daily update
[deliverable/binutils-gdb.git] / bfd / elf-eh-frame.c
1 /* .eh_frame section optimization.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Written by Jakub Jelinek <jakub@redhat.com>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/dwarf2.h"
26
27 #define EH_FRAME_HDR_SIZE 8
28
29 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
30 move onto the next byte. Return true on success. */
31
32 static inline bfd_boolean
33 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
34 {
35 if (*iter >= end)
36 return FALSE;
37 *result = *((*iter)++);
38 return TRUE;
39 }
40
41 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
42 Return true it was possible to move LENGTH bytes. */
43
44 static inline bfd_boolean
45 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
46 {
47 if ((bfd_size_type) (end - *iter) < length)
48 {
49 *iter = end;
50 return FALSE;
51 }
52 *iter += length;
53 return TRUE;
54 }
55
56 /* Move *ITER over an leb128, stopping at END. Return true if the end
57 of the leb128 was found. */
58
59 static bfd_boolean
60 skip_leb128 (bfd_byte **iter, bfd_byte *end)
61 {
62 unsigned char byte;
63 do
64 if (!read_byte (iter, end, &byte))
65 return FALSE;
66 while (byte & 0x80);
67 return TRUE;
68 }
69
70 /* Like skip_leb128, but treat the leb128 as an unsigned value and
71 store it in *VALUE. */
72
73 static bfd_boolean
74 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
75 {
76 bfd_byte *start, *p;
77
78 start = *iter;
79 if (!skip_leb128 (iter, end))
80 return FALSE;
81
82 p = *iter;
83 *value = *--p;
84 while (p > start)
85 *value = (*value << 7) | (*--p & 0x7f);
86
87 return TRUE;
88 }
89
90 /* Like read_uleb128, but for signed values. */
91
92 static bfd_boolean
93 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
94 {
95 bfd_byte *start, *p;
96
97 start = *iter;
98 if (!skip_leb128 (iter, end))
99 return FALSE;
100
101 p = *iter;
102 *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
103 while (p > start)
104 *value = (*value << 7) | (*--p & 0x7f);
105
106 return TRUE;
107 }
108
109 /* Return 0 if either encoding is variable width, or not yet known to bfd. */
110
111 static
112 int get_DW_EH_PE_width (int encoding, int ptr_size)
113 {
114 /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
115 was added to bfd. */
116 if ((encoding & 0x60) == 0x60)
117 return 0;
118
119 switch (encoding & 7)
120 {
121 case DW_EH_PE_udata2: return 2;
122 case DW_EH_PE_udata4: return 4;
123 case DW_EH_PE_udata8: return 8;
124 case DW_EH_PE_absptr: return ptr_size;
125 default:
126 break;
127 }
128
129 return 0;
130 }
131
132 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
133
134 /* Read a width sized value from memory. */
135
136 static bfd_vma
137 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
138 {
139 bfd_vma value;
140
141 switch (width)
142 {
143 case 2:
144 if (is_signed)
145 value = bfd_get_signed_16 (abfd, buf);
146 else
147 value = bfd_get_16 (abfd, buf);
148 break;
149 case 4:
150 if (is_signed)
151 value = bfd_get_signed_32 (abfd, buf);
152 else
153 value = bfd_get_32 (abfd, buf);
154 break;
155 case 8:
156 if (is_signed)
157 value = bfd_get_signed_64 (abfd, buf);
158 else
159 value = bfd_get_64 (abfd, buf);
160 break;
161 default:
162 BFD_FAIL ();
163 return 0;
164 }
165
166 return value;
167 }
168
169 /* Store a width sized value to memory. */
170
171 static void
172 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
173 {
174 switch (width)
175 {
176 case 2: bfd_put_16 (abfd, value, buf); break;
177 case 4: bfd_put_32 (abfd, value, buf); break;
178 case 8: bfd_put_64 (abfd, value, buf); break;
179 default: BFD_FAIL ();
180 }
181 }
182
183 /* Return zero if C1 and C2 CIEs can be merged. */
184
185 static
186 int cie_compare (struct cie *c1, struct cie *c2)
187 {
188 if (c1->hdr.length == c2->hdr.length
189 && c1->version == c2->version
190 && strcmp (c1->augmentation, c2->augmentation) == 0
191 && strcmp (c1->augmentation, "eh") != 0
192 && c1->code_align == c2->code_align
193 && c1->data_align == c2->data_align
194 && c1->ra_column == c2->ra_column
195 && c1->augmentation_size == c2->augmentation_size
196 && c1->personality == c2->personality
197 && c1->per_encoding == c2->per_encoding
198 && c1->lsda_encoding == c2->lsda_encoding
199 && c1->fde_encoding == c2->fde_encoding
200 && c1->initial_insn_length == c2->initial_insn_length
201 && memcmp (c1->initial_instructions,
202 c2->initial_instructions,
203 c1->initial_insn_length) == 0)
204 return 0;
205
206 return 1;
207 }
208
209 /* Return the number of extra bytes that we'll be inserting into
210 ENTRY's augmentation string. */
211
212 static INLINE unsigned int
213 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
214 {
215 unsigned int size = 0;
216 if (entry->cie)
217 {
218 if (entry->add_augmentation_size)
219 size++;
220 if (entry->add_fde_encoding)
221 size++;
222 }
223 return size;
224 }
225
226 /* Likewise ENTRY's augmentation data. */
227
228 static INLINE unsigned int
229 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
230 {
231 unsigned int size = 0;
232 if (entry->cie)
233 {
234 if (entry->add_augmentation_size)
235 size++;
236 if (entry->add_fde_encoding)
237 size++;
238 }
239 else
240 {
241 if (entry->cie_inf->add_augmentation_size)
242 size++;
243 }
244 return size;
245 }
246
247 /* Return the size that ENTRY will have in the output. ALIGNMENT is the
248 required alignment of ENTRY in bytes. */
249
250 static unsigned int
251 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
252 {
253 if (entry->removed)
254 return 0;
255 if (entry->size == 4)
256 return 4;
257 return (entry->size
258 + extra_augmentation_string_bytes (entry)
259 + extra_augmentation_data_bytes (entry)
260 + alignment - 1) & -alignment;
261 }
262
263 /* Assume that the bytes between *ITER and END are CFA instructions.
