gdb/
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 static const struct
884 {
885 const char *name;
886 int len;
887 } debug_sections [] =
888 {
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL, 0 }, /* 'e' */
891 { NULL, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL, 0 }, /* 'h' */
894 { NULL, 0 }, /* 'i' */
895 { NULL, 0 }, /* 'j' */
896 { NULL, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL, 0 }, /* 'm' */
899 { NULL, 0 }, /* 'n' */
900 { NULL, 0 }, /* 'o' */
901 { NULL, 0 }, /* 'p' */
902 { NULL, 0 }, /* 'q' */
903 { NULL, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL, 0 }, /* 't' */
906 { NULL, 0 }, /* 'u' */
907 { NULL, 0 }, /* 'v' */
908 { NULL, 0 }, /* 'w' */
909 { NULL, 0 }, /* 'x' */
910 { NULL, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
912 };
913
914 if (name [0] == '.')
915 {
916 int i = name [1] - 'd';
917 if (i >= 0
918 && i < (int) ARRAY_SIZE (debug_sections)
919 && debug_sections [i].name != NULL
920 && strncmp (&name [1], debug_sections [i].name,
921 debug_sections [i].len) == 0)
922 flags |= SEC_DEBUGGING;
923 }
924 }
925
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name, ".gnu.linkonce")
933 && elf_next_in_group (newsect) == NULL)
934 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
935
936 bed = get_elf_backend_data (abfd);
937 if (bed->elf_backend_section_flags)
938 if (! bed->elf_backend_section_flags (&flags, hdr))
939 return FALSE;
940
941 if (! bfd_set_section_flags (abfd, newsect, flags))
942 return FALSE;
943
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr->sh_type == SHT_NOTE)
948 {
949 bfd_byte *contents;
950
951 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
952 return FALSE;
953
954 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
955 free (contents);
956 }
957
958 if ((flags & SEC_ALLOC) != 0)
959 {
960 Elf_Internal_Phdr *phdr;
961 unsigned int i, nload;
962
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr = elf_tdata (abfd)->phdr;
968 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
969 if (phdr->p_paddr != 0)
970 break;
971 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
972 ++nload;
973 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
974 return TRUE;
975
976 phdr = elf_tdata (abfd)->phdr;
977 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
978 {
979 if (((phdr->p_type == PT_LOAD
980 && (hdr->sh_flags & SHF_TLS) == 0)
981 || phdr->p_type == PT_TLS)
982 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
983 {
984 if ((flags & SEC_LOAD) == 0)
985 newsect->lma = (phdr->p_paddr
986 + hdr->sh_addr - phdr->p_vaddr);
987 else
988 /* We used to use the same adjustment for SEC_LOAD
989 sections, but that doesn't work if the segment
990 is packed with code from multiple VMAs.
991 Instead we calculate the section LMA based on
992 the segment LMA. It is assumed that the
993 segment will contain sections with contiguous
994 LMAs, even if the VMAs are not. */
995 newsect->lma = (phdr->p_paddr
996 + hdr->sh_offset - phdr->p_offset);
997
998 /* With contiguous segments, we can't tell from file
999 offsets whether a section with zero size should
1000 be placed at the end of one segment or the
1001 beginning of the next. Decide based on vaddr. */
1002 if (hdr->sh_addr >= phdr->p_vaddr
1003 && (hdr->sh_addr + hdr->sh_size
1004 <= phdr->p_vaddr + phdr->p_memsz))
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Compress/decompress DWARF debug sections with names: .debug_* and
1011 .zdebug_*, after the section flags is set. */
1012 if ((flags & SEC_DEBUGGING)
1013 && ((name[1] == 'd' && name[6] == '_')
1014 || (name[1] == 'z' && name[7] == '_')))
1015 {
1016 enum { nothing, compress, decompress } action = nothing;
1017 char *new_name;
1018
1019 if (bfd_is_section_compressed (abfd, newsect))
1020 {
1021 /* Compressed section. Check if we should decompress. */
1022 if ((abfd->flags & BFD_DECOMPRESS))
1023 action = decompress;
1024 }
1025 else
1026 {
1027 /* Normal section. Check if we should compress. */
1028 if ((abfd->flags & BFD_COMPRESS))
1029 action = compress;
1030 }
1031
1032 new_name = NULL;
1033 switch (action)
1034 {
1035 case nothing:
1036 break;
1037 case compress:
1038 if (!bfd_init_section_compress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize commpress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] != 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len + 2);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 new_name[1] = 'z';
1054 memcpy (new_name + 2, name + 1, len);
1055 }
1056 break;
1057 case decompress:
1058 if (!bfd_init_section_decompress_status (abfd, newsect))
1059 {
1060 (*_bfd_error_handler)
1061 (_("%B: unable to initialize decommpress status for section %s"),
1062 abfd, name);
1063 return FALSE;
1064 }
1065 if (name[1] == 'z')
1066 {
1067 unsigned int len = strlen (name);
1068
1069 new_name = bfd_alloc (abfd, len);
1070 if (new_name == NULL)
1071 return FALSE;
1072 new_name[0] = '.';
1073 memcpy (new_name + 1, name + 2, len - 1);
1074 }
1075 break;
1076 }
1077 if (new_name != NULL)
1078 bfd_rename_section (abfd, newsect, new_name);
1079 }
1080
1081 return TRUE;
1082 }
1083
1084 const char *const bfd_elf_section_type_names[] = {
1085 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1086 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1087 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1088 };
1089
1090 /* ELF relocs are against symbols. If we are producing relocatable
1091 output, and the reloc is against an external symbol, and nothing
1092 has given us any additional addend, the resulting reloc will also
1093 be against the same symbol. In such a case, we don't want to
1094 change anything about the way the reloc is handled, since it will
1095 all be done at final link time. Rather than put special case code
1096 into bfd_perform_relocation, all the reloc types use this howto
1097 function. It just short circuits the reloc if producing
1098 relocatable output against an external symbol. */
1099
1100 bfd_reloc_status_type
1101 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1102 arelent *reloc_entry,
1103 asymbol *symbol,
1104 void *data ATTRIBUTE_UNUSED,
1105 asection *input_section,
1106 bfd *output_bfd,
1107 char **error_message ATTRIBUTE_UNUSED)
1108 {
1109 if (output_bfd != NULL
1110 && (symbol->flags & BSF_SECTION_SYM) == 0
1111 && (! reloc_entry->howto->partial_inplace
1112 || reloc_entry->addend == 0))
1113 {
1114 reloc_entry->address += input_section->output_offset;
1115 return bfd_reloc_ok;
1116 }
1117
1118 return bfd_reloc_continue;
1119 }
1120 \f
1121 /* Copy the program header and other data from one object module to
1122 another. */
1123
1124 bfd_boolean
1125 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1126 {
1127 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1128 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1129 return TRUE;
1130
1131 BFD_ASSERT (!elf_flags_init (obfd)
1132 || (elf_elfheader (obfd)->e_flags
1133 == elf_elfheader (ibfd)->e_flags));
1134
1135 elf_gp (obfd) = elf_gp (ibfd);
1136 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1137 elf_flags_init (obfd) = TRUE;
1138
1139 /* Copy object attributes. */
1140 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1141 return TRUE;
1142 }
1143
1144 static const char *
1145 get_segment_type (unsigned int p_type)
1146 {
1147 const char *pt;
1148 switch (p_type)
1149 {
1150 case PT_NULL: pt = "NULL"; break;
1151 case PT_LOAD: pt = "LOAD"; break;
1152 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1153 case PT_INTERP: pt = "INTERP"; break;
1154 case PT_NOTE: pt = "NOTE"; break;
1155 case PT_SHLIB: pt = "SHLIB"; break;
1156 case PT_PHDR: pt = "PHDR"; break;
1157 case PT_TLS: pt = "TLS"; break;
1158 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1159 case PT_GNU_STACK: pt = "STACK"; break;
1160 case PT_GNU_RELRO: pt = "RELRO"; break;
1161 default: pt = NULL; break;
1162 }
1163 return pt;
1164 }
1165
1166 /* Print out the program headers. */
1167
1168 bfd_boolean
1169 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1170 {
1171 FILE *f = (FILE *) farg;
1172 Elf_Internal_Phdr *p;
1173 asection *s;
1174 bfd_byte *dynbuf = NULL;
1175
1176 p = elf_tdata (abfd)->phdr;
1177 if (p != NULL)
1178 {
1179 unsigned int i, c;
1180
1181 fprintf (f, _("\nProgram Header:\n"));
1182 c = elf_elfheader (abfd)->e_phnum;
1183 for (i = 0; i < c; i++, p++)
1184 {
1185 const char *pt = get_segment_type (p->p_type);
1186 char buf[20];
1187
1188 if (pt == NULL)
1189 {
1190 sprintf (buf, "0x%lx", p->p_type);
1191 pt = buf;
1192 }
1193 fprintf (f, "%8s off 0x", pt);
1194 bfd_fprintf_vma (abfd, f, p->p_offset);
1195 fprintf (f, " vaddr 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1197 fprintf (f, " paddr 0x");
1198 bfd_fprintf_vma (abfd, f, p->p_paddr);
1199 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1200 fprintf (f, " filesz 0x");
1201 bfd_fprintf_vma (abfd, f, p->p_filesz);
1202 fprintf (f, " memsz 0x");
1203 bfd_fprintf_vma (abfd, f, p->p_memsz);
1204 fprintf (f, " flags %c%c%c",
1205 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1206 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1207 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1208 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1209 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1210 fprintf (f, "\n");
1211 }
1212 }
1213
1214 s = bfd_get_section_by_name (abfd, ".dynamic");
1215 if (s != NULL)
1216 {
1217 unsigned int elfsec;
1218 unsigned long shlink;
1219 bfd_byte *extdyn, *extdynend;
1220 size_t extdynsize;
1221 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1222
1223 fprintf (f, _("\nDynamic Section:\n"));
1224
1225 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1226 goto error_return;
1227
1228 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1229 if (elfsec == SHN_BAD)
1230 goto error_return;
1231 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1232
1233 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1234 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1235
1236 extdyn = dynbuf;
1237 extdynend = extdyn + s->size;
1238 for (; extdyn < extdynend; extdyn += extdynsize)
1239 {
1240 Elf_Internal_Dyn dyn;
1241 const char *name = "";
1242 char ab[20];
1243 bfd_boolean stringp;
1244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1245
1246 (*swap_dyn_in) (abfd, extdyn, &dyn);
1247
1248 if (dyn.d_tag == DT_NULL)
1249 break;
1250
1251 stringp = FALSE;
1252 switch (dyn.d_tag)
1253 {
1254 default:
1255 if (bed->elf_backend_get_target_dtag)
1256 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1257
1258 if (!strcmp (name, ""))
1259 {
1260 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1261 name = ab;
1262 }
1263 break;
1264
1265 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1266 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1267 case DT_PLTGOT: name = "PLTGOT"; break;
1268 case DT_HASH: name = "HASH"; break;
1269 case DT_STRTAB: name = "STRTAB"; break;
1270 case DT_SYMTAB: name = "SYMTAB"; break;
1271 case DT_RELA: name = "RELA"; break;
1272 case DT_RELASZ: name = "RELASZ"; break;
1273 case DT_RELAENT: name = "RELAENT"; break;
1274 case DT_STRSZ: name = "STRSZ"; break;
1275 case DT_SYMENT: name = "SYMENT"; break;
1276 case DT_INIT: name = "INIT"; break;
1277 case DT_FINI: name = "FINI"; break;
1278 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1279 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1280 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1281 case DT_REL: name = "REL"; break;
1282 case DT_RELSZ: name = "RELSZ"; break;
1283 case DT_RELENT: name = "RELENT"; break;
1284 case DT_PLTREL: name = "PLTREL"; break;
1285 case DT_DEBUG: name = "DEBUG"; break;
1286 case DT_TEXTREL: name = "TEXTREL"; break;
1287 case DT_JMPREL: name = "JMPREL"; break;
1288 case DT_BIND_NOW: name = "BIND_NOW"; break;
1289 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1290 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1291 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1292 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1293 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1294 case DT_FLAGS: name = "FLAGS"; break;
1295 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1296 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1297 case DT_CHECKSUM: name = "CHECKSUM"; break;
1298 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1299 case DT_MOVEENT: name = "MOVEENT"; break;
1300 case DT_MOVESZ: name = "MOVESZ"; break;
1301 case DT_FEATURE: name = "FEATURE"; break;
1302 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1303 case DT_SYMINSZ: name = "SYMINSZ"; break;
1304 case DT_SYMINENT: name = "SYMINENT"; break;
1305 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1306 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1307 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1308 case DT_PLTPAD: name = "PLTPAD"; break;
1309 case DT_MOVETAB: name = "MOVETAB"; break;
1310 case DT_SYMINFO: name = "SYMINFO"; break;
1311 case DT_RELACOUNT: name = "RELACOUNT"; break;
1312 case DT_RELCOUNT: name = "RELCOUNT"; break;
1313 case DT_FLAGS_1: name = "FLAGS_1"; break;
1314 case DT_VERSYM: name = "VERSYM"; break;
1315 case DT_VERDEF: name = "VERDEF"; break;
1316 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1317 case DT_VERNEED: name = "VERNEED"; break;
1318 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1319 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1320 case DT_USED: name = "USED"; break;
1321 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1322 case DT_GNU_HASH: name = "GNU_HASH"; break;
1323 }
1324
1325 fprintf (f, " %-20s ", name);
1326 if (! stringp)
1327 {
1328 fprintf (f, "0x");
1329 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1330 }
1331 else
1332 {
1333 const char *string;
1334 unsigned int tagv = dyn.d_un.d_val;
1335
1336 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1337 if (string == NULL)
1338 goto error_return;
1339 fprintf (f, "%s", string);
1340 }
1341 fprintf (f, "\n");
1342 }
1343
1344 free (dynbuf);
1345 dynbuf = NULL;
1346 }
1347
1348 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1349 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1350 {
1351 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1352 return FALSE;
1353 }
1354
1355 if (elf_dynverdef (abfd) != 0)
1356 {
1357 Elf_Internal_Verdef *t;
1358
1359 fprintf (f, _("\nVersion definitions:\n"));
1360 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1361 {
1362 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1363 t->vd_flags, t->vd_hash,
1364 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1365 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1366 {
1367 Elf_Internal_Verdaux *a;
1368
1369 fprintf (f, "\t");
1370 for (a = t->vd_auxptr->vda_nextptr;
1371 a != NULL;
1372 a = a->vda_nextptr)
1373 fprintf (f, "%s ",
1374 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1375 fprintf (f, "\n");
1376 }
1377 }
1378 }
1379
1380 if (elf_dynverref (abfd) != 0)
1381 {
1382 Elf_Internal_Verneed *t;
1383
1384 fprintf (f, _("\nVersion References:\n"));
1385 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1386 {
1387 Elf_Internal_Vernaux *a;
1388
1389 fprintf (f, _(" required from %s:\n"),
1390 t->vn_filename ? t->vn_filename : "<corrupt>");
1391 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1392 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1393 a->vna_flags, a->vna_other,
1394 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1395 }
1396 }
1397
1398 return TRUE;
1399
1400 error_return:
1401 if (dynbuf != NULL)
1402 free (dynbuf);
1403 return FALSE;
1404 }
1405
1406 /* Display ELF-specific fields of a symbol. */
1407
1408 void
1409 bfd_elf_print_symbol (bfd *abfd,
1410 void *filep,
1411 asymbol *symbol,
1412 bfd_print_symbol_type how)
1413 {
1414 FILE *file = (FILE *) filep;
1415 switch (how)
1416 {
1417 case bfd_print_symbol_name:
1418 fprintf (file, "%s", symbol->name);
1419 break;
1420 case bfd_print_symbol_more:
1421 fprintf (file, "elf ");
1422 bfd_fprintf_vma (abfd, file, symbol->value);
1423 fprintf (file, " %lx", (unsigned long) symbol->flags);
1424 break;
1425 case bfd_print_symbol_all:
1426 {
1427 const char *section_name;
1428 const char *name = NULL;
1429 const struct elf_backend_data *bed;
1430 unsigned char st_other;
1431 bfd_vma val;
1432
1433 section_name = symbol->section ? symbol->section->name : "(*none*)";
1434
1435 bed = get_elf_backend_data (abfd);
1436 if (bed->elf_backend_print_symbol_all)
1437 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1438
1439 if (name == NULL)
1440 {
1441 name = symbol->name;
1442 bfd_print_symbol_vandf (abfd, file, symbol);
1443 }
1444
1445 fprintf (file, " %s\t", section_name);
1446 /* Print the "other" value for a symbol. For common symbols,
1447 we've already printed the size; now print the alignment.
1448 For other symbols, we have no specified alignment, and
1449 we've printed the address; now print the size. */
1450 if (symbol->section && bfd_is_com_section (symbol->section))
1451 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1452 else
1453 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1454 bfd_fprintf_vma (abfd, file, val);
1455
1456 /* If we have version information, print it. */
1457 if (elf_tdata (abfd)->dynversym_section != 0
1458 && (elf_tdata (abfd)->dynverdef_section != 0
1459 || elf_tdata (abfd)->dynverref_section != 0))
1460 {
1461 unsigned int vernum;
1462 const char *version_string;
1463
1464 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1465
1466 if (vernum == 0)
1467 version_string = "";
1468 else if (vernum == 1)
1469 version_string = "Base";
1470 else if (vernum <= elf_tdata (abfd)->cverdefs)
1471 version_string =
1472 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1473 else
1474 {
1475 Elf_Internal_Verneed *t;
1476
1477 version_string = "";
1478 for (t = elf_tdata (abfd)->verref;
1479 t != NULL;
1480 t = t->vn_nextref)
1481 {
1482 Elf_Internal_Vernaux *a;
1483
1484 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1485 {
1486 if (a->vna_other == vernum)
1487 {
1488 version_string = a->vna_nodename;
1489 break;
1490 }
1491 }
1492 }
1493 }
1494
1495 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1496 fprintf (file, " %-11s", version_string);
1497 else
1498 {
1499 int i;
1500
1501 fprintf (file, " (%s)", version_string);
1502 for (i = 10 - strlen (version_string); i > 0; --i)
1503 putc (' ', file);
1504 }
1505 }
1506
1507 /* If the st_other field is not zero, print it. */
1508 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1509
1510 switch (st_other)
1511 {
1512 case 0: break;
1513 case STV_INTERNAL: fprintf (file, " .internal"); break;
1514 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1515 case STV_PROTECTED: fprintf (file, " .protected"); break;
1516 default:
1517 /* Some other non-defined flags are also present, so print
1518 everything hex. */
1519 fprintf (file, " 0x%02x", (unsigned int) st_other);
1520 }
1521
1522 fprintf (file, " %s", name);
1523 }
1524 break;
1525 }
1526 }
1527
1528 /* Allocate an ELF string table--force the first byte to be zero. */
1529
1530 struct bfd_strtab_hash *
1531 _bfd_elf_stringtab_init (void)
1532 {
1533 struct bfd_strtab_hash *ret;
1534
1535 ret = _bfd_stringtab_init ();
1536 if (ret != NULL)
1537 {
1538 bfd_size_type loc;
1539
1540 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1541 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1542 if (loc == (bfd_size_type) -1)
1543 {
1544 _bfd_stringtab_free (ret);
1545 ret = NULL;
1546 }
1547 }
1548 return ret;
1549 }
1550 \f
1551 /* ELF .o/exec file reading */
1552
1553 /* Create a new bfd section from an ELF section header. */
1554
1555 bfd_boolean
1556 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1557 {
1558 Elf_Internal_Shdr *hdr;
1559 Elf_Internal_Ehdr *ehdr;
1560 const struct elf_backend_data *bed;
1561 const char *name;
1562
1563 if (shindex >= elf_numsections (abfd))
1564 return FALSE;
1565
1566 hdr = elf_elfsections (abfd)[shindex];
1567 ehdr = elf_elfheader (abfd);
1568 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1569 hdr->sh_name);
1570 if (name == NULL)
1571 return FALSE;
1572
1573 bed = get_elf_backend_data (abfd);
1574 switch (hdr->sh_type)
1575 {
1576 case SHT_NULL:
1577 /* Inactive section. Throw it away. */
1578 return TRUE;
1579
1580 case SHT_PROGBITS: /* Normal section with contents. */
1581 case SHT_NOBITS: /* .bss section. */
1582 case SHT_HASH: /* .hash section. */
1583 case SHT_NOTE: /* .note section. */
1584 case SHT_INIT_ARRAY: /* .init_array section. */
1585 case SHT_FINI_ARRAY: /* .fini_array section. */
1586 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1587 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1588 case SHT_GNU_HASH: /* .gnu.hash section. */
1589 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1590
1591 case SHT_DYNAMIC: /* Dynamic linking information. */
1592 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1593 return FALSE;
1594 if (hdr->sh_link > elf_numsections (abfd))
1595 {
1596 /* PR 10478: Accept Solaris binaries with a sh_link
1597 field set to SHN_BEFORE or SHN_AFTER. */
1598 switch (bfd_get_arch (abfd))
1599 {
1600 case bfd_arch_i386:
1601 case bfd_arch_sparc:
1602 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1603 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1604 break;
1605 /* Otherwise fall through. */
1606 default:
1607 return FALSE;
1608 }
1609 }
1610 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1611 return FALSE;
1612 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1613 {
1614 Elf_Internal_Shdr *dynsymhdr;
1615
1616 /* The shared libraries distributed with hpux11 have a bogus
1617 sh_link field for the ".dynamic" section. Find the
1618 string table for the ".dynsym" section instead. */
1619 if (elf_dynsymtab (abfd) != 0)
1620 {
1621 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1622 hdr->sh_link = dynsymhdr->sh_link;
1623 }
1624 else
1625 {
1626 unsigned int i, num_sec;
1627
1628 num_sec = elf_numsections (abfd);
1629 for (i = 1; i < num_sec; i++)
1630 {
1631 dynsymhdr = elf_elfsections (abfd)[i];
1632 if (dynsymhdr->sh_type == SHT_DYNSYM)
1633 {
1634 hdr->sh_link = dynsymhdr->sh_link;
1635 break;
1636 }
1637 }
1638 }
1639 }
1640 break;
1641
1642 case SHT_SYMTAB: /* A symbol table */
1643 if (elf_onesymtab (abfd) == shindex)
1644 return TRUE;
1645
1646 if (hdr->sh_entsize != bed->s->sizeof_sym)
1647 return FALSE;
1648 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1649 {
1650 if (hdr->sh_size != 0)
1651 return FALSE;
1652 /* Some assemblers erroneously set sh_info to one with a
1653 zero sh_size. ld sees this as a global symbol count
1654 of (unsigned) -1. Fix it here. */
1655 hdr->sh_info = 0;
1656 return TRUE;
1657 }
1658 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1659 elf_onesymtab (abfd) = shindex;
1660 elf_tdata (abfd)->symtab_hdr = *hdr;
1661 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1662 abfd->flags |= HAS_SYMS;
1663
1664 /* Sometimes a shared object will map in the symbol table. If
1665 SHF_ALLOC is set, and this is a shared object, then we also
1666 treat this section as a BFD section. We can not base the
1667 decision purely on SHF_ALLOC, because that flag is sometimes
1668 set in a relocatable object file, which would confuse the
1669 linker. */
1670 if ((hdr->sh_flags & SHF_ALLOC) != 0
1671 && (abfd->flags & DYNAMIC) != 0
1672 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1673 shindex))
1674 return FALSE;
1675
1676 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1677 can't read symbols without that section loaded as well. It
1678 is most likely specified by the next section header. */
1679 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1680 {
1681 unsigned int i, num_sec;
1682
1683 num_sec = elf_numsections (abfd);
1684 for (i = shindex + 1; i < num_sec; i++)
1685 {
1686 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1687 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1688 && hdr2->sh_link == shindex)
1689 break;
1690 }
1691 if (i == num_sec)
1692 for (i = 1; i < shindex; i++)
1693 {
1694 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1695 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1696 && hdr2->sh_link == shindex)
1697 break;
1698 }
1699 if (i != shindex)
1700 return bfd_section_from_shdr (abfd, i);
1701 }
1702 return TRUE;
1703
1704 case SHT_DYNSYM: /* A dynamic symbol table */
1705 if (elf_dynsymtab (abfd) == shindex)
1706 return TRUE;
1707
1708 if (hdr->sh_entsize != bed->s->sizeof_sym)
1709 return FALSE;
1710 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1711 {
1712 if (hdr->sh_size != 0)
1713 return FALSE;
1714 /* Some linkers erroneously set sh_info to one with a
1715 zero sh_size. ld sees this as a global symbol count
1716 of (unsigned) -1. Fix it here. */
1717 hdr->sh_info = 0;
1718 return TRUE;
1719 }
1720 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1721 elf_dynsymtab (abfd) = shindex;
1722 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1723 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1724 abfd->flags |= HAS_SYMS;
1725
1726 /* Besides being a symbol table, we also treat this as a regular
1727 section, so that objcopy can handle it. */
1728 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1729
1730 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1731 if (elf_symtab_shndx (abfd) == shindex)
1732 return TRUE;
1733
1734 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1735 elf_symtab_shndx (abfd) = shindex;
1736 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1737 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1738 return TRUE;
1739
1740 case SHT_STRTAB: /* A string table */
1741 if (hdr->bfd_section != NULL)
1742 return TRUE;
1743 if (ehdr->e_shstrndx == shindex)
1744 {
1745 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1746 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1747 return TRUE;
1748 }
1749 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1750 {
1751 symtab_strtab:
1752 elf_tdata (abfd)->strtab_hdr = *hdr;
1753 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1754 return TRUE;
1755 }
1756 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1757 {
1758 dynsymtab_strtab:
1759 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1760 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1761 elf_elfsections (abfd)[shindex] = hdr;
1762 /* We also treat this as a regular section, so that objcopy
1763 can handle it. */
1764 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1765 shindex);
1766 }
1767
1768 /* If the string table isn't one of the above, then treat it as a
1769 regular section. We need to scan all the headers to be sure,
1770 just in case this strtab section appeared before the above. */
1771 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1772 {
1773 unsigned int i, num_sec;
1774
1775 num_sec = elf_numsections (abfd);
1776 for (i = 1; i < num_sec; i++)
1777 {
1778 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1779 if (hdr2->sh_link == shindex)
1780 {
1781 /* Prevent endless recursion on broken objects. */
1782 if (i == shindex)
1783 return FALSE;
1784 if (! bfd_section_from_shdr (abfd, i))
1785 return FALSE;
1786 if (elf_onesymtab (abfd) == i)
1787 goto symtab_strtab;
1788 if (elf_dynsymtab (abfd) == i)
1789 goto dynsymtab_strtab;
1790 }
1791 }
1792 }
1793 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1794
1795 case SHT_REL:
1796 case SHT_RELA:
1797 /* *These* do a lot of work -- but build no sections! */
1798 {
1799 asection *target_sect;
1800 Elf_Internal_Shdr *hdr2, **p_hdr;
1801 unsigned int num_sec = elf_numsections (abfd);
1802 struct bfd_elf_section_data *esdt;
1803 bfd_size_type amt;
1804
1805 if (hdr->sh_entsize
1806 != (bfd_size_type) (hdr->sh_type == SHT_REL
1807 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1808 return FALSE;
1809
1810 /* Check for a bogus link to avoid crashing. */
1811 if (hdr->sh_link >= num_sec)
1812 {
1813 ((*_bfd_error_handler)
1814 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1815 abfd, hdr->sh_link, name, shindex));
1816 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1817 shindex);
1818 }
1819
1820 /* For some incomprehensible reason Oracle distributes
1821 libraries for Solaris in which some of the objects have
1822 bogus sh_link fields. It would be nice if we could just
1823 reject them, but, unfortunately, some people need to use
1824 them. We scan through the section headers; if we find only
1825 one suitable symbol table, we clobber the sh_link to point
1826 to it. I hope this doesn't break anything.
