Fix and use elf_append_rel
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= minsize \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 if (name [0] == '.')
884 {
885 const char *p;
886 int n;
887 if (name[1] == 'd')
888 p = ".debug", n = 6;
889 else if (name[1] == 'g' && name[2] == 'n')
890 p = ".gnu.linkonce.wi.", n = 17;
891 else if (name[1] == 'g' && name[2] == 'd')
892 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
893 else if (name[1] == 'l')
894 p = ".line", n = 5;
895 else if (name[1] == 's')
896 p = ".stab", n = 5;
897 else if (name[1] == 'z')
898 p = ".zdebug", n = 7;
899 else
900 p = NULL, n = 0;
901 if (p != NULL && strncmp (name, p, n) == 0)
902 flags |= SEC_DEBUGGING;
903 }
904 }
905
906 /* As a GNU extension, if the name begins with .gnu.linkonce, we
907 only link a single copy of the section. This is used to support
908 g++. g++ will emit each template expansion in its own section.
909 The symbols will be defined as weak, so that multiple definitions
910 are permitted. The GNU linker extension is to actually discard
911 all but one of the sections. */
912 if (CONST_STRNEQ (name, ".gnu.linkonce")
913 && elf_next_in_group (newsect) == NULL)
914 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
915
916 bed = get_elf_backend_data (abfd);
917 if (bed->elf_backend_section_flags)
918 if (! bed->elf_backend_section_flags (&flags, hdr))
919 return FALSE;
920
921 if (! bfd_set_section_flags (abfd, newsect, flags))
922 return FALSE;
923
924 /* We do not parse the PT_NOTE segments as we are interested even in the
925 separate debug info files which may have the segments offsets corrupted.
926 PT_NOTEs from the core files are currently not parsed using BFD. */
927 if (hdr->sh_type == SHT_NOTE)
928 {
929 bfd_byte *contents;
930
931 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
932 return FALSE;
933
934 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
935 free (contents);
936 }
937
938 if ((flags & SEC_ALLOC) != 0)
939 {
940 Elf_Internal_Phdr *phdr;
941 unsigned int i, nload;
942
943 /* Some ELF linkers produce binaries with all the program header
944 p_paddr fields zero. If we have such a binary with more than
945 one PT_LOAD header, then leave the section lma equal to vma
946 so that we don't create sections with overlapping lma. */
947 phdr = elf_tdata (abfd)->phdr;
948 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
949 if (phdr->p_paddr != 0)
950 break;
951 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
952 ++nload;
953 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
954 return TRUE;
955
956 phdr = elf_tdata (abfd)->phdr;
957 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
958 {
959 if (((phdr->p_type == PT_LOAD
960 && (hdr->sh_flags & SHF_TLS) == 0)
961 || phdr->p_type == PT_TLS)
962 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
963 {
964 if ((flags & SEC_LOAD) == 0)
965 newsect->lma = (phdr->p_paddr
966 + hdr->sh_addr - phdr->p_vaddr);
967 else
968 /* We used to use the same adjustment for SEC_LOAD
969 sections, but that doesn't work if the segment
970 is packed with code from multiple VMAs.
971 Instead we calculate the section LMA based on
972 the segment LMA. It is assumed that the
973 segment will contain sections with contiguous
974 LMAs, even if the VMAs are not. */
975 newsect->lma = (phdr->p_paddr
976 + hdr->sh_offset - phdr->p_offset);
977
978 /* With contiguous segments, we can't tell from file
979 offsets whether a section with zero size should
980 be placed at the end of one segment or the
981 beginning of the next. Decide based on vaddr. */
982 if (hdr->sh_addr >= phdr->p_vaddr
983 && (hdr->sh_addr + hdr->sh_size
984 <= phdr->p_vaddr + phdr->p_memsz))
985 break;
986 }
987 }
988 }
989
990 /* Compress/decompress DWARF debug sections with names: .debug_* and
991 .zdebug_*, after the section flags is set. */
992 if ((flags & SEC_DEBUGGING)
993 && ((name[1] == 'd' && name[6] == '_')
994 || (name[1] == 'z' && name[7] == '_')))
995 {
996 enum { nothing, compress, decompress } action = nothing;
997 char *new_name;
998
999 if (bfd_is_section_compressed (abfd, newsect))
1000 {
1001 /* Compressed section. Check if we should decompress. */
1002 if ((abfd->flags & BFD_DECOMPRESS))
1003 action = decompress;
1004 }
1005 else
1006 {
1007 /* Normal section. Check if we should compress. */
1008 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1009 action = compress;
1010 }
1011
1012 new_name = NULL;
1013 switch (action)
1014 {
1015 case nothing:
1016 break;
1017 case compress:
1018 if (!bfd_init_section_compress_status (abfd, newsect))
1019 {
1020 (*_bfd_error_handler)
1021 (_("%B: unable to initialize compress status for section %s"),
1022 abfd, name);
1023 return FALSE;
1024 }
1025 if (name[1] != 'z')
1026 {
1027 unsigned int len = strlen (name);
1028
1029 new_name = bfd_alloc (abfd, len + 2);
1030 if (new_name == NULL)
1031 return FALSE;
1032 new_name[0] = '.';
1033 new_name[1] = 'z';
1034 memcpy (new_name + 2, name + 1, len);
1035 }
1036 break;
1037 case decompress:
1038 if (!bfd_init_section_decompress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize decompress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] == 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 memcpy (new_name + 1, name + 2, len - 1);
1054 }
1055 break;
1056 }
1057 if (new_name != NULL)
1058 bfd_rename_section (abfd, newsect, new_name);
1059 }
1060
1061 return TRUE;
1062 }
1063
1064 const char *const bfd_elf_section_type_names[] = {
1065 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1066 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1067 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1068 };
1069
1070 /* ELF relocs are against symbols. If we are producing relocatable
1071 output, and the reloc is against an external symbol, and nothing
1072 has given us any additional addend, the resulting reloc will also
1073 be against the same symbol. In such a case, we don't want to
1074 change anything about the way the reloc is handled, since it will
1075 all be done at final link time. Rather than put special case code
1076 into bfd_perform_relocation, all the reloc types use this howto
1077 function. It just short circuits the reloc if producing
1078 relocatable output against an external symbol. */
1079
1080 bfd_reloc_status_type
1081 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1082 arelent *reloc_entry,
1083 asymbol *symbol,
1084 void *data ATTRIBUTE_UNUSED,
1085 asection *input_section,
1086 bfd *output_bfd,
1087 char **error_message ATTRIBUTE_UNUSED)
1088 {
1089 if (output_bfd != NULL
1090 && (symbol->flags & BSF_SECTION_SYM) == 0
1091 && (! reloc_entry->howto->partial_inplace
1092 || reloc_entry->addend == 0))
1093 {
1094 reloc_entry->address += input_section->output_offset;
1095 return bfd_reloc_ok;
1096 }
1097
1098 return bfd_reloc_continue;
1099 }
1100 \f
1101 /* Copy the program header and other data from one object module to
1102 another. */
1103
1104 bfd_boolean
1105 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1106 {
1107 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1108 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1109 return TRUE;
1110
1111 BFD_ASSERT (!elf_flags_init (obfd)
1112 || (elf_elfheader (obfd)->e_flags
1113 == elf_elfheader (ibfd)->e_flags));
1114
1115 elf_gp (obfd) = elf_gp (ibfd);
1116 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1117 elf_flags_init (obfd) = TRUE;
1118
1119 /* Copy object attributes. */
1120 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1121 return TRUE;
1122 }
1123
1124 static const char *
1125 get_segment_type (unsigned int p_type)
1126 {
1127 const char *pt;
1128 switch (p_type)
1129 {
1130 case PT_NULL: pt = "NULL"; break;
1131 case PT_LOAD: pt = "LOAD"; break;
1132 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1133 case PT_INTERP: pt = "INTERP"; break;
1134 case PT_NOTE: pt = "NOTE"; break;
1135 case PT_SHLIB: pt = "SHLIB"; break;
1136 case PT_PHDR: pt = "PHDR"; break;
1137 case PT_TLS: pt = "TLS"; break;
1138 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1139 case PT_GNU_STACK: pt = "STACK"; break;
1140 case PT_GNU_RELRO: pt = "RELRO"; break;
1141 default: pt = NULL; break;
1142 }
1143 return pt;
1144 }
1145
1146 /* Print out the program headers. */
1147
1148 bfd_boolean
1149 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1150 {
1151 FILE *f = (FILE *) farg;
1152 Elf_Internal_Phdr *p;
1153 asection *s;
1154 bfd_byte *dynbuf = NULL;
1155
1156 p = elf_tdata (abfd)->phdr;
1157 if (p != NULL)
1158 {
1159 unsigned int i, c;
1160
1161 fprintf (f, _("\nProgram Header:\n"));
1162 c = elf_elfheader (abfd)->e_phnum;
1163 for (i = 0; i < c; i++, p++)
1164 {
1165 const char *pt = get_segment_type (p->p_type);
1166 char buf[20];
1167
1168 if (pt == NULL)
1169 {
1170 sprintf (buf, "0x%lx", p->p_type);
1171 pt = buf;
1172 }
1173 fprintf (f, "%8s off 0x", pt);
1174 bfd_fprintf_vma (abfd, f, p->p_offset);
1175 fprintf (f, " vaddr 0x");
1176 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1177 fprintf (f, " paddr 0x");
1178 bfd_fprintf_vma (abfd, f, p->p_paddr);
1179 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1180 fprintf (f, " filesz 0x");
1181 bfd_fprintf_vma (abfd, f, p->p_filesz);
1182 fprintf (f, " memsz 0x");
1183 bfd_fprintf_vma (abfd, f, p->p_memsz);
1184 fprintf (f, " flags %c%c%c",
1185 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1186 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1187 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1188 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1189 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1190 fprintf (f, "\n");
1191 }
1192 }
1193
1194 s = bfd_get_section_by_name (abfd, ".dynamic");
1195 if (s != NULL)
1196 {
1197 unsigned int elfsec;
1198 unsigned long shlink;
1199 bfd_byte *extdyn, *extdynend;
1200 size_t extdynsize;
1201 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1202
1203 fprintf (f, _("\nDynamic Section:\n"));
1204
1205 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1206 goto error_return;
1207
1208 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1209 if (elfsec == SHN_BAD)
1210 goto error_return;
1211 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1212
1213 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1214 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1215
1216 extdyn = dynbuf;
1217 extdynend = extdyn + s->size;
1218 for (; extdyn < extdynend; extdyn += extdynsize)
1219 {
1220 Elf_Internal_Dyn dyn;
1221 const char *name = "";
1222 char ab[20];
1223 bfd_boolean stringp;
1224 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1225
1226 (*swap_dyn_in) (abfd, extdyn, &dyn);
1227
1228 if (dyn.d_tag == DT_NULL)
1229 break;
1230
1231 stringp = FALSE;
1232 switch (dyn.d_tag)
1233 {
1234 default:
1235 if (bed->elf_backend_get_target_dtag)
1236 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1237
1238 if (!strcmp (name, ""))
1239 {
1240 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1241 name = ab;
1242 }
1243 break;
1244
1245 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1246 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1247 case DT_PLTGOT: name = "PLTGOT"; break;
1248 case DT_HASH: name = "HASH"; break;
1249 case DT_STRTAB: name = "STRTAB"; break;
1250 case DT_SYMTAB: name = "SYMTAB"; break;
1251 case DT_RELA: name = "RELA"; break;
1252 case DT_RELASZ: name = "RELASZ"; break;
1253 case DT_RELAENT: name = "RELAENT"; break;
1254 case DT_STRSZ: name = "STRSZ"; break;
1255 case DT_SYMENT: name = "SYMENT"; break;
1256 case DT_INIT: name = "INIT"; break;
1257 case DT_FINI: name = "FINI"; break;
1258 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1259 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1260 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1261 case DT_REL: name = "REL"; break;
1262 case DT_RELSZ: name = "RELSZ"; break;
1263 case DT_RELENT: name = "RELENT"; break;
1264 case DT_PLTREL: name = "PLTREL"; break;
1265 case DT_DEBUG: name = "DEBUG"; break;
1266 case DT_TEXTREL: name = "TEXTREL"; break;
1267 case DT_JMPREL: name = "JMPREL"; break;
1268 case DT_BIND_NOW: name = "BIND_NOW"; break;
1269 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1270 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1271 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1272 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1273 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1274 case DT_FLAGS: name = "FLAGS"; break;
1275 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1276 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1277 case DT_CHECKSUM: name = "CHECKSUM"; break;
1278 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1279 case DT_MOVEENT: name = "MOVEENT"; break;
1280 case DT_MOVESZ: name = "MOVESZ"; break;
1281 case DT_FEATURE: name = "FEATURE"; break;
1282 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1283 case DT_SYMINSZ: name = "SYMINSZ"; break;
1284 case DT_SYMINENT: name = "SYMINENT"; break;
1285 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1286 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1287 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1288 case DT_PLTPAD: name = "PLTPAD"; break;
1289 case DT_MOVETAB: name = "MOVETAB"; break;
1290 case DT_SYMINFO: name = "SYMINFO"; break;
1291 case DT_RELACOUNT: name = "RELACOUNT"; break;
1292 case DT_RELCOUNT: name = "RELCOUNT"; break;
1293 case DT_FLAGS_1: name = "FLAGS_1"; break;
1294 case DT_VERSYM: name = "VERSYM"; break;
1295 case DT_VERDEF: name = "VERDEF"; break;
1296 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1297 case DT_VERNEED: name = "VERNEED"; break;
1298 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1299 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1300 case DT_USED: name = "USED"; break;
1301 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1302 case DT_GNU_HASH: name = "GNU_HASH"; break;
1303 }
1304
1305 fprintf (f, " %-20s ", name);
1306 if (! stringp)
1307 {
1308 fprintf (f, "0x");
1309 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1310 }
1311 else
1312 {
1313 const char *string;
1314 unsigned int tagv = dyn.d_un.d_val;
1315
1316 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1317 if (string == NULL)
1318 goto error_return;
1319 fprintf (f, "%s", string);
1320 }
1321 fprintf (f, "\n");
1322 }
1323
1324 free (dynbuf);
1325 dynbuf = NULL;
1326 }
1327
1328 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1329 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1330 {
1331 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1332 return FALSE;
1333 }
1334
1335 if (elf_dynverdef (abfd) != 0)
1336 {
1337 Elf_Internal_Verdef *t;
1338
1339 fprintf (f, _("\nVersion definitions:\n"));
1340 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1341 {
1342 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1343 t->vd_flags, t->vd_hash,
1344 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1345 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1346 {
1347 Elf_Internal_Verdaux *a;
1348
1349 fprintf (f, "\t");
1350 for (a = t->vd_auxptr->vda_nextptr;
1351 a != NULL;
1352 a = a->vda_nextptr)
1353 fprintf (f, "%s ",
1354 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1355 fprintf (f, "\n");
1356 }
1357 }
1358 }
1359
1360 if (elf_dynverref (abfd) != 0)
1361 {
1362 Elf_Internal_Verneed *t;
1363
1364 fprintf (f, _("\nVersion References:\n"));
1365 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1366 {
1367 Elf_Internal_Vernaux *a;
1368
1369 fprintf (f, _(" required from %s:\n"),
1370 t->vn_filename ? t->vn_filename : "<corrupt>");
1371 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1372 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1373 a->vna_flags, a->vna_other,
1374 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1375 }
1376 }
1377
1378 return TRUE;
1379
1380 error_return:
1381 if (dynbuf != NULL)
1382 free (dynbuf);
1383 return FALSE;
1384 }
1385
1386 /* Display ELF-specific fields of a symbol. */
1387
1388 void
1389 bfd_elf_print_symbol (bfd *abfd,
1390 void *filep,
1391 asymbol *symbol,
1392 bfd_print_symbol_type how)
1393 {
1394 FILE *file = (FILE *) filep;
1395 switch (how)
1396 {
1397 case bfd_print_symbol_name:
1398 fprintf (file, "%s", symbol->name);
1399 break;
1400 case bfd_print_symbol_more:
1401 fprintf (file, "elf ");
1402 bfd_fprintf_vma (abfd, file, symbol->value);
1403 fprintf (file, " %lx", (unsigned long) symbol->flags);
1404 break;
1405 case bfd_print_symbol_all:
1406 {
1407 const char *section_name;
1408 const char *name = NULL;
1409 const struct elf_backend_data *bed;
1410 unsigned char st_other;
1411 bfd_vma val;
1412
1413 section_name = symbol->section ? symbol->section->name : "(*none*)";
1414
1415 bed = get_elf_backend_data (abfd);
1416 if (bed->elf_backend_print_symbol_all)
1417 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1418
1419 if (name == NULL)
1420 {
1421 name = symbol->name;
1422 bfd_print_symbol_vandf (abfd, file, symbol);
1423 }
1424
1425 fprintf (file, " %s\t", section_name);
1426 /* Print the "other" value for a symbol. For common symbols,
1427 we've already printed the size; now print the alignment.
1428 For other symbols, we have no specified alignment, and
1429 we've printed the address; now print the size. */
1430 if (symbol->section && bfd_is_com_section (symbol->section))
1431 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1432 else
1433 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1434 bfd_fprintf_vma (abfd, file, val);
1435
1436 /* If we have version information, print it. */
1437 if (elf_tdata (abfd)->dynversym_section != 0
1438 && (elf_tdata (abfd)->dynverdef_section != 0
1439 || elf_tdata (abfd)->dynverref_section != 0))
1440 {
1441 unsigned int vernum;
1442 const char *version_string;
1443
1444 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1445
1446 if (vernum == 0)
1447 version_string = "";
1448 else if (vernum == 1)
1449 version_string = "Base";
1450 else if (vernum <= elf_tdata (abfd)->cverdefs)
1451 version_string =
1452 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1453 else
1454 {
1455 Elf_Internal_Verneed *t;
1456
1457 version_string = "";
1458 for (t = elf_tdata (abfd)->verref;
1459 t != NULL;
1460 t = t->vn_nextref)
1461 {
1462 Elf_Internal_Vernaux *a;
1463
1464 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1465 {
1466 if (a->vna_other == vernum)
1467 {
1468 version_string = a->vna_nodename;
1469 break;
1470 }
1471 }
1472 }
1473 }
1474
1475 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1476 fprintf (file, " %-11s", version_string);
1477 else
1478 {
1479 int i;
1480
1481 fprintf (file, " (%s)", version_string);
1482 for (i = 10 - strlen (version_string); i > 0; --i)
1483 putc (' ', file);
1484 }
1485 }
1486
1487 /* If the st_other field is not zero, print it. */
1488 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1489
1490 switch (st_other)
1491 {
1492 case 0: break;
1493 case STV_INTERNAL: fprintf (file, " .internal"); break;
1494 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1495 case STV_PROTECTED: fprintf (file, " .protected"); break;
1496 default:
1497 /* Some other non-defined flags are also present, so print
1498 everything hex. */
1499 fprintf (file, " 0x%02x", (unsigned int) st_other);
1500 }
1501
1502 fprintf (file, " %s", name);
1503 }
1504 break;
1505 }
1506 }
1507
1508 /* Allocate an ELF string table--force the first byte to be zero. */
1509
1510 struct bfd_strtab_hash *
1511 _bfd_elf_stringtab_init (void)
1512 {
1513 struct bfd_strtab_hash *ret;
1514
1515 ret = _bfd_stringtab_init ();
1516 if (ret != NULL)
1517 {
1518 bfd_size_type loc;
1519
1520 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1521 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1522 if (loc == (bfd_size_type) -1)
1523 {
1524 _bfd_stringtab_free (ret);
1525 ret = NULL;
1526 }
1527 }
1528 return ret;
1529 }
1530 \f
1531 /* ELF .o/exec file reading */
1532
1533 /* Create a new bfd section from an ELF section header. */
1534
1535 bfd_boolean
1536 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1537 {
1538 Elf_Internal_Shdr *hdr;
1539 Elf_Internal_Ehdr *ehdr;
1540 const struct elf_backend_data *bed;
1541 const char *name;
1542
1543 if (shindex >= elf_numsections (abfd))
1544 return FALSE;
1545
1546 hdr = elf_elfsections (abfd)[shindex];
1547 ehdr = elf_elfheader (abfd);
1548 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1549 hdr->sh_name);
1550 if (name == NULL)
1551 return FALSE;
1552
1553 bed = get_elf_backend_data (abfd);
1554 switch (hdr->sh_type)
1555 {
1556 case SHT_NULL:
1557 /* Inactive section. Throw it away. */
1558 return TRUE;
1559
1560 case SHT_PROGBITS: /* Normal section with contents. */
1561 case SHT_NOBITS: /* .bss section. */
1562 case SHT_HASH: /* .hash section. */
1563 case SHT_NOTE: /* .note section. */
1564 case SHT_INIT_ARRAY: /* .init_array section. */
1565 case SHT_FINI_ARRAY: /* .fini_array section. */
1566 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1567 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1568 case SHT_GNU_HASH: /* .gnu.hash section. */
1569 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1570
1571 case SHT_DYNAMIC: /* Dynamic linking information. */
1572 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1573 return FALSE;
1574 if (hdr->sh_link > elf_numsections (abfd))
1575 {
1576 /* PR 10478: Accept Solaris binaries with a sh_link
1577 field set to SHN_BEFORE or SHN_AFTER. */
1578 switch (bfd_get_arch (abfd))
1579 {
1580 case bfd_arch_i386:
1581 case bfd_arch_sparc:
1582 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1583 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1584 break;
1585 /* Otherwise fall through. */
1586 default:
1587 return FALSE;
1588 }
1589 }
1590 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1591 return FALSE;
1592 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1593 {
1594 Elf_Internal_Shdr *dynsymhdr;
1595
1596 /* The shared libraries distributed with hpux11 have a bogus
1597 sh_link field for the ".dynamic" section. Find the
1598 string table for the ".dynsym" section instead. */
1599 if (elf_dynsymtab (abfd) != 0)
1600 {
1601 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1602 hdr->sh_link = dynsymhdr->sh_link;
1603 }
1604 else
1605 {
1606 unsigned int i, num_sec;
1607
1608 num_sec = elf_numsections (abfd);
1609 for (i = 1; i < num_sec; i++)
1610 {
1611 dynsymhdr = elf_elfsections (abfd)[i];
1612 if (dynsymhdr->sh_type == SHT_DYNSYM)
1613 {
1614 hdr->sh_link = dynsymhdr->sh_link;
1615 break;
1616 }
1617 }
1618 }
1619 }
1620 break;
1621
1622 case SHT_SYMTAB: /* A symbol table */
1623 if (elf_onesymtab (abfd) == shindex)
1624 return TRUE;
1625
1626 if (hdr->sh_entsize != bed->s->sizeof_sym)
1627 return FALSE;
1628 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1629 {
1630 if (hdr->sh_size != 0)
1631 return FALSE;
1632 /* Some assemblers erroneously set sh_info to one with a
1633 zero sh_size. ld sees this as a global symbol count
1634 of (unsigned) -1. Fix it here. */
1635 hdr->sh_info = 0;
1636 return TRUE;
1637 }
1638 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1639 elf_onesymtab (abfd) = shindex;
1640 elf_tdata (abfd)->symtab_hdr = *hdr;
1641 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1642 abfd->flags |= HAS_SYMS;
1643
1644 /* Sometimes a shared object will map in the symbol table. If
1645 SHF_ALLOC is set, and this is a shared object, then we also
1646 treat this section as a BFD section. We can not base the
1647 decision purely on SHF_ALLOC, because that flag is sometimes
1648 set in a relocatable object file, which would confuse the
1649 linker. */
1650 if ((hdr->sh_flags & SHF_ALLOC) != 0
1651 && (abfd->flags & DYNAMIC) != 0
1652 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1653 shindex))
1654 return FALSE;
1655
1656 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1657 can't read symbols without that section loaded as well. It
1658 is most likely specified by the next section header. */
1659 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1660 {
1661 unsigned int i, num_sec;
1662
1663 num_sec = elf_numsections (abfd);
1664 for (i = shindex + 1; i < num_sec; i++)
1665 {
1666 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1667 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1668 && hdr2->sh_link == shindex)
1669 break;
1670 }
1671 if (i == num_sec)
1672 for (i = 1; i < shindex; i++)
1673 {
1674 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1675 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1676 && hdr2->sh_link == shindex)
1677 break;
1678 }
1679 if (i != shindex)
1680 return bfd_section_from_shdr (abfd, i);
1681 }
1682 return TRUE;
1683
1684 case SHT_DYNSYM: /* A dynamic symbol table */
1685 if (elf_dynsymtab (abfd) == shindex)
1686 return TRUE;
1687
1688 if (hdr->sh_entsize != bed->s->sizeof_sym)
1689 return FALSE;
1690 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1691 {
1692 if (hdr->sh_size != 0)
1693 return FALSE;
1694 /* Some linkers erroneously set sh_info to one with a
1695 zero sh_size. ld sees this as a global symbol count
1696 of (unsigned) -1. Fix it here. */
1697 hdr->sh_info = 0;
1698 return TRUE;
1699 }
1700 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1701 elf_dynsymtab (abfd) = shindex;
1702 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1703 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1704 abfd->flags |= HAS_SYMS;
1705
1706 /* Besides being a symbol table, we also treat this as a regular
1707 section, so that objcopy can handle it. */
1708 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1709
1710 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1711 if (elf_symtab_shndx (abfd) == shindex)
1712 return TRUE;
1713
1714 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1715 elf_symtab_shndx (abfd) = shindex;
1716 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1717 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1718 return TRUE;
1719
1720 case SHT_STRTAB: /* A string table */
1721 if (hdr->bfd_section != NULL)
1722 return TRUE;
1723 if (ehdr->e_shstrndx == shindex)
1724 {
1725 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1726 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1727 return TRUE;
1728 }
1729 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1730 {
1731 symtab_strtab:
1732 elf_tdata (abfd)->strtab_hdr = *hdr;
1733 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1734 return TRUE;
1735 }
1736 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1737 {
1738 dynsymtab_strtab:
1739 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1740 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1741 elf_elfsections (abfd)[shindex] = hdr;
1742 /* We also treat this as a regular section, so that objcopy
1743 can handle it. */
1744 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1745 shindex);
1746 }
1747
1748 /* If the string table isn't one of the above, then treat it as a
1749 regular section. We need to scan all the headers to be sure,
1750 just in case this strtab section appeared before the above. */
1751 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1752 {
1753 unsigned int i, num_sec;
1754
1755 num_sec = elf_numsections (abfd);
1756 for (i = 1; i < num_sec; i++)
1757 {
1758 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1759 if (hdr2->sh_link == shindex)
1760 {
1761 /* Prevent endless recursion on broken objects. */
1762 if (i == shindex)
1763 return FALSE;
1764 if (! bfd_section_from_shdr (abfd, i))
1765 return FALSE;
1766 if (elf_onesymtab (abfd) == i)
1767 goto symtab_strtab;
1768 if (elf_dynsymtab (abfd) == i)
1769 goto dynsymtab_strtab;
1770 }
1771 }
1772 }
1773 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1774
1775 case SHT_REL:
1776 case SHT_RELA:
1777 /* *These* do a lot of work -- but build no sections! */
1778 {
1779 asection *target_sect;
1780 Elf_Internal_Shdr *hdr2, **p_hdr;
1781 unsigned int num_sec = elf_numsections (abfd);
1782 struct bfd_elf_section_data *esdt;
1783 bfd_size_type amt;
1784
1785 if (hdr->sh_entsize
1786 != (bfd_size_type) (hdr->sh_type == SHT_REL
1787 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1788 return FALSE;
1789
1790 /* Check for a bogus link to avoid crashing. */
1791 if (hdr->sh_link >= num_sec)
1792 {
1793 ((*_bfd_error_handler)
1794 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1795 abfd, hdr->sh_link, name, shindex));
1796 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1797 shindex);
1798 }
1799
1800 /* For some incomprehensible reason Oracle distributes
1801 libraries for Solaris in which some of the objects have
1802 bogus sh_link fields. It would be nice if we could just
1803 reject them, but, unfortunately, some people need to use
1804 them. We scan through the section headers; if we find only
1805 one suitable symbol table, we clobber the sh_link to point
1806 to it. I hope this doesn't break anything.