264 Try to move *ITER past the first instruction and return true on
265 success. ENCODED_PTR_WIDTH gives the width of pointer entries. */
266
267 static bfd_boolean
268 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
269 {
270 bfd_byte op;
271 bfd_vma length;
272
273 if (!read_byte (iter, end, &op))
274 return FALSE;
275
276 switch (op & 0x80 ? op & 0xc0 : op)
277 {
278 case DW_CFA_nop:
279 case DW_CFA_advance_loc:
280 case DW_CFA_restore:
281 /* No arguments. */
282 return TRUE;
283
284 case DW_CFA_offset:
285 case DW_CFA_restore_extended:
286 case DW_CFA_undefined:
287 case DW_CFA_same_value:
288 case DW_CFA_def_cfa_register:
289 case DW_CFA_def_cfa_offset:
290 case DW_CFA_def_cfa_offset_sf:
291 case DW_CFA_GNU_args_size:
292 /* One leb128 argument. */
293 return skip_leb128 (iter, end);
294
295 case DW_CFA_offset_extended:
296 case DW_CFA_register:
297 case DW_CFA_def_cfa:
298 case DW_CFA_offset_extended_sf:
299 case DW_CFA_GNU_negative_offset_extended:
300 case DW_CFA_def_cfa_sf:
301 /* Two leb128 arguments. */
302 return (skip_leb128 (iter, end)
303 && skip_leb128 (iter, end));
304
305 case DW_CFA_def_cfa_expression:
306 /* A variable-length argument. */
307 return (read_uleb128 (iter, end, &length)
308 && skip_bytes (iter, end, length));
309
310 case DW_CFA_expression:
311 /* A leb128 followed by a variable-length argument. */
312 return (skip_leb128 (iter, end)
313 && read_uleb128 (iter, end, &length)
314 && skip_bytes (iter, end, length));
315
316 case DW_CFA_set_loc:
317 return skip_bytes (iter, end, encoded_ptr_width);
318
319 case DW_CFA_advance_loc1:
320 return skip_bytes (iter, end, 1);
321
322 case DW_CFA_advance_loc2:
323 return skip_bytes (iter, end, 2);
324
325 case DW_CFA_advance_loc4:
326 return skip_bytes (iter, end, 4);
327
328 case DW_CFA_MIPS_advance_loc8:
329 return skip_bytes (iter, end, 8);
330
331 default:
332 return FALSE;
333 }
334 }
335
336 /* Try to interpret the bytes between BUF and END as CFA instructions.
337 If every byte makes sense, return a pointer to the first DW_CFA_nop
338 padding byte, or END if there is no padding. Return null otherwise.
339 ENCODED_PTR_WIDTH is as for skip_cfa_op. */
340
341 static bfd_byte *
342 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width)
343 {
344 bfd_byte *last;
345
346 last = buf;
347 while (buf < end)
348 if (*buf == DW_CFA_nop)
349 buf++;
350 else
351 {
352 if (!skip_cfa_op (&buf, end, encoded_ptr_width))
353 return 0;
354 last = buf;
355 }
356 return last;
357 }
358
359 /* This function is called for each input file before the .eh_frame
360 section is relocated. It discards duplicate CIEs and FDEs for discarded
361 functions. The function returns TRUE iff any entries have been
362 deleted. */
363
364 bfd_boolean
365 _bfd_elf_discard_section_eh_frame
366 (bfd *abfd, struct bfd_link_info *info, asection *sec,
367 bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
368 struct elf_reloc_cookie *cookie)
369 {
370 #define REQUIRE(COND) \
371 do \
372 if (!(COND)) \
373 goto free_no_table; \
374 while (0)
375
376 bfd_byte *ehbuf = NULL, *buf;
377 bfd_byte *last_cie, *last_fde;
378 struct eh_cie_fde *ent, *last_cie_inf, *this_inf;
379 struct cie_header hdr;
380 struct cie cie;
381 struct elf_link_hash_table *htab;
382 struct eh_frame_hdr_info *hdr_info;
383 struct eh_frame_sec_info *sec_info = NULL;
384 unsigned int cie_usage_count, offset;
385 unsigned int ptr_size;
386
387 if (sec->size == 0)
388 {
389 /* This file does not contain .eh_frame information. */
390 return FALSE;
391 }
392
393 if (bfd_is_abs_section (sec->output_section))
394 {
395 /* At least one of the sections is being discarded from the
396 link, so we should just ignore them. */
397 return FALSE;
398 }
399
400 htab = elf_hash_table (info);
401 hdr_info = &htab->eh_info;
402
403 /* Read the frame unwind information from abfd. */
404
405 REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
406
407 if (sec->size >= 4
408 && bfd_get_32 (abfd, ehbuf) == 0
409 && cookie->rel == cookie->relend)
410 {
411 /* Empty .eh_frame section. */
412 free (ehbuf);
413 return FALSE;
414 }
415
416 /* If .eh_frame section size doesn't fit into int, we cannot handle
417 it (it would need to use 64-bit .eh_frame format anyway). */
418 REQUIRE (sec->size == (unsigned int) sec->size);
419
420 ptr_size = (get_elf_backend_data (abfd)
421 ->elf_backend_eh_frame_address_size (abfd, sec));
422 REQUIRE (ptr_size != 0);
423
424 buf = ehbuf;
425 last_cie = NULL;