1827
1828 Don't do it on executable nor shared library. */
1829 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1830 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1831 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1832 {
1833 unsigned int scan;
1834 int found;
1835
1836 found = 0;
1837 for (scan = 1; scan < num_sec; scan++)
1838 {
1839 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1840 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1841 {
1842 if (found != 0)
1843 {
1844 found = 0;
1845 break;
1846 }
1847 found = scan;
1848 }
1849 }
1850 if (found != 0)
1851 hdr->sh_link = found;
1852 }
1853
1854 /* Get the symbol table. */
1855 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1856 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1857 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1858 return FALSE;
1859
1860 /* If this reloc section does not use the main symbol table we
1861 don't treat it as a reloc section. BFD can't adequately
1862 represent such a section, so at least for now, we don't
1863 try. We just present it as a normal section. We also
1864 can't use it as a reloc section if it points to the null
1865 section, an invalid section, another reloc section, or its
1866 sh_link points to the null section. */
1867 if (hdr->sh_link != elf_onesymtab (abfd)
1868 || hdr->sh_link == SHN_UNDEF
1869 || hdr->sh_info == SHN_UNDEF
1870 || hdr->sh_info >= num_sec
1871 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1872 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1873 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1874 shindex);
1875
1876 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1877 return FALSE;
1878 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1879 if (target_sect == NULL)
1880 return FALSE;
1881
1882 esdt = elf_section_data (target_sect);
1883 if (hdr->sh_type == SHT_RELA)
1884 p_hdr = &esdt->rela.hdr;
1885 else
1886 p_hdr = &esdt->rel.hdr;
1887
1888 BFD_ASSERT (*p_hdr == NULL);
1889 amt = sizeof (*hdr2);
1890 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1891 if (hdr2 == NULL)
1892 return FALSE;
1893 *hdr2 = *hdr;
1894 *p_hdr = hdr2;
1895 elf_elfsections (abfd)[shindex] = hdr2;
1896 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1897 target_sect->flags |= SEC_RELOC;
1898 target_sect->relocation = NULL;
1899 target_sect->rel_filepos = hdr->sh_offset;
1900 /* In the section to which the relocations apply, mark whether
1901 its relocations are of the REL or RELA variety. */
1902 if (hdr->sh_size != 0)
1903 {
1904 if (hdr->sh_type == SHT_RELA)
1905 target_sect->use_rela_p = 1;
1906 }
1907 abfd->flags |= HAS_RELOC;
1908 return TRUE;
1909 }
1910
1911 case SHT_GNU_verdef:
1912 elf_dynverdef (abfd) = shindex;
1913 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1915
1916 case SHT_GNU_versym:
1917 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1918 return FALSE;
1919 elf_dynversym (abfd) = shindex;
1920 elf_tdata (abfd)->dynversym_hdr = *hdr;
1921 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1922
1923 case SHT_GNU_verneed:
1924 elf_dynverref (abfd) = shindex;
1925 elf_tdata (abfd)->dynverref_hdr = *hdr;
1926 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1927
1928 case SHT_SHLIB:
1929 return TRUE;
1930
1931 case SHT_GROUP:
1932 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1933 return FALSE;
1934 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1935 return FALSE;
1936 if (hdr->contents != NULL)
1937 {
1938 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1939 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1940 asection *s;
1941
1942 if (idx->flags & GRP_COMDAT)
1943 hdr->bfd_section->flags
1944 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1945
1946 /* We try to keep the same section order as it comes in. */
1947 idx += n_elt;
1948 while (--n_elt != 0)
1949 {
1950 --idx;
1951
1952 if (idx->shdr != NULL
1953 && (s = idx->shdr->bfd_section) != NULL
1954 && elf_next_in_group (s) != NULL)
1955 {
1956 elf_next_in_group (hdr->bfd_section) = s;
1957 break;
1958 }
1959 }
1960 }
1961 break;
1962
1963 default:
1964 /* Possibly an attributes section. */
1965 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1966 || hdr->sh_type == bed->obj_attrs_section_type)
1967 {
1968 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1969 return FALSE;
1970 _bfd_elf_parse_attributes (abfd, hdr);
1971 return TRUE;
1972 }
1973
1974 /* Check for any processor-specific section types. */
1975 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1976 return TRUE;
1977
1978 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1979 {
1980 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1981 /* FIXME: How to properly handle allocated section reserved
1982 for applications? */
1983 (*_bfd_error_handler)
1984 (_("%B: don't know how to handle allocated, application "
1985 "specific section `%s' [0x%8x]"),
1986 abfd, name, hdr->sh_type);
1987 else
1988 /* Allow sections reserved for applications. */
1989 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1990 shindex);
1991 }
1992 else if (hdr->sh_type >= SHT_LOPROC
1993 && hdr->sh_type <= SHT_HIPROC)
1994 /* FIXME: We should handle this section. */
1995 (*_bfd_error_handler)
1996 (_("%B: don't know how to handle processor specific section "
1997 "`%s' [0x%8x]"),
1998 abfd, name, hdr->sh_type);
1999 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2000 {
2001 /* Unrecognised OS-specific sections. */
2002 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2003 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2004 required to correctly process the section and the file should
2005 be rejected with an error message. */
2006 (*_bfd_error_handler)
2007 (_("%B: don't know how to handle OS specific section "
2008 "`%s' [0x%8x]"),
2009 abfd, name, hdr->sh_type);
2010 else
2011 /* Otherwise it should be processed. */
2012 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2013 }
2014 else
2015 /* FIXME: We should handle this section. */
2016 (*_bfd_error_handler)
2017 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2018 abfd, name, hdr->sh_type);
2019
2020 return FALSE;
2021 }
2022
2023 return TRUE;
2024 }
2025
2026 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2027
2028 Elf_Internal_Sym *
2029 bfd_sym_from_r_symndx (struct sym_cache *cache,
2030 bfd *abfd,
2031 unsigned long r_symndx)
2032 {
2033 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2034
2035 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2036 {
2037 Elf_Internal_Shdr *symtab_hdr;
2038 unsigned char esym[sizeof (Elf64_External_Sym)];
2039 Elf_External_Sym_Shndx eshndx;
2040
2041 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2042 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2043 &cache->sym[ent], esym, &eshndx) == NULL)
2044 return NULL;
2045
2046 if (cache->abfd != abfd)
2047 {
2048 memset (cache->indx, -1, sizeof (cache->indx));
2049 cache->abfd = abfd;
2050 }
2051 cache->indx[ent] = r_symndx;
2052 }
2053
2054 return &cache->sym[ent];
2055 }
2056
2057 /* Given an ELF section number, retrieve the corresponding BFD
2058 section. */
2059
2060 asection *
2061 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2062 {
2063 if (sec_index >= elf_numsections (abfd))
2064 return NULL;
2065 return elf_elfsections (abfd)[sec_index]->bfd_section;
2066 }
2067
2068 static const struct bfd_elf_special_section special_sections_b[] =
2069 {
2070 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2071 { NULL, 0, 0, 0, 0 }
2072 };
2073
2074 static const struct bfd_elf_special_section special_sections_c[] =
2075 {
2076 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2077 { NULL, 0, 0, 0, 0 }
2078 };
2079
2080 static const struct bfd_elf_special_section special_sections_d[] =
2081 {
2082 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2083 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2084 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2086 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2087 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2088 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2089 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2090 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2091 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2092 { NULL, 0, 0, 0, 0 }
2093 };
2094
2095 static const struct bfd_elf_special_section special_sections_f[] =
2096 {
2097 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2098 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2099 { NULL, 0, 0, 0, 0 }
2100 };
2101
2102 static const struct bfd_elf_special_section special_sections_g[] =
2103 {
2104 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2105 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2106 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2107 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2108 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2109 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2110 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2111 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2112 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2113 { NULL, 0, 0, 0, 0 }
2114 };
2115
2116 static const struct bfd_elf_special_section special_sections_h[] =
2117 {
2118 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2119 { NULL, 0, 0, 0, 0 }
2120 };
2121
2122 static const struct bfd_elf_special_section special_sections_i[] =
2123 {
2124 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2125 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2126 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2127 { NULL, 0, 0, 0, 0 }
2128 };
2129
2130 static const struct bfd_elf_special_section special_sections_l[] =
2131 {
2132 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2133 { NULL, 0, 0, 0, 0 }
2134 };
2135
2136 static const struct bfd_elf_special_section special_sections_n[] =
2137 {
2138 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2139 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2140 { NULL, 0, 0, 0, 0 }
2141 };
2142
2143 static const struct bfd_elf_special_section special_sections_p[] =
2144 {
2145 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2146 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2147 { NULL, 0, 0, 0, 0 }
2148 };
2149
2150 static const struct bfd_elf_special_section special_sections_r[] =
2151 {
2152 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2153 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2154 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2155 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2156 { NULL, 0, 0, 0, 0 }
2157 };
2158
2159 static const struct bfd_elf_special_section special_sections_s[] =
2160 {
2161 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2162 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2163 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2164 /* See struct bfd_elf_special_section declaration for the semantics of
2165 this special case where .prefix_length != strlen (.prefix). */
2166 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2167 { NULL, 0, 0, 0, 0 }
2168 };
2169
2170 static const struct bfd_elf_special_section special_sections_t[] =
2171 {
2172 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2173 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2174 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2175 { NULL, 0, 0, 0, 0 }
2176 };
2177
2178 static const struct bfd_elf_special_section special_sections_z[] =
2179 {
2180 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2181 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2182 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2183 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2184 { NULL, 0, 0, 0, 0 }
2185 };
2186
2187 static const struct bfd_elf_special_section * const special_sections[] =
2188 {
2189 special_sections_b, /* 'b' */
2190 special_sections_c, /* 'c' */
2191 special_sections_d, /* 'd' */
2192 NULL, /* 'e' */
2193 special_sections_f, /* 'f' */
2194 special_sections_g, /* 'g' */
2195 special_sections_h, /* 'h' */
2196 special_sections_i, /* 'i' */
2197 NULL, /* 'j' */
2198 NULL, /* 'k' */
2199 special_sections_l, /* 'l' */
2200 NULL, /* 'm' */
2201 special_sections_n, /* 'n' */
2202 NULL, /* 'o' */
2203 special_sections_p, /* 'p' */
2204 NULL, /* 'q' */
2205 special_sections_r, /* 'r' */
2206 special_sections_s, /* 's' */
2207 special_sections_t, /* 't' */
2208 NULL, /* 'u' */
2209 NULL, /* 'v' */
2210 NULL, /* 'w' */
2211 NULL, /* 'x' */
2212 NULL, /* 'y' */
2213 special_sections_z /* 'z' */
2214 };
2215
2216 const struct bfd_elf_special_section *
2217 _bfd_elf_get_special_section (const char *name,
2218 const struct bfd_elf_special_section *spec,
2219 unsigned int rela)
2220 {
2221 int i;
2222 int len;
2223
2224 len = strlen (name);
2225
2226 for (i = 0; spec[i].prefix != NULL; i++)
2227 {
2228 int suffix_len;
2229 int prefix_len = spec[i].prefix_length;
2230
2231 if (len < prefix_len)
2232 continue;
2233 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2234 continue;
2235
2236 suffix_len = spec[i].suffix_length;
2237 if (suffix_len <= 0)
2238 {
2239 if (name[prefix_len] != 0)
2240 {
2241 if (suffix_len == 0)
2242 continue;
2243 if (name[prefix_len] != '.'
2244 && (suffix_len == -2
2245 || (rela && spec[i].type == SHT_REL)))
2246 continue;
2247 }
2248 }
2249 else
2250 {
2251 if (len < prefix_len + suffix_len)
2252 continue;
2253 if (memcmp (name + len - suffix_len,
2254 spec[i].prefix + prefix_len,
2255 suffix_len) != 0)
2256 continue;
2257 }
2258 return &spec[i];
2259 }
2260
2261 return NULL;
2262 }
2263
2264 const struct bfd_elf_special_section *
2265 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2266 {
2267 int i;
2268 const struct bfd_elf_special_section *spec;
2269 const struct elf_backend_data *bed;
2270
2271 /* See if this is one of the special sections. */
2272 if (sec->name == NULL)
2273 return NULL;
2274
2275 bed = get_elf_backend_data (abfd);
2276 spec = bed->special_sections;
2277 if (spec)
2278 {
2279 spec = _bfd_elf_get_special_section (sec->name,
2280 bed->special_sections,
2281 sec->use_rela_p);
2282 if (spec != NULL)
2283 return spec;
2284 }
2285
2286 if (sec->name[0] != '.')
2287 return NULL;
2288
2289 i = sec->name[1] - 'b';
2290 if (i < 0 || i > 'z' - 'b')
2291 return NULL;
2292
2293 spec = special_sections[i];
2294
2295 if (spec == NULL)
2296 return NULL;
2297
2298 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2299 }
2300
2301 bfd_boolean
2302 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2303 {
2304 struct bfd_elf_section_data *sdata;
2305 const struct elf_backend_data *bed;
2306 const struct bfd_elf_special_section *ssect;
2307
2308 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2309 if (sdata == NULL)
2310 {
2311 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2312 sizeof (*sdata));
2313 if (sdata == NULL)
2314 return FALSE;
2315 sec->used_by_bfd = sdata;
2316 }
2317
2318 /* Indicate whether or not this section should use RELA relocations. */
2319 bed = get_elf_backend_data (abfd);
2320 sec->use_rela_p = bed->default_use_rela_p;
2321
2322 /* When we read a file, we don't need to set ELF section type and
2323 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2324 anyway. We will set ELF section type and flags for all linker
2325 created sections. If user specifies BFD section flags, we will
2326 set ELF section type and flags based on BFD section flags in
2327 elf_fake_sections. Special handling for .init_array/.fini_array
2328 output sections since they may contain .ctors/.dtors input
2329 sections. We don't want _bfd_elf_init_private_section_data to
2330 copy ELF section type from .ctors/.dtors input sections. */
2331 if (abfd->direction != read_direction
2332 || (sec->flags & SEC_LINKER_CREATED) != 0)
2333 {
2334 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2335 if (ssect != NULL
2336 && (!sec->flags
2337 || (sec->flags & SEC_LINKER_CREATED) != 0
2338 || ssect->type == SHT_INIT_ARRAY
2339 || ssect->type == SHT_FINI_ARRAY))
2340 {
2341 elf_section_type (sec) = ssect->type;
2342 elf_section_flags (sec) = ssect->attr;
2343 }
2344 }
2345
2346 return _bfd_generic_new_section_hook (abfd, sec);
2347 }
2348
2349 /* Create a new bfd section from an ELF program header.
2350
2351 Since program segments have no names, we generate a synthetic name
2352 of the form segment<NUM>, where NUM is generally the index in the
2353 program header table. For segments that are split (see below) we
2354 generate the names segment<NUM>a and segment<NUM>b.
2355
2356 Note that some program segments may have a file size that is different than
2357 (less than) the memory size. All this means is that at execution the
2358 system must allocate the amount of memory specified by the memory size,
2359 but only initialize it with the first "file size" bytes read from the
2360 file. This would occur for example, with program segments consisting
2361 of combined data+bss.
2362
2363 To handle the above situation, this routine generates TWO bfd sections
2364 for the single program segment. The first has the length specified by
2365 the file size of the segment, and the second has the length specified
2366 by the difference between the two sizes. In effect, the segment is split
2367 into its initialized and uninitialized parts.
2368
2369 */
2370
2371 bfd_boolean
2372 _bfd_elf_make_section_from_phdr (bfd *abfd,
2373 Elf_Internal_Phdr *hdr,
2374 int hdr_index,
2375 const char *type_name)
2376 {
2377 asection *newsect;
2378 char *name;
2379 char namebuf[64];
2380 size_t len;
2381 int split;
2382
2383 split = ((hdr->p_memsz > 0)
2384 && (hdr->p_filesz > 0)
2385 && (hdr->p_memsz > hdr->p_filesz));
2386
2387 if (hdr->p_filesz > 0)
2388 {
2389 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2390 len = strlen (namebuf) + 1;
2391 name = (char *) bfd_alloc (abfd, len);
2392 if (!name)
2393 return FALSE;
2394 memcpy (name, namebuf, len);
2395 newsect = bfd_make_section (abfd, name);
2396 if (newsect == NULL)
2397 return FALSE;
2398 newsect->vma = hdr->p_vaddr;
2399 newsect->lma = hdr->p_paddr;
2400 newsect->size = hdr->p_filesz;
2401 newsect->filepos = hdr->p_offset;
2402 newsect->flags |= SEC_HAS_CONTENTS;
2403 newsect->alignment_power = bfd_log2 (hdr->p_align);
2404 if (hdr->p_type == PT_LOAD)
2405 {
2406 newsect->flags |= SEC_ALLOC;
2407 newsect->flags |= SEC_LOAD;
2408 if (hdr->p_flags & PF_X)
2409 {
2410 /* FIXME: all we known is that it has execute PERMISSION,
2411 may be data. */
2412 newsect->flags |= SEC_CODE;
2413 }
2414 }
2415 if (!(hdr->p_flags & PF_W))
2416 {
2417 newsect->flags |= SEC_READONLY;
2418 }
2419 }
2420
2421 if (hdr->p_memsz > hdr->p_filesz)
2422 {
2423 bfd_vma align;
2424
2425 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2426 len = strlen (namebuf) + 1;
2427 name = (char *) bfd_alloc (abfd, len);
2428 if (!name)
2429 return FALSE;
2430 memcpy (name, namebuf, len);
2431 newsect = bfd_make_section (abfd, name);
2432 if (newsect == NULL)
2433 return FALSE;
2434 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2435 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2436 newsect->size = hdr->p_memsz - hdr->p_filesz;
2437 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2438 align = newsect->vma & -newsect->vma;
2439 if (align == 0 || align > hdr->p_align)
2440 align = hdr->p_align;
2441 newsect->alignment_power = bfd_log2 (align);
2442 if (hdr->p_type == PT_LOAD)
2443 {
2444 /* Hack for gdb. Segments that have not been modified do
2445 not have their contents written to a core file, on the
2446 assumption that a debugger can find the contents in the
2447 executable. We flag this case by setting the fake
2448 section size to zero. Note that "real" bss sections will
2449 always have their contents dumped to the core file. */
2450 if (bfd_get_format (abfd) == bfd_core)
2451 newsect->size = 0;
2452 newsect->flags |= SEC_ALLOC;
2453 if (hdr->p_flags & PF_X)
2454 newsect->flags |= SEC_CODE;
2455 }
2456 if (!(hdr->p_flags & PF_W))
2457 newsect->flags |= SEC_READONLY;
2458 }
2459
2460 return TRUE;
2461 }
2462
2463 bfd_boolean
2464 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2465 {
2466 const struct elf_backend_data *bed;
2467
2468 switch (hdr->p_type)
2469 {
2470 case PT_NULL:
2471 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2472
2473 case PT_LOAD:
2474 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2475
2476 case PT_DYNAMIC:
2477 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2478
2479 case PT_INTERP:
2480 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2481
2482 case PT_NOTE:
2483 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2484 return FALSE;
2485 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2486 return FALSE;
2487 return TRUE;
2488
2489 case PT_SHLIB:
2490 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2491
2492 case PT_PHDR:
2493 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2494
2495 case PT_GNU_EH_FRAME:
2496 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2497 "eh_frame_hdr");
2498
2499 case PT_GNU_STACK:
2500 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2501
2502 case PT_GNU_RELRO:
2503 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2504
2505 default:
2506 /* Check for any processor-specific program segment types. */
2507 bed = get_elf_backend_data (abfd);
2508 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2509 }
2510 }
2511
2512 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2513 REL or RELA. */
2514
2515 Elf_Internal_Shdr *
2516 _bfd_elf_single_rel_hdr (asection *sec)
2517 {
2518 if (elf_section_data (sec)->rel.hdr)
2519 {
2520 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2521 return elf_section_data (sec)->rel.hdr;
2522 }
2523 else
2524 return elf_section_data (sec)->rela.hdr;
2525 }
2526
2527 /* Allocate and initialize a section-header for a new reloc section,
2528 containing relocations against ASECT. It is stored in RELDATA. If
2529 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2530 relocations. */
2531
2532 bfd_boolean
2533 _bfd_elf_init_reloc_shdr (bfd *abfd,
2534 struct bfd_elf_section_reloc_data *reldata,
2535 asection *asect,
2536 bfd_boolean use_rela_p)
2537 {
2538 Elf_Internal_Shdr *rel_hdr;
2539 char *name;
2540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2541 bfd_size_type amt;
2542
2543 amt = sizeof (Elf_Internal_Shdr);
2544 BFD_ASSERT (reldata->hdr == NULL);
2545 rel_hdr = bfd_zalloc (abfd, amt);
2546 reldata->hdr = rel_hdr;
2547
2548 amt = sizeof ".rela" + strlen (asect->name);
2549 name = (char *) bfd_alloc (abfd, amt);
2550 if (name == NULL)
2551 return FALSE;
2552 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2553 rel_hdr->sh_name =
2554 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2555 FALSE);
2556 if (rel_hdr->sh_name == (unsigned int) -1)
2557 return FALSE;
2558 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2559 rel_hdr->sh_entsize = (use_rela_p
2560 ? bed->s->sizeof_rela
2561 : bed->s->sizeof_rel);
2562 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2563 rel_hdr->sh_flags = 0;
2564 rel_hdr->sh_addr = 0;
2565 rel_hdr->sh_size = 0;
2566 rel_hdr->sh_offset = 0;
2567
2568 return TRUE;
2569 }
2570
2571 /* Return the default section type based on the passed in section flags. */
2572
2573 int
2574 bfd_elf_get_default_section_type (flagword flags)
2575 {
2576 if ((flags & SEC_ALLOC) != 0
2577 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2578 return SHT_NOBITS;
2579 return SHT_PROGBITS;
2580 }
2581
2582 struct fake_section_arg
2583 {
2584 struct bfd_link_info *link_info;
2585 bfd_boolean failed;
2586 };
2587
2588 /* Set up an ELF internal section header for a section. */
2589
2590 static void
2591 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2592 {
2593 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2595 struct bfd_elf_section_data *esd = elf_section_data (asect);
2596 Elf_Internal_Shdr *this_hdr;
2597 unsigned int sh_type;
2598
2599 if (arg->failed)
2600 {
2601 /* We already failed; just get out of the bfd_map_over_sections
2602 loop. */
2603 return;
2604 }
2605
2606 this_hdr = &esd->this_hdr;
2607
2608 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2609 asect->name, FALSE);
2610 if (this_hdr->sh_name == (unsigned int) -1)
2611 {
2612 arg->failed = TRUE;
2613 return;
2614 }
2615
2616 /* Don't clear sh_flags. Assembler may set additional bits. */
2617
2618 if ((asect->flags & SEC_ALLOC) != 0
2619 || asect->user_set_vma)
2620 this_hdr->sh_addr = asect->vma;
2621 else
2622 this_hdr->sh_addr = 0;
2623
2624 this_hdr->sh_offset = 0;
2625 this_hdr->sh_size = asect->size;
2626 this_hdr->sh_link = 0;
2627 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2628 /* The sh_entsize and sh_info fields may have been set already by
2629 copy_private_section_data. */
2630
2631 this_hdr->bfd_section = asect;
2632 this_hdr->contents = NULL;
2633
2634 /* If the section type is unspecified, we set it based on
2635 asect->flags. */
2636 if ((asect->flags & SEC_GROUP) != 0)
2637 sh_type = SHT_GROUP;
2638 else
2639 sh_type = bfd_elf_get_default_section_type (asect->flags);
2640
2641 if (this_hdr->sh_type == SHT_NULL)
2642 this_hdr->sh_type = sh_type;
2643 else if (this_hdr->sh_type == SHT_NOBITS
2644 && sh_type == SHT_PROGBITS
2645 && (asect->flags & SEC_ALLOC) != 0)
2646 {
2647 /* Warn if we are changing a NOBITS section to PROGBITS, but
2648 allow the link to proceed. This can happen when users link
2649 non-bss input sections to bss output sections, or emit data
2650 to a bss output section via a linker script. */
2651 (*_bfd_error_handler)
2652 (_("warning: section `%A' type changed to PROGBITS"), asect);
2653 this_hdr->sh_type = sh_type;
2654 }
2655
2656 switch (this_hdr->sh_type)
2657 {
2658 default:
2659 break;
2660
2661 case SHT_STRTAB:
2662 case SHT_INIT_ARRAY:
2663 case SHT_FINI_ARRAY:
2664 case SHT_PREINIT_ARRAY:
2665 case SHT_NOTE:
2666 case SHT_NOBITS:
2667 case SHT_PROGBITS:
2668 break;
2669
2670 case SHT_HASH:
2671 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2672 break;
2673
2674 case SHT_DYNSYM:
2675 this_hdr->sh_entsize = bed->s->sizeof_sym;
2676 break;
2677
2678 case SHT_DYNAMIC:
2679 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2680 break;
2681
2682 case SHT_RELA:
2683 if (get_elf_backend_data (abfd)->may_use_rela_p)
2684 this_hdr->sh_entsize = bed->s->sizeof_rela;
2685 break;
2686
2687 case SHT_REL:
2688 if (get_elf_backend_data (abfd)->may_use_rel_p)
2689 this_hdr->sh_entsize = bed->s->sizeof_rel;
2690 break;
2691
2692 case SHT_GNU_versym:
2693 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2694 break;
2695
2696 case SHT_GNU_verdef:
2697 this_hdr->sh_entsize = 0;
2698 /* objcopy or strip will copy over sh_info, but may not set
2699 cverdefs. The linker will set cverdefs, but sh_info will be
2700 zero. */
2701 if (this_hdr->sh_info == 0)
2702 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2703 else
2704 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2705 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2706 break;
2707
2708 case SHT_GNU_verneed:
2709 this_hdr->sh_entsize = 0;
2710 /* objcopy or strip will copy over sh_info, but may not set
2711 cverrefs. The linker will set cverrefs, but sh_info will be
2712 zero. */
2713 if (this_hdr->sh_info == 0)
2714 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2715 else
2716 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2717 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2718 break;
2719
2720 case SHT_GROUP:
2721 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2722 break;
2723
2724 case SHT_GNU_HASH:
2725 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2726 break;
2727 }
2728
2729 if ((asect->flags & SEC_ALLOC) != 0)
2730 this_hdr->sh_flags |= SHF_ALLOC;
2731 if ((asect->flags & SEC_READONLY) == 0)
2732 this_hdr->sh_flags |= SHF_WRITE;
2733 if ((asect->flags & SEC_CODE) != 0)
2734 this_hdr->sh_flags |= SHF_EXECINSTR;
2735 if ((asect->flags & SEC_MERGE) != 0)
2736 {
2737 this_hdr->sh_flags |= SHF_MERGE;
2738 this_hdr->sh_entsize = asect->entsize;
2739 if ((asect->flags & SEC_STRINGS) != 0)
2740 this_hdr->sh_flags |= SHF_STRINGS;
2741 }
2742 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2743 this_hdr->sh_flags |= SHF_GROUP;
2744 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2745 {
2746 this_hdr->sh_flags |= SHF_TLS;
2747 if (asect->size == 0
2748 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2749 {
2750 struct bfd_link_order *o = asect->map_tail.link_order;
2751
2752 this_hdr->sh_size = 0;
2753 if (o != NULL)
2754 {
2755 this_hdr->sh_size = o->offset + o->size;
2756 if (this_hdr->sh_size != 0)
2757 this_hdr->sh_type = SHT_NOBITS;
2758 }
2759 }
2760 }
2761 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2762 this_hdr->sh_flags |= SHF_EXCLUDE;
2763
2764 /* If the section has relocs, set up a section header for the
2765 SHT_REL[A] section. If two relocation sections are required for
2766 this section, it is up to the processor-specific back-end to
2767 create the other. */
2768 if ((asect->flags & SEC_RELOC) != 0)
2769 {
2770 /* When doing a relocatable link, create both REL and RELA sections if
2771 needed. */
2772 if (arg->link_info
2773 /* Do the normal setup if we wouldn't create any sections here. */
2774 && esd->rel.count + esd->rela.count > 0
2775 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2776 {
2777 if (esd->rel.count && esd->rel.hdr == NULL
2778 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2779 {
2780 arg->failed = TRUE;
2781 return;
2782 }
2783 if (esd->rela.count && esd->rela.hdr == NULL
2784 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2785 {
2786 arg->failed = TRUE;
2787 return;
2788 }
2789 }
2790 else if (!_bfd_elf_init_reloc_shdr (abfd,
2791 (asect->use_rela_p
2792 ? &esd->rela : &esd->rel),
2793 asect,
2794 asect->use_rela_p))
2795 arg->failed = TRUE;
2796 }
2797
2798 /* Check for processor-specific section types. */
2799 sh_type = this_hdr->sh_type;
2800 if (bed->elf_backend_fake_sections
2801 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2802 arg->failed = TRUE;
2803
2804 if (sh_type == SHT_NOBITS && asect->size != 0)
2805 {
2806 /* Don't change the header type from NOBITS if we are being
2807 called for objcopy --only-keep-debug. */
2808 this_hdr->sh_type = sh_type;
2809 }
2810 }
2811
2812 /* Fill in the contents of a SHT_GROUP section. Called from
2813 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2814 when ELF targets use the generic linker, ld. Called for ld -r
2815 from bfd_elf_final_link. */
2816
2817 void
2818 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2819 {
2820 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2821 asection *elt, *first;
2822 unsigned char *loc;
2823 bfd_boolean gas;
2824
2825 /* Ignore linker created group section. See elfNN_ia64_object_p in
2826 elfxx-ia64.c. */
2827 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2828 || *failedptr)
2829 return;
2830
2831 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2832 {
2833 unsigned long symindx = 0;
2834
2835 /* elf_group_id will have been set up by objcopy and the
2836 generic linker. */
2837 if (elf_group_id (sec) != NULL)
2838 symindx = elf_group_id (sec)->udata.i;
2839
2840 if (symindx == 0)
2841 {
2842 /* If called from the assembler, swap_out_syms will have set up
2843 elf_section_syms. */
2844 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2845 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2846 }
2847 elf_section_data (sec)->this_hdr.sh_info = symindx;
2848 }
2849 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2850 {
2851 /* The ELF backend linker sets sh_info to -2 when the group
2852 signature symbol is global, and thus the index can't be
2853 set until all local symbols are output. */
2854 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2855 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2856 unsigned long symndx = sec_data->this_hdr.sh_info;
2857 unsigned long extsymoff = 0;
2858 struct elf_link_hash_entry *h;
2859
2860 if (!elf_bad_symtab (igroup->owner))
2861 {
2862 Elf_Internal_Shdr *symtab_hdr;
2863
2864 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2865 extsymoff = symtab_hdr->sh_info;
2866 }
2867 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2868 while (h->root.type == bfd_link_hash_indirect
2869 || h->root.type == bfd_link_hash_warning)
2870 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2871
2872 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2873 }
2874
2875 /* The contents won't be allocated for "ld -r" or objcopy. */
2876 gas = TRUE;
2877 if (sec->contents == NULL)
2878 {
2879 gas = FALSE;
2880 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2881
2882 /* Arrange for the section to be written out. */
2883 elf_section_data (sec)->this_hdr.contents = sec->contents;
2884 if (sec->contents == NULL)
2885 {
2886 *failedptr = TRUE;
2887 return;
2888 }
2889 }
2890
2891 loc = sec->contents + sec->size;
2892
2893 /* Get the pointer to the first section in the group that gas
2894 squirreled away here. objcopy arranges for this to be set to the
2895 start of the input section group. */
2896 first = elt = elf_next_in_group (sec);
2897
2898 /* First element is a flag word. Rest of section is elf section
2899 indices for all the sections of the group. Write them backwards
2900 just to keep the group in the same order as given in .section
2901 directives, not that it matters. */
2902 while (elt != NULL)
2903 {
2904 asection *s;
2905
2906 s = elt;
2907 if (!gas)
2908 s = s->output_section;
2909 if (s != NULL
2910 && !bfd_is_abs_section (s))
2911 {
2912 unsigned int idx = elf_section_data (s)->this_idx;
2913
2914 loc -= 4;
2915 H_PUT_32 (abfd, idx, loc);
2916 }
2917 elt = elf_next_in_group (elt);
2918 if (elt == first)
2919 break;
2920 }
2921
2922 if ((loc -= 4) != sec->contents)
2923 abort ();
2924
2925 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2926 }
2927
2928 /* Assign all ELF section numbers. The dummy first section is handled here
2929 too. The link/info pointers for the standard section types are filled
2930 in here too, while we're at it. */
2931
2932 static bfd_boolean
2933 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2934 {
2935 struct elf_obj_tdata *t = elf_tdata (abfd);
2936 asection *sec;
2937 unsigned int section_number, secn;
2938 Elf_Internal_Shdr **i_shdrp;
2939 struct bfd_elf_section_data *d;
2940 bfd_boolean need_symtab;
2941
2942 section_number = 1;
2943
2944 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2945
2946 /* SHT_GROUP sections are in relocatable files only. */
2947 if (link_info == NULL || link_info->relocatable)
2948 {
2949 /* Put SHT_GROUP sections first. */
2950 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2951 {
2952 d = elf_section_data (sec);
2953
2954 if (d->this_hdr.sh_type == SHT_GROUP)
2955 {
2956 if (sec->flags & SEC_LINKER_CREATED)
2957 {
2958 /* Remove the linker created SHT_GROUP sections. */
2959 bfd_section_list_remove (abfd, sec);
2960 abfd->section_count--;
2961 }
2962 else
2963 d->this_idx = section_number++;
2964 }
2965 }
2966 }
2967
2968 for (sec = abfd->sections; sec; sec = sec->next)
2969 {
2970 d = elf_section_data (sec);
2971
2972 if (d->this_hdr.sh_type != SHT_GROUP)
2973 d->this_idx = section_number++;
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2975 if (d->rel.hdr)
2976 {
2977 d->rel.idx = section_number++;
2978 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2979 }
2980 else
2981 d->rel.idx = 0;
2982
2983 if (d->rela.hdr)
2984 {
2985 d->rela.idx = section_number++;
2986 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2987 }
2988 else
2989 d->rela.idx = 0;
2990 }
2991
2992 t->shstrtab_section = section_number++;
2993 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2994 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2995
2996 need_symtab = (bfd_get_symcount (abfd) > 0
2997 || (link_info == NULL
2998 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2999 == HAS_RELOC)));
3000 if (need_symtab)
3001 {
3002 t->symtab_section = section_number++;
3003 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3004 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3005 {
3006 t->symtab_shndx_section = section_number++;
3007 t->symtab_shndx_hdr.sh_name
3008 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3009 ".symtab_shndx", FALSE);
3010 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3011 return FALSE;
3012 }
3013 t->strtab_section = section_number++;
3014 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3015 }
3016
3017 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3018 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3019
3020 elf_numsections (abfd) = section_number;
3021 elf_elfheader (abfd)->e_shnum = section_number;
3022
3023 /* Set up the list of section header pointers, in agreement with the
3024 indices. */
3025 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3026 sizeof (Elf_Internal_Shdr *));
3027 if (i_shdrp == NULL)
3028 return FALSE;
3029
3030 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3031 sizeof (Elf_Internal_Shdr));
3032 if (i_shdrp[0] == NULL)
3033 {
3034 bfd_release (abfd, i_shdrp);
3035 return FALSE;
3036 }
3037
3038 elf_elfsections (abfd) = i_shdrp;
3039
3040 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3041 if (need_symtab)
3042 {
3043 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3044 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3045 {
3046 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3047 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3048 }
3049 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3050 t->symtab_hdr.sh_link = t->strtab_section;
3051 }
3052
3053 for (sec = abfd->sections; sec; sec = sec->next)
3054 {
3055 asection *s;
3056 const char *name;
3057
3058 d = elf_section_data (sec);
3059
3060 i_shdrp[d->this_idx] = &d->this_hdr;
3061 if (d->rel.idx != 0)
3062 i_shdrp[d->rel.idx] = d->rel.hdr;
3063 if (d->rela.idx != 0)
3064 i_shdrp[d->rela.idx] = d->rela.hdr;
3065
3066 /* Fill in the sh_link and sh_info fields while we're at it. */
3067
3068 /* sh_link of a reloc section is the section index of the symbol
3069 table. sh_info is the section index of the section to which
3070 the relocation entries apply. */
3071 if (d->rel.idx != 0)
3072 {
3073 d->rel.hdr->sh_link = t->symtab_section;
3074 d->rel.hdr->sh_info = d->this_idx;
3075 }
3076 if (d->rela.idx != 0)
3077 {
3078 d->rela.hdr->sh_link = t->symtab_section;
3079 d->rela.hdr->sh_info = d->this_idx;
3080 }
3081
3082 /* We need to set up sh_link for SHF_LINK_ORDER. */
3083 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3084 {
3085 s = elf_linked_to_section (sec);
3086 if (s)
3087 {
3088 /* elf_linked_to_section points to the input section. */
3089 if (link_info != NULL)
3090 {
3091 /* Check discarded linkonce section. */
3092 if (discarded_section (s))
3093 {
3094 asection *kept;
3095 (*_bfd_error_handler)
3096 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3097 abfd, d->this_hdr.bfd_section,
3098 s, s->owner);
3099 /* Point to the kept section if it has the same
3100 size as the discarded one. */
3101 kept = _bfd_elf_check_kept_section (s, link_info);
3102 if (kept == NULL)
3103 {
3104 bfd_set_error (bfd_error_bad_value);
3105 return FALSE;
3106 }
3107 s = kept;
3108 }
3109
3110 s = s->output_section;
3111 BFD_ASSERT (s != NULL);
3112 }
3113 else
3114 {
3115 /* Handle objcopy. */
3116 if (s->output_section == NULL)
3117 {
3118 (*_bfd_error_handler)
3119 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3120 abfd, d->this_hdr.bfd_section, s, s->owner);
3121 bfd_set_error (bfd_error_bad_value);
3122 return FALSE;
3123 }
3124 s = s->output_section;
3125 }
3126 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3127 }
3128 else
3129 {
3130 /* PR 290:
3131 The Intel C compiler generates SHT_IA_64_UNWIND with
3132 SHF_LINK_ORDER. But it doesn't set the sh_link or
3133 sh_info fields. Hence we could get the situation
3134 where s is NULL. */
3135 const struct elf_backend_data *bed
3136 = get_elf_backend_data (abfd);
3137 if (bed->link_order_error_handler)
3138 bed->link_order_error_handler
3139 (_("%B: warning: sh_link not set for section `%A'"),
3140 abfd, sec);
3141 }
3142 }
3143
3144 switch (d->this_hdr.sh_type)
3145 {
3146 case SHT_REL:
3147 case SHT_RELA:
3148 /* A reloc section which we are treating as a normal BFD
3149 section. sh_link is the section index of the symbol
3150 table. sh_info is the section index of the section to
3151 which the relocation entries apply. We assume that an
3152 allocated reloc section uses the dynamic symbol table.