1807
1808 Don't do it on executable nor shared library. */
1809 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1810 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1811 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1812 {
1813 unsigned int scan;
1814 int found;
1815
1816 found = 0;
1817 for (scan = 1; scan < num_sec; scan++)
1818 {
1819 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1820 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1821 {
1822 if (found != 0)
1823 {
1824 found = 0;
1825 break;
1826 }
1827 found = scan;
1828 }
1829 }
1830 if (found != 0)
1831 hdr->sh_link = found;
1832 }
1833
1834 /* Get the symbol table. */
1835 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1836 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1837 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1838 return FALSE;
1839
1840 /* If this reloc section does not use the main symbol table we
1841 don't treat it as a reloc section. BFD can't adequately
1842 represent such a section, so at least for now, we don't
1843 try. We just present it as a normal section. We also
1844 can't use it as a reloc section if it points to the null
1845 section, an invalid section, another reloc section, or its
1846 sh_link points to the null section. */
1847 if (hdr->sh_link != elf_onesymtab (abfd)
1848 || hdr->sh_link == SHN_UNDEF
1849 || hdr->sh_info == SHN_UNDEF
1850 || hdr->sh_info >= num_sec
1851 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1852 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1853 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1854 shindex);
1855
1856 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1857 return FALSE;
1858 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1859 if (target_sect == NULL)
1860 return FALSE;
1861
1862 esdt = elf_section_data (target_sect);
1863 if (hdr->sh_type == SHT_RELA)
1864 p_hdr = &esdt->rela.hdr;
1865 else
1866 p_hdr = &esdt->rel.hdr;
1867
1868 BFD_ASSERT (*p_hdr == NULL);
1869 amt = sizeof (*hdr2);
1870 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1871 if (hdr2 == NULL)
1872 return FALSE;
1873 *hdr2 = *hdr;
1874 *p_hdr = hdr2;
1875 elf_elfsections (abfd)[shindex] = hdr2;
1876 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1877 target_sect->flags |= SEC_RELOC;
1878 target_sect->relocation = NULL;
1879 target_sect->rel_filepos = hdr->sh_offset;
1880 /* In the section to which the relocations apply, mark whether
1881 its relocations are of the REL or RELA variety. */
1882 if (hdr->sh_size != 0)
1883 {
1884 if (hdr->sh_type == SHT_RELA)
1885 target_sect->use_rela_p = 1;
1886 }
1887 abfd->flags |= HAS_RELOC;
1888 return TRUE;
1889 }
1890
1891 case SHT_GNU_verdef:
1892 elf_dynverdef (abfd) = shindex;
1893 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1894 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1895
1896 case SHT_GNU_versym:
1897 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1898 return FALSE;
1899 elf_dynversym (abfd) = shindex;
1900 elf_tdata (abfd)->dynversym_hdr = *hdr;
1901 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1902
1903 case SHT_GNU_verneed:
1904 elf_dynverref (abfd) = shindex;
1905 elf_tdata (abfd)->dynverref_hdr = *hdr;
1906 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1907
1908 case SHT_SHLIB:
1909 return TRUE;
1910
1911 case SHT_GROUP:
1912 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1913 return FALSE;
1914 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1915 return FALSE;
1916 if (hdr->contents != NULL)
1917 {
1918 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1919 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1920 asection *s;
1921
1922 if (idx->flags & GRP_COMDAT)
1923 hdr->bfd_section->flags
1924 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1925
1926 /* We try to keep the same section order as it comes in. */
1927 idx += n_elt;
1928 while (--n_elt != 0)
1929 {
1930 --idx;
1931
1932 if (idx->shdr != NULL
1933 && (s = idx->shdr->bfd_section) != NULL
1934 && elf_next_in_group (s) != NULL)
1935 {
1936 elf_next_in_group (hdr->bfd_section) = s;
1937 break;
1938 }
1939 }
1940 }
1941 break;
1942
1943 default:
1944 /* Possibly an attributes section. */
1945 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1946 || hdr->sh_type == bed->obj_attrs_section_type)
1947 {
1948 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1949 return FALSE;
1950 _bfd_elf_parse_attributes (abfd, hdr);
1951 return TRUE;
1952 }
1953
1954 /* Check for any processor-specific section types. */
1955 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1956 return TRUE;
1957
1958 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1959 {
1960 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1961 /* FIXME: How to properly handle allocated section reserved
1962 for applications? */
1963 (*_bfd_error_handler)
1964 (_("%B: don't know how to handle allocated, application "
1965 "specific section `%s' [0x%8x]"),
1966 abfd, name, hdr->sh_type);
1967 else
1968 /* Allow sections reserved for applications. */
1969 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1970 shindex);
1971 }
1972 else if (hdr->sh_type >= SHT_LOPROC
1973 && hdr->sh_type <= SHT_HIPROC)
1974 /* FIXME: We should handle this section. */
1975 (*_bfd_error_handler)
1976 (_("%B: don't know how to handle processor specific section "
1977 "`%s' [0x%8x]"),
1978 abfd, name, hdr->sh_type);
1979 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1980 {
1981 /* Unrecognised OS-specific sections. */
1982 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1983 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1984 required to correctly process the section and the file should
1985 be rejected with an error message. */
1986 (*_bfd_error_handler)
1987 (_("%B: don't know how to handle OS specific section "
1988 "`%s' [0x%8x]"),
1989 abfd, name, hdr->sh_type);
1990 else
1991 /* Otherwise it should be processed. */
1992 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1993 }
1994 else
1995 /* FIXME: We should handle this section. */
1996 (*_bfd_error_handler)
1997 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1998 abfd, name, hdr->sh_type);
1999
2000 return FALSE;
2001 }
2002
2003 return TRUE;
2004 }
2005
2006 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2007
2008 Elf_Internal_Sym *
2009 bfd_sym_from_r_symndx (struct sym_cache *cache,
2010 bfd *abfd,
2011 unsigned long r_symndx)
2012 {
2013 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2014
2015 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2016 {
2017 Elf_Internal_Shdr *symtab_hdr;
2018 unsigned char esym[sizeof (Elf64_External_Sym)];
2019 Elf_External_Sym_Shndx eshndx;
2020
2021 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2022 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2023 &cache->sym[ent], esym, &eshndx) == NULL)
2024 return NULL;
2025
2026 if (cache->abfd != abfd)
2027 {
2028 memset (cache->indx, -1, sizeof (cache->indx));
2029 cache->abfd = abfd;
2030 }
2031 cache->indx[ent] = r_symndx;
2032 }
2033
2034 return &cache->sym[ent];
2035 }
2036
2037 /* Given an ELF section number, retrieve the corresponding BFD
2038 section. */
2039
2040 asection *
2041 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2042 {
2043 if (sec_index >= elf_numsections (abfd))
2044 return NULL;
2045 return elf_elfsections (abfd)[sec_index]->bfd_section;
2046 }
2047
2048 static const struct bfd_elf_special_section special_sections_b[] =
2049 {
2050 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2051 { NULL, 0, 0, 0, 0 }
2052 };
2053
2054 static const struct bfd_elf_special_section special_sections_c[] =
2055 {
2056 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2057 { NULL, 0, 0, 0, 0 }
2058 };
2059
2060 static const struct bfd_elf_special_section special_sections_d[] =
2061 {
2062 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2063 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2064 /* There are more DWARF sections than these, but they needn't be added here
2065 unless you have to cope with broken compilers that don't emit section
2066 attributes or you want to help the user writing assembler. */
2067 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2068 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2069 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2070 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2071 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2072 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2073 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2074 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2075 { NULL, 0, 0, 0, 0 }
2076 };
2077
2078 static const struct bfd_elf_special_section special_sections_f[] =
2079 {
2080 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2081 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2082 { NULL, 0, 0, 0, 0 }
2083 };
2084
2085 static const struct bfd_elf_special_section special_sections_g[] =
2086 {
2087 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2088 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2089 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2090 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2091 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2092 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2093 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2094 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2095 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2096 { NULL, 0, 0, 0, 0 }
2097 };
2098
2099 static const struct bfd_elf_special_section special_sections_h[] =
2100 {
2101 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2102 { NULL, 0, 0, 0, 0 }
2103 };
2104
2105 static const struct bfd_elf_special_section special_sections_i[] =
2106 {
2107 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2108 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2109 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2110 { NULL, 0, 0, 0, 0 }
2111 };
2112
2113 static const struct bfd_elf_special_section special_sections_l[] =
2114 {
2115 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2116 { NULL, 0, 0, 0, 0 }
2117 };
2118
2119 static const struct bfd_elf_special_section special_sections_n[] =
2120 {
2121 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2122 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2123 { NULL, 0, 0, 0, 0 }
2124 };
2125
2126 static const struct bfd_elf_special_section special_sections_p[] =
2127 {
2128 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2129 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2130 { NULL, 0, 0, 0, 0 }
2131 };
2132
2133 static const struct bfd_elf_special_section special_sections_r[] =
2134 {
2135 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2136 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2137 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2138 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2139 { NULL, 0, 0, 0, 0 }
2140 };
2141
2142 static const struct bfd_elf_special_section special_sections_s[] =
2143 {
2144 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2145 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2146 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2147 /* See struct bfd_elf_special_section declaration for the semantics of
2148 this special case where .prefix_length != strlen (.prefix). */
2149 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2150 { NULL, 0, 0, 0, 0 }
2151 };
2152
2153 static const struct bfd_elf_special_section special_sections_t[] =
2154 {
2155 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2156 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2157 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2158 { NULL, 0, 0, 0, 0 }
2159 };
2160
2161 static const struct bfd_elf_special_section special_sections_z[] =
2162 {
2163 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2164 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2165 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2166 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2167 { NULL, 0, 0, 0, 0 }
2168 };
2169
2170 static const struct bfd_elf_special_section * const special_sections[] =
2171 {
2172 special_sections_b, /* 'b' */
2173 special_sections_c, /* 'c' */
2174 special_sections_d, /* 'd' */
2175 NULL, /* 'e' */
2176 special_sections_f, /* 'f' */
2177 special_sections_g, /* 'g' */
2178 special_sections_h, /* 'h' */
2179 special_sections_i, /* 'i' */
2180 NULL, /* 'j' */
2181 NULL, /* 'k' */
2182 special_sections_l, /* 'l' */
2183 NULL, /* 'm' */
2184 special_sections_n, /* 'n' */
2185 NULL, /* 'o' */
2186 special_sections_p, /* 'p' */
2187 NULL, /* 'q' */
2188 special_sections_r, /* 'r' */
2189 special_sections_s, /* 's' */
2190 special_sections_t, /* 't' */
2191 NULL, /* 'u' */
2192 NULL, /* 'v' */
2193 NULL, /* 'w' */
2194 NULL, /* 'x' */
2195 NULL, /* 'y' */
2196 special_sections_z /* 'z' */
2197 };
2198
2199 const struct bfd_elf_special_section *
2200 _bfd_elf_get_special_section (const char *name,
2201 const struct bfd_elf_special_section *spec,
2202 unsigned int rela)
2203 {
2204 int i;
2205 int len;
2206
2207 len = strlen (name);
2208
2209 for (i = 0; spec[i].prefix != NULL; i++)
2210 {
2211 int suffix_len;
2212 int prefix_len = spec[i].prefix_length;
2213
2214 if (len < prefix_len)
2215 continue;
2216 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2217 continue;
2218
2219 suffix_len = spec[i].suffix_length;
2220 if (suffix_len <= 0)
2221 {
2222 if (name[prefix_len] != 0)
2223 {
2224 if (suffix_len == 0)
2225 continue;
2226 if (name[prefix_len] != '.'
2227 && (suffix_len == -2
2228 || (rela && spec[i].type == SHT_REL)))
2229 continue;
2230 }
2231 }
2232 else
2233 {
2234 if (len < prefix_len + suffix_len)
2235 continue;
2236 if (memcmp (name + len - suffix_len,
2237 spec[i].prefix + prefix_len,
2238 suffix_len) != 0)
2239 continue;
2240 }
2241 return &spec[i];
2242 }
2243
2244 return NULL;
2245 }
2246
2247 const struct bfd_elf_special_section *
2248 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2249 {
2250 int i;
2251 const struct bfd_elf_special_section *spec;
2252 const struct elf_backend_data *bed;
2253
2254 /* See if this is one of the special sections. */
2255 if (sec->name == NULL)
2256 return NULL;
2257
2258 bed = get_elf_backend_data (abfd);
2259 spec = bed->special_sections;
2260 if (spec)
2261 {
2262 spec = _bfd_elf_get_special_section (sec->name,
2263 bed->special_sections,
2264 sec->use_rela_p);
2265 if (spec != NULL)
2266 return spec;
2267 }
2268
2269 if (sec->name[0] != '.')
2270 return NULL;
2271
2272 i = sec->name[1] - 'b';
2273 if (i < 0 || i > 'z' - 'b')
2274 return NULL;
2275
2276 spec = special_sections[i];
2277
2278 if (spec == NULL)
2279 return NULL;
2280
2281 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2282 }
2283
2284 bfd_boolean
2285 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2286 {
2287 struct bfd_elf_section_data *sdata;
2288 const struct elf_backend_data *bed;
2289 const struct bfd_elf_special_section *ssect;
2290
2291 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2292 if (sdata == NULL)
2293 {
2294 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2295 sizeof (*sdata));
2296 if (sdata == NULL)
2297 return FALSE;
2298 sec->used_by_bfd = sdata;
2299 }
2300
2301 /* Indicate whether or not this section should use RELA relocations. */
2302 bed = get_elf_backend_data (abfd);
2303 sec->use_rela_p = bed->default_use_rela_p;
2304
2305 /* When we read a file, we don't need to set ELF section type and
2306 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2307 anyway. We will set ELF section type and flags for all linker
2308 created sections. If user specifies BFD section flags, we will
2309 set ELF section type and flags based on BFD section flags in
2310 elf_fake_sections. Special handling for .init_array/.fini_array
2311 output sections since they may contain .ctors/.dtors input
2312 sections. We don't want _bfd_elf_init_private_section_data to
2313 copy ELF section type from .ctors/.dtors input sections. */
2314 if (abfd->direction != read_direction
2315 || (sec->flags & SEC_LINKER_CREATED) != 0)
2316 {
2317 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2318 if (ssect != NULL
2319 && (!sec->flags
2320 || (sec->flags & SEC_LINKER_CREATED) != 0
2321 || ssect->type == SHT_INIT_ARRAY
2322 || ssect->type == SHT_FINI_ARRAY))
2323 {
2324 elf_section_type (sec) = ssect->type;
2325 elf_section_flags (sec) = ssect->attr;
2326 }
2327 }
2328
2329 return _bfd_generic_new_section_hook (abfd, sec);
2330 }
2331
2332 /* Create a new bfd section from an ELF program header.
2333
2334 Since program segments have no names, we generate a synthetic name
2335 of the form segment<NUM>, where NUM is generally the index in the
2336 program header table. For segments that are split (see below) we
2337 generate the names segment<NUM>a and segment<NUM>b.
2338
2339 Note that some program segments may have a file size that is different than
2340 (less than) the memory size. All this means is that at execution the
2341 system must allocate the amount of memory specified by the memory size,
2342 but only initialize it with the first "file size" bytes read from the
2343 file. This would occur for example, with program segments consisting
2344 of combined data+bss.
2345
2346 To handle the above situation, this routine generates TWO bfd sections
2347 for the single program segment. The first has the length specified by
2348 the file size of the segment, and the second has the length specified
2349 by the difference between the two sizes. In effect, the segment is split
2350 into its initialized and uninitialized parts.
2351
2352 */
2353
2354 bfd_boolean
2355 _bfd_elf_make_section_from_phdr (bfd *abfd,
2356 Elf_Internal_Phdr *hdr,
2357 int hdr_index,
2358 const char *type_name)
2359 {
2360 asection *newsect;
2361 char *name;
2362 char namebuf[64];
2363 size_t len;
2364 int split;
2365
2366 split = ((hdr->p_memsz > 0)
2367 && (hdr->p_filesz > 0)
2368 && (hdr->p_memsz > hdr->p_filesz));
2369
2370 if (hdr->p_filesz > 0)
2371 {
2372 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2373 len = strlen (namebuf) + 1;
2374 name = (char *) bfd_alloc (abfd, len);
2375 if (!name)
2376 return FALSE;
2377 memcpy (name, namebuf, len);
2378 newsect = bfd_make_section (abfd, name);
2379 if (newsect == NULL)
2380 return FALSE;
2381 newsect->vma = hdr->p_vaddr;
2382 newsect->lma = hdr->p_paddr;
2383 newsect->size = hdr->p_filesz;
2384 newsect->filepos = hdr->p_offset;
2385 newsect->flags |= SEC_HAS_CONTENTS;
2386 newsect->alignment_power = bfd_log2 (hdr->p_align);
2387 if (hdr->p_type == PT_LOAD)
2388 {
2389 newsect->flags |= SEC_ALLOC;
2390 newsect->flags |= SEC_LOAD;
2391 if (hdr->p_flags & PF_X)
2392 {
2393 /* FIXME: all we known is that it has execute PERMISSION,
2394 may be data. */
2395 newsect->flags |= SEC_CODE;
2396 }
2397 }
2398 if (!(hdr->p_flags & PF_W))
2399 {
2400 newsect->flags |= SEC_READONLY;
2401 }
2402 }
2403
2404 if (hdr->p_memsz > hdr->p_filesz)
2405 {
2406 bfd_vma align;
2407
2408 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2409 len = strlen (namebuf) + 1;
2410 name = (char *) bfd_alloc (abfd, len);
2411 if (!name)
2412 return FALSE;
2413 memcpy (name, namebuf, len);
2414 newsect = bfd_make_section (abfd, name);
2415 if (newsect == NULL)
2416 return FALSE;
2417 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2418 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2419 newsect->size = hdr->p_memsz - hdr->p_filesz;
2420 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2421 align = newsect->vma & -newsect->vma;
2422 if (align == 0 || align > hdr->p_align)
2423 align = hdr->p_align;
2424 newsect->alignment_power = bfd_log2 (align);
2425 if (hdr->p_type == PT_LOAD)
2426 {
2427 /* Hack for gdb. Segments that have not been modified do
2428 not have their contents written to a core file, on the
2429 assumption that a debugger can find the contents in the
2430 executable. We flag this case by setting the fake
2431 section size to zero. Note that "real" bss sections will
2432 always have their contents dumped to the core file. */
2433 if (bfd_get_format (abfd) == bfd_core)
2434 newsect->size = 0;
2435 newsect->flags |= SEC_ALLOC;
2436 if (hdr->p_flags & PF_X)
2437 newsect->flags |= SEC_CODE;
2438 }
2439 if (!(hdr->p_flags & PF_W))
2440 newsect->flags |= SEC_READONLY;
2441 }
2442
2443 return TRUE;
2444 }
2445
2446 bfd_boolean
2447 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2448 {
2449 const struct elf_backend_data *bed;
2450
2451 switch (hdr->p_type)
2452 {
2453 case PT_NULL:
2454 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2455
2456 case PT_LOAD:
2457 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2458
2459 case PT_DYNAMIC:
2460 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2461
2462 case PT_INTERP:
2463 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2464
2465 case PT_NOTE:
2466 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2467 return FALSE;
2468 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2469 return FALSE;
2470 return TRUE;
2471
2472 case PT_SHLIB:
2473 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2474
2475 case PT_PHDR:
2476 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2477
2478 case PT_GNU_EH_FRAME:
2479 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2480 "eh_frame_hdr");
2481
2482 case PT_GNU_STACK:
2483 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2484
2485 case PT_GNU_RELRO:
2486 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2487
2488 default:
2489 /* Check for any processor-specific program segment types. */
2490 bed = get_elf_backend_data (abfd);
2491 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2492 }
2493 }
2494
2495 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2496 REL or RELA. */
2497
2498 Elf_Internal_Shdr *
2499 _bfd_elf_single_rel_hdr (asection *sec)
2500 {
2501 if (elf_section_data (sec)->rel.hdr)
2502 {
2503 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2504 return elf_section_data (sec)->rel.hdr;
2505 }
2506 else
2507 return elf_section_data (sec)->rela.hdr;
2508 }
2509
2510 /* Allocate and initialize a section-header for a new reloc section,
2511 containing relocations against ASECT. It is stored in RELDATA. If
2512 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2513 relocations. */
2514
2515 bfd_boolean
2516 _bfd_elf_init_reloc_shdr (bfd *abfd,
2517 struct bfd_elf_section_reloc_data *reldata,
2518 asection *asect,
2519 bfd_boolean use_rela_p)
2520 {
2521 Elf_Internal_Shdr *rel_hdr;
2522 char *name;
2523 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2524 bfd_size_type amt;
2525
2526 amt = sizeof (Elf_Internal_Shdr);
2527 BFD_ASSERT (reldata->hdr == NULL);
2528 rel_hdr = bfd_zalloc (abfd, amt);
2529 reldata->hdr = rel_hdr;
2530
2531 amt = sizeof ".rela" + strlen (asect->name);
2532 name = (char *) bfd_alloc (abfd, amt);
2533 if (name == NULL)
2534 return FALSE;
2535 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2536 rel_hdr->sh_name =
2537 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2538 FALSE);
2539 if (rel_hdr->sh_name == (unsigned int) -1)
2540 return FALSE;
2541 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2542 rel_hdr->sh_entsize = (use_rela_p
2543 ? bed->s->sizeof_rela
2544 : bed->s->sizeof_rel);
2545 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2546 rel_hdr->sh_flags = 0;
2547 rel_hdr->sh_addr = 0;
2548 rel_hdr->sh_size = 0;
2549 rel_hdr->sh_offset = 0;
2550
2551 return TRUE;
2552 }
2553
2554 /* Return the default section type based on the passed in section flags. */
2555
2556 int
2557 bfd_elf_get_default_section_type (flagword flags)
2558 {
2559 if ((flags & SEC_ALLOC) != 0
2560 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2561 return SHT_NOBITS;
2562 return SHT_PROGBITS;
2563 }
2564
2565 struct fake_section_arg
2566 {
2567 struct bfd_link_info *link_info;
2568 bfd_boolean failed;
2569 };
2570
2571 /* Set up an ELF internal section header for a section. */
2572
2573 static void
2574 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2575 {
2576 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2577 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2578 struct bfd_elf_section_data *esd = elf_section_data (asect);
2579 Elf_Internal_Shdr *this_hdr;
2580 unsigned int sh_type;
2581
2582 if (arg->failed)
2583 {
2584 /* We already failed; just get out of the bfd_map_over_sections
2585 loop. */
2586 return;
2587 }
2588
2589 this_hdr = &esd->this_hdr;
2590
2591 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2592 asect->name, FALSE);
2593 if (this_hdr->sh_name == (unsigned int) -1)
2594 {
2595 arg->failed = TRUE;
2596 return;
2597 }
2598
2599 /* Don't clear sh_flags. Assembler may set additional bits. */
2600
2601 if ((asect->flags & SEC_ALLOC) != 0
2602 || asect->user_set_vma)
2603 this_hdr->sh_addr = asect->vma;
2604 else
2605 this_hdr->sh_addr = 0;
2606
2607 this_hdr->sh_offset = 0;
2608 this_hdr->sh_size = asect->size;
2609 this_hdr->sh_link = 0;
2610 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2611 /* The sh_entsize and sh_info fields may have been set already by
2612 copy_private_section_data. */
2613
2614 this_hdr->bfd_section = asect;
2615 this_hdr->contents = NULL;
2616
2617 /* If the section type is unspecified, we set it based on
2618 asect->flags. */
2619 if ((asect->flags & SEC_GROUP) != 0)
2620 sh_type = SHT_GROUP;
2621 else
2622 sh_type = bfd_elf_get_default_section_type (asect->flags);
2623
2624 if (this_hdr->sh_type == SHT_NULL)
2625 this_hdr->sh_type = sh_type;
2626 else if (this_hdr->sh_type == SHT_NOBITS
2627 && sh_type == SHT_PROGBITS
2628 && (asect->flags & SEC_ALLOC) != 0)
2629 {
2630 /* Warn if we are changing a NOBITS section to PROGBITS, but
2631 allow the link to proceed. This can happen when users link
2632 non-bss input sections to bss output sections, or emit data
2633 to a bss output section via a linker script. */
2634 (*_bfd_error_handler)
2635 (_("warning: section `%A' type changed to PROGBITS"), asect);
2636 this_hdr->sh_type = sh_type;
2637 }
2638
2639 switch (this_hdr->sh_type)
2640 {
2641 default:
2642 break;
2643
2644 case SHT_STRTAB:
2645 case SHT_INIT_ARRAY:
2646 case SHT_FINI_ARRAY:
2647 case SHT_PREINIT_ARRAY:
2648 case SHT_NOTE:
2649 case SHT_NOBITS:
2650 case SHT_PROGBITS:
2651 break;
2652
2653 case SHT_HASH:
2654 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2655 break;
2656
2657 case SHT_DYNSYM:
2658 this_hdr->sh_entsize = bed->s->sizeof_sym;
2659 break;
2660
2661 case SHT_DYNAMIC:
2662 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2663 break;
2664
2665 case SHT_RELA:
2666 if (get_elf_backend_data (abfd)->may_use_rela_p)
2667 this_hdr->sh_entsize = bed->s->sizeof_rela;
2668 break;
2669
2670 case SHT_REL:
2671 if (get_elf_backend_data (abfd)->may_use_rel_p)
2672 this_hdr->sh_entsize = bed->s->sizeof_rel;
2673 break;
2674
2675 case SHT_GNU_versym:
2676 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2677 break;
2678
2679 case SHT_GNU_verdef:
2680 this_hdr->sh_entsize = 0;
2681 /* objcopy or strip will copy over sh_info, but may not set
2682 cverdefs. The linker will set cverdefs, but sh_info will be
2683 zero. */
2684 if (this_hdr->sh_info == 0)
2685 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2686 else
2687 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2688 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2689 break;
2690
2691 case SHT_GNU_verneed:
2692 this_hdr->sh_entsize = 0;
2693 /* objcopy or strip will copy over sh_info, but may not set
2694 cverrefs. The linker will set cverrefs, but sh_info will be
2695 zero. */
2696 if (this_hdr->sh_info == 0)
2697 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2698 else
2699 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2700 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2701 break;
2702
2703 case SHT_GROUP:
2704 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2705 break;
2706
2707 case SHT_GNU_HASH:
2708 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2709 break;
2710 }
2711
2712 if ((asect->flags & SEC_ALLOC) != 0)
2713 this_hdr->sh_flags |= SHF_ALLOC;
2714 if ((asect->flags & SEC_READONLY) == 0)
2715 this_hdr->sh_flags |= SHF_WRITE;
2716 if ((asect->flags & SEC_CODE) != 0)
2717 this_hdr->sh_flags |= SHF_EXECINSTR;
2718 if ((asect->flags & SEC_MERGE) != 0)
2719 {
2720 this_hdr->sh_flags |= SHF_MERGE;
2721 this_hdr->sh_entsize = asect->entsize;
2722 if ((asect->flags & SEC_STRINGS) != 0)
2723 this_hdr->sh_flags |= SHF_STRINGS;
2724 }
2725 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2726 this_hdr->sh_flags |= SHF_GROUP;
2727 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2728 {
2729 this_hdr->sh_flags |= SHF_TLS;
2730 if (asect->size == 0
2731 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2732 {
2733 struct bfd_link_order *o = asect->map_tail.link_order;
2734
2735 this_hdr->sh_size = 0;
2736 if (o != NULL)
2737 {
2738 this_hdr->sh_size = o->offset + o->size;
2739 if (this_hdr->sh_size != 0)
2740 this_hdr->sh_type = SHT_NOBITS;
2741 }
2742 }
2743 }
2744 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2745 this_hdr->sh_flags |= SHF_EXCLUDE;
2746
2747 /* If the section has relocs, set up a section header for the
2748 SHT_REL[A] section. If two relocation sections are required for
2749 this section, it is up to the processor-specific back-end to
2750 create the other. */
2751 if ((asect->flags & SEC_RELOC) != 0)
2752 {
2753 /* When doing a relocatable link, create both REL and RELA sections if
2754 needed. */
2755 if (arg->link_info
2756 /* Do the normal setup if we wouldn't create any sections here. */
2757 && esd->rel.count + esd->rela.count > 0
2758 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2759 {
2760 if (esd->rel.count && esd->rel.hdr == NULL
2761 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2762 {
2763 arg->failed = TRUE;
2764 return;
2765 }
2766 if (esd->rela.count && esd->rela.hdr == NULL
2767 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2768 {
2769 arg->failed = TRUE;
2770 return;
2771 }
2772 }
2773 else if (!_bfd_elf_init_reloc_shdr (abfd,
2774 (asect->use_rela_p
2775 ? &esd->rela : &esd->rel),
2776 asect,
2777 asect->use_rela_p))
2778 arg->failed = TRUE;
2779 }
2780
2781 /* Check for processor-specific section types. */
2782 sh_type = this_hdr->sh_type;
2783 if (bed->elf_backend_fake_sections
2784 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2785 arg->failed = TRUE;
2786
2787 if (sh_type == SHT_NOBITS && asect->size != 0)
2788 {
2789 /* Don't change the header type from NOBITS if we are being
2790 called for objcopy --only-keep-debug. */
2791 this_hdr->sh_type = sh_type;
2792 }
2793 }
2794
2795 /* Fill in the contents of a SHT_GROUP section. Called from
2796 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2797 when ELF targets use the generic linker, ld. Called for ld -r
2798 from bfd_elf_final_link. */
2799
2800 void
2801 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2802 {
2803 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2804 asection *elt, *first;
2805 unsigned char *loc;
2806 bfd_boolean gas;
2807
2808 /* Ignore linker created group section. See elfNN_ia64_object_p in
2809 elfxx-ia64.c. */
2810 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2811 || *failedptr)
2812 return;
2813
2814 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2815 {
2816 unsigned long symindx = 0;
2817
2818 /* elf_group_id will have been set up by objcopy and the
2819 generic linker. */
2820 if (elf_group_id (sec) != NULL)
2821 symindx = elf_group_id (sec)->udata.i;
2822
2823 if (symindx == 0)
2824 {
2825 /* If called from the assembler, swap_out_syms will have set up
2826 elf_section_syms. */
2827 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2828 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2829 }
2830 elf_section_data (sec)->this_hdr.sh_info = symindx;
2831 }
2832 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2833 {
2834 /* The ELF backend linker sets sh_info to -2 when the group
2835 signature symbol is global, and thus the index can't be
2836 set until all local symbols are output. */
2837 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2838 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2839 unsigned long symndx = sec_data->this_hdr.sh_info;
2840 unsigned long extsymoff = 0;
2841 struct elf_link_hash_entry *h;
2842
2843 if (!elf_bad_symtab (igroup->owner))
2844 {
2845 Elf_Internal_Shdr *symtab_hdr;
2846
2847 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2848 extsymoff = symtab_hdr->sh_info;
2849 }
2850 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2851 while (h->root.type == bfd_link_hash_indirect
2852 || h->root.type == bfd_link_hash_warning)
2853 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2854
2855 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2856 }
2857
2858 /* The contents won't be allocated for "ld -r" or objcopy. */
2859 gas = TRUE;
2860 if (sec->contents == NULL)
2861 {
2862 gas = FALSE;
2863 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2864
2865 /* Arrange for the section to be written out. */
2866 elf_section_data (sec)->this_hdr.contents = sec->contents;
2867 if (sec->contents == NULL)
2868 {
2869 *failedptr = TRUE;
2870 return;
2871 }
2872 }
2873
2874 loc = sec->contents + sec->size;
2875
2876 /* Get the pointer to the first section in the group that gas
2877 squirreled away here. objcopy arranges for this to be set to the
2878 start of the input section group. */
2879 first = elt = elf_next_in_group (sec);
2880
2881 /* First element is a flag word. Rest of section is elf section
2882 indices for all the sections of the group. Write them backwards
2883 just to keep the group in the same order as given in .section
2884 directives, not that it matters. */
2885 while (elt != NULL)
2886 {
2887 asection *s;
2888
2889 s = elt;
2890 if (!gas)
2891 s = s->output_section;
2892 if (s != NULL
2893 && !bfd_is_abs_section (s))
2894 {
2895 unsigned int idx = elf_section_data (s)->this_idx;
2896
2897 loc -= 4;
2898 H_PUT_32 (abfd, idx, loc);
2899 }
2900 elt = elf_next_in_group (elt);
2901 if (elt == first)
2902 break;
2903 }
2904
2905 if ((loc -= 4) != sec->contents)
2906 abort ();
2907
2908 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2909 }
2910
2911 /* Assign all ELF section numbers. The dummy first section is handled here
2912 too. The link/info pointers for the standard section types are filled
2913 in here too, while we're at it. */
2914
2915 static bfd_boolean
2916 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2917 {
2918 struct elf_obj_tdata *t = elf_tdata (abfd);
2919 asection *sec;
2920 unsigned int section_number, secn;
2921 Elf_Internal_Shdr **i_shdrp;
2922 struct bfd_elf_section_data *d;
2923 bfd_boolean need_symtab;
2924
2925 section_number = 1;
2926
2927 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2928
2929 /* SHT_GROUP sections are in relocatable files only. */
2930 if (link_info == NULL || link_info->relocatable)
2931 {
2932 /* Put SHT_GROUP sections first. */
2933 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2934 {
2935 d = elf_section_data (sec);
2936
2937 if (d->this_hdr.sh_type == SHT_GROUP)
2938 {
2939 if (sec->flags & SEC_LINKER_CREATED)
2940 {
2941 /* Remove the linker created SHT_GROUP sections. */
2942 bfd_section_list_remove (abfd, sec);
2943 abfd->section_count--;
2944 }
2945 else
2946 d->this_idx = section_number++;
2947 }
2948 }
2949 }
2950
2951 for (sec = abfd->sections; sec; sec = sec->next)
2952 {
2953 d = elf_section_data (sec);
2954
2955 if (d->this_hdr.sh_type != SHT_GROUP)
2956 d->this_idx = section_number++;
2957 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2958 if (d->rel.hdr)
2959 {
2960 d->rel.idx = section_number++;
2961 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2962 }
2963 else
2964 d->rel.idx = 0;
2965
2966 if (d->rela.hdr)
2967 {
2968 d->rela.idx = section_number++;
2969 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2970 }
2971 else
2972 d->rela.idx = 0;
2973 }
2974
2975 t->shstrtab_section = section_number++;
2976 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2977 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2978
2979 need_symtab = (bfd_get_symcount (abfd) > 0
2980 || (link_info == NULL
2981 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2982 == HAS_RELOC)));
2983 if (need_symtab)
2984 {
2985 t->symtab_section = section_number++;
2986 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2987 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2988 {
2989 t->symtab_shndx_section = section_number++;
2990 t->symtab_shndx_hdr.sh_name
2991 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2992 ".symtab_shndx", FALSE);
2993 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2994 return FALSE;
2995 }
2996 t->strtab_section = section_number++;
2997 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2998 }
2999
3000 if (section_number >= SHN_LORESERVE)
3001 {
3002 _bfd_error_handler (_("%B: too many sections: %u"),
3003 abfd, section_number);
3004 return FALSE;
3005 }
3006
3007 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3008 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3009
3010 elf_numsections (abfd) = section_number;
3011 elf_elfheader (abfd)->e_shnum = section_number;
3012
3013 /* Set up the list of section header pointers, in agreement with the
3014 indices. */
3015 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3016 sizeof (Elf_Internal_Shdr *));
3017 if (i_shdrp == NULL)
3018 return FALSE;
3019
3020 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3021 sizeof (Elf_Internal_Shdr));
3022 if (i_shdrp[0] == NULL)
3023 {
3024 bfd_release (abfd, i_shdrp);
3025 return FALSE;
3026 }
3027
3028 elf_elfsections (abfd) = i_shdrp;
3029
3030 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3031 if (need_symtab)
3032 {
3033 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3034 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3035 {
3036 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3037 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3038 }
3039 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3040 t->symtab_hdr.sh_link = t->strtab_section;
3041 }
3042
3043 for (sec = abfd->sections; sec; sec = sec->next)
3044 {
3045 asection *s;
3046 const char *name;
3047
3048 d = elf_section_data (sec);
3049
3050 i_shdrp[d->this_idx] = &d->this_hdr;
3051 if (d->rel.idx != 0)
3052 i_shdrp[d->rel.idx] = d->rel.hdr;
3053 if (d->rela.idx != 0)
3054 i_shdrp[d->rela.idx] = d->rela.hdr;
3055
3056 /* Fill in the sh_link and sh_info fields while we're at it. */
3057
3058 /* sh_link of a reloc section is the section index of the symbol
3059 table. sh_info is the section index of the section to which
3060 the relocation entries apply. */
3061 if (d->rel.idx != 0)
3062 {
3063 d->rel.hdr->sh_link = t->symtab_section;
3064 d->rel.hdr->sh_info = d->this_idx;
3065 }
3066 if (d->rela.idx != 0)
3067 {
3068 d->rela.hdr->sh_link = t->symtab_section;
3069 d->rela.hdr->sh_info = d->this_idx;
3070 }
3071
3072 /* We need to set up sh_link for SHF_LINK_ORDER. */
3073 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3074 {
3075 s = elf_linked_to_section (sec);
3076 if (s)
3077 {
3078 /* elf_linked_to_section points to the input section. */
3079 if (link_info != NULL)
3080 {
3081 /* Check discarded linkonce section. */
3082 if (discarded_section (s))
3083 {
3084 asection *kept;
3085 (*_bfd_error_handler)
3086 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3087 abfd, d->this_hdr.bfd_section,
3088 s, s->owner);
3089 /* Point to the kept section if it has the same
3090 size as the discarded one. */
3091 kept = _bfd_elf_check_kept_section (s, link_info);
3092 if (kept == NULL)
3093 {
3094 bfd_set_error (bfd_error_bad_value);
3095 return FALSE;
3096 }
3097 s = kept;
3098 }
3099
3100 s = s->output_section;
3101 BFD_ASSERT (s != NULL);
3102 }
3103 else
3104 {
3105 /* Handle objcopy. */
3106 if (s->output_section == NULL)
3107 {
3108 (*_bfd_error_handler)
3109 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3110 abfd, d->this_hdr.bfd_section, s, s->owner);
3111 bfd_set_error (bfd_error_bad_value);
3112 return FALSE;
3113 }
3114 s = s->output_section;
3115 }
3116 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3117 }
3118 else
3119 {
3120 /* PR 290:
3121 The Intel C compiler generates SHT_IA_64_UNWIND with
3122 SHF_LINK_ORDER. But it doesn't set the sh_link or
3123 sh_info fields. Hence we could get the situation
3124 where s is NULL. */
3125 const struct elf_backend_data *bed
3126 = get_elf_backend_data (abfd);
3127 if (bed->link_order_error_handler)
3128 bed->link_order_error_handler
3129 (_("%B: warning: sh_link not set for section `%A'"),
3130 abfd, sec);
3131 }
3132 }
3133
3134 switch (d->this_hdr.sh_type)
3135 {
3136 case SHT_REL:
3137 case SHT_RELA:
3138 /* A reloc section which we are treating as a normal BFD
3139 section. sh_link is the section index of the symbol
3140 table. sh_info is the section index of the section to
3141 which the relocation entries apply. We assume that an
3142 allocated reloc section uses the dynamic symbol table.
