gdb/riscv: rewrite target description validation, add rv32e support
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2020 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int,
55 struct bfd_link_info *);
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset, size_t align);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1,
302 shstrtabsize)) == NULL)
303 {
304 /* Once we've failed to read it, make sure we don't keep
305 trying. Otherwise, we'll keep allocating space for
306 the string table over and over. */
307 i_shdrp[shindex]->sh_size = 0;
308 }
309 else
310 shstrtab[shstrtabsize] = '\0';
311 i_shdrp[shindex]->contents = shstrtab;
312 }
313 return (char *) shstrtab;
314 }
315
316 char *
317 bfd_elf_string_from_elf_section (bfd *abfd,
318 unsigned int shindex,
319 unsigned int strindex)
320 {
321 Elf_Internal_Shdr *hdr;
322
323 if (strindex == 0)
324 return "";
325
326 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
327 return NULL;
328
329 hdr = elf_elfsections (abfd)[shindex];
330
331 if (hdr->contents == NULL)
332 {
333 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
334 {
335 /* PR 17512: file: f057ec89. */
336 /* xgettext:c-format */
337 _bfd_error_handler (_("%pB: attempt to load strings from"
338 " a non-string section (number %d)"),
339 abfd, shindex);
340 return NULL;
341 }
342
343 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
344 return NULL;
345 }
346 else
347 {
348 /* PR 24273: The string section's contents may have already
349 been loaded elsewhere, eg because a corrupt file has the
350 string section index in the ELF header pointing at a group
351 section. So be paranoid, and test that the last byte of
352 the section is zero. */
353 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
354 return NULL;
355 }
356
357 if (strindex >= hdr->sh_size)
358 {
359 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
360 _bfd_error_handler
361 /* xgettext:c-format */
362 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
363 abfd, strindex, (uint64_t) hdr->sh_size,
364 (shindex == shstrndx && strindex == hdr->sh_name
365 ? ".shstrtab"
366 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
367 return NULL;
368 }
369
370 return ((char *) hdr->contents) + strindex;
371 }
372
373 /* Read and convert symbols to internal format.
374 SYMCOUNT specifies the number of symbols to read, starting from
375 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
376 are non-NULL, they are used to store the internal symbols, external
377 symbols, and symbol section index extensions, respectively.
378 Returns a pointer to the internal symbol buffer (malloced if necessary)
379 or NULL if there were no symbols or some kind of problem. */
380
381 Elf_Internal_Sym *
382 bfd_elf_get_elf_syms (bfd *ibfd,
383 Elf_Internal_Shdr *symtab_hdr,
384 size_t symcount,
385 size_t symoffset,
386 Elf_Internal_Sym *intsym_buf,
387 void *extsym_buf,
388 Elf_External_Sym_Shndx *extshndx_buf)
389 {
390 Elf_Internal_Shdr *shndx_hdr;
391 void *alloc_ext;
392 const bfd_byte *esym;
393 Elf_External_Sym_Shndx *alloc_extshndx;
394 Elf_External_Sym_Shndx *shndx;
395 Elf_Internal_Sym *alloc_intsym;
396 Elf_Internal_Sym *isym;
397 Elf_Internal_Sym *isymend;
398 const struct elf_backend_data *bed;
399 size_t extsym_size;
400 size_t amt;
401 file_ptr pos;
402
403 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
404 abort ();
405
406 if (symcount == 0)
407 return intsym_buf;
408
409 /* Normal syms might have section extension entries. */
410 shndx_hdr = NULL;
411 if (elf_symtab_shndx_list (ibfd) != NULL)
412 {
413 elf_section_list * entry;
414 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
415
416 /* Find an index section that is linked to this symtab section. */
417 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
418 {
419 /* PR 20063. */
420 if (entry->hdr.sh_link >= elf_numsections (ibfd))
421 continue;
422
423 if (sections[entry->hdr.sh_link] == symtab_hdr)
424 {
425 shndx_hdr = & entry->hdr;
426 break;
427 };
428 }
429
430 if (shndx_hdr == NULL)
431 {
432 if (symtab_hdr == & elf_symtab_hdr (ibfd))
433 /* Not really accurate, but this was how the old code used to work. */
434 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
435 /* Otherwise we do nothing. The assumption is that
436 the index table will not be needed. */
437 }
438 }
439
440 /* Read the symbols. */
441 alloc_ext = NULL;
442 alloc_extshndx = NULL;
443 alloc_intsym = NULL;
444 bed = get_elf_backend_data (ibfd);
445 extsym_size = bed->s->sizeof_sym;
446 if (_bfd_mul_overflow (symcount, extsym_size, &amt))
447 {
448 bfd_set_error (bfd_error_file_too_big);
449 intsym_buf = NULL;
450 goto out;
451 }
452 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
453 if (extsym_buf == NULL)
454 {
455 alloc_ext = bfd_malloc (amt);
456 extsym_buf = alloc_ext;
457 }
458 if (extsym_buf == NULL
459 || bfd_seek (ibfd, pos, SEEK_SET) != 0
460 || bfd_bread (extsym_buf, amt, ibfd) != amt)
461 {
462 intsym_buf = NULL;
463 goto out;
464 }
465
466 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
467 extshndx_buf = NULL;
468 else
469 {
470 if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt))
471 {
472 bfd_set_error (bfd_error_file_too_big);
473 intsym_buf = NULL;
474 goto out;
475 }
476 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
477 if (extshndx_buf == NULL)
478 {
479 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
480 extshndx_buf = alloc_extshndx;
481 }
482 if (extshndx_buf == NULL
483 || bfd_seek (ibfd, pos, SEEK_SET) != 0
484 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
485 {
486 intsym_buf = NULL;
487 goto out;
488 }
489 }
490
491 if (intsym_buf == NULL)
492 {
493 if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt))
494 {
495 bfd_set_error (bfd_error_file_too_big);
496 goto out;
497 }
498 alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt);
499 intsym_buf = alloc_intsym;
500 if (intsym_buf == NULL)
501 goto out;
502 }
503
504 /* Convert the symbols to internal form. */
505 isymend = intsym_buf + symcount;
506 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
507 shndx = extshndx_buf;
508 isym < isymend;
509 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
510 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
511 {
512 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
513 /* xgettext:c-format */
514 _bfd_error_handler (_("%pB symbol number %lu references"
515 " nonexistent SHT_SYMTAB_SHNDX section"),
516 ibfd, (unsigned long) symoffset);
517 free (alloc_intsym);
518 intsym_buf = NULL;
519 goto out;
520 }
521
522 out:
523 free (alloc_ext);
524 free (alloc_extshndx);
525
526 return intsym_buf;
527 }
528
529 /* Look up a symbol name. */
530 const char *
531 bfd_elf_sym_name (bfd *abfd,
532 Elf_Internal_Shdr *symtab_hdr,
533 Elf_Internal_Sym *isym,
534 asection *sym_sec)
535 {
536 const char *name;
537 unsigned int iname = isym->st_name;
538 unsigned int shindex = symtab_hdr->sh_link;
539
540 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
541 /* Check for a bogus st_shndx to avoid crashing. */
542 && isym->st_shndx < elf_numsections (abfd))
543 {
544 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
545 shindex = elf_elfheader (abfd)->e_shstrndx;
546 }
547
548 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
549 if (name == NULL)
550 name = "(null)";
551 else if (sym_sec && *name == '\0')
552 name = bfd_section_name (sym_sec);
553
554 return name;
555 }
556
557 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
558 sections. The first element is the flags, the rest are section
559 pointers. */
560
561 typedef union elf_internal_group {
562 Elf_Internal_Shdr *shdr;
563 unsigned int flags;
564 } Elf_Internal_Group;
565
566 /* Return the name of the group signature symbol. Why isn't the
567 signature just a string? */
568
569 static const char *
570 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
571 {
572 Elf_Internal_Shdr *hdr;
573 unsigned char esym[sizeof (Elf64_External_Sym)];
574 Elf_External_Sym_Shndx eshndx;
575 Elf_Internal_Sym isym;
576
577 /* First we need to ensure the symbol table is available. Make sure
578 that it is a symbol table section. */
579 if (ghdr->sh_link >= elf_numsections (abfd))
580 return NULL;
581 hdr = elf_elfsections (abfd) [ghdr->sh_link];
582 if (hdr->sh_type != SHT_SYMTAB
583 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
584 return NULL;
585
586 /* Go read the symbol. */
587 hdr = &elf_tdata (abfd)->symtab_hdr;
588 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
589 &isym, esym, &eshndx) == NULL)
590 return NULL;
591
592 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
593 }
594
595 /* Set next_in_group list pointer, and group name for NEWSECT. */
596
597 static bfd_boolean
598 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
599 {
600 unsigned int num_group = elf_tdata (abfd)->num_group;
601
602 /* If num_group is zero, read in all SHT_GROUP sections. The count
603 is set to -1 if there are no SHT_GROUP sections. */
604 if (num_group == 0)
605 {
606 unsigned int i, shnum;
607
608 /* First count the number of groups. If we have a SHT_GROUP
609 section with just a flag word (ie. sh_size is 4), ignore it. */
610 shnum = elf_numsections (abfd);
611 num_group = 0;
612
613 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
614 ( (shdr)->sh_type == SHT_GROUP \
615 && (shdr)->sh_size >= minsize \
616 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
617 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
618
619 for (i = 0; i < shnum; i++)
620 {
621 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
622
623 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
624 num_group += 1;
625 }
626
627 if (num_group == 0)
628 {
629 num_group = (unsigned) -1;
630 elf_tdata (abfd)->num_group = num_group;
631 elf_tdata (abfd)->group_sect_ptr = NULL;
632 }
633 else
634 {
635 /* We keep a list of elf section headers for group sections,
636 so we can find them quickly. */
637 size_t amt;
638
639 elf_tdata (abfd)->num_group = num_group;
640 amt = num_group * sizeof (Elf_Internal_Shdr *);
641 elf_tdata (abfd)->group_sect_ptr
642 = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
643 if (elf_tdata (abfd)->group_sect_ptr == NULL)
644 return FALSE;
645 num_group = 0;
646
647 for (i = 0; i < shnum; i++)
648 {
649 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
650
651 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
652 {
653 unsigned char *src;
654 Elf_Internal_Group *dest;
655
656 /* Make sure the group section has a BFD section
657 attached to it. */
658 if (!bfd_section_from_shdr (abfd, i))
659 return FALSE;
660
661 /* Add to list of sections. */
662 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
663 num_group += 1;
664
665 /* Read the raw contents. */
666 BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0);
667 shdr->contents = NULL;
668 if (_bfd_mul_overflow (shdr->sh_size,
669 sizeof (*dest) / 4, &amt)
670 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
671 || !(shdr->contents
672 = _bfd_alloc_and_read (abfd, amt, shdr->sh_size)))
673 {
674 _bfd_error_handler
675 /* xgettext:c-format */
676 (_("%pB: invalid size field in group section"
677 " header: %#" PRIx64 ""),
678 abfd, (uint64_t) shdr->sh_size);
679 bfd_set_error (bfd_error_bad_value);
680 -- num_group;
681 continue;
682 }
683
684 /* Translate raw contents, a flag word followed by an
685 array of elf section indices all in target byte order,
686 to the flag word followed by an array of elf section
687 pointers. */
688 src = shdr->contents + shdr->sh_size;
689 dest = (Elf_Internal_Group *) (shdr->contents + amt);
690
691 while (1)
692 {
693 unsigned int idx;
694
695 src -= 4;
696 --dest;
697 idx = H_GET_32 (abfd, src);
698 if (src == shdr->contents)
699 {
700 dest->shdr = NULL;
701 dest->flags = idx;
702 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
703 shdr->bfd_section->flags
704 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
705 break;
706 }
707 if (idx < shnum)
708 {
709 dest->shdr = elf_elfsections (abfd)[idx];
710 /* PR binutils/23199: All sections in a
711 section group should be marked with
712 SHF_GROUP. But some tools generate
713 broken objects without SHF_GROUP. Fix
714 them up here. */
715 dest->shdr->sh_flags |= SHF_GROUP;
716 }
717 if (idx >= shnum
718 || dest->shdr->sh_type == SHT_GROUP)
719 {
720 _bfd_error_handler
721 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
722 abfd, i);
723 dest->shdr = NULL;
724 }
725 }
726 }
727 }
728
729 /* PR 17510: Corrupt binaries might contain invalid groups. */
730 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
731 {
732 elf_tdata (abfd)->num_group = num_group;
733
734 /* If all groups are invalid then fail. */
735 if (num_group == 0)
736 {
737 elf_tdata (abfd)->group_sect_ptr = NULL;
738 elf_tdata (abfd)->num_group = num_group = -1;
739 _bfd_error_handler
740 (_("%pB: no valid group sections found"), abfd);
741 bfd_set_error (bfd_error_bad_value);
742 }
743 }
744 }
745 }
746
747 if (num_group != (unsigned) -1)
748 {
749 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
750 unsigned int j;
751
752 for (j = 0; j < num_group; j++)
753 {
754 /* Begin search from previous found group. */
755 unsigned i = (j + search_offset) % num_group;
756
757 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
758 Elf_Internal_Group *idx;
759 bfd_size_type n_elt;
760
761 if (shdr == NULL)
762 continue;
763
764 idx = (Elf_Internal_Group *) shdr->contents;
765 if (idx == NULL || shdr->sh_size < 4)
766 {
767 /* See PR 21957 for a reproducer. */
768 /* xgettext:c-format */
769 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
770 abfd, shdr->bfd_section);
771 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
772 bfd_set_error (bfd_error_bad_value);
773 return FALSE;
774 }
775 n_elt = shdr->sh_size / 4;
776
777 /* Look through this group's sections to see if current
778 section is a member. */
779 while (--n_elt != 0)
780 if ((++idx)->shdr == hdr)
781 {
782 asection *s = NULL;
783
784 /* We are a member of this group. Go looking through
785 other members to see if any others are linked via
786 next_in_group. */
787 idx = (Elf_Internal_Group *) shdr->contents;
788 n_elt = shdr->sh_size / 4;
789 while (--n_elt != 0)
790 if ((++idx)->shdr != NULL
791 && (s = idx->shdr->bfd_section) != NULL
792 && elf_next_in_group (s) != NULL)
793 break;
794 if (n_elt != 0)
795 {
796 /* Snarf the group name from other member, and
797 insert current section in circular list. */
798 elf_group_name (newsect) = elf_group_name (s);
799 elf_next_in_group (newsect) = elf_next_in_group (s);
800 elf_next_in_group (s) = newsect;
801 }
802 else
803 {
804 const char *gname;
805
806 gname = group_signature (abfd, shdr);
807 if (gname == NULL)
808 return FALSE;
809 elf_group_name (newsect) = gname;
810
811 /* Start a circular list with one element. */
812 elf_next_in_group (newsect) = newsect;
813 }
814
815 /* If the group section has been created, point to the
816 new member. */
817 if (shdr->bfd_section != NULL)
818 elf_next_in_group (shdr->bfd_section) = newsect;
819
820 elf_tdata (abfd)->group_search_offset = i;
821 j = num_group - 1;
822 break;
823 }
824 }
825 }
826
827 if (elf_group_name (newsect) == NULL)
828 {
829 /* xgettext:c-format */
830 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
831 abfd, newsect);
832 return FALSE;
833 }
834 return TRUE;
835 }
836
837 bfd_boolean
838 _bfd_elf_setup_sections (bfd *abfd)
839 {
840 unsigned int i;
841 unsigned int num_group = elf_tdata (abfd)->num_group;
842 bfd_boolean result = TRUE;
843 asection *s;
844
845 /* Process SHF_LINK_ORDER. */
846 for (s = abfd->sections; s != NULL; s = s->next)
847 {
848 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
849 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
850 {
851 unsigned int elfsec = this_hdr->sh_link;
852 /* An sh_link value of 0 is now allowed. It indicates that linked
853 to section has already been discarded, but that the current
854 section has been retained for some other reason. This linking
855 section is still a candidate for later garbage collection
856 however. */
857 if (elfsec == 0)
858 {
859 elf_linked_to_section (s) = NULL;
860 }
861 else
862 {
863 asection *linksec = NULL;
864
865 if (elfsec < elf_numsections (abfd))
866 {
867 this_hdr = elf_elfsections (abfd)[elfsec];
868 linksec = this_hdr->bfd_section;
869 }
870
871 /* PR 1991, 2008:
872 Some strip/objcopy may leave an incorrect value in
873 sh_link. We don't want to proceed. */
874 if (linksec == NULL)
875 {
876 _bfd_error_handler
877 /* xgettext:c-format */
878 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
879 s->owner, elfsec, s);
880 result = FALSE;
881 }
882
883 elf_linked_to_section (s) = linksec;
884 }
885 }
886 else if (this_hdr->sh_type == SHT_GROUP
887 && elf_next_in_group (s) == NULL)
888 {
889 _bfd_error_handler
890 /* xgettext:c-format */
891 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
892 abfd, elf_section_data (s)->this_idx);
893 result = FALSE;
894 }
895 }
896
897 /* Process section groups. */
898 if (num_group == (unsigned) -1)
899 return result;
900
901 for (i = 0; i < num_group; i++)
902 {
903 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
904 Elf_Internal_Group *idx;
905 unsigned int n_elt;
906
907 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
908 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
909 {
910 _bfd_error_handler
911 /* xgettext:c-format */
912 (_("%pB: section group entry number %u is corrupt"),
913 abfd, i);
914 result = FALSE;
915 continue;
916 }
917
918 idx = (Elf_Internal_Group *) shdr->contents;
919 n_elt = shdr->sh_size / 4;
920
921 while (--n_elt != 0)
922 {
923 ++ idx;
924
925 if (idx->shdr == NULL)
926 continue;
927 else if (idx->shdr->bfd_section)
928 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
929 else if (idx->shdr->sh_type != SHT_RELA
930 && idx->shdr->sh_type != SHT_REL)
931 {
932 /* There are some unknown sections in the group. */
933 _bfd_error_handler
934 /* xgettext:c-format */
935 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
936 abfd,
937 idx->shdr->sh_type,
938 bfd_elf_string_from_elf_section (abfd,
939 (elf_elfheader (abfd)
940 ->e_shstrndx),
941 idx->shdr->sh_name),
942 shdr->bfd_section);
943 result = FALSE;
944 }
945 }
946 }
947
948 return result;
949 }
950
951 bfd_boolean
952 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
953 {
954 return elf_next_in_group (sec) != NULL;
955 }
956
957 const char *
958 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
959 {
960 if (elf_sec_group (sec) != NULL)
961 return elf_group_name (sec);
962 return NULL;
963 }
964
965 static char *
966 convert_debug_to_zdebug (bfd *abfd, const char *name)
967 {
968 unsigned int len = strlen (name);
969 char *new_name = bfd_alloc (abfd, len + 2);
970 if (new_name == NULL)
971 return NULL;
972 new_name[0] = '.';
973 new_name[1] = 'z';
974 memcpy (new_name + 2, name + 1, len);
975 return new_name;
976 }
977
978 static char *
979 convert_zdebug_to_debug (bfd *abfd, const char *name)
980 {
981 unsigned int len = strlen (name);
982 char *new_name = bfd_alloc (abfd, len);
983 if (new_name == NULL)
984 return NULL;
985 new_name[0] = '.';
986 memcpy (new_name + 1, name + 2, len - 1);
987 return new_name;
988 }
989
990 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
991
992 struct lto_section
993 {
994 int16_t major_version;
995 int16_t minor_version;
996 unsigned char slim_object;
997
998 /* Flags is a private field that is not defined publicly. */
999 uint16_t flags;
1000 };
1001
1002 /* Make a BFD section from an ELF section. We store a pointer to the
1003 BFD section in the bfd_section field of the header. */
1004
1005 bfd_boolean
1006 _bfd_elf_make_section_from_shdr (bfd *abfd,
1007 Elf_Internal_Shdr *hdr,
1008 const char *name,
1009 int shindex)
1010 {
1011 asection *newsect;
1012 flagword flags;
1013 const struct elf_backend_data *bed;
1014 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
1015
1016 if (hdr->bfd_section != NULL)
1017 return TRUE;
1018
1019 newsect = bfd_make_section_anyway (abfd, name);
1020 if (newsect == NULL)
1021 return FALSE;
1022
1023 hdr->bfd_section = newsect;
1024 elf_section_data (newsect)->this_hdr = *hdr;
1025 elf_section_data (newsect)->this_idx = shindex;
1026
1027 /* Always use the real type/flags. */
1028 elf_section_type (newsect) = hdr->sh_type;
1029 elf_section_flags (newsect) = hdr->sh_flags;
1030
1031 newsect->filepos = hdr->sh_offset;
1032
1033 flags = SEC_NO_FLAGS;
1034 if (hdr->sh_type != SHT_NOBITS)
1035 flags |= SEC_HAS_CONTENTS;
1036 if (hdr->sh_type == SHT_GROUP)
1037 flags |= SEC_GROUP;
1038 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1039 {
1040 flags |= SEC_ALLOC;
1041 if (hdr->sh_type != SHT_NOBITS)
1042 flags |= SEC_LOAD;
1043 }
1044 if ((hdr->sh_flags & SHF_WRITE) == 0)
1045 flags |= SEC_READONLY;
1046 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1047 flags |= SEC_CODE;
1048 else if ((flags & SEC_LOAD) != 0)
1049 flags |= SEC_DATA;
1050 if ((hdr->sh_flags & SHF_MERGE) != 0)
1051 {
1052 flags |= SEC_MERGE;
1053 newsect->entsize = hdr->sh_entsize;
1054 }
1055 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1056 flags |= SEC_STRINGS;
1057 if (hdr->sh_flags & SHF_GROUP)
1058 if (!setup_group (abfd, hdr, newsect))
1059 return FALSE;
1060 if ((hdr->sh_flags & SHF_TLS) != 0)
1061 flags |= SEC_THREAD_LOCAL;
1062 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1063 flags |= SEC_EXCLUDE;
1064
1065 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1066 {
1067 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1068 but binutils as of 2019-07-23 did not set the EI_OSABI header
1069 byte. */
1070 case ELFOSABI_GNU:
1071 case ELFOSABI_FREEBSD:
1072 if ((hdr->sh_flags & SHF_GNU_RETAIN) != 0)
1073 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_retain;
1074 /* Fall through */
1075 case ELFOSABI_NONE:
1076 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1077 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1078 break;
1079 }
1080
1081 if ((flags & SEC_ALLOC) == 0)
1082 {
1083 /* The debugging sections appear to be recognized only by name,
1084 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1085 if (name [0] == '.')
1086 {
1087 if (strncmp (name, ".debug", 6) == 0
1088 || strncmp (name, ".gnu.linkonce.wi.", 17) == 0
1089 || strncmp (name, ".zdebug", 7) == 0)
1090 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1091 else if (strncmp (name, GNU_BUILD_ATTRS_SECTION_NAME, 21) == 0
1092 || strncmp (name, ".note.gnu", 9) == 0)
1093 {
1094 flags |= SEC_ELF_OCTETS;
1095 opb = 1;
1096 }
1097 else if (strncmp (name, ".line", 5) == 0
1098 || strncmp (name, ".stab", 5) == 0
1099 || strcmp (name, ".gdb_index") == 0)
1100 flags |= SEC_DEBUGGING;
1101 }
1102 }
1103
1104 if (!bfd_set_section_vma (newsect, hdr->sh_addr / opb)
1105 || !bfd_set_section_size (newsect, hdr->sh_size)
1106 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1107 return FALSE;
1108
1109 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1110 only link a single copy of the section. This is used to support
1111 g++. g++ will emit each template expansion in its own section.
1112 The symbols will be defined as weak, so that multiple definitions
1113 are permitted. The GNU linker extension is to actually discard
1114 all but one of the sections. */
1115 if (CONST_STRNEQ (name, ".gnu.linkonce")
1116 && elf_next_in_group (newsect) == NULL)
1117 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1118
1119 if (!bfd_set_section_flags (newsect, flags))
1120 return FALSE;
1121
1122 bed = get_elf_backend_data (abfd);
1123 if (bed->elf_backend_section_flags)
1124 if (!bed->elf_backend_section_flags (hdr))
1125 return FALSE;
1126
1127 /* We do not parse the PT_NOTE segments as we are interested even in the
1128 separate debug info files which may have the segments offsets corrupted.
1129 PT_NOTEs from the core files are currently not parsed using BFD. */
1130 if (hdr->sh_type == SHT_NOTE)
1131 {
1132 bfd_byte *contents;
1133
1134 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1135 return FALSE;
1136
1137 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1138 hdr->sh_offset, hdr->sh_addralign);
1139 free (contents);
1140 }
1141
1142 if ((newsect->flags & SEC_ALLOC) != 0)
1143 {
1144 Elf_Internal_Phdr *phdr;
1145 unsigned int i, nload;
1146
1147 /* Some ELF linkers produce binaries with all the program header
1148 p_paddr fields zero. If we have such a binary with more than
1149 one PT_LOAD header, then leave the section lma equal to vma
1150 so that we don't create sections with overlapping lma. */
1151 phdr = elf_tdata (abfd)->phdr;
1152 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1153 if (phdr->p_paddr != 0)
1154 break;
1155 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1156 ++nload;
1157 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1158 return TRUE;
1159
1160 phdr = elf_tdata (abfd)->phdr;
1161 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1162 {
1163 if (((phdr->p_type == PT_LOAD
1164 && (hdr->sh_flags & SHF_TLS) == 0)
1165 || phdr->p_type == PT_TLS)
1166 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1167 {
1168 if ((newsect->flags & SEC_LOAD) == 0)
1169 newsect->lma = (phdr->p_paddr
1170 + hdr->sh_addr - phdr->p_vaddr) / opb;
1171 else
1172 /* We used to use the same adjustment for SEC_LOAD
1173 sections, but that doesn't work if the segment
1174 is packed with code from multiple VMAs.
1175 Instead we calculate the section LMA based on
1176 the segment LMA. It is assumed that the
1177 segment will contain sections with contiguous
1178 LMAs, even if the VMAs are not. */
1179 newsect->lma = (phdr->p_paddr
1180 + hdr->sh_offset - phdr->p_offset) / opb;
1181
1182 /* With contiguous segments, we can't tell from file
1183 offsets whether a section with zero size should
1184 be placed at the end of one segment or the
1185 beginning of the next. Decide based on vaddr. */
1186 if (hdr->sh_addr >= phdr->p_vaddr
1187 && (hdr->sh_addr + hdr->sh_size
1188 <= phdr->p_vaddr + phdr->p_memsz))
1189 break;
1190 }
1191 }
1192 }
1193
1194 /* Compress/decompress DWARF debug sections with names: .debug_* and
1195 .zdebug_*, after the section flags is set. */
1196 if ((newsect->flags & SEC_DEBUGGING)
1197 && ((name[1] == 'd' && name[6] == '_')
1198 || (name[1] == 'z' && name[7] == '_')))
1199 {
1200 enum { nothing, compress, decompress } action = nothing;
1201 int compression_header_size;
1202 bfd_size_type uncompressed_size;
1203 unsigned int uncompressed_align_power;
1204 bfd_boolean compressed
1205 = bfd_is_section_compressed_with_header (abfd, newsect,
1206 &compression_header_size,
1207 &uncompressed_size,
1208 &uncompressed_align_power);
1209 if (compressed)
1210 {
1211 /* Compressed section. Check if we should decompress. */
1212 if ((abfd->flags & BFD_DECOMPRESS))
1213 action = decompress;
1214 }
1215
1216 /* Compress the uncompressed section or convert from/to .zdebug*
1217 section. Check if we should compress. */
1218 if (action == nothing)
1219 {
1220 if (newsect->size != 0
1221 && (abfd->flags & BFD_COMPRESS)
1222 && compression_header_size >= 0
1223 && uncompressed_size > 0
1224 && (!compressed
1225 || ((compression_header_size > 0)
1226 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1227 action = compress;
1228 else
1229 return TRUE;
1230 }
1231
1232 if (action == compress)
1233 {
1234 if (!bfd_init_section_compress_status (abfd, newsect))
1235 {
1236 _bfd_error_handler
1237 /* xgettext:c-format */
1238 (_("%pB: unable to initialize compress status for section %s"),
1239 abfd, name);
1240 return FALSE;
1241 }
1242 }
1243 else
1244 {
1245 if (!bfd_init_section_decompress_status (abfd, newsect))
1246 {
1247 _bfd_error_handler
1248 /* xgettext:c-format */
1249 (_("%pB: unable to initialize decompress status for section %s"),
1250 abfd, name);
1251 return FALSE;
1252 }
1253 }
1254
1255 if (abfd->is_linker_input)
1256 {
1257 if (name[1] == 'z'
1258 && (action == decompress
1259 || (action == compress
1260 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1261 {
1262 /* Convert section name from .zdebug_* to .debug_* so
1263 that linker will consider this section as a debug
1264 section. */
1265 char *new_name = convert_zdebug_to_debug (abfd, name);
1266 if (new_name == NULL)
1267 return FALSE;
1268 bfd_rename_section (newsect, new_name);
1269 }
1270 }
1271 else
1272 /* For objdump, don't rename the section. For objcopy, delay
1273 section rename to elf_fake_sections. */
1274 newsect->flags |= SEC_ELF_RENAME;
1275 }
1276
1277 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1278 section. */
1279 const char *lto_section_name = ".gnu.lto_.lto.";
1280 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1281 {
1282 struct lto_section lsection;
1283 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1284 sizeof (struct lto_section)))
1285 abfd->lto_slim_object = lsection.slim_object;
1286 }
1287
1288 return TRUE;
1289 }
1290
1291 const char *const bfd_elf_section_type_names[] =
1292 {
1293 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1294 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1295 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1296 };
1297
1298 /* ELF relocs are against symbols. If we are producing relocatable
1299 output, and the reloc is against an external symbol, and nothing
1300 has given us any additional addend, the resulting reloc will also
1301 be against the same symbol. In such a case, we don't want to
1302 change anything about the way the reloc is handled, since it will
1303 all be done at final link time. Rather than put special case code
1304 into bfd_perform_relocation, all the reloc types use this howto
1305 function. It just short circuits the reloc if producing
1306 relocatable output against an external symbol. */
1307
1308 bfd_reloc_status_type
1309 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1310 arelent *reloc_entry,
1311 asymbol *symbol,
1312 void *data ATTRIBUTE_UNUSED,
1313 asection *input_section,
1314 bfd *output_bfd,
1315 char **error_message ATTRIBUTE_UNUSED)
1316 {
1317 if (output_bfd != NULL
1318 && (symbol->flags & BSF_SECTION_SYM) == 0
1319 && (! reloc_entry->howto->partial_inplace
1320 || reloc_entry->addend == 0))
1321 {
1322 reloc_entry->address += input_section->output_offset;
1323 return bfd_reloc_ok;
1324 }
1325
1326 return bfd_reloc_continue;
1327 }
1328 \f
1329 /* Returns TRUE if section A matches section B.
1330 Names, addresses and links may be different, but everything else
1331 should be the same. */
1332
1333 static bfd_boolean
1334 section_match (const Elf_Internal_Shdr * a,
1335 const Elf_Internal_Shdr * b)
1336 {
1337 if (a->sh_type != b->sh_type
1338 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1339 || a->sh_addralign != b->sh_addralign
1340 || a->sh_entsize != b->sh_entsize)
1341 return FALSE;
1342 if (a->sh_type == SHT_SYMTAB
1343 || a->sh_type == SHT_STRTAB)
1344 return TRUE;
1345 return a->sh_size == b->sh_size;
1346 }
1347
1348 /* Find a section in OBFD that has the same characteristics
1349 as IHEADER. Return the index of this section or SHN_UNDEF if
1350 none can be found. Check's section HINT first, as this is likely
1351 to be the correct section. */
1352
1353 static unsigned int
1354 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1355 const unsigned int hint)
1356 {
1357 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1358 unsigned int i;
1359
1360 BFD_ASSERT (iheader != NULL);
1361
1362 /* See PR 20922 for a reproducer of the NULL test. */
1363 if (hint < elf_numsections (obfd)
1364 && oheaders[hint] != NULL
1365 && section_match (oheaders[hint], iheader))
1366 return hint;
1367
1368 for (i = 1; i < elf_numsections (obfd); i++)
1369 {
1370 Elf_Internal_Shdr * oheader = oheaders[i];
1371
1372 if (oheader == NULL)
1373 continue;
1374 if (section_match (oheader, iheader))
1375 /* FIXME: Do we care if there is a potential for
1376 multiple matches ? */
1377 return i;
1378 }
1379
1380 return SHN_UNDEF;
1381 }
1382
1383 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1384 Processor specific section, based upon a matching input section.
1385 Returns TRUE upon success, FALSE otherwise. */
1386
1387 static bfd_boolean
1388 copy_special_section_fields (const bfd *ibfd,
1389 bfd *obfd,
1390 const Elf_Internal_Shdr *iheader,
1391 Elf_Internal_Shdr *oheader,
1392 const unsigned int secnum)
1393 {
1394 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1395 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1396 bfd_boolean changed = FALSE;
1397 unsigned int sh_link;
1398
1399 if (oheader->sh_type == SHT_NOBITS)
1400 {
1401 /* This is a feature for objcopy --only-keep-debug:
1402 When a section's type is changed to NOBITS, we preserve
1403 the sh_link and sh_info fields so that they can be
1404 matched up with the original.
