* config/tc-mips.c (mips_emit_delays): Replace magic constant for RA
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* SECTION
22
23 ELF backends
24
25 BFD support for ELF formats is being worked on.
26 Currently, the best supported back ends are for sparc and i386
27 (running svr4 or Solaris 2).
28
29 Documentation of the internals of the support code still needs
30 to be written. The code is changing quickly enough that we
31 haven't bothered yet. */
32
33 /* For sparc64-cross-sparc32. */
34 #define _SYSCALL32
35 #include "bfd.h"
36 #include "sysdep.h"
37 #include "bfdlink.h"
38 #include "libbfd.h"
39 #define ARCH_SIZE 0
40 #include "elf-bfd.h"
41 #include "libiberty.h"
42
43 static INLINE struct elf_segment_map *make_mapping
44 PARAMS ((bfd *, asection **, unsigned int, unsigned int, boolean));
45 static boolean map_sections_to_segments PARAMS ((bfd *));
46 static int elf_sort_sections PARAMS ((const PTR, const PTR));
47 static boolean assign_file_positions_for_segments PARAMS ((bfd *));
48 static boolean assign_file_positions_except_relocs PARAMS ((bfd *));
49 static boolean prep_headers PARAMS ((bfd *));
50 static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **, int));
51 static boolean copy_private_bfd_data PARAMS ((bfd *, bfd *));
52 static char *elf_read PARAMS ((bfd *, file_ptr, bfd_size_type));
53 static boolean setup_group PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
54 static void merge_sections_remove_hook PARAMS ((bfd *, asection *));
55 static void elf_fake_sections PARAMS ((bfd *, asection *, PTR));
56 static void set_group_contents PARAMS ((bfd *, asection *, PTR));
57 static boolean assign_section_numbers PARAMS ((bfd *));
58 static INLINE int sym_is_global PARAMS ((bfd *, asymbol *));
59 static boolean elf_map_symbols PARAMS ((bfd *));
60 static bfd_size_type get_program_header_size PARAMS ((bfd *));
61 static boolean elfcore_read_notes PARAMS ((bfd *, file_ptr, bfd_size_type));
62 static boolean elf_find_function PARAMS ((bfd *, asection *, asymbol **,
63 bfd_vma, const char **,
64 const char **));
65 static int elfcore_make_pid PARAMS ((bfd *));
66 static boolean elfcore_maybe_make_sect PARAMS ((bfd *, char *, asection *));
67 static boolean elfcore_make_note_pseudosection PARAMS ((bfd *, char *,
68 Elf_Internal_Note *));
69 static boolean elfcore_grok_prfpreg PARAMS ((bfd *, Elf_Internal_Note *));
70 static boolean elfcore_grok_prxfpreg PARAMS ((bfd *, Elf_Internal_Note *));
71 static boolean elfcore_grok_note PARAMS ((bfd *, Elf_Internal_Note *));
72
73 static boolean elfcore_netbsd_get_lwpid PARAMS ((Elf_Internal_Note *, int *));
74 static boolean elfcore_grok_netbsd_procinfo PARAMS ((bfd *,
75 Elf_Internal_Note *));
76 static boolean elfcore_grok_netbsd_note PARAMS ((bfd *, Elf_Internal_Note *));
77
78 /* Swap version information in and out. The version information is
79 currently size independent. If that ever changes, this code will
80 need to move into elfcode.h. */
81
82 /* Swap in a Verdef structure. */
83
84 void
85 _bfd_elf_swap_verdef_in (abfd, src, dst)
86 bfd *abfd;
87 const Elf_External_Verdef *src;
88 Elf_Internal_Verdef *dst;
89 {
90 dst->vd_version = H_GET_16 (abfd, src->vd_version);
91 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
92 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
93 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
94 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
95 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
96 dst->vd_next = H_GET_32 (abfd, src->vd_next);
97 }
98
99 /* Swap out a Verdef structure. */
100
101 void
102 _bfd_elf_swap_verdef_out (abfd, src, dst)
103 bfd *abfd;
104 const Elf_Internal_Verdef *src;
105 Elf_External_Verdef *dst;
106 {
107 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
108 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
109 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
110 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
111 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
112 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
113 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
114 }
115
116 /* Swap in a Verdaux structure. */
117
118 void
119 _bfd_elf_swap_verdaux_in (abfd, src, dst)
120 bfd *abfd;
121 const Elf_External_Verdaux *src;
122 Elf_Internal_Verdaux *dst;
123 {
124 dst->vda_name = H_GET_32 (abfd, src->vda_name);
125 dst->vda_next = H_GET_32 (abfd, src->vda_next);
126 }
127
128 /* Swap out a Verdaux structure. */
129
130 void
131 _bfd_elf_swap_verdaux_out (abfd, src, dst)
132 bfd *abfd;
133 const Elf_Internal_Verdaux *src;
134 Elf_External_Verdaux *dst;
135 {
136 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
137 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
138 }
139
140 /* Swap in a Verneed structure. */
141
142 void
143 _bfd_elf_swap_verneed_in (abfd, src, dst)
144 bfd *abfd;
145 const Elf_External_Verneed *src;
146 Elf_Internal_Verneed *dst;
147 {
148 dst->vn_version = H_GET_16 (abfd, src->vn_version);
149 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
150 dst->vn_file = H_GET_32 (abfd, src->vn_file);
151 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
152 dst->vn_next = H_GET_32 (abfd, src->vn_next);
153 }
154
155 /* Swap out a Verneed structure. */
156
157 void
158 _bfd_elf_swap_verneed_out (abfd, src, dst)
159 bfd *abfd;
160 const Elf_Internal_Verneed *src;
161 Elf_External_Verneed *dst;
162 {
163 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
164 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
165 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
166 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
167 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
168 }
169
170 /* Swap in a Vernaux structure. */
171
172 void
173 _bfd_elf_swap_vernaux_in (abfd, src, dst)
174 bfd *abfd;
175 const Elf_External_Vernaux *src;
176 Elf_Internal_Vernaux *dst;
177 {
178 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
179 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
180 dst->vna_other = H_GET_16 (abfd, src->vna_other);
181 dst->vna_name = H_GET_32 (abfd, src->vna_name);
182 dst->vna_next = H_GET_32 (abfd, src->vna_next);
183 }
184
185 /* Swap out a Vernaux structure. */
186
187 void
188 _bfd_elf_swap_vernaux_out (abfd, src, dst)
189 bfd *abfd;
190 const Elf_Internal_Vernaux *src;
191 Elf_External_Vernaux *dst;
192 {
193 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
194 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
195 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
196 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
197 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
198 }
199
200 /* Swap in a Versym structure. */
201
202 void
203 _bfd_elf_swap_versym_in (abfd, src, dst)
204 bfd *abfd;
205 const Elf_External_Versym *src;
206 Elf_Internal_Versym *dst;
207 {
208 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
209 }
210
211 /* Swap out a Versym structure. */
212
213 void
214 _bfd_elf_swap_versym_out (abfd, src, dst)
215 bfd *abfd;
216 const Elf_Internal_Versym *src;
217 Elf_External_Versym *dst;
218 {
219 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
220 }
221
222 /* Standard ELF hash function. Do not change this function; you will
223 cause invalid hash tables to be generated. */
224
225 unsigned long
226 bfd_elf_hash (namearg)
227 const char *namearg;
228 {
229 const unsigned char *name = (const unsigned char *) namearg;
230 unsigned long h = 0;
231 unsigned long g;
232 int ch;
233
234 while ((ch = *name++) != '\0')
235 {
236 h = (h << 4) + ch;
237 if ((g = (h & 0xf0000000)) != 0)
238 {
239 h ^= g >> 24;
240 /* The ELF ABI says `h &= ~g', but this is equivalent in
241 this case and on some machines one insn instead of two. */
242 h ^= g;
243 }
244 }
245 return h;
246 }
247
248 /* Read a specified number of bytes at a specified offset in an ELF
249 file, into a newly allocated buffer, and return a pointer to the
250 buffer. */
251
252 static char *
253 elf_read (abfd, offset, size)
254 bfd *abfd;
255 file_ptr offset;
256 bfd_size_type size;
257 {
258 char *buf;
259
260 if ((buf = bfd_alloc (abfd, size)) == NULL)
261 return NULL;
262 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
263 return NULL;
264 if (bfd_bread ((PTR) buf, size, abfd) != size)
265 {
266 if (bfd_get_error () != bfd_error_system_call)
267 bfd_set_error (bfd_error_file_truncated);
268 return NULL;
269 }
270 return buf;
271 }
272
273 boolean
274 bfd_elf_mkobject (abfd)
275 bfd *abfd;
276 {
277 /* This just does initialization. */
278 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
279 bfd_size_type amt = sizeof (struct elf_obj_tdata);
280 elf_tdata (abfd) = (struct elf_obj_tdata *) bfd_zalloc (abfd, amt);
281 if (elf_tdata (abfd) == 0)
282 return false;
283 /* Since everything is done at close time, do we need any
284 initialization? */
285
286 return true;
287 }
288
289 boolean
290 bfd_elf_mkcorefile (abfd)
291 bfd *abfd;
292 {
293 /* I think this can be done just like an object file. */
294 return bfd_elf_mkobject (abfd);
295 }
296
297 char *
298 bfd_elf_get_str_section (abfd, shindex)
299 bfd *abfd;
300 unsigned int shindex;
301 {
302 Elf_Internal_Shdr **i_shdrp;
303 char *shstrtab = NULL;
304 file_ptr offset;
305 bfd_size_type shstrtabsize;
306
307 i_shdrp = elf_elfsections (abfd);
308 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
309 return 0;
310
311 shstrtab = (char *) i_shdrp[shindex]->contents;
312 if (shstrtab == NULL)
313 {
314 /* No cached one, attempt to read, and cache what we read. */
315 offset = i_shdrp[shindex]->sh_offset;
316 shstrtabsize = i_shdrp[shindex]->sh_size;
317 shstrtab = elf_read (abfd, offset, shstrtabsize);
318 i_shdrp[shindex]->contents = (PTR) shstrtab;
319 }
320 return shstrtab;
321 }
322
323 char *
324 bfd_elf_string_from_elf_section (abfd, shindex, strindex)
325 bfd *abfd;
326 unsigned int shindex;
327 unsigned int strindex;
328 {
329 Elf_Internal_Shdr *hdr;
330
331 if (strindex == 0)
332 return "";
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL
337 && bfd_elf_get_str_section (abfd, shindex) == NULL)
338 return NULL;
339
340 if (strindex >= hdr->sh_size)
341 {
342 (*_bfd_error_handler)
343 (_("%s: invalid string offset %u >= %lu for section `%s'"),
344 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
345 ((shindex == elf_elfheader(abfd)->e_shstrndx
346 && strindex == hdr->sh_name)
347 ? ".shstrtab"
348 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
349 return "";
350 }
351
352 return ((char *) hdr->contents) + strindex;
353 }
354
355 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
356 sections. The first element is the flags, the rest are section
357 pointers. */
358
359 typedef union elf_internal_group {
360 Elf_Internal_Shdr *shdr;
361 unsigned int flags;
362 } Elf_Internal_Group;
363
364 /* Set next_in_group list pointer, and group name for NEWSECT. */
365
366 static boolean
367 setup_group (abfd, hdr, newsect)
368 bfd *abfd;
369 Elf_Internal_Shdr *hdr;
370 asection *newsect;
371 {
372 unsigned int num_group = elf_tdata (abfd)->num_group;
373
374 /* If num_group is zero, read in all SHT_GROUP sections. The count
375 is set to -1 if there are no SHT_GROUP sections. */
376 if (num_group == 0)
377 {
378 unsigned int i, shnum;
379
380 /* First count the number of groups. If we have a SHT_GROUP
381 section with just a flag word (ie. sh_size is 4), ignore it. */
382 shnum = elf_numsections (abfd);
383 num_group = 0;
384 for (i = 0; i < shnum; i++)
385 {
386 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
387 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
388 num_group += 1;
389 }
390
391 if (num_group == 0)
392 num_group = (unsigned) -1;
393 elf_tdata (abfd)->num_group = num_group;
394
395 if (num_group > 0)
396 {
397 /* We keep a list of elf section headers for group sections,
398 so we can find them quickly. */
399 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
400 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
401 if (elf_tdata (abfd)->group_sect_ptr == NULL)
402 return false;
403
404 num_group = 0;
405 for (i = 0; i < shnum; i++)
406 {
407 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
408 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
409 {
410 unsigned char *src;
411 Elf_Internal_Group *dest;
412
413 /* Add to list of sections. */
414 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
415 num_group += 1;
416
417 /* Read the raw contents. */
418 BFD_ASSERT (sizeof (*dest) >= 4);
419 amt = shdr->sh_size * sizeof (*dest) / 4;
420 shdr->contents = bfd_alloc (abfd, amt);
421 if (shdr->contents == NULL
422 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
423 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
424 != shdr->sh_size))
425 return false;
426
427 /* Translate raw contents, a flag word followed by an
428 array of elf section indices all in target byte order,
429 to the flag word followed by an array of elf section
430 pointers. */
431 src = shdr->contents + shdr->sh_size;
432 dest = (Elf_Internal_Group *) (shdr->contents + amt);
433 while (1)
434 {
435 unsigned int idx;
436
437 src -= 4;
438 --dest;
439 idx = H_GET_32 (abfd, src);
440 if (src == shdr->contents)
441 {
442 dest->flags = idx;
443 break;
444 }
445 if (idx >= shnum)
446 {
447 ((*_bfd_error_handler)
448 (_("%s: invalid SHT_GROUP entry"),
449 bfd_archive_filename (abfd)));
450 idx = 0;
451 }
452 dest->shdr = elf_elfsections (abfd)[idx];
453 }
454 }
455 }
456 }
457 }
458
459 if (num_group != (unsigned) -1)
460 {
461 unsigned int i;
462
463 for (i = 0; i < num_group; i++)
464 {
465 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
466 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
467 unsigned int n_elt = shdr->sh_size / 4;
468
469 /* Look through this group's sections to see if current
470 section is a member. */
471 while (--n_elt != 0)
472 if ((++idx)->shdr == hdr)
473 {
474 asection *s = NULL;
475
476 /* We are a member of this group. Go looking through
477 other members to see if any others are linked via
478 next_in_group. */
479 idx = (Elf_Internal_Group *) shdr->contents;
480 n_elt = shdr->sh_size / 4;
481 while (--n_elt != 0)
482 if ((s = (++idx)->shdr->bfd_section) != NULL
483 && elf_next_in_group (s) != NULL)
484 break;
485 if (n_elt != 0)
486 {
487 /* Snarf the group name from other member, and
488 insert current section in circular list. */
489 elf_group_name (newsect) = elf_group_name (s);
490 elf_next_in_group (newsect) = elf_next_in_group (s);
491 elf_next_in_group (s) = newsect;
492 }
493 else
494 {
495 struct elf_backend_data *bed;
496 file_ptr pos;
497 unsigned char ename[4];
498 unsigned long iname;
499 const char *gname;
500
501 /* Humbug. Get the name from the group signature
502 symbol. Why isn't the signature just a string?
503 Fortunately, the name index is at the same
504 place in the external symbol for both 32 and 64
505 bit ELF. */
506 bed = get_elf_backend_data (abfd);
507 pos = elf_tdata (abfd)->symtab_hdr.sh_offset;
508 pos += shdr->sh_info * bed->s->sizeof_sym;
509 if (bfd_seek (abfd, pos, SEEK_SET) != 0
510 || bfd_bread (ename, (bfd_size_type) 4, abfd) != 4)
511 return false;
512 iname = H_GET_32 (abfd, ename);
513 gname = elf_string_from_elf_strtab (abfd, iname);
514 elf_group_name (newsect) = gname;
515
516 /* Start a circular list with one element. */
517 elf_next_in_group (newsect) = newsect;
518 }
519 if (shdr->bfd_section != NULL)
520 elf_next_in_group (shdr->bfd_section) = newsect;
521 i = num_group - 1;
522 break;
523 }
524 }
525 }
526
527 if (elf_group_name (newsect) == NULL)
528 {
529 (*_bfd_error_handler) (_("%s: no group info for section %s"),
530 bfd_archive_filename (abfd), newsect->name);
531 }
532 return true;
533 }
534
535 /* Make a BFD section from an ELF section. We store a pointer to the
536 BFD section in the bfd_section field of the header. */
537
538 boolean
539 _bfd_elf_make_section_from_shdr (abfd, hdr, name)
540 bfd *abfd;
541 Elf_Internal_Shdr *hdr;
542 const char *name;
543 {
544 asection *newsect;
545 flagword flags;
546 struct elf_backend_data *bed;
547
548 if (hdr->bfd_section != NULL)
549 {
550 BFD_ASSERT (strcmp (name,
551 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
552 return true;
553 }
554
555 newsect = bfd_make_section_anyway (abfd, name);
556 if (newsect == NULL)
557 return false;
558
559 newsect->filepos = hdr->sh_offset;
560
561 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
562 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
563 || ! bfd_set_section_alignment (abfd, newsect,
564 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
565 return false;
566
567 flags = SEC_NO_FLAGS;
568 if (hdr->sh_type != SHT_NOBITS)
569 flags |= SEC_HAS_CONTENTS;
570 if (hdr->sh_type == SHT_GROUP)
571 flags |= SEC_GROUP | SEC_EXCLUDE;
572 if ((hdr->sh_flags & SHF_ALLOC) != 0)
573 {
574 flags |= SEC_ALLOC;
575 if (hdr->sh_type != SHT_NOBITS)
576 flags |= SEC_LOAD;
577 }
578 if ((hdr->sh_flags & SHF_WRITE) == 0)
579 flags |= SEC_READONLY;
580 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
581 flags |= SEC_CODE;
582 else if ((flags & SEC_LOAD) != 0)
583 flags |= SEC_DATA;
584 if ((hdr->sh_flags & SHF_MERGE) != 0)
585 {
586 flags |= SEC_MERGE;
587 newsect->entsize = hdr->sh_entsize;
588 if ((hdr->sh_flags & SHF_STRINGS) != 0)
589 flags |= SEC_STRINGS;
590 }
591 if (hdr->sh_flags & SHF_GROUP)
592 if (!setup_group (abfd, hdr, newsect))
593 return false;
594 if ((hdr->sh_flags & SHF_TLS) != 0)
595 flags |= SEC_THREAD_LOCAL;
596
597 /* The debugging sections appear to be recognized only by name, not
598 any sort of flag. */
599 {
600 static const char *debug_sec_names [] =
601 {
602 ".debug",
603 ".gnu.linkonce.wi.",
604 ".line",
605 ".stab"
606 };
607 int i;
608
609 for (i = ARRAY_SIZE (debug_sec_names); i--;)
610 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
611 break;
612
613 if (i >= 0)
614 flags |= SEC_DEBUGGING;
615 }
616
617 /* As a GNU extension, if the name begins with .gnu.linkonce, we
618 only link a single copy of the section. This is used to support
619 g++. g++ will emit each template expansion in its own section.
620 The symbols will be defined as weak, so that multiple definitions
621 are permitted. The GNU linker extension is to actually discard
622 all but one of the sections. */
623 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0)
624 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
625
626 bed = get_elf_backend_data (abfd);
627 if (bed->elf_backend_section_flags)
628 if (! bed->elf_backend_section_flags (&flags, hdr))
629 return false;
630
631 if (! bfd_set_section_flags (abfd, newsect, flags))
632 return false;
633
634 if ((flags & SEC_ALLOC) != 0)
635 {
636 Elf_Internal_Phdr *phdr;
637 unsigned int i;
638
639 /* Look through the phdrs to see if we need to adjust the lma.
640 If all the p_paddr fields are zero, we ignore them, since
641 some ELF linkers produce such output. */
642 phdr = elf_tdata (abfd)->phdr;
643 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
644 {
645 if (phdr->p_paddr != 0)
646 break;
647 }
648 if (i < elf_elfheader (abfd)->e_phnum)
649 {
650 phdr = elf_tdata (abfd)->phdr;
651 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
652 {
653 /* This section is part of this segment if its file
654 offset plus size lies within the segment's memory
655 span and, if the section is loaded, the extent of the
656 loaded data lies within the extent of the segment.
657
658 Note - we used to check the p_paddr field as well, and
659 refuse to set the LMA if it was 0. This is wrong
660 though, as a perfectly valid initialised segment can
661 have a p_paddr of zero. Some architectures, eg ARM,
662 place special significance on the address 0 and
663 executables need to be able to have a segment which
664 covers this address. */
665 if (phdr->p_type == PT_LOAD
666 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
667 && (hdr->sh_offset + hdr->sh_size
668 <= phdr->p_offset + phdr->p_memsz)
669 && ((flags & SEC_LOAD) == 0
670 || (hdr->sh_offset + hdr->sh_size
671 <= phdr->p_offset + phdr->p_filesz)))
672 {
673 if ((flags & SEC_LOAD) == 0)
674 newsect->lma = (phdr->p_paddr
675 + hdr->sh_addr - phdr->p_vaddr);
676 else
677 /* We used to use the same adjustment for SEC_LOAD
678 sections, but that doesn't work if the segment
679 is packed with code from multiple VMAs.
680 Instead we calculate the section LMA based on
681 the segment LMA. It is assumed that the
682 segment will contain sections with contiguous
683 LMAs, even if the VMAs are not. */
684 newsect->lma = (phdr->p_paddr
685 + hdr->sh_offset - phdr->p_offset);
686
687 /* With contiguous segments, we can't tell from file
688 offsets whether a section with zero size should
689 be placed at the end of one segment or the
690 beginning of the next. Decide based on vaddr. */
691 if (hdr->sh_addr >= phdr->p_vaddr
692 && (hdr->sh_addr + hdr->sh_size
693 <= phdr->p_vaddr + phdr->p_memsz))
694 break;
695 }
696 }
697 }
698 }
699
700 hdr->bfd_section = newsect;
701 elf_section_data (newsect)->this_hdr = *hdr;
702
703 return true;
704 }
705
706 /*
707 INTERNAL_FUNCTION
708 bfd_elf_find_section
709
710 SYNOPSIS
711 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
712
713 DESCRIPTION
714 Helper functions for GDB to locate the string tables.
715 Since BFD hides string tables from callers, GDB needs to use an
716 internal hook to find them. Sun's .stabstr, in particular,
717 isn't even pointed to by the .stab section, so ordinary
718 mechanisms wouldn't work to find it, even if we had some.