426 last_cie_inf = NULL;
427 memset (&cie, 0, sizeof (cie));
428 cie_usage_count = 0;
429 sec_info = bfd_zmalloc (sizeof (struct eh_frame_sec_info)
430 + 99 * sizeof (struct eh_cie_fde));
431 REQUIRE (sec_info);
432
433 sec_info->alloced = 100;
434
435 #define ENSURE_NO_RELOCS(buf) \
436 REQUIRE (!(cookie->rel < cookie->relend \
437 && (cookie->rel->r_offset \
438 < (bfd_size_type) ((buf) - ehbuf)) \
439 && cookie->rel->r_info != 0))
440
441 #define SKIP_RELOCS(buf) \
442 while (cookie->rel < cookie->relend \
443 && (cookie->rel->r_offset \
444 < (bfd_size_type) ((buf) - ehbuf))) \
445 cookie->rel++
446
447 #define GET_RELOC(buf) \
448 ((cookie->rel < cookie->relend \
449 && (cookie->rel->r_offset \
450 == (bfd_size_type) ((buf) - ehbuf))) \
451 ? cookie->rel : NULL)
452
453 for (;;)
454 {
455 char *aug;
456 bfd_byte *start, *end, *insns;
457 bfd_size_type length;
458
459 if (sec_info->count == sec_info->alloced)
460 {
461 struct eh_cie_fde *old_entry = sec_info->entry;
462 sec_info = bfd_realloc (sec_info,
463 sizeof (struct eh_frame_sec_info)
464 + ((sec_info->alloced + 99)
465 * sizeof (struct eh_cie_fde)));
466 REQUIRE (sec_info);
467
468 memset (&sec_info->entry[sec_info->alloced], 0,
469 100 * sizeof (struct eh_cie_fde));
470 sec_info->alloced += 100;
471
472 /* Now fix any pointers into the array. */
473 if (last_cie_inf >= old_entry
474 && last_cie_inf < old_entry + sec_info->count)
475 last_cie_inf = sec_info->entry + (last_cie_inf - old_entry);
476 }
477
478 this_inf = sec_info->entry + sec_info->count;
479 last_fde = buf;
480 /* If we are at the end of the section, we still need to decide
481 on whether to output or discard last encountered CIE (if any). */
482 if ((bfd_size_type) (buf - ehbuf) == sec->size)
483 {
484 hdr.length = 0;
485 hdr.id = (unsigned int) -1;
486 end = buf;
487 }
488 else
489 {
490 /* Read the length of the entry. */
491 REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
492 hdr.length = bfd_get_32 (abfd, buf - 4);
493
494 /* 64-bit .eh_frame is not supported. */
495 REQUIRE (hdr.length != 0xffffffff);
496
497 /* The CIE/FDE must be fully contained in this input section. */
498 REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr.length <= sec->size);
499 end = buf + hdr.length;
500
501 this_inf->offset = last_fde - ehbuf;
502 this_inf->size = 4 + hdr.length;
503
504 if (hdr.length == 0)
505 {
506 /* A zero-length CIE should only be found at the end of
507 the section. */
508 REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
509 ENSURE_NO_RELOCS (buf);
510 sec_info->count++;
511 /* Now just finish last encountered CIE processing and break
512 the loop. */
513 hdr.id = (unsigned int) -1;
514 }
515 else
516 {
517 REQUIRE (skip_bytes (&buf, end, 4));
518 hdr.id = bfd_get_32 (abfd, buf - 4);
519 REQUIRE (hdr.id != (unsigned int) -1);
520 }
521 }
522
523 if (hdr.id == 0 || hdr.id == (unsigned int) -1)
524 {
525 unsigned int initial_insn_length;
526
527 /* CIE */
528 if (last_cie != NULL)
529 {
530 /* Now check if this CIE is identical to the last CIE,
531 in which case we can remove it provided we adjust
532 all FDEs. Also, it can be removed if we have removed
533 all FDEs using it. */
534 if ((!info->relocatable
535 && hdr_info->last_cie_sec
536 && (sec->output_section
537 == hdr_info->last_cie_sec->output_section)
538 && cie_compare (&cie, &hdr_info->last_cie) == 0)
539 || cie_usage_count == 0)
540 last_cie_inf->removed = 1;
541 else
542 {
543 hdr_info->last_cie = cie;
544 hdr_info->last_cie_sec = sec;
545 last_cie_inf->make_relative = cie.make_relative;
546 last_cie_inf->make_lsda_relative = cie.make_lsda_relative;
547 last_cie_inf->per_encoding_relative
548 = (cie.per_encoding & 0x70) == DW_EH_PE_pcrel;
549 }
550 }
551
552 if (hdr.id == (unsigned int) -1)
553 break;
554
555 last_cie_inf = this_inf;
556 this_inf->cie = 1;
557
558 cie_usage_count = 0;
559 memset (&cie, 0, sizeof (cie));
560 cie.hdr = hdr;
561 REQUIRE (read_byte (&buf, end, &cie.version));
562
563 /* Cannot handle unknown versions. */
564 REQUIRE (cie.version == 1 || cie.version == 3);
565 REQUIRE (strlen ((char *) buf) < sizeof (cie.augmentation));
566
567 strcpy (cie.augmentation, (char *) buf);
568 buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
569 ENSURE_NO_RELOCS (buf);
570 if (buf[0] == 'e' && buf[1] == 'h')
571 {
572 /* GCC < 3.0 .eh_frame CIE */
573 /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
574 is private to each CIE, so we don't need it for anything.