3153 FIXME: How can we be sure? */
3154 s = bfd_get_section_by_name (abfd, ".dynsym");
3155 if (s != NULL)
3156 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3157
3158 /* We look up the section the relocs apply to by name. */
3159 name = sec->name;
3160 if (d->this_hdr.sh_type == SHT_REL)
3161 name += 4;
3162 else
3163 name += 5;
3164 s = bfd_get_section_by_name (abfd, name);
3165 if (s != NULL)
3166 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3167 break;
3168
3169 case SHT_STRTAB:
3170 /* We assume that a section named .stab*str is a stabs
3171 string section. We look for a section with the same name
3172 but without the trailing ``str'', and set its sh_link
3173 field to point to this section. */
3174 if (CONST_STRNEQ (sec->name, ".stab")
3175 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3176 {
3177 size_t len;
3178 char *alc;
3179
3180 len = strlen (sec->name);
3181 alc = (char *) bfd_malloc (len - 2);
3182 if (alc == NULL)
3183 return FALSE;
3184 memcpy (alc, sec->name, len - 3);
3185 alc[len - 3] = '\0';
3186 s = bfd_get_section_by_name (abfd, alc);
3187 free (alc);
3188 if (s != NULL)
3189 {
3190 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3191
3192 /* This is a .stab section. */
3193 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3194 elf_section_data (s)->this_hdr.sh_entsize
3195 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3196 }
3197 }
3198 break;
3199
3200 case SHT_DYNAMIC:
3201 case SHT_DYNSYM:
3202 case SHT_GNU_verneed:
3203 case SHT_GNU_verdef:
3204 /* sh_link is the section header index of the string table
3205 used for the dynamic entries, or the symbol table, or the
3206 version strings. */
3207 s = bfd_get_section_by_name (abfd, ".dynstr");
3208 if (s != NULL)
3209 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3210 break;
3211
3212 case SHT_GNU_LIBLIST:
3213 /* sh_link is the section header index of the prelink library
3214 list used for the dynamic entries, or the symbol table, or
3215 the version strings. */
3216 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3217 ? ".dynstr" : ".gnu.libstr");
3218 if (s != NULL)
3219 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3220 break;
3221
3222 case SHT_HASH:
3223 case SHT_GNU_HASH:
3224 case SHT_GNU_versym:
3225 /* sh_link is the section header index of the symbol table
3226 this hash table or version table is for. */
3227 s = bfd_get_section_by_name (abfd, ".dynsym");
3228 if (s != NULL)
3229 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3230 break;
3231
3232 case SHT_GROUP:
3233 d->this_hdr.sh_link = t->symtab_section;
3234 }
3235 }
3236
3237 for (secn = 1; secn < section_number; ++secn)
3238 if (i_shdrp[secn] == NULL)
3239 i_shdrp[secn] = i_shdrp[0];
3240 else
3241 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3242 i_shdrp[secn]->sh_name);
3243 return TRUE;
3244 }
3245
3246 static bfd_boolean
3247 sym_is_global (bfd *abfd, asymbol *sym)
3248 {
3249 /* If the backend has a special mapping, use it. */
3250 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3251 if (bed->elf_backend_sym_is_global)
3252 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3253
3254 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3255 || bfd_is_und_section (bfd_get_section (sym))
3256 || bfd_is_com_section (bfd_get_section (sym)));
3257 }
3258
3259 /* Don't output section symbols for sections that are not going to be
3260 output, or that are duplicates. */
3261
3262 static bfd_boolean
3263 ignore_section_sym (bfd *abfd, asymbol *sym)
3264 {
3265 return ((sym->flags & BSF_SECTION_SYM) != 0
3266 && !(sym->section->owner == abfd
3267 || (sym->section->output_section->owner == abfd
3268 && sym->section->output_offset == 0)
3269 || bfd_is_abs_section (sym->section)));
3270 }
3271
3272 /* Map symbol from it's internal number to the external number, moving
3273 all local symbols to be at the head of the list. */
3274
3275 static bfd_boolean
3276 elf_map_symbols (bfd *abfd)
3277 {
3278 unsigned int symcount = bfd_get_symcount (abfd);
3279 asymbol **syms = bfd_get_outsymbols (abfd);
3280 asymbol **sect_syms;
3281 unsigned int num_locals = 0;
3282 unsigned int num_globals = 0;
3283 unsigned int num_locals2 = 0;
3284 unsigned int num_globals2 = 0;
3285 int max_index = 0;
3286 unsigned int idx;
3287 asection *asect;
3288 asymbol **new_syms;
3289
3290 #ifdef DEBUG
3291 fprintf (stderr, "elf_map_symbols\n");
3292 fflush (stderr);
3293 #endif
3294
3295 for (asect = abfd->sections; asect; asect = asect->next)
3296 {
3297 if (max_index < asect->index)
3298 max_index = asect->index;
3299 }
3300
3301 max_index++;
3302 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3303 if (sect_syms == NULL)
3304 return FALSE;
3305 elf_section_syms (abfd) = sect_syms;
3306 elf_num_section_syms (abfd) = max_index;
3307
3308 /* Init sect_syms entries for any section symbols we have already
3309 decided to output. */
3310 for (idx = 0; idx < symcount; idx++)
3311 {
3312 asymbol *sym = syms[idx];
3313
3314 if ((sym->flags & BSF_SECTION_SYM) != 0
3315 && sym->value == 0
3316 && !ignore_section_sym (abfd, sym)
3317 && !bfd_is_abs_section (sym->section))
3318 {
3319 asection *sec = sym->section;
3320
3321 if (sec->owner != abfd)
3322 sec = sec->output_section;
3323
3324 sect_syms[sec->index] = syms[idx];
3325 }
3326 }
3327
3328 /* Classify all of the symbols. */
3329 for (idx = 0; idx < symcount; idx++)
3330 {
3331 if (sym_is_global (abfd, syms[idx]))
3332 num_globals++;
3333 else if (!ignore_section_sym (abfd, syms[idx]))
3334 num_locals++;
3335 }
3336
3337 /* We will be adding a section symbol for each normal BFD section. Most
3338 sections will already have a section symbol in outsymbols, but
3339 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3340 at least in that case. */
3341 for (asect = abfd->sections; asect; asect = asect->next)
3342 {
3343 if (sect_syms[asect->index] == NULL)
3344 {
3345 if (!sym_is_global (abfd, asect->symbol))
3346 num_locals++;
3347 else
3348 num_globals++;
3349 }
3350 }
3351
3352 /* Now sort the symbols so the local symbols are first. */
3353 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3354 sizeof (asymbol *));
3355
3356 if (new_syms == NULL)
3357 return FALSE;
3358
3359 for (idx = 0; idx < symcount; idx++)
3360 {
3361 asymbol *sym = syms[idx];
3362 unsigned int i;
3363
3364 if (sym_is_global (abfd, sym))
3365 i = num_locals + num_globals2++;
3366 else if (!ignore_section_sym (abfd, sym))
3367 i = num_locals2++;
3368 else
3369 continue;
3370 new_syms[i] = sym;
3371 sym->udata.i = i + 1;
3372 }
3373 for (asect = abfd->sections; asect; asect = asect->next)
3374 {
3375 if (sect_syms[asect->index] == NULL)
3376 {
3377 asymbol *sym = asect->symbol;
3378 unsigned int i;
3379
3380 sect_syms[asect->index] = sym;
3381 if (!sym_is_global (abfd, sym))
3382 i = num_locals2++;
3383 else
3384 i = num_locals + num_globals2++;
3385 new_syms[i] = sym;
3386 sym->udata.i = i + 1;
3387 }
3388 }
3389
3390 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3391
3392 elf_num_locals (abfd) = num_locals;
3393 elf_num_globals (abfd) = num_globals;
3394 return TRUE;
3395 }
3396
3397 /* Align to the maximum file alignment that could be required for any
3398 ELF data structure. */
3399
3400 static inline file_ptr
3401 align_file_position (file_ptr off, int align)
3402 {
3403 return (off + align - 1) & ~(align - 1);
3404 }
3405
3406 /* Assign a file position to a section, optionally aligning to the
3407 required section alignment. */
3408
3409 file_ptr
3410 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3411 file_ptr offset,
3412 bfd_boolean align)
3413 {
3414 if (align && i_shdrp->sh_addralign > 1)
3415 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3416 i_shdrp->sh_offset = offset;
3417 if (i_shdrp->bfd_section != NULL)
3418 i_shdrp->bfd_section->filepos = offset;
3419 if (i_shdrp->sh_type != SHT_NOBITS)
3420 offset += i_shdrp->sh_size;
3421 return offset;
3422 }
3423
3424 /* Compute the file positions we are going to put the sections at, and
3425 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3426 is not NULL, this is being called by the ELF backend linker. */
3427
3428 bfd_boolean
3429 _bfd_elf_compute_section_file_positions (bfd *abfd,
3430 struct bfd_link_info *link_info)
3431 {
3432 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3433 struct fake_section_arg fsargs;
3434 bfd_boolean failed;
3435 struct bfd_strtab_hash *strtab = NULL;
3436 Elf_Internal_Shdr *shstrtab_hdr;
3437 bfd_boolean need_symtab;
3438
3439 if (abfd->output_has_begun)
3440 return TRUE;
3441
3442 /* Do any elf backend specific processing first. */
3443 if (bed->elf_backend_begin_write_processing)
3444 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3445
3446 if (! prep_headers (abfd))
3447 return FALSE;
3448
3449 /* Post process the headers if necessary. */
3450 if (bed->elf_backend_post_process_headers)
3451 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3452
3453 fsargs.failed = FALSE;
3454 fsargs.link_info = link_info;
3455 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3456 if (fsargs.failed)
3457 return FALSE;
3458
3459 if (!assign_section_numbers (abfd, link_info))
3460 return FALSE;
3461
3462 /* The backend linker builds symbol table information itself. */
3463 need_symtab = (link_info == NULL
3464 && (bfd_get_symcount (abfd) > 0
3465 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3466 == HAS_RELOC)));
3467 if (need_symtab)
3468 {
3469 /* Non-zero if doing a relocatable link. */
3470 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3471
3472 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3473 return FALSE;
3474 }
3475
3476 failed = FALSE;
3477 if (link_info == NULL)
3478 {
3479 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3480 if (failed)
3481 return FALSE;
3482 }
3483
3484 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3485 /* sh_name was set in prep_headers. */
3486 shstrtab_hdr->sh_type = SHT_STRTAB;
3487 shstrtab_hdr->sh_flags = 0;
3488 shstrtab_hdr->sh_addr = 0;
3489 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3490 shstrtab_hdr->sh_entsize = 0;
3491 shstrtab_hdr->sh_link = 0;
3492 shstrtab_hdr->sh_info = 0;
3493 /* sh_offset is set in assign_file_positions_except_relocs. */
3494 shstrtab_hdr->sh_addralign = 1;
3495
3496 if (!assign_file_positions_except_relocs (abfd, link_info))
3497 return FALSE;
3498
3499 if (need_symtab)
3500 {
3501 file_ptr off;
3502 Elf_Internal_Shdr *hdr;
3503
3504 off = elf_tdata (abfd)->next_file_pos;
3505
3506 hdr = &elf_tdata (abfd)->symtab_hdr;
3507 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3508
3509 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3510 if (hdr->sh_size != 0)
3511 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3512
3513 hdr = &elf_tdata (abfd)->strtab_hdr;
3514 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3515
3516 elf_tdata (abfd)->next_file_pos = off;
3517
3518 /* Now that we know where the .strtab section goes, write it
3519 out. */
3520 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3521 || ! _bfd_stringtab_emit (abfd, strtab))
3522 return FALSE;
3523 _bfd_stringtab_free (strtab);
3524 }
3525
3526 abfd->output_has_begun = TRUE;
3527
3528 return TRUE;
3529 }
3530
3531 /* Make an initial estimate of the size of the program header. If we
3532 get the number wrong here, we'll redo section placement. */
3533
3534 static bfd_size_type
3535 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3536 {
3537 size_t segs;
3538 asection *s;
3539 const struct elf_backend_data *bed;
3540
3541 /* Assume we will need exactly two PT_LOAD segments: one for text
3542 and one for data. */
3543 segs = 2;
3544
3545 s = bfd_get_section_by_name (abfd, ".interp");
3546 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3547 {
3548 /* If we have a loadable interpreter section, we need a
3549 PT_INTERP segment. In this case, assume we also need a
3550 PT_PHDR segment, although that may not be true for all
3551 targets. */
3552 segs += 2;
3553 }
3554
3555 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3556 {
3557 /* We need a PT_DYNAMIC segment. */
3558 ++segs;
3559 }
3560
3561 if (info != NULL && info->relro)
3562 {
3563 /* We need a PT_GNU_RELRO segment. */
3564 ++segs;
3565 }
3566
3567 if (elf_tdata (abfd)->eh_frame_hdr)
3568 {
3569 /* We need a PT_GNU_EH_FRAME segment. */
3570 ++segs;
3571 }
3572
3573 if (elf_tdata (abfd)->stack_flags)
3574 {
3575 /* We need a PT_GNU_STACK segment. */
3576 ++segs;
3577 }
3578
3579 for (s = abfd->sections; s != NULL; s = s->next)
3580 {
3581 if ((s->flags & SEC_LOAD) != 0
3582 && CONST_STRNEQ (s->name, ".note"))
3583 {
3584 /* We need a PT_NOTE segment. */
3585 ++segs;
3586 /* Try to create just one PT_NOTE segment
3587 for all adjacent loadable .note* sections.
3588 gABI requires that within a PT_NOTE segment
3589 (and also inside of each SHT_NOTE section)
3590 each note is padded to a multiple of 4 size,
3591 so we check whether the sections are correctly
3592 aligned. */
3593 if (s->alignment_power == 2)
3594 while (s->next != NULL
3595 && s->next->alignment_power == 2
3596 && (s->next->flags & SEC_LOAD) != 0
3597 && CONST_STRNEQ (s->next->name, ".note"))
3598 s = s->next;
3599 }
3600 }
3601
3602 for (s = abfd->sections; s != NULL; s = s->next)
3603 {
3604 if (s->flags & SEC_THREAD_LOCAL)
3605 {
3606 /* We need a PT_TLS segment. */
3607 ++segs;
3608 break;
3609 }
3610 }
3611
3612 /* Let the backend count up any program headers it might need. */
3613 bed = get_elf_backend_data (abfd);
3614 if (bed->elf_backend_additional_program_headers)
3615 {
3616 int a;
3617
3618 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3619 if (a == -1)
3620 abort ();
3621 segs += a;
3622 }
3623
3624 return segs * bed->s->sizeof_phdr;
3625 }
3626
3627 /* Find the segment that contains the output_section of section. */
3628
3629 Elf_Internal_Phdr *
3630 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3631 {
3632 struct elf_segment_map *m;
3633 Elf_Internal_Phdr *p;
3634
3635 for (m = elf_tdata (abfd)->segment_map,
3636 p = elf_tdata (abfd)->phdr;
3637 m != NULL;
3638 m = m->next, p++)
3639 {
3640 int i;
3641
3642 for (i = m->count - 1; i >= 0; i--)
3643 if (m->sections[i] == section)
3644 return p;
3645 }
3646
3647 return NULL;
3648 }
3649
3650 /* Create a mapping from a set of sections to a program segment. */
3651
3652 static struct elf_segment_map *
3653 make_mapping (bfd *abfd,
3654 asection **sections,
3655 unsigned int from,
3656 unsigned int to,
3657 bfd_boolean phdr)
3658 {
3659 struct elf_segment_map *m;
3660 unsigned int i;
3661 asection **hdrpp;
3662 bfd_size_type amt;
3663
3664 amt = sizeof (struct elf_segment_map);
3665 amt += (to - from - 1) * sizeof (asection *);
3666 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3667 if (m == NULL)
3668 return NULL;
3669 m->next = NULL;
3670 m->p_type = PT_LOAD;
3671 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3672 m->sections[i - from] = *hdrpp;
3673 m->count = to - from;
3674
3675 if (from == 0 && phdr)
3676 {
3677 /* Include the headers in the first PT_LOAD segment. */
3678 m->includes_filehdr = 1;
3679 m->includes_phdrs = 1;
3680 }
3681
3682 return m;
3683 }
3684
3685 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3686 on failure. */
3687
3688 struct elf_segment_map *
3689 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3690 {
3691 struct elf_segment_map *m;
3692
3693 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3694 sizeof (struct elf_segment_map));
3695 if (m == NULL)
3696 return NULL;
3697 m->next = NULL;
3698 m->p_type = PT_DYNAMIC;
3699 m->count = 1;
3700 m->sections[0] = dynsec;
3701
3702 return m;
3703 }
3704
3705 /* Possibly add or remove segments from the segment map. */
3706
3707 static bfd_boolean
3708 elf_modify_segment_map (bfd *abfd,
3709 struct bfd_link_info *info,
3710 bfd_boolean remove_empty_load)
3711 {
3712 struct elf_segment_map **m;
3713 const struct elf_backend_data *bed;
3714
3715 /* The placement algorithm assumes that non allocated sections are
3716 not in PT_LOAD segments. We ensure this here by removing such
3717 sections from the segment map. We also remove excluded
3718 sections. Finally, any PT_LOAD segment without sections is
3719 removed. */
3720 m = &elf_tdata (abfd)->segment_map;
3721 while (*m)
3722 {
3723 unsigned int i, new_count;
3724
3725 for (new_count = 0, i = 0; i < (*m)->count; i++)
3726 {
3727 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3728 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3729 || (*m)->p_type != PT_LOAD))
3730 {
3731 (*m)->sections[new_count] = (*m)->sections[i];
3732 new_count++;
3733 }
3734 }
3735 (*m)->count = new_count;
3736
3737 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3738 *m = (*m)->next;
3739 else
3740 m = &(*m)->next;
3741 }
3742
3743 bed = get_elf_backend_data (abfd);
3744 if (bed->elf_backend_modify_segment_map != NULL)
3745 {
3746 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3747 return FALSE;
3748 }
3749
3750 return TRUE;
3751 }
3752
3753 /* Set up a mapping from BFD sections to program segments. */
3754
3755 bfd_boolean
3756 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3757 {
3758 unsigned int count;
3759 struct elf_segment_map *m;
3760 asection **sections = NULL;
3761 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3762 bfd_boolean no_user_phdrs;
3763
3764 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3765
3766 if (info != NULL)
3767 info->user_phdrs = !no_user_phdrs;
3768
3769 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3770 {
3771 asection *s;
3772 unsigned int i;
3773 struct elf_segment_map *mfirst;
3774 struct elf_segment_map **pm;
3775 asection *last_hdr;
3776 bfd_vma last_size;
3777 unsigned int phdr_index;
3778 bfd_vma maxpagesize;
3779 asection **hdrpp;
3780 bfd_boolean phdr_in_segment = TRUE;
3781 bfd_boolean writable;
3782 int tls_count = 0;
3783 asection *first_tls = NULL;
3784 asection *dynsec, *eh_frame_hdr;
3785 bfd_size_type amt;
3786 bfd_vma addr_mask, wrap_to = 0;
3787
3788 /* Select the allocated sections, and sort them. */
3789
3790 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3791 sizeof (asection *));
3792 if (sections == NULL)
3793 goto error_return;
3794
3795 /* Calculate top address, avoiding undefined behaviour of shift
3796 left operator when shift count is equal to size of type
3797 being shifted. */
3798 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3799 addr_mask = (addr_mask << 1) + 1;
3800
3801 i = 0;
3802 for (s = abfd->sections; s != NULL; s = s->next)
3803 {
3804 if ((s->flags & SEC_ALLOC) != 0)
3805 {
3806 sections[i] = s;
3807 ++i;
3808 /* A wrapping section potentially clashes with header. */
3809 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3810 wrap_to = (s->lma + s->size) & addr_mask;
3811 }
3812 }
3813 BFD_ASSERT (i <= bfd_count_sections (abfd));
3814 count = i;
3815
3816 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3817
3818 /* Build the mapping. */
3819
3820 mfirst = NULL;
3821 pm = &mfirst;
3822
3823 /* If we have a .interp section, then create a PT_PHDR segment for
3824 the program headers and a PT_INTERP segment for the .interp
3825 section. */
3826 s = bfd_get_section_by_name (abfd, ".interp");
3827 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3828 {
3829 amt = sizeof (struct elf_segment_map);
3830 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3831 if (m == NULL)
3832 goto error_return;
3833 m->next = NULL;
3834 m->p_type = PT_PHDR;
3835 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3836 m->p_flags = PF_R | PF_X;
3837 m->p_flags_valid = 1;
3838 m->includes_phdrs = 1;
3839
3840 *pm = m;
3841 pm = &m->next;
3842
3843 amt = sizeof (struct elf_segment_map);
3844 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3845 if (m == NULL)
3846 goto error_return;
3847 m->next = NULL;
3848 m->p_type = PT_INTERP;
3849 m->count = 1;
3850 m->sections[0] = s;
3851
3852 *pm = m;
3853 pm = &m->next;
3854 }
3855
3856 /* Look through the sections. We put sections in the same program
3857 segment when the start of the second section can be placed within
3858 a few bytes of the end of the first section. */
3859 last_hdr = NULL;
3860 last_size = 0;
3861 phdr_index = 0;
3862 maxpagesize = bed->maxpagesize;
3863 writable = FALSE;
3864 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3865 if (dynsec != NULL
3866 && (dynsec->flags & SEC_LOAD) == 0)
3867 dynsec = NULL;
3868
3869 /* Deal with -Ttext or something similar such that the first section
3870 is not adjacent to the program headers. This is an
3871 approximation, since at this point we don't know exactly how many
3872 program headers we will need. */
3873 if (count > 0)
3874 {
3875 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3876
3877 if (phdr_size == (bfd_size_type) -1)
3878 phdr_size = get_program_header_size (abfd, info);
3879 if ((abfd->flags & D_PAGED) == 0
3880 || (sections[0]->lma & addr_mask) < phdr_size
3881 || ((sections[0]->lma & addr_mask) % maxpagesize
3882 < phdr_size % maxpagesize)
3883 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3884 phdr_in_segment = FALSE;
3885 }
3886
3887 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3888 {
3889 asection *hdr;
3890 bfd_boolean new_segment;
3891
3892 hdr = *hdrpp;
3893
3894 /* See if this section and the last one will fit in the same
3895 segment. */
3896
3897 if (last_hdr == NULL)
3898 {
3899 /* If we don't have a segment yet, then we don't need a new
3900 one (we build the last one after this loop). */
3901 new_segment = FALSE;
3902 }
3903 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3904 {
3905 /* If this section has a different relation between the
3906 virtual address and the load address, then we need a new
3907 segment. */
3908 new_segment = TRUE;
3909 }
3910 else if (hdr->lma < last_hdr->lma + last_size
3911 || last_hdr->lma + last_size < last_hdr->lma)
3912 {
3913 /* If this section has a load address that makes it overlap
3914 the previous section, then we need a new segment. */
3915 new_segment = TRUE;
3916 }
3917 /* In the next test we have to be careful when last_hdr->lma is close
3918 to the end of the address space. If the aligned address wraps
3919 around to the start of the address space, then there are no more
3920 pages left in memory and it is OK to assume that the current
3921 section can be included in the current segment. */
3922 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3923 > last_hdr->lma)
3924 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3925 <= hdr->lma))
3926 {
3927 /* If putting this section in this segment would force us to
3928 skip a page in the segment, then we need a new segment. */
3929 new_segment = TRUE;
3930 }
3931 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3932 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3933 {
3934 /* We don't want to put a loadable section after a
3935 nonloadable section in the same segment.
3936 Consider .tbss sections as loadable for this purpose. */
3937 new_segment = TRUE;
3938 }
3939 else if ((abfd->flags & D_PAGED) == 0)
3940 {
3941 /* If the file is not demand paged, which means that we
3942 don't require the sections to be correctly aligned in the
3943 file, then there is no other reason for a new segment. */
3944 new_segment = FALSE;
3945 }
3946 else if (! writable
3947 && (hdr->flags & SEC_READONLY) == 0
3948 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3949 != (hdr->lma & -maxpagesize)))
3950 {
3951 /* We don't want to put a writable section in a read only
3952 segment, unless they are on the same page in memory
3953 anyhow. We already know that the last section does not
3954 bring us past the current section on the page, so the
3955 only case in which the new section is not on the same
3956 page as the previous section is when the previous section
3957 ends precisely on a page boundary. */
3958 new_segment = TRUE;
3959 }
3960 else
3961 {
3962 /* Otherwise, we can use the same segment. */
3963 new_segment = FALSE;
3964 }
3965
3966 /* Allow interested parties a chance to override our decision. */
3967 if (last_hdr != NULL
3968 && info != NULL
3969 && info->callbacks->override_segment_assignment != NULL)
3970 new_segment
3971 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3972 last_hdr,
3973 new_segment);
3974
3975 if (! new_segment)
3976 {
3977 if ((hdr->flags & SEC_READONLY) == 0)
3978 writable = TRUE;
3979 last_hdr = hdr;
3980 /* .tbss sections effectively have zero size. */
3981 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3982 != SEC_THREAD_LOCAL)
3983 last_size = hdr->size;
3984 else
3985 last_size = 0;
3986 continue;
3987 }
3988
3989 /* We need a new program segment. We must create a new program
3990 header holding all the sections from phdr_index until hdr. */
3991
3992 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3993 if (m == NULL)
3994 goto error_return;
3995
3996 *pm = m;
3997 pm = &m->next;
3998
3999 if ((hdr->flags & SEC_READONLY) == 0)
4000 writable = TRUE;
4001 else
4002 writable = FALSE;
4003
4004 last_hdr = hdr;
4005 /* .tbss sections effectively have zero size. */
4006 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4007 last_size = hdr->size;
4008 else
4009 last_size = 0;
4010 phdr_index = i;
4011 phdr_in_segment = FALSE;
4012 }
4013
4014 /* Create a final PT_LOAD program segment, but not if it's just
4015 for .tbss. */
4016 if (last_hdr != NULL
4017 && (i - phdr_index != 1
4018 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4019 != SEC_THREAD_LOCAL)))
4020 {
4021 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4022 if (m == NULL)
4023 goto error_return;
4024
4025 *pm = m;
4026 pm = &m->next;
4027 }
4028
4029 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4030 if (dynsec != NULL)
4031 {
4032 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4033 if (m == NULL)
4034 goto error_return;
4035 *pm = m;
4036 pm = &m->next;
4037 }
4038
4039 /* For each batch of consecutive loadable .note sections,
4040 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4041 because if we link together nonloadable .note sections and
4042 loadable .note sections, we will generate two .note sections
4043 in the output file. FIXME: Using names for section types is
4044 bogus anyhow. */
4045 for (s = abfd->sections; s != NULL; s = s->next)
4046 {
4047 if ((s->flags & SEC_LOAD) != 0
4048 && CONST_STRNEQ (s->name, ".note"))
4049 {
4050 asection *s2;
4051
4052 count = 1;
4053 amt = sizeof (struct elf_segment_map);
4054 if (s->alignment_power == 2)
4055 for (s2 = s; s2->next != NULL; s2 = s2->next)
4056 {
4057 if (s2->next->alignment_power == 2
4058 && (s2->next->flags & SEC_LOAD) != 0
4059 && CONST_STRNEQ (s2->next->name, ".note")
4060 && align_power (s2->lma + s2->size, 2)
4061 == s2->next->lma)
4062 count++;
4063 else
4064 break;
4065 }
4066 amt += (count - 1) * sizeof (asection *);
4067 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4068 if (m == NULL)
4069 goto error_return;
4070 m->next = NULL;
4071 m->p_type = PT_NOTE;
4072 m->count = count;
4073 while (count > 1)
4074 {
4075 m->sections[m->count - count--] = s;
4076 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4077 s = s->next;
4078 }
4079 m->sections[m->count - 1] = s;
4080 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4081 *pm = m;
4082 pm = &m->next;
4083 }
4084 if (s->flags & SEC_THREAD_LOCAL)
4085 {
4086 if (! tls_count)
4087 first_tls = s;
4088 tls_count++;
4089 }
4090 }
4091
4092 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4093 if (tls_count > 0)
4094 {
4095 amt = sizeof (struct elf_segment_map);
4096 amt += (tls_count - 1) * sizeof (asection *);
4097 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4098 if (m == NULL)
4099 goto error_return;
4100 m->next = NULL;
4101 m->p_type = PT_TLS;
4102 m->count = tls_count;
4103 /* Mandated PF_R. */
4104 m->p_flags = PF_R;
4105 m->p_flags_valid = 1;
4106 for (i = 0; i < (unsigned int) tls_count; ++i)
4107 {
4108 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4109 m->sections[i] = first_tls;
4110 first_tls = first_tls->next;
4111 }
4112
4113 *pm = m;
4114 pm = &m->next;
4115 }
4116
4117 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4118 segment. */
4119 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4120 if (eh_frame_hdr != NULL
4121 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4122 {
4123 amt = sizeof (struct elf_segment_map);
4124 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4125 if (m == NULL)
4126 goto error_return;
4127 m->next = NULL;
4128 m->p_type = PT_GNU_EH_FRAME;
4129 m->count = 1;
4130 m->sections[0] = eh_frame_hdr->output_section;
4131
4132 *pm = m;
4133 pm = &m->next;
4134 }
4135
4136 if (elf_tdata (abfd)->stack_flags)
4137 {
4138 amt = sizeof (struct elf_segment_map);
4139 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4140 if (m == NULL)
4141 goto error_return;
4142 m->next = NULL;
4143 m->p_type = PT_GNU_STACK;
4144 m->p_flags = elf_tdata (abfd)->stack_flags;
4145 m->p_flags_valid = 1;
4146
4147 *pm = m;
4148 pm = &m->next;
4149 }
4150
4151 if (info != NULL && info->relro)
4152 {
4153 for (m = mfirst; m != NULL; m = m->next)
4154 {
4155 if (m->p_type == PT_LOAD
4156 && m->count != 0
4157 && m->sections[0]->vma >= info->relro_start
4158 && m->sections[0]->vma < info->relro_end)
4159 {
4160 i = m->count;
4161 while (--i != (unsigned) -1)
4162 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4163 == (SEC_LOAD | SEC_HAS_CONTENTS))
4164 break;
4165
4166 if (i == (unsigned) -1)
4167 continue;
4168
4169 if (m->sections[i]->vma + m->sections[i]->size
4170 >= info->relro_end)
4171 break;
4172 }
4173 }
4174
4175 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4176 if (m != NULL)
4177 {
4178 amt = sizeof (struct elf_segment_map);
4179 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4180 if (m == NULL)
4181 goto error_return;
4182 m->next = NULL;
4183 m->p_type = PT_GNU_RELRO;
4184 m->p_flags = PF_R;
4185 m->p_flags_valid = 1;
4186
4187 *pm = m;
4188 pm = &m->next;
4189 }
4190 }
4191
4192 free (sections);
4193 elf_tdata (abfd)->segment_map = mfirst;
4194 }
4195
4196 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4197 return FALSE;
4198
4199 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4200 ++count;
4201 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4202
4203 return TRUE;
4204
4205 error_return:
4206 if (sections != NULL)
4207 free (sections);
4208 return FALSE;
4209 }
4210
4211 /* Sort sections by address. */
4212
4213 static int
4214 elf_sort_sections (const void *arg1, const void *arg2)
4215 {
4216 const asection *sec1 = *(const asection **) arg1;
4217 const asection *sec2 = *(const asection **) arg2;
4218 bfd_size_type size1, size2;
4219
4220 /* Sort by LMA first, since this is the address used to
4221 place the section into a segment. */
4222 if (sec1->lma < sec2->lma)
4223 return -1;
4224 else if (sec1->lma > sec2->lma)
4225 return 1;
4226
4227 /* Then sort by VMA. Normally the LMA and the VMA will be
4228 the same, and this will do nothing. */
4229 if (sec1->vma < sec2->vma)
4230 return -1;
4231 else if (sec1->vma > sec2->vma)
4232 return 1;
4233
4234 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4235
4236 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4237
4238 if (TOEND (sec1))
4239 {
4240 if (TOEND (sec2))
4241 {
4242 /* If the indicies are the same, do not return 0
4243 here, but continue to try the next comparison. */
4244 if (sec1->target_index - sec2->target_index != 0)
4245 return sec1->target_index - sec2->target_index;
4246 }
4247 else
4248 return 1;
4249 }
4250 else if (TOEND (sec2))
4251 return -1;
4252
4253 #undef TOEND
4254
4255 /* Sort by size, to put zero sized sections
4256 before others at the same address. */
4257
4258 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4259 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4260
4261 if (size1 < size2)
4262 return -1;
4263 if (size1 > size2)
4264 return 1;
4265
4266 return sec1->target_index - sec2->target_index;
4267 }
4268
4269 /* Ian Lance Taylor writes:
4270
4271 We shouldn't be using % with a negative signed number. That's just
4272 not good. We have to make sure either that the number is not
4273 negative, or that the number has an unsigned type. When the types
4274 are all the same size they wind up as unsigned. When file_ptr is a
4275 larger signed type, the arithmetic winds up as signed long long,
4276 which is wrong.
