* remote-utils.c (prepare_resume_reply): Move declaration
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
211 {
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
219
220 return TRUE;
221 }
222
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
225 {
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
228 }
229
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
232 {
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
237
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
241
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
244 {
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
248
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
256 {
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
260 }
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
264 }
265 return (char *) shstrtab;
266 }
267
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
272 {
273 Elf_Internal_Shdr *hdr;
274
275 if (strindex == 0)
276 return "";
277
278 hdr = elf_elfsections (abfd)[shindex];
279
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
283
284 if (strindex >= hdr->sh_size)
285 {
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
294 }
295
296 return ((char *) hdr->contents) + strindex;
297 }
298
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
304
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
313 {
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
325
326 if (symcount == 0)
327 return intsym_buf;
328
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
333
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
342 {
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
345 }
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
349 {
350 intsym_buf = NULL;
351 goto out;
352 }
353
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
357 {
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
361 {
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
365 }
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
369 {
370 intsym_buf = NULL;
371 goto out;
372 }
373 }
374
375 if (intsym_buf == NULL)
376 {
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
380 }
381
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
388
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
394
395 return intsym_buf;
396 }
397
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
404 {
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
408
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
423
424 return name;
425 }
426
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
430
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
435
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
438
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
441 {
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
446
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
453
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
459
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
461 }
462
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
464
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
467 {
468 unsigned int num_group = elf_tdata (abfd)->num_group;
469
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
473 {
474 unsigned int i, shnum;
475
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
481 {
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
485 }
486
487 if (num_group == 0)
488 {
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
491 }
492 else
493 {
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
497
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
503
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
506 {
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
509 {
510 unsigned char *src;
511 Elf_Internal_Group *dest;
512
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
516
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
527
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
535 {
536 unsigned int idx;
537
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
542 {
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
548 }
549 if (idx >= shnum)
550 {
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
554 }
555 dest->shdr = elf_elfsections (abfd)[idx];
556 }
557 }
558 }
559 }
560 }
561
562 if (num_group != (unsigned) -1)
563 {
564 unsigned int i;
565
566 for (i = 0; i < num_group; i++)
567 {
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
571
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
576 {
577 asection *s = NULL;
578
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
589 {
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
595 }
596 else
597 {
598 const char *gname;
599
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
604
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
607 }
608
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
613
614 i = num_group - 1;
615 break;
616 }
617 }
618 }
619
620 if (elf_group_name (newsect) == NULL)
621 {
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
624 }
625 return TRUE;
626 }
627
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
630 {
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
635
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
638 {
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
641 {
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
647 {
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
654 }
655 else
656 {
657 asection *link;
658
659 this_hdr = elf_elfsections (abfd)[elfsec];
660
661 /* PR 1991, 2008:
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link = this_hdr->bfd_section;
665 if (link == NULL)
666 {
667 (*_bfd_error_handler)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s->owner, s, elfsec);
670 result = FALSE;
671 }
672
673 elf_linked_to_section (s) = link;
674 }
675 }
676 }
677
678 /* Process section groups. */
679 if (num_group == (unsigned) -1)
680 return result;
681
682 for (i = 0; i < num_group; i++)
683 {
684 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
685 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
686 unsigned int n_elt = shdr->sh_size / 4;
687
688 while (--n_elt != 0)
689 if ((++idx)->shdr->bfd_section)
690 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
691 else if (idx->shdr->sh_type == SHT_RELA
692 || idx->shdr->sh_type == SHT_REL)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
697 files. */
698 shdr->bfd_section->size -= 4;
699 else
700 {
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
704 abfd,
705 (unsigned int) idx->shdr->sh_type,
706 bfd_elf_string_from_elf_section (abfd,
707 (elf_elfheader (abfd)
708 ->e_shstrndx),
709 idx->shdr->sh_name),
710 shdr->bfd_section->name);
711 result = FALSE;
712 }
713 }
714 return result;
715 }
716
717 bfd_boolean
718 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
719 {
720 return elf_next_in_group (sec) != NULL;
721 }
722
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
725
726 bfd_boolean
727 _bfd_elf_make_section_from_shdr (bfd *abfd,
728 Elf_Internal_Shdr *hdr,
729 const char *name,
730 int shindex)
731 {
732 asection *newsect;
733 flagword flags;
734 const struct elf_backend_data *bed;
735
736 if (hdr->bfd_section != NULL)
737 {
738 BFD_ASSERT (strcmp (name,
739 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
740 return TRUE;
741 }
742
743 newsect = bfd_make_section_anyway (abfd, name);
744 if (newsect == NULL)
745 return FALSE;
746
747 hdr->bfd_section = newsect;
748 elf_section_data (newsect)->this_hdr = *hdr;
749 elf_section_data (newsect)->this_idx = shindex;
750
751 /* Always use the real type/flags. */
752 elf_section_type (newsect) = hdr->sh_type;
753 elf_section_flags (newsect) = hdr->sh_flags;
754
755 newsect->filepos = hdr->sh_offset;
756
757 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
758 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
759 || ! bfd_set_section_alignment (abfd, newsect,
760 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
761 return FALSE;
762
763 flags = SEC_NO_FLAGS;
764 if (hdr->sh_type != SHT_NOBITS)
765 flags |= SEC_HAS_CONTENTS;
766 if (hdr->sh_type == SHT_GROUP)
767 flags |= SEC_GROUP | SEC_EXCLUDE;
768 if ((hdr->sh_flags & SHF_ALLOC) != 0)
769 {
770 flags |= SEC_ALLOC;
771 if (hdr->sh_type != SHT_NOBITS)
772 flags |= SEC_LOAD;
773 }
774 if ((hdr->sh_flags & SHF_WRITE) == 0)
775 flags |= SEC_READONLY;
776 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
777 flags |= SEC_CODE;
778 else if ((flags & SEC_LOAD) != 0)
779 flags |= SEC_DATA;
780 if ((hdr->sh_flags & SHF_MERGE) != 0)
781 {
782 flags |= SEC_MERGE;
783 newsect->entsize = hdr->sh_entsize;
784 if ((hdr->sh_flags & SHF_STRINGS) != 0)
785 flags |= SEC_STRINGS;
786 }
787 if (hdr->sh_flags & SHF_GROUP)
788 if (!setup_group (abfd, hdr, newsect))
789 return FALSE;
790 if ((hdr->sh_flags & SHF_TLS) != 0)
791 flags |= SEC_THREAD_LOCAL;
792
793 if ((flags & SEC_ALLOC) == 0)
794 {
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
797 static const struct
798 {
799 const char *name;
800 int len;
801 } debug_sections [] =
802 {
803 { "debug", 5 }, /* 'd' */
804 { NULL, 0 }, /* 'e' */
805 { NULL, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL, 0 }, /* 'h' */
808 { NULL, 0 }, /* 'i' */
809 { NULL, 0 }, /* 'j' */
810 { NULL, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL, 0 }, /* 'm' */
813 { NULL, 0 }, /* 'n' */
814 { NULL, 0 }, /* 'o' */
815 { NULL, 0 }, /* 'p' */
816 { NULL, 0 }, /* 'q' */
817 { NULL, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
819 };
820
821 if (name [0] == '.')
822 {
823 int i = name [1] - 'd';
824 if (i >= 0
825 && i < (int) ARRAY_SIZE (debug_sections)
826 && debug_sections [i].name != NULL
827 && strncmp (&name [1], debug_sections [i].name,
828 debug_sections [i].len) == 0)
829 flags |= SEC_DEBUGGING;
830 }
831 }
832
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect) == NULL)
841 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
842
843 bed = get_elf_backend_data (abfd);
844 if (bed->elf_backend_section_flags)
845 if (! bed->elf_backend_section_flags (&flags, hdr))
846 return FALSE;
847
848 if (! bfd_set_section_flags (abfd, newsect, flags))
849 return FALSE;
850
851 if ((flags & SEC_ALLOC) != 0)
852 {
853 Elf_Internal_Phdr *phdr;
854 unsigned int i;
855
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr = elf_tdata (abfd)->phdr;
860 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
861 {
862 if (phdr->p_paddr != 0)
863 break;
864 }
865 if (i < elf_elfheader (abfd)->e_phnum)
866 {
867 phdr = elf_tdata (abfd)->phdr;
868 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
869 {
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
874
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr->p_type == PT_LOAD
883 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
884 && (hdr->sh_offset + hdr->sh_size
885 <= phdr->p_offset + phdr->p_memsz)
886 && ((flags & SEC_LOAD) == 0
887 || (hdr->sh_offset + hdr->sh_size
888 <= phdr->p_offset + phdr->p_filesz)))
889 {
890 if ((flags & SEC_LOAD) == 0)
891 newsect->lma = (phdr->p_paddr
892 + hdr->sh_addr - phdr->p_vaddr);
893 else
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect->lma = (phdr->p_paddr
902 + hdr->sh_offset - phdr->p_offset);
903
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr->sh_addr >= phdr->p_vaddr
909 && (hdr->sh_addr + hdr->sh_size
910 <= phdr->p_vaddr + phdr->p_memsz))
911 break;
912 }
913 }
914 }
915 }
916
917 return TRUE;
918 }
919
920 /*
921 INTERNAL_FUNCTION
922 bfd_elf_find_section
923
924 SYNOPSIS
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
926
927 DESCRIPTION
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
933 */
934
935 struct elf_internal_shdr *
936 bfd_elf_find_section (bfd *abfd, char *name)
937 {
938 Elf_Internal_Shdr **i_shdrp;
939 char *shstrtab;
940 unsigned int max;
941 unsigned int i;
942
943 i_shdrp = elf_elfsections (abfd);
944 if (i_shdrp != NULL)
945 {
946 shstrtab = bfd_elf_get_str_section (abfd,
947 elf_elfheader (abfd)->e_shstrndx);
948 if (shstrtab != NULL)
949 {
950 max = elf_numsections (abfd);
951 for (i = 1; i < max; i++)
952 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
953 return i_shdrp[i];
954 }
955 }
956 return 0;
957 }
958
959 const char *const bfd_elf_section_type_names[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
963 };
964
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
974
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
977 arelent *reloc_entry,
978 asymbol *symbol,
979 void *data ATTRIBUTE_UNUSED,
980 asection *input_section,
981 bfd *output_bfd,
982 char **error_message ATTRIBUTE_UNUSED)
983 {
984 if (output_bfd != NULL
985 && (symbol->flags & BSF_SECTION_SYM) == 0
986 && (! reloc_entry->howto->partial_inplace
987 || reloc_entry->addend == 0))
988 {
989 reloc_entry->address += input_section->output_offset;
990 return bfd_reloc_ok;
991 }
992
993 return bfd_reloc_continue;
994 }
995 \f
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
997
998 static void
999 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1000 asection *sec)
1001 {
1002 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1003 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1004 }
1005
1006 /* Finish SHF_MERGE section merging. */
1007
1008 bfd_boolean
1009 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1010 {
1011 bfd *ibfd;
1012 asection *sec;
1013
1014 if (!is_elf_hash_table (info->hash))
1015 return FALSE;
1016
1017 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1018 if ((ibfd->flags & DYNAMIC) == 0)
1019 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1020 if ((sec->flags & SEC_MERGE) != 0
1021 && !bfd_is_abs_section (sec->output_section))
1022 {
1023 struct bfd_elf_section_data *secdata;
1024
1025 secdata = elf_section_data (sec);
1026 if (! _bfd_add_merge_section (abfd,
1027 &elf_hash_table (info)->merge_info,
1028 sec, &secdata->sec_info))
1029 return FALSE;
1030 else if (secdata->sec_info)
1031 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1032 }
1033
1034 if (elf_hash_table (info)->merge_info != NULL)
1035 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1036 merge_sections_remove_hook);
1037 return TRUE;
1038 }
1039
1040 void
1041 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1042 {
1043 sec->output_section = bfd_abs_section_ptr;
1044 sec->output_offset = sec->vma;
1045 if (!is_elf_hash_table (info->hash))
1046 return;
1047
1048 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1049 }
1050 \f
1051 /* Copy the program header and other data from one object module to
1052 another. */
1053
1054 bfd_boolean
1055 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1056 {
1057 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1059 return TRUE;
1060
1061 BFD_ASSERT (!elf_flags_init (obfd)
1062 || (elf_elfheader (obfd)->e_flags
1063 == elf_elfheader (ibfd)->e_flags));
1064
1065 elf_gp (obfd) = elf_gp (ibfd);
1066 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1067 elf_flags_init (obfd) = TRUE;
1068 return TRUE;
1069 }
1070
1071 static const char *
1072 get_segment_type (unsigned int p_type)
1073 {
1074 const char *pt;
1075 switch (p_type)
1076 {
1077 case PT_NULL: pt = "NULL"; break;
1078 case PT_LOAD: pt = "LOAD"; break;
1079 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1080 case PT_INTERP: pt = "INTERP"; break;
1081 case PT_NOTE: pt = "NOTE"; break;
1082 case PT_SHLIB: pt = "SHLIB"; break;
1083 case PT_PHDR: pt = "PHDR"; break;
1084 case PT_TLS: pt = "TLS"; break;
1085 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1086 case PT_GNU_STACK: pt = "STACK"; break;
1087 case PT_GNU_RELRO: pt = "RELRO"; break;
1088 default: pt = NULL; break;
1089 }
1090 return pt;
1091 }
1092
1093 /* Print out the program headers. */
1094
1095 bfd_boolean
1096 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1097 {
1098 FILE *f = farg;
1099 Elf_Internal_Phdr *p;
1100 asection *s;
1101 bfd_byte *dynbuf = NULL;
1102
1103 p = elf_tdata (abfd)->phdr;
1104 if (p != NULL)
1105 {
1106 unsigned int i, c;
1107
1108 fprintf (f, _("\nProgram Header:\n"));
1109 c = elf_elfheader (abfd)->e_phnum;
1110 for (i = 0; i < c; i++, p++)
1111 {
1112 const char *pt = get_segment_type (p->p_type);
1113 char buf[20];
1114
1115 if (pt == NULL)
1116 {
1117 sprintf (buf, "0x%lx", p->p_type);
1118 pt = buf;
1119 }
1120 fprintf (f, "%8s off 0x", pt);
1121 bfd_fprintf_vma (abfd, f, p->p_offset);
1122 fprintf (f, " vaddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1124 fprintf (f, " paddr 0x");
1125 bfd_fprintf_vma (abfd, f, p->p_paddr);
1126 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1127 fprintf (f, " filesz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_filesz);
1129 fprintf (f, " memsz 0x");
1130 bfd_fprintf_vma (abfd, f, p->p_memsz);
1131 fprintf (f, " flags %c%c%c",
1132 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1133 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1134 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1135 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1136 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1137 fprintf (f, "\n");
1138 }
1139 }
1140
1141 s = bfd_get_section_by_name (abfd, ".dynamic");
1142 if (s != NULL)
1143 {
1144 int elfsec;
1145 unsigned long shlink;
1146 bfd_byte *extdyn, *extdynend;
1147 size_t extdynsize;
1148 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1149
1150 fprintf (f, _("\nDynamic Section:\n"));
1151
1152 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1153 goto error_return;
1154
1155 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1156 if (elfsec == -1)
1157 goto error_return;
1158 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1159
1160 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1161 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1162
1163 extdyn = dynbuf;
1164 extdynend = extdyn + s->size;
1165 for (; extdyn < extdynend; extdyn += extdynsize)
1166 {
1167 Elf_Internal_Dyn dyn;
1168 const char *name;
1169 char ab[20];
1170 bfd_boolean stringp;
1171
1172 (*swap_dyn_in) (abfd, extdyn, &dyn);
1173
1174 if (dyn.d_tag == DT_NULL)
1175 break;
1176
1177 stringp = FALSE;
1178 switch (dyn.d_tag)
1179 {
1180 default:
1181 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1182 name = ab;
1183 break;
1184
1185 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1186 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1187 case DT_PLTGOT: name = "PLTGOT"; break;
1188 case DT_HASH: name = "HASH"; break;
1189 case DT_STRTAB: name = "STRTAB"; break;
1190 case DT_SYMTAB: name = "SYMTAB"; break;
1191 case DT_RELA: name = "RELA"; break;
1192 case DT_RELASZ: name = "RELASZ"; break;
1193 case DT_RELAENT: name = "RELAENT"; break;
1194 case DT_STRSZ: name = "STRSZ"; break;
1195 case DT_SYMENT: name = "SYMENT"; break;
1196 case DT_INIT: name = "INIT"; break;
1197 case DT_FINI: name = "FINI"; break;
1198 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1199 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1200 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1201 case DT_REL: name = "REL"; break;
1202 case DT_RELSZ: name = "RELSZ"; break;
1203 case DT_RELENT: name = "RELENT"; break;
1204 case DT_PLTREL: name = "PLTREL"; break;
1205 case DT_DEBUG: name = "DEBUG"; break;
1206 case DT_TEXTREL: name = "TEXTREL"; break;
1207 case DT_JMPREL: name = "JMPREL"; break;
1208 case DT_BIND_NOW: name = "BIND_NOW"; break;
1209 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1214 case DT_FLAGS: name = "FLAGS"; break;
1215 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM: name = "CHECKSUM"; break;
1218 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1219 case DT_MOVEENT: name = "MOVEENT"; break;
1220 case DT_MOVESZ: name = "MOVESZ"; break;
1221 case DT_FEATURE: name = "FEATURE"; break;
1222 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1223 case DT_SYMINSZ: name = "SYMINSZ"; break;
1224 case DT_SYMINENT: name = "SYMINENT"; break;
1225 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1226 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1227 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1228 case DT_PLTPAD: name = "PLTPAD"; break;
1229 case DT_MOVETAB: name = "MOVETAB"; break;
1230 case DT_SYMINFO: name = "SYMINFO"; break;
1231 case DT_RELACOUNT: name = "RELACOUNT"; break;
1232 case DT_RELCOUNT: name = "RELCOUNT"; break;
1233 case DT_FLAGS_1: name = "FLAGS_1"; break;
1234 case DT_VERSYM: name = "VERSYM"; break;
1235 case DT_VERDEF: name = "VERDEF"; break;
1236 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1237 case DT_VERNEED: name = "VERNEED"; break;
1238 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1239 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1240 case DT_USED: name = "USED"; break;
1241 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1242 }
1243
1244 fprintf (f, " %-11s ", name);
1245 if (! stringp)
1246 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1247 else
1248 {
1249 const char *string;
1250 unsigned int tagv = dyn.d_un.d_val;
1251
1252 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1253 if (string == NULL)
1254 goto error_return;
1255 fprintf (f, "%s", string);
1256 }
1257 fprintf (f, "\n");
1258 }
1259
1260 free (dynbuf);
1261 dynbuf = NULL;
1262 }
1263
1264 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1265 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1266 {
1267 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1268 return FALSE;
1269 }
1270
1271 if (elf_dynverdef (abfd) != 0)
1272 {
1273 Elf_Internal_Verdef *t;
1274
1275 fprintf (f, _("\nVersion definitions:\n"));
1276 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1277 {
1278 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1279 t->vd_flags, t->vd_hash,
1280 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1281 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1282 {
1283 Elf_Internal_Verdaux *a;
1284
1285 fprintf (f, "\t");
1286 for (a = t->vd_auxptr->vda_nextptr;
1287 a != NULL;
1288 a = a->vda_nextptr)
1289 fprintf (f, "%s ",
1290 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1291 fprintf (f, "\n");
1292 }
1293 }
1294 }
1295
1296 if (elf_dynverref (abfd) != 0)
1297 {
1298 Elf_Internal_Verneed *t;
1299
1300 fprintf (f, _("\nVersion References:\n"));
1301 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1302 {
1303 Elf_Internal_Vernaux *a;
1304
1305 fprintf (f, _(" required from %s:\n"),
1306 t->vn_filename ? t->vn_filename : "<corrupt>");
1307 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1308 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1309 a->vna_flags, a->vna_other,
1310 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1311 }
1312 }
1313
1314 return TRUE;
1315
1316 error_return:
1317 if (dynbuf != NULL)
1318 free (dynbuf);
1319 return FALSE;
1320 }
1321
1322 /* Display ELF-specific fields of a symbol. */
1323
1324 void
1325 bfd_elf_print_symbol (bfd *abfd,
1326 void *filep,
1327 asymbol *symbol,
1328 bfd_print_symbol_type how)
1329 {
1330 FILE *file = filep;
1331 switch (how)
1332 {
1333 case bfd_print_symbol_name:
1334 fprintf (file, "%s", symbol->name);
1335 break;
1336 case bfd_print_symbol_more:
1337 fprintf (file, "elf ");
1338 bfd_fprintf_vma (abfd, file, symbol->value);
1339 fprintf (file, " %lx", (long) symbol->flags);
1340 break;
1341 case bfd_print_symbol_all:
1342 {
1343 const char *section_name;
1344 const char *name = NULL;
1345 const struct elf_backend_data *bed;
1346 unsigned char st_other;
1347 bfd_vma val;
1348
1349 section_name = symbol->section ? symbol->section->name : "(*none*)";
1350
1351 bed = get_elf_backend_data (abfd);
1352 if (bed->elf_backend_print_symbol_all)
1353 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1354
1355 if (name == NULL)
1356 {
1357 name = symbol->name;
1358 bfd_print_symbol_vandf (abfd, file, symbol);
1359 }
1360
1361 fprintf (file, " %s\t", section_name);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol->section))
1367 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1368 else
1369 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1370 bfd_fprintf_vma (abfd, file, val);
1371
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd)->dynversym_section != 0
1374 && (elf_tdata (abfd)->dynverdef_section != 0
1375 || elf_tdata (abfd)->dynverref_section != 0))
1376 {
1377 unsigned int vernum;
1378 const char *version_string;
1379
1380 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1381
1382 if (vernum == 0)
1383 version_string = "";
1384 else if (vernum == 1)
1385 version_string = "Base";
1386 else if (vernum <= elf_tdata (abfd)->cverdefs)
1387 version_string =
1388 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1389 else
1390 {
1391 Elf_Internal_Verneed *t;
1392
1393 version_string = "";
1394 for (t = elf_tdata (abfd)->verref;
1395 t != NULL;
1396 t = t->vn_nextref)
1397 {
1398 Elf_Internal_Vernaux *a;
1399
1400 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1401 {
1402 if (a->vna_other == vernum)
1403 {
1404 version_string = a->vna_nodename;
1405 break;
1406 }
1407 }
1408 }
1409 }
1410
1411 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1412 fprintf (file, " %-11s", version_string);
1413 else
1414 {
1415 int i;
1416
1417 fprintf (file, " (%s)", version_string);
1418 for (i = 10 - strlen (version_string); i > 0; --i)
1419 putc (' ', file);
1420 }
1421 }
1422
1423 /* If the st_other field is not zero, print it. */
1424 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1425
1426 switch (st_other)
1427 {
1428 case 0: break;
1429 case STV_INTERNAL: fprintf (file, " .internal"); break;
1430 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1431 case STV_PROTECTED: fprintf (file, " .protected"); break;
1432 default:
1433 /* Some other non-defined flags are also present, so print
1434 everything hex. */
1435 fprintf (file, " 0x%02x", (unsigned int) st_other);
1436 }
1437
1438 fprintf (file, " %s", name);
1439 }
1440 break;
1441 }
1442 }
1443 \f
1444 /* Create an entry in an ELF linker hash table. */
1445
1446 struct bfd_hash_entry *
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1448 struct bfd_hash_table *table,
1449 const char *string)
1450 {
1451 /* Allocate the structure if it has not already been allocated by a
1452 subclass. */
1453 if (entry == NULL)
1454 {
1455 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1456 if (entry == NULL)
1457 return entry;
1458 }
1459
1460 /* Call the allocation method of the superclass. */
1461 entry = _bfd_link_hash_newfunc (entry, table, string);
1462 if (entry != NULL)
1463 {
1464 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1465 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1466
1467 /* Set local fields. */
1468 ret->indx = -1;
1469 ret->dynindx = -1;
1470 ret->got = htab->init_got_refcount;
1471 ret->plt = htab->init_plt_refcount;
1472 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1473 - offsetof (struct elf_link_hash_entry, size)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1478 ret->non_elf = 1;
1479 }
1480
1481 return entry;
1482 }
1483
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1486
1487 void
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1489 struct elf_link_hash_entry *dir,
1490 struct elf_link_hash_entry *ind)
1491 {
1492 struct elf_link_hash_table *htab;
1493
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1496
1497 dir->ref_dynamic |= ind->ref_dynamic;
1498 dir->ref_regular |= ind->ref_regular;
1499 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1500 dir->non_got_ref |= ind->non_got_ref;
1501 dir->needs_plt |= ind->needs_plt;
1502 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1503
1504 if (ind->root.type != bfd_link_hash_indirect)
1505 return;
1506
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab = elf_hash_table (info);
1510 if (ind->got.refcount > htab->init_got_refcount.refcount)
1511 {
1512 if (dir->got.refcount < 0)
1513 dir->got.refcount = 0;
1514 dir->got.refcount += ind->got.refcount;
1515 ind->got.refcount = htab->init_got_refcount.refcount;
1516 }
1517
1518 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1519 {
1520 if (dir->plt.refcount < 0)
1521 dir->plt.refcount = 0;
1522 dir->plt.refcount += ind->plt.refcount;
1523 ind->plt.refcount = htab->init_plt_refcount.refcount;
1524 }
1525
1526 if (ind->dynindx != -1)
1527 {
1528 if (dir->dynindx != -1)
1529 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1530 dir->dynindx = ind->dynindx;
1531 dir->dynstr_index = ind->dynstr_index;
1532 ind->dynindx = -1;
1533 ind->dynstr_index = 0;
1534 }
1535 }
1536
1537 void
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1539 struct elf_link_hash_entry *h,
1540 bfd_boolean force_local)
1541 {
1542 h->plt = elf_hash_table (info)->init_plt_offset;
1543 h->needs_plt = 0;
1544 if (force_local)
1545 {
1546 h->forced_local = 1;
1547 if (h->dynindx != -1)
1548 {
1549 h->dynindx = -1;
1550 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1551 h->dynstr_index);
