Revert the value change of DT_ENCODING from 2003-01-17. Luckily (and
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
211
212 unsigned long
213 bfd_elf_gnu_hash (const char *namearg)
214 {
215 const unsigned char *name = (const unsigned char *) namearg;
216 unsigned long h = 5381;
217 unsigned char ch;
218
219 while ((ch = *name++) != '\0')
220 h = (h << 5) + h + ch;
221 return h & 0xffffffff;
222 }
223
224 bfd_boolean
225 bfd_elf_mkobject (bfd *abfd)
226 {
227 if (abfd->tdata.any == NULL)
228 {
229 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
230 if (abfd->tdata.any == NULL)
231 return FALSE;
232 }
233
234 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
235
236 return TRUE;
237 }
238
239 bfd_boolean
240 bfd_elf_mkcorefile (bfd *abfd)
241 {
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd);
244 }
245
246 char *
247 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
248 {
249 Elf_Internal_Shdr **i_shdrp;
250 bfd_byte *shstrtab = NULL;
251 file_ptr offset;
252 bfd_size_type shstrtabsize;
253
254 i_shdrp = elf_elfsections (abfd);
255 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
256 return NULL;
257
258 shstrtab = i_shdrp[shindex]->contents;
259 if (shstrtab == NULL)
260 {
261 /* No cached one, attempt to read, and cache what we read. */
262 offset = i_shdrp[shindex]->sh_offset;
263 shstrtabsize = i_shdrp[shindex]->sh_size;
264
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize + 1 == 0
268 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
269 || bfd_seek (abfd, offset, SEEK_SET) != 0)
270 shstrtab = NULL;
271 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
272 {
273 if (bfd_get_error () != bfd_error_system_call)
274 bfd_set_error (bfd_error_file_truncated);
275 shstrtab = NULL;
276 }
277 else
278 shstrtab[shstrtabsize] = '\0';
279 i_shdrp[shindex]->contents = shstrtab;
280 }
281 return (char *) shstrtab;
282 }
283
284 char *
285 bfd_elf_string_from_elf_section (bfd *abfd,
286 unsigned int shindex,
287 unsigned int strindex)
288 {
289 Elf_Internal_Shdr *hdr;
290
291 if (strindex == 0)
292 return "";
293
294 hdr = elf_elfsections (abfd)[shindex];
295
296 if (hdr->contents == NULL
297 && bfd_elf_get_str_section (abfd, shindex) == NULL)
298 return NULL;
299
300 if (strindex >= hdr->sh_size)
301 {
302 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
303 (*_bfd_error_handler)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd, strindex, (unsigned long) hdr->sh_size,
306 (shindex == shstrndx && strindex == hdr->sh_name
307 ? ".shstrtab"
308 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
309 return "";
310 }
311
312 return ((char *) hdr->contents) + strindex;
313 }
314
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
320
321 Elf_Internal_Sym *
322 bfd_elf_get_elf_syms (bfd *ibfd,
323 Elf_Internal_Shdr *symtab_hdr,
324 size_t symcount,
325 size_t symoffset,
326 Elf_Internal_Sym *intsym_buf,
327 void *extsym_buf,
328 Elf_External_Sym_Shndx *extshndx_buf)
329 {
330 Elf_Internal_Shdr *shndx_hdr;
331 void *alloc_ext;
332 const bfd_byte *esym;
333 Elf_External_Sym_Shndx *alloc_extshndx;
334 Elf_External_Sym_Shndx *shndx;
335 Elf_Internal_Sym *isym;
336 Elf_Internal_Sym *isymend;
337 const struct elf_backend_data *bed;
338 size_t extsym_size;
339 bfd_size_type amt;
340 file_ptr pos;
341
342 if (symcount == 0)
343 return intsym_buf;
344
345 /* Normal syms might have section extension entries. */
346 shndx_hdr = NULL;
347 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
348 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
349
350 /* Read the symbols. */
351 alloc_ext = NULL;
352 alloc_extshndx = NULL;
353 bed = get_elf_backend_data (ibfd);
354 extsym_size = bed->s->sizeof_sym;
355 amt = symcount * extsym_size;
356 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
357 if (extsym_buf == NULL)
358 {
359 alloc_ext = bfd_malloc2 (symcount, extsym_size);
360 extsym_buf = alloc_ext;
361 }
362 if (extsym_buf == NULL
363 || bfd_seek (ibfd, pos, SEEK_SET) != 0
364 || bfd_bread (extsym_buf, amt, ibfd) != amt)
365 {
366 intsym_buf = NULL;
367 goto out;
368 }
369
370 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
371 extshndx_buf = NULL;
372 else
373 {
374 amt = symcount * sizeof (Elf_External_Sym_Shndx);
375 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
376 if (extshndx_buf == NULL)
377 {
378 alloc_extshndx = bfd_malloc2 (symcount,
379 sizeof (Elf_External_Sym_Shndx));
380 extshndx_buf = alloc_extshndx;
381 }
382 if (extshndx_buf == NULL
383 || bfd_seek (ibfd, pos, SEEK_SET) != 0
384 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
385 {
386 intsym_buf = NULL;
387 goto out;
388 }
389 }
390
391 if (intsym_buf == NULL)
392 {
393 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
394 if (intsym_buf == NULL)
395 goto out;
396 }
397
398 /* Convert the symbols to internal form. */
399 isymend = intsym_buf + symcount;
400 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
401 isym < isymend;
402 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
403 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
404 {
405 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
406 (*_bfd_error_handler) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd, (unsigned long) symoffset);
409 intsym_buf = NULL;
410 goto out;
411 }
412
413 out:
414 if (alloc_ext != NULL)
415 free (alloc_ext);
416 if (alloc_extshndx != NULL)
417 free (alloc_extshndx);
418
419 return intsym_buf;
420 }
421
422 /* Look up a symbol name. */
423 const char *
424 bfd_elf_sym_name (bfd *abfd,
425 Elf_Internal_Shdr *symtab_hdr,
426 Elf_Internal_Sym *isym,
427 asection *sym_sec)
428 {
429 const char *name;
430 unsigned int iname = isym->st_name;
431 unsigned int shindex = symtab_hdr->sh_link;
432
433 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym->st_shndx < elf_numsections (abfd)
436 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
437 {
438 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
439 shindex = elf_elfheader (abfd)->e_shstrndx;
440 }
441
442 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
443 if (name == NULL)
444 name = "(null)";
445 else if (sym_sec && *name == '\0')
446 name = bfd_section_name (abfd, sym_sec);
447
448 return name;
449 }
450
451 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
453 pointers. */
454
455 typedef union elf_internal_group {
456 Elf_Internal_Shdr *shdr;
457 unsigned int flags;
458 } Elf_Internal_Group;
459
460 /* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
462
463 static const char *
464 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
465 {
466 Elf_Internal_Shdr *hdr;
467 unsigned char esym[sizeof (Elf64_External_Sym)];
468 Elf_External_Sym_Shndx eshndx;
469 Elf_Internal_Sym isym;
470
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr = elf_elfsections (abfd) [ghdr->sh_link];
474 if (hdr->sh_type != SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
476 return NULL;
477
478 /* Go read the symbol. */
479 hdr = &elf_tdata (abfd)->symtab_hdr;
480 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
481 &isym, esym, &eshndx) == NULL)
482 return NULL;
483
484 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
485 }
486
487 /* Set next_in_group list pointer, and group name for NEWSECT. */
488
489 static bfd_boolean
490 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
491 {
492 unsigned int num_group = elf_tdata (abfd)->num_group;
493
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
496 if (num_group == 0)
497 {
498 unsigned int i, shnum;
499
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum = elf_numsections (abfd);
503 num_group = 0;
504
505 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
506 ( (shdr)->sh_type == SHT_GROUP \
507 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
508 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
509 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
510
511 for (i = 0; i < shnum; i++)
512 {
513 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
514
515 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
516 num_group += 1;
517 }
518
519 if (num_group == 0)
520 {
521 num_group = (unsigned) -1;
522 elf_tdata (abfd)->num_group = num_group;
523 }
524 else
525 {
526 /* We keep a list of elf section headers for group sections,
527 so we can find them quickly. */
528 bfd_size_type amt;
529
530 elf_tdata (abfd)->num_group = num_group;
531 elf_tdata (abfd)->group_sect_ptr
532 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
533 if (elf_tdata (abfd)->group_sect_ptr == NULL)
534 return FALSE;
535
536 num_group = 0;
537 for (i = 0; i < shnum; i++)
538 {
539 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
540
541 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
542 {
543 unsigned char *src;
544 Elf_Internal_Group *dest;
545
546 /* Add to list of sections. */
547 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
548 num_group += 1;
549
550 /* Read the raw contents. */
551 BFD_ASSERT (sizeof (*dest) >= 4);
552 amt = shdr->sh_size * sizeof (*dest) / 4;
553 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
554 sizeof (*dest) / 4);
555 /* PR binutils/4110: Handle corrupt group headers. */
556 if (shdr->contents == NULL)
557 {
558 _bfd_error_handler
559 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
560 bfd_set_error (bfd_error_bad_value);
561 return FALSE;
562 }
563
564 memset (shdr->contents, 0, amt);
565
566 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
567 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
568 != shdr->sh_size))
569 return FALSE;
570
571 /* Translate raw contents, a flag word followed by an
572 array of elf section indices all in target byte order,
573 to the flag word followed by an array of elf section
574 pointers. */
575 src = shdr->contents + shdr->sh_size;
576 dest = (Elf_Internal_Group *) (shdr->contents + amt);
577 while (1)
578 {
579 unsigned int idx;
580
581 src -= 4;
582 --dest;
583 idx = H_GET_32 (abfd, src);
584 if (src == shdr->contents)
585 {
586 dest->flags = idx;
587 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
588 shdr->bfd_section->flags
589 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
590 break;
591 }
592 if (idx >= shnum)
593 {
594 ((*_bfd_error_handler)
595 (_("%B: invalid SHT_GROUP entry"), abfd));
596 idx = 0;
597 }
598 dest->shdr = elf_elfsections (abfd)[idx];
599 }
600 }
601 }
602 }
603 }
604
605 if (num_group != (unsigned) -1)
606 {
607 unsigned int i;
608
609 for (i = 0; i < num_group; i++)
610 {
611 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
612 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
613 unsigned int n_elt = shdr->sh_size / 4;
614
615 /* Look through this group's sections to see if current
616 section is a member. */
617 while (--n_elt != 0)
618 if ((++idx)->shdr == hdr)
619 {
620 asection *s = NULL;
621
622 /* We are a member of this group. Go looking through
623 other members to see if any others are linked via
624 next_in_group. */
625 idx = (Elf_Internal_Group *) shdr->contents;
626 n_elt = shdr->sh_size / 4;
627 while (--n_elt != 0)
628 if ((s = (++idx)->shdr->bfd_section) != NULL
629 && elf_next_in_group (s) != NULL)
630 break;
631 if (n_elt != 0)
632 {
633 /* Snarf the group name from other member, and
634 insert current section in circular list. */
635 elf_group_name (newsect) = elf_group_name (s);
636 elf_next_in_group (newsect) = elf_next_in_group (s);
637 elf_next_in_group (s) = newsect;
638 }
639 else
640 {
641 const char *gname;
642
643 gname = group_signature (abfd, shdr);
644 if (gname == NULL)
645 return FALSE;
646 elf_group_name (newsect) = gname;
647
648 /* Start a circular list with one element. */
649 elf_next_in_group (newsect) = newsect;
650 }
651
652 /* If the group section has been created, point to the
653 new member. */
654 if (shdr->bfd_section != NULL)
655 elf_next_in_group (shdr->bfd_section) = newsect;
656
657 i = num_group - 1;
658 break;
659 }
660 }
661 }
662
663 if (elf_group_name (newsect) == NULL)
664 {
665 (*_bfd_error_handler) (_("%B: no group info for section %A"),
666 abfd, newsect);
667 }
668 return TRUE;
669 }
670
671 bfd_boolean
672 _bfd_elf_setup_sections (bfd *abfd)
673 {
674 unsigned int i;
675 unsigned int num_group = elf_tdata (abfd)->num_group;
676 bfd_boolean result = TRUE;
677 asection *s;
678
679 /* Process SHF_LINK_ORDER. */
680 for (s = abfd->sections; s != NULL; s = s->next)
681 {
682 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
683 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
684 {
685 unsigned int elfsec = this_hdr->sh_link;
686 /* FIXME: The old Intel compiler and old strip/objcopy may
687 not set the sh_link or sh_info fields. Hence we could
688 get the situation where elfsec is 0. */
689 if (elfsec == 0)
690 {
691 const struct elf_backend_data *bed
692 = get_elf_backend_data (abfd);
693 if (bed->link_order_error_handler)
694 bed->link_order_error_handler
695 (_("%B: warning: sh_link not set for section `%A'"),
696 abfd, s);
697 }
698 else
699 {
700 asection *link;
701
702 this_hdr = elf_elfsections (abfd)[elfsec];
703
704 /* PR 1991, 2008:
705 Some strip/objcopy may leave an incorrect value in
706 sh_link. We don't want to proceed. */
707 link = this_hdr->bfd_section;
708 if (link == NULL)
709 {
710 (*_bfd_error_handler)
711 (_("%B: sh_link [%d] in section `%A' is incorrect"),
712 s->owner, s, elfsec);
713 result = FALSE;
714 }
715
716 elf_linked_to_section (s) = link;
717 }
718 }
719 }
720
721 /* Process section groups. */
722 if (num_group == (unsigned) -1)
723 return result;
724
725 for (i = 0; i < num_group; i++)
726 {
727 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
728 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
729 unsigned int n_elt = shdr->sh_size / 4;
730
731 while (--n_elt != 0)
732 if ((++idx)->shdr->bfd_section)
733 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
734 else if (idx->shdr->sh_type == SHT_RELA
735 || idx->shdr->sh_type == SHT_REL)
736 /* We won't include relocation sections in section groups in
737 output object files. We adjust the group section size here
738 so that relocatable link will work correctly when
739 relocation sections are in section group in input object
740 files. */
741 shdr->bfd_section->size -= 4;
742 else
743 {
744 /* There are some unknown sections in the group. */
745 (*_bfd_error_handler)
746 (_("%B: unknown [%d] section `%s' in group [%s]"),
747 abfd,
748 (unsigned int) idx->shdr->sh_type,
749 bfd_elf_string_from_elf_section (abfd,
750 (elf_elfheader (abfd)
751 ->e_shstrndx),
752 idx->shdr->sh_name),
753 shdr->bfd_section->name);
754 result = FALSE;
755 }
756 }
757 return result;
758 }
759
760 bfd_boolean
761 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
762 {
763 return elf_next_in_group (sec) != NULL;
764 }
765
766 /* Make a BFD section from an ELF section. We store a pointer to the
767 BFD section in the bfd_section field of the header. */
768
769 bfd_boolean
770 _bfd_elf_make_section_from_shdr (bfd *abfd,
771 Elf_Internal_Shdr *hdr,
772 const char *name,
773 int shindex)
774 {
775 asection *newsect;
776 flagword flags;
777 const struct elf_backend_data *bed;
778
779 if (hdr->bfd_section != NULL)
780 {
781 BFD_ASSERT (strcmp (name,
782 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
783 return TRUE;
784 }
785
786 newsect = bfd_make_section_anyway (abfd, name);
787 if (newsect == NULL)
788 return FALSE;
789
790 hdr->bfd_section = newsect;
791 elf_section_data (newsect)->this_hdr = *hdr;
792 elf_section_data (newsect)->this_idx = shindex;
793
794 /* Always use the real type/flags. */
795 elf_section_type (newsect) = hdr->sh_type;
796 elf_section_flags (newsect) = hdr->sh_flags;
797
798 newsect->filepos = hdr->sh_offset;
799
800 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
801 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
802 || ! bfd_set_section_alignment (abfd, newsect,
803 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
804 return FALSE;
805
806 flags = SEC_NO_FLAGS;
807 if (hdr->sh_type != SHT_NOBITS)
808 flags |= SEC_HAS_CONTENTS;
809 if (hdr->sh_type == SHT_GROUP)
810 flags |= SEC_GROUP | SEC_EXCLUDE;
811 if ((hdr->sh_flags & SHF_ALLOC) != 0)
812 {
813 flags |= SEC_ALLOC;
814 if (hdr->sh_type != SHT_NOBITS)
815 flags |= SEC_LOAD;
816 }
817 if ((hdr->sh_flags & SHF_WRITE) == 0)
818 flags |= SEC_READONLY;
819 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
820 flags |= SEC_CODE;
821 else if ((flags & SEC_LOAD) != 0)
822 flags |= SEC_DATA;
823 if ((hdr->sh_flags & SHF_MERGE) != 0)
824 {
825 flags |= SEC_MERGE;
826 newsect->entsize = hdr->sh_entsize;
827 if ((hdr->sh_flags & SHF_STRINGS) != 0)
828 flags |= SEC_STRINGS;
829 }
830 if (hdr->sh_flags & SHF_GROUP)
831 if (!setup_group (abfd, hdr, newsect))
832 return FALSE;
833 if ((hdr->sh_flags & SHF_TLS) != 0)
834 flags |= SEC_THREAD_LOCAL;
835
836 if ((flags & SEC_ALLOC) == 0)
837 {
838 /* The debugging sections appear to be recognized only by name,
839 not any sort of flag. Their SEC_ALLOC bits are cleared. */
840 static const struct
841 {
842 const char *name;
843 int len;
844 } debug_sections [] =
845 {
846 { STRING_COMMA_LEN ("debug") }, /* 'd' */
847 { NULL, 0 }, /* 'e' */
848 { NULL, 0 }, /* 'f' */
849 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
850 { NULL, 0 }, /* 'h' */
851 { NULL, 0 }, /* 'i' */
852 { NULL, 0 }, /* 'j' */
853 { NULL, 0 }, /* 'k' */
854 { STRING_COMMA_LEN ("line") }, /* 'l' */
855 { NULL, 0 }, /* 'm' */
856 { NULL, 0 }, /* 'n' */
857 { NULL, 0 }, /* 'o' */
858 { NULL, 0 }, /* 'p' */
859 { NULL, 0 }, /* 'q' */
860 { NULL, 0 }, /* 'r' */
861 { STRING_COMMA_LEN ("stab") } /* 's' */
862 };
863
864 if (name [0] == '.')
865 {
866 int i = name [1] - 'd';
867 if (i >= 0
868 && i < (int) ARRAY_SIZE (debug_sections)
869 && debug_sections [i].name != NULL
870 && strncmp (&name [1], debug_sections [i].name,
871 debug_sections [i].len) == 0)
872 flags |= SEC_DEBUGGING;
873 }
874 }
875
876 /* As a GNU extension, if the name begins with .gnu.linkonce, we
877 only link a single copy of the section. This is used to support
878 g++. g++ will emit each template expansion in its own section.
879 The symbols will be defined as weak, so that multiple definitions
880 are permitted. The GNU linker extension is to actually discard
881 all but one of the sections. */
882 if (CONST_STRNEQ (name, ".gnu.linkonce")
883 && elf_next_in_group (newsect) == NULL)
884 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
885
886 bed = get_elf_backend_data (abfd);
887 if (bed->elf_backend_section_flags)
888 if (! bed->elf_backend_section_flags (&flags, hdr))
889 return FALSE;
890
891 if (! bfd_set_section_flags (abfd, newsect, flags))
892 return FALSE;
893
894 if ((flags & SEC_ALLOC) != 0)
895 {
896 Elf_Internal_Phdr *phdr;
897 unsigned int i;
898
899 /* Look through the phdrs to see if we need to adjust the lma.
900 If all the p_paddr fields are zero, we ignore them, since
901 some ELF linkers produce such output. */
902 phdr = elf_tdata (abfd)->phdr;
903 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
904 {
905 if (phdr->p_paddr != 0)
906 break;
907 }
908 if (i < elf_elfheader (abfd)->e_phnum)
909 {
910 phdr = elf_tdata (abfd)->phdr;
911 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
912 {
913 /* This section is part of this segment if its file
914 offset plus size lies within the segment's memory
915 span and, if the section is loaded, the extent of the
916 loaded data lies within the extent of the segment.
917
918 Note - we used to check the p_paddr field as well, and
919 refuse to set the LMA if it was 0. This is wrong
920 though, as a perfectly valid initialised segment can
921 have a p_paddr of zero. Some architectures, eg ARM,
922 place special significance on the address 0 and
923 executables need to be able to have a segment which
924 covers this address. */
925 if (phdr->p_type == PT_LOAD
926 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
927 && (hdr->sh_offset + hdr->sh_size
928 <= phdr->p_offset + phdr->p_memsz)
929 && ((flags & SEC_LOAD) == 0
930 || (hdr->sh_offset + hdr->sh_size
931 <= phdr->p_offset + phdr->p_filesz)))
932 {
933 if ((flags & SEC_LOAD) == 0)
934 newsect->lma = (phdr->p_paddr
935 + hdr->sh_addr - phdr->p_vaddr);
936 else
937 /* We used to use the same adjustment for SEC_LOAD
938 sections, but that doesn't work if the segment
939 is packed with code from multiple VMAs.
940 Instead we calculate the section LMA based on
941 the segment LMA. It is assumed that the
942 segment will contain sections with contiguous
943 LMAs, even if the VMAs are not. */
944 newsect->lma = (phdr->p_paddr
945 + hdr->sh_offset - phdr->p_offset);
946
947 /* With contiguous segments, we can't tell from file
948 offsets whether a section with zero size should
949 be placed at the end of one segment or the
950 beginning of the next. Decide based on vaddr. */
951 if (hdr->sh_addr >= phdr->p_vaddr
952 && (hdr->sh_addr + hdr->sh_size
953 <= phdr->p_vaddr + phdr->p_memsz))
954 break;
955 }
956 }
957 }
958 }
959
960 return TRUE;
961 }
962
963 /*
964 INTERNAL_FUNCTION
965 bfd_elf_find_section
966
967 SYNOPSIS
968 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
969
970 DESCRIPTION
971 Helper functions for GDB to locate the string tables.
972 Since BFD hides string tables from callers, GDB needs to use an
973 internal hook to find them. Sun's .stabstr, in particular,
974 isn't even pointed to by the .stab section, so ordinary
975 mechanisms wouldn't work to find it, even if we had some.
976 */
977
978 struct elf_internal_shdr *
979 bfd_elf_find_section (bfd *abfd, char *name)
980 {
981 Elf_Internal_Shdr **i_shdrp;
982 char *shstrtab;
983 unsigned int max;
984 unsigned int i;
985
986 i_shdrp = elf_elfsections (abfd);
987 if (i_shdrp != NULL)
988 {
989 shstrtab = bfd_elf_get_str_section (abfd,
990 elf_elfheader (abfd)->e_shstrndx);
991 if (shstrtab != NULL)
992 {
993 max = elf_numsections (abfd);
994 for (i = 1; i < max; i++)
995 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
996 return i_shdrp[i];
997 }
998 }
999 return 0;
1000 }
1001
1002 const char *const bfd_elf_section_type_names[] = {
1003 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1004 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1005 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1006 };
1007
1008 /* ELF relocs are against symbols. If we are producing relocatable
1009 output, and the reloc is against an external symbol, and nothing
1010 has given us any additional addend, the resulting reloc will also
1011 be against the same symbol. In such a case, we don't want to
1012 change anything about the way the reloc is handled, since it will
1013 all be done at final link time. Rather than put special case code
1014 into bfd_perform_relocation, all the reloc types use this howto
1015 function. It just short circuits the reloc if producing
1016 relocatable output against an external symbol. */
1017
1018 bfd_reloc_status_type
1019 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1020 arelent *reloc_entry,
1021 asymbol *symbol,
1022 void *data ATTRIBUTE_UNUSED,
1023 asection *input_section,
1024 bfd *output_bfd,
1025 char **error_message ATTRIBUTE_UNUSED)
1026 {
1027 if (output_bfd != NULL
1028 && (symbol->flags & BSF_SECTION_SYM) == 0
1029 && (! reloc_entry->howto->partial_inplace
1030 || reloc_entry->addend == 0))
1031 {
1032 reloc_entry->address += input_section->output_offset;
1033 return bfd_reloc_ok;
1034 }
1035
1036 return bfd_reloc_continue;
1037 }
1038 \f
1039 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1040
1041 static void
1042 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1043 asection *sec)
1044 {
1045 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1046 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1047 }
1048
1049 /* Finish SHF_MERGE section merging. */
1050
1051 bfd_boolean
1052 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1053 {
1054 bfd *ibfd;
1055 asection *sec;
1056
1057 if (!is_elf_hash_table (info->hash))
1058 return FALSE;
1059
1060 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1061 if ((ibfd->flags & DYNAMIC) == 0)
1062 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1063 if ((sec->flags & SEC_MERGE) != 0
1064 && !bfd_is_abs_section (sec->output_section))
1065 {
1066 struct bfd_elf_section_data *secdata;
1067
1068 secdata = elf_section_data (sec);
1069 if (! _bfd_add_merge_section (abfd,
1070 &elf_hash_table (info)->merge_info,
1071 sec, &secdata->sec_info))
1072 return FALSE;
1073 else if (secdata->sec_info)
1074 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1075 }
1076
1077 if (elf_hash_table (info)->merge_info != NULL)
1078 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1079 merge_sections_remove_hook);
1080 return TRUE;
1081 }
1082
1083 void
1084 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1085 {
1086 sec->output_section = bfd_abs_section_ptr;
1087 sec->output_offset = sec->vma;
1088 if (!is_elf_hash_table (info->hash))
1089 return;
1090
1091 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1092 }
1093 \f
1094 /* Copy the program header and other data from one object module to
1095 another. */
1096
1097 bfd_boolean
1098 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1099 {
1100 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1101 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1102 return TRUE;
1103
1104 BFD_ASSERT (!elf_flags_init (obfd)
1105 || (elf_elfheader (obfd)->e_flags
1106 == elf_elfheader (ibfd)->e_flags));
1107
1108 elf_gp (obfd) = elf_gp (ibfd);
1109 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1110 elf_flags_init (obfd) = TRUE;
1111 return TRUE;
1112 }
1113
1114 static const char *
1115 get_segment_type (unsigned int p_type)
1116 {
1117 const char *pt;
1118 switch (p_type)
1119 {
1120 case PT_NULL: pt = "NULL"; break;
1121 case PT_LOAD: pt = "LOAD"; break;
1122 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1123 case PT_INTERP: pt = "INTERP"; break;
1124 case PT_NOTE: pt = "NOTE"; break;
1125 case PT_SHLIB: pt = "SHLIB"; break;
1126 case PT_PHDR: pt = "PHDR"; break;
1127 case PT_TLS: pt = "TLS"; break;
1128 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1129 case PT_GNU_STACK: pt = "STACK"; break;
1130 case PT_GNU_RELRO: pt = "RELRO"; break;
1131 default: pt = NULL; break;
1132 }
1133 return pt;
1134 }
1135
1136 /* Print out the program headers. */
1137
1138 bfd_boolean
1139 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1140 {
1141 FILE *f = farg;
1142 Elf_Internal_Phdr *p;
1143 asection *s;
1144 bfd_byte *dynbuf = NULL;
1145
1146 p = elf_tdata (abfd)->phdr;
1147 if (p != NULL)
1148 {
1149 unsigned int i, c;
1150
1151 fprintf (f, _("\nProgram Header:\n"));
1152 c = elf_elfheader (abfd)->e_phnum;
1153 for (i = 0; i < c; i++, p++)
1154 {
1155 const char *pt = get_segment_type (p->p_type);
1156 char buf[20];
1157
1158 if (pt == NULL)
1159 {
1160 sprintf (buf, "0x%lx", p->p_type);
1161 pt = buf;
1162 }
1163 fprintf (f, "%8s off 0x", pt);
1164 bfd_fprintf_vma (abfd, f, p->p_offset);
1165 fprintf (f, " vaddr 0x");
1166 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1167 fprintf (f, " paddr 0x");
1168 bfd_fprintf_vma (abfd, f, p->p_paddr);
1169 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1170 fprintf (f, " filesz 0x");
1171 bfd_fprintf_vma (abfd, f, p->p_filesz);
1172 fprintf (f, " memsz 0x");
1173 bfd_fprintf_vma (abfd, f, p->p_memsz);
1174 fprintf (f, " flags %c%c%c",
1175 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1176 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1177 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1178 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1179 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1180 fprintf (f, "\n");
1181 }
1182 }
1183
1184 s = bfd_get_section_by_name (abfd, ".dynamic");
1185 if (s != NULL)
1186 {
1187 int elfsec;
1188 unsigned long shlink;
1189 bfd_byte *extdyn, *extdynend;
1190 size_t extdynsize;
1191 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1192
1193 fprintf (f, _("\nDynamic Section:\n"));
1194
1195 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1196 goto error_return;
1197
1198 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1199 if (elfsec == -1)
1200 goto error_return;
1201 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1202
1203 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1204 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1205
1206 extdyn = dynbuf;
1207 extdynend = extdyn + s->size;
1208 for (; extdyn < extdynend; extdyn += extdynsize)
1209 {
1210 Elf_Internal_Dyn dyn;
1211 const char *name;
1212 char ab[20];
1213 bfd_boolean stringp;
1214
1215 (*swap_dyn_in) (abfd, extdyn, &dyn);
1216
1217 if (dyn.d_tag == DT_NULL)
1218 break;
1219
1220 stringp = FALSE;
1221 switch (dyn.d_tag)
1222 {
1223 default:
1224 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1225 name = ab;
1226 break;
1227
1228 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1229 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1230 case DT_PLTGOT: name = "PLTGOT"; break;
1231 case DT_HASH: name = "HASH"; break;
1232 case DT_STRTAB: name = "STRTAB"; break;
1233 case DT_SYMTAB: name = "SYMTAB"; break;
1234 case DT_RELA: name = "RELA"; break;
1235 case DT_RELASZ: name = "RELASZ"; break;
1236 case DT_RELAENT: name = "RELAENT"; break;
1237 case DT_STRSZ: name = "STRSZ"; break;
1238 case DT_SYMENT: name = "SYMENT"; break;
1239 case DT_INIT: name = "INIT"; break;
1240 case DT_FINI: name = "FINI"; break;
1241 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1242 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1243 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1244 case DT_REL: name = "REL"; break;
1245 case DT_RELSZ: name = "RELSZ"; break;
1246 case DT_RELENT: name = "RELENT"; break;
1247 case DT_PLTREL: name = "PLTREL"; break;
1248 case DT_DEBUG: name = "DEBUG"; break;
1249 case DT_TEXTREL: name = "TEXTREL"; break;
1250 case DT_JMPREL: name = "JMPREL"; break;
1251 case DT_BIND_NOW: name = "BIND_NOW"; break;
1252 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1253 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1254 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1255 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1256 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1257 case DT_FLAGS: name = "FLAGS"; break;
1258 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1259 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1260 case DT_CHECKSUM: name = "CHECKSUM"; break;
1261 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1262 case DT_MOVEENT: name = "MOVEENT"; break;
1263 case DT_MOVESZ: name = "MOVESZ"; break;
1264 case DT_FEATURE: name = "FEATURE"; break;
1265 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1266 case DT_SYMINSZ: name = "SYMINSZ"; break;
1267 case DT_SYMINENT: name = "SYMINENT"; break;
1268 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1269 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1270 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1271 case DT_PLTPAD: name = "PLTPAD"; break;
1272 case DT_MOVETAB: name = "MOVETAB"; break;
1273 case DT_SYMINFO: name = "SYMINFO"; break;
1274 case DT_RELACOUNT: name = "RELACOUNT"; break;
1275 case DT_RELCOUNT: name = "RELCOUNT"; break;
1276 case DT_FLAGS_1: name = "FLAGS_1"; break;
1277 case DT_VERSYM: name = "VERSYM"; break;
1278 case DT_VERDEF: name = "VERDEF"; break;
1279 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1280 case DT_VERNEED: name = "VERNEED"; break;
1281 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1282 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1283 case DT_USED: name = "USED"; break;
1284 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1285 case DT_GNU_HASH: name = "GNU_HASH"; break;
1286 }
1287
1288 fprintf (f, " %-11s ", name);
1289 if (! stringp)
1290 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1291 else
1292 {
1293 const char *string;
1294 unsigned int tagv = dyn.d_un.d_val;
1295
1296 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1297 if (string == NULL)
1298 goto error_return;
1299 fprintf (f, "%s", string);
1300 }
1301 fprintf (f, "\n");
1302 }
1303
1304 free (dynbuf);
1305 dynbuf = NULL;
1306 }
1307
1308 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1309 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1310 {
1311 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1312 return FALSE;
1313 }
1314
1315 if (elf_dynverdef (abfd) != 0)
1316 {
1317 Elf_Internal_Verdef *t;
1318
1319 fprintf (f, _("\nVersion definitions:\n"));
1320 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1321 {
1322 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1323 t->vd_flags, t->vd_hash,
1324 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1325 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1326 {
1327 Elf_Internal_Verdaux *a;
1328
1329 fprintf (f, "\t");
1330 for (a = t->vd_auxptr->vda_nextptr;
1331 a != NULL;
1332 a = a->vda_nextptr)
1333 fprintf (f, "%s ",
1334 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1335 fprintf (f, "\n");
1336 }
1337 }
1338 }
1339
1340 if (elf_dynverref (abfd) != 0)
1341 {
1342 Elf_Internal_Verneed *t;
1343
1344 fprintf (f, _("\nVersion References:\n"));
1345 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1346 {
1347 Elf_Internal_Vernaux *a;
1348
1349 fprintf (f, _(" required from %s:\n"),
1350 t->vn_filename ? t->vn_filename : "<corrupt>");
1351 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1352 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1353 a->vna_flags, a->vna_other,
1354 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1355 }
1356 }
1357
1358 return TRUE;
1359
1360 error_return:
1361 if (dynbuf != NULL)
1362 free (dynbuf);
1363 return FALSE;
1364 }
1365
1366 /* Display ELF-specific fields of a symbol. */
1367
1368 void
1369 bfd_elf_print_symbol (bfd *abfd,
1370 void *filep,
1371 asymbol *symbol,
1372 bfd_print_symbol_type how)
1373 {
1374 FILE *file = filep;
1375 switch (how)
1376 {
1377 case bfd_print_symbol_name:
1378 fprintf (file, "%s", symbol->name);
1379 break;
1380 case bfd_print_symbol_more:
1381 fprintf (file, "elf ");
1382 bfd_fprintf_vma (abfd, file, symbol->value);
1383 fprintf (file, " %lx", (long) symbol->flags);
1384 break;
1385 case bfd_print_symbol_all:
1386 {
1387 const char *section_name;
1388 const char *name = NULL;
1389 const struct elf_backend_data *bed;
1390 unsigned char st_other;
1391 bfd_vma val;
1392
1393 section_name = symbol->section ? symbol->section->name : "(*none*)";
1394
1395 bed = get_elf_backend_data (abfd);
1396 if (bed->elf_backend_print_symbol_all)
1397 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1398
1399 if (name == NULL)
1400 {
1401 name = symbol->name;
1402 bfd_print_symbol_vandf (abfd, file, symbol);
1403 }
1404
1405 fprintf (file, " %s\t", section_name);
1406 /* Print the "other" value for a symbol. For common symbols,
1407 we've already printed the size; now print the alignment.