575 Just skip it. */
576 REQUIRE (skip_bytes (&buf, end, ptr_size));
577 SKIP_RELOCS (buf);
578 }
579 REQUIRE (read_uleb128 (&buf, end, &cie.code_align));
580 REQUIRE (read_sleb128 (&buf, end, &cie.data_align));
581 if (cie.version == 1)
582 {
583 REQUIRE (buf < end);
584 cie.ra_column = *buf++;
585 }
586 else
587 REQUIRE (read_uleb128 (&buf, end, &cie.ra_column));
588 ENSURE_NO_RELOCS (buf);
589 cie.lsda_encoding = DW_EH_PE_omit;
590 cie.fde_encoding = DW_EH_PE_omit;
591 cie.per_encoding = DW_EH_PE_omit;
592 aug = cie.augmentation;
593 if (aug[0] != 'e' || aug[1] != 'h')
594 {
595 if (*aug == 'z')
596 {
597 aug++;
598 REQUIRE (read_uleb128 (&buf, end, &cie.augmentation_size));
599 ENSURE_NO_RELOCS (buf);
600 }
601
602 while (*aug != '\0')
603 switch (*aug++)
604 {
605 case 'L':
606 REQUIRE (read_byte (&buf, end, &cie.lsda_encoding));
607 ENSURE_NO_RELOCS (buf);
608 REQUIRE (get_DW_EH_PE_width (cie.lsda_encoding, ptr_size));
609 break;
610 case 'R':
611 REQUIRE (read_byte (&buf, end, &cie.fde_encoding));
612 ENSURE_NO_RELOCS (buf);
613 REQUIRE (get_DW_EH_PE_width (cie.fde_encoding, ptr_size));
614 break;
615 case 'S':
616 break;
617 case 'P':
618 {
619 int per_width;
620
621 REQUIRE (read_byte (&buf, end, &cie.per_encoding));
622 per_width = get_DW_EH_PE_width (cie.per_encoding,
623 ptr_size);
624 REQUIRE (per_width);
625 if ((cie.per_encoding & 0xf0) == DW_EH_PE_aligned)
626 {
627 length = -(buf - ehbuf) & (per_width - 1);
628 REQUIRE (skip_bytes (&buf, end, length));
629 }
630 ENSURE_NO_RELOCS (buf);
631 /* Ensure we have a reloc here, against
632 a global symbol. */
633 if (GET_RELOC (buf) != NULL)
634 {
635 unsigned long r_symndx;
636
637 #ifdef BFD64
638 if (ptr_size == 8)
639 r_symndx = ELF64_R_SYM (cookie->rel->r_info);
640 else
641 #endif
642 r_symndx = ELF32_R_SYM (cookie->rel->r_info);
643 if (r_symndx >= cookie->locsymcount)
644 {
645 struct elf_link_hash_entry *h;
646
647 r_symndx -= cookie->extsymoff;
648 h = cookie->sym_hashes[r_symndx];
649
650 while (h->root.type == bfd_link_hash_indirect
651 || h->root.type == bfd_link_hash_warning)
652 h = (struct elf_link_hash_entry *)
653 h->root.u.i.link;
654
655 cie.personality = h;
656 }
657 /* Cope with MIPS-style composite relocations. */
658 do
659 cookie->rel++;
660 while (GET_RELOC (buf) != NULL);
661 }
662 REQUIRE (skip_bytes (&buf, end, per_width));
663 }
664 break;
665 default:
666 /* Unrecognized augmentation. Better bail out. */
667 goto free_no_table;
668 }
669 }
670
671 /* For shared libraries, try to get rid of as many RELATIVE relocs
672 as possible. */
673 if (info->shared
674 && (get_elf_backend_data (abfd)
675 ->elf_backend_can_make_relative_eh_frame
676 (abfd, info, sec)))
677 {
678 if ((cie.fde_encoding & 0xf0) == DW_EH_PE_absptr)
679 cie.make_relative = 1;
680 /* If the CIE doesn't already have an 'R' entry, it's fairly
681 easy to add one, provided that there's no aligned data
682 after the augmentation string. */
683 else if (cie.fde_encoding == DW_EH_PE_omit
684 && (cie.per_encoding & 0xf0) != DW_EH_PE_aligned)
685 {
686 if (*cie.augmentation == 0)
687 this_inf->add_augmentation_size = 1;
688 this_inf->add_fde_encoding = 1;
689 cie.make_relative = 1;
690 }
691 }
692
693 if (info->shared
694 && (get_elf_backend_data (abfd)
695 ->elf_backend_can_make_lsda_relative_eh_frame
696 (abfd, info, sec))
697 && (cie.lsda_encoding & 0xf0) == DW_EH_PE_absptr)
698 cie.make_lsda_relative = 1;
699
700 /* If FDE encoding was not specified, it defaults to
701 DW_EH_absptr. */
702 if (cie.fde_encoding == DW_EH_PE_omit)
703 cie.fde_encoding = DW_EH_PE_absptr;
704
705 initial_insn_length = end - buf;
706 if (initial_insn_length <= 50)
707 {
708 cie.initial_insn_length = initial_insn_length;
709 memcpy (cie.initial_instructions, buf, initial_insn_length);
710 }
711 insns = buf;
712 buf += initial_insn_length;
713 ENSURE_NO_RELOCS (buf);
714 last_cie = last_fde;
715 }
716 else
717 {
718 /* Ensure this FDE uses the last CIE encountered. */
719 REQUIRE (last_cie);
720 REQUIRE (hdr.id == (unsigned int) (buf - 4 - last_cie));
721
722 ENSURE_NO_RELOCS (buf);
723 REQUIRE (GET_RELOC (buf));
724
725 if ((*reloc_symbol_deleted_p) (buf - ehbuf, cookie))
726 /* This is a FDE against a discarded section. It should
727 be deleted. */
728 this_inf->removed = 1;
729 else
730 {
731 if (info->shared
