* gas/arm/noarm.s: Add test for disabled ARM insns.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
211
212 unsigned long
213 bfd_elf_gnu_hash (const char *namearg)
214 {
215 const unsigned char *name = (const unsigned char *) namearg;
216 unsigned long h = 5381;
217 unsigned char ch;
218
219 while ((ch = *name++) != '\0')
220 h = (h << 5) + h + ch;
221 return h & 0xffffffff;
222 }
223
224 bfd_boolean
225 bfd_elf_mkobject (bfd *abfd)
226 {
227 if (abfd->tdata.any == NULL)
228 {
229 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
230 if (abfd->tdata.any == NULL)
231 return FALSE;
232 }
233
234 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
235
236 return TRUE;
237 }
238
239 bfd_boolean
240 bfd_elf_mkcorefile (bfd *abfd)
241 {
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd);
244 }
245
246 char *
247 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
248 {
249 Elf_Internal_Shdr **i_shdrp;
250 bfd_byte *shstrtab = NULL;
251 file_ptr offset;
252 bfd_size_type shstrtabsize;
253
254 i_shdrp = elf_elfsections (abfd);
255 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
256 return NULL;
257
258 shstrtab = i_shdrp[shindex]->contents;
259 if (shstrtab == NULL)
260 {
261 /* No cached one, attempt to read, and cache what we read. */
262 offset = i_shdrp[shindex]->sh_offset;
263 shstrtabsize = i_shdrp[shindex]->sh_size;
264
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize + 1 == 0
268 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
269 || bfd_seek (abfd, offset, SEEK_SET) != 0)
270 shstrtab = NULL;
271 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
272 {
273 if (bfd_get_error () != bfd_error_system_call)
274 bfd_set_error (bfd_error_file_truncated);
275 shstrtab = NULL;
276 }
277 else
278 shstrtab[shstrtabsize] = '\0';
279 i_shdrp[shindex]->contents = shstrtab;
280 }
281 return (char *) shstrtab;
282 }
283
284 char *
285 bfd_elf_string_from_elf_section (bfd *abfd,
286 unsigned int shindex,
287 unsigned int strindex)
288 {
289 Elf_Internal_Shdr *hdr;
290
291 if (strindex == 0)
292 return "";
293
294 hdr = elf_elfsections (abfd)[shindex];
295
296 if (hdr->contents == NULL
297 && bfd_elf_get_str_section (abfd, shindex) == NULL)
298 return NULL;
299
300 if (strindex >= hdr->sh_size)
301 {
302 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
303 (*_bfd_error_handler)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd, strindex, (unsigned long) hdr->sh_size,
306 (shindex == shstrndx && strindex == hdr->sh_name
307 ? ".shstrtab"
308 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
309 return "";
310 }
311
312 return ((char *) hdr->contents) + strindex;
313 }
314
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
320
321 Elf_Internal_Sym *
322 bfd_elf_get_elf_syms (bfd *ibfd,
323 Elf_Internal_Shdr *symtab_hdr,
324 size_t symcount,
325 size_t symoffset,
326 Elf_Internal_Sym *intsym_buf,
327 void *extsym_buf,
328 Elf_External_Sym_Shndx *extshndx_buf)
329 {
330 Elf_Internal_Shdr *shndx_hdr;
331 void *alloc_ext;
332 const bfd_byte *esym;
333 Elf_External_Sym_Shndx *alloc_extshndx;
334 Elf_External_Sym_Shndx *shndx;
335 Elf_Internal_Sym *isym;
336 Elf_Internal_Sym *isymend;
337 const struct elf_backend_data *bed;
338 size_t extsym_size;
339 bfd_size_type amt;
340 file_ptr pos;
341
342 if (symcount == 0)
343 return intsym_buf;
344
345 /* Normal syms might have section extension entries. */
346 shndx_hdr = NULL;
347 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
348 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
349
350 /* Read the symbols. */
351 alloc_ext = NULL;
352 alloc_extshndx = NULL;
353 bed = get_elf_backend_data (ibfd);
354 extsym_size = bed->s->sizeof_sym;
355 amt = symcount * extsym_size;
356 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
357 if (extsym_buf == NULL)
358 {
359 alloc_ext = bfd_malloc2 (symcount, extsym_size);
360 extsym_buf = alloc_ext;
361 }
362 if (extsym_buf == NULL
363 || bfd_seek (ibfd, pos, SEEK_SET) != 0
364 || bfd_bread (extsym_buf, amt, ibfd) != amt)
365 {
366 intsym_buf = NULL;
367 goto out;
368 }
369
370 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
371 extshndx_buf = NULL;
372 else
373 {
374 amt = symcount * sizeof (Elf_External_Sym_Shndx);
375 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
376 if (extshndx_buf == NULL)
377 {
378 alloc_extshndx = bfd_malloc2 (symcount,
379 sizeof (Elf_External_Sym_Shndx));
380 extshndx_buf = alloc_extshndx;
381 }
382 if (extshndx_buf == NULL
383 || bfd_seek (ibfd, pos, SEEK_SET) != 0
384 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
385 {
386 intsym_buf = NULL;
387 goto out;
388 }
389 }
390
391 if (intsym_buf == NULL)
392 {
393 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
394 if (intsym_buf == NULL)
395 goto out;
396 }
397
398 /* Convert the symbols to internal form. */
399 isymend = intsym_buf + symcount;
400 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
401 isym < isymend;
402 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
403 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
404
405 out:
406 if (alloc_ext != NULL)
407 free (alloc_ext);
408 if (alloc_extshndx != NULL)
409 free (alloc_extshndx);
410
411 return intsym_buf;
412 }
413
414 /* Look up a symbol name. */
415 const char *
416 bfd_elf_sym_name (bfd *abfd,
417 Elf_Internal_Shdr *symtab_hdr,
418 Elf_Internal_Sym *isym,
419 asection *sym_sec)
420 {
421 const char *name;
422 unsigned int iname = isym->st_name;
423 unsigned int shindex = symtab_hdr->sh_link;
424
425 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
426 /* Check for a bogus st_shndx to avoid crashing. */
427 && isym->st_shndx < elf_numsections (abfd)
428 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
429 {
430 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
431 shindex = elf_elfheader (abfd)->e_shstrndx;
432 }
433
434 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
435 if (name == NULL)
436 name = "(null)";
437 else if (sym_sec && *name == '\0')
438 name = bfd_section_name (abfd, sym_sec);
439
440 return name;
441 }
442
443 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
444 sections. The first element is the flags, the rest are section
445 pointers. */
446
447 typedef union elf_internal_group {
448 Elf_Internal_Shdr *shdr;
449 unsigned int flags;
450 } Elf_Internal_Group;
451
452 /* Return the name of the group signature symbol. Why isn't the
453 signature just a string? */
454
455 static const char *
456 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
457 {
458 Elf_Internal_Shdr *hdr;
459 unsigned char esym[sizeof (Elf64_External_Sym)];
460 Elf_External_Sym_Shndx eshndx;
461 Elf_Internal_Sym isym;
462
463 /* First we need to ensure the symbol table is available. Make sure
464 that it is a symbol table section. */
465 hdr = elf_elfsections (abfd) [ghdr->sh_link];
466 if (hdr->sh_type != SHT_SYMTAB
467 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
468 return NULL;
469
470 /* Go read the symbol. */
471 hdr = &elf_tdata (abfd)->symtab_hdr;
472 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
473 &isym, esym, &eshndx) == NULL)
474 return NULL;
475
476 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
477 }
478
479 /* Set next_in_group list pointer, and group name for NEWSECT. */
480
481 static bfd_boolean
482 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
483 {
484 unsigned int num_group = elf_tdata (abfd)->num_group;
485
486 /* If num_group is zero, read in all SHT_GROUP sections. The count
487 is set to -1 if there are no SHT_GROUP sections. */
488 if (num_group == 0)
489 {
490 unsigned int i, shnum;
491
492 /* First count the number of groups. If we have a SHT_GROUP
493 section with just a flag word (ie. sh_size is 4), ignore it. */
494 shnum = elf_numsections (abfd);
495 num_group = 0;
496 for (i = 0; i < shnum; i++)
497 {
498 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
499 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
500 num_group += 1;
501 }
502
503 if (num_group == 0)
504 {
505 num_group = (unsigned) -1;
506 elf_tdata (abfd)->num_group = num_group;
507 }
508 else
509 {
510 /* We keep a list of elf section headers for group sections,
511 so we can find them quickly. */
512 bfd_size_type amt;
513
514 elf_tdata (abfd)->num_group = num_group;
515 elf_tdata (abfd)->group_sect_ptr
516 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
517 if (elf_tdata (abfd)->group_sect_ptr == NULL)
518 return FALSE;
519
520 num_group = 0;
521 for (i = 0; i < shnum; i++)
522 {
523 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
524 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
525 {
526 unsigned char *src;
527 Elf_Internal_Group *dest;
528
529 /* Add to list of sections. */
530 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
531 num_group += 1;
532
533 /* Read the raw contents. */
534 BFD_ASSERT (sizeof (*dest) >= 4);
535 amt = shdr->sh_size * sizeof (*dest) / 4;
536 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
537 sizeof (*dest) / 4);
538 if (shdr->contents == NULL
539 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
540 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
541 != shdr->sh_size))
542 return FALSE;
543
544 /* Translate raw contents, a flag word followed by an
545 array of elf section indices all in target byte order,
546 to the flag word followed by an array of elf section
547 pointers. */
548 src = shdr->contents + shdr->sh_size;
549 dest = (Elf_Internal_Group *) (shdr->contents + amt);
550 while (1)
551 {
552 unsigned int idx;
553
554 src -= 4;
555 --dest;
556 idx = H_GET_32 (abfd, src);
557 if (src == shdr->contents)
558 {
559 dest->flags = idx;
560 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
561 shdr->bfd_section->flags
562 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
563 break;
564 }
565 if (idx >= shnum)
566 {
567 ((*_bfd_error_handler)
568 (_("%B: invalid SHT_GROUP entry"), abfd));
569 idx = 0;
570 }
571 dest->shdr = elf_elfsections (abfd)[idx];
572 }
573 }
574 }
575 }
576 }
577
578 if (num_group != (unsigned) -1)
579 {
580 unsigned int i;
581
582 for (i = 0; i < num_group; i++)
583 {
584 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
585 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
586 unsigned int n_elt = shdr->sh_size / 4;
587
588 /* Look through this group's sections to see if current
589 section is a member. */
590 while (--n_elt != 0)
591 if ((++idx)->shdr == hdr)
592 {
593 asection *s = NULL;
594
595 /* We are a member of this group. Go looking through
596 other members to see if any others are linked via
597 next_in_group. */
598 idx = (Elf_Internal_Group *) shdr->contents;
599 n_elt = shdr->sh_size / 4;
600 while (--n_elt != 0)
601 if ((s = (++idx)->shdr->bfd_section) != NULL
602 && elf_next_in_group (s) != NULL)
603 break;
604 if (n_elt != 0)
605 {
606 /* Snarf the group name from other member, and
607 insert current section in circular list. */
608 elf_group_name (newsect) = elf_group_name (s);
609 elf_next_in_group (newsect) = elf_next_in_group (s);
610 elf_next_in_group (s) = newsect;
611 }
612 else
613 {
614 const char *gname;
615
616 gname = group_signature (abfd, shdr);
617 if (gname == NULL)
618 return FALSE;
619 elf_group_name (newsect) = gname;
620
621 /* Start a circular list with one element. */
622 elf_next_in_group (newsect) = newsect;
623 }
624
625 /* If the group section has been created, point to the
626 new member. */
627 if (shdr->bfd_section != NULL)
628 elf_next_in_group (shdr->bfd_section) = newsect;
629
630 i = num_group - 1;
631 break;
632 }
633 }
634 }
635
636 if (elf_group_name (newsect) == NULL)
637 {
638 (*_bfd_error_handler) (_("%B: no group info for section %A"),
639 abfd, newsect);
640 }
641 return TRUE;
642 }
643
644 bfd_boolean
645 _bfd_elf_setup_sections (bfd *abfd)
646 {
647 unsigned int i;
648 unsigned int num_group = elf_tdata (abfd)->num_group;
649 bfd_boolean result = TRUE;
650 asection *s;
651
652 /* Process SHF_LINK_ORDER. */
653 for (s = abfd->sections; s != NULL; s = s->next)
654 {
655 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
656 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
657 {
658 unsigned int elfsec = this_hdr->sh_link;
659 /* FIXME: The old Intel compiler and old strip/objcopy may
660 not set the sh_link or sh_info fields. Hence we could
661 get the situation where elfsec is 0. */
662 if (elfsec == 0)
663 {
664 const struct elf_backend_data *bed
665 = get_elf_backend_data (abfd);
666 if (bed->link_order_error_handler)
667 bed->link_order_error_handler
668 (_("%B: warning: sh_link not set for section `%A'"),
669 abfd, s);
670 }
671 else
672 {
673 asection *link;
674
675 this_hdr = elf_elfsections (abfd)[elfsec];
676
677 /* PR 1991, 2008:
678 Some strip/objcopy may leave an incorrect value in
679 sh_link. We don't want to proceed. */
680 link = this_hdr->bfd_section;
681 if (link == NULL)
682 {
683 (*_bfd_error_handler)
684 (_("%B: sh_link [%d] in section `%A' is incorrect"),
685 s->owner, s, elfsec);
686 result = FALSE;
687 }
688
689 elf_linked_to_section (s) = link;
690 }
691 }
692 }
693
694 /* Process section groups. */
695 if (num_group == (unsigned) -1)
696 return result;
697
698 for (i = 0; i < num_group; i++)
699 {
700 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
701 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
702 unsigned int n_elt = shdr->sh_size / 4;
703
704 while (--n_elt != 0)
705 if ((++idx)->shdr->bfd_section)
706 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
707 else if (idx->shdr->sh_type == SHT_RELA
708 || idx->shdr->sh_type == SHT_REL)
709 /* We won't include relocation sections in section groups in
710 output object files. We adjust the group section size here
711 so that relocatable link will work correctly when
712 relocation sections are in section group in input object
713 files. */
714 shdr->bfd_section->size -= 4;
715 else
716 {
717 /* There are some unknown sections in the group. */
718 (*_bfd_error_handler)
719 (_("%B: unknown [%d] section `%s' in group [%s]"),
720 abfd,
721 (unsigned int) idx->shdr->sh_type,
722 bfd_elf_string_from_elf_section (abfd,
723 (elf_elfheader (abfd)
724 ->e_shstrndx),
725 idx->shdr->sh_name),
726 shdr->bfd_section->name);
727 result = FALSE;
728 }
729 }
730 return result;
731 }
732
733 bfd_boolean
734 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
735 {
736 return elf_next_in_group (sec) != NULL;
737 }
738
739 /* Make a BFD section from an ELF section. We store a pointer to the
740 BFD section in the bfd_section field of the header. */
741
742 bfd_boolean
743 _bfd_elf_make_section_from_shdr (bfd *abfd,
744 Elf_Internal_Shdr *hdr,
745 const char *name,
746 int shindex)
747 {
748 asection *newsect;
749 flagword flags;
750 const struct elf_backend_data *bed;
751
752 if (hdr->bfd_section != NULL)
753 {
754 BFD_ASSERT (strcmp (name,
755 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
756 return TRUE;
757 }
758
759 newsect = bfd_make_section_anyway (abfd, name);
760 if (newsect == NULL)
761 return FALSE;
762
763 hdr->bfd_section = newsect;
764 elf_section_data (newsect)->this_hdr = *hdr;
765 elf_section_data (newsect)->this_idx = shindex;
766
767 /* Always use the real type/flags. */
768 elf_section_type (newsect) = hdr->sh_type;
769 elf_section_flags (newsect) = hdr->sh_flags;
770
771 newsect->filepos = hdr->sh_offset;
772
773 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
774 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
775 || ! bfd_set_section_alignment (abfd, newsect,
776 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
777 return FALSE;
778
779 flags = SEC_NO_FLAGS;
780 if (hdr->sh_type != SHT_NOBITS)
781 flags |= SEC_HAS_CONTENTS;
782 if (hdr->sh_type == SHT_GROUP)
783 flags |= SEC_GROUP | SEC_EXCLUDE;
784 if ((hdr->sh_flags & SHF_ALLOC) != 0)
785 {
786 flags |= SEC_ALLOC;
787 if (hdr->sh_type != SHT_NOBITS)
788 flags |= SEC_LOAD;
789 }
790 if ((hdr->sh_flags & SHF_WRITE) == 0)
791 flags |= SEC_READONLY;
792 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
793 flags |= SEC_CODE;
794 else if ((flags & SEC_LOAD) != 0)
795 flags |= SEC_DATA;
796 if ((hdr->sh_flags & SHF_MERGE) != 0)
797 {
798 flags |= SEC_MERGE;
799 newsect->entsize = hdr->sh_entsize;
800 if ((hdr->sh_flags & SHF_STRINGS) != 0)
801 flags |= SEC_STRINGS;
802 }
803 if (hdr->sh_flags & SHF_GROUP)
804 if (!setup_group (abfd, hdr, newsect))
805 return FALSE;
806 if ((hdr->sh_flags & SHF_TLS) != 0)
807 flags |= SEC_THREAD_LOCAL;
808
809 if ((flags & SEC_ALLOC) == 0)
810 {
811 /* The debugging sections appear to be recognized only by name,
812 not any sort of flag. Their SEC_ALLOC bits are cleared. */
813 static const struct
814 {
815 const char *name;
816 int len;
817 } debug_sections [] =
818 {
819 { "debug", 5 }, /* 'd' */
820 { NULL, 0 }, /* 'e' */
821 { NULL, 0 }, /* 'f' */
822 { "gnu.linkonce.wi.", 17 }, /* 'g' */
823 { NULL, 0 }, /* 'h' */
824 { NULL, 0 }, /* 'i' */
825 { NULL, 0 }, /* 'j' */
826 { NULL, 0 }, /* 'k' */
827 { "line", 4 }, /* 'l' */
828 { NULL, 0 }, /* 'm' */
829 { NULL, 0 }, /* 'n' */
830 { NULL, 0 }, /* 'o' */
831 { NULL, 0 }, /* 'p' */
832 { NULL, 0 }, /* 'q' */
833 { NULL, 0 }, /* 'r' */
834 { "stab", 4 } /* 's' */
835 };
836
837 if (name [0] == '.')
838 {
839 int i = name [1] - 'd';
840 if (i >= 0
841 && i < (int) ARRAY_SIZE (debug_sections)
842 && debug_sections [i].name != NULL
843 && strncmp (&name [1], debug_sections [i].name,
844 debug_sections [i].len) == 0)
845 flags |= SEC_DEBUGGING;
846 }
847 }
848
849 /* As a GNU extension, if the name begins with .gnu.linkonce, we
850 only link a single copy of the section. This is used to support
851 g++. g++ will emit each template expansion in its own section.
852 The symbols will be defined as weak, so that multiple definitions
853 are permitted. The GNU linker extension is to actually discard
854 all but one of the sections. */
855 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
856 && elf_next_in_group (newsect) == NULL)
857 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
858
859 bed = get_elf_backend_data (abfd);
860 if (bed->elf_backend_section_flags)
861 if (! bed->elf_backend_section_flags (&flags, hdr))
862 return FALSE;
863
864 if (! bfd_set_section_flags (abfd, newsect, flags))
865 return FALSE;
866
867 if ((flags & SEC_ALLOC) != 0)
868 {
869 Elf_Internal_Phdr *phdr;
870 unsigned int i;
871
872 /* Look through the phdrs to see if we need to adjust the lma.
873 If all the p_paddr fields are zero, we ignore them, since
874 some ELF linkers produce such output. */
875 phdr = elf_tdata (abfd)->phdr;
876 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
877 {
878 if (phdr->p_paddr != 0)
879 break;
880 }
881 if (i < elf_elfheader (abfd)->e_phnum)
882 {
883 phdr = elf_tdata (abfd)->phdr;
884 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
885 {
886 /* This section is part of this segment if its file
887 offset plus size lies within the segment's memory
888 span and, if the section is loaded, the extent of the
889 loaded data lies within the extent of the segment.
890
891 Note - we used to check the p_paddr field as well, and
892 refuse to set the LMA if it was 0. This is wrong
893 though, as a perfectly valid initialised segment can
894 have a p_paddr of zero. Some architectures, eg ARM,
895 place special significance on the address 0 and
896 executables need to be able to have a segment which
897 covers this address. */
898 if (phdr->p_type == PT_LOAD
899 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
900 && (hdr->sh_offset + hdr->sh_size
901 <= phdr->p_offset + phdr->p_memsz)
902 && ((flags & SEC_LOAD) == 0
903 || (hdr->sh_offset + hdr->sh_size
904 <= phdr->p_offset + phdr->p_filesz)))
905 {
906 if ((flags & SEC_LOAD) == 0)
907 newsect->lma = (phdr->p_paddr
908 + hdr->sh_addr - phdr->p_vaddr);
909 else
910 /* We used to use the same adjustment for SEC_LOAD
911 sections, but that doesn't work if the segment
912 is packed with code from multiple VMAs.
913 Instead we calculate the section LMA based on
914 the segment LMA. It is assumed that the
915 segment will contain sections with contiguous
916 LMAs, even if the VMAs are not. */
917 newsect->lma = (phdr->p_paddr
918 + hdr->sh_offset - phdr->p_offset);
919
920 /* With contiguous segments, we can't tell from file
921 offsets whether a section with zero size should
922 be placed at the end of one segment or the
923 beginning of the next. Decide based on vaddr. */
924 if (hdr->sh_addr >= phdr->p_vaddr
925 && (hdr->sh_addr + hdr->sh_size
926 <= phdr->p_vaddr + phdr->p_memsz))
927 break;
928 }
929 }
930 }
931 }
932
933 return TRUE;
934 }
935
936 /*
937 INTERNAL_FUNCTION
938 bfd_elf_find_section
939
940 SYNOPSIS
941 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
942
943 DESCRIPTION
944 Helper functions for GDB to locate the string tables.
945 Since BFD hides string tables from callers, GDB needs to use an
946 internal hook to find them. Sun's .stabstr, in particular,
947 isn't even pointed to by the .stab section, so ordinary
948 mechanisms wouldn't work to find it, even if we had some.
949 */
950
951 struct elf_internal_shdr *
952 bfd_elf_find_section (bfd *abfd, char *name)
953 {
954 Elf_Internal_Shdr **i_shdrp;
955 char *shstrtab;
956 unsigned int max;
957 unsigned int i;
958
959 i_shdrp = elf_elfsections (abfd);
960 if (i_shdrp != NULL)
961 {
962 shstrtab = bfd_elf_get_str_section (abfd,
963 elf_elfheader (abfd)->e_shstrndx);
964 if (shstrtab != NULL)
965 {
966 max = elf_numsections (abfd);
967 for (i = 1; i < max; i++)
968 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
969 return i_shdrp[i];
970 }
971 }
972 return 0;
973 }
974
975 const char *const bfd_elf_section_type_names[] = {
976 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
977 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
978 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
979 };
980
981 /* ELF relocs are against symbols. If we are producing relocatable
982 output, and the reloc is against an external symbol, and nothing
983 has given us any additional addend, the resulting reloc will also
984 be against the same symbol. In such a case, we don't want to
985 change anything about the way the reloc is handled, since it will
986 all be done at final link time. Rather than put special case code
987 into bfd_perform_relocation, all the reloc types use this howto
988 function. It just short circuits the reloc if producing
989 relocatable output against an external symbol. */
990
991 bfd_reloc_status_type
992 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
993 arelent *reloc_entry,
994 asymbol *symbol,
995 void *data ATTRIBUTE_UNUSED,
996 asection *input_section,
997 bfd *output_bfd,
998 char **error_message ATTRIBUTE_UNUSED)
999 {
1000 if (output_bfd != NULL
1001 && (symbol->flags & BSF_SECTION_SYM) == 0
1002 && (! reloc_entry->howto->partial_inplace
1003 || reloc_entry->addend == 0))
1004 {
1005 reloc_entry->address += input_section->output_offset;
1006 return bfd_reloc_ok;
1007 }
1008
1009 return bfd_reloc_continue;
1010 }
1011 \f
1012 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1013
1014 static void
1015 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1016 asection *sec)
1017 {
1018 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1019 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1020 }
1021
1022 /* Finish SHF_MERGE section merging. */
1023
1024 bfd_boolean
1025 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1026 {
1027 bfd *ibfd;
1028 asection *sec;
1029
1030 if (!is_elf_hash_table (info->hash))
1031 return FALSE;
1032
1033 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1034 if ((ibfd->flags & DYNAMIC) == 0)
1035 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1036 if ((sec->flags & SEC_MERGE) != 0
1037 && !bfd_is_abs_section (sec->output_section))
1038 {
1039 struct bfd_elf_section_data *secdata;
1040
1041 secdata = elf_section_data (sec);
1042 if (! _bfd_add_merge_section (abfd,
1043 &elf_hash_table (info)->merge_info,
1044 sec, &secdata->sec_info))
1045 return FALSE;
1046 else if (secdata->sec_info)
1047 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1048 }
1049
1050 if (elf_hash_table (info)->merge_info != NULL)
1051 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1052 merge_sections_remove_hook);
1053 return TRUE;
1054 }
1055
1056 void
1057 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1058 {
1059 sec->output_section = bfd_abs_section_ptr;
1060 sec->output_offset = sec->vma;
1061 if (!is_elf_hash_table (info->hash))
1062 return;
1063
1064 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1065 }
1066 \f
1067 /* Copy the program header and other data from one object module to
1068 another. */
1069
1070 bfd_boolean
1071 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1072 {
1073 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1074 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1075 return TRUE;
1076
1077 BFD_ASSERT (!elf_flags_init (obfd)
1078 || (elf_elfheader (obfd)->e_flags
1079 == elf_elfheader (ibfd)->e_flags));
1080
1081 elf_gp (obfd) = elf_gp (ibfd);
1082 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1083 elf_flags_init (obfd) = TRUE;
1084 return TRUE;
1085 }
1086
1087 static const char *
1088 get_segment_type (unsigned int p_type)
1089 {
1090 const char *pt;
1091 switch (p_type)
1092 {
1093 case PT_NULL: pt = "NULL"; break;
1094 case PT_LOAD: pt = "LOAD"; break;
1095 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1096 case PT_INTERP: pt = "INTERP"; break;
1097 case PT_NOTE: pt = "NOTE"; break;
1098 case PT_SHLIB: pt = "SHLIB"; break;
1099 case PT_PHDR: pt = "PHDR"; break;
1100 case PT_TLS: pt = "TLS"; break;
1101 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1102 case PT_GNU_STACK: pt = "STACK"; break;
1103 case PT_GNU_RELRO: pt = "RELRO"; break;
1104 default: pt = NULL; break;
1105 }
1106 return pt;
1107 }
1108
1109 /* Print out the program headers. */
1110
1111 bfd_boolean
1112 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1113 {
1114 FILE *f = farg;
1115 Elf_Internal_Phdr *p;
1116 asection *s;
1117 bfd_byte *dynbuf = NULL;
1118
1119 p = elf_tdata (abfd)->phdr;
1120 if (p != NULL)
1121 {
1122 unsigned int i, c;
1123
1124 fprintf (f, _("\nProgram Header:\n"));
1125 c = elf_elfheader (abfd)->e_phnum;
1126 for (i = 0; i < c; i++, p++)
1127 {
1128 const char *pt = get_segment_type (p->p_type);
1129 char buf[20];
1130
1131 if (pt == NULL)
1132 {
1133 sprintf (buf, "0x%lx", p->p_type);
1134 pt = buf;
1135 }
1136 fprintf (f, "%8s off 0x", pt);
1137 bfd_fprintf_vma (abfd, f, p->p_offset);
1138 fprintf (f, " vaddr 0x");
1139 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1140 fprintf (f, " paddr 0x");
1141 bfd_fprintf_vma (abfd, f, p->p_paddr);
1142 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1143 fprintf (f, " filesz 0x");
1144 bfd_fprintf_vma (abfd, f, p->p_filesz);
1145 fprintf (f, " memsz 0x");
1146 bfd_fprintf_vma (abfd, f, p->p_memsz);
1147 fprintf (f, " flags %c%c%c",
1148 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1149 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1150 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1151 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1152 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1153 fprintf (f, "\n");
1154 }
1155 }
1156
1157 s = bfd_get_section_by_name (abfd, ".dynamic");
1158 if (s != NULL)
1159 {
1160 int elfsec;
1161 unsigned long shlink;
1162 bfd_byte *extdyn, *extdynend;
1163 size_t extdynsize;
1164 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1165
1166 fprintf (f, _("\nDynamic Section:\n"));
1167
1168 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1169 goto error_return;
1170
1171 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1172 if (elfsec == -1)
1173 goto error_return;
1174 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1175
1176 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1177 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1178
1179 extdyn = dynbuf;
1180 extdynend = extdyn + s->size;
1181 for (; extdyn < extdynend; extdyn += extdynsize)
1182 {
1183 Elf_Internal_Dyn dyn;
1184 const char *name;
1185 char ab[20];
1186 bfd_boolean stringp;
1187
1188 (*swap_dyn_in) (abfd, extdyn, &dyn);
1189
1190 if (dyn.d_tag == DT_NULL)
1191 break;
1192
1193 stringp = FALSE;
1194 switch (dyn.d_tag)
1195 {
1196 default:
1197 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1198 name = ab;
1199 break;
1200
1201 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1202 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1203 case DT_PLTGOT: name = "PLTGOT"; break;
1204 case DT_HASH: name = "HASH"; break;
1205 case DT_STRTAB: name = "STRTAB"; break;
1206 case DT_SYMTAB: name = "SYMTAB"; break;
1207 case DT_RELA: name = "RELA"; break;
1208 case DT_RELASZ: name = "RELASZ"; break;
1209 case DT_RELAENT: name = "RELAENT"; break;
1210 case DT_STRSZ: name = "STRSZ"; break;
1211 case DT_SYMENT: name = "SYMENT"; break;
1212 case DT_INIT: name = "INIT"; break;
1213 case DT_FINI: name = "FINI"; break;
1214 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1215 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1216 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1217 case DT_REL: name = "REL"; break;
1218 case DT_RELSZ: name = "RELSZ"; break;
1219 case DT_RELENT: name = "RELENT"; break;
1220 case DT_PLTREL: name = "PLTREL"; break;
1221 case DT_DEBUG: name = "DEBUG"; break;
1222 case DT_TEXTREL: name = "TEXTREL"; break;
1223 case DT_JMPREL: name = "JMPREL"; break;
1224 case DT_BIND_NOW: name = "BIND_NOW"; break;
1225 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1226 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1227 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1228 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1229 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1230 case DT_FLAGS: name = "FLAGS"; break;
1231 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1232 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1233 case DT_CHECKSUM: name = "CHECKSUM"; break;
1234 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1235 case DT_MOVEENT: name = "MOVEENT"; break;
1236 case DT_MOVESZ: name = "MOVESZ"; break;
1237 case DT_FEATURE: name = "FEATURE"; break;
1238 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1239 case DT_SYMINSZ: name = "SYMINSZ"; break;
1240 case DT_SYMINENT: name = "SYMINENT"; break;
1241 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1242 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1243 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1244 case DT_PLTPAD: name = "PLTPAD"; break;
1245 case DT_MOVETAB: name = "MOVETAB"; break;
1246 case DT_SYMINFO: name = "SYMINFO"; break;
1247 case DT_RELACOUNT: name = "RELACOUNT"; break;
1248 case DT_RELCOUNT: name = "RELCOUNT"; break;
1249 case DT_FLAGS_1: name = "FLAGS_1"; break;
1250 case DT_VERSYM: name = "VERSYM"; break;
1251 case DT_VERDEF: name = "VERDEF"; break;
1252 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1253 case DT_VERNEED: name = "VERNEED"; break;
1254 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1255 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1256 case DT_USED: name = "USED"; break;
1257 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1258 case DT_GNU_HASH: name = "GNU_HASH"; break;
1259 }
1260
1261 fprintf (f, " %-11s ", name);
1262 if (! stringp)
1263 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1264 else
1265 {
1266 const char *string;
1267 unsigned int tagv = dyn.d_un.d_val;
1268
1269 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1270 if (string == NULL)
1271 goto error_return;
1272 fprintf (f, "%s", string);
1273 }
1274 fprintf (f, "\n");
1275 }
1276
1277 free (dynbuf);
1278 dynbuf = NULL;
1279 }
1280
1281 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1282 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1283 {
1284 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1285 return FALSE;
1286 }
1287
1288 if (elf_dynverdef (abfd) != 0)
1289 {
1290 Elf_Internal_Verdef *t;
1291
1292 fprintf (f, _("\nVersion definitions:\n"));
1293 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1294 {
1295 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1296 t->vd_flags, t->vd_hash,
1297 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1298 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1299 {
1300 Elf_Internal_Verdaux *a;
1301
1302 fprintf (f, "\t");
1303 for (a = t->vd_auxptr->vda_nextptr;
1304 a != NULL;
1305 a = a->vda_nextptr)
1306 fprintf (f, "%s ",
1307 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1308 fprintf (f, "\n");
1309 }
1310 }
1311 }
1312
1313 if (elf_dynverref (abfd) != 0)
1314 {
1315 Elf_Internal_Verneed *t;
1316
1317 fprintf (f, _("\nVersion References:\n"));
1318 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1319 {
1320 Elf_Internal_Vernaux *a;
1321
1322 fprintf (f, _(" required from %s:\n"),
1323 t->vn_filename ? t->vn_filename : "<corrupt>");
1324 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1325 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1326 a->vna_flags, a->vna_other,
1327 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1328 }
1329 }
1330
1331 return TRUE;
1332
1333 error_return:
1334 if (dynbuf != NULL)
1335 free (dynbuf);
1336 return FALSE;
1337 }
1338
1339 /* Display ELF-specific fields of a symbol. */
1340
1341 void
1342 bfd_elf_print_symbol (bfd *abfd,
1343 void *filep,
1344 asymbol *symbol,
1345 bfd_print_symbol_type how)
1346 {
1347 FILE *file = filep;
1348 switch (how)
1349 {
1350 case bfd_print_symbol_name:
1351 fprintf (file, "%s", symbol->name);
1352 break;
1353 case bfd_print_symbol_more:
1354 fprintf (file, "elf ");
1355 bfd_fprintf_vma (abfd, file, symbol->value);
1356 fprintf (file, " %lx", (long) symbol->flags);
1357 break;
1358 case bfd_print_symbol_all:
1359 {
1360 const char *section_name;
1361 const char *name = NULL;
1362 const struct elf_backend_data *bed;
1363 unsigned char st_other;
1364 bfd_vma val;
1365
1366 section_name = symbol->section ? symbol->section->name : "(*none*)";
1367
1368 bed = get_elf_backend_data (abfd);
1369 if (bed->elf_backend_print_symbol_all)
1370 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1371
1372 if (name == NULL)
1373 {
1374 name = symbol->name;
1375 bfd_print_symbol_vandf (abfd, file, symbol);
1376 }
1377
1378 fprintf (file, " %s\t", section_name);
1379 /* Print the "other" value for a symbol. For common symbols,
1380 we've already printed the size; now print the alignment.