3143 FIXME: How can we be sure? */
3144 s = bfd_get_section_by_name (abfd, ".dynsym");
3145 if (s != NULL)
3146 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3147
3148 /* We look up the section the relocs apply to by name. */
3149 name = sec->name;
3150 if (d->this_hdr.sh_type == SHT_REL)
3151 name += 4;
3152 else
3153 name += 5;
3154 s = bfd_get_section_by_name (abfd, name);
3155 if (s != NULL)
3156 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3157 break;
3158
3159 case SHT_STRTAB:
3160 /* We assume that a section named .stab*str is a stabs
3161 string section. We look for a section with the same name
3162 but without the trailing ``str'', and set its sh_link
3163 field to point to this section. */
3164 if (CONST_STRNEQ (sec->name, ".stab")
3165 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3166 {
3167 size_t len;
3168 char *alc;
3169
3170 len = strlen (sec->name);
3171 alc = (char *) bfd_malloc (len - 2);
3172 if (alc == NULL)
3173 return FALSE;
3174 memcpy (alc, sec->name, len - 3);
3175 alc[len - 3] = '\0';
3176 s = bfd_get_section_by_name (abfd, alc);
3177 free (alc);
3178 if (s != NULL)
3179 {
3180 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3181
3182 /* This is a .stab section. */
3183 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3184 elf_section_data (s)->this_hdr.sh_entsize
3185 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3186 }
3187 }
3188 break;
3189
3190 case SHT_DYNAMIC:
3191 case SHT_DYNSYM:
3192 case SHT_GNU_verneed:
3193 case SHT_GNU_verdef:
3194 /* sh_link is the section header index of the string table
3195 used for the dynamic entries, or the symbol table, or the
3196 version strings. */
3197 s = bfd_get_section_by_name (abfd, ".dynstr");
3198 if (s != NULL)
3199 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3200 break;
3201
3202 case SHT_GNU_LIBLIST:
3203 /* sh_link is the section header index of the prelink library
3204 list used for the dynamic entries, or the symbol table, or
3205 the version strings. */
3206 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3207 ? ".dynstr" : ".gnu.libstr");
3208 if (s != NULL)
3209 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3210 break;
3211
3212 case SHT_HASH:
3213 case SHT_GNU_HASH:
3214 case SHT_GNU_versym:
3215 /* sh_link is the section header index of the symbol table
3216 this hash table or version table is for. */
3217 s = bfd_get_section_by_name (abfd, ".dynsym");
3218 if (s != NULL)
3219 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3220 break;
3221
3222 case SHT_GROUP:
3223 d->this_hdr.sh_link = t->symtab_section;
3224 }
3225 }
3226
3227 for (secn = 1; secn < section_number; ++secn)
3228 if (i_shdrp[secn] == NULL)
3229 i_shdrp[secn] = i_shdrp[0];
3230 else
3231 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3232 i_shdrp[secn]->sh_name);
3233 return TRUE;
3234 }
3235
3236 static bfd_boolean
3237 sym_is_global (bfd *abfd, asymbol *sym)
3238 {
3239 /* If the backend has a special mapping, use it. */
3240 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3241 if (bed->elf_backend_sym_is_global)
3242 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3243
3244 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3245 || bfd_is_und_section (bfd_get_section (sym))
3246 || bfd_is_com_section (bfd_get_section (sym)));
3247 }
3248
3249 /* Don't output section symbols for sections that are not going to be
3250 output, that are duplicates or there is no BFD section. */
3251
3252 static bfd_boolean
3253 ignore_section_sym (bfd *abfd, asymbol *sym)
3254 {
3255 elf_symbol_type *type_ptr;
3256
3257 if ((sym->flags & BSF_SECTION_SYM) == 0)
3258 return FALSE;
3259
3260 type_ptr = elf_symbol_from (abfd, sym);
3261 return ((type_ptr != NULL
3262 && type_ptr->internal_elf_sym.st_shndx != 0
3263 && bfd_is_abs_section (sym->section))
3264 || !(sym->section->owner == abfd
3265 || (sym->section->output_section->owner == abfd
3266 && sym->section->output_offset == 0)
3267 || bfd_is_abs_section (sym->section)));
3268 }
3269
3270 /* Map symbol from it's internal number to the external number, moving
3271 all local symbols to be at the head of the list. */
3272
3273 static bfd_boolean
3274 elf_map_symbols (bfd *abfd)
3275 {
3276 unsigned int symcount = bfd_get_symcount (abfd);
3277 asymbol **syms = bfd_get_outsymbols (abfd);
3278 asymbol **sect_syms;
3279 unsigned int num_locals = 0;
3280 unsigned int num_globals = 0;
3281 unsigned int num_locals2 = 0;
3282 unsigned int num_globals2 = 0;
3283 int max_index = 0;
3284 unsigned int idx;
3285 asection *asect;
3286 asymbol **new_syms;
3287
3288 #ifdef DEBUG
3289 fprintf (stderr, "elf_map_symbols\n");
3290 fflush (stderr);
3291 #endif
3292
3293 for (asect = abfd->sections; asect; asect = asect->next)
3294 {
3295 if (max_index < asect->index)
3296 max_index = asect->index;
3297 }
3298
3299 max_index++;
3300 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3301 if (sect_syms == NULL)
3302 return FALSE;
3303 elf_section_syms (abfd) = sect_syms;
3304 elf_num_section_syms (abfd) = max_index;
3305
3306 /* Init sect_syms entries for any section symbols we have already
3307 decided to output. */
3308 for (idx = 0; idx < symcount; idx++)
3309 {
3310 asymbol *sym = syms[idx];
3311
3312 if ((sym->flags & BSF_SECTION_SYM) != 0
3313 && sym->value == 0
3314 && !ignore_section_sym (abfd, sym)
3315 && !bfd_is_abs_section (sym->section))
3316 {
3317 asection *sec = sym->section;
3318
3319 if (sec->owner != abfd)
3320 sec = sec->output_section;
3321
3322 sect_syms[sec->index] = syms[idx];
3323 }
3324 }
3325
3326 /* Classify all of the symbols. */
3327 for (idx = 0; idx < symcount; idx++)
3328 {
3329 if (sym_is_global (abfd, syms[idx]))
3330 num_globals++;
3331 else if (!ignore_section_sym (abfd, syms[idx]))
3332 num_locals++;
3333 }
3334
3335 /* We will be adding a section symbol for each normal BFD section. Most
3336 sections will already have a section symbol in outsymbols, but
3337 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3338 at least in that case. */
3339 for (asect = abfd->sections; asect; asect = asect->next)
3340 {
3341 if (sect_syms[asect->index] == NULL)
3342 {
3343 if (!sym_is_global (abfd, asect->symbol))
3344 num_locals++;
3345 else
3346 num_globals++;
3347 }
3348 }
3349
3350 /* Now sort the symbols so the local symbols are first. */
3351 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3352 sizeof (asymbol *));
3353
3354 if (new_syms == NULL)
3355 return FALSE;
3356
3357 for (idx = 0; idx < symcount; idx++)
3358 {
3359 asymbol *sym = syms[idx];
3360 unsigned int i;
3361
3362 if (sym_is_global (abfd, sym))
3363 i = num_locals + num_globals2++;
3364 else if (!ignore_section_sym (abfd, sym))
3365 i = num_locals2++;
3366 else
3367 continue;
3368 new_syms[i] = sym;
3369 sym->udata.i = i + 1;
3370 }
3371 for (asect = abfd->sections; asect; asect = asect->next)
3372 {
3373 if (sect_syms[asect->index] == NULL)
3374 {
3375 asymbol *sym = asect->symbol;
3376 unsigned int i;
3377
3378 sect_syms[asect->index] = sym;
3379 if (!sym_is_global (abfd, sym))
3380 i = num_locals2++;
3381 else
3382 i = num_locals + num_globals2++;
3383 new_syms[i] = sym;
3384 sym->udata.i = i + 1;
3385 }
3386 }
3387
3388 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3389
3390 elf_num_locals (abfd) = num_locals;
3391 elf_num_globals (abfd) = num_globals;
3392 return TRUE;
3393 }
3394
3395 /* Align to the maximum file alignment that could be required for any
3396 ELF data structure. */
3397
3398 static inline file_ptr
3399 align_file_position (file_ptr off, int align)
3400 {
3401 return (off + align - 1) & ~(align - 1);
3402 }
3403
3404 /* Assign a file position to a section, optionally aligning to the
3405 required section alignment. */
3406
3407 file_ptr
3408 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3409 file_ptr offset,
3410 bfd_boolean align)
3411 {
3412 if (align && i_shdrp->sh_addralign > 1)
3413 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3414 i_shdrp->sh_offset = offset;
3415 if (i_shdrp->bfd_section != NULL)
3416 i_shdrp->bfd_section->filepos = offset;
3417 if (i_shdrp->sh_type != SHT_NOBITS)
3418 offset += i_shdrp->sh_size;
3419 return offset;
3420 }
3421
3422 /* Compute the file positions we are going to put the sections at, and
3423 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3424 is not NULL, this is being called by the ELF backend linker. */
3425
3426 bfd_boolean
3427 _bfd_elf_compute_section_file_positions (bfd *abfd,
3428 struct bfd_link_info *link_info)
3429 {
3430 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3431 struct fake_section_arg fsargs;
3432 bfd_boolean failed;
3433 struct bfd_strtab_hash *strtab = NULL;
3434 Elf_Internal_Shdr *shstrtab_hdr;
3435 bfd_boolean need_symtab;
3436
3437 if (abfd->output_has_begun)
3438 return TRUE;
3439
3440 /* Do any elf backend specific processing first. */
3441 if (bed->elf_backend_begin_write_processing)
3442 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3443
3444 if (! prep_headers (abfd))
3445 return FALSE;
3446
3447 /* Post process the headers if necessary. */
3448 if (bed->elf_backend_post_process_headers)
3449 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3450
3451 fsargs.failed = FALSE;
3452 fsargs.link_info = link_info;
3453 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3454 if (fsargs.failed)
3455 return FALSE;
3456
3457 if (!assign_section_numbers (abfd, link_info))
3458 return FALSE;
3459
3460 /* The backend linker builds symbol table information itself. */
3461 need_symtab = (link_info == NULL
3462 && (bfd_get_symcount (abfd) > 0
3463 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3464 == HAS_RELOC)));
3465 if (need_symtab)
3466 {
3467 /* Non-zero if doing a relocatable link. */
3468 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3469
3470 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3471 return FALSE;
3472 }
3473
3474 failed = FALSE;
3475 if (link_info == NULL)
3476 {
3477 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3478 if (failed)
3479 return FALSE;
3480 }
3481
3482 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3483 /* sh_name was set in prep_headers. */
3484 shstrtab_hdr->sh_type = SHT_STRTAB;
3485 shstrtab_hdr->sh_flags = 0;
3486 shstrtab_hdr->sh_addr = 0;
3487 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3488 shstrtab_hdr->sh_entsize = 0;
3489 shstrtab_hdr->sh_link = 0;
3490 shstrtab_hdr->sh_info = 0;
3491 /* sh_offset is set in assign_file_positions_except_relocs. */
3492 shstrtab_hdr->sh_addralign = 1;
3493
3494 if (!assign_file_positions_except_relocs (abfd, link_info))
3495 return FALSE;
3496
3497 if (need_symtab)
3498 {
3499 file_ptr off;
3500 Elf_Internal_Shdr *hdr;
3501
3502 off = elf_tdata (abfd)->next_file_pos;
3503
3504 hdr = &elf_tdata (abfd)->symtab_hdr;
3505 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3506
3507 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3508 if (hdr->sh_size != 0)
3509 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3510
3511 hdr = &elf_tdata (abfd)->strtab_hdr;
3512 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3513
3514 elf_tdata (abfd)->next_file_pos = off;
3515
3516 /* Now that we know where the .strtab section goes, write it
3517 out. */
3518 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3519 || ! _bfd_stringtab_emit (abfd, strtab))
3520 return FALSE;
3521 _bfd_stringtab_free (strtab);
3522 }
3523
3524 abfd->output_has_begun = TRUE;
3525
3526 return TRUE;
3527 }
3528
3529 /* Make an initial estimate of the size of the program header. If we
3530 get the number wrong here, we'll redo section placement. */
3531
3532 static bfd_size_type
3533 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3534 {
3535 size_t segs;
3536 asection *s;
3537 const struct elf_backend_data *bed;
3538
3539 /* Assume we will need exactly two PT_LOAD segments: one for text
3540 and one for data. */
3541 segs = 2;
3542
3543 s = bfd_get_section_by_name (abfd, ".interp");
3544 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3545 {
3546 /* If we have a loadable interpreter section, we need a
3547 PT_INTERP segment. In this case, assume we also need a
3548 PT_PHDR segment, although that may not be true for all
3549 targets. */
3550 segs += 2;
3551 }
3552
3553 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3554 {
3555 /* We need a PT_DYNAMIC segment. */
3556 ++segs;
3557 }
3558
3559 if (info != NULL && info->relro)
3560 {
3561 /* We need a PT_GNU_RELRO segment. */
3562 ++segs;
3563 }
3564
3565 if (elf_tdata (abfd)->eh_frame_hdr)
3566 {
3567 /* We need a PT_GNU_EH_FRAME segment. */
3568 ++segs;
3569 }
3570
3571 if (elf_tdata (abfd)->stack_flags)
3572 {
3573 /* We need a PT_GNU_STACK segment. */
3574 ++segs;
3575 }
3576
3577 for (s = abfd->sections; s != NULL; s = s->next)
3578 {
3579 if ((s->flags & SEC_LOAD) != 0
3580 && CONST_STRNEQ (s->name, ".note"))
3581 {
3582 /* We need a PT_NOTE segment. */
3583 ++segs;
3584 /* Try to create just one PT_NOTE segment
3585 for all adjacent loadable .note* sections.
3586 gABI requires that within a PT_NOTE segment
3587 (and also inside of each SHT_NOTE section)
3588 each note is padded to a multiple of 4 size,
3589 so we check whether the sections are correctly
3590 aligned. */
3591 if (s->alignment_power == 2)
3592 while (s->next != NULL
3593 && s->next->alignment_power == 2
3594 && (s->next->flags & SEC_LOAD) != 0
3595 && CONST_STRNEQ (s->next->name, ".note"))
3596 s = s->next;
3597 }
3598 }
3599
3600 for (s = abfd->sections; s != NULL; s = s->next)
3601 {
3602 if (s->flags & SEC_THREAD_LOCAL)
3603 {
3604 /* We need a PT_TLS segment. */
3605 ++segs;
3606 break;
3607 }
3608 }
3609
3610 /* Let the backend count up any program headers it might need. */
3611 bed = get_elf_backend_data (abfd);
3612 if (bed->elf_backend_additional_program_headers)
3613 {
3614 int a;
3615
3616 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3617 if (a == -1)
3618 abort ();
3619 segs += a;
3620 }
3621
3622 return segs * bed->s->sizeof_phdr;
3623 }
3624
3625 /* Find the segment that contains the output_section of section. */
3626
3627 Elf_Internal_Phdr *
3628 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3629 {
3630 struct elf_segment_map *m;
3631 Elf_Internal_Phdr *p;
3632
3633 for (m = elf_tdata (abfd)->segment_map,
3634 p = elf_tdata (abfd)->phdr;
3635 m != NULL;
3636 m = m->next, p++)
3637 {
3638 int i;
3639
3640 for (i = m->count - 1; i >= 0; i--)
3641 if (m->sections[i] == section)
3642 return p;
3643 }
3644
3645 return NULL;
3646 }
3647
3648 /* Create a mapping from a set of sections to a program segment. */
3649
3650 static struct elf_segment_map *
3651 make_mapping (bfd *abfd,
3652 asection **sections,
3653 unsigned int from,
3654 unsigned int to,
3655 bfd_boolean phdr)
3656 {
3657 struct elf_segment_map *m;
3658 unsigned int i;
3659 asection **hdrpp;
3660 bfd_size_type amt;
3661
3662 amt = sizeof (struct elf_segment_map);
3663 amt += (to - from - 1) * sizeof (asection *);
3664 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3665 if (m == NULL)
3666 return NULL;
3667 m->next = NULL;
3668 m->p_type = PT_LOAD;
3669 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3670 m->sections[i - from] = *hdrpp;
3671 m->count = to - from;
3672
3673 if (from == 0 && phdr)
3674 {
3675 /* Include the headers in the first PT_LOAD segment. */
3676 m->includes_filehdr = 1;
3677 m->includes_phdrs = 1;
3678 }
3679
3680 return m;
3681 }
3682
3683 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3684 on failure. */
3685
3686 struct elf_segment_map *
3687 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3688 {
3689 struct elf_segment_map *m;
3690
3691 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3692 sizeof (struct elf_segment_map));
3693 if (m == NULL)
3694 return NULL;
3695 m->next = NULL;
3696 m->p_type = PT_DYNAMIC;
3697 m->count = 1;
3698 m->sections[0] = dynsec;
3699
3700 return m;
3701 }
3702
3703 /* Possibly add or remove segments from the segment map. */
3704
3705 static bfd_boolean
3706 elf_modify_segment_map (bfd *abfd,
3707 struct bfd_link_info *info,
3708 bfd_boolean remove_empty_load)
3709 {
3710 struct elf_segment_map **m;
3711 const struct elf_backend_data *bed;
3712
3713 /* The placement algorithm assumes that non allocated sections are
3714 not in PT_LOAD segments. We ensure this here by removing such
3715 sections from the segment map. We also remove excluded
3716 sections. Finally, any PT_LOAD segment without sections is
3717 removed. */
3718 m = &elf_tdata (abfd)->segment_map;
3719 while (*m)
3720 {
3721 unsigned int i, new_count;
3722
3723 for (new_count = 0, i = 0; i < (*m)->count; i++)
3724 {
3725 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3726 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3727 || (*m)->p_type != PT_LOAD))
3728 {
3729 (*m)->sections[new_count] = (*m)->sections[i];
3730 new_count++;
3731 }
3732 }
3733 (*m)->count = new_count;
3734
3735 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3736 *m = (*m)->next;
3737 else
3738 m = &(*m)->next;
3739 }
3740
3741 bed = get_elf_backend_data (abfd);
3742 if (bed->elf_backend_modify_segment_map != NULL)
3743 {
3744 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3745 return FALSE;
3746 }
3747
3748 return TRUE;
3749 }
3750
3751 /* Set up a mapping from BFD sections to program segments. */
3752
3753 bfd_boolean
3754 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3755 {
3756 unsigned int count;
3757 struct elf_segment_map *m;
3758 asection **sections = NULL;
3759 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3760 bfd_boolean no_user_phdrs;
3761
3762 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3763
3764 if (info != NULL)
3765 info->user_phdrs = !no_user_phdrs;
3766
3767 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3768 {
3769 asection *s;
3770 unsigned int i;
3771 struct elf_segment_map *mfirst;
3772 struct elf_segment_map **pm;
3773 asection *last_hdr;
3774 bfd_vma last_size;
3775 unsigned int phdr_index;
3776 bfd_vma maxpagesize;
3777 asection **hdrpp;
3778 bfd_boolean phdr_in_segment = TRUE;
3779 bfd_boolean writable;
3780 int tls_count = 0;
3781 asection *first_tls = NULL;
3782 asection *dynsec, *eh_frame_hdr;
3783 bfd_size_type amt;
3784 bfd_vma addr_mask, wrap_to = 0;
3785
3786 /* Select the allocated sections, and sort them. */
3787
3788 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3789 sizeof (asection *));
3790 if (sections == NULL)
3791 goto error_return;
3792
3793 /* Calculate top address, avoiding undefined behaviour of shift
3794 left operator when shift count is equal to size of type
3795 being shifted. */
3796 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3797 addr_mask = (addr_mask << 1) + 1;
3798
3799 i = 0;
3800 for (s = abfd->sections; s != NULL; s = s->next)
3801 {
3802 if ((s->flags & SEC_ALLOC) != 0)
3803 {
3804 sections[i] = s;
3805 ++i;
3806 /* A wrapping section potentially clashes with header. */
3807 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3808 wrap_to = (s->lma + s->size) & addr_mask;
3809 }
3810 }
3811 BFD_ASSERT (i <= bfd_count_sections (abfd));
3812 count = i;
3813
3814 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3815
3816 /* Build the mapping. */
3817
3818 mfirst = NULL;
3819 pm = &mfirst;
3820
3821 /* If we have a .interp section, then create a PT_PHDR segment for
3822 the program headers and a PT_INTERP segment for the .interp
3823 section. */
3824 s = bfd_get_section_by_name (abfd, ".interp");
3825 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3826 {
3827 amt = sizeof (struct elf_segment_map);
3828 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3829 if (m == NULL)
3830 goto error_return;
3831 m->next = NULL;
3832 m->p_type = PT_PHDR;
3833 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3834 m->p_flags = PF_R | PF_X;
3835 m->p_flags_valid = 1;
3836 m->includes_phdrs = 1;
3837
3838 *pm = m;
3839 pm = &m->next;
3840
3841 amt = sizeof (struct elf_segment_map);
3842 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3843 if (m == NULL)
3844 goto error_return;
3845 m->next = NULL;
3846 m->p_type = PT_INTERP;
3847 m->count = 1;
3848 m->sections[0] = s;
3849
3850 *pm = m;
3851 pm = &m->next;
3852 }
3853
3854 /* Look through the sections. We put sections in the same program
3855 segment when the start of the second section can be placed within
3856 a few bytes of the end of the first section. */
3857 last_hdr = NULL;
3858 last_size = 0;
3859 phdr_index = 0;
3860 maxpagesize = bed->maxpagesize;
3861 writable = FALSE;
3862 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3863 if (dynsec != NULL
3864 && (dynsec->flags & SEC_LOAD) == 0)
3865 dynsec = NULL;
3866
3867 /* Deal with -Ttext or something similar such that the first section
3868 is not adjacent to the program headers. This is an
3869 approximation, since at this point we don't know exactly how many
3870 program headers we will need. */
3871 if (count > 0)
3872 {
3873 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3874
3875 if (phdr_size == (bfd_size_type) -1)
3876 phdr_size = get_program_header_size (abfd, info);
3877 phdr_size += bed->s->sizeof_ehdr;
3878 if ((abfd->flags & D_PAGED) == 0
3879 || (sections[0]->lma & addr_mask) < phdr_size
3880 || ((sections[0]->lma & addr_mask) % maxpagesize
3881 < phdr_size % maxpagesize)
3882 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3883 phdr_in_segment = FALSE;
3884 }
3885
3886 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3887 {
3888 asection *hdr;
3889 bfd_boolean new_segment;
3890
3891 hdr = *hdrpp;
3892
3893 /* See if this section and the last one will fit in the same
3894 segment. */
3895
3896 if (last_hdr == NULL)
3897 {
3898 /* If we don't have a segment yet, then we don't need a new
3899 one (we build the last one after this loop). */
3900 new_segment = FALSE;
3901 }
3902 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3903 {
3904 /* If this section has a different relation between the
3905 virtual address and the load address, then we need a new
3906 segment. */
3907 new_segment = TRUE;
3908 }
3909 else if (hdr->lma < last_hdr->lma + last_size
3910 || last_hdr->lma + last_size < last_hdr->lma)
3911 {
3912 /* If this section has a load address that makes it overlap
3913 the previous section, then we need a new segment. */
3914 new_segment = TRUE;
3915 }
3916 /* In the next test we have to be careful when last_hdr->lma is close
3917 to the end of the address space. If the aligned address wraps
3918 around to the start of the address space, then there are no more
3919 pages left in memory and it is OK to assume that the current
3920 section can be included in the current segment. */
3921 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3922 > last_hdr->lma)
3923 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3924 <= hdr->lma))
3925 {
3926 /* If putting this section in this segment would force us to
3927 skip a page in the segment, then we need a new segment. */
3928 new_segment = TRUE;
3929 }
3930 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3931 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3932 {
3933 /* We don't want to put a loadable section after a
3934 nonloadable section in the same segment.
3935 Consider .tbss sections as loadable for this purpose. */
3936 new_segment = TRUE;
3937 }
3938 else if ((abfd->flags & D_PAGED) == 0)
3939 {
3940 /* If the file is not demand paged, which means that we
3941 don't require the sections to be correctly aligned in the
3942 file, then there is no other reason for a new segment. */
3943 new_segment = FALSE;
3944 }
3945 else if (! writable
3946 && (hdr->flags & SEC_READONLY) == 0
3947 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3948 != (hdr->lma & -maxpagesize)))
3949 {
3950 /* We don't want to put a writable section in a read only
3951 segment, unless they are on the same page in memory
3952 anyhow. We already know that the last section does not
3953 bring us past the current section on the page, so the
3954 only case in which the new section is not on the same
3955 page as the previous section is when the previous section
3956 ends precisely on a page boundary. */
3957 new_segment = TRUE;
3958 }
3959 else
3960 {
3961 /* Otherwise, we can use the same segment. */
3962 new_segment = FALSE;
3963 }
3964
3965 /* Allow interested parties a chance to override our decision. */
3966 if (last_hdr != NULL
3967 && info != NULL
3968 && info->callbacks->override_segment_assignment != NULL)
3969 new_segment
3970 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3971 last_hdr,
3972 new_segment);
3973
3974 if (! new_segment)
3975 {
3976 if ((hdr->flags & SEC_READONLY) == 0)
3977 writable = TRUE;
3978 last_hdr = hdr;
3979 /* .tbss sections effectively have zero size. */
3980 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3981 != SEC_THREAD_LOCAL)
3982 last_size = hdr->size;
3983 else
3984 last_size = 0;
3985 continue;
3986 }
3987
3988 /* We need a new program segment. We must create a new program
3989 header holding all the sections from phdr_index until hdr. */
3990
3991 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3992 if (m == NULL)
3993 goto error_return;
3994
3995 *pm = m;
3996 pm = &m->next;
3997
3998 if ((hdr->flags & SEC_READONLY) == 0)
3999 writable = TRUE;
4000 else
4001 writable = FALSE;
4002
4003 last_hdr = hdr;
4004 /* .tbss sections effectively have zero size. */
4005 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4006 last_size = hdr->size;
4007 else
4008 last_size = 0;
4009 phdr_index = i;
4010 phdr_in_segment = FALSE;
4011 }
4012
4013 /* Create a final PT_LOAD program segment, but not if it's just
4014 for .tbss. */
4015 if (last_hdr != NULL
4016 && (i - phdr_index != 1
4017 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4018 != SEC_THREAD_LOCAL)))
4019 {
4020 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4021 if (m == NULL)
4022 goto error_return;
4023
4024 *pm = m;
4025 pm = &m->next;
4026 }
4027
4028 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4029 if (dynsec != NULL)
4030 {
4031 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4032 if (m == NULL)
4033 goto error_return;
4034 *pm = m;
4035 pm = &m->next;
4036 }
4037
4038 /* For each batch of consecutive loadable .note sections,
4039 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4040 because if we link together nonloadable .note sections and
4041 loadable .note sections, we will generate two .note sections
4042 in the output file. FIXME: Using names for section types is
4043 bogus anyhow. */
4044 for (s = abfd->sections; s != NULL; s = s->next)
4045 {
4046 if ((s->flags & SEC_LOAD) != 0
4047 && CONST_STRNEQ (s->name, ".note"))
4048 {
4049 asection *s2;
4050
4051 count = 1;
4052 amt = sizeof (struct elf_segment_map);
4053 if (s->alignment_power == 2)
4054 for (s2 = s; s2->next != NULL; s2 = s2->next)
4055 {
4056 if (s2->next->alignment_power == 2
4057 && (s2->next->flags & SEC_LOAD) != 0
4058 && CONST_STRNEQ (s2->next->name, ".note")
4059 && align_power (s2->lma + s2->size, 2)
4060 == s2->next->lma)
4061 count++;
4062 else
4063 break;
4064 }
4065 amt += (count - 1) * sizeof (asection *);
4066 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4067 if (m == NULL)
4068 goto error_return;
4069 m->next = NULL;
4070 m->p_type = PT_NOTE;
4071 m->count = count;
4072 while (count > 1)
4073 {
4074 m->sections[m->count - count--] = s;
4075 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4076 s = s->next;
4077 }
4078 m->sections[m->count - 1] = s;
4079 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4080 *pm = m;
4081 pm = &m->next;
4082 }
4083 if (s->flags & SEC_THREAD_LOCAL)
4084 {
4085 if (! tls_count)
4086 first_tls = s;
4087 tls_count++;
4088 }
4089 }
4090
4091 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4092 if (tls_count > 0)
4093 {
4094 amt = sizeof (struct elf_segment_map);
4095 amt += (tls_count - 1) * sizeof (asection *);
4096 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4097 if (m == NULL)
4098 goto error_return;
4099 m->next = NULL;
4100 m->p_type = PT_TLS;
4101 m->count = tls_count;
4102 /* Mandated PF_R. */
4103 m->p_flags = PF_R;
4104 m->p_flags_valid = 1;
4105 for (i = 0; i < (unsigned int) tls_count; ++i)
4106 {
4107 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4108 m->sections[i] = first_tls;
4109 first_tls = first_tls->next;
4110 }
4111
4112 *pm = m;
4113 pm = &m->next;
4114 }
4115
4116 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4117 segment. */
4118 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4119 if (eh_frame_hdr != NULL
4120 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4121 {
4122 amt = sizeof (struct elf_segment_map);
4123 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4124 if (m == NULL)
4125 goto error_return;
4126 m->next = NULL;
4127 m->p_type = PT_GNU_EH_FRAME;
4128 m->count = 1;
4129 m->sections[0] = eh_frame_hdr->output_section;
4130
4131 *pm = m;
4132 pm = &m->next;
4133 }
4134
4135 if (elf_tdata (abfd)->stack_flags)
4136 {
4137 amt = sizeof (struct elf_segment_map);
4138 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4139 if (m == NULL)
4140 goto error_return;
4141 m->next = NULL;
4142 m->p_type = PT_GNU_STACK;
4143 m->p_flags = elf_tdata (abfd)->stack_flags;
4144 m->p_align = bed->stack_align;
4145 m->p_flags_valid = 1;
4146 m->p_align_valid = m->p_align != 0;
4147 if (info->stacksize > 0)
4148 {
4149 m->p_size = info->stacksize;
4150 m->p_size_valid = 1;
4151 }
4152
4153 *pm = m;
4154 pm = &m->next;
4155 }
4156
4157 if (info != NULL && info->relro)
4158 {
4159 for (m = mfirst; m != NULL; m = m->next)
4160 {
4161 if (m->p_type == PT_LOAD
4162 && m->count != 0
4163 && m->sections[0]->vma >= info->relro_start
4164 && m->sections[0]->vma < info->relro_end)
4165 {
4166 i = m->count;
4167 while (--i != (unsigned) -1)
4168 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4169 == (SEC_LOAD | SEC_HAS_CONTENTS))
4170 break;
4171
4172 if (i == (unsigned) -1)
4173 continue;
4174
4175 if (m->sections[i]->vma + m->sections[i]->size
4176 >= info->relro_end)
4177 break;
4178 }
4179 }
4180
4181 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4182 if (m != NULL)
4183 {
4184 amt = sizeof (struct elf_segment_map);
4185 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4186 if (m == NULL)
4187 goto error_return;
4188 m->next = NULL;
4189 m->p_type = PT_GNU_RELRO;
4190 m->p_flags = PF_R;
4191 m->p_flags_valid = 1;
4192
4193 *pm = m;
4194 pm = &m->next;
4195 }
4196 }
4197
4198 free (sections);
4199 elf_tdata (abfd)->segment_map = mfirst;
4200 }
4201
4202 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4203 return FALSE;
4204
4205 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4206 ++count;
4207 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4208
4209 return TRUE;
4210
4211 error_return:
4212 if (sections != NULL)
4213 free (sections);
4214 return FALSE;
4215 }
4216
4217 /* Sort sections by address. */
4218
4219 static int
4220 elf_sort_sections (const void *arg1, const void *arg2)
4221 {
4222 const asection *sec1 = *(const asection **) arg1;
4223 const asection *sec2 = *(const asection **) arg2;
4224 bfd_size_type size1, size2;
4225
4226 /* Sort by LMA first, since this is the address used to
4227 place the section into a segment. */
4228 if (sec1->lma < sec2->lma)
4229 return -1;
4230 else if (sec1->lma > sec2->lma)
4231 return 1;
4232
4233 /* Then sort by VMA. Normally the LMA and the VMA will be
4234 the same, and this will do nothing. */
4235 if (sec1->vma < sec2->vma)
4236 return -1;
4237 else if (sec1->vma > sec2->vma)
4238 return 1;
4239
4240 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4241
4242 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4243
4244 if (TOEND (sec1))
4245 {
4246 if (TOEND (sec2))
4247 {
4248 /* If the indicies are the same, do not return 0
4249 here, but continue to try the next comparison. */
4250 if (sec1->target_index - sec2->target_index != 0)
4251 return sec1->target_index - sec2->target_index;
4252 }
4253 else
4254 return 1;
4255 }
4256 else if (TOEND (sec2))
4257 return -1;
4258
4259 #undef TOEND
4260
4261 /* Sort by size, to put zero sized sections
4262 before others at the same address. */
4263
4264 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4265 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4266
4267 if (size1 < size2)
4268 return -1;
4269 if (size1 > size2)
4270 return 1;
4271
4272 return sec1->target_index - sec2->target_index;
4273 }
4274
4275 /* Ian Lance Taylor writes:
4276
4277 We shouldn't be using % with a negative signed number. That's just
4278 not good. We have to make sure either that the number is not
4279 negative, or that the number has an unsigned type. When the types
4280 are all the same size they wind up as unsigned. When file_ptr is a
4281 larger signed type, the arithmetic winds up as signed long long,
4282 which is wrong.
