found without error and fills in
3093 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
3094 NULL the FUNCTIONNAME_PTR is also filled in.
3095 SYMBOLS contains the symbol table for ABFD.
3096 ADDR_SIZE is the number of bytes in the initial .debug_info length
3097 field and in the abbreviation offset, or zero to indicate that the
3098 default value should be used. */
3099
3100 static bfd_boolean
3101 find_line (bfd *abfd,
3102 asection *section,
3103 bfd_vma offset,
3104 asymbol *symbol,
3105 asymbol **symbols,
3106 const char **filename_ptr,
3107 const char **functionname_ptr,
3108 unsigned int *linenumber_ptr,
3109 unsigned int addr_size,
3110 void **pinfo)
3111 {
3112 /* Read each compilation unit from the section .debug_info, and check
3113 to see if it contains the address we are searching for. If yes,
3114 lookup the address, and return the line number info. If no, go
3115 on to the next compilation unit.
3116
3117 We keep a list of all the previously read compilation units, and
3118 a pointer to the next un-read compilation unit. Check the
3119 previously read units before reading more. */
3120 struct dwarf2_debug *stash;
3121 /* What address are we looking for? */
3122 bfd_vma addr;
3123 struct comp_unit* each;
3124 bfd_vma found = FALSE;
3125 bfd_boolean do_line;
3126
3127 stash = (struct dwarf2_debug *) *pinfo;
3128
3129 if (! stash)
3130 {
3131 bfd_size_type amt = sizeof (struct dwarf2_debug);
3132
3133 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
3134 if (! stash)
3135 return FALSE;
3136 }
3137
3138 /* In a relocatable file, 2 functions may have the same address.
3139 We change the section vma so that they won't overlap. */
3140 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
3141 {
3142 if (! place_sections (abfd, stash))
3143 return FALSE;
3144 }
3145
3146 do_line = (section == NULL
3147 && offset == 0
3148 && functionname_ptr == NULL
3149 && symbol != NULL);
3150 if (do_line)
3151 {
3152 addr = symbol->value;
3153 section = bfd_get_section (symbol);
3154 }
3155 else if (section != NULL
3156 && functionname_ptr != NULL
3157 && symbol == NULL)
3158 addr = offset;
3159 else
3160 abort ();
3161
3162 if (section->output_section)
3163 addr += section->output_section->vma + section->output_offset;
3164 else
3165 addr += section->vma;
3166 *filename_ptr = NULL;
3167 if (! do_line)
3168 *functionname_ptr = NULL;
3169 *linenumber_ptr = 0;
3170
3171 if (! *pinfo)
3172 {
3173 bfd *debug_bfd;
3174 bfd_size_type total_size;
3175 asection *msec;
3176
3177 *pinfo = stash;
3178
3179 msec = find_debug_info (abfd, NULL);
3180 if (msec == NULL)
3181 {
3182 char * debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
3183
3184 if (debug_filename == NULL)
3185 /* No dwarf2 info, and no gnu_debuglink to follow.
3186 Note that at this point the stash has been allocated, but
3187 contains zeros. This lets future calls to this function
3188 fail more quickly. */
3189 goto done;
3190
3191 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
3192 || ! bfd_check_format (debug_bfd, bfd_object)
3193 || (msec = find_debug_info (debug_bfd, NULL)) == NULL)
3194 {
3195 if (debug_bfd)
3196 bfd_close (debug_bfd);
3197 /* FIXME: Should we report our failure to follow the debuglink ? */
3198 free (debug_filename);
3199 goto done;
3200 }
3201 }
3202 else
3203 debug_bfd = abfd;
3204
3205 /* There can be more than one DWARF2 info section in a BFD these
3206 days. First handle the easy case when there's only one. If
3207 there's more than one, try case two: none of the sections is
3208 compressed. In that case, read them all in and produce one
3209 large stash. We do this in two passes - in the first pass we
3210 just accumulate the section sizes, and in the second pass we
3211 read in the section's contents. (The allows us to avoid
3212 reallocing the data as we add sections to the stash.) If
3213 some or all sections are compressed, then do things the slow
3214 way, with a bunch of reallocs. */
3215
3216 if (! find_debug_info (debug_bfd, msec))
3217 {
3218 /* Case 1: only one info section. */
3219 total_size = msec->size;
