PR 1042
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static bfd_byte *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 bfd_byte *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 bfd_byte *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return NULL;
263
264 shstrtab = i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return (char *) shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
295 (*_bfd_error_handler)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd, strindex, (unsigned long) hdr->sh_size,
298 (shindex == shstrndx && strindex == hdr->sh_name
299 ? ".shstrtab"
300 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_sym_name (bfd *abfd,
409 Elf_Internal_Shdr *symtab_hdr,
410 Elf_Internal_Sym *isym,
411 asection *sym_sec)
412 {
413 const char *name;
414 unsigned int iname = isym->st_name;
415 unsigned int shindex = symtab_hdr->sh_link;
416
417 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
418 /* Check for a bogus st_shndx to avoid crashing. */
419 && isym->st_shndx < elf_numsections (abfd)
420 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
421 {
422 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
423 shindex = elf_elfheader (abfd)->e_shstrndx;
424 }
425
426 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
427 if (name == NULL)
428 name = "(null)";
429 else if (sym_sec && *name == '\0')
430 name = bfd_section_name (abfd, sym_sec);
431
432 return name;
433 }
434
435 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
436 sections. The first element is the flags, the rest are section
437 pointers. */
438
439 typedef union elf_internal_group {
440 Elf_Internal_Shdr *shdr;
441 unsigned int flags;
442 } Elf_Internal_Group;
443
444 /* Return the name of the group signature symbol. Why isn't the
445 signature just a string? */
446
447 static const char *
448 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
449 {
450 Elf_Internal_Shdr *hdr;
451 unsigned char esym[sizeof (Elf64_External_Sym)];
452 Elf_External_Sym_Shndx eshndx;
453 Elf_Internal_Sym isym;
454
455 /* First we need to ensure the symbol table is available. Make sure
456 that it is a symbol table section. */
457 hdr = elf_elfsections (abfd) [ghdr->sh_link];
458 if (hdr->sh_type != SHT_SYMTAB
459 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
460 return NULL;
461
462 /* Go read the symbol. */
463 hdr = &elf_tdata (abfd)->symtab_hdr;
464 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
465 &isym, esym, &eshndx) == NULL)
466 return NULL;
467
468 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
469 }
470
471 /* Set next_in_group list pointer, and group name for NEWSECT. */
472
473 static bfd_boolean
474 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
475 {
476 unsigned int num_group = elf_tdata (abfd)->num_group;
477
478 /* If num_group is zero, read in all SHT_GROUP sections. The count
479 is set to -1 if there are no SHT_GROUP sections. */
480 if (num_group == 0)
481 {
482 unsigned int i, shnum;
483
484 /* First count the number of groups. If we have a SHT_GROUP
485 section with just a flag word (ie. sh_size is 4), ignore it. */
486 shnum = elf_numsections (abfd);
487 num_group = 0;
488 for (i = 0; i < shnum; i++)
489 {
490 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
491 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
492 num_group += 1;
493 }
494
495 if (num_group == 0)
496 {
497 num_group = (unsigned) -1;
498 elf_tdata (abfd)->num_group = num_group;
499 }
500 else
501 {
502 /* We keep a list of elf section headers for group sections,
503 so we can find them quickly. */
504 bfd_size_type amt;
505
506 elf_tdata (abfd)->num_group = num_group;
507 amt = num_group * sizeof (Elf_Internal_Shdr *);
508 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
509 if (elf_tdata (abfd)->group_sect_ptr == NULL)
510 return FALSE;
511
512 num_group = 0;
513 for (i = 0; i < shnum; i++)
514 {
515 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
516 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
517 {
518 unsigned char *src;
519 Elf_Internal_Group *dest;
520
521 /* Add to list of sections. */
522 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
523 num_group += 1;
524
525 /* Read the raw contents. */
526 BFD_ASSERT (sizeof (*dest) >= 4);
527 amt = shdr->sh_size * sizeof (*dest) / 4;
528 shdr->contents = bfd_alloc (abfd, amt);
529 if (shdr->contents == NULL
530 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
531 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
532 != shdr->sh_size))
533 return FALSE;
534
535 /* Translate raw contents, a flag word followed by an
536 array of elf section indices all in target byte order,
537 to the flag word followed by an array of elf section
538 pointers. */
539 src = shdr->contents + shdr->sh_size;
540 dest = (Elf_Internal_Group *) (shdr->contents + amt);
541 while (1)
542 {
543 unsigned int idx;
544
545 src -= 4;
546 --dest;
547 idx = H_GET_32 (abfd, src);
548 if (src == shdr->contents)
549 {
550 dest->flags = idx;
551 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
552 shdr->bfd_section->flags
553 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
554 break;
555 }
556 if (idx >= shnum)
557 {
558 ((*_bfd_error_handler)
559 (_("%B: invalid SHT_GROUP entry"), abfd));
560 idx = 0;
561 }
562 dest->shdr = elf_elfsections (abfd)[idx];
563 }
564 }
565 }
566 }
567 }
568
569 if (num_group != (unsigned) -1)
570 {
571 unsigned int i;
572
573 for (i = 0; i < num_group; i++)
574 {
575 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
576 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
577 unsigned int n_elt = shdr->sh_size / 4;
578
579 /* Look through this group's sections to see if current
580 section is a member. */
581 while (--n_elt != 0)
582 if ((++idx)->shdr == hdr)
583 {
584 asection *s = NULL;
585
586 /* We are a member of this group. Go looking through
587 other members to see if any others are linked via
588 next_in_group. */
589 idx = (Elf_Internal_Group *) shdr->contents;
590 n_elt = shdr->sh_size / 4;
591 while (--n_elt != 0)
592 if ((s = (++idx)->shdr->bfd_section) != NULL
593 && elf_next_in_group (s) != NULL)
594 break;
595 if (n_elt != 0)
596 {
597 /* Snarf the group name from other member, and
598 insert current section in circular list. */
599 elf_group_name (newsect) = elf_group_name (s);
600 elf_next_in_group (newsect) = elf_next_in_group (s);
601 elf_next_in_group (s) = newsect;
602 }
603 else
604 {
605 const char *gname;
606
607 gname = group_signature (abfd, shdr);
608 if (gname == NULL)
609 return FALSE;
610 elf_group_name (newsect) = gname;
611
612 /* Start a circular list with one element. */
613 elf_next_in_group (newsect) = newsect;
614 }
615
616 /* If the group section has been created, point to the
617 new member. */
618 if (shdr->bfd_section != NULL)
619 elf_next_in_group (shdr->bfd_section) = newsect;
620
621 i = num_group - 1;
622 break;
623 }
624 }
625 }
626
627 if (elf_group_name (newsect) == NULL)
628 {
629 (*_bfd_error_handler) (_("%B: no group info for section %A"),
630 abfd, newsect);
631 }
632 return TRUE;
633 }
634
635 bfd_boolean
636 _bfd_elf_setup_group_pointers (bfd *abfd)
637 {
638 unsigned int i;
639 unsigned int num_group = elf_tdata (abfd)->num_group;
640 bfd_boolean result = TRUE;
641
642 if (num_group == (unsigned) -1)
643 return result;
644
645 for (i = 0; i < num_group; i++)
646 {
647 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
648 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
649 unsigned int n_elt = shdr->sh_size / 4;
650
651 while (--n_elt != 0)
652 if ((++idx)->shdr->bfd_section)
653 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
654 else if (idx->shdr->sh_type == SHT_RELA
655 || idx->shdr->sh_type == SHT_REL)
656 /* We won't include relocation sections in section groups in
657 output object files. We adjust the group section size here
658 so that relocatable link will work correctly when
659 relocation sections are in section group in input object
660 files. */
661 shdr->bfd_section->size -= 4;
662 else
663 {
664 /* There are some unknown sections in the group. */
665 (*_bfd_error_handler)
666 (_("%B: unknown [%d] section `%s' in group [%s]"),
667 abfd,
668 (unsigned int) idx->shdr->sh_type,
669 bfd_elf_string_from_elf_section (abfd,
670 (elf_elfheader (abfd)
671 ->e_shstrndx),
672 idx->shdr->sh_name),
673 shdr->bfd_section->name);
674 result = FALSE;
675 }
676 }
677 return result;
678 }
679
680 bfd_boolean
681 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
682 {
683 return elf_next_in_group (sec) != NULL;
684 }
685
686 /* Make a BFD section from an ELF section. We store a pointer to the
687 BFD section in the bfd_section field of the header. */
688
689 bfd_boolean
690 _bfd_elf_make_section_from_shdr (bfd *abfd,
691 Elf_Internal_Shdr *hdr,
692 const char *name,
693 int shindex)
694 {
695 asection *newsect;
696 flagword flags;
697 const struct elf_backend_data *bed;
698
699 if (hdr->bfd_section != NULL)
700 {
701 BFD_ASSERT (strcmp (name,
702 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
703 return TRUE;
704 }
705
706 newsect = bfd_make_section_anyway (abfd, name);
707 if (newsect == NULL)
708 return FALSE;
709
710 hdr->bfd_section = newsect;
711 elf_section_data (newsect)->this_hdr = *hdr;
712 elf_section_data (newsect)->this_idx = shindex;
713
714 /* Always use the real type/flags. */
715 elf_section_type (newsect) = hdr->sh_type;
716 elf_section_flags (newsect) = hdr->sh_flags;
717
718 newsect->filepos = hdr->sh_offset;
719
720 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
721 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
722 || ! bfd_set_section_alignment (abfd, newsect,
723 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
724 return FALSE;
725
726 flags = SEC_NO_FLAGS;
727 if (hdr->sh_type != SHT_NOBITS)
728 flags |= SEC_HAS_CONTENTS;
729 if (hdr->sh_type == SHT_GROUP)
730 flags |= SEC_GROUP | SEC_EXCLUDE;
731 if ((hdr->sh_flags & SHF_ALLOC) != 0)
732 {
733 flags |= SEC_ALLOC;
734 if (hdr->sh_type != SHT_NOBITS)
735 flags |= SEC_LOAD;
736 }
737 if ((hdr->sh_flags & SHF_WRITE) == 0)
738 flags |= SEC_READONLY;
739 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
740 flags |= SEC_CODE;
741 else if ((flags & SEC_LOAD) != 0)
742 flags |= SEC_DATA;
743 if ((hdr->sh_flags & SHF_MERGE) != 0)
744 {
745 flags |= SEC_MERGE;
746 newsect->entsize = hdr->sh_entsize;
747 if ((hdr->sh_flags & SHF_STRINGS) != 0)
748 flags |= SEC_STRINGS;
749 }
750 if (hdr->sh_flags & SHF_GROUP)
751 if (!setup_group (abfd, hdr, newsect))
752 return FALSE;
753 if ((hdr->sh_flags & SHF_TLS) != 0)
754 flags |= SEC_THREAD_LOCAL;
755
756 if ((flags & SEC_ALLOC) == 0)
757 {
758 /* The debugging sections appear to be recognized only by name,
759 not any sort of flag. Their SEC_ALLOC bits are cleared. */
760 static const struct
761 {
762 const char *name;
763 int len;
764 } debug_sections [] =
765 {
766 { "debug", 5 }, /* 'd' */
767 { NULL, 0 }, /* 'e' */
768 { NULL, 0 }, /* 'f' */
769 { "gnu.linkonce.wi.", 17 }, /* 'g' */
770 { NULL, 0 }, /* 'h' */
771 { NULL, 0 }, /* 'i' */
772 { NULL, 0 }, /* 'j' */
773 { NULL, 0 }, /* 'k' */
774 { "line", 4 }, /* 'l' */
775 { NULL, 0 }, /* 'm' */
776 { NULL, 0 }, /* 'n' */
777 { NULL, 0 }, /* 'o' */
778 { NULL, 0 }, /* 'p' */
779 { NULL, 0 }, /* 'q' */
780 { NULL, 0 }, /* 'r' */
781 { "stab", 4 } /* 's' */
782 };
783
784 if (name [0] == '.')
785 {
786 int i = name [1] - 'd';
787 if (i >= 0
788 && i < (int) ARRAY_SIZE (debug_sections)
789 && debug_sections [i].name != NULL
790 && strncmp (&name [1], debug_sections [i].name,
791 debug_sections [i].len) == 0)
792 flags |= SEC_DEBUGGING;
793 }
794 }
795
796 /* As a GNU extension, if the name begins with .gnu.linkonce, we
797 only link a single copy of the section. This is used to support
798 g++. g++ will emit each template expansion in its own section.
799 The symbols will be defined as weak, so that multiple definitions
800 are permitted. The GNU linker extension is to actually discard
801 all but one of the sections. */
802 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
803 && elf_next_in_group (newsect) == NULL)
804 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
805
806 bed = get_elf_backend_data (abfd);
807 if (bed->elf_backend_section_flags)
808 if (! bed->elf_backend_section_flags (&flags, hdr))
809 return FALSE;
810
811 if (! bfd_set_section_flags (abfd, newsect, flags))
812 return FALSE;
813
814 if ((flags & SEC_ALLOC) != 0)
815 {
816 Elf_Internal_Phdr *phdr;
817 unsigned int i;
818
819 /* Look through the phdrs to see if we need to adjust the lma.
820 If all the p_paddr fields are zero, we ignore them, since
821 some ELF linkers produce such output. */
822 phdr = elf_tdata (abfd)->phdr;
823 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
824 {
825 if (phdr->p_paddr != 0)
826 break;
827 }
828 if (i < elf_elfheader (abfd)->e_phnum)
829 {
830 phdr = elf_tdata (abfd)->phdr;
831 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
832 {
833 /* This section is part of this segment if its file
834 offset plus size lies within the segment's memory
835 span and, if the section is loaded, the extent of the
836 loaded data lies within the extent of the segment.
837
838 Note - we used to check the p_paddr field as well, and
839 refuse to set the LMA if it was 0. This is wrong
840 though, as a perfectly valid initialised segment can
841 have a p_paddr of zero. Some architectures, eg ARM,
842 place special significance on the address 0 and
843 executables need to be able to have a segment which
844 covers this address. */
845 if (phdr->p_type == PT_LOAD
846 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
847 && (hdr->sh_offset + hdr->sh_size
848 <= phdr->p_offset + phdr->p_memsz)
849 && ((flags & SEC_LOAD) == 0
850 || (hdr->sh_offset + hdr->sh_size
851 <= phdr->p_offset + phdr->p_filesz)))
852 {
853 if ((flags & SEC_LOAD) == 0)
854 newsect->lma = (phdr->p_paddr
855 + hdr->sh_addr - phdr->p_vaddr);
856 else
857 /* We used to use the same adjustment for SEC_LOAD
858 sections, but that doesn't work if the segment
859 is packed with code from multiple VMAs.
860 Instead we calculate the section LMA based on
861 the segment LMA. It is assumed that the
862 segment will contain sections with contiguous
863 LMAs, even if the VMAs are not. */
864 newsect->lma = (phdr->p_paddr
865 + hdr->sh_offset - phdr->p_offset);
866
867 /* With contiguous segments, we can't tell from file
868 offsets whether a section with zero size should
869 be placed at the end of one segment or the
870 beginning of the next. Decide based on vaddr. */
871 if (hdr->sh_addr >= phdr->p_vaddr
872 && (hdr->sh_addr + hdr->sh_size
873 <= phdr->p_vaddr + phdr->p_memsz))
874 break;
875 }
876 }
877 }
878 }
879
880 return TRUE;
881 }
882
883 /*
884 INTERNAL_FUNCTION
885 bfd_elf_find_section
886
887 SYNOPSIS
888 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
889
890 DESCRIPTION
891 Helper functions for GDB to locate the string tables.
892 Since BFD hides string tables from callers, GDB needs to use an
893 internal hook to find them. Sun's .stabstr, in particular,
894 isn't even pointed to by the .stab section, so ordinary
895 mechanisms wouldn't work to find it, even if we had some.
896 */
897
898 struct elf_internal_shdr *
899 bfd_elf_find_section (bfd *abfd, char *name)
900 {
901 Elf_Internal_Shdr **i_shdrp;
902 char *shstrtab;
903 unsigned int max;
904 unsigned int i;
905
906 i_shdrp = elf_elfsections (abfd);
907 if (i_shdrp != NULL)
908 {
909 shstrtab = bfd_elf_get_str_section (abfd,
910 elf_elfheader (abfd)->e_shstrndx);
911 if (shstrtab != NULL)
912 {
913 max = elf_numsections (abfd);
914 for (i = 1; i < max; i++)
915 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
916 return i_shdrp[i];
917 }
918 }
919 return 0;
920 }
921
922 const char *const bfd_elf_section_type_names[] = {
923 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
924 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
925 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
926 };
927
928 /* ELF relocs are against symbols. If we are producing relocatable
929 output, and the reloc is against an external symbol, and nothing
930 has given us any additional addend, the resulting reloc will also
931 be against the same symbol. In such a case, we don't want to
932 change anything about the way the reloc is handled, since it will
933 all be done at final link time. Rather than put special case code
934 into bfd_perform_relocation, all the reloc types use this howto
935 function. It just short circuits the reloc if producing
936 relocatable output against an external symbol. */
937
938 bfd_reloc_status_type
939 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
940 arelent *reloc_entry,
941 asymbol *symbol,
942 void *data ATTRIBUTE_UNUSED,
943 asection *input_section,
944 bfd *output_bfd,
945 char **error_message ATTRIBUTE_UNUSED)
946 {
947 if (output_bfd != NULL
948 && (symbol->flags & BSF_SECTION_SYM) == 0
949 && (! reloc_entry->howto->partial_inplace
950 || reloc_entry->addend == 0))
951 {
952 reloc_entry->address += input_section->output_offset;
953 return bfd_reloc_ok;
954 }
955
956 return bfd_reloc_continue;
957 }
958 \f
959 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
960
961 static void
962 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
963 asection *sec)
964 {
965 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
966 sec->sec_info_type = ELF_INFO_TYPE_NONE;
967 }
968
969 /* Finish SHF_MERGE section merging. */
970
971 bfd_boolean
972 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
973 {
974 bfd *ibfd;
975 asection *sec;
976
977 if (!is_elf_hash_table (info->hash))
978 return FALSE;
979
980 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
981 if ((ibfd->flags & DYNAMIC) == 0)
982 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
983 if ((sec->flags & SEC_MERGE) != 0
984 && !bfd_is_abs_section (sec->output_section))
985 {
986 struct bfd_elf_section_data *secdata;
987
988 secdata = elf_section_data (sec);
989 if (! _bfd_add_merge_section (abfd,
990 &elf_hash_table (info)->merge_info,
991 sec, &secdata->sec_info))
992 return FALSE;
993 else if (secdata->sec_info)
994 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
995 }
996
997 if (elf_hash_table (info)->merge_info != NULL)
998 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
999 merge_sections_remove_hook);
1000 return TRUE;
1001 }
1002
1003 void
1004 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1005 {
1006 sec->output_section = bfd_abs_section_ptr;
1007 sec->output_offset = sec->vma;
1008 if (!is_elf_hash_table (info->hash))
1009 return;
1010
1011 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1012 }
1013 \f
1014 /* Copy the program header and other data from one object module to
1015 another. */
1016
1017 bfd_boolean
1018 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1019 {
1020 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1021 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1022 return TRUE;
1023
1024 BFD_ASSERT (!elf_flags_init (obfd)
1025 || (elf_elfheader (obfd)->e_flags
1026 == elf_elfheader (ibfd)->e_flags));
1027
1028 elf_gp (obfd) = elf_gp (ibfd);
1029 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1030 elf_flags_init (obfd) = TRUE;
1031 return TRUE;
1032 }
1033
1034 /* Print out the program headers. */
1035
1036 bfd_boolean
1037 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1038 {
1039 FILE *f = farg;
1040 Elf_Internal_Phdr *p;
1041 asection *s;
1042 bfd_byte *dynbuf = NULL;
1043
1044 p = elf_tdata (abfd)->phdr;
1045 if (p != NULL)
1046 {
1047 unsigned int i, c;
1048
1049 fprintf (f, _("\nProgram Header:\n"));
1050 c = elf_elfheader (abfd)->e_phnum;
1051 for (i = 0; i < c; i++, p++)
1052 {
1053 const char *pt;
1054 char buf[20];
1055
1056 switch (p->p_type)
1057 {
1058 case PT_NULL: pt = "NULL"; break;
1059 case PT_LOAD: pt = "LOAD"; break;
1060 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1061 case PT_INTERP: pt = "INTERP"; break;
1062 case PT_NOTE: pt = "NOTE"; break;
1063 case PT_SHLIB: pt = "SHLIB"; break;
1064 case PT_PHDR: pt = "PHDR"; break;
1065 case PT_TLS: pt = "TLS"; break;
1066 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1067 case PT_GNU_STACK: pt = "STACK"; break;
1068 case PT_GNU_RELRO: pt = "RELRO"; break;
1069 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1070 }
1071 fprintf (f, "%8s off 0x", pt);
1072 bfd_fprintf_vma (abfd, f, p->p_offset);
1073 fprintf (f, " vaddr 0x");
1074 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1075 fprintf (f, " paddr 0x");
1076 bfd_fprintf_vma (abfd, f, p->p_paddr);
1077 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1078 fprintf (f, " filesz 0x");
1079 bfd_fprintf_vma (abfd, f, p->p_filesz);
1080 fprintf (f, " memsz 0x");
1081 bfd_fprintf_vma (abfd, f, p->p_memsz);
1082 fprintf (f, " flags %c%c%c",
1083 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1084 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1085 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1086 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1087 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1088 fprintf (f, "\n");
1089 }
1090 }
1091
1092 s = bfd_get_section_by_name (abfd, ".dynamic");
1093 if (s != NULL)
1094 {
1095 int elfsec;
1096 unsigned long shlink;
1097 bfd_byte *extdyn, *extdynend;
1098 size_t extdynsize;
1099 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1100
1101 fprintf (f, _("\nDynamic Section:\n"));
1102
1103 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1104 goto error_return;
1105
1106 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1107 if (elfsec == -1)
1108 goto error_return;
1109 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1110
1111 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1112 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1113
1114 extdyn = dynbuf;
1115 extdynend = extdyn + s->size;
1116 for (; extdyn < extdynend; extdyn += extdynsize)
1117 {
1118 Elf_Internal_Dyn dyn;
1119 const char *name;
1120 char ab[20];
1121 bfd_boolean stringp;
1122
1123 (*swap_dyn_in) (abfd, extdyn, &dyn);
1124
1125 if (dyn.d_tag == DT_NULL)
1126 break;
1127
1128 stringp = FALSE;
1129 switch (dyn.d_tag)
1130 {
1131 default:
1132 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1133 name = ab;
1134 break;
1135
1136 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1137 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1138 case DT_PLTGOT: name = "PLTGOT"; break;
1139 case DT_HASH: name = "HASH"; break;
1140 case DT_STRTAB: name = "STRTAB"; break;
1141 case DT_SYMTAB: name = "SYMTAB"; break;
1142 case DT_RELA: name = "RELA"; break;
1143 case DT_RELASZ: name = "RELASZ"; break;
1144 case DT_RELAENT: name = "RELAENT"; break;
1145 case DT_STRSZ: name = "STRSZ"; break;
1146 case DT_SYMENT: name = "SYMENT"; break;
1147 case DT_INIT: name = "INIT"; break;
1148 case DT_FINI: name = "FINI"; break;
1149 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1150 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1151 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1152 case DT_REL: name = "REL"; break;
1153 case DT_RELSZ: name = "RELSZ"; break;
1154 case DT_RELENT: name = "RELENT"; break;
1155 case DT_PLTREL: name = "PLTREL"; break;
1156 case DT_DEBUG: name = "DEBUG"; break;
1157 case DT_TEXTREL: name = "TEXTREL"; break;
1158 case DT_JMPREL: name = "JMPREL"; break;
1159 case DT_BIND_NOW: name = "BIND_NOW"; break;
1160 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1161 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1162 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1163 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1164 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1165 case DT_FLAGS: name = "FLAGS"; break;
1166 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1167 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1168 case DT_CHECKSUM: name = "CHECKSUM"; break;
1169 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1170 case DT_MOVEENT: name = "MOVEENT"; break;
1171 case DT_MOVESZ: name = "MOVESZ"; break;
1172 case DT_FEATURE: name = "FEATURE"; break;
1173 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1174 case DT_SYMINSZ: name = "SYMINSZ"; break;
1175 case DT_SYMINENT: name = "SYMINENT"; break;
1176 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1177 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1178 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1179 case DT_PLTPAD: name = "PLTPAD"; break;
1180 case DT_MOVETAB: name = "MOVETAB"; break;
1181 case DT_SYMINFO: name = "SYMINFO"; break;
1182 case DT_RELACOUNT: name = "RELACOUNT"; break;
1183 case DT_RELCOUNT: name = "RELCOUNT"; break;
1184 case DT_FLAGS_1: name = "FLAGS_1"; break;
1185 case DT_VERSYM: name = "VERSYM"; break;
1186 case DT_VERDEF: name = "VERDEF"; break;
1187 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1188 case DT_VERNEED: name = "VERNEED"; break;
1189 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1190 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1191 case DT_USED: name = "USED"; break;
1192 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1193 }
1194
1195 fprintf (f, " %-11s ", name);
1196 if (! stringp)
1197 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1198 else
1199 {
1200 const char *string;
1201 unsigned int tagv = dyn.d_un.d_val;
1202
1203 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1204 if (string == NULL)
1205 goto error_return;
1206 fprintf (f, "%s", string);
1207 }
1208 fprintf (f, "\n");
1209 }
1210
1211 free (dynbuf);
1212 dynbuf = NULL;
1213 }
1214
1215 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1216 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1217 {
1218 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1219 return FALSE;
1220 }
1221
1222 if (elf_dynverdef (abfd) != 0)
1223 {
1224 Elf_Internal_Verdef *t;
1225
1226 fprintf (f, _("\nVersion definitions:\n"));
1227 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1228 {
1229 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1230 t->vd_flags, t->vd_hash, t->vd_nodename);
1231 if (t->vd_auxptr->vda_nextptr != NULL)
1232 {
1233 Elf_Internal_Verdaux *a;
1234
1235 fprintf (f, "\t");
1236 for (a = t->vd_auxptr->vda_nextptr;
1237 a != NULL;
1238 a = a->vda_nextptr)
1239 fprintf (f, "%s ", a->vda_nodename);
1240 fprintf (f, "\n");
1241 }
1242 }
1243 }
1244
1245 if (elf_dynverref (abfd) != 0)
1246 {
1247 Elf_Internal_Verneed *t;
1248
1249 fprintf (f, _("\nVersion References:\n"));
1250 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1251 {
1252 Elf_Internal_Vernaux *a;
1253
1254 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1255 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1256 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1257 a->vna_flags, a->vna_other, a->vna_nodename);
1258 }
1259 }
1260
1261 return TRUE;
1262
1263 error_return:
1264 if (dynbuf != NULL)
1265 free (dynbuf);
1266 return FALSE;
1267 }
1268
1269 /* Display ELF-specific fields of a symbol. */
1270
1271 void
1272 bfd_elf_print_symbol (bfd *abfd,
1273 void *filep,
1274 asymbol *symbol,
1275 bfd_print_symbol_type how)
1276 {
1277 FILE *file = filep;
1278 switch (how)
1279 {
1280 case bfd_print_symbol_name:
1281 fprintf (file, "%s", symbol->name);
1282 break;
1283 case bfd_print_symbol_more:
1284 fprintf (file, "elf ");
1285 bfd_fprintf_vma (abfd, file, symbol->value);
1286 fprintf (file, " %lx", (long) symbol->flags);
1287 break;
1288 case bfd_print_symbol_all:
1289 {
1290 const char *section_name;
1291 const char *name = NULL;
1292 const struct elf_backend_data *bed;
1293 unsigned char st_other;
1294 bfd_vma val;
1295
1296 section_name = symbol->section ? symbol->section->name : "(*none*)";
1297
1298 bed = get_elf_backend_data (abfd);
1299 if (bed->elf_backend_print_symbol_all)
1300 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1301
1302 if (name == NULL)
1303 {
1304 name = symbol->name;
1305 bfd_print_symbol_vandf (abfd, file, symbol);
1306 }
1307
1308 fprintf (file, " %s\t", section_name);
1309 /* Print the "other" value for a symbol. For common symbols,
1310 we've already printed the size; now print the alignment.