1408 For other symbols, we have no specified alignment, and
1409 we've printed the address; now print the size. */
1410 if (bfd_is_com_section (symbol->section))
1411 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1412 else
1413 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1414 bfd_fprintf_vma (abfd, file, val);
1415
1416 /* If we have version information, print it. */
1417 if (elf_tdata (abfd)->dynversym_section != 0
1418 && (elf_tdata (abfd)->dynverdef_section != 0
1419 || elf_tdata (abfd)->dynverref_section != 0))
1420 {
1421 unsigned int vernum;
1422 const char *version_string;
1423
1424 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1425
1426 if (vernum == 0)
1427 version_string = "";
1428 else if (vernum == 1)
1429 version_string = "Base";
1430 else if (vernum <= elf_tdata (abfd)->cverdefs)
1431 version_string =
1432 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1433 else
1434 {
1435 Elf_Internal_Verneed *t;
1436
1437 version_string = "";
1438 for (t = elf_tdata (abfd)->verref;
1439 t != NULL;
1440 t = t->vn_nextref)
1441 {
1442 Elf_Internal_Vernaux *a;
1443
1444 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1445 {
1446 if (a->vna_other == vernum)
1447 {
1448 version_string = a->vna_nodename;
1449 break;
1450 }
1451 }
1452 }
1453 }
1454
1455 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1456 fprintf (file, " %-11s", version_string);
1457 else
1458 {
1459 int i;
1460
1461 fprintf (file, " (%s)", version_string);
1462 for (i = 10 - strlen (version_string); i > 0; --i)
1463 putc (' ', file);
1464 }
1465 }
1466
1467 /* If the st_other field is not zero, print it. */
1468 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1469
1470 switch (st_other)
1471 {
1472 case 0: break;
1473 case STV_INTERNAL: fprintf (file, " .internal"); break;
1474 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1475 case STV_PROTECTED: fprintf (file, " .protected"); break;
1476 default:
1477 /* Some other non-defined flags are also present, so print
1478 everything hex. */
1479 fprintf (file, " 0x%02x", (unsigned int) st_other);
1480 }
1481
1482 fprintf (file, " %s", name);
1483 }
1484 break;
1485 }
1486 }
1487 \f
1488 /* Create an entry in an ELF linker hash table. */
1489
1490 struct bfd_hash_entry *
1491 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1492 struct bfd_hash_table *table,
1493 const char *string)
1494 {
1495 /* Allocate the structure if it has not already been allocated by a
1496 subclass. */
1497 if (entry == NULL)
1498 {
1499 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1500 if (entry == NULL)
1501 return entry;
1502 }
1503
1504 /* Call the allocation method of the superclass. */
1505 entry = _bfd_link_hash_newfunc (entry, table, string);
1506 if (entry != NULL)
1507 {
1508 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1509 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1510
1511 /* Set local fields. */
1512 ret->indx = -1;
1513 ret->dynindx = -1;
1514 ret->got = htab->init_got_refcount;
1515 ret->plt = htab->init_plt_refcount;
1516 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1517 - offsetof (struct elf_link_hash_entry, size)));
1518 /* Assume that we have been called by a non-ELF symbol reader.
1519 This flag is then reset by the code which reads an ELF input
1520 file. This ensures that a symbol created by a non-ELF symbol
1521 reader will have the flag set correctly. */
1522 ret->non_elf = 1;
1523 }
1524
1525 return entry;
1526 }
1527
1528 /* Copy data from an indirect symbol to its direct symbol, hiding the
1529 old indirect symbol. Also used for copying flags to a weakdef. */
1530
1531 void
1532 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1533 struct elf_link_hash_entry *dir,
1534 struct elf_link_hash_entry *ind)
1535 {
1536 struct elf_link_hash_table *htab;
1537
1538 /* Copy down any references that we may have already seen to the
1539 symbol which just became indirect. */
1540
1541 dir->ref_dynamic |= ind->ref_dynamic;
1542 dir->ref_regular |= ind->ref_regular;
1543 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1544 dir->non_got_ref |= ind->non_got_ref;
1545 dir->needs_plt |= ind->needs_plt;
1546 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1547
1548 if (ind->root.type != bfd_link_hash_indirect)
1549 return;
1550
1551 /* Copy over the global and procedure linkage table refcount entries.
1552 These may have been already set up by a check_relocs routine. */
1553 htab = elf_hash_table (info);
1554 if (ind->got.refcount > htab->init_got_refcount.refcount)
1555 {
1556 if (dir->got.refcount < 0)
1557 dir->got.refcount = 0;
1558 dir->got.refcount += ind->got.refcount;
1559 ind->got.refcount = htab->init_got_refcount.refcount;
1560 }
1561
1562 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1563 {
1564 if (dir->plt.refcount < 0)
1565 dir->plt.refcount = 0;
1566 dir->plt.refcount += ind->plt.refcount;
1567 ind->plt.refcount = htab->init_plt_refcount.refcount;
1568 }
1569
1570 if (ind->dynindx != -1)
1571 {
1572 if (dir->dynindx != -1)
1573 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1574 dir->dynindx = ind->dynindx;
1575 dir->dynstr_index = ind->dynstr_index;
1576 ind->dynindx = -1;
1577 ind->dynstr_index = 0;
1578 }
1579 }
1580
1581 void
1582 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1583 struct elf_link_hash_entry *h,
1584 bfd_boolean force_local)
1585 {
1586 h->plt = elf_hash_table (info)->init_plt_offset;
1587 h->needs_plt = 0;
1588 if (force_local)
1589 {
1590 h->forced_local = 1;
1591 if (h->dynindx != -1)
1592 {
1593 h->dynindx = -1;
1594 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1595 h->dynstr_index);
1596 }
1597 }
1598 }
1599
1600 /* Initialize an ELF linker hash table. */
1601
1602 bfd_boolean
1603 _bfd_elf_link_hash_table_init
1604 (struct elf_link_hash_table *table,
1605 bfd *abfd,
1606 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1607 struct bfd_hash_table *,
1608 const char *),
1609 unsigned int entsize)
1610 {
1611 bfd_boolean ret;
1612 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1613
1614 memset (table, 0, sizeof * table);
1615 table->init_got_refcount.refcount = can_refcount - 1;
1616 table->init_plt_refcount.refcount = can_refcount - 1;
1617 table->init_got_offset.offset = -(bfd_vma) 1;
1618 table->init_plt_offset.offset = -(bfd_vma) 1;
1619 /* The first dynamic symbol is a dummy. */
1620 table->dynsymcount = 1;
1621
1622 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1623 table->root.type = bfd_link_elf_hash_table;
1624
1625 return ret;
1626 }
1627
1628 /* Create an ELF linker hash table. */
1629
1630 struct bfd_link_hash_table *
1631 _bfd_elf_link_hash_table_create (bfd *abfd)
1632 {
1633 struct elf_link_hash_table *ret;
1634 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1635
1636 ret = bfd_malloc (amt);
1637 if (ret == NULL)
1638 return NULL;
1639
1640 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1641 sizeof (struct elf_link_hash_entry)))
1642 {
1643 free (ret);
1644 return NULL;
1645 }
1646
1647 return &ret->root;
1648 }
1649
1650 /* This is a hook for the ELF emulation code in the generic linker to
1651 tell the backend linker what file name to use for the DT_NEEDED
1652 entry for a dynamic object. */
1653
1654 void
1655 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1656 {
1657 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1658 && bfd_get_format (abfd) == bfd_object)
1659 elf_dt_name (abfd) = name;
1660 }
1661
1662 int
1663 bfd_elf_get_dyn_lib_class (bfd *abfd)
1664 {
1665 int lib_class;
1666 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1667 && bfd_get_format (abfd) == bfd_object)
1668 lib_class = elf_dyn_lib_class (abfd);
1669 else
1670 lib_class = 0;
1671 return lib_class;
1672 }
1673
1674 void
1675 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
1676 {
1677 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1678 && bfd_get_format (abfd) == bfd_object)
1679 elf_dyn_lib_class (abfd) = lib_class;
1680 }
1681
1682 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1683 the linker ELF emulation code. */
1684
1685 struct bfd_link_needed_list *
1686 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1687 struct bfd_link_info *info)
1688 {
1689 if (! is_elf_hash_table (info->hash))
1690 return NULL;
1691 return elf_hash_table (info)->needed;
1692 }
1693
1694 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1695 hook for the linker ELF emulation code. */
1696
1697 struct bfd_link_needed_list *
1698 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1699 struct bfd_link_info *info)
1700 {
1701 if (! is_elf_hash_table (info->hash))
1702 return NULL;
1703 return elf_hash_table (info)->runpath;
1704 }
1705
1706 /* Get the name actually used for a dynamic object for a link. This
1707 is the SONAME entry if there is one. Otherwise, it is the string
1708 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1709
1710 const char *
1711 bfd_elf_get_dt_soname (bfd *abfd)
1712 {
1713 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1714 && bfd_get_format (abfd) == bfd_object)
1715 return elf_dt_name (abfd);
1716 return NULL;
1717 }
1718
1719 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1720 the ELF linker emulation code. */
1721
1722 bfd_boolean
1723 bfd_elf_get_bfd_needed_list (bfd *abfd,
1724 struct bfd_link_needed_list **pneeded)
1725 {
1726 asection *s;
1727 bfd_byte *dynbuf = NULL;
1728 int elfsec;
1729 unsigned long shlink;
1730 bfd_byte *extdyn, *extdynend;
1731 size_t extdynsize;
1732 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1733
1734 *pneeded = NULL;
1735
1736 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1737 || bfd_get_format (abfd) != bfd_object)
1738 return TRUE;
1739
1740 s = bfd_get_section_by_name (abfd, ".dynamic");
1741 if (s == NULL || s->size == 0)
1742 return TRUE;
1743
1744 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1745 goto error_return;
1746
1747 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1748 if (elfsec == -1)
1749 goto error_return;
1750
1751 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1752
1753 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1754 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1755
1756 extdyn = dynbuf;
1757 extdynend = extdyn + s->size;
1758 for (; extdyn < extdynend; extdyn += extdynsize)
1759 {
1760 Elf_Internal_Dyn dyn;
1761
1762 (*swap_dyn_in) (abfd, extdyn, &dyn);
1763
1764 if (dyn.d_tag == DT_NULL)
1765 break;
1766
1767 if (dyn.d_tag == DT_NEEDED)
1768 {
1769 const char *string;
1770 struct bfd_link_needed_list *l;
1771 unsigned int tagv = dyn.d_un.d_val;
1772 bfd_size_type amt;
1773
1774 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1775 if (string == NULL)
1776 goto error_return;
1777
1778 amt = sizeof *l;
1779 l = bfd_alloc (abfd, amt);
1780 if (l == NULL)
1781 goto error_return;
1782
1783 l->by = abfd;
1784 l->name = string;
1785 l->next = *pneeded;
1786 *pneeded = l;
1787 }
1788 }
1789
1790 free (dynbuf);
1791
1792 return TRUE;
1793
1794 error_return:
1795 if (dynbuf != NULL)
1796 free (dynbuf);
1797 return FALSE;
1798 }
1799 \f
1800 /* Allocate an ELF string table--force the first byte to be zero. */
1801
1802 struct bfd_strtab_hash *
1803 _bfd_elf_stringtab_init (void)
1804 {
1805 struct bfd_strtab_hash *ret;
1806
1807 ret = _bfd_stringtab_init ();
1808 if (ret != NULL)
1809 {
1810 bfd_size_type loc;
1811
1812 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1813 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1814 if (loc == (bfd_size_type) -1)
1815 {
1816 _bfd_stringtab_free (ret);
1817 ret = NULL;
1818 }
1819 }
1820 return ret;
1821 }
1822 \f
1823 /* ELF .o/exec file reading */
1824
1825 /* Create a new bfd section from an ELF section header. */
1826
1827 bfd_boolean
1828 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1829 {
1830 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1831 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1832 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1833 const char *name;
1834
1835 name = bfd_elf_string_from_elf_section (abfd,
1836 elf_elfheader (abfd)->e_shstrndx,
1837 hdr->sh_name);
1838 if (name == NULL)
1839 return FALSE;
1840
1841 switch (hdr->sh_type)
1842 {
1843 case SHT_NULL:
1844 /* Inactive section. Throw it away. */
1845 return TRUE;
1846
1847 case SHT_PROGBITS: /* Normal section with contents. */
1848 case SHT_NOBITS: /* .bss section. */
1849 case SHT_HASH: /* .hash section. */
1850 case SHT_NOTE: /* .note section. */
1851 case SHT_INIT_ARRAY: /* .init_array section. */
1852 case SHT_FINI_ARRAY: /* .fini_array section. */
1853 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1854 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1855 case SHT_GNU_HASH: /* .gnu.hash section. */
1856 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1857
1858 case SHT_DYNAMIC: /* Dynamic linking information. */
1859 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1860 return FALSE;
1861 if (hdr->sh_link > elf_numsections (abfd)
1862 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1863 return FALSE;
1864 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1865 {
1866 Elf_Internal_Shdr *dynsymhdr;
1867
1868 /* The shared libraries distributed with hpux11 have a bogus
1869 sh_link field for the ".dynamic" section. Find the
1870 string table for the ".dynsym" section instead. */
1871 if (elf_dynsymtab (abfd) != 0)
1872 {
1873 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1874 hdr->sh_link = dynsymhdr->sh_link;
1875 }
1876 else
1877 {
1878 unsigned int i, num_sec;
1879
1880 num_sec = elf_numsections (abfd);
1881 for (i = 1; i < num_sec; i++)
1882 {
1883 dynsymhdr = elf_elfsections (abfd)[i];
1884 if (dynsymhdr->sh_type == SHT_DYNSYM)
1885 {
1886 hdr->sh_link = dynsymhdr->sh_link;
1887 break;
1888 }
1889 }
1890 }
1891 }
1892 break;
1893
1894 case SHT_SYMTAB: /* A symbol table */
1895 if (elf_onesymtab (abfd) == shindex)
1896 return TRUE;
1897
1898 if (hdr->sh_entsize != bed->s->sizeof_sym)
1899 return FALSE;
1900 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1901 elf_onesymtab (abfd) = shindex;
1902 elf_tdata (abfd)->symtab_hdr = *hdr;
1903 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1904 abfd->flags |= HAS_SYMS;
1905
1906 /* Sometimes a shared object will map in the symbol table. If
1907 SHF_ALLOC is set, and this is a shared object, then we also
1908 treat this section as a BFD section. We can not base the
1909 decision purely on SHF_ALLOC, because that flag is sometimes
1910 set in a relocatable object file, which would confuse the
1911 linker. */
1912 if ((hdr->sh_flags & SHF_ALLOC) != 0
1913 && (abfd->flags & DYNAMIC) != 0
1914 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1915 shindex))
1916 return FALSE;
1917
1918 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1919 can't read symbols without that section loaded as well. It
1920 is most likely specified by the next section header. */
1921 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1922 {
1923 unsigned int i, num_sec;
1924
1925 num_sec = elf_numsections (abfd);
1926 for (i = shindex + 1; i < num_sec; i++)
1927 {
1928 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1929 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1930 && hdr2->sh_link == shindex)
1931 break;
1932 }
1933 if (i == num_sec)
1934 for (i = 1; i < shindex; i++)
1935 {
1936 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1937 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1938 && hdr2->sh_link == shindex)
1939 break;
1940 }
1941 if (i != shindex)
1942 return bfd_section_from_shdr (abfd, i);
1943 }
1944 return TRUE;
1945
1946 case SHT_DYNSYM: /* A dynamic symbol table */
1947 if (elf_dynsymtab (abfd) == shindex)
1948 return TRUE;
1949
1950 if (hdr->sh_entsize != bed->s->sizeof_sym)
1951 return FALSE;
1952 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1953 elf_dynsymtab (abfd) = shindex;
1954 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1955 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1956 abfd->flags |= HAS_SYMS;
1957
1958 /* Besides being a symbol table, we also treat this as a regular
1959 section, so that objcopy can handle it. */
1960 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1961
1962 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1963 if (elf_symtab_shndx (abfd) == shindex)
1964 return TRUE;
1965
1966 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1967 elf_symtab_shndx (abfd) = shindex;
1968 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1969 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1970 return TRUE;
1971
1972 case SHT_STRTAB: /* A string table */
1973 if (hdr->bfd_section != NULL)
1974 return TRUE;
1975 if (ehdr->e_shstrndx == shindex)
1976 {
1977 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1978 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1979 return TRUE;
1980 }
1981 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1982 {
1983 symtab_strtab:
1984 elf_tdata (abfd)->strtab_hdr = *hdr;
1985 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1986 return TRUE;
1987 }
1988 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1989 {
1990 dynsymtab_strtab:
1991 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1992 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1993 elf_elfsections (abfd)[shindex] = hdr;
1994 /* We also treat this as a regular section, so that objcopy
1995 can handle it. */
1996 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1997 shindex);
1998 }
1999
2000 /* If the string table isn't one of the above, then treat it as a
2001 regular section. We need to scan all the headers to be sure,
2002 just in case this strtab section appeared before the above. */
2003 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2004 {
2005 unsigned int i, num_sec;
2006
2007 num_sec = elf_numsections (abfd);
2008 for (i = 1; i < num_sec; i++)
2009 {
2010 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2011 if (hdr2->sh_link == shindex)
2012 {
2013 /* Prevent endless recursion on broken objects. */
2014 if (i == shindex)
2015 return FALSE;
2016 if (! bfd_section_from_shdr (abfd, i))
2017 return FALSE;
2018 if (elf_onesymtab (abfd) == i)
2019 goto symtab_strtab;
2020 if (elf_dynsymtab (abfd) == i)
2021 goto dynsymtab_strtab;
2022 }
2023 }
2024 }
2025 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2026
2027 case SHT_REL:
2028 case SHT_RELA:
2029 /* *These* do a lot of work -- but build no sections! */
2030 {
2031 asection *target_sect;
2032 Elf_Internal_Shdr *hdr2;
2033 unsigned int num_sec = elf_numsections (abfd);
2034
2035 if (hdr->sh_entsize
2036 != (bfd_size_type) (hdr->sh_type == SHT_REL
2037 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2038 return FALSE;
2039
2040 /* Check for a bogus link to avoid crashing. */
2041 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2042 || hdr->sh_link >= num_sec)
2043 {
2044 ((*_bfd_error_handler)
2045 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2046 abfd, hdr->sh_link, name, shindex));
2047 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2048 shindex);
2049 }
2050
2051 /* For some incomprehensible reason Oracle distributes
2052 libraries for Solaris in which some of the objects have
2053 bogus sh_link fields. It would be nice if we could just
2054 reject them, but, unfortunately, some people need to use
2055 them. We scan through the section headers; if we find only
2056 one suitable symbol table, we clobber the sh_link to point
2057 to it. I hope this doesn't break anything. */
2058 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2059 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2060 {
2061 unsigned int scan;
2062 int found;
2063
2064 found = 0;
2065 for (scan = 1; scan < num_sec; scan++)
2066 {
2067 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2068 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2069 {
2070 if (found != 0)
2071 {
2072 found = 0;
2073 break;
2074 }
2075 found = scan;
2076 }
2077 }
2078 if (found != 0)
2079 hdr->sh_link = found;
2080 }
2081
2082 /* Get the symbol table. */
2083 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2084 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2085 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2086 return FALSE;
2087
2088 /* If this reloc section does not use the main symbol table we
2089 don't treat it as a reloc section. BFD can't adequately
2090 represent such a section, so at least for now, we don't
2091 try. We just present it as a normal section. We also
2092 can't use it as a reloc section if it points to the null
2093 section, an invalid section, or another reloc section. */
2094 if (hdr->sh_link != elf_onesymtab (abfd)
2095 || hdr->sh_info == SHN_UNDEF
2096 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2097 || hdr->sh_info >= num_sec
2098 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2099 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2100 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2101 shindex);
2102
2103 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2104 return FALSE;
2105 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2106 if (target_sect == NULL)
2107 return FALSE;
2108
2109 if ((target_sect->flags & SEC_RELOC) == 0
2110 || target_sect->reloc_count == 0)
2111 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2112 else
2113 {
2114 bfd_size_type amt;
2115 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2116 amt = sizeof (*hdr2);
2117 hdr2 = bfd_alloc (abfd, amt);
2118 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2119 }
2120 *hdr2 = *hdr;
2121 elf_elfsections (abfd)[shindex] = hdr2;
2122 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2123 target_sect->flags |= SEC_RELOC;
2124 target_sect->relocation = NULL;
2125 target_sect->rel_filepos = hdr->sh_offset;
2126 /* In the section to which the relocations apply, mark whether
2127 its relocations are of the REL or RELA variety. */
2128 if (hdr->sh_size != 0)
2129 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2130 abfd->flags |= HAS_RELOC;
2131 return TRUE;
2132 }
2133
2134 case SHT_GNU_verdef:
2135 elf_dynverdef (abfd) = shindex;
2136 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2137 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2138
2139 case SHT_GNU_versym:
2140 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2141 return FALSE;
2142 elf_dynversym (abfd) = shindex;
2143 elf_tdata (abfd)->dynversym_hdr = *hdr;
2144 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2145
2146 case SHT_GNU_verneed:
2147 elf_dynverref (abfd) = shindex;
2148 elf_tdata (abfd)->dynverref_hdr = *hdr;
2149 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2150
2151 case SHT_SHLIB:
2152 return TRUE;
2153
2154 case SHT_GROUP:
2155 /* We need a BFD section for objcopy and relocatable linking,
2156 and it's handy to have the signature available as the section
2157 name. */
2158 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
2159 return FALSE;
2160 name = group_signature (abfd, hdr);
2161 if (name == NULL)
2162 return FALSE;
2163 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2164 return FALSE;
2165 if (hdr->contents != NULL)
2166 {
2167 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2168 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
2169 asection *s;
2170
2171 if (idx->flags & GRP_COMDAT)
2172 hdr->bfd_section->flags
2173 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2174
2175 /* We try to keep the same section order as it comes in. */
2176 idx += n_elt;
2177 while (--n_elt != 0)
2178 {
2179 --idx;
2180
2181 if (idx->shdr != NULL
2182 && (s = idx->shdr->bfd_section) != NULL
2183 && elf_next_in_group (s) != NULL)
2184 {
2185 elf_next_in_group (hdr->bfd_section) = s;
2186 break;
2187 }
2188 }
2189 }
2190 break;
2191
2192 default:
2193 /* Check for any processor-specific section types. */
2194 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2195 return TRUE;
2196
2197 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2198 {
2199 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2200 /* FIXME: How to properly handle allocated section reserved
2201 for applications? */
2202 (*_bfd_error_handler)
2203 (_("%B: don't know how to handle allocated, application "
2204 "specific section `%s' [0x%8x]"),
2205 abfd, name, hdr->sh_type);
2206 else
2207 /* Allow sections reserved for applications. */
2208 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2209 shindex);
2210 }
2211 else if (hdr->sh_type >= SHT_LOPROC
2212 && hdr->sh_type <= SHT_HIPROC)
2213 /* FIXME: We should handle this section. */
2214 (*_bfd_error_handler)
2215 (_("%B: don't know how to handle processor specific section "
2216 "`%s' [0x%8x]"),
2217 abfd, name, hdr->sh_type);
2218 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2219 {
2220 /* Unrecognised OS-specific sections. */
2221 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2222 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2223 required to correctly process the section and the file should
2224 be rejected with an error message. */
2225 (*_bfd_error_handler)
2226 (_("%B: don't know how to handle OS specific section "
2227 "`%s' [0x%8x]"),
2228 abfd, name, hdr->sh_type);
2229 else
2230 /* Otherwise it should be processed. */
2231 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2232 }
2233 else
2234 /* FIXME: We should handle this section. */
2235 (*_bfd_error_handler)
2236 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2237 abfd, name, hdr->sh_type);
2238
2239 return FALSE;
2240 }
2241
2242 return TRUE;
2243 }
2244
2245 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2246 Return SEC for sections that have no elf section, and NULL on error. */
2247
2248 asection *
2249 bfd_section_from_r_symndx (bfd *abfd,
2250 struct sym_sec_cache *cache,
2251 asection *sec,
2252 unsigned long r_symndx)
2253 {
2254 Elf_Internal_Shdr *symtab_hdr;
2255 unsigned char esym[sizeof (Elf64_External_Sym)];
2256 Elf_External_Sym_Shndx eshndx;
2257 Elf_Internal_Sym isym;
2258 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2259
2260 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2261 return cache->sec[ent];
2262
2263 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2264 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2265 &isym, esym, &eshndx) == NULL)
2266 return NULL;
2267
2268 if (cache->abfd != abfd)
2269 {
2270 memset (cache->indx, -1, sizeof (cache->indx));
2271 cache->abfd = abfd;
2272 }
2273 cache->indx[ent] = r_symndx;
2274 cache->sec[ent] = sec;
2275 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2276 || isym.st_shndx > SHN_HIRESERVE)
2277 {
2278 asection *s;
2279 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2280 if (s != NULL)
2281 cache->sec[ent] = s;
2282 }
2283 return cache->sec[ent];
2284 }
2285
2286 /* Given an ELF section number, retrieve the corresponding BFD
2287 section. */
2288
2289 asection *
2290 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2291 {
2292 if (index >= elf_numsections (abfd))
2293 return NULL;
2294 return elf_elfsections (abfd)[index]->bfd_section;
2295 }
2296
2297 static const struct bfd_elf_special_section special_sections_b[] =
2298 {
2299 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2300 { NULL, 0, 0, 0, 0 }
2301 };
2302
2303 static const struct bfd_elf_special_section special_sections_c[] =
2304 {
2305 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2306 { NULL, 0, 0, 0, 0 }
2307 };
2308
2309 static const struct bfd_elf_special_section special_sections_d[] =
2310 {
2311 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2312 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2313 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2314 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2315 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2316 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2317 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2318 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2319 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2320 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2321 { NULL, 0, 0, 0, 0 }
2322 };
2323
2324 static const struct bfd_elf_special_section special_sections_f[] =
2325 {
2326 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2327 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2328 { NULL, 0, 0, 0, 0 }
2329 };
2330
2331 static const struct bfd_elf_special_section special_sections_g[] =
2332 {
2333 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2334 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2335 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2336 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2337 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2338 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2339 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2340 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2341 { NULL, 0, 0, 0, 0 }
2342 };
2343
2344 static const struct bfd_elf_special_section special_sections_h[] =
2345 {
2346 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2347 { NULL, 0, 0, 0, 0 }
2348 };
2349
2350 static const struct bfd_elf_special_section special_sections_i[] =
2351 {
2352 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2353 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2354 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2355 { NULL, 0, 0, 0, 0 }
2356 };
2357
2358 static const struct bfd_elf_special_section special_sections_l[] =
2359 {
2360 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2361 { NULL, 0, 0, 0, 0 }
2362 };
2363
2364 static const struct bfd_elf_special_section special_sections_n[] =
2365 {
2366 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2367 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2368 { NULL, 0, 0, 0, 0 }
2369 };
2370
2371 static const struct bfd_elf_special_section special_sections_p[] =
2372 {
2373 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2374 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2375 { NULL, 0, 0, 0, 0 }
2376 };
2377
2378 static const struct bfd_elf_special_section special_sections_r[] =
2379 {
2380 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2381 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2382 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2383 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2384 { NULL, 0, 0, 0, 0 }
2385 };
2386
2387 static const struct bfd_elf_special_section special_sections_s[] =
2388 {
2389 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2390 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2391 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2392 /* See struct bfd_elf_special_section declaration for the semantics of
2393 this special case where .prefix_length != strlen (.prefix). */
2394 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2395 { NULL, 0, 0, 0, 0 }
2396 };
2397
2398 static const struct bfd_elf_special_section special_sections_t[] =
2399 {
2400 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2401 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2402 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2403 { NULL, 0, 0, 0, 0 }
2404 };
2405
2406 static const struct bfd_elf_special_section *special_sections[] =
2407 {
2408 special_sections_b, /* 'b' */
2409 special_sections_c, /* 'b' */
2410 special_sections_d, /* 'd' */
2411 NULL, /* 'e' */
2412 special_sections_f, /* 'f' */
2413 special_sections_g, /* 'g' */
2414 special_sections_h, /* 'h' */
2415 special_sections_i, /* 'i' */
2416 NULL, /* 'j' */
2417 NULL, /* 'k' */
2418 special_sections_l, /* 'l' */
2419 NULL, /* 'm' */
2420 special_sections_n, /* 'n' */
2421 NULL, /* 'o' */
2422 special_sections_p, /* 'p' */
2423 NULL, /* 'q' */
2424 special_sections_r, /* 'r' */
2425 special_sections_s, /* 's' */
2426 special_sections_t, /* 't' */
2427 };
2428
2429 const struct bfd_elf_special_section *
2430 _bfd_elf_get_special_section (const char *name,
2431 const struct bfd_elf_special_section *spec,
2432 unsigned int rela)
2433 {
2434 int i;
2435 int len;
2436
2437 len = strlen (name);
2438
2439 for (i = 0; spec[i].prefix != NULL; i++)
2440 {
2441 int suffix_len;
2442 int prefix_len = spec[i].prefix_length;
2443
2444 if (len < prefix_len)
2445 continue;
2446 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2447 continue;
2448
2449 suffix_len = spec[i].suffix_length;
2450 if (suffix_len <= 0)
2451 {
2452 if (name[prefix_len] != 0)
2453 {
2454 if (suffix_len == 0)
2455 continue;
2456 if (name[prefix_len] != '.'
2457 && (suffix_len == -2
2458 || (rela && spec[i].type == SHT_REL)))
2459 continue;
2460 }
2461 }
2462 else
2463 {
2464 if (len < prefix_len + suffix_len)
2465 continue;
2466 if (memcmp (name + len - suffix_len,
2467 spec[i].prefix + prefix_len,
2468 suffix_len) != 0)
2469 continue;
2470 }
2471 return &spec[i];
2472 }
2473
2474 return NULL;
2475 }
2476
2477 const struct bfd_elf_special_section *
2478 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2479 {
2480 int i;
2481 const struct bfd_elf_special_section *spec;
2482 const struct elf_backend_data *bed;
2483
2484 /* See if this is one of the special sections. */
2485 if (sec->name == NULL)
2486 return NULL;
2487
2488 bed = get_elf_backend_data (abfd);
2489 spec = bed->special_sections;
2490 if (spec)
2491 {
2492 spec = _bfd_elf_get_special_section (sec->name,
2493 bed->special_sections,
2494 sec->use_rela_p);
2495 if (spec != NULL)
2496 return spec;
2497 }
2498
2499 if (sec->name[0] != '.')