1381 For other symbols, we have no specified alignment, and
1382 we've printed the address; now print the size. */
1383 if (bfd_is_com_section (symbol->section))
1384 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1385 else
1386 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1387 bfd_fprintf_vma (abfd, file, val);
1388
1389 /* If we have version information, print it. */
1390 if (elf_tdata (abfd)->dynversym_section != 0
1391 && (elf_tdata (abfd)->dynverdef_section != 0
1392 || elf_tdata (abfd)->dynverref_section != 0))
1393 {
1394 unsigned int vernum;
1395 const char *version_string;
1396
1397 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1398
1399 if (vernum == 0)
1400 version_string = "";
1401 else if (vernum == 1)
1402 version_string = "Base";
1403 else if (vernum <= elf_tdata (abfd)->cverdefs)
1404 version_string =
1405 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1406 else
1407 {
1408 Elf_Internal_Verneed *t;
1409
1410 version_string = "";
1411 for (t = elf_tdata (abfd)->verref;
1412 t != NULL;
1413 t = t->vn_nextref)
1414 {
1415 Elf_Internal_Vernaux *a;
1416
1417 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1418 {
1419 if (a->vna_other == vernum)
1420 {
1421 version_string = a->vna_nodename;
1422 break;
1423 }
1424 }
1425 }
1426 }
1427
1428 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1429 fprintf (file, " %-11s", version_string);
1430 else
1431 {
1432 int i;
1433
1434 fprintf (file, " (%s)", version_string);
1435 for (i = 10 - strlen (version_string); i > 0; --i)
1436 putc (' ', file);
1437 }
1438 }
1439
1440 /* If the st_other field is not zero, print it. */
1441 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1442
1443 switch (st_other)
1444 {
1445 case 0: break;
1446 case STV_INTERNAL: fprintf (file, " .internal"); break;
1447 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1448 case STV_PROTECTED: fprintf (file, " .protected"); break;
1449 default:
1450 /* Some other non-defined flags are also present, so print
1451 everything hex. */
1452 fprintf (file, " 0x%02x", (unsigned int) st_other);
1453 }
1454
1455 fprintf (file, " %s", name);
1456 }
1457 break;
1458 }
1459 }
1460 \f
1461 /* Create an entry in an ELF linker hash table. */
1462
1463 struct bfd_hash_entry *
1464 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1465 struct bfd_hash_table *table,
1466 const char *string)
1467 {
1468 /* Allocate the structure if it has not already been allocated by a
1469 subclass. */
1470 if (entry == NULL)
1471 {
1472 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1473 if (entry == NULL)
1474 return entry;
1475 }
1476
1477 /* Call the allocation method of the superclass. */
1478 entry = _bfd_link_hash_newfunc (entry, table, string);
1479 if (entry != NULL)
1480 {
1481 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1482 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1483
1484 /* Set local fields. */
1485 ret->indx = -1;
1486 ret->dynindx = -1;
1487 ret->got = htab->init_got_refcount;
1488 ret->plt = htab->init_plt_refcount;
1489 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1490 - offsetof (struct elf_link_hash_entry, size)));
1491 /* Assume that we have been called by a non-ELF symbol reader.
1492 This flag is then reset by the code which reads an ELF input
1493 file. This ensures that a symbol created by a non-ELF symbol
1494 reader will have the flag set correctly. */
1495 ret->non_elf = 1;
1496 }
1497
1498 return entry;
1499 }
1500
1501 /* Copy data from an indirect symbol to its direct symbol, hiding the
1502 old indirect symbol. Also used for copying flags to a weakdef. */
1503
1504 void
1505 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1506 struct elf_link_hash_entry *dir,
1507 struct elf_link_hash_entry *ind)
1508 {
1509 struct elf_link_hash_table *htab;
1510
1511 /* Copy down any references that we may have already seen to the
1512 symbol which just became indirect. */
1513
1514 dir->ref_dynamic |= ind->ref_dynamic;
1515 dir->ref_regular |= ind->ref_regular;
1516 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1517 dir->non_got_ref |= ind->non_got_ref;
1518 dir->needs_plt |= ind->needs_plt;
1519 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1520
1521 if (ind->root.type != bfd_link_hash_indirect)
1522 return;
1523
1524 /* Copy over the global and procedure linkage table refcount entries.
1525 These may have been already set up by a check_relocs routine. */
1526 htab = elf_hash_table (info);
1527 if (ind->got.refcount > htab->init_got_refcount.refcount)
1528 {
1529 if (dir->got.refcount < 0)
1530 dir->got.refcount = 0;
1531 dir->got.refcount += ind->got.refcount;
1532 ind->got.refcount = htab->init_got_refcount.refcount;
1533 }
1534
1535 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1536 {
1537 if (dir->plt.refcount < 0)
1538 dir->plt.refcount = 0;
1539 dir->plt.refcount += ind->plt.refcount;
1540 ind->plt.refcount = htab->init_plt_refcount.refcount;
1541 }
1542
1543 if (ind->dynindx != -1)
1544 {
1545 if (dir->dynindx != -1)
1546 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1547 dir->dynindx = ind->dynindx;
1548 dir->dynstr_index = ind->dynstr_index;
1549 ind->dynindx = -1;
1550 ind->dynstr_index = 0;
1551 }
1552 }
1553
1554 void
1555 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1556 struct elf_link_hash_entry *h,
1557 bfd_boolean force_local)
1558 {
1559 h->plt = elf_hash_table (info)->init_plt_offset;
1560 h->needs_plt = 0;
1561 if (force_local)
1562 {
1563 h->forced_local = 1;
1564 if (h->dynindx != -1)
1565 {
1566 h->dynindx = -1;
1567 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1568 h->dynstr_index);
1569 }
1570 }
1571 }
1572
1573 /* Initialize an ELF linker hash table. */
1574
1575 bfd_boolean
1576 _bfd_elf_link_hash_table_init
1577 (struct elf_link_hash_table *table,
1578 bfd *abfd,
1579 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1580 struct bfd_hash_table *,
1581 const char *),
1582 unsigned int entsize)
1583 {
1584 bfd_boolean ret;
1585 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1586
1587 table->dynamic_sections_created = FALSE;
1588 table->dynobj = NULL;
1589 table->init_got_refcount.refcount = can_refcount - 1;
1590 table->init_plt_refcount.refcount = can_refcount - 1;
1591 table->init_got_offset.offset = -(bfd_vma) 1;
1592 table->init_plt_offset.offset = -(bfd_vma) 1;
1593 /* The first dynamic symbol is a dummy. */
1594 table->dynsymcount = 1;
1595 table->dynstr = NULL;
1596 table->bucketcount = 0;
1597 table->needed = NULL;
1598 table->hgot = NULL;
1599 table->hplt = NULL;
1600 table->merge_info = NULL;
1601 memset (&table->stab_info, 0, sizeof (table->stab_info));
1602 memset (&table->eh_info, 0, sizeof (table->eh_info));
1603 table->dynlocal = NULL;
1604 table->runpath = NULL;
1605 table->tls_sec = NULL;
1606 table->tls_size = 0;
1607 table->loaded = NULL;
1608 table->is_relocatable_executable = FALSE;
1609
1610 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1611 table->root.type = bfd_link_elf_hash_table;
1612
1613 return ret;
1614 }
1615
1616 /* Create an ELF linker hash table. */
1617
1618 struct bfd_link_hash_table *
1619 _bfd_elf_link_hash_table_create (bfd *abfd)
1620 {
1621 struct elf_link_hash_table *ret;
1622 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1623
1624 ret = bfd_malloc (amt);
1625 if (ret == NULL)
1626 return NULL;
1627
1628 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1629 sizeof (struct elf_link_hash_entry)))
1630 {
1631 free (ret);
1632 return NULL;
1633 }
1634
1635 return &ret->root;
1636 }
1637
1638 /* This is a hook for the ELF emulation code in the generic linker to
1639 tell the backend linker what file name to use for the DT_NEEDED
1640 entry for a dynamic object. */
1641
1642 void
1643 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1644 {
1645 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1646 && bfd_get_format (abfd) == bfd_object)
1647 elf_dt_name (abfd) = name;
1648 }
1649
1650 int
1651 bfd_elf_get_dyn_lib_class (bfd *abfd)
1652 {
1653 int lib_class;
1654 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1655 && bfd_get_format (abfd) == bfd_object)
1656 lib_class = elf_dyn_lib_class (abfd);
1657 else
1658 lib_class = 0;
1659 return lib_class;
1660 }
1661
1662 void
1663 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1664 {
1665 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1666 && bfd_get_format (abfd) == bfd_object)
1667 elf_dyn_lib_class (abfd) = lib_class;
1668 }
1669
1670 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1671 the linker ELF emulation code. */
1672
1673 struct bfd_link_needed_list *
1674 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1675 struct bfd_link_info *info)
1676 {
1677 if (! is_elf_hash_table (info->hash))
1678 return NULL;
1679 return elf_hash_table (info)->needed;
1680 }
1681
1682 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1683 hook for the linker ELF emulation code. */
1684
1685 struct bfd_link_needed_list *
1686 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1687 struct bfd_link_info *info)
1688 {
1689 if (! is_elf_hash_table (info->hash))
1690 return NULL;
1691 return elf_hash_table (info)->runpath;
1692 }
1693
1694 /* Get the name actually used for a dynamic object for a link. This
1695 is the SONAME entry if there is one. Otherwise, it is the string
1696 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1697
1698 const char *
1699 bfd_elf_get_dt_soname (bfd *abfd)
1700 {
1701 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1702 && bfd_get_format (abfd) == bfd_object)
1703 return elf_dt_name (abfd);
1704 return NULL;
1705 }
1706
1707 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1708 the ELF linker emulation code. */
1709
1710 bfd_boolean
1711 bfd_elf_get_bfd_needed_list (bfd *abfd,
1712 struct bfd_link_needed_list **pneeded)
1713 {
1714 asection *s;
1715 bfd_byte *dynbuf = NULL;
1716 int elfsec;
1717 unsigned long shlink;
1718 bfd_byte *extdyn, *extdynend;
1719 size_t extdynsize;
1720 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1721
1722 *pneeded = NULL;
1723
1724 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1725 || bfd_get_format (abfd) != bfd_object)
1726 return TRUE;
1727
1728 s = bfd_get_section_by_name (abfd, ".dynamic");
1729 if (s == NULL || s->size == 0)
1730 return TRUE;
1731
1732 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1733 goto error_return;
1734
1735 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1736 if (elfsec == -1)
1737 goto error_return;
1738
1739 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1740
1741 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1742 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1743
1744 extdyn = dynbuf;
1745 extdynend = extdyn + s->size;
1746 for (; extdyn < extdynend; extdyn += extdynsize)
1747 {
1748 Elf_Internal_Dyn dyn;
1749
1750 (*swap_dyn_in) (abfd, extdyn, &dyn);
1751
1752 if (dyn.d_tag == DT_NULL)
1753 break;
1754
1755 if (dyn.d_tag == DT_NEEDED)
1756 {
1757 const char *string;
1758 struct bfd_link_needed_list *l;
1759 unsigned int tagv = dyn.d_un.d_val;
1760 bfd_size_type amt;
1761
1762 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1763 if (string == NULL)
1764 goto error_return;
1765
1766 amt = sizeof *l;
1767 l = bfd_alloc (abfd, amt);
1768 if (l == NULL)
1769 goto error_return;
1770
1771 l->by = abfd;
1772 l->name = string;
1773 l->next = *pneeded;
1774 *pneeded = l;
1775 }
1776 }
1777
1778 free (dynbuf);
1779
1780 return TRUE;
1781
1782 error_return:
1783 if (dynbuf != NULL)
1784 free (dynbuf);
1785 return FALSE;
1786 }
1787 \f
1788 /* Allocate an ELF string table--force the first byte to be zero. */
1789
1790 struct bfd_strtab_hash *
1791 _bfd_elf_stringtab_init (void)
1792 {
1793 struct bfd_strtab_hash *ret;
1794
1795 ret = _bfd_stringtab_init ();
1796 if (ret != NULL)
1797 {
1798 bfd_size_type loc;
1799
1800 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1801 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1802 if (loc == (bfd_size_type) -1)
1803 {
1804 _bfd_stringtab_free (ret);
1805 ret = NULL;
1806 }
1807 }
1808 return ret;
1809 }
1810 \f
1811 /* ELF .o/exec file reading */
1812
1813 /* Create a new bfd section from an ELF section header. */
1814
1815 bfd_boolean
1816 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1817 {
1818 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1819 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1820 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1821 const char *name;
1822
1823 name = bfd_elf_string_from_elf_section (abfd,
1824 elf_elfheader (abfd)->e_shstrndx,
1825 hdr->sh_name);
1826 if (name == NULL)
1827 return FALSE;
1828
1829 switch (hdr->sh_type)
1830 {
1831 case SHT_NULL:
1832 /* Inactive section. Throw it away. */
1833 return TRUE;
1834
1835 case SHT_PROGBITS: /* Normal section with contents. */
1836 case SHT_NOBITS: /* .bss section. */
1837 case SHT_HASH: /* .hash section. */
1838 case SHT_NOTE: /* .note section. */
1839 case SHT_INIT_ARRAY: /* .init_array section. */
1840 case SHT_FINI_ARRAY: /* .fini_array section. */
1841 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1842 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1843 case SHT_GNU_HASH: /* .gnu.hash section. */
1844 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1845
1846 case SHT_DYNAMIC: /* Dynamic linking information. */
1847 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1848 return FALSE;
1849 if (hdr->sh_link > elf_numsections (abfd)
1850 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1851 return FALSE;
1852 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1853 {
1854 Elf_Internal_Shdr *dynsymhdr;
1855
1856 /* The shared libraries distributed with hpux11 have a bogus
1857 sh_link field for the ".dynamic" section. Find the
1858 string table for the ".dynsym" section instead. */
1859 if (elf_dynsymtab (abfd) != 0)
1860 {
1861 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1862 hdr->sh_link = dynsymhdr->sh_link;
1863 }
1864 else
1865 {
1866 unsigned int i, num_sec;
1867
1868 num_sec = elf_numsections (abfd);
1869 for (i = 1; i < num_sec; i++)
1870 {
1871 dynsymhdr = elf_elfsections (abfd)[i];
1872 if (dynsymhdr->sh_type == SHT_DYNSYM)
1873 {
1874 hdr->sh_link = dynsymhdr->sh_link;
1875 break;
1876 }
1877 }
1878 }
1879 }
1880 break;
1881
1882 case SHT_SYMTAB: /* A symbol table */
1883 if (elf_onesymtab (abfd) == shindex)
1884 return TRUE;
1885
1886 if (hdr->sh_entsize != bed->s->sizeof_sym)
1887 return FALSE;
1888 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1889 elf_onesymtab (abfd) = shindex;
1890 elf_tdata (abfd)->symtab_hdr = *hdr;
1891 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1892 abfd->flags |= HAS_SYMS;
1893
1894 /* Sometimes a shared object will map in the symbol table. If
1895 SHF_ALLOC is set, and this is a shared object, then we also
1896 treat this section as a BFD section. We can not base the
1897 decision purely on SHF_ALLOC, because that flag is sometimes
1898 set in a relocatable object file, which would confuse the
1899 linker. */
1900 if ((hdr->sh_flags & SHF_ALLOC) != 0
1901 && (abfd->flags & DYNAMIC) != 0
1902 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1903 shindex))
1904 return FALSE;
1905
1906 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1907 can't read symbols without that section loaded as well. It
1908 is most likely specified by the next section header. */
1909 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1910 {
1911 unsigned int i, num_sec;
1912
1913 num_sec = elf_numsections (abfd);
1914 for (i = shindex + 1; i < num_sec; i++)
1915 {
1916 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1917 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1918 && hdr2->sh_link == shindex)
1919 break;
1920 }
1921 if (i == num_sec)
1922 for (i = 1; i < shindex; i++)
1923 {
1924 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1925 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1926 && hdr2->sh_link == shindex)
1927 break;
1928 }
1929 if (i != shindex)
1930 return bfd_section_from_shdr (abfd, i);
1931 }
1932 return TRUE;
1933
1934 case SHT_DYNSYM: /* A dynamic symbol table */
1935 if (elf_dynsymtab (abfd) == shindex)
1936 return TRUE;
1937
1938 if (hdr->sh_entsize != bed->s->sizeof_sym)
1939 return FALSE;
1940 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1941 elf_dynsymtab (abfd) = shindex;
1942 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1943 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1944 abfd->flags |= HAS_SYMS;
1945
1946 /* Besides being a symbol table, we also treat this as a regular
1947 section, so that objcopy can handle it. */
1948 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1949
1950 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1951 if (elf_symtab_shndx (abfd) == shindex)
1952 return TRUE;
1953
1954 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1955 elf_symtab_shndx (abfd) = shindex;
1956 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1957 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1958 return TRUE;
1959
1960 case SHT_STRTAB: /* A string table */
1961 if (hdr->bfd_section != NULL)
1962 return TRUE;
1963 if (ehdr->e_shstrndx == shindex)
1964 {
1965 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1966 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1967 return TRUE;
1968 }
1969 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1970 {
1971 symtab_strtab:
1972 elf_tdata (abfd)->strtab_hdr = *hdr;
1973 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1974 return TRUE;
1975 }
1976 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1977 {
1978 dynsymtab_strtab:
1979 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1980 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1981 elf_elfsections (abfd)[shindex] = hdr;
1982 /* We also treat this as a regular section, so that objcopy
1983 can handle it. */
1984 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1985 shindex);
1986 }
1987
1988 /* If the string table isn't one of the above, then treat it as a
1989 regular section. We need to scan all the headers to be sure,
1990 just in case this strtab section appeared before the above. */
1991 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1992 {
1993 unsigned int i, num_sec;
1994
1995 num_sec = elf_numsections (abfd);
1996 for (i = 1; i < num_sec; i++)
1997 {
1998 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1999 if (hdr2->sh_link == shindex)
2000 {
2001 /* Prevent endless recursion on broken objects. */
2002 if (i == shindex)
2003 return FALSE;
2004 if (! bfd_section_from_shdr (abfd, i))
2005 return FALSE;
2006 if (elf_onesymtab (abfd) == i)
2007 goto symtab_strtab;
2008 if (elf_dynsymtab (abfd) == i)
2009 goto dynsymtab_strtab;
2010 }
2011 }
2012 }
2013 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2014
2015 case SHT_REL:
2016 case SHT_RELA:
2017 /* *These* do a lot of work -- but build no sections! */
2018 {
2019 asection *target_sect;
2020 Elf_Internal_Shdr *hdr2;
2021 unsigned int num_sec = elf_numsections (abfd);
2022
2023 if (hdr->sh_entsize
2024 != (bfd_size_type) (hdr->sh_type == SHT_REL
2025 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2026 return FALSE;
2027
2028 /* Check for a bogus link to avoid crashing. */
2029 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2030 || hdr->sh_link >= num_sec)
2031 {
2032 ((*_bfd_error_handler)
2033 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2034 abfd, hdr->sh_link, name, shindex));
2035 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2036 shindex);
2037 }
2038
2039 /* For some incomprehensible reason Oracle distributes
2040 libraries for Solaris in which some of the objects have
2041 bogus sh_link fields. It would be nice if we could just
2042 reject them, but, unfortunately, some people need to use
2043 them. We scan through the section headers; if we find only
2044 one suitable symbol table, we clobber the sh_link to point
2045 to it. I hope this doesn't break anything. */
2046 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2047 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2048 {
2049 unsigned int scan;
2050 int found;
2051
2052 found = 0;
2053 for (scan = 1; scan < num_sec; scan++)
2054 {
2055 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2056 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2057 {
2058 if (found != 0)
2059 {
2060 found = 0;
2061 break;
2062 }
2063 found = scan;
2064 }
2065 }
2066 if (found != 0)
2067 hdr->sh_link = found;
2068 }
2069
2070 /* Get the symbol table. */
2071 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2072 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2073 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2074 return FALSE;
2075
2076 /* If this reloc section does not use the main symbol table we
2077 don't treat it as a reloc section. BFD can't adequately
2078 represent such a section, so at least for now, we don't
2079 try. We just present it as a normal section. We also
2080 can't use it as a reloc section if it points to the null
2081 section, an invalid section, or another reloc section. */
2082 if (hdr->sh_link != elf_onesymtab (abfd)
2083 || hdr->sh_info == SHN_UNDEF
2084 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2085 || hdr->sh_info >= num_sec
2086 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2087 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2088 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2089 shindex);
2090
2091 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2092 return FALSE;
2093 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2094 if (target_sect == NULL)
2095 return FALSE;
2096
2097 if ((target_sect->flags & SEC_RELOC) == 0
2098 || target_sect->reloc_count == 0)
2099 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2100 else
2101 {
2102 bfd_size_type amt;
2103 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2104 amt = sizeof (*hdr2);
2105 hdr2 = bfd_alloc (abfd, amt);
2106 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2107 }
2108 *hdr2 = *hdr;
2109 elf_elfsections (abfd)[shindex] = hdr2;
2110 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2111 target_sect->flags |= SEC_RELOC;
2112 target_sect->relocation = NULL;
2113 target_sect->rel_filepos = hdr->sh_offset;
2114 /* In the section to which the relocations apply, mark whether
2115 its relocations are of the REL or RELA variety. */
2116 if (hdr->sh_size != 0)
2117 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2118 abfd->flags |= HAS_RELOC;
2119 return TRUE;
2120 }
2121 break;
2122
2123 case SHT_GNU_verdef:
2124 elf_dynverdef (abfd) = shindex;
2125 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2126 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2127 break;
2128
2129 case SHT_GNU_versym:
2130 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2131 return FALSE;
2132 elf_dynversym (abfd) = shindex;
2133 elf_tdata (abfd)->dynversym_hdr = *hdr;
2134 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2135
2136 case SHT_GNU_verneed:
2137 elf_dynverref (abfd) = shindex;
2138 elf_tdata (abfd)->dynverref_hdr = *hdr;
2139 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2140
2141 case SHT_SHLIB:
2142 return TRUE;
2143
2144 case SHT_GROUP:
2145 /* We need a BFD section for objcopy and relocatable linking,
2146 and it's handy to have the signature available as the section
2147 name. */
2148 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2149 return FALSE;
2150 name = group_signature (abfd, hdr);
2151 if (name == NULL)
2152 return FALSE;
2153 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2154 return FALSE;
2155 if (hdr->contents != NULL)
2156 {
2157 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2158 unsigned int n_elt = hdr->sh_size / 4;
2159 asection *s;
2160
2161 if (idx->flags & GRP_COMDAT)
2162 hdr->bfd_section->flags
2163 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2164
2165 /* We try to keep the same section order as it comes in. */
2166 idx += n_elt;
2167 while (--n_elt != 0)
2168 if ((s = (--idx)->shdr->bfd_section) != NULL
2169 && elf_next_in_group (s) != NULL)
2170 {
2171 elf_next_in_group (hdr->bfd_section) = s;
2172 break;
2173 }
2174 }
2175 break;
2176
2177 default:
2178 /* Check for any processor-specific section types. */
2179 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2180 return TRUE;
2181
2182 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2183 {
2184 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2185 /* FIXME: How to properly handle allocated section reserved
2186 for applications? */
2187 (*_bfd_error_handler)
2188 (_("%B: don't know how to handle allocated, application "
2189 "specific section `%s' [0x%8x]"),
2190 abfd, name, hdr->sh_type);
2191 else
2192 /* Allow sections reserved for applications. */
2193 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2194 shindex);
2195 }
2196 else if (hdr->sh_type >= SHT_LOPROC
2197 && hdr->sh_type <= SHT_HIPROC)
2198 /* FIXME: We should handle this section. */
2199 (*_bfd_error_handler)
2200 (_("%B: don't know how to handle processor specific section "
2201 "`%s' [0x%8x]"),
2202 abfd, name, hdr->sh_type);
2203 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2204 {
2205 /* Unrecognised OS-specific sections. */
2206 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2207 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2208 required to correctly process the section and the file should
2209 be rejected with an error message. */
2210 (*_bfd_error_handler)
2211 (_("%B: don't know how to handle OS specific section "
2212 "`%s' [0x%8x]"),
2213 abfd, name, hdr->sh_type);
2214 else
2215 /* Otherwise it should be processed. */
2216 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2217 }
2218 else
2219 /* FIXME: We should handle this section. */
2220 (*_bfd_error_handler)
2221 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2222 abfd, name, hdr->sh_type);
2223
2224 return FALSE;
2225 }
2226
2227 return TRUE;
2228 }
2229
2230 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2231 Return SEC for sections that have no elf section, and NULL on error. */
2232
2233 asection *
2234 bfd_section_from_r_symndx (bfd *abfd,
2235 struct sym_sec_cache *cache,
2236 asection *sec,
2237 unsigned long r_symndx)
2238 {
2239 Elf_Internal_Shdr *symtab_hdr;
2240 unsigned char esym[sizeof (Elf64_External_Sym)];
2241 Elf_External_Sym_Shndx eshndx;
2242 Elf_Internal_Sym isym;
2243 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2244
2245 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2246 return cache->sec[ent];
2247
2248 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2249 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2250 &isym, esym, &eshndx) == NULL)
2251 return NULL;
2252
2253 if (cache->abfd != abfd)
2254 {
2255 memset (cache->indx, -1, sizeof (cache->indx));
2256 cache->abfd = abfd;
2257 }
2258 cache->indx[ent] = r_symndx;
2259 cache->sec[ent] = sec;
2260 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2261 || isym.st_shndx > SHN_HIRESERVE)
2262 {
2263 asection *s;
2264 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2265 if (s != NULL)
2266 cache->sec[ent] = s;
2267 }
2268 return cache->sec[ent];
2269 }
2270
2271 /* Given an ELF section number, retrieve the corresponding BFD
2272 section. */
2273
2274 asection *
2275 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2276 {
2277 if (index >= elf_numsections (abfd))
2278 return NULL;
2279 return elf_elfsections (abfd)[index]->bfd_section;
2280 }
2281
2282 static const struct bfd_elf_special_section special_sections_b[] =
2283 {
2284 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2285 { NULL, 0, 0, 0, 0 }
2286 };
2287
2288 static const struct bfd_elf_special_section special_sections_c[] =
2289 {
2290 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2291 { NULL, 0, 0, 0, 0 }
2292 };
2293
2294 static const struct bfd_elf_special_section special_sections_d[] =
2295 {
2296 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2297 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2298 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2299 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2300 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2301 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2302 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2303 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2304 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2305 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2306 { NULL, 0, 0, 0, 0 }
2307 };
2308
2309 static const struct bfd_elf_special_section special_sections_f[] =
2310 {
2311 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2312 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2313 { NULL, 0, 0, 0, 0 }
2314 };
2315
2316 static const struct bfd_elf_special_section special_sections_g[] =
2317 {
2318 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2319 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2320 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2321 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2322 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2323 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2324 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2325 { ".gnu.hash", 9, 0, SHT_GNU_HASH, SHF_ALLOC },
2326 { NULL, 0, 0, 0, 0 }
2327 };
2328
2329 static const struct bfd_elf_special_section special_sections_h[] =
2330 {
2331 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2332 { NULL, 0, 0, 0, 0 }
2333 };
2334
2335 static const struct bfd_elf_special_section special_sections_i[] =
2336 {
2337 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2338 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2339 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2340 { NULL, 0, 0, 0, 0 }
2341 };
2342
2343 static const struct bfd_elf_special_section special_sections_l[] =
2344 {
2345 { ".line", 5, 0, SHT_PROGBITS, 0 },
2346 { NULL, 0, 0, 0, 0 }
2347 };
2348
2349 static const struct bfd_elf_special_section special_sections_n[] =
2350 {
2351 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2352 { ".note", 5, -1, SHT_NOTE, 0 },
2353 { NULL, 0, 0, 0, 0 }
2354 };
2355
2356 static const struct bfd_elf_special_section special_sections_p[] =
2357 {
2358 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2359 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2360 { NULL, 0, 0, 0, 0 }
2361 };
2362
2363 static const struct bfd_elf_special_section special_sections_r[] =
2364 {
2365 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2366 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2367 { ".rela", 5, -1, SHT_RELA, 0 },
2368 { ".rel", 4, -1, SHT_REL, 0 },
2369 { NULL, 0, 0, 0, 0 }
2370 };
2371
2372 static const struct bfd_elf_special_section special_sections_s[] =
2373 {
2374 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2375 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2376 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2377 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2378 { NULL, 0, 0, 0, 0 }
2379 };
2380
2381 static const struct bfd_elf_special_section special_sections_t[] =
2382 {
2383 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2384 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2385 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2386 { NULL, 0, 0, 0, 0 }
2387 };
2388
2389 static const struct bfd_elf_special_section *special_sections[] =
2390 {
2391 special_sections_b, /* 'b' */
2392 special_sections_c, /* 'b' */
2393 special_sections_d, /* 'd' */
2394 NULL, /* 'e' */
2395 special_sections_f, /* 'f' */
2396 special_sections_g, /* 'g' */
2397 special_sections_h, /* 'h' */
2398 special_sections_i, /* 'i' */
2399 NULL, /* 'j' */
2400 NULL, /* 'k' */
2401 special_sections_l, /* 'l' */
2402 NULL, /* 'm' */
2403 special_sections_n, /* 'n' */
2404 NULL, /* 'o' */
2405 special_sections_p, /* 'p' */
2406 NULL, /* 'q' */
2407 special_sections_r, /* 'r' */
2408 special_sections_s, /* 's' */
2409 special_sections_t, /* 't' */
2410 };
2411
2412 const struct bfd_elf_special_section *
2413 _bfd_elf_get_special_section (const char *name,
2414 const struct bfd_elf_special_section *spec,
2415 unsigned int rela)
2416 {
2417 int i;
2418 int len;
2419
2420 len = strlen (name);
2421
2422 for (i = 0; spec[i].prefix != NULL; i++)
2423 {
2424 int suffix_len;
2425 int prefix_len = spec[i].prefix_length;
2426
2427 if (len < prefix_len)
2428 continue;
2429 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2430 continue;
2431
2432 suffix_len = spec[i].suffix_length;
2433 if (suffix_len <= 0)
2434 {
2435 if (name[prefix_len] != 0)
2436 {
2437 if (suffix_len == 0)
2438 continue;
2439 if (name[prefix_len] != '.'