1311 For other symbols, we have no specified alignment, and
1312 we've printed the address; now print the size. */
1313 if (bfd_is_com_section (symbol->section))
1314 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1315 else
1316 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1317 bfd_fprintf_vma (abfd, file, val);
1318
1319 /* If we have version information, print it. */
1320 if (elf_tdata (abfd)->dynversym_section != 0
1321 && (elf_tdata (abfd)->dynverdef_section != 0
1322 || elf_tdata (abfd)->dynverref_section != 0))
1323 {
1324 unsigned int vernum;
1325 const char *version_string;
1326
1327 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1328
1329 if (vernum == 0)
1330 version_string = "";
1331 else if (vernum == 1)
1332 version_string = "Base";
1333 else if (vernum <= elf_tdata (abfd)->cverdefs)
1334 version_string =
1335 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1336 else
1337 {
1338 Elf_Internal_Verneed *t;
1339
1340 version_string = "";
1341 for (t = elf_tdata (abfd)->verref;
1342 t != NULL;
1343 t = t->vn_nextref)
1344 {
1345 Elf_Internal_Vernaux *a;
1346
1347 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1348 {
1349 if (a->vna_other == vernum)
1350 {
1351 version_string = a->vna_nodename;
1352 break;
1353 }
1354 }
1355 }
1356 }
1357
1358 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1359 fprintf (file, " %-11s", version_string);
1360 else
1361 {
1362 int i;
1363
1364 fprintf (file, " (%s)", version_string);
1365 for (i = 10 - strlen (version_string); i > 0; --i)
1366 putc (' ', file);
1367 }
1368 }
1369
1370 /* If the st_other field is not zero, print it. */
1371 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1372
1373 switch (st_other)
1374 {
1375 case 0: break;
1376 case STV_INTERNAL: fprintf (file, " .internal"); break;
1377 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1378 case STV_PROTECTED: fprintf (file, " .protected"); break;
1379 default:
1380 /* Some other non-defined flags are also present, so print
1381 everything hex. */
1382 fprintf (file, " 0x%02x", (unsigned int) st_other);
1383 }
1384
1385 fprintf (file, " %s", name);
1386 }
1387 break;
1388 }
1389 }
1390 \f
1391 /* Create an entry in an ELF linker hash table. */
1392
1393 struct bfd_hash_entry *
1394 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1395 struct bfd_hash_table *table,
1396 const char *string)
1397 {
1398 /* Allocate the structure if it has not already been allocated by a
1399 subclass. */
1400 if (entry == NULL)
1401 {
1402 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1403 if (entry == NULL)
1404 return entry;
1405 }
1406
1407 /* Call the allocation method of the superclass. */
1408 entry = _bfd_link_hash_newfunc (entry, table, string);
1409 if (entry != NULL)
1410 {
1411 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1412 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1413
1414 /* Set local fields. */
1415 ret->indx = -1;
1416 ret->dynindx = -1;
1417 ret->got = htab->init_got_refcount;
1418 ret->plt = htab->init_plt_refcount;
1419 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1420 - offsetof (struct elf_link_hash_entry, size)));
1421 /* Assume that we have been called by a non-ELF symbol reader.
1422 This flag is then reset by the code which reads an ELF input
1423 file. This ensures that a symbol created by a non-ELF symbol
1424 reader will have the flag set correctly. */
1425 ret->non_elf = 1;
1426 }
1427
1428 return entry;
1429 }
1430
1431 /* Copy data from an indirect symbol to its direct symbol, hiding the
1432 old indirect symbol. Also used for copying flags to a weakdef. */
1433
1434 void
1435 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1436 struct elf_link_hash_entry *dir,
1437 struct elf_link_hash_entry *ind)
1438 {
1439 bfd_signed_vma tmp;
1440 bfd_signed_vma lowest_valid = bed->can_refcount;
1441
1442 /* Copy down any references that we may have already seen to the
1443 symbol which just became indirect. */
1444
1445 dir->ref_dynamic |= ind->ref_dynamic;
1446 dir->ref_regular |= ind->ref_regular;
1447 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1448 dir->non_got_ref |= ind->non_got_ref;
1449 dir->needs_plt |= ind->needs_plt;
1450 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1451
1452 if (ind->root.type != bfd_link_hash_indirect)
1453 return;
1454
1455 /* Copy over the global and procedure linkage table refcount entries.
1456 These may have been already set up by a check_relocs routine. */
1457 tmp = dir->got.refcount;
1458 if (tmp < lowest_valid)
1459 {
1460 dir->got.refcount = ind->got.refcount;
1461 ind->got.refcount = tmp;
1462 }
1463 else
1464 BFD_ASSERT (ind->got.refcount < lowest_valid);
1465
1466 tmp = dir->plt.refcount;
1467 if (tmp < lowest_valid)
1468 {
1469 dir->plt.refcount = ind->plt.refcount;
1470 ind->plt.refcount = tmp;
1471 }
1472 else
1473 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1474
1475 if (dir->dynindx == -1)
1476 {
1477 dir->dynindx = ind->dynindx;
1478 dir->dynstr_index = ind->dynstr_index;
1479 ind->dynindx = -1;
1480 ind->dynstr_index = 0;
1481 }
1482 else
1483 BFD_ASSERT (ind->dynindx == -1);
1484 }
1485
1486 void
1487 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1488 struct elf_link_hash_entry *h,
1489 bfd_boolean force_local)
1490 {
1491 h->plt = elf_hash_table (info)->init_plt_offset;
1492 h->needs_plt = 0;
1493 if (force_local)
1494 {
1495 h->forced_local = 1;
1496 if (h->dynindx != -1)
1497 {
1498 h->dynindx = -1;
1499 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1500 h->dynstr_index);
1501 }
1502 }
1503 }
1504
1505 /* Initialize an ELF linker hash table. */
1506
1507 bfd_boolean
1508 _bfd_elf_link_hash_table_init
1509 (struct elf_link_hash_table *table,
1510 bfd *abfd,
1511 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1512 struct bfd_hash_table *,
1513 const char *))
1514 {
1515 bfd_boolean ret;
1516 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1517
1518 table->dynamic_sections_created = FALSE;
1519 table->dynobj = NULL;
1520 table->init_got_refcount.refcount = can_refcount - 1;
1521 table->init_plt_refcount.refcount = can_refcount - 1;
1522 table->init_got_offset.offset = -(bfd_vma) 1;
1523 table->init_plt_offset.offset = -(bfd_vma) 1;
1524 /* The first dynamic symbol is a dummy. */
1525 table->dynsymcount = 1;
1526 table->dynstr = NULL;
1527 table->bucketcount = 0;
1528 table->needed = NULL;
1529 table->hgot = NULL;
1530 table->merge_info = NULL;
1531 memset (&table->stab_info, 0, sizeof (table->stab_info));
1532 memset (&table->eh_info, 0, sizeof (table->eh_info));
1533 table->dynlocal = NULL;
1534 table->runpath = NULL;
1535 table->tls_sec = NULL;
1536 table->tls_size = 0;
1537 table->loaded = NULL;
1538 table->is_relocatable_executable = FALSE;
1539
1540 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1541 table->root.type = bfd_link_elf_hash_table;
1542
1543 return ret;
1544 }
1545
1546 /* Create an ELF linker hash table. */
1547
1548 struct bfd_link_hash_table *
1549 _bfd_elf_link_hash_table_create (bfd *abfd)
1550 {
1551 struct elf_link_hash_table *ret;
1552 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1553
1554 ret = bfd_malloc (amt);
1555 if (ret == NULL)
1556 return NULL;
1557
1558 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1559 {
1560 free (ret);
1561 return NULL;
1562 }
1563
1564 return &ret->root;
1565 }
1566
1567 /* This is a hook for the ELF emulation code in the generic linker to
1568 tell the backend linker what file name to use for the DT_NEEDED
1569 entry for a dynamic object. */
1570
1571 void
1572 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1573 {
1574 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1575 && bfd_get_format (abfd) == bfd_object)
1576 elf_dt_name (abfd) = name;
1577 }
1578
1579 int
1580 bfd_elf_get_dyn_lib_class (bfd *abfd)
1581 {
1582 int lib_class;
1583 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1584 && bfd_get_format (abfd) == bfd_object)
1585 lib_class = elf_dyn_lib_class (abfd);
1586 else
1587 lib_class = 0;
1588 return lib_class;
1589 }
1590
1591 void
1592 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1593 {
1594 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1595 && bfd_get_format (abfd) == bfd_object)
1596 elf_dyn_lib_class (abfd) = lib_class;
1597 }
1598
1599 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1600 the linker ELF emulation code. */
1601
1602 struct bfd_link_needed_list *
1603 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1604 struct bfd_link_info *info)
1605 {
1606 if (! is_elf_hash_table (info->hash))
1607 return NULL;
1608 return elf_hash_table (info)->needed;
1609 }
1610
1611 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1612 hook for the linker ELF emulation code. */
1613
1614 struct bfd_link_needed_list *
1615 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1616 struct bfd_link_info *info)
1617 {
1618 if (! is_elf_hash_table (info->hash))
1619 return NULL;
1620 return elf_hash_table (info)->runpath;
1621 }
1622
1623 /* Get the name actually used for a dynamic object for a link. This
1624 is the SONAME entry if there is one. Otherwise, it is the string
1625 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1626
1627 const char *
1628 bfd_elf_get_dt_soname (bfd *abfd)
1629 {
1630 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1631 && bfd_get_format (abfd) == bfd_object)
1632 return elf_dt_name (abfd);
1633 return NULL;
1634 }
1635
1636 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1637 the ELF linker emulation code. */
1638
1639 bfd_boolean
1640 bfd_elf_get_bfd_needed_list (bfd *abfd,
1641 struct bfd_link_needed_list **pneeded)
1642 {
1643 asection *s;
1644 bfd_byte *dynbuf = NULL;
1645 int elfsec;
1646 unsigned long shlink;
1647 bfd_byte *extdyn, *extdynend;
1648 size_t extdynsize;
1649 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1650
1651 *pneeded = NULL;
1652
1653 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1654 || bfd_get_format (abfd) != bfd_object)
1655 return TRUE;
1656
1657 s = bfd_get_section_by_name (abfd, ".dynamic");
1658 if (s == NULL || s->size == 0)
1659 return TRUE;
1660
1661 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1662 goto error_return;
1663
1664 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1665 if (elfsec == -1)
1666 goto error_return;
1667
1668 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1669
1670 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1671 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1672
1673 extdyn = dynbuf;
1674 extdynend = extdyn + s->size;
1675 for (; extdyn < extdynend; extdyn += extdynsize)
1676 {
1677 Elf_Internal_Dyn dyn;
1678
1679 (*swap_dyn_in) (abfd, extdyn, &dyn);
1680
1681 if (dyn.d_tag == DT_NULL)
1682 break;
1683
1684 if (dyn.d_tag == DT_NEEDED)
1685 {
1686 const char *string;
1687 struct bfd_link_needed_list *l;
1688 unsigned int tagv = dyn.d_un.d_val;
1689 bfd_size_type amt;
1690
1691 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1692 if (string == NULL)
1693 goto error_return;
1694
1695 amt = sizeof *l;
1696 l = bfd_alloc (abfd, amt);
1697 if (l == NULL)
1698 goto error_return;
1699
1700 l->by = abfd;
1701 l->name = string;
1702 l->next = *pneeded;
1703 *pneeded = l;
1704 }
1705 }
1706
1707 free (dynbuf);
1708
1709 return TRUE;
1710
1711 error_return:
1712 if (dynbuf != NULL)
1713 free (dynbuf);
1714 return FALSE;
1715 }
1716 \f
1717 /* Allocate an ELF string table--force the first byte to be zero. */
1718
1719 struct bfd_strtab_hash *
1720 _bfd_elf_stringtab_init (void)
1721 {
1722 struct bfd_strtab_hash *ret;
1723
1724 ret = _bfd_stringtab_init ();
1725 if (ret != NULL)
1726 {
1727 bfd_size_type loc;
1728
1729 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1730 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1731 if (loc == (bfd_size_type) -1)
1732 {
1733 _bfd_stringtab_free (ret);
1734 ret = NULL;
1735 }
1736 }
1737 return ret;
1738 }
1739 \f
1740 /* ELF .o/exec file reading */
1741
1742 /* Create a new bfd section from an ELF section header. */
1743
1744 bfd_boolean
1745 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1746 {
1747 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1748 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1749 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1750 const char *name;
1751
1752 name = bfd_elf_string_from_elf_section (abfd,
1753 elf_elfheader (abfd)->e_shstrndx,
1754 hdr->sh_name);
1755 if (name == NULL)
1756 return FALSE;
1757
1758 switch (hdr->sh_type)
1759 {
1760 case SHT_NULL:
1761 /* Inactive section. Throw it away. */
1762 return TRUE;
1763
1764 case SHT_PROGBITS: /* Normal section with contents. */
1765 case SHT_NOBITS: /* .bss section. */
1766 case SHT_HASH: /* .hash section. */
1767 case SHT_NOTE: /* .note section. */
1768 case SHT_INIT_ARRAY: /* .init_array section. */
1769 case SHT_FINI_ARRAY: /* .fini_array section. */
1770 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1771 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1772 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1773
1774 case SHT_DYNAMIC: /* Dynamic linking information. */
1775 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1776 return FALSE;
1777 if (hdr->sh_link > elf_numsections (abfd)
1778 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1779 return FALSE;
1780 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1781 {
1782 Elf_Internal_Shdr *dynsymhdr;
1783
1784 /* The shared libraries distributed with hpux11 have a bogus
1785 sh_link field for the ".dynamic" section. Find the
1786 string table for the ".dynsym" section instead. */
1787 if (elf_dynsymtab (abfd) != 0)
1788 {
1789 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1790 hdr->sh_link = dynsymhdr->sh_link;
1791 }
1792 else
1793 {
1794 unsigned int i, num_sec;
1795
1796 num_sec = elf_numsections (abfd);
1797 for (i = 1; i < num_sec; i++)
1798 {
1799 dynsymhdr = elf_elfsections (abfd)[i];
1800 if (dynsymhdr->sh_type == SHT_DYNSYM)
1801 {
1802 hdr->sh_link = dynsymhdr->sh_link;
1803 break;
1804 }
1805 }
1806 }
1807 }
1808 break;
1809
1810 case SHT_SYMTAB: /* A symbol table */
1811 if (elf_onesymtab (abfd) == shindex)
1812 return TRUE;
1813
1814 if (hdr->sh_entsize != bed->s->sizeof_sym)
1815 return FALSE;
1816 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1817 elf_onesymtab (abfd) = shindex;
1818 elf_tdata (abfd)->symtab_hdr = *hdr;
1819 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1820 abfd->flags |= HAS_SYMS;
1821
1822 /* Sometimes a shared object will map in the symbol table. If
1823 SHF_ALLOC is set, and this is a shared object, then we also
1824 treat this section as a BFD section. We can not base the
1825 decision purely on SHF_ALLOC, because that flag is sometimes
1826 set in a relocatable object file, which would confuse the
1827 linker. */
1828 if ((hdr->sh_flags & SHF_ALLOC) != 0
1829 && (abfd->flags & DYNAMIC) != 0
1830 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1831 shindex))
1832 return FALSE;
1833
1834 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1835 can't read symbols without that section loaded as well. It
1836 is most likely specified by the next section header. */
1837 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1838 {
1839 unsigned int i, num_sec;
1840
1841 num_sec = elf_numsections (abfd);
1842 for (i = shindex + 1; i < num_sec; i++)
1843 {
1844 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1845 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1846 && hdr2->sh_link == shindex)
1847 break;
1848 }
1849 if (i == num_sec)
1850 for (i = 1; i < shindex; i++)
1851 {
1852 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1853 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1854 && hdr2->sh_link == shindex)
1855 break;
1856 }
1857 if (i != shindex)
1858 return bfd_section_from_shdr (abfd, i);
1859 }
1860 return TRUE;
1861
1862 case SHT_DYNSYM: /* A dynamic symbol table */
1863 if (elf_dynsymtab (abfd) == shindex)
1864 return TRUE;
1865
1866 if (hdr->sh_entsize != bed->s->sizeof_sym)
1867 return FALSE;
1868 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1869 elf_dynsymtab (abfd) = shindex;
1870 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1871 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1872 abfd->flags |= HAS_SYMS;
1873
1874 /* Besides being a symbol table, we also treat this as a regular
1875 section, so that objcopy can handle it. */
1876 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1877
1878 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1879 if (elf_symtab_shndx (abfd) == shindex)
1880 return TRUE;
1881
1882 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1883 elf_symtab_shndx (abfd) = shindex;
1884 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1885 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1886 return TRUE;
1887
1888 case SHT_STRTAB: /* A string table */
1889 if (hdr->bfd_section != NULL)
1890 return TRUE;
1891 if (ehdr->e_shstrndx == shindex)
1892 {
1893 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1894 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1895 return TRUE;
1896 }
1897 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1898 {
1899 symtab_strtab:
1900 elf_tdata (abfd)->strtab_hdr = *hdr;
1901 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1902 return TRUE;
1903 }
1904 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1905 {
1906 dynsymtab_strtab:
1907 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1908 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1909 elf_elfsections (abfd)[shindex] = hdr;
1910 /* We also treat this as a regular section, so that objcopy
1911 can handle it. */
1912 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1913 shindex);
1914 }
1915
1916 /* If the string table isn't one of the above, then treat it as a
1917 regular section. We need to scan all the headers to be sure,
1918 just in case this strtab section appeared before the above. */
1919 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1920 {
1921 unsigned int i, num_sec;
1922
1923 num_sec = elf_numsections (abfd);
1924 for (i = 1; i < num_sec; i++)
1925 {
1926 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1927 if (hdr2->sh_link == shindex)
1928 {
1929 /* Prevent endless recursion on broken objects. */
1930 if (i == shindex)
1931 return FALSE;
1932 if (! bfd_section_from_shdr (abfd, i))
1933 return FALSE;
1934 if (elf_onesymtab (abfd) == i)
1935 goto symtab_strtab;
1936 if (elf_dynsymtab (abfd) == i)
1937 goto dynsymtab_strtab;
1938 }
1939 }
1940 }
1941 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1942
1943 case SHT_REL:
1944 case SHT_RELA:
1945 /* *These* do a lot of work -- but build no sections! */
1946 {
1947 asection *target_sect;
1948 Elf_Internal_Shdr *hdr2;
1949 unsigned int num_sec = elf_numsections (abfd);
1950
1951 if (hdr->sh_entsize
1952 != (bfd_size_type) (hdr->sh_type == SHT_REL
1953 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1954 return FALSE;
1955
1956 /* Check for a bogus link to avoid crashing. */
1957 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1958 || hdr->sh_link >= num_sec)
1959 {
1960 ((*_bfd_error_handler)
1961 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1962 abfd, hdr->sh_link, name, shindex));
1963 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1964 shindex);
1965 }
1966
1967 /* For some incomprehensible reason Oracle distributes
1968 libraries for Solaris in which some of the objects have
1969 bogus sh_link fields. It would be nice if we could just
1970 reject them, but, unfortunately, some people need to use
1971 them. We scan through the section headers; if we find only
1972 one suitable symbol table, we clobber the sh_link to point
1973 to it. I hope this doesn't break anything. */
1974 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1975 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1976 {
1977 unsigned int scan;
1978 int found;
1979
1980 found = 0;
1981 for (scan = 1; scan < num_sec; scan++)
1982 {
1983 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1984 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1985 {
1986 if (found != 0)
1987 {
1988 found = 0;
1989 break;
1990 }
1991 found = scan;
1992 }
1993 }
1994 if (found != 0)
1995 hdr->sh_link = found;
1996 }
1997
1998 /* Get the symbol table. */
1999 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2000 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2001 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2002 return FALSE;
2003
2004 /* If this reloc section does not use the main symbol table we
2005 don't treat it as a reloc section. BFD can't adequately
2006 represent such a section, so at least for now, we don't
2007 try. We just present it as a normal section. We also
2008 can't use it as a reloc section if it points to the null
2009 section. */
2010 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
2011 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2012 shindex);
2013
2014 /* Prevent endless recursion on broken objects. */
2015 if (elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2016 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2017 return FALSE;
2018 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2019 return FALSE;
2020 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2021 if (target_sect == NULL)
2022 return FALSE;
2023
2024 if ((target_sect->flags & SEC_RELOC) == 0
2025 || target_sect->reloc_count == 0)
2026 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2027 else
2028 {
2029 bfd_size_type amt;
2030 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2031 amt = sizeof (*hdr2);
2032 hdr2 = bfd_alloc (abfd, amt);
2033 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2034 }
2035 *hdr2 = *hdr;
2036 elf_elfsections (abfd)[shindex] = hdr2;
2037 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2038 target_sect->flags |= SEC_RELOC;
2039 target_sect->relocation = NULL;
2040 target_sect->rel_filepos = hdr->sh_offset;
2041 /* In the section to which the relocations apply, mark whether
2042 its relocations are of the REL or RELA variety. */
2043 if (hdr->sh_size != 0)
2044 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2045 abfd->flags |= HAS_RELOC;
2046 return TRUE;
2047 }
2048 break;
2049
2050 case SHT_GNU_verdef:
2051 elf_dynverdef (abfd) = shindex;
2052 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2053 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2054 break;
2055
2056 case SHT_GNU_versym:
2057 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2058 return FALSE;
2059 elf_dynversym (abfd) = shindex;
2060 elf_tdata (abfd)->dynversym_hdr = *hdr;
2061 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2062 break;
2063
2064 case SHT_GNU_verneed:
2065 elf_dynverref (abfd) = shindex;
2066 elf_tdata (abfd)->dynverref_hdr = *hdr;
2067 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2068 break;
2069
2070 case SHT_SHLIB:
2071 return TRUE;
2072
2073 case SHT_GROUP:
2074 /* We need a BFD section for objcopy and relocatable linking,
2075 and it's handy to have the signature available as the section
2076 name. */
2077 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2078 return FALSE;
2079 name = group_signature (abfd, hdr);
2080 if (name == NULL)
2081 return FALSE;
2082 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2083 return FALSE;
2084 if (hdr->contents != NULL)
2085 {
2086 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2087 unsigned int n_elt = hdr->sh_size / 4;
2088 asection *s;
2089
2090 if (idx->flags & GRP_COMDAT)
2091 hdr->bfd_section->flags
2092 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2093
2094 /* We try to keep the same section order as it comes in. */
2095 idx += n_elt;
2096 while (--n_elt != 0)
2097 if ((s = (--idx)->shdr->bfd_section) != NULL
2098 && elf_next_in_group (s) != NULL)
2099 {
2100 elf_next_in_group (hdr->bfd_section) = s;
2101 break;
2102 }
2103 }
2104 break;
2105
2106 default:
2107 /* Check for any processor-specific section types. */
2108 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2109 shindex);
2110 }
2111
2112 return TRUE;
2113 }
2114
2115 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2116 Return SEC for sections that have no elf section, and NULL on error. */
2117
2118 asection *
2119 bfd_section_from_r_symndx (bfd *abfd,
2120 struct sym_sec_cache *cache,
2121 asection *sec,
2122 unsigned long r_symndx)
2123 {
2124 Elf_Internal_Shdr *symtab_hdr;
2125 unsigned char esym[sizeof (Elf64_External_Sym)];
2126 Elf_External_Sym_Shndx eshndx;
2127 Elf_Internal_Sym isym;
2128 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2129
2130 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2131 return cache->sec[ent];
2132
2133 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2134 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2135 &isym, esym, &eshndx) == NULL)
2136 return NULL;
2137
2138 if (cache->abfd != abfd)
2139 {
2140 memset (cache->indx, -1, sizeof (cache->indx));
2141 cache->abfd = abfd;
2142 }
2143 cache->indx[ent] = r_symndx;
2144 cache->sec[ent] = sec;
2145 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2146 || isym.st_shndx > SHN_HIRESERVE)
2147 {
2148 asection *s;
2149 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2150 if (s != NULL)
2151 cache->sec[ent] = s;
2152 }
2153 return cache->sec[ent];
2154 }
2155
2156 /* Given an ELF section number, retrieve the corresponding BFD
2157 section. */
2158
2159 asection *
2160 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2161 {
2162 if (index >= elf_numsections (abfd))
2163 return NULL;
2164 return elf_elfsections (abfd)[index]->bfd_section;
2165 }
2166
2167 static struct bfd_elf_special_section const special_sections_b[] =
2168 {
2169 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2170 { NULL, 0, 0, 0, 0 }
2171 };
2172
2173 static struct bfd_elf_special_section const special_sections_c[] =
2174 {
2175 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2176 { NULL, 0, 0, 0, 0 }
2177 };
2178
2179 static struct bfd_elf_special_section const special_sections_d[] =
2180 {
2181 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2182 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2183 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2184 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2185 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2186 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2187 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2188 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2189 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2190 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2191 { NULL, 0, 0, 0, 0 }
2192 };
2193
2194 static struct bfd_elf_special_section const special_sections_f[] =
2195 {
2196 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2197 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2198 { NULL, 0, 0, 0, 0 }
2199 };
2200
2201 static struct bfd_elf_special_section const special_sections_g[] =
2202 {
2203 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2204 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2205 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2206 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2207 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2208 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2209 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2210 { NULL, 0, 0, 0, 0 }
2211 };
2212
2213 static struct bfd_elf_special_section const special_sections_h[] =
2214 {
2215 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2216 { NULL, 0, 0, 0, 0 }
2217 };
2218
2219 static struct bfd_elf_special_section const special_sections_i[] =
2220 {
2221 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2222 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2223 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2224 { NULL, 0, 0, 0, 0 }
2225 };
2226
2227 static struct bfd_elf_special_section const special_sections_l[] =
2228 {
2229 { ".line", 5, 0, SHT_PROGBITS, 0 },
2230 { NULL, 0, 0, 0, 0 }
2231 };
2232
2233 static struct bfd_elf_special_section const special_sections_n[] =
2234 {
2235 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2236 { ".note", 5, -1, SHT_NOTE, 0 },
2237 { NULL, 0, 0, 0, 0 }
2238 };
2239
2240 static struct bfd_elf_special_section const special_sections_p[] =
2241 {
2242 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2243 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2244 { NULL, 0, 0, 0, 0 }
2245 };
2246
2247 static struct bfd_elf_special_section const special_sections_r[] =
2248 {
2249 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2250 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2251 { ".rela", 5, -1, SHT_RELA, 0 },
2252 { ".rel", 4, -1, SHT_REL, 0 },
2253 { NULL, 0, 0, 0, 0 }
2254 };
2255
2256 static struct bfd_elf_special_section const special_sections_s[] =
2257 {
2258 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2259 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2260 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2261 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2262 { NULL, 0, 0, 0, 0 }
2263 };
2264
2265 static struct bfd_elf_special_section const special_sections_t[] =
2266 {
2267 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2268 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2269 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2270 { NULL, 0, 0, 0, 0 }
2271 };
2272
2273 static struct bfd_elf_special_section const *special_sections[] =
2274 {
2275 special_sections_b, /* 'b' */
2276 special_sections_c, /* 'b' */
2277 special_sections_d, /* 'd' */
2278 NULL, /* 'e' */
2279 special_sections_f, /* 'f' */
2280 special_sections_g, /* 'g' */
2281 special_sections_h, /* 'h' */
2282 special_sections_i, /* 'i' */
2283 NULL, /* 'j' */
2284 NULL, /* 'k' */
2285 special_sections_l, /* 'l' */
2286 NULL, /* 'm' */
2287 special_sections_n, /* 'n' */
2288 NULL, /* 'o' */
2289 special_sections_p, /* 'p' */
2290 NULL, /* 'q' */
2291 special_sections_r, /* 'r' */
2292 special_sections_s, /* 's' */
2293 special_sections_t, /* 't' */
2294 };
2295
2296 const struct bfd_elf_special_section *
2297 _bfd_elf_get_special_section (const char *name,
2298 const struct bfd_elf_special_section *spec,
2299 unsigned int rela)
2300 {
2301 int i;
2302 int len;
2303
2304 len = strlen (name);
2305
2306 for (i = 0; spec[i].prefix != NULL; i++)
2307 {
2308 int suffix_len;
2309 int prefix_len = spec[i].prefix_length;
2310
2311 if (len < prefix_len)
2312 continue;
2313 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2314 continue;
2315
2316 suffix_len = spec[i].suffix_length;
2317 if (suffix_len <= 0)
2318 {
2319 if (name[prefix_len] != 0)
2320 {
2321 if (suffix_len == 0)
2322 continue;
2323 if (name[prefix_len] != '.'
2324 && (suffix_len == -2
2325 || (rela && spec[i].type == SHT_REL)))
2326 continue;
2327 }
2328 }
2329 else
2330 {
2331 if (len < prefix_len + suffix_len)
2332 continue;
2333 if (memcmp (name + len - suffix_len,
2334 spec[i].prefix + prefix_len,
2335 suffix_len) != 0)
2336 continue;
2337 }
2338 return &spec[i];
2339 }
2340
2341 return NULL;
2342 }
2343
2344 const struct bfd_elf_special_section *
2345 _bfd_elf_get_sec_type_attr (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
2346 {
2347 int i;
2348 const struct bfd_elf_special_section *spec;
2349
2350 /* See if this is one of the special sections. */
2351 if (sec->name == NULL)
2352 return NULL;
2353
2354 if (sec->name[0] != '.')
2355 return NULL;
2356
2357 i = sec->name[1] - 'b';
2358 if (i < 0 || i > 't' - 'b')
2359 return NULL;
2360
2361 spec = special_sections[i];
2362
2363 if (spec == NULL)
2364 return NULL;
2365
2366 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2367 }
2368
2369 bfd_boolean
2370 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2371 {
2372 struct bfd_elf_section_data *sdata;
2373 const struct elf_backend_data *bed;
2374 const struct bfd_elf_special_section *ssect;
2375
2376 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2377 if (sdata == NULL)
2378 {
2379 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2380 if (sdata == NULL)
2381 return FALSE;
2382 sec->used_by_bfd = sdata;
2383 }
2384
2385 /* Indicate whether or not this section should use RELA relocations. */
2386 bed = get_elf_backend_data (abfd);
2387 sec->use_rela_p = bed->default_use_rela_p;
2388
2389 /* When we read a file, we don't need section type and flags unless
2390 it is a linker created section. They will be overridden in
2391 _bfd_elf_make_section_from_shdr anyway. */
2392 if (abfd->direction != read_direction
2393 || (sec->flags & SEC_LINKER_CREATED) != 0)
2394 {
2395 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2396 if (ssect != NULL)
2397 {
2398 elf_section_type (sec) = ssect->type;
2399 elf_section_flags (sec) = ssect->attr;
2400 }
2401 }
2402
2403 return TRUE;
2404 }
2405
2406 /* Create a new bfd section from an ELF program header.
