Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2015 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-psinfo.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"),
342 abfd, shindex);
343 return NULL;
344 }
345
346 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
347 return NULL;
348 }
349
350 if (strindex >= hdr->sh_size)
351 {
352 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
353 (*_bfd_error_handler)
354 (_("%B: invalid string offset %u >= %lu for section `%s'"),
355 abfd, strindex, (unsigned long) hdr->sh_size,
356 (shindex == shstrndx && strindex == hdr->sh_name
357 ? ".shstrtab"
358 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
359 return NULL;
360 }
361
362 return ((char *) hdr->contents) + strindex;
363 }
364
365 /* Read and convert symbols to internal format.
366 SYMCOUNT specifies the number of symbols to read, starting from
367 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
368 are non-NULL, they are used to store the internal symbols, external
369 symbols, and symbol section index extensions, respectively.
370 Returns a pointer to the internal symbol buffer (malloced if necessary)
371 or NULL if there were no symbols or some kind of problem. */
372
373 Elf_Internal_Sym *
374 bfd_elf_get_elf_syms (bfd *ibfd,
375 Elf_Internal_Shdr *symtab_hdr,
376 size_t symcount,
377 size_t symoffset,
378 Elf_Internal_Sym *intsym_buf,
379 void *extsym_buf,
380 Elf_External_Sym_Shndx *extshndx_buf)
381 {
382 Elf_Internal_Shdr *shndx_hdr;
383 void *alloc_ext;
384 const bfd_byte *esym;
385 Elf_External_Sym_Shndx *alloc_extshndx;
386 Elf_External_Sym_Shndx *shndx;
387 Elf_Internal_Sym *alloc_intsym;
388 Elf_Internal_Sym *isym;
389 Elf_Internal_Sym *isymend;
390 const struct elf_backend_data *bed;
391 size_t extsym_size;
392 bfd_size_type amt;
393 file_ptr pos;
394
395 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
396 abort ();
397
398 if (symcount == 0)
399 return intsym_buf;
400
401 /* Normal syms might have section extension entries. */
402 shndx_hdr = NULL;
403 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
404 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
405
406 /* Read the symbols. */
407 alloc_ext = NULL;
408 alloc_extshndx = NULL;
409 alloc_intsym = NULL;
410 bed = get_elf_backend_data (ibfd);
411 extsym_size = bed->s->sizeof_sym;
412 amt = symcount * extsym_size;
413 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
414 if (extsym_buf == NULL)
415 {
416 alloc_ext = bfd_malloc2 (symcount, extsym_size);
417 extsym_buf = alloc_ext;
418 }
419 if (extsym_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extsym_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426
427 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
428 extshndx_buf = NULL;
429 else
430 {
431 amt = symcount * sizeof (Elf_External_Sym_Shndx);
432 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
433 if (extshndx_buf == NULL)
434 {
435 alloc_extshndx = (Elf_External_Sym_Shndx *)
436 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
437 extshndx_buf = alloc_extshndx;
438 }
439 if (extshndx_buf == NULL
440 || bfd_seek (ibfd, pos, SEEK_SET) != 0
441 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
442 {
443 intsym_buf = NULL;
444 goto out;
445 }
446 }
447
448 if (intsym_buf == NULL)
449 {
450 alloc_intsym = (Elf_Internal_Sym *)
451 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
452 intsym_buf = alloc_intsym;
453 if (intsym_buf == NULL)
454 goto out;
455 }
456
457 /* Convert the symbols to internal form. */
458 isymend = intsym_buf + symcount;
459 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
460 shndx = extshndx_buf;
461 isym < isymend;
462 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
463 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
464 {
465 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
466 (*_bfd_error_handler) (_("%B symbol number %lu references "
467 "nonexistent SHT_SYMTAB_SHNDX section"),
468 ibfd, (unsigned long) symoffset);
469 if (alloc_intsym != NULL)
470 free (alloc_intsym);
471 intsym_buf = NULL;
472 goto out;
473 }
474
475 out:
476 if (alloc_ext != NULL)
477 free (alloc_ext);
478 if (alloc_extshndx != NULL)
479 free (alloc_extshndx);
480
481 return intsym_buf;
482 }
483
484 /* Look up a symbol name. */
485 const char *
486 bfd_elf_sym_name (bfd *abfd,
487 Elf_Internal_Shdr *symtab_hdr,
488 Elf_Internal_Sym *isym,
489 asection *sym_sec)
490 {
491 const char *name;
492 unsigned int iname = isym->st_name;
493 unsigned int shindex = symtab_hdr->sh_link;
494
495 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
496 /* Check for a bogus st_shndx to avoid crashing. */
497 && isym->st_shndx < elf_numsections (abfd))
498 {
499 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
500 shindex = elf_elfheader (abfd)->e_shstrndx;
501 }
502
503 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
504 if (name == NULL)
505 name = "(null)";
506 else if (sym_sec && *name == '\0')
507 name = bfd_section_name (abfd, sym_sec);
508
509 return name;
510 }
511
512 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
513 sections. The first element is the flags, the rest are section
514 pointers. */
515
516 typedef union elf_internal_group {
517 Elf_Internal_Shdr *shdr;
518 unsigned int flags;
519 } Elf_Internal_Group;
520
521 /* Return the name of the group signature symbol. Why isn't the
522 signature just a string? */
523
524 static const char *
525 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
526 {
527 Elf_Internal_Shdr *hdr;
528 unsigned char esym[sizeof (Elf64_External_Sym)];
529 Elf_External_Sym_Shndx eshndx;
530 Elf_Internal_Sym isym;
531
532 /* First we need to ensure the symbol table is available. Make sure
533 that it is a symbol table section. */
534 if (ghdr->sh_link >= elf_numsections (abfd))
535 return NULL;
536 hdr = elf_elfsections (abfd) [ghdr->sh_link];
537 if (hdr->sh_type != SHT_SYMTAB
538 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
539 return NULL;
540
541 /* Go read the symbol. */
542 hdr = &elf_tdata (abfd)->symtab_hdr;
543 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
544 &isym, esym, &eshndx) == NULL)
545 return NULL;
546
547 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
548 }
549
550 /* Set next_in_group list pointer, and group name for NEWSECT. */
551
552 static bfd_boolean
553 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
554 {
555 unsigned int num_group = elf_tdata (abfd)->num_group;
556
557 /* If num_group is zero, read in all SHT_GROUP sections. The count
558 is set to -1 if there are no SHT_GROUP sections. */
559 if (num_group == 0)
560 {
561 unsigned int i, shnum;
562
563 /* First count the number of groups. If we have a SHT_GROUP
564 section with just a flag word (ie. sh_size is 4), ignore it. */
565 shnum = elf_numsections (abfd);
566 num_group = 0;
567
568 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
569 ( (shdr)->sh_type == SHT_GROUP \
570 && (shdr)->sh_size >= minsize \
571 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
572 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
573
574 for (i = 0; i < shnum; i++)
575 {
576 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
577
578 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
579 num_group += 1;
580 }
581
582 if (num_group == 0)
583 {
584 num_group = (unsigned) -1;
585 elf_tdata (abfd)->num_group = num_group;
586 }
587 else
588 {
589 /* We keep a list of elf section headers for group sections,
590 so we can find them quickly. */
591 bfd_size_type amt;
592
593 elf_tdata (abfd)->num_group = num_group;
594 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
595 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
596 if (elf_tdata (abfd)->group_sect_ptr == NULL)
597 return FALSE;
598
599 num_group = 0;
600 for (i = 0; i < shnum; i++)
601 {
602 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
603
604 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
605 {
606 unsigned char *src;
607 Elf_Internal_Group *dest;
608
609 /* Add to list of sections. */
610 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
611 num_group += 1;
612
613 /* Read the raw contents. */
614 BFD_ASSERT (sizeof (*dest) >= 4);
615 amt = shdr->sh_size * sizeof (*dest) / 4;
616 shdr->contents = (unsigned char *)
617 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
618 /* PR binutils/4110: Handle corrupt group headers. */
619 if (shdr->contents == NULL)
620 {
621 _bfd_error_handler
622 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
623 bfd_set_error (bfd_error_bad_value);
624 -- num_group;
625 continue;
626 }
627
628 memset (shdr->contents, 0, amt);
629
630 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
631 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
632 != shdr->sh_size))
633 {
634 _bfd_error_handler
635 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size);
636 bfd_set_error (bfd_error_bad_value);
637 -- num_group;
638 /* PR 17510: If the group contents are even partially
639 corrupt, do not allow any of the contents to be used. */
640 memset (shdr->contents, 0, amt);
641 continue;
642 }
643
644 /* Translate raw contents, a flag word followed by an
645 array of elf section indices all in target byte order,
646 to the flag word followed by an array of elf section
647 pointers. */
648 src = shdr->contents + shdr->sh_size;
649 dest = (Elf_Internal_Group *) (shdr->contents + amt);
650
651 while (1)
652 {
653 unsigned int idx;
654
655 src -= 4;
656 --dest;
657 idx = H_GET_32 (abfd, src);
658 if (src == shdr->contents)
659 {
660 dest->flags = idx;
661 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
662 shdr->bfd_section->flags
663 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
664 break;
665 }
666 if (idx >= shnum)
667 {
668 ((*_bfd_error_handler)
669 (_("%B: invalid SHT_GROUP entry"), abfd));
670 idx = 0;
671 }
672 dest->shdr = elf_elfsections (abfd)[idx];
673 }
674 }
675 }
676
677 /* PR 17510: Corrupt binaries might contain invalid groups. */
678 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
679 {
680 elf_tdata (abfd)->num_group = num_group;
681
682 /* If all groups are invalid then fail. */
683 if (num_group == 0)
684 {
685 elf_tdata (abfd)->group_sect_ptr = NULL;
686 elf_tdata (abfd)->num_group = num_group = -1;
687 (*_bfd_error_handler) (_("%B: no valid group sections found"), abfd);
688 bfd_set_error (bfd_error_bad_value);
689 }
690 }
691 }
692 }
693
694 if (num_group != (unsigned) -1)
695 {
696 unsigned int i;
697
698 for (i = 0; i < num_group; i++)
699 {
700 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
701 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
702 unsigned int n_elt = shdr->sh_size / 4;
703
704 /* Look through this group's sections to see if current
705 section is a member. */
706 while (--n_elt != 0)
707 if ((++idx)->shdr == hdr)
708 {
709 asection *s = NULL;
710
711 /* We are a member of this group. Go looking through
712 other members to see if any others are linked via
713 next_in_group. */
714 idx = (Elf_Internal_Group *) shdr->contents;
715 n_elt = shdr->sh_size / 4;
716 while (--n_elt != 0)
717 if ((s = (++idx)->shdr->bfd_section) != NULL
718 && elf_next_in_group (s) != NULL)
719 break;
720 if (n_elt != 0)
721 {
722 /* Snarf the group name from other member, and
723 insert current section in circular list. */
724 elf_group_name (newsect) = elf_group_name (s);
725 elf_next_in_group (newsect) = elf_next_in_group (s);
726 elf_next_in_group (s) = newsect;
727 }
728 else
729 {
730 const char *gname;
731
732 gname = group_signature (abfd, shdr);
733 if (gname == NULL)
734 return FALSE;
735 elf_group_name (newsect) = gname;
736
737 /* Start a circular list with one element. */
738 elf_next_in_group (newsect) = newsect;
739 }
740
741 /* If the group section has been created, point to the
742 new member. */
743 if (shdr->bfd_section != NULL)
744 elf_next_in_group (shdr->bfd_section) = newsect;
745
746 i = num_group - 1;
747 break;
748 }
749 }
750 }
751
752 if (elf_group_name (newsect) == NULL)
753 {
754 (*_bfd_error_handler) (_("%B: no group info for section %A"),
755 abfd, newsect);
756 return FALSE;
757 }
758 return TRUE;
759 }
760
761 bfd_boolean
762 _bfd_elf_setup_sections (bfd *abfd)
763 {
764 unsigned int i;
765 unsigned int num_group = elf_tdata (abfd)->num_group;
766 bfd_boolean result = TRUE;
767 asection *s;
768
769 /* Process SHF_LINK_ORDER. */
770 for (s = abfd->sections; s != NULL; s = s->next)
771 {
772 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
773 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
774 {
775 unsigned int elfsec = this_hdr->sh_link;
776 /* FIXME: The old Intel compiler and old strip/objcopy may
777 not set the sh_link or sh_info fields. Hence we could
778 get the situation where elfsec is 0. */
779 if (elfsec == 0)
780 {
781 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
782 if (bed->link_order_error_handler)
783 bed->link_order_error_handler
784 (_("%B: warning: sh_link not set for section `%A'"),
785 abfd, s);
786 }
787 else
788 {
789 asection *linksec = NULL;
790
791 if (elfsec < elf_numsections (abfd))
792 {
793 this_hdr = elf_elfsections (abfd)[elfsec];
794 linksec = this_hdr->bfd_section;
795 }
796
797 /* PR 1991, 2008:
798 Some strip/objcopy may leave an incorrect value in
799 sh_link. We don't want to proceed. */
800 if (linksec == NULL)
801 {
802 (*_bfd_error_handler)
803 (_("%B: sh_link [%d] in section `%A' is incorrect"),
804 s->owner, s, elfsec);
805 result = FALSE;
806 }
807
808 elf_linked_to_section (s) = linksec;
809 }
810 }
811 }
812
813 /* Process section groups. */
814 if (num_group == (unsigned) -1)
815 return result;
816
817 for (i = 0; i < num_group; i++)
818 {
819 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
820 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
821 unsigned int n_elt = shdr->sh_size / 4;
822
823 while (--n_elt != 0)
824 if ((++idx)->shdr->bfd_section)
825 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
826 else if (idx->shdr->sh_type == SHT_RELA
827 || idx->shdr->sh_type == SHT_REL)
828 /* We won't include relocation sections in section groups in
829 output object files. We adjust the group section size here
830 so that relocatable link will work correctly when
831 relocation sections are in section group in input object
832 files. */
833 shdr->bfd_section->size -= 4;
834 else
835 {
836 /* There are some unknown sections in the group. */
837 (*_bfd_error_handler)
838 (_("%B: unknown [%d] section `%s' in group [%s]"),
839 abfd,
840 (unsigned int) idx->shdr->sh_type,
841 bfd_elf_string_from_elf_section (abfd,
842 (elf_elfheader (abfd)
843 ->e_shstrndx),
844 idx->shdr->sh_name),
845 shdr->bfd_section->name);
846 result = FALSE;
847 }
848 }
849 return result;
850 }
851
852 bfd_boolean
853 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
854 {
855 return elf_next_in_group (sec) != NULL;
856 }
857
858 /* Make a BFD section from an ELF section. We store a pointer to the
859 BFD section in the bfd_section field of the header. */
860
861 bfd_boolean
862 _bfd_elf_make_section_from_shdr (bfd *abfd,
863 Elf_Internal_Shdr *hdr,
864 const char *name,
865 int shindex)
866 {
867 asection *newsect;
868 flagword flags;
869 const struct elf_backend_data *bed;
870
871 if (hdr->bfd_section != NULL)
872 return TRUE;
873
874 newsect = bfd_make_section_anyway (abfd, name);
875 if (newsect == NULL)
876 return FALSE;
877
878 hdr->bfd_section = newsect;
879 elf_section_data (newsect)->this_hdr = *hdr;
880 elf_section_data (newsect)->this_idx = shindex;
881
882 /* Always use the real type/flags. */
883 elf_section_type (newsect) = hdr->sh_type;
884 elf_section_flags (newsect) = hdr->sh_flags;
885
886 newsect->filepos = hdr->sh_offset;
887
888 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
889 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
890 || ! bfd_set_section_alignment (abfd, newsect,
891 bfd_log2 (hdr->sh_addralign)))
892 return FALSE;
893
894 flags = SEC_NO_FLAGS;
895 if (hdr->sh_type != SHT_NOBITS)
896 flags |= SEC_HAS_CONTENTS;
897 if (hdr->sh_type == SHT_GROUP)
898 flags |= SEC_GROUP | SEC_EXCLUDE;
899 if ((hdr->sh_flags & SHF_ALLOC) != 0)
900 {
901 flags |= SEC_ALLOC;
902 if (hdr->sh_type != SHT_NOBITS)
903 flags |= SEC_LOAD;
904 }
905 if ((hdr->sh_flags & SHF_WRITE) == 0)
906 flags |= SEC_READONLY;
907 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
908 flags |= SEC_CODE;
909 else if ((flags & SEC_LOAD) != 0)
910 flags |= SEC_DATA;
911 if ((hdr->sh_flags & SHF_MERGE) != 0)
912 {
913 flags |= SEC_MERGE;
914 newsect->entsize = hdr->sh_entsize;
915 if ((hdr->sh_flags & SHF_STRINGS) != 0)
916 flags |= SEC_STRINGS;
917 }
918 if (hdr->sh_flags & SHF_GROUP)
919 if (!setup_group (abfd, hdr, newsect))
920 return FALSE;
921 if ((hdr->sh_flags & SHF_TLS) != 0)
922 flags |= SEC_THREAD_LOCAL;
923 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
924 flags |= SEC_EXCLUDE;
925
926 if ((flags & SEC_ALLOC) == 0)
927 {
928 /* The debugging sections appear to be recognized only by name,
929 not any sort of flag. Their SEC_ALLOC bits are cleared. */
930 if (name [0] == '.')
931 {
932 const char *p;
933 int n;
934 if (name[1] == 'd')
935 p = ".debug", n = 6;
936 else if (name[1] == 'g' && name[2] == 'n')
937 p = ".gnu.linkonce.wi.", n = 17;
938 else if (name[1] == 'g' && name[2] == 'd')
939 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
940 else if (name[1] == 'l')
941 p = ".line", n = 5;
942 else if (name[1] == 's')
943 p = ".stab", n = 5;
944 else if (name[1] == 'z')
945 p = ".zdebug", n = 7;
946 else
947 p = NULL, n = 0;
948 if (p != NULL && strncmp (name, p, n) == 0)
949 flags |= SEC_DEBUGGING;
950 }
951 }
952
953 /* As a GNU extension, if the name begins with .gnu.linkonce, we
954 only link a single copy of the section. This is used to support
955 g++. g++ will emit each template expansion in its own section.
956 The symbols will be defined as weak, so that multiple definitions
957 are permitted. The GNU linker extension is to actually discard
958 all but one of the sections. */
959 if (CONST_STRNEQ (name, ".gnu.linkonce")
960 && elf_next_in_group (newsect) == NULL)
961 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
962
963 bed = get_elf_backend_data (abfd);
964 if (bed->elf_backend_section_flags)
965 if (! bed->elf_backend_section_flags (&flags, hdr))
966 return FALSE;
967
968 if (! bfd_set_section_flags (abfd, newsect, flags))
969 return FALSE;
970
971 /* We do not parse the PT_NOTE segments as we are interested even in the
972 separate debug info files which may have the segments offsets corrupted.
973 PT_NOTEs from the core files are currently not parsed using BFD. */
974 if (hdr->sh_type == SHT_NOTE)
975 {
976 bfd_byte *contents;
977
978 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
979 return FALSE;
980
981 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
982 free (contents);
983 }
984
985 if ((flags & SEC_ALLOC) != 0)
986 {
987 Elf_Internal_Phdr *phdr;
988 unsigned int i, nload;
989
990 /* Some ELF linkers produce binaries with all the program header
991 p_paddr fields zero. If we have such a binary with more than
992 one PT_LOAD header, then leave the section lma equal to vma
993 so that we don't create sections with overlapping lma. */
994 phdr = elf_tdata (abfd)->phdr;
995 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
996 if (phdr->p_paddr != 0)
997 break;
998 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
999 ++nload;
1000 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1001 return TRUE;
1002
1003 phdr = elf_tdata (abfd)->phdr;
1004 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1005 {
1006 if (((phdr->p_type == PT_LOAD
1007 && (hdr->sh_flags & SHF_TLS) == 0)
1008 || phdr->p_type == PT_TLS)
1009 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1010 {
1011 if ((flags & SEC_LOAD) == 0)
1012 newsect->lma = (phdr->p_paddr
1013 + hdr->sh_addr - phdr->p_vaddr);
1014 else
1015 /* We used to use the same adjustment for SEC_LOAD
1016 sections, but that doesn't work if the segment
1017 is packed with code from multiple VMAs.
1018 Instead we calculate the section LMA based on
1019 the segment LMA. It is assumed that the
1020 segment will contain sections with contiguous
1021 LMAs, even if the VMAs are not. */
1022 newsect->lma = (phdr->p_paddr
1023 + hdr->sh_offset - phdr->p_offset);
1024
1025 /* With contiguous segments, we can't tell from file
1026 offsets whether a section with zero size should
1027 be placed at the end of one segment or the
1028 beginning of the next. Decide based on vaddr. */
1029 if (hdr->sh_addr >= phdr->p_vaddr
1030 && (hdr->sh_addr + hdr->sh_size
1031 <= phdr->p_vaddr + phdr->p_memsz))
1032 break;
1033 }
1034 }
1035 }
1036
1037 /* Compress/decompress DWARF debug sections with names: .debug_* and
1038 .zdebug_*, after the section flags is set. */
1039 if ((flags & SEC_DEBUGGING)
1040 && ((name[1] == 'd' && name[6] == '_')
1041 || (name[1] == 'z' && name[7] == '_')))
1042 {
1043 enum { nothing, compress, decompress } action = nothing;
1044 char *new_name;
1045
1046 if (bfd_is_section_compressed (abfd, newsect))
1047 {
1048 /* Compressed section. Check if we should decompress. */
1049 if ((abfd->flags & BFD_DECOMPRESS))
1050 action = decompress;
1051 }
1052 else
1053 {
1054 /* Normal section. Check if we should compress. */
1055 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1056 action = compress;
1057 }
1058
1059 new_name = NULL;
1060 switch (action)
1061 {
1062 case nothing:
1063 break;
1064 case compress:
1065 if (!bfd_init_section_compress_status (abfd, newsect))
1066 {
1067 (*_bfd_error_handler)
1068 (_("%B: unable to initialize compress status for section %s"),
1069 abfd, name);
1070 return FALSE;
1071 }
1072 if (name[1] != 'z')
1073 {
1074 unsigned int len = strlen (name);
1075
1076 new_name = bfd_alloc (abfd, len + 2);
1077 if (new_name == NULL)
1078 return FALSE;
1079 new_name[0] = '.';
1080 new_name[1] = 'z';
1081 memcpy (new_name + 2, name + 1, len);
1082 }
1083 break;
1084 case decompress:
1085 if (!bfd_init_section_decompress_status (abfd, newsect))
1086 {
1087 (*_bfd_error_handler)
1088 (_("%B: unable to initialize decompress status for section %s"),
1089 abfd, name);
1090 return FALSE;
1091 }
1092 if (name[1] == 'z')
1093 {
1094 unsigned int len = strlen (name);
1095
1096 new_name = bfd_alloc (abfd, len);
1097 if (new_name == NULL)
1098 return FALSE;
1099 new_name[0] = '.';
1100 memcpy (new_name + 1, name + 2, len - 1);
1101 }
1102 break;
1103 }
1104 if (new_name != NULL)
1105 bfd_rename_section (abfd, newsect, new_name);
1106 }
1107
1108 return TRUE;
1109 }
1110
1111 const char *const bfd_elf_section_type_names[] = {
1112 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1113 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1114 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1115 };
1116
1117 /* ELF relocs are against symbols. If we are producing relocatable
1118 output, and the reloc is against an external symbol, and nothing
1119 has given us any additional addend, the resulting reloc will also
1120 be against the same symbol. In such a case, we don't want to
1121 change anything about the way the reloc is handled, since it will
1122 all be done at final link time. Rather than put special case code
1123 into bfd_perform_relocation, all the reloc types use this howto
1124 function. It just short circuits the reloc if producing
1125 relocatable output against an external symbol. */
1126
1127 bfd_reloc_status_type
1128 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1129 arelent *reloc_entry,
1130 asymbol *symbol,
1131 void *data ATTRIBUTE_UNUSED,
1132 asection *input_section,
1133 bfd *output_bfd,
1134 char **error_message ATTRIBUTE_UNUSED)
1135 {
1136 if (output_bfd != NULL
1137 && (symbol->flags & BSF_SECTION_SYM) == 0
1138 && (! reloc_entry->howto->partial_inplace
1139 || reloc_entry->addend == 0))
1140 {
1141 reloc_entry->address += input_section->output_offset;
1142 return bfd_reloc_ok;
1143 }
1144
1145 return bfd_reloc_continue;
1146 }
1147 \f
1148 /* Copy the program header and other data from one object module to
1149 another. */
1150
1151 bfd_boolean
1152 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1153 {
1154 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1155 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1156 return TRUE;
1157
1158 if (!elf_flags_init (obfd))
1159 {
1160 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1161 elf_flags_init (obfd) = TRUE;
1162 }
1163
1164 elf_gp (obfd) = elf_gp (ibfd);
1165
1166 /* Also copy the EI_OSABI field. */
1167 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1168 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1169
1170 /* Copy object attributes. */
1171 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1172 return TRUE;
1173 }
1174
1175 static const char *
1176 get_segment_type (unsigned int p_type)
1177 {
1178 const char *pt;
1179 switch (p_type)
1180 {
1181 case PT_NULL: pt = "NULL"; break;
1182 case PT_LOAD: pt = "LOAD"; break;
1183 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1184 case PT_INTERP: pt = "INTERP"; break;
1185 case PT_NOTE: pt = "NOTE"; break;
1186 case PT_SHLIB: pt = "SHLIB"; break;
1187 case PT_PHDR: pt = "PHDR"; break;
1188 case PT_TLS: pt = "TLS"; break;
1189 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1190 case PT_GNU_STACK: pt = "STACK"; break;
1191 case PT_GNU_RELRO: pt = "RELRO"; break;
1192 default: pt = NULL; break;
1193 }
1194 return pt;
1195 }
1196
1197 /* Print out the program headers. */
1198
1199 bfd_boolean
1200 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1201 {
1202 FILE *f = (FILE *) farg;
1203 Elf_Internal_Phdr *p;
1204 asection *s;
1205 bfd_byte *dynbuf = NULL;
1206
1207 p = elf_tdata (abfd)->phdr;
1208 if (p != NULL)
1209 {
1210 unsigned int i, c;
1211
1212 fprintf (f, _("\nProgram Header:\n"));
1213 c = elf_elfheader (abfd)->e_phnum;
1214 for (i = 0; i < c; i++, p++)
1215 {
1216 const char *pt = get_segment_type (p->p_type);
1217 char buf[20];
1218
1219 if (pt == NULL)
1220 {
1221 sprintf (buf, "0x%lx", p->p_type);
1222 pt = buf;
1223 }
1224 fprintf (f, "%8s off 0x", pt);
1225 bfd_fprintf_vma (abfd, f, p->p_offset);
1226 fprintf (f, " vaddr 0x");
1227 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1228 fprintf (f, " paddr 0x");
1229 bfd_fprintf_vma (abfd, f, p->p_paddr);
1230 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1231 fprintf (f, " filesz 0x");
1232 bfd_fprintf_vma (abfd, f, p->p_filesz);
1233 fprintf (f, " memsz 0x");
1234 bfd_fprintf_vma (abfd, f, p->p_memsz);
1235 fprintf (f, " flags %c%c%c",
1236 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1237 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1238 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1239 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1240 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1241 fprintf (f, "\n");
1242 }
1243 }
1244
1245 s = bfd_get_section_by_name (abfd, ".dynamic");
1246 if (s != NULL)
1247 {
1248 unsigned int elfsec;
1249 unsigned long shlink;
1250 bfd_byte *extdyn, *extdynend;
1251 size_t extdynsize;
1252 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1253
1254 fprintf (f, _("\nDynamic Section:\n"));
1255
1256 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1257 goto error_return;
1258
1259 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1260 if (elfsec == SHN_BAD)
1261 goto error_return;
1262 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1263
1264 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1265 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1266
1267 extdyn = dynbuf;
1268 /* PR 17512: file: 6f427532. */
1269 if (s->size < extdynsize)
1270 goto error_return;
1271 extdynend = extdyn + s->size;
1272 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1273 Fix range check. */
1274 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1275 {
1276 Elf_Internal_Dyn dyn;
1277 const char *name = "";
1278 char ab[20];
1279 bfd_boolean stringp;
1280 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1281
1282 (*swap_dyn_in) (abfd, extdyn, &dyn);
1283
1284 if (dyn.d_tag == DT_NULL)
1285 break;
1286
1287 stringp = FALSE;
1288 switch (dyn.d_tag)
1289 {
1290 default:
1291 if (bed->elf_backend_get_target_dtag)
1292 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1293
1294 if (!strcmp (name, ""))
1295 {
1296 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1297 name = ab;
1298 }
1299 break;
1300
1301 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1302 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1303 case DT_PLTGOT: name = "PLTGOT"; break;
1304 case DT_HASH: name = "HASH"; break;
1305 case DT_STRTAB: name = "STRTAB"; break;
1306 case DT_SYMTAB: name = "SYMTAB"; break;
1307 case DT_RELA: name = "RELA"; break;
1308 case DT_RELASZ: name = "RELASZ"; break;
1309 case DT_RELAENT: name = "RELAENT"; break;
1310 case DT_STRSZ: name = "STRSZ"; break;
1311 case DT_SYMENT: name = "SYMENT"; break;
1312 case DT_INIT: name = "INIT"; break;
1313 case DT_FINI: name = "FINI"; break;
1314 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1315 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1316 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1317 case DT_REL: name = "REL"; break;
1318 case DT_RELSZ: name = "RELSZ"; break;
1319 case DT_RELENT: name = "RELENT"; break;
1320 case DT_PLTREL: name = "PLTREL"; break;
1321 case DT_DEBUG: name = "DEBUG"; break;
1322 case DT_TEXTREL: name = "TEXTREL"; break;
1323 case DT_JMPREL: name = "JMPREL"; break;
1324 case DT_BIND_NOW: name = "BIND_NOW"; break;
1325 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1326 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1327 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1328 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1329 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1330 case DT_FLAGS: name = "FLAGS"; break;
1331 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1332 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1333 case DT_CHECKSUM: name = "CHECKSUM"; break;
1334 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1335 case DT_MOVEENT: name = "MOVEENT"; break;
1336 case DT_MOVESZ: name = "MOVESZ"; break;
1337 case DT_FEATURE: name = "FEATURE"; break;
1338 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1339 case DT_SYMINSZ: name = "SYMINSZ"; break;
1340 case DT_SYMINENT: name = "SYMINENT"; break;
1341 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1342 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1343 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1344 case DT_PLTPAD: name = "PLTPAD"; break;
1345 case DT_MOVETAB: name = "MOVETAB"; break;
1346 case DT_SYMINFO: name = "SYMINFO"; break;
1347 case DT_RELACOUNT: name = "RELACOUNT"; break;
1348 case DT_RELCOUNT: name = "RELCOUNT"; break;
1349 case DT_FLAGS_1: name = "FLAGS_1"; break;
1350 case DT_VERSYM: name = "VERSYM"; break;
1351 case DT_VERDEF: name = "VERDEF"; break;
1352 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1353 case DT_VERNEED: name = "VERNEED"; break;
1354 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1355 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1356 case DT_USED: name = "USED"; break;
1357 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1358 case DT_GNU_HASH: name = "GNU_HASH"; break;
1359 }
1360
1361 fprintf (f, " %-20s ", name);
1362 if (! stringp)
1363 {
1364 fprintf (f, "0x");
1365 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1366 }
1367 else
1368 {
1369 const char *string;
1370 unsigned int tagv = dyn.d_un.d_val;
1371
1372 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1373 if (string == NULL)
1374 goto error_return;
1375 fprintf (f, "%s", string);
1376 }
1377 fprintf (f, "\n");
1378 }
1379
1380 free (dynbuf);
1381 dynbuf = NULL;
1382 }
1383
1384 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1385 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1386 {
1387 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1388 return FALSE;
1389 }
1390
1391 if (elf_dynverdef (abfd) != 0)
1392 {
1393 Elf_Internal_Verdef *t;
1394
1395 fprintf (f, _("\nVersion definitions:\n"));
1396 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1397 {
1398 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1399 t->vd_flags, t->vd_hash,
1400 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1401 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1402 {
1403 Elf_Internal_Verdaux *a;
1404
1405 fprintf (f, "\t");
1406 for (a = t->vd_auxptr->vda_nextptr;
1407 a != NULL;
1408 a = a->vda_nextptr)
1409 fprintf (f, "%s ",
1410 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1411 fprintf (f, "\n");
1412 }
1413 }
1414 }
1415
1416 if (elf_dynverref (abfd) != 0)
1417 {
1418 Elf_Internal_Verneed *t;
1419
1420 fprintf (f, _("\nVersion References:\n"));
1421 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1422 {
1423 Elf_Internal_Vernaux *a;
1424
1425 fprintf (f, _(" required from %s:\n"),
1426 t->vn_filename ? t->vn_filename : "<corrupt>");
1427 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1428 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1429 a->vna_flags, a->vna_other,
1430 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1431 }
1432 }
1433
1434 return TRUE;
1435
1436 error_return:
1437 if (dynbuf != NULL)
1438 free (dynbuf);
1439 return FALSE;
1440 }
1441
1442 /* Get version string. */
1443
1444 const char *
1445 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1446 bfd_boolean *hidden)
1447 {
1448 const char *version_string = NULL;
1449 if (elf_dynversym (abfd) != 0
1450 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1451 {
1452 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1453
1454 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1455 vernum &= VERSYM_VERSION;
1456
1457 if (vernum == 0)
1458 version_string = "";
1459 else if (vernum == 1)
1460 version_string = "Base";
1461 else if (vernum <= elf_tdata (abfd)->cverdefs)
1462 version_string =
1463 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1464 else
1465 {
1466 Elf_Internal_Verneed *t;
1467
1468 version_string = "";
1469 for (t = elf_tdata (abfd)->verref;
1470 t != NULL;
1471 t = t->vn_nextref)
1472 {
1473 Elf_Internal_Vernaux *a;
1474
1475 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1476 {
1477 if (a->vna_other == vernum)
1478 {
1479 version_string = a->vna_nodename;
1480 break;
1481 }
1482 }
1483 }
1484 }
1485 }
1486 return version_string;
1487 }
1488
1489 /* Display ELF-specific fields of a symbol. */
1490
1491 void
1492 bfd_elf_print_symbol (bfd *abfd,
1493 void *filep,
1494 asymbol *symbol,
1495 bfd_print_symbol_type how)
1496 {
1497 FILE *file = (FILE *) filep;
1498 switch (how)
1499 {
1500 case bfd_print_symbol_name:
1501 fprintf (file, "%s", symbol->name);
1502 break;
1503 case bfd_print_symbol_more:
1504 fprintf (file, "elf ");
1505 bfd_fprintf_vma (abfd, file, symbol->value);
1506 fprintf (file, " %lx", (unsigned long) symbol->flags);
1507 break;
1508 case bfd_print_symbol_all:
1509 {
1510 const char *section_name;
1511 const char *name = NULL;
1512 const struct elf_backend_data *bed;
1513 unsigned char st_other;
1514 bfd_vma val;
1515 const char *version_string;
1516 bfd_boolean hidden;
1517
1518 section_name = symbol->section ? symbol->section->name : "(*none*)";
1519
1520 bed = get_elf_backend_data (abfd);
1521 if (bed->elf_backend_print_symbol_all)
1522 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1523
1524 if (name == NULL)
1525 {
1526 name = symbol->name;
1527 bfd_print_symbol_vandf (abfd, file, symbol);
1528 }
1529
1530 fprintf (file, " %s\t", section_name);
1531 /* Print the "other" value for a symbol. For common symbols,
1532 we've already printed the size; now print the alignment.