1552 }
1553 }
1554 }
1555
1556 /* Initialize an ELF linker hash table. */
1557
1558 bfd_boolean
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table *table,
1561 bfd *abfd,
1562 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1563 struct bfd_hash_table *,
1564 const char *))
1565 {
1566 bfd_boolean ret;
1567 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1568
1569 table->dynamic_sections_created = FALSE;
1570 table->dynobj = NULL;
1571 table->init_got_refcount.refcount = can_refcount - 1;
1572 table->init_plt_refcount.refcount = can_refcount - 1;
1573 table->init_got_offset.offset = -(bfd_vma) 1;
1574 table->init_plt_offset.offset = -(bfd_vma) 1;
1575 /* The first dynamic symbol is a dummy. */
1576 table->dynsymcount = 1;
1577 table->dynstr = NULL;
1578 table->bucketcount = 0;
1579 table->needed = NULL;
1580 table->hgot = NULL;
1581 table->merge_info = NULL;
1582 memset (&table->stab_info, 0, sizeof (table->stab_info));
1583 memset (&table->eh_info, 0, sizeof (table->eh_info));
1584 table->dynlocal = NULL;
1585 table->runpath = NULL;
1586 table->tls_sec = NULL;
1587 table->tls_size = 0;
1588 table->loaded = NULL;
1589 table->is_relocatable_executable = FALSE;
1590
1591 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1592 table->root.type = bfd_link_elf_hash_table;
1593
1594 return ret;
1595 }
1596
1597 /* Create an ELF linker hash table. */
1598
1599 struct bfd_link_hash_table *
1600 _bfd_elf_link_hash_table_create (bfd *abfd)
1601 {
1602 struct elf_link_hash_table *ret;
1603 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1604
1605 ret = bfd_malloc (amt);
1606 if (ret == NULL)
1607 return NULL;
1608
1609 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1610 {
1611 free (ret);
1612 return NULL;
1613 }
1614
1615 return &ret->root;
1616 }
1617
1618 /* This is a hook for the ELF emulation code in the generic linker to
1619 tell the backend linker what file name to use for the DT_NEEDED
1620 entry for a dynamic object. */
1621
1622 void
1623 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1624 {
1625 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1626 && bfd_get_format (abfd) == bfd_object)
1627 elf_dt_name (abfd) = name;
1628 }
1629
1630 int
1631 bfd_elf_get_dyn_lib_class (bfd *abfd)
1632 {
1633 int lib_class;
1634 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1635 && bfd_get_format (abfd) == bfd_object)
1636 lib_class = elf_dyn_lib_class (abfd);
1637 else
1638 lib_class = 0;
1639 return lib_class;
1640 }
1641
1642 void
1643 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1644 {
1645 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1646 && bfd_get_format (abfd) == bfd_object)
1647 elf_dyn_lib_class (abfd) = lib_class;
1648 }
1649
1650 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1651 the linker ELF emulation code. */
1652
1653 struct bfd_link_needed_list *
1654 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1655 struct bfd_link_info *info)
1656 {
1657 if (! is_elf_hash_table (info->hash))
1658 return NULL;
1659 return elf_hash_table (info)->needed;
1660 }
1661
1662 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1663 hook for the linker ELF emulation code. */
1664
1665 struct bfd_link_needed_list *
1666 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1667 struct bfd_link_info *info)
1668 {
1669 if (! is_elf_hash_table (info->hash))
1670 return NULL;
1671 return elf_hash_table (info)->runpath;
1672 }
1673
1674 /* Get the name actually used for a dynamic object for a link. This
1675 is the SONAME entry if there is one. Otherwise, it is the string
1676 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1677
1678 const char *
1679 bfd_elf_get_dt_soname (bfd *abfd)
1680 {
1681 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1682 && bfd_get_format (abfd) == bfd_object)
1683 return elf_dt_name (abfd);
1684 return NULL;
1685 }
1686
1687 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1688 the ELF linker emulation code. */
1689
1690 bfd_boolean
1691 bfd_elf_get_bfd_needed_list (bfd *abfd,
1692 struct bfd_link_needed_list **pneeded)
1693 {
1694 asection *s;
1695 bfd_byte *dynbuf = NULL;
1696 int elfsec;
1697 unsigned long shlink;
1698 bfd_byte *extdyn, *extdynend;
1699 size_t extdynsize;
1700 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1701
1702 *pneeded = NULL;
1703
1704 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1705 || bfd_get_format (abfd) != bfd_object)
1706 return TRUE;
1707
1708 s = bfd_get_section_by_name (abfd, ".dynamic");
1709 if (s == NULL || s->size == 0)
1710 return TRUE;
1711
1712 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1713 goto error_return;
1714
1715 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1716 if (elfsec == -1)
1717 goto error_return;
1718
1719 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1720
1721 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1722 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1723
1724 extdyn = dynbuf;
1725 extdynend = extdyn + s->size;
1726 for (; extdyn < extdynend; extdyn += extdynsize)
1727 {
1728 Elf_Internal_Dyn dyn;
1729
1730 (*swap_dyn_in) (abfd, extdyn, &dyn);
1731
1732 if (dyn.d_tag == DT_NULL)
1733 break;
1734
1735 if (dyn.d_tag == DT_NEEDED)
1736 {
1737 const char *string;
1738 struct bfd_link_needed_list *l;
1739 unsigned int tagv = dyn.d_un.d_val;
1740 bfd_size_type amt;
1741
1742 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1743 if (string == NULL)
1744 goto error_return;
1745
1746 amt = sizeof *l;
1747 l = bfd_alloc (abfd, amt);
1748 if (l == NULL)
1749 goto error_return;
1750
1751 l->by = abfd;
1752 l->name = string;
1753 l->next = *pneeded;
1754 *pneeded = l;
1755 }
1756 }
1757
1758 free (dynbuf);
1759
1760 return TRUE;
1761
1762 error_return:
1763 if (dynbuf != NULL)
1764 free (dynbuf);
1765 return FALSE;
1766 }
1767 \f
1768 /* Allocate an ELF string table--force the first byte to be zero. */
1769
1770 struct bfd_strtab_hash *
1771 _bfd_elf_stringtab_init (void)
1772 {
1773 struct bfd_strtab_hash *ret;
1774
1775 ret = _bfd_stringtab_init ();
1776 if (ret != NULL)
1777 {
1778 bfd_size_type loc;
1779
1780 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1781 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1782 if (loc == (bfd_size_type) -1)
1783 {
1784 _bfd_stringtab_free (ret);
1785 ret = NULL;
1786 }
1787 }
1788 return ret;
1789 }
1790 \f
1791 /* ELF .o/exec file reading */
1792
1793 /* Create a new bfd section from an ELF section header. */
1794
1795 bfd_boolean
1796 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1797 {
1798 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1799 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1800 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1801 const char *name;
1802
1803 name = bfd_elf_string_from_elf_section (abfd,
1804 elf_elfheader (abfd)->e_shstrndx,
1805 hdr->sh_name);
1806 if (name == NULL)
1807 return FALSE;
1808
1809 switch (hdr->sh_type)
1810 {
1811 case SHT_NULL:
1812 /* Inactive section. Throw it away. */
1813 return TRUE;
1814
1815 case SHT_PROGBITS: /* Normal section with contents. */
1816 case SHT_NOBITS: /* .bss section. */
1817 case SHT_HASH: /* .hash section. */
1818 case SHT_NOTE: /* .note section. */
1819 case SHT_INIT_ARRAY: /* .init_array section. */
1820 case SHT_FINI_ARRAY: /* .fini_array section. */
1821 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1822 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1823 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1824
1825 case SHT_DYNAMIC: /* Dynamic linking information. */
1826 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1827 return FALSE;
1828 if (hdr->sh_link > elf_numsections (abfd)
1829 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1830 return FALSE;
1831 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1832 {
1833 Elf_Internal_Shdr *dynsymhdr;
1834
1835 /* The shared libraries distributed with hpux11 have a bogus
1836 sh_link field for the ".dynamic" section. Find the
1837 string table for the ".dynsym" section instead. */
1838 if (elf_dynsymtab (abfd) != 0)
1839 {
1840 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1841 hdr->sh_link = dynsymhdr->sh_link;
1842 }
1843 else
1844 {
1845 unsigned int i, num_sec;
1846
1847 num_sec = elf_numsections (abfd);
1848 for (i = 1; i < num_sec; i++)
1849 {
1850 dynsymhdr = elf_elfsections (abfd)[i];
1851 if (dynsymhdr->sh_type == SHT_DYNSYM)
1852 {
1853 hdr->sh_link = dynsymhdr->sh_link;
1854 break;
1855 }
1856 }
1857 }
1858 }
1859 break;
1860
1861 case SHT_SYMTAB: /* A symbol table */
1862 if (elf_onesymtab (abfd) == shindex)
1863 return TRUE;
1864
1865 if (hdr->sh_entsize != bed->s->sizeof_sym)
1866 return FALSE;
1867 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1868 elf_onesymtab (abfd) = shindex;
1869 elf_tdata (abfd)->symtab_hdr = *hdr;
1870 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1871 abfd->flags |= HAS_SYMS;
1872
1873 /* Sometimes a shared object will map in the symbol table. If
1874 SHF_ALLOC is set, and this is a shared object, then we also
1875 treat this section as a BFD section. We can not base the
1876 decision purely on SHF_ALLOC, because that flag is sometimes
1877 set in a relocatable object file, which would confuse the
1878 linker. */
1879 if ((hdr->sh_flags & SHF_ALLOC) != 0
1880 && (abfd->flags & DYNAMIC) != 0
1881 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1882 shindex))
1883 return FALSE;
1884
1885 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1886 can't read symbols without that section loaded as well. It
1887 is most likely specified by the next section header. */
1888 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1889 {
1890 unsigned int i, num_sec;
1891
1892 num_sec = elf_numsections (abfd);
1893 for (i = shindex + 1; i < num_sec; i++)
1894 {
1895 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1896 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1897 && hdr2->sh_link == shindex)
1898 break;
1899 }
1900 if (i == num_sec)
1901 for (i = 1; i < shindex; i++)
1902 {
1903 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1904 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1905 && hdr2->sh_link == shindex)
1906 break;
1907 }
1908 if (i != shindex)
1909 return bfd_section_from_shdr (abfd, i);
1910 }
1911 return TRUE;
1912
1913 case SHT_DYNSYM: /* A dynamic symbol table */
1914 if (elf_dynsymtab (abfd) == shindex)
1915 return TRUE;
1916
1917 if (hdr->sh_entsize != bed->s->sizeof_sym)
1918 return FALSE;
1919 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1920 elf_dynsymtab (abfd) = shindex;
1921 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1922 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1923 abfd->flags |= HAS_SYMS;
1924
1925 /* Besides being a symbol table, we also treat this as a regular
1926 section, so that objcopy can handle it. */
1927 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1928
1929 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1930 if (elf_symtab_shndx (abfd) == shindex)
1931 return TRUE;
1932
1933 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1934 elf_symtab_shndx (abfd) = shindex;
1935 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1936 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1937 return TRUE;
1938
1939 case SHT_STRTAB: /* A string table */
1940 if (hdr->bfd_section != NULL)
1941 return TRUE;
1942 if (ehdr->e_shstrndx == shindex)
1943 {
1944 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1945 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1946 return TRUE;
1947 }
1948 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1949 {
1950 symtab_strtab:
1951 elf_tdata (abfd)->strtab_hdr = *hdr;
1952 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1953 return TRUE;
1954 }
1955 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1956 {
1957 dynsymtab_strtab:
1958 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1959 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1960 elf_elfsections (abfd)[shindex] = hdr;
1961 /* We also treat this as a regular section, so that objcopy
1962 can handle it. */
1963 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1964 shindex);
1965 }
1966
1967 /* If the string table isn't one of the above, then treat it as a
1968 regular section. We need to scan all the headers to be sure,
1969 just in case this strtab section appeared before the above. */
1970 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1971 {
1972 unsigned int i, num_sec;
1973
1974 num_sec = elf_numsections (abfd);
1975 for (i = 1; i < num_sec; i++)
1976 {
1977 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1978 if (hdr2->sh_link == shindex)
1979 {
1980 /* Prevent endless recursion on broken objects. */
1981 if (i == shindex)
1982 return FALSE;
1983 if (! bfd_section_from_shdr (abfd, i))
1984 return FALSE;
1985 if (elf_onesymtab (abfd) == i)
1986 goto symtab_strtab;
1987 if (elf_dynsymtab (abfd) == i)
1988 goto dynsymtab_strtab;
1989 }
1990 }
1991 }
1992 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1993
1994 case SHT_REL:
1995 case SHT_RELA:
1996 /* *These* do a lot of work -- but build no sections! */
1997 {
1998 asection *target_sect;
1999 Elf_Internal_Shdr *hdr2;
2000 unsigned int num_sec = elf_numsections (abfd);
2001
2002 if (hdr->sh_entsize
2003 != (bfd_size_type) (hdr->sh_type == SHT_REL
2004 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2005 return FALSE;
2006
2007 /* Check for a bogus link to avoid crashing. */
2008 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2009 || hdr->sh_link >= num_sec)
2010 {
2011 ((*_bfd_error_handler)
2012 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2013 abfd, hdr->sh_link, name, shindex));
2014 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2015 shindex);
2016 }
2017
2018 /* For some incomprehensible reason Oracle distributes
2019 libraries for Solaris in which some of the objects have
2020 bogus sh_link fields. It would be nice if we could just
2021 reject them, but, unfortunately, some people need to use
2022 them. We scan through the section headers; if we find only
2023 one suitable symbol table, we clobber the sh_link to point
2024 to it. I hope this doesn't break anything. */
2025 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2026 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2027 {
2028 unsigned int scan;
2029 int found;
2030
2031 found = 0;
2032 for (scan = 1; scan < num_sec; scan++)
2033 {
2034 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2035 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2036 {
2037 if (found != 0)
2038 {
2039 found = 0;
2040 break;
2041 }
2042 found = scan;
2043 }
2044 }
2045 if (found != 0)
2046 hdr->sh_link = found;
2047 }
2048
2049 /* Get the symbol table. */
2050 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2051 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2052 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2053 return FALSE;
2054
2055 /* If this reloc section does not use the main symbol table we
2056 don't treat it as a reloc section. BFD can't adequately
2057 represent such a section, so at least for now, we don't
2058 try. We just present it as a normal section. We also
2059 can't use it as a reloc section if it points to the null
2060 section, an invalid section, or another reloc section. */
2061 if (hdr->sh_link != elf_onesymtab (abfd)
2062 || hdr->sh_info == SHN_UNDEF
2063 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2064 || hdr->sh_info >= num_sec
2065 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2066 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2067 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2068 shindex);
2069
2070 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2071 return FALSE;
2072 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2073 if (target_sect == NULL)
2074 return FALSE;
2075
2076 if ((target_sect->flags & SEC_RELOC) == 0
2077 || target_sect->reloc_count == 0)
2078 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2079 else
2080 {
2081 bfd_size_type amt;
2082 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2083 amt = sizeof (*hdr2);
2084 hdr2 = bfd_alloc (abfd, amt);
2085 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2086 }
2087 *hdr2 = *hdr;
2088 elf_elfsections (abfd)[shindex] = hdr2;
2089 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2090 target_sect->flags |= SEC_RELOC;
2091 target_sect->relocation = NULL;
2092 target_sect->rel_filepos = hdr->sh_offset;
2093 /* In the section to which the relocations apply, mark whether
2094 its relocations are of the REL or RELA variety. */
2095 if (hdr->sh_size != 0)
2096 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2097 abfd->flags |= HAS_RELOC;
2098 return TRUE;
2099 }
2100 break;
2101
2102 case SHT_GNU_verdef:
2103 elf_dynverdef (abfd) = shindex;
2104 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2105 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2106 break;
2107
2108 case SHT_GNU_versym:
2109 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2110 return FALSE;
2111 elf_dynversym (abfd) = shindex;
2112 elf_tdata (abfd)->dynversym_hdr = *hdr;
2113 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2114 break;
2115
2116 case SHT_GNU_verneed:
2117 elf_dynverref (abfd) = shindex;
2118 elf_tdata (abfd)->dynverref_hdr = *hdr;
2119 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2120 break;
2121
2122 case SHT_SHLIB:
2123 return TRUE;
2124
2125 case SHT_GROUP:
2126 /* We need a BFD section for objcopy and relocatable linking,
2127 and it's handy to have the signature available as the section
2128 name. */
2129 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2130 return FALSE;
2131 name = group_signature (abfd, hdr);
2132 if (name == NULL)
2133 return FALSE;
2134 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2135 return FALSE;
2136 if (hdr->contents != NULL)
2137 {
2138 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2139 unsigned int n_elt = hdr->sh_size / 4;
2140 asection *s;
2141
2142 if (idx->flags & GRP_COMDAT)
2143 hdr->bfd_section->flags
2144 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2145
2146 /* We try to keep the same section order as it comes in. */
2147 idx += n_elt;
2148 while (--n_elt != 0)
2149 if ((s = (--idx)->shdr->bfd_section) != NULL
2150 && elf_next_in_group (s) != NULL)
2151 {
2152 elf_next_in_group (hdr->bfd_section) = s;
2153 break;
2154 }
2155 }
2156 break;
2157
2158 default:
2159 /* Check for any processor-specific section types. */
2160 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2161 shindex);
2162 }
2163
2164 return TRUE;
2165 }
2166
2167 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2168 Return SEC for sections that have no elf section, and NULL on error. */
2169
2170 asection *
2171 bfd_section_from_r_symndx (bfd *abfd,
2172 struct sym_sec_cache *cache,
2173 asection *sec,
2174 unsigned long r_symndx)
2175 {
2176 Elf_Internal_Shdr *symtab_hdr;
2177 unsigned char esym[sizeof (Elf64_External_Sym)];
2178 Elf_External_Sym_Shndx eshndx;
2179 Elf_Internal_Sym isym;
2180 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2181
2182 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2183 return cache->sec[ent];
2184
2185 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2186 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2187 &isym, esym, &eshndx) == NULL)
2188 return NULL;
2189
2190 if (cache->abfd != abfd)
2191 {
2192 memset (cache->indx, -1, sizeof (cache->indx));
2193 cache->abfd = abfd;
2194 }
2195 cache->indx[ent] = r_symndx;
2196 cache->sec[ent] = sec;
2197 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2198 || isym.st_shndx > SHN_HIRESERVE)
2199 {
2200 asection *s;
2201 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2202 if (s != NULL)
2203 cache->sec[ent] = s;
2204 }
2205 return cache->sec[ent];
2206 }
2207
2208 /* Given an ELF section number, retrieve the corresponding BFD
2209 section. */
2210
2211 asection *
2212 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2213 {
2214 if (index >= elf_numsections (abfd))
2215 return NULL;
2216 return elf_elfsections (abfd)[index]->bfd_section;
2217 }
2218
2219 static const struct bfd_elf_special_section special_sections_b[] =
2220 {
2221 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2222 { NULL, 0, 0, 0, 0 }
2223 };
2224
2225 static const struct bfd_elf_special_section special_sections_c[] =
2226 {
2227 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2228 { NULL, 0, 0, 0, 0 }
2229 };
2230
2231 static const struct bfd_elf_special_section special_sections_d[] =
2232 {
2233 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2234 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2235 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2236 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2237 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2238 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2239 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2240 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2241 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2242 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2243 { NULL, 0, 0, 0, 0 }
2244 };
2245
2246 static const struct bfd_elf_special_section special_sections_f[] =
2247 {
2248 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2249 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2250 { NULL, 0, 0, 0, 0 }
2251 };
2252
2253 static const struct bfd_elf_special_section special_sections_g[] =
2254 {
2255 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2256 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2257 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2258 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2259 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2260 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2261 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2262 { NULL, 0, 0, 0, 0 }
2263 };
2264
2265 static const struct bfd_elf_special_section special_sections_h[] =
2266 {
2267 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2268 { NULL, 0, 0, 0, 0 }
2269 };
2270
2271 static const struct bfd_elf_special_section special_sections_i[] =
2272 {
2273 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2274 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2275 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2276 { NULL, 0, 0, 0, 0 }
2277 };
2278
2279 static const struct bfd_elf_special_section special_sections_l[] =
2280 {
2281 { ".line", 5, 0, SHT_PROGBITS, 0 },
2282 { NULL, 0, 0, 0, 0 }
2283 };
2284
2285 static const struct bfd_elf_special_section special_sections_n[] =
2286 {
2287 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2288 { ".note", 5, -1, SHT_NOTE, 0 },
2289 { NULL, 0, 0, 0, 0 }
2290 };
2291
2292 static const struct bfd_elf_special_section special_sections_p[] =
2293 {
2294 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2295 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2296 { NULL, 0, 0, 0, 0 }
2297 };
2298
2299 static const struct bfd_elf_special_section special_sections_r[] =
2300 {
2301 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2302 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2303 { ".rela", 5, -1, SHT_RELA, 0 },
2304 { ".rel", 4, -1, SHT_REL, 0 },
2305 { NULL, 0, 0, 0, 0 }
2306 };
2307
2308 static const struct bfd_elf_special_section special_sections_s[] =
2309 {
2310 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2311 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2312 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2313 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2314 { NULL, 0, 0, 0, 0 }
2315 };
2316
2317 static const struct bfd_elf_special_section special_sections_t[] =
2318 {
2319 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2320 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2321 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2322 { NULL, 0, 0, 0, 0 }
2323 };
2324
2325 static const struct bfd_elf_special_section *special_sections[] =
2326 {
2327 special_sections_b, /* 'b' */
2328 special_sections_c, /* 'b' */
2329 special_sections_d, /* 'd' */
2330 NULL, /* 'e' */
2331 special_sections_f, /* 'f' */
2332 special_sections_g, /* 'g' */
2333 special_sections_h, /* 'h' */
2334 special_sections_i, /* 'i' */
2335 NULL, /* 'j' */
2336 NULL, /* 'k' */
2337 special_sections_l, /* 'l' */
2338 NULL, /* 'm' */
2339 special_sections_n, /* 'n' */
2340 NULL, /* 'o' */
2341 special_sections_p, /* 'p' */
2342 NULL, /* 'q' */
2343 special_sections_r, /* 'r' */
2344 special_sections_s, /* 's' */
2345 special_sections_t, /* 't' */
2346 };
2347
2348 const struct bfd_elf_special_section *
2349 _bfd_elf_get_special_section (const char *name,
2350 const struct bfd_elf_special_section *spec,
2351 unsigned int rela)
2352 {
2353 int i;
2354 int len;
2355
2356 len = strlen (name);
2357
2358 for (i = 0; spec[i].prefix != NULL; i++)
2359 {
2360 int suffix_len;
2361 int prefix_len = spec[i].prefix_length;
2362
2363 if (len < prefix_len)
2364 continue;
2365 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2366 continue;
2367
2368 suffix_len = spec[i].suffix_length;
2369 if (suffix_len <= 0)
2370 {
2371 if (name[prefix_len] != 0)
2372 {
2373 if (suffix_len == 0)
2374 continue;
2375 if (name[prefix_len] != '.'
2376 && (suffix_len == -2
2377 || (rela && spec[i].type == SHT_REL)))
2378 continue;
2379 }
2380 }
2381 else
2382 {
2383 if (len < prefix_len + suffix_len)
2384 continue;
2385 if (memcmp (name + len - suffix_len,
2386 spec[i].prefix + prefix_len,
2387 suffix_len) != 0)
2388 continue;
2389 }
2390 return &spec[i];
2391 }
2392
2393 return NULL;
2394 }
2395
2396 const struct bfd_elf_special_section *
2397 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2398 {
2399 int i;
2400 const struct bfd_elf_special_section *spec;
2401 const struct elf_backend_data *bed;
2402
2403 /* See if this is one of the special sections. */
2404 if (sec->name == NULL)
2405 return NULL;
2406
2407 bed = get_elf_backend_data (abfd);
2408 spec = bed->special_sections;
2409 if (spec)
2410 {
2411 spec = _bfd_elf_get_special_section (sec->name,
2412 bed->special_sections,
2413 sec->use_rela_p);
2414 if (spec != NULL)
2415 return spec;
2416 }
2417
2418 if (sec->name[0] != '.')
2419 return NULL;
2420
2421 i = sec->name[1] - 'b';
2422 if (i < 0 || i > 't' - 'b')
2423 return NULL;
2424
2425 spec = special_sections[i];
2426
2427 if (spec == NULL)
2428 return NULL;
2429
2430 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2431 }
2432
2433 bfd_boolean
2434 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2435 {
2436 struct bfd_elf_section_data *sdata;
2437 const struct elf_backend_data *bed;
2438 const struct bfd_elf_special_section *ssect;
2439
2440 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2441 if (sdata == NULL)
2442 {
2443 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2444 if (sdata == NULL)
2445 return FALSE;
2446 sec->used_by_bfd = sdata;
2447 }
2448
2449 /* Indicate whether or not this section should use RELA relocations. */
2450 bed = get_elf_backend_data (abfd);
2451 sec->use_rela_p = bed->default_use_rela_p;
2452
2453 /* When we read a file, we don't need section type and flags unless
2454 it is a linker created section. They will be overridden in
2455 _bfd_elf_make_section_from_shdr anyway. */
2456 if (abfd->direction != read_direction
2457 || (sec->flags & SEC_LINKER_CREATED) != 0)
2458 {
2459 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2460 if (ssect != NULL)
2461 {
2462 elf_section_type (sec) = ssect->type;
2463 elf_section_flags (sec) = ssect->attr;
2464 }
2465 }
2466
2467 return TRUE;
2468 }
2469
2470 /* Create a new bfd section from an ELF program header.
2471
2472 Since program segments have no names, we generate a synthetic name
2473 of the form segment<NUM>, where NUM is generally the index in the
2474 program header table. For segments that are split (see below) we
2475 generate the names segment<NUM>a and segment<NUM>b.
2476
2477 Note that some program segments may have a file size that is different than
2478 (less than) the memory size. All this means is that at execution the
2479 system must allocate the amount of memory specified by the memory size,
2480 but only initialize it with the first "file size" bytes read from the
2481 file. This would occur for example, with program segments consisting
2482 of combined data+bss.
2483
2484 To handle the above situation, this routine generates TWO bfd sections
2485 for the single program segment. The first has the length specified by
2486 the file size of the segment, and the second has the length specified
2487 by the difference between the two sizes. In effect, the segment is split
2488 into it's initialized and uninitialized parts.