1405
1406 Note: Strictly speaking these assignments are wrong.
1407 The sh_link and sh_info fields should point to the
1408 relevent sections in the output BFD, which may not be in
1409 the same location as they were in the input BFD. But
1410 the whole point of this action is to preserve the
1411 original values of the sh_link and sh_info fields, so
1412 that they can be matched up with the section headers in
1413 the original file. So strictly speaking we may be
1414 creating an invalid ELF file, but it is only for a file
1415 that just contains debug info and only for sections
1416 without any contents. */
1417 if (oheader->sh_link == 0)
1418 oheader->sh_link = iheader->sh_link;
1419 if (oheader->sh_info == 0)
1420 oheader->sh_info = iheader->sh_info;
1421 return TRUE;
1422 }
1423
1424 /* Allow the target a chance to decide how these fields should be set. */
1425 if (bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1426 iheader, oheader))
1427 return TRUE;
1428
1429 /* We have an iheader which might match oheader, and which has non-zero
1430 sh_info and/or sh_link fields. Attempt to follow those links and find
1431 the section in the output bfd which corresponds to the linked section
1432 in the input bfd. */
1433 if (iheader->sh_link != SHN_UNDEF)
1434 {
1435 /* See PR 20931 for a reproducer. */
1436 if (iheader->sh_link >= elf_numsections (ibfd))
1437 {
1438 _bfd_error_handler
1439 /* xgettext:c-format */
1440 (_("%pB: invalid sh_link field (%d) in section number %d"),
1441 ibfd, iheader->sh_link, secnum);
1442 return FALSE;
1443 }
1444
1445 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1446 if (sh_link != SHN_UNDEF)
1447 {
1448 oheader->sh_link = sh_link;
1449 changed = TRUE;
1450 }
1451 else
1452 /* FIXME: Should we install iheader->sh_link
1453 if we could not find a match ? */
1454 _bfd_error_handler
1455 /* xgettext:c-format */
1456 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1457 }
1458
1459 if (iheader->sh_info)
1460 {
1461 /* The sh_info field can hold arbitrary information, but if the
1462 SHF_LINK_INFO flag is set then it should be interpreted as a
1463 section index. */
1464 if (iheader->sh_flags & SHF_INFO_LINK)
1465 {
1466 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1467 iheader->sh_info);
1468 if (sh_link != SHN_UNDEF)
1469 oheader->sh_flags |= SHF_INFO_LINK;
1470 }
1471 else
1472 /* No idea what it means - just copy it. */
1473 sh_link = iheader->sh_info;
1474
1475 if (sh_link != SHN_UNDEF)
1476 {
1477 oheader->sh_info = sh_link;
1478 changed = TRUE;
1479 }
1480 else
1481 _bfd_error_handler
1482 /* xgettext:c-format */
1483 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1484 }
1485
1486 return changed;
1487 }
1488
1489 /* Copy the program header and other data from one object module to
1490 another. */
1491
1492 bfd_boolean
1493 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1494 {
1495 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1496 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1497 const struct elf_backend_data *bed;
1498 unsigned int i;
1499
1500 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1501 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1502 return TRUE;
1503
1504 if (!elf_flags_init (obfd))
1505 {
1506 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1507 elf_flags_init (obfd) = TRUE;
1508 }
1509
1510 elf_gp (obfd) = elf_gp (ibfd);
1511
1512 /* Also copy the EI_OSABI field. */
1513 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1514 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1515
1516 /* If set, copy the EI_ABIVERSION field. */
1517 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1518 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1519 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1520
1521 /* Copy object attributes. */
1522 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1523
1524 if (iheaders == NULL || oheaders == NULL)
1525 return TRUE;
1526
1527 bed = get_elf_backend_data (obfd);
1528
1529 /* Possibly copy other fields in the section header. */
1530 for (i = 1; i < elf_numsections (obfd); i++)
1531 {
1532 unsigned int j;
1533 Elf_Internal_Shdr * oheader = oheaders[i];
1534
1535 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1536 because of a special case need for generating separate debug info
1537 files. See below for more details. */
1538 if (oheader == NULL
1539 || (oheader->sh_type != SHT_NOBITS
1540 && oheader->sh_type < SHT_LOOS))
1541 continue;
1542
1543 /* Ignore empty sections, and sections whose
1544 fields have already been initialised. */
1545 if (oheader->sh_size == 0
1546 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1547 continue;
1548
1549 /* Scan for the matching section in the input bfd.
1550 First we try for a direct mapping between the input and output sections. */
1551 for (j = 1; j < elf_numsections (ibfd); j++)
1552 {
1553 const Elf_Internal_Shdr * iheader = iheaders[j];
1554
1555 if (iheader == NULL)
1556 continue;
1557
1558 if (oheader->bfd_section != NULL
1559 && iheader->bfd_section != NULL
1560 && iheader->bfd_section->output_section != NULL
1561 && iheader->bfd_section->output_section == oheader->bfd_section)
1562 {
1563 /* We have found a connection from the input section to the
1564 output section. Attempt to copy the header fields. If
1565 this fails then do not try any further sections - there
1566 should only be a one-to-one mapping between input and output. */
1567 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1568 j = elf_numsections (ibfd);
1569 break;
1570 }
1571 }
1572
1573 if (j < elf_numsections (ibfd))
1574 continue;
1575
1576 /* That failed. So try to deduce the corresponding input section.
1577 Unfortunately we cannot compare names as the output string table
1578 is empty, so instead we check size, address and type. */
1579 for (j = 1; j < elf_numsections (ibfd); j++)
1580 {
1581 const Elf_Internal_Shdr * iheader = iheaders[j];
1582
1583 if (iheader == NULL)
1584 continue;
1585
1586 /* Try matching fields in the input section's header.
1587 Since --only-keep-debug turns all non-debug sections into
1588 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1589 input type. */
1590 if ((oheader->sh_type == SHT_NOBITS
1591 || iheader->sh_type == oheader->sh_type)
1592 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1593 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1594 && iheader->sh_addralign == oheader->sh_addralign
1595 && iheader->sh_entsize == oheader->sh_entsize
1596 && iheader->sh_size == oheader->sh_size
1597 && iheader->sh_addr == oheader->sh_addr
1598 && (iheader->sh_info != oheader->sh_info
1599 || iheader->sh_link != oheader->sh_link))
1600 {
1601 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1602 break;
1603 }
1604 }
1605
1606 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1607 {
1608 /* Final attempt. Call the backend copy function
1609 with a NULL input section. */
1610 (void) bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1611 NULL, oheader);
1612 }
1613 }
1614
1615 return TRUE;
1616 }
1617
1618 static const char *
1619 get_segment_type (unsigned int p_type)
1620 {
1621 const char *pt;
1622 switch (p_type)
1623 {
1624 case PT_NULL: pt = "NULL"; break;
1625 case PT_LOAD: pt = "LOAD"; break;
1626 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1627 case PT_INTERP: pt = "INTERP"; break;
1628 case PT_NOTE: pt = "NOTE"; break;
1629 case PT_SHLIB: pt = "SHLIB"; break;
1630 case PT_PHDR: pt = "PHDR"; break;
1631 case PT_TLS: pt = "TLS"; break;
1632 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1633 case PT_GNU_STACK: pt = "STACK"; break;
1634 case PT_GNU_RELRO: pt = "RELRO"; break;
1635 default: pt = NULL; break;
1636 }
1637 return pt;
1638 }
1639
1640 /* Print out the program headers. */
1641
1642 bfd_boolean
1643 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1644 {
1645 FILE *f = (FILE *) farg;
1646 Elf_Internal_Phdr *p;
1647 asection *s;
1648 bfd_byte *dynbuf = NULL;
1649
1650 p = elf_tdata (abfd)->phdr;
1651 if (p != NULL)
1652 {
1653 unsigned int i, c;
1654
1655 fprintf (f, _("\nProgram Header:\n"));
1656 c = elf_elfheader (abfd)->e_phnum;
1657 for (i = 0; i < c; i++, p++)
1658 {
1659 const char *pt = get_segment_type (p->p_type);
1660 char buf[20];
1661
1662 if (pt == NULL)
1663 {
1664 sprintf (buf, "0x%lx", p->p_type);
1665 pt = buf;
1666 }
1667 fprintf (f, "%8s off 0x", pt);
1668 bfd_fprintf_vma (abfd, f, p->p_offset);
1669 fprintf (f, " vaddr 0x");
1670 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1671 fprintf (f, " paddr 0x");
1672 bfd_fprintf_vma (abfd, f, p->p_paddr);
1673 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1674 fprintf (f, " filesz 0x");
1675 bfd_fprintf_vma (abfd, f, p->p_filesz);
1676 fprintf (f, " memsz 0x");
1677 bfd_fprintf_vma (abfd, f, p->p_memsz);
1678 fprintf (f, " flags %c%c%c",
1679 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1680 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1681 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1682 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1683 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1684 fprintf (f, "\n");
1685 }
1686 }
1687
1688 s = bfd_get_section_by_name (abfd, ".dynamic");
1689 if (s != NULL)
1690 {
1691 unsigned int elfsec;
1692 unsigned long shlink;
1693 bfd_byte *extdyn, *extdynend;
1694 size_t extdynsize;
1695 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1696
1697 fprintf (f, _("\nDynamic Section:\n"));
1698
1699 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1700 goto error_return;
1701
1702 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1703 if (elfsec == SHN_BAD)
1704 goto error_return;
1705 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1706
1707 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1708 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1709
1710 extdyn = dynbuf;
1711 /* PR 17512: file: 6f427532. */
1712 if (s->size < extdynsize)
1713 goto error_return;
1714 extdynend = extdyn + s->size;
1715 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1716 Fix range check. */
1717 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1718 {
1719 Elf_Internal_Dyn dyn;
1720 const char *name = "";
1721 char ab[20];
1722 bfd_boolean stringp;
1723 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1724
1725 (*swap_dyn_in) (abfd, extdyn, &dyn);
1726
1727 if (dyn.d_tag == DT_NULL)
1728 break;
1729
1730 stringp = FALSE;
1731 switch (dyn.d_tag)
1732 {
1733 default:
1734 if (bed->elf_backend_get_target_dtag)
1735 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1736
1737 if (!strcmp (name, ""))
1738 {
1739 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1740 name = ab;
1741 }
1742 break;
1743
1744 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1745 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1746 case DT_PLTGOT: name = "PLTGOT"; break;
1747 case DT_HASH: name = "HASH"; break;
1748 case DT_STRTAB: name = "STRTAB"; break;
1749 case DT_SYMTAB: name = "SYMTAB"; break;
1750 case DT_RELA: name = "RELA"; break;
1751 case DT_RELASZ: name = "RELASZ"; break;
1752 case DT_RELAENT: name = "RELAENT"; break;
1753 case DT_STRSZ: name = "STRSZ"; break;
1754 case DT_SYMENT: name = "SYMENT"; break;
1755 case DT_INIT: name = "INIT"; break;
1756 case DT_FINI: name = "FINI"; break;
1757 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1758 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1759 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1760 case DT_REL: name = "REL"; break;
1761 case DT_RELSZ: name = "RELSZ"; break;
1762 case DT_RELENT: name = "RELENT"; break;
1763 case DT_PLTREL: name = "PLTREL"; break;
1764 case DT_DEBUG: name = "DEBUG"; break;
1765 case DT_TEXTREL: name = "TEXTREL"; break;
1766 case DT_JMPREL: name = "JMPREL"; break;
1767 case DT_BIND_NOW: name = "BIND_NOW"; break;
1768 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1769 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1770 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1771 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1772 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1773 case DT_FLAGS: name = "FLAGS"; break;
1774 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1775 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1776 case DT_CHECKSUM: name = "CHECKSUM"; break;
1777 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1778 case DT_MOVEENT: name = "MOVEENT"; break;
1779 case DT_MOVESZ: name = "MOVESZ"; break;
1780 case DT_FEATURE: name = "FEATURE"; break;
1781 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1782 case DT_SYMINSZ: name = "SYMINSZ"; break;
1783 case DT_SYMINENT: name = "SYMINENT"; break;
1784 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1785 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1786 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1787 case DT_PLTPAD: name = "PLTPAD"; break;
1788 case DT_MOVETAB: name = "MOVETAB"; break;
1789 case DT_SYMINFO: name = "SYMINFO"; break;
1790 case DT_RELACOUNT: name = "RELACOUNT"; break;
1791 case DT_RELCOUNT: name = "RELCOUNT"; break;
1792 case DT_FLAGS_1: name = "FLAGS_1"; break;
1793 case DT_VERSYM: name = "VERSYM"; break;
1794 case DT_VERDEF: name = "VERDEF"; break;
1795 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1796 case DT_VERNEED: name = "VERNEED"; break;
1797 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1798 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1799 case DT_USED: name = "USED"; break;
1800 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1801 case DT_GNU_HASH: name = "GNU_HASH"; break;
1802 }
1803
1804 fprintf (f, " %-20s ", name);
1805 if (! stringp)
1806 {
1807 fprintf (f, "0x");
1808 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1809 }
1810 else
1811 {
1812 const char *string;
1813 unsigned int tagv = dyn.d_un.d_val;
1814
1815 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1816 if (string == NULL)
1817 goto error_return;
1818 fprintf (f, "%s", string);
1819 }
1820 fprintf (f, "\n");
1821 }
1822
1823 free (dynbuf);
1824 dynbuf = NULL;
1825 }
1826
1827 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1828 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1829 {
1830 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1831 return FALSE;
1832 }
1833
1834 if (elf_dynverdef (abfd) != 0)
1835 {
1836 Elf_Internal_Verdef *t;
1837
1838 fprintf (f, _("\nVersion definitions:\n"));
1839 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1840 {
1841 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1842 t->vd_flags, t->vd_hash,
1843 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1844 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1845 {
1846 Elf_Internal_Verdaux *a;
1847
1848 fprintf (f, "\t");
1849 for (a = t->vd_auxptr->vda_nextptr;
1850 a != NULL;
1851 a = a->vda_nextptr)
1852 fprintf (f, "%s ",
1853 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1854 fprintf (f, "\n");
1855 }
1856 }
1857 }
1858
1859 if (elf_dynverref (abfd) != 0)
1860 {
1861 Elf_Internal_Verneed *t;
1862
1863 fprintf (f, _("\nVersion References:\n"));
1864 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1865 {
1866 Elf_Internal_Vernaux *a;
1867
1868 fprintf (f, _(" required from %s:\n"),
1869 t->vn_filename ? t->vn_filename : "<corrupt>");
1870 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1871 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1872 a->vna_flags, a->vna_other,
1873 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1874 }
1875 }
1876
1877 return TRUE;
1878
1879 error_return:
1880 free (dynbuf);
1881 return FALSE;
1882 }
1883
1884 /* Get version name. If BASE_P is TRUE, return "Base" for VER_FLG_BASE
1885 and return symbol version for symbol version itself. */
1886
1887 const char *
1888 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1889 bfd_boolean base_p,
1890 bfd_boolean *hidden)
1891 {
1892 const char *version_string = NULL;
1893 if (elf_dynversym (abfd) != 0
1894 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1895 {
1896 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1897
1898 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1899 vernum &= VERSYM_VERSION;
1900
1901 if (vernum == 0)
1902 version_string = "";
1903 else if (vernum == 1
1904 && (vernum > elf_tdata (abfd)->cverdefs
1905 || (elf_tdata (abfd)->verdef[0].vd_flags
1906 == VER_FLG_BASE)))
1907 version_string = base_p ? "Base" : "";
1908 else if (vernum <= elf_tdata (abfd)->cverdefs)
1909 {
1910 const char *nodename
1911 = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1912 version_string = "";
1913 if (base_p
1914 || nodename == NULL
1915 || symbol->name == NULL
1916 || strcmp (symbol->name, nodename) != 0)
1917 version_string = nodename;
1918 }
1919 else
1920 {
1921 Elf_Internal_Verneed *t;
1922
1923 version_string = _("<corrupt>");
1924 for (t = elf_tdata (abfd)->verref;
1925 t != NULL;
1926 t = t->vn_nextref)
1927 {
1928 Elf_Internal_Vernaux *a;
1929
1930 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1931 {
1932 if (a->vna_other == vernum)
1933 {
1934 version_string = a->vna_nodename;
1935 break;
1936 }
1937 }
1938 }
1939 }
1940 }
1941 return version_string;
1942 }
1943
1944 /* Display ELF-specific fields of a symbol. */
1945
1946 void
1947 bfd_elf_print_symbol (bfd *abfd,
1948 void *filep,
1949 asymbol *symbol,
1950 bfd_print_symbol_type how)
1951 {
1952 FILE *file = (FILE *) filep;
1953 switch (how)
1954 {
1955 case bfd_print_symbol_name:
1956 fprintf (file, "%s", symbol->name);
1957 break;
1958 case bfd_print_symbol_more:
1959 fprintf (file, "elf ");
1960 bfd_fprintf_vma (abfd, file, symbol->value);
1961 fprintf (file, " %x", symbol->flags);
1962 break;
1963 case bfd_print_symbol_all:
1964 {
1965 const char *section_name;
1966 const char *name = NULL;
1967 const struct elf_backend_data *bed;
1968 unsigned char st_other;
1969 bfd_vma val;
1970 const char *version_string;
1971 bfd_boolean hidden;
1972
1973 section_name = symbol->section ? symbol->section->name : "(*none*)";
1974
1975 bed = get_elf_backend_data (abfd);
1976 if (bed->elf_backend_print_symbol_all)
1977 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1978
1979 if (name == NULL)
1980 {
1981 name = symbol->name;
1982 bfd_print_symbol_vandf (abfd, file, symbol);
1983 }
1984
1985 fprintf (file, " %s\t", section_name);
1986 /* Print the "other" value for a symbol. For common symbols,
1987 we've already printed the size; now print the alignment.
1988 For other symbols, we have no specified alignment, and
1989 we've printed the address; now print the size. */
1990 if (symbol->section && bfd_is_com_section (symbol->section))
1991 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1992 else
1993 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1994 bfd_fprintf_vma (abfd, file, val);
1995
1996 /* If we have version information, print it. */
1997 version_string = _bfd_elf_get_symbol_version_string (abfd,
1998 symbol,
1999 TRUE,
2000 &hidden);
2001 if (version_string)
2002 {
2003 if (!hidden)
2004 fprintf (file, " %-11s", version_string);
2005 else
2006 {
2007 int i;
2008
2009 fprintf (file, " (%s)", version_string);
2010 for (i = 10 - strlen (version_string); i > 0; --i)
2011 putc (' ', file);
2012 }
2013 }
2014
2015 /* If the st_other field is not zero, print it. */
2016 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2017
2018 switch (st_other)
2019 {
2020 case 0: break;
2021 case STV_INTERNAL: fprintf (file, " .internal"); break;
2022 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2023 case STV_PROTECTED: fprintf (file, " .protected"); break;
2024 default:
2025 /* Some other non-defined flags are also present, so print
2026 everything hex. */
2027 fprintf (file, " 0x%02x", (unsigned int) st_other);
2028 }
2029
2030 fprintf (file, " %s", name);
2031 }
2032 break;
2033 }
2034 }
2035 \f
2036 /* ELF .o/exec file reading */
2037
2038 /* Create a new bfd section from an ELF section header. */
2039
2040 bfd_boolean
2041 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2042 {
2043 Elf_Internal_Shdr *hdr;
2044 Elf_Internal_Ehdr *ehdr;
2045 const struct elf_backend_data *bed;
2046 const char *name;
2047 bfd_boolean ret = TRUE;
2048 static bfd_boolean * sections_being_created = NULL;
2049 static bfd * sections_being_created_abfd = NULL;
2050 static unsigned int nesting = 0;
2051
2052 if (shindex >= elf_numsections (abfd))
2053 return FALSE;
2054
2055 if (++ nesting > 3)
2056 {
2057 /* PR17512: A corrupt ELF binary might contain a recursive group of
2058 sections, with each the string indices pointing to the next in the
2059 loop. Detect this here, by refusing to load a section that we are
2060 already in the process of loading. We only trigger this test if
2061 we have nested at least three sections deep as normal ELF binaries
2062 can expect to recurse at least once.
2063
2064 FIXME: It would be better if this array was attached to the bfd,
2065 rather than being held in a static pointer. */
2066
2067 if (sections_being_created_abfd != abfd)
2068 {
2069 free (sections_being_created);
2070 sections_being_created = NULL;
2071 }
2072 if (sections_being_created == NULL)
2073 {
2074 size_t amt = elf_numsections (abfd) * sizeof (bfd_boolean);
2075
2076 /* PR 26005: Do not use bfd_zalloc here as the memory might
2077 be released before the bfd has been fully scanned. */
2078 sections_being_created = (bfd_boolean *) bfd_zmalloc (amt);
2079 if (sections_being_created == NULL)
2080 return FALSE;
2081 sections_being_created_abfd = abfd;
2082 }
2083 if (sections_being_created [shindex])
2084 {
2085 _bfd_error_handler
2086 (_("%pB: warning: loop in section dependencies detected"), abfd);
2087 return FALSE;
2088 }
2089 sections_being_created [shindex] = TRUE;
2090 }
2091
2092 hdr = elf_elfsections (abfd)[shindex];
2093 ehdr = elf_elfheader (abfd);
2094 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2095 hdr->sh_name);
2096 if (name == NULL)
2097 goto fail;
2098
2099 bed = get_elf_backend_data (abfd);
2100 switch (hdr->sh_type)
2101 {
2102 case SHT_NULL:
2103 /* Inactive section. Throw it away. */
2104 goto success;
2105
2106 case SHT_PROGBITS: /* Normal section with contents. */
2107 case SHT_NOBITS: /* .bss section. */
2108 case SHT_HASH: /* .hash section. */
2109 case SHT_NOTE: /* .note section. */
2110 case SHT_INIT_ARRAY: /* .init_array section. */
2111 case SHT_FINI_ARRAY: /* .fini_array section. */
2112 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2113 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2114 case SHT_GNU_HASH: /* .gnu.hash section. */
2115 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2116 goto success;
2117
2118 case SHT_DYNAMIC: /* Dynamic linking information. */
2119 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2120 goto fail;
2121
2122 if (hdr->sh_link > elf_numsections (abfd))
2123 {
2124 /* PR 10478: Accept Solaris binaries with a sh_link
2125 field set to SHN_BEFORE or SHN_AFTER. */
2126 switch (bfd_get_arch (abfd))
2127 {
2128 case bfd_arch_i386:
2129 case bfd_arch_sparc:
2130 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2131 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2132 break;
2133 /* Otherwise fall through. */
2134 default:
2135 goto fail;
2136 }
2137 }
2138 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2139 goto fail;
2140 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2141 {
2142 Elf_Internal_Shdr *dynsymhdr;
2143
2144 /* The shared libraries distributed with hpux11 have a bogus
2145 sh_link field for the ".dynamic" section. Find the
2146 string table for the ".dynsym" section instead. */
2147 if (elf_dynsymtab (abfd) != 0)
2148 {
2149 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2150 hdr->sh_link = dynsymhdr->sh_link;
2151 }
2152 else
2153 {
2154 unsigned int i, num_sec;
2155
2156 num_sec = elf_numsections (abfd);
2157 for (i = 1; i < num_sec; i++)
2158 {
2159 dynsymhdr = elf_elfsections (abfd)[i];
2160 if (dynsymhdr->sh_type == SHT_DYNSYM)
2161 {
2162 hdr->sh_link = dynsymhdr->sh_link;
2163 break;
2164 }
2165 }
2166 }
2167 }
2168 goto success;
2169
2170 case SHT_SYMTAB: /* A symbol table. */
2171 if (elf_onesymtab (abfd) == shindex)
2172 goto success;
2173
2174 if (hdr->sh_entsize != bed->s->sizeof_sym)
2175 goto fail;
2176
2177 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2178 {
2179 if (hdr->sh_size != 0)
2180 goto fail;
2181 /* Some assemblers erroneously set sh_info to one with a
2182 zero sh_size. ld sees this as a global symbol count
2183 of (unsigned) -1. Fix it here. */
2184 hdr->sh_info = 0;
2185 goto success;
2186 }
2187
2188 /* PR 18854: A binary might contain more than one symbol table.
2189 Unusual, but possible. Warn, but continue. */
2190 if (elf_onesymtab (abfd) != 0)
2191 {
2192 _bfd_error_handler
2193 /* xgettext:c-format */
2194 (_("%pB: warning: multiple symbol tables detected"
2195 " - ignoring the table in section %u"),
2196 abfd, shindex);
2197 goto success;
2198 }
2199 elf_onesymtab (abfd) = shindex;
2200 elf_symtab_hdr (abfd) = *hdr;
2201 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2202 abfd->flags |= HAS_SYMS;
2203
2204 /* Sometimes a shared object will map in the symbol table. If
2205 SHF_ALLOC is set, and this is a shared object, then we also
2206 treat this section as a BFD section. We can not base the
2207 decision purely on SHF_ALLOC, because that flag is sometimes
2208 set in a relocatable object file, which would confuse the
2209 linker. */
2210 if ((hdr->sh_flags & SHF_ALLOC) != 0
2211 && (abfd->flags & DYNAMIC) != 0
2212 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2213 shindex))
2214 goto fail;
2215
2216 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2217 can't read symbols without that section loaded as well. It
2218 is most likely specified by the next section header. */
2219 {
2220 elf_section_list * entry;
2221 unsigned int i, num_sec;
2222
2223 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2224 if (entry->hdr.sh_link == shindex)
2225 goto success;
2226
2227 num_sec = elf_numsections (abfd);
2228 for (i = shindex + 1; i < num_sec; i++)
2229 {
2230 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2231
2232 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2233 && hdr2->sh_link == shindex)
2234 break;
2235 }
2236
2237 if (i == num_sec)
2238 for (i = 1; i < shindex; i++)
2239 {
2240 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2241
2242 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2243 && hdr2->sh_link == shindex)
2244 break;
2245 }
2246
2247 if (i != shindex)
2248 ret = bfd_section_from_shdr (abfd, i);
2249 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2250 goto success;
2251 }
2252
2253 case SHT_DYNSYM: /* A dynamic symbol table. */
2254 if (elf_dynsymtab (abfd) == shindex)
2255 goto success;
2256
2257 if (hdr->sh_entsize != bed->s->sizeof_sym)
2258 goto fail;
2259
2260 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2261 {
2262 if (hdr->sh_size != 0)
2263 goto fail;
2264
2265 /* Some linkers erroneously set sh_info to one with a
2266 zero sh_size. ld sees this as a global symbol count
2267 of (unsigned) -1. Fix it here. */
2268 hdr->sh_info = 0;
2269 goto success;
2270 }
2271
2272 /* PR 18854: A binary might contain more than one dynamic symbol table.
2273 Unusual, but possible. Warn, but continue. */
2274 if (elf_dynsymtab (abfd) != 0)
2275 {
2276 _bfd_error_handler
2277 /* xgettext:c-format */
2278 (_("%pB: warning: multiple dynamic symbol tables detected"
2279 " - ignoring the table in section %u"),
2280 abfd, shindex);
2281 goto success;
2282 }
2283 elf_dynsymtab (abfd) = shindex;
2284 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2285 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2286 abfd->flags |= HAS_SYMS;
2287
2288 /* Besides being a symbol table, we also treat this as a regular
2289 section, so that objcopy can handle it. */
2290 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2291 goto success;
2292
2293 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2294 {
2295 elf_section_list * entry;
2296
2297 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2298 if (entry->ndx == shindex)
2299 goto success;
2300
2301 entry = bfd_alloc (abfd, sizeof (*entry));
2302 if (entry == NULL)
2303 goto fail;
2304 entry->ndx = shindex;
2305 entry->hdr = * hdr;
2306 entry->next = elf_symtab_shndx_list (abfd);
2307 elf_symtab_shndx_list (abfd) = entry;
2308 elf_elfsections (abfd)[shindex] = & entry->hdr;
2309 goto success;
2310 }
2311
2312 case SHT_STRTAB: /* A string table. */
2313 if (hdr->bfd_section != NULL)
2314 goto success;
2315
2316 if (ehdr->e_shstrndx == shindex)
2317 {
2318 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2319 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2320 goto success;
2321 }
2322
2323 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2324 {
2325 symtab_strtab:
2326 elf_tdata (abfd)->strtab_hdr = *hdr;
2327 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2328 goto success;
2329 }
2330
2331 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2332 {
2333 dynsymtab_strtab:
2334 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2335 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2336 elf_elfsections (abfd)[shindex] = hdr;
2337 /* We also treat this as a regular section, so that objcopy
2338 can handle it. */
2339 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2340 shindex);
2341 goto success;
2342 }
2343
2344 /* If the string table isn't one of the above, then treat it as a
2345 regular section. We need to scan all the headers to be sure,
2346 just in case this strtab section appeared before the above. */
2347 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2348 {
2349 unsigned int i, num_sec;
2350
2351 num_sec = elf_numsections (abfd);
2352 for (i = 1; i < num_sec; i++)
2353 {
2354 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2355 if (hdr2->sh_link == shindex)
2356 {
2357 /* Prevent endless recursion on broken objects. */
2358 if (i == shindex)
2359 goto fail;
2360 if (! bfd_section_from_shdr (abfd, i))
2361 goto fail;
2362 if (elf_onesymtab (abfd) == i)
2363 goto symtab_strtab;
2364 if (elf_dynsymtab (abfd) == i)
2365 goto dynsymtab_strtab;
2366 }
2367 }
2368 }
2369 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2370 goto success;
2371
2372 case SHT_REL:
2373 case SHT_RELA:
2374 /* *These* do a lot of work -- but build no sections! */
2375 {
2376 asection *target_sect;
2377 Elf_Internal_Shdr *hdr2, **p_hdr;
2378 unsigned int num_sec = elf_numsections (abfd);
2379 struct bfd_elf_section_data *esdt;
2380
2381 if (hdr->sh_entsize
2382 != (bfd_size_type) (hdr->sh_type == SHT_REL
2383 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2384 goto fail;
2385
2386 /* Check for a bogus link to avoid crashing. */
2387 if (hdr->sh_link >= num_sec)
2388 {
2389 _bfd_error_handler
2390 /* xgettext:c-format */
2391 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2392 abfd, hdr->sh_link, name, shindex);
2393 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2394 shindex);
2395 goto success;
2396 }
2397
2398 /* For some incomprehensible reason Oracle distributes
2399 libraries for Solaris in which some of the objects have
2400 bogus sh_link fields. It would be nice if we could just
2401 reject them, but, unfortunately, some people need to use
2402 them. We scan through the section headers; if we find only
2403 one suitable symbol table, we clobber the sh_link to point
2404 to it. I hope this doesn't break anything.
2405
2406 Don't do it on executable nor shared library. */
2407 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2408 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2409 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2410 {
2411 unsigned int scan;
2412 int found;
2413
2414 found = 0;
2415 for (scan = 1; scan < num_sec; scan++)
2416 {
2417 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2418 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2419 {
2420 if (found != 0)
2421 {
2422 found = 0;
2423 break;
2424 }
2425 found = scan;
2426 }
2427 }
2428 if (found != 0)
2429 hdr->sh_link = found;
2430 }
2431
2432 /* Get the symbol table. */
2433 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2434 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2435 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2436 goto fail;
2437
2438 /* If this is an alloc section in an executable or shared
2439 library, or the reloc section does not use the main symbol
2440 table we don't treat it as a reloc section. BFD can't
2441 adequately represent such a section, so at least for now,
2442 we don't try. We just present it as a normal section. We
2443 also can't use it as a reloc section if it points to the
2444 null section, an invalid section, another reloc section, or
2445 its sh_link points to the null section. */
2446 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2447 && (hdr->sh_flags & SHF_ALLOC) != 0)
2448 || hdr->sh_link == SHN_UNDEF
2449 || hdr->sh_link != elf_onesymtab (abfd)
2450 || hdr->sh_info == SHN_UNDEF
2451 || hdr->sh_info >= num_sec
2452 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2453 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2454 {
2455 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2456 shindex);
2457 goto success;
2458 }
2459
2460 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2461 goto fail;
2462
2463 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2464 if (target_sect == NULL)
2465 goto fail;
2466
2467 esdt = elf_section_data (target_sect);
2468 if (hdr->sh_type == SHT_RELA)
2469 p_hdr = &esdt->rela.hdr;
2470 else
2471 p_hdr = &esdt->rel.hdr;
2472
2473 /* PR 17512: file: 0b4f81b7.