719 */
720
721 struct elf_internal_shdr *
722 bfd_elf_find_section (abfd, name)
723 bfd *abfd;
724 char *name;
725 {
726 Elf_Internal_Shdr **i_shdrp;
727 char *shstrtab;
728 unsigned int max;
729 unsigned int i;
730
731 i_shdrp = elf_elfsections (abfd);
732 if (i_shdrp != NULL)
733 {
734 shstrtab = bfd_elf_get_str_section (abfd,
735 elf_elfheader (abfd)->e_shstrndx);
736 if (shstrtab != NULL)
737 {
738 max = elf_numsections (abfd);
739 for (i = 1; i < max; i++)
740 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
741 return i_shdrp[i];
742 }
743 }
744 return 0;
745 }
746
747 const char *const bfd_elf_section_type_names[] = {
748 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
749 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
750 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
751 };
752
753 /* ELF relocs are against symbols. If we are producing relocateable
754 output, and the reloc is against an external symbol, and nothing
755 has given us any additional addend, the resulting reloc will also
756 be against the same symbol. In such a case, we don't want to
757 change anything about the way the reloc is handled, since it will
758 all be done at final link time. Rather than put special case code
759 into bfd_perform_relocation, all the reloc types use this howto
760 function. It just short circuits the reloc if producing
761 relocateable output against an external symbol. */
762
763 bfd_reloc_status_type
764 bfd_elf_generic_reloc (abfd,
765 reloc_entry,
766 symbol,
767 data,
768 input_section,
769 output_bfd,
770 error_message)
771 bfd *abfd ATTRIBUTE_UNUSED;
772 arelent *reloc_entry;
773 asymbol *symbol;
774 PTR data ATTRIBUTE_UNUSED;
775 asection *input_section;
776 bfd *output_bfd;
777 char **error_message ATTRIBUTE_UNUSED;
778 {
779 if (output_bfd != (bfd *) NULL
780 && (symbol->flags & BSF_SECTION_SYM) == 0
781 && (! reloc_entry->howto->partial_inplace
782 || reloc_entry->addend == 0))
783 {
784 reloc_entry->address += input_section->output_offset;
785 return bfd_reloc_ok;
786 }
787
788 return bfd_reloc_continue;
789 }
790 \f
791 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
792
793 static void
794 merge_sections_remove_hook (abfd, sec)
795 bfd *abfd ATTRIBUTE_UNUSED;
796 asection *sec;
797 {
798 struct bfd_elf_section_data *sec_data;
799
800 sec_data = elf_section_data (sec);
801 BFD_ASSERT (sec_data->sec_info_type == ELF_INFO_TYPE_MERGE);
802 sec_data->sec_info_type = ELF_INFO_TYPE_NONE;
803 }
804
805 /* Finish SHF_MERGE section merging. */
806
807 boolean
808 _bfd_elf_merge_sections (abfd, info)
809 bfd *abfd;
810 struct bfd_link_info *info;
811 {
812 if (!is_elf_hash_table (info))
813 return false;
814 if (elf_hash_table (info)->merge_info)
815 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
816 merge_sections_remove_hook);
817 return true;
818 }
819
820 void
821 _bfd_elf_link_just_syms (sec, info)
822 asection *sec;
823 struct bfd_link_info *info;
824 {
825 sec->output_section = bfd_abs_section_ptr;
826 sec->output_offset = sec->vma;
827 if (!is_elf_hash_table (info))
828 return;
829
830 elf_section_data (sec)->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
831 }
832 \f
833 /* Copy the program header and other data from one object module to
834 another. */
835
836 boolean
837 _bfd_elf_copy_private_bfd_data (ibfd, obfd)
838 bfd *ibfd;
839 bfd *obfd;
840 {
841 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
842 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
843 return true;
844
845 BFD_ASSERT (!elf_flags_init (obfd)
846 || (elf_elfheader (obfd)->e_flags
847 == elf_elfheader (ibfd)->e_flags));
848
849 elf_gp (obfd) = elf_gp (ibfd);
850 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
851 elf_flags_init (obfd) = true;
852 return true;
853 }
854
855 /* Print out the program headers. */
856
857 boolean
858 _bfd_elf_print_private_bfd_data (abfd, farg)
859 bfd *abfd;
860 PTR farg;
861 {
862 FILE *f = (FILE *) farg;
863 Elf_Internal_Phdr *p;
864 asection *s;
865 bfd_byte *dynbuf = NULL;
866
867 p = elf_tdata (abfd)->phdr;
868 if (p != NULL)
869 {
870 unsigned int i, c;
871
872 fprintf (f, _("\nProgram Header:\n"));
873 c = elf_elfheader (abfd)->e_phnum;
874 for (i = 0; i < c; i++, p++)
875 {
876 const char *pt;
877 char buf[20];
878
879 switch (p->p_type)
880 {
881 case PT_NULL: pt = "NULL"; break;
882 case PT_LOAD: pt = "LOAD"; break;
883 case PT_DYNAMIC: pt = "DYNAMIC"; break;
884 case PT_INTERP: pt = "INTERP"; break;
885 case PT_NOTE: pt = "NOTE"; break;
886 case PT_SHLIB: pt = "SHLIB"; break;
887 case PT_PHDR: pt = "PHDR"; break;
888 case PT_TLS: pt = "TLS"; break;
889 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
890 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
891 }
892 fprintf (f, "%8s off 0x", pt);
893 bfd_fprintf_vma (abfd, f, p->p_offset);
894 fprintf (f, " vaddr 0x");
895 bfd_fprintf_vma (abfd, f, p->p_vaddr);
896 fprintf (f, " paddr 0x");
897 bfd_fprintf_vma (abfd, f, p->p_paddr);
898 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
899 fprintf (f, " filesz 0x");
900 bfd_fprintf_vma (abfd, f, p->p_filesz);
901 fprintf (f, " memsz 0x");
902 bfd_fprintf_vma (abfd, f, p->p_memsz);
903 fprintf (f, " flags %c%c%c",
904 (p->p_flags & PF_R) != 0 ? 'r' : '-',
905 (p->p_flags & PF_W) != 0 ? 'w' : '-',
906 (p->p_flags & PF_X) != 0 ? 'x' : '-');
907 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
908 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
909 fprintf (f, "\n");
910 }
911 }
912
913 s = bfd_get_section_by_name (abfd, ".dynamic");
914 if (s != NULL)
915 {
916 int elfsec;
917 unsigned long shlink;
918 bfd_byte *extdyn, *extdynend;
919 size_t extdynsize;
920 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
921
922 fprintf (f, _("\nDynamic Section:\n"));
923
924 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
925 if (dynbuf == NULL)
926 goto error_return;
927 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
928 s->_raw_size))
929 goto error_return;
930
931 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
932 if (elfsec == -1)
933 goto error_return;
934 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
935
936 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
937 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
938
939 extdyn = dynbuf;
940 extdynend = extdyn + s->_raw_size;
941 for (; extdyn < extdynend; extdyn += extdynsize)
942 {
943 Elf_Internal_Dyn dyn;
944 const char *name;
945 char ab[20];
946 boolean stringp;
947
948 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
949
950 if (dyn.d_tag == DT_NULL)
951 break;
952
953 stringp = false;
954 switch (dyn.d_tag)
955 {
956 default:
957 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
958 name = ab;
959 break;
960
961 case DT_NEEDED: name = "NEEDED"; stringp = true; break;
962 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
963 case DT_PLTGOT: name = "PLTGOT"; break;
964 case DT_HASH: name = "HASH"; break;
965 case DT_STRTAB: name = "STRTAB"; break;
966 case DT_SYMTAB: name = "SYMTAB"; break;
967 case DT_RELA: name = "RELA"; break;
968 case DT_RELASZ: name = "RELASZ"; break;
969 case DT_RELAENT: name = "RELAENT"; break;
970 case DT_STRSZ: name = "STRSZ"; break;
971 case DT_SYMENT: name = "SYMENT"; break;
972 case DT_INIT: name = "INIT"; break;
973 case DT_FINI: name = "FINI"; break;
974 case DT_SONAME: name = "SONAME"; stringp = true; break;
975 case DT_RPATH: name = "RPATH"; stringp = true; break;
976 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
977 case DT_REL: name = "REL"; break;
978 case DT_RELSZ: name = "RELSZ"; break;
979 case DT_RELENT: name = "RELENT"; break;
980 case DT_PLTREL: name = "PLTREL"; break;
981 case DT_DEBUG: name = "DEBUG"; break;
982 case DT_TEXTREL: name = "TEXTREL"; break;
983 case DT_JMPREL: name = "JMPREL"; break;
984 case DT_BIND_NOW: name = "BIND_NOW"; break;
985 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
986 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
987 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
988 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
989 case DT_RUNPATH: name = "RUNPATH"; stringp = true; break;
990 case DT_FLAGS: name = "FLAGS"; break;
991 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
992 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
993 case DT_CHECKSUM: name = "CHECKSUM"; break;
994 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
995 case DT_MOVEENT: name = "MOVEENT"; break;
996 case DT_MOVESZ: name = "MOVESZ"; break;
997 case DT_FEATURE: name = "FEATURE"; break;
998 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
999 case DT_SYMINSZ: name = "SYMINSZ"; break;
1000 case DT_SYMINENT: name = "SYMINENT"; break;
1001 case DT_CONFIG: name = "CONFIG"; stringp = true; break;
1002 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break;
1003 case DT_AUDIT: name = "AUDIT"; stringp = true; break;
1004 case DT_PLTPAD: name = "PLTPAD"; break;
1005 case DT_MOVETAB: name = "MOVETAB"; break;
1006 case DT_SYMINFO: name = "SYMINFO"; break;
1007 case DT_RELACOUNT: name = "RELACOUNT"; break;
1008 case DT_RELCOUNT: name = "RELCOUNT"; break;
1009 case DT_FLAGS_1: name = "FLAGS_1"; break;
1010 case DT_VERSYM: name = "VERSYM"; break;
1011 case DT_VERDEF: name = "VERDEF"; break;
1012 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1013 case DT_VERNEED: name = "VERNEED"; break;
1014 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1015 case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break;
1016 case DT_USED: name = "USED"; break;
1017 case DT_FILTER: name = "FILTER"; stringp = true; break;
1018 }
1019
1020 fprintf (f, " %-11s ", name);
1021 if (! stringp)
1022 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1023 else
1024 {
1025 const char *string;
1026 unsigned int tagv = dyn.d_un.d_val;
1027
1028 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1029 if (string == NULL)
1030 goto error_return;
1031 fprintf (f, "%s", string);
1032 }
1033 fprintf (f, "\n");
1034 }
1035
1036 free (dynbuf);
1037 dynbuf = NULL;
1038 }
1039
1040 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1041 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1042 {
1043 if (! _bfd_elf_slurp_version_tables (abfd))
1044 return false;
1045 }
1046
1047 if (elf_dynverdef (abfd) != 0)
1048 {
1049 Elf_Internal_Verdef *t;
1050
1051 fprintf (f, _("\nVersion definitions:\n"));
1052 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1053 {
1054 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1055 t->vd_flags, t->vd_hash, t->vd_nodename);
1056 if (t->vd_auxptr->vda_nextptr != NULL)
1057 {
1058 Elf_Internal_Verdaux *a;
1059
1060 fprintf (f, "\t");
1061 for (a = t->vd_auxptr->vda_nextptr;
1062 a != NULL;
1063 a = a->vda_nextptr)
1064 fprintf (f, "%s ", a->vda_nodename);
1065 fprintf (f, "\n");
1066 }
1067 }
1068 }
1069
1070 if (elf_dynverref (abfd) != 0)
1071 {
1072 Elf_Internal_Verneed *t;
1073
1074 fprintf (f, _("\nVersion References:\n"));
1075 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1076 {
1077 Elf_Internal_Vernaux *a;
1078
1079 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1080 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1081 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1082 a->vna_flags, a->vna_other, a->vna_nodename);
1083 }
1084 }
1085
1086 return true;
1087
1088 error_return:
1089 if (dynbuf != NULL)
1090 free (dynbuf);
1091 return false;
1092 }
1093
1094 /* Display ELF-specific fields of a symbol. */
1095
1096 void
1097 bfd_elf_print_symbol (abfd, filep, symbol, how)
1098 bfd *abfd;
1099 PTR filep;
1100 asymbol *symbol;
1101 bfd_print_symbol_type how;
1102 {
1103 FILE *file = (FILE *) filep;
1104 switch (how)
1105 {
1106 case bfd_print_symbol_name:
1107 fprintf (file, "%s", symbol->name);
1108 break;
1109 case bfd_print_symbol_more:
1110 fprintf (file, "elf ");
1111 bfd_fprintf_vma (abfd, file, symbol->value);
1112 fprintf (file, " %lx", (long) symbol->flags);
1113 break;
1114 case bfd_print_symbol_all:
1115 {
1116 const char *section_name;
1117 const char *name = NULL;
1118 struct elf_backend_data *bed;
1119 unsigned char st_other;
1120 bfd_vma val;
1121
1122 section_name = symbol->section ? symbol->section->name : "(*none*)";
1123
1124 bed = get_elf_backend_data (abfd);
1125 if (bed->elf_backend_print_symbol_all)
1126 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1127
1128 if (name == NULL)
1129 {
1130 name = symbol->name;
1131 bfd_print_symbol_vandf (abfd, (PTR) file, symbol);
1132 }
1133
1134 fprintf (file, " %s\t", section_name);
1135 /* Print the "other" value for a symbol. For common symbols,
1136 we've already printed the size; now print the alignment.
1137 For other symbols, we have no specified alignment, and
1138 we've printed the address; now print the size. */
1139 if (bfd_is_com_section (symbol->section))
1140 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1141 else
1142 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1143 bfd_fprintf_vma (abfd, file, val);
1144
1145 /* If we have version information, print it. */
1146 if (elf_tdata (abfd)->dynversym_section != 0
1147 && (elf_tdata (abfd)->dynverdef_section != 0
1148 || elf_tdata (abfd)->dynverref_section != 0))
1149 {
1150 unsigned int vernum;
1151 const char *version_string;
1152
1153 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1154
1155 if (vernum == 0)
1156 version_string = "";
1157 else if (vernum == 1)
1158 version_string = "Base";
1159 else if (vernum <= elf_tdata (abfd)->cverdefs)
1160 version_string =
1161 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1162 else
1163 {
1164 Elf_Internal_Verneed *t;
1165
1166 version_string = "";
1167 for (t = elf_tdata (abfd)->verref;
1168 t != NULL;
1169 t = t->vn_nextref)
1170 {
1171 Elf_Internal_Vernaux *a;
1172
1173 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1174 {
1175 if (a->vna_other == vernum)
1176 {
1177 version_string = a->vna_nodename;
1178 break;
1179 }
1180 }
1181 }
1182 }
1183
1184 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1185 fprintf (file, " %-11s", version_string);
1186 else
1187 {
1188 int i;
1189
1190 fprintf (file, " (%s)", version_string);
1191 for (i = 10 - strlen (version_string); i > 0; --i)
1192 putc (' ', file);
1193 }
1194 }
1195
1196 /* If the st_other field is not zero, print it. */
1197 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1198
1199 switch (st_other)
1200 {
1201 case 0: break;
1202 case STV_INTERNAL: fprintf (file, " .internal"); break;
1203 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1204 case STV_PROTECTED: fprintf (file, " .protected"); break;
1205 default:
1206 /* Some other non-defined flags are also present, so print
1207 everything hex. */
1208 fprintf (file, " 0x%02x", (unsigned int) st_other);
1209 }
1210
1211 fprintf (file, " %s", name);
1212 }
1213 break;
1214 }
1215 }
1216 \f
1217 /* Create an entry in an ELF linker hash table. */
1218
1219 struct bfd_hash_entry *
1220 _bfd_elf_link_hash_newfunc (entry, table, string)
1221 struct bfd_hash_entry *entry;
1222 struct bfd_hash_table *table;
1223 const char *string;
1224 {
1225 /* Allocate the structure if it has not already been allocated by a
1226 subclass. */
1227 if (entry == NULL)
1228 {
1229 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1230 if (entry == NULL)
1231 return entry;
1232 }
1233
1234 /* Call the allocation method of the superclass. */
1235 entry = _bfd_link_hash_newfunc (entry, table, string);
1236 if (entry != NULL)
1237 {
1238 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1239 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1240
1241 /* Set local fields. */
1242 ret->indx = -1;
1243 ret->size = 0;
1244 ret->dynindx = -1;
1245 ret->dynstr_index = 0;
1246 ret->weakdef = NULL;
1247 ret->got.refcount = htab->init_refcount;
1248 ret->plt.refcount = htab->init_refcount;
1249 ret->linker_section_pointer = NULL;
1250 ret->verinfo.verdef = NULL;
1251 ret->vtable_entries_used = NULL;
1252 ret->vtable_entries_size = 0;
1253 ret->vtable_parent = NULL;
1254 ret->type = STT_NOTYPE;
1255 ret->other = 0;
1256 /* Assume that we have been called by a non-ELF symbol reader.
1257 This flag is then reset by the code which reads an ELF input
1258 file. This ensures that a symbol created by a non-ELF symbol
1259 reader will have the flag set correctly. */
1260 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1261 }
1262
1263 return entry;
1264 }
1265
1266 /* Copy data from an indirect symbol to its direct symbol, hiding the
1267 old indirect symbol. Also used for copying flags to a weakdef. */
1268
1269 void
1270 _bfd_elf_link_hash_copy_indirect (dir, ind)
1271 struct elf_link_hash_entry *dir, *ind;
1272 {
1273 bfd_signed_vma tmp;
1274
1275 /* Copy down any references that we may have already seen to the
1276 symbol which just became indirect. */
1277
1278 dir->elf_link_hash_flags |=
1279 (ind->elf_link_hash_flags
1280 & (ELF_LINK_HASH_REF_DYNAMIC
1281 | ELF_LINK_HASH_REF_REGULAR
1282 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1283 | ELF_LINK_NON_GOT_REF));
1284
1285 if (ind->root.type != bfd_link_hash_indirect)
1286 return;
1287
1288 /* Copy over the global and procedure linkage table refcount entries.
1289 These may have been already set up by a check_relocs routine. */
1290 tmp = dir->got.refcount;
1291 if (tmp <= 0)
1292 {
1293 dir->got.refcount = ind->got.refcount;
1294 ind->got.refcount = tmp;
1295 }
1296 else
1297 BFD_ASSERT (ind->got.refcount <= 0);
1298
1299 tmp = dir->plt.refcount;
1300 if (tmp <= 0)
1301 {
1302 dir->plt.refcount = ind->plt.refcount;
1303 ind->plt.refcount = tmp;
1304 }
1305 else
1306 BFD_ASSERT (ind->plt.refcount <= 0);
1307
1308 if (dir->dynindx == -1)
1309 {
1310 dir->dynindx = ind->dynindx;
1311 dir->dynstr_index = ind->dynstr_index;
1312 ind->dynindx = -1;
1313 ind->dynstr_index = 0;
1314 }
1315 else
1316 BFD_ASSERT (ind->dynindx == -1);
1317 }
1318
1319 void
1320 _bfd_elf_link_hash_hide_symbol (info, h, force_local)
1321 struct bfd_link_info *info;
1322 struct elf_link_hash_entry *h;
1323 boolean force_local;
1324 {
1325 h->plt.offset = (bfd_vma) -1;
1326 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1327 if (force_local)
1328 {
1329 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1330 if (h->dynindx != -1)
1331 {
1332 h->dynindx = -1;
1333 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1334 h->dynstr_index);
1335 }
1336 }
1337 }
1338
1339 /* Initialize an ELF linker hash table. */
1340
1341 boolean
1342 _bfd_elf_link_hash_table_init (table, abfd, newfunc)
1343 struct elf_link_hash_table *table;
1344 bfd *abfd;
1345 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
1346 struct bfd_hash_table *,
1347 const char *));
1348 {
1349 boolean ret;
1350
1351 table->dynamic_sections_created = false;
1352 table->dynobj = NULL;
1353 table->init_refcount = get_elf_backend_data (abfd)->can_refcount - 1;
1354 /* The first dynamic symbol is a dummy. */
1355 table->dynsymcount = 1;
1356 table->dynstr = NULL;
1357 table->bucketcount = 0;
1358 table->needed = NULL;
1359 table->runpath = NULL;
1360 table->hgot = NULL;
1361 table->stab_info = NULL;
1362 table->merge_info = NULL;
1363 table->dynlocal = NULL;
1364 ret = _bfd_link_hash_table_init (& table->root, abfd, newfunc);
1365 table->root.type = bfd_link_elf_hash_table;
1366
1367 return ret;
1368 }
1369
1370 /* Create an ELF linker hash table. */
1371
1372 struct bfd_link_hash_table *
1373 _bfd_elf_link_hash_table_create (abfd)
1374 bfd *abfd;
1375 {
1376 struct elf_link_hash_table *ret;
1377 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1378
1379 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
1380 if (ret == (struct elf_link_hash_table *) NULL)
1381 return NULL;
1382
1383 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1384 {
1385 free (ret);
1386 return NULL;
1387 }
1388
1389 return &ret->root;
1390 }
1391
1392 /* This is a hook for the ELF emulation code in the generic linker to
1393 tell the backend linker what file name to use for the DT_NEEDED
1394 entry for a dynamic object. The generic linker passes name as an
1395 empty string to indicate that no DT_NEEDED entry should be made. */
1396
1397 void
1398 bfd_elf_set_dt_needed_name (abfd, name)
1399 bfd *abfd;
1400 const char *name;
1401 {
1402 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1403 && bfd_get_format (abfd) == bfd_object)
1404 elf_dt_name (abfd) = name;
1405 }
1406
1407 void
1408 bfd_elf_set_dt_needed_soname (abfd, name)
1409 bfd *abfd;
1410 const char *name;
1411 {
1412 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1413 && bfd_get_format (abfd) == bfd_object)
1414 elf_dt_soname (abfd) = name;
1415 }
1416
1417 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1418 the linker ELF emulation code. */
1419
1420 struct bfd_link_needed_list *
1421 bfd_elf_get_needed_list (abfd, info)
1422 bfd *abfd ATTRIBUTE_UNUSED;
1423 struct bfd_link_info *info;
1424 {
1425 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1426 return NULL;
1427 return elf_hash_table (info)->needed;
1428 }
1429
1430 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1431 hook for the linker ELF emulation code. */
1432
1433 struct bfd_link_needed_list *
1434 bfd_elf_get_runpath_list (abfd, info)
1435 bfd *abfd ATTRIBUTE_UNUSED;
1436 struct bfd_link_info *info;
1437 {
1438 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1439 return NULL;
1440 return elf_hash_table (info)->runpath;
1441 }
1442
1443 /* Get the name actually used for a dynamic object for a link. This
1444 is the SONAME entry if there is one. Otherwise, it is the string
1445 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1446
1447 const char *
1448 bfd_elf_get_dt_soname (abfd)
1449 bfd *abfd;
1450 {
1451 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1452 && bfd_get_format (abfd) == bfd_object)
1453 return elf_dt_name (abfd);
1454 return NULL;
1455 }
1456
1457 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1458 the ELF linker emulation code. */
1459
1460 boolean
1461 bfd_elf_get_bfd_needed_list (abfd, pneeded)
1462 bfd *abfd;
1463 struct bfd_link_needed_list **pneeded;
1464 {
1465 asection *s;
1466 bfd_byte *dynbuf = NULL;
1467 int elfsec;
1468 unsigned long shlink;
1469 bfd_byte *extdyn, *extdynend;
1470 size_t extdynsize;
1471 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
1472
1473 *pneeded = NULL;
1474
1475 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1476 || bfd_get_format (abfd) != bfd_object)
1477 return true;
1478
1479 s = bfd_get_section_by_name (abfd, ".dynamic");
1480 if (s == NULL || s->_raw_size == 0)
1481 return true;
1482
1483 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
1484 if (dynbuf == NULL)
1485 goto error_return;
1486
1487 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
1488 s->_raw_size))
1489 goto error_return;
1490
1491 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1492 if (elfsec == -1)
1493 goto error_return;
1494
1495 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1496
1497 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1498 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1499
1500 extdyn = dynbuf;
1501 extdynend = extdyn + s->_raw_size;
1502 for (; extdyn < extdynend; extdyn += extdynsize)
1503 {
1504 Elf_Internal_Dyn dyn;
1505
1506 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
1507
1508 if (dyn.d_tag == DT_NULL)
1509 break;
1510
1511 if (dyn.d_tag == DT_NEEDED)
1512 {
1513 const char *string;
1514 struct bfd_link_needed_list *l;
1515 unsigned int tagv = dyn.d_un.d_val;
1516 bfd_size_type amt;
1517
1518 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1519 if (string == NULL)
1520 goto error_return;
1521
1522 amt = sizeof *l;
1523 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1524 if (l == NULL)
1525 goto error_return;
1526
1527 l->by = abfd;
1528 l->name = string;
1529 l->next = *pneeded;
1530 *pneeded = l;
1531 }
1532 }
1533
1534 free (dynbuf);
1535
1536 return true;
1537
1538 error_return:
1539 if (dynbuf != NULL)
1540 free (dynbuf);
1541 return false;
1542 }
1543 \f
1544 /* Allocate an ELF string table--force the first byte to be zero. */
1545
1546 struct bfd_strtab_hash *
1547 _bfd_elf_stringtab_init ()
1548 {
1549 struct bfd_strtab_hash *ret;
1550
1551 ret = _bfd_stringtab_init ();
1552 if (ret != NULL)
1553 {
1554 bfd_size_type loc;
1555
1556 loc = _bfd_stringtab_add (ret, "", true, false);
1557 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1558 if (loc == (bfd_size_type) -1)
1559 {
1560 _bfd_stringtab_free (ret);
1561 ret = NULL;
1562 }
1563 }
1564 return ret;
1565 }
1566 \f
1567 /* ELF .o/exec file reading */
1568
1569 /* Create a new bfd section from an ELF section header. */
1570
1571 boolean
1572 bfd_section_from_shdr (abfd, shindex)
1573 bfd *abfd;
1574 unsigned int shindex;
1575 {
1576 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1577 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1578 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1579 char *name;
1580
1581 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1582
1583 switch (hdr->sh_type)
1584 {
1585 case SHT_NULL:
1586 /* Inactive section. Throw it away. */
1587 return true;
1588
1589 case SHT_PROGBITS: /* Normal section with contents. */
1590 case SHT_DYNAMIC: /* Dynamic linking information. */
1591 case SHT_NOBITS: /* .bss section. */
1592 case SHT_HASH: /* .hash section. */
1593 case SHT_NOTE: /* .note section. */
1594 case SHT_INIT_ARRAY: /* .init_array section. */
1595 case SHT_FINI_ARRAY: /* .fini_array section. */
1596 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1597 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1598
1599 case SHT_SYMTAB: /* A symbol table */
1600 if (elf_onesymtab (abfd) == shindex)
1601 return true;
1602
1603 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1604 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1605 elf_onesymtab (abfd) = shindex;
1606 elf_tdata (abfd)->symtab_hdr = *hdr;
1607 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1608 abfd->flags |= HAS_SYMS;
1609
1610 /* Sometimes a shared object will map in the symbol table. If
1611 SHF_ALLOC is set, and this is a shared object, then we also
1612 treat this section as a BFD section. We can not base the
1613 decision purely on SHF_ALLOC, because that flag is sometimes
1614 set in a relocateable object file, which would confuse the
1615 linker. */
1616 if ((hdr->sh_flags & SHF_ALLOC) != 0
1617 && (abfd->flags & DYNAMIC) != 0
1618 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1619 return false;
1620
1621 return true;
1622
1623 case SHT_DYNSYM: /* A dynamic symbol table */
1624 if (elf_dynsymtab (abfd) == shindex)
1625 return true;
1626
1627 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1628 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1629 elf_dynsymtab (abfd) = shindex;
1630 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1631 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1632 abfd->flags |= HAS_SYMS;
1633
1634 /* Besides being a symbol table, we also treat this as a regular
1635 section, so that objcopy can handle it. */
1636 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1637
1638 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1639 if (elf_symtab_shndx (abfd) == shindex)
1640 return true;
1641
1642 /* Get the associated symbol table. */
1643 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1644 || hdr->sh_link != elf_onesymtab (abfd))
1645 return false;
1646
1647 elf_symtab_shndx (abfd) = shindex;
1648 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1649 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1650 return true;
1651
1652 case SHT_STRTAB: /* A string table */
1653 if (hdr->bfd_section != NULL)
1654 return true;
1655 if (ehdr->e_shstrndx == shindex)
1656 {
1657 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1658 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1659 return true;
1660 }
1661 {
1662 unsigned int i, num_sec;
1663
1664 num_sec = elf_numsections (abfd);
1665 for (i = 1; i < num_sec; i++)
1666 {
1667 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1668 if (hdr2->sh_link == shindex)
1669 {
1670 if (! bfd_section_from_shdr (abfd, i))
1671 return false;
1672 if (elf_onesymtab (abfd) == i)
1673 {
1674 elf_tdata (abfd)->strtab_hdr = *hdr;
1675 elf_elfsections (abfd)[shindex] =
1676 &elf_tdata (abfd)->strtab_hdr;
1677 return true;
1678 }
1679 if (elf_dynsymtab (abfd) == i)
1680 {
1681 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1682 elf_elfsections (abfd)[shindex] = hdr =
1683 &elf_tdata (abfd)->dynstrtab_hdr;
1684 /* We also treat this as a regular section, so
1685 that objcopy can handle it. */
1686 break;
1687 }
1688 #if 0 /* Not handling other string tables specially right now. */
1689 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1690 /* We have a strtab for some random other section. */
1691 newsect = (asection *) hdr2->bfd_section;
1692 if (!newsect)
1693 break;
1694 hdr->bfd_section = newsect;
1695 hdr2 = &elf_section_data (newsect)->str_hdr;
1696 *hdr2 = *hdr;
1697 elf_elfsections (abfd)[shindex] = hdr2;
1698 #endif
1699 }
1700 }
1701 }
1702
1703 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1704
1705 case SHT_REL:
1706 case SHT_RELA:
1707 /* *These* do a lot of work -- but build no sections! */
1708 {
1709 asection *target_sect;
1710 Elf_Internal_Shdr *hdr2;
1711 unsigned int num_sec = elf_numsections (abfd);
1712
1713 /* Check for a bogus link to avoid crashing. */
1714 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1715 || hdr->sh_link >= num_sec)
1716 {
1717 ((*_bfd_error_handler)
1718 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1719 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1720 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1721 }
1722
1723 /* For some incomprehensible reason Oracle distributes
1724 libraries for Solaris in which some of the objects have
1725 bogus sh_link fields. It would be nice if we could just
1726 reject them, but, unfortunately, some people need to use
1727 them. We scan through the section headers; if we find only
1728 one suitable symbol table, we clobber the sh_link to point
1729 to it. I hope this doesn't break anything. */
1730 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1731 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1732 {
1733 unsigned int scan;
1734 int found;
1735
1736 found = 0;
1737 for (scan = 1; scan < num_sec; scan++)
1738 {
1739 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1740 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1741 {
1742 if (found != 0)
1743 {
1744 found = 0;
1745 break;
1746 }
1747 found = scan;
1748 }
1749 }
1750 if (found != 0)
1751 hdr->sh_link = found;
1752 }
1753
1754 /* Get the symbol table. */
1755 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1756 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1757 return false;
1758
1759 /* If this reloc section does not use the main symbol table we
1760 don't treat it as a reloc section. BFD can't adequately
1761 represent such a section, so at least for now, we don't
1762 try. We just present it as a normal section. We also
1763 can't use it as a reloc section if it points to the null
1764 section. */
1765 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1766 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1767
1768 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1769 return false;
1770 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1771 if (target_sect == NULL)
1772 return false;
1773
1774 if ((target_sect->flags & SEC_RELOC) == 0
1775 || target_sect->reloc_count == 0)
1776 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1777 else
1778 {
1779 bfd_size_type amt;
1780 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1781 amt = sizeof (*hdr2);
1782 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1783 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1784 }
1785 *hdr2 = *hdr;
1786 elf_elfsections (abfd)[shindex] = hdr2;
1787 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1788 target_sect->flags |= SEC_RELOC;
1789 target_sect->relocation = NULL;
1790 target_sect->rel_filepos = hdr->sh_offset;
1791 /* In the section to which the relocations apply, mark whether
1792 its relocations are of the REL or RELA variety. */
1793 if (hdr->sh_size != 0)
1794 elf_section_data (target_sect)->use_rela_p
1795 = (hdr->sh_type == SHT_RELA);
1796 abfd->flags |= HAS_RELOC;
1797 return true;
1798 }
1799 break;
1800
1801 case SHT_GNU_verdef:
1802 elf_dynverdef (abfd) = shindex;
1803 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1804 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1805 break;
1806
1807 case SHT_GNU_versym:
1808 elf_dynversym (abfd) = shindex;
1809 elf_tdata (abfd)->dynversym_hdr = *hdr;
1810 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1811 break;
1812
1813 case SHT_GNU_verneed:
1814 elf_dynverref (abfd) = shindex;
1815 elf_tdata (abfd)->dynverref_hdr = *hdr;
1816 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1817 break;
1818
1819 case SHT_SHLIB:
1820 return true;
1821
1822 case SHT_GROUP:
1823 /* Make a section for objcopy and relocatable links. */
1824 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
1825 return false;
1826 if (hdr->contents != NULL)
1827 {
1828 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1829 unsigned int n_elt = hdr->sh_size / 4;
1830 asection *s;
1831
1832 while (--n_elt != 0)
1833 if ((s = (++idx)->shdr->bfd_section) != NULL
1834 && elf_next_in_group (s) != NULL)
1835 {
1836 elf_next_in_group (hdr->bfd_section) = s;
1837 break;
1838 }
1839 }
1840 break;
1841
1842 default:
1843 /* Check for any processor-specific section types. */
1844 {
1845 if (bed->elf_backend_section_from_shdr)
1846 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
1847 }
1848 break;
1849 }
1850
1851 return true;
1852 }
1853
1854 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1855 Return SEC for sections that have no elf section, and NULL on error. */
1856
1857 asection *
1858 bfd_section_from_r_symndx (abfd, cache, sec, r_symndx)
1859 bfd *abfd;
1860 struct sym_sec_cache *cache;
1861 asection *sec;
1862 unsigned long r_symndx;
1863 {
1864 unsigned char esym_shndx[4];
1865 unsigned int isym_shndx;
1866 Elf_Internal_Shdr *symtab_hdr;
1867 file_ptr pos;
1868 bfd_size_type amt;
1869 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1870
1871 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
1872 return cache->sec[ent];
1873
1874 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1875 pos = symtab_hdr->sh_offset;
1876 if (get_elf_backend_data (abfd)->s->sizeof_sym
1877 == sizeof (Elf64_External_Sym))
1878 {
1879 pos += r_symndx * sizeof (Elf64_External_Sym);
1880 pos += offsetof (Elf64_External_Sym, st_shndx);
1881 amt = sizeof (((Elf64_External_Sym *) 0)->st_shndx);
1882 }
1883 else
1884 {
1885 pos += r_symndx * sizeof (Elf32_External_Sym);
1886 pos += offsetof (Elf32_External_Sym, st_shndx);
1887 amt = sizeof (((Elf32_External_Sym *) 0)->st_shndx);
1888 }
1889 if (bfd_seek (abfd, pos, SEEK_SET) != 0
1890 || bfd_bread ((PTR) esym_shndx, amt, abfd) != amt)
1891 return NULL;
1892 isym_shndx = H_GET_16 (abfd, esym_shndx);
1893
1894 if (isym_shndx == SHN_XINDEX)
1895 {
1896 Elf_Internal_Shdr *shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
1897 if (shndx_hdr->sh_size != 0)
1898 {
1899 pos = shndx_hdr->sh_offset;
1900 pos += r_symndx * sizeof (Elf_External_Sym_Shndx);
1901 amt = sizeof (Elf_External_Sym_Shndx);
1902 if (bfd_seek (abfd, pos, SEEK_SET) != 0
1903 || bfd_bread ((PTR) esym_shndx, amt, abfd) != amt)
1904 return NULL;
1905 isym_shndx = H_GET_32 (abfd, esym_shndx);
1906 }
1907 }
1908
1909 if (cache->abfd != abfd)
1910 {
1911 memset (cache->indx, -1, sizeof (cache->indx));
1912 cache->abfd = abfd;
1913 }
1914 cache->indx[ent] = r_symndx;
1915 cache->sec[ent] = sec;
1916 if (isym_shndx < SHN_LORESERVE || isym_shndx > SHN_HIRESERVE)
1917 {
1918 asection *s;
1919 s = bfd_section_from_elf_index (abfd, isym_shndx);
1920 if (s != NULL)
1921 cache->sec[ent] = s;
1922 }
1923 return cache->sec[ent];
1924 }
1925
1926 /* Given an ELF section number, retrieve the corresponding BFD
1927 section. */
1928
1929 asection *
1930 bfd_section_from_elf_index (abfd, index)
1931 bfd *abfd;
1932 unsigned int index;
1933 {
1934 if (index >= elf_numsections (abfd))
1935 return NULL;
1936 return elf_elfsections (abfd)[index]->bfd_section;
1937 }
1938
1939 boolean
1940 _bfd_elf_new_section_hook (abfd, sec)
1941 bfd *abfd;
1942 asection *sec;
1943 {
1944 struct bfd_elf_section_data *sdata;
1945 bfd_size_type amt = sizeof (*sdata);
1946
1947 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, amt);
1948 if (!sdata)
1949 return false;
1950 sec->used_by_bfd = (PTR) sdata;
1951
1952 /* Indicate whether or not this section should use RELA relocations. */
1953 sdata->use_rela_p
1954 = get_elf_backend_data (abfd)->default_use_rela_p;
1955
1956 return true;
1957 }
1958
1959 /* Create a new bfd section from an ELF program header.
