21041a5b408fd0418375017ff7549f27a28b0b40
[deliverable/binutils-gdb.git] / bfd / elf-eh-frame.c
1 /* .eh_frame section optimization.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Written by Jakub Jelinek <jakub@redhat.com>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "dwarf2.h"
28
29 #define EH_FRAME_HDR_SIZE 8
30
31 struct cie
32 {
33 unsigned int length;
34 unsigned int hash;
35 unsigned char version;
36 unsigned char local_personality;
37 char augmentation[20];
38 bfd_vma code_align;
39 bfd_signed_vma data_align;
40 bfd_vma ra_column;
41 bfd_vma augmentation_size;
42 union {
43 struct elf_link_hash_entry *h;
44 bfd_vma val;
45 unsigned int reloc_index;
46 } personality;
47 asection *output_sec;
48 struct eh_cie_fde *cie_inf;
49 unsigned char per_encoding;
50 unsigned char lsda_encoding;
51 unsigned char fde_encoding;
52 unsigned char initial_insn_length;
53 unsigned char can_make_lsda_relative;
54 unsigned char initial_instructions[50];
55 };
56
57
58
59 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
60 move onto the next byte. Return true on success. */
61
62 static inline bfd_boolean
63 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
64 {
65 if (*iter >= end)
66 return FALSE;
67 *result = *((*iter)++);
68 return TRUE;
69 }
70
71 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
72 Return true it was possible to move LENGTH bytes. */
73
74 static inline bfd_boolean
75 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
76 {
77 if ((bfd_size_type) (end - *iter) < length)
78 {
79 *iter = end;
80 return FALSE;
81 }
82 *iter += length;
83 return TRUE;
84 }
85
86 /* Move *ITER over an leb128, stopping at END. Return true if the end
87 of the leb128 was found. */
88
89 static bfd_boolean
90 skip_leb128 (bfd_byte **iter, bfd_byte *end)
91 {
92 unsigned char byte;
93 do
94 if (!read_byte (iter, end, &byte))
95 return FALSE;
96 while (byte & 0x80);
97 return TRUE;
98 }
99
100 /* Like skip_leb128, but treat the leb128 as an unsigned value and
101 store it in *VALUE. */
102
103 static bfd_boolean
104 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
105 {
106 bfd_byte *start, *p;
107
108 start = *iter;
109 if (!skip_leb128 (iter, end))
110 return FALSE;
111
112 p = *iter;
113 *value = *--p;
114 while (p > start)
115 *value = (*value << 7) | (*--p & 0x7f);
116
117 return TRUE;
118 }
119
120 /* Like read_uleb128, but for signed values. */
121
122 static bfd_boolean
123 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
124 {
125 bfd_byte *start, *p;
126
127 start = *iter;
128 if (!skip_leb128 (iter, end))
129 return FALSE;
130
131 p = *iter;
132 *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
133 while (p > start)
134 *value = (*value << 7) | (*--p & 0x7f);
135
136 return TRUE;
137 }
138
139 /* Return 0 if either encoding is variable width, or not yet known to bfd. */
140
141 static
142 int get_DW_EH_PE_width (int encoding, int ptr_size)
143 {
144 /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
145 was added to bfd. */
146 if ((encoding & 0x60) == 0x60)
147 return 0;
148
149 switch (encoding & 7)
150 {
151 case DW_EH_PE_udata2: return 2;
152 case DW_EH_PE_udata4: return 4;
153 case DW_EH_PE_udata8: return 8;
154 case DW_EH_PE_absptr: return ptr_size;
155 default:
156 break;
157 }
158
159 return 0;
160 }
161
162 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
163
164 /* Read a width sized value from memory. */
165
166 static bfd_vma
167 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
168 {
169 bfd_vma value;
170
171 switch (width)
172 {
173 case 2:
174 if (is_signed)
175 value = bfd_get_signed_16 (abfd, buf);
176 else
177 value = bfd_get_16 (abfd, buf);
178 break;
179 case 4:
180 if (is_signed)
181 value = bfd_get_signed_32 (abfd, buf);
182 else
183 value = bfd_get_32 (abfd, buf);
184 break;
185 case 8:
186 if (is_signed)
187 value = bfd_get_signed_64 (abfd, buf);
188 else
189 value = bfd_get_64 (abfd, buf);
190 break;
191 default:
192 BFD_FAIL ();
193 return 0;
194 }
195
196 return value;
197 }
198
199 /* Store a width sized value to memory. */
200
201 static void
202 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
203 {
204 switch (width)
205 {
206 case 2: bfd_put_16 (abfd, value, buf); break;
207 case 4: bfd_put_32 (abfd, value, buf); break;
208 case 8: bfd_put_64 (abfd, value, buf); break;
209 default: BFD_FAIL ();
210 }
211 }
212
213 /* Return one if C1 and C2 CIEs can be merged. */
214
215 static int
216 cie_eq (const void *e1, const void *e2)
217 {
218 const struct cie *c1 = (const struct cie *) e1;
219 const struct cie *c2 = (const struct cie *) e2;
220
221 if (c1->hash == c2->hash
222 && c1->length == c2->length
223 && c1->version == c2->version
224 && c1->local_personality == c2->local_personality
225 && strcmp (c1->augmentation, c2->augmentation) == 0
226 && strcmp (c1->augmentation, "eh") != 0
227 && c1->code_align == c2->code_align
228 && c1->data_align == c2->data_align
229 && c1->ra_column == c2->ra_column
230 && c1->augmentation_size == c2->augmentation_size
231 && memcmp (&c1->personality, &c2->personality,
232 sizeof (c1->personality)) == 0
233 && c1->output_sec == c2->output_sec
234 && c1->per_encoding == c2->per_encoding
235 && c1->lsda_encoding == c2->lsda_encoding
236 && c1->fde_encoding == c2->fde_encoding
237 && c1->initial_insn_length == c2->initial_insn_length
238 && memcmp (c1->initial_instructions,
239 c2->initial_instructions,
240 c1->initial_insn_length) == 0)
241 return 1;
242
243 return 0;
244 }
245
246 static hashval_t
247 cie_hash (const void *e)
248 {
249 const struct cie *c = (const struct cie *) e;
250 return c->hash;
251 }
252
253 static hashval_t
254 cie_compute_hash (struct cie *c)
255 {
256 hashval_t h = 0;
257 h = iterative_hash_object (c->length, h);
258 h = iterative_hash_object (c->version, h);
259 h = iterative_hash (c->augmentation, strlen (c->augmentation) + 1, h);
260 h = iterative_hash_object (c->code_align, h);
261 h = iterative_hash_object (c->data_align, h);
262 h = iterative_hash_object (c->ra_column, h);
263 h = iterative_hash_object (c->augmentation_size, h);
264 h = iterative_hash_object (c->personality, h);
265 h = iterative_hash_object (c->output_sec, h);
266 h = iterative_hash_object (c->per_encoding, h);
267 h = iterative_hash_object (c->lsda_encoding, h);
268 h = iterative_hash_object (c->fde_encoding, h);
269 h = iterative_hash_object (c->initial_insn_length, h);
270 h = iterative_hash (c->initial_instructions, c->initial_insn_length, h);
271 c->hash = h;
272 return h;
273 }
274
275 /* Return the number of extra bytes that we'll be inserting into
276 ENTRY's augmentation string. */
277
278 static INLINE unsigned int
279 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
280 {
281 unsigned int size = 0;
282 if (entry->cie)
283 {
284 if (entry->add_augmentation_size)
285 size++;
286 if (entry->u.cie.add_fde_encoding)
287 size++;
288 }
289 return size;
290 }
291
292 /* Likewise ENTRY's augmentation data. */
293
294 static INLINE unsigned int
295 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
296 {
297 unsigned int size = 0;
298 if (entry->add_augmentation_size)
299 size++;
300 if (entry->cie && entry->u.cie.add_fde_encoding)
301 size++;
302 return size;
303 }
304
305 /* Return the size that ENTRY will have in the output. ALIGNMENT is the
306 required alignment of ENTRY in bytes. */
307
308 static unsigned int
309 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
310 {
311 if (entry->removed)
312 return 0;
313 if (entry->size == 4)
314 return 4;
315 return (entry->size
316 + extra_augmentation_string_bytes (entry)
317 + extra_augmentation_data_bytes (entry)
318 + alignment - 1) & -alignment;
319 }
320
321 /* Assume that the bytes between *ITER and END are CFA instructions.
