* bfd-in.h (bfd_int64_t, bfd_uint64_t): New types.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static char *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 char *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 char *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return 0;
263
264 shstrtab = (char *) i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 (*_bfd_error_handler)
295 (_("%s: invalid string offset %u >= %lu for section `%s'"),
296 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
297 ((shindex == elf_elfheader(abfd)->e_shstrndx
298 && strindex == hdr->sh_name)
299 ? ".shstrtab"
300 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
409 {
410 unsigned int iname = isym->st_name;
411 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
412 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 }
420
421 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
422 sections. The first element is the flags, the rest are section
423 pointers. */
424
425 typedef union elf_internal_group {
426 Elf_Internal_Shdr *shdr;
427 unsigned int flags;
428 } Elf_Internal_Group;
429
430 /* Return the name of the group signature symbol. Why isn't the
431 signature just a string? */
432
433 static const char *
434 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
435 {
436 Elf_Internal_Shdr *hdr;
437 unsigned char esym[sizeof (Elf64_External_Sym)];
438 Elf_External_Sym_Shndx eshndx;
439 Elf_Internal_Sym isym;
440
441 /* First we need to ensure the symbol table is available. */
442 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
443 return NULL;
444
445 /* Go read the symbol. */
446 hdr = &elf_tdata (abfd)->symtab_hdr;
447 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
448 &isym, esym, &eshndx) == NULL)
449 return NULL;
450
451 return bfd_elf_local_sym_name (abfd, &isym);
452 }
453
454 /* Set next_in_group list pointer, and group name for NEWSECT. */
455
456 static bfd_boolean
457 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
458 {
459 unsigned int num_group = elf_tdata (abfd)->num_group;
460
461 /* If num_group is zero, read in all SHT_GROUP sections. The count
462 is set to -1 if there are no SHT_GROUP sections. */
463 if (num_group == 0)
464 {
465 unsigned int i, shnum;
466
467 /* First count the number of groups. If we have a SHT_GROUP
468 section with just a flag word (ie. sh_size is 4), ignore it. */
469 shnum = elf_numsections (abfd);
470 num_group = 0;
471 for (i = 0; i < shnum; i++)
472 {
473 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
474 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
475 num_group += 1;
476 }
477
478 if (num_group == 0)
479 num_group = (unsigned) -1;
480 elf_tdata (abfd)->num_group = num_group;
481
482 if (num_group > 0)
483 {
484 /* We keep a list of elf section headers for group sections,
485 so we can find them quickly. */
486 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
487 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
488 if (elf_tdata (abfd)->group_sect_ptr == NULL)
489 return FALSE;
490
491 num_group = 0;
492 for (i = 0; i < shnum; i++)
493 {
494 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
495 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
496 {
497 unsigned char *src;
498 Elf_Internal_Group *dest;
499
500 /* Add to list of sections. */
501 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
502 num_group += 1;
503
504 /* Read the raw contents. */
505 BFD_ASSERT (sizeof (*dest) >= 4);
506 amt = shdr->sh_size * sizeof (*dest) / 4;
507 shdr->contents = bfd_alloc (abfd, amt);
508 if (shdr->contents == NULL
509 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
510 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
511 != shdr->sh_size))
512 return FALSE;
513
514 /* Translate raw contents, a flag word followed by an
515 array of elf section indices all in target byte order,
516 to the flag word followed by an array of elf section
517 pointers. */
518 src = shdr->contents + shdr->sh_size;
519 dest = (Elf_Internal_Group *) (shdr->contents + amt);
520 while (1)
521 {
522 unsigned int idx;
523
524 src -= 4;
525 --dest;
526 idx = H_GET_32 (abfd, src);
527 if (src == shdr->contents)
528 {
529 dest->flags = idx;
530 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
531 shdr->bfd_section->flags
532 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
533 break;
534 }
535 if (idx >= shnum)
536 {
537 ((*_bfd_error_handler)
538 (_("%s: invalid SHT_GROUP entry"),
539 bfd_archive_filename (abfd)));
540 idx = 0;
541 }
542 dest->shdr = elf_elfsections (abfd)[idx];
543 }
544 }
545 }
546 }
547 }
548
549 if (num_group != (unsigned) -1)
550 {
551 unsigned int i;
552
553 for (i = 0; i < num_group; i++)
554 {
555 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
556 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
557 unsigned int n_elt = shdr->sh_size / 4;
558
559 /* Look through this group's sections to see if current
560 section is a member. */
561 while (--n_elt != 0)
562 if ((++idx)->shdr == hdr)
563 {
564 asection *s = NULL;
565
566 /* We are a member of this group. Go looking through
567 other members to see if any others are linked via
568 next_in_group. */
569 idx = (Elf_Internal_Group *) shdr->contents;
570 n_elt = shdr->sh_size / 4;
571 while (--n_elt != 0)
572 if ((s = (++idx)->shdr->bfd_section) != NULL
573 && elf_next_in_group (s) != NULL)
574 break;
575 if (n_elt != 0)
576 {
577 /* Snarf the group name from other member, and
578 insert current section in circular list. */
579 elf_group_name (newsect) = elf_group_name (s);
580 elf_next_in_group (newsect) = elf_next_in_group (s);
581 elf_next_in_group (s) = newsect;
582 }
583 else
584 {
585 const char *gname;
586
587 gname = group_signature (abfd, shdr);
588 if (gname == NULL)
589 return FALSE;
590 elf_group_name (newsect) = gname;
591
592 /* Start a circular list with one element. */
593 elf_next_in_group (newsect) = newsect;
594 }
595
596 /* If the group section has been created, point to the
597 new member. */
598 if (shdr->bfd_section != NULL)
599 elf_next_in_group (shdr->bfd_section) = newsect;
600
601 i = num_group - 1;
602 break;
603 }
604 }
605 }
606
607 if (elf_group_name (newsect) == NULL)
608 {
609 (*_bfd_error_handler) (_("%s: no group info for section %s"),
610 bfd_archive_filename (abfd), newsect->name);
611 }
612 return TRUE;
613 }
614
615 bfd_boolean
616 bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED, asection *group)
617 {
618 asection *first = elf_next_in_group (group);
619 asection *s = first;
620
621 while (s != NULL)
622 {
623 s->output_section = bfd_abs_section_ptr;
624 s = elf_next_in_group (s);
625 /* These lists are circular. */
626 if (s == first)
627 break;
628 }
629 return TRUE;
630 }
631
632 /* Make a BFD section from an ELF section. We store a pointer to the
633 BFD section in the bfd_section field of the header. */
634
635 bfd_boolean
636 _bfd_elf_make_section_from_shdr (bfd *abfd,
637 Elf_Internal_Shdr *hdr,
638 const char *name)
639 {
640 asection *newsect;
641 flagword flags;
642 const struct elf_backend_data *bed;
643
644 if (hdr->bfd_section != NULL)
645 {
646 BFD_ASSERT (strcmp (name,
647 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
648 return TRUE;
649 }
650
651 newsect = bfd_make_section_anyway (abfd, name);
652 if (newsect == NULL)
653 return FALSE;
654
655 /* Always use the real type/flags. */
656 elf_section_type (newsect) = hdr->sh_type;
657 elf_section_flags (newsect) = hdr->sh_flags;
658
659 newsect->filepos = hdr->sh_offset;
660
661 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
662 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
663 || ! bfd_set_section_alignment (abfd, newsect,
664 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
665 return FALSE;
666
667 flags = SEC_NO_FLAGS;
668 if (hdr->sh_type != SHT_NOBITS)
669 flags |= SEC_HAS_CONTENTS;
670 if (hdr->sh_type == SHT_GROUP)
671 flags |= SEC_GROUP | SEC_EXCLUDE;
672 if ((hdr->sh_flags & SHF_ALLOC) != 0)
673 {
674 flags |= SEC_ALLOC;
675 if (hdr->sh_type != SHT_NOBITS)
676 flags |= SEC_LOAD;
677 }
678 if ((hdr->sh_flags & SHF_WRITE) == 0)
679 flags |= SEC_READONLY;
680 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
681 flags |= SEC_CODE;
682 else if ((flags & SEC_LOAD) != 0)
683 flags |= SEC_DATA;
684 if ((hdr->sh_flags & SHF_MERGE) != 0)
685 {
686 flags |= SEC_MERGE;
687 newsect->entsize = hdr->sh_entsize;
688 if ((hdr->sh_flags & SHF_STRINGS) != 0)
689 flags |= SEC_STRINGS;
690 }
691 if (hdr->sh_flags & SHF_GROUP)
692 if (!setup_group (abfd, hdr, newsect))
693 return FALSE;
694 if ((hdr->sh_flags & SHF_TLS) != 0)
695 flags |= SEC_THREAD_LOCAL;
696
697 /* The debugging sections appear to be recognized only by name, not
698 any sort of flag. */
699 {
700 static const char *debug_sec_names [] =
701 {
702 ".debug",
703 ".gnu.linkonce.wi.",
704 ".line",
705 ".stab"
706 };
707 int i;
708
709 for (i = ARRAY_SIZE (debug_sec_names); i--;)
710 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
711 break;
712
713 if (i >= 0)
714 flags |= SEC_DEBUGGING;
715 }
716
717 /* As a GNU extension, if the name begins with .gnu.linkonce, we
718 only link a single copy of the section. This is used to support
719 g++. g++ will emit each template expansion in its own section.
720 The symbols will be defined as weak, so that multiple definitions
721 are permitted. The GNU linker extension is to actually discard
722 all but one of the sections. */
723 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
724 && elf_next_in_group (newsect) == NULL)
725 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
726
727 bed = get_elf_backend_data (abfd);
728 if (bed->elf_backend_section_flags)
729 if (! bed->elf_backend_section_flags (&flags, hdr))
730 return FALSE;
731
732 if (! bfd_set_section_flags (abfd, newsect, flags))
733 return FALSE;
734
735 if ((flags & SEC_ALLOC) != 0)
736 {
737 Elf_Internal_Phdr *phdr;
738 unsigned int i;
739
740 /* Look through the phdrs to see if we need to adjust the lma.
741 If all the p_paddr fields are zero, we ignore them, since
742 some ELF linkers produce such output. */
743 phdr = elf_tdata (abfd)->phdr;
744 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
745 {
746 if (phdr->p_paddr != 0)
747 break;
748 }
749 if (i < elf_elfheader (abfd)->e_phnum)
750 {
751 phdr = elf_tdata (abfd)->phdr;
752 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
753 {
754 /* This section is part of this segment if its file
755 offset plus size lies within the segment's memory
756 span and, if the section is loaded, the extent of the
757 loaded data lies within the extent of the segment.
758
759 Note - we used to check the p_paddr field as well, and
760 refuse to set the LMA if it was 0. This is wrong
761 though, as a perfectly valid initialised segment can
762 have a p_paddr of zero. Some architectures, eg ARM,
763 place special significance on the address 0 and
764 executables need to be able to have a segment which
765 covers this address. */
766 if (phdr->p_type == PT_LOAD
767 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
768 && (hdr->sh_offset + hdr->sh_size
769 <= phdr->p_offset + phdr->p_memsz)
770 && ((flags & SEC_LOAD) == 0
771 || (hdr->sh_offset + hdr->sh_size
772 <= phdr->p_offset + phdr->p_filesz)))
773 {
774 if ((flags & SEC_LOAD) == 0)
775 newsect->lma = (phdr->p_paddr
776 + hdr->sh_addr - phdr->p_vaddr);
777 else
778 /* We used to use the same adjustment for SEC_LOAD
779 sections, but that doesn't work if the segment
780 is packed with code from multiple VMAs.
781 Instead we calculate the section LMA based on
782 the segment LMA. It is assumed that the
783 segment will contain sections with contiguous
784 LMAs, even if the VMAs are not. */
785 newsect->lma = (phdr->p_paddr
786 + hdr->sh_offset - phdr->p_offset);
787
788 /* With contiguous segments, we can't tell from file
789 offsets whether a section with zero size should
790 be placed at the end of one segment or the
791 beginning of the next. Decide based on vaddr. */
792 if (hdr->sh_addr >= phdr->p_vaddr
793 && (hdr->sh_addr + hdr->sh_size
794 <= phdr->p_vaddr + phdr->p_memsz))
795 break;
796 }
797 }
798 }
799 }
800
801 hdr->bfd_section = newsect;
802 elf_section_data (newsect)->this_hdr = *hdr;
803
804 return TRUE;
805 }
806
807 /*
808 INTERNAL_FUNCTION
809 bfd_elf_find_section
810
811 SYNOPSIS
812 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
813
814 DESCRIPTION
815 Helper functions for GDB to locate the string tables.
816 Since BFD hides string tables from callers, GDB needs to use an
817 internal hook to find them. Sun's .stabstr, in particular,
818 isn't even pointed to by the .stab section, so ordinary
819 mechanisms wouldn't work to find it, even if we had some.
820 */
821
822 struct elf_internal_shdr *
823 bfd_elf_find_section (bfd *abfd, char *name)
824 {
825 Elf_Internal_Shdr **i_shdrp;
826 char *shstrtab;
827 unsigned int max;
828 unsigned int i;
829
830 i_shdrp = elf_elfsections (abfd);
831 if (i_shdrp != NULL)
832 {
833 shstrtab = bfd_elf_get_str_section (abfd,
834 elf_elfheader (abfd)->e_shstrndx);
835 if (shstrtab != NULL)
836 {
837 max = elf_numsections (abfd);
838 for (i = 1; i < max; i++)
839 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
840 return i_shdrp[i];
841 }
842 }
843 return 0;
844 }
845
846 const char *const bfd_elf_section_type_names[] = {
847 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
848 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
849 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
850 };
851
852 /* ELF relocs are against symbols. If we are producing relocatable
853 output, and the reloc is against an external symbol, and nothing
854 has given us any additional addend, the resulting reloc will also
855 be against the same symbol. In such a case, we don't want to
856 change anything about the way the reloc is handled, since it will
857 all be done at final link time. Rather than put special case code
858 into bfd_perform_relocation, all the reloc types use this howto
859 function. It just short circuits the reloc if producing
860 relocatable output against an external symbol. */
861
862 bfd_reloc_status_type
863 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
864 arelent *reloc_entry,
865 asymbol *symbol,
866 void *data ATTRIBUTE_UNUSED,
867 asection *input_section,
868 bfd *output_bfd,
869 char **error_message ATTRIBUTE_UNUSED)
870 {
871 if (output_bfd != NULL
872 && (symbol->flags & BSF_SECTION_SYM) == 0
873 && (! reloc_entry->howto->partial_inplace
874 || reloc_entry->addend == 0))
875 {
876 reloc_entry->address += input_section->output_offset;
877 return bfd_reloc_ok;
878 }
879
880 return bfd_reloc_continue;
881 }
882 \f
883 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
884
885 static void
886 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
887 asection *sec)
888 {
889 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
890 sec->sec_info_type = ELF_INFO_TYPE_NONE;
891 }
892
893 /* Finish SHF_MERGE section merging. */
894
895 bfd_boolean
896 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
897 {
898 if (!is_elf_hash_table (info->hash))
899 return FALSE;
900 if (elf_hash_table (info)->merge_info)
901 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
902 merge_sections_remove_hook);
903 return TRUE;
904 }
905
906 void
907 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
908 {
909 sec->output_section = bfd_abs_section_ptr;
910 sec->output_offset = sec->vma;
911 if (!is_elf_hash_table (info->hash))
912 return;
913
914 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
915 }
916 \f
917 /* Copy the program header and other data from one object module to
918 another. */
919
920 bfd_boolean
921 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
922 {
923 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
924 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
925 return TRUE;
926
927 BFD_ASSERT (!elf_flags_init (obfd)
928 || (elf_elfheader (obfd)->e_flags
929 == elf_elfheader (ibfd)->e_flags));
930
931 elf_gp (obfd) = elf_gp (ibfd);
932 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
933 elf_flags_init (obfd) = TRUE;
934 return TRUE;
935 }
936
937 /* Print out the program headers. */
938
939 bfd_boolean
940 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
941 {
942 FILE *f = farg;
943 Elf_Internal_Phdr *p;
944 asection *s;
945 bfd_byte *dynbuf = NULL;
946
947 p = elf_tdata (abfd)->phdr;
948 if (p != NULL)
949 {
950 unsigned int i, c;
951
952 fprintf (f, _("\nProgram Header:\n"));
953 c = elf_elfheader (abfd)->e_phnum;
954 for (i = 0; i < c; i++, p++)
955 {
956 const char *pt;
957 char buf[20];
958
959 switch (p->p_type)
960 {
961 case PT_NULL: pt = "NULL"; break;
962 case PT_LOAD: pt = "LOAD"; break;
963 case PT_DYNAMIC: pt = "DYNAMIC"; break;
964 case PT_INTERP: pt = "INTERP"; break;
965 case PT_NOTE: pt = "NOTE"; break;
966 case PT_SHLIB: pt = "SHLIB"; break;
967 case PT_PHDR: pt = "PHDR"; break;
968 case PT_TLS: pt = "TLS"; break;
969 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
970 case PT_GNU_STACK: pt = "STACK"; break;
971 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
972 }
973 fprintf (f, "%8s off 0x", pt);
974 bfd_fprintf_vma (abfd, f, p->p_offset);
975 fprintf (f, " vaddr 0x");
976 bfd_fprintf_vma (abfd, f, p->p_vaddr);
977 fprintf (f, " paddr 0x");
978 bfd_fprintf_vma (abfd, f, p->p_paddr);
979 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
980 fprintf (f, " filesz 0x");
981 bfd_fprintf_vma (abfd, f, p->p_filesz);
982 fprintf (f, " memsz 0x");
983 bfd_fprintf_vma (abfd, f, p->p_memsz);
984 fprintf (f, " flags %c%c%c",
985 (p->p_flags & PF_R) != 0 ? 'r' : '-',
986 (p->p_flags & PF_W) != 0 ? 'w' : '-',
987 (p->p_flags & PF_X) != 0 ? 'x' : '-');
988 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
989 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
990 fprintf (f, "\n");
991 }
992 }
993
994 s = bfd_get_section_by_name (abfd, ".dynamic");
995 if (s != NULL)
996 {
997 int elfsec;
998 unsigned long shlink;
999 bfd_byte *extdyn, *extdynend;
1000 size_t extdynsize;
1001 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1002
1003 fprintf (f, _("\nDynamic Section:\n"));
1004
1005 dynbuf = bfd_malloc (s->_raw_size);
1006 if (dynbuf == NULL)
1007 goto error_return;
1008 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1009 goto error_return;
1010
1011 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1012 if (elfsec == -1)
1013 goto error_return;
1014 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1015
1016 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1017 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1018
1019 extdyn = dynbuf;
1020 extdynend = extdyn + s->_raw_size;
1021 for (; extdyn < extdynend; extdyn += extdynsize)
1022 {
1023 Elf_Internal_Dyn dyn;
1024 const char *name;
1025 char ab[20];
1026 bfd_boolean stringp;
1027
1028 (*swap_dyn_in) (abfd, extdyn, &dyn);
1029
1030 if (dyn.d_tag == DT_NULL)
1031 break;
1032
1033 stringp = FALSE;
1034 switch (dyn.d_tag)
1035 {
1036 default:
1037 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1038 name = ab;
1039 break;
1040
1041 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1042 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1043 case DT_PLTGOT: name = "PLTGOT"; break;
1044 case DT_HASH: name = "HASH"; break;
1045 case DT_STRTAB: name = "STRTAB"; break;
1046 case DT_SYMTAB: name = "SYMTAB"; break;
1047 case DT_RELA: name = "RELA"; break;
1048 case DT_RELASZ: name = "RELASZ"; break;
1049 case DT_RELAENT: name = "RELAENT"; break;
1050 case DT_STRSZ: name = "STRSZ"; break;
1051 case DT_SYMENT: name = "SYMENT"; break;
1052 case DT_INIT: name = "INIT"; break;
1053 case DT_FINI: name = "FINI"; break;
1054 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1055 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1056 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1057 case DT_REL: name = "REL"; break;
1058 case DT_RELSZ: name = "RELSZ"; break;
1059 case DT_RELENT: name = "RELENT"; break;
1060 case DT_PLTREL: name = "PLTREL"; break;
1061 case DT_DEBUG: name = "DEBUG"; break;
1062 case DT_TEXTREL: name = "TEXTREL"; break;
1063 case DT_JMPREL: name = "JMPREL"; break;
1064 case DT_BIND_NOW: name = "BIND_NOW"; break;
1065 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1066 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1067 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1068 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1069 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1070 case DT_FLAGS: name = "FLAGS"; break;
1071 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1072 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1073 case DT_CHECKSUM: name = "CHECKSUM"; break;
1074 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1075 case DT_MOVEENT: name = "MOVEENT"; break;
1076 case DT_MOVESZ: name = "MOVESZ"; break;
1077 case DT_FEATURE: name = "FEATURE"; break;
1078 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1079 case DT_SYMINSZ: name = "SYMINSZ"; break;
1080 case DT_SYMINENT: name = "SYMINENT"; break;
1081 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1082 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1083 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1084 case DT_PLTPAD: name = "PLTPAD"; break;
1085 case DT_MOVETAB: name = "MOVETAB"; break;
1086 case DT_SYMINFO: name = "SYMINFO"; break;
1087 case DT_RELACOUNT: name = "RELACOUNT"; break;
1088 case DT_RELCOUNT: name = "RELCOUNT"; break;
1089 case DT_FLAGS_1: name = "FLAGS_1"; break;
1090 case DT_VERSYM: name = "VERSYM"; break;
1091 case DT_VERDEF: name = "VERDEF"; break;
1092 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1093 case DT_VERNEED: name = "VERNEED"; break;
1094 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1095 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1096 case DT_USED: name = "USED"; break;
1097 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1098 }
1099
1100 fprintf (f, " %-11s ", name);
1101 if (! stringp)
1102 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1103 else
1104 {
1105 const char *string;
1106 unsigned int tagv = dyn.d_un.d_val;
1107
1108 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1109 if (string == NULL)
1110 goto error_return;
1111 fprintf (f, "%s", string);
1112 }
1113 fprintf (f, "\n");
1114 }
1115
1116 free (dynbuf);
1117 dynbuf = NULL;
1118 }
1119
1120 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1121 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1122 {
1123 if (! _bfd_elf_slurp_version_tables (abfd))
1124 return FALSE;
1125 }
1126
1127 if (elf_dynverdef (abfd) != 0)
1128 {
1129 Elf_Internal_Verdef *t;
1130
1131 fprintf (f, _("\nVersion definitions:\n"));
1132 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1133 {
1134 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1135 t->vd_flags, t->vd_hash, t->vd_nodename);
1136 if (t->vd_auxptr->vda_nextptr != NULL)
1137 {
1138 Elf_Internal_Verdaux *a;
1139
1140 fprintf (f, "\t");
1141 for (a = t->vd_auxptr->vda_nextptr;
1142 a != NULL;
1143 a = a->vda_nextptr)
1144 fprintf (f, "%s ", a->vda_nodename);
1145 fprintf (f, "\n");
1146 }
1147 }
1148 }
1149
1150 if (elf_dynverref (abfd) != 0)
1151 {
1152 Elf_Internal_Verneed *t;
1153
1154 fprintf (f, _("\nVersion References:\n"));
1155 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1156 {
1157 Elf_Internal_Vernaux *a;
1158
1159 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1160 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1161 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1162 a->vna_flags, a->vna_other, a->vna_nodename);
1163 }
1164 }
1165
1166 return TRUE;
1167
1168 error_return:
1169 if (dynbuf != NULL)
1170 free (dynbuf);
1171 return FALSE;
1172 }
1173
1174 /* Display ELF-specific fields of a symbol. */
1175
1176 void
1177 bfd_elf_print_symbol (bfd *abfd,
1178 void *filep,
1179 asymbol *symbol,
1180 bfd_print_symbol_type how)
1181 {
1182 FILE *file = filep;
1183 switch (how)
1184 {
1185 case bfd_print_symbol_name:
1186 fprintf (file, "%s", symbol->name);
1187 break;
1188 case bfd_print_symbol_more:
1189 fprintf (file, "elf ");
1190 bfd_fprintf_vma (abfd, file, symbol->value);
1191 fprintf (file, " %lx", (long) symbol->flags);
1192 break;
1193 case bfd_print_symbol_all:
1194 {
1195 const char *section_name;
1196 const char *name = NULL;
1197 const struct elf_backend_data *bed;
1198 unsigned char st_other;
1199 bfd_vma val;
1200
1201 section_name = symbol->section ? symbol->section->name : "(*none*)";
1202
1203 bed = get_elf_backend_data (abfd);
1204 if (bed->elf_backend_print_symbol_all)
1205 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1206
1207 if (name == NULL)
1208 {
1209 name = symbol->name;
1210 bfd_print_symbol_vandf (abfd, file, symbol);
1211 }
1212
1213 fprintf (file, " %s\t", section_name);
1214 /* Print the "other" value for a symbol. For common symbols,
1215 we've already printed the size; now print the alignment.