1960
1961 Since program segments have no names, we generate a synthetic name
1962 of the form segment<NUM>, where NUM is generally the index in the
1963 program header table. For segments that are split (see below) we
1964 generate the names segment<NUM>a and segment<NUM>b.
1965
1966 Note that some program segments may have a file size that is different than
1967 (less than) the memory size. All this means is that at execution the
1968 system must allocate the amount of memory specified by the memory size,
1969 but only initialize it with the first "file size" bytes read from the
1970 file. This would occur for example, with program segments consisting
1971 of combined data+bss.
1972
1973 To handle the above situation, this routine generates TWO bfd sections
1974 for the single program segment. The first has the length specified by
1975 the file size of the segment, and the second has the length specified
1976 by the difference between the two sizes. In effect, the segment is split
1977 into it's initialized and uninitialized parts.
1978
1979 */
1980
1981 boolean
1982 _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename)
1983 bfd *abfd;
1984 Elf_Internal_Phdr *hdr;
1985 int index;
1986 const char *typename;
1987 {
1988 asection *newsect;
1989 char *name;
1990 char namebuf[64];
1991 int split;
1992
1993 split = ((hdr->p_memsz > 0)
1994 && (hdr->p_filesz > 0)
1995 && (hdr->p_memsz > hdr->p_filesz));
1996 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
1997 name = bfd_alloc (abfd, (bfd_size_type) strlen (namebuf) + 1);
1998 if (!name)
1999 return false;
2000 strcpy (name, namebuf);
2001 newsect = bfd_make_section (abfd, name);
2002 if (newsect == NULL)
2003 return false;
2004 newsect->vma = hdr->p_vaddr;
2005 newsect->lma = hdr->p_paddr;
2006 newsect->_raw_size = hdr->p_filesz;
2007 newsect->filepos = hdr->p_offset;
2008 newsect->flags |= SEC_HAS_CONTENTS;
2009 if (hdr->p_type == PT_LOAD)
2010 {
2011 newsect->flags |= SEC_ALLOC;
2012 newsect->flags |= SEC_LOAD;
2013 if (hdr->p_flags & PF_X)
2014 {
2015 /* FIXME: all we known is that it has execute PERMISSION,
2016 may be data. */
2017 newsect->flags |= SEC_CODE;
2018 }
2019 }
2020 if (!(hdr->p_flags & PF_W))
2021 {
2022 newsect->flags |= SEC_READONLY;
2023 }
2024
2025 if (split)
2026 {
2027 sprintf (namebuf, "%s%db", typename, index);
2028 name = bfd_alloc (abfd, (bfd_size_type) strlen (namebuf) + 1);
2029 if (!name)
2030 return false;
2031 strcpy (name, namebuf);
2032 newsect = bfd_make_section (abfd, name);
2033 if (newsect == NULL)
2034 return false;
2035 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2036 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2037 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2038 if (hdr->p_type == PT_LOAD)
2039 {
2040 newsect->flags |= SEC_ALLOC;
2041 if (hdr->p_flags & PF_X)
2042 newsect->flags |= SEC_CODE;
2043 }
2044 if (!(hdr->p_flags & PF_W))
2045 newsect->flags |= SEC_READONLY;
2046 }
2047
2048 return true;
2049 }
2050
2051 boolean
2052 bfd_section_from_phdr (abfd, hdr, index)
2053 bfd *abfd;
2054 Elf_Internal_Phdr *hdr;
2055 int index;
2056 {
2057 struct elf_backend_data *bed;
2058
2059 switch (hdr->p_type)
2060 {
2061 case PT_NULL:
2062 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2063
2064 case PT_LOAD:
2065 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2066
2067 case PT_DYNAMIC:
2068 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2069
2070 case PT_INTERP:
2071 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2072
2073 case PT_NOTE:
2074 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2075 return false;
2076 if (! elfcore_read_notes (abfd, (file_ptr) hdr->p_offset, hdr->p_filesz))
2077 return false;
2078 return true;
2079
2080 case PT_SHLIB:
2081 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2082
2083 case PT_PHDR:
2084 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2085
2086 default:
2087 /* Check for any processor-specific program segment types.
2088 If no handler for them, default to making "segment" sections. */
2089 bed = get_elf_backend_data (abfd);
2090 if (bed->elf_backend_section_from_phdr)
2091 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2092 else
2093 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2094 }
2095 }
2096
2097 /* Initialize REL_HDR, the section-header for new section, containing
2098 relocations against ASECT. If USE_RELA_P is true, we use RELA
2099 relocations; otherwise, we use REL relocations. */
2100
2101 boolean
2102 _bfd_elf_init_reloc_shdr (abfd, rel_hdr, asect, use_rela_p)
2103 bfd *abfd;
2104 Elf_Internal_Shdr *rel_hdr;
2105 asection *asect;
2106 boolean use_rela_p;
2107 {
2108 char *name;
2109 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2110 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2111
2112 name = bfd_alloc (abfd, amt);
2113 if (name == NULL)
2114 return false;
2115 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2116 rel_hdr->sh_name =
2117 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2118 false);
2119 if (rel_hdr->sh_name == (unsigned int) -1)
2120 return false;
2121 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2122 rel_hdr->sh_entsize = (use_rela_p
2123 ? bed->s->sizeof_rela
2124 : bed->s->sizeof_rel);
2125 rel_hdr->sh_addralign = bed->s->file_align;
2126 rel_hdr->sh_flags = 0;
2127 rel_hdr->sh_addr = 0;
2128 rel_hdr->sh_size = 0;
2129 rel_hdr->sh_offset = 0;
2130
2131 return true;
2132 }
2133
2134 /* Set up an ELF internal section header for a section. */
2135
2136 static void
2137 elf_fake_sections (abfd, asect, failedptrarg)
2138 bfd *abfd;
2139 asection *asect;
2140 PTR failedptrarg;
2141 {
2142 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2143 boolean *failedptr = (boolean *) failedptrarg;
2144 Elf_Internal_Shdr *this_hdr;
2145
2146 if (*failedptr)
2147 {
2148 /* We already failed; just get out of the bfd_map_over_sections
2149 loop. */
2150 return;
2151 }
2152
2153 this_hdr = &elf_section_data (asect)->this_hdr;
2154
2155 this_hdr->sh_name = (unsigned long) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2156 asect->name, false);
2157 if (this_hdr->sh_name == (unsigned long) -1)
2158 {
2159 *failedptr = true;
2160 return;
2161 }
2162
2163 this_hdr->sh_flags = 0;
2164
2165 if ((asect->flags & SEC_ALLOC) != 0
2166 || asect->user_set_vma)
2167 this_hdr->sh_addr = asect->vma;
2168 else
2169 this_hdr->sh_addr = 0;
2170
2171 this_hdr->sh_offset = 0;
2172 this_hdr->sh_size = asect->_raw_size;
2173 this_hdr->sh_link = 0;
2174 this_hdr->sh_addralign = 1 << asect->alignment_power;
2175 /* The sh_entsize and sh_info fields may have been set already by
2176 copy_private_section_data. */
2177
2178 this_hdr->bfd_section = asect;
2179 this_hdr->contents = NULL;
2180
2181 /* FIXME: This should not be based on section names. */
2182 if (strcmp (asect->name, ".dynstr") == 0)
2183 this_hdr->sh_type = SHT_STRTAB;
2184 else if (strcmp (asect->name, ".hash") == 0)
2185 {
2186 this_hdr->sh_type = SHT_HASH;
2187 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2188 }
2189 else if (strcmp (asect->name, ".dynsym") == 0)
2190 {
2191 this_hdr->sh_type = SHT_DYNSYM;
2192 this_hdr->sh_entsize = bed->s->sizeof_sym;
2193 }
2194 else if (strcmp (asect->name, ".dynamic") == 0)
2195 {
2196 this_hdr->sh_type = SHT_DYNAMIC;
2197 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2198 }
2199 else if (strncmp (asect->name, ".rela", 5) == 0
2200 && get_elf_backend_data (abfd)->may_use_rela_p)
2201 {
2202 this_hdr->sh_type = SHT_RELA;
2203 this_hdr->sh_entsize = bed->s->sizeof_rela;
2204 }
2205 else if (strncmp (asect->name, ".rel", 4) == 0
2206 && get_elf_backend_data (abfd)->may_use_rel_p)
2207 {
2208 this_hdr->sh_type = SHT_REL;
2209 this_hdr->sh_entsize = bed->s->sizeof_rel;
2210 }
2211 else if (strcmp (asect->name, ".init_array") == 0)
2212 this_hdr->sh_type = SHT_INIT_ARRAY;
2213 else if (strcmp (asect->name, ".fini_array") == 0)
2214 this_hdr->sh_type = SHT_FINI_ARRAY;
2215 else if (strcmp (asect->name, ".preinit_array") == 0)
2216 this_hdr->sh_type = SHT_PREINIT_ARRAY;
2217 else if (strncmp (asect->name, ".note", 5) == 0)
2218 this_hdr->sh_type = SHT_NOTE;
2219 else if (strncmp (asect->name, ".stab", 5) == 0
2220 && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0)
2221 this_hdr->sh_type = SHT_STRTAB;
2222 else if (strcmp (asect->name, ".gnu.version") == 0)
2223 {
2224 this_hdr->sh_type = SHT_GNU_versym;
2225 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2226 }
2227 else if (strcmp (asect->name, ".gnu.version_d") == 0)
2228 {
2229 this_hdr->sh_type = SHT_GNU_verdef;
2230 this_hdr->sh_entsize = 0;
2231 /* objcopy or strip will copy over sh_info, but may not set
2232 cverdefs. The linker will set cverdefs, but sh_info will be
2233 zero. */
2234 if (this_hdr->sh_info == 0)
2235 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2236 else
2237 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2238 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2239 }
2240 else if (strcmp (asect->name, ".gnu.version_r") == 0)
2241 {
2242 this_hdr->sh_type = SHT_GNU_verneed;
2243 this_hdr->sh_entsize = 0;
2244 /* objcopy or strip will copy over sh_info, but may not set
2245 cverrefs. The linker will set cverrefs, but sh_info will be
2246 zero. */
2247 if (this_hdr->sh_info == 0)
2248 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2249 else
2250 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2251 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2252 }
2253 else if ((asect->flags & SEC_GROUP) != 0)
2254 {
2255 this_hdr->sh_type = SHT_GROUP;
2256 this_hdr->sh_entsize = 4;
2257 }
2258 else if ((asect->flags & SEC_ALLOC) != 0
2259 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2260 || (asect->flags & SEC_NEVER_LOAD) != 0))
2261 this_hdr->sh_type = SHT_NOBITS;
2262 else
2263 this_hdr->sh_type = SHT_PROGBITS;
2264
2265 if ((asect->flags & SEC_ALLOC) != 0)
2266 this_hdr->sh_flags |= SHF_ALLOC;
2267 if ((asect->flags & SEC_READONLY) == 0)
2268 this_hdr->sh_flags |= SHF_WRITE;
2269 if ((asect->flags & SEC_CODE) != 0)
2270 this_hdr->sh_flags |= SHF_EXECINSTR;
2271 if ((asect->flags & SEC_MERGE) != 0)
2272 {
2273 this_hdr->sh_flags |= SHF_MERGE;
2274 this_hdr->sh_entsize = asect->entsize;
2275 if ((asect->flags & SEC_STRINGS) != 0)
2276 this_hdr->sh_flags |= SHF_STRINGS;
2277 }
2278 if (elf_group_name (asect) != NULL)
2279 this_hdr->sh_flags |= SHF_GROUP;
2280 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2281 this_hdr->sh_flags |= SHF_TLS;
2282
2283 /* Check for processor-specific section types. */
2284 if (bed->elf_backend_fake_sections
2285 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2286 *failedptr = true;
2287
2288 /* If the section has relocs, set up a section header for the
2289 SHT_REL[A] section. If two relocation sections are required for
2290 this section, it is up to the processor-specific back-end to
2291 create the other. */
2292 if ((asect->flags & SEC_RELOC) != 0
2293 && !_bfd_elf_init_reloc_shdr (abfd,
2294 &elf_section_data (asect)->rel_hdr,
2295 asect,
2296 elf_section_data (asect)->use_rela_p))
2297 *failedptr = true;
2298 }
2299
2300 /* Fill in the contents of a SHT_GROUP section. */
2301
2302 static void
2303 set_group_contents (abfd, sec, failedptrarg)
2304 bfd *abfd;
2305 asection *sec;
2306 PTR failedptrarg ATTRIBUTE_UNUSED;
2307 {
2308 boolean *failedptr = (boolean *) failedptrarg;
2309 unsigned long symindx;
2310 asection *elt;
2311 unsigned char *loc;
2312 struct bfd_link_order *l;
2313
2314 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2315 || *failedptr)
2316 return;
2317
2318 /* If called from the assembler, swap_out_syms will have set up
2319 elf_section_syms; If called for "ld -r", the symbols won't yet
2320 be mapped, so emulate elf_bfd_final_link. */
2321 if (elf_section_syms (abfd) != NULL)
2322 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2323 else
2324 symindx = elf_section_data (sec)->this_idx;
2325 elf_section_data (sec)->this_hdr.sh_info = symindx;
2326
2327 /* Nor will the contents be allocated for "ld -r". */
2328 if (sec->contents == NULL)
2329 {
2330 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2331 if (sec->contents == NULL)
2332 {
2333 *failedptr = true;
2334 return;
2335 }
2336 }
2337
2338 loc = sec->contents + sec->_raw_size;
2339
2340 /* Get the pointer to the first section in the group that we
2341 squirreled away here. */
2342 elt = elf_next_in_group (sec);
2343
2344 /* First element is a flag word. Rest of section is elf section
2345 indices for all the sections of the group. Write them backwards
2346 just to keep the group in the same order as given in .section
2347 directives, not that it matters. */
2348 while (elt != NULL)
2349 {
2350 loc -= 4;
2351 H_PUT_32 (abfd, elf_section_data (elt)->this_idx, loc);
2352 elt = elf_next_in_group (elt);
2353 }
2354
2355 /* If this is a relocatable link, then the above did nothing because
2356 SEC is the output section. Look through the input sections
2357 instead. */
2358 for (l = sec->link_order_head; l != NULL; l = l->next)
2359 if (l->type == bfd_indirect_link_order
2360 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2361 do
2362 {
2363 loc -= 4;
2364 H_PUT_32 (abfd,
2365 elf_section_data (elt->output_section)->this_idx, loc);
2366 elt = elf_next_in_group (elt);
2367 /* During a relocatable link, the lists are circular. */
2368 }
2369 while (elt != elf_next_in_group (l->u.indirect.section));
2370
2371 loc -= 4;
2372 H_PUT_32 (abfd, 0, loc);
2373
2374 BFD_ASSERT (loc == sec->contents);
2375 }
2376
2377 /* Assign all ELF section numbers. The dummy first section is handled here
2378 too. The link/info pointers for the standard section types are filled
2379 in here too, while we're at it. */
2380
2381 static boolean
2382 assign_section_numbers (abfd)
2383 bfd *abfd;
2384 {
2385 struct elf_obj_tdata *t = elf_tdata (abfd);
2386 asection *sec;
2387 unsigned int section_number, secn;
2388 Elf_Internal_Shdr **i_shdrp;
2389 bfd_size_type amt;
2390
2391 section_number = 1;
2392
2393 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2394
2395 for (sec = abfd->sections; sec; sec = sec->next)
2396 {
2397 struct bfd_elf_section_data *d = elf_section_data (sec);
2398
2399 if (section_number == SHN_LORESERVE)
2400 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2401 d->this_idx = section_number++;
2402 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2403 if ((sec->flags & SEC_RELOC) == 0)
2404 d->rel_idx = 0;
2405 else
2406 {
2407 if (section_number == SHN_LORESERVE)
2408 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2409 d->rel_idx = section_number++;
2410 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2411 }
2412
2413 if (d->rel_hdr2)
2414 {
2415 if (section_number == SHN_LORESERVE)
2416 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2417 d->rel_idx2 = section_number++;
2418 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2419 }
2420 else
2421 d->rel_idx2 = 0;
2422 }
2423
2424 if (section_number == SHN_LORESERVE)
2425 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2426 t->shstrtab_section = section_number++;
2427 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2428 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2429
2430 if (bfd_get_symcount (abfd) > 0)
2431 {
2432 if (section_number == SHN_LORESERVE)
2433 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2434 t->symtab_section = section_number++;
2435 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2436 if (section_number > SHN_LORESERVE - 2)
2437 {
2438 if (section_number == SHN_LORESERVE)
2439 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2440 t->symtab_shndx_section = section_number++;
2441 t->symtab_shndx_hdr.sh_name
2442 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2443 ".symtab_shndx", false);
2444 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2445 return false;
2446 }
2447 if (section_number == SHN_LORESERVE)
2448 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2449 t->strtab_section = section_number++;
2450 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2451 }
2452
2453 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2454 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2455
2456 elf_numsections (abfd) = section_number;
2457 elf_elfheader (abfd)->e_shnum = section_number;
2458 if (section_number > SHN_LORESERVE)
2459 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2460
2461 /* Set up the list of section header pointers, in agreement with the
2462 indices. */
2463 amt = section_number * sizeof (Elf_Internal_Shdr *);
2464 i_shdrp = (Elf_Internal_Shdr **) bfd_alloc (abfd, amt);
2465 if (i_shdrp == NULL)
2466 return false;
2467
2468 amt = sizeof (Elf_Internal_Shdr);
2469 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
2470 if (i_shdrp[0] == NULL)
2471 {
2472 bfd_release (abfd, i_shdrp);
2473 return false;
2474 }
2475 memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr));
2476
2477 elf_elfsections (abfd) = i_shdrp;
2478
2479 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2480 if (bfd_get_symcount (abfd) > 0)
2481 {
2482 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2483 if (elf_numsections (abfd) > SHN_LORESERVE)
2484 {
2485 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2486 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2487 }
2488 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2489 t->symtab_hdr.sh_link = t->strtab_section;
2490 }
2491 for (sec = abfd->sections; sec; sec = sec->next)
2492 {
2493 struct bfd_elf_section_data *d = elf_section_data (sec);
2494 asection *s;
2495 const char *name;
2496
2497 i_shdrp[d->this_idx] = &d->this_hdr;
2498 if (d->rel_idx != 0)
2499 i_shdrp[d->rel_idx] = &d->rel_hdr;
2500 if (d->rel_idx2 != 0)
2501 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2502
2503 /* Fill in the sh_link and sh_info fields while we're at it. */
2504
2505 /* sh_link of a reloc section is the section index of the symbol
2506 table. sh_info is the section index of the section to which
2507 the relocation entries apply. */
2508 if (d->rel_idx != 0)
2509 {
2510 d->rel_hdr.sh_link = t->symtab_section;
2511 d->rel_hdr.sh_info = d->this_idx;
2512 }
2513 if (d->rel_idx2 != 0)
2514 {
2515 d->rel_hdr2->sh_link = t->symtab_section;
2516 d->rel_hdr2->sh_info = d->this_idx;
2517 }
2518
2519 switch (d->this_hdr.sh_type)
2520 {
2521 case SHT_REL:
2522 case SHT_RELA:
2523 /* A reloc section which we are treating as a normal BFD
2524 section. sh_link is the section index of the symbol
2525 table. sh_info is the section index of the section to
2526 which the relocation entries apply. We assume that an
2527 allocated reloc section uses the dynamic symbol table.