322 Try to move *ITER past the first instruction and return true on
323 success. ENCODED_PTR_WIDTH gives the width of pointer entries. */
324
325 static bfd_boolean
326 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
327 {
328 bfd_byte op;
329 bfd_vma length;
330
331 if (!read_byte (iter, end, &op))
332 return FALSE;
333
334 switch (op & 0xc0 ? op & 0xc0 : op)
335 {
336 case DW_CFA_nop:
337 case DW_CFA_advance_loc:
338 case DW_CFA_restore:
339 case DW_CFA_remember_state:
340 case DW_CFA_restore_state:
341 case DW_CFA_GNU_window_save:
342 /* No arguments. */
343 return TRUE;
344
345 case DW_CFA_offset:
346 case DW_CFA_restore_extended:
347 case DW_CFA_undefined:
348 case DW_CFA_same_value:
349 case DW_CFA_def_cfa_register:
350 case DW_CFA_def_cfa_offset:
351 case DW_CFA_def_cfa_offset_sf:
352 case DW_CFA_GNU_args_size:
353 /* One leb128 argument. */
354 return skip_leb128 (iter, end);
355
356 case DW_CFA_val_offset:
357 case DW_CFA_val_offset_sf:
358 case DW_CFA_offset_extended:
359 case DW_CFA_register:
360 case DW_CFA_def_cfa:
361 case DW_CFA_offset_extended_sf:
362 case DW_CFA_GNU_negative_offset_extended:
363 case DW_CFA_def_cfa_sf:
364 /* Two leb128 arguments. */
365 return (skip_leb128 (iter, end)
366 && skip_leb128 (iter, end));
367
368 case DW_CFA_def_cfa_expression:
369 /* A variable-length argument. */
370 return (read_uleb128 (iter, end, &length)
371 && skip_bytes (iter, end, length));
372
373 case DW_CFA_expression:
374 case DW_CFA_val_expression:
375 /* A leb128 followed by a variable-length argument. */
376 return (skip_leb128 (iter, end)
377 && read_uleb128 (iter, end, &length)
378 && skip_bytes (iter, end, length));
379
380 case DW_CFA_set_loc:
381 return skip_bytes (iter, end, encoded_ptr_width);
382
383 case DW_CFA_advance_loc1:
384 return skip_bytes (iter, end, 1);
385
386 case DW_CFA_advance_loc2:
387 return skip_bytes (iter, end, 2);
388
389 case DW_CFA_advance_loc4:
390 return skip_bytes (iter, end, 4);
391
392 case DW_CFA_MIPS_advance_loc8:
393 return skip_bytes (iter, end, 8);
394
395 default:
396 return FALSE;
397 }
398 }
399
400 /* Try to interpret the bytes between BUF and END as CFA instructions.
401 If every byte makes sense, return a pointer to the first DW_CFA_nop
402 padding byte, or END if there is no padding. Return null otherwise.
403 ENCODED_PTR_WIDTH is as for skip_cfa_op. */
404
405 static bfd_byte *
406 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width,
407 unsigned int *set_loc_count)
408 {
409 bfd_byte *last;
410
411 last = buf;
412 while (buf < end)
413 if (*buf == DW_CFA_nop)
414 buf++;
415 else
416 {
417 if (*buf == DW_CFA_set_loc)
418 ++*set_loc_count;
419 if (!skip_cfa_op (&buf, end, encoded_ptr_width))
420 return 0;
421 last = buf;
422 }
423 return last;
424 }
425
426 /* Convert absolute encoding ENCODING into PC-relative form.
427 SIZE is the size of a pointer. */
428
429 static unsigned char
430 make_pc_relative (unsigned char encoding, unsigned int ptr_size)
431 {
432 if ((encoding & 0x7f) == DW_EH_PE_absptr)
433 switch (ptr_size)
434 {
435 case 2:
436 encoding |= DW_EH_PE_sdata2;
437 break;
438 case 4:
439 encoding |= DW_EH_PE_sdata4;
440 break;
441 case 8:
442 encoding |= DW_EH_PE_sdata8;
443 break;
444 }
445 return encoding | DW_EH_PE_pcrel;
446 }
447
448 /* Called before calling _bfd_elf_parse_eh_frame on every input bfd's
449 .eh_frame section. */
450
451 void
452 _bfd_elf_begin_eh_frame_parsing (struct bfd_link_info *info)
453 {
454 struct eh_frame_hdr_info *hdr_info;
455
456 hdr_info = &elf_hash_table (info)->eh_info;
457 hdr_info->merge_cies = !info->relocatable;
458 }
459
460 /* Try to parse .eh_frame section SEC, which belongs to ABFD. Store the
461 information in the section's sec_info field on success. COOKIE
462 describes the relocations in SEC. */
463
464 void
465 _bfd_elf_parse_eh_frame (bfd *abfd, struct bfd_link_info *info,
466 asection *sec, struct elf_reloc_cookie *cookie)
467 {
468 #define REQUIRE(COND) \
469 do \
470 if (!(COND)) \
471 goto free_no_table; \
472 while (0)
473
474 bfd_byte *ehbuf = NULL, *buf, *end;
475 bfd_byte *last_fde;
476 struct eh_cie_fde *this_inf;
477 unsigned int hdr_length, hdr_id;
478 unsigned int cie_count;
479 struct cie *cie, *local_cies = NULL;
480 struct elf_link_hash_table *htab;
481 struct eh_frame_hdr_info *hdr_info;
482 struct eh_frame_sec_info *sec_info = NULL;
483 unsigned int ptr_size;
484 unsigned int num_cies;
485 unsigned int num_entries;
486 elf_gc_mark_hook_fn gc_mark_hook;
487
488 htab = elf_hash_table (info);
489 hdr_info = &htab->eh_info;
490 if (hdr_info->parsed_eh_frames)
491 return;
492
493 if (sec->size == 0
494 || sec->sec_info_type != ELF_INFO_TYPE_NONE)
495 {
496 /* This file does not contain .eh_frame information. */
497 return;
498 }
499
500 if (bfd_is_abs_section (sec->output_section))
501 {
502 /* At least one of the sections is being discarded from the
503 link, so we should just ignore them. */
504 return;
505 }
506
507 /* Read the frame unwind information from abfd. */
508
509 REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
510
511 if (sec->size >= 4
512 && bfd_get_32 (abfd, ehbuf) == 0
513 && cookie->rel == cookie->relend)
514 {
515 /* Empty .eh_frame section. */
516 free (ehbuf);
517 return;
518 }
519
520 /* If .eh_frame section size doesn't fit into int, we cannot handle
521 it (it would need to use 64-bit .eh_frame format anyway). */
522 REQUIRE (sec->size == (unsigned int) sec->size);
523
524 ptr_size = (get_elf_backend_data (abfd)
525 ->elf_backend_eh_frame_address_size (abfd, sec));
526 REQUIRE (ptr_size != 0);
527
528 /* Go through the section contents and work out how many FDEs and
529 CIEs there are. */
530 buf = ehbuf;
531 end = ehbuf + sec->size;
532 num_cies = 0;
533 num_entries = 0;
534 while (buf != end)
535 {
536 num_entries++;
537
538 /* Read the length of the entry. */
539 REQUIRE (skip_bytes (&buf, end, 4));
540 hdr_length = bfd_get_32 (abfd, buf - 4);
541
542 /* 64-bit .eh_frame is not supported. */
543 REQUIRE (hdr_length != 0xffffffff);
544 if (hdr_length == 0)
545 break;
546
547 REQUIRE (skip_bytes (&buf, end, 4));
548 hdr_id = bfd_get_32 (abfd, buf - 4);
549 if (hdr_id == 0)
550 num_cies++;
551
552 REQUIRE (skip_bytes (&buf, end, hdr_length - 4));
553 }
554
555 sec_info = (struct eh_frame_sec_info *)
556 bfd_zmalloc (sizeof (struct eh_frame_sec_info)
557 + (num_entries - 1) * sizeof (struct eh_cie_fde));
558 REQUIRE (sec_info);
559
560 /* We need to have a "struct cie" for each CIE in this section. */
561 local_cies = (struct cie *) bfd_zmalloc (num_cies * sizeof (*local_cies));
562 REQUIRE (local_cies);
563