1533 For other symbols, we have no specified alignment, and
1534 we've printed the address; now print the size. */
1535 if (symbol->section && bfd_is_com_section (symbol->section))
1536 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1537 else
1538 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1539 bfd_fprintf_vma (abfd, file, val);
1540
1541 /* If we have version information, print it. */
1542 version_string = _bfd_elf_get_symbol_version_string (abfd,
1543 symbol,
1544 &hidden);
1545 if (version_string)
1546 {
1547 if (!hidden)
1548 fprintf (file, " %-11s", version_string);
1549 else
1550 {
1551 int i;
1552
1553 fprintf (file, " (%s)", version_string);
1554 for (i = 10 - strlen (version_string); i > 0; --i)
1555 putc (' ', file);
1556 }
1557 }
1558
1559 /* If the st_other field is not zero, print it. */
1560 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1561
1562 switch (st_other)
1563 {
1564 case 0: break;
1565 case STV_INTERNAL: fprintf (file, " .internal"); break;
1566 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1567 case STV_PROTECTED: fprintf (file, " .protected"); break;
1568 default:
1569 /* Some other non-defined flags are also present, so print
1570 everything hex. */
1571 fprintf (file, " 0x%02x", (unsigned int) st_other);
1572 }
1573
1574 fprintf (file, " %s", name);
1575 }
1576 break;
1577 }
1578 }
1579
1580 /* Allocate an ELF string table--force the first byte to be zero. */
1581
1582 struct bfd_strtab_hash *
1583 _bfd_elf_stringtab_init (void)
1584 {
1585 struct bfd_strtab_hash *ret;
1586
1587 ret = _bfd_stringtab_init ();
1588 if (ret != NULL)
1589 {
1590 bfd_size_type loc;
1591
1592 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1593 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1594 if (loc == (bfd_size_type) -1)
1595 {
1596 _bfd_stringtab_free (ret);
1597 ret = NULL;
1598 }
1599 }
1600 return ret;
1601 }
1602 \f
1603 /* ELF .o/exec file reading */
1604
1605 /* Create a new bfd section from an ELF section header. */
1606
1607 bfd_boolean
1608 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1609 {
1610 Elf_Internal_Shdr *hdr;
1611 Elf_Internal_Ehdr *ehdr;
1612 const struct elf_backend_data *bed;
1613 const char *name;
1614 bfd_boolean ret = TRUE;
1615 static bfd_boolean * sections_being_created = NULL;
1616 static bfd * sections_being_created_abfd = NULL;
1617 static unsigned int nesting = 0;
1618
1619 if (shindex >= elf_numsections (abfd))
1620 return FALSE;
1621
1622 if (++ nesting > 3)
1623 {
1624 /* PR17512: A corrupt ELF binary might contain a recursive group of
1625 sections, with each the string indicies pointing to the next in the
1626 loop. Detect this here, by refusing to load a section that we are
1627 already in the process of loading. We only trigger this test if
1628 we have nested at least three sections deep as normal ELF binaries
1629 can expect to recurse at least once.
1630
1631 FIXME: It would be better if this array was attached to the bfd,
1632 rather than being held in a static pointer. */
1633
1634 if (sections_being_created_abfd != abfd)
1635 sections_being_created = NULL;
1636 if (sections_being_created == NULL)
1637 {
1638 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1639 sections_being_created = (bfd_boolean *)
1640 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1641 sections_being_created_abfd = abfd;
1642 }
1643 if (sections_being_created [shindex])
1644 {
1645 (*_bfd_error_handler)
1646 (_("%B: warning: loop in section dependencies detected"), abfd);
1647 return FALSE;
1648 }
1649 sections_being_created [shindex] = TRUE;
1650 }
1651
1652 hdr = elf_elfsections (abfd)[shindex];
1653 ehdr = elf_elfheader (abfd);
1654 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1655 hdr->sh_name);
1656 if (name == NULL)
1657 goto fail;
1658
1659 bed = get_elf_backend_data (abfd);
1660 switch (hdr->sh_type)
1661 {
1662 case SHT_NULL:
1663 /* Inactive section. Throw it away. */
1664 goto success;
1665
1666 case SHT_PROGBITS: /* Normal section with contents. */
1667 case SHT_NOBITS: /* .bss section. */
1668 case SHT_HASH: /* .hash section. */
1669 case SHT_NOTE: /* .note section. */
1670 case SHT_INIT_ARRAY: /* .init_array section. */
1671 case SHT_FINI_ARRAY: /* .fini_array section. */
1672 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1673 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1674 case SHT_GNU_HASH: /* .gnu.hash section. */
1675 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1676 goto success;
1677
1678 case SHT_DYNAMIC: /* Dynamic linking information. */
1679 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1680 goto fail;
1681
1682 if (hdr->sh_link > elf_numsections (abfd))
1683 {
1684 /* PR 10478: Accept Solaris binaries with a sh_link
1685 field set to SHN_BEFORE or SHN_AFTER. */
1686 switch (bfd_get_arch (abfd))
1687 {
1688 case bfd_arch_i386:
1689 case bfd_arch_sparc:
1690 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1691 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1692 break;
1693 /* Otherwise fall through. */
1694 default:
1695 goto fail;
1696 }
1697 }
1698 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1699 goto fail;
1700 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1701 {
1702 Elf_Internal_Shdr *dynsymhdr;
1703
1704 /* The shared libraries distributed with hpux11 have a bogus
1705 sh_link field for the ".dynamic" section. Find the
1706 string table for the ".dynsym" section instead. */
1707 if (elf_dynsymtab (abfd) != 0)
1708 {
1709 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1710 hdr->sh_link = dynsymhdr->sh_link;
1711 }
1712 else
1713 {
1714 unsigned int i, num_sec;
1715
1716 num_sec = elf_numsections (abfd);
1717 for (i = 1; i < num_sec; i++)
1718 {
1719 dynsymhdr = elf_elfsections (abfd)[i];
1720 if (dynsymhdr->sh_type == SHT_DYNSYM)
1721 {
1722 hdr->sh_link = dynsymhdr->sh_link;
1723 break;
1724 }
1725 }
1726 }
1727 }
1728 goto success;
1729
1730 case SHT_SYMTAB: /* A symbol table. */
1731 if (elf_onesymtab (abfd) == shindex)
1732 goto success;
1733
1734 if (hdr->sh_entsize != bed->s->sizeof_sym)
1735 goto fail;
1736
1737 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1738 {
1739 if (hdr->sh_size != 0)
1740 goto fail;
1741 /* Some assemblers erroneously set sh_info to one with a
1742 zero sh_size. ld sees this as a global symbol count
1743 of (unsigned) -1. Fix it here. */
1744 hdr->sh_info = 0;
1745 goto success;
1746 }
1747
1748 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1749 elf_onesymtab (abfd) = shindex;
1750 elf_tdata (abfd)->symtab_hdr = *hdr;
1751 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1752 abfd->flags |= HAS_SYMS;
1753
1754 /* Sometimes a shared object will map in the symbol table. If
1755 SHF_ALLOC is set, and this is a shared object, then we also
1756 treat this section as a BFD section. We can not base the
1757 decision purely on SHF_ALLOC, because that flag is sometimes
1758 set in a relocatable object file, which would confuse the
1759 linker. */
1760 if ((hdr->sh_flags & SHF_ALLOC) != 0
1761 && (abfd->flags & DYNAMIC) != 0
1762 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1763 shindex))
1764 goto fail;
1765
1766 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1767 can't read symbols without that section loaded as well. It
1768 is most likely specified by the next section header. */
1769 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1770 {
1771 unsigned int i, num_sec;
1772
1773 num_sec = elf_numsections (abfd);
1774 for (i = shindex + 1; i < num_sec; i++)
1775 {
1776 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1777 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1778 && hdr2->sh_link == shindex)
1779 break;
1780 }
1781 if (i == num_sec)
1782 for (i = 1; i < shindex; i++)
1783 {
1784 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1785 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1786 && hdr2->sh_link == shindex)
1787 break;
1788 }
1789 if (i != shindex)
1790 ret = bfd_section_from_shdr (abfd, i);
1791 }
1792 goto success;
1793
1794 case SHT_DYNSYM: /* A dynamic symbol table. */
1795 if (elf_dynsymtab (abfd) == shindex)
1796 goto success;
1797
1798 if (hdr->sh_entsize != bed->s->sizeof_sym)
1799 goto fail;
1800
1801 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1802 {
1803 if (hdr->sh_size != 0)
1804 goto fail;
1805
1806 /* Some linkers erroneously set sh_info to one with a
1807 zero sh_size. ld sees this as a global symbol count
1808 of (unsigned) -1. Fix it here. */
1809 hdr->sh_info = 0;
1810 goto success;
1811 }
1812
1813 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1814 elf_dynsymtab (abfd) = shindex;
1815 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1816 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1817 abfd->flags |= HAS_SYMS;
1818
1819 /* Besides being a symbol table, we also treat this as a regular
1820 section, so that objcopy can handle it. */
1821 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1822 goto success;
1823
1824 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
1825 if (elf_symtab_shndx (abfd) == shindex)
1826 goto success;
1827
1828 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1829 elf_symtab_shndx (abfd) = shindex;
1830 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1831 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1832 goto success;
1833
1834 case SHT_STRTAB: /* A string table. */
1835 if (hdr->bfd_section != NULL)
1836 goto success;
1837
1838 if (ehdr->e_shstrndx == shindex)
1839 {
1840 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1841 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1842 goto success;
1843 }
1844
1845 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1846 {
1847 symtab_strtab:
1848 elf_tdata (abfd)->strtab_hdr = *hdr;
1849 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1850 goto success;
1851 }
1852
1853 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1854 {
1855 dynsymtab_strtab:
1856 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1857 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1858 elf_elfsections (abfd)[shindex] = hdr;
1859 /* We also treat this as a regular section, so that objcopy
1860 can handle it. */
1861 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1862 shindex);
1863 goto success;
1864 }
1865
1866 /* If the string table isn't one of the above, then treat it as a
1867 regular section. We need to scan all the headers to be sure,
1868 just in case this strtab section appeared before the above. */
1869 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1870 {
1871 unsigned int i, num_sec;
1872
1873 num_sec = elf_numsections (abfd);
1874 for (i = 1; i < num_sec; i++)
1875 {
1876 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1877 if (hdr2->sh_link == shindex)
1878 {
1879 /* Prevent endless recursion on broken objects. */
1880 if (i == shindex)
1881 goto fail;
1882 if (! bfd_section_from_shdr (abfd, i))
1883 goto fail;
1884 if (elf_onesymtab (abfd) == i)
1885 goto symtab_strtab;
1886 if (elf_dynsymtab (abfd) == i)
1887 goto dynsymtab_strtab;
1888 }
1889 }
1890 }
1891 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1892 goto success;
1893
1894 case SHT_REL:
1895 case SHT_RELA:
1896 /* *These* do a lot of work -- but build no sections! */
1897 {
1898 asection *target_sect;
1899 Elf_Internal_Shdr *hdr2, **p_hdr;
1900 unsigned int num_sec = elf_numsections (abfd);
1901 struct bfd_elf_section_data *esdt;
1902 bfd_size_type amt;
1903
1904 if (hdr->sh_entsize
1905 != (bfd_size_type) (hdr->sh_type == SHT_REL
1906 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1907 goto fail;
1908
1909 /* Check for a bogus link to avoid crashing. */
1910 if (hdr->sh_link >= num_sec)
1911 {
1912 ((*_bfd_error_handler)
1913 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1914 abfd, hdr->sh_link, name, shindex));
1915 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1916 shindex);
1917 goto success;
1918 }
1919
1920 /* For some incomprehensible reason Oracle distributes
1921 libraries for Solaris in which some of the objects have
1922 bogus sh_link fields. It would be nice if we could just
1923 reject them, but, unfortunately, some people need to use
1924 them. We scan through the section headers; if we find only
1925 one suitable symbol table, we clobber the sh_link to point
1926 to it. I hope this doesn't break anything.
1927
1928 Don't do it on executable nor shared library. */
1929 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1930 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1931 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1932 {
1933 unsigned int scan;
1934 int found;
1935
1936 found = 0;
1937 for (scan = 1; scan < num_sec; scan++)
1938 {
1939 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1940 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1941 {
1942 if (found != 0)
1943 {
1944 found = 0;
1945 break;
1946 }
1947 found = scan;
1948 }
1949 }
1950 if (found != 0)
1951 hdr->sh_link = found;
1952 }
1953
1954 /* Get the symbol table. */
1955 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1956 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1957 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1958 goto fail;
1959
1960 /* If this reloc section does not use the main symbol table we
1961 don't treat it as a reloc section. BFD can't adequately
1962 represent such a section, so at least for now, we don't
1963 try. We just present it as a normal section. We also
1964 can't use it as a reloc section if it points to the null
1965 section, an invalid section, another reloc section, or its
1966 sh_link points to the null section. */
1967 if (hdr->sh_link != elf_onesymtab (abfd)
1968 || hdr->sh_link == SHN_UNDEF
1969 || hdr->sh_info == SHN_UNDEF
1970 || hdr->sh_info >= num_sec
1971 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1972 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1973 {
1974 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1975 shindex);
1976 goto success;
1977 }
1978
1979 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1980 goto fail;
1981
1982 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1983 if (target_sect == NULL)
1984 goto fail;
1985
1986 esdt = elf_section_data (target_sect);
1987 if (hdr->sh_type == SHT_RELA)
1988 p_hdr = &esdt->rela.hdr;
1989 else
1990 p_hdr = &esdt->rel.hdr;
1991
1992 /* PR 17512: file: 0b4f81b7. */
1993 if (*p_hdr != NULL)
1994 goto fail;
1995 amt = sizeof (*hdr2);
1996 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1997 if (hdr2 == NULL)
1998 goto fail;
1999 *hdr2 = *hdr;
2000 *p_hdr = hdr2;
2001 elf_elfsections (abfd)[shindex] = hdr2;
2002 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2003 target_sect->flags |= SEC_RELOC;
2004 target_sect->relocation = NULL;
2005 target_sect->rel_filepos = hdr->sh_offset;
2006 /* In the section to which the relocations apply, mark whether
2007 its relocations are of the REL or RELA variety. */
2008 if (hdr->sh_size != 0)
2009 {
2010 if (hdr->sh_type == SHT_RELA)
2011 target_sect->use_rela_p = 1;
2012 }
2013 abfd->flags |= HAS_RELOC;
2014 goto success;
2015 }
2016
2017 case SHT_GNU_verdef:
2018 elf_dynverdef (abfd) = shindex;
2019 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2020 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2021 goto success;
2022
2023 case SHT_GNU_versym:
2024 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2025 goto fail;
2026
2027 elf_dynversym (abfd) = shindex;
2028 elf_tdata (abfd)->dynversym_hdr = *hdr;
2029 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2030 goto success;
2031
2032 case SHT_GNU_verneed:
2033 elf_dynverref (abfd) = shindex;
2034 elf_tdata (abfd)->dynverref_hdr = *hdr;
2035 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2036 goto success;
2037
2038 case SHT_SHLIB:
2039 goto success;
2040
2041 case SHT_GROUP:
2042 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2043 goto fail;
2044
2045 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2046 goto fail;
2047
2048 if (hdr->contents != NULL)
2049 {
2050 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2051 unsigned int n_elt = hdr->sh_size / sizeof (* idx);
2052 asection *s;
2053
2054 if (n_elt == 0)
2055 goto fail;
2056 if (idx->flags & GRP_COMDAT)
2057 hdr->bfd_section->flags
2058 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2059
2060 /* We try to keep the same section order as it comes in. */
2061 idx += n_elt;
2062
2063 while (--n_elt != 0)
2064 {
2065 --idx;
2066
2067 if (idx->shdr != NULL
2068 && (s = idx->shdr->bfd_section) != NULL
2069 && elf_next_in_group (s) != NULL)
2070 {
2071 elf_next_in_group (hdr->bfd_section) = s;
2072 break;
2073 }
2074 }
2075 }
2076 goto success;
2077
2078 default:
2079 /* Possibly an attributes section. */
2080 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2081 || hdr->sh_type == bed->obj_attrs_section_type)
2082 {
2083 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2084 goto fail;
2085 _bfd_elf_parse_attributes (abfd, hdr);
2086 goto success;
2087 }
2088
2089 /* Check for any processor-specific section types. */
2090 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2091 goto success;
2092
2093 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2094 {
2095 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2096 /* FIXME: How to properly handle allocated section reserved
2097 for applications? */
2098 (*_bfd_error_handler)
2099 (_("%B: don't know how to handle allocated, application "
2100 "specific section `%s' [0x%8x]"),
2101 abfd, name, hdr->sh_type);
2102 else
2103 {
2104 /* Allow sections reserved for applications. */
2105 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2106 shindex);
2107 goto success;
2108 }
2109 }
2110 else if (hdr->sh_type >= SHT_LOPROC
2111 && hdr->sh_type <= SHT_HIPROC)
2112 /* FIXME: We should handle this section. */
2113 (*_bfd_error_handler)
2114 (_("%B: don't know how to handle processor specific section "
2115 "`%s' [0x%8x]"),
2116 abfd, name, hdr->sh_type);
2117 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2118 {
2119 /* Unrecognised OS-specific sections. */
2120 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2121 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2122 required to correctly process the section and the file should
2123 be rejected with an error message. */
2124 (*_bfd_error_handler)
2125 (_("%B: don't know how to handle OS specific section "
2126 "`%s' [0x%8x]"),
2127 abfd, name, hdr->sh_type);
2128 else
2129 {
2130 /* Otherwise it should be processed. */
2131 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2132 goto success;
2133 }
2134 }
2135 else
2136 /* FIXME: We should handle this section. */
2137 (*_bfd_error_handler)
2138 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2139 abfd, name, hdr->sh_type);
2140
2141 goto fail;
2142 }
2143
2144 fail:
2145 ret = FALSE;
2146 success:
2147 if (sections_being_created && sections_being_created_abfd == abfd)
2148 sections_being_created [shindex] = FALSE;
2149 if (-- nesting == 0)
2150 {
2151 sections_being_created = NULL;
2152 sections_being_created_abfd = abfd;
2153 }
2154 return ret;
2155 }
2156
2157 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2158
2159 Elf_Internal_Sym *
2160 bfd_sym_from_r_symndx (struct sym_cache *cache,
2161 bfd *abfd,
2162 unsigned long r_symndx)
2163 {
2164 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2165
2166 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2167 {
2168 Elf_Internal_Shdr *symtab_hdr;
2169 unsigned char esym[sizeof (Elf64_External_Sym)];
2170 Elf_External_Sym_Shndx eshndx;
2171
2172 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2173 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2174 &cache->sym[ent], esym, &eshndx) == NULL)
2175 return NULL;
2176
2177 if (cache->abfd != abfd)
2178 {
2179 memset (cache->indx, -1, sizeof (cache->indx));
2180 cache->abfd = abfd;
2181 }
2182 cache->indx[ent] = r_symndx;
2183 }
2184
2185 return &cache->sym[ent];
2186 }
2187
2188 /* Given an ELF section number, retrieve the corresponding BFD
2189 section. */
2190
2191 asection *
2192 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2193 {
2194 if (sec_index >= elf_numsections (abfd))
2195 return NULL;
2196 return elf_elfsections (abfd)[sec_index]->bfd_section;
2197 }
2198
2199 static const struct bfd_elf_special_section special_sections_b[] =
2200 {
2201 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2202 { NULL, 0, 0, 0, 0 }
2203 };
2204
2205 static const struct bfd_elf_special_section special_sections_c[] =
2206 {
2207 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2208 { NULL, 0, 0, 0, 0 }
2209 };
2210
2211 static const struct bfd_elf_special_section special_sections_d[] =
2212 {
2213 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2214 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2215 /* There are more DWARF sections than these, but they needn't be added here
2216 unless you have to cope with broken compilers that don't emit section
2217 attributes or you want to help the user writing assembler. */
2218 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2219 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2220 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2221 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2222 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2223 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2224 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2225 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2226 { NULL, 0, 0, 0, 0 }
2227 };
2228
2229 static const struct bfd_elf_special_section special_sections_f[] =
2230 {
2231 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2232 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2233 { NULL, 0, 0, 0, 0 }
2234 };
2235
2236 static const struct bfd_elf_special_section special_sections_g[] =
2237 {
2238 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2239 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2240 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2241 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2242 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2243 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2244 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2245 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2246 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2247 { NULL, 0, 0, 0, 0 }
2248 };
2249
2250 static const struct bfd_elf_special_section special_sections_h[] =
2251 {
2252 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2253 { NULL, 0, 0, 0, 0 }
2254 };
2255
2256 static const struct bfd_elf_special_section special_sections_i[] =
2257 {
2258 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2259 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2260 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2261 { NULL, 0, 0, 0, 0 }
2262 };
2263
2264 static const struct bfd_elf_special_section special_sections_l[] =
2265 {
2266 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2267 { NULL, 0, 0, 0, 0 }
2268 };
2269
2270 static const struct bfd_elf_special_section special_sections_n[] =
2271 {
2272 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2273 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2274 { NULL, 0, 0, 0, 0 }
2275 };
2276
2277 static const struct bfd_elf_special_section special_sections_p[] =
2278 {
2279 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2280 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2281 { NULL, 0, 0, 0, 0 }
2282 };
2283
2284 static const struct bfd_elf_special_section special_sections_r[] =
2285 {
2286 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2287 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2288 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2289 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2290 { NULL, 0, 0, 0, 0 }
2291 };
2292
2293 static const struct bfd_elf_special_section special_sections_s[] =
2294 {
2295 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2296 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2297 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2298 /* See struct bfd_elf_special_section declaration for the semantics of
2299 this special case where .prefix_length != strlen (.prefix). */
2300 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2301 { NULL, 0, 0, 0, 0 }
2302 };
2303
2304 static const struct bfd_elf_special_section special_sections_t[] =
2305 {
2306 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2307 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2308 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2309 { NULL, 0, 0, 0, 0 }
2310 };
2311
2312 static const struct bfd_elf_special_section special_sections_z[] =
2313 {
2314 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2315 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2316 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2317 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2318 { NULL, 0, 0, 0, 0 }
2319 };
2320
2321 static const struct bfd_elf_special_section * const special_sections[] =
2322 {
2323 special_sections_b, /* 'b' */
2324 special_sections_c, /* 'c' */
2325 special_sections_d, /* 'd' */
2326 NULL, /* 'e' */
2327 special_sections_f, /* 'f' */
2328 special_sections_g, /* 'g' */
2329 special_sections_h, /* 'h' */
2330 special_sections_i, /* 'i' */
2331 NULL, /* 'j' */
2332 NULL, /* 'k' */
2333 special_sections_l, /* 'l' */
2334 NULL, /* 'm' */
2335 special_sections_n, /* 'n' */
2336 NULL, /* 'o' */
2337 special_sections_p, /* 'p' */
2338 NULL, /* 'q' */
2339 special_sections_r, /* 'r' */
2340 special_sections_s, /* 's' */
2341 special_sections_t, /* 't' */
2342 NULL, /* 'u' */
2343 NULL, /* 'v' */
2344 NULL, /* 'w' */
2345 NULL, /* 'x' */
2346 NULL, /* 'y' */
2347 special_sections_z /* 'z' */
2348 };
2349
2350 const struct bfd_elf_special_section *
2351 _bfd_elf_get_special_section (const char *name,
2352 const struct bfd_elf_special_section *spec,
2353 unsigned int rela)
2354 {
2355 int i;
2356 int len;
2357
2358 len = strlen (name);
2359
2360 for (i = 0; spec[i].prefix != NULL; i++)
2361 {
2362 int suffix_len;
2363 int prefix_len = spec[i].prefix_length;
2364
2365 if (len < prefix_len)
2366 continue;
2367 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2368 continue;
2369
2370 suffix_len = spec[i].suffix_length;
2371 if (suffix_len <= 0)
2372 {
2373 if (name[prefix_len] != 0)
2374 {
2375 if (suffix_len == 0)
2376 continue;
2377 if (name[prefix_len] != '.'
2378 && (suffix_len == -2
2379 || (rela && spec[i].type == SHT_REL)))
2380 continue;
2381 }
2382 }
2383 else
2384 {
2385 if (len < prefix_len + suffix_len)
2386 continue;
2387 if (memcmp (name + len - suffix_len,
2388 spec[i].prefix + prefix_len,
2389 suffix_len) != 0)
2390 continue;
2391 }
2392 return &spec[i];
2393 }
2394
2395 return NULL;
2396 }
2397
2398 const struct bfd_elf_special_section *
2399 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2400 {
2401 int i;
2402 const struct bfd_elf_special_section *spec;
2403 const struct elf_backend_data *bed;
2404
2405 /* See if this is one of the special sections. */
2406 if (sec->name == NULL)
2407 return NULL;
2408
2409 bed = get_elf_backend_data (abfd);
2410 spec = bed->special_sections;
2411 if (spec)
2412 {
2413 spec = _bfd_elf_get_special_section (sec->name,
2414 bed->special_sections,
2415 sec->use_rela_p);
2416 if (spec != NULL)
2417 return spec;
2418 }
2419
2420 if (sec->name[0] != '.')
2421 return NULL;
2422
2423 i = sec->name[1] - 'b';
2424 if (i < 0 || i > 'z' - 'b')
2425 return NULL;
2426
2427 spec = special_sections[i];
2428
2429 if (spec == NULL)
2430 return NULL;
2431
2432 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2433 }
2434
2435 bfd_boolean
2436 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2437 {
2438 struct bfd_elf_section_data *sdata;
2439 const struct elf_backend_data *bed;
2440 const struct bfd_elf_special_section *ssect;
2441
2442 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2443 if (sdata == NULL)
2444 {
2445 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2446 sizeof (*sdata));
2447 if (sdata == NULL)
2448 return FALSE;
2449 sec->used_by_bfd = sdata;
2450 }
2451
2452 /* Indicate whether or not this section should use RELA relocations. */
2453 bed = get_elf_backend_data (abfd);
2454 sec->use_rela_p = bed->default_use_rela_p;
2455
2456 /* When we read a file, we don't need to set ELF section type and
2457 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2458 anyway. We will set ELF section type and flags for all linker
2459 created sections. If user specifies BFD section flags, we will
2460 set ELF section type and flags based on BFD section flags in
2461 elf_fake_sections. Special handling for .init_array/.fini_array
2462 output sections since they may contain .ctors/.dtors input
2463 sections. We don't want _bfd_elf_init_private_section_data to
2464 copy ELF section type from .ctors/.dtors input sections. */
2465 if (abfd->direction != read_direction
2466 || (sec->flags & SEC_LINKER_CREATED) != 0)
2467 {
2468 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2469 if (ssect != NULL
2470 && (!sec->flags
2471 || (sec->flags & SEC_LINKER_CREATED) != 0
2472 || ssect->type == SHT_INIT_ARRAY
2473 || ssect->type == SHT_FINI_ARRAY))
2474 {
2475 elf_section_type (sec) = ssect->type;
2476 elf_section_flags (sec) = ssect->attr;
2477 }
2478 }
2479
2480 return _bfd_generic_new_section_hook (abfd, sec);
2481 }
2482
2483 /* Create a new bfd section from an ELF program header.
2484
2485 Since program segments have no names, we generate a synthetic name
2486 of the form segment<NUM>, where NUM is generally the index in the
2487 program header table. For segments that are split (see below) we
2488 generate the names segment<NUM>a and segment<NUM>b.
2489
2490 Note that some program segments may have a file size that is different than
2491 (less than) the memory size. All this means is that at execution the
2492 system must allocate the amount of memory specified by the memory size,
2493 but only initialize it with the first "file size" bytes read from the
2494 file. This would occur for example, with program segments consisting
2495 of combined data+bss.
2496
2497 To handle the above situation, this routine generates TWO bfd sections
2498 for the single program segment. The first has the length specified by
2499 the file size of the segment, and the second has the length specified
2500 by the difference between the two sizes. In effect, the segment is split
2501 into its initialized and uninitialized parts.