2407
2408 Since program segments have no names, we generate a synthetic name
2409 of the form segment<NUM>, where NUM is generally the index in the
2410 program header table. For segments that are split (see below) we
2411 generate the names segment<NUM>a and segment<NUM>b.
2412
2413 Note that some program segments may have a file size that is different than
2414 (less than) the memory size. All this means is that at execution the
2415 system must allocate the amount of memory specified by the memory size,
2416 but only initialize it with the first "file size" bytes read from the
2417 file. This would occur for example, with program segments consisting
2418 of combined data+bss.
2419
2420 To handle the above situation, this routine generates TWO bfd sections
2421 for the single program segment. The first has the length specified by
2422 the file size of the segment, and the second has the length specified
2423 by the difference between the two sizes. In effect, the segment is split
2424 into it's initialized and uninitialized parts.
2425
2426 */
2427
2428 bfd_boolean
2429 _bfd_elf_make_section_from_phdr (bfd *abfd,
2430 Elf_Internal_Phdr *hdr,
2431 int index,
2432 const char *typename)
2433 {
2434 asection *newsect;
2435 char *name;
2436 char namebuf[64];
2437 size_t len;
2438 int split;
2439
2440 split = ((hdr->p_memsz > 0)
2441 && (hdr->p_filesz > 0)
2442 && (hdr->p_memsz > hdr->p_filesz));
2443 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2444 len = strlen (namebuf) + 1;
2445 name = bfd_alloc (abfd, len);
2446 if (!name)
2447 return FALSE;
2448 memcpy (name, namebuf, len);
2449 newsect = bfd_make_section (abfd, name);
2450 if (newsect == NULL)
2451 return FALSE;
2452 newsect->vma = hdr->p_vaddr;
2453 newsect->lma = hdr->p_paddr;
2454 newsect->size = hdr->p_filesz;
2455 newsect->filepos = hdr->p_offset;
2456 newsect->flags |= SEC_HAS_CONTENTS;
2457 newsect->alignment_power = bfd_log2 (hdr->p_align);
2458 if (hdr->p_type == PT_LOAD)
2459 {
2460 newsect->flags |= SEC_ALLOC;
2461 newsect->flags |= SEC_LOAD;
2462 if (hdr->p_flags & PF_X)
2463 {
2464 /* FIXME: all we known is that it has execute PERMISSION,
2465 may be data. */
2466 newsect->flags |= SEC_CODE;
2467 }
2468 }
2469 if (!(hdr->p_flags & PF_W))
2470 {
2471 newsect->flags |= SEC_READONLY;
2472 }
2473
2474 if (split)
2475 {
2476 sprintf (namebuf, "%s%db", typename, index);
2477 len = strlen (namebuf) + 1;
2478 name = bfd_alloc (abfd, len);
2479 if (!name)
2480 return FALSE;
2481 memcpy (name, namebuf, len);
2482 newsect = bfd_make_section (abfd, name);
2483 if (newsect == NULL)
2484 return FALSE;
2485 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2486 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2487 newsect->size = hdr->p_memsz - hdr->p_filesz;
2488 if (hdr->p_type == PT_LOAD)
2489 {
2490 newsect->flags |= SEC_ALLOC;
2491 if (hdr->p_flags & PF_X)
2492 newsect->flags |= SEC_CODE;
2493 }
2494 if (!(hdr->p_flags & PF_W))
2495 newsect->flags |= SEC_READONLY;
2496 }
2497
2498 return TRUE;
2499 }
2500
2501 bfd_boolean
2502 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2503 {
2504 const struct elf_backend_data *bed;
2505
2506 switch (hdr->p_type)
2507 {
2508 case PT_NULL:
2509 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2510
2511 case PT_LOAD:
2512 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2513
2514 case PT_DYNAMIC:
2515 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2516
2517 case PT_INTERP:
2518 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2519
2520 case PT_NOTE:
2521 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2522 return FALSE;
2523 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2524 return FALSE;
2525 return TRUE;
2526
2527 case PT_SHLIB:
2528 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2529
2530 case PT_PHDR:
2531 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2532
2533 case PT_GNU_EH_FRAME:
2534 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2535 "eh_frame_hdr");
2536
2537 case PT_GNU_STACK:
2538 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2539
2540 case PT_GNU_RELRO:
2541 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2542
2543 default:
2544 /* Check for any processor-specific program segment types. */
2545 bed = get_elf_backend_data (abfd);
2546 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2547 }
2548 }
2549
2550 /* Initialize REL_HDR, the section-header for new section, containing
2551 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2552 relocations; otherwise, we use REL relocations. */
2553
2554 bfd_boolean
2555 _bfd_elf_init_reloc_shdr (bfd *abfd,
2556 Elf_Internal_Shdr *rel_hdr,
2557 asection *asect,
2558 bfd_boolean use_rela_p)
2559 {
2560 char *name;
2561 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2562 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2563
2564 name = bfd_alloc (abfd, amt);
2565 if (name == NULL)
2566 return FALSE;
2567 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2568 rel_hdr->sh_name =
2569 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2570 FALSE);
2571 if (rel_hdr->sh_name == (unsigned int) -1)
2572 return FALSE;
2573 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2574 rel_hdr->sh_entsize = (use_rela_p
2575 ? bed->s->sizeof_rela
2576 : bed->s->sizeof_rel);
2577 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2578 rel_hdr->sh_flags = 0;
2579 rel_hdr->sh_addr = 0;
2580 rel_hdr->sh_size = 0;
2581 rel_hdr->sh_offset = 0;
2582
2583 return TRUE;
2584 }
2585
2586 /* Set up an ELF internal section header for a section. */
2587
2588 static void
2589 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2590 {
2591 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2592 bfd_boolean *failedptr = failedptrarg;
2593 Elf_Internal_Shdr *this_hdr;
2594
2595 if (*failedptr)
2596 {
2597 /* We already failed; just get out of the bfd_map_over_sections
2598 loop. */
2599 return;
2600 }
2601
2602 this_hdr = &elf_section_data (asect)->this_hdr;
2603
2604 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2605 asect->name, FALSE);
2606 if (this_hdr->sh_name == (unsigned int) -1)
2607 {
2608 *failedptr = TRUE;
2609 return;
2610 }
2611
2612 this_hdr->sh_flags = 0;
2613
2614 if ((asect->flags & SEC_ALLOC) != 0
2615 || asect->user_set_vma)
2616 this_hdr->sh_addr = asect->vma;
2617 else
2618 this_hdr->sh_addr = 0;
2619
2620 this_hdr->sh_offset = 0;
2621 this_hdr->sh_size = asect->size;
2622 this_hdr->sh_link = 0;
2623 this_hdr->sh_addralign = 1 << asect->alignment_power;
2624 /* The sh_entsize and sh_info fields may have been set already by
2625 copy_private_section_data. */
2626
2627 this_hdr->bfd_section = asect;
2628 this_hdr->contents = NULL;
2629
2630 /* If the section type is unspecified, we set it based on
2631 asect->flags. */
2632 if (this_hdr->sh_type == SHT_NULL)
2633 {
2634 if ((asect->flags & SEC_GROUP) != 0)
2635 {
2636 /* We also need to mark SHF_GROUP here for relocatable
2637 link. */
2638 struct bfd_link_order *l;
2639 asection *elt;
2640
2641 for (l = asect->map_head.link_order; l != NULL; l = l->next)
2642 if (l->type == bfd_indirect_link_order
2643 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2644 do
2645 {
2646 /* The name is not important. Anything will do. */
2647 elf_group_name (elt->output_section) = "G";
2648 elf_section_flags (elt->output_section) |= SHF_GROUP;
2649
2650 elt = elf_next_in_group (elt);
2651 /* During a relocatable link, the lists are
2652 circular. */
2653 }
2654 while (elt != elf_next_in_group (l->u.indirect.section));
2655
2656 this_hdr->sh_type = SHT_GROUP;
2657 }
2658 else if ((asect->flags & SEC_ALLOC) != 0
2659 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2660 || (asect->flags & SEC_NEVER_LOAD) != 0))
2661 this_hdr->sh_type = SHT_NOBITS;
2662 else
2663 this_hdr->sh_type = SHT_PROGBITS;
2664 }
2665
2666 switch (this_hdr->sh_type)
2667 {
2668 default:
2669 break;
2670
2671 case SHT_STRTAB:
2672 case SHT_INIT_ARRAY:
2673 case SHT_FINI_ARRAY:
2674 case SHT_PREINIT_ARRAY:
2675 case SHT_NOTE:
2676 case SHT_NOBITS:
2677 case SHT_PROGBITS:
2678 break;
2679
2680 case SHT_HASH:
2681 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2682 break;
2683
2684 case SHT_DYNSYM:
2685 this_hdr->sh_entsize = bed->s->sizeof_sym;
2686 break;
2687
2688 case SHT_DYNAMIC:
2689 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2690 break;
2691
2692 case SHT_RELA:
2693 if (get_elf_backend_data (abfd)->may_use_rela_p)
2694 this_hdr->sh_entsize = bed->s->sizeof_rela;
2695 break;
2696
2697 case SHT_REL:
2698 if (get_elf_backend_data (abfd)->may_use_rel_p)
2699 this_hdr->sh_entsize = bed->s->sizeof_rel;
2700 break;
2701
2702 case SHT_GNU_versym:
2703 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2704 break;
2705
2706 case SHT_GNU_verdef:
2707 this_hdr->sh_entsize = 0;
2708 /* objcopy or strip will copy over sh_info, but may not set
2709 cverdefs. The linker will set cverdefs, but sh_info will be
2710 zero. */
2711 if (this_hdr->sh_info == 0)
2712 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2713 else
2714 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2715 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2716 break;
2717
2718 case SHT_GNU_verneed:
2719 this_hdr->sh_entsize = 0;
2720 /* objcopy or strip will copy over sh_info, but may not set
2721 cverrefs. The linker will set cverrefs, but sh_info will be
2722 zero. */
2723 if (this_hdr->sh_info == 0)
2724 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2725 else
2726 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2727 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2728 break;
2729
2730 case SHT_GROUP:
2731 this_hdr->sh_entsize = 4;
2732 break;
2733 }
2734
2735 if ((asect->flags & SEC_ALLOC) != 0)
2736 this_hdr->sh_flags |= SHF_ALLOC;
2737 if ((asect->flags & SEC_READONLY) == 0)
2738 this_hdr->sh_flags |= SHF_WRITE;
2739 if ((asect->flags & SEC_CODE) != 0)
2740 this_hdr->sh_flags |= SHF_EXECINSTR;
2741 if ((asect->flags & SEC_MERGE) != 0)
2742 {
2743 this_hdr->sh_flags |= SHF_MERGE;
2744 this_hdr->sh_entsize = asect->entsize;
2745 if ((asect->flags & SEC_STRINGS) != 0)
2746 this_hdr->sh_flags |= SHF_STRINGS;
2747 }
2748 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2749 this_hdr->sh_flags |= SHF_GROUP;
2750 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2751 {
2752 this_hdr->sh_flags |= SHF_TLS;
2753 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2754 {
2755 struct bfd_link_order *o;
2756
2757 this_hdr->sh_size = 0;
2758 for (o = asect->map_head.link_order; o != NULL; o = o->next)
2759 if (this_hdr->sh_size < o->offset + o->size)
2760 this_hdr->sh_size = o->offset + o->size;
2761 if (this_hdr->sh_size)
2762 this_hdr->sh_type = SHT_NOBITS;
2763 }
2764 }
2765
2766 /* Check for processor-specific section types. */
2767 if (bed->elf_backend_fake_sections
2768 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2769 *failedptr = TRUE;
2770
2771 /* If the section has relocs, set up a section header for the
2772 SHT_REL[A] section. If two relocation sections are required for
2773 this section, it is up to the processor-specific back-end to
2774 create the other. */
2775 if ((asect->flags & SEC_RELOC) != 0
2776 && !_bfd_elf_init_reloc_shdr (abfd,
2777 &elf_section_data (asect)->rel_hdr,
2778 asect,
2779 asect->use_rela_p))
2780 *failedptr = TRUE;
2781 }
2782
2783 /* Fill in the contents of a SHT_GROUP section. */
2784
2785 void
2786 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2787 {
2788 bfd_boolean *failedptr = failedptrarg;
2789 unsigned long symindx;
2790 asection *elt, *first;
2791 unsigned char *loc;
2792 struct bfd_link_order *l;
2793 bfd_boolean gas;
2794
2795 /* Ignore linker created group section. See elfNN_ia64_object_p in
2796 elfxx-ia64.c. */
2797 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2798 || *failedptr)
2799 return;
2800
2801 symindx = 0;
2802 if (elf_group_id (sec) != NULL)
2803 symindx = elf_group_id (sec)->udata.i;
2804
2805 if (symindx == 0)
2806 {
2807 /* If called from the assembler, swap_out_syms will have set up
2808 elf_section_syms; If called for "ld -r", use target_index. */
2809 if (elf_section_syms (abfd) != NULL)
2810 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2811 else
2812 symindx = sec->target_index;
2813 }
2814 elf_section_data (sec)->this_hdr.sh_info = symindx;
2815
2816 /* The contents won't be allocated for "ld -r" or objcopy. */
2817 gas = TRUE;
2818 if (sec->contents == NULL)
2819 {
2820 gas = FALSE;
2821 sec->contents = bfd_alloc (abfd, sec->size);
2822
2823 /* Arrange for the section to be written out. */
2824 elf_section_data (sec)->this_hdr.contents = sec->contents;
2825 if (sec->contents == NULL)
2826 {
2827 *failedptr = TRUE;
2828 return;
2829 }
2830 }
2831
2832 loc = sec->contents + sec->size;
2833
2834 /* Get the pointer to the first section in the group that gas
2835 squirreled away here. objcopy arranges for this to be set to the
2836 start of the input section group. */
2837 first = elt = elf_next_in_group (sec);
2838
2839 /* First element is a flag word. Rest of section is elf section
2840 indices for all the sections of the group. Write them backwards
2841 just to keep the group in the same order as given in .section
2842 directives, not that it matters. */
2843 while (elt != NULL)
2844 {
2845 asection *s;
2846 unsigned int idx;
2847
2848 loc -= 4;
2849 s = elt;
2850 if (!gas)
2851 s = s->output_section;
2852 idx = 0;
2853 if (s != NULL)
2854 idx = elf_section_data (s)->this_idx;
2855 H_PUT_32 (abfd, idx, loc);
2856 elt = elf_next_in_group (elt);
2857 if (elt == first)
2858 break;
2859 }
2860
2861 /* If this is a relocatable link, then the above did nothing because
2862 SEC is the output section. Look through the input sections
2863 instead. */
2864 for (l = sec->map_head.link_order; l != NULL; l = l->next)
2865 if (l->type == bfd_indirect_link_order
2866 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2867 do
2868 {
2869 loc -= 4;
2870 H_PUT_32 (abfd,
2871 elf_section_data (elt->output_section)->this_idx, loc);
2872 elt = elf_next_in_group (elt);
2873 /* During a relocatable link, the lists are circular. */
2874 }
2875 while (elt != elf_next_in_group (l->u.indirect.section));
2876
2877 if ((loc -= 4) != sec->contents)
2878 abort ();
2879
2880 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2881 }
2882
2883 /* Assign all ELF section numbers. The dummy first section is handled here
2884 too. The link/info pointers for the standard section types are filled
2885 in here too, while we're at it. */
2886
2887 static bfd_boolean
2888 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2889 {
2890 struct elf_obj_tdata *t = elf_tdata (abfd);
2891 asection *sec;
2892 unsigned int section_number, secn;
2893 Elf_Internal_Shdr **i_shdrp;
2894 bfd_size_type amt;
2895 struct bfd_elf_section_data *d;
2896
2897 section_number = 1;
2898
2899 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2900
2901 /* SHT_GROUP sections are in relocatable files only. */
2902 if (link_info == NULL || link_info->relocatable)
2903 {
2904 /* Put SHT_GROUP sections first. */
2905 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2906 {
2907 d = elf_section_data (sec);
2908
2909 if (d->this_hdr.sh_type == SHT_GROUP)
2910 {
2911 if (sec->flags & SEC_LINKER_CREATED)
2912 {
2913 /* Remove the linker created SHT_GROUP sections. */
2914 bfd_section_list_remove (abfd, sec);
2915 abfd->section_count--;
2916 }
2917 else
2918 {
2919 if (section_number == SHN_LORESERVE)
2920 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2921 d->this_idx = section_number++;
2922 }
2923 }
2924 }
2925 }
2926
2927 for (sec = abfd->sections; sec; sec = sec->next)
2928 {
2929 d = elf_section_data (sec);
2930
2931 if (d->this_hdr.sh_type != SHT_GROUP)
2932 {
2933 if (section_number == SHN_LORESERVE)
2934 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2935 d->this_idx = section_number++;
2936 }
2937 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2938 if ((sec->flags & SEC_RELOC) == 0)
2939 d->rel_idx = 0;
2940 else
2941 {
2942 if (section_number == SHN_LORESERVE)
2943 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2944 d->rel_idx = section_number++;
2945 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2946 }
2947
2948 if (d->rel_hdr2)
2949 {
2950 if (section_number == SHN_LORESERVE)
2951 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2952 d->rel_idx2 = section_number++;
2953 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2954 }
2955 else
2956 d->rel_idx2 = 0;
2957 }
2958
2959 if (section_number == SHN_LORESERVE)
2960 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2961 t->shstrtab_section = section_number++;
2962 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2963 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2964
2965 if (bfd_get_symcount (abfd) > 0)
2966 {
2967 if (section_number == SHN_LORESERVE)
2968 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2969 t->symtab_section = section_number++;
2970 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2971 if (section_number > SHN_LORESERVE - 2)
2972 {
2973 if (section_number == SHN_LORESERVE)
2974 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2975 t->symtab_shndx_section = section_number++;
2976 t->symtab_shndx_hdr.sh_name
2977 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2978 ".symtab_shndx", FALSE);
2979 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2980 return FALSE;
2981 }
2982 if (section_number == SHN_LORESERVE)
2983 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2984 t->strtab_section = section_number++;
2985 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2986 }
2987
2988 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2989 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2990
2991 elf_numsections (abfd) = section_number;
2992 elf_elfheader (abfd)->e_shnum = section_number;
2993 if (section_number > SHN_LORESERVE)
2994 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2995
2996 /* Set up the list of section header pointers, in agreement with the
2997 indices. */
2998 amt = section_number * sizeof (Elf_Internal_Shdr *);
2999 i_shdrp = bfd_zalloc (abfd, amt);
3000 if (i_shdrp == NULL)
3001 return FALSE;
3002
3003 amt = sizeof (Elf_Internal_Shdr);
3004 i_shdrp[0] = bfd_zalloc (abfd, amt);
3005 if (i_shdrp[0] == NULL)
3006 {
3007 bfd_release (abfd, i_shdrp);
3008 return FALSE;
3009 }
3010
3011 elf_elfsections (abfd) = i_shdrp;
3012
3013 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3014 if (bfd_get_symcount (abfd) > 0)
3015 {
3016 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3017 if (elf_numsections (abfd) > SHN_LORESERVE)
3018 {
3019 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3020 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3021 }
3022 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3023 t->symtab_hdr.sh_link = t->strtab_section;
3024 }
3025
3026 for (sec = abfd->sections; sec; sec = sec->next)
3027 {
3028 struct bfd_elf_section_data *d = elf_section_data (sec);
3029 asection *s;
3030 const char *name;
3031
3032 i_shdrp[d->this_idx] = &d->this_hdr;
3033 if (d->rel_idx != 0)
3034 i_shdrp[d->rel_idx] = &d->rel_hdr;
3035 if (d->rel_idx2 != 0)
3036 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3037
3038 /* Fill in the sh_link and sh_info fields while we're at it. */
3039
3040 /* sh_link of a reloc section is the section index of the symbol
3041 table. sh_info is the section index of the section to which
3042 the relocation entries apply. */
3043 if (d->rel_idx != 0)
3044 {
3045 d->rel_hdr.sh_link = t->symtab_section;
3046 d->rel_hdr.sh_info = d->this_idx;
3047 }
3048 if (d->rel_idx2 != 0)
3049 {
3050 d->rel_hdr2->sh_link = t->symtab_section;
3051 d->rel_hdr2->sh_info = d->this_idx;
3052 }
3053
3054 /* We need to set up sh_link for SHF_LINK_ORDER. */
3055 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3056 {
3057 s = elf_linked_to_section (sec);
3058 if (s)
3059 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3060 else
3061 {
3062 struct bfd_link_order *p;
3063
3064 /* Find out what the corresponding section in output
3065 is. */
3066 for (p = sec->map_head.link_order; p != NULL; p = p->next)
3067 {
3068 s = p->u.indirect.section;
3069 if (p->type == bfd_indirect_link_order
3070 && (bfd_get_flavour (s->owner)
3071 == bfd_target_elf_flavour))
3072 {
3073 Elf_Internal_Shdr ** const elf_shdrp
3074 = elf_elfsections (s->owner);
3075 int elfsec
3076 = _bfd_elf_section_from_bfd_section (s->owner, s);
3077 elfsec = elf_shdrp[elfsec]->sh_link;
3078 /* PR 290:
3079 The Intel C compiler generates SHT_IA_64_UNWIND with
3080 SHF_LINK_ORDER. But it doesn't set the sh_link or
3081 sh_info fields. Hence we could get the situation
3082 where elfsec is 0. */
3083 if (elfsec == 0)
3084 {
3085 const struct elf_backend_data *bed
3086 = get_elf_backend_data (abfd);
3087 if (bed->link_order_error_handler)
3088 bed->link_order_error_handler
3089 (_("%B: warning: sh_link not set for section `%A'"),
3090 abfd, s);
3091 }
3092 else
3093 {
3094 s = elf_shdrp[elfsec]->bfd_section;
3095 if (elf_discarded_section (s))
3096 {
3097 asection *kept;
3098 (*_bfd_error_handler)
3099 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3100 abfd, d->this_hdr.bfd_section,
3101 s, s->owner);
3102 /* Point to the kept section if it has
3103 the same size as the discarded
3104 one. */
3105 kept = _bfd_elf_check_kept_section (s);
3106 if (kept == NULL)
3107 {
3108 bfd_set_error (bfd_error_bad_value);
3109 return FALSE;
3110 }
3111 s = kept;
3112 }
3113 s = s->output_section;
3114 BFD_ASSERT (s != NULL);
3115 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3116 }
3117 break;
3118 }
3119 }
3120 }
3121 }
3122
3123 switch (d->this_hdr.sh_type)
3124 {
3125 case SHT_REL:
3126 case SHT_RELA:
3127 /* A reloc section which we are treating as a normal BFD
3128 section. sh_link is the section index of the symbol
3129 table. sh_info is the section index of the section to
3130 which the relocation entries apply. We assume that an
3131 allocated reloc section uses the dynamic symbol table.
3132 FIXME: How can we be sure? */
3133 s = bfd_get_section_by_name (abfd, ".dynsym");
3134 if (s != NULL)
3135 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3136
3137 /* We look up the section the relocs apply to by name. */
3138 name = sec->name;
3139 if (d->this_hdr.sh_type == SHT_REL)
3140 name += 4;
3141 else
3142 name += 5;
3143 s = bfd_get_section_by_name (abfd, name);
3144 if (s != NULL)
3145 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3146 break;
3147
3148 case SHT_STRTAB:
3149 /* We assume that a section named .stab*str is a stabs
3150 string section. We look for a section with the same name
3151 but without the trailing ``str'', and set its sh_link
3152 field to point to this section. */
3153 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3154 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3155 {
3156 size_t len;
3157 char *alc;
3158
3159 len = strlen (sec->name);
3160 alc = bfd_malloc (len - 2);
3161 if (alc == NULL)
3162 return FALSE;
3163 memcpy (alc, sec->name, len - 3);
3164 alc[len - 3] = '\0';
3165 s = bfd_get_section_by_name (abfd, alc);
3166 free (alc);
3167 if (s != NULL)
3168 {
3169 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3170
3171 /* This is a .stab section. */
3172 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3173 elf_section_data (s)->this_hdr.sh_entsize
3174 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3175 }
3176 }
3177 break;
3178
3179 case SHT_DYNAMIC:
3180 case SHT_DYNSYM:
3181 case SHT_GNU_verneed:
3182 case SHT_GNU_verdef:
3183 /* sh_link is the section header index of the string table
3184 used for the dynamic entries, or the symbol table, or the
3185 version strings. */
3186 s = bfd_get_section_by_name (abfd, ".dynstr");
3187 if (s != NULL)
3188 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3189 break;
3190
3191 case SHT_GNU_LIBLIST:
3192 /* sh_link is the section header index of the prelink library
3193 list
3194 used for the dynamic entries, or the symbol table, or the
3195 version strings. */
3196 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3197 ? ".dynstr" : ".gnu.libstr");
3198 if (s != NULL)
3199 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3200 break;
3201
3202 case SHT_HASH:
3203 case SHT_GNU_versym:
3204 /* sh_link is the section header index of the symbol table
3205 this hash table or version table is for. */
3206 s = bfd_get_section_by_name (abfd, ".dynsym");
3207 if (s != NULL)
3208 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3209 break;
3210
3211 case SHT_GROUP:
3212 d->this_hdr.sh_link = t->symtab_section;
3213 }
3214 }
3215
3216 for (secn = 1; secn < section_number; ++secn)
3217 if (i_shdrp[secn] == NULL)
3218 i_shdrp[secn] = i_shdrp[0];
3219 else
3220 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3221 i_shdrp[secn]->sh_name);
3222 return TRUE;
3223 }
3224
3225 /* Map symbol from it's internal number to the external number, moving
3226 all local symbols to be at the head of the list. */
3227
3228 static int
3229 sym_is_global (bfd *abfd, asymbol *sym)
3230 {
3231 /* If the backend has a special mapping, use it. */
3232 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3233 if (bed->elf_backend_sym_is_global)
3234 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3235
3236 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3237 || bfd_is_und_section (bfd_get_section (sym))
3238 || bfd_is_com_section (bfd_get_section (sym)));
3239 }
3240
3241 static bfd_boolean
3242 elf_map_symbols (bfd *abfd)
3243 {
3244 unsigned int symcount = bfd_get_symcount (abfd);
3245 asymbol **syms = bfd_get_outsymbols (abfd);
3246 asymbol **sect_syms;
3247 unsigned int num_locals = 0;
3248 unsigned int num_globals = 0;
3249 unsigned int num_locals2 = 0;
3250 unsigned int num_globals2 = 0;
3251 int max_index = 0;
3252 unsigned int idx;
3253 asection *asect;
3254 asymbol **new_syms;
3255 bfd_size_type amt;
3256
3257 #ifdef DEBUG
3258 fprintf (stderr, "elf_map_symbols\n");
3259 fflush (stderr);
3260 #endif
3261
3262 for (asect = abfd->sections; asect; asect = asect->next)
3263 {
3264 if (max_index < asect->index)
3265 max_index = asect->index;
3266 }
3267
3268 max_index++;
3269 amt = max_index * sizeof (asymbol *);
3270 sect_syms = bfd_zalloc (abfd, amt);
3271 if (sect_syms == NULL)
3272 return FALSE;
3273 elf_section_syms (abfd) = sect_syms;
3274 elf_num_section_syms (abfd) = max_index;
3275
3276 /* Init sect_syms entries for any section symbols we have already
3277 decided to output. */
3278 for (idx = 0; idx < symcount; idx++)
3279 {
3280 asymbol *sym = syms[idx];
3281
3282 if ((sym->flags & BSF_SECTION_SYM) != 0
3283 && sym->value == 0)
3284 {
3285 asection *sec;
3286
3287 sec = sym->section;
3288
3289 if (sec->owner != NULL)
3290 {
3291 if (sec->owner != abfd)
3292 {
3293 if (sec->output_offset != 0)
3294 continue;
3295
3296 sec = sec->output_section;
3297
3298 /* Empty sections in the input files may have had a
3299 section symbol created for them. (See the comment
3300 near the end of _bfd_generic_link_output_symbols in
3301 linker.c). If the linker script discards such
3302 sections then we will reach this point. Since we know
3303 that we cannot avoid this case, we detect it and skip
3304 the abort and the assignment to the sect_syms array.