4277
4278 What we're trying to say here is something like ``increase OFF by
4279 the least amount that will cause it to be equal to the VMA modulo
4280 the page size.'' */
4281 /* In other words, something like:
4282
4283 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4284 off_offset = off % bed->maxpagesize;
4285 if (vma_offset < off_offset)
4286 adjustment = vma_offset + bed->maxpagesize - off_offset;
4287 else
4288 adjustment = vma_offset - off_offset;
4289
4290 which can can be collapsed into the expression below. */
4291
4292 static file_ptr
4293 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4294 {
4295 return ((vma - off) % maxpagesize);
4296 }
4297
4298 static void
4299 print_segment_map (const struct elf_segment_map *m)
4300 {
4301 unsigned int j;
4302 const char *pt = get_segment_type (m->p_type);
4303 char buf[32];
4304
4305 if (pt == NULL)
4306 {
4307 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4308 sprintf (buf, "LOPROC+%7.7x",
4309 (unsigned int) (m->p_type - PT_LOPROC));
4310 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4311 sprintf (buf, "LOOS+%7.7x",
4312 (unsigned int) (m->p_type - PT_LOOS));
4313 else
4314 snprintf (buf, sizeof (buf), "%8.8x",
4315 (unsigned int) m->p_type);
4316 pt = buf;
4317 }
4318 fflush (stdout);
4319 fprintf (stderr, "%s:", pt);
4320 for (j = 0; j < m->count; j++)
4321 fprintf (stderr, " %s", m->sections [j]->name);
4322 putc ('\n',stderr);
4323 fflush (stderr);
4324 }
4325
4326 static bfd_boolean
4327 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4328 {
4329 void *buf;
4330 bfd_boolean ret;
4331
4332 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4333 return FALSE;
4334 buf = bfd_zmalloc (len);
4335 if (buf == NULL)
4336 return FALSE;
4337 ret = bfd_bwrite (buf, len, abfd) == len;
4338 free (buf);
4339 return ret;
4340 }
4341
4342 /* Assign file positions to the sections based on the mapping from
4343 sections to segments. This function also sets up some fields in
4344 the file header. */
4345
4346 static bfd_boolean
4347 assign_file_positions_for_load_sections (bfd *abfd,
4348 struct bfd_link_info *link_info)
4349 {
4350 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4351 struct elf_segment_map *m;
4352 Elf_Internal_Phdr *phdrs;
4353 Elf_Internal_Phdr *p;
4354 file_ptr off;
4355 bfd_size_type maxpagesize;
4356 unsigned int alloc;
4357 unsigned int i, j;
4358 bfd_vma header_pad = 0;
4359
4360 if (link_info == NULL
4361 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4362 return FALSE;
4363
4364 alloc = 0;
4365 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4366 {
4367 ++alloc;
4368 if (m->header_size)
4369 header_pad = m->header_size;
4370 }
4371
4372 if (alloc)
4373 {
4374 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4375 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4376 }
4377 else
4378 {
4379 /* PR binutils/12467. */
4380 elf_elfheader (abfd)->e_phoff = 0;
4381 elf_elfheader (abfd)->e_phentsize = 0;
4382 }
4383
4384 elf_elfheader (abfd)->e_phnum = alloc;
4385
4386 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4387 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4388 else
4389 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4390 >= alloc * bed->s->sizeof_phdr);
4391
4392 if (alloc == 0)
4393 {
4394 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4395 return TRUE;
4396 }
4397
4398 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4399 see assign_file_positions_except_relocs, so make sure we have
4400 that amount allocated, with trailing space cleared.
4401 The variable alloc contains the computed need, while elf_tdata
4402 (abfd)->program_header_size contains the size used for the
4403 layout.
4404 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4405 where the layout is forced to according to a larger size in the
4406 last iterations for the testcase ld-elf/header. */
4407 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4408 == 0);
4409 phdrs = (Elf_Internal_Phdr *)
4410 bfd_zalloc2 (abfd,
4411 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4412 sizeof (Elf_Internal_Phdr));
4413 elf_tdata (abfd)->phdr = phdrs;
4414 if (phdrs == NULL)
4415 return FALSE;
4416
4417 maxpagesize = 1;
4418 if ((abfd->flags & D_PAGED) != 0)
4419 maxpagesize = bed->maxpagesize;
4420
4421 off = bed->s->sizeof_ehdr;
4422 off += alloc * bed->s->sizeof_phdr;
4423 if (header_pad < (bfd_vma) off)
4424 header_pad = 0;
4425 else
4426 header_pad -= off;
4427 off += header_pad;
4428
4429 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4430 m != NULL;
4431 m = m->next, p++, j++)
4432 {
4433 asection **secpp;
4434 bfd_vma off_adjust;
4435 bfd_boolean no_contents;
4436
4437 /* If elf_segment_map is not from map_sections_to_segments, the
4438 sections may not be correctly ordered. NOTE: sorting should
4439 not be done to the PT_NOTE section of a corefile, which may
4440 contain several pseudo-sections artificially created by bfd.
4441 Sorting these pseudo-sections breaks things badly. */
4442 if (m->count > 1
4443 && !(elf_elfheader (abfd)->e_type == ET_CORE
4444 && m->p_type == PT_NOTE))
4445 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4446 elf_sort_sections);
4447
4448 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4449 number of sections with contents contributing to both p_filesz
4450 and p_memsz, followed by a number of sections with no contents
4451 that just contribute to p_memsz. In this loop, OFF tracks next
4452 available file offset for PT_LOAD and PT_NOTE segments. */
4453 p->p_type = m->p_type;
4454 p->p_flags = m->p_flags;
4455
4456 if (m->count == 0)
4457 p->p_vaddr = 0;
4458 else
4459 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4460
4461 if (m->p_paddr_valid)
4462 p->p_paddr = m->p_paddr;
4463 else if (m->count == 0)
4464 p->p_paddr = 0;
4465 else
4466 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4467
4468 if (p->p_type == PT_LOAD
4469 && (abfd->flags & D_PAGED) != 0)
4470 {
4471 /* p_align in demand paged PT_LOAD segments effectively stores
4472 the maximum page size. When copying an executable with
4473 objcopy, we set m->p_align from the input file. Use this
4474 value for maxpagesize rather than bed->maxpagesize, which
4475 may be different. Note that we use maxpagesize for PT_TLS
4476 segment alignment later in this function, so we are relying
4477 on at least one PT_LOAD segment appearing before a PT_TLS
4478 segment. */
4479 if (m->p_align_valid)
4480 maxpagesize = m->p_align;
4481
4482 p->p_align = maxpagesize;
4483 }
4484 else if (m->p_align_valid)
4485 p->p_align = m->p_align;
4486 else if (m->count == 0)
4487 p->p_align = 1 << bed->s->log_file_align;
4488 else
4489 p->p_align = 0;
4490
4491 no_contents = FALSE;
4492 off_adjust = 0;
4493 if (p->p_type == PT_LOAD
4494 && m->count > 0)
4495 {
4496 bfd_size_type align;
4497 unsigned int align_power = 0;
4498
4499 if (m->p_align_valid)
4500 align = p->p_align;
4501 else
4502 {
4503 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4504 {
4505 unsigned int secalign;
4506
4507 secalign = bfd_get_section_alignment (abfd, *secpp);
4508 if (secalign > align_power)
4509 align_power = secalign;
4510 }
4511 align = (bfd_size_type) 1 << align_power;
4512 if (align < maxpagesize)
4513 align = maxpagesize;
4514 }
4515
4516 for (i = 0; i < m->count; i++)
4517 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4518 /* If we aren't making room for this section, then
4519 it must be SHT_NOBITS regardless of what we've
4520 set via struct bfd_elf_special_section. */
4521 elf_section_type (m->sections[i]) = SHT_NOBITS;
4522
4523 /* Find out whether this segment contains any loadable
4524 sections. */
4525 no_contents = TRUE;
4526 for (i = 0; i < m->count; i++)
4527 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4528 {
4529 no_contents = FALSE;
4530 break;
4531 }
4532
4533 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4534 off += off_adjust;
4535 if (no_contents)
4536 {
4537 /* We shouldn't need to align the segment on disk since
4538 the segment doesn't need file space, but the gABI
4539 arguably requires the alignment and glibc ld.so
4540 checks it. So to comply with the alignment
4541 requirement but not waste file space, we adjust
4542 p_offset for just this segment. (OFF_ADJUST is
4543 subtracted from OFF later.) This may put p_offset
4544 past the end of file, but that shouldn't matter. */
4545 }
4546 else
4547 off_adjust = 0;
4548 }
4549 /* Make sure the .dynamic section is the first section in the
4550 PT_DYNAMIC segment. */
4551 else if (p->p_type == PT_DYNAMIC
4552 && m->count > 1
4553 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4554 {
4555 _bfd_error_handler
4556 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4557 abfd);
4558 bfd_set_error (bfd_error_bad_value);
4559 return FALSE;
4560 }
4561 /* Set the note section type to SHT_NOTE. */
4562 else if (p->p_type == PT_NOTE)
4563 for (i = 0; i < m->count; i++)
4564 elf_section_type (m->sections[i]) = SHT_NOTE;
4565
4566 p->p_offset = 0;
4567 p->p_filesz = 0;
4568 p->p_memsz = 0;
4569
4570 if (m->includes_filehdr)
4571 {
4572 if (!m->p_flags_valid)
4573 p->p_flags |= PF_R;
4574 p->p_filesz = bed->s->sizeof_ehdr;
4575 p->p_memsz = bed->s->sizeof_ehdr;
4576 if (m->count > 0)
4577 {
4578 BFD_ASSERT (p->p_type == PT_LOAD);
4579
4580 if (p->p_vaddr < (bfd_vma) off)
4581 {
4582 (*_bfd_error_handler)
4583 (_("%B: Not enough room for program headers, try linking with -N"),
4584 abfd);
4585 bfd_set_error (bfd_error_bad_value);
4586 return FALSE;
4587 }
4588
4589 p->p_vaddr -= off;
4590 if (!m->p_paddr_valid)
4591 p->p_paddr -= off;
4592 }
4593 }
4594
4595 if (m->includes_phdrs)
4596 {
4597 if (!m->p_flags_valid)
4598 p->p_flags |= PF_R;
4599
4600 if (!m->includes_filehdr)
4601 {
4602 p->p_offset = bed->s->sizeof_ehdr;
4603
4604 if (m->count > 0)
4605 {
4606 BFD_ASSERT (p->p_type == PT_LOAD);
4607 p->p_vaddr -= off - p->p_offset;
4608 if (!m->p_paddr_valid)
4609 p->p_paddr -= off - p->p_offset;
4610 }
4611 }
4612
4613 p->p_filesz += alloc * bed->s->sizeof_phdr;
4614 p->p_memsz += alloc * bed->s->sizeof_phdr;
4615 if (m->count)
4616 {
4617 p->p_filesz += header_pad;
4618 p->p_memsz += header_pad;
4619 }
4620 }
4621
4622 if (p->p_type == PT_LOAD
4623 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4624 {
4625 if (!m->includes_filehdr && !m->includes_phdrs)
4626 p->p_offset = off;
4627 else
4628 {
4629 file_ptr adjust;
4630
4631 adjust = off - (p->p_offset + p->p_filesz);
4632 if (!no_contents)
4633 p->p_filesz += adjust;
4634 p->p_memsz += adjust;
4635 }
4636 }
4637
4638 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4639 maps. Set filepos for sections in PT_LOAD segments, and in
4640 core files, for sections in PT_NOTE segments.
4641 assign_file_positions_for_non_load_sections will set filepos
4642 for other sections and update p_filesz for other segments. */
4643 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4644 {
4645 asection *sec;
4646 bfd_size_type align;
4647 Elf_Internal_Shdr *this_hdr;
4648
4649 sec = *secpp;
4650 this_hdr = &elf_section_data (sec)->this_hdr;
4651 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4652
4653 if ((p->p_type == PT_LOAD
4654 || p->p_type == PT_TLS)
4655 && (this_hdr->sh_type != SHT_NOBITS
4656 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4657 && ((this_hdr->sh_flags & SHF_TLS) == 0
4658 || p->p_type == PT_TLS))))
4659 {
4660 bfd_vma p_start = p->p_paddr;
4661 bfd_vma p_end = p_start + p->p_memsz;
4662 bfd_vma s_start = sec->lma;
4663 bfd_vma adjust = s_start - p_end;
4664
4665 if (adjust != 0
4666 && (s_start < p_end
4667 || p_end < p_start))
4668 {
4669 (*_bfd_error_handler)
4670 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4671 (unsigned long) s_start, (unsigned long) p_end);
4672 adjust = 0;
4673 sec->lma = p_end;
4674 }
4675 p->p_memsz += adjust;
4676
4677 if (this_hdr->sh_type != SHT_NOBITS)
4678 {
4679 if (p->p_filesz + adjust < p->p_memsz)
4680 {
4681 /* We have a PROGBITS section following NOBITS ones.
4682 Allocate file space for the NOBITS section(s) and
4683 zero it. */
4684 adjust = p->p_memsz - p->p_filesz;
4685 if (!write_zeros (abfd, off, adjust))
4686 return FALSE;
4687 }
4688 off += adjust;
4689 p->p_filesz += adjust;
4690 }
4691 }
4692
4693 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4694 {
4695 /* The section at i == 0 is the one that actually contains
4696 everything. */
4697 if (i == 0)
4698 {
4699 this_hdr->sh_offset = sec->filepos = off;
4700 off += this_hdr->sh_size;
4701 p->p_filesz = this_hdr->sh_size;
4702 p->p_memsz = 0;
4703 p->p_align = 1;
4704 }
4705 else
4706 {
4707 /* The rest are fake sections that shouldn't be written. */
4708 sec->filepos = 0;
4709 sec->size = 0;
4710 sec->flags = 0;
4711 continue;
4712 }
4713 }
4714 else
4715 {
4716 if (p->p_type == PT_LOAD)
4717 {
4718 this_hdr->sh_offset = sec->filepos = off;
4719 if (this_hdr->sh_type != SHT_NOBITS)
4720 off += this_hdr->sh_size;
4721 }
4722 else if (this_hdr->sh_type == SHT_NOBITS
4723 && (this_hdr->sh_flags & SHF_TLS) != 0
4724 && this_hdr->sh_offset == 0)
4725 {
4726 /* This is a .tbss section that didn't get a PT_LOAD.
4727 (See _bfd_elf_map_sections_to_segments "Create a
4728 final PT_LOAD".) Set sh_offset to the value it
4729 would have if we had created a zero p_filesz and
4730 p_memsz PT_LOAD header for the section. This
4731 also makes the PT_TLS header have the same
4732 p_offset value. */
4733 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4734 off, align);
4735 this_hdr->sh_offset = sec->filepos = off + adjust;
4736 }
4737
4738 if (this_hdr->sh_type != SHT_NOBITS)
4739 {
4740 p->p_filesz += this_hdr->sh_size;
4741 /* A load section without SHF_ALLOC is something like
4742 a note section in a PT_NOTE segment. These take
4743 file space but are not loaded into memory. */
4744 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4745 p->p_memsz += this_hdr->sh_size;
4746 }
4747 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4748 {
4749 if (p->p_type == PT_TLS)
4750 p->p_memsz += this_hdr->sh_size;
4751
4752 /* .tbss is special. It doesn't contribute to p_memsz of
4753 normal segments. */
4754 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4755 p->p_memsz += this_hdr->sh_size;
4756 }
4757
4758 if (align > p->p_align
4759 && !m->p_align_valid
4760 && (p->p_type != PT_LOAD
4761 || (abfd->flags & D_PAGED) == 0))
4762 p->p_align = align;
4763 }
4764
4765 if (!m->p_flags_valid)
4766 {
4767 p->p_flags |= PF_R;
4768 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4769 p->p_flags |= PF_X;
4770 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4771 p->p_flags |= PF_W;
4772 }
4773 }
4774 off -= off_adjust;
4775
4776 /* Check that all sections are in a PT_LOAD segment.
4777 Don't check funky gdb generated core files. */
4778 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4779 {
4780 bfd_boolean check_vma = TRUE;
4781
4782 for (i = 1; i < m->count; i++)
4783 if (m->sections[i]->vma == m->sections[i - 1]->vma
4784 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4785 ->this_hdr), p) != 0
4786 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4787 ->this_hdr), p) != 0)
4788 {
4789 /* Looks like we have overlays packed into the segment. */
4790 check_vma = FALSE;
4791 break;
4792 }
4793
4794 for (i = 0; i < m->count; i++)
4795 {
4796 Elf_Internal_Shdr *this_hdr;
4797 asection *sec;
4798
4799 sec = m->sections[i];
4800 this_hdr = &(elf_section_data(sec)->this_hdr);
4801 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4802 && !ELF_TBSS_SPECIAL (this_hdr, p))
4803 {
4804 (*_bfd_error_handler)
4805 (_("%B: section `%A' can't be allocated in segment %d"),
4806 abfd, sec, j);
4807 print_segment_map (m);
4808 }
4809 }
4810 }
4811 }
4812
4813 elf_tdata (abfd)->next_file_pos = off;
4814 return TRUE;
4815 }
4816
4817 /* Assign file positions for the other sections. */
4818
4819 static bfd_boolean
4820 assign_file_positions_for_non_load_sections (bfd *abfd,
4821 struct bfd_link_info *link_info)
4822 {
4823 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4824 Elf_Internal_Shdr **i_shdrpp;
4825 Elf_Internal_Shdr **hdrpp;
4826 Elf_Internal_Phdr *phdrs;
4827 Elf_Internal_Phdr *p;
4828 struct elf_segment_map *m;
4829 bfd_vma filehdr_vaddr, filehdr_paddr;
4830 bfd_vma phdrs_vaddr, phdrs_paddr;
4831 file_ptr off;
4832 unsigned int num_sec;
4833 unsigned int i;
4834 unsigned int count;
4835
4836 i_shdrpp = elf_elfsections (abfd);
4837 num_sec = elf_numsections (abfd);
4838 off = elf_tdata (abfd)->next_file_pos;
4839 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4840 {
4841 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4842 Elf_Internal_Shdr *hdr;
4843
4844 hdr = *hdrpp;
4845 if (hdr->bfd_section != NULL
4846 && (hdr->bfd_section->filepos != 0
4847 || (hdr->sh_type == SHT_NOBITS
4848 && hdr->contents == NULL)))
4849 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4850 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4851 {
4852 if (hdr->sh_size != 0)
4853 (*_bfd_error_handler)
4854 (_("%B: warning: allocated section `%s' not in segment"),
4855 abfd,
4856 (hdr->bfd_section == NULL
4857 ? "*unknown*"
4858 : hdr->bfd_section->name));
4859 /* We don't need to page align empty sections. */
4860 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4861 off += vma_page_aligned_bias (hdr->sh_addr, off,
4862 bed->maxpagesize);
4863 else
4864 off += vma_page_aligned_bias (hdr->sh_addr, off,
4865 hdr->sh_addralign);
4866 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4867 FALSE);
4868 }
4869 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4870 && hdr->bfd_section == NULL)
4871 || hdr == i_shdrpp[tdata->symtab_section]
4872 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4873 || hdr == i_shdrpp[tdata->strtab_section])
4874 hdr->sh_offset = -1;
4875 else
4876 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4877 }
4878
4879 /* Now that we have set the section file positions, we can set up
4880 the file positions for the non PT_LOAD segments. */
4881 count = 0;
4882 filehdr_vaddr = 0;
4883 filehdr_paddr = 0;
4884 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4885 phdrs_paddr = 0;
4886 phdrs = elf_tdata (abfd)->phdr;
4887 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4888 m != NULL;
4889 m = m->next, p++)
4890 {
4891 ++count;
4892 if (p->p_type != PT_LOAD)
4893 continue;
4894
4895 if (m->includes_filehdr)
4896 {
4897 filehdr_vaddr = p->p_vaddr;
4898 filehdr_paddr = p->p_paddr;
4899 }
4900 if (m->includes_phdrs)
4901 {
4902 phdrs_vaddr = p->p_vaddr;
4903 phdrs_paddr = p->p_paddr;
4904 if (m->includes_filehdr)
4905 {
4906 phdrs_vaddr += bed->s->sizeof_ehdr;
4907 phdrs_paddr += bed->s->sizeof_ehdr;
4908 }
4909 }
4910 }
4911
4912 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4913 m != NULL;
4914 m = m->next, p++)
4915 {
4916 if (p->p_type == PT_GNU_RELRO)
4917 {
4918 const Elf_Internal_Phdr *lp;
4919
4920 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4921
4922 if (link_info != NULL)
4923 {
4924 /* During linking the range of the RELRO segment is passed
4925 in link_info. */
4926 for (lp = phdrs; lp < phdrs + count; ++lp)
4927 {
4928 if (lp->p_type == PT_LOAD
4929 && lp->p_vaddr >= link_info->relro_start
4930 && lp->p_vaddr < link_info->relro_end
4931 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4932 break;
4933 }
4934
4935 /* PR ld/14207. If the RELRO segment doesn't fit in the
4936 LOAD segment, it should be removed. */
4937 if (lp == (phdrs + count))
4938 abort ();
4939 }
4940 else
4941 {
4942 /* Otherwise we are copying an executable or shared
4943 library, but we need to use the same linker logic. */
4944 for (lp = phdrs; lp < phdrs + count; ++lp)
4945 {
4946 if (lp->p_type == PT_LOAD
4947 && lp->p_paddr == p->p_paddr)
4948 break;
4949 }
4950 }
4951
4952 if (lp < phdrs + count)
4953 {
4954 p->p_vaddr = lp->p_vaddr;
4955 p->p_paddr = lp->p_paddr;
4956 p->p_offset = lp->p_offset;
4957 if (link_info != NULL)
4958 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4959 else if (m->p_size_valid)
4960 p->p_filesz = m->p_size;
4961 else
4962 abort ();
4963 p->p_memsz = p->p_filesz;
4964 /* Preserve the alignment and flags if they are valid. The
4965 gold linker generates RW/4 for the PT_GNU_RELRO section.
4966 It is better for objcopy/strip to honor these attributes
4967 otherwise gdb will choke when using separate debug files.
4968 */
4969 if (!m->p_align_valid)
4970 p->p_align = 1;
4971 if (!m->p_flags_valid)
4972 p->p_flags = (lp->p_flags & ~PF_W);
4973 }
4974 else
4975 {
4976 memset (p, 0, sizeof *p);
4977 p->p_type = PT_NULL;
4978 }
4979 }
4980 else if (m->count != 0)
4981 {
4982 if (p->p_type != PT_LOAD
4983 && (p->p_type != PT_NOTE
4984 || bfd_get_format (abfd) != bfd_core))
4985 {
4986 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4987
4988 p->p_filesz = 0;
4989 p->p_offset = m->sections[0]->filepos;
4990 for (i = m->count; i-- != 0;)
4991 {
4992 asection *sect = m->sections[i];
4993 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
4994 if (hdr->sh_type != SHT_NOBITS)
4995 {
4996 p->p_filesz = (sect->filepos - m->sections[0]->filepos
4997 + hdr->sh_size);
4998 break;
4999 }
5000 }
5001 }
5002 }
5003 else if (m->includes_filehdr)
5004 {
5005 p->p_vaddr = filehdr_vaddr;
5006 if (! m->p_paddr_valid)
5007 p->p_paddr = filehdr_paddr;
5008 }
5009 else if (m->includes_phdrs)
5010 {
5011 p->p_vaddr = phdrs_vaddr;
5012 if (! m->p_paddr_valid)
5013 p->p_paddr = phdrs_paddr;
5014 }
5015 }
5016
5017 elf_tdata (abfd)->next_file_pos = off;
5018
5019 return TRUE;
5020 }
5021
5022 /* Work out the file positions of all the sections. This is called by
5023 _bfd_elf_compute_section_file_positions. All the section sizes and
5024 VMAs must be known before this is called.
5025
5026 Reloc sections come in two flavours: Those processed specially as
5027 "side-channel" data attached to a section to which they apply, and
5028 those that bfd doesn't process as relocations. The latter sort are
5029 stored in a normal bfd section by bfd_section_from_shdr. We don't
5030 consider the former sort here, unless they form part of the loadable
5031 image. Reloc sections not assigned here will be handled later by
5032 assign_file_positions_for_relocs.
5033
5034 We also don't set the positions of the .symtab and .strtab here. */
5035
5036 static bfd_boolean
5037 assign_file_positions_except_relocs (bfd *abfd,
5038 struct bfd_link_info *link_info)
5039 {
5040 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5041 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5042 file_ptr off;
5043 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5044
5045 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5046 && bfd_get_format (abfd) != bfd_core)
5047 {
5048 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5049 unsigned int num_sec = elf_numsections (abfd);
5050 Elf_Internal_Shdr **hdrpp;
5051 unsigned int i;
5052
5053 /* Start after the ELF header. */
5054 off = i_ehdrp->e_ehsize;
5055
5056 /* We are not creating an executable, which means that we are
5057 not creating a program header, and that the actual order of
5058 the sections in the file is unimportant. */
5059 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5060 {
5061 Elf_Internal_Shdr *hdr;
5062
5063 hdr = *hdrpp;
5064 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5065 && hdr->bfd_section == NULL)
5066 || i == tdata->symtab_section
5067 || i == tdata->symtab_shndx_section
5068 || i == tdata->strtab_section)
5069 {
5070 hdr->sh_offset = -1;
5071 }
5072 else
5073 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5074 }
5075 }
5076 else
5077 {
5078 unsigned int alloc;
5079
5080 /* Assign file positions for the loaded sections based on the
5081 assignment of sections to segments. */
5082 if (!assign_file_positions_for_load_sections (abfd, link_info))
5083 return FALSE;
5084
5085 /* And for non-load sections. */
5086 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5087 return FALSE;
5088
5089 if (bed->elf_backend_modify_program_headers != NULL)
5090 {
5091 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5092 return FALSE;
5093 }
5094
5095 /* Write out the program headers. */
5096 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5097 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5098 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5099 return FALSE;
5100
5101 off = tdata->next_file_pos;
5102 }
5103
5104 /* Place the section headers. */
5105 off = align_file_position (off, 1 << bed->s->log_file_align);
5106 i_ehdrp->e_shoff = off;
5107 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5108
5109 tdata->next_file_pos = off;
5110
5111 return TRUE;
5112 }
5113
5114 static bfd_boolean
5115 prep_headers (bfd *abfd)
5116 {
5117 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5118 struct elf_strtab_hash *shstrtab;
5119 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5120
5121 i_ehdrp = elf_elfheader (abfd);
5122
5123 shstrtab = _bfd_elf_strtab_init ();
5124 if (shstrtab == NULL)
5125 return FALSE;
5126
5127 elf_shstrtab (abfd) = shstrtab;
5128
5129 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5130 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5131 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5132 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5133
5134 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5135 i_ehdrp->e_ident[EI_DATA] =
5136 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5137 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5138
5139 if ((abfd->flags & DYNAMIC) != 0)
5140 i_ehdrp->e_type = ET_DYN;
5141 else if ((abfd->flags & EXEC_P) != 0)
5142 i_ehdrp->e_type = ET_EXEC;
5143 else if (bfd_get_format (abfd) == bfd_core)
5144 i_ehdrp->e_type = ET_CORE;
5145 else
5146 i_ehdrp->e_type = ET_REL;
5147
5148 switch (bfd_get_arch (abfd))
5149 {
5150 case bfd_arch_unknown:
5151 i_ehdrp->e_machine = EM_NONE;
5152 break;
5153
5154 /* There used to be a long list of cases here, each one setting
5155 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5156 in the corresponding bfd definition. To avoid duplication,
5157 the switch was removed. Machines that need special handling
5158 can generally do it in elf_backend_final_write_processing(),
5159 unless they need the information earlier than the final write.