564 /* FIXME: octets_per_byte. */
565 #define ENSURE_NO_RELOCS(buf) \
566 REQUIRE (!(cookie->rel < cookie->relend \
567 && (cookie->rel->r_offset \
568 < (bfd_size_type) ((buf) - ehbuf)) \
569 && cookie->rel->r_info != 0))
570
571 /* FIXME: octets_per_byte. */
572 #define SKIP_RELOCS(buf) \
573 while (cookie->rel < cookie->relend \
574 && (cookie->rel->r_offset \
575 < (bfd_size_type) ((buf) - ehbuf))) \
576 cookie->rel++
577
578 /* FIXME: octets_per_byte. */
579 #define GET_RELOC(buf) \
580 ((cookie->rel < cookie->relend \
581 && (cookie->rel->r_offset \
582 == (bfd_size_type) ((buf) - ehbuf))) \
583 ? cookie->rel : NULL)
584
585 buf = ehbuf;
586 cie_count = 0;
587 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
588 while ((bfd_size_type) (buf - ehbuf) != sec->size)
589 {
590 char *aug;
591 bfd_byte *start, *insns, *insns_end;
592 bfd_size_type length;
593 unsigned int set_loc_count;
594
595 this_inf = sec_info->entry + sec_info->count;
596 last_fde = buf;
597
598 /* Read the length of the entry. */
599 REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
600 hdr_length = bfd_get_32 (abfd, buf - 4);
601
602 /* The CIE/FDE must be fully contained in this input section. */
603 REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr_length <= sec->size);
604 end = buf + hdr_length;
605
606 this_inf->offset = last_fde - ehbuf;
607 this_inf->size = 4 + hdr_length;
608 this_inf->reloc_index = cookie->rel - cookie->rels;
609
610 if (hdr_length == 0)
611 {
612 /* A zero-length CIE should only be found at the end of
613 the section. */
614 REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
615 ENSURE_NO_RELOCS (buf);
616 sec_info->count++;
617 break;
618 }
619
620 REQUIRE (skip_bytes (&buf, end, 4));
621 hdr_id = bfd_get_32 (abfd, buf - 4);
622
623 if (hdr_id == 0)
624 {
625 unsigned int initial_insn_length;
626
627 /* CIE */
628 this_inf->cie = 1;
629
630 /* Point CIE to one of the section-local cie structures. */
631 cie = local_cies + cie_count++;
632
633 cie->cie_inf = this_inf;
634 cie->length = hdr_length;
635 cie->output_sec = sec->output_section;
636 start = buf;
637 REQUIRE (read_byte (&buf, end, &cie->version));
638
639 /* Cannot handle unknown versions. */
640 REQUIRE (cie->version == 1
641 || cie->version == 3
642 || cie->version == 4);
643 REQUIRE (strlen ((char *) buf) < sizeof (cie->augmentation));
644
645 strcpy (cie->augmentation, (char *) buf);
646 buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
647 ENSURE_NO_RELOCS (buf);
648 if (buf[0] == 'e' && buf[1] == 'h')
649 {
650 /* GCC < 3.0 .eh_frame CIE */
651 /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
652 is private to each CIE, so we don't need it for anything.
653 Just skip it. */
654 REQUIRE (skip_bytes (&buf, end, ptr_size));
655 SKIP_RELOCS (buf);
656 }
657 if (cie->version >= 4)
658 {
659 REQUIRE (buf + 1 < end);
660 REQUIRE (buf[0] == ptr_size);
661 REQUIRE (buf[1] == 0);
662 buf += 2;
663 }
664 REQUIRE (read_uleb128 (&buf, end, &cie->code_align));
665 REQUIRE (read_sleb128 (&buf, end, &cie->data_align));
666 if (cie->version == 1)
667 {
668 REQUIRE (buf < end);
669 cie->ra_column = *buf++;
670 }
671 else
672 REQUIRE (read_uleb128 (&buf, end, &cie->ra_column));
673 ENSURE_NO_RELOCS (buf);
674 cie->lsda_encoding = DW_EH_PE_omit;
675 cie->fde_encoding = DW_EH_PE_omit;
676 cie->per_encoding = DW_EH_PE_omit;
677 aug = cie->augmentation;
678 if (aug[0] != 'e' || aug[1] != 'h')
679 {
680 if (*aug == 'z')
681 {
682 aug++;
683 REQUIRE (read_uleb128 (&buf, end, &cie->augmentation_size));
684 ENSURE_NO_RELOCS (buf);
685 }
686
687 while (*aug != '\0')
688 switch (*aug++)
689 {
690 case 'L':
691 REQUIRE (read_byte (&buf, end, &cie->lsda_encoding));
692 ENSURE_NO_RELOCS (buf);
693 REQUIRE (get_DW_EH_PE_width (cie->lsda_encoding, ptr_size));
694 break;
695 case 'R':
696 REQUIRE (read_byte (&buf, end, &cie->fde_encoding));
697 ENSURE_NO_RELOCS (buf);
698 REQUIRE (get_DW_EH_PE_width (cie->fde_encoding, ptr_size));
699 break;
700 case 'S':
701 break;
702 case 'P':
703 {
704 int per_width;
705
706 REQUIRE (read_byte (&buf, end, &cie->per_encoding));
707 per_width = get_DW_EH_PE_width (cie->per_encoding,
708 ptr_size);
709 REQUIRE (per_width);
710 if ((cie->per_encoding & 0x70) == DW_EH_PE_aligned)
711 {
712 length = -(buf - ehbuf) & (per_width - 1);
713 REQUIRE (skip_bytes (&buf, end, length));
714 }
715 this_inf->u.cie.personality_offset = buf - start;
716 ENSURE_NO_RELOCS (buf);
717 /* Ensure we have a reloc here. */
718 REQUIRE (GET_RELOC (buf));
719 cie->personality.reloc_index
720 = cookie->rel - cookie->rels;
721 /* Cope with MIPS-style composite relocations. */
722 do
723 cookie->rel++;
724 while (GET_RELOC (buf) != NULL);
725 REQUIRE (skip_bytes (&buf, end, per_width));
726 }
727 break;
728 default:
729 /* Unrecognized augmentation. Better bail out. */
730 goto free_no_table;
731 }
732 }
733
734 /* For shared libraries, try to get rid of as many RELATIVE relocs
735 as possible. */
736 if (info->shared
737 && (get_elf_backend_data (abfd)
738 ->elf_backend_can_make_relative_eh_frame
739 (abfd, info, sec)))
740 {
741 if ((cie->fde_encoding & 0x70) == DW_EH_PE_absptr)
742 this_inf->make_relative = 1;
743 /* If the CIE doesn't already have an 'R' entry, it's fairly
744 easy to add one, provided that there's no aligned data
745 after the augmentation string. */
746 else if (cie->fde_encoding == DW_EH_PE_omit
747 && (cie->per_encoding & 0x70) != DW_EH_PE_aligned)
748 {
749 if (*cie->augmentation == 0)
750 this_inf->add_augmentation_size = 1;
751 this_inf->u.cie.add_fde_encoding = 1;
752 this_inf->make_relative = 1;
753 }
754
755 if ((cie->lsda_encoding & 0x70) == DW_EH_PE_absptr)
756 cie->can_make_lsda_relative = 1;
757 }
758
759 /* If FDE encoding was not specified, it defaults to
760 DW_EH_absptr. */
761 if (cie->fde_encoding == DW_EH_PE_omit)
762 cie->fde_encoding = DW_EH_PE_absptr;
763
764 initial_insn_length = end - buf;
765 if (initial_insn_length <= sizeof (cie->initial_instructions))
766 {
767 cie->initial_insn_length = initial_insn_length;
768 memcpy (cie->initial_instructions, buf, initial_insn_length);
769 }
770 insns = buf;
771 buf += initial_insn_length;
772 ENSURE_NO_RELOCS (buf);
773
774 if (hdr_info->merge_cies)
775 this_inf->u.cie.u.full_cie = cie;
776 this_inf->u.cie.per_encoding_relative
777 = (cie->per_encoding & 0x70) == DW_EH_PE_pcrel;
778 }
779 else
780 {
781 asection *rsec;
782
783 /* Find the corresponding CIE. */
784 unsigned int cie_offset = this_inf->offset + 4 - hdr_id;
785 for (cie = local_cies; cie < local_cies + cie_count; cie++)
786 if (cie_offset == cie->cie_inf->offset)
787 break;
788