2489
2490 */
2491
2492 bfd_boolean
2493 _bfd_elf_make_section_from_phdr (bfd *abfd,
2494 Elf_Internal_Phdr *hdr,
2495 int index,
2496 const char *typename)
2497 {
2498 asection *newsect;
2499 char *name;
2500 char namebuf[64];
2501 size_t len;
2502 int split;
2503
2504 split = ((hdr->p_memsz > 0)
2505 && (hdr->p_filesz > 0)
2506 && (hdr->p_memsz > hdr->p_filesz));
2507 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2508 len = strlen (namebuf) + 1;
2509 name = bfd_alloc (abfd, len);
2510 if (!name)
2511 return FALSE;
2512 memcpy (name, namebuf, len);
2513 newsect = bfd_make_section (abfd, name);
2514 if (newsect == NULL)
2515 return FALSE;
2516 newsect->vma = hdr->p_vaddr;
2517 newsect->lma = hdr->p_paddr;
2518 newsect->size = hdr->p_filesz;
2519 newsect->filepos = hdr->p_offset;
2520 newsect->flags |= SEC_HAS_CONTENTS;
2521 newsect->alignment_power = bfd_log2 (hdr->p_align);
2522 if (hdr->p_type == PT_LOAD)
2523 {
2524 newsect->flags |= SEC_ALLOC;
2525 newsect->flags |= SEC_LOAD;
2526 if (hdr->p_flags & PF_X)
2527 {
2528 /* FIXME: all we known is that it has execute PERMISSION,
2529 may be data. */
2530 newsect->flags |= SEC_CODE;
2531 }
2532 }
2533 if (!(hdr->p_flags & PF_W))
2534 {
2535 newsect->flags |= SEC_READONLY;
2536 }
2537
2538 if (split)
2539 {
2540 sprintf (namebuf, "%s%db", typename, index);
2541 len = strlen (namebuf) + 1;
2542 name = bfd_alloc (abfd, len);
2543 if (!name)
2544 return FALSE;
2545 memcpy (name, namebuf, len);
2546 newsect = bfd_make_section (abfd, name);
2547 if (newsect == NULL)
2548 return FALSE;
2549 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2550 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2551 newsect->size = hdr->p_memsz - hdr->p_filesz;
2552 if (hdr->p_type == PT_LOAD)
2553 {
2554 newsect->flags |= SEC_ALLOC;
2555 if (hdr->p_flags & PF_X)
2556 newsect->flags |= SEC_CODE;
2557 }
2558 if (!(hdr->p_flags & PF_W))
2559 newsect->flags |= SEC_READONLY;
2560 }
2561
2562 return TRUE;
2563 }
2564
2565 bfd_boolean
2566 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2567 {
2568 const struct elf_backend_data *bed;
2569
2570 switch (hdr->p_type)
2571 {
2572 case PT_NULL:
2573 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2574
2575 case PT_LOAD:
2576 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2577
2578 case PT_DYNAMIC:
2579 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2580
2581 case PT_INTERP:
2582 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2583
2584 case PT_NOTE:
2585 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2586 return FALSE;
2587 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2588 return FALSE;
2589 return TRUE;
2590
2591 case PT_SHLIB:
2592 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2593
2594 case PT_PHDR:
2595 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2596
2597 case PT_GNU_EH_FRAME:
2598 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2599 "eh_frame_hdr");
2600
2601 case PT_GNU_STACK:
2602 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2603
2604 case PT_GNU_RELRO:
2605 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2606
2607 default:
2608 /* Check for any processor-specific program segment types. */
2609 bed = get_elf_backend_data (abfd);
2610 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2611 }
2612 }
2613
2614 /* Initialize REL_HDR, the section-header for new section, containing
2615 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2616 relocations; otherwise, we use REL relocations. */
2617
2618 bfd_boolean
2619 _bfd_elf_init_reloc_shdr (bfd *abfd,
2620 Elf_Internal_Shdr *rel_hdr,
2621 asection *asect,
2622 bfd_boolean use_rela_p)
2623 {
2624 char *name;
2625 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2626 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2627
2628 name = bfd_alloc (abfd, amt);
2629 if (name == NULL)
2630 return FALSE;
2631 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2632 rel_hdr->sh_name =
2633 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2634 FALSE);
2635 if (rel_hdr->sh_name == (unsigned int) -1)
2636 return FALSE;
2637 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2638 rel_hdr->sh_entsize = (use_rela_p
2639 ? bed->s->sizeof_rela
2640 : bed->s->sizeof_rel);
2641 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2642 rel_hdr->sh_flags = 0;
2643 rel_hdr->sh_addr = 0;
2644 rel_hdr->sh_size = 0;
2645 rel_hdr->sh_offset = 0;
2646
2647 return TRUE;
2648 }
2649
2650 /* Set up an ELF internal section header for a section. */
2651
2652 static void
2653 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2654 {
2655 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2656 bfd_boolean *failedptr = failedptrarg;
2657 Elf_Internal_Shdr *this_hdr;
2658
2659 if (*failedptr)
2660 {
2661 /* We already failed; just get out of the bfd_map_over_sections
2662 loop. */
2663 return;
2664 }
2665
2666 this_hdr = &elf_section_data (asect)->this_hdr;
2667
2668 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2669 asect->name, FALSE);
2670 if (this_hdr->sh_name == (unsigned int) -1)
2671 {
2672 *failedptr = TRUE;
2673 return;
2674 }
2675
2676 /* Don't clear sh_flags. Assembler may set additional bits. */
2677
2678 if ((asect->flags & SEC_ALLOC) != 0
2679 || asect->user_set_vma)
2680 this_hdr->sh_addr = asect->vma;
2681 else
2682 this_hdr->sh_addr = 0;
2683
2684 this_hdr->sh_offset = 0;
2685 this_hdr->sh_size = asect->size;
2686 this_hdr->sh_link = 0;
2687 this_hdr->sh_addralign = 1 << asect->alignment_power;
2688 /* The sh_entsize and sh_info fields may have been set already by
2689 copy_private_section_data. */
2690
2691 this_hdr->bfd_section = asect;
2692 this_hdr->contents = NULL;
2693
2694 /* If the section type is unspecified, we set it based on
2695 asect->flags. */
2696 if (this_hdr->sh_type == SHT_NULL)
2697 {
2698 if ((asect->flags & SEC_GROUP) != 0)
2699 this_hdr->sh_type = SHT_GROUP;
2700 else if ((asect->flags & SEC_ALLOC) != 0
2701 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2702 || (asect->flags & SEC_NEVER_LOAD) != 0))
2703 this_hdr->sh_type = SHT_NOBITS;
2704 else
2705 this_hdr->sh_type = SHT_PROGBITS;
2706 }
2707
2708 switch (this_hdr->sh_type)
2709 {
2710 default:
2711 break;
2712
2713 case SHT_STRTAB:
2714 case SHT_INIT_ARRAY:
2715 case SHT_FINI_ARRAY:
2716 case SHT_PREINIT_ARRAY:
2717 case SHT_NOTE:
2718 case SHT_NOBITS:
2719 case SHT_PROGBITS:
2720 break;
2721
2722 case SHT_HASH:
2723 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2724 break;
2725
2726 case SHT_DYNSYM:
2727 this_hdr->sh_entsize = bed->s->sizeof_sym;
2728 break;
2729
2730 case SHT_DYNAMIC:
2731 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2732 break;
2733
2734 case SHT_RELA:
2735 if (get_elf_backend_data (abfd)->may_use_rela_p)
2736 this_hdr->sh_entsize = bed->s->sizeof_rela;
2737 break;
2738
2739 case SHT_REL:
2740 if (get_elf_backend_data (abfd)->may_use_rel_p)
2741 this_hdr->sh_entsize = bed->s->sizeof_rel;
2742 break;
2743
2744 case SHT_GNU_versym:
2745 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2746 break;
2747
2748 case SHT_GNU_verdef:
2749 this_hdr->sh_entsize = 0;
2750 /* objcopy or strip will copy over sh_info, but may not set
2751 cverdefs. The linker will set cverdefs, but sh_info will be
2752 zero. */
2753 if (this_hdr->sh_info == 0)
2754 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2755 else
2756 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2757 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2758 break;
2759
2760 case SHT_GNU_verneed:
2761 this_hdr->sh_entsize = 0;
2762 /* objcopy or strip will copy over sh_info, but may not set
2763 cverrefs. The linker will set cverrefs, but sh_info will be
2764 zero. */
2765 if (this_hdr->sh_info == 0)
2766 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2767 else
2768 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2769 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2770 break;
2771
2772 case SHT_GROUP:
2773 this_hdr->sh_entsize = 4;
2774 break;
2775 }
2776
2777 if ((asect->flags & SEC_ALLOC) != 0)
2778 this_hdr->sh_flags |= SHF_ALLOC;
2779 if ((asect->flags & SEC_READONLY) == 0)
2780 this_hdr->sh_flags |= SHF_WRITE;
2781 if ((asect->flags & SEC_CODE) != 0)
2782 this_hdr->sh_flags |= SHF_EXECINSTR;
2783 if ((asect->flags & SEC_MERGE) != 0)
2784 {
2785 this_hdr->sh_flags |= SHF_MERGE;
2786 this_hdr->sh_entsize = asect->entsize;
2787 if ((asect->flags & SEC_STRINGS) != 0)
2788 this_hdr->sh_flags |= SHF_STRINGS;
2789 }
2790 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2791 this_hdr->sh_flags |= SHF_GROUP;
2792 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2793 {
2794 this_hdr->sh_flags |= SHF_TLS;
2795 if (asect->size == 0
2796 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2797 {
2798 struct bfd_link_order *o = asect->map_tail.link_order;
2799
2800 this_hdr->sh_size = 0;
2801 if (o != NULL)
2802 {
2803 this_hdr->sh_size = o->offset + o->size;
2804 if (this_hdr->sh_size != 0)
2805 this_hdr->sh_type = SHT_NOBITS;
2806 }
2807 }
2808 }
2809
2810 /* Check for processor-specific section types. */
2811 if (bed->elf_backend_fake_sections
2812 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2813 *failedptr = TRUE;
2814
2815 /* If the section has relocs, set up a section header for the
2816 SHT_REL[A] section. If two relocation sections are required for
2817 this section, it is up to the processor-specific back-end to
2818 create the other. */
2819 if ((asect->flags & SEC_RELOC) != 0
2820 && !_bfd_elf_init_reloc_shdr (abfd,
2821 &elf_section_data (asect)->rel_hdr,
2822 asect,
2823 asect->use_rela_p))
2824 *failedptr = TRUE;
2825 }
2826
2827 /* Fill in the contents of a SHT_GROUP section. */
2828
2829 void
2830 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2831 {
2832 bfd_boolean *failedptr = failedptrarg;
2833 unsigned long symindx;
2834 asection *elt, *first;
2835 unsigned char *loc;
2836 bfd_boolean gas;
2837
2838 /* Ignore linker created group section. See elfNN_ia64_object_p in
2839 elfxx-ia64.c. */
2840 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2841 || *failedptr)
2842 return;
2843
2844 symindx = 0;
2845 if (elf_group_id (sec) != NULL)
2846 symindx = elf_group_id (sec)->udata.i;
2847
2848 if (symindx == 0)
2849 {
2850 /* If called from the assembler, swap_out_syms will have set up
2851 elf_section_syms; If called for "ld -r", use target_index. */
2852 if (elf_section_syms (abfd) != NULL)
2853 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2854 else
2855 symindx = sec->target_index;
2856 }
2857 elf_section_data (sec)->this_hdr.sh_info = symindx;
2858
2859 /* The contents won't be allocated for "ld -r" or objcopy. */
2860 gas = TRUE;
2861 if (sec->contents == NULL)
2862 {
2863 gas = FALSE;
2864 sec->contents = bfd_alloc (abfd, sec->size);
2865
2866 /* Arrange for the section to be written out. */
2867 elf_section_data (sec)->this_hdr.contents = sec->contents;
2868 if (sec->contents == NULL)
2869 {
2870 *failedptr = TRUE;
2871 return;
2872 }
2873 }
2874
2875 loc = sec->contents + sec->size;
2876
2877 /* Get the pointer to the first section in the group that gas
2878 squirreled away here. objcopy arranges for this to be set to the
2879 start of the input section group. */
2880 first = elt = elf_next_in_group (sec);
2881
2882 /* First element is a flag word. Rest of section is elf section
2883 indices for all the sections of the group. Write them backwards
2884 just to keep the group in the same order as given in .section
2885 directives, not that it matters. */
2886 while (elt != NULL)
2887 {
2888 asection *s;
2889 unsigned int idx;
2890
2891 loc -= 4;
2892 s = elt;
2893 if (!gas)
2894 s = s->output_section;
2895 idx = 0;
2896 if (s != NULL)
2897 idx = elf_section_data (s)->this_idx;
2898 H_PUT_32 (abfd, idx, loc);
2899 elt = elf_next_in_group (elt);
2900 if (elt == first)
2901 break;
2902 }
2903
2904 if ((loc -= 4) != sec->contents)
2905 abort ();
2906
2907 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2908 }
2909
2910 /* Assign all ELF section numbers. The dummy first section is handled here
2911 too. The link/info pointers for the standard section types are filled
2912 in here too, while we're at it. */
2913
2914 static bfd_boolean
2915 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2916 {
2917 struct elf_obj_tdata *t = elf_tdata (abfd);
2918 asection *sec;
2919 unsigned int section_number, secn;
2920 Elf_Internal_Shdr **i_shdrp;
2921 struct bfd_elf_section_data *d;
2922
2923 section_number = 1;
2924
2925 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2926
2927 /* SHT_GROUP sections are in relocatable files only. */
2928 if (link_info == NULL || link_info->relocatable)
2929 {
2930 /* Put SHT_GROUP sections first. */
2931 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2932 {
2933 d = elf_section_data (sec);
2934
2935 if (d->this_hdr.sh_type == SHT_GROUP)
2936 {
2937 if (sec->flags & SEC_LINKER_CREATED)
2938 {
2939 /* Remove the linker created SHT_GROUP sections. */
2940 bfd_section_list_remove (abfd, sec);
2941 abfd->section_count--;
2942 }
2943 else
2944 {
2945 if (section_number == SHN_LORESERVE)
2946 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2947 d->this_idx = section_number++;
2948 }
2949 }
2950 }
2951 }
2952
2953 for (sec = abfd->sections; sec; sec = sec->next)
2954 {
2955 d = elf_section_data (sec);
2956
2957 if (d->this_hdr.sh_type != SHT_GROUP)
2958 {
2959 if (section_number == SHN_LORESERVE)
2960 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2961 d->this_idx = section_number++;
2962 }
2963 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2964 if ((sec->flags & SEC_RELOC) == 0)
2965 d->rel_idx = 0;
2966 else
2967 {
2968 if (section_number == SHN_LORESERVE)
2969 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2970 d->rel_idx = section_number++;
2971 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2972 }
2973
2974 if (d->rel_hdr2)
2975 {
2976 if (section_number == SHN_LORESERVE)
2977 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2978 d->rel_idx2 = section_number++;
2979 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2980 }
2981 else
2982 d->rel_idx2 = 0;
2983 }
2984
2985 if (section_number == SHN_LORESERVE)
2986 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2987 t->shstrtab_section = section_number++;
2988 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2989 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2990
2991 if (bfd_get_symcount (abfd) > 0)
2992 {
2993 if (section_number == SHN_LORESERVE)
2994 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2995 t->symtab_section = section_number++;
2996 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2997 if (section_number > SHN_LORESERVE - 2)
2998 {
2999 if (section_number == SHN_LORESERVE)
3000 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3001 t->symtab_shndx_section = section_number++;
3002 t->symtab_shndx_hdr.sh_name
3003 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3004 ".symtab_shndx", FALSE);
3005 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3006 return FALSE;
3007 }
3008 if (section_number == SHN_LORESERVE)
3009 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3010 t->strtab_section = section_number++;
3011 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3012 }
3013
3014 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3015 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3016
3017 elf_numsections (abfd) = section_number;
3018 elf_elfheader (abfd)->e_shnum = section_number;
3019 if (section_number > SHN_LORESERVE)
3020 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3021
3022 /* Set up the list of section header pointers, in agreement with the
3023 indices. */
3024 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3025 if (i_shdrp == NULL)
3026 return FALSE;
3027
3028 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3029 if (i_shdrp[0] == NULL)
3030 {
3031 bfd_release (abfd, i_shdrp);
3032 return FALSE;
3033 }
3034
3035 elf_elfsections (abfd) = i_shdrp;
3036
3037 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3038 if (bfd_get_symcount (abfd) > 0)
3039 {
3040 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3041 if (elf_numsections (abfd) > SHN_LORESERVE)
3042 {
3043 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3044 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3045 }
3046 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3047 t->symtab_hdr.sh_link = t->strtab_section;
3048 }
3049
3050 for (sec = abfd->sections; sec; sec = sec->next)
3051 {
3052 struct bfd_elf_section_data *d = elf_section_data (sec);
3053 asection *s;
3054 const char *name;
3055
3056 i_shdrp[d->this_idx] = &d->this_hdr;
3057 if (d->rel_idx != 0)
3058 i_shdrp[d->rel_idx] = &d->rel_hdr;
3059 if (d->rel_idx2 != 0)
3060 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3061
3062 /* Fill in the sh_link and sh_info fields while we're at it. */
3063
3064 /* sh_link of a reloc section is the section index of the symbol
3065 table. sh_info is the section index of the section to which
3066 the relocation entries apply. */
3067 if (d->rel_idx != 0)
3068 {
3069 d->rel_hdr.sh_link = t->symtab_section;
3070 d->rel_hdr.sh_info = d->this_idx;
3071 }
3072 if (d->rel_idx2 != 0)
3073 {
3074 d->rel_hdr2->sh_link = t->symtab_section;
3075 d->rel_hdr2->sh_info = d->this_idx;
3076 }
3077
3078 /* We need to set up sh_link for SHF_LINK_ORDER. */
3079 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3080 {
3081 s = elf_linked_to_section (sec);
3082 if (s)
3083 {
3084 /* elf_linked_to_section points to the input section. */
3085 if (link_info != NULL)
3086 {
3087 /* Check discarded linkonce section. */
3088 if (elf_discarded_section (s))
3089 {
3090 asection *kept;
3091 (*_bfd_error_handler)
3092 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3093 abfd, d->this_hdr.bfd_section,
3094 s, s->owner);
3095 /* Point to the kept section if it has the same
3096 size as the discarded one. */
3097 kept = _bfd_elf_check_kept_section (s);
3098 if (kept == NULL)
3099 {
3100 bfd_set_error (bfd_error_bad_value);
3101 return FALSE;
3102 }
3103 s = kept;
3104 }
3105
3106 s = s->output_section;
3107 BFD_ASSERT (s != NULL);
3108 }
3109 else
3110 {
3111 /* Handle objcopy. */
3112 if (s->output_section == NULL)
3113 {
3114 (*_bfd_error_handler)
3115 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3116 abfd, d->this_hdr.bfd_section, s, s->owner);
3117 bfd_set_error (bfd_error_bad_value);
3118 return FALSE;
3119 }
3120 s = s->output_section;
3121 }
3122 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3123 }
3124 else
3125 {
3126 /* PR 290:
3127 The Intel C compiler generates SHT_IA_64_UNWIND with
3128 SHF_LINK_ORDER. But it doesn't set the sh_link or
3129 sh_info fields. Hence we could get the situation
3130 where s is NULL. */
3131 const struct elf_backend_data *bed
3132 = get_elf_backend_data (abfd);
3133 if (bed->link_order_error_handler)
3134 bed->link_order_error_handler
3135 (_("%B: warning: sh_link not set for section `%A'"),
3136 abfd, sec);
3137 }
3138 }
3139
3140 switch (d->this_hdr.sh_type)
3141 {
3142 case SHT_REL:
3143 case SHT_RELA:
3144 /* A reloc section which we are treating as a normal BFD
3145 section. sh_link is the section index of the symbol
3146 table. sh_info is the section index of the section to
3147 which the relocation entries apply. We assume that an
3148 allocated reloc section uses the dynamic symbol table.
3149 FIXME: How can we be sure? */
3150 s = bfd_get_section_by_name (abfd, ".dynsym");
3151 if (s != NULL)
3152 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3153
3154 /* We look up the section the relocs apply to by name. */
3155 name = sec->name;
3156 if (d->this_hdr.sh_type == SHT_REL)
3157 name += 4;
3158 else
3159 name += 5;
3160 s = bfd_get_section_by_name (abfd, name);
3161 if (s != NULL)
3162 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3163 break;
3164
3165 case SHT_STRTAB:
3166 /* We assume that a section named .stab*str is a stabs
3167 string section. We look for a section with the same name
3168 but without the trailing ``str'', and set its sh_link
3169 field to point to this section. */
3170 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3171 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3172 {
3173 size_t len;
3174 char *alc;
3175
3176 len = strlen (sec->name);
3177 alc = bfd_malloc (len - 2);
3178 if (alc == NULL)
3179 return FALSE;
3180 memcpy (alc, sec->name, len - 3);
3181 alc[len - 3] = '\0';
3182 s = bfd_get_section_by_name (abfd, alc);
3183 free (alc);
3184 if (s != NULL)
3185 {
3186 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3187
3188 /* This is a .stab section. */
3189 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3190 elf_section_data (s)->this_hdr.sh_entsize
3191 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3192 }
3193 }
3194 break;
3195
3196 case SHT_DYNAMIC:
3197 case SHT_DYNSYM:
3198 case SHT_GNU_verneed:
3199 case SHT_GNU_verdef:
3200 /* sh_link is the section header index of the string table
3201 used for the dynamic entries, or the symbol table, or the
3202 version strings. */
3203 s = bfd_get_section_by_name (abfd, ".dynstr");
3204 if (s != NULL)
3205 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3206 break;
3207
3208 case SHT_GNU_LIBLIST:
3209 /* sh_link is the section header index of the prelink library
3210 list
3211 used for the dynamic entries, or the symbol table, or the
3212 version strings. */
3213 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3214 ? ".dynstr" : ".gnu.libstr");
3215 if (s != NULL)
3216 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3217 break;
3218
3219 case SHT_HASH:
3220 case SHT_GNU_versym:
3221 /* sh_link is the section header index of the symbol table
3222 this hash table or version table is for. */
3223 s = bfd_get_section_by_name (abfd, ".dynsym");
3224 if (s != NULL)
3225 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3226 break;
3227
3228 case SHT_GROUP:
3229 d->this_hdr.sh_link = t->symtab_section;
3230 }
3231 }
3232
3233 for (secn = 1; secn < section_number; ++secn)
3234 if (i_shdrp[secn] == NULL)
3235 i_shdrp[secn] = i_shdrp[0];
3236 else
3237 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3238 i_shdrp[secn]->sh_name);
3239 return TRUE;
3240 }
3241
3242 /* Map symbol from it's internal number to the external number, moving
3243 all local symbols to be at the head of the list. */
3244
3245 static int
3246 sym_is_global (bfd *abfd, asymbol *sym)
3247 {
3248 /* If the backend has a special mapping, use it. */
3249 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3250 if (bed->elf_backend_sym_is_global)
3251 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3252
3253 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3254 || bfd_is_und_section (bfd_get_section (sym))
3255 || bfd_is_com_section (bfd_get_section (sym)));
3256 }
3257
3258 static bfd_boolean
3259 elf_map_symbols (bfd *abfd)
3260 {
3261 unsigned int symcount = bfd_get_symcount (abfd);
3262 asymbol **syms = bfd_get_outsymbols (abfd);
3263 asymbol **sect_syms;
3264 unsigned int num_locals = 0;
3265 unsigned int num_globals = 0;
3266 unsigned int num_locals2 = 0;
3267 unsigned int num_globals2 = 0;
3268 int max_index = 0;
3269 unsigned int idx;
3270 asection *asect;
3271 asymbol **new_syms;
3272
3273 #ifdef DEBUG
3274 fprintf (stderr, "elf_map_symbols\n");
3275 fflush (stderr);
3276 #endif
3277
3278 for (asect = abfd->sections; asect; asect = asect->next)
3279 {
3280 if (max_index < asect->index)
3281 max_index = asect->index;
3282 }
3283
3284 max_index++;
3285 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3286 if (sect_syms == NULL)
3287 return FALSE;
3288 elf_section_syms (abfd) = sect_syms;
3289 elf_num_section_syms (abfd) = max_index;
3290
3291 /* Init sect_syms entries for any section symbols we have already
3292 decided to output. */
3293 for (idx = 0; idx < symcount; idx++)
3294 {
3295 asymbol *sym = syms[idx];
3296
3297 if ((sym->flags & BSF_SECTION_SYM) != 0
3298 && sym->value == 0)
3299 {
3300 asection *sec;
3301
3302 sec = sym->section;
3303
3304 if (sec->owner != NULL)
3305 {
3306 if (sec->owner != abfd)
3307 {
3308 if (sec->output_offset != 0)
3309 continue;
3310
3311 sec = sec->output_section;
3312
3313 /* Empty sections in the input files may have had a
3314 section symbol created for them. (See the comment
3315 near the end of _bfd_generic_link_output_symbols in
3316 linker.c). If the linker script discards such
3317 sections then we will reach this point. Since we know
3318 that we cannot avoid this case, we detect it and skip
3319 the abort and the assignment to the sect_syms array.
3320 To reproduce this particular case try running the
3321 linker testsuite test ld-scripts/weak.exp for an ELF
3322 port that uses the generic linker. */
3323 if (sec->owner == NULL)
3324 continue;
3325
3326 BFD_ASSERT (sec->owner == abfd);
3327 }
3328 sect_syms[sec->index] = syms[idx];
3329 }
3330 }
3331 }
3332
3333 /* Classify all of the symbols. */
3334 for (idx = 0; idx < symcount; idx++)
3335 {
3336 if (!sym_is_global (abfd, syms[idx]))
3337 num_locals++;
3338 else
3339 num_globals++;
3340 }
3341
3342 /* We will be adding a section symbol for each BFD section. Most normal
3343 sections will already have a section symbol in outsymbols, but
3344 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3345 at least in that case. */
3346 for (asect = abfd->sections; asect; asect = asect->next)
3347 {
3348 if (sect_syms[asect->index] == NULL)
3349 {
3350 if (!sym_is_global (abfd, asect->symbol))
3351 num_locals++;
3352 else
3353 num_globals++;
3354 }
3355 }
3356
3357 /* Now sort the symbols so the local symbols are first. */
3358 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3359
3360 if (new_syms == NULL)
3361 return FALSE;
3362
3363 for (idx = 0; idx < symcount; idx++)
3364 {
3365 asymbol *sym = syms[idx];
3366 unsigned int i;
3367
3368 if (!sym_is_global (abfd, sym))
3369 i = num_locals2++;
3370 else
3371 i = num_locals + num_globals2++;
3372 new_syms[i] = sym;
3373 sym->udata.i = i + 1;
3374 }
3375 for (asect = abfd->sections; asect; asect = asect->next)
3376 {
3377 if (sect_syms[asect->index] == NULL)
3378 {
3379 asymbol *sym = asect->symbol;
3380 unsigned int i;
3381
3382 sect_syms[asect->index] = sym;
3383 if (!sym_is_global (abfd, sym))
3384 i = num_locals2++;
3385 else
3386 i = num_locals + num_globals2++;
3387 new_syms[i] = sym;
3388 sym->udata.i = i + 1;
3389 }
3390 }
3391
3392 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3393
3394 elf_num_locals (abfd) = num_locals;
3395 elf_num_globals (abfd) = num_globals;
3396 return TRUE;
3397 }
3398
3399 /* Align to the maximum file alignment that could be required for any
3400 ELF data structure. */
3401
3402 static inline file_ptr
3403 align_file_position (file_ptr off, int align)
3404 {
3405 return (off + align - 1) & ~(align - 1);
3406 }
3407
3408 /* Assign a file position to a section, optionally aligning to the
3409 required section alignment. */
3410
3411 file_ptr
3412 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3413 file_ptr offset,
3414 bfd_boolean align)
3415 {
3416 if (align)
3417 {
3418 unsigned int al;
3419
3420 al = i_shdrp->sh_addralign;
3421 if (al > 1)
3422 offset = BFD_ALIGN (offset, al);
3423 }
3424 i_shdrp->sh_offset = offset;
3425 if (i_shdrp->bfd_section != NULL)
3426 i_shdrp->bfd_section->filepos = offset;
3427 if (i_shdrp->sh_type != SHT_NOBITS)
3428 offset += i_shdrp->sh_size;
3429 return offset;
3430 }
3431
3432 /* Compute the file positions we are going to put the sections at, and
3433 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3434 is not NULL, this is being called by the ELF backend linker. */
3435
3436 bfd_boolean
3437 _bfd_elf_compute_section_file_positions (bfd *abfd,
3438 struct bfd_link_info *link_info)
3439 {
3440 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3441 bfd_boolean failed;
3442 struct bfd_strtab_hash *strtab = NULL;
3443 Elf_Internal_Shdr *shstrtab_hdr;
3444
3445 if (abfd->output_has_begun)
3446 return TRUE;
3447
3448 /* Do any elf backend specific processing first. */
3449 if (bed->elf_backend_begin_write_processing)
3450 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3451
3452 if (! prep_headers (abfd))
3453 return FALSE;
3454
3455 /* Post process the headers if necessary. */
3456 if (bed->elf_backend_post_process_headers)
3457 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3458
3459 failed = FALSE;
3460 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3461 if (failed)
3462 return FALSE;
3463
3464 if (!assign_section_numbers (abfd, link_info))
3465 return FALSE;
3466
3467 /* The backend linker builds symbol table information itself. */
3468 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3469 {
3470 /* Non-zero if doing a relocatable link. */
3471 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3472
3473 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3474 return FALSE;
3475 }
3476
3477 if (link_info == NULL)
3478 {
3479 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3480 if (failed)
3481 return FALSE;
3482 }
3483
3484 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3485 /* sh_name was set in prep_headers. */
3486 shstrtab_hdr->sh_type = SHT_STRTAB;
3487 shstrtab_hdr->sh_flags = 0;
3488 shstrtab_hdr->sh_addr = 0;
3489 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3490 shstrtab_hdr->sh_entsize = 0;
3491 shstrtab_hdr->sh_link = 0;
3492 shstrtab_hdr->sh_info = 0;
3493 /* sh_offset is set in assign_file_positions_except_relocs. */
3494 shstrtab_hdr->sh_addralign = 1;
3495
3496 if (!assign_file_positions_except_relocs (abfd, link_info))
3497 return FALSE;
3498
3499 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3500 {
3501 file_ptr off;
3502 Elf_Internal_Shdr *hdr;
3503
3504 off = elf_tdata (abfd)->next_file_pos;
3505
3506 hdr = &elf_tdata (abfd)->symtab_hdr;
3507 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3508
3509 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3510 if (hdr->sh_size != 0)
3511 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3512
3513 hdr = &elf_tdata (abfd)->strtab_hdr;
3514 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3515
3516 elf_tdata (abfd)->next_file_pos = off;
3517
3518 /* Now that we know where the .strtab section goes, write it
3519 out. */
3520 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3521 || ! _bfd_stringtab_emit (abfd, strtab))
3522 return FALSE;
3523 _bfd_stringtab_free (strtab);
3524 }
3525
3526 abfd->output_has_begun = TRUE;
3527
3528 return TRUE;
3529 }
3530
3531 /* Create a mapping from a set of sections to a program segment. */
3532
3533 static struct elf_segment_map *
3534 make_mapping (bfd *abfd,
3535 asection **sections,
3536 unsigned int from,
3537 unsigned int to,
3538 bfd_boolean phdr)
3539 {
3540 struct elf_segment_map *m;
3541 unsigned int i;
3542 asection **hdrpp;
3543 bfd_size_type amt;
3544
3545 amt = sizeof (struct elf_segment_map);
3546 amt += (to - from - 1) * sizeof (asection *);
3547 m = bfd_zalloc (abfd, amt);
3548 if (m == NULL)
3549 return NULL;
3550 m->next = NULL;
3551 m->p_type = PT_LOAD;
3552 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3553 m->sections[i - from] = *hdrpp;
3554 m->count = to - from;
3555
3556 if (from == 0 && phdr)
3557 {
3558 /* Include the headers in the first PT_LOAD segment. */
3559 m->includes_filehdr = 1;
3560 m->includes_phdrs = 1;
3561 }
3562
3563 return m;
3564 }
3565
3566 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3567 on failure. */
3568
3569 struct elf_segment_map *
3570 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3571 {
3572 struct elf_segment_map *m;
3573
3574 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3575 if (m == NULL)
3576 return NULL;
3577 m->next = NULL;
3578 m->p_type = PT_DYNAMIC;
3579 m->count = 1;
3580 m->sections[0] = dynsec;
3581
3582 return m;
3583 }
3584
3585 /* Set up a mapping from BFD sections to program segments. */
3586
3587 static bfd_boolean
3588 map_sections_to_segments (bfd *abfd)
3589 {
3590 asection **sections = NULL;
3591 asection *s;
3592 unsigned int i;
3593 unsigned int count;
3594 struct elf_segment_map *mfirst;
3595 struct elf_segment_map **pm;
3596 struct elf_segment_map *m;
3597 asection *last_hdr;
3598 bfd_vma last_size;
3599 unsigned int phdr_index;
3600 bfd_vma maxpagesize;
3601 asection **hdrpp;
3602 bfd_boolean phdr_in_segment = TRUE;
3603 bfd_boolean writable;
3604 int tls_count = 0;
3605 asection *first_tls = NULL;
3606 asection *dynsec, *eh_frame_hdr;
3607 bfd_size_type amt;
3608
3609 if (elf_tdata (abfd)->segment_map != NULL)
3610 return TRUE;
3611
3612 if (bfd_count_sections (abfd) == 0)
3613 return TRUE;
3614
3615 /* Select the allocated sections, and sort them. */
3616
3617 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3618 if (sections == NULL)
3619 goto error_return;
3620
3621 i = 0;
3622 for (s = abfd->sections; s != NULL; s = s->next)
3623 {
3624 if ((s->flags & SEC_ALLOC) != 0)
3625 {
3626 sections[i] = s;
3627 ++i;
3628 }
3629 }
3630 BFD_ASSERT (i <= bfd_count_sections (abfd));
3631 count = i;
3632
3633 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3634
3635 /* Build the mapping. */
3636
3637 mfirst = NULL;
3638 pm = &mfirst;
3639
3640 /* If we have a .interp section, then create a PT_PHDR segment for
3641 the program headers and a PT_INTERP segment for the .interp
3642 section. */
3643 s = bfd_get_section_by_name (abfd, ".interp");
3644 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3645 {
3646 amt = sizeof (struct elf_segment_map);
3647 m = bfd_zalloc (abfd, amt);
3648 if (m == NULL)
3649 goto error_return;
3650 m->next = NULL;
3651 m->p_type = PT_PHDR;
3652 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3653 m->p_flags = PF_R | PF_X;
3654 m->p_flags_valid = 1;
3655 m->includes_phdrs = 1;
3656
3657 *pm = m;
3658 pm = &m->next;
3659
3660 amt = sizeof (struct elf_segment_map);
3661 m = bfd_zalloc (abfd, amt);
3662 if (m == NULL)
3663 goto error_return;
3664 m->next = NULL;
3665 m->p_type = PT_INTERP;
3666 m->count = 1;
3667 m->sections[0] = s;
3668
3669 *pm = m;
3670 pm = &m->next;
3671 }
3672
3673 /* Look through the sections. We put sections in the same program
3674 segment when the start of the second section can be placed within
3675 a few bytes of the end of the first section. */
3676 last_hdr = NULL;
3677 last_size = 0;
3678 phdr_index = 0;
3679 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3680 writable = FALSE;
3681 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3682 if (dynsec != NULL
3683 && (dynsec->flags & SEC_LOAD) == 0)
3684 dynsec = NULL;
3685
3686 /* Deal with -Ttext or something similar such that the first section
3687 is not adjacent to the program headers. This is an
3688 approximation, since at this point we don't know exactly how many
3689 program headers we will need. */
3690 if (count > 0)
3691 {
3692 bfd_size_type phdr_size;
3693
3694 phdr_size = elf_tdata (abfd)->program_header_size;
3695 if (phdr_size == 0)
3696 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3697 if ((abfd->flags & D_PAGED) == 0
3698 || sections[0]->lma < phdr_size
3699 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3700 phdr_in_segment = FALSE;
3701 }
3702
3703 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3704 {
3705 asection *hdr;
3706 bfd_boolean new_segment;
3707
3708 hdr = *hdrpp;
3709
3710 /* See if this section and the last one will fit in the same
3711 segment. */
3712
3713 if (last_hdr == NULL)
3714 {
3715 /* If we don't have a segment yet, then we don't need a new
3716 one (we build the last one after this loop). */
3717 new_segment = FALSE;
3718 }
3719 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3720 {
3721 /* If this section has a different relation between the
3722 virtual address and the load address, then we need a new
3723 segment. */
3724 new_segment = TRUE;
3725 }
3726 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3727 < BFD_ALIGN (hdr->lma, maxpagesize))
3728 {
3729 /* If putting this section in this segment would force us to
3730 skip a page in the segment, then we need a new segment. */
3731 new_segment = TRUE;
3732 }
3733 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3734 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3735 {
3736 /* We don't want to put a loadable section after a
3737 nonloadable section in the same segment.