5160 Such need can generally be supplied by replacing the tests for
5161 e_machine with the conditions used to determine it. */
5162 default:
5163 i_ehdrp->e_machine = bed->elf_machine_code;
5164 }
5165
5166 i_ehdrp->e_version = bed->s->ev_current;
5167 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5168
5169 /* No program header, for now. */
5170 i_ehdrp->e_phoff = 0;
5171 i_ehdrp->e_phentsize = 0;
5172 i_ehdrp->e_phnum = 0;
5173
5174 /* Each bfd section is section header entry. */
5175 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5176 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5177
5178 /* If we're building an executable, we'll need a program header table. */
5179 if (abfd->flags & EXEC_P)
5180 /* It all happens later. */
5181 ;
5182 else
5183 {
5184 i_ehdrp->e_phentsize = 0;
5185 i_ehdrp->e_phoff = 0;
5186 }
5187
5188 elf_tdata (abfd)->symtab_hdr.sh_name =
5189 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5190 elf_tdata (abfd)->strtab_hdr.sh_name =
5191 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5192 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5193 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5194 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5195 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5196 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5197 return FALSE;
5198
5199 return TRUE;
5200 }
5201
5202 /* Assign file positions for all the reloc sections which are not part
5203 of the loadable file image. */
5204
5205 void
5206 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5207 {
5208 file_ptr off;
5209 unsigned int i, num_sec;
5210 Elf_Internal_Shdr **shdrpp;
5211
5212 off = elf_tdata (abfd)->next_file_pos;
5213
5214 num_sec = elf_numsections (abfd);
5215 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5216 {
5217 Elf_Internal_Shdr *shdrp;
5218
5219 shdrp = *shdrpp;
5220 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5221 && shdrp->sh_offset == -1)
5222 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5223 }
5224
5225 elf_tdata (abfd)->next_file_pos = off;
5226 }
5227
5228 bfd_boolean
5229 _bfd_elf_write_object_contents (bfd *abfd)
5230 {
5231 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5232 Elf_Internal_Shdr **i_shdrp;
5233 bfd_boolean failed;
5234 unsigned int count, num_sec;
5235
5236 if (! abfd->output_has_begun
5237 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5238 return FALSE;
5239
5240 i_shdrp = elf_elfsections (abfd);
5241
5242 failed = FALSE;
5243 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5244 if (failed)
5245 return FALSE;
5246
5247 _bfd_elf_assign_file_positions_for_relocs (abfd);
5248
5249 /* After writing the headers, we need to write the sections too... */
5250 num_sec = elf_numsections (abfd);
5251 for (count = 1; count < num_sec; count++)
5252 {
5253 if (bed->elf_backend_section_processing)
5254 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5255 if (i_shdrp[count]->contents)
5256 {
5257 bfd_size_type amt = i_shdrp[count]->sh_size;
5258
5259 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5260 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5261 return FALSE;
5262 }
5263 }
5264
5265 /* Write out the section header names. */
5266 if (elf_shstrtab (abfd) != NULL
5267 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5268 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5269 return FALSE;
5270
5271 if (bed->elf_backend_final_write_processing)
5272 (*bed->elf_backend_final_write_processing) (abfd,
5273 elf_tdata (abfd)->linker);
5274
5275 if (!bed->s->write_shdrs_and_ehdr (abfd))
5276 return FALSE;
5277
5278 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5279 if (elf_tdata (abfd)->after_write_object_contents)
5280 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5281
5282 return TRUE;
5283 }
5284
5285 bfd_boolean
5286 _bfd_elf_write_corefile_contents (bfd *abfd)
5287 {
5288 /* Hopefully this can be done just like an object file. */
5289 return _bfd_elf_write_object_contents (abfd);
5290 }
5291
5292 /* Given a section, search the header to find them. */
5293
5294 unsigned int
5295 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5296 {
5297 const struct elf_backend_data *bed;
5298 unsigned int sec_index;
5299
5300 if (elf_section_data (asect) != NULL
5301 && elf_section_data (asect)->this_idx != 0)
5302 return elf_section_data (asect)->this_idx;
5303
5304 if (bfd_is_abs_section (asect))
5305 sec_index = SHN_ABS;
5306 else if (bfd_is_com_section (asect))
5307 sec_index = SHN_COMMON;
5308 else if (bfd_is_und_section (asect))
5309 sec_index = SHN_UNDEF;
5310 else
5311 sec_index = SHN_BAD;
5312
5313 bed = get_elf_backend_data (abfd);
5314 if (bed->elf_backend_section_from_bfd_section)
5315 {
5316 int retval = sec_index;
5317
5318 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5319 return retval;
5320 }
5321
5322 if (sec_index == SHN_BAD)
5323 bfd_set_error (bfd_error_nonrepresentable_section);
5324
5325 return sec_index;
5326 }
5327
5328 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5329 on error. */
5330
5331 int
5332 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5333 {
5334 asymbol *asym_ptr = *asym_ptr_ptr;
5335 int idx;
5336 flagword flags = asym_ptr->flags;
5337
5338 /* When gas creates relocations against local labels, it creates its
5339 own symbol for the section, but does put the symbol into the
5340 symbol chain, so udata is 0. When the linker is generating
5341 relocatable output, this section symbol may be for one of the
5342 input sections rather than the output section. */
5343 if (asym_ptr->udata.i == 0
5344 && (flags & BSF_SECTION_SYM)
5345 && asym_ptr->section)
5346 {
5347 asection *sec;
5348 int indx;
5349
5350 sec = asym_ptr->section;
5351 if (sec->owner != abfd && sec->output_section != NULL)
5352 sec = sec->output_section;
5353 if (sec->owner == abfd
5354 && (indx = sec->index) < elf_num_section_syms (abfd)
5355 && elf_section_syms (abfd)[indx] != NULL)
5356 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5357 }
5358
5359 idx = asym_ptr->udata.i;
5360
5361 if (idx == 0)
5362 {
5363 /* This case can occur when using --strip-symbol on a symbol
5364 which is used in a relocation entry. */
5365 (*_bfd_error_handler)
5366 (_("%B: symbol `%s' required but not present"),
5367 abfd, bfd_asymbol_name (asym_ptr));
5368 bfd_set_error (bfd_error_no_symbols);
5369 return -1;
5370 }
5371
5372 #if DEBUG & 4
5373 {
5374 fprintf (stderr,
5375 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5376 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5377 fflush (stderr);
5378 }
5379 #endif
5380
5381 return idx;
5382 }
5383
5384 /* Rewrite program header information. */
5385
5386 static bfd_boolean
5387 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5388 {
5389 Elf_Internal_Ehdr *iehdr;
5390 struct elf_segment_map *map;
5391 struct elf_segment_map *map_first;
5392 struct elf_segment_map **pointer_to_map;
5393 Elf_Internal_Phdr *segment;
5394 asection *section;
5395 unsigned int i;
5396 unsigned int num_segments;
5397 bfd_boolean phdr_included = FALSE;
5398 bfd_boolean p_paddr_valid;
5399 bfd_vma maxpagesize;
5400 struct elf_segment_map *phdr_adjust_seg = NULL;
5401 unsigned int phdr_adjust_num = 0;
5402 const struct elf_backend_data *bed;
5403
5404 bed = get_elf_backend_data (ibfd);
5405 iehdr = elf_elfheader (ibfd);
5406
5407 map_first = NULL;
5408 pointer_to_map = &map_first;
5409
5410 num_segments = elf_elfheader (ibfd)->e_phnum;
5411 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5412
5413 /* Returns the end address of the segment + 1. */
5414 #define SEGMENT_END(segment, start) \
5415 (start + (segment->p_memsz > segment->p_filesz \
5416 ? segment->p_memsz : segment->p_filesz))
5417
5418 #define SECTION_SIZE(section, segment) \
5419 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5420 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5421 ? section->size : 0)
5422
5423 /* Returns TRUE if the given section is contained within
5424 the given segment. VMA addresses are compared. */
5425 #define IS_CONTAINED_BY_VMA(section, segment) \
5426 (section->vma >= segment->p_vaddr \
5427 && (section->vma + SECTION_SIZE (section, segment) \
5428 <= (SEGMENT_END (segment, segment->p_vaddr))))
5429
5430 /* Returns TRUE if the given section is contained within
5431 the given segment. LMA addresses are compared. */
5432 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5433 (section->lma >= base \
5434 && (section->lma + SECTION_SIZE (section, segment) \
5435 <= SEGMENT_END (segment, base)))
5436
5437 /* Handle PT_NOTE segment. */
5438 #define IS_NOTE(p, s) \
5439 (p->p_type == PT_NOTE \
5440 && elf_section_type (s) == SHT_NOTE \
5441 && (bfd_vma) s->filepos >= p->p_offset \
5442 && ((bfd_vma) s->filepos + s->size \
5443 <= p->p_offset + p->p_filesz))
5444
5445 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5446 etc. */
5447 #define IS_COREFILE_NOTE(p, s) \
5448 (IS_NOTE (p, s) \
5449 && bfd_get_format (ibfd) == bfd_core \
5450 && s->vma == 0 \
5451 && s->lma == 0)
5452
5453 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5454 linker, which generates a PT_INTERP section with p_vaddr and
5455 p_memsz set to 0. */
5456 #define IS_SOLARIS_PT_INTERP(p, s) \
5457 (p->p_vaddr == 0 \
5458 && p->p_paddr == 0 \
5459 && p->p_memsz == 0 \
5460 && p->p_filesz > 0 \
5461 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5462 && s->size > 0 \
5463 && (bfd_vma) s->filepos >= p->p_offset \
5464 && ((bfd_vma) s->filepos + s->size \
5465 <= p->p_offset + p->p_filesz))
5466
5467 /* Decide if the given section should be included in the given segment.
5468 A section will be included if:
5469 1. It is within the address space of the segment -- we use the LMA
5470 if that is set for the segment and the VMA otherwise,
5471 2. It is an allocated section or a NOTE section in a PT_NOTE
5472 segment.
5473 3. There is an output section associated with it,
5474 4. The section has not already been allocated to a previous segment.
5475 5. PT_GNU_STACK segments do not include any sections.
5476 6. PT_TLS segment includes only SHF_TLS sections.
5477 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5478 8. PT_DYNAMIC should not contain empty sections at the beginning
5479 (with the possible exception of .dynamic). */
5480 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5481 ((((segment->p_paddr \
5482 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5483 : IS_CONTAINED_BY_VMA (section, segment)) \
5484 && (section->flags & SEC_ALLOC) != 0) \
5485 || IS_NOTE (segment, section)) \
5486 && segment->p_type != PT_GNU_STACK \
5487 && (segment->p_type != PT_TLS \
5488 || (section->flags & SEC_THREAD_LOCAL)) \
5489 && (segment->p_type == PT_LOAD \
5490 || segment->p_type == PT_TLS \
5491 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5492 && (segment->p_type != PT_DYNAMIC \
5493 || SECTION_SIZE (section, segment) > 0 \
5494 || (segment->p_paddr \
5495 ? segment->p_paddr != section->lma \
5496 : segment->p_vaddr != section->vma) \
5497 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5498 == 0)) \
5499 && !section->segment_mark)
5500
5501 /* If the output section of a section in the input segment is NULL,
5502 it is removed from the corresponding output segment. */
5503 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5504 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5505 && section->output_section != NULL)
5506
5507 /* Returns TRUE iff seg1 starts after the end of seg2. */
5508 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5509 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5510
5511 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5512 their VMA address ranges and their LMA address ranges overlap.
5513 It is possible to have overlapping VMA ranges without overlapping LMA
5514 ranges. RedBoot images for example can have both .data and .bss mapped
5515 to the same VMA range, but with the .data section mapped to a different
5516 LMA. */
5517 #define SEGMENT_OVERLAPS(seg1, seg2) \
5518 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5519 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5520 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5521 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5522
5523 /* Initialise the segment mark field. */
5524 for (section = ibfd->sections; section != NULL; section = section->next)
5525 section->segment_mark = FALSE;
5526
5527 /* The Solaris linker creates program headers in which all the
5528 p_paddr fields are zero. When we try to objcopy or strip such a
5529 file, we get confused. Check for this case, and if we find it
5530 don't set the p_paddr_valid fields. */
5531 p_paddr_valid = FALSE;
5532 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5533 i < num_segments;
5534 i++, segment++)
5535 if (segment->p_paddr != 0)
5536 {
5537 p_paddr_valid = TRUE;
5538 break;
5539 }
5540
5541 /* Scan through the segments specified in the program header
5542 of the input BFD. For this first scan we look for overlaps
5543 in the loadable segments. These can be created by weird
5544 parameters to objcopy. Also, fix some solaris weirdness. */
5545 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5546 i < num_segments;
5547 i++, segment++)
5548 {
5549 unsigned int j;
5550 Elf_Internal_Phdr *segment2;
5551
5552 if (segment->p_type == PT_INTERP)
5553 for (section = ibfd->sections; section; section = section->next)
5554 if (IS_SOLARIS_PT_INTERP (segment, section))
5555 {
5556 /* Mininal change so that the normal section to segment
5557 assignment code will work. */
5558 segment->p_vaddr = section->vma;
5559 break;
5560 }
5561
5562 if (segment->p_type != PT_LOAD)
5563 {
5564 /* Remove PT_GNU_RELRO segment. */
5565 if (segment->p_type == PT_GNU_RELRO)
5566 segment->p_type = PT_NULL;
5567 continue;
5568 }
5569
5570 /* Determine if this segment overlaps any previous segments. */
5571 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5572 {
5573 bfd_signed_vma extra_length;
5574
5575 if (segment2->p_type != PT_LOAD
5576 || !SEGMENT_OVERLAPS (segment, segment2))
5577 continue;
5578
5579 /* Merge the two segments together. */
5580 if (segment2->p_vaddr < segment->p_vaddr)
5581 {
5582 /* Extend SEGMENT2 to include SEGMENT and then delete
5583 SEGMENT. */
5584 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5585 - SEGMENT_END (segment2, segment2->p_vaddr));
5586
5587 if (extra_length > 0)
5588 {
5589 segment2->p_memsz += extra_length;
5590 segment2->p_filesz += extra_length;
5591 }
5592
5593 segment->p_type = PT_NULL;
5594
5595 /* Since we have deleted P we must restart the outer loop. */
5596 i = 0;
5597 segment = elf_tdata (ibfd)->phdr;
5598 break;
5599 }
5600 else
5601 {
5602 /* Extend SEGMENT to include SEGMENT2 and then delete
5603 SEGMENT2. */
5604 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5605 - SEGMENT_END (segment, segment->p_vaddr));
5606
5607 if (extra_length > 0)
5608 {
5609 segment->p_memsz += extra_length;
5610 segment->p_filesz += extra_length;
5611 }
5612
5613 segment2->p_type = PT_NULL;
5614 }
5615 }
5616 }
5617
5618 /* The second scan attempts to assign sections to segments. */
5619 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5620 i < num_segments;
5621 i++, segment++)
5622 {
5623 unsigned int section_count;
5624 asection **sections;
5625 asection *output_section;
5626 unsigned int isec;
5627 bfd_vma matching_lma;
5628 bfd_vma suggested_lma;
5629 unsigned int j;
5630 bfd_size_type amt;
5631 asection *first_section;
5632 bfd_boolean first_matching_lma;
5633 bfd_boolean first_suggested_lma;
5634
5635 if (segment->p_type == PT_NULL)
5636 continue;
5637
5638 first_section = NULL;
5639 /* Compute how many sections might be placed into this segment. */
5640 for (section = ibfd->sections, section_count = 0;
5641 section != NULL;
5642 section = section->next)
5643 {
5644 /* Find the first section in the input segment, which may be
5645 removed from the corresponding output segment. */
5646 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5647 {
5648 if (first_section == NULL)
5649 first_section = section;
5650 if (section->output_section != NULL)
5651 ++section_count;
5652 }
5653 }
5654
5655 /* Allocate a segment map big enough to contain
5656 all of the sections we have selected. */
5657 amt = sizeof (struct elf_segment_map);
5658 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5659 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5660 if (map == NULL)
5661 return FALSE;
5662
5663 /* Initialise the fields of the segment map. Default to
5664 using the physical address of the segment in the input BFD. */
5665 map->next = NULL;
5666 map->p_type = segment->p_type;
5667 map->p_flags = segment->p_flags;
5668 map->p_flags_valid = 1;
5669
5670 /* If the first section in the input segment is removed, there is
5671 no need to preserve segment physical address in the corresponding
5672 output segment. */
5673 if (!first_section || first_section->output_section != NULL)
5674 {
5675 map->p_paddr = segment->p_paddr;
5676 map->p_paddr_valid = p_paddr_valid;
5677 }
5678
5679 /* Determine if this segment contains the ELF file header
5680 and if it contains the program headers themselves. */
5681 map->includes_filehdr = (segment->p_offset == 0
5682 && segment->p_filesz >= iehdr->e_ehsize);
5683 map->includes_phdrs = 0;
5684
5685 if (!phdr_included || segment->p_type != PT_LOAD)
5686 {
5687 map->includes_phdrs =
5688 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5689 && (segment->p_offset + segment->p_filesz
5690 >= ((bfd_vma) iehdr->e_phoff
5691 + iehdr->e_phnum * iehdr->e_phentsize)));
5692
5693 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5694 phdr_included = TRUE;
5695 }
5696
5697 if (section_count == 0)
5698 {
5699 /* Special segments, such as the PT_PHDR segment, may contain
5700 no sections, but ordinary, loadable segments should contain
5701 something. They are allowed by the ELF spec however, so only
5702 a warning is produced. */
5703 if (segment->p_type == PT_LOAD)
5704 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5705 " detected, is this intentional ?\n"),
5706 ibfd);
5707
5708 map->count = 0;
5709 *pointer_to_map = map;
5710 pointer_to_map = &map->next;
5711
5712 continue;
5713 }
5714
5715 /* Now scan the sections in the input BFD again and attempt
5716 to add their corresponding output sections to the segment map.
5717 The problem here is how to handle an output section which has
5718 been moved (ie had its LMA changed). There are four possibilities:
5719
5720 1. None of the sections have been moved.
5721 In this case we can continue to use the segment LMA from the
5722 input BFD.
5723
5724 2. All of the sections have been moved by the same amount.
5725 In this case we can change the segment's LMA to match the LMA
5726 of the first section.
5727
5728 3. Some of the sections have been moved, others have not.
5729 In this case those sections which have not been moved can be
5730 placed in the current segment which will have to have its size,
5731 and possibly its LMA changed, and a new segment or segments will
5732 have to be created to contain the other sections.
5733
5734 4. The sections have been moved, but not by the same amount.
5735 In this case we can change the segment's LMA to match the LMA
5736 of the first section and we will have to create a new segment
5737 or segments to contain the other sections.
5738
5739 In order to save time, we allocate an array to hold the section
5740 pointers that we are interested in. As these sections get assigned
5741 to a segment, they are removed from this array. */
5742
5743 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5744 if (sections == NULL)
5745 return FALSE;
5746
5747 /* Step One: Scan for segment vs section LMA conflicts.
5748 Also add the sections to the section array allocated above.
5749 Also add the sections to the current segment. In the common
5750 case, where the sections have not been moved, this means that
5751 we have completely filled the segment, and there is nothing
5752 more to do. */
5753 isec = 0;
5754 matching_lma = 0;
5755 suggested_lma = 0;
5756 first_matching_lma = TRUE;
5757 first_suggested_lma = TRUE;
5758
5759 for (section = ibfd->sections;
5760 section != NULL;
5761 section = section->next)
5762 if (section == first_section)
5763 break;
5764
5765 for (j = 0; section != NULL; section = section->next)
5766 {
5767 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5768 {
5769 output_section = section->output_section;
5770
5771 sections[j++] = section;
5772
5773 /* The Solaris native linker always sets p_paddr to 0.
5774 We try to catch that case here, and set it to the
5775 correct value. Note - some backends require that
5776 p_paddr be left as zero. */
5777 if (!p_paddr_valid
5778 && segment->p_vaddr != 0
5779 && !bed->want_p_paddr_set_to_zero
5780 && isec == 0
5781 && output_section->lma != 0
5782 && output_section->vma == (segment->p_vaddr
5783 + (map->includes_filehdr
5784 ? iehdr->e_ehsize
5785 : 0)
5786 + (map->includes_phdrs
5787 ? (iehdr->e_phnum
5788 * iehdr->e_phentsize)
5789 : 0)))
5790 map->p_paddr = segment->p_vaddr;
5791
5792 /* Match up the physical address of the segment with the
5793 LMA address of the output section. */
5794 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5795 || IS_COREFILE_NOTE (segment, section)
5796 || (bed->want_p_paddr_set_to_zero
5797 && IS_CONTAINED_BY_VMA (output_section, segment)))
5798 {
5799 if (first_matching_lma || output_section->lma < matching_lma)
5800 {
5801 matching_lma = output_section->lma;
5802 first_matching_lma = FALSE;
5803 }
5804
5805 /* We assume that if the section fits within the segment
5806 then it does not overlap any other section within that
5807 segment. */
5808 map->sections[isec++] = output_section;
5809 }
5810 else if (first_suggested_lma)
5811 {
5812 suggested_lma = output_section->lma;
5813 first_suggested_lma = FALSE;
5814 }
5815
5816 if (j == section_count)
5817 break;
5818 }
5819 }
5820
5821 BFD_ASSERT (j == section_count);
5822
5823 /* Step Two: Adjust the physical address of the current segment,
5824 if necessary. */
5825 if (isec == section_count)
5826 {
5827 /* All of the sections fitted within the segment as currently
5828 specified. This is the default case. Add the segment to
5829 the list of built segments and carry on to process the next
5830 program header in the input BFD. */
5831 map->count = section_count;
5832 *pointer_to_map = map;
5833 pointer_to_map = &map->next;
5834
5835 if (p_paddr_valid
5836 && !bed->want_p_paddr_set_to_zero
5837 && matching_lma != map->p_paddr
5838 && !map->includes_filehdr
5839 && !map->includes_phdrs)
5840 /* There is some padding before the first section in the
5841 segment. So, we must account for that in the output
5842 segment's vma. */
5843 map->p_vaddr_offset = matching_lma - map->p_paddr;
5844
5845 free (sections);
5846 continue;
5847 }
5848 else
5849 {
5850 if (!first_matching_lma)
5851 {
5852 /* At least one section fits inside the current segment.
5853 Keep it, but modify its physical address to match the
5854 LMA of the first section that fitted. */
5855 map->p_paddr = matching_lma;
5856 }
5857 else
5858 {
5859 /* None of the sections fitted inside the current segment.
5860 Change the current segment's physical address to match
5861 the LMA of the first section. */
5862 map->p_paddr = suggested_lma;
5863 }
5864
5865 /* Offset the segment physical address from the lma
5866 to allow for space taken up by elf headers. */
5867 if (map->includes_filehdr)
5868 {
5869 if (map->p_paddr >= iehdr->e_ehsize)
5870 map->p_paddr -= iehdr->e_ehsize;
5871 else
5872 {
5873 map->includes_filehdr = FALSE;
5874 map->includes_phdrs = FALSE;
5875 }
5876 }
5877
5878 if (map->includes_phdrs)
5879 {
5880 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5881 {
5882 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5883
5884 /* iehdr->e_phnum is just an estimate of the number
5885 of program headers that we will need. Make a note
5886 here of the number we used and the segment we chose
5887 to hold these headers, so that we can adjust the
5888 offset when we know the correct value. */
5889 phdr_adjust_num = iehdr->e_phnum;
5890 phdr_adjust_seg = map;
5891 }
5892 else
5893 map->includes_phdrs = FALSE;
5894 }
5895 }
5896
5897 /* Step Three: Loop over the sections again, this time assigning
5898 those that fit to the current segment and removing them from the
5899 sections array; but making sure not to leave large gaps. Once all
5900 possible sections have been assigned to the current segment it is
5901 added to the list of built segments and if sections still remain
5902 to be assigned, a new segment is constructed before repeating
5903 the loop. */
5904 isec = 0;
5905 do
5906 {
5907 map->count = 0;
5908 suggested_lma = 0;
5909 first_suggested_lma = TRUE;
5910
5911 /* Fill the current segment with sections that fit. */
5912 for (j = 0; j < section_count; j++)
5913 {
5914 section = sections[j];
5915
5916 if (section == NULL)
5917 continue;
5918
5919 output_section = section->output_section;
5920
5921 BFD_ASSERT (output_section != NULL);
5922
5923 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5924 || IS_COREFILE_NOTE (segment, section))
5925 {
5926 if (map->count == 0)
5927 {
5928 /* If the first section in a segment does not start at
5929 the beginning of the segment, then something is
5930 wrong. */
5931 if (output_section->lma
5932 != (map->p_paddr
5933 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5934 + (map->includes_phdrs
5935 ? iehdr->e_phnum * iehdr->e_phentsize
5936 : 0)))
5937 abort ();
5938 }
5939 else
5940 {
5941 asection *prev_sec;
5942
5943 prev_sec = map->sections[map->count - 1];
5944
5945 /* If the gap between the end of the previous section
5946 and the start of this section is more than
5947 maxpagesize then we need to start a new segment. */
5948 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5949 maxpagesize)
5950 < BFD_ALIGN (output_section->lma, maxpagesize))
5951 || (prev_sec->lma + prev_sec->size
5952 > output_section->lma))
5953 {
5954 if (first_suggested_lma)
5955 {
5956 suggested_lma = output_section->lma;
5957 first_suggested_lma = FALSE;
5958 }
5959
5960 continue;
5961 }
5962 }
5963
5964 map->sections[map->count++] = output_section;
5965 ++isec;
5966 sections[j] = NULL;
5967 section->segment_mark = TRUE;
5968 }
5969 else if (first_suggested_lma)
5970 {
5971 suggested_lma = output_section->lma;
5972 first_suggested_lma = FALSE;
5973 }
5974 }
5975
5976 BFD_ASSERT (map->count > 0);
5977
5978 /* Add the current segment to the list of built segments. */
5979 *pointer_to_map = map;
5980 pointer_to_map = &map->next;
5981
5982 if (isec < section_count)
5983 {
5984 /* We still have not allocated all of the sections to
5985 segments. Create a new segment here, initialise it
5986 and carry on looping. */
5987 amt = sizeof (struct elf_segment_map);
5988 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5989 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5990 if (map == NULL)
5991 {
5992 free (sections);
5993 return FALSE;
5994 }
5995
5996 /* Initialise the fields of the segment map. Set the physical
5997 physical address to the LMA of the first section that has
5998 not yet been assigned. */
5999 map->next = NULL;
6000 map->p_type = segment->p_type;
6001 map->p_flags = segment->p_flags;
6002 map->p_flags_valid = 1;
6003 map->p_paddr = suggested_lma;
6004 map->p_paddr_valid = p_paddr_valid;
6005 map->includes_filehdr = 0;
6006 map->includes_phdrs = 0;
6007 }
6008 }
6009 while (isec < section_count);
6010
6011 free (sections);
6012 }
6013
6014 elf_tdata (obfd)->segment_map = map_first;
6015
6016 /* If we had to estimate the number of program headers that were
6017 going to be needed, then check our estimate now and adjust
6018 the offset if necessary. */
6019 if (phdr_adjust_seg != NULL)
6020 {
6021 unsigned int count;
6022
6023 for (count = 0, map = map_first; map != NULL; map = map->next)
6024 count++;
6025
6026 if (count > phdr_adjust_num)
6027 phdr_adjust_seg->p_paddr
6028 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6029 }
6030
6031 #undef SEGMENT_END
6032 #undef SECTION_SIZE
6033 #undef IS_CONTAINED_BY_VMA
6034 #undef IS_CONTAINED_BY_LMA
6035 #undef IS_NOTE
6036 #undef IS_COREFILE_NOTE
6037 #undef IS_SOLARIS_PT_INTERP
6038 #undef IS_SECTION_IN_INPUT_SEGMENT
6039 #undef INCLUDE_SECTION_IN_SEGMENT
6040 #undef SEGMENT_AFTER_SEGMENT
6041 #undef SEGMENT_OVERLAPS
6042 return TRUE;
6043 }
6044
6045 /* Copy ELF program header information. */
6046
6047 static bfd_boolean
6048 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6049 {
6050 Elf_Internal_Ehdr *iehdr;
6051 struct elf_segment_map *map;
6052 struct elf_segment_map *map_first;
6053 struct elf_segment_map **pointer_to_map;
6054 Elf_Internal_Phdr *segment;
6055 unsigned int i;
6056 unsigned int num_segments;
6057 bfd_boolean phdr_included = FALSE;
6058 bfd_boolean p_paddr_valid;
6059
6060 iehdr = elf_elfheader (ibfd);
6061
6062 map_first = NULL;
6063 pointer_to_map = &map_first;
6064
6065 /* If all the segment p_paddr fields are zero, don't set
6066 map->p_paddr_valid. */
6067 p_paddr_valid = FALSE;
6068 num_segments = elf_elfheader (ibfd)->e_phnum;
6069 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6070 i < num_segments;
6071 i++, segment++)
6072 if (segment->p_paddr != 0)
6073 {
6074 p_paddr_valid = TRUE;
6075 break;
6076 }
6077
6078 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6079 i < num_segments;
6080 i++, segment++)
6081 {
6082 asection *section;
6083 unsigned int section_count;
6084 bfd_size_type amt;
6085 Elf_Internal_Shdr *this_hdr;
6086 asection *first_section = NULL;
6087 asection *lowest_section;
6088
6089 /* Compute how many sections are in this segment. */
6090 for (section = ibfd->sections, section_count = 0;
6091 section != NULL;
6092 section = section->next)
6093 {
6094 this_hdr = &(elf_section_data(section)->this_hdr);
6095 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6096 {
6097 if (first_section == NULL)
6098 first_section = section;
6099 section_count++;
6100 }
6101 }
6102
6103 /* Allocate a segment map big enough to contain
6104 all of the sections we have selected. */
6105 amt = sizeof (struct elf_segment_map);
6106 if (section_count != 0)
6107 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6108 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6109 if (map == NULL)
6110 return FALSE;
6111
6112 /* Initialize the fields of the output segment map with the
6113 input segment. */
6114 map->next = NULL;
6115 map->p_type = segment->p_type;
6116 map->p_flags = segment->p_flags;
6117 map->p_flags_valid = 1;
6118 map->p_paddr = segment->p_paddr;
6119 map->p_paddr_valid = p_paddr_valid;
6120 map->p_align = segment->p_align;
6121 map->p_align_valid = 1;
6122 map->p_vaddr_offset = 0;
6123
6124 if (map->p_type == PT_GNU_RELRO)
6125 {
6126 /* The PT_GNU_RELRO segment may contain the first a few
6127 bytes in the .got.plt section even if the whole .got.plt
6128 section isn't in the PT_GNU_RELRO segment. We won't
6129 change the size of the PT_GNU_RELRO segment. */
6130 map->p_size = segment->p_memsz;
6131 map->p_size_valid = 1;
6132 }
6133
6134 /* Determine if this segment contains the ELF file header
6135 and if it contains the program headers themselves. */
6136 map->includes_filehdr = (segment->p_offset == 0
6137 && segment->p_filesz >= iehdr->e_ehsize);
6138
6139 map->includes_phdrs = 0;
6140 if (! phdr_included || segment->p_type != PT_LOAD)
6141 {
6142 map->includes_phdrs =
6143 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6144 && (segment->p_offset + segment->p_filesz
6145 >= ((bfd_vma) iehdr->e_phoff
6146 + iehdr->e_phnum * iehdr->e_phentsize)));
6147
6148 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6149 phdr_included = TRUE;
6150 }
6151
6152 lowest_section = first_section;
6153 if (section_count != 0)
6154 {
6155 unsigned int isec = 0;
6156
6157 for (section = first_section;
6158 section != NULL;
6159 section = section->next)
6160 {
6161 this_hdr = &(elf_section_data(section)->this_hdr);
6162 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6163 {
6164 map->sections[isec++] = section->output_section;
6165 if (section->lma < lowest_section->lma)
6166 lowest_section = section;
6167 if ((section->flags & SEC_ALLOC) != 0)
6168 {
6169 bfd_vma seg_off;
6170
6171 /* Section lmas are set up from PT_LOAD header
6172 p_paddr in _bfd_elf_make_section_from_shdr.
6173 If this header has a p_paddr that disagrees
6174 with the section lma, flag the p_paddr as
6175 invalid. */
6176 if ((section->flags & SEC_LOAD) != 0)
6177 seg_off = this_hdr->sh_offset - segment->p_offset;
6178 else
6179 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6180 if (section->lma - segment->p_paddr != seg_off)
6181 map->p_paddr_valid = FALSE;
6182 }
6183 if (isec == section_count)
6184 break;
6185 }
6186 }
6187 }
6188
6189 if (map->includes_filehdr && lowest_section != NULL)
6190 /* We need to keep the space used by the headers fixed. */
6191 map->header_size = lowest_section->vma - segment->p_vaddr;
6192
6193 if (!map->includes_phdrs
6194 && !map->includes_filehdr
6195 && map->p_paddr_valid)
6196 /* There is some other padding before the first section. */
6197 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6198 - segment->p_paddr);
6199
6200 map->count = section_count;
6201 *pointer_to_map = map;
6202 pointer_to_map = &map->next;
6203 }
6204
6205 elf_tdata (obfd)->segment_map = map_first;
6206 return TRUE;
6207 }
6208
6209 /* Copy private BFD data. This copies or rewrites ELF program header
6210 information. */
6211
6212 static bfd_boolean
6213 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6214 {
6215 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6216 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6217 return TRUE;
6218
6219 if (elf_tdata (ibfd)->phdr == NULL)
6220 return TRUE;
6221
6222 if (ibfd->xvec == obfd->xvec)
6223 {
6224 /* Check to see if any sections in the input BFD
6225 covered by ELF program header have changed. */
6226 Elf_Internal_Phdr *segment;
6227 asection *section, *osec;
6228 unsigned int i, num_segments;
6229 Elf_Internal_Shdr *this_hdr;
6230 const struct elf_backend_data *bed;
6231
6232 bed = get_elf_backend_data (ibfd);
6233
6234 /* Regenerate the segment map if p_paddr is set to 0. */
6235 if (bed->want_p_paddr_set_to_zero)
6236 goto rewrite;
6237
6238 /* Initialize the segment mark field. */
6239 for (section = obfd->sections; section != NULL;
6240 section = section->next)
6241 section->segment_mark = FALSE;
6242
6243 num_segments = elf_elfheader (ibfd)->e_phnum;
6244 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6245 i < num_segments;
6246 i++, segment++)
6247 {
6248 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6249 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6250 which severly confuses things, so always regenerate the segment
6251 map in this case. */
6252 if (segment->p_paddr == 0
6253 && segment->p_memsz == 0
6254 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6255 goto rewrite;
6256
6257 for (section = ibfd->sections;
6258 section != NULL; section = section->next)
6259 {
6260 /* We mark the output section so that we know it comes
6261 from the input BFD. */
6262 osec = section->output_section;
6263 if (osec)
6264 osec->segment_mark = TRUE;
6265
6266 /* Check if this section is covered by the segment. */
6267 this_hdr = &(elf_section_data(section)->this_hdr);
6268 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6269 {
6270 /* FIXME: Check if its output section is changed or
6271 removed. What else do we need to check? */
6272 if (osec == NULL
6273 || section->flags != osec->flags
6274 || section->lma != osec->lma
6275 || section->vma != osec->vma
6276 || section->size != osec->size
6277 || section->rawsize != osec->rawsize
6278 || section->alignment_power != osec->alignment_power)
6279 goto rewrite;
6280 }
6281 }
6282 }
6283
6284 /* Check to see if any output section do not come from the
6285 input BFD. */
6286 for (section = obfd->sections; section != NULL;
6287 section = section->next)
6288 {
6289 if (section->segment_mark == FALSE)
6290 goto rewrite;
6291 else
6292 section->segment_mark = FALSE;
6293 }
6294
6295 return copy_elf_program_header (ibfd, obfd);
6296 }
6297
6298 rewrite:
6299 return rewrite_elf_program_header (ibfd, obfd);
6300 }
6301
6302 /* Initialize private output section information from input section. */
6303
6304 bfd_boolean
6305 _bfd_elf_init_private_section_data (bfd *ibfd,
6306 asection *isec,
6307 bfd *obfd,
6308 asection *osec,
6309 struct bfd_link_info *link_info)
6310
6311 {
6312 Elf_Internal_Shdr *ihdr, *ohdr;
6313 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6314
6315 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6316 || obfd->xvec->flavour != bfd_target_elf_flavour)
6317 return TRUE;
6318
6319 BFD_ASSERT (elf_section_data (osec) != NULL);
6320
6321 /* For objcopy and relocatable link, don't copy the output ELF
6322 section type from input if the output BFD section flags have been
6323 set to something different. For a final link allow some flags
6324 that the linker clears to differ. */
6325 if (elf_section_type (osec) == SHT_NULL
6326 && (osec->flags == isec->flags
6327 || (final_link
6328 && ((osec->flags ^ isec->flags)
6329 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6330 elf_section_type (osec) = elf_section_type (isec);
6331
6332 /* FIXME: Is this correct for all OS/PROC specific flags? */
6333 elf_section_flags (osec) |= (elf_section_flags (isec)
6334 & (SHF_MASKOS | SHF_MASKPROC));
6335
6336 /* Set things up for objcopy and relocatable link. The output
6337 SHT_GROUP section will have its elf_next_in_group pointing back
6338 to the input group members. Ignore linker created group section.