4283
4284 What we're trying to say here is something like ``increase OFF by
4285 the least amount that will cause it to be equal to the VMA modulo
4286 the page size.'' */
4287 /* In other words, something like:
4288
4289 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4290 off_offset = off % bed->maxpagesize;
4291 if (vma_offset < off_offset)
4292 adjustment = vma_offset + bed->maxpagesize - off_offset;
4293 else
4294 adjustment = vma_offset - off_offset;
4295
4296 which can can be collapsed into the expression below. */
4297
4298 static file_ptr
4299 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4300 {
4301 return ((vma - off) % maxpagesize);
4302 }
4303
4304 static void
4305 print_segment_map (const struct elf_segment_map *m)
4306 {
4307 unsigned int j;
4308 const char *pt = get_segment_type (m->p_type);
4309 char buf[32];
4310
4311 if (pt == NULL)
4312 {
4313 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4314 sprintf (buf, "LOPROC+%7.7x",
4315 (unsigned int) (m->p_type - PT_LOPROC));
4316 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4317 sprintf (buf, "LOOS+%7.7x",
4318 (unsigned int) (m->p_type - PT_LOOS));
4319 else
4320 snprintf (buf, sizeof (buf), "%8.8x",
4321 (unsigned int) m->p_type);
4322 pt = buf;
4323 }
4324 fflush (stdout);
4325 fprintf (stderr, "%s:", pt);
4326 for (j = 0; j < m->count; j++)
4327 fprintf (stderr, " %s", m->sections [j]->name);
4328 putc ('\n',stderr);
4329 fflush (stderr);
4330 }
4331
4332 static bfd_boolean
4333 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4334 {
4335 void *buf;
4336 bfd_boolean ret;
4337
4338 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4339 return FALSE;
4340 buf = bfd_zmalloc (len);
4341 if (buf == NULL)
4342 return FALSE;
4343 ret = bfd_bwrite (buf, len, abfd) == len;
4344 free (buf);
4345 return ret;
4346 }
4347
4348 /* Assign file positions to the sections based on the mapping from
4349 sections to segments. This function also sets up some fields in
4350 the file header. */
4351
4352 static bfd_boolean
4353 assign_file_positions_for_load_sections (bfd *abfd,
4354 struct bfd_link_info *link_info)
4355 {
4356 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4357 struct elf_segment_map *m;
4358 Elf_Internal_Phdr *phdrs;
4359 Elf_Internal_Phdr *p;
4360 file_ptr off;
4361 bfd_size_type maxpagesize;
4362 unsigned int alloc;
4363 unsigned int i, j;
4364 bfd_vma header_pad = 0;
4365
4366 if (link_info == NULL
4367 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4368 return FALSE;
4369
4370 alloc = 0;
4371 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4372 {
4373 ++alloc;
4374 if (m->header_size)
4375 header_pad = m->header_size;
4376 }
4377
4378 if (alloc)
4379 {
4380 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4381 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4382 }
4383 else
4384 {
4385 /* PR binutils/12467. */
4386 elf_elfheader (abfd)->e_phoff = 0;
4387 elf_elfheader (abfd)->e_phentsize = 0;
4388 }
4389
4390 elf_elfheader (abfd)->e_phnum = alloc;
4391
4392 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4393 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4394 else
4395 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4396 >= alloc * bed->s->sizeof_phdr);
4397
4398 if (alloc == 0)
4399 {
4400 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4401 return TRUE;
4402 }
4403
4404 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4405 see assign_file_positions_except_relocs, so make sure we have
4406 that amount allocated, with trailing space cleared.
4407 The variable alloc contains the computed need, while elf_tdata
4408 (abfd)->program_header_size contains the size used for the
4409 layout.
4410 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4411 where the layout is forced to according to a larger size in the
4412 last iterations for the testcase ld-elf/header. */
4413 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4414 == 0);
4415 phdrs = (Elf_Internal_Phdr *)
4416 bfd_zalloc2 (abfd,
4417 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4418 sizeof (Elf_Internal_Phdr));
4419 elf_tdata (abfd)->phdr = phdrs;
4420 if (phdrs == NULL)
4421 return FALSE;
4422
4423 maxpagesize = 1;
4424 if ((abfd->flags & D_PAGED) != 0)
4425 maxpagesize = bed->maxpagesize;
4426
4427 off = bed->s->sizeof_ehdr;
4428 off += alloc * bed->s->sizeof_phdr;
4429 if (header_pad < (bfd_vma) off)
4430 header_pad = 0;
4431 else
4432 header_pad -= off;
4433 off += header_pad;
4434
4435 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4436 m != NULL;
4437 m = m->next, p++, j++)
4438 {
4439 asection **secpp;
4440 bfd_vma off_adjust;
4441 bfd_boolean no_contents;
4442
4443 /* If elf_segment_map is not from map_sections_to_segments, the
4444 sections may not be correctly ordered. NOTE: sorting should
4445 not be done to the PT_NOTE section of a corefile, which may
4446 contain several pseudo-sections artificially created by bfd.
4447 Sorting these pseudo-sections breaks things badly. */
4448 if (m->count > 1
4449 && !(elf_elfheader (abfd)->e_type == ET_CORE
4450 && m->p_type == PT_NOTE))
4451 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4452 elf_sort_sections);
4453
4454 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4455 number of sections with contents contributing to both p_filesz
4456 and p_memsz, followed by a number of sections with no contents
4457 that just contribute to p_memsz. In this loop, OFF tracks next
4458 available file offset for PT_LOAD and PT_NOTE segments. */
4459 p->p_type = m->p_type;
4460 p->p_flags = m->p_flags;
4461
4462 if (m->count == 0)
4463 p->p_vaddr = 0;
4464 else
4465 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4466
4467 if (m->p_paddr_valid)
4468 p->p_paddr = m->p_paddr;
4469 else if (m->count == 0)
4470 p->p_paddr = 0;
4471 else
4472 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4473
4474 if (p->p_type == PT_LOAD
4475 && (abfd->flags & D_PAGED) != 0)
4476 {
4477 /* p_align in demand paged PT_LOAD segments effectively stores
4478 the maximum page size. When copying an executable with
4479 objcopy, we set m->p_align from the input file. Use this
4480 value for maxpagesize rather than bed->maxpagesize, which
4481 may be different. Note that we use maxpagesize for PT_TLS
4482 segment alignment later in this function, so we are relying
4483 on at least one PT_LOAD segment appearing before a PT_TLS
4484 segment. */
4485 if (m->p_align_valid)
4486 maxpagesize = m->p_align;
4487
4488 p->p_align = maxpagesize;
4489 }
4490 else if (m->p_align_valid)
4491 p->p_align = m->p_align;
4492 else if (m->count == 0)
4493 p->p_align = 1 << bed->s->log_file_align;
4494 else
4495 p->p_align = 0;
4496
4497 no_contents = FALSE;
4498 off_adjust = 0;
4499 if (p->p_type == PT_LOAD
4500 && m->count > 0)
4501 {
4502 bfd_size_type align;
4503 unsigned int align_power = 0;
4504
4505 if (m->p_align_valid)
4506 align = p->p_align;
4507 else
4508 {
4509 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4510 {
4511 unsigned int secalign;
4512
4513 secalign = bfd_get_section_alignment (abfd, *secpp);
4514 if (secalign > align_power)
4515 align_power = secalign;
4516 }
4517 align = (bfd_size_type) 1 << align_power;
4518 if (align < maxpagesize)
4519 align = maxpagesize;
4520 }
4521
4522 for (i = 0; i < m->count; i++)
4523 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4524 /* If we aren't making room for this section, then
4525 it must be SHT_NOBITS regardless of what we've
4526 set via struct bfd_elf_special_section. */
4527 elf_section_type (m->sections[i]) = SHT_NOBITS;
4528
4529 /* Find out whether this segment contains any loadable
4530 sections. */
4531 no_contents = TRUE;
4532 for (i = 0; i < m->count; i++)
4533 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4534 {
4535 no_contents = FALSE;
4536 break;
4537 }
4538
4539 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4540 off += off_adjust;
4541 if (no_contents)
4542 {
4543 /* We shouldn't need to align the segment on disk since
4544 the segment doesn't need file space, but the gABI
4545 arguably requires the alignment and glibc ld.so
4546 checks it. So to comply with the alignment
4547 requirement but not waste file space, we adjust
4548 p_offset for just this segment. (OFF_ADJUST is
4549 subtracted from OFF later.) This may put p_offset
4550 past the end of file, but that shouldn't matter. */
4551 }
4552 else
4553 off_adjust = 0;
4554 }
4555 /* Make sure the .dynamic section is the first section in the
4556 PT_DYNAMIC segment. */
4557 else if (p->p_type == PT_DYNAMIC
4558 && m->count > 1
4559 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4560 {
4561 _bfd_error_handler
4562 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4563 abfd);
4564 bfd_set_error (bfd_error_bad_value);
4565 return FALSE;
4566 }
4567 /* Set the note section type to SHT_NOTE. */
4568 else if (p->p_type == PT_NOTE)
4569 for (i = 0; i < m->count; i++)
4570 elf_section_type (m->sections[i]) = SHT_NOTE;
4571
4572 p->p_offset = 0;
4573 p->p_filesz = 0;
4574 p->p_memsz = 0;
4575
4576 if (m->includes_filehdr)
4577 {
4578 if (!m->p_flags_valid)
4579 p->p_flags |= PF_R;
4580 p->p_filesz = bed->s->sizeof_ehdr;
4581 p->p_memsz = bed->s->sizeof_ehdr;
4582 if (m->count > 0)
4583 {
4584 if (p->p_vaddr < (bfd_vma) off)
4585 {
4586 (*_bfd_error_handler)
4587 (_("%B: Not enough room for program headers, try linking with -N"),
4588 abfd);
4589 bfd_set_error (bfd_error_bad_value);
4590 return FALSE;
4591 }
4592
4593 p->p_vaddr -= off;
4594 if (!m->p_paddr_valid)
4595 p->p_paddr -= off;
4596 }
4597 }
4598
4599 if (m->includes_phdrs)
4600 {
4601 if (!m->p_flags_valid)
4602 p->p_flags |= PF_R;
4603
4604 if (!m->includes_filehdr)
4605 {
4606 p->p_offset = bed->s->sizeof_ehdr;
4607
4608 if (m->count > 0)
4609 {
4610 p->p_vaddr -= off - p->p_offset;
4611 if (!m->p_paddr_valid)
4612 p->p_paddr -= off - p->p_offset;
4613 }
4614 }
4615
4616 p->p_filesz += alloc * bed->s->sizeof_phdr;
4617 p->p_memsz += alloc * bed->s->sizeof_phdr;
4618 if (m->count)
4619 {
4620 p->p_filesz += header_pad;
4621 p->p_memsz += header_pad;
4622 }
4623 }
4624
4625 if (p->p_type == PT_LOAD
4626 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4627 {
4628 if (!m->includes_filehdr && !m->includes_phdrs)
4629 p->p_offset = off;
4630 else
4631 {
4632 file_ptr adjust;
4633
4634 adjust = off - (p->p_offset + p->p_filesz);
4635 if (!no_contents)
4636 p->p_filesz += adjust;
4637 p->p_memsz += adjust;
4638 }
4639 }
4640
4641 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4642 maps. Set filepos for sections in PT_LOAD segments, and in
4643 core files, for sections in PT_NOTE segments.
4644 assign_file_positions_for_non_load_sections will set filepos
4645 for other sections and update p_filesz for other segments. */
4646 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4647 {
4648 asection *sec;
4649 bfd_size_type align;
4650 Elf_Internal_Shdr *this_hdr;
4651
4652 sec = *secpp;
4653 this_hdr = &elf_section_data (sec)->this_hdr;
4654 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4655
4656 if ((p->p_type == PT_LOAD
4657 || p->p_type == PT_TLS)
4658 && (this_hdr->sh_type != SHT_NOBITS
4659 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4660 && ((this_hdr->sh_flags & SHF_TLS) == 0
4661 || p->p_type == PT_TLS))))
4662 {
4663 bfd_vma p_start = p->p_paddr;
4664 bfd_vma p_end = p_start + p->p_memsz;
4665 bfd_vma s_start = sec->lma;
4666 bfd_vma adjust = s_start - p_end;
4667
4668 if (adjust != 0
4669 && (s_start < p_end
4670 || p_end < p_start))
4671 {
4672 (*_bfd_error_handler)
4673 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4674 (unsigned long) s_start, (unsigned long) p_end);
4675 adjust = 0;
4676 sec->lma = p_end;
4677 }
4678 p->p_memsz += adjust;
4679
4680 if (this_hdr->sh_type != SHT_NOBITS)
4681 {
4682 if (p->p_filesz + adjust < p->p_memsz)
4683 {
4684 /* We have a PROGBITS section following NOBITS ones.
4685 Allocate file space for the NOBITS section(s) and
4686 zero it. */
4687 adjust = p->p_memsz - p->p_filesz;
4688 if (!write_zeros (abfd, off, adjust))
4689 return FALSE;
4690 }
4691 off += adjust;
4692 p->p_filesz += adjust;
4693 }
4694 }
4695
4696 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4697 {
4698 /* The section at i == 0 is the one that actually contains
4699 everything. */
4700 if (i == 0)
4701 {
4702 this_hdr->sh_offset = sec->filepos = off;
4703 off += this_hdr->sh_size;
4704 p->p_filesz = this_hdr->sh_size;
4705 p->p_memsz = 0;
4706 p->p_align = 1;
4707 }
4708 else
4709 {
4710 /* The rest are fake sections that shouldn't be written. */
4711 sec->filepos = 0;
4712 sec->size = 0;
4713 sec->flags = 0;
4714 continue;
4715 }
4716 }
4717 else
4718 {
4719 if (p->p_type == PT_LOAD)
4720 {
4721 this_hdr->sh_offset = sec->filepos = off;
4722 if (this_hdr->sh_type != SHT_NOBITS)
4723 off += this_hdr->sh_size;
4724 }
4725 else if (this_hdr->sh_type == SHT_NOBITS
4726 && (this_hdr->sh_flags & SHF_TLS) != 0
4727 && this_hdr->sh_offset == 0)
4728 {
4729 /* This is a .tbss section that didn't get a PT_LOAD.
4730 (See _bfd_elf_map_sections_to_segments "Create a
4731 final PT_LOAD".) Set sh_offset to the value it
4732 would have if we had created a zero p_filesz and
4733 p_memsz PT_LOAD header for the section. This
4734 also makes the PT_TLS header have the same
4735 p_offset value. */
4736 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4737 off, align);
4738 this_hdr->sh_offset = sec->filepos = off + adjust;
4739 }
4740
4741 if (this_hdr->sh_type != SHT_NOBITS)
4742 {
4743 p->p_filesz += this_hdr->sh_size;
4744 /* A load section without SHF_ALLOC is something like
4745 a note section in a PT_NOTE segment. These take
4746 file space but are not loaded into memory. */
4747 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4748 p->p_memsz += this_hdr->sh_size;
4749 }
4750 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4751 {
4752 if (p->p_type == PT_TLS)
4753 p->p_memsz += this_hdr->sh_size;
4754
4755 /* .tbss is special. It doesn't contribute to p_memsz of
4756 normal segments. */
4757 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4758 p->p_memsz += this_hdr->sh_size;
4759 }
4760
4761 if (align > p->p_align
4762 && !m->p_align_valid
4763 && (p->p_type != PT_LOAD
4764 || (abfd->flags & D_PAGED) == 0))
4765 p->p_align = align;
4766 }
4767
4768 if (!m->p_flags_valid)
4769 {
4770 p->p_flags |= PF_R;
4771 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4772 p->p_flags |= PF_X;
4773 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4774 p->p_flags |= PF_W;
4775 }
4776 }
4777 off -= off_adjust;
4778
4779 /* Check that all sections are in a PT_LOAD segment.
4780 Don't check funky gdb generated core files. */
4781 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4782 {
4783 bfd_boolean check_vma = TRUE;
4784
4785 for (i = 1; i < m->count; i++)
4786 if (m->sections[i]->vma == m->sections[i - 1]->vma
4787 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4788 ->this_hdr), p) != 0
4789 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4790 ->this_hdr), p) != 0)
4791 {
4792 /* Looks like we have overlays packed into the segment. */
4793 check_vma = FALSE;
4794 break;
4795 }
4796
4797 for (i = 0; i < m->count; i++)
4798 {
4799 Elf_Internal_Shdr *this_hdr;
4800 asection *sec;
4801
4802 sec = m->sections[i];
4803 this_hdr = &(elf_section_data(sec)->this_hdr);
4804 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4805 && !ELF_TBSS_SPECIAL (this_hdr, p))
4806 {
4807 (*_bfd_error_handler)
4808 (_("%B: section `%A' can't be allocated in segment %d"),
4809 abfd, sec, j);
4810 print_segment_map (m);
4811 }
4812 }
4813 }
4814 }
4815
4816 elf_tdata (abfd)->next_file_pos = off;
4817 return TRUE;
4818 }
4819
4820 /* Assign file positions for the other sections. */
4821
4822 static bfd_boolean
4823 assign_file_positions_for_non_load_sections (bfd *abfd,
4824 struct bfd_link_info *link_info)
4825 {
4826 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4827 Elf_Internal_Shdr **i_shdrpp;
4828 Elf_Internal_Shdr **hdrpp;
4829 Elf_Internal_Phdr *phdrs;
4830 Elf_Internal_Phdr *p;
4831 struct elf_segment_map *m;
4832 struct elf_segment_map *hdrs_segment;
4833 bfd_vma filehdr_vaddr, filehdr_paddr;
4834 bfd_vma phdrs_vaddr, phdrs_paddr;
4835 file_ptr off;
4836 unsigned int num_sec;
4837 unsigned int i;
4838 unsigned int count;
4839
4840 i_shdrpp = elf_elfsections (abfd);
4841 num_sec = elf_numsections (abfd);
4842 off = elf_tdata (abfd)->next_file_pos;
4843 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4844 {
4845 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4846 Elf_Internal_Shdr *hdr;
4847
4848 hdr = *hdrpp;
4849 if (hdr->bfd_section != NULL
4850 && (hdr->bfd_section->filepos != 0
4851 || (hdr->sh_type == SHT_NOBITS
4852 && hdr->contents == NULL)))
4853 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4854 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4855 {
4856 if (hdr->sh_size != 0)
4857 (*_bfd_error_handler)
4858 (_("%B: warning: allocated section `%s' not in segment"),
4859 abfd,
4860 (hdr->bfd_section == NULL
4861 ? "*unknown*"
4862 : hdr->bfd_section->name));
4863 /* We don't need to page align empty sections. */
4864 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4865 off += vma_page_aligned_bias (hdr->sh_addr, off,
4866 bed->maxpagesize);
4867 else
4868 off += vma_page_aligned_bias (hdr->sh_addr, off,
4869 hdr->sh_addralign);
4870 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4871 FALSE);
4872 }
4873 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4874 && hdr->bfd_section == NULL)
4875 || hdr == i_shdrpp[tdata->symtab_section]
4876 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4877 || hdr == i_shdrpp[tdata->strtab_section])
4878 hdr->sh_offset = -1;
4879 else
4880 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4881 }
4882
4883 /* Now that we have set the section file positions, we can set up
4884 the file positions for the non PT_LOAD segments. */
4885 count = 0;
4886 filehdr_vaddr = 0;
4887 filehdr_paddr = 0;
4888 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4889 phdrs_paddr = 0;
4890 hdrs_segment = NULL;
4891 phdrs = elf_tdata (abfd)->phdr;
4892 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4893 m != NULL;
4894 m = m->next, p++)
4895 {
4896 ++count;
4897 if (p->p_type != PT_LOAD)
4898 continue;
4899
4900 if (m->includes_filehdr)
4901 {
4902 filehdr_vaddr = p->p_vaddr;
4903 filehdr_paddr = p->p_paddr;
4904 }
4905 if (m->includes_phdrs)
4906 {
4907 phdrs_vaddr = p->p_vaddr;
4908 phdrs_paddr = p->p_paddr;
4909 if (m->includes_filehdr)
4910 {
4911 hdrs_segment = m;
4912 phdrs_vaddr += bed->s->sizeof_ehdr;
4913 phdrs_paddr += bed->s->sizeof_ehdr;
4914 }
4915 }
4916 }
4917
4918 if (hdrs_segment != NULL && link_info != NULL)
4919 {
4920 /* There is a segment that contains both the file headers and the
4921 program headers, so provide a symbol __ehdr_start pointing there.
4922 A program can use this to examine itself robustly. */
4923
4924 struct elf_link_hash_entry *hash
4925 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4926 FALSE, FALSE, TRUE);
4927 /* If the symbol was referenced and not defined, define it. */
4928 if (hash != NULL
4929 && (hash->root.type == bfd_link_hash_new
4930 || hash->root.type == bfd_link_hash_undefined
4931 || hash->root.type == bfd_link_hash_undefweak
4932 || hash->root.type == bfd_link_hash_common))
4933 {
4934 asection *s = NULL;
4935 if (hdrs_segment->count != 0)
4936 /* The segment contains sections, so use the first one. */
4937 s = hdrs_segment->sections[0];
4938 else
4939 /* Use the first (i.e. lowest-addressed) section in any segment. */
4940 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4941 if (m->count != 0)
4942 {
4943 s = m->sections[0];
4944 break;
4945 }
4946
4947 if (s != NULL)
4948 {
4949 hash->root.u.def.value = filehdr_vaddr - s->vma;
4950 hash->root.u.def.section = s;
4951 }
4952 else
4953 {
4954 hash->root.u.def.value = filehdr_vaddr;
4955 hash->root.u.def.section = bfd_abs_section_ptr;
4956 }
4957
4958 hash->root.type = bfd_link_hash_defined;
4959 hash->def_regular = 1;
4960 hash->non_elf = 0;
4961 }
4962 }
4963
4964 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4965 m != NULL;
4966 m = m->next, p++)
4967 {
4968 if (p->p_type == PT_GNU_RELRO)
4969 {
4970 const Elf_Internal_Phdr *lp;
4971 struct elf_segment_map *lm;
4972
4973 if (link_info != NULL)
4974 {
4975 /* During linking the range of the RELRO segment is passed
4976 in link_info. */
4977 for (lm = elf_tdata (abfd)->segment_map, lp = phdrs;
4978 lm != NULL;
4979 lm = lm->next, lp++)
4980 {
4981 if (lp->p_type == PT_LOAD
4982 && lp->p_vaddr < link_info->relro_end
4983 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end
4984 && lm->count != 0
4985 && lm->sections[0]->vma >= link_info->relro_start)
4986 break;
4987 }
4988
4989 /* PR ld/14207. If the RELRO segment doesn't fit in the
4990 LOAD segment, it should be removed. */
4991 BFD_ASSERT (lm != NULL);
4992 }
4993 else
4994 {
4995 /* Otherwise we are copying an executable or shared
4996 library, but we need to use the same linker logic. */
4997 for (lp = phdrs; lp < phdrs + count; ++lp)
4998 {
4999 if (lp->p_type == PT_LOAD
5000 && lp->p_paddr == p->p_paddr)
5001 break;
5002 }
5003 }
5004
5005 if (lp < phdrs + count)
5006 {
5007 p->p_vaddr = lp->p_vaddr;
5008 p->p_paddr = lp->p_paddr;
5009 p->p_offset = lp->p_offset;
5010 if (link_info != NULL)
5011 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5012 else if (m->p_size_valid)
5013 p->p_filesz = m->p_size;
5014 else
5015 abort ();
5016 p->p_memsz = p->p_filesz;
5017 /* Preserve the alignment and flags if they are valid. The
5018 gold linker generates RW/4 for the PT_GNU_RELRO section.
5019 It is better for objcopy/strip to honor these attributes
5020 otherwise gdb will choke when using separate debug files.
5021 */
5022 if (!m->p_align_valid)
5023 p->p_align = 1;
5024 if (!m->p_flags_valid)
5025 p->p_flags = (lp->p_flags & ~PF_W);
5026 }
5027 else
5028 {
5029 memset (p, 0, sizeof *p);
5030 p->p_type = PT_NULL;
5031 }
5032 }
5033 else if (p->p_type == PT_GNU_STACK)
5034 {
5035 if (m->p_size_valid)
5036 p->p_memsz = m->p_size;
5037 }
5038 else if (m->count != 0)
5039 {
5040 if (p->p_type != PT_LOAD
5041 && (p->p_type != PT_NOTE
5042 || bfd_get_format (abfd) != bfd_core))
5043 {
5044 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5045
5046 p->p_filesz = 0;
5047 p->p_offset = m->sections[0]->filepos;
5048 for (i = m->count; i-- != 0;)
5049 {
5050 asection *sect = m->sections[i];
5051 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5052 if (hdr->sh_type != SHT_NOBITS)
5053 {
5054 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5055 + hdr->sh_size);
5056 break;
5057 }
5058 }
5059 }
5060 }
5061 else if (m->includes_filehdr)
5062 {
5063 p->p_vaddr = filehdr_vaddr;
5064 if (! m->p_paddr_valid)
5065 p->p_paddr = filehdr_paddr;
5066 }
5067 else if (m->includes_phdrs)
5068 {
5069 p->p_vaddr = phdrs_vaddr;
5070 if (! m->p_paddr_valid)
5071 p->p_paddr = phdrs_paddr;
5072 }
5073 }
5074
5075 elf_tdata (abfd)->next_file_pos = off;
5076
5077 return TRUE;
5078 }
5079
5080 /* Work out the file positions of all the sections. This is called by
5081 _bfd_elf_compute_section_file_positions. All the section sizes and
5082 VMAs must be known before this is called.
5083
5084 Reloc sections come in two flavours: Those processed specially as
5085 "side-channel" data attached to a section to which they apply, and
5086 those that bfd doesn't process as relocations. The latter sort are
5087 stored in a normal bfd section by bfd_section_from_shdr. We don't
5088 consider the former sort here, unless they form part of the loadable
5089 image. Reloc sections not assigned here will be handled later by
5090 assign_file_positions_for_relocs.
5091
5092 We also don't set the positions of the .symtab and .strtab here. */
5093
5094 static bfd_boolean
5095 assign_file_positions_except_relocs (bfd *abfd,
5096 struct bfd_link_info *link_info)
5097 {
5098 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5099 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5100 file_ptr off;
5101 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5102
5103 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5104 && bfd_get_format (abfd) != bfd_core)
5105 {
5106 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5107 unsigned int num_sec = elf_numsections (abfd);
5108 Elf_Internal_Shdr **hdrpp;
5109 unsigned int i;
5110
5111 /* Start after the ELF header. */
5112 off = i_ehdrp->e_ehsize;
5113
5114 /* We are not creating an executable, which means that we are
5115 not creating a program header, and that the actual order of
5116 the sections in the file is unimportant. */
5117 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5118 {
5119 Elf_Internal_Shdr *hdr;
5120
5121 hdr = *hdrpp;
5122 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5123 && hdr->bfd_section == NULL)
5124 || i == tdata->symtab_section
5125 || i == tdata->symtab_shndx_section
5126 || i == tdata->strtab_section)
5127 {
5128 hdr->sh_offset = -1;
5129 }
5130 else
5131 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5132 }
5133 }
5134 else
5135 {
5136 unsigned int alloc;
5137
5138 /* Assign file positions for the loaded sections based on the
5139 assignment of sections to segments. */
5140 if (!assign_file_positions_for_load_sections (abfd, link_info))
5141 return FALSE;
5142
5143 /* And for non-load sections. */
5144 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5145 return FALSE;
5146
5147 if (bed->elf_backend_modify_program_headers != NULL)
5148 {
5149 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5150 return FALSE;
5151 }
5152
5153 /* Write out the program headers. */
5154 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5155 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5156 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5157 return FALSE;
5158
5159 off = tdata->next_file_pos;
5160 }
5161
5162 /* Place the section headers. */
5163 off = align_file_position (off, 1 << bed->s->log_file_align);
5164 i_ehdrp->e_shoff = off;
5165 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5166
5167 tdata->next_file_pos = off;
5168
5169 return TRUE;
5170 }
5171
5172 static bfd_boolean
5173 prep_headers (bfd *abfd)
5174 {
5175 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5176 struct elf_strtab_hash *shstrtab;
5177 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5178
5179 i_ehdrp = elf_elfheader (abfd);
5180
5181 shstrtab = _bfd_elf_strtab_init ();
5182 if (shstrtab == NULL)
5183 return FALSE;
5184
5185 elf_shstrtab (abfd) = shstrtab;
5186
5187 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5188 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5189 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5190 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5191
5192 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5193 i_ehdrp->e_ident[EI_DATA] =
5194 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5195 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5196
5197 if ((abfd->flags & DYNAMIC) != 0)
5198 i_ehdrp->e_type = ET_DYN;
5199 else if ((abfd->flags & EXEC_P) != 0)
5200 i_ehdrp->e_type = ET_EXEC;
5201 else if (bfd_get_format (abfd) == bfd_core)
5202 i_ehdrp->e_type = ET_CORE;
5203 else
5204 i_ehdrp->e_type = ET_REL;
5205
5206 switch (bfd_get_arch (abfd))
5207 {
5208 case bfd_arch_unknown:
5209 i_ehdrp->e_machine = EM_NONE;
5210 break;
5211
5212 /* There used to be a long list of cases here, each one setting
5213 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5214 in the corresponding bfd definition. To avoid duplication,
5215 the switch was removed. Machines that need special handling
5216 can generally do it in elf_backend_final_write_processing(),
5217 unless they need the information earlier than the final write.