789 /* Ensure this FDE references one of the CIEs in this input
790 section. */
791 REQUIRE (cie != local_cies + cie_count);
792 this_inf->u.fde.cie_inf = cie->cie_inf;
793 this_inf->make_relative = cie->cie_inf->make_relative;
794 this_inf->add_augmentation_size
795 = cie->cie_inf->add_augmentation_size;
796
797 ENSURE_NO_RELOCS (buf);
798 REQUIRE (GET_RELOC (buf));
799
800 /* Chain together the FDEs for each section. */
801 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
802 /* RSEC will be NULL if FDE was cleared out as it was belonging to
803 a discarded SHT_GROUP. */
804 if (rsec)
805 {
806 REQUIRE (rsec->owner == abfd);
807 this_inf->u.fde.next_for_section = elf_fde_list (rsec);
808 elf_fde_list (rsec) = this_inf;
809 }
810
811 /* Skip the initial location and address range. */
812 start = buf;
813 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
814 REQUIRE (skip_bytes (&buf, end, 2 * length));
815
816 /* Skip the augmentation size, if present. */
817 if (cie->augmentation[0] == 'z')
818 REQUIRE (read_uleb128 (&buf, end, &length));
819 else
820 length = 0;
821
822 /* Of the supported augmentation characters above, only 'L'
823 adds augmentation data to the FDE. This code would need to
824 be adjusted if any future augmentations do the same thing. */
825 if (cie->lsda_encoding != DW_EH_PE_omit)
826 {
827 SKIP_RELOCS (buf);
828 if (cie->can_make_lsda_relative && GET_RELOC (buf))
829 cie->cie_inf->u.cie.make_lsda_relative = 1;
830 this_inf->lsda_offset = buf - start;
831 /* If there's no 'z' augmentation, we don't know where the
832 CFA insns begin. Assume no padding. */
833 if (cie->augmentation[0] != 'z')
834 length = end - buf;
835 }
836
837 /* Skip over the augmentation data. */
838 REQUIRE (skip_bytes (&buf, end, length));
839 insns = buf;
840
841 buf = last_fde + 4 + hdr_length;
842
843 /* For NULL RSEC (cleared FDE belonging to a discarded section)
844 the relocations are commonly cleared. We do not sanity check if
845 all these relocations are cleared as (1) relocations to
846 .gcc_except_table will remain uncleared (they will get dropped
847 with the drop of this unused FDE) and (2) BFD already safely drops
848 relocations of any type to .eh_frame by
849 elf_section_ignore_discarded_relocs.
850 TODO: The .gcc_except_table entries should be also filtered as
851 .eh_frame entries; or GCC could rather use COMDAT for them. */
852 SKIP_RELOCS (buf);
853 }
854
855 /* Try to interpret the CFA instructions and find the first
856 padding nop. Shrink this_inf's size so that it doesn't
857 include the padding. */
858 length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
859 set_loc_count = 0;
860 insns_end = skip_non_nops (insns, end, length, &set_loc_count);
861 /* If we don't understand the CFA instructions, we can't know
862 what needs to be adjusted there. */
863 if (insns_end == NULL
864 /* For the time being we don't support DW_CFA_set_loc in
865 CIE instructions. */
866 || (set_loc_count && this_inf->cie))
867 goto free_no_table;
868 this_inf->size -= end - insns_end;
869 if (insns_end != end && this_inf->cie)
870 {
871 cie->initial_insn_length -= end - insns_end;
872 cie->length -= end - insns_end;
873 }
874 if (set_loc_count
875 && ((cie->fde_encoding & 0x70) == DW_EH_PE_pcrel
876 || this_inf->make_relative))
877 {
878 unsigned int cnt;
879 bfd_byte *p;
880
881 this_inf->set_loc = (unsigned int *)
882 bfd_malloc ((set_loc_count + 1) * sizeof (unsigned int));
883 REQUIRE (this_inf->set_loc);
884 this_inf->set_loc[0] = set_loc_count;
885 p = insns;
886 cnt = 0;
887 while (p < end)
888 {
889 if (*p == DW_CFA_set_loc)
890 this_inf->set_loc[++cnt] = p + 1 - start;
891 REQUIRE (skip_cfa_op (&p, end, length));
892 }
893 }
894
895 this_inf->removed = 1;
896 this_inf->fde_encoding = cie->fde_encoding;
897 this_inf->lsda_encoding = cie->lsda_encoding;
898 sec_info->count++;
899 }
900 BFD_ASSERT (sec_info->count == num_entries);
901 BFD_ASSERT (cie_count == num_cies);
902
903 elf_section_data (sec)->sec_info = sec_info;
904 sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
905 if (hdr_info->merge_cies)
906 {
907 sec_info->cies = local_cies;
908 local_cies = NULL;
909 }
910 goto success;
911
912 free_no_table:
913 (*info->callbacks->einfo)
914 (_("%P: error in %B(%A); no .eh_frame_hdr table will be created.\n"),
915 abfd, sec);
916 hdr_info->table = FALSE;
917 if (sec_info)
918 free (sec_info);
919 success:
920 if (ehbuf)
921 free (ehbuf);
922 if (local_cies)
923 free (local_cies);
924 #undef REQUIRE
925 }
926
927 /* Finish a pass over all .eh_frame sections. */
928
929 void
930 _bfd_elf_end_eh_frame_parsing (struct bfd_link_info *info)
931 {
932 struct eh_frame_hdr_info *hdr_info;
933
934 hdr_info = &elf_hash_table (info)->eh_info;
935 hdr_info->parsed_eh_frames = TRUE;
936 }
937
938 /* Mark all relocations against CIE or FDE ENT, which occurs in
939 .eh_frame section SEC. COOKIE describes the relocations in SEC;
940 its "rel" field can be changed freely. */
941
942 static bfd_boolean
943 mark_entry (struct bfd_link_info *info, asection *sec,
944 struct eh_cie_fde *ent, elf_gc_mark_hook_fn gc_mark_hook,
945 struct elf_reloc_cookie *cookie)
946 {
947 /* FIXME: octets_per_byte. */
948 for (cookie->rel = cookie->rels + ent->reloc_index;
949 cookie->rel < cookie->relend
950 && cookie->rel->r_offset < ent->offset + ent->size;
951 cookie->rel++)
952 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, cookie))
953 return FALSE;
954
955 return TRUE;
956 }
957
958 /* Mark all the relocations against FDEs that relate to code in input
959 section SEC. The FDEs belong to .eh_frame section EH_FRAME, whose
960 relocations are described by COOKIE. */
961
962 bfd_boolean
963 _bfd_elf_gc_mark_fdes (struct bfd_link_info *info, asection *sec,
964 asection *eh_frame, elf_gc_mark_hook_fn gc_mark_hook,
965 struct elf_reloc_cookie *cookie)
966 {
967 struct eh_cie_fde *fde, *cie;
968
969 for (fde = elf_fde_list (sec); fde; fde = fde->u.fde.next_for_section)
970 {
971 if (!mark_entry (info, eh_frame, fde, gc_mark_hook, cookie))
972 return FALSE;
973
974 /* At this stage, all cie_inf fields point to local CIEs, so we
975 can use the same cookie to refer to them. */
976 cie = fde->u.fde.cie_inf;
977 if (!cie->u.cie.gc_mark)
978 {
979 cie->u.cie.gc_mark = 1;
980 if (!mark_entry (info, eh_frame, cie, gc_mark_hook, cookie))
981 return FALSE;
982 }
983 }
984 return TRUE;
985 }
986
987 /* Input section SEC of ABFD is an .eh_frame section that contains the
988 CIE described by CIE_INF. Return a version of CIE_INF that is going
989 to be kept in the output, adding CIE_INF to the output if necessary.
