* i386.cc (Target_i386::Relocate::relocate): Recognize non-PIC calls
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /*
25 SECTION
26 ELF backends
27
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
31
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
35
36 /* For sparc64-cross-sparc32. */
37 #define _SYSCALL32
38 #include "sysdep.h"
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46
47 static int elf_sort_sections (const void *, const void *);
48 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
49 static bfd_boolean prep_headers (bfd *);
50 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
51 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
52 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
53 file_ptr offset);
54
55 /* Swap version information in and out. The version information is
56 currently size independent. If that ever changes, this code will
57 need to move into elfcode.h. */
58
59 /* Swap in a Verdef structure. */
60
61 void
62 _bfd_elf_swap_verdef_in (bfd *abfd,
63 const Elf_External_Verdef *src,
64 Elf_Internal_Verdef *dst)
65 {
66 dst->vd_version = H_GET_16 (abfd, src->vd_version);
67 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
68 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
69 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
70 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
71 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
72 dst->vd_next = H_GET_32 (abfd, src->vd_next);
73 }
74
75 /* Swap out a Verdef structure. */
76
77 void
78 _bfd_elf_swap_verdef_out (bfd *abfd,
79 const Elf_Internal_Verdef *src,
80 Elf_External_Verdef *dst)
81 {
82 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
83 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
84 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
85 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
86 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
87 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
88 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
89 }
90
91 /* Swap in a Verdaux structure. */
92
93 void
94 _bfd_elf_swap_verdaux_in (bfd *abfd,
95 const Elf_External_Verdaux *src,
96 Elf_Internal_Verdaux *dst)
97 {
98 dst->vda_name = H_GET_32 (abfd, src->vda_name);
99 dst->vda_next = H_GET_32 (abfd, src->vda_next);
100 }
101
102 /* Swap out a Verdaux structure. */
103
104 void
105 _bfd_elf_swap_verdaux_out (bfd *abfd,
106 const Elf_Internal_Verdaux *src,
107 Elf_External_Verdaux *dst)
108 {
109 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
110 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
111 }
112
113 /* Swap in a Verneed structure. */
114
115 void
116 _bfd_elf_swap_verneed_in (bfd *abfd,
117 const Elf_External_Verneed *src,
118 Elf_Internal_Verneed *dst)
119 {
120 dst->vn_version = H_GET_16 (abfd, src->vn_version);
121 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
122 dst->vn_file = H_GET_32 (abfd, src->vn_file);
123 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
124 dst->vn_next = H_GET_32 (abfd, src->vn_next);
125 }
126
127 /* Swap out a Verneed structure. */
128
129 void
130 _bfd_elf_swap_verneed_out (bfd *abfd,
131 const Elf_Internal_Verneed *src,
132 Elf_External_Verneed *dst)
133 {
134 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
135 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
136 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
137 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
138 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
139 }
140
141 /* Swap in a Vernaux structure. */
142
143 void
144 _bfd_elf_swap_vernaux_in (bfd *abfd,
145 const Elf_External_Vernaux *src,
146 Elf_Internal_Vernaux *dst)
147 {
148 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
149 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
150 dst->vna_other = H_GET_16 (abfd, src->vna_other);
151 dst->vna_name = H_GET_32 (abfd, src->vna_name);
152 dst->vna_next = H_GET_32 (abfd, src->vna_next);
153 }
154
155 /* Swap out a Vernaux structure. */
156
157 void
158 _bfd_elf_swap_vernaux_out (bfd *abfd,
159 const Elf_Internal_Vernaux *src,
160 Elf_External_Vernaux *dst)
161 {
162 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
163 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
164 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
165 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
166 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
167 }
168
169 /* Swap in a Versym structure. */
170
171 void
172 _bfd_elf_swap_versym_in (bfd *abfd,
173 const Elf_External_Versym *src,
174 Elf_Internal_Versym *dst)
175 {
176 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
177 }
178
179 /* Swap out a Versym structure. */
180
181 void
182 _bfd_elf_swap_versym_out (bfd *abfd,
183 const Elf_Internal_Versym *src,
184 Elf_External_Versym *dst)
185 {
186 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
187 }
188
189 /* Standard ELF hash function. Do not change this function; you will
190 cause invalid hash tables to be generated. */
191
192 unsigned long
193 bfd_elf_hash (const char *namearg)
194 {
195 const unsigned char *name = (const unsigned char *) namearg;
196 unsigned long h = 0;
197 unsigned long g;
198 int ch;
199
200 while ((ch = *name++) != '\0')
201 {
202 h = (h << 4) + ch;
203 if ((g = (h & 0xf0000000)) != 0)
204 {
205 h ^= g >> 24;
206 /* The ELF ABI says `h &= ~g', but this is equivalent in
207 this case and on some machines one insn instead of two. */
208 h ^= g;
209 }
210 }
211 return h & 0xffffffff;
212 }
213
214 /* DT_GNU_HASH hash function. Do not change this function; you will
215 cause invalid hash tables to be generated. */
216
217 unsigned long
218 bfd_elf_gnu_hash (const char *namearg)
219 {
220 const unsigned char *name = (const unsigned char *) namearg;
221 unsigned long h = 5381;
222 unsigned char ch;
223
224 while ((ch = *name++) != '\0')
225 h = (h << 5) + h + ch;
226 return h & 0xffffffff;
227 }
228
229 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
230 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
231 bfd_boolean
232 bfd_elf_allocate_object (bfd *abfd,
233 size_t object_size,
234 enum elf_object_id object_id)
235 {
236 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
237 abfd->tdata.any = bfd_zalloc (abfd, object_size);
238 if (abfd->tdata.any == NULL)
239 return FALSE;
240
241 elf_object_id (abfd) = object_id;
242 elf_program_header_size (abfd) = (bfd_size_type) -1;
243 return TRUE;
244 }
245
246
247 bfd_boolean
248 bfd_elf_make_generic_object (bfd *abfd)
249 {
250 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
251 GENERIC_ELF_TDATA);
252 }
253
254 bfd_boolean
255 bfd_elf_mkcorefile (bfd *abfd)
256 {
257 /* I think this can be done just like an object file. */
258 return bfd_elf_make_generic_object (abfd);
259 }
260
261 char *
262 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
263 {
264 Elf_Internal_Shdr **i_shdrp;
265 bfd_byte *shstrtab = NULL;
266 file_ptr offset;
267 bfd_size_type shstrtabsize;
268
269 i_shdrp = elf_elfsections (abfd);
270 if (i_shdrp == 0
271 || shindex >= elf_numsections (abfd)
272 || i_shdrp[shindex] == 0)
273 return NULL;
274
275 shstrtab = i_shdrp[shindex]->contents;
276 if (shstrtab == NULL)
277 {
278 /* No cached one, attempt to read, and cache what we read. */
279 offset = i_shdrp[shindex]->sh_offset;
280 shstrtabsize = i_shdrp[shindex]->sh_size;
281
282 /* Allocate and clear an extra byte at the end, to prevent crashes
283 in case the string table is not terminated. */
284 if (shstrtabsize + 1 <= 1
285 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
286 || bfd_seek (abfd, offset, SEEK_SET) != 0)
287 shstrtab = NULL;
288 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
289 {
290 if (bfd_get_error () != bfd_error_system_call)
291 bfd_set_error (bfd_error_file_truncated);
292 shstrtab = NULL;
293 /* Once we've failed to read it, make sure we don't keep
294 trying. Otherwise, we'll keep allocating space for
295 the string table over and over. */
296 i_shdrp[shindex]->sh_size = 0;
297 }
298 else
299 shstrtab[shstrtabsize] = '\0';
300 i_shdrp[shindex]->contents = shstrtab;
301 }
302 return (char *) shstrtab;
303 }
304
305 char *
306 bfd_elf_string_from_elf_section (bfd *abfd,
307 unsigned int shindex,
308 unsigned int strindex)
309 {
310 Elf_Internal_Shdr *hdr;
311
312 if (strindex == 0)
313 return "";
314
315 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
316 return NULL;
317
318 hdr = elf_elfsections (abfd)[shindex];
319
320 if (hdr->contents == NULL
321 && bfd_elf_get_str_section (abfd, shindex) == NULL)
322 return NULL;
323
324 if (strindex >= hdr->sh_size)
325 {
326 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
327 (*_bfd_error_handler)
328 (_("%B: invalid string offset %u >= %lu for section `%s'"),
329 abfd, strindex, (unsigned long) hdr->sh_size,
330 (shindex == shstrndx && strindex == hdr->sh_name
331 ? ".shstrtab"
332 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
333 return "";
334 }
335
336 return ((char *) hdr->contents) + strindex;
337 }
338
339 /* Read and convert symbols to internal format.
340 SYMCOUNT specifies the number of symbols to read, starting from
341 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
342 are non-NULL, they are used to store the internal symbols, external
343 symbols, and symbol section index extensions, respectively.
344 Returns a pointer to the internal symbol buffer (malloced if necessary)
345 or NULL if there were no symbols or some kind of problem. */
346
347 Elf_Internal_Sym *
348 bfd_elf_get_elf_syms (bfd *ibfd,
349 Elf_Internal_Shdr *symtab_hdr,
350 size_t symcount,
351 size_t symoffset,
352 Elf_Internal_Sym *intsym_buf,
353 void *extsym_buf,
354 Elf_External_Sym_Shndx *extshndx_buf)
355 {
356 Elf_Internal_Shdr *shndx_hdr;
357 void *alloc_ext;
358 const bfd_byte *esym;
359 Elf_External_Sym_Shndx *alloc_extshndx;
360 Elf_External_Sym_Shndx *shndx;
361 Elf_Internal_Sym *alloc_intsym;
362 Elf_Internal_Sym *isym;
363 Elf_Internal_Sym *isymend;
364 const struct elf_backend_data *bed;
365 size_t extsym_size;
366 bfd_size_type amt;
367 file_ptr pos;
368
369 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
370 abort ();
371
372 if (symcount == 0)
373 return intsym_buf;
374
375 /* Normal syms might have section extension entries. */
376 shndx_hdr = NULL;
377 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
378 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
379
380 /* Read the symbols. */
381 alloc_ext = NULL;
382 alloc_extshndx = NULL;
383 alloc_intsym = NULL;
384 bed = get_elf_backend_data (ibfd);
385 extsym_size = bed->s->sizeof_sym;
386 amt = symcount * extsym_size;
387 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
388 if (extsym_buf == NULL)
389 {
390 alloc_ext = bfd_malloc2 (symcount, extsym_size);
391 extsym_buf = alloc_ext;
392 }
393 if (extsym_buf == NULL
394 || bfd_seek (ibfd, pos, SEEK_SET) != 0
395 || bfd_bread (extsym_buf, amt, ibfd) != amt)
396 {
397 intsym_buf = NULL;
398 goto out;
399 }
400
401 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
402 extshndx_buf = NULL;
403 else
404 {
405 amt = symcount * sizeof (Elf_External_Sym_Shndx);
406 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
407 if (extshndx_buf == NULL)
408 {
409 alloc_extshndx = bfd_malloc2 (symcount,
410 sizeof (Elf_External_Sym_Shndx));
411 extshndx_buf = alloc_extshndx;
412 }
413 if (extshndx_buf == NULL
414 || bfd_seek (ibfd, pos, SEEK_SET) != 0
415 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
416 {
417 intsym_buf = NULL;
418 goto out;
419 }
420 }
421
422 if (intsym_buf == NULL)
423 {
424 alloc_intsym = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
425 intsym_buf = alloc_intsym;
426 if (intsym_buf == NULL)
427 goto out;
428 }
429
430 /* Convert the symbols to internal form. */
431 isymend = intsym_buf + symcount;
432 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
433 isym < isymend;
434 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
435 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
436 {
437 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
438 (*_bfd_error_handler) (_("%B symbol number %lu references "
439 "nonexistent SHT_SYMTAB_SHNDX section"),
440 ibfd, (unsigned long) symoffset);
441 if (alloc_intsym != NULL)
442 free (alloc_intsym);
443 intsym_buf = NULL;
444 goto out;
445 }
446
447 out:
448 if (alloc_ext != NULL)
449 free (alloc_ext);
450 if (alloc_extshndx != NULL)
451 free (alloc_extshndx);
452
453 return intsym_buf;
454 }
455
456 /* Look up a symbol name. */
457 const char *
458 bfd_elf_sym_name (bfd *abfd,
459 Elf_Internal_Shdr *symtab_hdr,
460 Elf_Internal_Sym *isym,
461 asection *sym_sec)
462 {
463 const char *name;
464 unsigned int iname = isym->st_name;
465 unsigned int shindex = symtab_hdr->sh_link;
466
467 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
468 /* Check for a bogus st_shndx to avoid crashing. */
469 && isym->st_shndx < elf_numsections (abfd))
470 {
471 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
472 shindex = elf_elfheader (abfd)->e_shstrndx;
473 }
474
475 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
476 if (name == NULL)
477 name = "(null)";
478 else if (sym_sec && *name == '\0')
479 name = bfd_section_name (abfd, sym_sec);
480
481 return name;
482 }
483
484 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
485 sections. The first element is the flags, the rest are section
486 pointers. */
487
488 typedef union elf_internal_group {
489 Elf_Internal_Shdr *shdr;
490 unsigned int flags;
491 } Elf_Internal_Group;
492
493 /* Return the name of the group signature symbol. Why isn't the
494 signature just a string? */
495
496 static const char *
497 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
498 {
499 Elf_Internal_Shdr *hdr;
500 unsigned char esym[sizeof (Elf64_External_Sym)];
501 Elf_External_Sym_Shndx eshndx;
502 Elf_Internal_Sym isym;
503
504 /* First we need to ensure the symbol table is available. Make sure
505 that it is a symbol table section. */
506 if (ghdr->sh_link >= elf_numsections (abfd))
507 return NULL;
508 hdr = elf_elfsections (abfd) [ghdr->sh_link];
509 if (hdr->sh_type != SHT_SYMTAB
510 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
511 return NULL;
512
513 /* Go read the symbol. */
514 hdr = &elf_tdata (abfd)->symtab_hdr;
515 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
516 &isym, esym, &eshndx) == NULL)
517 return NULL;
518
519 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
520 }
521
522 /* Set next_in_group list pointer, and group name for NEWSECT. */
523
524 static bfd_boolean
525 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
526 {
527 unsigned int num_group = elf_tdata (abfd)->num_group;
528
529 /* If num_group is zero, read in all SHT_GROUP sections. The count
530 is set to -1 if there are no SHT_GROUP sections. */
531 if (num_group == 0)
532 {
533 unsigned int i, shnum;
534
535 /* First count the number of groups. If we have a SHT_GROUP
536 section with just a flag word (ie. sh_size is 4), ignore it. */
537 shnum = elf_numsections (abfd);
538 num_group = 0;
539
540 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
541 ( (shdr)->sh_type == SHT_GROUP \
542 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
543 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
544 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
545
546 for (i = 0; i < shnum; i++)
547 {
548 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
549
550 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
551 num_group += 1;
552 }
553
554 if (num_group == 0)
555 {
556 num_group = (unsigned) -1;
557 elf_tdata (abfd)->num_group = num_group;
558 }
559 else
560 {
561 /* We keep a list of elf section headers for group sections,
562 so we can find them quickly. */
563 bfd_size_type amt;
564
565 elf_tdata (abfd)->num_group = num_group;
566 elf_tdata (abfd)->group_sect_ptr
567 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
568 if (elf_tdata (abfd)->group_sect_ptr == NULL)
569 return FALSE;
570
571 num_group = 0;
572 for (i = 0; i < shnum; i++)
573 {
574 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
575
576 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
577 {
578 unsigned char *src;
579 Elf_Internal_Group *dest;
580
581 /* Add to list of sections. */
582 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
583 num_group += 1;
584
585 /* Read the raw contents. */
586 BFD_ASSERT (sizeof (*dest) >= 4);
587 amt = shdr->sh_size * sizeof (*dest) / 4;
588 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
589 sizeof (*dest) / 4);
590 /* PR binutils/4110: Handle corrupt group headers. */
591 if (shdr->contents == NULL)
592 {
593 _bfd_error_handler
594 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
595 bfd_set_error (bfd_error_bad_value);
596 return FALSE;
597 }
598
599 memset (shdr->contents, 0, amt);
600
601 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
602 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
603 != shdr->sh_size))
604 return FALSE;
605
606 /* Translate raw contents, a flag word followed by an
607 array of elf section indices all in target byte order,
608 to the flag word followed by an array of elf section
609 pointers. */
610 src = shdr->contents + shdr->sh_size;
611 dest = (Elf_Internal_Group *) (shdr->contents + amt);
612 while (1)
613 {
614 unsigned int idx;
615
616 src -= 4;
617 --dest;
618 idx = H_GET_32 (abfd, src);
619 if (src == shdr->contents)
620 {
621 dest->flags = idx;
622 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
623 shdr->bfd_section->flags
624 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
625 break;
626 }
627 if (idx >= shnum)
628 {
629 ((*_bfd_error_handler)
630 (_("%B: invalid SHT_GROUP entry"), abfd));
631 idx = 0;
632 }
633 dest->shdr = elf_elfsections (abfd)[idx];
634 }
635 }
636 }
637 }
638 }
639
640 if (num_group != (unsigned) -1)
641 {
642 unsigned int i;
643
644 for (i = 0; i < num_group; i++)
645 {
646 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
647 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
648 unsigned int n_elt = shdr->sh_size / 4;
649
650 /* Look through this group's sections to see if current
651 section is a member. */
652 while (--n_elt != 0)
653 if ((++idx)->shdr == hdr)
654 {
655 asection *s = NULL;
656
657 /* We are a member of this group. Go looking through
658 other members to see if any others are linked via
659 next_in_group. */
660 idx = (Elf_Internal_Group *) shdr->contents;
661 n_elt = shdr->sh_size / 4;
662 while (--n_elt != 0)
663 if ((s = (++idx)->shdr->bfd_section) != NULL
664 && elf_next_in_group (s) != NULL)
665 break;
666 if (n_elt != 0)
667 {
668 /* Snarf the group name from other member, and
669 insert current section in circular list. */
670 elf_group_name (newsect) = elf_group_name (s);
671 elf_next_in_group (newsect) = elf_next_in_group (s);
672 elf_next_in_group (s) = newsect;
673 }
674 else
675 {
676 const char *gname;
677
678 gname = group_signature (abfd, shdr);
679 if (gname == NULL)
680 return FALSE;
681 elf_group_name (newsect) = gname;
682
683 /* Start a circular list with one element. */
684 elf_next_in_group (newsect) = newsect;
685 }
686
687 /* If the group section has been created, point to the
688 new member. */
689 if (shdr->bfd_section != NULL)
690 elf_next_in_group (shdr->bfd_section) = newsect;
691
692 i = num_group - 1;
693 break;
694 }
695 }
696 }
697
698 if (elf_group_name (newsect) == NULL)
699 {
700 (*_bfd_error_handler) (_("%B: no group info for section %A"),
701 abfd, newsect);
702 }
703 return TRUE;
704 }
705
706 bfd_boolean
707 _bfd_elf_setup_sections (bfd *abfd)
708 {
709 unsigned int i;
710 unsigned int num_group = elf_tdata (abfd)->num_group;
711 bfd_boolean result = TRUE;
712 asection *s;
713
714 /* Process SHF_LINK_ORDER. */
715 for (s = abfd->sections; s != NULL; s = s->next)
716 {
717 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
718 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
719 {
720 unsigned int elfsec = this_hdr->sh_link;
721 /* FIXME: The old Intel compiler and old strip/objcopy may
722 not set the sh_link or sh_info fields. Hence we could
723 get the situation where elfsec is 0. */
724 if (elfsec == 0)
725 {
726 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
727 if (bed->link_order_error_handler)
728 bed->link_order_error_handler
729 (_("%B: warning: sh_link not set for section `%A'"),
730 abfd, s);
731 }
732 else
733 {
734 asection *link = NULL;
735
736 if (elfsec < elf_numsections (abfd))
737 {
738 this_hdr = elf_elfsections (abfd)[elfsec];
739 link = this_hdr->bfd_section;
740 }
741
742 /* PR 1991, 2008:
743 Some strip/objcopy may leave an incorrect value in
744 sh_link. We don't want to proceed. */
745 if (link == NULL)
746 {
747 (*_bfd_error_handler)
748 (_("%B: sh_link [%d] in section `%A' is incorrect"),
749 s->owner, s, elfsec);
750 result = FALSE;
751 }
752
753 elf_linked_to_section (s) = link;
754 }
755 }
756 }
757
758 /* Process section groups. */
759 if (num_group == (unsigned) -1)
760 return result;
761
762 for (i = 0; i < num_group; i++)
763 {
764 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
765 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
766 unsigned int n_elt = shdr->sh_size / 4;
767
768 while (--n_elt != 0)
769 if ((++idx)->shdr->bfd_section)
770 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
771 else if (idx->shdr->sh_type == SHT_RELA
772 || idx->shdr->sh_type == SHT_REL)
773 /* We won't include relocation sections in section groups in
774 output object files. We adjust the group section size here
775 so that relocatable link will work correctly when
776 relocation sections are in section group in input object
777 files. */
778 shdr->bfd_section->size -= 4;
779 else
780 {
781 /* There are some unknown sections in the group. */
782 (*_bfd_error_handler)
783 (_("%B: unknown [%d] section `%s' in group [%s]"),
784 abfd,
785 (unsigned int) idx->shdr->sh_type,
786 bfd_elf_string_from_elf_section (abfd,
787 (elf_elfheader (abfd)
788 ->e_shstrndx),
789 idx->shdr->sh_name),
790 shdr->bfd_section->name);
791 result = FALSE;
792 }
793 }
794 return result;
795 }
796
797 bfd_boolean
798 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
799 {
800 return elf_next_in_group (sec) != NULL;
801 }
802
803 /* Make a BFD section from an ELF section. We store a pointer to the
804 BFD section in the bfd_section field of the header. */
805
806 bfd_boolean
807 _bfd_elf_make_section_from_shdr (bfd *abfd,
808 Elf_Internal_Shdr *hdr,
809 const char *name,
810 int shindex)
811 {
812 asection *newsect;
813 flagword flags;
814 const struct elf_backend_data *bed;
815
816 if (hdr->bfd_section != NULL)
817 {
818 BFD_ASSERT (strcmp (name,
819 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
820 return TRUE;
821 }
822
823 newsect = bfd_make_section_anyway (abfd, name);
824 if (newsect == NULL)
825 return FALSE;
826
827 hdr->bfd_section = newsect;
828 elf_section_data (newsect)->this_hdr = *hdr;
829 elf_section_data (newsect)->this_idx = shindex;
830
831 /* Always use the real type/flags. */
832 elf_section_type (newsect) = hdr->sh_type;
833 elf_section_flags (newsect) = hdr->sh_flags;
834
835 newsect->filepos = hdr->sh_offset;
836
837 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
838 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
839 || ! bfd_set_section_alignment (abfd, newsect,
840 bfd_log2 (hdr->sh_addralign)))
841 return FALSE;
842
843 flags = SEC_NO_FLAGS;
844 if (hdr->sh_type != SHT_NOBITS)
845 flags |= SEC_HAS_CONTENTS;
846 if (hdr->sh_type == SHT_GROUP)
847 flags |= SEC_GROUP | SEC_EXCLUDE;
848 if ((hdr->sh_flags & SHF_ALLOC) != 0)
849 {
850 flags |= SEC_ALLOC;
851 if (hdr->sh_type != SHT_NOBITS)
852 flags |= SEC_LOAD;
853 }
854 if ((hdr->sh_flags & SHF_WRITE) == 0)
855 flags |= SEC_READONLY;
856 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
857 flags |= SEC_CODE;
858 else if ((flags & SEC_LOAD) != 0)
859 flags |= SEC_DATA;
860 if ((hdr->sh_flags & SHF_MERGE) != 0)
861 {
862 flags |= SEC_MERGE;
863 newsect->entsize = hdr->sh_entsize;
864 if ((hdr->sh_flags & SHF_STRINGS) != 0)
865 flags |= SEC_STRINGS;
866 }
867 if (hdr->sh_flags & SHF_GROUP)
868 if (!setup_group (abfd, hdr, newsect))
869 return FALSE;
870 if ((hdr->sh_flags & SHF_TLS) != 0)
871 flags |= SEC_THREAD_LOCAL;
872
873 if ((flags & SEC_ALLOC) == 0)
874 {
875 /* The debugging sections appear to be recognized only by name,
876 not any sort of flag. Their SEC_ALLOC bits are cleared. */
877 static const struct
878 {
879 const char *name;
880 int len;
881 } debug_sections [] =
882 {
883 { STRING_COMMA_LEN ("debug") }, /* 'd' */
884 { NULL, 0 }, /* 'e' */
885 { NULL, 0 }, /* 'f' */
886 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
887 { NULL, 0 }, /* 'h' */
888 { NULL, 0 }, /* 'i' */
889 { NULL, 0 }, /* 'j' */
890 { NULL, 0 }, /* 'k' */
891 { STRING_COMMA_LEN ("line") }, /* 'l' */
892 { NULL, 0 }, /* 'm' */
893 { NULL, 0 }, /* 'n' */
894 { NULL, 0 }, /* 'o' */
895 { NULL, 0 }, /* 'p' */
896 { NULL, 0 }, /* 'q' */
897 { NULL, 0 }, /* 'r' */
898 { STRING_COMMA_LEN ("stab") }, /* 's' */
899 { NULL, 0 }, /* 't' */
900 { NULL, 0 }, /* 'u' */
901 { NULL, 0 }, /* 'v' */
902 { NULL, 0 }, /* 'w' */
903 { NULL, 0 }, /* 'x' */
904 { NULL, 0 }, /* 'y' */
905 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
906 };
907
908 if (name [0] == '.')
909 {
910 int i = name [1] - 'd';
911 if (i >= 0
912 && i < (int) ARRAY_SIZE (debug_sections)
913 && debug_sections [i].name != NULL
914 && strncmp (&name [1], debug_sections [i].name,
915 debug_sections [i].len) == 0)
916 flags |= SEC_DEBUGGING;
917 }
918 }
919
920 /* As a GNU extension, if the name begins with .gnu.linkonce, we
921 only link a single copy of the section. This is used to support
922 g++. g++ will emit each template expansion in its own section.
923 The symbols will be defined as weak, so that multiple definitions
924 are permitted. The GNU linker extension is to actually discard
925 all but one of the sections. */
926 if (CONST_STRNEQ (name, ".gnu.linkonce")
927 && elf_next_in_group (newsect) == NULL)
928 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
929
930 bed = get_elf_backend_data (abfd);
931 if (bed->elf_backend_section_flags)
932 if (! bed->elf_backend_section_flags (&flags, hdr))
933 return FALSE;
934
935 if (! bfd_set_section_flags (abfd, newsect, flags))
936 return FALSE;
937
938 /* We do not parse the PT_NOTE segments as we are interested even in the
939 separate debug info files which may have the segments offsets corrupted.
940 PT_NOTEs from the core files are currently not parsed using BFD. */
941 if (hdr->sh_type == SHT_NOTE)
942 {
943 bfd_byte *contents;
944
945 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
946 return FALSE;
947
948 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
949 free (contents);
950 }
951
952 if ((flags & SEC_ALLOC) != 0)
953 {
954 Elf_Internal_Phdr *phdr;
955 unsigned int i, nload;
956
957 /* Some ELF linkers produce binaries with all the program header
958 p_paddr fields zero. If we have such a binary with more than
959 one PT_LOAD header, then leave the section lma equal to vma
960 so that we don't create sections with overlapping lma. */
961 phdr = elf_tdata (abfd)->phdr;
962 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
963 if (phdr->p_paddr != 0)
964 break;
965 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
966 ++nload;
967 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
968 return TRUE;
969
970 phdr = elf_tdata (abfd)->phdr;
971 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
972 {
973 /* This section is part of this segment if its file
974 offset plus size lies within the segment's memory
975 span and, if the section is loaded, the extent of the
976 loaded data lies within the extent of the segment.
977
978 Note - we used to check the p_paddr field as well, and
979 refuse to set the LMA if it was 0. This is wrong
980 though, as a perfectly valid initialised segment can
981 have a p_paddr of zero. Some architectures, eg ARM,
982 place special significance on the address 0 and
983 executables need to be able to have a segment which
984 covers this address. */
985 if (phdr->p_type == PT_LOAD
986 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
987 && (hdr->sh_offset + hdr->sh_size
988 <= phdr->p_offset + phdr->p_memsz)
989 && ((flags & SEC_LOAD) == 0
990 || (hdr->sh_offset + hdr->sh_size
991 <= phdr->p_offset + phdr->p_filesz)))
992 {
993 if ((flags & SEC_LOAD) == 0)
994 newsect->lma = (phdr->p_paddr
995 + hdr->sh_addr - phdr->p_vaddr);
996 else
997 /* We used to use the same adjustment for SEC_LOAD
998 sections, but that doesn't work if the segment
999 is packed with code from multiple VMAs.
1000 Instead we calculate the section LMA based on
1001 the segment LMA. It is assumed that the
1002 segment will contain sections with contiguous
1003 LMAs, even if the VMAs are not. */
1004 newsect->lma = (phdr->p_paddr
1005 + hdr->sh_offset - phdr->p_offset);
1006
1007 /* With contiguous segments, we can't tell from file
1008 offsets whether a section with zero size should
1009 be placed at the end of one segment or the
1010 beginning of the next. Decide based on vaddr. */
1011 if (hdr->sh_addr >= phdr->p_vaddr
1012 && (hdr->sh_addr + hdr->sh_size
1013 <= phdr->p_vaddr + phdr->p_memsz))
1014 break;
1015 }
1016 }
1017 }
1018
1019 return TRUE;
1020 }
1021
1022 /*
1023 INTERNAL_FUNCTION
1024 bfd_elf_find_section
1025
1026 SYNOPSIS
1027 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
1028
1029 DESCRIPTION
1030 Helper functions for GDB to locate the string tables.
1031 Since BFD hides string tables from callers, GDB needs to use an
1032 internal hook to find them. Sun's .stabstr, in particular,
1033 isn't even pointed to by the .stab section, so ordinary
1034 mechanisms wouldn't work to find it, even if we had some.