2528 FIXME: How can we be sure? */
2529 s = bfd_get_section_by_name (abfd, ".dynsym");
2530 if (s != NULL)
2531 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2532
2533 /* We look up the section the relocs apply to by name. */
2534 name = sec->name;
2535 if (d->this_hdr.sh_type == SHT_REL)
2536 name += 4;
2537 else
2538 name += 5;
2539 s = bfd_get_section_by_name (abfd, name);
2540 if (s != NULL)
2541 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2542 break;
2543
2544 case SHT_STRTAB:
2545 /* We assume that a section named .stab*str is a stabs
2546 string section. We look for a section with the same name
2547 but without the trailing ``str'', and set its sh_link
2548 field to point to this section. */
2549 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2550 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2551 {
2552 size_t len;
2553 char *alc;
2554
2555 len = strlen (sec->name);
2556 alc = (char *) bfd_malloc ((bfd_size_type) len - 2);
2557 if (alc == NULL)
2558 return false;
2559 strncpy (alc, sec->name, len - 3);
2560 alc[len - 3] = '\0';
2561 s = bfd_get_section_by_name (abfd, alc);
2562 free (alc);
2563 if (s != NULL)
2564 {
2565 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2566
2567 /* This is a .stab section. */
2568 elf_section_data (s)->this_hdr.sh_entsize =
2569 4 + 2 * bfd_get_arch_size (abfd) / 8;
2570 }
2571 }
2572 break;
2573
2574 case SHT_DYNAMIC:
2575 case SHT_DYNSYM:
2576 case SHT_GNU_verneed:
2577 case SHT_GNU_verdef:
2578 /* sh_link is the section header index of the string table
2579 used for the dynamic entries, or the symbol table, or the
2580 version strings. */
2581 s = bfd_get_section_by_name (abfd, ".dynstr");
2582 if (s != NULL)
2583 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2584 break;
2585
2586 case SHT_HASH:
2587 case SHT_GNU_versym:
2588 /* sh_link is the section header index of the symbol table
2589 this hash table or version table is for. */
2590 s = bfd_get_section_by_name (abfd, ".dynsym");
2591 if (s != NULL)
2592 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2593 break;
2594
2595 case SHT_GROUP:
2596 d->this_hdr.sh_link = t->symtab_section;
2597 }
2598 }
2599
2600 for (secn = 1; secn < section_number; ++secn)
2601 if (i_shdrp[secn] == NULL)
2602 i_shdrp[secn] = i_shdrp[0];
2603 else
2604 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2605 i_shdrp[secn]->sh_name);
2606 return true;
2607 }
2608
2609 /* Map symbol from it's internal number to the external number, moving
2610 all local symbols to be at the head of the list. */
2611
2612 static INLINE int
2613 sym_is_global (abfd, sym)
2614 bfd *abfd;
2615 asymbol *sym;
2616 {
2617 /* If the backend has a special mapping, use it. */
2618 if (get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2619 return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2620 (abfd, sym));
2621
2622 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2623 || bfd_is_und_section (bfd_get_section (sym))
2624 || bfd_is_com_section (bfd_get_section (sym)));
2625 }
2626
2627 static boolean
2628 elf_map_symbols (abfd)
2629 bfd *abfd;
2630 {
2631 unsigned int symcount = bfd_get_symcount (abfd);
2632 asymbol **syms = bfd_get_outsymbols (abfd);
2633 asymbol **sect_syms;
2634 unsigned int num_locals = 0;
2635 unsigned int num_globals = 0;
2636 unsigned int num_locals2 = 0;
2637 unsigned int num_globals2 = 0;
2638 int max_index = 0;
2639 unsigned int idx;
2640 asection *asect;
2641 asymbol **new_syms;
2642 bfd_size_type amt;
2643
2644 #ifdef DEBUG
2645 fprintf (stderr, "elf_map_symbols\n");
2646 fflush (stderr);
2647 #endif
2648
2649 for (asect = abfd->sections; asect; asect = asect->next)
2650 {
2651 if (max_index < asect->index)
2652 max_index = asect->index;
2653 }
2654
2655 max_index++;
2656 amt = max_index * sizeof (asymbol *);
2657 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
2658 if (sect_syms == NULL)
2659 return false;
2660 elf_section_syms (abfd) = sect_syms;
2661 elf_num_section_syms (abfd) = max_index;
2662
2663 /* Init sect_syms entries for any section symbols we have already
2664 decided to output. */
2665 for (idx = 0; idx < symcount; idx++)
2666 {
2667 asymbol *sym = syms[idx];
2668
2669 if ((sym->flags & BSF_SECTION_SYM) != 0
2670 && sym->value == 0)
2671 {
2672 asection *sec;
2673
2674 sec = sym->section;
2675
2676 if (sec->owner != NULL)
2677 {
2678 if (sec->owner != abfd)
2679 {
2680 if (sec->output_offset != 0)
2681 continue;
2682
2683 sec = sec->output_section;
2684
2685 /* Empty sections in the input files may have had a
2686 section symbol created for them. (See the comment
2687 near the end of _bfd_generic_link_output_symbols in
2688 linker.c). If the linker script discards such
2689 sections then we will reach this point. Since we know
2690 that we cannot avoid this case, we detect it and skip
2691 the abort and the assignment to the sect_syms array.
2692 To reproduce this particular case try running the
2693 linker testsuite test ld-scripts/weak.exp for an ELF
2694 port that uses the generic linker. */
2695 if (sec->owner == NULL)
2696 continue;
2697
2698 BFD_ASSERT (sec->owner == abfd);
2699 }
2700 sect_syms[sec->index] = syms[idx];
2701 }
2702 }
2703 }
2704
2705 /* Classify all of the symbols. */
2706 for (idx = 0; idx < symcount; idx++)
2707 {
2708 if (!sym_is_global (abfd, syms[idx]))
2709 num_locals++;
2710 else
2711 num_globals++;
2712 }
2713
2714 /* We will be adding a section symbol for each BFD section. Most normal
2715 sections will already have a section symbol in outsymbols, but
2716 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2717 at least in that case. */
2718 for (asect = abfd->sections; asect; asect = asect->next)
2719 {
2720 if (sect_syms[asect->index] == NULL)
2721 {
2722 if (!sym_is_global (abfd, asect->symbol))
2723 num_locals++;
2724 else
2725 num_globals++;
2726 }
2727 }
2728
2729 /* Now sort the symbols so the local symbols are first. */
2730 amt = (num_locals + num_globals) * sizeof (asymbol *);
2731 new_syms = (asymbol **) bfd_alloc (abfd, amt);
2732
2733 if (new_syms == NULL)
2734 return false;
2735
2736 for (idx = 0; idx < symcount; idx++)
2737 {
2738 asymbol *sym = syms[idx];
2739 unsigned int i;
2740
2741 if (!sym_is_global (abfd, sym))
2742 i = num_locals2++;
2743 else
2744 i = num_locals + num_globals2++;
2745 new_syms[i] = sym;
2746 sym->udata.i = i + 1;
2747 }
2748 for (asect = abfd->sections; asect; asect = asect->next)
2749 {
2750 if (sect_syms[asect->index] == NULL)
2751 {
2752 asymbol *sym = asect->symbol;
2753 unsigned int i;
2754
2755 sect_syms[asect->index] = sym;
2756 if (!sym_is_global (abfd, sym))
2757 i = num_locals2++;
2758 else
2759 i = num_locals + num_globals2++;
2760 new_syms[i] = sym;
2761 sym->udata.i = i + 1;
2762 }
2763 }
2764
2765 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
2766
2767 elf_num_locals (abfd) = num_locals;
2768 elf_num_globals (abfd) = num_globals;
2769 return true;
2770 }
2771
2772 /* Align to the maximum file alignment that could be required for any
2773 ELF data structure. */
2774
2775 static INLINE file_ptr align_file_position PARAMS ((file_ptr, int));
2776 static INLINE file_ptr
2777 align_file_position (off, align)
2778 file_ptr off;
2779 int align;
2780 {
2781 return (off + align - 1) & ~(align - 1);
2782 }
2783
2784 /* Assign a file position to a section, optionally aligning to the
2785 required section alignment. */
2786
2787 INLINE file_ptr
2788 _bfd_elf_assign_file_position_for_section (i_shdrp, offset, align)
2789 Elf_Internal_Shdr *i_shdrp;
2790 file_ptr offset;
2791 boolean align;
2792 {
2793 if (align)
2794 {
2795 unsigned int al;
2796
2797 al = i_shdrp->sh_addralign;
2798 if (al > 1)
2799 offset = BFD_ALIGN (offset, al);
2800 }
2801 i_shdrp->sh_offset = offset;
2802 if (i_shdrp->bfd_section != NULL)
2803 i_shdrp->bfd_section->filepos = offset;
2804 if (i_shdrp->sh_type != SHT_NOBITS)
2805 offset += i_shdrp->sh_size;
2806 return offset;
2807 }
2808
2809 /* Compute the file positions we are going to put the sections at, and
2810 otherwise prepare to begin writing out the ELF file. If LINK_INFO
2811 is not NULL, this is being called by the ELF backend linker. */
2812
2813 boolean
2814 _bfd_elf_compute_section_file_positions (abfd, link_info)
2815 bfd *abfd;
2816 struct bfd_link_info *link_info;
2817 {
2818 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2819 boolean failed;
2820 struct bfd_strtab_hash *strtab;
2821 Elf_Internal_Shdr *shstrtab_hdr;
2822
2823 if (abfd->output_has_begun)
2824 return true;
2825
2826 /* Do any elf backend specific processing first. */
2827 if (bed->elf_backend_begin_write_processing)
2828 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
2829
2830 if (! prep_headers (abfd))
2831 return false;
2832
2833 /* Post process the headers if necessary. */
2834 if (bed->elf_backend_post_process_headers)
2835 (*bed->elf_backend_post_process_headers) (abfd, link_info);
2836
2837 failed = false;
2838 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
2839 if (failed)
2840 return false;
2841
2842 if (!assign_section_numbers (abfd))
2843 return false;
2844
2845 /* The backend linker builds symbol table information itself. */
2846 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
2847 {
2848 /* Non-zero if doing a relocatable link. */
2849 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
2850
2851 if (! swap_out_syms (abfd, &strtab, relocatable_p))
2852 return false;
2853 }
2854
2855 if (link_info == NULL || link_info->relocateable)
2856 {
2857 bfd_map_over_sections (abfd, set_group_contents, &failed);
2858 if (failed)
2859 return false;
2860 }
2861
2862 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
2863 /* sh_name was set in prep_headers. */
2864 shstrtab_hdr->sh_type = SHT_STRTAB;
2865 shstrtab_hdr->sh_flags = 0;
2866 shstrtab_hdr->sh_addr = 0;
2867 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2868 shstrtab_hdr->sh_entsize = 0;
2869 shstrtab_hdr->sh_link = 0;
2870 shstrtab_hdr->sh_info = 0;
2871 /* sh_offset is set in assign_file_positions_except_relocs. */
2872 shstrtab_hdr->sh_addralign = 1;
2873
2874 if (!assign_file_positions_except_relocs (abfd))
2875 return false;
2876
2877 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
2878 {
2879 file_ptr off;
2880 Elf_Internal_Shdr *hdr;
2881
2882 off = elf_tdata (abfd)->next_file_pos;
2883
2884 hdr = &elf_tdata (abfd)->symtab_hdr;
2885 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
2886
2887 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
2888 if (hdr->sh_size != 0)
2889 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
2890
2891 hdr = &elf_tdata (abfd)->strtab_hdr;
2892 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
2893
2894 elf_tdata (abfd)->next_file_pos = off;
2895
2896 /* Now that we know where the .strtab section goes, write it
2897 out. */
2898 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
2899 || ! _bfd_stringtab_emit (abfd, strtab))
2900 return false;
2901 _bfd_stringtab_free (strtab);
2902 }
2903
2904 abfd->output_has_begun = true;
2905
2906 return true;
2907 }
2908
2909 /* Create a mapping from a set of sections to a program segment. */
2910
2911 static INLINE struct elf_segment_map *
2912 make_mapping (abfd, sections, from, to, phdr)
2913 bfd *abfd;
2914 asection **sections;
2915 unsigned int from;
2916 unsigned int to;
2917 boolean phdr;
2918 {
2919 struct elf_segment_map *m;
2920 unsigned int i;
2921 asection **hdrpp;
2922 bfd_size_type amt;
2923
2924 amt = sizeof (struct elf_segment_map);
2925 amt += (to - from - 1) * sizeof (asection *);
2926 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
2927 if (m == NULL)
2928 return NULL;
2929 m->next = NULL;
2930 m->p_type = PT_LOAD;
2931 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
2932 m->sections[i - from] = *hdrpp;
2933 m->count = to - from;
2934
2935 if (from == 0 && phdr)
2936 {
2937 /* Include the headers in the first PT_LOAD segment. */
2938 m->includes_filehdr = 1;
2939 m->includes_phdrs = 1;
2940 }
2941
2942 return m;
2943 }
2944
2945 /* Set up a mapping from BFD sections to program segments. */
2946
2947 static boolean
2948 map_sections_to_segments (abfd)
2949 bfd *abfd;
2950 {
2951 asection **sections = NULL;
2952 asection *s;
2953 unsigned int i;
2954 unsigned int count;
2955 struct elf_segment_map *mfirst;
2956 struct elf_segment_map **pm;
2957 struct elf_segment_map *m;
2958 asection *last_hdr;
2959 unsigned int phdr_index;
2960 bfd_vma maxpagesize;
2961 asection **hdrpp;
2962 boolean phdr_in_segment = true;
2963 boolean writable;
2964 int tls_count = 0;
2965 asection *first_tls = NULL;
2966 asection *dynsec, *eh_frame_hdr;
2967 bfd_size_type amt;
2968
2969 if (elf_tdata (abfd)->segment_map != NULL)
2970 return true;
2971
2972 if (bfd_count_sections (abfd) == 0)
2973 return true;
2974
2975 /* Select the allocated sections, and sort them. */
2976
2977 amt = bfd_count_sections (abfd) * sizeof (asection *);
2978 sections = (asection **) bfd_malloc (amt);
2979 if (sections == NULL)
2980 goto error_return;
2981
2982 i = 0;
2983 for (s = abfd->sections; s != NULL; s = s->next)
2984 {
2985 if ((s->flags & SEC_ALLOC) != 0)
2986 {
2987 sections[i] = s;
2988 ++i;
2989 }
2990 }
2991 BFD_ASSERT (i <= bfd_count_sections (abfd));
2992 count = i;
2993
2994 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
2995
2996 /* Build the mapping. */
2997
2998 mfirst = NULL;
2999 pm = &mfirst;
3000
3001 /* If we have a .interp section, then create a PT_PHDR segment for
3002 the program headers and a PT_INTERP segment for the .interp
3003 section. */
3004 s = bfd_get_section_by_name (abfd, ".interp");
3005 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3006 {
3007 amt = sizeof (struct elf_segment_map);
3008 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3009 if (m == NULL)
3010 goto error_return;
3011 m->next = NULL;
3012 m->p_type = PT_PHDR;
3013 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3014 m->p_flags = PF_R | PF_X;
3015 m->p_flags_valid = 1;
3016 m->includes_phdrs = 1;
3017
3018 *pm = m;
3019 pm = &m->next;
3020
3021 amt = sizeof (struct elf_segment_map);
3022 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3023 if (m == NULL)
3024 goto error_return;
3025 m->next = NULL;
3026 m->p_type = PT_INTERP;
3027 m->count = 1;
3028 m->sections[0] = s;
3029
3030 *pm = m;
3031 pm = &m->next;
3032 }
3033
3034 /* Look through the sections. We put sections in the same program
3035 segment when the start of the second section can be placed within
3036 a few bytes of the end of the first section. */
3037 last_hdr = NULL;
3038 phdr_index = 0;
3039 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3040 writable = false;
3041 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3042 if (dynsec != NULL
3043 && (dynsec->flags & SEC_LOAD) == 0)
3044 dynsec = NULL;
3045
3046 /* Deal with -Ttext or something similar such that the first section
3047 is not adjacent to the program headers. This is an
3048 approximation, since at this point we don't know exactly how many
3049 program headers we will need. */
3050 if (count > 0)
3051 {
3052 bfd_size_type phdr_size;
3053
3054 phdr_size = elf_tdata (abfd)->program_header_size;
3055 if (phdr_size == 0)
3056 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3057 if ((abfd->flags & D_PAGED) == 0
3058 || sections[0]->lma < phdr_size
3059 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3060 phdr_in_segment = false;
3061 }
3062
3063 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3064 {
3065 asection *hdr;
3066 boolean new_segment;
3067
3068 hdr = *hdrpp;
3069
3070 /* See if this section and the last one will fit in the same
3071 segment. */
3072
3073 if (last_hdr == NULL)
3074 {
3075 /* If we don't have a segment yet, then we don't need a new
3076 one (we build the last one after this loop). */
3077 new_segment = false;
3078 }
3079 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3080 {
3081 /* If this section has a different relation between the
3082 virtual address and the load address, then we need a new
3083 segment. */
3084 new_segment = true;
3085 }
3086 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3087 < BFD_ALIGN (hdr->lma, maxpagesize))
3088 {
3089 /* If putting this section in this segment would force us to
3090 skip a page in the segment, then we need a new segment. */
3091 new_segment = true;
3092 }
3093 else if ((last_hdr->flags & SEC_LOAD) == 0
3094 && (hdr->flags & SEC_LOAD) != 0)
3095 {
3096 /* We don't want to put a loadable section after a
3097 nonloadable section in the same segment. */
3098 new_segment = true;
3099 }
3100 else if ((abfd->flags & D_PAGED) == 0)
3101 {
3102 /* If the file is not demand paged, which means that we
3103 don't require the sections to be correctly aligned in the
3104 file, then there is no other reason for a new segment. */
3105 new_segment = false;
3106 }
3107 else if (! writable
3108 && (hdr->flags & SEC_READONLY) == 0
3109 && (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3110 == hdr->lma))
3111 {
3112 /* We don't want to put a writable section in a read only
3113 segment, unless they are on the same page in memory
3114 anyhow. We already know that the last section does not
3115 bring us past the current section on the page, so the
3116 only case in which the new section is not on the same
3117 page as the previous section is when the previous section
3118 ends precisely on a page boundary. */
3119 new_segment = true;
3120 }
3121 else
3122 {
3123 /* Otherwise, we can use the same segment. */
3124 new_segment = false;
3125 }
3126
3127 if (! new_segment)
3128 {
3129 if ((hdr->flags & SEC_READONLY) == 0)
3130 writable = true;
3131 last_hdr = hdr;
3132 continue;
3133 }
3134
3135 /* We need a new program segment. We must create a new program
3136 header holding all the sections from phdr_index until hdr. */
3137
3138 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3139 if (m == NULL)
3140 goto error_return;
3141
3142 *pm = m;
3143 pm = &m->next;
3144
3145 if ((hdr->flags & SEC_READONLY) == 0)
3146 writable = true;
3147 else
3148 writable = false;
3149
3150 last_hdr = hdr;
3151 phdr_index = i;
3152 phdr_in_segment = false;
3153 }
3154
3155 /* Create a final PT_LOAD program segment. */
3156 if (last_hdr != NULL)
3157 {
3158 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3159 if (m == NULL)
3160 goto error_return;
3161
3162 *pm = m;
3163 pm = &m->next;
3164 }
3165
3166 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3167 if (dynsec != NULL)
3168 {
3169 amt = sizeof (struct elf_segment_map);
3170 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3171 if (m == NULL)
3172 goto error_return;
3173 m->next = NULL;
3174 m->p_type = PT_DYNAMIC;
3175 m->count = 1;
3176 m->sections[0] = dynsec;
3177
3178 *pm = m;
3179 pm = &m->next;
3180 }
3181
3182 /* For each loadable .note section, add a PT_NOTE segment. We don't
3183 use bfd_get_section_by_name, because if we link together
3184 nonloadable .note sections and loadable .note sections, we will
3185 generate two .note sections in the output file. FIXME: Using
3186 names for section types is bogus anyhow. */
3187 for (s = abfd->sections; s != NULL; s = s->next)
3188 {
3189 if ((s->flags & SEC_LOAD) != 0
3190 && strncmp (s->name, ".note", 5) == 0)
3191 {
3192 amt = sizeof (struct elf_segment_map);
3193 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3194 if (m == NULL)
3195 goto error_return;
3196 m->next = NULL;
3197 m->p_type = PT_NOTE;
3198 m->count = 1;
3199 m->sections[0] = s;
3200
3201 *pm = m;
3202 pm = &m->next;
3203 }
3204 if (s->flags & SEC_THREAD_LOCAL)
3205 {
3206 if (! tls_count)
3207 first_tls = s;
3208 tls_count++;
3209 }
3210 }
3211
3212 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3213 if (tls_count > 0)
3214 {
3215 int i;
3216
3217 amt = sizeof (struct elf_segment_map);
3218 amt += (tls_count - 1) * sizeof (asection *);
3219 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3220 if (m == NULL)
3221 goto error_return;
3222 m->next = NULL;
3223 m->p_type = PT_TLS;
3224 m->count = tls_count;
3225 /* Mandated PF_R. */
3226 m->p_flags = PF_R;
3227 m->p_flags_valid = 1;
3228 for (i = 0; i < tls_count; ++i)
3229 {
3230 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3231 m->sections[i] = first_tls;
3232 first_tls = first_tls->next;
3233 }
3234
3235 *pm = m;
3236 pm = &m->next;
3237 }
3238
3239 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3240 segment. */
3241 eh_frame_hdr = NULL;
3242 if (elf_tdata (abfd)->eh_frame_hdr)
3243 eh_frame_hdr = bfd_get_section_by_name (abfd, ".eh_frame_hdr");
3244 if (eh_frame_hdr != NULL && (eh_frame_hdr->flags & SEC_LOAD))
3245 {
3246 amt = sizeof (struct elf_segment_map);
3247 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3248 if (m == NULL)
3249 goto error_return;
3250 m->next = NULL;
3251 m->p_type = PT_GNU_EH_FRAME;
3252 m->count = 1;
3253 m->sections[0] = eh_frame_hdr;
3254
3255 *pm = m;
3256 pm = &m->next;
3257 }
3258
3259 free (sections);
3260 sections = NULL;
3261
3262 elf_tdata (abfd)->segment_map = mfirst;
3263 return true;
3264
3265 error_return:
3266 if (sections != NULL)
3267 free (sections);
3268 return false;
3269 }
3270
3271 /* Sort sections by address. */
3272
3273 static int
3274 elf_sort_sections (arg1, arg2)
3275 const PTR arg1;
3276 const PTR arg2;
3277 {
3278 const asection *sec1 = *(const asection **) arg1;
3279 const asection *sec2 = *(const asection **) arg2;
3280
3281 /* Sort by LMA first, since this is the address used to
3282 place the section into a segment. */
3283 if (sec1->lma < sec2->lma)
3284 return -1;
3285 else if (sec1->lma > sec2->lma)
3286 return 1;
3287
3288 /* Then sort by VMA. Normally the LMA and the VMA will be
3289 the same, and this will do nothing. */
3290 if (sec1->vma < sec2->vma)
3291 return -1;
3292 else if (sec1->vma > sec2->vma)
3293 return 1;
3294
3295 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3296
3297 #define TOEND(x) (((x)->flags & SEC_LOAD) == 0)
3298
3299 if (TOEND (sec1))
3300 {
3301 if (TOEND (sec2))
3302 {
3303 /* If the indicies are the same, do not return 0
3304 here, but continue to try the next comparison. */
3305 if (sec1->target_index - sec2->target_index != 0)
3306 return sec1->target_index - sec2->target_index;
3307 }
3308 else
3309 return 1;
3310 }
3311 else if (TOEND (sec2))
3312 return -1;
3313
3314 #undef TOEND
3315
3316 /* Sort by size, to put zero sized sections
3317 before others at the same address. */
3318
3319 if (sec1->_raw_size < sec2->_raw_size)
3320 return -1;
3321 if (sec1->_raw_size > sec2->_raw_size)
3322 return 1;
3323
3324 return sec1->target_index - sec2->target_index;
3325 }
3326
3327 /* Assign file positions to the sections based on the mapping from
3328 sections to segments. This function also sets up some fields in
3329 the file header, and writes out the program headers. */
3330
3331 static boolean
3332 assign_file_positions_for_segments (abfd)
3333 bfd *abfd;
3334 {
3335 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3336 unsigned int count;
3337 struct elf_segment_map *m;
3338 unsigned int alloc;
3339 Elf_Internal_Phdr *phdrs;
3340 file_ptr off, voff;
3341 bfd_vma filehdr_vaddr, filehdr_paddr;
3342 bfd_vma phdrs_vaddr, phdrs_paddr;
3343 Elf_Internal_Phdr *p;
3344 bfd_size_type amt;
3345
3346 if (elf_tdata (abfd)->segment_map == NULL)
3347 {
3348 if (! map_sections_to_segments (abfd))
3349 return false;
3350 }
3351
3352 if (bed->elf_backend_modify_segment_map)
3353 {
3354 if (! (*bed->elf_backend_modify_segment_map) (abfd))
3355 return false;
3356 }
3357
3358 count = 0;
3359 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3360 ++count;
3361
3362 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3363 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3364 elf_elfheader (abfd)->e_phnum = count;
3365
3366 if (count == 0)
3367 return true;
3368
3369 /* If we already counted the number of program segments, make sure
3370 that we allocated enough space. This happens when SIZEOF_HEADERS
3371 is used in a linker script. */
3372 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3373 if (alloc != 0 && count > alloc)
3374 {
3375 ((*_bfd_error_handler)
3376 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3377 bfd_get_filename (abfd), alloc, count));
3378 bfd_set_error (bfd_error_bad_value);
3379 return false;
3380 }
3381
3382 if (alloc == 0)
3383 alloc = count;
3384
3385 amt = alloc * sizeof (Elf_Internal_Phdr);
3386 phdrs = (Elf_Internal_Phdr *) bfd_alloc (abfd, amt);
3387 if (phdrs == NULL)
3388 return false;
3389
3390 off = bed->s->sizeof_ehdr;
3391 off += alloc * bed->s->sizeof_phdr;
3392
3393 filehdr_vaddr = 0;
3394 filehdr_paddr = 0;
3395 phdrs_vaddr = 0;
3396 phdrs_paddr = 0;
3397
3398 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3399 m != NULL;
3400 m = m->next, p++)
3401 {
3402 unsigned int i;
3403 asection **secpp;
3404
3405 /* If elf_segment_map is not from map_sections_to_segments, the
3406 sections may not be correctly ordered. NOTE: sorting should
3407 not be done to the PT_NOTE section of a corefile, which may
3408 contain several pseudo-sections artificially created by bfd.