3738 Consider .tbss sections as loadable for this purpose. */
3739 new_segment = TRUE;
3740 }
3741 else if ((abfd->flags & D_PAGED) == 0)
3742 {
3743 /* If the file is not demand paged, which means that we
3744 don't require the sections to be correctly aligned in the
3745 file, then there is no other reason for a new segment. */
3746 new_segment = FALSE;
3747 }
3748 else if (! writable
3749 && (hdr->flags & SEC_READONLY) == 0
3750 && (((last_hdr->lma + last_size - 1)
3751 & ~(maxpagesize - 1))
3752 != (hdr->lma & ~(maxpagesize - 1))))
3753 {
3754 /* We don't want to put a writable section in a read only
3755 segment, unless they are on the same page in memory
3756 anyhow. We already know that the last section does not
3757 bring us past the current section on the page, so the
3758 only case in which the new section is not on the same
3759 page as the previous section is when the previous section
3760 ends precisely on a page boundary. */
3761 new_segment = TRUE;
3762 }
3763 else
3764 {
3765 /* Otherwise, we can use the same segment. */
3766 new_segment = FALSE;
3767 }
3768
3769 if (! new_segment)
3770 {
3771 if ((hdr->flags & SEC_READONLY) == 0)
3772 writable = TRUE;
3773 last_hdr = hdr;
3774 /* .tbss sections effectively have zero size. */
3775 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3776 last_size = hdr->size;
3777 else
3778 last_size = 0;
3779 continue;
3780 }
3781
3782 /* We need a new program segment. We must create a new program
3783 header holding all the sections from phdr_index until hdr. */
3784
3785 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3786 if (m == NULL)
3787 goto error_return;
3788
3789 *pm = m;
3790 pm = &m->next;
3791
3792 if ((hdr->flags & SEC_READONLY) == 0)
3793 writable = TRUE;
3794 else
3795 writable = FALSE;
3796
3797 last_hdr = hdr;
3798 /* .tbss sections effectively have zero size. */
3799 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3800 last_size = hdr->size;
3801 else
3802 last_size = 0;
3803 phdr_index = i;
3804 phdr_in_segment = FALSE;
3805 }
3806
3807 /* Create a final PT_LOAD program segment. */
3808 if (last_hdr != NULL)
3809 {
3810 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3811 if (m == NULL)
3812 goto error_return;
3813
3814 *pm = m;
3815 pm = &m->next;
3816 }
3817
3818 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3819 if (dynsec != NULL)
3820 {
3821 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3822 if (m == NULL)
3823 goto error_return;
3824 *pm = m;
3825 pm = &m->next;
3826 }
3827
3828 /* For each loadable .note section, add a PT_NOTE segment. We don't
3829 use bfd_get_section_by_name, because if we link together
3830 nonloadable .note sections and loadable .note sections, we will
3831 generate two .note sections in the output file. FIXME: Using
3832 names for section types is bogus anyhow. */
3833 for (s = abfd->sections; s != NULL; s = s->next)
3834 {
3835 if ((s->flags & SEC_LOAD) != 0
3836 && strncmp (s->name, ".note", 5) == 0)
3837 {
3838 amt = sizeof (struct elf_segment_map);
3839 m = bfd_zalloc (abfd, amt);
3840 if (m == NULL)
3841 goto error_return;
3842 m->next = NULL;
3843 m->p_type = PT_NOTE;
3844 m->count = 1;
3845 m->sections[0] = s;
3846
3847 *pm = m;
3848 pm = &m->next;
3849 }
3850 if (s->flags & SEC_THREAD_LOCAL)
3851 {
3852 if (! tls_count)
3853 first_tls = s;
3854 tls_count++;
3855 }
3856 }
3857
3858 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3859 if (tls_count > 0)
3860 {
3861 int i;
3862
3863 amt = sizeof (struct elf_segment_map);
3864 amt += (tls_count - 1) * sizeof (asection *);
3865 m = bfd_zalloc (abfd, amt);
3866 if (m == NULL)
3867 goto error_return;
3868 m->next = NULL;
3869 m->p_type = PT_TLS;
3870 m->count = tls_count;
3871 /* Mandated PF_R. */
3872 m->p_flags = PF_R;
3873 m->p_flags_valid = 1;
3874 for (i = 0; i < tls_count; ++i)
3875 {
3876 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3877 m->sections[i] = first_tls;
3878 first_tls = first_tls->next;
3879 }
3880
3881 *pm = m;
3882 pm = &m->next;
3883 }
3884
3885 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3886 segment. */
3887 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3888 if (eh_frame_hdr != NULL
3889 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3890 {
3891 amt = sizeof (struct elf_segment_map);
3892 m = bfd_zalloc (abfd, amt);
3893 if (m == NULL)
3894 goto error_return;
3895 m->next = NULL;
3896 m->p_type = PT_GNU_EH_FRAME;
3897 m->count = 1;
3898 m->sections[0] = eh_frame_hdr->output_section;
3899
3900 *pm = m;
3901 pm = &m->next;
3902 }
3903
3904 if (elf_tdata (abfd)->stack_flags)
3905 {
3906 amt = sizeof (struct elf_segment_map);
3907 m = bfd_zalloc (abfd, amt);
3908 if (m == NULL)
3909 goto error_return;
3910 m->next = NULL;
3911 m->p_type = PT_GNU_STACK;
3912 m->p_flags = elf_tdata (abfd)->stack_flags;
3913 m->p_flags_valid = 1;
3914
3915 *pm = m;
3916 pm = &m->next;
3917 }
3918
3919 if (elf_tdata (abfd)->relro)
3920 {
3921 amt = sizeof (struct elf_segment_map);
3922 m = bfd_zalloc (abfd, amt);
3923 if (m == NULL)
3924 goto error_return;
3925 m->next = NULL;
3926 m->p_type = PT_GNU_RELRO;
3927 m->p_flags = PF_R;
3928 m->p_flags_valid = 1;
3929
3930 *pm = m;
3931 pm = &m->next;
3932 }
3933
3934 free (sections);
3935 sections = NULL;
3936
3937 elf_tdata (abfd)->segment_map = mfirst;
3938 return TRUE;
3939
3940 error_return:
3941 if (sections != NULL)
3942 free (sections);
3943 return FALSE;
3944 }
3945
3946 /* Sort sections by address. */
3947
3948 static int
3949 elf_sort_sections (const void *arg1, const void *arg2)
3950 {
3951 const asection *sec1 = *(const asection **) arg1;
3952 const asection *sec2 = *(const asection **) arg2;
3953 bfd_size_type size1, size2;
3954
3955 /* Sort by LMA first, since this is the address used to
3956 place the section into a segment. */
3957 if (sec1->lma < sec2->lma)
3958 return -1;
3959 else if (sec1->lma > sec2->lma)
3960 return 1;
3961
3962 /* Then sort by VMA. Normally the LMA and the VMA will be
3963 the same, and this will do nothing. */
3964 if (sec1->vma < sec2->vma)
3965 return -1;
3966 else if (sec1->vma > sec2->vma)
3967 return 1;
3968
3969 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3970
3971 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3972
3973 if (TOEND (sec1))
3974 {
3975 if (TOEND (sec2))
3976 {
3977 /* If the indicies are the same, do not return 0
3978 here, but continue to try the next comparison. */
3979 if (sec1->target_index - sec2->target_index != 0)
3980 return sec1->target_index - sec2->target_index;
3981 }
3982 else
3983 return 1;
3984 }
3985 else if (TOEND (sec2))
3986 return -1;
3987
3988 #undef TOEND
3989
3990 /* Sort by size, to put zero sized sections
3991 before others at the same address. */
3992
3993 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3994 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3995
3996 if (size1 < size2)
3997 return -1;
3998 if (size1 > size2)
3999 return 1;
4000
4001 return sec1->target_index - sec2->target_index;
4002 }
4003
4004 /* Ian Lance Taylor writes:
4005
4006 We shouldn't be using % with a negative signed number. That's just
4007 not good. We have to make sure either that the number is not
4008 negative, or that the number has an unsigned type. When the types
4009 are all the same size they wind up as unsigned. When file_ptr is a
4010 larger signed type, the arithmetic winds up as signed long long,
4011 which is wrong.
4012
4013 What we're trying to say here is something like ``increase OFF by
4014 the least amount that will cause it to be equal to the VMA modulo
4015 the page size.'' */
4016 /* In other words, something like:
4017
4018 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4019 off_offset = off % bed->maxpagesize;
4020 if (vma_offset < off_offset)
4021 adjustment = vma_offset + bed->maxpagesize - off_offset;
4022 else
4023 adjustment = vma_offset - off_offset;
4024
4025 which can can be collapsed into the expression below. */
4026
4027 static file_ptr
4028 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4029 {
4030 return ((vma - off) % maxpagesize);
4031 }
4032
4033 static void
4034 print_segment_map (bfd *abfd)
4035 {
4036 struct elf_segment_map *m;
4037 unsigned int i, j;
4038
4039 fprintf (stderr, _(" Section to Segment mapping:\n"));
4040 fprintf (stderr, _(" Segment Sections...\n"));
4041
4042 for (i= 0, m = elf_tdata (abfd)->segment_map;
4043 m != NULL;
4044 i++, m = m->next)
4045 {
4046 const char *pt = get_segment_type (m->p_type);
4047 char buf[32];
4048
4049 if (pt == NULL)
4050 {
4051 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4052 sprintf (buf, "LOPROC+%7.7x",
4053 (unsigned int) (m->p_type - PT_LOPROC));
4054 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4055 sprintf (buf, "LOOS+%7.7x",
4056 (unsigned int) (m->p_type - PT_LOOS));
4057 else
4058 snprintf (buf, sizeof (buf), "%8.8x",
4059 (unsigned int) m->p_type);
4060 pt = buf;
4061 }
4062 fprintf (stderr, " %2.2d: %14.14s: ", i, pt);
4063 for (j = 0; j < m->count; j++)
4064 fprintf (stderr, "%s ", m->sections [j]->name);
4065 putc ('\n',stderr);
4066 }
4067 }
4068
4069 /* Assign file positions to the sections based on the mapping from
4070 sections to segments. This function also sets up some fields in
4071 the file header, and writes out the program headers. */
4072
4073 static bfd_boolean
4074 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
4075 {
4076 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4077 unsigned int count;
4078 struct elf_segment_map *m;
4079 unsigned int alloc;
4080 Elf_Internal_Phdr *phdrs;
4081 file_ptr off, voff;
4082 bfd_vma filehdr_vaddr, filehdr_paddr;
4083 bfd_vma phdrs_vaddr, phdrs_paddr;
4084 Elf_Internal_Phdr *p;
4085
4086 if (elf_tdata (abfd)->segment_map == NULL)
4087 {
4088 if (! map_sections_to_segments (abfd))
4089 return FALSE;
4090 }
4091 else
4092 {
4093 /* The placement algorithm assumes that non allocated sections are
4094 not in PT_LOAD segments. We ensure this here by removing such
4095 sections from the segment map. We also remove excluded
4096 sections. */
4097 for (m = elf_tdata (abfd)->segment_map;
4098 m != NULL;
4099 m = m->next)
4100 {
4101 unsigned int new_count;
4102 unsigned int i;
4103
4104 new_count = 0;
4105 for (i = 0; i < m->count; i ++)
4106 {
4107 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4108 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4109 || m->p_type != PT_LOAD))
4110 {
4111 if (i != new_count)
4112 m->sections[new_count] = m->sections[i];
4113
4114 new_count ++;
4115 }
4116 }
4117
4118 if (new_count != m->count)
4119 m->count = new_count;
4120 }
4121 }
4122
4123 if (bed->elf_backend_modify_segment_map)
4124 {
4125 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4126 return FALSE;
4127 }
4128
4129 count = 0;
4130 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4131 ++count;
4132
4133 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4134 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4135 elf_elfheader (abfd)->e_phnum = count;
4136
4137 if (count == 0)
4138 {
4139 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4140 return TRUE;
4141 }
4142
4143 /* If we already counted the number of program segments, make sure
4144 that we allocated enough space. This happens when SIZEOF_HEADERS
4145 is used in a linker script. */
4146 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4147 if (alloc != 0 && count > alloc)
4148 {
4149 ((*_bfd_error_handler)
4150 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4151 abfd, alloc, count));
4152 print_segment_map (abfd);
4153 bfd_set_error (bfd_error_bad_value);
4154 return FALSE;
4155 }
4156
4157 if (alloc == 0)
4158 alloc = count;
4159
4160 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4161 if (phdrs == NULL)
4162 return FALSE;
4163
4164 off = bed->s->sizeof_ehdr;
4165 off += alloc * bed->s->sizeof_phdr;
4166
4167 filehdr_vaddr = 0;
4168 filehdr_paddr = 0;
4169 phdrs_vaddr = 0;
4170 phdrs_paddr = 0;
4171
4172 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4173 m != NULL;
4174 m = m->next, p++)
4175 {
4176 unsigned int i;
4177 asection **secpp;
4178
4179 /* If elf_segment_map is not from map_sections_to_segments, the
4180 sections may not be correctly ordered. NOTE: sorting should
4181 not be done to the PT_NOTE section of a corefile, which may
4182 contain several pseudo-sections artificially created by bfd.
4183 Sorting these pseudo-sections breaks things badly. */
4184 if (m->count > 1
4185 && !(elf_elfheader (abfd)->e_type == ET_CORE
4186 && m->p_type == PT_NOTE))
4187 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4188 elf_sort_sections);
4189
4190 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4191 number of sections with contents contributing to both p_filesz
4192 and p_memsz, followed by a number of sections with no contents
4193 that just contribute to p_memsz. In this loop, OFF tracks next
4194 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4195 an adjustment we use for segments that have no file contents
4196 but need zero filled memory allocation. */
4197 voff = 0;
4198 p->p_type = m->p_type;
4199 p->p_flags = m->p_flags;
4200
4201 if (p->p_type == PT_LOAD
4202 && m->count > 0)
4203 {
4204 bfd_size_type align;
4205 bfd_vma adjust;
4206 unsigned int align_power = 0;
4207
4208 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4209 {
4210 unsigned int secalign;
4211
4212 secalign = bfd_get_section_alignment (abfd, *secpp);
4213 if (secalign > align_power)
4214 align_power = secalign;
4215 }
4216 align = (bfd_size_type) 1 << align_power;
4217
4218 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4219 align = bed->maxpagesize;
4220
4221 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4222 off += adjust;
4223 if (adjust != 0
4224 && !m->includes_filehdr
4225 && !m->includes_phdrs
4226 && (ufile_ptr) off >= align)
4227 {
4228 /* If the first section isn't loadable, the same holds for
4229 any other sections. Since the segment won't need file
4230 space, we can make p_offset overlap some prior segment.
4231 However, .tbss is special. If a segment starts with
4232 .tbss, we need to look at the next section to decide
4233 whether the segment has any loadable sections. */
4234 i = 0;
4235 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4236 {
4237 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4238 || ++i >= m->count)
4239 {
4240 off -= adjust;
4241 voff = adjust - align;
4242 break;
4243 }
4244 }
4245 }
4246 }
4247 /* Make sure the .dynamic section is the first section in the
4248 PT_DYNAMIC segment. */
4249 else if (p->p_type == PT_DYNAMIC
4250 && m->count > 1
4251 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4252 {
4253 _bfd_error_handler
4254 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4255 abfd);
4256 bfd_set_error (bfd_error_bad_value);
4257 return FALSE;
4258 }
4259
4260 if (m->count == 0)
4261 p->p_vaddr = 0;
4262 else
4263 p->p_vaddr = m->sections[0]->vma;
4264
4265 if (m->p_paddr_valid)
4266 p->p_paddr = m->p_paddr;
4267 else if (m->count == 0)
4268 p->p_paddr = 0;
4269 else
4270 p->p_paddr = m->sections[0]->lma;
4271
4272 if (p->p_type == PT_LOAD
4273 && (abfd->flags & D_PAGED) != 0)
4274 p->p_align = bed->maxpagesize;
4275 else if (m->count == 0)
4276 p->p_align = 1 << bed->s->log_file_align;
4277 else
4278 p->p_align = 0;
4279
4280 p->p_offset = 0;
4281 p->p_filesz = 0;
4282 p->p_memsz = 0;
4283
4284 if (m->includes_filehdr)
4285 {
4286 if (! m->p_flags_valid)
4287 p->p_flags |= PF_R;
4288 p->p_offset = 0;
4289 p->p_filesz = bed->s->sizeof_ehdr;
4290 p->p_memsz = bed->s->sizeof_ehdr;
4291 if (m->count > 0)
4292 {
4293 BFD_ASSERT (p->p_type == PT_LOAD);
4294
4295 if (p->p_vaddr < (bfd_vma) off)
4296 {
4297 (*_bfd_error_handler)
4298 (_("%B: Not enough room for program headers, try linking with -N"),
4299 abfd);
4300 bfd_set_error (bfd_error_bad_value);
4301 return FALSE;
4302 }
4303
4304 p->p_vaddr -= off;
4305 if (! m->p_paddr_valid)
4306 p->p_paddr -= off;
4307 }
4308 if (p->p_type == PT_LOAD)
4309 {
4310 filehdr_vaddr = p->p_vaddr;
4311 filehdr_paddr = p->p_paddr;
4312 }
4313 }
4314
4315 if (m->includes_phdrs)
4316 {
4317 if (! m->p_flags_valid)
4318 p->p_flags |= PF_R;
4319
4320 if (m->includes_filehdr)
4321 {
4322 if (p->p_type == PT_LOAD)
4323 {
4324 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4325 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4326 }
4327 }
4328 else
4329 {
4330 p->p_offset = bed->s->sizeof_ehdr;
4331
4332 if (m->count > 0)
4333 {
4334 BFD_ASSERT (p->p_type == PT_LOAD);
4335 p->p_vaddr -= off - p->p_offset;
4336 if (! m->p_paddr_valid)
4337 p->p_paddr -= off - p->p_offset;
4338 }
4339
4340 if (p->p_type == PT_LOAD)
4341 {
4342 phdrs_vaddr = p->p_vaddr;
4343 phdrs_paddr = p->p_paddr;
4344 }
4345 else
4346 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4347 }
4348
4349 p->p_filesz += alloc * bed->s->sizeof_phdr;
4350 p->p_memsz += alloc * bed->s->sizeof_phdr;
4351 }
4352
4353 if (p->p_type == PT_LOAD
4354 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4355 {
4356 if (! m->includes_filehdr && ! m->includes_phdrs)
4357 p->p_offset = off + voff;
4358 else
4359 {
4360 file_ptr adjust;
4361
4362 adjust = off - (p->p_offset + p->p_filesz);
4363 p->p_filesz += adjust;
4364 p->p_memsz += adjust;
4365 }
4366 }
4367
4368 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4369 {
4370 asection *sec;
4371 flagword flags;
4372 bfd_size_type align;
4373
4374 sec = *secpp;
4375 flags = sec->flags;
4376 align = 1 << bfd_get_section_alignment (abfd, sec);
4377
4378 if (p->p_type == PT_LOAD
4379 || p->p_type == PT_TLS)
4380 {
4381 bfd_signed_vma adjust;
4382
4383 if ((flags & SEC_LOAD) != 0)
4384 {
4385 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4386 if (adjust < 0)
4387 {
4388 (*_bfd_error_handler)
4389 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4390 abfd, sec, (unsigned long) sec->lma);
4391 adjust = 0;
4392 }
4393 off += adjust;
4394 p->p_filesz += adjust;
4395 p->p_memsz += adjust;
4396 }
4397 /* .tbss is special. It doesn't contribute to p_memsz of
4398 normal segments. */
4399 else if ((flags & SEC_THREAD_LOCAL) == 0
4400 || p->p_type == PT_TLS)
4401 {
4402 /* The section VMA must equal the file position
4403 modulo the page size. */
4404 bfd_size_type page = align;
4405 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4406 page = bed->maxpagesize;
4407 adjust = vma_page_aligned_bias (sec->vma,
4408 p->p_vaddr + p->p_memsz,
4409 page);
4410 p->p_memsz += adjust;
4411 }
4412 }
4413
4414 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4415 {
4416 /* The section at i == 0 is the one that actually contains
4417 everything. */
4418 if (i == 0)
4419 {
4420 sec->filepos = off;
4421 off += sec->size;
4422 p->p_filesz = sec->size;
4423 p->p_memsz = 0;
4424 p->p_align = 1;
4425 }
4426 else
4427 {
4428 /* The rest are fake sections that shouldn't be written. */
4429 sec->filepos = 0;
4430 sec->size = 0;
4431 sec->flags = 0;
4432 continue;
4433 }
4434 }
4435 else
4436 {
4437 if (p->p_type == PT_LOAD)
4438 {
4439 sec->filepos = off;
4440 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4441 1997, and the exact reason for it isn't clear. One
4442 plausible explanation is that it is to work around
4443 a problem we have with linker scripts using data
4444 statements in NOLOAD sections. I don't think it
4445 makes a great deal of sense to have such a section
4446 assigned to a PT_LOAD segment, but apparently
4447 people do this. The data statement results in a
4448 bfd_data_link_order being built, and these need
4449 section contents to write into. Eventually, we get
4450 to _bfd_elf_write_object_contents which writes any
4451 section with contents to the output. Make room
4452 here for the write, so that following segments are
4453 not trashed. */
4454 if ((flags & SEC_LOAD) != 0
4455 || (flags & SEC_HAS_CONTENTS) != 0)
4456 off += sec->size;
4457 }
4458
4459 if ((flags & SEC_LOAD) != 0)
4460 {
4461 p->p_filesz += sec->size;
4462 p->p_memsz += sec->size;
4463 }
4464 /* PR ld/594: Sections in note segments which are not loaded
4465 contribute to the file size but not the in-memory size. */
4466 else if (p->p_type == PT_NOTE
4467 && (flags & SEC_HAS_CONTENTS) != 0)
4468 p->p_filesz += sec->size;
4469
4470 /* .tbss is special. It doesn't contribute to p_memsz of
4471 normal segments. */
4472 else if ((flags & SEC_THREAD_LOCAL) == 0
4473 || p->p_type == PT_TLS)
4474 p->p_memsz += sec->size;
4475
4476 if (p->p_type == PT_TLS
4477 && sec->size == 0
4478 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4479 {
4480 struct bfd_link_order *o = sec->map_tail.link_order;
4481 if (o != NULL)
4482 p->p_memsz += o->offset + o->size;
4483 }
4484
4485 if (align > p->p_align
4486 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4487 p->p_align = align;
4488 }
4489
4490 if (! m->p_flags_valid)
4491 {
4492 p->p_flags |= PF_R;
4493 if ((flags & SEC_CODE) != 0)
4494 p->p_flags |= PF_X;
4495 if ((flags & SEC_READONLY) == 0)
4496 p->p_flags |= PF_W;
4497 }
4498 }
4499 }
4500
4501 /* Now that we have set the section file positions, we can set up
4502 the file positions for the non PT_LOAD segments. */
4503 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4504 m != NULL;
4505 m = m->next, p++)
4506 {
4507 if (p->p_type != PT_LOAD && m->count > 0)
4508 {
4509 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4510 /* If the section has not yet been assigned a file position,
4511 do so now. The ARM BPABI requires that .dynamic section
4512 not be marked SEC_ALLOC because it is not part of any
4513 PT_LOAD segment, so it will not be processed above. */
4514 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4515 {
4516 unsigned int i;
4517 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4518
4519 i = 1;
4520 while (i_shdrpp[i]->bfd_section != m->sections[0])
4521 ++i;
4522 off = (_bfd_elf_assign_file_position_for_section
4523 (i_shdrpp[i], off, TRUE));
4524 p->p_filesz = m->sections[0]->size;
4525 }
4526 p->p_offset = m->sections[0]->filepos;
4527 }
4528 if (m->count == 0)
4529 {
4530 if (m->includes_filehdr)
4531 {
4532 p->p_vaddr = filehdr_vaddr;
4533 if (! m->p_paddr_valid)
4534 p->p_paddr = filehdr_paddr;
4535 }
4536 else if (m->includes_phdrs)
4537 {
4538 p->p_vaddr = phdrs_vaddr;
4539 if (! m->p_paddr_valid)
4540 p->p_paddr = phdrs_paddr;
4541 }
4542 else if (p->p_type == PT_GNU_RELRO)
4543 {
4544 Elf_Internal_Phdr *lp;
4545
4546 for (lp = phdrs; lp < phdrs + count; ++lp)
4547 {
4548 if (lp->p_type == PT_LOAD
4549 && lp->p_vaddr <= link_info->relro_end
4550 && lp->p_vaddr >= link_info->relro_start
4551 && lp->p_vaddr + lp->p_filesz
4552 >= link_info->relro_end)
4553 break;
4554 }
4555
4556 if (lp < phdrs + count
4557 && link_info->relro_end > lp->p_vaddr)
4558 {
4559 p->p_vaddr = lp->p_vaddr;
4560 p->p_paddr = lp->p_paddr;
4561 p->p_offset = lp->p_offset;
4562 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4563 p->p_memsz = p->p_filesz;
4564 p->p_align = 1;
4565 p->p_flags = (lp->p_flags & ~PF_W);
4566 }
4567 else
4568 {
4569 memset (p, 0, sizeof *p);
4570 p->p_type = PT_NULL;
4571 }
4572 }
4573 }
4574 }
4575
4576 /* Clear out any program headers we allocated but did not use. */
4577 for (; count < alloc; count++, p++)
4578 {
4579 memset (p, 0, sizeof *p);
4580 p->p_type = PT_NULL;
4581 }
4582
4583 elf_tdata (abfd)->phdr = phdrs;
4584
4585 elf_tdata (abfd)->next_file_pos = off;
4586
4587 /* Write out the program headers. */
4588 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4589 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4590 return FALSE;
4591
4592 return TRUE;
4593 }
4594
4595 /* Get the size of the program header.
4596
4597 If this is called by the linker before any of the section VMA's are set, it
4598 can't calculate the correct value for a strange memory layout. This only
4599 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4600 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4601 data segment (exclusive of .interp and .dynamic).
4602
4603 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4604 will be two segments. */
4605
4606 static bfd_size_type
4607 get_program_header_size (bfd *abfd)
4608 {
4609 size_t segs;
4610 asection *s;
4611 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4612
4613 /* We can't return a different result each time we're called. */
4614 if (elf_tdata (abfd)->program_header_size != 0)
4615 return elf_tdata (abfd)->program_header_size;
4616
4617 if (elf_tdata (abfd)->segment_map != NULL)
4618 {
4619 struct elf_segment_map *m;
4620
4621 segs = 0;
4622 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4623 ++segs;
4624 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4625 return elf_tdata (abfd)->program_header_size;
4626 }
4627
4628 /* Assume we will need exactly two PT_LOAD segments: one for text
4629 and one for data. */
4630 segs = 2;
4631
4632 s = bfd_get_section_by_name (abfd, ".interp");
4633 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4634 {
4635 /* If we have a loadable interpreter section, we need a
4636 PT_INTERP segment. In this case, assume we also need a
4637 PT_PHDR segment, although that may not be true for all
4638 targets. */
4639 segs += 2;
4640 }
4641
4642 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4643 {
4644 /* We need a PT_DYNAMIC segment. */
4645 ++segs;
4646 }
4647
4648 if (elf_tdata (abfd)->eh_frame_hdr)
4649 {
4650 /* We need a PT_GNU_EH_FRAME segment. */
4651 ++segs;
4652 }
4653
4654 if (elf_tdata (abfd)->stack_flags)
4655 {
4656 /* We need a PT_GNU_STACK segment. */
4657 ++segs;
4658 }
4659
4660 if (elf_tdata (abfd)->relro)
4661 {
4662 /* We need a PT_GNU_RELRO segment. */
4663 ++segs;
4664 }
4665
4666 for (s = abfd->sections; s != NULL; s = s->next)
4667 {
4668 if ((s->flags & SEC_LOAD) != 0
4669 && strncmp (s->name, ".note", 5) == 0)
4670 {
4671 /* We need a PT_NOTE segment. */
4672 ++segs;
4673 }
4674 }
4675
4676 for (s = abfd->sections; s != NULL; s = s->next)
4677 {
4678 if (s->flags & SEC_THREAD_LOCAL)
4679 {
4680 /* We need a PT_TLS segment. */
4681 ++segs;
4682 break;
4683 }
4684 }
4685
4686 /* Let the backend count up any program headers it might need. */
4687 if (bed->elf_backend_additional_program_headers)
4688 {
4689 int a;
4690
4691 a = (*bed->elf_backend_additional_program_headers) (abfd);
4692 if (a == -1)
4693 abort ();
4694 segs += a;
4695 }
4696
4697 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4698 return elf_tdata (abfd)->program_header_size;
4699 }
4700
4701 /* Work out the file positions of all the sections. This is called by
4702 _bfd_elf_compute_section_file_positions. All the section sizes and
4703 VMAs must be known before this is called.
4704
4705 Reloc sections come in two flavours: Those processed specially as
4706 "side-channel" data attached to a section to which they apply, and
4707 those that bfd doesn't process as relocations. The latter sort are
4708 stored in a normal bfd section by bfd_section_from_shdr. We don't
4709 consider the former sort here, unless they form part of the loadable
4710 image. Reloc sections not assigned here will be handled later by
4711 assign_file_positions_for_relocs.