732 && (((cie.fde_encoding & 0xf0) == DW_EH_PE_absptr
733 && cie.make_relative == 0)
734 || (cie.fde_encoding & 0xf0) == DW_EH_PE_aligned))
735 {
736 /* If a shared library uses absolute pointers
737 which we cannot turn into PC relative,
738 don't create the binary search table,
739 since it is affected by runtime relocations. */
740 hdr_info->table = FALSE;
741 }
742 cie_usage_count++;
743 hdr_info->fde_count++;
744 }
745 /* Skip the initial location and address range. */
746 start = buf;
747 length = get_DW_EH_PE_width (cie.fde_encoding, ptr_size);
748 REQUIRE (skip_bytes (&buf, end, 2 * length));
749
750 /* Skip the augmentation size, if present. */
751 if (cie.augmentation[0] == 'z')
752 REQUIRE (read_uleb128 (&buf, end, &length));
753 else
754 length = 0;
755
756 /* Of the supported augmentation characters above, only 'L'
757 adds augmentation data to the FDE. This code would need to
758 be adjusted if any future augmentations do the same thing. */
759 if (cie.lsda_encoding != DW_EH_PE_omit)
760 {
761 this_inf->lsda_offset = buf - start;
762 /* If there's no 'z' augmentation, we don't know where the
763 CFA insns begin. Assume no padding. */
764 if (cie.augmentation[0] != 'z')
765 length = end - buf;
766 }
767
768 /* Skip over the augmentation data. */
769 REQUIRE (skip_bytes (&buf, end, length));
770 insns = buf;
771
772 buf = last_fde + 4 + hdr.length;
773 SKIP_RELOCS (buf);
774 }
775
776 /* Try to interpret the CFA instructions and find the first
777 padding nop. Shrink this_inf's size so that it doesn't
778 including the padding. */
779 length = get_DW_EH_PE_width (cie.fde_encoding, ptr_size);
780 insns = skip_non_nops (insns, end, length);
781 if (insns != 0)
782 this_inf->size -= end - insns;
783
784 this_inf->fde_encoding = cie.fde_encoding;
785 this_inf->lsda_encoding = cie.lsda_encoding;
786 sec_info->count++;
787 }
788
789 elf_section_data (sec)->sec_info = sec_info;
790 sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
791
792 /* Ok, now we can assign new offsets. */
793 offset = 0;
794 last_cie_inf = hdr_info->last_cie_inf;
795 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
796 if (!ent->removed)
797 {
798 if (ent->cie)
799 last_cie_inf = ent;
800 else
801 ent->cie_inf = last_cie_inf;
802 ent->new_offset = offset;
803 offset += size_of_output_cie_fde (ent, ptr_size);
804 }
805 hdr_info->last_cie_inf = last_cie_inf;
806
807 /* Resize the sec as needed. */
808 sec->rawsize = sec->size;
809 sec->size = offset;
810 if (sec->size == 0)
811 sec->flags |= SEC_EXCLUDE;
812
813 free (ehbuf);
814 return offset != sec->rawsize;
815
816 free_no_table:
817 if (ehbuf)
818 free (ehbuf);
819 if (sec_info)
820 free (sec_info);
821 hdr_info->table = FALSE;
822 hdr_info->last_cie.hdr.length = 0;
823 return FALSE;
824
825 #undef REQUIRE
826 }
827
828 /* This function is called for .eh_frame_hdr section after
829 _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
830 input sections. It finalizes the size of .eh_frame_hdr section. */
831
832 bfd_boolean
833 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
834 {
835 struct elf_link_hash_table *htab;
836 struct eh_frame_hdr_info *hdr_info;
837 asection *sec;
838
839 htab = elf_hash_table (info);
840 hdr_info = &htab->eh_info;
841 sec = hdr_info->hdr_sec;
842 if (sec == NULL)
843 return FALSE;
844
845 sec->size = EH_FRAME_HDR_SIZE;
846 if (hdr_info->table)
847 sec->size += 4 + hdr_info->fde_count * 8;
848
849 elf_tdata (abfd)->eh_frame_hdr = sec;
850 return TRUE;
851 }
852
853 /* This function is called from size_dynamic_sections.
854 It needs to decide whether .eh_frame_hdr should be output or not,
855 because when the dynamic symbol table has been sized it is too late
856 to strip sections. */
857
858 bfd_boolean
859 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
860 {
861 asection *o;
862 bfd *abfd;
863 struct elf_link_hash_table *htab;
864 struct eh_frame_hdr_info *hdr_info;
865
866 htab = elf_hash_table (info);
867 hdr_info = &htab->eh_info;
868 if (hdr_info->hdr_sec == NULL)
869 return TRUE;
870
871 if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
872 {
873 hdr_info->hdr_sec = NULL;
874 return TRUE;
875 }
876
877 abfd = NULL;
878 if (info->eh_frame_hdr)
879 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
880 {
881 /* Count only sections which have at least a single CIE or FDE.