2440 && (suffix_len == -2
2441 || (rela && spec[i].type == SHT_REL)))
2442 continue;
2443 }
2444 }
2445 else
2446 {
2447 if (len < prefix_len + suffix_len)
2448 continue;
2449 if (memcmp (name + len - suffix_len,
2450 spec[i].prefix + prefix_len,
2451 suffix_len) != 0)
2452 continue;
2453 }
2454 return &spec[i];
2455 }
2456
2457 return NULL;
2458 }
2459
2460 const struct bfd_elf_special_section *
2461 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2462 {
2463 int i;
2464 const struct bfd_elf_special_section *spec;
2465 const struct elf_backend_data *bed;
2466
2467 /* See if this is one of the special sections. */
2468 if (sec->name == NULL)
2469 return NULL;
2470
2471 bed = get_elf_backend_data (abfd);
2472 spec = bed->special_sections;
2473 if (spec)
2474 {
2475 spec = _bfd_elf_get_special_section (sec->name,
2476 bed->special_sections,
2477 sec->use_rela_p);
2478 if (spec != NULL)
2479 return spec;
2480 }
2481
2482 if (sec->name[0] != '.')
2483 return NULL;
2484
2485 i = sec->name[1] - 'b';
2486 if (i < 0 || i > 't' - 'b')
2487 return NULL;
2488
2489 spec = special_sections[i];
2490
2491 if (spec == NULL)
2492 return NULL;
2493
2494 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2495 }
2496
2497 bfd_boolean
2498 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2499 {
2500 struct bfd_elf_section_data *sdata;
2501 const struct elf_backend_data *bed;
2502 const struct bfd_elf_special_section *ssect;
2503
2504 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2505 if (sdata == NULL)
2506 {
2507 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2508 if (sdata == NULL)
2509 return FALSE;
2510 sec->used_by_bfd = sdata;
2511 }
2512
2513 /* Indicate whether or not this section should use RELA relocations. */
2514 bed = get_elf_backend_data (abfd);
2515 sec->use_rela_p = bed->default_use_rela_p;
2516
2517 /* When we read a file, we don't need to set ELF section type and
2518 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2519 anyway. We will set ELF section type and flags for all linker
2520 created sections. If user specifies BFD section flags, we will
2521 set ELF section type and flags based on BFD section flags in
2522 elf_fake_sections. */
2523 if ((!sec->flags && abfd->direction != read_direction)
2524 || (sec->flags & SEC_LINKER_CREATED) != 0)
2525 {
2526 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2527 if (ssect != NULL)
2528 {
2529 elf_section_type (sec) = ssect->type;
2530 elf_section_flags (sec) = ssect->attr;
2531 }
2532 }
2533
2534 return _bfd_generic_new_section_hook (abfd, sec);
2535 }
2536
2537 /* Create a new bfd section from an ELF program header.
2538
2539 Since program segments have no names, we generate a synthetic name
2540 of the form segment<NUM>, where NUM is generally the index in the
2541 program header table. For segments that are split (see below) we
2542 generate the names segment<NUM>a and segment<NUM>b.
2543
2544 Note that some program segments may have a file size that is different than
2545 (less than) the memory size. All this means is that at execution the
2546 system must allocate the amount of memory specified by the memory size,
2547 but only initialize it with the first "file size" bytes read from the
2548 file. This would occur for example, with program segments consisting
2549 of combined data+bss.
2550
2551 To handle the above situation, this routine generates TWO bfd sections
2552 for the single program segment. The first has the length specified by
2553 the file size of the segment, and the second has the length specified
2554 by the difference between the two sizes. In effect, the segment is split
2555 into it's initialized and uninitialized parts.
2556
2557 */
2558
2559 bfd_boolean
2560 _bfd_elf_make_section_from_phdr (bfd *abfd,
2561 Elf_Internal_Phdr *hdr,
2562 int index,
2563 const char *typename)
2564 {
2565 asection *newsect;
2566 char *name;
2567 char namebuf[64];
2568 size_t len;
2569 int split;
2570
2571 split = ((hdr->p_memsz > 0)
2572 && (hdr->p_filesz > 0)
2573 && (hdr->p_memsz > hdr->p_filesz));
2574 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2575 len = strlen (namebuf) + 1;
2576 name = bfd_alloc (abfd, len);
2577 if (!name)
2578 return FALSE;
2579 memcpy (name, namebuf, len);
2580 newsect = bfd_make_section (abfd, name);
2581 if (newsect == NULL)
2582 return FALSE;
2583 newsect->vma = hdr->p_vaddr;
2584 newsect->lma = hdr->p_paddr;
2585 newsect->size = hdr->p_filesz;
2586 newsect->filepos = hdr->p_offset;
2587 newsect->flags |= SEC_HAS_CONTENTS;
2588 newsect->alignment_power = bfd_log2 (hdr->p_align);
2589 if (hdr->p_type == PT_LOAD)
2590 {
2591 newsect->flags |= SEC_ALLOC;
2592 newsect->flags |= SEC_LOAD;
2593 if (hdr->p_flags & PF_X)
2594 {
2595 /* FIXME: all we known is that it has execute PERMISSION,
2596 may be data. */
2597 newsect->flags |= SEC_CODE;
2598 }
2599 }
2600 if (!(hdr->p_flags & PF_W))
2601 {
2602 newsect->flags |= SEC_READONLY;
2603 }
2604
2605 if (split)
2606 {
2607 sprintf (namebuf, "%s%db", typename, index);
2608 len = strlen (namebuf) + 1;
2609 name = bfd_alloc (abfd, len);
2610 if (!name)
2611 return FALSE;
2612 memcpy (name, namebuf, len);
2613 newsect = bfd_make_section (abfd, name);
2614 if (newsect == NULL)
2615 return FALSE;
2616 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2617 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2618 newsect->size = hdr->p_memsz - hdr->p_filesz;
2619 if (hdr->p_type == PT_LOAD)
2620 {
2621 newsect->flags |= SEC_ALLOC;
2622 if (hdr->p_flags & PF_X)
2623 newsect->flags |= SEC_CODE;
2624 }
2625 if (!(hdr->p_flags & PF_W))
2626 newsect->flags |= SEC_READONLY;
2627 }
2628
2629 return TRUE;
2630 }
2631
2632 bfd_boolean
2633 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2634 {
2635 const struct elf_backend_data *bed;
2636
2637 switch (hdr->p_type)
2638 {
2639 case PT_NULL:
2640 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2641
2642 case PT_LOAD:
2643 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2644
2645 case PT_DYNAMIC:
2646 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2647
2648 case PT_INTERP:
2649 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2650
2651 case PT_NOTE:
2652 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2653 return FALSE;
2654 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2655 return FALSE;
2656 return TRUE;
2657
2658 case PT_SHLIB:
2659 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2660
2661 case PT_PHDR:
2662 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2663
2664 case PT_GNU_EH_FRAME:
2665 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2666 "eh_frame_hdr");
2667
2668 case PT_GNU_STACK:
2669 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2670
2671 case PT_GNU_RELRO:
2672 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2673
2674 default:
2675 /* Check for any processor-specific program segment types. */
2676 bed = get_elf_backend_data (abfd);
2677 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2678 }
2679 }
2680
2681 /* Initialize REL_HDR, the section-header for new section, containing
2682 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2683 relocations; otherwise, we use REL relocations. */
2684
2685 bfd_boolean
2686 _bfd_elf_init_reloc_shdr (bfd *abfd,
2687 Elf_Internal_Shdr *rel_hdr,
2688 asection *asect,
2689 bfd_boolean use_rela_p)
2690 {
2691 char *name;
2692 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2693 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2694
2695 name = bfd_alloc (abfd, amt);
2696 if (name == NULL)
2697 return FALSE;
2698 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2699 rel_hdr->sh_name =
2700 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2701 FALSE);
2702 if (rel_hdr->sh_name == (unsigned int) -1)
2703 return FALSE;
2704 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2705 rel_hdr->sh_entsize = (use_rela_p
2706 ? bed->s->sizeof_rela
2707 : bed->s->sizeof_rel);
2708 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2709 rel_hdr->sh_flags = 0;
2710 rel_hdr->sh_addr = 0;
2711 rel_hdr->sh_size = 0;
2712 rel_hdr->sh_offset = 0;
2713
2714 return TRUE;
2715 }
2716
2717 /* Set up an ELF internal section header for a section. */
2718
2719 static void
2720 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2721 {
2722 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2723 bfd_boolean *failedptr = failedptrarg;
2724 Elf_Internal_Shdr *this_hdr;
2725
2726 if (*failedptr)
2727 {
2728 /* We already failed; just get out of the bfd_map_over_sections
2729 loop. */
2730 return;
2731 }
2732
2733 this_hdr = &elf_section_data (asect)->this_hdr;
2734
2735 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2736 asect->name, FALSE);
2737 if (this_hdr->sh_name == (unsigned int) -1)
2738 {
2739 *failedptr = TRUE;
2740 return;
2741 }
2742
2743 /* Don't clear sh_flags. Assembler may set additional bits. */
2744
2745 if ((asect->flags & SEC_ALLOC) != 0
2746 || asect->user_set_vma)
2747 this_hdr->sh_addr = asect->vma;
2748 else
2749 this_hdr->sh_addr = 0;
2750
2751 this_hdr->sh_offset = 0;
2752 this_hdr->sh_size = asect->size;
2753 this_hdr->sh_link = 0;
2754 this_hdr->sh_addralign = 1 << asect->alignment_power;
2755 /* The sh_entsize and sh_info fields may have been set already by
2756 copy_private_section_data. */
2757
2758 this_hdr->bfd_section = asect;
2759 this_hdr->contents = NULL;
2760
2761 /* If the section type is unspecified, we set it based on
2762 asect->flags. */
2763 if (this_hdr->sh_type == SHT_NULL)
2764 {
2765 if ((asect->flags & SEC_GROUP) != 0)
2766 this_hdr->sh_type = SHT_GROUP;
2767 else if ((asect->flags & SEC_ALLOC) != 0
2768 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2769 || (asect->flags & SEC_NEVER_LOAD) != 0))
2770 this_hdr->sh_type = SHT_NOBITS;
2771 else
2772 this_hdr->sh_type = SHT_PROGBITS;
2773 }
2774
2775 switch (this_hdr->sh_type)
2776 {
2777 default:
2778 break;
2779
2780 case SHT_STRTAB:
2781 case SHT_INIT_ARRAY:
2782 case SHT_FINI_ARRAY:
2783 case SHT_PREINIT_ARRAY:
2784 case SHT_NOTE:
2785 case SHT_NOBITS:
2786 case SHT_PROGBITS:
2787 break;
2788
2789 case SHT_HASH:
2790 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2791 break;
2792
2793 case SHT_DYNSYM:
2794 this_hdr->sh_entsize = bed->s->sizeof_sym;
2795 break;
2796
2797 case SHT_DYNAMIC:
2798 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2799 break;
2800
2801 case SHT_RELA:
2802 if (get_elf_backend_data (abfd)->may_use_rela_p)
2803 this_hdr->sh_entsize = bed->s->sizeof_rela;
2804 break;
2805
2806 case SHT_REL:
2807 if (get_elf_backend_data (abfd)->may_use_rel_p)
2808 this_hdr->sh_entsize = bed->s->sizeof_rel;
2809 break;
2810
2811 case SHT_GNU_versym:
2812 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2813 break;
2814
2815 case SHT_GNU_verdef:
2816 this_hdr->sh_entsize = 0;
2817 /* objcopy or strip will copy over sh_info, but may not set
2818 cverdefs. The linker will set cverdefs, but sh_info will be
2819 zero. */
2820 if (this_hdr->sh_info == 0)
2821 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2822 else
2823 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2824 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2825 break;
2826
2827 case SHT_GNU_verneed:
2828 this_hdr->sh_entsize = 0;
2829 /* objcopy or strip will copy over sh_info, but may not set
2830 cverrefs. The linker will set cverrefs, but sh_info will be
2831 zero. */
2832 if (this_hdr->sh_info == 0)
2833 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2834 else
2835 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2836 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2837 break;
2838
2839 case SHT_GROUP:
2840 this_hdr->sh_entsize = 4;
2841 break;
2842
2843 case SHT_GNU_HASH:
2844 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2845 break;
2846 }
2847
2848 if ((asect->flags & SEC_ALLOC) != 0)
2849 this_hdr->sh_flags |= SHF_ALLOC;
2850 if ((asect->flags & SEC_READONLY) == 0)
2851 this_hdr->sh_flags |= SHF_WRITE;
2852 if ((asect->flags & SEC_CODE) != 0)
2853 this_hdr->sh_flags |= SHF_EXECINSTR;
2854 if ((asect->flags & SEC_MERGE) != 0)
2855 {
2856 this_hdr->sh_flags |= SHF_MERGE;
2857 this_hdr->sh_entsize = asect->entsize;
2858 if ((asect->flags & SEC_STRINGS) != 0)
2859 this_hdr->sh_flags |= SHF_STRINGS;
2860 }
2861 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2862 this_hdr->sh_flags |= SHF_GROUP;
2863 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2864 {
2865 this_hdr->sh_flags |= SHF_TLS;
2866 if (asect->size == 0
2867 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2868 {
2869 struct bfd_link_order *o = asect->map_tail.link_order;
2870
2871 this_hdr->sh_size = 0;
2872 if (o != NULL)
2873 {
2874 this_hdr->sh_size = o->offset + o->size;
2875 if (this_hdr->sh_size != 0)
2876 this_hdr->sh_type = SHT_NOBITS;
2877 }
2878 }
2879 }
2880
2881 /* Check for processor-specific section types. */
2882 if (bed->elf_backend_fake_sections
2883 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2884 *failedptr = TRUE;
2885
2886 /* If the section has relocs, set up a section header for the
2887 SHT_REL[A] section. If two relocation sections are required for
2888 this section, it is up to the processor-specific back-end to
2889 create the other. */
2890 if ((asect->flags & SEC_RELOC) != 0
2891 && !_bfd_elf_init_reloc_shdr (abfd,
2892 &elf_section_data (asect)->rel_hdr,
2893 asect,
2894 asect->use_rela_p))
2895 *failedptr = TRUE;
2896 }
2897
2898 /* Fill in the contents of a SHT_GROUP section. */
2899
2900 void
2901 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2902 {
2903 bfd_boolean *failedptr = failedptrarg;
2904 unsigned long symindx;
2905 asection *elt, *first;
2906 unsigned char *loc;
2907 bfd_boolean gas;
2908
2909 /* Ignore linker created group section. See elfNN_ia64_object_p in
2910 elfxx-ia64.c. */
2911 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2912 || *failedptr)
2913 return;
2914
2915 symindx = 0;
2916 if (elf_group_id (sec) != NULL)
2917 symindx = elf_group_id (sec)->udata.i;
2918
2919 if (symindx == 0)
2920 {
2921 /* If called from the assembler, swap_out_syms will have set up
2922 elf_section_syms; If called for "ld -r", use target_index. */
2923 if (elf_section_syms (abfd) != NULL)
2924 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2925 else
2926 symindx = sec->target_index;
2927 }
2928 elf_section_data (sec)->this_hdr.sh_info = symindx;
2929
2930 /* The contents won't be allocated for "ld -r" or objcopy. */
2931 gas = TRUE;
2932 if (sec->contents == NULL)
2933 {
2934 gas = FALSE;
2935 sec->contents = bfd_alloc (abfd, sec->size);
2936
2937 /* Arrange for the section to be written out. */
2938 elf_section_data (sec)->this_hdr.contents = sec->contents;
2939 if (sec->contents == NULL)
2940 {
2941 *failedptr = TRUE;
2942 return;
2943 }
2944 }
2945
2946 loc = sec->contents + sec->size;
2947
2948 /* Get the pointer to the first section in the group that gas
2949 squirreled away here. objcopy arranges for this to be set to the
2950 start of the input section group. */
2951 first = elt = elf_next_in_group (sec);
2952
2953 /* First element is a flag word. Rest of section is elf section
2954 indices for all the sections of the group. Write them backwards
2955 just to keep the group in the same order as given in .section
2956 directives, not that it matters. */
2957 while (elt != NULL)
2958 {
2959 asection *s;
2960 unsigned int idx;
2961
2962 loc -= 4;
2963 s = elt;
2964 if (!gas)
2965 s = s->output_section;
2966 idx = 0;
2967 if (s != NULL)
2968 idx = elf_section_data (s)->this_idx;
2969 H_PUT_32 (abfd, idx, loc);
2970 elt = elf_next_in_group (elt);
2971 if (elt == first)
2972 break;
2973 }
2974
2975 if ((loc -= 4) != sec->contents)
2976 abort ();
2977
2978 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2979 }
2980
2981 /* Assign all ELF section numbers. The dummy first section is handled here
2982 too. The link/info pointers for the standard section types are filled
2983 in here too, while we're at it. */
2984
2985 static bfd_boolean
2986 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2987 {
2988 struct elf_obj_tdata *t = elf_tdata (abfd);
2989 asection *sec;
2990 unsigned int section_number, secn;
2991 Elf_Internal_Shdr **i_shdrp;
2992 struct bfd_elf_section_data *d;
2993
2994 section_number = 1;
2995
2996 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2997
2998 /* SHT_GROUP sections are in relocatable files only. */
2999 if (link_info == NULL || link_info->relocatable)
3000 {
3001 /* Put SHT_GROUP sections first. */
3002 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3003 {
3004 d = elf_section_data (sec);
3005
3006 if (d->this_hdr.sh_type == SHT_GROUP)
3007 {
3008 if (sec->flags & SEC_LINKER_CREATED)
3009 {
3010 /* Remove the linker created SHT_GROUP sections. */
3011 bfd_section_list_remove (abfd, sec);
3012 abfd->section_count--;
3013 }
3014 else
3015 {
3016 if (section_number == SHN_LORESERVE)
3017 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3018 d->this_idx = section_number++;
3019 }
3020 }
3021 }
3022 }
3023
3024 for (sec = abfd->sections; sec; sec = sec->next)
3025 {
3026 d = elf_section_data (sec);
3027
3028 if (d->this_hdr.sh_type != SHT_GROUP)
3029 {
3030 if (section_number == SHN_LORESERVE)
3031 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3032 d->this_idx = section_number++;
3033 }
3034 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3035 if ((sec->flags & SEC_RELOC) == 0)
3036 d->rel_idx = 0;
3037 else
3038 {
3039 if (section_number == SHN_LORESERVE)
3040 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3041 d->rel_idx = section_number++;
3042 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3043 }
3044
3045 if (d->rel_hdr2)
3046 {
3047 if (section_number == SHN_LORESERVE)
3048 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3049 d->rel_idx2 = section_number++;
3050 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3051 }
3052 else
3053 d->rel_idx2 = 0;
3054 }
3055
3056 if (section_number == SHN_LORESERVE)
3057 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3058 t->shstrtab_section = section_number++;
3059 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3060 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3061
3062 if (bfd_get_symcount (abfd) > 0)
3063 {
3064 if (section_number == SHN_LORESERVE)
3065 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3066 t->symtab_section = section_number++;
3067 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3068 if (section_number > SHN_LORESERVE - 2)
3069 {
3070 if (section_number == SHN_LORESERVE)
3071 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3072 t->symtab_shndx_section = section_number++;
3073 t->symtab_shndx_hdr.sh_name
3074 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3075 ".symtab_shndx", FALSE);
3076 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3077 return FALSE;
3078 }
3079 if (section_number == SHN_LORESERVE)
3080 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3081 t->strtab_section = section_number++;
3082 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3083 }
3084
3085 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3086 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3087
3088 elf_numsections (abfd) = section_number;
3089 elf_elfheader (abfd)->e_shnum = section_number;
3090 if (section_number > SHN_LORESERVE)
3091 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3092
3093 /* Set up the list of section header pointers, in agreement with the
3094 indices. */
3095 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3096 if (i_shdrp == NULL)
3097 return FALSE;
3098
3099 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3100 if (i_shdrp[0] == NULL)
3101 {
3102 bfd_release (abfd, i_shdrp);
3103 return FALSE;
3104 }
3105
3106 elf_elfsections (abfd) = i_shdrp;
3107
3108 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3109 if (bfd_get_symcount (abfd) > 0)
3110 {
3111 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3112 if (elf_numsections (abfd) > SHN_LORESERVE)
3113 {
3114 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3115 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3116 }
3117 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3118 t->symtab_hdr.sh_link = t->strtab_section;
3119 }
3120
3121 for (sec = abfd->sections; sec; sec = sec->next)
3122 {
3123 struct bfd_elf_section_data *d = elf_section_data (sec);
3124 asection *s;
3125 const char *name;
3126
3127 i_shdrp[d->this_idx] = &d->this_hdr;
3128 if (d->rel_idx != 0)
3129 i_shdrp[d->rel_idx] = &d->rel_hdr;
3130 if (d->rel_idx2 != 0)
3131 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3132
3133 /* Fill in the sh_link and sh_info fields while we're at it. */
3134
3135 /* sh_link of a reloc section is the section index of the symbol
3136 table. sh_info is the section index of the section to which
3137 the relocation entries apply. */
3138 if (d->rel_idx != 0)
3139 {
3140 d->rel_hdr.sh_link = t->symtab_section;
3141 d->rel_hdr.sh_info = d->this_idx;
3142 }
3143 if (d->rel_idx2 != 0)
3144 {
3145 d->rel_hdr2->sh_link = t->symtab_section;
3146 d->rel_hdr2->sh_info = d->this_idx;
3147 }
3148
3149 /* We need to set up sh_link for SHF_LINK_ORDER. */
3150 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3151 {
3152 s = elf_linked_to_section (sec);
3153 if (s)
3154 {
3155 /* elf_linked_to_section points to the input section. */
3156 if (link_info != NULL)
3157 {
3158 /* Check discarded linkonce section. */
3159 if (elf_discarded_section (s))
3160 {
3161 asection *kept;
3162 (*_bfd_error_handler)
3163 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3164 abfd, d->this_hdr.bfd_section,
3165 s, s->owner);
3166 /* Point to the kept section if it has the same
3167 size as the discarded one. */
3168 kept = _bfd_elf_check_kept_section (s);
3169 if (kept == NULL)
3170 {
3171 bfd_set_error (bfd_error_bad_value);
3172 return FALSE;
3173 }
3174 s = kept;
3175 }
3176
3177 s = s->output_section;
3178 BFD_ASSERT (s != NULL);
3179 }
3180 else
3181 {
3182 /* Handle objcopy. */
3183 if (s->output_section == NULL)
3184 {
3185 (*_bfd_error_handler)
3186 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3187 abfd, d->this_hdr.bfd_section, s, s->owner);
3188 bfd_set_error (bfd_error_bad_value);
3189 return FALSE;
3190 }
3191 s = s->output_section;
3192 }
3193 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3194 }
3195 else
3196 {
3197 /* PR 290:
3198 The Intel C compiler generates SHT_IA_64_UNWIND with
3199 SHF_LINK_ORDER. But it doesn't set the sh_link or
3200 sh_info fields. Hence we could get the situation
3201 where s is NULL. */
3202 const struct elf_backend_data *bed
3203 = get_elf_backend_data (abfd);
3204 if (bed->link_order_error_handler)
3205 bed->link_order_error_handler
3206 (_("%B: warning: sh_link not set for section `%A'"),
3207 abfd, sec);
3208 }
3209 }
3210
3211 switch (d->this_hdr.sh_type)
3212 {
3213 case SHT_REL:
3214 case SHT_RELA:
3215 /* A reloc section which we are treating as a normal BFD
3216 section. sh_link is the section index of the symbol
3217 table. sh_info is the section index of the section to
3218 which the relocation entries apply. We assume that an
3219 allocated reloc section uses the dynamic symbol table.