2474 Also see PR 24456, for a file which deliberately has two reloc
2475 sections. */
2476 if (*p_hdr != NULL)
2477 {
2478 if (!bed->init_secondary_reloc_section (abfd, hdr, name, shindex))
2479 {
2480 _bfd_error_handler
2481 /* xgettext:c-format */
2482 (_("%pB: warning: secondary relocation section '%s' "
2483 "for section %pA found - ignoring"),
2484 abfd, name, target_sect);
2485 }
2486 goto success;
2487 }
2488
2489 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2490 if (hdr2 == NULL)
2491 goto fail;
2492 *hdr2 = *hdr;
2493 *p_hdr = hdr2;
2494 elf_elfsections (abfd)[shindex] = hdr2;
2495 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2496 * bed->s->int_rels_per_ext_rel);
2497 target_sect->flags |= SEC_RELOC;
2498 target_sect->relocation = NULL;
2499 target_sect->rel_filepos = hdr->sh_offset;
2500 /* In the section to which the relocations apply, mark whether
2501 its relocations are of the REL or RELA variety. */
2502 if (hdr->sh_size != 0)
2503 {
2504 if (hdr->sh_type == SHT_RELA)
2505 target_sect->use_rela_p = 1;
2506 }
2507 abfd->flags |= HAS_RELOC;
2508 goto success;
2509 }
2510
2511 case SHT_GNU_verdef:
2512 elf_dynverdef (abfd) = shindex;
2513 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2514 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2515 goto success;
2516
2517 case SHT_GNU_versym:
2518 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2519 goto fail;
2520
2521 elf_dynversym (abfd) = shindex;
2522 elf_tdata (abfd)->dynversym_hdr = *hdr;
2523 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2524 goto success;
2525
2526 case SHT_GNU_verneed:
2527 elf_dynverref (abfd) = shindex;
2528 elf_tdata (abfd)->dynverref_hdr = *hdr;
2529 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2530 goto success;
2531
2532 case SHT_SHLIB:
2533 goto success;
2534
2535 case SHT_GROUP:
2536 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2537 goto fail;
2538
2539 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2540 goto fail;
2541
2542 goto success;
2543
2544 default:
2545 /* Possibly an attributes section. */
2546 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2547 || hdr->sh_type == bed->obj_attrs_section_type)
2548 {
2549 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2550 goto fail;
2551 _bfd_elf_parse_attributes (abfd, hdr);
2552 goto success;
2553 }
2554
2555 /* Check for any processor-specific section types. */
2556 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2557 goto success;
2558
2559 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2560 {
2561 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2562 /* FIXME: How to properly handle allocated section reserved
2563 for applications? */
2564 _bfd_error_handler
2565 /* xgettext:c-format */
2566 (_("%pB: unknown type [%#x] section `%s'"),
2567 abfd, hdr->sh_type, name);
2568 else
2569 {
2570 /* Allow sections reserved for applications. */
2571 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2572 shindex);
2573 goto success;
2574 }
2575 }
2576 else if (hdr->sh_type >= SHT_LOPROC
2577 && hdr->sh_type <= SHT_HIPROC)
2578 /* FIXME: We should handle this section. */
2579 _bfd_error_handler
2580 /* xgettext:c-format */
2581 (_("%pB: unknown type [%#x] section `%s'"),
2582 abfd, hdr->sh_type, name);
2583 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2584 {
2585 /* Unrecognised OS-specific sections. */
2586 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2587 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2588 required to correctly process the section and the file should
2589 be rejected with an error message. */
2590 _bfd_error_handler
2591 /* xgettext:c-format */
2592 (_("%pB: unknown type [%#x] section `%s'"),
2593 abfd, hdr->sh_type, name);
2594 else
2595 {
2596 /* Otherwise it should be processed. */
2597 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2598 goto success;
2599 }
2600 }
2601 else
2602 /* FIXME: We should handle this section. */
2603 _bfd_error_handler
2604 /* xgettext:c-format */
2605 (_("%pB: unknown type [%#x] section `%s'"),
2606 abfd, hdr->sh_type, name);
2607
2608 goto fail;
2609 }
2610
2611 fail:
2612 ret = FALSE;
2613 success:
2614 if (sections_being_created && sections_being_created_abfd == abfd)
2615 sections_being_created [shindex] = FALSE;
2616 if (-- nesting == 0)
2617 {
2618 free (sections_being_created);
2619 sections_being_created = NULL;
2620 sections_being_created_abfd = NULL;
2621 }
2622 return ret;
2623 }
2624
2625 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2626
2627 Elf_Internal_Sym *
2628 bfd_sym_from_r_symndx (struct sym_cache *cache,
2629 bfd *abfd,
2630 unsigned long r_symndx)
2631 {
2632 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2633
2634 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2635 {
2636 Elf_Internal_Shdr *symtab_hdr;
2637 unsigned char esym[sizeof (Elf64_External_Sym)];
2638 Elf_External_Sym_Shndx eshndx;
2639
2640 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2641 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2642 &cache->sym[ent], esym, &eshndx) == NULL)
2643 return NULL;
2644
2645 if (cache->abfd != abfd)
2646 {
2647 memset (cache->indx, -1, sizeof (cache->indx));
2648 cache->abfd = abfd;
2649 }
2650 cache->indx[ent] = r_symndx;
2651 }
2652
2653 return &cache->sym[ent];
2654 }
2655
2656 /* Given an ELF section number, retrieve the corresponding BFD
2657 section. */
2658
2659 asection *
2660 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2661 {
2662 if (sec_index >= elf_numsections (abfd))
2663 return NULL;
2664 return elf_elfsections (abfd)[sec_index]->bfd_section;
2665 }
2666
2667 static const struct bfd_elf_special_section special_sections_b[] =
2668 {
2669 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2670 { NULL, 0, 0, 0, 0 }
2671 };
2672
2673 static const struct bfd_elf_special_section special_sections_c[] =
2674 {
2675 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2676 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2677 { NULL, 0, 0, 0, 0 }
2678 };
2679
2680 static const struct bfd_elf_special_section special_sections_d[] =
2681 {
2682 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2683 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2684 /* There are more DWARF sections than these, but they needn't be added here
2685 unless you have to cope with broken compilers that don't emit section
2686 attributes or you want to help the user writing assembler. */
2687 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2688 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2689 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2690 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2691 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2692 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2693 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2694 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2695 { NULL, 0, 0, 0, 0 }
2696 };
2697
2698 static const struct bfd_elf_special_section special_sections_f[] =
2699 {
2700 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2701 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2702 { NULL, 0 , 0, 0, 0 }
2703 };
2704
2705 static const struct bfd_elf_special_section special_sections_g[] =
2706 {
2707 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2708 { STRING_COMMA_LEN (".gnu.linkonce.n"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2709 { STRING_COMMA_LEN (".gnu.linkonce.p"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2710 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2711 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2712 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2713 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2714 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2715 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2716 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2717 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2718 { NULL, 0, 0, 0, 0 }
2719 };
2720
2721 static const struct bfd_elf_special_section special_sections_h[] =
2722 {
2723 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2724 { NULL, 0, 0, 0, 0 }
2725 };
2726
2727 static const struct bfd_elf_special_section special_sections_i[] =
2728 {
2729 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2730 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2731 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2732 { NULL, 0, 0, 0, 0 }
2733 };
2734
2735 static const struct bfd_elf_special_section special_sections_l[] =
2736 {
2737 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2738 { NULL, 0, 0, 0, 0 }
2739 };
2740
2741 static const struct bfd_elf_special_section special_sections_n[] =
2742 {
2743 { STRING_COMMA_LEN (".noinit"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2744 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2745 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2746 { NULL, 0, 0, 0, 0 }
2747 };
2748
2749 static const struct bfd_elf_special_section special_sections_p[] =
2750 {
2751 { STRING_COMMA_LEN (".persistent"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2752 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2753 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2754 { NULL, 0, 0, 0, 0 }
2755 };
2756
2757 static const struct bfd_elf_special_section special_sections_r[] =
2758 {
2759 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2760 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2761 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2762 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2763 { NULL, 0, 0, 0, 0 }
2764 };
2765
2766 static const struct bfd_elf_special_section special_sections_s[] =
2767 {
2768 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2769 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2770 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2771 /* See struct bfd_elf_special_section declaration for the semantics of
2772 this special case where .prefix_length != strlen (.prefix). */
2773 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2774 { NULL, 0, 0, 0, 0 }
2775 };
2776
2777 static const struct bfd_elf_special_section special_sections_t[] =
2778 {
2779 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2780 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2781 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2782 { NULL, 0, 0, 0, 0 }
2783 };
2784
2785 static const struct bfd_elf_special_section special_sections_z[] =
2786 {
2787 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2788 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2789 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2790 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2791 { NULL, 0, 0, 0, 0 }
2792 };
2793
2794 static const struct bfd_elf_special_section * const special_sections[] =
2795 {
2796 special_sections_b, /* 'b' */
2797 special_sections_c, /* 'c' */
2798 special_sections_d, /* 'd' */
2799 NULL, /* 'e' */
2800 special_sections_f, /* 'f' */
2801 special_sections_g, /* 'g' */
2802 special_sections_h, /* 'h' */
2803 special_sections_i, /* 'i' */
2804 NULL, /* 'j' */
2805 NULL, /* 'k' */
2806 special_sections_l, /* 'l' */
2807 NULL, /* 'm' */
2808 special_sections_n, /* 'n' */
2809 NULL, /* 'o' */
2810 special_sections_p, /* 'p' */
2811 NULL, /* 'q' */
2812 special_sections_r, /* 'r' */
2813 special_sections_s, /* 's' */
2814 special_sections_t, /* 't' */
2815 NULL, /* 'u' */
2816 NULL, /* 'v' */
2817 NULL, /* 'w' */
2818 NULL, /* 'x' */
2819 NULL, /* 'y' */
2820 special_sections_z /* 'z' */
2821 };
2822
2823 const struct bfd_elf_special_section *
2824 _bfd_elf_get_special_section (const char *name,
2825 const struct bfd_elf_special_section *spec,
2826 unsigned int rela)
2827 {
2828 int i;
2829 int len;
2830
2831 len = strlen (name);
2832
2833 for (i = 0; spec[i].prefix != NULL; i++)
2834 {
2835 int suffix_len;
2836 int prefix_len = spec[i].prefix_length;
2837
2838 if (len < prefix_len)
2839 continue;
2840 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2841 continue;
2842
2843 suffix_len = spec[i].suffix_length;
2844 if (suffix_len <= 0)
2845 {
2846 if (name[prefix_len] != 0)
2847 {
2848 if (suffix_len == 0)
2849 continue;
2850 if (name[prefix_len] != '.'
2851 && (suffix_len == -2
2852 || (rela && spec[i].type == SHT_REL)))
2853 continue;
2854 }
2855 }
2856 else
2857 {
2858 if (len < prefix_len + suffix_len)
2859 continue;
2860 if (memcmp (name + len - suffix_len,
2861 spec[i].prefix + prefix_len,
2862 suffix_len) != 0)
2863 continue;
2864 }
2865 return &spec[i];
2866 }
2867
2868 return NULL;
2869 }
2870
2871 const struct bfd_elf_special_section *
2872 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2873 {
2874 int i;
2875 const struct bfd_elf_special_section *spec;
2876 const struct elf_backend_data *bed;
2877
2878 /* See if this is one of the special sections. */
2879 if (sec->name == NULL)
2880 return NULL;
2881
2882 bed = get_elf_backend_data (abfd);
2883 spec = bed->special_sections;
2884 if (spec)
2885 {
2886 spec = _bfd_elf_get_special_section (sec->name,
2887 bed->special_sections,
2888 sec->use_rela_p);
2889 if (spec != NULL)
2890 return spec;
2891 }
2892
2893 if (sec->name[0] != '.')
2894 return NULL;
2895
2896 i = sec->name[1] - 'b';
2897 if (i < 0 || i > 'z' - 'b')
2898 return NULL;
2899
2900 spec = special_sections[i];
2901
2902 if (spec == NULL)
2903 return NULL;
2904
2905 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2906 }
2907
2908 bfd_boolean
2909 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2910 {
2911 struct bfd_elf_section_data *sdata;
2912 const struct elf_backend_data *bed;
2913 const struct bfd_elf_special_section *ssect;
2914
2915 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2916 if (sdata == NULL)
2917 {
2918 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2919 sizeof (*sdata));
2920 if (sdata == NULL)
2921 return FALSE;
2922 sec->used_by_bfd = sdata;
2923 }
2924
2925 /* Indicate whether or not this section should use RELA relocations. */
2926 bed = get_elf_backend_data (abfd);
2927 sec->use_rela_p = bed->default_use_rela_p;
2928
2929 /* Set up ELF section type and flags for newly created sections, if
2930 there is an ABI mandated section. */
2931 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2932 if (ssect != NULL)
2933 {
2934 elf_section_type (sec) = ssect->type;
2935 elf_section_flags (sec) = ssect->attr;
2936 }
2937
2938 return _bfd_generic_new_section_hook (abfd, sec);
2939 }
2940
2941 /* Create a new bfd section from an ELF program header.
2942
2943 Since program segments have no names, we generate a synthetic name
2944 of the form segment<NUM>, where NUM is generally the index in the
2945 program header table. For segments that are split (see below) we
2946 generate the names segment<NUM>a and segment<NUM>b.
2947
2948 Note that some program segments may have a file size that is different than
2949 (less than) the memory size. All this means is that at execution the
2950 system must allocate the amount of memory specified by the memory size,
2951 but only initialize it with the first "file size" bytes read from the
2952 file. This would occur for example, with program segments consisting
2953 of combined data+bss.
2954
2955 To handle the above situation, this routine generates TWO bfd sections
2956 for the single program segment. The first has the length specified by
2957 the file size of the segment, and the second has the length specified
2958 by the difference between the two sizes. In effect, the segment is split
2959 into its initialized and uninitialized parts.
2960
2961 */
2962
2963 bfd_boolean
2964 _bfd_elf_make_section_from_phdr (bfd *abfd,
2965 Elf_Internal_Phdr *hdr,
2966 int hdr_index,
2967 const char *type_name)
2968 {
2969 asection *newsect;
2970 char *name;
2971 char namebuf[64];
2972 size_t len;
2973 int split;
2974 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
2975
2976 split = ((hdr->p_memsz > 0)
2977 && (hdr->p_filesz > 0)
2978 && (hdr->p_memsz > hdr->p_filesz));
2979
2980 if (hdr->p_filesz > 0)
2981 {
2982 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2983 len = strlen (namebuf) + 1;
2984 name = (char *) bfd_alloc (abfd, len);
2985 if (!name)
2986 return FALSE;
2987 memcpy (name, namebuf, len);
2988 newsect = bfd_make_section (abfd, name);
2989 if (newsect == NULL)
2990 return FALSE;
2991 newsect->vma = hdr->p_vaddr / opb;
2992 newsect->lma = hdr->p_paddr / opb;
2993 newsect->size = hdr->p_filesz;
2994 newsect->filepos = hdr->p_offset;
2995 newsect->flags |= SEC_HAS_CONTENTS;
2996 newsect->alignment_power = bfd_log2 (hdr->p_align);
2997 if (hdr->p_type == PT_LOAD)
2998 {
2999 newsect->flags |= SEC_ALLOC;
3000 newsect->flags |= SEC_LOAD;
3001 if (hdr->p_flags & PF_X)
3002 {
3003 /* FIXME: all we known is that it has execute PERMISSION,
3004 may be data. */
3005 newsect->flags |= SEC_CODE;
3006 }
3007 }
3008 if (!(hdr->p_flags & PF_W))
3009 {
3010 newsect->flags |= SEC_READONLY;
3011 }
3012 }
3013
3014 if (hdr->p_memsz > hdr->p_filesz)
3015 {
3016 bfd_vma align;
3017
3018 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3019 len = strlen (namebuf) + 1;
3020 name = (char *) bfd_alloc (abfd, len);
3021 if (!name)
3022 return FALSE;
3023 memcpy (name, namebuf, len);
3024 newsect = bfd_make_section (abfd, name);
3025 if (newsect == NULL)
3026 return FALSE;
3027 newsect->vma = (hdr->p_vaddr + hdr->p_filesz) / opb;
3028 newsect->lma = (hdr->p_paddr + hdr->p_filesz) / opb;
3029 newsect->size = hdr->p_memsz - hdr->p_filesz;
3030 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3031 align = newsect->vma & -newsect->vma;
3032 if (align == 0 || align > hdr->p_align)
3033 align = hdr->p_align;
3034 newsect->alignment_power = bfd_log2 (align);
3035 if (hdr->p_type == PT_LOAD)
3036 {
3037 newsect->flags |= SEC_ALLOC;
3038 if (hdr->p_flags & PF_X)
3039 newsect->flags |= SEC_CODE;
3040 }
3041 if (!(hdr->p_flags & PF_W))
3042 newsect->flags |= SEC_READONLY;
3043 }
3044
3045 return TRUE;
3046 }
3047
3048 static bfd_boolean
3049 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3050 {
3051 /* The return value is ignored. Build-ids are considered optional. */
3052 if (templ->xvec->flavour == bfd_target_elf_flavour)
3053 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3054 (templ, offset);
3055 return FALSE;
3056 }
3057
3058 bfd_boolean
3059 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3060 {
3061 const struct elf_backend_data *bed;
3062
3063 switch (hdr->p_type)
3064 {
3065 case PT_NULL:
3066 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3067
3068 case PT_LOAD:
3069 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3070 return FALSE;
3071 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3072 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3073 return TRUE;
3074
3075 case PT_DYNAMIC:
3076 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3077
3078 case PT_INTERP:
3079 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3080
3081 case PT_NOTE:
3082 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3083 return FALSE;
3084 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3085 hdr->p_align))
3086 return FALSE;
3087 return TRUE;
3088
3089 case PT_SHLIB:
3090 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3091
3092 case PT_PHDR:
3093 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3094
3095 case PT_GNU_EH_FRAME:
3096 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3097 "eh_frame_hdr");
3098
3099 case PT_GNU_STACK:
3100 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3101
3102 case PT_GNU_RELRO:
3103 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3104
3105 default:
3106 /* Check for any processor-specific program segment types. */
3107 bed = get_elf_backend_data (abfd);
3108 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3109 }
3110 }
3111
3112 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3113 REL or RELA. */
3114
3115 Elf_Internal_Shdr *
3116 _bfd_elf_single_rel_hdr (asection *sec)
3117 {
3118 if (elf_section_data (sec)->rel.hdr)
3119 {
3120 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3121 return elf_section_data (sec)->rel.hdr;
3122 }
3123 else
3124 return elf_section_data (sec)->rela.hdr;
3125 }
3126
3127 static bfd_boolean
3128 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3129 Elf_Internal_Shdr *rel_hdr,
3130 const char *sec_name,
3131 bfd_boolean use_rela_p)
3132 {
3133 char *name = (char *) bfd_alloc (abfd,
3134 sizeof ".rela" + strlen (sec_name));
3135 if (name == NULL)
3136 return FALSE;
3137
3138 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3139 rel_hdr->sh_name =
3140 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3141 FALSE);
3142 if (rel_hdr->sh_name == (unsigned int) -1)
3143 return FALSE;
3144
3145 return TRUE;
3146 }
3147
3148 /* Allocate and initialize a section-header for a new reloc section,
3149 containing relocations against ASECT. It is stored in RELDATA. If
3150 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3151 relocations. */
3152
3153 static bfd_boolean
3154 _bfd_elf_init_reloc_shdr (bfd *abfd,
3155 struct bfd_elf_section_reloc_data *reldata,
3156 const char *sec_name,
3157 bfd_boolean use_rela_p,
3158 bfd_boolean delay_st_name_p)
3159 {
3160 Elf_Internal_Shdr *rel_hdr;
3161 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3162
3163 BFD_ASSERT (reldata->hdr == NULL);
3164 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3165 reldata->hdr = rel_hdr;
3166
3167 if (delay_st_name_p)
3168 rel_hdr->sh_name = (unsigned int) -1;
3169 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3170 use_rela_p))
3171 return FALSE;
3172 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3173 rel_hdr->sh_entsize = (use_rela_p
3174 ? bed->s->sizeof_rela
3175 : bed->s->sizeof_rel);
3176 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3177 rel_hdr->sh_flags = 0;
3178 rel_hdr->sh_addr = 0;
3179 rel_hdr->sh_size = 0;
3180 rel_hdr->sh_offset = 0;
3181
3182 return TRUE;
3183 }
3184
3185 /* Return the default section type based on the passed in section flags. */
3186
3187 int
3188 bfd_elf_get_default_section_type (flagword flags)
3189 {
3190 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3191 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3192 return SHT_NOBITS;
3193 return SHT_PROGBITS;
3194 }
3195
3196 struct fake_section_arg
3197 {
3198 struct bfd_link_info *link_info;
3199 bfd_boolean failed;
3200 };
3201
3202 /* Set up an ELF internal section header for a section. */
3203
3204 static void
3205 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3206 {
3207 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3208 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3209 struct bfd_elf_section_data *esd = elf_section_data (asect);
3210 Elf_Internal_Shdr *this_hdr;
3211 unsigned int sh_type;
3212 const char *name = asect->name;
3213 bfd_boolean delay_st_name_p = FALSE;
3214 bfd_vma mask;
3215
3216 if (arg->failed)
3217 {
3218 /* We already failed; just get out of the bfd_map_over_sections
3219 loop. */
3220 return;
3221 }
3222
3223 this_hdr = &esd->this_hdr;
3224
3225 if (arg->link_info)
3226 {
3227 /* ld: compress DWARF debug sections with names: .debug_*. */
3228 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3229 && (asect->flags & SEC_DEBUGGING)
3230 && name[1] == 'd'
3231 && name[6] == '_')
3232 {
3233 /* Set SEC_ELF_COMPRESS to indicate this section should be
3234 compressed. */
3235 asect->flags |= SEC_ELF_COMPRESS;
3236 /* If this section will be compressed, delay adding section
3237 name to section name section after it is compressed in
3238 _bfd_elf_assign_file_positions_for_non_load. */
3239 delay_st_name_p = TRUE;
3240 }
3241 }
3242 else if ((asect->flags & SEC_ELF_RENAME))
3243 {
3244 /* objcopy: rename output DWARF debug section. */
3245 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3246 {
3247 /* When we decompress or compress with SHF_COMPRESSED,
3248 convert section name from .zdebug_* to .debug_* if
3249 needed. */
3250 if (name[1] == 'z')
3251 {
3252 char *new_name = convert_zdebug_to_debug (abfd, name);
3253 if (new_name == NULL)
3254 {
3255 arg->failed = TRUE;
3256 return;
3257 }
3258 name = new_name;
3259 }
3260 }
3261 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3262 {
3263 /* PR binutils/18087: Compression does not always make a
3264 section smaller. So only rename the section when
3265 compression has actually taken place. If input section
3266 name is .zdebug_*, we should never compress it again. */
3267 char *new_name = convert_debug_to_zdebug (abfd, name);
3268 if (new_name == NULL)
3269 {
3270 arg->failed = TRUE;
3271 return;
3272 }
3273 BFD_ASSERT (name[1] != 'z');
3274 name = new_name;
3275 }
3276 }
3277
3278 if (delay_st_name_p)
3279 this_hdr->sh_name = (unsigned int) -1;
3280 else
3281 {
3282 this_hdr->sh_name
3283 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3284 name, FALSE);
3285 if (this_hdr->sh_name == (unsigned int) -1)
3286 {
3287 arg->failed = TRUE;
3288 return;
3289 }
3290 }
3291
3292 /* Don't clear sh_flags. Assembler may set additional bits. */
3293
3294 if ((asect->flags & SEC_ALLOC) != 0
3295 || asect->user_set_vma)
3296 this_hdr->sh_addr = asect->vma * bfd_octets_per_byte (abfd, asect);
3297 else
3298 this_hdr->sh_addr = 0;
3299
3300 this_hdr->sh_offset = 0;
3301 this_hdr->sh_size = asect->size;
3302 this_hdr->sh_link = 0;
3303 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3304 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3305 {
3306 _bfd_error_handler
3307 /* xgettext:c-format */
3308 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3309 abfd, asect->alignment_power, asect);
3310 arg->failed = TRUE;
3311 return;
3312 }
3313 /* Set sh_addralign to the highest power of two given by alignment
3314 consistent with the section VMA. Linker scripts can force VMA. */
3315 mask = ((bfd_vma) 1 << asect->alignment_power) | this_hdr->sh_addr;
3316 this_hdr->sh_addralign = mask & -mask;
3317 /* The sh_entsize and sh_info fields may have been set already by
3318 copy_private_section_data. */
3319
3320 this_hdr->bfd_section = asect;
3321 this_hdr->contents = NULL;
3322
3323 /* If the section type is unspecified, we set it based on
3324 asect->flags. */
3325 if ((asect->flags & SEC_GROUP) != 0)
3326 sh_type = SHT_GROUP;
3327 else
3328 sh_type = bfd_elf_get_default_section_type (asect->flags);
3329
3330 if (this_hdr->sh_type == SHT_NULL)
3331 this_hdr->sh_type = sh_type;
3332 else if (this_hdr->sh_type == SHT_NOBITS
3333 && sh_type == SHT_PROGBITS
3334 && (asect->flags & SEC_ALLOC) != 0)
3335 {
3336 /* Warn if we are changing a NOBITS section to PROGBITS, but
3337 allow the link to proceed. This can happen when users link
3338 non-bss input sections to bss output sections, or emit data
3339 to a bss output section via a linker script. */
3340 _bfd_error_handler
3341 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3342 this_hdr->sh_type = sh_type;
3343 }
3344
3345 switch (this_hdr->sh_type)
3346 {
3347 default:
3348 break;
3349
3350 case SHT_STRTAB:
3351 case SHT_NOTE:
3352 case SHT_NOBITS:
3353 case SHT_PROGBITS:
3354 break;
3355
3356 case SHT_INIT_ARRAY:
3357 case SHT_FINI_ARRAY:
3358 case SHT_PREINIT_ARRAY:
3359 this_hdr->sh_entsize = bed->s->arch_size / 8;
3360 break;
3361
3362 case SHT_HASH:
3363 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3364 break;
3365
3366 case SHT_DYNSYM:
3367 this_hdr->sh_entsize = bed->s->sizeof_sym;
3368 break;
3369
3370 case SHT_DYNAMIC:
3371 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3372 break;
3373
3374 case SHT_RELA:
3375 if (get_elf_backend_data (abfd)->may_use_rela_p)
3376 this_hdr->sh_entsize = bed->s->sizeof_rela;
3377 break;
3378
3379 case SHT_REL:
3380 if (get_elf_backend_data (abfd)->may_use_rel_p)
3381 this_hdr->sh_entsize = bed->s->sizeof_rel;
3382 break;
3383
3384 case SHT_GNU_versym:
3385 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3386 break;
3387
3388 case SHT_GNU_verdef:
3389 this_hdr->sh_entsize = 0;
3390 /* objcopy or strip will copy over sh_info, but may not set
3391 cverdefs. The linker will set cverdefs, but sh_info will be
3392 zero. */
3393 if (this_hdr->sh_info == 0)
3394 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3395 else
3396 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3397 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3398 break;
3399
3400 case SHT_GNU_verneed:
3401 this_hdr->sh_entsize = 0;
3402 /* objcopy or strip will copy over sh_info, but may not set
3403 cverrefs. The linker will set cverrefs, but sh_info will be
3404 zero. */
3405 if (this_hdr->sh_info == 0)
3406 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3407 else
3408 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3409 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3410 break;
3411
3412 case SHT_GROUP:
3413 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3414 break;
3415
3416 case SHT_GNU_HASH:
3417 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3418 break;
3419 }
3420
3421 if ((asect->flags & SEC_ALLOC) != 0)
3422 this_hdr->sh_flags |= SHF_ALLOC;
3423 if ((asect->flags & SEC_READONLY) == 0)
3424 this_hdr->sh_flags |= SHF_WRITE;
3425 if ((asect->flags & SEC_CODE) != 0)
3426 this_hdr->sh_flags |= SHF_EXECINSTR;
3427 if ((asect->flags & SEC_MERGE) != 0)
3428 {
3429 this_hdr->sh_flags |= SHF_MERGE;
3430 this_hdr->sh_entsize = asect->entsize;
3431 }
3432 if ((asect->flags & SEC_STRINGS) != 0)
3433 this_hdr->sh_flags |= SHF_STRINGS;
3434 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3435 this_hdr->sh_flags |= SHF_GROUP;
3436 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3437 {
3438 this_hdr->sh_flags |= SHF_TLS;
3439 if (asect->size == 0
3440 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3441 {
3442 struct bfd_link_order *o = asect->map_tail.link_order;
3443
3444 this_hdr->sh_size = 0;
3445 if (o != NULL)
3446 {
3447 this_hdr->sh_size = o->offset + o->size;
3448 if (this_hdr->sh_size != 0)
3449 this_hdr->sh_type = SHT_NOBITS;
3450 }
3451 }
3452 }
3453 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3454 this_hdr->sh_flags |= SHF_EXCLUDE;
3455
3456 /* If the section has relocs, set up a section header for the
3457 SHT_REL[A] section. If two relocation sections are required for
3458 this section, it is up to the processor-specific back-end to
3459 create the other. */
3460 if ((asect->flags & SEC_RELOC) != 0)
3461 {
3462 /* When doing a relocatable link, create both REL and RELA sections if
3463 needed. */
3464 if (arg->link_info
3465 /* Do the normal setup if we wouldn't create any sections here. */
3466 && esd->rel.count + esd->rela.count > 0
3467 && (bfd_link_relocatable (arg->link_info)
3468 || arg->link_info->emitrelocations))
3469 {
3470 if (esd->rel.count && esd->rel.hdr == NULL
3471 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3472 FALSE, delay_st_name_p))
3473 {
3474 arg->failed = TRUE;
3475 return;
3476 }
3477 if (esd->rela.count && esd->rela.hdr == NULL
3478 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3479 TRUE, delay_st_name_p))
3480 {
3481 arg->failed = TRUE;
3482 return;
3483 }
3484 }
3485 else if (!_bfd_elf_init_reloc_shdr (abfd,
3486 (asect->use_rela_p
3487 ? &esd->rela : &esd->rel),
3488 name,
3489 asect->use_rela_p,
3490 delay_st_name_p))
3491 {
3492 arg->failed = TRUE;
3493 return;
3494 }
3495 }
3496
3497 /* Check for processor-specific section types. */
3498 sh_type = this_hdr->sh_type;
3499 if (bed->elf_backend_fake_sections
3500 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3501 {
3502 arg->failed = TRUE;
3503 return;
3504 }
3505
3506 if (sh_type == SHT_NOBITS && asect->size != 0)
3507 {
3508 /* Don't change the header type from NOBITS if we are being
3509 called for objcopy --only-keep-debug. */
3510 this_hdr->sh_type = sh_type;
3511 }
3512 }
3513
3514 /* Fill in the contents of a SHT_GROUP section. Called from
3515 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3516 when ELF targets use the generic linker, ld. Called for ld -r
3517 from bfd_elf_final_link. */
3518
3519 void
3520 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3521 {
3522 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3523 asection *elt, *first;
3524 unsigned char *loc;
3525 bfd_boolean gas;
3526
3527 /* Ignore linker created group section. See elfNN_ia64_object_p in
3528 elfxx-ia64.c. */
3529 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3530 || sec->size == 0
3531 || *failedptr)
3532 return;
3533
3534 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3535 {
3536 unsigned long symindx = 0;
3537
3538 /* elf_group_id will have been set up by objcopy and the
3539 generic linker. */
3540 if (elf_group_id (sec) != NULL)
3541 symindx = elf_group_id (sec)->udata.i;
3542
3543 if (symindx == 0)
3544 {
3545 /* If called from the assembler, swap_out_syms will have set up
3546 elf_section_syms.
3547 PR 25699: A corrupt input file could contain bogus group info. */
3548 if (elf_section_syms (abfd) == NULL)
3549 {
3550 *failedptr = TRUE;
3551 return;
3552 }
3553 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3554 }
3555 elf_section_data (sec)->this_hdr.sh_info = symindx;
3556 }
3557 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3558 {
3559 /* The ELF backend linker sets sh_info to -2 when the group
3560 signature symbol is global, and thus the index can't be
3561 set until all local symbols are output. */
3562 asection *igroup;
3563 struct bfd_elf_section_data *sec_data;
3564 unsigned long symndx;
3565 unsigned long extsymoff;
3566 struct elf_link_hash_entry *h;
3567
3568 /* The point of this little dance to the first SHF_GROUP section
3569 then back to the SHT_GROUP section is that this gets us to
3570 the SHT_GROUP in the input object. */
3571 igroup = elf_sec_group (elf_next_in_group (sec));
3572 sec_data = elf_section_data (igroup);
3573 symndx = sec_data->this_hdr.sh_info;
3574 extsymoff = 0;
3575 if (!elf_bad_symtab (igroup->owner))
3576 {
3577 Elf_Internal_Shdr *symtab_hdr;
3578
3579 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3580 extsymoff = symtab_hdr->sh_info;
3581 }
3582 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3583 while (h->root.type == bfd_link_hash_indirect
3584 || h->root.type == bfd_link_hash_warning)
3585 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3586
3587 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3588 }
3589
3590 /* The contents won't be allocated for "ld -r" or objcopy. */
3591 gas = TRUE;
3592 if (sec->contents == NULL)
3593 {
3594 gas = FALSE;
3595 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3596
3597 /* Arrange for the section to be written out. */
3598 elf_section_data (sec)->this_hdr.contents = sec->contents;
3599 if (sec->contents == NULL)
3600 {
3601 *failedptr = TRUE;
3602 return;
3603 }
3604 }
3605
3606 loc = sec->contents + sec->size;
3607
3608 /* Get the pointer to the first section in the group that gas
3609 squirreled away here. objcopy arranges for this to be set to the
3610 start of the input section group. */
3611 first = elt = elf_next_in_group (sec);
3612
3613 /* First element is a flag word. Rest of section is elf section
3614 indices for all the sections of the group. Write them backwards
3615 just to keep the group in the same order as given in .section
3616 directives, not that it matters. */
3617 while (elt != NULL)
3618 {
3619 asection *s;
3620
3621 s = elt;
3622 if (!gas)
3623 s = s->output_section;
3624 if (s != NULL
3625 && !bfd_is_abs_section (s))
3626 {
3627 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3628 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3629
3630 if (elf_sec->rel.hdr != NULL
3631 && (gas
3632 || (input_elf_sec->rel.hdr != NULL
3633 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3634 {
3635 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3636 loc -= 4;
3637 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3638 }
3639 if (elf_sec->rela.hdr != NULL
3640 && (gas
3641 || (input_elf_sec->rela.hdr != NULL
3642 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3643 {
3644 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3645 loc -= 4;
3646 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3647 }
3648 loc -= 4;
3649 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3650 }
3651 elt = elf_next_in_group (elt);
3652 if (elt == first)
3653 break;
3654 }
3655
3656 loc -= 4;
3657 BFD_ASSERT (loc == sec->contents);
3658
3659 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3660 }
3661
3662 /* Given NAME, the name of a relocation section stripped of its
3663 .rel/.rela prefix, return the section in ABFD to which the
3664 relocations apply. */
3665
3666 asection *
3667 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3668 {
3669 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3670 section likely apply to .got.plt or .got section. */
3671 if (get_elf_backend_data (abfd)->want_got_plt
3672 && strcmp (name, ".plt") == 0)
3673 {
3674 asection *sec;
3675
3676 name = ".got.plt";
3677 sec = bfd_get_section_by_name (abfd, name);
3678 if (sec != NULL)
3679 return sec;
3680 name = ".got";
3681 }
3682
3683 return bfd_get_section_by_name (abfd, name);
3684 }
3685
3686 /* Return the section to which RELOC_SEC applies. */
3687
3688 static asection *
3689 elf_get_reloc_section (asection *reloc_sec)
3690 {
3691 const char *name;
3692 unsigned int type;
3693 bfd *abfd;
3694 const struct elf_backend_data *bed;
3695
3696 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3697 if (type != SHT_REL && type != SHT_RELA)
3698 return NULL;
3699
3700 /* We look up the section the relocs apply to by name. */
3701 name = reloc_sec->name;
3702 if (strncmp (name, ".rel", 4) != 0)
3703 return NULL;
3704 name += 4;
3705 if (type == SHT_RELA && *name++ != 'a')
3706 return NULL;
3707
3708 abfd = reloc_sec->owner;
3709 bed = get_elf_backend_data (abfd);
3710 return bed->get_reloc_section (abfd, name);
3711 }
3712
3713 /* Assign all ELF section numbers. The dummy first section is handled here
3714 too. The link/info pointers for the standard section types are filled
3715 in here too, while we're at it. LINK_INFO will be 0 when arriving
3716 here for objcopy, and when using the generic ELF linker. */
3717
3718 static bfd_boolean
3719 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3720 {
3721 struct elf_obj_tdata *t = elf_tdata (abfd);
3722 asection *sec;
3723 unsigned int section_number;
3724 Elf_Internal_Shdr **i_shdrp;
3725 struct bfd_elf_section_data *d;
3726 bfd_boolean need_symtab;
3727 size_t amt;
3728
3729 section_number = 1;
3730
3731 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3732
3733 /* SHT_GROUP sections are in relocatable files only. */
3734 if (link_info == NULL || !link_info->resolve_section_groups)
3735 {
3736 size_t reloc_count = 0;
3737
3738 /* Put SHT_GROUP sections first. */
3739 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3740 {
3741 d = elf_section_data (sec);
3742
3743 if (d->this_hdr.sh_type == SHT_GROUP)
3744 {
3745 if (sec->flags & SEC_LINKER_CREATED)
3746 {
3747 /* Remove the linker created SHT_GROUP sections. */
3748 bfd_section_list_remove (abfd, sec);
3749 abfd->section_count--;
3750 }
3751 else
3752 d->this_idx = section_number++;
3753 }
3754
3755 /* Count relocations. */
3756 reloc_count += sec->reloc_count;
3757 }
3758
3759 /* Clear HAS_RELOC if there are no relocations. */
3760 if (reloc_count == 0)
3761 abfd->flags &= ~HAS_RELOC;
3762 }
3763
3764 for (sec = abfd->sections; sec; sec = sec->next)
3765 {
3766 d = elf_section_data (sec);
3767
3768 if (d->this_hdr.sh_type != SHT_GROUP)
3769 d->this_idx = section_number++;
3770 if (d->this_hdr.sh_name != (unsigned int) -1)
3771 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3772 if (d->rel.hdr)
3773 {
3774 d->rel.idx = section_number++;
3775 if (d->rel.hdr->sh_name != (unsigned int) -1)
3776 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3777 }
3778 else
3779 d->rel.idx = 0;
3780
3781 if (d->rela.hdr)
3782 {
3783 d->rela.idx = section_number++;
3784 if (d->rela.hdr->sh_name != (unsigned int) -1)
3785 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3786 }
3787 else
3788 d->rela.idx = 0;
3789 }
3790
3791 need_symtab = (bfd_get_symcount (abfd) > 0
3792 || (link_info == NULL
3793 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3794 == HAS_RELOC)));
3795 if (need_symtab)
3796 {
3797 elf_onesymtab (abfd) = section_number++;
3798 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3799 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3800 {
3801 elf_section_list *entry;
3802
3803 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3804
3805 entry = bfd_zalloc (abfd, sizeof (*entry));
3806 entry->ndx = section_number++;
3807 elf_symtab_shndx_list (abfd) = entry;
3808 entry->hdr.sh_name
3809 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3810 ".symtab_shndx", FALSE);
3811 if (entry->hdr.sh_name == (unsigned int) -1)
3812 return FALSE;
3813 }
3814 elf_strtab_sec (abfd) = section_number++;
3815 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3816 }
3817
3818 elf_shstrtab_sec (abfd) = section_number++;
3819 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3820 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3821
3822 if (section_number >= SHN_LORESERVE)
3823 {
3824 /* xgettext:c-format */
3825 _bfd_error_handler (_("%pB: too many sections: %u"),
3826 abfd, section_number);
3827 return FALSE;
3828 }
3829
3830 elf_numsections (abfd) = section_number;
3831 elf_elfheader (abfd)->e_shnum = section_number;
3832
3833 /* Set up the list of section header pointers, in agreement with the
3834 indices. */
3835 amt = section_number * sizeof (Elf_Internal_Shdr *);
3836 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3837 if (i_shdrp == NULL)
3838 return FALSE;
3839
3840 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3841 sizeof (Elf_Internal_Shdr));
3842 if (i_shdrp[0] == NULL)
3843 {
3844 bfd_release (abfd, i_shdrp);
3845 return FALSE;
3846 }
3847
3848 elf_elfsections (abfd) = i_shdrp;
3849
3850 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3851 if (need_symtab)
3852 {
3853 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3854 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3855 {
3856 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3857 BFD_ASSERT (entry != NULL);
3858 i_shdrp[entry->ndx] = & entry->hdr;
3859 entry->hdr.sh_link = elf_onesymtab (abfd);
3860 }
3861 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3862 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3863 }
3864
3865 for (sec = abfd->sections; sec; sec = sec->next)
3866 {
3867 asection *s;
3868
3869 d = elf_section_data (sec);
3870
3871 i_shdrp[d->this_idx] = &d->this_hdr;
3872 if (d->rel.idx != 0)
3873 i_shdrp[d->rel.idx] = d->rel.hdr;
3874 if (d->rela.idx != 0)
3875 i_shdrp[d->rela.idx] = d->rela.hdr;
3876
3877 /* Fill in the sh_link and sh_info fields while we're at it. */
3878
3879 /* sh_link of a reloc section is the section index of the symbol
3880 table. sh_info is the section index of the section to which
3881 the relocation entries apply. */
3882 if (d->rel.idx != 0)
3883 {
3884 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3885 d->rel.hdr->sh_info = d->this_idx;
3886 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3887 }
3888 if (d->rela.idx != 0)
3889 {
3890 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3891 d->rela.hdr->sh_info = d->this_idx;
3892 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3893 }
3894
3895 /* We need to set up sh_link for SHF_LINK_ORDER. */
3896 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3897 {
3898 s = elf_linked_to_section (sec);
3899 /* We can now have a NULL linked section pointer.