2500 return NULL;
2501
2502 i = sec->name[1] - 'b';
2503 if (i < 0 || i > 't' - 'b')
2504 return NULL;
2505
2506 spec = special_sections[i];
2507
2508 if (spec == NULL)
2509 return NULL;
2510
2511 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2512 }
2513
2514 bfd_boolean
2515 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2516 {
2517 struct bfd_elf_section_data *sdata;
2518 const struct elf_backend_data *bed;
2519 const struct bfd_elf_special_section *ssect;
2520
2521 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2522 if (sdata == NULL)
2523 {
2524 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2525 if (sdata == NULL)
2526 return FALSE;
2527 sec->used_by_bfd = sdata;
2528 }
2529
2530 /* Indicate whether or not this section should use RELA relocations. */
2531 bed = get_elf_backend_data (abfd);
2532 sec->use_rela_p = bed->default_use_rela_p;
2533
2534 /* When we read a file, we don't need to set ELF section type and
2535 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2536 anyway. We will set ELF section type and flags for all linker
2537 created sections. If user specifies BFD section flags, we will
2538 set ELF section type and flags based on BFD section flags in
2539 elf_fake_sections. */
2540 if ((!sec->flags && abfd->direction != read_direction)
2541 || (sec->flags & SEC_LINKER_CREATED) != 0)
2542 {
2543 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2544 if (ssect != NULL)
2545 {
2546 elf_section_type (sec) = ssect->type;
2547 elf_section_flags (sec) = ssect->attr;
2548 }
2549 }
2550
2551 return _bfd_generic_new_section_hook (abfd, sec);
2552 }
2553
2554 /* Create a new bfd section from an ELF program header.
2555
2556 Since program segments have no names, we generate a synthetic name
2557 of the form segment<NUM>, where NUM is generally the index in the
2558 program header table. For segments that are split (see below) we
2559 generate the names segment<NUM>a and segment<NUM>b.
2560
2561 Note that some program segments may have a file size that is different than
2562 (less than) the memory size. All this means is that at execution the
2563 system must allocate the amount of memory specified by the memory size,
2564 but only initialize it with the first "file size" bytes read from the
2565 file. This would occur for example, with program segments consisting
2566 of combined data+bss.
2567
2568 To handle the above situation, this routine generates TWO bfd sections
2569 for the single program segment. The first has the length specified by
2570 the file size of the segment, and the second has the length specified
2571 by the difference between the two sizes. In effect, the segment is split
2572 into it's initialized and uninitialized parts.
2573
2574 */
2575
2576 bfd_boolean
2577 _bfd_elf_make_section_from_phdr (bfd *abfd,
2578 Elf_Internal_Phdr *hdr,
2579 int index,
2580 const char *typename)
2581 {
2582 asection *newsect;
2583 char *name;
2584 char namebuf[64];
2585 size_t len;
2586 int split;
2587
2588 split = ((hdr->p_memsz > 0)
2589 && (hdr->p_filesz > 0)
2590 && (hdr->p_memsz > hdr->p_filesz));
2591 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2592 len = strlen (namebuf) + 1;
2593 name = bfd_alloc (abfd, len);
2594 if (!name)
2595 return FALSE;
2596 memcpy (name, namebuf, len);
2597 newsect = bfd_make_section (abfd, name);
2598 if (newsect == NULL)
2599 return FALSE;
2600 newsect->vma = hdr->p_vaddr;
2601 newsect->lma = hdr->p_paddr;
2602 newsect->size = hdr->p_filesz;
2603 newsect->filepos = hdr->p_offset;
2604 newsect->flags |= SEC_HAS_CONTENTS;
2605 newsect->alignment_power = bfd_log2 (hdr->p_align);
2606 if (hdr->p_type == PT_LOAD)
2607 {
2608 newsect->flags |= SEC_ALLOC;
2609 newsect->flags |= SEC_LOAD;
2610 if (hdr->p_flags & PF_X)
2611 {
2612 /* FIXME: all we known is that it has execute PERMISSION,
2613 may be data. */
2614 newsect->flags |= SEC_CODE;
2615 }
2616 }
2617 if (!(hdr->p_flags & PF_W))
2618 {
2619 newsect->flags |= SEC_READONLY;
2620 }
2621
2622 if (split)
2623 {
2624 sprintf (namebuf, "%s%db", typename, index);
2625 len = strlen (namebuf) + 1;
2626 name = bfd_alloc (abfd, len);
2627 if (!name)
2628 return FALSE;
2629 memcpy (name, namebuf, len);
2630 newsect = bfd_make_section (abfd, name);
2631 if (newsect == NULL)
2632 return FALSE;
2633 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2634 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2635 newsect->size = hdr->p_memsz - hdr->p_filesz;
2636 if (hdr->p_type == PT_LOAD)
2637 {
2638 newsect->flags |= SEC_ALLOC;
2639 if (hdr->p_flags & PF_X)
2640 newsect->flags |= SEC_CODE;
2641 }
2642 if (!(hdr->p_flags & PF_W))
2643 newsect->flags |= SEC_READONLY;
2644 }
2645
2646 return TRUE;
2647 }
2648
2649 bfd_boolean
2650 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2651 {
2652 const struct elf_backend_data *bed;
2653
2654 switch (hdr->p_type)
2655 {
2656 case PT_NULL:
2657 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2658
2659 case PT_LOAD:
2660 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2661
2662 case PT_DYNAMIC:
2663 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2664
2665 case PT_INTERP:
2666 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2667
2668 case PT_NOTE:
2669 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2670 return FALSE;
2671 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2672 return FALSE;
2673 return TRUE;
2674
2675 case PT_SHLIB:
2676 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2677
2678 case PT_PHDR:
2679 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2680
2681 case PT_GNU_EH_FRAME:
2682 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2683 "eh_frame_hdr");
2684
2685 case PT_GNU_STACK:
2686 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2687
2688 case PT_GNU_RELRO:
2689 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2690
2691 default:
2692 /* Check for any processor-specific program segment types. */
2693 bed = get_elf_backend_data (abfd);
2694 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2695 }
2696 }
2697
2698 /* Initialize REL_HDR, the section-header for new section, containing
2699 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2700 relocations; otherwise, we use REL relocations. */
2701
2702 bfd_boolean
2703 _bfd_elf_init_reloc_shdr (bfd *abfd,
2704 Elf_Internal_Shdr *rel_hdr,
2705 asection *asect,
2706 bfd_boolean use_rela_p)
2707 {
2708 char *name;
2709 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2710 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2711
2712 name = bfd_alloc (abfd, amt);
2713 if (name == NULL)
2714 return FALSE;
2715 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2716 rel_hdr->sh_name =
2717 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2718 FALSE);
2719 if (rel_hdr->sh_name == (unsigned int) -1)
2720 return FALSE;
2721 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2722 rel_hdr->sh_entsize = (use_rela_p
2723 ? bed->s->sizeof_rela
2724 : bed->s->sizeof_rel);
2725 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2726 rel_hdr->sh_flags = 0;
2727 rel_hdr->sh_addr = 0;
2728 rel_hdr->sh_size = 0;
2729 rel_hdr->sh_offset = 0;
2730
2731 return TRUE;
2732 }
2733
2734 /* Set up an ELF internal section header for a section. */
2735
2736 static void
2737 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2738 {
2739 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2740 bfd_boolean *failedptr = failedptrarg;
2741 Elf_Internal_Shdr *this_hdr;
2742
2743 if (*failedptr)
2744 {
2745 /* We already failed; just get out of the bfd_map_over_sections
2746 loop. */
2747 return;
2748 }
2749
2750 this_hdr = &elf_section_data (asect)->this_hdr;
2751
2752 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2753 asect->name, FALSE);
2754 if (this_hdr->sh_name == (unsigned int) -1)
2755 {
2756 *failedptr = TRUE;
2757 return;
2758 }
2759
2760 /* Don't clear sh_flags. Assembler may set additional bits. */
2761
2762 if ((asect->flags & SEC_ALLOC) != 0
2763 || asect->user_set_vma)
2764 this_hdr->sh_addr = asect->vma;
2765 else
2766 this_hdr->sh_addr = 0;
2767
2768 this_hdr->sh_offset = 0;
2769 this_hdr->sh_size = asect->size;
2770 this_hdr->sh_link = 0;
2771 this_hdr->sh_addralign = 1 << asect->alignment_power;
2772 /* The sh_entsize and sh_info fields may have been set already by
2773 copy_private_section_data. */
2774
2775 this_hdr->bfd_section = asect;
2776 this_hdr->contents = NULL;
2777
2778 /* If the section type is unspecified, we set it based on
2779 asect->flags. */
2780 if (this_hdr->sh_type == SHT_NULL)
2781 {
2782 if ((asect->flags & SEC_GROUP) != 0)
2783 this_hdr->sh_type = SHT_GROUP;
2784 else if ((asect->flags & SEC_ALLOC) != 0
2785 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2786 || (asect->flags & SEC_NEVER_LOAD) != 0))
2787 this_hdr->sh_type = SHT_NOBITS;
2788 else
2789 this_hdr->sh_type = SHT_PROGBITS;
2790 }
2791
2792 switch (this_hdr->sh_type)
2793 {
2794 default:
2795 break;
2796
2797 case SHT_STRTAB:
2798 case SHT_INIT_ARRAY:
2799 case SHT_FINI_ARRAY:
2800 case SHT_PREINIT_ARRAY:
2801 case SHT_NOTE:
2802 case SHT_NOBITS:
2803 case SHT_PROGBITS:
2804 break;
2805
2806 case SHT_HASH:
2807 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2808 break;
2809
2810 case SHT_DYNSYM:
2811 this_hdr->sh_entsize = bed->s->sizeof_sym;
2812 break;
2813
2814 case SHT_DYNAMIC:
2815 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2816 break;
2817
2818 case SHT_RELA:
2819 if (get_elf_backend_data (abfd)->may_use_rela_p)
2820 this_hdr->sh_entsize = bed->s->sizeof_rela;
2821 break;
2822
2823 case SHT_REL:
2824 if (get_elf_backend_data (abfd)->may_use_rel_p)
2825 this_hdr->sh_entsize = bed->s->sizeof_rel;
2826 break;
2827
2828 case SHT_GNU_versym:
2829 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2830 break;
2831
2832 case SHT_GNU_verdef:
2833 this_hdr->sh_entsize = 0;
2834 /* objcopy or strip will copy over sh_info, but may not set
2835 cverdefs. The linker will set cverdefs, but sh_info will be
2836 zero. */
2837 if (this_hdr->sh_info == 0)
2838 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2839 else
2840 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2841 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2842 break;
2843
2844 case SHT_GNU_verneed:
2845 this_hdr->sh_entsize = 0;
2846 /* objcopy or strip will copy over sh_info, but may not set
2847 cverrefs. The linker will set cverrefs, but sh_info will be
2848 zero. */
2849 if (this_hdr->sh_info == 0)
2850 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2851 else
2852 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2853 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2854 break;
2855
2856 case SHT_GROUP:
2857 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2858 break;
2859
2860 case SHT_GNU_HASH:
2861 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2862 break;
2863 }
2864
2865 if ((asect->flags & SEC_ALLOC) != 0)
2866 this_hdr->sh_flags |= SHF_ALLOC;
2867 if ((asect->flags & SEC_READONLY) == 0)
2868 this_hdr->sh_flags |= SHF_WRITE;
2869 if ((asect->flags & SEC_CODE) != 0)
2870 this_hdr->sh_flags |= SHF_EXECINSTR;
2871 if ((asect->flags & SEC_MERGE) != 0)
2872 {
2873 this_hdr->sh_flags |= SHF_MERGE;
2874 this_hdr->sh_entsize = asect->entsize;
2875 if ((asect->flags & SEC_STRINGS) != 0)
2876 this_hdr->sh_flags |= SHF_STRINGS;
2877 }
2878 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2879 this_hdr->sh_flags |= SHF_GROUP;
2880 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2881 {
2882 this_hdr->sh_flags |= SHF_TLS;
2883 if (asect->size == 0
2884 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2885 {
2886 struct bfd_link_order *o = asect->map_tail.link_order;
2887
2888 this_hdr->sh_size = 0;
2889 if (o != NULL)
2890 {
2891 this_hdr->sh_size = o->offset + o->size;
2892 if (this_hdr->sh_size != 0)
2893 this_hdr->sh_type = SHT_NOBITS;
2894 }
2895 }
2896 }
2897
2898 /* Check for processor-specific section types. */
2899 if (bed->elf_backend_fake_sections
2900 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2901 *failedptr = TRUE;
2902
2903 /* If the section has relocs, set up a section header for the
2904 SHT_REL[A] section. If two relocation sections are required for
2905 this section, it is up to the processor-specific back-end to
2906 create the other. */
2907 if ((asect->flags & SEC_RELOC) != 0
2908 && !_bfd_elf_init_reloc_shdr (abfd,
2909 &elf_section_data (asect)->rel_hdr,
2910 asect,
2911 asect->use_rela_p))
2912 *failedptr = TRUE;
2913 }
2914
2915 /* Fill in the contents of a SHT_GROUP section. */
2916
2917 void
2918 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2919 {
2920 bfd_boolean *failedptr = failedptrarg;
2921 unsigned long symindx;
2922 asection *elt, *first;
2923 unsigned char *loc;
2924 bfd_boolean gas;
2925
2926 /* Ignore linker created group section. See elfNN_ia64_object_p in
2927 elfxx-ia64.c. */
2928 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2929 || *failedptr)
2930 return;
2931
2932 symindx = 0;
2933 if (elf_group_id (sec) != NULL)
2934 symindx = elf_group_id (sec)->udata.i;
2935
2936 if (symindx == 0)
2937 {
2938 /* If called from the assembler, swap_out_syms will have set up
2939 elf_section_syms; If called for "ld -r", use target_index. */
2940 if (elf_section_syms (abfd) != NULL)
2941 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2942 else
2943 symindx = sec->target_index;
2944 }
2945 elf_section_data (sec)->this_hdr.sh_info = symindx;
2946
2947 /* The contents won't be allocated for "ld -r" or objcopy. */
2948 gas = TRUE;
2949 if (sec->contents == NULL)
2950 {
2951 gas = FALSE;
2952 sec->contents = bfd_alloc (abfd, sec->size);
2953
2954 /* Arrange for the section to be written out. */
2955 elf_section_data (sec)->this_hdr.contents = sec->contents;
2956 if (sec->contents == NULL)
2957 {
2958 *failedptr = TRUE;
2959 return;
2960 }
2961 }
2962
2963 loc = sec->contents + sec->size;
2964
2965 /* Get the pointer to the first section in the group that gas
2966 squirreled away here. objcopy arranges for this to be set to the
2967 start of the input section group. */
2968 first = elt = elf_next_in_group (sec);
2969
2970 /* First element is a flag word. Rest of section is elf section
2971 indices for all the sections of the group. Write them backwards
2972 just to keep the group in the same order as given in .section
2973 directives, not that it matters. */
2974 while (elt != NULL)
2975 {
2976 asection *s;
2977 unsigned int idx;
2978
2979 loc -= 4;
2980 s = elt;
2981 if (!gas)
2982 s = s->output_section;
2983 idx = 0;
2984 if (s != NULL)
2985 idx = elf_section_data (s)->this_idx;
2986 H_PUT_32 (abfd, idx, loc);
2987 elt = elf_next_in_group (elt);
2988 if (elt == first)
2989 break;
2990 }
2991
2992 if ((loc -= 4) != sec->contents)
2993 abort ();
2994
2995 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2996 }
2997
2998 /* Assign all ELF section numbers. The dummy first section is handled here
2999 too. The link/info pointers for the standard section types are filled
3000 in here too, while we're at it. */
3001
3002 static bfd_boolean
3003 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3004 {
3005 struct elf_obj_tdata *t = elf_tdata (abfd);
3006 asection *sec;
3007 unsigned int section_number, secn;
3008 Elf_Internal_Shdr **i_shdrp;
3009 struct bfd_elf_section_data *d;
3010
3011 section_number = 1;
3012
3013 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3014
3015 /* SHT_GROUP sections are in relocatable files only. */
3016 if (link_info == NULL || link_info->relocatable)
3017 {
3018 /* Put SHT_GROUP sections first. */
3019 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3020 {
3021 d = elf_section_data (sec);
3022
3023 if (d->this_hdr.sh_type == SHT_GROUP)
3024 {
3025 if (sec->flags & SEC_LINKER_CREATED)
3026 {
3027 /* Remove the linker created SHT_GROUP sections. */
3028 bfd_section_list_remove (abfd, sec);
3029 abfd->section_count--;
3030 }
3031 else
3032 {
3033 if (section_number == SHN_LORESERVE)
3034 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3035 d->this_idx = section_number++;
3036 }
3037 }
3038 }
3039 }
3040
3041 for (sec = abfd->sections; sec; sec = sec->next)
3042 {
3043 d = elf_section_data (sec);
3044
3045 if (d->this_hdr.sh_type != SHT_GROUP)
3046 {
3047 if (section_number == SHN_LORESERVE)
3048 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3049 d->this_idx = section_number++;
3050 }
3051 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3052 if ((sec->flags & SEC_RELOC) == 0)
3053 d->rel_idx = 0;
3054 else
3055 {
3056 if (section_number == SHN_LORESERVE)
3057 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3058 d->rel_idx = section_number++;
3059 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3060 }
3061
3062 if (d->rel_hdr2)
3063 {
3064 if (section_number == SHN_LORESERVE)
3065 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3066 d->rel_idx2 = section_number++;
3067 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3068 }
3069 else
3070 d->rel_idx2 = 0;
3071 }
3072
3073 if (section_number == SHN_LORESERVE)
3074 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3075 t->shstrtab_section = section_number++;
3076 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3077 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3078
3079 if (bfd_get_symcount (abfd) > 0)
3080 {
3081 if (section_number == SHN_LORESERVE)
3082 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3083 t->symtab_section = section_number++;
3084 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3085 if (section_number > SHN_LORESERVE - 2)
3086 {
3087 if (section_number == SHN_LORESERVE)
3088 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3089 t->symtab_shndx_section = section_number++;
3090 t->symtab_shndx_hdr.sh_name
3091 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3092 ".symtab_shndx", FALSE);
3093 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3094 return FALSE;
3095 }
3096 if (section_number == SHN_LORESERVE)
3097 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3098 t->strtab_section = section_number++;
3099 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3100 }
3101
3102 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3103 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3104
3105 elf_numsections (abfd) = section_number;
3106 elf_elfheader (abfd)->e_shnum = section_number;
3107 if (section_number > SHN_LORESERVE)
3108 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3109
3110 /* Set up the list of section header pointers, in agreement with the
3111 indices. */
3112 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3113 if (i_shdrp == NULL)
3114 return FALSE;
3115
3116 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3117 if (i_shdrp[0] == NULL)
3118 {
3119 bfd_release (abfd, i_shdrp);
3120 return FALSE;
3121 }
3122
3123 elf_elfsections (abfd) = i_shdrp;
3124
3125 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3126 if (bfd_get_symcount (abfd) > 0)
3127 {
3128 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3129 if (elf_numsections (abfd) > SHN_LORESERVE)
3130 {
3131 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3132 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3133 }
3134 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3135 t->symtab_hdr.sh_link = t->strtab_section;
3136 }
3137
3138 for (sec = abfd->sections; sec; sec = sec->next)
3139 {
3140 struct bfd_elf_section_data *d = elf_section_data (sec);
3141 asection *s;
3142 const char *name;
3143
3144 i_shdrp[d->this_idx] = &d->this_hdr;
3145 if (d->rel_idx != 0)
3146 i_shdrp[d->rel_idx] = &d->rel_hdr;
3147 if (d->rel_idx2 != 0)
3148 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3149
3150 /* Fill in the sh_link and sh_info fields while we're at it. */
3151
3152 /* sh_link of a reloc section is the section index of the symbol
3153 table. sh_info is the section index of the section to which
3154 the relocation entries apply. */
3155 if (d->rel_idx != 0)
3156 {
3157 d->rel_hdr.sh_link = t->symtab_section;
3158 d->rel_hdr.sh_info = d->this_idx;
3159 }
3160 if (d->rel_idx2 != 0)
3161 {
3162 d->rel_hdr2->sh_link = t->symtab_section;
3163 d->rel_hdr2->sh_info = d->this_idx;
3164 }
3165
3166 /* We need to set up sh_link for SHF_LINK_ORDER. */
3167 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3168 {
3169 s = elf_linked_to_section (sec);
3170 if (s)
3171 {
3172 /* elf_linked_to_section points to the input section. */
3173 if (link_info != NULL)
3174 {
3175 /* Check discarded linkonce section. */
3176 if (elf_discarded_section (s))
3177 {
3178 asection *kept;
3179 (*_bfd_error_handler)
3180 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3181 abfd, d->this_hdr.bfd_section,
3182 s, s->owner);
3183 /* Point to the kept section if it has the same
3184 size as the discarded one. */
3185 kept = _bfd_elf_check_kept_section (s, link_info);
3186 if (kept == NULL)
3187 {
3188 bfd_set_error (bfd_error_bad_value);
3189 return FALSE;
3190 }
3191 s = kept;
3192 }
3193
3194 s = s->output_section;
3195 BFD_ASSERT (s != NULL);
3196 }
3197 else
3198 {
3199 /* Handle objcopy. */
3200 if (s->output_section == NULL)
3201 {
3202 (*_bfd_error_handler)
3203 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3204 abfd, d->this_hdr.bfd_section, s, s->owner);
3205 bfd_set_error (bfd_error_bad_value);
3206 return FALSE;
3207 }
3208 s = s->output_section;
3209 }
3210 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3211 }
3212 else
3213 {
3214 /* PR 290:
3215 The Intel C compiler generates SHT_IA_64_UNWIND with
3216 SHF_LINK_ORDER. But it doesn't set the sh_link or
3217 sh_info fields. Hence we could get the situation
3218 where s is NULL. */
3219 const struct elf_backend_data *bed
3220 = get_elf_backend_data (abfd);
3221 if (bed->link_order_error_handler)
3222 bed->link_order_error_handler
3223 (_("%B: warning: sh_link not set for section `%A'"),
3224 abfd, sec);
3225 }
3226 }
3227
3228 switch (d->this_hdr.sh_type)
3229 {
3230 case SHT_REL:
3231 case SHT_RELA:
3232 /* A reloc section which we are treating as a normal BFD
3233 section. sh_link is the section index of the symbol
3234 table. sh_info is the section index of the section to
3235 which the relocation entries apply. We assume that an
3236 allocated reloc section uses the dynamic symbol table.
3237 FIXME: How can we be sure? */
3238 s = bfd_get_section_by_name (abfd, ".dynsym");
3239 if (s != NULL)
3240 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3241
3242 /* We look up the section the relocs apply to by name. */
3243 name = sec->name;
3244 if (d->this_hdr.sh_type == SHT_REL)
3245 name += 4;
3246 else
3247 name += 5;
3248 s = bfd_get_section_by_name (abfd, name);
3249 if (s != NULL)
3250 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3251 break;
3252
3253 case SHT_STRTAB:
3254 /* We assume that a section named .stab*str is a stabs
3255 string section. We look for a section with the same name
3256 but without the trailing ``str'', and set its sh_link
3257 field to point to this section. */
3258 if (CONST_STRNEQ (sec->name, ".stab")
3259 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3260 {
3261 size_t len;
3262 char *alc;
3263
3264 len = strlen (sec->name);
3265 alc = bfd_malloc (len - 2);
3266 if (alc == NULL)
3267 return FALSE;
3268 memcpy (alc, sec->name, len - 3);
3269 alc[len - 3] = '\0';
3270 s = bfd_get_section_by_name (abfd, alc);
3271 free (alc);
3272 if (s != NULL)
3273 {
3274 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3275
3276 /* This is a .stab section. */
3277 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3278 elf_section_data (s)->this_hdr.sh_entsize
3279 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3280 }
3281 }
3282 break;
3283
3284 case SHT_DYNAMIC:
3285 case SHT_DYNSYM:
3286 case SHT_GNU_verneed:
3287 case SHT_GNU_verdef:
3288 /* sh_link is the section header index of the string table
3289 used for the dynamic entries, or the symbol table, or the
3290 version strings. */
3291 s = bfd_get_section_by_name (abfd, ".dynstr");
3292 if (s != NULL)
3293 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3294 break;
3295
3296 case SHT_GNU_LIBLIST:
3297 /* sh_link is the section header index of the prelink library
3298 list
3299 used for the dynamic entries, or the symbol table, or the
3300 version strings. */
3301 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3302 ? ".dynstr" : ".gnu.libstr");
3303 if (s != NULL)
3304 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3305 break;
3306
3307 case SHT_HASH:
3308 case SHT_GNU_HASH:
3309 case SHT_GNU_versym:
3310 /* sh_link is the section header index of the symbol table
3311 this hash table or version table is for. */
3312 s = bfd_get_section_by_name (abfd, ".dynsym");
3313 if (s != NULL)
3314 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3315 break;
3316
3317 case SHT_GROUP:
3318 d->this_hdr.sh_link = t->symtab_section;
3319 }
3320 }
3321
3322 for (secn = 1; secn < section_number; ++secn)
3323 if (i_shdrp[secn] == NULL)
3324 i_shdrp[secn] = i_shdrp[0];
3325 else
3326 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3327 i_shdrp[secn]->sh_name);
3328 return TRUE;
3329 }
3330
3331 /* Map symbol from it's internal number to the external number, moving
3332 all local symbols to be at the head of the list. */
3333
3334 static bfd_boolean
3335 sym_is_global (bfd *abfd, asymbol *sym)
3336 {
3337 /* If the backend has a special mapping, use it. */
3338 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3339 if (bed->elf_backend_sym_is_global)
3340 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3341
3342 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3343 || bfd_is_und_section (bfd_get_section (sym))
3344 || bfd_is_com_section (bfd_get_section (sym)));
3345 }
3346
3347 /* Don't output section symbols for sections that are not going to be
3348 output. Also, don't output section symbols for reloc and other
3349 special sections. */
3350
3351 static bfd_boolean
3352 ignore_section_sym (bfd *abfd, asymbol *sym)
3353 {
3354 return ((sym->flags & BSF_SECTION_SYM) != 0
3355 && (sym->value != 0
3356 || (sym->section->owner != abfd
3357 && (sym->section->output_section->owner != abfd
3358 || sym->section->output_offset != 0))));
3359 }
3360
3361 static bfd_boolean
3362 elf_map_symbols (bfd *abfd)
3363 {
3364 unsigned int symcount = bfd_get_symcount (abfd);
3365 asymbol **syms = bfd_get_outsymbols (abfd);
3366 asymbol **sect_syms;
3367 unsigned int num_locals = 0;
3368 unsigned int num_globals = 0;
3369 unsigned int num_locals2 = 0;
3370 unsigned int num_globals2 = 0;
3371 int max_index = 0;
3372 unsigned int idx;
3373 asection *asect;
3374 asymbol **new_syms;
3375
3376 #ifdef DEBUG
3377 fprintf (stderr, "elf_map_symbols\n");
3378 fflush (stderr);
3379 #endif
3380
3381 for (asect = abfd->sections; asect; asect = asect->next)
3382 {
3383 if (max_index < asect->index)
3384 max_index = asect->index;
3385 }
3386
3387 max_index++;
3388 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3389 if (sect_syms == NULL)
3390 return FALSE;
3391 elf_section_syms (abfd) = sect_syms;
3392 elf_num_section_syms (abfd) = max_index;
3393
3394 /* Init sect_syms entries for any section symbols we have already
3395 decided to output. */
3396 for (idx = 0; idx < symcount; idx++)
3397 {
3398 asymbol *sym = syms[idx];
3399
3400 if ((sym->flags & BSF_SECTION_SYM) != 0
3401 && !ignore_section_sym (abfd, sym))
3402 {
3403 asection *sec = sym->section;
3404
3405 if (sec->owner != abfd)
3406 sec = sec->output_section;
3407
3408 sect_syms[sec->index] = syms[idx];
3409 }
3410 }
3411
3412 /* Classify all of the symbols. */
3413 for (idx = 0; idx < symcount; idx++)
3414 {
3415 if (ignore_section_sym (abfd, syms[idx]))
3416 continue;
3417 if (!sym_is_global (abfd, syms[idx]))
3418 num_locals++;
3419 else
3420 num_globals++;
3421 }
3422
3423 /* We will be adding a section symbol for each normal BFD section. Most
3424 sections will already have a section symbol in outsymbols, but
3425 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3426 at least in that case. */
3427 for (asect = abfd->sections; asect; asect = asect->next)
3428 {
3429 if (sect_syms[asect->index] == NULL)
3430 {
3431 if (!sym_is_global (abfd, asect->symbol))
3432 num_locals++;
3433 else
3434 num_globals++;
3435 }
3436 }
3437
3438 /* Now sort the symbols so the local symbols are first. */
3439 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3440
3441 if (new_syms == NULL)
3442 return FALSE;
3443
3444 for (idx = 0; idx < symcount; idx++)
3445 {
3446 asymbol *sym = syms[idx];
3447 unsigned int i;
3448
3449 if (ignore_section_sym (abfd, sym))
3450 continue;
3451 if (!sym_is_global (abfd, sym))
3452 i = num_locals2++;
3453 else
3454 i = num_locals + num_globals2++;
3455 new_syms[i] = sym;
3456 sym->udata.i = i + 1;
3457 }
3458 for (asect = abfd->sections; asect; asect = asect->next)
3459 {
3460 if (sect_syms[asect->index] == NULL)
3461 {
3462 asymbol *sym = asect->symbol;
3463 unsigned int i;
3464
3465 sect_syms[asect->index] = sym;
3466 if (!sym_is_global (abfd, sym))
3467 i = num_locals2++;
3468 else
3469 i = num_locals + num_globals2++;
3470 new_syms[i] = sym;
3471 sym->udata.i = i + 1;
3472 }
3473 }
3474
3475 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3476
3477 elf_num_locals (abfd) = num_locals;
3478 elf_num_globals (abfd) = num_globals;
3479 return TRUE;
3480 }
3481
3482 /* Align to the maximum file alignment that could be required for any
3483 ELF data structure. */
3484
3485 static inline file_ptr
3486 align_file_position (file_ptr off, int align)
3487 {
3488 return (off + align - 1) & ~(align - 1);
3489 }
3490
3491 /* Assign a file position to a section, optionally aligning to the
3492 required section alignment. */
3493
3494 file_ptr
3495 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3496 file_ptr offset,
3497 bfd_boolean align)
3498 {
3499 if (align)
3500 {
3501 unsigned int al;
3502
3503 al = i_shdrp->sh_addralign;
3504 if (al > 1)
3505 offset = BFD_ALIGN (offset, al);
3506 }
3507 i_shdrp->sh_offset = offset;
3508 if (i_shdrp->bfd_section != NULL)
3509 i_shdrp->bfd_section->filepos = offset;
3510 if (i_shdrp->sh_type != SHT_NOBITS)
3511 offset += i_shdrp->sh_size;
3512 return offset;
3513 }
3514
3515 /* Compute the file positions we are going to put the sections at, and
3516 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3517 is not NULL, this is being called by the ELF backend linker. */
3518
3519 bfd_boolean
3520 _bfd_elf_compute_section_file_positions (bfd *abfd,
3521 struct bfd_link_info *link_info)
3522 {
3523 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3524 bfd_boolean failed;
3525 struct bfd_strtab_hash *strtab = NULL;
3526 Elf_Internal_Shdr *shstrtab_hdr;
3527
3528 if (abfd->output_has_begun)
3529 return TRUE;
3530
3531 /* Do any elf backend specific processing first. */
3532 if (bed->elf_backend_begin_write_processing)
3533 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3534
3535 if (! prep_headers (abfd))
3536 return FALSE;
3537
3538 /* Post process the headers if necessary. */
3539 if (bed->elf_backend_post_process_headers)
3540 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3541
3542 failed = FALSE;
3543 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3544 if (failed)
3545 return FALSE;
3546
3547 if (!assign_section_numbers (abfd, link_info))
3548 return FALSE;
3549
3550 /* The backend linker builds symbol table information itself. */
3551 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3552 {
3553 /* Non-zero if doing a relocatable link. */
3554 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3555
3556 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3557 return FALSE;
3558 }
3559
3560 if (link_info == NULL)
3561 {
3562 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3563 if (failed)
3564 return FALSE;
3565 }
3566
3567 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3568 /* sh_name was set in prep_headers. */
3569 shstrtab_hdr->sh_type = SHT_STRTAB;
3570 shstrtab_hdr->sh_flags = 0;
3571 shstrtab_hdr->sh_addr = 0;
3572 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3573 shstrtab_hdr->sh_entsize = 0;
3574 shstrtab_hdr->sh_link = 0;
3575 shstrtab_hdr->sh_info = 0;
3576 /* sh_offset is set in assign_file_positions_except_relocs. */
3577 shstrtab_hdr->sh_addralign = 1;
3578
3579 if (!assign_file_positions_except_relocs (abfd, link_info))
3580 return FALSE;
3581
3582 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3583 {
3584 file_ptr off;
3585 Elf_Internal_Shdr *hdr;
3586
3587 off = elf_tdata (abfd)->next_file_pos;
3588
3589 hdr = &elf_tdata (abfd)->symtab_hdr;
3590 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3591
3592 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3593 if (hdr->sh_size != 0)
3594 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3595
3596 hdr = &elf_tdata (abfd)->strtab_hdr;
3597 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3598
3599 elf_tdata (abfd)->next_file_pos = off;
3600
3601 /* Now that we know where the .strtab section goes, write it
3602 out. */
3603 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3604 || ! _bfd_stringtab_emit (abfd, strtab))
3605 return FALSE;
3606 _bfd_stringtab_free (strtab);
3607 }
3608
3609 abfd->output_has_begun = TRUE;
3610
3611 return TRUE;
3612 }
3613
3614 /* Make an initial estimate of the size of the program header. If we
3615 get the number wrong here, we'll redo section placement. */
3616
3617 static bfd_size_type
3618 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3619 {
3620 size_t segs;
3621 asection *s;
3622 const struct elf_backend_data *bed;
3623
3624 /* Assume we will need exactly two PT_LOAD segments: one for text
3625 and one for data. */