6339 See elfNN_ia64_object_p in elfxx-ia64.c. */
6340 if (!final_link)
6341 {
6342 if (elf_sec_group (isec) == NULL
6343 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6344 {
6345 if (elf_section_flags (isec) & SHF_GROUP)
6346 elf_section_flags (osec) |= SHF_GROUP;
6347 elf_next_in_group (osec) = elf_next_in_group (isec);
6348 elf_section_data (osec)->group = elf_section_data (isec)->group;
6349 }
6350 }
6351
6352 ihdr = &elf_section_data (isec)->this_hdr;
6353
6354 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6355 don't use the output section of the linked-to section since it
6356 may be NULL at this point. */
6357 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6358 {
6359 ohdr = &elf_section_data (osec)->this_hdr;
6360 ohdr->sh_flags |= SHF_LINK_ORDER;
6361 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6362 }
6363
6364 osec->use_rela_p = isec->use_rela_p;
6365
6366 return TRUE;
6367 }
6368
6369 /* Copy private section information. This copies over the entsize
6370 field, and sometimes the info field. */
6371
6372 bfd_boolean
6373 _bfd_elf_copy_private_section_data (bfd *ibfd,
6374 asection *isec,
6375 bfd *obfd,
6376 asection *osec)
6377 {
6378 Elf_Internal_Shdr *ihdr, *ohdr;
6379
6380 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6381 || obfd->xvec->flavour != bfd_target_elf_flavour)
6382 return TRUE;
6383
6384 ihdr = &elf_section_data (isec)->this_hdr;
6385 ohdr = &elf_section_data (osec)->this_hdr;
6386
6387 ohdr->sh_entsize = ihdr->sh_entsize;
6388
6389 if (ihdr->sh_type == SHT_SYMTAB
6390 || ihdr->sh_type == SHT_DYNSYM
6391 || ihdr->sh_type == SHT_GNU_verneed
6392 || ihdr->sh_type == SHT_GNU_verdef)
6393 ohdr->sh_info = ihdr->sh_info;
6394
6395 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6396 NULL);
6397 }
6398
6399 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6400 necessary if we are removing either the SHT_GROUP section or any of
6401 the group member sections. DISCARDED is the value that a section's
6402 output_section has if the section will be discarded, NULL when this
6403 function is called from objcopy, bfd_abs_section_ptr when called
6404 from the linker. */
6405
6406 bfd_boolean
6407 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6408 {
6409 asection *isec;
6410
6411 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6412 if (elf_section_type (isec) == SHT_GROUP)
6413 {
6414 asection *first = elf_next_in_group (isec);
6415 asection *s = first;
6416 bfd_size_type removed = 0;
6417
6418 while (s != NULL)
6419 {
6420 /* If this member section is being output but the
6421 SHT_GROUP section is not, then clear the group info
6422 set up by _bfd_elf_copy_private_section_data. */
6423 if (s->output_section != discarded
6424 && isec->output_section == discarded)
6425 {
6426 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6427 elf_group_name (s->output_section) = NULL;
6428 }
6429 /* Conversely, if the member section is not being output
6430 but the SHT_GROUP section is, then adjust its size. */
6431 else if (s->output_section == discarded
6432 && isec->output_section != discarded)
6433 removed += 4;
6434 s = elf_next_in_group (s);
6435 if (s == first)
6436 break;
6437 }
6438 if (removed != 0)
6439 {
6440 if (discarded != NULL)
6441 {
6442 /* If we've been called for ld -r, then we need to
6443 adjust the input section size. This function may
6444 be called multiple times, so save the original
6445 size. */
6446 if (isec->rawsize == 0)
6447 isec->rawsize = isec->size;
6448 isec->size = isec->rawsize - removed;
6449 }
6450 else
6451 {
6452 /* Adjust the output section size when called from
6453 objcopy. */
6454 isec->output_section->size -= removed;
6455 }
6456 }
6457 }
6458
6459 return TRUE;
6460 }
6461
6462 /* Copy private header information. */
6463
6464 bfd_boolean
6465 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6466 {
6467 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6468 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6469 return TRUE;
6470
6471 /* Copy over private BFD data if it has not already been copied.
6472 This must be done here, rather than in the copy_private_bfd_data
6473 entry point, because the latter is called after the section
6474 contents have been set, which means that the program headers have
6475 already been worked out. */
6476 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6477 {
6478 if (! copy_private_bfd_data (ibfd, obfd))
6479 return FALSE;
6480 }
6481
6482 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6483 }
6484
6485 /* Copy private symbol information. If this symbol is in a section
6486 which we did not map into a BFD section, try to map the section
6487 index correctly. We use special macro definitions for the mapped
6488 section indices; these definitions are interpreted by the
6489 swap_out_syms function. */
6490
6491 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6492 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6493 #define MAP_STRTAB (SHN_HIOS + 3)
6494 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6495 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6496
6497 bfd_boolean
6498 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6499 asymbol *isymarg,
6500 bfd *obfd,
6501 asymbol *osymarg)
6502 {
6503 elf_symbol_type *isym, *osym;
6504
6505 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6506 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6507 return TRUE;
6508
6509 isym = elf_symbol_from (ibfd, isymarg);
6510 osym = elf_symbol_from (obfd, osymarg);
6511
6512 if (isym != NULL
6513 && isym->internal_elf_sym.st_shndx != 0
6514 && osym != NULL
6515 && bfd_is_abs_section (isym->symbol.section))
6516 {
6517 unsigned int shndx;
6518
6519 shndx = isym->internal_elf_sym.st_shndx;
6520 if (shndx == elf_onesymtab (ibfd))
6521 shndx = MAP_ONESYMTAB;
6522 else if (shndx == elf_dynsymtab (ibfd))
6523 shndx = MAP_DYNSYMTAB;
6524 else if (shndx == elf_tdata (ibfd)->strtab_section)
6525 shndx = MAP_STRTAB;
6526 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6527 shndx = MAP_SHSTRTAB;
6528 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6529 shndx = MAP_SYM_SHNDX;
6530 osym->internal_elf_sym.st_shndx = shndx;
6531 }
6532
6533 return TRUE;
6534 }
6535
6536 /* Swap out the symbols. */
6537
6538 static bfd_boolean
6539 swap_out_syms (bfd *abfd,
6540 struct bfd_strtab_hash **sttp,
6541 int relocatable_p)
6542 {
6543 const struct elf_backend_data *bed;
6544 int symcount;
6545 asymbol **syms;
6546 struct bfd_strtab_hash *stt;
6547 Elf_Internal_Shdr *symtab_hdr;
6548 Elf_Internal_Shdr *symtab_shndx_hdr;
6549 Elf_Internal_Shdr *symstrtab_hdr;
6550 bfd_byte *outbound_syms;
6551 bfd_byte *outbound_shndx;
6552 int idx;
6553 bfd_size_type amt;
6554 bfd_boolean name_local_sections;
6555
6556 if (!elf_map_symbols (abfd))
6557 return FALSE;
6558
6559 /* Dump out the symtabs. */
6560 stt = _bfd_elf_stringtab_init ();
6561 if (stt == NULL)
6562 return FALSE;
6563
6564 bed = get_elf_backend_data (abfd);
6565 symcount = bfd_get_symcount (abfd);
6566 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6567 symtab_hdr->sh_type = SHT_SYMTAB;
6568 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6569 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6570 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6571 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6572
6573 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6574 symstrtab_hdr->sh_type = SHT_STRTAB;
6575
6576 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6577 bed->s->sizeof_sym);
6578 if (outbound_syms == NULL)
6579 {
6580 _bfd_stringtab_free (stt);
6581 return FALSE;
6582 }
6583 symtab_hdr->contents = outbound_syms;
6584
6585 outbound_shndx = NULL;
6586 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6587 if (symtab_shndx_hdr->sh_name != 0)
6588 {
6589 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6590 outbound_shndx = (bfd_byte *)
6591 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6592 if (outbound_shndx == NULL)
6593 {
6594 _bfd_stringtab_free (stt);
6595 return FALSE;
6596 }
6597
6598 symtab_shndx_hdr->contents = outbound_shndx;
6599 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6600 symtab_shndx_hdr->sh_size = amt;
6601 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6602 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6603 }
6604
6605 /* Now generate the data (for "contents"). */
6606 {
6607 /* Fill in zeroth symbol and swap it out. */
6608 Elf_Internal_Sym sym;
6609 sym.st_name = 0;
6610 sym.st_value = 0;
6611 sym.st_size = 0;
6612 sym.st_info = 0;
6613 sym.st_other = 0;
6614 sym.st_shndx = SHN_UNDEF;
6615 sym.st_target_internal = 0;
6616 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6617 outbound_syms += bed->s->sizeof_sym;
6618 if (outbound_shndx != NULL)
6619 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6620 }
6621
6622 name_local_sections
6623 = (bed->elf_backend_name_local_section_symbols
6624 && bed->elf_backend_name_local_section_symbols (abfd));
6625
6626 syms = bfd_get_outsymbols (abfd);
6627 for (idx = 0; idx < symcount; idx++)
6628 {
6629 Elf_Internal_Sym sym;
6630 bfd_vma value = syms[idx]->value;
6631 elf_symbol_type *type_ptr;
6632 flagword flags = syms[idx]->flags;
6633 int type;
6634
6635 if (!name_local_sections
6636 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6637 {
6638 /* Local section symbols have no name. */
6639 sym.st_name = 0;
6640 }
6641 else
6642 {
6643 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6644 syms[idx]->name,
6645 TRUE, FALSE);
6646 if (sym.st_name == (unsigned long) -1)
6647 {
6648 _bfd_stringtab_free (stt);
6649 return FALSE;
6650 }
6651 }
6652
6653 type_ptr = elf_symbol_from (abfd, syms[idx]);
6654
6655 if ((flags & BSF_SECTION_SYM) == 0
6656 && bfd_is_com_section (syms[idx]->section))
6657 {
6658 /* ELF common symbols put the alignment into the `value' field,
6659 and the size into the `size' field. This is backwards from
6660 how BFD handles it, so reverse it here. */
6661 sym.st_size = value;
6662 if (type_ptr == NULL
6663 || type_ptr->internal_elf_sym.st_value == 0)
6664 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6665 else
6666 sym.st_value = type_ptr->internal_elf_sym.st_value;
6667 sym.st_shndx = _bfd_elf_section_from_bfd_section
6668 (abfd, syms[idx]->section);
6669 }
6670 else
6671 {
6672 asection *sec = syms[idx]->section;
6673 unsigned int shndx;
6674
6675 if (sec->output_section)
6676 {
6677 value += sec->output_offset;
6678 sec = sec->output_section;
6679 }
6680
6681 /* Don't add in the section vma for relocatable output. */
6682 if (! relocatable_p)
6683 value += sec->vma;
6684 sym.st_value = value;
6685 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6686
6687 if (bfd_is_abs_section (sec)
6688 && type_ptr != NULL
6689 && type_ptr->internal_elf_sym.st_shndx != 0)
6690 {
6691 /* This symbol is in a real ELF section which we did
6692 not create as a BFD section. Undo the mapping done
6693 by copy_private_symbol_data. */
6694 shndx = type_ptr->internal_elf_sym.st_shndx;
6695 switch (shndx)
6696 {
6697 case MAP_ONESYMTAB:
6698 shndx = elf_onesymtab (abfd);
6699 break;
6700 case MAP_DYNSYMTAB:
6701 shndx = elf_dynsymtab (abfd);
6702 break;
6703 case MAP_STRTAB:
6704 shndx = elf_tdata (abfd)->strtab_section;
6705 break;
6706 case MAP_SHSTRTAB:
6707 shndx = elf_tdata (abfd)->shstrtab_section;
6708 break;
6709 case MAP_SYM_SHNDX:
6710 shndx = elf_tdata (abfd)->symtab_shndx_section;
6711 break;
6712 default:
6713 break;
6714 }
6715 }
6716 else
6717 {
6718 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6719
6720 if (shndx == SHN_BAD)
6721 {
6722 asection *sec2;
6723
6724 /* Writing this would be a hell of a lot easier if
6725 we had some decent documentation on bfd, and
6726 knew what to expect of the library, and what to
6727 demand of applications. For example, it
6728 appears that `objcopy' might not set the
6729 section of a symbol to be a section that is
6730 actually in the output file. */
6731 sec2 = bfd_get_section_by_name (abfd, sec->name);
6732 if (sec2 == NULL)
6733 {
6734 _bfd_error_handler (_("\
6735 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6736 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6737 sec->name);
6738 bfd_set_error (bfd_error_invalid_operation);
6739 _bfd_stringtab_free (stt);
6740 return FALSE;
6741 }
6742
6743 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6744 BFD_ASSERT (shndx != SHN_BAD);
6745 }
6746 }
6747
6748 sym.st_shndx = shndx;
6749 }
6750
6751 if ((flags & BSF_THREAD_LOCAL) != 0)
6752 type = STT_TLS;
6753 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6754 type = STT_GNU_IFUNC;
6755 else if ((flags & BSF_FUNCTION) != 0)
6756 type = STT_FUNC;
6757 else if ((flags & BSF_OBJECT) != 0)
6758 type = STT_OBJECT;
6759 else if ((flags & BSF_RELC) != 0)
6760 type = STT_RELC;
6761 else if ((flags & BSF_SRELC) != 0)
6762 type = STT_SRELC;
6763 else
6764 type = STT_NOTYPE;
6765
6766 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6767 type = STT_TLS;
6768
6769 /* Processor-specific types. */
6770 if (type_ptr != NULL
6771 && bed->elf_backend_get_symbol_type)
6772 type = ((*bed->elf_backend_get_symbol_type)
6773 (&type_ptr->internal_elf_sym, type));
6774
6775 if (flags & BSF_SECTION_SYM)
6776 {
6777 if (flags & BSF_GLOBAL)
6778 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6779 else
6780 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6781 }
6782 else if (bfd_is_com_section (syms[idx]->section))
6783 {
6784 #ifdef USE_STT_COMMON
6785 if (type == STT_OBJECT)
6786 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6787 else
6788 #endif
6789 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6790 }
6791 else if (bfd_is_und_section (syms[idx]->section))
6792 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6793 ? STB_WEAK
6794 : STB_GLOBAL),
6795 type);
6796 else if (flags & BSF_FILE)
6797 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6798 else
6799 {
6800 int bind = STB_LOCAL;
6801
6802 if (flags & BSF_LOCAL)
6803 bind = STB_LOCAL;
6804 else if (flags & BSF_GNU_UNIQUE)
6805 bind = STB_GNU_UNIQUE;
6806 else if (flags & BSF_WEAK)
6807 bind = STB_WEAK;
6808 else if (flags & BSF_GLOBAL)
6809 bind = STB_GLOBAL;
6810
6811 sym.st_info = ELF_ST_INFO (bind, type);
6812 }
6813
6814 if (type_ptr != NULL)
6815 {
6816 sym.st_other = type_ptr->internal_elf_sym.st_other;
6817 sym.st_target_internal
6818 = type_ptr->internal_elf_sym.st_target_internal;
6819 }
6820 else
6821 {
6822 sym.st_other = 0;
6823 sym.st_target_internal = 0;
6824 }
6825
6826 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6827 outbound_syms += bed->s->sizeof_sym;
6828 if (outbound_shndx != NULL)
6829 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6830 }
6831
6832 *sttp = stt;
6833 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6834 symstrtab_hdr->sh_type = SHT_STRTAB;
6835
6836 symstrtab_hdr->sh_flags = 0;
6837 symstrtab_hdr->sh_addr = 0;
6838 symstrtab_hdr->sh_entsize = 0;
6839 symstrtab_hdr->sh_link = 0;
6840 symstrtab_hdr->sh_info = 0;
6841 symstrtab_hdr->sh_addralign = 1;
6842
6843 return TRUE;
6844 }
6845
6846 /* Return the number of bytes required to hold the symtab vector.
6847
6848 Note that we base it on the count plus 1, since we will null terminate
6849 the vector allocated based on this size. However, the ELF symbol table
6850 always has a dummy entry as symbol #0, so it ends up even. */
6851
6852 long
6853 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6854 {
6855 long symcount;
6856 long symtab_size;
6857 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6858
6859 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6860 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6861 if (symcount > 0)
6862 symtab_size -= sizeof (asymbol *);
6863
6864 return symtab_size;
6865 }
6866
6867 long
6868 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6869 {
6870 long symcount;
6871 long symtab_size;
6872 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6873
6874 if (elf_dynsymtab (abfd) == 0)
6875 {
6876 bfd_set_error (bfd_error_invalid_operation);
6877 return -1;
6878 }
6879
6880 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6881 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6882 if (symcount > 0)
6883 symtab_size -= sizeof (asymbol *);
6884
6885 return symtab_size;
6886 }
6887
6888 long
6889 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6890 sec_ptr asect)
6891 {
6892 return (asect->reloc_count + 1) * sizeof (arelent *);
6893 }
6894
6895 /* Canonicalize the relocs. */
6896
6897 long
6898 _bfd_elf_canonicalize_reloc (bfd *abfd,
6899 sec_ptr section,
6900 arelent **relptr,
6901 asymbol **symbols)
6902 {
6903 arelent *tblptr;
6904 unsigned int i;
6905 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6906
6907 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6908 return -1;
6909
6910 tblptr = section->relocation;
6911 for (i = 0; i < section->reloc_count; i++)
6912 *relptr++ = tblptr++;
6913
6914 *relptr = NULL;
6915
6916 return section->reloc_count;
6917 }
6918
6919 long
6920 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6921 {
6922 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6923 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6924
6925 if (symcount >= 0)
6926 bfd_get_symcount (abfd) = symcount;
6927 return symcount;
6928 }
6929
6930 long
6931 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6932 asymbol **allocation)
6933 {
6934 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6935 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6936
6937 if (symcount >= 0)
6938 bfd_get_dynamic_symcount (abfd) = symcount;
6939 return symcount;
6940 }
6941
6942 /* Return the size required for the dynamic reloc entries. Any loadable
6943 section that was actually installed in the BFD, and has type SHT_REL
6944 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6945 dynamic reloc section. */
6946
6947 long
6948 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6949 {
6950 long ret;
6951 asection *s;
6952
6953 if (elf_dynsymtab (abfd) == 0)
6954 {
6955 bfd_set_error (bfd_error_invalid_operation);
6956 return -1;
6957 }
6958
6959 ret = sizeof (arelent *);
6960 for (s = abfd->sections; s != NULL; s = s->next)
6961 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6962 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6963 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6964 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6965 * sizeof (arelent *));
6966
6967 return ret;
6968 }
6969
6970 /* Canonicalize the dynamic relocation entries. Note that we return the
6971 dynamic relocations as a single block, although they are actually
6972 associated with particular sections; the interface, which was
6973 designed for SunOS style shared libraries, expects that there is only
6974 one set of dynamic relocs. Any loadable section that was actually
6975 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6976 dynamic symbol table, is considered to be a dynamic reloc section. */
6977
6978 long
6979 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6980 arelent **storage,
6981 asymbol **syms)
6982 {
6983 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6984 asection *s;
6985 long ret;
6986
6987 if (elf_dynsymtab (abfd) == 0)
6988 {
6989 bfd_set_error (bfd_error_invalid_operation);
6990 return -1;
6991 }
6992
6993 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6994 ret = 0;
6995 for (s = abfd->sections; s != NULL; s = s->next)
6996 {
6997 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6998 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6999 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7000 {
7001 arelent *p;
7002 long count, i;
7003
7004 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7005 return -1;
7006 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7007 p = s->relocation;
7008 for (i = 0; i < count; i++)
7009 *storage++ = p++;
7010 ret += count;
7011 }
7012 }
7013
7014 *storage = NULL;
7015
7016 return ret;
7017 }
7018 \f
7019 /* Read in the version information. */
7020
7021 bfd_boolean
7022 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7023 {
7024 bfd_byte *contents = NULL;
7025 unsigned int freeidx = 0;
7026
7027 if (elf_dynverref (abfd) != 0)
7028 {
7029 Elf_Internal_Shdr *hdr;
7030 Elf_External_Verneed *everneed;
7031 Elf_Internal_Verneed *iverneed;
7032 unsigned int i;
7033 bfd_byte *contents_end;
7034
7035 hdr = &elf_tdata (abfd)->dynverref_hdr;
7036
7037 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7038 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7039 if (elf_tdata (abfd)->verref == NULL)
7040 goto error_return;
7041
7042 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7043
7044 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7045 if (contents == NULL)
7046 {
7047 error_return_verref:
7048 elf_tdata (abfd)->verref = NULL;
7049 elf_tdata (abfd)->cverrefs = 0;
7050 goto error_return;
7051 }
7052 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7053 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7054 goto error_return_verref;
7055
7056 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7057 goto error_return_verref;
7058
7059 BFD_ASSERT (sizeof (Elf_External_Verneed)
7060 == sizeof (Elf_External_Vernaux));
7061 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7062 everneed = (Elf_External_Verneed *) contents;
7063 iverneed = elf_tdata (abfd)->verref;
7064 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7065 {
7066 Elf_External_Vernaux *evernaux;
7067 Elf_Internal_Vernaux *ivernaux;
7068 unsigned int j;
7069
7070 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7071
7072 iverneed->vn_bfd = abfd;
7073
7074 iverneed->vn_filename =
7075 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7076 iverneed->vn_file);
7077 if (iverneed->vn_filename == NULL)
7078 goto error_return_verref;
7079
7080 if (iverneed->vn_cnt == 0)
7081 iverneed->vn_auxptr = NULL;
7082 else
7083 {
7084 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7085 bfd_alloc2 (abfd, iverneed->vn_cnt,
7086 sizeof (Elf_Internal_Vernaux));
7087 if (iverneed->vn_auxptr == NULL)
7088 goto error_return_verref;
7089 }
7090
7091 if (iverneed->vn_aux
7092 > (size_t) (contents_end - (bfd_byte *) everneed))
7093 goto error_return_verref;
7094
7095 evernaux = ((Elf_External_Vernaux *)
7096 ((bfd_byte *) everneed + iverneed->vn_aux));
7097 ivernaux = iverneed->vn_auxptr;
7098 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7099 {
7100 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7101
7102 ivernaux->vna_nodename =
7103 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7104 ivernaux->vna_name);
7105 if (ivernaux->vna_nodename == NULL)
7106 goto error_return_verref;
7107
7108 if (j + 1 < iverneed->vn_cnt)
7109 ivernaux->vna_nextptr = ivernaux + 1;
7110 else
7111 ivernaux->vna_nextptr = NULL;
7112
7113 if (ivernaux->vna_next
7114 > (size_t) (contents_end - (bfd_byte *) evernaux))
7115 goto error_return_verref;
7116
7117 evernaux = ((Elf_External_Vernaux *)
7118 ((bfd_byte *) evernaux + ivernaux->vna_next));
7119
7120 if (ivernaux->vna_other > freeidx)
7121 freeidx = ivernaux->vna_other;
7122 }
7123
7124 if (i + 1 < hdr->sh_info)
7125 iverneed->vn_nextref = iverneed + 1;
7126 else
7127 iverneed->vn_nextref = NULL;
7128
7129 if (iverneed->vn_next
7130 > (size_t) (contents_end - (bfd_byte *) everneed))
7131 goto error_return_verref;
7132
7133 everneed = ((Elf_External_Verneed *)
7134 ((bfd_byte *) everneed + iverneed->vn_next));
7135 }
7136
7137 free (contents);
7138 contents = NULL;
7139 }
7140
7141 if (elf_dynverdef (abfd) != 0)
7142 {
7143 Elf_Internal_Shdr *hdr;
7144 Elf_External_Verdef *everdef;
7145 Elf_Internal_Verdef *iverdef;
7146 Elf_Internal_Verdef *iverdefarr;
7147 Elf_Internal_Verdef iverdefmem;
7148 unsigned int i;
7149 unsigned int maxidx;
7150 bfd_byte *contents_end_def, *contents_end_aux;
7151
7152 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7153
7154 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7155 if (contents == NULL)
7156 goto error_return;
7157 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7158 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7159 goto error_return;
7160
7161 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7162 goto error_return;
7163
7164 BFD_ASSERT (sizeof (Elf_External_Verdef)
7165 >= sizeof (Elf_External_Verdaux));
7166 contents_end_def = contents + hdr->sh_size
7167 - sizeof (Elf_External_Verdef);
7168 contents_end_aux = contents + hdr->sh_size
7169 - sizeof (Elf_External_Verdaux);
7170
7171 /* We know the number of entries in the section but not the maximum
7172 index. Therefore we have to run through all entries and find
7173 the maximum. */
7174 everdef = (Elf_External_Verdef *) contents;
7175 maxidx = 0;
7176 for (i = 0; i < hdr->sh_info; ++i)
7177 {
7178 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7179
7180 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7181 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7182
7183 if (iverdefmem.vd_next
7184 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7185 goto error_return;
7186
7187 everdef = ((Elf_External_Verdef *)
7188 ((bfd_byte *) everdef + iverdefmem.vd_next));
7189 }
7190
7191 if (default_imported_symver)
7192 {
7193 if (freeidx > maxidx)
7194 maxidx = ++freeidx;
7195 else
7196 freeidx = ++maxidx;
7197 }
7198 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7199 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7200 if (elf_tdata (abfd)->verdef == NULL)
7201 goto error_return;
7202
7203 elf_tdata (abfd)->cverdefs = maxidx;
7204
7205 everdef = (Elf_External_Verdef *) contents;
7206 iverdefarr = elf_tdata (abfd)->verdef;
7207 for (i = 0; i < hdr->sh_info; i++)
7208 {
7209 Elf_External_Verdaux *everdaux;
7210 Elf_Internal_Verdaux *iverdaux;
7211 unsigned int j;
7212
7213 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7214
7215 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7216 {
7217 error_return_verdef:
7218 elf_tdata (abfd)->verdef = NULL;
7219 elf_tdata (abfd)->cverdefs = 0;
7220 goto error_return;
7221 }
7222
7223 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7224 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7225
7226 iverdef->vd_bfd = abfd;
7227
7228 if (iverdef->vd_cnt == 0)
7229 iverdef->vd_auxptr = NULL;
7230 else
7231 {
7232 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7233 bfd_alloc2 (abfd, iverdef->vd_cnt,
7234 sizeof (Elf_Internal_Verdaux));
7235 if (iverdef->vd_auxptr == NULL)
7236 goto error_return_verdef;
7237 }
7238
7239 if (iverdef->vd_aux
7240 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7241 goto error_return_verdef;
7242
7243 everdaux = ((Elf_External_Verdaux *)
7244 ((bfd_byte *) everdef + iverdef->vd_aux));
7245 iverdaux = iverdef->vd_auxptr;
7246 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7247 {
7248 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7249
7250 iverdaux->vda_nodename =
7251 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7252 iverdaux->vda_name);
7253 if (iverdaux->vda_nodename == NULL)
7254 goto error_return_verdef;
7255
7256 if (j + 1 < iverdef->vd_cnt)
7257 iverdaux->vda_nextptr = iverdaux + 1;
7258 else
7259 iverdaux->vda_nextptr = NULL;
7260
7261 if (iverdaux->vda_next
7262 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7263 goto error_return_verdef;
7264
7265 everdaux = ((Elf_External_Verdaux *)
7266 ((bfd_byte *) everdaux + iverdaux->vda_next));
7267 }
7268
7269 if (iverdef->vd_cnt)
7270 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7271
7272 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7273 iverdef->vd_nextdef = iverdef + 1;
7274 else
7275 iverdef->vd_nextdef = NULL;
7276
7277 everdef = ((Elf_External_Verdef *)
7278 ((bfd_byte *) everdef + iverdef->vd_next));
7279 }
7280
7281 free (contents);
7282 contents = NULL;
7283 }
7284 else if (default_imported_symver)
7285 {
7286 if (freeidx < 3)
7287 freeidx = 3;
7288 else
7289 freeidx++;
7290
7291 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7292 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7293 if (elf_tdata (abfd)->verdef == NULL)
7294 goto error_return;
7295
7296 elf_tdata (abfd)->cverdefs = freeidx;
7297 }
7298
7299 /* Create a default version based on the soname. */
7300 if (default_imported_symver)
7301 {
7302 Elf_Internal_Verdef *iverdef;
7303 Elf_Internal_Verdaux *iverdaux;
7304
7305 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7306
7307 iverdef->vd_version = VER_DEF_CURRENT;
7308 iverdef->vd_flags = 0;
7309 iverdef->vd_ndx = freeidx;
7310 iverdef->vd_cnt = 1;
7311
7312 iverdef->vd_bfd = abfd;
7313
7314 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7315 if (iverdef->vd_nodename == NULL)
7316 goto error_return_verdef;
7317 iverdef->vd_nextdef = NULL;
7318 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7319 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7320 if (iverdef->vd_auxptr == NULL)
7321 goto error_return_verdef;
7322
7323 iverdaux = iverdef->vd_auxptr;
7324 iverdaux->vda_nodename = iverdef->vd_nodename;
7325 iverdaux->vda_nextptr = NULL;
7326 }
7327
7328 return TRUE;
7329
7330 error_return:
7331 if (contents != NULL)
7332 free (contents);
7333 return FALSE;
7334 }
7335 \f
7336 asymbol *
7337 _bfd_elf_make_empty_symbol (bfd *abfd)
7338 {
7339 elf_symbol_type *newsym;
7340 bfd_size_type amt = sizeof (elf_symbol_type);
7341
7342 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7343 if (!newsym)
7344 return NULL;
7345 else
7346 {
7347 newsym->symbol.the_bfd = abfd;
7348 return &newsym->symbol;
7349 }
7350 }
7351
7352 void
7353 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7354 asymbol *symbol,
7355 symbol_info *ret)
7356 {
7357 bfd_symbol_info (symbol, ret);
7358 }
7359
7360 /* Return whether a symbol name implies a local symbol. Most targets
7361 use this function for the is_local_label_name entry point, but some
7362 override it. */
7363
7364 bfd_boolean
7365 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7366 const char *name)
7367 {
7368 /* Normal local symbols start with ``.L''. */
7369 if (name[0] == '.' && name[1] == 'L')
7370 return TRUE;
7371
7372 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7373 DWARF debugging symbols starting with ``..''. */
7374 if (name[0] == '.' && name[1] == '.')