2502
2503 */
2504
2505 bfd_boolean
2506 _bfd_elf_make_section_from_phdr (bfd *abfd,
2507 Elf_Internal_Phdr *hdr,
2508 int hdr_index,
2509 const char *type_name)
2510 {
2511 asection *newsect;
2512 char *name;
2513 char namebuf[64];
2514 size_t len;
2515 int split;
2516
2517 split = ((hdr->p_memsz > 0)
2518 && (hdr->p_filesz > 0)
2519 && (hdr->p_memsz > hdr->p_filesz));
2520
2521 if (hdr->p_filesz > 0)
2522 {
2523 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2524 len = strlen (namebuf) + 1;
2525 name = (char *) bfd_alloc (abfd, len);
2526 if (!name)
2527 return FALSE;
2528 memcpy (name, namebuf, len);
2529 newsect = bfd_make_section (abfd, name);
2530 if (newsect == NULL)
2531 return FALSE;
2532 newsect->vma = hdr->p_vaddr;
2533 newsect->lma = hdr->p_paddr;
2534 newsect->size = hdr->p_filesz;
2535 newsect->filepos = hdr->p_offset;
2536 newsect->flags |= SEC_HAS_CONTENTS;
2537 newsect->alignment_power = bfd_log2 (hdr->p_align);
2538 if (hdr->p_type == PT_LOAD)
2539 {
2540 newsect->flags |= SEC_ALLOC;
2541 newsect->flags |= SEC_LOAD;
2542 if (hdr->p_flags & PF_X)
2543 {
2544 /* FIXME: all we known is that it has execute PERMISSION,
2545 may be data. */
2546 newsect->flags |= SEC_CODE;
2547 }
2548 }
2549 if (!(hdr->p_flags & PF_W))
2550 {
2551 newsect->flags |= SEC_READONLY;
2552 }
2553 }
2554
2555 if (hdr->p_memsz > hdr->p_filesz)
2556 {
2557 bfd_vma align;
2558
2559 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2560 len = strlen (namebuf) + 1;
2561 name = (char *) bfd_alloc (abfd, len);
2562 if (!name)
2563 return FALSE;
2564 memcpy (name, namebuf, len);
2565 newsect = bfd_make_section (abfd, name);
2566 if (newsect == NULL)
2567 return FALSE;
2568 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2569 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2570 newsect->size = hdr->p_memsz - hdr->p_filesz;
2571 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2572 align = newsect->vma & -newsect->vma;
2573 if (align == 0 || align > hdr->p_align)
2574 align = hdr->p_align;
2575 newsect->alignment_power = bfd_log2 (align);
2576 if (hdr->p_type == PT_LOAD)
2577 {
2578 /* Hack for gdb. Segments that have not been modified do
2579 not have their contents written to a core file, on the
2580 assumption that a debugger can find the contents in the
2581 executable. We flag this case by setting the fake
2582 section size to zero. Note that "real" bss sections will
2583 always have their contents dumped to the core file. */
2584 if (bfd_get_format (abfd) == bfd_core)
2585 newsect->size = 0;
2586 newsect->flags |= SEC_ALLOC;
2587 if (hdr->p_flags & PF_X)
2588 newsect->flags |= SEC_CODE;
2589 }
2590 if (!(hdr->p_flags & PF_W))
2591 newsect->flags |= SEC_READONLY;
2592 }
2593
2594 return TRUE;
2595 }
2596
2597 bfd_boolean
2598 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2599 {
2600 const struct elf_backend_data *bed;
2601
2602 switch (hdr->p_type)
2603 {
2604 case PT_NULL:
2605 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2606
2607 case PT_LOAD:
2608 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2609
2610 case PT_DYNAMIC:
2611 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2612
2613 case PT_INTERP:
2614 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2615
2616 case PT_NOTE:
2617 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2618 return FALSE;
2619 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2620 return FALSE;
2621 return TRUE;
2622
2623 case PT_SHLIB:
2624 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2625
2626 case PT_PHDR:
2627 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2628
2629 case PT_GNU_EH_FRAME:
2630 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2631 "eh_frame_hdr");
2632
2633 case PT_GNU_STACK:
2634 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2635
2636 case PT_GNU_RELRO:
2637 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2638
2639 default:
2640 /* Check for any processor-specific program segment types. */
2641 bed = get_elf_backend_data (abfd);
2642 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2643 }
2644 }
2645
2646 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2647 REL or RELA. */
2648
2649 Elf_Internal_Shdr *
2650 _bfd_elf_single_rel_hdr (asection *sec)
2651 {
2652 if (elf_section_data (sec)->rel.hdr)
2653 {
2654 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2655 return elf_section_data (sec)->rel.hdr;
2656 }
2657 else
2658 return elf_section_data (sec)->rela.hdr;
2659 }
2660
2661 /* Allocate and initialize a section-header for a new reloc section,
2662 containing relocations against ASECT. It is stored in RELDATA. If
2663 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2664 relocations. */
2665
2666 static bfd_boolean
2667 _bfd_elf_init_reloc_shdr (bfd *abfd,
2668 struct bfd_elf_section_reloc_data *reldata,
2669 asection *asect,
2670 bfd_boolean use_rela_p)
2671 {
2672 Elf_Internal_Shdr *rel_hdr;
2673 char *name;
2674 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2675 bfd_size_type amt;
2676
2677 amt = sizeof (Elf_Internal_Shdr);
2678 BFD_ASSERT (reldata->hdr == NULL);
2679 rel_hdr = bfd_zalloc (abfd, amt);
2680 reldata->hdr = rel_hdr;
2681
2682 amt = sizeof ".rela" + strlen (asect->name);
2683 name = (char *) bfd_alloc (abfd, amt);
2684 if (name == NULL)
2685 return FALSE;
2686 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2687 rel_hdr->sh_name =
2688 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2689 FALSE);
2690 if (rel_hdr->sh_name == (unsigned int) -1)
2691 return FALSE;
2692 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2693 rel_hdr->sh_entsize = (use_rela_p
2694 ? bed->s->sizeof_rela
2695 : bed->s->sizeof_rel);
2696 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2697 rel_hdr->sh_flags = 0;
2698 rel_hdr->sh_addr = 0;
2699 rel_hdr->sh_size = 0;
2700 rel_hdr->sh_offset = 0;
2701
2702 return TRUE;
2703 }
2704
2705 /* Return the default section type based on the passed in section flags. */
2706
2707 int
2708 bfd_elf_get_default_section_type (flagword flags)
2709 {
2710 if ((flags & SEC_ALLOC) != 0
2711 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2712 return SHT_NOBITS;
2713 return SHT_PROGBITS;
2714 }
2715
2716 struct fake_section_arg
2717 {
2718 struct bfd_link_info *link_info;
2719 bfd_boolean failed;
2720 };
2721
2722 /* Set up an ELF internal section header for a section. */
2723
2724 static void
2725 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2726 {
2727 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2728 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2729 struct bfd_elf_section_data *esd = elf_section_data (asect);
2730 Elf_Internal_Shdr *this_hdr;
2731 unsigned int sh_type;
2732
2733 if (arg->failed)
2734 {
2735 /* We already failed; just get out of the bfd_map_over_sections
2736 loop. */
2737 return;
2738 }
2739
2740 this_hdr = &esd->this_hdr;
2741
2742 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2743 asect->name, FALSE);
2744 if (this_hdr->sh_name == (unsigned int) -1)
2745 {
2746 arg->failed = TRUE;
2747 return;
2748 }
2749
2750 /* Don't clear sh_flags. Assembler may set additional bits. */
2751
2752 if ((asect->flags & SEC_ALLOC) != 0
2753 || asect->user_set_vma)
2754 this_hdr->sh_addr = asect->vma;
2755 else
2756 this_hdr->sh_addr = 0;
2757
2758 this_hdr->sh_offset = 0;
2759 this_hdr->sh_size = asect->size;
2760 this_hdr->sh_link = 0;
2761 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2762 /* The sh_entsize and sh_info fields may have been set already by
2763 copy_private_section_data. */
2764
2765 this_hdr->bfd_section = asect;
2766 this_hdr->contents = NULL;
2767
2768 /* If the section type is unspecified, we set it based on
2769 asect->flags. */
2770 if ((asect->flags & SEC_GROUP) != 0)
2771 sh_type = SHT_GROUP;
2772 else
2773 sh_type = bfd_elf_get_default_section_type (asect->flags);
2774
2775 if (this_hdr->sh_type == SHT_NULL)
2776 this_hdr->sh_type = sh_type;
2777 else if (this_hdr->sh_type == SHT_NOBITS
2778 && sh_type == SHT_PROGBITS
2779 && (asect->flags & SEC_ALLOC) != 0)
2780 {
2781 /* Warn if we are changing a NOBITS section to PROGBITS, but
2782 allow the link to proceed. This can happen when users link
2783 non-bss input sections to bss output sections, or emit data
2784 to a bss output section via a linker script. */
2785 (*_bfd_error_handler)
2786 (_("warning: section `%A' type changed to PROGBITS"), asect);
2787 this_hdr->sh_type = sh_type;
2788 }
2789
2790 switch (this_hdr->sh_type)
2791 {
2792 default:
2793 break;
2794
2795 case SHT_STRTAB:
2796 case SHT_INIT_ARRAY:
2797 case SHT_FINI_ARRAY:
2798 case SHT_PREINIT_ARRAY:
2799 case SHT_NOTE:
2800 case SHT_NOBITS:
2801 case SHT_PROGBITS:
2802 break;
2803
2804 case SHT_HASH:
2805 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2806 break;
2807
2808 case SHT_DYNSYM:
2809 this_hdr->sh_entsize = bed->s->sizeof_sym;
2810 break;
2811
2812 case SHT_DYNAMIC:
2813 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2814 break;
2815
2816 case SHT_RELA:
2817 if (get_elf_backend_data (abfd)->may_use_rela_p)
2818 this_hdr->sh_entsize = bed->s->sizeof_rela;
2819 break;
2820
2821 case SHT_REL:
2822 if (get_elf_backend_data (abfd)->may_use_rel_p)
2823 this_hdr->sh_entsize = bed->s->sizeof_rel;
2824 break;
2825
2826 case SHT_GNU_versym:
2827 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2828 break;
2829
2830 case SHT_GNU_verdef:
2831 this_hdr->sh_entsize = 0;
2832 /* objcopy or strip will copy over sh_info, but may not set
2833 cverdefs. The linker will set cverdefs, but sh_info will be
2834 zero. */
2835 if (this_hdr->sh_info == 0)
2836 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2837 else
2838 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2839 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2840 break;
2841
2842 case SHT_GNU_verneed:
2843 this_hdr->sh_entsize = 0;
2844 /* objcopy or strip will copy over sh_info, but may not set
2845 cverrefs. The linker will set cverrefs, but sh_info will be
2846 zero. */
2847 if (this_hdr->sh_info == 0)
2848 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2849 else
2850 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2851 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2852 break;
2853
2854 case SHT_GROUP:
2855 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2856 break;
2857
2858 case SHT_GNU_HASH:
2859 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2860 break;
2861 }
2862
2863 if ((asect->flags & SEC_ALLOC) != 0)
2864 this_hdr->sh_flags |= SHF_ALLOC;
2865 if ((asect->flags & SEC_READONLY) == 0)
2866 this_hdr->sh_flags |= SHF_WRITE;
2867 if ((asect->flags & SEC_CODE) != 0)
2868 this_hdr->sh_flags |= SHF_EXECINSTR;
2869 if ((asect->flags & SEC_MERGE) != 0)
2870 {
2871 this_hdr->sh_flags |= SHF_MERGE;
2872 this_hdr->sh_entsize = asect->entsize;
2873 if ((asect->flags & SEC_STRINGS) != 0)
2874 this_hdr->sh_flags |= SHF_STRINGS;
2875 }
2876 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2877 this_hdr->sh_flags |= SHF_GROUP;
2878 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2879 {
2880 this_hdr->sh_flags |= SHF_TLS;
2881 if (asect->size == 0
2882 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2883 {
2884 struct bfd_link_order *o = asect->map_tail.link_order;
2885
2886 this_hdr->sh_size = 0;
2887 if (o != NULL)
2888 {
2889 this_hdr->sh_size = o->offset + o->size;
2890 if (this_hdr->sh_size != 0)
2891 this_hdr->sh_type = SHT_NOBITS;
2892 }
2893 }
2894 }
2895 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2896 this_hdr->sh_flags |= SHF_EXCLUDE;
2897
2898 /* If the section has relocs, set up a section header for the
2899 SHT_REL[A] section. If two relocation sections are required for
2900 this section, it is up to the processor-specific back-end to
2901 create the other. */
2902 if ((asect->flags & SEC_RELOC) != 0)
2903 {
2904 /* When doing a relocatable link, create both REL and RELA sections if
2905 needed. */
2906 if (arg->link_info
2907 /* Do the normal setup if we wouldn't create any sections here. */
2908 && esd->rel.count + esd->rela.count > 0
2909 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2910 {
2911 if (esd->rel.count && esd->rel.hdr == NULL
2912 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2913 {
2914 arg->failed = TRUE;
2915 return;
2916 }
2917 if (esd->rela.count && esd->rela.hdr == NULL
2918 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2919 {
2920 arg->failed = TRUE;
2921 return;
2922 }
2923 }
2924 else if (!_bfd_elf_init_reloc_shdr (abfd,
2925 (asect->use_rela_p
2926 ? &esd->rela : &esd->rel),
2927 asect,
2928 asect->use_rela_p))
2929 arg->failed = TRUE;
2930 }
2931
2932 /* Check for processor-specific section types. */
2933 sh_type = this_hdr->sh_type;
2934 if (bed->elf_backend_fake_sections
2935 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2936 arg->failed = TRUE;
2937
2938 if (sh_type == SHT_NOBITS && asect->size != 0)
2939 {
2940 /* Don't change the header type from NOBITS if we are being
2941 called for objcopy --only-keep-debug. */
2942 this_hdr->sh_type = sh_type;
2943 }
2944 }
2945
2946 /* Fill in the contents of a SHT_GROUP section. Called from
2947 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2948 when ELF targets use the generic linker, ld. Called for ld -r
2949 from bfd_elf_final_link. */
2950
2951 void
2952 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2953 {
2954 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2955 asection *elt, *first;
2956 unsigned char *loc;
2957 bfd_boolean gas;
2958
2959 /* Ignore linker created group section. See elfNN_ia64_object_p in
2960 elfxx-ia64.c. */
2961 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2962 || *failedptr)
2963 return;
2964
2965 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2966 {
2967 unsigned long symindx = 0;
2968
2969 /* elf_group_id will have been set up by objcopy and the
2970 generic linker. */
2971 if (elf_group_id (sec) != NULL)
2972 symindx = elf_group_id (sec)->udata.i;
2973
2974 if (symindx == 0)
2975 {
2976 /* If called from the assembler, swap_out_syms will have set up
2977 elf_section_syms. */
2978 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2979 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2980 }
2981 elf_section_data (sec)->this_hdr.sh_info = symindx;
2982 }
2983 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2984 {
2985 /* The ELF backend linker sets sh_info to -2 when the group
2986 signature symbol is global, and thus the index can't be
2987 set until all local symbols are output. */
2988 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2989 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2990 unsigned long symndx = sec_data->this_hdr.sh_info;
2991 unsigned long extsymoff = 0;
2992 struct elf_link_hash_entry *h;
2993
2994 if (!elf_bad_symtab (igroup->owner))
2995 {
2996 Elf_Internal_Shdr *symtab_hdr;
2997
2998 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2999 extsymoff = symtab_hdr->sh_info;
3000 }
3001 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3002 while (h->root.type == bfd_link_hash_indirect
3003 || h->root.type == bfd_link_hash_warning)
3004 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3005
3006 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3007 }
3008
3009 /* The contents won't be allocated for "ld -r" or objcopy. */
3010 gas = TRUE;
3011 if (sec->contents == NULL)
3012 {
3013 gas = FALSE;
3014 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3015
3016 /* Arrange for the section to be written out. */
3017 elf_section_data (sec)->this_hdr.contents = sec->contents;
3018 if (sec->contents == NULL)
3019 {
3020 *failedptr = TRUE;
3021 return;
3022 }
3023 }
3024
3025 loc = sec->contents + sec->size;
3026
3027 /* Get the pointer to the first section in the group that gas
3028 squirreled away here. objcopy arranges for this to be set to the
3029 start of the input section group. */
3030 first = elt = elf_next_in_group (sec);
3031
3032 /* First element is a flag word. Rest of section is elf section
3033 indices for all the sections of the group. Write them backwards
3034 just to keep the group in the same order as given in .section
3035 directives, not that it matters. */
3036 while (elt != NULL)
3037 {
3038 asection *s;
3039
3040 s = elt;
3041 if (!gas)
3042 s = s->output_section;
3043 if (s != NULL
3044 && !bfd_is_abs_section (s))
3045 {
3046 unsigned int idx = elf_section_data (s)->this_idx;
3047
3048 loc -= 4;
3049 H_PUT_32 (abfd, idx, loc);
3050 }
3051 elt = elf_next_in_group (elt);
3052 if (elt == first)
3053 break;
3054 }
3055
3056 if ((loc -= 4) != sec->contents)
3057 abort ();
3058
3059 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3060 }
3061
3062 /* Assign all ELF section numbers. The dummy first section is handled here
3063 too. The link/info pointers for the standard section types are filled
3064 in here too, while we're at it. */
3065
3066 static bfd_boolean
3067 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3068 {
3069 struct elf_obj_tdata *t = elf_tdata (abfd);
3070 asection *sec;
3071 unsigned int section_number, secn;
3072 Elf_Internal_Shdr **i_shdrp;
3073 struct bfd_elf_section_data *d;
3074 bfd_boolean need_symtab;
3075
3076 section_number = 1;
3077
3078 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3079
3080 /* SHT_GROUP sections are in relocatable files only. */
3081 if (link_info == NULL || link_info->relocatable)
3082 {
3083 /* Put SHT_GROUP sections first. */
3084 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3085 {
3086 d = elf_section_data (sec);
3087
3088 if (d->this_hdr.sh_type == SHT_GROUP)
3089 {
3090 if (sec->flags & SEC_LINKER_CREATED)
3091 {
3092 /* Remove the linker created SHT_GROUP sections. */
3093 bfd_section_list_remove (abfd, sec);
3094 abfd->section_count--;
3095 }
3096 else
3097 d->this_idx = section_number++;
3098 }
3099 }
3100 }
3101
3102 for (sec = abfd->sections; sec; sec = sec->next)
3103 {
3104 d = elf_section_data (sec);
3105
3106 if (d->this_hdr.sh_type != SHT_GROUP)
3107 d->this_idx = section_number++;
3108 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3109 if (d->rel.hdr)
3110 {
3111 d->rel.idx = section_number++;
3112 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3113 }
3114 else
3115 d->rel.idx = 0;
3116
3117 if (d->rela.hdr)
3118 {
3119 d->rela.idx = section_number++;
3120 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3121 }
3122 else
3123 d->rela.idx = 0;
3124 }
3125
3126 elf_shstrtab_sec (abfd) = section_number++;
3127 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3128 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3129
3130 need_symtab = (bfd_get_symcount (abfd) > 0
3131 || (link_info == NULL
3132 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3133 == HAS_RELOC)));
3134 if (need_symtab)
3135 {
3136 elf_onesymtab (abfd) = section_number++;
3137 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3138 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3139 {
3140 elf_symtab_shndx (abfd) = section_number++;
3141 t->symtab_shndx_hdr.sh_name
3142 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3143 ".symtab_shndx", FALSE);
3144 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3145 return FALSE;
3146 }
3147 elf_strtab_sec (abfd) = section_number++;
3148 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3149 }
3150
3151 if (section_number >= SHN_LORESERVE)
3152 {
3153 _bfd_error_handler (_("%B: too many sections: %u"),
3154 abfd, section_number);
3155 return FALSE;
3156 }
3157
3158 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3159 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3160
3161 elf_numsections (abfd) = section_number;
3162 elf_elfheader (abfd)->e_shnum = section_number;
3163
3164 /* Set up the list of section header pointers, in agreement with the
3165 indices. */
3166 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3167 sizeof (Elf_Internal_Shdr *));
3168 if (i_shdrp == NULL)
3169 return FALSE;
3170
3171 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3172 sizeof (Elf_Internal_Shdr));
3173 if (i_shdrp[0] == NULL)
3174 {
3175 bfd_release (abfd, i_shdrp);
3176 return FALSE;
3177 }
3178
3179 elf_elfsections (abfd) = i_shdrp;
3180
3181 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3182 if (need_symtab)
3183 {
3184 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3185 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3186 {
3187 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3188 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3189 }
3190 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3191 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3192 }
3193
3194 for (sec = abfd->sections; sec; sec = sec->next)
3195 {
3196 asection *s;
3197 const char *name;
3198
3199 d = elf_section_data (sec);
3200
3201 i_shdrp[d->this_idx] = &d->this_hdr;
3202 if (d->rel.idx != 0)
3203 i_shdrp[d->rel.idx] = d->rel.hdr;
3204 if (d->rela.idx != 0)
3205 i_shdrp[d->rela.idx] = d->rela.hdr;
3206
3207 /* Fill in the sh_link and sh_info fields while we're at it. */
3208
3209 /* sh_link of a reloc section is the section index of the symbol
3210 table. sh_info is the section index of the section to which
3211 the relocation entries apply. */
3212 if (d->rel.idx != 0)
3213 {
3214 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3215 d->rel.hdr->sh_info = d->this_idx;
3216 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3217 }
3218 if (d->rela.idx != 0)
3219 {
3220 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3221 d->rela.hdr->sh_info = d->this_idx;
3222 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3223 }
3224
3225 /* We need to set up sh_link for SHF_LINK_ORDER. */
3226 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3227 {
3228 s = elf_linked_to_section (sec);
3229 if (s)
3230 {
3231 /* elf_linked_to_section points to the input section. */
3232 if (link_info != NULL)
3233 {
3234 /* Check discarded linkonce section. */
3235 if (discarded_section (s))
3236 {
3237 asection *kept;
3238 (*_bfd_error_handler)
3239 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3240 abfd, d->this_hdr.bfd_section,
3241 s, s->owner);
3242 /* Point to the kept section if it has the same
3243 size as the discarded one. */
3244 kept = _bfd_elf_check_kept_section (s, link_info);
3245 if (kept == NULL)
3246 {
3247 bfd_set_error (bfd_error_bad_value);
3248 return FALSE;
3249 }
3250 s = kept;
3251 }
3252
3253 s = s->output_section;
3254 BFD_ASSERT (s != NULL);
3255 }
3256 else
3257 {
3258 /* Handle objcopy. */
3259 if (s->output_section == NULL)
3260 {
3261 (*_bfd_error_handler)
3262 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3263 abfd, d->this_hdr.bfd_section, s, s->owner);
3264 bfd_set_error (bfd_error_bad_value);
3265 return FALSE;
3266 }
3267 s = s->output_section;
3268 }
3269 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3270 }
3271 else
3272 {
3273 /* PR 290:
3274 The Intel C compiler generates SHT_IA_64_UNWIND with
3275 SHF_LINK_ORDER. But it doesn't set the sh_link or
3276 sh_info fields. Hence we could get the situation
3277 where s is NULL. */
3278 const struct elf_backend_data *bed
3279 = get_elf_backend_data (abfd);
3280 if (bed->link_order_error_handler)
3281 bed->link_order_error_handler
3282 (_("%B: warning: sh_link not set for section `%A'"),
3283 abfd, sec);
3284 }
3285 }
3286
3287 switch (d->this_hdr.sh_type)
3288 {
3289 case SHT_REL:
3290 case SHT_RELA:
3291 /* A reloc section which we are treating as a normal BFD
3292 section. sh_link is the section index of the symbol
3293 table. sh_info is the section index of the section to
3294 which the relocation entries apply. We assume that an
3295 allocated reloc section uses the dynamic symbol table.
3296 FIXME: How can we be sure? */
3297 s = bfd_get_section_by_name (abfd, ".dynsym");
3298 if (s != NULL)
3299 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3300
3301 /* We look up the section the relocs apply to by name. */
3302 name = sec->name;
3303 if (d->this_hdr.sh_type == SHT_REL)
3304 name += 4;
3305 else
3306 name += 5;
3307 s = bfd_get_section_by_name (abfd, name);
3308 if (s != NULL)
3309 {
3310 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3311 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3312 }
3313 break;
3314
3315 case SHT_STRTAB:
3316 /* We assume that a section named .stab*str is a stabs
3317 string section. We look for a section with the same name
3318 but without the trailing ``str'', and set its sh_link
3319 field to point to this section. */
3320 if (CONST_STRNEQ (sec->name, ".stab")
3321 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3322 {
3323 size_t len;
3324 char *alc;
3325
3326 len = strlen (sec->name);
3327 alc = (char *) bfd_malloc (len - 2);
3328 if (alc == NULL)
3329 return FALSE;
3330 memcpy (alc, sec->name, len - 3);
3331 alc[len - 3] = '\0';
3332 s = bfd_get_section_by_name (abfd, alc);
3333 free (alc);
3334 if (s != NULL)
3335 {
3336 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3337
3338 /* This is a .stab section. */
3339 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3340 elf_section_data (s)->this_hdr.sh_entsize
3341 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3342 }
3343 }
3344 break;
3345
3346 case SHT_DYNAMIC:
3347 case SHT_DYNSYM:
3348 case SHT_GNU_verneed:
3349 case SHT_GNU_verdef:
3350 /* sh_link is the section header index of the string table
3351 used for the dynamic entries, or the symbol table, or the
3352 version strings. */
3353 s = bfd_get_section_by_name (abfd, ".dynstr");
3354 if (s != NULL)
3355 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3356 break;
3357
3358 case SHT_GNU_LIBLIST:
3359 /* sh_link is the section header index of the prelink library
3360 list used for the dynamic entries, or the symbol table, or
3361 the version strings. */
3362 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3363 ? ".dynstr" : ".gnu.libstr");
3364 if (s != NULL)
3365 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3366 break;
3367
3368 case SHT_HASH:
3369 case SHT_GNU_HASH:
3370 case SHT_GNU_versym:
3371 /* sh_link is the section header index of the symbol table
3372 this hash table or version table is for. */
3373 s = bfd_get_section_by_name (abfd, ".dynsym");
3374 if (s != NULL)
3375 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3376 break;
3377
3378 case SHT_GROUP:
3379 d->this_hdr.sh_link = elf_onesymtab (abfd);
3380 }
3381 }
3382
3383 for (secn = 1; secn < section_number; ++secn)
3384 if (i_shdrp[secn] == NULL)
3385 i_shdrp[secn] = i_shdrp[0];
3386 else
3387 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3388 i_shdrp[secn]->sh_name);
3389 return TRUE;
3390 }
3391
3392 static bfd_boolean
3393 sym_is_global (bfd *abfd, asymbol *sym)
3394 {
3395 /* If the backend has a special mapping, use it. */
3396 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3397 if (bed->elf_backend_sym_is_global)
3398 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3399
3400 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3401 || bfd_is_und_section (bfd_get_section (sym))
3402 || bfd_is_com_section (bfd_get_section (sym)));
3403 }
3404
3405 /* Don't output section symbols for sections that are not going to be
3406 output, that are duplicates or there is no BFD section. */
3407
3408 static bfd_boolean
3409 ignore_section_sym (bfd *abfd, asymbol *sym)
3410 {
3411 elf_symbol_type *type_ptr;
3412
3413 if ((sym->flags & BSF_SECTION_SYM) == 0)
3414 return FALSE;
3415
3416 type_ptr = elf_symbol_from (abfd, sym);
3417 return ((type_ptr != NULL
3418 && type_ptr->internal_elf_sym.st_shndx != 0
3419 && bfd_is_abs_section (sym->section))
3420 || !(sym->section->owner == abfd
3421 || (sym->section->output_section->owner == abfd
3422 && sym->section->output_offset == 0)
3423 || bfd_is_abs_section (sym->section)));
3424 }
3425
3426 /* Map symbol from it's internal number to the external number, moving
3427 all local symbols to be at the head of the list. */
3428
3429 static bfd_boolean
3430 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3431 {
3432 unsigned int symcount = bfd_get_symcount (abfd);
3433 asymbol **syms = bfd_get_outsymbols (abfd);
3434 asymbol **sect_syms;
3435 unsigned int num_locals = 0;
3436 unsigned int num_globals = 0;
3437 unsigned int num_locals2 = 0;
3438 unsigned int num_globals2 = 0;
3439 int max_index = 0;
3440 unsigned int idx;
3441 asection *asect;
3442 asymbol **new_syms;
3443
3444 #ifdef DEBUG
3445 fprintf (stderr, "elf_map_symbols\n");
3446 fflush (stderr);
3447 #endif
3448
3449 for (asect = abfd->sections; asect; asect = asect->next)
3450 {
3451 if (max_index < asect->index)
3452 max_index = asect->index;
3453 }
3454
3455 max_index++;
3456 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3457 if (sect_syms == NULL)
3458 return FALSE;
3459 elf_section_syms (abfd) = sect_syms;
3460 elf_num_section_syms (abfd) = max_index;
3461
3462 /* Init sect_syms entries for any section symbols we have already
3463 decided to output. */
3464 for (idx = 0; idx < symcount; idx++)
3465 {
3466 asymbol *sym = syms[idx];
3467
3468 if ((sym->flags & BSF_SECTION_SYM) != 0
3469 && sym->value == 0
3470 && !ignore_section_sym (abfd, sym)
3471 && !bfd_is_abs_section (sym->section))
3472 {
3473 asection *sec = sym->section;
3474
3475 if (sec->owner != abfd)
3476 sec = sec->output_section;
3477
3478 sect_syms[sec->index] = syms[idx];
3479 }
3480 }
3481
3482 /* Classify all of the symbols. */
3483 for (idx = 0; idx < symcount; idx++)
3484 {
3485 if (sym_is_global (abfd, syms[idx]))
3486 num_globals++;
3487 else if (!ignore_section_sym (abfd, syms[idx]))
3488 num_locals++;
3489 }
3490
3491 /* We will be adding a section symbol for each normal BFD section. Most
3492 sections will already have a section symbol in outsymbols, but
3493 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3494 at least in that case. */
3495 for (asect = abfd->sections; asect; asect = asect->next)
3496 {
3497 if (sect_syms[asect->index] == NULL)
3498 {
3499 if (!sym_is_global (abfd, asect->symbol))
3500 num_locals++;
3501 else
3502 num_globals++;
3503 }
3504 }
3505
3506 /* Now sort the symbols so the local symbols are first. */
3507 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3508 sizeof (asymbol *));
3509
3510 if (new_syms == NULL)
3511 return FALSE;
3512
3513 for (idx = 0; idx < symcount; idx++)
3514 {
3515 asymbol *sym = syms[idx];
3516 unsigned int i;
3517
3518 if (sym_is_global (abfd, sym))
3519 i = num_locals + num_globals2++;
3520 else if (!ignore_section_sym (abfd, sym))
3521 i = num_locals2++;
3522 else
3523 continue;
3524 new_syms[i] = sym;
3525 sym->udata.i = i + 1;
3526 }
3527 for (asect = abfd->sections; asect; asect = asect->next)
3528 {
3529 if (sect_syms[asect->index] == NULL)
3530 {
3531 asymbol *sym = asect->symbol;
3532 unsigned int i;
3533
3534 sect_syms[asect->index] = sym;
3535 if (!sym_is_global (abfd, sym))
3536 i = num_locals2++;
3537 else
3538 i = num_locals + num_globals2++;
3539 new_syms[i] = sym;
3540 sym->udata.i = i + 1;
3541 }
3542 }
3543
3544 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3545
3546 *pnum_locals = num_locals;
3547 return TRUE;
3548 }
3549
3550 /* Align to the maximum file alignment that could be required for any
3551 ELF data structure. */
3552
3553 static inline file_ptr
3554 align_file_position (file_ptr off, int align)
3555 {
3556 return (off + align - 1) & ~(align - 1);
3557 }
3558
3559 /* Assign a file position to a section, optionally aligning to the
3560 required section alignment. */
3561
3562 file_ptr
3563 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3564 file_ptr offset,
3565 bfd_boolean align)
3566 {
3567 if (align && i_shdrp->sh_addralign > 1)
3568 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3569 i_shdrp->sh_offset = offset;
3570 if (i_shdrp->bfd_section != NULL)
3571 i_shdrp->bfd_section->filepos = offset;
3572 if (i_shdrp->sh_type != SHT_NOBITS)
3573 offset += i_shdrp->sh_size;
3574 return offset;
3575 }
3576
3577 /* Compute the file positions we are going to put the sections at, and
3578 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3579 is not NULL, this is being called by the ELF backend linker. */
3580
3581 bfd_boolean
3582 _bfd_elf_compute_section_file_positions (bfd *abfd,
3583 struct bfd_link_info *link_info)
3584 {
3585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3586 struct fake_section_arg fsargs;
3587 bfd_boolean failed;
3588 struct bfd_strtab_hash *strtab = NULL;
3589 Elf_Internal_Shdr *shstrtab_hdr;
3590 bfd_boolean need_symtab;
3591
3592 if (abfd->output_has_begun)
3593 return TRUE;
3594
3595 /* Do any elf backend specific processing first. */
3596 if (bed->elf_backend_begin_write_processing)
3597 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3598
3599 if (! prep_headers (abfd))
3600 return FALSE;
3601
3602 /* Post process the headers if necessary. */
3603 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3604
3605 fsargs.failed = FALSE;
3606 fsargs.link_info = link_info;
3607 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3608 if (fsargs.failed)
3609 return FALSE;
3610
3611 if (!assign_section_numbers (abfd, link_info))
3612 return FALSE;
3613
3614 /* The backend linker builds symbol table information itself. */
3615 need_symtab = (link_info == NULL
3616 && (bfd_get_symcount (abfd) > 0
3617 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3618 == HAS_RELOC)));
3619 if (need_symtab)
3620 {
3621 /* Non-zero if doing a relocatable link. */
3622 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3623
3624 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3625 return FALSE;
3626 }
3627
3628 failed = FALSE;
3629 if (link_info == NULL)
3630 {
3631 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3632 if (failed)
3633 return FALSE;
3634 }
3635
3636 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3637 /* sh_name was set in prep_headers. */
3638 shstrtab_hdr->sh_type = SHT_STRTAB;
3639 shstrtab_hdr->sh_flags = 0;
3640 shstrtab_hdr->sh_addr = 0;
3641 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3642 shstrtab_hdr->sh_entsize = 0;
3643 shstrtab_hdr->sh_link = 0;
3644 shstrtab_hdr->sh_info = 0;
3645 /* sh_offset is set in assign_file_positions_except_relocs. */
3646 shstrtab_hdr->sh_addralign = 1;
3647
3648 if (!assign_file_positions_except_relocs (abfd, link_info))
3649 return FALSE;
3650
3651 if (need_symtab)
3652 {
3653 file_ptr off;
3654 Elf_Internal_Shdr *hdr;
3655
3656 off = elf_next_file_pos (abfd);
3657
3658 hdr = &elf_tdata (abfd)->symtab_hdr;
3659 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3660
3661 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3662 if (hdr->sh_size != 0)
3663 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3664
3665 hdr = &elf_tdata (abfd)->strtab_hdr;
3666 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3667
3668 elf_next_file_pos (abfd) = off;
3669
3670 /* Now that we know where the .strtab section goes, write it
3671 out. */
3672 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3673 || ! _bfd_stringtab_emit (abfd, strtab))
3674 return FALSE;
3675 _bfd_stringtab_free (strtab);
3676 }
3677
3678 abfd->output_has_begun = TRUE;
3679
3680 return TRUE;
3681 }
3682
3683 /* Make an initial estimate of the size of the program header. If we
3684 get the number wrong here, we'll redo section placement. */
3685
3686 static bfd_size_type
3687 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3688 {
3689 size_t segs;
3690 asection *s;
3691 const struct elf_backend_data *bed;
3692
3693 /* Assume we will need exactly two PT_LOAD segments: one for text
3694 and one for data. */
3695 segs = 2;
3696
3697 s = bfd_get_section_by_name (abfd, ".interp");
3698 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3699 {
3700 /* If we have a loadable interpreter section, we need a
3701 PT_INTERP segment. In this case, assume we also need a
3702 PT_PHDR segment, although that may not be true for all
3703 targets. */
3704 segs += 2;
3705 }
3706
3707 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3708 {
3709 /* We need a PT_DYNAMIC segment. */
3710 ++segs;
3711 }
3712
3713 if (info != NULL && info->relro)
3714 {
3715 /* We need a PT_GNU_RELRO segment. */
3716 ++segs;
3717 }
3718
3719 if (elf_eh_frame_hdr (abfd))
3720 {
3721 /* We need a PT_GNU_EH_FRAME segment. */
3722 ++segs;
3723 }
3724
3725 if (elf_stack_flags (abfd))
3726 {
3727 /* We need a PT_GNU_STACK segment. */
3728 ++segs;
3729 }
3730
3731 for (s = abfd->sections; s != NULL; s = s->next)
3732 {
3733 if ((s->flags & SEC_LOAD) != 0
3734 && CONST_STRNEQ (s->name, ".note"))
3735 {
3736 /* We need a PT_NOTE segment. */
3737 ++segs;
3738 /* Try to create just one PT_NOTE segment
3739 for all adjacent loadable .note* sections.
3740 gABI requires that within a PT_NOTE segment
3741 (and also inside of each SHT_NOTE section)
3742 each note is padded to a multiple of 4 size,
3743 so we check whether the sections are correctly
3744 aligned. */
3745 if (s->alignment_power == 2)
3746 while (s->next != NULL
3747 && s->next->alignment_power == 2
3748 && (s->next->flags & SEC_LOAD) != 0
3749 && CONST_STRNEQ (s->next->name, ".note"))
3750 s = s->next;
3751 }
3752 }
3753
3754 for (s = abfd->sections; s != NULL; s = s->next)
3755 {
3756 if (s->flags & SEC_THREAD_LOCAL)
3757 {
3758 /* We need a PT_TLS segment. */
3759 ++segs;
3760 break;
3761 }
3762 }
3763
3764 /* Let the backend count up any program headers it might need. */
3765 bed = get_elf_backend_data (abfd);
3766 if (bed->elf_backend_additional_program_headers)
3767 {
3768 int a;
3769
3770 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3771 if (a == -1)
3772 abort ();
3773 segs += a;
3774 }
3775
3776 return segs * bed->s->sizeof_phdr;
3777 }
3778
3779 /* Find the segment that contains the output_section of section. */
3780
3781 Elf_Internal_Phdr *
3782 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3783 {
3784 struct elf_segment_map *m;
3785 Elf_Internal_Phdr *p;
3786
3787 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3788 m != NULL;
3789 m = m->next, p++)
3790 {
3791 int i;
3792
3793 for (i = m->count - 1; i >= 0; i--)
3794 if (m->sections[i] == section)
3795 return p;
3796 }
3797
3798 return NULL;
3799 }
3800
3801 /* Create a mapping from a set of sections to a program segment. */
3802
3803 static struct elf_segment_map *
3804 make_mapping (bfd *abfd,
3805 asection **sections,
3806 unsigned int from,
3807 unsigned int to,
3808 bfd_boolean phdr)
3809 {
3810 struct elf_segment_map *m;
3811 unsigned int i;
3812 asection **hdrpp;
3813 bfd_size_type amt;
3814
3815 amt = sizeof (struct elf_segment_map);
3816 amt += (to - from - 1) * sizeof (asection *);
3817 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3818 if (m == NULL)
3819 return NULL;
3820 m->next = NULL;
3821 m->p_type = PT_LOAD;
3822 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3823 m->sections[i - from] = *hdrpp;
3824 m->count = to - from;
3825
3826 if (from == 0 && phdr)
3827 {
3828 /* Include the headers in the first PT_LOAD segment. */
3829 m->includes_filehdr = 1;
3830 m->includes_phdrs = 1;
3831 }
3832
3833 return m;
3834 }
3835
3836 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3837 on failure. */
3838
3839 struct elf_segment_map *
3840 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3841 {
3842 struct elf_segment_map *m;
3843
3844 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3845 sizeof (struct elf_segment_map));
3846 if (m == NULL)
3847 return NULL;
3848 m->next = NULL;
3849 m->p_type = PT_DYNAMIC;
3850 m->count = 1;
3851 m->sections[0] = dynsec;
3852
3853 return m;
3854 }
3855
3856 /* Possibly add or remove segments from the segment map. */
3857
3858 static bfd_boolean
3859 elf_modify_segment_map (bfd *abfd,
3860 struct bfd_link_info *info,
3861 bfd_boolean remove_empty_load)
3862 {
3863 struct elf_segment_map **m;
3864 const struct elf_backend_data *bed;
3865
3866 /* The placement algorithm assumes that non allocated sections are
3867 not in PT_LOAD segments. We ensure this here by removing such
3868 sections from the segment map. We also remove excluded
3869 sections. Finally, any PT_LOAD segment without sections is
3870 removed. */
3871 m = &elf_seg_map (abfd);
3872 while (*m)
3873 {
3874 unsigned int i, new_count;
3875
3876 for (new_count = 0, i = 0; i < (*m)->count; i++)
3877 {
3878 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3879 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3880 || (*m)->p_type != PT_LOAD))
3881 {
3882 (*m)->sections[new_count] = (*m)->sections[i];
3883 new_count++;
3884 }
3885 }
3886 (*m)->count = new_count;
3887
3888 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3889 *m = (*m)->next;
3890 else
3891 m = &(*m)->next;
3892 }
3893
3894 bed = get_elf_backend_data (abfd);
3895 if (bed->elf_backend_modify_segment_map != NULL)
3896 {
3897 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3898 return FALSE;
3899 }
3900
3901 return TRUE;
3902 }
3903
3904 /* Set up a mapping from BFD sections to program segments. */
3905
3906 bfd_boolean
3907 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3908 {
3909 unsigned int count;
3910 struct elf_segment_map *m;
3911 asection **sections = NULL;
3912 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3913 bfd_boolean no_user_phdrs;
3914
3915 no_user_phdrs = elf_seg_map (abfd) == NULL;
3916
3917 if (info != NULL)
3918 info->user_phdrs = !no_user_phdrs;
3919
3920 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3921 {
3922 asection *s;
3923 unsigned int i;
3924 struct elf_segment_map *mfirst;
3925 struct elf_segment_map **pm;
3926 asection *last_hdr;
3927 bfd_vma last_size;
3928 unsigned int phdr_index;
3929 bfd_vma maxpagesize;
3930 asection **hdrpp;
3931 bfd_boolean phdr_in_segment = TRUE;
3932 bfd_boolean writable;
3933 int tls_count = 0;
3934 asection *first_tls = NULL;
3935 asection *dynsec, *eh_frame_hdr;
3936 bfd_size_type amt;
3937 bfd_vma addr_mask, wrap_to = 0;
3938
3939 /* Select the allocated sections, and sort them. */
3940
3941 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3942 sizeof (asection *));
3943 if (sections == NULL)
3944 goto error_return;
3945
3946 /* Calculate top address, avoiding undefined behaviour of shift
3947 left operator when shift count is equal to size of type
3948 being shifted. */
3949 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3950 addr_mask = (addr_mask << 1) + 1;
3951
3952 i = 0;
3953 for (s = abfd->sections; s != NULL; s = s->next)
3954 {
3955 if ((s->flags & SEC_ALLOC) != 0)
3956 {
3957 sections[i] = s;
3958 ++i;
3959 /* A wrapping section potentially clashes with header. */
3960 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3961 wrap_to = (s->lma + s->size) & addr_mask;
3962 }
3963 }
3964 BFD_ASSERT (i <= bfd_count_sections (abfd));
3965 count = i;
3966
3967 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3968
3969 /* Build the mapping. */
3970
3971 mfirst = NULL;
3972 pm = &mfirst;
3973
3974 /* If we have a .interp section, then create a PT_PHDR segment for
3975 the program headers and a PT_INTERP segment for the .interp
3976 section. */
3977 s = bfd_get_section_by_name (abfd, ".interp");
3978 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3979 {
3980 amt = sizeof (struct elf_segment_map);
3981 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3982 if (m == NULL)
3983 goto error_return;
3984 m->next = NULL;
3985 m->p_type = PT_PHDR;
3986 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3987 m->p_flags = PF_R | PF_X;
3988 m->p_flags_valid = 1;
3989 m->includes_phdrs = 1;
3990
3991 *pm = m;
3992 pm = &m->next;
3993
3994 amt = sizeof (struct elf_segment_map);
3995 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3996 if (m == NULL)
3997 goto error_return;
3998 m->next = NULL;
3999 m->p_type = PT_INTERP;
4000 m->count = 1;
4001 m->sections[0] = s;
4002
4003 *pm = m;
4004 pm = &m->next;
4005 }
4006
4007 /* Look through the sections. We put sections in the same program
4008 segment when the start of the second section can be placed within
4009 a few bytes of the end of the first section. */
4010 last_hdr = NULL;
4011 last_size = 0;
4012 phdr_index = 0;
4013 maxpagesize = bed->maxpagesize;
4014 /* PR 17512: file: c8455299.