882 There cannot be any CIE or FDE <= 8 bytes. */
883 o = bfd_get_section_by_name (abfd, ".eh_frame");
884 if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
885 break;
886 }
887
888 if (abfd == NULL)
889 {
890 hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
891 hdr_info->hdr_sec = NULL;
892 return TRUE;
893 }
894
895 hdr_info->table = TRUE;
896 return TRUE;
897 }
898
899 /* Adjust an address in the .eh_frame section. Given OFFSET within
900 SEC, this returns the new offset in the adjusted .eh_frame section,
901 or -1 if the address refers to a CIE/FDE which has been removed
902 or to offset with dynamic relocation which is no longer needed. */
903
904 bfd_vma
905 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
906 struct bfd_link_info *info,
907 asection *sec,
908 bfd_vma offset)
909 {
910 struct eh_frame_sec_info *sec_info;
911 struct elf_link_hash_table *htab;
912 struct eh_frame_hdr_info *hdr_info;
913 unsigned int lo, hi, mid;
914
915 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
916 return offset;
917 sec_info = elf_section_data (sec)->sec_info;
918
919 if (offset >= sec->rawsize)
920 return offset - sec->rawsize + sec->size;
921
922 htab = elf_hash_table (info);
923 hdr_info = &htab->eh_info;
924 if (hdr_info->offsets_adjusted)
925 offset += sec->output_offset;
926
927 lo = 0;
928 hi = sec_info->count;
929 mid = 0;
930 while (lo < hi)
931 {
932 mid = (lo + hi) / 2;
933 if (offset < sec_info->entry[mid].offset)
934 hi = mid;
935 else if (offset
936 >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
937 lo = mid + 1;
938 else
939 break;
940 }
941
942 BFD_ASSERT (lo < hi);
943
944 /* FDE or CIE was removed. */
945 if (sec_info->entry[mid].removed)
946 return (bfd_vma) -1;
947
948 /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
949 relocation against FDE's initial_location field. */
950 if (!sec_info->entry[mid].cie
951 && sec_info->entry[mid].cie_inf->make_relative
952 && offset == sec_info->entry[mid].offset + 8)
953 return (bfd_vma) -2;
954
955 /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
956 for run-time relocation against LSDA field. */
957 if (!sec_info->entry[mid].cie
958 && sec_info->entry[mid].cie_inf->make_lsda_relative
959 && (offset == (sec_info->entry[mid].offset + 8
960 + sec_info->entry[mid].lsda_offset))
961 && (sec_info->entry[mid].cie_inf->need_lsda_relative
962 || !hdr_info->offsets_adjusted))
963 {
964 sec_info->entry[mid].cie_inf->need_lsda_relative = 1;
965 return (bfd_vma) -2;
966 }
967
968 if (hdr_info->offsets_adjusted)
969 offset -= sec->output_offset;
970 /* Any new augmentation bytes go before the first relocation. */
971 return (offset + sec_info->entry[mid].new_offset
972 - sec_info->entry[mid].offset
973 + extra_augmentation_string_bytes (sec_info->entry + mid)
974 + extra_augmentation_data_bytes (sec_info->entry + mid));
975 }
976
977 /* Write out .eh_frame section. This is called with the relocated
978 contents. */
979
980 bfd_boolean
981 _bfd_elf_write_section_eh_frame (bfd *abfd,
982 struct bfd_link_info *info,
983 asection *sec,
984 bfd_byte *contents)
985 {
986 struct eh_frame_sec_info *sec_info;
987 struct elf_link_hash_table *htab;
988 struct eh_frame_hdr_info *hdr_info;
989 unsigned int ptr_size;
990 struct eh_cie_fde *ent;
991
992 if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
993 return bfd_set_section_contents (abfd, sec->output_section, contents,
994 sec->output_offset, sec->size);
995
996 ptr_size = (get_elf_backend_data (abfd)
997 ->elf_backend_eh_frame_address_size (abfd, sec));
998 BFD_ASSERT (ptr_size != 0);
999
1000 sec_info = elf_section_data (sec)->sec_info;
1001 htab = elf_hash_table (info);
1002 hdr_info = &htab->eh_info;
1003
1004 /* First convert all offsets to output section offsets, so that a
1005 CIE offset is valid if the CIE is used by a FDE from some other
1006 section. This can happen when duplicate CIEs are deleted in
1007 _bfd_elf_discard_section_eh_frame. We do all sections here because
1008 this function might not be called on sections in the same order as
1009 _bfd_elf_discard_section_eh_frame. */
1010 if (!hdr_info->offsets_adjusted)
1011 {
1012 bfd *ibfd;
1013 asection *eh;
1014 struct eh_frame_sec_info *eh_inf;
1015
1016 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1017 {
1018 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1019 || (ibfd->flags & DYNAMIC) != 0)
1020 continue;
1021
1022 eh = bfd_get_section_by_name (ibfd, ".eh_frame");
1023 if (eh == NULL || eh->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1024 continue;
1025
1026 eh_inf = elf_section_data (eh)->sec_info;
1027 for (ent = eh_inf->entry; ent < eh_inf->entry + eh_inf->count; ++ent)
1028 {
1029 ent->offset += eh->output_offset;
1030 ent->new_offset += eh->output_offset;
1031 }
1032 }
1033 hdr_info->offsets_adjusted = TRUE;
1034 }
1035
1036 if (hdr_info->table && hdr_info->array == NULL)
1037 hdr_info->array
1038 = bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
1039 if (hdr_info->array == NULL)
1040 hdr_info = NULL;
1041
1042 /* The new offsets can be bigger or smaller than the original offsets.
1043 We therefore need to make two passes over the section: one backward
1044 pass to move entries up and one forward pass to move entries down.