1216 For other symbols, we have no specified alignment, and
1217 we've printed the address; now print the size. */
1218 if (bfd_is_com_section (symbol->section))
1219 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1220 else
1221 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1222 bfd_fprintf_vma (abfd, file, val);
1223
1224 /* If we have version information, print it. */
1225 if (elf_tdata (abfd)->dynversym_section != 0
1226 && (elf_tdata (abfd)->dynverdef_section != 0
1227 || elf_tdata (abfd)->dynverref_section != 0))
1228 {
1229 unsigned int vernum;
1230 const char *version_string;
1231
1232 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1233
1234 if (vernum == 0)
1235 version_string = "";
1236 else if (vernum == 1)
1237 version_string = "Base";
1238 else if (vernum <= elf_tdata (abfd)->cverdefs)
1239 version_string =
1240 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1241 else
1242 {
1243 Elf_Internal_Verneed *t;
1244
1245 version_string = "";
1246 for (t = elf_tdata (abfd)->verref;
1247 t != NULL;
1248 t = t->vn_nextref)
1249 {
1250 Elf_Internal_Vernaux *a;
1251
1252 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1253 {
1254 if (a->vna_other == vernum)
1255 {
1256 version_string = a->vna_nodename;
1257 break;
1258 }
1259 }
1260 }
1261 }
1262
1263 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1264 fprintf (file, " %-11s", version_string);
1265 else
1266 {
1267 int i;
1268
1269 fprintf (file, " (%s)", version_string);
1270 for (i = 10 - strlen (version_string); i > 0; --i)
1271 putc (' ', file);
1272 }
1273 }
1274
1275 /* If the st_other field is not zero, print it. */
1276 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1277
1278 switch (st_other)
1279 {
1280 case 0: break;
1281 case STV_INTERNAL: fprintf (file, " .internal"); break;
1282 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1283 case STV_PROTECTED: fprintf (file, " .protected"); break;
1284 default:
1285 /* Some other non-defined flags are also present, so print
1286 everything hex. */
1287 fprintf (file, " 0x%02x", (unsigned int) st_other);
1288 }
1289
1290 fprintf (file, " %s", name);
1291 }
1292 break;
1293 }
1294 }
1295 \f
1296 /* Create an entry in an ELF linker hash table. */
1297
1298 struct bfd_hash_entry *
1299 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1300 struct bfd_hash_table *table,
1301 const char *string)
1302 {
1303 /* Allocate the structure if it has not already been allocated by a
1304 subclass. */
1305 if (entry == NULL)
1306 {
1307 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1308 if (entry == NULL)
1309 return entry;
1310 }
1311
1312 /* Call the allocation method of the superclass. */
1313 entry = _bfd_link_hash_newfunc (entry, table, string);
1314 if (entry != NULL)
1315 {
1316 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1317 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1318
1319 /* Set local fields. */
1320 ret->indx = -1;
1321 ret->dynindx = -1;
1322 ret->dynstr_index = 0;
1323 ret->elf_hash_value = 0;
1324 ret->weakdef = NULL;
1325 ret->verinfo.verdef = NULL;
1326 ret->vtable_entries_size = 0;
1327 ret->vtable_entries_used = NULL;
1328 ret->vtable_parent = NULL;
1329 ret->got = htab->init_refcount;
1330 ret->plt = htab->init_refcount;
1331 ret->size = 0;
1332 ret->type = STT_NOTYPE;
1333 ret->other = 0;
1334 /* Assume that we have been called by a non-ELF symbol reader.
1335 This flag is then reset by the code which reads an ELF input
1336 file. This ensures that a symbol created by a non-ELF symbol
1337 reader will have the flag set correctly. */
1338 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1339 }
1340
1341 return entry;
1342 }
1343
1344 /* Copy data from an indirect symbol to its direct symbol, hiding the
1345 old indirect symbol. Also used for copying flags to a weakdef. */
1346
1347 void
1348 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1349 struct elf_link_hash_entry *dir,
1350 struct elf_link_hash_entry *ind)
1351 {
1352 bfd_signed_vma tmp;
1353 bfd_signed_vma lowest_valid = bed->can_refcount;
1354
1355 /* Copy down any references that we may have already seen to the
1356 symbol which just became indirect. */
1357
1358 dir->elf_link_hash_flags
1359 |= ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1360 | ELF_LINK_HASH_REF_REGULAR
1361 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1362 | ELF_LINK_NON_GOT_REF
1363 | ELF_LINK_HASH_NEEDS_PLT
1364 | ELF_LINK_POINTER_EQUALITY_NEEDED);
1365
1366 if (ind->root.type != bfd_link_hash_indirect)
1367 return;
1368
1369 /* Copy over the global and procedure linkage table refcount entries.
1370 These may have been already set up by a check_relocs routine. */
1371 tmp = dir->got.refcount;
1372 if (tmp < lowest_valid)
1373 {
1374 dir->got.refcount = ind->got.refcount;
1375 ind->got.refcount = tmp;
1376 }
1377 else
1378 BFD_ASSERT (ind->got.refcount < lowest_valid);
1379
1380 tmp = dir->plt.refcount;
1381 if (tmp < lowest_valid)
1382 {
1383 dir->plt.refcount = ind->plt.refcount;
1384 ind->plt.refcount = tmp;
1385 }
1386 else
1387 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1388
1389 if (dir->dynindx == -1)
1390 {
1391 dir->dynindx = ind->dynindx;
1392 dir->dynstr_index = ind->dynstr_index;
1393 ind->dynindx = -1;
1394 ind->dynstr_index = 0;
1395 }
1396 else
1397 BFD_ASSERT (ind->dynindx == -1);
1398 }
1399
1400 void
1401 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1402 struct elf_link_hash_entry *h,
1403 bfd_boolean force_local)
1404 {
1405 h->plt = elf_hash_table (info)->init_offset;
1406 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1407 if (force_local)
1408 {
1409 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1410 if (h->dynindx != -1)
1411 {
1412 h->dynindx = -1;
1413 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1414 h->dynstr_index);
1415 }
1416 }
1417 }
1418
1419 /* Initialize an ELF linker hash table. */
1420
1421 bfd_boolean
1422 _bfd_elf_link_hash_table_init
1423 (struct elf_link_hash_table *table,
1424 bfd *abfd,
1425 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1426 struct bfd_hash_table *,
1427 const char *))
1428 {
1429 bfd_boolean ret;
1430
1431 table->dynamic_sections_created = FALSE;
1432 table->dynobj = NULL;
1433 /* Make sure can_refcount is extended to the width and signedness of
1434 init_refcount before we subtract one from it. */
1435 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1436 table->init_refcount.refcount -= 1;
1437 table->init_offset.offset = -(bfd_vma) 1;
1438 /* The first dynamic symbol is a dummy. */
1439 table->dynsymcount = 1;
1440 table->dynstr = NULL;
1441 table->bucketcount = 0;
1442 table->needed = NULL;
1443 table->hgot = NULL;
1444 table->stab_info = NULL;
1445 table->merge_info = NULL;
1446 memset (&table->eh_info, 0, sizeof (table->eh_info));
1447 table->dynlocal = NULL;
1448 table->runpath = NULL;
1449 table->tls_sec = NULL;
1450 table->tls_size = 0;
1451 table->loaded = NULL;
1452
1453 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1454 table->root.type = bfd_link_elf_hash_table;
1455
1456 return ret;
1457 }
1458
1459 /* Create an ELF linker hash table. */
1460
1461 struct bfd_link_hash_table *
1462 _bfd_elf_link_hash_table_create (bfd *abfd)
1463 {
1464 struct elf_link_hash_table *ret;
1465 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1466
1467 ret = bfd_malloc (amt);
1468 if (ret == NULL)
1469 return NULL;
1470
1471 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1472 {
1473 free (ret);
1474 return NULL;
1475 }
1476
1477 return &ret->root;
1478 }
1479
1480 /* This is a hook for the ELF emulation code in the generic linker to
1481 tell the backend linker what file name to use for the DT_NEEDED
1482 entry for a dynamic object. The generic linker passes name as an
1483 empty string to indicate that no DT_NEEDED entry should be made. */
1484
1485 void
1486 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1487 {
1488 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1489 && bfd_get_format (abfd) == bfd_object)
1490 elf_dt_name (abfd) = name;
1491 }
1492
1493 void
1494 bfd_elf_set_dt_needed_soname (bfd *abfd, const char *name)
1495 {
1496 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1497 && bfd_get_format (abfd) == bfd_object)
1498 elf_dt_soname (abfd) = name;
1499 }
1500
1501 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1502 the linker ELF emulation code. */
1503
1504 struct bfd_link_needed_list *
1505 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1506 struct bfd_link_info *info)
1507 {
1508 if (! is_elf_hash_table (info->hash))
1509 return NULL;
1510 return elf_hash_table (info)->needed;
1511 }
1512
1513 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1514 hook for the linker ELF emulation code. */
1515
1516 struct bfd_link_needed_list *
1517 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1518 struct bfd_link_info *info)
1519 {
1520 if (! is_elf_hash_table (info->hash))
1521 return NULL;
1522 return elf_hash_table (info)->runpath;
1523 }
1524
1525 /* Get the name actually used for a dynamic object for a link. This
1526 is the SONAME entry if there is one. Otherwise, it is the string
1527 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1528
1529 const char *
1530 bfd_elf_get_dt_soname (bfd *abfd)
1531 {
1532 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1533 && bfd_get_format (abfd) == bfd_object)
1534 return elf_dt_name (abfd);
1535 return NULL;
1536 }
1537
1538 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1539 the ELF linker emulation code. */
1540
1541 bfd_boolean
1542 bfd_elf_get_bfd_needed_list (bfd *abfd,
1543 struct bfd_link_needed_list **pneeded)
1544 {
1545 asection *s;
1546 bfd_byte *dynbuf = NULL;
1547 int elfsec;
1548 unsigned long shlink;
1549 bfd_byte *extdyn, *extdynend;
1550 size_t extdynsize;
1551 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1552
1553 *pneeded = NULL;
1554
1555 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1556 || bfd_get_format (abfd) != bfd_object)
1557 return TRUE;
1558
1559 s = bfd_get_section_by_name (abfd, ".dynamic");
1560 if (s == NULL || s->_raw_size == 0)
1561 return TRUE;
1562
1563 dynbuf = bfd_malloc (s->_raw_size);
1564 if (dynbuf == NULL)
1565 goto error_return;
1566
1567 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1568 goto error_return;
1569
1570 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1571 if (elfsec == -1)
1572 goto error_return;
1573
1574 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1575
1576 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1577 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1578
1579 extdyn = dynbuf;
1580 extdynend = extdyn + s->_raw_size;
1581 for (; extdyn < extdynend; extdyn += extdynsize)
1582 {
1583 Elf_Internal_Dyn dyn;
1584
1585 (*swap_dyn_in) (abfd, extdyn, &dyn);
1586
1587 if (dyn.d_tag == DT_NULL)
1588 break;
1589
1590 if (dyn.d_tag == DT_NEEDED)
1591 {
1592 const char *string;
1593 struct bfd_link_needed_list *l;
1594 unsigned int tagv = dyn.d_un.d_val;
1595 bfd_size_type amt;
1596
1597 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1598 if (string == NULL)
1599 goto error_return;
1600
1601 amt = sizeof *l;
1602 l = bfd_alloc (abfd, amt);
1603 if (l == NULL)
1604 goto error_return;
1605
1606 l->by = abfd;
1607 l->name = string;
1608 l->next = *pneeded;
1609 *pneeded = l;
1610 }
1611 }
1612
1613 free (dynbuf);
1614
1615 return TRUE;
1616
1617 error_return:
1618 if (dynbuf != NULL)
1619 free (dynbuf);
1620 return FALSE;
1621 }
1622 \f
1623 /* Allocate an ELF string table--force the first byte to be zero. */
1624
1625 struct bfd_strtab_hash *
1626 _bfd_elf_stringtab_init (void)
1627 {
1628 struct bfd_strtab_hash *ret;
1629
1630 ret = _bfd_stringtab_init ();
1631 if (ret != NULL)
1632 {
1633 bfd_size_type loc;
1634
1635 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1636 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1637 if (loc == (bfd_size_type) -1)
1638 {
1639 _bfd_stringtab_free (ret);
1640 ret = NULL;
1641 }
1642 }
1643 return ret;
1644 }
1645 \f
1646 /* ELF .o/exec file reading */
1647
1648 /* Create a new bfd section from an ELF section header. */
1649
1650 bfd_boolean
1651 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1652 {
1653 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1654 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1655 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1656 const char *name;
1657
1658 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1659
1660 switch (hdr->sh_type)
1661 {
1662 case SHT_NULL:
1663 /* Inactive section. Throw it away. */
1664 return TRUE;
1665
1666 case SHT_PROGBITS: /* Normal section with contents. */
1667 case SHT_NOBITS: /* .bss section. */
1668 case SHT_HASH: /* .hash section. */
1669 case SHT_NOTE: /* .note section. */
1670 case SHT_INIT_ARRAY: /* .init_array section. */
1671 case SHT_FINI_ARRAY: /* .fini_array section. */
1672 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1673 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1674
1675 case SHT_DYNAMIC: /* Dynamic linking information. */
1676 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1677 return FALSE;
1678 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1679 {
1680 Elf_Internal_Shdr *dynsymhdr;
1681
1682 /* The shared libraries distributed with hpux11 have a bogus
1683 sh_link field for the ".dynamic" section. Find the
1684 string table for the ".dynsym" section instead. */
1685 if (elf_dynsymtab (abfd) != 0)
1686 {
1687 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1688 hdr->sh_link = dynsymhdr->sh_link;
1689 }
1690 else
1691 {
1692 unsigned int i, num_sec;
1693
1694 num_sec = elf_numsections (abfd);
1695 for (i = 1; i < num_sec; i++)
1696 {
1697 dynsymhdr = elf_elfsections (abfd)[i];
1698 if (dynsymhdr->sh_type == SHT_DYNSYM)
1699 {
1700 hdr->sh_link = dynsymhdr->sh_link;
1701 break;
1702 }
1703 }
1704 }
1705 }
1706 break;
1707
1708 case SHT_SYMTAB: /* A symbol table */
1709 if (elf_onesymtab (abfd) == shindex)
1710 return TRUE;
1711
1712 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1713 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1714 elf_onesymtab (abfd) = shindex;
1715 elf_tdata (abfd)->symtab_hdr = *hdr;
1716 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1717 abfd->flags |= HAS_SYMS;
1718
1719 /* Sometimes a shared object will map in the symbol table. If
1720 SHF_ALLOC is set, and this is a shared object, then we also
1721 treat this section as a BFD section. We can not base the
1722 decision purely on SHF_ALLOC, because that flag is sometimes
1723 set in a relocatable object file, which would confuse the
1724 linker. */
1725 if ((hdr->sh_flags & SHF_ALLOC) != 0
1726 && (abfd->flags & DYNAMIC) != 0
1727 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1728 return FALSE;
1729
1730 return TRUE;
1731
1732 case SHT_DYNSYM: /* A dynamic symbol table */
1733 if (elf_dynsymtab (abfd) == shindex)
1734 return TRUE;
1735
1736 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1737 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1738 elf_dynsymtab (abfd) = shindex;
1739 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1740 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1741 abfd->flags |= HAS_SYMS;
1742
1743 /* Besides being a symbol table, we also treat this as a regular
1744 section, so that objcopy can handle it. */
1745 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1746
1747 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1748 if (elf_symtab_shndx (abfd) == shindex)
1749 return TRUE;
1750
1751 /* Get the associated symbol table. */
1752 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1753 || hdr->sh_link != elf_onesymtab (abfd))
1754 return FALSE;
1755
1756 elf_symtab_shndx (abfd) = shindex;
1757 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1758 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1759 return TRUE;
1760
1761 case SHT_STRTAB: /* A string table */
1762 if (hdr->bfd_section != NULL)
1763 return TRUE;
1764 if (ehdr->e_shstrndx == shindex)
1765 {
1766 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1767 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1768 return TRUE;
1769 }
1770 {
1771 unsigned int i, num_sec;
1772
1773 num_sec = elf_numsections (abfd);
1774 for (i = 1; i < num_sec; i++)
1775 {
1776 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1777 if (hdr2->sh_link == shindex)
1778 {
1779 if (! bfd_section_from_shdr (abfd, i))
1780 return FALSE;
1781 if (elf_onesymtab (abfd) == i)
1782 {
1783 elf_tdata (abfd)->strtab_hdr = *hdr;
1784 elf_elfsections (abfd)[shindex] =
1785 &elf_tdata (abfd)->strtab_hdr;
1786 return TRUE;
1787 }
1788 if (elf_dynsymtab (abfd) == i)
1789 {
1790 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1791 elf_elfsections (abfd)[shindex] = hdr =
1792 &elf_tdata (abfd)->dynstrtab_hdr;
1793 /* We also treat this as a regular section, so
1794 that objcopy can handle it. */
1795 break;
1796 }
1797 #if 0 /* Not handling other string tables specially right now. */
1798 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1799 /* We have a strtab for some random other section. */
1800 newsect = (asection *) hdr2->bfd_section;
1801 if (!newsect)
1802 break;
1803 hdr->bfd_section = newsect;
1804 hdr2 = &elf_section_data (newsect)->str_hdr;
1805 *hdr2 = *hdr;
1806 elf_elfsections (abfd)[shindex] = hdr2;
1807 #endif
1808 }
1809 }
1810 }
1811
1812 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1813
1814 case SHT_REL:
1815 case SHT_RELA:
1816 /* *These* do a lot of work -- but build no sections! */
1817 {
1818 asection *target_sect;
1819 Elf_Internal_Shdr *hdr2;
1820 unsigned int num_sec = elf_numsections (abfd);
1821
1822 /* Check for a bogus link to avoid crashing. */
1823 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1824 || hdr->sh_link >= num_sec)
1825 {
1826 ((*_bfd_error_handler)
1827 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1828 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1829 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1830 }
1831
1832 /* For some incomprehensible reason Oracle distributes
1833 libraries for Solaris in which some of the objects have
1834 bogus sh_link fields. It would be nice if we could just
1835 reject them, but, unfortunately, some people need to use
1836 them. We scan through the section headers; if we find only
1837 one suitable symbol table, we clobber the sh_link to point
1838 to it. I hope this doesn't break anything. */
1839 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1840 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1841 {
1842 unsigned int scan;
1843 int found;
1844
1845 found = 0;
1846 for (scan = 1; scan < num_sec; scan++)
1847 {
1848 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1849 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1850 {
1851 if (found != 0)
1852 {
1853 found = 0;
1854 break;
1855 }
1856 found = scan;
1857 }
1858 }
1859 if (found != 0)
1860 hdr->sh_link = found;
1861 }
1862
1863 /* Get the symbol table. */
1864 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1865 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1866 return FALSE;
1867
1868 /* If this reloc section does not use the main symbol table we
1869 don't treat it as a reloc section. BFD can't adequately
1870 represent such a section, so at least for now, we don't
1871 try. We just present it as a normal section. We also
1872 can't use it as a reloc section if it points to the null
1873 section. */
1874 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1875 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1876
1877 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1878 return FALSE;
1879 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1880 if (target_sect == NULL)
1881 return FALSE;
1882
1883 if ((target_sect->flags & SEC_RELOC) == 0
1884 || target_sect->reloc_count == 0)
1885 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1886 else
1887 {
1888 bfd_size_type amt;
1889 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1890 amt = sizeof (*hdr2);
1891 hdr2 = bfd_alloc (abfd, amt);
1892 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1893 }
1894 *hdr2 = *hdr;
1895 elf_elfsections (abfd)[shindex] = hdr2;
1896 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1897 target_sect->flags |= SEC_RELOC;
1898 target_sect->relocation = NULL;
1899 target_sect->rel_filepos = hdr->sh_offset;
1900 /* In the section to which the relocations apply, mark whether
1901 its relocations are of the REL or RELA variety. */
1902 if (hdr->sh_size != 0)
1903 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1904 abfd->flags |= HAS_RELOC;
1905 return TRUE;
1906 }
1907 break;
1908
1909 case SHT_GNU_verdef:
1910 elf_dynverdef (abfd) = shindex;
1911 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1912 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1913 break;
1914
1915 case SHT_GNU_versym:
1916 elf_dynversym (abfd) = shindex;
1917 elf_tdata (abfd)->dynversym_hdr = *hdr;
1918 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1919 break;
1920
1921 case SHT_GNU_verneed:
1922 elf_dynverref (abfd) = shindex;
1923 elf_tdata (abfd)->dynverref_hdr = *hdr;
1924 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1925 break;
1926
1927 case SHT_SHLIB:
1928 return TRUE;
1929
1930 case SHT_GROUP:
1931 /* We need a BFD section for objcopy and relocatable linking,
1932 and it's handy to have the signature available as the section
1933 name. */
1934 name = group_signature (abfd, hdr);
1935 if (name == NULL)
1936 return FALSE;
1937 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
1938 return FALSE;
1939 if (hdr->contents != NULL)
1940 {
1941 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1942 unsigned int n_elt = hdr->sh_size / 4;
1943 asection *s;
1944
1945 if (idx->flags & GRP_COMDAT)
1946 hdr->bfd_section->flags
1947 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1948
1949 while (--n_elt != 0)
1950 if ((s = (++idx)->shdr->bfd_section) != NULL
1951 && elf_next_in_group (s) != NULL)
1952 {
1953 elf_next_in_group (hdr->bfd_section) = s;
1954 break;
1955 }
1956 }
1957 break;
1958
1959 default:
1960 /* Check for any processor-specific section types. */
1961 {
1962 if (bed->elf_backend_section_from_shdr)
1963 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
1964 }
1965 break;
1966 }
1967
1968 return TRUE;
1969 }
1970
1971 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1972 Return SEC for sections that have no elf section, and NULL on error. */
1973
1974 asection *
1975 bfd_section_from_r_symndx (bfd *abfd,
1976 struct sym_sec_cache *cache,
1977 asection *sec,
1978 unsigned long r_symndx)
1979 {
1980 Elf_Internal_Shdr *symtab_hdr;
1981 unsigned char esym[sizeof (Elf64_External_Sym)];
1982 Elf_External_Sym_Shndx eshndx;
1983 Elf_Internal_Sym isym;
1984 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1985
1986 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
1987 return cache->sec[ent];
1988
1989 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1990 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1991 &isym, esym, &eshndx) == NULL)
1992 return NULL;
1993
1994 if (cache->abfd != abfd)
1995 {
1996 memset (cache->indx, -1, sizeof (cache->indx));
1997 cache->abfd = abfd;
1998 }
1999 cache->indx[ent] = r_symndx;
2000 cache->sec[ent] = sec;
2001 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2002 || isym.st_shndx > SHN_HIRESERVE)
2003 {
2004 asection *s;
2005 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2006 if (s != NULL)
2007 cache->sec[ent] = s;
2008 }
2009 return cache->sec[ent];
2010 }
2011
2012 /* Given an ELF section number, retrieve the corresponding BFD
2013 section. */
2014
2015 asection *
2016 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2017 {
2018 if (index >= elf_numsections (abfd))
2019 return NULL;
2020 return elf_elfsections (abfd)[index]->bfd_section;
2021 }
2022
2023 static struct bfd_elf_special_section const special_sections[] =
2024 {
2025 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2026 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2027 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2028 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2029 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2030 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2031 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2032 { ".line", 5, 0, SHT_PROGBITS, 0 },
2033 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2034 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2035 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2036 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2037 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2038 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2039 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2040 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2041 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2042 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2043 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2044 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2045 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2046 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2047 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2048 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2049 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2050 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2051 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2052 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2053 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2054 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2055 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2056 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2057 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2058 { ".note", 5, -1, SHT_NOTE, 0 },
2059 { ".rela", 5, -1, SHT_RELA, 0 },
2060 { ".rel", 4, -1, SHT_REL, 0 },
2061 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2062 { NULL, 0, 0, 0, 0 }
2063 };
2064
2065 static const struct bfd_elf_special_section *
2066 get_special_section (const char *name,
2067 const struct bfd_elf_special_section *special_sections,
2068 unsigned int rela)
2069 {
2070 int i;
2071 int len = strlen (name);
2072
2073 for (i = 0; special_sections[i].prefix != NULL; i++)
2074 {
2075 int suffix_len;
2076 int prefix_len = special_sections[i].prefix_length;
2077
2078 if (len < prefix_len)
2079 continue;
2080 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2081 continue;
2082
2083 suffix_len = special_sections[i].suffix_length;
2084 if (suffix_len <= 0)
2085 {
2086 if (name[prefix_len] != 0)
2087 {
2088 if (suffix_len == 0)
2089 continue;
2090 if (name[prefix_len] != '.'
2091 && (suffix_len == -2
2092 || (rela && special_sections[i].type == SHT_REL)))
2093 continue;
2094 }
2095 }
2096 else
2097 {
2098 if (len < prefix_len + suffix_len)
2099 continue;
2100 if (memcmp (name + len - suffix_len,
2101 special_sections[i].prefix + prefix_len,
2102 suffix_len) != 0)
2103 continue;
2104 }
2105 return &special_sections[i];
2106 }
2107
2108 return NULL;
2109 }
2110
2111 const struct bfd_elf_special_section *
2112 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2113 {
2114 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2115 const struct bfd_elf_special_section *ssect = NULL;
2116
2117 /* See if this is one of the special sections. */
2118 if (name)
2119 {
2120 unsigned int rela = bed->default_use_rela_p;
2121
2122 if (bed->special_sections)
2123 ssect = get_special_section (name, bed->special_sections, rela);
2124
2125 if (! ssect)
2126 ssect = get_special_section (name, special_sections, rela);
2127 }
2128
2129 return ssect;
2130 }
2131
2132 bfd_boolean
2133 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2134 {
2135 struct bfd_elf_section_data *sdata;
2136 const struct bfd_elf_special_section *ssect;
2137
2138 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2139 if (sdata == NULL)
2140 {
2141 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2142 if (sdata == NULL)
2143 return FALSE;
2144 sec->used_by_bfd = sdata;
2145 }
2146
2147 elf_section_type (sec) = SHT_NULL;
2148 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2149 if (ssect != NULL)
2150 {
2151 elf_section_type (sec) = ssect->type;
2152 elf_section_flags (sec) = ssect->attr;
2153 }
2154
2155 /* Indicate whether or not this section should use RELA relocations. */
2156 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2157
2158 return TRUE;
2159 }
2160
2161 /* Create a new bfd section from an ELF program header.
2162
2163 Since program segments have no names, we generate a synthetic name
2164 of the form segment<NUM>, where NUM is generally the index in the
2165 program header table. For segments that are split (see below) we
2166 generate the names segment<NUM>a and segment<NUM>b.
2167
2168 Note that some program segments may have a file size that is different than
2169 (less than) the memory size. All this means is that at execution the
2170 system must allocate the amount of memory specified by the memory size,
2171 but only initialize it with the first "file size" bytes read from the
2172 file. This would occur for example, with program segments consisting
2173 of combined data+bss.
2174
2175 To handle the above situation, this routine generates TWO bfd sections
2176 for the single program segment. The first has the length specified by
2177 the file size of the segment, and the second has the length specified
2178 by the difference between the two sizes. In effect, the segment is split
2179 into it's initialized and uninitialized parts.