3900 This happens when the sh_link field is 0, which is done
3901 when a linked to section is discarded but the linking
3902 section has been retained for some reason. */
3903 if (s)
3904 {
3905 /* Check discarded linkonce section. */
3906 if (discarded_section (s))
3907 {
3908 asection *kept;
3909 _bfd_error_handler
3910 /* xgettext:c-format */
3911 (_("%pB: sh_link of section `%pA' points to"
3912 " discarded section `%pA' of `%pB'"),
3913 abfd, d->this_hdr.bfd_section, s, s->owner);
3914 /* Point to the kept section if it has the same
3915 size as the discarded one. */
3916 kept = _bfd_elf_check_kept_section (s, link_info);
3917 if (kept == NULL)
3918 {
3919 bfd_set_error (bfd_error_bad_value);
3920 return FALSE;
3921 }
3922 s = kept;
3923 }
3924 /* Handle objcopy. */
3925 else if (s->output_section == NULL)
3926 {
3927 _bfd_error_handler
3928 /* xgettext:c-format */
3929 (_("%pB: sh_link of section `%pA' points to"
3930 " removed section `%pA' of `%pB'"),
3931 abfd, d->this_hdr.bfd_section, s, s->owner);
3932 bfd_set_error (bfd_error_bad_value);
3933 return FALSE;
3934 }
3935 s = s->output_section;
3936 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3937 }
3938 }
3939
3940 switch (d->this_hdr.sh_type)
3941 {
3942 case SHT_REL:
3943 case SHT_RELA:
3944 /* A reloc section which we are treating as a normal BFD
3945 section. sh_link is the section index of the symbol
3946 table. sh_info is the section index of the section to
3947 which the relocation entries apply. We assume that an
3948 allocated reloc section uses the dynamic symbol table.
3949 FIXME: How can we be sure? */
3950 s = bfd_get_section_by_name (abfd, ".dynsym");
3951 if (s != NULL)
3952 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3953
3954 s = elf_get_reloc_section (sec);
3955 if (s != NULL)
3956 {
3957 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3958 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3959 }
3960 break;
3961
3962 case SHT_STRTAB:
3963 /* We assume that a section named .stab*str is a stabs
3964 string section. We look for a section with the same name
3965 but without the trailing ``str'', and set its sh_link
3966 field to point to this section. */
3967 if (CONST_STRNEQ (sec->name, ".stab")
3968 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3969 {
3970 size_t len;
3971 char *alc;
3972
3973 len = strlen (sec->name);
3974 alc = (char *) bfd_malloc (len - 2);
3975 if (alc == NULL)
3976 return FALSE;
3977 memcpy (alc, sec->name, len - 3);
3978 alc[len - 3] = '\0';
3979 s = bfd_get_section_by_name (abfd, alc);
3980 free (alc);
3981 if (s != NULL)
3982 {
3983 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3984
3985 /* This is a .stab section. */
3986 elf_section_data (s)->this_hdr.sh_entsize = 12;
3987 }
3988 }
3989 break;
3990
3991 case SHT_DYNAMIC:
3992 case SHT_DYNSYM:
3993 case SHT_GNU_verneed:
3994 case SHT_GNU_verdef:
3995 /* sh_link is the section header index of the string table
3996 used for the dynamic entries, or the symbol table, or the
3997 version strings. */
3998 s = bfd_get_section_by_name (abfd, ".dynstr");
3999 if (s != NULL)
4000 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4001 break;
4002
4003 case SHT_GNU_LIBLIST:
4004 /* sh_link is the section header index of the prelink library
4005 list used for the dynamic entries, or the symbol table, or
4006 the version strings. */
4007 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4008 ? ".dynstr" : ".gnu.libstr");
4009 if (s != NULL)
4010 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4011 break;
4012
4013 case SHT_HASH:
4014 case SHT_GNU_HASH:
4015 case SHT_GNU_versym:
4016 /* sh_link is the section header index of the symbol table
4017 this hash table or version table is for. */
4018 s = bfd_get_section_by_name (abfd, ".dynsym");
4019 if (s != NULL)
4020 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4021 break;
4022
4023 case SHT_GROUP:
4024 d->this_hdr.sh_link = elf_onesymtab (abfd);
4025 }
4026 }
4027
4028 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4029 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4030 debug section name from .debug_* to .zdebug_* if needed. */
4031
4032 return TRUE;
4033 }
4034
4035 static bfd_boolean
4036 sym_is_global (bfd *abfd, asymbol *sym)
4037 {
4038 /* If the backend has a special mapping, use it. */
4039 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4040 if (bed->elf_backend_sym_is_global)
4041 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4042
4043 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4044 || bfd_is_und_section (bfd_asymbol_section (sym))
4045 || bfd_is_com_section (bfd_asymbol_section (sym)));
4046 }
4047
4048 /* Filter global symbols of ABFD to include in the import library. All
4049 SYMCOUNT symbols of ABFD can be examined from their pointers in
4050 SYMS. Pointers of symbols to keep should be stored contiguously at
4051 the beginning of that array.
4052
4053 Returns the number of symbols to keep. */
4054
4055 unsigned int
4056 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4057 asymbol **syms, long symcount)
4058 {
4059 long src_count, dst_count = 0;
4060
4061 for (src_count = 0; src_count < symcount; src_count++)
4062 {
4063 asymbol *sym = syms[src_count];
4064 char *name = (char *) bfd_asymbol_name (sym);
4065 struct bfd_link_hash_entry *h;
4066
4067 if (!sym_is_global (abfd, sym))
4068 continue;
4069
4070 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4071 if (h == NULL)
4072 continue;
4073 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4074 continue;
4075 if (h->linker_def || h->ldscript_def)
4076 continue;
4077
4078 syms[dst_count++] = sym;
4079 }
4080
4081 syms[dst_count] = NULL;
4082
4083 return dst_count;
4084 }
4085
4086 /* Don't output section symbols for sections that are not going to be
4087 output, that are duplicates or there is no BFD section. */
4088
4089 static bfd_boolean
4090 ignore_section_sym (bfd *abfd, asymbol *sym)
4091 {
4092 elf_symbol_type *type_ptr;
4093
4094 if (sym == NULL)
4095 return FALSE;
4096
4097 if ((sym->flags & BSF_SECTION_SYM) == 0)
4098 return FALSE;
4099
4100 if (sym->section == NULL)
4101 return TRUE;
4102
4103 type_ptr = elf_symbol_from (sym);
4104 return ((type_ptr != NULL
4105 && type_ptr->internal_elf_sym.st_shndx != 0
4106 && bfd_is_abs_section (sym->section))
4107 || !(sym->section->owner == abfd
4108 || (sym->section->output_section != NULL
4109 && sym->section->output_section->owner == abfd
4110 && sym->section->output_offset == 0)
4111 || bfd_is_abs_section (sym->section)));
4112 }
4113
4114 /* Map symbol from it's internal number to the external number, moving
4115 all local symbols to be at the head of the list. */
4116
4117 static bfd_boolean
4118 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4119 {
4120 unsigned int symcount = bfd_get_symcount (abfd);
4121 asymbol **syms = bfd_get_outsymbols (abfd);
4122 asymbol **sect_syms;
4123 unsigned int num_locals = 0;
4124 unsigned int num_globals = 0;
4125 unsigned int num_locals2 = 0;
4126 unsigned int num_globals2 = 0;
4127 unsigned int max_index = 0;
4128 unsigned int idx;
4129 asection *asect;
4130 asymbol **new_syms;
4131 size_t amt;
4132
4133 #ifdef DEBUG
4134 fprintf (stderr, "elf_map_symbols\n");
4135 fflush (stderr);
4136 #endif
4137
4138 for (asect = abfd->sections; asect; asect = asect->next)
4139 {
4140 if (max_index < asect->index)
4141 max_index = asect->index;
4142 }
4143
4144 max_index++;
4145 amt = max_index * sizeof (asymbol *);
4146 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4147 if (sect_syms == NULL)
4148 return FALSE;
4149 elf_section_syms (abfd) = sect_syms;
4150 elf_num_section_syms (abfd) = max_index;
4151
4152 /* Init sect_syms entries for any section symbols we have already
4153 decided to output. */
4154 for (idx = 0; idx < symcount; idx++)
4155 {
4156 asymbol *sym = syms[idx];
4157
4158 if ((sym->flags & BSF_SECTION_SYM) != 0
4159 && sym->value == 0
4160 && !ignore_section_sym (abfd, sym)
4161 && !bfd_is_abs_section (sym->section))
4162 {
4163 asection *sec = sym->section;
4164
4165 if (sec->owner != abfd)
4166 sec = sec->output_section;
4167
4168 sect_syms[sec->index] = syms[idx];
4169 }
4170 }
4171
4172 /* Classify all of the symbols. */
4173 for (idx = 0; idx < symcount; idx++)
4174 {
4175 if (sym_is_global (abfd, syms[idx]))
4176 num_globals++;
4177 else if (!ignore_section_sym (abfd, syms[idx]))
4178 num_locals++;
4179 }
4180
4181 /* We will be adding a section symbol for each normal BFD section. Most
4182 sections will already have a section symbol in outsymbols, but
4183 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4184 at least in that case. */
4185 for (asect = abfd->sections; asect; asect = asect->next)
4186 {
4187 if (sect_syms[asect->index] == NULL)
4188 {
4189 if (!sym_is_global (abfd, asect->symbol))
4190 num_locals++;
4191 else
4192 num_globals++;
4193 }
4194 }
4195
4196 /* Now sort the symbols so the local symbols are first. */
4197 amt = (num_locals + num_globals) * sizeof (asymbol *);
4198 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4199 if (new_syms == NULL)
4200 return FALSE;
4201
4202 for (idx = 0; idx < symcount; idx++)
4203 {
4204 asymbol *sym = syms[idx];
4205 unsigned int i;
4206
4207 if (sym_is_global (abfd, sym))
4208 i = num_locals + num_globals2++;
4209 else if (!ignore_section_sym (abfd, sym))
4210 i = num_locals2++;
4211 else
4212 continue;
4213 new_syms[i] = sym;
4214 sym->udata.i = i + 1;
4215 }
4216 for (asect = abfd->sections; asect; asect = asect->next)
4217 {
4218 if (sect_syms[asect->index] == NULL)
4219 {
4220 asymbol *sym = asect->symbol;
4221 unsigned int i;
4222
4223 sect_syms[asect->index] = sym;
4224 if (!sym_is_global (abfd, sym))
4225 i = num_locals2++;
4226 else
4227 i = num_locals + num_globals2++;
4228 new_syms[i] = sym;
4229 sym->udata.i = i + 1;
4230 }
4231 }
4232
4233 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4234
4235 *pnum_locals = num_locals;
4236 return TRUE;
4237 }
4238
4239 /* Align to the maximum file alignment that could be required for any
4240 ELF data structure. */
4241
4242 static inline file_ptr
4243 align_file_position (file_ptr off, int align)
4244 {
4245 return (off + align - 1) & ~(align - 1);
4246 }
4247
4248 /* Assign a file position to a section, optionally aligning to the
4249 required section alignment. */
4250
4251 file_ptr
4252 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4253 file_ptr offset,
4254 bfd_boolean align)
4255 {
4256 if (align && i_shdrp->sh_addralign > 1)
4257 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4258 i_shdrp->sh_offset = offset;
4259 if (i_shdrp->bfd_section != NULL)
4260 i_shdrp->bfd_section->filepos = offset;
4261 if (i_shdrp->sh_type != SHT_NOBITS)
4262 offset += i_shdrp->sh_size;
4263 return offset;
4264 }
4265
4266 /* Compute the file positions we are going to put the sections at, and
4267 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4268 is not NULL, this is being called by the ELF backend linker. */
4269
4270 bfd_boolean
4271 _bfd_elf_compute_section_file_positions (bfd *abfd,
4272 struct bfd_link_info *link_info)
4273 {
4274 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4275 struct fake_section_arg fsargs;
4276 bfd_boolean failed;
4277 struct elf_strtab_hash *strtab = NULL;
4278 Elf_Internal_Shdr *shstrtab_hdr;
4279 bfd_boolean need_symtab;
4280
4281 if (abfd->output_has_begun)
4282 return TRUE;
4283
4284 /* Do any elf backend specific processing first. */
4285 if (bed->elf_backend_begin_write_processing)
4286 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4287
4288 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4289 return FALSE;
4290
4291 fsargs.failed = FALSE;
4292 fsargs.link_info = link_info;
4293 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4294 if (fsargs.failed)
4295 return FALSE;
4296
4297 if (!assign_section_numbers (abfd, link_info))
4298 return FALSE;
4299
4300 /* The backend linker builds symbol table information itself. */
4301 need_symtab = (link_info == NULL
4302 && (bfd_get_symcount (abfd) > 0
4303 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4304 == HAS_RELOC)));
4305 if (need_symtab)
4306 {
4307 /* Non-zero if doing a relocatable link. */
4308 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4309
4310 if (! swap_out_syms (abfd, &strtab, relocatable_p, link_info))
4311 return FALSE;
4312 }
4313
4314 failed = FALSE;
4315 if (link_info == NULL)
4316 {
4317 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4318 if (failed)
4319 return FALSE;
4320 }
4321
4322 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4323 /* sh_name was set in init_file_header. */
4324 shstrtab_hdr->sh_type = SHT_STRTAB;
4325 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4326 shstrtab_hdr->sh_addr = 0;
4327 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4328 shstrtab_hdr->sh_entsize = 0;
4329 shstrtab_hdr->sh_link = 0;
4330 shstrtab_hdr->sh_info = 0;
4331 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4332 shstrtab_hdr->sh_addralign = 1;
4333
4334 if (!assign_file_positions_except_relocs (abfd, link_info))
4335 return FALSE;
4336
4337 if (need_symtab)
4338 {
4339 file_ptr off;
4340 Elf_Internal_Shdr *hdr;
4341
4342 off = elf_next_file_pos (abfd);
4343
4344 hdr = & elf_symtab_hdr (abfd);
4345 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4346
4347 if (elf_symtab_shndx_list (abfd) != NULL)
4348 {
4349 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4350 if (hdr->sh_size != 0)
4351 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4352 /* FIXME: What about other symtab_shndx sections in the list ? */
4353 }
4354
4355 hdr = &elf_tdata (abfd)->strtab_hdr;
4356 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4357
4358 elf_next_file_pos (abfd) = off;
4359
4360 /* Now that we know where the .strtab section goes, write it
4361 out. */
4362 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4363 || ! _bfd_elf_strtab_emit (abfd, strtab))
4364 return FALSE;
4365 _bfd_elf_strtab_free (strtab);
4366 }
4367
4368 abfd->output_has_begun = TRUE;
4369
4370 return TRUE;
4371 }
4372
4373 /* Make an initial estimate of the size of the program header. If we
4374 get the number wrong here, we'll redo section placement. */
4375
4376 static bfd_size_type
4377 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4378 {
4379 size_t segs;
4380 asection *s;
4381 const struct elf_backend_data *bed;
4382
4383 /* Assume we will need exactly two PT_LOAD segments: one for text
4384 and one for data. */
4385 segs = 2;
4386
4387 s = bfd_get_section_by_name (abfd, ".interp");
4388 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4389 {
4390 /* If we have a loadable interpreter section, we need a
4391 PT_INTERP segment. In this case, assume we also need a
4392 PT_PHDR segment, although that may not be true for all
4393 targets. */
4394 segs += 2;
4395 }
4396
4397 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4398 {
4399 /* We need a PT_DYNAMIC segment. */
4400 ++segs;
4401 }
4402
4403 if (info != NULL && info->relro)
4404 {
4405 /* We need a PT_GNU_RELRO segment. */
4406 ++segs;
4407 }
4408
4409 if (elf_eh_frame_hdr (abfd))
4410 {
4411 /* We need a PT_GNU_EH_FRAME segment. */
4412 ++segs;
4413 }
4414
4415 if (elf_stack_flags (abfd))
4416 {
4417 /* We need a PT_GNU_STACK segment. */
4418 ++segs;
4419 }
4420
4421 s = bfd_get_section_by_name (abfd,
4422 NOTE_GNU_PROPERTY_SECTION_NAME);
4423 if (s != NULL && s->size != 0)
4424 {
4425 /* We need a PT_GNU_PROPERTY segment. */
4426 ++segs;
4427 }
4428
4429 for (s = abfd->sections; s != NULL; s = s->next)
4430 {
4431 if ((s->flags & SEC_LOAD) != 0
4432 && elf_section_type (s) == SHT_NOTE)
4433 {
4434 unsigned int alignment_power;
4435 /* We need a PT_NOTE segment. */
4436 ++segs;
4437 /* Try to create just one PT_NOTE segment for all adjacent
4438 loadable SHT_NOTE sections. gABI requires that within a
4439 PT_NOTE segment (and also inside of each SHT_NOTE section)
4440 each note should have the same alignment. So we check
4441 whether the sections are correctly aligned. */
4442 alignment_power = s->alignment_power;
4443 while (s->next != NULL
4444 && s->next->alignment_power == alignment_power
4445 && (s->next->flags & SEC_LOAD) != 0
4446 && elf_section_type (s->next) == SHT_NOTE)
4447 s = s->next;
4448 }
4449 }
4450
4451 for (s = abfd->sections; s != NULL; s = s->next)
4452 {
4453 if (s->flags & SEC_THREAD_LOCAL)
4454 {
4455 /* We need a PT_TLS segment. */
4456 ++segs;
4457 break;
4458 }
4459 }
4460
4461 bed = get_elf_backend_data (abfd);
4462
4463 if ((abfd->flags & D_PAGED) != 0
4464 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4465 {
4466 /* Add a PT_GNU_MBIND segment for each mbind section. */
4467 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4468 for (s = abfd->sections; s != NULL; s = s->next)
4469 if (elf_section_flags (s) & SHF_GNU_MBIND)
4470 {
4471 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4472 {
4473 _bfd_error_handler
4474 /* xgettext:c-format */
4475 (_("%pB: GNU_MBIND section `%pA' has invalid "
4476 "sh_info field: %d"),
4477 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4478 continue;
4479 }
4480 /* Align mbind section to page size. */
4481 if (s->alignment_power < page_align_power)
4482 s->alignment_power = page_align_power;
4483 segs ++;
4484 }
4485 }
4486
4487 /* Let the backend count up any program headers it might need. */
4488 if (bed->elf_backend_additional_program_headers)
4489 {
4490 int a;
4491
4492 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4493 if (a == -1)
4494 abort ();
4495 segs += a;
4496 }
4497
4498 return segs * bed->s->sizeof_phdr;
4499 }
4500
4501 /* Find the segment that contains the output_section of section. */
4502
4503 Elf_Internal_Phdr *
4504 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4505 {
4506 struct elf_segment_map *m;
4507 Elf_Internal_Phdr *p;
4508
4509 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4510 m != NULL;
4511 m = m->next, p++)
4512 {
4513 int i;
4514
4515 for (i = m->count - 1; i >= 0; i--)
4516 if (m->sections[i] == section)
4517 return p;
4518 }
4519
4520 return NULL;
4521 }
4522
4523 /* Create a mapping from a set of sections to a program segment. */
4524
4525 static struct elf_segment_map *
4526 make_mapping (bfd *abfd,
4527 asection **sections,
4528 unsigned int from,
4529 unsigned int to,
4530 bfd_boolean phdr)
4531 {
4532 struct elf_segment_map *m;
4533 unsigned int i;
4534 asection **hdrpp;
4535 size_t amt;
4536
4537 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4538 amt += (to - from) * sizeof (asection *);
4539 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4540 if (m == NULL)
4541 return NULL;
4542 m->next = NULL;
4543 m->p_type = PT_LOAD;
4544 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4545 m->sections[i - from] = *hdrpp;
4546 m->count = to - from;
4547
4548 if (from == 0 && phdr)
4549 {
4550 /* Include the headers in the first PT_LOAD segment. */
4551 m->includes_filehdr = 1;
4552 m->includes_phdrs = 1;
4553 }
4554
4555 return m;
4556 }
4557
4558 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4559 on failure. */
4560
4561 struct elf_segment_map *
4562 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4563 {
4564 struct elf_segment_map *m;
4565
4566 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4567 sizeof (struct elf_segment_map));
4568 if (m == NULL)
4569 return NULL;
4570 m->next = NULL;
4571 m->p_type = PT_DYNAMIC;
4572 m->count = 1;
4573 m->sections[0] = dynsec;
4574
4575 return m;
4576 }
4577
4578 /* Possibly add or remove segments from the segment map. */
4579
4580 static bfd_boolean
4581 elf_modify_segment_map (bfd *abfd,
4582 struct bfd_link_info *info,
4583 bfd_boolean remove_empty_load)
4584 {
4585 struct elf_segment_map **m;
4586 const struct elf_backend_data *bed;
4587
4588 /* The placement algorithm assumes that non allocated sections are
4589 not in PT_LOAD segments. We ensure this here by removing such
4590 sections from the segment map. We also remove excluded
4591 sections. Finally, any PT_LOAD segment without sections is
4592 removed. */
4593 m = &elf_seg_map (abfd);
4594 while (*m)
4595 {
4596 unsigned int i, new_count;
4597
4598 for (new_count = 0, i = 0; i < (*m)->count; i++)
4599 {
4600 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4601 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4602 || (*m)->p_type != PT_LOAD))
4603 {
4604 (*m)->sections[new_count] = (*m)->sections[i];
4605 new_count++;
4606 }
4607 }
4608 (*m)->count = new_count;
4609
4610 if (remove_empty_load
4611 && (*m)->p_type == PT_LOAD
4612 && (*m)->count == 0
4613 && !(*m)->includes_phdrs)
4614 *m = (*m)->next;
4615 else
4616 m = &(*m)->next;
4617 }
4618
4619 bed = get_elf_backend_data (abfd);
4620 if (bed->elf_backend_modify_segment_map != NULL)
4621 {
4622 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4623 return FALSE;
4624 }
4625
4626 return TRUE;
4627 }
4628
4629 #define IS_TBSS(s) \
4630 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4631
4632 /* Set up a mapping from BFD sections to program segments. */
4633
4634 bfd_boolean
4635 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4636 {
4637 unsigned int count;
4638 struct elf_segment_map *m;
4639 asection **sections = NULL;
4640 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4641 bfd_boolean no_user_phdrs;
4642
4643 no_user_phdrs = elf_seg_map (abfd) == NULL;
4644
4645 if (info != NULL)
4646 info->user_phdrs = !no_user_phdrs;
4647
4648 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4649 {
4650 asection *s;
4651 unsigned int i;
4652 struct elf_segment_map *mfirst;
4653 struct elf_segment_map **pm;
4654 asection *last_hdr;
4655 bfd_vma last_size;
4656 unsigned int hdr_index;
4657 bfd_vma maxpagesize;
4658 asection **hdrpp;
4659 bfd_boolean phdr_in_segment;
4660 bfd_boolean writable;
4661 bfd_boolean executable;
4662 unsigned int tls_count = 0;
4663 asection *first_tls = NULL;
4664 asection *first_mbind = NULL;
4665 asection *dynsec, *eh_frame_hdr;
4666 size_t amt;
4667 bfd_vma addr_mask, wrap_to = 0; /* Bytes. */
4668 bfd_size_type phdr_size; /* Octets/bytes. */
4669 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
4670
4671 /* Select the allocated sections, and sort them. */
4672
4673 amt = bfd_count_sections (abfd) * sizeof (asection *);
4674 sections = (asection **) bfd_malloc (amt);
4675 if (sections == NULL)
4676 goto error_return;
4677
4678 /* Calculate top address, avoiding undefined behaviour of shift
4679 left operator when shift count is equal to size of type
4680 being shifted. */
4681 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4682 addr_mask = (addr_mask << 1) + 1;
4683
4684 i = 0;
4685 for (s = abfd->sections; s != NULL; s = s->next)
4686 {
4687 if ((s->flags & SEC_ALLOC) != 0)
4688 {
4689 /* target_index is unused until bfd_elf_final_link
4690 starts output of section symbols. Use it to make
4691 qsort stable. */
4692 s->target_index = i;
4693 sections[i] = s;
4694 ++i;
4695 /* A wrapping section potentially clashes with header. */
4696 if (((s->lma + s->size / opb) & addr_mask) < (s->lma & addr_mask))
4697 wrap_to = (s->lma + s->size / opb) & addr_mask;
4698 }
4699 }
4700 BFD_ASSERT (i <= bfd_count_sections (abfd));
4701 count = i;
4702
4703 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4704
4705 phdr_size = elf_program_header_size (abfd);
4706 if (phdr_size == (bfd_size_type) -1)
4707 phdr_size = get_program_header_size (abfd, info);
4708 phdr_size += bed->s->sizeof_ehdr;
4709 /* phdr_size is compared to LMA values which are in bytes. */
4710 phdr_size /= opb;
4711 maxpagesize = bed->maxpagesize;
4712 if (maxpagesize == 0)
4713 maxpagesize = 1;
4714 phdr_in_segment = info != NULL && info->load_phdrs;
4715 if (count != 0
4716 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4717 >= (phdr_size & (maxpagesize - 1))))
4718 /* For compatibility with old scripts that may not be using
4719 SIZEOF_HEADERS, add headers when it looks like space has
4720 been left for them. */
4721 phdr_in_segment = TRUE;
4722
4723 /* Build the mapping. */
4724 mfirst = NULL;
4725 pm = &mfirst;
4726
4727 /* If we have a .interp section, then create a PT_PHDR segment for
4728 the program headers and a PT_INTERP segment for the .interp
4729 section. */
4730 s = bfd_get_section_by_name (abfd, ".interp");
4731 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4732 {
4733 amt = sizeof (struct elf_segment_map);
4734 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4735 if (m == NULL)
4736 goto error_return;
4737 m->next = NULL;
4738 m->p_type = PT_PHDR;
4739 m->p_flags = PF_R;
4740 m->p_flags_valid = 1;
4741 m->includes_phdrs = 1;
4742 phdr_in_segment = TRUE;
4743 *pm = m;
4744 pm = &m->next;
4745
4746 amt = sizeof (struct elf_segment_map);
4747 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4748 if (m == NULL)
4749 goto error_return;
4750 m->next = NULL;
4751 m->p_type = PT_INTERP;
4752 m->count = 1;
4753 m->sections[0] = s;
4754
4755 *pm = m;
4756 pm = &m->next;
4757 }
4758
4759 /* Look through the sections. We put sections in the same program
4760 segment when the start of the second section can be placed within
4761 a few bytes of the end of the first section. */
4762 last_hdr = NULL;
4763 last_size = 0;
4764 hdr_index = 0;
4765 writable = FALSE;
4766 executable = FALSE;
4767 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4768 if (dynsec != NULL
4769 && (dynsec->flags & SEC_LOAD) == 0)
4770 dynsec = NULL;
4771
4772 if ((abfd->flags & D_PAGED) == 0)
4773 phdr_in_segment = FALSE;
4774
4775 /* Deal with -Ttext or something similar such that the first section
4776 is not adjacent to the program headers. This is an
4777 approximation, since at this point we don't know exactly how many
4778 program headers we will need. */
4779 if (phdr_in_segment && count > 0)
4780 {
4781 bfd_vma phdr_lma; /* Bytes. */
4782 bfd_boolean separate_phdr = FALSE;
4783
4784 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4785 if (info != NULL
4786 && info->separate_code
4787 && (sections[0]->flags & SEC_CODE) != 0)
4788 {
4789 /* If data sections should be separate from code and
4790 thus not executable, and the first section is
4791 executable then put the file and program headers in
4792 their own PT_LOAD. */
4793 separate_phdr = TRUE;
4794 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4795 == (sections[0]->lma & addr_mask & -maxpagesize)))
4796 {
4797 /* The file and program headers are currently on the
4798 same page as the first section. Put them on the
4799 previous page if we can. */
4800 if (phdr_lma >= maxpagesize)
4801 phdr_lma -= maxpagesize;
4802 else
4803 separate_phdr = FALSE;
4804 }
4805 }
4806 if ((sections[0]->lma & addr_mask) < phdr_lma
4807 || (sections[0]->lma & addr_mask) < phdr_size)
4808 /* If file and program headers would be placed at the end
4809 of memory then it's probably better to omit them. */
4810 phdr_in_segment = FALSE;
4811 else if (phdr_lma < wrap_to)
4812 /* If a section wraps around to where we'll be placing
4813 file and program headers, then the headers will be
4814 overwritten. */
4815 phdr_in_segment = FALSE;
4816 else if (separate_phdr)
4817 {
4818 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4819 if (m == NULL)
4820 goto error_return;
4821 m->p_paddr = phdr_lma * opb;
4822 m->p_vaddr_offset
4823 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4824 m->p_paddr_valid = 1;
4825 *pm = m;
4826 pm = &m->next;
4827 phdr_in_segment = FALSE;
4828 }
4829 }
4830
4831 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4832 {
4833 asection *hdr;
4834 bfd_boolean new_segment;
4835
4836 hdr = *hdrpp;
4837
4838 /* See if this section and the last one will fit in the same
4839 segment. */
4840
4841 if (last_hdr == NULL)
4842 {
4843 /* If we don't have a segment yet, then we don't need a new
4844 one (we build the last one after this loop). */
4845 new_segment = FALSE;
4846 }
4847 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4848 {
4849 /* If this section has a different relation between the
4850 virtual address and the load address, then we need a new
4851 segment. */
4852 new_segment = TRUE;
4853 }
4854 else if (hdr->lma < last_hdr->lma + last_size
4855 || last_hdr->lma + last_size < last_hdr->lma)
4856 {
4857 /* If this section has a load address that makes it overlap
4858 the previous section, then we need a new segment. */
4859 new_segment = TRUE;
4860 }
4861 else if ((abfd->flags & D_PAGED) != 0
4862 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4863 == (hdr->lma & -maxpagesize)))
4864 {
4865 /* If we are demand paged then we can't map two disk
4866 pages onto the same memory page. */
4867 new_segment = FALSE;
4868 }
4869 /* In the next test we have to be careful when last_hdr->lma is close
4870 to the end of the address space. If the aligned address wraps
4871 around to the start of the address space, then there are no more
4872 pages left in memory and it is OK to assume that the current
4873 section can be included in the current segment. */
4874 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4875 + maxpagesize > last_hdr->lma)
4876 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4877 + maxpagesize <= hdr->lma))
4878 {
4879 /* If putting this section in this segment would force us to
4880 skip a page in the segment, then we need a new segment. */
4881 new_segment = TRUE;
4882 }
4883 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4884 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4885 {
4886 /* We don't want to put a loaded section after a
4887 nonloaded (ie. bss style) section in the same segment
4888 as that will force the non-loaded section to be loaded.