4015 Avoid divide-by-zero errors later on.
4016 FIXME: Should we abort if the maxpagesize is zero ? */
4017 if (maxpagesize == 0)
4018 maxpagesize = 1;
4019 writable = FALSE;
4020 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4021 if (dynsec != NULL
4022 && (dynsec->flags & SEC_LOAD) == 0)
4023 dynsec = NULL;
4024
4025 /* Deal with -Ttext or something similar such that the first section
4026 is not adjacent to the program headers. This is an
4027 approximation, since at this point we don't know exactly how many
4028 program headers we will need. */
4029 if (count > 0)
4030 {
4031 bfd_size_type phdr_size = elf_program_header_size (abfd);
4032
4033 if (phdr_size == (bfd_size_type) -1)
4034 phdr_size = get_program_header_size (abfd, info);
4035 phdr_size += bed->s->sizeof_ehdr;
4036 if ((abfd->flags & D_PAGED) == 0
4037 || (sections[0]->lma & addr_mask) < phdr_size
4038 || ((sections[0]->lma & addr_mask) % maxpagesize
4039 < phdr_size % maxpagesize)
4040 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4041 phdr_in_segment = FALSE;
4042 }
4043
4044 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4045 {
4046 asection *hdr;
4047 bfd_boolean new_segment;
4048
4049 hdr = *hdrpp;
4050
4051 /* See if this section and the last one will fit in the same
4052 segment. */
4053
4054 if (last_hdr == NULL)
4055 {
4056 /* If we don't have a segment yet, then we don't need a new
4057 one (we build the last one after this loop). */
4058 new_segment = FALSE;
4059 }
4060 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4061 {
4062 /* If this section has a different relation between the
4063 virtual address and the load address, then we need a new
4064 segment. */
4065 new_segment = TRUE;
4066 }
4067 else if (hdr->lma < last_hdr->lma + last_size
4068 || last_hdr->lma + last_size < last_hdr->lma)
4069 {
4070 /* If this section has a load address that makes it overlap
4071 the previous section, then we need a new segment. */
4072 new_segment = TRUE;
4073 }
4074 /* In the next test we have to be careful when last_hdr->lma is close
4075 to the end of the address space. If the aligned address wraps
4076 around to the start of the address space, then there are no more
4077 pages left in memory and it is OK to assume that the current
4078 section can be included in the current segment. */
4079 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4080 > last_hdr->lma)
4081 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4082 <= hdr->lma))
4083 {
4084 /* If putting this section in this segment would force us to
4085 skip a page in the segment, then we need a new segment. */
4086 new_segment = TRUE;
4087 }
4088 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4089 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4090 {
4091 /* We don't want to put a loadable section after a
4092 nonloadable section in the same segment.
4093 Consider .tbss sections as loadable for this purpose. */
4094 new_segment = TRUE;
4095 }
4096 else if ((abfd->flags & D_PAGED) == 0)
4097 {
4098 /* If the file is not demand paged, which means that we
4099 don't require the sections to be correctly aligned in the
4100 file, then there is no other reason for a new segment. */
4101 new_segment = FALSE;
4102 }
4103 else if (! writable
4104 && (hdr->flags & SEC_READONLY) == 0
4105 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4106 != (hdr->lma & -maxpagesize)))
4107 {
4108 /* We don't want to put a writable section in a read only
4109 segment, unless they are on the same page in memory
4110 anyhow. We already know that the last section does not
4111 bring us past the current section on the page, so the
4112 only case in which the new section is not on the same
4113 page as the previous section is when the previous section
4114 ends precisely on a page boundary. */
4115 new_segment = TRUE;
4116 }
4117 else
4118 {
4119 /* Otherwise, we can use the same segment. */
4120 new_segment = FALSE;
4121 }
4122
4123 /* Allow interested parties a chance to override our decision. */
4124 if (last_hdr != NULL
4125 && info != NULL
4126 && info->callbacks->override_segment_assignment != NULL)
4127 new_segment
4128 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4129 last_hdr,
4130 new_segment);
4131
4132 if (! new_segment)
4133 {
4134 if ((hdr->flags & SEC_READONLY) == 0)
4135 writable = TRUE;
4136 last_hdr = hdr;
4137 /* .tbss sections effectively have zero size. */
4138 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4139 != SEC_THREAD_LOCAL)
4140 last_size = hdr->size;
4141 else
4142 last_size = 0;
4143 continue;
4144 }
4145
4146 /* We need a new program segment. We must create a new program
4147 header holding all the sections from phdr_index until hdr. */
4148
4149 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4150 if (m == NULL)
4151 goto error_return;
4152
4153 *pm = m;
4154 pm = &m->next;
4155
4156 if ((hdr->flags & SEC_READONLY) == 0)
4157 writable = TRUE;
4158 else
4159 writable = FALSE;
4160
4161 last_hdr = hdr;
4162 /* .tbss sections effectively have zero size. */
4163 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4164 last_size = hdr->size;
4165 else
4166 last_size = 0;
4167 phdr_index = i;
4168 phdr_in_segment = FALSE;
4169 }
4170
4171 /* Create a final PT_LOAD program segment, but not if it's just
4172 for .tbss. */
4173 if (last_hdr != NULL
4174 && (i - phdr_index != 1
4175 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4176 != SEC_THREAD_LOCAL)))
4177 {
4178 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4179 if (m == NULL)
4180 goto error_return;
4181
4182 *pm = m;
4183 pm = &m->next;
4184 }
4185
4186 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4187 if (dynsec != NULL)
4188 {
4189 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4190 if (m == NULL)
4191 goto error_return;
4192 *pm = m;
4193 pm = &m->next;
4194 }
4195
4196 /* For each batch of consecutive loadable .note sections,
4197 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4198 because if we link together nonloadable .note sections and
4199 loadable .note sections, we will generate two .note sections
4200 in the output file. FIXME: Using names for section types is
4201 bogus anyhow. */
4202 for (s = abfd->sections; s != NULL; s = s->next)
4203 {
4204 if ((s->flags & SEC_LOAD) != 0
4205 && CONST_STRNEQ (s->name, ".note"))
4206 {
4207 asection *s2;
4208
4209 count = 1;
4210 amt = sizeof (struct elf_segment_map);
4211 if (s->alignment_power == 2)
4212 for (s2 = s; s2->next != NULL; s2 = s2->next)
4213 {
4214 if (s2->next->alignment_power == 2
4215 && (s2->next->flags & SEC_LOAD) != 0
4216 && CONST_STRNEQ (s2->next->name, ".note")
4217 && align_power (s2->lma + s2->size, 2)
4218 == s2->next->lma)
4219 count++;
4220 else
4221 break;
4222 }
4223 amt += (count - 1) * sizeof (asection *);
4224 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4225 if (m == NULL)
4226 goto error_return;
4227 m->next = NULL;
4228 m->p_type = PT_NOTE;
4229 m->count = count;
4230 while (count > 1)
4231 {
4232 m->sections[m->count - count--] = s;
4233 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4234 s = s->next;
4235 }
4236 m->sections[m->count - 1] = s;
4237 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4238 *pm = m;
4239 pm = &m->next;
4240 }
4241 if (s->flags & SEC_THREAD_LOCAL)
4242 {
4243 if (! tls_count)
4244 first_tls = s;
4245 tls_count++;
4246 }
4247 }
4248
4249 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4250 if (tls_count > 0)
4251 {
4252 amt = sizeof (struct elf_segment_map);
4253 amt += (tls_count - 1) * sizeof (asection *);
4254 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4255 if (m == NULL)
4256 goto error_return;
4257 m->next = NULL;
4258 m->p_type = PT_TLS;
4259 m->count = tls_count;
4260 /* Mandated PF_R. */
4261 m->p_flags = PF_R;
4262 m->p_flags_valid = 1;
4263 s = first_tls;
4264 for (i = 0; i < (unsigned int) tls_count; ++i)
4265 {
4266 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4267 {
4268 _bfd_error_handler
4269 (_("%B: TLS sections are not adjacent:"), abfd);
4270 s = first_tls;
4271 i = 0;
4272 while (i < (unsigned int) tls_count)
4273 {
4274 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4275 {
4276 _bfd_error_handler (_(" TLS: %A"), s);
4277 i++;
4278 }
4279 else
4280 _bfd_error_handler (_(" non-TLS: %A"), s);
4281 s = s->next;
4282 }
4283 bfd_set_error (bfd_error_bad_value);
4284 goto error_return;
4285 }
4286 m->sections[i] = s;
4287 s = s->next;
4288 }
4289
4290 *pm = m;
4291 pm = &m->next;
4292 }
4293
4294 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4295 segment. */
4296 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4297 if (eh_frame_hdr != NULL
4298 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4299 {
4300 amt = sizeof (struct elf_segment_map);
4301 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4302 if (m == NULL)
4303 goto error_return;
4304 m->next = NULL;
4305 m->p_type = PT_GNU_EH_FRAME;
4306 m->count = 1;
4307 m->sections[0] = eh_frame_hdr->output_section;
4308
4309 *pm = m;
4310 pm = &m->next;
4311 }
4312
4313 if (elf_stack_flags (abfd))
4314 {
4315 amt = sizeof (struct elf_segment_map);
4316 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4317 if (m == NULL)
4318 goto error_return;
4319 m->next = NULL;
4320 m->p_type = PT_GNU_STACK;
4321 m->p_flags = elf_stack_flags (abfd);
4322 m->p_align = bed->stack_align;
4323 m->p_flags_valid = 1;
4324 m->p_align_valid = m->p_align != 0;
4325 if (info->stacksize > 0)
4326 {
4327 m->p_size = info->stacksize;
4328 m->p_size_valid = 1;
4329 }
4330
4331 *pm = m;
4332 pm = &m->next;
4333 }
4334
4335 if (info != NULL && info->relro)
4336 {
4337 for (m = mfirst; m != NULL; m = m->next)
4338 {
4339 if (m->p_type == PT_LOAD
4340 && m->count != 0
4341 && m->sections[0]->vma >= info->relro_start
4342 && m->sections[0]->vma < info->relro_end)
4343 {
4344 i = m->count;
4345 while (--i != (unsigned) -1)
4346 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4347 == (SEC_LOAD | SEC_HAS_CONTENTS))
4348 break;
4349
4350 if (i != (unsigned) -1)
4351 break;
4352 }
4353 }
4354
4355 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4356 if (m != NULL)
4357 {
4358 amt = sizeof (struct elf_segment_map);
4359 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4360 if (m == NULL)
4361 goto error_return;
4362 m->next = NULL;
4363 m->p_type = PT_GNU_RELRO;
4364 m->p_flags = PF_R;
4365 m->p_flags_valid = 1;
4366
4367 *pm = m;
4368 pm = &m->next;
4369 }
4370 }
4371
4372 free (sections);
4373 elf_seg_map (abfd) = mfirst;
4374 }
4375
4376 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4377 return FALSE;
4378
4379 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4380 ++count;
4381 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4382
4383 return TRUE;
4384
4385 error_return:
4386 if (sections != NULL)
4387 free (sections);
4388 return FALSE;
4389 }
4390
4391 /* Sort sections by address. */
4392
4393 static int
4394 elf_sort_sections (const void *arg1, const void *arg2)
4395 {
4396 const asection *sec1 = *(const asection **) arg1;
4397 const asection *sec2 = *(const asection **) arg2;
4398 bfd_size_type size1, size2;
4399
4400 /* Sort by LMA first, since this is the address used to
4401 place the section into a segment. */
4402 if (sec1->lma < sec2->lma)
4403 return -1;
4404 else if (sec1->lma > sec2->lma)
4405 return 1;
4406
4407 /* Then sort by VMA. Normally the LMA and the VMA will be
4408 the same, and this will do nothing. */
4409 if (sec1->vma < sec2->vma)
4410 return -1;
4411 else if (sec1->vma > sec2->vma)
4412 return 1;
4413
4414 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4415
4416 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4417
4418 if (TOEND (sec1))
4419 {
4420 if (TOEND (sec2))
4421 {
4422 /* If the indicies are the same, do not return 0
4423 here, but continue to try the next comparison. */
4424 if (sec1->target_index - sec2->target_index != 0)
4425 return sec1->target_index - sec2->target_index;
4426 }
4427 else
4428 return 1;
4429 }
4430 else if (TOEND (sec2))
4431 return -1;
4432
4433 #undef TOEND
4434
4435 /* Sort by size, to put zero sized sections
4436 before others at the same address. */
4437
4438 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4439 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4440
4441 if (size1 < size2)
4442 return -1;
4443 if (size1 > size2)
4444 return 1;
4445
4446 return sec1->target_index - sec2->target_index;
4447 }
4448
4449 /* Ian Lance Taylor writes:
4450
4451 We shouldn't be using % with a negative signed number. That's just
4452 not good. We have to make sure either that the number is not
4453 negative, or that the number has an unsigned type. When the types
4454 are all the same size they wind up as unsigned. When file_ptr is a
4455 larger signed type, the arithmetic winds up as signed long long,
4456 which is wrong.
4457
4458 What we're trying to say here is something like ``increase OFF by
4459 the least amount that will cause it to be equal to the VMA modulo
4460 the page size.'' */
4461 /* In other words, something like:
4462
4463 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4464 off_offset = off % bed->maxpagesize;
4465 if (vma_offset < off_offset)
4466 adjustment = vma_offset + bed->maxpagesize - off_offset;
4467 else
4468 adjustment = vma_offset - off_offset;
4469
4470 which can can be collapsed into the expression below. */
4471
4472 static file_ptr
4473 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4474 {
4475 /* PR binutils/16199: Handle an alignment of zero. */
4476 if (maxpagesize == 0)
4477 maxpagesize = 1;
4478 return ((vma - off) % maxpagesize);
4479 }
4480
4481 static void
4482 print_segment_map (const struct elf_segment_map *m)
4483 {
4484 unsigned int j;
4485 const char *pt = get_segment_type (m->p_type);
4486 char buf[32];
4487
4488 if (pt == NULL)
4489 {
4490 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4491 sprintf (buf, "LOPROC+%7.7x",
4492 (unsigned int) (m->p_type - PT_LOPROC));
4493 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4494 sprintf (buf, "LOOS+%7.7x",
4495 (unsigned int) (m->p_type - PT_LOOS));
4496 else
4497 snprintf (buf, sizeof (buf), "%8.8x",
4498 (unsigned int) m->p_type);
4499 pt = buf;
4500 }
4501 fflush (stdout);
4502 fprintf (stderr, "%s:", pt);
4503 for (j = 0; j < m->count; j++)
4504 fprintf (stderr, " %s", m->sections [j]->name);
4505 putc ('\n',stderr);
4506 fflush (stderr);
4507 }
4508
4509 static bfd_boolean
4510 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4511 {
4512 void *buf;
4513 bfd_boolean ret;
4514
4515 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4516 return FALSE;
4517 buf = bfd_zmalloc (len);
4518 if (buf == NULL)
4519 return FALSE;
4520 ret = bfd_bwrite (buf, len, abfd) == len;
4521 free (buf);
4522 return ret;
4523 }
4524
4525 /* Assign file positions to the sections based on the mapping from
4526 sections to segments. This function also sets up some fields in
4527 the file header. */
4528
4529 static bfd_boolean
4530 assign_file_positions_for_load_sections (bfd *abfd,
4531 struct bfd_link_info *link_info)
4532 {
4533 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4534 struct elf_segment_map *m;
4535 Elf_Internal_Phdr *phdrs;
4536 Elf_Internal_Phdr *p;
4537 file_ptr off;
4538 bfd_size_type maxpagesize;
4539 unsigned int alloc;
4540 unsigned int i, j;
4541 bfd_vma header_pad = 0;
4542
4543 if (link_info == NULL
4544 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4545 return FALSE;
4546
4547 alloc = 0;
4548 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4549 {
4550 ++alloc;
4551 if (m->header_size)
4552 header_pad = m->header_size;
4553 }
4554
4555 if (alloc)
4556 {
4557 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4558 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4559 }
4560 else
4561 {
4562 /* PR binutils/12467. */
4563 elf_elfheader (abfd)->e_phoff = 0;
4564 elf_elfheader (abfd)->e_phentsize = 0;
4565 }
4566
4567 elf_elfheader (abfd)->e_phnum = alloc;
4568
4569 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4570 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4571 else
4572 BFD_ASSERT (elf_program_header_size (abfd)
4573 >= alloc * bed->s->sizeof_phdr);
4574
4575 if (alloc == 0)
4576 {
4577 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4578 return TRUE;
4579 }
4580
4581 /* We're writing the size in elf_program_header_size (abfd),
4582 see assign_file_positions_except_relocs, so make sure we have
4583 that amount allocated, with trailing space cleared.
4584 The variable alloc contains the computed need, while
4585 elf_program_header_size (abfd) contains the size used for the
4586 layout.
4587 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4588 where the layout is forced to according to a larger size in the
4589 last iterations for the testcase ld-elf/header. */
4590 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4591 == 0);
4592 phdrs = (Elf_Internal_Phdr *)
4593 bfd_zalloc2 (abfd,
4594 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4595 sizeof (Elf_Internal_Phdr));
4596 elf_tdata (abfd)->phdr = phdrs;
4597 if (phdrs == NULL)
4598 return FALSE;
4599
4600 maxpagesize = 1;
4601 if ((abfd->flags & D_PAGED) != 0)
4602 maxpagesize = bed->maxpagesize;
4603
4604 off = bed->s->sizeof_ehdr;
4605 off += alloc * bed->s->sizeof_phdr;
4606 if (header_pad < (bfd_vma) off)
4607 header_pad = 0;
4608 else
4609 header_pad -= off;
4610 off += header_pad;
4611
4612 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4613 m != NULL;
4614 m = m->next, p++, j++)
4615 {
4616 asection **secpp;
4617 bfd_vma off_adjust;
4618 bfd_boolean no_contents;
4619
4620 /* If elf_segment_map is not from map_sections_to_segments, the
4621 sections may not be correctly ordered. NOTE: sorting should
4622 not be done to the PT_NOTE section of a corefile, which may
4623 contain several pseudo-sections artificially created by bfd.
4624 Sorting these pseudo-sections breaks things badly. */
4625 if (m->count > 1
4626 && !(elf_elfheader (abfd)->e_type == ET_CORE
4627 && m->p_type == PT_NOTE))
4628 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4629 elf_sort_sections);
4630
4631 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4632 number of sections with contents contributing to both p_filesz
4633 and p_memsz, followed by a number of sections with no contents
4634 that just contribute to p_memsz. In this loop, OFF tracks next
4635 available file offset for PT_LOAD and PT_NOTE segments. */
4636 p->p_type = m->p_type;
4637 p->p_flags = m->p_flags;
4638
4639 if (m->count == 0)
4640 p->p_vaddr = 0;
4641 else
4642 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4643
4644 if (m->p_paddr_valid)
4645 p->p_paddr = m->p_paddr;
4646 else if (m->count == 0)
4647 p->p_paddr = 0;
4648 else
4649 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4650
4651 if (p->p_type == PT_LOAD
4652 && (abfd->flags & D_PAGED) != 0)
4653 {
4654 /* p_align in demand paged PT_LOAD segments effectively stores
4655 the maximum page size. When copying an executable with
4656 objcopy, we set m->p_align from the input file. Use this
4657 value for maxpagesize rather than bed->maxpagesize, which
4658 may be different. Note that we use maxpagesize for PT_TLS
4659 segment alignment later in this function, so we are relying
4660 on at least one PT_LOAD segment appearing before a PT_TLS
4661 segment. */
4662 if (m->p_align_valid)
4663 maxpagesize = m->p_align;
4664
4665 p->p_align = maxpagesize;
4666 }
4667 else if (m->p_align_valid)
4668 p->p_align = m->p_align;
4669 else if (m->count == 0)
4670 p->p_align = 1 << bed->s->log_file_align;
4671 else
4672 p->p_align = 0;
4673
4674 no_contents = FALSE;
4675 off_adjust = 0;
4676 if (p->p_type == PT_LOAD
4677 && m->count > 0)
4678 {
4679 bfd_size_type align;
4680 unsigned int align_power = 0;
4681
4682 if (m->p_align_valid)
4683 align = p->p_align;
4684 else
4685 {
4686 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4687 {
4688 unsigned int secalign;
4689
4690 secalign = bfd_get_section_alignment (abfd, *secpp);
4691 if (secalign > align_power)
4692 align_power = secalign;
4693 }
4694 align = (bfd_size_type) 1 << align_power;
4695 if (align < maxpagesize)
4696 align = maxpagesize;
4697 }
4698
4699 for (i = 0; i < m->count; i++)
4700 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4701 /* If we aren't making room for this section, then
4702 it must be SHT_NOBITS regardless of what we've
4703 set via struct bfd_elf_special_section. */
4704 elf_section_type (m->sections[i]) = SHT_NOBITS;
4705
4706 /* Find out whether this segment contains any loadable
4707 sections. */
4708 no_contents = TRUE;
4709 for (i = 0; i < m->count; i++)
4710 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4711 {
4712 no_contents = FALSE;
4713 break;
4714 }
4715
4716 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4717 off += off_adjust;
4718 if (no_contents)
4719 {
4720 /* We shouldn't need to align the segment on disk since
4721 the segment doesn't need file space, but the gABI
4722 arguably requires the alignment and glibc ld.so
4723 checks it. So to comply with the alignment
4724 requirement but not waste file space, we adjust
4725 p_offset for just this segment. (OFF_ADJUST is
4726 subtracted from OFF later.) This may put p_offset
4727 past the end of file, but that shouldn't matter. */
4728 }
4729 else
4730 off_adjust = 0;
4731 }
4732 /* Make sure the .dynamic section is the first section in the
4733 PT_DYNAMIC segment. */
4734 else if (p->p_type == PT_DYNAMIC
4735 && m->count > 1
4736 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4737 {
4738 _bfd_error_handler
4739 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4740 abfd);
4741 bfd_set_error (bfd_error_bad_value);
4742 return FALSE;
4743 }
4744 /* Set the note section type to SHT_NOTE. */
4745 else if (p->p_type == PT_NOTE)
4746 for (i = 0; i < m->count; i++)
4747 elf_section_type (m->sections[i]) = SHT_NOTE;
4748
4749 p->p_offset = 0;
4750 p->p_filesz = 0;
4751 p->p_memsz = 0;
4752
4753 if (m->includes_filehdr)
4754 {
4755 if (!m->p_flags_valid)
4756 p->p_flags |= PF_R;
4757 p->p_filesz = bed->s->sizeof_ehdr;
4758 p->p_memsz = bed->s->sizeof_ehdr;
4759 if (m->count > 0)
4760 {
4761 if (p->p_vaddr < (bfd_vma) off)
4762 {
4763 (*_bfd_error_handler)
4764 (_("%B: Not enough room for program headers, try linking with -N"),
4765 abfd);
4766 bfd_set_error (bfd_error_bad_value);
4767 return FALSE;
4768 }
4769
4770 p->p_vaddr -= off;
4771 if (!m->p_paddr_valid)
4772 p->p_paddr -= off;
4773 }
4774 }
4775
4776 if (m->includes_phdrs)
4777 {
4778 if (!m->p_flags_valid)
4779 p->p_flags |= PF_R;
4780
4781 if (!m->includes_filehdr)
4782 {
4783 p->p_offset = bed->s->sizeof_ehdr;
4784
4785 if (m->count > 0)
4786 {
4787 p->p_vaddr -= off - p->p_offset;
4788 if (!m->p_paddr_valid)
4789 p->p_paddr -= off - p->p_offset;
4790 }
4791 }
4792
4793 p->p_filesz += alloc * bed->s->sizeof_phdr;
4794 p->p_memsz += alloc * bed->s->sizeof_phdr;
4795 if (m->count)
4796 {
4797 p->p_filesz += header_pad;
4798 p->p_memsz += header_pad;
4799 }
4800 }
4801
4802 if (p->p_type == PT_LOAD
4803 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4804 {
4805 if (!m->includes_filehdr && !m->includes_phdrs)
4806 p->p_offset = off;
4807 else
4808 {
4809 file_ptr adjust;
4810
4811 adjust = off - (p->p_offset + p->p_filesz);
4812 if (!no_contents)
4813 p->p_filesz += adjust;
4814 p->p_memsz += adjust;
4815 }
4816 }
4817
4818 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4819 maps. Set filepos for sections in PT_LOAD segments, and in
4820 core files, for sections in PT_NOTE segments.
4821 assign_file_positions_for_non_load_sections will set filepos
4822 for other sections and update p_filesz for other segments. */
4823 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4824 {
4825 asection *sec;
4826 bfd_size_type align;
4827 Elf_Internal_Shdr *this_hdr;
4828
4829 sec = *secpp;
4830 this_hdr = &elf_section_data (sec)->this_hdr;
4831 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4832
4833 if ((p->p_type == PT_LOAD
4834 || p->p_type == PT_TLS)
4835 && (this_hdr->sh_type != SHT_NOBITS
4836 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4837 && ((this_hdr->sh_flags & SHF_TLS) == 0
4838 || p->p_type == PT_TLS))))
4839 {
4840 bfd_vma p_start = p->p_paddr;
4841 bfd_vma p_end = p_start + p->p_memsz;
4842 bfd_vma s_start = sec->lma;
4843 bfd_vma adjust = s_start - p_end;
4844
4845 if (adjust != 0
4846 && (s_start < p_end
4847 || p_end < p_start))
4848 {
4849 (*_bfd_error_handler)
4850 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4851 (unsigned long) s_start, (unsigned long) p_end);
4852 adjust = 0;
4853 sec->lma = p_end;
4854 }
4855 p->p_memsz += adjust;
4856
4857 if (this_hdr->sh_type != SHT_NOBITS)
4858 {
4859 if (p->p_filesz + adjust < p->p_memsz)
4860 {
4861 /* We have a PROGBITS section following NOBITS ones.
4862 Allocate file space for the NOBITS section(s) and
4863 zero it. */
4864 adjust = p->p_memsz - p->p_filesz;
4865 if (!write_zeros (abfd, off, adjust))
4866 return FALSE;
4867 }
4868 off += adjust;
4869 p->p_filesz += adjust;
4870 }
4871 }
4872
4873 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4874 {
4875 /* The section at i == 0 is the one that actually contains
4876 everything. */
4877 if (i == 0)
4878 {
4879 this_hdr->sh_offset = sec->filepos = off;
4880 off += this_hdr->sh_size;
4881 p->p_filesz = this_hdr->sh_size;
4882 p->p_memsz = 0;
4883 p->p_align = 1;
4884 }
4885 else
4886 {
4887 /* The rest are fake sections that shouldn't be written. */
4888 sec->filepos = 0;
4889 sec->size = 0;
4890 sec->flags = 0;
4891 continue;
4892 }
4893 }
4894 else
4895 {
4896 if (p->p_type == PT_LOAD)
4897 {
4898 this_hdr->sh_offset = sec->filepos = off;
4899 if (this_hdr->sh_type != SHT_NOBITS)
4900 off += this_hdr->sh_size;
4901 }
4902 else if (this_hdr->sh_type == SHT_NOBITS
4903 && (this_hdr->sh_flags & SHF_TLS) != 0
4904 && this_hdr->sh_offset == 0)
4905 {
4906 /* This is a .tbss section that didn't get a PT_LOAD.
4907 (See _bfd_elf_map_sections_to_segments "Create a
4908 final PT_LOAD".) Set sh_offset to the value it
4909 would have if we had created a zero p_filesz and
4910 p_memsz PT_LOAD header for the section. This
4911 also makes the PT_TLS header have the same
4912 p_offset value. */
4913 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4914 off, align);
4915 this_hdr->sh_offset = sec->filepos = off + adjust;
4916 }
4917
4918 if (this_hdr->sh_type != SHT_NOBITS)
4919 {
4920 p->p_filesz += this_hdr->sh_size;
4921 /* A load section without SHF_ALLOC is something like
4922 a note section in a PT_NOTE segment. These take
4923 file space but are not loaded into memory. */
4924 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4925 p->p_memsz += this_hdr->sh_size;
4926 }
4927 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4928 {
4929 if (p->p_type == PT_TLS)
4930 p->p_memsz += this_hdr->sh_size;
4931
4932 /* .tbss is special. It doesn't contribute to p_memsz of
4933 normal segments. */
4934 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4935 p->p_memsz += this_hdr->sh_size;
4936 }
4937
4938 if (align > p->p_align
4939 && !m->p_align_valid
4940 && (p->p_type != PT_LOAD
4941 || (abfd->flags & D_PAGED) == 0))
4942 p->p_align = align;
4943 }
4944
4945 if (!m->p_flags_valid)
4946 {
4947 p->p_flags |= PF_R;
4948 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4949 p->p_flags |= PF_X;
4950 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4951 p->p_flags |= PF_W;
4952 }
4953 }
4954
4955 off -= off_adjust;
4956
4957 /* Check that all sections are in a PT_LOAD segment.
4958 Don't check funky gdb generated core files. */
4959 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4960 {
4961 bfd_boolean check_vma = TRUE;
4962
4963 for (i = 1; i < m->count; i++)
4964 if (m->sections[i]->vma == m->sections[i - 1]->vma
4965 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4966 ->this_hdr), p) != 0
4967 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4968 ->this_hdr), p) != 0)
4969 {
4970 /* Looks like we have overlays packed into the segment. */
4971 check_vma = FALSE;
4972 break;
4973 }
4974
4975 for (i = 0; i < m->count; i++)
4976 {
4977 Elf_Internal_Shdr *this_hdr;
4978 asection *sec;
4979
4980 sec = m->sections[i];
4981 this_hdr = &(elf_section_data(sec)->this_hdr);
4982 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4983 && !ELF_TBSS_SPECIAL (this_hdr, p))
4984 {
4985 (*_bfd_error_handler)
4986 (_("%B: section `%A' can't be allocated in segment %d"),
4987 abfd, sec, j);
4988 print_segment_map (m);
4989 }
4990 }
4991 }
4992 }
4993
4994 elf_next_file_pos (abfd) = off;
4995 return TRUE;
4996 }
4997
4998 /* Assign file positions for the other sections. */
4999
5000 static bfd_boolean
5001 assign_file_positions_for_non_load_sections (bfd *abfd,
5002 struct bfd_link_info *link_info)
5003 {
5004 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5005 Elf_Internal_Shdr **i_shdrpp;
5006 Elf_Internal_Shdr **hdrpp;
5007 Elf_Internal_Phdr *phdrs;
5008 Elf_Internal_Phdr *p;
5009 struct elf_segment_map *m;
5010 struct elf_segment_map *hdrs_segment;
5011 bfd_vma filehdr_vaddr, filehdr_paddr;
5012 bfd_vma phdrs_vaddr, phdrs_paddr;
5013 file_ptr off;
5014 unsigned int num_sec;
5015 unsigned int i;
5016 unsigned int count;
5017
5018 i_shdrpp = elf_elfsections (abfd);
5019 num_sec = elf_numsections (abfd);
5020 off = elf_next_file_pos (abfd);
5021 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5022 {
5023 Elf_Internal_Shdr *hdr;
5024
5025 hdr = *hdrpp;
5026 if (hdr->bfd_section != NULL
5027 && (hdr->bfd_section->filepos != 0
5028 || (hdr->sh_type == SHT_NOBITS
5029 && hdr->contents == NULL)))
5030 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5031 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5032 {
5033 if (hdr->sh_size != 0)
5034 (*_bfd_error_handler)
5035 (_("%B: warning: allocated section `%s' not in segment"),
5036 abfd,
5037 (hdr->bfd_section == NULL
5038 ? "*unknown*"
5039 : hdr->bfd_section->name));
5040 /* We don't need to page align empty sections. */
5041 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5042 off += vma_page_aligned_bias (hdr->sh_addr, off,
5043 bed->maxpagesize);
5044 else
5045 off += vma_page_aligned_bias (hdr->sh_addr, off,
5046 hdr->sh_addralign);
5047 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5048 FALSE);
5049 }
5050 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5051 && hdr->bfd_section == NULL)
5052 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5053 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
5054 || hdr == i_shdrpp[elf_strtab_sec (abfd)])
5055 hdr->sh_offset = -1;
5056 else
5057 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5058 }
5059
5060 /* Now that we have set the section file positions, we can set up
5061 the file positions for the non PT_LOAD segments. */
5062 count = 0;
5063 filehdr_vaddr = 0;
5064 filehdr_paddr = 0;
5065 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5066 phdrs_paddr = 0;
5067 hdrs_segment = NULL;
5068 phdrs = elf_tdata (abfd)->phdr;
5069 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5070 {
5071 ++count;
5072 if (p->p_type != PT_LOAD)
5073 continue;
5074
5075 if (m->includes_filehdr)
5076 {
5077 filehdr_vaddr = p->p_vaddr;
5078 filehdr_paddr = p->p_paddr;
5079 }
5080 if (m->includes_phdrs)
5081 {
5082 phdrs_vaddr = p->p_vaddr;
5083 phdrs_paddr = p->p_paddr;
5084 if (m->includes_filehdr)
5085 {
5086 hdrs_segment = m;
5087 phdrs_vaddr += bed->s->sizeof_ehdr;
5088 phdrs_paddr += bed->s->sizeof_ehdr;
5089 }
5090 }
5091 }
5092
5093 if (hdrs_segment != NULL && link_info != NULL)
5094 {
5095 /* There is a segment that contains both the file headers and the
5096 program headers, so provide a symbol __ehdr_start pointing there.
5097 A program can use this to examine itself robustly. */
5098
5099 struct elf_link_hash_entry *hash
5100 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5101 FALSE, FALSE, TRUE);
5102 /* If the symbol was referenced and not defined, define it. */
5103 if (hash != NULL
5104 && (hash->root.type == bfd_link_hash_new
5105 || hash->root.type == bfd_link_hash_undefined
5106 || hash->root.type == bfd_link_hash_undefweak
5107 || hash->root.type == bfd_link_hash_common))
5108 {
5109 asection *s = NULL;
5110 if (hdrs_segment->count != 0)
5111 /* The segment contains sections, so use the first one. */
5112 s = hdrs_segment->sections[0];
5113 else
5114 /* Use the first (i.e. lowest-addressed) section in any segment. */
5115 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5116 if (m->count != 0)
5117 {
5118 s = m->sections[0];
5119 break;
5120 }
5121
5122 if (s != NULL)
5123 {
5124 hash->root.u.def.value = filehdr_vaddr - s->vma;
5125 hash->root.u.def.section = s;
5126 }
5127 else
5128 {
5129 hash->root.u.def.value = filehdr_vaddr;
5130 hash->root.u.def.section = bfd_abs_section_ptr;
5131 }
5132
5133 hash->root.type = bfd_link_hash_defined;
5134 hash->def_regular = 1;
5135 hash->non_elf = 0;
5136 }
5137 }
5138
5139 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5140 {
5141 if (p->p_type == PT_GNU_RELRO)
5142 {
5143 const Elf_Internal_Phdr *lp;
5144 struct elf_segment_map *lm;
5145
5146 if (link_info != NULL)
5147 {
5148 /* During linking the range of the RELRO segment is passed
5149 in link_info. */
5150 for (lm = elf_seg_map (abfd), lp = phdrs;
5151 lm != NULL;
5152 lm = lm->next, lp++)
5153 {
5154 if (lp->p_type == PT_LOAD
5155 && lp->p_vaddr < link_info->relro_end
5156 && lm->count != 0
5157 && lm->sections[0]->vma >= link_info->relro_start)
5158 break;
5159 }
5160
5161 BFD_ASSERT (lm != NULL);
5162 }
5163 else
5164 {
5165 /* Otherwise we are copying an executable or shared
5166 library, but we need to use the same linker logic. */
5167 for (lp = phdrs; lp < phdrs + count; ++lp)
5168 {
5169 if (lp->p_type == PT_LOAD
5170 && lp->p_paddr == p->p_paddr)
5171 break;
5172 }
5173 }
5174
5175 if (lp < phdrs + count)
5176 {
5177 p->p_vaddr = lp->p_vaddr;
5178 p->p_paddr = lp->p_paddr;
5179 p->p_offset = lp->p_offset;
5180 if (link_info != NULL)
5181 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5182 else if (m->p_size_valid)
5183 p->p_filesz = m->p_size;
5184 else
5185 abort ();
5186 p->p_memsz = p->p_filesz;
5187 /* Preserve the alignment and flags if they are valid. The
5188 gold linker generates RW/4 for the PT_GNU_RELRO section.
