13d4272c93620442d15d24fd612af16179a32510
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2015 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-psinfo.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"),
342 abfd, shindex);
343 return NULL;
344 }
345
346 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
347 return NULL;
348 }
349
350 if (strindex >= hdr->sh_size)
351 {
352 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
353 (*_bfd_error_handler)
354 (_("%B: invalid string offset %u >= %lu for section `%s'"),
355 abfd, strindex, (unsigned long) hdr->sh_size,
356 (shindex == shstrndx && strindex == hdr->sh_name
357 ? ".shstrtab"
358 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
359 return NULL;
360 }
361
362 return ((char *) hdr->contents) + strindex;
363 }
364
365 /* Read and convert symbols to internal format.
366 SYMCOUNT specifies the number of symbols to read, starting from
367 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
368 are non-NULL, they are used to store the internal symbols, external
369 symbols, and symbol section index extensions, respectively.
370 Returns a pointer to the internal symbol buffer (malloced if necessary)
371 or NULL if there were no symbols or some kind of problem. */
372
373 Elf_Internal_Sym *
374 bfd_elf_get_elf_syms (bfd *ibfd,
375 Elf_Internal_Shdr *symtab_hdr,
376 size_t symcount,
377 size_t symoffset,
378 Elf_Internal_Sym *intsym_buf,
379 void *extsym_buf,
380 Elf_External_Sym_Shndx *extshndx_buf)
381 {
382 Elf_Internal_Shdr *shndx_hdr;
383 void *alloc_ext;
384 const bfd_byte *esym;
385 Elf_External_Sym_Shndx *alloc_extshndx;
386 Elf_External_Sym_Shndx *shndx;
387 Elf_Internal_Sym *alloc_intsym;
388 Elf_Internal_Sym *isym;
389 Elf_Internal_Sym *isymend;
390 const struct elf_backend_data *bed;
391 size_t extsym_size;
392 bfd_size_type amt;
393 file_ptr pos;
394
395 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
396 abort ();
397
398 if (symcount == 0)
399 return intsym_buf;
400
401 /* Normal syms might have section extension entries. */
402 shndx_hdr = NULL;
403 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
404 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
405
406 /* Read the symbols. */
407 alloc_ext = NULL;
408 alloc_extshndx = NULL;
409 alloc_intsym = NULL;
410 bed = get_elf_backend_data (ibfd);
411 extsym_size = bed->s->sizeof_sym;
412 amt = symcount * extsym_size;
413 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
414 if (extsym_buf == NULL)
415 {
416 alloc_ext = bfd_malloc2 (symcount, extsym_size);
417 extsym_buf = alloc_ext;
418 }
419 if (extsym_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extsym_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426
427 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
428 extshndx_buf = NULL;
429 else
430 {
431 amt = symcount * sizeof (Elf_External_Sym_Shndx);
432 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
433 if (extshndx_buf == NULL)
434 {
435 alloc_extshndx = (Elf_External_Sym_Shndx *)
436 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
437 extshndx_buf = alloc_extshndx;
438 }
439 if (extshndx_buf == NULL
440 || bfd_seek (ibfd, pos, SEEK_SET) != 0
441 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
442 {
443 intsym_buf = NULL;
444 goto out;
445 }
446 }
447
448 if (intsym_buf == NULL)
449 {
450 alloc_intsym = (Elf_Internal_Sym *)
451 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
452 intsym_buf = alloc_intsym;
453 if (intsym_buf == NULL)
454 goto out;
455 }
456
457 /* Convert the symbols to internal form. */
458 isymend = intsym_buf + symcount;
459 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
460 shndx = extshndx_buf;
461 isym < isymend;
462 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
463 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
464 {
465 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
466 (*_bfd_error_handler) (_("%B symbol number %lu references "
467 "nonexistent SHT_SYMTAB_SHNDX section"),
468 ibfd, (unsigned long) symoffset);
469 if (alloc_intsym != NULL)
470 free (alloc_intsym);
471 intsym_buf = NULL;
472 goto out;
473 }
474
475 out:
476 if (alloc_ext != NULL)
477 free (alloc_ext);
478 if (alloc_extshndx != NULL)
479 free (alloc_extshndx);
480
481 return intsym_buf;
482 }
483
484 /* Look up a symbol name. */
485 const char *
486 bfd_elf_sym_name (bfd *abfd,
487 Elf_Internal_Shdr *symtab_hdr,
488 Elf_Internal_Sym *isym,
489 asection *sym_sec)
490 {
491 const char *name;
492 unsigned int iname = isym->st_name;
493 unsigned int shindex = symtab_hdr->sh_link;
494
495 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
496 /* Check for a bogus st_shndx to avoid crashing. */
497 && isym->st_shndx < elf_numsections (abfd))
498 {
499 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
500 shindex = elf_elfheader (abfd)->e_shstrndx;
501 }
502
503 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
504 if (name == NULL)
505 name = "(null)";
506 else if (sym_sec && *name == '\0')
507 name = bfd_section_name (abfd, sym_sec);
508
509 return name;
510 }
511
512 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
513 sections. The first element is the flags, the rest are section
514 pointers. */
515
516 typedef union elf_internal_group {
517 Elf_Internal_Shdr *shdr;
518 unsigned int flags;
519 } Elf_Internal_Group;
520
521 /* Return the name of the group signature symbol. Why isn't the
522 signature just a string? */
523
524 static const char *
525 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
526 {
527 Elf_Internal_Shdr *hdr;
528 unsigned char esym[sizeof (Elf64_External_Sym)];
529 Elf_External_Sym_Shndx eshndx;
530 Elf_Internal_Sym isym;
531
532 /* First we need to ensure the symbol table is available. Make sure
533 that it is a symbol table section. */
534 if (ghdr->sh_link >= elf_numsections (abfd))
535 return NULL;
536 hdr = elf_elfsections (abfd) [ghdr->sh_link];
537 if (hdr->sh_type != SHT_SYMTAB
538 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
539 return NULL;
540
541 /* Go read the symbol. */
542 hdr = &elf_tdata (abfd)->symtab_hdr;
543 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
544 &isym, esym, &eshndx) == NULL)
545 return NULL;
546
547 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
548 }
549
550 /* Set next_in_group list pointer, and group name for NEWSECT. */
551
552 static bfd_boolean
553 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
554 {
555 unsigned int num_group = elf_tdata (abfd)->num_group;
556
557 /* If num_group is zero, read in all SHT_GROUP sections. The count
558 is set to -1 if there are no SHT_GROUP sections. */
559 if (num_group == 0)
560 {
561 unsigned int i, shnum;
562
563 /* First count the number of groups. If we have a SHT_GROUP
564 section with just a flag word (ie. sh_size is 4), ignore it. */
565 shnum = elf_numsections (abfd);
566 num_group = 0;
567
568 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
569 ( (shdr)->sh_type == SHT_GROUP \
570 && (shdr)->sh_size >= minsize \
571 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
572 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
573
574 for (i = 0; i < shnum; i++)
575 {
576 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
577
578 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
579 num_group += 1;
580 }
581
582 if (num_group == 0)
583 {
584 num_group = (unsigned) -1;
585 elf_tdata (abfd)->num_group = num_group;
586 }
587 else
588 {
589 /* We keep a list of elf section headers for group sections,
590 so we can find them quickly. */
591 bfd_size_type amt;
592
593 elf_tdata (abfd)->num_group = num_group;
594 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
595 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
596 if (elf_tdata (abfd)->group_sect_ptr == NULL)
597 return FALSE;
598
599 num_group = 0;
600 for (i = 0; i < shnum; i++)
601 {
602 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
603
604 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
605 {
606 unsigned char *src;
607 Elf_Internal_Group *dest;
608
609 /* Add to list of sections. */
610 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
611 num_group += 1;
612
613 /* Read the raw contents. */
614 BFD_ASSERT (sizeof (*dest) >= 4);
615 amt = shdr->sh_size * sizeof (*dest) / 4;
616 shdr->contents = (unsigned char *)
617 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
618 /* PR binutils/4110: Handle corrupt group headers. */
619 if (shdr->contents == NULL)
620 {
621 _bfd_error_handler
622 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
623 bfd_set_error (bfd_error_bad_value);
624 -- num_group;
625 continue;
626 }
627
628 memset (shdr->contents, 0, amt);
629
630 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
631 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
632 != shdr->sh_size))
633 {
634 _bfd_error_handler
635 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size);
636 bfd_set_error (bfd_error_bad_value);
637 -- num_group;
638 /* PR 17510: If the group contents are even partially
639 corrupt, do not allow any of the contents to be used. */
640 memset (shdr->contents, 0, amt);
641 continue;
642 }
643
644 /* Translate raw contents, a flag word followed by an
645 array of elf section indices all in target byte order,
646 to the flag word followed by an array of elf section
647 pointers. */
648 src = shdr->contents + shdr->sh_size;
649 dest = (Elf_Internal_Group *) (shdr->contents + amt);
650
651 while (1)
652 {
653 unsigned int idx;
654
655 src -= 4;
656 --dest;
657 idx = H_GET_32 (abfd, src);
658 if (src == shdr->contents)
659 {
660 dest->flags = idx;
661 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
662 shdr->bfd_section->flags
663 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
664 break;
665 }
666 if (idx >= shnum)
667 {
668 ((*_bfd_error_handler)
669 (_("%B: invalid SHT_GROUP entry"), abfd));
670 idx = 0;
671 }
672 dest->shdr = elf_elfsections (abfd)[idx];
673 }
674 }
675 }
676
677 /* PR 17510: Corrupt binaries might contain invalid groups. */
678 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
679 {
680 elf_tdata (abfd)->num_group = num_group;
681
682 /* If all groups are invalid then fail. */
683 if (num_group == 0)
684 {
685 elf_tdata (abfd)->group_sect_ptr = NULL;
686 elf_tdata (abfd)->num_group = num_group = -1;
687 (*_bfd_error_handler) (_("%B: no valid group sections found"), abfd);
688 bfd_set_error (bfd_error_bad_value);
689 }
690 }
691 }
692 }
693
694 if (num_group != (unsigned) -1)
695 {
696 unsigned int i;
697
698 for (i = 0; i < num_group; i++)
699 {
700 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
701 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
702 unsigned int n_elt = shdr->sh_size / 4;
703
704 /* Look through this group's sections to see if current
705 section is a member. */
706 while (--n_elt != 0)
707 if ((++idx)->shdr == hdr)
708 {
709 asection *s = NULL;
710
711 /* We are a member of this group. Go looking through
712 other members to see if any others are linked via
713 next_in_group. */
714 idx = (Elf_Internal_Group *) shdr->contents;
715 n_elt = shdr->sh_size / 4;
716 while (--n_elt != 0)
717 if ((s = (++idx)->shdr->bfd_section) != NULL
718 && elf_next_in_group (s) != NULL)
719 break;
720 if (n_elt != 0)
721 {
722 /* Snarf the group name from other member, and
723 insert current section in circular list. */
724 elf_group_name (newsect) = elf_group_name (s);
725 elf_next_in_group (newsect) = elf_next_in_group (s);
726 elf_next_in_group (s) = newsect;
727 }
728 else
729 {
730 const char *gname;
731
732 gname = group_signature (abfd, shdr);
733 if (gname == NULL)
734 return FALSE;
735 elf_group_name (newsect) = gname;
736
737 /* Start a circular list with one element. */
738 elf_next_in_group (newsect) = newsect;
739 }
740
741 /* If the group section has been created, point to the
742 new member. */
743 if (shdr->bfd_section != NULL)
744 elf_next_in_group (shdr->bfd_section) = newsect;
745
746 i = num_group - 1;
747 break;
748 }
749 }
750 }
751
752 if (elf_group_name (newsect) == NULL)
753 {
754 (*_bfd_error_handler) (_("%B: no group info for section %A"),
755 abfd, newsect);
756 return FALSE;
757 }
758 return TRUE;
759 }
760
761 bfd_boolean
762 _bfd_elf_setup_sections (bfd *abfd)
763 {
764 unsigned int i;
765 unsigned int num_group = elf_tdata (abfd)->num_group;
766 bfd_boolean result = TRUE;
767 asection *s;
768
769 /* Process SHF_LINK_ORDER. */
770 for (s = abfd->sections; s != NULL; s = s->next)
771 {
772 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
773 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
774 {
775 unsigned int elfsec = this_hdr->sh_link;
776 /* FIXME: The old Intel compiler and old strip/objcopy may
777 not set the sh_link or sh_info fields. Hence we could
778 get the situation where elfsec is 0. */
779 if (elfsec == 0)
780 {
781 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
782 if (bed->link_order_error_handler)
783 bed->link_order_error_handler
784 (_("%B: warning: sh_link not set for section `%A'"),
785 abfd, s);
786 }
787 else
788 {
789 asection *linksec = NULL;
790
791 if (elfsec < elf_numsections (abfd))
792 {
793 this_hdr = elf_elfsections (abfd)[elfsec];
794 linksec = this_hdr->bfd_section;
795 }
796
797 /* PR 1991, 2008:
798 Some strip/objcopy may leave an incorrect value in
799 sh_link. We don't want to proceed. */
800 if (linksec == NULL)
801 {
802 (*_bfd_error_handler)
803 (_("%B: sh_link [%d] in section `%A' is incorrect"),
804 s->owner, s, elfsec);
805 result = FALSE;
806 }
807
808 elf_linked_to_section (s) = linksec;
809 }
810 }
811 }
812
813 /* Process section groups. */
814 if (num_group == (unsigned) -1)
815 return result;
816
817 for (i = 0; i < num_group; i++)
818 {
819 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
820 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
821 unsigned int n_elt = shdr->sh_size / 4;
822
823 while (--n_elt != 0)
824 if ((++idx)->shdr->bfd_section)
825 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
826 else if (idx->shdr->sh_type == SHT_RELA
827 || idx->shdr->sh_type == SHT_REL)
828 /* We won't include relocation sections in section groups in
829 output object files. We adjust the group section size here
830 so that relocatable link will work correctly when
831 relocation sections are in section group in input object
832 files. */
833 shdr->bfd_section->size -= 4;
834 else
835 {
836 /* There are some unknown sections in the group. */
837 (*_bfd_error_handler)
838 (_("%B: unknown [%d] section `%s' in group [%s]"),
839 abfd,
840 (unsigned int) idx->shdr->sh_type,
841 bfd_elf_string_from_elf_section (abfd,
842 (elf_elfheader (abfd)
843 ->e_shstrndx),
844 idx->shdr->sh_name),
845 shdr->bfd_section->name);
846 result = FALSE;
847 }
848 }
849 return result;
850 }
851
852 bfd_boolean
853 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
854 {
855 return elf_next_in_group (sec) != NULL;
856 }
857
858 /* Make a BFD section from an ELF section. We store a pointer to the
859 BFD section in the bfd_section field of the header. */
860
861 bfd_boolean
862 _bfd_elf_make_section_from_shdr (bfd *abfd,
863 Elf_Internal_Shdr *hdr,
864 const char *name,
865 int shindex)
866 {
867 asection *newsect;
868 flagword flags;
869 const struct elf_backend_data *bed;
870
871 if (hdr->bfd_section != NULL)
872 return TRUE;
873
874 newsect = bfd_make_section_anyway (abfd, name);
875 if (newsect == NULL)
876 return FALSE;
877
878 hdr->bfd_section = newsect;
879 elf_section_data (newsect)->this_hdr = *hdr;
880 elf_section_data (newsect)->this_idx = shindex;
881
882 /* Always use the real type/flags. */
883 elf_section_type (newsect) = hdr->sh_type;
884 elf_section_flags (newsect) = hdr->sh_flags;
885
886 newsect->filepos = hdr->sh_offset;
887
888 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
889 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
890 || ! bfd_set_section_alignment (abfd, newsect,
891 bfd_log2 (hdr->sh_addralign)))
892 return FALSE;
893
894 flags = SEC_NO_FLAGS;
895 if (hdr->sh_type != SHT_NOBITS)
896 flags |= SEC_HAS_CONTENTS;
897 if (hdr->sh_type == SHT_GROUP)
898 flags |= SEC_GROUP | SEC_EXCLUDE;
899 if ((hdr->sh_flags & SHF_ALLOC) != 0)
900 {
901 flags |= SEC_ALLOC;
902 if (hdr->sh_type != SHT_NOBITS)
903 flags |= SEC_LOAD;
904 }
905 if ((hdr->sh_flags & SHF_WRITE) == 0)
906 flags |= SEC_READONLY;
907 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
908 flags |= SEC_CODE;
909 else if ((flags & SEC_LOAD) != 0)
910 flags |= SEC_DATA;
911 if ((hdr->sh_flags & SHF_MERGE) != 0)
912 {
913 flags |= SEC_MERGE;
914 newsect->entsize = hdr->sh_entsize;
915 if ((hdr->sh_flags & SHF_STRINGS) != 0)
916 flags |= SEC_STRINGS;
917 }
918 if (hdr->sh_flags & SHF_GROUP)
919 if (!setup_group (abfd, hdr, newsect))
920 return FALSE;
921 if ((hdr->sh_flags & SHF_TLS) != 0)
922 flags |= SEC_THREAD_LOCAL;
923 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
924 flags |= SEC_EXCLUDE;
925
926 if ((flags & SEC_ALLOC) == 0)
927 {
928 /* The debugging sections appear to be recognized only by name,
929 not any sort of flag. Their SEC_ALLOC bits are cleared. */
930 if (name [0] == '.')
931 {
932 const char *p;
933 int n;
934 if (name[1] == 'd')
935 p = ".debug", n = 6;
936 else if (name[1] == 'g' && name[2] == 'n')
937 p = ".gnu.linkonce.wi.", n = 17;
938 else if (name[1] == 'g' && name[2] == 'd')
939 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
940 else if (name[1] == 'l')
941 p = ".line", n = 5;
942 else if (name[1] == 's')
943 p = ".stab", n = 5;
944 else if (name[1] == 'z')
945 p = ".zdebug", n = 7;
946 else
947 p = NULL, n = 0;
948 if (p != NULL && strncmp (name, p, n) == 0)
949 flags |= SEC_DEBUGGING;
950 }
951 }
952
953 /* As a GNU extension, if the name begins with .gnu.linkonce, we
954 only link a single copy of the section. This is used to support
955 g++. g++ will emit each template expansion in its own section.
956 The symbols will be defined as weak, so that multiple definitions
957 are permitted. The GNU linker extension is to actually discard
958 all but one of the sections. */
959 if (CONST_STRNEQ (name, ".gnu.linkonce")
960 && elf_next_in_group (newsect) == NULL)
961 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
962
963 bed = get_elf_backend_data (abfd);
964 if (bed->elf_backend_section_flags)
965 if (! bed->elf_backend_section_flags (&flags, hdr))
966 return FALSE;
967
968 if (! bfd_set_section_flags (abfd, newsect, flags))
969 return FALSE;
970
971 /* We do not parse the PT_NOTE segments as we are interested even in the
972 separate debug info files which may have the segments offsets corrupted.
973 PT_NOTEs from the core files are currently not parsed using BFD. */
974 if (hdr->sh_type == SHT_NOTE)
975 {
976 bfd_byte *contents;
977
978 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
979 return FALSE;
980
981 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
982 free (contents);
983 }
984
985 if ((flags & SEC_ALLOC) != 0)
986 {
987 Elf_Internal_Phdr *phdr;
988 unsigned int i, nload;
989
990 /* Some ELF linkers produce binaries with all the program header
991 p_paddr fields zero. If we have such a binary with more than
992 one PT_LOAD header, then leave the section lma equal to vma
993 so that we don't create sections with overlapping lma. */
994 phdr = elf_tdata (abfd)->phdr;
995 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
996 if (phdr->p_paddr != 0)
997 break;
998 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
999 ++nload;
1000 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1001 return TRUE;
1002
1003 phdr = elf_tdata (abfd)->phdr;
1004 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1005 {
1006 if (((phdr->p_type == PT_LOAD
1007 && (hdr->sh_flags & SHF_TLS) == 0)
1008 || phdr->p_type == PT_TLS)
1009 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1010 {
1011 if ((flags & SEC_LOAD) == 0)
1012 newsect->lma = (phdr->p_paddr
1013 + hdr->sh_addr - phdr->p_vaddr);
1014 else
1015 /* We used to use the same adjustment for SEC_LOAD
1016 sections, but that doesn't work if the segment
1017 is packed with code from multiple VMAs.
1018 Instead we calculate the section LMA based on
1019 the segment LMA. It is assumed that the
1020 segment will contain sections with contiguous
1021 LMAs, even if the VMAs are not. */
1022 newsect->lma = (phdr->p_paddr
1023 + hdr->sh_offset - phdr->p_offset);
1024
1025 /* With contiguous segments, we can't tell from file
1026 offsets whether a section with zero size should
1027 be placed at the end of one segment or the
1028 beginning of the next. Decide based on vaddr. */
1029 if (hdr->sh_addr >= phdr->p_vaddr
1030 && (hdr->sh_addr + hdr->sh_size
1031 <= phdr->p_vaddr + phdr->p_memsz))
1032 break;
1033 }
1034 }
1035 }
1036
1037 /* Compress/decompress DWARF debug sections with names: .debug_* and
1038 .zdebug_*, after the section flags is set. */
1039 if ((flags & SEC_DEBUGGING)
1040 && ((name[1] == 'd' && name[6] == '_')
1041 || (name[1] == 'z' && name[7] == '_')))
1042 {
1043 enum { nothing, compress, decompress } action = nothing;
1044 char *new_name;
1045
1046 if (bfd_is_section_compressed (abfd, newsect))
1047 {
1048 /* Compressed section. Check if we should decompress. */
1049 if ((abfd->flags & BFD_DECOMPRESS))
1050 action = decompress;
1051 }
1052 else
1053 {
1054 /* Normal section. Check if we should compress. */
1055 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1056 action = compress;
1057 }
1058
1059 new_name = NULL;
1060 switch (action)
1061 {
1062 case nothing:
1063 break;
1064 case compress:
1065 if (!bfd_init_section_compress_status (abfd, newsect))
1066 {
1067 (*_bfd_error_handler)
1068 (_("%B: unable to initialize compress status for section %s"),
1069 abfd, name);
1070 return FALSE;
1071 }
1072 if (name[1] != 'z')
1073 {
1074 unsigned int len = strlen (name);
1075
1076 new_name = bfd_alloc (abfd, len + 2);
1077 if (new_name == NULL)
1078 return FALSE;
1079 new_name[0] = '.';
1080 new_name[1] = 'z';
1081 memcpy (new_name + 2, name + 1, len);
1082 }
1083 break;
1084 case decompress:
1085 if (!bfd_init_section_decompress_status (abfd, newsect))
1086 {
1087 (*_bfd_error_handler)
1088 (_("%B: unable to initialize decompress status for section %s"),
1089 abfd, name);
1090 return FALSE;
1091 }
1092 if (name[1] == 'z')
1093 {
1094 unsigned int len = strlen (name);
1095
1096 new_name = bfd_alloc (abfd, len);
1097 if (new_name == NULL)
1098 return FALSE;
1099 new_name[0] = '.';
1100 memcpy (new_name + 1, name + 2, len - 1);
1101 }
1102 break;
1103 }
1104 if (new_name != NULL)
1105 bfd_rename_section (abfd, newsect, new_name);
1106 }
1107
1108 return TRUE;
1109 }
1110
1111 const char *const bfd_elf_section_type_names[] = {
1112 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1113 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1114 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1115 };
1116
1117 /* ELF relocs are against symbols. If we are producing relocatable
1118 output, and the reloc is against an external symbol, and nothing
1119 has given us any additional addend, the resulting reloc will also
1120 be against the same symbol. In such a case, we don't want to
1121 change anything about the way the reloc is handled, since it will
1122 all be done at final link time. Rather than put special case code
1123 into bfd_perform_relocation, all the reloc types use this howto
1124 function. It just short circuits the reloc if producing
1125 relocatable output against an external symbol. */
1126
1127 bfd_reloc_status_type
1128 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1129 arelent *reloc_entry,
1130 asymbol *symbol,
1131 void *data ATTRIBUTE_UNUSED,
1132 asection *input_section,
1133 bfd *output_bfd,
1134 char **error_message ATTRIBUTE_UNUSED)
1135 {
1136 if (output_bfd != NULL
1137 && (symbol->flags & BSF_SECTION_SYM) == 0
1138 && (! reloc_entry->howto->partial_inplace
1139 || reloc_entry->addend == 0))
1140 {
1141 reloc_entry->address += input_section->output_offset;
1142 return bfd_reloc_ok;
1143 }
1144
1145 return bfd_reloc_continue;
1146 }
1147 \f
1148 /* Copy the program header and other data from one object module to
1149 another. */
1150
1151 bfd_boolean
1152 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1153 {
1154 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1155 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1156 return TRUE;
1157
1158 if (!elf_flags_init (obfd))
1159 {
1160 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1161 elf_flags_init (obfd) = TRUE;
1162 }
1163
1164 elf_gp (obfd) = elf_gp (ibfd);
1165
1166 /* Also copy the EI_OSABI field. */
1167 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1168 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1169
1170 /* Copy object attributes. */
1171 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1172 return TRUE;
1173 }
1174
1175 static const char *
1176 get_segment_type (unsigned int p_type)
1177 {
1178 const char *pt;
1179 switch (p_type)
1180 {
1181 case PT_NULL: pt = "NULL"; break;
1182 case PT_LOAD: pt = "LOAD"; break;
1183 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1184 case PT_INTERP: pt = "INTERP"; break;
1185 case PT_NOTE: pt = "NOTE"; break;
1186 case PT_SHLIB: pt = "SHLIB"; break;
1187 case PT_PHDR: pt = "PHDR"; break;
1188 case PT_TLS: pt = "TLS"; break;
1189 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1190 case PT_GNU_STACK: pt = "STACK"; break;
1191 case PT_GNU_RELRO: pt = "RELRO"; break;
1192 default: pt = NULL; break;
1193 }
1194 return pt;
1195 }
1196
1197 /* Print out the program headers. */
1198
1199 bfd_boolean
1200 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1201 {
1202 FILE *f = (FILE *) farg;
1203 Elf_Internal_Phdr *p;
1204 asection *s;
1205 bfd_byte *dynbuf = NULL;
1206
1207 p = elf_tdata (abfd)->phdr;
1208 if (p != NULL)
1209 {
1210 unsigned int i, c;
1211
1212 fprintf (f, _("\nProgram Header:\n"));
1213 c = elf_elfheader (abfd)->e_phnum;
1214 for (i = 0; i < c; i++, p++)
1215 {
1216 const char *pt = get_segment_type (p->p_type);
1217 char buf[20];
1218
1219 if (pt == NULL)
1220 {
1221 sprintf (buf, "0x%lx", p->p_type);
1222 pt = buf;
1223 }
1224 fprintf (f, "%8s off 0x", pt);
1225 bfd_fprintf_vma (abfd, f, p->p_offset);
1226 fprintf (f, " vaddr 0x");
1227 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1228 fprintf (f, " paddr 0x");
1229 bfd_fprintf_vma (abfd, f, p->p_paddr);
1230 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1231 fprintf (f, " filesz 0x");
1232 bfd_fprintf_vma (abfd, f, p->p_filesz);
1233 fprintf (f, " memsz 0x");
1234 bfd_fprintf_vma (abfd, f, p->p_memsz);
1235 fprintf (f, " flags %c%c%c",
1236 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1237 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1238 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1239 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1240 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1241 fprintf (f, "\n");
1242 }
1243 }
1244
1245 s = bfd_get_section_by_name (abfd, ".dynamic");
1246 if (s != NULL)
1247 {
1248 unsigned int elfsec;
1249 unsigned long shlink;
1250 bfd_byte *extdyn, *extdynend;
1251 size_t extdynsize;
1252 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1253
1254 fprintf (f, _("\nDynamic Section:\n"));
1255
1256 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1257 goto error_return;
1258
1259 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1260 if (elfsec == SHN_BAD)
1261 goto error_return;
1262 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1263
1264 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1265 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1266
1267 extdyn = dynbuf;
1268 /* PR 17512: file: 6f427532. */
1269 if (s->size < extdynsize)
1270 goto error_return;
1271 extdynend = extdyn + s->size;
1272 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1273 Fix range check. */
1274 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1275 {
1276 Elf_Internal_Dyn dyn;
1277 const char *name = "";
1278 char ab[20];
1279 bfd_boolean stringp;
1280 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1281
1282 (*swap_dyn_in) (abfd, extdyn, &dyn);
1283
1284 if (dyn.d_tag == DT_NULL)
1285 break;
1286
1287 stringp = FALSE;
1288 switch (dyn.d_tag)
1289 {
1290 default:
1291 if (bed->elf_backend_get_target_dtag)
1292 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1293
1294 if (!strcmp (name, ""))
1295 {
1296 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1297 name = ab;
1298 }
1299 break;
1300
1301 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1302 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1303 case DT_PLTGOT: name = "PLTGOT"; break;
1304 case DT_HASH: name = "HASH"; break;
1305 case DT_STRTAB: name = "STRTAB"; break;
1306 case DT_SYMTAB: name = "SYMTAB"; break;
1307 case DT_RELA: name = "RELA"; break;
1308 case DT_RELASZ: name = "RELASZ"; break;
1309 case DT_RELAENT: name = "RELAENT"; break;
1310 case DT_STRSZ: name = "STRSZ"; break;
1311 case DT_SYMENT: name = "SYMENT"; break;
1312 case DT_INIT: name = "INIT"; break;
1313 case DT_FINI: name = "FINI"; break;
1314 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1315 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1316 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1317 case DT_REL: name = "REL"; break;
1318 case DT_RELSZ: name = "RELSZ"; break;
1319 case DT_RELENT: name = "RELENT"; break;
1320 case DT_PLTREL: name = "PLTREL"; break;
1321 case DT_DEBUG: name = "DEBUG"; break;
1322 case DT_TEXTREL: name = "TEXTREL"; break;
1323 case DT_JMPREL: name = "JMPREL"; break;
1324 case DT_BIND_NOW: name = "BIND_NOW"; break;
1325 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1326 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1327 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1328 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1329 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1330 case DT_FLAGS: name = "FLAGS"; break;
1331 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1332 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1333 case DT_CHECKSUM: name = "CHECKSUM"; break;
1334 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1335 case DT_MOVEENT: name = "MOVEENT"; break;
1336 case DT_MOVESZ: name = "MOVESZ"; break;
1337 case DT_FEATURE: name = "FEATURE"; break;
1338 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1339 case DT_SYMINSZ: name = "SYMINSZ"; break;
1340 case DT_SYMINENT: name = "SYMINENT"; break;
1341 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1342 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1343 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1344 case DT_PLTPAD: name = "PLTPAD"; break;
1345 case DT_MOVETAB: name = "MOVETAB"; break;
1346 case DT_SYMINFO: name = "SYMINFO"; break;
1347 case DT_RELACOUNT: name = "RELACOUNT"; break;
1348 case DT_RELCOUNT: name = "RELCOUNT"; break;
1349 case DT_FLAGS_1: name = "FLAGS_1"; break;
1350 case DT_VERSYM: name = "VERSYM"; break;
1351 case DT_VERDEF: name = "VERDEF"; break;
1352 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1353 case DT_VERNEED: name = "VERNEED"; break;
1354 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1355 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1356 case DT_USED: name = "USED"; break;
1357 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1358 case DT_GNU_HASH: name = "GNU_HASH"; break;
1359 }
1360
1361 fprintf (f, " %-20s ", name);
1362 if (! stringp)
1363 {
1364 fprintf (f, "0x");
1365 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1366 }
1367 else
1368 {
1369 const char *string;
1370 unsigned int tagv = dyn.d_un.d_val;
1371
1372 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1373 if (string == NULL)
1374 goto error_return;
1375 fprintf (f, "%s", string);
1376 }
1377 fprintf (f, "\n");
1378 }
1379
1380 free (dynbuf);
1381 dynbuf = NULL;
1382 }
1383
1384 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1385 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1386 {
1387 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1388 return FALSE;
1389 }
1390
1391 if (elf_dynverdef (abfd) != 0)
1392 {
1393 Elf_Internal_Verdef *t;
1394
1395 fprintf (f, _("\nVersion definitions:\n"));
1396 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1397 {
1398 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1399 t->vd_flags, t->vd_hash,
1400 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1401 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1402 {
1403 Elf_Internal_Verdaux *a;
1404
1405 fprintf (f, "\t");
1406 for (a = t->vd_auxptr->vda_nextptr;
1407 a != NULL;
1408 a = a->vda_nextptr)
1409 fprintf (f, "%s ",
1410 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1411 fprintf (f, "\n");
1412 }
1413 }
1414 }
1415
1416 if (elf_dynverref (abfd) != 0)
1417 {
1418 Elf_Internal_Verneed *t;
1419
1420 fprintf (f, _("\nVersion References:\n"));
1421 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1422 {
1423 Elf_Internal_Vernaux *a;
1424
1425 fprintf (f, _(" required from %s:\n"),
1426 t->vn_filename ? t->vn_filename : "<corrupt>");
1427 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1428 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1429 a->vna_flags, a->vna_other,
1430 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1431 }
1432 }
1433
1434 return TRUE;
1435
1436 error_return:
1437 if (dynbuf != NULL)
1438 free (dynbuf);
1439 return FALSE;
1440 }
1441
1442 /* Get version string. */
1443
1444 const char *
1445 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1446 bfd_boolean *hidden)
1447 {
1448 const char *version_string = NULL;
1449 if (elf_dynversym (abfd) != 0
1450 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1451 {
1452 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1453
1454 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1455 vernum &= VERSYM_VERSION;
1456
1457 if (vernum == 0)
1458 version_string = "";
1459 else if (vernum == 1)
1460 version_string = "Base";
1461 else if (vernum <= elf_tdata (abfd)->cverdefs)
1462 version_string =
1463 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1464 else
1465 {
1466 Elf_Internal_Verneed *t;
1467
1468 version_string = "";
1469 for (t = elf_tdata (abfd)->verref;
1470 t != NULL;
1471 t = t->vn_nextref)
1472 {
1473 Elf_Internal_Vernaux *a;
1474
1475 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1476 {
1477 if (a->vna_other == vernum)
1478 {
1479 version_string = a->vna_nodename;
1480 break;
1481 }
1482 }
1483 }
1484 }
1485 }
1486 return version_string;
1487 }
1488
1489 /* Display ELF-specific fields of a symbol. */
1490
1491 void
1492 bfd_elf_print_symbol (bfd *abfd,
1493 void *filep,
1494 asymbol *symbol,
1495 bfd_print_symbol_type how)
1496 {
1497 FILE *file = (FILE *) filep;
1498 switch (how)
1499 {
1500 case bfd_print_symbol_name:
1501 fprintf (file, "%s", symbol->name);
1502 break;
1503 case bfd_print_symbol_more:
1504 fprintf (file, "elf ");
1505 bfd_fprintf_vma (abfd, file, symbol->value);
1506 fprintf (file, " %lx", (unsigned long) symbol->flags);
1507 break;
1508 case bfd_print_symbol_all:
1509 {
1510 const char *section_name;
1511 const char *name = NULL;
1512 const struct elf_backend_data *bed;
1513 unsigned char st_other;
1514 bfd_vma val;
1515 const char *version_string;
1516 bfd_boolean hidden;
1517
1518 section_name = symbol->section ? symbol->section->name : "(*none*)";
1519
1520 bed = get_elf_backend_data (abfd);
1521 if (bed->elf_backend_print_symbol_all)
1522 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1523
1524 if (name == NULL)
1525 {
1526 name = symbol->name;
1527 bfd_print_symbol_vandf (abfd, file, symbol);
1528 }
1529
1530 fprintf (file, " %s\t", section_name);
1531 /* Print the "other" value for a symbol. For common symbols,
1532 we've already printed the size; now print the alignment.