3305 To reproduce this particular case try running the
3306 linker testsuite test ld-scripts/weak.exp for an ELF
3307 port that uses the generic linker. */
3308 if (sec->owner == NULL)
3309 continue;
3310
3311 BFD_ASSERT (sec->owner == abfd);
3312 }
3313 sect_syms[sec->index] = syms[idx];
3314 }
3315 }
3316 }
3317
3318 /* Classify all of the symbols. */
3319 for (idx = 0; idx < symcount; idx++)
3320 {
3321 if (!sym_is_global (abfd, syms[idx]))
3322 num_locals++;
3323 else
3324 num_globals++;
3325 }
3326
3327 /* We will be adding a section symbol for each BFD section. Most normal
3328 sections will already have a section symbol in outsymbols, but
3329 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3330 at least in that case. */
3331 for (asect = abfd->sections; asect; asect = asect->next)
3332 {
3333 if (sect_syms[asect->index] == NULL)
3334 {
3335 if (!sym_is_global (abfd, asect->symbol))
3336 num_locals++;
3337 else
3338 num_globals++;
3339 }
3340 }
3341
3342 /* Now sort the symbols so the local symbols are first. */
3343 amt = (num_locals + num_globals) * sizeof (asymbol *);
3344 new_syms = bfd_alloc (abfd, amt);
3345
3346 if (new_syms == NULL)
3347 return FALSE;
3348
3349 for (idx = 0; idx < symcount; idx++)
3350 {
3351 asymbol *sym = syms[idx];
3352 unsigned int i;
3353
3354 if (!sym_is_global (abfd, sym))
3355 i = num_locals2++;
3356 else
3357 i = num_locals + num_globals2++;
3358 new_syms[i] = sym;
3359 sym->udata.i = i + 1;
3360 }
3361 for (asect = abfd->sections; asect; asect = asect->next)
3362 {
3363 if (sect_syms[asect->index] == NULL)
3364 {
3365 asymbol *sym = asect->symbol;
3366 unsigned int i;
3367
3368 sect_syms[asect->index] = sym;
3369 if (!sym_is_global (abfd, sym))
3370 i = num_locals2++;
3371 else
3372 i = num_locals + num_globals2++;
3373 new_syms[i] = sym;
3374 sym->udata.i = i + 1;
3375 }
3376 }
3377
3378 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3379
3380 elf_num_locals (abfd) = num_locals;
3381 elf_num_globals (abfd) = num_globals;
3382 return TRUE;
3383 }
3384
3385 /* Align to the maximum file alignment that could be required for any
3386 ELF data structure. */
3387
3388 static inline file_ptr
3389 align_file_position (file_ptr off, int align)
3390 {
3391 return (off + align - 1) & ~(align - 1);
3392 }
3393
3394 /* Assign a file position to a section, optionally aligning to the
3395 required section alignment. */
3396
3397 file_ptr
3398 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3399 file_ptr offset,
3400 bfd_boolean align)
3401 {
3402 if (align)
3403 {
3404 unsigned int al;
3405
3406 al = i_shdrp->sh_addralign;
3407 if (al > 1)
3408 offset = BFD_ALIGN (offset, al);
3409 }
3410 i_shdrp->sh_offset = offset;
3411 if (i_shdrp->bfd_section != NULL)
3412 i_shdrp->bfd_section->filepos = offset;
3413 if (i_shdrp->sh_type != SHT_NOBITS)
3414 offset += i_shdrp->sh_size;
3415 return offset;
3416 }
3417
3418 /* Compute the file positions we are going to put the sections at, and
3419 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3420 is not NULL, this is being called by the ELF backend linker. */
3421
3422 bfd_boolean
3423 _bfd_elf_compute_section_file_positions (bfd *abfd,
3424 struct bfd_link_info *link_info)
3425 {
3426 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3427 bfd_boolean failed;
3428 struct bfd_strtab_hash *strtab = NULL;
3429 Elf_Internal_Shdr *shstrtab_hdr;
3430
3431 if (abfd->output_has_begun)
3432 return TRUE;
3433
3434 /* Do any elf backend specific processing first. */
3435 if (bed->elf_backend_begin_write_processing)
3436 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3437
3438 if (! prep_headers (abfd))
3439 return FALSE;
3440
3441 /* Post process the headers if necessary. */
3442 if (bed->elf_backend_post_process_headers)
3443 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3444
3445 failed = FALSE;
3446 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3447 if (failed)
3448 return FALSE;
3449
3450 if (!assign_section_numbers (abfd, link_info))
3451 return FALSE;
3452
3453 /* The backend linker builds symbol table information itself. */
3454 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3455 {
3456 /* Non-zero if doing a relocatable link. */
3457 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3458
3459 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3460 return FALSE;
3461 }
3462
3463 if (link_info == NULL)
3464 {
3465 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3466 if (failed)
3467 return FALSE;
3468 }
3469
3470 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3471 /* sh_name was set in prep_headers. */
3472 shstrtab_hdr->sh_type = SHT_STRTAB;
3473 shstrtab_hdr->sh_flags = 0;
3474 shstrtab_hdr->sh_addr = 0;
3475 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3476 shstrtab_hdr->sh_entsize = 0;
3477 shstrtab_hdr->sh_link = 0;
3478 shstrtab_hdr->sh_info = 0;
3479 /* sh_offset is set in assign_file_positions_except_relocs. */
3480 shstrtab_hdr->sh_addralign = 1;
3481
3482 if (!assign_file_positions_except_relocs (abfd, link_info))
3483 return FALSE;
3484
3485 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3486 {
3487 file_ptr off;
3488 Elf_Internal_Shdr *hdr;
3489
3490 off = elf_tdata (abfd)->next_file_pos;
3491
3492 hdr = &elf_tdata (abfd)->symtab_hdr;
3493 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3494
3495 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3496 if (hdr->sh_size != 0)
3497 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3498
3499 hdr = &elf_tdata (abfd)->strtab_hdr;
3500 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3501
3502 elf_tdata (abfd)->next_file_pos = off;
3503
3504 /* Now that we know where the .strtab section goes, write it
3505 out. */
3506 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3507 || ! _bfd_stringtab_emit (abfd, strtab))
3508 return FALSE;
3509 _bfd_stringtab_free (strtab);
3510 }
3511
3512 abfd->output_has_begun = TRUE;
3513
3514 return TRUE;
3515 }
3516
3517 /* Create a mapping from a set of sections to a program segment. */
3518
3519 static struct elf_segment_map *
3520 make_mapping (bfd *abfd,
3521 asection **sections,
3522 unsigned int from,
3523 unsigned int to,
3524 bfd_boolean phdr)
3525 {
3526 struct elf_segment_map *m;
3527 unsigned int i;
3528 asection **hdrpp;
3529 bfd_size_type amt;
3530
3531 amt = sizeof (struct elf_segment_map);
3532 amt += (to - from - 1) * sizeof (asection *);
3533 m = bfd_zalloc (abfd, amt);
3534 if (m == NULL)
3535 return NULL;
3536 m->next = NULL;
3537 m->p_type = PT_LOAD;
3538 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3539 m->sections[i - from] = *hdrpp;
3540 m->count = to - from;
3541
3542 if (from == 0 && phdr)
3543 {
3544 /* Include the headers in the first PT_LOAD segment. */
3545 m->includes_filehdr = 1;
3546 m->includes_phdrs = 1;
3547 }
3548
3549 return m;
3550 }
3551
3552 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3553 on failure. */
3554
3555 struct elf_segment_map *
3556 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3557 {
3558 struct elf_segment_map *m;
3559
3560 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3561 if (m == NULL)
3562 return NULL;
3563 m->next = NULL;
3564 m->p_type = PT_DYNAMIC;
3565 m->count = 1;
3566 m->sections[0] = dynsec;
3567
3568 return m;
3569 }
3570
3571 /* Set up a mapping from BFD sections to program segments. */
3572
3573 static bfd_boolean
3574 map_sections_to_segments (bfd *abfd)
3575 {
3576 asection **sections = NULL;
3577 asection *s;
3578 unsigned int i;
3579 unsigned int count;
3580 struct elf_segment_map *mfirst;
3581 struct elf_segment_map **pm;
3582 struct elf_segment_map *m;
3583 asection *last_hdr;
3584 bfd_vma last_size;
3585 unsigned int phdr_index;
3586 bfd_vma maxpagesize;
3587 asection **hdrpp;
3588 bfd_boolean phdr_in_segment = TRUE;
3589 bfd_boolean writable;
3590 int tls_count = 0;
3591 asection *first_tls = NULL;
3592 asection *dynsec, *eh_frame_hdr;
3593 bfd_size_type amt;
3594
3595 if (elf_tdata (abfd)->segment_map != NULL)
3596 return TRUE;
3597
3598 if (bfd_count_sections (abfd) == 0)
3599 return TRUE;
3600
3601 /* Select the allocated sections, and sort them. */
3602
3603 amt = bfd_count_sections (abfd) * sizeof (asection *);
3604 sections = bfd_malloc (amt);
3605 if (sections == NULL)
3606 goto error_return;
3607
3608 i = 0;
3609 for (s = abfd->sections; s != NULL; s = s->next)
3610 {
3611 if ((s->flags & SEC_ALLOC) != 0)
3612 {
3613 sections[i] = s;
3614 ++i;
3615 }
3616 }
3617 BFD_ASSERT (i <= bfd_count_sections (abfd));
3618 count = i;
3619
3620 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3621
3622 /* Build the mapping. */
3623
3624 mfirst = NULL;
3625 pm = &mfirst;
3626
3627 /* If we have a .interp section, then create a PT_PHDR segment for
3628 the program headers and a PT_INTERP segment for the .interp
3629 section. */
3630 s = bfd_get_section_by_name (abfd, ".interp");
3631 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3632 {
3633 amt = sizeof (struct elf_segment_map);
3634 m = bfd_zalloc (abfd, amt);
3635 if (m == NULL)
3636 goto error_return;
3637 m->next = NULL;
3638 m->p_type = PT_PHDR;
3639 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3640 m->p_flags = PF_R | PF_X;
3641 m->p_flags_valid = 1;
3642 m->includes_phdrs = 1;
3643
3644 *pm = m;
3645 pm = &m->next;
3646
3647 amt = sizeof (struct elf_segment_map);
3648 m = bfd_zalloc (abfd, amt);
3649 if (m == NULL)
3650 goto error_return;
3651 m->next = NULL;
3652 m->p_type = PT_INTERP;
3653 m->count = 1;
3654 m->sections[0] = s;
3655
3656 *pm = m;
3657 pm = &m->next;
3658 }
3659
3660 /* Look through the sections. We put sections in the same program
3661 segment when the start of the second section can be placed within
3662 a few bytes of the end of the first section. */
3663 last_hdr = NULL;
3664 last_size = 0;
3665 phdr_index = 0;
3666 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3667 writable = FALSE;
3668 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3669 if (dynsec != NULL
3670 && (dynsec->flags & SEC_LOAD) == 0)
3671 dynsec = NULL;
3672
3673 /* Deal with -Ttext or something similar such that the first section
3674 is not adjacent to the program headers. This is an
3675 approximation, since at this point we don't know exactly how many
3676 program headers we will need. */
3677 if (count > 0)
3678 {
3679 bfd_size_type phdr_size;
3680
3681 phdr_size = elf_tdata (abfd)->program_header_size;
3682 if (phdr_size == 0)
3683 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3684 if ((abfd->flags & D_PAGED) == 0
3685 || sections[0]->lma < phdr_size
3686 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3687 phdr_in_segment = FALSE;
3688 }
3689
3690 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3691 {
3692 asection *hdr;
3693 bfd_boolean new_segment;
3694
3695 hdr = *hdrpp;
3696
3697 /* See if this section and the last one will fit in the same
3698 segment. */
3699
3700 if (last_hdr == NULL)
3701 {
3702 /* If we don't have a segment yet, then we don't need a new
3703 one (we build the last one after this loop). */
3704 new_segment = FALSE;
3705 }
3706 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3707 {
3708 /* If this section has a different relation between the
3709 virtual address and the load address, then we need a new
3710 segment. */
3711 new_segment = TRUE;
3712 }
3713 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3714 < BFD_ALIGN (hdr->lma, maxpagesize))
3715 {
3716 /* If putting this section in this segment would force us to
3717 skip a page in the segment, then we need a new segment. */
3718 new_segment = TRUE;
3719 }
3720 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3721 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3722 {
3723 /* We don't want to put a loadable section after a
3724 nonloadable section in the same segment.
3725 Consider .tbss sections as loadable for this purpose. */
3726 new_segment = TRUE;
3727 }
3728 else if ((abfd->flags & D_PAGED) == 0)
3729 {
3730 /* If the file is not demand paged, which means that we
3731 don't require the sections to be correctly aligned in the
3732 file, then there is no other reason for a new segment. */
3733 new_segment = FALSE;
3734 }
3735 else if (! writable
3736 && (hdr->flags & SEC_READONLY) == 0
3737 && (((last_hdr->lma + last_size - 1)
3738 & ~(maxpagesize - 1))
3739 != (hdr->lma & ~(maxpagesize - 1))))
3740 {
3741 /* We don't want to put a writable section in a read only
3742 segment, unless they are on the same page in memory
3743 anyhow. We already know that the last section does not
3744 bring us past the current section on the page, so the
3745 only case in which the new section is not on the same
3746 page as the previous section is when the previous section
3747 ends precisely on a page boundary. */
3748 new_segment = TRUE;
3749 }
3750 else
3751 {
3752 /* Otherwise, we can use the same segment. */
3753 new_segment = FALSE;
3754 }
3755
3756 if (! new_segment)
3757 {
3758 if ((hdr->flags & SEC_READONLY) == 0)
3759 writable = TRUE;
3760 last_hdr = hdr;
3761 /* .tbss sections effectively have zero size. */
3762 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3763 last_size = hdr->size;
3764 else
3765 last_size = 0;
3766 continue;
3767 }
3768
3769 /* We need a new program segment. We must create a new program
3770 header holding all the sections from phdr_index until hdr. */
3771
3772 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3773 if (m == NULL)
3774 goto error_return;
3775
3776 *pm = m;
3777 pm = &m->next;
3778
3779 if ((hdr->flags & SEC_READONLY) == 0)
3780 writable = TRUE;
3781 else
3782 writable = FALSE;
3783
3784 last_hdr = hdr;
3785 /* .tbss sections effectively have zero size. */
3786 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3787 last_size = hdr->size;
3788 else
3789 last_size = 0;
3790 phdr_index = i;
3791 phdr_in_segment = FALSE;
3792 }
3793
3794 /* Create a final PT_LOAD program segment. */
3795 if (last_hdr != NULL)
3796 {
3797 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3798 if (m == NULL)
3799 goto error_return;
3800
3801 *pm = m;
3802 pm = &m->next;
3803 }
3804
3805 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3806 if (dynsec != NULL)
3807 {
3808 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3809 if (m == NULL)
3810 goto error_return;
3811 *pm = m;
3812 pm = &m->next;
3813 }
3814
3815 /* For each loadable .note section, add a PT_NOTE segment. We don't
3816 use bfd_get_section_by_name, because if we link together
3817 nonloadable .note sections and loadable .note sections, we will
3818 generate two .note sections in the output file. FIXME: Using
3819 names for section types is bogus anyhow. */
3820 for (s = abfd->sections; s != NULL; s = s->next)
3821 {
3822 if ((s->flags & SEC_LOAD) != 0
3823 && strncmp (s->name, ".note", 5) == 0)
3824 {
3825 amt = sizeof (struct elf_segment_map);
3826 m = bfd_zalloc (abfd, amt);
3827 if (m == NULL)
3828 goto error_return;
3829 m->next = NULL;
3830 m->p_type = PT_NOTE;
3831 m->count = 1;
3832 m->sections[0] = s;
3833
3834 *pm = m;
3835 pm = &m->next;
3836 }
3837 if (s->flags & SEC_THREAD_LOCAL)
3838 {
3839 if (! tls_count)
3840 first_tls = s;
3841 tls_count++;
3842 }
3843 }
3844
3845 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3846 if (tls_count > 0)
3847 {
3848 int i;
3849
3850 amt = sizeof (struct elf_segment_map);
3851 amt += (tls_count - 1) * sizeof (asection *);
3852 m = bfd_zalloc (abfd, amt);
3853 if (m == NULL)
3854 goto error_return;
3855 m->next = NULL;
3856 m->p_type = PT_TLS;
3857 m->count = tls_count;
3858 /* Mandated PF_R. */
3859 m->p_flags = PF_R;
3860 m->p_flags_valid = 1;
3861 for (i = 0; i < tls_count; ++i)
3862 {
3863 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3864 m->sections[i] = first_tls;
3865 first_tls = first_tls->next;
3866 }
3867
3868 *pm = m;
3869 pm = &m->next;
3870 }
3871
3872 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3873 segment. */
3874 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3875 if (eh_frame_hdr != NULL
3876 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3877 {
3878 amt = sizeof (struct elf_segment_map);
3879 m = bfd_zalloc (abfd, amt);
3880 if (m == NULL)
3881 goto error_return;
3882 m->next = NULL;
3883 m->p_type = PT_GNU_EH_FRAME;
3884 m->count = 1;
3885 m->sections[0] = eh_frame_hdr->output_section;
3886
3887 *pm = m;
3888 pm = &m->next;
3889 }
3890
3891 if (elf_tdata (abfd)->stack_flags)
3892 {
3893 amt = sizeof (struct elf_segment_map);
3894 m = bfd_zalloc (abfd, amt);
3895 if (m == NULL)
3896 goto error_return;
3897 m->next = NULL;
3898 m->p_type = PT_GNU_STACK;
3899 m->p_flags = elf_tdata (abfd)->stack_flags;
3900 m->p_flags_valid = 1;
3901
3902 *pm = m;
3903 pm = &m->next;
3904 }
3905
3906 if (elf_tdata (abfd)->relro)
3907 {
3908 amt = sizeof (struct elf_segment_map);
3909 m = bfd_zalloc (abfd, amt);
3910 if (m == NULL)
3911 goto error_return;
3912 m->next = NULL;
3913 m->p_type = PT_GNU_RELRO;
3914 m->p_flags = PF_R;
3915 m->p_flags_valid = 1;
3916
3917 *pm = m;
3918 pm = &m->next;
3919 }
3920
3921 free (sections);
3922 sections = NULL;
3923
3924 elf_tdata (abfd)->segment_map = mfirst;
3925 return TRUE;
3926
3927 error_return:
3928 if (sections != NULL)
3929 free (sections);
3930 return FALSE;
3931 }
3932
3933 /* Sort sections by address. */
3934
3935 static int
3936 elf_sort_sections (const void *arg1, const void *arg2)
3937 {
3938 const asection *sec1 = *(const asection **) arg1;
3939 const asection *sec2 = *(const asection **) arg2;
3940 bfd_size_type size1, size2;
3941
3942 /* Sort by LMA first, since this is the address used to
3943 place the section into a segment. */
3944 if (sec1->lma < sec2->lma)
3945 return -1;
3946 else if (sec1->lma > sec2->lma)
3947 return 1;
3948
3949 /* Then sort by VMA. Normally the LMA and the VMA will be
3950 the same, and this will do nothing. */
3951 if (sec1->vma < sec2->vma)
3952 return -1;
3953 else if (sec1->vma > sec2->vma)
3954 return 1;
3955
3956 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3957
3958 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3959
3960 if (TOEND (sec1))
3961 {
3962 if (TOEND (sec2))
3963 {
3964 /* If the indicies are the same, do not return 0
3965 here, but continue to try the next comparison. */
3966 if (sec1->target_index - sec2->target_index != 0)
3967 return sec1->target_index - sec2->target_index;
3968 }
3969 else
3970 return 1;
3971 }
3972 else if (TOEND (sec2))
3973 return -1;
3974
3975 #undef TOEND
3976
3977 /* Sort by size, to put zero sized sections
3978 before others at the same address. */
3979
3980 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3981 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3982
3983 if (size1 < size2)
3984 return -1;
3985 if (size1 > size2)
3986 return 1;
3987
3988 return sec1->target_index - sec2->target_index;
3989 }
3990
3991 /* Ian Lance Taylor writes:
3992
3993 We shouldn't be using % with a negative signed number. That's just
3994 not good. We have to make sure either that the number is not
3995 negative, or that the number has an unsigned type. When the types
3996 are all the same size they wind up as unsigned. When file_ptr is a
3997 larger signed type, the arithmetic winds up as signed long long,
3998 which is wrong.
3999
4000 What we're trying to say here is something like ``increase OFF by
4001 the least amount that will cause it to be equal to the VMA modulo
4002 the page size.'' */
4003 /* In other words, something like:
4004
4005 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4006 off_offset = off % bed->maxpagesize;
4007 if (vma_offset < off_offset)
4008 adjustment = vma_offset + bed->maxpagesize - off_offset;
4009 else
4010 adjustment = vma_offset - off_offset;
4011
4012 which can can be collapsed into the expression below. */
4013
4014 static file_ptr
4015 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4016 {
4017 return ((vma - off) % maxpagesize);
4018 }
4019
4020 /* Assign file positions to the sections based on the mapping from
4021 sections to segments. This function also sets up some fields in
4022 the file header, and writes out the program headers. */
4023
4024 static bfd_boolean
4025 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
4026 {
4027 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4028 unsigned int count;
4029 struct elf_segment_map *m;
4030 unsigned int alloc;
4031 Elf_Internal_Phdr *phdrs;
4032 file_ptr off, voff;
4033 bfd_vma filehdr_vaddr, filehdr_paddr;
4034 bfd_vma phdrs_vaddr, phdrs_paddr;
4035 Elf_Internal_Phdr *p;
4036 bfd_size_type amt;
4037
4038 if (elf_tdata (abfd)->segment_map == NULL)
4039 {
4040 if (! map_sections_to_segments (abfd))
4041 return FALSE;
4042 }
4043 else
4044 {
4045 /* The placement algorithm assumes that non allocated sections are
4046 not in PT_LOAD segments. We ensure this here by removing such
4047 sections from the segment map. We also remove excluded
4048 sections. */
4049 for (m = elf_tdata (abfd)->segment_map;
4050 m != NULL;
4051 m = m->next)
4052 {
4053 unsigned int new_count;
4054 unsigned int i;
4055
4056 new_count = 0;
4057 for (i = 0; i < m->count; i ++)
4058 {
4059 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4060 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4061 || m->p_type != PT_LOAD))
4062 {
4063 if (i != new_count)
4064 m->sections[new_count] = m->sections[i];
4065
4066 new_count ++;
4067 }
4068 }
4069
4070 if (new_count != m->count)
4071 m->count = new_count;
4072 }
4073 }
4074
4075 if (bed->elf_backend_modify_segment_map)
4076 {
4077 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4078 return FALSE;
4079 }
4080
4081 count = 0;
4082 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4083 ++count;
4084
4085 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4086 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4087 elf_elfheader (abfd)->e_phnum = count;
4088
4089 if (count == 0)
4090 {
4091 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4092 return TRUE;
4093 }
4094
4095 /* If we already counted the number of program segments, make sure
4096 that we allocated enough space. This happens when SIZEOF_HEADERS
4097 is used in a linker script. */
4098 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4099 if (alloc != 0 && count > alloc)
4100 {
4101 ((*_bfd_error_handler)
4102 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4103 abfd, alloc, count));
4104 bfd_set_error (bfd_error_bad_value);
4105 return FALSE;
4106 }
4107
4108 if (alloc == 0)
4109 alloc = count;
4110
4111 amt = alloc * sizeof (Elf_Internal_Phdr);
4112 phdrs = bfd_alloc (abfd, amt);
4113 if (phdrs == NULL)
4114 return FALSE;
4115
4116 off = bed->s->sizeof_ehdr;
4117 off += alloc * bed->s->sizeof_phdr;
4118
4119 filehdr_vaddr = 0;
4120 filehdr_paddr = 0;
4121 phdrs_vaddr = 0;
4122 phdrs_paddr = 0;
4123
4124 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4125 m != NULL;
4126 m = m->next, p++)
4127 {
4128 unsigned int i;
4129 asection **secpp;
4130
4131 /* If elf_segment_map is not from map_sections_to_segments, the
4132 sections may not be correctly ordered. NOTE: sorting should
4133 not be done to the PT_NOTE section of a corefile, which may
4134 contain several pseudo-sections artificially created by bfd.
4135 Sorting these pseudo-sections breaks things badly. */
4136 if (m->count > 1
4137 && !(elf_elfheader (abfd)->e_type == ET_CORE
4138 && m->p_type == PT_NOTE))
4139 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4140 elf_sort_sections);
4141
4142 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4143 number of sections with contents contributing to both p_filesz
4144 and p_memsz, followed by a number of sections with no contents
4145 that just contribute to p_memsz. In this loop, OFF tracks next
4146 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4147 an adjustment we use for segments that have no file contents
4148 but need zero filled memory allocation. */
4149 voff = 0;
4150 p->p_type = m->p_type;
4151 p->p_flags = m->p_flags;
4152
4153 if (p->p_type == PT_LOAD
4154 && m->count > 0)
4155 {
4156 bfd_size_type align;
4157 bfd_vma adjust;
4158 unsigned int align_power = 0;
4159
4160 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4161 {
4162 unsigned int secalign;
4163
4164 secalign = bfd_get_section_alignment (abfd, *secpp);
4165 if (secalign > align_power)
4166 align_power = secalign;
4167 }
4168 align = (bfd_size_type) 1 << align_power;
4169
4170 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4171 align = bed->maxpagesize;
4172
4173 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4174 off += adjust;
4175 if (adjust != 0
4176 && !m->includes_filehdr
4177 && !m->includes_phdrs
4178 && (ufile_ptr) off >= align)
4179 {
4180 /* If the first section isn't loadable, the same holds for
4181 any other sections. Since the segment won't need file
4182 space, we can make p_offset overlap some prior segment.