7375 return TRUE;
7376
7377 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7378 emitting DWARF debugging output. I suspect this is actually a
7379 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7380 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7381 underscore to be emitted on some ELF targets). For ease of use,
7382 we treat such symbols as local. */
7383 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7384 return TRUE;
7385
7386 return FALSE;
7387 }
7388
7389 alent *
7390 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7391 asymbol *symbol ATTRIBUTE_UNUSED)
7392 {
7393 abort ();
7394 return NULL;
7395 }
7396
7397 bfd_boolean
7398 _bfd_elf_set_arch_mach (bfd *abfd,
7399 enum bfd_architecture arch,
7400 unsigned long machine)
7401 {
7402 /* If this isn't the right architecture for this backend, and this
7403 isn't the generic backend, fail. */
7404 if (arch != get_elf_backend_data (abfd)->arch
7405 && arch != bfd_arch_unknown
7406 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7407 return FALSE;
7408
7409 return bfd_default_set_arch_mach (abfd, arch, machine);
7410 }
7411
7412 /* Find the function to a particular section and offset,
7413 for error reporting. */
7414
7415 static bfd_boolean
7416 elf_find_function (bfd *abfd,
7417 asection *section,
7418 asymbol **symbols,
7419 bfd_vma offset,
7420 const char **filename_ptr,
7421 const char **functionname_ptr)
7422 {
7423 static asection *last_section;
7424 static asymbol *func;
7425 static const char *filename;
7426 static bfd_size_type func_size;
7427
7428 if (symbols == NULL)
7429 return FALSE;
7430
7431 if (last_section != section
7432 || func == NULL
7433 || offset < func->value
7434 || offset >= func->value + func_size)
7435 {
7436 asymbol *file;
7437 bfd_vma low_func;
7438 asymbol **p;
7439 /* ??? Given multiple file symbols, it is impossible to reliably
7440 choose the right file name for global symbols. File symbols are
7441 local symbols, and thus all file symbols must sort before any
7442 global symbols. The ELF spec may be interpreted to say that a
7443 file symbol must sort before other local symbols, but currently
7444 ld -r doesn't do this. So, for ld -r output, it is possible to
7445 make a better choice of file name for local symbols by ignoring
7446 file symbols appearing after a given local symbol. */
7447 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7448 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7449
7450 filename = NULL;
7451 func = NULL;
7452 file = NULL;
7453 low_func = 0;
7454 state = nothing_seen;
7455 func_size = 0;
7456 last_section = section;
7457
7458 for (p = symbols; *p != NULL; p++)
7459 {
7460 asymbol *sym = *p;
7461 bfd_vma code_off;
7462 bfd_size_type size;
7463
7464 if ((sym->flags & BSF_FILE) != 0)
7465 {
7466 file = sym;
7467 if (state == symbol_seen)
7468 state = file_after_symbol_seen;
7469 continue;
7470 }
7471
7472 size = bed->maybe_function_sym (sym, section, &code_off);
7473 if (size != 0
7474 && code_off <= offset
7475 && (code_off > low_func
7476 || (code_off == low_func
7477 && size > func_size)))
7478 {
7479 func = sym;
7480 func_size = size;
7481 low_func = code_off;
7482 filename = NULL;
7483 if (file != NULL
7484 && ((sym->flags & BSF_LOCAL) != 0
7485 || state != file_after_symbol_seen))
7486 filename = bfd_asymbol_name (file);
7487 }
7488 if (state == nothing_seen)
7489 state = symbol_seen;
7490 }
7491 }
7492
7493 if (func == NULL)
7494 return FALSE;
7495
7496 if (filename_ptr)
7497 *filename_ptr = filename;
7498 if (functionname_ptr)
7499 *functionname_ptr = bfd_asymbol_name (func);
7500
7501 return TRUE;
7502 }
7503
7504 /* Find the nearest line to a particular section and offset,
7505 for error reporting. */
7506
7507 bfd_boolean
7508 _bfd_elf_find_nearest_line (bfd *abfd,
7509 asection *section,
7510 asymbol **symbols,
7511 bfd_vma offset,
7512 const char **filename_ptr,
7513 const char **functionname_ptr,
7514 unsigned int *line_ptr)
7515 {
7516 bfd_boolean found;
7517
7518 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7519 filename_ptr, functionname_ptr,
7520 line_ptr))
7521 {
7522 if (!*functionname_ptr)
7523 elf_find_function (abfd, section, symbols, offset,
7524 *filename_ptr ? NULL : filename_ptr,
7525 functionname_ptr);
7526
7527 return TRUE;
7528 }
7529
7530 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7531 section, symbols, offset,
7532 filename_ptr, functionname_ptr,
7533 line_ptr, 0,
7534 &elf_tdata (abfd)->dwarf2_find_line_info))
7535 {
7536 if (!*functionname_ptr)
7537 elf_find_function (abfd, section, symbols, offset,
7538 *filename_ptr ? NULL : filename_ptr,
7539 functionname_ptr);
7540
7541 return TRUE;
7542 }
7543
7544 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7545 &found, filename_ptr,
7546 functionname_ptr, line_ptr,
7547 &elf_tdata (abfd)->line_info))
7548 return FALSE;
7549 if (found && (*functionname_ptr || *line_ptr))
7550 return TRUE;
7551
7552 if (symbols == NULL)
7553 return FALSE;
7554
7555 if (! elf_find_function (abfd, section, symbols, offset,
7556 filename_ptr, functionname_ptr))
7557 return FALSE;
7558
7559 *line_ptr = 0;
7560 return TRUE;
7561 }
7562
7563 /* Find the line for a symbol. */
7564
7565 bfd_boolean
7566 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7567 const char **filename_ptr, unsigned int *line_ptr)
7568 {
7569 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7570 filename_ptr, line_ptr, 0,
7571 &elf_tdata (abfd)->dwarf2_find_line_info);
7572 }
7573
7574 /* After a call to bfd_find_nearest_line, successive calls to
7575 bfd_find_inliner_info can be used to get source information about
7576 each level of function inlining that terminated at the address
7577 passed to bfd_find_nearest_line. Currently this is only supported
7578 for DWARF2 with appropriate DWARF3 extensions. */
7579
7580 bfd_boolean
7581 _bfd_elf_find_inliner_info (bfd *abfd,
7582 const char **filename_ptr,
7583 const char **functionname_ptr,
7584 unsigned int *line_ptr)
7585 {
7586 bfd_boolean found;
7587 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7588 functionname_ptr, line_ptr,
7589 & elf_tdata (abfd)->dwarf2_find_line_info);
7590 return found;
7591 }
7592
7593 int
7594 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7595 {
7596 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7597 int ret = bed->s->sizeof_ehdr;
7598
7599 if (!info->relocatable)
7600 {
7601 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7602
7603 if (phdr_size == (bfd_size_type) -1)
7604 {
7605 struct elf_segment_map *m;
7606
7607 phdr_size = 0;
7608 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7609 phdr_size += bed->s->sizeof_phdr;
7610
7611 if (phdr_size == 0)
7612 phdr_size = get_program_header_size (abfd, info);
7613 }
7614
7615 elf_tdata (abfd)->program_header_size = phdr_size;
7616 ret += phdr_size;
7617 }
7618
7619 return ret;
7620 }
7621
7622 bfd_boolean
7623 _bfd_elf_set_section_contents (bfd *abfd,
7624 sec_ptr section,
7625 const void *location,
7626 file_ptr offset,
7627 bfd_size_type count)
7628 {
7629 Elf_Internal_Shdr *hdr;
7630 bfd_signed_vma pos;
7631
7632 if (! abfd->output_has_begun
7633 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7634 return FALSE;
7635
7636 hdr = &elf_section_data (section)->this_hdr;
7637 pos = hdr->sh_offset + offset;
7638 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7639 || bfd_bwrite (location, count, abfd) != count)
7640 return FALSE;
7641
7642 return TRUE;
7643 }
7644
7645 void
7646 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7647 arelent *cache_ptr ATTRIBUTE_UNUSED,
7648 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7649 {
7650 abort ();
7651 }
7652
7653 /* Try to convert a non-ELF reloc into an ELF one. */
7654
7655 bfd_boolean
7656 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7657 {
7658 /* Check whether we really have an ELF howto. */
7659
7660 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7661 {
7662 bfd_reloc_code_real_type code;
7663 reloc_howto_type *howto;
7664
7665 /* Alien reloc: Try to determine its type to replace it with an
7666 equivalent ELF reloc. */
7667
7668 if (areloc->howto->pc_relative)
7669 {
7670 switch (areloc->howto->bitsize)
7671 {
7672 case 8:
7673 code = BFD_RELOC_8_PCREL;
7674 break;
7675 case 12:
7676 code = BFD_RELOC_12_PCREL;
7677 break;
7678 case 16:
7679 code = BFD_RELOC_16_PCREL;
7680 break;
7681 case 24:
7682 code = BFD_RELOC_24_PCREL;
7683 break;
7684 case 32:
7685 code = BFD_RELOC_32_PCREL;
7686 break;
7687 case 64:
7688 code = BFD_RELOC_64_PCREL;
7689 break;
7690 default:
7691 goto fail;
7692 }
7693
7694 howto = bfd_reloc_type_lookup (abfd, code);
7695
7696 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7697 {
7698 if (howto->pcrel_offset)
7699 areloc->addend += areloc->address;
7700 else
7701 areloc->addend -= areloc->address; /* addend is unsigned!! */
7702 }
7703 }
7704 else
7705 {
7706 switch (areloc->howto->bitsize)
7707 {
7708 case 8:
7709 code = BFD_RELOC_8;
7710 break;
7711 case 14:
7712 code = BFD_RELOC_14;
7713 break;
7714 case 16:
7715 code = BFD_RELOC_16;
7716 break;
7717 case 26:
7718 code = BFD_RELOC_26;
7719 break;
7720 case 32:
7721 code = BFD_RELOC_32;
7722 break;
7723 case 64:
7724 code = BFD_RELOC_64;
7725 break;
7726 default:
7727 goto fail;
7728 }
7729
7730 howto = bfd_reloc_type_lookup (abfd, code);
7731 }
7732
7733 if (howto)
7734 areloc->howto = howto;
7735 else
7736 goto fail;
7737 }
7738
7739 return TRUE;
7740
7741 fail:
7742 (*_bfd_error_handler)
7743 (_("%B: unsupported relocation type %s"),
7744 abfd, areloc->howto->name);
7745 bfd_set_error (bfd_error_bad_value);
7746 return FALSE;
7747 }
7748
7749 bfd_boolean
7750 _bfd_elf_close_and_cleanup (bfd *abfd)
7751 {
7752 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7753 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7754 {
7755 if (elf_shstrtab (abfd) != NULL)
7756 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7757 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7758 }
7759
7760 return _bfd_generic_close_and_cleanup (abfd);
7761 }
7762
7763 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7764 in the relocation's offset. Thus we cannot allow any sort of sanity
7765 range-checking to interfere. There is nothing else to do in processing
7766 this reloc. */
7767
7768 bfd_reloc_status_type
7769 _bfd_elf_rel_vtable_reloc_fn
7770 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7771 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7772 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7773 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7774 {
7775 return bfd_reloc_ok;
7776 }
7777 \f
7778 /* Elf core file support. Much of this only works on native
7779 toolchains, since we rely on knowing the
7780 machine-dependent procfs structure in order to pick
7781 out details about the corefile. */
7782
7783 #ifdef HAVE_SYS_PROCFS_H
7784 /* Needed for new procfs interface on sparc-solaris. */
7785 # define _STRUCTURED_PROC 1
7786 # include <sys/procfs.h>
7787 #endif
7788
7789 /* Return a PID that identifies a "thread" for threaded cores, or the
7790 PID of the main process for non-threaded cores. */
7791
7792 static int
7793 elfcore_make_pid (bfd *abfd)
7794 {
7795 int pid;
7796
7797 pid = elf_tdata (abfd)->core_lwpid;
7798 if (pid == 0)
7799 pid = elf_tdata (abfd)->core_pid;
7800
7801 return pid;
7802 }
7803
7804 /* If there isn't a section called NAME, make one, using
7805 data from SECT. Note, this function will generate a
7806 reference to NAME, so you shouldn't deallocate or
7807 overwrite it. */
7808
7809 static bfd_boolean
7810 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7811 {
7812 asection *sect2;
7813
7814 if (bfd_get_section_by_name (abfd, name) != NULL)
7815 return TRUE;
7816
7817 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7818 if (sect2 == NULL)
7819 return FALSE;
7820
7821 sect2->size = sect->size;
7822 sect2->filepos = sect->filepos;
7823 sect2->alignment_power = sect->alignment_power;
7824 return TRUE;
7825 }
7826
7827 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7828 actually creates up to two pseudosections:
7829 - For the single-threaded case, a section named NAME, unless
7830 such a section already exists.
7831 - For the multi-threaded case, a section named "NAME/PID", where
7832 PID is elfcore_make_pid (abfd).
7833 Both pseudosections have identical contents. */
7834 bfd_boolean
7835 _bfd_elfcore_make_pseudosection (bfd *abfd,
7836 char *name,
7837 size_t size,
7838 ufile_ptr filepos)
7839 {
7840 char buf[100];
7841 char *threaded_name;
7842 size_t len;
7843 asection *sect;
7844
7845 /* Build the section name. */
7846
7847 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7848 len = strlen (buf) + 1;
7849 threaded_name = (char *) bfd_alloc (abfd, len);
7850 if (threaded_name == NULL)
7851 return FALSE;
7852 memcpy (threaded_name, buf, len);
7853
7854 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7855 SEC_HAS_CONTENTS);
7856 if (sect == NULL)
7857 return FALSE;
7858 sect->size = size;
7859 sect->filepos = filepos;
7860 sect->alignment_power = 2;
7861
7862 return elfcore_maybe_make_sect (abfd, name, sect);
7863 }
7864
7865 /* prstatus_t exists on:
7866 solaris 2.5+
7867 linux 2.[01] + glibc
7868 unixware 4.2
7869 */
7870
7871 #if defined (HAVE_PRSTATUS_T)
7872
7873 static bfd_boolean
7874 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7875 {
7876 size_t size;
7877 int offset;
7878
7879 if (note->descsz == sizeof (prstatus_t))
7880 {
7881 prstatus_t prstat;
7882
7883 size = sizeof (prstat.pr_reg);
7884 offset = offsetof (prstatus_t, pr_reg);
7885 memcpy (&prstat, note->descdata, sizeof (prstat));
7886
7887 /* Do not overwrite the core signal if it
7888 has already been set by another thread. */
7889 if (elf_tdata (abfd)->core_signal == 0)
7890 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7891 if (elf_tdata (abfd)->core_pid == 0)
7892 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7893
7894 /* pr_who exists on:
7895 solaris 2.5+
7896 unixware 4.2
7897 pr_who doesn't exist on:
7898 linux 2.[01]
7899 */
7900 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7901 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7902 #else
7903 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7904 #endif
7905 }
7906 #if defined (HAVE_PRSTATUS32_T)
7907 else if (note->descsz == sizeof (prstatus32_t))
7908 {
7909 /* 64-bit host, 32-bit corefile */
7910 prstatus32_t prstat;
7911
7912 size = sizeof (prstat.pr_reg);
7913 offset = offsetof (prstatus32_t, pr_reg);
7914 memcpy (&prstat, note->descdata, sizeof (prstat));
7915
7916 /* Do not overwrite the core signal if it
7917 has already been set by another thread. */
7918 if (elf_tdata (abfd)->core_signal == 0)
7919 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7920 if (elf_tdata (abfd)->core_pid == 0)
7921 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7922
7923 /* pr_who exists on:
7924 solaris 2.5+
7925 unixware 4.2
7926 pr_who doesn't exist on:
7927 linux 2.[01]
7928 */
7929 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7930 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7931 #else
7932 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7933 #endif
7934 }
7935 #endif /* HAVE_PRSTATUS32_T */
7936 else
7937 {
7938 /* Fail - we don't know how to handle any other
7939 note size (ie. data object type). */
7940 return TRUE;
7941 }
7942
7943 /* Make a ".reg/999" section and a ".reg" section. */
7944 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7945 size, note->descpos + offset);
7946 }
7947 #endif /* defined (HAVE_PRSTATUS_T) */
7948
7949 /* Create a pseudosection containing the exact contents of NOTE. */
7950 static bfd_boolean
7951 elfcore_make_note_pseudosection (bfd *abfd,
7952 char *name,
7953 Elf_Internal_Note *note)
7954 {
7955 return _bfd_elfcore_make_pseudosection (abfd, name,
7956 note->descsz, note->descpos);
7957 }
7958
7959 /* There isn't a consistent prfpregset_t across platforms,
7960 but it doesn't matter, because we don't have to pick this
7961 data structure apart. */
7962
7963 static bfd_boolean
7964 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7965 {
7966 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7967 }
7968
7969 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7970 type of NT_PRXFPREG. Just include the whole note's contents
7971 literally. */
7972
7973 static bfd_boolean
7974 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7975 {
7976 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7977 }
7978
7979 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7980 with a note type of NT_X86_XSTATE. Just include the whole note's
7981 contents literally. */
7982
7983 static bfd_boolean
7984 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
7985 {
7986 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
7987 }
7988
7989 static bfd_boolean
7990 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7991 {
7992 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7993 }
7994
7995 static bfd_boolean
7996 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7997 {
7998 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7999 }
8000
8001 static bfd_boolean
8002 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8003 {
8004 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8005 }
8006
8007 static bfd_boolean
8008 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8009 {
8010 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8011 }
8012
8013 static bfd_boolean
8014 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8015 {
8016 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8017 }
8018
8019 static bfd_boolean
8020 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8021 {
8022 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8023 }
8024
8025 static bfd_boolean
8026 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8027 {
8028 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8029 }
8030
8031 static bfd_boolean
8032 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8033 {
8034 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8035 }
8036
8037 static bfd_boolean
8038 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8039 {
8040 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8041 }
8042
8043 static bfd_boolean
8044 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8045 {
8046 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8047 }
8048
8049 static bfd_boolean
8050 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8051 {
8052 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8053 }
8054
8055 #if defined (HAVE_PRPSINFO_T)
8056 typedef prpsinfo_t elfcore_psinfo_t;
8057 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8058 typedef prpsinfo32_t elfcore_psinfo32_t;
8059 #endif
8060 #endif
8061
8062 #if defined (HAVE_PSINFO_T)
8063 typedef psinfo_t elfcore_psinfo_t;
8064 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8065 typedef psinfo32_t elfcore_psinfo32_t;
8066 #endif
8067 #endif
8068
8069 /* return a malloc'ed copy of a string at START which is at
8070 most MAX bytes long, possibly without a terminating '\0'.
8071 the copy will always have a terminating '\0'. */
8072
8073 char *
8074 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8075 {
8076 char *dups;
8077 char *end = (char *) memchr (start, '\0', max);
8078 size_t len;
8079
8080 if (end == NULL)
8081 len = max;
8082 else
8083 len = end - start;
8084
8085 dups = (char *) bfd_alloc (abfd, len + 1);
8086 if (dups == NULL)
8087 return NULL;
8088
8089 memcpy (dups, start, len);
8090 dups[len] = '\0';
8091
8092 return dups;
8093 }
8094
8095 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8096 static bfd_boolean
8097 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8098 {
8099 if (note->descsz == sizeof (elfcore_psinfo_t))
8100 {
8101 elfcore_psinfo_t psinfo;
8102
8103 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8104
8105 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8106 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8107 #endif
8108 elf_tdata (abfd)->core_program
8109 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8110 sizeof (psinfo.pr_fname));
8111
8112 elf_tdata (abfd)->core_command
8113 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8114 sizeof (psinfo.pr_psargs));
8115 }
8116 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8117 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8118 {
8119 /* 64-bit host, 32-bit corefile */
8120 elfcore_psinfo32_t psinfo;
8121
8122 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8123
8124 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8125 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8126 #endif
8127 elf_tdata (abfd)->core_program
8128 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8129 sizeof (psinfo.pr_fname));
8130
8131 elf_tdata (abfd)->core_command
8132 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8133 sizeof (psinfo.pr_psargs));
8134 }
8135 #endif
8136
8137 else
8138 {
8139 /* Fail - we don't know how to handle any other
8140 note size (ie. data object type). */
8141 return TRUE;
8142 }
8143
8144 /* Note that for some reason, a spurious space is tacked
8145 onto the end of the args in some (at least one anyway)
8146 implementations, so strip it off if it exists. */
8147
8148 {
8149 char *command = elf_tdata (abfd)->core_command;
8150 int n = strlen (command);
8151
8152 if (0 < n && command[n - 1] == ' ')
8153 command[n - 1] = '\0';
8154 }
8155
8156 return TRUE;
8157 }
8158 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8159
8160 #if defined (HAVE_PSTATUS_T)
8161 static bfd_boolean
8162 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8163 {
8164 if (note->descsz == sizeof (pstatus_t)
8165 #if defined (HAVE_PXSTATUS_T)
8166 || note->descsz == sizeof (pxstatus_t)
8167 #endif
8168 )
8169 {
8170 pstatus_t pstat;
8171
8172 memcpy (&pstat, note->descdata, sizeof (pstat));
8173
8174 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8175 }
8176 #if defined (HAVE_PSTATUS32_T)
8177 else if (note->descsz == sizeof (pstatus32_t))
8178 {
8179 /* 64-bit host, 32-bit corefile */
8180 pstatus32_t pstat;
8181
8182 memcpy (&pstat, note->descdata, sizeof (pstat));
8183
8184 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8185 }
8186 #endif
8187 /* Could grab some more details from the "representative"
8188 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8189 NT_LWPSTATUS note, presumably. */
8190
8191 return TRUE;
8192 }
8193 #endif /* defined (HAVE_PSTATUS_T) */
8194
8195 #if defined (HAVE_LWPSTATUS_T)
8196 static bfd_boolean
8197 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8198 {
8199 lwpstatus_t lwpstat;
8200 char buf[100];
8201 char *name;
8202 size_t len;
8203 asection *sect;
8204
8205 if (note->descsz != sizeof (lwpstat)
8206 #if defined (HAVE_LWPXSTATUS_T)
8207 && note->descsz != sizeof (lwpxstatus_t)
8208 #endif
8209 )
8210 return TRUE;
8211
8212 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8213
8214 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8215 /* Do not overwrite the core signal if it has already been set by
8216 another thread. */
8217 if (elf_tdata (abfd)->core_signal == 0)
8218 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8219
8220 /* Make a ".reg/999" section. */
8221
8222 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8223 len = strlen (buf) + 1;
8224 name = bfd_alloc (abfd, len);
8225 if (name == NULL)
8226 return FALSE;
8227 memcpy (name, buf, len);
8228
8229 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8230 if (sect == NULL)
8231 return FALSE;
8232
8233 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8234 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8235 sect->filepos = note->descpos
8236 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8237 #endif
8238
8239 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8240 sect->size = sizeof (lwpstat.pr_reg);
8241 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8242 #endif
8243
8244 sect->alignment_power = 2;
8245
8246 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8247 return FALSE;
8248
8249 /* Make a ".reg2/999" section */
8250
8251 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8252 len = strlen (buf) + 1;
8253 name = bfd_alloc (abfd, len);
8254 if (name == NULL)
8255 return FALSE;
8256 memcpy (name, buf, len);
8257
8258 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8259 if (sect == NULL)
8260 return FALSE;
8261
8262 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8263 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8264 sect->filepos = note->descpos
8265 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8266 #endif
8267
8268 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8269 sect->size = sizeof (lwpstat.pr_fpreg);
8270 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8271 #endif
8272
8273 sect->alignment_power = 2;
8274
8275 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8276 }
8277 #endif /* defined (HAVE_LWPSTATUS_T) */
8278
8279 static bfd_boolean
8280 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8281 {
8282 char buf[30];
8283 char *name;
8284 size_t len;
8285 asection *sect;
8286 int type;
8287 int is_active_thread;
8288 bfd_vma base_addr;
8289
8290 if (note->descsz < 728)
8291 return TRUE;
8292
8293 if (! CONST_STRNEQ (note->namedata, "win32"))
8294 return TRUE;
8295
8296 type = bfd_get_32 (abfd, note->descdata);
8297
8298 switch (type)
8299 {
8300 case 1 /* NOTE_INFO_PROCESS */:
8301 /* FIXME: need to add ->core_command. */
8302 /* process_info.pid */
8303 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8304 /* process_info.signal */
8305 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8306 break;
8307
8308 case 2 /* NOTE_INFO_THREAD */:
8309 /* Make a ".reg/999" section. */
8310 /* thread_info.tid */
8311 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8312
8313 len = strlen (buf) + 1;
8314 name = (char *) bfd_alloc (abfd, len);
8315 if (name == NULL)
8316 return FALSE;
8317
8318 memcpy (name, buf, len);
8319
8320 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8321 if (sect == NULL)
8322 return FALSE;
8323
8324 /* sizeof (thread_info.thread_context) */
8325 sect->size = 716;
8326 /* offsetof (thread_info.thread_context) */
8327 sect->filepos = note->descpos + 12;
8328 sect->alignment_power = 2;
8329
8330 /* thread_info.is_active_thread */
8331 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8332
8333 if (is_active_thread)
8334 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8335 return FALSE;
8336 break;
8337
8338 case 3 /* NOTE_INFO_MODULE */:
8339 /* Make a ".module/xxxxxxxx" section. */
8340 /* module_info.base_address */
8341 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8342 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8343
8344 len = strlen (buf) + 1;
8345 name = (char *) bfd_alloc (abfd, len);
8346 if (name == NULL)
8347 return FALSE;
8348
8349 memcpy (name, buf, len);
8350
8351 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8352
8353 if (sect == NULL)
8354 return FALSE;
8355
8356 sect->size = note->descsz;
8357 sect->filepos = note->descpos;
8358 sect->alignment_power = 2;
8359 break;
8360
8361 default:
8362 return TRUE;
8363 }
8364
8365 return TRUE;
8366 }
8367
8368 static bfd_boolean
8369 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8370 {
8371 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8372
8373 switch (note->type)
8374 {
8375 default:
8376 return TRUE;
8377
8378 case NT_PRSTATUS:
8379 if (bed->elf_backend_grok_prstatus)
8380 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8381 return TRUE;
8382 #if defined (HAVE_PRSTATUS_T)
8383 return elfcore_grok_prstatus (abfd, note);
8384 #else
8385 return TRUE;
8386 #endif
8387
8388 #if defined (HAVE_PSTATUS_T)
8389 case NT_PSTATUS:
8390 return elfcore_grok_pstatus (abfd, note);
8391 #endif
8392
8393 #if defined (HAVE_LWPSTATUS_T)
8394 case NT_LWPSTATUS:
8395 return elfcore_grok_lwpstatus (abfd, note);
8396 #endif
8397
8398 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8399 return elfcore_grok_prfpreg (abfd, note);
8400
8401 case NT_WIN32PSTATUS:
8402 return elfcore_grok_win32pstatus (abfd, note);
8403
8404 case NT_PRXFPREG: /* Linux SSE extension */
8405 if (note->namesz == 6
8406 && strcmp (note->namedata, "LINUX") == 0)
8407 return elfcore_grok_prxfpreg (abfd, note);
8408 else
8409 return TRUE;
8410
8411 case NT_X86_XSTATE: /* Linux XSAVE extension */
8412 if (note->namesz == 6
8413 && strcmp (note->namedata, "LINUX") == 0)
8414 return elfcore_grok_xstatereg (abfd, note);
8415 else
8416 return TRUE;
8417
8418 case NT_PPC_VMX:
8419 if (note->namesz == 6
8420 && strcmp (note->namedata, "LINUX") == 0)
8421 return elfcore_grok_ppc_vmx (abfd, note);
8422 else
8423 return TRUE;
8424
8425 case NT_PPC_VSX:
8426 if (note->namesz == 6
8427 && strcmp (note->namedata, "LINUX") == 0)
8428 return elfcore_grok_ppc_vsx (abfd, note);
8429 else
8430 return TRUE;
8431
8432 case NT_S390_HIGH_GPRS:
8433 if (note->namesz == 6
8434 && strcmp (note->namedata, "LINUX") == 0)
8435 return elfcore_grok_s390_high_gprs (abfd, note);
8436 else
8437 return TRUE;
8438
8439 case NT_S390_TIMER:
8440 if (note->namesz == 6
8441 && strcmp (note->namedata, "LINUX") == 0)
8442 return elfcore_grok_s390_timer (abfd, note);
8443 else
8444 return TRUE;
8445
8446 case NT_S390_TODCMP:
8447 if (note->namesz == 6
8448 && strcmp (note->namedata, "LINUX") == 0)
8449 return elfcore_grok_s390_todcmp (abfd, note);
8450 else
8451 return TRUE;
8452
8453 case NT_S390_TODPREG:
8454 if (note->namesz == 6
8455 && strcmp (note->namedata, "LINUX") == 0)
8456 return elfcore_grok_s390_todpreg (abfd, note);
8457 else
8458 return TRUE;
8459
8460 case NT_S390_CTRS:
8461 if (note->namesz == 6
8462 && strcmp (note->namedata, "LINUX") == 0)
8463 return elfcore_grok_s390_ctrs (abfd, note);
8464 else
8465 return TRUE;
8466
8467 case NT_S390_PREFIX:
8468 if (note->namesz == 6
8469 && strcmp (note->namedata, "LINUX") == 0)
8470 return elfcore_grok_s390_prefix (abfd, note);
8471 else
8472 return TRUE;
8473
8474 case NT_S390_LAST_BREAK:
8475 if (note->namesz == 6
8476 && strcmp (note->namedata, "LINUX") == 0)
8477 return elfcore_grok_s390_last_break (abfd, note);
8478 else
8479 return TRUE;
8480
8481 case NT_S390_SYSTEM_CALL:
8482 if (note->namesz == 6
8483 && strcmp (note->namedata, "LINUX") == 0)
8484 return elfcore_grok_s390_system_call (abfd, note);
8485 else
8486 return TRUE;
8487
8488 case NT_ARM_VFP:
8489 if (note->namesz == 6
8490 && strcmp (note->namedata, "LINUX") == 0)
8491 return elfcore_grok_arm_vfp (abfd, note);
8492 else
8493 return TRUE;
8494
8495 case NT_PRPSINFO:
8496 case NT_PSINFO:
8497 if (bed->elf_backend_grok_psinfo)
8498 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8499 return TRUE;
8500 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8501 return elfcore_grok_psinfo (abfd, note);
8502 #else
8503 return TRUE;
8504 #endif
8505
8506 case NT_AUXV:
8507 {
8508 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8509 SEC_HAS_CONTENTS);
8510
8511 if (sect == NULL)
8512 return FALSE;
8513 sect->size = note->descsz;
8514 sect->filepos = note->descpos;
8515 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8516
8517 return TRUE;
8518 }
8519 }
8520 }
8521
8522 static bfd_boolean
8523 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8524 {
8525 elf_tdata (abfd)->build_id_size = note->descsz;
8526 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8527 if (elf_tdata (abfd)->build_id == NULL)
8528 return FALSE;
8529
8530 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8531
8532 return TRUE;
8533 }
8534
8535 static bfd_boolean
8536 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8537 {
8538 switch (note->type)
8539 {
8540 default:
8541 return TRUE;
8542
8543 case NT_GNU_BUILD_ID:
8544 return elfobj_grok_gnu_build_id (abfd, note);
8545 }
8546 }
8547
8548 static bfd_boolean
8549 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8550 {
8551 struct sdt_note *cur =
8552 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8553 + note->descsz);
8554
8555 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8556 cur->size = (bfd_size_type) note->descsz;
8557 memcpy (cur->data, note->descdata, note->descsz);
8558
8559 elf_tdata (abfd)->sdt_note_head = cur;
8560
8561 return TRUE;
8562 }
8563
8564 static bfd_boolean
8565 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8566 {
8567 switch (note->type)
8568 {
8569 case NT_STAPSDT:
8570 return elfobj_grok_stapsdt_note_1 (abfd, note);
8571
8572 default:
8573 return TRUE;
8574 }
8575 }
8576
8577 static bfd_boolean