5189 It is better for objcopy/strip to honor these attributes
5190 otherwise gdb will choke when using separate debug files.
5191 */
5192 if (!m->p_align_valid)
5193 p->p_align = 1;
5194 if (!m->p_flags_valid)
5195 p->p_flags = (lp->p_flags & ~PF_W);
5196 }
5197 else
5198 {
5199 memset (p, 0, sizeof *p);
5200 p->p_type = PT_NULL;
5201 }
5202 }
5203 else if (p->p_type == PT_GNU_STACK)
5204 {
5205 if (m->p_size_valid)
5206 p->p_memsz = m->p_size;
5207 }
5208 else if (m->count != 0)
5209 {
5210 if (p->p_type != PT_LOAD
5211 && (p->p_type != PT_NOTE
5212 || bfd_get_format (abfd) != bfd_core))
5213 {
5214 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5215
5216 p->p_filesz = 0;
5217 p->p_offset = m->sections[0]->filepos;
5218 for (i = m->count; i-- != 0;)
5219 {
5220 asection *sect = m->sections[i];
5221 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5222 if (hdr->sh_type != SHT_NOBITS)
5223 {
5224 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5225 + hdr->sh_size);
5226 break;
5227 }
5228 }
5229 }
5230 }
5231 else if (m->includes_filehdr)
5232 {
5233 p->p_vaddr = filehdr_vaddr;
5234 if (! m->p_paddr_valid)
5235 p->p_paddr = filehdr_paddr;
5236 }
5237 else if (m->includes_phdrs)
5238 {
5239 p->p_vaddr = phdrs_vaddr;
5240 if (! m->p_paddr_valid)
5241 p->p_paddr = phdrs_paddr;
5242 }
5243 }
5244
5245 elf_next_file_pos (abfd) = off;
5246
5247 return TRUE;
5248 }
5249
5250 /* Work out the file positions of all the sections. This is called by
5251 _bfd_elf_compute_section_file_positions. All the section sizes and
5252 VMAs must be known before this is called.
5253
5254 Reloc sections come in two flavours: Those processed specially as
5255 "side-channel" data attached to a section to which they apply, and
5256 those that bfd doesn't process as relocations. The latter sort are
5257 stored in a normal bfd section by bfd_section_from_shdr. We don't
5258 consider the former sort here, unless they form part of the loadable
5259 image. Reloc sections not assigned here will be handled later by
5260 assign_file_positions_for_relocs.
5261
5262 We also don't set the positions of the .symtab and .strtab here. */
5263
5264 static bfd_boolean
5265 assign_file_positions_except_relocs (bfd *abfd,
5266 struct bfd_link_info *link_info)
5267 {
5268 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5269 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5270 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5271
5272 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5273 && bfd_get_format (abfd) != bfd_core)
5274 {
5275 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5276 unsigned int num_sec = elf_numsections (abfd);
5277 Elf_Internal_Shdr **hdrpp;
5278 unsigned int i;
5279 file_ptr off;
5280
5281 /* Start after the ELF header. */
5282 off = i_ehdrp->e_ehsize;
5283
5284 /* We are not creating an executable, which means that we are
5285 not creating a program header, and that the actual order of
5286 the sections in the file is unimportant. */
5287 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5288 {
5289 Elf_Internal_Shdr *hdr;
5290
5291 hdr = *hdrpp;
5292 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5293 && hdr->bfd_section == NULL)
5294 || i == elf_onesymtab (abfd)
5295 || i == elf_symtab_shndx (abfd)
5296 || i == elf_strtab_sec (abfd))
5297 {
5298 hdr->sh_offset = -1;
5299 }
5300 else
5301 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5302 }
5303
5304 elf_next_file_pos (abfd) = off;
5305 }
5306 else
5307 {
5308 unsigned int alloc;
5309
5310 /* Assign file positions for the loaded sections based on the
5311 assignment of sections to segments. */
5312 if (!assign_file_positions_for_load_sections (abfd, link_info))
5313 return FALSE;
5314
5315 /* And for non-load sections. */
5316 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5317 return FALSE;
5318
5319 if (bed->elf_backend_modify_program_headers != NULL)
5320 {
5321 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5322 return FALSE;
5323 }
5324
5325 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5326 if (link_info != NULL
5327 && link_info->executable
5328 && link_info->shared)
5329 {
5330 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5331 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5332 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5333
5334 /* Find the lowest p_vaddr in PT_LOAD segments. */
5335 bfd_vma p_vaddr = (bfd_vma) -1;
5336 for (; segment < end_segment; segment++)
5337 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5338 p_vaddr = segment->p_vaddr;
5339
5340 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5341 segments is non-zero. */
5342 if (p_vaddr)
5343 i_ehdrp->e_type = ET_EXEC;
5344 }
5345
5346 /* Write out the program headers. */
5347 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5348 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5349 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5350 return FALSE;
5351 }
5352
5353 return TRUE;
5354 }
5355
5356 static bfd_boolean
5357 prep_headers (bfd *abfd)
5358 {
5359 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5360 struct elf_strtab_hash *shstrtab;
5361 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5362
5363 i_ehdrp = elf_elfheader (abfd);
5364
5365 shstrtab = _bfd_elf_strtab_init ();
5366 if (shstrtab == NULL)
5367 return FALSE;
5368
5369 elf_shstrtab (abfd) = shstrtab;
5370
5371 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5372 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5373 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5374 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5375
5376 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5377 i_ehdrp->e_ident[EI_DATA] =
5378 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5379 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5380
5381 if ((abfd->flags & DYNAMIC) != 0)
5382 i_ehdrp->e_type = ET_DYN;
5383 else if ((abfd->flags & EXEC_P) != 0)
5384 i_ehdrp->e_type = ET_EXEC;
5385 else if (bfd_get_format (abfd) == bfd_core)
5386 i_ehdrp->e_type = ET_CORE;
5387 else
5388 i_ehdrp->e_type = ET_REL;
5389
5390 switch (bfd_get_arch (abfd))
5391 {
5392 case bfd_arch_unknown:
5393 i_ehdrp->e_machine = EM_NONE;
5394 break;
5395
5396 /* There used to be a long list of cases here, each one setting
5397 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5398 in the corresponding bfd definition. To avoid duplication,
5399 the switch was removed. Machines that need special handling
5400 can generally do it in elf_backend_final_write_processing(),
5401 unless they need the information earlier than the final write.
5402 Such need can generally be supplied by replacing the tests for
5403 e_machine with the conditions used to determine it. */
5404 default:
5405 i_ehdrp->e_machine = bed->elf_machine_code;
5406 }
5407
5408 i_ehdrp->e_version = bed->s->ev_current;
5409 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5410
5411 /* No program header, for now. */
5412 i_ehdrp->e_phoff = 0;
5413 i_ehdrp->e_phentsize = 0;
5414 i_ehdrp->e_phnum = 0;
5415
5416 /* Each bfd section is section header entry. */
5417 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5418 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5419
5420 /* If we're building an executable, we'll need a program header table. */
5421 if (abfd->flags & EXEC_P)
5422 /* It all happens later. */
5423 ;
5424 else
5425 {
5426 i_ehdrp->e_phentsize = 0;
5427 i_ehdrp->e_phoff = 0;
5428 }
5429
5430 elf_tdata (abfd)->symtab_hdr.sh_name =
5431 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5432 elf_tdata (abfd)->strtab_hdr.sh_name =
5433 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5434 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5435 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5436 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5437 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
5438 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5439 return FALSE;
5440
5441 return TRUE;
5442 }
5443
5444 /* Assign file positions for all the reloc sections which are not part
5445 of the loadable file image, and the file position of section headers. */
5446
5447 static void
5448 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5449 {
5450 file_ptr off;
5451 unsigned int i, num_sec;
5452 Elf_Internal_Shdr **shdrpp;
5453 Elf_Internal_Ehdr *i_ehdrp;
5454 const struct elf_backend_data *bed;
5455
5456 off = elf_next_file_pos (abfd);
5457
5458 num_sec = elf_numsections (abfd);
5459 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5460 {
5461 Elf_Internal_Shdr *shdrp;
5462
5463 shdrp = *shdrpp;
5464 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5465 && shdrp->sh_offset == -1)
5466 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5467 }
5468
5469 /* Place the section headers. */
5470 i_ehdrp = elf_elfheader (abfd);
5471 bed = get_elf_backend_data (abfd);
5472 off = align_file_position (off, 1 << bed->s->log_file_align);
5473 i_ehdrp->e_shoff = off;
5474 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5475 elf_next_file_pos (abfd) = off;
5476 }
5477
5478 bfd_boolean
5479 _bfd_elf_write_object_contents (bfd *abfd)
5480 {
5481 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5482 Elf_Internal_Shdr **i_shdrp;
5483 bfd_boolean failed;
5484 unsigned int count, num_sec;
5485 struct elf_obj_tdata *t;
5486
5487 if (! abfd->output_has_begun
5488 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5489 return FALSE;
5490
5491 i_shdrp = elf_elfsections (abfd);
5492
5493 failed = FALSE;
5494 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5495 if (failed)
5496 return FALSE;
5497
5498 _bfd_elf_assign_file_positions_for_relocs (abfd);
5499
5500 /* After writing the headers, we need to write the sections too... */
5501 num_sec = elf_numsections (abfd);
5502 for (count = 1; count < num_sec; count++)
5503 {
5504 if (bed->elf_backend_section_processing)
5505 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5506 if (i_shdrp[count]->contents)
5507 {
5508 bfd_size_type amt = i_shdrp[count]->sh_size;
5509
5510 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5511 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5512 return FALSE;
5513 }
5514 }
5515
5516 /* Write out the section header names. */
5517 t = elf_tdata (abfd);
5518 if (elf_shstrtab (abfd) != NULL
5519 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5520 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5521 return FALSE;
5522
5523 if (bed->elf_backend_final_write_processing)
5524 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5525
5526 if (!bed->s->write_shdrs_and_ehdr (abfd))
5527 return FALSE;
5528
5529 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5530 if (t->o->build_id.after_write_object_contents != NULL)
5531 return (*t->o->build_id.after_write_object_contents) (abfd);
5532
5533 return TRUE;
5534 }
5535
5536 bfd_boolean
5537 _bfd_elf_write_corefile_contents (bfd *abfd)
5538 {
5539 /* Hopefully this can be done just like an object file. */
5540 return _bfd_elf_write_object_contents (abfd);
5541 }
5542
5543 /* Given a section, search the header to find them. */
5544
5545 unsigned int
5546 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5547 {
5548 const struct elf_backend_data *bed;
5549 unsigned int sec_index;
5550
5551 if (elf_section_data (asect) != NULL
5552 && elf_section_data (asect)->this_idx != 0)
5553 return elf_section_data (asect)->this_idx;
5554
5555 if (bfd_is_abs_section (asect))
5556 sec_index = SHN_ABS;
5557 else if (bfd_is_com_section (asect))
5558 sec_index = SHN_COMMON;
5559 else if (bfd_is_und_section (asect))
5560 sec_index = SHN_UNDEF;
5561 else
5562 sec_index = SHN_BAD;
5563
5564 bed = get_elf_backend_data (abfd);
5565 if (bed->elf_backend_section_from_bfd_section)
5566 {
5567 int retval = sec_index;
5568
5569 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5570 return retval;
5571 }
5572
5573 if (sec_index == SHN_BAD)
5574 bfd_set_error (bfd_error_nonrepresentable_section);
5575
5576 return sec_index;
5577 }
5578
5579 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5580 on error. */
5581
5582 int
5583 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5584 {
5585 asymbol *asym_ptr = *asym_ptr_ptr;
5586 int idx;
5587 flagword flags = asym_ptr->flags;
5588
5589 /* When gas creates relocations against local labels, it creates its
5590 own symbol for the section, but does put the symbol into the
5591 symbol chain, so udata is 0. When the linker is generating
5592 relocatable output, this section symbol may be for one of the
5593 input sections rather than the output section. */
5594 if (asym_ptr->udata.i == 0
5595 && (flags & BSF_SECTION_SYM)
5596 && asym_ptr->section)
5597 {
5598 asection *sec;
5599 int indx;
5600
5601 sec = asym_ptr->section;
5602 if (sec->owner != abfd && sec->output_section != NULL)
5603 sec = sec->output_section;
5604 if (sec->owner == abfd
5605 && (indx = sec->index) < elf_num_section_syms (abfd)
5606 && elf_section_syms (abfd)[indx] != NULL)
5607 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5608 }
5609
5610 idx = asym_ptr->udata.i;
5611
5612 if (idx == 0)
5613 {
5614 /* This case can occur when using --strip-symbol on a symbol
5615 which is used in a relocation entry. */
5616 (*_bfd_error_handler)
5617 (_("%B: symbol `%s' required but not present"),
5618 abfd, bfd_asymbol_name (asym_ptr));
5619 bfd_set_error (bfd_error_no_symbols);
5620 return -1;
5621 }
5622
5623 #if DEBUG & 4
5624 {
5625 fprintf (stderr,
5626 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5627 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5628 fflush (stderr);
5629 }
5630 #endif
5631
5632 return idx;
5633 }
5634
5635 /* Rewrite program header information. */
5636
5637 static bfd_boolean
5638 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5639 {
5640 Elf_Internal_Ehdr *iehdr;
5641 struct elf_segment_map *map;
5642 struct elf_segment_map *map_first;
5643 struct elf_segment_map **pointer_to_map;
5644 Elf_Internal_Phdr *segment;
5645 asection *section;
5646 unsigned int i;
5647 unsigned int num_segments;
5648 bfd_boolean phdr_included = FALSE;
5649 bfd_boolean p_paddr_valid;
5650 bfd_vma maxpagesize;
5651 struct elf_segment_map *phdr_adjust_seg = NULL;
5652 unsigned int phdr_adjust_num = 0;
5653 const struct elf_backend_data *bed;
5654
5655 bed = get_elf_backend_data (ibfd);
5656 iehdr = elf_elfheader (ibfd);
5657
5658 map_first = NULL;
5659 pointer_to_map = &map_first;
5660
5661 num_segments = elf_elfheader (ibfd)->e_phnum;
5662 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5663
5664 /* Returns the end address of the segment + 1. */
5665 #define SEGMENT_END(segment, start) \
5666 (start + (segment->p_memsz > segment->p_filesz \
5667 ? segment->p_memsz : segment->p_filesz))
5668
5669 #define SECTION_SIZE(section, segment) \
5670 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5671 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5672 ? section->size : 0)
5673
5674 /* Returns TRUE if the given section is contained within
5675 the given segment. VMA addresses are compared. */
5676 #define IS_CONTAINED_BY_VMA(section, segment) \
5677 (section->vma >= segment->p_vaddr \
5678 && (section->vma + SECTION_SIZE (section, segment) \
5679 <= (SEGMENT_END (segment, segment->p_vaddr))))
5680
5681 /* Returns TRUE if the given section is contained within
5682 the given segment. LMA addresses are compared. */
5683 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5684 (section->lma >= base \
5685 && (section->lma + SECTION_SIZE (section, segment) \
5686 <= SEGMENT_END (segment, base)))
5687
5688 /* Handle PT_NOTE segment. */
5689 #define IS_NOTE(p, s) \
5690 (p->p_type == PT_NOTE \
5691 && elf_section_type (s) == SHT_NOTE \
5692 && (bfd_vma) s->filepos >= p->p_offset \
5693 && ((bfd_vma) s->filepos + s->size \
5694 <= p->p_offset + p->p_filesz))
5695
5696 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5697 etc. */
5698 #define IS_COREFILE_NOTE(p, s) \
5699 (IS_NOTE (p, s) \
5700 && bfd_get_format (ibfd) == bfd_core \
5701 && s->vma == 0 \
5702 && s->lma == 0)
5703
5704 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5705 linker, which generates a PT_INTERP section with p_vaddr and
5706 p_memsz set to 0. */
5707 #define IS_SOLARIS_PT_INTERP(p, s) \
5708 (p->p_vaddr == 0 \
5709 && p->p_paddr == 0 \
5710 && p->p_memsz == 0 \
5711 && p->p_filesz > 0 \
5712 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5713 && s->size > 0 \
5714 && (bfd_vma) s->filepos >= p->p_offset \
5715 && ((bfd_vma) s->filepos + s->size \
5716 <= p->p_offset + p->p_filesz))
5717
5718 /* Decide if the given section should be included in the given segment.
5719 A section will be included if:
5720 1. It is within the address space of the segment -- we use the LMA
5721 if that is set for the segment and the VMA otherwise,
5722 2. It is an allocated section or a NOTE section in a PT_NOTE
5723 segment.
5724 3. There is an output section associated with it,
5725 4. The section has not already been allocated to a previous segment.
5726 5. PT_GNU_STACK segments do not include any sections.
5727 6. PT_TLS segment includes only SHF_TLS sections.
5728 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5729 8. PT_DYNAMIC should not contain empty sections at the beginning
5730 (with the possible exception of .dynamic). */
5731 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5732 ((((segment->p_paddr \
5733 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5734 : IS_CONTAINED_BY_VMA (section, segment)) \
5735 && (section->flags & SEC_ALLOC) != 0) \
5736 || IS_NOTE (segment, section)) \
5737 && segment->p_type != PT_GNU_STACK \
5738 && (segment->p_type != PT_TLS \
5739 || (section->flags & SEC_THREAD_LOCAL)) \
5740 && (segment->p_type == PT_LOAD \
5741 || segment->p_type == PT_TLS \
5742 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5743 && (segment->p_type != PT_DYNAMIC \
5744 || SECTION_SIZE (section, segment) > 0 \
5745 || (segment->p_paddr \
5746 ? segment->p_paddr != section->lma \
5747 : segment->p_vaddr != section->vma) \
5748 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5749 == 0)) \
5750 && !section->segment_mark)
5751
5752 /* If the output section of a section in the input segment is NULL,
5753 it is removed from the corresponding output segment. */
5754 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5755 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5756 && section->output_section != NULL)
5757
5758 /* Returns TRUE iff seg1 starts after the end of seg2. */
5759 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5760 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5761
5762 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5763 their VMA address ranges and their LMA address ranges overlap.
5764 It is possible to have overlapping VMA ranges without overlapping LMA
5765 ranges. RedBoot images for example can have both .data and .bss mapped
5766 to the same VMA range, but with the .data section mapped to a different
5767 LMA. */
5768 #define SEGMENT_OVERLAPS(seg1, seg2) \
5769 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5770 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5771 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5772 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5773
5774 /* Initialise the segment mark field. */
5775 for (section = ibfd->sections; section != NULL; section = section->next)
5776 section->segment_mark = FALSE;
5777
5778 /* The Solaris linker creates program headers in which all the
5779 p_paddr fields are zero. When we try to objcopy or strip such a
5780 file, we get confused. Check for this case, and if we find it
5781 don't set the p_paddr_valid fields. */
5782 p_paddr_valid = FALSE;
5783 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5784 i < num_segments;
5785 i++, segment++)
5786 if (segment->p_paddr != 0)
5787 {
5788 p_paddr_valid = TRUE;
5789 break;
5790 }
5791
5792 /* Scan through the segments specified in the program header
5793 of the input BFD. For this first scan we look for overlaps
5794 in the loadable segments. These can be created by weird
5795 parameters to objcopy. Also, fix some solaris weirdness. */
5796 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5797 i < num_segments;
5798 i++, segment++)
5799 {
5800 unsigned int j;
5801 Elf_Internal_Phdr *segment2;
5802
5803 if (segment->p_type == PT_INTERP)
5804 for (section = ibfd->sections; section; section = section->next)
5805 if (IS_SOLARIS_PT_INTERP (segment, section))
5806 {
5807 /* Mininal change so that the normal section to segment
5808 assignment code will work. */
5809 segment->p_vaddr = section->vma;
5810 break;
5811 }
5812
5813 if (segment->p_type != PT_LOAD)
5814 {
5815 /* Remove PT_GNU_RELRO segment. */
5816 if (segment->p_type == PT_GNU_RELRO)
5817 segment->p_type = PT_NULL;
5818 continue;
5819 }
5820
5821 /* Determine if this segment overlaps any previous segments. */
5822 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5823 {
5824 bfd_signed_vma extra_length;
5825
5826 if (segment2->p_type != PT_LOAD
5827 || !SEGMENT_OVERLAPS (segment, segment2))
5828 continue;
5829
5830 /* Merge the two segments together. */
5831 if (segment2->p_vaddr < segment->p_vaddr)
5832 {
5833 /* Extend SEGMENT2 to include SEGMENT and then delete
5834 SEGMENT. */
5835 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5836 - SEGMENT_END (segment2, segment2->p_vaddr));
5837
5838 if (extra_length > 0)
5839 {
5840 segment2->p_memsz += extra_length;
5841 segment2->p_filesz += extra_length;
5842 }
5843
5844 segment->p_type = PT_NULL;
5845
5846 /* Since we have deleted P we must restart the outer loop. */
5847 i = 0;
5848 segment = elf_tdata (ibfd)->phdr;
5849 break;
5850 }
5851 else
5852 {
5853 /* Extend SEGMENT to include SEGMENT2 and then delete
5854 SEGMENT2. */
5855 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5856 - SEGMENT_END (segment, segment->p_vaddr));
5857
5858 if (extra_length > 0)
5859 {
5860 segment->p_memsz += extra_length;
5861 segment->p_filesz += extra_length;
5862 }
5863
5864 segment2->p_type = PT_NULL;
5865 }
5866 }
5867 }
5868
5869 /* The second scan attempts to assign sections to segments. */
5870 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5871 i < num_segments;
5872 i++, segment++)
5873 {
5874 unsigned int section_count;
5875 asection **sections;
5876 asection *output_section;
5877 unsigned int isec;
5878 bfd_vma matching_lma;
5879 bfd_vma suggested_lma;
5880 unsigned int j;
5881 bfd_size_type amt;
5882 asection *first_section;
5883 bfd_boolean first_matching_lma;
5884 bfd_boolean first_suggested_lma;
5885
5886 if (segment->p_type == PT_NULL)
5887 continue;
5888
5889 first_section = NULL;
5890 /* Compute how many sections might be placed into this segment. */
5891 for (section = ibfd->sections, section_count = 0;
5892 section != NULL;
5893 section = section->next)
5894 {
5895 /* Find the first section in the input segment, which may be
5896 removed from the corresponding output segment. */
5897 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5898 {
5899 if (first_section == NULL)
5900 first_section = section;
5901 if (section->output_section != NULL)
5902 ++section_count;
5903 }
5904 }
5905
5906 /* Allocate a segment map big enough to contain
5907 all of the sections we have selected. */
5908 amt = sizeof (struct elf_segment_map);
5909 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5910 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5911 if (map == NULL)
5912 return FALSE;
5913
5914 /* Initialise the fields of the segment map. Default to
5915 using the physical address of the segment in the input BFD. */
5916 map->next = NULL;
5917 map->p_type = segment->p_type;
5918 map->p_flags = segment->p_flags;
5919 map->p_flags_valid = 1;
5920
5921 /* If the first section in the input segment is removed, there is
5922 no need to preserve segment physical address in the corresponding
5923 output segment. */
5924 if (!first_section || first_section->output_section != NULL)
5925 {
5926 map->p_paddr = segment->p_paddr;
5927 map->p_paddr_valid = p_paddr_valid;
5928 }
5929
5930 /* Determine if this segment contains the ELF file header
5931 and if it contains the program headers themselves. */
5932 map->includes_filehdr = (segment->p_offset == 0
5933 && segment->p_filesz >= iehdr->e_ehsize);
5934 map->includes_phdrs = 0;
5935
5936 if (!phdr_included || segment->p_type != PT_LOAD)
5937 {
5938 map->includes_phdrs =
5939 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5940 && (segment->p_offset + segment->p_filesz
5941 >= ((bfd_vma) iehdr->e_phoff
5942 + iehdr->e_phnum * iehdr->e_phentsize)));
5943
5944 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5945 phdr_included = TRUE;
5946 }
5947
5948 if (section_count == 0)
5949 {
5950 /* Special segments, such as the PT_PHDR segment, may contain
5951 no sections, but ordinary, loadable segments should contain
5952 something. They are allowed by the ELF spec however, so only
5953 a warning is produced. */
5954 if (segment->p_type == PT_LOAD)
5955 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5956 " detected, is this intentional ?\n"),
5957 ibfd);
5958
5959 map->count = 0;
5960 *pointer_to_map = map;
5961 pointer_to_map = &map->next;
5962
5963 continue;
5964 }
5965
5966 /* Now scan the sections in the input BFD again and attempt
5967 to add their corresponding output sections to the segment map.
5968 The problem here is how to handle an output section which has
5969 been moved (ie had its LMA changed). There are four possibilities:
5970
5971 1. None of the sections have been moved.
5972 In this case we can continue to use the segment LMA from the
5973 input BFD.
5974
5975 2. All of the sections have been moved by the same amount.
5976 In this case we can change the segment's LMA to match the LMA
5977 of the first section.
5978
5979 3. Some of the sections have been moved, others have not.
5980 In this case those sections which have not been moved can be
5981 placed in the current segment which will have to have its size,
5982 and possibly its LMA changed, and a new segment or segments will
5983 have to be created to contain the other sections.
5984
5985 4. The sections have been moved, but not by the same amount.
5986 In this case we can change the segment's LMA to match the LMA
5987 of the first section and we will have to create a new segment
5988 or segments to contain the other sections.
5989
5990 In order to save time, we allocate an array to hold the section
5991 pointers that we are interested in. As these sections get assigned
5992 to a segment, they are removed from this array. */
5993
5994 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5995 if (sections == NULL)
5996 return FALSE;
5997
5998 /* Step One: Scan for segment vs section LMA conflicts.
5999 Also add the sections to the section array allocated above.
6000 Also add the sections to the current segment. In the common
6001 case, where the sections have not been moved, this means that
6002 we have completely filled the segment, and there is nothing
6003 more to do. */
6004 isec = 0;
6005 matching_lma = 0;
6006 suggested_lma = 0;
6007 first_matching_lma = TRUE;
6008 first_suggested_lma = TRUE;
6009
6010 for (section = ibfd->sections;
6011 section != NULL;
6012 section = section->next)
6013 if (section == first_section)
6014 break;
6015
6016 for (j = 0; section != NULL; section = section->next)
6017 {
6018 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6019 {
6020 output_section = section->output_section;
6021
6022 sections[j++] = section;
6023
6024 /* The Solaris native linker always sets p_paddr to 0.
6025 We try to catch that case here, and set it to the
6026 correct value. Note - some backends require that
6027 p_paddr be left as zero. */
6028 if (!p_paddr_valid
6029 && segment->p_vaddr != 0
6030 && !bed->want_p_paddr_set_to_zero
6031 && isec == 0
6032 && output_section->lma != 0
6033 && output_section->vma == (segment->p_vaddr
6034 + (map->includes_filehdr
6035 ? iehdr->e_ehsize
6036 : 0)
6037 + (map->includes_phdrs
6038 ? (iehdr->e_phnum
6039 * iehdr->e_phentsize)
6040 : 0)))
6041 map->p_paddr = segment->p_vaddr;
6042
6043 /* Match up the physical address of the segment with the
6044 LMA address of the output section. */
6045 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6046 || IS_COREFILE_NOTE (segment, section)
6047 || (bed->want_p_paddr_set_to_zero
6048 && IS_CONTAINED_BY_VMA (output_section, segment)))
6049 {
6050 if (first_matching_lma || output_section->lma < matching_lma)
6051 {
6052 matching_lma = output_section->lma;
6053 first_matching_lma = FALSE;
6054 }
6055
6056 /* We assume that if the section fits within the segment
6057 then it does not overlap any other section within that
6058 segment. */
6059 map->sections[isec++] = output_section;
6060 }
6061 else if (first_suggested_lma)
6062 {
6063 suggested_lma = output_section->lma;
6064 first_suggested_lma = FALSE;
6065 }
6066
6067 if (j == section_count)
6068 break;
6069 }
6070 }
6071
6072 BFD_ASSERT (j == section_count);
6073
6074 /* Step Two: Adjust the physical address of the current segment,
6075 if necessary. */
6076 if (isec == section_count)
6077 {
6078 /* All of the sections fitted within the segment as currently
6079 specified. This is the default case. Add the segment to
6080 the list of built segments and carry on to process the next
6081 program header in the input BFD. */
6082 map->count = section_count;
6083 *pointer_to_map = map;
6084 pointer_to_map = &map->next;
6085
6086 if (p_paddr_valid
6087 && !bed->want_p_paddr_set_to_zero
6088 && matching_lma != map->p_paddr
6089 && !map->includes_filehdr
6090 && !map->includes_phdrs)
6091 /* There is some padding before the first section in the
6092 segment. So, we must account for that in the output
6093 segment's vma. */
6094 map->p_vaddr_offset = matching_lma - map->p_paddr;
6095
6096 free (sections);
6097 continue;
6098 }
6099 else
6100 {
6101 if (!first_matching_lma)
6102 {
6103 /* At least one section fits inside the current segment.
6104 Keep it, but modify its physical address to match the
6105 LMA of the first section that fitted. */
6106 map->p_paddr = matching_lma;
6107 }
6108 else
6109 {
6110 /* None of the sections fitted inside the current segment.
6111 Change the current segment's physical address to match
6112 the LMA of the first section. */
6113 map->p_paddr = suggested_lma;
6114 }
6115
6116 /* Offset the segment physical address from the lma
6117 to allow for space taken up by elf headers. */
6118 if (map->includes_filehdr)
6119 {
6120 if (map->p_paddr >= iehdr->e_ehsize)
6121 map->p_paddr -= iehdr->e_ehsize;
6122 else
6123 {
6124 map->includes_filehdr = FALSE;
6125 map->includes_phdrs = FALSE;
6126 }
6127 }
6128
6129 if (map->includes_phdrs)
6130 {
6131 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6132 {
6133 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6134
6135 /* iehdr->e_phnum is just an estimate of the number
6136 of program headers that we will need. Make a note
6137 here of the number we used and the segment we chose
6138 to hold these headers, so that we can adjust the
6139 offset when we know the correct value. */
6140 phdr_adjust_num = iehdr->e_phnum;
6141 phdr_adjust_seg = map;
6142 }
6143 else
6144 map->includes_phdrs = FALSE;
6145 }
6146 }
6147
6148 /* Step Three: Loop over the sections again, this time assigning
6149 those that fit to the current segment and removing them from the
6150 sections array; but making sure not to leave large gaps. Once all
6151 possible sections have been assigned to the current segment it is
6152 added to the list of built segments and if sections still remain
6153 to be assigned, a new segment is constructed before repeating
6154 the loop. */
6155 isec = 0;
6156 do
6157 {
6158 map->count = 0;
6159 suggested_lma = 0;
6160 first_suggested_lma = TRUE;
6161
6162 /* Fill the current segment with sections that fit. */
6163 for (j = 0; j < section_count; j++)
6164 {
6165 section = sections[j];
6166
6167 if (section == NULL)
6168 continue;
6169
6170 output_section = section->output_section;
6171
6172 BFD_ASSERT (output_section != NULL);
6173
6174 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6175 || IS_COREFILE_NOTE (segment, section))
6176 {
6177 if (map->count == 0)
6178 {
6179 /* If the first section in a segment does not start at
6180 the beginning of the segment, then something is
6181 wrong. */
6182 if (output_section->lma
6183 != (map->p_paddr
6184 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6185 + (map->includes_phdrs
6186 ? iehdr->e_phnum * iehdr->e_phentsize
6187 : 0)))
6188 abort ();
6189 }
6190 else
6191 {
6192 asection *prev_sec;
6193
6194 prev_sec = map->sections[map->count - 1];
6195
6196 /* If the gap between the end of the previous section
6197 and the start of this section is more than
6198 maxpagesize then we need to start a new segment. */
6199 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6200 maxpagesize)
6201 < BFD_ALIGN (output_section->lma, maxpagesize))
6202 || (prev_sec->lma + prev_sec->size
6203 > output_section->lma))
6204 {
6205 if (first_suggested_lma)
6206 {
6207 suggested_lma = output_section->lma;
6208 first_suggested_lma = FALSE;
6209 }
6210
6211 continue;
6212 }
6213 }
6214
6215 map->sections[map->count++] = output_section;
6216 ++isec;
6217 sections[j] = NULL;
6218 section->segment_mark = TRUE;
6219 }
6220 else if (first_suggested_lma)
6221 {
6222 suggested_lma = output_section->lma;
6223 first_suggested_lma = FALSE;
6224 }
6225 }
6226
6227 BFD_ASSERT (map->count > 0);
6228
6229 /* Add the current segment to the list of built segments. */
6230 *pointer_to_map = map;
6231 pointer_to_map = &map->next;
6232
6233 if (isec < section_count)
6234 {
6235 /* We still have not allocated all of the sections to
6236 segments. Create a new segment here, initialise it
6237 and carry on looping. */
6238 amt = sizeof (struct elf_segment_map);
6239 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6240 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6241 if (map == NULL)
6242 {
6243 free (sections);
6244 return FALSE;
6245 }
6246
6247 /* Initialise the fields of the segment map. Set the physical
6248 physical address to the LMA of the first section that has
6249 not yet been assigned. */
6250 map->next = NULL;
6251 map->p_type = segment->p_type;
6252 map->p_flags = segment->p_flags;
6253 map->p_flags_valid = 1;
6254 map->p_paddr = suggested_lma;
6255 map->p_paddr_valid = p_paddr_valid;
6256 map->includes_filehdr = 0;
6257 map->includes_phdrs = 0;
6258 }
6259 }
6260 while (isec < section_count);
6261
6262 free (sections);
6263 }
6264
6265 elf_seg_map (obfd) = map_first;
6266
6267 /* If we had to estimate the number of program headers that were
6268 going to be needed, then check our estimate now and adjust
6269 the offset if necessary. */
6270 if (phdr_adjust_seg != NULL)
6271 {
6272 unsigned int count;
6273
6274 for (count = 0, map = map_first; map != NULL; map = map->next)
6275 count++;
6276
6277 if (count > phdr_adjust_num)
6278 phdr_adjust_seg->p_paddr
6279 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6280 }
6281
6282 #undef SEGMENT_END
6283 #undef SECTION_SIZE
6284 #undef IS_CONTAINED_BY_VMA
6285 #undef IS_CONTAINED_BY_LMA
6286 #undef IS_NOTE
6287 #undef IS_COREFILE_NOTE
6288 #undef IS_SOLARIS_PT_INTERP
6289 #undef IS_SECTION_IN_INPUT_SEGMENT
6290 #undef INCLUDE_SECTION_IN_SEGMENT
6291 #undef SEGMENT_AFTER_SEGMENT
6292 #undef SEGMENT_OVERLAPS
6293 return TRUE;
6294 }
6295
6296 /* Copy ELF program header information. */
6297
6298 static bfd_boolean
6299 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6300 {
6301 Elf_Internal_Ehdr *iehdr;
6302 struct elf_segment_map *map;
6303 struct elf_segment_map *map_first;
6304 struct elf_segment_map **pointer_to_map;
6305 Elf_Internal_Phdr *segment;
6306 unsigned int i;
6307 unsigned int num_segments;
6308 bfd_boolean phdr_included = FALSE;
6309 bfd_boolean p_paddr_valid;
6310
6311 iehdr = elf_elfheader (ibfd);
6312
6313 map_first = NULL;
6314 pointer_to_map = &map_first;
6315
6316 /* If all the segment p_paddr fields are zero, don't set
6317 map->p_paddr_valid. */
6318 p_paddr_valid = FALSE;
6319 num_segments = elf_elfheader (ibfd)->e_phnum;
6320 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6321 i < num_segments;
6322 i++, segment++)
6323 if (segment->p_paddr != 0)
6324 {
6325 p_paddr_valid = TRUE;
6326 break;
6327 }
6328
6329 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6330 i < num_segments;
6331 i++, segment++)
6332 {
6333 asection *section;
6334 unsigned int section_count;
6335 bfd_size_type amt;
6336 Elf_Internal_Shdr *this_hdr;
6337 asection *first_section = NULL;
6338 asection *lowest_section;
6339
6340 /* Compute how many sections are in this segment. */
6341 for (section = ibfd->sections, section_count = 0;
6342 section != NULL;
6343 section = section->next)
6344 {
6345 this_hdr = &(elf_section_data(section)->this_hdr);
6346 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6347 {
6348 if (first_section == NULL)
6349 first_section = section;
6350 section_count++;
6351 }
6352 }
6353
6354 /* Allocate a segment map big enough to contain
6355 all of the sections we have selected. */
6356 amt = sizeof (struct elf_segment_map);
6357 if (section_count != 0)
6358 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6359 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6360 if (map == NULL)
6361 return FALSE;
6362
6363 /* Initialize the fields of the output segment map with the
6364 input segment. */
6365 map->next = NULL;
6366 map->p_type = segment->p_type;
6367 map->p_flags = segment->p_flags;
6368 map->p_flags_valid = 1;
6369 map->p_paddr = segment->p_paddr;
6370 map->p_paddr_valid = p_paddr_valid;
6371 map->p_align = segment->p_align;
6372 map->p_align_valid = 1;
6373 map->p_vaddr_offset = 0;
6374
6375 if (map->p_type == PT_GNU_RELRO
6376 || map->p_type == PT_GNU_STACK)
6377 {
6378 /* The PT_GNU_RELRO segment may contain the first a few
6379 bytes in the .got.plt section even if the whole .got.plt
6380 section isn't in the PT_GNU_RELRO segment. We won't
6381 change the size of the PT_GNU_RELRO segment.