3409 Sorting these pseudo-sections breaks things badly. */
3410 if (m->count > 1
3411 && !(elf_elfheader (abfd)->e_type == ET_CORE
3412 && m->p_type == PT_NOTE))
3413 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3414 elf_sort_sections);
3415
3416 p->p_type = m->p_type;
3417 p->p_flags = m->p_flags;
3418
3419 if (p->p_type == PT_LOAD
3420 && m->count > 0
3421 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3422 {
3423 if ((abfd->flags & D_PAGED) != 0)
3424 off += (m->sections[0]->vma - off) % bed->maxpagesize;
3425 else
3426 {
3427 bfd_size_type align;
3428
3429 align = 0;
3430 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3431 {
3432 bfd_size_type secalign;
3433
3434 secalign = bfd_get_section_alignment (abfd, *secpp);
3435 if (secalign > align)
3436 align = secalign;
3437 }
3438
3439 off += (m->sections[0]->vma - off) % (1 << align);
3440 }
3441 }
3442
3443 if (m->count == 0)
3444 p->p_vaddr = 0;
3445 else
3446 p->p_vaddr = m->sections[0]->vma;
3447
3448 if (m->p_paddr_valid)
3449 p->p_paddr = m->p_paddr;
3450 else if (m->count == 0)
3451 p->p_paddr = 0;
3452 else
3453 p->p_paddr = m->sections[0]->lma;
3454
3455 if (p->p_type == PT_LOAD
3456 && (abfd->flags & D_PAGED) != 0)
3457 p->p_align = bed->maxpagesize;
3458 else if (m->count == 0)
3459 p->p_align = bed->s->file_align;
3460 else
3461 p->p_align = 0;
3462
3463 p->p_offset = 0;
3464 p->p_filesz = 0;
3465 p->p_memsz = 0;
3466
3467 if (m->includes_filehdr)
3468 {
3469 if (! m->p_flags_valid)
3470 p->p_flags |= PF_R;
3471 p->p_offset = 0;
3472 p->p_filesz = bed->s->sizeof_ehdr;
3473 p->p_memsz = bed->s->sizeof_ehdr;
3474 if (m->count > 0)
3475 {
3476 BFD_ASSERT (p->p_type == PT_LOAD);
3477
3478 if (p->p_vaddr < (bfd_vma) off)
3479 {
3480 _bfd_error_handler (_("%s: Not enough room for program headers, try linking with -N"),
3481 bfd_get_filename (abfd));
3482 bfd_set_error (bfd_error_bad_value);
3483 return false;
3484 }
3485
3486 p->p_vaddr -= off;
3487 if (! m->p_paddr_valid)
3488 p->p_paddr -= off;
3489 }
3490 if (p->p_type == PT_LOAD)
3491 {
3492 filehdr_vaddr = p->p_vaddr;
3493 filehdr_paddr = p->p_paddr;
3494 }
3495 }
3496
3497 if (m->includes_phdrs)
3498 {
3499 if (! m->p_flags_valid)
3500 p->p_flags |= PF_R;
3501
3502 if (m->includes_filehdr)
3503 {
3504 if (p->p_type == PT_LOAD)
3505 {
3506 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3507 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3508 }
3509 }
3510 else
3511 {
3512 p->p_offset = bed->s->sizeof_ehdr;
3513
3514 if (m->count > 0)
3515 {
3516 BFD_ASSERT (p->p_type == PT_LOAD);
3517 p->p_vaddr -= off - p->p_offset;
3518 if (! m->p_paddr_valid)
3519 p->p_paddr -= off - p->p_offset;
3520 }
3521
3522 if (p->p_type == PT_LOAD)
3523 {
3524 phdrs_vaddr = p->p_vaddr;
3525 phdrs_paddr = p->p_paddr;
3526 }
3527 else
3528 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3529 }
3530
3531 p->p_filesz += alloc * bed->s->sizeof_phdr;
3532 p->p_memsz += alloc * bed->s->sizeof_phdr;
3533 }
3534
3535 if (p->p_type == PT_LOAD
3536 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3537 {
3538 if (! m->includes_filehdr && ! m->includes_phdrs)
3539 p->p_offset = off;
3540 else
3541 {
3542 file_ptr adjust;
3543
3544 adjust = off - (p->p_offset + p->p_filesz);
3545 p->p_filesz += adjust;
3546 p->p_memsz += adjust;
3547 }
3548 }
3549
3550 voff = off;
3551
3552 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3553 {
3554 asection *sec;
3555 flagword flags;
3556 bfd_size_type align;
3557
3558 sec = *secpp;
3559 flags = sec->flags;
3560 align = 1 << bfd_get_section_alignment (abfd, sec);
3561
3562 /* The section may have artificial alignment forced by a
3563 link script. Notice this case by the gap between the
3564 cumulative phdr lma and the section's lma. */
3565 if (p->p_paddr + p->p_memsz < sec->lma)
3566 {
3567 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3568
3569 p->p_memsz += adjust;
3570 off += adjust;
3571 voff += adjust;
3572 if ((flags & SEC_LOAD) != 0)
3573 p->p_filesz += adjust;
3574 }
3575
3576 if (p->p_type == PT_LOAD)
3577 {
3578 bfd_signed_vma adjust;
3579
3580 if ((flags & SEC_LOAD) != 0)
3581 {
3582 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3583 if (adjust < 0)
3584 adjust = 0;
3585 }
3586 else if ((flags & SEC_ALLOC) != 0)
3587 {
3588 /* The section VMA must equal the file position
3589 modulo the page size. FIXME: I'm not sure if
3590 this adjustment is really necessary. We used to
3591 not have the SEC_LOAD case just above, and then
3592 this was necessary, but now I'm not sure. */
3593 if ((abfd->flags & D_PAGED) != 0)
3594 adjust = (sec->vma - voff) % bed->maxpagesize;
3595 else
3596 adjust = (sec->vma - voff) % align;
3597 }
3598 else
3599 adjust = 0;
3600
3601 if (adjust != 0)
3602 {
3603 if (i == 0)
3604 {
3605 (* _bfd_error_handler) (_("\
3606 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3607 bfd_section_name (abfd, sec),
3608 sec->lma,
3609 p->p_paddr);
3610 return false;
3611 }
3612 p->p_memsz += adjust;
3613 off += adjust;
3614 voff += adjust;
3615 if ((flags & SEC_LOAD) != 0)
3616 p->p_filesz += adjust;
3617 }
3618
3619 sec->filepos = off;
3620
3621 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3622 used in a linker script we may have a section with
3623 SEC_LOAD clear but which is supposed to have
3624 contents. */
3625 if ((flags & SEC_LOAD) != 0
3626 || (flags & SEC_HAS_CONTENTS) != 0)
3627 off += sec->_raw_size;
3628
3629 if ((flags & SEC_ALLOC) != 0)
3630 voff += sec->_raw_size;
3631 }
3632
3633 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3634 {
3635 /* The actual "note" segment has i == 0.
3636 This is the one that actually contains everything. */
3637 if (i == 0)
3638 {
3639 sec->filepos = off;
3640 p->p_filesz = sec->_raw_size;
3641 off += sec->_raw_size;
3642 voff = off;
3643 }
3644 else
3645 {
3646 /* Fake sections -- don't need to be written. */
3647 sec->filepos = 0;
3648 sec->_raw_size = 0;
3649 flags = sec->flags = 0;
3650 }
3651 p->p_memsz = 0;
3652 p->p_align = 1;
3653 }
3654 else
3655 {
3656 p->p_memsz += sec->_raw_size;
3657
3658 if ((flags & SEC_LOAD) != 0)
3659 p->p_filesz += sec->_raw_size;
3660
3661 if (p->p_type == PT_TLS
3662 && sec->_raw_size == 0
3663 && (sec->flags & SEC_HAS_CONTENTS) == 0)
3664 {
3665 struct bfd_link_order *o;
3666 bfd_vma tbss_size = 0;
3667
3668 for (o = sec->link_order_head; o != NULL; o = o->next)
3669 if (tbss_size < o->offset + o->size)
3670 tbss_size = o->offset + o->size;
3671
3672 p->p_memsz += tbss_size;
3673 }
3674
3675 if (align > p->p_align
3676 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
3677 p->p_align = align;
3678 }
3679
3680 if (! m->p_flags_valid)
3681 {
3682 p->p_flags |= PF_R;
3683 if ((flags & SEC_CODE) != 0)
3684 p->p_flags |= PF_X;
3685 if ((flags & SEC_READONLY) == 0)
3686 p->p_flags |= PF_W;
3687 }
3688 }
3689 }
3690
3691 /* Now that we have set the section file positions, we can set up
3692 the file positions for the non PT_LOAD segments. */
3693 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3694 m != NULL;
3695 m = m->next, p++)
3696 {
3697 if (p->p_type != PT_LOAD && m->count > 0)
3698 {
3699 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
3700 p->p_offset = m->sections[0]->filepos;
3701 }
3702 if (m->count == 0)
3703 {
3704 if (m->includes_filehdr)
3705 {
3706 p->p_vaddr = filehdr_vaddr;
3707 if (! m->p_paddr_valid)
3708 p->p_paddr = filehdr_paddr;
3709 }
3710 else if (m->includes_phdrs)
3711 {
3712 p->p_vaddr = phdrs_vaddr;
3713 if (! m->p_paddr_valid)
3714 p->p_paddr = phdrs_paddr;
3715 }
3716 }
3717 }
3718
3719 /* Clear out any program headers we allocated but did not use. */
3720 for (; count < alloc; count++, p++)
3721 {
3722 memset (p, 0, sizeof *p);
3723 p->p_type = PT_NULL;
3724 }
3725
3726 elf_tdata (abfd)->phdr = phdrs;
3727
3728 elf_tdata (abfd)->next_file_pos = off;
3729
3730 /* Write out the program headers. */
3731 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
3732 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
3733 return false;
3734
3735 return true;
3736 }
3737
3738 /* Get the size of the program header.
3739
3740 If this is called by the linker before any of the section VMA's are set, it
3741 can't calculate the correct value for a strange memory layout. This only
3742 happens when SIZEOF_HEADERS is used in a linker script. In this case,
3743 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
3744 data segment (exclusive of .interp and .dynamic).
3745
3746 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
3747 will be two segments. */
3748
3749 static bfd_size_type
3750 get_program_header_size (abfd)
3751 bfd *abfd;
3752 {
3753 size_t segs;
3754 asection *s;
3755 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3756
3757 /* We can't return a different result each time we're called. */
3758 if (elf_tdata (abfd)->program_header_size != 0)
3759 return elf_tdata (abfd)->program_header_size;
3760
3761 if (elf_tdata (abfd)->segment_map != NULL)
3762 {
3763 struct elf_segment_map *m;
3764
3765 segs = 0;
3766 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3767 ++segs;
3768 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
3769 return elf_tdata (abfd)->program_header_size;
3770 }
3771
3772 /* Assume we will need exactly two PT_LOAD segments: one for text
3773 and one for data. */
3774 segs = 2;
3775
3776 s = bfd_get_section_by_name (abfd, ".interp");
3777 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3778 {
3779 /* If we have a loadable interpreter section, we need a
3780 PT_INTERP segment. In this case, assume we also need a
3781 PT_PHDR segment, although that may not be true for all
3782 targets. */
3783 segs += 2;
3784 }
3785
3786 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3787 {
3788 /* We need a PT_DYNAMIC segment. */
3789 ++segs;
3790 }
3791
3792 if (elf_tdata (abfd)->eh_frame_hdr
3793 && bfd_get_section_by_name (abfd, ".eh_frame_hdr") != NULL)
3794 {
3795 /* We need a PT_GNU_EH_FRAME segment. */
3796 ++segs;
3797 }
3798
3799 for (s = abfd->sections; s != NULL; s = s->next)
3800 {
3801 if ((s->flags & SEC_LOAD) != 0
3802 && strncmp (s->name, ".note", 5) == 0)
3803 {
3804 /* We need a PT_NOTE segment. */
3805 ++segs;
3806 }
3807 }
3808
3809 for (s = abfd->sections; s != NULL; s = s->next)
3810 {
3811 if (s->flags & SEC_THREAD_LOCAL)
3812 {
3813 /* We need a PT_TLS segment. */
3814 ++segs;
3815 break;
3816 }
3817 }
3818
3819 /* Let the backend count up any program headers it might need. */
3820 if (bed->elf_backend_additional_program_headers)
3821 {
3822 int a;
3823
3824 a = (*bed->elf_backend_additional_program_headers) (abfd);
3825 if (a == -1)
3826 abort ();
3827 segs += a;
3828 }
3829
3830 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
3831 return elf_tdata (abfd)->program_header_size;
3832 }
3833
3834 /* Work out the file positions of all the sections. This is called by
3835 _bfd_elf_compute_section_file_positions. All the section sizes and
3836 VMAs must be known before this is called.
3837
3838 We do not consider reloc sections at this point, unless they form
3839 part of the loadable image. Reloc sections are assigned file
3840 positions in assign_file_positions_for_relocs, which is called by
3841 write_object_contents and final_link.
3842
3843 We also don't set the positions of the .symtab and .strtab here. */
3844
3845 static boolean
3846 assign_file_positions_except_relocs (abfd)
3847 bfd *abfd;
3848 {
3849 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
3850 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
3851 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
3852 unsigned int num_sec = elf_numsections (abfd);
3853 file_ptr off;
3854 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3855
3856 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3857 && bfd_get_format (abfd) != bfd_core)
3858 {
3859 Elf_Internal_Shdr **hdrpp;
3860 unsigned int i;
3861
3862 /* Start after the ELF header. */
3863 off = i_ehdrp->e_ehsize;
3864
3865 /* We are not creating an executable, which means that we are
3866 not creating a program header, and that the actual order of
3867 the sections in the file is unimportant. */
3868 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
3869 {
3870 Elf_Internal_Shdr *hdr;
3871
3872 hdr = *hdrpp;
3873 if (hdr->sh_type == SHT_REL
3874 || hdr->sh_type == SHT_RELA
3875 || i == tdata->symtab_section
3876 || i == tdata->symtab_shndx_section
3877 || i == tdata->strtab_section)
3878 {
3879 hdr->sh_offset = -1;
3880 }
3881 else
3882 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3883
3884 if (i == SHN_LORESERVE - 1)
3885 {
3886 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3887 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3888 }
3889 }
3890 }
3891 else
3892 {
3893 unsigned int i;
3894 Elf_Internal_Shdr **hdrpp;
3895
3896 /* Assign file positions for the loaded sections based on the
3897 assignment of sections to segments. */
3898 if (! assign_file_positions_for_segments (abfd))
3899 return false;
3900
3901 /* Assign file positions for the other sections. */
3902
3903 off = elf_tdata (abfd)->next_file_pos;
3904 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
3905 {
3906 Elf_Internal_Shdr *hdr;
3907
3908 hdr = *hdrpp;
3909 if (hdr->bfd_section != NULL
3910 && hdr->bfd_section->filepos != 0)
3911 hdr->sh_offset = hdr->bfd_section->filepos;
3912 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
3913 {
3914 ((*_bfd_error_handler)
3915 (_("%s: warning: allocated section `%s' not in segment"),
3916 bfd_get_filename (abfd),
3917 (hdr->bfd_section == NULL
3918 ? "*unknown*"
3919 : hdr->bfd_section->name)));
3920 if ((abfd->flags & D_PAGED) != 0)
3921 off += (hdr->sh_addr - off) % bed->maxpagesize;
3922 else
3923 off += (hdr->sh_addr - off) % hdr->sh_addralign;
3924 off = _bfd_elf_assign_file_position_for_section (hdr, off,
3925 false);
3926 }
3927 else if (hdr->sh_type == SHT_REL
3928 || hdr->sh_type == SHT_RELA
3929 || hdr == i_shdrpp[tdata->symtab_section]
3930 || hdr == i_shdrpp[tdata->symtab_shndx_section]
3931 || hdr == i_shdrpp[tdata->strtab_section])
3932 hdr->sh_offset = -1;
3933 else
3934 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3935
3936 if (i == SHN_LORESERVE - 1)
3937 {
3938 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3939 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3940 }
3941 }
3942 }
3943
3944 /* Place the section headers. */
3945 off = align_file_position (off, bed->s->file_align);
3946 i_ehdrp->e_shoff = off;
3947 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
3948
3949 elf_tdata (abfd)->next_file_pos = off;
3950
3951 return true;
3952 }
3953
3954 static boolean
3955 prep_headers (abfd)
3956 bfd *abfd;
3957 {
3958 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
3959 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
3960 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
3961 struct elf_strtab_hash *shstrtab;
3962 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3963
3964 i_ehdrp = elf_elfheader (abfd);
3965 i_shdrp = elf_elfsections (abfd);
3966
3967 shstrtab = _bfd_elf_strtab_init ();
3968 if (shstrtab == NULL)
3969 return false;
3970
3971 elf_shstrtab (abfd) = shstrtab;
3972
3973 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
3974 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
3975 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
3976 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
3977
3978 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
3979 i_ehdrp->e_ident[EI_DATA] =
3980 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
3981 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
3982
3983 if ((abfd->flags & DYNAMIC) != 0)
3984 i_ehdrp->e_type = ET_DYN;
3985 else if ((abfd->flags & EXEC_P) != 0)
3986 i_ehdrp->e_type = ET_EXEC;
3987 else if (bfd_get_format (abfd) == bfd_core)
3988 i_ehdrp->e_type = ET_CORE;
3989 else
3990 i_ehdrp->e_type = ET_REL;
3991
3992 switch (bfd_get_arch (abfd))
3993 {
3994 case bfd_arch_unknown:
3995 i_ehdrp->e_machine = EM_NONE;
3996 break;
3997
3998 /* There used to be a long list of cases here, each one setting
3999 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4000 in the corresponding bfd definition. To avoid duplication,
4001 the switch was removed. Machines that need special handling
4002 can generally do it in elf_backend_final_write_processing(),
4003 unless they need the information earlier than the final write.
4004 Such need can generally be supplied by replacing the tests for
4005 e_machine with the conditions used to determine it. */
4006 default:
4007 if (get_elf_backend_data (abfd) != NULL)
4008 i_ehdrp->e_machine = get_elf_backend_data (abfd)->elf_machine_code;
4009 else
4010 i_ehdrp->e_machine = EM_NONE;
4011 }
4012
4013 i_ehdrp->e_version = bed->s->ev_current;
4014 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4015
4016 /* No program header, for now. */
4017 i_ehdrp->e_phoff = 0;
4018 i_ehdrp->e_phentsize = 0;
4019 i_ehdrp->e_phnum = 0;
4020
4021 /* Each bfd section is section header entry. */
4022 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4023 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4024
4025 /* If we're building an executable, we'll need a program header table. */
4026 if (abfd->flags & EXEC_P)
4027 {
4028 /* It all happens later. */
4029 #if 0
4030 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4031
4032 /* elf_build_phdrs() returns a (NULL-terminated) array of
4033 Elf_Internal_Phdrs. */
4034 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4035 i_ehdrp->e_phoff = outbase;
4036 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4037 #endif
4038 }
4039 else
4040 {
4041 i_ehdrp->e_phentsize = 0;
4042 i_phdrp = 0;
4043 i_ehdrp->e_phoff = 0;
4044 }
4045
4046 elf_tdata (abfd)->symtab_hdr.sh_name =
4047 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", false);
4048 elf_tdata (abfd)->strtab_hdr.sh_name =
4049 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", false);
4050 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4051 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", false);
4052 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4053 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4054 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4055 return false;
4056
4057 return true;
4058 }
4059
4060 /* Assign file positions for all the reloc sections which are not part
4061 of the loadable file image. */
4062
4063 void
4064 _bfd_elf_assign_file_positions_for_relocs (abfd)
4065 bfd *abfd;
4066 {
4067 file_ptr off;
4068 unsigned int i, num_sec;
4069 Elf_Internal_Shdr **shdrpp;
4070
4071 off = elf_tdata (abfd)->next_file_pos;
4072
4073 num_sec = elf_numsections (abfd);
4074 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4075 {
4076 Elf_Internal_Shdr *shdrp;
4077
4078 shdrp = *shdrpp;
4079 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4080 && shdrp->sh_offset == -1)
4081 off = _bfd_elf_assign_file_position_for_section (shdrp, off, true);
4082 }
4083
4084 elf_tdata (abfd)->next_file_pos = off;
4085 }
4086
4087 boolean
4088 _bfd_elf_write_object_contents (abfd)
4089 bfd *abfd;
4090 {
4091 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4092 Elf_Internal_Ehdr *i_ehdrp;
4093 Elf_Internal_Shdr **i_shdrp;
4094 boolean failed;
4095 unsigned int count, num_sec;
4096
4097 if (! abfd->output_has_begun
4098 && ! _bfd_elf_compute_section_file_positions
4099 (abfd, (struct bfd_link_info *) NULL))
4100 return false;
4101
4102 i_shdrp = elf_elfsections (abfd);
4103 i_ehdrp = elf_elfheader (abfd);
4104
4105 failed = false;
4106 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4107 if (failed)
4108 return false;
4109
4110 _bfd_elf_assign_file_positions_for_relocs (abfd);
4111
4112 /* After writing the headers, we need to write the sections too... */
4113 num_sec = elf_numsections (abfd);
4114 for (count = 1; count < num_sec; count++)
4115 {
4116 if (bed->elf_backend_section_processing)
4117 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4118 if (i_shdrp[count]->contents)
4119 {
4120 bfd_size_type amt = i_shdrp[count]->sh_size;
4121
4122 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4123 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4124 return false;
4125 }
4126 if (count == SHN_LORESERVE - 1)
4127 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4128 }
4129
4130 /* Write out the section header names. */
4131 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4132 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4133 return false;
4134
4135 if (bed->elf_backend_final_write_processing)
4136 (*bed->elf_backend_final_write_processing) (abfd,
4137 elf_tdata (abfd)->linker);
4138
4139 return bed->s->write_shdrs_and_ehdr (abfd);
4140 }
4141
4142 boolean
4143 _bfd_elf_write_corefile_contents (abfd)
4144 bfd *abfd;
4145 {
4146 /* Hopefully this can be done just like an object file. */
4147 return _bfd_elf_write_object_contents (abfd);
4148 }
4149
4150 /* Given a section, search the header to find them. */
4151
4152 int
4153 _bfd_elf_section_from_bfd_section (abfd, asect)
4154 bfd *abfd;
4155 struct sec *asect;
4156 {
4157 struct elf_backend_data *bed;
4158 int index;
4159
4160 if (elf_section_data (asect) != NULL
4161 && elf_section_data (asect)->this_idx != 0)
4162 return elf_section_data (asect)->this_idx;
4163
4164 if (bfd_is_abs_section (asect))
4165 index = SHN_ABS;
4166 else if (bfd_is_com_section (asect))
4167 index = SHN_COMMON;
4168 else if (bfd_is_und_section (asect))
4169 index = SHN_UNDEF;
4170 else
4171 {
4172 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4173 int maxindex = elf_numsections (abfd);
4174
4175 for (index = 1; index < maxindex; index++)
4176 {
4177 Elf_Internal_Shdr *hdr = i_shdrp[index];
4178
4179 if (hdr != NULL && hdr->bfd_section == asect)
4180 return index;
4181 }
4182 index = -1;
4183 }
4184
4185 bed = get_elf_backend_data (abfd);
4186 if (bed->elf_backend_section_from_bfd_section)
4187 {
4188 int retval = index;
4189
4190 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4191 return retval;
4192 }
4193
4194 if (index == -1)
4195 bfd_set_error (bfd_error_nonrepresentable_section);
4196
4197 return index;
4198 }
4199
4200 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4201 on error. */
4202
4203 int
4204 _bfd_elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr)
4205 bfd *abfd;
4206 asymbol **asym_ptr_ptr;
4207 {
4208 asymbol *asym_ptr = *asym_ptr_ptr;
4209 int idx;
4210 flagword flags = asym_ptr->flags;
4211
4212 /* When gas creates relocations against local labels, it creates its
4213 own symbol for the section, but does put the symbol into the
4214 symbol chain, so udata is 0. When the linker is generating
4215 relocatable output, this section symbol may be for one of the
4216 input sections rather than the output section. */
4217 if (asym_ptr->udata.i == 0
4218 && (flags & BSF_SECTION_SYM)
4219 && asym_ptr->section)
4220 {
4221 int indx;
4222
4223 if (asym_ptr->section->output_section != NULL)
4224 indx = asym_ptr->section->output_section->index;
4225 else
4226 indx = asym_ptr->section->index;
4227 if (indx < elf_num_section_syms (abfd)
4228 && elf_section_syms (abfd)[indx] != NULL)
4229 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4230 }
4231
4232 idx = asym_ptr->udata.i;
4233
4234 if (idx == 0)
4235 {
4236 /* This case can occur when using --strip-symbol on a symbol
4237 which is used in a relocation entry. */
4238 (*_bfd_error_handler)
4239 (_("%s: symbol `%s' required but not present"),
4240 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4241 bfd_set_error (bfd_error_no_symbols);
4242 return -1;
4243 }
4244
4245 #if DEBUG & 4
4246 {
4247 fprintf (stderr,
4248 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4249 (long) asym_ptr, asym_ptr->name, idx, flags,
4250 elf_symbol_flags (flags));
4251 fflush (stderr);
4252 }
4253 #endif
4254
4255 return idx;
4256 }
4257
4258 /* Copy private BFD data. This copies any program header information. */
4259
4260 static boolean
4261 copy_private_bfd_data (ibfd, obfd)
4262 bfd *ibfd;
4263 bfd *obfd;
4264 {
4265 Elf_Internal_Ehdr * iehdr;
4266 struct elf_segment_map * map;
4267 struct elf_segment_map * map_first;
4268 struct elf_segment_map ** pointer_to_map;
4269 Elf_Internal_Phdr * segment;
4270 asection * section;
4271 unsigned int i;
4272 unsigned int num_segments;
4273 boolean phdr_included = false;
4274 bfd_vma maxpagesize;
4275 struct elf_segment_map * phdr_adjust_seg = NULL;
4276 unsigned int phdr_adjust_num = 0;
4277
4278 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4279 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4280 return true;
4281
4282 if (elf_tdata (ibfd)->phdr == NULL)
4283 return true;
4284
4285 iehdr = elf_elfheader (ibfd);
4286
4287 map_first = NULL;
4288 pointer_to_map = &map_first;
4289
4290 num_segments = elf_elfheader (ibfd)->e_phnum;
4291 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4292
4293 /* Returns the end address of the segment + 1. */
4294 #define SEGMENT_END(segment, start) \
4295 (start + (segment->p_memsz > segment->p_filesz \
4296 ? segment->p_memsz : segment->p_filesz))
4297
4298 /* Returns true if the given section is contained within
4299 the given segment. VMA addresses are compared. */
4300 #define IS_CONTAINED_BY_VMA(section, segment) \
4301 (section->vma >= segment->p_vaddr \
4302 && (section->vma + section->_raw_size) \
4303 <= (SEGMENT_END (segment, segment->p_vaddr)))
4304
4305 /* Returns true if the given section is contained within
4306 the given segment. LMA addresses are compared. */
4307 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4308 (section->lma >= base \
4309 && (section->lma + section->_raw_size) \
4310 <= SEGMENT_END (segment, base))
4311
4312 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4313 #define IS_COREFILE_NOTE(p, s) \
4314 (p->p_type == PT_NOTE \
4315 && bfd_get_format (ibfd) == bfd_core \
4316 && s->vma == 0 && s->lma == 0 \
4317 && (bfd_vma) s->filepos >= p->p_offset \
4318 && (bfd_vma) s->filepos + s->_raw_size \
4319 <= p->p_offset + p->p_filesz)
4320
4321 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4322 linker, which generates a PT_INTERP section with p_vaddr and
4323 p_memsz set to 0. */
4324 #define IS_SOLARIS_PT_INTERP(p, s) \
4325 ( p->p_vaddr == 0 \
4326 && p->p_filesz > 0 \
4327 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4328 && s->_raw_size > 0 \
4329 && (bfd_vma) s->filepos >= p->p_offset \
4330 && ((bfd_vma) s->filepos + s->_raw_size \
4331 <= p->p_offset + p->p_filesz))
4332
4333 /* Decide if the given section should be included in the given segment.