2180
2181 */
2182
2183 bfd_boolean
2184 _bfd_elf_make_section_from_phdr (bfd *abfd,
2185 Elf_Internal_Phdr *hdr,
2186 int index,
2187 const char *typename)
2188 {
2189 asection *newsect;
2190 char *name;
2191 char namebuf[64];
2192 size_t len;
2193 int split;
2194
2195 split = ((hdr->p_memsz > 0)
2196 && (hdr->p_filesz > 0)
2197 && (hdr->p_memsz > hdr->p_filesz));
2198 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2199 len = strlen (namebuf) + 1;
2200 name = bfd_alloc (abfd, len);
2201 if (!name)
2202 return FALSE;
2203 memcpy (name, namebuf, len);
2204 newsect = bfd_make_section (abfd, name);
2205 if (newsect == NULL)
2206 return FALSE;
2207 newsect->vma = hdr->p_vaddr;
2208 newsect->lma = hdr->p_paddr;
2209 newsect->_raw_size = hdr->p_filesz;
2210 newsect->filepos = hdr->p_offset;
2211 newsect->flags |= SEC_HAS_CONTENTS;
2212 newsect->alignment_power = bfd_log2 (hdr->p_align);
2213 if (hdr->p_type == PT_LOAD)
2214 {
2215 newsect->flags |= SEC_ALLOC;
2216 newsect->flags |= SEC_LOAD;
2217 if (hdr->p_flags & PF_X)
2218 {
2219 /* FIXME: all we known is that it has execute PERMISSION,
2220 may be data. */
2221 newsect->flags |= SEC_CODE;
2222 }
2223 }
2224 if (!(hdr->p_flags & PF_W))
2225 {
2226 newsect->flags |= SEC_READONLY;
2227 }
2228
2229 if (split)
2230 {
2231 sprintf (namebuf, "%s%db", typename, index);
2232 len = strlen (namebuf) + 1;
2233 name = bfd_alloc (abfd, len);
2234 if (!name)
2235 return FALSE;
2236 memcpy (name, namebuf, len);
2237 newsect = bfd_make_section (abfd, name);
2238 if (newsect == NULL)
2239 return FALSE;
2240 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2241 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2242 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2243 if (hdr->p_type == PT_LOAD)
2244 {
2245 newsect->flags |= SEC_ALLOC;
2246 if (hdr->p_flags & PF_X)
2247 newsect->flags |= SEC_CODE;
2248 }
2249 if (!(hdr->p_flags & PF_W))
2250 newsect->flags |= SEC_READONLY;
2251 }
2252
2253 return TRUE;
2254 }
2255
2256 bfd_boolean
2257 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2258 {
2259 const struct elf_backend_data *bed;
2260
2261 switch (hdr->p_type)
2262 {
2263 case PT_NULL:
2264 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2265
2266 case PT_LOAD:
2267 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2268
2269 case PT_DYNAMIC:
2270 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2271
2272 case PT_INTERP:
2273 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2274
2275 case PT_NOTE:
2276 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2277 return FALSE;
2278 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2279 return FALSE;
2280 return TRUE;
2281
2282 case PT_SHLIB:
2283 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2284
2285 case PT_PHDR:
2286 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2287
2288 case PT_GNU_EH_FRAME:
2289 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2290 "eh_frame_hdr");
2291
2292 case PT_GNU_STACK:
2293 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2294
2295 default:
2296 /* Check for any processor-specific program segment types.
2297 If no handler for them, default to making "segment" sections. */
2298 bed = get_elf_backend_data (abfd);
2299 if (bed->elf_backend_section_from_phdr)
2300 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2301 else
2302 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2303 }
2304 }
2305
2306 /* Initialize REL_HDR, the section-header for new section, containing
2307 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2308 relocations; otherwise, we use REL relocations. */
2309
2310 bfd_boolean
2311 _bfd_elf_init_reloc_shdr (bfd *abfd,
2312 Elf_Internal_Shdr *rel_hdr,
2313 asection *asect,
2314 bfd_boolean use_rela_p)
2315 {
2316 char *name;
2317 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2318 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2319
2320 name = bfd_alloc (abfd, amt);
2321 if (name == NULL)
2322 return FALSE;
2323 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2324 rel_hdr->sh_name =
2325 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2326 FALSE);
2327 if (rel_hdr->sh_name == (unsigned int) -1)
2328 return FALSE;
2329 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2330 rel_hdr->sh_entsize = (use_rela_p
2331 ? bed->s->sizeof_rela
2332 : bed->s->sizeof_rel);
2333 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2334 rel_hdr->sh_flags = 0;
2335 rel_hdr->sh_addr = 0;
2336 rel_hdr->sh_size = 0;
2337 rel_hdr->sh_offset = 0;
2338
2339 return TRUE;
2340 }
2341
2342 /* Set up an ELF internal section header for a section. */
2343
2344 static void
2345 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2346 {
2347 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2348 bfd_boolean *failedptr = failedptrarg;
2349 Elf_Internal_Shdr *this_hdr;
2350
2351 if (*failedptr)
2352 {
2353 /* We already failed; just get out of the bfd_map_over_sections
2354 loop. */
2355 return;
2356 }
2357
2358 this_hdr = &elf_section_data (asect)->this_hdr;
2359
2360 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2361 asect->name, FALSE);
2362 if (this_hdr->sh_name == (unsigned int) -1)
2363 {
2364 *failedptr = TRUE;
2365 return;
2366 }
2367
2368 this_hdr->sh_flags = 0;
2369
2370 if ((asect->flags & SEC_ALLOC) != 0
2371 || asect->user_set_vma)
2372 this_hdr->sh_addr = asect->vma;
2373 else
2374 this_hdr->sh_addr = 0;
2375
2376 this_hdr->sh_offset = 0;
2377 this_hdr->sh_size = asect->_raw_size;
2378 this_hdr->sh_link = 0;
2379 this_hdr->sh_addralign = 1 << asect->alignment_power;
2380 /* The sh_entsize and sh_info fields may have been set already by
2381 copy_private_section_data. */
2382
2383 this_hdr->bfd_section = asect;
2384 this_hdr->contents = NULL;
2385
2386 /* If the section type is unspecified, we set it based on
2387 asect->flags. */
2388 if (this_hdr->sh_type == SHT_NULL)
2389 {
2390 if ((asect->flags & SEC_ALLOC) != 0
2391 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2392 || (asect->flags & SEC_NEVER_LOAD) != 0))
2393 this_hdr->sh_type = SHT_NOBITS;
2394 else
2395 this_hdr->sh_type = SHT_PROGBITS;
2396 }
2397
2398 switch (this_hdr->sh_type)
2399 {
2400 default:
2401 break;
2402
2403 case SHT_STRTAB:
2404 case SHT_INIT_ARRAY:
2405 case SHT_FINI_ARRAY:
2406 case SHT_PREINIT_ARRAY:
2407 case SHT_NOTE:
2408 case SHT_NOBITS:
2409 case SHT_PROGBITS:
2410 break;
2411
2412 case SHT_HASH:
2413 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2414 break;
2415
2416 case SHT_DYNSYM:
2417 this_hdr->sh_entsize = bed->s->sizeof_sym;
2418 break;
2419
2420 case SHT_DYNAMIC:
2421 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2422 break;
2423
2424 case SHT_RELA:
2425 if (get_elf_backend_data (abfd)->may_use_rela_p)
2426 this_hdr->sh_entsize = bed->s->sizeof_rela;
2427 break;
2428
2429 case SHT_REL:
2430 if (get_elf_backend_data (abfd)->may_use_rel_p)
2431 this_hdr->sh_entsize = bed->s->sizeof_rel;
2432 break;
2433
2434 case SHT_GNU_versym:
2435 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2436 break;
2437
2438 case SHT_GNU_verdef:
2439 this_hdr->sh_entsize = 0;
2440 /* objcopy or strip will copy over sh_info, but may not set
2441 cverdefs. The linker will set cverdefs, but sh_info will be
2442 zero. */
2443 if (this_hdr->sh_info == 0)
2444 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2445 else
2446 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2447 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2448 break;
2449
2450 case SHT_GNU_verneed:
2451 this_hdr->sh_entsize = 0;
2452 /* objcopy or strip will copy over sh_info, but may not set
2453 cverrefs. The linker will set cverrefs, but sh_info will be
2454 zero. */
2455 if (this_hdr->sh_info == 0)
2456 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2457 else
2458 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2459 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2460 break;
2461
2462 case SHT_GROUP:
2463 this_hdr->sh_entsize = 4;
2464 break;
2465 }
2466
2467 if ((asect->flags & SEC_ALLOC) != 0)
2468 this_hdr->sh_flags |= SHF_ALLOC;
2469 if ((asect->flags & SEC_READONLY) == 0)
2470 this_hdr->sh_flags |= SHF_WRITE;
2471 if ((asect->flags & SEC_CODE) != 0)
2472 this_hdr->sh_flags |= SHF_EXECINSTR;
2473 if ((asect->flags & SEC_MERGE) != 0)
2474 {
2475 this_hdr->sh_flags |= SHF_MERGE;
2476 this_hdr->sh_entsize = asect->entsize;
2477 if ((asect->flags & SEC_STRINGS) != 0)
2478 this_hdr->sh_flags |= SHF_STRINGS;
2479 }
2480 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2481 this_hdr->sh_flags |= SHF_GROUP;
2482 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2483 {
2484 this_hdr->sh_flags |= SHF_TLS;
2485 if (asect->_raw_size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2486 {
2487 struct bfd_link_order *o;
2488
2489 this_hdr->sh_size = 0;
2490 for (o = asect->link_order_head; o != NULL; o = o->next)
2491 if (this_hdr->sh_size < o->offset + o->size)
2492 this_hdr->sh_size = o->offset + o->size;
2493 if (this_hdr->sh_size)
2494 this_hdr->sh_type = SHT_NOBITS;
2495 }
2496 }
2497
2498 /* Check for processor-specific section types. */
2499 if (bed->elf_backend_fake_sections
2500 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2501 *failedptr = TRUE;
2502
2503 /* If the section has relocs, set up a section header for the
2504 SHT_REL[A] section. If two relocation sections are required for
2505 this section, it is up to the processor-specific back-end to
2506 create the other. */
2507 if ((asect->flags & SEC_RELOC) != 0
2508 && !_bfd_elf_init_reloc_shdr (abfd,
2509 &elf_section_data (asect)->rel_hdr,
2510 asect,
2511 asect->use_rela_p))
2512 *failedptr = TRUE;
2513 }
2514
2515 /* Fill in the contents of a SHT_GROUP section. */
2516
2517 void
2518 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2519 {
2520 bfd_boolean *failedptr = failedptrarg;
2521 unsigned long symindx;
2522 asection *elt, *first;
2523 unsigned char *loc;
2524 struct bfd_link_order *l;
2525 bfd_boolean gas;
2526
2527 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2528 || *failedptr)
2529 return;
2530
2531 symindx = 0;
2532 if (elf_group_id (sec) != NULL)
2533 symindx = elf_group_id (sec)->udata.i;
2534
2535 if (symindx == 0)
2536 {
2537 /* If called from the assembler, swap_out_syms will have set up
2538 elf_section_syms; If called for "ld -r", use target_index. */
2539 if (elf_section_syms (abfd) != NULL)
2540 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2541 else
2542 symindx = sec->target_index;
2543 }
2544 elf_section_data (sec)->this_hdr.sh_info = symindx;
2545
2546 /* The contents won't be allocated for "ld -r" or objcopy. */
2547 gas = TRUE;
2548 if (sec->contents == NULL)
2549 {
2550 gas = FALSE;
2551 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2552
2553 /* Arrange for the section to be written out. */
2554 elf_section_data (sec)->this_hdr.contents = sec->contents;
2555 if (sec->contents == NULL)
2556 {
2557 *failedptr = TRUE;
2558 return;
2559 }
2560 }
2561
2562 loc = sec->contents + sec->_raw_size;
2563
2564 /* Get the pointer to the first section in the group that gas
2565 squirreled away here. objcopy arranges for this to be set to the
2566 start of the input section group. */
2567 first = elt = elf_next_in_group (sec);
2568
2569 /* First element is a flag word. Rest of section is elf section
2570 indices for all the sections of the group. Write them backwards
2571 just to keep the group in the same order as given in .section
2572 directives, not that it matters. */
2573 while (elt != NULL)
2574 {
2575 asection *s;
2576 unsigned int idx;
2577
2578 loc -= 4;
2579 s = elt;
2580 if (!gas)
2581 s = s->output_section;
2582 idx = 0;
2583 if (s != NULL)
2584 idx = elf_section_data (s)->this_idx;
2585 H_PUT_32 (abfd, idx, loc);
2586 elt = elf_next_in_group (elt);
2587 if (elt == first)
2588 break;
2589 }
2590
2591 /* If this is a relocatable link, then the above did nothing because
2592 SEC is the output section. Look through the input sections
2593 instead. */
2594 for (l = sec->link_order_head; l != NULL; l = l->next)
2595 if (l->type == bfd_indirect_link_order
2596 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2597 do
2598 {
2599 loc -= 4;
2600 H_PUT_32 (abfd,
2601 elf_section_data (elt->output_section)->this_idx, loc);
2602 elt = elf_next_in_group (elt);
2603 /* During a relocatable link, the lists are circular. */
2604 }
2605 while (elt != elf_next_in_group (l->u.indirect.section));
2606
2607 /* With ld -r, merging SHT_GROUP sections results in wasted space
2608 due to allowing for the flag word on each input. We may well
2609 duplicate entries too. */
2610 while ((loc -= 4) > sec->contents)
2611 H_PUT_32 (abfd, 0, loc);
2612
2613 if (loc != sec->contents)
2614 abort ();
2615
2616 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2617 }
2618
2619 /* Assign all ELF section numbers. The dummy first section is handled here
2620 too. The link/info pointers for the standard section types are filled
2621 in here too, while we're at it. */
2622
2623 static bfd_boolean
2624 assign_section_numbers (bfd *abfd)
2625 {
2626 struct elf_obj_tdata *t = elf_tdata (abfd);
2627 asection *sec;
2628 unsigned int section_number, secn;
2629 Elf_Internal_Shdr **i_shdrp;
2630 bfd_size_type amt;
2631
2632 section_number = 1;
2633
2634 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2635
2636 for (sec = abfd->sections; sec; sec = sec->next)
2637 {
2638 struct bfd_elf_section_data *d = elf_section_data (sec);
2639
2640 if (section_number == SHN_LORESERVE)
2641 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2642 d->this_idx = section_number++;
2643 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2644 if ((sec->flags & SEC_RELOC) == 0)
2645 d->rel_idx = 0;
2646 else
2647 {
2648 if (section_number == SHN_LORESERVE)
2649 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2650 d->rel_idx = section_number++;
2651 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2652 }
2653
2654 if (d->rel_hdr2)
2655 {
2656 if (section_number == SHN_LORESERVE)
2657 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2658 d->rel_idx2 = section_number++;
2659 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2660 }
2661 else
2662 d->rel_idx2 = 0;
2663 }
2664
2665 if (section_number == SHN_LORESERVE)
2666 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2667 t->shstrtab_section = section_number++;
2668 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2669 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2670
2671 if (bfd_get_symcount (abfd) > 0)
2672 {
2673 if (section_number == SHN_LORESERVE)
2674 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2675 t->symtab_section = section_number++;
2676 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2677 if (section_number > SHN_LORESERVE - 2)
2678 {
2679 if (section_number == SHN_LORESERVE)
2680 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2681 t->symtab_shndx_section = section_number++;
2682 t->symtab_shndx_hdr.sh_name
2683 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2684 ".symtab_shndx", FALSE);
2685 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2686 return FALSE;
2687 }
2688 if (section_number == SHN_LORESERVE)
2689 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2690 t->strtab_section = section_number++;
2691 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2692 }
2693
2694 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2695 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2696
2697 elf_numsections (abfd) = section_number;
2698 elf_elfheader (abfd)->e_shnum = section_number;
2699 if (section_number > SHN_LORESERVE)
2700 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2701
2702 /* Set up the list of section header pointers, in agreement with the
2703 indices. */
2704 amt = section_number * sizeof (Elf_Internal_Shdr *);
2705 i_shdrp = bfd_zalloc (abfd, amt);
2706 if (i_shdrp == NULL)
2707 return FALSE;
2708
2709 amt = sizeof (Elf_Internal_Shdr);
2710 i_shdrp[0] = bfd_zalloc (abfd, amt);
2711 if (i_shdrp[0] == NULL)
2712 {
2713 bfd_release (abfd, i_shdrp);
2714 return FALSE;
2715 }
2716
2717 elf_elfsections (abfd) = i_shdrp;
2718
2719 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2720 if (bfd_get_symcount (abfd) > 0)
2721 {
2722 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2723 if (elf_numsections (abfd) > SHN_LORESERVE)
2724 {
2725 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2726 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2727 }
2728 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2729 t->symtab_hdr.sh_link = t->strtab_section;
2730 }
2731 for (sec = abfd->sections; sec; sec = sec->next)
2732 {
2733 struct bfd_elf_section_data *d = elf_section_data (sec);
2734 asection *s;
2735 const char *name;
2736
2737 i_shdrp[d->this_idx] = &d->this_hdr;
2738 if (d->rel_idx != 0)
2739 i_shdrp[d->rel_idx] = &d->rel_hdr;
2740 if (d->rel_idx2 != 0)
2741 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2742
2743 /* Fill in the sh_link and sh_info fields while we're at it. */
2744
2745 /* sh_link of a reloc section is the section index of the symbol
2746 table. sh_info is the section index of the section to which
2747 the relocation entries apply. */
2748 if (d->rel_idx != 0)
2749 {
2750 d->rel_hdr.sh_link = t->symtab_section;
2751 d->rel_hdr.sh_info = d->this_idx;
2752 }
2753 if (d->rel_idx2 != 0)
2754 {
2755 d->rel_hdr2->sh_link = t->symtab_section;
2756 d->rel_hdr2->sh_info = d->this_idx;
2757 }
2758
2759 switch (d->this_hdr.sh_type)
2760 {
2761 case SHT_REL:
2762 case SHT_RELA:
2763 /* A reloc section which we are treating as a normal BFD
2764 section. sh_link is the section index of the symbol
2765 table. sh_info is the section index of the section to
2766 which the relocation entries apply. We assume that an
2767 allocated reloc section uses the dynamic symbol table.
2768 FIXME: How can we be sure? */
2769 s = bfd_get_section_by_name (abfd, ".dynsym");
2770 if (s != NULL)
2771 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2772
2773 /* We look up the section the relocs apply to by name. */
2774 name = sec->name;
2775 if (d->this_hdr.sh_type == SHT_REL)
2776 name += 4;
2777 else
2778 name += 5;
2779 s = bfd_get_section_by_name (abfd, name);
2780 if (s != NULL)
2781 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2782 break;
2783
2784 case SHT_STRTAB:
2785 /* We assume that a section named .stab*str is a stabs
2786 string section. We look for a section with the same name
2787 but without the trailing ``str'', and set its sh_link
2788 field to point to this section. */
2789 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2790 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2791 {
2792 size_t len;
2793 char *alc;
2794
2795 len = strlen (sec->name);
2796 alc = bfd_malloc (len - 2);
2797 if (alc == NULL)
2798 return FALSE;
2799 memcpy (alc, sec->name, len - 3);
2800 alc[len - 3] = '\0';
2801 s = bfd_get_section_by_name (abfd, alc);
2802 free (alc);
2803 if (s != NULL)
2804 {
2805 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2806
2807 /* This is a .stab section. */
2808 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2809 elf_section_data (s)->this_hdr.sh_entsize
2810 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2811 }
2812 }
2813 break;
2814
2815 case SHT_DYNAMIC:
2816 case SHT_DYNSYM:
2817 case SHT_GNU_verneed:
2818 case SHT_GNU_verdef:
2819 /* sh_link is the section header index of the string table
2820 used for the dynamic entries, or the symbol table, or the
2821 version strings. */
2822 s = bfd_get_section_by_name (abfd, ".dynstr");
2823 if (s != NULL)
2824 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2825 break;
2826
2827 case SHT_HASH:
2828 case SHT_GNU_versym:
2829 /* sh_link is the section header index of the symbol table
2830 this hash table or version table is for. */
2831 s = bfd_get_section_by_name (abfd, ".dynsym");
2832 if (s != NULL)
2833 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2834 break;
2835
2836 case SHT_GROUP:
2837 d->this_hdr.sh_link = t->symtab_section;
2838 }
2839 }
2840
2841 for (secn = 1; secn < section_number; ++secn)
2842 if (i_shdrp[secn] == NULL)
2843 i_shdrp[secn] = i_shdrp[0];
2844 else
2845 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2846 i_shdrp[secn]->sh_name);
2847 return TRUE;
2848 }
2849
2850 /* Map symbol from it's internal number to the external number, moving
2851 all local symbols to be at the head of the list. */
2852
2853 static int
2854 sym_is_global (bfd *abfd, asymbol *sym)
2855 {
2856 /* If the backend has a special mapping, use it. */
2857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2858 if (bed->elf_backend_sym_is_global)
2859 return (*bed->elf_backend_sym_is_global) (abfd, sym);
2860
2861 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2862 || bfd_is_und_section (bfd_get_section (sym))
2863 || bfd_is_com_section (bfd_get_section (sym)));
2864 }
2865
2866 static bfd_boolean
2867 elf_map_symbols (bfd *abfd)
2868 {
2869 unsigned int symcount = bfd_get_symcount (abfd);
2870 asymbol **syms = bfd_get_outsymbols (abfd);
2871 asymbol **sect_syms;
2872 unsigned int num_locals = 0;
2873 unsigned int num_globals = 0;
2874 unsigned int num_locals2 = 0;
2875 unsigned int num_globals2 = 0;
2876 int max_index = 0;
2877 unsigned int idx;
2878 asection *asect;
2879 asymbol **new_syms;
2880 bfd_size_type amt;
2881
2882 #ifdef DEBUG
2883 fprintf (stderr, "elf_map_symbols\n");
2884 fflush (stderr);
2885 #endif
2886
2887 for (asect = abfd->sections; asect; asect = asect->next)
2888 {
2889 if (max_index < asect->index)
2890 max_index = asect->index;
2891 }
2892
2893 max_index++;
2894 amt = max_index * sizeof (asymbol *);
2895 sect_syms = bfd_zalloc (abfd, amt);
2896 if (sect_syms == NULL)
2897 return FALSE;
2898 elf_section_syms (abfd) = sect_syms;
2899 elf_num_section_syms (abfd) = max_index;
2900
2901 /* Init sect_syms entries for any section symbols we have already
2902 decided to output. */
2903 for (idx = 0; idx < symcount; idx++)
2904 {
2905 asymbol *sym = syms[idx];
2906
2907 if ((sym->flags & BSF_SECTION_SYM) != 0
2908 && sym->value == 0)
2909 {
2910 asection *sec;
2911
2912 sec = sym->section;
2913
2914 if (sec->owner != NULL)
2915 {
2916 if (sec->owner != abfd)
2917 {
2918 if (sec->output_offset != 0)
2919 continue;
2920
2921 sec = sec->output_section;
2922
2923 /* Empty sections in the input files may have had a
2924 section symbol created for them. (See the comment
2925 near the end of _bfd_generic_link_output_symbols in
2926 linker.c). If the linker script discards such
2927 sections then we will reach this point. Since we know
2928 that we cannot avoid this case, we detect it and skip
2929 the abort and the assignment to the sect_syms array.