3220 if (! read_section (debug_bfd, ".debug_info", ".zdebug_info",
3221 symbols, 0,
3222 &stash->info_ptr_memory, &total_size))
3223 goto done;
3224 }
3225 else
3226 {
3227 int all_uncompressed = 1;
3228 for (total_size = 0; msec; msec = find_debug_info (debug_bfd, msec))
3229 {
3230 total_size += msec->size;
3231 if (strcmp (msec->name, DWARF2_COMPRESSED_DEBUG_INFO) == 0)
3232 all_uncompressed = 0;
3233 }
3234 if (all_uncompressed)
3235 {
3236 /* Case 2: multiple sections, but none is compressed. */
3237 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size);
3238 if (stash->info_ptr_memory == NULL)
3239 goto done;
3240
3241 total_size = 0;
3242 for (msec = find_debug_info (debug_bfd, NULL);
3243 msec;
3244 msec = find_debug_info (debug_bfd, msec))
3245 {
3246 bfd_size_type size;
3247
3248 size = msec->size;
3249 if (size == 0)
3250 continue;
3251
3252 if (!(bfd_simple_get_relocated_section_contents
3253 (debug_bfd, msec, stash->info_ptr_memory + total_size,
3254 symbols)))
3255 goto done;
3256
3257 total_size += size;
3258 }
3259 }
3260 else
3261 {
3262 /* Case 3: multiple sections, some or all compressed. */
3263 stash->info_ptr_memory = NULL;
3264 total_size = 0;
3265 for (msec = find_debug_info (debug_bfd, NULL);
3266 msec;
3267 msec = find_debug_info (debug_bfd, msec))
3268 {
3269 bfd_size_type size = msec->size;
3270 bfd_byte *buffer, *tmp;
3271 bfd_boolean is_compressed =
3272 strcmp (msec->name, DWARF2_COMPRESSED_DEBUG_INFO) == 0;
3273
3274 if (size == 0)
3275 continue;
3276
3277 if (! read_and_uncompress_section (debug_bfd, msec,
3278 is_compressed, symbols,
3279 &buffer, &size))
3280 goto done;
3281
3282 tmp = (bfd_byte *) bfd_realloc (stash->info_ptr_memory,
3283 total_size + size);
3284 if (tmp == NULL)
3285 {
3286 free (buffer);
3287 goto done;
3288 }
3289 stash->info_ptr_memory = tmp;
3290 memcpy (stash->info_ptr_memory + total_size, buffer, size);
3291 free (buffer);
3292 total_size += size;
3293 }
3294 }
3295 }
3296
3297 stash->info_ptr = stash->info_ptr_memory;
3298 stash->info_ptr_end = stash->info_ptr + total_size;
3299 stash->sec = find_debug_info (debug_bfd, NULL);
3300 stash->sec_info_ptr = stash->info_ptr;
3301 stash->syms = symbols;
3302 stash->bfd_ptr = debug_bfd;
3303 }
3304
3305 /* A null info_ptr indicates that there is no dwarf2 info
3306 (or that an error occured while setting up the stash). */
3307 if (! stash->info_ptr)
3308 goto done;
3309
3310 stash->inliner_chain = NULL;
3311
3312 /* Check the previously read comp. units first. */
3313 if (do_line)
3314 {
3315 /* The info hash tables use quite a bit of memory. We may not want to
3316 always use them. We use some heuristics to decide if and when to
3317 turn it on. */
3318 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
3319 stash_maybe_enable_info_hash_tables (abfd, stash);
3320
3321 /* Keep info hash table up to date if they are available. Note that we
3322 may disable the hash tables if there is any error duing update. */
3323 if (stash->info_hash_status == STASH_INFO_HASH_ON)
3324 stash_maybe_update_info_hash_tables (stash);
3325
3326 if (stash->info_hash_status == STASH_INFO_HASH_ON)
3327 {
3328 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
3329 linenumber_ptr);
3330 if (found)
3331 goto done;
3332 }
3333 else
3334 {
3335 /* Check the previously read comp. units first. */
3336 for (each = stash->all_comp_units; each; each = each->next_unit)
3337 if ((symbol->flags & BSF_FUNCTION) == 0
3338 || comp_unit_contains_address (each, addr))
3339 {
3340 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
3341 linenumber_ptr, stash);
3342 if (found)
3343 goto done;
3344 }
3345 }
3346 }
3347 else
3348 {
3349 for (each = stash->all_comp_units; each; each = each->next_unit)
3350 {
3351 found = (comp_unit_contains_address (each, addr)
3352 && comp_unit_find_nearest_line (each, addr,
3353 filename_ptr,
3354 functionname_ptr,
3355 linenumber_ptr,
3356 stash));
3357 if (found)
3358 goto done;
3359 }
3360 }
3361
3362 /* The DWARF2 spec says that the initial length field, and the
3363 offset of the abbreviation table, should both be 4-byte values.