990
991 HDR_INFO is the .eh_frame_hdr information and COOKIE describes the
992 relocations in REL. */
993
994 static struct eh_cie_fde *
995 find_merged_cie (bfd *abfd, struct bfd_link_info *info, asection *sec,
996 struct eh_frame_hdr_info *hdr_info,
997 struct elf_reloc_cookie *cookie,
998 struct eh_cie_fde *cie_inf)
999 {
1000 unsigned long r_symndx;
1001 struct cie *cie, *new_cie;
1002 Elf_Internal_Rela *rel;
1003 void **loc;
1004
1005 /* Use CIE_INF if we have already decided to keep it. */
1006 if (!cie_inf->removed)
1007 return cie_inf;
1008
1009 /* If we have merged CIE_INF with another CIE, use that CIE instead. */
1010 if (cie_inf->u.cie.merged)
1011 return cie_inf->u.cie.u.merged_with;
1012
1013 cie = cie_inf->u.cie.u.full_cie;
1014
1015 /* Assume we will need to keep CIE_INF. */
1016 cie_inf->removed = 0;
1017 cie_inf->u.cie.u.sec = sec;
1018
1019 /* If we are not merging CIEs, use CIE_INF. */
1020 if (cie == NULL)
1021 return cie_inf;
1022
1023 if (cie->per_encoding != DW_EH_PE_omit)
1024 {
1025 bfd_boolean per_binds_local;
1026
1027 /* Work out the address of personality routine, either as an absolute
1028 value or as a symbol. */
1029 rel = cookie->rels + cie->personality.reloc_index;
1030 memset (&cie->personality, 0, sizeof (cie->personality));
1031 #ifdef BFD64
1032 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
1033 r_symndx = ELF64_R_SYM (rel->r_info);
1034 else
1035 #endif
1036 r_symndx = ELF32_R_SYM (rel->r_info);
1037 if (r_symndx >= cookie->locsymcount
1038 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
1039 {
1040 struct elf_link_hash_entry *h;
1041
1042 r_symndx -= cookie->extsymoff;
1043 h = cookie->sym_hashes[r_symndx];
1044
1045 while (h->root.type == bfd_link_hash_indirect
1046 || h->root.type == bfd_link_hash_warning)
1047 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1048
1049 cie->personality.h = h;
1050 per_binds_local = SYMBOL_REFERENCES_LOCAL (info, h);
1051 }
1052 else
1053 {
1054 Elf_Internal_Sym *sym;
1055 asection *sym_sec;
1056
1057 sym = &cookie->locsyms[r_symndx];
1058 sym_sec = bfd_section_from_elf_index (abfd, sym->st_shndx);
1059 if (sym_sec == NULL)
1060 return cie_inf;
1061
1062 if (sym_sec->kept_section != NULL)
1063 sym_sec = sym_sec->kept_section;
1064 if (sym_sec->output_section == NULL)
1065 return cie_inf;
1066
1067 cie->local_personality = 1;
1068 cie->personality.val = (sym->st_value
1069 + sym_sec->output_offset
1070 + sym_sec->output_section->vma);
1071 per_binds_local = TRUE;
1072 }
1073
1074 if (per_binds_local
1075 && info->shared
1076 && (cie->per_encoding & 0x70) == DW_EH_PE_absptr
1077 && (get_elf_backend_data (abfd)
1078 ->elf_backend_can_make_relative_eh_frame (abfd, info, sec)))
1079 {
1080 cie_inf->u.cie.make_per_encoding_relative = 1;
1081 cie_inf->u.cie.per_encoding_relative = 1;
1082 }
1083 }
1084
1085 /* See if we can merge this CIE with an earlier one. */
1086 cie->output_sec = sec->output_section;
1087 cie_compute_hash (cie);
1088 if (hdr_info->cies == NULL)
1089 {
1090 hdr_info->cies = htab_try_create (1, cie_hash, cie_eq, free);
1091 if (hdr_info->cies == NULL)
1092 return cie_inf;
1093 }
1094 loc = htab_find_slot_with_hash (hdr_info->cies, cie, cie->hash, INSERT);
1095 if (loc == NULL)
1096 return cie_inf;
1097
1098 new_cie = (struct cie *) *loc;
1099 if (new_cie == NULL)
1100 {
1101 /* Keep CIE_INF and record it in the hash table. */
1102 new_cie = (struct cie *) malloc (sizeof (struct cie));
1103 if (new_cie == NULL)
1104 return cie_inf;
1105
1106 memcpy (new_cie, cie, sizeof (struct cie));
1107 *loc = new_cie;
1108 }
1109 else
1110 {
1111 /* Merge CIE_INF with NEW_CIE->CIE_INF. */
1112 cie_inf->removed = 1;
1113 cie_inf->u.cie.merged = 1;
1114 cie_inf->u.cie.u.merged_with = new_cie->cie_inf;
1115 if (cie_inf->u.cie.make_lsda_relative)
1116 new_cie->cie_inf->u.cie.make_lsda_relative = 1;
1117 }
1118 return new_cie->cie_inf;
1119 }
1120
1121 /* This function is called for each input file before the .eh_frame
1122 section is relocated. It discards duplicate CIEs and FDEs for discarded
1123 functions. The function returns TRUE iff any entries have been
1124 deleted. */
1125
1126 bfd_boolean
1127 _bfd_elf_discard_section_eh_frame
1128 (bfd *abfd, struct bfd_link_info *info, asection *sec,
1129 bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
1130 struct elf_reloc_cookie *cookie)
1131 {
1132 struct eh_cie_fde *ent;
1133 struct eh_frame_sec_info *sec_info;
1134 struct eh_frame_hdr_info *hdr_info;
1135 unsigned int ptr_size, offset;
1136
1137 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1138 return FALSE;
1139
1140 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1141 if (sec_info == NULL)
1142 return FALSE;
1143
1144 hdr_info = &elf_hash_table (info)->eh_info;
1145 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1146 if (ent->size == 4)
1147 /* There should only be one zero terminator, on the last input
1148 file supplying .eh_frame (crtend.o). Remove any others. */
1149 ent->removed = sec->map_head.s != NULL;
1150 else if (!ent->cie)
1151 {
1152 cookie->rel = cookie->rels + ent->reloc_index;
1153 /* FIXME: octets_per_byte. */
1154 BFD_ASSERT (cookie->rel < cookie->relend
1155 && cookie->rel->r_offset == ent->offset + 8);
1156 if (!(*reloc_symbol_deleted_p) (ent->offset + 8, cookie))
1157 {
1158 if (info->shared
1159 && (((ent->fde_encoding & 0x70) == DW_EH_PE_absptr
1160 && ent->make_relative == 0)
1161 || (ent->fde_encoding & 0x70) == DW_EH_PE_aligned))
1162 {
1163 /* If a shared library uses absolute pointers
1164 which we cannot turn into PC relative,
1165 don't create the binary search table,
1166 since it is affected by runtime relocations. */
1167 hdr_info->table = FALSE;
1168 (*info->callbacks->einfo)
1169 (_("%P: fde encoding in %B(%A) prevents .eh_frame_hdr"
1170 " table being created.\n"), abfd, sec);
1171 }
1172 ent->removed = 0;
1173 hdr_info->fde_count++;
1174 ent->u.fde.cie_inf = find_merged_cie (abfd, info, sec, hdr_info,
1175 cookie, ent->u.fde.cie_inf);
1176 }
1177 }
1178
1179 if (sec_info->cies)
1180 {
1181 free (sec_info->cies);
1182 sec_info->cies = NULL;
1183 }
1184
1185 ptr_size = (get_elf_backend_data (sec->owner)
1186 ->elf_backend_eh_frame_address_size (sec->owner, sec));
1187 offset = 0;
1188 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1189 if (!ent->removed)
1190 {
1191 ent->new_offset = offset;
1192 offset += size_of_output_cie_fde (ent, ptr_size);
1193 }
1194
1195 sec->rawsize = sec->size;
1196 sec->size = offset;
1197 return offset != sec->rawsize;
1198 }
1199
1200 /* This function is called for .eh_frame_hdr section after
1201 _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
1202 input sections. It finalizes the size of .eh_frame_hdr section. */
1203
1204 bfd_boolean
1205 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1206 {
1207 struct elf_link_hash_table *htab;
1208 struct eh_frame_hdr_info *hdr_info;
1209 asection *sec;
1210
1211 htab = elf_hash_table (info);
1212 hdr_info = &htab->eh_info;
1213
1214 if (hdr_info->cies != NULL)
1215 {
1216 htab_delete (hdr_info->cies);
1217 hdr_info->cies = NULL;
1218 }
1219
1220 sec = hdr_info->hdr_sec;
1221 if (sec == NULL)
1222 return FALSE;
1223
1224 sec->size = EH_FRAME_HDR_SIZE;
1225 if (hdr_info->table)
1226 sec->size += 4 + hdr_info->fde_count * 8;
1227
1228 elf_tdata (abfd)->eh_frame_hdr = sec;
1229 return TRUE;
1230 }
1231
1232 /* This function is called from size_dynamic_sections.