8578 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8579 {
8580 char *cp;
8581
8582 cp = strchr (note->namedata, '@');
8583 if (cp != NULL)
8584 {
8585 *lwpidp = atoi(cp + 1);
8586 return TRUE;
8587 }
8588 return FALSE;
8589 }
8590
8591 static bfd_boolean
8592 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8593 {
8594 /* Signal number at offset 0x08. */
8595 elf_tdata (abfd)->core_signal
8596 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8597
8598 /* Process ID at offset 0x50. */
8599 elf_tdata (abfd)->core_pid
8600 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8601
8602 /* Command name at 0x7c (max 32 bytes, including nul). */
8603 elf_tdata (abfd)->core_command
8604 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8605
8606 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8607 note);
8608 }
8609
8610 static bfd_boolean
8611 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8612 {
8613 int lwp;
8614
8615 if (elfcore_netbsd_get_lwpid (note, &lwp))
8616 elf_tdata (abfd)->core_lwpid = lwp;
8617
8618 if (note->type == NT_NETBSDCORE_PROCINFO)
8619 {
8620 /* NetBSD-specific core "procinfo". Note that we expect to
8621 find this note before any of the others, which is fine,
8622 since the kernel writes this note out first when it
8623 creates a core file. */
8624
8625 return elfcore_grok_netbsd_procinfo (abfd, note);
8626 }
8627
8628 /* As of Jan 2002 there are no other machine-independent notes
8629 defined for NetBSD core files. If the note type is less
8630 than the start of the machine-dependent note types, we don't
8631 understand it. */
8632
8633 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8634 return TRUE;
8635
8636
8637 switch (bfd_get_arch (abfd))
8638 {
8639 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8640 PT_GETFPREGS == mach+2. */
8641
8642 case bfd_arch_alpha:
8643 case bfd_arch_sparc:
8644 switch (note->type)
8645 {
8646 case NT_NETBSDCORE_FIRSTMACH+0:
8647 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8648
8649 case NT_NETBSDCORE_FIRSTMACH+2:
8650 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8651
8652 default:
8653 return TRUE;
8654 }
8655
8656 /* On all other arch's, PT_GETREGS == mach+1 and
8657 PT_GETFPREGS == mach+3. */
8658
8659 default:
8660 switch (note->type)
8661 {
8662 case NT_NETBSDCORE_FIRSTMACH+1:
8663 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8664
8665 case NT_NETBSDCORE_FIRSTMACH+3:
8666 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8667
8668 default:
8669 return TRUE;
8670 }
8671 }
8672 /* NOTREACHED */
8673 }
8674
8675 static bfd_boolean
8676 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8677 {
8678 /* Signal number at offset 0x08. */
8679 elf_tdata (abfd)->core_signal
8680 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8681
8682 /* Process ID at offset 0x20. */
8683 elf_tdata (abfd)->core_pid
8684 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8685
8686 /* Command name at 0x48 (max 32 bytes, including nul). */
8687 elf_tdata (abfd)->core_command
8688 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8689
8690 return TRUE;
8691 }
8692
8693 static bfd_boolean
8694 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8695 {
8696 if (note->type == NT_OPENBSD_PROCINFO)
8697 return elfcore_grok_openbsd_procinfo (abfd, note);
8698
8699 if (note->type == NT_OPENBSD_REGS)
8700 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8701
8702 if (note->type == NT_OPENBSD_FPREGS)
8703 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8704
8705 if (note->type == NT_OPENBSD_XFPREGS)
8706 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8707
8708 if (note->type == NT_OPENBSD_AUXV)
8709 {
8710 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8711 SEC_HAS_CONTENTS);
8712
8713 if (sect == NULL)
8714 return FALSE;
8715 sect->size = note->descsz;
8716 sect->filepos = note->descpos;
8717 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8718
8719 return TRUE;
8720 }
8721
8722 if (note->type == NT_OPENBSD_WCOOKIE)
8723 {
8724 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8725 SEC_HAS_CONTENTS);
8726
8727 if (sect == NULL)
8728 return FALSE;
8729 sect->size = note->descsz;
8730 sect->filepos = note->descpos;
8731 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8732
8733 return TRUE;
8734 }
8735
8736 return TRUE;
8737 }
8738
8739 static bfd_boolean
8740 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8741 {
8742 void *ddata = note->descdata;
8743 char buf[100];
8744 char *name;
8745 asection *sect;
8746 short sig;
8747 unsigned flags;
8748
8749 /* nto_procfs_status 'pid' field is at offset 0. */
8750 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8751
8752 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8753 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8754
8755 /* nto_procfs_status 'flags' field is at offset 8. */
8756 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8757
8758 /* nto_procfs_status 'what' field is at offset 14. */
8759 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8760 {
8761 elf_tdata (abfd)->core_signal = sig;
8762 elf_tdata (abfd)->core_lwpid = *tid;
8763 }
8764
8765 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8766 do not come from signals so we make sure we set the current
8767 thread just in case. */
8768 if (flags & 0x00000080)
8769 elf_tdata (abfd)->core_lwpid = *tid;
8770
8771 /* Make a ".qnx_core_status/%d" section. */
8772 sprintf (buf, ".qnx_core_status/%ld", *tid);
8773
8774 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8775 if (name == NULL)
8776 return FALSE;
8777 strcpy (name, buf);
8778
8779 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8780 if (sect == NULL)
8781 return FALSE;
8782
8783 sect->size = note->descsz;
8784 sect->filepos = note->descpos;
8785 sect->alignment_power = 2;
8786
8787 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8788 }
8789
8790 static bfd_boolean
8791 elfcore_grok_nto_regs (bfd *abfd,
8792 Elf_Internal_Note *note,
8793 long tid,
8794 char *base)
8795 {
8796 char buf[100];
8797 char *name;
8798 asection *sect;
8799
8800 /* Make a "(base)/%d" section. */
8801 sprintf (buf, "%s/%ld", base, tid);
8802
8803 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8804 if (name == NULL)
8805 return FALSE;
8806 strcpy (name, buf);
8807
8808 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8809 if (sect == NULL)
8810 return FALSE;
8811
8812 sect->size = note->descsz;
8813 sect->filepos = note->descpos;
8814 sect->alignment_power = 2;
8815
8816 /* This is the current thread. */
8817 if (elf_tdata (abfd)->core_lwpid == tid)
8818 return elfcore_maybe_make_sect (abfd, base, sect);
8819
8820 return TRUE;
8821 }
8822
8823 #define BFD_QNT_CORE_INFO 7
8824 #define BFD_QNT_CORE_STATUS 8
8825 #define BFD_QNT_CORE_GREG 9
8826 #define BFD_QNT_CORE_FPREG 10
8827
8828 static bfd_boolean
8829 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8830 {
8831 /* Every GREG section has a STATUS section before it. Store the
8832 tid from the previous call to pass down to the next gregs
8833 function. */
8834 static long tid = 1;
8835
8836 switch (note->type)
8837 {
8838 case BFD_QNT_CORE_INFO:
8839 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8840 case BFD_QNT_CORE_STATUS:
8841 return elfcore_grok_nto_status (abfd, note, &tid);
8842 case BFD_QNT_CORE_GREG:
8843 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8844 case BFD_QNT_CORE_FPREG:
8845 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8846 default:
8847 return TRUE;
8848 }
8849 }
8850
8851 static bfd_boolean
8852 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8853 {
8854 char *name;
8855 asection *sect;
8856 size_t len;
8857
8858 /* Use note name as section name. */
8859 len = note->namesz;
8860 name = (char *) bfd_alloc (abfd, len);
8861 if (name == NULL)
8862 return FALSE;
8863 memcpy (name, note->namedata, len);
8864 name[len - 1] = '\0';
8865
8866 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8867 if (sect == NULL)
8868 return FALSE;
8869
8870 sect->size = note->descsz;
8871 sect->filepos = note->descpos;
8872 sect->alignment_power = 1;
8873
8874 return TRUE;
8875 }
8876
8877 /* Function: elfcore_write_note
8878
8879 Inputs:
8880 buffer to hold note, and current size of buffer
8881 name of note
8882 type of note
8883 data for note
8884 size of data for note
8885
8886 Writes note to end of buffer. ELF64 notes are written exactly as
8887 for ELF32, despite the current (as of 2006) ELF gabi specifying
8888 that they ought to have 8-byte namesz and descsz field, and have
8889 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8890
8891 Return:
8892 Pointer to realloc'd buffer, *BUFSIZ updated. */
8893
8894 char *
8895 elfcore_write_note (bfd *abfd,
8896 char *buf,
8897 int *bufsiz,
8898 const char *name,
8899 int type,
8900 const void *input,
8901 int size)
8902 {
8903 Elf_External_Note *xnp;
8904 size_t namesz;
8905 size_t newspace;
8906 char *dest;
8907
8908 namesz = 0;
8909 if (name != NULL)
8910 namesz = strlen (name) + 1;
8911
8912 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8913
8914 buf = (char *) realloc (buf, *bufsiz + newspace);
8915 if (buf == NULL)
8916 return buf;
8917 dest = buf + *bufsiz;
8918 *bufsiz += newspace;
8919 xnp = (Elf_External_Note *) dest;
8920 H_PUT_32 (abfd, namesz, xnp->namesz);
8921 H_PUT_32 (abfd, size, xnp->descsz);
8922 H_PUT_32 (abfd, type, xnp->type);
8923 dest = xnp->name;
8924 if (name != NULL)
8925 {
8926 memcpy (dest, name, namesz);
8927 dest += namesz;
8928 while (namesz & 3)
8929 {
8930 *dest++ = '\0';
8931 ++namesz;
8932 }
8933 }
8934 memcpy (dest, input, size);
8935 dest += size;
8936 while (size & 3)
8937 {
8938 *dest++ = '\0';
8939 ++size;
8940 }
8941 return buf;
8942 }
8943
8944 char *
8945 elfcore_write_prpsinfo (bfd *abfd,
8946 char *buf,
8947 int *bufsiz,
8948 const char *fname,
8949 const char *psargs)
8950 {
8951 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8952
8953 if (bed->elf_backend_write_core_note != NULL)
8954 {
8955 char *ret;
8956 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8957 NT_PRPSINFO, fname, psargs);
8958 if (ret != NULL)
8959 return ret;
8960 }
8961
8962 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8963 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8964 if (bed->s->elfclass == ELFCLASS32)
8965 {
8966 #if defined (HAVE_PSINFO32_T)
8967 psinfo32_t data;
8968 int note_type = NT_PSINFO;
8969 #else
8970 prpsinfo32_t data;
8971 int note_type = NT_PRPSINFO;
8972 #endif
8973
8974 memset (&data, 0, sizeof (data));
8975 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8976 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8977 return elfcore_write_note (abfd, buf, bufsiz,
8978 "CORE", note_type, &data, sizeof (data));
8979 }
8980 else
8981 #endif
8982 {
8983 #if defined (HAVE_PSINFO_T)
8984 psinfo_t data;
8985 int note_type = NT_PSINFO;
8986 #else
8987 prpsinfo_t data;
8988 int note_type = NT_PRPSINFO;
8989 #endif
8990
8991 memset (&data, 0, sizeof (data));
8992 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8993 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8994 return elfcore_write_note (abfd, buf, bufsiz,
8995 "CORE", note_type, &data, sizeof (data));
8996 }
8997 #endif /* PSINFO_T or PRPSINFO_T */
8998
8999 free (buf);
9000 return NULL;
9001 }
9002
9003 char *
9004 elfcore_write_prstatus (bfd *abfd,
9005 char *buf,
9006 int *bufsiz,
9007 long pid,
9008 int cursig,
9009 const void *gregs)
9010 {
9011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9012
9013 if (bed->elf_backend_write_core_note != NULL)
9014 {
9015 char *ret;
9016 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9017 NT_PRSTATUS,
9018 pid, cursig, gregs);
9019 if (ret != NULL)
9020 return ret;
9021 }
9022
9023 #if defined (HAVE_PRSTATUS_T)
9024 #if defined (HAVE_PRSTATUS32_T)
9025 if (bed->s->elfclass == ELFCLASS32)
9026 {
9027 prstatus32_t prstat;
9028
9029 memset (&prstat, 0, sizeof (prstat));
9030 prstat.pr_pid = pid;
9031 prstat.pr_cursig = cursig;
9032 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9033 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9034 NT_PRSTATUS, &prstat, sizeof (prstat));
9035 }
9036 else
9037 #endif
9038 {
9039 prstatus_t prstat;
9040
9041 memset (&prstat, 0, sizeof (prstat));
9042 prstat.pr_pid = pid;
9043 prstat.pr_cursig = cursig;
9044 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9045 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9046 NT_PRSTATUS, &prstat, sizeof (prstat));
9047 }
9048 #endif /* HAVE_PRSTATUS_T */
9049
9050 free (buf);
9051 return NULL;
9052 }
9053
9054 #if defined (HAVE_LWPSTATUS_T)
9055 char *
9056 elfcore_write_lwpstatus (bfd *abfd,
9057 char *buf,
9058 int *bufsiz,
9059 long pid,
9060 int cursig,
9061 const void *gregs)
9062 {
9063 lwpstatus_t lwpstat;
9064 const char *note_name = "CORE";
9065
9066 memset (&lwpstat, 0, sizeof (lwpstat));
9067 lwpstat.pr_lwpid = pid >> 16;
9068 lwpstat.pr_cursig = cursig;
9069 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9070 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9071 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9072 #if !defined(gregs)
9073 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9074 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9075 #else
9076 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9077 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9078 #endif
9079 #endif
9080 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9081 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9082 }
9083 #endif /* HAVE_LWPSTATUS_T */
9084
9085 #if defined (HAVE_PSTATUS_T)
9086 char *
9087 elfcore_write_pstatus (bfd *abfd,
9088 char *buf,
9089 int *bufsiz,
9090 long pid,
9091 int cursig ATTRIBUTE_UNUSED,
9092 const void *gregs ATTRIBUTE_UNUSED)
9093 {
9094 const char *note_name = "CORE";
9095 #if defined (HAVE_PSTATUS32_T)
9096 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9097
9098 if (bed->s->elfclass == ELFCLASS32)
9099 {
9100 pstatus32_t pstat;
9101
9102 memset (&pstat, 0, sizeof (pstat));
9103 pstat.pr_pid = pid & 0xffff;
9104 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9105 NT_PSTATUS, &pstat, sizeof (pstat));
9106 return buf;
9107 }
9108 else
9109 #endif
9110 {
9111 pstatus_t pstat;
9112
9113 memset (&pstat, 0, sizeof (pstat));
9114 pstat.pr_pid = pid & 0xffff;
9115 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9116 NT_PSTATUS, &pstat, sizeof (pstat));
9117 return buf;
9118 }
9119 }
9120 #endif /* HAVE_PSTATUS_T */
9121
9122 char *
9123 elfcore_write_prfpreg (bfd *abfd,
9124 char *buf,
9125 int *bufsiz,
9126 const void *fpregs,
9127 int size)
9128 {
9129 const char *note_name = "CORE";
9130 return elfcore_write_note (abfd, buf, bufsiz,
9131 note_name, NT_FPREGSET, fpregs, size);
9132 }
9133
9134 char *
9135 elfcore_write_prxfpreg (bfd *abfd,
9136 char *buf,
9137 int *bufsiz,
9138 const void *xfpregs,
9139 int size)
9140 {
9141 char *note_name = "LINUX";
9142 return elfcore_write_note (abfd, buf, bufsiz,
9143 note_name, NT_PRXFPREG, xfpregs, size);
9144 }
9145
9146 char *
9147 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9148 const void *xfpregs, int size)
9149 {
9150 char *note_name = "LINUX";
9151 return elfcore_write_note (abfd, buf, bufsiz,
9152 note_name, NT_X86_XSTATE, xfpregs, size);
9153 }
9154
9155 char *
9156 elfcore_write_ppc_vmx (bfd *abfd,
9157 char *buf,
9158 int *bufsiz,
9159 const void *ppc_vmx,
9160 int size)
9161 {
9162 char *note_name = "LINUX";
9163 return elfcore_write_note (abfd, buf, bufsiz,
9164 note_name, NT_PPC_VMX, ppc_vmx, size);
9165 }
9166
9167 char *
9168 elfcore_write_ppc_vsx (bfd *abfd,
9169 char *buf,
9170 int *bufsiz,
9171 const void *ppc_vsx,
9172 int size)
9173 {
9174 char *note_name = "LINUX";
9175 return elfcore_write_note (abfd, buf, bufsiz,
9176 note_name, NT_PPC_VSX, ppc_vsx, size);
9177 }
9178
9179 static char *
9180 elfcore_write_s390_high_gprs (bfd *abfd,
9181 char *buf,
9182 int *bufsiz,
9183 const void *s390_high_gprs,
9184 int size)
9185 {
9186 char *note_name = "LINUX";
9187 return elfcore_write_note (abfd, buf, bufsiz,
9188 note_name, NT_S390_HIGH_GPRS,
9189 s390_high_gprs, size);
9190 }
9191
9192 char *
9193 elfcore_write_s390_timer (bfd *abfd,
9194 char *buf,
9195 int *bufsiz,
9196 const void *s390_timer,
9197 int size)
9198 {
9199 char *note_name = "LINUX";
9200 return elfcore_write_note (abfd, buf, bufsiz,
9201 note_name, NT_S390_TIMER, s390_timer, size);
9202 }
9203
9204 char *
9205 elfcore_write_s390_todcmp (bfd *abfd,
9206 char *buf,
9207 int *bufsiz,
9208 const void *s390_todcmp,
9209 int size)
9210 {
9211 char *note_name = "LINUX";
9212 return elfcore_write_note (abfd, buf, bufsiz,
9213 note_name, NT_S390_TODCMP, s390_todcmp, size);
9214 }
9215
9216 char *
9217 elfcore_write_s390_todpreg (bfd *abfd,
9218 char *buf,
9219 int *bufsiz,
9220 const void *s390_todpreg,
9221 int size)
9222 {
9223 char *note_name = "LINUX";
9224 return elfcore_write_note (abfd, buf, bufsiz,
9225 note_name, NT_S390_TODPREG, s390_todpreg, size);
9226 }
9227
9228 char *
9229 elfcore_write_s390_ctrs (bfd *abfd,
9230 char *buf,
9231 int *bufsiz,
9232 const void *s390_ctrs,
9233 int size)
9234 {
9235 char *note_name = "LINUX";
9236 return elfcore_write_note (abfd, buf, bufsiz,
9237 note_name, NT_S390_CTRS, s390_ctrs, size);
9238 }
9239
9240 char *
9241 elfcore_write_s390_prefix (bfd *abfd,
9242 char *buf,
9243 int *bufsiz,
9244 const void *s390_prefix,
9245 int size)
9246 {
9247 char *note_name = "LINUX";
9248 return elfcore_write_note (abfd, buf, bufsiz,
9249 note_name, NT_S390_PREFIX, s390_prefix, size);
9250 }
9251
9252 char *
9253 elfcore_write_s390_last_break (bfd *abfd,
9254 char *buf,
9255 int *bufsiz,
9256 const void *s390_last_break,
9257 int size)
9258 {
9259 char *note_name = "LINUX";
9260 return elfcore_write_note (abfd, buf, bufsiz,
9261 note_name, NT_S390_LAST_BREAK,
9262 s390_last_break, size);
9263 }
9264
9265 char *
9266 elfcore_write_s390_system_call (bfd *abfd,
9267 char *buf,
9268 int *bufsiz,
9269 const void *s390_system_call,
9270 int size)
9271 {
9272 char *note_name = "LINUX";
9273 return elfcore_write_note (abfd, buf, bufsiz,
9274 note_name, NT_S390_SYSTEM_CALL,
9275 s390_system_call, size);
9276 }
9277
9278 char *
9279 elfcore_write_arm_vfp (bfd *abfd,
9280 char *buf,
9281 int *bufsiz,
9282 const void *arm_vfp,
9283 int size)
9284 {
9285 char *note_name = "LINUX";
9286 return elfcore_write_note (abfd, buf, bufsiz,
9287 note_name, NT_ARM_VFP, arm_vfp, size);
9288 }
9289
9290 char *
9291 elfcore_write_register_note (bfd *abfd,
9292 char *buf,
9293 int *bufsiz,
9294 const char *section,
9295 const void *data,
9296 int size)
9297 {
9298 if (strcmp (section, ".reg2") == 0)
9299 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9300 if (strcmp (section, ".reg-xfp") == 0)
9301 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9302 if (strcmp (section, ".reg-xstate") == 0)
9303 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9304 if (strcmp (section, ".reg-ppc-vmx") == 0)
9305 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9306 if (strcmp (section, ".reg-ppc-vsx") == 0)
9307 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9308 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9309 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9310 if (strcmp (section, ".reg-s390-timer") == 0)
9311 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9312 if (strcmp (section, ".reg-s390-todcmp") == 0)
9313 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9314 if (strcmp (section, ".reg-s390-todpreg") == 0)
9315 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9316 if (strcmp (section, ".reg-s390-ctrs") == 0)
9317 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9318 if (strcmp (section, ".reg-s390-prefix") == 0)
9319 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9320 if (strcmp (section, ".reg-s390-last-break") == 0)
9321 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9322 if (strcmp (section, ".reg-s390-system-call") == 0)
9323 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9324 if (strcmp (section, ".reg-arm-vfp") == 0)
9325 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9326 return NULL;
9327 }
9328
9329 static bfd_boolean
9330 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9331 {
9332 char *p;
9333
9334 p = buf;
9335 while (p < buf + size)
9336 {
9337 /* FIXME: bad alignment assumption. */
9338 Elf_External_Note *xnp = (Elf_External_Note *) p;
9339 Elf_Internal_Note in;
9340
9341 if (offsetof (Elf_External_Note, name) > buf - p + size)
9342 return FALSE;
9343
9344 in.type = H_GET_32 (abfd, xnp->type);
9345
9346 in.namesz = H_GET_32 (abfd, xnp->namesz);
9347 in.namedata = xnp->name;
9348 if (in.namesz > buf - in.namedata + size)
9349 return FALSE;
9350
9351 in.descsz = H_GET_32 (abfd, xnp->descsz);
9352 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9353 in.descpos = offset + (in.descdata - buf);
9354 if (in.descsz != 0
9355 && (in.descdata >= buf + size
9356 || in.descsz > buf - in.descdata + size))
9357 return FALSE;
9358
9359 switch (bfd_get_format (abfd))
9360 {
9361 default:
9362 return TRUE;
9363
9364 case bfd_core:
9365 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9366 {
9367 if (! elfcore_grok_netbsd_note (abfd, &in))
9368 return FALSE;
9369 }
9370 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9371 {
9372 if (! elfcore_grok_openbsd_note (abfd, &in))
9373 return FALSE;
9374 }
9375 else if (CONST_STRNEQ (in.namedata, "QNX"))
9376 {
9377 if (! elfcore_grok_nto_note (abfd, &in))
9378 return FALSE;
9379 }
9380 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9381 {
9382 if (! elfcore_grok_spu_note (abfd, &in))
9383 return FALSE;
9384 }
9385 else
9386 {
9387 if (! elfcore_grok_note (abfd, &in))
9388 return FALSE;
9389 }
9390 break;
9391
9392 case bfd_object:
9393 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9394 {
9395 if (! elfobj_grok_gnu_note (abfd, &in))
9396 return FALSE;
9397 }
9398 else if (in.namesz == sizeof "stapsdt"
9399 && strcmp (in.namedata, "stapsdt") == 0)
9400 {
9401 if (! elfobj_grok_stapsdt_note (abfd, &in))
9402 return FALSE;
9403 }
9404 break;
9405 }
9406
9407 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9408 }
9409
9410 return TRUE;
9411 }
9412
9413 static bfd_boolean
9414 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9415 {
9416 char *buf;
9417
9418 if (size <= 0)
9419 return TRUE;
9420
9421 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9422 return FALSE;
9423
9424 buf = (char *) bfd_malloc (size);
9425 if (buf == NULL)
9426 return FALSE;
9427
9428 if (bfd_bread (buf, size, abfd) != size
9429 || !elf_parse_notes (abfd, buf, size, offset))
9430 {
9431 free (buf);
9432 return FALSE;
9433 }
9434
9435 free (buf);
9436 return TRUE;
9437 }
9438 \f
9439 /* Providing external access to the ELF program header table. */
9440
9441 /* Return an upper bound on the number of bytes required to store a
9442 copy of ABFD's program header table entries. Return -1 if an error
9443 occurs; bfd_get_error will return an appropriate code. */
9444
9445 long
9446 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9447 {
9448 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9449 {
9450 bfd_set_error (bfd_error_wrong_format);
9451 return -1;
9452 }
9453
9454 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9455 }
9456
9457 /* Copy ABFD's program header table entries to *PHDRS. The entries
9458 will be stored as an array of Elf_Internal_Phdr structures, as
9459 defined in include/elf/internal.h. To find out how large the
9460 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9461
9462 Return the number of program header table entries read, or -1 if an
9463 error occurs; bfd_get_error will return an appropriate code. */
9464
9465 int
9466 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9467 {
9468 int num_phdrs;
9469
9470 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9471 {
9472 bfd_set_error (bfd_error_wrong_format);
9473 return -1;
9474 }
9475
9476 num_phdrs = elf_elfheader (abfd)->e_phnum;
9477 memcpy (phdrs, elf_tdata (abfd)->phdr,
9478 num_phdrs * sizeof (Elf_Internal_Phdr));
9479
9480 return num_phdrs;
9481 }
9482
9483 enum elf_reloc_type_class
9484 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9485 {
9486 return reloc_class_normal;
9487 }
9488
9489 /* For RELA architectures, return the relocation value for a
9490 relocation against a local symbol. */
9491
9492 bfd_vma
9493 _bfd_elf_rela_local_sym (bfd *abfd,
9494 Elf_Internal_Sym *sym,
9495 asection **psec,
9496 Elf_Internal_Rela *rel)
9497 {
9498 asection *sec = *psec;
9499 bfd_vma relocation;
9500
9501 relocation = (sec->output_section->vma
9502 + sec->output_offset
9503 + sym->st_value);
9504 if ((sec->flags & SEC_MERGE)
9505 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9506 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9507 {
9508 rel->r_addend =
9509 _bfd_merged_section_offset (abfd, psec,
9510 elf_section_data (sec)->sec_info,
9511 sym->st_value + rel->r_addend);
9512 if (sec != *psec)
9513 {
9514 /* If we have changed the section, and our original section is
9515 marked with SEC_EXCLUDE, it means that the original
9516 SEC_MERGE section has been completely subsumed in some
9517 other SEC_MERGE section. In this case, we need to leave
9518 some info around for --emit-relocs. */
9519 if ((sec->flags & SEC_EXCLUDE) != 0)
9520 sec->kept_section = *psec;
9521 sec = *psec;
9522 }
9523 rel->r_addend -= relocation;
9524 rel->r_addend += sec->output_section->vma + sec->output_offset;
9525 }
9526 return relocation;
9527 }
9528
9529 bfd_vma
9530 _bfd_elf_rel_local_sym (bfd *abfd,
9531 Elf_Internal_Sym *sym,
9532 asection **psec,
9533 bfd_vma addend)
9534 {
9535 asection *sec = *psec;
9536
9537 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9538 return sym->st_value + addend;
9539
9540 return _bfd_merged_section_offset (abfd, psec,
9541 elf_section_data (sec)->sec_info,
9542 sym->st_value + addend);
9543 }
9544
9545 bfd_vma
9546 _bfd_elf_section_offset (bfd *abfd,
9547 struct bfd_link_info *info,
9548 asection *sec,
9549 bfd_vma offset)
9550 {
9551 switch (sec->sec_info_type)
9552 {
9553 case SEC_INFO_TYPE_STABS:
9554 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9555 offset);
9556 case SEC_INFO_TYPE_EH_FRAME:
9557 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9558 default:
9559 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9560 {
9561 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9562 bfd_size_type address_size = bed->s->arch_size / 8;
9563 offset = sec->size - offset - address_size;
9564 }
9565 return offset;
9566 }
9567 }
9568 \f
9569 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9570 reconstruct an ELF file by reading the segments out of remote memory
9571 based on the ELF file header at EHDR_VMA and the ELF program headers it
9572 points to. If not null, *LOADBASEP is filled in with the difference
9573 between the VMAs from which the segments were read, and the VMAs the
9574 file headers (and hence BFD's idea of each section's VMA) put them at.
9575
9576 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9577 remote memory at target address VMA into the local buffer at MYADDR; it
9578 should return zero on success or an `errno' code on failure. TEMPL must
9579 be a BFD for an ELF target with the word size and byte order found in
9580 the remote memory. */
9581
9582 bfd *
9583 bfd_elf_bfd_from_remote_memory
9584 (bfd *templ,
9585 bfd_vma ehdr_vma,
9586 bfd_vma *loadbasep,
9587 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9588 {
9589 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9590 (templ, ehdr_vma, loadbasep, target_read_memory);
9591 }
9592 \f
9593 long
9594 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9595 long symcount ATTRIBUTE_UNUSED,
9596 asymbol **syms ATTRIBUTE_UNUSED,
9597 long dynsymcount,
9598 asymbol **dynsyms,
9599 asymbol **ret)
9600 {
9601 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9602 asection *relplt;
9603 asymbol *s;
9604 const char *relplt_name;
9605 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9606 arelent *p;
9607 long count, i, n;
9608 size_t size;
9609 Elf_Internal_Shdr *hdr;
9610 char *names;
9611 asection *plt;
9612
9613 *ret = NULL;
9614
9615 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9616 return 0;
9617
9618 if (dynsymcount <= 0)
9619 return 0;
9620
9621 if (!bed->plt_sym_val)
9622 return 0;
9623
9624 relplt_name = bed->relplt_name;
9625 if (relplt_name == NULL)
9626 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9627 relplt = bfd_get_section_by_name (abfd, relplt_name);
9628 if (relplt == NULL)
9629 return 0;
9630
9631 hdr = &elf_section_data (relplt)->this_hdr;
9632 if (hdr->sh_link != elf_dynsymtab (abfd)
9633 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9634 return 0;
9635
9636 plt = bfd_get_section_by_name (abfd, ".plt");
9637 if (plt == NULL)
9638 return 0;
9639
9640 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9641 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9642 return -1;
9643
9644 count = relplt->size / hdr->sh_entsize;
9645 size = count * sizeof (asymbol);
9646 p = relplt->relocation;
9647 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9648 {
9649 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9650 if (p->addend != 0)
9651 {
9652 #ifdef BFD64
9653 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9654 #else
9655 size += sizeof ("+0x") - 1 + 8;
9656 #endif
9657 }
9658 }
9659
9660 s = *ret = (asymbol *) bfd_malloc (size);
9661 if (s == NULL)
9662 return -1;
9663
9664 names = (char *) (s + count);
9665 p = relplt->relocation;
9666 n = 0;
9667 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9668 {
9669 size_t len;
9670 bfd_vma addr;
9671
9672 addr = bed->plt_sym_val (i, plt, p);
9673 if (addr == (bfd_vma) -1)
9674 continue;
9675
9676 *s = **p->sym_ptr_ptr;
9677 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9678 we are defining a symbol, ensure one of them is set. */
9679 if ((s->flags & BSF_LOCAL) == 0)
9680 s->flags |= BSF_GLOBAL;
9681 s->flags |= BSF_SYNTHETIC;
9682 s->section = plt;
9683 s->value = addr - plt->vma;
9684 s->name = names;
9685 s->udata.p = NULL;
9686 len = strlen ((*p->sym_ptr_ptr)->name);
9687 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9688 names += len;
9689 if (p->addend != 0)
9690 {
9691 char buf[30], *a;
9692
9693 memcpy (names, "+0x", sizeof ("+0x") - 1);
9694 names += sizeof ("+0x") - 1;
9695 bfd_sprintf_vma (abfd, buf, p->addend);
9696 for (a = buf; *a == '0'; ++a)
9697 ;
9698 len = strlen (a);
9699 memcpy (names, a, len);
9700 names += len;
9701 }
9702 memcpy (names, "@plt", sizeof ("@plt"));
9703 names += sizeof ("@plt");
9704 ++s, ++n;
9705 }
9706
9707 return n;
9708 }
9709
9710 /* It is only used by x86-64 so far. */
9711 asection _bfd_elf_large_com_section
9712 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9713 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9714
9715 void
9716 _bfd_elf_set_osabi (bfd * abfd,
9717 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9718 {
9719 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9720
9721 i_ehdrp = elf_elfheader (abfd);
9722
9723 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9724
9725 /* To make things simpler for the loader on Linux systems we set the
9726 osabi field to ELFOSABI_GNU if the binary contains symbols of
9727 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9728 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9729 && elf_tdata (abfd)->has_gnu_symbols)
9730 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9731 }
9732
9733
9734 /* Return TRUE for ELF symbol types that represent functions.
9735 This is the default version of this function, which is sufficient for
9736 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9737
9738 bfd_boolean
9739 _bfd_elf_is_function_type (unsigned int type)
9740 {
9741 return (type == STT_FUNC
9742 || type == STT_GNU_IFUNC);
9743 }
9744
9745 /* If the ELF symbol SYM might be a function in SEC, return the
9746 function size and set *CODE_OFF to the function's entry point,
9747 otherwise return zero. */
9748
9749 bfd_size_type
9750 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
9751 bfd_vma *code_off)
9752 {
9753 bfd_size_type size;
9754
9755 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9756 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
9757 || sym->section != sec)
9758 return 0;
9759
9760 *code_off = sym->value;
9761 size = 0;
9762 if (!(sym->flags & BSF_SYNTHETIC))
9763 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
9764 if (size == 0)
9765 size = 1;
9766 return size;
9767 }
This page took 0.227036 seconds and 4 git commands to generate.