1533 For other symbols, we have no specified alignment, and
1534 we've printed the address; now print the size. */
1535 if (symbol->section && bfd_is_com_section (symbol->section))
1536 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1537 else
1538 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1539 bfd_fprintf_vma (abfd, file, val);
1540
1541 /* If we have version information, print it. */
1542 version_string = _bfd_elf_get_symbol_version_string (abfd,
1543 symbol,
1544 &hidden);
1545 if (version_string)
1546 {
1547 if (!hidden)
1548 fprintf (file, " %-11s", version_string);
1549 else
1550 {
1551 int i;
1552
1553 fprintf (file, " (%s)", version_string);
1554 for (i = 10 - strlen (version_string); i > 0; --i)
1555 putc (' ', file);
1556 }
1557 }
1558
1559 /* If the st_other field is not zero, print it. */
1560 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1561
1562 switch (st_other)
1563 {
1564 case 0: break;
1565 case STV_INTERNAL: fprintf (file, " .internal"); break;
1566 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1567 case STV_PROTECTED: fprintf (file, " .protected"); break;
1568 default:
1569 /* Some other non-defined flags are also present, so print
1570 everything hex. */
1571 fprintf (file, " 0x%02x", (unsigned int) st_other);
1572 }
1573
1574 fprintf (file, " %s", name);
1575 }
1576 break;
1577 }
1578 }
1579
1580 /* Allocate an ELF string table--force the first byte to be zero. */
1581
1582 struct bfd_strtab_hash *
1583 _bfd_elf_stringtab_init (void)
1584 {
1585 struct bfd_strtab_hash *ret;
1586
1587 ret = _bfd_stringtab_init ();
1588 if (ret != NULL)
1589 {
1590 bfd_size_type loc;
1591
1592 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1593 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1594 if (loc == (bfd_size_type) -1)
1595 {
1596 _bfd_stringtab_free (ret);
1597 ret = NULL;
1598 }
1599 }
1600 return ret;
1601 }
1602 \f
1603 /* ELF .o/exec file reading */
1604
1605 /* Create a new bfd section from an ELF section header. */
1606
1607 bfd_boolean
1608 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1609 {
1610 Elf_Internal_Shdr *hdr;
1611 Elf_Internal_Ehdr *ehdr;
1612 const struct elf_backend_data *bed;
1613 const char *name;
1614 bfd_boolean ret = TRUE;
1615 static bfd_boolean * sections_being_created = NULL;
1616 static bfd * sections_being_created_abfd = NULL;
1617 static unsigned int nesting = 0;
1618
1619 if (shindex >= elf_numsections (abfd))
1620 return FALSE;
1621
1622 if (++ nesting > 3)
1623 {
1624 /* PR17512: A corrupt ELF binary might contain a recursive group of
1625 sections, with each the string indicies pointing to the next in the
1626 loop. Detect this here, by refusing to load a section that we are
1627 already in the process of loading. We only trigger this test if
1628 we have nested at least three sections deep as normal ELF binaries
1629 can expect to recurse at least once.
1630
1631 FIXME: It would be better if this array was attached to the bfd,
1632 rather than being held in a static pointer. */
1633
1634 if (sections_being_created_abfd != abfd)
1635 sections_being_created = NULL;
1636 if (sections_being_created == NULL)
1637 {
1638 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1639 sections_being_created = (bfd_boolean *)
1640 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1641 sections_being_created_abfd = abfd;
1642 }
1643 if (sections_being_created [shindex])
1644 {
1645 (*_bfd_error_handler)
1646 (_("%B: warning: loop in section dependencies detected"), abfd);
1647 return FALSE;
1648 }
1649 sections_being_created [shindex] = TRUE;
1650 }
1651
1652 hdr = elf_elfsections (abfd)[shindex];
1653 ehdr = elf_elfheader (abfd);
1654 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1655 hdr->sh_name);
1656 if (name == NULL)
1657 goto fail;
1658
1659 bed = get_elf_backend_data (abfd);
1660 switch (hdr->sh_type)
1661 {
1662 case SHT_NULL:
1663 /* Inactive section. Throw it away. */
1664 goto success;
1665
1666 case SHT_PROGBITS: /* Normal section with contents. */
1667 case SHT_NOBITS: /* .bss section. */
1668 case SHT_HASH: /* .hash section. */
1669 case SHT_NOTE: /* .note section. */
1670 case SHT_INIT_ARRAY: /* .init_array section. */
1671 case SHT_FINI_ARRAY: /* .fini_array section. */
1672 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1673 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1674 case SHT_GNU_HASH: /* .gnu.hash section. */
1675 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1676 goto success;
1677
1678 case SHT_DYNAMIC: /* Dynamic linking information. */
1679 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1680 goto fail;
1681
1682 if (hdr->sh_link > elf_numsections (abfd))
1683 {
1684 /* PR 10478: Accept Solaris binaries with a sh_link
1685 field set to SHN_BEFORE or SHN_AFTER. */
1686 switch (bfd_get_arch (abfd))
1687 {
1688 case bfd_arch_i386:
1689 case bfd_arch_sparc:
1690 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1691 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1692 break;
1693 /* Otherwise fall through. */
1694 default:
1695 goto fail;
1696 }
1697 }
1698 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1699 goto fail;
1700 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1701 {
1702 Elf_Internal_Shdr *dynsymhdr;
1703
1704 /* The shared libraries distributed with hpux11 have a bogus
1705 sh_link field for the ".dynamic" section. Find the
1706 string table for the ".dynsym" section instead. */
1707 if (elf_dynsymtab (abfd) != 0)
1708 {
1709 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1710 hdr->sh_link = dynsymhdr->sh_link;
1711 }
1712 else
1713 {
1714 unsigned int i, num_sec;
1715
1716 num_sec = elf_numsections (abfd);
1717 for (i = 1; i < num_sec; i++)
1718 {
1719 dynsymhdr = elf_elfsections (abfd)[i];
1720 if (dynsymhdr->sh_type == SHT_DYNSYM)
1721 {
1722 hdr->sh_link = dynsymhdr->sh_link;
1723 break;
1724 }
1725 }
1726 }
1727 }
1728 goto success;
1729
1730 case SHT_SYMTAB: /* A symbol table. */
1731 if (elf_onesymtab (abfd) == shindex)
1732 goto success;
1733
1734 if (hdr->sh_entsize != bed->s->sizeof_sym)
1735 goto fail;
1736
1737 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1738 {
1739 if (hdr->sh_size != 0)
1740 goto fail;
1741 /* Some assemblers erroneously set sh_info to one with a
1742 zero sh_size. ld sees this as a global symbol count
1743 of (unsigned) -1. Fix it here. */
1744 hdr->sh_info = 0;
1745 goto success;
1746 }
1747
1748 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1749 elf_onesymtab (abfd) = shindex;
1750 elf_tdata (abfd)->symtab_hdr = *hdr;
1751 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1752 abfd->flags |= HAS_SYMS;
1753
1754 /* Sometimes a shared object will map in the symbol table. If
1755 SHF_ALLOC is set, and this is a shared object, then we also
1756 treat this section as a BFD section. We can not base the
1757 decision purely on SHF_ALLOC, because that flag is sometimes
1758 set in a relocatable object file, which would confuse the
1759 linker. */
1760 if ((hdr->sh_flags & SHF_ALLOC) != 0
1761 && (abfd->flags & DYNAMIC) != 0
1762 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1763 shindex))
1764 goto fail;
1765
1766 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1767 can't read symbols without that section loaded as well. It
1768 is most likely specified by the next section header. */
1769 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1770 {
1771 unsigned int i, num_sec;
1772
1773 num_sec = elf_numsections (abfd);
1774 for (i = shindex + 1; i < num_sec; i++)
1775 {
1776 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1777 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1778 && hdr2->sh_link == shindex)
1779 break;
1780 }
1781 if (i == num_sec)
1782 for (i = 1; i < shindex; i++)
1783 {
1784 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1785 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1786 && hdr2->sh_link == shindex)
1787 break;
1788 }
1789 if (i != shindex)
1790 ret = bfd_section_from_shdr (abfd, i);
1791 }
1792 goto success;
1793
1794 case SHT_DYNSYM: /* A dynamic symbol table. */
1795 if (elf_dynsymtab (abfd) == shindex)
1796 goto success;
1797
1798 if (hdr->sh_entsize != bed->s->sizeof_sym)
1799 goto fail;
1800
1801 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1802 {
1803 if (hdr->sh_size != 0)
1804 goto fail;
1805
1806 /* Some linkers erroneously set sh_info to one with a
1807 zero sh_size. ld sees this as a global symbol count
1808 of (unsigned) -1. Fix it here. */
1809 hdr->sh_info = 0;
1810 goto success;
1811 }
1812
1813 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1814 elf_dynsymtab (abfd) = shindex;
1815 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1816 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1817 abfd->flags |= HAS_SYMS;
1818
1819 /* Besides being a symbol table, we also treat this as a regular
1820 section, so that objcopy can handle it. */
1821 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1822 goto success;
1823
1824 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
1825 if (elf_symtab_shndx (abfd) == shindex)
1826 goto success;
1827
1828 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1829 elf_symtab_shndx (abfd) = shindex;
1830 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1831 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1832 goto success;
1833
1834 case SHT_STRTAB: /* A string table. */
1835 if (hdr->bfd_section != NULL)
1836 goto success;
1837
1838 if (ehdr->e_shstrndx == shindex)
1839 {
1840 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1841 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1842 goto success;
1843 }
1844
1845 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1846 {
1847 symtab_strtab:
1848 elf_tdata (abfd)->strtab_hdr = *hdr;
1849 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1850 goto success;
1851 }
1852
1853 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1854 {
1855 dynsymtab_strtab:
1856 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1857 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1858 elf_elfsections (abfd)[shindex] = hdr;
1859 /* We also treat this as a regular section, so that objcopy
1860 can handle it. */
1861 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1862 shindex);
1863 goto success;
1864 }
1865
1866 /* If the string table isn't one of the above, then treat it as a
1867 regular section. We need to scan all the headers to be sure,
1868 just in case this strtab section appeared before the above. */
1869 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1870 {
1871 unsigned int i, num_sec;
1872
1873 num_sec = elf_numsections (abfd);
1874 for (i = 1; i < num_sec; i++)
1875 {
1876 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1877 if (hdr2->sh_link == shindex)
1878 {
1879 /* Prevent endless recursion on broken objects. */
1880 if (i == shindex)
1881 goto fail;
1882 if (! bfd_section_from_shdr (abfd, i))
1883 goto fail;
1884 if (elf_onesymtab (abfd) == i)
1885 goto symtab_strtab;
1886 if (elf_dynsymtab (abfd) == i)
1887 goto dynsymtab_strtab;
1888 }
1889 }
1890 }
1891 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1892 goto success;
1893
1894 case SHT_REL:
1895 case SHT_RELA:
1896 /* *These* do a lot of work -- but build no sections! */
1897 {
1898 asection *target_sect;
1899 Elf_Internal_Shdr *hdr2, **p_hdr;
1900 unsigned int num_sec = elf_numsections (abfd);
1901 struct bfd_elf_section_data *esdt;
1902 bfd_size_type amt;
1903
1904 if (hdr->sh_entsize
1905 != (bfd_size_type) (hdr->sh_type == SHT_REL
1906 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1907 goto fail;
1908
1909 /* Check for a bogus link to avoid crashing. */
1910 if (hdr->sh_link >= num_sec)
1911 {
1912 ((*_bfd_error_handler)
1913 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1914 abfd, hdr->sh_link, name, shindex));
1915 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1916 shindex);
1917 goto success;
1918 }
1919
1920 /* For some incomprehensible reason Oracle distributes
1921 libraries for Solaris in which some of the objects have
1922 bogus sh_link fields. It would be nice if we could just
1923 reject them, but, unfortunately, some people need to use
1924 them. We scan through the section headers; if we find only
1925 one suitable symbol table, we clobber the sh_link to point
1926 to it. I hope this doesn't break anything.
1927
1928 Don't do it on executable nor shared library. */
1929 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1930 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1931 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1932 {
1933 unsigned int scan;
1934 int found;
1935
1936 found = 0;
1937 for (scan = 1; scan < num_sec; scan++)
1938 {
1939 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1940 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1941 {
1942 if (found != 0)
1943 {
1944 found = 0;
1945 break;
1946 }
1947 found = scan;
1948 }
1949 }
1950 if (found != 0)
1951 hdr->sh_link = found;
1952 }
1953
1954 /* Get the symbol table. */
1955 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1956 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1957 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1958 goto fail;
1959
1960 /* If this reloc section does not use the main symbol table we
1961 don't treat it as a reloc section. BFD can't adequately
1962 represent such a section, so at least for now, we don't
1963 try. We just present it as a normal section. We also
1964 can't use it as a reloc section if it points to the null
1965 section, an invalid section, another reloc section, or its
1966 sh_link points to the null section. */
1967 if (hdr->sh_link != elf_onesymtab (abfd)
1968 || hdr->sh_link == SHN_UNDEF
1969 || hdr->sh_info == SHN_UNDEF
1970 || hdr->sh_info >= num_sec
1971 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1972 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1973 {
1974 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1975 shindex);
1976 goto success;
1977 }
1978
1979 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1980 goto fail;
1981
1982 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1983 if (target_sect == NULL)
1984 goto fail;
1985
1986 esdt = elf_section_data (target_sect);
1987 if (hdr->sh_type == SHT_RELA)
1988 p_hdr = &esdt->rela.hdr;
1989 else
1990 p_hdr = &esdt->rel.hdr;
1991
1992 /* PR 17512: file: 0b4f81b7. */
1993 if (*p_hdr != NULL)
1994 goto fail;
1995 amt = sizeof (*hdr2);
1996 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1997 if (hdr2 == NULL)
1998 goto fail;
1999 *hdr2 = *hdr;
2000 *p_hdr = hdr2;
2001 elf_elfsections (abfd)[shindex] = hdr2;
2002 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2003 target_sect->flags |= SEC_RELOC;
2004 target_sect->relocation = NULL;
2005 target_sect->rel_filepos = hdr->sh_offset;
2006 /* In the section to which the relocations apply, mark whether
2007 its relocations are of the REL or RELA variety. */
2008 if (hdr->sh_size != 0)
2009 {
2010 if (hdr->sh_type == SHT_RELA)
2011 target_sect->use_rela_p = 1;
2012 }
2013 abfd->flags |= HAS_RELOC;
2014 goto success;
2015 }
2016
2017 case SHT_GNU_verdef:
2018 elf_dynverdef (abfd) = shindex;
2019 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2020 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2021 goto success;
2022
2023 case SHT_GNU_versym:
2024 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2025 goto fail;
2026
2027 elf_dynversym (abfd) = shindex;
2028 elf_tdata (abfd)->dynversym_hdr = *hdr;
2029 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2030 goto success;
2031
2032 case SHT_GNU_verneed:
2033 elf_dynverref (abfd) = shindex;
2034 elf_tdata (abfd)->dynverref_hdr = *hdr;
2035 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2036 goto success;
2037
2038 case SHT_SHLIB:
2039 goto success;
2040
2041 case SHT_GROUP:
2042 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2043 goto fail;
2044
2045 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2046 goto fail;
2047
2048 if (hdr->contents != NULL)
2049 {
2050 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2051 unsigned int n_elt = hdr->sh_size / sizeof (* idx);
2052 asection *s;
2053
2054 if (n_elt == 0)
2055 goto fail;
2056 if (idx->flags & GRP_COMDAT)
2057 hdr->bfd_section->flags
2058 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2059
2060 /* We try to keep the same section order as it comes in. */
2061 idx += n_elt;
2062
2063 while (--n_elt != 0)
2064 {
2065 --idx;
2066
2067 if (idx->shdr != NULL
2068 && (s = idx->shdr->bfd_section) != NULL
2069 && elf_next_in_group (s) != NULL)
2070 {
2071 elf_next_in_group (hdr->bfd_section) = s;
2072 break;
2073 }
2074 }
2075 }
2076 goto success;
2077
2078 default:
2079 /* Possibly an attributes section. */
2080 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2081 || hdr->sh_type == bed->obj_attrs_section_type)
2082 {
2083 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2084 goto fail;
2085 _bfd_elf_parse_attributes (abfd, hdr);
2086 goto success;
2087 }
2088
2089 /* Check for any processor-specific section types. */
2090 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2091 goto success;
2092
2093 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2094 {
2095 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2096 /* FIXME: How to properly handle allocated section reserved
2097 for applications? */
2098 (*_bfd_error_handler)
2099 (_("%B: don't know how to handle allocated, application "
2100 "specific section `%s' [0x%8x]"),
2101 abfd, name, hdr->sh_type);
2102 else
2103 {
2104 /* Allow sections reserved for applications. */
2105 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2106 shindex);
2107 goto success;
2108 }
2109 }
2110 else if (hdr->sh_type >= SHT_LOPROC
2111 && hdr->sh_type <= SHT_HIPROC)
2112 /* FIXME: We should handle this section. */
2113 (*_bfd_error_handler)
2114 (_("%B: don't know how to handle processor specific section "
2115 "`%s' [0x%8x]"),
2116 abfd, name, hdr->sh_type);
2117 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2118 {
2119 /* Unrecognised OS-specific sections. */
2120 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2121 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2122 required to correctly process the section and the file should
2123 be rejected with an error message. */
2124 (*_bfd_error_handler)
2125 (_("%B: don't know how to handle OS specific section "
2126 "`%s' [0x%8x]"),
2127 abfd, name, hdr->sh_type);
2128 else
2129 {
2130 /* Otherwise it should be processed. */
2131 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2132 goto success;
2133 }
2134 }
2135 else
2136 /* FIXME: We should handle this section. */
2137 (*_bfd_error_handler)
2138 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2139 abfd, name, hdr->sh_type);
2140
2141 goto fail;
2142 }
2143
2144 fail:
2145 ret = FALSE;
2146 success:
2147 if (sections_being_created && sections_being_created_abfd == abfd)
2148 sections_being_created [shindex] = FALSE;
2149 if (-- nesting == 0)
2150 {
2151 sections_being_created = NULL;
2152 sections_being_created_abfd = abfd;
2153 }
2154 return ret;
2155 }
2156
2157 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2158
2159 Elf_Internal_Sym *
2160 bfd_sym_from_r_symndx (struct sym_cache *cache,
2161 bfd *abfd,
2162 unsigned long r_symndx)
2163 {
2164 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2165
2166 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2167 {
2168 Elf_Internal_Shdr *symtab_hdr;
2169 unsigned char esym[sizeof (Elf64_External_Sym)];
2170 Elf_External_Sym_Shndx eshndx;
2171
2172 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2173 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2174 &cache->sym[ent], esym, &eshndx) == NULL)
2175 return NULL;
2176
2177 if (cache->abfd != abfd)
2178 {
2179 memset (cache->indx, -1, sizeof (cache->indx));
2180 cache->abfd = abfd;
2181 }
2182 cache->indx[ent] = r_symndx;
2183 }
2184
2185 return &cache->sym[ent];
2186 }
2187
2188 /* Given an ELF section number, retrieve the corresponding BFD
2189 section. */
2190
2191 asection *
2192 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2193 {
2194 if (sec_index >= elf_numsections (abfd))
2195 return NULL;
2196 return elf_elfsections (abfd)[sec_index]->bfd_section;
2197 }
2198
2199 static const struct bfd_elf_special_section special_sections_b[] =
2200 {
2201 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2202 { NULL, 0, 0, 0, 0 }
2203 };
2204
2205 static const struct bfd_elf_special_section special_sections_c[] =
2206 {
2207 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2208 { NULL, 0, 0, 0, 0 }
2209 };
2210
2211 static const struct bfd_elf_special_section special_sections_d[] =
2212 {
2213 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2214 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2215 /* There are more DWARF sections than these, but they needn't be added here
2216 unless you have to cope with broken compilers that don't emit section
2217 attributes or you want to help the user writing assembler. */
2218 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2219 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2220 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2221 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2222 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2223 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2224 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2225 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2226 { NULL, 0, 0, 0, 0 }
2227 };
2228
2229 static const struct bfd_elf_special_section special_sections_f[] =
2230 {
2231 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2232 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2233 { NULL, 0, 0, 0, 0 }
2234 };
2235
2236 static const struct bfd_elf_special_section special_sections_g[] =
2237 {
2238 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2239 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2240 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2241 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2242 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2243 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2244 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2245 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2246 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2247 { NULL, 0, 0, 0, 0 }
2248 };
2249
2250 static const struct bfd_elf_special_section special_sections_h[] =
2251 {
2252 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2253 { NULL, 0, 0, 0, 0 }
2254 };
2255
2256 static const struct bfd_elf_special_section special_sections_i[] =
2257 {
2258 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2259 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2260 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2261 { NULL, 0, 0, 0, 0 }
2262 };
2263
2264 static const struct bfd_elf_special_section special_sections_l[] =
2265 {
2266 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2267 { NULL, 0, 0, 0, 0 }
2268 };
2269
2270 static const struct bfd_elf_special_section special_sections_n[] =
2271 {
2272 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2273 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2274 { NULL, 0, 0, 0, 0 }
2275 };
2276
2277 static const struct bfd_elf_special_section special_sections_p[] =
2278 {
2279 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2280 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2281 { NULL, 0, 0, 0, 0 }
2282 };
2283
2284 static const struct bfd_elf_special_section special_sections_r[] =
2285 {
2286 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2287 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2288 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2289 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2290 { NULL, 0, 0, 0, 0 }
2291 };
2292
2293 static const struct bfd_elf_special_section special_sections_s[] =
2294 {
2295 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2296 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2297 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2298 /* See struct bfd_elf_special_section declaration for the semantics of
2299 this special case where .prefix_length != strlen (.prefix). */
2300 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2301 { NULL, 0, 0, 0, 0 }
2302 };
2303
2304 static const struct bfd_elf_special_section special_sections_t[] =
2305 {
2306 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2307 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2308 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2309 { NULL, 0, 0, 0, 0 }
2310 };
2311
2312 static const struct bfd_elf_special_section special_sections_z[] =
2313 {
2314 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2315 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2316 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2317 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2318 { NULL, 0, 0, 0, 0 }
2319 };
2320
2321 static const struct bfd_elf_special_section * const special_sections[] =
2322 {
2323 special_sections_b, /* 'b' */
2324 special_sections_c, /* 'c' */
2325 special_sections_d, /* 'd' */
2326 NULL, /* 'e' */
2327 special_sections_f, /* 'f' */
2328 special_sections_g, /* 'g' */
2329 special_sections_h, /* 'h' */
2330 special_sections_i, /* 'i' */
2331 NULL, /* 'j' */
2332 NULL, /* 'k' */
2333 special_sections_l, /* 'l' */
2334 NULL, /* 'm' */
2335 special_sections_n, /* 'n' */
2336 NULL, /* 'o' */
2337 special_sections_p, /* 'p' */
2338 NULL, /* 'q' */
2339 special_sections_r, /* 'r' */
2340 special_sections_s, /* 's' */
2341 special_sections_t, /* 't' */
2342 NULL, /* 'u' */
2343 NULL, /* 'v' */
2344 NULL, /* 'w' */
2345 NULL, /* 'x' */
2346 NULL, /* 'y' */
2347 special_sections_z /* 'z' */
2348 };
2349
2350 const struct bfd_elf_special_section *
2351 _bfd_elf_get_special_section (const char *name,
2352 const struct bfd_elf_special_section *spec,
2353 unsigned int rela)
2354 {
2355 int i;
2356 int len;
2357
2358 len = strlen (name);
2359
2360 for (i = 0; spec[i].prefix != NULL; i++)
2361 {
2362 int suffix_len;
2363 int prefix_len = spec[i].prefix_length;
2364
2365 if (len < prefix_len)
2366 continue;
2367 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2368 continue;
2369
2370 suffix_len = spec[i].suffix_length;
2371 if (suffix_len <= 0)
2372 {
2373 if (name[prefix_len] != 0)
2374 {
2375 if (suffix_len == 0)
2376 continue;
2377 if (name[prefix_len] != '.'
2378 && (suffix_len == -2
2379 || (rela && spec[i].type == SHT_REL)))
2380 continue;
2381 }
2382 }
2383 else
2384 {
2385 if (len < prefix_len + suffix_len)
2386 continue;
2387 if (memcmp (name + len - suffix_len,
2388 spec[i].prefix + prefix_len,
2389 suffix_len) != 0)
2390 continue;
2391 }
2392 return &spec[i];
2393 }
2394
2395 return NULL;
2396 }
2397
2398 const struct bfd_elf_special_section *
2399 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2400 {
2401 int i;
2402 const struct bfd_elf_special_section *spec;
2403 const struct elf_backend_data *bed;
2404
2405 /* See if this is one of the special sections. */
2406 if (sec->name == NULL)
2407 return NULL;
2408
2409 bed = get_elf_backend_data (abfd);
2410 spec = bed->special_sections;
2411 if (spec)
2412 {
2413 spec = _bfd_elf_get_special_section (sec->name,
2414 bed->special_sections,
2415 sec->use_rela_p);
2416 if (spec != NULL)
2417 return spec;
2418 }
2419
2420 if (sec->name[0] != '.')
2421 return NULL;
2422
2423 i = sec->name[1] - 'b';
2424 if (i < 0 || i > 'z' - 'b')
2425 return NULL;
2426
2427 spec = special_sections[i];
2428
2429 if (spec == NULL)
2430 return NULL;
2431
2432 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2433 }
2434
2435 bfd_boolean
2436 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2437 {
2438 struct bfd_elf_section_data *sdata;
2439 const struct elf_backend_data *bed;
2440 const struct bfd_elf_special_section *ssect;
2441
2442 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2443 if (sdata == NULL)
2444 {
2445 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2446 sizeof (*sdata));
2447 if (sdata == NULL)
2448 return FALSE;
2449 sec->used_by_bfd = sdata;
2450 }
2451
2452 /* Indicate whether or not this section should use RELA relocations. */
2453 bed = get_elf_backend_data (abfd);
2454 sec->use_rela_p = bed->default_use_rela_p;
2455
2456 /* When we read a file, we don't need to set ELF section type and
2457 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2458 anyway. We will set ELF section type and flags for all linker
2459 created sections. If user specifies BFD section flags, we will
2460 set ELF section type and flags based on BFD section flags in
2461 elf_fake_sections. Special handling for .init_array/.fini_array
2462 output sections since they may contain .ctors/.dtors input
2463 sections. We don't want _bfd_elf_init_private_section_data to
2464 copy ELF section type from .ctors/.dtors input sections. */
2465 if (abfd->direction != read_direction
2466 || (sec->flags & SEC_LINKER_CREATED) != 0)
2467 {
2468 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2469 if (ssect != NULL
2470 && (!sec->flags
2471 || (sec->flags & SEC_LINKER_CREATED) != 0
2472 || ssect->type == SHT_INIT_ARRAY
2473 || ssect->type == SHT_FINI_ARRAY))
2474 {
2475 elf_section_type (sec) = ssect->type;
2476 elf_section_flags (sec) = ssect->attr;
2477 }
2478 }
2479
2480 return _bfd_generic_new_section_hook (abfd, sec);
2481 }
2482
2483 /* Create a new bfd section from an ELF program header.
2484
2485 Since program segments have no names, we generate a synthetic name
2486 of the form segment<NUM>, where NUM is generally the index in the
2487 program header table. For segments that are split (see below) we
2488 generate the names segment<NUM>a and segment<NUM>b.
2489
2490 Note that some program segments may have a file size that is different than
2491 (less than) the memory size. All this means is that at execution the
2492 system must allocate the amount of memory specified by the memory size,
2493 but only initialize it with the first "file size" bytes read from the
2494 file. This would occur for example, with program segments consisting
2495 of combined data+bss.
2496
2497 To handle the above situation, this routine generates TWO bfd sections
2498 for the single program segment. The first has the length specified by
2499 the file size of the segment, and the second has the length specified
2500 by the difference between the two sizes. In effect, the segment is split
2501 into its initialized and uninitialized parts.