3220 FIXME: How can we be sure? */
3221 s = bfd_get_section_by_name (abfd, ".dynsym");
3222 if (s != NULL)
3223 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3224
3225 /* We look up the section the relocs apply to by name. */
3226 name = sec->name;
3227 if (d->this_hdr.sh_type == SHT_REL)
3228 name += 4;
3229 else
3230 name += 5;
3231 s = bfd_get_section_by_name (abfd, name);
3232 if (s != NULL)
3233 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3234 break;
3235
3236 case SHT_STRTAB:
3237 /* We assume that a section named .stab*str is a stabs
3238 string section. We look for a section with the same name
3239 but without the trailing ``str'', and set its sh_link
3240 field to point to this section. */
3241 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3242 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3243 {
3244 size_t len;
3245 char *alc;
3246
3247 len = strlen (sec->name);
3248 alc = bfd_malloc (len - 2);
3249 if (alc == NULL)
3250 return FALSE;
3251 memcpy (alc, sec->name, len - 3);
3252 alc[len - 3] = '\0';
3253 s = bfd_get_section_by_name (abfd, alc);
3254 free (alc);
3255 if (s != NULL)
3256 {
3257 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3258
3259 /* This is a .stab section. */
3260 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3261 elf_section_data (s)->this_hdr.sh_entsize
3262 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3263 }
3264 }
3265 break;
3266
3267 case SHT_DYNAMIC:
3268 case SHT_DYNSYM:
3269 case SHT_GNU_verneed:
3270 case SHT_GNU_verdef:
3271 /* sh_link is the section header index of the string table
3272 used for the dynamic entries, or the symbol table, or the
3273 version strings. */
3274 s = bfd_get_section_by_name (abfd, ".dynstr");
3275 if (s != NULL)
3276 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3277 break;
3278
3279 case SHT_GNU_LIBLIST:
3280 /* sh_link is the section header index of the prelink library
3281 list
3282 used for the dynamic entries, or the symbol table, or the
3283 version strings. */
3284 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3285 ? ".dynstr" : ".gnu.libstr");
3286 if (s != NULL)
3287 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3288 break;
3289
3290 case SHT_HASH:
3291 case SHT_GNU_HASH:
3292 case SHT_GNU_versym:
3293 /* sh_link is the section header index of the symbol table
3294 this hash table or version table is for. */
3295 s = bfd_get_section_by_name (abfd, ".dynsym");
3296 if (s != NULL)
3297 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3298 break;
3299
3300 case SHT_GROUP:
3301 d->this_hdr.sh_link = t->symtab_section;
3302 }
3303 }
3304
3305 for (secn = 1; secn < section_number; ++secn)
3306 if (i_shdrp[secn] == NULL)
3307 i_shdrp[secn] = i_shdrp[0];
3308 else
3309 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3310 i_shdrp[secn]->sh_name);
3311 return TRUE;
3312 }
3313
3314 /* Map symbol from it's internal number to the external number, moving
3315 all local symbols to be at the head of the list. */
3316
3317 static bfd_boolean
3318 sym_is_global (bfd *abfd, asymbol *sym)
3319 {
3320 /* If the backend has a special mapping, use it. */
3321 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3322 if (bed->elf_backend_sym_is_global)
3323 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3324
3325 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3326 || bfd_is_und_section (bfd_get_section (sym))
3327 || bfd_is_com_section (bfd_get_section (sym)));
3328 }
3329
3330 /* Don't output section symbols for sections that are not going to be
3331 output. Also, don't output section symbols for reloc and other
3332 special sections. */
3333
3334 static bfd_boolean
3335 ignore_section_sym (bfd *abfd, asymbol *sym)
3336 {
3337 return ((sym->flags & BSF_SECTION_SYM) != 0
3338 && (sym->value != 0
3339 || (sym->section->owner != abfd
3340 && (sym->section->output_section->owner != abfd
3341 || sym->section->output_offset != 0))));
3342 }
3343
3344 static bfd_boolean
3345 elf_map_symbols (bfd *abfd)
3346 {
3347 unsigned int symcount = bfd_get_symcount (abfd);
3348 asymbol **syms = bfd_get_outsymbols (abfd);
3349 asymbol **sect_syms;
3350 unsigned int num_locals = 0;
3351 unsigned int num_globals = 0;
3352 unsigned int num_locals2 = 0;
3353 unsigned int num_globals2 = 0;
3354 int max_index = 0;
3355 unsigned int idx;
3356 asection *asect;
3357 asymbol **new_syms;
3358
3359 #ifdef DEBUG
3360 fprintf (stderr, "elf_map_symbols\n");
3361 fflush (stderr);
3362 #endif
3363
3364 for (asect = abfd->sections; asect; asect = asect->next)
3365 {
3366 if (max_index < asect->index)
3367 max_index = asect->index;
3368 }
3369
3370 max_index++;
3371 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3372 if (sect_syms == NULL)
3373 return FALSE;
3374 elf_section_syms (abfd) = sect_syms;
3375 elf_num_section_syms (abfd) = max_index;
3376
3377 /* Init sect_syms entries for any section symbols we have already
3378 decided to output. */
3379 for (idx = 0; idx < symcount; idx++)
3380 {
3381 asymbol *sym = syms[idx];
3382
3383 if ((sym->flags & BSF_SECTION_SYM) != 0
3384 && !ignore_section_sym (abfd, sym))
3385 {
3386 asection *sec = sym->section;
3387
3388 if (sec->owner != abfd)
3389 sec = sec->output_section;
3390
3391 sect_syms[sec->index] = syms[idx];
3392 }
3393 }
3394
3395 /* Classify all of the symbols. */
3396 for (idx = 0; idx < symcount; idx++)
3397 {
3398 if (ignore_section_sym (abfd, syms[idx]))
3399 continue;
3400 if (!sym_is_global (abfd, syms[idx]))
3401 num_locals++;
3402 else
3403 num_globals++;
3404 }
3405
3406 /* We will be adding a section symbol for each normal BFD section. Most
3407 sections will already have a section symbol in outsymbols, but
3408 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3409 at least in that case. */
3410 for (asect = abfd->sections; asect; asect = asect->next)
3411 {
3412 if (sect_syms[asect->index] == NULL)
3413 {
3414 if (!sym_is_global (abfd, asect->symbol))
3415 num_locals++;
3416 else
3417 num_globals++;
3418 }
3419 }
3420
3421 /* Now sort the symbols so the local symbols are first. */
3422 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3423
3424 if (new_syms == NULL)
3425 return FALSE;
3426
3427 for (idx = 0; idx < symcount; idx++)
3428 {
3429 asymbol *sym = syms[idx];
3430 unsigned int i;
3431
3432 if (ignore_section_sym (abfd, sym))
3433 continue;
3434 if (!sym_is_global (abfd, sym))
3435 i = num_locals2++;
3436 else
3437 i = num_locals + num_globals2++;
3438 new_syms[i] = sym;
3439 sym->udata.i = i + 1;
3440 }
3441 for (asect = abfd->sections; asect; asect = asect->next)
3442 {
3443 if (sect_syms[asect->index] == NULL)
3444 {
3445 asymbol *sym = asect->symbol;
3446 unsigned int i;
3447
3448 sect_syms[asect->index] = sym;
3449 if (!sym_is_global (abfd, sym))
3450 i = num_locals2++;
3451 else
3452 i = num_locals + num_globals2++;
3453 new_syms[i] = sym;
3454 sym->udata.i = i + 1;
3455 }
3456 }
3457
3458 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3459
3460 elf_num_locals (abfd) = num_locals;
3461 elf_num_globals (abfd) = num_globals;
3462 return TRUE;
3463 }
3464
3465 /* Align to the maximum file alignment that could be required for any
3466 ELF data structure. */
3467
3468 static inline file_ptr
3469 align_file_position (file_ptr off, int align)
3470 {
3471 return (off + align - 1) & ~(align - 1);
3472 }
3473
3474 /* Assign a file position to a section, optionally aligning to the
3475 required section alignment. */
3476
3477 file_ptr
3478 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3479 file_ptr offset,
3480 bfd_boolean align)
3481 {
3482 if (align)
3483 {
3484 unsigned int al;
3485
3486 al = i_shdrp->sh_addralign;
3487 if (al > 1)
3488 offset = BFD_ALIGN (offset, al);
3489 }
3490 i_shdrp->sh_offset = offset;
3491 if (i_shdrp->bfd_section != NULL)
3492 i_shdrp->bfd_section->filepos = offset;
3493 if (i_shdrp->sh_type != SHT_NOBITS)
3494 offset += i_shdrp->sh_size;
3495 return offset;
3496 }
3497
3498 /* Compute the file positions we are going to put the sections at, and
3499 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3500 is not NULL, this is being called by the ELF backend linker. */
3501
3502 bfd_boolean
3503 _bfd_elf_compute_section_file_positions (bfd *abfd,
3504 struct bfd_link_info *link_info)
3505 {
3506 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3507 bfd_boolean failed;
3508 struct bfd_strtab_hash *strtab = NULL;
3509 Elf_Internal_Shdr *shstrtab_hdr;
3510
3511 if (abfd->output_has_begun)
3512 return TRUE;
3513
3514 /* Do any elf backend specific processing first. */
3515 if (bed->elf_backend_begin_write_processing)
3516 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3517
3518 if (! prep_headers (abfd))
3519 return FALSE;
3520
3521 /* Post process the headers if necessary. */
3522 if (bed->elf_backend_post_process_headers)
3523 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3524
3525 failed = FALSE;
3526 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3527 if (failed)
3528 return FALSE;
3529
3530 if (!assign_section_numbers (abfd, link_info))
3531 return FALSE;
3532
3533 /* The backend linker builds symbol table information itself. */
3534 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3535 {
3536 /* Non-zero if doing a relocatable link. */
3537 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3538
3539 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3540 return FALSE;
3541 }
3542
3543 if (link_info == NULL)
3544 {
3545 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3546 if (failed)
3547 return FALSE;
3548 }
3549
3550 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3551 /* sh_name was set in prep_headers. */
3552 shstrtab_hdr->sh_type = SHT_STRTAB;
3553 shstrtab_hdr->sh_flags = 0;
3554 shstrtab_hdr->sh_addr = 0;
3555 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3556 shstrtab_hdr->sh_entsize = 0;
3557 shstrtab_hdr->sh_link = 0;
3558 shstrtab_hdr->sh_info = 0;
3559 /* sh_offset is set in assign_file_positions_except_relocs. */
3560 shstrtab_hdr->sh_addralign = 1;
3561
3562 if (!assign_file_positions_except_relocs (abfd, link_info))
3563 return FALSE;
3564
3565 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3566 {
3567 file_ptr off;
3568 Elf_Internal_Shdr *hdr;
3569
3570 off = elf_tdata (abfd)->next_file_pos;
3571
3572 hdr = &elf_tdata (abfd)->symtab_hdr;
3573 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3574
3575 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3576 if (hdr->sh_size != 0)
3577 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3578
3579 hdr = &elf_tdata (abfd)->strtab_hdr;
3580 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3581
3582 elf_tdata (abfd)->next_file_pos = off;
3583
3584 /* Now that we know where the .strtab section goes, write it
3585 out. */
3586 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3587 || ! _bfd_stringtab_emit (abfd, strtab))
3588 return FALSE;
3589 _bfd_stringtab_free (strtab);
3590 }
3591
3592 abfd->output_has_begun = TRUE;
3593
3594 return TRUE;
3595 }
3596
3597 /* Make an initial estimate of the size of the program header. If we
3598 get the number wrong here, we'll redo section placement. */
3599
3600 static bfd_size_type
3601 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3602 {
3603 size_t segs;
3604 asection *s;
3605 const struct elf_backend_data *bed;
3606
3607 /* Assume we will need exactly two PT_LOAD segments: one for text
3608 and one for data. */
3609 segs = 2;
3610
3611 s = bfd_get_section_by_name (abfd, ".interp");
3612 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3613 {
3614 /* If we have a loadable interpreter section, we need a
3615 PT_INTERP segment. In this case, assume we also need a
3616 PT_PHDR segment, although that may not be true for all
3617 targets. */
3618 segs += 2;
3619 }
3620
3621 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3622 {
3623 /* We need a PT_DYNAMIC segment. */
3624 ++segs;
3625 }
3626
3627 if (elf_tdata (abfd)->eh_frame_hdr)
3628 {
3629 /* We need a PT_GNU_EH_FRAME segment. */
3630 ++segs;
3631 }
3632
3633 if (elf_tdata (abfd)->stack_flags)
3634 {
3635 /* We need a PT_GNU_STACK segment. */
3636 ++segs;
3637 }
3638
3639 if (elf_tdata (abfd)->relro)
3640 {
3641 /* We need a PT_GNU_RELRO segment. */
3642 ++segs;
3643 }
3644
3645 for (s = abfd->sections; s != NULL; s = s->next)
3646 {
3647 if ((s->flags & SEC_LOAD) != 0
3648 && strncmp (s->name, ".note", 5) == 0)
3649 {
3650 /* We need a PT_NOTE segment. */
3651 ++segs;
3652 }
3653 }
3654
3655 for (s = abfd->sections; s != NULL; s = s->next)
3656 {
3657 if (s->flags & SEC_THREAD_LOCAL)
3658 {
3659 /* We need a PT_TLS segment. */
3660 ++segs;
3661 break;
3662 }
3663 }
3664
3665 /* Let the backend count up any program headers it might need. */
3666 bed = get_elf_backend_data (abfd);
3667 if (bed->elf_backend_additional_program_headers)
3668 {
3669 int a;
3670
3671 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3672 if (a == -1)
3673 abort ();
3674 segs += a;
3675 }
3676
3677 return segs * bed->s->sizeof_phdr;
3678 }
3679
3680 /* Create a mapping from a set of sections to a program segment. */
3681
3682 static struct elf_segment_map *
3683 make_mapping (bfd *abfd,
3684 asection **sections,
3685 unsigned int from,
3686 unsigned int to,
3687 bfd_boolean phdr)
3688 {
3689 struct elf_segment_map *m;
3690 unsigned int i;
3691 asection **hdrpp;
3692 bfd_size_type amt;
3693
3694 amt = sizeof (struct elf_segment_map);
3695 amt += (to - from - 1) * sizeof (asection *);
3696 m = bfd_zalloc (abfd, amt);
3697 if (m == NULL)
3698 return NULL;
3699 m->next = NULL;
3700 m->p_type = PT_LOAD;
3701 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3702 m->sections[i - from] = *hdrpp;
3703 m->count = to - from;
3704
3705 if (from == 0 && phdr)
3706 {
3707 /* Include the headers in the first PT_LOAD segment. */
3708 m->includes_filehdr = 1;
3709 m->includes_phdrs = 1;
3710 }
3711
3712 return m;
3713 }
3714
3715 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3716 on failure. */
3717
3718 struct elf_segment_map *
3719 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3720 {
3721 struct elf_segment_map *m;
3722
3723 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3724 if (m == NULL)
3725 return NULL;
3726 m->next = NULL;
3727 m->p_type = PT_DYNAMIC;
3728 m->count = 1;
3729 m->sections[0] = dynsec;
3730
3731 return m;
3732 }
3733
3734 /* Possibly add or remove segments from the segment map. */
3735
3736 static bfd_boolean
3737 elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3738 {
3739 struct elf_segment_map **m;
3740 const struct elf_backend_data *bed;
3741
3742 /* The placement algorithm assumes that non allocated sections are
3743 not in PT_LOAD segments. We ensure this here by removing such
3744 sections from the segment map. We also remove excluded
3745 sections. Finally, any PT_LOAD segment without sections is
3746 removed. */
3747 m = &elf_tdata (abfd)->segment_map;
3748 while (*m)
3749 {
3750 unsigned int i, new_count;
3751
3752 for (new_count = 0, i = 0; i < (*m)->count; i++)
3753 {
3754 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3755 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3756 || (*m)->p_type != PT_LOAD))
3757 {
3758 (*m)->sections[new_count] = (*m)->sections[i];
3759 new_count++;
3760 }
3761 }
3762 (*m)->count = new_count;
3763
3764 if ((*m)->p_type == PT_LOAD && (*m)->count == 0)
3765 *m = (*m)->next;
3766 else
3767 m = &(*m)->next;
3768 }
3769
3770 bed = get_elf_backend_data (abfd);
3771 if (bed->elf_backend_modify_segment_map != NULL)
3772 {
3773 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3774 return FALSE;
3775 }
3776
3777 return TRUE;
3778 }
3779
3780 /* Set up a mapping from BFD sections to program segments. */
3781
3782 bfd_boolean
3783 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3784 {
3785 unsigned int count;
3786 struct elf_segment_map *m;
3787 asection **sections = NULL;
3788 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3789
3790 if (elf_tdata (abfd)->segment_map == NULL
3791 && bfd_count_sections (abfd) != 0)
3792 {
3793 asection *s;
3794 unsigned int i;
3795 struct elf_segment_map *mfirst;
3796 struct elf_segment_map **pm;
3797 asection *last_hdr;
3798 bfd_vma last_size;
3799 unsigned int phdr_index;
3800 bfd_vma maxpagesize;
3801 asection **hdrpp;
3802 bfd_boolean phdr_in_segment = TRUE;
3803 bfd_boolean writable;
3804 int tls_count = 0;
3805 asection *first_tls = NULL;
3806 asection *dynsec, *eh_frame_hdr;
3807 bfd_size_type amt;
3808
3809 /* Select the allocated sections, and sort them. */
3810
3811 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3812 if (sections == NULL)
3813 goto error_return;
3814
3815 i = 0;
3816 for (s = abfd->sections; s != NULL; s = s->next)
3817 {
3818 if ((s->flags & SEC_ALLOC) != 0)
3819 {
3820 sections[i] = s;
3821 ++i;
3822 }
3823 }
3824 BFD_ASSERT (i <= bfd_count_sections (abfd));
3825 count = i;
3826
3827 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3828
3829 /* Build the mapping. */
3830
3831 mfirst = NULL;
3832 pm = &mfirst;
3833
3834 /* If we have a .interp section, then create a PT_PHDR segment for
3835 the program headers and a PT_INTERP segment for the .interp
3836 section. */
3837 s = bfd_get_section_by_name (abfd, ".interp");
3838 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3839 {
3840 amt = sizeof (struct elf_segment_map);
3841 m = bfd_zalloc (abfd, amt);
3842 if (m == NULL)
3843 goto error_return;
3844 m->next = NULL;
3845 m->p_type = PT_PHDR;
3846 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3847 m->p_flags = PF_R | PF_X;
3848 m->p_flags_valid = 1;
3849 m->includes_phdrs = 1;
3850
3851 *pm = m;
3852 pm = &m->next;
3853
3854 amt = sizeof (struct elf_segment_map);
3855 m = bfd_zalloc (abfd, amt);
3856 if (m == NULL)
3857 goto error_return;
3858 m->next = NULL;
3859 m->p_type = PT_INTERP;
3860 m->count = 1;
3861 m->sections[0] = s;
3862
3863 *pm = m;
3864 pm = &m->next;
3865 }
3866
3867 /* Look through the sections. We put sections in the same program
3868 segment when the start of the second section can be placed within
3869 a few bytes of the end of the first section. */
3870 last_hdr = NULL;
3871 last_size = 0;
3872 phdr_index = 0;
3873 maxpagesize = bed->maxpagesize;
3874 writable = FALSE;
3875 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3876 if (dynsec != NULL
3877 && (dynsec->flags & SEC_LOAD) == 0)
3878 dynsec = NULL;
3879
3880 /* Deal with -Ttext or something similar such that the first section
3881 is not adjacent to the program headers. This is an
3882 approximation, since at this point we don't know exactly how many
3883 program headers we will need. */
3884 if (count > 0)
3885 {
3886 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3887
3888 if (phdr_size == (bfd_size_type) -1)
3889 phdr_size = get_program_header_size (abfd, info);
3890 if ((abfd->flags & D_PAGED) == 0
3891 || sections[0]->lma < phdr_size
3892 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3893 phdr_in_segment = FALSE;
3894 }
3895
3896 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3897 {
3898 asection *hdr;
3899 bfd_boolean new_segment;
3900
3901 hdr = *hdrpp;
3902
3903 /* See if this section and the last one will fit in the same
3904 segment. */
3905
3906 if (last_hdr == NULL)
3907 {
3908 /* If we don't have a segment yet, then we don't need a new
3909 one (we build the last one after this loop). */
3910 new_segment = FALSE;
3911 }
3912 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3913 {
3914 /* If this section has a different relation between the
3915 virtual address and the load address, then we need a new
3916 segment. */
3917 new_segment = TRUE;
3918 }
3919 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3920 < BFD_ALIGN (hdr->lma, maxpagesize))
3921 {
3922 /* If putting this section in this segment would force us to
3923 skip a page in the segment, then we need a new segment. */
3924 new_segment = TRUE;
3925 }
3926 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3927 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3928 {
3929 /* We don't want to put a loadable section after a
3930 nonloadable section in the same segment.
3931 Consider .tbss sections as loadable for this purpose. */
3932 new_segment = TRUE;
3933 }
3934 else if ((abfd->flags & D_PAGED) == 0)
3935 {
3936 /* If the file is not demand paged, which means that we
3937 don't require the sections to be correctly aligned in the
3938 file, then there is no other reason for a new segment. */
3939 new_segment = FALSE;
3940 }
3941 else if (! writable
3942 && (hdr->flags & SEC_READONLY) == 0
3943 && (((last_hdr->lma + last_size - 1)
3944 & ~(maxpagesize - 1))
3945 != (hdr->lma & ~(maxpagesize - 1))))
3946 {
3947 /* We don't want to put a writable section in a read only
3948 segment, unless they are on the same page in memory
3949 anyhow. We already know that the last section does not
3950 bring us past the current section on the page, so the
3951 only case in which the new section is not on the same
3952 page as the previous section is when the previous section
3953 ends precisely on a page boundary. */
3954 new_segment = TRUE;
3955 }
3956 else
3957 {
3958 /* Otherwise, we can use the same segment. */
3959 new_segment = FALSE;
3960 }
3961
3962 if (! new_segment)
3963 {
3964 if ((hdr->flags & SEC_READONLY) == 0)
3965 writable = TRUE;
3966 last_hdr = hdr;
3967 /* .tbss sections effectively have zero size. */
3968 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3969 != SEC_THREAD_LOCAL)
3970 last_size = hdr->size;
3971 else
3972 last_size = 0;
3973 continue;
3974 }
3975
3976 /* We need a new program segment. We must create a new program
3977 header holding all the sections from phdr_index until hdr. */
3978
3979 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3980 if (m == NULL)
3981 goto error_return;
3982
3983 *pm = m;
3984 pm = &m->next;
3985
3986 if ((hdr->flags & SEC_READONLY) == 0)
3987 writable = TRUE;
3988 else
3989 writable = FALSE;
3990
3991 last_hdr = hdr;
3992 /* .tbss sections effectively have zero size. */
3993 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3994 last_size = hdr->size;
3995 else
3996 last_size = 0;
3997 phdr_index = i;
3998 phdr_in_segment = FALSE;
3999 }
4000
4001 /* Create a final PT_LOAD program segment. */
4002 if (last_hdr != NULL)
4003 {
4004 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4005 if (m == NULL)
4006 goto error_return;
4007
4008 *pm = m;
4009 pm = &m->next;
4010 }
4011
4012 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4013 if (dynsec != NULL)
4014 {
4015 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4016 if (m == NULL)
4017 goto error_return;
4018 *pm = m;
4019 pm = &m->next;
4020 }
4021
4022 /* For each loadable .note section, add a PT_NOTE segment. We don't
4023 use bfd_get_section_by_name, because if we link together
4024 nonloadable .note sections and loadable .note sections, we will
4025 generate two .note sections in the output file. FIXME: Using
4026 names for section types is bogus anyhow. */
4027 for (s = abfd->sections; s != NULL; s = s->next)
4028 {
4029 if ((s->flags & SEC_LOAD) != 0
4030 && strncmp (s->name, ".note", 5) == 0)
4031 {
4032 amt = sizeof (struct elf_segment_map);
4033 m = bfd_zalloc (abfd, amt);
4034 if (m == NULL)
4035 goto error_return;
4036 m->next = NULL;
4037 m->p_type = PT_NOTE;
4038 m->count = 1;
4039 m->sections[0] = s;
4040
4041 *pm = m;
4042 pm = &m->next;
4043 }
4044 if (s->flags & SEC_THREAD_LOCAL)
4045 {
4046 if (! tls_count)
4047 first_tls = s;
4048 tls_count++;
4049 }
4050 }
4051
4052 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4053 if (tls_count > 0)
4054 {
4055 int i;
4056
4057 amt = sizeof (struct elf_segment_map);
4058 amt += (tls_count - 1) * sizeof (asection *);
4059 m = bfd_zalloc (abfd, amt);
4060 if (m == NULL)
4061 goto error_return;
4062 m->next = NULL;
4063 m->p_type = PT_TLS;
4064 m->count = tls_count;
4065 /* Mandated PF_R. */
4066 m->p_flags = PF_R;
4067 m->p_flags_valid = 1;
4068 for (i = 0; i < tls_count; ++i)
4069 {
4070 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4071 m->sections[i] = first_tls;
4072 first_tls = first_tls->next;
4073 }
4074
4075 *pm = m;
4076 pm = &m->next;
4077 }
4078
4079 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4080 segment. */
4081 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4082 if (eh_frame_hdr != NULL
4083 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4084 {
4085 amt = sizeof (struct elf_segment_map);
4086 m = bfd_zalloc (abfd, amt);
4087 if (m == NULL)
4088 goto error_return;
4089 m->next = NULL;
4090 m->p_type = PT_GNU_EH_FRAME;
4091 m->count = 1;
4092 m->sections[0] = eh_frame_hdr->output_section;
4093
4094 *pm = m;
4095 pm = &m->next;
4096 }
4097
4098 if (elf_tdata (abfd)->stack_flags)
4099 {
4100 amt = sizeof (struct elf_segment_map);
4101 m = bfd_zalloc (abfd, amt);
4102 if (m == NULL)
4103 goto error_return;
4104 m->next = NULL;
4105 m->p_type = PT_GNU_STACK;
4106 m->p_flags = elf_tdata (abfd)->stack_flags;
4107 m->p_flags_valid = 1;
4108
4109 *pm = m;
4110 pm = &m->next;
4111 }
4112
4113 if (elf_tdata (abfd)->relro)
4114 {
4115 amt = sizeof (struct elf_segment_map);
4116 m = bfd_zalloc (abfd, amt);
4117 if (m == NULL)
4118 goto error_return;
4119 m->next = NULL;
4120 m->p_type = PT_GNU_RELRO;
4121 m->p_flags = PF_R;
4122 m->p_flags_valid = 1;
4123
4124 *pm = m;
4125 pm = &m->next;
4126 }
4127
4128 free (sections);
4129 elf_tdata (abfd)->segment_map = mfirst;
4130 }
4131
4132 if (!elf_modify_segment_map (abfd, info))
4133 return FALSE;
4134
4135 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4136 ++count;
4137 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4138
4139 return TRUE;
4140
4141 error_return:
4142 if (sections != NULL)
4143 free (sections);
4144 return FALSE;
4145 }
4146
4147 /* Sort sections by address. */
4148
4149 static int
4150 elf_sort_sections (const void *arg1, const void *arg2)
4151 {
4152 const asection *sec1 = *(const asection **) arg1;
4153 const asection *sec2 = *(const asection **) arg2;
4154 bfd_size_type size1, size2;
4155
4156 /* Sort by LMA first, since this is the address used to
4157 place the section into a segment. */
4158 if (sec1->lma < sec2->lma)
4159 return -1;
4160 else if (sec1->lma > sec2->lma)
4161 return 1;
4162
4163 /* Then sort by VMA. Normally the LMA and the VMA will be
4164 the same, and this will do nothing. */
4165 if (sec1->vma < sec2->vma)
4166 return -1;
4167 else if (sec1->vma > sec2->vma)
4168 return 1;
4169
4170 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4171
4172 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4173
4174 if (TOEND (sec1))
4175 {
4176 if (TOEND (sec2))
4177 {
4178 /* If the indicies are the same, do not return 0
4179 here, but continue to try the next comparison. */
4180 if (sec1->target_index - sec2->target_index != 0)
4181 return sec1->target_index - sec2->target_index;
4182 }
4183 else
4184 return 1;
4185 }
4186 else if (TOEND (sec2))
4187 return -1;
4188
4189 #undef TOEND
4190
4191 /* Sort by size, to put zero sized sections
4192 before others at the same address. */
4193
4194 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4195 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4196
4197 if (size1 < size2)
4198 return -1;
4199 if (size1 > size2)
4200 return 1;
4201
4202 return sec1->target_index - sec2->target_index;
4203 }
4204
4205 /* Ian Lance Taylor writes:
4206
4207 We shouldn't be using % with a negative signed number. That's just
4208 not good. We have to make sure either that the number is not
4209 negative, or that the number has an unsigned type. When the types
4210 are all the same size they wind up as unsigned. When file_ptr is a
4211 larger signed type, the arithmetic winds up as signed long long,
4212 which is wrong.
4213
4214 What we're trying to say here is something like ``increase OFF by
4215 the least amount that will cause it to be equal to the VMA modulo
4216 the page size.'' */
4217 /* In other words, something like:
4218
4219 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4220 off_offset = off % bed->maxpagesize;
4221 if (vma_offset < off_offset)
4222 adjustment = vma_offset + bed->maxpagesize - off_offset;
4223 else
4224 adjustment = vma_offset - off_offset;
4225
4226 which can can be collapsed into the expression below. */
4227
4228 static file_ptr
4229 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4230 {
4231 return ((vma - off) % maxpagesize);
4232 }
4233
4234 /* Assign file positions to the sections based on the mapping from
4235 sections to segments. This function also sets up some fields in
4236 the file header. */
4237
4238 static bfd_boolean
4239 assign_file_positions_for_load_sections (bfd *abfd,
4240 struct bfd_link_info *link_info)
4241 {
4242 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4243 struct elf_segment_map *m;
4244 Elf_Internal_Phdr *phdrs;
4245 Elf_Internal_Phdr *p;
4246 file_ptr off, voff;
4247 bfd_size_type maxpagesize;
4248 unsigned int alloc;
4249 unsigned int i;
4250
4251 if (link_info == NULL
4252 && !elf_modify_segment_map (abfd, link_info))
4253 return FALSE;
4254
4255 alloc = 0;
4256 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4257 ++alloc;
4258
4259 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4260 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4261 elf_elfheader (abfd)->e_phnum = alloc;
4262
4263 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4264 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4265 else
4266 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4267 == alloc * bed->s->sizeof_phdr);
4268
4269 if (alloc == 0)
4270 {
4271 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4272 return TRUE;
4273 }
4274
4275 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4276 elf_tdata (abfd)->phdr = phdrs;
4277 if (phdrs == NULL)
4278 return FALSE;
4279
4280 maxpagesize = 1;
4281 if ((abfd->flags & D_PAGED) != 0)
4282 maxpagesize = bed->maxpagesize;
4283
4284 off = bed->s->sizeof_ehdr;
4285 off += alloc * bed->s->sizeof_phdr;
4286
4287 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4288 m != NULL;
4289 m = m->next, p++)
4290 {
4291 asection **secpp;
4292
4293 /* If elf_segment_map is not from map_sections_to_segments, the
4294 sections may not be correctly ordered. NOTE: sorting should
4295 not be done to the PT_NOTE section of a corefile, which may
4296 contain several pseudo-sections artificially created by bfd.
4297 Sorting these pseudo-sections breaks things badly. */
4298 if (m->count > 1
4299 && !(elf_elfheader (abfd)->e_type == ET_CORE
4300 && m->p_type == PT_NOTE))
4301 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4302 elf_sort_sections);
4303
4304 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4305 number of sections with contents contributing to both p_filesz
4306 and p_memsz, followed by a number of sections with no contents
4307 that just contribute to p_memsz. In this loop, OFF tracks next
4308 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4309 an adjustment we use for segments that have no file contents
4310 but need zero filled memory allocation. */
4311 voff = 0;
4312 p->p_type = m->p_type;
4313 p->p_flags = m->p_flags;
4314
4315 if (m->count == 0)
4316 p->p_vaddr = 0;
4317 else
4318 p->p_vaddr = m->sections[0]->vma;
4319
4320 if (m->p_paddr_valid)
4321 p->p_paddr = m->p_paddr;
4322 else if (m->count == 0)
4323 p->p_paddr = 0;
4324 else
4325 p->p_paddr = m->sections[0]->lma;
4326
4327 if (p->p_type == PT_LOAD
4328 && (abfd->flags & D_PAGED) != 0)
4329 {
4330 /* p_align in demand paged PT_LOAD segments effectively stores
4331 the maximum page size. When copying an executable with
4332 objcopy, we set m->p_align from the input file. Use this
4333 value for maxpagesize rather than bed->maxpagesize, which
4334 may be different. Note that we use maxpagesize for PT_TLS
4335 segment alignment later in this function, so we are relying
4336 on at least one PT_LOAD segment appearing before a PT_TLS
4337 segment. */
4338 if (m->p_align_valid)
4339 maxpagesize = m->p_align;
4340
4341 p->p_align = maxpagesize;
4342 }
4343 else if (m->count == 0)
4344 p->p_align = 1 << bed->s->log_file_align;
4345 else
4346 p->p_align = 0;
4347
4348 if (p->p_type == PT_LOAD
4349 && m->count > 0)
4350 {
4351 bfd_size_type align;
4352 bfd_vma adjust;
4353 unsigned int align_power = 0;
4354
4355 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4356 {
4357 unsigned int secalign;
4358
4359 secalign = bfd_get_section_alignment (abfd, *secpp);
4360 if (secalign > align_power)
4361 align_power = secalign;
4362 }
4363 align = (bfd_size_type) 1 << align_power;
4364
4365 if (align < maxpagesize)
4366 align = maxpagesize;
4367
4368 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4369 off += adjust;
4370 if (adjust != 0
4371 && !m->includes_filehdr
4372 && !m->includes_phdrs
4373 && (ufile_ptr) off >= align)
4374 {
4375 /* If the first section isn't loadable, the same holds for
4376 any other sections. Since the segment won't need file
4377 space, we can make p_offset overlap some prior segment.
4378 However, .tbss is special. If a segment starts with
4379 .tbss, we need to look at the next section to decide
4380 whether the segment has any loadable sections. */
4381 i = 0;
4382 while ((m->sections[i]->flags & SEC_LOAD) == 0
4383 && (m->sections[i]->flags & SEC_HAS_CONTENTS) == 0)
4384 {
4385 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4386 || ++i >= m->count)
4387 {
4388 off -= adjust;
4389 voff = adjust - align;
4390 break;
4391 }
4392 }
4393 }
4394 }
4395 /* Make sure the .dynamic section is the first section in the
4396 PT_DYNAMIC segment. */
4397 else if (p->p_type == PT_DYNAMIC
4398 && m->count > 1
4399 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4400 {
4401 _bfd_error_handler
4402 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4403 abfd);
4404 bfd_set_error (bfd_error_bad_value);
4405 return FALSE;
4406 }
4407
4408 p->p_offset = 0;
4409 p->p_filesz = 0;
4410 p->p_memsz = 0;
4411
4412 if (m->includes_filehdr)
4413 {
4414 if (! m->p_flags_valid)
4415 p->p_flags |= PF_R;
4416 p->p_offset = 0;
4417 p->p_filesz = bed->s->sizeof_ehdr;
4418 p->p_memsz = bed->s->sizeof_ehdr;
4419 if (m->count > 0)
4420 {
4421 BFD_ASSERT (p->p_type == PT_LOAD);
4422
4423 if (p->p_vaddr < (bfd_vma) off)
4424 {
4425 (*_bfd_error_handler)
4426 (_("%B: Not enough room for program headers, try linking with -N"),
4427 abfd);
4428 bfd_set_error (bfd_error_bad_value);
4429 return FALSE;
4430 }
4431
4432 p->p_vaddr -= off;
4433 if (! m->p_paddr_valid)
4434 p->p_paddr -= off;
4435 }
4436 }
4437
4438 if (m->includes_phdrs)
4439 {
4440 if (! m->p_flags_valid)
4441 p->p_flags |= PF_R;
4442
4443 if (!m->includes_filehdr)
4444 {
4445 p->p_offset = bed->s->sizeof_ehdr;
4446
4447 if (m->count > 0)
4448 {
4449 BFD_ASSERT (p->p_type == PT_LOAD);
4450 p->p_vaddr -= off - p->p_offset;
4451 if (! m->p_paddr_valid)
4452 p->p_paddr -= off - p->p_offset;
4453 }
4454 }
4455
4456 p->p_filesz += alloc * bed->s->sizeof_phdr;
4457 p->p_memsz += alloc * bed->s->sizeof_phdr;
4458 }
4459
4460 if (p->p_type == PT_LOAD
4461 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4462 {
4463 if (! m->includes_filehdr && ! m->includes_phdrs)
4464 p->p_offset = off + voff;
4465 else
4466 {
4467 file_ptr adjust;
4468
4469 adjust = off - (p->p_offset + p->p_filesz);
4470 p->p_filesz += adjust;
4471 p->p_memsz += adjust;
4472 }
4473 }
4474
4475 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4476 maps. Set filepos for sections in PT_LOAD segments, and in
4477 core files, for sections in PT_NOTE segments.