3364 However, some compilers do things differently. */
3365 if (addr_size == 0)
3366 addr_size = 4;
3367 BFD_ASSERT (addr_size == 4 || addr_size == 8);
3368
3369 /* Read each remaining comp. units checking each as they are read. */
3370 while (stash->info_ptr < stash->info_ptr_end)
3371 {
3372 bfd_vma length;
3373 unsigned int offset_size = addr_size;
3374 bfd_byte *info_ptr_unit = stash->info_ptr;
3375
3376 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr);
3377 /* A 0xffffff length is the DWARF3 way of indicating
3378 we use 64-bit offsets, instead of 32-bit offsets. */
3379 if (length == 0xffffffff)
3380 {
3381 offset_size = 8;
3382 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4);
3383 stash->info_ptr += 12;
3384 }
3385 /* A zero length is the IRIX way of indicating 64-bit offsets,
3386 mostly because the 64-bit length will generally fit in 32
3387 bits, and the endianness helps. */
3388 else if (length == 0)
3389 {
3390 offset_size = 8;
3391 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4);
3392 stash->info_ptr += 8;
3393 }
3394 /* In the absence of the hints above, we assume 32-bit DWARF2
3395 offsets even for targets with 64-bit addresses, because:
3396 a) most of the time these targets will not have generated
3397 more than 2Gb of debug info and so will not need 64-bit
3398 offsets,
3399 and
3400 b) if they do use 64-bit offsets but they are not using
3401 the size hints that are tested for above then they are
3402 not conforming to the DWARF3 standard anyway. */
3403 else if (addr_size == 8)
3404 {
3405 offset_size = 4;
3406 stash->info_ptr += 4;
3407 }
3408 else
3409 stash->info_ptr += 4;
3410
3411 if (length > 0)
3412 {
3413 each = parse_comp_unit (stash, length, info_ptr_unit,
3414 offset_size);
3415 if (!each)
3416 /* The dwarf information is damaged, don't trust it any
3417 more. */
3418 break;
3419 stash->info_ptr += length;
3420
3421 if (stash->all_comp_units)
3422 stash->all_comp_units->prev_unit = each;
3423 else
3424 stash->last_comp_unit = each;
3425
3426 each->next_unit = stash->all_comp_units;
3427 stash->all_comp_units = each;
3428
3429 /* DW_AT_low_pc and DW_AT_high_pc are optional for
3430 compilation units. If we don't have them (i.e.,
3431 unit->high == 0), we need to consult the line info table
3432 to see if a compilation unit contains the given
3433 address. */
3434 if (do_line)
3435 found = (((symbol->flags & BSF_FUNCTION) == 0
3436 || each->arange.high == 0
3437 || comp_unit_contains_address (each, addr))
3438 && comp_unit_find_line (each, symbol, addr,
3439 filename_ptr,
3440 linenumber_ptr,
3441 stash));
3442 else
3443 found = ((each->arange.high == 0
3444 || comp_unit_contains_address (each, addr))
3445 && comp_unit_find_nearest_line (each, addr,
3446 filename_ptr,
3447 functionname_ptr,
3448 linenumber_ptr,
3449 stash));
3450
3451 if ((bfd_vma) (stash->info_ptr - stash->sec_info_ptr)
3452 == stash->sec->size)
3453 {
3454 stash->sec = find_debug_info (stash->bfd_ptr, stash->sec);
3455 stash->sec_info_ptr = stash->info_ptr;
3456 }
3457
3458 if (found)
3459 goto done;
3460 }
3461 }
3462
3463 done:
3464 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
3465 unset_sections (stash);
3466
3467 return found;
3468 }
3469
3470 /* The DWARF2 version of find_nearest_line.