1035 */
1036
1037 struct elf_internal_shdr *
1038 bfd_elf_find_section (bfd *abfd, char *name)
1039 {
1040 Elf_Internal_Shdr **i_shdrp;
1041 char *shstrtab;
1042 unsigned int max;
1043 unsigned int i;
1044
1045 i_shdrp = elf_elfsections (abfd);
1046 if (i_shdrp != NULL)
1047 {
1048 shstrtab = bfd_elf_get_str_section (abfd,
1049 elf_elfheader (abfd)->e_shstrndx);
1050 if (shstrtab != NULL)
1051 {
1052 max = elf_numsections (abfd);
1053 for (i = 1; i < max; i++)
1054 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
1055 return i_shdrp[i];
1056 }
1057 }
1058 return 0;
1059 }
1060
1061 const char *const bfd_elf_section_type_names[] = {
1062 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1063 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1064 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1065 };
1066
1067 /* ELF relocs are against symbols. If we are producing relocatable
1068 output, and the reloc is against an external symbol, and nothing
1069 has given us any additional addend, the resulting reloc will also
1070 be against the same symbol. In such a case, we don't want to
1071 change anything about the way the reloc is handled, since it will
1072 all be done at final link time. Rather than put special case code
1073 into bfd_perform_relocation, all the reloc types use this howto
1074 function. It just short circuits the reloc if producing
1075 relocatable output against an external symbol. */
1076
1077 bfd_reloc_status_type
1078 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1079 arelent *reloc_entry,
1080 asymbol *symbol,
1081 void *data ATTRIBUTE_UNUSED,
1082 asection *input_section,
1083 bfd *output_bfd,
1084 char **error_message ATTRIBUTE_UNUSED)
1085 {
1086 if (output_bfd != NULL
1087 && (symbol->flags & BSF_SECTION_SYM) == 0
1088 && (! reloc_entry->howto->partial_inplace
1089 || reloc_entry->addend == 0))
1090 {
1091 reloc_entry->address += input_section->output_offset;
1092 return bfd_reloc_ok;
1093 }
1094
1095 return bfd_reloc_continue;
1096 }
1097 \f
1098 /* Copy the program header and other data from one object module to
1099 another. */
1100
1101 bfd_boolean
1102 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1103 {
1104 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1105 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1106 return TRUE;
1107
1108 BFD_ASSERT (!elf_flags_init (obfd)
1109 || (elf_elfheader (obfd)->e_flags
1110 == elf_elfheader (ibfd)->e_flags));
1111
1112 elf_gp (obfd) = elf_gp (ibfd);
1113 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1114 elf_flags_init (obfd) = TRUE;
1115
1116 /* Copy object attributes. */
1117 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1118
1119 return TRUE;
1120 }
1121
1122 static const char *
1123 get_segment_type (unsigned int p_type)
1124 {
1125 const char *pt;
1126 switch (p_type)
1127 {
1128 case PT_NULL: pt = "NULL"; break;
1129 case PT_LOAD: pt = "LOAD"; break;
1130 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1131 case PT_INTERP: pt = "INTERP"; break;
1132 case PT_NOTE: pt = "NOTE"; break;
1133 case PT_SHLIB: pt = "SHLIB"; break;
1134 case PT_PHDR: pt = "PHDR"; break;
1135 case PT_TLS: pt = "TLS"; break;
1136 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1137 case PT_GNU_STACK: pt = "STACK"; break;
1138 case PT_GNU_RELRO: pt = "RELRO"; break;
1139 default: pt = NULL; break;
1140 }
1141 return pt;
1142 }
1143
1144 /* Print out the program headers. */
1145
1146 bfd_boolean
1147 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1148 {
1149 FILE *f = farg;
1150 Elf_Internal_Phdr *p;
1151 asection *s;
1152 bfd_byte *dynbuf = NULL;
1153
1154 p = elf_tdata (abfd)->phdr;
1155 if (p != NULL)
1156 {
1157 unsigned int i, c;
1158
1159 fprintf (f, _("\nProgram Header:\n"));
1160 c = elf_elfheader (abfd)->e_phnum;
1161 for (i = 0; i < c; i++, p++)
1162 {
1163 const char *pt = get_segment_type (p->p_type);
1164 char buf[20];
1165
1166 if (pt == NULL)
1167 {
1168 sprintf (buf, "0x%lx", p->p_type);
1169 pt = buf;
1170 }
1171 fprintf (f, "%8s off 0x", pt);
1172 bfd_fprintf_vma (abfd, f, p->p_offset);
1173 fprintf (f, " vaddr 0x");
1174 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1175 fprintf (f, " paddr 0x");
1176 bfd_fprintf_vma (abfd, f, p->p_paddr);
1177 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1178 fprintf (f, " filesz 0x");
1179 bfd_fprintf_vma (abfd, f, p->p_filesz);
1180 fprintf (f, " memsz 0x");
1181 bfd_fprintf_vma (abfd, f, p->p_memsz);
1182 fprintf (f, " flags %c%c%c",
1183 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1184 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1185 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1186 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1187 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1188 fprintf (f, "\n");
1189 }
1190 }
1191
1192 s = bfd_get_section_by_name (abfd, ".dynamic");
1193 if (s != NULL)
1194 {
1195 unsigned int elfsec;
1196 unsigned long shlink;
1197 bfd_byte *extdyn, *extdynend;
1198 size_t extdynsize;
1199 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1200
1201 fprintf (f, _("\nDynamic Section:\n"));
1202
1203 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1204 goto error_return;
1205
1206 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1207 if (elfsec == SHN_BAD)
1208 goto error_return;
1209 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1210
1211 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1212 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1213
1214 extdyn = dynbuf;
1215 extdynend = extdyn + s->size;
1216 for (; extdyn < extdynend; extdyn += extdynsize)
1217 {
1218 Elf_Internal_Dyn dyn;
1219 const char *name = "";
1220 char ab[20];
1221 bfd_boolean stringp;
1222 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1223
1224 (*swap_dyn_in) (abfd, extdyn, &dyn);
1225
1226 if (dyn.d_tag == DT_NULL)
1227 break;
1228
1229 stringp = FALSE;
1230 switch (dyn.d_tag)
1231 {
1232 default:
1233 if (bed->elf_backend_get_target_dtag)
1234 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1235
1236 if (!strcmp (name, ""))
1237 {
1238 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1239 name = ab;
1240 }
1241 break;
1242
1243 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1244 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1245 case DT_PLTGOT: name = "PLTGOT"; break;
1246 case DT_HASH: name = "HASH"; break;
1247 case DT_STRTAB: name = "STRTAB"; break;
1248 case DT_SYMTAB: name = "SYMTAB"; break;
1249 case DT_RELA: name = "RELA"; break;
1250 case DT_RELASZ: name = "RELASZ"; break;
1251 case DT_RELAENT: name = "RELAENT"; break;
1252 case DT_STRSZ: name = "STRSZ"; break;
1253 case DT_SYMENT: name = "SYMENT"; break;
1254 case DT_INIT: name = "INIT"; break;
1255 case DT_FINI: name = "FINI"; break;
1256 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1257 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1258 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1259 case DT_REL: name = "REL"; break;
1260 case DT_RELSZ: name = "RELSZ"; break;
1261 case DT_RELENT: name = "RELENT"; break;
1262 case DT_PLTREL: name = "PLTREL"; break;
1263 case DT_DEBUG: name = "DEBUG"; break;
1264 case DT_TEXTREL: name = "TEXTREL"; break;
1265 case DT_JMPREL: name = "JMPREL"; break;
1266 case DT_BIND_NOW: name = "BIND_NOW"; break;
1267 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1268 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1269 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1270 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1271 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1272 case DT_FLAGS: name = "FLAGS"; break;
1273 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1274 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1275 case DT_CHECKSUM: name = "CHECKSUM"; break;
1276 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1277 case DT_MOVEENT: name = "MOVEENT"; break;
1278 case DT_MOVESZ: name = "MOVESZ"; break;
1279 case DT_FEATURE: name = "FEATURE"; break;
1280 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1281 case DT_SYMINSZ: name = "SYMINSZ"; break;
1282 case DT_SYMINENT: name = "SYMINENT"; break;
1283 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1284 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1285 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1286 case DT_PLTPAD: name = "PLTPAD"; break;
1287 case DT_MOVETAB: name = "MOVETAB"; break;
1288 case DT_SYMINFO: name = "SYMINFO"; break;
1289 case DT_RELACOUNT: name = "RELACOUNT"; break;
1290 case DT_RELCOUNT: name = "RELCOUNT"; break;
1291 case DT_FLAGS_1: name = "FLAGS_1"; break;
1292 case DT_VERSYM: name = "VERSYM"; break;
1293 case DT_VERDEF: name = "VERDEF"; break;
1294 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1295 case DT_VERNEED: name = "VERNEED"; break;
1296 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1297 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1298 case DT_USED: name = "USED"; break;
1299 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1300 case DT_GNU_HASH: name = "GNU_HASH"; break;
1301 }
1302
1303 fprintf (f, " %-20s ", name);
1304 if (! stringp)
1305 {
1306 fprintf (f, "0x");
1307 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1308 }
1309 else
1310 {
1311 const char *string;
1312 unsigned int tagv = dyn.d_un.d_val;
1313
1314 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1315 if (string == NULL)
1316 goto error_return;
1317 fprintf (f, "%s", string);
1318 }
1319 fprintf (f, "\n");
1320 }
1321
1322 free (dynbuf);
1323 dynbuf = NULL;
1324 }
1325
1326 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1327 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1328 {
1329 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1330 return FALSE;
1331 }
1332
1333 if (elf_dynverdef (abfd) != 0)
1334 {
1335 Elf_Internal_Verdef *t;
1336
1337 fprintf (f, _("\nVersion definitions:\n"));
1338 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1339 {
1340 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1341 t->vd_flags, t->vd_hash,
1342 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1343 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1344 {
1345 Elf_Internal_Verdaux *a;
1346
1347 fprintf (f, "\t");
1348 for (a = t->vd_auxptr->vda_nextptr;
1349 a != NULL;
1350 a = a->vda_nextptr)
1351 fprintf (f, "%s ",
1352 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1353 fprintf (f, "\n");
1354 }
1355 }
1356 }
1357
1358 if (elf_dynverref (abfd) != 0)
1359 {
1360 Elf_Internal_Verneed *t;
1361
1362 fprintf (f, _("\nVersion References:\n"));
1363 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1364 {
1365 Elf_Internal_Vernaux *a;
1366
1367 fprintf (f, _(" required from %s:\n"),
1368 t->vn_filename ? t->vn_filename : "<corrupt>");
1369 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1370 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1371 a->vna_flags, a->vna_other,
1372 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1373 }
1374 }
1375
1376 return TRUE;
1377
1378 error_return:
1379 if (dynbuf != NULL)
1380 free (dynbuf);
1381 return FALSE;
1382 }
1383
1384 /* Display ELF-specific fields of a symbol. */
1385
1386 void
1387 bfd_elf_print_symbol (bfd *abfd,
1388 void *filep,
1389 asymbol *symbol,
1390 bfd_print_symbol_type how)
1391 {
1392 FILE *file = filep;
1393 switch (how)
1394 {
1395 case bfd_print_symbol_name:
1396 fprintf (file, "%s", symbol->name);
1397 break;
1398 case bfd_print_symbol_more:
1399 fprintf (file, "elf ");
1400 bfd_fprintf_vma (abfd, file, symbol->value);
1401 fprintf (file, " %lx", (unsigned long) symbol->flags);
1402 break;
1403 case bfd_print_symbol_all:
1404 {
1405 const char *section_name;
1406 const char *name = NULL;
1407 const struct elf_backend_data *bed;
1408 unsigned char st_other;
1409 bfd_vma val;
1410
1411 section_name = symbol->section ? symbol->section->name : "(*none*)";
1412
1413 bed = get_elf_backend_data (abfd);
1414 if (bed->elf_backend_print_symbol_all)
1415 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1416
1417 if (name == NULL)
1418 {
1419 name = symbol->name;
1420 bfd_print_symbol_vandf (abfd, file, symbol);
1421 }
1422
1423 fprintf (file, " %s\t", section_name);
1424 /* Print the "other" value for a symbol. For common symbols,
1425 we've already printed the size; now print the alignment.
1426 For other symbols, we have no specified alignment, and
1427 we've printed the address; now print the size. */
1428 if (symbol->section && bfd_is_com_section (symbol->section))
1429 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1430 else
1431 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1432 bfd_fprintf_vma (abfd, file, val);
1433
1434 /* If we have version information, print it. */
1435 if (elf_tdata (abfd)->dynversym_section != 0
1436 && (elf_tdata (abfd)->dynverdef_section != 0
1437 || elf_tdata (abfd)->dynverref_section != 0))
1438 {
1439 unsigned int vernum;
1440 const char *version_string;
1441
1442 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1443
1444 if (vernum == 0)
1445 version_string = "";
1446 else if (vernum == 1)
1447 version_string = "Base";
1448 else if (vernum <= elf_tdata (abfd)->cverdefs)
1449 version_string =
1450 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1451 else
1452 {
1453 Elf_Internal_Verneed *t;
1454
1455 version_string = "";
1456 for (t = elf_tdata (abfd)->verref;
1457 t != NULL;
1458 t = t->vn_nextref)
1459 {
1460 Elf_Internal_Vernaux *a;
1461
1462 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1463 {
1464 if (a->vna_other == vernum)
1465 {
1466 version_string = a->vna_nodename;
1467 break;
1468 }
1469 }
1470 }
1471 }
1472
1473 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1474 fprintf (file, " %-11s", version_string);
1475 else
1476 {
1477 int i;
1478
1479 fprintf (file, " (%s)", version_string);
1480 for (i = 10 - strlen (version_string); i > 0; --i)
1481 putc (' ', file);
1482 }
1483 }
1484
1485 /* If the st_other field is not zero, print it. */
1486 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1487
1488 switch (st_other)
1489 {
1490 case 0: break;
1491 case STV_INTERNAL: fprintf (file, " .internal"); break;
1492 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1493 case STV_PROTECTED: fprintf (file, " .protected"); break;
1494 default:
1495 /* Some other non-defined flags are also present, so print
1496 everything hex. */
1497 fprintf (file, " 0x%02x", (unsigned int) st_other);
1498 }
1499
1500 fprintf (file, " %s", name);
1501 }
1502 break;
1503 }
1504 }
1505
1506 /* Allocate an ELF string table--force the first byte to be zero. */
1507
1508 struct bfd_strtab_hash *
1509 _bfd_elf_stringtab_init (void)
1510 {
1511 struct bfd_strtab_hash *ret;
1512
1513 ret = _bfd_stringtab_init ();
1514 if (ret != NULL)
1515 {
1516 bfd_size_type loc;
1517
1518 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1519 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1520 if (loc == (bfd_size_type) -1)
1521 {
1522 _bfd_stringtab_free (ret);
1523 ret = NULL;
1524 }
1525 }
1526 return ret;
1527 }
1528 \f
1529 /* ELF .o/exec file reading */
1530
1531 /* Create a new bfd section from an ELF section header. */
1532
1533 bfd_boolean
1534 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1535 {
1536 Elf_Internal_Shdr *hdr;
1537 Elf_Internal_Ehdr *ehdr;
1538 const struct elf_backend_data *bed;
1539 const char *name;
1540
1541 if (shindex >= elf_numsections (abfd))
1542 return FALSE;
1543
1544 hdr = elf_elfsections (abfd)[shindex];
1545 ehdr = elf_elfheader (abfd);
1546 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1547 hdr->sh_name);
1548 if (name == NULL)
1549 return FALSE;
1550
1551 bed = get_elf_backend_data (abfd);
1552 switch (hdr->sh_type)
1553 {
1554 case SHT_NULL:
1555 /* Inactive section. Throw it away. */
1556 return TRUE;
1557
1558 case SHT_PROGBITS: /* Normal section with contents. */
1559 case SHT_NOBITS: /* .bss section. */
1560 case SHT_HASH: /* .hash section. */
1561 case SHT_NOTE: /* .note section. */
1562 case SHT_INIT_ARRAY: /* .init_array section. */
1563 case SHT_FINI_ARRAY: /* .fini_array section. */
1564 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1565 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1566 case SHT_GNU_HASH: /* .gnu.hash section. */
1567 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1568
1569 case SHT_DYNAMIC: /* Dynamic linking information. */
1570 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1571 return FALSE;
1572 if (hdr->sh_link > elf_numsections (abfd)
1573 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1574 return FALSE;
1575 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1576 {
1577 Elf_Internal_Shdr *dynsymhdr;
1578
1579 /* The shared libraries distributed with hpux11 have a bogus
1580 sh_link field for the ".dynamic" section. Find the
1581 string table for the ".dynsym" section instead. */
1582 if (elf_dynsymtab (abfd) != 0)
1583 {
1584 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1585 hdr->sh_link = dynsymhdr->sh_link;
1586 }
1587 else
1588 {
1589 unsigned int i, num_sec;
1590
1591 num_sec = elf_numsections (abfd);
1592 for (i = 1; i < num_sec; i++)
1593 {
1594 dynsymhdr = elf_elfsections (abfd)[i];
1595 if (dynsymhdr->sh_type == SHT_DYNSYM)
1596 {
1597 hdr->sh_link = dynsymhdr->sh_link;
1598 break;
1599 }
1600 }
1601 }
1602 }
1603 break;
1604
1605 case SHT_SYMTAB: /* A symbol table */
1606 if (elf_onesymtab (abfd) == shindex)
1607 return TRUE;
1608
1609 if (hdr->sh_entsize != bed->s->sizeof_sym)
1610 return FALSE;
1611 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1612 return FALSE;
1613 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1614 elf_onesymtab (abfd) = shindex;
1615 elf_tdata (abfd)->symtab_hdr = *hdr;
1616 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1617 abfd->flags |= HAS_SYMS;
1618
1619 /* Sometimes a shared object will map in the symbol table. If
1620 SHF_ALLOC is set, and this is a shared object, then we also
1621 treat this section as a BFD section. We can not base the
1622 decision purely on SHF_ALLOC, because that flag is sometimes
1623 set in a relocatable object file, which would confuse the
1624 linker. */
1625 if ((hdr->sh_flags & SHF_ALLOC) != 0
1626 && (abfd->flags & DYNAMIC) != 0
1627 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1628 shindex))
1629 return FALSE;
1630
1631 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1632 can't read symbols without that section loaded as well. It
1633 is most likely specified by the next section header. */
1634 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1635 {
1636 unsigned int i, num_sec;
1637
1638 num_sec = elf_numsections (abfd);
1639 for (i = shindex + 1; i < num_sec; i++)
1640 {
1641 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1642 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1643 && hdr2->sh_link == shindex)
1644 break;
1645 }
1646 if (i == num_sec)
1647 for (i = 1; i < shindex; i++)
1648 {
1649 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1650 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1651 && hdr2->sh_link == shindex)
1652 break;
1653 }
1654 if (i != shindex)
1655 return bfd_section_from_shdr (abfd, i);
1656 }
1657 return TRUE;
1658
1659 case SHT_DYNSYM: /* A dynamic symbol table */
1660 if (elf_dynsymtab (abfd) == shindex)
1661 return TRUE;
1662
1663 if (hdr->sh_entsize != bed->s->sizeof_sym)
1664 return FALSE;
1665 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1666 elf_dynsymtab (abfd) = shindex;
1667 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1668 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1669 abfd->flags |= HAS_SYMS;
1670
1671 /* Besides being a symbol table, we also treat this as a regular
1672 section, so that objcopy can handle it. */
1673 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1674
1675 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1676 if (elf_symtab_shndx (abfd) == shindex)
1677 return TRUE;
1678
1679 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1680 elf_symtab_shndx (abfd) = shindex;
1681 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1682 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1683 return TRUE;
1684
1685 case SHT_STRTAB: /* A string table */
1686 if (hdr->bfd_section != NULL)
1687 return TRUE;
1688 if (ehdr->e_shstrndx == shindex)
1689 {
1690 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1691 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1692 return TRUE;
1693 }
1694 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1695 {
1696 symtab_strtab:
1697 elf_tdata (abfd)->strtab_hdr = *hdr;
1698 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1699 return TRUE;
1700 }
1701 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1702 {
1703 dynsymtab_strtab:
1704 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1705 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1706 elf_elfsections (abfd)[shindex] = hdr;
1707 /* We also treat this as a regular section, so that objcopy
1708 can handle it. */
1709 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1710 shindex);
1711 }
1712
1713 /* If the string table isn't one of the above, then treat it as a
1714 regular section. We need to scan all the headers to be sure,
1715 just in case this strtab section appeared before the above. */
1716 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1717 {
1718 unsigned int i, num_sec;
1719
1720 num_sec = elf_numsections (abfd);
1721 for (i = 1; i < num_sec; i++)
1722 {
1723 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1724 if (hdr2->sh_link == shindex)
1725 {
1726 /* Prevent endless recursion on broken objects. */
1727 if (i == shindex)
1728 return FALSE;
1729 if (! bfd_section_from_shdr (abfd, i))
1730 return FALSE;
1731 if (elf_onesymtab (abfd) == i)
1732 goto symtab_strtab;
1733 if (elf_dynsymtab (abfd) == i)
1734 goto dynsymtab_strtab;
1735 }
1736 }
1737 }
1738 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1739
1740 case SHT_REL:
1741 case SHT_RELA:
1742 /* *These* do a lot of work -- but build no sections! */
1743 {
1744 asection *target_sect;
1745 Elf_Internal_Shdr *hdr2;
1746 unsigned int num_sec = elf_numsections (abfd);
1747
1748 if (hdr->sh_entsize
1749 != (bfd_size_type) (hdr->sh_type == SHT_REL
1750 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1751 return FALSE;
1752
1753 /* Check for a bogus link to avoid crashing. */
1754 if (hdr->sh_link >= num_sec)
1755 {
1756 ((*_bfd_error_handler)
1757 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1758 abfd, hdr->sh_link, name, shindex));
1759 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1760 shindex);
1761 }
1762
1763 /* For some incomprehensible reason Oracle distributes
1764 libraries for Solaris in which some of the objects have
1765 bogus sh_link fields. It would be nice if we could just
1766 reject them, but, unfortunately, some people need to use
1767 them. We scan through the section headers; if we find only
1768 one suitable symbol table, we clobber the sh_link to point
1769 to it. I hope this doesn't break anything. */
1770 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1771 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1772 {
1773 unsigned int scan;
1774 int found;
1775
1776 found = 0;
1777 for (scan = 1; scan < num_sec; scan++)
1778 {
1779 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1780 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1781 {
1782 if (found != 0)
1783 {
1784 found = 0;
1785 break;
1786 }
1787 found = scan;
1788 }
1789 }
1790 if (found != 0)
1791 hdr->sh_link = found;
1792 }
1793
1794 /* Get the symbol table. */
1795 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1796 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1797 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1798 return FALSE;
1799
1800 /* If this reloc section does not use the main symbol table we
1801 don't treat it as a reloc section. BFD can't adequately
1802 represent such a section, so at least for now, we don't
1803 try. We just present it as a normal section. We also
1804 can't use it as a reloc section if it points to the null
1805 section, an invalid section, or another reloc section. */
1806 if (hdr->sh_link != elf_onesymtab (abfd)
1807 || hdr->sh_info == SHN_UNDEF
1808 || hdr->sh_info >= num_sec
1809 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1810 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1811 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1812 shindex);
1813
1814 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1815 return FALSE;
1816 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1817 if (target_sect == NULL)
1818 return FALSE;
1819
1820 if ((target_sect->flags & SEC_RELOC) == 0
1821 || target_sect->reloc_count == 0)
1822 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1823 else
1824 {
1825 bfd_size_type amt;
1826 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1827 amt = sizeof (*hdr2);
1828 hdr2 = bfd_alloc (abfd, amt);
1829 if (hdr2 == NULL)
1830 return FALSE;
1831 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1832 }
1833 *hdr2 = *hdr;
1834 elf_elfsections (abfd)[shindex] = hdr2;
1835 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1836 target_sect->flags |= SEC_RELOC;
1837 target_sect->relocation = NULL;
1838 target_sect->rel_filepos = hdr->sh_offset;
1839 /* In the section to which the relocations apply, mark whether
1840 its relocations are of the REL or RELA variety. */
1841 if (hdr->sh_size != 0)
1842 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1843 abfd->flags |= HAS_RELOC;
1844 return TRUE;
1845 }
1846
1847 case SHT_GNU_verdef:
1848 elf_dynverdef (abfd) = shindex;
1849 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1850 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1851
1852 case SHT_GNU_versym:
1853 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1854 return FALSE;
1855 elf_dynversym (abfd) = shindex;
1856 elf_tdata (abfd)->dynversym_hdr = *hdr;
1857 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1858
1859 case SHT_GNU_verneed:
1860 elf_dynverref (abfd) = shindex;
1861 elf_tdata (abfd)->dynverref_hdr = *hdr;
1862 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1863
1864 case SHT_SHLIB:
1865 return TRUE;
1866
1867 case SHT_GROUP:
1868 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1869 return FALSE;
1870 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1871 return FALSE;
1872 if (hdr->contents != NULL)
1873 {
1874 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1875 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1876 asection *s;
1877
1878 if (idx->flags & GRP_COMDAT)
1879 hdr->bfd_section->flags
1880 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1881
1882 /* We try to keep the same section order as it comes in. */
1883 idx += n_elt;
1884 while (--n_elt != 0)
1885 {
1886 --idx;
1887
1888 if (idx->shdr != NULL
1889 && (s = idx->shdr->bfd_section) != NULL
1890 && elf_next_in_group (s) != NULL)
1891 {
1892 elf_next_in_group (hdr->bfd_section) = s;
1893 break;
1894 }
1895 }
1896 }
1897 break;
1898
1899 default:
1900 /* Possibly an attributes section. */
1901 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1902 || hdr->sh_type == bed->obj_attrs_section_type)
1903 {
1904 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1905 return FALSE;
1906 _bfd_elf_parse_attributes (abfd, hdr);
1907 return TRUE;
1908 }
1909
1910 /* Check for any processor-specific section types. */
1911 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1912 return TRUE;
1913
1914 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1915 {
1916 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1917 /* FIXME: How to properly handle allocated section reserved
1918 for applications? */
1919 (*_bfd_error_handler)
1920 (_("%B: don't know how to handle allocated, application "
1921 "specific section `%s' [0x%8x]"),
1922 abfd, name, hdr->sh_type);
1923 else
1924 /* Allow sections reserved for applications. */
1925 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1926 shindex);
1927 }
1928 else if (hdr->sh_type >= SHT_LOPROC
1929 && hdr->sh_type <= SHT_HIPROC)
1930 /* FIXME: We should handle this section. */
1931 (*_bfd_error_handler)
1932 (_("%B: don't know how to handle processor specific section "
1933 "`%s' [0x%8x]"),
1934 abfd, name, hdr->sh_type);
1935 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1936 {
1937 /* Unrecognised OS-specific sections. */
1938 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1939 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1940 required to correctly process the section and the file should
1941 be rejected with an error message. */
1942 (*_bfd_error_handler)
1943 (_("%B: don't know how to handle OS specific section "
1944 "`%s' [0x%8x]"),
1945 abfd, name, hdr->sh_type);
1946 else
1947 /* Otherwise it should be processed. */
1948 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1949 }
1950 else
1951 /* FIXME: We should handle this section. */
1952 (*_bfd_error_handler)
1953 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1954 abfd, name, hdr->sh_type);
1955
1956 return FALSE;
1957 }
1958
1959 return TRUE;
1960 }
1961
1962 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1963 Return SEC for sections that have no elf section, and NULL on error. */
1964
1965 asection *
1966 bfd_section_from_r_symndx (bfd *abfd,
1967 struct sym_sec_cache *cache,
1968 asection *sec,
1969 unsigned long r_symndx)
1970 {
1971 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1972 asection *s;
1973
1974 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1975 {
1976 Elf_Internal_Shdr *symtab_hdr;
1977 unsigned char esym[sizeof (Elf64_External_Sym)];
1978 Elf_External_Sym_Shndx eshndx;
1979 Elf_Internal_Sym isym;
1980
1981 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1982 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1983 &isym, esym, &eshndx) == NULL)
1984 return NULL;
1985
1986 if (cache->abfd != abfd)
1987 {
1988 memset (cache->indx, -1, sizeof (cache->indx));
1989 cache->abfd = abfd;
1990 }
1991 cache->indx[ent] = r_symndx;
1992 cache->shndx[ent] = isym.st_shndx;
1993 }
1994
1995 s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
1996 if (s != NULL)
1997 return s;
1998
1999 return sec;
2000 }
2001
2002 /* Given an ELF section number, retrieve the corresponding BFD
2003 section. */
2004
2005 asection *
2006 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2007 {
2008 if (index >= elf_numsections (abfd))
2009 return NULL;
2010 return elf_elfsections (abfd)[index]->bfd_section;
2011 }
2012
2013 static const struct bfd_elf_special_section special_sections_b[] =
2014 {
2015 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2016 { NULL, 0, 0, 0, 0 }
2017 };
2018
2019 static const struct bfd_elf_special_section special_sections_c[] =
2020 {
2021 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2022 { NULL, 0, 0, 0, 0 }
2023 };
2024
2025 static const struct bfd_elf_special_section special_sections_d[] =
2026 {
2027 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2028 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2029 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2030 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2031 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2032 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2033 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2034 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2035 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2036 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2037 { NULL, 0, 0, 0, 0 }
2038 };
2039
2040 static const struct bfd_elf_special_section special_sections_f[] =
2041 {
2042 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2043 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2044 { NULL, 0, 0, 0, 0 }
2045 };
2046
2047 static const struct bfd_elf_special_section special_sections_g[] =
2048 {
2049 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2050 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2051 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2052 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2053 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2054 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2055 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2056 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2057 { NULL, 0, 0, 0, 0 }
2058 };
2059
2060 static const struct bfd_elf_special_section special_sections_h[] =
2061 {
2062 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2063 { NULL, 0, 0, 0, 0 }
2064 };
2065
2066 static const struct bfd_elf_special_section special_sections_i[] =
2067 {
2068 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2069 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2070 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2071 { NULL, 0, 0, 0, 0 }
2072 };
2073
2074 static const struct bfd_elf_special_section special_sections_l[] =
2075 {
2076 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2077 { NULL, 0, 0, 0, 0 }
2078 };
2079
2080 static const struct bfd_elf_special_section special_sections_n[] =
2081 {
2082 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2083 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2084 { NULL, 0, 0, 0, 0 }
2085 };
2086
2087 static const struct bfd_elf_special_section special_sections_p[] =
2088 {
2089 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2090 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2091 { NULL, 0, 0, 0, 0 }
2092 };
2093
2094 static const struct bfd_elf_special_section special_sections_r[] =
2095 {
2096 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2097 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2098 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2099 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2100 { NULL, 0, 0, 0, 0 }
2101 };
2102
2103 static const struct bfd_elf_special_section special_sections_s[] =
2104 {
2105 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2106 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2107 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2108 /* See struct bfd_elf_special_section declaration for the semantics of
2109 this special case where .prefix_length != strlen (.prefix). */
2110 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2111 { NULL, 0, 0, 0, 0 }
2112 };
2113
2114 static const struct bfd_elf_special_section special_sections_t[] =
2115 {
2116 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2117 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2118 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2119 { NULL, 0, 0, 0, 0 }
2120 };
2121
2122 static const struct bfd_elf_special_section special_sections_z[] =
2123 {
2124 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2125 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2126 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2127 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2128 { NULL, 0, 0, 0, 0 }
2129 };
2130
2131 static const struct bfd_elf_special_section *special_sections[] =
2132 {
2133 special_sections_b, /* 'b' */
2134 special_sections_c, /* 'c' */
2135 special_sections_d, /* 'd' */
2136 NULL, /* 'e' */
2137 special_sections_f, /* 'f' */
2138 special_sections_g, /* 'g' */
2139 special_sections_h, /* 'h' */
2140 special_sections_i, /* 'i' */
2141 NULL, /* 'j' */
2142 NULL, /* 'k' */
2143 special_sections_l, /* 'l' */
2144 NULL, /* 'm' */
2145 special_sections_n, /* 'n' */
2146 NULL, /* 'o' */
2147 special_sections_p, /* 'p' */
2148 NULL, /* 'q' */
2149 special_sections_r, /* 'r' */
2150 special_sections_s, /* 's' */
2151 special_sections_t, /* 't' */
2152 NULL, /* 'u' */
2153 NULL, /* 'v' */
2154 NULL, /* 'w' */
2155 NULL, /* 'x' */
2156 NULL, /* 'y' */
2157 special_sections_z /* 'z' */
2158 };
2159
2160 const struct bfd_elf_special_section *
2161 _bfd_elf_get_special_section (const char *name,
2162 const struct bfd_elf_special_section *spec,
2163 unsigned int rela)
2164 {
2165 int i;
2166 int len;
2167
2168 len = strlen (name);
2169
2170 for (i = 0; spec[i].prefix != NULL; i++)
2171 {
2172 int suffix_len;
2173 int prefix_len = spec[i].prefix_length;
2174
2175 if (len < prefix_len)
2176 continue;
2177 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2178 continue;
2179
2180 suffix_len = spec[i].suffix_length;
2181 if (suffix_len <= 0)
2182 {
2183 if (name[prefix_len] != 0)
2184 {
2185 if (suffix_len == 0)
2186 continue;
2187 if (name[prefix_len] != '.'
2188 && (suffix_len == -2
2189 || (rela && spec[i].type == SHT_REL)))
2190 continue;
2191 }
2192 }
2193 else
2194 {
2195 if (len < prefix_len + suffix_len)
2196 continue;
2197 if (memcmp (name + len - suffix_len,
2198 spec[i].prefix + prefix_len,
2199 suffix_len) != 0)
2200 continue;
2201 }
2202 return &spec[i];
2203 }
2204
2205 return NULL;
2206 }
2207
2208 const struct bfd_elf_special_section *
2209 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2210 {
2211 int i;
2212 const struct bfd_elf_special_section *spec;
2213 const struct elf_backend_data *bed;
2214
2215 /* See if this is one of the special sections. */
2216 if (sec->name == NULL)
2217 return NULL;
2218
2219 bed = get_elf_backend_data (abfd);
2220 spec = bed->special_sections;
2221 if (spec)
2222 {
2223 spec = _bfd_elf_get_special_section (sec->name,
2224 bed->special_sections,
2225 sec->use_rela_p);
2226 if (spec != NULL)
2227 return spec;
2228 }
2229
2230 if (sec->name[0] != '.')
2231 return NULL;
2232
2233 i = sec->name[1] - 'b';
2234 if (i < 0 || i > 'z' - 'b')
2235 return NULL;
2236
2237 spec = special_sections[i];
2238
2239 if (spec == NULL)
2240 return NULL;
2241
2242 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2243 }
2244
2245 bfd_boolean
2246 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2247 {
2248 struct bfd_elf_section_data *sdata;
2249 const struct elf_backend_data *bed;
2250 const struct bfd_elf_special_section *ssect;
2251
2252 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2253 if (sdata == NULL)
2254 {
2255 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2256 if (sdata == NULL)
2257 return FALSE;
2258 sec->used_by_bfd = sdata;
2259 }
2260
2261 /* Indicate whether or not this section should use RELA relocations. */
2262 bed = get_elf_backend_data (abfd);
2263 sec->use_rela_p = bed->default_use_rela_p;
2264
2265 /* When we read a file, we don't need to set ELF section type and
2266 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2267 anyway. We will set ELF section type and flags for all linker
2268 created sections. If user specifies BFD section flags, we will
2269 set ELF section type and flags based on BFD section flags in
2270 elf_fake_sections. */
2271 if ((!sec->flags && abfd->direction != read_direction)
2272 || (sec->flags & SEC_LINKER_CREATED) != 0)
2273 {
2274 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2275 if (ssect != NULL)
2276 {
2277 elf_section_type (sec) = ssect->type;
2278 elf_section_flags (sec) = ssect->attr;
2279 }
2280 }
2281
2282 return _bfd_generic_new_section_hook (abfd, sec);
2283 }
2284
2285 /* Create a new bfd section from an ELF program header.