1233 It needs to decide whether .eh_frame_hdr should be output or not,
1234 because when the dynamic symbol table has been sized it is too late
1235 to strip sections. */
1236
1237 bfd_boolean
1238 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
1239 {
1240 asection *o;
1241 bfd *abfd;
1242 struct elf_link_hash_table *htab;
1243 struct eh_frame_hdr_info *hdr_info;
1244
1245 htab = elf_hash_table (info);
1246 hdr_info = &htab->eh_info;
1247 if (hdr_info->hdr_sec == NULL)
1248 return TRUE;
1249
1250 if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
1251 {
1252 hdr_info->hdr_sec = NULL;
1253 return TRUE;
1254 }
1255
1256 abfd = NULL;
1257 if (info->eh_frame_hdr)
1258 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1259 {
1260 /* Count only sections which have at least a single CIE or FDE.
1261 There cannot be any CIE or FDE <= 8 bytes. */
1262 o = bfd_get_section_by_name (abfd, ".eh_frame");
1263 if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
1264 break;
1265 }
1266
1267 if (abfd == NULL)
1268 {
1269 hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
1270 hdr_info->hdr_sec = NULL;
1271 return TRUE;
1272 }
1273
1274 hdr_info->table = TRUE;
1275 return TRUE;
1276 }
1277
1278 /* Adjust an address in the .eh_frame section. Given OFFSET within
1279 SEC, this returns the new offset in the adjusted .eh_frame section,
1280 or -1 if the address refers to a CIE/FDE which has been removed
1281 or to offset with dynamic relocation which is no longer needed. */
1282
1283 bfd_vma
1284 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
1285 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1286 asection *sec,
1287 bfd_vma offset)
1288 {
1289 struct eh_frame_sec_info *sec_info;
1290 unsigned int lo, hi, mid;
1291
1292 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1293 return offset;
1294 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1295
1296 if (offset >= sec->rawsize)
1297 return offset - sec->rawsize + sec->size;
1298
1299 lo = 0;
1300 hi = sec_info->count;
1301 mid = 0;
1302 while (lo < hi)
1303 {
1304 mid = (lo + hi) / 2;
1305 if (offset < sec_info->entry[mid].offset)
1306 hi = mid;
1307 else if (offset
1308 >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
1309 lo = mid + 1;
1310 else
1311 break;
1312 }
1313
1314 BFD_ASSERT (lo < hi);
1315
1316 /* FDE or CIE was removed. */
1317 if (sec_info->entry[mid].removed)
1318 return (bfd_vma) -1;
1319
1320 /* If converting personality pointers to DW_EH_PE_pcrel, there will be
1321 no need for run-time relocation against the personality field. */
1322 if (sec_info->entry[mid].cie
1323 && sec_info->entry[mid].u.cie.make_per_encoding_relative
1324 && offset == (sec_info->entry[mid].offset + 8
1325 + sec_info->entry[mid].u.cie.personality_offset))
1326 return (bfd_vma) -2;
1327
1328 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1329 relocation against FDE's initial_location field. */
1330 if (!sec_info->entry[mid].cie
1331 && sec_info->entry[mid].make_relative
1332 && offset == sec_info->entry[mid].offset + 8)
1333 return (bfd_vma) -2;
1334
1335 /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
1336 for run-time relocation against LSDA field. */
1337 if (!sec_info->entry[mid].cie
1338 && sec_info->entry[mid].u.fde.cie_inf->u.cie.make_lsda_relative
1339 && offset == (sec_info->entry[mid].offset + 8
1340 + sec_info->entry[mid].lsda_offset))
1341 return (bfd_vma) -2;
1342
1343 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
1344 relocation against DW_CFA_set_loc's arguments. */
1345 if (sec_info->entry[mid].set_loc
1346 && sec_info->entry[mid].make_relative
1347 && (offset >= sec_info->entry[mid].offset + 8
1348 + sec_info->entry[mid].set_loc[1]))
1349 {
1350 unsigned int cnt;
1351
1352 for (cnt = 1; cnt <= sec_info->entry[mid].set_loc[0]; cnt++)
1353 if (offset == sec_info->entry[mid].offset + 8
1354 + sec_info->entry[mid].set_loc[cnt])
1355 return (bfd_vma) -2;
1356 }
1357
1358 /* Any new augmentation bytes go before the first relocation. */
1359 return (offset + sec_info->entry[mid].new_offset
1360 - sec_info->entry[mid].offset
1361 + extra_augmentation_string_bytes (sec_info->entry + mid)
1362 + extra_augmentation_data_bytes (sec_info->entry + mid));
1363 }
1364
1365 /* Write out .eh_frame section. This is called with the relocated
1366 contents. */
1367
1368 bfd_boolean
1369 _bfd_elf_write_section_eh_frame (bfd *abfd,
1370 struct bfd_link_info *info,
1371 asection *sec,
1372 bfd_byte *contents)
1373 {
1374 struct eh_frame_sec_info *sec_info;
1375 struct elf_link_hash_table *htab;
1376 struct eh_frame_hdr_info *hdr_info;
1377 unsigned int ptr_size;
1378 struct eh_cie_fde *ent;
1379
1380 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1381 /* FIXME: octets_per_byte. */
1382 return bfd_set_section_contents (abfd, sec->output_section, contents,
1383 sec->output_offset, sec->size);
1384
1385 ptr_size = (get_elf_backend_data (abfd)
1386 ->elf_backend_eh_frame_address_size (abfd, sec));
1387 BFD_ASSERT (ptr_size != 0);
1388
1389 sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
1390 htab = elf_hash_table (info);
1391 hdr_info = &htab->eh_info;
1392
1393 if (hdr_info->table && hdr_info->array == NULL)
1394 hdr_info->array = (struct eh_frame_array_ent *)
1395 bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
1396 if (hdr_info->array == NULL)
1397 hdr_info = NULL;
1398
1399 /* The new offsets can be bigger or smaller than the original offsets.