5218 Such need can generally be supplied by replacing the tests for
5219 e_machine with the conditions used to determine it. */
5220 default:
5221 i_ehdrp->e_machine = bed->elf_machine_code;
5222 }
5223
5224 i_ehdrp->e_version = bed->s->ev_current;
5225 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5226
5227 /* No program header, for now. */
5228 i_ehdrp->e_phoff = 0;
5229 i_ehdrp->e_phentsize = 0;
5230 i_ehdrp->e_phnum = 0;
5231
5232 /* Each bfd section is section header entry. */
5233 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5234 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5235
5236 /* If we're building an executable, we'll need a program header table. */
5237 if (abfd->flags & EXEC_P)
5238 /* It all happens later. */
5239 ;
5240 else
5241 {
5242 i_ehdrp->e_phentsize = 0;
5243 i_ehdrp->e_phoff = 0;
5244 }
5245
5246 elf_tdata (abfd)->symtab_hdr.sh_name =
5247 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5248 elf_tdata (abfd)->strtab_hdr.sh_name =
5249 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5250 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5251 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5252 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5253 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5254 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5255 return FALSE;
5256
5257 return TRUE;
5258 }
5259
5260 /* Assign file positions for all the reloc sections which are not part
5261 of the loadable file image. */
5262
5263 void
5264 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5265 {
5266 file_ptr off;
5267 unsigned int i, num_sec;
5268 Elf_Internal_Shdr **shdrpp;
5269
5270 off = elf_tdata (abfd)->next_file_pos;
5271
5272 num_sec = elf_numsections (abfd);
5273 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5274 {
5275 Elf_Internal_Shdr *shdrp;
5276
5277 shdrp = *shdrpp;
5278 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5279 && shdrp->sh_offset == -1)
5280 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5281 }
5282
5283 elf_tdata (abfd)->next_file_pos = off;
5284 }
5285
5286 bfd_boolean
5287 _bfd_elf_write_object_contents (bfd *abfd)
5288 {
5289 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5290 Elf_Internal_Shdr **i_shdrp;
5291 bfd_boolean failed;
5292 unsigned int count, num_sec;
5293
5294 if (! abfd->output_has_begun
5295 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5296 return FALSE;
5297
5298 i_shdrp = elf_elfsections (abfd);
5299
5300 failed = FALSE;
5301 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5302 if (failed)
5303 return FALSE;
5304
5305 _bfd_elf_assign_file_positions_for_relocs (abfd);
5306
5307 /* After writing the headers, we need to write the sections too... */
5308 num_sec = elf_numsections (abfd);
5309 for (count = 1; count < num_sec; count++)
5310 {
5311 if (bed->elf_backend_section_processing)
5312 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5313 if (i_shdrp[count]->contents)
5314 {
5315 bfd_size_type amt = i_shdrp[count]->sh_size;
5316
5317 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5318 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5319 return FALSE;
5320 }
5321 }
5322
5323 /* Write out the section header names. */
5324 if (elf_shstrtab (abfd) != NULL
5325 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5326 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5327 return FALSE;
5328
5329 if (bed->elf_backend_final_write_processing)
5330 (*bed->elf_backend_final_write_processing) (abfd,
5331 elf_tdata (abfd)->linker);
5332
5333 if (!bed->s->write_shdrs_and_ehdr (abfd))
5334 return FALSE;
5335
5336 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5337 if (elf_tdata (abfd)->after_write_object_contents)
5338 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5339
5340 return TRUE;
5341 }
5342
5343 bfd_boolean
5344 _bfd_elf_write_corefile_contents (bfd *abfd)
5345 {
5346 /* Hopefully this can be done just like an object file. */
5347 return _bfd_elf_write_object_contents (abfd);
5348 }
5349
5350 /* Given a section, search the header to find them. */
5351
5352 unsigned int
5353 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5354 {
5355 const struct elf_backend_data *bed;
5356 unsigned int sec_index;
5357
5358 if (elf_section_data (asect) != NULL
5359 && elf_section_data (asect)->this_idx != 0)
5360 return elf_section_data (asect)->this_idx;
5361
5362 if (bfd_is_abs_section (asect))
5363 sec_index = SHN_ABS;
5364 else if (bfd_is_com_section (asect))
5365 sec_index = SHN_COMMON;
5366 else if (bfd_is_und_section (asect))
5367 sec_index = SHN_UNDEF;
5368 else
5369 sec_index = SHN_BAD;
5370
5371 bed = get_elf_backend_data (abfd);
5372 if (bed->elf_backend_section_from_bfd_section)
5373 {
5374 int retval = sec_index;
5375
5376 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5377 return retval;
5378 }
5379
5380 if (sec_index == SHN_BAD)
5381 bfd_set_error (bfd_error_nonrepresentable_section);
5382
5383 return sec_index;
5384 }
5385
5386 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5387 on error. */
5388
5389 int
5390 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5391 {
5392 asymbol *asym_ptr = *asym_ptr_ptr;
5393 int idx;
5394 flagword flags = asym_ptr->flags;
5395
5396 /* When gas creates relocations against local labels, it creates its
5397 own symbol for the section, but does put the symbol into the
5398 symbol chain, so udata is 0. When the linker is generating
5399 relocatable output, this section symbol may be for one of the
5400 input sections rather than the output section. */
5401 if (asym_ptr->udata.i == 0
5402 && (flags & BSF_SECTION_SYM)
5403 && asym_ptr->section)
5404 {
5405 asection *sec;
5406 int indx;
5407
5408 sec = asym_ptr->section;
5409 if (sec->owner != abfd && sec->output_section != NULL)
5410 sec = sec->output_section;
5411 if (sec->owner == abfd
5412 && (indx = sec->index) < elf_num_section_syms (abfd)
5413 && elf_section_syms (abfd)[indx] != NULL)
5414 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5415 }
5416
5417 idx = asym_ptr->udata.i;
5418
5419 if (idx == 0)
5420 {
5421 /* This case can occur when using --strip-symbol on a symbol
5422 which is used in a relocation entry. */
5423 (*_bfd_error_handler)
5424 (_("%B: symbol `%s' required but not present"),
5425 abfd, bfd_asymbol_name (asym_ptr));
5426 bfd_set_error (bfd_error_no_symbols);
5427 return -1;
5428 }
5429
5430 #if DEBUG & 4
5431 {
5432 fprintf (stderr,
5433 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5434 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5435 fflush (stderr);
5436 }
5437 #endif
5438
5439 return idx;
5440 }
5441
5442 /* Rewrite program header information. */
5443
5444 static bfd_boolean
5445 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5446 {
5447 Elf_Internal_Ehdr *iehdr;
5448 struct elf_segment_map *map;
5449 struct elf_segment_map *map_first;
5450 struct elf_segment_map **pointer_to_map;
5451 Elf_Internal_Phdr *segment;
5452 asection *section;
5453 unsigned int i;
5454 unsigned int num_segments;
5455 bfd_boolean phdr_included = FALSE;
5456 bfd_boolean p_paddr_valid;
5457 bfd_vma maxpagesize;
5458 struct elf_segment_map *phdr_adjust_seg = NULL;
5459 unsigned int phdr_adjust_num = 0;
5460 const struct elf_backend_data *bed;
5461
5462 bed = get_elf_backend_data (ibfd);
5463 iehdr = elf_elfheader (ibfd);
5464
5465 map_first = NULL;
5466 pointer_to_map = &map_first;
5467
5468 num_segments = elf_elfheader (ibfd)->e_phnum;
5469 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5470
5471 /* Returns the end address of the segment + 1. */
5472 #define SEGMENT_END(segment, start) \
5473 (start + (segment->p_memsz > segment->p_filesz \
5474 ? segment->p_memsz : segment->p_filesz))
5475
5476 #define SECTION_SIZE(section, segment) \
5477 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5478 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5479 ? section->size : 0)
5480
5481 /* Returns TRUE if the given section is contained within
5482 the given segment. VMA addresses are compared. */
5483 #define IS_CONTAINED_BY_VMA(section, segment) \
5484 (section->vma >= segment->p_vaddr \
5485 && (section->vma + SECTION_SIZE (section, segment) \
5486 <= (SEGMENT_END (segment, segment->p_vaddr))))
5487
5488 /* Returns TRUE if the given section is contained within
5489 the given segment. LMA addresses are compared. */
5490 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5491 (section->lma >= base \
5492 && (section->lma + SECTION_SIZE (section, segment) \
5493 <= SEGMENT_END (segment, base)))
5494
5495 /* Handle PT_NOTE segment. */
5496 #define IS_NOTE(p, s) \
5497 (p->p_type == PT_NOTE \
5498 && elf_section_type (s) == SHT_NOTE \
5499 && (bfd_vma) s->filepos >= p->p_offset \
5500 && ((bfd_vma) s->filepos + s->size \
5501 <= p->p_offset + p->p_filesz))
5502
5503 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5504 etc. */
5505 #define IS_COREFILE_NOTE(p, s) \
5506 (IS_NOTE (p, s) \
5507 && bfd_get_format (ibfd) == bfd_core \
5508 && s->vma == 0 \
5509 && s->lma == 0)
5510
5511 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5512 linker, which generates a PT_INTERP section with p_vaddr and
5513 p_memsz set to 0. */
5514 #define IS_SOLARIS_PT_INTERP(p, s) \
5515 (p->p_vaddr == 0 \
5516 && p->p_paddr == 0 \
5517 && p->p_memsz == 0 \
5518 && p->p_filesz > 0 \
5519 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5520 && s->size > 0 \
5521 && (bfd_vma) s->filepos >= p->p_offset \
5522 && ((bfd_vma) s->filepos + s->size \
5523 <= p->p_offset + p->p_filesz))
5524
5525 /* Decide if the given section should be included in the given segment.
5526 A section will be included if:
5527 1. It is within the address space of the segment -- we use the LMA
5528 if that is set for the segment and the VMA otherwise,
5529 2. It is an allocated section or a NOTE section in a PT_NOTE
5530 segment.
5531 3. There is an output section associated with it,
5532 4. The section has not already been allocated to a previous segment.
5533 5. PT_GNU_STACK segments do not include any sections.
5534 6. PT_TLS segment includes only SHF_TLS sections.
5535 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5536 8. PT_DYNAMIC should not contain empty sections at the beginning
5537 (with the possible exception of .dynamic). */
5538 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5539 ((((segment->p_paddr \
5540 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5541 : IS_CONTAINED_BY_VMA (section, segment)) \
5542 && (section->flags & SEC_ALLOC) != 0) \
5543 || IS_NOTE (segment, section)) \
5544 && segment->p_type != PT_GNU_STACK \
5545 && (segment->p_type != PT_TLS \
5546 || (section->flags & SEC_THREAD_LOCAL)) \
5547 && (segment->p_type == PT_LOAD \
5548 || segment->p_type == PT_TLS \
5549 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5550 && (segment->p_type != PT_DYNAMIC \
5551 || SECTION_SIZE (section, segment) > 0 \
5552 || (segment->p_paddr \
5553 ? segment->p_paddr != section->lma \
5554 : segment->p_vaddr != section->vma) \
5555 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5556 == 0)) \
5557 && !section->segment_mark)
5558
5559 /* If the output section of a section in the input segment is NULL,
5560 it is removed from the corresponding output segment. */
5561 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5562 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5563 && section->output_section != NULL)
5564
5565 /* Returns TRUE iff seg1 starts after the end of seg2. */
5566 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5567 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5568
5569 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5570 their VMA address ranges and their LMA address ranges overlap.
5571 It is possible to have overlapping VMA ranges without overlapping LMA
5572 ranges. RedBoot images for example can have both .data and .bss mapped
5573 to the same VMA range, but with the .data section mapped to a different
5574 LMA. */
5575 #define SEGMENT_OVERLAPS(seg1, seg2) \
5576 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5577 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5578 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5579 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5580
5581 /* Initialise the segment mark field. */
5582 for (section = ibfd->sections; section != NULL; section = section->next)
5583 section->segment_mark = FALSE;
5584
5585 /* The Solaris linker creates program headers in which all the
5586 p_paddr fields are zero. When we try to objcopy or strip such a
5587 file, we get confused. Check for this case, and if we find it
5588 don't set the p_paddr_valid fields. */
5589 p_paddr_valid = FALSE;
5590 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5591 i < num_segments;
5592 i++, segment++)
5593 if (segment->p_paddr != 0)
5594 {
5595 p_paddr_valid = TRUE;
5596 break;
5597 }
5598
5599 /* Scan through the segments specified in the program header
5600 of the input BFD. For this first scan we look for overlaps
5601 in the loadable segments. These can be created by weird
5602 parameters to objcopy. Also, fix some solaris weirdness. */
5603 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5604 i < num_segments;
5605 i++, segment++)
5606 {
5607 unsigned int j;
5608 Elf_Internal_Phdr *segment2;
5609
5610 if (segment->p_type == PT_INTERP)
5611 for (section = ibfd->sections; section; section = section->next)
5612 if (IS_SOLARIS_PT_INTERP (segment, section))
5613 {
5614 /* Mininal change so that the normal section to segment
5615 assignment code will work. */
5616 segment->p_vaddr = section->vma;
5617 break;
5618 }
5619
5620 if (segment->p_type != PT_LOAD)
5621 {
5622 /* Remove PT_GNU_RELRO segment. */
5623 if (segment->p_type == PT_GNU_RELRO)
5624 segment->p_type = PT_NULL;
5625 continue;
5626 }
5627
5628 /* Determine if this segment overlaps any previous segments. */
5629 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5630 {
5631 bfd_signed_vma extra_length;
5632
5633 if (segment2->p_type != PT_LOAD
5634 || !SEGMENT_OVERLAPS (segment, segment2))
5635 continue;
5636
5637 /* Merge the two segments together. */
5638 if (segment2->p_vaddr < segment->p_vaddr)
5639 {
5640 /* Extend SEGMENT2 to include SEGMENT and then delete
5641 SEGMENT. */
5642 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5643 - SEGMENT_END (segment2, segment2->p_vaddr));
5644
5645 if (extra_length > 0)
5646 {
5647 segment2->p_memsz += extra_length;
5648 segment2->p_filesz += extra_length;
5649 }
5650
5651 segment->p_type = PT_NULL;
5652
5653 /* Since we have deleted P we must restart the outer loop. */
5654 i = 0;
5655 segment = elf_tdata (ibfd)->phdr;
5656 break;
5657 }
5658 else
5659 {
5660 /* Extend SEGMENT to include SEGMENT2 and then delete
5661 SEGMENT2. */
5662 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5663 - SEGMENT_END (segment, segment->p_vaddr));
5664
5665 if (extra_length > 0)
5666 {
5667 segment->p_memsz += extra_length;
5668 segment->p_filesz += extra_length;
5669 }
5670
5671 segment2->p_type = PT_NULL;
5672 }
5673 }
5674 }
5675
5676 /* The second scan attempts to assign sections to segments. */
5677 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5678 i < num_segments;
5679 i++, segment++)
5680 {
5681 unsigned int section_count;
5682 asection **sections;
5683 asection *output_section;
5684 unsigned int isec;
5685 bfd_vma matching_lma;
5686 bfd_vma suggested_lma;
5687 unsigned int j;
5688 bfd_size_type amt;
5689 asection *first_section;
5690 bfd_boolean first_matching_lma;
5691 bfd_boolean first_suggested_lma;
5692
5693 if (segment->p_type == PT_NULL)
5694 continue;
5695
5696 first_section = NULL;
5697 /* Compute how many sections might be placed into this segment. */
5698 for (section = ibfd->sections, section_count = 0;
5699 section != NULL;
5700 section = section->next)
5701 {
5702 /* Find the first section in the input segment, which may be
5703 removed from the corresponding output segment. */
5704 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5705 {
5706 if (first_section == NULL)
5707 first_section = section;
5708 if (section->output_section != NULL)
5709 ++section_count;
5710 }
5711 }
5712
5713 /* Allocate a segment map big enough to contain
5714 all of the sections we have selected. */
5715 amt = sizeof (struct elf_segment_map);
5716 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5717 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5718 if (map == NULL)
5719 return FALSE;
5720
5721 /* Initialise the fields of the segment map. Default to
5722 using the physical address of the segment in the input BFD. */
5723 map->next = NULL;
5724 map->p_type = segment->p_type;
5725 map->p_flags = segment->p_flags;
5726 map->p_flags_valid = 1;
5727
5728 /* If the first section in the input segment is removed, there is
5729 no need to preserve segment physical address in the corresponding
5730 output segment. */
5731 if (!first_section || first_section->output_section != NULL)
5732 {
5733 map->p_paddr = segment->p_paddr;
5734 map->p_paddr_valid = p_paddr_valid;
5735 }
5736
5737 /* Determine if this segment contains the ELF file header
5738 and if it contains the program headers themselves. */
5739 map->includes_filehdr = (segment->p_offset == 0
5740 && segment->p_filesz >= iehdr->e_ehsize);
5741 map->includes_phdrs = 0;
5742
5743 if (!phdr_included || segment->p_type != PT_LOAD)
5744 {
5745 map->includes_phdrs =
5746 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5747 && (segment->p_offset + segment->p_filesz
5748 >= ((bfd_vma) iehdr->e_phoff
5749 + iehdr->e_phnum * iehdr->e_phentsize)));
5750
5751 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5752 phdr_included = TRUE;
5753 }
5754
5755 if (section_count == 0)
5756 {
5757 /* Special segments, such as the PT_PHDR segment, may contain
5758 no sections, but ordinary, loadable segments should contain
5759 something. They are allowed by the ELF spec however, so only
5760 a warning is produced. */
5761 if (segment->p_type == PT_LOAD)
5762 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5763 " detected, is this intentional ?\n"),
5764 ibfd);
5765
5766 map->count = 0;
5767 *pointer_to_map = map;
5768 pointer_to_map = &map->next;
5769
5770 continue;
5771 }
5772
5773 /* Now scan the sections in the input BFD again and attempt
5774 to add their corresponding output sections to the segment map.
5775 The problem here is how to handle an output section which has
5776 been moved (ie had its LMA changed). There are four possibilities:
5777
5778 1. None of the sections have been moved.
5779 In this case we can continue to use the segment LMA from the
5780 input BFD.
5781
5782 2. All of the sections have been moved by the same amount.
5783 In this case we can change the segment's LMA to match the LMA
5784 of the first section.
5785
5786 3. Some of the sections have been moved, others have not.
5787 In this case those sections which have not been moved can be
5788 placed in the current segment which will have to have its size,
5789 and possibly its LMA changed, and a new segment or segments will
5790 have to be created to contain the other sections.
5791
5792 4. The sections have been moved, but not by the same amount.
5793 In this case we can change the segment's LMA to match the LMA
5794 of the first section and we will have to create a new segment
5795 or segments to contain the other sections.
5796
5797 In order to save time, we allocate an array to hold the section
5798 pointers that we are interested in. As these sections get assigned
5799 to a segment, they are removed from this array. */
5800
5801 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5802 if (sections == NULL)
5803 return FALSE;
5804
5805 /* Step One: Scan for segment vs section LMA conflicts.
5806 Also add the sections to the section array allocated above.
5807 Also add the sections to the current segment. In the common
5808 case, where the sections have not been moved, this means that
5809 we have completely filled the segment, and there is nothing
5810 more to do. */
5811 isec = 0;
5812 matching_lma = 0;
5813 suggested_lma = 0;
5814 first_matching_lma = TRUE;
5815 first_suggested_lma = TRUE;
5816
5817 for (section = ibfd->sections;
5818 section != NULL;
5819 section = section->next)
5820 if (section == first_section)
5821 break;
5822
5823 for (j = 0; section != NULL; section = section->next)
5824 {
5825 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5826 {
5827 output_section = section->output_section;
5828
5829 sections[j++] = section;
5830
5831 /* The Solaris native linker always sets p_paddr to 0.
5832 We try to catch that case here, and set it to the
5833 correct value. Note - some backends require that
5834 p_paddr be left as zero. */
5835 if (!p_paddr_valid
5836 && segment->p_vaddr != 0
5837 && !bed->want_p_paddr_set_to_zero
5838 && isec == 0
5839 && output_section->lma != 0
5840 && output_section->vma == (segment->p_vaddr
5841 + (map->includes_filehdr
5842 ? iehdr->e_ehsize
5843 : 0)
5844 + (map->includes_phdrs
5845 ? (iehdr->e_phnum
5846 * iehdr->e_phentsize)
5847 : 0)))
5848 map->p_paddr = segment->p_vaddr;
5849
5850 /* Match up the physical address of the segment with the
5851 LMA address of the output section. */
5852 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5853 || IS_COREFILE_NOTE (segment, section)
5854 || (bed->want_p_paddr_set_to_zero
5855 && IS_CONTAINED_BY_VMA (output_section, segment)))
5856 {
5857 if (first_matching_lma || output_section->lma < matching_lma)
5858 {
5859 matching_lma = output_section->lma;
5860 first_matching_lma = FALSE;
5861 }
5862
5863 /* We assume that if the section fits within the segment
5864 then it does not overlap any other section within that
5865 segment. */
5866 map->sections[isec++] = output_section;
5867 }
5868 else if (first_suggested_lma)
5869 {
5870 suggested_lma = output_section->lma;
5871 first_suggested_lma = FALSE;
5872 }
5873
5874 if (j == section_count)
5875 break;
5876 }
5877 }
5878
5879 BFD_ASSERT (j == section_count);
5880
5881 /* Step Two: Adjust the physical address of the current segment,
5882 if necessary. */
5883 if (isec == section_count)
5884 {
5885 /* All of the sections fitted within the segment as currently
5886 specified. This is the default case. Add the segment to
5887 the list of built segments and carry on to process the next
5888 program header in the input BFD. */
5889 map->count = section_count;
5890 *pointer_to_map = map;
5891 pointer_to_map = &map->next;
5892
5893 if (p_paddr_valid
5894 && !bed->want_p_paddr_set_to_zero
5895 && matching_lma != map->p_paddr
5896 && !map->includes_filehdr
5897 && !map->includes_phdrs)
5898 /* There is some padding before the first section in the
5899 segment. So, we must account for that in the output
5900 segment's vma. */
5901 map->p_vaddr_offset = matching_lma - map->p_paddr;
5902
5903 free (sections);
5904 continue;
5905 }
5906 else
5907 {
5908 if (!first_matching_lma)
5909 {
5910 /* At least one section fits inside the current segment.
5911 Keep it, but modify its physical address to match the
5912 LMA of the first section that fitted. */
5913 map->p_paddr = matching_lma;
5914 }
5915 else
5916 {
5917 /* None of the sections fitted inside the current segment.
5918 Change the current segment's physical address to match
5919 the LMA of the first section. */
5920 map->p_paddr = suggested_lma;
5921 }
5922
5923 /* Offset the segment physical address from the lma
5924 to allow for space taken up by elf headers. */
5925 if (map->includes_filehdr)
5926 {
5927 if (map->p_paddr >= iehdr->e_ehsize)
5928 map->p_paddr -= iehdr->e_ehsize;
5929 else
5930 {
5931 map->includes_filehdr = FALSE;
5932 map->includes_phdrs = FALSE;
5933 }
5934 }
5935
5936 if (map->includes_phdrs)
5937 {
5938 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5939 {
5940 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5941
5942 /* iehdr->e_phnum is just an estimate of the number
5943 of program headers that we will need. Make a note
5944 here of the number we used and the segment we chose
5945 to hold these headers, so that we can adjust the
5946 offset when we know the correct value. */
5947 phdr_adjust_num = iehdr->e_phnum;
5948 phdr_adjust_seg = map;
5949 }
5950 else
5951 map->includes_phdrs = FALSE;
5952 }
5953 }
5954
5955 /* Step Three: Loop over the sections again, this time assigning
5956 those that fit to the current segment and removing them from the
5957 sections array; but making sure not to leave large gaps. Once all
5958 possible sections have been assigned to the current segment it is
5959 added to the list of built segments and if sections still remain
5960 to be assigned, a new segment is constructed before repeating
5961 the loop. */
5962 isec = 0;
5963 do
5964 {
5965 map->count = 0;
5966 suggested_lma = 0;
5967 first_suggested_lma = TRUE;
5968
5969 /* Fill the current segment with sections that fit. */
5970 for (j = 0; j < section_count; j++)
5971 {
5972 section = sections[j];
5973
5974 if (section == NULL)
5975 continue;
5976
5977 output_section = section->output_section;
5978
5979 BFD_ASSERT (output_section != NULL);
5980
5981 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5982 || IS_COREFILE_NOTE (segment, section))
5983 {
5984 if (map->count == 0)
5985 {
5986 /* If the first section in a segment does not start at
5987 the beginning of the segment, then something is
5988 wrong. */
5989 if (output_section->lma
5990 != (map->p_paddr
5991 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5992 + (map->includes_phdrs
5993 ? iehdr->e_phnum * iehdr->e_phentsize
5994 : 0)))
5995 abort ();
5996 }
5997 else
5998 {
5999 asection *prev_sec;
6000
6001 prev_sec = map->sections[map->count - 1];
6002
6003 /* If the gap between the end of the previous section
6004 and the start of this section is more than
6005 maxpagesize then we need to start a new segment. */
6006 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6007 maxpagesize)
6008 < BFD_ALIGN (output_section->lma, maxpagesize))
6009 || (prev_sec->lma + prev_sec->size
6010 > output_section->lma))
6011 {
6012 if (first_suggested_lma)
6013 {
6014 suggested_lma = output_section->lma;
6015 first_suggested_lma = FALSE;
6016 }
6017
6018 continue;
6019 }
6020 }
6021
6022 map->sections[map->count++] = output_section;
6023 ++isec;
6024 sections[j] = NULL;
6025 section->segment_mark = TRUE;
6026 }
6027 else if (first_suggested_lma)
6028 {
6029 suggested_lma = output_section->lma;
6030 first_suggested_lma = FALSE;
6031 }
6032 }
6033
6034 BFD_ASSERT (map->count > 0);
6035
6036 /* Add the current segment to the list of built segments. */
6037 *pointer_to_map = map;
6038 pointer_to_map = &map->next;
6039
6040 if (isec < section_count)
6041 {
6042 /* We still have not allocated all of the sections to
6043 segments. Create a new segment here, initialise it
6044 and carry on looping. */
6045 amt = sizeof (struct elf_segment_map);
6046 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6047 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6048 if (map == NULL)
6049 {
6050 free (sections);
6051 return FALSE;
6052 }
6053
6054 /* Initialise the fields of the segment map. Set the physical
6055 physical address to the LMA of the first section that has
6056 not yet been assigned. */
6057 map->next = NULL;
6058 map->p_type = segment->p_type;
6059 map->p_flags = segment->p_flags;
6060 map->p_flags_valid = 1;
6061 map->p_paddr = suggested_lma;
6062 map->p_paddr_valid = p_paddr_valid;
6063 map->includes_filehdr = 0;
6064 map->includes_phdrs = 0;
6065 }
6066 }
6067 while (isec < section_count);
6068
6069 free (sections);
6070 }
6071
6072 elf_tdata (obfd)->segment_map = map_first;
6073
6074 /* If we had to estimate the number of program headers that were
6075 going to be needed, then check our estimate now and adjust
6076 the offset if necessary. */
6077 if (phdr_adjust_seg != NULL)
6078 {
6079 unsigned int count;
6080
6081 for (count = 0, map = map_first; map != NULL; map = map->next)
6082 count++;
6083
6084 if (count > phdr_adjust_num)
6085 phdr_adjust_seg->p_paddr
6086 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6087 }
6088
6089 #undef SEGMENT_END
6090 #undef SECTION_SIZE
6091 #undef IS_CONTAINED_BY_VMA
6092 #undef IS_CONTAINED_BY_LMA
6093 #undef IS_NOTE
6094 #undef IS_COREFILE_NOTE
6095 #undef IS_SOLARIS_PT_INTERP
6096 #undef IS_SECTION_IN_INPUT_SEGMENT
6097 #undef INCLUDE_SECTION_IN_SEGMENT
6098 #undef SEGMENT_AFTER_SEGMENT
6099 #undef SEGMENT_OVERLAPS
6100 return TRUE;
6101 }
6102
6103 /* Copy ELF program header information. */
6104
6105 static bfd_boolean
6106 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6107 {
6108 Elf_Internal_Ehdr *iehdr;
6109 struct elf_segment_map *map;
6110 struct elf_segment_map *map_first;
6111 struct elf_segment_map **pointer_to_map;
6112 Elf_Internal_Phdr *segment;
6113 unsigned int i;
6114 unsigned int num_segments;
6115 bfd_boolean phdr_included = FALSE;
6116 bfd_boolean p_paddr_valid;
6117
6118 iehdr = elf_elfheader (ibfd);
6119
6120 map_first = NULL;
6121 pointer_to_map = &map_first;
6122
6123 /* If all the segment p_paddr fields are zero, don't set
6124 map->p_paddr_valid. */
6125 p_paddr_valid = FALSE;
6126 num_segments = elf_elfheader (ibfd)->e_phnum;
6127 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6128 i < num_segments;
6129 i++, segment++)
6130 if (segment->p_paddr != 0)
6131 {
6132 p_paddr_valid = TRUE;
6133 break;
6134 }
6135
6136 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6137 i < num_segments;
6138 i++, segment++)
6139 {
6140 asection *section;
6141 unsigned int section_count;
6142 bfd_size_type amt;
6143 Elf_Internal_Shdr *this_hdr;
6144 asection *first_section = NULL;
6145 asection *lowest_section;
6146
6147 /* Compute how many sections are in this segment. */
6148 for (section = ibfd->sections, section_count = 0;
6149 section != NULL;
6150 section = section->next)
6151 {
6152 this_hdr = &(elf_section_data(section)->this_hdr);
6153 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6154 {
6155 if (first_section == NULL)
6156 first_section = section;
6157 section_count++;
6158 }
6159 }
6160
6161 /* Allocate a segment map big enough to contain
6162 all of the sections we have selected. */
6163 amt = sizeof (struct elf_segment_map);
6164 if (section_count != 0)
6165 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6166 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6167 if (map == NULL)
6168 return FALSE;
6169
6170 /* Initialize the fields of the output segment map with the
6171 input segment. */
6172 map->next = NULL;
6173 map->p_type = segment->p_type;
6174 map->p_flags = segment->p_flags;
6175 map->p_flags_valid = 1;
6176 map->p_paddr = segment->p_paddr;
6177 map->p_paddr_valid = p_paddr_valid;
6178 map->p_align = segment->p_align;
6179 map->p_align_valid = 1;
6180 map->p_vaddr_offset = 0;
6181
6182 if (map->p_type == PT_GNU_RELRO
6183 || map->p_type == PT_GNU_STACK)
6184 {
6185 /* The PT_GNU_RELRO segment may contain the first a few
6186 bytes in the .got.plt section even if the whole .got.plt
6187 section isn't in the PT_GNU_RELRO segment. We won't
6188 change the size of the PT_GNU_RELRO segment.
6189 Similarly, PT_GNU_STACK size is significant on uclinux
6190 systems. */
6191 map->p_size = segment->p_memsz;
6192 map->p_size_valid = 1;
6193 }
6194
6195 /* Determine if this segment contains the ELF file header
6196 and if it contains the program headers themselves. */
6197 map->includes_filehdr = (segment->p_offset == 0
6198 && segment->p_filesz >= iehdr->e_ehsize);
6199
6200 map->includes_phdrs = 0;
6201 if (! phdr_included || segment->p_type != PT_LOAD)
6202 {
6203 map->includes_phdrs =
6204 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6205 && (segment->p_offset + segment->p_filesz
6206 >= ((bfd_vma) iehdr->e_phoff
6207 + iehdr->e_phnum * iehdr->e_phentsize)));
6208
6209 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6210 phdr_included = TRUE;
6211 }
6212
6213 lowest_section = first_section;
6214 if (section_count != 0)
6215 {
6216 unsigned int isec = 0;
6217
6218 for (section = first_section;
6219 section != NULL;
6220 section = section->next)
6221 {
6222 this_hdr = &(elf_section_data(section)->this_hdr);
6223 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6224 {
6225 map->sections[isec++] = section->output_section;
6226 if (section->lma < lowest_section->lma)
6227 lowest_section = section;
6228 if ((section->flags & SEC_ALLOC) != 0)
6229 {
6230 bfd_vma seg_off;
6231
6232 /* Section lmas are set up from PT_LOAD header
6233 p_paddr in _bfd_elf_make_section_from_shdr.
6234 If this header has a p_paddr that disagrees
6235 with the section lma, flag the p_paddr as
6236 invalid. */
6237 if ((section->flags & SEC_LOAD) != 0)
6238 seg_off = this_hdr->sh_offset - segment->p_offset;
6239 else
6240 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6241 if (section->lma - segment->p_paddr != seg_off)
6242 map->p_paddr_valid = FALSE;
6243 }
6244 if (isec == section_count)
6245 break;
6246 }
6247 }
6248 }
6249
6250 if (map->includes_filehdr && lowest_section != NULL)
6251 /* We need to keep the space used by the headers fixed. */
6252 map->header_size = lowest_section->vma - segment->p_vaddr;
6253
6254 if (!map->includes_phdrs
6255 && !map->includes_filehdr
6256 && map->p_paddr_valid)
6257 /* There is some other padding before the first section. */
6258 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6259 - segment->p_paddr);
6260
6261 map->count = section_count;
6262 *pointer_to_map = map;
6263 pointer_to_map = &map->next;
6264 }
6265
6266 elf_tdata (obfd)->segment_map = map_first;
6267 return TRUE;
6268 }
6269
6270 /* Copy private BFD data. This copies or rewrites ELF program header
6271 information. */
6272
6273 static bfd_boolean
6274 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6275 {
6276 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6277 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6278 return TRUE;
6279
6280 if (elf_tdata (ibfd)->phdr == NULL)
6281 return TRUE;
6282
6283 if (ibfd->xvec == obfd->xvec)
6284 {
6285 /* Check to see if any sections in the input BFD
6286 covered by ELF program header have changed. */
6287 Elf_Internal_Phdr *segment;
6288 asection *section, *osec;
6289 unsigned int i, num_segments;
6290 Elf_Internal_Shdr *this_hdr;
6291 const struct elf_backend_data *bed;
6292
6293 bed = get_elf_backend_data (ibfd);
6294
6295 /* Regenerate the segment map if p_paddr is set to 0. */
6296 if (bed->want_p_paddr_set_to_zero)
6297 goto rewrite;
6298
6299 /* Initialize the segment mark field. */
6300 for (section = obfd->sections; section != NULL;
6301 section = section->next)
6302 section->segment_mark = FALSE;
6303
6304 num_segments = elf_elfheader (ibfd)->e_phnum;
6305 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6306 i < num_segments;
6307 i++, segment++)
6308 {
6309 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6310 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6311 which severly confuses things, so always regenerate the segment
6312 map in this case. */
6313 if (segment->p_paddr == 0
6314 && segment->p_memsz == 0
6315 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6316 goto rewrite;
6317
6318 for (section = ibfd->sections;
6319 section != NULL; section = section->next)
6320 {
6321 /* We mark the output section so that we know it comes
6322 from the input BFD. */
6323 osec = section->output_section;
6324 if (osec)
6325 osec->segment_mark = TRUE;
6326
6327 /* Check if this section is covered by the segment. */
6328 this_hdr = &(elf_section_data(section)->this_hdr);
6329 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6330 {
6331 /* FIXME: Check if its output section is changed or
6332 removed. What else do we need to check? */
6333 if (osec == NULL
6334 || section->flags != osec->flags
6335 || section->lma != osec->lma
6336 || section->vma != osec->vma
6337 || section->size != osec->size
6338 || section->rawsize != osec->rawsize
6339 || section->alignment_power != osec->alignment_power)
6340 goto rewrite;
6341 }
6342 }
6343 }
6344
6345 /* Check to see if any output section do not come from the
6346 input BFD. */
6347 for (section = obfd->sections; section != NULL;
6348 section = section->next)
6349 {
6350 if (section->segment_mark == FALSE)
6351 goto rewrite;
6352 else
6353 section->segment_mark = FALSE;
6354 }
6355
6356 return copy_elf_program_header (ibfd, obfd);
6357 }
6358
6359 rewrite:
6360 if (ibfd->xvec == obfd->xvec)
6361 {
6362 /* When rewriting program header, set the output maxpagesize to
6363 the maximum alignment of input PT_LOAD segments. */
6364 Elf_Internal_Phdr *segment;
6365 unsigned int i;
6366 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6367 bfd_vma maxpagesize = 0;
6368
6369 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6370 i < num_segments;
6371 i++, segment++)
6372 if (segment->p_type == PT_LOAD
6373 && maxpagesize < segment->p_align)
6374 maxpagesize = segment->p_align;
6375
6376 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6377 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6378 }
6379
6380 return rewrite_elf_program_header (ibfd, obfd);
6381 }
6382
6383 /* Initialize private output section information from input section. */
6384
6385 bfd_boolean
6386 _bfd_elf_init_private_section_data (bfd *ibfd,
6387 asection *isec,
6388 bfd *obfd,
6389 asection *osec,
6390 struct bfd_link_info *link_info)
6391
6392 {
6393 Elf_Internal_Shdr *ihdr, *ohdr;
6394 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6395
6396 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6397 || obfd->xvec->flavour != bfd_target_elf_flavour)
6398 return TRUE;
6399
6400 BFD_ASSERT (elf_section_data (osec) != NULL);
6401
6402 /* For objcopy and relocatable link, don't copy the output ELF
6403 section type from input if the output BFD section flags have been
6404 set to something different. For a final link allow some flags
6405 that the linker clears to differ. */
6406 if (elf_section_type (osec) == SHT_NULL
6407 && (osec->flags == isec->flags
6408 || (final_link
6409 && ((osec->flags ^ isec->flags)
6410 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6411 elf_section_type (osec) = elf_section_type (isec);
6412
6413 /* FIXME: Is this correct for all OS/PROC specific flags? */
6414 elf_section_flags (osec) |= (elf_section_flags (isec)
6415 & (SHF_MASKOS | SHF_MASKPROC));
6416
6417 /* Set things up for objcopy and relocatable link. The output
6418 SHT_GROUP section will have its elf_next_in_group pointing back
6419 to the input group members. Ignore linker created group section.