2930 To reproduce this particular case try running the
2931 linker testsuite test ld-scripts/weak.exp for an ELF
2932 port that uses the generic linker. */
2933 if (sec->owner == NULL)
2934 continue;
2935
2936 BFD_ASSERT (sec->owner == abfd);
2937 }
2938 sect_syms[sec->index] = syms[idx];
2939 }
2940 }
2941 }
2942
2943 /* Classify all of the symbols. */
2944 for (idx = 0; idx < symcount; idx++)
2945 {
2946 if (!sym_is_global (abfd, syms[idx]))
2947 num_locals++;
2948 else
2949 num_globals++;
2950 }
2951
2952 /* We will be adding a section symbol for each BFD section. Most normal
2953 sections will already have a section symbol in outsymbols, but
2954 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2955 at least in that case. */
2956 for (asect = abfd->sections; asect; asect = asect->next)
2957 {
2958 if (sect_syms[asect->index] == NULL)
2959 {
2960 if (!sym_is_global (abfd, asect->symbol))
2961 num_locals++;
2962 else
2963 num_globals++;
2964 }
2965 }
2966
2967 /* Now sort the symbols so the local symbols are first. */
2968 amt = (num_locals + num_globals) * sizeof (asymbol *);
2969 new_syms = bfd_alloc (abfd, amt);
2970
2971 if (new_syms == NULL)
2972 return FALSE;
2973
2974 for (idx = 0; idx < symcount; idx++)
2975 {
2976 asymbol *sym = syms[idx];
2977 unsigned int i;
2978
2979 if (!sym_is_global (abfd, sym))
2980 i = num_locals2++;
2981 else
2982 i = num_locals + num_globals2++;
2983 new_syms[i] = sym;
2984 sym->udata.i = i + 1;
2985 }
2986 for (asect = abfd->sections; asect; asect = asect->next)
2987 {
2988 if (sect_syms[asect->index] == NULL)
2989 {
2990 asymbol *sym = asect->symbol;
2991 unsigned int i;
2992
2993 sect_syms[asect->index] = sym;
2994 if (!sym_is_global (abfd, sym))
2995 i = num_locals2++;
2996 else
2997 i = num_locals + num_globals2++;
2998 new_syms[i] = sym;
2999 sym->udata.i = i + 1;
3000 }
3001 }
3002
3003 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3004
3005 elf_num_locals (abfd) = num_locals;
3006 elf_num_globals (abfd) = num_globals;
3007 return TRUE;
3008 }
3009
3010 /* Align to the maximum file alignment that could be required for any
3011 ELF data structure. */
3012
3013 static inline file_ptr
3014 align_file_position (file_ptr off, int align)
3015 {
3016 return (off + align - 1) & ~(align - 1);
3017 }
3018
3019 /* Assign a file position to a section, optionally aligning to the
3020 required section alignment. */
3021
3022 file_ptr
3023 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3024 file_ptr offset,
3025 bfd_boolean align)
3026 {
3027 if (align)
3028 {
3029 unsigned int al;
3030
3031 al = i_shdrp->sh_addralign;
3032 if (al > 1)
3033 offset = BFD_ALIGN (offset, al);
3034 }
3035 i_shdrp->sh_offset = offset;
3036 if (i_shdrp->bfd_section != NULL)
3037 i_shdrp->bfd_section->filepos = offset;
3038 if (i_shdrp->sh_type != SHT_NOBITS)
3039 offset += i_shdrp->sh_size;
3040 return offset;
3041 }
3042
3043 /* Compute the file positions we are going to put the sections at, and
3044 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3045 is not NULL, this is being called by the ELF backend linker. */
3046
3047 bfd_boolean
3048 _bfd_elf_compute_section_file_positions (bfd *abfd,
3049 struct bfd_link_info *link_info)
3050 {
3051 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3052 bfd_boolean failed;
3053 struct bfd_strtab_hash *strtab;
3054 Elf_Internal_Shdr *shstrtab_hdr;
3055
3056 if (abfd->output_has_begun)
3057 return TRUE;
3058
3059 /* Do any elf backend specific processing first. */
3060 if (bed->elf_backend_begin_write_processing)
3061 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3062
3063 if (! prep_headers (abfd))
3064 return FALSE;
3065
3066 /* Post process the headers if necessary. */
3067 if (bed->elf_backend_post_process_headers)
3068 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3069
3070 failed = FALSE;
3071 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3072 if (failed)
3073 return FALSE;
3074
3075 if (!assign_section_numbers (abfd))
3076 return FALSE;
3077
3078 /* The backend linker builds symbol table information itself. */
3079 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3080 {
3081 /* Non-zero if doing a relocatable link. */
3082 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3083
3084 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3085 return FALSE;
3086 }
3087
3088 if (link_info == NULL)
3089 {
3090 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3091 if (failed)
3092 return FALSE;
3093 }
3094
3095 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3096 /* sh_name was set in prep_headers. */
3097 shstrtab_hdr->sh_type = SHT_STRTAB;
3098 shstrtab_hdr->sh_flags = 0;
3099 shstrtab_hdr->sh_addr = 0;
3100 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3101 shstrtab_hdr->sh_entsize = 0;
3102 shstrtab_hdr->sh_link = 0;
3103 shstrtab_hdr->sh_info = 0;
3104 /* sh_offset is set in assign_file_positions_except_relocs. */
3105 shstrtab_hdr->sh_addralign = 1;
3106
3107 if (!assign_file_positions_except_relocs (abfd, link_info))
3108 return FALSE;
3109
3110 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3111 {
3112 file_ptr off;
3113 Elf_Internal_Shdr *hdr;
3114
3115 off = elf_tdata (abfd)->next_file_pos;
3116
3117 hdr = &elf_tdata (abfd)->symtab_hdr;
3118 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3119
3120 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3121 if (hdr->sh_size != 0)
3122 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3123
3124 hdr = &elf_tdata (abfd)->strtab_hdr;
3125 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3126
3127 elf_tdata (abfd)->next_file_pos = off;
3128
3129 /* Now that we know where the .strtab section goes, write it
3130 out. */
3131 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3132 || ! _bfd_stringtab_emit (abfd, strtab))
3133 return FALSE;
3134 _bfd_stringtab_free (strtab);
3135 }
3136
3137 abfd->output_has_begun = TRUE;
3138
3139 return TRUE;
3140 }
3141
3142 /* Create a mapping from a set of sections to a program segment. */
3143
3144 static struct elf_segment_map *
3145 make_mapping (bfd *abfd,
3146 asection **sections,
3147 unsigned int from,
3148 unsigned int to,
3149 bfd_boolean phdr)
3150 {
3151 struct elf_segment_map *m;
3152 unsigned int i;
3153 asection **hdrpp;
3154 bfd_size_type amt;
3155
3156 amt = sizeof (struct elf_segment_map);
3157 amt += (to - from - 1) * sizeof (asection *);
3158 m = bfd_zalloc (abfd, amt);
3159 if (m == NULL)
3160 return NULL;
3161 m->next = NULL;
3162 m->p_type = PT_LOAD;
3163 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3164 m->sections[i - from] = *hdrpp;
3165 m->count = to - from;
3166
3167 if (from == 0 && phdr)
3168 {
3169 /* Include the headers in the first PT_LOAD segment. */
3170 m->includes_filehdr = 1;
3171 m->includes_phdrs = 1;
3172 }
3173
3174 return m;
3175 }
3176
3177 /* Set up a mapping from BFD sections to program segments. */
3178
3179 static bfd_boolean
3180 map_sections_to_segments (bfd *abfd)
3181 {
3182 asection **sections = NULL;
3183 asection *s;
3184 unsigned int i;
3185 unsigned int count;
3186 struct elf_segment_map *mfirst;
3187 struct elf_segment_map **pm;
3188 struct elf_segment_map *m;
3189 asection *last_hdr;
3190 unsigned int phdr_index;
3191 bfd_vma maxpagesize;
3192 asection **hdrpp;
3193 bfd_boolean phdr_in_segment = TRUE;
3194 bfd_boolean writable;
3195 int tls_count = 0;
3196 asection *first_tls = NULL;
3197 asection *dynsec, *eh_frame_hdr;
3198 bfd_size_type amt;
3199
3200 if (elf_tdata (abfd)->segment_map != NULL)
3201 return TRUE;
3202
3203 if (bfd_count_sections (abfd) == 0)
3204 return TRUE;
3205
3206 /* Select the allocated sections, and sort them. */
3207
3208 amt = bfd_count_sections (abfd) * sizeof (asection *);
3209 sections = bfd_malloc (amt);
3210 if (sections == NULL)
3211 goto error_return;
3212
3213 i = 0;
3214 for (s = abfd->sections; s != NULL; s = s->next)
3215 {
3216 if ((s->flags & SEC_ALLOC) != 0)
3217 {
3218 sections[i] = s;
3219 ++i;
3220 }
3221 }
3222 BFD_ASSERT (i <= bfd_count_sections (abfd));
3223 count = i;
3224
3225 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3226
3227 /* Build the mapping. */
3228
3229 mfirst = NULL;
3230 pm = &mfirst;
3231
3232 /* If we have a .interp section, then create a PT_PHDR segment for
3233 the program headers and a PT_INTERP segment for the .interp
3234 section. */
3235 s = bfd_get_section_by_name (abfd, ".interp");
3236 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3237 {
3238 amt = sizeof (struct elf_segment_map);
3239 m = bfd_zalloc (abfd, amt);
3240 if (m == NULL)
3241 goto error_return;
3242 m->next = NULL;
3243 m->p_type = PT_PHDR;
3244 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3245 m->p_flags = PF_R | PF_X;
3246 m->p_flags_valid = 1;
3247 m->includes_phdrs = 1;
3248
3249 *pm = m;
3250 pm = &m->next;
3251
3252 amt = sizeof (struct elf_segment_map);
3253 m = bfd_zalloc (abfd, amt);
3254 if (m == NULL)
3255 goto error_return;
3256 m->next = NULL;
3257 m->p_type = PT_INTERP;
3258 m->count = 1;
3259 m->sections[0] = s;
3260
3261 *pm = m;
3262 pm = &m->next;
3263 }
3264
3265 /* Look through the sections. We put sections in the same program
3266 segment when the start of the second section can be placed within
3267 a few bytes of the end of the first section. */
3268 last_hdr = NULL;
3269 phdr_index = 0;
3270 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3271 writable = FALSE;
3272 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3273 if (dynsec != NULL
3274 && (dynsec->flags & SEC_LOAD) == 0)
3275 dynsec = NULL;
3276
3277 /* Deal with -Ttext or something similar such that the first section
3278 is not adjacent to the program headers. This is an
3279 approximation, since at this point we don't know exactly how many
3280 program headers we will need. */
3281 if (count > 0)
3282 {
3283 bfd_size_type phdr_size;
3284
3285 phdr_size = elf_tdata (abfd)->program_header_size;
3286 if (phdr_size == 0)
3287 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3288 if ((abfd->flags & D_PAGED) == 0
3289 || sections[0]->lma < phdr_size
3290 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3291 phdr_in_segment = FALSE;
3292 }
3293
3294 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3295 {
3296 asection *hdr;
3297 bfd_boolean new_segment;
3298
3299 hdr = *hdrpp;
3300
3301 /* See if this section and the last one will fit in the same
3302 segment. */
3303
3304 if (last_hdr == NULL)
3305 {
3306 /* If we don't have a segment yet, then we don't need a new
3307 one (we build the last one after this loop). */
3308 new_segment = FALSE;
3309 }
3310 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3311 {
3312 /* If this section has a different relation between the
3313 virtual address and the load address, then we need a new
3314 segment. */
3315 new_segment = TRUE;
3316 }
3317 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3318 < BFD_ALIGN (hdr->lma, maxpagesize))
3319 {
3320 /* If putting this section in this segment would force us to
3321 skip a page in the segment, then we need a new segment. */
3322 new_segment = TRUE;
3323 }
3324 else if ((last_hdr->flags & SEC_LOAD) == 0
3325 && (hdr->flags & SEC_LOAD) != 0)
3326 {
3327 /* We don't want to put a loadable section after a
3328 nonloadable section in the same segment. */
3329 new_segment = TRUE;
3330 }
3331 else if ((abfd->flags & D_PAGED) == 0)
3332 {
3333 /* If the file is not demand paged, which means that we
3334 don't require the sections to be correctly aligned in the
3335 file, then there is no other reason for a new segment. */
3336 new_segment = FALSE;
3337 }
3338 else if (! writable
3339 && (hdr->flags & SEC_READONLY) == 0
3340 && (((last_hdr->lma + last_hdr->_raw_size - 1)
3341 & ~(maxpagesize - 1))
3342 != (hdr->lma & ~(maxpagesize - 1))))
3343 {
3344 /* We don't want to put a writable section in a read only
3345 segment, unless they are on the same page in memory
3346 anyhow. We already know that the last section does not
3347 bring us past the current section on the page, so the
3348 only case in which the new section is not on the same
3349 page as the previous section is when the previous section
3350 ends precisely on a page boundary. */
3351 new_segment = TRUE;
3352 }
3353 else
3354 {
3355 /* Otherwise, we can use the same segment. */
3356 new_segment = FALSE;
3357 }
3358
3359 if (! new_segment)
3360 {
3361 if ((hdr->flags & SEC_READONLY) == 0)
3362 writable = TRUE;
3363 /* Ignore .tbss section for segment layout purposes. */
3364 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3365 last_hdr = hdr;
3366 continue;
3367 }
3368
3369 /* We need a new program segment. We must create a new program
3370 header holding all the sections from phdr_index until hdr. */
3371
3372 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3373 if (m == NULL)
3374 goto error_return;
3375
3376 *pm = m;
3377 pm = &m->next;
3378
3379 if ((hdr->flags & SEC_READONLY) == 0)
3380 writable = TRUE;
3381 else
3382 writable = FALSE;
3383
3384 last_hdr = hdr;
3385 phdr_index = i;
3386 phdr_in_segment = FALSE;
3387 }
3388
3389 /* Create a final PT_LOAD program segment. */
3390 if (last_hdr != NULL)
3391 {
3392 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3393 if (m == NULL)
3394 goto error_return;
3395
3396 *pm = m;
3397 pm = &m->next;
3398 }
3399
3400 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3401 if (dynsec != NULL)
3402 {
3403 amt = sizeof (struct elf_segment_map);
3404 m = bfd_zalloc (abfd, amt);
3405 if (m == NULL)
3406 goto error_return;
3407 m->next = NULL;
3408 m->p_type = PT_DYNAMIC;
3409 m->count = 1;
3410 m->sections[0] = dynsec;
3411
3412 *pm = m;
3413 pm = &m->next;
3414 }
3415
3416 /* For each loadable .note section, add a PT_NOTE segment. We don't
3417 use bfd_get_section_by_name, because if we link together
3418 nonloadable .note sections and loadable .note sections, we will
3419 generate two .note sections in the output file. FIXME: Using
3420 names for section types is bogus anyhow. */
3421 for (s = abfd->sections; s != NULL; s = s->next)
3422 {
3423 if ((s->flags & SEC_LOAD) != 0
3424 && strncmp (s->name, ".note", 5) == 0)
3425 {
3426 amt = sizeof (struct elf_segment_map);
3427 m = bfd_zalloc (abfd, amt);
3428 if (m == NULL)
3429 goto error_return;
3430 m->next = NULL;
3431 m->p_type = PT_NOTE;
3432 m->count = 1;
3433 m->sections[0] = s;
3434
3435 *pm = m;
3436 pm = &m->next;
3437 }
3438 if (s->flags & SEC_THREAD_LOCAL)
3439 {
3440 if (! tls_count)
3441 first_tls = s;
3442 tls_count++;
3443 }
3444 }
3445
3446 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3447 if (tls_count > 0)
3448 {
3449 int i;
3450
3451 amt = sizeof (struct elf_segment_map);
3452 amt += (tls_count - 1) * sizeof (asection *);
3453 m = bfd_zalloc (abfd, amt);
3454 if (m == NULL)
3455 goto error_return;
3456 m->next = NULL;
3457 m->p_type = PT_TLS;
3458 m->count = tls_count;
3459 /* Mandated PF_R. */
3460 m->p_flags = PF_R;
3461 m->p_flags_valid = 1;
3462 for (i = 0; i < tls_count; ++i)
3463 {
3464 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3465 m->sections[i] = first_tls;
3466 first_tls = first_tls->next;
3467 }
3468
3469 *pm = m;
3470 pm = &m->next;
3471 }
3472
3473 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3474 segment. */
3475 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3476 if (eh_frame_hdr != NULL
3477 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3478 {
3479 amt = sizeof (struct elf_segment_map);
3480 m = bfd_zalloc (abfd, amt);
3481 if (m == NULL)
3482 goto error_return;
3483 m->next = NULL;
3484 m->p_type = PT_GNU_EH_FRAME;
3485 m->count = 1;
3486 m->sections[0] = eh_frame_hdr->output_section;
3487
3488 *pm = m;
3489 pm = &m->next;
3490 }
3491
3492 if (elf_tdata (abfd)->stack_flags)
3493 {
3494 amt = sizeof (struct elf_segment_map);
3495 m = bfd_zalloc (abfd, amt);
3496 if (m == NULL)
3497 goto error_return;
3498 m->next = NULL;
3499 m->p_type = PT_GNU_STACK;
3500 m->p_flags = elf_tdata (abfd)->stack_flags;
3501 m->p_flags_valid = 1;
3502
3503 *pm = m;
3504 pm = &m->next;
3505 }
3506
3507 free (sections);
3508 sections = NULL;
3509
3510 elf_tdata (abfd)->segment_map = mfirst;
3511 return TRUE;
3512
3513 error_return:
3514 if (sections != NULL)
3515 free (sections);
3516 return FALSE;
3517 }
3518
3519 /* Sort sections by address. */
3520
3521 static int
3522 elf_sort_sections (const void *arg1, const void *arg2)
3523 {
3524 const asection *sec1 = *(const asection **) arg1;
3525 const asection *sec2 = *(const asection **) arg2;
3526 bfd_size_type size1, size2;
3527
3528 /* Sort by LMA first, since this is the address used to
3529 place the section into a segment. */
3530 if (sec1->lma < sec2->lma)
3531 return -1;
3532 else if (sec1->lma > sec2->lma)
3533 return 1;
3534
3535 /* Then sort by VMA. Normally the LMA and the VMA will be
3536 the same, and this will do nothing. */
3537 if (sec1->vma < sec2->vma)
3538 return -1;
3539 else if (sec1->vma > sec2->vma)
3540 return 1;
3541
3542 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3543
3544 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3545
3546 if (TOEND (sec1))
3547 {
3548 if (TOEND (sec2))
3549 {
3550 /* If the indicies are the same, do not return 0
3551 here, but continue to try the next comparison. */
3552 if (sec1->target_index - sec2->target_index != 0)
3553 return sec1->target_index - sec2->target_index;
3554 }
3555 else
3556 return 1;
3557 }
3558 else if (TOEND (sec2))
3559 return -1;
3560
3561 #undef TOEND
3562
3563 /* Sort by size, to put zero sized sections
3564 before others at the same address. */
3565
3566 size1 = (sec1->flags & SEC_LOAD) ? sec1->_raw_size : 0;
3567 size2 = (sec2->flags & SEC_LOAD) ? sec2->_raw_size : 0;
3568
3569 if (size1 < size2)
3570 return -1;
3571 if (size1 > size2)
3572 return 1;
3573
3574 return sec1->target_index - sec2->target_index;
3575 }
3576
3577 /* Ian Lance Taylor writes:
3578
3579 We shouldn't be using % with a negative signed number. That's just
3580 not good. We have to make sure either that the number is not
3581 negative, or that the number has an unsigned type. When the types
3582 are all the same size they wind up as unsigned. When file_ptr is a
3583 larger signed type, the arithmetic winds up as signed long long,
3584 which is wrong.
3585
3586 What we're trying to say here is something like ``increase OFF by
3587 the least amount that will cause it to be equal to the VMA modulo
3588 the page size.'' */
3589 /* In other words, something like:
3590
3591 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3592 off_offset = off % bed->maxpagesize;
3593 if (vma_offset < off_offset)
3594 adjustment = vma_offset + bed->maxpagesize - off_offset;
3595 else
3596 adjustment = vma_offset - off_offset;
3597
3598 which can can be collapsed into the expression below. */
3599
3600 static file_ptr
3601 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3602 {
3603 return ((vma - off) % maxpagesize);
3604 }
3605
3606 /* Assign file positions to the sections based on the mapping from
3607 sections to segments. This function also sets up some fields in
3608 the file header, and writes out the program headers. */
3609
3610 static bfd_boolean
3611 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3612 {
3613 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3614 unsigned int count;
3615 struct elf_segment_map *m;
3616 unsigned int alloc;
3617 Elf_Internal_Phdr *phdrs;
3618 file_ptr off, voff;
3619 bfd_vma filehdr_vaddr, filehdr_paddr;
3620 bfd_vma phdrs_vaddr, phdrs_paddr;
3621 Elf_Internal_Phdr *p;
3622 bfd_size_type amt;
3623
3624 if (elf_tdata (abfd)->segment_map == NULL)
3625 {
3626 if (! map_sections_to_segments (abfd))
3627 return FALSE;
3628 }
3629 else
3630 {
3631 /* The placement algorithm assumes that non allocated sections are
3632 not in PT_LOAD segments. We ensure this here by removing such
3633 sections from the segment map. */
3634 for (m = elf_tdata (abfd)->segment_map;
3635 m != NULL;
3636 m = m->next)
3637 {
3638 unsigned int new_count;
3639 unsigned int i;
3640
3641 if (m->p_type != PT_LOAD)
3642 continue;
3643
3644 new_count = 0;
3645 for (i = 0; i < m->count; i ++)
3646 {
3647 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3648 {
3649 if (i != new_count)
3650 m->sections[new_count] = m->sections[i];
3651
3652 new_count ++;
3653 }
3654 }
3655
3656 if (new_count != m->count)
3657 m->count = new_count;
3658 }
3659 }
3660
3661 if (bed->elf_backend_modify_segment_map)
3662 {
3663 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3664 return FALSE;
3665 }
3666
3667 count = 0;
3668 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3669 ++count;
3670
3671 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3672 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3673 elf_elfheader (abfd)->e_phnum = count;
3674
3675 if (count == 0)
3676 return TRUE;
3677
3678 /* If we already counted the number of program segments, make sure
3679 that we allocated enough space. This happens when SIZEOF_HEADERS
3680 is used in a linker script. */
3681 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3682 if (alloc != 0 && count > alloc)
3683 {
3684 ((*_bfd_error_handler)
3685 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3686 bfd_get_filename (abfd), alloc, count));
3687 bfd_set_error (bfd_error_bad_value);
3688 return FALSE;
3689 }
3690
3691 if (alloc == 0)
3692 alloc = count;
3693
3694 amt = alloc * sizeof (Elf_Internal_Phdr);
3695 phdrs = bfd_alloc (abfd, amt);
3696 if (phdrs == NULL)
3697 return FALSE;
3698
3699 off = bed->s->sizeof_ehdr;
3700 off += alloc * bed->s->sizeof_phdr;
3701
3702 filehdr_vaddr = 0;
3703 filehdr_paddr = 0;
3704 phdrs_vaddr = 0;
3705 phdrs_paddr = 0;
3706
3707 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3708 m != NULL;
3709 m = m->next, p++)
3710 {
3711 unsigned int i;
3712 asection **secpp;
3713
3714 /* If elf_segment_map is not from map_sections_to_segments, the
3715 sections may not be correctly ordered. NOTE: sorting should
3716 not be done to the PT_NOTE section of a corefile, which may
3717 contain several pseudo-sections artificially created by bfd.
3718 Sorting these pseudo-sections breaks things badly. */
3719 if (m->count > 1
3720 && !(elf_elfheader (abfd)->e_type == ET_CORE
3721 && m->p_type == PT_NOTE))
3722 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3723 elf_sort_sections);
3724
3725 p->p_type = m->p_type;
3726 p->p_flags = m->p_flags;
3727
3728 if (p->p_type == PT_LOAD
3729 && m->count > 0
3730 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3731 {
3732 if ((abfd->flags & D_PAGED) != 0)
3733 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3734 bed->maxpagesize);
3735 else
3736 {
3737 bfd_size_type align;
3738
3739 align = 0;
3740 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3741 {
3742 bfd_size_type secalign;
3743
3744 secalign = bfd_get_section_alignment (abfd, *secpp);
3745 if (secalign > align)
3746 align = secalign;
3747 }
3748
3749 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3750 1 << align);
3751 }
3752 }
3753
3754 if (m->count == 0)
3755 p->p_vaddr = 0;
3756 else
3757 p->p_vaddr = m->sections[0]->vma;
3758
3759 if (m->p_paddr_valid)
3760 p->p_paddr = m->p_paddr;
3761 else if (m->count == 0)
3762 p->p_paddr = 0;
3763 else
3764 p->p_paddr = m->sections[0]->lma;
3765
3766 if (p->p_type == PT_LOAD
3767 && (abfd->flags & D_PAGED) != 0)
3768 p->p_align = bed->maxpagesize;
3769 else if (m->count == 0)
3770 p->p_align = 1 << bed->s->log_file_align;
3771 else
3772 p->p_align = 0;
3773
3774 p->p_offset = 0;
3775 p->p_filesz = 0;
3776 p->p_memsz = 0;
3777
3778 if (m->includes_filehdr)
3779 {
3780 if (! m->p_flags_valid)
3781 p->p_flags |= PF_R;
3782 p->p_offset = 0;
3783 p->p_filesz = bed->s->sizeof_ehdr;
3784 p->p_memsz = bed->s->sizeof_ehdr;
3785 if (m->count > 0)
3786 {
3787 BFD_ASSERT (p->p_type == PT_LOAD);
3788
3789 if (p->p_vaddr < (bfd_vma) off)
3790 {
3791 (*_bfd_error_handler)
3792 (_("%s: Not enough room for program headers, try linking with -N"),
3793 bfd_get_filename (abfd));
3794 bfd_set_error (bfd_error_bad_value);
3795 return FALSE;
3796 }
3797
3798 p->p_vaddr -= off;
3799 if (! m->p_paddr_valid)
3800 p->p_paddr -= off;
3801 }
3802 if (p->p_type == PT_LOAD)
3803 {
3804 filehdr_vaddr = p->p_vaddr;
3805 filehdr_paddr = p->p_paddr;
3806 }
3807 }
3808
3809 if (m->includes_phdrs)
3810 {
3811 if (! m->p_flags_valid)
3812 p->p_flags |= PF_R;
3813
3814 if (m->includes_filehdr)
3815 {
3816 if (p->p_type == PT_LOAD)
3817 {
3818 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3819 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3820 }
3821 }
3822 else
3823 {
3824 p->p_offset = bed->s->sizeof_ehdr;
3825
3826 if (m->count > 0)
3827 {
3828 BFD_ASSERT (p->p_type == PT_LOAD);
3829 p->p_vaddr -= off - p->p_offset;
3830 if (! m->p_paddr_valid)
3831 p->p_paddr -= off - p->p_offset;
3832 }
3833
3834 if (p->p_type == PT_LOAD)
3835 {
3836 phdrs_vaddr = p->p_vaddr;
3837 phdrs_paddr = p->p_paddr;
3838 }
3839 else
3840 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3841 }
3842
3843 p->p_filesz += alloc * bed->s->sizeof_phdr;
3844 p->p_memsz += alloc * bed->s->sizeof_phdr;
3845 }
3846
3847 if (p->p_type == PT_LOAD
3848 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3849 {
3850 if (! m->includes_filehdr && ! m->includes_phdrs)
3851 p->p_offset = off;
3852 else
3853 {
3854 file_ptr adjust;
3855
3856 adjust = off - (p->p_offset + p->p_filesz);
3857 p->p_filesz += adjust;
3858 p->p_memsz += adjust;
3859 }
3860 }
3861
3862 voff = off;
3863
3864 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3865 {
3866 asection *sec;
3867 flagword flags;
3868 bfd_size_type align;
3869
3870 sec = *secpp;
3871 flags = sec->flags;
3872 align = 1 << bfd_get_section_alignment (abfd, sec);
3873
3874 /* The section may have artificial alignment forced by a
3875 link script. Notice this case by the gap between the
3876 cumulative phdr lma and the section's lma. */
3877 if (p->p_paddr + p->p_memsz < sec->lma)
3878 {
3879 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3880
3881 p->p_memsz += adjust;
3882 if (p->p_type == PT_LOAD
3883 || (p->p_type == PT_NOTE
3884 && bfd_get_format (abfd) == bfd_core))
3885 {
3886 off += adjust;
3887 voff += adjust;
3888 }
3889 if ((flags & SEC_LOAD) != 0
3890 || (flags & SEC_THREAD_LOCAL) != 0)
3891 p->p_filesz += adjust;
3892 }
3893
3894 if (p->p_type == PT_LOAD)
3895 {
3896 bfd_signed_vma adjust;
3897
3898 if ((flags & SEC_LOAD) != 0)
3899 {
3900 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3901 if (adjust < 0)
3902 adjust = 0;
3903 }
3904 else if ((flags & SEC_ALLOC) != 0)
3905 {
3906 /* The section VMA must equal the file position
3907 modulo the page size. FIXME: I'm not sure if
3908 this adjustment is really necessary. We used to
3909 not have the SEC_LOAD case just above, and then
3910 this was necessary, but now I'm not sure. */
3911 if ((abfd->flags & D_PAGED) != 0)
3912 adjust = vma_page_aligned_bias (sec->vma, voff,
3913 bed->maxpagesize);
3914 else
3915 adjust = vma_page_aligned_bias (sec->vma, voff,
3916 align);
3917 }
3918 else
3919 adjust = 0;
3920
3921 if (adjust != 0)
3922 {
3923 if (i == 0)
3924 {
3925 (* _bfd_error_handler) (_("\
3926 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3927 bfd_section_name (abfd, sec),
3928 sec->lma,
3929 p->p_paddr);
3930 return FALSE;
3931 }
3932 p->p_memsz += adjust;
3933 off += adjust;
3934 voff += adjust;
3935 if ((flags & SEC_LOAD) != 0)
3936 p->p_filesz += adjust;
3937 }
3938
3939 sec->filepos = off;
3940
3941 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3942 used in a linker script we may have a section with
3943 SEC_LOAD clear but which is supposed to have
3944 contents. */
3945 if ((flags & SEC_LOAD) != 0
3946 || (flags & SEC_HAS_CONTENTS) != 0)
3947 off += sec->_raw_size;
3948
3949 if ((flags & SEC_ALLOC) != 0
3950 && ((flags & SEC_LOAD) != 0
3951 || (flags & SEC_THREAD_LOCAL) == 0))
3952 voff += sec->_raw_size;
3953 }
3954
3955 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3956 {
3957 /* The actual "note" segment has i == 0.