1400 We therefore need to make two passes over the section: one backward
1401 pass to move entries up and one forward pass to move entries down.
1402 The two passes won't interfere with each other because entries are
1403 not reordered */
1404 for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1405 if (!ent->removed && ent->new_offset > ent->offset)
1406 memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1407
1408 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1409 if (!ent->removed && ent->new_offset < ent->offset)
1410 memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
1411
1412 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1413 {
1414 unsigned char *buf, *end;
1415 unsigned int new_size;
1416
1417 if (ent->removed)
1418 continue;
1419
1420 if (ent->size == 4)
1421 {
1422 /* Any terminating FDE must be at the end of the section. */
1423 BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1424 continue;
1425 }
1426
1427 buf = contents + ent->new_offset;
1428 end = buf + ent->size;
1429 new_size = size_of_output_cie_fde (ent, ptr_size);
1430
1431 /* Update the size. It may be shrinked. */
1432 bfd_put_32 (abfd, new_size - 4, buf);
1433
1434 /* Filling the extra bytes with DW_CFA_nops. */
1435 if (new_size != ent->size)
1436 memset (end, 0, new_size - ent->size);
1437
1438 if (ent->cie)
1439 {
1440 /* CIE */
1441 if (ent->make_relative
1442 || ent->u.cie.make_lsda_relative
1443 || ent->u.cie.per_encoding_relative)
1444 {
1445 char *aug;
1446 unsigned int action, extra_string, extra_data;
1447 unsigned int per_width, per_encoding;
1448
1449 /* Need to find 'R' or 'L' augmentation's argument and modify
1450 DW_EH_PE_* value. */
1451 action = ((ent->make_relative ? 1 : 0)
1452 | (ent->u.cie.make_lsda_relative ? 2 : 0)
1453 | (ent->u.cie.per_encoding_relative ? 4 : 0));
1454 extra_string = extra_augmentation_string_bytes (ent);
1455 extra_data = extra_augmentation_data_bytes (ent);
1456
1457 /* Skip length, id and version. */
1458 buf += 9;
1459 aug = (char *) buf;
1460 buf += strlen (aug) + 1;
1461 skip_leb128 (&buf, end);
1462 skip_leb128 (&buf, end);
1463 skip_leb128 (&buf, end);
1464 if (*aug == 'z')
1465 {
1466 /* The uleb128 will always be a single byte for the kind
1467 of augmentation strings that we're prepared to handle. */
1468 *buf++ += extra_data;
1469 aug++;
1470 }
1471
1472 /* Make room for the new augmentation string and data bytes. */
1473 memmove (buf + extra_string + extra_data, buf, end - buf);
1474 memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
1475 buf += extra_string;
1476 end += extra_string + extra_data;
1477
1478 if (ent->add_augmentation_size)
1479 {
1480 *aug++ = 'z';
1481 *buf++ = extra_data - 1;
1482 }
1483 if (ent->u.cie.add_fde_encoding)
1484 {
1485 BFD_ASSERT (action & 1);
1486 *aug++ = 'R';
1487 *buf++ = make_pc_relative (DW_EH_PE_absptr, ptr_size);
1488 action &= ~1;
1489 }
1490
1491 while (action)
1492 switch (*aug++)
1493 {
1494 case 'L':
1495 if (action & 2)
1496 {
1497 BFD_ASSERT (*buf == ent->lsda_encoding);
1498 *buf = make_pc_relative (*buf, ptr_size);
1499 action &= ~2;
1500 }
1501 buf++;
1502 break;
1503 case 'P':
1504 if (ent->u.cie.make_per_encoding_relative)
1505 *buf = make_pc_relative (*buf, ptr_size);
1506 per_encoding = *buf++;
1507 per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1508 BFD_ASSERT (per_width != 0);
1509 BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1510 == ent->u.cie.per_encoding_relative);
1511 if ((per_encoding & 0x70) == DW_EH_PE_aligned)
1512 buf = (contents
1513 + ((buf - contents + per_width - 1)
1514 & ~((bfd_size_type) per_width - 1)));
1515 if (action & 4)
1516 {
1517 bfd_vma val;
1518
1519 val = read_value (abfd, buf, per_width,
1520 get_DW_EH_PE_signed (per_encoding));
1521 if (ent->u.cie.make_per_encoding_relative)
1522 val -= (sec->output_section->vma
1523 + sec->output_offset
1524 + (buf - contents));
1525 else
1526 {
1527 val += (bfd_vma) ent->offset - ent->new_offset;
1528 val -= extra_string + extra_data;
1529 }
1530 write_value (abfd, buf, val, per_width);
1531 action &= ~4;
1532 }
1533 buf += per_width;
1534 break;
1535 case 'R':
1536 if (action & 1)
1537 {
1538 BFD_ASSERT (*buf == ent->fde_encoding);
1539 *buf = make_pc_relative (*buf, ptr_size);
1540 action &= ~1;
1541 }
1542 buf++;
1543 break;
1544 case 'S':
1545 break;
1546 default:
1547 BFD_FAIL ();
1548 }
1549 }
1550 }
1551 else
1552 {
1553 /* FDE */
1554 bfd_vma value, address;
1555 unsigned int width;
1556 bfd_byte *start;
1557 struct eh_cie_fde *cie;
1558
1559 /* Skip length. */
1560 cie = ent->u.fde.cie_inf;
1561 buf += 4;
1562 value = ((ent->new_offset + sec->output_offset + 4)
1563 - (cie->new_offset + cie->u.cie.u.sec->output_offset));
1564 bfd_put_32 (abfd, value, buf);
1565 buf += 4;
1566 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1567 value = read_value (abfd, buf, width,
1568 get_DW_EH_PE_signed (ent->fde_encoding));
1569 address = value;
1570 if (value)
1571 {
1572 switch (ent->fde_encoding & 0x70)
1573 {
1574 case DW_EH_PE_textrel:
1575 BFD_ASSERT (hdr_info == NULL);
1576 break;
1577 case DW_EH_PE_datarel:
1578 {
1579 switch (abfd->arch_info->arch)
1580 {
1581 case bfd_arch_ia64:
1582 BFD_ASSERT (elf_gp (abfd) != 0);
1583 address += elf_gp (abfd);
1584 break;
1585 default:
1586 (*info->callbacks->einfo)
1587 (_("%P: DW_EH_PE_datarel unspecified"
1588 " for this architecture.\n"));
1589 /* Fall thru */
1590 case bfd_arch_frv:
1591 case bfd_arch_i386:
1592 BFD_ASSERT (htab->hgot != NULL
1593 && ((htab->hgot->root.type
1594 == bfd_link_hash_defined)
1595 || (htab->hgot->root.type
1596 == bfd_link_hash_defweak)));
1597 address
1598 += (htab->hgot->root.u.def.value
1599 + htab->hgot->root.u.def.section->output_offset
1600 + (htab->hgot->root.u.def.section->output_section
1601 ->vma));
1602 break;
1603 }
1604 }
1605 break;
1606 case DW_EH_PE_pcrel:
1607 value += (bfd_vma) ent->offset - ent->new_offset;
1608 address += (sec->output_section->vma
1609 + sec->output_offset
1610 + ent->offset + 8);
1611 break;
1612 }
1613 if (ent->make_relative)
1614 value -= (sec->output_section->vma
1615 + sec->output_offset
1616 + ent->new_offset + 8);
1617 write_value (abfd, buf, value, width);
1618 }
1619
1620 start = buf;
1621
1622 if (hdr_info)
1623 {
1624 /* The address calculation may overflow, giving us a
1625 value greater than 4G on a 32-bit target when
1626 dwarf_vma is 64-bit. */
1627 if (sizeof (address) > 4 && ptr_size == 4)
1628 address &= 0xffffffff;
1629 hdr_info->array[hdr_info->array_count].initial_loc = address;
1630 hdr_info->array[hdr_info->array_count++].fde
1631 = (sec->output_section->vma
1632 + sec->output_offset
1633 + ent->new_offset);
1634 }
1635
1636 if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel
1637 || cie->u.cie.make_lsda_relative)
1638 {
1639 buf += ent->lsda_offset;
1640 width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1641 value = read_value (abfd, buf, width,