4183 However, .tbss is special. If a segment starts with
4184 .tbss, we need to look at the next section to decide
4185 whether the segment has any loadable sections. */
4186 i = 0;
4187 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4188 {
4189 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4190 || ++i >= m->count)
4191 {
4192 off -= adjust;
4193 voff = adjust - align;
4194 break;
4195 }
4196 }
4197 }
4198 }
4199 /* Make sure the .dynamic section is the first section in the
4200 PT_DYNAMIC segment. */
4201 else if (p->p_type == PT_DYNAMIC
4202 && m->count > 1
4203 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4204 {
4205 _bfd_error_handler
4206 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4207 abfd);
4208 bfd_set_error (bfd_error_bad_value);
4209 return FALSE;
4210 }
4211
4212 if (m->count == 0)
4213 p->p_vaddr = 0;
4214 else
4215 p->p_vaddr = m->sections[0]->vma;
4216
4217 if (m->p_paddr_valid)
4218 p->p_paddr = m->p_paddr;
4219 else if (m->count == 0)
4220 p->p_paddr = 0;
4221 else
4222 p->p_paddr = m->sections[0]->lma;
4223
4224 if (p->p_type == PT_LOAD
4225 && (abfd->flags & D_PAGED) != 0)
4226 p->p_align = bed->maxpagesize;
4227 else if (m->count == 0)
4228 p->p_align = 1 << bed->s->log_file_align;
4229 else
4230 p->p_align = 0;
4231
4232 p->p_offset = 0;
4233 p->p_filesz = 0;
4234 p->p_memsz = 0;
4235
4236 if (m->includes_filehdr)
4237 {
4238 if (! m->p_flags_valid)
4239 p->p_flags |= PF_R;
4240 p->p_offset = 0;
4241 p->p_filesz = bed->s->sizeof_ehdr;
4242 p->p_memsz = bed->s->sizeof_ehdr;
4243 if (m->count > 0)
4244 {
4245 BFD_ASSERT (p->p_type == PT_LOAD);
4246
4247 if (p->p_vaddr < (bfd_vma) off)
4248 {
4249 (*_bfd_error_handler)
4250 (_("%B: Not enough room for program headers, try linking with -N"),
4251 abfd);
4252 bfd_set_error (bfd_error_bad_value);
4253 return FALSE;
4254 }
4255
4256 p->p_vaddr -= off;
4257 if (! m->p_paddr_valid)
4258 p->p_paddr -= off;
4259 }
4260 if (p->p_type == PT_LOAD)
4261 {
4262 filehdr_vaddr = p->p_vaddr;
4263 filehdr_paddr = p->p_paddr;
4264 }
4265 }
4266
4267 if (m->includes_phdrs)
4268 {
4269 if (! m->p_flags_valid)
4270 p->p_flags |= PF_R;
4271
4272 if (m->includes_filehdr)
4273 {
4274 if (p->p_type == PT_LOAD)
4275 {
4276 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4277 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4278 }
4279 }
4280 else
4281 {
4282 p->p_offset = bed->s->sizeof_ehdr;
4283
4284 if (m->count > 0)
4285 {
4286 BFD_ASSERT (p->p_type == PT_LOAD);
4287 p->p_vaddr -= off - p->p_offset;
4288 if (! m->p_paddr_valid)
4289 p->p_paddr -= off - p->p_offset;
4290 }
4291
4292 if (p->p_type == PT_LOAD)
4293 {
4294 phdrs_vaddr = p->p_vaddr;
4295 phdrs_paddr = p->p_paddr;
4296 }
4297 else
4298 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4299 }
4300
4301 p->p_filesz += alloc * bed->s->sizeof_phdr;
4302 p->p_memsz += alloc * bed->s->sizeof_phdr;
4303 }
4304
4305 if (p->p_type == PT_LOAD
4306 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4307 {
4308 if (! m->includes_filehdr && ! m->includes_phdrs)
4309 p->p_offset = off + voff;
4310 else
4311 {
4312 file_ptr adjust;
4313
4314 adjust = off - (p->p_offset + p->p_filesz);
4315 p->p_filesz += adjust;
4316 p->p_memsz += adjust;
4317 }
4318 }
4319
4320 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4321 {
4322 asection *sec;
4323 flagword flags;
4324 bfd_size_type align;
4325
4326 sec = *secpp;
4327 flags = sec->flags;
4328 align = 1 << bfd_get_section_alignment (abfd, sec);
4329
4330 if (p->p_type == PT_LOAD
4331 || p->p_type == PT_TLS)
4332 {
4333 bfd_signed_vma adjust;
4334
4335 if ((flags & SEC_LOAD) != 0)
4336 {
4337 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4338 if (adjust < 0)
4339 {
4340 (*_bfd_error_handler)
4341 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4342 abfd, sec, (unsigned long) sec->lma);
4343 adjust = 0;
4344 }
4345 off += adjust;
4346 p->p_filesz += adjust;
4347 p->p_memsz += adjust;
4348 }
4349 /* .tbss is special. It doesn't contribute to p_memsz of
4350 normal segments. */
4351 else if ((flags & SEC_THREAD_LOCAL) == 0
4352 || p->p_type == PT_TLS)
4353 {
4354 /* The section VMA must equal the file position
4355 modulo the page size. */
4356 bfd_size_type page = align;
4357 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4358 page = bed->maxpagesize;
4359 adjust = vma_page_aligned_bias (sec->vma,
4360 p->p_vaddr + p->p_memsz,
4361 page);
4362 p->p_memsz += adjust;
4363 }
4364 }
4365
4366 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4367 {
4368 /* The section at i == 0 is the one that actually contains
4369 everything. */
4370 if (i == 0)
4371 {
4372 sec->filepos = off;
4373 off += sec->size;
4374 p->p_filesz = sec->size;
4375 p->p_memsz = 0;
4376 p->p_align = 1;
4377 }
4378 else
4379 {
4380 /* The rest are fake sections that shouldn't be written. */
4381 sec->filepos = 0;
4382 sec->size = 0;
4383 sec->flags = 0;
4384 continue;
4385 }
4386 }
4387 else
4388 {
4389 if (p->p_type == PT_LOAD)
4390 {
4391 sec->filepos = off;
4392 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4393 1997, and the exact reason for it isn't clear. One
4394 plausible explanation is that it is to work around
4395 a problem we have with linker scripts using data
4396 statements in NOLOAD sections. I don't think it
4397 makes a great deal of sense to have such a section
4398 assigned to a PT_LOAD segment, but apparently
4399 people do this. The data statement results in a
4400 bfd_data_link_order being built, and these need
4401 section contents to write into. Eventually, we get
4402 to _bfd_elf_write_object_contents which writes any
4403 section with contents to the output. Make room
4404 here for the write, so that following segments are
4405 not trashed. */
4406 if ((flags & SEC_LOAD) != 0
4407 || (flags & SEC_HAS_CONTENTS) != 0)
4408 off += sec->size;
4409 }
4410
4411 if ((flags & SEC_LOAD) != 0)
4412 {
4413 p->p_filesz += sec->size;
4414 p->p_memsz += sec->size;
4415 }
4416 /* PR ld/594: Sections in note segments which are not loaded
4417 contribute to the file size but not the in-memory size. */
4418 else if (p->p_type == PT_NOTE
4419 && (flags & SEC_HAS_CONTENTS) != 0)
4420 p->p_filesz += sec->size;
4421
4422 /* .tbss is special. It doesn't contribute to p_memsz of
4423 normal segments. */
4424 else if ((flags & SEC_THREAD_LOCAL) == 0
4425 || p->p_type == PT_TLS)
4426 p->p_memsz += sec->size;
4427
4428 if (p->p_type == PT_TLS
4429 && sec->size == 0
4430 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4431 {
4432 struct bfd_link_order *o;
4433 bfd_vma tbss_size = 0;
4434
4435 for (o = sec->map_head.link_order; o != NULL; o = o->next)
4436 if (tbss_size < o->offset + o->size)
4437 tbss_size = o->offset + o->size;
4438
4439 p->p_memsz += tbss_size;
4440 }
4441
4442 if (align > p->p_align
4443 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4444 p->p_align = align;
4445 }
4446
4447 if (! m->p_flags_valid)
4448 {
4449 p->p_flags |= PF_R;
4450 if ((flags & SEC_CODE) != 0)
4451 p->p_flags |= PF_X;
4452 if ((flags & SEC_READONLY) == 0)
4453 p->p_flags |= PF_W;
4454 }
4455 }
4456 }
4457
4458 /* Now that we have set the section file positions, we can set up
4459 the file positions for the non PT_LOAD segments. */
4460 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4461 m != NULL;
4462 m = m->next, p++)
4463 {
4464 if (p->p_type != PT_LOAD && m->count > 0)
4465 {
4466 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4467 /* If the section has not yet been assigned a file position,
4468 do so now. The ARM BPABI requires that .dynamic section
4469 not be marked SEC_ALLOC because it is not part of any
4470 PT_LOAD segment, so it will not be processed above. */
4471 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4472 {
4473 unsigned int i;
4474 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4475
4476 i = 1;
4477 while (i_shdrpp[i]->bfd_section != m->sections[0])
4478 ++i;
4479 off = (_bfd_elf_assign_file_position_for_section
4480 (i_shdrpp[i], off, TRUE));
4481 p->p_filesz = m->sections[0]->size;
4482 }
4483 p->p_offset = m->sections[0]->filepos;
4484 }
4485 if (m->count == 0)
4486 {
4487 if (m->includes_filehdr)
4488 {
4489 p->p_vaddr = filehdr_vaddr;
4490 if (! m->p_paddr_valid)
4491 p->p_paddr = filehdr_paddr;
4492 }
4493 else if (m->includes_phdrs)
4494 {
4495 p->p_vaddr = phdrs_vaddr;
4496 if (! m->p_paddr_valid)
4497 p->p_paddr = phdrs_paddr;
4498 }
4499 else if (p->p_type == PT_GNU_RELRO)
4500 {
4501 Elf_Internal_Phdr *lp;
4502
4503 for (lp = phdrs; lp < phdrs + count; ++lp)
4504 {
4505 if (lp->p_type == PT_LOAD
4506 && lp->p_vaddr <= link_info->relro_end
4507 && lp->p_vaddr >= link_info->relro_start
4508 && lp->p_vaddr + lp->p_filesz
4509 >= link_info->relro_end)
4510 break;
4511 }
4512
4513 if (lp < phdrs + count
4514 && link_info->relro_end > lp->p_vaddr)
4515 {
4516 p->p_vaddr = lp->p_vaddr;
4517 p->p_paddr = lp->p_paddr;
4518 p->p_offset = lp->p_offset;
4519 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4520 p->p_memsz = p->p_filesz;
4521 p->p_align = 1;
4522 p->p_flags = (lp->p_flags & ~PF_W);
4523 }
4524 else
4525 {
4526 memset (p, 0, sizeof *p);
4527 p->p_type = PT_NULL;
4528 }
4529 }
4530 }
4531 }
4532
4533 /* Clear out any program headers we allocated but did not use. */
4534 for (; count < alloc; count++, p++)
4535 {
4536 memset (p, 0, sizeof *p);
4537 p->p_type = PT_NULL;
4538 }
4539
4540 elf_tdata (abfd)->phdr = phdrs;
4541
4542 elf_tdata (abfd)->next_file_pos = off;
4543
4544 /* Write out the program headers. */
4545 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4546 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4547 return FALSE;
4548
4549 return TRUE;
4550 }
4551
4552 /* Get the size of the program header.
4553
4554 If this is called by the linker before any of the section VMA's are set, it
4555 can't calculate the correct value for a strange memory layout. This only
4556 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4557 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4558 data segment (exclusive of .interp and .dynamic).
4559
4560 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4561 will be two segments. */
4562
4563 static bfd_size_type
4564 get_program_header_size (bfd *abfd)
4565 {
4566 size_t segs;
4567 asection *s;
4568 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4569
4570 /* We can't return a different result each time we're called. */
4571 if (elf_tdata (abfd)->program_header_size != 0)
4572 return elf_tdata (abfd)->program_header_size;
4573
4574 if (elf_tdata (abfd)->segment_map != NULL)
4575 {
4576 struct elf_segment_map *m;
4577
4578 segs = 0;
4579 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4580 ++segs;
4581 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4582 return elf_tdata (abfd)->program_header_size;
4583 }
4584
4585 /* Assume we will need exactly two PT_LOAD segments: one for text
4586 and one for data. */
4587 segs = 2;
4588
4589 s = bfd_get_section_by_name (abfd, ".interp");
4590 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4591 {
4592 /* If we have a loadable interpreter section, we need a
4593 PT_INTERP segment. In this case, assume we also need a
4594 PT_PHDR segment, although that may not be true for all
4595 targets. */
4596 segs += 2;
4597 }
4598
4599 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4600 {
4601 /* We need a PT_DYNAMIC segment. */
4602 ++segs;
4603 }
4604
4605 if (elf_tdata (abfd)->eh_frame_hdr)
4606 {
4607 /* We need a PT_GNU_EH_FRAME segment. */
4608 ++segs;
4609 }
4610
4611 if (elf_tdata (abfd)->stack_flags)
4612 {
4613 /* We need a PT_GNU_STACK segment. */
4614 ++segs;
4615 }
4616
4617 if (elf_tdata (abfd)->relro)
4618 {
4619 /* We need a PT_GNU_RELRO segment. */
4620 ++segs;
4621 }
4622
4623 for (s = abfd->sections; s != NULL; s = s->next)
4624 {
4625 if ((s->flags & SEC_LOAD) != 0
4626 && strncmp (s->name, ".note", 5) == 0)
4627 {
4628 /* We need a PT_NOTE segment. */
4629 ++segs;
4630 }
4631 }
4632
4633 for (s = abfd->sections; s != NULL; s = s->next)
4634 {
4635 if (s->flags & SEC_THREAD_LOCAL)
4636 {
4637 /* We need a PT_TLS segment. */
4638 ++segs;
4639 break;
4640 }
4641 }
4642
4643 /* Let the backend count up any program headers it might need. */
4644 if (bed->elf_backend_additional_program_headers)
4645 {
4646 int a;
4647
4648 a = (*bed->elf_backend_additional_program_headers) (abfd);
4649 if (a == -1)
4650 abort ();
4651 segs += a;
4652 }
4653
4654 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4655 return elf_tdata (abfd)->program_header_size;
4656 }
4657
4658 /* Work out the file positions of all the sections. This is called by
4659 _bfd_elf_compute_section_file_positions. All the section sizes and
4660 VMAs must be known before this is called.
4661
4662 Reloc sections come in two flavours: Those processed specially as
4663 "side-channel" data attached to a section to which they apply, and
4664 those that bfd doesn't process as relocations. The latter sort are
4665 stored in a normal bfd section by bfd_section_from_shdr. We don't
4666 consider the former sort here, unless they form part of the loadable
4667 image. Reloc sections not assigned here will be handled later by
4668 assign_file_positions_for_relocs.
4669
4670 We also don't set the positions of the .symtab and .strtab here. */
4671
4672 static bfd_boolean
4673 assign_file_positions_except_relocs (bfd *abfd,
4674 struct bfd_link_info *link_info)
4675 {
4676 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4677 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4678 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4679 unsigned int num_sec = elf_numsections (abfd);
4680 file_ptr off;
4681 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4682
4683 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4684 && bfd_get_format (abfd) != bfd_core)
4685 {
4686 Elf_Internal_Shdr **hdrpp;
4687 unsigned int i;
4688
4689 /* Start after the ELF header. */
4690 off = i_ehdrp->e_ehsize;
4691
4692 /* We are not creating an executable, which means that we are
4693 not creating a program header, and that the actual order of
4694 the sections in the file is unimportant. */
4695 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4696 {
4697 Elf_Internal_Shdr *hdr;
4698
4699 hdr = *hdrpp;
4700 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4701 && hdr->bfd_section == NULL)
4702 || i == tdata->symtab_section
4703 || i == tdata->symtab_shndx_section
4704 || i == tdata->strtab_section)
4705 {
4706 hdr->sh_offset = -1;
4707 }
4708 else
4709 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4710
4711 if (i == SHN_LORESERVE - 1)
4712 {
4713 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4714 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4715 }
4716 }
4717 }
4718 else
4719 {
4720 unsigned int i;
4721 Elf_Internal_Shdr **hdrpp;
4722
4723 /* Assign file positions for the loaded sections based on the
4724 assignment of sections to segments. */
4725 if (! assign_file_positions_for_segments (abfd, link_info))
4726 return FALSE;
4727
4728 /* Assign file positions for the other sections. */
4729
4730 off = elf_tdata (abfd)->next_file_pos;
4731 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4732 {
4733 Elf_Internal_Shdr *hdr;
4734
4735 hdr = *hdrpp;
4736 if (hdr->bfd_section != NULL
4737 && hdr->bfd_section->filepos != 0)
4738 hdr->sh_offset = hdr->bfd_section->filepos;
4739 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4740 {
4741 ((*_bfd_error_handler)
4742 (_("%B: warning: allocated section `%s' not in segment"),
4743 abfd,
4744 (hdr->bfd_section == NULL
4745 ? "*unknown*"
4746 : hdr->bfd_section->name)));
4747 if ((abfd->flags & D_PAGED) != 0)
4748 off += vma_page_aligned_bias (hdr->sh_addr, off,
4749 bed->maxpagesize);
4750 else
4751 off += vma_page_aligned_bias (hdr->sh_addr, off,
4752 hdr->sh_addralign);
4753 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4754 FALSE);
4755 }
4756 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4757 && hdr->bfd_section == NULL)
4758 || hdr == i_shdrpp[tdata->symtab_section]
4759 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4760 || hdr == i_shdrpp[tdata->strtab_section])
4761 hdr->sh_offset = -1;
4762 else
4763 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4764
4765 if (i == SHN_LORESERVE - 1)
4766 {
4767 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4768 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4769 }
4770 }
4771 }
4772
4773 /* Place the section headers. */
4774 off = align_file_position (off, 1 << bed->s->log_file_align);
4775 i_ehdrp->e_shoff = off;
4776 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4777
4778 elf_tdata (abfd)->next_file_pos = off;
4779
4780 return TRUE;
4781 }
4782
4783 static bfd_boolean
4784 prep_headers (bfd *abfd)
4785 {
4786 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4787 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4788 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4789 struct elf_strtab_hash *shstrtab;
4790 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4791
4792 i_ehdrp = elf_elfheader (abfd);
4793 i_shdrp = elf_elfsections (abfd);
4794
4795 shstrtab = _bfd_elf_strtab_init ();
4796 if (shstrtab == NULL)
4797 return FALSE;
4798
4799 elf_shstrtab (abfd) = shstrtab;
4800
4801 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4802 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4803 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4804 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4805
4806 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4807 i_ehdrp->e_ident[EI_DATA] =
4808 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4809 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4810
4811 if ((abfd->flags & DYNAMIC) != 0)
4812 i_ehdrp->e_type = ET_DYN;
4813 else if ((abfd->flags & EXEC_P) != 0)
4814 i_ehdrp->e_type = ET_EXEC;
4815 else if (bfd_get_format (abfd) == bfd_core)
4816 i_ehdrp->e_type = ET_CORE;
4817 else
4818 i_ehdrp->e_type = ET_REL;
4819
4820 switch (bfd_get_arch (abfd))
4821 {
4822 case bfd_arch_unknown:
4823 i_ehdrp->e_machine = EM_NONE;
4824 break;
4825
4826 /* There used to be a long list of cases here, each one setting
4827 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4828 in the corresponding bfd definition. To avoid duplication,
4829 the switch was removed. Machines that need special handling
4830 can generally do it in elf_backend_final_write_processing(),
4831 unless they need the information earlier than the final write.
4832 Such need can generally be supplied by replacing the tests for
4833 e_machine with the conditions used to determine it. */
4834 default:
4835 i_ehdrp->e_machine = bed->elf_machine_code;
4836 }
4837
4838 i_ehdrp->e_version = bed->s->ev_current;
4839 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4840
4841 /* No program header, for now. */
4842 i_ehdrp->e_phoff = 0;
4843 i_ehdrp->e_phentsize = 0;
4844 i_ehdrp->e_phnum = 0;
4845
4846 /* Each bfd section is section header entry. */
4847 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4848 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4849
4850 /* If we're building an executable, we'll need a program header table. */
4851 if (abfd->flags & EXEC_P)
4852 /* It all happens later. */
4853 ;
4854 else
4855 {
4856 i_ehdrp->e_phentsize = 0;
4857 i_phdrp = 0;
4858 i_ehdrp->e_phoff = 0;
4859 }
4860
4861 elf_tdata (abfd)->symtab_hdr.sh_name =
4862 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4863 elf_tdata (abfd)->strtab_hdr.sh_name =
4864 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4865 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4866 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4867 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4868 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4869 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4870 return FALSE;
4871
4872 return TRUE;
4873 }
4874
4875 /* Assign file positions for all the reloc sections which are not part
4876 of the loadable file image. */
4877
4878 void
4879 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4880 {
4881 file_ptr off;
4882 unsigned int i, num_sec;
4883 Elf_Internal_Shdr **shdrpp;
4884
4885 off = elf_tdata (abfd)->next_file_pos;
4886
4887 num_sec = elf_numsections (abfd);
4888 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4889 {
4890 Elf_Internal_Shdr *shdrp;
4891
4892 shdrp = *shdrpp;
4893 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4894 && shdrp->sh_offset == -1)
4895 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4896 }
4897
4898 elf_tdata (abfd)->next_file_pos = off;
4899 }
4900
4901 bfd_boolean
4902 _bfd_elf_write_object_contents (bfd *abfd)
4903 {
4904 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4905 Elf_Internal_Ehdr *i_ehdrp;
4906 Elf_Internal_Shdr **i_shdrp;
4907 bfd_boolean failed;
4908 unsigned int count, num_sec;
4909
4910 if (! abfd->output_has_begun
4911 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4912 return FALSE;
4913
4914 i_shdrp = elf_elfsections (abfd);
4915 i_ehdrp = elf_elfheader (abfd);
4916
4917 failed = FALSE;
4918 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4919 if (failed)
4920 return FALSE;
4921
4922 _bfd_elf_assign_file_positions_for_relocs (abfd);
4923
4924 /* After writing the headers, we need to write the sections too... */
4925 num_sec = elf_numsections (abfd);
4926 for (count = 1; count < num_sec; count++)
4927 {
4928 if (bed->elf_backend_section_processing)
4929 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4930 if (i_shdrp[count]->contents)
4931 {
4932 bfd_size_type amt = i_shdrp[count]->sh_size;
4933
4934 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4935 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4936 return FALSE;
4937 }
4938 if (count == SHN_LORESERVE - 1)
4939 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4940 }
4941
4942 /* Write out the section header names. */
4943 if (elf_shstrtab (abfd) != NULL
4944 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4945 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4946 return FALSE;
4947
4948 if (bed->elf_backend_final_write_processing)
4949 (*bed->elf_backend_final_write_processing) (abfd,
4950 elf_tdata (abfd)->linker);
4951
4952 return bed->s->write_shdrs_and_ehdr (abfd);
4953 }
4954
4955 bfd_boolean
4956 _bfd_elf_write_corefile_contents (bfd *abfd)
4957 {
4958 /* Hopefully this can be done just like an object file. */
4959 return _bfd_elf_write_object_contents (abfd);
4960 }
4961
4962 /* Given a section, search the header to find them. */
4963
4964 int
4965 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4966 {
4967 const struct elf_backend_data *bed;
4968 int index;
4969
4970 if (elf_section_data (asect) != NULL
4971 && elf_section_data (asect)->this_idx != 0)
4972 return elf_section_data (asect)->this_idx;
4973
4974 if (bfd_is_abs_section (asect))
4975 index = SHN_ABS;
4976 else if (bfd_is_com_section (asect))
4977 index = SHN_COMMON;
4978 else if (bfd_is_und_section (asect))
4979 index = SHN_UNDEF;
4980 else
4981 index = -1;
4982
4983 bed = get_elf_backend_data (abfd);
4984 if (bed->elf_backend_section_from_bfd_section)
4985 {
4986 int retval = index;
4987
4988 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4989 return retval;
4990 }
4991
4992 if (index == -1)
4993 bfd_set_error (bfd_error_nonrepresentable_section);
4994
4995 return index;
4996 }
4997
4998 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4999 on error. */
5000
5001 int
5002 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5003 {
5004 asymbol *asym_ptr = *asym_ptr_ptr;
5005 int idx;
5006 flagword flags = asym_ptr->flags;
5007
5008 /* When gas creates relocations against local labels, it creates its
5009 own symbol for the section, but does put the symbol into the
5010 symbol chain, so udata is 0. When the linker is generating
5011 relocatable output, this section symbol may be for one of the
5012 input sections rather than the output section. */
5013 if (asym_ptr->udata.i == 0
5014 && (flags & BSF_SECTION_SYM)
5015 && asym_ptr->section)
5016 {
5017 int indx;
5018
5019 if (asym_ptr->section->output_section != NULL)
5020 indx = asym_ptr->section->output_section->index;
5021 else
5022 indx = asym_ptr->section->index;
5023 if (indx < elf_num_section_syms (abfd)
5024 && elf_section_syms (abfd)[indx] != NULL)
5025 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5026 }
5027
5028 idx = asym_ptr->udata.i;
5029
5030 if (idx == 0)
5031 {
5032 /* This case can occur when using --strip-symbol on a symbol
5033 which is used in a relocation entry. */
5034 (*_bfd_error_handler)
5035 (_("%B: symbol `%s' required but not present"),
5036 abfd, bfd_asymbol_name (asym_ptr));
5037 bfd_set_error (bfd_error_no_symbols);
5038 return -1;
5039 }
5040
5041 #if DEBUG & 4
5042 {
5043 fprintf (stderr,
5044 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5045 (long) asym_ptr, asym_ptr->name, idx, flags,
5046 elf_symbol_flags (flags));
5047 fflush (stderr);
5048 }
5049 #endif
5050
5051 return idx;
5052 }
5053
5054 /* Copy private BFD data. This copies any program header information. */
5055
5056 static bfd_boolean
5057 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5058 {
5059 Elf_Internal_Ehdr *iehdr;
5060 struct elf_segment_map *map;
5061 struct elf_segment_map *map_first;
5062 struct elf_segment_map **pointer_to_map;
5063 Elf_Internal_Phdr *segment;
5064 asection *section;
5065 unsigned int i;
5066 unsigned int num_segments;
5067 bfd_boolean phdr_included = FALSE;
5068 bfd_vma maxpagesize;
5069 struct elf_segment_map *phdr_adjust_seg = NULL;
5070 unsigned int phdr_adjust_num = 0;
5071 const struct elf_backend_data *bed;
5072
5073 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5074 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5075 return TRUE;
5076
5077 if (elf_tdata (ibfd)->phdr == NULL)
5078 return TRUE;
5079
5080 bed = get_elf_backend_data (ibfd);
5081 iehdr = elf_elfheader (ibfd);
5082
5083 map_first = NULL;
5084 pointer_to_map = &map_first;
5085
5086 num_segments = elf_elfheader (ibfd)->e_phnum;
5087 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5088
5089 /* Returns the end address of the segment + 1. */
5090 #define SEGMENT_END(segment, start) \
5091 (start + (segment->p_memsz > segment->p_filesz \
5092 ? segment->p_memsz : segment->p_filesz))
5093
5094 #define SECTION_SIZE(section, segment) \
5095 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5096 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5097 ? section->size : 0)
5098
5099 /* Returns TRUE if the given section is contained within
5100 the given segment. VMA addresses are compared. */
5101 #define IS_CONTAINED_BY_VMA(section, segment) \
5102 (section->vma >= segment->p_vaddr \
5103 && (section->vma + SECTION_SIZE (section, segment) \
5104 <= (SEGMENT_END (segment, segment->p_vaddr))))
5105
5106 /* Returns TRUE if the given section is contained within
5107 the given segment. LMA addresses are compared. */
5108 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5109 (section->lma >= base \
5110 && (section->lma + SECTION_SIZE (section, segment) \
5111 <= SEGMENT_END (segment, base)))
5112
5113 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5114 #define IS_COREFILE_NOTE(p, s) \
5115 (p->p_type == PT_NOTE \
5116 && bfd_get_format (ibfd) == bfd_core \
5117 && s->vma == 0 && s->lma == 0 \
5118 && (bfd_vma) s->filepos >= p->p_offset \
5119 && ((bfd_vma) s->filepos + s->size \
5120 <= p->p_offset + p->p_filesz))
5121
5122 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5123 linker, which generates a PT_INTERP section with p_vaddr and
5124 p_memsz set to 0. */
5125 #define IS_SOLARIS_PT_INTERP(p, s) \
5126 (p->p_vaddr == 0 \
5127 && p->p_paddr == 0 \
5128 && p->p_memsz == 0 \
5129 && p->p_filesz > 0 \
5130 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5131 && s->size > 0 \
5132 && (bfd_vma) s->filepos >= p->p_offset \
5133 && ((bfd_vma) s->filepos + s->size \
5134 <= p->p_offset + p->p_filesz))
5135
5136 /* Decide if the given section should be included in the given segment.
5137 A section will be included if:
5138 1. It is within the address space of the segment -- we use the LMA
5139 if that is set for the segment and the VMA otherwise,
5140 2. It is an allocated segment,
5141 3. There is an output section associated with it,
5142 4. The section has not already been allocated to a previous segment.
5143 5. PT_GNU_STACK segments do not include any sections.
5144 6. PT_TLS segment includes only SHF_TLS sections.
5145 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5146 8. PT_DYNAMIC should not contain empty sections at the beginning
5147 (with the possible exception of .dynamic). */
5148 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5149 ((((segment->p_paddr \
5150 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5151 : IS_CONTAINED_BY_VMA (section, segment)) \
5152 && (section->flags & SEC_ALLOC) != 0) \
5153 || IS_COREFILE_NOTE (segment, section)) \
5154 && section->output_section != NULL \
5155 && segment->p_type != PT_GNU_STACK \
5156 && (segment->p_type != PT_TLS \
5157 || (section->flags & SEC_THREAD_LOCAL)) \
5158 && (segment->p_type == PT_LOAD \
5159 || segment->p_type == PT_TLS \
5160 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5161 && (segment->p_type != PT_DYNAMIC \
5162 || SECTION_SIZE (section, segment) > 0 \
5163 || (segment->p_paddr \
5164 ? segment->p_paddr != section->lma \
5165 : segment->p_vaddr != section->vma) \
5166 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5167 == 0)) \
5168 && ! section->segment_mark)
5169
5170 /* Returns TRUE iff seg1 starts after the end of seg2. */
5171 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5172 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5173
5174 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5175 their VMA address ranges and their LMA address ranges overlap.
5176 It is possible to have overlapping VMA ranges without overlapping LMA
5177 ranges. RedBoot images for example can have both .data and .bss mapped
5178 to the same VMA range, but with the .data section mapped to a different
5179 LMA. */
5180 #define SEGMENT_OVERLAPS(seg1, seg2) \
5181 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5182 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5183 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5184 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5185
5186 /* Initialise the segment mark field. */
5187 for (section = ibfd->sections; section != NULL; section = section->next)
5188 section->segment_mark = FALSE;
5189
5190 /* Scan through the segments specified in the program header
5191 of the input BFD. For this first scan we look for overlaps
5192 in the loadable segments. These can be created by weird
5193 parameters to objcopy. Also, fix some solaris weirdness. */
5194 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5195 i < num_segments;
5196 i++, segment++)
5197 {
5198 unsigned int j;
5199 Elf_Internal_Phdr *segment2;
5200
5201 if (segment->p_type == PT_INTERP)
5202 for (section = ibfd->sections; section; section = section->next)
5203 if (IS_SOLARIS_PT_INTERP (segment, section))
5204 {
5205 /* Mininal change so that the normal section to segment
5206 assignment code will work. */
5207 segment->p_vaddr = section->vma;
5208 break;
5209 }
5210
5211 if (segment->p_type != PT_LOAD)
5212 continue;
5213
5214 /* Determine if this segment overlaps any previous segments. */
5215 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5216 {
5217 bfd_signed_vma extra_length;
5218
5219 if (segment2->p_type != PT_LOAD
5220 || ! SEGMENT_OVERLAPS (segment, segment2))
5221 continue;
5222
5223 /* Merge the two segments together. */
5224 if (segment2->p_vaddr < segment->p_vaddr)
5225 {
5226 /* Extend SEGMENT2 to include SEGMENT and then delete
5227 SEGMENT. */
5228 extra_length =
5229 SEGMENT_END (segment, segment->p_vaddr)
5230 - SEGMENT_END (segment2, segment2->p_vaddr);
5231
5232 if (extra_length > 0)
5233 {
5234 segment2->p_memsz += extra_length;
5235 segment2->p_filesz += extra_length;
5236 }
5237
5238 segment->p_type = PT_NULL;
5239
5240 /* Since we have deleted P we must restart the outer loop. */
5241 i = 0;
5242 segment = elf_tdata (ibfd)->phdr;
5243 break;
5244 }
5245 else
5246 {
5247 /* Extend SEGMENT to include SEGMENT2 and then delete
5248 SEGMENT2. */
5249 extra_length =
5250 SEGMENT_END (segment2, segment2->p_vaddr)
5251 - SEGMENT_END (segment, segment->p_vaddr);
5252
5253 if (extra_length > 0)
5254 {
5255 segment->p_memsz += extra_length;
5256 segment->p_filesz += extra_length;
5257 }
5258
5259 segment2->p_type = PT_NULL;
5260 }
5261 }
5262 }
5263
5264 /* The second scan attempts to assign sections to segments. */
5265 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5266 i < num_segments;
5267 i ++, segment ++)
5268 {
5269 unsigned int section_count;
5270 asection ** sections;
5271 asection * output_section;
5272 unsigned int isec;
5273 bfd_vma matching_lma;
5274 bfd_vma suggested_lma;
5275 unsigned int j;
5276 bfd_size_type amt;
5277
5278 if (segment->p_type == PT_NULL)
5279 continue;
5280
5281 /* Compute how many sections might be placed into this segment. */
5282 for (section = ibfd->sections, section_count = 0;
5283 section != NULL;
5284 section = section->next)
5285 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5286 ++section_count;
5287
5288 /* Allocate a segment map big enough to contain
5289 all of the sections we have selected. */
5290 amt = sizeof (struct elf_segment_map);
5291 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5292 map = bfd_alloc (obfd, amt);
5293 if (map == NULL)
5294 return FALSE;
5295
5296 /* Initialise the fields of the segment map. Default to
5297 using the physical address of the segment in the input BFD. */
5298 map->next = NULL;
5299 map->p_type = segment->p_type;
5300 map->p_flags = segment->p_flags;
5301 map->p_flags_valid = 1;
5302 map->p_paddr = segment->p_paddr;
5303 map->p_paddr_valid = 1;
5304
5305 /* Determine if this segment contains the ELF file header
5306 and if it contains the program headers themselves. */
5307 map->includes_filehdr = (segment->p_offset == 0
5308 && segment->p_filesz >= iehdr->e_ehsize);
5309
5310 map->includes_phdrs = 0;
5311
5312 if (! phdr_included || segment->p_type != PT_LOAD)
5313 {
5314 map->includes_phdrs =
5315 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5316 && (segment->p_offset + segment->p_filesz
5317 >= ((bfd_vma) iehdr->e_phoff
5318 + iehdr->e_phnum * iehdr->e_phentsize)));
5319
5320 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5321 phdr_included = TRUE;
5322 }
5323
5324 if (section_count == 0)
5325 {
5326 /* Special segments, such as the PT_PHDR segment, may contain
5327 no sections, but ordinary, loadable segments should contain
5328 something. They are allowed by the ELF spec however, so only
5329 a warning is produced. */
5330 if (segment->p_type == PT_LOAD)
5331 (*_bfd_error_handler)
5332 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5333 ibfd);
5334
5335 map->count = 0;
5336 *pointer_to_map = map;
5337 pointer_to_map = &map->next;
5338
5339 continue;
5340 }
5341
5342 /* Now scan the sections in the input BFD again and attempt
5343 to add their corresponding output sections to the segment map.