2502
2503 */
2504
2505 bfd_boolean
2506 _bfd_elf_make_section_from_phdr (bfd *abfd,
2507 Elf_Internal_Phdr *hdr,
2508 int hdr_index,
2509 const char *type_name)
2510 {
2511 asection *newsect;
2512 char *name;
2513 char namebuf[64];
2514 size_t len;
2515 int split;
2516
2517 split = ((hdr->p_memsz > 0)
2518 && (hdr->p_filesz > 0)
2519 && (hdr->p_memsz > hdr->p_filesz));
2520
2521 if (hdr->p_filesz > 0)
2522 {
2523 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2524 len = strlen (namebuf) + 1;
2525 name = (char *) bfd_alloc (abfd, len);
2526 if (!name)
2527 return FALSE;
2528 memcpy (name, namebuf, len);
2529 newsect = bfd_make_section (abfd, name);
2530 if (newsect == NULL)
2531 return FALSE;
2532 newsect->vma = hdr->p_vaddr;
2533 newsect->lma = hdr->p_paddr;
2534 newsect->size = hdr->p_filesz;
2535 newsect->filepos = hdr->p_offset;
2536 newsect->flags |= SEC_HAS_CONTENTS;
2537 newsect->alignment_power = bfd_log2 (hdr->p_align);
2538 if (hdr->p_type == PT_LOAD)
2539 {
2540 newsect->flags |= SEC_ALLOC;
2541 newsect->flags |= SEC_LOAD;
2542 if (hdr->p_flags & PF_X)
2543 {
2544 /* FIXME: all we known is that it has execute PERMISSION,
2545 may be data. */
2546 newsect->flags |= SEC_CODE;
2547 }
2548 }
2549 if (!(hdr->p_flags & PF_W))
2550 {
2551 newsect->flags |= SEC_READONLY;
2552 }
2553 }
2554
2555 if (hdr->p_memsz > hdr->p_filesz)
2556 {
2557 bfd_vma align;
2558
2559 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2560 len = strlen (namebuf) + 1;
2561 name = (char *) bfd_alloc (abfd, len);
2562 if (!name)
2563 return FALSE;
2564 memcpy (name, namebuf, len);
2565 newsect = bfd_make_section (abfd, name);
2566 if (newsect == NULL)
2567 return FALSE;
2568 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2569 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2570 newsect->size = hdr->p_memsz - hdr->p_filesz;
2571 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2572 align = newsect->vma & -newsect->vma;
2573 if (align == 0 || align > hdr->p_align)
2574 align = hdr->p_align;
2575 newsect->alignment_power = bfd_log2 (align);
2576 if (hdr->p_type == PT_LOAD)
2577 {
2578 /* Hack for gdb. Segments that have not been modified do
2579 not have their contents written to a core file, on the
2580 assumption that a debugger can find the contents in the
2581 executable. We flag this case by setting the fake
2582 section size to zero. Note that "real" bss sections will
2583 always have their contents dumped to the core file. */
2584 if (bfd_get_format (abfd) == bfd_core)
2585 newsect->size = 0;
2586 newsect->flags |= SEC_ALLOC;
2587 if (hdr->p_flags & PF_X)
2588 newsect->flags |= SEC_CODE;
2589 }
2590 if (!(hdr->p_flags & PF_W))
2591 newsect->flags |= SEC_READONLY;
2592 }
2593
2594 return TRUE;
2595 }
2596
2597 bfd_boolean
2598 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2599 {
2600 const struct elf_backend_data *bed;
2601
2602 switch (hdr->p_type)
2603 {
2604 case PT_NULL:
2605 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2606
2607 case PT_LOAD:
2608 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2609
2610 case PT_DYNAMIC:
2611 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2612
2613 case PT_INTERP:
2614 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2615
2616 case PT_NOTE:
2617 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2618 return FALSE;
2619 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2620 return FALSE;
2621 return TRUE;
2622
2623 case PT_SHLIB:
2624 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2625
2626 case PT_PHDR:
2627 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2628
2629 case PT_GNU_EH_FRAME:
2630 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2631 "eh_frame_hdr");
2632
2633 case PT_GNU_STACK:
2634 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2635
2636 case PT_GNU_RELRO:
2637 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2638
2639 default:
2640 /* Check for any processor-specific program segment types. */
2641 bed = get_elf_backend_data (abfd);
2642 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2643 }
2644 }
2645
2646 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2647 REL or RELA. */
2648
2649 Elf_Internal_Shdr *
2650 _bfd_elf_single_rel_hdr (asection *sec)
2651 {
2652 if (elf_section_data (sec)->rel.hdr)
2653 {
2654 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2655 return elf_section_data (sec)->rel.hdr;
2656 }
2657 else
2658 return elf_section_data (sec)->rela.hdr;
2659 }
2660
2661 /* Allocate and initialize a section-header for a new reloc section,
2662 containing relocations against ASECT. It is stored in RELDATA. If
2663 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2664 relocations. */
2665
2666 static bfd_boolean
2667 _bfd_elf_init_reloc_shdr (bfd *abfd,
2668 struct bfd_elf_section_reloc_data *reldata,
2669 asection *asect,
2670 bfd_boolean use_rela_p)
2671 {
2672 Elf_Internal_Shdr *rel_hdr;
2673 char *name;
2674 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2675 bfd_size_type amt;
2676
2677 amt = sizeof (Elf_Internal_Shdr);
2678 BFD_ASSERT (reldata->hdr == NULL);
2679 rel_hdr = bfd_zalloc (abfd, amt);
2680 reldata->hdr = rel_hdr;
2681
2682 amt = sizeof ".rela" + strlen (asect->name);
2683 name = (char *) bfd_alloc (abfd, amt);
2684 if (name == NULL)
2685 return FALSE;
2686 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2687 rel_hdr->sh_name =
2688 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2689 FALSE);
2690 if (rel_hdr->sh_name == (unsigned int) -1)
2691 return FALSE;
2692 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2693 rel_hdr->sh_entsize = (use_rela_p
2694 ? bed->s->sizeof_rela
2695 : bed->s->sizeof_rel);
2696 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2697 rel_hdr->sh_flags = 0;
2698 rel_hdr->sh_addr = 0;
2699 rel_hdr->sh_size = 0;
2700 rel_hdr->sh_offset = 0;
2701
2702 return TRUE;
2703 }
2704
2705 /* Return the default section type based on the passed in section flags. */
2706
2707 int
2708 bfd_elf_get_default_section_type (flagword flags)
2709 {
2710 if ((flags & SEC_ALLOC) != 0
2711 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2712 return SHT_NOBITS;
2713 return SHT_PROGBITS;
2714 }
2715
2716 struct fake_section_arg
2717 {
2718 struct bfd_link_info *link_info;
2719 bfd_boolean failed;
2720 };
2721
2722 /* Set up an ELF internal section header for a section. */
2723
2724 static void
2725 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2726 {
2727 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2728 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2729 struct bfd_elf_section_data *esd = elf_section_data (asect);
2730 Elf_Internal_Shdr *this_hdr;
2731 unsigned int sh_type;
2732
2733 if (arg->failed)
2734 {
2735 /* We already failed; just get out of the bfd_map_over_sections
2736 loop. */
2737 return;
2738 }
2739
2740 this_hdr = &esd->this_hdr;
2741
2742 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2743 asect->name, FALSE);
2744 if (this_hdr->sh_name == (unsigned int) -1)
2745 {
2746 arg->failed = TRUE;
2747 return;
2748 }
2749
2750 /* Don't clear sh_flags. Assembler may set additional bits. */
2751
2752 if ((asect->flags & SEC_ALLOC) != 0
2753 || asect->user_set_vma)
2754 this_hdr->sh_addr = asect->vma;
2755 else
2756 this_hdr->sh_addr = 0;
2757
2758 this_hdr->sh_offset = 0;
2759 this_hdr->sh_size = asect->size;
2760 this_hdr->sh_link = 0;
2761 /* PR 17512: file: 0eb809fe, 8b0535ee. */
2762 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
2763 {
2764 (*_bfd_error_handler)
2765 (_("%B: error: Alignment power %d of section `%A' is too big"),
2766 abfd, asect, asect->alignment_power);
2767 arg->failed = TRUE;
2768 return;
2769 }
2770 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2771 /* The sh_entsize and sh_info fields may have been set already by
2772 copy_private_section_data. */
2773
2774 this_hdr->bfd_section = asect;
2775 this_hdr->contents = NULL;
2776
2777 /* If the section type is unspecified, we set it based on
2778 asect->flags. */
2779 if ((asect->flags & SEC_GROUP) != 0)
2780 sh_type = SHT_GROUP;
2781 else
2782 sh_type = bfd_elf_get_default_section_type (asect->flags);
2783
2784 if (this_hdr->sh_type == SHT_NULL)
2785 this_hdr->sh_type = sh_type;
2786 else if (this_hdr->sh_type == SHT_NOBITS
2787 && sh_type == SHT_PROGBITS
2788 && (asect->flags & SEC_ALLOC) != 0)
2789 {
2790 /* Warn if we are changing a NOBITS section to PROGBITS, but
2791 allow the link to proceed. This can happen when users link
2792 non-bss input sections to bss output sections, or emit data
2793 to a bss output section via a linker script. */
2794 (*_bfd_error_handler)
2795 (_("warning: section `%A' type changed to PROGBITS"), asect);
2796 this_hdr->sh_type = sh_type;
2797 }
2798
2799 switch (this_hdr->sh_type)
2800 {
2801 default:
2802 break;
2803
2804 case SHT_STRTAB:
2805 case SHT_INIT_ARRAY:
2806 case SHT_FINI_ARRAY:
2807 case SHT_PREINIT_ARRAY:
2808 case SHT_NOTE:
2809 case SHT_NOBITS:
2810 case SHT_PROGBITS:
2811 break;
2812
2813 case SHT_HASH:
2814 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2815 break;
2816
2817 case SHT_DYNSYM:
2818 this_hdr->sh_entsize = bed->s->sizeof_sym;
2819 break;
2820
2821 case SHT_DYNAMIC:
2822 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2823 break;
2824
2825 case SHT_RELA:
2826 if (get_elf_backend_data (abfd)->may_use_rela_p)
2827 this_hdr->sh_entsize = bed->s->sizeof_rela;
2828 break;
2829
2830 case SHT_REL:
2831 if (get_elf_backend_data (abfd)->may_use_rel_p)
2832 this_hdr->sh_entsize = bed->s->sizeof_rel;
2833 break;
2834
2835 case SHT_GNU_versym:
2836 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2837 break;
2838
2839 case SHT_GNU_verdef:
2840 this_hdr->sh_entsize = 0;
2841 /* objcopy or strip will copy over sh_info, but may not set
2842 cverdefs. The linker will set cverdefs, but sh_info will be
2843 zero. */
2844 if (this_hdr->sh_info == 0)
2845 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2846 else
2847 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2848 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2849 break;
2850
2851 case SHT_GNU_verneed:
2852 this_hdr->sh_entsize = 0;
2853 /* objcopy or strip will copy over sh_info, but may not set
2854 cverrefs. The linker will set cverrefs, but sh_info will be
2855 zero. */
2856 if (this_hdr->sh_info == 0)
2857 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2858 else
2859 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2860 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2861 break;
2862
2863 case SHT_GROUP:
2864 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2865 break;
2866
2867 case SHT_GNU_HASH:
2868 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2869 break;
2870 }
2871
2872 if ((asect->flags & SEC_ALLOC) != 0)
2873 this_hdr->sh_flags |= SHF_ALLOC;
2874 if ((asect->flags & SEC_READONLY) == 0)
2875 this_hdr->sh_flags |= SHF_WRITE;
2876 if ((asect->flags & SEC_CODE) != 0)
2877 this_hdr->sh_flags |= SHF_EXECINSTR;
2878 if ((asect->flags & SEC_MERGE) != 0)
2879 {
2880 this_hdr->sh_flags |= SHF_MERGE;
2881 this_hdr->sh_entsize = asect->entsize;
2882 if ((asect->flags & SEC_STRINGS) != 0)
2883 this_hdr->sh_flags |= SHF_STRINGS;
2884 }
2885 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2886 this_hdr->sh_flags |= SHF_GROUP;
2887 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2888 {
2889 this_hdr->sh_flags |= SHF_TLS;
2890 if (asect->size == 0
2891 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2892 {
2893 struct bfd_link_order *o = asect->map_tail.link_order;
2894
2895 this_hdr->sh_size = 0;
2896 if (o != NULL)
2897 {
2898 this_hdr->sh_size = o->offset + o->size;
2899 if (this_hdr->sh_size != 0)
2900 this_hdr->sh_type = SHT_NOBITS;
2901 }
2902 }
2903 }
2904 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2905 this_hdr->sh_flags |= SHF_EXCLUDE;
2906
2907 /* If the section has relocs, set up a section header for the
2908 SHT_REL[A] section. If two relocation sections are required for
2909 this section, it is up to the processor-specific back-end to
2910 create the other. */
2911 if ((asect->flags & SEC_RELOC) != 0)
2912 {
2913 /* When doing a relocatable link, create both REL and RELA sections if
2914 needed. */
2915 if (arg->link_info
2916 /* Do the normal setup if we wouldn't create any sections here. */
2917 && esd->rel.count + esd->rela.count > 0
2918 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2919 {
2920 if (esd->rel.count && esd->rel.hdr == NULL
2921 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2922 {
2923 arg->failed = TRUE;
2924 return;
2925 }
2926 if (esd->rela.count && esd->rela.hdr == NULL
2927 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2928 {
2929 arg->failed = TRUE;
2930 return;
2931 }
2932 }
2933 else if (!_bfd_elf_init_reloc_shdr (abfd,
2934 (asect->use_rela_p
2935 ? &esd->rela : &esd->rel),
2936 asect,
2937 asect->use_rela_p))
2938 arg->failed = TRUE;
2939 }
2940
2941 /* Check for processor-specific section types. */
2942 sh_type = this_hdr->sh_type;
2943 if (bed->elf_backend_fake_sections
2944 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2945 arg->failed = TRUE;
2946
2947 if (sh_type == SHT_NOBITS && asect->size != 0)
2948 {
2949 /* Don't change the header type from NOBITS if we are being
2950 called for objcopy --only-keep-debug. */
2951 this_hdr->sh_type = sh_type;
2952 }
2953 }
2954
2955 /* Fill in the contents of a SHT_GROUP section. Called from
2956 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2957 when ELF targets use the generic linker, ld. Called for ld -r
2958 from bfd_elf_final_link. */
2959
2960 void
2961 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2962 {
2963 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2964 asection *elt, *first;
2965 unsigned char *loc;
2966 bfd_boolean gas;
2967
2968 /* Ignore linker created group section. See elfNN_ia64_object_p in
2969 elfxx-ia64.c. */
2970 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2971 || *failedptr)
2972 return;
2973
2974 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2975 {
2976 unsigned long symindx = 0;
2977
2978 /* elf_group_id will have been set up by objcopy and the
2979 generic linker. */
2980 if (elf_group_id (sec) != NULL)
2981 symindx = elf_group_id (sec)->udata.i;
2982
2983 if (symindx == 0)
2984 {
2985 /* If called from the assembler, swap_out_syms will have set up
2986 elf_section_syms. */
2987 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2988 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2989 }
2990 elf_section_data (sec)->this_hdr.sh_info = symindx;
2991 }
2992 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2993 {
2994 /* The ELF backend linker sets sh_info to -2 when the group
2995 signature symbol is global, and thus the index can't be
2996 set until all local symbols are output. */
2997 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2998 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2999 unsigned long symndx = sec_data->this_hdr.sh_info;
3000 unsigned long extsymoff = 0;
3001 struct elf_link_hash_entry *h;
3002
3003 if (!elf_bad_symtab (igroup->owner))
3004 {
3005 Elf_Internal_Shdr *symtab_hdr;
3006
3007 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3008 extsymoff = symtab_hdr->sh_info;
3009 }
3010 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3011 while (h->root.type == bfd_link_hash_indirect
3012 || h->root.type == bfd_link_hash_warning)
3013 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3014
3015 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3016 }
3017
3018 /* The contents won't be allocated for "ld -r" or objcopy. */
3019 gas = TRUE;
3020 if (sec->contents == NULL)
3021 {
3022 gas = FALSE;
3023 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3024
3025 /* Arrange for the section to be written out. */
3026 elf_section_data (sec)->this_hdr.contents = sec->contents;
3027 if (sec->contents == NULL)
3028 {
3029 *failedptr = TRUE;
3030 return;
3031 }
3032 }
3033
3034 loc = sec->contents + sec->size;
3035
3036 /* Get the pointer to the first section in the group that gas
3037 squirreled away here. objcopy arranges for this to be set to the
3038 start of the input section group. */
3039 first = elt = elf_next_in_group (sec);
3040
3041 /* First element is a flag word. Rest of section is elf section
3042 indices for all the sections of the group. Write them backwards
3043 just to keep the group in the same order as given in .section
3044 directives, not that it matters. */
3045 while (elt != NULL)
3046 {
3047 asection *s;
3048
3049 s = elt;
3050 if (!gas)
3051 s = s->output_section;
3052 if (s != NULL
3053 && !bfd_is_abs_section (s))
3054 {
3055 unsigned int idx = elf_section_data (s)->this_idx;
3056
3057 loc -= 4;
3058 H_PUT_32 (abfd, idx, loc);
3059 }
3060 elt = elf_next_in_group (elt);
3061 if (elt == first)
3062 break;
3063 }
3064
3065 if ((loc -= 4) != sec->contents)
3066 abort ();
3067
3068 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3069 }
3070
3071 /* Assign all ELF section numbers. The dummy first section is handled here
3072 too. The link/info pointers for the standard section types are filled
3073 in here too, while we're at it. */
3074
3075 static bfd_boolean
3076 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3077 {
3078 struct elf_obj_tdata *t = elf_tdata (abfd);
3079 asection *sec;
3080 unsigned int section_number, secn;
3081 Elf_Internal_Shdr **i_shdrp;
3082 struct bfd_elf_section_data *d;
3083 bfd_boolean need_symtab;
3084
3085 section_number = 1;
3086
3087 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3088
3089 /* SHT_GROUP sections are in relocatable files only. */
3090 if (link_info == NULL || link_info->relocatable)
3091 {
3092 /* Put SHT_GROUP sections first. */
3093 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3094 {
3095 d = elf_section_data (sec);
3096
3097 if (d->this_hdr.sh_type == SHT_GROUP)
3098 {
3099 if (sec->flags & SEC_LINKER_CREATED)
3100 {
3101 /* Remove the linker created SHT_GROUP sections. */
3102 bfd_section_list_remove (abfd, sec);
3103 abfd->section_count--;
3104 }
3105 else
3106 d->this_idx = section_number++;
3107 }
3108 }
3109 }
3110
3111 for (sec = abfd->sections; sec; sec = sec->next)
3112 {
3113 d = elf_section_data (sec);
3114
3115 if (d->this_hdr.sh_type != SHT_GROUP)
3116 d->this_idx = section_number++;
3117 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3118 if (d->rel.hdr)
3119 {
3120 d->rel.idx = section_number++;
3121 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3122 }
3123 else
3124 d->rel.idx = 0;
3125
3126 if (d->rela.hdr)
3127 {
3128 d->rela.idx = section_number++;
3129 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3130 }
3131 else
3132 d->rela.idx = 0;
3133 }
3134
3135 elf_shstrtab_sec (abfd) = section_number++;
3136 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3137 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3138
3139 need_symtab = (bfd_get_symcount (abfd) > 0
3140 || (link_info == NULL
3141 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3142 == HAS_RELOC)));
3143 if (need_symtab)
3144 {
3145 elf_onesymtab (abfd) = section_number++;
3146 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3147 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3148 {
3149 elf_symtab_shndx (abfd) = section_number++;
3150 t->symtab_shndx_hdr.sh_name
3151 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3152 ".symtab_shndx", FALSE);
3153 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3154 return FALSE;
3155 }
3156 elf_strtab_sec (abfd) = section_number++;
3157 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3158 }
3159
3160 if (section_number >= SHN_LORESERVE)
3161 {
3162 _bfd_error_handler (_("%B: too many sections: %u"),
3163 abfd, section_number);
3164 return FALSE;
3165 }
3166
3167 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3168 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3169
3170 elf_numsections (abfd) = section_number;
3171 elf_elfheader (abfd)->e_shnum = section_number;
3172
3173 /* Set up the list of section header pointers, in agreement with the
3174 indices. */
3175 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3176 sizeof (Elf_Internal_Shdr *));
3177 if (i_shdrp == NULL)
3178 return FALSE;
3179
3180 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3181 sizeof (Elf_Internal_Shdr));
3182 if (i_shdrp[0] == NULL)
3183 {
3184 bfd_release (abfd, i_shdrp);
3185 return FALSE;
3186 }
3187
3188 elf_elfsections (abfd) = i_shdrp;
3189
3190 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3191 if (need_symtab)
3192 {
3193 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3194 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3195 {
3196 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3197 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3198 }
3199 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3200 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3201 }
3202
3203 for (sec = abfd->sections; sec; sec = sec->next)
3204 {
3205 asection *s;
3206 const char *name;
3207
3208 d = elf_section_data (sec);
3209
3210 i_shdrp[d->this_idx] = &d->this_hdr;
3211 if (d->rel.idx != 0)
3212 i_shdrp[d->rel.idx] = d->rel.hdr;
3213 if (d->rela.idx != 0)
3214 i_shdrp[d->rela.idx] = d->rela.hdr;
3215
3216 /* Fill in the sh_link and sh_info fields while we're at it. */
3217
3218 /* sh_link of a reloc section is the section index of the symbol
3219 table. sh_info is the section index of the section to which
3220 the relocation entries apply. */
3221 if (d->rel.idx != 0)
3222 {
3223 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3224 d->rel.hdr->sh_info = d->this_idx;
3225 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3226 }
3227 if (d->rela.idx != 0)
3228 {
3229 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3230 d->rela.hdr->sh_info = d->this_idx;
3231 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3232 }
3233
3234 /* We need to set up sh_link for SHF_LINK_ORDER. */
3235 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3236 {
3237 s = elf_linked_to_section (sec);
3238 if (s)
3239 {
3240 /* elf_linked_to_section points to the input section. */
3241 if (link_info != NULL)
3242 {
3243 /* Check discarded linkonce section. */
3244 if (discarded_section (s))
3245 {
3246 asection *kept;
3247 (*_bfd_error_handler)
3248 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3249 abfd, d->this_hdr.bfd_section,
3250 s, s->owner);
3251 /* Point to the kept section if it has the same
3252 size as the discarded one. */
3253 kept = _bfd_elf_check_kept_section (s, link_info);
3254 if (kept == NULL)
3255 {
3256 bfd_set_error (bfd_error_bad_value);
3257 return FALSE;
3258 }
3259 s = kept;
3260 }
3261
3262 s = s->output_section;
3263 BFD_ASSERT (s != NULL);
3264 }
3265 else
3266 {
3267 /* Handle objcopy. */
3268 if (s->output_section == NULL)
3269 {
3270 (*_bfd_error_handler)
3271 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3272 abfd, d->this_hdr.bfd_section, s, s->owner);
3273 bfd_set_error (bfd_error_bad_value);
3274 return FALSE;
3275 }
3276 s = s->output_section;
3277 }
3278 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3279 }
3280 else
3281 {
3282 /* PR 290:
3283 The Intel C compiler generates SHT_IA_64_UNWIND with
3284 SHF_LINK_ORDER. But it doesn't set the sh_link or
3285 sh_info fields. Hence we could get the situation
3286 where s is NULL. */
3287 const struct elf_backend_data *bed
3288 = get_elf_backend_data (abfd);
3289 if (bed->link_order_error_handler)
3290 bed->link_order_error_handler
3291 (_("%B: warning: sh_link not set for section `%A'"),
3292 abfd, sec);
3293 }
3294 }
3295
3296 switch (d->this_hdr.sh_type)
3297 {
3298 case SHT_REL:
3299 case SHT_RELA:
3300 /* A reloc section which we are treating as a normal BFD
3301 section. sh_link is the section index of the symbol
3302 table. sh_info is the section index of the section to
3303 which the relocation entries apply. We assume that an
3304 allocated reloc section uses the dynamic symbol table.
3305 FIXME: How can we be sure? */
3306 s = bfd_get_section_by_name (abfd, ".dynsym");
3307 if (s != NULL)
3308 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3309
3310 /* We look up the section the relocs apply to by name. */
3311 name = sec->name;
3312 if (d->this_hdr.sh_type == SHT_REL)
3313 name += 4;
3314 else
3315 name += 5;
3316 s = bfd_get_section_by_name (abfd, name);
3317 if (s != NULL)
3318 {
3319 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3320 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3321 }
3322 break;
3323
3324 case SHT_STRTAB:
3325 /* We assume that a section named .stab*str is a stabs
3326 string section. We look for a section with the same name
3327 but without the trailing ``str'', and set its sh_link
3328 field to point to this section. */
3329 if (CONST_STRNEQ (sec->name, ".stab")
3330 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3331 {
3332 size_t len;
3333 char *alc;
3334
3335 len = strlen (sec->name);
3336 alc = (char *) bfd_malloc (len - 2);
3337 if (alc == NULL)
3338 return FALSE;
3339 memcpy (alc, sec->name, len - 3);
3340 alc[len - 3] = '\0';
3341 s = bfd_get_section_by_name (abfd, alc);
3342 free (alc);
3343 if (s != NULL)
3344 {
3345 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3346
3347 /* This is a .stab section. */
3348 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3349 elf_section_data (s)->this_hdr.sh_entsize
3350 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3351 }
3352 }
3353 break;
3354
3355 case SHT_DYNAMIC:
3356 case SHT_DYNSYM:
3357 case SHT_GNU_verneed:
3358 case SHT_GNU_verdef:
3359 /* sh_link is the section header index of the string table
3360 used for the dynamic entries, or the symbol table, or the
3361 version strings. */
3362 s = bfd_get_section_by_name (abfd, ".dynstr");
3363 if (s != NULL)
3364 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3365 break;
3366
3367 case SHT_GNU_LIBLIST:
3368 /* sh_link is the section header index of the prelink library
3369 list used for the dynamic entries, or the symbol table, or
3370 the version strings. */
3371 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3372 ? ".dynstr" : ".gnu.libstr");
3373 if (s != NULL)
3374 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3375 break;
3376
3377 case SHT_HASH:
3378 case SHT_GNU_HASH:
3379 case SHT_GNU_versym:
3380 /* sh_link is the section header index of the symbol table
3381 this hash table or version table is for. */
3382 s = bfd_get_section_by_name (abfd, ".dynsym");
3383 if (s != NULL)
3384 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3385 break;
3386
3387 case SHT_GROUP:
3388 d->this_hdr.sh_link = elf_onesymtab (abfd);
3389 }
3390 }
3391
3392 for (secn = 1; secn < section_number; ++secn)
3393 if (i_shdrp[secn] == NULL)
3394 i_shdrp[secn] = i_shdrp[0];
3395 else
3396 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3397 i_shdrp[secn]->sh_name);
3398 return TRUE;
3399 }
3400
3401 static bfd_boolean
3402 sym_is_global (bfd *abfd, asymbol *sym)
3403 {
3404 /* If the backend has a special mapping, use it. */
3405 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3406 if (bed->elf_backend_sym_is_global)
3407 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3408
3409 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3410 || bfd_is_und_section (bfd_get_section (sym))
3411 || bfd_is_com_section (bfd_get_section (sym)));
3412 }
3413
3414 /* Don't output section symbols for sections that are not going to be
3415 output, that are duplicates or there is no BFD section. */
3416
3417 static bfd_boolean
3418 ignore_section_sym (bfd *abfd, asymbol *sym)
3419 {
3420 elf_symbol_type *type_ptr;
3421
3422 if ((sym->flags & BSF_SECTION_SYM) == 0)
3423 return FALSE;
3424
3425 type_ptr = elf_symbol_from (abfd, sym);
3426 return ((type_ptr != NULL
3427 && type_ptr->internal_elf_sym.st_shndx != 0
3428 && bfd_is_abs_section (sym->section))
3429 || !(sym->section->owner == abfd
3430 || (sym->section->output_section->owner == abfd
3431 && sym->section->output_offset == 0)
3432 || bfd_is_abs_section (sym->section)));
3433 }
3434
3435 /* Map symbol from it's internal number to the external number, moving
3436 all local symbols to be at the head of the list. */
3437
3438 static bfd_boolean
3439 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3440 {
3441 unsigned int symcount = bfd_get_symcount (abfd);
3442 asymbol **syms = bfd_get_outsymbols (abfd);
3443 asymbol **sect_syms;
3444 unsigned int num_locals = 0;
3445 unsigned int num_globals = 0;
3446 unsigned int num_locals2 = 0;
3447 unsigned int num_globals2 = 0;
3448 int max_index = 0;
3449 unsigned int idx;
3450 asection *asect;
3451 asymbol **new_syms;
3452
3453 #ifdef DEBUG
3454 fprintf (stderr, "elf_map_symbols\n");
3455 fflush (stderr);
3456 #endif
3457
3458 for (asect = abfd->sections; asect; asect = asect->next)
3459 {
3460 if (max_index < asect->index)
3461 max_index = asect->index;
3462 }
3463
3464 max_index++;
3465 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3466 if (sect_syms == NULL)
3467 return FALSE;
3468 elf_section_syms (abfd) = sect_syms;
3469 elf_num_section_syms (abfd) = max_index;
3470
3471 /* Init sect_syms entries for any section symbols we have already
3472 decided to output. */
3473 for (idx = 0; idx < symcount; idx++)
3474 {
3475 asymbol *sym = syms[idx];
3476
3477 if ((sym->flags & BSF_SECTION_SYM) != 0
3478 && sym->value == 0
3479 && !ignore_section_sym (abfd, sym)
3480 && !bfd_is_abs_section (sym->section))
3481 {
3482 asection *sec = sym->section;
3483
3484 if (sec->owner != abfd)
3485 sec = sec->output_section;
3486
3487 sect_syms[sec->index] = syms[idx];
3488 }
3489 }
3490
3491 /* Classify all of the symbols. */
3492 for (idx = 0; idx < symcount; idx++)
3493 {
3494 if (sym_is_global (abfd, syms[idx]))
3495 num_globals++;
3496 else if (!ignore_section_sym (abfd, syms[idx]))
3497 num_locals++;
3498 }
3499
3500 /* We will be adding a section symbol for each normal BFD section. Most
3501 sections will already have a section symbol in outsymbols, but
3502 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3503 at least in that case. */
3504 for (asect = abfd->sections; asect; asect = asect->next)
3505 {
3506 if (sect_syms[asect->index] == NULL)
3507 {
3508 if (!sym_is_global (abfd, asect->symbol))
3509 num_locals++;
3510 else
3511 num_globals++;
3512 }
3513 }
3514
3515 /* Now sort the symbols so the local symbols are first. */
3516 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3517 sizeof (asymbol *));
3518
3519 if (new_syms == NULL)
3520 return FALSE;
3521
3522 for (idx = 0; idx < symcount; idx++)
3523 {
3524 asymbol *sym = syms[idx];
3525 unsigned int i;
3526
3527 if (sym_is_global (abfd, sym))
3528 i = num_locals + num_globals2++;
3529 else if (!ignore_section_sym (abfd, sym))
3530 i = num_locals2++;
3531 else
3532 continue;
3533 new_syms[i] = sym;
3534 sym->udata.i = i + 1;
3535 }
3536 for (asect = abfd->sections; asect; asect = asect->next)
3537 {
3538 if (sect_syms[asect->index] == NULL)
3539 {
3540 asymbol *sym = asect->symbol;
3541 unsigned int i;
3542
3543 sect_syms[asect->index] = sym;
3544 if (!sym_is_global (abfd, sym))
3545 i = num_locals2++;
3546 else
3547 i = num_locals + num_globals2++;
3548 new_syms[i] = sym;
3549 sym->udata.i = i + 1;
3550 }
3551 }
3552
3553 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3554
3555 *pnum_locals = num_locals;
3556 return TRUE;
3557 }
3558
3559 /* Align to the maximum file alignment that could be required for any
3560 ELF data structure. */
3561
3562 static inline file_ptr
3563 align_file_position (file_ptr off, int align)
3564 {
3565 return (off + align - 1) & ~(align - 1);
3566 }
3567
3568 /* Assign a file position to a section, optionally aligning to the
3569 required section alignment. */
3570
3571 file_ptr
3572 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3573 file_ptr offset,
3574 bfd_boolean align)
3575 {
3576 if (align && i_shdrp->sh_addralign > 1)
3577 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3578 i_shdrp->sh_offset = offset;
3579 if (i_shdrp->bfd_section != NULL)
3580 i_shdrp->bfd_section->filepos = offset;
3581 if (i_shdrp->sh_type != SHT_NOBITS)
3582 offset += i_shdrp->sh_size;
3583 return offset;
3584 }
3585
3586 /* Compute the file positions we are going to put the sections at, and
3587 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3588 is not NULL, this is being called by the ELF backend linker. */
3589
3590 bfd_boolean
3591 _bfd_elf_compute_section_file_positions (bfd *abfd,
3592 struct bfd_link_info *link_info)
3593 {
3594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3595 struct fake_section_arg fsargs;
3596 bfd_boolean failed;
3597 struct bfd_strtab_hash *strtab = NULL;
3598 Elf_Internal_Shdr *shstrtab_hdr;
3599 bfd_boolean need_symtab;
3600
3601 if (abfd->output_has_begun)
3602 return TRUE;
3603
3604 /* Do any elf backend specific processing first. */
3605 if (bed->elf_backend_begin_write_processing)
3606 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3607
3608 if (! prep_headers (abfd))
3609 return FALSE;
3610
3611 /* Post process the headers if necessary. */
3612 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3613
3614 fsargs.failed = FALSE;
3615 fsargs.link_info = link_info;
3616 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3617 if (fsargs.failed)
3618 return FALSE;
3619
3620 if (!assign_section_numbers (abfd, link_info))
3621 return FALSE;
3622
3623 /* The backend linker builds symbol table information itself. */
3624 need_symtab = (link_info == NULL
3625 && (bfd_get_symcount (abfd) > 0
3626 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3627 == HAS_RELOC)));
3628 if (need_symtab)
3629 {
3630 /* Non-zero if doing a relocatable link. */
3631 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3632
3633 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3634 return FALSE;
3635 }
3636
3637 failed = FALSE;
3638 if (link_info == NULL)
3639 {
3640 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3641 if (failed)
3642 return FALSE;
3643 }
3644
3645 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3646 /* sh_name was set in prep_headers. */
3647 shstrtab_hdr->sh_type = SHT_STRTAB;
3648 shstrtab_hdr->sh_flags = 0;
3649 shstrtab_hdr->sh_addr = 0;
3650 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3651 shstrtab_hdr->sh_entsize = 0;
3652 shstrtab_hdr->sh_link = 0;
3653 shstrtab_hdr->sh_info = 0;
3654 /* sh_offset is set in assign_file_positions_except_relocs. */
3655 shstrtab_hdr->sh_addralign = 1;
3656
3657 if (!assign_file_positions_except_relocs (abfd, link_info))
3658 return FALSE;
3659
3660 if (need_symtab)
3661 {
3662 file_ptr off;
3663 Elf_Internal_Shdr *hdr;
3664
3665 off = elf_next_file_pos (abfd);
3666
3667 hdr = &elf_tdata (abfd)->symtab_hdr;
3668 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3669
3670 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3671 if (hdr->sh_size != 0)
3672 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3673
3674 hdr = &elf_tdata (abfd)->strtab_hdr;
3675 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3676
3677 elf_next_file_pos (abfd) = off;
3678
3679 /* Now that we know where the .strtab section goes, write it
3680 out. */
3681 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3682 || ! _bfd_stringtab_emit (abfd, strtab))
3683 return FALSE;
3684 _bfd_stringtab_free (strtab);
3685 }
3686
3687 abfd->output_has_begun = TRUE;
3688
3689 return TRUE;
3690 }
3691
3692 /* Make an initial estimate of the size of the program header. If we
3693 get the number wrong here, we'll redo section placement. */
3694
3695 static bfd_size_type
3696 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3697 {
3698 size_t segs;
3699 asection *s;
3700 const struct elf_backend_data *bed;
3701
3702 /* Assume we will need exactly two PT_LOAD segments: one for text
3703 and one for data. */
3704 segs = 2;
3705
3706 s = bfd_get_section_by_name (abfd, ".interp");
3707 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3708 {
3709 /* If we have a loadable interpreter section, we need a
3710 PT_INTERP segment. In this case, assume we also need a
3711 PT_PHDR segment, although that may not be true for all
3712 targets. */
3713 segs += 2;
3714 }
3715
3716 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3717 {
3718 /* We need a PT_DYNAMIC segment. */
3719 ++segs;
3720 }
3721
3722 if (info != NULL && info->relro)
3723 {
3724 /* We need a PT_GNU_RELRO segment. */
3725 ++segs;
3726 }
3727
3728 if (elf_eh_frame_hdr (abfd))
3729 {
3730 /* We need a PT_GNU_EH_FRAME segment. */
3731 ++segs;
3732 }
3733
3734 if (elf_stack_flags (abfd))
3735 {
3736 /* We need a PT_GNU_STACK segment. */
3737 ++segs;
3738 }
3739
3740 for (s = abfd->sections; s != NULL; s = s->next)
3741 {
3742 if ((s->flags & SEC_LOAD) != 0
3743 && CONST_STRNEQ (s->name, ".note"))
3744 {
3745 /* We need a PT_NOTE segment. */
3746 ++segs;
3747 /* Try to create just one PT_NOTE segment
3748 for all adjacent loadable .note* sections.
3749 gABI requires that within a PT_NOTE segment
3750 (and also inside of each SHT_NOTE section)
3751 each note is padded to a multiple of 4 size,
3752 so we check whether the sections are correctly
3753 aligned. */
3754 if (s->alignment_power == 2)
3755 while (s->next != NULL
3756 && s->next->alignment_power == 2
3757 && (s->next->flags & SEC_LOAD) != 0
3758 && CONST_STRNEQ (s->next->name, ".note"))
3759 s = s->next;
3760 }
3761 }
3762
3763 for (s = abfd->sections; s != NULL; s = s->next)
3764 {
3765 if (s->flags & SEC_THREAD_LOCAL)
3766 {
3767 /* We need a PT_TLS segment. */
3768 ++segs;
3769 break;
3770 }
3771 }
3772
3773 /* Let the backend count up any program headers it might need. */
3774 bed = get_elf_backend_data (abfd);
3775 if (bed->elf_backend_additional_program_headers)
3776 {
3777 int a;
3778
3779 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3780 if (a == -1)
3781 abort ();
3782 segs += a;
3783 }
3784
3785 return segs * bed->s->sizeof_phdr;
3786 }
3787
3788 /* Find the segment that contains the output_section of section. */
3789
3790 Elf_Internal_Phdr *
3791 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3792 {
3793 struct elf_segment_map *m;
3794 Elf_Internal_Phdr *p;
3795
3796 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3797 m != NULL;
3798 m = m->next, p++)
3799 {
3800 int i;
3801
3802 for (i = m->count - 1; i >= 0; i--)
3803 if (m->sections[i] == section)
3804 return p;
3805 }
3806
3807 return NULL;
3808 }
3809
3810 /* Create a mapping from a set of sections to a program segment. */
3811
3812 static struct elf_segment_map *
3813 make_mapping (bfd *abfd,
3814 asection **sections,
3815 unsigned int from,
3816 unsigned int to,
3817 bfd_boolean phdr)
3818 {
3819 struct elf_segment_map *m;
3820 unsigned int i;
3821 asection **hdrpp;
3822 bfd_size_type amt;
3823
3824 amt = sizeof (struct elf_segment_map);
3825 amt += (to - from - 1) * sizeof (asection *);
3826 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3827 if (m == NULL)
3828 return NULL;
3829 m->next = NULL;
3830 m->p_type = PT_LOAD;
3831 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3832 m->sections[i - from] = *hdrpp;
3833 m->count = to - from;
3834
3835 if (from == 0 && phdr)
3836 {
3837 /* Include the headers in the first PT_LOAD segment. */
3838 m->includes_filehdr = 1;
3839 m->includes_phdrs = 1;
3840 }
3841
3842 return m;
3843 }
3844
3845 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3846 on failure. */
3847
3848 struct elf_segment_map *
3849 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3850 {
3851 struct elf_segment_map *m;
3852
3853 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3854 sizeof (struct elf_segment_map));
3855 if (m == NULL)
3856 return NULL;
3857 m->next = NULL;
3858 m->p_type = PT_DYNAMIC;
3859 m->count = 1;
3860 m->sections[0] = dynsec;
3861
3862 return m;
3863 }
3864
3865 /* Possibly add or remove segments from the segment map. */
3866
3867 static bfd_boolean
3868 elf_modify_segment_map (bfd *abfd,
3869 struct bfd_link_info *info,
3870 bfd_boolean remove_empty_load)
3871 {
3872 struct elf_segment_map **m;
3873 const struct elf_backend_data *bed;
3874
3875 /* The placement algorithm assumes that non allocated sections are
3876 not in PT_LOAD segments. We ensure this here by removing such
3877 sections from the segment map. We also remove excluded
3878 sections. Finally, any PT_LOAD segment without sections is
3879 removed. */
3880 m = &elf_seg_map (abfd);
3881 while (*m)
3882 {
3883 unsigned int i, new_count;
3884
3885 for (new_count = 0, i = 0; i < (*m)->count; i++)
3886 {
3887 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3888 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3889 || (*m)->p_type != PT_LOAD))
3890 {
3891 (*m)->sections[new_count] = (*m)->sections[i];
3892 new_count++;
3893 }
3894 }
3895 (*m)->count = new_count;
3896
3897 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3898 *m = (*m)->next;
3899 else
3900 m = &(*m)->next;
3901 }
3902
3903 bed = get_elf_backend_data (abfd);
3904 if (bed->elf_backend_modify_segment_map != NULL)
3905 {
3906 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3907 return FALSE;
3908 }
3909
3910 return TRUE;
3911 }
3912
3913 /* Set up a mapping from BFD sections to program segments. */
3914
3915 bfd_boolean
3916 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3917 {
3918 unsigned int count;
3919 struct elf_segment_map *m;
3920 asection **sections = NULL;
3921 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3922 bfd_boolean no_user_phdrs;
3923
3924 no_user_phdrs = elf_seg_map (abfd) == NULL;
3925
3926 if (info != NULL)
3927 info->user_phdrs = !no_user_phdrs;
3928
3929 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3930 {
3931 asection *s;
3932 unsigned int i;
3933 struct elf_segment_map *mfirst;
3934 struct elf_segment_map **pm;
3935 asection *last_hdr;
3936 bfd_vma last_size;
3937 unsigned int phdr_index;
3938 bfd_vma maxpagesize;
3939 asection **hdrpp;
3940 bfd_boolean phdr_in_segment = TRUE;
3941 bfd_boolean writable;
3942 int tls_count = 0;
3943 asection *first_tls = NULL;
3944 asection *dynsec, *eh_frame_hdr;
3945 bfd_size_type amt;
3946 bfd_vma addr_mask, wrap_to = 0;
3947
3948 /* Select the allocated sections, and sort them. */
3949
3950 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3951 sizeof (asection *));
3952 if (sections == NULL)
3953 goto error_return;
3954
3955 /* Calculate top address, avoiding undefined behaviour of shift
3956 left operator when shift count is equal to size of type
3957 being shifted. */
3958 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3959 addr_mask = (addr_mask << 1) + 1;
3960
3961 i = 0;
3962 for (s = abfd->sections; s != NULL; s = s->next)
3963 {
3964 if ((s->flags & SEC_ALLOC) != 0)
3965 {
3966 sections[i] = s;
3967 ++i;
3968 /* A wrapping section potentially clashes with header. */
3969 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3970 wrap_to = (s->lma + s->size) & addr_mask;
3971 }
3972 }
3973 BFD_ASSERT (i <= bfd_count_sections (abfd));
3974 count = i;
3975
3976 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3977
3978 /* Build the mapping. */
3979
3980 mfirst = NULL;
3981 pm = &mfirst;
3982
3983 /* If we have a .interp section, then create a PT_PHDR segment for
3984 the program headers and a PT_INTERP segment for the .interp
3985 section. */
3986 s = bfd_get_section_by_name (abfd, ".interp");
3987 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3988 {
3989 amt = sizeof (struct elf_segment_map);
3990 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3991 if (m == NULL)
3992 goto error_return;
3993 m->next = NULL;
3994 m->p_type = PT_PHDR;
3995 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3996 m->p_flags = PF_R | PF_X;
3997 m->p_flags_valid = 1;
3998 m->includes_phdrs = 1;
3999
4000 *pm = m;
4001 pm = &m->next;
4002
4003 amt = sizeof (struct elf_segment_map);
4004 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4005 if (m == NULL)
4006 goto error_return;
4007 m->next = NULL;
4008 m->p_type = PT_INTERP;
4009 m->count = 1;
4010 m->sections[0] = s;
4011
4012 *pm = m;
4013 pm = &m->next;
4014 }
4015
4016 /* Look through the sections. We put sections in the same program
4017 segment when the start of the second section can be placed within
4018 a few bytes of the end of the first section. */
4019 last_hdr = NULL;
4020 last_size = 0;
4021 phdr_index = 0;
4022 maxpagesize = bed->maxpagesize;
4023 /* PR 17512: file: c8455299.