3471 Return TRUE if the line is found without error. */
3472
3473 bfd_boolean
3474 _bfd_dwarf2_find_nearest_line (bfd *abfd,
3475 asection *section,
3476 asymbol **symbols,
3477 bfd_vma offset,
3478 const char **filename_ptr,
3479 const char **functionname_ptr,
3480 unsigned int *linenumber_ptr,
3481 unsigned int addr_size,
3482 void **pinfo)
3483 {
3484 return find_line (abfd, section, offset, NULL, symbols, filename_ptr,
3485 functionname_ptr, linenumber_ptr, addr_size,
3486 pinfo);
3487 }
3488
3489 /* The DWARF2 version of find_line.
3490 Return TRUE if the line is found without error. */
3491
3492 bfd_boolean
3493 _bfd_dwarf2_find_line (bfd *abfd,
3494 asymbol **symbols,
3495 asymbol *symbol,
3496 const char **filename_ptr,
3497 unsigned int *linenumber_ptr,
3498 unsigned int addr_size,
3499 void **pinfo)
3500 {
3501 return find_line (abfd, NULL, 0, symbol, symbols, filename_ptr,
3502 NULL, linenumber_ptr, addr_size,
3503 pinfo);
3504 }
3505
3506 bfd_boolean
3507 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
3508 const char **filename_ptr,
3509 const char **functionname_ptr,
3510 unsigned int *linenumber_ptr,
3511 void **pinfo)
3512 {
3513 struct dwarf2_debug *stash;
3514
3515 stash = (struct dwarf2_debug *) *pinfo;
3516 if (stash)
3517 {
3518 struct funcinfo *func = stash->inliner_chain;
3519
3520 if (func && func->caller_func)
3521 {
3522 *filename_ptr = func->caller_file;
3523 *functionname_ptr = func->caller_func->name;
3524 *linenumber_ptr = func->caller_line;
3525 stash->inliner_chain = func->caller_func;
3526 return TRUE;
3527 }
3528 }
3529
3530 return FALSE;
3531 }
3532
3533 void
3534 _bfd_dwarf2_cleanup_debug_info (bfd *abfd)
3535 {
3536 struct comp_unit *each;
3537 struct dwarf2_debug *stash;
3538
3539 if (abfd == NULL || elf_tdata (abfd) == NULL)
3540 return;
3541
3542 stash = (struct dwarf2_debug *) elf_tdata (abfd)->dwarf2_find_line_info;
3543
3544 if (stash == NULL)
3545 return;
3546
3547 for (each = stash->all_comp_units; each; each = each->next_unit)
3548 {
3549 struct abbrev_info **abbrevs = each->abbrevs;
3550 struct funcinfo *function_table = each->function_table;
3551 struct varinfo *variable_table = each->variable_table;
3552 size_t i;
3553
3554 for (i = 0; i < ABBREV_HASH_SIZE; i++)
3555 {
3556 struct abbrev_info *abbrev = abbrevs[i];
3557
3558 while (abbrev)
3559 {
3560 free (abbrev->attrs);
3561 abbrev = abbrev->next;
3562 }
3563 }
3564
3565 if (each->line_table)
3566 {
3567 free (each->line_table->dirs);
3568 free (each->line_table->files);
3569 }
3570
3571 while (function_table)
3572 {
3573 if (function_table->file)
3574 {
3575 free (function_table->file);
3576 function_table->file = NULL;
3577 }
3578
3579 if (function_table->caller_file)
3580 {
3581 free (function_table->caller_file);
3582 function_table->caller_file = NULL;
3583 }
3584 function_table = function_table->prev_func;
3585 }
3586
3587 while (variable_table)
3588 {
3589 if (variable_table->file)
3590 {
3591 free (variable_table->file);
3592 variable_table->file = NULL;
3593 }
3594
3595 variable_table = variable_table->prev_var;
3596 }
3597 }
3598
3599 if (stash->dwarf_abbrev_buffer)
3600 free (stash->dwarf_abbrev_buffer);
3601 if (stash->dwarf_line_buffer)
3602 free (stash->dwarf_line_buffer);
3603 if (stash->dwarf_str_buffer)
3604 free (stash->dwarf_str_buffer);
3605 if (stash->dwarf_ranges_buffer)
3606 free (stash->dwarf_ranges_buffer);
3607 if (stash->info_ptr_memory)
3608 free (stash->info_ptr_memory);
3609 }
This page took 0.156584 seconds and 4 git commands to generate.