4889 Consider .tbss sections as loaded for this purpose. */
4890 new_segment = TRUE;
4891 }
4892 else if ((abfd->flags & D_PAGED) == 0)
4893 {
4894 /* If the file is not demand paged, which means that we
4895 don't require the sections to be correctly aligned in the
4896 file, then there is no other reason for a new segment. */
4897 new_segment = FALSE;
4898 }
4899 else if (info != NULL
4900 && info->separate_code
4901 && executable != ((hdr->flags & SEC_CODE) != 0))
4902 {
4903 new_segment = TRUE;
4904 }
4905 else if (! writable
4906 && (hdr->flags & SEC_READONLY) == 0)
4907 {
4908 /* We don't want to put a writable section in a read only
4909 segment. */
4910 new_segment = TRUE;
4911 }
4912 else
4913 {
4914 /* Otherwise, we can use the same segment. */
4915 new_segment = FALSE;
4916 }
4917
4918 /* Allow interested parties a chance to override our decision. */
4919 if (last_hdr != NULL
4920 && info != NULL
4921 && info->callbacks->override_segment_assignment != NULL)
4922 new_segment
4923 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4924 last_hdr,
4925 new_segment);
4926
4927 if (! new_segment)
4928 {
4929 if ((hdr->flags & SEC_READONLY) == 0)
4930 writable = TRUE;
4931 if ((hdr->flags & SEC_CODE) != 0)
4932 executable = TRUE;
4933 last_hdr = hdr;
4934 /* .tbss sections effectively have zero size. */
4935 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4936 continue;
4937 }
4938
4939 /* We need a new program segment. We must create a new program
4940 header holding all the sections from hdr_index until hdr. */
4941
4942 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4943 if (m == NULL)
4944 goto error_return;
4945
4946 *pm = m;
4947 pm = &m->next;
4948
4949 if ((hdr->flags & SEC_READONLY) == 0)
4950 writable = TRUE;
4951 else
4952 writable = FALSE;
4953
4954 if ((hdr->flags & SEC_CODE) == 0)
4955 executable = FALSE;
4956 else
4957 executable = TRUE;
4958
4959 last_hdr = hdr;
4960 /* .tbss sections effectively have zero size. */
4961 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4962 hdr_index = i;
4963 phdr_in_segment = FALSE;
4964 }
4965
4966 /* Create a final PT_LOAD program segment, but not if it's just
4967 for .tbss. */
4968 if (last_hdr != NULL
4969 && (i - hdr_index != 1
4970 || !IS_TBSS (last_hdr)))
4971 {
4972 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4973 if (m == NULL)
4974 goto error_return;
4975
4976 *pm = m;
4977 pm = &m->next;
4978 }
4979
4980 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4981 if (dynsec != NULL)
4982 {
4983 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4984 if (m == NULL)
4985 goto error_return;
4986 *pm = m;
4987 pm = &m->next;
4988 }
4989
4990 /* For each batch of consecutive loadable SHT_NOTE sections,
4991 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4992 because if we link together nonloadable .note sections and
4993 loadable .note sections, we will generate two .note sections
4994 in the output file. */
4995 for (s = abfd->sections; s != NULL; s = s->next)
4996 {
4997 if ((s->flags & SEC_LOAD) != 0
4998 && elf_section_type (s) == SHT_NOTE)
4999 {
5000 asection *s2;
5001 unsigned int alignment_power = s->alignment_power;
5002
5003 count = 1;
5004 for (s2 = s; s2->next != NULL; s2 = s2->next)
5005 {
5006 if (s2->next->alignment_power == alignment_power
5007 && (s2->next->flags & SEC_LOAD) != 0
5008 && elf_section_type (s2->next) == SHT_NOTE
5009 && align_power (s2->lma + s2->size / opb,
5010 alignment_power)
5011 == s2->next->lma)
5012 count++;
5013 else
5014 break;
5015 }
5016 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5017 amt += count * sizeof (asection *);
5018 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5019 if (m == NULL)
5020 goto error_return;
5021 m->next = NULL;
5022 m->p_type = PT_NOTE;
5023 m->count = count;
5024 while (count > 1)
5025 {
5026 m->sections[m->count - count--] = s;
5027 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5028 s = s->next;
5029 }
5030 m->sections[m->count - 1] = s;
5031 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5032 *pm = m;
5033 pm = &m->next;
5034 }
5035 if (s->flags & SEC_THREAD_LOCAL)
5036 {
5037 if (! tls_count)
5038 first_tls = s;
5039 tls_count++;
5040 }
5041 if (first_mbind == NULL
5042 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5043 first_mbind = s;
5044 }
5045
5046 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5047 if (tls_count > 0)
5048 {
5049 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5050 amt += tls_count * sizeof (asection *);
5051 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5052 if (m == NULL)
5053 goto error_return;
5054 m->next = NULL;
5055 m->p_type = PT_TLS;
5056 m->count = tls_count;
5057 /* Mandated PF_R. */
5058 m->p_flags = PF_R;
5059 m->p_flags_valid = 1;
5060 s = first_tls;
5061 for (i = 0; i < tls_count; ++i)
5062 {
5063 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5064 {
5065 _bfd_error_handler
5066 (_("%pB: TLS sections are not adjacent:"), abfd);
5067 s = first_tls;
5068 i = 0;
5069 while (i < tls_count)
5070 {
5071 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5072 {
5073 _bfd_error_handler (_(" TLS: %pA"), s);
5074 i++;
5075 }
5076 else
5077 _bfd_error_handler (_(" non-TLS: %pA"), s);
5078 s = s->next;
5079 }
5080 bfd_set_error (bfd_error_bad_value);
5081 goto error_return;
5082 }
5083 m->sections[i] = s;
5084 s = s->next;
5085 }
5086
5087 *pm = m;
5088 pm = &m->next;
5089 }
5090
5091 if (first_mbind
5092 && (abfd->flags & D_PAGED) != 0
5093 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5094 for (s = first_mbind; s != NULL; s = s->next)
5095 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5096 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5097 {
5098 /* Mandated PF_R. */
5099 unsigned long p_flags = PF_R;
5100 if ((s->flags & SEC_READONLY) == 0)
5101 p_flags |= PF_W;
5102 if ((s->flags & SEC_CODE) != 0)
5103 p_flags |= PF_X;
5104
5105 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5106 m = bfd_zalloc (abfd, amt);
5107 if (m == NULL)
5108 goto error_return;
5109 m->next = NULL;
5110 m->p_type = (PT_GNU_MBIND_LO
5111 + elf_section_data (s)->this_hdr.sh_info);
5112 m->count = 1;
5113 m->p_flags_valid = 1;
5114 m->sections[0] = s;
5115 m->p_flags = p_flags;
5116
5117 *pm = m;
5118 pm = &m->next;
5119 }
5120
5121 s = bfd_get_section_by_name (abfd,
5122 NOTE_GNU_PROPERTY_SECTION_NAME);
5123 if (s != NULL && s->size != 0)
5124 {
5125 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5126 m = bfd_zalloc (abfd, amt);
5127 if (m == NULL)
5128 goto error_return;
5129 m->next = NULL;
5130 m->p_type = PT_GNU_PROPERTY;
5131 m->count = 1;
5132 m->p_flags_valid = 1;
5133 m->sections[0] = s;
5134 m->p_flags = PF_R;
5135 *pm = m;
5136 pm = &m->next;
5137 }
5138
5139 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5140 segment. */
5141 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5142 if (eh_frame_hdr != NULL
5143 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5144 {
5145 amt = sizeof (struct elf_segment_map);
5146 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5147 if (m == NULL)
5148 goto error_return;
5149 m->next = NULL;
5150 m->p_type = PT_GNU_EH_FRAME;
5151 m->count = 1;
5152 m->sections[0] = eh_frame_hdr->output_section;
5153
5154 *pm = m;
5155 pm = &m->next;
5156 }
5157
5158 if (elf_stack_flags (abfd))
5159 {
5160 amt = sizeof (struct elf_segment_map);
5161 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5162 if (m == NULL)
5163 goto error_return;
5164 m->next = NULL;
5165 m->p_type = PT_GNU_STACK;
5166 m->p_flags = elf_stack_flags (abfd);
5167 m->p_align = bed->stack_align;
5168 m->p_flags_valid = 1;
5169 m->p_align_valid = m->p_align != 0;
5170 if (info->stacksize > 0)
5171 {
5172 m->p_size = info->stacksize;
5173 m->p_size_valid = 1;
5174 }
5175
5176 *pm = m;
5177 pm = &m->next;
5178 }
5179
5180 if (info != NULL && info->relro)
5181 {
5182 for (m = mfirst; m != NULL; m = m->next)
5183 {
5184 if (m->p_type == PT_LOAD
5185 && m->count != 0
5186 && m->sections[0]->vma >= info->relro_start
5187 && m->sections[0]->vma < info->relro_end)
5188 {
5189 i = m->count;
5190 while (--i != (unsigned) -1)
5191 {
5192 if (m->sections[i]->size > 0
5193 && (m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5194 == (SEC_LOAD | SEC_HAS_CONTENTS))
5195 break;
5196 }
5197
5198 if (i != (unsigned) -1)
5199 break;
5200 }
5201 }
5202
5203 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5204 if (m != NULL)
5205 {
5206 amt = sizeof (struct elf_segment_map);
5207 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5208 if (m == NULL)
5209 goto error_return;
5210 m->next = NULL;
5211 m->p_type = PT_GNU_RELRO;
5212 *pm = m;
5213 pm = &m->next;
5214 }
5215 }
5216
5217 free (sections);
5218 elf_seg_map (abfd) = mfirst;
5219 }
5220
5221 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5222 return FALSE;
5223
5224 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5225 ++count;
5226 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5227
5228 return TRUE;
5229
5230 error_return:
5231 free (sections);
5232 return FALSE;
5233 }
5234
5235 /* Sort sections by address. */
5236
5237 static int
5238 elf_sort_sections (const void *arg1, const void *arg2)
5239 {
5240 const asection *sec1 = *(const asection **) arg1;
5241 const asection *sec2 = *(const asection **) arg2;
5242 bfd_size_type size1, size2;
5243
5244 /* Sort by LMA first, since this is the address used to
5245 place the section into a segment. */
5246 if (sec1->lma < sec2->lma)
5247 return -1;
5248 else if (sec1->lma > sec2->lma)
5249 return 1;
5250
5251 /* Then sort by VMA. Normally the LMA and the VMA will be
5252 the same, and this will do nothing. */
5253 if (sec1->vma < sec2->vma)
5254 return -1;
5255 else if (sec1->vma > sec2->vma)
5256 return 1;
5257
5258 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5259
5260 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 \
5261 && (x)->size != 0)
5262
5263 if (TOEND (sec1))
5264 {
5265 if (!TOEND (sec2))
5266 return 1;
5267 }
5268 else if (TOEND (sec2))
5269 return -1;
5270
5271 #undef TOEND
5272
5273 /* Sort by size, to put zero sized sections
5274 before others at the same address. */
5275
5276 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5277 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5278
5279 if (size1 < size2)
5280 return -1;
5281 if (size1 > size2)
5282 return 1;
5283
5284 return sec1->target_index - sec2->target_index;
5285 }
5286
5287 /* This qsort comparison functions sorts PT_LOAD segments first and
5288 by p_paddr, for assign_file_positions_for_load_sections. */
5289
5290 static int
5291 elf_sort_segments (const void *arg1, const void *arg2)
5292 {
5293 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5294 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5295
5296 if (m1->p_type != m2->p_type)
5297 {
5298 if (m1->p_type == PT_NULL)
5299 return 1;
5300 if (m2->p_type == PT_NULL)
5301 return -1;
5302 return m1->p_type < m2->p_type ? -1 : 1;
5303 }
5304 if (m1->includes_filehdr != m2->includes_filehdr)
5305 return m1->includes_filehdr ? -1 : 1;
5306 if (m1->no_sort_lma != m2->no_sort_lma)
5307 return m1->no_sort_lma ? -1 : 1;
5308 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5309 {
5310 bfd_vma lma1, lma2; /* Octets. */
5311 lma1 = 0;
5312 if (m1->p_paddr_valid)
5313 lma1 = m1->p_paddr;
5314 else if (m1->count != 0)
5315 {
5316 unsigned int opb = bfd_octets_per_byte (m1->sections[0]->owner,
5317 m1->sections[0]);
5318 lma1 = (m1->sections[0]->lma + m1->p_vaddr_offset) * opb;
5319 }
5320 lma2 = 0;
5321 if (m2->p_paddr_valid)
5322 lma2 = m2->p_paddr;
5323 else if (m2->count != 0)
5324 {
5325 unsigned int opb = bfd_octets_per_byte (m2->sections[0]->owner,
5326 m2->sections[0]);
5327 lma2 = (m2->sections[0]->lma + m2->p_vaddr_offset) * opb;
5328 }
5329 if (lma1 != lma2)
5330 return lma1 < lma2 ? -1 : 1;
5331 }
5332 if (m1->idx != m2->idx)
5333 return m1->idx < m2->idx ? -1 : 1;
5334 return 0;
5335 }
5336
5337 /* Ian Lance Taylor writes:
5338
5339 We shouldn't be using % with a negative signed number. That's just
5340 not good. We have to make sure either that the number is not
5341 negative, or that the number has an unsigned type. When the types
5342 are all the same size they wind up as unsigned. When file_ptr is a
5343 larger signed type, the arithmetic winds up as signed long long,
5344 which is wrong.
5345
5346 What we're trying to say here is something like ``increase OFF by
5347 the least amount that will cause it to be equal to the VMA modulo
5348 the page size.'' */
5349 /* In other words, something like:
5350
5351 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5352 off_offset = off % bed->maxpagesize;
5353 if (vma_offset < off_offset)
5354 adjustment = vma_offset + bed->maxpagesize - off_offset;
5355 else
5356 adjustment = vma_offset - off_offset;
5357
5358 which can be collapsed into the expression below. */
5359
5360 static file_ptr
5361 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5362 {
5363 /* PR binutils/16199: Handle an alignment of zero. */
5364 if (maxpagesize == 0)
5365 maxpagesize = 1;
5366 return ((vma - off) % maxpagesize);
5367 }
5368
5369 static void
5370 print_segment_map (const struct elf_segment_map *m)
5371 {
5372 unsigned int j;
5373 const char *pt = get_segment_type (m->p_type);
5374 char buf[32];
5375
5376 if (pt == NULL)
5377 {
5378 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5379 sprintf (buf, "LOPROC+%7.7x",
5380 (unsigned int) (m->p_type - PT_LOPROC));
5381 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5382 sprintf (buf, "LOOS+%7.7x",
5383 (unsigned int) (m->p_type - PT_LOOS));
5384 else
5385 snprintf (buf, sizeof (buf), "%8.8x",
5386 (unsigned int) m->p_type);
5387 pt = buf;
5388 }
5389 fflush (stdout);
5390 fprintf (stderr, "%s:", pt);
5391 for (j = 0; j < m->count; j++)
5392 fprintf (stderr, " %s", m->sections [j]->name);
5393 putc ('\n',stderr);
5394 fflush (stderr);
5395 }
5396
5397 static bfd_boolean
5398 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5399 {
5400 void *buf;
5401 bfd_boolean ret;
5402
5403 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5404 return FALSE;
5405 buf = bfd_zmalloc (len);
5406 if (buf == NULL)
5407 return FALSE;
5408 ret = bfd_bwrite (buf, len, abfd) == len;
5409 free (buf);
5410 return ret;
5411 }
5412
5413 /* Assign file positions to the sections based on the mapping from
5414 sections to segments. This function also sets up some fields in
5415 the file header. */
5416
5417 static bfd_boolean
5418 assign_file_positions_for_load_sections (bfd *abfd,
5419 struct bfd_link_info *link_info)
5420 {
5421 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5422 struct elf_segment_map *m;
5423 struct elf_segment_map *phdr_load_seg;
5424 Elf_Internal_Phdr *phdrs;
5425 Elf_Internal_Phdr *p;
5426 file_ptr off; /* Octets. */
5427 bfd_size_type maxpagesize;
5428 unsigned int alloc, actual;
5429 unsigned int i, j;
5430 struct elf_segment_map **sorted_seg_map;
5431 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
5432
5433 if (link_info == NULL
5434 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5435 return FALSE;
5436
5437 alloc = 0;
5438 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5439 m->idx = alloc++;
5440
5441 if (alloc)
5442 {
5443 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5444 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5445 }
5446 else
5447 {
5448 /* PR binutils/12467. */
5449 elf_elfheader (abfd)->e_phoff = 0;
5450 elf_elfheader (abfd)->e_phentsize = 0;
5451 }
5452
5453 elf_elfheader (abfd)->e_phnum = alloc;
5454
5455 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5456 {
5457 actual = alloc;
5458 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5459 }
5460 else
5461 {
5462 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5463 BFD_ASSERT (elf_program_header_size (abfd)
5464 == actual * bed->s->sizeof_phdr);
5465 BFD_ASSERT (actual >= alloc);
5466 }
5467
5468 if (alloc == 0)
5469 {
5470 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5471 return TRUE;
5472 }
5473
5474 /* We're writing the size in elf_program_header_size (abfd),
5475 see assign_file_positions_except_relocs, so make sure we have
5476 that amount allocated, with trailing space cleared.
5477 The variable alloc contains the computed need, while
5478 elf_program_header_size (abfd) contains the size used for the
5479 layout.
5480 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5481 where the layout is forced to according to a larger size in the
5482 last iterations for the testcase ld-elf/header. */
5483 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5484 + alloc * sizeof (*sorted_seg_map)));
5485 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5486 elf_tdata (abfd)->phdr = phdrs;
5487 if (phdrs == NULL)
5488 return FALSE;
5489
5490 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5491 {
5492 sorted_seg_map[j] = m;
5493 /* If elf_segment_map is not from map_sections_to_segments, the
5494 sections may not be correctly ordered. NOTE: sorting should
5495 not be done to the PT_NOTE section of a corefile, which may
5496 contain several pseudo-sections artificially created by bfd.
5497 Sorting these pseudo-sections breaks things badly. */
5498 if (m->count > 1
5499 && !(elf_elfheader (abfd)->e_type == ET_CORE
5500 && m->p_type == PT_NOTE))
5501 {
5502 for (i = 0; i < m->count; i++)
5503 m->sections[i]->target_index = i;
5504 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5505 elf_sort_sections);
5506 }
5507 }
5508 if (alloc > 1)
5509 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5510 elf_sort_segments);
5511
5512 maxpagesize = 1;
5513 if ((abfd->flags & D_PAGED) != 0)
5514 maxpagesize = bed->maxpagesize;
5515
5516 /* Sections must map to file offsets past the ELF file header. */
5517 off = bed->s->sizeof_ehdr;
5518 /* And if one of the PT_LOAD headers doesn't include the program
5519 headers then we'll be mapping program headers in the usual
5520 position after the ELF file header. */
5521 phdr_load_seg = NULL;
5522 for (j = 0; j < alloc; j++)
5523 {
5524 m = sorted_seg_map[j];
5525 if (m->p_type != PT_LOAD)
5526 break;
5527 if (m->includes_phdrs)
5528 {
5529 phdr_load_seg = m;
5530 break;
5531 }
5532 }
5533 if (phdr_load_seg == NULL)
5534 off += actual * bed->s->sizeof_phdr;
5535
5536 for (j = 0; j < alloc; j++)
5537 {
5538 asection **secpp;
5539 bfd_vma off_adjust; /* Octets. */
5540 bfd_boolean no_contents;
5541
5542 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5543 number of sections with contents contributing to both p_filesz
5544 and p_memsz, followed by a number of sections with no contents
5545 that just contribute to p_memsz. In this loop, OFF tracks next
5546 available file offset for PT_LOAD and PT_NOTE segments. */
5547 m = sorted_seg_map[j];
5548 p = phdrs + m->idx;
5549 p->p_type = m->p_type;
5550 p->p_flags = m->p_flags;
5551
5552 if (m->count == 0)
5553 p->p_vaddr = m->p_vaddr_offset * opb;
5554 else
5555 p->p_vaddr = (m->sections[0]->vma + m->p_vaddr_offset) * opb;
5556
5557 if (m->p_paddr_valid)
5558 p->p_paddr = m->p_paddr;
5559 else if (m->count == 0)
5560 p->p_paddr = 0;
5561 else
5562 p->p_paddr = (m->sections[0]->lma + m->p_vaddr_offset) * opb;
5563
5564 if (p->p_type == PT_LOAD
5565 && (abfd->flags & D_PAGED) != 0)
5566 {
5567 /* p_align in demand paged PT_LOAD segments effectively stores
5568 the maximum page size. When copying an executable with
5569 objcopy, we set m->p_align from the input file. Use this
5570 value for maxpagesize rather than bed->maxpagesize, which
5571 may be different. Note that we use maxpagesize for PT_TLS
5572 segment alignment later in this function, so we are relying
5573 on at least one PT_LOAD segment appearing before a PT_TLS
5574 segment. */
5575 if (m->p_align_valid)
5576 maxpagesize = m->p_align;
5577
5578 p->p_align = maxpagesize;
5579 }
5580 else if (m->p_align_valid)
5581 p->p_align = m->p_align;
5582 else if (m->count == 0)
5583 p->p_align = 1 << bed->s->log_file_align;
5584
5585 if (m == phdr_load_seg)
5586 {
5587 if (!m->includes_filehdr)
5588 p->p_offset = off;
5589 off += actual * bed->s->sizeof_phdr;
5590 }
5591
5592 no_contents = FALSE;
5593 off_adjust = 0;
5594 if (p->p_type == PT_LOAD
5595 && m->count > 0)
5596 {
5597 bfd_size_type align; /* Bytes. */
5598 unsigned int align_power = 0;
5599
5600 if (m->p_align_valid)
5601 align = p->p_align;
5602 else
5603 {
5604 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5605 {
5606 unsigned int secalign;
5607
5608 secalign = bfd_section_alignment (*secpp);
5609 if (secalign > align_power)
5610 align_power = secalign;
5611 }
5612 align = (bfd_size_type) 1 << align_power;
5613 if (align < maxpagesize)
5614 align = maxpagesize;
5615 }
5616
5617 for (i = 0; i < m->count; i++)
5618 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5619 /* If we aren't making room for this section, then
5620 it must be SHT_NOBITS regardless of what we've
5621 set via struct bfd_elf_special_section. */
5622 elf_section_type (m->sections[i]) = SHT_NOBITS;
5623
5624 /* Find out whether this segment contains any loadable
5625 sections. */
5626 no_contents = TRUE;
5627 for (i = 0; i < m->count; i++)
5628 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5629 {
5630 no_contents = FALSE;
5631 break;
5632 }
5633
5634 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align * opb);
5635
5636 /* Broken hardware and/or kernel require that files do not
5637 map the same page with different permissions on some hppa
5638 processors. */
5639 if (j != 0
5640 && (abfd->flags & D_PAGED) != 0
5641 && bed->no_page_alias
5642 && (off & (maxpagesize - 1)) != 0
5643 && ((off & -maxpagesize)
5644 == ((off + off_adjust) & -maxpagesize)))
5645 off_adjust += maxpagesize;
5646 off += off_adjust;
5647 if (no_contents)
5648 {
5649 /* We shouldn't need to align the segment on disk since
5650 the segment doesn't need file space, but the gABI
5651 arguably requires the alignment and glibc ld.so
5652 checks it. So to comply with the alignment
5653 requirement but not waste file space, we adjust
5654 p_offset for just this segment. (OFF_ADJUST is
5655 subtracted from OFF later.) This may put p_offset
5656 past the end of file, but that shouldn't matter. */
5657 }
5658 else
5659 off_adjust = 0;
5660 }
5661 /* Make sure the .dynamic section is the first section in the
5662 PT_DYNAMIC segment. */
5663 else if (p->p_type == PT_DYNAMIC
5664 && m->count > 1
5665 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5666 {
5667 _bfd_error_handler
5668 (_("%pB: The first section in the PT_DYNAMIC segment"
5669 " is not the .dynamic section"),
5670 abfd);
5671 bfd_set_error (bfd_error_bad_value);
5672 return FALSE;
5673 }
5674 /* Set the note section type to SHT_NOTE. */
5675 else if (p->p_type == PT_NOTE)
5676 for (i = 0; i < m->count; i++)
5677 elf_section_type (m->sections[i]) = SHT_NOTE;
5678
5679 if (m->includes_filehdr)
5680 {
5681 if (!m->p_flags_valid)
5682 p->p_flags |= PF_R;
5683 p->p_filesz = bed->s->sizeof_ehdr;
5684 p->p_memsz = bed->s->sizeof_ehdr;
5685 if (p->p_type == PT_LOAD)
5686 {
5687 if (m->count > 0)
5688 {
5689 if (p->p_vaddr < (bfd_vma) off
5690 || (!m->p_paddr_valid
5691 && p->p_paddr < (bfd_vma) off))
5692 {
5693 _bfd_error_handler
5694 (_("%pB: not enough room for program headers,"
5695 " try linking with -N"),
5696 abfd);
5697 bfd_set_error (bfd_error_bad_value);
5698 return FALSE;
5699 }
5700 p->p_vaddr -= off;
5701 if (!m->p_paddr_valid)
5702 p->p_paddr -= off;
5703 }
5704 }
5705 else if (sorted_seg_map[0]->includes_filehdr)
5706 {
5707 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5708 p->p_vaddr = filehdr->p_vaddr;
5709 if (!m->p_paddr_valid)
5710 p->p_paddr = filehdr->p_paddr;
5711 }
5712 }
5713
5714 if (m->includes_phdrs)
5715 {
5716 if (!m->p_flags_valid)
5717 p->p_flags |= PF_R;
5718 p->p_filesz += actual * bed->s->sizeof_phdr;
5719 p->p_memsz += actual * bed->s->sizeof_phdr;
5720 if (!m->includes_filehdr)
5721 {
5722 if (p->p_type == PT_LOAD)
5723 {
5724 elf_elfheader (abfd)->e_phoff = p->p_offset;
5725 if (m->count > 0)
5726 {
5727 p->p_vaddr -= off - p->p_offset;
5728 if (!m->p_paddr_valid)
5729 p->p_paddr -= off - p->p_offset;
5730 }
5731 }
5732 else if (phdr_load_seg != NULL)
5733 {
5734 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5735 bfd_vma phdr_off = 0; /* Octets. */
5736 if (phdr_load_seg->includes_filehdr)
5737 phdr_off = bed->s->sizeof_ehdr;
5738 p->p_vaddr = phdr->p_vaddr + phdr_off;
5739 if (!m->p_paddr_valid)
5740 p->p_paddr = phdr->p_paddr + phdr_off;
5741 p->p_offset = phdr->p_offset + phdr_off;
5742 }
5743 else
5744 p->p_offset = bed->s->sizeof_ehdr;
5745 }
5746 }
5747
5748 if (p->p_type == PT_LOAD
5749 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5750 {
5751 if (!m->includes_filehdr && !m->includes_phdrs)
5752 {
5753 p->p_offset = off;
5754 if (no_contents)
5755 {
5756 /* Put meaningless p_offset for PT_LOAD segments
5757 without file contents somewhere within the first
5758 page, in an attempt to not point past EOF. */
5759 bfd_size_type align = maxpagesize;
5760 if (align < p->p_align)
5761 align = p->p_align;
5762 if (align < 1)
5763 align = 1;
5764 p->p_offset = off % align;
5765 }
5766 }
5767 else
5768 {
5769 file_ptr adjust; /* Octets. */
5770
5771 adjust = off - (p->p_offset + p->p_filesz);
5772 if (!no_contents)
5773 p->p_filesz += adjust;
5774 p->p_memsz += adjust;
5775 }
5776 }
5777
5778 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5779 maps. Set filepos for sections in PT_LOAD segments, and in
5780 core files, for sections in PT_NOTE segments.
5781 assign_file_positions_for_non_load_sections will set filepos
5782 for other sections and update p_filesz for other segments. */
5783 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5784 {
5785 asection *sec;
5786 bfd_size_type align;
5787 Elf_Internal_Shdr *this_hdr;
5788
5789 sec = *secpp;
5790 this_hdr = &elf_section_data (sec)->this_hdr;
5791 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5792
5793 if ((p->p_type == PT_LOAD
5794 || p->p_type == PT_TLS)
5795 && (this_hdr->sh_type != SHT_NOBITS
5796 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5797 && ((this_hdr->sh_flags & SHF_TLS) == 0
5798 || p->p_type == PT_TLS))))
5799 {
5800 bfd_vma p_start = p->p_paddr; /* Octets. */
5801 bfd_vma p_end = p_start + p->p_memsz; /* Octets. */
5802 bfd_vma s_start = sec->lma * opb; /* Octets. */
5803 bfd_vma adjust = s_start - p_end; /* Octets. */
5804
5805 if (adjust != 0
5806 && (s_start < p_end
5807 || p_end < p_start))
5808 {
5809 _bfd_error_handler
5810 /* xgettext:c-format */
5811 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5812 abfd, sec, (uint64_t) s_start / opb,
5813 (uint64_t) p_end / opb);
5814 adjust = 0;
5815 sec->lma = p_end / opb;
5816 }
5817 p->p_memsz += adjust;
5818
5819 if (p->p_type == PT_LOAD)
5820 {
5821 if (this_hdr->sh_type != SHT_NOBITS)
5822 {
5823 off_adjust = 0;
5824 if (p->p_filesz + adjust < p->p_memsz)
5825 {
5826 /* We have a PROGBITS section following NOBITS ones.
5827 Allocate file space for the NOBITS section(s) and
5828 zero it. */
5829 adjust = p->p_memsz - p->p_filesz;
5830 if (!write_zeros (abfd, off, adjust))
5831 return FALSE;
5832 }
5833 }
5834 /* We only adjust sh_offset in SHT_NOBITS sections
5835 as would seem proper for their address when the
5836 section is first in the segment. sh_offset
5837 doesn't really have any significance for
5838 SHT_NOBITS anyway, apart from a notional position
5839 relative to other sections. Historically we
5840 didn't bother with adjusting sh_offset and some
5841 programs depend on it not being adjusted. See
5842 pr12921 and pr25662. */
5843 if (this_hdr->sh_type != SHT_NOBITS || i == 0)
5844 {
5845 off += adjust;
5846 if (this_hdr->sh_type == SHT_NOBITS)
5847 off_adjust += adjust;
5848 }
5849 }
5850 if (this_hdr->sh_type != SHT_NOBITS)
5851 p->p_filesz += adjust;
5852 }
5853
5854 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5855 {
5856 /* The section at i == 0 is the one that actually contains
5857 everything. */
5858 if (i == 0)
5859 {
5860 this_hdr->sh_offset = sec->filepos = off;
5861 off += this_hdr->sh_size;
5862 p->p_filesz = this_hdr->sh_size;
5863 p->p_memsz = 0;
5864 p->p_align = 1;
5865 }
5866 else
5867 {
5868 /* The rest are fake sections that shouldn't be written. */
5869 sec->filepos = 0;
5870 sec->size = 0;
5871 sec->flags = 0;
5872 continue;
5873 }
5874 }
5875 else
5876 {
5877 if (p->p_type == PT_LOAD)
5878 {
5879 this_hdr->sh_offset = sec->filepos = off;
5880 if (this_hdr->sh_type != SHT_NOBITS)
5881 off += this_hdr->sh_size;
5882 }
5883 else if (this_hdr->sh_type == SHT_NOBITS
5884 && (this_hdr->sh_flags & SHF_TLS) != 0
5885 && this_hdr->sh_offset == 0)
5886 {
5887 /* This is a .tbss section that didn't get a PT_LOAD.
5888 (See _bfd_elf_map_sections_to_segments "Create a
5889 final PT_LOAD".) Set sh_offset to the value it
5890 would have if we had created a zero p_filesz and
5891 p_memsz PT_LOAD header for the section. This
5892 also makes the PT_TLS header have the same
5893 p_offset value. */
5894 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5895 off, align);
5896 this_hdr->sh_offset = sec->filepos = off + adjust;
5897 }
5898
5899 if (this_hdr->sh_type != SHT_NOBITS)
5900 {
5901 p->p_filesz += this_hdr->sh_size;
5902 /* A load section without SHF_ALLOC is something like
5903 a note section in a PT_NOTE segment. These take
5904 file space but are not loaded into memory. */
5905 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5906 p->p_memsz += this_hdr->sh_size;
5907 }
5908 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5909 {
5910 if (p->p_type == PT_TLS)
5911 p->p_memsz += this_hdr->sh_size;
5912
5913 /* .tbss is special. It doesn't contribute to p_memsz of
5914 normal segments. */
5915 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5916 p->p_memsz += this_hdr->sh_size;
5917 }
5918
5919 if (align > p->p_align
5920 && !m->p_align_valid
5921 && (p->p_type != PT_LOAD
5922 || (abfd->flags & D_PAGED) == 0))
5923 p->p_align = align;
5924 }
5925
5926 if (!m->p_flags_valid)
5927 {
5928 p->p_flags |= PF_R;
5929 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5930 p->p_flags |= PF_X;
5931 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5932 p->p_flags |= PF_W;
5933 }
5934 }
5935
5936 off -= off_adjust;
5937
5938 /* PR ld/20815 - Check that the program header segment, if
5939 present, will be loaded into memory. */
5940 if (p->p_type == PT_PHDR
5941 && phdr_load_seg == NULL
5942 && !(bed->elf_backend_allow_non_load_phdr != NULL
5943 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5944 {
5945 /* The fix for this error is usually to edit the linker script being
5946 used and set up the program headers manually. Either that or
5947 leave room for the headers at the start of the SECTIONS. */
5948 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5949 " by LOAD segment"),
5950 abfd);
5951 if (link_info == NULL)
5952 return FALSE;
5953 /* Arrange for the linker to exit with an error, deleting
5954 the output file unless --noinhibit-exec is given. */
5955 link_info->callbacks->info ("%X");
5956 }
5957
5958 /* Check that all sections are in a PT_LOAD segment.
5959 Don't check funky gdb generated core files. */
5960 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5961 {
5962 bfd_boolean check_vma = TRUE;
5963
5964 for (i = 1; i < m->count; i++)
5965 if (m->sections[i]->vma == m->sections[i - 1]->vma
5966 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5967 ->this_hdr), p) != 0
5968 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5969 ->this_hdr), p) != 0)
5970 {
5971 /* Looks like we have overlays packed into the segment. */
5972 check_vma = FALSE;
5973 break;
5974 }
5975
5976 for (i = 0; i < m->count; i++)
5977 {
5978 Elf_Internal_Shdr *this_hdr;
5979 asection *sec;
5980
5981 sec = m->sections[i];
5982 this_hdr = &(elf_section_data(sec)->this_hdr);
5983 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5984 && !ELF_TBSS_SPECIAL (this_hdr, p))
5985 {
5986 _bfd_error_handler
5987 /* xgettext:c-format */
5988 (_("%pB: section `%pA' can't be allocated in segment %d"),
5989 abfd, sec, j);
5990 print_segment_map (m);
5991 }
5992 }
5993 }
5994 }
5995
5996 elf_next_file_pos (abfd) = off;
5997
5998 if (link_info != NULL
5999 && phdr_load_seg != NULL
6000 && phdr_load_seg->includes_filehdr)
6001 {
6002 /* There is a segment that contains both the file headers and the
6003 program headers, so provide a symbol __ehdr_start pointing there.