5344 The problem here is how to handle an output section which has
5345 been moved (ie had its LMA changed). There are four possibilities:
5346
5347 1. None of the sections have been moved.
5348 In this case we can continue to use the segment LMA from the
5349 input BFD.
5350
5351 2. All of the sections have been moved by the same amount.
5352 In this case we can change the segment's LMA to match the LMA
5353 of the first section.
5354
5355 3. Some of the sections have been moved, others have not.
5356 In this case those sections which have not been moved can be
5357 placed in the current segment which will have to have its size,
5358 and possibly its LMA changed, and a new segment or segments will
5359 have to be created to contain the other sections.
5360
5361 4. The sections have been moved, but not by the same amount.
5362 In this case we can change the segment's LMA to match the LMA
5363 of the first section and we will have to create a new segment
5364 or segments to contain the other sections.
5365
5366 In order to save time, we allocate an array to hold the section
5367 pointers that we are interested in. As these sections get assigned
5368 to a segment, they are removed from this array. */
5369
5370 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5371 to work around this long long bug. */
5372 amt = section_count * sizeof (asection *);
5373 sections = bfd_malloc (amt);
5374 if (sections == NULL)
5375 return FALSE;
5376
5377 /* Step One: Scan for segment vs section LMA conflicts.
5378 Also add the sections to the section array allocated above.
5379 Also add the sections to the current segment. In the common
5380 case, where the sections have not been moved, this means that
5381 we have completely filled the segment, and there is nothing
5382 more to do. */
5383 isec = 0;
5384 matching_lma = 0;
5385 suggested_lma = 0;
5386
5387 for (j = 0, section = ibfd->sections;
5388 section != NULL;
5389 section = section->next)
5390 {
5391 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5392 {
5393 output_section = section->output_section;
5394
5395 sections[j ++] = section;
5396
5397 /* The Solaris native linker always sets p_paddr to 0.
5398 We try to catch that case here, and set it to the
5399 correct value. Note - some backends require that
5400 p_paddr be left as zero. */
5401 if (segment->p_paddr == 0
5402 && segment->p_vaddr != 0
5403 && (! bed->want_p_paddr_set_to_zero)
5404 && isec == 0
5405 && output_section->lma != 0
5406 && (output_section->vma == (segment->p_vaddr
5407 + (map->includes_filehdr
5408 ? iehdr->e_ehsize
5409 : 0)
5410 + (map->includes_phdrs
5411 ? (iehdr->e_phnum
5412 * iehdr->e_phentsize)
5413 : 0))))
5414 map->p_paddr = segment->p_vaddr;
5415
5416 /* Match up the physical address of the segment with the
5417 LMA address of the output section. */
5418 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5419 || IS_COREFILE_NOTE (segment, section)
5420 || (bed->want_p_paddr_set_to_zero &&
5421 IS_CONTAINED_BY_VMA (output_section, segment))
5422 )
5423 {
5424 if (matching_lma == 0)
5425 matching_lma = output_section->lma;
5426
5427 /* We assume that if the section fits within the segment
5428 then it does not overlap any other section within that
5429 segment. */
5430 map->sections[isec ++] = output_section;
5431 }
5432 else if (suggested_lma == 0)
5433 suggested_lma = output_section->lma;
5434 }
5435 }
5436
5437 BFD_ASSERT (j == section_count);
5438
5439 /* Step Two: Adjust the physical address of the current segment,
5440 if necessary. */
5441 if (isec == section_count)
5442 {
5443 /* All of the sections fitted within the segment as currently
5444 specified. This is the default case. Add the segment to
5445 the list of built segments and carry on to process the next
5446 program header in the input BFD. */
5447 map->count = section_count;
5448 *pointer_to_map = map;
5449 pointer_to_map = &map->next;
5450
5451 free (sections);
5452 continue;
5453 }
5454 else
5455 {
5456 if (matching_lma != 0)
5457 {
5458 /* At least one section fits inside the current segment.
5459 Keep it, but modify its physical address to match the
5460 LMA of the first section that fitted. */
5461 map->p_paddr = matching_lma;
5462 }
5463 else
5464 {
5465 /* None of the sections fitted inside the current segment.
5466 Change the current segment's physical address to match
5467 the LMA of the first section. */
5468 map->p_paddr = suggested_lma;
5469 }
5470
5471 /* Offset the segment physical address from the lma
5472 to allow for space taken up by elf headers. */
5473 if (map->includes_filehdr)
5474 map->p_paddr -= iehdr->e_ehsize;
5475
5476 if (map->includes_phdrs)
5477 {
5478 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5479
5480 /* iehdr->e_phnum is just an estimate of the number
5481 of program headers that we will need. Make a note
5482 here of the number we used and the segment we chose
5483 to hold these headers, so that we can adjust the
5484 offset when we know the correct value. */
5485 phdr_adjust_num = iehdr->e_phnum;
5486 phdr_adjust_seg = map;
5487 }
5488 }
5489
5490 /* Step Three: Loop over the sections again, this time assigning
5491 those that fit to the current segment and removing them from the
5492 sections array; but making sure not to leave large gaps. Once all
5493 possible sections have been assigned to the current segment it is
5494 added to the list of built segments and if sections still remain
5495 to be assigned, a new segment is constructed before repeating
5496 the loop. */
5497 isec = 0;
5498 do
5499 {
5500 map->count = 0;
5501 suggested_lma = 0;
5502
5503 /* Fill the current segment with sections that fit. */
5504 for (j = 0; j < section_count; j++)
5505 {
5506 section = sections[j];
5507
5508 if (section == NULL)
5509 continue;
5510
5511 output_section = section->output_section;
5512
5513 BFD_ASSERT (output_section != NULL);
5514
5515 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5516 || IS_COREFILE_NOTE (segment, section))
5517 {
5518 if (map->count == 0)
5519 {
5520 /* If the first section in a segment does not start at
5521 the beginning of the segment, then something is
5522 wrong. */
5523 if (output_section->lma !=
5524 (map->p_paddr
5525 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5526 + (map->includes_phdrs
5527 ? iehdr->e_phnum * iehdr->e_phentsize
5528 : 0)))
5529 abort ();
5530 }
5531 else
5532 {
5533 asection * prev_sec;
5534
5535 prev_sec = map->sections[map->count - 1];
5536
5537 /* If the gap between the end of the previous section
5538 and the start of this section is more than
5539 maxpagesize then we need to start a new segment. */
5540 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5541 maxpagesize)
5542 < BFD_ALIGN (output_section->lma, maxpagesize))
5543 || ((prev_sec->lma + prev_sec->size)
5544 > output_section->lma))
5545 {
5546 if (suggested_lma == 0)
5547 suggested_lma = output_section->lma;
5548
5549 continue;
5550 }
5551 }
5552
5553 map->sections[map->count++] = output_section;
5554 ++isec;
5555 sections[j] = NULL;
5556 section->segment_mark = TRUE;
5557 }
5558 else if (suggested_lma == 0)
5559 suggested_lma = output_section->lma;
5560 }
5561
5562 BFD_ASSERT (map->count > 0);
5563
5564 /* Add the current segment to the list of built segments. */
5565 *pointer_to_map = map;
5566 pointer_to_map = &map->next;
5567
5568 if (isec < section_count)
5569 {
5570 /* We still have not allocated all of the sections to
5571 segments. Create a new segment here, initialise it
5572 and carry on looping. */
5573 amt = sizeof (struct elf_segment_map);
5574 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5575 map = bfd_alloc (obfd, amt);
5576 if (map == NULL)
5577 {
5578 free (sections);
5579 return FALSE;
5580 }
5581
5582 /* Initialise the fields of the segment map. Set the physical
5583 physical address to the LMA of the first section that has
5584 not yet been assigned. */
5585 map->next = NULL;
5586 map->p_type = segment->p_type;
5587 map->p_flags = segment->p_flags;
5588 map->p_flags_valid = 1;
5589 map->p_paddr = suggested_lma;
5590 map->p_paddr_valid = 1;
5591 map->includes_filehdr = 0;
5592 map->includes_phdrs = 0;
5593 }
5594 }
5595 while (isec < section_count);
5596
5597 free (sections);
5598 }
5599
5600 /* The Solaris linker creates program headers in which all the
5601 p_paddr fields are zero. When we try to objcopy or strip such a
5602 file, we get confused. Check for this case, and if we find it
5603 reset the p_paddr_valid fields. */
5604 for (map = map_first; map != NULL; map = map->next)
5605 if (map->p_paddr != 0)
5606 break;
5607 if (map == NULL)
5608 for (map = map_first; map != NULL; map = map->next)
5609 map->p_paddr_valid = 0;
5610
5611 elf_tdata (obfd)->segment_map = map_first;
5612
5613 /* If we had to estimate the number of program headers that were
5614 going to be needed, then check our estimate now and adjust
5615 the offset if necessary. */
5616 if (phdr_adjust_seg != NULL)
5617 {
5618 unsigned int count;
5619
5620 for (count = 0, map = map_first; map != NULL; map = map->next)
5621 count++;
5622
5623 if (count > phdr_adjust_num)
5624 phdr_adjust_seg->p_paddr
5625 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5626 }
5627
5628 #undef SEGMENT_END
5629 #undef SECTION_SIZE
5630 #undef IS_CONTAINED_BY_VMA
5631 #undef IS_CONTAINED_BY_LMA
5632 #undef IS_COREFILE_NOTE
5633 #undef IS_SOLARIS_PT_INTERP
5634 #undef INCLUDE_SECTION_IN_SEGMENT
5635 #undef SEGMENT_AFTER_SEGMENT
5636 #undef SEGMENT_OVERLAPS
5637 return TRUE;
5638 }
5639
5640 /* Copy private section information. This copies over the entsize
5641 field, and sometimes the info field. */
5642
5643 bfd_boolean
5644 _bfd_elf_copy_private_section_data (bfd *ibfd,
5645 asection *isec,
5646 bfd *obfd,
5647 asection *osec)
5648 {
5649 Elf_Internal_Shdr *ihdr, *ohdr;
5650
5651 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5652 || obfd->xvec->flavour != bfd_target_elf_flavour)
5653 return TRUE;
5654
5655 ihdr = &elf_section_data (isec)->this_hdr;
5656 ohdr = &elf_section_data (osec)->this_hdr;
5657
5658 ohdr->sh_entsize = ihdr->sh_entsize;
5659
5660 if (ihdr->sh_type == SHT_SYMTAB
5661 || ihdr->sh_type == SHT_DYNSYM
5662 || ihdr->sh_type == SHT_GNU_verneed
5663 || ihdr->sh_type == SHT_GNU_verdef)
5664 ohdr->sh_info = ihdr->sh_info;
5665
5666 /* Set things up for objcopy. The output SHT_GROUP section will
5667 have its elf_next_in_group pointing back to the input group
5668 members. Ignore linker created group section. See
5669 elfNN_ia64_object_p in elfxx-ia64.c. */
5670 if (elf_sec_group (isec) == NULL
5671 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5672 {
5673 elf_next_in_group (osec) = elf_next_in_group (isec);
5674 elf_group_name (osec) = elf_group_name (isec);
5675 }
5676
5677 osec->use_rela_p = isec->use_rela_p;
5678
5679 return TRUE;
5680 }
5681
5682 /* Copy private header information. */
5683
5684 bfd_boolean
5685 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5686 {
5687 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5688 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5689 return TRUE;
5690
5691 /* Copy over private BFD data if it has not already been copied.
5692 This must be done here, rather than in the copy_private_bfd_data
5693 entry point, because the latter is called after the section
5694 contents have been set, which means that the program headers have
5695 already been worked out. */
5696 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5697 {
5698 if (! copy_private_bfd_data (ibfd, obfd))
5699 return FALSE;
5700 }
5701
5702 return TRUE;
5703 }
5704
5705 /* Copy private symbol information. If this symbol is in a section
5706 which we did not map into a BFD section, try to map the section
5707 index correctly. We use special macro definitions for the mapped
5708 section indices; these definitions are interpreted by the
5709 swap_out_syms function. */
5710
5711 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5712 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5713 #define MAP_STRTAB (SHN_HIOS + 3)
5714 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5715 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5716
5717 bfd_boolean
5718 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5719 asymbol *isymarg,
5720 bfd *obfd,
5721 asymbol *osymarg)
5722 {
5723 elf_symbol_type *isym, *osym;
5724
5725 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5726 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5727 return TRUE;
5728
5729 isym = elf_symbol_from (ibfd, isymarg);
5730 osym = elf_symbol_from (obfd, osymarg);
5731
5732 if (isym != NULL
5733 && osym != NULL
5734 && bfd_is_abs_section (isym->symbol.section))
5735 {
5736 unsigned int shndx;
5737
5738 shndx = isym->internal_elf_sym.st_shndx;
5739 if (shndx == elf_onesymtab (ibfd))
5740 shndx = MAP_ONESYMTAB;
5741 else if (shndx == elf_dynsymtab (ibfd))
5742 shndx = MAP_DYNSYMTAB;
5743 else if (shndx == elf_tdata (ibfd)->strtab_section)
5744 shndx = MAP_STRTAB;
5745 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5746 shndx = MAP_SHSTRTAB;
5747 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5748 shndx = MAP_SYM_SHNDX;
5749 osym->internal_elf_sym.st_shndx = shndx;
5750 }
5751
5752 return TRUE;
5753 }
5754
5755 /* Swap out the symbols. */
5756
5757 static bfd_boolean
5758 swap_out_syms (bfd *abfd,
5759 struct bfd_strtab_hash **sttp,
5760 int relocatable_p)
5761 {
5762 const struct elf_backend_data *bed;
5763 int symcount;
5764 asymbol **syms;
5765 struct bfd_strtab_hash *stt;
5766 Elf_Internal_Shdr *symtab_hdr;
5767 Elf_Internal_Shdr *symtab_shndx_hdr;
5768 Elf_Internal_Shdr *symstrtab_hdr;
5769 bfd_byte *outbound_syms;
5770 bfd_byte *outbound_shndx;
5771 int idx;
5772 bfd_size_type amt;
5773 bfd_boolean name_local_sections;
5774
5775 if (!elf_map_symbols (abfd))
5776 return FALSE;
5777
5778 /* Dump out the symtabs. */
5779 stt = _bfd_elf_stringtab_init ();
5780 if (stt == NULL)
5781 return FALSE;
5782
5783 bed = get_elf_backend_data (abfd);
5784 symcount = bfd_get_symcount (abfd);
5785 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5786 symtab_hdr->sh_type = SHT_SYMTAB;
5787 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5788 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5789 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5790 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5791
5792 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5793 symstrtab_hdr->sh_type = SHT_STRTAB;
5794
5795 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5796 outbound_syms = bfd_alloc (abfd, amt);
5797 if (outbound_syms == NULL)
5798 {
5799 _bfd_stringtab_free (stt);
5800 return FALSE;
5801 }
5802 symtab_hdr->contents = outbound_syms;
5803
5804 outbound_shndx = NULL;
5805 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5806 if (symtab_shndx_hdr->sh_name != 0)
5807 {
5808 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5809 outbound_shndx = bfd_zalloc (abfd, amt);
5810 if (outbound_shndx == NULL)
5811 {
5812 _bfd_stringtab_free (stt);
5813 return FALSE;
5814 }
5815
5816 symtab_shndx_hdr->contents = outbound_shndx;
5817 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5818 symtab_shndx_hdr->sh_size = amt;
5819 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5820 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5821 }
5822
5823 /* Now generate the data (for "contents"). */
5824 {
5825 /* Fill in zeroth symbol and swap it out. */
5826 Elf_Internal_Sym sym;
5827 sym.st_name = 0;
5828 sym.st_value = 0;
5829 sym.st_size = 0;
5830 sym.st_info = 0;
5831 sym.st_other = 0;
5832 sym.st_shndx = SHN_UNDEF;
5833 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5834 outbound_syms += bed->s->sizeof_sym;
5835 if (outbound_shndx != NULL)
5836 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5837 }
5838
5839 name_local_sections
5840 = (bed->elf_backend_name_local_section_symbols
5841 && bed->elf_backend_name_local_section_symbols (abfd));
5842
5843 syms = bfd_get_outsymbols (abfd);
5844 for (idx = 0; idx < symcount; idx++)
5845 {
5846 Elf_Internal_Sym sym;
5847 bfd_vma value = syms[idx]->value;
5848 elf_symbol_type *type_ptr;
5849 flagword flags = syms[idx]->flags;
5850 int type;
5851
5852 if (!name_local_sections
5853 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5854 {
5855 /* Local section symbols have no name. */
5856 sym.st_name = 0;
5857 }
5858 else
5859 {
5860 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5861 syms[idx]->name,
5862 TRUE, FALSE);
5863 if (sym.st_name == (unsigned long) -1)
5864 {
5865 _bfd_stringtab_free (stt);
5866 return FALSE;
5867 }
5868 }
5869
5870 type_ptr = elf_symbol_from (abfd, syms[idx]);
5871
5872 if ((flags & BSF_SECTION_SYM) == 0
5873 && bfd_is_com_section (syms[idx]->section))
5874 {
5875 /* ELF common symbols put the alignment into the `value' field,
5876 and the size into the `size' field. This is backwards from
5877 how BFD handles it, so reverse it here. */
5878 sym.st_size = value;
5879 if (type_ptr == NULL
5880 || type_ptr->internal_elf_sym.st_value == 0)
5881 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5882 else
5883 sym.st_value = type_ptr->internal_elf_sym.st_value;
5884 sym.st_shndx = _bfd_elf_section_from_bfd_section
5885 (abfd, syms[idx]->section);
5886 }
5887 else
5888 {
5889 asection *sec = syms[idx]->section;
5890 int shndx;
5891
5892 if (sec->output_section)
5893 {
5894 value += sec->output_offset;
5895 sec = sec->output_section;
5896 }
5897
5898 /* Don't add in the section vma for relocatable output. */
5899 if (! relocatable_p)
5900 value += sec->vma;
5901 sym.st_value = value;
5902 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5903
5904 if (bfd_is_abs_section (sec)
5905 && type_ptr != NULL
5906 && type_ptr->internal_elf_sym.st_shndx != 0)
5907 {
5908 /* This symbol is in a real ELF section which we did
5909 not create as a BFD section. Undo the mapping done
5910 by copy_private_symbol_data. */
5911 shndx = type_ptr->internal_elf_sym.st_shndx;
5912 switch (shndx)
5913 {
5914 case MAP_ONESYMTAB:
5915 shndx = elf_onesymtab (abfd);
5916 break;
5917 case MAP_DYNSYMTAB:
5918 shndx = elf_dynsymtab (abfd);
5919 break;
5920 case MAP_STRTAB:
5921 shndx = elf_tdata (abfd)->strtab_section;
5922 break;
5923 case MAP_SHSTRTAB:
5924 shndx = elf_tdata (abfd)->shstrtab_section;
5925 break;
5926 case MAP_SYM_SHNDX:
5927 shndx = elf_tdata (abfd)->symtab_shndx_section;
5928 break;
5929 default:
5930 break;
5931 }
5932 }
5933 else
5934 {
5935 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5936
5937 if (shndx == -1)
5938 {
5939 asection *sec2;
5940
5941 /* Writing this would be a hell of a lot easier if
5942 we had some decent documentation on bfd, and
5943 knew what to expect of the library, and what to
5944 demand of applications. For example, it
5945 appears that `objcopy' might not set the
5946 section of a symbol to be a section that is
5947 actually in the output file. */
5948 sec2 = bfd_get_section_by_name (abfd, sec->name);
5949 if (sec2 == NULL)
5950 {
5951 _bfd_error_handler (_("\
5952 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5953 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5954 sec->name);
5955 bfd_set_error (bfd_error_invalid_operation);
5956 _bfd_stringtab_free (stt);
5957 return FALSE;
5958 }
5959
5960 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5961 BFD_ASSERT (shndx != -1);
5962 }
5963 }
5964
5965 sym.st_shndx = shndx;
5966 }
5967
5968 if ((flags & BSF_THREAD_LOCAL) != 0)
5969 type = STT_TLS;
5970 else if ((flags & BSF_FUNCTION) != 0)
5971 type = STT_FUNC;
5972 else if ((flags & BSF_OBJECT) != 0)
5973 type = STT_OBJECT;
5974 else
5975 type = STT_NOTYPE;
5976
5977 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5978 type = STT_TLS;
5979
5980 /* Processor-specific types. */
5981 if (type_ptr != NULL
5982 && bed->elf_backend_get_symbol_type)
5983 type = ((*bed->elf_backend_get_symbol_type)
5984 (&type_ptr->internal_elf_sym, type));
5985
5986 if (flags & BSF_SECTION_SYM)
5987 {
5988 if (flags & BSF_GLOBAL)
5989 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5990 else
5991 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5992 }
5993 else if (bfd_is_com_section (syms[idx]->section))
5994 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5995 else if (bfd_is_und_section (syms[idx]->section))
5996 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5997 ? STB_WEAK
5998 : STB_GLOBAL),
5999 type);
6000 else if (flags & BSF_FILE)
6001 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6002 else
6003 {
6004 int bind = STB_LOCAL;
6005
6006 if (flags & BSF_LOCAL)
6007 bind = STB_LOCAL;
6008 else if (flags & BSF_WEAK)
6009 bind = STB_WEAK;
6010 else if (flags & BSF_GLOBAL)
6011 bind = STB_GLOBAL;
6012
6013 sym.st_info = ELF_ST_INFO (bind, type);
6014 }
6015
6016 if (type_ptr != NULL)
6017 sym.st_other = type_ptr->internal_elf_sym.st_other;
6018 else
6019 sym.st_other = 0;
6020
6021 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6022 outbound_syms += bed->s->sizeof_sym;
6023 if (outbound_shndx != NULL)
6024 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6025 }
6026
6027 *sttp = stt;
6028 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6029 symstrtab_hdr->sh_type = SHT_STRTAB;
6030
6031 symstrtab_hdr->sh_flags = 0;
6032 symstrtab_hdr->sh_addr = 0;
6033 symstrtab_hdr->sh_entsize = 0;
6034 symstrtab_hdr->sh_link = 0;
6035 symstrtab_hdr->sh_info = 0;
6036 symstrtab_hdr->sh_addralign = 1;
6037
6038 return TRUE;
6039 }
6040
6041 /* Return the number of bytes required to hold the symtab vector.