4712
4713 We also don't set the positions of the .symtab and .strtab here. */
4714
4715 static bfd_boolean
4716 assign_file_positions_except_relocs (bfd *abfd,
4717 struct bfd_link_info *link_info)
4718 {
4719 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4720 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4721 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4722 unsigned int num_sec = elf_numsections (abfd);
4723 file_ptr off;
4724 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4725
4726 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4727 && bfd_get_format (abfd) != bfd_core)
4728 {
4729 Elf_Internal_Shdr **hdrpp;
4730 unsigned int i;
4731
4732 /* Start after the ELF header. */
4733 off = i_ehdrp->e_ehsize;
4734
4735 /* We are not creating an executable, which means that we are
4736 not creating a program header, and that the actual order of
4737 the sections in the file is unimportant. */
4738 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4739 {
4740 Elf_Internal_Shdr *hdr;
4741
4742 hdr = *hdrpp;
4743 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4744 && hdr->bfd_section == NULL)
4745 || i == tdata->symtab_section
4746 || i == tdata->symtab_shndx_section
4747 || i == tdata->strtab_section)
4748 {
4749 hdr->sh_offset = -1;
4750 }
4751 else
4752 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4753
4754 if (i == SHN_LORESERVE - 1)
4755 {
4756 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4757 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4758 }
4759 }
4760 }
4761 else
4762 {
4763 unsigned int i;
4764 Elf_Internal_Shdr **hdrpp;
4765
4766 /* Assign file positions for the loaded sections based on the
4767 assignment of sections to segments. */
4768 if (! assign_file_positions_for_segments (abfd, link_info))
4769 return FALSE;
4770
4771 /* Assign file positions for the other sections. */
4772
4773 off = elf_tdata (abfd)->next_file_pos;
4774 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4775 {
4776 Elf_Internal_Shdr *hdr;
4777
4778 hdr = *hdrpp;
4779 if (hdr->bfd_section != NULL
4780 && hdr->bfd_section->filepos != 0)
4781 hdr->sh_offset = hdr->bfd_section->filepos;
4782 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4783 {
4784 ((*_bfd_error_handler)
4785 (_("%B: warning: allocated section `%s' not in segment"),
4786 abfd,
4787 (hdr->bfd_section == NULL
4788 ? "*unknown*"
4789 : hdr->bfd_section->name)));
4790 if ((abfd->flags & D_PAGED) != 0)
4791 off += vma_page_aligned_bias (hdr->sh_addr, off,
4792 bed->maxpagesize);
4793 else
4794 off += vma_page_aligned_bias (hdr->sh_addr, off,
4795 hdr->sh_addralign);
4796 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4797 FALSE);
4798 }
4799 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4800 && hdr->bfd_section == NULL)
4801 || hdr == i_shdrpp[tdata->symtab_section]
4802 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4803 || hdr == i_shdrpp[tdata->strtab_section])
4804 hdr->sh_offset = -1;
4805 else
4806 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4807
4808 if (i == SHN_LORESERVE - 1)
4809 {
4810 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4811 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4812 }
4813 }
4814 }
4815
4816 /* Place the section headers. */
4817 off = align_file_position (off, 1 << bed->s->log_file_align);
4818 i_ehdrp->e_shoff = off;
4819 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4820
4821 elf_tdata (abfd)->next_file_pos = off;
4822
4823 return TRUE;
4824 }
4825
4826 static bfd_boolean
4827 prep_headers (bfd *abfd)
4828 {
4829 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4830 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4831 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4832 struct elf_strtab_hash *shstrtab;
4833 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4834
4835 i_ehdrp = elf_elfheader (abfd);
4836 i_shdrp = elf_elfsections (abfd);
4837
4838 shstrtab = _bfd_elf_strtab_init ();
4839 if (shstrtab == NULL)
4840 return FALSE;
4841
4842 elf_shstrtab (abfd) = shstrtab;
4843
4844 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4845 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4846 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4847 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4848
4849 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4850 i_ehdrp->e_ident[EI_DATA] =
4851 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4852 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4853
4854 if ((abfd->flags & DYNAMIC) != 0)
4855 i_ehdrp->e_type = ET_DYN;
4856 else if ((abfd->flags & EXEC_P) != 0)
4857 i_ehdrp->e_type = ET_EXEC;
4858 else if (bfd_get_format (abfd) == bfd_core)
4859 i_ehdrp->e_type = ET_CORE;
4860 else
4861 i_ehdrp->e_type = ET_REL;
4862
4863 switch (bfd_get_arch (abfd))
4864 {
4865 case bfd_arch_unknown:
4866 i_ehdrp->e_machine = EM_NONE;
4867 break;
4868
4869 /* There used to be a long list of cases here, each one setting
4870 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4871 in the corresponding bfd definition. To avoid duplication,
4872 the switch was removed. Machines that need special handling
4873 can generally do it in elf_backend_final_write_processing(),
4874 unless they need the information earlier than the final write.
4875 Such need can generally be supplied by replacing the tests for
4876 e_machine with the conditions used to determine it. */
4877 default:
4878 i_ehdrp->e_machine = bed->elf_machine_code;
4879 }
4880
4881 i_ehdrp->e_version = bed->s->ev_current;
4882 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4883
4884 /* No program header, for now. */
4885 i_ehdrp->e_phoff = 0;
4886 i_ehdrp->e_phentsize = 0;
4887 i_ehdrp->e_phnum = 0;
4888
4889 /* Each bfd section is section header entry. */
4890 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4891 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4892
4893 /* If we're building an executable, we'll need a program header table. */
4894 if (abfd->flags & EXEC_P)
4895 /* It all happens later. */
4896 ;
4897 else
4898 {
4899 i_ehdrp->e_phentsize = 0;
4900 i_phdrp = 0;
4901 i_ehdrp->e_phoff = 0;
4902 }
4903
4904 elf_tdata (abfd)->symtab_hdr.sh_name =
4905 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4906 elf_tdata (abfd)->strtab_hdr.sh_name =
4907 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4908 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4909 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4910 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4911 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4912 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4913 return FALSE;
4914
4915 return TRUE;
4916 }
4917
4918 /* Assign file positions for all the reloc sections which are not part
4919 of the loadable file image. */
4920
4921 void
4922 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4923 {
4924 file_ptr off;
4925 unsigned int i, num_sec;
4926 Elf_Internal_Shdr **shdrpp;
4927
4928 off = elf_tdata (abfd)->next_file_pos;
4929
4930 num_sec = elf_numsections (abfd);
4931 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4932 {
4933 Elf_Internal_Shdr *shdrp;
4934
4935 shdrp = *shdrpp;
4936 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4937 && shdrp->sh_offset == -1)
4938 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4939 }
4940
4941 elf_tdata (abfd)->next_file_pos = off;
4942 }
4943
4944 bfd_boolean
4945 _bfd_elf_write_object_contents (bfd *abfd)
4946 {
4947 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4948 Elf_Internal_Ehdr *i_ehdrp;
4949 Elf_Internal_Shdr **i_shdrp;
4950 bfd_boolean failed;
4951 unsigned int count, num_sec;
4952
4953 if (! abfd->output_has_begun
4954 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4955 return FALSE;
4956
4957 i_shdrp = elf_elfsections (abfd);
4958 i_ehdrp = elf_elfheader (abfd);
4959
4960 failed = FALSE;
4961 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4962 if (failed)
4963 return FALSE;
4964
4965 _bfd_elf_assign_file_positions_for_relocs (abfd);
4966
4967 /* After writing the headers, we need to write the sections too... */
4968 num_sec = elf_numsections (abfd);
4969 for (count = 1; count < num_sec; count++)
4970 {
4971 if (bed->elf_backend_section_processing)
4972 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4973 if (i_shdrp[count]->contents)
4974 {
4975 bfd_size_type amt = i_shdrp[count]->sh_size;
4976
4977 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4978 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4979 return FALSE;
4980 }
4981 if (count == SHN_LORESERVE - 1)
4982 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4983 }
4984
4985 /* Write out the section header names. */
4986 if (elf_shstrtab (abfd) != NULL
4987 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4988 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4989 return FALSE;
4990
4991 if (bed->elf_backend_final_write_processing)
4992 (*bed->elf_backend_final_write_processing) (abfd,
4993 elf_tdata (abfd)->linker);
4994
4995 return bed->s->write_shdrs_and_ehdr (abfd);
4996 }
4997
4998 bfd_boolean
4999 _bfd_elf_write_corefile_contents (bfd *abfd)
5000 {
5001 /* Hopefully this can be done just like an object file. */
5002 return _bfd_elf_write_object_contents (abfd);
5003 }
5004
5005 /* Given a section, search the header to find them. */
5006
5007 int
5008 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5009 {
5010 const struct elf_backend_data *bed;
5011 int index;
5012
5013 if (elf_section_data (asect) != NULL
5014 && elf_section_data (asect)->this_idx != 0)
5015 return elf_section_data (asect)->this_idx;
5016
5017 if (bfd_is_abs_section (asect))
5018 index = SHN_ABS;
5019 else if (bfd_is_com_section (asect))
5020 index = SHN_COMMON;
5021 else if (bfd_is_und_section (asect))
5022 index = SHN_UNDEF;
5023 else
5024 index = -1;
5025
5026 bed = get_elf_backend_data (abfd);
5027 if (bed->elf_backend_section_from_bfd_section)
5028 {
5029 int retval = index;
5030
5031 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5032 return retval;
5033 }
5034
5035 if (index == -1)
5036 bfd_set_error (bfd_error_nonrepresentable_section);
5037
5038 return index;
5039 }
5040
5041 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5042 on error. */
5043
5044 int
5045 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5046 {
5047 asymbol *asym_ptr = *asym_ptr_ptr;
5048 int idx;
5049 flagword flags = asym_ptr->flags;
5050
5051 /* When gas creates relocations against local labels, it creates its
5052 own symbol for the section, but does put the symbol into the
5053 symbol chain, so udata is 0. When the linker is generating
5054 relocatable output, this section symbol may be for one of the
5055 input sections rather than the output section. */
5056 if (asym_ptr->udata.i == 0
5057 && (flags & BSF_SECTION_SYM)
5058 && asym_ptr->section)
5059 {
5060 int indx;
5061
5062 if (asym_ptr->section->output_section != NULL)
5063 indx = asym_ptr->section->output_section->index;
5064 else
5065 indx = asym_ptr->section->index;
5066 if (indx < elf_num_section_syms (abfd)
5067 && elf_section_syms (abfd)[indx] != NULL)
5068 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5069 }
5070
5071 idx = asym_ptr->udata.i;
5072
5073 if (idx == 0)
5074 {
5075 /* This case can occur when using --strip-symbol on a symbol
5076 which is used in a relocation entry. */
5077 (*_bfd_error_handler)
5078 (_("%B: symbol `%s' required but not present"),
5079 abfd, bfd_asymbol_name (asym_ptr));
5080 bfd_set_error (bfd_error_no_symbols);
5081 return -1;
5082 }
5083
5084 #if DEBUG & 4
5085 {
5086 fprintf (stderr,
5087 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5088 (long) asym_ptr, asym_ptr->name, idx, flags,
5089 elf_symbol_flags (flags));
5090 fflush (stderr);
5091 }
5092 #endif
5093
5094 return idx;
5095 }
5096
5097 /* Rewrite program header information. */
5098
5099 static bfd_boolean
5100 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5101 {
5102 Elf_Internal_Ehdr *iehdr;
5103 struct elf_segment_map *map;
5104 struct elf_segment_map *map_first;
5105 struct elf_segment_map **pointer_to_map;
5106 Elf_Internal_Phdr *segment;
5107 asection *section;
5108 unsigned int i;
5109 unsigned int num_segments;
5110 bfd_boolean phdr_included = FALSE;
5111 bfd_vma maxpagesize;
5112 struct elf_segment_map *phdr_adjust_seg = NULL;
5113 unsigned int phdr_adjust_num = 0;
5114 const struct elf_backend_data *bed;
5115
5116 bed = get_elf_backend_data (ibfd);
5117 iehdr = elf_elfheader (ibfd);
5118
5119 map_first = NULL;
5120 pointer_to_map = &map_first;
5121
5122 num_segments = elf_elfheader (ibfd)->e_phnum;
5123 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5124
5125 /* Returns the end address of the segment + 1. */
5126 #define SEGMENT_END(segment, start) \
5127 (start + (segment->p_memsz > segment->p_filesz \
5128 ? segment->p_memsz : segment->p_filesz))
5129
5130 #define SECTION_SIZE(section, segment) \
5131 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5132 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5133 ? section->size : 0)
5134
5135 /* Returns TRUE if the given section is contained within
5136 the given segment. VMA addresses are compared. */
5137 #define IS_CONTAINED_BY_VMA(section, segment) \
5138 (section->vma >= segment->p_vaddr \
5139 && (section->vma + SECTION_SIZE (section, segment) \
5140 <= (SEGMENT_END (segment, segment->p_vaddr))))
5141
5142 /* Returns TRUE if the given section is contained within
5143 the given segment. LMA addresses are compared. */
5144 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5145 (section->lma >= base \
5146 && (section->lma + SECTION_SIZE (section, segment) \
5147 <= SEGMENT_END (segment, base)))
5148
5149 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5150 #define IS_COREFILE_NOTE(p, s) \
5151 (p->p_type == PT_NOTE \
5152 && bfd_get_format (ibfd) == bfd_core \
5153 && s->vma == 0 && s->lma == 0 \
5154 && (bfd_vma) s->filepos >= p->p_offset \
5155 && ((bfd_vma) s->filepos + s->size \
5156 <= p->p_offset + p->p_filesz))
5157
5158 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5159 linker, which generates a PT_INTERP section with p_vaddr and
5160 p_memsz set to 0. */
5161 #define IS_SOLARIS_PT_INTERP(p, s) \
5162 (p->p_vaddr == 0 \
5163 && p->p_paddr == 0 \
5164 && p->p_memsz == 0 \
5165 && p->p_filesz > 0 \
5166 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5167 && s->size > 0 \
5168 && (bfd_vma) s->filepos >= p->p_offset \
5169 && ((bfd_vma) s->filepos + s->size \
5170 <= p->p_offset + p->p_filesz))
5171
5172 /* Decide if the given section should be included in the given segment.
5173 A section will be included if:
5174 1. It is within the address space of the segment -- we use the LMA
5175 if that is set for the segment and the VMA otherwise,
5176 2. It is an allocated segment,
5177 3. There is an output section associated with it,
5178 4. The section has not already been allocated to a previous segment.
5179 5. PT_GNU_STACK segments do not include any sections.
5180 6. PT_TLS segment includes only SHF_TLS sections.
5181 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5182 8. PT_DYNAMIC should not contain empty sections at the beginning
5183 (with the possible exception of .dynamic). */
5184 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5185 ((((segment->p_paddr \
5186 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5187 : IS_CONTAINED_BY_VMA (section, segment)) \
5188 && (section->flags & SEC_ALLOC) != 0) \
5189 || IS_COREFILE_NOTE (segment, section)) \
5190 && section->output_section != NULL \
5191 && segment->p_type != PT_GNU_STACK \
5192 && (segment->p_type != PT_TLS \
5193 || (section->flags & SEC_THREAD_LOCAL)) \
5194 && (segment->p_type == PT_LOAD \
5195 || segment->p_type == PT_TLS \
5196 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5197 && (segment->p_type != PT_DYNAMIC \
5198 || SECTION_SIZE (section, segment) > 0 \
5199 || (segment->p_paddr \
5200 ? segment->p_paddr != section->lma \
5201 : segment->p_vaddr != section->vma) \
5202 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5203 == 0)) \
5204 && ! section->segment_mark)
5205
5206 /* Returns TRUE iff seg1 starts after the end of seg2. */
5207 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5208 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5209
5210 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5211 their VMA address ranges and their LMA address ranges overlap.
5212 It is possible to have overlapping VMA ranges without overlapping LMA
5213 ranges. RedBoot images for example can have both .data and .bss mapped
5214 to the same VMA range, but with the .data section mapped to a different
5215 LMA. */
5216 #define SEGMENT_OVERLAPS(seg1, seg2) \
5217 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5218 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5219 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5220 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5221
5222 /* Initialise the segment mark field. */
5223 for (section = ibfd->sections; section != NULL; section = section->next)
5224 section->segment_mark = FALSE;
5225
5226 /* Scan through the segments specified in the program header
5227 of the input BFD. For this first scan we look for overlaps
5228 in the loadable segments. These can be created by weird
5229 parameters to objcopy. Also, fix some solaris weirdness. */
5230 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5231 i < num_segments;
5232 i++, segment++)
5233 {
5234 unsigned int j;
5235 Elf_Internal_Phdr *segment2;
5236
5237 if (segment->p_type == PT_INTERP)
5238 for (section = ibfd->sections; section; section = section->next)
5239 if (IS_SOLARIS_PT_INTERP (segment, section))
5240 {
5241 /* Mininal change so that the normal section to segment
5242 assignment code will work. */
5243 segment->p_vaddr = section->vma;
5244 break;
5245 }
5246
5247 if (segment->p_type != PT_LOAD)
5248 continue;
5249
5250 /* Determine if this segment overlaps any previous segments. */
5251 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5252 {
5253 bfd_signed_vma extra_length;
5254
5255 if (segment2->p_type != PT_LOAD
5256 || ! SEGMENT_OVERLAPS (segment, segment2))
5257 continue;
5258
5259 /* Merge the two segments together. */
5260 if (segment2->p_vaddr < segment->p_vaddr)
5261 {
5262 /* Extend SEGMENT2 to include SEGMENT and then delete
5263 SEGMENT. */
5264 extra_length =
5265 SEGMENT_END (segment, segment->p_vaddr)
5266 - SEGMENT_END (segment2, segment2->p_vaddr);
5267
5268 if (extra_length > 0)
5269 {
5270 segment2->p_memsz += extra_length;
5271 segment2->p_filesz += extra_length;
5272 }
5273
5274 segment->p_type = PT_NULL;
5275
5276 /* Since we have deleted P we must restart the outer loop. */
5277 i = 0;
5278 segment = elf_tdata (ibfd)->phdr;
5279 break;
5280 }
5281 else
5282 {
5283 /* Extend SEGMENT to include SEGMENT2 and then delete
5284 SEGMENT2. */
5285 extra_length =
5286 SEGMENT_END (segment2, segment2->p_vaddr)
5287 - SEGMENT_END (segment, segment->p_vaddr);
5288
5289 if (extra_length > 0)
5290 {
5291 segment->p_memsz += extra_length;
5292 segment->p_filesz += extra_length;
5293 }
5294
5295 segment2->p_type = PT_NULL;
5296 }
5297 }
5298 }
5299
5300 /* The second scan attempts to assign sections to segments. */
5301 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5302 i < num_segments;
5303 i ++, segment ++)
5304 {
5305 unsigned int section_count;
5306 asection ** sections;
5307 asection * output_section;
5308 unsigned int isec;
5309 bfd_vma matching_lma;
5310 bfd_vma suggested_lma;
5311 unsigned int j;
5312 bfd_size_type amt;
5313
5314 if (segment->p_type == PT_NULL)
5315 continue;
5316
5317 /* Compute how many sections might be placed into this segment. */
5318 for (section = ibfd->sections, section_count = 0;
5319 section != NULL;
5320 section = section->next)
5321 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5322 ++section_count;
5323
5324 /* Allocate a segment map big enough to contain
5325 all of the sections we have selected. */
5326 amt = sizeof (struct elf_segment_map);
5327 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5328 map = bfd_alloc (obfd, amt);
5329 if (map == NULL)
5330 return FALSE;
5331
5332 /* Initialise the fields of the segment map. Default to
5333 using the physical address of the segment in the input BFD. */
5334 map->next = NULL;
5335 map->p_type = segment->p_type;
5336 map->p_flags = segment->p_flags;
5337 map->p_flags_valid = 1;
5338 map->p_paddr = segment->p_paddr;
5339 map->p_paddr_valid = 1;
5340
5341 /* Determine if this segment contains the ELF file header
5342 and if it contains the program headers themselves. */
5343 map->includes_filehdr = (segment->p_offset == 0
5344 && segment->p_filesz >= iehdr->e_ehsize);
5345
5346 map->includes_phdrs = 0;
5347
5348 if (! phdr_included || segment->p_type != PT_LOAD)
5349 {
5350 map->includes_phdrs =
5351 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5352 && (segment->p_offset + segment->p_filesz
5353 >= ((bfd_vma) iehdr->e_phoff
5354 + iehdr->e_phnum * iehdr->e_phentsize)));
5355
5356 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5357 phdr_included = TRUE;
5358 }
5359
5360 if (section_count == 0)
5361 {
5362 /* Special segments, such as the PT_PHDR segment, may contain
5363 no sections, but ordinary, loadable segments should contain
5364 something. They are allowed by the ELF spec however, so only
5365 a warning is produced. */
5366 if (segment->p_type == PT_LOAD)
5367 (*_bfd_error_handler)
5368 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5369 ibfd);
5370
5371 map->count = 0;
5372 *pointer_to_map = map;
5373 pointer_to_map = &map->next;
5374
5375 continue;
5376 }
5377
5378 /* Now scan the sections in the input BFD again and attempt
5379 to add their corresponding output sections to the segment map.
5380 The problem here is how to handle an output section which has
5381 been moved (ie had its LMA changed). There are four possibilities:
5382
5383 1. None of the sections have been moved.
5384 In this case we can continue to use the segment LMA from the
5385 input BFD.
5386
5387 2. All of the sections have been moved by the same amount.
5388 In this case we can change the segment's LMA to match the LMA
5389 of the first section.
5390
5391 3. Some of the sections have been moved, others have not.
5392 In this case those sections which have not been moved can be
5393 placed in the current segment which will have to have its size,
5394 and possibly its LMA changed, and a new segment or segments will
5395 have to be created to contain the other sections.
5396
5397 4. The sections have been moved, but not by the same amount.
5398 In this case we can change the segment's LMA to match the LMA
5399 of the first section and we will have to create a new segment
5400 or segments to contain the other sections.
5401
5402 In order to save time, we allocate an array to hold the section
5403 pointers that we are interested in. As these sections get assigned
5404 to a segment, they are removed from this array. */
5405
5406 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5407 to work around this long long bug. */
5408 sections = bfd_malloc2 (section_count, sizeof (asection *));
5409 if (sections == NULL)
5410 return FALSE;
5411
5412 /* Step One: Scan for segment vs section LMA conflicts.
5413 Also add the sections to the section array allocated above.
5414 Also add the sections to the current segment. In the common
5415 case, where the sections have not been moved, this means that
5416 we have completely filled the segment, and there is nothing
5417 more to do. */
5418 isec = 0;
5419 matching_lma = 0;
5420 suggested_lma = 0;
5421
5422 for (j = 0, section = ibfd->sections;
5423 section != NULL;
5424 section = section->next)
5425 {
5426 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5427 {
5428 output_section = section->output_section;
5429
5430 sections[j ++] = section;
5431
5432 /* The Solaris native linker always sets p_paddr to 0.
5433 We try to catch that case here, and set it to the
5434 correct value. Note - some backends require that
5435 p_paddr be left as zero. */
5436 if (segment->p_paddr == 0
5437 && segment->p_vaddr != 0
5438 && (! bed->want_p_paddr_set_to_zero)
5439 && isec == 0
5440 && output_section->lma != 0
5441 && (output_section->vma == (segment->p_vaddr
5442 + (map->includes_filehdr
5443 ? iehdr->e_ehsize
5444 : 0)
5445 + (map->includes_phdrs
5446 ? (iehdr->e_phnum
5447 * iehdr->e_phentsize)
5448 : 0))))
5449 map->p_paddr = segment->p_vaddr;
5450
5451 /* Match up the physical address of the segment with the
5452 LMA address of the output section. */
5453 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5454 || IS_COREFILE_NOTE (segment, section)
5455 || (bed->want_p_paddr_set_to_zero &&
5456 IS_CONTAINED_BY_VMA (output_section, segment))
5457 )
5458 {
5459 if (matching_lma == 0)
5460 matching_lma = output_section->lma;
5461
5462 /* We assume that if the section fits within the segment
5463 then it does not overlap any other section within that
5464 segment. */
5465 map->sections[isec ++] = output_section;
5466 }
5467 else if (suggested_lma == 0)
5468 suggested_lma = output_section->lma;
5469 }
5470 }
5471
5472 BFD_ASSERT (j == section_count);
5473
5474 /* Step Two: Adjust the physical address of the current segment,
5475 if necessary. */
5476 if (isec == section_count)
5477 {
5478 /* All of the sections fitted within the segment as currently
5479 specified. This is the default case. Add the segment to
5480 the list of built segments and carry on to process the next
5481 program header in the input BFD. */
5482 map->count = section_count;
5483 *pointer_to_map = map;
5484 pointer_to_map = &map->next;
5485
5486 free (sections);
5487 continue;
5488 }
5489 else
5490 {
5491 if (matching_lma != 0)
5492 {
5493 /* At least one section fits inside the current segment.
5494 Keep it, but modify its physical address to match the
5495 LMA of the first section that fitted. */
5496 map->p_paddr = matching_lma;
5497 }
5498 else
5499 {
5500 /* None of the sections fitted inside the current segment.