6382 Similarly, PT_GNU_STACK size is significant on uclinux
6383 systems. */
6384 map->p_size = segment->p_memsz;
6385 map->p_size_valid = 1;
6386 }
6387
6388 /* Determine if this segment contains the ELF file header
6389 and if it contains the program headers themselves. */
6390 map->includes_filehdr = (segment->p_offset == 0
6391 && segment->p_filesz >= iehdr->e_ehsize);
6392
6393 map->includes_phdrs = 0;
6394 if (! phdr_included || segment->p_type != PT_LOAD)
6395 {
6396 map->includes_phdrs =
6397 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6398 && (segment->p_offset + segment->p_filesz
6399 >= ((bfd_vma) iehdr->e_phoff
6400 + iehdr->e_phnum * iehdr->e_phentsize)));
6401
6402 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6403 phdr_included = TRUE;
6404 }
6405
6406 lowest_section = NULL;
6407 if (section_count != 0)
6408 {
6409 unsigned int isec = 0;
6410
6411 for (section = first_section;
6412 section != NULL;
6413 section = section->next)
6414 {
6415 this_hdr = &(elf_section_data(section)->this_hdr);
6416 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6417 {
6418 map->sections[isec++] = section->output_section;
6419 if ((section->flags & SEC_ALLOC) != 0)
6420 {
6421 bfd_vma seg_off;
6422
6423 if (lowest_section == NULL
6424 || section->lma < lowest_section->lma)
6425 lowest_section = section;
6426
6427 /* Section lmas are set up from PT_LOAD header
6428 p_paddr in _bfd_elf_make_section_from_shdr.
6429 If this header has a p_paddr that disagrees
6430 with the section lma, flag the p_paddr as
6431 invalid. */
6432 if ((section->flags & SEC_LOAD) != 0)
6433 seg_off = this_hdr->sh_offset - segment->p_offset;
6434 else
6435 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6436 if (section->lma - segment->p_paddr != seg_off)
6437 map->p_paddr_valid = FALSE;
6438 }
6439 if (isec == section_count)
6440 break;
6441 }
6442 }
6443 }
6444
6445 if (map->includes_filehdr && lowest_section != NULL)
6446 /* We need to keep the space used by the headers fixed. */
6447 map->header_size = lowest_section->vma - segment->p_vaddr;
6448
6449 if (!map->includes_phdrs
6450 && !map->includes_filehdr
6451 && map->p_paddr_valid)
6452 /* There is some other padding before the first section. */
6453 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6454 - segment->p_paddr);
6455
6456 map->count = section_count;
6457 *pointer_to_map = map;
6458 pointer_to_map = &map->next;
6459 }
6460
6461 elf_seg_map (obfd) = map_first;
6462 return TRUE;
6463 }
6464
6465 /* Copy private BFD data. This copies or rewrites ELF program header
6466 information. */
6467
6468 static bfd_boolean
6469 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6470 {
6471 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6472 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6473 return TRUE;
6474
6475 if (elf_tdata (ibfd)->phdr == NULL)
6476 return TRUE;
6477
6478 if (ibfd->xvec == obfd->xvec)
6479 {
6480 /* Check to see if any sections in the input BFD
6481 covered by ELF program header have changed. */
6482 Elf_Internal_Phdr *segment;
6483 asection *section, *osec;
6484 unsigned int i, num_segments;
6485 Elf_Internal_Shdr *this_hdr;
6486 const struct elf_backend_data *bed;
6487
6488 bed = get_elf_backend_data (ibfd);
6489
6490 /* Regenerate the segment map if p_paddr is set to 0. */
6491 if (bed->want_p_paddr_set_to_zero)
6492 goto rewrite;
6493
6494 /* Initialize the segment mark field. */
6495 for (section = obfd->sections; section != NULL;
6496 section = section->next)
6497 section->segment_mark = FALSE;
6498
6499 num_segments = elf_elfheader (ibfd)->e_phnum;
6500 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6501 i < num_segments;
6502 i++, segment++)
6503 {
6504 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6505 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6506 which severly confuses things, so always regenerate the segment
6507 map in this case. */
6508 if (segment->p_paddr == 0
6509 && segment->p_memsz == 0
6510 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6511 goto rewrite;
6512
6513 for (section = ibfd->sections;
6514 section != NULL; section = section->next)
6515 {
6516 /* We mark the output section so that we know it comes
6517 from the input BFD. */
6518 osec = section->output_section;
6519 if (osec)
6520 osec->segment_mark = TRUE;
6521
6522 /* Check if this section is covered by the segment. */
6523 this_hdr = &(elf_section_data(section)->this_hdr);
6524 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6525 {
6526 /* FIXME: Check if its output section is changed or
6527 removed. What else do we need to check? */
6528 if (osec == NULL
6529 || section->flags != osec->flags
6530 || section->lma != osec->lma
6531 || section->vma != osec->vma
6532 || section->size != osec->size
6533 || section->rawsize != osec->rawsize
6534 || section->alignment_power != osec->alignment_power)
6535 goto rewrite;
6536 }
6537 }
6538 }
6539
6540 /* Check to see if any output section do not come from the
6541 input BFD. */
6542 for (section = obfd->sections; section != NULL;
6543 section = section->next)
6544 {
6545 if (section->segment_mark == FALSE)
6546 goto rewrite;
6547 else
6548 section->segment_mark = FALSE;
6549 }
6550
6551 return copy_elf_program_header (ibfd, obfd);
6552 }
6553
6554 rewrite:
6555 if (ibfd->xvec == obfd->xvec)
6556 {
6557 /* When rewriting program header, set the output maxpagesize to
6558 the maximum alignment of input PT_LOAD segments. */
6559 Elf_Internal_Phdr *segment;
6560 unsigned int i;
6561 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6562 bfd_vma maxpagesize = 0;
6563
6564 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6565 i < num_segments;
6566 i++, segment++)
6567 if (segment->p_type == PT_LOAD
6568 && maxpagesize < segment->p_align)
6569 maxpagesize = segment->p_align;
6570
6571 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6572 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6573 }
6574
6575 return rewrite_elf_program_header (ibfd, obfd);
6576 }
6577
6578 /* Initialize private output section information from input section. */
6579
6580 bfd_boolean
6581 _bfd_elf_init_private_section_data (bfd *ibfd,
6582 asection *isec,
6583 bfd *obfd,
6584 asection *osec,
6585 struct bfd_link_info *link_info)
6586
6587 {
6588 Elf_Internal_Shdr *ihdr, *ohdr;
6589 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6590
6591 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6592 || obfd->xvec->flavour != bfd_target_elf_flavour)
6593 return TRUE;
6594
6595 BFD_ASSERT (elf_section_data (osec) != NULL);
6596
6597 /* For objcopy and relocatable link, don't copy the output ELF
6598 section type from input if the output BFD section flags have been
6599 set to something different. For a final link allow some flags
6600 that the linker clears to differ. */
6601 if (elf_section_type (osec) == SHT_NULL
6602 && (osec->flags == isec->flags
6603 || (final_link
6604 && ((osec->flags ^ isec->flags)
6605 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6606 elf_section_type (osec) = elf_section_type (isec);
6607
6608 /* FIXME: Is this correct for all OS/PROC specific flags? */
6609 elf_section_flags (osec) |= (elf_section_flags (isec)
6610 & (SHF_MASKOS | SHF_MASKPROC));
6611
6612 /* Set things up for objcopy and relocatable link. The output
6613 SHT_GROUP section will have its elf_next_in_group pointing back
6614 to the input group members. Ignore linker created group section.
6615 See elfNN_ia64_object_p in elfxx-ia64.c. */
6616 if (!final_link)
6617 {
6618 if (elf_sec_group (isec) == NULL
6619 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6620 {
6621 if (elf_section_flags (isec) & SHF_GROUP)
6622 elf_section_flags (osec) |= SHF_GROUP;
6623 elf_next_in_group (osec) = elf_next_in_group (isec);
6624 elf_section_data (osec)->group = elf_section_data (isec)->group;
6625 }
6626 }
6627
6628 ihdr = &elf_section_data (isec)->this_hdr;
6629
6630 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6631 don't use the output section of the linked-to section since it
6632 may be NULL at this point. */
6633 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6634 {
6635 ohdr = &elf_section_data (osec)->this_hdr;
6636 ohdr->sh_flags |= SHF_LINK_ORDER;
6637 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6638 }
6639
6640 osec->use_rela_p = isec->use_rela_p;
6641
6642 return TRUE;
6643 }
6644
6645 /* Copy private section information. This copies over the entsize
6646 field, and sometimes the info field. */
6647
6648 bfd_boolean
6649 _bfd_elf_copy_private_section_data (bfd *ibfd,
6650 asection *isec,
6651 bfd *obfd,
6652 asection *osec)
6653 {
6654 Elf_Internal_Shdr *ihdr, *ohdr;
6655
6656 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6657 || obfd->xvec->flavour != bfd_target_elf_flavour)
6658 return TRUE;
6659
6660 ihdr = &elf_section_data (isec)->this_hdr;
6661 ohdr = &elf_section_data (osec)->this_hdr;
6662
6663 ohdr->sh_entsize = ihdr->sh_entsize;
6664
6665 if (ihdr->sh_type == SHT_SYMTAB
6666 || ihdr->sh_type == SHT_DYNSYM
6667 || ihdr->sh_type == SHT_GNU_verneed
6668 || ihdr->sh_type == SHT_GNU_verdef)
6669 ohdr->sh_info = ihdr->sh_info;
6670
6671 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6672 NULL);
6673 }
6674
6675 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6676 necessary if we are removing either the SHT_GROUP section or any of
6677 the group member sections. DISCARDED is the value that a section's
6678 output_section has if the section will be discarded, NULL when this
6679 function is called from objcopy, bfd_abs_section_ptr when called
6680 from the linker. */
6681
6682 bfd_boolean
6683 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6684 {
6685 asection *isec;
6686
6687 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6688 if (elf_section_type (isec) == SHT_GROUP)
6689 {
6690 asection *first = elf_next_in_group (isec);
6691 asection *s = first;
6692 bfd_size_type removed = 0;
6693
6694 while (s != NULL)
6695 {
6696 /* If this member section is being output but the
6697 SHT_GROUP section is not, then clear the group info
6698 set up by _bfd_elf_copy_private_section_data. */
6699 if (s->output_section != discarded
6700 && isec->output_section == discarded)
6701 {
6702 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6703 elf_group_name (s->output_section) = NULL;
6704 }
6705 /* Conversely, if the member section is not being output
6706 but the SHT_GROUP section is, then adjust its size. */
6707 else if (s->output_section == discarded
6708 && isec->output_section != discarded)
6709 removed += 4;
6710 s = elf_next_in_group (s);
6711 if (s == first)
6712 break;
6713 }
6714 if (removed != 0)
6715 {
6716 if (discarded != NULL)
6717 {
6718 /* If we've been called for ld -r, then we need to
6719 adjust the input section size. This function may
6720 be called multiple times, so save the original
6721 size. */
6722 if (isec->rawsize == 0)
6723 isec->rawsize = isec->size;
6724 isec->size = isec->rawsize - removed;
6725 }
6726 else
6727 {
6728 /* Adjust the output section size when called from
6729 objcopy. */
6730 isec->output_section->size -= removed;
6731 }
6732 }
6733 }
6734
6735 return TRUE;
6736 }
6737
6738 /* Copy private header information. */
6739
6740 bfd_boolean
6741 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6742 {
6743 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6744 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6745 return TRUE;
6746
6747 /* Copy over private BFD data if it has not already been copied.
6748 This must be done here, rather than in the copy_private_bfd_data
6749 entry point, because the latter is called after the section
6750 contents have been set, which means that the program headers have
6751 already been worked out. */
6752 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
6753 {
6754 if (! copy_private_bfd_data (ibfd, obfd))
6755 return FALSE;
6756 }
6757
6758 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6759 }
6760
6761 /* Copy private symbol information. If this symbol is in a section
6762 which we did not map into a BFD section, try to map the section
6763 index correctly. We use special macro definitions for the mapped
6764 section indices; these definitions are interpreted by the
6765 swap_out_syms function. */
6766
6767 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6768 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6769 #define MAP_STRTAB (SHN_HIOS + 3)
6770 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6771 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6772
6773 bfd_boolean
6774 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6775 asymbol *isymarg,
6776 bfd *obfd,
6777 asymbol *osymarg)
6778 {
6779 elf_symbol_type *isym, *osym;
6780
6781 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6782 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6783 return TRUE;
6784
6785 isym = elf_symbol_from (ibfd, isymarg);
6786 osym = elf_symbol_from (obfd, osymarg);
6787
6788 if (isym != NULL
6789 && isym->internal_elf_sym.st_shndx != 0
6790 && osym != NULL
6791 && bfd_is_abs_section (isym->symbol.section))
6792 {
6793 unsigned int shndx;
6794
6795 shndx = isym->internal_elf_sym.st_shndx;
6796 if (shndx == elf_onesymtab (ibfd))
6797 shndx = MAP_ONESYMTAB;
6798 else if (shndx == elf_dynsymtab (ibfd))
6799 shndx = MAP_DYNSYMTAB;
6800 else if (shndx == elf_strtab_sec (ibfd))
6801 shndx = MAP_STRTAB;
6802 else if (shndx == elf_shstrtab_sec (ibfd))
6803 shndx = MAP_SHSTRTAB;
6804 else if (shndx == elf_symtab_shndx (ibfd))
6805 shndx = MAP_SYM_SHNDX;
6806 osym->internal_elf_sym.st_shndx = shndx;
6807 }
6808
6809 return TRUE;
6810 }
6811
6812 /* Swap out the symbols. */
6813
6814 static bfd_boolean
6815 swap_out_syms (bfd *abfd,
6816 struct bfd_strtab_hash **sttp,
6817 int relocatable_p)
6818 {
6819 const struct elf_backend_data *bed;
6820 int symcount;
6821 asymbol **syms;
6822 struct bfd_strtab_hash *stt;
6823 Elf_Internal_Shdr *symtab_hdr;
6824 Elf_Internal_Shdr *symtab_shndx_hdr;
6825 Elf_Internal_Shdr *symstrtab_hdr;
6826 bfd_byte *outbound_syms;
6827 bfd_byte *outbound_shndx;
6828 int idx;
6829 unsigned int num_locals;
6830 bfd_size_type amt;
6831 bfd_boolean name_local_sections;
6832
6833 if (!elf_map_symbols (abfd, &num_locals))
6834 return FALSE;
6835
6836 /* Dump out the symtabs. */
6837 stt = _bfd_elf_stringtab_init ();
6838 if (stt == NULL)
6839 return FALSE;
6840
6841 bed = get_elf_backend_data (abfd);
6842 symcount = bfd_get_symcount (abfd);
6843 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6844 symtab_hdr->sh_type = SHT_SYMTAB;
6845 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6846 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6847 symtab_hdr->sh_info = num_locals + 1;
6848 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6849
6850 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6851 symstrtab_hdr->sh_type = SHT_STRTAB;
6852
6853 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6854 bed->s->sizeof_sym);
6855 if (outbound_syms == NULL)
6856 {
6857 _bfd_stringtab_free (stt);
6858 return FALSE;
6859 }
6860 symtab_hdr->contents = outbound_syms;
6861
6862 outbound_shndx = NULL;
6863 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6864 if (symtab_shndx_hdr->sh_name != 0)
6865 {
6866 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6867 outbound_shndx = (bfd_byte *)
6868 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6869 if (outbound_shndx == NULL)
6870 {
6871 _bfd_stringtab_free (stt);
6872 return FALSE;
6873 }
6874
6875 symtab_shndx_hdr->contents = outbound_shndx;
6876 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6877 symtab_shndx_hdr->sh_size = amt;
6878 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6879 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6880 }
6881
6882 /* Now generate the data (for "contents"). */
6883 {
6884 /* Fill in zeroth symbol and swap it out. */
6885 Elf_Internal_Sym sym;
6886 sym.st_name = 0;
6887 sym.st_value = 0;
6888 sym.st_size = 0;
6889 sym.st_info = 0;
6890 sym.st_other = 0;
6891 sym.st_shndx = SHN_UNDEF;
6892 sym.st_target_internal = 0;
6893 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6894 outbound_syms += bed->s->sizeof_sym;
6895 if (outbound_shndx != NULL)
6896 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6897 }
6898
6899 name_local_sections
6900 = (bed->elf_backend_name_local_section_symbols
6901 && bed->elf_backend_name_local_section_symbols (abfd));
6902
6903 syms = bfd_get_outsymbols (abfd);
6904 for (idx = 0; idx < symcount; idx++)
6905 {
6906 Elf_Internal_Sym sym;
6907 bfd_vma value = syms[idx]->value;
6908 elf_symbol_type *type_ptr;
6909 flagword flags = syms[idx]->flags;
6910 int type;
6911
6912 if (!name_local_sections
6913 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6914 {
6915 /* Local section symbols have no name. */
6916 sym.st_name = 0;
6917 }
6918 else
6919 {
6920 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6921 syms[idx]->name,
6922 TRUE, FALSE);
6923 if (sym.st_name == (unsigned long) -1)
6924 {
6925 _bfd_stringtab_free (stt);
6926 return FALSE;
6927 }
6928 }
6929
6930 type_ptr = elf_symbol_from (abfd, syms[idx]);
6931
6932 if ((flags & BSF_SECTION_SYM) == 0
6933 && bfd_is_com_section (syms[idx]->section))
6934 {
6935 /* ELF common symbols put the alignment into the `value' field,
6936 and the size into the `size' field. This is backwards from
6937 how BFD handles it, so reverse it here. */
6938 sym.st_size = value;
6939 if (type_ptr == NULL
6940 || type_ptr->internal_elf_sym.st_value == 0)
6941 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6942 else
6943 sym.st_value = type_ptr->internal_elf_sym.st_value;
6944 sym.st_shndx = _bfd_elf_section_from_bfd_section
6945 (abfd, syms[idx]->section);
6946 }
6947 else
6948 {
6949 asection *sec = syms[idx]->section;
6950 unsigned int shndx;
6951
6952 if (sec->output_section)
6953 {
6954 value += sec->output_offset;
6955 sec = sec->output_section;
6956 }
6957
6958 /* Don't add in the section vma for relocatable output. */
6959 if (! relocatable_p)
6960 value += sec->vma;
6961 sym.st_value = value;
6962 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6963
6964 if (bfd_is_abs_section (sec)
6965 && type_ptr != NULL
6966 && type_ptr->internal_elf_sym.st_shndx != 0)
6967 {
6968 /* This symbol is in a real ELF section which we did
6969 not create as a BFD section. Undo the mapping done
6970 by copy_private_symbol_data. */
6971 shndx = type_ptr->internal_elf_sym.st_shndx;
6972 switch (shndx)
6973 {
6974 case MAP_ONESYMTAB:
6975 shndx = elf_onesymtab (abfd);
6976 break;
6977 case MAP_DYNSYMTAB:
6978 shndx = elf_dynsymtab (abfd);
6979 break;
6980 case MAP_STRTAB:
6981 shndx = elf_strtab_sec (abfd);
6982 break;
6983 case MAP_SHSTRTAB:
6984 shndx = elf_shstrtab_sec (abfd);
6985 break;
6986 case MAP_SYM_SHNDX:
6987 shndx = elf_symtab_shndx (abfd);
6988 break;
6989 default:
6990 shndx = SHN_ABS;
6991 break;
6992 }
6993 }
6994 else
6995 {
6996 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6997
6998 if (shndx == SHN_BAD)
6999 {
7000 asection *sec2;
7001
7002 /* Writing this would be a hell of a lot easier if
7003 we had some decent documentation on bfd, and
7004 knew what to expect of the library, and what to
7005 demand of applications. For example, it
7006 appears that `objcopy' might not set the
7007 section of a symbol to be a section that is
7008 actually in the output file. */
7009 sec2 = bfd_get_section_by_name (abfd, sec->name);
7010 if (sec2 == NULL)
7011 {
7012 _bfd_error_handler (_("\
7013 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7014 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7015 sec->name);
7016 bfd_set_error (bfd_error_invalid_operation);
7017 _bfd_stringtab_free (stt);
7018 return FALSE;
7019 }
7020
7021 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7022 BFD_ASSERT (shndx != SHN_BAD);
7023 }
7024 }
7025
7026 sym.st_shndx = shndx;
7027 }
7028
7029 if ((flags & BSF_THREAD_LOCAL) != 0)
7030 type = STT_TLS;
7031 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7032 type = STT_GNU_IFUNC;
7033 else if ((flags & BSF_FUNCTION) != 0)
7034 type = STT_FUNC;
7035 else if ((flags & BSF_OBJECT) != 0)
7036 type = STT_OBJECT;
7037 else if ((flags & BSF_RELC) != 0)
7038 type = STT_RELC;
7039 else if ((flags & BSF_SRELC) != 0)
7040 type = STT_SRELC;
7041 else
7042 type = STT_NOTYPE;
7043
7044 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7045 type = STT_TLS;
7046
7047 /* Processor-specific types. */
7048 if (type_ptr != NULL
7049 && bed->elf_backend_get_symbol_type)
7050 type = ((*bed->elf_backend_get_symbol_type)
7051 (&type_ptr->internal_elf_sym, type));
7052
7053 if (flags & BSF_SECTION_SYM)
7054 {
7055 if (flags & BSF_GLOBAL)
7056 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7057 else
7058 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7059 }
7060 else if (bfd_is_com_section (syms[idx]->section))
7061 {
7062 #ifdef USE_STT_COMMON
7063 if (type == STT_OBJECT)
7064 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
7065 else
7066 #endif
7067 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7068 }
7069 else if (bfd_is_und_section (syms[idx]->section))
7070 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7071 ? STB_WEAK
7072 : STB_GLOBAL),
7073 type);
7074 else if (flags & BSF_FILE)
7075 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7076 else
7077 {
7078 int bind = STB_LOCAL;
7079
7080 if (flags & BSF_LOCAL)
7081 bind = STB_LOCAL;
7082 else if (flags & BSF_GNU_UNIQUE)
7083 bind = STB_GNU_UNIQUE;
7084 else if (flags & BSF_WEAK)
7085 bind = STB_WEAK;
7086 else if (flags & BSF_GLOBAL)
7087 bind = STB_GLOBAL;
7088
7089 sym.st_info = ELF_ST_INFO (bind, type);
7090 }
7091
7092 if (type_ptr != NULL)
7093 {
7094 sym.st_other = type_ptr->internal_elf_sym.st_other;
7095 sym.st_target_internal
7096 = type_ptr->internal_elf_sym.st_target_internal;
7097 }
7098 else
7099 {
7100 sym.st_other = 0;
7101 sym.st_target_internal = 0;
7102 }
7103
7104 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
7105 outbound_syms += bed->s->sizeof_sym;
7106 if (outbound_shndx != NULL)
7107 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
7108 }
7109
7110 *sttp = stt;
7111 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
7112 symstrtab_hdr->sh_type = SHT_STRTAB;
7113
7114 symstrtab_hdr->sh_flags = 0;
7115 symstrtab_hdr->sh_addr = 0;
7116 symstrtab_hdr->sh_entsize = 0;
7117 symstrtab_hdr->sh_link = 0;
7118 symstrtab_hdr->sh_info = 0;
7119 symstrtab_hdr->sh_addralign = 1;
7120
7121 return TRUE;
7122 }
7123
7124 /* Return the number of bytes required to hold the symtab vector.
7125
7126 Note that we base it on the count plus 1, since we will null terminate
7127 the vector allocated based on this size. However, the ELF symbol table
7128 always has a dummy entry as symbol #0, so it ends up even. */
7129
7130 long
7131 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7132 {
7133 long symcount;
7134 long symtab_size;
7135 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7136
7137 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7138 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7139 if (symcount > 0)
7140 symtab_size -= sizeof (asymbol *);
7141
7142 return symtab_size;
7143 }
7144
7145 long
7146 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7147 {
7148 long symcount;
7149 long symtab_size;
7150 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7151
7152 if (elf_dynsymtab (abfd) == 0)
7153 {
7154 bfd_set_error (bfd_error_invalid_operation);
7155 return -1;
7156 }
7157
7158 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7159 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7160 if (symcount > 0)
7161 symtab_size -= sizeof (asymbol *);
7162
7163 return symtab_size;
7164 }
7165
7166 long
7167 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7168 sec_ptr asect)
7169 {
7170 return (asect->reloc_count + 1) * sizeof (arelent *);
7171 }
7172
7173 /* Canonicalize the relocs. */
7174
7175 long
7176 _bfd_elf_canonicalize_reloc (bfd *abfd,
7177 sec_ptr section,
7178 arelent **relptr,
7179 asymbol **symbols)
7180 {
7181 arelent *tblptr;
7182 unsigned int i;
7183 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7184
7185 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7186 return -1;
7187
7188 tblptr = section->relocation;
7189 for (i = 0; i < section->reloc_count; i++)
7190 *relptr++ = tblptr++;
7191
7192 *relptr = NULL;
7193
7194 return section->reloc_count;
7195 }
7196
7197 long
7198 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7199 {
7200 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7201 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7202
7203 if (symcount >= 0)
7204 bfd_get_symcount (abfd) = symcount;
7205 return symcount;
7206 }
7207
7208 long
7209 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7210 asymbol **allocation)
7211 {
7212 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7213 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7214
7215 if (symcount >= 0)
7216 bfd_get_dynamic_symcount (abfd) = symcount;
7217 return symcount;
7218 }
7219
7220 /* Return the size required for the dynamic reloc entries. Any loadable
7221 section that was actually installed in the BFD, and has type SHT_REL
7222 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7223 dynamic reloc section. */
7224
7225 long
7226 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7227 {
7228 long ret;
7229 asection *s;
7230
7231 if (elf_dynsymtab (abfd) == 0)
7232 {
7233 bfd_set_error (bfd_error_invalid_operation);
7234 return -1;
7235 }
7236
7237 ret = sizeof (arelent *);
7238 for (s = abfd->sections; s != NULL; s = s->next)
7239 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7240 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7241 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7242 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7243 * sizeof (arelent *));
7244
7245 return ret;
7246 }
7247
7248 /* Canonicalize the dynamic relocation entries. Note that we return the
7249 dynamic relocations as a single block, although they are actually
7250 associated with particular sections; the interface, which was
7251 designed for SunOS style shared libraries, expects that there is only
7252 one set of dynamic relocs. Any loadable section that was actually
7253 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7254 dynamic symbol table, is considered to be a dynamic reloc section. */
7255
7256 long
7257 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7258 arelent **storage,
7259 asymbol **syms)
7260 {
7261 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7262 asection *s;
7263 long ret;
7264
7265 if (elf_dynsymtab (abfd) == 0)
7266 {
7267 bfd_set_error (bfd_error_invalid_operation);
7268 return -1;
7269 }
7270
7271 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7272 ret = 0;
7273 for (s = abfd->sections; s != NULL; s = s->next)
7274 {
7275 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7276 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7277 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7278 {
7279 arelent *p;
7280 long count, i;
7281
7282 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7283 return -1;
7284 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7285 p = s->relocation;
7286 for (i = 0; i < count; i++)
7287 *storage++ = p++;
7288 ret += count;
7289 }
7290 }
7291
7292 *storage = NULL;
7293
7294 return ret;
7295 }
7296 \f
7297 /* Read in the version information. */
7298
7299 bfd_boolean
7300 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7301 {
7302 bfd_byte *contents = NULL;
7303 unsigned int freeidx = 0;
7304
7305 if (elf_dynverref (abfd) != 0)
7306 {
7307 Elf_Internal_Shdr *hdr;
7308 Elf_External_Verneed *everneed;
7309 Elf_Internal_Verneed *iverneed;
7310 unsigned int i;
7311 bfd_byte *contents_end;
7312
7313 hdr = &elf_tdata (abfd)->dynverref_hdr;
7314
7315 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
7316 {
7317 error_return_bad_verref:
7318 (*_bfd_error_handler)
7319 (_("%B: .gnu.version_r invalid entry"), abfd);
7320 bfd_set_error (bfd_error_bad_value);
7321 error_return_verref:
7322 elf_tdata (abfd)->verref = NULL;
7323 elf_tdata (abfd)->cverrefs = 0;
7324 goto error_return;
7325 }
7326
7327 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7328 if (contents == NULL)
7329 goto error_return_verref;
7330
7331 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7332 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7333 goto error_return_verref;
7334
7335 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7336 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7337
7338 if (elf_tdata (abfd)->verref == NULL)
7339 goto error_return_verref;
7340
7341 BFD_ASSERT (sizeof (Elf_External_Verneed)
7342 == sizeof (Elf_External_Vernaux));
7343 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7344 everneed = (Elf_External_Verneed *) contents;
7345 iverneed = elf_tdata (abfd)->verref;
7346 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7347 {
7348 Elf_External_Vernaux *evernaux;
7349 Elf_Internal_Vernaux *ivernaux;
7350 unsigned int j;
7351
7352 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7353
7354 iverneed->vn_bfd = abfd;
7355
7356 iverneed->vn_filename =
7357 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7358 iverneed->vn_file);
7359 if (iverneed->vn_filename == NULL)
7360 goto error_return_bad_verref;
7361
7362 if (iverneed->vn_cnt == 0)
7363 iverneed->vn_auxptr = NULL;
7364 else
7365 {
7366 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7367 bfd_alloc2 (abfd, iverneed->vn_cnt,
7368 sizeof (Elf_Internal_Vernaux));
7369 if (iverneed->vn_auxptr == NULL)
7370 goto error_return_verref;
7371 }
7372
7373 if (iverneed->vn_aux
7374 > (size_t) (contents_end - (bfd_byte *) everneed))
7375 goto error_return_bad_verref;
7376
7377 evernaux = ((Elf_External_Vernaux *)
7378 ((bfd_byte *) everneed + iverneed->vn_aux));
7379 ivernaux = iverneed->vn_auxptr;
7380 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7381 {
7382 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7383
7384 ivernaux->vna_nodename =
7385 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7386 ivernaux->vna_name);
7387 if (ivernaux->vna_nodename == NULL)
7388 goto error_return_bad_verref;
7389
7390 if (ivernaux->vna_other > freeidx)
7391 freeidx = ivernaux->vna_other;
7392
7393 ivernaux->vna_nextptr = NULL;
7394 if (ivernaux->vna_next == 0)
7395 {
7396 iverneed->vn_cnt = j + 1;
7397 break;
7398 }
7399 if (j + 1 < iverneed->vn_cnt)
7400 ivernaux->vna_nextptr = ivernaux + 1;
7401
7402 if (ivernaux->vna_next
7403 > (size_t) (contents_end - (bfd_byte *) evernaux))
7404 goto error_return_bad_verref;
7405
7406 evernaux = ((Elf_External_Vernaux *)
7407 ((bfd_byte *) evernaux + ivernaux->vna_next));
7408 }
7409
7410 iverneed->vn_nextref = NULL;
7411 if (iverneed->vn_next == 0)
7412 break;
7413 if (i + 1 < hdr->sh_info)
7414 iverneed->vn_nextref = iverneed + 1;
7415
7416 if (iverneed->vn_next
7417 > (size_t) (contents_end - (bfd_byte *) everneed))
7418 goto error_return_bad_verref;
7419
7420 everneed = ((Elf_External_Verneed *)
7421 ((bfd_byte *) everneed + iverneed->vn_next));
7422 }
7423 elf_tdata (abfd)->cverrefs = i;
7424
7425 free (contents);
7426 contents = NULL;
7427 }
7428
7429 if (elf_dynverdef (abfd) != 0)
7430 {
7431 Elf_Internal_Shdr *hdr;
7432 Elf_External_Verdef *everdef;
7433 Elf_Internal_Verdef *iverdef;
7434 Elf_Internal_Verdef *iverdefarr;
7435 Elf_Internal_Verdef iverdefmem;
7436 unsigned int i;
7437 unsigned int maxidx;
7438 bfd_byte *contents_end_def, *contents_end_aux;
7439
7440 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7441
7442 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
7443 {
7444 error_return_bad_verdef:
7445 (*_bfd_error_handler)
7446 (_("%B: .gnu.version_d invalid entry"), abfd);
7447 bfd_set_error (bfd_error_bad_value);
7448 error_return_verdef:
7449 elf_tdata (abfd)->verdef = NULL;
7450 elf_tdata (abfd)->cverdefs = 0;
7451 goto error_return;
7452 }
7453
7454 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7455 if (contents == NULL)
7456 goto error_return_verdef;
7457 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7458 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7459 goto error_return_verdef;
7460
7461 BFD_ASSERT (sizeof (Elf_External_Verdef)
7462 >= sizeof (Elf_External_Verdaux));
7463 contents_end_def = contents + hdr->sh_size
7464 - sizeof (Elf_External_Verdef);
7465 contents_end_aux = contents + hdr->sh_size
7466 - sizeof (Elf_External_Verdaux);
7467
7468 /* We know the number of entries in the section but not the maximum
7469 index. Therefore we have to run through all entries and find
7470 the maximum. */
7471 everdef = (Elf_External_Verdef *) contents;
7472 maxidx = 0;
7473 for (i = 0; i < hdr->sh_info; ++i)
7474 {
7475 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7476
7477 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
7478 goto error_return_bad_verdef;
7479 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7480 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7481
7482 if (iverdefmem.vd_next == 0)
7483 break;
7484
7485 if (iverdefmem.vd_next
7486 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7487 goto error_return_bad_verdef;
7488
7489 everdef = ((Elf_External_Verdef *)
7490 ((bfd_byte *) everdef + iverdefmem.vd_next));
7491 }
7492
7493 if (default_imported_symver)
7494 {
7495 if (freeidx > maxidx)
7496 maxidx = ++freeidx;
7497 else
7498 freeidx = ++maxidx;
7499 }
7500
7501 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7502 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7503 if (elf_tdata (abfd)->verdef == NULL)
7504 goto error_return_verdef;
7505
7506 elf_tdata (abfd)->cverdefs = maxidx;
7507
7508 everdef = (Elf_External_Verdef *) contents;
7509 iverdefarr = elf_tdata (abfd)->verdef;
7510 for (i = 0; i < hdr->sh_info; i++)
7511 {
7512 Elf_External_Verdaux *everdaux;
7513 Elf_Internal_Verdaux *iverdaux;
7514 unsigned int j;
7515
7516 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7517
7518 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7519 goto error_return_bad_verdef;
7520
7521 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7522 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7523
7524 iverdef->vd_bfd = abfd;
7525
7526 if (iverdef->vd_cnt == 0)
7527 iverdef->vd_auxptr = NULL;
7528 else
7529 {
7530 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7531 bfd_alloc2 (abfd, iverdef->vd_cnt,
7532 sizeof (Elf_Internal_Verdaux));
7533 if (iverdef->vd_auxptr == NULL)
7534 goto error_return_verdef;
7535 }
7536
7537 if (iverdef->vd_aux
7538 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7539 goto error_return_bad_verdef;
7540
7541 everdaux = ((Elf_External_Verdaux *)
7542 ((bfd_byte *) everdef + iverdef->vd_aux));
7543 iverdaux = iverdef->vd_auxptr;
7544 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7545 {
7546 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7547
7548 iverdaux->vda_nodename =
7549 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7550 iverdaux->vda_name);
7551 if (iverdaux->vda_nodename == NULL)
7552 goto error_return_bad_verdef;
7553
7554 iverdaux->vda_nextptr = NULL;
7555 if (iverdaux->vda_next == 0)
7556 {
7557 iverdef->vd_cnt = j + 1;
7558 break;
7559 }
7560 if (j + 1 < iverdef->vd_cnt)
7561 iverdaux->vda_nextptr = iverdaux + 1;
7562
7563 if (iverdaux->vda_next
7564 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7565 goto error_return_bad_verdef;
7566
7567 everdaux = ((Elf_External_Verdaux *)
7568 ((bfd_byte *) everdaux + iverdaux->vda_next));
7569 }
7570
7571 if (iverdef->vd_cnt)
7572 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7573
7574 iverdef->vd_nextdef = NULL;
7575 if (iverdef->vd_next == 0)
7576 break;
7577 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7578 iverdef->vd_nextdef = iverdef + 1;
7579
7580 everdef = ((Elf_External_Verdef *)
7581 ((bfd_byte *) everdef + iverdef->vd_next));
7582 }
7583
7584 free (contents);
7585 contents = NULL;
7586 }
7587 else if (default_imported_symver)
7588 {
7589 if (freeidx < 3)
7590 freeidx = 3;
7591 else
7592 freeidx++;
7593
7594 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7595 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7596 if (elf_tdata (abfd)->verdef == NULL)
7597 goto error_return;
7598
7599 elf_tdata (abfd)->cverdefs = freeidx;
7600 }
7601
7602 /* Create a default version based on the soname. */
7603 if (default_imported_symver)
7604 {
7605 Elf_Internal_Verdef *iverdef;
7606 Elf_Internal_Verdaux *iverdaux;
7607
7608 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7609
7610 iverdef->vd_version = VER_DEF_CURRENT;
7611 iverdef->vd_flags = 0;
7612 iverdef->vd_ndx = freeidx;
7613 iverdef->vd_cnt = 1;
7614
7615 iverdef->vd_bfd = abfd;
7616
7617 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7618 if (iverdef->vd_nodename == NULL)
7619 goto error_return_verdef;
7620 iverdef->vd_nextdef = NULL;
7621 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
7622 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
7623 if (iverdef->vd_auxptr == NULL)
7624 goto error_return_verdef;
7625
7626 iverdaux = iverdef->vd_auxptr;
7627 iverdaux->vda_nodename = iverdef->vd_nodename;
7628 }
7629
7630 return TRUE;
7631
7632 error_return:
7633 if (contents != NULL)
7634 free (contents);
7635 return FALSE;
7636 }
7637 \f
7638 asymbol *
7639 _bfd_elf_make_empty_symbol (bfd *abfd)
7640 {
7641 elf_symbol_type *newsym;
7642
7643 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
7644 if (!newsym)
7645 return NULL;
7646 newsym->symbol.the_bfd = abfd;
7647 return &newsym->symbol;
7648 }
7649
7650 void
7651 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7652 asymbol *symbol,
7653 symbol_info *ret)
7654 {
7655 bfd_symbol_info (symbol, ret);
7656 }
7657
7658 /* Return whether a symbol name implies a local symbol. Most targets
7659 use this function for the is_local_label_name entry point, but some
7660 override it. */
7661
7662 bfd_boolean
7663 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7664 const char *name)
7665 {
7666 /* Normal local symbols start with ``.L''. */
7667 if (name[0] == '.' && name[1] == 'L')
7668 return TRUE;
7669
7670 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7671 DWARF debugging symbols starting with ``..''. */
7672 if (name[0] == '.' && name[1] == '.')