1045 The two passes won't interfere with each other because entries are
1046 not reordered */
1047 for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1048 if (!ent->removed && ent->new_offset > ent->offset)
1049 memmove (contents + ent->new_offset - sec->output_offset,
1050 contents + ent->offset - sec->output_offset, ent->size);
1051
1052 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1053 if (!ent->removed && ent->new_offset < ent->offset)
1054 memmove (contents + ent->new_offset - sec->output_offset,
1055 contents + ent->offset - sec->output_offset, ent->size);
1056
1057 for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1058 {
1059 unsigned char *buf, *end;
1060 unsigned int new_size;
1061
1062 if (ent->removed)
1063 continue;
1064
1065 if (ent->size == 4)
1066 {
1067 /* Any terminating FDE must be at the end of the section. */
1068 BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1069 continue;
1070 }
1071
1072 buf = contents + ent->new_offset - sec->output_offset;
1073 end = buf + ent->size;
1074 new_size = size_of_output_cie_fde (ent, ptr_size);
1075
1076 /* Update the size. It may be shrinked. */
1077 bfd_put_32 (abfd, new_size - 4, buf);
1078
1079 /* Filling the extra bytes with DW_CFA_nops. */
1080 if (new_size != ent->size)
1081 memset (end, 0, new_size - ent->size);
1082
1083 if (ent->cie)
1084 {
1085 /* CIE */
1086 if (ent->make_relative
1087 || ent->need_lsda_relative
1088 || ent->per_encoding_relative)
1089 {
1090 char *aug;
1091 unsigned int action, extra_string, extra_data;
1092 unsigned int per_width, per_encoding;
1093
1094 /* Need to find 'R' or 'L' augmentation's argument and modify
1095 DW_EH_PE_* value. */
1096 action = ((ent->make_relative ? 1 : 0)
1097 | (ent->need_lsda_relative ? 2 : 0)
1098 | (ent->per_encoding_relative ? 4 : 0));
1099 extra_string = extra_augmentation_string_bytes (ent);
1100 extra_data = extra_augmentation_data_bytes (ent);
1101
1102 /* Skip length, id and version. */
1103 buf += 9;
1104 aug = (char *) buf;
1105 buf += strlen (aug) + 1;
1106 skip_leb128 (&buf, end);
1107 skip_leb128 (&buf, end);
1108 skip_leb128 (&buf, end);
1109 if (*aug == 'z')
1110 {
1111 /* The uleb128 will always be a single byte for the kind
1112 of augmentation strings that we're prepared to handle. */
1113 *buf++ += extra_data;
1114 aug++;
1115 }
1116
1117 /* Make room for the new augmentation string and data bytes. */
1118 memmove (buf + extra_string + extra_data, buf, end - buf);
1119 memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
1120 buf += extra_string;
1121 end += extra_string + extra_data;
1122
1123 if (ent->add_augmentation_size)
1124 {
1125 *aug++ = 'z';
1126 *buf++ = extra_data - 1;
1127 }
1128 if (ent->add_fde_encoding)
1129 {
1130 BFD_ASSERT (action & 1);
1131 *aug++ = 'R';
1132 *buf++ = DW_EH_PE_pcrel;
1133 action &= ~1;
1134 }
1135
1136 while (action)
1137 switch (*aug++)
1138 {
1139 case 'L':
1140 if (action & 2)
1141 {
1142 BFD_ASSERT (*buf == ent->lsda_encoding);
1143 *buf |= DW_EH_PE_pcrel;
1144 action &= ~2;
1145 }
1146 buf++;
1147 break;
1148 case 'P':
1149 per_encoding = *buf++;
1150 per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1151 BFD_ASSERT (per_width != 0);
1152 BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1153 == ent->per_encoding_relative);
1154 if ((per_encoding & 0xf0) == DW_EH_PE_aligned)
1155 buf = (contents
1156 + ((buf - contents + per_width - 1)
1157 & ~((bfd_size_type) per_width - 1)));
1158 if (action & 4)
1159 {
1160 bfd_vma val;
1161
1162 val = read_value (abfd, buf, per_width,
1163 get_DW_EH_PE_signed (per_encoding));
1164 val += ent->offset - ent->new_offset;
1165 val -= extra_string + extra_data;
1166 write_value (abfd, buf, val, per_width);
1167 action &= ~4;
1168 }
1169 buf += per_width;
1170 break;
1171 case 'R':
1172 if (action & 1)
1173 {
1174 BFD_ASSERT (*buf == ent->fde_encoding);
1175 *buf |= DW_EH_PE_pcrel;
1176 action &= ~1;
1177 }
1178 buf++;
1179 break;
1180 case 'S':
1181 break;
1182 default:
1183 BFD_FAIL ();
1184 }
1185 }
1186 }
1187 else
1188 {
1189 /* FDE */
1190 bfd_vma value, address;
1191 unsigned int width;
1192
1193 /* Skip length. */
1194 buf += 4;
1195 value = ent->new_offset + 4 - ent->cie_inf->new_offset;
1196 bfd_put_32 (abfd, value, buf);
1197 buf += 4;
1198 width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1199 value = read_value (abfd, buf, width,
1200 get_DW_EH_PE_signed (ent->fde_encoding));
1201 address = value;
1202 if (value)
1203 {
1204 switch (ent->fde_encoding & 0xf0)
1205 {
1206 case DW_EH_PE_indirect:
1207 case DW_EH_PE_textrel:
1208 BFD_ASSERT (hdr_info == NULL);
1209 break;
1210 case DW_EH_PE_datarel:
1211 {
1212 asection *got = bfd_get_section_by_name (abfd, ".got");
1213
1214 BFD_ASSERT (got != NULL);
1215 address += got->vma;
1216 }
1217 break;
1218 case DW_EH_PE_pcrel:
1219 value += ent->offset - ent->new_offset;
1220 address += sec->output_section->vma + ent->offset + 8;
1221 break;
1222 }
1223 if (ent->cie_inf->make_relative)
1224 value -= sec->output_section->vma + ent->new_offset + 8;
1225 write_value (abfd, buf, value, width);
1226 }
1227
1228 if (hdr_info)
1229 {
1230 hdr_info->array[hdr_info->array_count].initial_loc = address;
1231 hdr_info->array[hdr_info->array_count++].fde
1232 = sec->output_section->vma + ent->new_offset;
1233 }
1234
1235 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel
1236 || ent->cie_inf->need_lsda_relative)
1237 {
1238 buf += ent->lsda_offset;
1239 width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1240 value = read_value (abfd, buf, width,
1241 get_DW_EH_PE_signed (ent->lsda_encoding));
1242 if (value)
1243 {
1244 if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel)
1245 value += ent->offset - ent->new_offset;
1246 else if (ent->cie_inf->need_lsda_relative)
1247 value -= (sec->output_section->vma + ent->new_offset + 8
1248 + ent->lsda_offset);
1249 write_value (abfd, buf, value, width);
1250 }
1251 }
1252 else if (ent->cie_inf->add_augmentation_size)
1253 {
1254 /* Skip the PC and length and insert a zero byte for the
1255 augmentation size. */
1256 buf += width * 2;
1257 memmove (buf + 1, buf, end - buf);
1258 *buf = 0;
1259 }
1260 }
1261 }
1262
1263 /* We don't align the section to its section alignment since the
1264 runtime library only expects all CIE/FDE records aligned at
1265 the pointer size. _bfd_elf_discard_section_eh_frame should
1266 have padded CIE/FDE records to multiple of pointer size with
1267 size_of_output_cie_fde. */
1268 if ((sec->size % ptr_size) != 0)
1269 abort ();
1270
1271 return bfd_set_section_contents (abfd, sec->output_section,
1272 contents, (file_ptr) sec->output_offset,
1273 sec->size);
1274 }
1275
1276 /* Helper function used to sort .eh_frame_hdr search table by increasing
1277 VMA of FDE initial location. */
1278
1279 static int
1280 vma_compare (const void *a, const void *b)
1281 {
1282 const struct eh_frame_array_ent *p = a;
1283 const struct eh_frame_array_ent *q = b;
1284 if (p->initial_loc > q->initial_loc)
1285 return 1;
1286 if (p->initial_loc < q->initial_loc)
1287 return -1;
1288 return 0;
1289 }
1290
1291 /* Write out .eh_frame_hdr section. This must be called after
1292 _bfd_elf_write_section_eh_frame has been called on all input
1293 .eh_frame sections.