3958 This is the one that actually contains everything. */
3959 if (i == 0)
3960 {
3961 sec->filepos = off;
3962 p->p_filesz = sec->_raw_size;
3963 off += sec->_raw_size;
3964 voff = off;
3965 }
3966 else
3967 {
3968 /* Fake sections -- don't need to be written. */
3969 sec->filepos = 0;
3970 sec->_raw_size = 0;
3971 flags = sec->flags = 0;
3972 }
3973 p->p_memsz = 0;
3974 p->p_align = 1;
3975 }
3976 else
3977 {
3978 if ((sec->flags & SEC_LOAD) != 0
3979 || (sec->flags & SEC_THREAD_LOCAL) == 0
3980 || p->p_type == PT_TLS)
3981 p->p_memsz += sec->_raw_size;
3982
3983 if ((flags & SEC_LOAD) != 0)
3984 p->p_filesz += sec->_raw_size;
3985
3986 if (p->p_type == PT_TLS
3987 && sec->_raw_size == 0
3988 && (sec->flags & SEC_HAS_CONTENTS) == 0)
3989 {
3990 struct bfd_link_order *o;
3991 bfd_vma tbss_size = 0;
3992
3993 for (o = sec->link_order_head; o != NULL; o = o->next)
3994 if (tbss_size < o->offset + o->size)
3995 tbss_size = o->offset + o->size;
3996
3997 p->p_memsz += tbss_size;
3998 }
3999
4000 if (align > p->p_align
4001 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4002 p->p_align = align;
4003 }
4004
4005 if (! m->p_flags_valid)
4006 {
4007 p->p_flags |= PF_R;
4008 if ((flags & SEC_CODE) != 0)
4009 p->p_flags |= PF_X;
4010 if ((flags & SEC_READONLY) == 0)
4011 p->p_flags |= PF_W;
4012 }
4013 }
4014 }
4015
4016 /* Now that we have set the section file positions, we can set up
4017 the file positions for the non PT_LOAD segments. */
4018 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4019 m != NULL;
4020 m = m->next, p++)
4021 {
4022 if (p->p_type != PT_LOAD && m->count > 0)
4023 {
4024 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4025 p->p_offset = m->sections[0]->filepos;
4026 }
4027 if (m->count == 0)
4028 {
4029 if (m->includes_filehdr)
4030 {
4031 p->p_vaddr = filehdr_vaddr;
4032 if (! m->p_paddr_valid)
4033 p->p_paddr = filehdr_paddr;
4034 }
4035 else if (m->includes_phdrs)
4036 {
4037 p->p_vaddr = phdrs_vaddr;
4038 if (! m->p_paddr_valid)
4039 p->p_paddr = phdrs_paddr;
4040 }
4041 }
4042 }
4043
4044 /* Clear out any program headers we allocated but did not use. */
4045 for (; count < alloc; count++, p++)
4046 {
4047 memset (p, 0, sizeof *p);
4048 p->p_type = PT_NULL;
4049 }
4050
4051 elf_tdata (abfd)->phdr = phdrs;
4052
4053 elf_tdata (abfd)->next_file_pos = off;
4054
4055 /* Write out the program headers. */
4056 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4057 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4058 return FALSE;
4059
4060 return TRUE;
4061 }
4062
4063 /* Get the size of the program header.
4064
4065 If this is called by the linker before any of the section VMA's are set, it
4066 can't calculate the correct value for a strange memory layout. This only
4067 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4068 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4069 data segment (exclusive of .interp and .dynamic).
4070
4071 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4072 will be two segments. */
4073
4074 static bfd_size_type
4075 get_program_header_size (bfd *abfd)
4076 {
4077 size_t segs;
4078 asection *s;
4079 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4080
4081 /* We can't return a different result each time we're called. */
4082 if (elf_tdata (abfd)->program_header_size != 0)
4083 return elf_tdata (abfd)->program_header_size;
4084
4085 if (elf_tdata (abfd)->segment_map != NULL)
4086 {
4087 struct elf_segment_map *m;
4088
4089 segs = 0;
4090 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4091 ++segs;
4092 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4093 return elf_tdata (abfd)->program_header_size;
4094 }
4095
4096 /* Assume we will need exactly two PT_LOAD segments: one for text
4097 and one for data. */
4098 segs = 2;
4099
4100 s = bfd_get_section_by_name (abfd, ".interp");
4101 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4102 {
4103 /* If we have a loadable interpreter section, we need a
4104 PT_INTERP segment. In this case, assume we also need a
4105 PT_PHDR segment, although that may not be true for all
4106 targets. */
4107 segs += 2;
4108 }
4109
4110 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4111 {
4112 /* We need a PT_DYNAMIC segment. */
4113 ++segs;
4114 }
4115
4116 if (elf_tdata (abfd)->eh_frame_hdr)
4117 {
4118 /* We need a PT_GNU_EH_FRAME segment. */
4119 ++segs;
4120 }
4121
4122 if (elf_tdata (abfd)->stack_flags)
4123 {
4124 /* We need a PT_GNU_STACK segment. */
4125 ++segs;
4126 }
4127
4128 for (s = abfd->sections; s != NULL; s = s->next)
4129 {
4130 if ((s->flags & SEC_LOAD) != 0
4131 && strncmp (s->name, ".note", 5) == 0)
4132 {
4133 /* We need a PT_NOTE segment. */
4134 ++segs;
4135 }
4136 }
4137
4138 for (s = abfd->sections; s != NULL; s = s->next)
4139 {
4140 if (s->flags & SEC_THREAD_LOCAL)
4141 {
4142 /* We need a PT_TLS segment. */
4143 ++segs;
4144 break;
4145 }
4146 }
4147
4148 /* Let the backend count up any program headers it might need. */
4149 if (bed->elf_backend_additional_program_headers)
4150 {
4151 int a;
4152
4153 a = (*bed->elf_backend_additional_program_headers) (abfd);
4154 if (a == -1)
4155 abort ();
4156 segs += a;
4157 }
4158
4159 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4160 return elf_tdata (abfd)->program_header_size;
4161 }
4162
4163 /* Work out the file positions of all the sections. This is called by
4164 _bfd_elf_compute_section_file_positions. All the section sizes and
4165 VMAs must be known before this is called.
4166
4167 We do not consider reloc sections at this point, unless they form
4168 part of the loadable image. Reloc sections are assigned file
4169 positions in assign_file_positions_for_relocs, which is called by
4170 write_object_contents and final_link.
4171
4172 We also don't set the positions of the .symtab and .strtab here. */
4173
4174 static bfd_boolean
4175 assign_file_positions_except_relocs (bfd *abfd,
4176 struct bfd_link_info *link_info)
4177 {
4178 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4179 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4180 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4181 unsigned int num_sec = elf_numsections (abfd);
4182 file_ptr off;
4183 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4184
4185 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4186 && bfd_get_format (abfd) != bfd_core)
4187 {
4188 Elf_Internal_Shdr **hdrpp;
4189 unsigned int i;
4190
4191 /* Start after the ELF header. */
4192 off = i_ehdrp->e_ehsize;
4193
4194 /* We are not creating an executable, which means that we are
4195 not creating a program header, and that the actual order of
4196 the sections in the file is unimportant. */
4197 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4198 {
4199 Elf_Internal_Shdr *hdr;
4200
4201 hdr = *hdrpp;
4202 if (hdr->sh_type == SHT_REL
4203 || hdr->sh_type == SHT_RELA
4204 || i == tdata->symtab_section
4205 || i == tdata->symtab_shndx_section
4206 || i == tdata->strtab_section)
4207 {
4208 hdr->sh_offset = -1;
4209 }
4210 else
4211 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4212
4213 if (i == SHN_LORESERVE - 1)
4214 {
4215 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4216 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4217 }
4218 }
4219 }
4220 else
4221 {
4222 unsigned int i;
4223 Elf_Internal_Shdr **hdrpp;
4224
4225 /* Assign file positions for the loaded sections based on the
4226 assignment of sections to segments. */
4227 if (! assign_file_positions_for_segments (abfd, link_info))
4228 return FALSE;
4229
4230 /* Assign file positions for the other sections. */
4231
4232 off = elf_tdata (abfd)->next_file_pos;
4233 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4234 {
4235 Elf_Internal_Shdr *hdr;
4236
4237 hdr = *hdrpp;
4238 if (hdr->bfd_section != NULL
4239 && hdr->bfd_section->filepos != 0)
4240 hdr->sh_offset = hdr->bfd_section->filepos;
4241 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4242 {
4243 ((*_bfd_error_handler)
4244 (_("%s: warning: allocated section `%s' not in segment"),
4245 bfd_get_filename (abfd),
4246 (hdr->bfd_section == NULL
4247 ? "*unknown*"
4248 : hdr->bfd_section->name)));
4249 if ((abfd->flags & D_PAGED) != 0)
4250 off += vma_page_aligned_bias (hdr->sh_addr, off,
4251 bed->maxpagesize);
4252 else
4253 off += vma_page_aligned_bias (hdr->sh_addr, off,
4254 hdr->sh_addralign);
4255 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4256 FALSE);
4257 }
4258 else if (hdr->sh_type == SHT_REL
4259 || hdr->sh_type == SHT_RELA
4260 || hdr == i_shdrpp[tdata->symtab_section]
4261 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4262 || hdr == i_shdrpp[tdata->strtab_section])
4263 hdr->sh_offset = -1;
4264 else
4265 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4266
4267 if (i == SHN_LORESERVE - 1)
4268 {
4269 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4270 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4271 }
4272 }
4273 }
4274
4275 /* Place the section headers. */
4276 off = align_file_position (off, 1 << bed->s->log_file_align);
4277 i_ehdrp->e_shoff = off;
4278 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4279
4280 elf_tdata (abfd)->next_file_pos = off;
4281
4282 return TRUE;
4283 }
4284
4285 static bfd_boolean
4286 prep_headers (bfd *abfd)
4287 {
4288 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4289 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4290 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4291 struct elf_strtab_hash *shstrtab;
4292 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4293
4294 i_ehdrp = elf_elfheader (abfd);
4295 i_shdrp = elf_elfsections (abfd);
4296
4297 shstrtab = _bfd_elf_strtab_init ();
4298 if (shstrtab == NULL)
4299 return FALSE;
4300
4301 elf_shstrtab (abfd) = shstrtab;
4302
4303 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4304 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4305 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4306 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4307
4308 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4309 i_ehdrp->e_ident[EI_DATA] =
4310 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4311 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4312
4313 if ((abfd->flags & DYNAMIC) != 0)
4314 i_ehdrp->e_type = ET_DYN;
4315 else if ((abfd->flags & EXEC_P) != 0)
4316 i_ehdrp->e_type = ET_EXEC;
4317 else if (bfd_get_format (abfd) == bfd_core)
4318 i_ehdrp->e_type = ET_CORE;
4319 else
4320 i_ehdrp->e_type = ET_REL;
4321
4322 switch (bfd_get_arch (abfd))
4323 {
4324 case bfd_arch_unknown:
4325 i_ehdrp->e_machine = EM_NONE;
4326 break;
4327
4328 /* There used to be a long list of cases here, each one setting
4329 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4330 in the corresponding bfd definition. To avoid duplication,
4331 the switch was removed. Machines that need special handling
4332 can generally do it in elf_backend_final_write_processing(),
4333 unless they need the information earlier than the final write.
4334 Such need can generally be supplied by replacing the tests for
4335 e_machine with the conditions used to determine it. */
4336 default:
4337 i_ehdrp->e_machine = bed->elf_machine_code;
4338 }
4339
4340 i_ehdrp->e_version = bed->s->ev_current;
4341 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4342
4343 /* No program header, for now. */
4344 i_ehdrp->e_phoff = 0;
4345 i_ehdrp->e_phentsize = 0;
4346 i_ehdrp->e_phnum = 0;
4347
4348 /* Each bfd section is section header entry. */
4349 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4350 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4351
4352 /* If we're building an executable, we'll need a program header table. */
4353 if (abfd->flags & EXEC_P)
4354 {
4355 /* It all happens later. */
4356 #if 0
4357 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4358
4359 /* elf_build_phdrs() returns a (NULL-terminated) array of
4360 Elf_Internal_Phdrs. */
4361 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4362 i_ehdrp->e_phoff = outbase;
4363 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4364 #endif
4365 }
4366 else
4367 {
4368 i_ehdrp->e_phentsize = 0;
4369 i_phdrp = 0;
4370 i_ehdrp->e_phoff = 0;
4371 }
4372
4373 elf_tdata (abfd)->symtab_hdr.sh_name =
4374 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4375 elf_tdata (abfd)->strtab_hdr.sh_name =
4376 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4377 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4378 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4379 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4380 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4381 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4382 return FALSE;
4383
4384 return TRUE;
4385 }
4386
4387 /* Assign file positions for all the reloc sections which are not part
4388 of the loadable file image. */
4389
4390 void
4391 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4392 {
4393 file_ptr off;
4394 unsigned int i, num_sec;
4395 Elf_Internal_Shdr **shdrpp;
4396
4397 off = elf_tdata (abfd)->next_file_pos;
4398
4399 num_sec = elf_numsections (abfd);
4400 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4401 {
4402 Elf_Internal_Shdr *shdrp;
4403
4404 shdrp = *shdrpp;
4405 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4406 && shdrp->sh_offset == -1)
4407 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4408 }
4409
4410 elf_tdata (abfd)->next_file_pos = off;
4411 }
4412
4413 bfd_boolean
4414 _bfd_elf_write_object_contents (bfd *abfd)
4415 {
4416 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4417 Elf_Internal_Ehdr *i_ehdrp;
4418 Elf_Internal_Shdr **i_shdrp;
4419 bfd_boolean failed;
4420 unsigned int count, num_sec;
4421
4422 if (! abfd->output_has_begun
4423 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4424 return FALSE;
4425
4426 i_shdrp = elf_elfsections (abfd);
4427 i_ehdrp = elf_elfheader (abfd);
4428
4429 failed = FALSE;
4430 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4431 if (failed)
4432 return FALSE;
4433
4434 _bfd_elf_assign_file_positions_for_relocs (abfd);
4435
4436 /* After writing the headers, we need to write the sections too... */
4437 num_sec = elf_numsections (abfd);
4438 for (count = 1; count < num_sec; count++)
4439 {
4440 if (bed->elf_backend_section_processing)
4441 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4442 if (i_shdrp[count]->contents)
4443 {
4444 bfd_size_type amt = i_shdrp[count]->sh_size;
4445
4446 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4447 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4448 return FALSE;
4449 }
4450 if (count == SHN_LORESERVE - 1)
4451 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4452 }
4453
4454 /* Write out the section header names. */
4455 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4456 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4457 return FALSE;
4458
4459 if (bed->elf_backend_final_write_processing)
4460 (*bed->elf_backend_final_write_processing) (abfd,
4461 elf_tdata (abfd)->linker);
4462
4463 return bed->s->write_shdrs_and_ehdr (abfd);
4464 }
4465
4466 bfd_boolean
4467 _bfd_elf_write_corefile_contents (bfd *abfd)
4468 {
4469 /* Hopefully this can be done just like an object file. */
4470 return _bfd_elf_write_object_contents (abfd);
4471 }
4472
4473 /* Given a section, search the header to find them. */
4474
4475 int
4476 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4477 {
4478 const struct elf_backend_data *bed;
4479 int index;
4480
4481 if (elf_section_data (asect) != NULL
4482 && elf_section_data (asect)->this_idx != 0)
4483 return elf_section_data (asect)->this_idx;
4484
4485 if (bfd_is_abs_section (asect))
4486 index = SHN_ABS;
4487 else if (bfd_is_com_section (asect))
4488 index = SHN_COMMON;
4489 else if (bfd_is_und_section (asect))
4490 index = SHN_UNDEF;
4491 else
4492 {
4493 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4494 int maxindex = elf_numsections (abfd);
4495
4496 for (index = 1; index < maxindex; index++)
4497 {
4498 Elf_Internal_Shdr *hdr = i_shdrp[index];
4499
4500 if (hdr != NULL && hdr->bfd_section == asect)
4501 return index;
4502 }
4503 index = -1;
4504 }
4505
4506 bed = get_elf_backend_data (abfd);
4507 if (bed->elf_backend_section_from_bfd_section)
4508 {
4509 int retval = index;
4510
4511 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4512 return retval;
4513 }
4514
4515 if (index == -1)
4516 bfd_set_error (bfd_error_nonrepresentable_section);
4517
4518 return index;
4519 }
4520
4521 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4522 on error. */
4523
4524 int
4525 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4526 {
4527 asymbol *asym_ptr = *asym_ptr_ptr;
4528 int idx;
4529 flagword flags = asym_ptr->flags;
4530
4531 /* When gas creates relocations against local labels, it creates its
4532 own symbol for the section, but does put the symbol into the
4533 symbol chain, so udata is 0. When the linker is generating
4534 relocatable output, this section symbol may be for one of the
4535 input sections rather than the output section. */
4536 if (asym_ptr->udata.i == 0
4537 && (flags & BSF_SECTION_SYM)
4538 && asym_ptr->section)
4539 {
4540 int indx;
4541
4542 if (asym_ptr->section->output_section != NULL)
4543 indx = asym_ptr->section->output_section->index;
4544 else
4545 indx = asym_ptr->section->index;
4546 if (indx < elf_num_section_syms (abfd)
4547 && elf_section_syms (abfd)[indx] != NULL)
4548 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4549 }
4550
4551 idx = asym_ptr->udata.i;
4552
4553 if (idx == 0)
4554 {
4555 /* This case can occur when using --strip-symbol on a symbol
4556 which is used in a relocation entry. */
4557 (*_bfd_error_handler)
4558 (_("%s: symbol `%s' required but not present"),
4559 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4560 bfd_set_error (bfd_error_no_symbols);
4561 return -1;
4562 }
4563
4564 #if DEBUG & 4
4565 {
4566 fprintf (stderr,
4567 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4568 (long) asym_ptr, asym_ptr->name, idx, flags,
4569 elf_symbol_flags (flags));
4570 fflush (stderr);
4571 }
4572 #endif
4573
4574 return idx;
4575 }
4576
4577 /* Copy private BFD data. This copies any program header information. */
4578
4579 static bfd_boolean
4580 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4581 {
4582 Elf_Internal_Ehdr *iehdr;
4583 struct elf_segment_map *map;
4584 struct elf_segment_map *map_first;
4585 struct elf_segment_map **pointer_to_map;
4586 Elf_Internal_Phdr *segment;
4587 asection *section;
4588 unsigned int i;
4589 unsigned int num_segments;
4590 bfd_boolean phdr_included = FALSE;
4591 bfd_vma maxpagesize;
4592 struct elf_segment_map *phdr_adjust_seg = NULL;
4593 unsigned int phdr_adjust_num = 0;
4594 const struct elf_backend_data *bed;
4595
4596 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4597 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4598 return TRUE;
4599
4600 if (elf_tdata (ibfd)->phdr == NULL)
4601 return TRUE;
4602
4603 bed = get_elf_backend_data (ibfd);
4604 iehdr = elf_elfheader (ibfd);
4605
4606 map_first = NULL;
4607 pointer_to_map = &map_first;
4608
4609 num_segments = elf_elfheader (ibfd)->e_phnum;
4610 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4611
4612 /* Returns the end address of the segment + 1. */
4613 #define SEGMENT_END(segment, start) \
4614 (start + (segment->p_memsz > segment->p_filesz \
4615 ? segment->p_memsz : segment->p_filesz))
4616
4617 #define SECTION_SIZE(section, segment) \
4618 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4619 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4620 ? section->_raw_size : 0)
4621
4622 /* Returns TRUE if the given section is contained within
4623 the given segment. VMA addresses are compared. */
4624 #define IS_CONTAINED_BY_VMA(section, segment) \
4625 (section->vma >= segment->p_vaddr \
4626 && (section->vma + SECTION_SIZE (section, segment) \
4627 <= (SEGMENT_END (segment, segment->p_vaddr))))
4628
4629 /* Returns TRUE if the given section is contained within
4630 the given segment. LMA addresses are compared. */
4631 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4632 (section->lma >= base \
4633 && (section->lma + SECTION_SIZE (section, segment) \
4634 <= SEGMENT_END (segment, base)))
4635
4636 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4637 #define IS_COREFILE_NOTE(p, s) \
4638 (p->p_type == PT_NOTE \
4639 && bfd_get_format (ibfd) == bfd_core \
4640 && s->vma == 0 && s->lma == 0 \
4641 && (bfd_vma) s->filepos >= p->p_offset \
4642 && ((bfd_vma) s->filepos + s->_raw_size \
4643 <= p->p_offset + p->p_filesz))
4644
4645 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4646 linker, which generates a PT_INTERP section with p_vaddr and
4647 p_memsz set to 0. */
4648 #define IS_SOLARIS_PT_INTERP(p, s) \
4649 (p->p_vaddr == 0 \
4650 && p->p_paddr == 0 \
4651 && p->p_memsz == 0 \
4652 && p->p_filesz > 0 \
4653 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4654 && s->_raw_size > 0 \
4655 && (bfd_vma) s->filepos >= p->p_offset \
4656 && ((bfd_vma) s->filepos + s->_raw_size \
4657 <= p->p_offset + p->p_filesz))
4658
4659 /* Decide if the given section should be included in the given segment.
4660 A section will be included if:
4661 1. It is within the address space of the segment -- we use the LMA
4662 if that is set for the segment and the VMA otherwise,
4663 2. It is an allocated segment,
4664 3. There is an output section associated with it,
4665 4. The section has not already been allocated to a previous segment.
4666 5. PT_GNU_STACK segments do not include any sections.
4667 6. PT_TLS segment includes only SHF_TLS sections.
4668 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4669 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4670 ((((segment->p_paddr \
4671 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4672 : IS_CONTAINED_BY_VMA (section, segment)) \
4673 && (section->flags & SEC_ALLOC) != 0) \
4674 || IS_COREFILE_NOTE (segment, section)) \
4675 && section->output_section != NULL \
4676 && segment->p_type != PT_GNU_STACK \
4677 && (segment->p_type != PT_TLS \
4678 || (section->flags & SEC_THREAD_LOCAL)) \
4679 && (segment->p_type == PT_LOAD \
4680 || segment->p_type == PT_TLS \
4681 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4682 && ! section->segment_mark)
4683
4684 /* Returns TRUE iff seg1 starts after the end of seg2. */
4685 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4686 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4687
4688 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4689 their VMA address ranges and their LMA address ranges overlap.