7673 return TRUE;
7674
7675 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7676 emitting DWARF debugging output. I suspect this is actually a
7677 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7678 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7679 underscore to be emitted on some ELF targets). For ease of use,
7680 we treat such symbols as local. */
7681 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7682 return TRUE;
7683
7684 return FALSE;
7685 }
7686
7687 alent *
7688 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7689 asymbol *symbol ATTRIBUTE_UNUSED)
7690 {
7691 abort ();
7692 return NULL;
7693 }
7694
7695 bfd_boolean
7696 _bfd_elf_set_arch_mach (bfd *abfd,
7697 enum bfd_architecture arch,
7698 unsigned long machine)
7699 {
7700 /* If this isn't the right architecture for this backend, and this
7701 isn't the generic backend, fail. */
7702 if (arch != get_elf_backend_data (abfd)->arch
7703 && arch != bfd_arch_unknown
7704 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7705 return FALSE;
7706
7707 return bfd_default_set_arch_mach (abfd, arch, machine);
7708 }
7709
7710 /* Find the nearest line to a particular section and offset,
7711 for error reporting. */
7712
7713 bfd_boolean
7714 _bfd_elf_find_nearest_line (bfd *abfd,
7715 asymbol **symbols,
7716 asection *section,
7717 bfd_vma offset,
7718 const char **filename_ptr,
7719 const char **functionname_ptr,
7720 unsigned int *line_ptr,
7721 unsigned int *discriminator_ptr)
7722 {
7723 bfd_boolean found;
7724
7725 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7726 filename_ptr, functionname_ptr,
7727 line_ptr, discriminator_ptr,
7728 dwarf_debug_sections, 0,
7729 &elf_tdata (abfd)->dwarf2_find_line_info)
7730 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
7731 filename_ptr, functionname_ptr,
7732 line_ptr))
7733 {
7734 if (!*functionname_ptr)
7735 _bfd_elf_find_function (abfd, symbols, section, offset,
7736 *filename_ptr ? NULL : filename_ptr,
7737 functionname_ptr);
7738 return TRUE;
7739 }
7740
7741 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7742 &found, filename_ptr,
7743 functionname_ptr, line_ptr,
7744 &elf_tdata (abfd)->line_info))
7745 return FALSE;
7746 if (found && (*functionname_ptr || *line_ptr))
7747 return TRUE;
7748
7749 if (symbols == NULL)
7750 return FALSE;
7751
7752 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
7753 filename_ptr, functionname_ptr))
7754 return FALSE;
7755
7756 *line_ptr = 0;
7757 return TRUE;
7758 }
7759
7760 /* Find the line for a symbol. */
7761
7762 bfd_boolean
7763 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7764 const char **filename_ptr, unsigned int *line_ptr)
7765 {
7766 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
7767 filename_ptr, NULL, line_ptr, NULL,
7768 dwarf_debug_sections, 0,
7769 &elf_tdata (abfd)->dwarf2_find_line_info);
7770 }
7771
7772 /* After a call to bfd_find_nearest_line, successive calls to
7773 bfd_find_inliner_info can be used to get source information about
7774 each level of function inlining that terminated at the address
7775 passed to bfd_find_nearest_line. Currently this is only supported
7776 for DWARF2 with appropriate DWARF3 extensions. */
7777
7778 bfd_boolean
7779 _bfd_elf_find_inliner_info (bfd *abfd,
7780 const char **filename_ptr,
7781 const char **functionname_ptr,
7782 unsigned int *line_ptr)
7783 {
7784 bfd_boolean found;
7785 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7786 functionname_ptr, line_ptr,
7787 & elf_tdata (abfd)->dwarf2_find_line_info);
7788 return found;
7789 }
7790
7791 int
7792 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7793 {
7794 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7795 int ret = bed->s->sizeof_ehdr;
7796
7797 if (!info->relocatable)
7798 {
7799 bfd_size_type phdr_size = elf_program_header_size (abfd);
7800
7801 if (phdr_size == (bfd_size_type) -1)
7802 {
7803 struct elf_segment_map *m;
7804
7805 phdr_size = 0;
7806 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
7807 phdr_size += bed->s->sizeof_phdr;
7808
7809 if (phdr_size == 0)
7810 phdr_size = get_program_header_size (abfd, info);
7811 }
7812
7813 elf_program_header_size (abfd) = phdr_size;
7814 ret += phdr_size;
7815 }
7816
7817 return ret;
7818 }
7819
7820 bfd_boolean
7821 _bfd_elf_set_section_contents (bfd *abfd,
7822 sec_ptr section,
7823 const void *location,
7824 file_ptr offset,
7825 bfd_size_type count)
7826 {
7827 Elf_Internal_Shdr *hdr;
7828 file_ptr pos;
7829
7830 if (! abfd->output_has_begun
7831 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7832 return FALSE;
7833
7834 hdr = &elf_section_data (section)->this_hdr;
7835 pos = hdr->sh_offset + offset;
7836 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7837 || bfd_bwrite (location, count, abfd) != count)
7838 return FALSE;
7839
7840 return TRUE;
7841 }
7842
7843 void
7844 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7845 arelent *cache_ptr ATTRIBUTE_UNUSED,
7846 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7847 {
7848 abort ();
7849 }
7850
7851 /* Try to convert a non-ELF reloc into an ELF one. */
7852
7853 bfd_boolean
7854 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7855 {
7856 /* Check whether we really have an ELF howto. */
7857
7858 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7859 {
7860 bfd_reloc_code_real_type code;
7861 reloc_howto_type *howto;
7862
7863 /* Alien reloc: Try to determine its type to replace it with an
7864 equivalent ELF reloc. */
7865
7866 if (areloc->howto->pc_relative)
7867 {
7868 switch (areloc->howto->bitsize)
7869 {
7870 case 8:
7871 code = BFD_RELOC_8_PCREL;
7872 break;
7873 case 12:
7874 code = BFD_RELOC_12_PCREL;
7875 break;
7876 case 16:
7877 code = BFD_RELOC_16_PCREL;
7878 break;
7879 case 24:
7880 code = BFD_RELOC_24_PCREL;
7881 break;
7882 case 32:
7883 code = BFD_RELOC_32_PCREL;
7884 break;
7885 case 64:
7886 code = BFD_RELOC_64_PCREL;
7887 break;
7888 default:
7889 goto fail;
7890 }
7891
7892 howto = bfd_reloc_type_lookup (abfd, code);
7893
7894 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7895 {
7896 if (howto->pcrel_offset)
7897 areloc->addend += areloc->address;
7898 else
7899 areloc->addend -= areloc->address; /* addend is unsigned!! */
7900 }
7901 }
7902 else
7903 {
7904 switch (areloc->howto->bitsize)
7905 {
7906 case 8:
7907 code = BFD_RELOC_8;
7908 break;
7909 case 14:
7910 code = BFD_RELOC_14;
7911 break;
7912 case 16:
7913 code = BFD_RELOC_16;
7914 break;
7915 case 26:
7916 code = BFD_RELOC_26;
7917 break;
7918 case 32:
7919 code = BFD_RELOC_32;
7920 break;
7921 case 64:
7922 code = BFD_RELOC_64;
7923 break;
7924 default:
7925 goto fail;
7926 }
7927
7928 howto = bfd_reloc_type_lookup (abfd, code);
7929 }
7930
7931 if (howto)
7932 areloc->howto = howto;
7933 else
7934 goto fail;
7935 }
7936
7937 return TRUE;
7938
7939 fail:
7940 (*_bfd_error_handler)
7941 (_("%B: unsupported relocation type %s"),
7942 abfd, areloc->howto->name);
7943 bfd_set_error (bfd_error_bad_value);
7944 return FALSE;
7945 }
7946
7947 bfd_boolean
7948 _bfd_elf_close_and_cleanup (bfd *abfd)
7949 {
7950 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7951 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7952 {
7953 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
7954 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7955 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7956 }
7957
7958 return _bfd_generic_close_and_cleanup (abfd);
7959 }
7960
7961 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7962 in the relocation's offset. Thus we cannot allow any sort of sanity
7963 range-checking to interfere. There is nothing else to do in processing
7964 this reloc. */
7965
7966 bfd_reloc_status_type
7967 _bfd_elf_rel_vtable_reloc_fn
7968 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7969 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7970 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7971 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7972 {
7973 return bfd_reloc_ok;
7974 }
7975 \f
7976 /* Elf core file support. Much of this only works on native
7977 toolchains, since we rely on knowing the
7978 machine-dependent procfs structure in order to pick
7979 out details about the corefile. */
7980
7981 #ifdef HAVE_SYS_PROCFS_H
7982 /* Needed for new procfs interface on sparc-solaris. */
7983 # define _STRUCTURED_PROC 1
7984 # include <sys/procfs.h>
7985 #endif
7986
7987 /* Return a PID that identifies a "thread" for threaded cores, or the
7988 PID of the main process for non-threaded cores. */
7989
7990 static int
7991 elfcore_make_pid (bfd *abfd)
7992 {
7993 int pid;
7994
7995 pid = elf_tdata (abfd)->core->lwpid;
7996 if (pid == 0)
7997 pid = elf_tdata (abfd)->core->pid;
7998
7999 return pid;
8000 }
8001
8002 /* If there isn't a section called NAME, make one, using
8003 data from SECT. Note, this function will generate a
8004 reference to NAME, so you shouldn't deallocate or
8005 overwrite it. */
8006
8007 static bfd_boolean
8008 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8009 {
8010 asection *sect2;
8011
8012 if (bfd_get_section_by_name (abfd, name) != NULL)
8013 return TRUE;
8014
8015 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8016 if (sect2 == NULL)
8017 return FALSE;
8018
8019 sect2->size = sect->size;
8020 sect2->filepos = sect->filepos;
8021 sect2->alignment_power = sect->alignment_power;
8022 return TRUE;
8023 }
8024
8025 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8026 actually creates up to two pseudosections:
8027 - For the single-threaded case, a section named NAME, unless
8028 such a section already exists.
8029 - For the multi-threaded case, a section named "NAME/PID", where
8030 PID is elfcore_make_pid (abfd).
8031 Both pseudosections have identical contents. */
8032 bfd_boolean
8033 _bfd_elfcore_make_pseudosection (bfd *abfd,
8034 char *name,
8035 size_t size,
8036 ufile_ptr filepos)
8037 {
8038 char buf[100];
8039 char *threaded_name;
8040 size_t len;
8041 asection *sect;
8042
8043 /* Build the section name. */
8044
8045 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8046 len = strlen (buf) + 1;
8047 threaded_name = (char *) bfd_alloc (abfd, len);
8048 if (threaded_name == NULL)
8049 return FALSE;
8050 memcpy (threaded_name, buf, len);
8051
8052 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8053 SEC_HAS_CONTENTS);
8054 if (sect == NULL)
8055 return FALSE;
8056 sect->size = size;
8057 sect->filepos = filepos;
8058 sect->alignment_power = 2;
8059
8060 return elfcore_maybe_make_sect (abfd, name, sect);
8061 }
8062
8063 /* prstatus_t exists on:
8064 solaris 2.5+
8065 linux 2.[01] + glibc
8066 unixware 4.2
8067 */
8068
8069 #if defined (HAVE_PRSTATUS_T)
8070
8071 static bfd_boolean
8072 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8073 {
8074 size_t size;
8075 int offset;
8076
8077 if (note->descsz == sizeof (prstatus_t))
8078 {
8079 prstatus_t prstat;
8080
8081 size = sizeof (prstat.pr_reg);
8082 offset = offsetof (prstatus_t, pr_reg);
8083 memcpy (&prstat, note->descdata, sizeof (prstat));
8084
8085 /* Do not overwrite the core signal if it
8086 has already been set by another thread. */
8087 if (elf_tdata (abfd)->core->signal == 0)
8088 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8089 if (elf_tdata (abfd)->core->pid == 0)
8090 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8091
8092 /* pr_who exists on:
8093 solaris 2.5+
8094 unixware 4.2
8095 pr_who doesn't exist on:
8096 linux 2.[01]
8097 */
8098 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8099 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8100 #else
8101 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8102 #endif
8103 }
8104 #if defined (HAVE_PRSTATUS32_T)
8105 else if (note->descsz == sizeof (prstatus32_t))
8106 {
8107 /* 64-bit host, 32-bit corefile */
8108 prstatus32_t prstat;
8109
8110 size = sizeof (prstat.pr_reg);
8111 offset = offsetof (prstatus32_t, pr_reg);
8112 memcpy (&prstat, note->descdata, sizeof (prstat));
8113
8114 /* Do not overwrite the core signal if it
8115 has already been set by another thread. */
8116 if (elf_tdata (abfd)->core->signal == 0)
8117 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8118 if (elf_tdata (abfd)->core->pid == 0)
8119 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8120
8121 /* pr_who exists on:
8122 solaris 2.5+
8123 unixware 4.2
8124 pr_who doesn't exist on:
8125 linux 2.[01]
8126 */
8127 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8128 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8129 #else
8130 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8131 #endif
8132 }
8133 #endif /* HAVE_PRSTATUS32_T */
8134 else
8135 {
8136 /* Fail - we don't know how to handle any other
8137 note size (ie. data object type). */
8138 return TRUE;
8139 }
8140
8141 /* Make a ".reg/999" section and a ".reg" section. */
8142 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8143 size, note->descpos + offset);
8144 }
8145 #endif /* defined (HAVE_PRSTATUS_T) */
8146
8147 /* Create a pseudosection containing the exact contents of NOTE. */
8148 static bfd_boolean
8149 elfcore_make_note_pseudosection (bfd *abfd,
8150 char *name,
8151 Elf_Internal_Note *note)
8152 {
8153 return _bfd_elfcore_make_pseudosection (abfd, name,
8154 note->descsz, note->descpos);
8155 }
8156
8157 /* There isn't a consistent prfpregset_t across platforms,
8158 but it doesn't matter, because we don't have to pick this
8159 data structure apart. */
8160
8161 static bfd_boolean
8162 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8163 {
8164 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8165 }
8166
8167 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8168 type of NT_PRXFPREG. Just include the whole note's contents
8169 literally. */
8170
8171 static bfd_boolean
8172 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8173 {
8174 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8175 }
8176
8177 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8178 with a note type of NT_X86_XSTATE. Just include the whole note's
8179 contents literally. */
8180
8181 static bfd_boolean
8182 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8183 {
8184 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8185 }
8186
8187 static bfd_boolean
8188 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8189 {
8190 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8191 }
8192
8193 static bfd_boolean
8194 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8195 {
8196 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8197 }
8198
8199 static bfd_boolean
8200 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8201 {
8202 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8203 }
8204
8205 static bfd_boolean
8206 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8207 {
8208 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8209 }
8210
8211 static bfd_boolean
8212 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8213 {
8214 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8215 }
8216
8217 static bfd_boolean
8218 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8219 {
8220 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8221 }
8222
8223 static bfd_boolean
8224 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8225 {
8226 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8227 }
8228
8229 static bfd_boolean
8230 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8231 {
8232 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8233 }
8234
8235 static bfd_boolean
8236 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8237 {
8238 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8239 }
8240
8241 static bfd_boolean
8242 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8243 {
8244 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8245 }
8246
8247 static bfd_boolean
8248 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8249 {
8250 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8251 }
8252
8253 static bfd_boolean
8254 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
8255 {
8256 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
8257 }
8258
8259 static bfd_boolean
8260 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
8261 {
8262 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
8263 }
8264
8265 static bfd_boolean
8266 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8267 {
8268 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8269 }
8270
8271 static bfd_boolean
8272 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8273 {
8274 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8275 }
8276
8277 static bfd_boolean
8278 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8279 {
8280 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8281 }
8282
8283 static bfd_boolean
8284 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8285 {
8286 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8287 }
8288
8289 #if defined (HAVE_PRPSINFO_T)
8290 typedef prpsinfo_t elfcore_psinfo_t;
8291 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8292 typedef prpsinfo32_t elfcore_psinfo32_t;
8293 #endif
8294 #endif
8295
8296 #if defined (HAVE_PSINFO_T)
8297 typedef psinfo_t elfcore_psinfo_t;
8298 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8299 typedef psinfo32_t elfcore_psinfo32_t;
8300 #endif
8301 #endif
8302
8303 /* return a malloc'ed copy of a string at START which is at
8304 most MAX bytes long, possibly without a terminating '\0'.
8305 the copy will always have a terminating '\0'. */
8306
8307 char *
8308 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8309 {
8310 char *dups;
8311 char *end = (char *) memchr (start, '\0', max);
8312 size_t len;
8313
8314 if (end == NULL)
8315 len = max;
8316 else
8317 len = end - start;
8318
8319 dups = (char *) bfd_alloc (abfd, len + 1);
8320 if (dups == NULL)
8321 return NULL;
8322
8323 memcpy (dups, start, len);
8324 dups[len] = '\0';
8325
8326 return dups;
8327 }
8328
8329 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8330 static bfd_boolean
8331 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8332 {
8333 if (note->descsz == sizeof (elfcore_psinfo_t))
8334 {
8335 elfcore_psinfo_t psinfo;
8336
8337 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8338
8339 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8340 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8341 #endif
8342 elf_tdata (abfd)->core->program
8343 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8344 sizeof (psinfo.pr_fname));
8345
8346 elf_tdata (abfd)->core->command
8347 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8348 sizeof (psinfo.pr_psargs));
8349 }
8350 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8351 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8352 {
8353 /* 64-bit host, 32-bit corefile */
8354 elfcore_psinfo32_t psinfo;
8355
8356 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8357
8358 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8359 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8360 #endif
8361 elf_tdata (abfd)->core->program
8362 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8363 sizeof (psinfo.pr_fname));
8364
8365 elf_tdata (abfd)->core->command
8366 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8367 sizeof (psinfo.pr_psargs));
8368 }
8369 #endif
8370
8371 else
8372 {
8373 /* Fail - we don't know how to handle any other
8374 note size (ie. data object type). */
8375 return TRUE;
8376 }
8377
8378 /* Note that for some reason, a spurious space is tacked
8379 onto the end of the args in some (at least one anyway)
8380 implementations, so strip it off if it exists. */
8381
8382 {
8383 char *command = elf_tdata (abfd)->core->command;
8384 int n = strlen (command);
8385
8386 if (0 < n && command[n - 1] == ' ')
8387 command[n - 1] = '\0';
8388 }
8389
8390 return TRUE;
8391 }
8392 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8393
8394 #if defined (HAVE_PSTATUS_T)
8395 static bfd_boolean
8396 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8397 {
8398 if (note->descsz == sizeof (pstatus_t)
8399 #if defined (HAVE_PXSTATUS_T)
8400 || note->descsz == sizeof (pxstatus_t)
8401 #endif
8402 )
8403 {
8404 pstatus_t pstat;
8405
8406 memcpy (&pstat, note->descdata, sizeof (pstat));
8407
8408 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8409 }
8410 #if defined (HAVE_PSTATUS32_T)
8411 else if (note->descsz == sizeof (pstatus32_t))
8412 {
8413 /* 64-bit host, 32-bit corefile */
8414 pstatus32_t pstat;
8415
8416 memcpy (&pstat, note->descdata, sizeof (pstat));
8417
8418 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8419 }
8420 #endif
8421 /* Could grab some more details from the "representative"
8422 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8423 NT_LWPSTATUS note, presumably. */
8424
8425 return TRUE;
8426 }
8427 #endif /* defined (HAVE_PSTATUS_T) */
8428
8429 #if defined (HAVE_LWPSTATUS_T)
8430 static bfd_boolean
8431 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8432 {
8433 lwpstatus_t lwpstat;
8434 char buf[100];
8435 char *name;
8436 size_t len;
8437 asection *sect;
8438
8439 if (note->descsz != sizeof (lwpstat)
8440 #if defined (HAVE_LWPXSTATUS_T)
8441 && note->descsz != sizeof (lwpxstatus_t)
8442 #endif
8443 )
8444 return TRUE;
8445
8446 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8447
8448 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8449 /* Do not overwrite the core signal if it has already been set by
8450 another thread. */
8451 if (elf_tdata (abfd)->core->signal == 0)
8452 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8453
8454 /* Make a ".reg/999" section. */
8455
8456 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8457 len = strlen (buf) + 1;
8458 name = bfd_alloc (abfd, len);
8459 if (name == NULL)
8460 return FALSE;
8461 memcpy (name, buf, len);
8462
8463 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8464 if (sect == NULL)
8465 return FALSE;
8466
8467 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8468 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8469 sect->filepos = note->descpos
8470 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8471 #endif
8472
8473 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8474 sect->size = sizeof (lwpstat.pr_reg);
8475 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8476 #endif
8477
8478 sect->alignment_power = 2;
8479
8480 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8481 return FALSE;
8482
8483 /* Make a ".reg2/999" section */
8484
8485 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8486 len = strlen (buf) + 1;
8487 name = bfd_alloc (abfd, len);
8488 if (name == NULL)
8489 return FALSE;
8490 memcpy (name, buf, len);
8491
8492 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8493 if (sect == NULL)
8494 return FALSE;
8495
8496 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8497 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8498 sect->filepos = note->descpos
8499 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8500 #endif
8501
8502 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8503 sect->size = sizeof (lwpstat.pr_fpreg);
8504 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8505 #endif
8506
8507 sect->alignment_power = 2;
8508
8509 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8510 }
8511 #endif /* defined (HAVE_LWPSTATUS_T) */
8512
8513 static bfd_boolean
8514 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8515 {
8516 char buf[30];
8517 char *name;
8518 size_t len;
8519 asection *sect;
8520 int type;
8521 int is_active_thread;
8522 bfd_vma base_addr;
8523
8524 if (note->descsz < 728)
8525 return TRUE;
8526
8527 if (! CONST_STRNEQ (note->namedata, "win32"))
8528 return TRUE;
8529
8530 type = bfd_get_32 (abfd, note->descdata);
8531
8532 switch (type)
8533 {
8534 case 1 /* NOTE_INFO_PROCESS */:
8535 /* FIXME: need to add ->core->command. */
8536 /* process_info.pid */
8537 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
8538 /* process_info.signal */
8539 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
8540 break;
8541
8542 case 2 /* NOTE_INFO_THREAD */:
8543 /* Make a ".reg/999" section. */
8544 /* thread_info.tid */
8545 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8546
8547 len = strlen (buf) + 1;
8548 name = (char *) bfd_alloc (abfd, len);
8549 if (name == NULL)
8550 return FALSE;
8551
8552 memcpy (name, buf, len);
8553
8554 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8555 if (sect == NULL)
8556 return FALSE;
8557
8558 /* sizeof (thread_info.thread_context) */
8559 sect->size = 716;
8560 /* offsetof (thread_info.thread_context) */
8561 sect->filepos = note->descpos + 12;
8562 sect->alignment_power = 2;
8563
8564 /* thread_info.is_active_thread */
8565 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8566
8567 if (is_active_thread)
8568 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8569 return FALSE;
8570 break;
8571
8572 case 3 /* NOTE_INFO_MODULE */:
8573 /* Make a ".module/xxxxxxxx" section. */
8574 /* module_info.base_address */
8575 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8576 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8577
8578 len = strlen (buf) + 1;
8579 name = (char *) bfd_alloc (abfd, len);
8580 if (name == NULL)
8581 return FALSE;
8582
8583 memcpy (name, buf, len);
8584
8585 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8586
8587 if (sect == NULL)
8588 return FALSE;
8589
8590 sect->size = note->descsz;
8591 sect->filepos = note->descpos;
8592 sect->alignment_power = 2;
8593 break;
8594
8595 default:
8596 return TRUE;
8597 }
8598
8599 return TRUE;
8600 }
8601
8602 static bfd_boolean
8603 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8604 {
8605 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8606
8607 switch (note->type)
8608 {
8609 default:
8610 return TRUE;
8611
8612 case NT_PRSTATUS:
8613 if (bed->elf_backend_grok_prstatus)
8614 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8615 return TRUE;
8616 #if defined (HAVE_PRSTATUS_T)
8617 return elfcore_grok_prstatus (abfd, note);
8618 #else
8619 return TRUE;
8620 #endif
8621
8622 #if defined (HAVE_PSTATUS_T)
8623 case NT_PSTATUS:
8624 return elfcore_grok_pstatus (abfd, note);
8625 #endif
8626
8627 #if defined (HAVE_LWPSTATUS_T)
8628 case NT_LWPSTATUS:
8629 return elfcore_grok_lwpstatus (abfd, note);
8630 #endif
8631
8632 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8633 return elfcore_grok_prfpreg (abfd, note);
8634
8635 case NT_WIN32PSTATUS:
8636 return elfcore_grok_win32pstatus (abfd, note);
8637
8638 case NT_PRXFPREG: /* Linux SSE extension */
8639 if (note->namesz == 6
8640 && strcmp (note->namedata, "LINUX") == 0)
8641 return elfcore_grok_prxfpreg (abfd, note);
8642 else
8643 return TRUE;
8644
8645 case NT_X86_XSTATE: /* Linux XSAVE extension */
8646 if (note->namesz == 6
8647 && strcmp (note->namedata, "LINUX") == 0)
8648 return elfcore_grok_xstatereg (abfd, note);
8649 else
8650 return TRUE;
8651
8652 case NT_PPC_VMX:
8653 if (note->namesz == 6
8654 && strcmp (note->namedata, "LINUX") == 0)
8655 return elfcore_grok_ppc_vmx (abfd, note);
8656 else
8657 return TRUE;
8658
8659 case NT_PPC_VSX:
8660 if (note->namesz == 6
8661 && strcmp (note->namedata, "LINUX") == 0)
8662 return elfcore_grok_ppc_vsx (abfd, note);
8663 else
8664 return TRUE;
8665
8666 case NT_S390_HIGH_GPRS:
8667 if (note->namesz == 6
8668 && strcmp (note->namedata, "LINUX") == 0)
8669 return elfcore_grok_s390_high_gprs (abfd, note);
8670 else
8671 return TRUE;
8672
8673 case NT_S390_TIMER:
8674 if (note->namesz == 6
8675 && strcmp (note->namedata, "LINUX") == 0)
8676 return elfcore_grok_s390_timer (abfd, note);
8677 else
8678 return TRUE;
8679
8680 case NT_S390_TODCMP:
8681 if (note->namesz == 6
8682 && strcmp (note->namedata, "LINUX") == 0)
8683 return elfcore_grok_s390_todcmp (abfd, note);
8684 else
8685 return TRUE;
8686
8687 case NT_S390_TODPREG:
8688 if (note->namesz == 6
8689 && strcmp (note->namedata, "LINUX") == 0)
8690 return elfcore_grok_s390_todpreg (abfd, note);
8691 else
8692 return TRUE;
8693
8694 case NT_S390_CTRS:
8695 if (note->namesz == 6
8696 && strcmp (note->namedata, "LINUX") == 0)
8697 return elfcore_grok_s390_ctrs (abfd, note);
8698 else
8699 return TRUE;
8700
8701 case NT_S390_PREFIX:
8702 if (note->namesz == 6
8703 && strcmp (note->namedata, "LINUX") == 0)
8704 return elfcore_grok_s390_prefix (abfd, note);
8705 else
8706 return TRUE;
8707
8708 case NT_S390_LAST_BREAK:
8709 if (note->namesz == 6
8710 && strcmp (note->namedata, "LINUX") == 0)
8711 return elfcore_grok_s390_last_break (abfd, note);
8712 else
8713 return TRUE;
8714
8715 case NT_S390_SYSTEM_CALL:
8716 if (note->namesz == 6
8717 && strcmp (note->namedata, "LINUX") == 0)
8718 return elfcore_grok_s390_system_call (abfd, note);
8719 else
8720 return TRUE;
8721
8722 case NT_S390_TDB:
8723 if (note->namesz == 6
8724 && strcmp (note->namedata, "LINUX") == 0)
8725 return elfcore_grok_s390_tdb (abfd, note);
8726 else
8727 return TRUE;
8728
8729 case NT_S390_VXRS_LOW:
8730 if (note->namesz == 6
8731 && strcmp (note->namedata, "LINUX") == 0)
8732 return elfcore_grok_s390_vxrs_low (abfd, note);
8733 else
8734 return TRUE;
8735
8736 case NT_S390_VXRS_HIGH:
8737 if (note->namesz == 6
8738 && strcmp (note->namedata, "LINUX") == 0)
8739 return elfcore_grok_s390_vxrs_high (abfd, note);
8740 else
8741 return TRUE;
8742
8743 case NT_ARM_VFP:
8744 if (note->namesz == 6
8745 && strcmp (note->namedata, "LINUX") == 0)
8746 return elfcore_grok_arm_vfp (abfd, note);
8747 else
8748 return TRUE;
8749
8750 case NT_ARM_TLS:
8751 if (note->namesz == 6
8752 && strcmp (note->namedata, "LINUX") == 0)
8753 return elfcore_grok_aarch_tls (abfd, note);
8754 else
8755 return TRUE;
8756
8757 case NT_ARM_HW_BREAK:
8758 if (note->namesz == 6
8759 && strcmp (note->namedata, "LINUX") == 0)
8760 return elfcore_grok_aarch_hw_break (abfd, note);
8761 else
8762 return TRUE;
8763
8764 case NT_ARM_HW_WATCH:
8765 if (note->namesz == 6
8766 && strcmp (note->namedata, "LINUX") == 0)
8767 return elfcore_grok_aarch_hw_watch (abfd, note);
8768 else
8769 return TRUE;
8770
8771 case NT_PRPSINFO:
8772 case NT_PSINFO:
8773 if (bed->elf_backend_grok_psinfo)
8774 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8775 return TRUE;
8776 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8777 return elfcore_grok_psinfo (abfd, note);
8778 #else
8779 return TRUE;
8780 #endif
8781
8782 case NT_AUXV:
8783 {
8784 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8785 SEC_HAS_CONTENTS);
8786
8787 if (sect == NULL)
8788 return FALSE;
8789 sect->size = note->descsz;
8790 sect->filepos = note->descpos;
8791 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8792
8793 return TRUE;
8794 }
8795
8796 case NT_FILE:
8797 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
8798 note);
8799
8800 case NT_SIGINFO:
8801 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8802 note);
8803 }
8804 }
8805
8806 static bfd_boolean
8807 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8808 {
8809 struct elf_obj_tdata *t;
8810
8811 if (note->descsz == 0)
8812 return FALSE;
8813
8814 t = elf_tdata (abfd);
8815 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz);
8816 if (t->build_id == NULL)
8817 return FALSE;
8818
8819 t->build_id->size = note->descsz;
8820 memcpy (t->build_id->data, note->descdata, note->descsz);
8821
8822 return TRUE;
8823 }
8824
8825 static bfd_boolean
8826 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8827 {
8828 switch (note->type)
8829 {
8830 default:
8831 return TRUE;
8832
8833 case NT_GNU_BUILD_ID:
8834 return elfobj_grok_gnu_build_id (abfd, note);
8835 }
8836 }
8837
8838 static bfd_boolean
8839 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8840 {
8841 struct sdt_note *cur =
8842 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8843 + note->descsz);
8844
8845 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8846 cur->size = (bfd_size_type) note->descsz;
8847 memcpy (cur->data, note->descdata, note->descsz);
8848
8849 elf_tdata (abfd)->sdt_note_head = cur;
8850
8851 return TRUE;
8852 }
8853
8854 static bfd_boolean
8855 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8856 {
8857 switch (note->type)
8858 {
8859 case NT_STAPSDT:
8860 return elfobj_grok_stapsdt_note_1 (abfd, note);
8861
8862 default:
8863 return TRUE;
8864 }
8865 }
8866
8867 static bfd_boolean
8868 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8869 {
8870 char *cp;
8871
8872 cp = strchr (note->namedata, '@');
8873 if (cp != NULL)
8874 {
8875 *lwpidp = atoi(cp + 1);
8876 return TRUE;
8877 }
8878 return FALSE;
8879 }
8880
8881 static bfd_boolean
8882 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8883 {
8884 /* Signal number at offset 0x08. */
8885 elf_tdata (abfd)->core->signal
8886 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8887
8888 /* Process ID at offset 0x50. */
8889 elf_tdata (abfd)->core->pid
8890 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8891
8892 /* Command name at 0x7c (max 32 bytes, including nul). */
8893 elf_tdata (abfd)->core->command
8894 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8895
8896 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8897 note);
8898 }
8899
8900 static bfd_boolean
8901 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8902 {
8903 int lwp;
8904
8905 if (elfcore_netbsd_get_lwpid (note, &lwp))
8906 elf_tdata (abfd)->core->lwpid = lwp;
8907
8908 if (note->type == NT_NETBSDCORE_PROCINFO)
8909 {
8910 /* NetBSD-specific core "procinfo". Note that we expect to
8911 find this note before any of the others, which is fine,
8912 since the kernel writes this note out first when it
8913 creates a core file. */
8914
8915 return elfcore_grok_netbsd_procinfo (abfd, note);
8916 }
8917
8918 /* As of Jan 2002 there are no other machine-independent notes
8919 defined for NetBSD core files. If the note type is less
8920 than the start of the machine-dependent note types, we don't
8921 understand it. */
8922
8923 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8924 return TRUE;
8925
8926
8927 switch (bfd_get_arch (abfd))
8928 {
8929 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8930 PT_GETFPREGS == mach+2. */
8931
8932 case bfd_arch_alpha:
8933 case bfd_arch_sparc:
8934 switch (note->type)
8935 {
8936 case NT_NETBSDCORE_FIRSTMACH+0:
8937 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8938
8939 case NT_NETBSDCORE_FIRSTMACH+2:
8940 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8941