1642 get_DW_EH_PE_signed (ent->lsda_encoding));
1643 if (value)
1644 {
1645 if ((ent->lsda_encoding & 0x70) == DW_EH_PE_pcrel)
1646 value += (bfd_vma) ent->offset - ent->new_offset;
1647 else if (cie->u.cie.make_lsda_relative)
1648 value -= (sec->output_section->vma
1649 + sec->output_offset
1650 + ent->new_offset + 8 + ent->lsda_offset);
1651 write_value (abfd, buf, value, width);
1652 }
1653 }
1654 else if (ent->add_augmentation_size)
1655 {
1656 /* Skip the PC and length and insert a zero byte for the
1657 augmentation size. */
1658 buf += width * 2;
1659 memmove (buf + 1, buf, end - buf);
1660 *buf = 0;
1661 }
1662
1663 if (ent->set_loc)
1664 {
1665 /* Adjust DW_CFA_set_loc. */
1666 unsigned int cnt;
1667 bfd_vma new_offset;
1668
1669 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1670 new_offset = ent->new_offset + 8
1671 + extra_augmentation_string_bytes (ent)
1672 + extra_augmentation_data_bytes (ent);
1673
1674 for (cnt = 1; cnt <= ent->set_loc[0]; cnt++)
1675 {
1676 buf = start + ent->set_loc[cnt];
1677
1678 value = read_value (abfd, buf, width,
1679 get_DW_EH_PE_signed (ent->fde_encoding));
1680 if (!value)
1681 continue;
1682
1683 if ((ent->fde_encoding & 0x70) == DW_EH_PE_pcrel)
1684 value += (bfd_vma) ent->offset + 8 - new_offset;
1685 if (ent->make_relative)
1686 value -= (sec->output_section->vma
1687 + sec->output_offset
1688 + new_offset + ent->set_loc[cnt]);
1689 write_value (abfd, buf, value, width);
1690 }
1691 }
1692 }
1693 }
1694
1695 /* We don't align the section to its section alignment since the
1696 runtime library only expects all CIE/FDE records aligned at
1697 the pointer size. _bfd_elf_discard_section_eh_frame should
1698 have padded CIE/FDE records to multiple of pointer size with
1699 size_of_output_cie_fde. */
1700 if ((sec->size % ptr_size) != 0)
1701 abort ();
1702
1703 /* FIXME: octets_per_byte. */
1704 return bfd_set_section_contents (abfd, sec->output_section,
1705 contents, (file_ptr) sec->output_offset,
1706 sec->size);
1707 }
1708
1709 /* Helper function used to sort .eh_frame_hdr search table by increasing
1710 VMA of FDE initial location. */
1711
1712 static int
1713 vma_compare (const void *a, const void *b)
1714 {
1715 const struct eh_frame_array_ent *p = (const struct eh_frame_array_ent *) a;
1716 const struct eh_frame_array_ent *q = (const struct eh_frame_array_ent *) b;
1717 if (p->initial_loc > q->initial_loc)
1718 return 1;
1719 if (p->initial_loc < q->initial_loc)
1720 return -1;
1721 return 0;
1722 }
1723
1724 /* Write out .eh_frame_hdr section. This must be called after
1725 _bfd_elf_write_section_eh_frame has been called on all input
1726 .eh_frame sections.
1727 .eh_frame_hdr format:
1728 ubyte version (currently 1)
1729 ubyte eh_frame_ptr_enc (DW_EH_PE_* encoding of pointer to start of
1730 .eh_frame section)
1731 ubyte fde_count_enc (DW_EH_PE_* encoding of total FDE count
1732 number (or DW_EH_PE_omit if there is no
1733 binary search table computed))
1734 ubyte table_enc (DW_EH_PE_* encoding of binary search table,
1735 or DW_EH_PE_omit if not present.
1736 DW_EH_PE_datarel is using address of
1737 .eh_frame_hdr section start as base)
1738 [encoded] eh_frame_ptr (pointer to start of .eh_frame section)
1739 optionally followed by:
1740 [encoded] fde_count (total number of FDEs in .eh_frame section)
1741 fde_count x [encoded] initial_loc, fde
1742 (array of encoded pairs containing
1743 FDE initial_location field and FDE address,
1744 sorted by increasing initial_loc). */
1745
1746 bfd_boolean
1747 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1748 {
1749 struct elf_link_hash_table *htab;
1750 struct eh_frame_hdr_info *hdr_info;
1751 asection *sec;
1752 bfd_byte *contents;
1753 asection *eh_frame_sec;
1754 bfd_size_type size;
1755 bfd_boolean retval;
1756 bfd_vma encoded_eh_frame;
1757
1758 htab = elf_hash_table (info);
1759 hdr_info = &htab->eh_info;
1760 sec = hdr_info->hdr_sec;
1761 if (sec == NULL)
1762 return TRUE;
1763
1764 size = EH_FRAME_HDR_SIZE;
1765 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1766 size += 4 + hdr_info->fde_count * 8;
1767 contents = (bfd_byte *) bfd_malloc (size);
1768 if (contents == NULL)
1769 return FALSE;
1770
1771 eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
1772 if (eh_frame_sec == NULL)
1773 {
1774 free (contents);
1775 return FALSE;
1776 }
1777
1778 memset (contents, 0, EH_FRAME_HDR_SIZE);
1779 contents[0] = 1; /* Version. */
1780 contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
1781 (abfd, info, eh_frame_sec, 0, sec, 4,
1782 &encoded_eh_frame); /* .eh_frame offset. */
1783
1784 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1785 {
1786 contents[2] = DW_EH_PE_udata4; /* FDE count encoding. */
1787 contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc. */
1788 }
1789 else
1790 {
1791 contents[2] = DW_EH_PE_omit;
1792 contents[3] = DW_EH_PE_omit;
1793 }
1794 bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
1795
1796 if (contents[2] != DW_EH_PE_omit)
1797 {
1798 unsigned int i;
1799
1800 bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
1801 qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
1802 vma_compare);
1803 for (i = 0; i < hdr_info->fde_count; i++)
1804 {
1805 bfd_put_32 (abfd,
1806 hdr_info->array[i].initial_loc
1807 - sec->output_section->vma,
1808 contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
1809 bfd_put_32 (abfd,
1810 hdr_info->array[i].fde - sec->output_section->vma,
1811 contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
1812 }
1813 }
1814
1815 /* FIXME: octets_per_byte. */
1816 retval = bfd_set_section_contents (abfd, sec->output_section,
1817 contents, (file_ptr) sec->output_offset,
1818 sec->size);
1819 free (contents);
1820 return retval;
1821 }
1822
1823 /* Return the width of FDE addresses. This is the default implementation. */
1824
1825 unsigned int
1826 _bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
1827 {
1828 return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
1829 }
1830
1831 /* Decide whether we can use a PC-relative encoding within the given
1832 EH frame section. This is the default implementation. */
1833
1834 bfd_boolean
1835 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
1836 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1837 asection *eh_frame_section ATTRIBUTE_UNUSED)
1838 {
1839 return TRUE;
1840 }
1841
1842 /* Select an encoding for the given address. Preference is given to
1843 PC-relative addressing modes. */
1844
1845 bfd_byte
1846 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
1847 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1848 asection *osec, bfd_vma offset,
1849 asection *loc_sec, bfd_vma loc_offset,
1850 bfd_vma *encoded)
1851 {
1852 *encoded = osec->vma + offset -
1853 (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
1854 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
1855 }
This page took 0.09082 seconds and 4 git commands to generate.