4478 assign_file_positions_for_non_load_sections will set filepos
4479 for other sections and update p_filesz for other segments. */
4480 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4481 {
4482 asection *sec;
4483 flagword flags;
4484 bfd_size_type align;
4485
4486 sec = *secpp;
4487 flags = sec->flags;
4488 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4489
4490 if (p->p_type == PT_LOAD
4491 || p->p_type == PT_TLS)
4492 {
4493 bfd_signed_vma adjust;
4494
4495 if ((flags & SEC_LOAD) != 0)
4496 {
4497 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4498 if (adjust < 0)
4499 {
4500 (*_bfd_error_handler)
4501 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4502 abfd, sec, (unsigned long) sec->lma);
4503 adjust = 0;
4504 }
4505 off += adjust;
4506 p->p_filesz += adjust;
4507 p->p_memsz += adjust;
4508 }
4509 /* .tbss is special. It doesn't contribute to p_memsz of
4510 normal segments. */
4511 else if ((flags & SEC_ALLOC) != 0
4512 && ((flags & SEC_THREAD_LOCAL) == 0
4513 || p->p_type == PT_TLS))
4514 {
4515 /* The section VMA must equal the file position
4516 modulo the page size. */
4517 bfd_size_type page = align;
4518 if (page < maxpagesize)
4519 page = maxpagesize;
4520 adjust = vma_page_aligned_bias (sec->vma,
4521 p->p_vaddr + p->p_memsz,
4522 page);
4523 p->p_memsz += adjust;
4524 }
4525 }
4526
4527 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4528 {
4529 /* The section at i == 0 is the one that actually contains
4530 everything. */
4531 if (i == 0)
4532 {
4533 sec->filepos = off;
4534 off += sec->size;
4535 p->p_filesz = sec->size;
4536 p->p_memsz = 0;
4537 p->p_align = 1;
4538 }
4539 else
4540 {
4541 /* The rest are fake sections that shouldn't be written. */
4542 sec->filepos = 0;
4543 sec->size = 0;
4544 sec->flags = 0;
4545 continue;
4546 }
4547 }
4548 else
4549 {
4550 if (p->p_type == PT_LOAD)
4551 {
4552 sec->filepos = off + voff;
4553 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4554 1997, and the exact reason for it isn't clear. One
4555 plausible explanation is that it is to work around
4556 a problem we have with linker scripts using data
4557 statements in NOLOAD sections. I don't think it
4558 makes a great deal of sense to have such a section
4559 assigned to a PT_LOAD segment, but apparently
4560 people do this. The data statement results in a
4561 bfd_data_link_order being built, and these need
4562 section contents to write into. Eventually, we get
4563 to _bfd_elf_write_object_contents which writes any
4564 section with contents to the output. Make room
4565 here for the write, so that following segments are
4566 not trashed. */
4567 if ((flags & SEC_LOAD) != 0
4568 || (flags & SEC_HAS_CONTENTS) != 0)
4569 off += sec->size;
4570 }
4571
4572 if ((flags & SEC_LOAD) != 0)
4573 {
4574 p->p_filesz += sec->size;
4575 p->p_memsz += sec->size;
4576 }
4577
4578 /* .tbss is special. It doesn't contribute to p_memsz of
4579 normal segments. */
4580 else if ((flags & SEC_ALLOC) != 0
4581 && ((flags & SEC_THREAD_LOCAL) == 0
4582 || p->p_type == PT_TLS))
4583 p->p_memsz += sec->size;
4584
4585 if (p->p_type == PT_TLS
4586 && sec->size == 0
4587 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4588 {
4589 struct bfd_link_order *o = sec->map_tail.link_order;
4590 if (o != NULL)
4591 p->p_memsz += o->offset + o->size;
4592 }
4593
4594 if (align > p->p_align
4595 && (p->p_type != PT_LOAD
4596 || (abfd->flags & D_PAGED) == 0))
4597 p->p_align = align;
4598 }
4599
4600 if (! m->p_flags_valid)
4601 {
4602 p->p_flags |= PF_R;
4603 if ((flags & SEC_CODE) != 0)
4604 p->p_flags |= PF_X;
4605 if ((flags & SEC_READONLY) == 0)
4606 p->p_flags |= PF_W;
4607 }
4608 }
4609 }
4610
4611 elf_tdata (abfd)->next_file_pos = off;
4612 return TRUE;
4613 }
4614
4615 /* Assign file positions for the other sections. */
4616
4617 static bfd_boolean
4618 assign_file_positions_for_non_load_sections (bfd *abfd,
4619 struct bfd_link_info *link_info)
4620 {
4621 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4622 Elf_Internal_Shdr **i_shdrpp;
4623 Elf_Internal_Shdr **hdrpp;
4624 Elf_Internal_Phdr *phdrs;
4625 Elf_Internal_Phdr *p;
4626 struct elf_segment_map *m;
4627 bfd_vma filehdr_vaddr, filehdr_paddr;
4628 bfd_vma phdrs_vaddr, phdrs_paddr;
4629 file_ptr off;
4630 unsigned int num_sec;
4631 unsigned int i;
4632 unsigned int count;
4633
4634 i_shdrpp = elf_elfsections (abfd);
4635 num_sec = elf_numsections (abfd);
4636 off = elf_tdata (abfd)->next_file_pos;
4637 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4638 {
4639 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4640 Elf_Internal_Shdr *hdr;
4641
4642 hdr = *hdrpp;
4643 if (hdr->bfd_section != NULL
4644 && (hdr->bfd_section->filepos != 0
4645 || (hdr->sh_type == SHT_NOBITS
4646 && hdr->contents == NULL)))
4647 hdr->sh_offset = hdr->bfd_section->filepos;
4648 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4649 {
4650 ((*_bfd_error_handler)
4651 (_("%B: warning: allocated section `%s' not in segment"),
4652 abfd,
4653 (hdr->bfd_section == NULL
4654 ? "*unknown*"
4655 : hdr->bfd_section->name)));
4656 if ((abfd->flags & D_PAGED) != 0)
4657 off += vma_page_aligned_bias (hdr->sh_addr, off,
4658 bed->maxpagesize);
4659 else
4660 off += vma_page_aligned_bias (hdr->sh_addr, off,
4661 hdr->sh_addralign);
4662 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4663 FALSE);
4664 }
4665 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4666 && hdr->bfd_section == NULL)
4667 || hdr == i_shdrpp[tdata->symtab_section]
4668 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4669 || hdr == i_shdrpp[tdata->strtab_section])
4670 hdr->sh_offset = -1;
4671 else
4672 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4673
4674 if (i == SHN_LORESERVE - 1)
4675 {
4676 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4677 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4678 }
4679 }
4680
4681 /* Now that we have set the section file positions, we can set up
4682 the file positions for the non PT_LOAD segments. */
4683 count = 0;
4684 filehdr_vaddr = 0;
4685 filehdr_paddr = 0;
4686 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4687 phdrs_paddr = 0;
4688 phdrs = elf_tdata (abfd)->phdr;
4689 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4690 m != NULL;
4691 m = m->next, p++)
4692 {
4693 ++count;
4694 if (p->p_type != PT_LOAD)
4695 continue;
4696
4697 if (m->includes_filehdr)
4698 {
4699 filehdr_vaddr = p->p_vaddr;
4700 filehdr_paddr = p->p_paddr;
4701 }
4702 if (m->includes_phdrs)
4703 {
4704 phdrs_vaddr = p->p_vaddr;
4705 phdrs_paddr = p->p_paddr;
4706 if (m->includes_filehdr)
4707 {
4708 phdrs_vaddr += bed->s->sizeof_ehdr;
4709 phdrs_paddr += bed->s->sizeof_ehdr;
4710 }
4711 }
4712 }
4713
4714 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4715 m != NULL;
4716 m = m->next, p++)
4717 {
4718 if (m->count != 0)
4719 {
4720 if (p->p_type != PT_LOAD
4721 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4722 {
4723 Elf_Internal_Shdr *hdr;
4724 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4725
4726 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4727 p->p_filesz = (m->sections[m->count - 1]->filepos
4728 - m->sections[0]->filepos);
4729 if (hdr->sh_type != SHT_NOBITS)
4730 p->p_filesz += hdr->sh_size;
4731
4732 p->p_offset = m->sections[0]->filepos;
4733 }
4734 }
4735 else
4736 {
4737 if (m->includes_filehdr)
4738 {
4739 p->p_vaddr = filehdr_vaddr;
4740 if (! m->p_paddr_valid)
4741 p->p_paddr = filehdr_paddr;
4742 }
4743 else if (m->includes_phdrs)
4744 {
4745 p->p_vaddr = phdrs_vaddr;
4746 if (! m->p_paddr_valid)
4747 p->p_paddr = phdrs_paddr;
4748 }
4749 else if (p->p_type == PT_GNU_RELRO)
4750 {
4751 Elf_Internal_Phdr *lp;
4752
4753 for (lp = phdrs; lp < phdrs + count; ++lp)
4754 {
4755 if (lp->p_type == PT_LOAD
4756 && lp->p_vaddr <= link_info->relro_end
4757 && lp->p_vaddr >= link_info->relro_start
4758 && (lp->p_vaddr + lp->p_filesz
4759 >= link_info->relro_end))
4760 break;
4761 }
4762
4763 if (lp < phdrs + count
4764 && link_info->relro_end > lp->p_vaddr)
4765 {
4766 p->p_vaddr = lp->p_vaddr;
4767 p->p_paddr = lp->p_paddr;
4768 p->p_offset = lp->p_offset;
4769 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4770 p->p_memsz = p->p_filesz;
4771 p->p_align = 1;
4772 p->p_flags = (lp->p_flags & ~PF_W);
4773 }
4774 else
4775 {
4776 memset (p, 0, sizeof *p);
4777 p->p_type = PT_NULL;
4778 }
4779 }
4780 }
4781 }
4782
4783 elf_tdata (abfd)->next_file_pos = off;
4784
4785 return TRUE;
4786 }
4787
4788 /* Work out the file positions of all the sections. This is called by
4789 _bfd_elf_compute_section_file_positions. All the section sizes and
4790 VMAs must be known before this is called.
4791
4792 Reloc sections come in two flavours: Those processed specially as
4793 "side-channel" data attached to a section to which they apply, and
4794 those that bfd doesn't process as relocations. The latter sort are
4795 stored in a normal bfd section by bfd_section_from_shdr. We don't
4796 consider the former sort here, unless they form part of the loadable
4797 image. Reloc sections not assigned here will be handled later by
4798 assign_file_positions_for_relocs.
4799
4800 We also don't set the positions of the .symtab and .strtab here. */
4801
4802 static bfd_boolean
4803 assign_file_positions_except_relocs (bfd *abfd,
4804 struct bfd_link_info *link_info)
4805 {
4806 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4807 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4808 file_ptr off;
4809 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4810
4811 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4812 && bfd_get_format (abfd) != bfd_core)
4813 {
4814 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4815 unsigned int num_sec = elf_numsections (abfd);
4816 Elf_Internal_Shdr **hdrpp;
4817 unsigned int i;
4818
4819 /* Start after the ELF header. */
4820 off = i_ehdrp->e_ehsize;
4821
4822 /* We are not creating an executable, which means that we are
4823 not creating a program header, and that the actual order of
4824 the sections in the file is unimportant. */
4825 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4826 {
4827 Elf_Internal_Shdr *hdr;
4828
4829 hdr = *hdrpp;
4830 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4831 && hdr->bfd_section == NULL)
4832 || i == tdata->symtab_section
4833 || i == tdata->symtab_shndx_section
4834 || i == tdata->strtab_section)
4835 {
4836 hdr->sh_offset = -1;
4837 }
4838 else
4839 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4840
4841 if (i == SHN_LORESERVE - 1)
4842 {
4843 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4844 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4845 }
4846 }
4847 }
4848 else
4849 {
4850 unsigned int alloc;
4851
4852 /* Assign file positions for the loaded sections based on the
4853 assignment of sections to segments. */
4854 if (!assign_file_positions_for_load_sections (abfd, link_info))
4855 return FALSE;
4856
4857 /* And for non-load sections. */
4858 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4859 return FALSE;
4860
4861 if (bed->elf_backend_modify_program_headers != NULL)
4862 {
4863 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4864 return FALSE;
4865 }
4866
4867 /* Write out the program headers. */
4868 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4869 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4870 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4871 return FALSE;
4872
4873 off = tdata->next_file_pos;
4874 }
4875
4876 /* Place the section headers. */
4877 off = align_file_position (off, 1 << bed->s->log_file_align);
4878 i_ehdrp->e_shoff = off;
4879 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4880
4881 tdata->next_file_pos = off;
4882
4883 return TRUE;
4884 }
4885
4886 static bfd_boolean
4887 prep_headers (bfd *abfd)
4888 {
4889 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4890 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4891 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4892 struct elf_strtab_hash *shstrtab;
4893 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4894
4895 i_ehdrp = elf_elfheader (abfd);
4896 i_shdrp = elf_elfsections (abfd);
4897
4898 shstrtab = _bfd_elf_strtab_init ();
4899 if (shstrtab == NULL)
4900 return FALSE;
4901
4902 elf_shstrtab (abfd) = shstrtab;
4903
4904 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4905 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4906 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4907 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4908
4909 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4910 i_ehdrp->e_ident[EI_DATA] =
4911 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4912 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4913
4914 if ((abfd->flags & DYNAMIC) != 0)
4915 i_ehdrp->e_type = ET_DYN;
4916 else if ((abfd->flags & EXEC_P) != 0)
4917 i_ehdrp->e_type = ET_EXEC;
4918 else if (bfd_get_format (abfd) == bfd_core)
4919 i_ehdrp->e_type = ET_CORE;
4920 else
4921 i_ehdrp->e_type = ET_REL;
4922
4923 switch (bfd_get_arch (abfd))
4924 {
4925 case bfd_arch_unknown:
4926 i_ehdrp->e_machine = EM_NONE;
4927 break;
4928
4929 /* There used to be a long list of cases here, each one setting
4930 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4931 in the corresponding bfd definition. To avoid duplication,
4932 the switch was removed. Machines that need special handling
4933 can generally do it in elf_backend_final_write_processing(),
4934 unless they need the information earlier than the final write.
4935 Such need can generally be supplied by replacing the tests for
4936 e_machine with the conditions used to determine it. */
4937 default:
4938 i_ehdrp->e_machine = bed->elf_machine_code;
4939 }
4940
4941 i_ehdrp->e_version = bed->s->ev_current;
4942 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4943
4944 /* No program header, for now. */
4945 i_ehdrp->e_phoff = 0;
4946 i_ehdrp->e_phentsize = 0;
4947 i_ehdrp->e_phnum = 0;
4948
4949 /* Each bfd section is section header entry. */
4950 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4951 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4952
4953 /* If we're building an executable, we'll need a program header table. */
4954 if (abfd->flags & EXEC_P)
4955 /* It all happens later. */
4956 ;
4957 else
4958 {
4959 i_ehdrp->e_phentsize = 0;
4960 i_phdrp = 0;
4961 i_ehdrp->e_phoff = 0;
4962 }
4963
4964 elf_tdata (abfd)->symtab_hdr.sh_name =
4965 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4966 elf_tdata (abfd)->strtab_hdr.sh_name =
4967 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4968 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4969 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4970 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4971 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4972 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4973 return FALSE;
4974
4975 return TRUE;
4976 }
4977
4978 /* Assign file positions for all the reloc sections which are not part
4979 of the loadable file image. */
4980
4981 void
4982 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4983 {
4984 file_ptr off;
4985 unsigned int i, num_sec;
4986 Elf_Internal_Shdr **shdrpp;
4987
4988 off = elf_tdata (abfd)->next_file_pos;
4989
4990 num_sec = elf_numsections (abfd);
4991 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4992 {
4993 Elf_Internal_Shdr *shdrp;
4994
4995 shdrp = *shdrpp;
4996 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4997 && shdrp->sh_offset == -1)
4998 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4999 }
5000
5001 elf_tdata (abfd)->next_file_pos = off;
5002 }
5003
5004 bfd_boolean
5005 _bfd_elf_write_object_contents (bfd *abfd)
5006 {
5007 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5008 Elf_Internal_Ehdr *i_ehdrp;
5009 Elf_Internal_Shdr **i_shdrp;
5010 bfd_boolean failed;
5011 unsigned int count, num_sec;
5012
5013 if (! abfd->output_has_begun
5014 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5015 return FALSE;
5016
5017 i_shdrp = elf_elfsections (abfd);
5018 i_ehdrp = elf_elfheader (abfd);
5019
5020 failed = FALSE;
5021 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5022 if (failed)
5023 return FALSE;
5024
5025 _bfd_elf_assign_file_positions_for_relocs (abfd);
5026
5027 /* After writing the headers, we need to write the sections too... */
5028 num_sec = elf_numsections (abfd);
5029 for (count = 1; count < num_sec; count++)
5030 {
5031 if (bed->elf_backend_section_processing)
5032 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5033 if (i_shdrp[count]->contents)
5034 {
5035 bfd_size_type amt = i_shdrp[count]->sh_size;
5036
5037 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5038 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5039 return FALSE;
5040 }
5041 if (count == SHN_LORESERVE - 1)
5042 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5043 }
5044
5045 /* Write out the section header names. */
5046 if (elf_shstrtab (abfd) != NULL
5047 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5048 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5049 return FALSE;
5050
5051 if (bed->elf_backend_final_write_processing)
5052 (*bed->elf_backend_final_write_processing) (abfd,
5053 elf_tdata (abfd)->linker);
5054
5055 return bed->s->write_shdrs_and_ehdr (abfd);
5056 }
5057
5058 bfd_boolean
5059 _bfd_elf_write_corefile_contents (bfd *abfd)
5060 {
5061 /* Hopefully this can be done just like an object file. */
5062 return _bfd_elf_write_object_contents (abfd);
5063 }
5064
5065 /* Given a section, search the header to find them. */
5066
5067 int
5068 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5069 {
5070 const struct elf_backend_data *bed;
5071 int index;
5072
5073 if (elf_section_data (asect) != NULL
5074 && elf_section_data (asect)->this_idx != 0)
5075 return elf_section_data (asect)->this_idx;
5076
5077 if (bfd_is_abs_section (asect))
5078 index = SHN_ABS;
5079 else if (bfd_is_com_section (asect))
5080 index = SHN_COMMON;
5081 else if (bfd_is_und_section (asect))
5082 index = SHN_UNDEF;
5083 else
5084 index = -1;
5085
5086 bed = get_elf_backend_data (abfd);
5087 if (bed->elf_backend_section_from_bfd_section)
5088 {
5089 int retval = index;
5090
5091 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5092 return retval;
5093 }
5094
5095 if (index == -1)
5096 bfd_set_error (bfd_error_nonrepresentable_section);
5097
5098 return index;
5099 }
5100
5101 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5102 on error. */
5103
5104 int
5105 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5106 {
5107 asymbol *asym_ptr = *asym_ptr_ptr;
5108 int idx;
5109 flagword flags = asym_ptr->flags;
5110
5111 /* When gas creates relocations against local labels, it creates its
5112 own symbol for the section, but does put the symbol into the
5113 symbol chain, so udata is 0. When the linker is generating
5114 relocatable output, this section symbol may be for one of the
5115 input sections rather than the output section. */
5116 if (asym_ptr->udata.i == 0
5117 && (flags & BSF_SECTION_SYM)
5118 && asym_ptr->section)
5119 {
5120 asection *sec;
5121 int indx;
5122
5123 sec = asym_ptr->section;
5124 if (sec->owner != abfd && sec->output_section != NULL)
5125 sec = sec->output_section;
5126 if (sec->owner == abfd
5127 && (indx = sec->index) < elf_num_section_syms (abfd)
5128 && elf_section_syms (abfd)[indx] != NULL)
5129 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5130 }
5131
5132 idx = asym_ptr->udata.i;
5133
5134 if (idx == 0)
5135 {
5136 /* This case can occur when using --strip-symbol on a symbol
5137 which is used in a relocation entry. */
5138 (*_bfd_error_handler)
5139 (_("%B: symbol `%s' required but not present"),
5140 abfd, bfd_asymbol_name (asym_ptr));
5141 bfd_set_error (bfd_error_no_symbols);
5142 return -1;
5143 }
5144
5145 #if DEBUG & 4
5146 {
5147 fprintf (stderr,
5148 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5149 (long) asym_ptr, asym_ptr->name, idx, flags,
5150 elf_symbol_flags (flags));
5151 fflush (stderr);
5152 }
5153 #endif
5154
5155 return idx;
5156 }
5157
5158 /* Rewrite program header information. */
5159
5160 static bfd_boolean
5161 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5162 {
5163 Elf_Internal_Ehdr *iehdr;
5164 struct elf_segment_map *map;
5165 struct elf_segment_map *map_first;
5166 struct elf_segment_map **pointer_to_map;
5167 Elf_Internal_Phdr *segment;
5168 asection *section;
5169 unsigned int i;
5170 unsigned int num_segments;
5171 bfd_boolean phdr_included = FALSE;
5172 bfd_vma maxpagesize;
5173 struct elf_segment_map *phdr_adjust_seg = NULL;
5174 unsigned int phdr_adjust_num = 0;
5175 const struct elf_backend_data *bed;
5176
5177 bed = get_elf_backend_data (ibfd);
5178 iehdr = elf_elfheader (ibfd);
5179
5180 map_first = NULL;
5181 pointer_to_map = &map_first;
5182
5183 num_segments = elf_elfheader (ibfd)->e_phnum;
5184 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5185
5186 /* Returns the end address of the segment + 1. */
5187 #define SEGMENT_END(segment, start) \
5188 (start + (segment->p_memsz > segment->p_filesz \
5189 ? segment->p_memsz : segment->p_filesz))
5190
5191 #define SECTION_SIZE(section, segment) \
5192 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5193 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5194 ? section->size : 0)
5195
5196 /* Returns TRUE if the given section is contained within
5197 the given segment. VMA addresses are compared. */
5198 #define IS_CONTAINED_BY_VMA(section, segment) \
5199 (section->vma >= segment->p_vaddr \
5200 && (section->vma + SECTION_SIZE (section, segment) \
5201 <= (SEGMENT_END (segment, segment->p_vaddr))))
5202
5203 /* Returns TRUE if the given section is contained within
5204 the given segment. LMA addresses are compared. */
5205 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5206 (section->lma >= base \
5207 && (section->lma + SECTION_SIZE (section, segment) \
5208 <= SEGMENT_END (segment, base)))
5209
5210 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5211 #define IS_COREFILE_NOTE(p, s) \
5212 (p->p_type == PT_NOTE \
5213 && bfd_get_format (ibfd) == bfd_core \
5214 && s->vma == 0 && s->lma == 0 \
5215 && (bfd_vma) s->filepos >= p->p_offset \
5216 && ((bfd_vma) s->filepos + s->size \
5217 <= p->p_offset + p->p_filesz))
5218
5219 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5220 linker, which generates a PT_INTERP section with p_vaddr and
5221 p_memsz set to 0. */
5222 #define IS_SOLARIS_PT_INTERP(p, s) \
5223 (p->p_vaddr == 0 \
5224 && p->p_paddr == 0 \
5225 && p->p_memsz == 0 \
5226 && p->p_filesz > 0 \
5227 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5228 && s->size > 0 \
5229 && (bfd_vma) s->filepos >= p->p_offset \
5230 && ((bfd_vma) s->filepos + s->size \
5231 <= p->p_offset + p->p_filesz))
5232
5233 /* Decide if the given section should be included in the given segment.
5234 A section will be included if:
5235 1. It is within the address space of the segment -- we use the LMA
5236 if that is set for the segment and the VMA otherwise,
5237 2. It is an allocated segment,
5238 3. There is an output section associated with it,
5239 4. The section has not already been allocated to a previous segment.
5240 5. PT_GNU_STACK segments do not include any sections.
5241 6. PT_TLS segment includes only SHF_TLS sections.
5242 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5243 8. PT_DYNAMIC should not contain empty sections at the beginning
5244 (with the possible exception of .dynamic). */
5245 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5246 ((((segment->p_paddr \
5247 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5248 : IS_CONTAINED_BY_VMA (section, segment)) \
5249 && (section->flags & SEC_ALLOC) != 0) \
5250 || IS_COREFILE_NOTE (segment, section)) \
5251 && section->output_section != NULL \
5252 && segment->p_type != PT_GNU_STACK \
5253 && (segment->p_type != PT_TLS \
5254 || (section->flags & SEC_THREAD_LOCAL)) \
5255 && (segment->p_type == PT_LOAD \
5256 || segment->p_type == PT_TLS \
5257 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5258 && (segment->p_type != PT_DYNAMIC \
5259 || SECTION_SIZE (section, segment) > 0 \
5260 || (segment->p_paddr \
5261 ? segment->p_paddr != section->lma \
5262 : segment->p_vaddr != section->vma) \
5263 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5264 == 0)) \
5265 && ! section->segment_mark)
5266
5267 /* Returns TRUE iff seg1 starts after the end of seg2. */
5268 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5269 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5270
5271 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5272 their VMA address ranges and their LMA address ranges overlap.
5273 It is possible to have overlapping VMA ranges without overlapping LMA
5274 ranges. RedBoot images for example can have both .data and .bss mapped
5275 to the same VMA range, but with the .data section mapped to a different
5276 LMA. */
5277 #define SEGMENT_OVERLAPS(seg1, seg2) \
5278 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5279 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5280 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5281 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5282
5283 /* Initialise the segment mark field. */
5284 for (section = ibfd->sections; section != NULL; section = section->next)
5285 section->segment_mark = FALSE;
5286
5287 /* Scan through the segments specified in the program header
5288 of the input BFD. For this first scan we look for overlaps
5289 in the loadable segments. These can be created by weird
5290 parameters to objcopy. Also, fix some solaris weirdness. */
5291 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5292 i < num_segments;
5293 i++, segment++)
5294 {
5295 unsigned int j;
5296 Elf_Internal_Phdr *segment2;
5297
5298 if (segment->p_type == PT_INTERP)
5299 for (section = ibfd->sections; section; section = section->next)
5300 if (IS_SOLARIS_PT_INTERP (segment, section))
5301 {
5302 /* Mininal change so that the normal section to segment
5303 assignment code will work. */
5304 segment->p_vaddr = section->vma;
5305 break;
5306 }
5307
5308 if (segment->p_type != PT_LOAD)
5309 continue;
5310
5311 /* Determine if this segment overlaps any previous segments. */
5312 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5313 {
5314 bfd_signed_vma extra_length;
5315
5316 if (segment2->p_type != PT_LOAD
5317 || ! SEGMENT_OVERLAPS (segment, segment2))
5318 continue;
5319
5320 /* Merge the two segments together. */
5321 if (segment2->p_vaddr < segment->p_vaddr)
5322 {
5323 /* Extend SEGMENT2 to include SEGMENT and then delete
5324 SEGMENT. */
5325 extra_length =
5326 SEGMENT_END (segment, segment->p_vaddr)
5327 - SEGMENT_END (segment2, segment2->p_vaddr);
5328
5329 if (extra_length > 0)
5330 {
5331 segment2->p_memsz += extra_length;
5332 segment2->p_filesz += extra_length;
5333 }
5334
5335 segment->p_type = PT_NULL;
5336
5337 /* Since we have deleted P we must restart the outer loop. */
5338 i = 0;
5339 segment = elf_tdata (ibfd)->phdr;
5340 break;
5341 }
5342 else
5343 {
5344 /* Extend SEGMENT to include SEGMENT2 and then delete
5345 SEGMENT2. */
5346 extra_length =
5347 SEGMENT_END (segment2, segment2->p_vaddr)
5348 - SEGMENT_END (segment, segment->p_vaddr);
5349
5350 if (extra_length > 0)
5351 {
5352 segment->p_memsz += extra_length;
5353 segment->p_filesz += extra_length;
5354 }
5355
5356 segment2->p_type = PT_NULL;
5357 }
5358 }
5359 }
5360
5361 /* The second scan attempts to assign sections to segments. */
5362 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5363 i < num_segments;
5364 i ++, segment ++)
5365 {
5366 unsigned int section_count;
5367 asection ** sections;
5368 asection * output_section;
5369 unsigned int isec;
5370 bfd_vma matching_lma;
5371 bfd_vma suggested_lma;
5372 unsigned int j;
5373 bfd_size_type amt;
5374
5375 if (segment->p_type == PT_NULL)
5376 continue;
5377
5378 /* Compute how many sections might be placed into this segment. */
5379 for (section = ibfd->sections, section_count = 0;
5380 section != NULL;
5381 section = section->next)
5382 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5383 ++section_count;
5384
5385 /* Allocate a segment map big enough to contain
5386 all of the sections we have selected. */
5387 amt = sizeof (struct elf_segment_map);
5388 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5389 map = bfd_alloc (obfd, amt);
5390 if (map == NULL)
5391 return FALSE;
5392
5393 /* Initialise the fields of the segment map. Default to
5394 using the physical address of the segment in the input BFD. */
5395 map->next = NULL;
5396 map->p_type = segment->p_type;
5397 map->p_flags = segment->p_flags;
5398 map->p_flags_valid = 1;
5399 map->p_paddr = segment->p_paddr;
5400 map->p_paddr_valid = 1;
5401
5402 /* Determine if this segment contains the ELF file header
5403 and if it contains the program headers themselves. */
5404 map->includes_filehdr = (segment->p_offset == 0
5405 && segment->p_filesz >= iehdr->e_ehsize);
5406
5407 map->includes_phdrs = 0;
5408
5409 if (! phdr_included || segment->p_type != PT_LOAD)
5410 {
5411 map->includes_phdrs =
5412 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5413 && (segment->p_offset + segment->p_filesz
5414 >= ((bfd_vma) iehdr->e_phoff
5415 + iehdr->e_phnum * iehdr->e_phentsize)));
5416
5417 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5418 phdr_included = TRUE;
5419 }
5420
5421 if (section_count == 0)
5422 {
5423 /* Special segments, such as the PT_PHDR segment, may contain
5424 no sections, but ordinary, loadable segments should contain
5425 something. They are allowed by the ELF spec however, so only
5426 a warning is produced. */
5427 if (segment->p_type == PT_LOAD)
5428 (*_bfd_error_handler)
5429 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5430 ibfd);
5431
5432 map->count = 0;
5433 *pointer_to_map = map;
5434 pointer_to_map = &map->next;
5435
5436 continue;
5437 }
5438
5439 /* Now scan the sections in the input BFD again and attempt
5440 to add their corresponding output sections to the segment map.
5441 The problem here is how to handle an output section which has
5442 been moved (ie had its LMA changed). There are four possibilities:
5443
5444 1. None of the sections have been moved.
5445 In this case we can continue to use the segment LMA from the
5446 input BFD.
5447
5448 2. All of the sections have been moved by the same amount.
5449 In this case we can change the segment's LMA to match the LMA
5450 of the first section.
5451
5452 3. Some of the sections have been moved, others have not.
5453 In this case those sections which have not been moved can be
5454 placed in the current segment which will have to have its size,
5455 and possibly its LMA changed, and a new segment or segments will
5456 have to be created to contain the other sections.
5457
5458 4. The sections have been moved, but not by the same amount.
5459 In this case we can change the segment's LMA to match the LMA
5460 of the first section and we will have to create a new segment
5461 or segments to contain the other sections.
5462
5463 In order to save time, we allocate an array to hold the section
5464 pointers that we are interested in. As these sections get assigned
5465 to a segment, they are removed from this array. */
5466
5467 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5468 to work around this long long bug. */
5469 sections = bfd_malloc2 (section_count, sizeof (asection *));
5470 if (sections == NULL)
5471 return FALSE;
5472
5473 /* Step One: Scan for segment vs section LMA conflicts.
5474 Also add the sections to the section array allocated above.
5475 Also add the sections to the current segment. In the common
5476 case, where the sections have not been moved, this means that
5477 we have completely filled the segment, and there is nothing
5478 more to do. */
5479 isec = 0;
5480 matching_lma = 0;
5481 suggested_lma = 0;
5482
5483 for (j = 0, section = ibfd->sections;
5484 section != NULL;
5485 section = section->next)
5486 {
5487 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5488 {
5489 output_section = section->output_section;
5490
5491 sections[j ++] = section;
5492
5493 /* The Solaris native linker always sets p_paddr to 0.