2286
2287 Since program segments have no names, we generate a synthetic name
2288 of the form segment<NUM>, where NUM is generally the index in the
2289 program header table. For segments that are split (see below) we
2290 generate the names segment<NUM>a and segment<NUM>b.
2291
2292 Note that some program segments may have a file size that is different than
2293 (less than) the memory size. All this means is that at execution the
2294 system must allocate the amount of memory specified by the memory size,
2295 but only initialize it with the first "file size" bytes read from the
2296 file. This would occur for example, with program segments consisting
2297 of combined data+bss.
2298
2299 To handle the above situation, this routine generates TWO bfd sections
2300 for the single program segment. The first has the length specified by
2301 the file size of the segment, and the second has the length specified
2302 by the difference between the two sizes. In effect, the segment is split
2303 into its initialized and uninitialized parts.
2304
2305 */
2306
2307 bfd_boolean
2308 _bfd_elf_make_section_from_phdr (bfd *abfd,
2309 Elf_Internal_Phdr *hdr,
2310 int index,
2311 const char *typename)
2312 {
2313 asection *newsect;
2314 char *name;
2315 char namebuf[64];
2316 size_t len;
2317 int split;
2318
2319 split = ((hdr->p_memsz > 0)
2320 && (hdr->p_filesz > 0)
2321 && (hdr->p_memsz > hdr->p_filesz));
2322
2323 if (hdr->p_filesz > 0)
2324 {
2325 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2326 len = strlen (namebuf) + 1;
2327 name = bfd_alloc (abfd, len);
2328 if (!name)
2329 return FALSE;
2330 memcpy (name, namebuf, len);
2331 newsect = bfd_make_section (abfd, name);
2332 if (newsect == NULL)
2333 return FALSE;
2334 newsect->vma = hdr->p_vaddr;
2335 newsect->lma = hdr->p_paddr;
2336 newsect->size = hdr->p_filesz;
2337 newsect->filepos = hdr->p_offset;
2338 newsect->flags |= SEC_HAS_CONTENTS;
2339 newsect->alignment_power = bfd_log2 (hdr->p_align);
2340 if (hdr->p_type == PT_LOAD)
2341 {
2342 newsect->flags |= SEC_ALLOC;
2343 newsect->flags |= SEC_LOAD;
2344 if (hdr->p_flags & PF_X)
2345 {
2346 /* FIXME: all we known is that it has execute PERMISSION,
2347 may be data. */
2348 newsect->flags |= SEC_CODE;
2349 }
2350 }
2351 if (!(hdr->p_flags & PF_W))
2352 {
2353 newsect->flags |= SEC_READONLY;
2354 }
2355 }
2356
2357 if (hdr->p_memsz > hdr->p_filesz)
2358 {
2359 bfd_vma align;
2360
2361 sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : "");
2362 len = strlen (namebuf) + 1;
2363 name = bfd_alloc (abfd, len);
2364 if (!name)
2365 return FALSE;
2366 memcpy (name, namebuf, len);
2367 newsect = bfd_make_section (abfd, name);
2368 if (newsect == NULL)
2369 return FALSE;
2370 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2371 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2372 newsect->size = hdr->p_memsz - hdr->p_filesz;
2373 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2374 align = newsect->vma & -newsect->vma;
2375 if (align == 0 || align > hdr->p_align)
2376 align = hdr->p_align;
2377 newsect->alignment_power = bfd_log2 (align);
2378 if (hdr->p_type == PT_LOAD)
2379 {
2380 /* Hack for gdb. Segments that have not been modified do
2381 not have their contents written to a core file, on the
2382 assumption that a debugger can find the contents in the
2383 executable. We flag this case by setting the fake
2384 section size to zero. Note that "real" bss sections will
2385 always have their contents dumped to the core file. */
2386 if (bfd_get_format (abfd) == bfd_core)
2387 newsect->size = 0;
2388 newsect->flags |= SEC_ALLOC;
2389 if (hdr->p_flags & PF_X)
2390 newsect->flags |= SEC_CODE;
2391 }
2392 if (!(hdr->p_flags & PF_W))
2393 newsect->flags |= SEC_READONLY;
2394 }
2395
2396 return TRUE;
2397 }
2398
2399 bfd_boolean
2400 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2401 {
2402 const struct elf_backend_data *bed;
2403
2404 switch (hdr->p_type)
2405 {
2406 case PT_NULL:
2407 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2408
2409 case PT_LOAD:
2410 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2411
2412 case PT_DYNAMIC:
2413 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2414
2415 case PT_INTERP:
2416 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2417
2418 case PT_NOTE:
2419 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2420 return FALSE;
2421 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2422 return FALSE;
2423 return TRUE;
2424
2425 case PT_SHLIB:
2426 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2427
2428 case PT_PHDR:
2429 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2430
2431 case PT_GNU_EH_FRAME:
2432 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2433 "eh_frame_hdr");
2434
2435 case PT_GNU_STACK:
2436 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2437
2438 case PT_GNU_RELRO:
2439 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2440
2441 default:
2442 /* Check for any processor-specific program segment types. */
2443 bed = get_elf_backend_data (abfd);
2444 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2445 }
2446 }
2447
2448 /* Initialize REL_HDR, the section-header for new section, containing
2449 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2450 relocations; otherwise, we use REL relocations. */
2451
2452 bfd_boolean
2453 _bfd_elf_init_reloc_shdr (bfd *abfd,
2454 Elf_Internal_Shdr *rel_hdr,
2455 asection *asect,
2456 bfd_boolean use_rela_p)
2457 {
2458 char *name;
2459 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2460 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2461
2462 name = bfd_alloc (abfd, amt);
2463 if (name == NULL)
2464 return FALSE;
2465 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2466 rel_hdr->sh_name =
2467 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2468 FALSE);
2469 if (rel_hdr->sh_name == (unsigned int) -1)
2470 return FALSE;
2471 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2472 rel_hdr->sh_entsize = (use_rela_p
2473 ? bed->s->sizeof_rela
2474 : bed->s->sizeof_rel);
2475 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2476 rel_hdr->sh_flags = 0;
2477 rel_hdr->sh_addr = 0;
2478 rel_hdr->sh_size = 0;
2479 rel_hdr->sh_offset = 0;
2480
2481 return TRUE;
2482 }
2483
2484 /* Set up an ELF internal section header for a section. */
2485
2486 static void
2487 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2488 {
2489 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2490 bfd_boolean *failedptr = failedptrarg;
2491 Elf_Internal_Shdr *this_hdr;
2492 unsigned int sh_type;
2493
2494 if (*failedptr)
2495 {
2496 /* We already failed; just get out of the bfd_map_over_sections
2497 loop. */
2498 return;
2499 }
2500
2501 this_hdr = &elf_section_data (asect)->this_hdr;
2502
2503 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2504 asect->name, FALSE);
2505 if (this_hdr->sh_name == (unsigned int) -1)
2506 {
2507 *failedptr = TRUE;
2508 return;
2509 }
2510
2511 /* Don't clear sh_flags. Assembler may set additional bits. */
2512
2513 if ((asect->flags & SEC_ALLOC) != 0
2514 || asect->user_set_vma)
2515 this_hdr->sh_addr = asect->vma;
2516 else
2517 this_hdr->sh_addr = 0;
2518
2519 this_hdr->sh_offset = 0;
2520 this_hdr->sh_size = asect->size;
2521 this_hdr->sh_link = 0;
2522 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2523 /* The sh_entsize and sh_info fields may have been set already by
2524 copy_private_section_data. */
2525
2526 this_hdr->bfd_section = asect;
2527 this_hdr->contents = NULL;
2528
2529 /* If the section type is unspecified, we set it based on
2530 asect->flags. */
2531 if ((asect->flags & SEC_GROUP) != 0)
2532 sh_type = SHT_GROUP;
2533 else if ((asect->flags & SEC_ALLOC) != 0
2534 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2535 || (asect->flags & SEC_NEVER_LOAD) != 0))
2536 sh_type = SHT_NOBITS;
2537 else
2538 sh_type = SHT_PROGBITS;
2539
2540 if (this_hdr->sh_type == SHT_NULL)
2541 this_hdr->sh_type = sh_type;
2542 else if (this_hdr->sh_type == SHT_NOBITS
2543 && sh_type == SHT_PROGBITS
2544 && (asect->flags & SEC_ALLOC) != 0)
2545 {
2546 /* Warn if we are changing a NOBITS section to PROGBITS, but
2547 allow the link to proceed. This can happen when users link
2548 non-bss input sections to bss output sections, or emit data
2549 to a bss output section via a linker script. */
2550 (*_bfd_error_handler)
2551 (_("warning: section `%A' type changed to PROGBITS"), asect);
2552 this_hdr->sh_type = sh_type;
2553 }
2554
2555 switch (this_hdr->sh_type)
2556 {
2557 default:
2558 break;
2559
2560 case SHT_STRTAB:
2561 case SHT_INIT_ARRAY:
2562 case SHT_FINI_ARRAY:
2563 case SHT_PREINIT_ARRAY:
2564 case SHT_NOTE:
2565 case SHT_NOBITS:
2566 case SHT_PROGBITS:
2567 break;
2568
2569 case SHT_HASH:
2570 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2571 break;
2572
2573 case SHT_DYNSYM:
2574 this_hdr->sh_entsize = bed->s->sizeof_sym;
2575 break;
2576
2577 case SHT_DYNAMIC:
2578 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2579 break;
2580
2581 case SHT_RELA:
2582 if (get_elf_backend_data (abfd)->may_use_rela_p)
2583 this_hdr->sh_entsize = bed->s->sizeof_rela;
2584 break;
2585
2586 case SHT_REL:
2587 if (get_elf_backend_data (abfd)->may_use_rel_p)
2588 this_hdr->sh_entsize = bed->s->sizeof_rel;
2589 break;
2590
2591 case SHT_GNU_versym:
2592 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2593 break;
2594
2595 case SHT_GNU_verdef:
2596 this_hdr->sh_entsize = 0;
2597 /* objcopy or strip will copy over sh_info, but may not set
2598 cverdefs. The linker will set cverdefs, but sh_info will be
2599 zero. */
2600 if (this_hdr->sh_info == 0)
2601 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2602 else
2603 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2604 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2605 break;
2606
2607 case SHT_GNU_verneed:
2608 this_hdr->sh_entsize = 0;
2609 /* objcopy or strip will copy over sh_info, but may not set
2610 cverrefs. The linker will set cverrefs, but sh_info will be
2611 zero. */
2612 if (this_hdr->sh_info == 0)
2613 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2614 else
2615 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2616 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2617 break;
2618
2619 case SHT_GROUP:
2620 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2621 break;
2622
2623 case SHT_GNU_HASH:
2624 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2625 break;
2626 }
2627
2628 if ((asect->flags & SEC_ALLOC) != 0)
2629 this_hdr->sh_flags |= SHF_ALLOC;
2630 if ((asect->flags & SEC_READONLY) == 0)
2631 this_hdr->sh_flags |= SHF_WRITE;
2632 if ((asect->flags & SEC_CODE) != 0)
2633 this_hdr->sh_flags |= SHF_EXECINSTR;
2634 if ((asect->flags & SEC_MERGE) != 0)
2635 {
2636 this_hdr->sh_flags |= SHF_MERGE;
2637 this_hdr->sh_entsize = asect->entsize;
2638 if ((asect->flags & SEC_STRINGS) != 0)
2639 this_hdr->sh_flags |= SHF_STRINGS;
2640 }
2641 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2642 this_hdr->sh_flags |= SHF_GROUP;
2643 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2644 {
2645 this_hdr->sh_flags |= SHF_TLS;
2646 if (asect->size == 0
2647 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2648 {
2649 struct bfd_link_order *o = asect->map_tail.link_order;
2650
2651 this_hdr->sh_size = 0;
2652 if (o != NULL)
2653 {
2654 this_hdr->sh_size = o->offset + o->size;
2655 if (this_hdr->sh_size != 0)
2656 this_hdr->sh_type = SHT_NOBITS;
2657 }
2658 }
2659 }
2660
2661 /* Check for processor-specific section types. */
2662 sh_type = this_hdr->sh_type;
2663 if (bed->elf_backend_fake_sections
2664 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2665 *failedptr = TRUE;
2666
2667 if (sh_type == SHT_NOBITS && asect->size != 0)
2668 {
2669 /* Don't change the header type from NOBITS if we are being
2670 called for objcopy --only-keep-debug. */
2671 this_hdr->sh_type = sh_type;
2672 }
2673
2674 /* If the section has relocs, set up a section header for the
2675 SHT_REL[A] section. If two relocation sections are required for
2676 this section, it is up to the processor-specific back-end to
2677 create the other. */
2678 if ((asect->flags & SEC_RELOC) != 0
2679 && !_bfd_elf_init_reloc_shdr (abfd,
2680 &elf_section_data (asect)->rel_hdr,
2681 asect,
2682 asect->use_rela_p))
2683 *failedptr = TRUE;
2684 }
2685
2686 /* Fill in the contents of a SHT_GROUP section. Called from
2687 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2688 when ELF targets use the generic linker, ld. Called for ld -r
2689 from bfd_elf_final_link. */
2690
2691 void
2692 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2693 {
2694 bfd_boolean *failedptr = failedptrarg;
2695 asection *elt, *first;
2696 unsigned char *loc;
2697 bfd_boolean gas;
2698
2699 /* Ignore linker created group section. See elfNN_ia64_object_p in
2700 elfxx-ia64.c. */
2701 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2702 || *failedptr)
2703 return;
2704
2705 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2706 {
2707 unsigned long symindx = 0;
2708
2709 /* elf_group_id will have been set up by objcopy and the
2710 generic linker. */
2711 if (elf_group_id (sec) != NULL)
2712 symindx = elf_group_id (sec)->udata.i;
2713
2714 if (symindx == 0)
2715 {
2716 /* If called from the assembler, swap_out_syms will have set up
2717 elf_section_syms. */
2718 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2719 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2720 }
2721 elf_section_data (sec)->this_hdr.sh_info = symindx;
2722 }
2723 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2724 {
2725 /* The ELF backend linker sets sh_info to -2 when the group
2726 signature symbol is global, and thus the index can't be
2727 set until all local symbols are output. */
2728 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2729 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2730 unsigned long symndx = sec_data->this_hdr.sh_info;
2731 unsigned long extsymoff = 0;
2732 struct elf_link_hash_entry *h;
2733
2734 if (!elf_bad_symtab (igroup->owner))
2735 {
2736 Elf_Internal_Shdr *symtab_hdr;
2737
2738 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2739 extsymoff = symtab_hdr->sh_info;
2740 }
2741 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2742 while (h->root.type == bfd_link_hash_indirect
2743 || h->root.type == bfd_link_hash_warning)
2744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2745
2746 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2747 }
2748
2749 /* The contents won't be allocated for "ld -r" or objcopy. */
2750 gas = TRUE;
2751 if (sec->contents == NULL)
2752 {
2753 gas = FALSE;
2754 sec->contents = bfd_alloc (abfd, sec->size);
2755
2756 /* Arrange for the section to be written out. */
2757 elf_section_data (sec)->this_hdr.contents = sec->contents;
2758 if (sec->contents == NULL)
2759 {
2760 *failedptr = TRUE;
2761 return;
2762 }
2763 }
2764
2765 loc = sec->contents + sec->size;
2766
2767 /* Get the pointer to the first section in the group that gas
2768 squirreled away here. objcopy arranges for this to be set to the
2769 start of the input section group. */
2770 first = elt = elf_next_in_group (sec);
2771
2772 /* First element is a flag word. Rest of section is elf section
2773 indices for all the sections of the group. Write them backwards
2774 just to keep the group in the same order as given in .section
2775 directives, not that it matters. */
2776 while (elt != NULL)
2777 {
2778 asection *s;
2779 unsigned int idx;
2780
2781 s = elt;
2782 if (! elf_discarded_section (s))
2783 {
2784 loc -= 4;
2785 if (!gas)
2786 s = s->output_section;
2787 idx = 0;
2788 if (s != NULL)
2789 idx = elf_section_data (s)->this_idx;
2790 H_PUT_32 (abfd, idx, loc);
2791 }
2792 elt = elf_next_in_group (elt);
2793 if (elt == first)
2794 break;
2795 }
2796
2797 if ((loc -= 4) != sec->contents)
2798 abort ();
2799
2800 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2801 }
2802
2803 /* Assign all ELF section numbers. The dummy first section is handled here
2804 too. The link/info pointers for the standard section types are filled
2805 in here too, while we're at it. */
2806
2807 static bfd_boolean
2808 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2809 {
2810 struct elf_obj_tdata *t = elf_tdata (abfd);
2811 asection *sec;
2812 unsigned int section_number, secn;
2813 Elf_Internal_Shdr **i_shdrp;
2814 struct bfd_elf_section_data *d;
2815
2816 section_number = 1;
2817
2818 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2819
2820 /* SHT_GROUP sections are in relocatable files only. */
2821 if (link_info == NULL || link_info->relocatable)
2822 {
2823 /* Put SHT_GROUP sections first. */
2824 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2825 {
2826 d = elf_section_data (sec);
2827
2828 if (d->this_hdr.sh_type == SHT_GROUP)
2829 {
2830 if (sec->flags & SEC_LINKER_CREATED)
2831 {
2832 /* Remove the linker created SHT_GROUP sections. */
2833 bfd_section_list_remove (abfd, sec);
2834 abfd->section_count--;
2835 }
2836 else
2837 d->this_idx = section_number++;
2838 }
2839 }
2840 }
2841
2842 for (sec = abfd->sections; sec; sec = sec->next)
2843 {
2844 d = elf_section_data (sec);
2845
2846 if (d->this_hdr.sh_type != SHT_GROUP)
2847 d->this_idx = section_number++;
2848 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2849 if ((sec->flags & SEC_RELOC) == 0)
2850 d->rel_idx = 0;
2851 else
2852 {
2853 d->rel_idx = section_number++;
2854 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2855 }
2856
2857 if (d->rel_hdr2)
2858 {
2859 d->rel_idx2 = section_number++;
2860 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2861 }
2862 else
2863 d->rel_idx2 = 0;
2864 }
2865
2866 t->shstrtab_section = section_number++;
2867 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2868 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2869
2870 if (bfd_get_symcount (abfd) > 0)
2871 {
2872 t->symtab_section = section_number++;
2873 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2874 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2875 {
2876 t->symtab_shndx_section = section_number++;
2877 t->symtab_shndx_hdr.sh_name
2878 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2879 ".symtab_shndx", FALSE);
2880 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2881 return FALSE;
2882 }
2883 t->strtab_section = section_number++;
2884 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2885 }
2886
2887 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2888 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2889
2890 elf_numsections (abfd) = section_number;
2891 elf_elfheader (abfd)->e_shnum = section_number;
2892
2893 /* Set up the list of section header pointers, in agreement with the
2894 indices. */
2895 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2896 if (i_shdrp == NULL)
2897 return FALSE;
2898
2899 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2900 if (i_shdrp[0] == NULL)
2901 {
2902 bfd_release (abfd, i_shdrp);
2903 return FALSE;
2904 }
2905
2906 elf_elfsections (abfd) = i_shdrp;
2907
2908 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2909 if (bfd_get_symcount (abfd) > 0)
2910 {
2911 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2912 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
2913 {
2914 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2915 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2916 }
2917 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2918 t->symtab_hdr.sh_link = t->strtab_section;
2919 }
2920
2921 for (sec = abfd->sections; sec; sec = sec->next)
2922 {
2923 struct bfd_elf_section_data *d = elf_section_data (sec);
2924 asection *s;
2925 const char *name;
2926
2927 i_shdrp[d->this_idx] = &d->this_hdr;
2928 if (d->rel_idx != 0)
2929 i_shdrp[d->rel_idx] = &d->rel_hdr;
2930 if (d->rel_idx2 != 0)
2931 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2932
2933 /* Fill in the sh_link and sh_info fields while we're at it. */
2934
2935 /* sh_link of a reloc section is the section index of the symbol
2936 table. sh_info is the section index of the section to which
2937 the relocation entries apply. */
2938 if (d->rel_idx != 0)
2939 {
2940 d->rel_hdr.sh_link = t->symtab_section;
2941 d->rel_hdr.sh_info = d->this_idx;
2942 }
2943 if (d->rel_idx2 != 0)
2944 {
2945 d->rel_hdr2->sh_link = t->symtab_section;
2946 d->rel_hdr2->sh_info = d->this_idx;
2947 }
2948
2949 /* We need to set up sh_link for SHF_LINK_ORDER. */
2950 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2951 {
2952 s = elf_linked_to_section (sec);
2953 if (s)
2954 {
2955 /* elf_linked_to_section points to the input section. */
2956 if (link_info != NULL)
2957 {
2958 /* Check discarded linkonce section. */
2959 if (elf_discarded_section (s))
2960 {
2961 asection *kept;
2962 (*_bfd_error_handler)
2963 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2964 abfd, d->this_hdr.bfd_section,
2965 s, s->owner);
2966 /* Point to the kept section if it has the same
2967 size as the discarded one. */
2968 kept = _bfd_elf_check_kept_section (s, link_info);
2969 if (kept == NULL)
2970 {
2971 bfd_set_error (bfd_error_bad_value);
2972 return FALSE;
2973 }
2974 s = kept;
2975 }
2976
2977 s = s->output_section;
2978 BFD_ASSERT (s != NULL);
2979 }
2980 else
2981 {
2982 /* Handle objcopy. */
2983 if (s->output_section == NULL)
2984 {
2985 (*_bfd_error_handler)
2986 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2987 abfd, d->this_hdr.bfd_section, s, s->owner);
2988 bfd_set_error (bfd_error_bad_value);
2989 return FALSE;
2990 }
2991 s = s->output_section;
2992 }
2993 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2994 }
2995 else
2996 {
2997 /* PR 290:
2998 The Intel C compiler generates SHT_IA_64_UNWIND with
2999 SHF_LINK_ORDER. But it doesn't set the sh_link or
3000 sh_info fields. Hence we could get the situation
3001 where s is NULL. */
3002 const struct elf_backend_data *bed
3003 = get_elf_backend_data (abfd);
3004 if (bed->link_order_error_handler)
3005 bed->link_order_error_handler
3006 (_("%B: warning: sh_link not set for section `%A'"),
3007 abfd, sec);
3008 }
3009 }
3010
3011 switch (d->this_hdr.sh_type)
3012 {
3013 case SHT_REL:
3014 case SHT_RELA:
3015 /* A reloc section which we are treating as a normal BFD
3016 section. sh_link is the section index of the symbol
3017 table. sh_info is the section index of the section to
3018 which the relocation entries apply. We assume that an
3019 allocated reloc section uses the dynamic symbol table.
3020 FIXME: How can we be sure? */
3021 s = bfd_get_section_by_name (abfd, ".dynsym");
3022 if (s != NULL)
3023 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3024
3025 /* We look up the section the relocs apply to by name. */
3026 name = sec->name;
3027 if (d->this_hdr.sh_type == SHT_REL)
3028 name += 4;
3029 else
3030 name += 5;
3031 s = bfd_get_section_by_name (abfd, name);
3032 if (s != NULL)
3033 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3034 break;
3035
3036 case SHT_STRTAB:
3037 /* We assume that a section named .stab*str is a stabs
3038 string section. We look for a section with the same name
3039 but without the trailing ``str'', and set its sh_link
3040 field to point to this section. */
3041 if (CONST_STRNEQ (sec->name, ".stab")
3042 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3043 {
3044 size_t len;
3045 char *alc;
3046
3047 len = strlen (sec->name);
3048 alc = bfd_malloc (len - 2);
3049 if (alc == NULL)
3050 return FALSE;
3051 memcpy (alc, sec->name, len - 3);
3052 alc[len - 3] = '\0';
3053 s = bfd_get_section_by_name (abfd, alc);
3054 free (alc);
3055 if (s != NULL)
3056 {
3057 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3058
3059 /* This is a .stab section. */
3060 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3061 elf_section_data (s)->this_hdr.sh_entsize
3062 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3063 }
3064 }
3065 break;
3066
3067 case SHT_DYNAMIC:
3068 case SHT_DYNSYM:
3069 case SHT_GNU_verneed:
3070 case SHT_GNU_verdef:
3071 /* sh_link is the section header index of the string table
3072 used for the dynamic entries, or the symbol table, or the
3073 version strings. */
3074 s = bfd_get_section_by_name (abfd, ".dynstr");
3075 if (s != NULL)
3076 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3077 break;
3078
3079 case SHT_GNU_LIBLIST:
3080 /* sh_link is the section header index of the prelink library
3081 list used for the dynamic entries, or the symbol table, or
3082 the version strings. */
3083 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3084 ? ".dynstr" : ".gnu.libstr");
3085 if (s != NULL)
3086 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3087 break;
3088
3089 case SHT_HASH:
3090 case SHT_GNU_HASH:
3091 case SHT_GNU_versym:
3092 /* sh_link is the section header index of the symbol table
3093 this hash table or version table is for. */
3094 s = bfd_get_section_by_name (abfd, ".dynsym");
3095 if (s != NULL)
3096 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3097 break;
3098
3099 case SHT_GROUP:
3100 d->this_hdr.sh_link = t->symtab_section;
3101 }
3102 }
3103
3104 for (secn = 1; secn < section_number; ++secn)
3105 if (i_shdrp[secn] == NULL)
3106 i_shdrp[secn] = i_shdrp[0];
3107 else
3108 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3109 i_shdrp[secn]->sh_name);
3110 return TRUE;
3111 }
3112
3113 /* Map symbol from it's internal number to the external number, moving
3114 all local symbols to be at the head of the list. */
3115
3116 static bfd_boolean
3117 sym_is_global (bfd *abfd, asymbol *sym)
3118 {
3119 /* If the backend has a special mapping, use it. */
3120 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3121 if (bed->elf_backend_sym_is_global)
3122 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3123
3124 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3125 || bfd_is_und_section (bfd_get_section (sym))
3126 || bfd_is_com_section (bfd_get_section (sym)));
3127 }
3128
3129 /* Don't output section symbols for sections that are not going to be
3130 output. */
3131
3132 static bfd_boolean
3133 ignore_section_sym (bfd *abfd, asymbol *sym)
3134 {
3135 return ((sym->flags & BSF_SECTION_SYM) != 0
3136 && !(sym->section->owner == abfd
3137 || (sym->section->output_section->owner == abfd
3138 && sym->section->output_offset == 0)));
3139 }
3140
3141 static bfd_boolean
3142 elf_map_symbols (bfd *abfd)
3143 {
3144 unsigned int symcount = bfd_get_symcount (abfd);
3145 asymbol **syms = bfd_get_outsymbols (abfd);
3146 asymbol **sect_syms;
3147 unsigned int num_locals = 0;
3148 unsigned int num_globals = 0;
3149 unsigned int num_locals2 = 0;
3150 unsigned int num_globals2 = 0;
3151 int max_index = 0;
3152 unsigned int idx;
3153 asection *asect;
3154 asymbol **new_syms;
3155
3156 #ifdef DEBUG
3157 fprintf (stderr, "elf_map_symbols\n");
3158 fflush (stderr);
3159 #endif
3160
3161 for (asect = abfd->sections; asect; asect = asect->next)
3162 {
3163 if (max_index < asect->index)
3164 max_index = asect->index;
3165 }
3166
3167 max_index++;
3168 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3169 if (sect_syms == NULL)
3170 return FALSE;
3171 elf_section_syms (abfd) = sect_syms;
3172 elf_num_section_syms (abfd) = max_index;
3173
3174 /* Init sect_syms entries for any section symbols we have already
3175 decided to output. */
3176 for (idx = 0; idx < symcount; idx++)
3177 {
3178 asymbol *sym = syms[idx];
3179
3180 if ((sym->flags & BSF_SECTION_SYM) != 0
3181 && sym->value == 0
3182 && !ignore_section_sym (abfd, sym))
3183 {
3184 asection *sec = sym->section;
3185
3186 if (sec->owner != abfd)
3187 sec = sec->output_section;
3188
3189 sect_syms[sec->index] = syms[idx];
3190 }
3191 }
3192
3193 /* Classify all of the symbols. */
3194 for (idx = 0; idx < symcount; idx++)
3195 {
3196 if (ignore_section_sym (abfd, syms[idx]))
3197 continue;
3198 if (!sym_is_global (abfd, syms[idx]))
3199 num_locals++;
3200 else
3201 num_globals++;
3202 }
3203
3204 /* We will be adding a section symbol for each normal BFD section. Most
3205 sections will already have a section symbol in outsymbols, but
3206 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3207 at least in that case. */
3208 for (asect = abfd->sections; asect; asect = asect->next)
3209 {
3210 if (sect_syms[asect->index] == NULL)
3211 {
3212 if (!sym_is_global (abfd, asect->symbol))
3213 num_locals++;
3214 else
3215 num_globals++;
3216 }
3217 }
3218
3219 /* Now sort the symbols so the local symbols are first. */
3220 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3221
3222 if (new_syms == NULL)
3223 return FALSE;
3224
3225 for (idx = 0; idx < symcount; idx++)
3226 {
3227 asymbol *sym = syms[idx];
3228 unsigned int i;
3229
3230 if (ignore_section_sym (abfd, sym))
3231 continue;
3232 if (!sym_is_global (abfd, sym))
3233 i = num_locals2++;
3234 else
3235 i = num_locals + num_globals2++;
3236 new_syms[i] = sym;
3237 sym->udata.i = i + 1;
3238 }
3239 for (asect = abfd->sections; asect; asect = asect->next)
3240 {
3241 if (sect_syms[asect->index] == NULL)
3242 {
3243 asymbol *sym = asect->symbol;
3244 unsigned int i;
3245
3246 sect_syms[asect->index] = sym;
3247 if (!sym_is_global (abfd, sym))
3248 i = num_locals2++;
3249 else
3250 i = num_locals + num_globals2++;
3251 new_syms[i] = sym;
3252 sym->udata.i = i + 1;
3253 }
3254 }
3255
3256 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3257
3258 elf_num_locals (abfd) = num_locals;
3259 elf_num_globals (abfd) = num_globals;
3260 return TRUE;
3261 }
3262
3263 /* Align to the maximum file alignment that could be required for any
3264 ELF data structure. */
3265
3266 static inline file_ptr
3267 align_file_position (file_ptr off, int align)
3268 {
3269 return (off + align - 1) & ~(align - 1);
3270 }
3271
3272 /* Assign a file position to a section, optionally aligning to the
3273 required section alignment. */
3274
3275 file_ptr
3276 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3277 file_ptr offset,
3278 bfd_boolean align)
3279 {
3280 if (align && i_shdrp->sh_addralign > 1)
3281 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3282 i_shdrp->sh_offset = offset;
3283 if (i_shdrp->bfd_section != NULL)
3284 i_shdrp->bfd_section->filepos = offset;
3285 if (i_shdrp->sh_type != SHT_NOBITS)
3286 offset += i_shdrp->sh_size;
3287 return offset;
3288 }
3289
3290 /* Compute the file positions we are going to put the sections at, and
3291 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3292 is not NULL, this is being called by the ELF backend linker. */
3293
3294 bfd_boolean
3295 _bfd_elf_compute_section_file_positions (bfd *abfd,
3296 struct bfd_link_info *link_info)
3297 {
3298 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3299 bfd_boolean failed;
3300 struct bfd_strtab_hash *strtab = NULL;
3301 Elf_Internal_Shdr *shstrtab_hdr;
3302
3303 if (abfd->output_has_begun)
3304 return TRUE;
3305
3306 /* Do any elf backend specific processing first. */
3307 if (bed->elf_backend_begin_write_processing)
3308 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3309
3310 if (! prep_headers (abfd))
3311 return FALSE;
3312
3313 /* Post process the headers if necessary. */
3314 if (bed->elf_backend_post_process_headers)
3315 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3316
3317 failed = FALSE;
3318 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3319 if (failed)
3320 return FALSE;
3321
3322 if (!assign_section_numbers (abfd, link_info))
3323 return FALSE;
3324
3325 /* The backend linker builds symbol table information itself. */
3326 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3327 {
3328 /* Non-zero if doing a relocatable link. */
3329 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3330
3331 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3332 return FALSE;
3333 }
3334
3335 if (link_info == NULL)
3336 {
3337 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3338 if (failed)
3339 return FALSE;
3340 }
3341
3342 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3343 /* sh_name was set in prep_headers. */
3344 shstrtab_hdr->sh_type = SHT_STRTAB;
3345 shstrtab_hdr->sh_flags = 0;
3346 shstrtab_hdr->sh_addr = 0;
3347 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3348 shstrtab_hdr->sh_entsize = 0;
3349 shstrtab_hdr->sh_link = 0;
3350 shstrtab_hdr->sh_info = 0;
3351 /* sh_offset is set in assign_file_positions_except_relocs. */
3352 shstrtab_hdr->sh_addralign = 1;
3353
3354 if (!assign_file_positions_except_relocs (abfd, link_info))
3355 return FALSE;
3356
3357 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3358 {
3359 file_ptr off;
3360 Elf_Internal_Shdr *hdr;
3361
3362 off = elf_tdata (abfd)->next_file_pos;
3363
3364 hdr = &elf_tdata (abfd)->symtab_hdr;
3365 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3366
3367 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3368 if (hdr->sh_size != 0)
3369 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3370
3371 hdr = &elf_tdata (abfd)->strtab_hdr;
3372 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3373
3374 elf_tdata (abfd)->next_file_pos = off;
3375
3376 /* Now that we know where the .strtab section goes, write it
3377 out. */
3378 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3379 || ! _bfd_stringtab_emit (abfd, strtab))
3380 return FALSE;
3381 _bfd_stringtab_free (strtab);
3382 }
3383
3384 abfd->output_has_begun = TRUE;
3385
3386 return TRUE;
3387 }
3388
3389 /* Make an initial estimate of the size of the program header. If we
3390 get the number wrong here, we'll redo section placement. */
3391
3392 static bfd_size_type
3393 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3394 {
3395 size_t segs;
3396 asection *s;
3397 const struct elf_backend_data *bed;
3398
3399 /* Assume we will need exactly two PT_LOAD segments: one for text
3400 and one for data. */
3401 segs = 2;
3402
3403 s = bfd_get_section_by_name (abfd, ".interp");
3404 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3405 {
3406 /* If we have a loadable interpreter section, we need a
3407 PT_INTERP segment. In this case, assume we also need a
3408 PT_PHDR segment, although that may not be true for all
3409 targets. */
3410 segs += 2;
3411 }
3412
3413 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3414 {
3415 /* We need a PT_DYNAMIC segment. */
3416 ++segs;
3417 }
3418
3419 if (info != NULL && info->relro)
3420 {
3421 /* We need a PT_GNU_RELRO segment. */
3422 ++segs;
3423 }
3424
3425 if (elf_tdata (abfd)->eh_frame_hdr)
3426 {
3427 /* We need a PT_GNU_EH_FRAME segment. */
3428 ++segs;
3429 }
3430
3431 if (elf_tdata (abfd)->stack_flags)
3432 {
3433 /* We need a PT_GNU_STACK segment. */
3434 ++segs;
3435 }
3436
3437 for (s = abfd->sections; s != NULL; s = s->next)
3438 {
3439 if ((s->flags & SEC_LOAD) != 0
3440 && CONST_STRNEQ (s->name, ".note"))
3441 {
3442 /* We need a PT_NOTE segment. */
3443 ++segs;
3444 /* Try to create just one PT_NOTE segment
3445 for all adjacent loadable .note* sections.