4690 It is possible to have overlapping VMA ranges without overlapping LMA
4691 ranges. RedBoot images for example can have both .data and .bss mapped
4692 to the same VMA range, but with the .data section mapped to a different
4693 LMA. */
4694 #define SEGMENT_OVERLAPS(seg1, seg2) \
4695 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4696 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4697 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4698 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4699
4700 /* Initialise the segment mark field. */
4701 for (section = ibfd->sections; section != NULL; section = section->next)
4702 section->segment_mark = FALSE;
4703
4704 /* Scan through the segments specified in the program header
4705 of the input BFD. For this first scan we look for overlaps
4706 in the loadable segments. These can be created by weird
4707 parameters to objcopy. Also, fix some solaris weirdness. */
4708 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4709 i < num_segments;
4710 i++, segment++)
4711 {
4712 unsigned int j;
4713 Elf_Internal_Phdr *segment2;
4714
4715 if (segment->p_type == PT_INTERP)
4716 for (section = ibfd->sections; section; section = section->next)
4717 if (IS_SOLARIS_PT_INTERP (segment, section))
4718 {
4719 /* Mininal change so that the normal section to segment
4720 assignment code will work. */
4721 segment->p_vaddr = section->vma;
4722 break;
4723 }
4724
4725 if (segment->p_type != PT_LOAD)
4726 continue;
4727
4728 /* Determine if this segment overlaps any previous segments. */
4729 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4730 {
4731 bfd_signed_vma extra_length;
4732
4733 if (segment2->p_type != PT_LOAD
4734 || ! SEGMENT_OVERLAPS (segment, segment2))
4735 continue;
4736
4737 /* Merge the two segments together. */
4738 if (segment2->p_vaddr < segment->p_vaddr)
4739 {
4740 /* Extend SEGMENT2 to include SEGMENT and then delete
4741 SEGMENT. */
4742 extra_length =
4743 SEGMENT_END (segment, segment->p_vaddr)
4744 - SEGMENT_END (segment2, segment2->p_vaddr);
4745
4746 if (extra_length > 0)
4747 {
4748 segment2->p_memsz += extra_length;
4749 segment2->p_filesz += extra_length;
4750 }
4751
4752 segment->p_type = PT_NULL;
4753
4754 /* Since we have deleted P we must restart the outer loop. */
4755 i = 0;
4756 segment = elf_tdata (ibfd)->phdr;
4757 break;
4758 }
4759 else
4760 {
4761 /* Extend SEGMENT to include SEGMENT2 and then delete
4762 SEGMENT2. */
4763 extra_length =
4764 SEGMENT_END (segment2, segment2->p_vaddr)
4765 - SEGMENT_END (segment, segment->p_vaddr);
4766
4767 if (extra_length > 0)
4768 {
4769 segment->p_memsz += extra_length;
4770 segment->p_filesz += extra_length;
4771 }
4772
4773 segment2->p_type = PT_NULL;
4774 }
4775 }
4776 }
4777
4778 /* The second scan attempts to assign sections to segments. */
4779 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4780 i < num_segments;
4781 i ++, segment ++)
4782 {
4783 unsigned int section_count;
4784 asection ** sections;
4785 asection * output_section;
4786 unsigned int isec;
4787 bfd_vma matching_lma;
4788 bfd_vma suggested_lma;
4789 unsigned int j;
4790 bfd_size_type amt;
4791
4792 if (segment->p_type == PT_NULL)
4793 continue;
4794
4795 /* Compute how many sections might be placed into this segment. */
4796 for (section = ibfd->sections, section_count = 0;
4797 section != NULL;
4798 section = section->next)
4799 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4800 ++section_count;
4801
4802 /* Allocate a segment map big enough to contain
4803 all of the sections we have selected. */
4804 amt = sizeof (struct elf_segment_map);
4805 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4806 map = bfd_alloc (obfd, amt);
4807 if (map == NULL)
4808 return FALSE;
4809
4810 /* Initialise the fields of the segment map. Default to
4811 using the physical address of the segment in the input BFD. */
4812 map->next = NULL;
4813 map->p_type = segment->p_type;
4814 map->p_flags = segment->p_flags;
4815 map->p_flags_valid = 1;
4816 map->p_paddr = segment->p_paddr;
4817 map->p_paddr_valid = 1;
4818
4819 /* Determine if this segment contains the ELF file header
4820 and if it contains the program headers themselves. */
4821 map->includes_filehdr = (segment->p_offset == 0
4822 && segment->p_filesz >= iehdr->e_ehsize);
4823
4824 map->includes_phdrs = 0;
4825
4826 if (! phdr_included || segment->p_type != PT_LOAD)
4827 {
4828 map->includes_phdrs =
4829 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4830 && (segment->p_offset + segment->p_filesz
4831 >= ((bfd_vma) iehdr->e_phoff
4832 + iehdr->e_phnum * iehdr->e_phentsize)));
4833
4834 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4835 phdr_included = TRUE;
4836 }
4837
4838 if (section_count == 0)
4839 {
4840 /* Special segments, such as the PT_PHDR segment, may contain
4841 no sections, but ordinary, loadable segments should contain
4842 something. They are allowed by the ELF spec however, so only
4843 a warning is produced. */
4844 if (segment->p_type == PT_LOAD)
4845 (*_bfd_error_handler)
4846 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4847 bfd_archive_filename (ibfd));
4848
4849 map->count = 0;
4850 *pointer_to_map = map;
4851 pointer_to_map = &map->next;
4852
4853 continue;
4854 }
4855
4856 /* Now scan the sections in the input BFD again and attempt
4857 to add their corresponding output sections to the segment map.
4858 The problem here is how to handle an output section which has
4859 been moved (ie had its LMA changed). There are four possibilities:
4860
4861 1. None of the sections have been moved.
4862 In this case we can continue to use the segment LMA from the
4863 input BFD.
4864
4865 2. All of the sections have been moved by the same amount.
4866 In this case we can change the segment's LMA to match the LMA
4867 of the first section.
4868
4869 3. Some of the sections have been moved, others have not.
4870 In this case those sections which have not been moved can be
4871 placed in the current segment which will have to have its size,
4872 and possibly its LMA changed, and a new segment or segments will
4873 have to be created to contain the other sections.
4874
4875 4. The sections have been moved, but not by the same amount.
4876 In this case we can change the segment's LMA to match the LMA
4877 of the first section and we will have to create a new segment
4878 or segments to contain the other sections.
4879
4880 In order to save time, we allocate an array to hold the section
4881 pointers that we are interested in. As these sections get assigned
4882 to a segment, they are removed from this array. */
4883
4884 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4885 to work around this long long bug. */
4886 amt = section_count * sizeof (asection *);
4887 sections = bfd_malloc (amt);
4888 if (sections == NULL)
4889 return FALSE;
4890
4891 /* Step One: Scan for segment vs section LMA conflicts.
4892 Also add the sections to the section array allocated above.
4893 Also add the sections to the current segment. In the common
4894 case, where the sections have not been moved, this means that
4895 we have completely filled the segment, and there is nothing
4896 more to do. */
4897 isec = 0;
4898 matching_lma = 0;
4899 suggested_lma = 0;
4900
4901 for (j = 0, section = ibfd->sections;
4902 section != NULL;
4903 section = section->next)
4904 {
4905 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4906 {
4907 output_section = section->output_section;
4908
4909 sections[j ++] = section;
4910
4911 /* The Solaris native linker always sets p_paddr to 0.
4912 We try to catch that case here, and set it to the
4913 correct value. Note - some backends require that
4914 p_paddr be left as zero. */
4915 if (segment->p_paddr == 0
4916 && segment->p_vaddr != 0
4917 && (! bed->want_p_paddr_set_to_zero)
4918 && isec == 0
4919 && output_section->lma != 0
4920 && (output_section->vma == (segment->p_vaddr
4921 + (map->includes_filehdr
4922 ? iehdr->e_ehsize
4923 : 0)
4924 + (map->includes_phdrs
4925 ? (iehdr->e_phnum
4926 * iehdr->e_phentsize)
4927 : 0))))
4928 map->p_paddr = segment->p_vaddr;
4929
4930 /* Match up the physical address of the segment with the
4931 LMA address of the output section. */
4932 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4933 || IS_COREFILE_NOTE (segment, section)
4934 || (bed->want_p_paddr_set_to_zero &&
4935 IS_CONTAINED_BY_VMA (output_section, segment))
4936 )
4937 {
4938 if (matching_lma == 0)
4939 matching_lma = output_section->lma;
4940
4941 /* We assume that if the section fits within the segment
4942 then it does not overlap any other section within that
4943 segment. */
4944 map->sections[isec ++] = output_section;
4945 }
4946 else if (suggested_lma == 0)
4947 suggested_lma = output_section->lma;
4948 }
4949 }
4950
4951 BFD_ASSERT (j == section_count);
4952
4953 /* Step Two: Adjust the physical address of the current segment,
4954 if necessary. */
4955 if (isec == section_count)
4956 {
4957 /* All of the sections fitted within the segment as currently
4958 specified. This is the default case. Add the segment to
4959 the list of built segments and carry on to process the next
4960 program header in the input BFD. */
4961 map->count = section_count;
4962 *pointer_to_map = map;
4963 pointer_to_map = &map->next;
4964
4965 free (sections);
4966 continue;
4967 }
4968 else
4969 {
4970 if (matching_lma != 0)
4971 {
4972 /* At least one section fits inside the current segment.
4973 Keep it, but modify its physical address to match the
4974 LMA of the first section that fitted. */
4975 map->p_paddr = matching_lma;
4976 }
4977 else
4978 {
4979 /* None of the sections fitted inside the current segment.
4980 Change the current segment's physical address to match
4981 the LMA of the first section. */
4982 map->p_paddr = suggested_lma;
4983 }
4984
4985 /* Offset the segment physical address from the lma
4986 to allow for space taken up by elf headers. */
4987 if (map->includes_filehdr)
4988 map->p_paddr -= iehdr->e_ehsize;
4989
4990 if (map->includes_phdrs)
4991 {
4992 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
4993
4994 /* iehdr->e_phnum is just an estimate of the number
4995 of program headers that we will need. Make a note
4996 here of the number we used and the segment we chose
4997 to hold these headers, so that we can adjust the
4998 offset when we know the correct value. */
4999 phdr_adjust_num = iehdr->e_phnum;
5000 phdr_adjust_seg = map;
5001 }
5002 }
5003
5004 /* Step Three: Loop over the sections again, this time assigning
5005 those that fit to the current segment and removing them from the
5006 sections array; but making sure not to leave large gaps. Once all
5007 possible sections have been assigned to the current segment it is
5008 added to the list of built segments and if sections still remain
5009 to be assigned, a new segment is constructed before repeating
5010 the loop. */
5011 isec = 0;
5012 do
5013 {
5014 map->count = 0;
5015 suggested_lma = 0;
5016
5017 /* Fill the current segment with sections that fit. */
5018 for (j = 0; j < section_count; j++)
5019 {
5020 section = sections[j];
5021
5022 if (section == NULL)
5023 continue;
5024
5025 output_section = section->output_section;
5026
5027 BFD_ASSERT (output_section != NULL);
5028
5029 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5030 || IS_COREFILE_NOTE (segment, section))
5031 {
5032 if (map->count == 0)
5033 {
5034 /* If the first section in a segment does not start at
5035 the beginning of the segment, then something is
5036 wrong. */
5037 if (output_section->lma !=
5038 (map->p_paddr
5039 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5040 + (map->includes_phdrs
5041 ? iehdr->e_phnum * iehdr->e_phentsize
5042 : 0)))
5043 abort ();
5044 }
5045 else
5046 {
5047 asection * prev_sec;
5048
5049 prev_sec = map->sections[map->count - 1];
5050
5051 /* If the gap between the end of the previous section
5052 and the start of this section is more than
5053 maxpagesize then we need to start a new segment. */
5054 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
5055 maxpagesize)
5056 < BFD_ALIGN (output_section->lma, maxpagesize))
5057 || ((prev_sec->lma + prev_sec->_raw_size)
5058 > output_section->lma))
5059 {
5060 if (suggested_lma == 0)
5061 suggested_lma = output_section->lma;
5062
5063 continue;
5064 }
5065 }
5066
5067 map->sections[map->count++] = output_section;
5068 ++isec;
5069 sections[j] = NULL;
5070 section->segment_mark = TRUE;
5071 }
5072 else if (suggested_lma == 0)
5073 suggested_lma = output_section->lma;
5074 }
5075
5076 BFD_ASSERT (map->count > 0);
5077
5078 /* Add the current segment to the list of built segments. */
5079 *pointer_to_map = map;
5080 pointer_to_map = &map->next;
5081
5082 if (isec < section_count)
5083 {
5084 /* We still have not allocated all of the sections to
5085 segments. Create a new segment here, initialise it
5086 and carry on looping. */
5087 amt = sizeof (struct elf_segment_map);
5088 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5089 map = bfd_alloc (obfd, amt);
5090 if (map == NULL)
5091 {
5092 free (sections);
5093 return FALSE;
5094 }
5095
5096 /* Initialise the fields of the segment map. Set the physical
5097 physical address to the LMA of the first section that has
5098 not yet been assigned. */
5099 map->next = NULL;
5100 map->p_type = segment->p_type;
5101 map->p_flags = segment->p_flags;
5102 map->p_flags_valid = 1;
5103 map->p_paddr = suggested_lma;
5104 map->p_paddr_valid = 1;
5105 map->includes_filehdr = 0;
5106 map->includes_phdrs = 0;
5107 }
5108 }
5109 while (isec < section_count);
5110
5111 free (sections);
5112 }
5113
5114 /* The Solaris linker creates program headers in which all the
5115 p_paddr fields are zero. When we try to objcopy or strip such a
5116 file, we get confused. Check for this case, and if we find it
5117 reset the p_paddr_valid fields. */
5118 for (map = map_first; map != NULL; map = map->next)
5119 if (map->p_paddr != 0)
5120 break;
5121 if (map == NULL)
5122 for (map = map_first; map != NULL; map = map->next)
5123 map->p_paddr_valid = 0;
5124
5125 elf_tdata (obfd)->segment_map = map_first;
5126
5127 /* If we had to estimate the number of program headers that were
5128 going to be needed, then check our estimate now and adjust
5129 the offset if necessary. */
5130 if (phdr_adjust_seg != NULL)
5131 {
5132 unsigned int count;
5133
5134 for (count = 0, map = map_first; map != NULL; map = map->next)
5135 count++;
5136
5137 if (count > phdr_adjust_num)
5138 phdr_adjust_seg->p_paddr
5139 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5140 }
5141
5142 #if 0
5143 /* Final Step: Sort the segments into ascending order of physical
5144 address. */
5145 if (map_first != NULL)
5146 {
5147 struct elf_segment_map *prev;
5148
5149 prev = map_first;
5150 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5151 {
5152 /* Yes I know - its a bubble sort.... */
5153 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5154 {
5155 /* Swap map and map->next. */
5156 prev->next = map->next;
5157 map->next = map->next->next;
5158 prev->next->next = map;
5159
5160 /* Restart loop. */
5161 map = map_first;
5162 }
5163 }
5164 }
5165 #endif
5166
5167 #undef SEGMENT_END
5168 #undef SECTION_SIZE
5169 #undef IS_CONTAINED_BY_VMA
5170 #undef IS_CONTAINED_BY_LMA
5171 #undef IS_COREFILE_NOTE
5172 #undef IS_SOLARIS_PT_INTERP
5173 #undef INCLUDE_SECTION_IN_SEGMENT
5174 #undef SEGMENT_AFTER_SEGMENT
5175 #undef SEGMENT_OVERLAPS
5176 return TRUE;
5177 }
5178
5179 /* Copy private section information. This copies over the entsize
5180 field, and sometimes the info field. */
5181
5182 bfd_boolean
5183 _bfd_elf_copy_private_section_data (bfd *ibfd,
5184 asection *isec,
5185 bfd *obfd,
5186 asection *osec)
5187 {
5188 Elf_Internal_Shdr *ihdr, *ohdr;
5189
5190 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5191 || obfd->xvec->flavour != bfd_target_elf_flavour)
5192 return TRUE;
5193
5194 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5195 {
5196 asection *s;
5197
5198 /* Only set up the segments if there are no more SEC_ALLOC
5199 sections. FIXME: This won't do the right thing if objcopy is
5200 used to remove the last SEC_ALLOC section, since objcopy
5201 won't call this routine in that case. */
5202 for (s = isec->next; s != NULL; s = s->next)
5203 if ((s->flags & SEC_ALLOC) != 0)
5204 break;
5205 if (s == NULL)
5206 {
5207 if (! copy_private_bfd_data (ibfd, obfd))
5208 return FALSE;
5209 }
5210 }
5211
5212 ihdr = &elf_section_data (isec)->this_hdr;
5213 ohdr = &elf_section_data (osec)->this_hdr;
5214
5215 ohdr->sh_entsize = ihdr->sh_entsize;
5216
5217 if (ihdr->sh_type == SHT_SYMTAB
5218 || ihdr->sh_type == SHT_DYNSYM
5219 || ihdr->sh_type == SHT_GNU_verneed
5220 || ihdr->sh_type == SHT_GNU_verdef)
5221 ohdr->sh_info = ihdr->sh_info;
5222
5223 /* Set things up for objcopy. The output SHT_GROUP section will
5224 have its elf_next_in_group pointing back to the input group
5225 members. */
5226 elf_next_in_group (osec) = elf_next_in_group (isec);
5227 elf_group_name (osec) = elf_group_name (isec);
5228
5229 osec->use_rela_p = isec->use_rela_p;
5230
5231 return TRUE;
5232 }
5233
5234 /* Copy private symbol information. If this symbol is in a section
5235 which we did not map into a BFD section, try to map the section
5236 index correctly. We use special macro definitions for the mapped
5237 section indices; these definitions are interpreted by the
5238 swap_out_syms function. */
5239
5240 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5241 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5242 #define MAP_STRTAB (SHN_HIOS + 3)
5243 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5244 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5245
5246 bfd_boolean
5247 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5248 asymbol *isymarg,
5249 bfd *obfd,
5250 asymbol *osymarg)
5251 {
5252 elf_symbol_type *isym, *osym;
5253
5254 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5255 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5256 return TRUE;
5257
5258 isym = elf_symbol_from (ibfd, isymarg);
5259 osym = elf_symbol_from (obfd, osymarg);
5260
5261 if (isym != NULL
5262 && osym != NULL
5263 && bfd_is_abs_section (isym->symbol.section))
5264 {
5265 unsigned int shndx;
5266
5267 shndx = isym->internal_elf_sym.st_shndx;
5268 if (shndx == elf_onesymtab (ibfd))
5269 shndx = MAP_ONESYMTAB;
5270 else if (shndx == elf_dynsymtab (ibfd))
5271 shndx = MAP_DYNSYMTAB;
5272 else if (shndx == elf_tdata (ibfd)->strtab_section)
5273 shndx = MAP_STRTAB;
5274 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5275 shndx = MAP_SHSTRTAB;
5276 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5277 shndx = MAP_SYM_SHNDX;
5278 osym->internal_elf_sym.st_shndx = shndx;
5279 }
5280
5281 return TRUE;
5282 }
5283
5284 /* Swap out the symbols. */
5285
5286 static bfd_boolean
5287 swap_out_syms (bfd *abfd,
5288 struct bfd_strtab_hash **sttp,
5289 int relocatable_p)
5290 {
5291 const struct elf_backend_data *bed;
5292 int symcount;
5293 asymbol **syms;
5294 struct bfd_strtab_hash *stt;
5295 Elf_Internal_Shdr *symtab_hdr;
5296 Elf_Internal_Shdr *symtab_shndx_hdr;
5297 Elf_Internal_Shdr *symstrtab_hdr;
5298 char *outbound_syms;
5299 char *outbound_shndx;
5300 int idx;
5301 bfd_size_type amt;
5302 bfd_boolean name_local_sections;
5303
5304 if (!elf_map_symbols (abfd))
5305 return FALSE;
5306
5307 /* Dump out the symtabs. */
5308 stt = _bfd_elf_stringtab_init ();
5309 if (stt == NULL)
5310 return FALSE;
5311
5312 bed = get_elf_backend_data (abfd);
5313 symcount = bfd_get_symcount (abfd);
5314 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5315 symtab_hdr->sh_type = SHT_SYMTAB;
5316 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5317 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5318 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5319 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5320
5321 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5322 symstrtab_hdr->sh_type = SHT_STRTAB;
5323
5324 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5325 outbound_syms = bfd_alloc (abfd, amt);
5326 if (outbound_syms == NULL)
5327 {
5328 _bfd_stringtab_free (stt);
5329 return FALSE;
5330 }
5331 symtab_hdr->contents = outbound_syms;
5332
5333 outbound_shndx = NULL;
5334 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5335 if (symtab_shndx_hdr->sh_name != 0)
5336 {
5337 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5338 outbound_shndx = bfd_zalloc (abfd, amt);
5339 if (outbound_shndx == NULL)
5340 {
5341 _bfd_stringtab_free (stt);
5342 return FALSE;
5343 }
5344
5345 symtab_shndx_hdr->contents = outbound_shndx;
5346 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5347 symtab_shndx_hdr->sh_size = amt;
5348 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5349 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5350 }
5351
5352 /* Now generate the data (for "contents"). */
5353 {
5354 /* Fill in zeroth symbol and swap it out. */
5355 Elf_Internal_Sym sym;
5356 sym.st_name = 0;
5357 sym.st_value = 0;
5358 sym.st_size = 0;
5359 sym.st_info = 0;
5360 sym.st_other = 0;
5361 sym.st_shndx = SHN_UNDEF;
5362 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5363 outbound_syms += bed->s->sizeof_sym;
5364 if (outbound_shndx != NULL)
5365 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5366 }
5367
5368 name_local_sections
5369 = (bed->elf_backend_name_local_section_symbols
5370 && bed->elf_backend_name_local_section_symbols (abfd));
5371
5372 syms = bfd_get_outsymbols (abfd);
5373 for (idx = 0; idx < symcount; idx++)
5374 {
5375 Elf_Internal_Sym sym;
5376 bfd_vma value = syms[idx]->value;
5377 elf_symbol_type *type_ptr;
5378 flagword flags = syms[idx]->flags;
5379 int type;
5380
5381 if (!name_local_sections
5382 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5383 {
5384 /* Local section symbols have no name. */
5385 sym.st_name = 0;
5386 }
5387 else
5388 {
5389 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5390 syms[idx]->name,
5391 TRUE, FALSE);
5392 if (sym.st_name == (unsigned long) -1)
5393 {
5394 _bfd_stringtab_free (stt);
5395 return FALSE;
5396 }
5397 }
5398
5399 type_ptr = elf_symbol_from (abfd, syms[idx]);
5400
5401 if ((flags & BSF_SECTION_SYM) == 0
5402 && bfd_is_com_section (syms[idx]->section))
5403 {
5404 /* ELF common symbols put the alignment into the `value' field,
5405 and the size into the `size' field. This is backwards from
5406 how BFD handles it, so reverse it here. */
5407 sym.st_size = value;
5408 if (type_ptr == NULL
5409 || type_ptr->internal_elf_sym.st_value == 0)
5410 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5411 else
5412 sym.st_value = type_ptr->internal_elf_sym.st_value;
5413 sym.st_shndx = _bfd_elf_section_from_bfd_section
5414 (abfd, syms[idx]->section);
5415 }
5416 else
5417 {
5418 asection *sec = syms[idx]->section;
5419 int shndx;
5420
5421 if (sec->output_section)
5422 {
5423 value += sec->output_offset;
5424 sec = sec->output_section;
5425 }
5426
5427 /* Don't add in the section vma for relocatable output. */
5428 if (! relocatable_p)
5429 value += sec->vma;
5430 sym.st_value = value;
5431 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5432
5433 if (bfd_is_abs_section (sec)
5434 && type_ptr != NULL
5435 && type_ptr->internal_elf_sym.st_shndx != 0)
5436 {
5437 /* This symbol is in a real ELF section which we did
5438 not create as a BFD section. Undo the mapping done
5439 by copy_private_symbol_data. */
5440 shndx = type_ptr->internal_elf_sym.st_shndx;
5441 switch (shndx)
5442 {
5443 case MAP_ONESYMTAB:
5444 shndx = elf_onesymtab (abfd);
5445 break;
5446 case MAP_DYNSYMTAB:
5447 shndx = elf_dynsymtab (abfd);
5448 break;
5449 case MAP_STRTAB:
5450 shndx = elf_tdata (abfd)->strtab_section;
5451 break;
5452 case MAP_SHSTRTAB:
5453 shndx = elf_tdata (abfd)->shstrtab_section;
5454 break;
5455 case MAP_SYM_SHNDX:
5456 shndx = elf_tdata (abfd)->symtab_shndx_section;
5457 break;
5458 default:
5459 break;
5460 }
5461 }
5462 else
5463 {
5464 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5465
5466 if (shndx == -1)
5467 {
5468 asection *sec2;
5469
5470 /* Writing this would be a hell of a lot easier if
5471 we had some decent documentation on bfd, and
5472 knew what to expect of the library, and what to
5473 demand of applications. For example, it
5474 appears that `objcopy' might not set the
5475 section of a symbol to be a section that is
5476 actually in the output file. */
5477 sec2 = bfd_get_section_by_name (abfd, sec->name);
5478 if (sec2 == NULL)
5479 {
5480 _bfd_error_handler (_("\
5481 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5482 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5483 sec->name);
5484 bfd_set_error (bfd_error_invalid_operation);
5485 _bfd_stringtab_free (stt);
5486 return FALSE;
5487 }
5488
5489 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5490 BFD_ASSERT (shndx != -1);
5491 }
5492 }
5493
5494 sym.st_shndx = shndx;
5495 }
5496
5497 if ((flags & BSF_THREAD_LOCAL) != 0)
5498 type = STT_TLS;
5499 else if ((flags & BSF_FUNCTION) != 0)
5500 type = STT_FUNC;
5501 else if ((flags & BSF_OBJECT) != 0)
5502 type = STT_OBJECT;
5503 else
5504 type = STT_NOTYPE;
5505
5506 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5507 type = STT_TLS;
5508
5509 /* Processor-specific types. */
5510 if (type_ptr != NULL
5511 && bed->elf_backend_get_symbol_type)
5512 type = ((*bed->elf_backend_get_symbol_type)
5513 (&type_ptr->internal_elf_sym, type));
5514
5515 if (flags & BSF_SECTION_SYM)
5516 {
5517 if (flags & BSF_GLOBAL)
5518 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5519 else
5520 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5521 }
5522 else if (bfd_is_com_section (syms[idx]->section))
5523 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5524 else if (bfd_is_und_section (syms[idx]->section))
5525 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5526 ? STB_WEAK
5527 : STB_GLOBAL),
5528 type);
5529 else if (flags & BSF_FILE)
5530 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5531 else
5532 {
5533 int bind = STB_LOCAL;
5534
5535 if (flags & BSF_LOCAL)
5536 bind = STB_LOCAL;
5537 else if (flags & BSF_WEAK)
5538 bind = STB_WEAK;
5539 else if (flags & BSF_GLOBAL)
5540 bind = STB_GLOBAL;
5541
5542 sym.st_info = ELF_ST_INFO (bind, type);
5543 }
5544
5545 if (type_ptr != NULL)
5546 sym.st_other = type_ptr->internal_elf_sym.st_other;
5547 else
5548 sym.st_other = 0;
5549
5550 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5551 outbound_syms += bed->s->sizeof_sym;
5552 if (outbound_shndx != NULL)
5553 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5554 }
5555
5556 *sttp = stt;
5557 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5558 symstrtab_hdr->sh_type = SHT_STRTAB;
5559
5560 symstrtab_hdr->sh_flags = 0;
5561 symstrtab_hdr->sh_addr = 0;
5562 symstrtab_hdr->sh_entsize = 0;
5563 symstrtab_hdr->sh_link = 0;
5564 symstrtab_hdr->sh_info = 0;
5565 symstrtab_hdr->sh_addralign = 1;
5566
5567 return TRUE;
5568 }
5569
5570 /* Return the number of bytes required to hold the symtab vector.