4024 Avoid divide-by-zero errors later on.
4025 FIXME: Should we abort if the maxpagesize is zero ? */
4026 if (maxpagesize == 0)
4027 maxpagesize = 1;
4028 writable = FALSE;
4029 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4030 if (dynsec != NULL
4031 && (dynsec->flags & SEC_LOAD) == 0)
4032 dynsec = NULL;
4033
4034 /* Deal with -Ttext or something similar such that the first section
4035 is not adjacent to the program headers. This is an
4036 approximation, since at this point we don't know exactly how many
4037 program headers we will need. */
4038 if (count > 0)
4039 {
4040 bfd_size_type phdr_size = elf_program_header_size (abfd);
4041
4042 if (phdr_size == (bfd_size_type) -1)
4043 phdr_size = get_program_header_size (abfd, info);
4044 phdr_size += bed->s->sizeof_ehdr;
4045 if ((abfd->flags & D_PAGED) == 0
4046 || (sections[0]->lma & addr_mask) < phdr_size
4047 || ((sections[0]->lma & addr_mask) % maxpagesize
4048 < phdr_size % maxpagesize)
4049 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4050 phdr_in_segment = FALSE;
4051 }
4052
4053 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4054 {
4055 asection *hdr;
4056 bfd_boolean new_segment;
4057
4058 hdr = *hdrpp;
4059
4060 /* See if this section and the last one will fit in the same
4061 segment. */
4062
4063 if (last_hdr == NULL)
4064 {
4065 /* If we don't have a segment yet, then we don't need a new
4066 one (we build the last one after this loop). */
4067 new_segment = FALSE;
4068 }
4069 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4070 {
4071 /* If this section has a different relation between the
4072 virtual address and the load address, then we need a new
4073 segment. */
4074 new_segment = TRUE;
4075 }
4076 else if (hdr->lma < last_hdr->lma + last_size
4077 || last_hdr->lma + last_size < last_hdr->lma)
4078 {
4079 /* If this section has a load address that makes it overlap
4080 the previous section, then we need a new segment. */
4081 new_segment = TRUE;
4082 }
4083 /* In the next test we have to be careful when last_hdr->lma is close
4084 to the end of the address space. If the aligned address wraps
4085 around to the start of the address space, then there are no more
4086 pages left in memory and it is OK to assume that the current
4087 section can be included in the current segment. */
4088 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4089 > last_hdr->lma)
4090 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4091 <= hdr->lma))
4092 {
4093 /* If putting this section in this segment would force us to
4094 skip a page in the segment, then we need a new segment. */
4095 new_segment = TRUE;
4096 }
4097 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4098 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4099 {
4100 /* We don't want to put a loadable section after a
4101 nonloadable section in the same segment.
4102 Consider .tbss sections as loadable for this purpose. */
4103 new_segment = TRUE;
4104 }
4105 else if ((abfd->flags & D_PAGED) == 0)
4106 {
4107 /* If the file is not demand paged, which means that we
4108 don't require the sections to be correctly aligned in the
4109 file, then there is no other reason for a new segment. */
4110 new_segment = FALSE;
4111 }
4112 else if (! writable
4113 && (hdr->flags & SEC_READONLY) == 0
4114 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4115 != (hdr->lma & -maxpagesize)))
4116 {
4117 /* We don't want to put a writable section in a read only
4118 segment, unless they are on the same page in memory
4119 anyhow. We already know that the last section does not
4120 bring us past the current section on the page, so the
4121 only case in which the new section is not on the same
4122 page as the previous section is when the previous section
4123 ends precisely on a page boundary. */
4124 new_segment = TRUE;
4125 }
4126 else
4127 {
4128 /* Otherwise, we can use the same segment. */
4129 new_segment = FALSE;
4130 }
4131
4132 /* Allow interested parties a chance to override our decision. */
4133 if (last_hdr != NULL
4134 && info != NULL
4135 && info->callbacks->override_segment_assignment != NULL)
4136 new_segment
4137 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4138 last_hdr,
4139 new_segment);
4140
4141 if (! new_segment)
4142 {
4143 if ((hdr->flags & SEC_READONLY) == 0)
4144 writable = TRUE;
4145 last_hdr = hdr;
4146 /* .tbss sections effectively have zero size. */
4147 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4148 != SEC_THREAD_LOCAL)
4149 last_size = hdr->size;
4150 else
4151 last_size = 0;
4152 continue;
4153 }
4154
4155 /* We need a new program segment. We must create a new program
4156 header holding all the sections from phdr_index until hdr. */
4157
4158 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4159 if (m == NULL)
4160 goto error_return;
4161
4162 *pm = m;
4163 pm = &m->next;
4164
4165 if ((hdr->flags & SEC_READONLY) == 0)
4166 writable = TRUE;
4167 else
4168 writable = FALSE;
4169
4170 last_hdr = hdr;
4171 /* .tbss sections effectively have zero size. */
4172 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4173 last_size = hdr->size;
4174 else
4175 last_size = 0;
4176 phdr_index = i;
4177 phdr_in_segment = FALSE;
4178 }
4179
4180 /* Create a final PT_LOAD program segment, but not if it's just
4181 for .tbss. */
4182 if (last_hdr != NULL
4183 && (i - phdr_index != 1
4184 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4185 != SEC_THREAD_LOCAL)))
4186 {
4187 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4188 if (m == NULL)
4189 goto error_return;
4190
4191 *pm = m;
4192 pm = &m->next;
4193 }
4194
4195 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4196 if (dynsec != NULL)
4197 {
4198 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4199 if (m == NULL)
4200 goto error_return;
4201 *pm = m;
4202 pm = &m->next;
4203 }
4204
4205 /* For each batch of consecutive loadable .note sections,
4206 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4207 because if we link together nonloadable .note sections and
4208 loadable .note sections, we will generate two .note sections
4209 in the output file. FIXME: Using names for section types is
4210 bogus anyhow. */
4211 for (s = abfd->sections; s != NULL; s = s->next)
4212 {
4213 if ((s->flags & SEC_LOAD) != 0
4214 && CONST_STRNEQ (s->name, ".note"))
4215 {
4216 asection *s2;
4217
4218 count = 1;
4219 amt = sizeof (struct elf_segment_map);
4220 if (s->alignment_power == 2)
4221 for (s2 = s; s2->next != NULL; s2 = s2->next)
4222 {
4223 if (s2->next->alignment_power == 2
4224 && (s2->next->flags & SEC_LOAD) != 0
4225 && CONST_STRNEQ (s2->next->name, ".note")
4226 && align_power (s2->lma + s2->size, 2)
4227 == s2->next->lma)
4228 count++;
4229 else
4230 break;
4231 }
4232 amt += (count - 1) * sizeof (asection *);
4233 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4234 if (m == NULL)
4235 goto error_return;
4236 m->next = NULL;
4237 m->p_type = PT_NOTE;
4238 m->count = count;
4239 while (count > 1)
4240 {
4241 m->sections[m->count - count--] = s;
4242 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4243 s = s->next;
4244 }
4245 m->sections[m->count - 1] = s;
4246 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4247 *pm = m;
4248 pm = &m->next;
4249 }
4250 if (s->flags & SEC_THREAD_LOCAL)
4251 {
4252 if (! tls_count)
4253 first_tls = s;
4254 tls_count++;
4255 }
4256 }
4257
4258 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4259 if (tls_count > 0)
4260 {
4261 amt = sizeof (struct elf_segment_map);
4262 amt += (tls_count - 1) * sizeof (asection *);
4263 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4264 if (m == NULL)
4265 goto error_return;
4266 m->next = NULL;
4267 m->p_type = PT_TLS;
4268 m->count = tls_count;
4269 /* Mandated PF_R. */
4270 m->p_flags = PF_R;
4271 m->p_flags_valid = 1;
4272 s = first_tls;
4273 for (i = 0; i < (unsigned int) tls_count; ++i)
4274 {
4275 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4276 {
4277 _bfd_error_handler
4278 (_("%B: TLS sections are not adjacent:"), abfd);
4279 s = first_tls;
4280 i = 0;
4281 while (i < (unsigned int) tls_count)
4282 {
4283 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4284 {
4285 _bfd_error_handler (_(" TLS: %A"), s);
4286 i++;
4287 }
4288 else
4289 _bfd_error_handler (_(" non-TLS: %A"), s);
4290 s = s->next;
4291 }
4292 bfd_set_error (bfd_error_bad_value);
4293 goto error_return;
4294 }
4295 m->sections[i] = s;
4296 s = s->next;
4297 }
4298
4299 *pm = m;
4300 pm = &m->next;
4301 }
4302
4303 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4304 segment. */
4305 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4306 if (eh_frame_hdr != NULL
4307 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4308 {
4309 amt = sizeof (struct elf_segment_map);
4310 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4311 if (m == NULL)
4312 goto error_return;
4313 m->next = NULL;
4314 m->p_type = PT_GNU_EH_FRAME;
4315 m->count = 1;
4316 m->sections[0] = eh_frame_hdr->output_section;
4317
4318 *pm = m;
4319 pm = &m->next;
4320 }
4321
4322 if (elf_stack_flags (abfd))
4323 {
4324 amt = sizeof (struct elf_segment_map);
4325 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4326 if (m == NULL)
4327 goto error_return;
4328 m->next = NULL;
4329 m->p_type = PT_GNU_STACK;
4330 m->p_flags = elf_stack_flags (abfd);
4331 m->p_align = bed->stack_align;
4332 m->p_flags_valid = 1;
4333 m->p_align_valid = m->p_align != 0;
4334 if (info->stacksize > 0)
4335 {
4336 m->p_size = info->stacksize;
4337 m->p_size_valid = 1;
4338 }
4339
4340 *pm = m;
4341 pm = &m->next;
4342 }
4343
4344 if (info != NULL && info->relro)
4345 {
4346 for (m = mfirst; m != NULL; m = m->next)
4347 {
4348 if (m->p_type == PT_LOAD
4349 && m->count != 0
4350 && m->sections[0]->vma >= info->relro_start
4351 && m->sections[0]->vma < info->relro_end)
4352 {
4353 i = m->count;
4354 while (--i != (unsigned) -1)
4355 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4356 == (SEC_LOAD | SEC_HAS_CONTENTS))
4357 break;
4358
4359 if (i != (unsigned) -1)
4360 break;
4361 }
4362 }
4363
4364 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4365 if (m != NULL)
4366 {
4367 amt = sizeof (struct elf_segment_map);
4368 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4369 if (m == NULL)
4370 goto error_return;
4371 m->next = NULL;
4372 m->p_type = PT_GNU_RELRO;
4373 m->p_flags = PF_R;
4374 m->p_flags_valid = 1;
4375
4376 *pm = m;
4377 pm = &m->next;
4378 }
4379 }
4380
4381 free (sections);
4382 elf_seg_map (abfd) = mfirst;
4383 }
4384
4385 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4386 return FALSE;
4387
4388 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4389 ++count;
4390 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4391
4392 return TRUE;
4393
4394 error_return:
4395 if (sections != NULL)
4396 free (sections);
4397 return FALSE;
4398 }
4399
4400 /* Sort sections by address. */
4401
4402 static int
4403 elf_sort_sections (const void *arg1, const void *arg2)
4404 {
4405 const asection *sec1 = *(const asection **) arg1;
4406 const asection *sec2 = *(const asection **) arg2;
4407 bfd_size_type size1, size2;
4408
4409 /* Sort by LMA first, since this is the address used to
4410 place the section into a segment. */
4411 if (sec1->lma < sec2->lma)
4412 return -1;
4413 else if (sec1->lma > sec2->lma)
4414 return 1;
4415
4416 /* Then sort by VMA. Normally the LMA and the VMA will be
4417 the same, and this will do nothing. */
4418 if (sec1->vma < sec2->vma)
4419 return -1;
4420 else if (sec1->vma > sec2->vma)
4421 return 1;
4422
4423 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4424
4425 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4426
4427 if (TOEND (sec1))
4428 {
4429 if (TOEND (sec2))
4430 {
4431 /* If the indicies are the same, do not return 0
4432 here, but continue to try the next comparison. */
4433 if (sec1->target_index - sec2->target_index != 0)
4434 return sec1->target_index - sec2->target_index;
4435 }
4436 else
4437 return 1;
4438 }
4439 else if (TOEND (sec2))
4440 return -1;
4441
4442 #undef TOEND
4443
4444 /* Sort by size, to put zero sized sections
4445 before others at the same address. */
4446
4447 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4448 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4449
4450 if (size1 < size2)
4451 return -1;
4452 if (size1 > size2)
4453 return 1;
4454
4455 return sec1->target_index - sec2->target_index;
4456 }
4457
4458 /* Ian Lance Taylor writes:
4459
4460 We shouldn't be using % with a negative signed number. That's just
4461 not good. We have to make sure either that the number is not
4462 negative, or that the number has an unsigned type. When the types
4463 are all the same size they wind up as unsigned. When file_ptr is a
4464 larger signed type, the arithmetic winds up as signed long long,
4465 which is wrong.
4466
4467 What we're trying to say here is something like ``increase OFF by
4468 the least amount that will cause it to be equal to the VMA modulo
4469 the page size.'' */
4470 /* In other words, something like:
4471
4472 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4473 off_offset = off % bed->maxpagesize;
4474 if (vma_offset < off_offset)
4475 adjustment = vma_offset + bed->maxpagesize - off_offset;
4476 else
4477 adjustment = vma_offset - off_offset;
4478
4479 which can can be collapsed into the expression below. */
4480
4481 static file_ptr
4482 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4483 {
4484 /* PR binutils/16199: Handle an alignment of zero. */
4485 if (maxpagesize == 0)
4486 maxpagesize = 1;
4487 return ((vma - off) % maxpagesize);
4488 }
4489
4490 static void
4491 print_segment_map (const struct elf_segment_map *m)
4492 {
4493 unsigned int j;
4494 const char *pt = get_segment_type (m->p_type);
4495 char buf[32];
4496
4497 if (pt == NULL)
4498 {
4499 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4500 sprintf (buf, "LOPROC+%7.7x",
4501 (unsigned int) (m->p_type - PT_LOPROC));
4502 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4503 sprintf (buf, "LOOS+%7.7x",
4504 (unsigned int) (m->p_type - PT_LOOS));
4505 else
4506 snprintf (buf, sizeof (buf), "%8.8x",
4507 (unsigned int) m->p_type);
4508 pt = buf;
4509 }
4510 fflush (stdout);
4511 fprintf (stderr, "%s:", pt);
4512 for (j = 0; j < m->count; j++)
4513 fprintf (stderr, " %s", m->sections [j]->name);
4514 putc ('\n',stderr);
4515 fflush (stderr);
4516 }
4517
4518 static bfd_boolean
4519 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4520 {
4521 void *buf;
4522 bfd_boolean ret;
4523
4524 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4525 return FALSE;
4526 buf = bfd_zmalloc (len);
4527 if (buf == NULL)
4528 return FALSE;
4529 ret = bfd_bwrite (buf, len, abfd) == len;
4530 free (buf);
4531 return ret;
4532 }
4533
4534 /* Assign file positions to the sections based on the mapping from
4535 sections to segments. This function also sets up some fields in
4536 the file header. */
4537
4538 static bfd_boolean
4539 assign_file_positions_for_load_sections (bfd *abfd,
4540 struct bfd_link_info *link_info)
4541 {
4542 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4543 struct elf_segment_map *m;
4544 Elf_Internal_Phdr *phdrs;
4545 Elf_Internal_Phdr *p;
4546 file_ptr off;
4547 bfd_size_type maxpagesize;
4548 unsigned int alloc;
4549 unsigned int i, j;
4550 bfd_vma header_pad = 0;
4551
4552 if (link_info == NULL
4553 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4554 return FALSE;
4555
4556 alloc = 0;
4557 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4558 {
4559 ++alloc;
4560 if (m->header_size)
4561 header_pad = m->header_size;
4562 }
4563
4564 if (alloc)
4565 {
4566 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4567 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4568 }
4569 else
4570 {
4571 /* PR binutils/12467. */
4572 elf_elfheader (abfd)->e_phoff = 0;
4573 elf_elfheader (abfd)->e_phentsize = 0;
4574 }
4575
4576 elf_elfheader (abfd)->e_phnum = alloc;
4577
4578 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4579 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4580 else
4581 BFD_ASSERT (elf_program_header_size (abfd)
4582 >= alloc * bed->s->sizeof_phdr);
4583
4584 if (alloc == 0)
4585 {
4586 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4587 return TRUE;
4588 }
4589
4590 /* We're writing the size in elf_program_header_size (abfd),
4591 see assign_file_positions_except_relocs, so make sure we have
4592 that amount allocated, with trailing space cleared.
4593 The variable alloc contains the computed need, while
4594 elf_program_header_size (abfd) contains the size used for the
4595 layout.
4596 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4597 where the layout is forced to according to a larger size in the
4598 last iterations for the testcase ld-elf/header. */
4599 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4600 == 0);
4601 phdrs = (Elf_Internal_Phdr *)
4602 bfd_zalloc2 (abfd,
4603 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4604 sizeof (Elf_Internal_Phdr));
4605 elf_tdata (abfd)->phdr = phdrs;
4606 if (phdrs == NULL)
4607 return FALSE;
4608
4609 maxpagesize = 1;
4610 if ((abfd->flags & D_PAGED) != 0)
4611 maxpagesize = bed->maxpagesize;
4612
4613 off = bed->s->sizeof_ehdr;
4614 off += alloc * bed->s->sizeof_phdr;
4615 if (header_pad < (bfd_vma) off)
4616 header_pad = 0;
4617 else
4618 header_pad -= off;
4619 off += header_pad;
4620
4621 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4622 m != NULL;
4623 m = m->next, p++, j++)
4624 {
4625 asection **secpp;
4626 bfd_vma off_adjust;
4627 bfd_boolean no_contents;
4628
4629 /* If elf_segment_map is not from map_sections_to_segments, the
4630 sections may not be correctly ordered. NOTE: sorting should
4631 not be done to the PT_NOTE section of a corefile, which may
4632 contain several pseudo-sections artificially created by bfd.
4633 Sorting these pseudo-sections breaks things badly. */
4634 if (m->count > 1
4635 && !(elf_elfheader (abfd)->e_type == ET_CORE
4636 && m->p_type == PT_NOTE))
4637 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4638 elf_sort_sections);
4639
4640 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4641 number of sections with contents contributing to both p_filesz
4642 and p_memsz, followed by a number of sections with no contents
4643 that just contribute to p_memsz. In this loop, OFF tracks next
4644 available file offset for PT_LOAD and PT_NOTE segments. */
4645 p->p_type = m->p_type;
4646 p->p_flags = m->p_flags;
4647
4648 if (m->count == 0)
4649 p->p_vaddr = 0;
4650 else
4651 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4652
4653 if (m->p_paddr_valid)
4654 p->p_paddr = m->p_paddr;
4655 else if (m->count == 0)
4656 p->p_paddr = 0;
4657 else
4658 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4659
4660 if (p->p_type == PT_LOAD
4661 && (abfd->flags & D_PAGED) != 0)
4662 {
4663 /* p_align in demand paged PT_LOAD segments effectively stores
4664 the maximum page size. When copying an executable with
4665 objcopy, we set m->p_align from the input file. Use this
4666 value for maxpagesize rather than bed->maxpagesize, which
4667 may be different. Note that we use maxpagesize for PT_TLS
4668 segment alignment later in this function, so we are relying
4669 on at least one PT_LOAD segment appearing before a PT_TLS
4670 segment. */
4671 if (m->p_align_valid)
4672 maxpagesize = m->p_align;
4673
4674 p->p_align = maxpagesize;
4675 }
4676 else if (m->p_align_valid)
4677 p->p_align = m->p_align;
4678 else if (m->count == 0)
4679 p->p_align = 1 << bed->s->log_file_align;
4680 else
4681 p->p_align = 0;
4682
4683 no_contents = FALSE;
4684 off_adjust = 0;
4685 if (p->p_type == PT_LOAD
4686 && m->count > 0)
4687 {
4688 bfd_size_type align;
4689 unsigned int align_power = 0;
4690
4691 if (m->p_align_valid)
4692 align = p->p_align;
4693 else
4694 {
4695 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4696 {
4697 unsigned int secalign;
4698
4699 secalign = bfd_get_section_alignment (abfd, *secpp);
4700 if (secalign > align_power)
4701 align_power = secalign;
4702 }
4703 align = (bfd_size_type) 1 << align_power;
4704 if (align < maxpagesize)
4705 align = maxpagesize;
4706 }
4707
4708 for (i = 0; i < m->count; i++)
4709 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4710 /* If we aren't making room for this section, then
4711 it must be SHT_NOBITS regardless of what we've
4712 set via struct bfd_elf_special_section. */
4713 elf_section_type (m->sections[i]) = SHT_NOBITS;
4714
4715 /* Find out whether this segment contains any loadable
4716 sections. */
4717 no_contents = TRUE;
4718 for (i = 0; i < m->count; i++)
4719 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4720 {
4721 no_contents = FALSE;
4722 break;
4723 }
4724
4725 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4726 off += off_adjust;
4727 if (no_contents)
4728 {
4729 /* We shouldn't need to align the segment on disk since
4730 the segment doesn't need file space, but the gABI
4731 arguably requires the alignment and glibc ld.so
4732 checks it. So to comply with the alignment
4733 requirement but not waste file space, we adjust
4734 p_offset for just this segment. (OFF_ADJUST is
4735 subtracted from OFF later.) This may put p_offset
4736 past the end of file, but that shouldn't matter. */
4737 }
4738 else
4739 off_adjust = 0;
4740 }
4741 /* Make sure the .dynamic section is the first section in the
4742 PT_DYNAMIC segment. */
4743 else if (p->p_type == PT_DYNAMIC
4744 && m->count > 1
4745 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4746 {
4747 _bfd_error_handler
4748 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4749 abfd);
4750 bfd_set_error (bfd_error_bad_value);
4751 return FALSE;
4752 }
4753 /* Set the note section type to SHT_NOTE. */
4754 else if (p->p_type == PT_NOTE)
4755 for (i = 0; i < m->count; i++)
4756 elf_section_type (m->sections[i]) = SHT_NOTE;
4757
4758 p->p_offset = 0;
4759 p->p_filesz = 0;
4760 p->p_memsz = 0;
4761
4762 if (m->includes_filehdr)
4763 {
4764 if (!m->p_flags_valid)
4765 p->p_flags |= PF_R;
4766 p->p_filesz = bed->s->sizeof_ehdr;
4767 p->p_memsz = bed->s->sizeof_ehdr;
4768 if (m->count > 0)
4769 {
4770 if (p->p_vaddr < (bfd_vma) off)
4771 {
4772 (*_bfd_error_handler)
4773 (_("%B: Not enough room for program headers, try linking with -N"),
4774 abfd);
4775 bfd_set_error (bfd_error_bad_value);
4776 return FALSE;
4777 }
4778
4779 p->p_vaddr -= off;
4780 if (!m->p_paddr_valid)
4781 p->p_paddr -= off;
4782 }
4783 }
4784
4785 if (m->includes_phdrs)
4786 {
4787 if (!m->p_flags_valid)
4788 p->p_flags |= PF_R;
4789
4790 if (!m->includes_filehdr)
4791 {
4792 p->p_offset = bed->s->sizeof_ehdr;
4793
4794 if (m->count > 0)
4795 {
4796 p->p_vaddr -= off - p->p_offset;
4797 if (!m->p_paddr_valid)
4798 p->p_paddr -= off - p->p_offset;
4799 }
4800 }
4801
4802 p->p_filesz += alloc * bed->s->sizeof_phdr;
4803 p->p_memsz += alloc * bed->s->sizeof_phdr;
4804 if (m->count)
4805 {
4806 p->p_filesz += header_pad;
4807 p->p_memsz += header_pad;
4808 }
4809 }
4810
4811 if (p->p_type == PT_LOAD
4812 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4813 {
4814 if (!m->includes_filehdr && !m->includes_phdrs)
4815 p->p_offset = off;
4816 else
4817 {
4818 file_ptr adjust;
4819
4820 adjust = off - (p->p_offset + p->p_filesz);
4821 if (!no_contents)
4822 p->p_filesz += adjust;
4823 p->p_memsz += adjust;
4824 }
4825 }
4826
4827 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4828 maps. Set filepos for sections in PT_LOAD segments, and in
4829 core files, for sections in PT_NOTE segments.
4830 assign_file_positions_for_non_load_sections will set filepos
4831 for other sections and update p_filesz for other segments. */
4832 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4833 {
4834 asection *sec;
4835 bfd_size_type align;
4836 Elf_Internal_Shdr *this_hdr;
4837
4838 sec = *secpp;
4839 this_hdr = &elf_section_data (sec)->this_hdr;
4840 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4841
4842 if ((p->p_type == PT_LOAD
4843 || p->p_type == PT_TLS)
4844 && (this_hdr->sh_type != SHT_NOBITS
4845 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4846 && ((this_hdr->sh_flags & SHF_TLS) == 0
4847 || p->p_type == PT_TLS))))
4848 {
4849 bfd_vma p_start = p->p_paddr;
4850 bfd_vma p_end = p_start + p->p_memsz;
4851 bfd_vma s_start = sec->lma;
4852 bfd_vma adjust = s_start - p_end;
4853
4854 if (adjust != 0
4855 && (s_start < p_end
4856 || p_end < p_start))
4857 {
4858 (*_bfd_error_handler)
4859 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4860 (unsigned long) s_start, (unsigned long) p_end);
4861 adjust = 0;
4862 sec->lma = p_end;
4863 }
4864 p->p_memsz += adjust;
4865
4866 if (this_hdr->sh_type != SHT_NOBITS)
4867 {
4868 if (p->p_filesz + adjust < p->p_memsz)
4869 {
4870 /* We have a PROGBITS section following NOBITS ones.
4871 Allocate file space for the NOBITS section(s) and
4872 zero it. */
4873 adjust = p->p_memsz - p->p_filesz;
4874 if (!write_zeros (abfd, off, adjust))
4875 return FALSE;
4876 }
4877 off += adjust;
4878 p->p_filesz += adjust;
4879 }
4880 }
4881
4882 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4883 {
4884 /* The section at i == 0 is the one that actually contains
4885 everything. */
4886 if (i == 0)
4887 {
4888 this_hdr->sh_offset = sec->filepos = off;
4889 off += this_hdr->sh_size;
4890 p->p_filesz = this_hdr->sh_size;
4891 p->p_memsz = 0;
4892 p->p_align = 1;
4893 }
4894 else
4895 {
4896 /* The rest are fake sections that shouldn't be written. */
4897 sec->filepos = 0;
4898 sec->size = 0;
4899 sec->flags = 0;
4900 continue;
4901 }
4902 }
4903 else
4904 {
4905 if (p->p_type == PT_LOAD)
4906 {
4907 this_hdr->sh_offset = sec->filepos = off;
4908 if (this_hdr->sh_type != SHT_NOBITS)
4909 off += this_hdr->sh_size;
4910 }
4911 else if (this_hdr->sh_type == SHT_NOBITS
4912 && (this_hdr->sh_flags & SHF_TLS) != 0
4913 && this_hdr->sh_offset == 0)
4914 {
4915 /* This is a .tbss section that didn't get a PT_LOAD.
4916 (See _bfd_elf_map_sections_to_segments "Create a
4917 final PT_LOAD".) Set sh_offset to the value it
4918 would have if we had created a zero p_filesz and
4919 p_memsz PT_LOAD header for the section. This
4920 also makes the PT_TLS header have the same
4921 p_offset value. */
4922 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4923 off, align);
4924 this_hdr->sh_offset = sec->filepos = off + adjust;
4925 }
4926
4927 if (this_hdr->sh_type != SHT_NOBITS)
4928 {
4929 p->p_filesz += this_hdr->sh_size;
4930 /* A load section without SHF_ALLOC is something like
4931 a note section in a PT_NOTE segment. These take
4932 file space but are not loaded into memory. */
4933 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4934 p->p_memsz += this_hdr->sh_size;
4935 }
4936 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4937 {
4938 if (p->p_type == PT_TLS)
4939 p->p_memsz += this_hdr->sh_size;
4940
4941 /* .tbss is special. It doesn't contribute to p_memsz of
4942 normal segments. */
4943 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4944 p->p_memsz += this_hdr->sh_size;
4945 }
4946
4947 if (align > p->p_align
4948 && !m->p_align_valid
4949 && (p->p_type != PT_LOAD
4950 || (abfd->flags & D_PAGED) == 0))
4951 p->p_align = align;
4952 }
4953
4954 if (!m->p_flags_valid)
4955 {
4956 p->p_flags |= PF_R;
4957 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4958 p->p_flags |= PF_X;
4959 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4960 p->p_flags |= PF_W;
4961 }
4962 }
4963
4964 off -= off_adjust;
4965
4966 /* Check that all sections are in a PT_LOAD segment.
4967 Don't check funky gdb generated core files. */
4968 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4969 {
4970 bfd_boolean check_vma = TRUE;
4971
4972 for (i = 1; i < m->count; i++)
4973 if (m->sections[i]->vma == m->sections[i - 1]->vma
4974 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4975 ->this_hdr), p) != 0
4976 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4977 ->this_hdr), p) != 0)
4978 {
4979 /* Looks like we have overlays packed into the segment. */
4980 check_vma = FALSE;
4981 break;
4982 }
4983
4984 for (i = 0; i < m->count; i++)
4985 {
4986 Elf_Internal_Shdr *this_hdr;
4987 asection *sec;
4988
4989 sec = m->sections[i];
4990 this_hdr = &(elf_section_data(sec)->this_hdr);
4991 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4992 && !ELF_TBSS_SPECIAL (this_hdr, p))
4993 {
4994 (*_bfd_error_handler)
4995 (_("%B: section `%A' can't be allocated in segment %d"),
4996 abfd, sec, j);
4997 print_segment_map (m);
4998 }
4999 }
5000 }
5001 }
5002
5003 elf_next_file_pos (abfd) = off;
5004 return TRUE;
5005 }
5006
5007 /* Assign file positions for the other sections. */
5008
5009 static bfd_boolean
5010 assign_file_positions_for_non_load_sections (bfd *abfd,
5011 struct bfd_link_info *link_info)
5012 {
5013 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5014 Elf_Internal_Shdr **i_shdrpp;
5015 Elf_Internal_Shdr **hdrpp;
5016 Elf_Internal_Phdr *phdrs;
5017 Elf_Internal_Phdr *p;
5018 struct elf_segment_map *m;
5019 struct elf_segment_map *hdrs_segment;
5020 bfd_vma filehdr_vaddr, filehdr_paddr;
5021 bfd_vma phdrs_vaddr, phdrs_paddr;
5022 file_ptr off;
5023 unsigned int num_sec;
5024 unsigned int i;
5025 unsigned int count;
5026
5027 i_shdrpp = elf_elfsections (abfd);
5028 num_sec = elf_numsections (abfd);
5029 off = elf_next_file_pos (abfd);
5030 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5031 {
5032 Elf_Internal_Shdr *hdr;
5033
5034 hdr = *hdrpp;
5035 if (hdr->bfd_section != NULL
5036 && (hdr->bfd_section->filepos != 0
5037 || (hdr->sh_type == SHT_NOBITS
5038 && hdr->contents == NULL)))
5039 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5040 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5041 {
5042 if (hdr->sh_size != 0)
5043 (*_bfd_error_handler)
5044 (_("%B: warning: allocated section `%s' not in segment"),
5045 abfd,
5046 (hdr->bfd_section == NULL
5047 ? "*unknown*"
5048 : hdr->bfd_section->name));
5049 /* We don't need to page align empty sections. */
5050 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5051 off += vma_page_aligned_bias (hdr->sh_addr, off,
5052 bed->maxpagesize);
5053 else
5054 off += vma_page_aligned_bias (hdr->sh_addr, off,
5055 hdr->sh_addralign);
5056 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5057 FALSE);
5058 }
5059 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5060 && hdr->bfd_section == NULL)
5061 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5062 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
5063 || hdr == i_shdrpp[elf_strtab_sec (abfd)])
5064 hdr->sh_offset = -1;
5065 else
5066 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5067 }
5068
5069 /* Now that we have set the section file positions, we can set up
5070 the file positions for the non PT_LOAD segments. */
5071 count = 0;
5072 filehdr_vaddr = 0;
5073 filehdr_paddr = 0;
5074 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5075 phdrs_paddr = 0;
5076 hdrs_segment = NULL;
5077 phdrs = elf_tdata (abfd)->phdr;
5078 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5079 {
5080 ++count;
5081 if (p->p_type != PT_LOAD)
5082 continue;
5083
5084 if (m->includes_filehdr)
5085 {
5086 filehdr_vaddr = p->p_vaddr;
5087 filehdr_paddr = p->p_paddr;
5088 }
5089 if (m->includes_phdrs)
5090 {
5091 phdrs_vaddr = p->p_vaddr;
5092 phdrs_paddr = p->p_paddr;
5093 if (m->includes_filehdr)
5094 {
5095 hdrs_segment = m;
5096 phdrs_vaddr += bed->s->sizeof_ehdr;
5097 phdrs_paddr += bed->s->sizeof_ehdr;
5098 }
5099 }
5100 }
5101
5102 if (hdrs_segment != NULL && link_info != NULL)
5103 {
5104 /* There is a segment that contains both the file headers and the
5105 program headers, so provide a symbol __ehdr_start pointing there.
5106 A program can use this to examine itself robustly. */
5107
5108 struct elf_link_hash_entry *hash
5109 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5110 FALSE, FALSE, TRUE);
5111 /* If the symbol was referenced and not defined, define it. */
5112 if (hash != NULL
5113 && (hash->root.type == bfd_link_hash_new
5114 || hash->root.type == bfd_link_hash_undefined
5115 || hash->root.type == bfd_link_hash_undefweak
5116 || hash->root.type == bfd_link_hash_common))
5117 {
5118 asection *s = NULL;
5119 if (hdrs_segment->count != 0)
5120 /* The segment contains sections, so use the first one. */
5121 s = hdrs_segment->sections[0];
5122 else
5123 /* Use the first (i.e. lowest-addressed) section in any segment. */
5124 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5125 if (m->count != 0)
5126 {
5127 s = m->sections[0];
5128 break;
5129 }
5130
5131 if (s != NULL)
5132 {
5133 hash->root.u.def.value = filehdr_vaddr - s->vma;
5134 hash->root.u.def.section = s;
5135 }
5136 else
5137 {
5138 hash->root.u.def.value = filehdr_vaddr;
5139 hash->root.u.def.section = bfd_abs_section_ptr;
5140 }
5141
5142 hash->root.type = bfd_link_hash_defined;
5143 hash->def_regular = 1;
5144 hash->non_elf = 0;
5145 }
5146 }
5147
5148 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5149 {
5150 if (p->p_type == PT_GNU_RELRO)
5151 {
5152 const Elf_Internal_Phdr *lp;
5153 struct elf_segment_map *lm;
5154
5155 if (link_info != NULL)
5156 {
5157 /* During linking the range of the RELRO segment is passed
5158 in link_info. */
5159 for (lm = elf_seg_map (abfd), lp = phdrs;
5160 lm != NULL;
5161 lm = lm->next, lp++)
5162 {
5163 if (lp->p_type == PT_LOAD
5164 && lp->p_vaddr < link_info->relro_end
5165 && lm->count != 0
5166 && lm->sections[0]->vma >= link_info->relro_start)
5167 break;
5168 }
5169
5170 BFD_ASSERT (lm != NULL);
5171 }
5172 else
5173 {
5174 /* Otherwise we are copying an executable or shared
5175 library, but we need to use the same linker logic. */
5176 for (lp = phdrs; lp < phdrs + count; ++lp)
5177 {
5178 if (lp->p_type == PT_LOAD
5179 && lp->p_paddr == p->p_paddr)
5180 break;
5181 }
5182 }
5183
5184 if (lp < phdrs + count)
5185 {
5186 p->p_vaddr = lp->p_vaddr;
5187 p->p_paddr = lp->p_paddr;
5188 p->p_offset = lp->p_offset;
5189 if (link_info != NULL)
5190 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5191 else if (m->p_size_valid)
5192 p->p_filesz = m->p_size;
5193 else
5194 abort ();
5195 p->p_memsz = p->p_filesz;
5196 /* Preserve the alignment and flags if they are valid. The
5197 gold linker generates RW/4 for the PT_GNU_RELRO section.
5198 It is better for objcopy/strip to honor these attributes
5199 otherwise gdb will choke when using separate debug files.