3626 segs = 2;
3627
3628 s = bfd_get_section_by_name (abfd, ".interp");
3629 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3630 {
3631 /* If we have a loadable interpreter section, we need a
3632 PT_INTERP segment. In this case, assume we also need a
3633 PT_PHDR segment, although that may not be true for all
3634 targets. */
3635 segs += 2;
3636 }
3637
3638 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3639 {
3640 /* We need a PT_DYNAMIC segment. */
3641 ++segs;
3642
3643 if (elf_tdata (abfd)->relro)
3644 {
3645 /* We need a PT_GNU_RELRO segment only when there is a
3646 PT_DYNAMIC segment. */
3647 ++segs;
3648 }
3649 }
3650
3651 if (elf_tdata (abfd)->eh_frame_hdr)
3652 {
3653 /* We need a PT_GNU_EH_FRAME segment. */
3654 ++segs;
3655 }
3656
3657 if (elf_tdata (abfd)->stack_flags)
3658 {
3659 /* We need a PT_GNU_STACK segment. */
3660 ++segs;
3661 }
3662
3663 for (s = abfd->sections; s != NULL; s = s->next)
3664 {
3665 if ((s->flags & SEC_LOAD) != 0
3666 && CONST_STRNEQ (s->name, ".note"))
3667 {
3668 /* We need a PT_NOTE segment. */
3669 ++segs;
3670 }
3671 }
3672
3673 for (s = abfd->sections; s != NULL; s = s->next)
3674 {
3675 if (s->flags & SEC_THREAD_LOCAL)
3676 {
3677 /* We need a PT_TLS segment. */
3678 ++segs;
3679 break;
3680 }
3681 }
3682
3683 /* Let the backend count up any program headers it might need. */
3684 bed = get_elf_backend_data (abfd);
3685 if (bed->elf_backend_additional_program_headers)
3686 {
3687 int a;
3688
3689 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3690 if (a == -1)
3691 abort ();
3692 segs += a;
3693 }
3694
3695 return segs * bed->s->sizeof_phdr;
3696 }
3697
3698 /* Create a mapping from a set of sections to a program segment. */
3699
3700 static struct elf_segment_map *
3701 make_mapping (bfd *abfd,
3702 asection **sections,
3703 unsigned int from,
3704 unsigned int to,
3705 bfd_boolean phdr)
3706 {
3707 struct elf_segment_map *m;
3708 unsigned int i;
3709 asection **hdrpp;
3710 bfd_size_type amt;
3711
3712 amt = sizeof (struct elf_segment_map);
3713 amt += (to - from - 1) * sizeof (asection *);
3714 m = bfd_zalloc (abfd, amt);
3715 if (m == NULL)
3716 return NULL;
3717 m->next = NULL;
3718 m->p_type = PT_LOAD;
3719 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3720 m->sections[i - from] = *hdrpp;
3721 m->count = to - from;
3722
3723 if (from == 0 && phdr)
3724 {
3725 /* Include the headers in the first PT_LOAD segment. */
3726 m->includes_filehdr = 1;
3727 m->includes_phdrs = 1;
3728 }
3729
3730 return m;
3731 }
3732
3733 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3734 on failure. */
3735
3736 struct elf_segment_map *
3737 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3738 {
3739 struct elf_segment_map *m;
3740
3741 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3742 if (m == NULL)
3743 return NULL;
3744 m->next = NULL;
3745 m->p_type = PT_DYNAMIC;
3746 m->count = 1;
3747 m->sections[0] = dynsec;
3748
3749 return m;
3750 }
3751
3752 /* Possibly add or remove segments from the segment map. */
3753
3754 static bfd_boolean
3755 elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3756 {
3757 struct elf_segment_map **m;
3758 const struct elf_backend_data *bed;
3759
3760 /* The placement algorithm assumes that non allocated sections are
3761 not in PT_LOAD segments. We ensure this here by removing such
3762 sections from the segment map. We also remove excluded
3763 sections. Finally, any PT_LOAD segment without sections is
3764 removed. */
3765 m = &elf_tdata (abfd)->segment_map;
3766 while (*m)
3767 {
3768 unsigned int i, new_count;
3769
3770 for (new_count = 0, i = 0; i < (*m)->count; i++)
3771 {
3772 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3773 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3774 || (*m)->p_type != PT_LOAD))
3775 {
3776 (*m)->sections[new_count] = (*m)->sections[i];
3777 new_count++;
3778 }
3779 }
3780 (*m)->count = new_count;
3781
3782 if ((*m)->p_type == PT_LOAD && (*m)->count == 0)
3783 *m = (*m)->next;
3784 else
3785 m = &(*m)->next;
3786 }
3787
3788 bed = get_elf_backend_data (abfd);
3789 if (bed->elf_backend_modify_segment_map != NULL)
3790 {
3791 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3792 return FALSE;
3793 }
3794
3795 return TRUE;
3796 }
3797
3798 /* Set up a mapping from BFD sections to program segments. */
3799
3800 bfd_boolean
3801 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3802 {
3803 unsigned int count;
3804 struct elf_segment_map *m;
3805 asection **sections = NULL;
3806 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3807
3808 if (elf_tdata (abfd)->segment_map == NULL
3809 && bfd_count_sections (abfd) != 0)
3810 {
3811 asection *s;
3812 unsigned int i;
3813 struct elf_segment_map *mfirst;
3814 struct elf_segment_map **pm;
3815 asection *last_hdr;
3816 bfd_vma last_size;
3817 unsigned int phdr_index;
3818 bfd_vma maxpagesize;
3819 asection **hdrpp;
3820 bfd_boolean phdr_in_segment = TRUE;
3821 bfd_boolean writable;
3822 int tls_count = 0;
3823 asection *first_tls = NULL;
3824 asection *dynsec, *eh_frame_hdr;
3825 bfd_size_type amt;
3826
3827 /* Select the allocated sections, and sort them. */
3828
3829 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3830 if (sections == NULL)
3831 goto error_return;
3832
3833 i = 0;
3834 for (s = abfd->sections; s != NULL; s = s->next)
3835 {
3836 if ((s->flags & SEC_ALLOC) != 0)
3837 {
3838 sections[i] = s;
3839 ++i;
3840 }
3841 }
3842 BFD_ASSERT (i <= bfd_count_sections (abfd));
3843 count = i;
3844
3845 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3846
3847 /* Build the mapping. */
3848
3849 mfirst = NULL;
3850 pm = &mfirst;
3851
3852 /* If we have a .interp section, then create a PT_PHDR segment for
3853 the program headers and a PT_INTERP segment for the .interp
3854 section. */
3855 s = bfd_get_section_by_name (abfd, ".interp");
3856 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3857 {
3858 amt = sizeof (struct elf_segment_map);
3859 m = bfd_zalloc (abfd, amt);
3860 if (m == NULL)
3861 goto error_return;
3862 m->next = NULL;
3863 m->p_type = PT_PHDR;
3864 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3865 m->p_flags = PF_R | PF_X;
3866 m->p_flags_valid = 1;
3867 m->includes_phdrs = 1;
3868
3869 *pm = m;
3870 pm = &m->next;
3871
3872 amt = sizeof (struct elf_segment_map);
3873 m = bfd_zalloc (abfd, amt);
3874 if (m == NULL)
3875 goto error_return;
3876 m->next = NULL;
3877 m->p_type = PT_INTERP;
3878 m->count = 1;
3879 m->sections[0] = s;
3880
3881 *pm = m;
3882 pm = &m->next;
3883 }
3884
3885 /* Look through the sections. We put sections in the same program
3886 segment when the start of the second section can be placed within
3887 a few bytes of the end of the first section. */
3888 last_hdr = NULL;
3889 last_size = 0;
3890 phdr_index = 0;
3891 maxpagesize = bed->maxpagesize;
3892 writable = FALSE;
3893 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3894 if (dynsec != NULL
3895 && (dynsec->flags & SEC_LOAD) == 0)
3896 dynsec = NULL;
3897
3898 /* Deal with -Ttext or something similar such that the first section
3899 is not adjacent to the program headers. This is an
3900 approximation, since at this point we don't know exactly how many
3901 program headers we will need. */
3902 if (count > 0)
3903 {
3904 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3905
3906 if (phdr_size == (bfd_size_type) -1)
3907 phdr_size = get_program_header_size (abfd, info);
3908 if ((abfd->flags & D_PAGED) == 0
3909 || sections[0]->lma < phdr_size
3910 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3911 phdr_in_segment = FALSE;
3912 }
3913
3914 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3915 {
3916 asection *hdr;
3917 bfd_boolean new_segment;
3918
3919 hdr = *hdrpp;
3920
3921 /* See if this section and the last one will fit in the same
3922 segment. */
3923
3924 if (last_hdr == NULL)
3925 {
3926 /* If we don't have a segment yet, then we don't need a new
3927 one (we build the last one after this loop). */
3928 new_segment = FALSE;
3929 }
3930 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3931 {
3932 /* If this section has a different relation between the
3933 virtual address and the load address, then we need a new
3934 segment. */
3935 new_segment = TRUE;
3936 }
3937 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3938 < BFD_ALIGN (hdr->lma, maxpagesize))
3939 {
3940 /* If putting this section in this segment would force us to
3941 skip a page in the segment, then we need a new segment. */
3942 new_segment = TRUE;
3943 }
3944 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3945 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3946 {
3947 /* We don't want to put a loadable section after a
3948 nonloadable section in the same segment.
3949 Consider .tbss sections as loadable for this purpose. */
3950 new_segment = TRUE;
3951 }
3952 else if ((abfd->flags & D_PAGED) == 0)
3953 {
3954 /* If the file is not demand paged, which means that we
3955 don't require the sections to be correctly aligned in the
3956 file, then there is no other reason for a new segment. */
3957 new_segment = FALSE;
3958 }
3959 else if (! writable
3960 && (hdr->flags & SEC_READONLY) == 0
3961 && (((last_hdr->lma + last_size - 1)
3962 & ~(maxpagesize - 1))
3963 != (hdr->lma & ~(maxpagesize - 1))))
3964 {
3965 /* We don't want to put a writable section in a read only
3966 segment, unless they are on the same page in memory
3967 anyhow. We already know that the last section does not
3968 bring us past the current section on the page, so the
3969 only case in which the new section is not on the same
3970 page as the previous section is when the previous section
3971 ends precisely on a page boundary. */
3972 new_segment = TRUE;
3973 }
3974 else
3975 {
3976 /* Otherwise, we can use the same segment. */
3977 new_segment = FALSE;
3978 }
3979
3980 /* Allow interested parties a chance to override our decision. */
3981 if (last_hdr && info->callbacks->override_segment_assignment)
3982 new_segment = info->callbacks->override_segment_assignment (info, abfd, hdr, last_hdr, new_segment);
3983
3984 if (! new_segment)
3985 {
3986 if ((hdr->flags & SEC_READONLY) == 0)
3987 writable = TRUE;
3988 last_hdr = hdr;
3989 /* .tbss sections effectively have zero size. */
3990 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3991 != SEC_THREAD_LOCAL)
3992 last_size = hdr->size;
3993 else
3994 last_size = 0;
3995 continue;
3996 }
3997
3998 /* We need a new program segment. We must create a new program
3999 header holding all the sections from phdr_index until hdr. */
4000
4001 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4002 if (m == NULL)
4003 goto error_return;
4004
4005 *pm = m;
4006 pm = &m->next;
4007
4008 if ((hdr->flags & SEC_READONLY) == 0)
4009 writable = TRUE;
4010 else
4011 writable = FALSE;
4012
4013 last_hdr = hdr;
4014 /* .tbss sections effectively have zero size. */
4015 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4016 last_size = hdr->size;
4017 else
4018 last_size = 0;
4019 phdr_index = i;
4020 phdr_in_segment = FALSE;
4021 }
4022
4023 /* Create a final PT_LOAD program segment. */
4024 if (last_hdr != NULL)
4025 {
4026 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4027 if (m == NULL)
4028 goto error_return;
4029
4030 *pm = m;
4031 pm = &m->next;
4032 }
4033
4034 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4035 if (dynsec != NULL)
4036 {
4037 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4038 if (m == NULL)
4039 goto error_return;
4040 *pm = m;
4041 pm = &m->next;
4042 }
4043
4044 /* For each loadable .note section, add a PT_NOTE segment. We don't
4045 use bfd_get_section_by_name, because if we link together
4046 nonloadable .note sections and loadable .note sections, we will
4047 generate two .note sections in the output file. FIXME: Using
4048 names for section types is bogus anyhow. */
4049 for (s = abfd->sections; s != NULL; s = s->next)
4050 {
4051 if ((s->flags & SEC_LOAD) != 0
4052 && CONST_STRNEQ (s->name, ".note"))
4053 {
4054 amt = sizeof (struct elf_segment_map);
4055 m = bfd_zalloc (abfd, amt);
4056 if (m == NULL)
4057 goto error_return;
4058 m->next = NULL;
4059 m->p_type = PT_NOTE;
4060 m->count = 1;
4061 m->sections[0] = s;
4062
4063 *pm = m;
4064 pm = &m->next;
4065 }
4066 if (s->flags & SEC_THREAD_LOCAL)
4067 {
4068 if (! tls_count)
4069 first_tls = s;
4070 tls_count++;
4071 }
4072 }
4073
4074 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4075 if (tls_count > 0)
4076 {
4077 int i;
4078
4079 amt = sizeof (struct elf_segment_map);
4080 amt += (tls_count - 1) * sizeof (asection *);
4081 m = bfd_zalloc (abfd, amt);
4082 if (m == NULL)
4083 goto error_return;
4084 m->next = NULL;
4085 m->p_type = PT_TLS;
4086 m->count = tls_count;
4087 /* Mandated PF_R. */
4088 m->p_flags = PF_R;
4089 m->p_flags_valid = 1;
4090 for (i = 0; i < tls_count; ++i)
4091 {
4092 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4093 m->sections[i] = first_tls;
4094 first_tls = first_tls->next;
4095 }
4096
4097 *pm = m;
4098 pm = &m->next;
4099 }
4100
4101 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4102 segment. */
4103 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4104 if (eh_frame_hdr != NULL
4105 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4106 {
4107 amt = sizeof (struct elf_segment_map);
4108 m = bfd_zalloc (abfd, amt);
4109 if (m == NULL)
4110 goto error_return;
4111 m->next = NULL;
4112 m->p_type = PT_GNU_EH_FRAME;
4113 m->count = 1;
4114 m->sections[0] = eh_frame_hdr->output_section;
4115
4116 *pm = m;
4117 pm = &m->next;
4118 }
4119
4120 if (elf_tdata (abfd)->stack_flags)
4121 {
4122 amt = sizeof (struct elf_segment_map);
4123 m = bfd_zalloc (abfd, amt);
4124 if (m == NULL)
4125 goto error_return;
4126 m->next = NULL;
4127 m->p_type = PT_GNU_STACK;
4128 m->p_flags = elf_tdata (abfd)->stack_flags;
4129 m->p_flags_valid = 1;
4130
4131 *pm = m;
4132 pm = &m->next;
4133 }
4134
4135 if (dynsec != NULL && elf_tdata (abfd)->relro)
4136 {
4137 /* We make a PT_GNU_RELRO segment only when there is a
4138 PT_DYNAMIC segment. */
4139 amt = sizeof (struct elf_segment_map);
4140 m = bfd_zalloc (abfd, amt);
4141 if (m == NULL)
4142 goto error_return;
4143 m->next = NULL;
4144 m->p_type = PT_GNU_RELRO;
4145 m->p_flags = PF_R;
4146 m->p_flags_valid = 1;
4147
4148 *pm = m;
4149 pm = &m->next;
4150 }
4151
4152 free (sections);
4153 elf_tdata (abfd)->segment_map = mfirst;
4154 }
4155
4156 if (!elf_modify_segment_map (abfd, info))
4157 return FALSE;
4158
4159 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4160 ++count;
4161 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4162
4163 return TRUE;
4164
4165 error_return:
4166 if (sections != NULL)
4167 free (sections);
4168 return FALSE;
4169 }
4170
4171 /* Sort sections by address. */
4172
4173 static int
4174 elf_sort_sections (const void *arg1, const void *arg2)
4175 {
4176 const asection *sec1 = *(const asection **) arg1;
4177 const asection *sec2 = *(const asection **) arg2;
4178 bfd_size_type size1, size2;
4179
4180 /* Sort by LMA first, since this is the address used to
4181 place the section into a segment. */
4182 if (sec1->lma < sec2->lma)
4183 return -1;
4184 else if (sec1->lma > sec2->lma)
4185 return 1;
4186
4187 /* Then sort by VMA. Normally the LMA and the VMA will be
4188 the same, and this will do nothing. */
4189 if (sec1->vma < sec2->vma)
4190 return -1;
4191 else if (sec1->vma > sec2->vma)
4192 return 1;
4193
4194 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4195
4196 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4197
4198 if (TOEND (sec1))
4199 {
4200 if (TOEND (sec2))
4201 {
4202 /* If the indicies are the same, do not return 0
4203 here, but continue to try the next comparison. */
4204 if (sec1->target_index - sec2->target_index != 0)
4205 return sec1->target_index - sec2->target_index;
4206 }
4207 else
4208 return 1;
4209 }
4210 else if (TOEND (sec2))
4211 return -1;
4212
4213 #undef TOEND
4214
4215 /* Sort by size, to put zero sized sections
4216 before others at the same address. */
4217
4218 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4219 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4220
4221 if (size1 < size2)
4222 return -1;
4223 if (size1 > size2)
4224 return 1;
4225
4226 return sec1->target_index - sec2->target_index;
4227 }
4228
4229 /* Ian Lance Taylor writes:
4230
4231 We shouldn't be using % with a negative signed number. That's just
4232 not good. We have to make sure either that the number is not
4233 negative, or that the number has an unsigned type. When the types
4234 are all the same size they wind up as unsigned. When file_ptr is a
4235 larger signed type, the arithmetic winds up as signed long long,
4236 which is wrong.
4237
4238 What we're trying to say here is something like ``increase OFF by
4239 the least amount that will cause it to be equal to the VMA modulo
4240 the page size.'' */
4241 /* In other words, something like:
4242
4243 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4244 off_offset = off % bed->maxpagesize;
4245 if (vma_offset < off_offset)
4246 adjustment = vma_offset + bed->maxpagesize - off_offset;
4247 else
4248 adjustment = vma_offset - off_offset;
4249
4250 which can can be collapsed into the expression below. */
4251
4252 static file_ptr
4253 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4254 {
4255 return ((vma - off) % maxpagesize);
4256 }
4257
4258 /* Assign file positions to the sections based on the mapping from
4259 sections to segments. This function also sets up some fields in
4260 the file header. */
4261
4262 static bfd_boolean
4263 assign_file_positions_for_load_sections (bfd *abfd,
4264 struct bfd_link_info *link_info)
4265 {
4266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4267 struct elf_segment_map *m;
4268 Elf_Internal_Phdr *phdrs;
4269 Elf_Internal_Phdr *p;
4270 file_ptr off, voff;
4271 bfd_size_type maxpagesize;
4272 unsigned int alloc;
4273 unsigned int i, j;
4274
4275 if (link_info == NULL
4276 && !elf_modify_segment_map (abfd, link_info))
4277 return FALSE;
4278
4279 alloc = 0;
4280 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4281 ++alloc;
4282
4283 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4284 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4285 elf_elfheader (abfd)->e_phnum = alloc;
4286
4287 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4288 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4289 else
4290 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4291 >= alloc * bed->s->sizeof_phdr);
4292
4293 if (alloc == 0)
4294 {
4295 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4296 return TRUE;
4297 }
4298
4299 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4300 elf_tdata (abfd)->phdr = phdrs;
4301 if (phdrs == NULL)
4302 return FALSE;
4303
4304 maxpagesize = 1;
4305 if ((abfd->flags & D_PAGED) != 0)
4306 maxpagesize = bed->maxpagesize;
4307
4308 off = bed->s->sizeof_ehdr;
4309 off += alloc * bed->s->sizeof_phdr;
4310
4311 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4312 m != NULL;
4313 m = m->next, p++, j++)
4314 {
4315 asection **secpp;
4316
4317 /* If elf_segment_map is not from map_sections_to_segments, the
4318 sections may not be correctly ordered. NOTE: sorting should
4319 not be done to the PT_NOTE section of a corefile, which may
4320 contain several pseudo-sections artificially created by bfd.
4321 Sorting these pseudo-sections breaks things badly. */
4322 if (m->count > 1
4323 && !(elf_elfheader (abfd)->e_type == ET_CORE
4324 && m->p_type == PT_NOTE))
4325 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4326 elf_sort_sections);
4327
4328 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4329 number of sections with contents contributing to both p_filesz
4330 and p_memsz, followed by a number of sections with no contents
4331 that just contribute to p_memsz. In this loop, OFF tracks next
4332 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4333 an adjustment we use for segments that have no file contents
4334 but need zero filled memory allocation. */
4335 voff = 0;
4336 p->p_type = m->p_type;
4337 p->p_flags = m->p_flags;
4338
4339 if (m->count == 0)
4340 p->p_vaddr = 0;
4341 else
4342 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4343
4344 if (m->p_paddr_valid)
4345 p->p_paddr = m->p_paddr;
4346 else if (m->count == 0)
4347 p->p_paddr = 0;
4348 else
4349 p->p_paddr = m->sections[0]->lma;
4350
4351 if (p->p_type == PT_LOAD
4352 && (abfd->flags & D_PAGED) != 0)
4353 {
4354 /* p_align in demand paged PT_LOAD segments effectively stores
4355 the maximum page size. When copying an executable with
4356 objcopy, we set m->p_align from the input file. Use this
4357 value for maxpagesize rather than bed->maxpagesize, which
4358 may be different. Note that we use maxpagesize for PT_TLS
4359 segment alignment later in this function, so we are relying
4360 on at least one PT_LOAD segment appearing before a PT_TLS
4361 segment. */
4362 if (m->p_align_valid)
4363 maxpagesize = m->p_align;
4364
4365 p->p_align = maxpagesize;
4366 }
4367 else if (m->count == 0)
4368 p->p_align = 1 << bed->s->log_file_align;
4369 else if (m->p_align_valid)
4370 p->p_align = m->p_align;
4371 else
4372 p->p_align = 0;
4373
4374 if (p->p_type == PT_LOAD
4375 && m->count > 0)
4376 {
4377 bfd_size_type align;
4378 bfd_vma adjust;
4379 unsigned int align_power = 0;
4380
4381 if (m->p_align_valid)
4382 align = p->p_align;
4383 else
4384 {
4385 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4386 {
4387 unsigned int secalign;
4388
4389 secalign = bfd_get_section_alignment (abfd, *secpp);
4390 if (secalign > align_power)
4391 align_power = secalign;
4392 }
4393 align = (bfd_size_type) 1 << align_power;
4394 if (align < maxpagesize)
4395 align = maxpagesize;
4396 }
4397
4398 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4399 off += adjust;
4400 if (adjust != 0
4401 && !m->includes_filehdr
4402 && !m->includes_phdrs
4403 && (ufile_ptr) off >= align)
4404 {
4405 /* If the first section isn't loadable, the same holds for
4406 any other sections. Since the segment won't need file
4407 space, we can make p_offset overlap some prior segment.
4408 However, .tbss is special. If a segment starts with
4409 .tbss, we need to look at the next section to decide
4410 whether the segment has any loadable sections. */
4411 i = 0;
4412 while ((m->sections[i]->flags & SEC_LOAD) == 0
4413 && (m->sections[i]->flags & SEC_HAS_CONTENTS) == 0)
4414 {
4415 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4416 || ++i >= m->count)
4417 {
4418 off -= adjust;
4419 voff = adjust - align;
4420 break;
4421 }
4422 }
4423 }
4424 }
4425 /* Make sure the .dynamic section is the first section in the
4426 PT_DYNAMIC segment. */
4427 else if (p->p_type == PT_DYNAMIC
4428 && m->count > 1
4429 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4430 {
4431 _bfd_error_handler
4432 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4433 abfd);
4434 bfd_set_error (bfd_error_bad_value);
4435 return FALSE;
4436 }
4437
4438 p->p_offset = 0;
4439 p->p_filesz = 0;
4440 p->p_memsz = 0;
4441
4442 if (m->includes_filehdr)
4443 {
4444 if (! m->p_flags_valid)
4445 p->p_flags |= PF_R;
4446 p->p_filesz = bed->s->sizeof_ehdr;
4447 p->p_memsz = bed->s->sizeof_ehdr;
4448 if (m->count > 0)
4449 {
4450 BFD_ASSERT (p->p_type == PT_LOAD);
4451
4452 if (p->p_vaddr < (bfd_vma) off)
4453 {
4454 (*_bfd_error_handler)
4455 (_("%B: Not enough room for program headers, try linking with -N"),
4456 abfd);
4457 bfd_set_error (bfd_error_bad_value);
4458 return FALSE;
4459 }
4460
4461 p->p_vaddr -= off;
4462 if (! m->p_paddr_valid)
4463 p->p_paddr -= off;
4464 }
4465 }
4466
4467 if (m->includes_phdrs)
4468 {
4469 if (! m->p_flags_valid)
4470 p->p_flags |= PF_R;
4471
4472 if (!m->includes_filehdr)
4473 {
4474 p->p_offset = bed->s->sizeof_ehdr;
4475
4476 if (m->count > 0)
4477 {
4478 BFD_ASSERT (p->p_type == PT_LOAD);
4479 p->p_vaddr -= off - p->p_offset;
4480 if (! m->p_paddr_valid)
4481 p->p_paddr -= off - p->p_offset;
4482 }
4483 }
4484
4485 p->p_filesz += alloc * bed->s->sizeof_phdr;
4486 p->p_memsz += alloc * bed->s->sizeof_phdr;
4487 }
4488
4489 if (p->p_type == PT_LOAD
4490 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4491 {
4492 if (! m->includes_filehdr && ! m->includes_phdrs)
4493 p->p_offset = off + voff;
4494 else
4495 {
4496 file_ptr adjust;
4497
4498 adjust = off - (p->p_offset + p->p_filesz);
4499 p->p_filesz += adjust;
4500 p->p_memsz += adjust;
4501 }
4502 }
4503
4504 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4505 maps. Set filepos for sections in PT_LOAD segments, and in
4506 core files, for sections in PT_NOTE segments.
4507 assign_file_positions_for_non_load_sections will set filepos
4508 for other sections and update p_filesz for other segments. */
4509 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4510 {
4511 asection *sec;
4512 flagword flags;
4513 bfd_size_type align;
4514
4515 sec = *secpp;
4516 flags = sec->flags;
4517 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4518
4519 if (p->p_type == PT_LOAD
4520 || p->p_type == PT_TLS)
4521 {
4522 bfd_signed_vma adjust = sec->lma - (p->p_paddr + p->p_filesz);
4523
4524 if ((flags & SEC_LOAD) != 0
4525 || ((flags & SEC_ALLOC) != 0
4526 && ((flags & SEC_THREAD_LOCAL) == 0
4527 || p->p_type == PT_TLS)))
4528 {
4529 if (adjust < 0)
4530 {
4531 (*_bfd_error_handler)
4532 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4533 abfd, sec, (unsigned long) sec->lma);
4534 adjust = 0;
4535 }
4536 p->p_memsz += adjust;
4537
4538 if ((flags & SEC_LOAD) != 0)
4539 {
4540 off += adjust;
4541 p->p_filesz += adjust;
4542 }
4543 }
4544 }
4545
4546 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4547 {
4548 /* The section at i == 0 is the one that actually contains
4549 everything. */
4550 if (i == 0)
4551 {
4552 sec->filepos = off;
4553 off += sec->size;
4554 p->p_filesz = sec->size;
4555 p->p_memsz = 0;
4556 p->p_align = 1;
4557 }
4558 else
4559 {
4560 /* The rest are fake sections that shouldn't be written. */
4561 sec->filepos = 0;
4562 sec->size = 0;
4563 sec->flags = 0;
4564 continue;
4565 }
4566 }
4567 else
4568 {
4569 if (p->p_type == PT_LOAD)
4570 {
4571 sec->filepos = off + voff;
4572 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4573 1997, and the exact reason for it isn't clear. One
4574 plausible explanation is that it is to work around
4575 a problem we have with linker scripts using data
4576 statements in NOLOAD sections. I don't think it
4577 makes a great deal of sense to have such a section
4578 assigned to a PT_LOAD segment, but apparently
4579 people do this. The data statement results in a
4580 bfd_data_link_order being built, and these need
4581 section contents to write into. Eventually, we get
4582 to _bfd_elf_write_object_contents which writes any
4583 section with contents to the output. Make room
4584 here for the write, so that following segments are
4585 not trashed. */
4586 if ((flags & SEC_LOAD) != 0
4587 || (flags & SEC_HAS_CONTENTS) != 0)
4588 off += sec->size;
4589 }
4590
4591 if ((flags & SEC_LOAD) != 0)
4592 {
4593 p->p_filesz += sec->size;
4594 p->p_memsz += sec->size;
4595 }
4596
4597 /* .tbss is special. It doesn't contribute to p_memsz of
4598 normal segments. */
4599 else if ((flags & SEC_ALLOC) != 0
4600 && ((flags & SEC_THREAD_LOCAL) == 0
4601 || p->p_type == PT_TLS))
4602 p->p_memsz += sec->size;
4603
4604 if (p->p_type == PT_TLS
4605 && sec->size == 0
4606 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4607 {
4608 struct bfd_link_order *o = sec->map_tail.link_order;
4609 if (o != NULL)
4610 p->p_memsz += o->offset + o->size;
4611 }
4612
4613 if (p->p_type == PT_GNU_RELRO)
4614 p->p_align = 1;
4615 else if (align > p->p_align
4616 && !m->p_align_valid
4617 && (p->p_type != PT_LOAD
4618 || (abfd->flags & D_PAGED) == 0))
4619 p->p_align = align;
4620 }
4621
4622 if (! m->p_flags_valid)
4623 {
4624 p->p_flags |= PF_R;
4625 if ((flags & SEC_CODE) != 0)
4626 p->p_flags |= PF_X;
4627 if ((flags & SEC_READONLY) == 0)
4628 p->p_flags |= PF_W;
4629 }
4630 }
4631
4632 /* Check if all sections are in the segment. Skip PT_GNU_RELRO
4633 and PT_NOTE segments since they will be processed by
4634 assign_file_positions_for_non_load_sections later. */
4635 if (p->p_type != PT_GNU_RELRO
4636 && p->p_type != PT_NOTE)
4637 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4638 {
4639 Elf_Internal_Shdr *this_hdr;
4640 asection *sec;
4641
4642 sec = *secpp;
4643 this_hdr = &(elf_section_data(sec)->this_hdr);
4644 if (this_hdr->sh_size != 0
4645 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4646 {
4647 (*_bfd_error_handler)
4648 (_("%B: section `%A' can't be allocated in segment %d"),
4649 abfd, sec, j);
4650 bfd_set_error (bfd_error_bad_value);
4651 return FALSE;
4652 }
4653 }
4654 }
4655
4656 elf_tdata (abfd)->next_file_pos = off;
4657 return TRUE;
4658 }
4659
4660 /* Assign file positions for the other sections. */
4661
4662 static bfd_boolean
4663 assign_file_positions_for_non_load_sections (bfd *abfd,
4664 struct bfd_link_info *link_info)
4665 {
4666 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4667 Elf_Internal_Shdr **i_shdrpp;
4668 Elf_Internal_Shdr **hdrpp;
4669 Elf_Internal_Phdr *phdrs;
4670 Elf_Internal_Phdr *p;
4671 struct elf_segment_map *m;
4672 bfd_vma filehdr_vaddr, filehdr_paddr;
4673 bfd_vma phdrs_vaddr, phdrs_paddr;
4674 file_ptr off;
4675 unsigned int num_sec;
4676 unsigned int i;
4677 unsigned int count;
4678
4679 i_shdrpp = elf_elfsections (abfd);
4680 num_sec = elf_numsections (abfd);
4681 off = elf_tdata (abfd)->next_file_pos;
4682 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4683 {
4684 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4685 Elf_Internal_Shdr *hdr;
4686
4687 hdr = *hdrpp;
4688 if (hdr->bfd_section != NULL
4689 && (hdr->bfd_section->filepos != 0
4690 || (hdr->sh_type == SHT_NOBITS
4691 && hdr->contents == NULL)))
4692 hdr->sh_offset = hdr->bfd_section->filepos;
4693 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4694 {
4695 if (hdr->sh_size != 0)
4696 ((*_bfd_error_handler)
4697 (_("%B: warning: allocated section `%s' not in segment"),
4698 abfd,
4699 (hdr->bfd_section == NULL
4700 ? "*unknown*"
4701 : hdr->bfd_section->name)));
4702 /* We don't need to page align empty sections. */
4703 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4704 off += vma_page_aligned_bias (hdr->sh_addr, off,
4705 bed->maxpagesize);
4706 else
4707 off += vma_page_aligned_bias (hdr->sh_addr, off,
4708 hdr->sh_addralign);
4709 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4710 FALSE);
4711 }
4712 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4713 && hdr->bfd_section == NULL)
4714 || hdr == i_shdrpp[tdata->symtab_section]
4715 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4716 || hdr == i_shdrpp[tdata->strtab_section])
4717 hdr->sh_offset = -1;
4718 else
4719 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4720
4721 if (i == SHN_LORESERVE - 1)
4722 {
4723 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4724 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4725 }
4726 }
4727
4728 /* Now that we have set the section file positions, we can set up
4729 the file positions for the non PT_LOAD segments. */
4730 count = 0;
4731 filehdr_vaddr = 0;
4732 filehdr_paddr = 0;
4733 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4734 phdrs_paddr = 0;
4735 phdrs = elf_tdata (abfd)->phdr;
4736 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4737 m != NULL;
4738 m = m->next, p++)
4739 {
4740 ++count;
4741 if (p->p_type != PT_LOAD)
4742 continue;
4743
4744 if (m->includes_filehdr)
4745 {
4746 filehdr_vaddr = p->p_vaddr;
4747 filehdr_paddr = p->p_paddr;
4748 }
4749 if (m->includes_phdrs)
4750 {
4751 phdrs_vaddr = p->p_vaddr;
4752 phdrs_paddr = p->p_paddr;
4753 if (m->includes_filehdr)
4754 {
4755 phdrs_vaddr += bed->s->sizeof_ehdr;
4756 phdrs_paddr += bed->s->sizeof_ehdr;
4757 }
4758 }
4759 }
4760
4761 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4762 m != NULL;
4763 m = m->next, p++)
4764 {
4765 if (m->count != 0)
4766 {
4767 if (p->p_type != PT_LOAD
4768 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4769 {
4770 Elf_Internal_Shdr *hdr;
4771 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4772
4773 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4774 p->p_filesz = (m->sections[m->count - 1]->filepos
4775 - m->sections[0]->filepos);
4776 if (hdr->sh_type != SHT_NOBITS)
4777 p->p_filesz += hdr->sh_size;
4778
4779 p->p_offset = m->sections[0]->filepos;
4780 }
4781 }
4782 else
4783 {
4784 if (m->includes_filehdr)
4785 {
4786 p->p_vaddr = filehdr_vaddr;
4787 if (! m->p_paddr_valid)
4788 p->p_paddr = filehdr_paddr;
4789 }
4790 else if (m->includes_phdrs)
4791 {
4792 p->p_vaddr = phdrs_vaddr;
4793 if (! m->p_paddr_valid)
4794 p->p_paddr = phdrs_paddr;
4795 }
4796 else if (p->p_type == PT_GNU_RELRO)
4797 {
4798 Elf_Internal_Phdr *lp;
4799
4800 for (lp = phdrs; lp < phdrs + count; ++lp)
4801 {
4802 if (lp->p_type == PT_LOAD
4803 && lp->p_vaddr <= link_info->relro_end
4804 && lp->p_vaddr >= link_info->relro_start
4805 && (lp->p_vaddr + lp->p_filesz
4806 >= link_info->relro_end))
4807 break;
4808 }
4809
4810 if (lp < phdrs + count
4811 && link_info->relro_end > lp->p_vaddr)
4812 {
4813 p->p_vaddr = lp->p_vaddr;
4814 p->p_paddr = lp->p_paddr;
4815 p->p_offset = lp->p_offset;
4816 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4817 p->p_memsz = p->p_filesz;
4818 p->p_align = 1;
4819 p->p_flags = (lp->p_flags & ~PF_W);
4820 }
4821 else
4822 {
4823 memset (p, 0, sizeof *p);
4824 p->p_type = PT_NULL;
4825 }
4826 }
4827 }
4828 }
4829
4830 elf_tdata (abfd)->next_file_pos = off;
4831
4832 return TRUE;