5571
5572 Note that we base it on the count plus 1, since we will null terminate
5573 the vector allocated based on this size. However, the ELF symbol table
5574 always has a dummy entry as symbol #0, so it ends up even. */
5575
5576 long
5577 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5578 {
5579 long symcount;
5580 long symtab_size;
5581 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5582
5583 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5584 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5585 if (symcount > 0)
5586 symtab_size -= sizeof (asymbol *);
5587
5588 return symtab_size;
5589 }
5590
5591 long
5592 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5593 {
5594 long symcount;
5595 long symtab_size;
5596 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5597
5598 if (elf_dynsymtab (abfd) == 0)
5599 {
5600 bfd_set_error (bfd_error_invalid_operation);
5601 return -1;
5602 }
5603
5604 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5605 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5606 if (symcount > 0)
5607 symtab_size -= sizeof (asymbol *);
5608
5609 return symtab_size;
5610 }
5611
5612 long
5613 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5614 sec_ptr asect)
5615 {
5616 return (asect->reloc_count + 1) * sizeof (arelent *);
5617 }
5618
5619 /* Canonicalize the relocs. */
5620
5621 long
5622 _bfd_elf_canonicalize_reloc (bfd *abfd,
5623 sec_ptr section,
5624 arelent **relptr,
5625 asymbol **symbols)
5626 {
5627 arelent *tblptr;
5628 unsigned int i;
5629 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5630
5631 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5632 return -1;
5633
5634 tblptr = section->relocation;
5635 for (i = 0; i < section->reloc_count; i++)
5636 *relptr++ = tblptr++;
5637
5638 *relptr = NULL;
5639
5640 return section->reloc_count;
5641 }
5642
5643 long
5644 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5645 {
5646 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5647 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5648
5649 if (symcount >= 0)
5650 bfd_get_symcount (abfd) = symcount;
5651 return symcount;
5652 }
5653
5654 long
5655 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5656 asymbol **allocation)
5657 {
5658 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5659 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5660
5661 if (symcount >= 0)
5662 bfd_get_dynamic_symcount (abfd) = symcount;
5663 return symcount;
5664 }
5665
5666 /* Return the size required for the dynamic reloc entries. Any
5667 section that was actually installed in the BFD, and has type
5668 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5669 considered to be a dynamic reloc section. */
5670
5671 long
5672 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5673 {
5674 long ret;
5675 asection *s;
5676
5677 if (elf_dynsymtab (abfd) == 0)
5678 {
5679 bfd_set_error (bfd_error_invalid_operation);
5680 return -1;
5681 }
5682
5683 ret = sizeof (arelent *);
5684 for (s = abfd->sections; s != NULL; s = s->next)
5685 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5686 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5687 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5688 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5689 * sizeof (arelent *));
5690
5691 return ret;
5692 }
5693
5694 /* Canonicalize the dynamic relocation entries. Note that we return
5695 the dynamic relocations as a single block, although they are
5696 actually associated with particular sections; the interface, which
5697 was designed for SunOS style shared libraries, expects that there
5698 is only one set of dynamic relocs. Any section that was actually
5699 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5700 the dynamic symbol table, is considered to be a dynamic reloc
5701 section. */
5702
5703 long
5704 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5705 arelent **storage,
5706 asymbol **syms)
5707 {
5708 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5709 asection *s;
5710 long ret;
5711
5712 if (elf_dynsymtab (abfd) == 0)
5713 {
5714 bfd_set_error (bfd_error_invalid_operation);
5715 return -1;
5716 }
5717
5718 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5719 ret = 0;
5720 for (s = abfd->sections; s != NULL; s = s->next)
5721 {
5722 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5723 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5724 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5725 {
5726 arelent *p;
5727 long count, i;
5728
5729 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
5730 return -1;
5731 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5732 p = s->relocation;
5733 for (i = 0; i < count; i++)
5734 *storage++ = p++;
5735 ret += count;
5736 }
5737 }
5738
5739 *storage = NULL;
5740
5741 return ret;
5742 }
5743 \f
5744 /* Read in the version information. */
5745
5746 bfd_boolean
5747 _bfd_elf_slurp_version_tables (bfd *abfd)
5748 {
5749 bfd_byte *contents = NULL;
5750 bfd_size_type amt;
5751
5752 if (elf_dynverdef (abfd) != 0)
5753 {
5754 Elf_Internal_Shdr *hdr;
5755 Elf_External_Verdef *everdef;
5756 Elf_Internal_Verdef *iverdef;
5757 Elf_Internal_Verdef *iverdefarr;
5758 Elf_Internal_Verdef iverdefmem;
5759 unsigned int i;
5760 unsigned int maxidx;
5761
5762 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5763
5764 contents = bfd_malloc (hdr->sh_size);
5765 if (contents == NULL)
5766 goto error_return;
5767 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5768 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5769 goto error_return;
5770
5771 /* We know the number of entries in the section but not the maximum
5772 index. Therefore we have to run through all entries and find
5773 the maximum. */
5774 everdef = (Elf_External_Verdef *) contents;
5775 maxidx = 0;
5776 for (i = 0; i < hdr->sh_info; ++i)
5777 {
5778 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5779
5780 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5781 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5782
5783 everdef = ((Elf_External_Verdef *)
5784 ((bfd_byte *) everdef + iverdefmem.vd_next));
5785 }
5786
5787 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5788 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
5789 if (elf_tdata (abfd)->verdef == NULL)
5790 goto error_return;
5791
5792 elf_tdata (abfd)->cverdefs = maxidx;
5793
5794 everdef = (Elf_External_Verdef *) contents;
5795 iverdefarr = elf_tdata (abfd)->verdef;
5796 for (i = 0; i < hdr->sh_info; i++)
5797 {
5798 Elf_External_Verdaux *everdaux;
5799 Elf_Internal_Verdaux *iverdaux;
5800 unsigned int j;
5801
5802 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5803
5804 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5805 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5806
5807 iverdef->vd_bfd = abfd;
5808
5809 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5810 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
5811 if (iverdef->vd_auxptr == NULL)
5812 goto error_return;
5813
5814 everdaux = ((Elf_External_Verdaux *)
5815 ((bfd_byte *) everdef + iverdef->vd_aux));
5816 iverdaux = iverdef->vd_auxptr;
5817 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5818 {
5819 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5820
5821 iverdaux->vda_nodename =
5822 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5823 iverdaux->vda_name);
5824 if (iverdaux->vda_nodename == NULL)
5825 goto error_return;
5826
5827 if (j + 1 < iverdef->vd_cnt)
5828 iverdaux->vda_nextptr = iverdaux + 1;
5829 else
5830 iverdaux->vda_nextptr = NULL;
5831
5832 everdaux = ((Elf_External_Verdaux *)
5833 ((bfd_byte *) everdaux + iverdaux->vda_next));
5834 }
5835
5836 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5837
5838 if (i + 1 < hdr->sh_info)
5839 iverdef->vd_nextdef = iverdef + 1;
5840 else
5841 iverdef->vd_nextdef = NULL;
5842
5843 everdef = ((Elf_External_Verdef *)
5844 ((bfd_byte *) everdef + iverdef->vd_next));
5845 }
5846
5847 free (contents);
5848 contents = NULL;
5849 }
5850
5851 if (elf_dynverref (abfd) != 0)
5852 {
5853 Elf_Internal_Shdr *hdr;
5854 Elf_External_Verneed *everneed;
5855 Elf_Internal_Verneed *iverneed;
5856 unsigned int i;
5857
5858 hdr = &elf_tdata (abfd)->dynverref_hdr;
5859
5860 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5861 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
5862 if (elf_tdata (abfd)->verref == NULL)
5863 goto error_return;
5864
5865 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5866
5867 contents = bfd_malloc (hdr->sh_size);
5868 if (contents == NULL)
5869 goto error_return;
5870 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5871 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5872 goto error_return;
5873
5874 everneed = (Elf_External_Verneed *) contents;
5875 iverneed = elf_tdata (abfd)->verref;
5876 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5877 {
5878 Elf_External_Vernaux *evernaux;
5879 Elf_Internal_Vernaux *ivernaux;
5880 unsigned int j;
5881
5882 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5883
5884 iverneed->vn_bfd = abfd;
5885
5886 iverneed->vn_filename =
5887 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5888 iverneed->vn_file);
5889 if (iverneed->vn_filename == NULL)
5890 goto error_return;
5891
5892 amt = iverneed->vn_cnt;
5893 amt *= sizeof (Elf_Internal_Vernaux);
5894 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
5895
5896 evernaux = ((Elf_External_Vernaux *)
5897 ((bfd_byte *) everneed + iverneed->vn_aux));
5898 ivernaux = iverneed->vn_auxptr;
5899 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5900 {
5901 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5902
5903 ivernaux->vna_nodename =
5904 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5905 ivernaux->vna_name);
5906 if (ivernaux->vna_nodename == NULL)
5907 goto error_return;
5908
5909 if (j + 1 < iverneed->vn_cnt)
5910 ivernaux->vna_nextptr = ivernaux + 1;
5911 else
5912 ivernaux->vna_nextptr = NULL;
5913
5914 evernaux = ((Elf_External_Vernaux *)
5915 ((bfd_byte *) evernaux + ivernaux->vna_next));
5916 }
5917
5918 if (i + 1 < hdr->sh_info)
5919 iverneed->vn_nextref = iverneed + 1;
5920 else
5921 iverneed->vn_nextref = NULL;
5922
5923 everneed = ((Elf_External_Verneed *)
5924 ((bfd_byte *) everneed + iverneed->vn_next));
5925 }
5926
5927 free (contents);
5928 contents = NULL;
5929 }
5930
5931 return TRUE;
5932
5933 error_return:
5934 if (contents != NULL)
5935 free (contents);
5936 return FALSE;
5937 }
5938 \f
5939 asymbol *
5940 _bfd_elf_make_empty_symbol (bfd *abfd)
5941 {
5942 elf_symbol_type *newsym;
5943 bfd_size_type amt = sizeof (elf_symbol_type);
5944
5945 newsym = bfd_zalloc (abfd, amt);
5946 if (!newsym)
5947 return NULL;
5948 else
5949 {
5950 newsym->symbol.the_bfd = abfd;
5951 return &newsym->symbol;
5952 }
5953 }
5954
5955 void
5956 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
5957 asymbol *symbol,
5958 symbol_info *ret)
5959 {
5960 bfd_symbol_info (symbol, ret);
5961 }
5962
5963 /* Return whether a symbol name implies a local symbol. Most targets
5964 use this function for the is_local_label_name entry point, but some
5965 override it. */
5966
5967 bfd_boolean
5968 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
5969 const char *name)
5970 {
5971 /* Normal local symbols start with ``.L''. */
5972 if (name[0] == '.' && name[1] == 'L')
5973 return TRUE;
5974
5975 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5976 DWARF debugging symbols starting with ``..''. */
5977 if (name[0] == '.' && name[1] == '.')
5978 return TRUE;
5979
5980 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5981 emitting DWARF debugging output. I suspect this is actually a
5982 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5983 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5984 underscore to be emitted on some ELF targets). For ease of use,
5985 we treat such symbols as local. */
5986 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
5987 return TRUE;
5988
5989 return FALSE;
5990 }
5991
5992 alent *
5993 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
5994 asymbol *symbol ATTRIBUTE_UNUSED)
5995 {
5996 abort ();
5997 return NULL;
5998 }
5999
6000 bfd_boolean
6001 _bfd_elf_set_arch_mach (bfd *abfd,
6002 enum bfd_architecture arch,
6003 unsigned long machine)
6004 {
6005 /* If this isn't the right architecture for this backend, and this
6006 isn't the generic backend, fail. */
6007 if (arch != get_elf_backend_data (abfd)->arch
6008 && arch != bfd_arch_unknown
6009 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6010 return FALSE;
6011
6012 return bfd_default_set_arch_mach (abfd, arch, machine);
6013 }
6014
6015 /* Find the function to a particular section and offset,
6016 for error reporting. */
6017
6018 static bfd_boolean
6019 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6020 asection *section,
6021 asymbol **symbols,
6022 bfd_vma offset,
6023 const char **filename_ptr,
6024 const char **functionname_ptr)
6025 {
6026 const char *filename;
6027 asymbol *func;
6028 bfd_vma low_func;
6029 asymbol **p;
6030
6031 filename = NULL;
6032 func = NULL;
6033 low_func = 0;
6034
6035 for (p = symbols; *p != NULL; p++)
6036 {
6037 elf_symbol_type *q;
6038
6039 q = (elf_symbol_type *) *p;
6040
6041 if (bfd_get_section (&q->symbol) != section)
6042 continue;
6043
6044 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6045 {
6046 default:
6047 break;
6048 case STT_FILE:
6049 filename = bfd_asymbol_name (&q->symbol);
6050 break;
6051 case STT_NOTYPE:
6052 case STT_FUNC:
6053 if (q->symbol.section == section
6054 && q->symbol.value >= low_func
6055 && q->symbol.value <= offset)
6056 {
6057 func = (asymbol *) q;
6058 low_func = q->symbol.value;
6059 }
6060 break;
6061 }
6062 }
6063
6064 if (func == NULL)
6065 return FALSE;
6066
6067 if (filename_ptr)
6068 *filename_ptr = filename;
6069 if (functionname_ptr)
6070 *functionname_ptr = bfd_asymbol_name (func);
6071
6072 return TRUE;
6073 }
6074
6075 /* Find the nearest line to a particular section and offset,
6076 for error reporting. */
6077
6078 bfd_boolean
6079 _bfd_elf_find_nearest_line (bfd *abfd,
6080 asection *section,
6081 asymbol **symbols,
6082 bfd_vma offset,
6083 const char **filename_ptr,
6084 const char **functionname_ptr,
6085 unsigned int *line_ptr)
6086 {
6087 bfd_boolean found;
6088
6089 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6090 filename_ptr, functionname_ptr,
6091 line_ptr))
6092 {
6093 if (!*functionname_ptr)
6094 elf_find_function (abfd, section, symbols, offset,
6095 *filename_ptr ? NULL : filename_ptr,
6096 functionname_ptr);
6097
6098 return TRUE;
6099 }
6100
6101 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6102 filename_ptr, functionname_ptr,
6103 line_ptr, 0,
6104 &elf_tdata (abfd)->dwarf2_find_line_info))
6105 {
6106 if (!*functionname_ptr)
6107 elf_find_function (abfd, section, symbols, offset,
6108 *filename_ptr ? NULL : filename_ptr,
6109 functionname_ptr);
6110
6111 return TRUE;
6112 }
6113
6114 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6115 &found, filename_ptr,
6116 functionname_ptr, line_ptr,
6117 &elf_tdata (abfd)->line_info))
6118 return FALSE;
6119 if (found && (*functionname_ptr || *line_ptr))
6120 return TRUE;
6121
6122 if (symbols == NULL)
6123 return FALSE;
6124
6125 if (! elf_find_function (abfd, section, symbols, offset,
6126 filename_ptr, functionname_ptr))
6127 return FALSE;
6128
6129 *line_ptr = 0;
6130 return TRUE;
6131 }
6132
6133 int
6134 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6135 {
6136 int ret;
6137
6138 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6139 if (! reloc)
6140 ret += get_program_header_size (abfd);
6141 return ret;
6142 }
6143
6144 bfd_boolean
6145 _bfd_elf_set_section_contents (bfd *abfd,
6146 sec_ptr section,
6147 const void *location,
6148 file_ptr offset,
6149 bfd_size_type count)
6150 {
6151 Elf_Internal_Shdr *hdr;
6152 bfd_signed_vma pos;
6153
6154 if (! abfd->output_has_begun
6155 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6156 return FALSE;
6157
6158 hdr = &elf_section_data (section)->this_hdr;
6159 pos = hdr->sh_offset + offset;
6160 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6161 || bfd_bwrite (location, count, abfd) != count)
6162 return FALSE;
6163
6164 return TRUE;
6165 }
6166
6167 void
6168 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6169 arelent *cache_ptr ATTRIBUTE_UNUSED,
6170 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6171 {
6172 abort ();
6173 }
6174
6175 /* Try to convert a non-ELF reloc into an ELF one. */
6176
6177 bfd_boolean
6178 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6179 {
6180 /* Check whether we really have an ELF howto. */
6181
6182 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6183 {
6184 bfd_reloc_code_real_type code;
6185 reloc_howto_type *howto;
6186
6187 /* Alien reloc: Try to determine its type to replace it with an
6188 equivalent ELF reloc. */
6189
6190 if (areloc->howto->pc_relative)
6191 {
6192 switch (areloc->howto->bitsize)
6193 {
6194 case 8:
6195 code = BFD_RELOC_8_PCREL;
6196 break;
6197 case 12:
6198 code = BFD_RELOC_12_PCREL;
6199 break;
6200 case 16:
6201 code = BFD_RELOC_16_PCREL;
6202 break;
6203 case 24:
6204 code = BFD_RELOC_24_PCREL;
6205 break;
6206 case 32:
6207 code = BFD_RELOC_32_PCREL;
6208 break;
6209 case 64:
6210 code = BFD_RELOC_64_PCREL;
6211 break;
6212 default:
6213 goto fail;
6214 }
6215
6216 howto = bfd_reloc_type_lookup (abfd, code);
6217
6218 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6219 {
6220 if (howto->pcrel_offset)
6221 areloc->addend += areloc->address;
6222 else
6223 areloc->addend -= areloc->address; /* addend is unsigned!! */
6224 }
6225 }
6226 else
6227 {
6228 switch (areloc->howto->bitsize)
6229 {
6230 case 8:
6231 code = BFD_RELOC_8;
6232 break;
6233 case 14:
6234 code = BFD_RELOC_14;
6235 break;
6236 case 16:
6237 code = BFD_RELOC_16;
6238 break;
6239 case 26:
6240 code = BFD_RELOC_26;
6241 break;
6242 case 32:
6243 code = BFD_RELOC_32;
6244 break;
6245 case 64:
6246 code = BFD_RELOC_64;
6247 break;
6248 default:
6249 goto fail;
6250 }
6251
6252 howto = bfd_reloc_type_lookup (abfd, code);
6253 }
6254
6255 if (howto)
6256 areloc->howto = howto;
6257 else
6258 goto fail;
6259 }
6260
6261 return TRUE;
6262
6263 fail:
6264 (*_bfd_error_handler)
6265 (_("%s: unsupported relocation type %s"),
6266 bfd_archive_filename (abfd), areloc->howto->name);
6267 bfd_set_error (bfd_error_bad_value);
6268 return FALSE;
6269 }
6270
6271 bfd_boolean
6272 _bfd_elf_close_and_cleanup (bfd *abfd)
6273 {
6274 if (bfd_get_format (abfd) == bfd_object)
6275 {
6276 if (elf_shstrtab (abfd) != NULL)
6277 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6278 }
6279
6280 return _bfd_generic_close_and_cleanup (abfd);
6281 }
6282
6283 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6284 in the relocation's offset. Thus we cannot allow any sort of sanity
6285 range-checking to interfere. There is nothing else to do in processing
6286 this reloc. */
6287
6288 bfd_reloc_status_type
6289 _bfd_elf_rel_vtable_reloc_fn
6290 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6291 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6292 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6293 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6294 {
6295 return bfd_reloc_ok;
6296 }
6297 \f
6298 /* Elf core file support. Much of this only works on native
6299 toolchains, since we rely on knowing the
6300 machine-dependent procfs structure in order to pick
6301 out details about the corefile. */
6302
6303 #ifdef HAVE_SYS_PROCFS_H
6304 # include <sys/procfs.h>
6305 #endif
6306
6307 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6308
6309 static int
6310 elfcore_make_pid (bfd *abfd)
6311 {
6312 return ((elf_tdata (abfd)->core_lwpid << 16)
6313 + (elf_tdata (abfd)->core_pid));
6314 }
6315
6316 /* If there isn't a section called NAME, make one, using
6317 data from SECT. Note, this function will generate a
6318 reference to NAME, so you shouldn't deallocate or
6319 overwrite it. */
6320
6321 static bfd_boolean
6322 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6323 {
6324 asection *sect2;
6325
6326 if (bfd_get_section_by_name (abfd, name) != NULL)
6327 return TRUE;
6328
6329 sect2 = bfd_make_section (abfd, name);
6330 if (sect2 == NULL)
6331 return FALSE;
6332
6333 sect2->_raw_size = sect->_raw_size;
6334 sect2->filepos = sect->filepos;
6335 sect2->flags = sect->flags;
6336 sect2->alignment_power = sect->alignment_power;
6337 return TRUE;
6338 }
6339
6340 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6341 actually creates up to two pseudosections:
6342 - For the single-threaded case, a section named NAME, unless
6343 such a section already exists.
6344 - For the multi-threaded case, a section named "NAME/PID", where
6345 PID is elfcore_make_pid (abfd).
6346 Both pseudosections have identical contents. */
6347 bfd_boolean
6348 _bfd_elfcore_make_pseudosection (bfd *abfd,
6349 char *name,
6350 size_t size,
6351 ufile_ptr filepos)
6352 {
6353 char buf[100];
6354 char *threaded_name;
6355 size_t len;
6356 asection *sect;
6357
6358 /* Build the section name. */
6359
6360 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6361 len = strlen (buf) + 1;
6362 threaded_name = bfd_alloc (abfd, len);
6363 if (threaded_name == NULL)
6364 return FALSE;
6365 memcpy (threaded_name, buf, len);
6366
6367 sect = bfd_make_section_anyway (abfd, threaded_name);
6368 if (sect == NULL)
6369 return FALSE;
6370 sect->_raw_size = size;
6371 sect->filepos = filepos;
6372 sect->flags = SEC_HAS_CONTENTS;
6373 sect->alignment_power = 2;
6374
6375 return elfcore_maybe_make_sect (abfd, name, sect);
6376 }
6377
6378 /* prstatus_t exists on:
6379 solaris 2.5+
6380 linux 2.[01] + glibc
6381 unixware 4.2
6382 */
6383
6384 #if defined (HAVE_PRSTATUS_T)
6385
6386 static bfd_boolean
6387 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6388 {
6389 size_t raw_size;
6390 int offset;
6391
6392 if (note->descsz == sizeof (prstatus_t))
6393 {
6394 prstatus_t prstat;
6395
6396 raw_size = sizeof (prstat.pr_reg);
6397 offset = offsetof (prstatus_t, pr_reg);
6398 memcpy (&prstat, note->descdata, sizeof (prstat));
6399
6400 /* Do not overwrite the core signal if it
6401 has already been set by another thread. */
6402 if (elf_tdata (abfd)->core_signal == 0)
6403 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6404 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6405
6406 /* pr_who exists on:
6407 solaris 2.5+
6408 unixware 4.2
6409 pr_who doesn't exist on:
6410 linux 2.[01]
6411 */
6412 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6413 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6414 #endif
6415 }
6416 #if defined (HAVE_PRSTATUS32_T)
6417 else if (note->descsz == sizeof (prstatus32_t))
6418 {
6419 /* 64-bit host, 32-bit corefile */
6420 prstatus32_t prstat;
6421
6422 raw_size = sizeof (prstat.pr_reg);
6423 offset = offsetof (prstatus32_t, pr_reg);
6424 memcpy (&prstat, note->descdata, sizeof (prstat));
6425
6426 /* Do not overwrite the core signal if it
6427 has already been set by another thread. */
6428 if (elf_tdata (abfd)->core_signal == 0)
6429 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6430 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6431
6432 /* pr_who exists on:
6433 solaris 2.5+
6434 unixware 4.2
6435 pr_who doesn't exist on:
6436 linux 2.[01]
6437 */
6438 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6439 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6440 #endif
6441 }
6442 #endif /* HAVE_PRSTATUS32_T */
6443 else
6444 {
6445 /* Fail - we don't know how to handle any other
6446 note size (ie. data object type). */
6447 return TRUE;
6448 }
6449
6450 /* Make a ".reg/999" section and a ".reg" section. */
6451 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6452 raw_size, note->descpos + offset);
6453 }
6454 #endif /* defined (HAVE_PRSTATUS_T) */
6455
6456 /* Create a pseudosection containing the exact contents of NOTE. */
6457 static bfd_boolean
6458 elfcore_make_note_pseudosection (bfd *abfd,
6459 char *name,
6460 Elf_Internal_Note *note)
6461 {
6462 return _bfd_elfcore_make_pseudosection (abfd, name,
6463 note->descsz, note->descpos);
6464 }
6465
6466 /* There isn't a consistent prfpregset_t across platforms,
6467 but it doesn't matter, because we don't have to pick this
6468 data structure apart. */
6469
6470 static bfd_boolean
6471 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6472 {
6473 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6474 }
6475
6476 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6477 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6478 literally. */
6479
6480 static bfd_boolean
6481 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6482 {
6483 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6484 }
6485
6486 #if defined (HAVE_PRPSINFO_T)
6487 typedef prpsinfo_t elfcore_psinfo_t;
6488 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6489 typedef prpsinfo32_t elfcore_psinfo32_t;
6490 #endif
6491 #endif
6492
6493 #if defined (HAVE_PSINFO_T)
6494 typedef psinfo_t elfcore_psinfo_t;
6495 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6496 typedef psinfo32_t elfcore_psinfo32_t;
6497 #endif
6498 #endif
6499
6500 /* return a malloc'ed copy of a string at START which is at
6501 most MAX bytes long, possibly without a terminating '\0'.