6004 A program can use this to examine itself robustly. */
6005
6006 struct elf_link_hash_entry *hash
6007 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
6008 FALSE, FALSE, TRUE);
6009 /* If the symbol was referenced and not defined, define it. */
6010 if (hash != NULL
6011 && (hash->root.type == bfd_link_hash_new
6012 || hash->root.type == bfd_link_hash_undefined
6013 || hash->root.type == bfd_link_hash_undefweak
6014 || hash->root.type == bfd_link_hash_common))
6015 {
6016 asection *s = NULL;
6017 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr / opb;
6018
6019 if (phdr_load_seg->count != 0)
6020 /* The segment contains sections, so use the first one. */
6021 s = phdr_load_seg->sections[0];
6022 else
6023 /* Use the first (i.e. lowest-addressed) section in any segment. */
6024 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6025 if (m->p_type == PT_LOAD && m->count != 0)
6026 {
6027 s = m->sections[0];
6028 break;
6029 }
6030
6031 if (s != NULL)
6032 {
6033 hash->root.u.def.value = filehdr_vaddr - s->vma;
6034 hash->root.u.def.section = s;
6035 }
6036 else
6037 {
6038 hash->root.u.def.value = filehdr_vaddr;
6039 hash->root.u.def.section = bfd_abs_section_ptr;
6040 }
6041
6042 hash->root.type = bfd_link_hash_defined;
6043 hash->def_regular = 1;
6044 hash->non_elf = 0;
6045 }
6046 }
6047
6048 return TRUE;
6049 }
6050
6051 /* Determine if a bfd is a debuginfo file. Unfortunately there
6052 is no defined method for detecting such files, so we have to
6053 use heuristics instead. */
6054
6055 bfd_boolean
6056 is_debuginfo_file (bfd *abfd)
6057 {
6058 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6059 return FALSE;
6060
6061 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6062 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6063 Elf_Internal_Shdr **headerp;
6064
6065 for (headerp = start_headers; headerp < end_headers; headerp ++)
6066 {
6067 Elf_Internal_Shdr *header = * headerp;
6068
6069 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6070 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6071 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6072 && header->sh_type != SHT_NOBITS
6073 && header->sh_type != SHT_NOTE)
6074 return FALSE;
6075 }
6076
6077 return TRUE;
6078 }
6079
6080 /* Assign file positions for the other sections, except for compressed debugging
6081 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6082
6083 static bfd_boolean
6084 assign_file_positions_for_non_load_sections (bfd *abfd,
6085 struct bfd_link_info *link_info)
6086 {
6087 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6088 Elf_Internal_Shdr **i_shdrpp;
6089 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6090 Elf_Internal_Phdr *phdrs;
6091 Elf_Internal_Phdr *p;
6092 struct elf_segment_map *m;
6093 file_ptr off;
6094 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
6095
6096 i_shdrpp = elf_elfsections (abfd);
6097 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6098 off = elf_next_file_pos (abfd);
6099 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6100 {
6101 Elf_Internal_Shdr *hdr;
6102
6103 hdr = *hdrpp;
6104 if (hdr->bfd_section != NULL
6105 && (hdr->bfd_section->filepos != 0
6106 || (hdr->sh_type == SHT_NOBITS
6107 && hdr->contents == NULL)))
6108 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6109 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6110 {
6111 if (hdr->sh_size != 0
6112 /* PR 24717 - debuginfo files are known to be not strictly
6113 compliant with the ELF standard. In particular they often
6114 have .note.gnu.property sections that are outside of any
6115 loadable segment. This is not a problem for such files,
6116 so do not warn about them. */
6117 && ! is_debuginfo_file (abfd))
6118 _bfd_error_handler
6119 /* xgettext:c-format */
6120 (_("%pB: warning: allocated section `%s' not in segment"),
6121 abfd,
6122 (hdr->bfd_section == NULL
6123 ? "*unknown*"
6124 : hdr->bfd_section->name));
6125 /* We don't need to page align empty sections. */
6126 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6127 off += vma_page_aligned_bias (hdr->sh_addr, off,
6128 bed->maxpagesize);
6129 else
6130 off += vma_page_aligned_bias (hdr->sh_addr, off,
6131 hdr->sh_addralign);
6132 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6133 FALSE);
6134 }
6135 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6136 && hdr->bfd_section == NULL)
6137 /* We don't know the offset of these sections yet: their size has
6138 not been decided. */
6139 || (hdr->bfd_section != NULL
6140 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6141 || (bfd_section_is_ctf (hdr->bfd_section)
6142 && abfd->is_linker_output)))
6143 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6144 || (elf_symtab_shndx_list (abfd) != NULL
6145 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6146 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6147 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6148 hdr->sh_offset = -1;
6149 else
6150 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6151 }
6152 elf_next_file_pos (abfd) = off;
6153
6154 /* Now that we have set the section file positions, we can set up
6155 the file positions for the non PT_LOAD segments. */
6156 phdrs = elf_tdata (abfd)->phdr;
6157 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6158 {
6159 if (p->p_type == PT_GNU_RELRO)
6160 {
6161 bfd_vma start, end; /* Bytes. */
6162 bfd_boolean ok;
6163
6164 if (link_info != NULL)
6165 {
6166 /* During linking the range of the RELRO segment is passed
6167 in link_info. Note that there may be padding between
6168 relro_start and the first RELRO section. */
6169 start = link_info->relro_start;
6170 end = link_info->relro_end;
6171 }
6172 else if (m->count != 0)
6173 {
6174 if (!m->p_size_valid)
6175 abort ();
6176 start = m->sections[0]->vma;
6177 end = start + m->p_size / opb;
6178 }
6179 else
6180 {
6181 start = 0;
6182 end = 0;
6183 }
6184
6185 ok = FALSE;
6186 if (start < end)
6187 {
6188 struct elf_segment_map *lm;
6189 const Elf_Internal_Phdr *lp;
6190 unsigned int i;
6191
6192 /* Find a LOAD segment containing a section in the RELRO
6193 segment. */
6194 for (lm = elf_seg_map (abfd), lp = phdrs;
6195 lm != NULL;
6196 lm = lm->next, lp++)
6197 {
6198 if (lp->p_type == PT_LOAD
6199 && lm->count != 0
6200 && (lm->sections[lm->count - 1]->vma
6201 + (!IS_TBSS (lm->sections[lm->count - 1])
6202 ? lm->sections[lm->count - 1]->size / opb
6203 : 0)) > start
6204 && lm->sections[0]->vma < end)
6205 break;
6206 }
6207
6208 if (lm != NULL)
6209 {
6210 /* Find the section starting the RELRO segment. */
6211 for (i = 0; i < lm->count; i++)
6212 {
6213 asection *s = lm->sections[i];
6214 if (s->vma >= start
6215 && s->vma < end
6216 && s->size != 0)
6217 break;
6218 }
6219
6220 if (i < lm->count)
6221 {
6222 p->p_vaddr = lm->sections[i]->vma * opb;
6223 p->p_paddr = lm->sections[i]->lma * opb;
6224 p->p_offset = lm->sections[i]->filepos;
6225 p->p_memsz = end * opb - p->p_vaddr;
6226 p->p_filesz = p->p_memsz;
6227
6228 /* The RELRO segment typically ends a few bytes
6229 into .got.plt but other layouts are possible.
6230 In cases where the end does not match any
6231 loaded section (for instance is in file
6232 padding), trim p_filesz back to correspond to
6233 the end of loaded section contents. */
6234 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6235 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6236
6237 /* Preserve the alignment and flags if they are
6238 valid. The gold linker generates RW/4 for
6239 the PT_GNU_RELRO section. It is better for
6240 objcopy/strip to honor these attributes
6241 otherwise gdb will choke when using separate
6242 debug files. */
6243 if (!m->p_align_valid)
6244 p->p_align = 1;
6245 if (!m->p_flags_valid)
6246 p->p_flags = PF_R;
6247 ok = TRUE;
6248 }
6249 }
6250 }
6251 if (link_info != NULL)
6252 BFD_ASSERT (ok);
6253 if (!ok)
6254 memset (p, 0, sizeof *p);
6255 }
6256 else if (p->p_type == PT_GNU_STACK)
6257 {
6258 if (m->p_size_valid)
6259 p->p_memsz = m->p_size;
6260 }
6261 else if (m->count != 0)
6262 {
6263 unsigned int i;
6264
6265 if (p->p_type != PT_LOAD
6266 && (p->p_type != PT_NOTE
6267 || bfd_get_format (abfd) != bfd_core))
6268 {
6269 /* A user specified segment layout may include a PHDR
6270 segment that overlaps with a LOAD segment... */
6271 if (p->p_type == PT_PHDR)
6272 {
6273 m->count = 0;
6274 continue;
6275 }
6276
6277 if (m->includes_filehdr || m->includes_phdrs)
6278 {
6279 /* PR 17512: file: 2195325e. */
6280 _bfd_error_handler
6281 (_("%pB: error: non-load segment %d includes file header "
6282 "and/or program header"),
6283 abfd, (int) (p - phdrs));
6284 return FALSE;
6285 }
6286
6287 p->p_filesz = 0;
6288 p->p_offset = m->sections[0]->filepos;
6289 for (i = m->count; i-- != 0;)
6290 {
6291 asection *sect = m->sections[i];
6292 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6293 if (hdr->sh_type != SHT_NOBITS)
6294 {
6295 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6296 + hdr->sh_size);
6297 break;
6298 }
6299 }
6300 }
6301 }
6302 }
6303
6304 return TRUE;
6305 }
6306
6307 static elf_section_list *
6308 find_section_in_list (unsigned int i, elf_section_list * list)
6309 {
6310 for (;list != NULL; list = list->next)
6311 if (list->ndx == i)
6312 break;
6313 return list;
6314 }
6315
6316 /* Work out the file positions of all the sections. This is called by
6317 _bfd_elf_compute_section_file_positions. All the section sizes and
6318 VMAs must be known before this is called.
6319
6320 Reloc sections come in two flavours: Those processed specially as
6321 "side-channel" data attached to a section to which they apply, and those that
6322 bfd doesn't process as relocations. The latter sort are stored in a normal
6323 bfd section by bfd_section_from_shdr. We don't consider the former sort
6324 here, unless they form part of the loadable image. Reloc sections not
6325 assigned here (and compressed debugging sections and CTF sections which
6326 nothing else in the file can rely upon) will be handled later by
6327 assign_file_positions_for_relocs.
6328
6329 We also don't set the positions of the .symtab and .strtab here. */
6330
6331 static bfd_boolean
6332 assign_file_positions_except_relocs (bfd *abfd,
6333 struct bfd_link_info *link_info)
6334 {
6335 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6336 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6337 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6338 unsigned int alloc;
6339
6340 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6341 && bfd_get_format (abfd) != bfd_core)
6342 {
6343 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6344 unsigned int num_sec = elf_numsections (abfd);
6345 Elf_Internal_Shdr **hdrpp;
6346 unsigned int i;
6347 file_ptr off;
6348
6349 /* Start after the ELF header. */
6350 off = i_ehdrp->e_ehsize;
6351
6352 /* We are not creating an executable, which means that we are
6353 not creating a program header, and that the actual order of
6354 the sections in the file is unimportant. */
6355 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6356 {
6357 Elf_Internal_Shdr *hdr;
6358
6359 hdr = *hdrpp;
6360 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6361 && hdr->bfd_section == NULL)
6362 /* Do not assign offsets for these sections yet: we don't know
6363 their sizes. */
6364 || (hdr->bfd_section != NULL
6365 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6366 || (bfd_section_is_ctf (hdr->bfd_section)
6367 && abfd->is_linker_output)))
6368 || i == elf_onesymtab (abfd)
6369 || (elf_symtab_shndx_list (abfd) != NULL
6370 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6371 || i == elf_strtab_sec (abfd)
6372 || i == elf_shstrtab_sec (abfd))
6373 {
6374 hdr->sh_offset = -1;
6375 }
6376 else
6377 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6378 }
6379
6380 elf_next_file_pos (abfd) = off;
6381 elf_program_header_size (abfd) = 0;
6382 }
6383 else
6384 {
6385 /* Assign file positions for the loaded sections based on the
6386 assignment of sections to segments. */
6387 if (!assign_file_positions_for_load_sections (abfd, link_info))
6388 return FALSE;
6389
6390 /* And for non-load sections. */
6391 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6392 return FALSE;
6393 }
6394
6395 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6396 return FALSE;
6397
6398 /* Write out the program headers. */
6399 alloc = i_ehdrp->e_phnum;
6400 if (alloc != 0)
6401 {
6402 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6403 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6404 return FALSE;
6405 }
6406
6407 return TRUE;
6408 }
6409
6410 bfd_boolean
6411 _bfd_elf_init_file_header (bfd *abfd,
6412 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6413 {
6414 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6415 struct elf_strtab_hash *shstrtab;
6416 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6417
6418 i_ehdrp = elf_elfheader (abfd);
6419
6420 shstrtab = _bfd_elf_strtab_init ();
6421 if (shstrtab == NULL)
6422 return FALSE;
6423
6424 elf_shstrtab (abfd) = shstrtab;
6425
6426 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6427 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6428 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6429 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6430
6431 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6432 i_ehdrp->e_ident[EI_DATA] =
6433 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6434 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6435
6436 if ((abfd->flags & DYNAMIC) != 0)
6437 i_ehdrp->e_type = ET_DYN;
6438 else if ((abfd->flags & EXEC_P) != 0)
6439 i_ehdrp->e_type = ET_EXEC;
6440 else if (bfd_get_format (abfd) == bfd_core)
6441 i_ehdrp->e_type = ET_CORE;
6442 else
6443 i_ehdrp->e_type = ET_REL;
6444
6445 switch (bfd_get_arch (abfd))
6446 {
6447 case bfd_arch_unknown:
6448 i_ehdrp->e_machine = EM_NONE;
6449 break;
6450
6451 /* There used to be a long list of cases here, each one setting
6452 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6453 in the corresponding bfd definition. To avoid duplication,
6454 the switch was removed. Machines that need special handling
6455 can generally do it in elf_backend_final_write_processing(),
6456 unless they need the information earlier than the final write.
6457 Such need can generally be supplied by replacing the tests for
6458 e_machine with the conditions used to determine it. */
6459 default:
6460 i_ehdrp->e_machine = bed->elf_machine_code;
6461 }
6462
6463 i_ehdrp->e_version = bed->s->ev_current;
6464 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6465
6466 /* No program header, for now. */
6467 i_ehdrp->e_phoff = 0;
6468 i_ehdrp->e_phentsize = 0;
6469 i_ehdrp->e_phnum = 0;
6470
6471 /* Each bfd section is section header entry. */
6472 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6473 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6474
6475 elf_tdata (abfd)->symtab_hdr.sh_name =
6476 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6477 elf_tdata (abfd)->strtab_hdr.sh_name =
6478 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6479 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6480 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6481 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6482 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6483 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6484 return FALSE;
6485
6486 return TRUE;
6487 }
6488
6489 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6490
6491 FIXME: We used to have code here to sort the PT_LOAD segments into
6492 ascending order, as per the ELF spec. But this breaks some programs,
6493 including the Linux kernel. But really either the spec should be
6494 changed or the programs updated. */
6495
6496 bfd_boolean
6497 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6498 {
6499 if (link_info != NULL && bfd_link_pie (link_info))
6500 {
6501 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6502 unsigned int num_segments = i_ehdrp->e_phnum;
6503 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6504 Elf_Internal_Phdr *segment = tdata->phdr;
6505 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6506
6507 /* Find the lowest p_vaddr in PT_LOAD segments. */
6508 bfd_vma p_vaddr = (bfd_vma) -1;
6509 for (; segment < end_segment; segment++)
6510 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6511 p_vaddr = segment->p_vaddr;
6512
6513 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6514 segments is non-zero. */
6515 if (p_vaddr)
6516 i_ehdrp->e_type = ET_EXEC;
6517 }
6518 return TRUE;
6519 }
6520
6521 /* Assign file positions for all the reloc sections which are not part
6522 of the loadable file image, and the file position of section headers. */
6523
6524 static bfd_boolean
6525 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6526 {
6527 file_ptr off;
6528 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6529 Elf_Internal_Shdr *shdrp;
6530 Elf_Internal_Ehdr *i_ehdrp;
6531 const struct elf_backend_data *bed;
6532
6533 off = elf_next_file_pos (abfd);
6534
6535 shdrpp = elf_elfsections (abfd);
6536 end_shdrpp = shdrpp + elf_numsections (abfd);
6537 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6538 {
6539 shdrp = *shdrpp;
6540 if (shdrp->sh_offset == -1)
6541 {
6542 asection *sec = shdrp->bfd_section;
6543 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6544 || shdrp->sh_type == SHT_RELA);
6545 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6546 if (is_rel
6547 || is_ctf
6548 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6549 {
6550 if (!is_rel && !is_ctf)
6551 {
6552 const char *name = sec->name;
6553 struct bfd_elf_section_data *d;
6554
6555 /* Compress DWARF debug sections. */
6556 if (!bfd_compress_section (abfd, sec,
6557 shdrp->contents))
6558 return FALSE;
6559
6560 if (sec->compress_status == COMPRESS_SECTION_DONE
6561 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6562 {
6563 /* If section is compressed with zlib-gnu, convert
6564 section name from .debug_* to .zdebug_*. */
6565 char *new_name
6566 = convert_debug_to_zdebug (abfd, name);
6567 if (new_name == NULL)
6568 return FALSE;
6569 name = new_name;
6570 }
6571 /* Add section name to section name section. */
6572 if (shdrp->sh_name != (unsigned int) -1)
6573 abort ();
6574 shdrp->sh_name
6575 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6576 name, FALSE);
6577 d = elf_section_data (sec);
6578
6579 /* Add reloc section name to section name section. */
6580 if (d->rel.hdr
6581 && !_bfd_elf_set_reloc_sh_name (abfd,
6582 d->rel.hdr,
6583 name, FALSE))
6584 return FALSE;
6585 if (d->rela.hdr
6586 && !_bfd_elf_set_reloc_sh_name (abfd,
6587 d->rela.hdr,
6588 name, TRUE))
6589 return FALSE;
6590
6591 /* Update section size and contents. */
6592 shdrp->sh_size = sec->size;
6593 shdrp->contents = sec->contents;
6594 shdrp->bfd_section->contents = NULL;
6595 }
6596 else if (is_ctf)
6597 {
6598 /* Update section size and contents. */
6599 shdrp->sh_size = sec->size;
6600 shdrp->contents = sec->contents;
6601 }
6602
6603 off = _bfd_elf_assign_file_position_for_section (shdrp,
6604 off,
6605 TRUE);
6606 }
6607 }
6608 }
6609
6610 /* Place section name section after DWARF debug sections have been
6611 compressed. */
6612 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6613 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6614 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6615 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6616
6617 /* Place the section headers. */
6618 i_ehdrp = elf_elfheader (abfd);
6619 bed = get_elf_backend_data (abfd);
6620 off = align_file_position (off, 1 << bed->s->log_file_align);
6621 i_ehdrp->e_shoff = off;
6622 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6623 elf_next_file_pos (abfd) = off;
6624
6625 return TRUE;
6626 }
6627
6628 bfd_boolean
6629 _bfd_elf_write_object_contents (bfd *abfd)
6630 {
6631 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6632 Elf_Internal_Shdr **i_shdrp;
6633 bfd_boolean failed;
6634 unsigned int count, num_sec;
6635 struct elf_obj_tdata *t;
6636
6637 if (! abfd->output_has_begun
6638 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6639 return FALSE;
6640 /* Do not rewrite ELF data when the BFD has been opened for update.
6641 abfd->output_has_begun was set to TRUE on opening, so creation of new
6642 sections, and modification of existing section sizes was restricted.
6643 This means the ELF header, program headers and section headers can't have
6644 changed.
6645 If the contents of any sections has been modified, then those changes have
6646 already been written to the BFD. */
6647 else if (abfd->direction == both_direction)
6648 {
6649 BFD_ASSERT (abfd->output_has_begun);
6650 return TRUE;
6651 }
6652
6653 i_shdrp = elf_elfsections (abfd);
6654
6655 failed = FALSE;
6656 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6657 if (failed)
6658 return FALSE;
6659
6660 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6661 return FALSE;
6662
6663 /* After writing the headers, we need to write the sections too... */
6664 num_sec = elf_numsections (abfd);
6665 for (count = 1; count < num_sec; count++)
6666 {
6667 i_shdrp[count]->sh_name
6668 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6669 i_shdrp[count]->sh_name);
6670 if (bed->elf_backend_section_processing)
6671 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6672 return FALSE;
6673 if (i_shdrp[count]->contents)
6674 {
6675 bfd_size_type amt = i_shdrp[count]->sh_size;
6676
6677 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6678 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6679 return FALSE;
6680 }
6681 }
6682
6683 /* Write out the section header names. */
6684 t = elf_tdata (abfd);
6685 if (elf_shstrtab (abfd) != NULL
6686 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6687 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6688 return FALSE;
6689
6690 if (!(*bed->elf_backend_final_write_processing) (abfd))
6691 return FALSE;
6692
6693 if (!bed->s->write_shdrs_and_ehdr (abfd))
6694 return FALSE;
6695
6696 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6697 if (t->o->build_id.after_write_object_contents != NULL)
6698 return (*t->o->build_id.after_write_object_contents) (abfd);
6699
6700 return TRUE;
6701 }
6702
6703 bfd_boolean
6704 _bfd_elf_write_corefile_contents (bfd *abfd)
6705 {
6706 /* Hopefully this can be done just like an object file. */
6707 return _bfd_elf_write_object_contents (abfd);
6708 }
6709
6710 /* Given a section, search the header to find them. */
6711
6712 unsigned int
6713 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6714 {
6715 const struct elf_backend_data *bed;
6716 unsigned int sec_index;
6717
6718 if (elf_section_data (asect) != NULL
6719 && elf_section_data (asect)->this_idx != 0)
6720 return elf_section_data (asect)->this_idx;
6721
6722 if (bfd_is_abs_section (asect))
6723 sec_index = SHN_ABS;
6724 else if (bfd_is_com_section (asect))
6725 sec_index = SHN_COMMON;
6726 else if (bfd_is_und_section (asect))
6727 sec_index = SHN_UNDEF;
6728 else
6729 sec_index = SHN_BAD;
6730
6731 bed = get_elf_backend_data (abfd);
6732 if (bed->elf_backend_section_from_bfd_section)
6733 {
6734 int retval = sec_index;
6735
6736 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6737 return retval;
6738 }
6739
6740 if (sec_index == SHN_BAD)
6741 bfd_set_error (bfd_error_nonrepresentable_section);
6742
6743 return sec_index;
6744 }
6745
6746 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6747 on error. */
6748
6749 int
6750 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6751 {
6752 asymbol *asym_ptr = *asym_ptr_ptr;
6753 int idx;
6754 flagword flags = asym_ptr->flags;
6755
6756 /* When gas creates relocations against local labels, it creates its
6757 own symbol for the section, but does put the symbol into the
6758 symbol chain, so udata is 0. When the linker is generating
6759 relocatable output, this section symbol may be for one of the
6760 input sections rather than the output section. */
6761 if (asym_ptr->udata.i == 0
6762 && (flags & BSF_SECTION_SYM)
6763 && asym_ptr->section)
6764 {
6765 asection *sec;
6766 int indx;
6767
6768 sec = asym_ptr->section;
6769 if (sec->owner != abfd && sec->output_section != NULL)
6770 sec = sec->output_section;
6771 if (sec->owner == abfd
6772 && (indx = sec->index) < elf_num_section_syms (abfd)
6773 && elf_section_syms (abfd)[indx] != NULL)
6774 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6775 }
6776
6777 idx = asym_ptr->udata.i;
6778
6779 if (idx == 0)
6780 {
6781 /* This case can occur when using --strip-symbol on a symbol
6782 which is used in a relocation entry. */
6783 _bfd_error_handler
6784 /* xgettext:c-format */
6785 (_("%pB: symbol `%s' required but not present"),
6786 abfd, bfd_asymbol_name (asym_ptr));
6787 bfd_set_error (bfd_error_no_symbols);
6788 return -1;
6789 }
6790
6791 #if DEBUG & 4
6792 {
6793 fprintf (stderr,
6794 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6795 (long) asym_ptr, asym_ptr->name, idx, flags);
6796 fflush (stderr);
6797 }
6798 #endif
6799
6800 return idx;
6801 }
6802
6803 /* Rewrite program header information. */
6804
6805 static bfd_boolean
6806 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6807 {
6808 Elf_Internal_Ehdr *iehdr;
6809 struct elf_segment_map *map;
6810 struct elf_segment_map *map_first;
6811 struct elf_segment_map **pointer_to_map;
6812 Elf_Internal_Phdr *segment;
6813 asection *section;
6814 unsigned int i;
6815 unsigned int num_segments;
6816 bfd_boolean phdr_included = FALSE;
6817 bfd_boolean p_paddr_valid;
6818 bfd_vma maxpagesize;
6819 struct elf_segment_map *phdr_adjust_seg = NULL;
6820 unsigned int phdr_adjust_num = 0;
6821 const struct elf_backend_data *bed;
6822 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
6823
6824 bed = get_elf_backend_data (ibfd);
6825 iehdr = elf_elfheader (ibfd);
6826
6827 map_first = NULL;
6828 pointer_to_map = &map_first;
6829
6830 num_segments = elf_elfheader (ibfd)->e_phnum;
6831 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6832
6833 /* Returns the end address of the segment + 1. */
6834 #define SEGMENT_END(segment, start) \
6835 (start + (segment->p_memsz > segment->p_filesz \
6836 ? segment->p_memsz : segment->p_filesz))
6837
6838 #define SECTION_SIZE(section, segment) \
6839 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6840 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6841 ? section->size : 0)
6842
6843 /* Returns TRUE if the given section is contained within
6844 the given segment. VMA addresses are compared. */
6845 #define IS_CONTAINED_BY_VMA(section, segment, opb) \
6846 (section->vma * (opb) >= segment->p_vaddr \
6847 && (section->vma * (opb) + SECTION_SIZE (section, segment) \
6848 <= (SEGMENT_END (segment, segment->p_vaddr))))
6849
6850 /* Returns TRUE if the given section is contained within
6851 the given segment. LMA addresses are compared. */
6852 #define IS_CONTAINED_BY_LMA(section, segment, base, opb) \
6853 (section->lma * (opb) >= base \
6854 && (section->lma + SECTION_SIZE (section, segment) / (opb) >= section->lma) \
6855 && (section->lma * (opb) + SECTION_SIZE (section, segment) \
6856 <= SEGMENT_END (segment, base)))
6857
6858 /* Handle PT_NOTE segment. */
6859 #define IS_NOTE(p, s) \
6860 (p->p_type == PT_NOTE \
6861 && elf_section_type (s) == SHT_NOTE \
6862 && (bfd_vma) s->filepos >= p->p_offset \
6863 && ((bfd_vma) s->filepos + s->size \
6864 <= p->p_offset + p->p_filesz))
6865
6866 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6867 etc. */
6868 #define IS_COREFILE_NOTE(p, s) \
6869 (IS_NOTE (p, s) \
6870 && bfd_get_format (ibfd) == bfd_core \
6871 && s->vma == 0 \
6872 && s->lma == 0)
6873
6874 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6875 linker, which generates a PT_INTERP section with p_vaddr and
6876 p_memsz set to 0. */
6877 #define IS_SOLARIS_PT_INTERP(p, s) \
6878 (p->p_vaddr == 0 \
6879 && p->p_paddr == 0 \
6880 && p->p_memsz == 0 \
6881 && p->p_filesz > 0 \
6882 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6883 && s->size > 0 \
6884 && (bfd_vma) s->filepos >= p->p_offset \
6885 && ((bfd_vma) s->filepos + s->size \
6886 <= p->p_offset + p->p_filesz))
6887
6888 /* Decide if the given section should be included in the given segment.
6889 A section will be included if:
6890 1. It is within the address space of the segment -- we use the LMA
6891 if that is set for the segment and the VMA otherwise,
6892 2. It is an allocated section or a NOTE section in a PT_NOTE
6893 segment.
6894 3. There is an output section associated with it,
6895 4. The section has not already been allocated to a previous segment.
6896 5. PT_GNU_STACK segments do not include any sections.
6897 6. PT_TLS segment includes only SHF_TLS sections.
6898 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6899 8. PT_DYNAMIC should not contain empty sections at the beginning
6900 (with the possible exception of .dynamic). */
6901 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed, opb) \
6902 ((((segment->p_paddr \
6903 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr, opb) \
6904 : IS_CONTAINED_BY_VMA (section, segment, opb)) \
6905 && (section->flags & SEC_ALLOC) != 0) \
6906 || IS_NOTE (segment, section)) \
6907 && segment->p_type != PT_GNU_STACK \
6908 && (segment->p_type != PT_TLS \
6909 || (section->flags & SEC_THREAD_LOCAL)) \
6910 && (segment->p_type == PT_LOAD \
6911 || segment->p_type == PT_TLS \
6912 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6913 && (segment->p_type != PT_DYNAMIC \
6914 || SECTION_SIZE (section, segment) > 0 \
6915 || (segment->p_paddr \
6916 ? segment->p_paddr != section->lma * (opb) \
6917 : segment->p_vaddr != section->vma * (opb)) \
6918 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6919 && (segment->p_type != PT_LOAD || !section->segment_mark))
6920
6921 /* If the output section of a section in the input segment is NULL,
6922 it is removed from the corresponding output segment. */
6923 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed, opb) \
6924 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb) \
6925 && section->output_section != NULL)
6926
6927 /* Returns TRUE iff seg1 starts after the end of seg2. */
6928 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6929 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6930
6931 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6932 their VMA address ranges and their LMA address ranges overlap.
6933 It is possible to have overlapping VMA ranges without overlapping LMA
6934 ranges. RedBoot images for example can have both .data and .bss mapped
6935 to the same VMA range, but with the .data section mapped to a different
6936 LMA. */
6937 #define SEGMENT_OVERLAPS(seg1, seg2) \
6938 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6939 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6940 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6941 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6942
6943 /* Initialise the segment mark field. */
6944 for (section = ibfd->sections; section != NULL; section = section->next)
6945 section->segment_mark = FALSE;
6946
6947 /* The Solaris linker creates program headers in which all the
6948 p_paddr fields are zero. When we try to objcopy or strip such a
6949 file, we get confused. Check for this case, and if we find it
6950 don't set the p_paddr_valid fields. */
6951 p_paddr_valid = FALSE;
6952 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6953 i < num_segments;
6954 i++, segment++)
6955 if (segment->p_paddr != 0)
6956 {
6957 p_paddr_valid = TRUE;
6958 break;
6959 }
6960
6961 /* Scan through the segments specified in the program header
6962 of the input BFD. For this first scan we look for overlaps
6963 in the loadable segments. These can be created by weird
6964 parameters to objcopy. Also, fix some solaris weirdness. */
6965 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6966 i < num_segments;
6967 i++, segment++)
6968 {
6969 unsigned int j;
6970 Elf_Internal_Phdr *segment2;
6971
6972 if (segment->p_type == PT_INTERP)
6973 for (section = ibfd->sections; section; section = section->next)
6974 if (IS_SOLARIS_PT_INTERP (segment, section))
6975 {
6976 /* Mininal change so that the normal section to segment
6977 assignment code will work. */
6978 segment->p_vaddr = section->vma * opb;
6979 break;
6980 }
6981
6982 if (segment->p_type != PT_LOAD)
6983 {
6984 /* Remove PT_GNU_RELRO segment. */
6985 if (segment->p_type == PT_GNU_RELRO)
6986 segment->p_type = PT_NULL;
6987 continue;
6988 }
6989
6990 /* Determine if this segment overlaps any previous segments. */
6991 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6992 {
6993 bfd_signed_vma extra_length;
6994
6995 if (segment2->p_type != PT_LOAD
6996 || !SEGMENT_OVERLAPS (segment, segment2))
6997 continue;
6998
6999 /* Merge the two segments together. */
7000 if (segment2->p_vaddr < segment->p_vaddr)
7001 {
7002 /* Extend SEGMENT2 to include SEGMENT and then delete
7003 SEGMENT. */
7004 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
7005 - SEGMENT_END (segment2, segment2->p_vaddr));
7006
7007 if (extra_length > 0)
7008 {
7009 segment2->p_memsz += extra_length;
7010 segment2->p_filesz += extra_length;
7011 }
7012
7013 segment->p_type = PT_NULL;
7014
7015 /* Since we have deleted P we must restart the outer loop. */
7016 i = 0;
7017 segment = elf_tdata (ibfd)->phdr;
7018 break;
7019 }
7020 else
7021 {
7022 /* Extend SEGMENT to include SEGMENT2 and then delete
7023 SEGMENT2. */
7024 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7025 - SEGMENT_END (segment, segment->p_vaddr));
7026
7027 if (extra_length > 0)
7028 {
7029 segment->p_memsz += extra_length;
7030 segment->p_filesz += extra_length;
7031 }
7032
7033 segment2->p_type = PT_NULL;
7034 }
7035 }
7036 }
7037
7038 /* The second scan attempts to assign sections to segments. */
7039 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7040 i < num_segments;
7041 i++, segment++)
7042 {
7043 unsigned int section_count;
7044 asection **sections;
7045 asection *output_section;
7046 unsigned int isec;
7047 asection *matching_lma;
7048 asection *suggested_lma;
7049 unsigned int j;
7050 size_t amt;
7051 asection *first_section;
7052
7053 if (segment->p_type == PT_NULL)
7054 continue;
7055
7056 first_section = NULL;
7057 /* Compute how many sections might be placed into this segment. */
7058 for (section = ibfd->sections, section_count = 0;
7059 section != NULL;
7060 section = section->next)
7061 {
7062 /* Find the first section in the input segment, which may be
7063 removed from the corresponding output segment. */
7064 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb))
7065 {
7066 if (first_section == NULL)
7067 first_section = section;
7068 if (section->output_section != NULL)
7069 ++section_count;
7070 }
7071 }
7072
7073 /* Allocate a segment map big enough to contain
7074 all of the sections we have selected. */
7075 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7076 amt += section_count * sizeof (asection *);
7077 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7078 if (map == NULL)
7079 return FALSE;
7080
7081 /* Initialise the fields of the segment map. Default to
7082 using the physical address of the segment in the input BFD. */
7083 map->next = NULL;
7084 map->p_type = segment->p_type;
7085 map->p_flags = segment->p_flags;
7086 map->p_flags_valid = 1;
7087
7088 /* If the first section in the input segment is removed, there is
7089 no need to preserve segment physical address in the corresponding
7090 output segment. */
7091 if (!first_section || first_section->output_section != NULL)
7092 {
7093 map->p_paddr = segment->p_paddr;
7094 map->p_paddr_valid = p_paddr_valid;
7095 }
7096
7097 /* Determine if this segment contains the ELF file header
7098 and if it contains the program headers themselves. */
7099 map->includes_filehdr = (segment->p_offset == 0
7100 && segment->p_filesz >= iehdr->e_ehsize);
7101 map->includes_phdrs = 0;
7102
7103 if (!phdr_included || segment->p_type != PT_LOAD)
7104 {
7105 map->includes_phdrs =
7106 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7107 && (segment->p_offset + segment->p_filesz
7108 >= ((bfd_vma) iehdr->e_phoff
7109 + iehdr->e_phnum * iehdr->e_phentsize)));
7110
7111 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7112 phdr_included = TRUE;
7113 }
7114
7115 if (section_count == 0)
7116 {
7117 /* Special segments, such as the PT_PHDR segment, may contain
7118 no sections, but ordinary, loadable segments should contain
7119 something. They are allowed by the ELF spec however, so only
7120 a warning is produced.
7121 There is however the valid use case of embedded systems which
7122 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7123 flash memory with zeros. No warning is shown for that case. */
7124 if (segment->p_type == PT_LOAD
7125 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7126 /* xgettext:c-format */
7127 _bfd_error_handler
7128 (_("%pB: warning: empty loadable segment detected"
7129 " at vaddr=%#" PRIx64 ", is this intentional?"),
7130 ibfd, (uint64_t) segment->p_vaddr);
7131
7132 map->p_vaddr_offset = segment->p_vaddr / opb;
7133 map->count = 0;
7134 *pointer_to_map = map;
7135 pointer_to_map = &map->next;
7136
7137 continue;
7138 }
7139
7140 /* Now scan the sections in the input BFD again and attempt
7141 to add their corresponding output sections to the segment map.
7142 The problem here is how to handle an output section which has
7143 been moved (ie had its LMA changed). There are four possibilities:
7144
7145 1. None of the sections have been moved.
7146 In this case we can continue to use the segment LMA from the
7147 input BFD.
7148
7149 2. All of the sections have been moved by the same amount.
7150 In this case we can change the segment's LMA to match the LMA
7151 of the first section.
7152
7153 3. Some of the sections have been moved, others have not.
7154 In this case those sections which have not been moved can be
7155 placed in the current segment which will have to have its size,
7156 and possibly its LMA changed, and a new segment or segments will
7157 have to be created to contain the other sections.
7158
7159 4. The sections have been moved, but not by the same amount.
7160 In this case we can change the segment's LMA to match the LMA
7161 of the first section and we will have to create a new segment
7162 or segments to contain the other sections.
7163
7164 In order to save time, we allocate an array to hold the section
7165 pointers that we are interested in. As these sections get assigned
7166 to a segment, they are removed from this array. */
7167
7168 amt = section_count * sizeof (asection *);
7169 sections = (asection **) bfd_malloc (amt);
7170 if (sections == NULL)
7171 return FALSE;
7172
7173 /* Step One: Scan for segment vs section LMA conflicts.
7174 Also add the sections to the section array allocated above.
7175 Also add the sections to the current segment. In the common
7176 case, where the sections have not been moved, this means that
7177 we have completely filled the segment, and there is nothing
7178 more to do. */
7179 isec = 0;
7180 matching_lma = NULL;
7181 suggested_lma = NULL;
7182
7183 for (section = first_section, j = 0;
7184 section != NULL;
7185 section = section->next)
7186 {
7187 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed, opb))
7188 {
7189 output_section = section->output_section;
7190
7191 sections[j++] = section;
7192
7193 /* The Solaris native linker always sets p_paddr to 0.