6042
6043 Note that we base it on the count plus 1, since we will null terminate
6044 the vector allocated based on this size. However, the ELF symbol table
6045 always has a dummy entry as symbol #0, so it ends up even. */
6046
6047 long
6048 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6049 {
6050 long symcount;
6051 long symtab_size;
6052 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6053
6054 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6055 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6056 if (symcount > 0)
6057 symtab_size -= sizeof (asymbol *);
6058
6059 return symtab_size;
6060 }
6061
6062 long
6063 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6064 {
6065 long symcount;
6066 long symtab_size;
6067 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6068
6069 if (elf_dynsymtab (abfd) == 0)
6070 {
6071 bfd_set_error (bfd_error_invalid_operation);
6072 return -1;
6073 }
6074
6075 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6076 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6077 if (symcount > 0)
6078 symtab_size -= sizeof (asymbol *);
6079
6080 return symtab_size;
6081 }
6082
6083 long
6084 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6085 sec_ptr asect)
6086 {
6087 return (asect->reloc_count + 1) * sizeof (arelent *);
6088 }
6089
6090 /* Canonicalize the relocs. */
6091
6092 long
6093 _bfd_elf_canonicalize_reloc (bfd *abfd,
6094 sec_ptr section,
6095 arelent **relptr,
6096 asymbol **symbols)
6097 {
6098 arelent *tblptr;
6099 unsigned int i;
6100 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6101
6102 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6103 return -1;
6104
6105 tblptr = section->relocation;
6106 for (i = 0; i < section->reloc_count; i++)
6107 *relptr++ = tblptr++;
6108
6109 *relptr = NULL;
6110
6111 return section->reloc_count;
6112 }
6113
6114 long
6115 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6116 {
6117 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6118 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6119
6120 if (symcount >= 0)
6121 bfd_get_symcount (abfd) = symcount;
6122 return symcount;
6123 }
6124
6125 long
6126 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6127 asymbol **allocation)
6128 {
6129 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6130 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6131
6132 if (symcount >= 0)
6133 bfd_get_dynamic_symcount (abfd) = symcount;
6134 return symcount;
6135 }
6136
6137 /* Return the size required for the dynamic reloc entries. Any loadable
6138 section that was actually installed in the BFD, and has type SHT_REL
6139 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6140 dynamic reloc section. */
6141
6142 long
6143 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6144 {
6145 long ret;
6146 asection *s;
6147
6148 if (elf_dynsymtab (abfd) == 0)
6149 {
6150 bfd_set_error (bfd_error_invalid_operation);
6151 return -1;
6152 }
6153
6154 ret = sizeof (arelent *);
6155 for (s = abfd->sections; s != NULL; s = s->next)
6156 if ((s->flags & SEC_LOAD) != 0
6157 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6158 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6159 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6160 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6161 * sizeof (arelent *));
6162
6163 return ret;
6164 }
6165
6166 /* Canonicalize the dynamic relocation entries. Note that we return the
6167 dynamic relocations as a single block, although they are actually
6168 associated with particular sections; the interface, which was
6169 designed for SunOS style shared libraries, expects that there is only
6170 one set of dynamic relocs. Any loadable section that was actually
6171 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6172 dynamic symbol table, is considered to be a dynamic reloc section. */
6173
6174 long
6175 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6176 arelent **storage,
6177 asymbol **syms)
6178 {
6179 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6180 asection *s;
6181 long ret;
6182
6183 if (elf_dynsymtab (abfd) == 0)
6184 {
6185 bfd_set_error (bfd_error_invalid_operation);
6186 return -1;
6187 }
6188
6189 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6190 ret = 0;
6191 for (s = abfd->sections; s != NULL; s = s->next)
6192 {
6193 if ((s->flags & SEC_LOAD) != 0
6194 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6195 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6196 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6197 {
6198 arelent *p;
6199 long count, i;
6200
6201 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6202 return -1;
6203 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6204 p = s->relocation;
6205 for (i = 0; i < count; i++)
6206 *storage++ = p++;
6207 ret += count;
6208 }
6209 }
6210
6211 *storage = NULL;
6212
6213 return ret;
6214 }
6215 \f
6216 /* Read in the version information. */
6217
6218 bfd_boolean
6219 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6220 {
6221 bfd_byte *contents = NULL;
6222 bfd_size_type amt;
6223 unsigned int freeidx = 0;
6224
6225 if (elf_dynverref (abfd) != 0)
6226 {
6227 Elf_Internal_Shdr *hdr;
6228 Elf_External_Verneed *everneed;
6229 Elf_Internal_Verneed *iverneed;
6230 unsigned int i;
6231
6232 hdr = &elf_tdata (abfd)->dynverref_hdr;
6233
6234 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6235 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6236 if (elf_tdata (abfd)->verref == NULL)
6237 goto error_return;
6238
6239 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6240
6241 contents = bfd_malloc (hdr->sh_size);
6242 if (contents == NULL)
6243 goto error_return;
6244 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6245 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6246 goto error_return;
6247
6248 everneed = (Elf_External_Verneed *) contents;
6249 iverneed = elf_tdata (abfd)->verref;
6250 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6251 {
6252 Elf_External_Vernaux *evernaux;
6253 Elf_Internal_Vernaux *ivernaux;
6254 unsigned int j;
6255
6256 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6257
6258 iverneed->vn_bfd = abfd;
6259
6260 iverneed->vn_filename =
6261 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6262 iverneed->vn_file);
6263 if (iverneed->vn_filename == NULL)
6264 goto error_return;
6265
6266 amt = iverneed->vn_cnt;
6267 amt *= sizeof (Elf_Internal_Vernaux);
6268 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6269
6270 evernaux = ((Elf_External_Vernaux *)
6271 ((bfd_byte *) everneed + iverneed->vn_aux));
6272 ivernaux = iverneed->vn_auxptr;
6273 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6274 {
6275 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6276
6277 ivernaux->vna_nodename =
6278 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6279 ivernaux->vna_name);
6280 if (ivernaux->vna_nodename == NULL)
6281 goto error_return;
6282
6283 if (j + 1 < iverneed->vn_cnt)
6284 ivernaux->vna_nextptr = ivernaux + 1;
6285 else
6286 ivernaux->vna_nextptr = NULL;
6287
6288 evernaux = ((Elf_External_Vernaux *)
6289 ((bfd_byte *) evernaux + ivernaux->vna_next));
6290
6291 if (ivernaux->vna_other > freeidx)
6292 freeidx = ivernaux->vna_other;
6293 }
6294
6295 if (i + 1 < hdr->sh_info)
6296 iverneed->vn_nextref = iverneed + 1;
6297 else
6298 iverneed->vn_nextref = NULL;
6299
6300 everneed = ((Elf_External_Verneed *)
6301 ((bfd_byte *) everneed + iverneed->vn_next));
6302 }
6303
6304 free (contents);
6305 contents = NULL;
6306 }
6307
6308 if (elf_dynverdef (abfd) != 0)
6309 {
6310 Elf_Internal_Shdr *hdr;
6311 Elf_External_Verdef *everdef;
6312 Elf_Internal_Verdef *iverdef;
6313 Elf_Internal_Verdef *iverdefarr;
6314 Elf_Internal_Verdef iverdefmem;
6315 unsigned int i;
6316 unsigned int maxidx;
6317
6318 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6319
6320 contents = bfd_malloc (hdr->sh_size);
6321 if (contents == NULL)
6322 goto error_return;
6323 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6324 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6325 goto error_return;
6326
6327 /* We know the number of entries in the section but not the maximum
6328 index. Therefore we have to run through all entries and find
6329 the maximum. */
6330 everdef = (Elf_External_Verdef *) contents;
6331 maxidx = 0;
6332 for (i = 0; i < hdr->sh_info; ++i)
6333 {
6334 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6335
6336 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6337 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6338
6339 everdef = ((Elf_External_Verdef *)
6340 ((bfd_byte *) everdef + iverdefmem.vd_next));
6341 }
6342
6343 if (default_imported_symver)
6344 {
6345 if (freeidx > maxidx)
6346 maxidx = ++freeidx;
6347 else
6348 freeidx = ++maxidx;
6349 }
6350 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6351 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6352 if (elf_tdata (abfd)->verdef == NULL)
6353 goto error_return;
6354
6355 elf_tdata (abfd)->cverdefs = maxidx;
6356
6357 everdef = (Elf_External_Verdef *) contents;
6358 iverdefarr = elf_tdata (abfd)->verdef;
6359 for (i = 0; i < hdr->sh_info; i++)
6360 {
6361 Elf_External_Verdaux *everdaux;
6362 Elf_Internal_Verdaux *iverdaux;
6363 unsigned int j;
6364
6365 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6366
6367 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6368 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6369
6370 iverdef->vd_bfd = abfd;
6371
6372 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6373 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6374 if (iverdef->vd_auxptr == NULL)
6375 goto error_return;
6376
6377 everdaux = ((Elf_External_Verdaux *)
6378 ((bfd_byte *) everdef + iverdef->vd_aux));
6379 iverdaux = iverdef->vd_auxptr;
6380 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6381 {
6382 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6383
6384 iverdaux->vda_nodename =
6385 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6386 iverdaux->vda_name);
6387 if (iverdaux->vda_nodename == NULL)
6388 goto error_return;
6389
6390 if (j + 1 < iverdef->vd_cnt)
6391 iverdaux->vda_nextptr = iverdaux + 1;
6392 else
6393 iverdaux->vda_nextptr = NULL;
6394
6395 everdaux = ((Elf_External_Verdaux *)
6396 ((bfd_byte *) everdaux + iverdaux->vda_next));
6397 }
6398
6399 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6400
6401 if (i + 1 < hdr->sh_info)
6402 iverdef->vd_nextdef = iverdef + 1;
6403 else
6404 iverdef->vd_nextdef = NULL;
6405
6406 everdef = ((Elf_External_Verdef *)
6407 ((bfd_byte *) everdef + iverdef->vd_next));
6408 }
6409
6410 free (contents);
6411 contents = NULL;
6412 }
6413 else if (default_imported_symver)
6414 {
6415 if (freeidx < 3)
6416 freeidx = 3;
6417 else
6418 freeidx++;
6419
6420 amt = (bfd_size_type) freeidx * sizeof (Elf_Internal_Verdef);
6421 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6422 if (elf_tdata (abfd)->verdef == NULL)
6423 goto error_return;
6424
6425 elf_tdata (abfd)->cverdefs = freeidx;
6426 }
6427
6428 /* Create a default version based on the soname. */
6429 if (default_imported_symver)
6430 {
6431 Elf_Internal_Verdef *iverdef;
6432 Elf_Internal_Verdaux *iverdaux;
6433
6434 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6435
6436 iverdef->vd_version = VER_DEF_CURRENT;
6437 iverdef->vd_flags = 0;
6438 iverdef->vd_ndx = freeidx;
6439 iverdef->vd_cnt = 1;
6440
6441 iverdef->vd_bfd = abfd;
6442
6443 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6444 if (iverdef->vd_nodename == NULL)
6445 goto error_return;
6446 iverdef->vd_nextdef = NULL;
6447 amt = (bfd_size_type) sizeof (Elf_Internal_Verdaux);
6448 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6449
6450 iverdaux = iverdef->vd_auxptr;
6451 iverdaux->vda_nodename = iverdef->vd_nodename;
6452 iverdaux->vda_nextptr = NULL;
6453 }
6454
6455 return TRUE;
6456
6457 error_return:
6458 if (contents != NULL)
6459 free (contents);
6460 return FALSE;
6461 }
6462 \f
6463 asymbol *
6464 _bfd_elf_make_empty_symbol (bfd *abfd)
6465 {
6466 elf_symbol_type *newsym;
6467 bfd_size_type amt = sizeof (elf_symbol_type);
6468
6469 newsym = bfd_zalloc (abfd, amt);
6470 if (!newsym)
6471 return NULL;
6472 else
6473 {
6474 newsym->symbol.the_bfd = abfd;
6475 return &newsym->symbol;
6476 }
6477 }
6478
6479 void
6480 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6481 asymbol *symbol,
6482 symbol_info *ret)
6483 {
6484 bfd_symbol_info (symbol, ret);
6485 }
6486
6487 /* Return whether a symbol name implies a local symbol. Most targets
6488 use this function for the is_local_label_name entry point, but some
6489 override it. */
6490
6491 bfd_boolean
6492 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6493 const char *name)
6494 {
6495 /* Normal local symbols start with ``.L''. */
6496 if (name[0] == '.' && name[1] == 'L')
6497 return TRUE;
6498
6499 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6500 DWARF debugging symbols starting with ``..''. */
6501 if (name[0] == '.' && name[1] == '.')
6502 return TRUE;
6503
6504 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6505 emitting DWARF debugging output. I suspect this is actually a
6506 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6507 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6508 underscore to be emitted on some ELF targets). For ease of use,
6509 we treat such symbols as local. */
6510 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6511 return TRUE;
6512
6513 return FALSE;
6514 }
6515
6516 alent *
6517 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6518 asymbol *symbol ATTRIBUTE_UNUSED)
6519 {
6520 abort ();
6521 return NULL;
6522 }
6523
6524 bfd_boolean
6525 _bfd_elf_set_arch_mach (bfd *abfd,
6526 enum bfd_architecture arch,
6527 unsigned long machine)
6528 {
6529 /* If this isn't the right architecture for this backend, and this
6530 isn't the generic backend, fail. */
6531 if (arch != get_elf_backend_data (abfd)->arch
6532 && arch != bfd_arch_unknown
6533 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6534 return FALSE;
6535
6536 return bfd_default_set_arch_mach (abfd, arch, machine);
6537 }
6538
6539 /* Find the function to a particular section and offset,
6540 for error reporting. */
6541
6542 static bfd_boolean
6543 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6544 asection *section,
6545 asymbol **symbols,
6546 bfd_vma offset,
6547 const char **filename_ptr,
6548 const char **functionname_ptr)
6549 {
6550 const char *filename;
6551 asymbol *func, *file;
6552 bfd_vma low_func;
6553 asymbol **p;
6554 /* ??? Given multiple file symbols, it is impossible to reliably
6555 choose the right file name for global symbols. File symbols are
6556 local symbols, and thus all file symbols must sort before any
6557 global symbols. The ELF spec may be interpreted to say that a
6558 file symbol must sort before other local symbols, but currently
6559 ld -r doesn't do this. So, for ld -r output, it is possible to
6560 make a better choice of file name for local symbols by ignoring
6561 file symbols appearing after a given local symbol. */
6562 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6563
6564 filename = NULL;
6565 func = NULL;
6566 file = NULL;
6567 low_func = 0;
6568 state = nothing_seen;
6569
6570 for (p = symbols; *p != NULL; p++)
6571 {
6572 elf_symbol_type *q;
6573
6574 q = (elf_symbol_type *) *p;
6575
6576 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6577 {
6578 default:
6579 break;
6580 case STT_FILE:
6581 file = &q->symbol;
6582 if (state == symbol_seen)
6583 state = file_after_symbol_seen;
6584 continue;
6585 case STT_SECTION:
6586 continue;
6587 case STT_NOTYPE:
6588 case STT_FUNC:
6589 if (bfd_get_section (&q->symbol) == section
6590 && q->symbol.value >= low_func
6591 && q->symbol.value <= offset)
6592 {
6593 func = (asymbol *) q;
6594 low_func = q->symbol.value;
6595 if (file == NULL)
6596 filename = NULL;
6597 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6598 && state == file_after_symbol_seen)
6599 filename = NULL;
6600 else
6601 filename = bfd_asymbol_name (file);
6602 }
6603 break;
6604 }
6605 if (state == nothing_seen)
6606 state = symbol_seen;
6607 }
6608
6609 if (func == NULL)
6610 return FALSE;
6611
6612 if (filename_ptr)
6613 *filename_ptr = filename;
6614 if (functionname_ptr)
6615 *functionname_ptr = bfd_asymbol_name (func);
6616
6617 return TRUE;
6618 }
6619
6620 /* Find the nearest line to a particular section and offset,
6621 for error reporting. */
6622
6623 bfd_boolean
6624 _bfd_elf_find_nearest_line (bfd *abfd,
6625 asection *section,
6626 asymbol **symbols,
6627 bfd_vma offset,
6628 const char **filename_ptr,
6629 const char **functionname_ptr,
6630 unsigned int *line_ptr)
6631 {
6632 bfd_boolean found;
6633
6634 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6635 filename_ptr, functionname_ptr,
6636 line_ptr))
6637 {
6638 if (!*functionname_ptr)
6639 elf_find_function (abfd, section, symbols, offset,
6640 *filename_ptr ? NULL : filename_ptr,
6641 functionname_ptr);
6642
6643 return TRUE;
6644 }
6645
6646 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6647 filename_ptr, functionname_ptr,
6648 line_ptr, 0,
6649 &elf_tdata (abfd)->dwarf2_find_line_info))
6650 {
6651 if (!*functionname_ptr)
6652 elf_find_function (abfd, section, symbols, offset,
6653 *filename_ptr ? NULL : filename_ptr,
6654 functionname_ptr);
6655
6656 return TRUE;
6657 }
6658
6659 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6660 &found, filename_ptr,
6661 functionname_ptr, line_ptr,
6662 &elf_tdata (abfd)->line_info))
6663 return FALSE;
6664 if (found && (*functionname_ptr || *line_ptr))
6665 return TRUE;
6666
6667 if (symbols == NULL)
6668 return FALSE;
6669
6670 if (! elf_find_function (abfd, section, symbols, offset,
6671 filename_ptr, functionname_ptr))
6672 return FALSE;
6673
6674 *line_ptr = 0;
6675 return TRUE;
6676 }
6677
6678 /* Find the line for a symbol. */
6679
6680 bfd_boolean
6681 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
6682 const char **filename_ptr, unsigned int *line_ptr)
6683 {
6684 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
6685 filename_ptr, line_ptr, 0,
6686 &elf_tdata (abfd)->dwarf2_find_line_info);
6687 }
6688
6689 /* After a call to bfd_find_nearest_line, successive calls to
6690 bfd_find_inliner_info can be used to get source information about
6691 each level of function inlining that terminated at the address
6692 passed to bfd_find_nearest_line. Currently this is only supported
6693 for DWARF2 with appropriate DWARF3 extensions. */
6694
6695 bfd_boolean
6696 _bfd_elf_find_inliner_info (bfd *abfd,
6697 const char **filename_ptr,
6698 const char **functionname_ptr,
6699 unsigned int *line_ptr)
6700 {
6701 bfd_boolean found;
6702 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
6703 functionname_ptr, line_ptr,
6704 & elf_tdata (abfd)->dwarf2_find_line_info);
6705 return found;
6706 }
6707
6708 int
6709 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6710 {
6711 int ret;
6712
6713 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6714 if (! reloc)
6715 ret += get_program_header_size (abfd);
6716 return ret;
6717 }
6718
6719 bfd_boolean
6720 _bfd_elf_set_section_contents (bfd *abfd,
6721 sec_ptr section,
6722 const void *location,
6723 file_ptr offset,
6724 bfd_size_type count)
6725 {
6726 Elf_Internal_Shdr *hdr;
6727 bfd_signed_vma pos;
6728
6729 if (! abfd->output_has_begun
6730 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6731 return FALSE;
6732
6733 hdr = &elf_section_data (section)->this_hdr;
6734 pos = hdr->sh_offset + offset;
6735 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6736 || bfd_bwrite (location, count, abfd) != count)
6737 return FALSE;
6738
6739 return TRUE;
6740 }
6741
6742 void
6743 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6744 arelent *cache_ptr ATTRIBUTE_UNUSED,
6745 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6746 {
6747 abort ();
6748 }
6749
6750 /* Try to convert a non-ELF reloc into an ELF one. */
6751
6752 bfd_boolean
6753 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6754 {
6755 /* Check whether we really have an ELF howto. */
6756
6757 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6758 {
6759 bfd_reloc_code_real_type code;
6760 reloc_howto_type *howto;
6761
6762 /* Alien reloc: Try to determine its type to replace it with an
6763 equivalent ELF reloc. */
6764
6765 if (areloc->howto->pc_relative)
6766 {
6767 switch (areloc->howto->bitsize)
6768 {
6769 case 8:
6770 code = BFD_RELOC_8_PCREL;
6771 break;
6772 case 12:
6773 code = BFD_RELOC_12_PCREL;
6774 break;
6775 case 16:
6776 code = BFD_RELOC_16_PCREL;
6777 break;
6778 case 24:
6779 code = BFD_RELOC_24_PCREL;
6780 break;
6781 case 32:
6782 code = BFD_RELOC_32_PCREL;
6783 break;
6784 case 64:
6785 code = BFD_RELOC_64_PCREL;
6786 break;
6787 default:
6788 goto fail;
6789 }
6790
6791 howto = bfd_reloc_type_lookup (abfd, code);
6792
6793 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6794 {
6795 if (howto->pcrel_offset)
6796 areloc->addend += areloc->address;
6797 else
6798 areloc->addend -= areloc->address; /* addend is unsigned!! */
6799 }
6800 }
6801 else
6802 {
6803 switch (areloc->howto->bitsize)
6804 {
6805 case 8:
6806 code = BFD_RELOC_8;
6807 break;
6808 case 14:
6809 code = BFD_RELOC_14;
6810 break;
6811 case 16:
6812 code = BFD_RELOC_16;
6813 break;
6814 case 26:
6815 code = BFD_RELOC_26;
6816 break;
6817 case 32:
6818 code = BFD_RELOC_32;
6819 break;
6820 case 64:
6821 code = BFD_RELOC_64;
6822 break;
6823 default:
6824 goto fail;
6825 }
6826
6827 howto = bfd_reloc_type_lookup (abfd, code);
6828 }
6829
6830 if (howto)
6831 areloc->howto = howto;
6832 else
6833 goto fail;
6834 }
6835
6836 return TRUE;
6837
6838 fail:
6839 (*_bfd_error_handler)
6840 (_("%B: unsupported relocation type %s"),
6841 abfd, areloc->howto->name);
6842 bfd_set_error (bfd_error_bad_value);
6843 return FALSE;
6844 }
6845
6846 bfd_boolean
6847 _bfd_elf_close_and_cleanup (bfd *abfd)
6848 {
6849 if (bfd_get_format (abfd) == bfd_object)
6850 {
6851 if (elf_shstrtab (abfd) != NULL)
6852 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6853 _bfd_dwarf2_cleanup_debug_info (abfd);
6854 }
6855
6856 return _bfd_generic_close_and_cleanup (abfd);
6857 }
6858
6859 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6860 in the relocation's offset. Thus we cannot allow any sort of sanity
6861 range-checking to interfere. There is nothing else to do in processing
6862 this reloc. */
6863
6864 bfd_reloc_status_type
6865 _bfd_elf_rel_vtable_reloc_fn
6866 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6867 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6868 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6869 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6870 {
6871 return bfd_reloc_ok;
6872 }
6873 \f
6874 /* Elf core file support. Much of this only works on native
6875 toolchains, since we rely on knowing the
6876 machine-dependent procfs structure in order to pick
6877 out details about the corefile. */
6878
6879 #ifdef HAVE_SYS_PROCFS_H
6880 # include <sys/procfs.h>
6881 #endif
6882
6883 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6884
6885 static int
6886 elfcore_make_pid (bfd *abfd)
6887 {
6888 return ((elf_tdata (abfd)->core_lwpid << 16)
6889 + (elf_tdata (abfd)->core_pid));
6890 }
6891
6892 /* If there isn't a section called NAME, make one, using
6893 data from SECT. Note, this function will generate a
6894 reference to NAME, so you shouldn't deallocate or
6895 overwrite it. */
6896
6897 static bfd_boolean
6898 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6899 {
6900 asection *sect2;
6901
6902 if (bfd_get_section_by_name (abfd, name) != NULL)
6903 return TRUE;
6904
6905 sect2 = bfd_make_section (abfd, name);
6906 if (sect2 == NULL)
6907 return FALSE;
6908
6909 sect2->size = sect->size;
6910 sect2->filepos = sect->filepos;
6911 sect2->flags = sect->flags;
6912 sect2->alignment_power = sect->alignment_power;
6913 return TRUE;
6914 }
6915
6916 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6917 actually creates up to two pseudosections:
6918 - For the single-threaded case, a section named NAME, unless
6919 such a section already exists.
6920 - For the multi-threaded case, a section named "NAME/PID", where
6921 PID is elfcore_make_pid (abfd).
6922 Both pseudosections have identical contents. */
6923 bfd_boolean
6924 _bfd_elfcore_make_pseudosection (bfd *abfd,
6925 char *name,
6926 size_t size,
6927 ufile_ptr filepos)
6928 {
6929 char buf[100];
6930 char *threaded_name;
6931 size_t len;
6932 asection *sect;
6933
6934 /* Build the section name. */
6935
6936 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6937 len = strlen (buf) + 1;
6938 threaded_name = bfd_alloc (abfd, len);
6939 if (threaded_name == NULL)
6940 return FALSE;
6941 memcpy (threaded_name, buf, len);
6942
6943 sect = bfd_make_section_anyway (abfd, threaded_name);
6944 if (sect == NULL)
6945 return FALSE;
6946 sect->size = size;
6947 sect->filepos = filepos;
6948 sect->flags = SEC_HAS_CONTENTS;
6949 sect->alignment_power = 2;
6950
6951 return elfcore_maybe_make_sect (abfd, name, sect);
6952 }
6953
6954 /* prstatus_t exists on:
6955 solaris 2.5+
6956 linux 2.[01] + glibc
6957 unixware 4.2
6958 */
6959
6960 #if defined (HAVE_PRSTATUS_T)
6961
6962 static bfd_boolean
6963 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6964 {
6965 size_t size;
6966 int offset;
6967
6968 if (note->descsz == sizeof (prstatus_t))
6969 {
6970 prstatus_t prstat;
6971
6972 size = sizeof (prstat.pr_reg);
6973 offset = offsetof (prstatus_t, pr_reg);
6974 memcpy (&prstat, note->descdata, sizeof (prstat));
6975
6976 /* Do not overwrite the core signal if it
6977 has already been set by another thread. */
6978 if (elf_tdata (abfd)->core_signal == 0)
6979 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6980 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6981
6982 /* pr_who exists on:
6983 solaris 2.5+
6984 unixware 4.2
6985 pr_who doesn't exist on:
6986 linux 2.[01]
6987 */
6988 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6989 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6990 #endif
6991 }
6992 #if defined (HAVE_PRSTATUS32_T)
6993 else if (note->descsz == sizeof (prstatus32_t))
6994 {
6995 /* 64-bit host, 32-bit corefile */
6996 prstatus32_t prstat;
6997
6998 size = sizeof (prstat.pr_reg);
6999 offset = offsetof (prstatus32_t, pr_reg);
7000 memcpy (&prstat, note->descdata, sizeof (prstat));
7001
7002 /* Do not overwrite the core signal if it
7003 has already been set by another thread. */
7004 if (elf_tdata (abfd)->core_signal == 0)
7005 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7006 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7007
7008 /* pr_who exists on:
7009 solaris 2.5+
7010 unixware 4.2
7011 pr_who doesn't exist on:
7012 linux 2.[01]
7013 */
7014 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7015 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7016 #endif
7017 }
7018 #endif /* HAVE_PRSTATUS32_T */
7019 else
7020 {
7021 /* Fail - we don't know how to handle any other
7022 note size (ie. data object type). */
7023 return TRUE;
7024 }
7025
7026 /* Make a ".reg/999" section and a ".reg" section. */
7027 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7028 size, note->descpos + offset);
7029 }
7030 #endif /* defined (HAVE_PRSTATUS_T) */
7031
7032 /* Create a pseudosection containing the exact contents of NOTE. */
7033 static bfd_boolean
7034 elfcore_make_note_pseudosection (bfd *abfd,
7035 char *name,
7036 Elf_Internal_Note *note)
7037 {
7038 return _bfd_elfcore_make_pseudosection (abfd, name,
7039 note->descsz, note->descpos);
7040 }
7041
7042 /* There isn't a consistent prfpregset_t across platforms,
7043 but it doesn't matter, because we don't have to pick this
7044 data structure apart. */
7045
7046 static bfd_boolean
7047 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7048 {
7049 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7050 }
7051
7052 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7053 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7054 literally. */
7055
7056 static bfd_boolean
7057 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7058 {
7059 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7060 }
7061
7062 #if defined (HAVE_PRPSINFO_T)
7063 typedef prpsinfo_t elfcore_psinfo_t;
7064 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7065 typedef prpsinfo32_t elfcore_psinfo32_t;
7066 #endif
7067 #endif
7068
7069 #if defined (HAVE_PSINFO_T)
7070 typedef psinfo_t elfcore_psinfo_t;
7071 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7072 typedef psinfo32_t elfcore_psinfo32_t;
7073 #endif
7074 #endif
7075
7076 /* return a malloc'ed copy of a string at START which is at
7077 most MAX bytes long, possibly without a terminating '\0'.