5501 Change the current segment's physical address to match
5502 the LMA of the first section. */
5503 map->p_paddr = suggested_lma;
5504 }
5505
5506 /* Offset the segment physical address from the lma
5507 to allow for space taken up by elf headers. */
5508 if (map->includes_filehdr)
5509 map->p_paddr -= iehdr->e_ehsize;
5510
5511 if (map->includes_phdrs)
5512 {
5513 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5514
5515 /* iehdr->e_phnum is just an estimate of the number
5516 of program headers that we will need. Make a note
5517 here of the number we used and the segment we chose
5518 to hold these headers, so that we can adjust the
5519 offset when we know the correct value. */
5520 phdr_adjust_num = iehdr->e_phnum;
5521 phdr_adjust_seg = map;
5522 }
5523 }
5524
5525 /* Step Three: Loop over the sections again, this time assigning
5526 those that fit to the current segment and removing them from the
5527 sections array; but making sure not to leave large gaps. Once all
5528 possible sections have been assigned to the current segment it is
5529 added to the list of built segments and if sections still remain
5530 to be assigned, a new segment is constructed before repeating
5531 the loop. */
5532 isec = 0;
5533 do
5534 {
5535 map->count = 0;
5536 suggested_lma = 0;
5537
5538 /* Fill the current segment with sections that fit. */
5539 for (j = 0; j < section_count; j++)
5540 {
5541 section = sections[j];
5542
5543 if (section == NULL)
5544 continue;
5545
5546 output_section = section->output_section;
5547
5548 BFD_ASSERT (output_section != NULL);
5549
5550 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5551 || IS_COREFILE_NOTE (segment, section))
5552 {
5553 if (map->count == 0)
5554 {
5555 /* If the first section in a segment does not start at
5556 the beginning of the segment, then something is
5557 wrong. */
5558 if (output_section->lma !=
5559 (map->p_paddr
5560 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5561 + (map->includes_phdrs
5562 ? iehdr->e_phnum * iehdr->e_phentsize
5563 : 0)))
5564 abort ();
5565 }
5566 else
5567 {
5568 asection * prev_sec;
5569
5570 prev_sec = map->sections[map->count - 1];
5571
5572 /* If the gap between the end of the previous section
5573 and the start of this section is more than
5574 maxpagesize then we need to start a new segment. */
5575 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5576 maxpagesize)
5577 < BFD_ALIGN (output_section->lma, maxpagesize))
5578 || ((prev_sec->lma + prev_sec->size)
5579 > output_section->lma))
5580 {
5581 if (suggested_lma == 0)
5582 suggested_lma = output_section->lma;
5583
5584 continue;
5585 }
5586 }
5587
5588 map->sections[map->count++] = output_section;
5589 ++isec;
5590 sections[j] = NULL;
5591 section->segment_mark = TRUE;
5592 }
5593 else if (suggested_lma == 0)
5594 suggested_lma = output_section->lma;
5595 }
5596
5597 BFD_ASSERT (map->count > 0);
5598
5599 /* Add the current segment to the list of built segments. */
5600 *pointer_to_map = map;
5601 pointer_to_map = &map->next;
5602
5603 if (isec < section_count)
5604 {
5605 /* We still have not allocated all of the sections to
5606 segments. Create a new segment here, initialise it
5607 and carry on looping. */
5608 amt = sizeof (struct elf_segment_map);
5609 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5610 map = bfd_alloc (obfd, amt);
5611 if (map == NULL)
5612 {
5613 free (sections);
5614 return FALSE;
5615 }
5616
5617 /* Initialise the fields of the segment map. Set the physical
5618 physical address to the LMA of the first section that has
5619 not yet been assigned. */
5620 map->next = NULL;
5621 map->p_type = segment->p_type;
5622 map->p_flags = segment->p_flags;
5623 map->p_flags_valid = 1;
5624 map->p_paddr = suggested_lma;
5625 map->p_paddr_valid = 1;
5626 map->includes_filehdr = 0;
5627 map->includes_phdrs = 0;
5628 }
5629 }
5630 while (isec < section_count);
5631
5632 free (sections);
5633 }
5634
5635 /* The Solaris linker creates program headers in which all the
5636 p_paddr fields are zero. When we try to objcopy or strip such a
5637 file, we get confused. Check for this case, and if we find it
5638 reset the p_paddr_valid fields. */
5639 for (map = map_first; map != NULL; map = map->next)
5640 if (map->p_paddr != 0)
5641 break;
5642 if (map == NULL)
5643 for (map = map_first; map != NULL; map = map->next)
5644 map->p_paddr_valid = 0;
5645
5646 elf_tdata (obfd)->segment_map = map_first;
5647
5648 /* If we had to estimate the number of program headers that were
5649 going to be needed, then check our estimate now and adjust
5650 the offset if necessary. */
5651 if (phdr_adjust_seg != NULL)
5652 {
5653 unsigned int count;
5654
5655 for (count = 0, map = map_first; map != NULL; map = map->next)
5656 count++;
5657
5658 if (count > phdr_adjust_num)
5659 phdr_adjust_seg->p_paddr
5660 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5661 }
5662
5663 #undef SEGMENT_END
5664 #undef SECTION_SIZE
5665 #undef IS_CONTAINED_BY_VMA
5666 #undef IS_CONTAINED_BY_LMA
5667 #undef IS_COREFILE_NOTE
5668 #undef IS_SOLARIS_PT_INTERP
5669 #undef INCLUDE_SECTION_IN_SEGMENT
5670 #undef SEGMENT_AFTER_SEGMENT
5671 #undef SEGMENT_OVERLAPS
5672 return TRUE;
5673 }
5674
5675 /* Copy ELF program header information. */
5676
5677 static bfd_boolean
5678 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5679 {
5680 Elf_Internal_Ehdr *iehdr;
5681 struct elf_segment_map *map;
5682 struct elf_segment_map *map_first;
5683 struct elf_segment_map **pointer_to_map;
5684 Elf_Internal_Phdr *segment;
5685 unsigned int i;
5686 unsigned int num_segments;
5687 bfd_boolean phdr_included = FALSE;
5688
5689 iehdr = elf_elfheader (ibfd);
5690
5691 map_first = NULL;
5692 pointer_to_map = &map_first;
5693
5694 num_segments = elf_elfheader (ibfd)->e_phnum;
5695 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5696 i < num_segments;
5697 i++, segment++)
5698 {
5699 asection *section;
5700 unsigned int section_count;
5701 bfd_size_type amt;
5702 Elf_Internal_Shdr *this_hdr;
5703
5704 /* FIXME: Do we need to copy PT_NULL segment? */
5705 if (segment->p_type == PT_NULL)
5706 continue;
5707
5708 /* Compute how many sections are in this segment. */
5709 for (section = ibfd->sections, section_count = 0;
5710 section != NULL;
5711 section = section->next)
5712 {
5713 this_hdr = &(elf_section_data(section)->this_hdr);
5714 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5715 section_count++;
5716 }
5717
5718 /* Allocate a segment map big enough to contain
5719 all of the sections we have selected. */
5720 amt = sizeof (struct elf_segment_map);
5721 if (section_count != 0)
5722 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5723 map = bfd_alloc (obfd, amt);
5724 if (map == NULL)
5725 return FALSE;
5726
5727 /* Initialize the fields of the output segment map with the
5728 input segment. */
5729 map->next = NULL;
5730 map->p_type = segment->p_type;
5731 map->p_flags = segment->p_flags;
5732 map->p_flags_valid = 1;
5733 map->p_paddr = segment->p_paddr;
5734 map->p_paddr_valid = 1;
5735
5736 /* Determine if this segment contains the ELF file header
5737 and if it contains the program headers themselves. */
5738 map->includes_filehdr = (segment->p_offset == 0
5739 && segment->p_filesz >= iehdr->e_ehsize);
5740
5741 map->includes_phdrs = 0;
5742 if (! phdr_included || segment->p_type != PT_LOAD)
5743 {
5744 map->includes_phdrs =
5745 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5746 && (segment->p_offset + segment->p_filesz
5747 >= ((bfd_vma) iehdr->e_phoff
5748 + iehdr->e_phnum * iehdr->e_phentsize)));
5749
5750 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5751 phdr_included = TRUE;
5752 }
5753
5754 if (section_count != 0)
5755 {
5756 unsigned int isec = 0;
5757
5758 for (section = ibfd->sections;
5759 section != NULL;
5760 section = section->next)
5761 {
5762 this_hdr = &(elf_section_data(section)->this_hdr);
5763 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5764 map->sections[isec++] = section->output_section;
5765 }
5766 }
5767
5768 map->count = section_count;
5769 *pointer_to_map = map;
5770 pointer_to_map = &map->next;
5771 }
5772
5773 elf_tdata (obfd)->segment_map = map_first;
5774 return TRUE;
5775 }
5776
5777 /* Copy private BFD data. This copies or rewrites ELF program header
5778 information. */
5779
5780 static bfd_boolean
5781 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5782 {
5783 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5784 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5785 return TRUE;
5786
5787 if (elf_tdata (ibfd)->phdr == NULL)
5788 return TRUE;
5789
5790 if (ibfd->xvec == obfd->xvec)
5791 {
5792 /* Check if any sections in the input BFD covered by ELF program
5793 header are changed. */
5794 Elf_Internal_Phdr *segment;
5795 asection *section, *osec;
5796 unsigned int i, num_segments;
5797 Elf_Internal_Shdr *this_hdr;
5798
5799 /* Initialize the segment mark field. */
5800 for (section = obfd->sections; section != NULL;
5801 section = section->next)
5802 section->segment_mark = FALSE;
5803
5804 num_segments = elf_elfheader (ibfd)->e_phnum;
5805 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5806 i < num_segments;
5807 i++, segment++)
5808 {
5809 for (section = ibfd->sections;
5810 section != NULL; section = section->next)
5811 {
5812 /* We mark the output section so that we know it comes
5813 from the input BFD. */
5814 osec = section->output_section;
5815 if (osec)
5816 osec->segment_mark = TRUE;
5817
5818 /* Check if this section is covered by the segment. */
5819 this_hdr = &(elf_section_data(section)->this_hdr);
5820 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5821 {
5822 /* FIXME: Check if its output section is changed or
5823 removed. What else do we need to check? */
5824 if (osec == NULL
5825 || section->flags != osec->flags
5826 || section->lma != osec->lma
5827 || section->vma != osec->vma
5828 || section->size != osec->size
5829 || section->rawsize != osec->rawsize
5830 || section->alignment_power != osec->alignment_power)
5831 goto rewrite;
5832 }
5833 }
5834 }
5835
5836 /* Check to see if any output section doesn't come from the
5837 input BFD. */
5838 for (section = obfd->sections; section != NULL;
5839 section = section->next)
5840 {
5841 if (section->segment_mark == FALSE)
5842 goto rewrite;
5843 else
5844 section->segment_mark = FALSE;
5845 }
5846
5847 return copy_elf_program_header (ibfd, obfd);
5848 }
5849
5850 rewrite:
5851 return rewrite_elf_program_header (ibfd, obfd);
5852 }
5853
5854 /* Initialize private output section information from input section. */
5855
5856 bfd_boolean
5857 _bfd_elf_init_private_section_data (bfd *ibfd,
5858 asection *isec,
5859 bfd *obfd,
5860 asection *osec,
5861 struct bfd_link_info *link_info)
5862
5863 {
5864 Elf_Internal_Shdr *ihdr, *ohdr;
5865 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5866
5867 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5868 || obfd->xvec->flavour != bfd_target_elf_flavour)
5869 return TRUE;
5870
5871 /* FIXME: What if the output ELF section type has been set to
5872 something different? */
5873 if (elf_section_type (osec) == SHT_NULL)
5874 elf_section_type (osec) = elf_section_type (isec);
5875
5876 /* Set things up for objcopy and relocatable link. The output
5877 SHT_GROUP section will have its elf_next_in_group pointing back
5878 to the input group members. Ignore linker created group section.
5879 See elfNN_ia64_object_p in elfxx-ia64.c. */
5880
5881 if (need_group)
5882 {
5883 if (elf_sec_group (isec) == NULL
5884 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5885 {
5886 if (elf_section_flags (isec) & SHF_GROUP)
5887 elf_section_flags (osec) |= SHF_GROUP;
5888 elf_next_in_group (osec) = elf_next_in_group (isec);
5889 elf_group_name (osec) = elf_group_name (isec);
5890 }
5891 }
5892
5893 ihdr = &elf_section_data (isec)->this_hdr;
5894
5895 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5896 don't use the output section of the linked-to section since it
5897 may be NULL at this point. */
5898 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5899 {
5900 ohdr = &elf_section_data (osec)->this_hdr;
5901 ohdr->sh_flags |= SHF_LINK_ORDER;
5902 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5903 }
5904
5905 osec->use_rela_p = isec->use_rela_p;
5906
5907 return TRUE;
5908 }
5909
5910 /* Copy private section information. This copies over the entsize
5911 field, and sometimes the info field. */
5912
5913 bfd_boolean
5914 _bfd_elf_copy_private_section_data (bfd *ibfd,
5915 asection *isec,
5916 bfd *obfd,
5917 asection *osec)
5918 {
5919 Elf_Internal_Shdr *ihdr, *ohdr;
5920
5921 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5922 || obfd->xvec->flavour != bfd_target_elf_flavour)
5923 return TRUE;
5924
5925 ihdr = &elf_section_data (isec)->this_hdr;
5926 ohdr = &elf_section_data (osec)->this_hdr;
5927
5928 ohdr->sh_entsize = ihdr->sh_entsize;
5929
5930 if (ihdr->sh_type == SHT_SYMTAB
5931 || ihdr->sh_type == SHT_DYNSYM
5932 || ihdr->sh_type == SHT_GNU_verneed
5933 || ihdr->sh_type == SHT_GNU_verdef)
5934 ohdr->sh_info = ihdr->sh_info;
5935
5936 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5937 NULL);
5938 }
5939
5940 /* Copy private header information. */
5941
5942 bfd_boolean
5943 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5944 {
5945 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5946 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5947 return TRUE;
5948
5949 /* Copy over private BFD data if it has not already been copied.
5950 This must be done here, rather than in the copy_private_bfd_data
5951 entry point, because the latter is called after the section
5952 contents have been set, which means that the program headers have
5953 already been worked out. */
5954 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5955 {
5956 if (! copy_private_bfd_data (ibfd, obfd))
5957 return FALSE;
5958 }
5959
5960 return TRUE;
5961 }
5962
5963 /* Copy private symbol information. If this symbol is in a section
5964 which we did not map into a BFD section, try to map the section
5965 index correctly. We use special macro definitions for the mapped
5966 section indices; these definitions are interpreted by the
5967 swap_out_syms function. */
5968
5969 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5970 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5971 #define MAP_STRTAB (SHN_HIOS + 3)
5972 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5973 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5974
5975 bfd_boolean
5976 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5977 asymbol *isymarg,
5978 bfd *obfd,
5979 asymbol *osymarg)
5980 {
5981 elf_symbol_type *isym, *osym;
5982
5983 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5984 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5985 return TRUE;
5986
5987 isym = elf_symbol_from (ibfd, isymarg);
5988 osym = elf_symbol_from (obfd, osymarg);
5989
5990 if (isym != NULL
5991 && osym != NULL
5992 && bfd_is_abs_section (isym->symbol.section))
5993 {
5994 unsigned int shndx;
5995
5996 shndx = isym->internal_elf_sym.st_shndx;
5997 if (shndx == elf_onesymtab (ibfd))
5998 shndx = MAP_ONESYMTAB;
5999 else if (shndx == elf_dynsymtab (ibfd))
6000 shndx = MAP_DYNSYMTAB;
6001 else if (shndx == elf_tdata (ibfd)->strtab_section)
6002 shndx = MAP_STRTAB;
6003 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6004 shndx = MAP_SHSTRTAB;
6005 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6006 shndx = MAP_SYM_SHNDX;
6007 osym->internal_elf_sym.st_shndx = shndx;
6008 }
6009
6010 return TRUE;
6011 }
6012
6013 /* Swap out the symbols. */
6014
6015 static bfd_boolean
6016 swap_out_syms (bfd *abfd,
6017 struct bfd_strtab_hash **sttp,
6018 int relocatable_p)
6019 {
6020 const struct elf_backend_data *bed;
6021 int symcount;
6022 asymbol **syms;
6023 struct bfd_strtab_hash *stt;
6024 Elf_Internal_Shdr *symtab_hdr;
6025 Elf_Internal_Shdr *symtab_shndx_hdr;
6026 Elf_Internal_Shdr *symstrtab_hdr;
6027 bfd_byte *outbound_syms;
6028 bfd_byte *outbound_shndx;
6029 int idx;
6030 bfd_size_type amt;
6031 bfd_boolean name_local_sections;
6032
6033 if (!elf_map_symbols (abfd))
6034 return FALSE;
6035
6036 /* Dump out the symtabs. */
6037 stt = _bfd_elf_stringtab_init ();
6038 if (stt == NULL)
6039 return FALSE;
6040
6041 bed = get_elf_backend_data (abfd);
6042 symcount = bfd_get_symcount (abfd);
6043 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6044 symtab_hdr->sh_type = SHT_SYMTAB;
6045 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6046 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6047 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6048 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6049
6050 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6051 symstrtab_hdr->sh_type = SHT_STRTAB;
6052
6053 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6054 if (outbound_syms == NULL)
6055 {
6056 _bfd_stringtab_free (stt);
6057 return FALSE;
6058 }
6059 symtab_hdr->contents = outbound_syms;
6060
6061 outbound_shndx = NULL;
6062 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6063 if (symtab_shndx_hdr->sh_name != 0)
6064 {
6065 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6066 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6067 sizeof (Elf_External_Sym_Shndx));
6068 if (outbound_shndx == NULL)
6069 {
6070 _bfd_stringtab_free (stt);
6071 return FALSE;
6072 }
6073
6074 symtab_shndx_hdr->contents = outbound_shndx;
6075 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6076 symtab_shndx_hdr->sh_size = amt;
6077 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6078 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6079 }
6080
6081 /* Now generate the data (for "contents"). */
6082 {
6083 /* Fill in zeroth symbol and swap it out. */
6084 Elf_Internal_Sym sym;
6085 sym.st_name = 0;
6086 sym.st_value = 0;
6087 sym.st_size = 0;
6088 sym.st_info = 0;
6089 sym.st_other = 0;
6090 sym.st_shndx = SHN_UNDEF;
6091 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6092 outbound_syms += bed->s->sizeof_sym;
6093 if (outbound_shndx != NULL)
6094 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6095 }
6096
6097 name_local_sections
6098 = (bed->elf_backend_name_local_section_symbols
6099 && bed->elf_backend_name_local_section_symbols (abfd));
6100
6101 syms = bfd_get_outsymbols (abfd);
6102 for (idx = 0; idx < symcount; idx++)
6103 {
6104 Elf_Internal_Sym sym;
6105 bfd_vma value = syms[idx]->value;
6106 elf_symbol_type *type_ptr;
6107 flagword flags = syms[idx]->flags;
6108 int type;
6109
6110 if (!name_local_sections
6111 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6112 {
6113 /* Local section symbols have no name. */
6114 sym.st_name = 0;
6115 }
6116 else
6117 {
6118 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6119 syms[idx]->name,
6120 TRUE, FALSE);
6121 if (sym.st_name == (unsigned long) -1)
6122 {
6123 _bfd_stringtab_free (stt);
6124 return FALSE;
6125 }
6126 }
6127
6128 type_ptr = elf_symbol_from (abfd, syms[idx]);
6129
6130 if ((flags & BSF_SECTION_SYM) == 0
6131 && bfd_is_com_section (syms[idx]->section))
6132 {
6133 /* ELF common symbols put the alignment into the `value' field,
6134 and the size into the `size' field. This is backwards from
6135 how BFD handles it, so reverse it here. */
6136 sym.st_size = value;
6137 if (type_ptr == NULL
6138 || type_ptr->internal_elf_sym.st_value == 0)
6139 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6140 else
6141 sym.st_value = type_ptr->internal_elf_sym.st_value;
6142 sym.st_shndx = _bfd_elf_section_from_bfd_section
6143 (abfd, syms[idx]->section);
6144 }
6145 else
6146 {
6147 asection *sec = syms[idx]->section;
6148 int shndx;
6149
6150 if (sec->output_section)
6151 {
6152 value += sec->output_offset;
6153 sec = sec->output_section;
6154 }
6155
6156 /* Don't add in the section vma for relocatable output. */
6157 if (! relocatable_p)
6158 value += sec->vma;
6159 sym.st_value = value;
6160 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6161
6162 if (bfd_is_abs_section (sec)
6163 && type_ptr != NULL
6164 && type_ptr->internal_elf_sym.st_shndx != 0)
6165 {
6166 /* This symbol is in a real ELF section which we did
6167 not create as a BFD section. Undo the mapping done
6168 by copy_private_symbol_data. */
6169 shndx = type_ptr->internal_elf_sym.st_shndx;
6170 switch (shndx)
6171 {
6172 case MAP_ONESYMTAB:
6173 shndx = elf_onesymtab (abfd);
6174 break;
6175 case MAP_DYNSYMTAB:
6176 shndx = elf_dynsymtab (abfd);
6177 break;
6178 case MAP_STRTAB:
6179 shndx = elf_tdata (abfd)->strtab_section;
6180 break;
6181 case MAP_SHSTRTAB:
6182 shndx = elf_tdata (abfd)->shstrtab_section;
6183 break;
6184 case MAP_SYM_SHNDX:
6185 shndx = elf_tdata (abfd)->symtab_shndx_section;
6186 break;
6187 default:
6188 break;
6189 }
6190 }
6191 else
6192 {
6193 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6194
6195 if (shndx == -1)
6196 {
6197 asection *sec2;
6198
6199 /* Writing this would be a hell of a lot easier if
6200 we had some decent documentation on bfd, and
6201 knew what to expect of the library, and what to
6202 demand of applications. For example, it
6203 appears that `objcopy' might not set the
6204 section of a symbol to be a section that is
6205 actually in the output file. */
6206 sec2 = bfd_get_section_by_name (abfd, sec->name);
6207 if (sec2 == NULL)
6208 {
6209 _bfd_error_handler (_("\
6210 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6211 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6212 sec->name);
6213 bfd_set_error (bfd_error_invalid_operation);
6214 _bfd_stringtab_free (stt);
6215 return FALSE;
6216 }
6217
6218 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6219 BFD_ASSERT (shndx != -1);
6220 }
6221 }
6222
6223 sym.st_shndx = shndx;
6224 }
6225
6226 if ((flags & BSF_THREAD_LOCAL) != 0)
6227 type = STT_TLS;
6228 else if ((flags & BSF_FUNCTION) != 0)
6229 type = STT_FUNC;
6230 else if ((flags & BSF_OBJECT) != 0)
6231 type = STT_OBJECT;
6232 else
6233 type = STT_NOTYPE;
6234
6235 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6236 type = STT_TLS;
6237
6238 /* Processor-specific types. */
6239 if (type_ptr != NULL
6240 && bed->elf_backend_get_symbol_type)
6241 type = ((*bed->elf_backend_get_symbol_type)
6242 (&type_ptr->internal_elf_sym, type));
6243
6244 if (flags & BSF_SECTION_SYM)
6245 {
6246 if (flags & BSF_GLOBAL)
6247 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6248 else
6249 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6250 }
6251 else if (bfd_is_com_section (syms[idx]->section))
6252 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6253 else if (bfd_is_und_section (syms[idx]->section))
6254 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6255 ? STB_WEAK
6256 : STB_GLOBAL),
6257 type);
6258 else if (flags & BSF_FILE)
6259 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6260 else
6261 {
6262 int bind = STB_LOCAL;
6263
6264 if (flags & BSF_LOCAL)
6265 bind = STB_LOCAL;
6266 else if (flags & BSF_WEAK)
6267 bind = STB_WEAK;
6268 else if (flags & BSF_GLOBAL)
6269 bind = STB_GLOBAL;
6270
6271 sym.st_info = ELF_ST_INFO (bind, type);
6272 }
6273
6274 if (type_ptr != NULL)
6275 sym.st_other = type_ptr->internal_elf_sym.st_other;
6276 else
6277 sym.st_other = 0;
6278
6279 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6280 outbound_syms += bed->s->sizeof_sym;
6281 if (outbound_shndx != NULL)
6282 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6283 }
6284
6285 *sttp = stt;
6286 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6287 symstrtab_hdr->sh_type = SHT_STRTAB;
6288
6289 symstrtab_hdr->sh_flags = 0;
6290 symstrtab_hdr->sh_addr = 0;
6291 symstrtab_hdr->sh_entsize = 0;
6292 symstrtab_hdr->sh_link = 0;
6293 symstrtab_hdr->sh_info = 0;
6294 symstrtab_hdr->sh_addralign = 1;
6295
6296 return TRUE;
6297 }
6298
6299 /* Return the number of bytes required to hold the symtab vector.
6300
6301 Note that we base it on the count plus 1, since we will null terminate
6302 the vector allocated based on this size. However, the ELF symbol table
6303 always has a dummy entry as symbol #0, so it ends up even. */
6304
6305 long
6306 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6307 {
6308 long symcount;
6309 long symtab_size;
6310 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6311
6312 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6313 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6314 if (symcount > 0)
6315 symtab_size -= sizeof (asymbol *);
6316
6317 return symtab_size;
6318 }
6319
6320 long
6321 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6322 {
6323 long symcount;
6324 long symtab_size;
6325 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6326
6327 if (elf_dynsymtab (abfd) == 0)
6328 {
6329 bfd_set_error (bfd_error_invalid_operation);
6330 return -1;
6331 }
6332
6333 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6334 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6335 if (symcount > 0)
6336 symtab_size -= sizeof (asymbol *);
6337
6338 return symtab_size;
6339 }
6340
6341 long
6342 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6343 sec_ptr asect)
6344 {
6345 return (asect->reloc_count + 1) * sizeof (arelent *);
6346 }
6347
6348 /* Canonicalize the relocs. */
6349
6350 long
6351 _bfd_elf_canonicalize_reloc (bfd *abfd,
6352 sec_ptr section,
6353 arelent **relptr,
6354 asymbol **symbols)
6355 {
6356 arelent *tblptr;
6357 unsigned int i;
6358 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6359
6360 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6361 return -1;
6362
6363 tblptr = section->relocation;
6364 for (i = 0; i < section->reloc_count; i++)
6365 *relptr++ = tblptr++;
6366
6367 *relptr = NULL;
6368
6369 return section->reloc_count;
6370 }
6371
6372 long
6373 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6374 {
6375 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6376 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6377
6378 if (symcount >= 0)
6379 bfd_get_symcount (abfd) = symcount;
6380 return symcount;
6381 }
6382
6383 long
6384 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6385 asymbol **allocation)
6386 {
6387 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6388 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6389
6390 if (symcount >= 0)
6391 bfd_get_dynamic_symcount (abfd) = symcount;
6392 return symcount;
6393 }
6394
6395 /* Return the size required for the dynamic reloc entries. Any loadable
6396 section that was actually installed in the BFD, and has type SHT_REL
6397 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6398 dynamic reloc section. */
6399
6400 long
6401 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6402 {
6403 long ret;
6404 asection *s;
6405
6406 if (elf_dynsymtab (abfd) == 0)
6407 {
6408 bfd_set_error (bfd_error_invalid_operation);
6409 return -1;
6410 }
6411
6412 ret = sizeof (arelent *);
6413 for (s = abfd->sections; s != NULL; s = s->next)
6414 if ((s->flags & SEC_LOAD) != 0
6415 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6416 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6417 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6418 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6419 * sizeof (arelent *));
6420
6421 return ret;
6422 }
6423
6424 /* Canonicalize the dynamic relocation entries. Note that we return the
6425 dynamic relocations as a single block, although they are actually
6426 associated with particular sections; the interface, which was
6427 designed for SunOS style shared libraries, expects that there is only
6428 one set of dynamic relocs. Any loadable section that was actually
6429 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6430 dynamic symbol table, is considered to be a dynamic reloc section. */
6431
6432 long
6433 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6434 arelent **storage,
6435 asymbol **syms)
6436 {
6437 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6438 asection *s;
6439 long ret;
6440
6441 if (elf_dynsymtab (abfd) == 0)
6442 {
6443 bfd_set_error (bfd_error_invalid_operation);
6444 return -1;
6445 }
6446
6447 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6448 ret = 0;
6449 for (s = abfd->sections; s != NULL; s = s->next)
6450 {
6451 if ((s->flags & SEC_LOAD) != 0
6452 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6453 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6454 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6455 {
6456 arelent *p;
6457 long count, i;
6458
6459 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6460 return -1;
6461 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6462 p = s->relocation;
6463 for (i = 0; i < count; i++)
6464 *storage++ = p++;
6465 ret += count;
6466 }
6467 }
6468
6469 *storage = NULL;
6470
6471 return ret;
6472 }
6473 \f
6474 /* Read in the version information. */
6475
6476 bfd_boolean
6477 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6478 {
6479 bfd_byte *contents = NULL;
6480 unsigned int freeidx = 0;
6481
6482 if (elf_dynverref (abfd) != 0)
6483 {
6484 Elf_Internal_Shdr *hdr;
6485 Elf_External_Verneed *everneed;
6486 Elf_Internal_Verneed *iverneed;
6487 unsigned int i;
6488 bfd_byte *contents_end;
6489
6490 hdr = &elf_tdata (abfd)->dynverref_hdr;
6491
6492 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6493 sizeof (Elf_Internal_Verneed));
6494 if (elf_tdata (abfd)->verref == NULL)
6495 goto error_return;
6496
6497 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6498
6499 contents = bfd_malloc (hdr->sh_size);
6500 if (contents == NULL)
6501 {
6502 error_return_verref:
6503 elf_tdata (abfd)->verref = NULL;
6504 elf_tdata (abfd)->cverrefs = 0;
6505 goto error_return;
6506 }
6507 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6508 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6509 goto error_return_verref;
6510
6511 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6512 goto error_return_verref;
6513
6514 BFD_ASSERT (sizeof (Elf_External_Verneed)
6515 == sizeof (Elf_External_Vernaux));
6516 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6517 everneed = (Elf_External_Verneed *) contents;
6518 iverneed = elf_tdata (abfd)->verref;
6519 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6520 {
6521 Elf_External_Vernaux *evernaux;
6522 Elf_Internal_Vernaux *ivernaux;
6523 unsigned int j;
6524
6525 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6526
6527 iverneed->vn_bfd = abfd;
6528
6529 iverneed->vn_filename =
6530 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6531 iverneed->vn_file);
6532 if (iverneed->vn_filename == NULL)
6533 goto error_return_verref;
6534
6535 if (iverneed->vn_cnt == 0)
6536 iverneed->vn_auxptr = NULL;
6537 else
6538 {
6539 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6540 sizeof (Elf_Internal_Vernaux));
6541 if (iverneed->vn_auxptr == NULL)
6542 goto error_return_verref;
6543 }
6544
6545 if (iverneed->vn_aux
6546 > (size_t) (contents_end - (bfd_byte *) everneed))
6547 goto error_return_verref;
6548
6549 evernaux = ((Elf_External_Vernaux *)
6550 ((bfd_byte *) everneed + iverneed->vn_aux));
6551 ivernaux = iverneed->vn_auxptr;
6552 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6553 {
6554 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6555
6556 ivernaux->vna_nodename =
6557 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6558 ivernaux->vna_name);
6559 if (ivernaux->vna_nodename == NULL)
6560 goto error_return_verref;
6561
6562 if (j + 1 < iverneed->vn_cnt)
6563 ivernaux->vna_nextptr = ivernaux + 1;
6564 else
6565 ivernaux->vna_nextptr = NULL;
6566
6567 if (ivernaux->vna_next
6568 > (size_t) (contents_end - (bfd_byte *) evernaux))
6569 goto error_return_verref;
6570
6571 evernaux = ((Elf_External_Vernaux *)
6572 ((bfd_byte *) evernaux + ivernaux->vna_next));
6573
6574 if (ivernaux->vna_other > freeidx)
6575 freeidx = ivernaux->vna_other;
6576 }
6577
6578 if (i + 1 < hdr->sh_info)
6579 iverneed->vn_nextref = iverneed + 1;
6580 else
6581 iverneed->vn_nextref = NULL;
6582
6583 if (iverneed->vn_next
6584 > (size_t) (contents_end - (bfd_byte *) everneed))
6585 goto error_return_verref;
6586
6587 everneed = ((Elf_External_Verneed *)
6588 ((bfd_byte *) everneed + iverneed->vn_next));
6589 }
6590
6591 free (contents);
6592 contents = NULL;
6593 }
6594
6595 if (elf_dynverdef (abfd) != 0)
6596 {
6597 Elf_Internal_Shdr *hdr;
6598 Elf_External_Verdef *everdef;
6599 Elf_Internal_Verdef *iverdef;
6600 Elf_Internal_Verdef *iverdefarr;
6601 Elf_Internal_Verdef iverdefmem;
6602 unsigned int i;
6603 unsigned int maxidx;
6604 bfd_byte *contents_end_def, *contents_end_aux;
6605
6606 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6607
6608 contents = bfd_malloc (hdr->sh_size);
6609 if (contents == NULL)
6610 goto error_return;
6611 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6612 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6613 goto error_return;
6614
6615 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6616 goto error_return;
6617
6618 BFD_ASSERT (sizeof (Elf_External_Verdef)
6619 >= sizeof (Elf_External_Verdaux));
6620 contents_end_def = contents + hdr->sh_size
6621 - sizeof (Elf_External_Verdef);
6622 contents_end_aux = contents + hdr->sh_size
6623 - sizeof (Elf_External_Verdaux);
6624
6625 /* We know the number of entries in the section but not the maximum
6626 index. Therefore we have to run through all entries and find
6627 the maximum. */
6628 everdef = (Elf_External_Verdef *) contents;
6629 maxidx = 0;
6630 for (i = 0; i < hdr->sh_info; ++i)
6631 {
6632 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6633
6634 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6635 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6636
6637 if (iverdefmem.vd_next
6638 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6639 goto error_return;
6640
6641 everdef = ((Elf_External_Verdef *)
6642 ((bfd_byte *) everdef + iverdefmem.vd_next));
6643 }
6644
6645 if (default_imported_symver)
6646 {
6647 if (freeidx > maxidx)
6648 maxidx = ++freeidx;
6649 else
6650 freeidx = ++maxidx;
6651 }
6652 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6653 sizeof (Elf_Internal_Verdef));
6654 if (elf_tdata (abfd)->verdef == NULL)
6655 goto error_return;
6656
6657 elf_tdata (abfd)->cverdefs = maxidx;
6658
6659 everdef = (Elf_External_Verdef *) contents;
6660 iverdefarr = elf_tdata (abfd)->verdef;
6661 for (i = 0; i < hdr->sh_info; i++)
6662 {
6663 Elf_External_Verdaux *everdaux;
6664 Elf_Internal_Verdaux *iverdaux;
6665 unsigned int j;
6666
6667 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6668
6669 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6670 {
6671 error_return_verdef:
6672 elf_tdata (abfd)->verdef = NULL;
6673 elf_tdata (abfd)->cverdefs = 0;
6674 goto error_return;
6675 }
6676
6677 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6678 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6679
6680 iverdef->vd_bfd = abfd;
6681
6682 if (iverdef->vd_cnt == 0)
6683 iverdef->vd_auxptr = NULL;
6684 else
6685 {
6686 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6687 sizeof (Elf_Internal_Verdaux));
6688 if (iverdef->vd_auxptr == NULL)
6689 goto error_return_verdef;
6690 }
6691
6692 if (iverdef->vd_aux
6693 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6694 goto error_return_verdef;
6695
6696 everdaux = ((Elf_External_Verdaux *)
6697 ((bfd_byte *) everdef + iverdef->vd_aux));
6698 iverdaux = iverdef->vd_auxptr;
6699 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6700 {
6701 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6702
6703 iverdaux->vda_nodename =
6704 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6705 iverdaux->vda_name);
6706 if (iverdaux->vda_nodename == NULL)
6707 goto error_return_verdef;
6708
6709 if (j + 1 < iverdef->vd_cnt)
6710 iverdaux->vda_nextptr = iverdaux + 1;
6711 else
6712 iverdaux->vda_nextptr = NULL;
6713
6714 if (iverdaux->vda_next
6715 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6716 goto error_return_verdef;
6717
6718 everdaux = ((Elf_External_Verdaux *)
6719 ((bfd_byte *) everdaux + iverdaux->vda_next));
6720 }
6721
6722 if (iverdef->vd_cnt)
6723 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6724
6725 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6726 iverdef->vd_nextdef = iverdef + 1;
6727 else
6728 iverdef->vd_nextdef = NULL;
6729
6730 everdef = ((Elf_External_Verdef *)
6731 ((bfd_byte *) everdef + iverdef->vd_next));
6732 }
6733
6734 free (contents);
6735 contents = NULL;
6736 }
6737 else if (default_imported_symver)
6738 {
6739 if (freeidx < 3)
6740 freeidx = 3;
6741 else
6742 freeidx++;
6743
6744 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6745 sizeof (Elf_Internal_Verdef));
6746 if (elf_tdata (abfd)->verdef == NULL)
6747 goto error_return;
6748
6749 elf_tdata (abfd)->cverdefs = freeidx;
6750 }
6751
6752 /* Create a default version based on the soname. */
6753 if (default_imported_symver)
6754 {
6755 Elf_Internal_Verdef *iverdef;
6756 Elf_Internal_Verdaux *iverdaux;
6757
6758 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6759
6760 iverdef->vd_version = VER_DEF_CURRENT;
6761 iverdef->vd_flags = 0;
6762 iverdef->vd_ndx = freeidx;
6763 iverdef->vd_cnt = 1;
6764
6765 iverdef->vd_bfd = abfd;
6766
6767 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6768 if (iverdef->vd_nodename == NULL)
6769 goto error_return_verdef;
6770 iverdef->vd_nextdef = NULL;
6771 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6772 if (iverdef->vd_auxptr == NULL)
6773 goto error_return_verdef;
6774
6775 iverdaux = iverdef->vd_auxptr;
6776 iverdaux->vda_nodename = iverdef->vd_nodename;
6777 iverdaux->vda_nextptr = NULL;
6778 }
6779
6780 return TRUE;
6781
6782 error_return:
6783 if (contents != NULL)
6784 free (contents);
6785 return FALSE;
6786 }
6787 \f
6788 asymbol *
6789 _bfd_elf_make_empty_symbol (bfd *abfd)
6790 {
6791 elf_symbol_type *newsym;
6792 bfd_size_type amt = sizeof (elf_symbol_type);
6793
6794 newsym = bfd_zalloc (abfd, amt);
6795 if (!newsym)
6796 return NULL;
6797 else
6798 {
6799 newsym->symbol.the_bfd = abfd;
6800 return &newsym->symbol;
6801 }
6802 }
6803
6804 void
6805 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6806 asymbol *symbol,
6807 symbol_info *ret)
6808 {
6809 bfd_symbol_info (symbol, ret);
6810 }
6811
6812 /* Return whether a symbol name implies a local symbol. Most targets
6813 use this function for the is_local_label_name entry point, but some
6814 override it. */
6815
6816 bfd_boolean
6817 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6818 const char *name)
6819 {
6820 /* Normal local symbols start with ``.L''. */
6821 if (name[0] == '.' && name[1] == 'L')
6822 return TRUE;
6823
6824 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6825 DWARF debugging symbols starting with ``..''. */
6826 if (name[0] == '.' && name[1] == '.')