4833 }
4834
4835 /* Work out the file positions of all the sections. This is called by
4836 _bfd_elf_compute_section_file_positions. All the section sizes and
4837 VMAs must be known before this is called.
4838
4839 Reloc sections come in two flavours: Those processed specially as
4840 "side-channel" data attached to a section to which they apply, and
4841 those that bfd doesn't process as relocations. The latter sort are
4842 stored in a normal bfd section by bfd_section_from_shdr. We don't
4843 consider the former sort here, unless they form part of the loadable
4844 image. Reloc sections not assigned here will be handled later by
4845 assign_file_positions_for_relocs.
4846
4847 We also don't set the positions of the .symtab and .strtab here. */
4848
4849 static bfd_boolean
4850 assign_file_positions_except_relocs (bfd *abfd,
4851 struct bfd_link_info *link_info)
4852 {
4853 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4854 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4855 file_ptr off;
4856 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4857
4858 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4859 && bfd_get_format (abfd) != bfd_core)
4860 {
4861 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4862 unsigned int num_sec = elf_numsections (abfd);
4863 Elf_Internal_Shdr **hdrpp;
4864 unsigned int i;
4865
4866 /* Start after the ELF header. */
4867 off = i_ehdrp->e_ehsize;
4868
4869 /* We are not creating an executable, which means that we are
4870 not creating a program header, and that the actual order of
4871 the sections in the file is unimportant. */
4872 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4873 {
4874 Elf_Internal_Shdr *hdr;
4875
4876 hdr = *hdrpp;
4877 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4878 && hdr->bfd_section == NULL)
4879 || i == tdata->symtab_section
4880 || i == tdata->symtab_shndx_section
4881 || i == tdata->strtab_section)
4882 {
4883 hdr->sh_offset = -1;
4884 }
4885 else
4886 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4887
4888 if (i == SHN_LORESERVE - 1)
4889 {
4890 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4891 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4892 }
4893 }
4894 }
4895 else
4896 {
4897 unsigned int alloc;
4898
4899 /* Assign file positions for the loaded sections based on the
4900 assignment of sections to segments. */
4901 if (!assign_file_positions_for_load_sections (abfd, link_info))
4902 return FALSE;
4903
4904 /* And for non-load sections. */
4905 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4906 return FALSE;
4907
4908 if (bed->elf_backend_modify_program_headers != NULL)
4909 {
4910 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4911 return FALSE;
4912 }
4913
4914 /* Write out the program headers. */
4915 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4916 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4917 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4918 return FALSE;
4919
4920 off = tdata->next_file_pos;
4921 }
4922
4923 /* Place the section headers. */
4924 off = align_file_position (off, 1 << bed->s->log_file_align);
4925 i_ehdrp->e_shoff = off;
4926 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4927
4928 tdata->next_file_pos = off;
4929
4930 return TRUE;
4931 }
4932
4933 static bfd_boolean
4934 prep_headers (bfd *abfd)
4935 {
4936 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4937 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4938 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4939 struct elf_strtab_hash *shstrtab;
4940 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4941
4942 i_ehdrp = elf_elfheader (abfd);
4943 i_shdrp = elf_elfsections (abfd);
4944
4945 shstrtab = _bfd_elf_strtab_init ();
4946 if (shstrtab == NULL)
4947 return FALSE;
4948
4949 elf_shstrtab (abfd) = shstrtab;
4950
4951 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4952 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4953 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4954 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4955
4956 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4957 i_ehdrp->e_ident[EI_DATA] =
4958 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4959 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4960
4961 if ((abfd->flags & DYNAMIC) != 0)
4962 i_ehdrp->e_type = ET_DYN;
4963 else if ((abfd->flags & EXEC_P) != 0)
4964 i_ehdrp->e_type = ET_EXEC;
4965 else if (bfd_get_format (abfd) == bfd_core)
4966 i_ehdrp->e_type = ET_CORE;
4967 else
4968 i_ehdrp->e_type = ET_REL;
4969
4970 switch (bfd_get_arch (abfd))
4971 {
4972 case bfd_arch_unknown:
4973 i_ehdrp->e_machine = EM_NONE;
4974 break;
4975
4976 /* There used to be a long list of cases here, each one setting
4977 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4978 in the corresponding bfd definition. To avoid duplication,
4979 the switch was removed. Machines that need special handling
4980 can generally do it in elf_backend_final_write_processing(),
4981 unless they need the information earlier than the final write.
4982 Such need can generally be supplied by replacing the tests for
4983 e_machine with the conditions used to determine it. */
4984 default:
4985 i_ehdrp->e_machine = bed->elf_machine_code;
4986 }
4987
4988 i_ehdrp->e_version = bed->s->ev_current;
4989 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4990
4991 /* No program header, for now. */
4992 i_ehdrp->e_phoff = 0;
4993 i_ehdrp->e_phentsize = 0;
4994 i_ehdrp->e_phnum = 0;
4995
4996 /* Each bfd section is section header entry. */
4997 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4998 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4999
5000 /* If we're building an executable, we'll need a program header table. */
5001 if (abfd->flags & EXEC_P)
5002 /* It all happens later. */
5003 ;
5004 else
5005 {
5006 i_ehdrp->e_phentsize = 0;
5007 i_phdrp = 0;
5008 i_ehdrp->e_phoff = 0;
5009 }
5010
5011 elf_tdata (abfd)->symtab_hdr.sh_name =
5012 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5013 elf_tdata (abfd)->strtab_hdr.sh_name =
5014 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5015 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5016 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5017 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5018 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5019 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5020 return FALSE;
5021
5022 return TRUE;
5023 }
5024
5025 /* Assign file positions for all the reloc sections which are not part
5026 of the loadable file image. */
5027
5028 void
5029 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5030 {
5031 file_ptr off;
5032 unsigned int i, num_sec;
5033 Elf_Internal_Shdr **shdrpp;
5034
5035 off = elf_tdata (abfd)->next_file_pos;
5036
5037 num_sec = elf_numsections (abfd);
5038 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5039 {
5040 Elf_Internal_Shdr *shdrp;
5041
5042 shdrp = *shdrpp;
5043 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5044 && shdrp->sh_offset == -1)
5045 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5046 }
5047
5048 elf_tdata (abfd)->next_file_pos = off;
5049 }
5050
5051 bfd_boolean
5052 _bfd_elf_write_object_contents (bfd *abfd)
5053 {
5054 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5055 Elf_Internal_Ehdr *i_ehdrp;
5056 Elf_Internal_Shdr **i_shdrp;
5057 bfd_boolean failed;
5058 unsigned int count, num_sec;
5059
5060 if (! abfd->output_has_begun
5061 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5062 return FALSE;
5063
5064 i_shdrp = elf_elfsections (abfd);
5065 i_ehdrp = elf_elfheader (abfd);
5066
5067 failed = FALSE;
5068 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5069 if (failed)
5070 return FALSE;
5071
5072 _bfd_elf_assign_file_positions_for_relocs (abfd);
5073
5074 /* After writing the headers, we need to write the sections too... */
5075 num_sec = elf_numsections (abfd);
5076 for (count = 1; count < num_sec; count++)
5077 {
5078 if (bed->elf_backend_section_processing)
5079 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5080 if (i_shdrp[count]->contents)
5081 {
5082 bfd_size_type amt = i_shdrp[count]->sh_size;
5083
5084 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5085 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5086 return FALSE;
5087 }
5088 if (count == SHN_LORESERVE - 1)
5089 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5090 }
5091
5092 /* Write out the section header names. */
5093 if (elf_shstrtab (abfd) != NULL
5094 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5095 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5096 return FALSE;
5097
5098 if (bed->elf_backend_final_write_processing)
5099 (*bed->elf_backend_final_write_processing) (abfd,
5100 elf_tdata (abfd)->linker);
5101
5102 return bed->s->write_shdrs_and_ehdr (abfd);
5103 }
5104
5105 bfd_boolean
5106 _bfd_elf_write_corefile_contents (bfd *abfd)
5107 {
5108 /* Hopefully this can be done just like an object file. */
5109 return _bfd_elf_write_object_contents (abfd);
5110 }
5111
5112 /* Given a section, search the header to find them. */
5113
5114 int
5115 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5116 {
5117 const struct elf_backend_data *bed;
5118 int index;
5119
5120 if (elf_section_data (asect) != NULL
5121 && elf_section_data (asect)->this_idx != 0)
5122 return elf_section_data (asect)->this_idx;
5123
5124 if (bfd_is_abs_section (asect))
5125 index = SHN_ABS;
5126 else if (bfd_is_com_section (asect))
5127 index = SHN_COMMON;
5128 else if (bfd_is_und_section (asect))
5129 index = SHN_UNDEF;
5130 else
5131 index = -1;
5132
5133 bed = get_elf_backend_data (abfd);
5134 if (bed->elf_backend_section_from_bfd_section)
5135 {
5136 int retval = index;
5137
5138 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5139 return retval;
5140 }
5141
5142 if (index == -1)
5143 bfd_set_error (bfd_error_nonrepresentable_section);
5144
5145 return index;
5146 }
5147
5148 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5149 on error. */
5150
5151 int
5152 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5153 {
5154 asymbol *asym_ptr = *asym_ptr_ptr;
5155 int idx;
5156 flagword flags = asym_ptr->flags;
5157
5158 /* When gas creates relocations against local labels, it creates its
5159 own symbol for the section, but does put the symbol into the
5160 symbol chain, so udata is 0. When the linker is generating
5161 relocatable output, this section symbol may be for one of the
5162 input sections rather than the output section. */
5163 if (asym_ptr->udata.i == 0
5164 && (flags & BSF_SECTION_SYM)
5165 && asym_ptr->section)
5166 {
5167 asection *sec;
5168 int indx;
5169
5170 sec = asym_ptr->section;
5171 if (sec->owner != abfd && sec->output_section != NULL)
5172 sec = sec->output_section;
5173 if (sec->owner == abfd
5174 && (indx = sec->index) < elf_num_section_syms (abfd)
5175 && elf_section_syms (abfd)[indx] != NULL)
5176 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5177 }
5178
5179 idx = asym_ptr->udata.i;
5180
5181 if (idx == 0)
5182 {
5183 /* This case can occur when using --strip-symbol on a symbol
5184 which is used in a relocation entry. */
5185 (*_bfd_error_handler)
5186 (_("%B: symbol `%s' required but not present"),
5187 abfd, bfd_asymbol_name (asym_ptr));
5188 bfd_set_error (bfd_error_no_symbols);
5189 return -1;
5190 }
5191
5192 #if DEBUG & 4
5193 {
5194 fprintf (stderr,
5195 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5196 (long) asym_ptr, asym_ptr->name, idx, flags,
5197 elf_symbol_flags (flags));
5198 fflush (stderr);
5199 }
5200 #endif
5201
5202 return idx;
5203 }
5204
5205 /* Rewrite program header information. */
5206
5207 static bfd_boolean
5208 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5209 {
5210 Elf_Internal_Ehdr *iehdr;
5211 struct elf_segment_map *map;
5212 struct elf_segment_map *map_first;
5213 struct elf_segment_map **pointer_to_map;
5214 Elf_Internal_Phdr *segment;
5215 asection *section;
5216 unsigned int i;
5217 unsigned int num_segments;
5218 bfd_boolean phdr_included = FALSE;
5219 bfd_vma maxpagesize;
5220 struct elf_segment_map *phdr_adjust_seg = NULL;
5221 unsigned int phdr_adjust_num = 0;
5222 const struct elf_backend_data *bed;
5223
5224 bed = get_elf_backend_data (ibfd);
5225 iehdr = elf_elfheader (ibfd);
5226
5227 map_first = NULL;
5228 pointer_to_map = &map_first;
5229
5230 num_segments = elf_elfheader (ibfd)->e_phnum;
5231 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5232
5233 /* Returns the end address of the segment + 1. */
5234 #define SEGMENT_END(segment, start) \
5235 (start + (segment->p_memsz > segment->p_filesz \
5236 ? segment->p_memsz : segment->p_filesz))
5237
5238 #define SECTION_SIZE(section, segment) \
5239 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5240 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5241 ? section->size : 0)
5242
5243 /* Returns TRUE if the given section is contained within
5244 the given segment. VMA addresses are compared. */
5245 #define IS_CONTAINED_BY_VMA(section, segment) \
5246 (section->vma >= segment->p_vaddr \
5247 && (section->vma + SECTION_SIZE (section, segment) \
5248 <= (SEGMENT_END (segment, segment->p_vaddr))))
5249
5250 /* Returns TRUE if the given section is contained within
5251 the given segment. LMA addresses are compared. */
5252 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5253 (section->lma >= base \
5254 && (section->lma + SECTION_SIZE (section, segment) \
5255 <= SEGMENT_END (segment, base)))
5256
5257 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5258 #define IS_COREFILE_NOTE(p, s) \
5259 (p->p_type == PT_NOTE \
5260 && bfd_get_format (ibfd) == bfd_core \
5261 && s->vma == 0 && s->lma == 0 \
5262 && (bfd_vma) s->filepos >= p->p_offset \
5263 && ((bfd_vma) s->filepos + s->size \
5264 <= p->p_offset + p->p_filesz))
5265
5266 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5267 linker, which generates a PT_INTERP section with p_vaddr and
5268 p_memsz set to 0. */
5269 #define IS_SOLARIS_PT_INTERP(p, s) \
5270 (p->p_vaddr == 0 \
5271 && p->p_paddr == 0 \
5272 && p->p_memsz == 0 \
5273 && p->p_filesz > 0 \
5274 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5275 && s->size > 0 \
5276 && (bfd_vma) s->filepos >= p->p_offset \
5277 && ((bfd_vma) s->filepos + s->size \
5278 <= p->p_offset + p->p_filesz))
5279
5280 /* Decide if the given section should be included in the given segment.
5281 A section will be included if:
5282 1. It is within the address space of the segment -- we use the LMA
5283 if that is set for the segment and the VMA otherwise,
5284 2. It is an allocated segment,
5285 3. There is an output section associated with it,
5286 4. The section has not already been allocated to a previous segment.
5287 5. PT_GNU_STACK segments do not include any sections.
5288 6. PT_TLS segment includes only SHF_TLS sections.
5289 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5290 8. PT_DYNAMIC should not contain empty sections at the beginning
5291 (with the possible exception of .dynamic). */
5292 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5293 ((((segment->p_paddr \
5294 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5295 : IS_CONTAINED_BY_VMA (section, segment)) \
5296 && (section->flags & SEC_ALLOC) != 0) \
5297 || IS_COREFILE_NOTE (segment, section)) \
5298 && segment->p_type != PT_GNU_STACK \
5299 && (segment->p_type != PT_TLS \
5300 || (section->flags & SEC_THREAD_LOCAL)) \
5301 && (segment->p_type == PT_LOAD \
5302 || segment->p_type == PT_TLS \
5303 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5304 && (segment->p_type != PT_DYNAMIC \
5305 || SECTION_SIZE (section, segment) > 0 \
5306 || (segment->p_paddr \
5307 ? segment->p_paddr != section->lma \
5308 : segment->p_vaddr != section->vma) \
5309 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5310 == 0)) \
5311 && ! section->segment_mark)
5312
5313 /* If the output section of a section in the input segment is NULL,
5314 it is removed from the corresponding output segment. */
5315 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5316 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5317 && section->output_section != NULL)
5318
5319 /* Returns TRUE iff seg1 starts after the end of seg2. */
5320 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5321 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5322
5323 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5324 their VMA address ranges and their LMA address ranges overlap.
5325 It is possible to have overlapping VMA ranges without overlapping LMA
5326 ranges. RedBoot images for example can have both .data and .bss mapped
5327 to the same VMA range, but with the .data section mapped to a different
5328 LMA. */
5329 #define SEGMENT_OVERLAPS(seg1, seg2) \
5330 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5331 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5332 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5333 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5334
5335 /* Initialise the segment mark field. */
5336 for (section = ibfd->sections; section != NULL; section = section->next)
5337 section->segment_mark = FALSE;
5338
5339 /* Scan through the segments specified in the program header
5340 of the input BFD. For this first scan we look for overlaps
5341 in the loadable segments. These can be created by weird
5342 parameters to objcopy. Also, fix some solaris weirdness. */
5343 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5344 i < num_segments;
5345 i++, segment++)
5346 {
5347 unsigned int j;
5348 Elf_Internal_Phdr *segment2;
5349
5350 if (segment->p_type == PT_INTERP)
5351 for (section = ibfd->sections; section; section = section->next)
5352 if (IS_SOLARIS_PT_INTERP (segment, section))
5353 {
5354 /* Mininal change so that the normal section to segment
5355 assignment code will work. */
5356 segment->p_vaddr = section->vma;
5357 break;
5358 }
5359
5360 if (segment->p_type != PT_LOAD)
5361 continue;
5362
5363 /* Determine if this segment overlaps any previous segments. */
5364 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5365 {
5366 bfd_signed_vma extra_length;
5367
5368 if (segment2->p_type != PT_LOAD
5369 || ! SEGMENT_OVERLAPS (segment, segment2))
5370 continue;
5371
5372 /* Merge the two segments together. */
5373 if (segment2->p_vaddr < segment->p_vaddr)
5374 {
5375 /* Extend SEGMENT2 to include SEGMENT and then delete
5376 SEGMENT. */
5377 extra_length =
5378 SEGMENT_END (segment, segment->p_vaddr)
5379 - SEGMENT_END (segment2, segment2->p_vaddr);
5380
5381 if (extra_length > 0)
5382 {
5383 segment2->p_memsz += extra_length;
5384 segment2->p_filesz += extra_length;
5385 }
5386
5387 segment->p_type = PT_NULL;
5388
5389 /* Since we have deleted P we must restart the outer loop. */
5390 i = 0;
5391 segment = elf_tdata (ibfd)->phdr;
5392 break;
5393 }
5394 else
5395 {
5396 /* Extend SEGMENT to include SEGMENT2 and then delete
5397 SEGMENT2. */
5398 extra_length =
5399 SEGMENT_END (segment2, segment2->p_vaddr)
5400 - SEGMENT_END (segment, segment->p_vaddr);
5401
5402 if (extra_length > 0)
5403 {
5404 segment->p_memsz += extra_length;
5405 segment->p_filesz += extra_length;
5406 }
5407
5408 segment2->p_type = PT_NULL;
5409 }
5410 }
5411 }
5412
5413 /* The second scan attempts to assign sections to segments. */
5414 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5415 i < num_segments;
5416 i ++, segment ++)
5417 {
5418 unsigned int section_count;
5419 asection ** sections;
5420 asection * output_section;
5421 unsigned int isec;
5422 bfd_vma matching_lma;
5423 bfd_vma suggested_lma;
5424 unsigned int j;
5425 bfd_size_type amt;
5426 asection * first_section;
5427
5428 if (segment->p_type == PT_NULL)
5429 continue;
5430
5431 first_section = NULL;
5432 /* Compute how many sections might be placed into this segment. */
5433 for (section = ibfd->sections, section_count = 0;
5434 section != NULL;
5435 section = section->next)
5436 {
5437 /* Find the first section in the input segment, which may be
5438 removed from the corresponding output segment. */
5439 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5440 {
5441 if (first_section == NULL)
5442 first_section = section;
5443 if (section->output_section != NULL)
5444 ++section_count;
5445 }
5446 }
5447
5448 /* Allocate a segment map big enough to contain
5449 all of the sections we have selected. */
5450 amt = sizeof (struct elf_segment_map);
5451 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5452 map = bfd_zalloc (obfd, amt);
5453 if (map == NULL)
5454 return FALSE;
5455
5456 /* Initialise the fields of the segment map. Default to
5457 using the physical address of the segment in the input BFD. */
5458 map->next = NULL;
5459 map->p_type = segment->p_type;
5460 map->p_flags = segment->p_flags;
5461 map->p_flags_valid = 1;
5462
5463 /* If the first section in the input segment is removed, there is
5464 no need to preserve segment physical address in the corresponding
5465 output segment. */
5466 if (!first_section || first_section->output_section != NULL)
5467 {
5468 map->p_paddr = segment->p_paddr;
5469 map->p_paddr_valid = 1;
5470 }
5471
5472 /* Determine if this segment contains the ELF file header
5473 and if it contains the program headers themselves. */
5474 map->includes_filehdr = (segment->p_offset == 0
5475 && segment->p_filesz >= iehdr->e_ehsize);
5476
5477 map->includes_phdrs = 0;
5478
5479 if (! phdr_included || segment->p_type != PT_LOAD)
5480 {
5481 map->includes_phdrs =
5482 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5483 && (segment->p_offset + segment->p_filesz
5484 >= ((bfd_vma) iehdr->e_phoff
5485 + iehdr->e_phnum * iehdr->e_phentsize)));
5486
5487 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5488 phdr_included = TRUE;
5489 }
5490
5491 if (section_count == 0)
5492 {
5493 /* Special segments, such as the PT_PHDR segment, may contain
5494 no sections, but ordinary, loadable segments should contain
5495 something. They are allowed by the ELF spec however, so only
5496 a warning is produced. */
5497 if (segment->p_type == PT_LOAD)
5498 (*_bfd_error_handler)
5499 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5500 ibfd);
5501
5502 map->count = 0;
5503 *pointer_to_map = map;
5504 pointer_to_map = &map->next;
5505
5506 continue;
5507 }
5508
5509 /* Now scan the sections in the input BFD again and attempt
5510 to add their corresponding output sections to the segment map.
5511 The problem here is how to handle an output section which has
5512 been moved (ie had its LMA changed). There are four possibilities:
5513
5514 1. None of the sections have been moved.
5515 In this case we can continue to use the segment LMA from the
5516 input BFD.
5517
5518 2. All of the sections have been moved by the same amount.
5519 In this case we can change the segment's LMA to match the LMA
5520 of the first section.
5521
5522 3. Some of the sections have been moved, others have not.
5523 In this case those sections which have not been moved can be
5524 placed in the current segment which will have to have its size,
5525 and possibly its LMA changed, and a new segment or segments will
5526 have to be created to contain the other sections.
5527
5528 4. The sections have been moved, but not by the same amount.
5529 In this case we can change the segment's LMA to match the LMA
5530 of the first section and we will have to create a new segment
5531 or segments to contain the other sections.
5532
5533 In order to save time, we allocate an array to hold the section
5534 pointers that we are interested in. As these sections get assigned
5535 to a segment, they are removed from this array. */
5536
5537 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5538 to work around this long long bug. */
5539 sections = bfd_malloc2 (section_count, sizeof (asection *));
5540 if (sections == NULL)
5541 return FALSE;
5542
5543 /* Step One: Scan for segment vs section LMA conflicts.
5544 Also add the sections to the section array allocated above.
5545 Also add the sections to the current segment. In the common
5546 case, where the sections have not been moved, this means that
5547 we have completely filled the segment, and there is nothing
5548 more to do. */
5549 isec = 0;
5550 matching_lma = 0;
5551 suggested_lma = 0;
5552
5553 for (j = 0, section = ibfd->sections;
5554 section != NULL;
5555 section = section->next)
5556 {
5557 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5558 {
5559 output_section = section->output_section;
5560
5561 sections[j ++] = section;
5562
5563 /* The Solaris native linker always sets p_paddr to 0.
5564 We try to catch that case here, and set it to the
5565 correct value. Note - some backends require that
5566 p_paddr be left as zero. */
5567 if (segment->p_paddr == 0
5568 && segment->p_vaddr != 0
5569 && (! bed->want_p_paddr_set_to_zero)
5570 && isec == 0
5571 && output_section->lma != 0
5572 && (output_section->vma == (segment->p_vaddr
5573 + (map->includes_filehdr
5574 ? iehdr->e_ehsize
5575 : 0)
5576 + (map->includes_phdrs
5577 ? (iehdr->e_phnum
5578 * iehdr->e_phentsize)
5579 : 0))))
5580 map->p_paddr = segment->p_vaddr;
5581
5582 /* Match up the physical address of the segment with the
5583 LMA address of the output section. */
5584 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5585 || IS_COREFILE_NOTE (segment, section)
5586 || (bed->want_p_paddr_set_to_zero &&
5587 IS_CONTAINED_BY_VMA (output_section, segment))
5588 )
5589 {
5590 if (matching_lma == 0)
5591 matching_lma = output_section->lma;
5592
5593 /* We assume that if the section fits within the segment
5594 then it does not overlap any other section within that
5595 segment. */
5596 map->sections[isec ++] = output_section;
5597 }
5598 else if (suggested_lma == 0)
5599 suggested_lma = output_section->lma;
5600 }
5601 }
5602
5603 BFD_ASSERT (j == section_count);
5604
5605 /* Step Two: Adjust the physical address of the current segment,
5606 if necessary. */
5607 if (isec == section_count)
5608 {
5609 /* All of the sections fitted within the segment as currently
5610 specified. This is the default case. Add the segment to
5611 the list of built segments and carry on to process the next
5612 program header in the input BFD. */
5613 map->count = section_count;
5614 *pointer_to_map = map;
5615 pointer_to_map = &map->next;
5616
5617 if (matching_lma != map->p_paddr
5618 && !map->includes_filehdr && !map->includes_phdrs)
5619 /* There is some padding before the first section in the
5620 segment. So, we must account for that in the output
5621 segment's vma. */
5622 map->p_vaddr_offset = matching_lma - map->p_paddr;
5623
5624 free (sections);
5625 continue;
5626 }
5627 else
5628 {
5629 if (matching_lma != 0)
5630 {
5631 /* At least one section fits inside the current segment.
5632 Keep it, but modify its physical address to match the
5633 LMA of the first section that fitted. */
5634 map->p_paddr = matching_lma;
5635 }
5636 else
5637 {
5638 /* None of the sections fitted inside the current segment.