3446 gABI requires that within a PT_NOTE segment
3447 (and also inside of each SHT_NOTE section)
3448 each note is padded to a multiple of 4 size,
3449 so we check whether the sections are correctly
3450 aligned. */
3451 if (s->alignment_power == 2)
3452 while (s->next != NULL
3453 && s->next->alignment_power == 2
3454 && (s->next->flags & SEC_LOAD) != 0
3455 && CONST_STRNEQ (s->next->name, ".note"))
3456 s = s->next;
3457 }
3458 }
3459
3460 for (s = abfd->sections; s != NULL; s = s->next)
3461 {
3462 if (s->flags & SEC_THREAD_LOCAL)
3463 {
3464 /* We need a PT_TLS segment. */
3465 ++segs;
3466 break;
3467 }
3468 }
3469
3470 /* Let the backend count up any program headers it might need. */
3471 bed = get_elf_backend_data (abfd);
3472 if (bed->elf_backend_additional_program_headers)
3473 {
3474 int a;
3475
3476 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3477 if (a == -1)
3478 abort ();
3479 segs += a;
3480 }
3481
3482 return segs * bed->s->sizeof_phdr;
3483 }
3484
3485 /* Find the segment that contains the output_section of section. */
3486
3487 Elf_Internal_Phdr *
3488 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3489 {
3490 struct elf_segment_map *m;
3491 Elf_Internal_Phdr *p;
3492
3493 for (m = elf_tdata (abfd)->segment_map,
3494 p = elf_tdata (abfd)->phdr;
3495 m != NULL;
3496 m = m->next, p++)
3497 {
3498 int i;
3499
3500 for (i = m->count - 1; i >= 0; i--)
3501 if (m->sections[i] == section)
3502 return p;
3503 }
3504
3505 return NULL;
3506 }
3507
3508 /* Create a mapping from a set of sections to a program segment. */
3509
3510 static struct elf_segment_map *
3511 make_mapping (bfd *abfd,
3512 asection **sections,
3513 unsigned int from,
3514 unsigned int to,
3515 bfd_boolean phdr)
3516 {
3517 struct elf_segment_map *m;
3518 unsigned int i;
3519 asection **hdrpp;
3520 bfd_size_type amt;
3521
3522 amt = sizeof (struct elf_segment_map);
3523 amt += (to - from - 1) * sizeof (asection *);
3524 m = bfd_zalloc (abfd, amt);
3525 if (m == NULL)
3526 return NULL;
3527 m->next = NULL;
3528 m->p_type = PT_LOAD;
3529 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3530 m->sections[i - from] = *hdrpp;
3531 m->count = to - from;
3532
3533 if (from == 0 && phdr)
3534 {
3535 /* Include the headers in the first PT_LOAD segment. */
3536 m->includes_filehdr = 1;
3537 m->includes_phdrs = 1;
3538 }
3539
3540 return m;
3541 }
3542
3543 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3544 on failure. */
3545
3546 struct elf_segment_map *
3547 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3548 {
3549 struct elf_segment_map *m;
3550
3551 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3552 if (m == NULL)
3553 return NULL;
3554 m->next = NULL;
3555 m->p_type = PT_DYNAMIC;
3556 m->count = 1;
3557 m->sections[0] = dynsec;
3558
3559 return m;
3560 }
3561
3562 /* Possibly add or remove segments from the segment map. */
3563
3564 static bfd_boolean
3565 elf_modify_segment_map (bfd *abfd,
3566 struct bfd_link_info *info,
3567 bfd_boolean remove_empty_load)
3568 {
3569 struct elf_segment_map **m;
3570 const struct elf_backend_data *bed;
3571
3572 /* The placement algorithm assumes that non allocated sections are
3573 not in PT_LOAD segments. We ensure this here by removing such
3574 sections from the segment map. We also remove excluded
3575 sections. Finally, any PT_LOAD segment without sections is
3576 removed. */
3577 m = &elf_tdata (abfd)->segment_map;
3578 while (*m)
3579 {
3580 unsigned int i, new_count;
3581
3582 for (new_count = 0, i = 0; i < (*m)->count; i++)
3583 {
3584 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3585 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3586 || (*m)->p_type != PT_LOAD))
3587 {
3588 (*m)->sections[new_count] = (*m)->sections[i];
3589 new_count++;
3590 }
3591 }
3592 (*m)->count = new_count;
3593
3594 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3595 *m = (*m)->next;
3596 else
3597 m = &(*m)->next;
3598 }
3599
3600 bed = get_elf_backend_data (abfd);
3601 if (bed->elf_backend_modify_segment_map != NULL)
3602 {
3603 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3604 return FALSE;
3605 }
3606
3607 return TRUE;
3608 }
3609
3610 /* Set up a mapping from BFD sections to program segments. */
3611
3612 bfd_boolean
3613 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3614 {
3615 unsigned int count;
3616 struct elf_segment_map *m;
3617 asection **sections = NULL;
3618 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3619 bfd_boolean no_user_phdrs;
3620
3621 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3622 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3623 {
3624 asection *s;
3625 unsigned int i;
3626 struct elf_segment_map *mfirst;
3627 struct elf_segment_map **pm;
3628 asection *last_hdr;
3629 bfd_vma last_size;
3630 unsigned int phdr_index;
3631 bfd_vma maxpagesize;
3632 asection **hdrpp;
3633 bfd_boolean phdr_in_segment = TRUE;
3634 bfd_boolean writable;
3635 int tls_count = 0;
3636 asection *first_tls = NULL;
3637 asection *dynsec, *eh_frame_hdr;
3638 bfd_size_type amt;
3639
3640 /* Select the allocated sections, and sort them. */
3641
3642 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3643 if (sections == NULL)
3644 goto error_return;
3645
3646 i = 0;
3647 for (s = abfd->sections; s != NULL; s = s->next)
3648 {
3649 if ((s->flags & SEC_ALLOC) != 0)
3650 {
3651 sections[i] = s;
3652 ++i;
3653 }
3654 }
3655 BFD_ASSERT (i <= bfd_count_sections (abfd));
3656 count = i;
3657
3658 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3659
3660 /* Build the mapping. */
3661
3662 mfirst = NULL;
3663 pm = &mfirst;
3664
3665 /* If we have a .interp section, then create a PT_PHDR segment for
3666 the program headers and a PT_INTERP segment for the .interp
3667 section. */
3668 s = bfd_get_section_by_name (abfd, ".interp");
3669 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3670 {
3671 amt = sizeof (struct elf_segment_map);
3672 m = bfd_zalloc (abfd, amt);
3673 if (m == NULL)
3674 goto error_return;
3675 m->next = NULL;
3676 m->p_type = PT_PHDR;
3677 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3678 m->p_flags = PF_R | PF_X;
3679 m->p_flags_valid = 1;
3680 m->includes_phdrs = 1;
3681
3682 *pm = m;
3683 pm = &m->next;
3684
3685 amt = sizeof (struct elf_segment_map);
3686 m = bfd_zalloc (abfd, amt);
3687 if (m == NULL)
3688 goto error_return;
3689 m->next = NULL;
3690 m->p_type = PT_INTERP;
3691 m->count = 1;
3692 m->sections[0] = s;
3693
3694 *pm = m;
3695 pm = &m->next;
3696 }
3697
3698 /* Look through the sections. We put sections in the same program
3699 segment when the start of the second section can be placed within
3700 a few bytes of the end of the first section. */
3701 last_hdr = NULL;
3702 last_size = 0;
3703 phdr_index = 0;
3704 maxpagesize = bed->maxpagesize;
3705 writable = FALSE;
3706 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3707 if (dynsec != NULL
3708 && (dynsec->flags & SEC_LOAD) == 0)
3709 dynsec = NULL;
3710
3711 /* Deal with -Ttext or something similar such that the first section
3712 is not adjacent to the program headers. This is an
3713 approximation, since at this point we don't know exactly how many
3714 program headers we will need. */
3715 if (count > 0)
3716 {
3717 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3718
3719 if (phdr_size == (bfd_size_type) -1)
3720 phdr_size = get_program_header_size (abfd, info);
3721 if ((abfd->flags & D_PAGED) == 0
3722 || sections[0]->lma < phdr_size
3723 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3724 phdr_in_segment = FALSE;
3725 }
3726
3727 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3728 {
3729 asection *hdr;
3730 bfd_boolean new_segment;
3731
3732 hdr = *hdrpp;
3733
3734 /* See if this section and the last one will fit in the same
3735 segment. */
3736
3737 if (last_hdr == NULL)
3738 {
3739 /* If we don't have a segment yet, then we don't need a new
3740 one (we build the last one after this loop). */
3741 new_segment = FALSE;
3742 }
3743 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3744 {
3745 /* If this section has a different relation between the
3746 virtual address and the load address, then we need a new
3747 segment. */
3748 new_segment = TRUE;
3749 }
3750 /* In the next test we have to be careful when last_hdr->lma is close
3751 to the end of the address space. If the aligned address wraps
3752 around to the start of the address space, then there are no more
3753 pages left in memory and it is OK to assume that the current
3754 section can be included in the current segment. */
3755 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3756 > last_hdr->lma)
3757 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3758 <= hdr->lma))
3759 {
3760 /* If putting this section in this segment would force us to
3761 skip a page in the segment, then we need a new segment. */
3762 new_segment = TRUE;
3763 }
3764 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3765 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3766 {
3767 /* We don't want to put a loadable section after a
3768 nonloadable section in the same segment.
3769 Consider .tbss sections as loadable for this purpose. */
3770 new_segment = TRUE;
3771 }
3772 else if ((abfd->flags & D_PAGED) == 0)
3773 {
3774 /* If the file is not demand paged, which means that we
3775 don't require the sections to be correctly aligned in the
3776 file, then there is no other reason for a new segment. */
3777 new_segment = FALSE;
3778 }
3779 else if (! writable
3780 && (hdr->flags & SEC_READONLY) == 0
3781 && (((last_hdr->lma + last_size - 1)
3782 & ~(maxpagesize - 1))
3783 != (hdr->lma & ~(maxpagesize - 1))))
3784 {
3785 /* We don't want to put a writable section in a read only
3786 segment, unless they are on the same page in memory
3787 anyhow. We already know that the last section does not
3788 bring us past the current section on the page, so the
3789 only case in which the new section is not on the same
3790 page as the previous section is when the previous section
3791 ends precisely on a page boundary. */
3792 new_segment = TRUE;
3793 }
3794 else
3795 {
3796 /* Otherwise, we can use the same segment. */
3797 new_segment = FALSE;
3798 }
3799
3800 /* Allow interested parties a chance to override our decision. */
3801 if (last_hdr != NULL
3802 && info != NULL
3803 && info->callbacks->override_segment_assignment != NULL)
3804 new_segment
3805 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3806 last_hdr,
3807 new_segment);
3808
3809 if (! new_segment)
3810 {
3811 if ((hdr->flags & SEC_READONLY) == 0)
3812 writable = TRUE;
3813 last_hdr = hdr;
3814 /* .tbss sections effectively have zero size. */
3815 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3816 != SEC_THREAD_LOCAL)
3817 last_size = hdr->size;
3818 else
3819 last_size = 0;
3820 continue;
3821 }
3822
3823 /* We need a new program segment. We must create a new program
3824 header holding all the sections from phdr_index until hdr. */
3825
3826 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3827 if (m == NULL)
3828 goto error_return;
3829
3830 *pm = m;
3831 pm = &m->next;
3832
3833 if ((hdr->flags & SEC_READONLY) == 0)
3834 writable = TRUE;
3835 else
3836 writable = FALSE;
3837
3838 last_hdr = hdr;
3839 /* .tbss sections effectively have zero size. */
3840 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3841 last_size = hdr->size;
3842 else
3843 last_size = 0;
3844 phdr_index = i;
3845 phdr_in_segment = FALSE;
3846 }
3847
3848 /* Create a final PT_LOAD program segment. */
3849 if (last_hdr != NULL)
3850 {
3851 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3852 if (m == NULL)
3853 goto error_return;
3854
3855 *pm = m;
3856 pm = &m->next;
3857 }
3858
3859 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3860 if (dynsec != NULL)
3861 {
3862 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3863 if (m == NULL)
3864 goto error_return;
3865 *pm = m;
3866 pm = &m->next;
3867 }
3868
3869 /* For each batch of consecutive loadable .note sections,
3870 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3871 because if we link together nonloadable .note sections and
3872 loadable .note sections, we will generate two .note sections
3873 in the output file. FIXME: Using names for section types is
3874 bogus anyhow. */
3875 for (s = abfd->sections; s != NULL; s = s->next)
3876 {
3877 if ((s->flags & SEC_LOAD) != 0
3878 && CONST_STRNEQ (s->name, ".note"))
3879 {
3880 asection *s2;
3881 unsigned count = 1;
3882 amt = sizeof (struct elf_segment_map);
3883 if (s->alignment_power == 2)
3884 for (s2 = s; s2->next != NULL; s2 = s2->next)
3885 {
3886 if (s2->next->alignment_power == 2
3887 && (s2->next->flags & SEC_LOAD) != 0
3888 && CONST_STRNEQ (s2->next->name, ".note")
3889 && align_power (s2->vma + s2->size, 2)
3890 == s2->next->vma)
3891 count++;
3892 else
3893 break;
3894 }
3895 amt += (count - 1) * sizeof (asection *);
3896 m = bfd_zalloc (abfd, amt);
3897 if (m == NULL)
3898 goto error_return;
3899 m->next = NULL;
3900 m->p_type = PT_NOTE;
3901 m->count = count;
3902 while (count > 1)
3903 {
3904 m->sections[m->count - count--] = s;
3905 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3906 s = s->next;
3907 }
3908 m->sections[m->count - 1] = s;
3909 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3910 *pm = m;
3911 pm = &m->next;
3912 }
3913 if (s->flags & SEC_THREAD_LOCAL)
3914 {
3915 if (! tls_count)
3916 first_tls = s;
3917 tls_count++;
3918 }
3919 }
3920
3921 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3922 if (tls_count > 0)
3923 {
3924 int i;
3925
3926 amt = sizeof (struct elf_segment_map);
3927 amt += (tls_count - 1) * sizeof (asection *);
3928 m = bfd_zalloc (abfd, amt);
3929 if (m == NULL)
3930 goto error_return;
3931 m->next = NULL;
3932 m->p_type = PT_TLS;
3933 m->count = tls_count;
3934 /* Mandated PF_R. */
3935 m->p_flags = PF_R;
3936 m->p_flags_valid = 1;
3937 for (i = 0; i < tls_count; ++i)
3938 {
3939 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3940 m->sections[i] = first_tls;
3941 first_tls = first_tls->next;
3942 }
3943
3944 *pm = m;
3945 pm = &m->next;
3946 }
3947
3948 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3949 segment. */
3950 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3951 if (eh_frame_hdr != NULL
3952 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3953 {
3954 amt = sizeof (struct elf_segment_map);
3955 m = bfd_zalloc (abfd, amt);
3956 if (m == NULL)
3957 goto error_return;
3958 m->next = NULL;
3959 m->p_type = PT_GNU_EH_FRAME;
3960 m->count = 1;
3961 m->sections[0] = eh_frame_hdr->output_section;
3962
3963 *pm = m;
3964 pm = &m->next;
3965 }
3966
3967 if (elf_tdata (abfd)->stack_flags)
3968 {
3969 amt = sizeof (struct elf_segment_map);
3970 m = bfd_zalloc (abfd, amt);
3971 if (m == NULL)
3972 goto error_return;
3973 m->next = NULL;
3974 m->p_type = PT_GNU_STACK;
3975 m->p_flags = elf_tdata (abfd)->stack_flags;
3976 m->p_flags_valid = 1;
3977
3978 *pm = m;
3979 pm = &m->next;
3980 }
3981
3982 if (info != NULL && info->relro)
3983 {
3984 for (m = mfirst; m != NULL; m = m->next)
3985 {
3986 if (m->p_type == PT_LOAD)
3987 {
3988 asection *last = m->sections[m->count - 1];
3989 bfd_vma vaddr = m->sections[0]->vma;
3990 bfd_vma filesz = last->vma - vaddr + last->size;
3991
3992 if (vaddr < info->relro_end
3993 && vaddr >= info->relro_start
3994 && (vaddr + filesz) >= info->relro_end)
3995 break;
3996 }
3997 }
3998
3999 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4000 if (m != NULL)
4001 {
4002 amt = sizeof (struct elf_segment_map);
4003 m = bfd_zalloc (abfd, amt);
4004 if (m == NULL)
4005 goto error_return;
4006 m->next = NULL;
4007 m->p_type = PT_GNU_RELRO;
4008 m->p_flags = PF_R;
4009 m->p_flags_valid = 1;
4010
4011 *pm = m;
4012 pm = &m->next;
4013 }
4014 }
4015
4016 free (sections);
4017 elf_tdata (abfd)->segment_map = mfirst;
4018 }
4019
4020 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4021 return FALSE;
4022
4023 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4024 ++count;
4025 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4026
4027 return TRUE;
4028
4029 error_return:
4030 if (sections != NULL)
4031 free (sections);
4032 return FALSE;
4033 }
4034
4035 /* Sort sections by address. */
4036
4037 static int
4038 elf_sort_sections (const void *arg1, const void *arg2)
4039 {
4040 const asection *sec1 = *(const asection **) arg1;
4041 const asection *sec2 = *(const asection **) arg2;
4042 bfd_size_type size1, size2;
4043
4044 /* Sort by LMA first, since this is the address used to
4045 place the section into a segment. */
4046 if (sec1->lma < sec2->lma)
4047 return -1;
4048 else if (sec1->lma > sec2->lma)
4049 return 1;
4050
4051 /* Then sort by VMA. Normally the LMA and the VMA will be
4052 the same, and this will do nothing. */
4053 if (sec1->vma < sec2->vma)
4054 return -1;
4055 else if (sec1->vma > sec2->vma)
4056 return 1;
4057
4058 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4059
4060 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4061
4062 if (TOEND (sec1))
4063 {
4064 if (TOEND (sec2))
4065 {
4066 /* If the indicies are the same, do not return 0
4067 here, but continue to try the next comparison. */
4068 if (sec1->target_index - sec2->target_index != 0)
4069 return sec1->target_index - sec2->target_index;
4070 }
4071 else
4072 return 1;
4073 }
4074 else if (TOEND (sec2))
4075 return -1;
4076
4077 #undef TOEND
4078
4079 /* Sort by size, to put zero sized sections
4080 before others at the same address. */
4081
4082 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4083 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4084
4085 if (size1 < size2)
4086 return -1;
4087 if (size1 > size2)
4088 return 1;
4089
4090 return sec1->target_index - sec2->target_index;
4091 }
4092
4093 /* Ian Lance Taylor writes:
4094
4095 We shouldn't be using % with a negative signed number. That's just
4096 not good. We have to make sure either that the number is not
4097 negative, or that the number has an unsigned type. When the types
4098 are all the same size they wind up as unsigned. When file_ptr is a
4099 larger signed type, the arithmetic winds up as signed long long,
4100 which is wrong.
4101
4102 What we're trying to say here is something like ``increase OFF by
4103 the least amount that will cause it to be equal to the VMA modulo
4104 the page size.'' */
4105 /* In other words, something like:
4106
4107 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4108 off_offset = off % bed->maxpagesize;
4109 if (vma_offset < off_offset)
4110 adjustment = vma_offset + bed->maxpagesize - off_offset;
4111 else
4112 adjustment = vma_offset - off_offset;
4113
4114 which can can be collapsed into the expression below. */
4115
4116 static file_ptr
4117 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4118 {
4119 return ((vma - off) % maxpagesize);
4120 }
4121
4122 static void
4123 print_segment_map (const struct elf_segment_map *m)
4124 {
4125 unsigned int j;
4126 const char *pt = get_segment_type (m->p_type);
4127 char buf[32];
4128
4129 if (pt == NULL)
4130 {
4131 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4132 sprintf (buf, "LOPROC+%7.7x",
4133 (unsigned int) (m->p_type - PT_LOPROC));
4134 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4135 sprintf (buf, "LOOS+%7.7x",
4136 (unsigned int) (m->p_type - PT_LOOS));
4137 else
4138 snprintf (buf, sizeof (buf), "%8.8x",
4139 (unsigned int) m->p_type);
4140 pt = buf;
4141 }
4142 fprintf (stderr, "%s:", pt);
4143 for (j = 0; j < m->count; j++)
4144 fprintf (stderr, " %s", m->sections [j]->name);
4145 putc ('\n',stderr);
4146 }
4147
4148 /* Assign file positions to the sections based on the mapping from
4149 sections to segments. This function also sets up some fields in
4150 the file header. */
4151
4152 static bfd_boolean
4153 assign_file_positions_for_load_sections (bfd *abfd,
4154 struct bfd_link_info *link_info)
4155 {
4156 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4157 struct elf_segment_map *m;
4158 Elf_Internal_Phdr *phdrs;
4159 Elf_Internal_Phdr *p;
4160 file_ptr off;
4161 bfd_size_type maxpagesize;
4162 unsigned int alloc;
4163 unsigned int i, j;
4164 bfd_vma header_pad = 0;
4165
4166 if (link_info == NULL
4167 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4168 return FALSE;
4169
4170 alloc = 0;
4171 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4172 {
4173 ++alloc;
4174 if (m->header_size)
4175 header_pad = m->header_size;
4176 }
4177
4178 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4179 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4180 elf_elfheader (abfd)->e_phnum = alloc;
4181
4182 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4183 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4184 else
4185 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4186 >= alloc * bed->s->sizeof_phdr);
4187
4188 if (alloc == 0)
4189 {
4190 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4191 return TRUE;
4192 }
4193
4194 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4195 see assign_file_positions_except_relocs, so make sure we have
4196 that amount allocated, with trailing space cleared.
4197 The variable alloc contains the computed need, while elf_tdata
4198 (abfd)->program_header_size contains the size used for the
4199 layout.
4200 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4201 where the layout is forced to according to a larger size in the
4202 last iterations for the testcase ld-elf/header. */
4203 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4204 == 0);
4205 phdrs = bfd_zalloc2 (abfd,
4206 (elf_tdata (abfd)->program_header_size
4207 / bed->s->sizeof_phdr),
4208 sizeof (Elf_Internal_Phdr));
4209 elf_tdata (abfd)->phdr = phdrs;
4210 if (phdrs == NULL)
4211 return FALSE;
4212
4213 maxpagesize = 1;
4214 if ((abfd->flags & D_PAGED) != 0)
4215 maxpagesize = bed->maxpagesize;
4216
4217 off = bed->s->sizeof_ehdr;
4218 off += alloc * bed->s->sizeof_phdr;
4219 if (header_pad < (bfd_vma) off)
4220 header_pad = 0;
4221 else
4222 header_pad -= off;
4223 off += header_pad;
4224
4225 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4226 m != NULL;
4227 m = m->next, p++, j++)
4228 {
4229 asection **secpp;
4230 bfd_vma off_adjust;
4231 bfd_boolean no_contents;
4232
4233 /* If elf_segment_map is not from map_sections_to_segments, the
4234 sections may not be correctly ordered. NOTE: sorting should
4235 not be done to the PT_NOTE section of a corefile, which may
4236 contain several pseudo-sections artificially created by bfd.
4237 Sorting these pseudo-sections breaks things badly. */
4238 if (m->count > 1
4239 && !(elf_elfheader (abfd)->e_type == ET_CORE
4240 && m->p_type == PT_NOTE))
4241 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4242 elf_sort_sections);
4243
4244 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4245 number of sections with contents contributing to both p_filesz
4246 and p_memsz, followed by a number of sections with no contents
4247 that just contribute to p_memsz. In this loop, OFF tracks next
4248 available file offset for PT_LOAD and PT_NOTE segments. */
4249 p->p_type = m->p_type;
4250 p->p_flags = m->p_flags;
4251
4252 if (m->count == 0)
4253 p->p_vaddr = 0;
4254 else
4255 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4256
4257 if (m->p_paddr_valid)
4258 p->p_paddr = m->p_paddr;
4259 else if (m->count == 0)
4260 p->p_paddr = 0;
4261 else
4262 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4263
4264 if (p->p_type == PT_LOAD
4265 && (abfd->flags & D_PAGED) != 0)
4266 {
4267 /* p_align in demand paged PT_LOAD segments effectively stores
4268 the maximum page size. When copying an executable with
4269 objcopy, we set m->p_align from the input file. Use this
4270 value for maxpagesize rather than bed->maxpagesize, which
4271 may be different. Note that we use maxpagesize for PT_TLS
4272 segment alignment later in this function, so we are relying
4273 on at least one PT_LOAD segment appearing before a PT_TLS
4274 segment. */
4275 if (m->p_align_valid)
4276 maxpagesize = m->p_align;
4277
4278 p->p_align = maxpagesize;
4279 }
4280 else if (m->p_align_valid)
4281 p->p_align = m->p_align;
4282 else if (m->count == 0)
4283 p->p_align = 1 << bed->s->log_file_align;
4284 else
4285 p->p_align = 0;
4286
4287 no_contents = FALSE;
4288 off_adjust = 0;
4289 if (p->p_type == PT_LOAD
4290 && m->count > 0)
4291 {
4292 bfd_size_type align;
4293 unsigned int align_power = 0;
4294
4295 if (m->p_align_valid)
4296 align = p->p_align;
4297 else
4298 {
4299 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4300 {
4301 unsigned int secalign;
4302
4303 secalign = bfd_get_section_alignment (abfd, *secpp);
4304 if (secalign > align_power)
4305 align_power = secalign;
4306 }
4307 align = (bfd_size_type) 1 << align_power;
4308 if (align < maxpagesize)
4309 align = maxpagesize;
4310 }
4311
4312 for (i = 0; i < m->count; i++)
4313 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4314 /* If we aren't making room for this section, then
4315 it must be SHT_NOBITS regardless of what we've
4316 set via struct bfd_elf_special_section. */
4317 elf_section_type (m->sections[i]) = SHT_NOBITS;
4318
4319 /* Find out whether this segment contains any loadable
4320 sections. */
4321 no_contents = TRUE;
4322 for (i = 0; i < m->count; i++)
4323 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4324 {
4325 no_contents = FALSE;
4326 break;
4327 }
4328
4329 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4330 off += off_adjust;
4331 if (no_contents)
4332 {
4333 /* We shouldn't need to align the segment on disk since
4334 the segment doesn't need file space, but the gABI
4335 arguably requires the alignment and glibc ld.so
4336 checks it. So to comply with the alignment
4337 requirement but not waste file space, we adjust
4338 p_offset for just this segment. (OFF_ADJUST is
4339 subtracted from OFF later.) This may put p_offset
4340 past the end of file, but that shouldn't matter. */
4341 }
4342 else
4343 off_adjust = 0;
4344 }
4345 /* Make sure the .dynamic section is the first section in the
4346 PT_DYNAMIC segment. */
4347 else if (p->p_type == PT_DYNAMIC
4348 && m->count > 1
4349 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4350 {
4351 _bfd_error_handler
4352 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4353 abfd);
4354 bfd_set_error (bfd_error_bad_value);
4355 return FALSE;
4356 }
4357 /* Set the note section type to SHT_NOTE. */
4358 else if (p->p_type == PT_NOTE)
4359 for (i = 0; i < m->count; i++)
4360 elf_section_type (m->sections[i]) = SHT_NOTE;
4361
4362 p->p_offset = 0;
4363 p->p_filesz = 0;
4364 p->p_memsz = 0;
4365
4366 if (m->includes_filehdr)
4367 {
4368 if (!m->p_flags_valid)
4369 p->p_flags |= PF_R;
4370 p->p_filesz = bed->s->sizeof_ehdr;
4371 p->p_memsz = bed->s->sizeof_ehdr;
4372 if (m->count > 0)
4373 {
4374 BFD_ASSERT (p->p_type == PT_LOAD);
4375
4376 if (p->p_vaddr < (bfd_vma) off)
4377 {
4378 (*_bfd_error_handler)
4379 (_("%B: Not enough room for program headers, try linking with -N"),
4380 abfd);
4381 bfd_set_error (bfd_error_bad_value);
4382 return FALSE;
4383 }
4384
4385 p->p_vaddr -= off;
4386 if (!m->p_paddr_valid)
4387 p->p_paddr -= off;
4388 }
4389 }
4390
4391 if (m->includes_phdrs)
4392 {
4393 if (!m->p_flags_valid)
4394 p->p_flags |= PF_R;
4395
4396 if (!m->includes_filehdr)
4397 {
4398 p->p_offset = bed->s->sizeof_ehdr;
4399
4400 if (m->count > 0)
4401 {
4402 BFD_ASSERT (p->p_type == PT_LOAD);
4403 p->p_vaddr -= off - p->p_offset;
4404 if (!m->p_paddr_valid)
4405 p->p_paddr -= off - p->p_offset;
4406 }
4407 }
4408
4409 p->p_filesz += alloc * bed->s->sizeof_phdr;
4410 p->p_memsz += alloc * bed->s->sizeof_phdr;
4411 if (m->count)
4412 {
4413 p->p_filesz += header_pad;
4414 p->p_memsz += header_pad;
4415 }
4416 }
4417
4418 if (p->p_type == PT_LOAD
4419 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4420 {
4421 if (!m->includes_filehdr && !m->includes_phdrs)
4422 p->p_offset = off;
4423 else
4424 {
4425 file_ptr adjust;
4426
4427 adjust = off - (p->p_offset + p->p_filesz);
4428 if (!no_contents)
4429 p->p_filesz += adjust;
4430 p->p_memsz += adjust;
4431 }
4432 }
4433
4434 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4435 maps. Set filepos for sections in PT_LOAD segments, and in
4436 core files, for sections in PT_NOTE segments.