6420 See elfNN_ia64_object_p in elfxx-ia64.c. */
6421 if (!final_link)
6422 {
6423 if (elf_sec_group (isec) == NULL
6424 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6425 {
6426 if (elf_section_flags (isec) & SHF_GROUP)
6427 elf_section_flags (osec) |= SHF_GROUP;
6428 elf_next_in_group (osec) = elf_next_in_group (isec);
6429 elf_section_data (osec)->group = elf_section_data (isec)->group;
6430 }
6431 }
6432
6433 ihdr = &elf_section_data (isec)->this_hdr;
6434
6435 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6436 don't use the output section of the linked-to section since it
6437 may be NULL at this point. */
6438 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6439 {
6440 ohdr = &elf_section_data (osec)->this_hdr;
6441 ohdr->sh_flags |= SHF_LINK_ORDER;
6442 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6443 }
6444
6445 osec->use_rela_p = isec->use_rela_p;
6446
6447 return TRUE;
6448 }
6449
6450 /* Copy private section information. This copies over the entsize
6451 field, and sometimes the info field. */
6452
6453 bfd_boolean
6454 _bfd_elf_copy_private_section_data (bfd *ibfd,
6455 asection *isec,
6456 bfd *obfd,
6457 asection *osec)
6458 {
6459 Elf_Internal_Shdr *ihdr, *ohdr;
6460
6461 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6462 || obfd->xvec->flavour != bfd_target_elf_flavour)
6463 return TRUE;
6464
6465 ihdr = &elf_section_data (isec)->this_hdr;
6466 ohdr = &elf_section_data (osec)->this_hdr;
6467
6468 ohdr->sh_entsize = ihdr->sh_entsize;
6469
6470 if (ihdr->sh_type == SHT_SYMTAB
6471 || ihdr->sh_type == SHT_DYNSYM
6472 || ihdr->sh_type == SHT_GNU_verneed
6473 || ihdr->sh_type == SHT_GNU_verdef)
6474 ohdr->sh_info = ihdr->sh_info;
6475
6476 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6477 NULL);
6478 }
6479
6480 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6481 necessary if we are removing either the SHT_GROUP section or any of
6482 the group member sections. DISCARDED is the value that a section's
6483 output_section has if the section will be discarded, NULL when this
6484 function is called from objcopy, bfd_abs_section_ptr when called
6485 from the linker. */
6486
6487 bfd_boolean
6488 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6489 {
6490 asection *isec;
6491
6492 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6493 if (elf_section_type (isec) == SHT_GROUP)
6494 {
6495 asection *first = elf_next_in_group (isec);
6496 asection *s = first;
6497 bfd_size_type removed = 0;
6498
6499 while (s != NULL)
6500 {
6501 /* If this member section is being output but the
6502 SHT_GROUP section is not, then clear the group info
6503 set up by _bfd_elf_copy_private_section_data. */
6504 if (s->output_section != discarded
6505 && isec->output_section == discarded)
6506 {
6507 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6508 elf_group_name (s->output_section) = NULL;
6509 }
6510 /* Conversely, if the member section is not being output
6511 but the SHT_GROUP section is, then adjust its size. */
6512 else if (s->output_section == discarded
6513 && isec->output_section != discarded)
6514 removed += 4;
6515 s = elf_next_in_group (s);
6516 if (s == first)
6517 break;
6518 }
6519 if (removed != 0)
6520 {
6521 if (discarded != NULL)
6522 {
6523 /* If we've been called for ld -r, then we need to
6524 adjust the input section size. This function may
6525 be called multiple times, so save the original
6526 size. */
6527 if (isec->rawsize == 0)
6528 isec->rawsize = isec->size;
6529 isec->size = isec->rawsize - removed;
6530 }
6531 else
6532 {
6533 /* Adjust the output section size when called from
6534 objcopy. */
6535 isec->output_section->size -= removed;
6536 }
6537 }
6538 }
6539
6540 return TRUE;
6541 }
6542
6543 /* Copy private header information. */
6544
6545 bfd_boolean
6546 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6547 {
6548 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6549 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6550 return TRUE;
6551
6552 /* Copy over private BFD data if it has not already been copied.
6553 This must be done here, rather than in the copy_private_bfd_data
6554 entry point, because the latter is called after the section
6555 contents have been set, which means that the program headers have
6556 already been worked out. */
6557 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6558 {
6559 if (! copy_private_bfd_data (ibfd, obfd))
6560 return FALSE;
6561 }
6562
6563 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6564 }
6565
6566 /* Copy private symbol information. If this symbol is in a section
6567 which we did not map into a BFD section, try to map the section
6568 index correctly. We use special macro definitions for the mapped
6569 section indices; these definitions are interpreted by the
6570 swap_out_syms function. */
6571
6572 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6573 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6574 #define MAP_STRTAB (SHN_HIOS + 3)
6575 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6576 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6577
6578 bfd_boolean
6579 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6580 asymbol *isymarg,
6581 bfd *obfd,
6582 asymbol *osymarg)
6583 {
6584 elf_symbol_type *isym, *osym;
6585
6586 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6587 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6588 return TRUE;
6589
6590 isym = elf_symbol_from (ibfd, isymarg);
6591 osym = elf_symbol_from (obfd, osymarg);
6592
6593 if (isym != NULL
6594 && isym->internal_elf_sym.st_shndx != 0
6595 && osym != NULL
6596 && bfd_is_abs_section (isym->symbol.section))
6597 {
6598 unsigned int shndx;
6599
6600 shndx = isym->internal_elf_sym.st_shndx;
6601 if (shndx == elf_onesymtab (ibfd))
6602 shndx = MAP_ONESYMTAB;
6603 else if (shndx == elf_dynsymtab (ibfd))
6604 shndx = MAP_DYNSYMTAB;
6605 else if (shndx == elf_tdata (ibfd)->strtab_section)
6606 shndx = MAP_STRTAB;
6607 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6608 shndx = MAP_SHSTRTAB;
6609 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6610 shndx = MAP_SYM_SHNDX;
6611 osym->internal_elf_sym.st_shndx = shndx;
6612 }
6613
6614 return TRUE;
6615 }
6616
6617 /* Swap out the symbols. */
6618
6619 static bfd_boolean
6620 swap_out_syms (bfd *abfd,
6621 struct bfd_strtab_hash **sttp,
6622 int relocatable_p)
6623 {
6624 const struct elf_backend_data *bed;
6625 int symcount;
6626 asymbol **syms;
6627 struct bfd_strtab_hash *stt;
6628 Elf_Internal_Shdr *symtab_hdr;
6629 Elf_Internal_Shdr *symtab_shndx_hdr;
6630 Elf_Internal_Shdr *symstrtab_hdr;
6631 bfd_byte *outbound_syms;
6632 bfd_byte *outbound_shndx;
6633 int idx;
6634 bfd_size_type amt;
6635 bfd_boolean name_local_sections;
6636
6637 if (!elf_map_symbols (abfd))
6638 return FALSE;
6639
6640 /* Dump out the symtabs. */
6641 stt = _bfd_elf_stringtab_init ();
6642 if (stt == NULL)
6643 return FALSE;
6644
6645 bed = get_elf_backend_data (abfd);
6646 symcount = bfd_get_symcount (abfd);
6647 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6648 symtab_hdr->sh_type = SHT_SYMTAB;
6649 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6650 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6651 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6652 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6653
6654 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6655 symstrtab_hdr->sh_type = SHT_STRTAB;
6656
6657 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6658 bed->s->sizeof_sym);
6659 if (outbound_syms == NULL)
6660 {
6661 _bfd_stringtab_free (stt);
6662 return FALSE;
6663 }
6664 symtab_hdr->contents = outbound_syms;
6665
6666 outbound_shndx = NULL;
6667 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6668 if (symtab_shndx_hdr->sh_name != 0)
6669 {
6670 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6671 outbound_shndx = (bfd_byte *)
6672 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6673 if (outbound_shndx == NULL)
6674 {
6675 _bfd_stringtab_free (stt);
6676 return FALSE;
6677 }
6678
6679 symtab_shndx_hdr->contents = outbound_shndx;
6680 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6681 symtab_shndx_hdr->sh_size = amt;
6682 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6683 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6684 }
6685
6686 /* Now generate the data (for "contents"). */
6687 {
6688 /* Fill in zeroth symbol and swap it out. */
6689 Elf_Internal_Sym sym;
6690 sym.st_name = 0;
6691 sym.st_value = 0;
6692 sym.st_size = 0;
6693 sym.st_info = 0;
6694 sym.st_other = 0;
6695 sym.st_shndx = SHN_UNDEF;
6696 sym.st_target_internal = 0;
6697 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6698 outbound_syms += bed->s->sizeof_sym;
6699 if (outbound_shndx != NULL)
6700 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6701 }
6702
6703 name_local_sections
6704 = (bed->elf_backend_name_local_section_symbols
6705 && bed->elf_backend_name_local_section_symbols (abfd));
6706
6707 syms = bfd_get_outsymbols (abfd);
6708 for (idx = 0; idx < symcount; idx++)
6709 {
6710 Elf_Internal_Sym sym;
6711 bfd_vma value = syms[idx]->value;
6712 elf_symbol_type *type_ptr;
6713 flagword flags = syms[idx]->flags;
6714 int type;
6715
6716 if (!name_local_sections
6717 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6718 {
6719 /* Local section symbols have no name. */
6720 sym.st_name = 0;
6721 }
6722 else
6723 {
6724 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6725 syms[idx]->name,
6726 TRUE, FALSE);
6727 if (sym.st_name == (unsigned long) -1)
6728 {
6729 _bfd_stringtab_free (stt);
6730 return FALSE;
6731 }
6732 }
6733
6734 type_ptr = elf_symbol_from (abfd, syms[idx]);
6735
6736 if ((flags & BSF_SECTION_SYM) == 0
6737 && bfd_is_com_section (syms[idx]->section))
6738 {
6739 /* ELF common symbols put the alignment into the `value' field,
6740 and the size into the `size' field. This is backwards from
6741 how BFD handles it, so reverse it here. */
6742 sym.st_size = value;
6743 if (type_ptr == NULL
6744 || type_ptr->internal_elf_sym.st_value == 0)
6745 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6746 else
6747 sym.st_value = type_ptr->internal_elf_sym.st_value;
6748 sym.st_shndx = _bfd_elf_section_from_bfd_section
6749 (abfd, syms[idx]->section);
6750 }
6751 else
6752 {
6753 asection *sec = syms[idx]->section;
6754 unsigned int shndx;
6755
6756 if (sec->output_section)
6757 {
6758 value += sec->output_offset;
6759 sec = sec->output_section;
6760 }
6761
6762 /* Don't add in the section vma for relocatable output. */
6763 if (! relocatable_p)
6764 value += sec->vma;
6765 sym.st_value = value;
6766 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6767
6768 if (bfd_is_abs_section (sec)
6769 && type_ptr != NULL
6770 && type_ptr->internal_elf_sym.st_shndx != 0)
6771 {
6772 /* This symbol is in a real ELF section which we did
6773 not create as a BFD section. Undo the mapping done
6774 by copy_private_symbol_data. */
6775 shndx = type_ptr->internal_elf_sym.st_shndx;
6776 switch (shndx)
6777 {
6778 case MAP_ONESYMTAB:
6779 shndx = elf_onesymtab (abfd);
6780 break;
6781 case MAP_DYNSYMTAB:
6782 shndx = elf_dynsymtab (abfd);
6783 break;
6784 case MAP_STRTAB:
6785 shndx = elf_tdata (abfd)->strtab_section;
6786 break;
6787 case MAP_SHSTRTAB:
6788 shndx = elf_tdata (abfd)->shstrtab_section;
6789 break;
6790 case MAP_SYM_SHNDX:
6791 shndx = elf_tdata (abfd)->symtab_shndx_section;
6792 break;
6793 default:
6794 shndx = SHN_ABS;
6795 break;
6796 }
6797 }
6798 else
6799 {
6800 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6801
6802 if (shndx == SHN_BAD)
6803 {
6804 asection *sec2;
6805
6806 /* Writing this would be a hell of a lot easier if
6807 we had some decent documentation on bfd, and
6808 knew what to expect of the library, and what to
6809 demand of applications. For example, it
6810 appears that `objcopy' might not set the
6811 section of a symbol to be a section that is
6812 actually in the output file. */
6813 sec2 = bfd_get_section_by_name (abfd, sec->name);
6814 if (sec2 == NULL)
6815 {
6816 _bfd_error_handler (_("\
6817 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6818 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6819 sec->name);
6820 bfd_set_error (bfd_error_invalid_operation);
6821 _bfd_stringtab_free (stt);
6822 return FALSE;
6823 }
6824
6825 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6826 BFD_ASSERT (shndx != SHN_BAD);
6827 }
6828 }
6829
6830 sym.st_shndx = shndx;
6831 }
6832
6833 if ((flags & BSF_THREAD_LOCAL) != 0)
6834 type = STT_TLS;
6835 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6836 type = STT_GNU_IFUNC;
6837 else if ((flags & BSF_FUNCTION) != 0)
6838 type = STT_FUNC;
6839 else if ((flags & BSF_OBJECT) != 0)
6840 type = STT_OBJECT;
6841 else if ((flags & BSF_RELC) != 0)
6842 type = STT_RELC;
6843 else if ((flags & BSF_SRELC) != 0)
6844 type = STT_SRELC;
6845 else
6846 type = STT_NOTYPE;
6847
6848 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6849 type = STT_TLS;
6850
6851 /* Processor-specific types. */
6852 if (type_ptr != NULL
6853 && bed->elf_backend_get_symbol_type)
6854 type = ((*bed->elf_backend_get_symbol_type)
6855 (&type_ptr->internal_elf_sym, type));
6856
6857 if (flags & BSF_SECTION_SYM)
6858 {
6859 if (flags & BSF_GLOBAL)
6860 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6861 else
6862 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6863 }
6864 else if (bfd_is_com_section (syms[idx]->section))
6865 {
6866 #ifdef USE_STT_COMMON
6867 if (type == STT_OBJECT)
6868 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6869 else
6870 #endif
6871 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6872 }
6873 else if (bfd_is_und_section (syms[idx]->section))
6874 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6875 ? STB_WEAK
6876 : STB_GLOBAL),
6877 type);
6878 else if (flags & BSF_FILE)
6879 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6880 else
6881 {
6882 int bind = STB_LOCAL;
6883
6884 if (flags & BSF_LOCAL)
6885 bind = STB_LOCAL;
6886 else if (flags & BSF_GNU_UNIQUE)
6887 bind = STB_GNU_UNIQUE;
6888 else if (flags & BSF_WEAK)
6889 bind = STB_WEAK;
6890 else if (flags & BSF_GLOBAL)
6891 bind = STB_GLOBAL;
6892
6893 sym.st_info = ELF_ST_INFO (bind, type);
6894 }
6895
6896 if (type_ptr != NULL)
6897 {
6898 sym.st_other = type_ptr->internal_elf_sym.st_other;
6899 sym.st_target_internal
6900 = type_ptr->internal_elf_sym.st_target_internal;
6901 }
6902 else
6903 {
6904 sym.st_other = 0;
6905 sym.st_target_internal = 0;
6906 }
6907
6908 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6909 outbound_syms += bed->s->sizeof_sym;
6910 if (outbound_shndx != NULL)
6911 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6912 }
6913
6914 *sttp = stt;
6915 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6916 symstrtab_hdr->sh_type = SHT_STRTAB;
6917
6918 symstrtab_hdr->sh_flags = 0;
6919 symstrtab_hdr->sh_addr = 0;
6920 symstrtab_hdr->sh_entsize = 0;
6921 symstrtab_hdr->sh_link = 0;
6922 symstrtab_hdr->sh_info = 0;
6923 symstrtab_hdr->sh_addralign = 1;
6924
6925 return TRUE;
6926 }
6927
6928 /* Return the number of bytes required to hold the symtab vector.
6929
6930 Note that we base it on the count plus 1, since we will null terminate
6931 the vector allocated based on this size. However, the ELF symbol table
6932 always has a dummy entry as symbol #0, so it ends up even. */
6933
6934 long
6935 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6936 {
6937 long symcount;
6938 long symtab_size;
6939 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6940
6941 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6942 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6943 if (symcount > 0)
6944 symtab_size -= sizeof (asymbol *);
6945
6946 return symtab_size;
6947 }
6948
6949 long
6950 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6951 {
6952 long symcount;
6953 long symtab_size;
6954 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6955
6956 if (elf_dynsymtab (abfd) == 0)
6957 {
6958 bfd_set_error (bfd_error_invalid_operation);
6959 return -1;
6960 }
6961
6962 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6963 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6964 if (symcount > 0)
6965 symtab_size -= sizeof (asymbol *);
6966
6967 return symtab_size;
6968 }
6969
6970 long
6971 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6972 sec_ptr asect)
6973 {
6974 return (asect->reloc_count + 1) * sizeof (arelent *);
6975 }
6976
6977 /* Canonicalize the relocs. */
6978
6979 long
6980 _bfd_elf_canonicalize_reloc (bfd *abfd,
6981 sec_ptr section,
6982 arelent **relptr,
6983 asymbol **symbols)
6984 {
6985 arelent *tblptr;
6986 unsigned int i;
6987 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6988
6989 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6990 return -1;
6991
6992 tblptr = section->relocation;
6993 for (i = 0; i < section->reloc_count; i++)
6994 *relptr++ = tblptr++;
6995
6996 *relptr = NULL;
6997
6998 return section->reloc_count;
6999 }
7000
7001 long
7002 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7003 {
7004 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7005 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7006
7007 if (symcount >= 0)
7008 bfd_get_symcount (abfd) = symcount;
7009 return symcount;
7010 }
7011
7012 long
7013 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7014 asymbol **allocation)
7015 {
7016 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7017 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7018
7019 if (symcount >= 0)
7020 bfd_get_dynamic_symcount (abfd) = symcount;
7021 return symcount;
7022 }
7023
7024 /* Return the size required for the dynamic reloc entries. Any loadable
7025 section that was actually installed in the BFD, and has type SHT_REL
7026 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7027 dynamic reloc section. */
7028
7029 long
7030 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7031 {
7032 long ret;
7033 asection *s;
7034
7035 if (elf_dynsymtab (abfd) == 0)
7036 {
7037 bfd_set_error (bfd_error_invalid_operation);
7038 return -1;
7039 }
7040
7041 ret = sizeof (arelent *);
7042 for (s = abfd->sections; s != NULL; s = s->next)
7043 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7044 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7045 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7046 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7047 * sizeof (arelent *));
7048
7049 return ret;
7050 }
7051
7052 /* Canonicalize the dynamic relocation entries. Note that we return the
7053 dynamic relocations as a single block, although they are actually
7054 associated with particular sections; the interface, which was
7055 designed for SunOS style shared libraries, expects that there is only
7056 one set of dynamic relocs. Any loadable section that was actually
7057 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7058 dynamic symbol table, is considered to be a dynamic reloc section. */
7059
7060 long
7061 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7062 arelent **storage,
7063 asymbol **syms)
7064 {
7065 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7066 asection *s;
7067 long ret;
7068
7069 if (elf_dynsymtab (abfd) == 0)
7070 {
7071 bfd_set_error (bfd_error_invalid_operation);
7072 return -1;
7073 }
7074
7075 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7076 ret = 0;
7077 for (s = abfd->sections; s != NULL; s = s->next)
7078 {
7079 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7080 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7081 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7082 {
7083 arelent *p;
7084 long count, i;
7085
7086 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7087 return -1;
7088 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7089 p = s->relocation;
7090 for (i = 0; i < count; i++)
7091 *storage++ = p++;
7092 ret += count;
7093 }
7094 }
7095
7096 *storage = NULL;
7097
7098 return ret;
7099 }
7100 \f
7101 /* Read in the version information. */
7102
7103 bfd_boolean
7104 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7105 {
7106 bfd_byte *contents = NULL;
7107 unsigned int freeidx = 0;
7108
7109 if (elf_dynverref (abfd) != 0)
7110 {
7111 Elf_Internal_Shdr *hdr;
7112 Elf_External_Verneed *everneed;
7113 Elf_Internal_Verneed *iverneed;
7114 unsigned int i;
7115 bfd_byte *contents_end;
7116
7117 hdr = &elf_tdata (abfd)->dynverref_hdr;
7118
7119 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7120 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7121 if (elf_tdata (abfd)->verref == NULL)
7122 goto error_return;
7123
7124 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7125
7126 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7127 if (contents == NULL)
7128 {
7129 error_return_verref:
7130 elf_tdata (abfd)->verref = NULL;
7131 elf_tdata (abfd)->cverrefs = 0;
7132 goto error_return;
7133 }
7134 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7135 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7136 goto error_return_verref;
7137
7138 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7139 goto error_return_verref;
7140
7141 BFD_ASSERT (sizeof (Elf_External_Verneed)
7142 == sizeof (Elf_External_Vernaux));
7143 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7144 everneed = (Elf_External_Verneed *) contents;
7145 iverneed = elf_tdata (abfd)->verref;
7146 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7147 {
7148 Elf_External_Vernaux *evernaux;
7149 Elf_Internal_Vernaux *ivernaux;
7150 unsigned int j;
7151
7152 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7153
7154 iverneed->vn_bfd = abfd;
7155
7156 iverneed->vn_filename =
7157 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7158 iverneed->vn_file);
7159 if (iverneed->vn_filename == NULL)
7160 goto error_return_verref;
7161
7162 if (iverneed->vn_cnt == 0)
7163 iverneed->vn_auxptr = NULL;
7164 else
7165 {
7166 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7167 bfd_alloc2 (abfd, iverneed->vn_cnt,
7168 sizeof (Elf_Internal_Vernaux));
7169 if (iverneed->vn_auxptr == NULL)
7170 goto error_return_verref;
7171 }
7172
7173 if (iverneed->vn_aux
7174 > (size_t) (contents_end - (bfd_byte *) everneed))
7175 goto error_return_verref;
7176
7177 evernaux = ((Elf_External_Vernaux *)
7178 ((bfd_byte *) everneed + iverneed->vn_aux));
7179 ivernaux = iverneed->vn_auxptr;
7180 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7181 {
7182 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7183
7184 ivernaux->vna_nodename =
7185 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7186 ivernaux->vna_name);
7187 if (ivernaux->vna_nodename == NULL)
7188 goto error_return_verref;
7189
7190 if (j + 1 < iverneed->vn_cnt)
7191 ivernaux->vna_nextptr = ivernaux + 1;
7192 else
7193 ivernaux->vna_nextptr = NULL;
7194
7195 if (ivernaux->vna_next
7196 > (size_t) (contents_end - (bfd_byte *) evernaux))
7197 goto error_return_verref;
7198
7199 evernaux = ((Elf_External_Vernaux *)
7200 ((bfd_byte *) evernaux + ivernaux->vna_next));
7201
7202 if (ivernaux->vna_other > freeidx)
7203 freeidx = ivernaux->vna_other;
7204 }
7205
7206 if (i + 1 < hdr->sh_info)
7207 iverneed->vn_nextref = iverneed + 1;
7208 else
7209 iverneed->vn_nextref = NULL;
7210
7211 if (iverneed->vn_next
7212 > (size_t) (contents_end - (bfd_byte *) everneed))
7213 goto error_return_verref;
7214
7215 everneed = ((Elf_External_Verneed *)
7216 ((bfd_byte *) everneed + iverneed->vn_next));
7217 }
7218
7219 free (contents);
7220 contents = NULL;
7221 }
7222
7223 if (elf_dynverdef (abfd) != 0)
7224 {
7225 Elf_Internal_Shdr *hdr;
7226 Elf_External_Verdef *everdef;
7227 Elf_Internal_Verdef *iverdef;
7228 Elf_Internal_Verdef *iverdefarr;
7229 Elf_Internal_Verdef iverdefmem;
7230 unsigned int i;
7231 unsigned int maxidx;
7232 bfd_byte *contents_end_def, *contents_end_aux;
7233
7234 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7235
7236 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7237 if (contents == NULL)
7238 goto error_return;
7239 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7240 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7241 goto error_return;
7242
7243 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7244 goto error_return;
7245
7246 BFD_ASSERT (sizeof (Elf_External_Verdef)
7247 >= sizeof (Elf_External_Verdaux));
7248 contents_end_def = contents + hdr->sh_size
7249 - sizeof (Elf_External_Verdef);
7250 contents_end_aux = contents + hdr->sh_size
7251 - sizeof (Elf_External_Verdaux);
7252
7253 /* We know the number of entries in the section but not the maximum
7254 index. Therefore we have to run through all entries and find
7255 the maximum. */
7256 everdef = (Elf_External_Verdef *) contents;
7257 maxidx = 0;
7258 for (i = 0; i < hdr->sh_info; ++i)
7259 {
7260 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7261
7262 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7263 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7264
7265 if (iverdefmem.vd_next
7266 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7267 goto error_return;
7268
7269 everdef = ((Elf_External_Verdef *)
7270 ((bfd_byte *) everdef + iverdefmem.vd_next));
7271 }
7272
7273 if (default_imported_symver)
7274 {
7275 if (freeidx > maxidx)
7276 maxidx = ++freeidx;
7277 else
7278 freeidx = ++maxidx;
7279 }
7280 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7281 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7282 if (elf_tdata (abfd)->verdef == NULL)
7283 goto error_return;
7284
7285 elf_tdata (abfd)->cverdefs = maxidx;
7286
7287 everdef = (Elf_External_Verdef *) contents;
7288 iverdefarr = elf_tdata (abfd)->verdef;
7289 for (i = 0; i < hdr->sh_info; i++)
7290 {
7291 Elf_External_Verdaux *everdaux;
7292 Elf_Internal_Verdaux *iverdaux;
7293 unsigned int j;
7294
7295 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7296
7297 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7298 {
7299 error_return_verdef:
7300 elf_tdata (abfd)->verdef = NULL;
7301 elf_tdata (abfd)->cverdefs = 0;
7302 goto error_return;
7303 }
7304
7305 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7306 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7307
7308 iverdef->vd_bfd = abfd;
7309
7310 if (iverdef->vd_cnt == 0)
7311 iverdef->vd_auxptr = NULL;
7312 else
7313 {
7314 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7315 bfd_alloc2 (abfd, iverdef->vd_cnt,
7316 sizeof (Elf_Internal_Verdaux));
7317 if (iverdef->vd_auxptr == NULL)
7318 goto error_return_verdef;
7319 }
7320
7321 if (iverdef->vd_aux
7322 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7323 goto error_return_verdef;
7324
7325 everdaux = ((Elf_External_Verdaux *)
7326 ((bfd_byte *) everdef + iverdef->vd_aux));
7327 iverdaux = iverdef->vd_auxptr;
7328 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7329 {
7330 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7331
7332 iverdaux->vda_nodename =
7333 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7334 iverdaux->vda_name);
7335 if (iverdaux->vda_nodename == NULL)
7336 goto error_return_verdef;
7337
7338 if (j + 1 < iverdef->vd_cnt)
7339 iverdaux->vda_nextptr = iverdaux + 1;
7340 else
7341 iverdaux->vda_nextptr = NULL;
7342
7343 if (iverdaux->vda_next
7344 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7345 goto error_return_verdef;
7346
7347 everdaux = ((Elf_External_Verdaux *)
7348 ((bfd_byte *) everdaux + iverdaux->vda_next));
7349 }
7350
7351 if (iverdef->vd_cnt)
7352 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7353
7354 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7355 iverdef->vd_nextdef = iverdef + 1;
7356 else
7357 iverdef->vd_nextdef = NULL;
7358
7359 everdef = ((Elf_External_Verdef *)
7360 ((bfd_byte *) everdef + iverdef->vd_next));
7361 }
7362
7363 free (contents);
7364 contents = NULL;
7365 }
7366 else if (default_imported_symver)
7367 {
7368 if (freeidx < 3)
7369 freeidx = 3;
7370 else
7371 freeidx++;
7372
7373 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7374 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7375 if (elf_tdata (abfd)->verdef == NULL)
7376 goto error_return;
7377
7378 elf_tdata (abfd)->cverdefs = freeidx;
7379 }
7380
7381 /* Create a default version based on the soname. */
7382 if (default_imported_symver)
7383 {
7384 Elf_Internal_Verdef *iverdef;
7385 Elf_Internal_Verdaux *iverdaux;
7386
7387 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7388
7389 iverdef->vd_version = VER_DEF_CURRENT;
7390 iverdef->vd_flags = 0;
7391 iverdef->vd_ndx = freeidx;
7392 iverdef->vd_cnt = 1;
7393
7394 iverdef->vd_bfd = abfd;
7395
7396 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7397 if (iverdef->vd_nodename == NULL)
7398 goto error_return_verdef;
7399 iverdef->vd_nextdef = NULL;
7400 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7401 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7402 if (iverdef->vd_auxptr == NULL)
7403 goto error_return_verdef;
7404
7405 iverdaux = iverdef->vd_auxptr;
7406 iverdaux->vda_nodename = iverdef->vd_nodename;
7407 iverdaux->vda_nextptr = NULL;
7408 }
7409
7410 return TRUE;
7411
7412 error_return:
7413 if (contents != NULL)
7414 free (contents);
7415 return FALSE;
7416 }
7417 \f
7418 asymbol *
7419 _bfd_elf_make_empty_symbol (bfd *abfd)
7420 {
7421 elf_symbol_type *newsym;
7422 bfd_size_type amt = sizeof (elf_symbol_type);
7423
7424 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7425 if (!newsym)
7426 return NULL;
7427 else
7428 {
7429 newsym->symbol.the_bfd = abfd;
7430 return &newsym->symbol;
7431 }
7432 }
7433
7434 void
7435 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7436 asymbol *symbol,
7437 symbol_info *ret)
7438 {
7439 bfd_symbol_info (symbol, ret);
7440 }
7441
7442 /* Return whether a symbol name implies a local symbol. Most targets
7443 use this function for the is_local_label_name entry point, but some
7444 override it. */
7445
7446 bfd_boolean
7447 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7448 const char *name)
7449 {
7450 /* Normal local symbols start with ``.L''. */
7451 if (name[0] == '.' && name[1] == 'L')
7452 return TRUE;
7453
7454 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7455 DWARF debugging symbols starting with ``..''. */
7456 if (name[0] == '.' && name[1] == '.')