5639 Change the current segment's physical address to match
5640 the LMA of the first section. */
5641 map->p_paddr = suggested_lma;
5642 }
5643
5644 /* Offset the segment physical address from the lma
5645 to allow for space taken up by elf headers. */
5646 if (map->includes_filehdr)
5647 map->p_paddr -= iehdr->e_ehsize;
5648
5649 if (map->includes_phdrs)
5650 {
5651 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5652
5653 /* iehdr->e_phnum is just an estimate of the number
5654 of program headers that we will need. Make a note
5655 here of the number we used and the segment we chose
5656 to hold these headers, so that we can adjust the
5657 offset when we know the correct value. */
5658 phdr_adjust_num = iehdr->e_phnum;
5659 phdr_adjust_seg = map;
5660 }
5661 }
5662
5663 /* Step Three: Loop over the sections again, this time assigning
5664 those that fit to the current segment and removing them from the
5665 sections array; but making sure not to leave large gaps. Once all
5666 possible sections have been assigned to the current segment it is
5667 added to the list of built segments and if sections still remain
5668 to be assigned, a new segment is constructed before repeating
5669 the loop. */
5670 isec = 0;
5671 do
5672 {
5673 map->count = 0;
5674 suggested_lma = 0;
5675
5676 /* Fill the current segment with sections that fit. */
5677 for (j = 0; j < section_count; j++)
5678 {
5679 section = sections[j];
5680
5681 if (section == NULL)
5682 continue;
5683
5684 output_section = section->output_section;
5685
5686 BFD_ASSERT (output_section != NULL);
5687
5688 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5689 || IS_COREFILE_NOTE (segment, section))
5690 {
5691 if (map->count == 0)
5692 {
5693 /* If the first section in a segment does not start at
5694 the beginning of the segment, then something is
5695 wrong. */
5696 if (output_section->lma !=
5697 (map->p_paddr
5698 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5699 + (map->includes_phdrs
5700 ? iehdr->e_phnum * iehdr->e_phentsize
5701 : 0)))
5702 abort ();
5703 }
5704 else
5705 {
5706 asection * prev_sec;
5707
5708 prev_sec = map->sections[map->count - 1];
5709
5710 /* If the gap between the end of the previous section
5711 and the start of this section is more than
5712 maxpagesize then we need to start a new segment. */
5713 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5714 maxpagesize)
5715 < BFD_ALIGN (output_section->lma, maxpagesize))
5716 || ((prev_sec->lma + prev_sec->size)
5717 > output_section->lma))
5718 {
5719 if (suggested_lma == 0)
5720 suggested_lma = output_section->lma;
5721
5722 continue;
5723 }
5724 }
5725
5726 map->sections[map->count++] = output_section;
5727 ++isec;
5728 sections[j] = NULL;
5729 section->segment_mark = TRUE;
5730 }
5731 else if (suggested_lma == 0)
5732 suggested_lma = output_section->lma;
5733 }
5734
5735 BFD_ASSERT (map->count > 0);
5736
5737 /* Add the current segment to the list of built segments. */
5738 *pointer_to_map = map;
5739 pointer_to_map = &map->next;
5740
5741 if (isec < section_count)
5742 {
5743 /* We still have not allocated all of the sections to
5744 segments. Create a new segment here, initialise it
5745 and carry on looping. */
5746 amt = sizeof (struct elf_segment_map);
5747 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5748 map = bfd_alloc (obfd, amt);
5749 if (map == NULL)
5750 {
5751 free (sections);
5752 return FALSE;
5753 }
5754
5755 /* Initialise the fields of the segment map. Set the physical
5756 physical address to the LMA of the first section that has
5757 not yet been assigned. */
5758 map->next = NULL;
5759 map->p_type = segment->p_type;
5760 map->p_flags = segment->p_flags;
5761 map->p_flags_valid = 1;
5762 map->p_paddr = suggested_lma;
5763 map->p_paddr_valid = 1;
5764 map->includes_filehdr = 0;
5765 map->includes_phdrs = 0;
5766 }
5767 }
5768 while (isec < section_count);
5769
5770 free (sections);
5771 }
5772
5773 /* The Solaris linker creates program headers in which all the
5774 p_paddr fields are zero. When we try to objcopy or strip such a
5775 file, we get confused. Check for this case, and if we find it
5776 reset the p_paddr_valid fields. */
5777 for (map = map_first; map != NULL; map = map->next)
5778 if (map->p_paddr != 0)
5779 break;
5780 if (map == NULL)
5781 for (map = map_first; map != NULL; map = map->next)
5782 map->p_paddr_valid = 0;
5783
5784 elf_tdata (obfd)->segment_map = map_first;
5785
5786 /* If we had to estimate the number of program headers that were
5787 going to be needed, then check our estimate now and adjust
5788 the offset if necessary. */
5789 if (phdr_adjust_seg != NULL)
5790 {
5791 unsigned int count;
5792
5793 for (count = 0, map = map_first; map != NULL; map = map->next)
5794 count++;
5795
5796 if (count > phdr_adjust_num)
5797 phdr_adjust_seg->p_paddr
5798 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5799 }
5800
5801 #undef SEGMENT_END
5802 #undef SECTION_SIZE
5803 #undef IS_CONTAINED_BY_VMA
5804 #undef IS_CONTAINED_BY_LMA
5805 #undef IS_COREFILE_NOTE
5806 #undef IS_SOLARIS_PT_INTERP
5807 #undef IS_SECTION_IN_INPUT_SEGMENT
5808 #undef INCLUDE_SECTION_IN_SEGMENT
5809 #undef SEGMENT_AFTER_SEGMENT
5810 #undef SEGMENT_OVERLAPS
5811 return TRUE;
5812 }
5813
5814 /* Copy ELF program header information. */
5815
5816 static bfd_boolean
5817 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5818 {
5819 Elf_Internal_Ehdr *iehdr;
5820 struct elf_segment_map *map;
5821 struct elf_segment_map *map_first;
5822 struct elf_segment_map **pointer_to_map;
5823 Elf_Internal_Phdr *segment;
5824 unsigned int i;
5825 unsigned int num_segments;
5826 bfd_boolean phdr_included = FALSE;
5827
5828 iehdr = elf_elfheader (ibfd);
5829
5830 map_first = NULL;
5831 pointer_to_map = &map_first;
5832
5833 num_segments = elf_elfheader (ibfd)->e_phnum;
5834 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5835 i < num_segments;
5836 i++, segment++)
5837 {
5838 asection *section;
5839 unsigned int section_count;
5840 bfd_size_type amt;
5841 Elf_Internal_Shdr *this_hdr;
5842 asection *first_section = NULL;
5843
5844 /* FIXME: Do we need to copy PT_NULL segment? */
5845 if (segment->p_type == PT_NULL)
5846 continue;
5847
5848 /* Compute how many sections are in this segment. */
5849 for (section = ibfd->sections, section_count = 0;
5850 section != NULL;
5851 section = section->next)
5852 {
5853 this_hdr = &(elf_section_data(section)->this_hdr);
5854 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5855 {
5856 if (!first_section)
5857 first_section = section;
5858 section_count++;
5859 }
5860 }
5861
5862 /* Allocate a segment map big enough to contain
5863 all of the sections we have selected. */
5864 amt = sizeof (struct elf_segment_map);
5865 if (section_count != 0)
5866 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5867 map = bfd_zalloc (obfd, amt);
5868 if (map == NULL)
5869 return FALSE;
5870
5871 /* Initialize the fields of the output segment map with the
5872 input segment. */
5873 map->next = NULL;
5874 map->p_type = segment->p_type;
5875 map->p_flags = segment->p_flags;
5876 map->p_flags_valid = 1;
5877 map->p_paddr = segment->p_paddr;
5878 map->p_paddr_valid = 1;
5879 map->p_align = segment->p_align;
5880 map->p_align_valid = 1;
5881 map->p_vaddr_offset = 0;
5882
5883 /* Determine if this segment contains the ELF file header
5884 and if it contains the program headers themselves. */
5885 map->includes_filehdr = (segment->p_offset == 0
5886 && segment->p_filesz >= iehdr->e_ehsize);
5887
5888 map->includes_phdrs = 0;
5889 if (! phdr_included || segment->p_type != PT_LOAD)
5890 {
5891 map->includes_phdrs =
5892 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5893 && (segment->p_offset + segment->p_filesz
5894 >= ((bfd_vma) iehdr->e_phoff
5895 + iehdr->e_phnum * iehdr->e_phentsize)));
5896
5897 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5898 phdr_included = TRUE;
5899 }
5900
5901 if (!map->includes_phdrs && !map->includes_filehdr)
5902 /* There is some other padding before the first section. */
5903 map->p_vaddr_offset = ((first_section ? first_section->lma : 0)
5904 - segment->p_paddr);
5905
5906 if (section_count != 0)
5907 {
5908 unsigned int isec = 0;
5909
5910 for (section = first_section;
5911 section != NULL;
5912 section = section->next)
5913 {
5914 this_hdr = &(elf_section_data(section)->this_hdr);
5915 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5916 {
5917 map->sections[isec++] = section->output_section;
5918 if (isec == section_count)
5919 break;
5920 }
5921 }
5922 }
5923
5924 map->count = section_count;
5925 *pointer_to_map = map;
5926 pointer_to_map = &map->next;
5927 }
5928
5929 elf_tdata (obfd)->segment_map = map_first;
5930 return TRUE;
5931 }
5932
5933 /* Copy private BFD data. This copies or rewrites ELF program header
5934 information. */
5935
5936 static bfd_boolean
5937 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5938 {
5939 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5940 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5941 return TRUE;
5942
5943 if (elf_tdata (ibfd)->phdr == NULL)
5944 return TRUE;
5945
5946 if (ibfd->xvec == obfd->xvec)
5947 {
5948 /* Check to see if any sections in the input BFD
5949 covered by ELF program header have changed. */
5950 Elf_Internal_Phdr *segment;
5951 asection *section, *osec;
5952 unsigned int i, num_segments;
5953 Elf_Internal_Shdr *this_hdr;
5954
5955 /* Initialize the segment mark field. */
5956 for (section = obfd->sections; section != NULL;
5957 section = section->next)
5958 section->segment_mark = FALSE;
5959
5960 num_segments = elf_elfheader (ibfd)->e_phnum;
5961 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5962 i < num_segments;
5963 i++, segment++)
5964 {
5965 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5966 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5967 which severly confuses things, so always regenerate the segment
5968 map in this case. */
5969 if (segment->p_paddr == 0
5970 && segment->p_memsz == 0
5971 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5972 goto rewrite;
5973
5974 for (section = ibfd->sections;
5975 section != NULL; section = section->next)
5976 {
5977 /* We mark the output section so that we know it comes
5978 from the input BFD. */
5979 osec = section->output_section;
5980 if (osec)
5981 osec->segment_mark = TRUE;
5982
5983 /* Check if this section is covered by the segment. */
5984 this_hdr = &(elf_section_data(section)->this_hdr);
5985 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5986 {
5987 /* FIXME: Check if its output section is changed or
5988 removed. What else do we need to check? */
5989 if (osec == NULL
5990 || section->flags != osec->flags
5991 || section->lma != osec->lma
5992 || section->vma != osec->vma
5993 || section->size != osec->size
5994 || section->rawsize != osec->rawsize
5995 || section->alignment_power != osec->alignment_power)
5996 goto rewrite;
5997 }
5998 }
5999 }
6000
6001 /* Check to see if any output section do not come from the
6002 input BFD. */
6003 for (section = obfd->sections; section != NULL;
6004 section = section->next)
6005 {
6006 if (section->segment_mark == FALSE)
6007 goto rewrite;
6008 else
6009 section->segment_mark = FALSE;
6010 }
6011
6012 return copy_elf_program_header (ibfd, obfd);
6013 }
6014
6015 rewrite:
6016 return rewrite_elf_program_header (ibfd, obfd);
6017 }
6018
6019 /* Initialize private output section information from input section. */
6020
6021 bfd_boolean
6022 _bfd_elf_init_private_section_data (bfd *ibfd,
6023 asection *isec,
6024 bfd *obfd,
6025 asection *osec,
6026 struct bfd_link_info *link_info)
6027
6028 {
6029 Elf_Internal_Shdr *ihdr, *ohdr;
6030 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
6031
6032 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6033 || obfd->xvec->flavour != bfd_target_elf_flavour)
6034 return TRUE;
6035
6036 /* Don't copy the output ELF section type from input if the
6037 output BFD section flags have been set to something different.
6038 elf_fake_sections will set ELF section type based on BFD
6039 section flags. */
6040 if (osec->flags == isec->flags || !osec->flags)
6041 {
6042 BFD_ASSERT (osec->flags == isec->flags
6043 || (!osec->flags
6044 && elf_section_type (osec) == SHT_NULL));
6045 elf_section_type (osec) = elf_section_type (isec);
6046 }
6047
6048 /* FIXME: Is this correct for all OS/PROC specific flags? */
6049 elf_section_flags (osec) |= (elf_section_flags (isec)
6050 & (SHF_MASKOS | SHF_MASKPROC));
6051
6052 /* Set things up for objcopy and relocatable link. The output
6053 SHT_GROUP section will have its elf_next_in_group pointing back
6054 to the input group members. Ignore linker created group section.
6055 See elfNN_ia64_object_p in elfxx-ia64.c. */
6056 if (need_group)
6057 {
6058 if (elf_sec_group (isec) == NULL
6059 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6060 {
6061 if (elf_section_flags (isec) & SHF_GROUP)
6062 elf_section_flags (osec) |= SHF_GROUP;
6063 elf_next_in_group (osec) = elf_next_in_group (isec);
6064 elf_group_name (osec) = elf_group_name (isec);
6065 }
6066 }
6067
6068 ihdr = &elf_section_data (isec)->this_hdr;
6069
6070 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6071 don't use the output section of the linked-to section since it
6072 may be NULL at this point. */
6073 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6074 {
6075 ohdr = &elf_section_data (osec)->this_hdr;
6076 ohdr->sh_flags |= SHF_LINK_ORDER;
6077 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6078 }
6079
6080 osec->use_rela_p = isec->use_rela_p;
6081
6082 return TRUE;
6083 }
6084
6085 /* Copy private section information. This copies over the entsize
6086 field, and sometimes the info field. */
6087
6088 bfd_boolean
6089 _bfd_elf_copy_private_section_data (bfd *ibfd,
6090 asection *isec,
6091 bfd *obfd,
6092 asection *osec)
6093 {
6094 Elf_Internal_Shdr *ihdr, *ohdr;
6095
6096 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6097 || obfd->xvec->flavour != bfd_target_elf_flavour)
6098 return TRUE;
6099
6100 ihdr = &elf_section_data (isec)->this_hdr;
6101 ohdr = &elf_section_data (osec)->this_hdr;
6102
6103 ohdr->sh_entsize = ihdr->sh_entsize;
6104
6105 if (ihdr->sh_type == SHT_SYMTAB
6106 || ihdr->sh_type == SHT_DYNSYM
6107 || ihdr->sh_type == SHT_GNU_verneed
6108 || ihdr->sh_type == SHT_GNU_verdef)
6109 ohdr->sh_info = ihdr->sh_info;
6110
6111 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6112 NULL);
6113 }
6114
6115 /* Copy private header information. */
6116
6117 bfd_boolean
6118 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6119 {
6120 asection *isec;
6121
6122 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6123 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6124 return TRUE;
6125
6126 /* Copy over private BFD data if it has not already been copied.
6127 This must be done here, rather than in the copy_private_bfd_data
6128 entry point, because the latter is called after the section
6129 contents have been set, which means that the program headers have
6130 already been worked out. */
6131 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6132 {
6133 if (! copy_private_bfd_data (ibfd, obfd))
6134 return FALSE;
6135 }
6136
6137 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6138 but this might be wrong if we deleted the group section. */
6139 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6140 if (elf_section_type (isec) == SHT_GROUP
6141 && isec->output_section == NULL)
6142 {
6143 asection *first = elf_next_in_group (isec);
6144 asection *s = first;
6145 while (s != NULL)
6146 {
6147 if (s->output_section != NULL)
6148 {
6149 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6150 elf_group_name (s->output_section) = NULL;
6151 }
6152 s = elf_next_in_group (s);
6153 if (s == first)
6154 break;
6155 }
6156 }
6157
6158 return TRUE;
6159 }
6160
6161 /* Copy private symbol information. If this symbol is in a section
6162 which we did not map into a BFD section, try to map the section
6163 index correctly. We use special macro definitions for the mapped
6164 section indices; these definitions are interpreted by the
6165 swap_out_syms function. */
6166
6167 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6168 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6169 #define MAP_STRTAB (SHN_HIOS + 3)
6170 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6171 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6172
6173 bfd_boolean
6174 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6175 asymbol *isymarg,
6176 bfd *obfd,
6177 asymbol *osymarg)
6178 {
6179 elf_symbol_type *isym, *osym;
6180
6181 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6182 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6183 return TRUE;
6184
6185 isym = elf_symbol_from (ibfd, isymarg);
6186 osym = elf_symbol_from (obfd, osymarg);
6187
6188 if (isym != NULL
6189 && osym != NULL
6190 && bfd_is_abs_section (isym->symbol.section))
6191 {
6192 unsigned int shndx;
6193
6194 shndx = isym->internal_elf_sym.st_shndx;
6195 if (shndx == elf_onesymtab (ibfd))
6196 shndx = MAP_ONESYMTAB;
6197 else if (shndx == elf_dynsymtab (ibfd))
6198 shndx = MAP_DYNSYMTAB;
6199 else if (shndx == elf_tdata (ibfd)->strtab_section)
6200 shndx = MAP_STRTAB;
6201 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6202 shndx = MAP_SHSTRTAB;
6203 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6204 shndx = MAP_SYM_SHNDX;
6205 osym->internal_elf_sym.st_shndx = shndx;
6206 }
6207
6208 return TRUE;
6209 }
6210
6211 /* Swap out the symbols. */
6212
6213 static bfd_boolean
6214 swap_out_syms (bfd *abfd,
6215 struct bfd_strtab_hash **sttp,
6216 int relocatable_p)
6217 {
6218 const struct elf_backend_data *bed;
6219 int symcount;
6220 asymbol **syms;
6221 struct bfd_strtab_hash *stt;
6222 Elf_Internal_Shdr *symtab_hdr;
6223 Elf_Internal_Shdr *symtab_shndx_hdr;
6224 Elf_Internal_Shdr *symstrtab_hdr;
6225 bfd_byte *outbound_syms;
6226 bfd_byte *outbound_shndx;
6227 int idx;
6228 bfd_size_type amt;
6229 bfd_boolean name_local_sections;
6230
6231 if (!elf_map_symbols (abfd))
6232 return FALSE;
6233
6234 /* Dump out the symtabs. */
6235 stt = _bfd_elf_stringtab_init ();
6236 if (stt == NULL)
6237 return FALSE;
6238
6239 bed = get_elf_backend_data (abfd);
6240 symcount = bfd_get_symcount (abfd);
6241 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6242 symtab_hdr->sh_type = SHT_SYMTAB;
6243 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6244 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6245 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6246 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6247
6248 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6249 symstrtab_hdr->sh_type = SHT_STRTAB;
6250
6251 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6252 if (outbound_syms == NULL)
6253 {
6254 _bfd_stringtab_free (stt);
6255 return FALSE;
6256 }
6257 symtab_hdr->contents = outbound_syms;
6258
6259 outbound_shndx = NULL;
6260 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6261 if (symtab_shndx_hdr->sh_name != 0)
6262 {
6263 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6264 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6265 sizeof (Elf_External_Sym_Shndx));
6266 if (outbound_shndx == NULL)
6267 {
6268 _bfd_stringtab_free (stt);
6269 return FALSE;
6270 }
6271
6272 symtab_shndx_hdr->contents = outbound_shndx;
6273 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6274 symtab_shndx_hdr->sh_size = amt;
6275 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6276 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6277 }
6278
6279 /* Now generate the data (for "contents"). */
6280 {
6281 /* Fill in zeroth symbol and swap it out. */
6282 Elf_Internal_Sym sym;
6283 sym.st_name = 0;
6284 sym.st_value = 0;
6285 sym.st_size = 0;
6286 sym.st_info = 0;
6287 sym.st_other = 0;
6288 sym.st_shndx = SHN_UNDEF;
6289 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6290 outbound_syms += bed->s->sizeof_sym;
6291 if (outbound_shndx != NULL)
6292 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6293 }
6294
6295 name_local_sections
6296 = (bed->elf_backend_name_local_section_symbols
6297 && bed->elf_backend_name_local_section_symbols (abfd));
6298
6299 syms = bfd_get_outsymbols (abfd);
6300 for (idx = 0; idx < symcount; idx++)
6301 {
6302 Elf_Internal_Sym sym;
6303 bfd_vma value = syms[idx]->value;
6304 elf_symbol_type *type_ptr;
6305 flagword flags = syms[idx]->flags;
6306 int type;
6307
6308 if (!name_local_sections
6309 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6310 {
6311 /* Local section symbols have no name. */
6312 sym.st_name = 0;
6313 }
6314 else
6315 {
6316 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6317 syms[idx]->name,
6318 TRUE, FALSE);
6319 if (sym.st_name == (unsigned long) -1)
6320 {
6321 _bfd_stringtab_free (stt);
6322 return FALSE;
6323 }
6324 }
6325
6326 type_ptr = elf_symbol_from (abfd, syms[idx]);
6327
6328 if ((flags & BSF_SECTION_SYM) == 0
6329 && bfd_is_com_section (syms[idx]->section))
6330 {
6331 /* ELF common symbols put the alignment into the `value' field,
6332 and the size into the `size' field. This is backwards from
6333 how BFD handles it, so reverse it here. */
6334 sym.st_size = value;
6335 if (type_ptr == NULL
6336 || type_ptr->internal_elf_sym.st_value == 0)
6337 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6338 else
6339 sym.st_value = type_ptr->internal_elf_sym.st_value;
6340 sym.st_shndx = _bfd_elf_section_from_bfd_section
6341 (abfd, syms[idx]->section);
6342 }
6343 else
6344 {
6345 asection *sec = syms[idx]->section;
6346 int shndx;
6347
6348 if (sec->output_section)
6349 {
6350 value += sec->output_offset;
6351 sec = sec->output_section;
6352 }
6353
6354 /* Don't add in the section vma for relocatable output. */
6355 if (! relocatable_p)
6356 value += sec->vma;
6357 sym.st_value = value;
6358 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6359
6360 if (bfd_is_abs_section (sec)
6361 && type_ptr != NULL
6362 && type_ptr->internal_elf_sym.st_shndx != 0)
6363 {
6364 /* This symbol is in a real ELF section which we did
6365 not create as a BFD section. Undo the mapping done
6366 by copy_private_symbol_data. */
6367 shndx = type_ptr->internal_elf_sym.st_shndx;
6368 switch (shndx)
6369 {
6370 case MAP_ONESYMTAB:
6371 shndx = elf_onesymtab (abfd);
6372 break;
6373 case MAP_DYNSYMTAB:
6374 shndx = elf_dynsymtab (abfd);
6375 break;
6376 case MAP_STRTAB:
6377 shndx = elf_tdata (abfd)->strtab_section;
6378 break;
6379 case MAP_SHSTRTAB:
6380 shndx = elf_tdata (abfd)->shstrtab_section;
6381 break;
6382 case MAP_SYM_SHNDX:
6383 shndx = elf_tdata (abfd)->symtab_shndx_section;
6384 break;
6385 default:
6386 break;
6387 }
6388 }
6389 else
6390 {
6391 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6392
6393 if (shndx == -1)
6394 {
6395 asection *sec2;
6396
6397 /* Writing this would be a hell of a lot easier if
6398 we had some decent documentation on bfd, and
6399 knew what to expect of the library, and what to
6400 demand of applications. For example, it
6401 appears that `objcopy' might not set the
6402 section of a symbol to be a section that is
6403 actually in the output file. */
6404 sec2 = bfd_get_section_by_name (abfd, sec->name);
6405 if (sec2 == NULL)
6406 {
6407 _bfd_error_handler (_("\
6408 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6409 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6410 sec->name);
6411 bfd_set_error (bfd_error_invalid_operation);
6412 _bfd_stringtab_free (stt);
6413 return FALSE;
6414 }
6415
6416 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6417 BFD_ASSERT (shndx != -1);
6418 }
6419 }
6420
6421 sym.st_shndx = shndx;
6422 }
6423
6424 if ((flags & BSF_THREAD_LOCAL) != 0)
6425 type = STT_TLS;
6426 else if ((flags & BSF_FUNCTION) != 0)
6427 type = STT_FUNC;
6428 else if ((flags & BSF_OBJECT) != 0)
6429 type = STT_OBJECT;
6430 else if ((flags & BSF_RELC) != 0)
6431 type = STT_RELC;
6432 else if ((flags & BSF_SRELC) != 0)
6433 type = STT_SRELC;
6434 else
6435 type = STT_NOTYPE;
6436
6437 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6438 type = STT_TLS;
6439
6440 /* Processor-specific types. */
6441 if (type_ptr != NULL
6442 && bed->elf_backend_get_symbol_type)
6443 type = ((*bed->elf_backend_get_symbol_type)
6444 (&type_ptr->internal_elf_sym, type));
6445
6446 if (flags & BSF_SECTION_SYM)
6447 {
6448 if (flags & BSF_GLOBAL)
6449 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6450 else
6451 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6452 }
6453 else if (bfd_is_com_section (syms[idx]->section))
6454 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6455 else if (bfd_is_und_section (syms[idx]->section))
6456 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6457 ? STB_WEAK
6458 : STB_GLOBAL),
6459 type);
6460 else if (flags & BSF_FILE)
6461 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6462 else
6463 {
6464 int bind = STB_LOCAL;
6465
6466 if (flags & BSF_LOCAL)
6467 bind = STB_LOCAL;
6468 else if (flags & BSF_WEAK)
6469 bind = STB_WEAK;
6470 else if (flags & BSF_GLOBAL)
6471 bind = STB_GLOBAL;
6472
6473 sym.st_info = ELF_ST_INFO (bind, type);
6474 }
6475
6476 if (type_ptr != NULL)
6477 sym.st_other = type_ptr->internal_elf_sym.st_other;
6478 else
6479 sym.st_other = 0;
6480
6481 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6482 outbound_syms += bed->s->sizeof_sym;
6483 if (outbound_shndx != NULL)
6484 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6485 }
6486
6487 *sttp = stt;
6488 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6489 symstrtab_hdr->sh_type = SHT_STRTAB;
6490
6491 symstrtab_hdr->sh_flags = 0;
6492 symstrtab_hdr->sh_addr = 0;
6493 symstrtab_hdr->sh_entsize = 0;
6494 symstrtab_hdr->sh_link = 0;
6495 symstrtab_hdr->sh_info = 0;
6496 symstrtab_hdr->sh_addralign = 1;
6497
6498 return TRUE;
6499 }
6500
6501 /* Return the number of bytes required to hold the symtab vector.
6502
6503 Note that we base it on the count plus 1, since we will null terminate
6504 the vector allocated based on this size. However, the ELF symbol table
6505 always has a dummy entry as symbol #0, so it ends up even. */
6506
6507 long
6508 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6509 {
6510 long symcount;
6511 long symtab_size;
6512 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6513
6514 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6515 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6516 if (symcount > 0)
6517 symtab_size -= sizeof (asymbol *);
6518
6519 return symtab_size;
6520 }
6521
6522 long
6523 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6524 {
6525 long symcount;
6526 long symtab_size;
6527 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6528
6529 if (elf_dynsymtab (abfd) == 0)
6530 {
6531 bfd_set_error (bfd_error_invalid_operation);
6532 return -1;
6533 }
6534
6535 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6536 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6537 if (symcount > 0)
6538 symtab_size -= sizeof (asymbol *);
6539
6540 return symtab_size;
6541 }
6542
6543 long
6544 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6545 sec_ptr asect)
6546 {
6547 return (asect->reloc_count + 1) * sizeof (arelent *);
6548 }
6549
6550 /* Canonicalize the relocs. */
6551
6552 long
6553 _bfd_elf_canonicalize_reloc (bfd *abfd,
6554 sec_ptr section,
6555 arelent **relptr,
6556 asymbol **symbols)
6557 {
6558 arelent *tblptr;
6559 unsigned int i;
6560 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6561
6562 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6563 return -1;
6564
6565 tblptr = section->relocation;
6566 for (i = 0; i < section->reloc_count; i++)
6567 *relptr++ = tblptr++;
6568
6569 *relptr = NULL;
6570
6571 return section->reloc_count;
6572 }
6573
6574 long
6575 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6576 {
6577 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6578 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6579
6580 if (symcount >= 0)
6581 bfd_get_symcount (abfd) = symcount;
6582 return symcount;
6583 }
6584
6585 long
6586 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6587 asymbol **allocation)
6588 {
6589 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6590 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6591
6592 if (symcount >= 0)
6593 bfd_get_dynamic_symcount (abfd) = symcount;
6594 return symcount;
6595 }
6596
6597 /* Return the size required for the dynamic reloc entries. Any loadable
6598 section that was actually installed in the BFD, and has type SHT_REL
6599 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6600 dynamic reloc section. */
6601
6602 long
6603 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6604 {
6605 long ret;
6606 asection *s;
6607
6608 if (elf_dynsymtab (abfd) == 0)
6609 {
6610 bfd_set_error (bfd_error_invalid_operation);
6611 return -1;
6612 }
6613
6614 ret = sizeof (arelent *);
6615 for (s = abfd->sections; s != NULL; s = s->next)
6616 if ((s->flags & SEC_LOAD) != 0
6617 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6618 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6619 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6620 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6621 * sizeof (arelent *));
6622
6623 return ret;
6624 }
6625
6626 /* Canonicalize the dynamic relocation entries. Note that we return the
6627 dynamic relocations as a single block, although they are actually
6628 associated with particular sections; the interface, which was
6629 designed for SunOS style shared libraries, expects that there is only
6630 one set of dynamic relocs. Any loadable section that was actually
6631 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6632 dynamic symbol table, is considered to be a dynamic reloc section. */
6633
6634 long
6635 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6636 arelent **storage,
6637 asymbol **syms)
6638 {
6639 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6640 asection *s;
6641 long ret;
6642
6643 if (elf_dynsymtab (abfd) == 0)
6644 {
6645 bfd_set_error (bfd_error_invalid_operation);
6646 return -1;
6647 }
6648
6649 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6650 ret = 0;
6651 for (s = abfd->sections; s != NULL; s = s->next)
6652 {
6653 if ((s->flags & SEC_LOAD) != 0
6654 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6655 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6656 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6657 {
6658 arelent *p;
6659 long count, i;
6660
6661 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6662 return -1;
6663 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6664 p = s->relocation;
6665 for (i = 0; i < count; i++)
6666 *storage++ = p++;
6667 ret += count;
6668 }
6669 }
6670
6671 *storage = NULL;
6672
6673 return ret;
6674 }
6675 \f
6676 /* Read in the version information. */
6677
6678 bfd_boolean
6679 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6680 {
6681 bfd_byte *contents = NULL;
6682 unsigned int freeidx = 0;
6683
6684 if (elf_dynverref (abfd) != 0)
6685 {
6686 Elf_Internal_Shdr *hdr;
6687 Elf_External_Verneed *everneed;
6688 Elf_Internal_Verneed *iverneed;
6689 unsigned int i;
6690 bfd_byte *contents_end;
6691
6692 hdr = &elf_tdata (abfd)->dynverref_hdr;
6693
6694 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6695 sizeof (Elf_Internal_Verneed));
6696 if (elf_tdata (abfd)->verref == NULL)
6697 goto error_return;
6698
6699 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6700
6701 contents = bfd_malloc (hdr->sh_size);
6702 if (contents == NULL)
6703 {
6704 error_return_verref:
6705 elf_tdata (abfd)->verref = NULL;
6706 elf_tdata (abfd)->cverrefs = 0;
6707 goto error_return;
6708 }
6709 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6710 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6711 goto error_return_verref;
6712
6713 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6714 goto error_return_verref;
6715
6716 BFD_ASSERT (sizeof (Elf_External_Verneed)
6717 == sizeof (Elf_External_Vernaux));
6718 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6719 everneed = (Elf_External_Verneed *) contents;
6720 iverneed = elf_tdata (abfd)->verref;
6721 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6722 {
6723 Elf_External_Vernaux *evernaux;
6724 Elf_Internal_Vernaux *ivernaux;
6725 unsigned int j;
6726
6727 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6728
6729 iverneed->vn_bfd = abfd;
6730
6731 iverneed->vn_filename =
6732 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6733 iverneed->vn_file);
6734 if (iverneed->vn_filename == NULL)
6735 goto error_return_verref;
6736
6737 if (iverneed->vn_cnt == 0)
6738 iverneed->vn_auxptr = NULL;
6739 else
6740 {
6741 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6742 sizeof (Elf_Internal_Vernaux));
6743 if (iverneed->vn_auxptr == NULL)
6744 goto error_return_verref;
6745 }
6746
6747 if (iverneed->vn_aux
6748 > (size_t) (contents_end - (bfd_byte *) everneed))
6749 goto error_return_verref;
6750
6751 evernaux = ((Elf_External_Vernaux *)
6752 ((bfd_byte *) everneed + iverneed->vn_aux));
6753 ivernaux = iverneed->vn_auxptr;
6754 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6755 {
6756 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6757
6758 ivernaux->vna_nodename =
6759 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6760 ivernaux->vna_name);
6761 if (ivernaux->vna_nodename == NULL)
6762 goto error_return_verref;
6763
6764 if (j + 1 < iverneed->vn_cnt)
6765 ivernaux->vna_nextptr = ivernaux + 1;
6766 else
6767 ivernaux->vna_nextptr = NULL;
6768
6769 if (ivernaux->vna_next
6770 > (size_t) (contents_end - (bfd_byte *) evernaux))
6771 goto error_return_verref;
6772
6773 evernaux = ((Elf_External_Vernaux *)
6774 ((bfd_byte *) evernaux + ivernaux->vna_next));
6775
6776 if (ivernaux->vna_other > freeidx)
6777 freeidx = ivernaux->vna_other;
6778 }
6779
6780 if (i + 1 < hdr->sh_info)
6781 iverneed->vn_nextref = iverneed + 1;
6782 else
6783 iverneed->vn_nextref = NULL;
6784
6785 if (iverneed->vn_next
6786 > (size_t) (contents_end - (bfd_byte *) everneed))
6787 goto error_return_verref;
6788
6789 everneed = ((Elf_External_Verneed *)
6790 ((bfd_byte *) everneed + iverneed->vn_next));
6791 }
6792
6793 free (contents);
6794 contents = NULL;
6795 }
6796
6797 if (elf_dynverdef (abfd) != 0)
6798 {
6799 Elf_Internal_Shdr *hdr;
6800 Elf_External_Verdef *everdef;
6801 Elf_Internal_Verdef *iverdef;
6802 Elf_Internal_Verdef *iverdefarr;
6803 Elf_Internal_Verdef iverdefmem;
6804 unsigned int i;
6805 unsigned int maxidx;
6806 bfd_byte *contents_end_def, *contents_end_aux;
6807
6808 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6809
6810 contents = bfd_malloc (hdr->sh_size);
6811 if (contents == NULL)
6812 goto error_return;
6813 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6814 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6815 goto error_return;
6816
6817 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6818 goto error_return;
6819
6820 BFD_ASSERT (sizeof (Elf_External_Verdef)
6821 >= sizeof (Elf_External_Verdaux));
6822 contents_end_def = contents + hdr->sh_size
6823 - sizeof (Elf_External_Verdef);
6824 contents_end_aux = contents + hdr->sh_size
6825 - sizeof (Elf_External_Verdaux);
6826
6827 /* We know the number of entries in the section but not the maximum
6828 index. Therefore we have to run through all entries and find
6829 the maximum. */
6830 everdef = (Elf_External_Verdef *) contents;
6831 maxidx = 0;
6832 for (i = 0; i < hdr->sh_info; ++i)
6833 {
6834 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6835
6836 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6837 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6838
6839 if (iverdefmem.vd_next
6840 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6841 goto error_return;
6842
6843 everdef = ((Elf_External_Verdef *)
6844 ((bfd_byte *) everdef + iverdefmem.vd_next));
6845 }
6846
6847 if (default_imported_symver)
6848 {
6849 if (freeidx > maxidx)
6850 maxidx = ++freeidx;
6851 else
6852 freeidx = ++maxidx;
6853 }
6854 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6855 sizeof (Elf_Internal_Verdef));
6856 if (elf_tdata (abfd)->verdef == NULL)
6857 goto error_return;
6858
6859 elf_tdata (abfd)->cverdefs = maxidx;
6860
6861 everdef = (Elf_External_Verdef *) contents;
6862 iverdefarr = elf_tdata (abfd)->verdef;
6863 for (i = 0; i < hdr->sh_info; i++)
6864 {
6865 Elf_External_Verdaux *everdaux;
6866 Elf_Internal_Verdaux *iverdaux;
6867 unsigned int j;
6868
6869 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6870
6871 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6872 {
6873 error_return_verdef:
6874 elf_tdata (abfd)->verdef = NULL;
6875 elf_tdata (abfd)->cverdefs = 0;
6876 goto error_return;
6877 }
6878
6879 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6880 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6881
6882 iverdef->vd_bfd = abfd;
6883
6884 if (iverdef->vd_cnt == 0)
6885 iverdef->vd_auxptr = NULL;
6886 else
6887 {
6888 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6889 sizeof (Elf_Internal_Verdaux));
6890 if (iverdef->vd_auxptr == NULL)
6891 goto error_return_verdef;
6892 }
6893
6894 if (iverdef->vd_aux
6895 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6896 goto error_return_verdef;
6897
6898 everdaux = ((Elf_External_Verdaux *)
6899 ((bfd_byte *) everdef + iverdef->vd_aux));
6900 iverdaux = iverdef->vd_auxptr;
6901 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6902 {
6903 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6904
6905 iverdaux->vda_nodename =
6906 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6907 iverdaux->vda_name);
6908 if (iverdaux->vda_nodename == NULL)
6909 goto error_return_verdef;
6910
6911 if (j + 1 < iverdef->vd_cnt)
6912 iverdaux->vda_nextptr = iverdaux + 1;
6913 else
6914 iverdaux->vda_nextptr = NULL;
6915
6916 if (iverdaux->vda_next
6917 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6918 goto error_return_verdef;
6919
6920 everdaux = ((Elf_External_Verdaux *)
6921 ((bfd_byte *) everdaux + iverdaux->vda_next));
6922 }
6923
6924 if (iverdef->vd_cnt)
6925 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6926
6927 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6928 iverdef->vd_nextdef = iverdef + 1;
6929 else
6930 iverdef->vd_nextdef = NULL;
6931
6932 everdef = ((Elf_External_Verdef *)
6933 ((bfd_byte *) everdef + iverdef->vd_next));
6934 }
6935
6936 free (contents);
6937 contents = NULL;
6938 }
6939 else if (default_imported_symver)
6940 {
6941 if (freeidx < 3)
6942 freeidx = 3;
6943 else
6944 freeidx++;
6945
6946 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6947 sizeof (Elf_Internal_Verdef));
6948 if (elf_tdata (abfd)->verdef == NULL)
6949 goto error_return;
6950
6951 elf_tdata (abfd)->cverdefs = freeidx;
6952 }
6953
6954 /* Create a default version based on the soname. */
6955 if (default_imported_symver)
6956 {
6957 Elf_Internal_Verdef *iverdef;
6958 Elf_Internal_Verdaux *iverdaux;
6959
6960 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6961
6962 iverdef->vd_version = VER_DEF_CURRENT;
6963 iverdef->vd_flags = 0;
6964 iverdef->vd_ndx = freeidx;
6965 iverdef->vd_cnt = 1;
6966
6967 iverdef->vd_bfd = abfd;
6968
6969 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6970 if (iverdef->vd_nodename == NULL)
6971 goto error_return_verdef;
6972 iverdef->vd_nextdef = NULL;
6973 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6974 if (iverdef->vd_auxptr == NULL)
6975 goto error_return_verdef;
6976
6977 iverdaux = iverdef->vd_auxptr;
6978 iverdaux->vda_nodename = iverdef->vd_nodename;
6979 iverdaux->vda_nextptr = NULL;
6980 }
6981
6982 return TRUE;
6983
6984 error_return:
6985 if (contents != NULL)
6986 free (contents);
6987 return FALSE;
6988 }
6989 \f
6990 asymbol *
6991 _bfd_elf_make_empty_symbol (bfd *abfd)
6992 {
6993 elf_symbol_type *newsym;
6994 bfd_size_type amt = sizeof (elf_symbol_type);
6995
6996 newsym = bfd_zalloc (abfd, amt);
6997 if (!newsym)
6998 return NULL;
6999 else
7000 {
7001 newsym->symbol.the_bfd = abfd;
7002 return &newsym->symbol;
7003 }
7004 }
7005
7006 void
7007 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7008 asymbol *symbol,
7009 symbol_info *ret)
7010 {
7011 bfd_symbol_info (symbol, ret);
7012 }
7013
7014 /* Return whether a symbol name implies a local symbol. Most targets
7015 use this function for the is_local_label_name entry point, but some
7016 override it. */
7017
7018 bfd_boolean
7019 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7020 const char *name)
7021 {
7022 /* Normal local symbols start with ``.L''. */
7023 if (name[0] == '.' && name[1] == 'L')
7024 return TRUE;
7025
7026 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7027 DWARF debugging symbols starting with ``..''. */
7028 if (name[0] == '.' && name[1] == '.')