5200 */
5201 if (!m->p_align_valid)
5202 p->p_align = 1;
5203 if (!m->p_flags_valid)
5204 p->p_flags = (lp->p_flags & ~PF_W);
5205 }
5206 else
5207 {
5208 memset (p, 0, sizeof *p);
5209 p->p_type = PT_NULL;
5210 }
5211 }
5212 else if (p->p_type == PT_GNU_STACK)
5213 {
5214 if (m->p_size_valid)
5215 p->p_memsz = m->p_size;
5216 }
5217 else if (m->count != 0)
5218 {
5219 if (p->p_type != PT_LOAD
5220 && (p->p_type != PT_NOTE
5221 || bfd_get_format (abfd) != bfd_core))
5222 {
5223 if (m->includes_filehdr || m->includes_phdrs)
5224 {
5225 /* PR 17512: file: 2195325e. */
5226 (*_bfd_error_handler)
5227 (_("%B: warning: non-load segment includes file header and/or program header"),
5228 abfd);
5229 return FALSE;
5230 }
5231
5232 p->p_filesz = 0;
5233 p->p_offset = m->sections[0]->filepos;
5234 for (i = m->count; i-- != 0;)
5235 {
5236 asection *sect = m->sections[i];
5237 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5238 if (hdr->sh_type != SHT_NOBITS)
5239 {
5240 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5241 + hdr->sh_size);
5242 break;
5243 }
5244 }
5245 }
5246 }
5247 else if (m->includes_filehdr)
5248 {
5249 p->p_vaddr = filehdr_vaddr;
5250 if (! m->p_paddr_valid)
5251 p->p_paddr = filehdr_paddr;
5252 }
5253 else if (m->includes_phdrs)
5254 {
5255 p->p_vaddr = phdrs_vaddr;
5256 if (! m->p_paddr_valid)
5257 p->p_paddr = phdrs_paddr;
5258 }
5259 }
5260
5261 elf_next_file_pos (abfd) = off;
5262
5263 return TRUE;
5264 }
5265
5266 /* Work out the file positions of all the sections. This is called by
5267 _bfd_elf_compute_section_file_positions. All the section sizes and
5268 VMAs must be known before this is called.
5269
5270 Reloc sections come in two flavours: Those processed specially as
5271 "side-channel" data attached to a section to which they apply, and
5272 those that bfd doesn't process as relocations. The latter sort are
5273 stored in a normal bfd section by bfd_section_from_shdr. We don't
5274 consider the former sort here, unless they form part of the loadable
5275 image. Reloc sections not assigned here will be handled later by
5276 assign_file_positions_for_relocs.
5277
5278 We also don't set the positions of the .symtab and .strtab here. */
5279
5280 static bfd_boolean
5281 assign_file_positions_except_relocs (bfd *abfd,
5282 struct bfd_link_info *link_info)
5283 {
5284 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5285 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5286 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5287
5288 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5289 && bfd_get_format (abfd) != bfd_core)
5290 {
5291 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5292 unsigned int num_sec = elf_numsections (abfd);
5293 Elf_Internal_Shdr **hdrpp;
5294 unsigned int i;
5295 file_ptr off;
5296
5297 /* Start after the ELF header. */
5298 off = i_ehdrp->e_ehsize;
5299
5300 /* We are not creating an executable, which means that we are
5301 not creating a program header, and that the actual order of
5302 the sections in the file is unimportant. */
5303 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5304 {
5305 Elf_Internal_Shdr *hdr;
5306
5307 hdr = *hdrpp;
5308 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5309 && hdr->bfd_section == NULL)
5310 || i == elf_onesymtab (abfd)
5311 || i == elf_symtab_shndx (abfd)
5312 || i == elf_strtab_sec (abfd))
5313 {
5314 hdr->sh_offset = -1;
5315 }
5316 else
5317 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5318 }
5319
5320 elf_next_file_pos (abfd) = off;
5321 }
5322 else
5323 {
5324 unsigned int alloc;
5325
5326 /* Assign file positions for the loaded sections based on the
5327 assignment of sections to segments. */
5328 if (!assign_file_positions_for_load_sections (abfd, link_info))
5329 return FALSE;
5330
5331 /* And for non-load sections. */
5332 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5333 return FALSE;
5334
5335 if (bed->elf_backend_modify_program_headers != NULL)
5336 {
5337 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5338 return FALSE;
5339 }
5340
5341 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5342 if (link_info != NULL
5343 && link_info->executable
5344 && link_info->shared)
5345 {
5346 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5347 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5348 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5349
5350 /* Find the lowest p_vaddr in PT_LOAD segments. */
5351 bfd_vma p_vaddr = (bfd_vma) -1;
5352 for (; segment < end_segment; segment++)
5353 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5354 p_vaddr = segment->p_vaddr;
5355
5356 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5357 segments is non-zero. */
5358 if (p_vaddr)
5359 i_ehdrp->e_type = ET_EXEC;
5360 }
5361
5362 /* Write out the program headers. */
5363 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5364 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5365 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5366 return FALSE;
5367 }
5368
5369 return TRUE;
5370 }
5371
5372 static bfd_boolean
5373 prep_headers (bfd *abfd)
5374 {
5375 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5376 struct elf_strtab_hash *shstrtab;
5377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5378
5379 i_ehdrp = elf_elfheader (abfd);
5380
5381 shstrtab = _bfd_elf_strtab_init ();
5382 if (shstrtab == NULL)
5383 return FALSE;
5384
5385 elf_shstrtab (abfd) = shstrtab;
5386
5387 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5388 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5389 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5390 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5391
5392 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5393 i_ehdrp->e_ident[EI_DATA] =
5394 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5395 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5396
5397 if ((abfd->flags & DYNAMIC) != 0)
5398 i_ehdrp->e_type = ET_DYN;
5399 else if ((abfd->flags & EXEC_P) != 0)
5400 i_ehdrp->e_type = ET_EXEC;
5401 else if (bfd_get_format (abfd) == bfd_core)
5402 i_ehdrp->e_type = ET_CORE;
5403 else
5404 i_ehdrp->e_type = ET_REL;
5405
5406 switch (bfd_get_arch (abfd))
5407 {
5408 case bfd_arch_unknown:
5409 i_ehdrp->e_machine = EM_NONE;
5410 break;
5411
5412 /* There used to be a long list of cases here, each one setting
5413 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5414 in the corresponding bfd definition. To avoid duplication,
5415 the switch was removed. Machines that need special handling
5416 can generally do it in elf_backend_final_write_processing(),
5417 unless they need the information earlier than the final write.
5418 Such need can generally be supplied by replacing the tests for
5419 e_machine with the conditions used to determine it. */
5420 default:
5421 i_ehdrp->e_machine = bed->elf_machine_code;
5422 }
5423
5424 i_ehdrp->e_version = bed->s->ev_current;
5425 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5426
5427 /* No program header, for now. */
5428 i_ehdrp->e_phoff = 0;
5429 i_ehdrp->e_phentsize = 0;
5430 i_ehdrp->e_phnum = 0;
5431
5432 /* Each bfd section is section header entry. */
5433 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5434 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5435
5436 /* If we're building an executable, we'll need a program header table. */
5437 if (abfd->flags & EXEC_P)
5438 /* It all happens later. */
5439 ;
5440 else
5441 {
5442 i_ehdrp->e_phentsize = 0;
5443 i_ehdrp->e_phoff = 0;
5444 }
5445
5446 elf_tdata (abfd)->symtab_hdr.sh_name =
5447 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5448 elf_tdata (abfd)->strtab_hdr.sh_name =
5449 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5450 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5451 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5452 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5453 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
5454 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5455 return FALSE;
5456
5457 return TRUE;
5458 }
5459
5460 /* Assign file positions for all the reloc sections which are not part
5461 of the loadable file image, and the file position of section headers. */
5462
5463 static void
5464 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5465 {
5466 file_ptr off;
5467 unsigned int i, num_sec;
5468 Elf_Internal_Shdr **shdrpp;
5469 Elf_Internal_Ehdr *i_ehdrp;
5470 const struct elf_backend_data *bed;
5471
5472 off = elf_next_file_pos (abfd);
5473
5474 num_sec = elf_numsections (abfd);
5475 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5476 {
5477 Elf_Internal_Shdr *shdrp;
5478
5479 shdrp = *shdrpp;
5480 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5481 && shdrp->sh_offset == -1)
5482 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5483 }
5484
5485 /* Place the section headers. */
5486 i_ehdrp = elf_elfheader (abfd);
5487 bed = get_elf_backend_data (abfd);
5488 off = align_file_position (off, 1 << bed->s->log_file_align);
5489 i_ehdrp->e_shoff = off;
5490 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5491 elf_next_file_pos (abfd) = off;
5492 }
5493
5494 bfd_boolean
5495 _bfd_elf_write_object_contents (bfd *abfd)
5496 {
5497 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5498 Elf_Internal_Shdr **i_shdrp;
5499 bfd_boolean failed;
5500 unsigned int count, num_sec;
5501 struct elf_obj_tdata *t;
5502
5503 if (! abfd->output_has_begun
5504 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5505 return FALSE;
5506
5507 i_shdrp = elf_elfsections (abfd);
5508
5509 failed = FALSE;
5510 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5511 if (failed)
5512 return FALSE;
5513
5514 _bfd_elf_assign_file_positions_for_relocs (abfd);
5515
5516 /* After writing the headers, we need to write the sections too... */
5517 num_sec = elf_numsections (abfd);
5518 for (count = 1; count < num_sec; count++)
5519 {
5520 if (bed->elf_backend_section_processing)
5521 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5522 if (i_shdrp[count]->contents)
5523 {
5524 bfd_size_type amt = i_shdrp[count]->sh_size;
5525
5526 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5527 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5528 return FALSE;
5529 }
5530 }
5531
5532 /* Write out the section header names. */
5533 t = elf_tdata (abfd);
5534 if (elf_shstrtab (abfd) != NULL
5535 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5536 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5537 return FALSE;
5538
5539 if (bed->elf_backend_final_write_processing)
5540 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5541
5542 if (!bed->s->write_shdrs_and_ehdr (abfd))
5543 return FALSE;
5544
5545 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5546 if (t->o->build_id.after_write_object_contents != NULL)
5547 return (*t->o->build_id.after_write_object_contents) (abfd);
5548
5549 return TRUE;
5550 }
5551
5552 bfd_boolean
5553 _bfd_elf_write_corefile_contents (bfd *abfd)
5554 {
5555 /* Hopefully this can be done just like an object file. */
5556 return _bfd_elf_write_object_contents (abfd);
5557 }
5558
5559 /* Given a section, search the header to find them. */
5560
5561 unsigned int
5562 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5563 {
5564 const struct elf_backend_data *bed;
5565 unsigned int sec_index;
5566
5567 if (elf_section_data (asect) != NULL
5568 && elf_section_data (asect)->this_idx != 0)
5569 return elf_section_data (asect)->this_idx;
5570
5571 if (bfd_is_abs_section (asect))
5572 sec_index = SHN_ABS;
5573 else if (bfd_is_com_section (asect))
5574 sec_index = SHN_COMMON;
5575 else if (bfd_is_und_section (asect))
5576 sec_index = SHN_UNDEF;
5577 else
5578 sec_index = SHN_BAD;
5579
5580 bed = get_elf_backend_data (abfd);
5581 if (bed->elf_backend_section_from_bfd_section)
5582 {
5583 int retval = sec_index;
5584
5585 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5586 return retval;
5587 }
5588
5589 if (sec_index == SHN_BAD)
5590 bfd_set_error (bfd_error_nonrepresentable_section);
5591
5592 return sec_index;
5593 }
5594
5595 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5596 on error. */
5597
5598 int
5599 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5600 {
5601 asymbol *asym_ptr = *asym_ptr_ptr;
5602 int idx;
5603 flagword flags = asym_ptr->flags;
5604
5605 /* When gas creates relocations against local labels, it creates its
5606 own symbol for the section, but does put the symbol into the
5607 symbol chain, so udata is 0. When the linker is generating
5608 relocatable output, this section symbol may be for one of the
5609 input sections rather than the output section. */
5610 if (asym_ptr->udata.i == 0
5611 && (flags & BSF_SECTION_SYM)
5612 && asym_ptr->section)
5613 {
5614 asection *sec;
5615 int indx;
5616
5617 sec = asym_ptr->section;
5618 if (sec->owner != abfd && sec->output_section != NULL)
5619 sec = sec->output_section;
5620 if (sec->owner == abfd
5621 && (indx = sec->index) < elf_num_section_syms (abfd)
5622 && elf_section_syms (abfd)[indx] != NULL)
5623 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5624 }
5625
5626 idx = asym_ptr->udata.i;
5627
5628 if (idx == 0)
5629 {
5630 /* This case can occur when using --strip-symbol on a symbol
5631 which is used in a relocation entry. */
5632 (*_bfd_error_handler)
5633 (_("%B: symbol `%s' required but not present"),
5634 abfd, bfd_asymbol_name (asym_ptr));
5635 bfd_set_error (bfd_error_no_symbols);
5636 return -1;
5637 }
5638
5639 #if DEBUG & 4
5640 {
5641 fprintf (stderr,
5642 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5643 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5644 fflush (stderr);
5645 }
5646 #endif
5647
5648 return idx;
5649 }
5650
5651 /* Rewrite program header information. */
5652
5653 static bfd_boolean
5654 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5655 {
5656 Elf_Internal_Ehdr *iehdr;
5657 struct elf_segment_map *map;
5658 struct elf_segment_map *map_first;
5659 struct elf_segment_map **pointer_to_map;
5660 Elf_Internal_Phdr *segment;
5661 asection *section;
5662 unsigned int i;
5663 unsigned int num_segments;
5664 bfd_boolean phdr_included = FALSE;
5665 bfd_boolean p_paddr_valid;
5666 bfd_vma maxpagesize;
5667 struct elf_segment_map *phdr_adjust_seg = NULL;
5668 unsigned int phdr_adjust_num = 0;
5669 const struct elf_backend_data *bed;
5670
5671 bed = get_elf_backend_data (ibfd);
5672 iehdr = elf_elfheader (ibfd);
5673
5674 map_first = NULL;
5675 pointer_to_map = &map_first;
5676
5677 num_segments = elf_elfheader (ibfd)->e_phnum;
5678 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5679
5680 /* Returns the end address of the segment + 1. */
5681 #define SEGMENT_END(segment, start) \
5682 (start + (segment->p_memsz > segment->p_filesz \
5683 ? segment->p_memsz : segment->p_filesz))
5684
5685 #define SECTION_SIZE(section, segment) \
5686 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5687 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5688 ? section->size : 0)
5689
5690 /* Returns TRUE if the given section is contained within
5691 the given segment. VMA addresses are compared. */
5692 #define IS_CONTAINED_BY_VMA(section, segment) \
5693 (section->vma >= segment->p_vaddr \
5694 && (section->vma + SECTION_SIZE (section, segment) \
5695 <= (SEGMENT_END (segment, segment->p_vaddr))))
5696
5697 /* Returns TRUE if the given section is contained within
5698 the given segment. LMA addresses are compared. */
5699 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5700 (section->lma >= base \
5701 && (section->lma + SECTION_SIZE (section, segment) \
5702 <= SEGMENT_END (segment, base)))
5703
5704 /* Handle PT_NOTE segment. */
5705 #define IS_NOTE(p, s) \
5706 (p->p_type == PT_NOTE \
5707 && elf_section_type (s) == SHT_NOTE \
5708 && (bfd_vma) s->filepos >= p->p_offset \
5709 && ((bfd_vma) s->filepos + s->size \
5710 <= p->p_offset + p->p_filesz))
5711
5712 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5713 etc. */
5714 #define IS_COREFILE_NOTE(p, s) \
5715 (IS_NOTE (p, s) \
5716 && bfd_get_format (ibfd) == bfd_core \
5717 && s->vma == 0 \
5718 && s->lma == 0)
5719
5720 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5721 linker, which generates a PT_INTERP section with p_vaddr and
5722 p_memsz set to 0. */
5723 #define IS_SOLARIS_PT_INTERP(p, s) \
5724 (p->p_vaddr == 0 \
5725 && p->p_paddr == 0 \
5726 && p->p_memsz == 0 \
5727 && p->p_filesz > 0 \
5728 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5729 && s->size > 0 \
5730 && (bfd_vma) s->filepos >= p->p_offset \
5731 && ((bfd_vma) s->filepos + s->size \
5732 <= p->p_offset + p->p_filesz))
5733
5734 /* Decide if the given section should be included in the given segment.
5735 A section will be included if:
5736 1. It is within the address space of the segment -- we use the LMA
5737 if that is set for the segment and the VMA otherwise,
5738 2. It is an allocated section or a NOTE section in a PT_NOTE
5739 segment.
5740 3. There is an output section associated with it,
5741 4. The section has not already been allocated to a previous segment.
5742 5. PT_GNU_STACK segments do not include any sections.
5743 6. PT_TLS segment includes only SHF_TLS sections.
5744 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5745 8. PT_DYNAMIC should not contain empty sections at the beginning
5746 (with the possible exception of .dynamic). */
5747 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5748 ((((segment->p_paddr \
5749 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5750 : IS_CONTAINED_BY_VMA (section, segment)) \
5751 && (section->flags & SEC_ALLOC) != 0) \
5752 || IS_NOTE (segment, section)) \
5753 && segment->p_type != PT_GNU_STACK \
5754 && (segment->p_type != PT_TLS \
5755 || (section->flags & SEC_THREAD_LOCAL)) \
5756 && (segment->p_type == PT_LOAD \
5757 || segment->p_type == PT_TLS \
5758 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5759 && (segment->p_type != PT_DYNAMIC \
5760 || SECTION_SIZE (section, segment) > 0 \
5761 || (segment->p_paddr \
5762 ? segment->p_paddr != section->lma \
5763 : segment->p_vaddr != section->vma) \
5764 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5765 == 0)) \
5766 && !section->segment_mark)
5767
5768 /* If the output section of a section in the input segment is NULL,
5769 it is removed from the corresponding output segment. */
5770 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5771 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5772 && section->output_section != NULL)
5773
5774 /* Returns TRUE iff seg1 starts after the end of seg2. */
5775 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5776 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5777
5778 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5779 their VMA address ranges and their LMA address ranges overlap.
5780 It is possible to have overlapping VMA ranges without overlapping LMA
5781 ranges. RedBoot images for example can have both .data and .bss mapped
5782 to the same VMA range, but with the .data section mapped to a different
5783 LMA. */
5784 #define SEGMENT_OVERLAPS(seg1, seg2) \
5785 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5786 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5787 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5788 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5789
5790 /* Initialise the segment mark field. */
5791 for (section = ibfd->sections; section != NULL; section = section->next)
5792 section->segment_mark = FALSE;
5793
5794 /* The Solaris linker creates program headers in which all the
5795 p_paddr fields are zero. When we try to objcopy or strip such a
5796 file, we get confused. Check for this case, and if we find it
5797 don't set the p_paddr_valid fields. */
5798 p_paddr_valid = FALSE;
5799 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5800 i < num_segments;
5801 i++, segment++)
5802 if (segment->p_paddr != 0)
5803 {
5804 p_paddr_valid = TRUE;
5805 break;
5806 }
5807
5808 /* Scan through the segments specified in the program header
5809 of the input BFD. For this first scan we look for overlaps
5810 in the loadable segments. These can be created by weird
5811 parameters to objcopy. Also, fix some solaris weirdness. */
5812 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5813 i < num_segments;
5814 i++, segment++)
5815 {
5816 unsigned int j;
5817 Elf_Internal_Phdr *segment2;
5818
5819 if (segment->p_type == PT_INTERP)
5820 for (section = ibfd->sections; section; section = section->next)
5821 if (IS_SOLARIS_PT_INTERP (segment, section))
5822 {
5823 /* Mininal change so that the normal section to segment
5824 assignment code will work. */
5825 segment->p_vaddr = section->vma;
5826 break;
5827 }
5828
5829 if (segment->p_type != PT_LOAD)
5830 {
5831 /* Remove PT_GNU_RELRO segment. */
5832 if (segment->p_type == PT_GNU_RELRO)
5833 segment->p_type = PT_NULL;
5834 continue;
5835 }
5836
5837 /* Determine if this segment overlaps any previous segments. */
5838 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5839 {
5840 bfd_signed_vma extra_length;
5841
5842 if (segment2->p_type != PT_LOAD
5843 || !SEGMENT_OVERLAPS (segment, segment2))
5844 continue;
5845
5846 /* Merge the two segments together. */
5847 if (segment2->p_vaddr < segment->p_vaddr)
5848 {
5849 /* Extend SEGMENT2 to include SEGMENT and then delete
5850 SEGMENT. */
5851 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5852 - SEGMENT_END (segment2, segment2->p_vaddr));
5853
5854 if (extra_length > 0)
5855 {
5856 segment2->p_memsz += extra_length;
5857 segment2->p_filesz += extra_length;
5858 }
5859
5860 segment->p_type = PT_NULL;
5861
5862 /* Since we have deleted P we must restart the outer loop. */
5863 i = 0;
5864 segment = elf_tdata (ibfd)->phdr;
5865 break;
5866 }
5867 else
5868 {
5869 /* Extend SEGMENT to include SEGMENT2 and then delete
5870 SEGMENT2. */
5871 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5872 - SEGMENT_END (segment, segment->p_vaddr));
5873
5874 if (extra_length > 0)
5875 {
5876 segment->p_memsz += extra_length;
5877 segment->p_filesz += extra_length;
5878 }
5879
5880 segment2->p_type = PT_NULL;
5881 }
5882 }
5883 }
5884
5885 /* The second scan attempts to assign sections to segments. */
5886 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5887 i < num_segments;
5888 i++, segment++)
5889 {
5890 unsigned int section_count;
5891 asection **sections;
5892 asection *output_section;
5893 unsigned int isec;
5894 bfd_vma matching_lma;
5895 bfd_vma suggested_lma;
5896 unsigned int j;
5897 bfd_size_type amt;
5898 asection *first_section;
5899 bfd_boolean first_matching_lma;
5900 bfd_boolean first_suggested_lma;
5901
5902 if (segment->p_type == PT_NULL)
5903 continue;
5904
5905 first_section = NULL;
5906 /* Compute how many sections might be placed into this segment. */
5907 for (section = ibfd->sections, section_count = 0;
5908 section != NULL;
5909 section = section->next)
5910 {
5911 /* Find the first section in the input segment, which may be
5912 removed from the corresponding output segment. */
5913 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5914 {
5915 if (first_section == NULL)
5916 first_section = section;
5917 if (section->output_section != NULL)
5918 ++section_count;
5919 }
5920 }
5921
5922 /* Allocate a segment map big enough to contain
5923 all of the sections we have selected. */
5924 amt = sizeof (struct elf_segment_map);
5925 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5926 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5927 if (map == NULL)
5928 return FALSE;
5929
5930 /* Initialise the fields of the segment map. Default to
5931 using the physical address of the segment in the input BFD. */
5932 map->next = NULL;
5933 map->p_type = segment->p_type;
5934 map->p_flags = segment->p_flags;
5935 map->p_flags_valid = 1;
5936
5937 /* If the first section in the input segment is removed, there is
5938 no need to preserve segment physical address in the corresponding
5939 output segment. */
5940 if (!first_section || first_section->output_section != NULL)
5941 {
5942 map->p_paddr = segment->p_paddr;
5943 map->p_paddr_valid = p_paddr_valid;
5944 }
5945
5946 /* Determine if this segment contains the ELF file header
5947 and if it contains the program headers themselves. */
5948 map->includes_filehdr = (segment->p_offset == 0
5949 && segment->p_filesz >= iehdr->e_ehsize);
5950 map->includes_phdrs = 0;
5951
5952 if (!phdr_included || segment->p_type != PT_LOAD)
5953 {
5954 map->includes_phdrs =
5955 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5956 && (segment->p_offset + segment->p_filesz
5957 >= ((bfd_vma) iehdr->e_phoff
5958 + iehdr->e_phnum * iehdr->e_phentsize)));
5959
5960 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5961 phdr_included = TRUE;
5962 }
5963
5964 if (section_count == 0)
5965 {
5966 /* Special segments, such as the PT_PHDR segment, may contain
5967 no sections, but ordinary, loadable segments should contain
5968 something. They are allowed by the ELF spec however, so only
5969 a warning is produced. */
5970 if (segment->p_type == PT_LOAD)
5971 (*_bfd_error_handler) (_("\
5972 %B: warning: Empty loadable segment detected, is this intentional ?"),
5973 ibfd);
5974
5975 map->count = 0;
5976 *pointer_to_map = map;
5977 pointer_to_map = &map->next;
5978
5979 continue;
5980 }
5981
5982 /* Now scan the sections in the input BFD again and attempt
5983 to add their corresponding output sections to the segment map.
5984 The problem here is how to handle an output section which has
5985 been moved (ie had its LMA changed). There are four possibilities:
5986
5987 1. None of the sections have been moved.
5988 In this case we can continue to use the segment LMA from the
5989 input BFD.
5990
5991 2. All of the sections have been moved by the same amount.
5992 In this case we can change the segment's LMA to match the LMA
5993 of the first section.
5994
5995 3. Some of the sections have been moved, others have not.
5996 In this case those sections which have not been moved can be
5997 placed in the current segment which will have to have its size,
5998 and possibly its LMA changed, and a new segment or segments will
5999 have to be created to contain the other sections.
6000
6001 4. The sections have been moved, but not by the same amount.
6002 In this case we can change the segment's LMA to match the LMA
6003 of the first section and we will have to create a new segment
6004 or segments to contain the other sections.
6005
6006 In order to save time, we allocate an array to hold the section
6007 pointers that we are interested in. As these sections get assigned
6008 to a segment, they are removed from this array. */
6009
6010 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6011 if (sections == NULL)
6012 return FALSE;
6013
6014 /* Step One: Scan for segment vs section LMA conflicts.
6015 Also add the sections to the section array allocated above.
6016 Also add the sections to the current segment. In the common
6017 case, where the sections have not been moved, this means that
6018 we have completely filled the segment, and there is nothing
6019 more to do. */
6020 isec = 0;
6021 matching_lma = 0;
6022 suggested_lma = 0;
6023 first_matching_lma = TRUE;
6024 first_suggested_lma = TRUE;
6025
6026 for (section = ibfd->sections;
6027 section != NULL;
6028 section = section->next)
6029 if (section == first_section)
6030 break;
6031
6032 for (j = 0; section != NULL; section = section->next)
6033 {
6034 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6035 {
6036 output_section = section->output_section;
6037
6038 sections[j++] = section;
6039
6040 /* The Solaris native linker always sets p_paddr to 0.
6041 We try to catch that case here, and set it to the
6042 correct value. Note - some backends require that
6043 p_paddr be left as zero. */
6044 if (!p_paddr_valid
6045 && segment->p_vaddr != 0
6046 && !bed->want_p_paddr_set_to_zero
6047 && isec == 0
6048 && output_section->lma != 0
6049 && output_section->vma == (segment->p_vaddr
6050 + (map->includes_filehdr
6051 ? iehdr->e_ehsize
6052 : 0)
6053 + (map->includes_phdrs
6054 ? (iehdr->e_phnum
6055 * iehdr->e_phentsize)
6056 : 0)))
6057 map->p_paddr = segment->p_vaddr;
6058
6059 /* Match up the physical address of the segment with the
6060 LMA address of the output section. */
6061 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6062 || IS_COREFILE_NOTE (segment, section)
6063 || (bed->want_p_paddr_set_to_zero
6064 && IS_CONTAINED_BY_VMA (output_section, segment)))
6065 {
6066 if (first_matching_lma || output_section->lma < matching_lma)
6067 {
6068 matching_lma = output_section->lma;
6069 first_matching_lma = FALSE;
6070 }
6071
6072 /* We assume that if the section fits within the segment
6073 then it does not overlap any other section within that
6074 segment. */
6075 map->sections[isec++] = output_section;
6076 }
6077 else if (first_suggested_lma)
6078 {
6079 suggested_lma = output_section->lma;
6080 first_suggested_lma = FALSE;
6081 }
6082
6083 if (j == section_count)
6084 break;
6085 }
6086 }
6087
6088 BFD_ASSERT (j == section_count);
6089
6090 /* Step Two: Adjust the physical address of the current segment,
6091 if necessary. */
6092 if (isec == section_count)
6093 {
6094 /* All of the sections fitted within the segment as currently
6095 specified. This is the default case. Add the segment to
6096 the list of built segments and carry on to process the next
6097 program header in the input BFD. */
6098 map->count = section_count;
6099 *pointer_to_map = map;
6100 pointer_to_map = &map->next;
6101
6102 if (p_paddr_valid
6103 && !bed->want_p_paddr_set_to_zero
6104 && matching_lma != map->p_paddr
6105 && !map->includes_filehdr
6106 && !map->includes_phdrs)
6107 /* There is some padding before the first section in the
6108 segment. So, we must account for that in the output
6109 segment's vma. */
6110 map->p_vaddr_offset = matching_lma - map->p_paddr;
6111
6112 free (sections);
6113 continue;
6114 }
6115 else
6116 {
6117 if (!first_matching_lma)
6118 {
6119 /* At least one section fits inside the current segment.
6120 Keep it, but modify its physical address to match the
6121 LMA of the first section that fitted. */
6122 map->p_paddr = matching_lma;
6123 }
6124 else
6125 {
6126 /* None of the sections fitted inside the current segment.
6127 Change the current segment's physical address to match
6128 the LMA of the first section. */
6129 map->p_paddr = suggested_lma;
6130 }
6131
6132 /* Offset the segment physical address from the lma
6133 to allow for space taken up by elf headers. */
6134 if (map->includes_filehdr)
6135 {
6136 if (map->p_paddr >= iehdr->e_ehsize)
6137 map->p_paddr -= iehdr->e_ehsize;
6138 else
6139 {
6140 map->includes_filehdr = FALSE;
6141 map->includes_phdrs = FALSE;
6142 }
6143 }
6144
6145 if (map->includes_phdrs)
6146 {
6147 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6148 {
6149 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6150
6151 /* iehdr->e_phnum is just an estimate of the number
6152 of program headers that we will need. Make a note
6153 here of the number we used and the segment we chose
6154 to hold these headers, so that we can adjust the
6155 offset when we know the correct value. */
6156 phdr_adjust_num = iehdr->e_phnum;
6157 phdr_adjust_seg = map;
6158 }
6159 else
6160 map->includes_phdrs = FALSE;
6161 }
6162 }
6163
6164 /* Step Three: Loop over the sections again, this time assigning
6165 those that fit to the current segment and removing them from the
6166 sections array; but making sure not to leave large gaps. Once all
6167 possible sections have been assigned to the current segment it is
6168 added to the list of built segments and if sections still remain
6169 to be assigned, a new segment is constructed before repeating
6170 the loop. */
6171 isec = 0;
6172 do
6173 {
6174 map->count = 0;
6175 suggested_lma = 0;
6176 first_suggested_lma = TRUE;
6177
6178 /* Fill the current segment with sections that fit. */
6179 for (j = 0; j < section_count; j++)
6180 {
6181 section = sections[j];
6182
6183 if (section == NULL)
6184 continue;
6185
6186 output_section = section->output_section;
6187
6188 BFD_ASSERT (output_section != NULL);
6189
6190 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6191 || IS_COREFILE_NOTE (segment, section))
6192 {
6193 if (map->count == 0)
6194 {
6195 /* If the first section in a segment does not start at
6196 the beginning of the segment, then something is
6197 wrong. */
6198 if (output_section->lma
6199 != (map->p_paddr
6200 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6201 + (map->includes_phdrs
6202 ? iehdr->e_phnum * iehdr->e_phentsize
6203 : 0)))
6204 abort ();
6205 }
6206 else
6207 {
6208 asection *prev_sec;
6209
6210 prev_sec = map->sections[map->count - 1];
6211
6212 /* If the gap between the end of the previous section
6213 and the start of this section is more than
6214 maxpagesize then we need to start a new segment. */
6215 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6216 maxpagesize)
6217 < BFD_ALIGN (output_section->lma, maxpagesize))
6218 || (prev_sec->lma + prev_sec->size
6219 > output_section->lma))
6220 {
6221 if (first_suggested_lma)
6222 {
6223 suggested_lma = output_section->lma;
6224 first_suggested_lma = FALSE;
6225 }
6226
6227 continue;
6228 }
6229 }
6230
6231 map->sections[map->count++] = output_section;
6232 ++isec;
6233 sections[j] = NULL;
6234 section->segment_mark = TRUE;
6235 }
6236 else if (first_suggested_lma)
6237 {
6238 suggested_lma = output_section->lma;
6239 first_suggested_lma = FALSE;
6240 }
6241 }
6242
6243 BFD_ASSERT (map->count > 0);
6244
6245 /* Add the current segment to the list of built segments. */
6246 *pointer_to_map = map;
6247 pointer_to_map = &map->next;
6248
6249 if (isec < section_count)
6250 {
6251 /* We still have not allocated all of the sections to
6252 segments. Create a new segment here, initialise it
6253 and carry on looping. */
6254 amt = sizeof (struct elf_segment_map);
6255 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6256 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6257 if (map == NULL)
6258 {
6259 free (sections);
6260 return FALSE;
6261 }
6262
6263 /* Initialise the fields of the segment map. Set the physical
6264 physical address to the LMA of the first section that has
6265 not yet been assigned. */
6266 map->next = NULL;
6267 map->p_type = segment->p_type;
6268 map->p_flags = segment->p_flags;
6269 map->p_flags_valid = 1;
6270 map->p_paddr = suggested_lma;
6271 map->p_paddr_valid = p_paddr_valid;
6272 map->includes_filehdr = 0;
6273 map->includes_phdrs = 0;
6274 }
6275 }
6276 while (isec < section_count);
6277
6278 free (sections);
6279 }
6280
6281 elf_seg_map (obfd) = map_first;
6282
6283 /* If we had to estimate the number of program headers that were
6284 going to be needed, then check our estimate now and adjust
6285 the offset if necessary. */
6286 if (phdr_adjust_seg != NULL)
6287 {
6288 unsigned int count;
6289
6290 for (count = 0, map = map_first; map != NULL; map = map->next)
6291 count++;
6292
6293 if (count > phdr_adjust_num)
6294 phdr_adjust_seg->p_paddr
6295 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6296 }
6297
6298 #undef SEGMENT_END
6299 #undef SECTION_SIZE
6300 #undef IS_CONTAINED_BY_VMA
6301 #undef IS_CONTAINED_BY_LMA
6302 #undef IS_NOTE
6303 #undef IS_COREFILE_NOTE
6304 #undef IS_SOLARIS_PT_INTERP
6305 #undef IS_SECTION_IN_INPUT_SEGMENT
6306 #undef INCLUDE_SECTION_IN_SEGMENT
6307 #undef SEGMENT_AFTER_SEGMENT
6308 #undef SEGMENT_OVERLAPS
6309 return TRUE;
6310 }
6311
6312 /* Copy ELF program header information. */
6313
6314 static bfd_boolean
6315 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6316 {
6317 Elf_Internal_Ehdr *iehdr;
6318 struct elf_segment_map *map;
6319 struct elf_segment_map *map_first;
6320 struct elf_segment_map **pointer_to_map;
6321 Elf_Internal_Phdr *segment;
6322 unsigned int i;
6323 unsigned int num_segments;
6324 bfd_boolean phdr_included = FALSE;
6325 bfd_boolean p_paddr_valid;
6326
6327 iehdr = elf_elfheader (ibfd);
6328
6329 map_first = NULL;
6330 pointer_to_map = &map_first;
6331
6332 /* If all the segment p_paddr fields are zero, don't set
6333 map->p_paddr_valid. */
6334 p_paddr_valid = FALSE;
6335 num_segments = elf_elfheader (ibfd)->e_phnum;
6336 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6337 i < num_segments;
6338 i++, segment++)
6339 if (segment->p_paddr != 0)
6340 {
6341 p_paddr_valid = TRUE;
6342 break;
6343 }
6344
6345 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6346 i < num_segments;
6347 i++, segment++)
6348 {
6349 asection *section;
6350 unsigned int section_count;
6351 bfd_size_type amt;
6352 Elf_Internal_Shdr *this_hdr;
6353 asection *first_section = NULL;
6354 asection *lowest_section;
6355
6356 /* Compute how many sections are in this segment. */
6357 for (section = ibfd->sections, section_count = 0;
6358 section != NULL;
6359 section = section->next)
6360 {
6361 this_hdr = &(elf_section_data(section)->this_hdr);
6362 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6363 {
6364 if (first_section == NULL)
6365 first_section = section;
6366 section_count++;
6367 }
6368 }
6369
6370 /* Allocate a segment map big enough to contain
6371 all of the sections we have selected. */
6372 amt = sizeof (struct elf_segment_map);
6373 if (section_count != 0)
6374 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6375 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6376 if (map == NULL)
6377 return FALSE;
6378
6379 /* Initialize the fields of the output segment map with the
6380 input segment. */
6381 map->next = NULL;
6382 map->p_type = segment->p_type;
6383 map->p_flags = segment->p_flags;
6384 map->p_flags_valid = 1;
6385 map->p_paddr = segment->p_paddr;
6386 map->p_paddr_valid = p_paddr_valid;
6387 map->p_align = segment->p_align;
6388 map->p_align_valid = 1;
6389 map->p_vaddr_offset = 0;
6390
6391 if (map->p_type == PT_GNU_RELRO
6392 || map->p_type == PT_GNU_STACK)
6393 {
6394 /* The PT_GNU_RELRO segment may contain the first a few
6395 bytes in the .got.plt section even if the whole .got.plt
6396 section isn't in the PT_GNU_RELRO segment. We won't
6397 change the size of the PT_GNU_RELRO segment.