4437 assign_file_positions_for_non_load_sections will set filepos
4438 for other sections and update p_filesz for other segments. */
4439 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4440 {
4441 asection *sec;
4442 bfd_size_type align;
4443 Elf_Internal_Shdr *this_hdr;
4444
4445 sec = *secpp;
4446 this_hdr = &elf_section_data (sec)->this_hdr;
4447 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4448
4449 if ((p->p_type == PT_LOAD
4450 || p->p_type == PT_TLS)
4451 && (this_hdr->sh_type != SHT_NOBITS
4452 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4453 && ((this_hdr->sh_flags & SHF_TLS) == 0
4454 || p->p_type == PT_TLS))))
4455 {
4456 bfd_signed_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
4457
4458 if (adjust < 0)
4459 {
4460 (*_bfd_error_handler)
4461 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4462 abfd, sec, (unsigned long) sec->vma);
4463 adjust = 0;
4464 }
4465 p->p_memsz += adjust;
4466
4467 if (this_hdr->sh_type != SHT_NOBITS)
4468 {
4469 off += adjust;
4470 p->p_filesz += adjust;
4471 }
4472 }
4473
4474 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4475 {
4476 /* The section at i == 0 is the one that actually contains
4477 everything. */
4478 if (i == 0)
4479 {
4480 this_hdr->sh_offset = sec->filepos = off;
4481 off += this_hdr->sh_size;
4482 p->p_filesz = this_hdr->sh_size;
4483 p->p_memsz = 0;
4484 p->p_align = 1;
4485 }
4486 else
4487 {
4488 /* The rest are fake sections that shouldn't be written. */
4489 sec->filepos = 0;
4490 sec->size = 0;
4491 sec->flags = 0;
4492 continue;
4493 }
4494 }
4495 else
4496 {
4497 if (p->p_type == PT_LOAD)
4498 {
4499 this_hdr->sh_offset = sec->filepos = off;
4500 if (this_hdr->sh_type != SHT_NOBITS)
4501 off += this_hdr->sh_size;
4502 }
4503
4504 if (this_hdr->sh_type != SHT_NOBITS)
4505 {
4506 p->p_filesz += this_hdr->sh_size;
4507 /* A load section without SHF_ALLOC is something like
4508 a note section in a PT_NOTE segment. These take
4509 file space but are not loaded into memory. */
4510 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4511 p->p_memsz += this_hdr->sh_size;
4512 }
4513 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4514 {
4515 if (p->p_type == PT_TLS)
4516 p->p_memsz += this_hdr->sh_size;
4517
4518 /* .tbss is special. It doesn't contribute to p_memsz of
4519 normal segments. */
4520 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4521 p->p_memsz += this_hdr->sh_size;
4522 }
4523
4524 if (align > p->p_align
4525 && !m->p_align_valid
4526 && (p->p_type != PT_LOAD
4527 || (abfd->flags & D_PAGED) == 0))
4528 p->p_align = align;
4529 }
4530
4531 if (!m->p_flags_valid)
4532 {
4533 p->p_flags |= PF_R;
4534 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4535 p->p_flags |= PF_X;
4536 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4537 p->p_flags |= PF_W;
4538 }
4539 }
4540 off -= off_adjust;
4541
4542 /* Check that all sections are in a PT_LOAD segment.
4543 Don't check funky gdb generated core files. */
4544 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4545 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4546 {
4547 Elf_Internal_Shdr *this_hdr;
4548 asection *sec;
4549
4550 sec = *secpp;
4551 this_hdr = &(elf_section_data(sec)->this_hdr);
4552 if (this_hdr->sh_size != 0
4553 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4554 {
4555 (*_bfd_error_handler)
4556 (_("%B: section `%A' can't be allocated in segment %d"),
4557 abfd, sec, j);
4558 print_segment_map (m);
4559 bfd_set_error (bfd_error_bad_value);
4560 return FALSE;
4561 }
4562 }
4563 }
4564
4565 elf_tdata (abfd)->next_file_pos = off;
4566 return TRUE;
4567 }
4568
4569 /* Assign file positions for the other sections. */
4570
4571 static bfd_boolean
4572 assign_file_positions_for_non_load_sections (bfd *abfd,
4573 struct bfd_link_info *link_info)
4574 {
4575 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4576 Elf_Internal_Shdr **i_shdrpp;
4577 Elf_Internal_Shdr **hdrpp;
4578 Elf_Internal_Phdr *phdrs;
4579 Elf_Internal_Phdr *p;
4580 struct elf_segment_map *m;
4581 bfd_vma filehdr_vaddr, filehdr_paddr;
4582 bfd_vma phdrs_vaddr, phdrs_paddr;
4583 file_ptr off;
4584 unsigned int num_sec;
4585 unsigned int i;
4586 unsigned int count;
4587
4588 i_shdrpp = elf_elfsections (abfd);
4589 num_sec = elf_numsections (abfd);
4590 off = elf_tdata (abfd)->next_file_pos;
4591 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4592 {
4593 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4594 Elf_Internal_Shdr *hdr;
4595
4596 hdr = *hdrpp;
4597 if (hdr->bfd_section != NULL
4598 && (hdr->bfd_section->filepos != 0
4599 || (hdr->sh_type == SHT_NOBITS
4600 && hdr->contents == NULL)))
4601 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4602 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4603 {
4604 if (hdr->sh_size != 0)
4605 ((*_bfd_error_handler)
4606 (_("%B: warning: allocated section `%s' not in segment"),
4607 abfd,
4608 (hdr->bfd_section == NULL
4609 ? "*unknown*"
4610 : hdr->bfd_section->name)));
4611 /* We don't need to page align empty sections. */
4612 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4613 off += vma_page_aligned_bias (hdr->sh_addr, off,
4614 bed->maxpagesize);
4615 else
4616 off += vma_page_aligned_bias (hdr->sh_addr, off,
4617 hdr->sh_addralign);
4618 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4619 FALSE);
4620 }
4621 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4622 && hdr->bfd_section == NULL)
4623 || hdr == i_shdrpp[tdata->symtab_section]
4624 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4625 || hdr == i_shdrpp[tdata->strtab_section])
4626 hdr->sh_offset = -1;
4627 else
4628 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4629 }
4630
4631 /* Now that we have set the section file positions, we can set up
4632 the file positions for the non PT_LOAD segments. */
4633 count = 0;
4634 filehdr_vaddr = 0;
4635 filehdr_paddr = 0;
4636 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4637 phdrs_paddr = 0;
4638 phdrs = elf_tdata (abfd)->phdr;
4639 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4640 m != NULL;
4641 m = m->next, p++)
4642 {
4643 ++count;
4644 if (p->p_type != PT_LOAD)
4645 continue;
4646
4647 if (m->includes_filehdr)
4648 {
4649 filehdr_vaddr = p->p_vaddr;
4650 filehdr_paddr = p->p_paddr;
4651 }
4652 if (m->includes_phdrs)
4653 {
4654 phdrs_vaddr = p->p_vaddr;
4655 phdrs_paddr = p->p_paddr;
4656 if (m->includes_filehdr)
4657 {
4658 phdrs_vaddr += bed->s->sizeof_ehdr;
4659 phdrs_paddr += bed->s->sizeof_ehdr;
4660 }
4661 }
4662 }
4663
4664 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4665 m != NULL;
4666 m = m->next, p++)
4667 {
4668 if (p->p_type == PT_GNU_RELRO)
4669 {
4670 const Elf_Internal_Phdr *lp;
4671
4672 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4673
4674 if (link_info != NULL)
4675 {
4676 /* During linking the range of the RELRO segment is passed
4677 in link_info. */
4678 for (lp = phdrs; lp < phdrs + count; ++lp)
4679 {
4680 if (lp->p_type == PT_LOAD
4681 && lp->p_vaddr >= link_info->relro_start
4682 && lp->p_vaddr < link_info->relro_end
4683 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4684 break;
4685 }
4686 }
4687 else
4688 {
4689 /* Otherwise we are copying an executable or shared
4690 library, but we need to use the same linker logic. */
4691 for (lp = phdrs; lp < phdrs + count; ++lp)
4692 {
4693 if (lp->p_type == PT_LOAD
4694 && lp->p_paddr == p->p_paddr)
4695 break;
4696 }
4697 }
4698
4699 if (lp < phdrs + count)
4700 {
4701 p->p_vaddr = lp->p_vaddr;
4702 p->p_paddr = lp->p_paddr;
4703 p->p_offset = lp->p_offset;
4704 if (link_info != NULL)
4705 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4706 else if (m->p_size_valid)
4707 p->p_filesz = m->p_size;
4708 else
4709 abort ();
4710 p->p_memsz = p->p_filesz;
4711 p->p_align = 1;
4712 p->p_flags = (lp->p_flags & ~PF_W);
4713 }
4714 else if (link_info != NULL)
4715 {
4716 memset (p, 0, sizeof *p);
4717 p->p_type = PT_NULL;
4718 }
4719 else
4720 abort ();
4721 }
4722 else if (m->count != 0)
4723 {
4724 if (p->p_type != PT_LOAD
4725 && (p->p_type != PT_NOTE
4726 || bfd_get_format (abfd) != bfd_core))
4727 {
4728 Elf_Internal_Shdr *hdr;
4729 asection *sect;
4730
4731 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4732
4733 sect = m->sections[m->count - 1];
4734 hdr = &elf_section_data (sect)->this_hdr;
4735 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4736 if (hdr->sh_type != SHT_NOBITS)
4737 p->p_filesz += hdr->sh_size;
4738 p->p_offset = m->sections[0]->filepos;
4739 }
4740 }
4741 else if (m->includes_filehdr)
4742 {
4743 p->p_vaddr = filehdr_vaddr;
4744 if (! m->p_paddr_valid)
4745 p->p_paddr = filehdr_paddr;
4746 }
4747 else if (m->includes_phdrs)
4748 {
4749 p->p_vaddr = phdrs_vaddr;
4750 if (! m->p_paddr_valid)
4751 p->p_paddr = phdrs_paddr;
4752 }
4753 }
4754
4755 elf_tdata (abfd)->next_file_pos = off;
4756
4757 return TRUE;
4758 }
4759
4760 /* Work out the file positions of all the sections. This is called by
4761 _bfd_elf_compute_section_file_positions. All the section sizes and
4762 VMAs must be known before this is called.
4763
4764 Reloc sections come in two flavours: Those processed specially as
4765 "side-channel" data attached to a section to which they apply, and
4766 those that bfd doesn't process as relocations. The latter sort are
4767 stored in a normal bfd section by bfd_section_from_shdr. We don't
4768 consider the former sort here, unless they form part of the loadable
4769 image. Reloc sections not assigned here will be handled later by
4770 assign_file_positions_for_relocs.
4771
4772 We also don't set the positions of the .symtab and .strtab here. */
4773
4774 static bfd_boolean
4775 assign_file_positions_except_relocs (bfd *abfd,
4776 struct bfd_link_info *link_info)
4777 {
4778 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4779 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4780 file_ptr off;
4781 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4782
4783 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4784 && bfd_get_format (abfd) != bfd_core)
4785 {
4786 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4787 unsigned int num_sec = elf_numsections (abfd);
4788 Elf_Internal_Shdr **hdrpp;
4789 unsigned int i;
4790
4791 /* Start after the ELF header. */
4792 off = i_ehdrp->e_ehsize;
4793
4794 /* We are not creating an executable, which means that we are
4795 not creating a program header, and that the actual order of
4796 the sections in the file is unimportant. */
4797 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4798 {
4799 Elf_Internal_Shdr *hdr;
4800
4801 hdr = *hdrpp;
4802 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4803 && hdr->bfd_section == NULL)
4804 || i == tdata->symtab_section
4805 || i == tdata->symtab_shndx_section
4806 || i == tdata->strtab_section)
4807 {
4808 hdr->sh_offset = -1;
4809 }
4810 else
4811 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4812 }
4813 }
4814 else
4815 {
4816 unsigned int alloc;
4817
4818 /* Assign file positions for the loaded sections based on the
4819 assignment of sections to segments. */
4820 if (!assign_file_positions_for_load_sections (abfd, link_info))
4821 return FALSE;
4822
4823 /* And for non-load sections. */
4824 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4825 return FALSE;
4826
4827 if (bed->elf_backend_modify_program_headers != NULL)
4828 {
4829 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4830 return FALSE;
4831 }
4832
4833 /* Write out the program headers. */
4834 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4835 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4836 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4837 return FALSE;
4838
4839 off = tdata->next_file_pos;
4840 }
4841
4842 /* Place the section headers. */
4843 off = align_file_position (off, 1 << bed->s->log_file_align);
4844 i_ehdrp->e_shoff = off;
4845 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4846
4847 tdata->next_file_pos = off;
4848
4849 return TRUE;
4850 }
4851
4852 static bfd_boolean
4853 prep_headers (bfd *abfd)
4854 {
4855 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4856 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4857 struct elf_strtab_hash *shstrtab;
4858 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4859
4860 i_ehdrp = elf_elfheader (abfd);
4861
4862 shstrtab = _bfd_elf_strtab_init ();
4863 if (shstrtab == NULL)
4864 return FALSE;
4865
4866 elf_shstrtab (abfd) = shstrtab;
4867
4868 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4869 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4870 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4871 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4872
4873 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4874 i_ehdrp->e_ident[EI_DATA] =
4875 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4876 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4877
4878 if ((abfd->flags & DYNAMIC) != 0)
4879 i_ehdrp->e_type = ET_DYN;
4880 else if ((abfd->flags & EXEC_P) != 0)
4881 i_ehdrp->e_type = ET_EXEC;
4882 else if (bfd_get_format (abfd) == bfd_core)
4883 i_ehdrp->e_type = ET_CORE;
4884 else
4885 i_ehdrp->e_type = ET_REL;
4886
4887 switch (bfd_get_arch (abfd))
4888 {
4889 case bfd_arch_unknown:
4890 i_ehdrp->e_machine = EM_NONE;
4891 break;
4892
4893 /* There used to be a long list of cases here, each one setting
4894 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4895 in the corresponding bfd definition. To avoid duplication,
4896 the switch was removed. Machines that need special handling
4897 can generally do it in elf_backend_final_write_processing(),
4898 unless they need the information earlier than the final write.
4899 Such need can generally be supplied by replacing the tests for
4900 e_machine with the conditions used to determine it. */
4901 default:
4902 i_ehdrp->e_machine = bed->elf_machine_code;
4903 }
4904
4905 i_ehdrp->e_version = bed->s->ev_current;
4906 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4907
4908 /* No program header, for now. */
4909 i_ehdrp->e_phoff = 0;
4910 i_ehdrp->e_phentsize = 0;
4911 i_ehdrp->e_phnum = 0;
4912
4913 /* Each bfd section is section header entry. */
4914 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4915 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4916
4917 /* If we're building an executable, we'll need a program header table. */
4918 if (abfd->flags & EXEC_P)
4919 /* It all happens later. */
4920 ;
4921 else
4922 {
4923 i_ehdrp->e_phentsize = 0;
4924 i_phdrp = 0;
4925 i_ehdrp->e_phoff = 0;
4926 }
4927
4928 elf_tdata (abfd)->symtab_hdr.sh_name =
4929 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4930 elf_tdata (abfd)->strtab_hdr.sh_name =
4931 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4932 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4933 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4934 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4935 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4936 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4937 return FALSE;
4938
4939 return TRUE;
4940 }
4941
4942 /* Assign file positions for all the reloc sections which are not part
4943 of the loadable file image. */
4944
4945 void
4946 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4947 {
4948 file_ptr off;
4949 unsigned int i, num_sec;
4950 Elf_Internal_Shdr **shdrpp;
4951
4952 off = elf_tdata (abfd)->next_file_pos;
4953
4954 num_sec = elf_numsections (abfd);
4955 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4956 {
4957 Elf_Internal_Shdr *shdrp;
4958
4959 shdrp = *shdrpp;
4960 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4961 && shdrp->sh_offset == -1)
4962 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4963 }
4964
4965 elf_tdata (abfd)->next_file_pos = off;
4966 }
4967
4968 bfd_boolean
4969 _bfd_elf_write_object_contents (bfd *abfd)
4970 {
4971 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4972 Elf_Internal_Ehdr *i_ehdrp;
4973 Elf_Internal_Shdr **i_shdrp;
4974 bfd_boolean failed;
4975 unsigned int count, num_sec;
4976
4977 if (! abfd->output_has_begun
4978 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4979 return FALSE;
4980
4981 i_shdrp = elf_elfsections (abfd);
4982 i_ehdrp = elf_elfheader (abfd);
4983
4984 failed = FALSE;
4985 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4986 if (failed)
4987 return FALSE;
4988
4989 _bfd_elf_assign_file_positions_for_relocs (abfd);
4990
4991 /* After writing the headers, we need to write the sections too... */
4992 num_sec = elf_numsections (abfd);
4993 for (count = 1; count < num_sec; count++)
4994 {
4995 if (bed->elf_backend_section_processing)
4996 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4997 if (i_shdrp[count]->contents)
4998 {
4999 bfd_size_type amt = i_shdrp[count]->sh_size;
5000
5001 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5002 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5003 return FALSE;
5004 }
5005 }
5006
5007 /* Write out the section header names. */
5008 if (elf_shstrtab (abfd) != NULL
5009 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5010 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5011 return FALSE;
5012
5013 if (bed->elf_backend_final_write_processing)
5014 (*bed->elf_backend_final_write_processing) (abfd,
5015 elf_tdata (abfd)->linker);
5016
5017 if (!bed->s->write_shdrs_and_ehdr (abfd))
5018 return FALSE;
5019
5020 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5021 if (elf_tdata (abfd)->after_write_object_contents)
5022 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5023
5024 return TRUE;
5025 }
5026
5027 bfd_boolean
5028 _bfd_elf_write_corefile_contents (bfd *abfd)
5029 {
5030 /* Hopefully this can be done just like an object file. */
5031 return _bfd_elf_write_object_contents (abfd);
5032 }
5033
5034 /* Given a section, search the header to find them. */
5035
5036 unsigned int
5037 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5038 {
5039 const struct elf_backend_data *bed;
5040 unsigned int index;
5041
5042 if (elf_section_data (asect) != NULL
5043 && elf_section_data (asect)->this_idx != 0)
5044 return elf_section_data (asect)->this_idx;
5045
5046 if (bfd_is_abs_section (asect))
5047 index = SHN_ABS;
5048 else if (bfd_is_com_section (asect))
5049 index = SHN_COMMON;
5050 else if (bfd_is_und_section (asect))
5051 index = SHN_UNDEF;
5052 else
5053 index = SHN_BAD;
5054
5055 bed = get_elf_backend_data (abfd);
5056 if (bed->elf_backend_section_from_bfd_section)
5057 {
5058 int retval = index;
5059
5060 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5061 return retval;
5062 }
5063
5064 if (index == SHN_BAD)
5065 bfd_set_error (bfd_error_nonrepresentable_section);
5066
5067 return index;
5068 }
5069
5070 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5071 on error. */
5072
5073 int
5074 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5075 {
5076 asymbol *asym_ptr = *asym_ptr_ptr;
5077 int idx;
5078 flagword flags = asym_ptr->flags;
5079
5080 /* When gas creates relocations against local labels, it creates its
5081 own symbol for the section, but does put the symbol into the
5082 symbol chain, so udata is 0. When the linker is generating
5083 relocatable output, this section symbol may be for one of the
5084 input sections rather than the output section. */
5085 if (asym_ptr->udata.i == 0
5086 && (flags & BSF_SECTION_SYM)
5087 && asym_ptr->section)
5088 {
5089 asection *sec;
5090 int indx;
5091
5092 sec = asym_ptr->section;
5093 if (sec->owner != abfd && sec->output_section != NULL)
5094 sec = sec->output_section;
5095 if (sec->owner == abfd
5096 && (indx = sec->index) < elf_num_section_syms (abfd)
5097 && elf_section_syms (abfd)[indx] != NULL)
5098 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5099 }
5100
5101 idx = asym_ptr->udata.i;
5102
5103 if (idx == 0)
5104 {
5105 /* This case can occur when using --strip-symbol on a symbol
5106 which is used in a relocation entry. */
5107 (*_bfd_error_handler)
5108 (_("%B: symbol `%s' required but not present"),
5109 abfd, bfd_asymbol_name (asym_ptr));
5110 bfd_set_error (bfd_error_no_symbols);
5111 return -1;
5112 }
5113
5114 #if DEBUG & 4
5115 {
5116 fprintf (stderr,
5117 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5118 (long) asym_ptr, asym_ptr->name, idx, flags,
5119 elf_symbol_flags (flags));
5120 fflush (stderr);
5121 }
5122 #endif
5123
5124 return idx;
5125 }
5126
5127 /* Rewrite program header information. */
5128
5129 static bfd_boolean
5130 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5131 {
5132 Elf_Internal_Ehdr *iehdr;
5133 struct elf_segment_map *map;
5134 struct elf_segment_map *map_first;
5135 struct elf_segment_map **pointer_to_map;
5136 Elf_Internal_Phdr *segment;
5137 asection *section;
5138 unsigned int i;
5139 unsigned int num_segments;
5140 bfd_boolean phdr_included = FALSE;
5141 bfd_boolean p_paddr_valid;
5142 bfd_vma maxpagesize;
5143 struct elf_segment_map *phdr_adjust_seg = NULL;
5144 unsigned int phdr_adjust_num = 0;
5145 const struct elf_backend_data *bed;
5146
5147 bed = get_elf_backend_data (ibfd);
5148 iehdr = elf_elfheader (ibfd);
5149
5150 map_first = NULL;
5151 pointer_to_map = &map_first;
5152
5153 num_segments = elf_elfheader (ibfd)->e_phnum;
5154 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5155
5156 /* Returns the end address of the segment + 1. */
5157 #define SEGMENT_END(segment, start) \
5158 (start + (segment->p_memsz > segment->p_filesz \
5159 ? segment->p_memsz : segment->p_filesz))
5160
5161 #define SECTION_SIZE(section, segment) \
5162 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5163 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5164 ? section->size : 0)
5165
5166 /* Returns TRUE if the given section is contained within
5167 the given segment. VMA addresses are compared. */
5168 #define IS_CONTAINED_BY_VMA(section, segment) \
5169 (section->vma >= segment->p_vaddr \
5170 && (section->vma + SECTION_SIZE (section, segment) \
5171 <= (SEGMENT_END (segment, segment->p_vaddr))))
5172
5173 /* Returns TRUE if the given section is contained within
5174 the given segment. LMA addresses are compared. */
5175 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5176 (section->lma >= base \
5177 && (section->lma + SECTION_SIZE (section, segment) \
5178 <= SEGMENT_END (segment, base)))
5179
5180 /* Handle PT_NOTE segment. */
5181 #define IS_NOTE(p, s) \
5182 (p->p_type == PT_NOTE \
5183 && elf_section_type (s) == SHT_NOTE \
5184 && (bfd_vma) s->filepos >= p->p_offset \
5185 && ((bfd_vma) s->filepos + s->size \
5186 <= p->p_offset + p->p_filesz))
5187
5188 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5189 etc. */
5190 #define IS_COREFILE_NOTE(p, s) \
5191 (IS_NOTE (p, s) \
5192 && bfd_get_format (ibfd) == bfd_core \
5193 && s->vma == 0 \
5194 && s->lma == 0)
5195
5196 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5197 linker, which generates a PT_INTERP section with p_vaddr and
5198 p_memsz set to 0. */
5199 #define IS_SOLARIS_PT_INTERP(p, s) \
5200 (p->p_vaddr == 0 \
5201 && p->p_paddr == 0 \
5202 && p->p_memsz == 0 \
5203 && p->p_filesz > 0 \
5204 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5205 && s->size > 0 \
5206 && (bfd_vma) s->filepos >= p->p_offset \
5207 && ((bfd_vma) s->filepos + s->size \
5208 <= p->p_offset + p->p_filesz))
5209
5210 /* Decide if the given section should be included in the given segment.
5211 A section will be included if:
5212 1. It is within the address space of the segment -- we use the LMA
5213 if that is set for the segment and the VMA otherwise,
5214 2. It is an allocated section or a NOTE section in a PT_NOTE
5215 segment.
5216 3. There is an output section associated with it,
5217 4. The section has not already been allocated to a previous segment.
5218 5. PT_GNU_STACK segments do not include any sections.
5219 6. PT_TLS segment includes only SHF_TLS sections.
5220 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5221 8. PT_DYNAMIC should not contain empty sections at the beginning
5222 (with the possible exception of .dynamic). */
5223 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5224 ((((segment->p_paddr \
5225 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5226 : IS_CONTAINED_BY_VMA (section, segment)) \
5227 && (section->flags & SEC_ALLOC) != 0) \
5228 || IS_NOTE (segment, section)) \
5229 && segment->p_type != PT_GNU_STACK \
5230 && (segment->p_type != PT_TLS \
5231 || (section->flags & SEC_THREAD_LOCAL)) \
5232 && (segment->p_type == PT_LOAD \
5233 || segment->p_type == PT_TLS \
5234 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5235 && (segment->p_type != PT_DYNAMIC \
5236 || SECTION_SIZE (section, segment) > 0 \
5237 || (segment->p_paddr \
5238 ? segment->p_paddr != section->lma \
5239 : segment->p_vaddr != section->vma) \
5240 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5241 == 0)) \
5242 && !section->segment_mark)
5243
5244 /* If the output section of a section in the input segment is NULL,
5245 it is removed from the corresponding output segment. */
5246 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5247 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5248 && section->output_section != NULL)
5249
5250 /* Returns TRUE iff seg1 starts after the end of seg2. */
5251 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5252 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5253
5254 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5255 their VMA address ranges and their LMA address ranges overlap.
5256 It is possible to have overlapping VMA ranges without overlapping LMA
5257 ranges. RedBoot images for example can have both .data and .bss mapped
5258 to the same VMA range, but with the .data section mapped to a different
5259 LMA. */
5260 #define SEGMENT_OVERLAPS(seg1, seg2) \
5261 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5262 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5263 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5264 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5265
5266 /* Initialise the segment mark field. */
5267 for (section = ibfd->sections; section != NULL; section = section->next)
5268 section->segment_mark = FALSE;
5269
5270 /* The Solaris linker creates program headers in which all the
5271 p_paddr fields are zero. When we try to objcopy or strip such a
5272 file, we get confused. Check for this case, and if we find it
5273 don't set the p_paddr_valid fields. */
5274 p_paddr_valid = FALSE;
5275 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5276 i < num_segments;
5277 i++, segment++)
5278 if (segment->p_paddr != 0)
5279 {
5280 p_paddr_valid = TRUE;
5281 break;
5282 }
5283
5284 /* Scan through the segments specified in the program header
5285 of the input BFD. For this first scan we look for overlaps
5286 in the loadable segments. These can be created by weird
5287 parameters to objcopy. Also, fix some solaris weirdness. */
5288 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5289 i < num_segments;
5290 i++, segment++)
5291 {
5292 unsigned int j;
5293 Elf_Internal_Phdr *segment2;
5294
5295 if (segment->p_type == PT_INTERP)
5296 for (section = ibfd->sections; section; section = section->next)
5297 if (IS_SOLARIS_PT_INTERP (segment, section))
5298 {
5299 /* Mininal change so that the normal section to segment
5300 assignment code will work. */
5301 segment->p_vaddr = section->vma;
5302 break;
5303 }
5304
5305 if (segment->p_type != PT_LOAD)
5306 {
5307 /* Remove PT_GNU_RELRO segment. */
5308 if (segment->p_type == PT_GNU_RELRO)
5309 segment->p_type = PT_NULL;
5310 continue;
5311 }
5312
5313 /* Determine if this segment overlaps any previous segments. */
5314 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5315 {
5316 bfd_signed_vma extra_length;
5317
5318 if (segment2->p_type != PT_LOAD
5319 || !SEGMENT_OVERLAPS (segment, segment2))
5320 continue;
5321
5322 /* Merge the two segments together. */
5323 if (segment2->p_vaddr < segment->p_vaddr)
5324 {
5325 /* Extend SEGMENT2 to include SEGMENT and then delete
5326 SEGMENT. */
5327 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5328 - SEGMENT_END (segment2, segment2->p_vaddr));
5329
5330 if (extra_length > 0)
5331 {
5332 segment2->p_memsz += extra_length;
5333 segment2->p_filesz += extra_length;
5334 }
5335
5336 segment->p_type = PT_NULL;
5337
5338 /* Since we have deleted P we must restart the outer loop. */
5339 i = 0;
5340 segment = elf_tdata (ibfd)->phdr;
5341 break;
5342 }
5343 else
5344 {
5345 /* Extend SEGMENT to include SEGMENT2 and then delete
5346 SEGMENT2. */
5347 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5348 - SEGMENT_END (segment, segment->p_vaddr));
5349
5350 if (extra_length > 0)
5351 {
5352 segment->p_memsz += extra_length;
5353 segment->p_filesz += extra_length;
5354 }
5355
5356 segment2->p_type = PT_NULL;
5357 }
5358 }
5359 }
5360
5361 /* The second scan attempts to assign sections to segments. */
5362 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5363 i < num_segments;
5364 i++, segment++)
5365 {
5366 unsigned int section_count;
5367 asection **sections;
5368 asection *output_section;
5369 unsigned int isec;
5370 bfd_vma matching_lma;
5371 bfd_vma suggested_lma;
5372 unsigned int j;
5373 bfd_size_type amt;
5374 asection *first_section;
5375 bfd_boolean first_matching_lma;
5376 bfd_boolean first_suggested_lma;
5377
5378 if (segment->p_type == PT_NULL)
5379 continue;
5380
5381 first_section = NULL;
5382 /* Compute how many sections might be placed into this segment. */
5383 for (section = ibfd->sections, section_count = 0;
5384 section != NULL;
5385 section = section->next)
5386 {
5387 /* Find the first section in the input segment, which may be
5388 removed from the corresponding output segment. */
5389 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5390 {
5391 if (first_section == NULL)
5392 first_section = section;
5393 if (section->output_section != NULL)
5394 ++section_count;
5395 }
5396 }
5397
5398 /* Allocate a segment map big enough to contain
5399 all of the sections we have selected. */
5400 amt = sizeof (struct elf_segment_map);
5401 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5402 map = bfd_zalloc (obfd, amt);
5403 if (map == NULL)
5404 return FALSE;
5405
5406 /* Initialise the fields of the segment map. Default to
5407 using the physical address of the segment in the input BFD. */
5408 map->next = NULL;
5409 map->p_type = segment->p_type;
5410 map->p_flags = segment->p_flags;
5411 map->p_flags_valid = 1;
5412
5413 /* If the first section in the input segment is removed, there is
5414 no need to preserve segment physical address in the corresponding
5415 output segment. */
5416 if (!first_section || first_section->output_section != NULL)
5417 {
5418 map->p_paddr = segment->p_paddr;
5419 map->p_paddr_valid = p_paddr_valid;
5420 }
5421
5422 /* Determine if this segment contains the ELF file header
5423 and if it contains the program headers themselves. */
5424 map->includes_filehdr = (segment->p_offset == 0
5425 && segment->p_filesz >= iehdr->e_ehsize);
5426 map->includes_phdrs = 0;
5427
5428 if (!phdr_included || segment->p_type != PT_LOAD)
5429 {
5430 map->includes_phdrs =
5431 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5432 && (segment->p_offset + segment->p_filesz
5433 >= ((bfd_vma) iehdr->e_phoff
5434 + iehdr->e_phnum * iehdr->e_phentsize)));
5435
5436 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5437 phdr_included = TRUE;
5438 }
5439
5440 if (section_count == 0)
5441 {
5442 /* Special segments, such as the PT_PHDR segment, may contain
5443 no sections, but ordinary, loadable segments should contain
5444 something. They are allowed by the ELF spec however, so only
5445 a warning is produced. */
5446 if (segment->p_type == PT_LOAD)
5447 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5448 " detected, is this intentional ?\n"),
5449 ibfd);
5450
5451 map->count = 0;
5452 *pointer_to_map = map;
5453 pointer_to_map = &map->next;
5454
5455 continue;
5456 }
5457
5458 /* Now scan the sections in the input BFD again and attempt
5459 to add their corresponding output sections to the segment map.
5460 The problem here is how to handle an output section which has
5461 been moved (ie had its LMA changed). There are four possibilities:
5462
5463 1. None of the sections have been moved.
5464 In this case we can continue to use the segment LMA from the
5465 input BFD.
5466
5467 2. All of the sections have been moved by the same amount.
5468 In this case we can change the segment's LMA to match the LMA
5469 of the first section.
5470
5471 3. Some of the sections have been moved, others have not.
5472 In this case those sections which have not been moved can be
5473 placed in the current segment which will have to have its size,
5474 and possibly its LMA changed, and a new segment or segments will
5475 have to be created to contain the other sections.
5476
5477 4. The sections have been moved, but not by the same amount.
5478 In this case we can change the segment's LMA to match the LMA
5479 of the first section and we will have to create a new segment
5480 or segments to contain the other sections.
5481
5482 In order to save time, we allocate an array to hold the section
5483 pointers that we are interested in. As these sections get assigned
5484 to a segment, they are removed from this array. */
5485
5486 sections = bfd_malloc2 (section_count, sizeof (asection *));
5487 if (sections == NULL)
5488 return FALSE;
5489
5490 /* Step One: Scan for segment vs section LMA conflicts.