6827 return TRUE;
6828
6829 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6830 emitting DWARF debugging output. I suspect this is actually a
6831 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6832 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6833 underscore to be emitted on some ELF targets). For ease of use,
6834 we treat such symbols as local. */
6835 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6836 return TRUE;
6837
6838 return FALSE;
6839 }
6840
6841 alent *
6842 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6843 asymbol *symbol ATTRIBUTE_UNUSED)
6844 {
6845 abort ();
6846 return NULL;
6847 }
6848
6849 bfd_boolean
6850 _bfd_elf_set_arch_mach (bfd *abfd,
6851 enum bfd_architecture arch,
6852 unsigned long machine)
6853 {
6854 /* If this isn't the right architecture for this backend, and this
6855 isn't the generic backend, fail. */
6856 if (arch != get_elf_backend_data (abfd)->arch
6857 && arch != bfd_arch_unknown
6858 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6859 return FALSE;
6860
6861 return bfd_default_set_arch_mach (abfd, arch, machine);
6862 }
6863
6864 /* Find the function to a particular section and offset,
6865 for error reporting. */
6866
6867 static bfd_boolean
6868 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6869 asection *section,
6870 asymbol **symbols,
6871 bfd_vma offset,
6872 const char **filename_ptr,
6873 const char **functionname_ptr)
6874 {
6875 const char *filename;
6876 asymbol *func, *file;
6877 bfd_vma low_func;
6878 asymbol **p;
6879 /* ??? Given multiple file symbols, it is impossible to reliably
6880 choose the right file name for global symbols. File symbols are
6881 local symbols, and thus all file symbols must sort before any
6882 global symbols. The ELF spec may be interpreted to say that a
6883 file symbol must sort before other local symbols, but currently
6884 ld -r doesn't do this. So, for ld -r output, it is possible to
6885 make a better choice of file name for local symbols by ignoring
6886 file symbols appearing after a given local symbol. */
6887 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6888
6889 filename = NULL;
6890 func = NULL;
6891 file = NULL;
6892 low_func = 0;
6893 state = nothing_seen;
6894
6895 for (p = symbols; *p != NULL; p++)
6896 {
6897 elf_symbol_type *q;
6898
6899 q = (elf_symbol_type *) *p;
6900
6901 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6902 {
6903 default:
6904 break;
6905 case STT_FILE:
6906 file = &q->symbol;
6907 if (state == symbol_seen)
6908 state = file_after_symbol_seen;
6909 continue;
6910 case STT_NOTYPE:
6911 case STT_FUNC:
6912 if (bfd_get_section (&q->symbol) == section
6913 && q->symbol.value >= low_func
6914 && q->symbol.value <= offset)
6915 {
6916 func = (asymbol *) q;
6917 low_func = q->symbol.value;
6918 filename = NULL;
6919 if (file != NULL
6920 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6921 || state != file_after_symbol_seen))
6922 filename = bfd_asymbol_name (file);
6923 }
6924 break;
6925 }
6926 if (state == nothing_seen)
6927 state = symbol_seen;
6928 }
6929
6930 if (func == NULL)
6931 return FALSE;
6932
6933 if (filename_ptr)
6934 *filename_ptr = filename;
6935 if (functionname_ptr)
6936 *functionname_ptr = bfd_asymbol_name (func);
6937
6938 return TRUE;
6939 }
6940
6941 /* Find the nearest line to a particular section and offset,
6942 for error reporting. */
6943
6944 bfd_boolean
6945 _bfd_elf_find_nearest_line (bfd *abfd,
6946 asection *section,
6947 asymbol **symbols,
6948 bfd_vma offset,
6949 const char **filename_ptr,
6950 const char **functionname_ptr,
6951 unsigned int *line_ptr)
6952 {
6953 bfd_boolean found;
6954
6955 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6956 filename_ptr, functionname_ptr,
6957 line_ptr))
6958 {
6959 if (!*functionname_ptr)
6960 elf_find_function (abfd, section, symbols, offset,
6961 *filename_ptr ? NULL : filename_ptr,
6962 functionname_ptr);
6963
6964 return TRUE;
6965 }
6966
6967 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6968 filename_ptr, functionname_ptr,
6969 line_ptr, 0,
6970 &elf_tdata (abfd)->dwarf2_find_line_info))
6971 {
6972 if (!*functionname_ptr)
6973 elf_find_function (abfd, section, symbols, offset,
6974 *filename_ptr ? NULL : filename_ptr,
6975 functionname_ptr);
6976
6977 return TRUE;
6978 }
6979
6980 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6981 &found, filename_ptr,
6982 functionname_ptr, line_ptr,
6983 &elf_tdata (abfd)->line_info))
6984 return FALSE;
6985 if (found && (*functionname_ptr || *line_ptr))
6986 return TRUE;
6987
6988 if (symbols == NULL)
6989 return FALSE;
6990
6991 if (! elf_find_function (abfd, section, symbols, offset,
6992 filename_ptr, functionname_ptr))
6993 return FALSE;
6994
6995 *line_ptr = 0;
6996 return TRUE;
6997 }
6998
6999 /* Find the line for a symbol. */
7000
7001 bfd_boolean
7002 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7003 const char **filename_ptr, unsigned int *line_ptr)
7004 {
7005 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7006 filename_ptr, line_ptr, 0,
7007 &elf_tdata (abfd)->dwarf2_find_line_info);
7008 }
7009
7010 /* After a call to bfd_find_nearest_line, successive calls to
7011 bfd_find_inliner_info can be used to get source information about
7012 each level of function inlining that terminated at the address
7013 passed to bfd_find_nearest_line. Currently this is only supported
7014 for DWARF2 with appropriate DWARF3 extensions. */
7015
7016 bfd_boolean
7017 _bfd_elf_find_inliner_info (bfd *abfd,
7018 const char **filename_ptr,
7019 const char **functionname_ptr,
7020 unsigned int *line_ptr)
7021 {
7022 bfd_boolean found;
7023 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7024 functionname_ptr, line_ptr,
7025 & elf_tdata (abfd)->dwarf2_find_line_info);
7026 return found;
7027 }
7028
7029 int
7030 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
7031 {
7032 int ret;
7033
7034 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
7035 if (! reloc)
7036 ret += get_program_header_size (abfd);
7037 return ret;
7038 }
7039
7040 bfd_boolean
7041 _bfd_elf_set_section_contents (bfd *abfd,
7042 sec_ptr section,
7043 const void *location,
7044 file_ptr offset,
7045 bfd_size_type count)
7046 {
7047 Elf_Internal_Shdr *hdr;
7048 bfd_signed_vma pos;
7049
7050 if (! abfd->output_has_begun
7051 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7052 return FALSE;
7053
7054 hdr = &elf_section_data (section)->this_hdr;
7055 pos = hdr->sh_offset + offset;
7056 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7057 || bfd_bwrite (location, count, abfd) != count)
7058 return FALSE;
7059
7060 return TRUE;
7061 }
7062
7063 void
7064 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7065 arelent *cache_ptr ATTRIBUTE_UNUSED,
7066 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7067 {
7068 abort ();
7069 }
7070
7071 /* Try to convert a non-ELF reloc into an ELF one. */
7072
7073 bfd_boolean
7074 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7075 {
7076 /* Check whether we really have an ELF howto. */
7077
7078 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7079 {
7080 bfd_reloc_code_real_type code;
7081 reloc_howto_type *howto;
7082
7083 /* Alien reloc: Try to determine its type to replace it with an
7084 equivalent ELF reloc. */
7085
7086 if (areloc->howto->pc_relative)
7087 {
7088 switch (areloc->howto->bitsize)
7089 {
7090 case 8:
7091 code = BFD_RELOC_8_PCREL;
7092 break;
7093 case 12:
7094 code = BFD_RELOC_12_PCREL;
7095 break;
7096 case 16:
7097 code = BFD_RELOC_16_PCREL;
7098 break;
7099 case 24:
7100 code = BFD_RELOC_24_PCREL;
7101 break;
7102 case 32:
7103 code = BFD_RELOC_32_PCREL;
7104 break;
7105 case 64:
7106 code = BFD_RELOC_64_PCREL;
7107 break;
7108 default:
7109 goto fail;
7110 }
7111
7112 howto = bfd_reloc_type_lookup (abfd, code);
7113
7114 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7115 {
7116 if (howto->pcrel_offset)
7117 areloc->addend += areloc->address;
7118 else
7119 areloc->addend -= areloc->address; /* addend is unsigned!! */
7120 }
7121 }
7122 else
7123 {
7124 switch (areloc->howto->bitsize)
7125 {
7126 case 8:
7127 code = BFD_RELOC_8;
7128 break;
7129 case 14:
7130 code = BFD_RELOC_14;
7131 break;
7132 case 16:
7133 code = BFD_RELOC_16;
7134 break;
7135 case 26:
7136 code = BFD_RELOC_26;
7137 break;
7138 case 32:
7139 code = BFD_RELOC_32;
7140 break;
7141 case 64:
7142 code = BFD_RELOC_64;
7143 break;
7144 default:
7145 goto fail;
7146 }
7147
7148 howto = bfd_reloc_type_lookup (abfd, code);
7149 }
7150
7151 if (howto)
7152 areloc->howto = howto;
7153 else
7154 goto fail;
7155 }
7156
7157 return TRUE;
7158
7159 fail:
7160 (*_bfd_error_handler)
7161 (_("%B: unsupported relocation type %s"),
7162 abfd, areloc->howto->name);
7163 bfd_set_error (bfd_error_bad_value);
7164 return FALSE;
7165 }
7166
7167 bfd_boolean
7168 _bfd_elf_close_and_cleanup (bfd *abfd)
7169 {
7170 if (bfd_get_format (abfd) == bfd_object)
7171 {
7172 if (elf_shstrtab (abfd) != NULL)
7173 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7174 _bfd_dwarf2_cleanup_debug_info (abfd);
7175 }
7176
7177 return _bfd_generic_close_and_cleanup (abfd);
7178 }
7179
7180 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7181 in the relocation's offset. Thus we cannot allow any sort of sanity
7182 range-checking to interfere. There is nothing else to do in processing
7183 this reloc. */
7184
7185 bfd_reloc_status_type
7186 _bfd_elf_rel_vtable_reloc_fn
7187 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7188 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7189 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7190 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7191 {
7192 return bfd_reloc_ok;
7193 }
7194 \f
7195 /* Elf core file support. Much of this only works on native
7196 toolchains, since we rely on knowing the
7197 machine-dependent procfs structure in order to pick
7198 out details about the corefile. */
7199
7200 #ifdef HAVE_SYS_PROCFS_H
7201 # include <sys/procfs.h>
7202 #endif
7203
7204 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7205
7206 static int
7207 elfcore_make_pid (bfd *abfd)
7208 {
7209 return ((elf_tdata (abfd)->core_lwpid << 16)
7210 + (elf_tdata (abfd)->core_pid));
7211 }
7212
7213 /* If there isn't a section called NAME, make one, using
7214 data from SECT. Note, this function will generate a
7215 reference to NAME, so you shouldn't deallocate or
7216 overwrite it. */
7217
7218 static bfd_boolean
7219 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7220 {
7221 asection *sect2;
7222
7223 if (bfd_get_section_by_name (abfd, name) != NULL)
7224 return TRUE;
7225
7226 sect2 = bfd_make_section (abfd, name);
7227 if (sect2 == NULL)
7228 return FALSE;
7229
7230 sect2->size = sect->size;
7231 sect2->filepos = sect->filepos;
7232 sect2->flags = sect->flags;
7233 sect2->alignment_power = sect->alignment_power;
7234 return TRUE;
7235 }
7236
7237 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7238 actually creates up to two pseudosections:
7239 - For the single-threaded case, a section named NAME, unless
7240 such a section already exists.
7241 - For the multi-threaded case, a section named "NAME/PID", where
7242 PID is elfcore_make_pid (abfd).
7243 Both pseudosections have identical contents. */
7244 bfd_boolean
7245 _bfd_elfcore_make_pseudosection (bfd *abfd,
7246 char *name,
7247 size_t size,
7248 ufile_ptr filepos)
7249 {
7250 char buf[100];
7251 char *threaded_name;
7252 size_t len;
7253 asection *sect;
7254
7255 /* Build the section name. */
7256
7257 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7258 len = strlen (buf) + 1;
7259 threaded_name = bfd_alloc (abfd, len);
7260 if (threaded_name == NULL)
7261 return FALSE;
7262 memcpy (threaded_name, buf, len);
7263
7264 sect = bfd_make_section_anyway (abfd, threaded_name);
7265 if (sect == NULL)
7266 return FALSE;
7267 sect->size = size;
7268 sect->filepos = filepos;
7269 sect->flags = SEC_HAS_CONTENTS;
7270 sect->alignment_power = 2;
7271
7272 return elfcore_maybe_make_sect (abfd, name, sect);
7273 }
7274
7275 /* prstatus_t exists on:
7276 solaris 2.5+
7277 linux 2.[01] + glibc
7278 unixware 4.2
7279 */
7280
7281 #if defined (HAVE_PRSTATUS_T)
7282
7283 static bfd_boolean
7284 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7285 {
7286 size_t size;
7287 int offset;
7288
7289 if (note->descsz == sizeof (prstatus_t))
7290 {
7291 prstatus_t prstat;
7292
7293 size = sizeof (prstat.pr_reg);
7294 offset = offsetof (prstatus_t, pr_reg);
7295 memcpy (&prstat, note->descdata, sizeof (prstat));
7296
7297 /* Do not overwrite the core signal if it
7298 has already been set by another thread. */
7299 if (elf_tdata (abfd)->core_signal == 0)
7300 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7301 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7302
7303 /* pr_who exists on:
7304 solaris 2.5+
7305 unixware 4.2
7306 pr_who doesn't exist on:
7307 linux 2.[01]
7308 */
7309 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7310 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7311 #endif
7312 }
7313 #if defined (HAVE_PRSTATUS32_T)
7314 else if (note->descsz == sizeof (prstatus32_t))
7315 {
7316 /* 64-bit host, 32-bit corefile */
7317 prstatus32_t prstat;
7318
7319 size = sizeof (prstat.pr_reg);
7320 offset = offsetof (prstatus32_t, pr_reg);
7321 memcpy (&prstat, note->descdata, sizeof (prstat));
7322
7323 /* Do not overwrite the core signal if it
7324 has already been set by another thread. */
7325 if (elf_tdata (abfd)->core_signal == 0)
7326 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7327 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7328
7329 /* pr_who exists on:
7330 solaris 2.5+
7331 unixware 4.2
7332 pr_who doesn't exist on:
7333 linux 2.[01]
7334 */
7335 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7336 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7337 #endif
7338 }
7339 #endif /* HAVE_PRSTATUS32_T */
7340 else
7341 {
7342 /* Fail - we don't know how to handle any other
7343 note size (ie. data object type). */
7344 return TRUE;
7345 }
7346
7347 /* Make a ".reg/999" section and a ".reg" section. */
7348 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7349 size, note->descpos + offset);
7350 }
7351 #endif /* defined (HAVE_PRSTATUS_T) */
7352
7353 /* Create a pseudosection containing the exact contents of NOTE. */
7354 static bfd_boolean
7355 elfcore_make_note_pseudosection (bfd *abfd,
7356 char *name,
7357 Elf_Internal_Note *note)
7358 {
7359 return _bfd_elfcore_make_pseudosection (abfd, name,
7360 note->descsz, note->descpos);
7361 }
7362
7363 /* There isn't a consistent prfpregset_t across platforms,
7364 but it doesn't matter, because we don't have to pick this
7365 data structure apart. */
7366
7367 static bfd_boolean
7368 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7369 {
7370 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7371 }
7372
7373 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7374 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7375 literally. */
7376
7377 static bfd_boolean
7378 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7379 {
7380 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7381 }
7382
7383 #if defined (HAVE_PRPSINFO_T)
7384 typedef prpsinfo_t elfcore_psinfo_t;
7385 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7386 typedef prpsinfo32_t elfcore_psinfo32_t;
7387 #endif
7388 #endif
7389
7390 #if defined (HAVE_PSINFO_T)
7391 typedef psinfo_t elfcore_psinfo_t;
7392 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7393 typedef psinfo32_t elfcore_psinfo32_t;
7394 #endif
7395 #endif
7396
7397 /* return a malloc'ed copy of a string at START which is at
7398 most MAX bytes long, possibly without a terminating '\0'.