5494 We try to catch that case here, and set it to the
5495 correct value. Note - some backends require that
5496 p_paddr be left as zero. */
5497 if (segment->p_paddr == 0
5498 && segment->p_vaddr != 0
5499 && (! bed->want_p_paddr_set_to_zero)
5500 && isec == 0
5501 && output_section->lma != 0
5502 && (output_section->vma == (segment->p_vaddr
5503 + (map->includes_filehdr
5504 ? iehdr->e_ehsize
5505 : 0)
5506 + (map->includes_phdrs
5507 ? (iehdr->e_phnum
5508 * iehdr->e_phentsize)
5509 : 0))))
5510 map->p_paddr = segment->p_vaddr;
5511
5512 /* Match up the physical address of the segment with the
5513 LMA address of the output section. */
5514 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5515 || IS_COREFILE_NOTE (segment, section)
5516 || (bed->want_p_paddr_set_to_zero &&
5517 IS_CONTAINED_BY_VMA (output_section, segment))
5518 )
5519 {
5520 if (matching_lma == 0)
5521 matching_lma = output_section->lma;
5522
5523 /* We assume that if the section fits within the segment
5524 then it does not overlap any other section within that
5525 segment. */
5526 map->sections[isec ++] = output_section;
5527 }
5528 else if (suggested_lma == 0)
5529 suggested_lma = output_section->lma;
5530 }
5531 }
5532
5533 BFD_ASSERT (j == section_count);
5534
5535 /* Step Two: Adjust the physical address of the current segment,
5536 if necessary. */
5537 if (isec == section_count)
5538 {
5539 /* All of the sections fitted within the segment as currently
5540 specified. This is the default case. Add the segment to
5541 the list of built segments and carry on to process the next
5542 program header in the input BFD. */
5543 map->count = section_count;
5544 *pointer_to_map = map;
5545 pointer_to_map = &map->next;
5546
5547 free (sections);
5548 continue;
5549 }
5550 else
5551 {
5552 if (matching_lma != 0)
5553 {
5554 /* At least one section fits inside the current segment.
5555 Keep it, but modify its physical address to match the
5556 LMA of the first section that fitted. */
5557 map->p_paddr = matching_lma;
5558 }
5559 else
5560 {
5561 /* None of the sections fitted inside the current segment.
5562 Change the current segment's physical address to match
5563 the LMA of the first section. */
5564 map->p_paddr = suggested_lma;
5565 }
5566
5567 /* Offset the segment physical address from the lma
5568 to allow for space taken up by elf headers. */
5569 if (map->includes_filehdr)
5570 map->p_paddr -= iehdr->e_ehsize;
5571
5572 if (map->includes_phdrs)
5573 {
5574 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5575
5576 /* iehdr->e_phnum is just an estimate of the number
5577 of program headers that we will need. Make a note
5578 here of the number we used and the segment we chose
5579 to hold these headers, so that we can adjust the
5580 offset when we know the correct value. */
5581 phdr_adjust_num = iehdr->e_phnum;
5582 phdr_adjust_seg = map;
5583 }
5584 }
5585
5586 /* Step Three: Loop over the sections again, this time assigning
5587 those that fit to the current segment and removing them from the
5588 sections array; but making sure not to leave large gaps. Once all
5589 possible sections have been assigned to the current segment it is
5590 added to the list of built segments and if sections still remain
5591 to be assigned, a new segment is constructed before repeating
5592 the loop. */
5593 isec = 0;
5594 do
5595 {
5596 map->count = 0;
5597 suggested_lma = 0;
5598
5599 /* Fill the current segment with sections that fit. */
5600 for (j = 0; j < section_count; j++)
5601 {
5602 section = sections[j];
5603
5604 if (section == NULL)
5605 continue;
5606
5607 output_section = section->output_section;
5608
5609 BFD_ASSERT (output_section != NULL);
5610
5611 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5612 || IS_COREFILE_NOTE (segment, section))
5613 {
5614 if (map->count == 0)
5615 {
5616 /* If the first section in a segment does not start at
5617 the beginning of the segment, then something is
5618 wrong. */
5619 if (output_section->lma !=
5620 (map->p_paddr
5621 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5622 + (map->includes_phdrs
5623 ? iehdr->e_phnum * iehdr->e_phentsize
5624 : 0)))
5625 abort ();
5626 }
5627 else
5628 {
5629 asection * prev_sec;
5630
5631 prev_sec = map->sections[map->count - 1];
5632
5633 /* If the gap between the end of the previous section
5634 and the start of this section is more than
5635 maxpagesize then we need to start a new segment. */
5636 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5637 maxpagesize)
5638 < BFD_ALIGN (output_section->lma, maxpagesize))
5639 || ((prev_sec->lma + prev_sec->size)
5640 > output_section->lma))
5641 {
5642 if (suggested_lma == 0)
5643 suggested_lma = output_section->lma;
5644
5645 continue;
5646 }
5647 }
5648
5649 map->sections[map->count++] = output_section;
5650 ++isec;
5651 sections[j] = NULL;
5652 section->segment_mark = TRUE;
5653 }
5654 else if (suggested_lma == 0)
5655 suggested_lma = output_section->lma;
5656 }
5657
5658 BFD_ASSERT (map->count > 0);
5659
5660 /* Add the current segment to the list of built segments. */
5661 *pointer_to_map = map;
5662 pointer_to_map = &map->next;
5663
5664 if (isec < section_count)
5665 {
5666 /* We still have not allocated all of the sections to
5667 segments. Create a new segment here, initialise it
5668 and carry on looping. */
5669 amt = sizeof (struct elf_segment_map);
5670 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5671 map = bfd_alloc (obfd, amt);
5672 if (map == NULL)
5673 {
5674 free (sections);
5675 return FALSE;
5676 }
5677
5678 /* Initialise the fields of the segment map. Set the physical
5679 physical address to the LMA of the first section that has
5680 not yet been assigned. */
5681 map->next = NULL;
5682 map->p_type = segment->p_type;
5683 map->p_flags = segment->p_flags;
5684 map->p_flags_valid = 1;
5685 map->p_paddr = suggested_lma;
5686 map->p_paddr_valid = 1;
5687 map->includes_filehdr = 0;
5688 map->includes_phdrs = 0;
5689 }
5690 }
5691 while (isec < section_count);
5692
5693 free (sections);
5694 }
5695
5696 /* The Solaris linker creates program headers in which all the
5697 p_paddr fields are zero. When we try to objcopy or strip such a
5698 file, we get confused. Check for this case, and if we find it
5699 reset the p_paddr_valid fields. */
5700 for (map = map_first; map != NULL; map = map->next)
5701 if (map->p_paddr != 0)
5702 break;
5703 if (map == NULL)
5704 for (map = map_first; map != NULL; map = map->next)
5705 map->p_paddr_valid = 0;
5706
5707 elf_tdata (obfd)->segment_map = map_first;
5708
5709 /* If we had to estimate the number of program headers that were
5710 going to be needed, then check our estimate now and adjust
5711 the offset if necessary. */
5712 if (phdr_adjust_seg != NULL)
5713 {
5714 unsigned int count;
5715
5716 for (count = 0, map = map_first; map != NULL; map = map->next)
5717 count++;
5718
5719 if (count > phdr_adjust_num)
5720 phdr_adjust_seg->p_paddr
5721 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5722 }
5723
5724 #undef SEGMENT_END
5725 #undef SECTION_SIZE
5726 #undef IS_CONTAINED_BY_VMA
5727 #undef IS_CONTAINED_BY_LMA
5728 #undef IS_COREFILE_NOTE
5729 #undef IS_SOLARIS_PT_INTERP
5730 #undef INCLUDE_SECTION_IN_SEGMENT
5731 #undef SEGMENT_AFTER_SEGMENT
5732 #undef SEGMENT_OVERLAPS
5733 return TRUE;
5734 }
5735
5736 /* Copy ELF program header information. */
5737
5738 static bfd_boolean
5739 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5740 {
5741 Elf_Internal_Ehdr *iehdr;
5742 struct elf_segment_map *map;
5743 struct elf_segment_map *map_first;
5744 struct elf_segment_map **pointer_to_map;
5745 Elf_Internal_Phdr *segment;
5746 unsigned int i;
5747 unsigned int num_segments;
5748 bfd_boolean phdr_included = FALSE;
5749
5750 iehdr = elf_elfheader (ibfd);
5751
5752 map_first = NULL;
5753 pointer_to_map = &map_first;
5754
5755 num_segments = elf_elfheader (ibfd)->e_phnum;
5756 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5757 i < num_segments;
5758 i++, segment++)
5759 {
5760 asection *section;
5761 unsigned int section_count;
5762 bfd_size_type amt;
5763 Elf_Internal_Shdr *this_hdr;
5764
5765 /* FIXME: Do we need to copy PT_NULL segment? */
5766 if (segment->p_type == PT_NULL)
5767 continue;
5768
5769 /* Compute how many sections are in this segment. */
5770 for (section = ibfd->sections, section_count = 0;
5771 section != NULL;
5772 section = section->next)
5773 {
5774 this_hdr = &(elf_section_data(section)->this_hdr);
5775 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5776 section_count++;
5777 }
5778
5779 /* Allocate a segment map big enough to contain
5780 all of the sections we have selected. */
5781 amt = sizeof (struct elf_segment_map);
5782 if (section_count != 0)
5783 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5784 map = bfd_alloc (obfd, amt);
5785 if (map == NULL)
5786 return FALSE;
5787
5788 /* Initialize the fields of the output segment map with the
5789 input segment. */
5790 map->next = NULL;
5791 map->p_type = segment->p_type;
5792 map->p_flags = segment->p_flags;
5793 map->p_flags_valid = 1;
5794 map->p_paddr = segment->p_paddr;
5795 map->p_paddr_valid = 1;
5796 map->p_align = segment->p_align;
5797 map->p_align_valid = 1;
5798
5799 /* Determine if this segment contains the ELF file header
5800 and if it contains the program headers themselves. */
5801 map->includes_filehdr = (segment->p_offset == 0
5802 && segment->p_filesz >= iehdr->e_ehsize);
5803
5804 map->includes_phdrs = 0;
5805 if (! phdr_included || segment->p_type != PT_LOAD)
5806 {
5807 map->includes_phdrs =
5808 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5809 && (segment->p_offset + segment->p_filesz
5810 >= ((bfd_vma) iehdr->e_phoff
5811 + iehdr->e_phnum * iehdr->e_phentsize)));
5812
5813 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5814 phdr_included = TRUE;
5815 }
5816
5817 if (section_count != 0)
5818 {
5819 unsigned int isec = 0;
5820
5821 for (section = ibfd->sections;
5822 section != NULL;
5823 section = section->next)
5824 {
5825 this_hdr = &(elf_section_data(section)->this_hdr);
5826 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5827 map->sections[isec++] = section->output_section;
5828 }
5829 }
5830
5831 map->count = section_count;
5832 *pointer_to_map = map;
5833 pointer_to_map = &map->next;
5834 }
5835
5836 elf_tdata (obfd)->segment_map = map_first;
5837 return TRUE;
5838 }
5839
5840 /* Copy private BFD data. This copies or rewrites ELF program header
5841 information. */
5842
5843 static bfd_boolean
5844 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5845 {
5846 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5847 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5848 return TRUE;
5849
5850 if (elf_tdata (ibfd)->phdr == NULL)
5851 return TRUE;
5852
5853 if (ibfd->xvec == obfd->xvec)
5854 {
5855 /* Check if any sections in the input BFD covered by ELF program
5856 header are changed. */
5857 Elf_Internal_Phdr *segment;
5858 asection *section, *osec;
5859 unsigned int i, num_segments;
5860 Elf_Internal_Shdr *this_hdr;
5861
5862 /* Initialize the segment mark field. */
5863 for (section = obfd->sections; section != NULL;
5864 section = section->next)
5865 section->segment_mark = FALSE;
5866
5867 num_segments = elf_elfheader (ibfd)->e_phnum;
5868 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5869 i < num_segments;
5870 i++, segment++)
5871 {
5872 for (section = ibfd->sections;
5873 section != NULL; section = section->next)
5874 {
5875 /* We mark the output section so that we know it comes
5876 from the input BFD. */
5877 osec = section->output_section;
5878 if (osec)
5879 osec->segment_mark = TRUE;
5880
5881 /* Check if this section is covered by the segment. */
5882 this_hdr = &(elf_section_data(section)->this_hdr);
5883 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5884 {
5885 /* FIXME: Check if its output section is changed or
5886 removed. What else do we need to check? */
5887 if (osec == NULL
5888 || section->flags != osec->flags
5889 || section->lma != osec->lma
5890 || section->vma != osec->vma
5891 || section->size != osec->size
5892 || section->rawsize != osec->rawsize
5893 || section->alignment_power != osec->alignment_power)
5894 goto rewrite;
5895 }
5896 }
5897 }
5898
5899 /* Check to see if any output section doesn't come from the
5900 input BFD. */
5901 for (section = obfd->sections; section != NULL;
5902 section = section->next)
5903 {
5904 if (section->segment_mark == FALSE)
5905 goto rewrite;
5906 else
5907 section->segment_mark = FALSE;
5908 }
5909
5910 return copy_elf_program_header (ibfd, obfd);
5911 }
5912
5913 rewrite:
5914 return rewrite_elf_program_header (ibfd, obfd);
5915 }
5916
5917 /* Initialize private output section information from input section. */
5918
5919 bfd_boolean
5920 _bfd_elf_init_private_section_data (bfd *ibfd,
5921 asection *isec,
5922 bfd *obfd,
5923 asection *osec,
5924 struct bfd_link_info *link_info)
5925
5926 {
5927 Elf_Internal_Shdr *ihdr, *ohdr;
5928 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5929
5930 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5931 || obfd->xvec->flavour != bfd_target_elf_flavour)
5932 return TRUE;
5933
5934 /* Don't copy the output ELF section type from input if the
5935 output BFD section flags have been set to something different.
5936 elf_fake_sections will set ELF section type based on BFD
5937 section flags. */
5938 if (osec->flags == isec->flags
5939 || (osec->flags == 0 && elf_section_type (osec) == SHT_NULL))
5940 elf_section_type (osec) = elf_section_type (isec);
5941
5942 /* Set things up for objcopy and relocatable link. The output
5943 SHT_GROUP section will have its elf_next_in_group pointing back
5944 to the input group members. Ignore linker created group section.
5945 See elfNN_ia64_object_p in elfxx-ia64.c. */
5946 if (need_group)
5947 {
5948 if (elf_sec_group (isec) == NULL
5949 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5950 {
5951 if (elf_section_flags (isec) & SHF_GROUP)
5952 elf_section_flags (osec) |= SHF_GROUP;
5953 elf_next_in_group (osec) = elf_next_in_group (isec);
5954 elf_group_name (osec) = elf_group_name (isec);
5955 }
5956 }
5957
5958 ihdr = &elf_section_data (isec)->this_hdr;
5959
5960 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5961 don't use the output section of the linked-to section since it
5962 may be NULL at this point. */
5963 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5964 {
5965 ohdr = &elf_section_data (osec)->this_hdr;
5966 ohdr->sh_flags |= SHF_LINK_ORDER;
5967 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5968 }
5969
5970 osec->use_rela_p = isec->use_rela_p;
5971
5972 return TRUE;
5973 }
5974
5975 /* Copy private section information. This copies over the entsize
5976 field, and sometimes the info field. */
5977
5978 bfd_boolean
5979 _bfd_elf_copy_private_section_data (bfd *ibfd,
5980 asection *isec,
5981 bfd *obfd,
5982 asection *osec)
5983 {
5984 Elf_Internal_Shdr *ihdr, *ohdr;
5985
5986 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5987 || obfd->xvec->flavour != bfd_target_elf_flavour)
5988 return TRUE;
5989
5990 ihdr = &elf_section_data (isec)->this_hdr;
5991 ohdr = &elf_section_data (osec)->this_hdr;
5992
5993 ohdr->sh_entsize = ihdr->sh_entsize;
5994
5995 if (ihdr->sh_type == SHT_SYMTAB
5996 || ihdr->sh_type == SHT_DYNSYM
5997 || ihdr->sh_type == SHT_GNU_verneed
5998 || ihdr->sh_type == SHT_GNU_verdef)
5999 ohdr->sh_info = ihdr->sh_info;
6000
6001 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6002 NULL);
6003 }
6004
6005 /* Copy private header information. */
6006
6007 bfd_boolean
6008 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6009 {
6010 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6011 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6012 return TRUE;
6013
6014 /* Copy over private BFD data if it has not already been copied.
6015 This must be done here, rather than in the copy_private_bfd_data
6016 entry point, because the latter is called after the section
6017 contents have been set, which means that the program headers have
6018 already been worked out. */
6019 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6020 {
6021 if (! copy_private_bfd_data (ibfd, obfd))
6022 return FALSE;
6023 }
6024
6025 return TRUE;
6026 }
6027
6028 /* Copy private symbol information. If this symbol is in a section
6029 which we did not map into a BFD section, try to map the section
6030 index correctly. We use special macro definitions for the mapped
6031 section indices; these definitions are interpreted by the
6032 swap_out_syms function. */
6033
6034 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6035 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6036 #define MAP_STRTAB (SHN_HIOS + 3)
6037 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6038 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6039
6040 bfd_boolean
6041 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6042 asymbol *isymarg,
6043 bfd *obfd,
6044 asymbol *osymarg)
6045 {
6046 elf_symbol_type *isym, *osym;
6047
6048 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6049 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6050 return TRUE;
6051
6052 isym = elf_symbol_from (ibfd, isymarg);
6053 osym = elf_symbol_from (obfd, osymarg);
6054
6055 if (isym != NULL
6056 && osym != NULL
6057 && bfd_is_abs_section (isym->symbol.section))
6058 {
6059 unsigned int shndx;
6060
6061 shndx = isym->internal_elf_sym.st_shndx;
6062 if (shndx == elf_onesymtab (ibfd))
6063 shndx = MAP_ONESYMTAB;
6064 else if (shndx == elf_dynsymtab (ibfd))
6065 shndx = MAP_DYNSYMTAB;
6066 else if (shndx == elf_tdata (ibfd)->strtab_section)
6067 shndx = MAP_STRTAB;
6068 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6069 shndx = MAP_SHSTRTAB;
6070 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6071 shndx = MAP_SYM_SHNDX;
6072 osym->internal_elf_sym.st_shndx = shndx;
6073 }
6074
6075 return TRUE;
6076 }
6077
6078 /* Swap out the symbols. */
6079
6080 static bfd_boolean
6081 swap_out_syms (bfd *abfd,
6082 struct bfd_strtab_hash **sttp,
6083 int relocatable_p)
6084 {
6085 const struct elf_backend_data *bed;
6086 int symcount;
6087 asymbol **syms;
6088 struct bfd_strtab_hash *stt;
6089 Elf_Internal_Shdr *symtab_hdr;
6090 Elf_Internal_Shdr *symtab_shndx_hdr;
6091 Elf_Internal_Shdr *symstrtab_hdr;
6092 bfd_byte *outbound_syms;
6093 bfd_byte *outbound_shndx;
6094 int idx;
6095 bfd_size_type amt;
6096 bfd_boolean name_local_sections;
6097
6098 if (!elf_map_symbols (abfd))
6099 return FALSE;
6100
6101 /* Dump out the symtabs. */
6102 stt = _bfd_elf_stringtab_init ();
6103 if (stt == NULL)
6104 return FALSE;
6105
6106 bed = get_elf_backend_data (abfd);
6107 symcount = bfd_get_symcount (abfd);
6108 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6109 symtab_hdr->sh_type = SHT_SYMTAB;
6110 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6111 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6112 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6113 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6114
6115 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6116 symstrtab_hdr->sh_type = SHT_STRTAB;
6117
6118 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6119 if (outbound_syms == NULL)
6120 {
6121 _bfd_stringtab_free (stt);
6122 return FALSE;
6123 }
6124 symtab_hdr->contents = outbound_syms;
6125
6126 outbound_shndx = NULL;
6127 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6128 if (symtab_shndx_hdr->sh_name != 0)
6129 {
6130 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6131 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6132 sizeof (Elf_External_Sym_Shndx));
6133 if (outbound_shndx == NULL)
6134 {
6135 _bfd_stringtab_free (stt);
6136 return FALSE;
6137 }
6138
6139 symtab_shndx_hdr->contents = outbound_shndx;
6140 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6141 symtab_shndx_hdr->sh_size = amt;
6142 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6143 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6144 }
6145
6146 /* Now generate the data (for "contents"). */
6147 {
6148 /* Fill in zeroth symbol and swap it out. */
6149 Elf_Internal_Sym sym;
6150 sym.st_name = 0;
6151 sym.st_value = 0;
6152 sym.st_size = 0;
6153 sym.st_info = 0;
6154 sym.st_other = 0;
6155 sym.st_shndx = SHN_UNDEF;
6156 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6157 outbound_syms += bed->s->sizeof_sym;
6158 if (outbound_shndx != NULL)
6159 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6160 }
6161
6162 name_local_sections
6163 = (bed->elf_backend_name_local_section_symbols
6164 && bed->elf_backend_name_local_section_symbols (abfd));
6165
6166 syms = bfd_get_outsymbols (abfd);
6167 for (idx = 0; idx < symcount; idx++)
6168 {
6169 Elf_Internal_Sym sym;
6170 bfd_vma value = syms[idx]->value;
6171 elf_symbol_type *type_ptr;
6172 flagword flags = syms[idx]->flags;
6173 int type;
6174
6175 if (!name_local_sections
6176 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6177 {
6178 /* Local section symbols have no name. */
6179 sym.st_name = 0;
6180 }
6181 else
6182 {
6183 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6184 syms[idx]->name,
6185 TRUE, FALSE);
6186 if (sym.st_name == (unsigned long) -1)
6187 {
6188 _bfd_stringtab_free (stt);
6189 return FALSE;
6190 }
6191 }
6192
6193 type_ptr = elf_symbol_from (abfd, syms[idx]);
6194
6195 if ((flags & BSF_SECTION_SYM) == 0
6196 && bfd_is_com_section (syms[idx]->section))
6197 {
6198 /* ELF common symbols put the alignment into the `value' field,
6199 and the size into the `size' field. This is backwards from
6200 how BFD handles it, so reverse it here. */
6201 sym.st_size = value;
6202 if (type_ptr == NULL
6203 || type_ptr->internal_elf_sym.st_value == 0)
6204 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6205 else
6206 sym.st_value = type_ptr->internal_elf_sym.st_value;
6207 sym.st_shndx = _bfd_elf_section_from_bfd_section
6208 (abfd, syms[idx]->section);
6209 }
6210 else
6211 {
6212 asection *sec = syms[idx]->section;
6213 int shndx;
6214
6215 if (sec->output_section)
6216 {
6217 value += sec->output_offset;
6218 sec = sec->output_section;
6219 }
6220
6221 /* Don't add in the section vma for relocatable output. */
6222 if (! relocatable_p)
6223 value += sec->vma;
6224 sym.st_value = value;
6225 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6226
6227 if (bfd_is_abs_section (sec)
6228 && type_ptr != NULL
6229 && type_ptr->internal_elf_sym.st_shndx != 0)
6230 {
6231 /* This symbol is in a real ELF section which we did
6232 not create as a BFD section. Undo the mapping done
6233 by copy_private_symbol_data. */
6234 shndx = type_ptr->internal_elf_sym.st_shndx;
6235 switch (shndx)
6236 {
6237 case MAP_ONESYMTAB:
6238 shndx = elf_onesymtab (abfd);
6239 break;
6240 case MAP_DYNSYMTAB:
6241 shndx = elf_dynsymtab (abfd);
6242 break;
6243 case MAP_STRTAB:
6244 shndx = elf_tdata (abfd)->strtab_section;
6245 break;
6246 case MAP_SHSTRTAB:
6247 shndx = elf_tdata (abfd)->shstrtab_section;
6248 break;
6249 case MAP_SYM_SHNDX:
6250 shndx = elf_tdata (abfd)->symtab_shndx_section;
6251 break;
6252 default:
6253 break;
6254 }
6255 }
6256 else
6257 {
6258 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6259
6260 if (shndx == -1)
6261 {
6262 asection *sec2;
6263
6264 /* Writing this would be a hell of a lot easier if
6265 we had some decent documentation on bfd, and
6266 knew what to expect of the library, and what to
6267 demand of applications. For example, it
6268 appears that `objcopy' might not set the
6269 section of a symbol to be a section that is
6270 actually in the output file. */
6271 sec2 = bfd_get_section_by_name (abfd, sec->name);
6272 if (sec2 == NULL)
6273 {
6274 _bfd_error_handler (_("\
6275 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6276 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6277 sec->name);
6278 bfd_set_error (bfd_error_invalid_operation);
6279 _bfd_stringtab_free (stt);
6280 return FALSE;
6281 }
6282
6283 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6284 BFD_ASSERT (shndx != -1);
6285 }
6286 }
6287
6288 sym.st_shndx = shndx;
6289 }
6290
6291 if ((flags & BSF_THREAD_LOCAL) != 0)
6292 type = STT_TLS;
6293 else if ((flags & BSF_FUNCTION) != 0)
6294 type = STT_FUNC;
6295 else if ((flags & BSF_OBJECT) != 0)
6296 type = STT_OBJECT;
6297 else
6298 type = STT_NOTYPE;
6299
6300 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6301 type = STT_TLS;
6302
6303 /* Processor-specific types. */
6304 if (type_ptr != NULL
6305 && bed->elf_backend_get_symbol_type)
6306 type = ((*bed->elf_backend_get_symbol_type)
6307 (&type_ptr->internal_elf_sym, type));
6308
6309 if (flags & BSF_SECTION_SYM)
6310 {
6311 if (flags & BSF_GLOBAL)
6312 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6313 else
6314 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6315 }
6316 else if (bfd_is_com_section (syms[idx]->section))
6317 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6318 else if (bfd_is_und_section (syms[idx]->section))
6319 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6320 ? STB_WEAK
6321 : STB_GLOBAL),
6322 type);
6323 else if (flags & BSF_FILE)
6324 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6325 else
6326 {
6327 int bind = STB_LOCAL;
6328
6329 if (flags & BSF_LOCAL)
6330 bind = STB_LOCAL;
6331 else if (flags & BSF_WEAK)
6332 bind = STB_WEAK;
6333 else if (flags & BSF_GLOBAL)
6334 bind = STB_GLOBAL;
6335
6336 sym.st_info = ELF_ST_INFO (bind, type);
6337 }
6338
6339 if (type_ptr != NULL)
6340 sym.st_other = type_ptr->internal_elf_sym.st_other;
6341 else
6342 sym.st_other = 0;
6343
6344 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6345 outbound_syms += bed->s->sizeof_sym;
6346 if (outbound_shndx != NULL)
6347 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6348 }
6349
6350 *sttp = stt;
6351 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6352 symstrtab_hdr->sh_type = SHT_STRTAB;
6353
6354 symstrtab_hdr->sh_flags = 0;
6355 symstrtab_hdr->sh_addr = 0;
6356 symstrtab_hdr->sh_entsize = 0;
6357 symstrtab_hdr->sh_link = 0;
6358 symstrtab_hdr->sh_info = 0;
6359 symstrtab_hdr->sh_addralign = 1;
6360
6361 return TRUE;
6362 }
6363
6364 /* Return the number of bytes required to hold the symtab vector.