5491 Also add the sections to the section array allocated above.
5492 Also add the sections to the current segment. In the common
5493 case, where the sections have not been moved, this means that
5494 we have completely filled the segment, and there is nothing
5495 more to do. */
5496 isec = 0;
5497 matching_lma = 0;
5498 suggested_lma = 0;
5499 first_matching_lma = TRUE;
5500 first_suggested_lma = TRUE;
5501
5502 for (section = ibfd->sections;
5503 section != NULL;
5504 section = section->next)
5505 if (section == first_section)
5506 break;
5507
5508 for (j = 0; section != NULL; section = section->next)
5509 {
5510 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5511 {
5512 output_section = section->output_section;
5513
5514 sections[j++] = section;
5515
5516 /* The Solaris native linker always sets p_paddr to 0.
5517 We try to catch that case here, and set it to the
5518 correct value. Note - some backends require that
5519 p_paddr be left as zero. */
5520 if (!p_paddr_valid
5521 && segment->p_vaddr != 0
5522 && !bed->want_p_paddr_set_to_zero
5523 && isec == 0
5524 && output_section->lma != 0
5525 && output_section->vma == (segment->p_vaddr
5526 + (map->includes_filehdr
5527 ? iehdr->e_ehsize
5528 : 0)
5529 + (map->includes_phdrs
5530 ? (iehdr->e_phnum
5531 * iehdr->e_phentsize)
5532 : 0)))
5533 map->p_paddr = segment->p_vaddr;
5534
5535 /* Match up the physical address of the segment with the
5536 LMA address of the output section. */
5537 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5538 || IS_COREFILE_NOTE (segment, section)
5539 || (bed->want_p_paddr_set_to_zero
5540 && IS_CONTAINED_BY_VMA (output_section, segment)))
5541 {
5542 if (first_matching_lma || output_section->lma < matching_lma)
5543 {
5544 matching_lma = output_section->lma;
5545 first_matching_lma = FALSE;
5546 }
5547
5548 /* We assume that if the section fits within the segment
5549 then it does not overlap any other section within that
5550 segment. */
5551 map->sections[isec++] = output_section;
5552 }
5553 else if (first_suggested_lma)
5554 {
5555 suggested_lma = output_section->lma;
5556 first_suggested_lma = FALSE;
5557 }
5558
5559 if (j == section_count)
5560 break;
5561 }
5562 }
5563
5564 BFD_ASSERT (j == section_count);
5565
5566 /* Step Two: Adjust the physical address of the current segment,
5567 if necessary. */
5568 if (isec == section_count)
5569 {
5570 /* All of the sections fitted within the segment as currently
5571 specified. This is the default case. Add the segment to
5572 the list of built segments and carry on to process the next
5573 program header in the input BFD. */
5574 map->count = section_count;
5575 *pointer_to_map = map;
5576 pointer_to_map = &map->next;
5577
5578 if (p_paddr_valid
5579 && !bed->want_p_paddr_set_to_zero
5580 && matching_lma != map->p_paddr
5581 && !map->includes_filehdr
5582 && !map->includes_phdrs)
5583 /* There is some padding before the first section in the
5584 segment. So, we must account for that in the output
5585 segment's vma. */
5586 map->p_vaddr_offset = matching_lma - map->p_paddr;
5587
5588 free (sections);
5589 continue;
5590 }
5591 else
5592 {
5593 if (!first_matching_lma)
5594 {
5595 /* At least one section fits inside the current segment.
5596 Keep it, but modify its physical address to match the
5597 LMA of the first section that fitted. */
5598 map->p_paddr = matching_lma;
5599 }
5600 else
5601 {
5602 /* None of the sections fitted inside the current segment.
5603 Change the current segment's physical address to match
5604 the LMA of the first section. */
5605 map->p_paddr = suggested_lma;
5606 }
5607
5608 /* Offset the segment physical address from the lma
5609 to allow for space taken up by elf headers. */
5610 if (map->includes_filehdr)
5611 {
5612 if (map->p_paddr >= iehdr->e_ehsize)
5613 map->p_paddr -= iehdr->e_ehsize;
5614 else
5615 {
5616 map->includes_filehdr = FALSE;
5617 map->includes_phdrs = FALSE;
5618 }
5619 }
5620
5621 if (map->includes_phdrs)
5622 {
5623 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5624 {
5625 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5626
5627 /* iehdr->e_phnum is just an estimate of the number
5628 of program headers that we will need. Make a note
5629 here of the number we used and the segment we chose
5630 to hold these headers, so that we can adjust the
5631 offset when we know the correct value. */
5632 phdr_adjust_num = iehdr->e_phnum;
5633 phdr_adjust_seg = map;
5634 }
5635 else
5636 map->includes_phdrs = FALSE;
5637 }
5638 }
5639
5640 /* Step Three: Loop over the sections again, this time assigning
5641 those that fit to the current segment and removing them from the
5642 sections array; but making sure not to leave large gaps. Once all
5643 possible sections have been assigned to the current segment it is
5644 added to the list of built segments and if sections still remain
5645 to be assigned, a new segment is constructed before repeating
5646 the loop. */
5647 isec = 0;
5648 do
5649 {
5650 map->count = 0;
5651 suggested_lma = 0;
5652 first_suggested_lma = TRUE;
5653
5654 /* Fill the current segment with sections that fit. */
5655 for (j = 0; j < section_count; j++)
5656 {
5657 section = sections[j];
5658
5659 if (section == NULL)
5660 continue;
5661
5662 output_section = section->output_section;
5663
5664 BFD_ASSERT (output_section != NULL);
5665
5666 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5667 || IS_COREFILE_NOTE (segment, section))
5668 {
5669 if (map->count == 0)
5670 {
5671 /* If the first section in a segment does not start at
5672 the beginning of the segment, then something is
5673 wrong. */
5674 if (output_section->lma
5675 != (map->p_paddr
5676 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5677 + (map->includes_phdrs
5678 ? iehdr->e_phnum * iehdr->e_phentsize
5679 : 0)))
5680 abort ();
5681 }
5682 else
5683 {
5684 asection *prev_sec;
5685
5686 prev_sec = map->sections[map->count - 1];
5687
5688 /* If the gap between the end of the previous section
5689 and the start of this section is more than
5690 maxpagesize then we need to start a new segment. */
5691 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5692 maxpagesize)
5693 < BFD_ALIGN (output_section->lma, maxpagesize))
5694 || (prev_sec->lma + prev_sec->size
5695 > output_section->lma))
5696 {
5697 if (first_suggested_lma)
5698 {
5699 suggested_lma = output_section->lma;
5700 first_suggested_lma = FALSE;
5701 }
5702
5703 continue;
5704 }
5705 }
5706
5707 map->sections[map->count++] = output_section;
5708 ++isec;
5709 sections[j] = NULL;
5710 section->segment_mark = TRUE;
5711 }
5712 else if (first_suggested_lma)
5713 {
5714 suggested_lma = output_section->lma;
5715 first_suggested_lma = FALSE;
5716 }
5717 }
5718
5719 BFD_ASSERT (map->count > 0);
5720
5721 /* Add the current segment to the list of built segments. */
5722 *pointer_to_map = map;
5723 pointer_to_map = &map->next;
5724
5725 if (isec < section_count)
5726 {
5727 /* We still have not allocated all of the sections to
5728 segments. Create a new segment here, initialise it
5729 and carry on looping. */
5730 amt = sizeof (struct elf_segment_map);
5731 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5732 map = bfd_alloc (obfd, amt);
5733 if (map == NULL)
5734 {
5735 free (sections);
5736 return FALSE;
5737 }
5738
5739 /* Initialise the fields of the segment map. Set the physical
5740 physical address to the LMA of the first section that has
5741 not yet been assigned. */
5742 map->next = NULL;
5743 map->p_type = segment->p_type;
5744 map->p_flags = segment->p_flags;
5745 map->p_flags_valid = 1;
5746 map->p_paddr = suggested_lma;
5747 map->p_paddr_valid = p_paddr_valid;
5748 map->includes_filehdr = 0;
5749 map->includes_phdrs = 0;
5750 }
5751 }
5752 while (isec < section_count);
5753
5754 free (sections);
5755 }
5756
5757 elf_tdata (obfd)->segment_map = map_first;
5758
5759 /* If we had to estimate the number of program headers that were
5760 going to be needed, then check our estimate now and adjust
5761 the offset if necessary. */
5762 if (phdr_adjust_seg != NULL)
5763 {
5764 unsigned int count;
5765
5766 for (count = 0, map = map_first; map != NULL; map = map->next)
5767 count++;
5768
5769 if (count > phdr_adjust_num)
5770 phdr_adjust_seg->p_paddr
5771 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5772 }
5773
5774 #undef SEGMENT_END
5775 #undef SECTION_SIZE
5776 #undef IS_CONTAINED_BY_VMA
5777 #undef IS_CONTAINED_BY_LMA
5778 #undef IS_NOTE
5779 #undef IS_COREFILE_NOTE
5780 #undef IS_SOLARIS_PT_INTERP
5781 #undef IS_SECTION_IN_INPUT_SEGMENT
5782 #undef INCLUDE_SECTION_IN_SEGMENT
5783 #undef SEGMENT_AFTER_SEGMENT
5784 #undef SEGMENT_OVERLAPS
5785 return TRUE;
5786 }
5787
5788 /* Copy ELF program header information. */
5789
5790 static bfd_boolean
5791 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5792 {
5793 Elf_Internal_Ehdr *iehdr;
5794 struct elf_segment_map *map;
5795 struct elf_segment_map *map_first;
5796 struct elf_segment_map **pointer_to_map;
5797 Elf_Internal_Phdr *segment;
5798 unsigned int i;
5799 unsigned int num_segments;
5800 bfd_boolean phdr_included = FALSE;
5801 bfd_boolean p_paddr_valid;
5802
5803 iehdr = elf_elfheader (ibfd);
5804
5805 map_first = NULL;
5806 pointer_to_map = &map_first;
5807
5808 /* If all the segment p_paddr fields are zero, don't set
5809 map->p_paddr_valid. */
5810 p_paddr_valid = FALSE;
5811 num_segments = elf_elfheader (ibfd)->e_phnum;
5812 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5813 i < num_segments;
5814 i++, segment++)
5815 if (segment->p_paddr != 0)
5816 {
5817 p_paddr_valid = TRUE;
5818 break;
5819 }
5820
5821 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5822 i < num_segments;
5823 i++, segment++)
5824 {
5825 asection *section;
5826 unsigned int section_count;
5827 bfd_size_type amt;
5828 Elf_Internal_Shdr *this_hdr;
5829 asection *first_section = NULL;
5830 asection *lowest_section = NULL;
5831
5832 /* Compute how many sections are in this segment. */
5833 for (section = ibfd->sections, section_count = 0;
5834 section != NULL;
5835 section = section->next)
5836 {
5837 this_hdr = &(elf_section_data(section)->this_hdr);
5838 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5839 {
5840 if (!first_section)
5841 first_section = lowest_section = section;
5842 if (section->lma < lowest_section->lma)
5843 lowest_section = section;
5844 section_count++;
5845 }
5846 }
5847
5848 /* Allocate a segment map big enough to contain
5849 all of the sections we have selected. */
5850 amt = sizeof (struct elf_segment_map);
5851 if (section_count != 0)
5852 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5853 map = bfd_zalloc (obfd, amt);
5854 if (map == NULL)
5855 return FALSE;
5856
5857 /* Initialize the fields of the output segment map with the
5858 input segment. */
5859 map->next = NULL;
5860 map->p_type = segment->p_type;
5861 map->p_flags = segment->p_flags;
5862 map->p_flags_valid = 1;
5863 map->p_paddr = segment->p_paddr;
5864 map->p_paddr_valid = p_paddr_valid;
5865 map->p_align = segment->p_align;
5866 map->p_align_valid = 1;
5867 map->p_vaddr_offset = 0;
5868
5869 if (map->p_type == PT_GNU_RELRO
5870 && segment->p_filesz == segment->p_memsz)
5871 {
5872 /* The PT_GNU_RELRO segment may contain the first a few
5873 bytes in the .got.plt section even if the whole .got.plt
5874 section isn't in the PT_GNU_RELRO segment. We won't
5875 change the size of the PT_GNU_RELRO segment. */
5876 map->p_size = segment->p_filesz;
5877 map->p_size_valid = 1;
5878 }
5879
5880 /* Determine if this segment contains the ELF file header
5881 and if it contains the program headers themselves. */
5882 map->includes_filehdr = (segment->p_offset == 0
5883 && segment->p_filesz >= iehdr->e_ehsize);
5884
5885 map->includes_phdrs = 0;
5886 if (! phdr_included || segment->p_type != PT_LOAD)
5887 {
5888 map->includes_phdrs =
5889 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5890 && (segment->p_offset + segment->p_filesz
5891 >= ((bfd_vma) iehdr->e_phoff
5892 + iehdr->e_phnum * iehdr->e_phentsize)));
5893
5894 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5895 phdr_included = TRUE;
5896 }
5897
5898 if (map->includes_filehdr && first_section)
5899 /* We need to keep the space used by the headers fixed. */
5900 map->header_size = first_section->vma - segment->p_vaddr;
5901
5902 if (!map->includes_phdrs
5903 && !map->includes_filehdr
5904 && map->p_paddr_valid)
5905 /* There is some other padding before the first section. */
5906 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5907 - segment->p_paddr);
5908
5909 if (section_count != 0)
5910 {
5911 unsigned int isec = 0;
5912
5913 for (section = first_section;
5914 section != NULL;
5915 section = section->next)
5916 {
5917 this_hdr = &(elf_section_data(section)->this_hdr);
5918 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5919 {
5920 map->sections[isec++] = section->output_section;
5921 if (isec == section_count)
5922 break;
5923 }
5924 }
5925 }
5926
5927 map->count = section_count;
5928 *pointer_to_map = map;
5929 pointer_to_map = &map->next;
5930 }
5931
5932 elf_tdata (obfd)->segment_map = map_first;
5933 return TRUE;
5934 }
5935
5936 /* Copy private BFD data. This copies or rewrites ELF program header
5937 information. */
5938
5939 static bfd_boolean
5940 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5941 {
5942 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5943 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5944 return TRUE;
5945
5946 if (elf_tdata (ibfd)->phdr == NULL)
5947 return TRUE;
5948
5949 if (ibfd->xvec == obfd->xvec)
5950 {
5951 /* Check to see if any sections in the input BFD
5952 covered by ELF program header have changed. */
5953 Elf_Internal_Phdr *segment;
5954 asection *section, *osec;
5955 unsigned int i, num_segments;
5956 Elf_Internal_Shdr *this_hdr;
5957 const struct elf_backend_data *bed;
5958
5959 bed = get_elf_backend_data (ibfd);
5960
5961 /* Regenerate the segment map if p_paddr is set to 0. */
5962 if (bed->want_p_paddr_set_to_zero)
5963 goto rewrite;
5964
5965 /* Initialize the segment mark field. */
5966 for (section = obfd->sections; section != NULL;
5967 section = section->next)
5968 section->segment_mark = FALSE;
5969
5970 num_segments = elf_elfheader (ibfd)->e_phnum;
5971 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5972 i < num_segments;
5973 i++, segment++)
5974 {
5975 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5976 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5977 which severly confuses things, so always regenerate the segment
5978 map in this case. */
5979 if (segment->p_paddr == 0
5980 && segment->p_memsz == 0
5981 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5982 goto rewrite;
5983
5984 for (section = ibfd->sections;
5985 section != NULL; section = section->next)
5986 {
5987 /* We mark the output section so that we know it comes
5988 from the input BFD. */
5989 osec = section->output_section;
5990 if (osec)
5991 osec->segment_mark = TRUE;
5992
5993 /* Check if this section is covered by the segment. */
5994 this_hdr = &(elf_section_data(section)->this_hdr);
5995 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5996 {
5997 /* FIXME: Check if its output section is changed or
5998 removed. What else do we need to check? */
5999 if (osec == NULL
6000 || section->flags != osec->flags
6001 || section->lma != osec->lma
6002 || section->vma != osec->vma
6003 || section->size != osec->size
6004 || section->rawsize != osec->rawsize
6005 || section->alignment_power != osec->alignment_power)
6006 goto rewrite;
6007 }
6008 }
6009 }
6010
6011 /* Check to see if any output section do not come from the
6012 input BFD. */
6013 for (section = obfd->sections; section != NULL;
6014 section = section->next)
6015 {
6016 if (section->segment_mark == FALSE)
6017 goto rewrite;
6018 else
6019 section->segment_mark = FALSE;
6020 }
6021
6022 return copy_elf_program_header (ibfd, obfd);
6023 }
6024
6025 rewrite:
6026 return rewrite_elf_program_header (ibfd, obfd);
6027 }
6028
6029 /* Initialize private output section information from input section. */
6030
6031 bfd_boolean
6032 _bfd_elf_init_private_section_data (bfd *ibfd,
6033 asection *isec,
6034 bfd *obfd,
6035 asection *osec,
6036 struct bfd_link_info *link_info)
6037
6038 {
6039 Elf_Internal_Shdr *ihdr, *ohdr;
6040 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
6041
6042 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6043 || obfd->xvec->flavour != bfd_target_elf_flavour)
6044 return TRUE;
6045
6046 /* Don't copy the output ELF section type from input if the
6047 output BFD section flags have been set to something different.
6048 elf_fake_sections will set ELF section type based on BFD
6049 section flags. */
6050 if (elf_section_type (osec) == SHT_NULL
6051 && (osec->flags == isec->flags || !osec->flags))
6052 elf_section_type (osec) = elf_section_type (isec);
6053
6054 /* FIXME: Is this correct for all OS/PROC specific flags? */
6055 elf_section_flags (osec) |= (elf_section_flags (isec)
6056 & (SHF_MASKOS | SHF_MASKPROC));
6057
6058 /* Set things up for objcopy and relocatable link. The output
6059 SHT_GROUP section will have its elf_next_in_group pointing back
6060 to the input group members. Ignore linker created group section.
6061 See elfNN_ia64_object_p in elfxx-ia64.c. */
6062 if (need_group)
6063 {
6064 if (elf_sec_group (isec) == NULL
6065 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6066 {
6067 if (elf_section_flags (isec) & SHF_GROUP)
6068 elf_section_flags (osec) |= SHF_GROUP;
6069 elf_next_in_group (osec) = elf_next_in_group (isec);
6070 elf_section_data (osec)->group = elf_section_data (isec)->group;
6071 }
6072 }
6073
6074 ihdr = &elf_section_data (isec)->this_hdr;
6075
6076 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6077 don't use the output section of the linked-to section since it
6078 may be NULL at this point. */
6079 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6080 {
6081 ohdr = &elf_section_data (osec)->this_hdr;
6082 ohdr->sh_flags |= SHF_LINK_ORDER;
6083 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6084 }
6085
6086 osec->use_rela_p = isec->use_rela_p;
6087
6088 return TRUE;
6089 }
6090
6091 /* Copy private section information. This copies over the entsize
6092 field, and sometimes the info field. */
6093
6094 bfd_boolean
6095 _bfd_elf_copy_private_section_data (bfd *ibfd,
6096 asection *isec,
6097 bfd *obfd,
6098 asection *osec)
6099 {
6100 Elf_Internal_Shdr *ihdr, *ohdr;
6101
6102 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6103 || obfd->xvec->flavour != bfd_target_elf_flavour)
6104 return TRUE;
6105
6106 ihdr = &elf_section_data (isec)->this_hdr;
6107 ohdr = &elf_section_data (osec)->this_hdr;
6108
6109 ohdr->sh_entsize = ihdr->sh_entsize;
6110
6111 if (ihdr->sh_type == SHT_SYMTAB
6112 || ihdr->sh_type == SHT_DYNSYM
6113 || ihdr->sh_type == SHT_GNU_verneed
6114 || ihdr->sh_type == SHT_GNU_verdef)
6115 ohdr->sh_info = ihdr->sh_info;
6116
6117 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6118 NULL);
6119 }
6120
6121 /* Copy private header information. */
6122
6123 bfd_boolean
6124 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6125 {
6126 asection *isec;
6127
6128 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6129 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6130 return TRUE;
6131
6132 /* Copy over private BFD data if it has not already been copied.
6133 This must be done here, rather than in the copy_private_bfd_data
6134 entry point, because the latter is called after the section
6135 contents have been set, which means that the program headers have
6136 already been worked out. */
6137 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6138 {
6139 if (! copy_private_bfd_data (ibfd, obfd))
6140 return FALSE;
6141 }
6142
6143 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6144 but this might be wrong if we deleted the group section. */
6145 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6146 if (elf_section_type (isec) == SHT_GROUP
6147 && isec->output_section == NULL)
6148 {
6149 asection *first = elf_next_in_group (isec);
6150 asection *s = first;
6151 while (s != NULL)
6152 {
6153 if (s->output_section != NULL)
6154 {
6155 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6156 elf_group_name (s->output_section) = NULL;
6157 }
6158 s = elf_next_in_group (s);
6159 if (s == first)
6160 break;
6161 }
6162 }
6163
6164 return TRUE;
6165 }
6166
6167 /* Copy private symbol information. If this symbol is in a section
6168 which we did not map into a BFD section, try to map the section
6169 index correctly. We use special macro definitions for the mapped
6170 section indices; these definitions are interpreted by the
6171 swap_out_syms function. */
6172
6173 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6174 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6175 #define MAP_STRTAB (SHN_HIOS + 3)
6176 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6177 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6178
6179 bfd_boolean
6180 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6181 asymbol *isymarg,
6182 bfd *obfd,
6183 asymbol *osymarg)
6184 {
6185 elf_symbol_type *isym, *osym;
6186
6187 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6188 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6189 return TRUE;
6190
6191 isym = elf_symbol_from (ibfd, isymarg);
6192 osym = elf_symbol_from (obfd, osymarg);
6193
6194 if (isym != NULL
6195 && isym->internal_elf_sym.st_shndx != 0
6196 && osym != NULL
6197 && bfd_is_abs_section (isym->symbol.section))
6198 {
6199 unsigned int shndx;
6200
6201 shndx = isym->internal_elf_sym.st_shndx;
6202 if (shndx == elf_onesymtab (ibfd))
6203 shndx = MAP_ONESYMTAB;
6204 else if (shndx == elf_dynsymtab (ibfd))
6205 shndx = MAP_DYNSYMTAB;
6206 else if (shndx == elf_tdata (ibfd)->strtab_section)
6207 shndx = MAP_STRTAB;
6208 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6209 shndx = MAP_SHSTRTAB;
6210 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6211 shndx = MAP_SYM_SHNDX;
6212 osym->internal_elf_sym.st_shndx = shndx;
6213 }
6214
6215 return TRUE;
6216 }
6217
6218 /* Swap out the symbols. */
6219
6220 static bfd_boolean
6221 swap_out_syms (bfd *abfd,
6222 struct bfd_strtab_hash **sttp,
6223 int relocatable_p)
6224 {
6225 const struct elf_backend_data *bed;
6226 int symcount;
6227 asymbol **syms;
6228 struct bfd_strtab_hash *stt;
6229 Elf_Internal_Shdr *symtab_hdr;
6230 Elf_Internal_Shdr *symtab_shndx_hdr;
6231 Elf_Internal_Shdr *symstrtab_hdr;
6232 bfd_byte *outbound_syms;
6233 bfd_byte *outbound_shndx;
6234 int idx;
6235 bfd_size_type amt;
6236 bfd_boolean name_local_sections;
6237
6238 if (!elf_map_symbols (abfd))
6239 return FALSE;
6240
6241 /* Dump out the symtabs. */
6242 stt = _bfd_elf_stringtab_init ();
6243 if (stt == NULL)
6244 return FALSE;
6245
6246 bed = get_elf_backend_data (abfd);
6247 symcount = bfd_get_symcount (abfd);
6248 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6249 symtab_hdr->sh_type = SHT_SYMTAB;
6250 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6251 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6252 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6253 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6254
6255 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6256 symstrtab_hdr->sh_type = SHT_STRTAB;
6257
6258 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6259 if (outbound_syms == NULL)
6260 {
6261 _bfd_stringtab_free (stt);
6262 return FALSE;
6263 }
6264 symtab_hdr->contents = outbound_syms;
6265
6266 outbound_shndx = NULL;
6267 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6268 if (symtab_shndx_hdr->sh_name != 0)
6269 {
6270 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6271 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6272 sizeof (Elf_External_Sym_Shndx));
6273 if (outbound_shndx == NULL)
6274 {
6275 _bfd_stringtab_free (stt);
6276 return FALSE;
6277 }
6278
6279 symtab_shndx_hdr->contents = outbound_shndx;
6280 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6281 symtab_shndx_hdr->sh_size = amt;
6282 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6283 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6284 }
6285
6286 /* Now generate the data (for "contents"). */
6287 {
6288 /* Fill in zeroth symbol and swap it out. */
6289 Elf_Internal_Sym sym;
6290 sym.st_name = 0;
6291 sym.st_value = 0;
6292 sym.st_size = 0;
6293 sym.st_info = 0;
6294 sym.st_other = 0;
6295 sym.st_shndx = SHN_UNDEF;
6296 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6297 outbound_syms += bed->s->sizeof_sym;
6298 if (outbound_shndx != NULL)
6299 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6300 }
6301
6302 name_local_sections
6303 = (bed->elf_backend_name_local_section_symbols
6304 && bed->elf_backend_name_local_section_symbols (abfd));
6305
6306 syms = bfd_get_outsymbols (abfd);
6307 for (idx = 0; idx < symcount; idx++)
6308 {
6309 Elf_Internal_Sym sym;
6310 bfd_vma value = syms[idx]->value;
6311 elf_symbol_type *type_ptr;
6312 flagword flags = syms[idx]->flags;
6313 int type;
6314
6315 if (!name_local_sections
6316 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6317 {
6318 /* Local section symbols have no name. */
6319 sym.st_name = 0;
6320 }
6321 else
6322 {
6323 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6324 syms[idx]->name,
6325 TRUE, FALSE);
6326 if (sym.st_name == (unsigned long) -1)
6327 {
6328 _bfd_stringtab_free (stt);
6329 return FALSE;
6330 }
6331 }
6332
6333 type_ptr = elf_symbol_from (abfd, syms[idx]);
6334
6335 if ((flags & BSF_SECTION_SYM) == 0
6336 && bfd_is_com_section (syms[idx]->section))
6337 {
6338 /* ELF common symbols put the alignment into the `value' field,
6339 and the size into the `size' field. This is backwards from
6340 how BFD handles it, so reverse it here. */
6341 sym.st_size = value;
6342 if (type_ptr == NULL
6343 || type_ptr->internal_elf_sym.st_value == 0)
6344 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6345 else
6346 sym.st_value = type_ptr->internal_elf_sym.st_value;
6347 sym.st_shndx = _bfd_elf_section_from_bfd_section
6348 (abfd, syms[idx]->section);
6349 }
6350 else
6351 {
6352 asection *sec = syms[idx]->section;
6353 unsigned int shndx;
6354
6355 if (sec->output_section)
6356 {
6357 value += sec->output_offset;
6358 sec = sec->output_section;
6359 }
6360
6361 /* Don't add in the section vma for relocatable output. */
6362 if (! relocatable_p)
6363 value += sec->vma;
6364 sym.st_value = value;
6365 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6366
6367 if (bfd_is_abs_section (sec)
6368 && type_ptr != NULL
6369 && type_ptr->internal_elf_sym.st_shndx != 0)
6370 {
6371 /* This symbol is in a real ELF section which we did
6372 not create as a BFD section. Undo the mapping done
6373 by copy_private_symbol_data. */
6374 shndx = type_ptr->internal_elf_sym.st_shndx;
6375 switch (shndx)
6376 {
6377 case MAP_ONESYMTAB:
6378 shndx = elf_onesymtab (abfd);
6379 break;
6380 case MAP_DYNSYMTAB:
6381 shndx = elf_dynsymtab (abfd);
6382 break;
6383 case MAP_STRTAB:
6384 shndx = elf_tdata (abfd)->strtab_section;
6385 break;
6386 case MAP_SHSTRTAB:
6387 shndx = elf_tdata (abfd)->shstrtab_section;
6388 break;
6389 case MAP_SYM_SHNDX:
6390 shndx = elf_tdata (abfd)->symtab_shndx_section;
6391 break;
6392 default:
6393 break;
6394 }
6395 }
6396 else
6397 {
6398 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6399
6400 if (shndx == SHN_BAD)
6401 {
6402 asection *sec2;
6403
6404 /* Writing this would be a hell of a lot easier if
6405 we had some decent documentation on bfd, and
6406 knew what to expect of the library, and what to
6407 demand of applications. For example, it
6408 appears that `objcopy' might not set the
6409 section of a symbol to be a section that is
6410 actually in the output file. */
6411 sec2 = bfd_get_section_by_name (abfd, sec->name);
6412 if (sec2 == NULL)
6413 {
6414 _bfd_error_handler (_("\
6415 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6416 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6417 sec->name);
6418 bfd_set_error (bfd_error_invalid_operation);
6419 _bfd_stringtab_free (stt);
6420 return FALSE;
6421 }
6422
6423 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6424 BFD_ASSERT (shndx != SHN_BAD);
6425 }
6426 }
6427
6428 sym.st_shndx = shndx;
6429 }
6430
6431 if ((flags & BSF_THREAD_LOCAL) != 0)
6432 type = STT_TLS;
6433 else if ((flags & BSF_FUNCTION) != 0)
6434 type = STT_FUNC;
6435 else if ((flags & BSF_OBJECT) != 0)
6436 type = STT_OBJECT;
6437 else if ((flags & BSF_RELC) != 0)
6438 type = STT_RELC;
6439 else if ((flags & BSF_SRELC) != 0)
6440 type = STT_SRELC;
6441 else
6442 type = STT_NOTYPE;
6443
6444 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6445 type = STT_TLS;
6446
6447 /* Processor-specific types. */
6448 if (type_ptr != NULL
6449 && bed->elf_backend_get_symbol_type)
6450 type = ((*bed->elf_backend_get_symbol_type)
6451 (&type_ptr->internal_elf_sym, type));
6452
6453 if (flags & BSF_SECTION_SYM)
6454 {
6455 if (flags & BSF_GLOBAL)
6456 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6457 else
6458 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6459 }
6460 else if (bfd_is_com_section (syms[idx]->section))
6461 {
6462 #ifdef USE_STT_COMMON
6463 if (type == STT_OBJECT)
6464 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6465 else
6466 #endif
6467 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6468 }
6469 else if (bfd_is_und_section (syms[idx]->section))
6470 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6471 ? STB_WEAK
6472 : STB_GLOBAL),
6473 type);
6474 else if (flags & BSF_FILE)
6475 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6476 else
6477 {
6478 int bind = STB_LOCAL;
6479
6480 if (flags & BSF_LOCAL)
6481 bind = STB_LOCAL;
6482 else if (flags & BSF_WEAK)
6483 bind = STB_WEAK;
6484 else if (flags & BSF_GLOBAL)
6485 bind = STB_GLOBAL;
6486
6487 sym.st_info = ELF_ST_INFO (bind, type);
6488 }
6489
6490 if (type_ptr != NULL)
6491 sym.st_other = type_ptr->internal_elf_sym.st_other;
6492 else
6493 sym.st_other = 0;
6494
6495 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6496 outbound_syms += bed->s->sizeof_sym;
6497 if (outbound_shndx != NULL)
6498 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6499 }
6500
6501 *sttp = stt;
6502 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6503 symstrtab_hdr->sh_type = SHT_STRTAB;
6504
6505 symstrtab_hdr->sh_flags = 0;
6506 symstrtab_hdr->sh_addr = 0;
6507 symstrtab_hdr->sh_entsize = 0;
6508 symstrtab_hdr->sh_link = 0;
6509 symstrtab_hdr->sh_info = 0;
6510 symstrtab_hdr->sh_addralign = 1;
6511
6512 return TRUE;
6513 }
6514
6515 /* Return the number of bytes required to hold the symtab vector.