7194 We try to catch that case here, and set it to the
7195 correct value. Note - some backends require that
7196 p_paddr be left as zero. */
7197 if (!p_paddr_valid
7198 && segment->p_vaddr != 0
7199 && !bed->want_p_paddr_set_to_zero
7200 && isec == 0
7201 && output_section->lma != 0
7202 && (align_power (segment->p_vaddr
7203 + (map->includes_filehdr
7204 ? iehdr->e_ehsize : 0)
7205 + (map->includes_phdrs
7206 ? iehdr->e_phnum * iehdr->e_phentsize
7207 : 0),
7208 output_section->alignment_power * opb)
7209 == (output_section->vma * opb)))
7210 map->p_paddr = segment->p_vaddr;
7211
7212 /* Match up the physical address of the segment with the
7213 LMA address of the output section. */
7214 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7215 opb)
7216 || IS_COREFILE_NOTE (segment, section)
7217 || (bed->want_p_paddr_set_to_zero
7218 && IS_CONTAINED_BY_VMA (output_section, segment, opb)))
7219 {
7220 if (matching_lma == NULL
7221 || output_section->lma < matching_lma->lma)
7222 matching_lma = output_section;
7223
7224 /* We assume that if the section fits within the segment
7225 then it does not overlap any other section within that
7226 segment. */
7227 map->sections[isec++] = output_section;
7228 }
7229 else if (suggested_lma == NULL)
7230 suggested_lma = output_section;
7231
7232 if (j == section_count)
7233 break;
7234 }
7235 }
7236
7237 BFD_ASSERT (j == section_count);
7238
7239 /* Step Two: Adjust the physical address of the current segment,
7240 if necessary. */
7241 if (isec == section_count)
7242 {
7243 /* All of the sections fitted within the segment as currently
7244 specified. This is the default case. Add the segment to
7245 the list of built segments and carry on to process the next
7246 program header in the input BFD. */
7247 map->count = section_count;
7248 *pointer_to_map = map;
7249 pointer_to_map = &map->next;
7250
7251 if (p_paddr_valid
7252 && !bed->want_p_paddr_set_to_zero)
7253 {
7254 bfd_vma hdr_size = 0;
7255 if (map->includes_filehdr)
7256 hdr_size = iehdr->e_ehsize;
7257 if (map->includes_phdrs)
7258 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7259
7260 /* Account for padding before the first section in the
7261 segment. */
7262 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7263 - matching_lma->lma);
7264 }
7265
7266 free (sections);
7267 continue;
7268 }
7269 else
7270 {
7271 /* Change the current segment's physical address to match
7272 the LMA of the first section that fitted, or if no
7273 section fitted, the first section. */
7274 if (matching_lma == NULL)
7275 matching_lma = suggested_lma;
7276
7277 map->p_paddr = matching_lma->lma * opb;
7278
7279 /* Offset the segment physical address from the lma
7280 to allow for space taken up by elf headers. */
7281 if (map->includes_phdrs)
7282 {
7283 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7284
7285 /* iehdr->e_phnum is just an estimate of the number
7286 of program headers that we will need. Make a note
7287 here of the number we used and the segment we chose
7288 to hold these headers, so that we can adjust the
7289 offset when we know the correct value. */
7290 phdr_adjust_num = iehdr->e_phnum;
7291 phdr_adjust_seg = map;
7292 }
7293
7294 if (map->includes_filehdr)
7295 {
7296 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7297 map->p_paddr -= iehdr->e_ehsize;
7298 /* We've subtracted off the size of headers from the
7299 first section lma, but there may have been some
7300 alignment padding before that section too. Try to
7301 account for that by adjusting the segment lma down to
7302 the same alignment. */
7303 if (segment->p_align != 0 && segment->p_align < align)
7304 align = segment->p_align;
7305 map->p_paddr &= -(align * opb);
7306 }
7307 }
7308
7309 /* Step Three: Loop over the sections again, this time assigning
7310 those that fit to the current segment and removing them from the
7311 sections array; but making sure not to leave large gaps. Once all
7312 possible sections have been assigned to the current segment it is
7313 added to the list of built segments and if sections still remain
7314 to be assigned, a new segment is constructed before repeating
7315 the loop. */
7316 isec = 0;
7317 do
7318 {
7319 map->count = 0;
7320 suggested_lma = NULL;
7321
7322 /* Fill the current segment with sections that fit. */
7323 for (j = 0; j < section_count; j++)
7324 {
7325 section = sections[j];
7326
7327 if (section == NULL)
7328 continue;
7329
7330 output_section = section->output_section;
7331
7332 BFD_ASSERT (output_section != NULL);
7333
7334 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7335 opb)
7336 || IS_COREFILE_NOTE (segment, section))
7337 {
7338 if (map->count == 0)
7339 {
7340 /* If the first section in a segment does not start at
7341 the beginning of the segment, then something is
7342 wrong. */
7343 if (align_power (map->p_paddr
7344 + (map->includes_filehdr
7345 ? iehdr->e_ehsize : 0)
7346 + (map->includes_phdrs
7347 ? iehdr->e_phnum * iehdr->e_phentsize
7348 : 0),
7349 output_section->alignment_power * opb)
7350 != output_section->lma * opb)
7351 goto sorry;
7352 }
7353 else
7354 {
7355 asection *prev_sec;
7356
7357 prev_sec = map->sections[map->count - 1];
7358
7359 /* If the gap between the end of the previous section
7360 and the start of this section is more than
7361 maxpagesize then we need to start a new segment. */
7362 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7363 maxpagesize)
7364 < BFD_ALIGN (output_section->lma, maxpagesize))
7365 || (prev_sec->lma + prev_sec->size
7366 > output_section->lma))
7367 {
7368 if (suggested_lma == NULL)
7369 suggested_lma = output_section;
7370
7371 continue;
7372 }
7373 }
7374
7375 map->sections[map->count++] = output_section;
7376 ++isec;
7377 sections[j] = NULL;
7378 if (segment->p_type == PT_LOAD)
7379 section->segment_mark = TRUE;
7380 }
7381 else if (suggested_lma == NULL)
7382 suggested_lma = output_section;
7383 }
7384
7385 /* PR 23932. A corrupt input file may contain sections that cannot
7386 be assigned to any segment - because for example they have a
7387 negative size - or segments that do not contain any sections.
7388 But there are also valid reasons why a segment can be empty.
7389 So allow a count of zero. */
7390
7391 /* Add the current segment to the list of built segments. */
7392 *pointer_to_map = map;
7393 pointer_to_map = &map->next;
7394
7395 if (isec < section_count)
7396 {
7397 /* We still have not allocated all of the sections to
7398 segments. Create a new segment here, initialise it
7399 and carry on looping. */
7400 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7401 amt += section_count * sizeof (asection *);
7402 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7403 if (map == NULL)
7404 {
7405 free (sections);
7406 return FALSE;
7407 }
7408
7409 /* Initialise the fields of the segment map. Set the physical
7410 physical address to the LMA of the first section that has
7411 not yet been assigned. */
7412 map->next = NULL;
7413 map->p_type = segment->p_type;
7414 map->p_flags = segment->p_flags;
7415 map->p_flags_valid = 1;
7416 map->p_paddr = suggested_lma->lma * opb;
7417 map->p_paddr_valid = p_paddr_valid;
7418 map->includes_filehdr = 0;
7419 map->includes_phdrs = 0;
7420 }
7421
7422 continue;
7423 sorry:
7424 bfd_set_error (bfd_error_sorry);
7425 free (sections);
7426 return FALSE;
7427 }
7428 while (isec < section_count);
7429
7430 free (sections);
7431 }
7432
7433 elf_seg_map (obfd) = map_first;
7434
7435 /* If we had to estimate the number of program headers that were
7436 going to be needed, then check our estimate now and adjust
7437 the offset if necessary. */
7438 if (phdr_adjust_seg != NULL)
7439 {
7440 unsigned int count;
7441
7442 for (count = 0, map = map_first; map != NULL; map = map->next)
7443 count++;
7444
7445 if (count > phdr_adjust_num)
7446 phdr_adjust_seg->p_paddr
7447 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7448
7449 for (map = map_first; map != NULL; map = map->next)
7450 if (map->p_type == PT_PHDR)
7451 {
7452 bfd_vma adjust
7453 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7454 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7455 break;
7456 }
7457 }
7458
7459 #undef SEGMENT_END
7460 #undef SECTION_SIZE
7461 #undef IS_CONTAINED_BY_VMA
7462 #undef IS_CONTAINED_BY_LMA
7463 #undef IS_NOTE
7464 #undef IS_COREFILE_NOTE
7465 #undef IS_SOLARIS_PT_INTERP
7466 #undef IS_SECTION_IN_INPUT_SEGMENT
7467 #undef INCLUDE_SECTION_IN_SEGMENT
7468 #undef SEGMENT_AFTER_SEGMENT
7469 #undef SEGMENT_OVERLAPS
7470 return TRUE;
7471 }
7472
7473 /* Copy ELF program header information. */
7474
7475 static bfd_boolean
7476 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7477 {
7478 Elf_Internal_Ehdr *iehdr;
7479 struct elf_segment_map *map;
7480 struct elf_segment_map *map_first;
7481 struct elf_segment_map **pointer_to_map;
7482 Elf_Internal_Phdr *segment;
7483 unsigned int i;
7484 unsigned int num_segments;
7485 bfd_boolean phdr_included = FALSE;
7486 bfd_boolean p_paddr_valid;
7487 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
7488
7489 iehdr = elf_elfheader (ibfd);
7490
7491 map_first = NULL;
7492 pointer_to_map = &map_first;
7493
7494 /* If all the segment p_paddr fields are zero, don't set
7495 map->p_paddr_valid. */
7496 p_paddr_valid = FALSE;
7497 num_segments = elf_elfheader (ibfd)->e_phnum;
7498 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7499 i < num_segments;
7500 i++, segment++)
7501 if (segment->p_paddr != 0)
7502 {
7503 p_paddr_valid = TRUE;
7504 break;
7505 }
7506
7507 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7508 i < num_segments;
7509 i++, segment++)
7510 {
7511 asection *section;
7512 unsigned int section_count;
7513 size_t amt;
7514 Elf_Internal_Shdr *this_hdr;
7515 asection *first_section = NULL;
7516 asection *lowest_section;
7517
7518 /* Compute how many sections are in this segment. */
7519 for (section = ibfd->sections, section_count = 0;
7520 section != NULL;
7521 section = section->next)
7522 {
7523 this_hdr = &(elf_section_data(section)->this_hdr);
7524 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7525 {
7526 if (first_section == NULL)
7527 first_section = section;
7528 section_count++;
7529 }
7530 }
7531
7532 /* Allocate a segment map big enough to contain
7533 all of the sections we have selected. */
7534 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7535 amt += section_count * sizeof (asection *);
7536 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7537 if (map == NULL)
7538 return FALSE;
7539
7540 /* Initialize the fields of the output segment map with the
7541 input segment. */
7542 map->next = NULL;
7543 map->p_type = segment->p_type;
7544 map->p_flags = segment->p_flags;
7545 map->p_flags_valid = 1;
7546 map->p_paddr = segment->p_paddr;
7547 map->p_paddr_valid = p_paddr_valid;
7548 map->p_align = segment->p_align;
7549 map->p_align_valid = 1;
7550 map->p_vaddr_offset = 0;
7551
7552 if (map->p_type == PT_GNU_RELRO
7553 || map->p_type == PT_GNU_STACK)
7554 {
7555 /* The PT_GNU_RELRO segment may contain the first a few
7556 bytes in the .got.plt section even if the whole .got.plt
7557 section isn't in the PT_GNU_RELRO segment. We won't
7558 change the size of the PT_GNU_RELRO segment.
7559 Similarly, PT_GNU_STACK size is significant on uclinux
7560 systems. */
7561 map->p_size = segment->p_memsz;
7562 map->p_size_valid = 1;
7563 }
7564
7565 /* Determine if this segment contains the ELF file header
7566 and if it contains the program headers themselves. */
7567 map->includes_filehdr = (segment->p_offset == 0
7568 && segment->p_filesz >= iehdr->e_ehsize);
7569
7570 map->includes_phdrs = 0;
7571 if (! phdr_included || segment->p_type != PT_LOAD)
7572 {
7573 map->includes_phdrs =
7574 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7575 && (segment->p_offset + segment->p_filesz
7576 >= ((bfd_vma) iehdr->e_phoff
7577 + iehdr->e_phnum * iehdr->e_phentsize)));
7578
7579 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7580 phdr_included = TRUE;
7581 }
7582
7583 lowest_section = NULL;
7584 if (section_count != 0)
7585 {
7586 unsigned int isec = 0;
7587
7588 for (section = first_section;
7589 section != NULL;
7590 section = section->next)
7591 {
7592 this_hdr = &(elf_section_data(section)->this_hdr);
7593 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7594 {
7595 map->sections[isec++] = section->output_section;
7596 if ((section->flags & SEC_ALLOC) != 0)
7597 {
7598 bfd_vma seg_off;
7599
7600 if (lowest_section == NULL
7601 || section->lma < lowest_section->lma)
7602 lowest_section = section;
7603
7604 /* Section lmas are set up from PT_LOAD header
7605 p_paddr in _bfd_elf_make_section_from_shdr.
7606 If this header has a p_paddr that disagrees
7607 with the section lma, flag the p_paddr as
7608 invalid. */
7609 if ((section->flags & SEC_LOAD) != 0)
7610 seg_off = this_hdr->sh_offset - segment->p_offset;
7611 else
7612 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7613 if (section->lma * opb - segment->p_paddr != seg_off)
7614 map->p_paddr_valid = FALSE;
7615 }
7616 if (isec == section_count)
7617 break;
7618 }
7619 }
7620 }
7621
7622 if (section_count == 0)
7623 map->p_vaddr_offset = segment->p_vaddr / opb;
7624 else if (map->p_paddr_valid)
7625 {
7626 /* Account for padding before the first section in the segment. */
7627 bfd_vma hdr_size = 0;
7628 if (map->includes_filehdr)
7629 hdr_size = iehdr->e_ehsize;
7630 if (map->includes_phdrs)
7631 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7632
7633 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7634 - (lowest_section ? lowest_section->lma : 0));
7635 }
7636
7637 map->count = section_count;
7638 *pointer_to_map = map;
7639 pointer_to_map = &map->next;
7640 }
7641
7642 elf_seg_map (obfd) = map_first;
7643 return TRUE;
7644 }
7645
7646 /* Copy private BFD data. This copies or rewrites ELF program header
7647 information. */
7648
7649 static bfd_boolean
7650 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7651 {
7652 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7653 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7654 return TRUE;
7655
7656 if (elf_tdata (ibfd)->phdr == NULL)
7657 return TRUE;
7658
7659 if (ibfd->xvec == obfd->xvec)
7660 {
7661 /* Check to see if any sections in the input BFD
7662 covered by ELF program header have changed. */
7663 Elf_Internal_Phdr *segment;
7664 asection *section, *osec;
7665 unsigned int i, num_segments;
7666 Elf_Internal_Shdr *this_hdr;
7667 const struct elf_backend_data *bed;
7668
7669 bed = get_elf_backend_data (ibfd);
7670
7671 /* Regenerate the segment map if p_paddr is set to 0. */
7672 if (bed->want_p_paddr_set_to_zero)
7673 goto rewrite;
7674
7675 /* Initialize the segment mark field. */
7676 for (section = obfd->sections; section != NULL;
7677 section = section->next)
7678 section->segment_mark = FALSE;
7679
7680 num_segments = elf_elfheader (ibfd)->e_phnum;
7681 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7682 i < num_segments;
7683 i++, segment++)
7684 {
7685 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7686 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7687 which severly confuses things, so always regenerate the segment
7688 map in this case. */
7689 if (segment->p_paddr == 0
7690 && segment->p_memsz == 0
7691 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7692 goto rewrite;
7693
7694 for (section = ibfd->sections;
7695 section != NULL; section = section->next)
7696 {
7697 /* We mark the output section so that we know it comes
7698 from the input BFD. */
7699 osec = section->output_section;
7700 if (osec)
7701 osec->segment_mark = TRUE;
7702
7703 /* Check if this section is covered by the segment. */
7704 this_hdr = &(elf_section_data(section)->this_hdr);
7705 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7706 {
7707 /* FIXME: Check if its output section is changed or
7708 removed. What else do we need to check? */
7709 if (osec == NULL
7710 || section->flags != osec->flags
7711 || section->lma != osec->lma
7712 || section->vma != osec->vma
7713 || section->size != osec->size
7714 || section->rawsize != osec->rawsize
7715 || section->alignment_power != osec->alignment_power)
7716 goto rewrite;
7717 }
7718 }
7719 }
7720
7721 /* Check to see if any output section do not come from the
7722 input BFD. */
7723 for (section = obfd->sections; section != NULL;
7724 section = section->next)
7725 {
7726 if (!section->segment_mark)
7727 goto rewrite;
7728 else
7729 section->segment_mark = FALSE;
7730 }
7731
7732 return copy_elf_program_header (ibfd, obfd);
7733 }
7734
7735 rewrite:
7736 if (ibfd->xvec == obfd->xvec)
7737 {
7738 /* When rewriting program header, set the output maxpagesize to
7739 the maximum alignment of input PT_LOAD segments. */
7740 Elf_Internal_Phdr *segment;
7741 unsigned int i;
7742 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7743 bfd_vma maxpagesize = 0;
7744
7745 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7746 i < num_segments;
7747 i++, segment++)
7748 if (segment->p_type == PT_LOAD
7749 && maxpagesize < segment->p_align)
7750 {
7751 /* PR 17512: file: f17299af. */
7752 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7753 /* xgettext:c-format */
7754 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7755 PRIx64 " is too large"),
7756 ibfd, (uint64_t) segment->p_align);
7757 else
7758 maxpagesize = segment->p_align;
7759 }
7760
7761 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7762 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7763 }
7764
7765 return rewrite_elf_program_header (ibfd, obfd);
7766 }
7767
7768 /* Initialize private output section information from input section. */
7769
7770 bfd_boolean
7771 _bfd_elf_init_private_section_data (bfd *ibfd,
7772 asection *isec,
7773 bfd *obfd,
7774 asection *osec,
7775 struct bfd_link_info *link_info)
7776
7777 {
7778 Elf_Internal_Shdr *ihdr, *ohdr;
7779 bfd_boolean final_link = (link_info != NULL
7780 && !bfd_link_relocatable (link_info));
7781
7782 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7783 || obfd->xvec->flavour != bfd_target_elf_flavour)
7784 return TRUE;
7785
7786 BFD_ASSERT (elf_section_data (osec) != NULL);
7787
7788 /* If this is a known ABI section, ELF section type and flags may
7789 have been set up when OSEC was created. For normal sections we
7790 allow the user to override the type and flags other than
7791 SHF_MASKOS and SHF_MASKPROC. */
7792 if (elf_section_type (osec) == SHT_PROGBITS
7793 || elf_section_type (osec) == SHT_NOTE
7794 || elf_section_type (osec) == SHT_NOBITS)
7795 elf_section_type (osec) = SHT_NULL;
7796 /* For objcopy and relocatable link, copy the ELF section type from
7797 the input file if the BFD section flags are the same. (If they
7798 are different the user may be doing something like
7799 "objcopy --set-section-flags .text=alloc,data".) For a final
7800 link allow some flags that the linker clears to differ. */
7801 if (elf_section_type (osec) == SHT_NULL
7802 && (osec->flags == isec->flags
7803 || (final_link
7804 && ((osec->flags ^ isec->flags)
7805 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7806 elf_section_type (osec) = elf_section_type (isec);
7807
7808 /* FIXME: Is this correct for all OS/PROC specific flags? */
7809 elf_section_flags (osec) = (elf_section_flags (isec)
7810 & (SHF_MASKOS | SHF_MASKPROC));
7811
7812 /* Copy sh_info from input for mbind section. */
7813 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7814 && elf_section_flags (isec) & SHF_GNU_MBIND)
7815 elf_section_data (osec)->this_hdr.sh_info
7816 = elf_section_data (isec)->this_hdr.sh_info;
7817
7818 /* Set things up for objcopy and relocatable link. The output
7819 SHT_GROUP section will have its elf_next_in_group pointing back
7820 to the input group members. Ignore linker created group section.
7821 See elfNN_ia64_object_p in elfxx-ia64.c. */
7822 if ((link_info == NULL
7823 || !link_info->resolve_section_groups)
7824 && (elf_sec_group (isec) == NULL
7825 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7826 {
7827 if (elf_section_flags (isec) & SHF_GROUP)
7828 elf_section_flags (osec) |= SHF_GROUP;
7829 elf_next_in_group (osec) = elf_next_in_group (isec);
7830 elf_section_data (osec)->group = elf_section_data (isec)->group;
7831 }
7832
7833 /* If not decompress, preserve SHF_COMPRESSED. */
7834 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7835 elf_section_flags (osec) |= (elf_section_flags (isec)
7836 & SHF_COMPRESSED);
7837
7838 ihdr = &elf_section_data (isec)->this_hdr;
7839
7840 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7841 don't use the output section of the linked-to section since it
7842 may be NULL at this point. */
7843 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7844 {
7845 ohdr = &elf_section_data (osec)->this_hdr;
7846 ohdr->sh_flags |= SHF_LINK_ORDER;
7847 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7848 }
7849
7850 osec->use_rela_p = isec->use_rela_p;
7851
7852 return TRUE;
7853 }
7854
7855 /* Copy private section information. This copies over the entsize
7856 field, and sometimes the info field. */
7857
7858 bfd_boolean
7859 _bfd_elf_copy_private_section_data (bfd *ibfd,
7860 asection *isec,
7861 bfd *obfd,
7862 asection *osec)
7863 {
7864 Elf_Internal_Shdr *ihdr, *ohdr;
7865
7866 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7867 || obfd->xvec->flavour != bfd_target_elf_flavour)
7868 return TRUE;
7869
7870 ihdr = &elf_section_data (isec)->this_hdr;
7871 ohdr = &elf_section_data (osec)->this_hdr;
7872
7873 ohdr->sh_entsize = ihdr->sh_entsize;
7874
7875 if (ihdr->sh_type == SHT_SYMTAB
7876 || ihdr->sh_type == SHT_DYNSYM
7877 || ihdr->sh_type == SHT_GNU_verneed
7878 || ihdr->sh_type == SHT_GNU_verdef)
7879 ohdr->sh_info = ihdr->sh_info;
7880
7881 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7882 NULL);
7883 }
7884
7885 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7886 necessary if we are removing either the SHT_GROUP section or any of
7887 the group member sections. DISCARDED is the value that a section's
7888 output_section has if the section will be discarded, NULL when this
7889 function is called from objcopy, bfd_abs_section_ptr when called
7890 from the linker. */
7891
7892 bfd_boolean
7893 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7894 {
7895 asection *isec;
7896
7897 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7898 if (elf_section_type (isec) == SHT_GROUP)
7899 {
7900 asection *first = elf_next_in_group (isec);
7901 asection *s = first;
7902 bfd_size_type removed = 0;
7903
7904 while (s != NULL)
7905 {
7906 /* If this member section is being output but the
7907 SHT_GROUP section is not, then clear the group info
7908 set up by _bfd_elf_copy_private_section_data. */
7909 if (s->output_section != discarded
7910 && isec->output_section == discarded)
7911 {
7912 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7913 elf_group_name (s->output_section) = NULL;
7914 }
7915 else
7916 {
7917 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7918 if (s->output_section == discarded
7919 && isec->output_section != discarded)
7920 {
7921 /* Conversely, if the member section is not being
7922 output but the SHT_GROUP section is, then adjust
7923 its size. */
7924 removed += 4;
7925 if (elf_sec->rel.hdr != NULL
7926 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7927 removed += 4;
7928 if (elf_sec->rela.hdr != NULL
7929 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7930 removed += 4;
7931 }
7932 else
7933 {
7934 /* Also adjust for zero-sized relocation member
7935 section. */
7936 if (elf_sec->rel.hdr != NULL
7937 && elf_sec->rel.hdr->sh_size == 0)
7938 removed += 4;
7939 if (elf_sec->rela.hdr != NULL
7940 && elf_sec->rela.hdr->sh_size == 0)
7941 removed += 4;
7942 }
7943 }
7944 s = elf_next_in_group (s);
7945 if (s == first)
7946 break;
7947 }
7948 if (removed != 0)
7949 {
7950 if (discarded != NULL)
7951 {
7952 /* If we've been called for ld -r, then we need to
7953 adjust the input section size. */
7954 if (isec->rawsize == 0)
7955 isec->rawsize = isec->size;
7956 isec->size = isec->rawsize - removed;
7957 if (isec->size <= 4)
7958 {
7959 isec->size = 0;
7960 isec->flags |= SEC_EXCLUDE;
7961 }
7962 }
7963 else
7964 {
7965 /* Adjust the output section size when called from
7966 objcopy. */
7967 isec->output_section->size -= removed;
7968 if (isec->output_section->size <= 4)
7969 {
7970 isec->output_section->size = 0;
7971 isec->output_section->flags |= SEC_EXCLUDE;
7972 }
7973 }
7974 }
7975 }
7976
7977 return TRUE;
7978 }
7979
7980 /* Copy private header information. */
7981
7982 bfd_boolean
7983 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7984 {
7985 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7986 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7987 return TRUE;
7988
7989 /* Copy over private BFD data if it has not already been copied.
7990 This must be done here, rather than in the copy_private_bfd_data
7991 entry point, because the latter is called after the section
7992 contents have been set, which means that the program headers have
7993 already been worked out. */
7994 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7995 {
7996 if (! copy_private_bfd_data (ibfd, obfd))
7997 return FALSE;
7998 }
7999
8000 return _bfd_elf_fixup_group_sections (ibfd, NULL);
8001 }
8002
8003 /* Copy private symbol information. If this symbol is in a section
8004 which we did not map into a BFD section, try to map the section
8005 index correctly. We use special macro definitions for the mapped
8006 section indices; these definitions are interpreted by the
8007 swap_out_syms function. */
8008
8009 #define MAP_ONESYMTAB (SHN_HIOS + 1)
8010 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
8011 #define MAP_STRTAB (SHN_HIOS + 3)
8012 #define MAP_SHSTRTAB (SHN_HIOS + 4)
8013 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
8014
8015 bfd_boolean
8016 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
8017 asymbol *isymarg,
8018 bfd *obfd,
8019 asymbol *osymarg)
8020 {
8021 elf_symbol_type *isym, *osym;
8022
8023 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8024 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8025 return TRUE;
8026
8027 isym = elf_symbol_from (isymarg);
8028 osym = elf_symbol_from (osymarg);
8029
8030 if (isym != NULL
8031 && isym->internal_elf_sym.st_shndx != 0
8032 && osym != NULL
8033 && bfd_is_abs_section (isym->symbol.section))
8034 {
8035 unsigned int shndx;
8036
8037 shndx = isym->internal_elf_sym.st_shndx;
8038 if (shndx == elf_onesymtab (ibfd))
8039 shndx = MAP_ONESYMTAB;
8040 else if (shndx == elf_dynsymtab (ibfd))
8041 shndx = MAP_DYNSYMTAB;
8042 else if (shndx == elf_strtab_sec (ibfd))
8043 shndx = MAP_STRTAB;
8044 else if (shndx == elf_shstrtab_sec (ibfd))
8045 shndx = MAP_SHSTRTAB;
8046 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
8047 shndx = MAP_SYM_SHNDX;
8048 osym->internal_elf_sym.st_shndx = shndx;
8049 }
8050
8051 return TRUE;
8052 }
8053
8054 /* Swap out the symbols. */
8055
8056 static bfd_boolean
8057 swap_out_syms (bfd *abfd,
8058 struct elf_strtab_hash **sttp,
8059 int relocatable_p,
8060 struct bfd_link_info *info)
8061 {
8062 const struct elf_backend_data *bed;
8063 unsigned int symcount;
8064 asymbol **syms;
8065 struct elf_strtab_hash *stt;
8066 Elf_Internal_Shdr *symtab_hdr;
8067 Elf_Internal_Shdr *symtab_shndx_hdr;
8068 Elf_Internal_Shdr *symstrtab_hdr;
8069 struct elf_sym_strtab *symstrtab;
8070 bfd_byte *outbound_syms;
8071 bfd_byte *outbound_shndx;
8072 unsigned long outbound_syms_index;
8073 unsigned long outbound_shndx_index;
8074 unsigned int idx;
8075 unsigned int num_locals;
8076 size_t amt;
8077 bfd_boolean name_local_sections;
8078
8079 if (!elf_map_symbols (abfd, &num_locals))
8080 return FALSE;
8081
8082 /* Dump out the symtabs. */
8083 stt = _bfd_elf_strtab_init ();
8084 if (stt == NULL)
8085 return FALSE;
8086
8087 bed = get_elf_backend_data (abfd);
8088 symcount = bfd_get_symcount (abfd);
8089 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8090 symtab_hdr->sh_type = SHT_SYMTAB;
8091 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8092 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8093 symtab_hdr->sh_info = num_locals + 1;
8094 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8095
8096 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8097 symstrtab_hdr->sh_type = SHT_STRTAB;
8098
8099 /* Allocate buffer to swap out the .strtab section. */
8100 if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt)
8101 || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL)
8102 {
8103 bfd_set_error (bfd_error_no_memory);
8104 _bfd_elf_strtab_free (stt);
8105 return FALSE;
8106 }
8107
8108 if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt)
8109 || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL)
8110 {
8111 error_no_mem:
8112 bfd_set_error (bfd_error_no_memory);
8113 error_return:
8114 free (symstrtab);
8115 _bfd_elf_strtab_free (stt);
8116 return FALSE;
8117 }
8118 symtab_hdr->contents = outbound_syms;
8119 outbound_syms_index = 0;
8120
8121 outbound_shndx = NULL;
8122 outbound_shndx_index = 0;
8123
8124 if (elf_symtab_shndx_list (abfd))
8125 {
8126 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8127 if (symtab_shndx_hdr->sh_name != 0)
8128 {
8129 if (_bfd_mul_overflow (symcount + 1,
8130 sizeof (Elf_External_Sym_Shndx), &amt))
8131 goto error_no_mem;
8132 outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt);
8133 if (outbound_shndx == NULL)
8134 goto error_return;
8135
8136 symtab_shndx_hdr->contents = outbound_shndx;
8137 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8138 symtab_shndx_hdr->sh_size = amt;
8139 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8140 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8141 }
8142 /* FIXME: What about any other headers in the list ? */
8143 }
8144
8145 /* Now generate the data (for "contents"). */
8146 {
8147 /* Fill in zeroth symbol and swap it out. */
8148 Elf_Internal_Sym sym;
8149 sym.st_name = 0;
8150 sym.st_value = 0;
8151 sym.st_size = 0;
8152 sym.st_info = 0;
8153 sym.st_other = 0;
8154 sym.st_shndx = SHN_UNDEF;
8155 sym.st_target_internal = 0;
8156 symstrtab[0].sym = sym;
8157 symstrtab[0].dest_index = outbound_syms_index;
8158 symstrtab[0].destshndx_index = outbound_shndx_index;
8159 outbound_syms_index++;
8160 if (outbound_shndx != NULL)
8161 outbound_shndx_index++;
8162 }
8163
8164 name_local_sections
8165 = (bed->elf_backend_name_local_section_symbols
8166 && bed->elf_backend_name_local_section_symbols (abfd));
8167
8168 syms = bfd_get_outsymbols (abfd);
8169 for (idx = 0; idx < symcount;)
8170 {
8171 Elf_Internal_Sym sym;
8172 bfd_vma value = syms[idx]->value;
8173 elf_symbol_type *type_ptr;
8174 flagword flags = syms[idx]->flags;
8175 int type;
8176
8177 if (!name_local_sections
8178 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8179 {
8180 /* Local section symbols have no name. */
8181 sym.st_name = (unsigned long) -1;
8182 }
8183 else
8184 {
8185 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8186 to get the final offset for st_name. */
8187 sym.st_name
8188 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8189 FALSE);
8190 if (sym.st_name == (unsigned long) -1)
8191 goto error_return;
8192 }
8193
8194 type_ptr = elf_symbol_from (syms[idx]);
8195
8196 if ((flags & BSF_SECTION_SYM) == 0
8197 && bfd_is_com_section (syms[idx]->section))
8198 {
8199 /* ELF common symbols put the alignment into the `value' field,
8200 and the size into the `size' field. This is backwards from
8201 how BFD handles it, so reverse it here. */
8202 sym.st_size = value;
8203 if (type_ptr == NULL
8204 || type_ptr->internal_elf_sym.st_value == 0)
8205 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8206 else
8207 sym.st_value = type_ptr->internal_elf_sym.st_value;
8208 sym.st_shndx = _bfd_elf_section_from_bfd_section
8209 (abfd, syms[idx]->section);
8210 }
8211 else
8212 {
8213 asection *sec = syms[idx]->section;
8214 unsigned int shndx;
8215
8216 if (sec->output_section)
8217 {
8218 value += sec->output_offset;
8219 sec = sec->output_section;
8220 }
8221
8222 /* Don't add in the section vma for relocatable output. */
8223 if (! relocatable_p)
8224 value += sec->vma;
8225 sym.st_value = value;
8226 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8227
8228 if (bfd_is_abs_section (sec)
8229 && type_ptr != NULL
8230 && type_ptr->internal_elf_sym.st_shndx != 0)
8231 {
8232 /* This symbol is in a real ELF section which we did
8233 not create as a BFD section. Undo the mapping done
8234 by copy_private_symbol_data. */
8235 shndx = type_ptr->internal_elf_sym.st_shndx;
8236 switch (shndx)
8237 {
8238 case MAP_ONESYMTAB:
8239 shndx = elf_onesymtab (abfd);
8240 break;
8241 case MAP_DYNSYMTAB:
8242 shndx = elf_dynsymtab (abfd);
8243 break;
8244 case MAP_STRTAB:
8245 shndx = elf_strtab_sec (abfd);
8246 break;
8247 case MAP_SHSTRTAB:
8248 shndx = elf_shstrtab_sec (abfd);
8249 break;
8250 case MAP_SYM_SHNDX:
8251 if (elf_symtab_shndx_list (abfd))
8252 shndx = elf_symtab_shndx_list (abfd)->ndx;
8253 break;
8254 case SHN_COMMON:
8255 case SHN_ABS:
8256 shndx = SHN_ABS;
8257 break;
8258 default:
8259 if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS)
8260 {
8261 if (bed->symbol_section_index)
8262 shndx = bed->symbol_section_index (abfd, type_ptr);
8263 /* Otherwise just leave the index alone. */
8264 }
8265 else
8266 {
8267 if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE)
8268 _bfd_error_handler (_("%pB: \
8269 Unable to handle section index %x in ELF symbol. Using ABS instead."),
8270 abfd, shndx);
8271 shndx = SHN_ABS;
8272 }
8273 break;
8274 }
8275 }
8276 else
8277 {
8278 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8279
8280 if (shndx == SHN_BAD)
8281 {
8282 asection *sec2;
8283
8284 /* Writing this would be a hell of a lot easier if
8285 we had some decent documentation on bfd, and
8286 knew what to expect of the library, and what to
8287 demand of applications. For example, it
8288 appears that `objcopy' might not set the
8289 section of a symbol to be a section that is
8290 actually in the output file. */
8291 sec2 = bfd_get_section_by_name (abfd, sec->name);
8292 if (sec2 != NULL)
8293 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8294 if (shndx == SHN_BAD)
8295 {
8296 /* xgettext:c-format */
8297 _bfd_error_handler
8298 (_("unable to find equivalent output section"
8299 " for symbol '%s' from section '%s'"),
8300 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8301 sec->name);
8302 bfd_set_error (bfd_error_invalid_operation);
8303 goto error_return;
8304 }
8305 }
8306 }
8307
8308 sym.st_shndx = shndx;
8309 }
8310
8311 if ((flags & BSF_THREAD_LOCAL) != 0)
8312 type = STT_TLS;
8313 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8314 type = STT_GNU_IFUNC;
8315 else if ((flags & BSF_FUNCTION) != 0)
8316 type = STT_FUNC;
8317 else if ((flags & BSF_OBJECT) != 0)
8318 type = STT_OBJECT;
8319 else if ((flags & BSF_RELC) != 0)
8320 type = STT_RELC;
8321 else if ((flags & BSF_SRELC) != 0)
8322 type = STT_SRELC;
8323 else
8324 type = STT_NOTYPE;
8325
8326 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8327 type = STT_TLS;
8328
8329 /* Processor-specific types. */
8330 if (type_ptr != NULL
8331 && bed->elf_backend_get_symbol_type)
8332 type = ((*bed->elf_backend_get_symbol_type)
8333 (&type_ptr->internal_elf_sym, type));
8334
8335 if (flags & BSF_SECTION_SYM)
8336 {
8337 if (flags & BSF_GLOBAL)
8338 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8339 else
8340 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8341 }
8342 else if (bfd_is_com_section (syms[idx]->section))
8343 {
8344 if (type != STT_TLS)
8345 {
8346 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8347 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8348 ? STT_COMMON : STT_OBJECT);
8349 else
8350 type = ((flags & BSF_ELF_COMMON) != 0
8351 ? STT_COMMON : STT_OBJECT);
8352 }
8353 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8354 }
8355 else if (bfd_is_und_section (syms[idx]->section))
8356 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8357 ? STB_WEAK
8358 : STB_GLOBAL),
8359 type);
8360 else if (flags & BSF_FILE)
8361 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8362 else
8363 {
8364 int bind = STB_LOCAL;
8365
8366 if (flags & BSF_LOCAL)
8367 bind = STB_LOCAL;
8368 else if (flags & BSF_GNU_UNIQUE)
8369 bind = STB_GNU_UNIQUE;
8370 else if (flags & BSF_WEAK)
8371 bind = STB_WEAK;
8372 else if (flags & BSF_GLOBAL)
8373 bind = STB_GLOBAL;
8374
8375 sym.st_info = ELF_ST_INFO (bind, type);
8376 }
8377
8378 if (type_ptr != NULL)
8379 {
8380 sym.st_other = type_ptr->internal_elf_sym.st_other;
8381 sym.st_target_internal
8382 = type_ptr->internal_elf_sym.st_target_internal;
8383 }
8384 else
8385 {
8386 sym.st_other = 0;
8387 sym.st_target_internal = 0;
8388 }
8389
8390 idx++;
8391 symstrtab[idx].sym = sym;
8392 symstrtab[idx].dest_index = outbound_syms_index;
8393 symstrtab[idx].destshndx_index = outbound_shndx_index;
8394
8395 outbound_syms_index++;
8396 if (outbound_shndx != NULL)
8397 outbound_shndx_index++;
8398 }
8399
8400 /* Finalize the .strtab section. */
8401 _bfd_elf_strtab_finalize (stt);
8402
8403 /* Swap out the .strtab section. */
8404 for (idx = 0; idx <= symcount; idx++)
8405 {
8406 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8407 if (elfsym->sym.st_name == (unsigned long) -1)
8408 elfsym->sym.st_name = 0;
8409 else
8410 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8411 elfsym->sym.st_name);
8412 if (info && info->callbacks->ctf_new_symbol)
8413 info->callbacks->ctf_new_symbol (elfsym->dest_index,
8414 &elfsym->sym);
8415
8416 /* Inform the linker of the addition of this symbol. */
8417
8418 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8419 (outbound_syms
8420 + (elfsym->dest_index
8421 * bed->s->sizeof_sym)),
8422 (outbound_shndx
8423 + (elfsym->destshndx_index
8424 * sizeof (Elf_External_Sym_Shndx))));
8425 }
8426 free (symstrtab);
8427
8428 *sttp = stt;
8429 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8430 symstrtab_hdr->sh_type = SHT_STRTAB;
8431 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8432 symstrtab_hdr->sh_addr = 0;
8433 symstrtab_hdr->sh_entsize = 0;
8434 symstrtab_hdr->sh_link = 0;
8435 symstrtab_hdr->sh_info = 0;
8436 symstrtab_hdr->sh_addralign = 1;
8437
8438 return TRUE;
8439 }
8440
8441 /* Return the number of bytes required to hold the symtab vector.