1294 .eh_frame_hdr format:
1295 ubyte version (currently 1)
1296 ubyte eh_frame_ptr_enc (DW_EH_PE_* encoding of pointer to start of
1297 .eh_frame section)
1298 ubyte fde_count_enc (DW_EH_PE_* encoding of total FDE count
1299 number (or DW_EH_PE_omit if there is no
1300 binary search table computed))
1301 ubyte table_enc (DW_EH_PE_* encoding of binary search table,
1302 or DW_EH_PE_omit if not present.
1303 DW_EH_PE_datarel is using address of
1304 .eh_frame_hdr section start as base)
1305 [encoded] eh_frame_ptr (pointer to start of .eh_frame section)
1306 optionally followed by:
1307 [encoded] fde_count (total number of FDEs in .eh_frame section)
1308 fde_count x [encoded] initial_loc, fde
1309 (array of encoded pairs containing
1310 FDE initial_location field and FDE address,
1311 sorted by increasing initial_loc). */
1312
1313 bfd_boolean
1314 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1315 {
1316 struct elf_link_hash_table *htab;
1317 struct eh_frame_hdr_info *hdr_info;
1318 asection *sec;
1319 bfd_byte *contents;
1320 asection *eh_frame_sec;
1321 bfd_size_type size;
1322 bfd_boolean retval;
1323 bfd_vma encoded_eh_frame;
1324
1325 htab = elf_hash_table (info);
1326 hdr_info = &htab->eh_info;
1327 sec = hdr_info->hdr_sec;
1328 if (sec == NULL)
1329 return TRUE;
1330
1331 size = EH_FRAME_HDR_SIZE;
1332 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1333 size += 4 + hdr_info->fde_count * 8;
1334 contents = bfd_malloc (size);
1335 if (contents == NULL)
1336 return FALSE;
1337
1338 eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
1339 if (eh_frame_sec == NULL)
1340 {
1341 free (contents);
1342 return FALSE;
1343 }
1344
1345 memset (contents, 0, EH_FRAME_HDR_SIZE);
1346 contents[0] = 1; /* Version. */
1347 contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
1348 (abfd, info, eh_frame_sec, 0, sec, 4,
1349 &encoded_eh_frame); /* .eh_frame offset. */
1350
1351 if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1352 {
1353 contents[2] = DW_EH_PE_udata4; /* FDE count encoding. */
1354 contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc. */
1355 }
1356 else
1357 {
1358 contents[2] = DW_EH_PE_omit;
1359 contents[3] = DW_EH_PE_omit;
1360 }
1361 bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
1362
1363 if (contents[2] != DW_EH_PE_omit)
1364 {
1365 unsigned int i;
1366
1367 bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
1368 qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
1369 vma_compare);
1370 for (i = 0; i < hdr_info->fde_count; i++)
1371 {
1372 bfd_put_32 (abfd,
1373 hdr_info->array[i].initial_loc
1374 - sec->output_section->vma,
1375 contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
1376 bfd_put_32 (abfd,
1377 hdr_info->array[i].fde - sec->output_section->vma,
1378 contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
1379 }
1380 }
1381
1382 retval = bfd_set_section_contents (abfd, sec->output_section,
1383 contents, (file_ptr) sec->output_offset,
1384 sec->size);
1385 free (contents);
1386 return retval;
1387 }
1388
1389 /* Return the width of FDE addresses. This is the default implementation. */
1390
1391 unsigned int
1392 _bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
1393 {
1394 return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
1395 }
1396
1397 /* Decide whether we can use a PC-relative encoding within the given
1398 EH frame section. This is the default implementation. */
1399
1400 bfd_boolean
1401 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
1402 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1403 asection *eh_frame_section ATTRIBUTE_UNUSED)
1404 {
1405 return TRUE;
1406 }
1407
1408 /* Select an encoding for the given address. Preference is given to
1409 PC-relative addressing modes. */
1410
1411 bfd_byte
1412 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
1413 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1414 asection *osec, bfd_vma offset,
1415 asection *loc_sec, bfd_vma loc_offset,
1416 bfd_vma *encoded)
1417 {
1418 *encoded = osec->vma + offset -
1419 (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
1420 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
1421 }
This page took 0.058046 seconds and 4 git commands to generate.