6516
6517 Note that we base it on the count plus 1, since we will null terminate
6518 the vector allocated based on this size. However, the ELF symbol table
6519 always has a dummy entry as symbol #0, so it ends up even. */
6520
6521 long
6522 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6523 {
6524 long symcount;
6525 long symtab_size;
6526 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6527
6528 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6529 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6530 if (symcount > 0)
6531 symtab_size -= sizeof (asymbol *);
6532
6533 return symtab_size;
6534 }
6535
6536 long
6537 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6538 {
6539 long symcount;
6540 long symtab_size;
6541 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6542
6543 if (elf_dynsymtab (abfd) == 0)
6544 {
6545 bfd_set_error (bfd_error_invalid_operation);
6546 return -1;
6547 }
6548
6549 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6550 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6551 if (symcount > 0)
6552 symtab_size -= sizeof (asymbol *);
6553
6554 return symtab_size;
6555 }
6556
6557 long
6558 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6559 sec_ptr asect)
6560 {
6561 return (asect->reloc_count + 1) * sizeof (arelent *);
6562 }
6563
6564 /* Canonicalize the relocs. */
6565
6566 long
6567 _bfd_elf_canonicalize_reloc (bfd *abfd,
6568 sec_ptr section,
6569 arelent **relptr,
6570 asymbol **symbols)
6571 {
6572 arelent *tblptr;
6573 unsigned int i;
6574 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6575
6576 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6577 return -1;
6578
6579 tblptr = section->relocation;
6580 for (i = 0; i < section->reloc_count; i++)
6581 *relptr++ = tblptr++;
6582
6583 *relptr = NULL;
6584
6585 return section->reloc_count;
6586 }
6587
6588 long
6589 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6590 {
6591 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6592 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6593
6594 if (symcount >= 0)
6595 bfd_get_symcount (abfd) = symcount;
6596 return symcount;
6597 }
6598
6599 long
6600 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6601 asymbol **allocation)
6602 {
6603 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6604 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6605
6606 if (symcount >= 0)
6607 bfd_get_dynamic_symcount (abfd) = symcount;
6608 return symcount;
6609 }
6610
6611 /* Return the size required for the dynamic reloc entries. Any loadable
6612 section that was actually installed in the BFD, and has type SHT_REL
6613 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6614 dynamic reloc section. */
6615
6616 long
6617 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6618 {
6619 long ret;
6620 asection *s;
6621
6622 if (elf_dynsymtab (abfd) == 0)
6623 {
6624 bfd_set_error (bfd_error_invalid_operation);
6625 return -1;
6626 }
6627
6628 ret = sizeof (arelent *);
6629 for (s = abfd->sections; s != NULL; s = s->next)
6630 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6631 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6632 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6633 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6634 * sizeof (arelent *));
6635
6636 return ret;
6637 }
6638
6639 /* Canonicalize the dynamic relocation entries. Note that we return the
6640 dynamic relocations as a single block, although they are actually
6641 associated with particular sections; the interface, which was
6642 designed for SunOS style shared libraries, expects that there is only
6643 one set of dynamic relocs. Any loadable section that was actually
6644 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6645 dynamic symbol table, is considered to be a dynamic reloc section. */
6646
6647 long
6648 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6649 arelent **storage,
6650 asymbol **syms)
6651 {
6652 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6653 asection *s;
6654 long ret;
6655
6656 if (elf_dynsymtab (abfd) == 0)
6657 {
6658 bfd_set_error (bfd_error_invalid_operation);
6659 return -1;
6660 }
6661
6662 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6663 ret = 0;
6664 for (s = abfd->sections; s != NULL; s = s->next)
6665 {
6666 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6667 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6668 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6669 {
6670 arelent *p;
6671 long count, i;
6672
6673 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6674 return -1;
6675 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6676 p = s->relocation;
6677 for (i = 0; i < count; i++)
6678 *storage++ = p++;
6679 ret += count;
6680 }
6681 }
6682
6683 *storage = NULL;
6684
6685 return ret;
6686 }
6687 \f
6688 /* Read in the version information. */
6689
6690 bfd_boolean
6691 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6692 {
6693 bfd_byte *contents = NULL;
6694 unsigned int freeidx = 0;
6695
6696 if (elf_dynverref (abfd) != 0)
6697 {
6698 Elf_Internal_Shdr *hdr;
6699 Elf_External_Verneed *everneed;
6700 Elf_Internal_Verneed *iverneed;
6701 unsigned int i;
6702 bfd_byte *contents_end;
6703
6704 hdr = &elf_tdata (abfd)->dynverref_hdr;
6705
6706 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6707 sizeof (Elf_Internal_Verneed));
6708 if (elf_tdata (abfd)->verref == NULL)
6709 goto error_return;
6710
6711 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6712
6713 contents = bfd_malloc (hdr->sh_size);
6714 if (contents == NULL)
6715 {
6716 error_return_verref:
6717 elf_tdata (abfd)->verref = NULL;
6718 elf_tdata (abfd)->cverrefs = 0;
6719 goto error_return;
6720 }
6721 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6722 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6723 goto error_return_verref;
6724
6725 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6726 goto error_return_verref;
6727
6728 BFD_ASSERT (sizeof (Elf_External_Verneed)
6729 == sizeof (Elf_External_Vernaux));
6730 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6731 everneed = (Elf_External_Verneed *) contents;
6732 iverneed = elf_tdata (abfd)->verref;
6733 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6734 {
6735 Elf_External_Vernaux *evernaux;
6736 Elf_Internal_Vernaux *ivernaux;
6737 unsigned int j;
6738
6739 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6740
6741 iverneed->vn_bfd = abfd;
6742
6743 iverneed->vn_filename =
6744 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6745 iverneed->vn_file);
6746 if (iverneed->vn_filename == NULL)
6747 goto error_return_verref;
6748
6749 if (iverneed->vn_cnt == 0)
6750 iverneed->vn_auxptr = NULL;
6751 else
6752 {
6753 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6754 sizeof (Elf_Internal_Vernaux));
6755 if (iverneed->vn_auxptr == NULL)
6756 goto error_return_verref;
6757 }
6758
6759 if (iverneed->vn_aux
6760 > (size_t) (contents_end - (bfd_byte *) everneed))
6761 goto error_return_verref;
6762
6763 evernaux = ((Elf_External_Vernaux *)
6764 ((bfd_byte *) everneed + iverneed->vn_aux));
6765 ivernaux = iverneed->vn_auxptr;
6766 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6767 {
6768 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6769
6770 ivernaux->vna_nodename =
6771 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6772 ivernaux->vna_name);
6773 if (ivernaux->vna_nodename == NULL)
6774 goto error_return_verref;
6775
6776 if (j + 1 < iverneed->vn_cnt)
6777 ivernaux->vna_nextptr = ivernaux + 1;
6778 else
6779 ivernaux->vna_nextptr = NULL;
6780
6781 if (ivernaux->vna_next
6782 > (size_t) (contents_end - (bfd_byte *) evernaux))
6783 goto error_return_verref;
6784
6785 evernaux = ((Elf_External_Vernaux *)
6786 ((bfd_byte *) evernaux + ivernaux->vna_next));
6787
6788 if (ivernaux->vna_other > freeidx)
6789 freeidx = ivernaux->vna_other;
6790 }
6791
6792 if (i + 1 < hdr->sh_info)
6793 iverneed->vn_nextref = iverneed + 1;
6794 else
6795 iverneed->vn_nextref = NULL;
6796
6797 if (iverneed->vn_next
6798 > (size_t) (contents_end - (bfd_byte *) everneed))
6799 goto error_return_verref;
6800
6801 everneed = ((Elf_External_Verneed *)
6802 ((bfd_byte *) everneed + iverneed->vn_next));
6803 }
6804
6805 free (contents);
6806 contents = NULL;
6807 }
6808
6809 if (elf_dynverdef (abfd) != 0)
6810 {
6811 Elf_Internal_Shdr *hdr;
6812 Elf_External_Verdef *everdef;
6813 Elf_Internal_Verdef *iverdef;
6814 Elf_Internal_Verdef *iverdefarr;
6815 Elf_Internal_Verdef iverdefmem;
6816 unsigned int i;
6817 unsigned int maxidx;
6818 bfd_byte *contents_end_def, *contents_end_aux;
6819
6820 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6821
6822 contents = bfd_malloc (hdr->sh_size);
6823 if (contents == NULL)
6824 goto error_return;
6825 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6826 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6827 goto error_return;
6828
6829 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6830 goto error_return;
6831
6832 BFD_ASSERT (sizeof (Elf_External_Verdef)
6833 >= sizeof (Elf_External_Verdaux));
6834 contents_end_def = contents + hdr->sh_size
6835 - sizeof (Elf_External_Verdef);
6836 contents_end_aux = contents + hdr->sh_size
6837 - sizeof (Elf_External_Verdaux);
6838
6839 /* We know the number of entries in the section but not the maximum
6840 index. Therefore we have to run through all entries and find
6841 the maximum. */
6842 everdef = (Elf_External_Verdef *) contents;
6843 maxidx = 0;
6844 for (i = 0; i < hdr->sh_info; ++i)
6845 {
6846 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6847
6848 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6849 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6850
6851 if (iverdefmem.vd_next
6852 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6853 goto error_return;
6854
6855 everdef = ((Elf_External_Verdef *)
6856 ((bfd_byte *) everdef + iverdefmem.vd_next));
6857 }
6858
6859 if (default_imported_symver)
6860 {
6861 if (freeidx > maxidx)
6862 maxidx = ++freeidx;
6863 else
6864 freeidx = ++maxidx;
6865 }
6866 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6867 sizeof (Elf_Internal_Verdef));
6868 if (elf_tdata (abfd)->verdef == NULL)
6869 goto error_return;
6870
6871 elf_tdata (abfd)->cverdefs = maxidx;
6872
6873 everdef = (Elf_External_Verdef *) contents;
6874 iverdefarr = elf_tdata (abfd)->verdef;
6875 for (i = 0; i < hdr->sh_info; i++)
6876 {
6877 Elf_External_Verdaux *everdaux;
6878 Elf_Internal_Verdaux *iverdaux;
6879 unsigned int j;
6880
6881 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6882
6883 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6884 {
6885 error_return_verdef:
6886 elf_tdata (abfd)->verdef = NULL;
6887 elf_tdata (abfd)->cverdefs = 0;
6888 goto error_return;
6889 }
6890
6891 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6892 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6893
6894 iverdef->vd_bfd = abfd;
6895
6896 if (iverdef->vd_cnt == 0)
6897 iverdef->vd_auxptr = NULL;
6898 else
6899 {
6900 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6901 sizeof (Elf_Internal_Verdaux));
6902 if (iverdef->vd_auxptr == NULL)
6903 goto error_return_verdef;
6904 }
6905
6906 if (iverdef->vd_aux
6907 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6908 goto error_return_verdef;
6909
6910 everdaux = ((Elf_External_Verdaux *)
6911 ((bfd_byte *) everdef + iverdef->vd_aux));
6912 iverdaux = iverdef->vd_auxptr;
6913 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6914 {
6915 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6916
6917 iverdaux->vda_nodename =
6918 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6919 iverdaux->vda_name);
6920 if (iverdaux->vda_nodename == NULL)
6921 goto error_return_verdef;
6922
6923 if (j + 1 < iverdef->vd_cnt)
6924 iverdaux->vda_nextptr = iverdaux + 1;
6925 else
6926 iverdaux->vda_nextptr = NULL;
6927
6928 if (iverdaux->vda_next
6929 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6930 goto error_return_verdef;
6931
6932 everdaux = ((Elf_External_Verdaux *)
6933 ((bfd_byte *) everdaux + iverdaux->vda_next));
6934 }
6935
6936 if (iverdef->vd_cnt)
6937 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6938
6939 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6940 iverdef->vd_nextdef = iverdef + 1;
6941 else
6942 iverdef->vd_nextdef = NULL;
6943
6944 everdef = ((Elf_External_Verdef *)
6945 ((bfd_byte *) everdef + iverdef->vd_next));
6946 }
6947
6948 free (contents);
6949 contents = NULL;
6950 }
6951 else if (default_imported_symver)
6952 {
6953 if (freeidx < 3)
6954 freeidx = 3;
6955 else
6956 freeidx++;
6957
6958 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6959 sizeof (Elf_Internal_Verdef));
6960 if (elf_tdata (abfd)->verdef == NULL)
6961 goto error_return;
6962
6963 elf_tdata (abfd)->cverdefs = freeidx;
6964 }
6965
6966 /* Create a default version based on the soname. */
6967 if (default_imported_symver)
6968 {
6969 Elf_Internal_Verdef *iverdef;
6970 Elf_Internal_Verdaux *iverdaux;
6971
6972 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6973
6974 iverdef->vd_version = VER_DEF_CURRENT;
6975 iverdef->vd_flags = 0;
6976 iverdef->vd_ndx = freeidx;
6977 iverdef->vd_cnt = 1;
6978
6979 iverdef->vd_bfd = abfd;
6980
6981 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6982 if (iverdef->vd_nodename == NULL)
6983 goto error_return_verdef;
6984 iverdef->vd_nextdef = NULL;
6985 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6986 if (iverdef->vd_auxptr == NULL)
6987 goto error_return_verdef;
6988
6989 iverdaux = iverdef->vd_auxptr;
6990 iverdaux->vda_nodename = iverdef->vd_nodename;
6991 iverdaux->vda_nextptr = NULL;
6992 }
6993
6994 return TRUE;
6995
6996 error_return:
6997 if (contents != NULL)
6998 free (contents);
6999 return FALSE;
7000 }
7001 \f
7002 asymbol *
7003 _bfd_elf_make_empty_symbol (bfd *abfd)
7004 {
7005 elf_symbol_type *newsym;
7006 bfd_size_type amt = sizeof (elf_symbol_type);
7007
7008 newsym = bfd_zalloc (abfd, amt);
7009 if (!newsym)
7010 return NULL;
7011 else
7012 {
7013 newsym->symbol.the_bfd = abfd;
7014 return &newsym->symbol;
7015 }
7016 }
7017
7018 void
7019 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7020 asymbol *symbol,
7021 symbol_info *ret)
7022 {
7023 bfd_symbol_info (symbol, ret);
7024 }
7025
7026 /* Return whether a symbol name implies a local symbol. Most targets
7027 use this function for the is_local_label_name entry point, but some
7028 override it. */
7029
7030 bfd_boolean
7031 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7032 const char *name)
7033 {
7034 /* Normal local symbols start with ``.L''. */
7035 if (name[0] == '.' && name[1] == 'L')
7036 return TRUE;
7037
7038 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7039 DWARF debugging symbols starting with ``..''. */
7040 if (name[0] == '.' && name[1] == '.')
7041 return TRUE;
7042
7043 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7044 emitting DWARF debugging output. I suspect this is actually a
7045 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7046 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7047 underscore to be emitted on some ELF targets). For ease of use,
7048 we treat such symbols as local. */
7049 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7050 return TRUE;
7051
7052 return FALSE;
7053 }
7054
7055 alent *
7056 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7057 asymbol *symbol ATTRIBUTE_UNUSED)
7058 {
7059 abort ();
7060 return NULL;
7061 }
7062
7063 bfd_boolean
7064 _bfd_elf_set_arch_mach (bfd *abfd,
7065 enum bfd_architecture arch,
7066 unsigned long machine)
7067 {
7068 /* If this isn't the right architecture for this backend, and this
7069 isn't the generic backend, fail. */
7070 if (arch != get_elf_backend_data (abfd)->arch
7071 && arch != bfd_arch_unknown
7072 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7073 return FALSE;
7074
7075 return bfd_default_set_arch_mach (abfd, arch, machine);
7076 }
7077
7078 /* Find the function to a particular section and offset,
7079 for error reporting. */
7080
7081 static bfd_boolean
7082 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7083 asection *section,
7084 asymbol **symbols,
7085 bfd_vma offset,
7086 const char **filename_ptr,
7087 const char **functionname_ptr)
7088 {
7089 const char *filename;
7090 asymbol *func, *file;
7091 bfd_vma low_func;
7092 asymbol **p;
7093 /* ??? Given multiple file symbols, it is impossible to reliably
7094 choose the right file name for global symbols. File symbols are
7095 local symbols, and thus all file symbols must sort before any
7096 global symbols. The ELF spec may be interpreted to say that a
7097 file symbol must sort before other local symbols, but currently
7098 ld -r doesn't do this. So, for ld -r output, it is possible to
7099 make a better choice of file name for local symbols by ignoring
7100 file symbols appearing after a given local symbol. */
7101 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7102
7103 filename = NULL;
7104 func = NULL;
7105 file = NULL;
7106 low_func = 0;
7107 state = nothing_seen;
7108
7109 for (p = symbols; *p != NULL; p++)
7110 {
7111 elf_symbol_type *q;
7112
7113 q = (elf_symbol_type *) *p;
7114
7115 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7116 {
7117 default:
7118 break;
7119 case STT_FILE:
7120 file = &q->symbol;
7121 if (state == symbol_seen)
7122 state = file_after_symbol_seen;
7123 continue;
7124 case STT_NOTYPE:
7125 case STT_FUNC:
7126 if (bfd_get_section (&q->symbol) == section
7127 && q->symbol.value >= low_func
7128 && q->symbol.value <= offset)
7129 {
7130 func = (asymbol *) q;
7131 low_func = q->symbol.value;
7132 filename = NULL;
7133 if (file != NULL
7134 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7135 || state != file_after_symbol_seen))
7136 filename = bfd_asymbol_name (file);
7137 }
7138 break;
7139 }
7140 if (state == nothing_seen)
7141 state = symbol_seen;
7142 }
7143
7144 if (func == NULL)
7145 return FALSE;
7146
7147 if (filename_ptr)
7148 *filename_ptr = filename;
7149 if (functionname_ptr)
7150 *functionname_ptr = bfd_asymbol_name (func);
7151
7152 return TRUE;
7153 }
7154
7155 /* Find the nearest line to a particular section and offset,
7156 for error reporting. */
7157
7158 bfd_boolean
7159 _bfd_elf_find_nearest_line (bfd *abfd,
7160 asection *section,
7161 asymbol **symbols,
7162 bfd_vma offset,
7163 const char **filename_ptr,
7164 const char **functionname_ptr,
7165 unsigned int *line_ptr)
7166 {
7167 bfd_boolean found;
7168
7169 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7170 filename_ptr, functionname_ptr,
7171 line_ptr))
7172 {
7173 if (!*functionname_ptr)
7174 elf_find_function (abfd, section, symbols, offset,
7175 *filename_ptr ? NULL : filename_ptr,
7176 functionname_ptr);
7177
7178 return TRUE;
7179 }
7180
7181 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7182 filename_ptr, functionname_ptr,
7183 line_ptr, 0,
7184 &elf_tdata (abfd)->dwarf2_find_line_info))
7185 {
7186 if (!*functionname_ptr)
7187 elf_find_function (abfd, section, symbols, offset,
7188 *filename_ptr ? NULL : filename_ptr,
7189 functionname_ptr);
7190
7191 return TRUE;
7192 }
7193
7194 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7195 &found, filename_ptr,
7196 functionname_ptr, line_ptr,
7197 &elf_tdata (abfd)->line_info))
7198 return FALSE;
7199 if (found && (*functionname_ptr || *line_ptr))
7200 return TRUE;
7201
7202 if (symbols == NULL)
7203 return FALSE;
7204
7205 if (! elf_find_function (abfd, section, symbols, offset,
7206 filename_ptr, functionname_ptr))
7207 return FALSE;
7208
7209 *line_ptr = 0;
7210 return TRUE;
7211 }
7212
7213 /* Find the line for a symbol. */
7214
7215 bfd_boolean
7216 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7217 const char **filename_ptr, unsigned int *line_ptr)
7218 {
7219 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7220 filename_ptr, line_ptr, 0,
7221 &elf_tdata (abfd)->dwarf2_find_line_info);
7222 }
7223
7224 /* After a call to bfd_find_nearest_line, successive calls to
7225 bfd_find_inliner_info can be used to get source information about
7226 each level of function inlining that terminated at the address
7227 passed to bfd_find_nearest_line. Currently this is only supported
7228 for DWARF2 with appropriate DWARF3 extensions. */
7229
7230 bfd_boolean
7231 _bfd_elf_find_inliner_info (bfd *abfd,
7232 const char **filename_ptr,
7233 const char **functionname_ptr,
7234 unsigned int *line_ptr)
7235 {
7236 bfd_boolean found;
7237 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7238 functionname_ptr, line_ptr,
7239 & elf_tdata (abfd)->dwarf2_find_line_info);
7240 return found;
7241 }
7242
7243 int
7244 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7245 {
7246 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7247 int ret = bed->s->sizeof_ehdr;
7248
7249 if (!info->relocatable)
7250 {
7251 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7252
7253 if (phdr_size == (bfd_size_type) -1)
7254 {
7255 struct elf_segment_map *m;
7256
7257 phdr_size = 0;
7258 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7259 phdr_size += bed->s->sizeof_phdr;
7260
7261 if (phdr_size == 0)
7262 phdr_size = get_program_header_size (abfd, info);
7263 }
7264
7265 elf_tdata (abfd)->program_header_size = phdr_size;
7266 ret += phdr_size;
7267 }
7268
7269 return ret;
7270 }
7271
7272 bfd_boolean
7273 _bfd_elf_set_section_contents (bfd *abfd,
7274 sec_ptr section,
7275 const void *location,
7276 file_ptr offset,
7277 bfd_size_type count)
7278 {
7279 Elf_Internal_Shdr *hdr;
7280 bfd_signed_vma pos;
7281
7282 if (! abfd->output_has_begun
7283 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7284 return FALSE;
7285
7286 hdr = &elf_section_data (section)->this_hdr;
7287 pos = hdr->sh_offset + offset;
7288 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7289 || bfd_bwrite (location, count, abfd) != count)
7290 return FALSE;
7291
7292 return TRUE;
7293 }
7294
7295 void
7296 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7297 arelent *cache_ptr ATTRIBUTE_UNUSED,
7298 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7299 {
7300 abort ();
7301 }
7302
7303 /* Try to convert a non-ELF reloc into an ELF one. */
7304
7305 bfd_boolean
7306 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7307 {
7308 /* Check whether we really have an ELF howto. */
7309
7310 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7311 {
7312 bfd_reloc_code_real_type code;
7313 reloc_howto_type *howto;
7314
7315 /* Alien reloc: Try to determine its type to replace it with an
7316 equivalent ELF reloc. */
7317
7318 if (areloc->howto->pc_relative)
7319 {
7320 switch (areloc->howto->bitsize)
7321 {
7322 case 8:
7323 code = BFD_RELOC_8_PCREL;
7324 break;
7325 case 12:
7326 code = BFD_RELOC_12_PCREL;
7327 break;
7328 case 16:
7329 code = BFD_RELOC_16_PCREL;
7330 break;
7331 case 24:
7332 code = BFD_RELOC_24_PCREL;
7333 break;
7334 case 32:
7335 code = BFD_RELOC_32_PCREL;
7336 break;
7337 case 64:
7338 code = BFD_RELOC_64_PCREL;
7339 break;
7340 default:
7341 goto fail;
7342 }
7343
7344 howto = bfd_reloc_type_lookup (abfd, code);
7345
7346 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7347 {
7348 if (howto->pcrel_offset)
7349 areloc->addend += areloc->address;
7350 else
7351 areloc->addend -= areloc->address; /* addend is unsigned!! */
7352 }
7353 }
7354 else
7355 {
7356 switch (areloc->howto->bitsize)
7357 {
7358 case 8:
7359 code = BFD_RELOC_8;
7360 break;
7361 case 14:
7362 code = BFD_RELOC_14;
7363 break;
7364 case 16:
7365 code = BFD_RELOC_16;
7366 break;
7367 case 26:
7368 code = BFD_RELOC_26;
7369 break;
7370 case 32:
7371 code = BFD_RELOC_32;
7372 break;
7373 case 64:
7374 code = BFD_RELOC_64;
7375 break;
7376 default:
7377 goto fail;
7378 }
7379
7380 howto = bfd_reloc_type_lookup (abfd, code);
7381 }
7382
7383 if (howto)
7384 areloc->howto = howto;
7385 else
7386 goto fail;
7387 }
7388
7389 return TRUE;
7390
7391 fail:
7392 (*_bfd_error_handler)
7393 (_("%B: unsupported relocation type %s"),
7394 abfd, areloc->howto->name);
7395 bfd_set_error (bfd_error_bad_value);
7396 return FALSE;
7397 }
7398
7399 bfd_boolean
7400 _bfd_elf_close_and_cleanup (bfd *abfd)
7401 {
7402 if (bfd_get_format (abfd) == bfd_object)
7403 {
7404 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7405 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7406 _bfd_dwarf2_cleanup_debug_info (abfd);
7407 }
7408
7409 return _bfd_generic_close_and_cleanup (abfd);
7410 }
7411
7412 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7413 in the relocation's offset. Thus we cannot allow any sort of sanity
7414 range-checking to interfere. There is nothing else to do in processing
7415 this reloc. */
7416
7417 bfd_reloc_status_type
7418 _bfd_elf_rel_vtable_reloc_fn
7419 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7420 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7421 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7422 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7423 {
7424 return bfd_reloc_ok;
7425 }
7426 \f
7427 /* Elf core file support. Much of this only works on native
7428 toolchains, since we rely on knowing the
7429 machine-dependent procfs structure in order to pick
7430 out details about the corefile. */
7431
7432 #ifdef HAVE_SYS_PROCFS_H
7433 # include <sys/procfs.h>
7434 #endif
7435
7436 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7437
7438 static int
7439 elfcore_make_pid (bfd *abfd)
7440 {
7441 return ((elf_tdata (abfd)->core_lwpid << 16)
7442 + (elf_tdata (abfd)->core_pid));
7443 }
7444
7445 /* If there isn't a section called NAME, make one, using
7446 data from SECT. Note, this function will generate a
7447 reference to NAME, so you shouldn't deallocate or
7448 overwrite it. */
7449
7450 static bfd_boolean
7451 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7452 {
7453 asection *sect2;
7454
7455 if (bfd_get_section_by_name (abfd, name) != NULL)
7456 return TRUE;
7457
7458 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7459 if (sect2 == NULL)
7460 return FALSE;
7461
7462 sect2->size = sect->size;
7463 sect2->filepos = sect->filepos;
7464 sect2->alignment_power = sect->alignment_power;
7465 return TRUE;
7466 }
7467
7468 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7469 actually creates up to two pseudosections:
7470 - For the single-threaded case, a section named NAME, unless
7471 such a section already exists.
7472 - For the multi-threaded case, a section named "NAME/PID", where
7473 PID is elfcore_make_pid (abfd).
7474 Both pseudosections have identical contents. */
7475 bfd_boolean
7476 _bfd_elfcore_make_pseudosection (bfd *abfd,
7477 char *name,
7478 size_t size,
7479 ufile_ptr filepos)
7480 {
7481 char buf[100];
7482 char *threaded_name;
7483 size_t len;
7484 asection *sect;
7485
7486 /* Build the section name. */
7487
7488 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7489 len = strlen (buf) + 1;
7490 threaded_name = bfd_alloc (abfd, len);
7491 if (threaded_name == NULL)
7492 return FALSE;
7493 memcpy (threaded_name, buf, len);
7494
7495 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7496 SEC_HAS_CONTENTS);
7497 if (sect == NULL)
7498 return FALSE;
7499 sect->size = size;
7500 sect->filepos = filepos;
7501 sect->alignment_power = 2;
7502
7503 return elfcore_maybe_make_sect (abfd, name, sect);
7504 }
7505
7506 /* prstatus_t exists on:
7507 solaris 2.5+
7508 linux 2.[01] + glibc
7509 unixware 4.2
7510 */
7511
7512 #if defined (HAVE_PRSTATUS_T)
7513
7514 static bfd_boolean
7515 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7516 {
7517 size_t size;
7518 int offset;
7519
7520 if (note->descsz == sizeof (prstatus_t))
7521 {
7522 prstatus_t prstat;
7523
7524 size = sizeof (prstat.pr_reg);
7525 offset = offsetof (prstatus_t, pr_reg);
7526 memcpy (&prstat, note->descdata, sizeof (prstat));
7527
7528 /* Do not overwrite the core signal if it
7529 has already been set by another thread. */
7530 if (elf_tdata (abfd)->core_signal == 0)
7531 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7532 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7533
7534 /* pr_who exists on:
7535 solaris 2.5+
7536 unixware 4.2
7537 pr_who doesn't exist on:
7538 linux 2.[01]
7539 */
7540 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7541 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7542 #endif
7543 }
7544 #if defined (HAVE_PRSTATUS32_T)
7545 else if (note->descsz == sizeof (prstatus32_t))
7546 {
7547 /* 64-bit host, 32-bit corefile */
7548 prstatus32_t prstat;
7549
7550 size = sizeof (prstat.pr_reg);
7551 offset = offsetof (prstatus32_t, pr_reg);
7552 memcpy (&prstat, note->descdata, sizeof (prstat));
7553
7554 /* Do not overwrite the core signal if it
7555 has already been set by another thread. */
7556 if (elf_tdata (abfd)->core_signal == 0)
7557 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7558 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7559
7560 /* pr_who exists on:
7561 solaris 2.5+
7562 unixware 4.2
7563 pr_who doesn't exist on:
7564 linux 2.[01]
7565 */
7566 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7567 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7568 #endif
7569 }
7570 #endif /* HAVE_PRSTATUS32_T */
7571 else
7572 {
7573 /* Fail - we don't know how to handle any other
7574 note size (ie. data object type). */
7575 return TRUE;
7576 }
7577
7578 /* Make a ".reg/999" section and a ".reg" section. */
7579 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7580 size, note->descpos + offset);
7581 }
7582 #endif /* defined (HAVE_PRSTATUS_T) */
7583
7584 /* Create a pseudosection containing the exact contents of NOTE. */
7585 static bfd_boolean
7586 elfcore_make_note_pseudosection (bfd *abfd,
7587 char *name,
7588 Elf_Internal_Note *note)
7589 {
7590 return _bfd_elfcore_make_pseudosection (abfd, name,
7591 note->descsz, note->descpos);
7592 }
7593
7594 /* There isn't a consistent prfpregset_t across platforms,
7595 but it doesn't matter, because we don't have to pick this
7596 data structure apart. */
7597
7598 static bfd_boolean
7599 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7600 {
7601 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7602 }
7603
7604 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7605 type of NT_PRXFPREG. Just include the whole note's contents
7606 literally. */
7607
7608 static bfd_boolean
7609 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7610 {
7611 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7612 }
7613
7614 static bfd_boolean
7615 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7616 {
7617 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7618 }
7619
7620 static bfd_boolean
7621 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7622 {
7623 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7624 }
7625
7626 #if defined (HAVE_PRPSINFO_T)
7627 typedef prpsinfo_t elfcore_psinfo_t;
7628 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7629 typedef prpsinfo32_t elfcore_psinfo32_t;
7630 #endif
7631 #endif
7632
7633 #if defined (HAVE_PSINFO_T)
7634 typedef psinfo_t elfcore_psinfo_t;
7635 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7636 typedef psinfo32_t elfcore_psinfo32_t;
7637 #endif
7638 #endif
7639
7640 /* return a malloc'ed copy of a string at START which is at
7641 most MAX bytes long, possibly without a terminating '\0'.