4334 A section will be included if:
4335 1. It is within the address space of the segment -- we use the LMA
4336 if that is set for the segment and the VMA otherwise,
4337 2. It is an allocated segment,
4338 3. There is an output section associated with it,
4339 4. The section has not already been allocated to a previous segment. */
4340 #define INCLUDE_SECTION_IN_SEGMENT(section, segment) \
4341 (((((segment->p_paddr \
4342 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4343 : IS_CONTAINED_BY_VMA (section, segment)) \
4344 || IS_SOLARIS_PT_INTERP (segment, section)) \
4345 && (section->flags & SEC_ALLOC) != 0) \
4346 || IS_COREFILE_NOTE (segment, section)) \
4347 && section->output_section != NULL \
4348 && section->segment_mark == false)
4349
4350 /* Returns true iff seg1 starts after the end of seg2. */
4351 #define SEGMENT_AFTER_SEGMENT(seg1, seg2) \
4352 (seg1->p_vaddr >= SEGMENT_END (seg2, seg2->p_vaddr))
4353
4354 /* Returns true iff seg1 and seg2 overlap. */
4355 #define SEGMENT_OVERLAPS(seg1, seg2) \
4356 (!(SEGMENT_AFTER_SEGMENT (seg1, seg2) || SEGMENT_AFTER_SEGMENT (seg2, seg1)))
4357
4358 /* Initialise the segment mark field. */
4359 for (section = ibfd->sections; section != NULL; section = section->next)
4360 section->segment_mark = false;
4361
4362 /* Scan through the segments specified in the program header
4363 of the input BFD. For this first scan we look for overlaps
4364 in the loadable segments. These can be created by weird
4365 parameters to objcopy. */
4366 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4367 i < num_segments;
4368 i++, segment++)
4369 {
4370 unsigned int j;
4371 Elf_Internal_Phdr *segment2;
4372
4373 if (segment->p_type != PT_LOAD)
4374 continue;
4375
4376 /* Determine if this segment overlaps any previous segments. */
4377 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4378 {
4379 bfd_signed_vma extra_length;
4380
4381 if (segment2->p_type != PT_LOAD
4382 || ! SEGMENT_OVERLAPS (segment, segment2))
4383 continue;
4384
4385 /* Merge the two segments together. */
4386 if (segment2->p_vaddr < segment->p_vaddr)
4387 {
4388 /* Extend SEGMENT2 to include SEGMENT and then delete
4389 SEGMENT. */
4390 extra_length =
4391 SEGMENT_END (segment, segment->p_vaddr)
4392 - SEGMENT_END (segment2, segment2->p_vaddr);
4393
4394 if (extra_length > 0)
4395 {
4396 segment2->p_memsz += extra_length;
4397 segment2->p_filesz += extra_length;
4398 }
4399
4400 segment->p_type = PT_NULL;
4401
4402 /* Since we have deleted P we must restart the outer loop. */
4403 i = 0;
4404 segment = elf_tdata (ibfd)->phdr;
4405 break;
4406 }
4407 else
4408 {
4409 /* Extend SEGMENT to include SEGMENT2 and then delete
4410 SEGMENT2. */
4411 extra_length =
4412 SEGMENT_END (segment2, segment2->p_vaddr)
4413 - SEGMENT_END (segment, segment->p_vaddr);
4414
4415 if (extra_length > 0)
4416 {
4417 segment->p_memsz += extra_length;
4418 segment->p_filesz += extra_length;
4419 }
4420
4421 segment2->p_type = PT_NULL;
4422 }
4423 }
4424 }
4425
4426 /* The second scan attempts to assign sections to segments. */
4427 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4428 i < num_segments;
4429 i ++, segment ++)
4430 {
4431 unsigned int section_count;
4432 asection ** sections;
4433 asection * output_section;
4434 unsigned int isec;
4435 bfd_vma matching_lma;
4436 bfd_vma suggested_lma;
4437 unsigned int j;
4438 bfd_size_type amt;
4439
4440 if (segment->p_type == PT_NULL)
4441 continue;
4442
4443 /* Compute how many sections might be placed into this segment. */
4444 section_count = 0;
4445 for (section = ibfd->sections; section != NULL; section = section->next)
4446 if (INCLUDE_SECTION_IN_SEGMENT (section, segment))
4447 ++section_count;
4448
4449 /* Allocate a segment map big enough to contain all of the
4450 sections we have selected. */
4451 amt = sizeof (struct elf_segment_map);
4452 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4453 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
4454 if (map == NULL)
4455 return false;
4456
4457 /* Initialise the fields of the segment map. Default to
4458 using the physical address of the segment in the input BFD. */
4459 map->next = NULL;
4460 map->p_type = segment->p_type;
4461 map->p_flags = segment->p_flags;
4462 map->p_flags_valid = 1;
4463 map->p_paddr = segment->p_paddr;
4464 map->p_paddr_valid = 1;
4465
4466 /* Determine if this segment contains the ELF file header
4467 and if it contains the program headers themselves. */
4468 map->includes_filehdr = (segment->p_offset == 0
4469 && segment->p_filesz >= iehdr->e_ehsize);
4470
4471 map->includes_phdrs = 0;
4472
4473 if (! phdr_included || segment->p_type != PT_LOAD)
4474 {
4475 map->includes_phdrs =
4476 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4477 && (segment->p_offset + segment->p_filesz
4478 >= ((bfd_vma) iehdr->e_phoff
4479 + iehdr->e_phnum * iehdr->e_phentsize)));
4480
4481 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4482 phdr_included = true;
4483 }
4484
4485 if (section_count == 0)
4486 {
4487 /* Special segments, such as the PT_PHDR segment, may contain
4488 no sections, but ordinary, loadable segments should contain
4489 something. */
4490 if (segment->p_type == PT_LOAD)
4491 _bfd_error_handler
4492 (_("%s: warning: Empty loadable segment detected\n"),
4493 bfd_archive_filename (ibfd));
4494
4495 map->count = 0;
4496 *pointer_to_map = map;
4497 pointer_to_map = &map->next;
4498
4499 continue;
4500 }
4501
4502 /* Now scan the sections in the input BFD again and attempt
4503 to add their corresponding output sections to the segment map.
4504 The problem here is how to handle an output section which has
4505 been moved (ie had its LMA changed). There are four possibilities:
4506
4507 1. None of the sections have been moved.
4508 In this case we can continue to use the segment LMA from the
4509 input BFD.
4510
4511 2. All of the sections have been moved by the same amount.
4512 In this case we can change the segment's LMA to match the LMA
4513 of the first section.
4514
4515 3. Some of the sections have been moved, others have not.
4516 In this case those sections which have not been moved can be
4517 placed in the current segment which will have to have its size,
4518 and possibly its LMA changed, and a new segment or segments will
4519 have to be created to contain the other sections.
4520
4521 4. The sections have been moved, but not be the same amount.
4522 In this case we can change the segment's LMA to match the LMA
4523 of the first section and we will have to create a new segment
4524 or segments to contain the other sections.
4525
4526 In order to save time, we allocate an array to hold the section
4527 pointers that we are interested in. As these sections get assigned
4528 to a segment, they are removed from this array. */
4529
4530 amt = (bfd_size_type) section_count * sizeof (asection *);
4531 sections = (asection **) bfd_malloc (amt);
4532 if (sections == NULL)
4533 return false;
4534
4535 /* Step One: Scan for segment vs section LMA conflicts.
4536 Also add the sections to the section array allocated above.
4537 Also add the sections to the current segment. In the common
4538 case, where the sections have not been moved, this means that
4539 we have completely filled the segment, and there is nothing
4540 more to do. */
4541 isec = 0;
4542 matching_lma = 0;
4543 suggested_lma = 0;
4544
4545 for (j = 0, section = ibfd->sections;
4546 section != NULL;
4547 section = section->next)
4548 {
4549 if (INCLUDE_SECTION_IN_SEGMENT (section, segment))
4550 {
4551 output_section = section->output_section;
4552
4553 sections[j ++] = section;
4554
4555 /* The Solaris native linker always sets p_paddr to 0.
4556 We try to catch that case here, and set it to the
4557 correct value. */
4558 if (segment->p_paddr == 0
4559 && segment->p_vaddr != 0
4560 && isec == 0
4561 && output_section->lma != 0
4562 && (output_section->vma == (segment->p_vaddr
4563 + (map->includes_filehdr
4564 ? iehdr->e_ehsize
4565 : 0)
4566 + (map->includes_phdrs
4567 ? (iehdr->e_phnum
4568 * iehdr->e_phentsize)
4569 : 0))))
4570 map->p_paddr = segment->p_vaddr;
4571
4572 /* Match up the physical address of the segment with the
4573 LMA address of the output section. */
4574 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4575 || IS_COREFILE_NOTE (segment, section))
4576 {
4577 if (matching_lma == 0)
4578 matching_lma = output_section->lma;
4579
4580 /* We assume that if the section fits within the segment
4581 then it does not overlap any other section within that
4582 segment. */
4583 map->sections[isec ++] = output_section;
4584 }
4585 else if (suggested_lma == 0)
4586 suggested_lma = output_section->lma;
4587 }
4588 }
4589
4590 BFD_ASSERT (j == section_count);
4591
4592 /* Step Two: Adjust the physical address of the current segment,
4593 if necessary. */
4594 if (isec == section_count)
4595 {
4596 /* All of the sections fitted within the segment as currently
4597 specified. This is the default case. Add the segment to
4598 the list of built segments and carry on to process the next
4599 program header in the input BFD. */
4600 map->count = section_count;
4601 *pointer_to_map = map;
4602 pointer_to_map = &map->next;
4603
4604 free (sections);
4605 continue;
4606 }
4607 else
4608 {
4609 if (matching_lma != 0)
4610 {
4611 /* At least one section fits inside the current segment.
4612 Keep it, but modify its physical address to match the
4613 LMA of the first section that fitted. */
4614 map->p_paddr = matching_lma;
4615 }
4616 else
4617 {
4618 /* None of the sections fitted inside the current segment.
4619 Change the current segment's physical address to match
4620 the LMA of the first section. */
4621 map->p_paddr = suggested_lma;
4622 }
4623
4624 /* Offset the segment physical address from the lma
4625 to allow for space taken up by elf headers. */
4626 if (map->includes_filehdr)
4627 map->p_paddr -= iehdr->e_ehsize;
4628
4629 if (map->includes_phdrs)
4630 {
4631 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
4632
4633 /* iehdr->e_phnum is just an estimate of the number
4634 of program headers that we will need. Make a note
4635 here of the number we used and the segment we chose
4636 to hold these headers, so that we can adjust the
4637 offset when we know the correct value. */
4638 phdr_adjust_num = iehdr->e_phnum;
4639 phdr_adjust_seg = map;
4640 }
4641 }
4642
4643 /* Step Three: Loop over the sections again, this time assigning
4644 those that fit to the current segment and remvoing them from the
4645 sections array; but making sure not to leave large gaps. Once all
4646 possible sections have been assigned to the current segment it is
4647 added to the list of built segments and if sections still remain
4648 to be assigned, a new segment is constructed before repeating
4649 the loop. */
4650 isec = 0;
4651 do
4652 {
4653 map->count = 0;
4654 suggested_lma = 0;
4655
4656 /* Fill the current segment with sections that fit. */
4657 for (j = 0; j < section_count; j++)
4658 {
4659 section = sections[j];
4660
4661 if (section == NULL)
4662 continue;
4663
4664 output_section = section->output_section;
4665
4666 BFD_ASSERT (output_section != NULL);
4667
4668 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4669 || IS_COREFILE_NOTE (segment, section))
4670 {
4671 if (map->count == 0)
4672 {
4673 /* If the first section in a segment does not start at
4674 the beginning of the segment, then something is
4675 wrong. */
4676 if (output_section->lma !=
4677 (map->p_paddr
4678 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
4679 + (map->includes_phdrs
4680 ? iehdr->e_phnum * iehdr->e_phentsize
4681 : 0)))
4682 abort ();
4683 }
4684 else
4685 {
4686 asection * prev_sec;
4687
4688 prev_sec = map->sections[map->count - 1];
4689
4690 /* If the gap between the end of the previous section
4691 and the start of this section is more than
4692 maxpagesize then we need to start a new segment. */
4693 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
4694 maxpagesize)
4695 < BFD_ALIGN (output_section->lma, maxpagesize))
4696 || ((prev_sec->lma + prev_sec->_raw_size)
4697 > output_section->lma))
4698 {
4699 if (suggested_lma == 0)
4700 suggested_lma = output_section->lma;
4701
4702 continue;
4703 }
4704 }
4705
4706 map->sections[map->count++] = output_section;
4707 ++isec;
4708 sections[j] = NULL;
4709 section->segment_mark = true;
4710 }
4711 else if (suggested_lma == 0)
4712 suggested_lma = output_section->lma;
4713 }
4714
4715 BFD_ASSERT (map->count > 0);
4716
4717 /* Add the current segment to the list of built segments. */
4718 *pointer_to_map = map;
4719 pointer_to_map = &map->next;
4720
4721 if (isec < section_count)
4722 {
4723 /* We still have not allocated all of the sections to
4724 segments. Create a new segment here, initialise it
4725 and carry on looping. */
4726 amt = sizeof (struct elf_segment_map);
4727 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4728 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
4729 if (map == NULL)
4730 return false;
4731
4732 /* Initialise the fields of the segment map. Set the physical
4733 physical address to the LMA of the first section that has
4734 not yet been assigned. */
4735 map->next = NULL;
4736 map->p_type = segment->p_type;
4737 map->p_flags = segment->p_flags;
4738 map->p_flags_valid = 1;
4739 map->p_paddr = suggested_lma;
4740 map->p_paddr_valid = 1;
4741 map->includes_filehdr = 0;
4742 map->includes_phdrs = 0;
4743 }
4744 }
4745 while (isec < section_count);
4746
4747 free (sections);
4748 }
4749
4750 /* The Solaris linker creates program headers in which all the
4751 p_paddr fields are zero. When we try to objcopy or strip such a
4752 file, we get confused. Check for this case, and if we find it
4753 reset the p_paddr_valid fields. */
4754 for (map = map_first; map != NULL; map = map->next)
4755 if (map->p_paddr != 0)
4756 break;
4757 if (map == NULL)
4758 {
4759 for (map = map_first; map != NULL; map = map->next)
4760 map->p_paddr_valid = 0;
4761 }
4762
4763 elf_tdata (obfd)->segment_map = map_first;
4764
4765 /* If we had to estimate the number of program headers that were
4766 going to be needed, then check our estimate now and adjust
4767 the offset if necessary. */
4768 if (phdr_adjust_seg != NULL)
4769 {
4770 unsigned int count;
4771
4772 for (count = 0, map = map_first; map != NULL; map = map->next)
4773 count++;
4774
4775 if (count > phdr_adjust_num)
4776 phdr_adjust_seg->p_paddr
4777 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
4778 }
4779
4780 #if 0
4781 /* Final Step: Sort the segments into ascending order of physical
4782 address. */
4783 if (map_first != NULL)
4784 {
4785 struct elf_segment_map *prev;
4786
4787 prev = map_first;
4788 for (map = map_first->next; map != NULL; prev = map, map = map->next)
4789 {
4790 /* Yes I know - its a bubble sort.... */
4791 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
4792 {
4793 /* Swap map and map->next. */
4794 prev->next = map->next;
4795 map->next = map->next->next;
4796 prev->next->next = map;
4797
4798 /* Restart loop. */
4799 map = map_first;
4800 }
4801 }
4802 }
4803 #endif
4804
4805 #undef SEGMENT_END
4806 #undef IS_CONTAINED_BY_VMA
4807 #undef IS_CONTAINED_BY_LMA
4808 #undef IS_COREFILE_NOTE
4809 #undef IS_SOLARIS_PT_INTERP
4810 #undef INCLUDE_SECTION_IN_SEGMENT
4811 #undef SEGMENT_AFTER_SEGMENT
4812 #undef SEGMENT_OVERLAPS
4813 return true;
4814 }
4815
4816 /* Copy private section information. This copies over the entsize
4817 field, and sometimes the info field. */
4818
4819 boolean
4820 _bfd_elf_copy_private_section_data (ibfd, isec, obfd, osec)
4821 bfd *ibfd;
4822 asection *isec;
4823 bfd *obfd;
4824 asection *osec;
4825 {
4826 Elf_Internal_Shdr *ihdr, *ohdr;
4827
4828 if (ibfd->xvec->flavour != bfd_target_elf_flavour
4829 || obfd->xvec->flavour != bfd_target_elf_flavour)
4830 return true;
4831
4832 /* Copy over private BFD data if it has not already been copied.
4833 This must be done here, rather than in the copy_private_bfd_data
4834 entry point, because the latter is called after the section
4835 contents have been set, which means that the program headers have
4836 already been worked out. */
4837 if (elf_tdata (obfd)->segment_map == NULL
4838 && elf_tdata (ibfd)->phdr != NULL)
4839 {
4840 asection *s;
4841
4842 /* Only set up the segments if there are no more SEC_ALLOC
4843 sections. FIXME: This won't do the right thing if objcopy is
4844 used to remove the last SEC_ALLOC section, since objcopy
4845 won't call this routine in that case. */
4846 for (s = isec->next; s != NULL; s = s->next)
4847 if ((s->flags & SEC_ALLOC) != 0)
4848 break;
4849 if (s == NULL)
4850 {
4851 if (! copy_private_bfd_data (ibfd, obfd))
4852 return false;
4853 }
4854 }
4855
4856 ihdr = &elf_section_data (isec)->this_hdr;
4857 ohdr = &elf_section_data (osec)->this_hdr;
4858
4859 ohdr->sh_entsize = ihdr->sh_entsize;
4860
4861 if (ihdr->sh_type == SHT_SYMTAB
4862 || ihdr->sh_type == SHT_DYNSYM
4863 || ihdr->sh_type == SHT_GNU_verneed
4864 || ihdr->sh_type == SHT_GNU_verdef)
4865 ohdr->sh_info = ihdr->sh_info;
4866
4867 elf_section_data (osec)->use_rela_p
4868 = elf_section_data (isec)->use_rela_p;
4869
4870 return true;
4871 }
4872
4873 /* Copy private symbol information. If this symbol is in a section
4874 which we did not map into a BFD section, try to map the section
4875 index correctly. We use special macro definitions for the mapped
4876 section indices; these definitions are interpreted by the
4877 swap_out_syms function. */
4878
4879 #define MAP_ONESYMTAB (SHN_HIOS + 1)
4880 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
4881 #define MAP_STRTAB (SHN_HIOS + 3)
4882 #define MAP_SHSTRTAB (SHN_HIOS + 4)
4883 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
4884
4885 boolean
4886 _bfd_elf_copy_private_symbol_data (ibfd, isymarg, obfd, osymarg)
4887 bfd *ibfd;
4888 asymbol *isymarg;
4889 bfd *obfd;
4890 asymbol *osymarg;
4891 {
4892 elf_symbol_type *isym, *osym;
4893
4894 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4895 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4896 return true;
4897
4898 isym = elf_symbol_from (ibfd, isymarg);
4899 osym = elf_symbol_from (obfd, osymarg);
4900
4901 if (isym != NULL
4902 && osym != NULL
4903 && bfd_is_abs_section (isym->symbol.section))
4904 {
4905 unsigned int shndx;
4906
4907 shndx = isym->internal_elf_sym.st_shndx;
4908 if (shndx == elf_onesymtab (ibfd))
4909 shndx = MAP_ONESYMTAB;
4910 else if (shndx == elf_dynsymtab (ibfd))
4911 shndx = MAP_DYNSYMTAB;
4912 else if (shndx == elf_tdata (ibfd)->strtab_section)
4913 shndx = MAP_STRTAB;
4914 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
4915 shndx = MAP_SHSTRTAB;
4916 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
4917 shndx = MAP_SYM_SHNDX;
4918 osym->internal_elf_sym.st_shndx = shndx;
4919 }
4920
4921 return true;
4922 }
4923
4924 /* Swap out the symbols. */
4925
4926 static boolean
4927 swap_out_syms (abfd, sttp, relocatable_p)
4928 bfd *abfd;
4929 struct bfd_strtab_hash **sttp;
4930 int relocatable_p;
4931 {
4932 struct elf_backend_data *bed;
4933 int symcount;
4934 asymbol **syms;
4935 struct bfd_strtab_hash *stt;
4936 Elf_Internal_Shdr *symtab_hdr;
4937 Elf_Internal_Shdr *symtab_shndx_hdr;
4938 Elf_Internal_Shdr *symstrtab_hdr;
4939 char *outbound_syms;
4940 char *outbound_shndx;
4941 int idx;
4942 bfd_size_type amt;
4943
4944 if (!elf_map_symbols (abfd))
4945 return false;
4946
4947 /* Dump out the symtabs. */
4948 stt = _bfd_elf_stringtab_init ();
4949 if (stt == NULL)
4950 return false;
4951
4952 bed = get_elf_backend_data (abfd);
4953 symcount = bfd_get_symcount (abfd);
4954 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4955 symtab_hdr->sh_type = SHT_SYMTAB;
4956 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
4957 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
4958 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
4959 symtab_hdr->sh_addralign = bed->s->file_align;
4960
4961 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4962 symstrtab_hdr->sh_type = SHT_STRTAB;
4963
4964 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
4965 outbound_syms = bfd_alloc (abfd, amt);
4966 if (outbound_syms == NULL)
4967 return false;
4968 symtab_hdr->contents = (PTR) outbound_syms;
4969
4970 outbound_shndx = NULL;
4971 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
4972 if (symtab_shndx_hdr->sh_name != 0)
4973 {
4974 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
4975 outbound_shndx = bfd_alloc (abfd, amt);
4976 if (outbound_shndx == NULL)
4977 return false;
4978 memset (outbound_shndx, 0, (unsigned long) amt);
4979 symtab_shndx_hdr->contents = outbound_shndx;
4980 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
4981 symtab_shndx_hdr->sh_size = amt;
4982 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
4983 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
4984 }
4985
4986 /* now generate the data (for "contents") */
4987 {
4988 /* Fill in zeroth symbol and swap it out. */
4989 Elf_Internal_Sym sym;
4990 sym.st_name = 0;
4991 sym.st_value = 0;
4992 sym.st_size = 0;
4993 sym.st_info = 0;
4994 sym.st_other = 0;
4995 sym.st_shndx = SHN_UNDEF;
4996 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
4997 outbound_syms += bed->s->sizeof_sym;
4998 if (outbound_shndx != NULL)
4999 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5000 }
5001
5002 syms = bfd_get_outsymbols (abfd);
5003 for (idx = 0; idx < symcount; idx++)
5004 {
5005 Elf_Internal_Sym sym;
5006 bfd_vma value = syms[idx]->value;
5007 elf_symbol_type *type_ptr;
5008 flagword flags = syms[idx]->flags;
5009 int type;
5010
5011 if ((flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5012 {
5013 /* Local section symbols have no name. */
5014 sym.st_name = 0;
5015 }
5016 else
5017 {
5018 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5019 syms[idx]->name,
5020 true, false);
5021 if (sym.st_name == (unsigned long) -1)
5022 return false;
5023 }
5024
5025 type_ptr = elf_symbol_from (abfd, syms[idx]);
5026
5027 if ((flags & BSF_SECTION_SYM) == 0
5028 && bfd_is_com_section (syms[idx]->section))
5029 {
5030 /* ELF common symbols put the alignment into the `value' field,
5031 and the size into the `size' field. This is backwards from
5032 how BFD handles it, so reverse it here. */
5033 sym.st_size = value;
5034 if (type_ptr == NULL
5035 || type_ptr->internal_elf_sym.st_value == 0)
5036 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5037 else
5038 sym.st_value = type_ptr->internal_elf_sym.st_value;
5039 sym.st_shndx = _bfd_elf_section_from_bfd_section
5040 (abfd, syms[idx]->section);
5041 }
5042 else
5043 {
5044 asection *sec = syms[idx]->section;
5045 int shndx;
5046
5047 if (sec->output_section)
5048 {
5049 value += sec->output_offset;
5050 sec = sec->output_section;
5051 }
5052 /* Don't add in the section vma for relocatable output. */
5053 if (! relocatable_p)
5054 value += sec->vma;
5055 sym.st_value = value;
5056 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5057
5058 if (bfd_is_abs_section (sec)
5059 && type_ptr != NULL
5060 && type_ptr->internal_elf_sym.st_shndx != 0)
5061 {
5062 /* This symbol is in a real ELF section which we did
5063 not create as a BFD section. Undo the mapping done
5064 by copy_private_symbol_data. */
5065 shndx = type_ptr->internal_elf_sym.st_shndx;
5066 switch (shndx)
5067 {
5068 case MAP_ONESYMTAB:
5069 shndx = elf_onesymtab (abfd);
5070 break;
5071 case MAP_DYNSYMTAB:
5072 shndx = elf_dynsymtab (abfd);
5073 break;
5074 case MAP_STRTAB:
5075 shndx = elf_tdata (abfd)->strtab_section;
5076 break;
5077 case MAP_SHSTRTAB:
5078 shndx = elf_tdata (abfd)->shstrtab_section;
5079 break;
5080 case MAP_SYM_SHNDX:
5081 shndx = elf_tdata (abfd)->symtab_shndx_section;
5082 break;
5083 default:
5084 break;
5085 }
5086 }
5087 else
5088 {
5089 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5090
5091 if (shndx == -1)
5092 {
5093 asection *sec2;
5094
5095 /* Writing this would be a hell of a lot easier if
5096 we had some decent documentation on bfd, and
5097 knew what to expect of the library, and what to
5098 demand of applications. For example, it
5099 appears that `objcopy' might not set the
5100 section of a symbol to be a section that is
5101 actually in the output file. */
5102 sec2 = bfd_get_section_by_name (abfd, sec->name);
5103 BFD_ASSERT (sec2 != 0);
5104 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5105 BFD_ASSERT (shndx != -1);
5106 }
5107 }
5108
5109 sym.st_shndx = shndx;
5110 }
5111
5112 if ((flags & BSF_THREAD_LOCAL) != 0)
5113 type = STT_TLS;
5114 else if ((flags & BSF_FUNCTION) != 0)
5115 type = STT_FUNC;
5116 else if ((flags & BSF_OBJECT) != 0)
5117 type = STT_OBJECT;
5118 else
5119 type = STT_NOTYPE;
5120
5121 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5122 type = STT_TLS;
5123
5124 /* Processor-specific types */
5125 if (type_ptr != NULL
5126 && bed->elf_backend_get_symbol_type)
5127 type = ((*bed->elf_backend_get_symbol_type)
5128 (&type_ptr->internal_elf_sym, type));
5129
5130 if (flags & BSF_SECTION_SYM)
5131 {
5132 if (flags & BSF_GLOBAL)
5133 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5134 else
5135 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5136 }
5137 else if (bfd_is_com_section (syms[idx]->section))
5138 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5139 else if (bfd_is_und_section (syms[idx]->section))
5140 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5141 ? STB_WEAK
5142 : STB_GLOBAL),
5143 type);
5144 else if (flags & BSF_FILE)
5145 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5146 else
5147 {
5148 int bind = STB_LOCAL;
5149
5150 if (flags & BSF_LOCAL)
5151 bind = STB_LOCAL;
5152 else if (flags & BSF_WEAK)
5153 bind = STB_WEAK;
5154 else if (flags & BSF_GLOBAL)
5155 bind = STB_GLOBAL;
5156
5157 sym.st_info = ELF_ST_INFO (bind, type);
5158 }
5159
5160 if (type_ptr != NULL)
5161 sym.st_other = type_ptr->internal_elf_sym.st_other;
5162 else
5163 sym.st_other = 0;
5164
5165 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5166 outbound_syms += bed->s->sizeof_sym;
5167 if (outbound_shndx != NULL)
5168 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5169 }
5170
5171 *sttp = stt;
5172 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5173 symstrtab_hdr->sh_type = SHT_STRTAB;
5174
5175 symstrtab_hdr->sh_flags = 0;
5176 symstrtab_hdr->sh_addr = 0;
5177 symstrtab_hdr->sh_entsize = 0;
5178 symstrtab_hdr->sh_link = 0;
5179 symstrtab_hdr->sh_info = 0;
5180 symstrtab_hdr->sh_addralign = 1;
5181
5182 return true;
5183 }
5184
5185 /* Return the number of bytes required to hold the symtab vector.