7029 return TRUE;
7030
7031 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7032 emitting DWARF debugging output. I suspect this is actually a
7033 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7034 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7035 underscore to be emitted on some ELF targets). For ease of use,
7036 we treat such symbols as local. */
7037 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7038 return TRUE;
7039
7040 return FALSE;
7041 }
7042
7043 alent *
7044 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7045 asymbol *symbol ATTRIBUTE_UNUSED)
7046 {
7047 abort ();
7048 return NULL;
7049 }
7050
7051 bfd_boolean
7052 _bfd_elf_set_arch_mach (bfd *abfd,
7053 enum bfd_architecture arch,
7054 unsigned long machine)
7055 {
7056 /* If this isn't the right architecture for this backend, and this
7057 isn't the generic backend, fail. */
7058 if (arch != get_elf_backend_data (abfd)->arch
7059 && arch != bfd_arch_unknown
7060 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7061 return FALSE;
7062
7063 return bfd_default_set_arch_mach (abfd, arch, machine);
7064 }
7065
7066 /* Find the function to a particular section and offset,
7067 for error reporting. */
7068
7069 static bfd_boolean
7070 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7071 asection *section,
7072 asymbol **symbols,
7073 bfd_vma offset,
7074 const char **filename_ptr,
7075 const char **functionname_ptr)
7076 {
7077 const char *filename;
7078 asymbol *func, *file;
7079 bfd_vma low_func;
7080 asymbol **p;
7081 /* ??? Given multiple file symbols, it is impossible to reliably
7082 choose the right file name for global symbols. File symbols are
7083 local symbols, and thus all file symbols must sort before any
7084 global symbols. The ELF spec may be interpreted to say that a
7085 file symbol must sort before other local symbols, but currently
7086 ld -r doesn't do this. So, for ld -r output, it is possible to
7087 make a better choice of file name for local symbols by ignoring
7088 file symbols appearing after a given local symbol. */
7089 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7090
7091 filename = NULL;
7092 func = NULL;
7093 file = NULL;
7094 low_func = 0;
7095 state = nothing_seen;
7096
7097 for (p = symbols; *p != NULL; p++)
7098 {
7099 elf_symbol_type *q;
7100
7101 q = (elf_symbol_type *) *p;
7102
7103 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7104 {
7105 default:
7106 break;
7107 case STT_FILE:
7108 file = &q->symbol;
7109 if (state == symbol_seen)
7110 state = file_after_symbol_seen;
7111 continue;
7112 case STT_NOTYPE:
7113 case STT_FUNC:
7114 if (bfd_get_section (&q->symbol) == section
7115 && q->symbol.value >= low_func
7116 && q->symbol.value <= offset)
7117 {
7118 func = (asymbol *) q;
7119 low_func = q->symbol.value;
7120 filename = NULL;
7121 if (file != NULL
7122 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7123 || state != file_after_symbol_seen))
7124 filename = bfd_asymbol_name (file);
7125 }
7126 break;
7127 }
7128 if (state == nothing_seen)
7129 state = symbol_seen;
7130 }
7131
7132 if (func == NULL)
7133 return FALSE;
7134
7135 if (filename_ptr)
7136 *filename_ptr = filename;
7137 if (functionname_ptr)
7138 *functionname_ptr = bfd_asymbol_name (func);
7139
7140 return TRUE;
7141 }
7142
7143 /* Find the nearest line to a particular section and offset,
7144 for error reporting. */
7145
7146 bfd_boolean
7147 _bfd_elf_find_nearest_line (bfd *abfd,
7148 asection *section,
7149 asymbol **symbols,
7150 bfd_vma offset,
7151 const char **filename_ptr,
7152 const char **functionname_ptr,
7153 unsigned int *line_ptr)
7154 {
7155 bfd_boolean found;
7156
7157 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7158 filename_ptr, functionname_ptr,
7159 line_ptr))
7160 {
7161 if (!*functionname_ptr)
7162 elf_find_function (abfd, section, symbols, offset,
7163 *filename_ptr ? NULL : filename_ptr,
7164 functionname_ptr);
7165
7166 return TRUE;
7167 }
7168
7169 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7170 filename_ptr, functionname_ptr,
7171 line_ptr, 0,
7172 &elf_tdata (abfd)->dwarf2_find_line_info))
7173 {
7174 if (!*functionname_ptr)
7175 elf_find_function (abfd, section, symbols, offset,
7176 *filename_ptr ? NULL : filename_ptr,
7177 functionname_ptr);
7178
7179 return TRUE;
7180 }
7181
7182 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7183 &found, filename_ptr,
7184 functionname_ptr, line_ptr,
7185 &elf_tdata (abfd)->line_info))
7186 return FALSE;
7187 if (found && (*functionname_ptr || *line_ptr))
7188 return TRUE;
7189
7190 if (symbols == NULL)
7191 return FALSE;
7192
7193 if (! elf_find_function (abfd, section, symbols, offset,
7194 filename_ptr, functionname_ptr))
7195 return FALSE;
7196
7197 *line_ptr = 0;
7198 return TRUE;
7199 }
7200
7201 /* Find the line for a symbol. */
7202
7203 bfd_boolean
7204 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7205 const char **filename_ptr, unsigned int *line_ptr)
7206 {
7207 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7208 filename_ptr, line_ptr, 0,
7209 &elf_tdata (abfd)->dwarf2_find_line_info);
7210 }
7211
7212 /* After a call to bfd_find_nearest_line, successive calls to
7213 bfd_find_inliner_info can be used to get source information about
7214 each level of function inlining that terminated at the address
7215 passed to bfd_find_nearest_line. Currently this is only supported
7216 for DWARF2 with appropriate DWARF3 extensions. */
7217
7218 bfd_boolean
7219 _bfd_elf_find_inliner_info (bfd *abfd,
7220 const char **filename_ptr,
7221 const char **functionname_ptr,
7222 unsigned int *line_ptr)
7223 {
7224 bfd_boolean found;
7225 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7226 functionname_ptr, line_ptr,
7227 & elf_tdata (abfd)->dwarf2_find_line_info);
7228 return found;
7229 }
7230
7231 int
7232 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7233 {
7234 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7235 int ret = bed->s->sizeof_ehdr;
7236
7237 if (!info->relocatable)
7238 {
7239 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7240
7241 if (phdr_size == (bfd_size_type) -1)
7242 {
7243 struct elf_segment_map *m;
7244
7245 phdr_size = 0;
7246 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7247 phdr_size += bed->s->sizeof_phdr;
7248
7249 if (phdr_size == 0)
7250 phdr_size = get_program_header_size (abfd, info);
7251 }
7252
7253 elf_tdata (abfd)->program_header_size = phdr_size;
7254 ret += phdr_size;
7255 }
7256
7257 return ret;
7258 }
7259
7260 bfd_boolean
7261 _bfd_elf_set_section_contents (bfd *abfd,
7262 sec_ptr section,
7263 const void *location,
7264 file_ptr offset,
7265 bfd_size_type count)
7266 {
7267 Elf_Internal_Shdr *hdr;
7268 bfd_signed_vma pos;
7269
7270 if (! abfd->output_has_begun
7271 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7272 return FALSE;
7273
7274 hdr = &elf_section_data (section)->this_hdr;
7275 pos = hdr->sh_offset + offset;
7276 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7277 || bfd_bwrite (location, count, abfd) != count)
7278 return FALSE;
7279
7280 return TRUE;
7281 }
7282
7283 void
7284 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7285 arelent *cache_ptr ATTRIBUTE_UNUSED,
7286 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7287 {
7288 abort ();
7289 }
7290
7291 /* Try to convert a non-ELF reloc into an ELF one. */
7292
7293 bfd_boolean
7294 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7295 {
7296 /* Check whether we really have an ELF howto. */
7297
7298 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7299 {
7300 bfd_reloc_code_real_type code;
7301 reloc_howto_type *howto;
7302
7303 /* Alien reloc: Try to determine its type to replace it with an
7304 equivalent ELF reloc. */
7305
7306 if (areloc->howto->pc_relative)
7307 {
7308 switch (areloc->howto->bitsize)
7309 {
7310 case 8:
7311 code = BFD_RELOC_8_PCREL;
7312 break;
7313 case 12:
7314 code = BFD_RELOC_12_PCREL;
7315 break;
7316 case 16:
7317 code = BFD_RELOC_16_PCREL;
7318 break;
7319 case 24:
7320 code = BFD_RELOC_24_PCREL;
7321 break;
7322 case 32:
7323 code = BFD_RELOC_32_PCREL;
7324 break;
7325 case 64:
7326 code = BFD_RELOC_64_PCREL;
7327 break;
7328 default:
7329 goto fail;
7330 }
7331
7332 howto = bfd_reloc_type_lookup (abfd, code);
7333
7334 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7335 {
7336 if (howto->pcrel_offset)
7337 areloc->addend += areloc->address;
7338 else
7339 areloc->addend -= areloc->address; /* addend is unsigned!! */
7340 }
7341 }
7342 else
7343 {
7344 switch (areloc->howto->bitsize)
7345 {
7346 case 8:
7347 code = BFD_RELOC_8;
7348 break;
7349 case 14:
7350 code = BFD_RELOC_14;
7351 break;
7352 case 16:
7353 code = BFD_RELOC_16;
7354 break;
7355 case 26:
7356 code = BFD_RELOC_26;
7357 break;
7358 case 32:
7359 code = BFD_RELOC_32;
7360 break;
7361 case 64:
7362 code = BFD_RELOC_64;
7363 break;
7364 default:
7365 goto fail;
7366 }
7367
7368 howto = bfd_reloc_type_lookup (abfd, code);
7369 }
7370
7371 if (howto)
7372 areloc->howto = howto;
7373 else
7374 goto fail;
7375 }
7376
7377 return TRUE;
7378
7379 fail:
7380 (*_bfd_error_handler)
7381 (_("%B: unsupported relocation type %s"),
7382 abfd, areloc->howto->name);
7383 bfd_set_error (bfd_error_bad_value);
7384 return FALSE;
7385 }
7386
7387 bfd_boolean
7388 _bfd_elf_close_and_cleanup (bfd *abfd)
7389 {
7390 if (bfd_get_format (abfd) == bfd_object)
7391 {
7392 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7393 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7394 _bfd_dwarf2_cleanup_debug_info (abfd);
7395 }
7396
7397 return _bfd_generic_close_and_cleanup (abfd);
7398 }
7399
7400 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7401 in the relocation's offset. Thus we cannot allow any sort of sanity
7402 range-checking to interfere. There is nothing else to do in processing
7403 this reloc. */
7404
7405 bfd_reloc_status_type
7406 _bfd_elf_rel_vtable_reloc_fn
7407 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7408 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7409 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7410 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7411 {
7412 return bfd_reloc_ok;
7413 }
7414 \f
7415 /* Elf core file support. Much of this only works on native
7416 toolchains, since we rely on knowing the
7417 machine-dependent procfs structure in order to pick
7418 out details about the corefile. */
7419
7420 #ifdef HAVE_SYS_PROCFS_H
7421 # include <sys/procfs.h>
7422 #endif
7423
7424 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7425
7426 static int
7427 elfcore_make_pid (bfd *abfd)
7428 {
7429 return ((elf_tdata (abfd)->core_lwpid << 16)
7430 + (elf_tdata (abfd)->core_pid));
7431 }
7432
7433 /* If there isn't a section called NAME, make one, using
7434 data from SECT. Note, this function will generate a
7435 reference to NAME, so you shouldn't deallocate or
7436 overwrite it. */
7437
7438 static bfd_boolean
7439 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7440 {
7441 asection *sect2;
7442
7443 if (bfd_get_section_by_name (abfd, name) != NULL)
7444 return TRUE;
7445
7446 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7447 if (sect2 == NULL)
7448 return FALSE;
7449
7450 sect2->size = sect->size;
7451 sect2->filepos = sect->filepos;
7452 sect2->alignment_power = sect->alignment_power;
7453 return TRUE;
7454 }
7455
7456 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7457 actually creates up to two pseudosections:
7458 - For the single-threaded case, a section named NAME, unless
7459 such a section already exists.
7460 - For the multi-threaded case, a section named "NAME/PID", where
7461 PID is elfcore_make_pid (abfd).
7462 Both pseudosections have identical contents. */
7463 bfd_boolean
7464 _bfd_elfcore_make_pseudosection (bfd *abfd,
7465 char *name,
7466 size_t size,
7467 ufile_ptr filepos)
7468 {
7469 char buf[100];
7470 char *threaded_name;
7471 size_t len;
7472 asection *sect;
7473
7474 /* Build the section name. */
7475
7476 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7477 len = strlen (buf) + 1;
7478 threaded_name = bfd_alloc (abfd, len);
7479 if (threaded_name == NULL)
7480 return FALSE;
7481 memcpy (threaded_name, buf, len);
7482
7483 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7484 SEC_HAS_CONTENTS);
7485 if (sect == NULL)
7486 return FALSE;
7487 sect->size = size;
7488 sect->filepos = filepos;
7489 sect->alignment_power = 2;
7490
7491 return elfcore_maybe_make_sect (abfd, name, sect);
7492 }
7493
7494 /* prstatus_t exists on:
7495 solaris 2.5+
7496 linux 2.[01] + glibc
7497 unixware 4.2
7498 */
7499
7500 #if defined (HAVE_PRSTATUS_T)
7501
7502 static bfd_boolean
7503 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7504 {
7505 size_t size;
7506 int offset;
7507
7508 if (note->descsz == sizeof (prstatus_t))
7509 {
7510 prstatus_t prstat;
7511
7512 size = sizeof (prstat.pr_reg);
7513 offset = offsetof (prstatus_t, pr_reg);
7514 memcpy (&prstat, note->descdata, sizeof (prstat));
7515
7516 /* Do not overwrite the core signal if it
7517 has already been set by another thread. */
7518 if (elf_tdata (abfd)->core_signal == 0)
7519 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7520 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7521
7522 /* pr_who exists on:
7523 solaris 2.5+
7524 unixware 4.2
7525 pr_who doesn't exist on:
7526 linux 2.[01]
7527 */
7528 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7529 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7530 #endif
7531 }
7532 #if defined (HAVE_PRSTATUS32_T)
7533 else if (note->descsz == sizeof (prstatus32_t))
7534 {
7535 /* 64-bit host, 32-bit corefile */
7536 prstatus32_t prstat;
7537
7538 size = sizeof (prstat.pr_reg);
7539 offset = offsetof (prstatus32_t, pr_reg);
7540 memcpy (&prstat, note->descdata, sizeof (prstat));
7541
7542 /* Do not overwrite the core signal if it
7543 has already been set by another thread. */
7544 if (elf_tdata (abfd)->core_signal == 0)
7545 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7546 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7547
7548 /* pr_who exists on:
7549 solaris 2.5+
7550 unixware 4.2
7551 pr_who doesn't exist on:
7552 linux 2.[01]
7553 */
7554 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7555 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7556 #endif
7557 }
7558 #endif /* HAVE_PRSTATUS32_T */
7559 else
7560 {
7561 /* Fail - we don't know how to handle any other
7562 note size (ie. data object type). */
7563 return TRUE;
7564 }
7565
7566 /* Make a ".reg/999" section and a ".reg" section. */
7567 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7568 size, note->descpos + offset);
7569 }
7570 #endif /* defined (HAVE_PRSTATUS_T) */
7571
7572 /* Create a pseudosection containing the exact contents of NOTE. */
7573 static bfd_boolean
7574 elfcore_make_note_pseudosection (bfd *abfd,
7575 char *name,
7576 Elf_Internal_Note *note)
7577 {
7578 return _bfd_elfcore_make_pseudosection (abfd, name,
7579 note->descsz, note->descpos);
7580 }
7581
7582 /* There isn't a consistent prfpregset_t across platforms,
7583 but it doesn't matter, because we don't have to pick this
7584 data structure apart. */
7585
7586 static bfd_boolean
7587 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7588 {
7589 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7590 }
7591
7592 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7593 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7594 literally. */
7595
7596 static bfd_boolean
7597 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7598 {
7599 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7600 }
7601
7602 #if defined (HAVE_PRPSINFO_T)
7603 typedef prpsinfo_t elfcore_psinfo_t;
7604 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7605 typedef prpsinfo32_t elfcore_psinfo32_t;
7606 #endif
7607 #endif
7608
7609 #if defined (HAVE_PSINFO_T)
7610 typedef psinfo_t elfcore_psinfo_t;
7611 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7612 typedef psinfo32_t elfcore_psinfo32_t;
7613 #endif
7614 #endif
7615
7616 /* return a malloc'ed copy of a string at START which is at
7617 most MAX bytes long, possibly without a terminating '\0'.
7618 the copy will always have a terminating '\0'. */
7619
7620 char *
7621 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7622 {
7623 char *dups;
7624 char *end = memchr (start, '\0', max);
7625 size_t len;
7626
7627 if (end == NULL)
7628 len = max;
7629 else
7630 len = end - start;
7631
7632 dups = bfd_alloc (abfd, len + 1);
7633 if (dups == NULL)
7634 return NULL;
7635
7636 memcpy (dups, start, len);
7637 dups[len] = '\0';
7638
7639 return dups;
7640 }
7641
7642 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7643 static bfd_boolean
7644 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7645 {
7646 if (note->descsz == sizeof (elfcore_psinfo_t))
7647 {
7648 elfcore_psinfo_t psinfo;
7649
7650 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7651
7652 elf_tdata (abfd)->core_program
7653 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7654 sizeof (psinfo.pr_fname));
7655
7656 elf_tdata (abfd)->core_command
7657 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7658 sizeof (psinfo.pr_psargs));
7659 }
7660 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7661 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7662 {
7663 /* 64-bit host, 32-bit corefile */
7664 elfcore_psinfo32_t psinfo;
7665
7666 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7667
7668 elf_tdata (abfd)->core_program
7669 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7670 sizeof (psinfo.pr_fname));
7671
7672 elf_tdata (abfd)->core_command
7673 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7674 sizeof (psinfo.pr_psargs));
7675 }
7676 #endif
7677
7678 else
7679 {
7680 /* Fail - we don't know how to handle any other
7681 note size (ie. data object type). */
7682 return TRUE;
7683 }
7684
7685 /* Note that for some reason, a spurious space is tacked
7686 onto the end of the args in some (at least one anyway)
7687 implementations, so strip it off if it exists. */
7688
7689 {
7690 char *command = elf_tdata (abfd)->core_command;
7691 int n = strlen (command);
7692
7693 if (0 < n && command[n - 1] == ' ')
7694 command[n - 1] = '\0';
7695 }
7696
7697 return TRUE;
7698 }
7699 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7700
7701 #if defined (HAVE_PSTATUS_T)
7702 static bfd_boolean
7703 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7704 {
7705 if (note->descsz == sizeof (pstatus_t)
7706 #if defined (HAVE_PXSTATUS_T)
7707 || note->descsz == sizeof (pxstatus_t)
7708 #endif
7709 )
7710 {
7711 pstatus_t pstat;
7712
7713 memcpy (&pstat, note->descdata, sizeof (pstat));
7714
7715 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7716 }
7717 #if defined (HAVE_PSTATUS32_T)
7718 else if (note->descsz == sizeof (pstatus32_t))
7719 {
7720 /* 64-bit host, 32-bit corefile */
7721 pstatus32_t pstat;
7722
7723 memcpy (&pstat, note->descdata, sizeof (pstat));
7724
7725 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7726 }
7727 #endif
7728 /* Could grab some more details from the "representative"
7729 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7730 NT_LWPSTATUS note, presumably. */
7731
7732 return TRUE;
7733 }
7734 #endif /* defined (HAVE_PSTATUS_T) */
7735
7736 #if defined (HAVE_LWPSTATUS_T)
7737 static bfd_boolean
7738 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7739 {
7740 lwpstatus_t lwpstat;
7741 char buf[100];
7742 char *name;
7743 size_t len;
7744 asection *sect;
7745
7746 if (note->descsz != sizeof (lwpstat)
7747 #if defined (HAVE_LWPXSTATUS_T)
7748 && note->descsz != sizeof (lwpxstatus_t)
7749 #endif
7750 )
7751 return TRUE;
7752
7753 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7754
7755 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7756 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7757
7758 /* Make a ".reg/999" section. */
7759
7760 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7761 len = strlen (buf) + 1;
7762 name = bfd_alloc (abfd, len);
7763 if (name == NULL)
7764 return FALSE;
7765 memcpy (name, buf, len);
7766
7767 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7768 if (sect == NULL)
7769 return FALSE;
7770
7771 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7772 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7773 sect->filepos = note->descpos
7774 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7775 #endif
7776
7777 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7778 sect->size = sizeof (lwpstat.pr_reg);
7779 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7780 #endif
7781
7782 sect->alignment_power = 2;
7783
7784 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7785 return FALSE;
7786
7787 /* Make a ".reg2/999" section */
7788
7789 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7790 len = strlen (buf) + 1;
7791 name = bfd_alloc (abfd, len);
7792 if (name == NULL)
7793 return FALSE;
7794 memcpy (name, buf, len);
7795
7796 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7797 if (sect == NULL)
7798 return FALSE;
7799
7800 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7801 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7802 sect->filepos = note->descpos
7803 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7804 #endif
7805
7806 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7807 sect->size = sizeof (lwpstat.pr_fpreg);
7808 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7809 #endif
7810
7811 sect->alignment_power = 2;
7812
7813 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7814 }
7815 #endif /* defined (HAVE_LWPSTATUS_T) */
7816
7817 #if defined (HAVE_WIN32_PSTATUS_T)
7818 static bfd_boolean
7819 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7820 {
7821 char buf[30];
7822 char *name;
7823 size_t len;
7824 asection *sect;
7825 win32_pstatus_t pstatus;
7826
7827 if (note->descsz < sizeof (pstatus))
7828 return TRUE;
7829
7830 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7831
7832 switch (pstatus.data_type)
7833 {
7834 case NOTE_INFO_PROCESS:
7835 /* FIXME: need to add ->core_command. */
7836 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7837 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7838 break;
7839
7840 case NOTE_INFO_THREAD:
7841 /* Make a ".reg/999" section. */
7842 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7843
7844 len = strlen (buf) + 1;
7845 name = bfd_alloc (abfd, len);
7846 if (name == NULL)
7847 return FALSE;
7848
7849 memcpy (name, buf, len);
7850
7851 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7852 if (sect == NULL)
7853 return FALSE;
7854
7855 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7856 sect->filepos = (note->descpos
7857 + offsetof (struct win32_pstatus,
7858 data.thread_info.thread_context));
7859 sect->alignment_power = 2;
7860
7861 if (pstatus.data.thread_info.is_active_thread)
7862 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7863 return FALSE;
7864 break;
7865
7866 case NOTE_INFO_MODULE:
7867 /* Make a ".module/xxxxxxxx" section. */
7868 sprintf (buf, ".module/%08lx",
7869 (long) pstatus.data.module_info.base_address);
7870
7871 len = strlen (buf) + 1;
7872 name = bfd_alloc (abfd, len);
7873 if (name == NULL)
7874 return FALSE;
7875
7876 memcpy (name, buf, len);
7877
7878 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7879
7880 if (sect == NULL)
7881 return FALSE;
7882
7883 sect->size = note->descsz;
7884 sect->filepos = note->descpos;
7885 sect->alignment_power = 2;
7886 break;
7887
7888 default:
7889 return TRUE;
7890 }
7891
7892 return TRUE;
7893 }
7894 #endif /* HAVE_WIN32_PSTATUS_T */
7895
7896 static bfd_boolean
7897 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7898 {
7899 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7900
7901 switch (note->type)
7902 {
7903 default:
7904 return TRUE;
7905
7906 case NT_PRSTATUS:
7907 if (bed->elf_backend_grok_prstatus)
7908 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7909 return TRUE;
7910 #if defined (HAVE_PRSTATUS_T)
7911 return elfcore_grok_prstatus (abfd, note);
7912 #else
7913 return TRUE;
7914 #endif
7915
7916 #if defined (HAVE_PSTATUS_T)
7917 case NT_PSTATUS:
7918 return elfcore_grok_pstatus (abfd, note);
7919 #endif
7920
7921 #if defined (HAVE_LWPSTATUS_T)
7922 case NT_LWPSTATUS:
7923 return elfcore_grok_lwpstatus (abfd, note);
7924 #endif
7925
7926 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7927 return elfcore_grok_prfpreg (abfd, note);
7928
7929 #if defined (HAVE_WIN32_PSTATUS_T)
7930 case NT_WIN32PSTATUS:
7931 return elfcore_grok_win32pstatus (abfd, note);
7932 #endif
7933
7934 case NT_PRXFPREG: /* Linux SSE extension */
7935 if (note->namesz == 6
7936 && strcmp (note->namedata, "LINUX") == 0)
7937 return elfcore_grok_prxfpreg (abfd, note);
7938 else
7939 return TRUE;
7940
7941 case NT_PRPSINFO:
7942 case NT_PSINFO:
7943 if (bed->elf_backend_grok_psinfo)
7944 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7945 return TRUE;
7946 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7947 return elfcore_grok_psinfo (abfd, note);
7948 #else
7949 return TRUE;
7950 #endif
7951
7952 case NT_AUXV:
7953 {
7954 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7955 SEC_HAS_CONTENTS);
7956
7957 if (sect == NULL)
7958 return FALSE;
7959 sect->size = note->descsz;
7960 sect->filepos = note->descpos;
7961 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7962
7963 return TRUE;
7964 }
7965 }
7966 }
7967
7968 static bfd_boolean
7969 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7970 {
7971 char *cp;
7972
7973 cp = strchr (note->namedata, '@');
7974 if (cp != NULL)
7975 {
7976 *lwpidp = atoi(cp + 1);
7977 return TRUE;
7978 }
7979 return FALSE;
7980 }
7981
7982 static bfd_boolean
7983 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7984 {
7985
7986 /* Signal number at offset 0x08. */
7987 elf_tdata (abfd)->core_signal
7988 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7989
7990 /* Process ID at offset 0x50. */
7991 elf_tdata (abfd)->core_pid
7992 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7993
7994 /* Command name at 0x7c (max 32 bytes, including nul). */
7995 elf_tdata (abfd)->core_command
7996 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7997
7998 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7999 note);
8000 }
8001
8002 static bfd_boolean
8003 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8004 {
8005 int lwp;
8006
8007 if (elfcore_netbsd_get_lwpid (note, &lwp))
8008 elf_tdata (abfd)->core_lwpid = lwp;
8009
8010 if (note->type == NT_NETBSDCORE_PROCINFO)
8011 {
8012 /* NetBSD-specific core "procinfo". Note that we expect to
8013 find this note before any of the others, which is fine,
8014 since the kernel writes this note out first when it
8015 creates a core file. */
8016
8017 return elfcore_grok_netbsd_procinfo (abfd, note);
8018 }
8019
8020 /* As of Jan 2002 there are no other machine-independent notes
8021 defined for NetBSD core files. If the note type is less
8022 than the start of the machine-dependent note types, we don't
8023 understand it. */
8024
8025 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8026 return TRUE;
8027
8028
8029 switch (bfd_get_arch (abfd))
8030 {
8031 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8032 PT_GETFPREGS == mach+2. */
8033
8034 case bfd_arch_alpha:
8035 case bfd_arch_sparc:
8036 switch (note->type)
8037 {
8038 case NT_NETBSDCORE_FIRSTMACH+0:
8039 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8040
8041 case NT_NETBSDCORE_FIRSTMACH+2:
8042 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8043
8044 default:
8045 return TRUE;
8046 }
8047
8048 /* On all other arch's, PT_GETREGS == mach+1 and
8049 PT_GETFPREGS == mach+3. */
8050
8051 default:
8052 switch (note->type)
8053 {
8054 case NT_NETBSDCORE_FIRSTMACH+1:
8055 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8056
8057 case NT_NETBSDCORE_FIRSTMACH+3:
8058 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8059
8060 default:
8061 return TRUE;
8062 }
8063 }
8064 /* NOTREACHED */
8065 }
8066
8067 static bfd_boolean
8068 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8069 {
8070 void *ddata = note->descdata;
8071 char buf[100];
8072 char *name;
8073 asection *sect;
8074 short sig;
8075 unsigned flags;
8076
8077 /* nto_procfs_status 'pid' field is at offset 0. */
8078 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8079
8080 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8081 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8082
8083 /* nto_procfs_status 'flags' field is at offset 8. */
8084 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8085
8086 /* nto_procfs_status 'what' field is at offset 14. */
8087 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8088 {
8089 elf_tdata (abfd)->core_signal = sig;
8090 elf_tdata (abfd)->core_lwpid = *tid;
8091 }
8092
8093 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8094 do not come from signals so we make sure we set the current
8095 thread just in case. */
8096 if (flags & 0x00000080)
8097 elf_tdata (abfd)->core_lwpid = *tid;
8098
8099 /* Make a ".qnx_core_status/%d" section. */
8100 sprintf (buf, ".qnx_core_status/%ld", *tid);
8101
8102 name = bfd_alloc (abfd, strlen (buf) + 1);
8103 if (name == NULL)
8104 return FALSE;
8105 strcpy (name, buf);
8106
8107 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8108 if (sect == NULL)
8109 return FALSE;
8110
8111 sect->size = note->descsz;
8112 sect->filepos = note->descpos;
8113 sect->alignment_power = 2;
8114