7078 the copy will always have a terminating '\0'. */
7079
7080 char *
7081 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7082 {
7083 char *dups;
7084 char *end = memchr (start, '\0', max);
7085 size_t len;
7086
7087 if (end == NULL)
7088 len = max;
7089 else
7090 len = end - start;
7091
7092 dups = bfd_alloc (abfd, len + 1);
7093 if (dups == NULL)
7094 return NULL;
7095
7096 memcpy (dups, start, len);
7097 dups[len] = '\0';
7098
7099 return dups;
7100 }
7101
7102 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7103 static bfd_boolean
7104 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7105 {
7106 if (note->descsz == sizeof (elfcore_psinfo_t))
7107 {
7108 elfcore_psinfo_t psinfo;
7109
7110 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7111
7112 elf_tdata (abfd)->core_program
7113 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7114 sizeof (psinfo.pr_fname));
7115
7116 elf_tdata (abfd)->core_command
7117 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7118 sizeof (psinfo.pr_psargs));
7119 }
7120 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7121 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7122 {
7123 /* 64-bit host, 32-bit corefile */
7124 elfcore_psinfo32_t psinfo;
7125
7126 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7127
7128 elf_tdata (abfd)->core_program
7129 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7130 sizeof (psinfo.pr_fname));
7131
7132 elf_tdata (abfd)->core_command
7133 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7134 sizeof (psinfo.pr_psargs));
7135 }
7136 #endif
7137
7138 else
7139 {
7140 /* Fail - we don't know how to handle any other
7141 note size (ie. data object type). */
7142 return TRUE;
7143 }
7144
7145 /* Note that for some reason, a spurious space is tacked
7146 onto the end of the args in some (at least one anyway)
7147 implementations, so strip it off if it exists. */
7148
7149 {
7150 char *command = elf_tdata (abfd)->core_command;
7151 int n = strlen (command);
7152
7153 if (0 < n && command[n - 1] == ' ')
7154 command[n - 1] = '\0';
7155 }
7156
7157 return TRUE;
7158 }
7159 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7160
7161 #if defined (HAVE_PSTATUS_T)
7162 static bfd_boolean
7163 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7164 {
7165 if (note->descsz == sizeof (pstatus_t)
7166 #if defined (HAVE_PXSTATUS_T)
7167 || note->descsz == sizeof (pxstatus_t)
7168 #endif
7169 )
7170 {
7171 pstatus_t pstat;
7172
7173 memcpy (&pstat, note->descdata, sizeof (pstat));
7174
7175 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7176 }
7177 #if defined (HAVE_PSTATUS32_T)
7178 else if (note->descsz == sizeof (pstatus32_t))
7179 {
7180 /* 64-bit host, 32-bit corefile */
7181 pstatus32_t pstat;
7182
7183 memcpy (&pstat, note->descdata, sizeof (pstat));
7184
7185 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7186 }
7187 #endif
7188 /* Could grab some more details from the "representative"
7189 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7190 NT_LWPSTATUS note, presumably. */
7191
7192 return TRUE;
7193 }
7194 #endif /* defined (HAVE_PSTATUS_T) */
7195
7196 #if defined (HAVE_LWPSTATUS_T)
7197 static bfd_boolean
7198 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7199 {
7200 lwpstatus_t lwpstat;
7201 char buf[100];
7202 char *name;
7203 size_t len;
7204 asection *sect;
7205
7206 if (note->descsz != sizeof (lwpstat)
7207 #if defined (HAVE_LWPXSTATUS_T)
7208 && note->descsz != sizeof (lwpxstatus_t)
7209 #endif
7210 )
7211 return TRUE;
7212
7213 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7214
7215 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7216 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7217
7218 /* Make a ".reg/999" section. */
7219
7220 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7221 len = strlen (buf) + 1;
7222 name = bfd_alloc (abfd, len);
7223 if (name == NULL)
7224 return FALSE;
7225 memcpy (name, buf, len);
7226
7227 sect = bfd_make_section_anyway (abfd, name);
7228 if (sect == NULL)
7229 return FALSE;
7230
7231 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7232 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7233 sect->filepos = note->descpos
7234 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7235 #endif
7236
7237 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7238 sect->size = sizeof (lwpstat.pr_reg);
7239 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7240 #endif
7241
7242 sect->flags = SEC_HAS_CONTENTS;
7243 sect->alignment_power = 2;
7244
7245 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7246 return FALSE;
7247
7248 /* Make a ".reg2/999" section */
7249
7250 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7251 len = strlen (buf) + 1;
7252 name = bfd_alloc (abfd, len);
7253 if (name == NULL)
7254 return FALSE;
7255 memcpy (name, buf, len);
7256
7257 sect = bfd_make_section_anyway (abfd, name);
7258 if (sect == NULL)
7259 return FALSE;
7260
7261 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7262 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7263 sect->filepos = note->descpos
7264 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7265 #endif
7266
7267 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7268 sect->size = sizeof (lwpstat.pr_fpreg);
7269 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7270 #endif
7271
7272 sect->flags = SEC_HAS_CONTENTS;
7273 sect->alignment_power = 2;
7274
7275 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7276 }
7277 #endif /* defined (HAVE_LWPSTATUS_T) */
7278
7279 #if defined (HAVE_WIN32_PSTATUS_T)
7280 static bfd_boolean
7281 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7282 {
7283 char buf[30];
7284 char *name;
7285 size_t len;
7286 asection *sect;
7287 win32_pstatus_t pstatus;
7288
7289 if (note->descsz < sizeof (pstatus))
7290 return TRUE;
7291
7292 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7293
7294 switch (pstatus.data_type)
7295 {
7296 case NOTE_INFO_PROCESS:
7297 /* FIXME: need to add ->core_command. */
7298 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7299 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7300 break;
7301
7302 case NOTE_INFO_THREAD:
7303 /* Make a ".reg/999" section. */
7304 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7305
7306 len = strlen (buf) + 1;
7307 name = bfd_alloc (abfd, len);
7308 if (name == NULL)
7309 return FALSE;
7310
7311 memcpy (name, buf, len);
7312
7313 sect = bfd_make_section_anyway (abfd, name);
7314 if (sect == NULL)
7315 return FALSE;
7316
7317 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7318 sect->filepos = (note->descpos
7319 + offsetof (struct win32_pstatus,
7320 data.thread_info.thread_context));
7321 sect->flags = SEC_HAS_CONTENTS;
7322 sect->alignment_power = 2;
7323
7324 if (pstatus.data.thread_info.is_active_thread)
7325 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7326 return FALSE;
7327 break;
7328
7329 case NOTE_INFO_MODULE:
7330 /* Make a ".module/xxxxxxxx" section. */
7331 sprintf (buf, ".module/%08lx",
7332 (long) pstatus.data.module_info.base_address);
7333
7334 len = strlen (buf) + 1;
7335 name = bfd_alloc (abfd, len);
7336 if (name == NULL)
7337 return FALSE;
7338
7339 memcpy (name, buf, len);
7340
7341 sect = bfd_make_section_anyway (abfd, name);
7342
7343 if (sect == NULL)
7344 return FALSE;
7345
7346 sect->size = note->descsz;
7347 sect->filepos = note->descpos;
7348 sect->flags = SEC_HAS_CONTENTS;
7349 sect->alignment_power = 2;
7350 break;
7351
7352 default:
7353 return TRUE;
7354 }
7355
7356 return TRUE;
7357 }
7358 #endif /* HAVE_WIN32_PSTATUS_T */
7359
7360 static bfd_boolean
7361 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7362 {
7363 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7364
7365 switch (note->type)
7366 {
7367 default:
7368 return TRUE;
7369
7370 case NT_PRSTATUS:
7371 if (bed->elf_backend_grok_prstatus)
7372 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7373 return TRUE;
7374 #if defined (HAVE_PRSTATUS_T)
7375 return elfcore_grok_prstatus (abfd, note);
7376 #else
7377 return TRUE;
7378 #endif
7379
7380 #if defined (HAVE_PSTATUS_T)
7381 case NT_PSTATUS:
7382 return elfcore_grok_pstatus (abfd, note);
7383 #endif
7384
7385 #if defined (HAVE_LWPSTATUS_T)
7386 case NT_LWPSTATUS:
7387 return elfcore_grok_lwpstatus (abfd, note);
7388 #endif
7389
7390 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7391 return elfcore_grok_prfpreg (abfd, note);
7392
7393 #if defined (HAVE_WIN32_PSTATUS_T)
7394 case NT_WIN32PSTATUS:
7395 return elfcore_grok_win32pstatus (abfd, note);
7396 #endif
7397
7398 case NT_PRXFPREG: /* Linux SSE extension */
7399 if (note->namesz == 6
7400 && strcmp (note->namedata, "LINUX") == 0)
7401 return elfcore_grok_prxfpreg (abfd, note);
7402 else
7403 return TRUE;
7404
7405 case NT_PRPSINFO:
7406 case NT_PSINFO:
7407 if (bed->elf_backend_grok_psinfo)
7408 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7409 return TRUE;
7410 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7411 return elfcore_grok_psinfo (abfd, note);
7412 #else
7413 return TRUE;
7414 #endif
7415
7416 case NT_AUXV:
7417 {
7418 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7419
7420 if (sect == NULL)
7421 return FALSE;
7422 sect->size = note->descsz;
7423 sect->filepos = note->descpos;
7424 sect->flags = SEC_HAS_CONTENTS;
7425 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7426
7427 return TRUE;
7428 }
7429 }
7430 }
7431
7432 static bfd_boolean
7433 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7434 {
7435 char *cp;
7436
7437 cp = strchr (note->namedata, '@');
7438 if (cp != NULL)
7439 {
7440 *lwpidp = atoi(cp + 1);
7441 return TRUE;
7442 }
7443 return FALSE;
7444 }
7445
7446 static bfd_boolean
7447 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7448 {
7449
7450 /* Signal number at offset 0x08. */
7451 elf_tdata (abfd)->core_signal
7452 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7453
7454 /* Process ID at offset 0x50. */
7455 elf_tdata (abfd)->core_pid
7456 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7457
7458 /* Command name at 0x7c (max 32 bytes, including nul). */
7459 elf_tdata (abfd)->core_command
7460 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7461
7462 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7463 note);
7464 }
7465
7466 static bfd_boolean
7467 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7468 {
7469 int lwp;
7470
7471 if (elfcore_netbsd_get_lwpid (note, &lwp))
7472 elf_tdata (abfd)->core_lwpid = lwp;
7473
7474 if (note->type == NT_NETBSDCORE_PROCINFO)
7475 {
7476 /* NetBSD-specific core "procinfo". Note that we expect to
7477 find this note before any of the others, which is fine,
7478 since the kernel writes this note out first when it
7479 creates a core file. */
7480
7481 return elfcore_grok_netbsd_procinfo (abfd, note);
7482 }
7483
7484 /* As of Jan 2002 there are no other machine-independent notes
7485 defined for NetBSD core files. If the note type is less
7486 than the start of the machine-dependent note types, we don't
7487 understand it. */
7488
7489 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7490 return TRUE;
7491
7492
7493 switch (bfd_get_arch (abfd))
7494 {
7495 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7496 PT_GETFPREGS == mach+2. */
7497
7498 case bfd_arch_alpha:
7499 case bfd_arch_sparc:
7500 switch (note->type)
7501 {
7502 case NT_NETBSDCORE_FIRSTMACH+0:
7503 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7504
7505 case NT_NETBSDCORE_FIRSTMACH+2:
7506 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7507
7508 default:
7509 return TRUE;
7510 }
7511
7512 /* On all other arch's, PT_GETREGS == mach+1 and
7513 PT_GETFPREGS == mach+3. */
7514
7515 default:
7516 switch (note->type)
7517 {
7518 case NT_NETBSDCORE_FIRSTMACH+1:
7519 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7520
7521 case NT_NETBSDCORE_FIRSTMACH+3:
7522 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7523
7524 default:
7525 return TRUE;
7526 }
7527 }
7528 /* NOTREACHED */
7529 }
7530
7531 static bfd_boolean
7532 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7533 {
7534 void *ddata = note->descdata;
7535 char buf[100];
7536 char *name;
7537 asection *sect;
7538 short sig;
7539 unsigned flags;
7540
7541 /* nto_procfs_status 'pid' field is at offset 0. */
7542 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7543
7544 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7545 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7546
7547 /* nto_procfs_status 'flags' field is at offset 8. */
7548 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7549
7550 /* nto_procfs_status 'what' field is at offset 14. */
7551 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7552 {
7553 elf_tdata (abfd)->core_signal = sig;
7554 elf_tdata (abfd)->core_lwpid = *tid;
7555 }
7556
7557 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7558 do not come from signals so we make sure we set the current
7559 thread just in case. */
7560 if (flags & 0x00000080)
7561 elf_tdata (abfd)->core_lwpid = *tid;
7562
7563 /* Make a ".qnx_core_status/%d" section. */
7564 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7565
7566 name = bfd_alloc (abfd, strlen (buf) + 1);
7567 if (name == NULL)
7568 return FALSE;
7569 strcpy (name, buf);
7570
7571 sect = bfd_make_section_anyway (abfd, name);
7572 if (sect == NULL)
7573 return FALSE;
7574
7575 sect->size = note->descsz;
7576 sect->filepos = note->descpos;
7577 sect->flags = SEC_HAS_CONTENTS;
7578 sect->alignment_power = 2;
7579
7580 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7581 }
7582
7583 static bfd_boolean
7584 elfcore_grok_nto_regs (bfd *abfd,
7585 Elf_Internal_Note *note,
7586 pid_t tid,
7587 char *base)
7588 {
7589 char buf[100];
7590 char *name;
7591 asection *sect;
7592
7593 /* Make a "(base)/%d" section. */
7594 sprintf (buf, "%s/%ld", base, (long) tid);
7595
7596 name = bfd_alloc (abfd, strlen (buf) + 1);
7597 if (name == NULL)
7598 return FALSE;
7599 strcpy (name, buf);
7600
7601 sect = bfd_make_section_anyway (abfd, name);
7602 if (sect == NULL)
7603 return FALSE;
7604
7605 sect->size = note->descsz;
7606 sect->filepos = note->descpos;
7607 sect->flags = SEC_HAS_CONTENTS;
7608 sect->alignment_power = 2;
7609
7610 /* This is the current thread. */
7611 if (elf_tdata (abfd)->core_lwpid == tid)
7612 return elfcore_maybe_make_sect (abfd, base, sect);
7613
7614 return TRUE;
7615 }
7616
7617 #define BFD_QNT_CORE_INFO 7
7618 #define BFD_QNT_CORE_STATUS 8
7619 #define BFD_QNT_CORE_GREG 9
7620 #define BFD_QNT_CORE_FPREG 10
7621
7622 static bfd_boolean
7623 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7624 {
7625 /* Every GREG section has a STATUS section before it. Store the
7626 tid from the previous call to pass down to the next gregs
7627 function. */
7628 static pid_t tid = 1;
7629
7630 switch (note->type)
7631 {
7632 case BFD_QNT_CORE_INFO:
7633 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7634 case BFD_QNT_CORE_STATUS:
7635 return elfcore_grok_nto_status (abfd, note, &tid);
7636 case BFD_QNT_CORE_GREG:
7637 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7638 case BFD_QNT_CORE_FPREG:
7639 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7640 default:
7641 return TRUE;
7642 }
7643 }
7644
7645 /* Function: elfcore_write_note
7646
7647 Inputs:
7648 buffer to hold note
7649 name of note
7650 type of note
7651 data for note
7652 size of data for note
7653
7654 Return:
7655 End of buffer containing note. */
7656
7657 char *
7658 elfcore_write_note (bfd *abfd,
7659 char *buf,
7660 int *bufsiz,
7661 const char *name,
7662 int type,
7663 const void *input,
7664 int size)
7665 {
7666 Elf_External_Note *xnp;
7667 size_t namesz;
7668 size_t pad;
7669 size_t newspace;
7670 char *p, *dest;
7671
7672 namesz = 0;
7673 pad = 0;
7674 if (name != NULL)
7675 {
7676 const struct elf_backend_data *bed;
7677
7678 namesz = strlen (name) + 1;
7679 bed = get_elf_backend_data (abfd);
7680 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7681 }
7682
7683 newspace = 12 + namesz + pad + size;
7684
7685 p = realloc (buf, *bufsiz + newspace);
7686 dest = p + *bufsiz;
7687 *bufsiz += newspace;
7688 xnp = (Elf_External_Note *) dest;
7689 H_PUT_32 (abfd, namesz, xnp->namesz);
7690 H_PUT_32 (abfd, size, xnp->descsz);
7691 H_PUT_32 (abfd, type, xnp->type);
7692 dest = xnp->name;
7693 if (name != NULL)
7694 {
7695 memcpy (dest, name, namesz);
7696 dest += namesz;
7697 while (pad != 0)
7698 {
7699 *dest++ = '\0';
7700 --pad;
7701 }
7702 }
7703 memcpy (dest, input, size);
7704 return p;
7705 }
7706
7707 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7708 char *
7709 elfcore_write_prpsinfo (bfd *abfd,
7710 char *buf,
7711 int *bufsiz,
7712 const char *fname,
7713 const char *psargs)
7714 {
7715 int note_type;
7716 char *note_name = "CORE";
7717
7718 #if defined (HAVE_PSINFO_T)
7719 psinfo_t data;
7720 note_type = NT_PSINFO;
7721 #else
7722 prpsinfo_t data;
7723 note_type = NT_PRPSINFO;
7724 #endif
7725
7726 memset (&data, 0, sizeof (data));
7727 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7728 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7729 return elfcore_write_note (abfd, buf, bufsiz,
7730 note_name, note_type, &data, sizeof (data));
7731 }
7732 #endif /* PSINFO_T or PRPSINFO_T */
7733
7734 #if defined (HAVE_PRSTATUS_T)
7735 char *
7736 elfcore_write_prstatus (bfd *abfd,
7737 char *buf,
7738 int *bufsiz,
7739 long pid,
7740 int cursig,
7741 const void *gregs)
7742 {
7743 prstatus_t prstat;
7744 char *note_name = "CORE";
7745
7746 memset (&prstat, 0, sizeof (prstat));
7747 prstat.pr_pid = pid;
7748 prstat.pr_cursig = cursig;
7749 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7750 return elfcore_write_note (abfd, buf, bufsiz,
7751 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7752 }
7753 #endif /* HAVE_PRSTATUS_T */
7754
7755 #if defined (HAVE_LWPSTATUS_T)
7756 char *
7757 elfcore_write_lwpstatus (bfd *abfd,
7758 char *buf,
7759 int *bufsiz,
7760 long pid,
7761 int cursig,
7762 const void *gregs)
7763 {
7764 lwpstatus_t lwpstat;
7765 char *note_name = "CORE";
7766
7767 memset (&lwpstat, 0, sizeof (lwpstat));
7768 lwpstat.pr_lwpid = pid >> 16;
7769 lwpstat.pr_cursig = cursig;
7770 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7771 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7772 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7773 #if !defined(gregs)
7774 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7775 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7776 #else
7777 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7778 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7779 #endif
7780 #endif
7781 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7782 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7783 }
7784 #endif /* HAVE_LWPSTATUS_T */
7785
7786 #if defined (HAVE_PSTATUS_T)
7787 char *
7788 elfcore_write_pstatus (bfd *abfd,
7789 char *buf,
7790 int *bufsiz,
7791 long pid,
7792 int cursig,
7793 const void *gregs)
7794 {
7795 pstatus_t pstat;
7796 char *note_name = "CORE";
7797
7798 memset (&pstat, 0, sizeof (pstat));
7799 pstat.pr_pid = pid & 0xffff;
7800 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7801 NT_PSTATUS, &pstat, sizeof (pstat));
7802 return buf;
7803 }
7804 #endif /* HAVE_PSTATUS_T */
7805
7806 char *
7807 elfcore_write_prfpreg (bfd *abfd,
7808 char *buf,
7809 int *bufsiz,
7810 const void *fpregs,
7811 int size)
7812 {
7813 char *note_name = "CORE";
7814 return elfcore_write_note (abfd, buf, bufsiz,
7815 note_name, NT_FPREGSET, fpregs, size);
7816 }
7817
7818 char *
7819 elfcore_write_prxfpreg (bfd *abfd,
7820 char *buf,
7821 int *bufsiz,
7822 const void *xfpregs,
7823 int size)
7824 {
7825 char *note_name = "LINUX";
7826 return elfcore_write_note (abfd, buf, bufsiz,
7827 note_name, NT_PRXFPREG, xfpregs, size);
7828 }
7829
7830 static bfd_boolean
7831 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7832 {
7833 char *buf;
7834 char *p;
7835
7836 if (size <= 0)
7837 return TRUE;
7838
7839 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7840 return FALSE;
7841
7842 buf = bfd_malloc (size);
7843 if (buf == NULL)
7844 return FALSE;
7845
7846 if (bfd_bread (buf, size, abfd) != size)
7847 {
7848 error:
7849 free (buf);
7850 return FALSE;
7851 }
7852
7853 p = buf;
7854 while (p < buf + size)
7855 {
7856 /* FIXME: bad alignment assumption. */
7857 Elf_External_Note *xnp = (Elf_External_Note *) p;
7858 Elf_Internal_Note in;
7859
7860 in.type = H_GET_32 (abfd, xnp->type);
7861
7862 in.namesz = H_GET_32 (abfd, xnp->namesz);
7863 in.namedata = xnp->name;
7864
7865 in.descsz = H_GET_32 (abfd, xnp->descsz);
7866 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7867 in.descpos = offset + (in.descdata - buf);
7868
7869 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7870 {
7871 if (! elfcore_grok_netbsd_note (abfd, &in))
7872 goto error;
7873 }
7874 else if (strncmp (in.namedata, "QNX", 3) == 0)
7875 {
7876 if (! elfcore_grok_nto_note (abfd, &in))
7877 goto error;
7878 }
7879 else
7880 {
7881 if (! elfcore_grok_note (abfd, &in))
7882 goto error;
7883 }
7884
7885 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7886 }
7887
7888 free (buf);
7889 return TRUE;
7890 }
7891 \f
7892 /* Providing external access to the ELF program header table. */
7893
7894 /* Return an upper bound on the number of bytes required to store a
7895 copy of ABFD's program header table entries. Return -1 if an error
7896 occurs; bfd_get_error will return an appropriate code. */
7897
7898 long
7899 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7900 {
7901 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7902 {
7903 bfd_set_error (bfd_error_wrong_format);
7904 return -1;
7905 }
7906
7907 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7908 }
7909
7910 /* Copy ABFD's program header table entries to *PHDRS. The entries
7911 will be stored as an array of Elf_Internal_Phdr structures, as
7912 defined in include/elf/internal.h. To find out how large the
7913 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7914
7915 Return the number of program header table entries read, or -1 if an
7916 error occurs; bfd_get_error will return an appropriate code. */
7917
7918 int
7919 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7920 {
7921 int num_phdrs;
7922
7923 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7924 {
7925 bfd_set_error (bfd_error_wrong_format);
7926 return -1;
7927 }
7928
7929 num_phdrs = elf_elfheader (abfd)->e_phnum;
7930 memcpy (phdrs, elf_tdata (abfd)->phdr,
7931 num_phdrs * sizeof (Elf_Internal_Phdr));
7932
7933 return num_phdrs;
7934 }
7935
7936 void
7937 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7938 {
7939 #ifdef BFD64
7940 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7941
7942 i_ehdrp = elf_elfheader (abfd);
7943 if (i_ehdrp == NULL)
7944 sprintf_vma (buf, value);
7945 else
7946 {
7947 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7948 {
7949 #if BFD_HOST_64BIT_LONG
7950 sprintf (buf, "%016lx", value);
7951 #else
7952 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7953 _bfd_int64_low (value));
7954 #endif
7955 }
7956 else
7957 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7958 }
7959 #else
7960 sprintf_vma (buf, value);
7961 #endif
7962 }
7963
7964 void
7965 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7966 {
7967 #ifdef BFD64
7968 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7969
7970 i_ehdrp = elf_elfheader (abfd);
7971 if (i_ehdrp == NULL)
7972 fprintf_vma ((FILE *) stream, value);
7973 else
7974 {
7975 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7976 {
7977 #if BFD_HOST_64BIT_LONG
7978 fprintf ((FILE *) stream, "%016lx", value);
7979 #else
7980 fprintf ((FILE *) stream, "%08lx%08lx",
7981 _bfd_int64_high (value), _bfd_int64_low (value));
7982 #endif
7983 }
7984 else
7985 fprintf ((FILE *) stream, "%08lx",
7986 (unsigned long) (value & 0xffffffff));
7987 }
7988 #else
7989 fprintf_vma ((FILE *) stream, value);
7990 #endif
7991 }
7992
7993 enum elf_reloc_type_class
7994 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7995 {
7996 return reloc_class_normal;
7997 }
7998
7999 /* For RELA architectures, return the relocation value for a
8000 relocation against a local symbol. */
8001
8002 bfd_vma
8003 _bfd_elf_rela_local_sym (bfd *abfd,
8004 Elf_Internal_Sym *sym,
8005 asection **psec,
8006 Elf_Internal_Rela *rel)
8007 {
8008 asection *sec = *psec;
8009 bfd_vma relocation;
8010
8011 relocation = (sec->output_section->vma
8012 + sec->output_offset
8013 + sym->st_value);
8014 if ((sec->flags & SEC_MERGE)
8015 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8016 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8017 {
8018 rel->r_addend =
8019 _bfd_merged_section_offset (abfd, psec,
8020 elf_section_data (sec)->sec_info,
8021 sym->st_value + rel->r_addend);
8022 if (sec != *psec)
8023 {
8024 /* If we have changed the section, and our original section is
8025 marked with SEC_EXCLUDE, it means that the original
8026 SEC_MERGE section has been completely subsumed in some
8027 other SEC_MERGE section. In this case, we need to leave
8028 some info around for --emit-relocs. */
8029 if ((sec->flags & SEC_EXCLUDE) != 0)
8030 sec->kept_section = *psec;
8031 sec = *psec;
8032 }
8033 rel->r_addend -= relocation;
8034 rel->r_addend += sec->output_section->vma + sec->output_offset;
8035 }
8036 return relocation;
8037 }
8038
8039 bfd_vma
8040 _bfd_elf_rel_local_sym (bfd *abfd,
8041 Elf_Internal_Sym *sym,
8042 asection **psec,
8043 bfd_vma addend)
8044 {
8045 asection *sec = *psec;
8046
8047 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8048 return sym->st_value + addend;
8049
8050 return _bfd_merged_section_offset (abfd, psec,
8051 elf_section_data (sec)->sec_info,
8052 sym->st_value + addend);
8053 }
8054
8055 bfd_vma
8056 _bfd_elf_section_offset (bfd *abfd,
8057 struct bfd_link_info *info,
8058 asection *sec,
8059 bfd_vma offset)
8060 {
8061 switch (sec->sec_info_type)
8062 {
8063 case ELF_INFO_TYPE_STABS:
8064 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8065 offset);
8066 case ELF_INFO_TYPE_EH_FRAME:
8067 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8068 default:
8069 return offset;
8070 }
8071 }
8072 \f
8073 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8074 reconstruct an ELF file by reading the segments out of remote memory
8075 based on the ELF file header at EHDR_VMA and the ELF program headers it
8076 points to. If not null, *LOADBASEP is filled in with the difference
8077 between the VMAs from which the segments were read, and the VMAs the
8078 file headers (and hence BFD's idea of each section's VMA) put them at.
8079
8080 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8081 remote memory at target address VMA into the local buffer at MYADDR; it
8082 should return zero on success or an `errno' code on failure. TEMPL must
8083 be a BFD for an ELF target with the word size and byte order found in
8084 the remote memory. */
8085
8086 bfd *
8087 bfd_elf_bfd_from_remote_memory
8088 (bfd *templ,
8089 bfd_vma ehdr_vma,
8090 bfd_vma *loadbasep,
8091 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8092 {
8093 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8094 (templ, ehdr_vma, loadbasep, target_read_memory);
8095 }
8096 \f
8097 long
8098 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8099 long symcount ATTRIBUTE_UNUSED,
8100 asymbol **syms ATTRIBUTE_UNUSED,
8101 long dynsymcount,
8102 asymbol **dynsyms,
8103 asymbol **ret)
8104 {
8105 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8106 asection *relplt;
8107 asymbol *s;
8108 const char *relplt_name;
8109 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8110 arelent *p;
8111 long count, i, n;
8112 size_t size;
8113 Elf_Internal_Shdr *hdr;
8114 char *names;
8115 asection *plt;
8116
8117 *ret = NULL;
8118
8119 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8120 return 0;
8121
8122 if (dynsymcount <= 0)
8123 return 0;
8124
8125 if (!bed->plt_sym_val)
8126 return 0;
8127
8128 relplt_name = bed->relplt_name;
8129 if (relplt_name == NULL)
8130 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8131 relplt = bfd_get_section_by_name (abfd, relplt_name);
8132 if (relplt == NULL)
8133 return 0;
8134
8135 hdr = &elf_section_data (relplt)->this_hdr;
8136 if (hdr->sh_link != elf_dynsymtab (abfd)
8137 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8138 return 0;
8139
8140 plt = bfd_get_section_by_name (abfd, ".plt");
8141 if (plt == NULL)
8142 return 0;
8143
8144 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8145 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8146 return -1;
8147
8148 count = relplt->size / hdr->sh_entsize;
8149 size = count * sizeof (asymbol);
8150 p = relplt->relocation;
8151 for (i = 0; i < count; i++, s++, p++)
8152 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8153
8154 s = *ret = bfd_malloc (size);
8155 if (s == NULL)
8156 return -1;
8157
8158 names = (char *) (s + count);
8159 p = relplt->relocation;
8160 n = 0;
8161 for (i = 0; i < count; i++, s++, p++)
8162 {
8163 size_t len;
8164 bfd_vma addr;
8165
8166 addr = bed->plt_sym_val (i, plt, p);
8167 if (addr == (bfd_vma) -1)
8168 continue;
8169
8170 *s = **p->sym_ptr_ptr;
8171 s->section = plt;
8172 s->value = addr - plt->vma;
8173 s->name = names;
8174 len = strlen ((*p->sym_ptr_ptr)->name);
8175 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8176 names += len;
8177 memcpy (names, "@plt", sizeof ("@plt"));
8178 names += sizeof ("@plt");
8179 ++n;
8180 }
8181
8182 return n;
8183 }
8184
8185 /* Sort symbol by binding and section. We want to put definitions
8186 sorted by section at the beginning. */
8187
8188 static int
8189 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8190 {
8191 const Elf_Internal_Sym *s1;
8192 const Elf_Internal_Sym *s2;
8193 int shndx;
8194
8195 /* Make sure that undefined symbols are at the end. */
8196 s1 = (const Elf_Internal_Sym *) arg1;
8197 if (s1->st_shndx == SHN_UNDEF)
8198 return 1;
8199 s2 = (const Elf_Internal_Sym *) arg2;
8200 if (s2->st_shndx == SHN_UNDEF)
8201 return -1;
8202
8203 /* Sorted by section index. */
8204 shndx = s1->st_shndx - s2->st_shndx;
8205 if (shndx != 0)
8206 return shndx;
8207
8208 /* Sorted by binding. */
8209 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8210 }
8211
8212 struct elf_symbol
8213 {
8214 Elf_Internal_Sym *sym;
8215 const char *name;
8216 };
8217
8218 static int
8219 elf_sym_name_compare (const void *arg1, const void *arg2)
8220 {
8221 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8222 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8223 return strcmp (s1->name, s2->name);
8224 }
8225
8226 /* Check if 2 sections define the same set of local and global
8227 symbols. */
8228
8229 bfd_boolean
8230 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8231 {
8232 bfd *bfd1, *bfd2;
8233 const struct elf_backend_data *bed1, *bed2;
8234 Elf_Internal_Shdr *hdr1, *hdr2;
8235 bfd_size_type symcount1, symcount2;
8236 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8237 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8238 Elf_Internal_Sym *isymend;
8239 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8240 bfd_size_type count1, count2, i;
8241 int shndx1, shndx2;
8242 bfd_boolean result;
8243
8244 bfd1 = sec1->owner;
8245 bfd2 = sec2->owner;
8246
8247 /* If both are .gnu.linkonce sections, they have to have the same
8248 section name. */
8249 if (strncmp (sec1->name, ".gnu.linkonce",
8250 sizeof ".gnu.linkonce" - 1) == 0
8251 && strncmp (sec2->name, ".gnu.linkonce",
8252 sizeof ".gnu.linkonce" - 1) == 0)
8253 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8254 sec2->name + sizeof ".gnu.linkonce") == 0;
8255
8256 /* Both sections have to be in ELF. */
8257 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8258 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8259 return FALSE;
8260
8261 if (elf_section_type (sec1) != elf_section_type (sec2))
8262 return FALSE;
8263
8264 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8265 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8266 {
8267 /* If both are members of section groups, they have to have the
8268 same group name. */
8269 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8270 return FALSE;
8271 }
8272
8273 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8274 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8275 if (shndx1 == -1 || shndx2 == -1)
8276 return FALSE;
8277
8278 bed1 = get_elf_backend_data (bfd1);
8279 bed2 = get_elf_backend_data (bfd2);
8280 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8281 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8282 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8283 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8284
8285 if (symcount1 == 0 || symcount2 == 0)
8286 return FALSE;
8287
8288 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8289 NULL, NULL, NULL);
8290 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8291 NULL, NULL, NULL);
8292
8293 result = FALSE;
8294 if (isymbuf1 == NULL || isymbuf2 == NULL)
8295 goto done;
8296
8297 /* Sort symbols by binding and section. Global definitions are at
8298 the beginning. */
8299 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8300 elf_sort_elf_symbol);
8301 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8302 elf_sort_elf_symbol);
8303
8304 /* Count definitions in the section. */
8305 count1 = 0;
8306 for (isym = isymbuf1, isymend = isym + symcount1;
8307 isym < isymend; isym++)
8308 {
8309 if (isym->st_shndx == (unsigned int) shndx1)
8310 {
8311 if (count1 == 0)
8312 isymstart1 = isym;
8313 count1++;
8314 }
8315
8316 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8317 break;
8318 }
8319
8320 count2 = 0;
8321 for (isym = isymbuf2, isymend = isym + symcount2;
8322 isym < isymend; isym++)
8323 {
8324 if (isym->st_shndx == (unsigned int) shndx2)
8325 {
8326 if (count2 == 0)
8327 isymstart2 = isym;
8328 count2++;
8329 }
8330
8331 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8332 break;
8333 }
8334
8335 if (count1 == 0 || count2 == 0 || count1 != count2)
8336 goto done;
8337
8338 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8339 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8340
8341 if (symtable1 == NULL || symtable2 == NULL)
8342 goto done;
8343
8344 symp = symtable1;
8345 for (isym = isymstart1, isymend = isym + count1;
8346 isym < isymend; isym++)
8347 {
8348 symp->sym = isym;
8349 symp->name = bfd_elf_string_from_elf_section (bfd1,
8350 hdr1->sh_link,
8351 isym->st_name);
8352 symp++;
8353 }
8354
8355 symp = symtable2;
8356 for (isym = isymstart2, isymend = isym + count1;
8357 isym < isymend; isym++)
8358 {
8359 symp->sym = isym;
8360 symp->name = bfd_elf_string_from_elf_section (bfd2,
8361 hdr2->sh_link,
8362 isym->st_name);
8363 symp++;
8364 }
8365
8366 /* Sort symbol by name. */
8367 qsort (symtable1, count1, sizeof (struct elf_symbol),
8368 elf_sym_name_compare);
8369 qsort (symtable2, count1, sizeof (struct elf_symbol),
8370 elf_sym_name_compare);
8371
8372 for (i = 0; i < count1; i++)
8373 /* Two symbols must have the same binding, type and name. */
8374 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8375 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8376 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8377 goto done;
8378
8379 result = TRUE;
8380
8381 done:
8382 if (symtable1)
8383 free (symtable1);
8384 if (symtable2)
8385 free (symtable2);
8386 if (isymbuf1)
8387 free (isymbuf1);
8388 if (isymbuf2)
8389 free (isymbuf2);
8390
8391 return result;
8392 }
This page took 0.20276 seconds and 4 git commands to generate.