5186
5187 Note that we base it on the count plus 1, since we will null terminate
5188 the vector allocated based on this size. However, the ELF symbol table
5189 always has a dummy entry as symbol #0, so it ends up even. */
5190
5191 long
5192 _bfd_elf_get_symtab_upper_bound (abfd)
5193 bfd *abfd;
5194 {
5195 long symcount;
5196 long symtab_size;
5197 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5198
5199 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5200 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5201 if (symcount > 0)
5202 symtab_size -= sizeof (asymbol *);
5203
5204 return symtab_size;
5205 }
5206
5207 long
5208 _bfd_elf_get_dynamic_symtab_upper_bound (abfd)
5209 bfd *abfd;
5210 {
5211 long symcount;
5212 long symtab_size;
5213 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5214
5215 if (elf_dynsymtab (abfd) == 0)
5216 {
5217 bfd_set_error (bfd_error_invalid_operation);
5218 return -1;
5219 }
5220
5221 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5222 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5223 if (symcount > 0)
5224 symtab_size -= sizeof (asymbol *);
5225
5226 return symtab_size;
5227 }
5228
5229 long
5230 _bfd_elf_get_reloc_upper_bound (abfd, asect)
5231 bfd *abfd ATTRIBUTE_UNUSED;
5232 sec_ptr asect;
5233 {
5234 return (asect->reloc_count + 1) * sizeof (arelent *);
5235 }
5236
5237 /* Canonicalize the relocs. */
5238
5239 long
5240 _bfd_elf_canonicalize_reloc (abfd, section, relptr, symbols)
5241 bfd *abfd;
5242 sec_ptr section;
5243 arelent **relptr;
5244 asymbol **symbols;
5245 {
5246 arelent *tblptr;
5247 unsigned int i;
5248 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5249
5250 if (! bed->s->slurp_reloc_table (abfd, section, symbols, false))
5251 return -1;
5252
5253 tblptr = section->relocation;
5254 for (i = 0; i < section->reloc_count; i++)
5255 *relptr++ = tblptr++;
5256
5257 *relptr = NULL;
5258
5259 return section->reloc_count;
5260 }
5261
5262 long
5263 _bfd_elf_get_symtab (abfd, alocation)
5264 bfd *abfd;
5265 asymbol **alocation;
5266 {
5267 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5268 long symcount = bed->s->slurp_symbol_table (abfd, alocation, false);
5269
5270 if (symcount >= 0)
5271 bfd_get_symcount (abfd) = symcount;
5272 return symcount;
5273 }
5274
5275 long
5276 _bfd_elf_canonicalize_dynamic_symtab (abfd, alocation)
5277 bfd *abfd;
5278 asymbol **alocation;
5279 {
5280 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5281 return bed->s->slurp_symbol_table (abfd, alocation, true);
5282 }
5283
5284 /* Return the size required for the dynamic reloc entries. Any
5285 section that was actually installed in the BFD, and has type
5286 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5287 considered to be a dynamic reloc section. */
5288
5289 long
5290 _bfd_elf_get_dynamic_reloc_upper_bound (abfd)
5291 bfd *abfd;
5292 {
5293 long ret;
5294 asection *s;
5295
5296 if (elf_dynsymtab (abfd) == 0)
5297 {
5298 bfd_set_error (bfd_error_invalid_operation);
5299 return -1;
5300 }
5301
5302 ret = sizeof (arelent *);
5303 for (s = abfd->sections; s != NULL; s = s->next)
5304 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5305 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5306 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5307 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5308 * sizeof (arelent *));
5309
5310 return ret;
5311 }
5312
5313 /* Canonicalize the dynamic relocation entries. Note that we return
5314 the dynamic relocations as a single block, although they are
5315 actually associated with particular sections; the interface, which
5316 was designed for SunOS style shared libraries, expects that there
5317 is only one set of dynamic relocs. Any section that was actually
5318 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5319 the dynamic symbol table, is considered to be a dynamic reloc
5320 section. */
5321
5322 long
5323 _bfd_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
5324 bfd *abfd;
5325 arelent **storage;
5326 asymbol **syms;
5327 {
5328 boolean (*slurp_relocs) PARAMS ((bfd *, asection *, asymbol **, boolean));
5329 asection *s;
5330 long ret;
5331
5332 if (elf_dynsymtab (abfd) == 0)
5333 {
5334 bfd_set_error (bfd_error_invalid_operation);
5335 return -1;
5336 }
5337
5338 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5339 ret = 0;
5340 for (s = abfd->sections; s != NULL; s = s->next)
5341 {
5342 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5343 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5344 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5345 {
5346 arelent *p;
5347 long count, i;
5348
5349 if (! (*slurp_relocs) (abfd, s, syms, true))
5350 return -1;
5351 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5352 p = s->relocation;
5353 for (i = 0; i < count; i++)
5354 *storage++ = p++;
5355 ret += count;
5356 }
5357 }
5358
5359 *storage = NULL;
5360
5361 return ret;
5362 }
5363 \f
5364 /* Read in the version information. */
5365
5366 boolean
5367 _bfd_elf_slurp_version_tables (abfd)
5368 bfd *abfd;
5369 {
5370 bfd_byte *contents = NULL;
5371 bfd_size_type amt;
5372
5373 if (elf_dynverdef (abfd) != 0)
5374 {
5375 Elf_Internal_Shdr *hdr;
5376 Elf_External_Verdef *everdef;
5377 Elf_Internal_Verdef *iverdef;
5378 Elf_Internal_Verdef *iverdefarr;
5379 Elf_Internal_Verdef iverdefmem;
5380 unsigned int i;
5381 unsigned int maxidx;
5382
5383 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5384
5385 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
5386 if (contents == NULL)
5387 goto error_return;
5388 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5389 || bfd_bread ((PTR) contents, hdr->sh_size, abfd) != hdr->sh_size)
5390 goto error_return;
5391
5392 /* We know the number of entries in the section but not the maximum
5393 index. Therefore we have to run through all entries and find
5394 the maximum. */
5395 everdef = (Elf_External_Verdef *) contents;
5396 maxidx = 0;
5397 for (i = 0; i < hdr->sh_info; ++i)
5398 {
5399 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5400
5401 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5402 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5403
5404 everdef = ((Elf_External_Verdef *)
5405 ((bfd_byte *) everdef + iverdefmem.vd_next));
5406 }
5407
5408 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5409 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
5410 if (elf_tdata (abfd)->verdef == NULL)
5411 goto error_return;
5412
5413 elf_tdata (abfd)->cverdefs = maxidx;
5414
5415 everdef = (Elf_External_Verdef *) contents;
5416 iverdefarr = elf_tdata (abfd)->verdef;
5417 for (i = 0; i < hdr->sh_info; i++)
5418 {
5419 Elf_External_Verdaux *everdaux;
5420 Elf_Internal_Verdaux *iverdaux;
5421 unsigned int j;
5422
5423 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5424
5425 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5426 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5427
5428 iverdef->vd_bfd = abfd;
5429
5430 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5431 iverdef->vd_auxptr = (Elf_Internal_Verdaux *) bfd_alloc (abfd, amt);
5432 if (iverdef->vd_auxptr == NULL)
5433 goto error_return;
5434
5435 everdaux = ((Elf_External_Verdaux *)
5436 ((bfd_byte *) everdef + iverdef->vd_aux));
5437 iverdaux = iverdef->vd_auxptr;
5438 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5439 {
5440 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5441
5442 iverdaux->vda_nodename =
5443 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5444 iverdaux->vda_name);
5445 if (iverdaux->vda_nodename == NULL)
5446 goto error_return;
5447
5448 if (j + 1 < iverdef->vd_cnt)
5449 iverdaux->vda_nextptr = iverdaux + 1;
5450 else
5451 iverdaux->vda_nextptr = NULL;
5452
5453 everdaux = ((Elf_External_Verdaux *)
5454 ((bfd_byte *) everdaux + iverdaux->vda_next));
5455 }
5456
5457 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5458
5459 if (i + 1 < hdr->sh_info)
5460 iverdef->vd_nextdef = iverdef + 1;
5461 else
5462 iverdef->vd_nextdef = NULL;
5463
5464 everdef = ((Elf_External_Verdef *)
5465 ((bfd_byte *) everdef + iverdef->vd_next));
5466 }
5467
5468 free (contents);
5469 contents = NULL;
5470 }
5471
5472 if (elf_dynverref (abfd) != 0)
5473 {
5474 Elf_Internal_Shdr *hdr;
5475 Elf_External_Verneed *everneed;
5476 Elf_Internal_Verneed *iverneed;
5477 unsigned int i;
5478
5479 hdr = &elf_tdata (abfd)->dynverref_hdr;
5480
5481 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5482 elf_tdata (abfd)->verref =
5483 (Elf_Internal_Verneed *) bfd_zalloc (abfd, amt);
5484 if (elf_tdata (abfd)->verref == NULL)
5485 goto error_return;
5486
5487 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5488
5489 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
5490 if (contents == NULL)
5491 goto error_return;
5492 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5493 || bfd_bread ((PTR) contents, hdr->sh_size, abfd) != hdr->sh_size)
5494 goto error_return;
5495
5496 everneed = (Elf_External_Verneed *) contents;
5497 iverneed = elf_tdata (abfd)->verref;
5498 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5499 {
5500 Elf_External_Vernaux *evernaux;
5501 Elf_Internal_Vernaux *ivernaux;
5502 unsigned int j;
5503
5504 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5505
5506 iverneed->vn_bfd = abfd;
5507
5508 iverneed->vn_filename =
5509 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5510 iverneed->vn_file);
5511 if (iverneed->vn_filename == NULL)
5512 goto error_return;
5513
5514 amt = iverneed->vn_cnt;
5515 amt *= sizeof (Elf_Internal_Vernaux);
5516 iverneed->vn_auxptr = (Elf_Internal_Vernaux *) bfd_alloc (abfd, amt);
5517
5518 evernaux = ((Elf_External_Vernaux *)
5519 ((bfd_byte *) everneed + iverneed->vn_aux));
5520 ivernaux = iverneed->vn_auxptr;
5521 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5522 {
5523 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5524
5525 ivernaux->vna_nodename =
5526 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5527 ivernaux->vna_name);
5528 if (ivernaux->vna_nodename == NULL)
5529 goto error_return;
5530
5531 if (j + 1 < iverneed->vn_cnt)
5532 ivernaux->vna_nextptr = ivernaux + 1;
5533 else
5534 ivernaux->vna_nextptr = NULL;
5535
5536 evernaux = ((Elf_External_Vernaux *)
5537 ((bfd_byte *) evernaux + ivernaux->vna_next));
5538 }
5539
5540 if (i + 1 < hdr->sh_info)
5541 iverneed->vn_nextref = iverneed + 1;
5542 else
5543 iverneed->vn_nextref = NULL;
5544
5545 everneed = ((Elf_External_Verneed *)
5546 ((bfd_byte *) everneed + iverneed->vn_next));
5547 }
5548
5549 free (contents);
5550 contents = NULL;
5551 }
5552
5553 return true;
5554
5555 error_return:
5556 if (contents == NULL)
5557 free (contents);
5558 return false;
5559 }
5560 \f
5561 asymbol *
5562 _bfd_elf_make_empty_symbol (abfd)
5563 bfd *abfd;
5564 {
5565 elf_symbol_type *newsym;
5566 bfd_size_type amt = sizeof (elf_symbol_type);
5567
5568 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
5569 if (!newsym)
5570 return NULL;
5571 else
5572 {
5573 newsym->symbol.the_bfd = abfd;
5574 return &newsym->symbol;
5575 }
5576 }
5577
5578 void
5579 _bfd_elf_get_symbol_info (ignore_abfd, symbol, ret)
5580 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5581 asymbol *symbol;
5582 symbol_info *ret;
5583 {
5584 bfd_symbol_info (symbol, ret);
5585 }
5586
5587 /* Return whether a symbol name implies a local symbol. Most targets
5588 use this function for the is_local_label_name entry point, but some
5589 override it. */
5590
5591 boolean
5592 _bfd_elf_is_local_label_name (abfd, name)
5593 bfd *abfd ATTRIBUTE_UNUSED;
5594 const char *name;
5595 {
5596 /* Normal local symbols start with ``.L''. */
5597 if (name[0] == '.' && name[1] == 'L')
5598 return true;
5599
5600 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5601 DWARF debugging symbols starting with ``..''. */
5602 if (name[0] == '.' && name[1] == '.')
5603 return true;
5604
5605 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5606 emitting DWARF debugging output. I suspect this is actually a
5607 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5608 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5609 underscore to be emitted on some ELF targets). For ease of use,
5610 we treat such symbols as local. */
5611 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
5612 return true;
5613
5614 return false;
5615 }
5616
5617 alent *
5618 _bfd_elf_get_lineno (ignore_abfd, symbol)
5619 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5620 asymbol *symbol ATTRIBUTE_UNUSED;
5621 {
5622 abort ();
5623 return NULL;
5624 }
5625
5626 boolean
5627 _bfd_elf_set_arch_mach (abfd, arch, machine)
5628 bfd *abfd;
5629 enum bfd_architecture arch;
5630 unsigned long machine;
5631 {
5632 /* If this isn't the right architecture for this backend, and this
5633 isn't the generic backend, fail. */
5634 if (arch != get_elf_backend_data (abfd)->arch
5635 && arch != bfd_arch_unknown
5636 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
5637 return false;
5638
5639 return bfd_default_set_arch_mach (abfd, arch, machine);
5640 }
5641
5642 /* Find the function to a particular section and offset,
5643 for error reporting. */
5644
5645 static boolean
5646 elf_find_function (abfd, section, symbols, offset,
5647 filename_ptr, functionname_ptr)
5648 bfd *abfd ATTRIBUTE_UNUSED;
5649 asection *section;
5650 asymbol **symbols;
5651 bfd_vma offset;
5652 const char **filename_ptr;
5653 const char **functionname_ptr;
5654 {
5655 const char *filename;
5656 asymbol *func;
5657 bfd_vma low_func;
5658 asymbol **p;
5659
5660 filename = NULL;
5661 func = NULL;
5662 low_func = 0;
5663
5664 for (p = symbols; *p != NULL; p++)
5665 {
5666 elf_symbol_type *q;
5667
5668 q = (elf_symbol_type *) *p;
5669
5670 if (bfd_get_section (&q->symbol) != section)
5671 continue;
5672
5673 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5674 {
5675 default:
5676 break;
5677 case STT_FILE:
5678 filename = bfd_asymbol_name (&q->symbol);
5679 break;
5680 case STT_NOTYPE:
5681 case STT_FUNC:
5682 if (q->symbol.section == section
5683 && q->symbol.value >= low_func
5684 && q->symbol.value <= offset)
5685 {
5686 func = (asymbol *) q;
5687 low_func = q->symbol.value;
5688 }
5689 break;
5690 }
5691 }
5692
5693 if (func == NULL)
5694 return false;
5695
5696 if (filename_ptr)
5697 *filename_ptr = filename;
5698 if (functionname_ptr)
5699 *functionname_ptr = bfd_asymbol_name (func);
5700
5701 return true;
5702 }
5703
5704 /* Find the nearest line to a particular section and offset,
5705 for error reporting. */
5706
5707 boolean
5708 _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
5709 filename_ptr, functionname_ptr, line_ptr)
5710 bfd *abfd;
5711 asection *section;
5712 asymbol **symbols;
5713 bfd_vma offset;
5714 const char **filename_ptr;
5715 const char **functionname_ptr;
5716 unsigned int *line_ptr;
5717 {
5718 boolean found;
5719
5720 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
5721 filename_ptr, functionname_ptr,
5722 line_ptr))
5723 {
5724 if (!*functionname_ptr)
5725 elf_find_function (abfd, section, symbols, offset,
5726 *filename_ptr ? NULL : filename_ptr,
5727 functionname_ptr);
5728
5729 return true;
5730 }
5731
5732 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
5733 filename_ptr, functionname_ptr,
5734 line_ptr, 0,
5735 &elf_tdata (abfd)->dwarf2_find_line_info))
5736 {
5737 if (!*functionname_ptr)
5738 elf_find_function (abfd, section, symbols, offset,
5739 *filename_ptr ? NULL : filename_ptr,
5740 functionname_ptr);
5741
5742 return true;
5743 }
5744
5745 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
5746 &found, filename_ptr,
5747 functionname_ptr, line_ptr,
5748 &elf_tdata (abfd)->line_info))
5749 return false;
5750 if (found)
5751 return true;
5752
5753 if (symbols == NULL)
5754 return false;
5755
5756 if (! elf_find_function (abfd, section, symbols, offset,
5757 filename_ptr, functionname_ptr))
5758 return false;
5759
5760 *line_ptr = 0;
5761 return true;
5762 }
5763
5764 int
5765 _bfd_elf_sizeof_headers (abfd, reloc)
5766 bfd *abfd;
5767 boolean reloc;
5768 {
5769 int ret;
5770
5771 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
5772 if (! reloc)
5773 ret += get_program_header_size (abfd);
5774 return ret;
5775 }
5776
5777 boolean
5778 _bfd_elf_set_section_contents (abfd, section, location, offset, count)
5779 bfd *abfd;
5780 sec_ptr section;
5781 PTR location;
5782 file_ptr offset;
5783 bfd_size_type count;
5784 {
5785 Elf_Internal_Shdr *hdr;
5786 bfd_signed_vma pos;
5787
5788 if (! abfd->output_has_begun
5789 && ! _bfd_elf_compute_section_file_positions
5790 (abfd, (struct bfd_link_info *) NULL))
5791 return false;
5792
5793 hdr = &elf_section_data (section)->this_hdr;
5794 pos = hdr->sh_offset + offset;
5795 if (bfd_seek (abfd, pos, SEEK_SET) != 0
5796 || bfd_bwrite (location, count, abfd) != count)
5797 return false;
5798
5799 return true;
5800 }
5801
5802 void
5803 _bfd_elf_no_info_to_howto (abfd, cache_ptr, dst)
5804 bfd *abfd ATTRIBUTE_UNUSED;
5805 arelent *cache_ptr ATTRIBUTE_UNUSED;
5806 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED;
5807 {
5808 abort ();
5809 }
5810
5811 #if 0
5812 void
5813 _bfd_elf_no_info_to_howto_rel (abfd, cache_ptr, dst)
5814 bfd *abfd;
5815 arelent *cache_ptr;
5816 Elf_Internal_Rel *dst;
5817 {
5818 abort ();
5819 }
5820 #endif
5821
5822 /* Try to convert a non-ELF reloc into an ELF one. */
5823
5824 boolean
5825 _bfd_elf_validate_reloc (abfd, areloc)
5826 bfd *abfd;
5827 arelent *areloc;
5828 {
5829 /* Check whether we really have an ELF howto. */
5830
5831 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
5832 {
5833 bfd_reloc_code_real_type code;
5834 reloc_howto_type *howto;
5835
5836 /* Alien reloc: Try to determine its type to replace it with an
5837 equivalent ELF reloc. */
5838
5839 if (areloc->howto->pc_relative)
5840 {
5841 switch (areloc->howto->bitsize)
5842 {
5843 case 8:
5844 code = BFD_RELOC_8_PCREL;
5845 break;
5846 case 12:
5847 code = BFD_RELOC_12_PCREL;
5848 break;
5849 case 16:
5850 code = BFD_RELOC_16_PCREL;
5851 break;
5852 case 24:
5853 code = BFD_RELOC_24_PCREL;
5854 break;
5855 case 32:
5856 code = BFD_RELOC_32_PCREL;
5857 break;
5858 case 64:
5859 code = BFD_RELOC_64_PCREL;
5860 break;
5861 default:
5862 goto fail;
5863 }
5864
5865 howto = bfd_reloc_type_lookup (abfd, code);
5866
5867 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
5868 {
5869 if (howto->pcrel_offset)
5870 areloc->addend += areloc->address;
5871 else
5872 areloc->addend -= areloc->address; /* addend is unsigned!! */
5873 }
5874 }
5875 else
5876 {
5877 switch (areloc->howto->bitsize)
5878 {
5879 case 8:
5880 code = BFD_RELOC_8;
5881 break;
5882 case 14:
5883 code = BFD_RELOC_14;
5884 break;
5885 case 16:
5886 code = BFD_RELOC_16;
5887 break;
5888 case 26:
5889 code = BFD_RELOC_26;
5890 break;
5891 case 32:
5892 code = BFD_RELOC_32;
5893 break;
5894 case 64:
5895 code = BFD_RELOC_64;
5896 break;
5897 default:
5898 goto fail;
5899 }
5900
5901 howto = bfd_reloc_type_lookup (abfd, code);
5902 }
5903
5904 if (howto)
5905 areloc->howto = howto;
5906 else
5907 goto fail;
5908 }
5909
5910 return true;
5911
5912 fail:
5913 (*_bfd_error_handler)
5914 (_("%s: unsupported relocation type %s"),
5915 bfd_archive_filename (abfd), areloc->howto->name);
5916 bfd_set_error (bfd_error_bad_value);
5917 return false;
5918 }
5919
5920 boolean
5921 _bfd_elf_close_and_cleanup (abfd)
5922 bfd *abfd;
5923 {
5924 if (bfd_get_format (abfd) == bfd_object)
5925 {
5926 if (elf_shstrtab (abfd) != NULL)
5927 _bfd_elf_strtab_free (elf_shstrtab (abfd));
5928 }
5929
5930 return _bfd_generic_close_and_cleanup (abfd);
5931 }
5932
5933 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
5934 in the relocation's offset. Thus we cannot allow any sort of sanity
5935 range-checking to interfere. There is nothing else to do in processing
5936 this reloc. */
5937
5938 bfd_reloc_status_type
5939 _bfd_elf_rel_vtable_reloc_fn (abfd, re, symbol, data, is, obfd, errmsg)
5940 bfd *abfd ATTRIBUTE_UNUSED;
5941 arelent *re ATTRIBUTE_UNUSED;
5942 struct symbol_cache_entry *symbol ATTRIBUTE_UNUSED;
5943 PTR data ATTRIBUTE_UNUSED;
5944 asection *is ATTRIBUTE_UNUSED;
5945 bfd *obfd ATTRIBUTE_UNUSED;
5946 char **errmsg ATTRIBUTE_UNUSED;
5947 {
5948 return bfd_reloc_ok;
5949 }
5950 \f
5951 /* Elf core file support. Much of this only works on native
5952 toolchains, since we rely on knowing the
5953 machine-dependent procfs structure in order to pick
5954 out details about the corefile. */
5955
5956 #ifdef HAVE_SYS_PROCFS_H
5957 # include <sys/procfs.h>
5958 #endif
5959
5960 /* FIXME: this is kinda wrong, but it's what gdb wants. */
5961
5962 static int
5963 elfcore_make_pid (abfd)
5964 bfd *abfd;
5965 {
5966 return ((elf_tdata (abfd)->core_lwpid << 16)
5967 + (elf_tdata (abfd)->core_pid));
5968 }
5969
5970 /* If there isn't a section called NAME, make one, using
5971 data from SECT. Note, this function will generate a
5972 reference to NAME, so you shouldn't deallocate or
5973 overwrite it. */
5974
5975 static boolean
5976 elfcore_maybe_make_sect (abfd, name, sect)
5977 bfd *abfd;
5978 char *name;
5979 asection *sect;
5980 {
5981 asection *sect2;
5982
5983 if (bfd_get_section_by_name (abfd, name) != NULL)
5984 return true;
5985
5986 sect2 = bfd_make_section (abfd, name);
5987 if (sect2 == NULL)
5988 return false;
5989
5990 sect2->_raw_size = sect->_raw_size;
5991 sect2->filepos = sect->filepos;
5992 sect2->flags = sect->flags;
5993 sect2->alignment_power = sect->alignment_power;
5994 return true;
5995 }
5996
5997 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
5998 actually creates up to two pseudosections:
5999 - For the single-threaded case, a section named NAME, unless
6000 such a section already exists.
6001 - For the multi-threaded case, a section named "NAME/PID", where
6002 PID is elfcore_make_pid (abfd).
6003 Both pseudosections have identical contents. */
6004 boolean
6005 _bfd_elfcore_make_pseudosection (abfd, name, size, filepos)
6006 bfd *abfd;
6007 char *name;
6008 size_t size;
6009 ufile_ptr filepos;
6010 {
6011 char buf[100];
6012 char *threaded_name;
6013 asection *sect;
6014
6015 /* Build the section name. */
6016
6017 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6018 threaded_name = bfd_alloc (abfd, (bfd_size_type) strlen (buf) + 1);
6019 if (threaded_name == NULL)
6020 return false;
6021 strcpy (threaded_name, buf);
6022
6023 sect = bfd_make_section (abfd, threaded_name);
6024 if (sect == NULL)
6025 return false;
6026 sect->_raw_size = size;
6027 sect->filepos = filepos;
6028 sect->flags = SEC_HAS_CONTENTS;
6029 sect->alignment_power = 2;
6030
6031 return elfcore_maybe_make_sect (abfd, name, sect);
6032 }
6033
6034 /* prstatus_t exists on:
6035 solaris 2.5+
6036 linux 2.[01] + glibc
6037 unixware 4.2
6038 */
6039
6040 #if defined (HAVE_PRSTATUS_T)
6041 static boolean elfcore_grok_prstatus PARAMS ((bfd *, Elf_Internal_Note *));
6042
6043 static boolean
6044 elfcore_grok_prstatus (abfd, note)
6045 bfd *abfd;
6046 Elf_Internal_Note *note;
6047 {
6048 size_t raw_size;
6049 int offset;
6050
6051 if (note->descsz == sizeof (prstatus_t))
6052 {
6053 prstatus_t prstat;
6054
6055 raw_size = sizeof (prstat.pr_reg);
6056 offset = offsetof (prstatus_t, pr_reg);
6057 memcpy (&prstat, note->descdata, sizeof (prstat));
6058
6059 /* Do not overwrite the core signal if it
6060 has already been set by another thread. */
6061 if (elf_tdata (abfd)->core_signal == 0)
6062 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6063 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6064
6065 /* pr_who exists on:
6066 solaris 2.5+
6067 unixware 4.2
6068 pr_who doesn't exist on:
6069 linux 2.[01]
6070 */
6071 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6072 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6073 #endif
6074 }
6075 #if defined (HAVE_PRSTATUS32_T)
6076 else if (note->descsz == sizeof (prstatus32_t))
6077 {
6078 /* 64-bit host, 32-bit corefile */
6079 prstatus32_t prstat;
6080
6081 raw_size = sizeof (prstat.pr_reg);
6082 offset = offsetof (prstatus32_t, pr_reg);
6083 memcpy (&prstat, note->descdata, sizeof (prstat));
6084
6085 /* Do not overwrite the core signal if it
6086 has already been set by another thread. */
6087 if (elf_tdata (abfd)->core_signal == 0)
6088 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6089 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6090
6091 /* pr_who exists on:
6092 solaris 2.5+
6093 unixware 4.2
6094 pr_who doesn't exist on:
6095 linux 2.[01]
6096 */
6097 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6098 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6099 #endif
6100 }
6101 #endif /* HAVE_PRSTATUS32_T */
6102 else
6103 {
6104 /* Fail - we don't know how to handle any other
6105 note size (ie. data object type). */
6106 return true;
6107 }
6108
6109 /* Make a ".reg/999" section and a ".reg" section. */
6110 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6111 raw_size, note->descpos + offset);
6112 }
6113 #endif /* defined (HAVE_PRSTATUS_T) */
6114
6115 /* Create a pseudosection containing the exact contents of NOTE. */
6116 static boolean
6117 elfcore_make_note_pseudosection (abfd, name, note)
6118 bfd *abfd;
6119 char *name;
6120 Elf_Internal_Note *note;
6121 {
6122 return _bfd_elfcore_make_pseudosection (abfd, name,
6123 note->descsz, note->descpos);
6124 }
6125
6126 /* There isn't a consistent prfpregset_t across platforms,
6127 but it doesn't matter, because we don't have to pick this
6128 data structure apart. */
6129
6130 static boolean
6131 elfcore_grok_prfpreg (abfd, note)
6132 bfd *abfd;
6133 Elf_Internal_Note *note;
6134 {
6135 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6136 }
6137
6138 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6139 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6140 literally. */
6141
6142 static boolean
6143 elfcore_grok_prxfpreg (abfd, note)
6144 bfd *abfd;
6145 Elf_Internal_Note *note;
6146 {
6147 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6148 }
6149
6150 #if defined (HAVE_PRPSINFO_T)
6151 typedef prpsinfo_t elfcore_psinfo_t;
6152 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6153 typedef prpsinfo32_t elfcore_psinfo32_t;
6154 #endif
6155 #endif
6156
6157 #if defined (HAVE_PSINFO_T)
6158 typedef psinfo_t elfcore_psinfo_t;
6159 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6160 typedef psinfo32_t elfcore_psinfo32_t;
6161 #endif
6162 #endif
6163
6164 /* return a malloc'ed copy of a string at START which is at
6165 most MAX bytes long, possibly without a terminating '\0'.