8115 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8116 }
8117
8118 static bfd_boolean
8119 elfcore_grok_nto_regs (bfd *abfd,
8120 Elf_Internal_Note *note,
8121 long tid,
8122 char *base)
8123 {
8124 char buf[100];
8125 char *name;
8126 asection *sect;
8127
8128 /* Make a "(base)/%d" section. */
8129 sprintf (buf, "%s/%ld", base, tid);
8130
8131 name = bfd_alloc (abfd, strlen (buf) + 1);
8132 if (name == NULL)
8133 return FALSE;
8134 strcpy (name, buf);
8135
8136 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8137 if (sect == NULL)
8138 return FALSE;
8139
8140 sect->size = note->descsz;
8141 sect->filepos = note->descpos;
8142 sect->alignment_power = 2;
8143
8144 /* This is the current thread. */
8145 if (elf_tdata (abfd)->core_lwpid == tid)
8146 return elfcore_maybe_make_sect (abfd, base, sect);
8147
8148 return TRUE;
8149 }
8150
8151 #define BFD_QNT_CORE_INFO 7
8152 #define BFD_QNT_CORE_STATUS 8
8153 #define BFD_QNT_CORE_GREG 9
8154 #define BFD_QNT_CORE_FPREG 10
8155
8156 static bfd_boolean
8157 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8158 {
8159 /* Every GREG section has a STATUS section before it. Store the
8160 tid from the previous call to pass down to the next gregs
8161 function. */
8162 static long tid = 1;
8163
8164 switch (note->type)
8165 {
8166 case BFD_QNT_CORE_INFO:
8167 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8168 case BFD_QNT_CORE_STATUS:
8169 return elfcore_grok_nto_status (abfd, note, &tid);
8170 case BFD_QNT_CORE_GREG:
8171 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8172 case BFD_QNT_CORE_FPREG:
8173 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8174 default:
8175 return TRUE;
8176 }
8177 }
8178
8179 /* Function: elfcore_write_note
8180
8181 Inputs:
8182 buffer to hold note, and current size of buffer
8183 name of note
8184 type of note
8185 data for note
8186 size of data for note
8187
8188 Writes note to end of buffer. ELF64 notes are written exactly as
8189 for ELF32, despite the current (as of 2006) ELF gabi specifying
8190 that they ought to have 8-byte namesz and descsz field, and have
8191 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8192
8193 Return:
8194 Pointer to realloc'd buffer, *BUFSIZ updated. */
8195
8196 char *
8197 elfcore_write_note (bfd *abfd,
8198 char *buf,
8199 int *bufsiz,
8200 const char *name,
8201 int type,
8202 const void *input,
8203 int size)
8204 {
8205 Elf_External_Note *xnp;
8206 size_t namesz;
8207 size_t newspace;
8208 char *dest;
8209
8210 namesz = 0;
8211 if (name != NULL)
8212 namesz = strlen (name) + 1;
8213
8214 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8215
8216 buf = realloc (buf, *bufsiz + newspace);
8217 dest = buf + *bufsiz;
8218 *bufsiz += newspace;
8219 xnp = (Elf_External_Note *) dest;
8220 H_PUT_32 (abfd, namesz, xnp->namesz);
8221 H_PUT_32 (abfd, size, xnp->descsz);
8222 H_PUT_32 (abfd, type, xnp->type);
8223 dest = xnp->name;
8224 if (name != NULL)
8225 {
8226 memcpy (dest, name, namesz);
8227 dest += namesz;
8228 while (namesz & 3)
8229 {
8230 *dest++ = '\0';
8231 ++namesz;
8232 }
8233 }
8234 memcpy (dest, input, size);
8235 dest += size;
8236 while (size & 3)
8237 {
8238 *dest++ = '\0';
8239 ++size;
8240 }
8241 return buf;
8242 }
8243
8244 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8245 char *
8246 elfcore_write_prpsinfo (bfd *abfd,
8247 char *buf,
8248 int *bufsiz,
8249 const char *fname,
8250 const char *psargs)
8251 {
8252 const char *note_name = "CORE";
8253 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8254
8255 if (bed->elf_backend_write_core_note != NULL)
8256 {
8257 char *ret;
8258 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8259 NT_PRPSINFO, fname, psargs);
8260 if (ret != NULL)
8261 return ret;
8262 }
8263
8264 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8265 if (bed->s->elfclass == ELFCLASS32)
8266 {
8267 #if defined (HAVE_PSINFO32_T)
8268 psinfo32_t data;
8269 int note_type = NT_PSINFO;
8270 #else
8271 prpsinfo32_t data;
8272 int note_type = NT_PRPSINFO;
8273 #endif
8274
8275 memset (&data, 0, sizeof (data));
8276 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8277 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8278 return elfcore_write_note (abfd, buf, bufsiz,
8279 note_name, note_type, &data, sizeof (data));
8280 }
8281 else
8282 #endif
8283 {
8284 #if defined (HAVE_PSINFO_T)
8285 psinfo_t data;
8286 int note_type = NT_PSINFO;
8287 #else
8288 prpsinfo_t data;
8289 int note_type = NT_PRPSINFO;
8290 #endif
8291
8292 memset (&data, 0, sizeof (data));
8293 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8294 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8295 return elfcore_write_note (abfd, buf, bufsiz,
8296 note_name, note_type, &data, sizeof (data));
8297 }
8298 }
8299 #endif /* PSINFO_T or PRPSINFO_T */
8300
8301 #if defined (HAVE_PRSTATUS_T)
8302 char *
8303 elfcore_write_prstatus (bfd *abfd,
8304 char *buf,
8305 int *bufsiz,
8306 long pid,
8307 int cursig,
8308 const void *gregs)
8309 {
8310 const char *note_name = "CORE";
8311 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8312
8313 if (bed->elf_backend_write_core_note != NULL)
8314 {
8315 char *ret;
8316 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8317 NT_PRSTATUS,
8318 pid, cursig, gregs);
8319 if (ret != NULL)
8320 return ret;
8321 }
8322
8323 #if defined (HAVE_PRSTATUS32_T)
8324 if (bed->s->elfclass == ELFCLASS32)
8325 {
8326 prstatus32_t prstat;
8327
8328 memset (&prstat, 0, sizeof (prstat));
8329 prstat.pr_pid = pid;
8330 prstat.pr_cursig = cursig;
8331 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8332 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8333 NT_PRSTATUS, &prstat, sizeof (prstat));
8334 }
8335 else
8336 #endif
8337 {
8338 prstatus_t prstat;
8339
8340 memset (&prstat, 0, sizeof (prstat));
8341 prstat.pr_pid = pid;
8342 prstat.pr_cursig = cursig;
8343 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8344 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8345 NT_PRSTATUS, &prstat, sizeof (prstat));
8346 }
8347 }
8348 #endif /* HAVE_PRSTATUS_T */
8349
8350 #if defined (HAVE_LWPSTATUS_T)
8351 char *
8352 elfcore_write_lwpstatus (bfd *abfd,
8353 char *buf,
8354 int *bufsiz,
8355 long pid,
8356 int cursig,
8357 const void *gregs)
8358 {
8359 lwpstatus_t lwpstat;
8360 const char *note_name = "CORE";
8361
8362 memset (&lwpstat, 0, sizeof (lwpstat));
8363 lwpstat.pr_lwpid = pid >> 16;
8364 lwpstat.pr_cursig = cursig;
8365 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8366 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8367 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8368 #if !defined(gregs)
8369 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8370 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8371 #else
8372 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8373 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8374 #endif
8375 #endif
8376 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8377 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8378 }
8379 #endif /* HAVE_LWPSTATUS_T */
8380
8381 #if defined (HAVE_PSTATUS_T)
8382 char *
8383 elfcore_write_pstatus (bfd *abfd,
8384 char *buf,
8385 int *bufsiz,
8386 long pid,
8387 int cursig ATTRIBUTE_UNUSED,
8388 const void *gregs ATTRIBUTE_UNUSED)
8389 {
8390 const char *note_name = "CORE";
8391 #if defined (HAVE_PSTATUS32_T)
8392 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8393
8394 if (bed->s->elfclass == ELFCLASS32)
8395 {
8396 pstatus32_t pstat;
8397
8398 memset (&pstat, 0, sizeof (pstat));
8399 pstat.pr_pid = pid & 0xffff;
8400 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8401 NT_PSTATUS, &pstat, sizeof (pstat));
8402 return buf;
8403 }
8404 else
8405 #endif
8406 {
8407 pstatus_t pstat;
8408
8409 memset (&pstat, 0, sizeof (pstat));
8410 pstat.pr_pid = pid & 0xffff;
8411 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8412 NT_PSTATUS, &pstat, sizeof (pstat));
8413 return buf;
8414 }
8415 }
8416 #endif /* HAVE_PSTATUS_T */
8417
8418 char *
8419 elfcore_write_prfpreg (bfd *abfd,
8420 char *buf,
8421 int *bufsiz,
8422 const void *fpregs,
8423 int size)
8424 {
8425 const char *note_name = "CORE";
8426 return elfcore_write_note (abfd, buf, bufsiz,
8427 note_name, NT_FPREGSET, fpregs, size);
8428 }
8429
8430 char *
8431 elfcore_write_prxfpreg (bfd *abfd,
8432 char *buf,
8433 int *bufsiz,
8434 const void *xfpregs,
8435 int size)
8436 {
8437 char *note_name = "LINUX";
8438 return elfcore_write_note (abfd, buf, bufsiz,
8439 note_name, NT_PRXFPREG, xfpregs, size);
8440 }
8441
8442 static bfd_boolean
8443 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8444 {
8445 char *buf;
8446 char *p;
8447
8448 if (size <= 0)
8449 return TRUE;
8450
8451 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8452 return FALSE;
8453
8454 buf = bfd_malloc (size);
8455 if (buf == NULL)
8456 return FALSE;
8457
8458 if (bfd_bread (buf, size, abfd) != size)
8459 {
8460 error:
8461 free (buf);
8462 return FALSE;
8463 }
8464
8465 p = buf;
8466 while (p < buf + size)
8467 {
8468 /* FIXME: bad alignment assumption. */
8469 Elf_External_Note *xnp = (Elf_External_Note *) p;
8470 Elf_Internal_Note in;
8471
8472 in.type = H_GET_32 (abfd, xnp->type);
8473
8474 in.namesz = H_GET_32 (abfd, xnp->namesz);
8475 in.namedata = xnp->name;
8476
8477 in.descsz = H_GET_32 (abfd, xnp->descsz);
8478 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8479 in.descpos = offset + (in.descdata - buf);
8480
8481 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8482 {
8483 if (! elfcore_grok_netbsd_note (abfd, &in))
8484 goto error;
8485 }
8486 else if (CONST_STRNEQ (in.namedata, "QNX"))
8487 {
8488 if (! elfcore_grok_nto_note (abfd, &in))
8489 goto error;
8490 }
8491 else
8492 {
8493 if (! elfcore_grok_note (abfd, &in))
8494 goto error;
8495 }
8496
8497 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8498 }
8499
8500 free (buf);
8501 return TRUE;
8502 }
8503 \f
8504 /* Providing external access to the ELF program header table. */
8505
8506 /* Return an upper bound on the number of bytes required to store a
8507 copy of ABFD's program header table entries. Return -1 if an error
8508 occurs; bfd_get_error will return an appropriate code. */
8509
8510 long
8511 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8512 {
8513 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8514 {
8515 bfd_set_error (bfd_error_wrong_format);
8516 return -1;
8517 }
8518
8519 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8520 }
8521
8522 /* Copy ABFD's program header table entries to *PHDRS. The entries
8523 will be stored as an array of Elf_Internal_Phdr structures, as
8524 defined in include/elf/internal.h. To find out how large the
8525 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8526
8527 Return the number of program header table entries read, or -1 if an
8528 error occurs; bfd_get_error will return an appropriate code. */
8529
8530 int
8531 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8532 {
8533 int num_phdrs;
8534
8535 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8536 {
8537 bfd_set_error (bfd_error_wrong_format);
8538 return -1;
8539 }
8540
8541 num_phdrs = elf_elfheader (abfd)->e_phnum;
8542 memcpy (phdrs, elf_tdata (abfd)->phdr,
8543 num_phdrs * sizeof (Elf_Internal_Phdr));
8544
8545 return num_phdrs;
8546 }
8547
8548 void
8549 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8550 {
8551 #ifdef BFD64
8552 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8553
8554 i_ehdrp = elf_elfheader (abfd);
8555 if (i_ehdrp == NULL)
8556 sprintf_vma (buf, value);
8557 else
8558 {
8559 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8560 {
8561 #if BFD_HOST_64BIT_LONG
8562 sprintf (buf, "%016lx", value);
8563 #else
8564 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8565 _bfd_int64_low (value));
8566 #endif
8567 }
8568 else
8569 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8570 }
8571 #else
8572 sprintf_vma (buf, value);
8573 #endif
8574 }
8575
8576 void
8577 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8578 {
8579 #ifdef BFD64
8580 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8581
8582 i_ehdrp = elf_elfheader (abfd);
8583 if (i_ehdrp == NULL)
8584 fprintf_vma ((FILE *) stream, value);
8585 else
8586 {
8587 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8588 {
8589 #if BFD_HOST_64BIT_LONG
8590 fprintf ((FILE *) stream, "%016lx", value);
8591 #else
8592 fprintf ((FILE *) stream, "%08lx%08lx",
8593 _bfd_int64_high (value), _bfd_int64_low (value));
8594 #endif
8595 }
8596 else
8597 fprintf ((FILE *) stream, "%08lx",
8598 (unsigned long) (value & 0xffffffff));
8599 }
8600 #else
8601 fprintf_vma ((FILE *) stream, value);
8602 #endif
8603 }
8604
8605 enum elf_reloc_type_class
8606 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8607 {
8608 return reloc_class_normal;
8609 }
8610
8611 /* For RELA architectures, return the relocation value for a
8612 relocation against a local symbol. */
8613
8614 bfd_vma
8615 _bfd_elf_rela_local_sym (bfd *abfd,
8616 Elf_Internal_Sym *sym,
8617 asection **psec,
8618 Elf_Internal_Rela *rel)
8619 {
8620 asection *sec = *psec;
8621 bfd_vma relocation;
8622
8623 relocation = (sec->output_section->vma
8624 + sec->output_offset
8625 + sym->st_value);
8626 if ((sec->flags & SEC_MERGE)
8627 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8628 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8629 {
8630 rel->r_addend =
8631 _bfd_merged_section_offset (abfd, psec,
8632 elf_section_data (sec)->sec_info,
8633 sym->st_value + rel->r_addend);
8634 if (sec != *psec)
8635 {
8636 /* If we have changed the section, and our original section is
8637 marked with SEC_EXCLUDE, it means that the original
8638 SEC_MERGE section has been completely subsumed in some
8639 other SEC_MERGE section. In this case, we need to leave
8640 some info around for --emit-relocs. */
8641 if ((sec->flags & SEC_EXCLUDE) != 0)
8642 sec->kept_section = *psec;
8643 sec = *psec;
8644 }
8645 rel->r_addend -= relocation;
8646 rel->r_addend += sec->output_section->vma + sec->output_offset;
8647 }
8648 return relocation;
8649 }
8650
8651 bfd_vma
8652 _bfd_elf_rel_local_sym (bfd *abfd,
8653 Elf_Internal_Sym *sym,
8654 asection **psec,
8655 bfd_vma addend)
8656 {
8657 asection *sec = *psec;
8658
8659 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8660 return sym->st_value + addend;
8661
8662 return _bfd_merged_section_offset (abfd, psec,
8663 elf_section_data (sec)->sec_info,
8664 sym->st_value + addend);
8665 }
8666
8667 bfd_vma
8668 _bfd_elf_section_offset (bfd *abfd,
8669 struct bfd_link_info *info,
8670 asection *sec,
8671 bfd_vma offset)
8672 {
8673 switch (sec->sec_info_type)
8674 {
8675 case ELF_INFO_TYPE_STABS:
8676 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8677 offset);
8678 case ELF_INFO_TYPE_EH_FRAME:
8679 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8680 default:
8681 return offset;
8682 }
8683 }
8684 \f
8685 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8686 reconstruct an ELF file by reading the segments out of remote memory
8687 based on the ELF file header at EHDR_VMA and the ELF program headers it
8688 points to. If not null, *LOADBASEP is filled in with the difference
8689 between the VMAs from which the segments were read, and the VMAs the
8690 file headers (and hence BFD's idea of each section's VMA) put them at.
8691
8692 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8693 remote memory at target address VMA into the local buffer at MYADDR; it
8694 should return zero on success or an `errno' code on failure. TEMPL must
8695 be a BFD for an ELF target with the word size and byte order found in
8696 the remote memory. */
8697
8698 bfd *
8699 bfd_elf_bfd_from_remote_memory
8700 (bfd *templ,
8701 bfd_vma ehdr_vma,
8702 bfd_vma *loadbasep,
8703 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8704 {
8705 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8706 (templ, ehdr_vma, loadbasep, target_read_memory);
8707 }
8708 \f
8709 long
8710 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8711 long symcount ATTRIBUTE_UNUSED,
8712 asymbol **syms ATTRIBUTE_UNUSED,
8713 long dynsymcount,
8714 asymbol **dynsyms,
8715 asymbol **ret)
8716 {
8717 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8718 asection *relplt;
8719 asymbol *s;
8720 const char *relplt_name;
8721 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8722 arelent *p;
8723 long count, i, n;
8724 size_t size;
8725 Elf_Internal_Shdr *hdr;
8726 char *names;
8727 asection *plt;
8728
8729 *ret = NULL;
8730
8731 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8732 return 0;
8733
8734 if (dynsymcount <= 0)
8735 return 0;
8736
8737 if (!bed->plt_sym_val)
8738 return 0;
8739
8740 relplt_name = bed->relplt_name;
8741 if (relplt_name == NULL)
8742 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8743 relplt = bfd_get_section_by_name (abfd, relplt_name);
8744 if (relplt == NULL)
8745 return 0;
8746
8747 hdr = &elf_section_data (relplt)->this_hdr;
8748 if (hdr->sh_link != elf_dynsymtab (abfd)
8749 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8750 return 0;
8751
8752 plt = bfd_get_section_by_name (abfd, ".plt");
8753 if (plt == NULL)
8754 return 0;
8755
8756 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8757 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8758 return -1;
8759
8760 count = relplt->size / hdr->sh_entsize;
8761 size = count * sizeof (asymbol);
8762 p = relplt->relocation;
8763 for (i = 0; i < count; i++, s++, p++)
8764 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8765
8766 s = *ret = bfd_malloc (size);
8767 if (s == NULL)
8768 return -1;
8769
8770 names = (char *) (s + count);
8771 p = relplt->relocation;
8772 n = 0;
8773 for (i = 0; i < count; i++, s++, p++)
8774 {
8775 size_t len;
8776 bfd_vma addr;
8777
8778 addr = bed->plt_sym_val (i, plt, p);
8779 if (addr == (bfd_vma) -1)
8780 continue;
8781
8782 *s = **p->sym_ptr_ptr;
8783 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8784 we are defining a symbol, ensure one of them is set. */
8785 if ((s->flags & BSF_LOCAL) == 0)
8786 s->flags |= BSF_GLOBAL;
8787 s->section = plt;
8788 s->value = addr - plt->vma;
8789 s->name = names;
8790 len = strlen ((*p->sym_ptr_ptr)->name);
8791 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8792 names += len;
8793 memcpy (names, "@plt", sizeof ("@plt"));
8794 names += sizeof ("@plt");
8795 ++n;
8796 }
8797
8798 return n;
8799 }
8800
8801 struct elf_symbuf_symbol
8802 {
8803 unsigned long st_name; /* Symbol name, index in string tbl */
8804 unsigned char st_info; /* Type and binding attributes */
8805 unsigned char st_other; /* Visibilty, and target specific */
8806 };
8807
8808 struct elf_symbuf_head
8809 {
8810 struct elf_symbuf_symbol *ssym;
8811 bfd_size_type count;
8812 unsigned int st_shndx;
8813 };
8814
8815 struct elf_symbol
8816 {
8817 union
8818 {
8819 Elf_Internal_Sym *isym;
8820 struct elf_symbuf_symbol *ssym;
8821 } u;
8822 const char *name;
8823 };
8824
8825 /* Sort references to symbols by ascending section number. */
8826
8827 static int
8828 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8829 {
8830 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8831 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8832
8833 return s1->st_shndx - s2->st_shndx;
8834 }
8835
8836 static int
8837 elf_sym_name_compare (const void *arg1, const void *arg2)
8838 {
8839 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8840 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8841 return strcmp (s1->name, s2->name);
8842 }
8843
8844 static struct elf_symbuf_head *
8845 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
8846 {
8847 Elf_Internal_Sym **ind, **indbufend, **indbuf
8848 = bfd_malloc2 (symcount, sizeof (*indbuf));
8849 struct elf_symbuf_symbol *ssym;
8850 struct elf_symbuf_head *ssymbuf, *ssymhead;
8851 bfd_size_type i, shndx_count;
8852
8853 if (indbuf == NULL)
8854 return NULL;
8855
8856 for (ind = indbuf, i = 0; i < symcount; i++)
8857 if (isymbuf[i].st_shndx != SHN_UNDEF)
8858 *ind++ = &isymbuf[i];
8859 indbufend = ind;
8860
8861 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8862 elf_sort_elf_symbol);
8863
8864 shndx_count = 0;
8865 if (indbufend > indbuf)
8866 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8867 if (ind[0]->st_shndx != ind[1]->st_shndx)
8868 shndx_count++;
8869
8870 ssymbuf = bfd_malloc ((shndx_count + 1) * sizeof (*ssymbuf)
8871 + (indbufend - indbuf) * sizeof (*ssymbuf));
8872 if (ssymbuf == NULL)
8873 {
8874 free (indbuf);
8875 return NULL;
8876 }
8877
8878 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count);
8879 ssymbuf->ssym = NULL;
8880 ssymbuf->count = shndx_count;
8881 ssymbuf->st_shndx = 0;
8882 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8883 {
8884 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8885 {
8886 ssymhead++;
8887 ssymhead->ssym = ssym;
8888 ssymhead->count = 0;
8889 ssymhead->st_shndx = (*ind)->st_shndx;
8890 }
8891 ssym->st_name = (*ind)->st_name;
8892 ssym->st_info = (*ind)->st_info;
8893 ssym->st_other = (*ind)->st_other;
8894 ssymhead->count++;
8895 }
8896 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count);
8897
8898 free (indbuf);
8899 return ssymbuf;
8900 }
8901
8902 /* Check if 2 sections define the same set of local and global
8903 symbols. */
8904
8905 bfd_boolean
8906 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8907 struct bfd_link_info *info)
8908 {
8909 bfd *bfd1, *bfd2;
8910 const struct elf_backend_data *bed1, *bed2;
8911 Elf_Internal_Shdr *hdr1, *hdr2;
8912 bfd_size_type symcount1, symcount2;
8913 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8914 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8915 Elf_Internal_Sym *isym, *isymend;
8916 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8917 bfd_size_type count1, count2, i;
8918 int shndx1, shndx2;
8919 bfd_boolean result;
8920
8921 bfd1 = sec1->owner;
8922 bfd2 = sec2->owner;
8923
8924 /* If both are .gnu.linkonce sections, they have to have the same
8925 section name. */
8926 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
8927 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
8928 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8929 sec2->name + sizeof ".gnu.linkonce") == 0;
8930
8931 /* Both sections have to be in ELF. */
8932 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8933 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8934 return FALSE;
8935
8936 if (elf_section_type (sec1) != elf_section_type (sec2))
8937 return FALSE;
8938
8939 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8940 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8941 {
8942 /* If both are members of section groups, they have to have the
8943 same group name. */
8944 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8945 return FALSE;
8946 }
8947
8948 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8949 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8950 if (shndx1 == -1 || shndx2 == -1)
8951 return FALSE;
8952
8953 bed1 = get_elf_backend_data (bfd1);
8954 bed2 = get_elf_backend_data (bfd2);
8955 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8956 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8957 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8958 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8959
8960 if (symcount1 == 0 || symcount2 == 0)
8961 return FALSE;
8962
8963 result = FALSE;
8964 isymbuf1 = NULL;
8965 isymbuf2 = NULL;
8966 ssymbuf1 = elf_tdata (bfd1)->symbuf;
8967 ssymbuf2 = elf_tdata (bfd2)->symbuf;
8968
8969 if (ssymbuf1 == NULL)
8970 {
8971 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8972 NULL, NULL, NULL);
8973 if (isymbuf1 == NULL)
8974 goto done;
8975
8976 if (!info->reduce_memory_overheads)
8977 elf_tdata (bfd1)->symbuf = ssymbuf1
8978 = elf_create_symbuf (symcount1, isymbuf1);
8979 }
8980
8981 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8982 {
8983 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8984 NULL, NULL, NULL);
8985 if (isymbuf2 == NULL)
8986 goto done;
8987
8988 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8989 elf_tdata (bfd2)->symbuf = ssymbuf2
8990 = elf_create_symbuf (symcount2, isymbuf2);
8991 }
8992
8993 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8994 {
8995 /* Optimized faster version. */
8996 bfd_size_type lo, hi, mid;
8997 struct elf_symbol *symp;
8998 struct elf_symbuf_symbol *ssym, *ssymend;
8999
9000 lo = 0;
9001 hi = ssymbuf1->count;
9002 ssymbuf1++;
9003 count1 = 0;
9004 while (lo < hi)
9005 {
9006 mid = (lo + hi) / 2;
9007 if ((unsigned int) shndx1 < ssymbuf1[mid].st_shndx)
9008 hi = mid;
9009 else if ((unsigned int) shndx1 > ssymbuf1[mid].st_shndx)
9010 lo = mid + 1;
9011 else
9012 {
9013 count1 = ssymbuf1[mid].count;
9014 ssymbuf1 += mid;
9015 break;
9016 }
9017 }
9018
9019 lo = 0;
9020 hi = ssymbuf2->count;
9021 ssymbuf2++;
9022 count2 = 0;
9023 while (lo < hi)
9024 {
9025 mid = (lo + hi) / 2;
9026 if ((unsigned int) shndx2 < ssymbuf2[mid].st_shndx)
9027 hi = mid;
9028 else if ((unsigned int) shndx2 > ssymbuf2[mid].st_shndx)
9029 lo = mid + 1;
9030 else
9031 {
9032 count2 = ssymbuf2[mid].count;
9033 ssymbuf2 += mid;
9034 break;
9035 }
9036 }
9037
9038 if (count1 == 0 || count2 == 0 || count1 != count2)
9039 goto done;
9040
9041 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
9042 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
9043 if (symtable1 == NULL || symtable2 == NULL)
9044 goto done;
9045
9046 symp = symtable1;
9047 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
9048 ssym < ssymend; ssym++, symp++)
9049 {
9050 symp->u.ssym = ssym;
9051 symp->name = bfd_elf_string_from_elf_section (bfd1,
9052 hdr1->sh_link,
9053 ssym->st_name);
9054 }
9055
9056 symp = symtable2;
9057 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
9058 ssym < ssymend; ssym++, symp++)
9059 {
9060 symp->u.ssym = ssym;
9061 symp->name = bfd_elf_string_from_elf_section (bfd2,
9062 hdr2->sh_link,
9063 ssym->st_name);
9064 }
9065
9066 /* Sort symbol by name. */
9067 qsort (symtable1, count1, sizeof (struct elf_symbol),
9068 elf_sym_name_compare);
9069 qsort (symtable2, count1, sizeof (struct elf_symbol),
9070 elf_sym_name_compare);
9071
9072 for (i = 0; i < count1; i++)
9073 /* Two symbols must have the same binding, type and name. */
9074 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
9075 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
9076 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
9077 goto done;
9078
9079 result = TRUE;
9080 goto done;
9081 }
9082
9083 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
9084 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
9085 if (symtable1 == NULL || symtable2 == NULL)
9086 goto done;
9087
9088 /* Count definitions in the section. */
9089 count1 = 0;
9090 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
9091 if (isym->st_shndx == (unsigned int) shndx1)
9092 symtable1[count1++].u.isym = isym;
9093
9094 count2 = 0;
9095 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
9096 if (isym->st_shndx == (unsigned int) shndx2)
9097 symtable2[count2++].u.isym = isym;
9098
9099 if (count1 == 0 || count2 == 0 || count1 != count2)
9100 goto done;
9101
9102 for (i = 0; i < count1; i++)
9103 symtable1[i].name
9104 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
9105 symtable1[i].u.isym->st_name);
9106
9107 for (i = 0; i < count2; i++)
9108 symtable2[i].name
9109 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
9110 symtable2[i].u.isym->st_name);
9111
9112 /* Sort symbol by name. */
9113 qsort (symtable1, count1, sizeof (struct elf_symbol),
9114 elf_sym_name_compare);
9115 qsort (symtable2, count1, sizeof (struct elf_symbol),
9116 elf_sym_name_compare);
9117
9118 for (i = 0; i < count1; i++)
9119 /* Two symbols must have the same binding, type and name. */
9120 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
9121 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
9122 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
9123 goto done;
9124
9125 result = TRUE;
9126
9127 done:
9128 if (symtable1)
9129 free (symtable1);
9130 if (symtable2)
9131 free (symtable2);
9132 if (isymbuf1)
9133 free (isymbuf1);
9134 if (isymbuf2)
9135 free (isymbuf2);
9136
9137 return result;
9138 }
9139
9140 /* It is only used by x86-64 so far. */
9141 asection _bfd_elf_large_com_section
9142 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9143 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9144
9145 /* Return TRUE if 2 section types are compatible. */
9146
9147 bfd_boolean
9148 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
9149 bfd *bbfd, const asection *bsec)
9150 {
9151 if (asec == NULL
9152 || bsec == NULL
9153 || abfd->xvec->flavour != bfd_target_elf_flavour
9154 || bbfd->xvec->flavour != bfd_target_elf_flavour)
9155 return TRUE;
9156
9157 return elf_section_type (asec) == elf_section_type (bsec);
9158 }
9159
9160 void
9161 _bfd_elf_set_osabi (bfd * abfd,
9162 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9163 {
9164 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9165
9166 i_ehdrp = elf_elfheader (abfd);
9167
9168 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9169 }
9170
9171
9172 /* Return TRUE for ELF symbol types that represent functions.
9173 This is the default version of this function, which is sufficient for
9174 most targets. It returns true if TYPE is STT_FUNC. */
9175
9176 bfd_boolean
9177 _bfd_elf_is_function_type (unsigned int type)
9178 {
9179 return (type == STT_FUNC);
9180 }
This page took 0.215479 seconds and 4 git commands to generate.