7399 the copy will always have a terminating '\0'. */
7400
7401 char *
7402 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7403 {
7404 char *dups;
7405 char *end = memchr (start, '\0', max);
7406 size_t len;
7407
7408 if (end == NULL)
7409 len = max;
7410 else
7411 len = end - start;
7412
7413 dups = bfd_alloc (abfd, len + 1);
7414 if (dups == NULL)
7415 return NULL;
7416
7417 memcpy (dups, start, len);
7418 dups[len] = '\0';
7419
7420 return dups;
7421 }
7422
7423 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7424 static bfd_boolean
7425 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7426 {
7427 if (note->descsz == sizeof (elfcore_psinfo_t))
7428 {
7429 elfcore_psinfo_t psinfo;
7430
7431 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7432
7433 elf_tdata (abfd)->core_program
7434 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7435 sizeof (psinfo.pr_fname));
7436
7437 elf_tdata (abfd)->core_command
7438 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7439 sizeof (psinfo.pr_psargs));
7440 }
7441 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7442 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7443 {
7444 /* 64-bit host, 32-bit corefile */
7445 elfcore_psinfo32_t psinfo;
7446
7447 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7448
7449 elf_tdata (abfd)->core_program
7450 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7451 sizeof (psinfo.pr_fname));
7452
7453 elf_tdata (abfd)->core_command
7454 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7455 sizeof (psinfo.pr_psargs));
7456 }
7457 #endif
7458
7459 else
7460 {
7461 /* Fail - we don't know how to handle any other
7462 note size (ie. data object type). */
7463 return TRUE;
7464 }
7465
7466 /* Note that for some reason, a spurious space is tacked
7467 onto the end of the args in some (at least one anyway)
7468 implementations, so strip it off if it exists. */
7469
7470 {
7471 char *command = elf_tdata (abfd)->core_command;
7472 int n = strlen (command);
7473
7474 if (0 < n && command[n - 1] == ' ')
7475 command[n - 1] = '\0';
7476 }
7477
7478 return TRUE;
7479 }
7480 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7481
7482 #if defined (HAVE_PSTATUS_T)
7483 static bfd_boolean
7484 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7485 {
7486 if (note->descsz == sizeof (pstatus_t)
7487 #if defined (HAVE_PXSTATUS_T)
7488 || note->descsz == sizeof (pxstatus_t)
7489 #endif
7490 )
7491 {
7492 pstatus_t pstat;
7493
7494 memcpy (&pstat, note->descdata, sizeof (pstat));
7495
7496 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7497 }
7498 #if defined (HAVE_PSTATUS32_T)
7499 else if (note->descsz == sizeof (pstatus32_t))
7500 {
7501 /* 64-bit host, 32-bit corefile */
7502 pstatus32_t pstat;
7503
7504 memcpy (&pstat, note->descdata, sizeof (pstat));
7505
7506 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7507 }
7508 #endif
7509 /* Could grab some more details from the "representative"
7510 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7511 NT_LWPSTATUS note, presumably. */
7512
7513 return TRUE;
7514 }
7515 #endif /* defined (HAVE_PSTATUS_T) */
7516
7517 #if defined (HAVE_LWPSTATUS_T)
7518 static bfd_boolean
7519 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7520 {
7521 lwpstatus_t lwpstat;
7522 char buf[100];
7523 char *name;
7524 size_t len;
7525 asection *sect;
7526
7527 if (note->descsz != sizeof (lwpstat)
7528 #if defined (HAVE_LWPXSTATUS_T)
7529 && note->descsz != sizeof (lwpxstatus_t)
7530 #endif
7531 )
7532 return TRUE;
7533
7534 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7535
7536 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7537 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7538
7539 /* Make a ".reg/999" section. */
7540
7541 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7542 len = strlen (buf) + 1;
7543 name = bfd_alloc (abfd, len);
7544 if (name == NULL)
7545 return FALSE;
7546 memcpy (name, buf, len);
7547
7548 sect = bfd_make_section_anyway (abfd, name);
7549 if (sect == NULL)
7550 return FALSE;
7551
7552 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7553 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7554 sect->filepos = note->descpos
7555 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7556 #endif
7557
7558 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7559 sect->size = sizeof (lwpstat.pr_reg);
7560 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7561 #endif
7562
7563 sect->flags = SEC_HAS_CONTENTS;
7564 sect->alignment_power = 2;
7565
7566 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7567 return FALSE;
7568
7569 /* Make a ".reg2/999" section */
7570
7571 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7572 len = strlen (buf) + 1;
7573 name = bfd_alloc (abfd, len);
7574 if (name == NULL)
7575 return FALSE;
7576 memcpy (name, buf, len);
7577
7578 sect = bfd_make_section_anyway (abfd, name);
7579 if (sect == NULL)
7580 return FALSE;
7581
7582 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7583 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7584 sect->filepos = note->descpos
7585 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7586 #endif
7587
7588 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7589 sect->size = sizeof (lwpstat.pr_fpreg);
7590 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7591 #endif
7592
7593 sect->flags = SEC_HAS_CONTENTS;
7594 sect->alignment_power = 2;
7595
7596 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7597 }
7598 #endif /* defined (HAVE_LWPSTATUS_T) */
7599
7600 #if defined (HAVE_WIN32_PSTATUS_T)
7601 static bfd_boolean
7602 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7603 {
7604 char buf[30];
7605 char *name;
7606 size_t len;
7607 asection *sect;
7608 win32_pstatus_t pstatus;
7609
7610 if (note->descsz < sizeof (pstatus))
7611 return TRUE;
7612
7613 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7614
7615 switch (pstatus.data_type)
7616 {
7617 case NOTE_INFO_PROCESS:
7618 /* FIXME: need to add ->core_command. */
7619 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7620 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7621 break;
7622
7623 case NOTE_INFO_THREAD:
7624 /* Make a ".reg/999" section. */
7625 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7626
7627 len = strlen (buf) + 1;
7628 name = bfd_alloc (abfd, len);
7629 if (name == NULL)
7630 return FALSE;
7631
7632 memcpy (name, buf, len);
7633
7634 sect = bfd_make_section_anyway (abfd, name);
7635 if (sect == NULL)
7636 return FALSE;
7637
7638 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7639 sect->filepos = (note->descpos
7640 + offsetof (struct win32_pstatus,
7641 data.thread_info.thread_context));
7642 sect->flags = SEC_HAS_CONTENTS;
7643 sect->alignment_power = 2;
7644
7645 if (pstatus.data.thread_info.is_active_thread)
7646 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7647 return FALSE;
7648 break;
7649
7650 case NOTE_INFO_MODULE:
7651 /* Make a ".module/xxxxxxxx" section. */
7652 sprintf (buf, ".module/%08lx",
7653 (long) pstatus.data.module_info.base_address);
7654
7655 len = strlen (buf) + 1;
7656 name = bfd_alloc (abfd, len);
7657 if (name == NULL)
7658 return FALSE;
7659
7660 memcpy (name, buf, len);
7661
7662 sect = bfd_make_section_anyway (abfd, name);
7663
7664 if (sect == NULL)
7665 return FALSE;
7666
7667 sect->size = note->descsz;
7668 sect->filepos = note->descpos;
7669 sect->flags = SEC_HAS_CONTENTS;
7670 sect->alignment_power = 2;
7671 break;
7672
7673 default:
7674 return TRUE;
7675 }
7676
7677 return TRUE;
7678 }
7679 #endif /* HAVE_WIN32_PSTATUS_T */
7680
7681 static bfd_boolean
7682 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7683 {
7684 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7685
7686 switch (note->type)
7687 {
7688 default:
7689 return TRUE;
7690
7691 case NT_PRSTATUS:
7692 if (bed->elf_backend_grok_prstatus)
7693 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7694 return TRUE;
7695 #if defined (HAVE_PRSTATUS_T)
7696 return elfcore_grok_prstatus (abfd, note);
7697 #else
7698 return TRUE;
7699 #endif
7700
7701 #if defined (HAVE_PSTATUS_T)
7702 case NT_PSTATUS:
7703 return elfcore_grok_pstatus (abfd, note);
7704 #endif
7705
7706 #if defined (HAVE_LWPSTATUS_T)
7707 case NT_LWPSTATUS:
7708 return elfcore_grok_lwpstatus (abfd, note);
7709 #endif
7710
7711 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7712 return elfcore_grok_prfpreg (abfd, note);
7713
7714 #if defined (HAVE_WIN32_PSTATUS_T)
7715 case NT_WIN32PSTATUS:
7716 return elfcore_grok_win32pstatus (abfd, note);
7717 #endif
7718
7719 case NT_PRXFPREG: /* Linux SSE extension */
7720 if (note->namesz == 6
7721 && strcmp (note->namedata, "LINUX") == 0)
7722 return elfcore_grok_prxfpreg (abfd, note);
7723 else
7724 return TRUE;
7725
7726 case NT_PRPSINFO:
7727 case NT_PSINFO:
7728 if (bed->elf_backend_grok_psinfo)
7729 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7730 return TRUE;
7731 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7732 return elfcore_grok_psinfo (abfd, note);
7733 #else
7734 return TRUE;
7735 #endif
7736
7737 case NT_AUXV:
7738 {
7739 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7740
7741 if (sect == NULL)
7742 return FALSE;
7743 sect->size = note->descsz;
7744 sect->filepos = note->descpos;
7745 sect->flags = SEC_HAS_CONTENTS;
7746 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7747
7748 return TRUE;
7749 }
7750 }
7751 }
7752
7753 static bfd_boolean
7754 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7755 {
7756 char *cp;
7757
7758 cp = strchr (note->namedata, '@');
7759 if (cp != NULL)
7760 {
7761 *lwpidp = atoi(cp + 1);
7762 return TRUE;
7763 }
7764 return FALSE;
7765 }
7766
7767 static bfd_boolean
7768 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7769 {
7770
7771 /* Signal number at offset 0x08. */
7772 elf_tdata (abfd)->core_signal
7773 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7774
7775 /* Process ID at offset 0x50. */
7776 elf_tdata (abfd)->core_pid
7777 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7778
7779 /* Command name at 0x7c (max 32 bytes, including nul). */
7780 elf_tdata (abfd)->core_command
7781 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7782
7783 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7784 note);
7785 }
7786
7787 static bfd_boolean
7788 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7789 {
7790 int lwp;
7791
7792 if (elfcore_netbsd_get_lwpid (note, &lwp))
7793 elf_tdata (abfd)->core_lwpid = lwp;
7794
7795 if (note->type == NT_NETBSDCORE_PROCINFO)
7796 {
7797 /* NetBSD-specific core "procinfo". Note that we expect to
7798 find this note before any of the others, which is fine,
7799 since the kernel writes this note out first when it
7800 creates a core file. */
7801
7802 return elfcore_grok_netbsd_procinfo (abfd, note);
7803 }
7804
7805 /* As of Jan 2002 there are no other machine-independent notes
7806 defined for NetBSD core files. If the note type is less
7807 than the start of the machine-dependent note types, we don't
7808 understand it. */
7809
7810 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7811 return TRUE;
7812
7813
7814 switch (bfd_get_arch (abfd))
7815 {
7816 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7817 PT_GETFPREGS == mach+2. */
7818
7819 case bfd_arch_alpha:
7820 case bfd_arch_sparc:
7821 switch (note->type)
7822 {
7823 case NT_NETBSDCORE_FIRSTMACH+0:
7824 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7825
7826 case NT_NETBSDCORE_FIRSTMACH+2:
7827 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7828
7829 default:
7830 return TRUE;
7831 }
7832
7833 /* On all other arch's, PT_GETREGS == mach+1 and
7834 PT_GETFPREGS == mach+3. */
7835
7836 default:
7837 switch (note->type)
7838 {
7839 case NT_NETBSDCORE_FIRSTMACH+1:
7840 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7841
7842 case NT_NETBSDCORE_FIRSTMACH+3:
7843 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7844
7845 default:
7846 return TRUE;
7847 }
7848 }
7849 /* NOTREACHED */
7850 }
7851
7852 static bfd_boolean
7853 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7854 {
7855 void *ddata = note->descdata;
7856 char buf[100];
7857 char *name;
7858 asection *sect;
7859 short sig;
7860 unsigned flags;
7861
7862 /* nto_procfs_status 'pid' field is at offset 0. */
7863 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7864
7865 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7866 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7867
7868 /* nto_procfs_status 'flags' field is at offset 8. */
7869 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7870
7871 /* nto_procfs_status 'what' field is at offset 14. */
7872 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7873 {
7874 elf_tdata (abfd)->core_signal = sig;
7875 elf_tdata (abfd)->core_lwpid = *tid;
7876 }
7877
7878 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7879 do not come from signals so we make sure we set the current
7880 thread just in case. */
7881 if (flags & 0x00000080)
7882 elf_tdata (abfd)->core_lwpid = *tid;
7883
7884 /* Make a ".qnx_core_status/%d" section. */
7885 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7886
7887 name = bfd_alloc (abfd, strlen (buf) + 1);
7888 if (name == NULL)
7889 return FALSE;
7890 strcpy (name, buf);
7891
7892 sect = bfd_make_section_anyway (abfd, name);
7893 if (sect == NULL)
7894 return FALSE;
7895
7896 sect->size = note->descsz;
7897 sect->filepos = note->descpos;
7898 sect->flags = SEC_HAS_CONTENTS;
7899 sect->alignment_power = 2;
7900
7901 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7902 }
7903
7904 static bfd_boolean
7905 elfcore_grok_nto_regs (bfd *abfd,
7906 Elf_Internal_Note *note,
7907 pid_t tid,
7908 char *base)
7909 {
7910 char buf[100];
7911 char *name;
7912 asection *sect;
7913
7914 /* Make a "(base)/%d" section. */
7915 sprintf (buf, "%s/%ld", base, (long) tid);
7916
7917 name = bfd_alloc (abfd, strlen (buf) + 1);
7918 if (name == NULL)
7919 return FALSE;
7920 strcpy (name, buf);
7921
7922 sect = bfd_make_section_anyway (abfd, name);
7923 if (sect == NULL)
7924 return FALSE;
7925
7926 sect->size = note->descsz;
7927 sect->filepos = note->descpos;
7928 sect->flags = SEC_HAS_CONTENTS;
7929 sect->alignment_power = 2;
7930
7931 /* This is the current thread. */
7932 if (elf_tdata (abfd)->core_lwpid == tid)
7933 return elfcore_maybe_make_sect (abfd, base, sect);
7934
7935 return TRUE;
7936 }
7937
7938 #define BFD_QNT_CORE_INFO 7
7939 #define BFD_QNT_CORE_STATUS 8
7940 #define BFD_QNT_CORE_GREG 9
7941 #define BFD_QNT_CORE_FPREG 10
7942
7943 static bfd_boolean
7944 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7945 {
7946 /* Every GREG section has a STATUS section before it. Store the
7947 tid from the previous call to pass down to the next gregs
7948 function. */
7949 static pid_t tid = 1;
7950
7951 switch (note->type)
7952 {
7953 case BFD_QNT_CORE_INFO:
7954 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7955 case BFD_QNT_CORE_STATUS:
7956 return elfcore_grok_nto_status (abfd, note, &tid);
7957 case BFD_QNT_CORE_GREG:
7958 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7959 case BFD_QNT_CORE_FPREG:
7960 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7961 default:
7962 return TRUE;
7963 }
7964 }
7965
7966 /* Function: elfcore_write_note
7967
7968 Inputs:
7969 buffer to hold note
7970 name of note
7971 type of note
7972 data for note
7973 size of data for note
7974
7975 Return:
7976 End of buffer containing note. */
7977
7978 char *
7979 elfcore_write_note (bfd *abfd,
7980 char *buf,
7981 int *bufsiz,
7982 const char *name,
7983 int type,
7984 const void *input,
7985 int size)
7986 {
7987 Elf_External_Note *xnp;
7988 size_t namesz;
7989 size_t pad;
7990 size_t newspace;
7991 char *p, *dest;
7992
7993 namesz = 0;
7994 pad = 0;
7995 if (name != NULL)
7996 {
7997 const struct elf_backend_data *bed;
7998
7999 namesz = strlen (name) + 1;
8000 bed = get_elf_backend_data (abfd);
8001 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
8002 }
8003
8004 newspace = 12 + namesz + pad + size;
8005
8006 p = realloc (buf, *bufsiz + newspace);
8007 dest = p + *bufsiz;
8008 *bufsiz += newspace;
8009 xnp = (Elf_External_Note *) dest;
8010 H_PUT_32 (abfd, namesz, xnp->namesz);
8011 H_PUT_32 (abfd, size, xnp->descsz);
8012 H_PUT_32 (abfd, type, xnp->type);
8013 dest = xnp->name;
8014 if (name != NULL)
8015 {
8016 memcpy (dest, name, namesz);
8017 dest += namesz;
8018 while (pad != 0)
8019 {
8020 *dest++ = '\0';
8021 --pad;
8022 }
8023 }
8024 memcpy (dest, input, size);
8025 return p;
8026 }
8027
8028 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8029 char *
8030 elfcore_write_prpsinfo (bfd *abfd,
8031 char *buf,
8032 int *bufsiz,
8033 const char *fname,
8034 const char *psargs)
8035 {
8036 int note_type;
8037 char *note_name = "CORE";
8038
8039 #if defined (HAVE_PSINFO_T)
8040 psinfo_t data;
8041 note_type = NT_PSINFO;
8042 #else
8043 prpsinfo_t data;
8044 note_type = NT_PRPSINFO;
8045 #endif
8046
8047 memset (&data, 0, sizeof (data));
8048 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8049 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8050 return elfcore_write_note (abfd, buf, bufsiz,
8051 note_name, note_type, &data, sizeof (data));
8052 }
8053 #endif /* PSINFO_T or PRPSINFO_T */
8054
8055 #if defined (HAVE_PRSTATUS_T)
8056 char *
8057 elfcore_write_prstatus (bfd *abfd,
8058 char *buf,
8059 int *bufsiz,
8060 long pid,
8061 int cursig,
8062 const void *gregs)
8063 {
8064 prstatus_t prstat;
8065 char *note_name = "CORE";
8066
8067 memset (&prstat, 0, sizeof (prstat));
8068 prstat.pr_pid = pid;
8069 prstat.pr_cursig = cursig;
8070 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8071 return elfcore_write_note (abfd, buf, bufsiz,
8072 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8073 }
8074 #endif /* HAVE_PRSTATUS_T */
8075
8076 #if defined (HAVE_LWPSTATUS_T)
8077 char *
8078 elfcore_write_lwpstatus (bfd *abfd,
8079 char *buf,
8080 int *bufsiz,
8081 long pid,
8082 int cursig,
8083 const void *gregs)
8084 {
8085 lwpstatus_t lwpstat;
8086 char *note_name = "CORE";
8087
8088 memset (&lwpstat, 0, sizeof (lwpstat));
8089 lwpstat.pr_lwpid = pid >> 16;
8090 lwpstat.pr_cursig = cursig;
8091 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8092 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8093 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8094 #if !defined(gregs)
8095 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8096 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8097 #else
8098 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8099 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8100 #endif
8101 #endif
8102 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8103 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8104 }
8105 #endif /* HAVE_LWPSTATUS_T */
8106
8107 #if defined (HAVE_PSTATUS_T)
8108 char *
8109 elfcore_write_pstatus (bfd *abfd,
8110 char *buf,
8111 int *bufsiz,
8112 long pid,
8113 int cursig ATTRIBUTE_UNUSED,
8114 const void *gregs ATTRIBUTE_UNUSED)
8115 {
8116 pstatus_t pstat;
8117 char *note_name = "CORE";
8118
8119 memset (&pstat, 0, sizeof (pstat));
8120 pstat.pr_pid = pid & 0xffff;
8121 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8122 NT_PSTATUS, &pstat, sizeof (pstat));
8123 return buf;
8124 }
8125 #endif /* HAVE_PSTATUS_T */
8126
8127 char *
8128 elfcore_write_prfpreg (bfd *abfd,
8129 char *buf,
8130 int *bufsiz,
8131 const void *fpregs,
8132 int size)
8133 {
8134 char *note_name = "CORE";
8135 return elfcore_write_note (abfd, buf, bufsiz,
8136 note_name, NT_FPREGSET, fpregs, size);
8137 }
8138
8139 char *
8140 elfcore_write_prxfpreg (bfd *abfd,
8141 char *buf,
8142 int *bufsiz,
8143 const void *xfpregs,
8144 int size)
8145 {
8146 char *note_name = "LINUX";
8147 return elfcore_write_note (abfd, buf, bufsiz,
8148 note_name, NT_PRXFPREG, xfpregs, size);
8149 }
8150
8151 static bfd_boolean
8152 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8153 {
8154 char *buf;
8155 char *p;
8156
8157 if (size <= 0)
8158 return TRUE;
8159
8160 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8161 return FALSE;
8162
8163 buf = bfd_malloc (size);
8164 if (buf == NULL)
8165 return FALSE;
8166
8167 if (bfd_bread (buf, size, abfd) != size)
8168 {
8169 error:
8170 free (buf);
8171 return FALSE;
8172 }
8173
8174 p = buf;
8175 while (p < buf + size)
8176 {
8177 /* FIXME: bad alignment assumption. */
8178 Elf_External_Note *xnp = (Elf_External_Note *) p;
8179 Elf_Internal_Note in;
8180
8181 in.type = H_GET_32 (abfd, xnp->type);
8182
8183 in.namesz = H_GET_32 (abfd, xnp->namesz);
8184 in.namedata = xnp->name;
8185
8186 in.descsz = H_GET_32 (abfd, xnp->descsz);
8187 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8188 in.descpos = offset + (in.descdata - buf);
8189
8190 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
8191 {
8192 if (! elfcore_grok_netbsd_note (abfd, &in))
8193 goto error;
8194 }
8195 else if (strncmp (in.namedata, "QNX", 3) == 0)
8196 {
8197 if (! elfcore_grok_nto_note (abfd, &in))
8198 goto error;
8199 }
8200 else
8201 {
8202 if (! elfcore_grok_note (abfd, &in))
8203 goto error;
8204 }
8205
8206 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8207 }
8208
8209 free (buf);
8210 return TRUE;
8211 }
8212 \f
8213 /* Providing external access to the ELF program header table. */
8214
8215 /* Return an upper bound on the number of bytes required to store a
8216 copy of ABFD's program header table entries. Return -1 if an error
8217 occurs; bfd_get_error will return an appropriate code. */
8218
8219 long
8220 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8221 {
8222 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8223 {
8224 bfd_set_error (bfd_error_wrong_format);
8225 return -1;
8226 }
8227
8228 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8229 }
8230
8231 /* Copy ABFD's program header table entries to *PHDRS. The entries
8232 will be stored as an array of Elf_Internal_Phdr structures, as
8233 defined in include/elf/internal.h. To find out how large the
8234 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8235
8236 Return the number of program header table entries read, or -1 if an
8237 error occurs; bfd_get_error will return an appropriate code. */
8238
8239 int
8240 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8241 {
8242 int num_phdrs;
8243
8244 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8245 {
8246 bfd_set_error (bfd_error_wrong_format);
8247 return -1;
8248 }
8249
8250 num_phdrs = elf_elfheader (abfd)->e_phnum;
8251 memcpy (phdrs, elf_tdata (abfd)->phdr,
8252 num_phdrs * sizeof (Elf_Internal_Phdr));
8253
8254 return num_phdrs;
8255 }
8256
8257 void
8258 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8259 {
8260 #ifdef BFD64
8261 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8262
8263 i_ehdrp = elf_elfheader (abfd);
8264 if (i_ehdrp == NULL)
8265 sprintf_vma (buf, value);
8266 else
8267 {
8268 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8269 {
8270 #if BFD_HOST_64BIT_LONG
8271 sprintf (buf, "%016lx", value);
8272 #else
8273 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8274 _bfd_int64_low (value));
8275 #endif
8276 }
8277 else
8278 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8279 }
8280 #else
8281 sprintf_vma (buf, value);
8282 #endif
8283 }
8284
8285 void
8286 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8287 {
8288 #ifdef BFD64
8289 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8290
8291 i_ehdrp = elf_elfheader (abfd);
8292 if (i_ehdrp == NULL)
8293 fprintf_vma ((FILE *) stream, value);
8294 else
8295 {
8296 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8297 {
8298 #if BFD_HOST_64BIT_LONG
8299 fprintf ((FILE *) stream, "%016lx", value);
8300 #else
8301 fprintf ((FILE *) stream, "%08lx%08lx",
8302 _bfd_int64_high (value), _bfd_int64_low (value));
8303 #endif
8304 }
8305 else
8306 fprintf ((FILE *) stream, "%08lx",
8307 (unsigned long) (value & 0xffffffff));
8308 }
8309 #else
8310 fprintf_vma ((FILE *) stream, value);
8311 #endif
8312 }
8313
8314 enum elf_reloc_type_class
8315 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8316 {
8317 return reloc_class_normal;
8318 }
8319
8320 /* For RELA architectures, return the relocation value for a
8321 relocation against a local symbol. */
8322
8323 bfd_vma
8324 _bfd_elf_rela_local_sym (bfd *abfd,
8325 Elf_Internal_Sym *sym,
8326 asection **psec,
8327 Elf_Internal_Rela *rel)
8328 {
8329 asection *sec = *psec;
8330 bfd_vma relocation;
8331
8332 relocation = (sec->output_section->vma
8333 + sec->output_offset
8334 + sym->st_value);
8335 if ((sec->flags & SEC_MERGE)
8336 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8337 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8338 {
8339 rel->r_addend =
8340 _bfd_merged_section_offset (abfd, psec,
8341 elf_section_data (sec)->sec_info,
8342 sym->st_value + rel->r_addend);
8343 if (sec != *psec)
8344 {
8345 /* If we have changed the section, and our original section is
8346 marked with SEC_EXCLUDE, it means that the original
8347 SEC_MERGE section has been completely subsumed in some
8348 other SEC_MERGE section. In this case, we need to leave
8349 some info around for --emit-relocs. */
8350 if ((sec->flags & SEC_EXCLUDE) != 0)
8351 sec->kept_section = *psec;
8352 sec = *psec;
8353 }
8354 rel->r_addend -= relocation;
8355 rel->r_addend += sec->output_section->vma + sec->output_offset;
8356 }
8357 return relocation;
8358 }
8359
8360 bfd_vma
8361 _bfd_elf_rel_local_sym (bfd *abfd,
8362 Elf_Internal_Sym *sym,
8363 asection **psec,
8364 bfd_vma addend)
8365 {
8366 asection *sec = *psec;
8367
8368 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8369 return sym->st_value + addend;
8370
8371 return _bfd_merged_section_offset (abfd, psec,
8372 elf_section_data (sec)->sec_info,
8373 sym->st_value + addend);
8374 }
8375
8376 bfd_vma
8377 _bfd_elf_section_offset (bfd *abfd,
8378 struct bfd_link_info *info,
8379 asection *sec,
8380 bfd_vma offset)
8381 {
8382 switch (sec->sec_info_type)
8383 {
8384 case ELF_INFO_TYPE_STABS:
8385 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8386 offset);
8387 case ELF_INFO_TYPE_EH_FRAME:
8388 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8389 default:
8390 return offset;
8391 }
8392 }
8393 \f
8394 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8395 reconstruct an ELF file by reading the segments out of remote memory
8396 based on the ELF file header at EHDR_VMA and the ELF program headers it
8397 points to. If not null, *LOADBASEP is filled in with the difference
8398 between the VMAs from which the segments were read, and the VMAs the
8399 file headers (and hence BFD's idea of each section's VMA) put them at.
8400
8401 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8402 remote memory at target address VMA into the local buffer at MYADDR; it
8403 should return zero on success or an `errno' code on failure. TEMPL must
8404 be a BFD for an ELF target with the word size and byte order found in
8405 the remote memory. */
8406
8407 bfd *
8408 bfd_elf_bfd_from_remote_memory
8409 (bfd *templ,
8410 bfd_vma ehdr_vma,
8411 bfd_vma *loadbasep,
8412 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8413 {
8414 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8415 (templ, ehdr_vma, loadbasep, target_read_memory);
8416 }
8417 \f
8418 long
8419 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8420 long symcount ATTRIBUTE_UNUSED,
8421 asymbol **syms ATTRIBUTE_UNUSED,
8422 long dynsymcount,
8423 asymbol **dynsyms,
8424 asymbol **ret)
8425 {
8426 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8427 asection *relplt;
8428 asymbol *s;
8429 const char *relplt_name;
8430 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8431 arelent *p;
8432 long count, i, n;
8433 size_t size;
8434 Elf_Internal_Shdr *hdr;
8435 char *names;
8436 asection *plt;
8437
8438 *ret = NULL;
8439
8440 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8441 return 0;
8442
8443 if (dynsymcount <= 0)
8444 return 0;
8445
8446 if (!bed->plt_sym_val)
8447 return 0;
8448
8449 relplt_name = bed->relplt_name;
8450 if (relplt_name == NULL)
8451 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8452 relplt = bfd_get_section_by_name (abfd, relplt_name);
8453 if (relplt == NULL)
8454 return 0;
8455
8456 hdr = &elf_section_data (relplt)->this_hdr;
8457 if (hdr->sh_link != elf_dynsymtab (abfd)
8458 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8459 return 0;
8460
8461 plt = bfd_get_section_by_name (abfd, ".plt");
8462 if (plt == NULL)
8463 return 0;
8464
8465 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8466 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8467 return -1;
8468
8469 count = relplt->size / hdr->sh_entsize;
8470 size = count * sizeof (asymbol);
8471 p = relplt->relocation;
8472 for (i = 0; i < count; i++, s++, p++)
8473 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8474
8475 s = *ret = bfd_malloc (size);
8476 if (s == NULL)
8477 return -1;
8478
8479 names = (char *) (s + count);
8480 p = relplt->relocation;
8481 n = 0;
8482 for (i = 0; i < count; i++, s++, p++)
8483 {
8484 size_t len;
8485 bfd_vma addr;
8486
8487 addr = bed->plt_sym_val (i, plt, p);
8488 if (addr == (bfd_vma) -1)
8489 continue;
8490
8491 *s = **p->sym_ptr_ptr;
8492 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8493 we are defining a symbol, ensure one of them is set. */
8494 if ((s->flags & BSF_LOCAL) == 0)
8495 s->flags |= BSF_GLOBAL;
8496 s->section = plt;
8497 s->value = addr - plt->vma;
8498 s->name = names;
8499 len = strlen ((*p->sym_ptr_ptr)->name);
8500 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8501 names += len;
8502 memcpy (names, "@plt", sizeof ("@plt"));
8503 names += sizeof ("@plt");
8504 ++n;
8505 }
8506
8507 return n;
8508 }
8509
8510 /* Sort symbol by binding and section. We want to put definitions
8511 sorted by section at the beginning. */
8512
8513 static int
8514 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8515 {
8516 const Elf_Internal_Sym *s1;
8517 const Elf_Internal_Sym *s2;
8518 int shndx;
8519
8520 /* Make sure that undefined symbols are at the end. */
8521 s1 = (const Elf_Internal_Sym *) arg1;
8522 if (s1->st_shndx == SHN_UNDEF)
8523 return 1;
8524 s2 = (const Elf_Internal_Sym *) arg2;
8525 if (s2->st_shndx == SHN_UNDEF)
8526 return -1;
8527
8528 /* Sorted by section index. */
8529 shndx = s1->st_shndx - s2->st_shndx;
8530 if (shndx != 0)
8531 return shndx;
8532
8533 /* Sorted by binding. */
8534 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8535 }
8536
8537 struct elf_symbol
8538 {
8539 Elf_Internal_Sym *sym;
8540 const char *name;
8541 };
8542
8543 static int
8544 elf_sym_name_compare (const void *arg1, const void *arg2)
8545 {
8546 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8547 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8548 return strcmp (s1->name, s2->name);
8549 }
8550
8551 /* Check if 2 sections define the same set of local and global
8552 symbols. */
8553
8554 bfd_boolean
8555 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8556 {
8557 bfd *bfd1, *bfd2;
8558 const struct elf_backend_data *bed1, *bed2;
8559 Elf_Internal_Shdr *hdr1, *hdr2;
8560 bfd_size_type symcount1, symcount2;
8561 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8562 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8563 Elf_Internal_Sym *isymend;
8564 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8565 bfd_size_type count1, count2, i;
8566 int shndx1, shndx2;
8567 bfd_boolean result;
8568
8569 bfd1 = sec1->owner;
8570 bfd2 = sec2->owner;
8571
8572 /* If both are .gnu.linkonce sections, they have to have the same
8573 section name. */
8574 if (strncmp (sec1->name, ".gnu.linkonce",
8575 sizeof ".gnu.linkonce" - 1) == 0
8576 && strncmp (sec2->name, ".gnu.linkonce",
8577 sizeof ".gnu.linkonce" - 1) == 0)
8578 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8579 sec2->name + sizeof ".gnu.linkonce") == 0;
8580
8581 /* Both sections have to be in ELF. */
8582 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8583 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8584 return FALSE;
8585
8586 if (elf_section_type (sec1) != elf_section_type (sec2))
8587 return FALSE;
8588
8589 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8590 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8591 {
8592 /* If both are members of section groups, they have to have the
8593 same group name. */
8594 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8595 return FALSE;
8596 }
8597
8598 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8599 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8600 if (shndx1 == -1 || shndx2 == -1)
8601 return FALSE;
8602
8603 bed1 = get_elf_backend_data (bfd1);
8604 bed2 = get_elf_backend_data (bfd2);
8605 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8606 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8607 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8608 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8609
8610 if (symcount1 == 0 || symcount2 == 0)
8611 return FALSE;
8612
8613 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8614 NULL, NULL, NULL);
8615 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8616 NULL, NULL, NULL);
8617
8618 result = FALSE;
8619 if (isymbuf1 == NULL || isymbuf2 == NULL)
8620 goto done;
8621
8622 /* Sort symbols by binding and section. Global definitions are at
8623 the beginning. */
8624 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8625 elf_sort_elf_symbol);
8626 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8627 elf_sort_elf_symbol);
8628
8629 /* Count definitions in the section. */
8630 count1 = 0;
8631 for (isym = isymbuf1, isymend = isym + symcount1;
8632 isym < isymend; isym++)
8633 {
8634 if (isym->st_shndx == (unsigned int) shndx1)
8635 {
8636 if (count1 == 0)
8637 isymstart1 = isym;
8638 count1++;
8639 }
8640
8641 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8642 break;
8643 }
8644
8645 count2 = 0;
8646 for (isym = isymbuf2, isymend = isym + symcount2;
8647 isym < isymend; isym++)
8648 {
8649 if (isym->st_shndx == (unsigned int) shndx2)
8650 {
8651 if (count2 == 0)
8652 isymstart2 = isym;
8653 count2++;
8654 }
8655
8656 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8657 break;
8658 }
8659
8660 if (count1 == 0 || count2 == 0 || count1 != count2)
8661 goto done;
8662
8663 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8664 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8665
8666 if (symtable1 == NULL || symtable2 == NULL)
8667 goto done;
8668
8669 symp = symtable1;
8670 for (isym = isymstart1, isymend = isym + count1;
8671 isym < isymend; isym++)
8672 {
8673 symp->sym = isym;
8674 symp->name = bfd_elf_string_from_elf_section (bfd1,
8675 hdr1->sh_link,
8676 isym->st_name);
8677 symp++;
8678 }
8679
8680 symp = symtable2;
8681 for (isym = isymstart2, isymend = isym + count1;
8682 isym < isymend; isym++)
8683 {
8684 symp->sym = isym;
8685 symp->name = bfd_elf_string_from_elf_section (bfd2,
8686 hdr2->sh_link,
8687 isym->st_name);
8688 symp++;
8689 }
8690
8691 /* Sort symbol by name. */
8692 qsort (symtable1, count1, sizeof (struct elf_symbol),
8693 elf_sym_name_compare);
8694 qsort (symtable2, count1, sizeof (struct elf_symbol),
8695 elf_sym_name_compare);
8696
8697 for (i = 0; i < count1; i++)
8698 /* Two symbols must have the same binding, type and name. */
8699 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8700 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8701 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8702 goto done;
8703
8704 result = TRUE;
8705
8706 done:
8707 if (symtable1)
8708 free (symtable1);
8709 if (symtable2)
8710 free (symtable2);
8711 if (isymbuf1)
8712 free (isymbuf1);
8713 if (isymbuf2)
8714 free (isymbuf2);
8715
8716 return result;
8717 }
8718
8719 /* It is only used by x86-64 so far. */
8720 asection _bfd_elf_large_com_section
8721 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8722 SEC_IS_COMMON, NULL, NULL, "LARGE_COMMON",
8723 0);
8724
8725 /* Return TRUE if 2 section types are compatible. */
8726
8727 bfd_boolean
8728 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8729 bfd *bbfd, const asection *bsec)
8730 {
8731 if (asec == NULL
8732 || bsec == NULL
8733 || abfd->xvec->flavour != bfd_target_elf_flavour
8734 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8735 return TRUE;
8736
8737 return elf_section_type (asec) == elf_section_type (bsec);
8738 }
This page took 0.445093 seconds and 4 git commands to generate.