6166 the copy will always have a terminating '\0'. */
6167
6168 char *
6169 _bfd_elfcore_strndup (abfd, start, max)
6170 bfd *abfd;
6171 char *start;
6172 size_t max;
6173 {
6174 char *dups;
6175 char *end = memchr (start, '\0', max);
6176 size_t len;
6177
6178 if (end == NULL)
6179 len = max;
6180 else
6181 len = end - start;
6182
6183 dups = bfd_alloc (abfd, (bfd_size_type) len + 1);
6184 if (dups == NULL)
6185 return NULL;
6186
6187 memcpy (dups, start, len);
6188 dups[len] = '\0';
6189
6190 return dups;
6191 }
6192
6193 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6194 static boolean elfcore_grok_psinfo PARAMS ((bfd *, Elf_Internal_Note *));
6195
6196 static boolean
6197 elfcore_grok_psinfo (abfd, note)
6198 bfd *abfd;
6199 Elf_Internal_Note *note;
6200 {
6201 if (note->descsz == sizeof (elfcore_psinfo_t))
6202 {
6203 elfcore_psinfo_t psinfo;
6204
6205 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6206
6207 elf_tdata (abfd)->core_program
6208 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6209 sizeof (psinfo.pr_fname));
6210
6211 elf_tdata (abfd)->core_command
6212 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6213 sizeof (psinfo.pr_psargs));
6214 }
6215 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6216 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6217 {
6218 /* 64-bit host, 32-bit corefile */
6219 elfcore_psinfo32_t psinfo;
6220
6221 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6222
6223 elf_tdata (abfd)->core_program
6224 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6225 sizeof (psinfo.pr_fname));
6226
6227 elf_tdata (abfd)->core_command
6228 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6229 sizeof (psinfo.pr_psargs));
6230 }
6231 #endif
6232
6233 else
6234 {
6235 /* Fail - we don't know how to handle any other
6236 note size (ie. data object type). */
6237 return true;
6238 }
6239
6240 /* Note that for some reason, a spurious space is tacked
6241 onto the end of the args in some (at least one anyway)
6242 implementations, so strip it off if it exists. */
6243
6244 {
6245 char *command = elf_tdata (abfd)->core_command;
6246 int n = strlen (command);
6247
6248 if (0 < n && command[n - 1] == ' ')
6249 command[n - 1] = '\0';
6250 }
6251
6252 return true;
6253 }
6254 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6255
6256 #if defined (HAVE_PSTATUS_T)
6257 static boolean elfcore_grok_pstatus PARAMS ((bfd *, Elf_Internal_Note *));
6258
6259 static boolean
6260 elfcore_grok_pstatus (abfd, note)
6261 bfd *abfd;
6262 Elf_Internal_Note *note;
6263 {
6264 if (note->descsz == sizeof (pstatus_t)
6265 #if defined (HAVE_PXSTATUS_T)
6266 || note->descsz == sizeof (pxstatus_t)
6267 #endif
6268 )
6269 {
6270 pstatus_t pstat;
6271
6272 memcpy (&pstat, note->descdata, sizeof (pstat));
6273
6274 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6275 }
6276 #if defined (HAVE_PSTATUS32_T)
6277 else if (note->descsz == sizeof (pstatus32_t))
6278 {
6279 /* 64-bit host, 32-bit corefile */
6280 pstatus32_t pstat;
6281
6282 memcpy (&pstat, note->descdata, sizeof (pstat));
6283
6284 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6285 }
6286 #endif
6287 /* Could grab some more details from the "representative"
6288 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6289 NT_LWPSTATUS note, presumably. */
6290
6291 return true;
6292 }
6293 #endif /* defined (HAVE_PSTATUS_T) */
6294
6295 #if defined (HAVE_LWPSTATUS_T)
6296 static boolean elfcore_grok_lwpstatus PARAMS ((bfd *, Elf_Internal_Note *));
6297
6298 static boolean
6299 elfcore_grok_lwpstatus (abfd, note)
6300 bfd *abfd;
6301 Elf_Internal_Note *note;
6302 {
6303 lwpstatus_t lwpstat;
6304 char buf[100];
6305 char *name;
6306 asection *sect;
6307
6308 if (note->descsz != sizeof (lwpstat)
6309 #if defined (HAVE_LWPXSTATUS_T)
6310 && note->descsz != sizeof (lwpxstatus_t)
6311 #endif
6312 )
6313 return true;
6314
6315 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6316
6317 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6318 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6319
6320 /* Make a ".reg/999" section. */
6321
6322 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6323 name = bfd_alloc (abfd, (bfd_size_type) strlen (buf) + 1);
6324 if (name == NULL)
6325 return false;
6326 strcpy (name, buf);
6327
6328 sect = bfd_make_section (abfd, name);
6329 if (sect == NULL)
6330 return false;
6331
6332 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6333 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6334 sect->filepos = note->descpos
6335 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6336 #endif
6337
6338 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6339 sect->_raw_size = sizeof (lwpstat.pr_reg);
6340 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6341 #endif
6342
6343 sect->flags = SEC_HAS_CONTENTS;
6344 sect->alignment_power = 2;
6345
6346 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6347 return false;
6348
6349 /* Make a ".reg2/999" section */
6350
6351 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6352 name = bfd_alloc (abfd, (bfd_size_type) strlen (buf) + 1);
6353 if (name == NULL)
6354 return false;
6355 strcpy (name, buf);
6356
6357 sect = bfd_make_section (abfd, name);
6358 if (sect == NULL)
6359 return false;
6360
6361 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6362 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6363 sect->filepos = note->descpos
6364 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6365 #endif
6366
6367 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6368 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6369 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6370 #endif
6371
6372 sect->flags = SEC_HAS_CONTENTS;
6373 sect->alignment_power = 2;
6374
6375 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6376 }
6377 #endif /* defined (HAVE_LWPSTATUS_T) */
6378
6379 #if defined (HAVE_WIN32_PSTATUS_T)
6380 static boolean
6381 elfcore_grok_win32pstatus (abfd, note)
6382 bfd *abfd;
6383 Elf_Internal_Note *note;
6384 {
6385 char buf[30];
6386 char *name;
6387 asection *sect;
6388 win32_pstatus_t pstatus;
6389
6390 if (note->descsz < sizeof (pstatus))
6391 return true;
6392
6393 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6394
6395 switch (pstatus.data_type)
6396 {
6397 case NOTE_INFO_PROCESS:
6398 /* FIXME: need to add ->core_command. */
6399 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6400 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6401 break;
6402
6403 case NOTE_INFO_THREAD:
6404 /* Make a ".reg/999" section. */
6405 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6406
6407 name = bfd_alloc (abfd, (bfd_size_type) strlen (buf) + 1);
6408 if (name == NULL)
6409 return false;
6410
6411 strcpy (name, buf);
6412
6413 sect = bfd_make_section (abfd, name);
6414 if (sect == NULL)
6415 return false;
6416
6417 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6418 sect->filepos = (note->descpos
6419 + offsetof (struct win32_pstatus,
6420 data.thread_info.thread_context));
6421 sect->flags = SEC_HAS_CONTENTS;
6422 sect->alignment_power = 2;
6423
6424 if (pstatus.data.thread_info.is_active_thread)
6425 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6426 return false;
6427 break;
6428
6429 case NOTE_INFO_MODULE:
6430 /* Make a ".module/xxxxxxxx" section. */
6431 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6432
6433 name = bfd_alloc (abfd, (bfd_size_type) strlen (buf) + 1);
6434 if (name == NULL)
6435 return false;
6436
6437 strcpy (name, buf);
6438
6439 sect = bfd_make_section (abfd, name);
6440
6441 if (sect == NULL)
6442 return false;
6443
6444 sect->_raw_size = note->descsz;
6445 sect->filepos = note->descpos;
6446 sect->flags = SEC_HAS_CONTENTS;
6447 sect->alignment_power = 2;
6448 break;
6449
6450 default:
6451 return true;
6452 }
6453
6454 return true;
6455 }
6456 #endif /* HAVE_WIN32_PSTATUS_T */
6457
6458 static boolean
6459 elfcore_grok_note (abfd, note)
6460 bfd *abfd;
6461 Elf_Internal_Note *note;
6462 {
6463 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6464
6465 switch (note->type)
6466 {
6467 default:
6468 return true;
6469
6470 case NT_PRSTATUS:
6471 if (bed->elf_backend_grok_prstatus)
6472 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6473 return true;
6474 #if defined (HAVE_PRSTATUS_T)
6475 return elfcore_grok_prstatus (abfd, note);
6476 #else
6477 return true;
6478 #endif
6479
6480 #if defined (HAVE_PSTATUS_T)
6481 case NT_PSTATUS:
6482 return elfcore_grok_pstatus (abfd, note);
6483 #endif
6484
6485 #if defined (HAVE_LWPSTATUS_T)
6486 case NT_LWPSTATUS:
6487 return elfcore_grok_lwpstatus (abfd, note);
6488 #endif
6489
6490 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6491 return elfcore_grok_prfpreg (abfd, note);
6492
6493 #if defined (HAVE_WIN32_PSTATUS_T)
6494 case NT_WIN32PSTATUS:
6495 return elfcore_grok_win32pstatus (abfd, note);
6496 #endif
6497
6498 case NT_PRXFPREG: /* Linux SSE extension */
6499 if (note->namesz == 5
6500 && ! strcmp (note->namedata, "LINUX"))
6501 return elfcore_grok_prxfpreg (abfd, note);
6502 else
6503 return true;
6504
6505 case NT_PRPSINFO:
6506 case NT_PSINFO:
6507 if (bed->elf_backend_grok_psinfo)
6508 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6509 return true;
6510 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6511 return elfcore_grok_psinfo (abfd, note);
6512 #else
6513 return true;
6514 #endif
6515 }
6516 }
6517
6518 static boolean
6519 elfcore_netbsd_get_lwpid (note, lwpidp)
6520 Elf_Internal_Note *note;
6521 int *lwpidp;
6522 {
6523 char *cp;
6524
6525 cp = strchr (note->namedata, '@');
6526 if (cp != NULL)
6527 {
6528 *lwpidp = atoi(cp + 1);
6529 return true;
6530 }
6531 return false;
6532 }
6533
6534 static boolean
6535 elfcore_grok_netbsd_procinfo (abfd, note)
6536 bfd *abfd;
6537 Elf_Internal_Note *note;
6538 {
6539
6540 /* Signal number at offset 0x08. */
6541 elf_tdata (abfd)->core_signal
6542 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6543
6544 /* Process ID at offset 0x50. */
6545 elf_tdata (abfd)->core_pid
6546 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6547
6548 /* Command name at 0x7c (max 32 bytes, including nul). */
6549 elf_tdata (abfd)->core_command
6550 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6551
6552 return true;
6553 }
6554
6555 static boolean
6556 elfcore_grok_netbsd_note (abfd, note)
6557 bfd *abfd;
6558 Elf_Internal_Note *note;
6559 {
6560 int lwp;
6561
6562 if (elfcore_netbsd_get_lwpid (note, &lwp))
6563 elf_tdata (abfd)->core_lwpid = lwp;
6564
6565 if (note->type == NT_NETBSDCORE_PROCINFO)
6566 {
6567 /* NetBSD-specific core "procinfo". Note that we expect to
6568 find this note before any of the others, which is fine,
6569 since the kernel writes this note out first when it
6570 creates a core file. */
6571
6572 return elfcore_grok_netbsd_procinfo (abfd, note);
6573 }
6574
6575 /* As of Jan 2002 there are no other machine-independent notes
6576 defined for NetBSD core files. If the note type is less
6577 than the start of the machine-dependent note types, we don't
6578 understand it. */
6579
6580 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6581 return true;
6582
6583
6584 switch (bfd_get_arch (abfd))
6585 {
6586 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6587 PT_GETFPREGS == mach+2. */
6588
6589 case bfd_arch_alpha:
6590 case bfd_arch_sparc:
6591 switch (note->type)
6592 {
6593 case NT_NETBSDCORE_FIRSTMACH+0:
6594 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6595
6596 case NT_NETBSDCORE_FIRSTMACH+2:
6597 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6598
6599 default:
6600 return true;
6601 }
6602
6603 /* On all other arch's, PT_GETREGS == mach+1 and
6604 PT_GETFPREGS == mach+3. */
6605
6606 default:
6607 switch (note->type)
6608 {
6609 case NT_NETBSDCORE_FIRSTMACH+1:
6610 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6611
6612 case NT_NETBSDCORE_FIRSTMACH+3:
6613 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6614
6615 default:
6616 return true;
6617 }
6618 }
6619 /* NOTREACHED */
6620 }
6621
6622 /* Function: elfcore_write_note
6623
6624 Inputs:
6625 buffer to hold note
6626 name of note
6627 type of note
6628 data for note
6629 size of data for note
6630
6631 Return:
6632 End of buffer containing note. */
6633
6634 char *
6635 elfcore_write_note (abfd, buf, bufsiz, name, type, input, size)
6636 bfd *abfd;
6637 char *buf;
6638 int *bufsiz;
6639 char *name;
6640 int type;
6641 void *input;
6642 int size;
6643 {
6644 Elf_External_Note *xnp;
6645 int namesz = strlen (name);
6646 int newspace = BFD_ALIGN (sizeof (Elf_External_Note) + size + namesz - 1, 4);
6647 char *p, *dest;
6648
6649 p = realloc (buf, *bufsiz + newspace);
6650 dest = p + *bufsiz;
6651 *bufsiz += newspace;
6652 xnp = (Elf_External_Note *) dest;
6653 H_PUT_32 (abfd, namesz, xnp->namesz);
6654 H_PUT_32 (abfd, size, xnp->descsz);
6655 H_PUT_32 (abfd, type, xnp->type);
6656 strcpy (xnp->name, name);
6657 memcpy (xnp->name + BFD_ALIGN (namesz, 4), input, size);
6658 return p;
6659 }
6660
6661 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6662 char *
6663 elfcore_write_prpsinfo (abfd, buf, bufsiz, fname, psargs)
6664 bfd *abfd;
6665 char *buf;
6666 int *bufsiz;
6667 char *fname;
6668 char *psargs;
6669 {
6670 int note_type;
6671 char *note_name = "CORE";
6672
6673 #if defined (HAVE_PSINFO_T)
6674 psinfo_t data;
6675 note_type = NT_PSINFO;
6676 #else
6677 prpsinfo_t data;
6678 note_type = NT_PRPSINFO;
6679 #endif
6680
6681 memset (&data, 0, sizeof (data));
6682 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
6683 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
6684 return elfcore_write_note (abfd, buf, bufsiz,
6685 note_name, note_type, &data, sizeof (data));
6686 }
6687 #endif /* PSINFO_T or PRPSINFO_T */
6688
6689 #if defined (HAVE_PRSTATUS_T)
6690 char *
6691 elfcore_write_prstatus (abfd, buf, bufsiz, pid, cursig, gregs)
6692 bfd *abfd;
6693 char *buf;
6694 int *bufsiz;
6695 long pid;
6696 int cursig;
6697 void *gregs;
6698 {
6699 prstatus_t prstat;
6700 char *note_name = "CORE";
6701
6702 memset (&prstat, 0, sizeof (prstat));
6703 prstat.pr_pid = pid;
6704 prstat.pr_cursig = cursig;
6705 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
6706 return elfcore_write_note (abfd, buf, bufsiz,
6707 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
6708 }
6709 #endif /* HAVE_PRSTATUS_T */
6710
6711 #if defined (HAVE_LWPSTATUS_T)
6712 char *
6713 elfcore_write_lwpstatus (abfd, buf, bufsiz, pid, cursig, gregs)
6714 bfd *abfd;
6715 char *buf;
6716 int *bufsiz;
6717 long pid;
6718 int cursig;
6719 void *gregs;
6720 {
6721 lwpstatus_t lwpstat;
6722 char *note_name = "CORE";
6723
6724 memset (&lwpstat, 0, sizeof (lwpstat));
6725 lwpstat.pr_lwpid = pid >> 16;
6726 lwpstat.pr_cursig = cursig;
6727 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6728 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
6729 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6730 #if !defined(gregs)
6731 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
6732 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
6733 #else
6734 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
6735 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
6736 #endif
6737 #endif
6738 return elfcore_write_note (abfd, buf, bufsiz, note_name,
6739 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
6740 }
6741 #endif /* HAVE_LWPSTATUS_T */
6742
6743 #if defined (HAVE_PSTATUS_T)
6744 char *
6745 elfcore_write_pstatus (abfd, buf, bufsiz, pid, cursig, gregs)
6746 bfd *abfd;
6747 char *buf;
6748 int *bufsiz;
6749 long pid;
6750 int cursig;
6751 void *gregs;
6752 {
6753 pstatus_t pstat;
6754 char *note_name = "CORE";
6755
6756 memset (&pstat, 0, sizeof (pstat));
6757 pstat.pr_pid = pid & 0xffff;
6758 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
6759 NT_PSTATUS, &pstat, sizeof (pstat));
6760 return buf;
6761 }
6762 #endif /* HAVE_PSTATUS_T */
6763
6764 char *
6765 elfcore_write_prfpreg (abfd, buf, bufsiz, fpregs, size)
6766 bfd *abfd;
6767 char *buf;
6768 int *bufsiz;
6769 void *fpregs;
6770 int size;
6771 {
6772 char *note_name = "CORE";
6773 return elfcore_write_note (abfd, buf, bufsiz,
6774 note_name, NT_FPREGSET, fpregs, size);
6775 }
6776
6777 char *
6778 elfcore_write_prxfpreg (abfd, buf, bufsiz, xfpregs, size)
6779 bfd *abfd;
6780 char *buf;
6781 int *bufsiz;
6782 void *xfpregs;
6783 int size;
6784 {
6785 char *note_name = "LINUX";
6786 return elfcore_write_note (abfd, buf, bufsiz,
6787 note_name, NT_PRXFPREG, xfpregs, size);
6788 }
6789
6790 static boolean
6791 elfcore_read_notes (abfd, offset, size)
6792 bfd *abfd;
6793 file_ptr offset;
6794 bfd_size_type size;
6795 {
6796 char *buf;
6797 char *p;
6798
6799 if (size <= 0)
6800 return true;
6801
6802 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
6803 return false;
6804
6805 buf = bfd_malloc (size);
6806 if (buf == NULL)
6807 return false;
6808
6809 if (bfd_bread (buf, size, abfd) != size)
6810 {
6811 error:
6812 free (buf);
6813 return false;
6814 }
6815
6816 p = buf;
6817 while (p < buf + size)
6818 {
6819 /* FIXME: bad alignment assumption. */
6820 Elf_External_Note *xnp = (Elf_External_Note *) p;
6821 Elf_Internal_Note in;
6822
6823 in.type = H_GET_32 (abfd, xnp->type);
6824
6825 in.namesz = H_GET_32 (abfd, xnp->namesz);
6826 in.namedata = xnp->name;
6827
6828 in.descsz = H_GET_32 (abfd, xnp->descsz);
6829 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
6830 in.descpos = offset + (in.descdata - buf);
6831
6832 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
6833 {
6834 if (! elfcore_grok_netbsd_note (abfd, &in))
6835 goto error;
6836 }
6837 else
6838 {
6839 if (! elfcore_grok_note (abfd, &in))
6840 goto error;
6841 }
6842
6843 p = in.descdata + BFD_ALIGN (in.descsz, 4);
6844 }
6845
6846 free (buf);
6847 return true;
6848 }
6849 \f
6850 /* Providing external access to the ELF program header table. */
6851
6852 /* Return an upper bound on the number of bytes required to store a
6853 copy of ABFD's program header table entries. Return -1 if an error
6854 occurs; bfd_get_error will return an appropriate code. */
6855
6856 long
6857 bfd_get_elf_phdr_upper_bound (abfd)
6858 bfd *abfd;
6859 {
6860 if (abfd->xvec->flavour != bfd_target_elf_flavour)
6861 {
6862 bfd_set_error (bfd_error_wrong_format);
6863 return -1;
6864 }
6865
6866 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
6867 }
6868
6869 /* Copy ABFD's program header table entries to *PHDRS. The entries
6870 will be stored as an array of Elf_Internal_Phdr structures, as
6871 defined in include/elf/internal.h. To find out how large the
6872 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
6873
6874 Return the number of program header table entries read, or -1 if an
6875 error occurs; bfd_get_error will return an appropriate code. */
6876
6877 int
6878 bfd_get_elf_phdrs (abfd, phdrs)
6879 bfd *abfd;
6880 void *phdrs;
6881 {
6882 int num_phdrs;
6883
6884 if (abfd->xvec->flavour != bfd_target_elf_flavour)
6885 {
6886 bfd_set_error (bfd_error_wrong_format);
6887 return -1;
6888 }
6889
6890 num_phdrs = elf_elfheader (abfd)->e_phnum;
6891 memcpy (phdrs, elf_tdata (abfd)->phdr,
6892 num_phdrs * sizeof (Elf_Internal_Phdr));
6893
6894 return num_phdrs;
6895 }
6896
6897 void
6898 _bfd_elf_sprintf_vma (abfd, buf, value)
6899 bfd *abfd ATTRIBUTE_UNUSED;
6900 char *buf;
6901 bfd_vma value;
6902 {
6903 #ifdef BFD64
6904 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
6905
6906 i_ehdrp = elf_elfheader (abfd);
6907 if (i_ehdrp == NULL)
6908 sprintf_vma (buf, value);
6909 else
6910 {
6911 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
6912 {
6913 #if BFD_HOST_64BIT_LONG
6914 sprintf (buf, "%016lx", value);
6915 #else
6916 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
6917 _bfd_int64_low (value));
6918 #endif
6919 }
6920 else
6921 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
6922 }
6923 #else
6924 sprintf_vma (buf, value);
6925 #endif
6926 }
6927
6928 void
6929 _bfd_elf_fprintf_vma (abfd, stream, value)
6930 bfd *abfd ATTRIBUTE_UNUSED;
6931 PTR stream;
6932 bfd_vma value;
6933 {
6934 #ifdef BFD64
6935 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
6936
6937 i_ehdrp = elf_elfheader (abfd);
6938 if (i_ehdrp == NULL)
6939 fprintf_vma ((FILE *) stream, value);
6940 else
6941 {
6942 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
6943 {
6944 #if BFD_HOST_64BIT_LONG
6945 fprintf ((FILE *) stream, "%016lx", value);
6946 #else
6947 fprintf ((FILE *) stream, "%08lx%08lx",
6948 _bfd_int64_high (value), _bfd_int64_low (value));
6949 #endif
6950 }
6951 else
6952 fprintf ((FILE *) stream, "%08lx",
6953 (unsigned long) (value & 0xffffffff));
6954 }
6955 #else
6956 fprintf_vma ((FILE *) stream, value);
6957 #endif
6958 }
6959
6960 enum elf_reloc_type_class
6961 _bfd_elf_reloc_type_class (rela)
6962 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED;
6963 {
6964 return reloc_class_normal;
6965 }
6966
6967 /* For RELA architectures, return what the relocation value for
6968 relocation against a local symbol. */
6969
6970 bfd_vma
6971 _bfd_elf_rela_local_sym (abfd, sym, sec, rel)
6972 bfd *abfd;
6973 Elf_Internal_Sym *sym;
6974 asection *sec;
6975 Elf_Internal_Rela *rel;
6976 {
6977 bfd_vma relocation;
6978
6979 relocation = (sec->output_section->vma
6980 + sec->output_offset
6981 + sym->st_value);
6982 if ((sec->flags & SEC_MERGE)
6983 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
6984 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
6985 {
6986 asection *msec;
6987
6988 msec = sec;
6989 rel->r_addend =
6990 _bfd_merged_section_offset (abfd, &msec,
6991 elf_section_data (sec)->sec_info,
6992 sym->st_value + rel->r_addend,
6993 (bfd_vma) 0)
6994 - relocation;
6995 rel->r_addend += msec->output_section->vma + msec->output_offset;
6996 }
6997 return relocation;
6998 }
6999
7000 bfd_vma
7001 _bfd_elf_rel_local_sym (abfd, sym, psec, addend)
7002 bfd *abfd;
7003 Elf_Internal_Sym *sym;
7004 asection **psec;
7005 bfd_vma addend;
7006 {
7007 asection *sec = *psec;
7008
7009 if (elf_section_data (sec)->sec_info_type != ELF_INFO_TYPE_MERGE)
7010 return sym->st_value + addend;
7011
7012 return _bfd_merged_section_offset (abfd, psec,
7013 elf_section_data (sec)->sec_info,
7014 sym->st_value + addend, (bfd_vma) 0);
7015 }
7016
7017 bfd_vma
7018 _bfd_elf_section_offset (abfd, info, sec, offset)
7019 bfd *abfd;
7020 struct bfd_link_info *info;
7021 asection *sec;
7022 bfd_vma offset;
7023 {
7024 struct bfd_elf_section_data *sec_data;
7025
7026 sec_data = elf_section_data (sec);
7027 switch (sec_data->sec_info_type)
7028 {
7029 case ELF_INFO_TYPE_STABS:
7030 return _bfd_stab_section_offset
7031 (abfd, &elf_hash_table (info)->merge_info, sec, &sec_data->sec_info,
7032 offset);
7033 case ELF_INFO_TYPE_EH_FRAME:
7034 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7035 default:
7036 return offset;
7037 }
7038 }
This page took 0.177012 seconds and 4 git commands to generate.