6365
6366 Note that we base it on the count plus 1, since we will null terminate
6367 the vector allocated based on this size. However, the ELF symbol table
6368 always has a dummy entry as symbol #0, so it ends up even. */
6369
6370 long
6371 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6372 {
6373 long symcount;
6374 long symtab_size;
6375 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6376
6377 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6378 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6379 if (symcount > 0)
6380 symtab_size -= sizeof (asymbol *);
6381
6382 return symtab_size;
6383 }
6384
6385 long
6386 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6387 {
6388 long symcount;
6389 long symtab_size;
6390 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6391
6392 if (elf_dynsymtab (abfd) == 0)
6393 {
6394 bfd_set_error (bfd_error_invalid_operation);
6395 return -1;
6396 }
6397
6398 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6399 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6400 if (symcount > 0)
6401 symtab_size -= sizeof (asymbol *);
6402
6403 return symtab_size;
6404 }
6405
6406 long
6407 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6408 sec_ptr asect)
6409 {
6410 return (asect->reloc_count + 1) * sizeof (arelent *);
6411 }
6412
6413 /* Canonicalize the relocs. */
6414
6415 long
6416 _bfd_elf_canonicalize_reloc (bfd *abfd,
6417 sec_ptr section,
6418 arelent **relptr,
6419 asymbol **symbols)
6420 {
6421 arelent *tblptr;
6422 unsigned int i;
6423 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6424
6425 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6426 return -1;
6427
6428 tblptr = section->relocation;
6429 for (i = 0; i < section->reloc_count; i++)
6430 *relptr++ = tblptr++;
6431
6432 *relptr = NULL;
6433
6434 return section->reloc_count;
6435 }
6436
6437 long
6438 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6439 {
6440 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6441 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6442
6443 if (symcount >= 0)
6444 bfd_get_symcount (abfd) = symcount;
6445 return symcount;
6446 }
6447
6448 long
6449 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6450 asymbol **allocation)
6451 {
6452 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6453 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6454
6455 if (symcount >= 0)
6456 bfd_get_dynamic_symcount (abfd) = symcount;
6457 return symcount;
6458 }
6459
6460 /* Return the size required for the dynamic reloc entries. Any loadable
6461 section that was actually installed in the BFD, and has type SHT_REL
6462 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6463 dynamic reloc section. */
6464
6465 long
6466 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6467 {
6468 long ret;
6469 asection *s;
6470
6471 if (elf_dynsymtab (abfd) == 0)
6472 {
6473 bfd_set_error (bfd_error_invalid_operation);
6474 return -1;
6475 }
6476
6477 ret = sizeof (arelent *);
6478 for (s = abfd->sections; s != NULL; s = s->next)
6479 if ((s->flags & SEC_LOAD) != 0
6480 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6481 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6482 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6483 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6484 * sizeof (arelent *));
6485
6486 return ret;
6487 }
6488
6489 /* Canonicalize the dynamic relocation entries. Note that we return the
6490 dynamic relocations as a single block, although they are actually
6491 associated with particular sections; the interface, which was
6492 designed for SunOS style shared libraries, expects that there is only
6493 one set of dynamic relocs. Any loadable section that was actually
6494 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6495 dynamic symbol table, is considered to be a dynamic reloc section. */
6496
6497 long
6498 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6499 arelent **storage,
6500 asymbol **syms)
6501 {
6502 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6503 asection *s;
6504 long ret;
6505
6506 if (elf_dynsymtab (abfd) == 0)
6507 {
6508 bfd_set_error (bfd_error_invalid_operation);
6509 return -1;
6510 }
6511
6512 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6513 ret = 0;
6514 for (s = abfd->sections; s != NULL; s = s->next)
6515 {
6516 if ((s->flags & SEC_LOAD) != 0
6517 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6518 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6519 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6520 {
6521 arelent *p;
6522 long count, i;
6523
6524 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6525 return -1;
6526 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6527 p = s->relocation;
6528 for (i = 0; i < count; i++)
6529 *storage++ = p++;
6530 ret += count;
6531 }
6532 }
6533
6534 *storage = NULL;
6535
6536 return ret;
6537 }
6538 \f
6539 /* Read in the version information. */
6540
6541 bfd_boolean
6542 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6543 {
6544 bfd_byte *contents = NULL;
6545 unsigned int freeidx = 0;
6546
6547 if (elf_dynverref (abfd) != 0)
6548 {
6549 Elf_Internal_Shdr *hdr;
6550 Elf_External_Verneed *everneed;
6551 Elf_Internal_Verneed *iverneed;
6552 unsigned int i;
6553 bfd_byte *contents_end;
6554
6555 hdr = &elf_tdata (abfd)->dynverref_hdr;
6556
6557 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6558 sizeof (Elf_Internal_Verneed));
6559 if (elf_tdata (abfd)->verref == NULL)
6560 goto error_return;
6561
6562 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6563
6564 contents = bfd_malloc (hdr->sh_size);
6565 if (contents == NULL)
6566 {
6567 error_return_verref:
6568 elf_tdata (abfd)->verref = NULL;
6569 elf_tdata (abfd)->cverrefs = 0;
6570 goto error_return;
6571 }
6572 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6573 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6574 goto error_return_verref;
6575
6576 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6577 goto error_return_verref;
6578
6579 BFD_ASSERT (sizeof (Elf_External_Verneed)
6580 == sizeof (Elf_External_Vernaux));
6581 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6582 everneed = (Elf_External_Verneed *) contents;
6583 iverneed = elf_tdata (abfd)->verref;
6584 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6585 {
6586 Elf_External_Vernaux *evernaux;
6587 Elf_Internal_Vernaux *ivernaux;
6588 unsigned int j;
6589
6590 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6591
6592 iverneed->vn_bfd = abfd;
6593
6594 iverneed->vn_filename =
6595 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6596 iverneed->vn_file);
6597 if (iverneed->vn_filename == NULL)
6598 goto error_return_verref;
6599
6600 if (iverneed->vn_cnt == 0)
6601 iverneed->vn_auxptr = NULL;
6602 else
6603 {
6604 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6605 sizeof (Elf_Internal_Vernaux));
6606 if (iverneed->vn_auxptr == NULL)
6607 goto error_return_verref;
6608 }
6609
6610 if (iverneed->vn_aux
6611 > (size_t) (contents_end - (bfd_byte *) everneed))
6612 goto error_return_verref;
6613
6614 evernaux = ((Elf_External_Vernaux *)
6615 ((bfd_byte *) everneed + iverneed->vn_aux));
6616 ivernaux = iverneed->vn_auxptr;
6617 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6618 {
6619 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6620
6621 ivernaux->vna_nodename =
6622 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6623 ivernaux->vna_name);
6624 if (ivernaux->vna_nodename == NULL)
6625 goto error_return_verref;
6626
6627 if (j + 1 < iverneed->vn_cnt)
6628 ivernaux->vna_nextptr = ivernaux + 1;
6629 else
6630 ivernaux->vna_nextptr = NULL;
6631
6632 if (ivernaux->vna_next
6633 > (size_t) (contents_end - (bfd_byte *) evernaux))
6634 goto error_return_verref;
6635
6636 evernaux = ((Elf_External_Vernaux *)
6637 ((bfd_byte *) evernaux + ivernaux->vna_next));
6638
6639 if (ivernaux->vna_other > freeidx)
6640 freeidx = ivernaux->vna_other;
6641 }
6642
6643 if (i + 1 < hdr->sh_info)
6644 iverneed->vn_nextref = iverneed + 1;
6645 else
6646 iverneed->vn_nextref = NULL;
6647
6648 if (iverneed->vn_next
6649 > (size_t) (contents_end - (bfd_byte *) everneed))
6650 goto error_return_verref;
6651
6652 everneed = ((Elf_External_Verneed *)
6653 ((bfd_byte *) everneed + iverneed->vn_next));
6654 }
6655
6656 free (contents);
6657 contents = NULL;
6658 }
6659
6660 if (elf_dynverdef (abfd) != 0)
6661 {
6662 Elf_Internal_Shdr *hdr;
6663 Elf_External_Verdef *everdef;
6664 Elf_Internal_Verdef *iverdef;
6665 Elf_Internal_Verdef *iverdefarr;
6666 Elf_Internal_Verdef iverdefmem;
6667 unsigned int i;
6668 unsigned int maxidx;
6669 bfd_byte *contents_end_def, *contents_end_aux;
6670
6671 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6672
6673 contents = bfd_malloc (hdr->sh_size);
6674 if (contents == NULL)
6675 goto error_return;
6676 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6677 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6678 goto error_return;
6679
6680 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6681 goto error_return;
6682
6683 BFD_ASSERT (sizeof (Elf_External_Verdef)
6684 >= sizeof (Elf_External_Verdaux));
6685 contents_end_def = contents + hdr->sh_size
6686 - sizeof (Elf_External_Verdef);
6687 contents_end_aux = contents + hdr->sh_size
6688 - sizeof (Elf_External_Verdaux);
6689
6690 /* We know the number of entries in the section but not the maximum
6691 index. Therefore we have to run through all entries and find
6692 the maximum. */
6693 everdef = (Elf_External_Verdef *) contents;
6694 maxidx = 0;
6695 for (i = 0; i < hdr->sh_info; ++i)
6696 {
6697 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6698
6699 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6700 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6701
6702 if (iverdefmem.vd_next
6703 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6704 goto error_return;
6705
6706 everdef = ((Elf_External_Verdef *)
6707 ((bfd_byte *) everdef + iverdefmem.vd_next));
6708 }
6709
6710 if (default_imported_symver)
6711 {
6712 if (freeidx > maxidx)
6713 maxidx = ++freeidx;
6714 else
6715 freeidx = ++maxidx;
6716 }
6717 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6718 sizeof (Elf_Internal_Verdef));
6719 if (elf_tdata (abfd)->verdef == NULL)
6720 goto error_return;
6721
6722 elf_tdata (abfd)->cverdefs = maxidx;
6723
6724 everdef = (Elf_External_Verdef *) contents;
6725 iverdefarr = elf_tdata (abfd)->verdef;
6726 for (i = 0; i < hdr->sh_info; i++)
6727 {
6728 Elf_External_Verdaux *everdaux;
6729 Elf_Internal_Verdaux *iverdaux;
6730 unsigned int j;
6731
6732 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6733
6734 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6735 {
6736 error_return_verdef:
6737 elf_tdata (abfd)->verdef = NULL;
6738 elf_tdata (abfd)->cverdefs = 0;
6739 goto error_return;
6740 }
6741
6742 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6743 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6744
6745 iverdef->vd_bfd = abfd;
6746
6747 if (iverdef->vd_cnt == 0)
6748 iverdef->vd_auxptr = NULL;
6749 else
6750 {
6751 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6752 sizeof (Elf_Internal_Verdaux));
6753 if (iverdef->vd_auxptr == NULL)
6754 goto error_return_verdef;
6755 }
6756
6757 if (iverdef->vd_aux
6758 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6759 goto error_return_verdef;
6760
6761 everdaux = ((Elf_External_Verdaux *)
6762 ((bfd_byte *) everdef + iverdef->vd_aux));
6763 iverdaux = iverdef->vd_auxptr;
6764 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6765 {
6766 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6767
6768 iverdaux->vda_nodename =
6769 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6770 iverdaux->vda_name);
6771 if (iverdaux->vda_nodename == NULL)
6772 goto error_return_verdef;
6773
6774 if (j + 1 < iverdef->vd_cnt)
6775 iverdaux->vda_nextptr = iverdaux + 1;
6776 else
6777 iverdaux->vda_nextptr = NULL;
6778
6779 if (iverdaux->vda_next
6780 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6781 goto error_return_verdef;
6782
6783 everdaux = ((Elf_External_Verdaux *)
6784 ((bfd_byte *) everdaux + iverdaux->vda_next));
6785 }
6786
6787 if (iverdef->vd_cnt)
6788 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6789
6790 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6791 iverdef->vd_nextdef = iverdef + 1;
6792 else
6793 iverdef->vd_nextdef = NULL;
6794
6795 everdef = ((Elf_External_Verdef *)
6796 ((bfd_byte *) everdef + iverdef->vd_next));
6797 }
6798
6799 free (contents);
6800 contents = NULL;
6801 }
6802 else if (default_imported_symver)
6803 {
6804 if (freeidx < 3)
6805 freeidx = 3;
6806 else
6807 freeidx++;
6808
6809 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6810 sizeof (Elf_Internal_Verdef));
6811 if (elf_tdata (abfd)->verdef == NULL)
6812 goto error_return;
6813
6814 elf_tdata (abfd)->cverdefs = freeidx;
6815 }
6816
6817 /* Create a default version based on the soname. */
6818 if (default_imported_symver)
6819 {
6820 Elf_Internal_Verdef *iverdef;
6821 Elf_Internal_Verdaux *iverdaux;
6822
6823 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6824
6825 iverdef->vd_version = VER_DEF_CURRENT;
6826 iverdef->vd_flags = 0;
6827 iverdef->vd_ndx = freeidx;
6828 iverdef->vd_cnt = 1;
6829
6830 iverdef->vd_bfd = abfd;
6831
6832 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6833 if (iverdef->vd_nodename == NULL)
6834 goto error_return_verdef;
6835 iverdef->vd_nextdef = NULL;
6836 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6837 if (iverdef->vd_auxptr == NULL)
6838 goto error_return_verdef;
6839
6840 iverdaux = iverdef->vd_auxptr;
6841 iverdaux->vda_nodename = iverdef->vd_nodename;
6842 iverdaux->vda_nextptr = NULL;
6843 }
6844
6845 return TRUE;
6846
6847 error_return:
6848 if (contents != NULL)
6849 free (contents);
6850 return FALSE;
6851 }
6852 \f
6853 asymbol *
6854 _bfd_elf_make_empty_symbol (bfd *abfd)
6855 {
6856 elf_symbol_type *newsym;
6857 bfd_size_type amt = sizeof (elf_symbol_type);
6858
6859 newsym = bfd_zalloc (abfd, amt);
6860 if (!newsym)
6861 return NULL;
6862 else
6863 {
6864 newsym->symbol.the_bfd = abfd;
6865 return &newsym->symbol;
6866 }
6867 }
6868
6869 void
6870 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6871 asymbol *symbol,
6872 symbol_info *ret)
6873 {
6874 bfd_symbol_info (symbol, ret);
6875 }
6876
6877 /* Return whether a symbol name implies a local symbol. Most targets
6878 use this function for the is_local_label_name entry point, but some
6879 override it. */
6880
6881 bfd_boolean
6882 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6883 const char *name)
6884 {
6885 /* Normal local symbols start with ``.L''. */
6886 if (name[0] == '.' && name[1] == 'L')
6887 return TRUE;
6888
6889 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6890 DWARF debugging symbols starting with ``..''. */
6891 if (name[0] == '.' && name[1] == '.')
6892 return TRUE;
6893
6894 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6895 emitting DWARF debugging output. I suspect this is actually a
6896 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6897 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6898 underscore to be emitted on some ELF targets). For ease of use,
6899 we treat such symbols as local. */
6900 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6901 return TRUE;
6902
6903 return FALSE;
6904 }
6905
6906 alent *
6907 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6908 asymbol *symbol ATTRIBUTE_UNUSED)
6909 {
6910 abort ();
6911 return NULL;
6912 }
6913
6914 bfd_boolean
6915 _bfd_elf_set_arch_mach (bfd *abfd,
6916 enum bfd_architecture arch,
6917 unsigned long machine)
6918 {
6919 /* If this isn't the right architecture for this backend, and this
6920 isn't the generic backend, fail. */
6921 if (arch != get_elf_backend_data (abfd)->arch
6922 && arch != bfd_arch_unknown
6923 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6924 return FALSE;
6925
6926 return bfd_default_set_arch_mach (abfd, arch, machine);
6927 }
6928
6929 /* Find the function to a particular section and offset,
6930 for error reporting. */
6931
6932 static bfd_boolean
6933 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6934 asection *section,
6935 asymbol **symbols,
6936 bfd_vma offset,
6937 const char **filename_ptr,
6938 const char **functionname_ptr)
6939 {
6940 const char *filename;
6941 asymbol *func, *file;
6942 bfd_vma low_func;
6943 asymbol **p;
6944 /* ??? Given multiple file symbols, it is impossible to reliably
6945 choose the right file name for global symbols. File symbols are
6946 local symbols, and thus all file symbols must sort before any
6947 global symbols. The ELF spec may be interpreted to say that a
6948 file symbol must sort before other local symbols, but currently
6949 ld -r doesn't do this. So, for ld -r output, it is possible to
6950 make a better choice of file name for local symbols by ignoring
6951 file symbols appearing after a given local symbol. */
6952 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6953
6954 filename = NULL;
6955 func = NULL;
6956 file = NULL;
6957 low_func = 0;
6958 state = nothing_seen;
6959
6960 for (p = symbols; *p != NULL; p++)
6961 {
6962 elf_symbol_type *q;
6963
6964 q = (elf_symbol_type *) *p;
6965
6966 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6967 {
6968 default:
6969 break;
6970 case STT_FILE:
6971 file = &q->symbol;
6972 if (state == symbol_seen)
6973 state = file_after_symbol_seen;
6974 continue;
6975 case STT_NOTYPE:
6976 case STT_FUNC:
6977 if (bfd_get_section (&q->symbol) == section
6978 && q->symbol.value >= low_func
6979 && q->symbol.value <= offset)
6980 {
6981 func = (asymbol *) q;
6982 low_func = q->symbol.value;
6983 filename = NULL;
6984 if (file != NULL
6985 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6986 || state != file_after_symbol_seen))
6987 filename = bfd_asymbol_name (file);
6988 }
6989 break;
6990 }
6991 if (state == nothing_seen)
6992 state = symbol_seen;
6993 }
6994
6995 if (func == NULL)
6996 return FALSE;
6997
6998 if (filename_ptr)
6999 *filename_ptr = filename;
7000 if (functionname_ptr)
7001 *functionname_ptr = bfd_asymbol_name (func);
7002
7003 return TRUE;
7004 }
7005
7006 /* Find the nearest line to a particular section and offset,
7007 for error reporting. */
7008
7009 bfd_boolean
7010 _bfd_elf_find_nearest_line (bfd *abfd,
7011 asection *section,
7012 asymbol **symbols,
7013 bfd_vma offset,
7014 const char **filename_ptr,
7015 const char **functionname_ptr,
7016 unsigned int *line_ptr)
7017 {
7018 bfd_boolean found;
7019
7020 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7021 filename_ptr, functionname_ptr,
7022 line_ptr))
7023 {
7024 if (!*functionname_ptr)
7025 elf_find_function (abfd, section, symbols, offset,
7026 *filename_ptr ? NULL : filename_ptr,
7027 functionname_ptr);
7028
7029 return TRUE;
7030 }
7031
7032 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7033 filename_ptr, functionname_ptr,
7034 line_ptr, 0,
7035 &elf_tdata (abfd)->dwarf2_find_line_info))
7036 {
7037 if (!*functionname_ptr)
7038 elf_find_function (abfd, section, symbols, offset,
7039 *filename_ptr ? NULL : filename_ptr,
7040 functionname_ptr);
7041
7042 return TRUE;
7043 }
7044
7045 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7046 &found, filename_ptr,
7047 functionname_ptr, line_ptr,
7048 &elf_tdata (abfd)->line_info))
7049 return FALSE;
7050 if (found && (*functionname_ptr || *line_ptr))
7051 return TRUE;
7052
7053 if (symbols == NULL)
7054 return FALSE;
7055
7056 if (! elf_find_function (abfd, section, symbols, offset,
7057 filename_ptr, functionname_ptr))
7058 return FALSE;
7059
7060 *line_ptr = 0;
7061 return TRUE;
7062 }
7063
7064 /* Find the line for a symbol. */
7065
7066 bfd_boolean
7067 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7068 const char **filename_ptr, unsigned int *line_ptr)
7069 {
7070 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7071 filename_ptr, line_ptr, 0,
7072 &elf_tdata (abfd)->dwarf2_find_line_info);
7073 }
7074
7075 /* After a call to bfd_find_nearest_line, successive calls to
7076 bfd_find_inliner_info can be used to get source information about
7077 each level of function inlining that terminated at the address
7078 passed to bfd_find_nearest_line. Currently this is only supported
7079 for DWARF2 with appropriate DWARF3 extensions. */
7080
7081 bfd_boolean
7082 _bfd_elf_find_inliner_info (bfd *abfd,
7083 const char **filename_ptr,
7084 const char **functionname_ptr,
7085 unsigned int *line_ptr)
7086 {
7087 bfd_boolean found;
7088 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7089 functionname_ptr, line_ptr,
7090 & elf_tdata (abfd)->dwarf2_find_line_info);
7091 return found;
7092 }
7093
7094 int
7095 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7096 {
7097 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7098 int ret = bed->s->sizeof_ehdr;
7099
7100 if (!info->relocatable)
7101 {
7102 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7103
7104 if (phdr_size == (bfd_size_type) -1)
7105 {
7106 struct elf_segment_map *m;
7107
7108 phdr_size = 0;
7109 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7110 phdr_size += bed->s->sizeof_phdr;
7111
7112 if (phdr_size == 0)
7113 phdr_size = get_program_header_size (abfd, info);
7114 }
7115
7116 elf_tdata (abfd)->program_header_size = phdr_size;
7117 ret += phdr_size;
7118 }
7119
7120 return ret;
7121 }
7122
7123 bfd_boolean
7124 _bfd_elf_set_section_contents (bfd *abfd,
7125 sec_ptr section,
7126 const void *location,
7127 file_ptr offset,
7128 bfd_size_type count)
7129 {
7130 Elf_Internal_Shdr *hdr;
7131 bfd_signed_vma pos;
7132
7133 if (! abfd->output_has_begun
7134 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7135 return FALSE;
7136
7137 hdr = &elf_section_data (section)->this_hdr;
7138 pos = hdr->sh_offset + offset;
7139 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7140 || bfd_bwrite (location, count, abfd) != count)
7141 return FALSE;
7142
7143 return TRUE;
7144 }
7145
7146 void
7147 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7148 arelent *cache_ptr ATTRIBUTE_UNUSED,
7149 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7150 {
7151 abort ();
7152 }
7153
7154 /* Try to convert a non-ELF reloc into an ELF one. */
7155
7156 bfd_boolean
7157 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7158 {
7159 /* Check whether we really have an ELF howto. */
7160
7161 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7162 {
7163 bfd_reloc_code_real_type code;
7164 reloc_howto_type *howto;
7165
7166 /* Alien reloc: Try to determine its type to replace it with an
7167 equivalent ELF reloc. */
7168
7169 if (areloc->howto->pc_relative)
7170 {
7171 switch (areloc->howto->bitsize)
7172 {
7173 case 8:
7174 code = BFD_RELOC_8_PCREL;
7175 break;
7176 case 12:
7177 code = BFD_RELOC_12_PCREL;
7178 break;
7179 case 16:
7180 code = BFD_RELOC_16_PCREL;
7181 break;
7182 case 24:
7183 code = BFD_RELOC_24_PCREL;
7184 break;
7185 case 32:
7186 code = BFD_RELOC_32_PCREL;
7187 break;
7188 case 64:
7189 code = BFD_RELOC_64_PCREL;
7190 break;
7191 default:
7192 goto fail;
7193 }
7194
7195 howto = bfd_reloc_type_lookup (abfd, code);
7196
7197 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7198 {
7199 if (howto->pcrel_offset)
7200 areloc->addend += areloc->address;
7201 else
7202 areloc->addend -= areloc->address; /* addend is unsigned!! */
7203 }
7204 }
7205 else
7206 {
7207 switch (areloc->howto->bitsize)
7208 {
7209 case 8:
7210 code = BFD_RELOC_8;
7211 break;
7212 case 14:
7213 code = BFD_RELOC_14;
7214 break;
7215 case 16:
7216 code = BFD_RELOC_16;
7217 break;
7218 case 26:
7219 code = BFD_RELOC_26;
7220 break;
7221 case 32:
7222 code = BFD_RELOC_32;
7223 break;
7224 case 64:
7225 code = BFD_RELOC_64;
7226 break;
7227 default:
7228 goto fail;
7229 }
7230
7231 howto = bfd_reloc_type_lookup (abfd, code);
7232 }
7233
7234 if (howto)
7235 areloc->howto = howto;
7236 else
7237 goto fail;
7238 }
7239
7240 return TRUE;
7241
7242 fail:
7243 (*_bfd_error_handler)
7244 (_("%B: unsupported relocation type %s"),
7245 abfd, areloc->howto->name);
7246 bfd_set_error (bfd_error_bad_value);
7247 return FALSE;
7248 }
7249
7250 bfd_boolean
7251 _bfd_elf_close_and_cleanup (bfd *abfd)
7252 {
7253 if (bfd_get_format (abfd) == bfd_object)
7254 {
7255 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7256 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7257 _bfd_dwarf2_cleanup_debug_info (abfd);
7258 }
7259
7260 return _bfd_generic_close_and_cleanup (abfd);
7261 }
7262
7263 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7264 in the relocation's offset. Thus we cannot allow any sort of sanity
7265 range-checking to interfere. There is nothing else to do in processing
7266 this reloc. */
7267
7268 bfd_reloc_status_type
7269 _bfd_elf_rel_vtable_reloc_fn
7270 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7271 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7272 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7273 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7274 {
7275 return bfd_reloc_ok;
7276 }
7277 \f
7278 /* Elf core file support. Much of this only works on native
7279 toolchains, since we rely on knowing the
7280 machine-dependent procfs structure in order to pick
7281 out details about the corefile. */
7282
7283 #ifdef HAVE_SYS_PROCFS_H
7284 # include <sys/procfs.h>
7285 #endif
7286
7287 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7288
7289 static int
7290 elfcore_make_pid (bfd *abfd)
7291 {
7292 return ((elf_tdata (abfd)->core_lwpid << 16)
7293 + (elf_tdata (abfd)->core_pid));
7294 }
7295
7296 /* If there isn't a section called NAME, make one, using
7297 data from SECT. Note, this function will generate a
7298 reference to NAME, so you shouldn't deallocate or
7299 overwrite it. */
7300
7301 static bfd_boolean
7302 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7303 {
7304 asection *sect2;
7305
7306 if (bfd_get_section_by_name (abfd, name) != NULL)
7307 return TRUE;
7308
7309 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7310 if (sect2 == NULL)
7311 return FALSE;
7312
7313 sect2->size = sect->size;
7314 sect2->filepos = sect->filepos;
7315 sect2->alignment_power = sect->alignment_power;
7316 return TRUE;
7317 }
7318
7319 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7320 actually creates up to two pseudosections:
7321 - For the single-threaded case, a section named NAME, unless
7322 such a section already exists.
7323 - For the multi-threaded case, a section named "NAME/PID", where
7324 PID is elfcore_make_pid (abfd).
7325 Both pseudosections have identical contents. */
7326 bfd_boolean
7327 _bfd_elfcore_make_pseudosection (bfd *abfd,
7328 char *name,
7329 size_t size,
7330 ufile_ptr filepos)
7331 {
7332 char buf[100];
7333 char *threaded_name;
7334 size_t len;
7335 asection *sect;
7336
7337 /* Build the section name. */
7338
7339 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7340 len = strlen (buf) + 1;
7341 threaded_name = bfd_alloc (abfd, len);
7342 if (threaded_name == NULL)
7343 return FALSE;
7344 memcpy (threaded_name, buf, len);
7345
7346 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7347 SEC_HAS_CONTENTS);
7348 if (sect == NULL)
7349 return FALSE;
7350 sect->size = size;
7351 sect->filepos = filepos;
7352 sect->alignment_power = 2;
7353
7354 return elfcore_maybe_make_sect (abfd, name, sect);
7355 }
7356
7357 /* prstatus_t exists on:
7358 solaris 2.5+
7359 linux 2.[01] + glibc
7360 unixware 4.2
7361 */
7362
7363 #if defined (HAVE_PRSTATUS_T)
7364
7365 static bfd_boolean
7366 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7367 {
7368 size_t size;
7369 int offset;
7370
7371 if (note->descsz == sizeof (prstatus_t))
7372 {
7373 prstatus_t prstat;
7374
7375 size = sizeof (prstat.pr_reg);
7376 offset = offsetof (prstatus_t, pr_reg);
7377 memcpy (&prstat, note->descdata, sizeof (prstat));
7378
7379 /* Do not overwrite the core signal if it
7380 has already been set by another thread. */
7381 if (elf_tdata (abfd)->core_signal == 0)
7382 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7383 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7384
7385 /* pr_who exists on:
7386 solaris 2.5+
7387 unixware 4.2
7388 pr_who doesn't exist on:
7389 linux 2.[01]
7390 */
7391 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7392 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7393 #endif
7394 }
7395 #if defined (HAVE_PRSTATUS32_T)
7396 else if (note->descsz == sizeof (prstatus32_t))
7397 {
7398 /* 64-bit host, 32-bit corefile */
7399 prstatus32_t prstat;
7400
7401 size = sizeof (prstat.pr_reg);
7402 offset = offsetof (prstatus32_t, pr_reg);
7403 memcpy (&prstat, note->descdata, sizeof (prstat));
7404
7405 /* Do not overwrite the core signal if it
7406 has already been set by another thread. */
7407 if (elf_tdata (abfd)->core_signal == 0)
7408 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7409 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7410
7411 /* pr_who exists on:
7412 solaris 2.5+
7413 unixware 4.2
7414 pr_who doesn't exist on:
7415 linux 2.[01]
7416 */
7417 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7418 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7419 #endif
7420 }
7421 #endif /* HAVE_PRSTATUS32_T */
7422 else
7423 {
7424 /* Fail - we don't know how to handle any other
7425 note size (ie. data object type). */
7426 return TRUE;
7427 }
7428
7429 /* Make a ".reg/999" section and a ".reg" section. */
7430 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7431 size, note->descpos + offset);
7432 }
7433 #endif /* defined (HAVE_PRSTATUS_T) */
7434
7435 /* Create a pseudosection containing the exact contents of NOTE. */
7436 static bfd_boolean
7437 elfcore_make_note_pseudosection (bfd *abfd,
7438 char *name,
7439 Elf_Internal_Note *note)
7440 {
7441 return _bfd_elfcore_make_pseudosection (abfd, name,
7442 note->descsz, note->descpos);
7443 }
7444
7445 /* There isn't a consistent prfpregset_t across platforms,
7446 but it doesn't matter, because we don't have to pick this
7447 data structure apart. */
7448
7449 static bfd_boolean
7450 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7451 {
7452 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7453 }
7454
7455 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7456 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7457 literally. */
7458
7459 static bfd_boolean
7460 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7461 {
7462 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7463 }
7464
7465 #if defined (HAVE_PRPSINFO_T)
7466 typedef prpsinfo_t elfcore_psinfo_t;
7467 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7468 typedef prpsinfo32_t elfcore_psinfo32_t;
7469 #endif
7470 #endif
7471
7472 #if defined (HAVE_PSINFO_T)
7473 typedef psinfo_t elfcore_psinfo_t;
7474 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7475 typedef psinfo32_t elfcore_psinfo32_t;
7476 #endif
7477 #endif
7478
7479 /* return a malloc'ed copy of a string at START which is at
7480 most MAX bytes long, possibly without a terminating '\0'.