7457 return TRUE;
7458
7459 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7460 emitting DWARF debugging output. I suspect this is actually a
7461 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7462 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7463 underscore to be emitted on some ELF targets). For ease of use,
7464 we treat such symbols as local. */
7465 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7466 return TRUE;
7467
7468 return FALSE;
7469 }
7470
7471 alent *
7472 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7473 asymbol *symbol ATTRIBUTE_UNUSED)
7474 {
7475 abort ();
7476 return NULL;
7477 }
7478
7479 bfd_boolean
7480 _bfd_elf_set_arch_mach (bfd *abfd,
7481 enum bfd_architecture arch,
7482 unsigned long machine)
7483 {
7484 /* If this isn't the right architecture for this backend, and this
7485 isn't the generic backend, fail. */
7486 if (arch != get_elf_backend_data (abfd)->arch
7487 && arch != bfd_arch_unknown
7488 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7489 return FALSE;
7490
7491 return bfd_default_set_arch_mach (abfd, arch, machine);
7492 }
7493
7494 /* Find the function to a particular section and offset,
7495 for error reporting. */
7496
7497 static bfd_boolean
7498 elf_find_function (bfd *abfd,
7499 asection *section,
7500 asymbol **symbols,
7501 bfd_vma offset,
7502 const char **filename_ptr,
7503 const char **functionname_ptr)
7504 {
7505 static asection *last_section;
7506 static asymbol *func;
7507 static const char *filename;
7508 static bfd_size_type func_size;
7509
7510 if (symbols == NULL)
7511 return FALSE;
7512
7513 if (last_section != section
7514 || func == NULL
7515 || offset < func->value
7516 || offset >= func->value + func_size)
7517 {
7518 asymbol *file;
7519 bfd_vma low_func;
7520 asymbol **p;
7521 /* ??? Given multiple file symbols, it is impossible to reliably
7522 choose the right file name for global symbols. File symbols are
7523 local symbols, and thus all file symbols must sort before any
7524 global symbols. The ELF spec may be interpreted to say that a
7525 file symbol must sort before other local symbols, but currently
7526 ld -r doesn't do this. So, for ld -r output, it is possible to
7527 make a better choice of file name for local symbols by ignoring
7528 file symbols appearing after a given local symbol. */
7529 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7530 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7531
7532 filename = NULL;
7533 func = NULL;
7534 file = NULL;
7535 low_func = 0;
7536 state = nothing_seen;
7537 func_size = 0;
7538 last_section = section;
7539
7540 for (p = symbols; *p != NULL; p++)
7541 {
7542 asymbol *sym = *p;
7543 bfd_vma code_off;
7544 bfd_size_type size;
7545
7546 if ((sym->flags & BSF_FILE) != 0)
7547 {
7548 file = sym;
7549 if (state == symbol_seen)
7550 state = file_after_symbol_seen;
7551 continue;
7552 }
7553
7554 size = bed->maybe_function_sym (sym, section, &code_off);
7555 if (size != 0
7556 && code_off <= offset
7557 && (code_off > low_func
7558 || (code_off == low_func
7559 && size > func_size)))
7560 {
7561 func = sym;
7562 func_size = size;
7563 low_func = code_off;
7564 filename = NULL;
7565 if (file != NULL
7566 && ((sym->flags & BSF_LOCAL) != 0
7567 || state != file_after_symbol_seen))
7568 filename = bfd_asymbol_name (file);
7569 }
7570 if (state == nothing_seen)
7571 state = symbol_seen;
7572 }
7573 }
7574
7575 if (func == NULL)
7576 return FALSE;
7577
7578 if (filename_ptr)
7579 *filename_ptr = filename;
7580 if (functionname_ptr)
7581 *functionname_ptr = bfd_asymbol_name (func);
7582
7583 return TRUE;
7584 }
7585
7586 /* Find the nearest line to a particular section and offset,
7587 for error reporting. */
7588
7589 bfd_boolean
7590 _bfd_elf_find_nearest_line (bfd *abfd,
7591 asection *section,
7592 asymbol **symbols,
7593 bfd_vma offset,
7594 const char **filename_ptr,
7595 const char **functionname_ptr,
7596 unsigned int *line_ptr)
7597 {
7598 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7599 offset, filename_ptr,
7600 functionname_ptr,
7601 line_ptr,
7602 NULL);
7603 }
7604
7605 bfd_boolean
7606 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7607 asection *section,
7608 asymbol **symbols,
7609 bfd_vma offset,
7610 const char **filename_ptr,
7611 const char **functionname_ptr,
7612 unsigned int *line_ptr,
7613 unsigned int *discriminator_ptr)
7614 {
7615 bfd_boolean found;
7616
7617 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7618 filename_ptr, functionname_ptr,
7619 line_ptr))
7620 {
7621 if (!*functionname_ptr)
7622 elf_find_function (abfd, section, symbols, offset,
7623 *filename_ptr ? NULL : filename_ptr,
7624 functionname_ptr);
7625
7626 return TRUE;
7627 }
7628
7629 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7630 section, symbols, offset,
7631 filename_ptr, functionname_ptr,
7632 line_ptr, discriminator_ptr, 0,
7633 &elf_tdata (abfd)->dwarf2_find_line_info))
7634 {
7635 if (!*functionname_ptr)
7636 elf_find_function (abfd, section, symbols, offset,
7637 *filename_ptr ? NULL : filename_ptr,
7638 functionname_ptr);
7639
7640 return TRUE;
7641 }
7642
7643 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7644 &found, filename_ptr,
7645 functionname_ptr, line_ptr,
7646 &elf_tdata (abfd)->line_info))
7647 return FALSE;
7648 if (found && (*functionname_ptr || *line_ptr))
7649 return TRUE;
7650
7651 if (symbols == NULL)
7652 return FALSE;
7653
7654 if (! elf_find_function (abfd, section, symbols, offset,
7655 filename_ptr, functionname_ptr))
7656 return FALSE;
7657
7658 *line_ptr = 0;
7659 return TRUE;
7660 }
7661
7662 /* Find the line for a symbol. */
7663
7664 bfd_boolean
7665 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7666 const char **filename_ptr, unsigned int *line_ptr)
7667 {
7668 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7669 filename_ptr, line_ptr,
7670 NULL);
7671 }
7672
7673 bfd_boolean
7674 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7675 const char **filename_ptr,
7676 unsigned int *line_ptr,
7677 unsigned int *discriminator_ptr)
7678 {
7679 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7680 filename_ptr, line_ptr, discriminator_ptr, 0,
7681 &elf_tdata (abfd)->dwarf2_find_line_info);
7682 }
7683
7684 /* After a call to bfd_find_nearest_line, successive calls to
7685 bfd_find_inliner_info can be used to get source information about
7686 each level of function inlining that terminated at the address
7687 passed to bfd_find_nearest_line. Currently this is only supported
7688 for DWARF2 with appropriate DWARF3 extensions. */
7689
7690 bfd_boolean
7691 _bfd_elf_find_inliner_info (bfd *abfd,
7692 const char **filename_ptr,
7693 const char **functionname_ptr,
7694 unsigned int *line_ptr)
7695 {
7696 bfd_boolean found;
7697 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7698 functionname_ptr, line_ptr,
7699 & elf_tdata (abfd)->dwarf2_find_line_info);
7700 return found;
7701 }
7702
7703 int
7704 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7705 {
7706 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7707 int ret = bed->s->sizeof_ehdr;
7708
7709 if (!info->relocatable)
7710 {
7711 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7712
7713 if (phdr_size == (bfd_size_type) -1)
7714 {
7715 struct elf_segment_map *m;
7716
7717 phdr_size = 0;
7718 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7719 phdr_size += bed->s->sizeof_phdr;
7720
7721 if (phdr_size == 0)
7722 phdr_size = get_program_header_size (abfd, info);
7723 }
7724
7725 elf_tdata (abfd)->program_header_size = phdr_size;
7726 ret += phdr_size;
7727 }
7728
7729 return ret;
7730 }
7731
7732 bfd_boolean
7733 _bfd_elf_set_section_contents (bfd *abfd,
7734 sec_ptr section,
7735 const void *location,
7736 file_ptr offset,
7737 bfd_size_type count)
7738 {
7739 Elf_Internal_Shdr *hdr;
7740 bfd_signed_vma pos;
7741
7742 if (! abfd->output_has_begun
7743 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7744 return FALSE;
7745
7746 hdr = &elf_section_data (section)->this_hdr;
7747 pos = hdr->sh_offset + offset;
7748 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7749 || bfd_bwrite (location, count, abfd) != count)
7750 return FALSE;
7751
7752 return TRUE;
7753 }
7754
7755 void
7756 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7757 arelent *cache_ptr ATTRIBUTE_UNUSED,
7758 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7759 {
7760 abort ();
7761 }
7762
7763 /* Try to convert a non-ELF reloc into an ELF one. */
7764
7765 bfd_boolean
7766 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7767 {
7768 /* Check whether we really have an ELF howto. */
7769
7770 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7771 {
7772 bfd_reloc_code_real_type code;
7773 reloc_howto_type *howto;
7774
7775 /* Alien reloc: Try to determine its type to replace it with an
7776 equivalent ELF reloc. */
7777
7778 if (areloc->howto->pc_relative)
7779 {
7780 switch (areloc->howto->bitsize)
7781 {
7782 case 8:
7783 code = BFD_RELOC_8_PCREL;
7784 break;
7785 case 12:
7786 code = BFD_RELOC_12_PCREL;
7787 break;
7788 case 16:
7789 code = BFD_RELOC_16_PCREL;
7790 break;
7791 case 24:
7792 code = BFD_RELOC_24_PCREL;
7793 break;
7794 case 32:
7795 code = BFD_RELOC_32_PCREL;
7796 break;
7797 case 64:
7798 code = BFD_RELOC_64_PCREL;
7799 break;
7800 default:
7801 goto fail;
7802 }
7803
7804 howto = bfd_reloc_type_lookup (abfd, code);
7805
7806 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7807 {
7808 if (howto->pcrel_offset)
7809 areloc->addend += areloc->address;
7810 else
7811 areloc->addend -= areloc->address; /* addend is unsigned!! */
7812 }
7813 }
7814 else
7815 {
7816 switch (areloc->howto->bitsize)
7817 {
7818 case 8:
7819 code = BFD_RELOC_8;
7820 break;
7821 case 14:
7822 code = BFD_RELOC_14;
7823 break;
7824 case 16:
7825 code = BFD_RELOC_16;
7826 break;
7827 case 26:
7828 code = BFD_RELOC_26;
7829 break;
7830 case 32:
7831 code = BFD_RELOC_32;
7832 break;
7833 case 64:
7834 code = BFD_RELOC_64;
7835 break;
7836 default:
7837 goto fail;
7838 }
7839
7840 howto = bfd_reloc_type_lookup (abfd, code);
7841 }
7842
7843 if (howto)
7844 areloc->howto = howto;
7845 else
7846 goto fail;
7847 }
7848
7849 return TRUE;
7850
7851 fail:
7852 (*_bfd_error_handler)
7853 (_("%B: unsupported relocation type %s"),
7854 abfd, areloc->howto->name);
7855 bfd_set_error (bfd_error_bad_value);
7856 return FALSE;
7857 }
7858
7859 bfd_boolean
7860 _bfd_elf_close_and_cleanup (bfd *abfd)
7861 {
7862 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7863 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7864 {
7865 if (elf_shstrtab (abfd) != NULL)
7866 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7867 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7868 }
7869
7870 return _bfd_generic_close_and_cleanup (abfd);
7871 }
7872
7873 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7874 in the relocation's offset. Thus we cannot allow any sort of sanity
7875 range-checking to interfere. There is nothing else to do in processing
7876 this reloc. */
7877
7878 bfd_reloc_status_type
7879 _bfd_elf_rel_vtable_reloc_fn
7880 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7881 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7882 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7883 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7884 {
7885 return bfd_reloc_ok;
7886 }
7887 \f
7888 /* Elf core file support. Much of this only works on native
7889 toolchains, since we rely on knowing the
7890 machine-dependent procfs structure in order to pick
7891 out details about the corefile. */
7892
7893 #ifdef HAVE_SYS_PROCFS_H
7894 /* Needed for new procfs interface on sparc-solaris. */
7895 # define _STRUCTURED_PROC 1
7896 # include <sys/procfs.h>
7897 #endif
7898
7899 /* Return a PID that identifies a "thread" for threaded cores, or the
7900 PID of the main process for non-threaded cores. */
7901
7902 static int
7903 elfcore_make_pid (bfd *abfd)
7904 {
7905 int pid;
7906
7907 pid = elf_tdata (abfd)->core_lwpid;
7908 if (pid == 0)
7909 pid = elf_tdata (abfd)->core_pid;
7910
7911 return pid;
7912 }
7913
7914 /* If there isn't a section called NAME, make one, using
7915 data from SECT. Note, this function will generate a
7916 reference to NAME, so you shouldn't deallocate or
7917 overwrite it. */
7918
7919 static bfd_boolean
7920 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7921 {
7922 asection *sect2;
7923
7924 if (bfd_get_section_by_name (abfd, name) != NULL)
7925 return TRUE;
7926
7927 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7928 if (sect2 == NULL)
7929 return FALSE;
7930
7931 sect2->size = sect->size;
7932 sect2->filepos = sect->filepos;
7933 sect2->alignment_power = sect->alignment_power;
7934 return TRUE;
7935 }
7936
7937 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7938 actually creates up to two pseudosections:
7939 - For the single-threaded case, a section named NAME, unless
7940 such a section already exists.
7941 - For the multi-threaded case, a section named "NAME/PID", where
7942 PID is elfcore_make_pid (abfd).
7943 Both pseudosections have identical contents. */
7944 bfd_boolean
7945 _bfd_elfcore_make_pseudosection (bfd *abfd,
7946 char *name,
7947 size_t size,
7948 ufile_ptr filepos)
7949 {
7950 char buf[100];
7951 char *threaded_name;
7952 size_t len;
7953 asection *sect;
7954
7955 /* Build the section name. */
7956
7957 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7958 len = strlen (buf) + 1;
7959 threaded_name = (char *) bfd_alloc (abfd, len);
7960 if (threaded_name == NULL)
7961 return FALSE;
7962 memcpy (threaded_name, buf, len);
7963
7964 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7965 SEC_HAS_CONTENTS);
7966 if (sect == NULL)
7967 return FALSE;
7968 sect->size = size;
7969 sect->filepos = filepos;
7970 sect->alignment_power = 2;
7971
7972 return elfcore_maybe_make_sect (abfd, name, sect);
7973 }
7974
7975 /* prstatus_t exists on:
7976 solaris 2.5+
7977 linux 2.[01] + glibc
7978 unixware 4.2
7979 */
7980
7981 #if defined (HAVE_PRSTATUS_T)
7982
7983 static bfd_boolean
7984 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7985 {
7986 size_t size;
7987 int offset;
7988
7989 if (note->descsz == sizeof (prstatus_t))
7990 {
7991 prstatus_t prstat;
7992
7993 size = sizeof (prstat.pr_reg);
7994 offset = offsetof (prstatus_t, pr_reg);
7995 memcpy (&prstat, note->descdata, sizeof (prstat));
7996
7997 /* Do not overwrite the core signal if it
7998 has already been set by another thread. */
7999 if (elf_tdata (abfd)->core_signal == 0)
8000 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
8001 if (elf_tdata (abfd)->core_pid == 0)
8002 elf_tdata (abfd)->core_pid = prstat.pr_pid;
8003
8004 /* pr_who exists on:
8005 solaris 2.5+
8006 unixware 4.2
8007 pr_who doesn't exist on:
8008 linux 2.[01]
8009 */
8010 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8011 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
8012 #else
8013 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
8014 #endif
8015 }
8016 #if defined (HAVE_PRSTATUS32_T)
8017 else if (note->descsz == sizeof (prstatus32_t))
8018 {
8019 /* 64-bit host, 32-bit corefile */
8020 prstatus32_t prstat;
8021
8022 size = sizeof (prstat.pr_reg);
8023 offset = offsetof (prstatus32_t, pr_reg);
8024 memcpy (&prstat, note->descdata, sizeof (prstat));
8025
8026 /* Do not overwrite the core signal if it
8027 has already been set by another thread. */
8028 if (elf_tdata (abfd)->core_signal == 0)
8029 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
8030 if (elf_tdata (abfd)->core_pid == 0)
8031 elf_tdata (abfd)->core_pid = prstat.pr_pid;
8032
8033 /* pr_who exists on:
8034 solaris 2.5+
8035 unixware 4.2
8036 pr_who doesn't exist on:
8037 linux 2.[01]
8038 */
8039 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8040 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
8041 #else
8042 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
8043 #endif
8044 }
8045 #endif /* HAVE_PRSTATUS32_T */
8046 else
8047 {
8048 /* Fail - we don't know how to handle any other
8049 note size (ie. data object type). */
8050 return TRUE;
8051 }
8052
8053 /* Make a ".reg/999" section and a ".reg" section. */
8054 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8055 size, note->descpos + offset);
8056 }
8057 #endif /* defined (HAVE_PRSTATUS_T) */
8058
8059 /* Create a pseudosection containing the exact contents of NOTE. */
8060 static bfd_boolean
8061 elfcore_make_note_pseudosection (bfd *abfd,
8062 char *name,
8063 Elf_Internal_Note *note)
8064 {
8065 return _bfd_elfcore_make_pseudosection (abfd, name,
8066 note->descsz, note->descpos);
8067 }
8068
8069 /* There isn't a consistent prfpregset_t across platforms,
8070 but it doesn't matter, because we don't have to pick this
8071 data structure apart. */
8072
8073 static bfd_boolean
8074 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8075 {
8076 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8077 }
8078
8079 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8080 type of NT_PRXFPREG. Just include the whole note's contents
8081 literally. */
8082
8083 static bfd_boolean
8084 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8085 {
8086 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8087 }
8088
8089 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8090 with a note type of NT_X86_XSTATE. Just include the whole note's
8091 contents literally. */
8092
8093 static bfd_boolean
8094 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8095 {
8096 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8097 }
8098
8099 static bfd_boolean
8100 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8101 {
8102 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8103 }
8104
8105 static bfd_boolean
8106 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8107 {
8108 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8109 }
8110
8111 static bfd_boolean
8112 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8113 {
8114 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8115 }
8116
8117 static bfd_boolean
8118 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8119 {
8120 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8121 }
8122
8123 static bfd_boolean
8124 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8125 {
8126 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8127 }
8128
8129 static bfd_boolean
8130 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8131 {
8132 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8133 }
8134
8135 static bfd_boolean
8136 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8137 {
8138 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8139 }
8140
8141 static bfd_boolean
8142 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8143 {
8144 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8145 }
8146
8147 static bfd_boolean
8148 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8149 {
8150 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8151 }
8152
8153 static bfd_boolean
8154 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8155 {
8156 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8157 }
8158
8159 static bfd_boolean
8160 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8161 {
8162 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8163 }
8164
8165 #if defined (HAVE_PRPSINFO_T)
8166 typedef prpsinfo_t elfcore_psinfo_t;
8167 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8168 typedef prpsinfo32_t elfcore_psinfo32_t;
8169 #endif
8170 #endif
8171
8172 #if defined (HAVE_PSINFO_T)
8173 typedef psinfo_t elfcore_psinfo_t;
8174 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8175 typedef psinfo32_t elfcore_psinfo32_t;
8176 #endif
8177 #endif
8178
8179 /* return a malloc'ed copy of a string at START which is at
8180 most MAX bytes long, possibly without a terminating '\0'.
8181 the copy will always have a terminating '\0'. */
8182
8183 char *
8184 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8185 {
8186 char *dups;
8187 char *end = (char *) memchr (start, '\0', max);
8188 size_t len;
8189
8190 if (end == NULL)
8191 len = max;
8192 else
8193 len = end - start;
8194
8195 dups = (char *) bfd_alloc (abfd, len + 1);
8196 if (dups == NULL)
8197 return NULL;
8198
8199 memcpy (dups, start, len);
8200 dups[len] = '\0';
8201
8202 return dups;
8203 }
8204
8205 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8206 static bfd_boolean
8207 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8208 {
8209 if (note->descsz == sizeof (elfcore_psinfo_t))
8210 {
8211 elfcore_psinfo_t psinfo;
8212
8213 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8214
8215 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8216 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8217 #endif
8218 elf_tdata (abfd)->core_program
8219 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8220 sizeof (psinfo.pr_fname));
8221
8222 elf_tdata (abfd)->core_command
8223 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8224 sizeof (psinfo.pr_psargs));
8225 }
8226 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8227 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8228 {
8229 /* 64-bit host, 32-bit corefile */
8230 elfcore_psinfo32_t psinfo;
8231
8232 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8233
8234 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8235 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8236 #endif
8237 elf_tdata (abfd)->core_program
8238 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8239 sizeof (psinfo.pr_fname));
8240
8241 elf_tdata (abfd)->core_command
8242 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8243 sizeof (psinfo.pr_psargs));
8244 }
8245 #endif
8246
8247 else
8248 {
8249 /* Fail - we don't know how to handle any other
8250 note size (ie. data object type). */
8251 return TRUE;
8252 }
8253
8254 /* Note that for some reason, a spurious space is tacked
8255 onto the end of the args in some (at least one anyway)
8256 implementations, so strip it off if it exists. */
8257
8258 {
8259 char *command = elf_tdata (abfd)->core_command;
8260 int n = strlen (command);
8261
8262 if (0 < n && command[n - 1] == ' ')
8263 command[n - 1] = '\0';
8264 }
8265
8266 return TRUE;
8267 }
8268 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8269
8270 #if defined (HAVE_PSTATUS_T)
8271 static bfd_boolean
8272 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8273 {
8274 if (note->descsz == sizeof (pstatus_t)
8275 #if defined (HAVE_PXSTATUS_T)
8276 || note->descsz == sizeof (pxstatus_t)
8277 #endif
8278 )
8279 {
8280 pstatus_t pstat;
8281
8282 memcpy (&pstat, note->descdata, sizeof (pstat));
8283
8284 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8285 }
8286 #if defined (HAVE_PSTATUS32_T)
8287 else if (note->descsz == sizeof (pstatus32_t))
8288 {
8289 /* 64-bit host, 32-bit corefile */
8290 pstatus32_t pstat;
8291
8292 memcpy (&pstat, note->descdata, sizeof (pstat));
8293
8294 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8295 }
8296 #endif
8297 /* Could grab some more details from the "representative"
8298 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8299 NT_LWPSTATUS note, presumably. */
8300
8301 return TRUE;
8302 }
8303 #endif /* defined (HAVE_PSTATUS_T) */
8304
8305 #if defined (HAVE_LWPSTATUS_T)
8306 static bfd_boolean
8307 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8308 {
8309 lwpstatus_t lwpstat;
8310 char buf[100];
8311 char *name;
8312 size_t len;
8313 asection *sect;
8314
8315 if (note->descsz != sizeof (lwpstat)
8316 #if defined (HAVE_LWPXSTATUS_T)
8317 && note->descsz != sizeof (lwpxstatus_t)
8318 #endif
8319 )
8320 return TRUE;
8321
8322 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8323
8324 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8325 /* Do not overwrite the core signal if it has already been set by
8326 another thread. */
8327 if (elf_tdata (abfd)->core_signal == 0)
8328 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8329
8330 /* Make a ".reg/999" section. */
8331
8332 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8333 len = strlen (buf) + 1;
8334 name = bfd_alloc (abfd, len);
8335 if (name == NULL)
8336 return FALSE;
8337 memcpy (name, buf, len);
8338
8339 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8340 if (sect == NULL)
8341 return FALSE;
8342
8343 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8344 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8345 sect->filepos = note->descpos
8346 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8347 #endif
8348
8349 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8350 sect->size = sizeof (lwpstat.pr_reg);
8351 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8352 #endif
8353
8354 sect->alignment_power = 2;
8355
8356 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8357 return FALSE;
8358
8359 /* Make a ".reg2/999" section */
8360
8361 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8362 len = strlen (buf) + 1;
8363 name = bfd_alloc (abfd, len);
8364 if (name == NULL)
8365 return FALSE;
8366 memcpy (name, buf, len);
8367
8368 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8369 if (sect == NULL)
8370 return FALSE;
8371
8372 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8373 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8374 sect->filepos = note->descpos
8375 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8376 #endif
8377
8378 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8379 sect->size = sizeof (lwpstat.pr_fpreg);
8380 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8381 #endif
8382
8383 sect->alignment_power = 2;
8384
8385 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8386 }
8387 #endif /* defined (HAVE_LWPSTATUS_T) */
8388
8389 static bfd_boolean
8390 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8391 {
8392 char buf[30];
8393 char *name;
8394 size_t len;
8395 asection *sect;
8396 int type;
8397 int is_active_thread;
8398 bfd_vma base_addr;
8399
8400 if (note->descsz < 728)
8401 return TRUE;
8402
8403 if (! CONST_STRNEQ (note->namedata, "win32"))
8404 return TRUE;
8405
8406 type = bfd_get_32 (abfd, note->descdata);
8407
8408 switch (type)
8409 {
8410 case 1 /* NOTE_INFO_PROCESS */:
8411 /* FIXME: need to add ->core_command. */
8412 /* process_info.pid */
8413 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8414 /* process_info.signal */
8415 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8416 break;
8417
8418 case 2 /* NOTE_INFO_THREAD */:
8419 /* Make a ".reg/999" section. */
8420 /* thread_info.tid */
8421 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8422
8423 len = strlen (buf) + 1;
8424 name = (char *) bfd_alloc (abfd, len);
8425 if (name == NULL)
8426 return FALSE;
8427
8428 memcpy (name, buf, len);
8429
8430 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8431 if (sect == NULL)
8432 return FALSE;
8433
8434 /* sizeof (thread_info.thread_context) */
8435 sect->size = 716;
8436 /* offsetof (thread_info.thread_context) */
8437 sect->filepos = note->descpos + 12;
8438 sect->alignment_power = 2;
8439
8440 /* thread_info.is_active_thread */
8441 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8442
8443 if (is_active_thread)
8444 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8445 return FALSE;
8446 break;
8447
8448 case 3 /* NOTE_INFO_MODULE */:
8449 /* Make a ".module/xxxxxxxx" section. */
8450 /* module_info.base_address */
8451 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8452 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8453
8454 len = strlen (buf) + 1;
8455 name = (char *) bfd_alloc (abfd, len);
8456 if (name == NULL)
8457 return FALSE;
8458
8459 memcpy (name, buf, len);
8460
8461 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8462
8463 if (sect == NULL)
8464 return FALSE;
8465
8466 sect->size = note->descsz;
8467 sect->filepos = note->descpos;
8468 sect->alignment_power = 2;
8469 break;
8470
8471 default:
8472 return TRUE;
8473 }
8474
8475 return TRUE;
8476 }
8477
8478 static bfd_boolean
8479 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8480 {
8481 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8482
8483 switch (note->type)
8484 {
8485 default:
8486 return TRUE;
8487
8488 case NT_PRSTATUS:
8489 if (bed->elf_backend_grok_prstatus)
8490 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8491 return TRUE;
8492 #if defined (HAVE_PRSTATUS_T)
8493 return elfcore_grok_prstatus (abfd, note);
8494 #else
8495 return TRUE;
8496 #endif
8497
8498 #if defined (HAVE_PSTATUS_T)
8499 case NT_PSTATUS:
8500 return elfcore_grok_pstatus (abfd, note);
8501 #endif
8502
8503 #if defined (HAVE_LWPSTATUS_T)
8504 case NT_LWPSTATUS:
8505 return elfcore_grok_lwpstatus (abfd, note);
8506 #endif
8507
8508 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8509 return elfcore_grok_prfpreg (abfd, note);
8510
8511 case NT_WIN32PSTATUS:
8512 return elfcore_grok_win32pstatus (abfd, note);
8513
8514 case NT_PRXFPREG: /* Linux SSE extension */
8515 if (note->namesz == 6
8516 && strcmp (note->namedata, "LINUX") == 0)
8517 return elfcore_grok_prxfpreg (abfd, note);
8518 else
8519 return TRUE;
8520
8521 case NT_X86_XSTATE: /* Linux XSAVE extension */
8522 if (note->namesz == 6
8523 && strcmp (note->namedata, "LINUX") == 0)
8524 return elfcore_grok_xstatereg (abfd, note);
8525 else
8526 return TRUE;
8527
8528 case NT_PPC_VMX:
8529 if (note->namesz == 6
8530 && strcmp (note->namedata, "LINUX") == 0)
8531 return elfcore_grok_ppc_vmx (abfd, note);
8532 else
8533 return TRUE;
8534
8535 case NT_PPC_VSX:
8536 if (note->namesz == 6
8537 && strcmp (note->namedata, "LINUX") == 0)
8538 return elfcore_grok_ppc_vsx (abfd, note);
8539 else
8540 return TRUE;
8541
8542 case NT_S390_HIGH_GPRS:
8543 if (note->namesz == 6
8544 && strcmp (note->namedata, "LINUX") == 0)
8545 return elfcore_grok_s390_high_gprs (abfd, note);
8546 else
8547 return TRUE;
8548
8549 case NT_S390_TIMER:
8550 if (note->namesz == 6
8551 && strcmp (note->namedata, "LINUX") == 0)
8552 return elfcore_grok_s390_timer (abfd, note);
8553 else
8554 return TRUE;
8555
8556 case NT_S390_TODCMP:
8557 if (note->namesz == 6
8558 && strcmp (note->namedata, "LINUX") == 0)
8559 return elfcore_grok_s390_todcmp (abfd, note);
8560 else
8561 return TRUE;
8562
8563 case NT_S390_TODPREG:
8564 if (note->namesz == 6
8565 && strcmp (note->namedata, "LINUX") == 0)
8566 return elfcore_grok_s390_todpreg (abfd, note);
8567 else
8568 return TRUE;
8569
8570 case NT_S390_CTRS:
8571 if (note->namesz == 6
8572 && strcmp (note->namedata, "LINUX") == 0)
8573 return elfcore_grok_s390_ctrs (abfd, note);
8574 else
8575 return TRUE;
8576
8577 case NT_S390_PREFIX:
8578 if (note->namesz == 6
8579 && strcmp (note->namedata, "LINUX") == 0)
8580 return elfcore_grok_s390_prefix (abfd, note);
8581 else
8582 return TRUE;
8583
8584 case NT_S390_LAST_BREAK:
8585 if (note->namesz == 6
8586 && strcmp (note->namedata, "LINUX") == 0)
8587 return elfcore_grok_s390_last_break (abfd, note);
8588 else
8589 return TRUE;
8590
8591 case NT_S390_SYSTEM_CALL:
8592 if (note->namesz == 6
8593 && strcmp (note->namedata, "LINUX") == 0)
8594 return elfcore_grok_s390_system_call (abfd, note);
8595 else
8596 return TRUE;
8597
8598 case NT_ARM_VFP:
8599 if (note->namesz == 6
8600 && strcmp (note->namedata, "LINUX") == 0)
8601 return elfcore_grok_arm_vfp (abfd, note);
8602 else
8603 return TRUE;
8604
8605 case NT_PRPSINFO:
8606 case NT_PSINFO:
8607 if (bed->elf_backend_grok_psinfo)
8608 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8609 return TRUE;
8610 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8611 return elfcore_grok_psinfo (abfd, note);
8612 #else
8613 return TRUE;
8614 #endif
8615
8616 case NT_AUXV:
8617 {
8618 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8619 SEC_HAS_CONTENTS);
8620
8621 if (sect == NULL)
8622 return FALSE;
8623 sect->size = note->descsz;
8624 sect->filepos = note->descpos;
8625 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8626
8627 return TRUE;
8628 }
8629
8630 case NT_FILE:
8631 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
8632 note);
8633
8634 case NT_SIGINFO:
8635 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8636 note);
8637 }
8638 }
8639
8640 static bfd_boolean
8641 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8642 {
8643 elf_tdata (abfd)->build_id_size = note->descsz;
8644 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8645 if (elf_tdata (abfd)->build_id == NULL)
8646 return FALSE;
8647
8648 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8649
8650 return TRUE;
8651 }
8652
8653 static bfd_boolean
8654 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8655 {
8656 switch (note->type)
8657 {
8658 default:
8659 return TRUE;
8660
8661 case NT_GNU_BUILD_ID:
8662 return elfobj_grok_gnu_build_id (abfd, note);
8663 }
8664 }
8665
8666 static bfd_boolean
8667 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8668 {
8669 struct sdt_note *cur =
8670 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8671 + note->descsz);
8672
8673 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8674 cur->size = (bfd_size_type) note->descsz;