6398 Similarly, PT_GNU_STACK size is significant on uclinux
6399 systems. */
6400 map->p_size = segment->p_memsz;
6401 map->p_size_valid = 1;
6402 }
6403
6404 /* Determine if this segment contains the ELF file header
6405 and if it contains the program headers themselves. */
6406 map->includes_filehdr = (segment->p_offset == 0
6407 && segment->p_filesz >= iehdr->e_ehsize);
6408
6409 map->includes_phdrs = 0;
6410 if (! phdr_included || segment->p_type != PT_LOAD)
6411 {
6412 map->includes_phdrs =
6413 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6414 && (segment->p_offset + segment->p_filesz
6415 >= ((bfd_vma) iehdr->e_phoff
6416 + iehdr->e_phnum * iehdr->e_phentsize)));
6417
6418 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6419 phdr_included = TRUE;
6420 }
6421
6422 lowest_section = NULL;
6423 if (section_count != 0)
6424 {
6425 unsigned int isec = 0;
6426
6427 for (section = first_section;
6428 section != NULL;
6429 section = section->next)
6430 {
6431 this_hdr = &(elf_section_data(section)->this_hdr);
6432 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6433 {
6434 map->sections[isec++] = section->output_section;
6435 if ((section->flags & SEC_ALLOC) != 0)
6436 {
6437 bfd_vma seg_off;
6438
6439 if (lowest_section == NULL
6440 || section->lma < lowest_section->lma)
6441 lowest_section = section;
6442
6443 /* Section lmas are set up from PT_LOAD header
6444 p_paddr in _bfd_elf_make_section_from_shdr.
6445 If this header has a p_paddr that disagrees
6446 with the section lma, flag the p_paddr as
6447 invalid. */
6448 if ((section->flags & SEC_LOAD) != 0)
6449 seg_off = this_hdr->sh_offset - segment->p_offset;
6450 else
6451 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6452 if (section->lma - segment->p_paddr != seg_off)
6453 map->p_paddr_valid = FALSE;
6454 }
6455 if (isec == section_count)
6456 break;
6457 }
6458 }
6459 }
6460
6461 if (map->includes_filehdr && lowest_section != NULL)
6462 /* We need to keep the space used by the headers fixed. */
6463 map->header_size = lowest_section->vma - segment->p_vaddr;
6464
6465 if (!map->includes_phdrs
6466 && !map->includes_filehdr
6467 && map->p_paddr_valid)
6468 /* There is some other padding before the first section. */
6469 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6470 - segment->p_paddr);
6471
6472 map->count = section_count;
6473 *pointer_to_map = map;
6474 pointer_to_map = &map->next;
6475 }
6476
6477 elf_seg_map (obfd) = map_first;
6478 return TRUE;
6479 }
6480
6481 /* Copy private BFD data. This copies or rewrites ELF program header
6482 information. */
6483
6484 static bfd_boolean
6485 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6486 {
6487 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6488 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6489 return TRUE;
6490
6491 if (elf_tdata (ibfd)->phdr == NULL)
6492 return TRUE;
6493
6494 if (ibfd->xvec == obfd->xvec)
6495 {
6496 /* Check to see if any sections in the input BFD
6497 covered by ELF program header have changed. */
6498 Elf_Internal_Phdr *segment;
6499 asection *section, *osec;
6500 unsigned int i, num_segments;
6501 Elf_Internal_Shdr *this_hdr;
6502 const struct elf_backend_data *bed;
6503
6504 bed = get_elf_backend_data (ibfd);
6505
6506 /* Regenerate the segment map if p_paddr is set to 0. */
6507 if (bed->want_p_paddr_set_to_zero)
6508 goto rewrite;
6509
6510 /* Initialize the segment mark field. */
6511 for (section = obfd->sections; section != NULL;
6512 section = section->next)
6513 section->segment_mark = FALSE;
6514
6515 num_segments = elf_elfheader (ibfd)->e_phnum;
6516 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6517 i < num_segments;
6518 i++, segment++)
6519 {
6520 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6521 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6522 which severly confuses things, so always regenerate the segment
6523 map in this case. */
6524 if (segment->p_paddr == 0
6525 && segment->p_memsz == 0
6526 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6527 goto rewrite;
6528
6529 for (section = ibfd->sections;
6530 section != NULL; section = section->next)
6531 {
6532 /* We mark the output section so that we know it comes
6533 from the input BFD. */
6534 osec = section->output_section;
6535 if (osec)
6536 osec->segment_mark = TRUE;
6537
6538 /* Check if this section is covered by the segment. */
6539 this_hdr = &(elf_section_data(section)->this_hdr);
6540 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6541 {
6542 /* FIXME: Check if its output section is changed or
6543 removed. What else do we need to check? */
6544 if (osec == NULL
6545 || section->flags != osec->flags
6546 || section->lma != osec->lma
6547 || section->vma != osec->vma
6548 || section->size != osec->size
6549 || section->rawsize != osec->rawsize
6550 || section->alignment_power != osec->alignment_power)
6551 goto rewrite;
6552 }
6553 }
6554 }
6555
6556 /* Check to see if any output section do not come from the
6557 input BFD. */
6558 for (section = obfd->sections; section != NULL;
6559 section = section->next)
6560 {
6561 if (section->segment_mark == FALSE)
6562 goto rewrite;
6563 else
6564 section->segment_mark = FALSE;
6565 }
6566
6567 return copy_elf_program_header (ibfd, obfd);
6568 }
6569
6570 rewrite:
6571 if (ibfd->xvec == obfd->xvec)
6572 {
6573 /* When rewriting program header, set the output maxpagesize to
6574 the maximum alignment of input PT_LOAD segments. */
6575 Elf_Internal_Phdr *segment;
6576 unsigned int i;
6577 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6578 bfd_vma maxpagesize = 0;
6579
6580 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6581 i < num_segments;
6582 i++, segment++)
6583 if (segment->p_type == PT_LOAD
6584 && maxpagesize < segment->p_align)
6585 {
6586 /* PR 17512: file: f17299af. */
6587 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
6588 (*_bfd_error_handler) (_("\
6589 %B: warning: segment alignment of 0x%llx is too large"),
6590 ibfd, (long long) segment->p_align);
6591 else
6592 maxpagesize = segment->p_align;
6593 }
6594
6595 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6596 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6597 }
6598
6599 return rewrite_elf_program_header (ibfd, obfd);
6600 }
6601
6602 /* Initialize private output section information from input section. */
6603
6604 bfd_boolean
6605 _bfd_elf_init_private_section_data (bfd *ibfd,
6606 asection *isec,
6607 bfd *obfd,
6608 asection *osec,
6609 struct bfd_link_info *link_info)
6610
6611 {
6612 Elf_Internal_Shdr *ihdr, *ohdr;
6613 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6614
6615 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6616 || obfd->xvec->flavour != bfd_target_elf_flavour)
6617 return TRUE;
6618
6619 BFD_ASSERT (elf_section_data (osec) != NULL);
6620
6621 /* For objcopy and relocatable link, don't copy the output ELF
6622 section type from input if the output BFD section flags have been
6623 set to something different. For a final link allow some flags
6624 that the linker clears to differ. */
6625 if (elf_section_type (osec) == SHT_NULL
6626 && (osec->flags == isec->flags
6627 || (final_link
6628 && ((osec->flags ^ isec->flags)
6629 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6630 elf_section_type (osec) = elf_section_type (isec);
6631
6632 /* FIXME: Is this correct for all OS/PROC specific flags? */
6633 elf_section_flags (osec) |= (elf_section_flags (isec)
6634 & (SHF_MASKOS | SHF_MASKPROC));
6635
6636 /* Set things up for objcopy and relocatable link. The output
6637 SHT_GROUP section will have its elf_next_in_group pointing back
6638 to the input group members. Ignore linker created group section.
6639 See elfNN_ia64_object_p in elfxx-ia64.c. */
6640 if (!final_link)
6641 {
6642 if (elf_sec_group (isec) == NULL
6643 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6644 {
6645 if (elf_section_flags (isec) & SHF_GROUP)
6646 elf_section_flags (osec) |= SHF_GROUP;
6647 elf_next_in_group (osec) = elf_next_in_group (isec);
6648 elf_section_data (osec)->group = elf_section_data (isec)->group;
6649 }
6650 }
6651
6652 ihdr = &elf_section_data (isec)->this_hdr;
6653
6654 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6655 don't use the output section of the linked-to section since it
6656 may be NULL at this point. */
6657 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6658 {
6659 ohdr = &elf_section_data (osec)->this_hdr;
6660 ohdr->sh_flags |= SHF_LINK_ORDER;
6661 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6662 }
6663
6664 osec->use_rela_p = isec->use_rela_p;
6665
6666 return TRUE;
6667 }
6668
6669 /* Copy private section information. This copies over the entsize
6670 field, and sometimes the info field. */
6671
6672 bfd_boolean
6673 _bfd_elf_copy_private_section_data (bfd *ibfd,
6674 asection *isec,
6675 bfd *obfd,
6676 asection *osec)
6677 {
6678 Elf_Internal_Shdr *ihdr, *ohdr;
6679
6680 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6681 || obfd->xvec->flavour != bfd_target_elf_flavour)
6682 return TRUE;
6683
6684 ihdr = &elf_section_data (isec)->this_hdr;
6685 ohdr = &elf_section_data (osec)->this_hdr;
6686
6687 ohdr->sh_entsize = ihdr->sh_entsize;
6688
6689 if (ihdr->sh_type == SHT_SYMTAB
6690 || ihdr->sh_type == SHT_DYNSYM
6691 || ihdr->sh_type == SHT_GNU_verneed
6692 || ihdr->sh_type == SHT_GNU_verdef)
6693 ohdr->sh_info = ihdr->sh_info;
6694
6695 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6696 NULL);
6697 }
6698
6699 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6700 necessary if we are removing either the SHT_GROUP section or any of
6701 the group member sections. DISCARDED is the value that a section's
6702 output_section has if the section will be discarded, NULL when this
6703 function is called from objcopy, bfd_abs_section_ptr when called
6704 from the linker. */
6705
6706 bfd_boolean
6707 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6708 {
6709 asection *isec;
6710
6711 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6712 if (elf_section_type (isec) == SHT_GROUP)
6713 {
6714 asection *first = elf_next_in_group (isec);
6715 asection *s = first;
6716 bfd_size_type removed = 0;
6717
6718 while (s != NULL)
6719 {
6720 /* If this member section is being output but the
6721 SHT_GROUP section is not, then clear the group info
6722 set up by _bfd_elf_copy_private_section_data. */
6723 if (s->output_section != discarded
6724 && isec->output_section == discarded)
6725 {
6726 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6727 elf_group_name (s->output_section) = NULL;
6728 }
6729 /* Conversely, if the member section is not being output
6730 but the SHT_GROUP section is, then adjust its size. */
6731 else if (s->output_section == discarded
6732 && isec->output_section != discarded)
6733 removed += 4;
6734 s = elf_next_in_group (s);
6735 if (s == first)
6736 break;
6737 }
6738 if (removed != 0)
6739 {
6740 if (discarded != NULL)
6741 {
6742 /* If we've been called for ld -r, then we need to
6743 adjust the input section size. This function may
6744 be called multiple times, so save the original
6745 size. */
6746 if (isec->rawsize == 0)
6747 isec->rawsize = isec->size;
6748 isec->size = isec->rawsize - removed;
6749 }
6750 else
6751 {
6752 /* Adjust the output section size when called from
6753 objcopy. */
6754 isec->output_section->size -= removed;
6755 }
6756 }
6757 }
6758
6759 return TRUE;
6760 }
6761
6762 /* Copy private header information. */
6763
6764 bfd_boolean
6765 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6766 {
6767 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6768 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6769 return TRUE;
6770
6771 /* Copy over private BFD data if it has not already been copied.
6772 This must be done here, rather than in the copy_private_bfd_data
6773 entry point, because the latter is called after the section
6774 contents have been set, which means that the program headers have
6775 already been worked out. */
6776 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
6777 {
6778 if (! copy_private_bfd_data (ibfd, obfd))
6779 return FALSE;
6780 }
6781
6782 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6783 }
6784
6785 /* Copy private symbol information. If this symbol is in a section
6786 which we did not map into a BFD section, try to map the section
6787 index correctly. We use special macro definitions for the mapped
6788 section indices; these definitions are interpreted by the
6789 swap_out_syms function. */
6790
6791 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6792 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6793 #define MAP_STRTAB (SHN_HIOS + 3)
6794 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6795 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6796
6797 bfd_boolean
6798 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6799 asymbol *isymarg,
6800 bfd *obfd,
6801 asymbol *osymarg)
6802 {
6803 elf_symbol_type *isym, *osym;
6804
6805 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6806 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6807 return TRUE;
6808
6809 isym = elf_symbol_from (ibfd, isymarg);
6810 osym = elf_symbol_from (obfd, osymarg);
6811
6812 if (isym != NULL
6813 && isym->internal_elf_sym.st_shndx != 0
6814 && osym != NULL
6815 && bfd_is_abs_section (isym->symbol.section))
6816 {
6817 unsigned int shndx;
6818
6819 shndx = isym->internal_elf_sym.st_shndx;
6820 if (shndx == elf_onesymtab (ibfd))
6821 shndx = MAP_ONESYMTAB;
6822 else if (shndx == elf_dynsymtab (ibfd))
6823 shndx = MAP_DYNSYMTAB;
6824 else if (shndx == elf_strtab_sec (ibfd))
6825 shndx = MAP_STRTAB;
6826 else if (shndx == elf_shstrtab_sec (ibfd))
6827 shndx = MAP_SHSTRTAB;
6828 else if (shndx == elf_symtab_shndx (ibfd))
6829 shndx = MAP_SYM_SHNDX;
6830 osym->internal_elf_sym.st_shndx = shndx;
6831 }
6832
6833 return TRUE;
6834 }
6835
6836 /* Swap out the symbols. */
6837
6838 static bfd_boolean
6839 swap_out_syms (bfd *abfd,
6840 struct bfd_strtab_hash **sttp,
6841 int relocatable_p)
6842 {
6843 const struct elf_backend_data *bed;
6844 int symcount;
6845 asymbol **syms;
6846 struct bfd_strtab_hash *stt;
6847 Elf_Internal_Shdr *symtab_hdr;
6848 Elf_Internal_Shdr *symtab_shndx_hdr;
6849 Elf_Internal_Shdr *symstrtab_hdr;
6850 bfd_byte *outbound_syms;
6851 bfd_byte *outbound_shndx;
6852 int idx;
6853 unsigned int num_locals;
6854 bfd_size_type amt;
6855 bfd_boolean name_local_sections;
6856
6857 if (!elf_map_symbols (abfd, &num_locals))
6858 return FALSE;
6859
6860 /* Dump out the symtabs. */
6861 stt = _bfd_elf_stringtab_init ();
6862 if (stt == NULL)
6863 return FALSE;
6864
6865 bed = get_elf_backend_data (abfd);
6866 symcount = bfd_get_symcount (abfd);
6867 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6868 symtab_hdr->sh_type = SHT_SYMTAB;
6869 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6870 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6871 symtab_hdr->sh_info = num_locals + 1;
6872 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6873
6874 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6875 symstrtab_hdr->sh_type = SHT_STRTAB;
6876
6877 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6878 bed->s->sizeof_sym);
6879 if (outbound_syms == NULL)
6880 {
6881 _bfd_stringtab_free (stt);
6882 return FALSE;
6883 }
6884 symtab_hdr->contents = outbound_syms;
6885
6886 outbound_shndx = NULL;
6887 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6888 if (symtab_shndx_hdr->sh_name != 0)
6889 {
6890 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6891 outbound_shndx = (bfd_byte *)
6892 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6893 if (outbound_shndx == NULL)
6894 {
6895 _bfd_stringtab_free (stt);
6896 return FALSE;
6897 }
6898
6899 symtab_shndx_hdr->contents = outbound_shndx;
6900 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6901 symtab_shndx_hdr->sh_size = amt;
6902 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6903 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6904 }
6905
6906 /* Now generate the data (for "contents"). */
6907 {
6908 /* Fill in zeroth symbol and swap it out. */
6909 Elf_Internal_Sym sym;
6910 sym.st_name = 0;
6911 sym.st_value = 0;
6912 sym.st_size = 0;
6913 sym.st_info = 0;
6914 sym.st_other = 0;
6915 sym.st_shndx = SHN_UNDEF;
6916 sym.st_target_internal = 0;
6917 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6918 outbound_syms += bed->s->sizeof_sym;
6919 if (outbound_shndx != NULL)
6920 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6921 }
6922
6923 name_local_sections
6924 = (bed->elf_backend_name_local_section_symbols
6925 && bed->elf_backend_name_local_section_symbols (abfd));
6926
6927 syms = bfd_get_outsymbols (abfd);
6928 for (idx = 0; idx < symcount; idx++)
6929 {
6930 Elf_Internal_Sym sym;
6931 bfd_vma value = syms[idx]->value;
6932 elf_symbol_type *type_ptr;
6933 flagword flags = syms[idx]->flags;
6934 int type;
6935
6936 if (!name_local_sections
6937 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6938 {
6939 /* Local section symbols have no name. */
6940 sym.st_name = 0;
6941 }
6942 else
6943 {
6944 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6945 syms[idx]->name,
6946 TRUE, FALSE);
6947 if (sym.st_name == (unsigned long) -1)
6948 {
6949 _bfd_stringtab_free (stt);
6950 return FALSE;
6951 }
6952 }
6953
6954 type_ptr = elf_symbol_from (abfd, syms[idx]);
6955
6956 if ((flags & BSF_SECTION_SYM) == 0
6957 && bfd_is_com_section (syms[idx]->section))
6958 {
6959 /* ELF common symbols put the alignment into the `value' field,
6960 and the size into the `size' field. This is backwards from
6961 how BFD handles it, so reverse it here. */
6962 sym.st_size = value;
6963 if (type_ptr == NULL
6964 || type_ptr->internal_elf_sym.st_value == 0)
6965 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6966 else
6967 sym.st_value = type_ptr->internal_elf_sym.st_value;
6968 sym.st_shndx = _bfd_elf_section_from_bfd_section
6969 (abfd, syms[idx]->section);
6970 }
6971 else
6972 {
6973 asection *sec = syms[idx]->section;
6974 unsigned int shndx;
6975
6976 if (sec->output_section)
6977 {
6978 value += sec->output_offset;
6979 sec = sec->output_section;
6980 }
6981
6982 /* Don't add in the section vma for relocatable output. */
6983 if (! relocatable_p)
6984 value += sec->vma;
6985 sym.st_value = value;
6986 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6987
6988 if (bfd_is_abs_section (sec)
6989 && type_ptr != NULL
6990 && type_ptr->internal_elf_sym.st_shndx != 0)
6991 {
6992 /* This symbol is in a real ELF section which we did
6993 not create as a BFD section. Undo the mapping done
6994 by copy_private_symbol_data. */
6995 shndx = type_ptr->internal_elf_sym.st_shndx;
6996 switch (shndx)
6997 {
6998 case MAP_ONESYMTAB:
6999 shndx = elf_onesymtab (abfd);
7000 break;
7001 case MAP_DYNSYMTAB:
7002 shndx = elf_dynsymtab (abfd);
7003 break;
7004 case MAP_STRTAB:
7005 shndx = elf_strtab_sec (abfd);
7006 break;
7007 case MAP_SHSTRTAB:
7008 shndx = elf_shstrtab_sec (abfd);
7009 break;
7010 case MAP_SYM_SHNDX:
7011 shndx = elf_symtab_shndx (abfd);
7012 break;
7013 default:
7014 shndx = SHN_ABS;
7015 break;
7016 }
7017 }
7018 else
7019 {
7020 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7021
7022 if (shndx == SHN_BAD)
7023 {
7024 asection *sec2;
7025
7026 /* Writing this would be a hell of a lot easier if
7027 we had some decent documentation on bfd, and
7028 knew what to expect of the library, and what to
7029 demand of applications. For example, it
7030 appears that `objcopy' might not set the
7031 section of a symbol to be a section that is
7032 actually in the output file. */
7033 sec2 = bfd_get_section_by_name (abfd, sec->name);
7034 if (sec2 == NULL)
7035 {
7036 _bfd_error_handler (_("\
7037 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7038 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7039 sec->name);
7040 bfd_set_error (bfd_error_invalid_operation);
7041 _bfd_stringtab_free (stt);
7042 return FALSE;
7043 }
7044
7045 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7046 BFD_ASSERT (shndx != SHN_BAD);
7047 }
7048 }
7049
7050 sym.st_shndx = shndx;
7051 }
7052
7053 if ((flags & BSF_THREAD_LOCAL) != 0)
7054 type = STT_TLS;
7055 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7056 type = STT_GNU_IFUNC;
7057 else if ((flags & BSF_FUNCTION) != 0)
7058 type = STT_FUNC;
7059 else if ((flags & BSF_OBJECT) != 0)
7060 type = STT_OBJECT;
7061 else if ((flags & BSF_RELC) != 0)
7062 type = STT_RELC;
7063 else if ((flags & BSF_SRELC) != 0)
7064 type = STT_SRELC;
7065 else
7066 type = STT_NOTYPE;
7067
7068 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7069 type = STT_TLS;
7070
7071 /* Processor-specific types. */
7072 if (type_ptr != NULL
7073 && bed->elf_backend_get_symbol_type)
7074 type = ((*bed->elf_backend_get_symbol_type)
7075 (&type_ptr->internal_elf_sym, type));
7076
7077 if (flags & BSF_SECTION_SYM)
7078 {
7079 if (flags & BSF_GLOBAL)
7080 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7081 else
7082 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7083 }
7084 else if (bfd_is_com_section (syms[idx]->section))
7085 {
7086 #ifdef USE_STT_COMMON
7087 if (type == STT_OBJECT)
7088 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
7089 else
7090 #endif
7091 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7092 }
7093 else if (bfd_is_und_section (syms[idx]->section))
7094 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7095 ? STB_WEAK
7096 : STB_GLOBAL),
7097 type);
7098 else if (flags & BSF_FILE)
7099 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7100 else
7101 {
7102 int bind = STB_LOCAL;
7103
7104 if (flags & BSF_LOCAL)
7105 bind = STB_LOCAL;
7106 else if (flags & BSF_GNU_UNIQUE)
7107 bind = STB_GNU_UNIQUE;
7108 else if (flags & BSF_WEAK)
7109 bind = STB_WEAK;
7110 else if (flags & BSF_GLOBAL)
7111 bind = STB_GLOBAL;
7112
7113 sym.st_info = ELF_ST_INFO (bind, type);
7114 }
7115
7116 if (type_ptr != NULL)
7117 {
7118 sym.st_other = type_ptr->internal_elf_sym.st_other;
7119 sym.st_target_internal
7120 = type_ptr->internal_elf_sym.st_target_internal;
7121 }
7122 else
7123 {
7124 sym.st_other = 0;
7125 sym.st_target_internal = 0;
7126 }
7127
7128 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
7129 outbound_syms += bed->s->sizeof_sym;
7130 if (outbound_shndx != NULL)
7131 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
7132 }
7133
7134 *sttp = stt;
7135 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
7136 symstrtab_hdr->sh_type = SHT_STRTAB;
7137
7138 symstrtab_hdr->sh_flags = 0;
7139 symstrtab_hdr->sh_addr = 0;
7140 symstrtab_hdr->sh_entsize = 0;
7141 symstrtab_hdr->sh_link = 0;
7142 symstrtab_hdr->sh_info = 0;
7143 symstrtab_hdr->sh_addralign = 1;
7144
7145 return TRUE;
7146 }
7147
7148 /* Return the number of bytes required to hold the symtab vector.
7149
7150 Note that we base it on the count plus 1, since we will null terminate
7151 the vector allocated based on this size. However, the ELF symbol table
7152 always has a dummy entry as symbol #0, so it ends up even. */
7153
7154 long
7155 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7156 {
7157 long symcount;
7158 long symtab_size;
7159 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7160
7161 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7162 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7163 if (symcount > 0)
7164 symtab_size -= sizeof (asymbol *);
7165
7166 return symtab_size;
7167 }
7168
7169 long
7170 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7171 {
7172 long symcount;
7173 long symtab_size;
7174 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7175
7176 if (elf_dynsymtab (abfd) == 0)
7177 {
7178 bfd_set_error (bfd_error_invalid_operation);
7179 return -1;
7180 }
7181
7182 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7183 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7184 if (symcount > 0)
7185 symtab_size -= sizeof (asymbol *);
7186
7187 return symtab_size;
7188 }
7189
7190 long
7191 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7192 sec_ptr asect)
7193 {
7194 return (asect->reloc_count + 1) * sizeof (arelent *);
7195 }
7196
7197 /* Canonicalize the relocs. */
7198
7199 long
7200 _bfd_elf_canonicalize_reloc (bfd *abfd,
7201 sec_ptr section,
7202 arelent **relptr,
7203 asymbol **symbols)
7204 {
7205 arelent *tblptr;
7206 unsigned int i;
7207 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7208
7209 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7210 return -1;
7211
7212 tblptr = section->relocation;
7213 for (i = 0; i < section->reloc_count; i++)
7214 *relptr++ = tblptr++;
7215
7216 *relptr = NULL;
7217
7218 return section->reloc_count;
7219 }
7220
7221 long
7222 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7223 {
7224 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7225 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7226
7227 if (symcount >= 0)
7228 bfd_get_symcount (abfd) = symcount;
7229 return symcount;
7230 }
7231
7232 long
7233 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7234 asymbol **allocation)
7235 {
7236 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7237 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7238
7239 if (symcount >= 0)
7240 bfd_get_dynamic_symcount (abfd) = symcount;
7241 return symcount;
7242 }
7243
7244 /* Return the size required for the dynamic reloc entries. Any loadable
7245 section that was actually installed in the BFD, and has type SHT_REL
7246 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7247 dynamic reloc section. */
7248
7249 long
7250 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7251 {
7252 long ret;
7253 asection *s;
7254
7255 if (elf_dynsymtab (abfd) == 0)
7256 {
7257 bfd_set_error (bfd_error_invalid_operation);
7258 return -1;
7259 }
7260
7261 ret = sizeof (arelent *);
7262 for (s = abfd->sections; s != NULL; s = s->next)
7263 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7264 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7265 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7266 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7267 * sizeof (arelent *));
7268
7269 return ret;
7270 }
7271
7272 /* Canonicalize the dynamic relocation entries. Note that we return the
7273 dynamic relocations as a single block, although they are actually
7274 associated with particular sections; the interface, which was
7275 designed for SunOS style shared libraries, expects that there is only
7276 one set of dynamic relocs. Any loadable section that was actually
7277 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7278 dynamic symbol table, is considered to be a dynamic reloc section. */
7279
7280 long
7281 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7282 arelent **storage,
7283 asymbol **syms)
7284 {
7285 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7286 asection *s;
7287 long ret;
7288
7289 if (elf_dynsymtab (abfd) == 0)
7290 {
7291 bfd_set_error (bfd_error_invalid_operation);
7292 return -1;
7293 }
7294
7295 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7296 ret = 0;
7297 for (s = abfd->sections; s != NULL; s = s->next)
7298 {
7299 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7300 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7301 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7302 {
7303 arelent *p;
7304 long count, i;
7305
7306 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7307 return -1;
7308 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7309 p = s->relocation;
7310 for (i = 0; i < count; i++)
7311 *storage++ = p++;
7312 ret += count;
7313 }
7314 }
7315
7316 *storage = NULL;
7317
7318 return ret;
7319 }
7320 \f
7321 /* Read in the version information. */
7322
7323 bfd_boolean
7324 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7325 {
7326 bfd_byte *contents = NULL;
7327 unsigned int freeidx = 0;
7328
7329 if (elf_dynverref (abfd) != 0)
7330 {
7331 Elf_Internal_Shdr *hdr;
7332 Elf_External_Verneed *everneed;
7333 Elf_Internal_Verneed *iverneed;
7334 unsigned int i;
7335 bfd_byte *contents_end;
7336
7337 hdr = &elf_tdata (abfd)->dynverref_hdr;
7338
7339 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
7340 {
7341 error_return_bad_verref:
7342 (*_bfd_error_handler)
7343 (_("%B: .gnu.version_r invalid entry"), abfd);
7344 bfd_set_error (bfd_error_bad_value);
7345 error_return_verref:
7346 elf_tdata (abfd)->verref = NULL;
7347 elf_tdata (abfd)->cverrefs = 0;
7348 goto error_return;
7349 }
7350
7351 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7352 if (contents == NULL)
7353 goto error_return_verref;
7354
7355 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7356 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7357 goto error_return_verref;
7358
7359 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7360 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7361
7362 if (elf_tdata (abfd)->verref == NULL)
7363 goto error_return_verref;
7364
7365 BFD_ASSERT (sizeof (Elf_External_Verneed)
7366 == sizeof (Elf_External_Vernaux));
7367 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7368 everneed = (Elf_External_Verneed *) contents;
7369 iverneed = elf_tdata (abfd)->verref;
7370 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7371 {
7372 Elf_External_Vernaux *evernaux;
7373 Elf_Internal_Vernaux *ivernaux;
7374 unsigned int j;
7375
7376 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7377
7378 iverneed->vn_bfd = abfd;
7379
7380 iverneed->vn_filename =
7381 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7382 iverneed->vn_file);
7383 if (iverneed->vn_filename == NULL)
7384 goto error_return_bad_verref;
7385
7386 if (iverneed->vn_cnt == 0)
7387 iverneed->vn_auxptr = NULL;
7388 else
7389 {
7390 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7391 bfd_alloc2 (abfd, iverneed->vn_cnt,
7392 sizeof (Elf_Internal_Vernaux));
7393 if (iverneed->vn_auxptr == NULL)
7394 goto error_return_verref;
7395 }
7396
7397 if (iverneed->vn_aux
7398 > (size_t) (contents_end - (bfd_byte *) everneed))
7399 goto error_return_bad_verref;
7400
7401 evernaux = ((Elf_External_Vernaux *)
7402 ((bfd_byte *) everneed + iverneed->vn_aux));
7403 ivernaux = iverneed->vn_auxptr;
7404 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7405 {
7406 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7407
7408 ivernaux->vna_nodename =
7409 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7410 ivernaux->vna_name);
7411 if (ivernaux->vna_nodename == NULL)
7412 goto error_return_bad_verref;
7413
7414 if (ivernaux->vna_other > freeidx)
7415 freeidx = ivernaux->vna_other;
7416
7417 ivernaux->vna_nextptr = NULL;
7418 if (ivernaux->vna_next == 0)
7419 {
7420 iverneed->vn_cnt = j + 1;
7421 break;
7422 }
7423 if (j + 1 < iverneed->vn_cnt)
7424 ivernaux->vna_nextptr = ivernaux + 1;
7425
7426 if (ivernaux->vna_next
7427 > (size_t) (contents_end - (bfd_byte *) evernaux))
7428 goto error_return_bad_verref;
7429
7430 evernaux = ((Elf_External_Vernaux *)
7431 ((bfd_byte *) evernaux + ivernaux->vna_next));
7432 }
7433
7434 iverneed->vn_nextref = NULL;
7435 if (iverneed->vn_next == 0)
7436 break;
7437 if (i + 1 < hdr->sh_info)
7438 iverneed->vn_nextref = iverneed + 1;
7439
7440 if (iverneed->vn_next
7441 > (size_t) (contents_end - (bfd_byte *) everneed))
7442 goto error_return_bad_verref;
7443
7444 everneed = ((Elf_External_Verneed *)
7445 ((bfd_byte *) everneed + iverneed->vn_next));
7446 }
7447 elf_tdata (abfd)->cverrefs = i;
7448
7449 free (contents);
7450 contents = NULL;
7451 }
7452
7453 if (elf_dynverdef (abfd) != 0)
7454 {
7455 Elf_Internal_Shdr *hdr;
7456 Elf_External_Verdef *everdef;
7457 Elf_Internal_Verdef *iverdef;
7458 Elf_Internal_Verdef *iverdefarr;
7459 Elf_Internal_Verdef iverdefmem;
7460 unsigned int i;
7461 unsigned int maxidx;
7462 bfd_byte *contents_end_def, *contents_end_aux;
7463
7464 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7465
7466 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
7467 {
7468 error_return_bad_verdef:
7469 (*_bfd_error_handler)
7470 (_("%B: .gnu.version_d invalid entry"), abfd);
7471 bfd_set_error (bfd_error_bad_value);
7472 error_return_verdef:
7473 elf_tdata (abfd)->verdef = NULL;
7474 elf_tdata (abfd)->cverdefs = 0;
7475 goto error_return;
7476 }
7477
7478 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7479 if (contents == NULL)
7480 goto error_return_verdef;
7481 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7482 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7483 goto error_return_verdef;
7484
7485 BFD_ASSERT (sizeof (Elf_External_Verdef)
7486 >= sizeof (Elf_External_Verdaux));
7487 contents_end_def = contents + hdr->sh_size
7488 - sizeof (Elf_External_Verdef);
7489 contents_end_aux = contents + hdr->sh_size
7490 - sizeof (Elf_External_Verdaux);
7491
7492 /* We know the number of entries in the section but not the maximum
7493 index. Therefore we have to run through all entries and find
7494 the maximum. */
7495 everdef = (Elf_External_Verdef *) contents;
7496 maxidx = 0;
7497 for (i = 0; i < hdr->sh_info; ++i)
7498 {
7499 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7500
7501 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
7502 goto error_return_bad_verdef;
7503 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7504 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7505
7506 if (iverdefmem.vd_next == 0)
7507 break;
7508
7509 if (iverdefmem.vd_next
7510 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7511 goto error_return_bad_verdef;
7512
7513 everdef = ((Elf_External_Verdef *)
7514 ((bfd_byte *) everdef + iverdefmem.vd_next));
7515 }
7516
7517 if (default_imported_symver)
7518 {
7519 if (freeidx > maxidx)
7520 maxidx = ++freeidx;
7521 else
7522 freeidx = ++maxidx;
7523 }
7524
7525 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7526 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7527 if (elf_tdata (abfd)->verdef == NULL)
7528 goto error_return_verdef;
7529
7530 elf_tdata (abfd)->cverdefs = maxidx;
7531
7532 everdef = (Elf_External_Verdef *) contents;
7533 iverdefarr = elf_tdata (abfd)->verdef;
7534 for (i = 0; i < hdr->sh_info; i++)
7535 {
7536 Elf_External_Verdaux *everdaux;
7537 Elf_Internal_Verdaux *iverdaux;
7538 unsigned int j;
7539
7540 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7541
7542 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7543 goto error_return_bad_verdef;
7544
7545 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7546 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7547
7548 iverdef->vd_bfd = abfd;
7549
7550 if (iverdef->vd_cnt == 0)
7551 iverdef->vd_auxptr = NULL;
7552 else
7553 {
7554 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7555 bfd_alloc2 (abfd, iverdef->vd_cnt,
7556 sizeof (Elf_Internal_Verdaux));
7557 if (iverdef->vd_auxptr == NULL)
7558 goto error_return_verdef;
7559 }
7560
7561 if (iverdef->vd_aux
7562 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7563 goto error_return_bad_verdef;
7564
7565 everdaux = ((Elf_External_Verdaux *)
7566 ((bfd_byte *) everdef + iverdef->vd_aux));
7567 iverdaux = iverdef->vd_auxptr;
7568 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7569 {
7570 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7571
7572 iverdaux->vda_nodename =
7573 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7574 iverdaux->vda_name);
7575 if (iverdaux->vda_nodename == NULL)
7576 goto error_return_bad_verdef;
7577
7578 iverdaux->vda_nextptr = NULL;
7579 if (iverdaux->vda_next == 0)
7580 {
7581 iverdef->vd_cnt = j + 1;
7582 break;
7583 }
7584 if (j + 1 < iverdef->vd_cnt)
7585 iverdaux->vda_nextptr = iverdaux + 1;
7586
7587 if (iverdaux->vda_next
7588 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7589 goto error_return_bad_verdef;
7590
7591 everdaux = ((Elf_External_Verdaux *)
7592 ((bfd_byte *) everdaux + iverdaux->vda_next));
7593 }
7594
7595 if (iverdef->vd_cnt)
7596 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7597
7598 iverdef->vd_nextdef = NULL;
7599 if (iverdef->vd_next == 0)
7600 break;
7601 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7602 iverdef->vd_nextdef = iverdef + 1;
7603
7604 everdef = ((Elf_External_Verdef *)
7605 ((bfd_byte *) everdef + iverdef->vd_next));
7606 }
7607
7608 free (contents);
7609 contents = NULL;
7610 }
7611 else if (default_imported_symver)
7612 {
7613 if (freeidx < 3)
7614 freeidx = 3;
7615 else
7616 freeidx++;
7617
7618 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7619 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7620 if (elf_tdata (abfd)->verdef == NULL)
7621 goto error_return;
7622
7623 elf_tdata (abfd)->cverdefs = freeidx;
7624 }
7625
7626 /* Create a default version based on the soname. */
7627 if (default_imported_symver)
7628 {
7629 Elf_Internal_Verdef *iverdef;
7630 Elf_Internal_Verdaux *iverdaux;
7631
7632 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7633
7634 iverdef->vd_version = VER_DEF_CURRENT;
7635 iverdef->vd_flags = 0;
7636 iverdef->vd_ndx = freeidx;
7637 iverdef->vd_cnt = 1;
7638
7639 iverdef->vd_bfd = abfd;
7640
7641 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7642 if (iverdef->vd_nodename == NULL)
7643 goto error_return_verdef;
7644 iverdef->vd_nextdef = NULL;
7645 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
7646 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
7647 if (iverdef->vd_auxptr == NULL)
7648 goto error_return_verdef;
7649
7650 iverdaux = iverdef->vd_auxptr;
7651 iverdaux->vda_nodename = iverdef->vd_nodename;
7652 }
7653
7654 return TRUE;
7655
7656 error_return:
7657 if (contents != NULL)
7658 free (contents);
7659 return FALSE;
7660 }
7661 \f
7662 asymbol *
7663 _bfd_elf_make_empty_symbol (bfd *abfd)
7664 {
7665 elf_symbol_type *newsym;
7666
7667 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
7668 if (!newsym)
7669 return NULL;
7670 newsym->symbol.the_bfd = abfd;
7671 return &newsym->symbol;
7672 }
7673
7674 void
7675 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7676 asymbol *symbol,
7677 symbol_info *ret)
7678 {
7679 bfd_symbol_info (symbol, ret);
7680 }
7681
7682 /* Return whether a symbol name implies a local symbol. Most targets
7683 use this function for the is_local_label_name entry point, but some
7684 override it. */
7685
7686 bfd_boolean
7687 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7688 const char *name)
7689 {
7690 /* Normal local symbols start with ``.L''. */
7691 if (name[0] == '.' && name[1] == 'L')
7692 return TRUE;
7693
7694 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7695 DWARF debugging symbols starting with ``..''. */
7696 if (name[0] == '.' && name[1] == '.')