6502 the copy will always have a terminating '\0'. */
6503
6504 char *
6505 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6506 {
6507 char *dups;
6508 char *end = memchr (start, '\0', max);
6509 size_t len;
6510
6511 if (end == NULL)
6512 len = max;
6513 else
6514 len = end - start;
6515
6516 dups = bfd_alloc (abfd, len + 1);
6517 if (dups == NULL)
6518 return NULL;
6519
6520 memcpy (dups, start, len);
6521 dups[len] = '\0';
6522
6523 return dups;
6524 }
6525
6526 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6527 static bfd_boolean
6528 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6529 {
6530 if (note->descsz == sizeof (elfcore_psinfo_t))
6531 {
6532 elfcore_psinfo_t psinfo;
6533
6534 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6535
6536 elf_tdata (abfd)->core_program
6537 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6538 sizeof (psinfo.pr_fname));
6539
6540 elf_tdata (abfd)->core_command
6541 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6542 sizeof (psinfo.pr_psargs));
6543 }
6544 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6545 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6546 {
6547 /* 64-bit host, 32-bit corefile */
6548 elfcore_psinfo32_t psinfo;
6549
6550 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6551
6552 elf_tdata (abfd)->core_program
6553 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6554 sizeof (psinfo.pr_fname));
6555
6556 elf_tdata (abfd)->core_command
6557 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6558 sizeof (psinfo.pr_psargs));
6559 }
6560 #endif
6561
6562 else
6563 {
6564 /* Fail - we don't know how to handle any other
6565 note size (ie. data object type). */
6566 return TRUE;
6567 }
6568
6569 /* Note that for some reason, a spurious space is tacked
6570 onto the end of the args in some (at least one anyway)
6571 implementations, so strip it off if it exists. */
6572
6573 {
6574 char *command = elf_tdata (abfd)->core_command;
6575 int n = strlen (command);
6576
6577 if (0 < n && command[n - 1] == ' ')
6578 command[n - 1] = '\0';
6579 }
6580
6581 return TRUE;
6582 }
6583 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6584
6585 #if defined (HAVE_PSTATUS_T)
6586 static bfd_boolean
6587 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6588 {
6589 if (note->descsz == sizeof (pstatus_t)
6590 #if defined (HAVE_PXSTATUS_T)
6591 || note->descsz == sizeof (pxstatus_t)
6592 #endif
6593 )
6594 {
6595 pstatus_t pstat;
6596
6597 memcpy (&pstat, note->descdata, sizeof (pstat));
6598
6599 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6600 }
6601 #if defined (HAVE_PSTATUS32_T)
6602 else if (note->descsz == sizeof (pstatus32_t))
6603 {
6604 /* 64-bit host, 32-bit corefile */
6605 pstatus32_t pstat;
6606
6607 memcpy (&pstat, note->descdata, sizeof (pstat));
6608
6609 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6610 }
6611 #endif
6612 /* Could grab some more details from the "representative"
6613 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6614 NT_LWPSTATUS note, presumably. */
6615
6616 return TRUE;
6617 }
6618 #endif /* defined (HAVE_PSTATUS_T) */
6619
6620 #if defined (HAVE_LWPSTATUS_T)
6621 static bfd_boolean
6622 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6623 {
6624 lwpstatus_t lwpstat;
6625 char buf[100];
6626 char *name;
6627 size_t len;
6628 asection *sect;
6629
6630 if (note->descsz != sizeof (lwpstat)
6631 #if defined (HAVE_LWPXSTATUS_T)
6632 && note->descsz != sizeof (lwpxstatus_t)
6633 #endif
6634 )
6635 return TRUE;
6636
6637 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6638
6639 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6640 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6641
6642 /* Make a ".reg/999" section. */
6643
6644 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6645 len = strlen (buf) + 1;
6646 name = bfd_alloc (abfd, len);
6647 if (name == NULL)
6648 return FALSE;
6649 memcpy (name, buf, len);
6650
6651 sect = bfd_make_section_anyway (abfd, name);
6652 if (sect == NULL)
6653 return FALSE;
6654
6655 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6656 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6657 sect->filepos = note->descpos
6658 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6659 #endif
6660
6661 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6662 sect->_raw_size = sizeof (lwpstat.pr_reg);
6663 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6664 #endif
6665
6666 sect->flags = SEC_HAS_CONTENTS;
6667 sect->alignment_power = 2;
6668
6669 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6670 return FALSE;
6671
6672 /* Make a ".reg2/999" section */
6673
6674 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6675 len = strlen (buf) + 1;
6676 name = bfd_alloc (abfd, len);
6677 if (name == NULL)
6678 return FALSE;
6679 memcpy (name, buf, len);
6680
6681 sect = bfd_make_section_anyway (abfd, name);
6682 if (sect == NULL)
6683 return FALSE;
6684
6685 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6686 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6687 sect->filepos = note->descpos
6688 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6689 #endif
6690
6691 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6692 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6693 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6694 #endif
6695
6696 sect->flags = SEC_HAS_CONTENTS;
6697 sect->alignment_power = 2;
6698
6699 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6700 }
6701 #endif /* defined (HAVE_LWPSTATUS_T) */
6702
6703 #if defined (HAVE_WIN32_PSTATUS_T)
6704 static bfd_boolean
6705 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
6706 {
6707 char buf[30];
6708 char *name;
6709 size_t len;
6710 asection *sect;
6711 win32_pstatus_t pstatus;
6712
6713 if (note->descsz < sizeof (pstatus))
6714 return TRUE;
6715
6716 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6717
6718 switch (pstatus.data_type)
6719 {
6720 case NOTE_INFO_PROCESS:
6721 /* FIXME: need to add ->core_command. */
6722 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6723 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6724 break;
6725
6726 case NOTE_INFO_THREAD:
6727 /* Make a ".reg/999" section. */
6728 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6729
6730 len = strlen (buf) + 1;
6731 name = bfd_alloc (abfd, len);
6732 if (name == NULL)
6733 return FALSE;
6734
6735 memcpy (name, buf, len);
6736
6737 sect = bfd_make_section_anyway (abfd, name);
6738 if (sect == NULL)
6739 return FALSE;
6740
6741 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6742 sect->filepos = (note->descpos
6743 + offsetof (struct win32_pstatus,
6744 data.thread_info.thread_context));
6745 sect->flags = SEC_HAS_CONTENTS;
6746 sect->alignment_power = 2;
6747
6748 if (pstatus.data.thread_info.is_active_thread)
6749 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6750 return FALSE;
6751 break;
6752
6753 case NOTE_INFO_MODULE:
6754 /* Make a ".module/xxxxxxxx" section. */
6755 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6756
6757 len = strlen (buf) + 1;
6758 name = bfd_alloc (abfd, len);
6759 if (name == NULL)
6760 return FALSE;
6761
6762 memcpy (name, buf, len);
6763
6764 sect = bfd_make_section_anyway (abfd, name);
6765
6766 if (sect == NULL)
6767 return FALSE;
6768
6769 sect->_raw_size = note->descsz;
6770 sect->filepos = note->descpos;
6771 sect->flags = SEC_HAS_CONTENTS;
6772 sect->alignment_power = 2;
6773 break;
6774
6775 default:
6776 return TRUE;
6777 }
6778
6779 return TRUE;
6780 }
6781 #endif /* HAVE_WIN32_PSTATUS_T */
6782
6783 static bfd_boolean
6784 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
6785 {
6786 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6787
6788 switch (note->type)
6789 {
6790 default:
6791 return TRUE;
6792
6793 case NT_PRSTATUS:
6794 if (bed->elf_backend_grok_prstatus)
6795 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6796 return TRUE;
6797 #if defined (HAVE_PRSTATUS_T)
6798 return elfcore_grok_prstatus (abfd, note);
6799 #else
6800 return TRUE;
6801 #endif
6802
6803 #if defined (HAVE_PSTATUS_T)
6804 case NT_PSTATUS:
6805 return elfcore_grok_pstatus (abfd, note);
6806 #endif
6807
6808 #if defined (HAVE_LWPSTATUS_T)
6809 case NT_LWPSTATUS:
6810 return elfcore_grok_lwpstatus (abfd, note);
6811 #endif
6812
6813 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6814 return elfcore_grok_prfpreg (abfd, note);
6815
6816 #if defined (HAVE_WIN32_PSTATUS_T)
6817 case NT_WIN32PSTATUS:
6818 return elfcore_grok_win32pstatus (abfd, note);
6819 #endif
6820
6821 case NT_PRXFPREG: /* Linux SSE extension */
6822 if (note->namesz == 6
6823 && strcmp (note->namedata, "LINUX") == 0)
6824 return elfcore_grok_prxfpreg (abfd, note);
6825 else
6826 return TRUE;
6827
6828 case NT_PRPSINFO:
6829 case NT_PSINFO:
6830 if (bed->elf_backend_grok_psinfo)
6831 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6832 return TRUE;
6833 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6834 return elfcore_grok_psinfo (abfd, note);
6835 #else
6836 return TRUE;
6837 #endif
6838
6839 case NT_AUXV:
6840 {
6841 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
6842
6843 if (sect == NULL)
6844 return FALSE;
6845 sect->_raw_size = note->descsz;
6846 sect->filepos = note->descpos;
6847 sect->flags = SEC_HAS_CONTENTS;
6848 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
6849
6850 return TRUE;
6851 }
6852 }
6853 }
6854
6855 static bfd_boolean
6856 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
6857 {
6858 char *cp;
6859
6860 cp = strchr (note->namedata, '@');
6861 if (cp != NULL)
6862 {
6863 *lwpidp = atoi(cp + 1);
6864 return TRUE;
6865 }
6866 return FALSE;
6867 }
6868
6869 static bfd_boolean
6870 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
6871 {
6872
6873 /* Signal number at offset 0x08. */
6874 elf_tdata (abfd)->core_signal
6875 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6876
6877 /* Process ID at offset 0x50. */
6878 elf_tdata (abfd)->core_pid
6879 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6880
6881 /* Command name at 0x7c (max 32 bytes, including nul). */
6882 elf_tdata (abfd)->core_command
6883 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6884
6885 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
6886 note);
6887 }
6888
6889 static bfd_boolean
6890 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
6891 {
6892 int lwp;
6893
6894 if (elfcore_netbsd_get_lwpid (note, &lwp))
6895 elf_tdata (abfd)->core_lwpid = lwp;
6896
6897 if (note->type == NT_NETBSDCORE_PROCINFO)
6898 {
6899 /* NetBSD-specific core "procinfo". Note that we expect to
6900 find this note before any of the others, which is fine,
6901 since the kernel writes this note out first when it
6902 creates a core file. */
6903
6904 return elfcore_grok_netbsd_procinfo (abfd, note);
6905 }
6906
6907 /* As of Jan 2002 there are no other machine-independent notes
6908 defined for NetBSD core files. If the note type is less
6909 than the start of the machine-dependent note types, we don't
6910 understand it. */
6911
6912 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6913 return TRUE;
6914
6915
6916 switch (bfd_get_arch (abfd))
6917 {
6918 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6919 PT_GETFPREGS == mach+2. */
6920
6921 case bfd_arch_alpha:
6922 case bfd_arch_sparc:
6923 switch (note->type)
6924 {
6925 case NT_NETBSDCORE_FIRSTMACH+0:
6926 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6927
6928 case NT_NETBSDCORE_FIRSTMACH+2:
6929 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6930
6931 default:
6932 return TRUE;
6933 }
6934
6935 /* On all other arch's, PT_GETREGS == mach+1 and
6936 PT_GETFPREGS == mach+3. */
6937
6938 default:
6939 switch (note->type)
6940 {
6941 case NT_NETBSDCORE_FIRSTMACH+1:
6942 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6943
6944 case NT_NETBSDCORE_FIRSTMACH+3:
6945 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6946
6947 default:
6948 return TRUE;
6949 }
6950 }
6951 /* NOTREACHED */
6952 }
6953
6954 static bfd_boolean
6955 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
6956 {
6957 void *ddata = note->descdata;
6958 char buf[100];
6959 char *name;
6960 asection *sect;
6961 short sig;
6962 unsigned flags;
6963
6964 /* nto_procfs_status 'pid' field is at offset 0. */
6965 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
6966
6967 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
6968 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
6969
6970 /* nto_procfs_status 'flags' field is at offset 8. */
6971 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
6972
6973 /* nto_procfs_status 'what' field is at offset 14. */
6974 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
6975 {
6976 elf_tdata (abfd)->core_signal = sig;
6977 elf_tdata (abfd)->core_lwpid = *tid;
6978 }
6979
6980 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
6981 do not come from signals so we make sure we set the current
6982 thread just in case. */
6983 if (flags & 0x00000080)
6984 elf_tdata (abfd)->core_lwpid = *tid;
6985
6986 /* Make a ".qnx_core_status/%d" section. */
6987 sprintf (buf, ".qnx_core_status/%d", *tid);
6988
6989 name = bfd_alloc (abfd, strlen (buf) + 1);
6990 if (name == NULL)
6991 return FALSE;
6992 strcpy (name, buf);
6993
6994 sect = bfd_make_section_anyway (abfd, name);
6995 if (sect == NULL)
6996 return FALSE;
6997
6998 sect->_raw_size = note->descsz;
6999 sect->filepos = note->descpos;
7000 sect->flags = SEC_HAS_CONTENTS;
7001 sect->alignment_power = 2;
7002
7003 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7004 }
7005
7006 static bfd_boolean
7007 elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
7008 {
7009 char buf[100];
7010 char *name;
7011 asection *sect;
7012
7013 /* Make a ".reg/%d" section. */
7014 sprintf (buf, ".reg/%d", tid);
7015
7016 name = bfd_alloc (abfd, strlen (buf) + 1);
7017 if (name == NULL)
7018 return FALSE;
7019 strcpy (name, buf);
7020
7021 sect = bfd_make_section_anyway (abfd, name);
7022 if (sect == NULL)
7023 return FALSE;
7024
7025 sect->_raw_size = note->descsz;
7026 sect->filepos = note->descpos;
7027 sect->flags = SEC_HAS_CONTENTS;
7028 sect->alignment_power = 2;
7029
7030 /* This is the current thread. */
7031 if (elf_tdata (abfd)->core_lwpid == tid)
7032 return elfcore_maybe_make_sect (abfd, ".reg", sect);
7033
7034 return TRUE;
7035 }
7036
7037 #define BFD_QNT_CORE_INFO 7
7038 #define BFD_QNT_CORE_STATUS 8
7039 #define BFD_QNT_CORE_GREG 9
7040 #define BFD_QNT_CORE_FPREG 10
7041
7042 static bfd_boolean
7043 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7044 {
7045 /* Every GREG section has a STATUS section before it. Store the
7046 tid from the previous call to pass down to the next gregs
7047 function. */
7048 static pid_t tid = 1;
7049
7050 switch (note->type)
7051 {
7052 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7053 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7054 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7055 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7056 default: return TRUE;
7057 }
7058 }
7059
7060 /* Function: elfcore_write_note
7061
7062 Inputs:
7063 buffer to hold note
7064 name of note
7065 type of note
7066 data for note
7067 size of data for note
7068
7069 Return:
7070 End of buffer containing note. */
7071
7072 char *
7073 elfcore_write_note (bfd *abfd,
7074 char *buf,
7075 int *bufsiz,
7076 const char *name,
7077 int type,
7078 const void *input,
7079 int size)
7080 {
7081 Elf_External_Note *xnp;
7082 size_t namesz;
7083 size_t pad;
7084 size_t newspace;
7085 char *p, *dest;
7086
7087 namesz = 0;
7088 pad = 0;
7089 if (name != NULL)
7090 {
7091 const struct elf_backend_data *bed;
7092
7093 namesz = strlen (name) + 1;
7094 bed = get_elf_backend_data (abfd);
7095 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7096 }
7097
7098 newspace = 12 + namesz + pad + size;
7099
7100 p = realloc (buf, *bufsiz + newspace);
7101 dest = p + *bufsiz;
7102 *bufsiz += newspace;
7103 xnp = (Elf_External_Note *) dest;
7104 H_PUT_32 (abfd, namesz, xnp->namesz);
7105 H_PUT_32 (abfd, size, xnp->descsz);
7106 H_PUT_32 (abfd, type, xnp->type);
7107 dest = xnp->name;
7108 if (name != NULL)
7109 {
7110 memcpy (dest, name, namesz);
7111 dest += namesz;
7112 while (pad != 0)
7113 {
7114 *dest++ = '\0';
7115 --pad;
7116 }
7117 }
7118 memcpy (dest, input, size);
7119 return p;
7120 }
7121
7122 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7123 char *
7124 elfcore_write_prpsinfo (bfd *abfd,
7125 char *buf,
7126 int *bufsiz,
7127 const char *fname,
7128 const char *psargs)
7129 {
7130 int note_type;
7131 char *note_name = "CORE";
7132
7133 #if defined (HAVE_PSINFO_T)
7134 psinfo_t data;
7135 note_type = NT_PSINFO;
7136 #else
7137 prpsinfo_t data;
7138 note_type = NT_PRPSINFO;
7139 #endif
7140
7141 memset (&data, 0, sizeof (data));
7142 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7143 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7144 return elfcore_write_note (abfd, buf, bufsiz,
7145 note_name, note_type, &data, sizeof (data));
7146 }
7147 #endif /* PSINFO_T or PRPSINFO_T */
7148
7149 #if defined (HAVE_PRSTATUS_T)
7150 char *
7151 elfcore_write_prstatus (bfd *abfd,
7152 char *buf,
7153 int *bufsiz,
7154 long pid,
7155 int cursig,
7156 const void *gregs)
7157 {
7158 prstatus_t prstat;
7159 char *note_name = "CORE";
7160
7161 memset (&prstat, 0, sizeof (prstat));
7162 prstat.pr_pid = pid;
7163 prstat.pr_cursig = cursig;
7164 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7165 return elfcore_write_note (abfd, buf, bufsiz,
7166 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7167 }
7168 #endif /* HAVE_PRSTATUS_T */
7169
7170 #if defined (HAVE_LWPSTATUS_T)
7171 char *
7172 elfcore_write_lwpstatus (bfd *abfd,
7173 char *buf,
7174 int *bufsiz,
7175 long pid,
7176 int cursig,
7177 const void *gregs)
7178 {
7179 lwpstatus_t lwpstat;
7180 char *note_name = "CORE";
7181
7182 memset (&lwpstat, 0, sizeof (lwpstat));
7183 lwpstat.pr_lwpid = pid >> 16;
7184 lwpstat.pr_cursig = cursig;
7185 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7186 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7187 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7188 #if !defined(gregs)
7189 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7190 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7191 #else
7192 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7193 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7194 #endif
7195 #endif
7196 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7197 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7198 }
7199 #endif /* HAVE_LWPSTATUS_T */
7200
7201 #if defined (HAVE_PSTATUS_T)
7202 char *
7203 elfcore_write_pstatus (bfd *abfd,
7204 char *buf,
7205 int *bufsiz,
7206 long pid,
7207 int cursig,
7208 const void *gregs)
7209 {
7210 pstatus_t pstat;
7211 char *note_name = "CORE";
7212
7213 memset (&pstat, 0, sizeof (pstat));
7214 pstat.pr_pid = pid & 0xffff;
7215 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7216 NT_PSTATUS, &pstat, sizeof (pstat));
7217 return buf;
7218 }
7219 #endif /* HAVE_PSTATUS_T */
7220
7221 char *
7222 elfcore_write_prfpreg (bfd *abfd,
7223 char *buf,
7224 int *bufsiz,
7225 const void *fpregs,
7226 int size)
7227 {
7228 char *note_name = "CORE";
7229 return elfcore_write_note (abfd, buf, bufsiz,
7230 note_name, NT_FPREGSET, fpregs, size);
7231 }
7232
7233 char *
7234 elfcore_write_prxfpreg (bfd *abfd,
7235 char *buf,
7236 int *bufsiz,
7237 const void *xfpregs,
7238 int size)
7239 {
7240 char *note_name = "LINUX";
7241 return elfcore_write_note (abfd, buf, bufsiz,
7242 note_name, NT_PRXFPREG, xfpregs, size);
7243 }
7244
7245 static bfd_boolean
7246 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7247 {
7248 char *buf;
7249 char *p;
7250
7251 if (size <= 0)
7252 return TRUE;
7253
7254 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7255 return FALSE;
7256
7257 buf = bfd_malloc (size);
7258 if (buf == NULL)
7259 return FALSE;
7260
7261 if (bfd_bread (buf, size, abfd) != size)
7262 {
7263 error:
7264 free (buf);
7265 return FALSE;
7266 }
7267
7268 p = buf;
7269 while (p < buf + size)
7270 {
7271 /* FIXME: bad alignment assumption. */
7272 Elf_External_Note *xnp = (Elf_External_Note *) p;
7273 Elf_Internal_Note in;
7274
7275 in.type = H_GET_32 (abfd, xnp->type);
7276
7277 in.namesz = H_GET_32 (abfd, xnp->namesz);
7278 in.namedata = xnp->name;
7279
7280 in.descsz = H_GET_32 (abfd, xnp->descsz);
7281 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7282 in.descpos = offset + (in.descdata - buf);
7283
7284 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7285 {
7286 if (! elfcore_grok_netbsd_note (abfd, &in))
7287 goto error;
7288 }
7289 else if (strncmp (in.namedata, "QNX", 3) == 0)
7290 {
7291 if (! elfcore_grok_nto_note (abfd, &in))
7292 goto error;
7293 }
7294 else
7295 {
7296 if (! elfcore_grok_note (abfd, &in))
7297 goto error;
7298 }
7299
7300 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7301 }
7302
7303 free (buf);
7304 return TRUE;
7305 }
7306 \f
7307 /* Providing external access to the ELF program header table. */
7308
7309 /* Return an upper bound on the number of bytes required to store a
7310 copy of ABFD's program header table entries. Return -1 if an error
7311 occurs; bfd_get_error will return an appropriate code. */
7312
7313 long
7314 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7315 {
7316 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7317 {
7318 bfd_set_error (bfd_error_wrong_format);
7319 return -1;
7320 }
7321
7322 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7323 }
7324
7325 /* Copy ABFD's program header table entries to *PHDRS. The entries
7326 will be stored as an array of Elf_Internal_Phdr structures, as
7327 defined in include/elf/internal.h. To find out how large the
7328 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7329
7330 Return the number of program header table entries read, or -1 if an
7331 error occurs; bfd_get_error will return an appropriate code. */
7332
7333 int
7334 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7335 {
7336 int num_phdrs;
7337
7338 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7339 {
7340 bfd_set_error (bfd_error_wrong_format);
7341 return -1;
7342 }
7343
7344 num_phdrs = elf_elfheader (abfd)->e_phnum;
7345 memcpy (phdrs, elf_tdata (abfd)->phdr,
7346 num_phdrs * sizeof (Elf_Internal_Phdr));
7347
7348 return num_phdrs;
7349 }
7350
7351 void
7352 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7353 {
7354 #ifdef BFD64
7355 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7356
7357 i_ehdrp = elf_elfheader (abfd);
7358 if (i_ehdrp == NULL)
7359 sprintf_vma (buf, value);
7360 else
7361 {
7362 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7363 {
7364 #if BFD_HOST_64BIT_LONG
7365 sprintf (buf, "%016lx", value);
7366 #else
7367 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7368 _bfd_int64_low (value));
7369 #endif
7370 }
7371 else
7372 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7373 }
7374 #else
7375 sprintf_vma (buf, value);
7376 #endif
7377 }
7378
7379 void
7380 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7381 {
7382 #ifdef BFD64
7383 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7384
7385 i_ehdrp = elf_elfheader (abfd);
7386 if (i_ehdrp == NULL)
7387 fprintf_vma ((FILE *) stream, value);
7388 else
7389 {
7390 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7391 {
7392 #if BFD_HOST_64BIT_LONG
7393 fprintf ((FILE *) stream, "%016lx", value);
7394 #else
7395 fprintf ((FILE *) stream, "%08lx%08lx",
7396 _bfd_int64_high (value), _bfd_int64_low (value));
7397 #endif
7398 }
7399 else
7400 fprintf ((FILE *) stream, "%08lx",
7401 (unsigned long) (value & 0xffffffff));
7402 }
7403 #else
7404 fprintf_vma ((FILE *) stream, value);
7405 #endif
7406 }
7407
7408 enum elf_reloc_type_class
7409 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7410 {
7411 return reloc_class_normal;
7412 }
7413
7414 /* For RELA architectures, return the relocation value for a
7415 relocation against a local symbol. */
7416
7417 bfd_vma
7418 _bfd_elf_rela_local_sym (bfd *abfd,
7419 Elf_Internal_Sym *sym,
7420 asection **psec,
7421 Elf_Internal_Rela *rel)
7422 {
7423 asection *sec = *psec;
7424 bfd_vma relocation;
7425
7426 relocation = (sec->output_section->vma
7427 + sec->output_offset
7428 + sym->st_value);
7429 if ((sec->flags & SEC_MERGE)
7430 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7431 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7432 {
7433 rel->r_addend =
7434 _bfd_merged_section_offset (abfd, psec,
7435 elf_section_data (sec)->sec_info,
7436 sym->st_value + rel->r_addend,
7437 0);
7438 sec = *psec;
7439 rel->r_addend -= relocation;
7440 rel->r_addend += sec->output_section->vma + sec->output_offset;
7441 }
7442 return relocation;
7443 }
7444
7445 bfd_vma
7446 _bfd_elf_rel_local_sym (bfd *abfd,
7447 Elf_Internal_Sym *sym,
7448 asection **psec,
7449 bfd_vma addend)
7450 {
7451 asection *sec = *psec;
7452
7453 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7454 return sym->st_value + addend;
7455
7456 return _bfd_merged_section_offset (abfd, psec,
7457 elf_section_data (sec)->sec_info,
7458 sym->st_value + addend, 0);
7459 }
7460
7461 bfd_vma
7462 _bfd_elf_section_offset (bfd *abfd,
7463 struct bfd_link_info *info,
7464 asection *sec,
7465 bfd_vma offset)
7466 {
7467 struct bfd_elf_section_data *sec_data;
7468
7469 sec_data = elf_section_data (sec);
7470 switch (sec->sec_info_type)
7471 {
7472 case ELF_INFO_TYPE_STABS:
7473 return _bfd_stab_section_offset (abfd,
7474 &elf_hash_table (info)->merge_info,
7475 sec, &sec_data->sec_info, offset);
7476 case ELF_INFO_TYPE_EH_FRAME:
7477 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7478 default:
7479 return offset;
7480 }
7481 }
7482 \f
7483 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7484 reconstruct an ELF file by reading the segments out of remote memory
7485 based on the ELF file header at EHDR_VMA and the ELF program headers it
7486 points to. If not null, *LOADBASEP is filled in with the difference
7487 between the VMAs from which the segments were read, and the VMAs the
7488 file headers (and hence BFD's idea of each section's VMA) put them at.
7489
7490 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7491 remote memory at target address VMA into the local buffer at MYADDR; it
7492 should return zero on success or an `errno' code on failure. TEMPL must
7493 be a BFD for an ELF target with the word size and byte order found in
7494 the remote memory. */
7495
7496 bfd *
7497 bfd_elf_bfd_from_remote_memory
7498 (bfd *templ,
7499 bfd_vma ehdr_vma,
7500 bfd_vma *loadbasep,
7501 int (*target_read_memory) (bfd_vma, char *, int))
7502 {
7503 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7504 (templ, ehdr_vma, loadbasep, target_read_memory);
7505 }
This page took 0.214806 seconds and 4 git commands to generate.