8675 memcpy (cur->data, note->descdata, note->descsz);
8676
8677 elf_tdata (abfd)->sdt_note_head = cur;
8678
8679 return TRUE;
8680 }
8681
8682 static bfd_boolean
8683 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8684 {
8685 switch (note->type)
8686 {
8687 case NT_STAPSDT:
8688 return elfobj_grok_stapsdt_note_1 (abfd, note);
8689
8690 default:
8691 return TRUE;
8692 }
8693 }
8694
8695 static bfd_boolean
8696 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8697 {
8698 char *cp;
8699
8700 cp = strchr (note->namedata, '@');
8701 if (cp != NULL)
8702 {
8703 *lwpidp = atoi(cp + 1);
8704 return TRUE;
8705 }
8706 return FALSE;
8707 }
8708
8709 static bfd_boolean
8710 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8711 {
8712 /* Signal number at offset 0x08. */
8713 elf_tdata (abfd)->core_signal
8714 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8715
8716 /* Process ID at offset 0x50. */
8717 elf_tdata (abfd)->core_pid
8718 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8719
8720 /* Command name at 0x7c (max 32 bytes, including nul). */
8721 elf_tdata (abfd)->core_command
8722 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8723
8724 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8725 note);
8726 }
8727
8728 static bfd_boolean
8729 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8730 {
8731 int lwp;
8732
8733 if (elfcore_netbsd_get_lwpid (note, &lwp))
8734 elf_tdata (abfd)->core_lwpid = lwp;
8735
8736 if (note->type == NT_NETBSDCORE_PROCINFO)
8737 {
8738 /* NetBSD-specific core "procinfo". Note that we expect to
8739 find this note before any of the others, which is fine,
8740 since the kernel writes this note out first when it
8741 creates a core file. */
8742
8743 return elfcore_grok_netbsd_procinfo (abfd, note);
8744 }
8745
8746 /* As of Jan 2002 there are no other machine-independent notes
8747 defined for NetBSD core files. If the note type is less
8748 than the start of the machine-dependent note types, we don't
8749 understand it. */
8750
8751 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8752 return TRUE;
8753
8754
8755 switch (bfd_get_arch (abfd))
8756 {
8757 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8758 PT_GETFPREGS == mach+2. */
8759
8760 case bfd_arch_alpha:
8761 case bfd_arch_sparc:
8762 switch (note->type)
8763 {
8764 case NT_NETBSDCORE_FIRSTMACH+0:
8765 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8766
8767 case NT_NETBSDCORE_FIRSTMACH+2:
8768 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8769
8770 default:
8771 return TRUE;
8772 }
8773
8774 /* On all other arch's, PT_GETREGS == mach+1 and
8775 PT_GETFPREGS == mach+3. */
8776
8777 default:
8778 switch (note->type)
8779 {
8780 case NT_NETBSDCORE_FIRSTMACH+1:
8781 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8782
8783 case NT_NETBSDCORE_FIRSTMACH+3:
8784 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8785
8786 default:
8787 return TRUE;
8788 }
8789 }
8790 /* NOTREACHED */
8791 }
8792
8793 static bfd_boolean
8794 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8795 {
8796 /* Signal number at offset 0x08. */
8797 elf_tdata (abfd)->core_signal
8798 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8799
8800 /* Process ID at offset 0x20. */
8801 elf_tdata (abfd)->core_pid
8802 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8803
8804 /* Command name at 0x48 (max 32 bytes, including nul). */
8805 elf_tdata (abfd)->core_command
8806 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8807
8808 return TRUE;
8809 }
8810
8811 static bfd_boolean
8812 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8813 {
8814 if (note->type == NT_OPENBSD_PROCINFO)
8815 return elfcore_grok_openbsd_procinfo (abfd, note);
8816
8817 if (note->type == NT_OPENBSD_REGS)
8818 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8819
8820 if (note->type == NT_OPENBSD_FPREGS)
8821 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8822
8823 if (note->type == NT_OPENBSD_XFPREGS)
8824 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8825
8826 if (note->type == NT_OPENBSD_AUXV)
8827 {
8828 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8829 SEC_HAS_CONTENTS);
8830
8831 if (sect == NULL)
8832 return FALSE;
8833 sect->size = note->descsz;
8834 sect->filepos = note->descpos;
8835 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8836
8837 return TRUE;
8838 }
8839
8840 if (note->type == NT_OPENBSD_WCOOKIE)
8841 {
8842 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8843 SEC_HAS_CONTENTS);
8844
8845 if (sect == NULL)
8846 return FALSE;
8847 sect->size = note->descsz;
8848 sect->filepos = note->descpos;
8849 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8850
8851 return TRUE;
8852 }
8853
8854 return TRUE;
8855 }
8856
8857 static bfd_boolean
8858 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8859 {
8860 void *ddata = note->descdata;
8861 char buf[100];
8862 char *name;
8863 asection *sect;
8864 short sig;
8865 unsigned flags;
8866
8867 /* nto_procfs_status 'pid' field is at offset 0. */
8868 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8869
8870 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8871 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8872
8873 /* nto_procfs_status 'flags' field is at offset 8. */
8874 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8875
8876 /* nto_procfs_status 'what' field is at offset 14. */
8877 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8878 {
8879 elf_tdata (abfd)->core_signal = sig;
8880 elf_tdata (abfd)->core_lwpid = *tid;
8881 }
8882
8883 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8884 do not come from signals so we make sure we set the current
8885 thread just in case. */
8886 if (flags & 0x00000080)
8887 elf_tdata (abfd)->core_lwpid = *tid;
8888
8889 /* Make a ".qnx_core_status/%d" section. */
8890 sprintf (buf, ".qnx_core_status/%ld", *tid);
8891
8892 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8893 if (name == NULL)
8894 return FALSE;
8895 strcpy (name, buf);
8896
8897 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8898 if (sect == NULL)
8899 return FALSE;
8900
8901 sect->size = note->descsz;
8902 sect->filepos = note->descpos;
8903 sect->alignment_power = 2;
8904
8905 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8906 }
8907
8908 static bfd_boolean
8909 elfcore_grok_nto_regs (bfd *abfd,
8910 Elf_Internal_Note *note,
8911 long tid,
8912 char *base)
8913 {
8914 char buf[100];
8915 char *name;
8916 asection *sect;
8917
8918 /* Make a "(base)/%d" section. */
8919 sprintf (buf, "%s/%ld", base, tid);
8920
8921 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8922 if (name == NULL)
8923 return FALSE;
8924 strcpy (name, buf);
8925
8926 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8927 if (sect == NULL)
8928 return FALSE;
8929
8930 sect->size = note->descsz;
8931 sect->filepos = note->descpos;
8932 sect->alignment_power = 2;
8933
8934 /* This is the current thread. */
8935 if (elf_tdata (abfd)->core_lwpid == tid)
8936 return elfcore_maybe_make_sect (abfd, base, sect);
8937
8938 return TRUE;
8939 }
8940
8941 #define BFD_QNT_CORE_INFO 7
8942 #define BFD_QNT_CORE_STATUS 8
8943 #define BFD_QNT_CORE_GREG 9
8944 #define BFD_QNT_CORE_FPREG 10
8945
8946 static bfd_boolean
8947 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8948 {
8949 /* Every GREG section has a STATUS section before it. Store the
8950 tid from the previous call to pass down to the next gregs
8951 function. */
8952 static long tid = 1;
8953
8954 switch (note->type)
8955 {
8956 case BFD_QNT_CORE_INFO:
8957 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8958 case BFD_QNT_CORE_STATUS:
8959 return elfcore_grok_nto_status (abfd, note, &tid);
8960 case BFD_QNT_CORE_GREG:
8961 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8962 case BFD_QNT_CORE_FPREG:
8963 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8964 default:
8965 return TRUE;
8966 }
8967 }
8968
8969 static bfd_boolean
8970 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8971 {
8972 char *name;
8973 asection *sect;
8974 size_t len;
8975
8976 /* Use note name as section name. */
8977 len = note->namesz;
8978 name = (char *) bfd_alloc (abfd, len);
8979 if (name == NULL)
8980 return FALSE;
8981 memcpy (name, note->namedata, len);
8982 name[len - 1] = '\0';
8983
8984 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8985 if (sect == NULL)
8986 return FALSE;
8987
8988 sect->size = note->descsz;
8989 sect->filepos = note->descpos;
8990 sect->alignment_power = 1;
8991
8992 return TRUE;
8993 }
8994
8995 /* Function: elfcore_write_note
8996
8997 Inputs:
8998 buffer to hold note, and current size of buffer
8999 name of note
9000 type of note
9001 data for note
9002 size of data for note
9003
9004 Writes note to end of buffer. ELF64 notes are written exactly as
9005 for ELF32, despite the current (as of 2006) ELF gabi specifying
9006 that they ought to have 8-byte namesz and descsz field, and have
9007 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9008
9009 Return:
9010 Pointer to realloc'd buffer, *BUFSIZ updated. */
9011
9012 char *
9013 elfcore_write_note (bfd *abfd,
9014 char *buf,
9015 int *bufsiz,
9016 const char *name,
9017 int type,
9018 const void *input,
9019 int size)
9020 {
9021 Elf_External_Note *xnp;
9022 size_t namesz;
9023 size_t newspace;
9024 char *dest;
9025
9026 namesz = 0;
9027 if (name != NULL)
9028 namesz = strlen (name) + 1;
9029
9030 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9031
9032 buf = (char *) realloc (buf, *bufsiz + newspace);
9033 if (buf == NULL)
9034 return buf;
9035 dest = buf + *bufsiz;
9036 *bufsiz += newspace;
9037 xnp = (Elf_External_Note *) dest;
9038 H_PUT_32 (abfd, namesz, xnp->namesz);
9039 H_PUT_32 (abfd, size, xnp->descsz);
9040 H_PUT_32 (abfd, type, xnp->type);
9041 dest = xnp->name;
9042 if (name != NULL)
9043 {
9044 memcpy (dest, name, namesz);
9045 dest += namesz;
9046 while (namesz & 3)
9047 {
9048 *dest++ = '\0';
9049 ++namesz;
9050 }
9051 }
9052 memcpy (dest, input, size);
9053 dest += size;
9054 while (size & 3)
9055 {
9056 *dest++ = '\0';
9057 ++size;
9058 }
9059 return buf;
9060 }
9061
9062 char *
9063 elfcore_write_prpsinfo (bfd *abfd,
9064 char *buf,
9065 int *bufsiz,
9066 const char *fname,
9067 const char *psargs)
9068 {
9069 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9070
9071 if (bed->elf_backend_write_core_note != NULL)
9072 {
9073 char *ret;
9074 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9075 NT_PRPSINFO, fname, psargs);
9076 if (ret != NULL)
9077 return ret;
9078 }
9079
9080 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9081 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9082 if (bed->s->elfclass == ELFCLASS32)
9083 {
9084 #if defined (HAVE_PSINFO32_T)
9085 psinfo32_t data;
9086 int note_type = NT_PSINFO;
9087 #else
9088 prpsinfo32_t data;
9089 int note_type = NT_PRPSINFO;
9090 #endif
9091
9092 memset (&data, 0, sizeof (data));
9093 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9094 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9095 return elfcore_write_note (abfd, buf, bufsiz,
9096 "CORE", note_type, &data, sizeof (data));
9097 }
9098 else
9099 #endif
9100 {
9101 #if defined (HAVE_PSINFO_T)
9102 psinfo_t data;
9103 int note_type = NT_PSINFO;
9104 #else
9105 prpsinfo_t data;
9106 int note_type = NT_PRPSINFO;
9107 #endif
9108
9109 memset (&data, 0, sizeof (data));
9110 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9111 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9112 return elfcore_write_note (abfd, buf, bufsiz,
9113 "CORE", note_type, &data, sizeof (data));
9114 }
9115 #endif /* PSINFO_T or PRPSINFO_T */
9116
9117 free (buf);
9118 return NULL;
9119 }
9120
9121 char *
9122 elfcore_write_prstatus (bfd *abfd,
9123 char *buf,
9124 int *bufsiz,
9125 long pid,
9126 int cursig,
9127 const void *gregs)
9128 {
9129 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9130
9131 if (bed->elf_backend_write_core_note != NULL)
9132 {
9133 char *ret;
9134 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9135 NT_PRSTATUS,
9136 pid, cursig, gregs);
9137 if (ret != NULL)
9138 return ret;
9139 }
9140
9141 #if defined (HAVE_PRSTATUS_T)
9142 #if defined (HAVE_PRSTATUS32_T)
9143 if (bed->s->elfclass == ELFCLASS32)
9144 {
9145 prstatus32_t prstat;
9146
9147 memset (&prstat, 0, sizeof (prstat));
9148 prstat.pr_pid = pid;
9149 prstat.pr_cursig = cursig;
9150 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9151 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9152 NT_PRSTATUS, &prstat, sizeof (prstat));
9153 }
9154 else
9155 #endif
9156 {
9157 prstatus_t prstat;
9158
9159 memset (&prstat, 0, sizeof (prstat));
9160 prstat.pr_pid = pid;
9161 prstat.pr_cursig = cursig;
9162 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9163 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9164 NT_PRSTATUS, &prstat, sizeof (prstat));
9165 }
9166 #endif /* HAVE_PRSTATUS_T */
9167
9168 free (buf);
9169 return NULL;
9170 }
9171
9172 #if defined (HAVE_LWPSTATUS_T)
9173 char *
9174 elfcore_write_lwpstatus (bfd *abfd,
9175 char *buf,
9176 int *bufsiz,
9177 long pid,
9178 int cursig,
9179 const void *gregs)
9180 {
9181 lwpstatus_t lwpstat;
9182 const char *note_name = "CORE";
9183
9184 memset (&lwpstat, 0, sizeof (lwpstat));
9185 lwpstat.pr_lwpid = pid >> 16;
9186 lwpstat.pr_cursig = cursig;
9187 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9188 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9189 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9190 #if !defined(gregs)
9191 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9192 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9193 #else
9194 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9195 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9196 #endif
9197 #endif
9198 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9199 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9200 }
9201 #endif /* HAVE_LWPSTATUS_T */
9202
9203 #if defined (HAVE_PSTATUS_T)
9204 char *
9205 elfcore_write_pstatus (bfd *abfd,
9206 char *buf,
9207 int *bufsiz,
9208 long pid,
9209 int cursig ATTRIBUTE_UNUSED,
9210 const void *gregs ATTRIBUTE_UNUSED)
9211 {
9212 const char *note_name = "CORE";
9213 #if defined (HAVE_PSTATUS32_T)
9214 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9215
9216 if (bed->s->elfclass == ELFCLASS32)
9217 {
9218 pstatus32_t pstat;
9219
9220 memset (&pstat, 0, sizeof (pstat));
9221 pstat.pr_pid = pid & 0xffff;
9222 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9223 NT_PSTATUS, &pstat, sizeof (pstat));
9224 return buf;
9225 }
9226 else
9227 #endif
9228 {
9229 pstatus_t pstat;
9230
9231 memset (&pstat, 0, sizeof (pstat));
9232 pstat.pr_pid = pid & 0xffff;
9233 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9234 NT_PSTATUS, &pstat, sizeof (pstat));
9235 return buf;
9236 }
9237 }
9238 #endif /* HAVE_PSTATUS_T */
9239
9240 char *
9241 elfcore_write_prfpreg (bfd *abfd,
9242 char *buf,
9243 int *bufsiz,
9244 const void *fpregs,
9245 int size)
9246 {
9247 const char *note_name = "CORE";
9248 return elfcore_write_note (abfd, buf, bufsiz,
9249 note_name, NT_FPREGSET, fpregs, size);
9250 }
9251
9252 char *
9253 elfcore_write_prxfpreg (bfd *abfd,
9254 char *buf,
9255 int *bufsiz,
9256 const void *xfpregs,
9257 int size)
9258 {
9259 char *note_name = "LINUX";
9260 return elfcore_write_note (abfd, buf, bufsiz,
9261 note_name, NT_PRXFPREG, xfpregs, size);
9262 }
9263
9264 char *
9265 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9266 const void *xfpregs, int size)
9267 {
9268 char *note_name = "LINUX";
9269 return elfcore_write_note (abfd, buf, bufsiz,
9270 note_name, NT_X86_XSTATE, xfpregs, size);
9271 }
9272
9273 char *
9274 elfcore_write_ppc_vmx (bfd *abfd,
9275 char *buf,
9276 int *bufsiz,
9277 const void *ppc_vmx,
9278 int size)
9279 {
9280 char *note_name = "LINUX";
9281 return elfcore_write_note (abfd, buf, bufsiz,
9282 note_name, NT_PPC_VMX, ppc_vmx, size);
9283 }
9284
9285 char *
9286 elfcore_write_ppc_vsx (bfd *abfd,
9287 char *buf,
9288 int *bufsiz,
9289 const void *ppc_vsx,
9290 int size)
9291 {
9292 char *note_name = "LINUX";
9293 return elfcore_write_note (abfd, buf, bufsiz,
9294 note_name, NT_PPC_VSX, ppc_vsx, size);
9295 }
9296
9297 static char *
9298 elfcore_write_s390_high_gprs (bfd *abfd,
9299 char *buf,
9300 int *bufsiz,
9301 const void *s390_high_gprs,
9302 int size)
9303 {
9304 char *note_name = "LINUX";
9305 return elfcore_write_note (abfd, buf, bufsiz,
9306 note_name, NT_S390_HIGH_GPRS,
9307 s390_high_gprs, size);
9308 }
9309
9310 char *
9311 elfcore_write_s390_timer (bfd *abfd,
9312 char *buf,
9313 int *bufsiz,
9314 const void *s390_timer,
9315 int size)
9316 {
9317 char *note_name = "LINUX";
9318 return elfcore_write_note (abfd, buf, bufsiz,
9319 note_name, NT_S390_TIMER, s390_timer, size);
9320 }
9321
9322 char *
9323 elfcore_write_s390_todcmp (bfd *abfd,
9324 char *buf,
9325 int *bufsiz,
9326 const void *s390_todcmp,
9327 int size)
9328 {
9329 char *note_name = "LINUX";
9330 return elfcore_write_note (abfd, buf, bufsiz,
9331 note_name, NT_S390_TODCMP, s390_todcmp, size);
9332 }
9333
9334 char *
9335 elfcore_write_s390_todpreg (bfd *abfd,
9336 char *buf,
9337 int *bufsiz,
9338 const void *s390_todpreg,
9339 int size)
9340 {
9341 char *note_name = "LINUX";
9342 return elfcore_write_note (abfd, buf, bufsiz,
9343 note_name, NT_S390_TODPREG, s390_todpreg, size);
9344 }
9345
9346 char *
9347 elfcore_write_s390_ctrs (bfd *abfd,
9348 char *buf,
9349 int *bufsiz,
9350 const void *s390_ctrs,
9351 int size)
9352 {
9353 char *note_name = "LINUX";
9354 return elfcore_write_note (abfd, buf, bufsiz,
9355 note_name, NT_S390_CTRS, s390_ctrs, size);
9356 }
9357
9358 char *
9359 elfcore_write_s390_prefix (bfd *abfd,
9360 char *buf,
9361 int *bufsiz,
9362 const void *s390_prefix,
9363 int size)
9364 {
9365 char *note_name = "LINUX";
9366 return elfcore_write_note (abfd, buf, bufsiz,
9367 note_name, NT_S390_PREFIX, s390_prefix, size);
9368 }
9369
9370 char *
9371 elfcore_write_s390_last_break (bfd *abfd,
9372 char *buf,
9373 int *bufsiz,
9374 const void *s390_last_break,
9375 int size)
9376 {
9377 char *note_name = "LINUX";
9378 return elfcore_write_note (abfd, buf, bufsiz,
9379 note_name, NT_S390_LAST_BREAK,
9380 s390_last_break, size);
9381 }
9382
9383 char *
9384 elfcore_write_s390_system_call (bfd *abfd,
9385 char *buf,
9386 int *bufsiz,
9387 const void *s390_system_call,
9388 int size)
9389 {
9390 char *note_name = "LINUX";
9391 return elfcore_write_note (abfd, buf, bufsiz,
9392 note_name, NT_S390_SYSTEM_CALL,
9393 s390_system_call, size);
9394 }
9395
9396 char *
9397 elfcore_write_arm_vfp (bfd *abfd,
9398 char *buf,
9399 int *bufsiz,
9400 const void *arm_vfp,
9401 int size)
9402 {
9403 char *note_name = "LINUX";
9404 return elfcore_write_note (abfd, buf, bufsiz,
9405 note_name, NT_ARM_VFP, arm_vfp, size);
9406 }
9407
9408 char *
9409 elfcore_write_register_note (bfd *abfd,
9410 char *buf,
9411 int *bufsiz,
9412 const char *section,
9413 const void *data,
9414 int size)
9415 {
9416 if (strcmp (section, ".reg2") == 0)
9417 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9418 if (strcmp (section, ".reg-xfp") == 0)
9419 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9420 if (strcmp (section, ".reg-xstate") == 0)
9421 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9422 if (strcmp (section, ".reg-ppc-vmx") == 0)
9423 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9424 if (strcmp (section, ".reg-ppc-vsx") == 0)
9425 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9426 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9427 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9428 if (strcmp (section, ".reg-s390-timer") == 0)
9429 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9430 if (strcmp (section, ".reg-s390-todcmp") == 0)
9431 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9432 if (strcmp (section, ".reg-s390-todpreg") == 0)
9433 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9434 if (strcmp (section, ".reg-s390-ctrs") == 0)
9435 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9436 if (strcmp (section, ".reg-s390-prefix") == 0)
9437 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9438 if (strcmp (section, ".reg-s390-last-break") == 0)
9439 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9440 if (strcmp (section, ".reg-s390-system-call") == 0)
9441 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9442 if (strcmp (section, ".reg-arm-vfp") == 0)
9443 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9444 return NULL;
9445 }
9446
9447 static bfd_boolean
9448 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9449 {
9450 char *p;
9451
9452 p = buf;
9453 while (p < buf + size)
9454 {
9455 /* FIXME: bad alignment assumption. */
9456 Elf_External_Note *xnp = (Elf_External_Note *) p;
9457 Elf_Internal_Note in;
9458
9459 if (offsetof (Elf_External_Note, name) > buf - p + size)
9460 return FALSE;
9461
9462 in.type = H_GET_32 (abfd, xnp->type);
9463
9464 in.namesz = H_GET_32 (abfd, xnp->namesz);
9465 in.namedata = xnp->name;
9466 if (in.namesz > buf - in.namedata + size)
9467 return FALSE;
9468
9469 in.descsz = H_GET_32 (abfd, xnp->descsz);
9470 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9471 in.descpos = offset + (in.descdata - buf);
9472 if (in.descsz != 0
9473 && (in.descdata >= buf + size
9474 || in.descsz > buf - in.descdata + size))
9475 return FALSE;
9476
9477 switch (bfd_get_format (abfd))
9478 {
9479 default:
9480 return TRUE;
9481
9482 case bfd_core:
9483 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9484 {
9485 if (! elfcore_grok_netbsd_note (abfd, &in))
9486 return FALSE;
9487 }
9488 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9489 {
9490 if (! elfcore_grok_openbsd_note (abfd, &in))
9491 return FALSE;
9492 }
9493 else if (CONST_STRNEQ (in.namedata, "QNX"))
9494 {
9495 if (! elfcore_grok_nto_note (abfd, &in))
9496 return FALSE;
9497 }
9498 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9499 {
9500 if (! elfcore_grok_spu_note (abfd, &in))
9501 return FALSE;
9502 }
9503 else
9504 {
9505 if (! elfcore_grok_note (abfd, &in))
9506 return FALSE;
9507 }
9508 break;
9509
9510 case bfd_object:
9511 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9512 {
9513 if (! elfobj_grok_gnu_note (abfd, &in))
9514 return FALSE;
9515 }
9516 else if (in.namesz == sizeof "stapsdt"
9517 && strcmp (in.namedata, "stapsdt") == 0)
9518 {
9519 if (! elfobj_grok_stapsdt_note (abfd, &in))
9520 return FALSE;
9521 }
9522 break;
9523 }
9524
9525 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9526 }
9527
9528 return TRUE;
9529 }
9530
9531 static bfd_boolean
9532 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9533 {
9534 char *buf;
9535
9536 if (size <= 0)
9537 return TRUE;
9538
9539 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9540 return FALSE;
9541
9542 buf = (char *) bfd_malloc (size);
9543 if (buf == NULL)
9544 return FALSE;
9545
9546 if (bfd_bread (buf, size, abfd) != size
9547 || !elf_parse_notes (abfd, buf, size, offset))
9548 {
9549 free (buf);
9550 return FALSE;
9551 }
9552
9553 free (buf);
9554 return TRUE;
9555 }
9556 \f
9557 /* Providing external access to the ELF program header table. */
9558
9559 /* Return an upper bound on the number of bytes required to store a
9560 copy of ABFD's program header table entries. Return -1 if an error
9561 occurs; bfd_get_error will return an appropriate code. */
9562
9563 long
9564 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9565 {
9566 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9567 {
9568 bfd_set_error (bfd_error_wrong_format);
9569 return -1;
9570 }
9571
9572 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9573 }
9574
9575 /* Copy ABFD's program header table entries to *PHDRS. The entries
9576 will be stored as an array of Elf_Internal_Phdr structures, as
9577 defined in include/elf/internal.h. To find out how large the
9578 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9579
9580 Return the number of program header table entries read, or -1 if an
9581 error occurs; bfd_get_error will return an appropriate code. */
9582
9583 int
9584 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9585 {
9586 int num_phdrs;
9587
9588 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9589 {
9590 bfd_set_error (bfd_error_wrong_format);
9591 return -1;
9592 }
9593
9594 num_phdrs = elf_elfheader (abfd)->e_phnum;
9595 memcpy (phdrs, elf_tdata (abfd)->phdr,
9596 num_phdrs * sizeof (Elf_Internal_Phdr));
9597
9598 return num_phdrs;
9599 }
9600
9601 enum elf_reloc_type_class
9602 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9603 {
9604 return reloc_class_normal;
9605 }
9606
9607 /* For RELA architectures, return the relocation value for a
9608 relocation against a local symbol. */
9609
9610 bfd_vma
9611 _bfd_elf_rela_local_sym (bfd *abfd,
9612 Elf_Internal_Sym *sym,
9613 asection **psec,
9614 Elf_Internal_Rela *rel)
9615 {
9616 asection *sec = *psec;
9617 bfd_vma relocation;
9618
9619 relocation = (sec->output_section->vma
9620 + sec->output_offset
9621 + sym->st_value);
9622 if ((sec->flags & SEC_MERGE)
9623 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9624 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9625 {
9626 rel->r_addend =
9627 _bfd_merged_section_offset (abfd, psec,
9628 elf_section_data (sec)->sec_info,
9629 sym->st_value + rel->r_addend);
9630 if (sec != *psec)
9631 {
9632 /* If we have changed the section, and our original section is
9633 marked with SEC_EXCLUDE, it means that the original
9634 SEC_MERGE section has been completely subsumed in some
9635 other SEC_MERGE section. In this case, we need to leave
9636 some info around for --emit-relocs. */
9637 if ((sec->flags & SEC_EXCLUDE) != 0)
9638 sec->kept_section = *psec;
9639 sec = *psec;
9640 }
9641 rel->r_addend -= relocation;
9642 rel->r_addend += sec->output_section->vma + sec->output_offset;
9643 }
9644 return relocation;
9645 }
9646
9647 bfd_vma
9648 _bfd_elf_rel_local_sym (bfd *abfd,
9649 Elf_Internal_Sym *sym,
9650 asection **psec,
9651 bfd_vma addend)
9652 {
9653 asection *sec = *psec;
9654
9655 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9656 return sym->st_value + addend;
9657
9658 return _bfd_merged_section_offset (abfd, psec,
9659 elf_section_data (sec)->sec_info,
9660 sym->st_value + addend);
9661 }
9662
9663 bfd_vma
9664 _bfd_elf_section_offset (bfd *abfd,
9665 struct bfd_link_info *info,
9666 asection *sec,
9667 bfd_vma offset)
9668 {
9669 switch (sec->sec_info_type)
9670 {
9671 case SEC_INFO_TYPE_STABS:
9672 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9673 offset);
9674 case SEC_INFO_TYPE_EH_FRAME:
9675 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9676 default:
9677 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9678 {
9679 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9680 bfd_size_type address_size = bed->s->arch_size / 8;
9681 offset = sec->size - offset - address_size;
9682 }
9683 return offset;
9684 }
9685 }
9686 \f
9687 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9688 reconstruct an ELF file by reading the segments out of remote memory
9689 based on the ELF file header at EHDR_VMA and the ELF program headers it
9690 points to. If not null, *LOADBASEP is filled in with the difference
9691 between the VMAs from which the segments were read, and the VMAs the
9692 file headers (and hence BFD's idea of each section's VMA) put them at.
9693
9694 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9695 remote memory at target address VMA into the local buffer at MYADDR; it
9696 should return zero on success or an `errno' code on failure. TEMPL must
9697 be a BFD for an ELF target with the word size and byte order found in
9698 the remote memory. */
9699
9700 bfd *
9701 bfd_elf_bfd_from_remote_memory
9702 (bfd *templ,
9703 bfd_vma ehdr_vma,
9704 bfd_vma *loadbasep,
9705 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9706 {
9707 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9708 (templ, ehdr_vma, loadbasep, target_read_memory);
9709 }
9710 \f
9711 long
9712 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9713 long symcount ATTRIBUTE_UNUSED,
9714 asymbol **syms ATTRIBUTE_UNUSED,
9715 long dynsymcount,
9716 asymbol **dynsyms,
9717 asymbol **ret)
9718 {
9719 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9720 asection *relplt;
9721 asymbol *s;
9722 const char *relplt_name;
9723 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9724 arelent *p;
9725 long count, i, n;
9726 size_t size;
9727 Elf_Internal_Shdr *hdr;
9728 char *names;
9729 asection *plt;
9730
9731 *ret = NULL;
9732
9733 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9734 return 0;
9735
9736 if (dynsymcount <= 0)
9737 return 0;
9738
9739 if (!bed->plt_sym_val)
9740 return 0;
9741
9742 relplt_name = bed->relplt_name;
9743 if (relplt_name == NULL)
9744 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9745 relplt = bfd_get_section_by_name (abfd, relplt_name);
9746 if (relplt == NULL)
9747 return 0;
9748
9749 hdr = &elf_section_data (relplt)->this_hdr;
9750 if (hdr->sh_link != elf_dynsymtab (abfd)
9751 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9752 return 0;
9753
9754 plt = bfd_get_section_by_name (abfd, ".plt");
9755 if (plt == NULL)
9756 return 0;
9757
9758 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9759 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9760 return -1;
9761
9762 count = relplt->size / hdr->sh_entsize;
9763 size = count * sizeof (asymbol);
9764 p = relplt->relocation;
9765 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9766 {
9767 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9768 if (p->addend != 0)
9769 {
9770 #ifdef BFD64
9771 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9772 #else
9773 size += sizeof ("+0x") - 1 + 8;
9774 #endif
9775 }
9776 }
9777
9778 s = *ret = (asymbol *) bfd_malloc (size);
9779 if (s == NULL)
9780 return -1;
9781
9782 names = (char *) (s + count);
9783 p = relplt->relocation;
9784 n = 0;
9785 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9786 {
9787 size_t len;
9788 bfd_vma addr;
9789
9790 addr = bed->plt_sym_val (i, plt, p);
9791 if (addr == (bfd_vma) -1)
9792 continue;
9793
9794 *s = **p->sym_ptr_ptr;
9795 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9796 we are defining a symbol, ensure one of them is set. */
9797 if ((s->flags & BSF_LOCAL) == 0)
9798 s->flags |= BSF_GLOBAL;
9799 s->flags |= BSF_SYNTHETIC;
9800 s->section = plt;
9801 s->value = addr - plt->vma;
9802 s->name = names;
9803 s->udata.p = NULL;
9804 len = strlen ((*p->sym_ptr_ptr)->name);
9805 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9806 names += len;
9807 if (p->addend != 0)
9808 {
9809 char buf[30], *a;
9810
9811 memcpy (names, "+0x", sizeof ("+0x") - 1);
9812 names += sizeof ("+0x") - 1;
9813 bfd_sprintf_vma (abfd, buf, p->addend);
9814 for (a = buf; *a == '0'; ++a)
9815 ;
9816 len = strlen (a);
9817 memcpy (names, a, len);
9818 names += len;
9819 }
9820 memcpy (names, "@plt", sizeof ("@plt"));
9821 names += sizeof ("@plt");
9822 ++s, ++n;
9823 }
9824
9825 return n;
9826 }
9827
9828 /* It is only used by x86-64 so far. */
9829 asection _bfd_elf_large_com_section
9830 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9831 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9832
9833 void
9834 _bfd_elf_set_osabi (bfd * abfd,
9835 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9836 {
9837 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9838
9839 i_ehdrp = elf_elfheader (abfd);
9840
9841 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9842
9843 /* To make things simpler for the loader on Linux systems we set the
9844 osabi field to ELFOSABI_GNU if the binary contains symbols of
9845 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9846 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9847 && elf_tdata (abfd)->has_gnu_symbols)
9848 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9849 }
9850
9851
9852 /* Return TRUE for ELF symbol types that represent functions.
9853 This is the default version of this function, which is sufficient for
9854 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9855
9856 bfd_boolean
9857 _bfd_elf_is_function_type (unsigned int type)
9858 {
9859 return (type == STT_FUNC
9860 || type == STT_GNU_IFUNC);
9861 }
9862
9863 /* If the ELF symbol SYM might be a function in SEC, return the
9864 function size and set *CODE_OFF to the function's entry point,
9865 otherwise return zero. */
9866
9867 bfd_size_type
9868 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
9869 bfd_vma *code_off)
9870 {
9871 bfd_size_type size;
9872
9873 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9874 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
9875 || sym->section != sec)
9876 return 0;
9877
9878 *code_off = sym->value;
9879 size = 0;
9880 if (!(sym->flags & BSF_SYNTHETIC))
9881 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
9882 if (size == 0)
9883 size = 1;
9884 return size;
9885 }
This page took 0.235186 seconds and 4 git commands to generate.