7481 the copy will always have a terminating '\0'. */
7482
7483 char *
7484 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7485 {
7486 char *dups;
7487 char *end = memchr (start, '\0', max);
7488 size_t len;
7489
7490 if (end == NULL)
7491 len = max;
7492 else
7493 len = end - start;
7494
7495 dups = bfd_alloc (abfd, len + 1);
7496 if (dups == NULL)
7497 return NULL;
7498
7499 memcpy (dups, start, len);
7500 dups[len] = '\0';
7501
7502 return dups;
7503 }
7504
7505 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7506 static bfd_boolean
7507 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7508 {
7509 if (note->descsz == sizeof (elfcore_psinfo_t))
7510 {
7511 elfcore_psinfo_t psinfo;
7512
7513 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7514
7515 elf_tdata (abfd)->core_program
7516 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7517 sizeof (psinfo.pr_fname));
7518
7519 elf_tdata (abfd)->core_command
7520 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7521 sizeof (psinfo.pr_psargs));
7522 }
7523 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7524 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7525 {
7526 /* 64-bit host, 32-bit corefile */
7527 elfcore_psinfo32_t psinfo;
7528
7529 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7530
7531 elf_tdata (abfd)->core_program
7532 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7533 sizeof (psinfo.pr_fname));
7534
7535 elf_tdata (abfd)->core_command
7536 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7537 sizeof (psinfo.pr_psargs));
7538 }
7539 #endif
7540
7541 else
7542 {
7543 /* Fail - we don't know how to handle any other
7544 note size (ie. data object type). */
7545 return TRUE;
7546 }
7547
7548 /* Note that for some reason, a spurious space is tacked
7549 onto the end of the args in some (at least one anyway)
7550 implementations, so strip it off if it exists. */
7551
7552 {
7553 char *command = elf_tdata (abfd)->core_command;
7554 int n = strlen (command);
7555
7556 if (0 < n && command[n - 1] == ' ')
7557 command[n - 1] = '\0';
7558 }
7559
7560 return TRUE;
7561 }
7562 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7563
7564 #if defined (HAVE_PSTATUS_T)
7565 static bfd_boolean
7566 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7567 {
7568 if (note->descsz == sizeof (pstatus_t)
7569 #if defined (HAVE_PXSTATUS_T)
7570 || note->descsz == sizeof (pxstatus_t)
7571 #endif
7572 )
7573 {
7574 pstatus_t pstat;
7575
7576 memcpy (&pstat, note->descdata, sizeof (pstat));
7577
7578 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7579 }
7580 #if defined (HAVE_PSTATUS32_T)
7581 else if (note->descsz == sizeof (pstatus32_t))
7582 {
7583 /* 64-bit host, 32-bit corefile */
7584 pstatus32_t pstat;
7585
7586 memcpy (&pstat, note->descdata, sizeof (pstat));
7587
7588 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7589 }
7590 #endif
7591 /* Could grab some more details from the "representative"
7592 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7593 NT_LWPSTATUS note, presumably. */
7594
7595 return TRUE;
7596 }
7597 #endif /* defined (HAVE_PSTATUS_T) */
7598
7599 #if defined (HAVE_LWPSTATUS_T)
7600 static bfd_boolean
7601 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7602 {
7603 lwpstatus_t lwpstat;
7604 char buf[100];
7605 char *name;
7606 size_t len;
7607 asection *sect;
7608
7609 if (note->descsz != sizeof (lwpstat)
7610 #if defined (HAVE_LWPXSTATUS_T)
7611 && note->descsz != sizeof (lwpxstatus_t)
7612 #endif
7613 )
7614 return TRUE;
7615
7616 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7617
7618 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7619 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7620
7621 /* Make a ".reg/999" section. */
7622
7623 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7624 len = strlen (buf) + 1;
7625 name = bfd_alloc (abfd, len);
7626 if (name == NULL)
7627 return FALSE;
7628 memcpy (name, buf, len);
7629
7630 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7631 if (sect == NULL)
7632 return FALSE;
7633
7634 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7635 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7636 sect->filepos = note->descpos
7637 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7638 #endif
7639
7640 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7641 sect->size = sizeof (lwpstat.pr_reg);
7642 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7643 #endif
7644
7645 sect->alignment_power = 2;
7646
7647 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7648 return FALSE;
7649
7650 /* Make a ".reg2/999" section */
7651
7652 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7653 len = strlen (buf) + 1;
7654 name = bfd_alloc (abfd, len);
7655 if (name == NULL)
7656 return FALSE;
7657 memcpy (name, buf, len);
7658
7659 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7660 if (sect == NULL)
7661 return FALSE;
7662
7663 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7664 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7665 sect->filepos = note->descpos
7666 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7667 #endif
7668
7669 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7670 sect->size = sizeof (lwpstat.pr_fpreg);
7671 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7672 #endif
7673
7674 sect->alignment_power = 2;
7675
7676 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7677 }
7678 #endif /* defined (HAVE_LWPSTATUS_T) */
7679
7680 #if defined (HAVE_WIN32_PSTATUS_T)
7681 static bfd_boolean
7682 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7683 {
7684 char buf[30];
7685 char *name;
7686 size_t len;
7687 asection *sect;
7688 win32_pstatus_t pstatus;
7689
7690 if (note->descsz < sizeof (pstatus))
7691 return TRUE;
7692
7693 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7694
7695 switch (pstatus.data_type)
7696 {
7697 case NOTE_INFO_PROCESS:
7698 /* FIXME: need to add ->core_command. */
7699 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7700 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7701 break;
7702
7703 case NOTE_INFO_THREAD:
7704 /* Make a ".reg/999" section. */
7705 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7706
7707 len = strlen (buf) + 1;
7708 name = bfd_alloc (abfd, len);
7709 if (name == NULL)
7710 return FALSE;
7711
7712 memcpy (name, buf, len);
7713
7714 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7715 if (sect == NULL)
7716 return FALSE;
7717
7718 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7719 sect->filepos = (note->descpos
7720 + offsetof (struct win32_pstatus,
7721 data.thread_info.thread_context));
7722 sect->alignment_power = 2;
7723
7724 if (pstatus.data.thread_info.is_active_thread)
7725 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7726 return FALSE;
7727 break;
7728
7729 case NOTE_INFO_MODULE:
7730 /* Make a ".module/xxxxxxxx" section. */
7731 sprintf (buf, ".module/%08lx",
7732 (long) pstatus.data.module_info.base_address);
7733
7734 len = strlen (buf) + 1;
7735 name = bfd_alloc (abfd, len);
7736 if (name == NULL)
7737 return FALSE;
7738
7739 memcpy (name, buf, len);
7740
7741 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7742
7743 if (sect == NULL)
7744 return FALSE;
7745
7746 sect->size = note->descsz;
7747 sect->filepos = note->descpos;
7748 sect->alignment_power = 2;
7749 break;
7750
7751 default:
7752 return TRUE;
7753 }
7754
7755 return TRUE;
7756 }
7757 #endif /* HAVE_WIN32_PSTATUS_T */
7758
7759 static bfd_boolean
7760 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7761 {
7762 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7763
7764 switch (note->type)
7765 {
7766 default:
7767 return TRUE;
7768
7769 case NT_PRSTATUS:
7770 if (bed->elf_backend_grok_prstatus)
7771 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7772 return TRUE;
7773 #if defined (HAVE_PRSTATUS_T)
7774 return elfcore_grok_prstatus (abfd, note);
7775 #else
7776 return TRUE;
7777 #endif
7778
7779 #if defined (HAVE_PSTATUS_T)
7780 case NT_PSTATUS:
7781 return elfcore_grok_pstatus (abfd, note);
7782 #endif
7783
7784 #if defined (HAVE_LWPSTATUS_T)
7785 case NT_LWPSTATUS:
7786 return elfcore_grok_lwpstatus (abfd, note);
7787 #endif
7788
7789 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7790 return elfcore_grok_prfpreg (abfd, note);
7791
7792 #if defined (HAVE_WIN32_PSTATUS_T)
7793 case NT_WIN32PSTATUS:
7794 return elfcore_grok_win32pstatus (abfd, note);
7795 #endif
7796
7797 case NT_PRXFPREG: /* Linux SSE extension */
7798 if (note->namesz == 6
7799 && strcmp (note->namedata, "LINUX") == 0)
7800 return elfcore_grok_prxfpreg (abfd, note);
7801 else
7802 return TRUE;
7803
7804 case NT_PRPSINFO:
7805 case NT_PSINFO:
7806 if (bed->elf_backend_grok_psinfo)
7807 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7808 return TRUE;
7809 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7810 return elfcore_grok_psinfo (abfd, note);
7811 #else
7812 return TRUE;
7813 #endif
7814
7815 case NT_AUXV:
7816 {
7817 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7818 SEC_HAS_CONTENTS);
7819
7820 if (sect == NULL)
7821 return FALSE;
7822 sect->size = note->descsz;
7823 sect->filepos = note->descpos;
7824 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7825
7826 return TRUE;
7827 }
7828 }
7829 }
7830
7831 static bfd_boolean
7832 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7833 {
7834 char *cp;
7835
7836 cp = strchr (note->namedata, '@');
7837 if (cp != NULL)
7838 {
7839 *lwpidp = atoi(cp + 1);
7840 return TRUE;
7841 }
7842 return FALSE;
7843 }
7844
7845 static bfd_boolean
7846 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7847 {
7848
7849 /* Signal number at offset 0x08. */
7850 elf_tdata (abfd)->core_signal
7851 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7852
7853 /* Process ID at offset 0x50. */
7854 elf_tdata (abfd)->core_pid
7855 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7856
7857 /* Command name at 0x7c (max 32 bytes, including nul). */
7858 elf_tdata (abfd)->core_command
7859 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7860
7861 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7862 note);
7863 }
7864
7865 static bfd_boolean
7866 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7867 {
7868 int lwp;
7869
7870 if (elfcore_netbsd_get_lwpid (note, &lwp))
7871 elf_tdata (abfd)->core_lwpid = lwp;
7872
7873 if (note->type == NT_NETBSDCORE_PROCINFO)
7874 {
7875 /* NetBSD-specific core "procinfo". Note that we expect to
7876 find this note before any of the others, which is fine,
7877 since the kernel writes this note out first when it
7878 creates a core file. */
7879
7880 return elfcore_grok_netbsd_procinfo (abfd, note);
7881 }
7882
7883 /* As of Jan 2002 there are no other machine-independent notes
7884 defined for NetBSD core files. If the note type is less
7885 than the start of the machine-dependent note types, we don't
7886 understand it. */
7887
7888 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7889 return TRUE;
7890
7891
7892 switch (bfd_get_arch (abfd))
7893 {
7894 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7895 PT_GETFPREGS == mach+2. */
7896
7897 case bfd_arch_alpha:
7898 case bfd_arch_sparc:
7899 switch (note->type)
7900 {
7901 case NT_NETBSDCORE_FIRSTMACH+0:
7902 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7903
7904 case NT_NETBSDCORE_FIRSTMACH+2:
7905 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7906
7907 default:
7908 return TRUE;
7909 }
7910
7911 /* On all other arch's, PT_GETREGS == mach+1 and
7912 PT_GETFPREGS == mach+3. */
7913
7914 default:
7915 switch (note->type)
7916 {
7917 case NT_NETBSDCORE_FIRSTMACH+1:
7918 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7919
7920 case NT_NETBSDCORE_FIRSTMACH+3:
7921 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7922
7923 default:
7924 return TRUE;
7925 }
7926 }
7927 /* NOTREACHED */
7928 }
7929
7930 static bfd_boolean
7931 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
7932 {
7933 void *ddata = note->descdata;
7934 char buf[100];
7935 char *name;
7936 asection *sect;
7937 short sig;
7938 unsigned flags;
7939
7940 /* nto_procfs_status 'pid' field is at offset 0. */
7941 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7942
7943 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7944 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7945
7946 /* nto_procfs_status 'flags' field is at offset 8. */
7947 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7948
7949 /* nto_procfs_status 'what' field is at offset 14. */
7950 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7951 {
7952 elf_tdata (abfd)->core_signal = sig;
7953 elf_tdata (abfd)->core_lwpid = *tid;
7954 }
7955
7956 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7957 do not come from signals so we make sure we set the current
7958 thread just in case. */
7959 if (flags & 0x00000080)
7960 elf_tdata (abfd)->core_lwpid = *tid;
7961
7962 /* Make a ".qnx_core_status/%d" section. */
7963 sprintf (buf, ".qnx_core_status/%ld", *tid);
7964
7965 name = bfd_alloc (abfd, strlen (buf) + 1);
7966 if (name == NULL)
7967 return FALSE;
7968 strcpy (name, buf);
7969
7970 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7971 if (sect == NULL)
7972 return FALSE;
7973
7974 sect->size = note->descsz;
7975 sect->filepos = note->descpos;
7976 sect->alignment_power = 2;
7977
7978 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7979 }
7980
7981 static bfd_boolean
7982 elfcore_grok_nto_regs (bfd *abfd,
7983 Elf_Internal_Note *note,
7984 long tid,
7985 char *base)
7986 {
7987 char buf[100];
7988 char *name;
7989 asection *sect;
7990
7991 /* Make a "(base)/%d" section. */
7992 sprintf (buf, "%s/%ld", base, tid);
7993
7994 name = bfd_alloc (abfd, strlen (buf) + 1);
7995 if (name == NULL)
7996 return FALSE;
7997 strcpy (name, buf);
7998
7999 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8000 if (sect == NULL)
8001 return FALSE;
8002
8003 sect->size = note->descsz;
8004 sect->filepos = note->descpos;
8005 sect->alignment_power = 2;
8006
8007 /* This is the current thread. */
8008 if (elf_tdata (abfd)->core_lwpid == tid)
8009 return elfcore_maybe_make_sect (abfd, base, sect);
8010
8011 return TRUE;
8012 }
8013
8014 #define BFD_QNT_CORE_INFO 7
8015 #define BFD_QNT_CORE_STATUS 8
8016 #define BFD_QNT_CORE_GREG 9
8017 #define BFD_QNT_CORE_FPREG 10
8018
8019 static bfd_boolean
8020 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8021 {
8022 /* Every GREG section has a STATUS section before it. Store the
8023 tid from the previous call to pass down to the next gregs
8024 function. */
8025 static long tid = 1;
8026
8027 switch (note->type)
8028 {
8029 case BFD_QNT_CORE_INFO:
8030 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8031 case BFD_QNT_CORE_STATUS:
8032 return elfcore_grok_nto_status (abfd, note, &tid);
8033 case BFD_QNT_CORE_GREG:
8034 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8035 case BFD_QNT_CORE_FPREG:
8036 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8037 default:
8038 return TRUE;
8039 }
8040 }
8041
8042 /* Function: elfcore_write_note
8043
8044 Inputs:
8045 buffer to hold note
8046 name of note
8047 type of note
8048 data for note
8049 size of data for note
8050
8051 Return:
8052 End of buffer containing note. */
8053
8054 char *
8055 elfcore_write_note (bfd *abfd,
8056 char *buf,
8057 int *bufsiz,
8058 const char *name,
8059 int type,
8060 const void *input,
8061 int size)
8062 {
8063 Elf_External_Note *xnp;
8064 size_t namesz;
8065 size_t pad;
8066 size_t newspace;
8067 char *p, *dest;
8068
8069 namesz = 0;
8070 pad = 0;
8071 if (name != NULL)
8072 {
8073 const struct elf_backend_data *bed;
8074
8075 namesz = strlen (name) + 1;
8076 bed = get_elf_backend_data (abfd);
8077 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
8078 }
8079
8080 newspace = 12 + namesz + pad + size;
8081
8082 p = realloc (buf, *bufsiz + newspace);
8083 dest = p + *bufsiz;
8084 *bufsiz += newspace;
8085 xnp = (Elf_External_Note *) dest;
8086 H_PUT_32 (abfd, namesz, xnp->namesz);
8087 H_PUT_32 (abfd, size, xnp->descsz);
8088 H_PUT_32 (abfd, type, xnp->type);
8089 dest = xnp->name;
8090 if (name != NULL)
8091 {
8092 memcpy (dest, name, namesz);
8093 dest += namesz;
8094 while (pad != 0)
8095 {
8096 *dest++ = '\0';
8097 --pad;
8098 }
8099 }
8100 memcpy (dest, input, size);
8101 return p;
8102 }
8103
8104 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8105 char *
8106 elfcore_write_prpsinfo (bfd *abfd,
8107 char *buf,
8108 int *bufsiz,
8109 const char *fname,
8110 const char *psargs)
8111 {
8112 int note_type;
8113 char *note_name = "CORE";
8114
8115 #if defined (HAVE_PSINFO_T)
8116 psinfo_t data;
8117 note_type = NT_PSINFO;
8118 #else
8119 prpsinfo_t data;
8120 note_type = NT_PRPSINFO;
8121 #endif
8122
8123 memset (&data, 0, sizeof (data));
8124 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8125 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8126 return elfcore_write_note (abfd, buf, bufsiz,
8127 note_name, note_type, &data, sizeof (data));
8128 }
8129 #endif /* PSINFO_T or PRPSINFO_T */
8130
8131 #if defined (HAVE_PRSTATUS_T)
8132 char *
8133 elfcore_write_prstatus (bfd *abfd,
8134 char *buf,
8135 int *bufsiz,
8136 long pid,
8137 int cursig,
8138 const void *gregs)
8139 {
8140 prstatus_t prstat;
8141 char *note_name = "CORE";
8142
8143 memset (&prstat, 0, sizeof (prstat));
8144 prstat.pr_pid = pid;
8145 prstat.pr_cursig = cursig;
8146 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8147 return elfcore_write_note (abfd, buf, bufsiz,
8148 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8149 }
8150 #endif /* HAVE_PRSTATUS_T */
8151
8152 #if defined (HAVE_LWPSTATUS_T)
8153 char *
8154 elfcore_write_lwpstatus (bfd *abfd,
8155 char *buf,
8156 int *bufsiz,
8157 long pid,
8158 int cursig,
8159 const void *gregs)
8160 {
8161 lwpstatus_t lwpstat;
8162 char *note_name = "CORE";
8163
8164 memset (&lwpstat, 0, sizeof (lwpstat));
8165 lwpstat.pr_lwpid = pid >> 16;
8166 lwpstat.pr_cursig = cursig;
8167 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8168 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8169 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8170 #if !defined(gregs)
8171 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8172 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8173 #else
8174 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8175 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8176 #endif
8177 #endif
8178 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8179 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8180 }
8181 #endif /* HAVE_LWPSTATUS_T */
8182
8183 #if defined (HAVE_PSTATUS_T)
8184 char *
8185 elfcore_write_pstatus (bfd *abfd,
8186 char *buf,
8187 int *bufsiz,
8188 long pid,
8189 int cursig ATTRIBUTE_UNUSED,
8190 const void *gregs ATTRIBUTE_UNUSED)
8191 {
8192 pstatus_t pstat;
8193 char *note_name = "CORE";
8194
8195 memset (&pstat, 0, sizeof (pstat));
8196 pstat.pr_pid = pid & 0xffff;
8197 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8198 NT_PSTATUS, &pstat, sizeof (pstat));
8199 return buf;
8200 }
8201 #endif /* HAVE_PSTATUS_T */
8202
8203 char *
8204 elfcore_write_prfpreg (bfd *abfd,
8205 char *buf,
8206 int *bufsiz,
8207 const void *fpregs,
8208 int size)
8209 {
8210 char *note_name = "CORE";
8211 return elfcore_write_note (abfd, buf, bufsiz,
8212 note_name, NT_FPREGSET, fpregs, size);
8213 }
8214
8215 char *
8216 elfcore_write_prxfpreg (bfd *abfd,
8217 char *buf,
8218 int *bufsiz,
8219 const void *xfpregs,
8220 int size)
8221 {
8222 char *note_name = "LINUX";
8223 return elfcore_write_note (abfd, buf, bufsiz,
8224 note_name, NT_PRXFPREG, xfpregs, size);
8225 }
8226
8227 static bfd_boolean
8228 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8229 {
8230 char *buf;
8231 char *p;
8232
8233 if (size <= 0)
8234 return TRUE;
8235
8236 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8237 return FALSE;
8238
8239 buf = bfd_malloc (size);
8240 if (buf == NULL)
8241 return FALSE;
8242
8243 if (bfd_bread (buf, size, abfd) != size)
8244 {
8245 error:
8246 free (buf);
8247 return FALSE;
8248 }
8249
8250 p = buf;
8251 while (p < buf + size)
8252 {
8253 /* FIXME: bad alignment assumption. */
8254 Elf_External_Note *xnp = (Elf_External_Note *) p;
8255 Elf_Internal_Note in;
8256
8257 in.type = H_GET_32 (abfd, xnp->type);
8258
8259 in.namesz = H_GET_32 (abfd, xnp->namesz);
8260 in.namedata = xnp->name;
8261
8262 in.descsz = H_GET_32 (abfd, xnp->descsz);
8263 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8264 in.descpos = offset + (in.descdata - buf);
8265
8266 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
8267 {
8268 if (! elfcore_grok_netbsd_note (abfd, &in))
8269 goto error;
8270 }
8271 else if (strncmp (in.namedata, "QNX", 3) == 0)
8272 {
8273 if (! elfcore_grok_nto_note (abfd, &in))
8274 goto error;
8275 }
8276 else
8277 {
8278 if (! elfcore_grok_note (abfd, &in))
8279 goto error;
8280 }
8281
8282 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8283 }
8284
8285 free (buf);
8286 return TRUE;
8287 }
8288 \f
8289 /* Providing external access to the ELF program header table. */
8290
8291 /* Return an upper bound on the number of bytes required to store a
8292 copy of ABFD's program header table entries. Return -1 if an error
8293 occurs; bfd_get_error will return an appropriate code. */
8294
8295 long
8296 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8297 {
8298 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8299 {
8300 bfd_set_error (bfd_error_wrong_format);
8301 return -1;
8302 }
8303
8304 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8305 }
8306
8307 /* Copy ABFD's program header table entries to *PHDRS. The entries
8308 will be stored as an array of Elf_Internal_Phdr structures, as
8309 defined in include/elf/internal.h. To find out how large the
8310 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8311
8312 Return the number of program header table entries read, or -1 if an
8313 error occurs; bfd_get_error will return an appropriate code. */
8314
8315 int
8316 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8317 {
8318 int num_phdrs;
8319
8320 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8321 {
8322 bfd_set_error (bfd_error_wrong_format);
8323 return -1;
8324 }
8325
8326 num_phdrs = elf_elfheader (abfd)->e_phnum;
8327 memcpy (phdrs, elf_tdata (abfd)->phdr,
8328 num_phdrs * sizeof (Elf_Internal_Phdr));
8329
8330 return num_phdrs;
8331 }
8332
8333 void
8334 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8335 {
8336 #ifdef BFD64
8337 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8338
8339 i_ehdrp = elf_elfheader (abfd);
8340 if (i_ehdrp == NULL)
8341 sprintf_vma (buf, value);
8342 else
8343 {
8344 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8345 {
8346 #if BFD_HOST_64BIT_LONG
8347 sprintf (buf, "%016lx", value);
8348 #else
8349 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8350 _bfd_int64_low (value));
8351 #endif
8352 }
8353 else
8354 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8355 }
8356 #else
8357 sprintf_vma (buf, value);
8358 #endif
8359 }
8360
8361 void
8362 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8363 {
8364 #ifdef BFD64
8365 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8366
8367 i_ehdrp = elf_elfheader (abfd);
8368 if (i_ehdrp == NULL)
8369 fprintf_vma ((FILE *) stream, value);
8370 else
8371 {
8372 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8373 {
8374 #if BFD_HOST_64BIT_LONG
8375 fprintf ((FILE *) stream, "%016lx", value);
8376 #else
8377 fprintf ((FILE *) stream, "%08lx%08lx",
8378 _bfd_int64_high (value), _bfd_int64_low (value));
8379 #endif
8380 }
8381 else
8382 fprintf ((FILE *) stream, "%08lx",
8383 (unsigned long) (value & 0xffffffff));
8384 }
8385 #else
8386 fprintf_vma ((FILE *) stream, value);
8387 #endif
8388 }
8389
8390 enum elf_reloc_type_class
8391 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8392 {
8393 return reloc_class_normal;
8394 }
8395
8396 /* For RELA architectures, return the relocation value for a
8397 relocation against a local symbol. */
8398
8399 bfd_vma
8400 _bfd_elf_rela_local_sym (bfd *abfd,
8401 Elf_Internal_Sym *sym,
8402 asection **psec,
8403 Elf_Internal_Rela *rel)
8404 {
8405 asection *sec = *psec;
8406 bfd_vma relocation;
8407
8408 relocation = (sec->output_section->vma
8409 + sec->output_offset
8410 + sym->st_value);
8411 if ((sec->flags & SEC_MERGE)
8412 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8413 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8414 {
8415 rel->r_addend =
8416 _bfd_merged_section_offset (abfd, psec,
8417 elf_section_data (sec)->sec_info,
8418 sym->st_value + rel->r_addend);
8419 if (sec != *psec)
8420 {
8421 /* If we have changed the section, and our original section is
8422 marked with SEC_EXCLUDE, it means that the original
8423 SEC_MERGE section has been completely subsumed in some
8424 other SEC_MERGE section. In this case, we need to leave
8425 some info around for --emit-relocs. */
8426 if ((sec->flags & SEC_EXCLUDE) != 0)
8427 sec->kept_section = *psec;
8428 sec = *psec;
8429 }
8430 rel->r_addend -= relocation;
8431 rel->r_addend += sec->output_section->vma + sec->output_offset;
8432 }
8433 return relocation;
8434 }
8435
8436 bfd_vma
8437 _bfd_elf_rel_local_sym (bfd *abfd,
8438 Elf_Internal_Sym *sym,
8439 asection **psec,
8440 bfd_vma addend)
8441 {
8442 asection *sec = *psec;
8443
8444 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8445 return sym->st_value + addend;
8446
8447 return _bfd_merged_section_offset (abfd, psec,
8448 elf_section_data (sec)->sec_info,
8449 sym->st_value + addend);
8450 }
8451
8452 bfd_vma
8453 _bfd_elf_section_offset (bfd *abfd,
8454 struct bfd_link_info *info,
8455 asection *sec,
8456 bfd_vma offset)
8457 {
8458 switch (sec->sec_info_type)
8459 {
8460 case ELF_INFO_TYPE_STABS:
8461 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8462 offset);
8463 case ELF_INFO_TYPE_EH_FRAME:
8464 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8465 default:
8466 return offset;
8467 }
8468 }
8469 \f
8470 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8471 reconstruct an ELF file by reading the segments out of remote memory
8472 based on the ELF file header at EHDR_VMA and the ELF program headers it
8473 points to. If not null, *LOADBASEP is filled in with the difference
8474 between the VMAs from which the segments were read, and the VMAs the
8475 file headers (and hence BFD's idea of each section's VMA) put them at.
8476
8477 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8478 remote memory at target address VMA into the local buffer at MYADDR; it
8479 should return zero on success or an `errno' code on failure. TEMPL must
8480 be a BFD for an ELF target with the word size and byte order found in
8481 the remote memory. */
8482
8483 bfd *
8484 bfd_elf_bfd_from_remote_memory
8485 (bfd *templ,
8486 bfd_vma ehdr_vma,
8487 bfd_vma *loadbasep,
8488 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8489 {
8490 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8491 (templ, ehdr_vma, loadbasep, target_read_memory);
8492 }
8493 \f
8494 long
8495 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8496 long symcount ATTRIBUTE_UNUSED,
8497 asymbol **syms ATTRIBUTE_UNUSED,
8498 long dynsymcount,
8499 asymbol **dynsyms,
8500 asymbol **ret)
8501 {
8502 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8503 asection *relplt;
8504 asymbol *s;
8505 const char *relplt_name;
8506 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8507 arelent *p;
8508 long count, i, n;
8509 size_t size;
8510 Elf_Internal_Shdr *hdr;
8511 char *names;
8512 asection *plt;
8513
8514 *ret = NULL;
8515
8516 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8517 return 0;
8518
8519 if (dynsymcount <= 0)
8520 return 0;
8521
8522 if (!bed->plt_sym_val)
8523 return 0;
8524
8525 relplt_name = bed->relplt_name;
8526 if (relplt_name == NULL)
8527 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8528 relplt = bfd_get_section_by_name (abfd, relplt_name);
8529 if (relplt == NULL)
8530 return 0;
8531
8532 hdr = &elf_section_data (relplt)->this_hdr;
8533 if (hdr->sh_link != elf_dynsymtab (abfd)
8534 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8535 return 0;
8536
8537 plt = bfd_get_section_by_name (abfd, ".plt");
8538 if (plt == NULL)
8539 return 0;
8540
8541 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8542 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8543 return -1;
8544
8545 count = relplt->size / hdr->sh_entsize;
8546 size = count * sizeof (asymbol);
8547 p = relplt->relocation;
8548 for (i = 0; i < count; i++, s++, p++)
8549 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8550
8551 s = *ret = bfd_malloc (size);
8552 if (s == NULL)
8553 return -1;
8554
8555 names = (char *) (s + count);
8556 p = relplt->relocation;
8557 n = 0;
8558 for (i = 0; i < count; i++, s++, p++)
8559 {
8560 size_t len;
8561 bfd_vma addr;
8562
8563 addr = bed->plt_sym_val (i, plt, p);
8564 if (addr == (bfd_vma) -1)
8565 continue;
8566
8567 *s = **p->sym_ptr_ptr;
8568 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8569 we are defining a symbol, ensure one of them is set. */
8570 if ((s->flags & BSF_LOCAL) == 0)
8571 s->flags |= BSF_GLOBAL;
8572 s->section = plt;
8573 s->value = addr - plt->vma;
8574 s->name = names;
8575 len = strlen ((*p->sym_ptr_ptr)->name);
8576 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8577 names += len;
8578 memcpy (names, "@plt", sizeof ("@plt"));
8579 names += sizeof ("@plt");
8580 ++n;
8581 }
8582
8583 return n;
8584 }
8585
8586 /* Sort symbol by binding and section. We want to put definitions
8587 sorted by section at the beginning. */
8588
8589 static int
8590 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8591 {
8592 const Elf_Internal_Sym *s1;
8593 const Elf_Internal_Sym *s2;
8594 int shndx;
8595
8596 /* Make sure that undefined symbols are at the end. */
8597 s1 = (const Elf_Internal_Sym *) arg1;
8598 if (s1->st_shndx == SHN_UNDEF)
8599 return 1;
8600 s2 = (const Elf_Internal_Sym *) arg2;
8601 if (s2->st_shndx == SHN_UNDEF)
8602 return -1;
8603
8604 /* Sorted by section index. */
8605 shndx = s1->st_shndx - s2->st_shndx;
8606 if (shndx != 0)
8607 return shndx;
8608
8609 /* Sorted by binding. */
8610 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8611 }
8612
8613 struct elf_symbol
8614 {
8615 Elf_Internal_Sym *sym;
8616 const char *name;
8617 };
8618
8619 static int
8620 elf_sym_name_compare (const void *arg1, const void *arg2)
8621 {
8622 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8623 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8624 return strcmp (s1->name, s2->name);
8625 }
8626
8627 /* Check if 2 sections define the same set of local and global
8628 symbols. */
8629
8630 bfd_boolean
8631 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8632 {
8633 bfd *bfd1, *bfd2;
8634 const struct elf_backend_data *bed1, *bed2;
8635 Elf_Internal_Shdr *hdr1, *hdr2;
8636 bfd_size_type symcount1, symcount2;
8637 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8638 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8639 Elf_Internal_Sym *isymend;
8640 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8641 bfd_size_type count1, count2, i;
8642 int shndx1, shndx2;
8643 bfd_boolean result;
8644
8645 bfd1 = sec1->owner;
8646 bfd2 = sec2->owner;
8647
8648 /* If both are .gnu.linkonce sections, they have to have the same
8649 section name. */
8650 if (strncmp (sec1->name, ".gnu.linkonce",
8651 sizeof ".gnu.linkonce" - 1) == 0
8652 && strncmp (sec2->name, ".gnu.linkonce",
8653 sizeof ".gnu.linkonce" - 1) == 0)
8654 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8655 sec2->name + sizeof ".gnu.linkonce") == 0;
8656
8657 /* Both sections have to be in ELF. */
8658 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8659 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8660 return FALSE;
8661
8662 if (elf_section_type (sec1) != elf_section_type (sec2))
8663 return FALSE;
8664
8665 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8666 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8667 {
8668 /* If both are members of section groups, they have to have the
8669 same group name. */
8670 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8671 return FALSE;
8672 }
8673
8674 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8675 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8676 if (shndx1 == -1 || shndx2 == -1)
8677 return FALSE;
8678
8679 bed1 = get_elf_backend_data (bfd1);
8680 bed2 = get_elf_backend_data (bfd2);
8681 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8682 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8683 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8684 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8685
8686 if (symcount1 == 0 || symcount2 == 0)
8687 return FALSE;
8688
8689 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8690 NULL, NULL, NULL);
8691 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8692 NULL, NULL, NULL);
8693
8694 result = FALSE;
8695 if (isymbuf1 == NULL || isymbuf2 == NULL)
8696 goto done;
8697
8698 /* Sort symbols by binding and section. Global definitions are at
8699 the beginning. */
8700 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8701 elf_sort_elf_symbol);
8702 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8703 elf_sort_elf_symbol);
8704
8705 /* Count definitions in the section. */
8706 count1 = 0;
8707 for (isym = isymbuf1, isymend = isym + symcount1;
8708 isym < isymend; isym++)
8709 {
8710 if (isym->st_shndx == (unsigned int) shndx1)
8711 {
8712 if (count1 == 0)
8713 isymstart1 = isym;
8714 count1++;
8715 }
8716
8717 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8718 break;
8719 }
8720
8721 count2 = 0;
8722 for (isym = isymbuf2, isymend = isym + symcount2;
8723 isym < isymend; isym++)
8724 {
8725 if (isym->st_shndx == (unsigned int) shndx2)
8726 {
8727 if (count2 == 0)
8728 isymstart2 = isym;
8729 count2++;
8730 }
8731
8732 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8733 break;
8734 }
8735
8736 if (count1 == 0 || count2 == 0 || count1 != count2)
8737 goto done;
8738
8739 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8740 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8741
8742 if (symtable1 == NULL || symtable2 == NULL)
8743 goto done;
8744
8745 symp = symtable1;
8746 for (isym = isymstart1, isymend = isym + count1;
8747 isym < isymend; isym++)
8748 {
8749 symp->sym = isym;
8750 symp->name = bfd_elf_string_from_elf_section (bfd1,
8751 hdr1->sh_link,
8752 isym->st_name);
8753 symp++;
8754 }
8755
8756 symp = symtable2;
8757 for (isym = isymstart2, isymend = isym + count1;
8758 isym < isymend; isym++)
8759 {
8760 symp->sym = isym;
8761 symp->name = bfd_elf_string_from_elf_section (bfd2,
8762 hdr2->sh_link,
8763 isym->st_name);
8764 symp++;
8765 }
8766
8767 /* Sort symbol by name. */
8768 qsort (symtable1, count1, sizeof (struct elf_symbol),
8769 elf_sym_name_compare);
8770 qsort (symtable2, count1, sizeof (struct elf_symbol),
8771 elf_sym_name_compare);
8772
8773 for (i = 0; i < count1; i++)
8774 /* Two symbols must have the same binding, type and name. */
8775 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8776 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8777 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8778 goto done;
8779
8780 result = TRUE;
8781
8782 done:
8783 if (symtable1)
8784 free (symtable1);
8785 if (symtable2)
8786 free (symtable2);
8787 if (isymbuf1)
8788 free (isymbuf1);
8789 if (isymbuf2)
8790 free (isymbuf2);
8791
8792 return result;
8793 }
8794
8795 /* It is only used by x86-64 so far. */
8796 asection _bfd_elf_large_com_section
8797 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8798 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8799
8800 /* Return TRUE if 2 section types are compatible. */
8801
8802 bfd_boolean
8803 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8804 bfd *bbfd, const asection *bsec)
8805 {
8806 if (asec == NULL
8807 || bsec == NULL
8808 || abfd->xvec->flavour != bfd_target_elf_flavour
8809 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8810 return TRUE;
8811
8812 return elf_section_type (asec) == elf_section_type (bsec);
8813 }
This page took 0.21496 seconds and 4 git commands to generate.