7642 the copy will always have a terminating '\0'. */
7643
7644 char *
7645 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7646 {
7647 char *dups;
7648 char *end = memchr (start, '\0', max);
7649 size_t len;
7650
7651 if (end == NULL)
7652 len = max;
7653 else
7654 len = end - start;
7655
7656 dups = bfd_alloc (abfd, len + 1);
7657 if (dups == NULL)
7658 return NULL;
7659
7660 memcpy (dups, start, len);
7661 dups[len] = '\0';
7662
7663 return dups;
7664 }
7665
7666 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7667 static bfd_boolean
7668 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7669 {
7670 if (note->descsz == sizeof (elfcore_psinfo_t))
7671 {
7672 elfcore_psinfo_t psinfo;
7673
7674 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7675
7676 elf_tdata (abfd)->core_program
7677 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7678 sizeof (psinfo.pr_fname));
7679
7680 elf_tdata (abfd)->core_command
7681 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7682 sizeof (psinfo.pr_psargs));
7683 }
7684 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7685 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7686 {
7687 /* 64-bit host, 32-bit corefile */
7688 elfcore_psinfo32_t psinfo;
7689
7690 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7691
7692 elf_tdata (abfd)->core_program
7693 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7694 sizeof (psinfo.pr_fname));
7695
7696 elf_tdata (abfd)->core_command
7697 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7698 sizeof (psinfo.pr_psargs));
7699 }
7700 #endif
7701
7702 else
7703 {
7704 /* Fail - we don't know how to handle any other
7705 note size (ie. data object type). */
7706 return TRUE;
7707 }
7708
7709 /* Note that for some reason, a spurious space is tacked
7710 onto the end of the args in some (at least one anyway)
7711 implementations, so strip it off if it exists. */
7712
7713 {
7714 char *command = elf_tdata (abfd)->core_command;
7715 int n = strlen (command);
7716
7717 if (0 < n && command[n - 1] == ' ')
7718 command[n - 1] = '\0';
7719 }
7720
7721 return TRUE;
7722 }
7723 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7724
7725 #if defined (HAVE_PSTATUS_T)
7726 static bfd_boolean
7727 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7728 {
7729 if (note->descsz == sizeof (pstatus_t)
7730 #if defined (HAVE_PXSTATUS_T)
7731 || note->descsz == sizeof (pxstatus_t)
7732 #endif
7733 )
7734 {
7735 pstatus_t pstat;
7736
7737 memcpy (&pstat, note->descdata, sizeof (pstat));
7738
7739 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7740 }
7741 #if defined (HAVE_PSTATUS32_T)
7742 else if (note->descsz == sizeof (pstatus32_t))
7743 {
7744 /* 64-bit host, 32-bit corefile */
7745 pstatus32_t pstat;
7746
7747 memcpy (&pstat, note->descdata, sizeof (pstat));
7748
7749 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7750 }
7751 #endif
7752 /* Could grab some more details from the "representative"
7753 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7754 NT_LWPSTATUS note, presumably. */
7755
7756 return TRUE;
7757 }
7758 #endif /* defined (HAVE_PSTATUS_T) */
7759
7760 #if defined (HAVE_LWPSTATUS_T)
7761 static bfd_boolean
7762 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7763 {
7764 lwpstatus_t lwpstat;
7765 char buf[100];
7766 char *name;
7767 size_t len;
7768 asection *sect;
7769
7770 if (note->descsz != sizeof (lwpstat)
7771 #if defined (HAVE_LWPXSTATUS_T)
7772 && note->descsz != sizeof (lwpxstatus_t)
7773 #endif
7774 )
7775 return TRUE;
7776
7777 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7778
7779 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7780 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7781
7782 /* Make a ".reg/999" section. */
7783
7784 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7785 len = strlen (buf) + 1;
7786 name = bfd_alloc (abfd, len);
7787 if (name == NULL)
7788 return FALSE;
7789 memcpy (name, buf, len);
7790
7791 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7792 if (sect == NULL)
7793 return FALSE;
7794
7795 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7796 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7797 sect->filepos = note->descpos
7798 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7799 #endif
7800
7801 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7802 sect->size = sizeof (lwpstat.pr_reg);
7803 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7804 #endif
7805
7806 sect->alignment_power = 2;
7807
7808 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7809 return FALSE;
7810
7811 /* Make a ".reg2/999" section */
7812
7813 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7814 len = strlen (buf) + 1;
7815 name = bfd_alloc (abfd, len);
7816 if (name == NULL)
7817 return FALSE;
7818 memcpy (name, buf, len);
7819
7820 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7821 if (sect == NULL)
7822 return FALSE;
7823
7824 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7825 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7826 sect->filepos = note->descpos
7827 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7828 #endif
7829
7830 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7831 sect->size = sizeof (lwpstat.pr_fpreg);
7832 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7833 #endif
7834
7835 sect->alignment_power = 2;
7836
7837 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7838 }
7839 #endif /* defined (HAVE_LWPSTATUS_T) */
7840
7841 static bfd_boolean
7842 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7843 {
7844 char buf[30];
7845 char *name;
7846 size_t len;
7847 asection *sect;
7848 int type;
7849 int is_active_thread;
7850 bfd_vma base_addr;
7851
7852 if (note->descsz < 728)
7853 return TRUE;
7854
7855 if (! CONST_STRNEQ (note->namedata, "win32"))
7856 return TRUE;
7857
7858 type = bfd_get_32 (abfd, note->descdata);
7859
7860 switch (type)
7861 {
7862 case 1 /* NOTE_INFO_PROCESS */:
7863 /* FIXME: need to add ->core_command. */
7864 /* process_info.pid */
7865 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7866 /* process_info.signal */
7867 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7868 break;
7869
7870 case 2 /* NOTE_INFO_THREAD */:
7871 /* Make a ".reg/999" section. */
7872 /* thread_info.tid */
7873 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7874
7875 len = strlen (buf) + 1;
7876 name = bfd_alloc (abfd, len);
7877 if (name == NULL)
7878 return FALSE;
7879
7880 memcpy (name, buf, len);
7881
7882 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7883 if (sect == NULL)
7884 return FALSE;
7885
7886 /* sizeof (thread_info.thread_context) */
7887 sect->size = 716;
7888 /* offsetof (thread_info.thread_context) */
7889 sect->filepos = note->descpos + 12;
7890 sect->alignment_power = 2;
7891
7892 /* thread_info.is_active_thread */
7893 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
7894
7895 if (is_active_thread)
7896 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7897 return FALSE;
7898 break;
7899
7900 case 3 /* NOTE_INFO_MODULE */:
7901 /* Make a ".module/xxxxxxxx" section. */
7902 /* module_info.base_address */
7903 base_addr = bfd_get_32 (abfd, note->descdata + 4);
7904 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
7905
7906 len = strlen (buf) + 1;
7907 name = bfd_alloc (abfd, len);
7908 if (name == NULL)
7909 return FALSE;
7910
7911 memcpy (name, buf, len);
7912
7913 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7914
7915 if (sect == NULL)
7916 return FALSE;
7917
7918 sect->size = note->descsz;
7919 sect->filepos = note->descpos;
7920 sect->alignment_power = 2;
7921 break;
7922
7923 default:
7924 return TRUE;
7925 }
7926
7927 return TRUE;
7928 }
7929
7930 static bfd_boolean
7931 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7932 {
7933 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7934
7935 switch (note->type)
7936 {
7937 default:
7938 return TRUE;
7939
7940 case NT_PRSTATUS:
7941 if (bed->elf_backend_grok_prstatus)
7942 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7943 return TRUE;
7944 #if defined (HAVE_PRSTATUS_T)
7945 return elfcore_grok_prstatus (abfd, note);
7946 #else
7947 return TRUE;
7948 #endif
7949
7950 #if defined (HAVE_PSTATUS_T)
7951 case NT_PSTATUS:
7952 return elfcore_grok_pstatus (abfd, note);
7953 #endif
7954
7955 #if defined (HAVE_LWPSTATUS_T)
7956 case NT_LWPSTATUS:
7957 return elfcore_grok_lwpstatus (abfd, note);
7958 #endif
7959
7960 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7961 return elfcore_grok_prfpreg (abfd, note);
7962
7963 case NT_WIN32PSTATUS:
7964 return elfcore_grok_win32pstatus (abfd, note);
7965
7966 case NT_PRXFPREG: /* Linux SSE extension */
7967 if (note->namesz == 6
7968 && strcmp (note->namedata, "LINUX") == 0)
7969 return elfcore_grok_prxfpreg (abfd, note);
7970 else
7971 return TRUE;
7972
7973 case NT_PPC_VMX:
7974 if (note->namesz == 6
7975 && strcmp (note->namedata, "LINUX") == 0)
7976 return elfcore_grok_ppc_vmx (abfd, note);
7977 else
7978 return TRUE;
7979
7980 case NT_PPC_VSX:
7981 if (note->namesz == 6
7982 && strcmp (note->namedata, "LINUX") == 0)
7983 return elfcore_grok_ppc_vsx (abfd, note);
7984 else
7985 return TRUE;
7986
7987 case NT_PRPSINFO:
7988 case NT_PSINFO:
7989 if (bed->elf_backend_grok_psinfo)
7990 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7991 return TRUE;
7992 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7993 return elfcore_grok_psinfo (abfd, note);
7994 #else
7995 return TRUE;
7996 #endif
7997
7998 case NT_AUXV:
7999 {
8000 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8001 SEC_HAS_CONTENTS);
8002
8003 if (sect == NULL)
8004 return FALSE;
8005 sect->size = note->descsz;
8006 sect->filepos = note->descpos;
8007 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8008
8009 return TRUE;
8010 }
8011 }
8012 }
8013
8014 static bfd_boolean
8015 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8016 {
8017 elf_tdata (abfd)->build_id_size = note->descsz;
8018 elf_tdata (abfd)->build_id = bfd_alloc (abfd, note->descsz);
8019 if (elf_tdata (abfd)->build_id == NULL)
8020 return FALSE;
8021
8022 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8023
8024 return TRUE;
8025 }
8026
8027 static bfd_boolean
8028 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8029 {
8030 switch (note->type)
8031 {
8032 default:
8033 return TRUE;
8034
8035 case NT_GNU_BUILD_ID:
8036 return elfobj_grok_gnu_build_id (abfd, note);
8037 }
8038 }
8039
8040 static bfd_boolean
8041 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8042 {
8043 char *cp;
8044
8045 cp = strchr (note->namedata, '@');
8046 if (cp != NULL)
8047 {
8048 *lwpidp = atoi(cp + 1);
8049 return TRUE;
8050 }
8051 return FALSE;
8052 }
8053
8054 static bfd_boolean
8055 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8056 {
8057 /* Signal number at offset 0x08. */
8058 elf_tdata (abfd)->core_signal
8059 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8060
8061 /* Process ID at offset 0x50. */
8062 elf_tdata (abfd)->core_pid
8063 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8064
8065 /* Command name at 0x7c (max 32 bytes, including nul). */
8066 elf_tdata (abfd)->core_command
8067 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8068
8069 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8070 note);
8071 }
8072
8073 static bfd_boolean
8074 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8075 {
8076 int lwp;
8077
8078 if (elfcore_netbsd_get_lwpid (note, &lwp))
8079 elf_tdata (abfd)->core_lwpid = lwp;
8080
8081 if (note->type == NT_NETBSDCORE_PROCINFO)
8082 {
8083 /* NetBSD-specific core "procinfo". Note that we expect to
8084 find this note before any of the others, which is fine,
8085 since the kernel writes this note out first when it
8086 creates a core file. */
8087
8088 return elfcore_grok_netbsd_procinfo (abfd, note);
8089 }
8090
8091 /* As of Jan 2002 there are no other machine-independent notes
8092 defined for NetBSD core files. If the note type is less
8093 than the start of the machine-dependent note types, we don't
8094 understand it. */
8095
8096 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8097 return TRUE;
8098
8099
8100 switch (bfd_get_arch (abfd))
8101 {
8102 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8103 PT_GETFPREGS == mach+2. */
8104
8105 case bfd_arch_alpha:
8106 case bfd_arch_sparc:
8107 switch (note->type)
8108 {
8109 case NT_NETBSDCORE_FIRSTMACH+0:
8110 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8111
8112 case NT_NETBSDCORE_FIRSTMACH+2:
8113 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8114
8115 default:
8116 return TRUE;
8117 }
8118
8119 /* On all other arch's, PT_GETREGS == mach+1 and
8120 PT_GETFPREGS == mach+3. */
8121
8122 default:
8123 switch (note->type)
8124 {
8125 case NT_NETBSDCORE_FIRSTMACH+1:
8126 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8127
8128 case NT_NETBSDCORE_FIRSTMACH+3:
8129 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8130
8131 default:
8132 return TRUE;
8133 }
8134 }
8135 /* NOTREACHED */
8136 }
8137
8138 static bfd_boolean
8139 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8140 {
8141 void *ddata = note->descdata;
8142 char buf[100];
8143 char *name;
8144 asection *sect;
8145 short sig;
8146 unsigned flags;
8147
8148 /* nto_procfs_status 'pid' field is at offset 0. */
8149 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8150
8151 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8152 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8153
8154 /* nto_procfs_status 'flags' field is at offset 8. */
8155 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8156
8157 /* nto_procfs_status 'what' field is at offset 14. */
8158 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8159 {
8160 elf_tdata (abfd)->core_signal = sig;
8161 elf_tdata (abfd)->core_lwpid = *tid;
8162 }
8163
8164 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8165 do not come from signals so we make sure we set the current
8166 thread just in case. */
8167 if (flags & 0x00000080)
8168 elf_tdata (abfd)->core_lwpid = *tid;
8169
8170 /* Make a ".qnx_core_status/%d" section. */
8171 sprintf (buf, ".qnx_core_status/%ld", *tid);
8172
8173 name = bfd_alloc (abfd, strlen (buf) + 1);
8174 if (name == NULL)
8175 return FALSE;
8176 strcpy (name, buf);
8177
8178 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8179 if (sect == NULL)
8180 return FALSE;
8181
8182 sect->size = note->descsz;
8183 sect->filepos = note->descpos;
8184 sect->alignment_power = 2;
8185
8186 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8187 }
8188
8189 static bfd_boolean
8190 elfcore_grok_nto_regs (bfd *abfd,
8191 Elf_Internal_Note *note,
8192 long tid,
8193 char *base)
8194 {
8195 char buf[100];
8196 char *name;
8197 asection *sect;
8198
8199 /* Make a "(base)/%d" section. */
8200 sprintf (buf, "%s/%ld", base, tid);
8201
8202 name = bfd_alloc (abfd, strlen (buf) + 1);
8203 if (name == NULL)
8204 return FALSE;
8205 strcpy (name, buf);
8206
8207 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8208 if (sect == NULL)
8209 return FALSE;
8210
8211 sect->size = note->descsz;
8212 sect->filepos = note->descpos;
8213 sect->alignment_power = 2;
8214
8215 /* This is the current thread. */
8216 if (elf_tdata (abfd)->core_lwpid == tid)
8217 return elfcore_maybe_make_sect (abfd, base, sect);
8218
8219 return TRUE;
8220 }
8221
8222 #define BFD_QNT_CORE_INFO 7
8223 #define BFD_QNT_CORE_STATUS 8
8224 #define BFD_QNT_CORE_GREG 9
8225 #define BFD_QNT_CORE_FPREG 10
8226
8227 static bfd_boolean
8228 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8229 {
8230 /* Every GREG section has a STATUS section before it. Store the
8231 tid from the previous call to pass down to the next gregs
8232 function. */
8233 static long tid = 1;
8234
8235 switch (note->type)
8236 {
8237 case BFD_QNT_CORE_INFO:
8238 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8239 case BFD_QNT_CORE_STATUS:
8240 return elfcore_grok_nto_status (abfd, note, &tid);
8241 case BFD_QNT_CORE_GREG:
8242 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8243 case BFD_QNT_CORE_FPREG:
8244 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8245 default:
8246 return TRUE;
8247 }
8248 }
8249
8250 static bfd_boolean
8251 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8252 {
8253 char *name;
8254 asection *sect;
8255 size_t len;
8256
8257 /* Use note name as section name. */
8258 len = note->namesz;
8259 name = bfd_alloc (abfd, len);
8260 if (name == NULL)
8261 return FALSE;
8262 memcpy (name, note->namedata, len);
8263 name[len - 1] = '\0';
8264
8265 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8266 if (sect == NULL)
8267 return FALSE;
8268
8269 sect->size = note->descsz;
8270 sect->filepos = note->descpos;
8271 sect->alignment_power = 1;
8272
8273 return TRUE;
8274 }
8275
8276 /* Function: elfcore_write_note
8277
8278 Inputs:
8279 buffer to hold note, and current size of buffer
8280 name of note
8281 type of note
8282 data for note
8283 size of data for note
8284
8285 Writes note to end of buffer. ELF64 notes are written exactly as
8286 for ELF32, despite the current (as of 2006) ELF gabi specifying
8287 that they ought to have 8-byte namesz and descsz field, and have
8288 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8289
8290 Return:
8291 Pointer to realloc'd buffer, *BUFSIZ updated. */
8292
8293 char *
8294 elfcore_write_note (bfd *abfd,
8295 char *buf,
8296 int *bufsiz,
8297 const char *name,
8298 int type,
8299 const void *input,
8300 int size)
8301 {
8302 Elf_External_Note *xnp;
8303 size_t namesz;
8304 size_t newspace;
8305 char *dest;
8306
8307 namesz = 0;
8308 if (name != NULL)
8309 namesz = strlen (name) + 1;
8310
8311 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8312
8313 buf = realloc (buf, *bufsiz + newspace);
8314 if (buf == NULL)
8315 return buf;
8316 dest = buf + *bufsiz;
8317 *bufsiz += newspace;
8318 xnp = (Elf_External_Note *) dest;
8319 H_PUT_32 (abfd, namesz, xnp->namesz);
8320 H_PUT_32 (abfd, size, xnp->descsz);
8321 H_PUT_32 (abfd, type, xnp->type);
8322 dest = xnp->name;
8323 if (name != NULL)
8324 {
8325 memcpy (dest, name, namesz);
8326 dest += namesz;
8327 while (namesz & 3)
8328 {
8329 *dest++ = '\0';
8330 ++namesz;
8331 }
8332 }
8333 memcpy (dest, input, size);
8334 dest += size;
8335 while (size & 3)
8336 {
8337 *dest++ = '\0';
8338 ++size;
8339 }
8340 return buf;
8341 }
8342
8343 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8344 char *
8345 elfcore_write_prpsinfo (bfd *abfd,
8346 char *buf,
8347 int *bufsiz,
8348 const char *fname,
8349 const char *psargs)
8350 {
8351 const char *note_name = "CORE";
8352 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8353
8354 if (bed->elf_backend_write_core_note != NULL)
8355 {
8356 char *ret;
8357 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8358 NT_PRPSINFO, fname, psargs);
8359 if (ret != NULL)
8360 return ret;
8361 }
8362
8363 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8364 if (bed->s->elfclass == ELFCLASS32)
8365 {
8366 #if defined (HAVE_PSINFO32_T)
8367 psinfo32_t data;
8368 int note_type = NT_PSINFO;
8369 #else
8370 prpsinfo32_t data;
8371 int note_type = NT_PRPSINFO;
8372 #endif
8373
8374 memset (&data, 0, sizeof (data));
8375 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8376 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8377 return elfcore_write_note (abfd, buf, bufsiz,
8378 note_name, note_type, &data, sizeof (data));
8379 }
8380 else
8381 #endif
8382 {
8383 #if defined (HAVE_PSINFO_T)
8384 psinfo_t data;
8385 int note_type = NT_PSINFO;
8386 #else
8387 prpsinfo_t data;
8388 int note_type = NT_PRPSINFO;
8389 #endif
8390
8391 memset (&data, 0, sizeof (data));
8392 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8393 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8394 return elfcore_write_note (abfd, buf, bufsiz,
8395 note_name, note_type, &data, sizeof (data));
8396 }
8397 }
8398 #endif /* PSINFO_T or PRPSINFO_T */
8399
8400 #if defined (HAVE_PRSTATUS_T)
8401 char *
8402 elfcore_write_prstatus (bfd *abfd,
8403 char *buf,
8404 int *bufsiz,
8405 long pid,
8406 int cursig,
8407 const void *gregs)
8408 {
8409 const char *note_name = "CORE";
8410 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8411
8412 if (bed->elf_backend_write_core_note != NULL)
8413 {
8414 char *ret;
8415 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8416 NT_PRSTATUS,
8417 pid, cursig, gregs);
8418 if (ret != NULL)
8419 return ret;
8420 }
8421
8422 #if defined (HAVE_PRSTATUS32_T)
8423 if (bed->s->elfclass == ELFCLASS32)
8424 {
8425 prstatus32_t prstat;
8426
8427 memset (&prstat, 0, sizeof (prstat));
8428 prstat.pr_pid = pid;
8429 prstat.pr_cursig = cursig;
8430 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8431 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8432 NT_PRSTATUS, &prstat, sizeof (prstat));
8433 }
8434 else
8435 #endif
8436 {
8437 prstatus_t prstat;
8438
8439 memset (&prstat, 0, sizeof (prstat));
8440 prstat.pr_pid = pid;
8441 prstat.pr_cursig = cursig;
8442 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8443 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8444 NT_PRSTATUS, &prstat, sizeof (prstat));
8445 }
8446 }
8447 #endif /* HAVE_PRSTATUS_T */
8448
8449 #if defined (HAVE_LWPSTATUS_T)
8450 char *
8451 elfcore_write_lwpstatus (bfd *abfd,
8452 char *buf,
8453 int *bufsiz,
8454 long pid,
8455 int cursig,
8456 const void *gregs)
8457 {
8458 lwpstatus_t lwpstat;
8459 const char *note_name = "CORE";
8460
8461 memset (&lwpstat, 0, sizeof (lwpstat));
8462 lwpstat.pr_lwpid = pid >> 16;
8463 lwpstat.pr_cursig = cursig;
8464 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8465 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8466 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8467 #if !defined(gregs)
8468 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8469 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8470 #else
8471 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8472 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8473 #endif
8474 #endif
8475 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8476 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8477 }
8478 #endif /* HAVE_LWPSTATUS_T */
8479
8480 #if defined (HAVE_PSTATUS_T)
8481 char *
8482 elfcore_write_pstatus (bfd *abfd,
8483 char *buf,
8484 int *bufsiz,
8485 long pid,
8486 int cursig ATTRIBUTE_UNUSED,
8487 const void *gregs ATTRIBUTE_UNUSED)
8488 {
8489 const char *note_name = "CORE";
8490 #if defined (HAVE_PSTATUS32_T)
8491 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8492
8493 if (bed->s->elfclass == ELFCLASS32)
8494 {
8495 pstatus32_t pstat;
8496
8497 memset (&pstat, 0, sizeof (pstat));
8498 pstat.pr_pid = pid & 0xffff;
8499 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8500 NT_PSTATUS, &pstat, sizeof (pstat));
8501 return buf;
8502 }
8503 else
8504 #endif
8505 {
8506 pstatus_t pstat;
8507
8508 memset (&pstat, 0, sizeof (pstat));
8509 pstat.pr_pid = pid & 0xffff;
8510 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8511 NT_PSTATUS, &pstat, sizeof (pstat));
8512 return buf;
8513 }
8514 }
8515 #endif /* HAVE_PSTATUS_T */
8516
8517 char *
8518 elfcore_write_prfpreg (bfd *abfd,
8519 char *buf,
8520 int *bufsiz,
8521 const void *fpregs,
8522 int size)
8523 {
8524 const char *note_name = "CORE";
8525 return elfcore_write_note (abfd, buf, bufsiz,
8526 note_name, NT_FPREGSET, fpregs, size);
8527 }
8528
8529 char *
8530 elfcore_write_prxfpreg (bfd *abfd,
8531 char *buf,
8532 int *bufsiz,
8533 const void *xfpregs,
8534 int size)
8535 {
8536 char *note_name = "LINUX";
8537 return elfcore_write_note (abfd, buf, bufsiz,
8538 note_name, NT_PRXFPREG, xfpregs, size);
8539 }
8540
8541 char *
8542 elfcore_write_ppc_vmx (bfd *abfd,
8543 char *buf,
8544 int *bufsiz,
8545 const void *ppc_vmx,
8546 int size)
8547 {
8548 char *note_name = "LINUX";
8549 return elfcore_write_note (abfd, buf, bufsiz,
8550 note_name, NT_PPC_VMX, ppc_vmx, size);
8551 }
8552
8553 char *
8554 elfcore_write_ppc_vsx (bfd *abfd,
8555 char *buf,
8556 int *bufsiz,
8557 const void *ppc_vsx,
8558 int size)
8559 {
8560 char *note_name = "LINUX";
8561 return elfcore_write_note (abfd, buf, bufsiz,
8562 note_name, NT_PPC_VSX, ppc_vsx, size);
8563 }
8564
8565 char *
8566 elfcore_write_register_note (bfd *abfd,
8567 char *buf,
8568 int *bufsiz,
8569 const char *section,
8570 const void *data,
8571 int size)
8572 {
8573 if (strcmp (section, ".reg2") == 0)
8574 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
8575 if (strcmp (section, ".reg-xfp") == 0)
8576 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
8577 if (strcmp (section, ".reg-ppc-vmx") == 0)
8578 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
8579 if (strcmp (section, ".reg-ppc-vsx") == 0)
8580 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
8581 return NULL;
8582 }
8583
8584 static bfd_boolean
8585 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8586 {
8587 char *p;
8588
8589 p = buf;
8590 while (p < buf + size)
8591 {
8592 /* FIXME: bad alignment assumption. */
8593 Elf_External_Note *xnp = (Elf_External_Note *) p;
8594 Elf_Internal_Note in;
8595
8596 if (offsetof (Elf_External_Note, name) > buf - p + size)
8597 return FALSE;
8598
8599 in.type = H_GET_32 (abfd, xnp->type);
8600
8601 in.namesz = H_GET_32 (abfd, xnp->namesz);
8602 in.namedata = xnp->name;
8603 if (in.namesz > buf - in.namedata + size)
8604 return FALSE;
8605
8606 in.descsz = H_GET_32 (abfd, xnp->descsz);
8607 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8608 in.descpos = offset + (in.descdata - buf);
8609 if (in.descsz != 0
8610 && (in.descdata >= buf + size
8611 || in.descsz > buf - in.descdata + size))
8612 return FALSE;
8613
8614 switch (bfd_get_format (abfd))
8615 {
8616 default:
8617 return TRUE;
8618
8619 case bfd_core:
8620 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8621 {
8622 if (! elfcore_grok_netbsd_note (abfd, &in))
8623 return FALSE;
8624 }
8625 else if (CONST_STRNEQ (in.namedata, "QNX"))
8626 {
8627 if (! elfcore_grok_nto_note (abfd, &in))
8628 return FALSE;
8629 }
8630 else if (CONST_STRNEQ (in.namedata, "SPU/"))
8631 {
8632 if (! elfcore_grok_spu_note (abfd, &in))
8633 return FALSE;
8634 }
8635 else
8636 {
8637 if (! elfcore_grok_note (abfd, &in))
8638 return FALSE;
8639 }
8640 break;
8641
8642 case bfd_object:
8643 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8644 {
8645 if (! elfobj_grok_gnu_note (abfd, &in))
8646 return FALSE;
8647 }
8648 break;
8649 }
8650
8651 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8652 }
8653
8654 return TRUE;
8655 }
8656
8657 static bfd_boolean
8658 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8659 {
8660 char *buf;
8661
8662 if (size <= 0)
8663 return TRUE;
8664
8665 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8666 return FALSE;
8667
8668 buf = bfd_malloc (size);
8669 if (buf == NULL)
8670 return FALSE;
8671
8672 if (bfd_bread (buf, size, abfd) != size
8673 || !elf_parse_notes (abfd, buf, size, offset))
8674 {
8675 free (buf);
8676 return FALSE;
8677 }
8678
8679 free (buf);
8680 return TRUE;
8681 }
8682 \f
8683 /* Providing external access to the ELF program header table. */
8684
8685 /* Return an upper bound on the number of bytes required to store a
8686 copy of ABFD's program header table entries. Return -1 if an error
8687 occurs; bfd_get_error will return an appropriate code. */
8688
8689 long
8690 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8691 {
8692 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8693 {
8694 bfd_set_error (bfd_error_wrong_format);
8695 return -1;
8696 }
8697
8698 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8699 }
8700
8701 /* Copy ABFD's program header table entries to *PHDRS. The entries
8702 will be stored as an array of Elf_Internal_Phdr structures, as
8703 defined in include/elf/internal.h. To find out how large the
8704 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8705
8706 Return the number of program header table entries read, or -1 if an
8707 error occurs; bfd_get_error will return an appropriate code. */
8708
8709 int
8710 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8711 {
8712 int num_phdrs;
8713
8714 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8715 {
8716 bfd_set_error (bfd_error_wrong_format);
8717 return -1;
8718 }
8719
8720 num_phdrs = elf_elfheader (abfd)->e_phnum;
8721 memcpy (phdrs, elf_tdata (abfd)->phdr,
8722 num_phdrs * sizeof (Elf_Internal_Phdr));
8723
8724 return num_phdrs;
8725 }
8726
8727 enum elf_reloc_type_class
8728 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8729 {
8730 return reloc_class_normal;
8731 }
8732
8733 /* For RELA architectures, return the relocation value for a
8734 relocation against a local symbol. */
8735
8736 bfd_vma
8737 _bfd_elf_rela_local_sym (bfd *abfd,
8738 Elf_Internal_Sym *sym,
8739 asection **psec,
8740 Elf_Internal_Rela *rel)
8741 {
8742 asection *sec = *psec;
8743 bfd_vma relocation;
8744
8745 relocation = (sec->output_section->vma
8746 + sec->output_offset
8747 + sym->st_value);
8748 if ((sec->flags & SEC_MERGE)
8749 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8750 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8751 {
8752 rel->r_addend =
8753 _bfd_merged_section_offset (abfd, psec,
8754 elf_section_data (sec)->sec_info,
8755 sym->st_value + rel->r_addend);
8756 if (sec != *psec)
8757 {
8758 /* If we have changed the section, and our original section is
8759 marked with SEC_EXCLUDE, it means that the original
8760 SEC_MERGE section has been completely subsumed in some
8761 other SEC_MERGE section. In this case, we need to leave
8762 some info around for --emit-relocs. */
8763 if ((sec->flags & SEC_EXCLUDE) != 0)
8764 sec->kept_section = *psec;
8765 sec = *psec;
8766 }
8767 rel->r_addend -= relocation;
8768 rel->r_addend += sec->output_section->vma + sec->output_offset;
8769 }
8770 return relocation;
8771 }
8772
8773 bfd_vma
8774 _bfd_elf_rel_local_sym (bfd *abfd,
8775 Elf_Internal_Sym *sym,
8776 asection **psec,
8777 bfd_vma addend)
8778 {
8779 asection *sec = *psec;
8780
8781 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8782 return sym->st_value + addend;
8783
8784 return _bfd_merged_section_offset (abfd, psec,
8785 elf_section_data (sec)->sec_info,
8786 sym->st_value + addend);
8787 }
8788
8789 bfd_vma
8790 _bfd_elf_section_offset (bfd *abfd,
8791 struct bfd_link_info *info,
8792 asection *sec,
8793 bfd_vma offset)
8794 {
8795 switch (sec->sec_info_type)
8796 {
8797 case ELF_INFO_TYPE_STABS:
8798 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8799 offset);
8800 case ELF_INFO_TYPE_EH_FRAME:
8801 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8802 default:
8803 return offset;
8804 }
8805 }
8806 \f
8807 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8808 reconstruct an ELF file by reading the segments out of remote memory
8809 based on the ELF file header at EHDR_VMA and the ELF program headers it
8810 points to. If not null, *LOADBASEP is filled in with the difference
8811 between the VMAs from which the segments were read, and the VMAs the
8812 file headers (and hence BFD's idea of each section's VMA) put them at.
8813
8814 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8815 remote memory at target address VMA into the local buffer at MYADDR; it
8816 should return zero on success or an `errno' code on failure. TEMPL must
8817 be a BFD for an ELF target with the word size and byte order found in
8818 the remote memory. */
8819
8820 bfd *
8821 bfd_elf_bfd_from_remote_memory
8822 (bfd *templ,
8823 bfd_vma ehdr_vma,
8824 bfd_vma *loadbasep,
8825 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8826 {
8827 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8828 (templ, ehdr_vma, loadbasep, target_read_memory);
8829 }
8830 \f
8831 long
8832 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8833 long symcount ATTRIBUTE_UNUSED,
8834 asymbol **syms ATTRIBUTE_UNUSED,
8835 long dynsymcount,
8836 asymbol **dynsyms,
8837 asymbol **ret)
8838 {
8839 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8840 asection *relplt;
8841 asymbol *s;
8842 const char *relplt_name;
8843 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8844 arelent *p;
8845 long count, i, n;
8846 size_t size;
8847 Elf_Internal_Shdr *hdr;
8848 char *names;
8849 asection *plt;
8850
8851 *ret = NULL;
8852
8853 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8854 return 0;
8855
8856 if (dynsymcount <= 0)
8857 return 0;
8858
8859 if (!bed->plt_sym_val)
8860 return 0;
8861
8862 relplt_name = bed->relplt_name;
8863 if (relplt_name == NULL)
8864 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
8865 relplt = bfd_get_section_by_name (abfd, relplt_name);
8866 if (relplt == NULL)
8867 return 0;
8868
8869 hdr = &elf_section_data (relplt)->this_hdr;
8870 if (hdr->sh_link != elf_dynsymtab (abfd)
8871 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8872 return 0;
8873
8874 plt = bfd_get_section_by_name (abfd, ".plt");
8875 if (plt == NULL)
8876 return 0;
8877
8878 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8879 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8880 return -1;
8881
8882 count = relplt->size / hdr->sh_entsize;
8883 size = count * sizeof (asymbol);
8884 p = relplt->relocation;
8885 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
8886 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8887
8888 s = *ret = bfd_malloc (size);
8889 if (s == NULL)
8890 return -1;
8891
8892 names = (char *) (s + count);
8893 p = relplt->relocation;
8894 n = 0;
8895 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
8896 {
8897 size_t len;
8898 bfd_vma addr;
8899
8900 addr = bed->plt_sym_val (i, plt, p);
8901 if (addr == (bfd_vma) -1)
8902 continue;
8903
8904 *s = **p->sym_ptr_ptr;
8905 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8906 we are defining a symbol, ensure one of them is set. */
8907 if ((s->flags & BSF_LOCAL) == 0)
8908 s->flags |= BSF_GLOBAL;
8909 s->flags |= BSF_SYNTHETIC;
8910 s->section = plt;
8911 s->value = addr - plt->vma;
8912 s->name = names;
8913 s->udata.p = NULL;
8914 len = strlen ((*p->sym_ptr_ptr)->name);
8915 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8916 names += len;
8917 memcpy (names, "@plt", sizeof ("@plt"));
8918 names += sizeof ("@plt");
8919 ++s, ++n;
8920 }
8921
8922 return n;
8923 }
8924
8925 /* It is only used by x86-64 so far. */
8926 asection _bfd_elf_large_com_section
8927 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8928 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8929
8930 void
8931 _bfd_elf_set_osabi (bfd * abfd,
8932 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
8933 {
8934 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
8935
8936 i_ehdrp = elf_elfheader (abfd);
8937
8938 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
8939 }
8940
8941
8942 /* Return TRUE for ELF symbol types that represent functions.
8943 This is the default version of this function, which is sufficient for
8944 most targets. It returns true if TYPE is STT_FUNC. */
8945
8946 bfd_boolean
8947 _bfd_elf_is_function_type (unsigned int type)
8948 {
8949 return (type == STT_FUNC);
8950 }
This page took 0.34906 seconds and 4 git commands to generate.