8942 default:
8943 return TRUE;
8944 }
8945
8946 /* On all other arch's, PT_GETREGS == mach+1 and
8947 PT_GETFPREGS == mach+3. */
8948
8949 default:
8950 switch (note->type)
8951 {
8952 case NT_NETBSDCORE_FIRSTMACH+1:
8953 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8954
8955 case NT_NETBSDCORE_FIRSTMACH+3:
8956 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8957
8958 default:
8959 return TRUE;
8960 }
8961 }
8962 /* NOTREACHED */
8963 }
8964
8965 static bfd_boolean
8966 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8967 {
8968 /* Signal number at offset 0x08. */
8969 elf_tdata (abfd)->core->signal
8970 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8971
8972 /* Process ID at offset 0x20. */
8973 elf_tdata (abfd)->core->pid
8974 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8975
8976 /* Command name at 0x48 (max 32 bytes, including nul). */
8977 elf_tdata (abfd)->core->command
8978 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8979
8980 return TRUE;
8981 }
8982
8983 static bfd_boolean
8984 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8985 {
8986 if (note->type == NT_OPENBSD_PROCINFO)
8987 return elfcore_grok_openbsd_procinfo (abfd, note);
8988
8989 if (note->type == NT_OPENBSD_REGS)
8990 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8991
8992 if (note->type == NT_OPENBSD_FPREGS)
8993 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8994
8995 if (note->type == NT_OPENBSD_XFPREGS)
8996 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8997
8998 if (note->type == NT_OPENBSD_AUXV)
8999 {
9000 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9001 SEC_HAS_CONTENTS);
9002
9003 if (sect == NULL)
9004 return FALSE;
9005 sect->size = note->descsz;
9006 sect->filepos = note->descpos;
9007 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9008
9009 return TRUE;
9010 }
9011
9012 if (note->type == NT_OPENBSD_WCOOKIE)
9013 {
9014 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
9015 SEC_HAS_CONTENTS);
9016
9017 if (sect == NULL)
9018 return FALSE;
9019 sect->size = note->descsz;
9020 sect->filepos = note->descpos;
9021 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9022
9023 return TRUE;
9024 }
9025
9026 return TRUE;
9027 }
9028
9029 static bfd_boolean
9030 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
9031 {
9032 void *ddata = note->descdata;
9033 char buf[100];
9034 char *name;
9035 asection *sect;
9036 short sig;
9037 unsigned flags;
9038
9039 /* nto_procfs_status 'pid' field is at offset 0. */
9040 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
9041
9042 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
9043 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
9044
9045 /* nto_procfs_status 'flags' field is at offset 8. */
9046 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
9047
9048 /* nto_procfs_status 'what' field is at offset 14. */
9049 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
9050 {
9051 elf_tdata (abfd)->core->signal = sig;
9052 elf_tdata (abfd)->core->lwpid = *tid;
9053 }
9054
9055 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
9056 do not come from signals so we make sure we set the current
9057 thread just in case. */
9058 if (flags & 0x00000080)
9059 elf_tdata (abfd)->core->lwpid = *tid;
9060
9061 /* Make a ".qnx_core_status/%d" section. */
9062 sprintf (buf, ".qnx_core_status/%ld", *tid);
9063
9064 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9065 if (name == NULL)
9066 return FALSE;
9067 strcpy (name, buf);
9068
9069 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9070 if (sect == NULL)
9071 return FALSE;
9072
9073 sect->size = note->descsz;
9074 sect->filepos = note->descpos;
9075 sect->alignment_power = 2;
9076
9077 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9078 }
9079
9080 static bfd_boolean
9081 elfcore_grok_nto_regs (bfd *abfd,
9082 Elf_Internal_Note *note,
9083 long tid,
9084 char *base)
9085 {
9086 char buf[100];
9087 char *name;
9088 asection *sect;
9089
9090 /* Make a "(base)/%d" section. */
9091 sprintf (buf, "%s/%ld", base, tid);
9092
9093 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9094 if (name == NULL)
9095 return FALSE;
9096 strcpy (name, buf);
9097
9098 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9099 if (sect == NULL)
9100 return FALSE;
9101
9102 sect->size = note->descsz;
9103 sect->filepos = note->descpos;
9104 sect->alignment_power = 2;
9105
9106 /* This is the current thread. */
9107 if (elf_tdata (abfd)->core->lwpid == tid)
9108 return elfcore_maybe_make_sect (abfd, base, sect);
9109
9110 return TRUE;
9111 }
9112
9113 #define BFD_QNT_CORE_INFO 7
9114 #define BFD_QNT_CORE_STATUS 8
9115 #define BFD_QNT_CORE_GREG 9
9116 #define BFD_QNT_CORE_FPREG 10
9117
9118 static bfd_boolean
9119 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9120 {
9121 /* Every GREG section has a STATUS section before it. Store the
9122 tid from the previous call to pass down to the next gregs
9123 function. */
9124 static long tid = 1;
9125
9126 switch (note->type)
9127 {
9128 case BFD_QNT_CORE_INFO:
9129 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9130 case BFD_QNT_CORE_STATUS:
9131 return elfcore_grok_nto_status (abfd, note, &tid);
9132 case BFD_QNT_CORE_GREG:
9133 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9134 case BFD_QNT_CORE_FPREG:
9135 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9136 default:
9137 return TRUE;
9138 }
9139 }
9140
9141 static bfd_boolean
9142 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9143 {
9144 char *name;
9145 asection *sect;
9146 size_t len;
9147
9148 /* Use note name as section name. */
9149 len = note->namesz;
9150 name = (char *) bfd_alloc (abfd, len);
9151 if (name == NULL)
9152 return FALSE;
9153 memcpy (name, note->namedata, len);
9154 name[len - 1] = '\0';
9155
9156 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9157 if (sect == NULL)
9158 return FALSE;
9159
9160 sect->size = note->descsz;
9161 sect->filepos = note->descpos;
9162 sect->alignment_power = 1;
9163
9164 return TRUE;
9165 }
9166
9167 /* Function: elfcore_write_note
9168
9169 Inputs:
9170 buffer to hold note, and current size of buffer
9171 name of note
9172 type of note
9173 data for note
9174 size of data for note
9175
9176 Writes note to end of buffer. ELF64 notes are written exactly as
9177 for ELF32, despite the current (as of 2006) ELF gabi specifying
9178 that they ought to have 8-byte namesz and descsz field, and have
9179 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9180
9181 Return:
9182 Pointer to realloc'd buffer, *BUFSIZ updated. */
9183
9184 char *
9185 elfcore_write_note (bfd *abfd,
9186 char *buf,
9187 int *bufsiz,
9188 const char *name,
9189 int type,
9190 const void *input,
9191 int size)
9192 {
9193 Elf_External_Note *xnp;
9194 size_t namesz;
9195 size_t newspace;
9196 char *dest;
9197
9198 namesz = 0;
9199 if (name != NULL)
9200 namesz = strlen (name) + 1;
9201
9202 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9203
9204 buf = (char *) realloc (buf, *bufsiz + newspace);
9205 if (buf == NULL)
9206 return buf;
9207 dest = buf + *bufsiz;
9208 *bufsiz += newspace;
9209 xnp = (Elf_External_Note *) dest;
9210 H_PUT_32 (abfd, namesz, xnp->namesz);
9211 H_PUT_32 (abfd, size, xnp->descsz);
9212 H_PUT_32 (abfd, type, xnp->type);
9213 dest = xnp->name;
9214 if (name != NULL)
9215 {
9216 memcpy (dest, name, namesz);
9217 dest += namesz;
9218 while (namesz & 3)
9219 {
9220 *dest++ = '\0';
9221 ++namesz;
9222 }
9223 }
9224 memcpy (dest, input, size);
9225 dest += size;
9226 while (size & 3)
9227 {
9228 *dest++ = '\0';
9229 ++size;
9230 }
9231 return buf;
9232 }
9233
9234 char *
9235 elfcore_write_prpsinfo (bfd *abfd,
9236 char *buf,
9237 int *bufsiz,
9238 const char *fname,
9239 const char *psargs)
9240 {
9241 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9242
9243 if (bed->elf_backend_write_core_note != NULL)
9244 {
9245 char *ret;
9246 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9247 NT_PRPSINFO, fname, psargs);
9248 if (ret != NULL)
9249 return ret;
9250 }
9251
9252 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9253 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9254 if (bed->s->elfclass == ELFCLASS32)
9255 {
9256 #if defined (HAVE_PSINFO32_T)
9257 psinfo32_t data;
9258 int note_type = NT_PSINFO;
9259 #else
9260 prpsinfo32_t data;
9261 int note_type = NT_PRPSINFO;
9262 #endif
9263
9264 memset (&data, 0, sizeof (data));
9265 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9266 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9267 return elfcore_write_note (abfd, buf, bufsiz,
9268 "CORE", note_type, &data, sizeof (data));
9269 }
9270 else
9271 #endif
9272 {
9273 #if defined (HAVE_PSINFO_T)
9274 psinfo_t data;
9275 int note_type = NT_PSINFO;
9276 #else
9277 prpsinfo_t data;
9278 int note_type = NT_PRPSINFO;
9279 #endif
9280
9281 memset (&data, 0, sizeof (data));
9282 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9283 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9284 return elfcore_write_note (abfd, buf, bufsiz,
9285 "CORE", note_type, &data, sizeof (data));
9286 }
9287 #endif /* PSINFO_T or PRPSINFO_T */
9288
9289 free (buf);
9290 return NULL;
9291 }
9292
9293 char *
9294 elfcore_write_linux_prpsinfo32
9295 (bfd *abfd, char *buf, int *bufsiz,
9296 const struct elf_internal_linux_prpsinfo *prpsinfo)
9297 {
9298 struct elf_external_linux_prpsinfo32 data;
9299
9300 memset (&data, 0, sizeof (data));
9301 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9302
9303 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9304 &data, sizeof (data));
9305 }
9306
9307 char *
9308 elfcore_write_linux_prpsinfo64
9309 (bfd *abfd, char *buf, int *bufsiz,
9310 const struct elf_internal_linux_prpsinfo *prpsinfo)
9311 {
9312 struct elf_external_linux_prpsinfo64 data;
9313
9314 memset (&data, 0, sizeof (data));
9315 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9316
9317 return elfcore_write_note (abfd, buf, bufsiz,
9318 "CORE", NT_PRPSINFO, &data, sizeof (data));
9319 }
9320
9321 char *
9322 elfcore_write_prstatus (bfd *abfd,
9323 char *buf,
9324 int *bufsiz,
9325 long pid,
9326 int cursig,
9327 const void *gregs)
9328 {
9329 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9330
9331 if (bed->elf_backend_write_core_note != NULL)
9332 {
9333 char *ret;
9334 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9335 NT_PRSTATUS,
9336 pid, cursig, gregs);
9337 if (ret != NULL)
9338 return ret;
9339 }
9340
9341 #if defined (HAVE_PRSTATUS_T)
9342 #if defined (HAVE_PRSTATUS32_T)
9343 if (bed->s->elfclass == ELFCLASS32)
9344 {
9345 prstatus32_t prstat;
9346
9347 memset (&prstat, 0, sizeof (prstat));
9348 prstat.pr_pid = pid;
9349 prstat.pr_cursig = cursig;
9350 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9351 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9352 NT_PRSTATUS, &prstat, sizeof (prstat));
9353 }
9354 else
9355 #endif
9356 {
9357 prstatus_t prstat;
9358
9359 memset (&prstat, 0, sizeof (prstat));
9360 prstat.pr_pid = pid;
9361 prstat.pr_cursig = cursig;
9362 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9363 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9364 NT_PRSTATUS, &prstat, sizeof (prstat));
9365 }
9366 #endif /* HAVE_PRSTATUS_T */
9367
9368 free (buf);
9369 return NULL;
9370 }
9371
9372 #if defined (HAVE_LWPSTATUS_T)
9373 char *
9374 elfcore_write_lwpstatus (bfd *abfd,
9375 char *buf,
9376 int *bufsiz,
9377 long pid,
9378 int cursig,
9379 const void *gregs)
9380 {
9381 lwpstatus_t lwpstat;
9382 const char *note_name = "CORE";
9383
9384 memset (&lwpstat, 0, sizeof (lwpstat));
9385 lwpstat.pr_lwpid = pid >> 16;
9386 lwpstat.pr_cursig = cursig;
9387 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9388 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9389 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9390 #if !defined(gregs)
9391 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9392 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9393 #else
9394 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9395 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9396 #endif
9397 #endif
9398 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9399 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9400 }
9401 #endif /* HAVE_LWPSTATUS_T */
9402
9403 #if defined (HAVE_PSTATUS_T)
9404 char *
9405 elfcore_write_pstatus (bfd *abfd,
9406 char *buf,
9407 int *bufsiz,
9408 long pid,
9409 int cursig ATTRIBUTE_UNUSED,
9410 const void *gregs ATTRIBUTE_UNUSED)
9411 {
9412 const char *note_name = "CORE";
9413 #if defined (HAVE_PSTATUS32_T)
9414 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9415
9416 if (bed->s->elfclass == ELFCLASS32)
9417 {
9418 pstatus32_t pstat;
9419
9420 memset (&pstat, 0, sizeof (pstat));
9421 pstat.pr_pid = pid & 0xffff;
9422 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9423 NT_PSTATUS, &pstat, sizeof (pstat));
9424 return buf;
9425 }
9426 else
9427 #endif
9428 {
9429 pstatus_t pstat;
9430
9431 memset (&pstat, 0, sizeof (pstat));
9432 pstat.pr_pid = pid & 0xffff;
9433 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9434 NT_PSTATUS, &pstat, sizeof (pstat));
9435 return buf;
9436 }
9437 }
9438 #endif /* HAVE_PSTATUS_T */
9439
9440 char *
9441 elfcore_write_prfpreg (bfd *abfd,
9442 char *buf,
9443 int *bufsiz,
9444 const void *fpregs,
9445 int size)
9446 {
9447 const char *note_name = "CORE";
9448 return elfcore_write_note (abfd, buf, bufsiz,
9449 note_name, NT_FPREGSET, fpregs, size);
9450 }
9451
9452 char *
9453 elfcore_write_prxfpreg (bfd *abfd,
9454 char *buf,
9455 int *bufsiz,
9456 const void *xfpregs,
9457 int size)
9458 {
9459 char *note_name = "LINUX";
9460 return elfcore_write_note (abfd, buf, bufsiz,
9461 note_name, NT_PRXFPREG, xfpregs, size);
9462 }
9463
9464 char *
9465 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9466 const void *xfpregs, int size)
9467 {
9468 char *note_name = "LINUX";
9469 return elfcore_write_note (abfd, buf, bufsiz,
9470 note_name, NT_X86_XSTATE, xfpregs, size);
9471 }
9472
9473 char *
9474 elfcore_write_ppc_vmx (bfd *abfd,
9475 char *buf,
9476 int *bufsiz,
9477 const void *ppc_vmx,
9478 int size)
9479 {
9480 char *note_name = "LINUX";
9481 return elfcore_write_note (abfd, buf, bufsiz,
9482 note_name, NT_PPC_VMX, ppc_vmx, size);
9483 }
9484
9485 char *
9486 elfcore_write_ppc_vsx (bfd *abfd,
9487 char *buf,
9488 int *bufsiz,
9489 const void *ppc_vsx,
9490 int size)
9491 {
9492 char *note_name = "LINUX";
9493 return elfcore_write_note (abfd, buf, bufsiz,
9494 note_name, NT_PPC_VSX, ppc_vsx, size);
9495 }
9496
9497 static char *
9498 elfcore_write_s390_high_gprs (bfd *abfd,
9499 char *buf,
9500 int *bufsiz,
9501 const void *s390_high_gprs,
9502 int size)
9503 {
9504 char *note_name = "LINUX";
9505 return elfcore_write_note (abfd, buf, bufsiz,
9506 note_name, NT_S390_HIGH_GPRS,
9507 s390_high_gprs, size);
9508 }
9509
9510 char *
9511 elfcore_write_s390_timer (bfd *abfd,
9512 char *buf,
9513 int *bufsiz,
9514 const void *s390_timer,
9515 int size)
9516 {
9517 char *note_name = "LINUX";
9518 return elfcore_write_note (abfd, buf, bufsiz,
9519 note_name, NT_S390_TIMER, s390_timer, size);
9520 }
9521
9522 char *
9523 elfcore_write_s390_todcmp (bfd *abfd,
9524 char *buf,
9525 int *bufsiz,
9526 const void *s390_todcmp,
9527 int size)
9528 {
9529 char *note_name = "LINUX";
9530 return elfcore_write_note (abfd, buf, bufsiz,
9531 note_name, NT_S390_TODCMP, s390_todcmp, size);
9532 }
9533
9534 char *
9535 elfcore_write_s390_todpreg (bfd *abfd,
9536 char *buf,
9537 int *bufsiz,
9538 const void *s390_todpreg,
9539 int size)
9540 {
9541 char *note_name = "LINUX";
9542 return elfcore_write_note (abfd, buf, bufsiz,
9543 note_name, NT_S390_TODPREG, s390_todpreg, size);
9544 }
9545
9546 char *
9547 elfcore_write_s390_ctrs (bfd *abfd,
9548 char *buf,
9549 int *bufsiz,
9550 const void *s390_ctrs,
9551 int size)
9552 {
9553 char *note_name = "LINUX";
9554 return elfcore_write_note (abfd, buf, bufsiz,
9555 note_name, NT_S390_CTRS, s390_ctrs, size);
9556 }
9557
9558 char *
9559 elfcore_write_s390_prefix (bfd *abfd,
9560 char *buf,
9561 int *bufsiz,
9562 const void *s390_prefix,
9563 int size)
9564 {
9565 char *note_name = "LINUX";
9566 return elfcore_write_note (abfd, buf, bufsiz,
9567 note_name, NT_S390_PREFIX, s390_prefix, size);
9568 }
9569
9570 char *
9571 elfcore_write_s390_last_break (bfd *abfd,
9572 char *buf,
9573 int *bufsiz,
9574 const void *s390_last_break,
9575 int size)
9576 {
9577 char *note_name = "LINUX";
9578 return elfcore_write_note (abfd, buf, bufsiz,
9579 note_name, NT_S390_LAST_BREAK,
9580 s390_last_break, size);
9581 }
9582
9583 char *
9584 elfcore_write_s390_system_call (bfd *abfd,
9585 char *buf,
9586 int *bufsiz,
9587 const void *s390_system_call,
9588 int size)
9589 {
9590 char *note_name = "LINUX";
9591 return elfcore_write_note (abfd, buf, bufsiz,
9592 note_name, NT_S390_SYSTEM_CALL,
9593 s390_system_call, size);
9594 }
9595
9596 char *
9597 elfcore_write_s390_tdb (bfd *abfd,
9598 char *buf,
9599 int *bufsiz,
9600 const void *s390_tdb,
9601 int size)
9602 {
9603 char *note_name = "LINUX";
9604 return elfcore_write_note (abfd, buf, bufsiz,
9605 note_name, NT_S390_TDB, s390_tdb, size);
9606 }
9607
9608 char *
9609 elfcore_write_s390_vxrs_low (bfd *abfd,
9610 char *buf,
9611 int *bufsiz,
9612 const void *s390_vxrs_low,
9613 int size)
9614 {
9615 char *note_name = "LINUX";
9616 return elfcore_write_note (abfd, buf, bufsiz,
9617 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
9618 }
9619
9620 char *
9621 elfcore_write_s390_vxrs_high (bfd *abfd,
9622 char *buf,
9623 int *bufsiz,
9624 const void *s390_vxrs_high,
9625 int size)
9626 {
9627 char *note_name = "LINUX";
9628 return elfcore_write_note (abfd, buf, bufsiz,
9629 note_name, NT_S390_VXRS_HIGH,
9630 s390_vxrs_high, size);
9631 }
9632
9633 char *
9634 elfcore_write_arm_vfp (bfd *abfd,
9635 char *buf,
9636 int *bufsiz,
9637 const void *arm_vfp,
9638 int size)
9639 {
9640 char *note_name = "LINUX";
9641 return elfcore_write_note (abfd, buf, bufsiz,
9642 note_name, NT_ARM_VFP, arm_vfp, size);
9643 }
9644
9645 char *
9646 elfcore_write_aarch_tls (bfd *abfd,
9647 char *buf,
9648 int *bufsiz,
9649 const void *aarch_tls,
9650 int size)
9651 {
9652 char *note_name = "LINUX";
9653 return elfcore_write_note (abfd, buf, bufsiz,
9654 note_name, NT_ARM_TLS, aarch_tls, size);
9655 }
9656
9657 char *
9658 elfcore_write_aarch_hw_break (bfd *abfd,
9659 char *buf,
9660 int *bufsiz,
9661 const void *aarch_hw_break,
9662 int size)
9663 {
9664 char *note_name = "LINUX";
9665 return elfcore_write_note (abfd, buf, bufsiz,
9666 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9667 }
9668
9669 char *
9670 elfcore_write_aarch_hw_watch (bfd *abfd,
9671 char *buf,
9672 int *bufsiz,
9673 const void *aarch_hw_watch,
9674 int size)
9675 {
9676 char *note_name = "LINUX";
9677 return elfcore_write_note (abfd, buf, bufsiz,
9678 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9679 }
9680
9681 char *
9682 elfcore_write_register_note (bfd *abfd,
9683 char *buf,
9684 int *bufsiz,
9685 const char *section,
9686 const void *data,
9687 int size)
9688 {
9689 if (strcmp (section, ".reg2") == 0)
9690 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9691 if (strcmp (section, ".reg-xfp") == 0)
9692 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9693 if (strcmp (section, ".reg-xstate") == 0)
9694 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9695 if (strcmp (section, ".reg-ppc-vmx") == 0)
9696 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9697 if (strcmp (section, ".reg-ppc-vsx") == 0)
9698 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9699 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9700 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9701 if (strcmp (section, ".reg-s390-timer") == 0)
9702 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9703 if (strcmp (section, ".reg-s390-todcmp") == 0)
9704 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9705 if (strcmp (section, ".reg-s390-todpreg") == 0)
9706 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9707 if (strcmp (section, ".reg-s390-ctrs") == 0)
9708 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9709 if (strcmp (section, ".reg-s390-prefix") == 0)
9710 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9711 if (strcmp (section, ".reg-s390-last-break") == 0)
9712 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9713 if (strcmp (section, ".reg-s390-system-call") == 0)
9714 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9715 if (strcmp (section, ".reg-s390-tdb") == 0)
9716 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
9717 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
9718 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
9719 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
9720 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
9721 if (strcmp (section, ".reg-arm-vfp") == 0)
9722 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9723 if (strcmp (section, ".reg-aarch-tls") == 0)
9724 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
9725 if (strcmp (section, ".reg-aarch-hw-break") == 0)
9726 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
9727 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
9728 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
9729 return NULL;
9730 }
9731
9732 static bfd_boolean
9733 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9734 {
9735 char *p;
9736
9737 p = buf;
9738 while (p < buf + size)
9739 {
9740 /* FIXME: bad alignment assumption. */
9741 Elf_External_Note *xnp = (Elf_External_Note *) p;
9742 Elf_Internal_Note in;
9743
9744 if (offsetof (Elf_External_Note, name) > buf - p + size)
9745 return FALSE;
9746
9747 in.type = H_GET_32 (abfd, xnp->type);
9748
9749 in.namesz = H_GET_32 (abfd, xnp->namesz);
9750 in.namedata = xnp->name;
9751 if (in.namesz > buf - in.namedata + size)
9752 return FALSE;
9753
9754 in.descsz = H_GET_32 (abfd, xnp->descsz);
9755 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9756 in.descpos = offset + (in.descdata - buf);
9757 if (in.descsz != 0
9758 && (in.descdata >= buf + size
9759 || in.descsz > buf - in.descdata + size))
9760 return FALSE;
9761
9762 switch (bfd_get_format (abfd))
9763 {
9764 default:
9765 return TRUE;
9766
9767 case bfd_core:
9768 {
9769 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
9770 struct
9771 {
9772 const char * string;
9773 size_t len;
9774 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
9775 }
9776 grokers[] =
9777 {
9778 GROKER_ELEMENT ("", elfcore_grok_note),
9779 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
9780 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
9781 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
9782 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
9783 };
9784 #undef GROKER_ELEMENT
9785 int i;
9786
9787 for (i = ARRAY_SIZE (grokers); i--;)
9788 {
9789 if (in.namesz >= grokers[i].len
9790 && strncmp (in.namedata, grokers[i].string,
9791 grokers[i].len) == 0)
9792 {
9793 if (! grokers[i].func (abfd, & in))
9794 return FALSE;
9795 break;
9796 }
9797 }
9798 break;
9799 }
9800
9801 case bfd_object:
9802 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9803 {
9804 if (! elfobj_grok_gnu_note (abfd, &in))
9805 return FALSE;
9806 }
9807 else if (in.namesz == sizeof "stapsdt"
9808 && strcmp (in.namedata, "stapsdt") == 0)
9809 {
9810 if (! elfobj_grok_stapsdt_note (abfd, &in))
9811 return FALSE;
9812 }
9813 break;
9814 }
9815
9816 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9817 }
9818
9819 return TRUE;
9820 }
9821
9822 static bfd_boolean
9823 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9824 {
9825 char *buf;
9826
9827 if (size <= 0)
9828 return TRUE;
9829
9830 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9831 return FALSE;
9832
9833 buf = (char *) bfd_malloc (size + 1);
9834 if (buf == NULL)
9835 return FALSE;
9836
9837 /* PR 17512: file: ec08f814
9838 0-termintate the buffer so that string searches will not overflow. */
9839 buf[size] = 0;
9840
9841 if (bfd_bread (buf, size, abfd) != size
9842 || !elf_parse_notes (abfd, buf, size, offset))
9843 {
9844 free (buf);
9845 return FALSE;
9846 }
9847
9848 free (buf);
9849 return TRUE;
9850 }
9851 \f
9852 /* Providing external access to the ELF program header table. */
9853
9854 /* Return an upper bound on the number of bytes required to store a
9855 copy of ABFD's program header table entries. Return -1 if an error
9856 occurs; bfd_get_error will return an appropriate code. */
9857
9858 long
9859 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9860 {
9861 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9862 {
9863 bfd_set_error (bfd_error_wrong_format);
9864 return -1;
9865 }
9866
9867 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9868 }
9869
9870 /* Copy ABFD's program header table entries to *PHDRS. The entries
9871 will be stored as an array of Elf_Internal_Phdr structures, as
9872 defined in include/elf/internal.h. To find out how large the
9873 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9874
9875 Return the number of program header table entries read, or -1 if an
9876 error occurs; bfd_get_error will return an appropriate code. */
9877
9878 int
9879 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9880 {
9881 int num_phdrs;
9882
9883 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9884 {
9885 bfd_set_error (bfd_error_wrong_format);
9886 return -1;
9887 }
9888
9889 num_phdrs = elf_elfheader (abfd)->e_phnum;
9890 memcpy (phdrs, elf_tdata (abfd)->phdr,
9891 num_phdrs * sizeof (Elf_Internal_Phdr));
9892
9893 return num_phdrs;
9894 }
9895
9896 enum elf_reloc_type_class
9897 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
9898 const asection *rel_sec ATTRIBUTE_UNUSED,
9899 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9900 {
9901 return reloc_class_normal;
9902 }
9903
9904 /* For RELA architectures, return the relocation value for a
9905 relocation against a local symbol. */
9906
9907 bfd_vma
9908 _bfd_elf_rela_local_sym (bfd *abfd,
9909 Elf_Internal_Sym *sym,
9910 asection **psec,
9911 Elf_Internal_Rela *rel)
9912 {
9913 asection *sec = *psec;
9914 bfd_vma relocation;
9915
9916 relocation = (sec->output_section->vma
9917 + sec->output_offset
9918 + sym->st_value);
9919 if ((sec->flags & SEC_MERGE)
9920 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9921 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9922 {
9923 rel->r_addend =
9924 _bfd_merged_section_offset (abfd, psec,
9925 elf_section_data (sec)->sec_info,
9926 sym->st_value + rel->r_addend);
9927 if (sec != *psec)
9928 {
9929 /* If we have changed the section, and our original section is
9930 marked with SEC_EXCLUDE, it means that the original
9931 SEC_MERGE section has been completely subsumed in some
9932 other SEC_MERGE section. In this case, we need to leave
9933 some info around for --emit-relocs. */
9934 if ((sec->flags & SEC_EXCLUDE) != 0)
9935 sec->kept_section = *psec;
9936 sec = *psec;
9937 }
9938 rel->r_addend -= relocation;
9939 rel->r_addend += sec->output_section->vma + sec->output_offset;
9940 }
9941 return relocation;
9942 }
9943
9944 bfd_vma
9945 _bfd_elf_rel_local_sym (bfd *abfd,
9946 Elf_Internal_Sym *sym,
9947 asection **psec,
9948 bfd_vma addend)
9949 {
9950 asection *sec = *psec;
9951
9952 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9953 return sym->st_value + addend;
9954
9955 return _bfd_merged_section_offset (abfd, psec,
9956 elf_section_data (sec)->sec_info,
9957 sym->st_value + addend);
9958 }
9959
9960 bfd_vma
9961 _bfd_elf_section_offset (bfd *abfd,
9962 struct bfd_link_info *info,
9963 asection *sec,
9964 bfd_vma offset)
9965 {
9966 switch (sec->sec_info_type)
9967 {
9968 case SEC_INFO_TYPE_STABS:
9969 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9970 offset);
9971 case SEC_INFO_TYPE_EH_FRAME:
9972 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9973 default:
9974 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9975 {
9976 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9977 bfd_size_type address_size = bed->s->arch_size / 8;
9978 offset = sec->size - offset - address_size;
9979 }
9980 return offset;
9981 }
9982 }
9983 \f
9984 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9985 reconstruct an ELF file by reading the segments out of remote memory
9986 based on the ELF file header at EHDR_VMA and the ELF program headers it
9987 points to. If not null, *LOADBASEP is filled in with the difference
9988 between the VMAs from which the segments were read, and the VMAs the
9989 file headers (and hence BFD's idea of each section's VMA) put them at.
9990
9991 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9992 remote memory at target address VMA into the local buffer at MYADDR; it
9993 should return zero on success or an `errno' code on failure. TEMPL must
9994 be a BFD for an ELF target with the word size and byte order found in
9995 the remote memory. */
9996
9997 bfd *
9998 bfd_elf_bfd_from_remote_memory
9999 (bfd *templ,
10000 bfd_vma ehdr_vma,
10001 bfd_size_type size,
10002 bfd_vma *loadbasep,
10003 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
10004 {
10005 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
10006 (templ, ehdr_vma, size, loadbasep, target_read_memory);
10007 }
10008 \f
10009 long
10010 _bfd_elf_get_synthetic_symtab (bfd *abfd,
10011 long symcount ATTRIBUTE_UNUSED,
10012 asymbol **syms ATTRIBUTE_UNUSED,
10013 long dynsymcount,
10014 asymbol **dynsyms,
10015 asymbol **ret)
10016 {
10017 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10018 asection *relplt;
10019 asymbol *s;
10020 const char *relplt_name;
10021 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
10022 arelent *p;
10023 long count, i, n;
10024 size_t size;
10025 Elf_Internal_Shdr *hdr;
10026 char *names;
10027 asection *plt;
10028
10029 *ret = NULL;
10030
10031 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
10032 return 0;
10033
10034 if (dynsymcount <= 0)
10035 return 0;
10036
10037 if (!bed->plt_sym_val)
10038 return 0;
10039
10040 relplt_name = bed->relplt_name;
10041 if (relplt_name == NULL)
10042 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
10043 relplt = bfd_get_section_by_name (abfd, relplt_name);
10044 if (relplt == NULL)
10045 return 0;
10046
10047 hdr = &elf_section_data (relplt)->this_hdr;
10048 if (hdr->sh_link != elf_dynsymtab (abfd)
10049 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
10050 return 0;
10051
10052 plt = bfd_get_section_by_name (abfd, ".plt");
10053 if (plt == NULL)
10054 return 0;
10055
10056 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
10057 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
10058 return -1;
10059
10060 count = relplt->size / hdr->sh_entsize;
10061 size = count * sizeof (asymbol);
10062 p = relplt->relocation;
10063 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10064 {
10065 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
10066 if (p->addend != 0)
10067 {
10068 #ifdef BFD64
10069 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
10070 #else
10071 size += sizeof ("+0x") - 1 + 8;
10072 #endif
10073 }
10074 }
10075
10076 s = *ret = (asymbol *) bfd_malloc (size);
10077 if (s == NULL)
10078 return -1;
10079
10080 names = (char *) (s + count);
10081 p = relplt->relocation;
10082 n = 0;
10083 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10084 {
10085 size_t len;
10086 bfd_vma addr;
10087
10088 addr = bed->plt_sym_val (i, plt, p);
10089 if (addr == (bfd_vma) -1)
10090 continue;
10091
10092 *s = **p->sym_ptr_ptr;
10093 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
10094 we are defining a symbol, ensure one of them is set. */
10095 if ((s->flags & BSF_LOCAL) == 0)
10096 s->flags |= BSF_GLOBAL;
10097 s->flags |= BSF_SYNTHETIC;
10098 s->section = plt;
10099 s->value = addr - plt->vma;
10100 s->name = names;
10101 s->udata.p = NULL;
10102 len = strlen ((*p->sym_ptr_ptr)->name);
10103 memcpy (names, (*p->sym_ptr_ptr)->name, len);
10104 names += len;
10105 if (p->addend != 0)
10106 {
10107 char buf[30], *a;
10108
10109 memcpy (names, "+0x", sizeof ("+0x") - 1);
10110 names += sizeof ("+0x") - 1;
10111 bfd_sprintf_vma (abfd, buf, p->addend);
10112 for (a = buf; *a == '0'; ++a)
10113 ;
10114 len = strlen (a);
10115 memcpy (names, a, len);
10116 names += len;
10117 }
10118 memcpy (names, "@plt", sizeof ("@plt"));
10119 names += sizeof ("@plt");
10120 ++s, ++n;
10121 }
10122
10123 return n;
10124 }
10125
10126 /* It is only used by x86-64 so far. */
10127 asection _bfd_elf_large_com_section
10128 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10129 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10130
10131 void
10132 _bfd_elf_post_process_headers (bfd * abfd,
10133 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10134 {
10135 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10136
10137 i_ehdrp = elf_elfheader (abfd);
10138
10139 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10140
10141 /* To make things simpler for the loader on Linux systems we set the
10142 osabi field to ELFOSABI_GNU if the binary contains symbols of
10143 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10144 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10145 && elf_tdata (abfd)->has_gnu_symbols)
10146 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10147 }
10148
10149
10150 /* Return TRUE for ELF symbol types that represent functions.
10151 This is the default version of this function, which is sufficient for
10152 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10153
10154 bfd_boolean
10155 _bfd_elf_is_function_type (unsigned int type)
10156 {
10157 return (type == STT_FUNC
10158 || type == STT_GNU_IFUNC);
10159 }
10160
10161 /* If the ELF symbol SYM might be a function in SEC, return the
10162 function size and set *CODE_OFF to the function's entry point,
10163 otherwise return zero. */
10164
10165 bfd_size_type
10166 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10167 bfd_vma *code_off)
10168 {
10169 bfd_size_type size;
10170
10171 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10172 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10173 || sym->section != sec)
10174 return 0;
10175
10176 *code_off = sym->value;
10177 size = 0;
10178 if (!(sym->flags & BSF_SYNTHETIC))
10179 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10180 if (size == 0)
10181 size = 1;
10182 return size;
10183 }
This page took 0.255128 seconds and 4 git commands to generate.