7697 return TRUE;
7698
7699 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7700 emitting DWARF debugging output. I suspect this is actually a
7701 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7702 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7703 underscore to be emitted on some ELF targets). For ease of use,
7704 we treat such symbols as local. */
7705 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7706 return TRUE;
7707
7708 return FALSE;
7709 }
7710
7711 alent *
7712 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7713 asymbol *symbol ATTRIBUTE_UNUSED)
7714 {
7715 abort ();
7716 return NULL;
7717 }
7718
7719 bfd_boolean
7720 _bfd_elf_set_arch_mach (bfd *abfd,
7721 enum bfd_architecture arch,
7722 unsigned long machine)
7723 {
7724 /* If this isn't the right architecture for this backend, and this
7725 isn't the generic backend, fail. */
7726 if (arch != get_elf_backend_data (abfd)->arch
7727 && arch != bfd_arch_unknown
7728 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7729 return FALSE;
7730
7731 return bfd_default_set_arch_mach (abfd, arch, machine);
7732 }
7733
7734 /* Find the nearest line to a particular section and offset,
7735 for error reporting. */
7736
7737 bfd_boolean
7738 _bfd_elf_find_nearest_line (bfd *abfd,
7739 asymbol **symbols,
7740 asection *section,
7741 bfd_vma offset,
7742 const char **filename_ptr,
7743 const char **functionname_ptr,
7744 unsigned int *line_ptr,
7745 unsigned int *discriminator_ptr)
7746 {
7747 bfd_boolean found;
7748
7749 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7750 filename_ptr, functionname_ptr,
7751 line_ptr, discriminator_ptr,
7752 dwarf_debug_sections, 0,
7753 &elf_tdata (abfd)->dwarf2_find_line_info)
7754 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
7755 filename_ptr, functionname_ptr,
7756 line_ptr))
7757 {
7758 if (!*functionname_ptr)
7759 _bfd_elf_find_function (abfd, symbols, section, offset,
7760 *filename_ptr ? NULL : filename_ptr,
7761 functionname_ptr);
7762 return TRUE;
7763 }
7764
7765 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7766 &found, filename_ptr,
7767 functionname_ptr, line_ptr,
7768 &elf_tdata (abfd)->line_info))
7769 return FALSE;
7770 if (found && (*functionname_ptr || *line_ptr))
7771 return TRUE;
7772
7773 if (symbols == NULL)
7774 return FALSE;
7775
7776 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
7777 filename_ptr, functionname_ptr))
7778 return FALSE;
7779
7780 *line_ptr = 0;
7781 return TRUE;
7782 }
7783
7784 /* Find the line for a symbol. */
7785
7786 bfd_boolean
7787 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7788 const char **filename_ptr, unsigned int *line_ptr)
7789 {
7790 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
7791 filename_ptr, NULL, line_ptr, NULL,
7792 dwarf_debug_sections, 0,
7793 &elf_tdata (abfd)->dwarf2_find_line_info);
7794 }
7795
7796 /* After a call to bfd_find_nearest_line, successive calls to
7797 bfd_find_inliner_info can be used to get source information about
7798 each level of function inlining that terminated at the address
7799 passed to bfd_find_nearest_line. Currently this is only supported
7800 for DWARF2 with appropriate DWARF3 extensions. */
7801
7802 bfd_boolean
7803 _bfd_elf_find_inliner_info (bfd *abfd,
7804 const char **filename_ptr,
7805 const char **functionname_ptr,
7806 unsigned int *line_ptr)
7807 {
7808 bfd_boolean found;
7809 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7810 functionname_ptr, line_ptr,
7811 & elf_tdata (abfd)->dwarf2_find_line_info);
7812 return found;
7813 }
7814
7815 int
7816 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7817 {
7818 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7819 int ret = bed->s->sizeof_ehdr;
7820
7821 if (!info->relocatable)
7822 {
7823 bfd_size_type phdr_size = elf_program_header_size (abfd);
7824
7825 if (phdr_size == (bfd_size_type) -1)
7826 {
7827 struct elf_segment_map *m;
7828
7829 phdr_size = 0;
7830 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
7831 phdr_size += bed->s->sizeof_phdr;
7832
7833 if (phdr_size == 0)
7834 phdr_size = get_program_header_size (abfd, info);
7835 }
7836
7837 elf_program_header_size (abfd) = phdr_size;
7838 ret += phdr_size;
7839 }
7840
7841 return ret;
7842 }
7843
7844 bfd_boolean
7845 _bfd_elf_set_section_contents (bfd *abfd,
7846 sec_ptr section,
7847 const void *location,
7848 file_ptr offset,
7849 bfd_size_type count)
7850 {
7851 Elf_Internal_Shdr *hdr;
7852 file_ptr pos;
7853
7854 if (! abfd->output_has_begun
7855 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7856 return FALSE;
7857
7858 hdr = &elf_section_data (section)->this_hdr;
7859 pos = hdr->sh_offset + offset;
7860 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7861 || bfd_bwrite (location, count, abfd) != count)
7862 return FALSE;
7863
7864 return TRUE;
7865 }
7866
7867 void
7868 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7869 arelent *cache_ptr ATTRIBUTE_UNUSED,
7870 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7871 {
7872 abort ();
7873 }
7874
7875 /* Try to convert a non-ELF reloc into an ELF one. */
7876
7877 bfd_boolean
7878 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7879 {
7880 /* Check whether we really have an ELF howto. */
7881
7882 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7883 {
7884 bfd_reloc_code_real_type code;
7885 reloc_howto_type *howto;
7886
7887 /* Alien reloc: Try to determine its type to replace it with an
7888 equivalent ELF reloc. */
7889
7890 if (areloc->howto->pc_relative)
7891 {
7892 switch (areloc->howto->bitsize)
7893 {
7894 case 8:
7895 code = BFD_RELOC_8_PCREL;
7896 break;
7897 case 12:
7898 code = BFD_RELOC_12_PCREL;
7899 break;
7900 case 16:
7901 code = BFD_RELOC_16_PCREL;
7902 break;
7903 case 24:
7904 code = BFD_RELOC_24_PCREL;
7905 break;
7906 case 32:
7907 code = BFD_RELOC_32_PCREL;
7908 break;
7909 case 64:
7910 code = BFD_RELOC_64_PCREL;
7911 break;
7912 default:
7913 goto fail;
7914 }
7915
7916 howto = bfd_reloc_type_lookup (abfd, code);
7917
7918 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7919 {
7920 if (howto->pcrel_offset)
7921 areloc->addend += areloc->address;
7922 else
7923 areloc->addend -= areloc->address; /* addend is unsigned!! */
7924 }
7925 }
7926 else
7927 {
7928 switch (areloc->howto->bitsize)
7929 {
7930 case 8:
7931 code = BFD_RELOC_8;
7932 break;
7933 case 14:
7934 code = BFD_RELOC_14;
7935 break;
7936 case 16:
7937 code = BFD_RELOC_16;
7938 break;
7939 case 26:
7940 code = BFD_RELOC_26;
7941 break;
7942 case 32:
7943 code = BFD_RELOC_32;
7944 break;
7945 case 64:
7946 code = BFD_RELOC_64;
7947 break;
7948 default:
7949 goto fail;
7950 }
7951
7952 howto = bfd_reloc_type_lookup (abfd, code);
7953 }
7954
7955 if (howto)
7956 areloc->howto = howto;
7957 else
7958 goto fail;
7959 }
7960
7961 return TRUE;
7962
7963 fail:
7964 (*_bfd_error_handler)
7965 (_("%B: unsupported relocation type %s"),
7966 abfd, areloc->howto->name);
7967 bfd_set_error (bfd_error_bad_value);
7968 return FALSE;
7969 }
7970
7971 bfd_boolean
7972 _bfd_elf_close_and_cleanup (bfd *abfd)
7973 {
7974 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7975 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7976 {
7977 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
7978 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7979 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7980 }
7981
7982 return _bfd_generic_close_and_cleanup (abfd);
7983 }
7984
7985 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7986 in the relocation's offset. Thus we cannot allow any sort of sanity
7987 range-checking to interfere. There is nothing else to do in processing
7988 this reloc. */
7989
7990 bfd_reloc_status_type
7991 _bfd_elf_rel_vtable_reloc_fn
7992 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7993 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7994 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7995 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7996 {
7997 return bfd_reloc_ok;
7998 }
7999 \f
8000 /* Elf core file support. Much of this only works on native
8001 toolchains, since we rely on knowing the
8002 machine-dependent procfs structure in order to pick
8003 out details about the corefile. */
8004
8005 #ifdef HAVE_SYS_PROCFS_H
8006 /* Needed for new procfs interface on sparc-solaris. */
8007 # define _STRUCTURED_PROC 1
8008 # include <sys/procfs.h>
8009 #endif
8010
8011 /* Return a PID that identifies a "thread" for threaded cores, or the
8012 PID of the main process for non-threaded cores. */
8013
8014 static int
8015 elfcore_make_pid (bfd *abfd)
8016 {
8017 int pid;
8018
8019 pid = elf_tdata (abfd)->core->lwpid;
8020 if (pid == 0)
8021 pid = elf_tdata (abfd)->core->pid;
8022
8023 return pid;
8024 }
8025
8026 /* If there isn't a section called NAME, make one, using
8027 data from SECT. Note, this function will generate a
8028 reference to NAME, so you shouldn't deallocate or
8029 overwrite it. */
8030
8031 static bfd_boolean
8032 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8033 {
8034 asection *sect2;
8035
8036 if (bfd_get_section_by_name (abfd, name) != NULL)
8037 return TRUE;
8038
8039 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8040 if (sect2 == NULL)
8041 return FALSE;
8042
8043 sect2->size = sect->size;
8044 sect2->filepos = sect->filepos;
8045 sect2->alignment_power = sect->alignment_power;
8046 return TRUE;
8047 }
8048
8049 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8050 actually creates up to two pseudosections:
8051 - For the single-threaded case, a section named NAME, unless
8052 such a section already exists.
8053 - For the multi-threaded case, a section named "NAME/PID", where
8054 PID is elfcore_make_pid (abfd).
8055 Both pseudosections have identical contents. */
8056 bfd_boolean
8057 _bfd_elfcore_make_pseudosection (bfd *abfd,
8058 char *name,
8059 size_t size,
8060 ufile_ptr filepos)
8061 {
8062 char buf[100];
8063 char *threaded_name;
8064 size_t len;
8065 asection *sect;
8066
8067 /* Build the section name. */
8068
8069 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8070 len = strlen (buf) + 1;
8071 threaded_name = (char *) bfd_alloc (abfd, len);
8072 if (threaded_name == NULL)
8073 return FALSE;
8074 memcpy (threaded_name, buf, len);
8075
8076 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8077 SEC_HAS_CONTENTS);
8078 if (sect == NULL)
8079 return FALSE;
8080 sect->size = size;
8081 sect->filepos = filepos;
8082 sect->alignment_power = 2;
8083
8084 return elfcore_maybe_make_sect (abfd, name, sect);
8085 }
8086
8087 /* prstatus_t exists on:
8088 solaris 2.5+
8089 linux 2.[01] + glibc
8090 unixware 4.2
8091 */
8092
8093 #if defined (HAVE_PRSTATUS_T)
8094
8095 static bfd_boolean
8096 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8097 {
8098 size_t size;
8099 int offset;
8100
8101 if (note->descsz == sizeof (prstatus_t))
8102 {
8103 prstatus_t prstat;
8104
8105 size = sizeof (prstat.pr_reg);
8106 offset = offsetof (prstatus_t, pr_reg);
8107 memcpy (&prstat, note->descdata, sizeof (prstat));
8108
8109 /* Do not overwrite the core signal if it
8110 has already been set by another thread. */
8111 if (elf_tdata (abfd)->core->signal == 0)
8112 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8113 if (elf_tdata (abfd)->core->pid == 0)
8114 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8115
8116 /* pr_who exists on:
8117 solaris 2.5+
8118 unixware 4.2
8119 pr_who doesn't exist on:
8120 linux 2.[01]
8121 */
8122 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8123 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8124 #else
8125 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8126 #endif
8127 }
8128 #if defined (HAVE_PRSTATUS32_T)
8129 else if (note->descsz == sizeof (prstatus32_t))
8130 {
8131 /* 64-bit host, 32-bit corefile */
8132 prstatus32_t prstat;
8133
8134 size = sizeof (prstat.pr_reg);
8135 offset = offsetof (prstatus32_t, pr_reg);
8136 memcpy (&prstat, note->descdata, sizeof (prstat));
8137
8138 /* Do not overwrite the core signal if it
8139 has already been set by another thread. */
8140 if (elf_tdata (abfd)->core->signal == 0)
8141 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8142 if (elf_tdata (abfd)->core->pid == 0)
8143 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8144
8145 /* pr_who exists on:
8146 solaris 2.5+
8147 unixware 4.2
8148 pr_who doesn't exist on:
8149 linux 2.[01]
8150 */
8151 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8152 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8153 #else
8154 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8155 #endif
8156 }
8157 #endif /* HAVE_PRSTATUS32_T */
8158 else
8159 {
8160 /* Fail - we don't know how to handle any other
8161 note size (ie. data object type). */
8162 return TRUE;
8163 }
8164
8165 /* Make a ".reg/999" section and a ".reg" section. */
8166 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8167 size, note->descpos + offset);
8168 }
8169 #endif /* defined (HAVE_PRSTATUS_T) */
8170
8171 /* Create a pseudosection containing the exact contents of NOTE. */
8172 static bfd_boolean
8173 elfcore_make_note_pseudosection (bfd *abfd,
8174 char *name,
8175 Elf_Internal_Note *note)
8176 {
8177 return _bfd_elfcore_make_pseudosection (abfd, name,
8178 note->descsz, note->descpos);
8179 }
8180
8181 /* There isn't a consistent prfpregset_t across platforms,
8182 but it doesn't matter, because we don't have to pick this
8183 data structure apart. */
8184
8185 static bfd_boolean
8186 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8187 {
8188 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8189 }
8190
8191 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8192 type of NT_PRXFPREG. Just include the whole note's contents
8193 literally. */
8194
8195 static bfd_boolean
8196 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8197 {
8198 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8199 }
8200
8201 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8202 with a note type of NT_X86_XSTATE. Just include the whole note's
8203 contents literally. */
8204
8205 static bfd_boolean
8206 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8207 {
8208 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8209 }
8210
8211 static bfd_boolean
8212 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8213 {
8214 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8215 }
8216
8217 static bfd_boolean
8218 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8219 {
8220 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8221 }
8222
8223 static bfd_boolean
8224 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8225 {
8226 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8227 }
8228
8229 static bfd_boolean
8230 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8231 {
8232 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8233 }
8234
8235 static bfd_boolean
8236 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8237 {
8238 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8239 }
8240
8241 static bfd_boolean
8242 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8243 {
8244 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8245 }
8246
8247 static bfd_boolean
8248 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8249 {
8250 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8251 }
8252
8253 static bfd_boolean
8254 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8255 {
8256 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8257 }
8258
8259 static bfd_boolean
8260 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8261 {
8262 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8263 }
8264
8265 static bfd_boolean
8266 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8267 {
8268 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8269 }
8270
8271 static bfd_boolean
8272 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8273 {
8274 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8275 }
8276
8277 static bfd_boolean
8278 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
8279 {
8280 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
8281 }
8282
8283 static bfd_boolean
8284 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
8285 {
8286 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
8287 }
8288
8289 static bfd_boolean
8290 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8291 {
8292 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8293 }
8294
8295 static bfd_boolean
8296 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8297 {
8298 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8299 }
8300
8301 static bfd_boolean
8302 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8303 {
8304 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8305 }
8306
8307 static bfd_boolean
8308 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8309 {
8310 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8311 }
8312
8313 #if defined (HAVE_PRPSINFO_T)
8314 typedef prpsinfo_t elfcore_psinfo_t;
8315 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8316 typedef prpsinfo32_t elfcore_psinfo32_t;
8317 #endif
8318 #endif
8319
8320 #if defined (HAVE_PSINFO_T)
8321 typedef psinfo_t elfcore_psinfo_t;
8322 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8323 typedef psinfo32_t elfcore_psinfo32_t;
8324 #endif
8325 #endif
8326
8327 /* return a malloc'ed copy of a string at START which is at
8328 most MAX bytes long, possibly without a terminating '\0'.
8329 the copy will always have a terminating '\0'. */
8330
8331 char *
8332 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8333 {
8334 char *dups;
8335 char *end = (char *) memchr (start, '\0', max);
8336 size_t len;
8337
8338 if (end == NULL)
8339 len = max;
8340 else
8341 len = end - start;
8342
8343 dups = (char *) bfd_alloc (abfd, len + 1);
8344 if (dups == NULL)
8345 return NULL;
8346
8347 memcpy (dups, start, len);
8348 dups[len] = '\0';
8349
8350 return dups;
8351 }
8352
8353 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8354 static bfd_boolean
8355 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8356 {
8357 if (note->descsz == sizeof (elfcore_psinfo_t))
8358 {
8359 elfcore_psinfo_t psinfo;
8360
8361 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8362
8363 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8364 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8365 #endif
8366 elf_tdata (abfd)->core->program
8367 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8368 sizeof (psinfo.pr_fname));
8369
8370 elf_tdata (abfd)->core->command
8371 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8372 sizeof (psinfo.pr_psargs));
8373 }
8374 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8375 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8376 {
8377 /* 64-bit host, 32-bit corefile */
8378 elfcore_psinfo32_t psinfo;
8379
8380 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8381
8382 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8383 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8384 #endif
8385 elf_tdata (abfd)->core->program
8386 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8387 sizeof (psinfo.pr_fname));
8388
8389 elf_tdata (abfd)->core->command
8390 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8391 sizeof (psinfo.pr_psargs));
8392 }
8393 #endif
8394
8395 else
8396 {
8397 /* Fail - we don't know how to handle any other
8398 note size (ie. data object type). */
8399 return TRUE;
8400 }
8401
8402 /* Note that for some reason, a spurious space is tacked
8403 onto the end of the args in some (at least one anyway)
8404 implementations, so strip it off if it exists. */
8405
8406 {
8407 char *command = elf_tdata (abfd)->core->command;
8408 int n = strlen (command);
8409
8410 if (0 < n && command[n - 1] == ' ')
8411 command[n - 1] = '\0';
8412 }
8413
8414 return TRUE;
8415 }
8416 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8417
8418 #if defined (HAVE_PSTATUS_T)
8419 static bfd_boolean
8420 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8421 {
8422 if (note->descsz == sizeof (pstatus_t)
8423 #if defined (HAVE_PXSTATUS_T)
8424 || note->descsz == sizeof (pxstatus_t)
8425 #endif
8426 )
8427 {
8428 pstatus_t pstat;
8429
8430 memcpy (&pstat, note->descdata, sizeof (pstat));
8431
8432 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8433 }
8434 #if defined (HAVE_PSTATUS32_T)
8435 else if (note->descsz == sizeof (pstatus32_t))
8436 {
8437 /* 64-bit host, 32-bit corefile */
8438 pstatus32_t pstat;
8439
8440 memcpy (&pstat, note->descdata, sizeof (pstat));
8441
8442 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8443 }
8444 #endif
8445 /* Could grab some more details from the "representative"
8446 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8447 NT_LWPSTATUS note, presumably. */
8448
8449 return TRUE;
8450 }
8451 #endif /* defined (HAVE_PSTATUS_T) */
8452
8453 #if defined (HAVE_LWPSTATUS_T)
8454 static bfd_boolean
8455 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8456 {
8457 lwpstatus_t lwpstat;
8458 char buf[100];
8459 char *name;
8460 size_t len;
8461 asection *sect;
8462
8463 if (note->descsz != sizeof (lwpstat)
8464 #if defined (HAVE_LWPXSTATUS_T)
8465 && note->descsz != sizeof (lwpxstatus_t)
8466 #endif
8467 )
8468 return TRUE;
8469
8470 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8471
8472 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8473 /* Do not overwrite the core signal if it has already been set by
8474 another thread. */
8475 if (elf_tdata (abfd)->core->signal == 0)
8476 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8477
8478 /* Make a ".reg/999" section. */
8479
8480 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8481 len = strlen (buf) + 1;
8482 name = bfd_alloc (abfd, len);
8483 if (name == NULL)
8484 return FALSE;
8485 memcpy (name, buf, len);
8486
8487 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8488 if (sect == NULL)
8489 return FALSE;
8490
8491 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8492 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8493 sect->filepos = note->descpos
8494 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8495 #endif
8496
8497 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8498 sect->size = sizeof (lwpstat.pr_reg);
8499 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8500 #endif
8501
8502 sect->alignment_power = 2;
8503
8504 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8505 return FALSE;
8506
8507 /* Make a ".reg2/999" section */
8508
8509 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8510 len = strlen (buf) + 1;
8511 name = bfd_alloc (abfd, len);
8512 if (name == NULL)
8513 return FALSE;
8514 memcpy (name, buf, len);
8515
8516 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8517 if (sect == NULL)
8518 return FALSE;
8519
8520 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8521 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8522 sect->filepos = note->descpos
8523 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8524 #endif
8525
8526 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8527 sect->size = sizeof (lwpstat.pr_fpreg);
8528 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8529 #endif
8530
8531 sect->alignment_power = 2;
8532
8533 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8534 }
8535 #endif /* defined (HAVE_LWPSTATUS_T) */
8536
8537 static bfd_boolean
8538 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8539 {
8540 char buf[30];
8541 char *name;
8542 size_t len;
8543 asection *sect;
8544 int type;
8545 int is_active_thread;
8546 bfd_vma base_addr;
8547
8548 if (note->descsz < 728)
8549 return TRUE;
8550
8551 if (! CONST_STRNEQ (note->namedata, "win32"))
8552 return TRUE;
8553
8554 type = bfd_get_32 (abfd, note->descdata);
8555
8556 switch (type)
8557 {
8558 case 1 /* NOTE_INFO_PROCESS */:
8559 /* FIXME: need to add ->core->command. */
8560 /* process_info.pid */
8561 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
8562 /* process_info.signal */
8563 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
8564 break;
8565
8566 case 2 /* NOTE_INFO_THREAD */:
8567 /* Make a ".reg/999" section. */
8568 /* thread_info.tid */
8569 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8570
8571 len = strlen (buf) + 1;
8572 name = (char *) bfd_alloc (abfd, len);
8573 if (name == NULL)
8574 return FALSE;
8575
8576 memcpy (name, buf, len);
8577
8578 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8579 if (sect == NULL)
8580 return FALSE;
8581
8582 /* sizeof (thread_info.thread_context) */
8583 sect->size = 716;
8584 /* offsetof (thread_info.thread_context) */
8585 sect->filepos = note->descpos + 12;
8586 sect->alignment_power = 2;
8587
8588 /* thread_info.is_active_thread */
8589 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8590
8591 if (is_active_thread)
8592 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8593 return FALSE;
8594 break;
8595
8596 case 3 /* NOTE_INFO_MODULE */:
8597 /* Make a ".module/xxxxxxxx" section. */
8598 /* module_info.base_address */
8599 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8600 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8601
8602 len = strlen (buf) + 1;
8603 name = (char *) bfd_alloc (abfd, len);
8604 if (name == NULL)
8605 return FALSE;
8606
8607 memcpy (name, buf, len);
8608
8609 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8610
8611 if (sect == NULL)
8612 return FALSE;
8613
8614 sect->size = note->descsz;
8615 sect->filepos = note->descpos;
8616 sect->alignment_power = 2;
8617 break;
8618
8619 default:
8620 return TRUE;
8621 }
8622
8623 return TRUE;
8624 }
8625
8626 static bfd_boolean
8627 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8628 {
8629 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8630
8631 switch (note->type)
8632 {
8633 default:
8634 return TRUE;
8635
8636 case NT_PRSTATUS:
8637 if (bed->elf_backend_grok_prstatus)
8638 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8639 return TRUE;
8640 #if defined (HAVE_PRSTATUS_T)
8641 return elfcore_grok_prstatus (abfd, note);
8642 #else
8643 return TRUE;
8644 #endif
8645
8646 #if defined (HAVE_PSTATUS_T)
8647 case NT_PSTATUS:
8648 return elfcore_grok_pstatus (abfd, note);
8649 #endif
8650
8651 #if defined (HAVE_LWPSTATUS_T)
8652 case NT_LWPSTATUS:
8653 return elfcore_grok_lwpstatus (abfd, note);
8654 #endif
8655
8656 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8657 return elfcore_grok_prfpreg (abfd, note);
8658
8659 case NT_WIN32PSTATUS:
8660 return elfcore_grok_win32pstatus (abfd, note);
8661
8662 case NT_PRXFPREG: /* Linux SSE extension */
8663 if (note->namesz == 6
8664 && strcmp (note->namedata, "LINUX") == 0)
8665 return elfcore_grok_prxfpreg (abfd, note);
8666 else
8667 return TRUE;
8668
8669 case NT_X86_XSTATE: /* Linux XSAVE extension */
8670 if (note->namesz == 6
8671 && strcmp (note->namedata, "LINUX") == 0)
8672 return elfcore_grok_xstatereg (abfd, note);
8673 else
8674 return TRUE;
8675
8676 case NT_PPC_VMX:
8677 if (note->namesz == 6
8678 && strcmp (note->namedata, "LINUX") == 0)
8679 return elfcore_grok_ppc_vmx (abfd, note);
8680 else
8681 return TRUE;
8682
8683 case NT_PPC_VSX:
8684 if (note->namesz == 6
8685 && strcmp (note->namedata, "LINUX") == 0)
8686 return elfcore_grok_ppc_vsx (abfd, note);
8687 else
8688 return TRUE;
8689
8690 case NT_S390_HIGH_GPRS:
8691 if (note->namesz == 6
8692 && strcmp (note->namedata, "LINUX") == 0)
8693 return elfcore_grok_s390_high_gprs (abfd, note);
8694 else
8695 return TRUE;
8696
8697 case NT_S390_TIMER:
8698 if (note->namesz == 6
8699 && strcmp (note->namedata, "LINUX") == 0)
8700 return elfcore_grok_s390_timer (abfd, note);
8701 else
8702 return TRUE;
8703
8704 case NT_S390_TODCMP:
8705 if (note->namesz == 6
8706 && strcmp (note->namedata, "LINUX") == 0)
8707 return elfcore_grok_s390_todcmp (abfd, note);
8708 else
8709 return TRUE;
8710
8711 case NT_S390_TODPREG:
8712 if (note->namesz == 6
8713 && strcmp (note->namedata, "LINUX") == 0)
8714 return elfcore_grok_s390_todpreg (abfd, note);
8715 else
8716 return TRUE;
8717
8718 case NT_S390_CTRS:
8719 if (note->namesz == 6
8720 && strcmp (note->namedata, "LINUX") == 0)
8721 return elfcore_grok_s390_ctrs (abfd, note);
8722 else
8723 return TRUE;
8724
8725 case NT_S390_PREFIX:
8726 if (note->namesz == 6
8727 && strcmp (note->namedata, "LINUX") == 0)
8728 return elfcore_grok_s390_prefix (abfd, note);
8729 else
8730 return TRUE;
8731
8732 case NT_S390_LAST_BREAK:
8733 if (note->namesz == 6
8734 && strcmp (note->namedata, "LINUX") == 0)
8735 return elfcore_grok_s390_last_break (abfd, note);
8736 else
8737 return TRUE;
8738
8739 case NT_S390_SYSTEM_CALL:
8740 if (note->namesz == 6
8741 && strcmp (note->namedata, "LINUX") == 0)
8742 return elfcore_grok_s390_system_call (abfd, note);
8743 else
8744 return TRUE;
8745
8746 case NT_S390_TDB:
8747 if (note->namesz == 6
8748 && strcmp (note->namedata, "LINUX") == 0)
8749 return elfcore_grok_s390_tdb (abfd, note);
8750 else
8751 return TRUE;
8752
8753 case NT_S390_VXRS_LOW:
8754 if (note->namesz == 6
8755 && strcmp (note->namedata, "LINUX") == 0)
8756 return elfcore_grok_s390_vxrs_low (abfd, note);
8757 else
8758 return TRUE;
8759
8760 case NT_S390_VXRS_HIGH:
8761 if (note->namesz == 6
8762 && strcmp (note->namedata, "LINUX") == 0)
8763 return elfcore_grok_s390_vxrs_high (abfd, note);
8764 else
8765 return TRUE;
8766
8767 case NT_ARM_VFP:
8768 if (note->namesz == 6
8769 && strcmp (note->namedata, "LINUX") == 0)
8770 return elfcore_grok_arm_vfp (abfd, note);
8771 else
8772 return TRUE;
8773
8774 case NT_ARM_TLS:
8775 if (note->namesz == 6
8776 && strcmp (note->namedata, "LINUX") == 0)
8777 return elfcore_grok_aarch_tls (abfd, note);
8778 else
8779 return TRUE;
8780
8781 case NT_ARM_HW_BREAK:
8782 if (note->namesz == 6
8783 && strcmp (note->namedata, "LINUX") == 0)
8784 return elfcore_grok_aarch_hw_break (abfd, note);
8785 else
8786 return TRUE;
8787
8788 case NT_ARM_HW_WATCH:
8789 if (note->namesz == 6
8790 && strcmp (note->namedata, "LINUX") == 0)
8791 return elfcore_grok_aarch_hw_watch (abfd, note);
8792 else
8793 return TRUE;
8794
8795 case NT_PRPSINFO:
8796 case NT_PSINFO:
8797 if (bed->elf_backend_grok_psinfo)
8798 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8799 return TRUE;
8800 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8801 return elfcore_grok_psinfo (abfd, note);
8802 #else
8803 return TRUE;
8804 #endif
8805
8806 case NT_AUXV:
8807 {
8808 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8809 SEC_HAS_CONTENTS);
8810
8811 if (sect == NULL)
8812 return FALSE;
8813 sect->size = note->descsz;
8814 sect->filepos = note->descpos;
8815 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8816
8817 return TRUE;
8818 }
8819
8820 case NT_FILE:
8821 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
8822 note);
8823
8824 case NT_SIGINFO:
8825 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8826 note);
8827 }
8828 }
8829
8830 static bfd_boolean
8831 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8832 {
8833 struct elf_obj_tdata *t;
8834
8835 if (note->descsz == 0)
8836 return FALSE;
8837
8838 t = elf_tdata (abfd);
8839 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz);
8840 if (t->build_id == NULL)
8841 return FALSE;
8842
8843 t->build_id->size = note->descsz;
8844 memcpy (t->build_id->data, note->descdata, note->descsz);
8845
8846 return TRUE;
8847 }
8848
8849 static bfd_boolean
8850 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8851 {
8852 switch (note->type)
8853 {
8854 default:
8855 return TRUE;
8856
8857 case NT_GNU_BUILD_ID:
8858 return elfobj_grok_gnu_build_id (abfd, note);
8859 }
8860 }
8861
8862 static bfd_boolean
8863 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8864 {
8865 struct sdt_note *cur =
8866 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8867 + note->descsz);
8868
8869 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8870 cur->size = (bfd_size_type) note->descsz;
8871 memcpy (cur->data, note->descdata, note->descsz);
8872
8873 elf_tdata (abfd)->sdt_note_head = cur;
8874
8875 return TRUE;
8876 }
8877
8878 static bfd_boolean
8879 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8880 {
8881 switch (note->type)
8882 {
8883 case NT_STAPSDT:
8884 return elfobj_grok_stapsdt_note_1 (abfd, note);
8885
8886 default:
8887 return TRUE;
8888 }
8889 }
8890
8891 static bfd_boolean
8892 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8893 {
8894 char *cp;
8895
8896 cp = strchr (note->namedata, '@');
8897 if (cp != NULL)
8898 {
8899 *lwpidp = atoi(cp + 1);
8900 return TRUE;
8901 }
8902 return FALSE;
8903 }
8904
8905 static bfd_boolean
8906 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8907 {
8908 /* Signal number at offset 0x08. */
8909 elf_tdata (abfd)->core->signal
8910 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8911
8912 /* Process ID at offset 0x50. */
8913 elf_tdata (abfd)->core->pid
8914 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8915
8916 /* Command name at 0x7c (max 32 bytes, including nul). */
8917 elf_tdata (abfd)->core->command
8918 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8919
8920 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8921 note);
8922 }
8923
8924 static bfd_boolean
8925 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8926 {
8927 int lwp;
8928
8929 if (elfcore_netbsd_get_lwpid (note, &lwp))
8930 elf_tdata (abfd)->core->lwpid = lwp;
8931
8932 if (note->type == NT_NETBSDCORE_PROCINFO)
8933 {
8934 /* NetBSD-specific core "procinfo". Note that we expect to
8935 find this note before any of the others, which is fine,
8936 since the kernel writes this note out first when it
8937 creates a core file. */
8938
8939 return elfcore_grok_netbsd_procinfo (abfd, note);
8940 }
8941
8942 /* As of Jan 2002 there are no other machine-independent notes
8943 defined for NetBSD core files. If the note type is less
8944 than the start of the machine-dependent note types, we don't
8945 understand it. */
8946
8947 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8948 return TRUE;
8949
8950
8951 switch (bfd_get_arch (abfd))
8952 {
8953 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8954 PT_GETFPREGS == mach+2. */
8955
8956 case bfd_arch_alpha:
8957 case bfd_arch_sparc:
8958 switch (note->type)
8959 {
8960 case NT_NETBSDCORE_FIRSTMACH+0:
8961 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8962
8963 case NT_NETBSDCORE_FIRSTMACH+2:
8964 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8965
8966 default:
8967 return TRUE;
8968 }
8969
8970 /* On all other arch's, PT_GETREGS == mach+1 and
8971 PT_GETFPREGS == mach+3. */
8972
8973 default:
8974 switch (note->type)
8975 {
8976 case NT_NETBSDCORE_FIRSTMACH+1:
8977 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8978
8979 case NT_NETBSDCORE_FIRSTMACH+3:
8980 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8981
8982 default:
8983 return TRUE;
8984 }
8985 }
8986 /* NOTREACHED */
8987 }
8988
8989 static bfd_boolean
8990 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8991 {
8992 /* Signal number at offset 0x08. */
8993 elf_tdata (abfd)->core->signal
8994 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8995
8996 /* Process ID at offset 0x20. */
8997 elf_tdata (abfd)->core->pid
8998 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8999
9000 /* Command name at 0x48 (max 32 bytes, including nul). */
9001 elf_tdata (abfd)->core->command
9002 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
9003
9004 return TRUE;
9005 }
9006
9007 static bfd_boolean
9008 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
9009 {
9010 if (note->type == NT_OPENBSD_PROCINFO)
9011 return elfcore_grok_openbsd_procinfo (abfd, note);
9012
9013 if (note->type == NT_OPENBSD_REGS)
9014 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9015
9016 if (note->type == NT_OPENBSD_FPREGS)
9017 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9018
9019 if (note->type == NT_OPENBSD_XFPREGS)
9020 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9021
9022 if (note->type == NT_OPENBSD_AUXV)
9023 {
9024 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9025 SEC_HAS_CONTENTS);
9026
9027 if (sect == NULL)
9028 return FALSE;
9029 sect->size = note->descsz;
9030 sect->filepos = note->descpos;
9031 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9032
9033 return TRUE;
9034 }
9035
9036 if (note->type == NT_OPENBSD_WCOOKIE)
9037 {
9038 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
9039 SEC_HAS_CONTENTS);
9040
9041 if (sect == NULL)
9042 return FALSE;
9043 sect->size = note->descsz;
9044 sect->filepos = note->descpos;
9045 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9046
9047 return TRUE;
9048 }
9049
9050 return TRUE;
9051 }
9052
9053 static bfd_boolean
9054 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
9055 {
9056 void *ddata = note->descdata;
9057 char buf[100];
9058 char *name;
9059 asection *sect;
9060 short sig;
9061 unsigned flags;
9062
9063 /* nto_procfs_status 'pid' field is at offset 0. */
9064 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
9065
9066 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
9067 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
9068
9069 /* nto_procfs_status 'flags' field is at offset 8. */
9070 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
9071
9072 /* nto_procfs_status 'what' field is at offset 14. */
9073 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
9074 {
9075 elf_tdata (abfd)->core->signal = sig;
9076 elf_tdata (abfd)->core->lwpid = *tid;
9077 }
9078
9079 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
9080 do not come from signals so we make sure we set the current
9081 thread just in case. */
9082 if (flags & 0x00000080)
9083 elf_tdata (abfd)->core->lwpid = *tid;
9084
9085 /* Make a ".qnx_core_status/%d" section. */
9086 sprintf (buf, ".qnx_core_status/%ld", *tid);
9087
9088 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9089 if (name == NULL)
9090 return FALSE;
9091 strcpy (name, buf);
9092
9093 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9094 if (sect == NULL)
9095 return FALSE;
9096
9097 sect->size = note->descsz;
9098 sect->filepos = note->descpos;
9099 sect->alignment_power = 2;
9100
9101 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9102 }
9103
9104 static bfd_boolean
9105 elfcore_grok_nto_regs (bfd *abfd,
9106 Elf_Internal_Note *note,
9107 long tid,
9108 char *base)
9109 {
9110 char buf[100];
9111 char *name;
9112 asection *sect;
9113
9114 /* Make a "(base)/%d" section. */
9115 sprintf (buf, "%s/%ld", base, tid);
9116
9117 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9118 if (name == NULL)
9119 return FALSE;
9120 strcpy (name, buf);
9121
9122 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9123 if (sect == NULL)
9124 return FALSE;
9125
9126 sect->size = note->descsz;
9127 sect->filepos = note->descpos;
9128 sect->alignment_power = 2;
9129
9130 /* This is the current thread. */
9131 if (elf_tdata (abfd)->core->lwpid == tid)
9132 return elfcore_maybe_make_sect (abfd, base, sect);
9133
9134 return TRUE;
9135 }
9136
9137 #define BFD_QNT_CORE_INFO 7
9138 #define BFD_QNT_CORE_STATUS 8
9139 #define BFD_QNT_CORE_GREG 9
9140 #define BFD_QNT_CORE_FPREG 10
9141
9142 static bfd_boolean
9143 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9144 {
9145 /* Every GREG section has a STATUS section before it. Store the
9146 tid from the previous call to pass down to the next gregs
9147 function. */
9148 static long tid = 1;
9149
9150 switch (note->type)
9151 {
9152 case BFD_QNT_CORE_INFO:
9153 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9154 case BFD_QNT_CORE_STATUS:
9155 return elfcore_grok_nto_status (abfd, note, &tid);
9156 case BFD_QNT_CORE_GREG:
9157 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9158 case BFD_QNT_CORE_FPREG:
9159 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9160 default:
9161 return TRUE;
9162 }
9163 }
9164
9165 static bfd_boolean
9166 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9167 {
9168 char *name;
9169 asection *sect;
9170 size_t len;
9171
9172 /* Use note name as section name. */
9173 len = note->namesz;
9174 name = (char *) bfd_alloc (abfd, len);
9175 if (name == NULL)
9176 return FALSE;
9177 memcpy (name, note->namedata, len);
9178 name[len - 1] = '\0';
9179
9180 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9181 if (sect == NULL)
9182 return FALSE;
9183
9184 sect->size = note->descsz;
9185 sect->filepos = note->descpos;
9186 sect->alignment_power = 1;
9187
9188 return TRUE;
9189 }
9190
9191 /* Function: elfcore_write_note
9192
9193 Inputs:
9194 buffer to hold note, and current size of buffer
9195 name of note
9196 type of note
9197 data for note
9198 size of data for note
9199
9200 Writes note to end of buffer. ELF64 notes are written exactly as
9201 for ELF32, despite the current (as of 2006) ELF gabi specifying
9202 that they ought to have 8-byte namesz and descsz field, and have
9203 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9204
9205 Return:
9206 Pointer to realloc'd buffer, *BUFSIZ updated. */
9207
9208 char *
9209 elfcore_write_note (bfd *abfd,
9210 char *buf,
9211 int *bufsiz,
9212 const char *name,
9213 int type,
9214 const void *input,
9215 int size)
9216 {
9217 Elf_External_Note *xnp;
9218 size_t namesz;
9219 size_t newspace;
9220 char *dest;
9221
9222 namesz = 0;
9223 if (name != NULL)
9224 namesz = strlen (name) + 1;
9225
9226 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9227
9228 buf = (char *) realloc (buf, *bufsiz + newspace);
9229 if (buf == NULL)
9230 return buf;
9231 dest = buf + *bufsiz;
9232 *bufsiz += newspace;
9233 xnp = (Elf_External_Note *) dest;
9234 H_PUT_32 (abfd, namesz, xnp->namesz);
9235 H_PUT_32 (abfd, size, xnp->descsz);
9236 H_PUT_32 (abfd, type, xnp->type);
9237 dest = xnp->name;
9238 if (name != NULL)
9239 {
9240 memcpy (dest, name, namesz);
9241 dest += namesz;
9242 while (namesz & 3)
9243 {
9244 *dest++ = '\0';
9245 ++namesz;
9246 }
9247 }
9248 memcpy (dest, input, size);
9249 dest += size;
9250 while (size & 3)
9251 {
9252 *dest++ = '\0';
9253 ++size;
9254 }
9255 return buf;
9256 }
9257
9258 char *
9259 elfcore_write_prpsinfo (bfd *abfd,
9260 char *buf,
9261 int *bufsiz,
9262 const char *fname,
9263 const char *psargs)
9264 {
9265 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9266
9267 if (bed->elf_backend_write_core_note != NULL)
9268 {
9269 char *ret;
9270 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9271 NT_PRPSINFO, fname, psargs);
9272 if (ret != NULL)
9273 return ret;
9274 }
9275
9276 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9277 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9278 if (bed->s->elfclass == ELFCLASS32)
9279 {
9280 #if defined (HAVE_PSINFO32_T)
9281 psinfo32_t data;
9282 int note_type = NT_PSINFO;
9283 #else
9284 prpsinfo32_t data;
9285 int note_type = NT_PRPSINFO;
9286 #endif
9287
9288 memset (&data, 0, sizeof (data));
9289 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9290 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9291 return elfcore_write_note (abfd, buf, bufsiz,
9292 "CORE", note_type, &data, sizeof (data));
9293 }
9294 else
9295 #endif
9296 {
9297 #if defined (HAVE_PSINFO_T)
9298 psinfo_t data;
9299 int note_type = NT_PSINFO;
9300 #else
9301 prpsinfo_t data;
9302 int note_type = NT_PRPSINFO;
9303 #endif
9304
9305 memset (&data, 0, sizeof (data));
9306 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9307 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9308 return elfcore_write_note (abfd, buf, bufsiz,
9309 "CORE", note_type, &data, sizeof (data));
9310 }
9311 #endif /* PSINFO_T or PRPSINFO_T */
9312
9313 free (buf);
9314 return NULL;
9315 }
9316
9317 char *
9318 elfcore_write_linux_prpsinfo32
9319 (bfd *abfd, char *buf, int *bufsiz,
9320 const struct elf_internal_linux_prpsinfo *prpsinfo)
9321 {
9322 struct elf_external_linux_prpsinfo32 data;
9323
9324 memset (&data, 0, sizeof (data));
9325 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9326
9327 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9328 &data, sizeof (data));
9329 }
9330
9331 char *
9332 elfcore_write_linux_prpsinfo64
9333 (bfd *abfd, char *buf, int *bufsiz,
9334 const struct elf_internal_linux_prpsinfo *prpsinfo)
9335 {
9336 struct elf_external_linux_prpsinfo64 data;
9337
9338 memset (&data, 0, sizeof (data));
9339 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9340
9341 return elfcore_write_note (abfd, buf, bufsiz,
9342 "CORE", NT_PRPSINFO, &data, sizeof (data));
9343 }
9344
9345 char *
9346 elfcore_write_prstatus (bfd *abfd,
9347 char *buf,
9348 int *bufsiz,
9349 long pid,
9350 int cursig,
9351 const void *gregs)
9352 {
9353 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9354
9355 if (bed->elf_backend_write_core_note != NULL)
9356 {
9357 char *ret;
9358 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9359 NT_PRSTATUS,
9360 pid, cursig, gregs);
9361 if (ret != NULL)
9362 return ret;
9363 }
9364
9365 #if defined (HAVE_PRSTATUS_T)
9366 #if defined (HAVE_PRSTATUS32_T)
9367 if (bed->s->elfclass == ELFCLASS32)
9368 {
9369 prstatus32_t prstat;
9370
9371 memset (&prstat, 0, sizeof (prstat));
9372 prstat.pr_pid = pid;
9373 prstat.pr_cursig = cursig;
9374 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9375 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9376 NT_PRSTATUS, &prstat, sizeof (prstat));
9377 }
9378 else
9379 #endif
9380 {
9381 prstatus_t prstat;
9382
9383 memset (&prstat, 0, sizeof (prstat));
9384 prstat.pr_pid = pid;
9385 prstat.pr_cursig = cursig;
9386 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9387 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9388 NT_PRSTATUS, &prstat, sizeof (prstat));
9389 }
9390 #endif /* HAVE_PRSTATUS_T */
9391
9392 free (buf);
9393 return NULL;
9394 }
9395
9396 #if defined (HAVE_LWPSTATUS_T)
9397 char *
9398 elfcore_write_lwpstatus (bfd *abfd,
9399 char *buf,
9400 int *bufsiz,
9401 long pid,
9402 int cursig,
9403 const void *gregs)
9404 {
9405 lwpstatus_t lwpstat;
9406 const char *note_name = "CORE";
9407
9408 memset (&lwpstat, 0, sizeof (lwpstat));
9409 lwpstat.pr_lwpid = pid >> 16;
9410 lwpstat.pr_cursig = cursig;
9411 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9412 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9413 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9414 #if !defined(gregs)
9415 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9416 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9417 #else
9418 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9419 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9420 #endif
9421 #endif
9422 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9423 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9424 }
9425 #endif /* HAVE_LWPSTATUS_T */
9426
9427 #if defined (HAVE_PSTATUS_T)
9428 char *
9429 elfcore_write_pstatus (bfd *abfd,
9430 char *buf,
9431 int *bufsiz,
9432 long pid,
9433 int cursig ATTRIBUTE_UNUSED,
9434 const void *gregs ATTRIBUTE_UNUSED)
9435 {
9436 const char *note_name = "CORE";
9437 #if defined (HAVE_PSTATUS32_T)
9438 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9439
9440 if (bed->s->elfclass == ELFCLASS32)
9441 {
9442 pstatus32_t pstat;
9443
9444 memset (&pstat, 0, sizeof (pstat));
9445 pstat.pr_pid = pid & 0xffff;
9446 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9447 NT_PSTATUS, &pstat, sizeof (pstat));
9448 return buf;
9449 }
9450 else
9451 #endif
9452 {
9453 pstatus_t pstat;
9454
9455 memset (&pstat, 0, sizeof (pstat));
9456 pstat.pr_pid = pid & 0xffff;
9457 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9458 NT_PSTATUS, &pstat, sizeof (pstat));
9459 return buf;
9460 }
9461 }
9462 #endif /* HAVE_PSTATUS_T */
9463
9464 char *
9465 elfcore_write_prfpreg (bfd *abfd,
9466 char *buf,
9467 int *bufsiz,
9468 const void *fpregs,
9469 int size)
9470 {
9471 const char *note_name = "CORE";
9472 return elfcore_write_note (abfd, buf, bufsiz,
9473 note_name, NT_FPREGSET, fpregs, size);
9474 }
9475
9476 char *
9477 elfcore_write_prxfpreg (bfd *abfd,
9478 char *buf,
9479 int *bufsiz,
9480 const void *xfpregs,
9481 int size)
9482 {
9483 char *note_name = "LINUX";
9484 return elfcore_write_note (abfd, buf, bufsiz,
9485 note_name, NT_PRXFPREG, xfpregs, size);
9486 }
9487
9488 char *
9489 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9490 const void *xfpregs, int size)
9491 {
9492 char *note_name = "LINUX";
9493 return elfcore_write_note (abfd, buf, bufsiz,
9494 note_name, NT_X86_XSTATE, xfpregs, size);
9495 }
9496
9497 char *
9498 elfcore_write_ppc_vmx (bfd *abfd,
9499 char *buf,
9500 int *bufsiz,
9501 const void *ppc_vmx,
9502 int size)
9503 {
9504 char *note_name = "LINUX";
9505 return elfcore_write_note (abfd, buf, bufsiz,
9506 note_name, NT_PPC_VMX, ppc_vmx, size);
9507 }
9508
9509 char *
9510 elfcore_write_ppc_vsx (bfd *abfd,
9511 char *buf,
9512 int *bufsiz,
9513 const void *ppc_vsx,
9514 int size)
9515 {
9516 char *note_name = "LINUX";
9517 return elfcore_write_note (abfd, buf, bufsiz,
9518 note_name, NT_PPC_VSX, ppc_vsx, size);
9519 }
9520
9521 static char *
9522 elfcore_write_s390_high_gprs (bfd *abfd,
9523 char *buf,
9524 int *bufsiz,
9525 const void *s390_high_gprs,
9526 int size)
9527 {
9528 char *note_name = "LINUX";
9529 return elfcore_write_note (abfd, buf, bufsiz,
9530 note_name, NT_S390_HIGH_GPRS,
9531 s390_high_gprs, size);
9532 }
9533
9534 char *
9535 elfcore_write_s390_timer (bfd *abfd,
9536 char *buf,
9537 int *bufsiz,
9538 const void *s390_timer,
9539 int size)
9540 {
9541 char *note_name = "LINUX";
9542 return elfcore_write_note (abfd, buf, bufsiz,
9543 note_name, NT_S390_TIMER, s390_timer, size);
9544 }
9545
9546 char *
9547 elfcore_write_s390_todcmp (bfd *abfd,
9548 char *buf,
9549 int *bufsiz,
9550 const void *s390_todcmp,
9551 int size)
9552 {
9553 char *note_name = "LINUX";
9554 return elfcore_write_note (abfd, buf, bufsiz,
9555 note_name, NT_S390_TODCMP, s390_todcmp, size);
9556 }
9557
9558 char *
9559 elfcore_write_s390_todpreg (bfd *abfd,
9560 char *buf,
9561 int *bufsiz,
9562 const void *s390_todpreg,
9563 int size)
9564 {
9565 char *note_name = "LINUX";
9566 return elfcore_write_note (abfd, buf, bufsiz,
9567 note_name, NT_S390_TODPREG, s390_todpreg, size);
9568 }
9569
9570 char *
9571 elfcore_write_s390_ctrs (bfd *abfd,
9572 char *buf,
9573 int *bufsiz,
9574 const void *s390_ctrs,
9575 int size)
9576 {
9577 char *note_name = "LINUX";
9578 return elfcore_write_note (abfd, buf, bufsiz,
9579 note_name, NT_S390_CTRS, s390_ctrs, size);
9580 }
9581
9582 char *
9583 elfcore_write_s390_prefix (bfd *abfd,
9584 char *buf,
9585 int *bufsiz,
9586 const void *s390_prefix,
9587 int size)
9588 {
9589 char *note_name = "LINUX";
9590 return elfcore_write_note (abfd, buf, bufsiz,
9591 note_name, NT_S390_PREFIX, s390_prefix, size);
9592 }
9593
9594 char *
9595 elfcore_write_s390_last_break (bfd *abfd,
9596 char *buf,
9597 int *bufsiz,
9598 const void *s390_last_break,
9599 int size)
9600 {
9601 char *note_name = "LINUX";
9602 return elfcore_write_note (abfd, buf, bufsiz,
9603 note_name, NT_S390_LAST_BREAK,
9604 s390_last_break, size);
9605 }
9606
9607 char *
9608 elfcore_write_s390_system_call (bfd *abfd,
9609 char *buf,
9610 int *bufsiz,
9611 const void *s390_system_call,
9612 int size)
9613 {
9614 char *note_name = "LINUX";
9615 return elfcore_write_note (abfd, buf, bufsiz,
9616 note_name, NT_S390_SYSTEM_CALL,
9617 s390_system_call, size);
9618 }
9619
9620 char *
9621 elfcore_write_s390_tdb (bfd *abfd,
9622 char *buf,
9623 int *bufsiz,
9624 const void *s390_tdb,
9625 int size)
9626 {
9627 char *note_name = "LINUX";
9628 return elfcore_write_note (abfd, buf, bufsiz,
9629 note_name, NT_S390_TDB, s390_tdb, size);
9630 }
9631
9632 char *
9633 elfcore_write_s390_vxrs_low (bfd *abfd,
9634 char *buf,
9635 int *bufsiz,
9636 const void *s390_vxrs_low,
9637 int size)
9638 {
9639 char *note_name = "LINUX";
9640 return elfcore_write_note (abfd, buf, bufsiz,
9641 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
9642 }
9643
9644 char *
9645 elfcore_write_s390_vxrs_high (bfd *abfd,
9646 char *buf,
9647 int *bufsiz,
9648 const void *s390_vxrs_high,
9649 int size)
9650 {
9651 char *note_name = "LINUX";
9652 return elfcore_write_note (abfd, buf, bufsiz,
9653 note_name, NT_S390_VXRS_HIGH,
9654 s390_vxrs_high, size);
9655 }
9656
9657 char *
9658 elfcore_write_arm_vfp (bfd *abfd,
9659 char *buf,
9660 int *bufsiz,
9661 const void *arm_vfp,
9662 int size)
9663 {
9664 char *note_name = "LINUX";
9665 return elfcore_write_note (abfd, buf, bufsiz,
9666 note_name, NT_ARM_VFP, arm_vfp, size);
9667 }
9668
9669 char *
9670 elfcore_write_aarch_tls (bfd *abfd,
9671 char *buf,
9672 int *bufsiz,
9673 const void *aarch_tls,
9674 int size)
9675 {
9676 char *note_name = "LINUX";
9677 return elfcore_write_note (abfd, buf, bufsiz,
9678 note_name, NT_ARM_TLS, aarch_tls, size);
9679 }
9680
9681 char *
9682 elfcore_write_aarch_hw_break (bfd *abfd,
9683 char *buf,
9684 int *bufsiz,
9685 const void *aarch_hw_break,
9686 int size)
9687 {
9688 char *note_name = "LINUX";
9689 return elfcore_write_note (abfd, buf, bufsiz,
9690 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9691 }
9692
9693 char *
9694 elfcore_write_aarch_hw_watch (bfd *abfd,
9695 char *buf,
9696 int *bufsiz,
9697 const void *aarch_hw_watch,
9698 int size)
9699 {
9700 char *note_name = "LINUX";
9701 return elfcore_write_note (abfd, buf, bufsiz,
9702 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9703 }
9704
9705 char *
9706 elfcore_write_register_note (bfd *abfd,
9707 char *buf,
9708 int *bufsiz,
9709 const char *section,
9710 const void *data,
9711 int size)
9712 {
9713 if (strcmp (section, ".reg2") == 0)
9714 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9715 if (strcmp (section, ".reg-xfp") == 0)
9716 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9717 if (strcmp (section, ".reg-xstate") == 0)
9718 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9719 if (strcmp (section, ".reg-ppc-vmx") == 0)
9720 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9721 if (strcmp (section, ".reg-ppc-vsx") == 0)
9722 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9723 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9724 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9725 if (strcmp (section, ".reg-s390-timer") == 0)
9726 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9727 if (strcmp (section, ".reg-s390-todcmp") == 0)
9728 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9729 if (strcmp (section, ".reg-s390-todpreg") == 0)
9730 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9731 if (strcmp (section, ".reg-s390-ctrs") == 0)
9732 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9733 if (strcmp (section, ".reg-s390-prefix") == 0)
9734 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9735 if (strcmp (section, ".reg-s390-last-break") == 0)
9736 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9737 if (strcmp (section, ".reg-s390-system-call") == 0)
9738 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9739 if (strcmp (section, ".reg-s390-tdb") == 0)
9740 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
9741 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
9742 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
9743 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
9744 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
9745 if (strcmp (section, ".reg-arm-vfp") == 0)
9746 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9747 if (strcmp (section, ".reg-aarch-tls") == 0)
9748 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
9749 if (strcmp (section, ".reg-aarch-hw-break") == 0)
9750 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
9751 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
9752 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
9753 return NULL;
9754 }
9755
9756 static bfd_boolean
9757 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9758 {
9759 char *p;
9760
9761 p = buf;
9762 while (p < buf + size)
9763 {
9764 /* FIXME: bad alignment assumption. */
9765 Elf_External_Note *xnp = (Elf_External_Note *) p;
9766 Elf_Internal_Note in;
9767
9768 if (offsetof (Elf_External_Note, name) > buf - p + size)
9769 return FALSE;
9770
9771 in.type = H_GET_32 (abfd, xnp->type);
9772
9773 in.namesz = H_GET_32 (abfd, xnp->namesz);
9774 in.namedata = xnp->name;
9775 if (in.namesz > buf - in.namedata + size)
9776 return FALSE;
9777
9778 in.descsz = H_GET_32 (abfd, xnp->descsz);
9779 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9780 in.descpos = offset + (in.descdata - buf);
9781 if (in.descsz != 0
9782 && (in.descdata >= buf + size
9783 || in.descsz > buf - in.descdata + size))
9784 return FALSE;
9785
9786 switch (bfd_get_format (abfd))
9787 {
9788 default:
9789 return TRUE;
9790
9791 case bfd_core:
9792 {
9793 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
9794 struct
9795 {
9796 const char * string;
9797 size_t len;
9798 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
9799 }
9800 grokers[] =
9801 {
9802 GROKER_ELEMENT ("", elfcore_grok_note),
9803 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
9804 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
9805 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
9806 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
9807 };
9808 #undef GROKER_ELEMENT
9809 int i;
9810
9811 for (i = ARRAY_SIZE (grokers); i--;)
9812 {
9813 if (in.namesz >= grokers[i].len
9814 && strncmp (in.namedata, grokers[i].string,
9815 grokers[i].len) == 0)
9816 {
9817 if (! grokers[i].func (abfd, & in))
9818 return FALSE;
9819 break;
9820 }
9821 }
9822 break;
9823 }
9824
9825 case bfd_object:
9826 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9827 {
9828 if (! elfobj_grok_gnu_note (abfd, &in))
9829 return FALSE;
9830 }
9831 else if (in.namesz == sizeof "stapsdt"
9832 && strcmp (in.namedata, "stapsdt") == 0)
9833 {
9834 if (! elfobj_grok_stapsdt_note (abfd, &in))
9835 return FALSE;
9836 }
9837 break;
9838 }
9839
9840 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9841 }
9842
9843 return TRUE;
9844 }
9845
9846 static bfd_boolean
9847 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9848 {
9849 char *buf;
9850
9851 if (size <= 0)
9852 return TRUE;
9853
9854 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9855 return FALSE;
9856
9857 buf = (char *) bfd_malloc (size + 1);
9858 if (buf == NULL)
9859 return FALSE;
9860
9861 /* PR 17512: file: ec08f814
9862 0-termintate the buffer so that string searches will not overflow. */
9863 buf[size] = 0;
9864
9865 if (bfd_bread (buf, size, abfd) != size
9866 || !elf_parse_notes (abfd, buf, size, offset))
9867 {
9868 free (buf);
9869 return FALSE;
9870 }
9871
9872 free (buf);
9873 return TRUE;
9874 }
9875 \f
9876 /* Providing external access to the ELF program header table. */
9877
9878 /* Return an upper bound on the number of bytes required to store a
9879 copy of ABFD's program header table entries. Return -1 if an error
9880 occurs; bfd_get_error will return an appropriate code. */
9881
9882 long
9883 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9884 {
9885 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9886 {
9887 bfd_set_error (bfd_error_wrong_format);
9888 return -1;
9889 }
9890
9891 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9892 }
9893
9894 /* Copy ABFD's program header table entries to *PHDRS. The entries
9895 will be stored as an array of Elf_Internal_Phdr structures, as
9896 defined in include/elf/internal.h. To find out how large the
9897 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9898
9899 Return the number of program header table entries read, or -1 if an
9900 error occurs; bfd_get_error will return an appropriate code. */
9901
9902 int
9903 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9904 {
9905 int num_phdrs;
9906
9907 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9908 {
9909 bfd_set_error (bfd_error_wrong_format);
9910 return -1;
9911 }
9912
9913 num_phdrs = elf_elfheader (abfd)->e_phnum;
9914 memcpy (phdrs, elf_tdata (abfd)->phdr,
9915 num_phdrs * sizeof (Elf_Internal_Phdr));
9916
9917 return num_phdrs;
9918 }
9919
9920 enum elf_reloc_type_class
9921 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
9922 const asection *rel_sec ATTRIBUTE_UNUSED,
9923 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9924 {
9925 return reloc_class_normal;
9926 }
9927
9928 /* For RELA architectures, return the relocation value for a
9929 relocation against a local symbol. */
9930
9931 bfd_vma
9932 _bfd_elf_rela_local_sym (bfd *abfd,
9933 Elf_Internal_Sym *sym,
9934 asection **psec,
9935 Elf_Internal_Rela *rel)
9936 {
9937 asection *sec = *psec;
9938 bfd_vma relocation;
9939
9940 relocation = (sec->output_section->vma
9941 + sec->output_offset
9942 + sym->st_value);
9943 if ((sec->flags & SEC_MERGE)
9944 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9945 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9946 {
9947 rel->r_addend =
9948 _bfd_merged_section_offset (abfd, psec,
9949 elf_section_data (sec)->sec_info,
9950 sym->st_value + rel->r_addend);
9951 if (sec != *psec)
9952 {
9953 /* If we have changed the section, and our original section is
9954 marked with SEC_EXCLUDE, it means that the original
9955 SEC_MERGE section has been completely subsumed in some
9956 other SEC_MERGE section. In this case, we need to leave
9957 some info around for --emit-relocs. */
9958 if ((sec->flags & SEC_EXCLUDE) != 0)
9959 sec->kept_section = *psec;
9960 sec = *psec;
9961 }
9962 rel->r_addend -= relocation;
9963 rel->r_addend += sec->output_section->vma + sec->output_offset;
9964 }
9965 return relocation;
9966 }
9967
9968 bfd_vma
9969 _bfd_elf_rel_local_sym (bfd *abfd,
9970 Elf_Internal_Sym *sym,
9971 asection **psec,
9972 bfd_vma addend)
9973 {
9974 asection *sec = *psec;
9975
9976 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9977 return sym->st_value + addend;
9978
9979 return _bfd_merged_section_offset (abfd, psec,
9980 elf_section_data (sec)->sec_info,
9981 sym->st_value + addend);
9982 }
9983
9984 bfd_vma
9985 _bfd_elf_section_offset (bfd *abfd,
9986 struct bfd_link_info *info,
9987 asection *sec,
9988 bfd_vma offset)
9989 {
9990 switch (sec->sec_info_type)
9991 {
9992 case SEC_INFO_TYPE_STABS:
9993 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9994 offset);
9995 case SEC_INFO_TYPE_EH_FRAME:
9996 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9997 default:
9998 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9999 {
10000 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10001 bfd_size_type address_size = bed->s->arch_size / 8;
10002 offset = sec->size - offset - address_size;
10003 }
10004 return offset;
10005 }
10006 }
10007 \f
10008 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
10009 reconstruct an ELF file by reading the segments out of remote memory
10010 based on the ELF file header at EHDR_VMA and the ELF program headers it
10011 points to. If not null, *LOADBASEP is filled in with the difference
10012 between the VMAs from which the segments were read, and the VMAs the
10013 file headers (and hence BFD's idea of each section's VMA) put them at.
10014
10015 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
10016 remote memory at target address VMA into the local buffer at MYADDR; it
10017 should return zero on success or an `errno' code on failure. TEMPL must
10018 be a BFD for an ELF target with the word size and byte order found in
10019 the remote memory. */
10020
10021 bfd *
10022 bfd_elf_bfd_from_remote_memory
10023 (bfd *templ,
10024 bfd_vma ehdr_vma,
10025 bfd_size_type size,
10026 bfd_vma *loadbasep,
10027 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
10028 {
10029 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
10030 (templ, ehdr_vma, size, loadbasep, target_read_memory);
10031 }
10032 \f
10033 long
10034 _bfd_elf_get_synthetic_symtab (bfd *abfd,
10035 long symcount ATTRIBUTE_UNUSED,
10036 asymbol **syms ATTRIBUTE_UNUSED,
10037 long dynsymcount,
10038 asymbol **dynsyms,
10039 asymbol **ret)
10040 {
10041 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10042 asection *relplt;
10043 asymbol *s;
10044 const char *relplt_name;
10045 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
10046 arelent *p;
10047 long count, i, n;
10048 size_t size;
10049 Elf_Internal_Shdr *hdr;
10050 char *names;
10051 asection *plt;
10052
10053 *ret = NULL;
10054
10055 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
10056 return 0;
10057
10058 if (dynsymcount <= 0)
10059 return 0;
10060
10061 if (!bed->plt_sym_val)
10062 return 0;
10063
10064 relplt_name = bed->relplt_name;
10065 if (relplt_name == NULL)
10066 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
10067 relplt = bfd_get_section_by_name (abfd, relplt_name);
10068 if (relplt == NULL)
10069 return 0;
10070
10071 hdr = &elf_section_data (relplt)->this_hdr;
10072 if (hdr->sh_link != elf_dynsymtab (abfd)
10073 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
10074 return 0;
10075
10076 plt = bfd_get_section_by_name (abfd, ".plt");
10077 if (plt == NULL)
10078 return 0;
10079
10080 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
10081 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
10082 return -1;
10083
10084 count = relplt->size / hdr->sh_entsize;
10085 size = count * sizeof (asymbol);
10086 p = relplt->relocation;
10087 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10088 {
10089 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
10090 if (p->addend != 0)
10091 {
10092 #ifdef BFD64
10093 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
10094 #else
10095 size += sizeof ("+0x") - 1 + 8;
10096 #endif
10097 }
10098 }
10099
10100 s = *ret = (asymbol *) bfd_malloc (size);
10101 if (s == NULL)
10102 return -1;
10103
10104 names = (char *) (s + count);
10105 p = relplt->relocation;
10106 n = 0;
10107 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10108 {
10109 size_t len;
10110 bfd_vma addr;
10111
10112 addr = bed->plt_sym_val (i, plt, p);
10113 if (addr == (bfd_vma) -1)
10114 continue;
10115
10116 *s = **p->sym_ptr_ptr;
10117 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
10118 we are defining a symbol, ensure one of them is set. */
10119 if ((s->flags & BSF_LOCAL) == 0)
10120 s->flags |= BSF_GLOBAL;
10121 s->flags |= BSF_SYNTHETIC;
10122 s->section = plt;
10123 s->value = addr - plt->vma;
10124 s->name = names;
10125 s->udata.p = NULL;
10126 len = strlen ((*p->sym_ptr_ptr)->name);
10127 memcpy (names, (*p->sym_ptr_ptr)->name, len);
10128 names += len;
10129 if (p->addend != 0)
10130 {
10131 char buf[30], *a;
10132
10133 memcpy (names, "+0x", sizeof ("+0x") - 1);
10134 names += sizeof ("+0x") - 1;
10135 bfd_sprintf_vma (abfd, buf, p->addend);
10136 for (a = buf; *a == '0'; ++a)
10137 ;
10138 len = strlen (a);
10139 memcpy (names, a, len);
10140 names += len;
10141 }
10142 memcpy (names, "@plt", sizeof ("@plt"));
10143 names += sizeof ("@plt");
10144 ++s, ++n;
10145 }
10146
10147 return n;
10148 }
10149
10150 /* It is only used by x86-64 so far. */
10151 asection _bfd_elf_large_com_section
10152 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10153 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10154
10155 void
10156 _bfd_elf_post_process_headers (bfd * abfd,
10157 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10158 {
10159 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10160
10161 i_ehdrp = elf_elfheader (abfd);
10162
10163 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10164
10165 /* To make things simpler for the loader on Linux systems we set the
10166 osabi field to ELFOSABI_GNU if the binary contains symbols of
10167 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10168 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10169 && elf_tdata (abfd)->has_gnu_symbols)
10170 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10171 }
10172
10173
10174 /* Return TRUE for ELF symbol types that represent functions.
10175 This is the default version of this function, which is sufficient for
10176 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10177
10178 bfd_boolean
10179 _bfd_elf_is_function_type (unsigned int type)
10180 {
10181 return (type == STT_FUNC
10182 || type == STT_GNU_IFUNC);
10183 }
10184
10185 /* If the ELF symbol SYM might be a function in SEC, return the
10186 function size and set *CODE_OFF to the function's entry point,
10187 otherwise return zero. */
10188
10189 bfd_size_type
10190 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10191 bfd_vma *code_off)
10192 {
10193 bfd_size_type size;
10194
10195 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10196 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10197 || sym->section != sec)
10198 return 0;
10199
10200 *code_off = sym->value;
10201 size = 0;
10202 if (!(sym->flags & BSF_SYNTHETIC))
10203 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10204 if (size == 0)
10205 size = 1;
10206 return size;
10207 }
This page took 0.253709 seconds and 4 git commands to generate.