8442
8443 Note that we base it on the count plus 1, since we will null terminate
8444 the vector allocated based on this size. However, the ELF symbol table
8445 always has a dummy entry as symbol #0, so it ends up even. */
8446
8447 long
8448 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8449 {
8450 bfd_size_type symcount;
8451 long symtab_size;
8452 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8453
8454 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8455 if (symcount > LONG_MAX / sizeof (asymbol *))
8456 {
8457 bfd_set_error (bfd_error_file_too_big);
8458 return -1;
8459 }
8460 symtab_size = symcount * (sizeof (asymbol *));
8461 if (symcount == 0)
8462 symtab_size = sizeof (asymbol *);
8463 else if (!bfd_write_p (abfd))
8464 {
8465 ufile_ptr filesize = bfd_get_file_size (abfd);
8466
8467 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8468 {
8469 bfd_set_error (bfd_error_file_truncated);
8470 return -1;
8471 }
8472 }
8473
8474 return symtab_size;
8475 }
8476
8477 long
8478 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8479 {
8480 bfd_size_type symcount;
8481 long symtab_size;
8482 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8483
8484 if (elf_dynsymtab (abfd) == 0)
8485 {
8486 bfd_set_error (bfd_error_invalid_operation);
8487 return -1;
8488 }
8489
8490 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8491 if (symcount > LONG_MAX / sizeof (asymbol *))
8492 {
8493 bfd_set_error (bfd_error_file_too_big);
8494 return -1;
8495 }
8496 symtab_size = symcount * (sizeof (asymbol *));
8497 if (symcount == 0)
8498 symtab_size = sizeof (asymbol *);
8499 else if (!bfd_write_p (abfd))
8500 {
8501 ufile_ptr filesize = bfd_get_file_size (abfd);
8502
8503 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8504 {
8505 bfd_set_error (bfd_error_file_truncated);
8506 return -1;
8507 }
8508 }
8509
8510 return symtab_size;
8511 }
8512
8513 long
8514 _bfd_elf_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
8515 {
8516 if (asect->reloc_count != 0 && !bfd_write_p (abfd))
8517 {
8518 /* Sanity check reloc section size. */
8519 struct bfd_elf_section_data *d = elf_section_data (asect);
8520 Elf_Internal_Shdr *rel_hdr = &d->this_hdr;
8521 bfd_size_type ext_rel_size = rel_hdr->sh_size;
8522 ufile_ptr filesize = bfd_get_file_size (abfd);
8523
8524 if (filesize != 0 && ext_rel_size > filesize)
8525 {
8526 bfd_set_error (bfd_error_file_truncated);
8527 return -1;
8528 }
8529 }
8530
8531 #if SIZEOF_LONG == SIZEOF_INT
8532 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8533 {
8534 bfd_set_error (bfd_error_file_too_big);
8535 return -1;
8536 }
8537 #endif
8538 return (asect->reloc_count + 1) * sizeof (arelent *);
8539 }
8540
8541 /* Canonicalize the relocs. */
8542
8543 long
8544 _bfd_elf_canonicalize_reloc (bfd *abfd,
8545 sec_ptr section,
8546 arelent **relptr,
8547 asymbol **symbols)
8548 {
8549 arelent *tblptr;
8550 unsigned int i;
8551 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8552
8553 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8554 return -1;
8555
8556 tblptr = section->relocation;
8557 for (i = 0; i < section->reloc_count; i++)
8558 *relptr++ = tblptr++;
8559
8560 *relptr = NULL;
8561
8562 return section->reloc_count;
8563 }
8564
8565 long
8566 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8567 {
8568 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8569 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8570
8571 if (symcount >= 0)
8572 abfd->symcount = symcount;
8573 return symcount;
8574 }
8575
8576 long
8577 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8578 asymbol **allocation)
8579 {
8580 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8581 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8582
8583 if (symcount >= 0)
8584 abfd->dynsymcount = symcount;
8585 return symcount;
8586 }
8587
8588 /* Return the size required for the dynamic reloc entries. Any loadable
8589 section that was actually installed in the BFD, and has type SHT_REL
8590 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8591 dynamic reloc section. */
8592
8593 long
8594 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8595 {
8596 bfd_size_type count, ext_rel_size;
8597 asection *s;
8598
8599 if (elf_dynsymtab (abfd) == 0)
8600 {
8601 bfd_set_error (bfd_error_invalid_operation);
8602 return -1;
8603 }
8604
8605 count = 1;
8606 ext_rel_size = 0;
8607 for (s = abfd->sections; s != NULL; s = s->next)
8608 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8609 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8610 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8611 {
8612 ext_rel_size += s->size;
8613 if (ext_rel_size < s->size)
8614 {
8615 bfd_set_error (bfd_error_file_truncated);
8616 return -1;
8617 }
8618 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8619 if (count > LONG_MAX / sizeof (arelent *))
8620 {
8621 bfd_set_error (bfd_error_file_too_big);
8622 return -1;
8623 }
8624 }
8625 if (count > 1 && !bfd_write_p (abfd))
8626 {
8627 /* Sanity check reloc section sizes. */
8628 ufile_ptr filesize = bfd_get_file_size (abfd);
8629 if (filesize != 0 && ext_rel_size > filesize)
8630 {
8631 bfd_set_error (bfd_error_file_truncated);
8632 return -1;
8633 }
8634 }
8635 return count * sizeof (arelent *);
8636 }
8637
8638 /* Canonicalize the dynamic relocation entries. Note that we return the
8639 dynamic relocations as a single block, although they are actually
8640 associated with particular sections; the interface, which was
8641 designed for SunOS style shared libraries, expects that there is only
8642 one set of dynamic relocs. Any loadable section that was actually
8643 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8644 dynamic symbol table, is considered to be a dynamic reloc section. */
8645
8646 long
8647 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8648 arelent **storage,
8649 asymbol **syms)
8650 {
8651 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8652 asection *s;
8653 long ret;
8654
8655 if (elf_dynsymtab (abfd) == 0)
8656 {
8657 bfd_set_error (bfd_error_invalid_operation);
8658 return -1;
8659 }
8660
8661 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8662 ret = 0;
8663 for (s = abfd->sections; s != NULL; s = s->next)
8664 {
8665 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8666 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8667 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8668 {
8669 arelent *p;
8670 long count, i;
8671
8672 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8673 return -1;
8674 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8675 p = s->relocation;
8676 for (i = 0; i < count; i++)
8677 *storage++ = p++;
8678 ret += count;
8679 }
8680 }
8681
8682 *storage = NULL;
8683
8684 return ret;
8685 }
8686 \f
8687 /* Read in the version information. */
8688
8689 bfd_boolean
8690 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8691 {
8692 bfd_byte *contents = NULL;
8693 unsigned int freeidx = 0;
8694 size_t amt;
8695
8696 if (elf_dynverref (abfd) != 0)
8697 {
8698 Elf_Internal_Shdr *hdr;
8699 Elf_External_Verneed *everneed;
8700 Elf_Internal_Verneed *iverneed;
8701 unsigned int i;
8702 bfd_byte *contents_end;
8703
8704 hdr = &elf_tdata (abfd)->dynverref_hdr;
8705
8706 if (hdr->sh_info == 0
8707 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8708 {
8709 error_return_bad_verref:
8710 _bfd_error_handler
8711 (_("%pB: .gnu.version_r invalid entry"), abfd);
8712 bfd_set_error (bfd_error_bad_value);
8713 error_return_verref:
8714 elf_tdata (abfd)->verref = NULL;
8715 elf_tdata (abfd)->cverrefs = 0;
8716 goto error_return;
8717 }
8718
8719 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8720 goto error_return_verref;
8721 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8722 if (contents == NULL)
8723 goto error_return_verref;
8724
8725 if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt))
8726 {
8727 bfd_set_error (bfd_error_file_too_big);
8728 goto error_return_verref;
8729 }
8730 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt);
8731 if (elf_tdata (abfd)->verref == NULL)
8732 goto error_return_verref;
8733
8734 BFD_ASSERT (sizeof (Elf_External_Verneed)
8735 == sizeof (Elf_External_Vernaux));
8736 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8737 everneed = (Elf_External_Verneed *) contents;
8738 iverneed = elf_tdata (abfd)->verref;
8739 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8740 {
8741 Elf_External_Vernaux *evernaux;
8742 Elf_Internal_Vernaux *ivernaux;
8743 unsigned int j;
8744
8745 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8746
8747 iverneed->vn_bfd = abfd;
8748
8749 iverneed->vn_filename =
8750 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8751 iverneed->vn_file);
8752 if (iverneed->vn_filename == NULL)
8753 goto error_return_bad_verref;
8754
8755 if (iverneed->vn_cnt == 0)
8756 iverneed->vn_auxptr = NULL;
8757 else
8758 {
8759 if (_bfd_mul_overflow (iverneed->vn_cnt,
8760 sizeof (Elf_Internal_Vernaux), &amt))
8761 {
8762 bfd_set_error (bfd_error_file_too_big);
8763 goto error_return_verref;
8764 }
8765 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8766 bfd_alloc (abfd, amt);
8767 if (iverneed->vn_auxptr == NULL)
8768 goto error_return_verref;
8769 }
8770
8771 if (iverneed->vn_aux
8772 > (size_t) (contents_end - (bfd_byte *) everneed))
8773 goto error_return_bad_verref;
8774
8775 evernaux = ((Elf_External_Vernaux *)
8776 ((bfd_byte *) everneed + iverneed->vn_aux));
8777 ivernaux = iverneed->vn_auxptr;
8778 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8779 {
8780 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8781
8782 ivernaux->vna_nodename =
8783 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8784 ivernaux->vna_name);
8785 if (ivernaux->vna_nodename == NULL)
8786 goto error_return_bad_verref;
8787
8788 if (ivernaux->vna_other > freeidx)
8789 freeidx = ivernaux->vna_other;
8790
8791 ivernaux->vna_nextptr = NULL;
8792 if (ivernaux->vna_next == 0)
8793 {
8794 iverneed->vn_cnt = j + 1;
8795 break;
8796 }
8797 if (j + 1 < iverneed->vn_cnt)
8798 ivernaux->vna_nextptr = ivernaux + 1;
8799
8800 if (ivernaux->vna_next
8801 > (size_t) (contents_end - (bfd_byte *) evernaux))
8802 goto error_return_bad_verref;
8803
8804 evernaux = ((Elf_External_Vernaux *)
8805 ((bfd_byte *) evernaux + ivernaux->vna_next));
8806 }
8807
8808 iverneed->vn_nextref = NULL;
8809 if (iverneed->vn_next == 0)
8810 break;
8811 if (i + 1 < hdr->sh_info)
8812 iverneed->vn_nextref = iverneed + 1;
8813
8814 if (iverneed->vn_next
8815 > (size_t) (contents_end - (bfd_byte *) everneed))
8816 goto error_return_bad_verref;
8817
8818 everneed = ((Elf_External_Verneed *)
8819 ((bfd_byte *) everneed + iverneed->vn_next));
8820 }
8821 elf_tdata (abfd)->cverrefs = i;
8822
8823 free (contents);
8824 contents = NULL;
8825 }
8826
8827 if (elf_dynverdef (abfd) != 0)
8828 {
8829 Elf_Internal_Shdr *hdr;
8830 Elf_External_Verdef *everdef;
8831 Elf_Internal_Verdef *iverdef;
8832 Elf_Internal_Verdef *iverdefarr;
8833 Elf_Internal_Verdef iverdefmem;
8834 unsigned int i;
8835 unsigned int maxidx;
8836 bfd_byte *contents_end_def, *contents_end_aux;
8837
8838 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8839
8840 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8841 {
8842 error_return_bad_verdef:
8843 _bfd_error_handler
8844 (_("%pB: .gnu.version_d invalid entry"), abfd);
8845 bfd_set_error (bfd_error_bad_value);
8846 error_return_verdef:
8847 elf_tdata (abfd)->verdef = NULL;
8848 elf_tdata (abfd)->cverdefs = 0;
8849 goto error_return;
8850 }
8851
8852 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8853 goto error_return_verdef;
8854 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8855 if (contents == NULL)
8856 goto error_return_verdef;
8857
8858 BFD_ASSERT (sizeof (Elf_External_Verdef)
8859 >= sizeof (Elf_External_Verdaux));
8860 contents_end_def = contents + hdr->sh_size
8861 - sizeof (Elf_External_Verdef);
8862 contents_end_aux = contents + hdr->sh_size
8863 - sizeof (Elf_External_Verdaux);
8864
8865 /* We know the number of entries in the section but not the maximum
8866 index. Therefore we have to run through all entries and find
8867 the maximum. */
8868 everdef = (Elf_External_Verdef *) contents;
8869 maxidx = 0;
8870 for (i = 0; i < hdr->sh_info; ++i)
8871 {
8872 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8873
8874 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8875 goto error_return_bad_verdef;
8876 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8877 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8878
8879 if (iverdefmem.vd_next == 0)
8880 break;
8881
8882 if (iverdefmem.vd_next
8883 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8884 goto error_return_bad_verdef;
8885
8886 everdef = ((Elf_External_Verdef *)
8887 ((bfd_byte *) everdef + iverdefmem.vd_next));
8888 }
8889
8890 if (default_imported_symver)
8891 {
8892 if (freeidx > maxidx)
8893 maxidx = ++freeidx;
8894 else
8895 freeidx = ++maxidx;
8896 }
8897 if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt))
8898 {
8899 bfd_set_error (bfd_error_file_too_big);
8900 goto error_return_verdef;
8901 }
8902 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8903 if (elf_tdata (abfd)->verdef == NULL)
8904 goto error_return_verdef;
8905
8906 elf_tdata (abfd)->cverdefs = maxidx;
8907
8908 everdef = (Elf_External_Verdef *) contents;
8909 iverdefarr = elf_tdata (abfd)->verdef;
8910 for (i = 0; i < hdr->sh_info; i++)
8911 {
8912 Elf_External_Verdaux *everdaux;
8913 Elf_Internal_Verdaux *iverdaux;
8914 unsigned int j;
8915
8916 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8917
8918 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8919 goto error_return_bad_verdef;
8920
8921 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8922 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8923
8924 iverdef->vd_bfd = abfd;
8925
8926 if (iverdef->vd_cnt == 0)
8927 iverdef->vd_auxptr = NULL;
8928 else
8929 {
8930 if (_bfd_mul_overflow (iverdef->vd_cnt,
8931 sizeof (Elf_Internal_Verdaux), &amt))
8932 {
8933 bfd_set_error (bfd_error_file_too_big);
8934 goto error_return_verdef;
8935 }
8936 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8937 bfd_alloc (abfd, amt);
8938 if (iverdef->vd_auxptr == NULL)
8939 goto error_return_verdef;
8940 }
8941
8942 if (iverdef->vd_aux
8943 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8944 goto error_return_bad_verdef;
8945
8946 everdaux = ((Elf_External_Verdaux *)
8947 ((bfd_byte *) everdef + iverdef->vd_aux));
8948 iverdaux = iverdef->vd_auxptr;
8949 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8950 {
8951 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8952
8953 iverdaux->vda_nodename =
8954 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8955 iverdaux->vda_name);
8956 if (iverdaux->vda_nodename == NULL)
8957 goto error_return_bad_verdef;
8958
8959 iverdaux->vda_nextptr = NULL;
8960 if (iverdaux->vda_next == 0)
8961 {
8962 iverdef->vd_cnt = j + 1;
8963 break;
8964 }
8965 if (j + 1 < iverdef->vd_cnt)
8966 iverdaux->vda_nextptr = iverdaux + 1;
8967
8968 if (iverdaux->vda_next
8969 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8970 goto error_return_bad_verdef;
8971
8972 everdaux = ((Elf_External_Verdaux *)
8973 ((bfd_byte *) everdaux + iverdaux->vda_next));
8974 }
8975
8976 iverdef->vd_nodename = NULL;
8977 if (iverdef->vd_cnt)
8978 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8979
8980 iverdef->vd_nextdef = NULL;
8981 if (iverdef->vd_next == 0)
8982 break;
8983 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8984 iverdef->vd_nextdef = iverdef + 1;
8985
8986 everdef = ((Elf_External_Verdef *)
8987 ((bfd_byte *) everdef + iverdef->vd_next));
8988 }
8989
8990 free (contents);
8991 contents = NULL;
8992 }
8993 else if (default_imported_symver)
8994 {
8995 if (freeidx < 3)
8996 freeidx = 3;
8997 else
8998 freeidx++;
8999
9000 if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt))
9001 {
9002 bfd_set_error (bfd_error_file_too_big);
9003 goto error_return;
9004 }
9005 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
9006 if (elf_tdata (abfd)->verdef == NULL)
9007 goto error_return;
9008
9009 elf_tdata (abfd)->cverdefs = freeidx;
9010 }
9011
9012 /* Create a default version based on the soname. */
9013 if (default_imported_symver)
9014 {
9015 Elf_Internal_Verdef *iverdef;
9016 Elf_Internal_Verdaux *iverdaux;
9017
9018 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
9019
9020 iverdef->vd_version = VER_DEF_CURRENT;
9021 iverdef->vd_flags = 0;
9022 iverdef->vd_ndx = freeidx;
9023 iverdef->vd_cnt = 1;
9024
9025 iverdef->vd_bfd = abfd;
9026
9027 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
9028 if (iverdef->vd_nodename == NULL)
9029 goto error_return_verdef;
9030 iverdef->vd_nextdef = NULL;
9031 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
9032 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
9033 if (iverdef->vd_auxptr == NULL)
9034 goto error_return_verdef;
9035
9036 iverdaux = iverdef->vd_auxptr;
9037 iverdaux->vda_nodename = iverdef->vd_nodename;
9038 }
9039
9040 return TRUE;
9041
9042 error_return:
9043 free (contents);
9044 return FALSE;
9045 }
9046 \f
9047 asymbol *
9048 _bfd_elf_make_empty_symbol (bfd *abfd)
9049 {
9050 elf_symbol_type *newsym;
9051
9052 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
9053 if (!newsym)
9054 return NULL;
9055 newsym->symbol.the_bfd = abfd;
9056 return &newsym->symbol;
9057 }
9058
9059 void
9060 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
9061 asymbol *symbol,
9062 symbol_info *ret)
9063 {
9064 bfd_symbol_info (symbol, ret);
9065 }
9066
9067 /* Return whether a symbol name implies a local symbol. Most targets
9068 use this function for the is_local_label_name entry point, but some
9069 override it. */
9070
9071 bfd_boolean
9072 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
9073 const char *name)
9074 {
9075 /* Normal local symbols start with ``.L''. */
9076 if (name[0] == '.' && name[1] == 'L')
9077 return TRUE;
9078
9079 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
9080 DWARF debugging symbols starting with ``..''. */
9081 if (name[0] == '.' && name[1] == '.')
9082 return TRUE;
9083
9084 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
9085 emitting DWARF debugging output. I suspect this is actually a
9086 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
9087 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
9088 underscore to be emitted on some ELF targets). For ease of use,
9089 we treat such symbols as local. */
9090 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
9091 return TRUE;
9092
9093 /* Treat assembler generated fake symbols, dollar local labels and
9094 forward-backward labels (aka local labels) as locals.
9095 These labels have the form:
9096
9097 L0^A.* (fake symbols)
9098
9099 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
9100
9101 Versions which start with .L will have already been matched above,
9102 so we only need to match the rest. */
9103 if (name[0] == 'L' && ISDIGIT (name[1]))
9104 {
9105 bfd_boolean ret = FALSE;
9106 const char * p;
9107 char c;
9108
9109 for (p = name + 2; (c = *p); p++)
9110 {
9111 if (c == 1 || c == 2)
9112 {
9113 if (c == 1 && p == name + 2)
9114 /* A fake symbol. */
9115 return TRUE;
9116
9117 /* FIXME: We are being paranoid here and treating symbols like
9118 L0^Bfoo as if there were non-local, on the grounds that the
9119 assembler will never generate them. But can any symbol
9120 containing an ASCII value in the range 1-31 ever be anything
9121 other than some kind of local ? */
9122 ret = TRUE;
9123 }
9124
9125 if (! ISDIGIT (c))
9126 {
9127 ret = FALSE;
9128 break;
9129 }
9130 }
9131 return ret;
9132 }
9133
9134 return FALSE;
9135 }
9136
9137 alent *
9138 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9139 asymbol *symbol ATTRIBUTE_UNUSED)
9140 {
9141 abort ();
9142 return NULL;
9143 }
9144
9145 bfd_boolean
9146 _bfd_elf_set_arch_mach (bfd *abfd,
9147 enum bfd_architecture arch,
9148 unsigned long machine)
9149 {
9150 /* If this isn't the right architecture for this backend, and this
9151 isn't the generic backend, fail. */
9152 if (arch != get_elf_backend_data (abfd)->arch
9153 && arch != bfd_arch_unknown
9154 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9155 return FALSE;
9156
9157 return bfd_default_set_arch_mach (abfd, arch, machine);
9158 }
9159
9160 /* Find the nearest line to a particular section and offset,
9161 for error reporting. */
9162
9163 bfd_boolean
9164 _bfd_elf_find_nearest_line (bfd *abfd,
9165 asymbol **symbols,
9166 asection *section,
9167 bfd_vma offset,
9168 const char **filename_ptr,
9169 const char **functionname_ptr,
9170 unsigned int *line_ptr,
9171 unsigned int *discriminator_ptr)
9172 {
9173 bfd_boolean found;
9174
9175 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9176 filename_ptr, functionname_ptr,
9177 line_ptr, discriminator_ptr,
9178 dwarf_debug_sections,
9179 &elf_tdata (abfd)->dwarf2_find_line_info))
9180 return TRUE;
9181
9182 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9183 filename_ptr, functionname_ptr, line_ptr))
9184 {
9185 if (!*functionname_ptr)
9186 _bfd_elf_find_function (abfd, symbols, section, offset,
9187 *filename_ptr ? NULL : filename_ptr,
9188 functionname_ptr);
9189 return TRUE;
9190 }
9191
9192 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9193 &found, filename_ptr,
9194 functionname_ptr, line_ptr,
9195 &elf_tdata (abfd)->line_info))
9196 return FALSE;
9197 if (found && (*functionname_ptr || *line_ptr))
9198 return TRUE;
9199
9200 if (symbols == NULL)
9201 return FALSE;
9202
9203 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9204 filename_ptr, functionname_ptr))
9205 return FALSE;
9206
9207 *line_ptr = 0;
9208 return TRUE;
9209 }
9210
9211 /* Find the line for a symbol. */
9212
9213 bfd_boolean
9214 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9215 const char **filename_ptr, unsigned int *line_ptr)
9216 {
9217 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9218 filename_ptr, NULL, line_ptr, NULL,
9219 dwarf_debug_sections,
9220 &elf_tdata (abfd)->dwarf2_find_line_info);
9221 }
9222
9223 /* After a call to bfd_find_nearest_line, successive calls to
9224 bfd_find_inliner_info can be used to get source information about
9225 each level of function inlining that terminated at the address
9226 passed to bfd_find_nearest_line. Currently this is only supported
9227 for DWARF2 with appropriate DWARF3 extensions. */
9228
9229 bfd_boolean
9230 _bfd_elf_find_inliner_info (bfd *abfd,
9231 const char **filename_ptr,
9232 const char **functionname_ptr,
9233 unsigned int *line_ptr)
9234 {
9235 bfd_boolean found;
9236 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9237 functionname_ptr, line_ptr,
9238 & elf_tdata (abfd)->dwarf2_find_line_info);
9239 return found;
9240 }
9241
9242 int
9243 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9244 {
9245 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9246 int ret = bed->s->sizeof_ehdr;
9247
9248 if (!bfd_link_relocatable (info))
9249 {
9250 bfd_size_type phdr_size = elf_program_header_size (abfd);
9251
9252 if (phdr_size == (bfd_size_type) -1)
9253 {
9254 struct elf_segment_map *m;
9255
9256 phdr_size = 0;
9257 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9258 phdr_size += bed->s->sizeof_phdr;
9259
9260 if (phdr_size == 0)
9261 phdr_size = get_program_header_size (abfd, info);
9262 }
9263
9264 elf_program_header_size (abfd) = phdr_size;
9265 ret += phdr_size;
9266 }
9267
9268 return ret;
9269 }
9270
9271 bfd_boolean
9272 _bfd_elf_set_section_contents (bfd *abfd,
9273 sec_ptr section,
9274 const void *location,
9275 file_ptr offset,
9276 bfd_size_type count)
9277 {
9278 Elf_Internal_Shdr *hdr;
9279 file_ptr pos;
9280
9281 if (! abfd->output_has_begun
9282 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9283 return FALSE;
9284
9285 if (!count)
9286 return TRUE;
9287
9288 hdr = &elf_section_data (section)->this_hdr;
9289 if (hdr->sh_offset == (file_ptr) -1)
9290 {
9291 unsigned char *contents;
9292
9293 if (bfd_section_is_ctf (section))
9294 /* Nothing to do with this section: the contents are generated
9295 later. */
9296 return TRUE;
9297
9298 if ((section->flags & SEC_ELF_COMPRESS) == 0)
9299 {
9300 _bfd_error_handler
9301 (_("%pB:%pA: error: attempting to write into an unallocated compressed section"),
9302 abfd, section);
9303 bfd_set_error (bfd_error_invalid_operation);
9304 return FALSE;
9305 }
9306
9307 if ((offset + count) > hdr->sh_size)
9308 {
9309 _bfd_error_handler
9310 (_("%pB:%pA: error: attempting to write over the end of the section"),
9311 abfd, section);
9312
9313 bfd_set_error (bfd_error_invalid_operation);
9314 return FALSE;
9315 }
9316
9317 contents = hdr->contents;
9318 if (contents == NULL)
9319 {
9320 _bfd_error_handler
9321 (_("%pB:%pA: error: attempting to write section into an empty buffer"),
9322 abfd, section);
9323
9324 bfd_set_error (bfd_error_invalid_operation);
9325 return FALSE;
9326 }
9327
9328 memcpy (contents + offset, location, count);
9329 return TRUE;
9330 }
9331
9332 pos = hdr->sh_offset + offset;
9333 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9334 || bfd_bwrite (location, count, abfd) != count)
9335 return FALSE;
9336
9337 return TRUE;
9338 }
9339
9340 bfd_boolean
9341 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9342 arelent *cache_ptr ATTRIBUTE_UNUSED,
9343 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9344 {
9345 abort ();
9346 return FALSE;
9347 }
9348
9349 /* Try to convert a non-ELF reloc into an ELF one. */
9350
9351 bfd_boolean
9352 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9353 {
9354 /* Check whether we really have an ELF howto. */
9355
9356 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9357 {
9358 bfd_reloc_code_real_type code;
9359 reloc_howto_type *howto;
9360
9361 /* Alien reloc: Try to determine its type to replace it with an
9362 equivalent ELF reloc. */
9363
9364 if (areloc->howto->pc_relative)
9365 {
9366 switch (areloc->howto->bitsize)
9367 {
9368 case 8:
9369 code = BFD_RELOC_8_PCREL;
9370 break;
9371 case 12:
9372 code = BFD_RELOC_12_PCREL;
9373 break;
9374 case 16:
9375 code = BFD_RELOC_16_PCREL;
9376 break;
9377 case 24:
9378 code = BFD_RELOC_24_PCREL;
9379 break;
9380 case 32:
9381 code = BFD_RELOC_32_PCREL;
9382 break;
9383 case 64:
9384 code = BFD_RELOC_64_PCREL;
9385 break;
9386 default:
9387 goto fail;
9388 }
9389
9390 howto = bfd_reloc_type_lookup (abfd, code);
9391
9392 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9393 {
9394 if (howto->pcrel_offset)
9395 areloc->addend += areloc->address;
9396 else
9397 areloc->addend -= areloc->address; /* addend is unsigned!! */
9398 }
9399 }
9400 else
9401 {
9402 switch (areloc->howto->bitsize)
9403 {
9404 case 8:
9405 code = BFD_RELOC_8;
9406 break;
9407 case 14:
9408 code = BFD_RELOC_14;
9409 break;
9410 case 16:
9411 code = BFD_RELOC_16;
9412 break;
9413 case 26:
9414 code = BFD_RELOC_26;
9415 break;
9416 case 32:
9417 code = BFD_RELOC_32;
9418 break;
9419 case 64:
9420 code = BFD_RELOC_64;
9421 break;
9422 default:
9423 goto fail;
9424 }
9425
9426 howto = bfd_reloc_type_lookup (abfd, code);
9427 }
9428
9429 if (howto)
9430 areloc->howto = howto;
9431 else
9432 goto fail;
9433 }
9434
9435 return TRUE;
9436
9437 fail:
9438 /* xgettext:c-format */
9439 _bfd_error_handler (_("%pB: %s unsupported"),
9440 abfd, areloc->howto->name);
9441 bfd_set_error (bfd_error_sorry);
9442 return FALSE;
9443 }
9444
9445 bfd_boolean
9446 _bfd_elf_close_and_cleanup (bfd *abfd)
9447 {
9448 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9449 if (tdata != NULL
9450 && (bfd_get_format (abfd) == bfd_object
9451 || bfd_get_format (abfd) == bfd_core))
9452 {
9453 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9454 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9455 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9456 }
9457
9458 return _bfd_generic_close_and_cleanup (abfd);
9459 }
9460
9461 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9462 in the relocation's offset. Thus we cannot allow any sort of sanity
9463 range-checking to interfere. There is nothing else to do in processing
9464 this reloc. */
9465
9466 bfd_reloc_status_type
9467 _bfd_elf_rel_vtable_reloc_fn
9468 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9469 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9470 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9471 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9472 {
9473 return bfd_reloc_ok;
9474 }
9475 \f
9476 /* Elf core file support. Much of this only works on native
9477 toolchains, since we rely on knowing the
9478 machine-dependent procfs structure in order to pick
9479 out details about the corefile. */
9480
9481 #ifdef HAVE_SYS_PROCFS_H
9482 # include <sys/procfs.h>
9483 #endif
9484
9485 /* Return a PID that identifies a "thread" for threaded cores, or the
9486 PID of the main process for non-threaded cores. */
9487
9488 static int
9489 elfcore_make_pid (bfd *abfd)
9490 {
9491 int pid;
9492
9493 pid = elf_tdata (abfd)->core->lwpid;
9494 if (pid == 0)
9495 pid = elf_tdata (abfd)->core->pid;
9496
9497 return pid;
9498 }
9499
9500 /* If there isn't a section called NAME, make one, using
9501 data from SECT. Note, this function will generate a
9502 reference to NAME, so you shouldn't deallocate or
9503 overwrite it. */
9504
9505 static bfd_boolean
9506 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9507 {
9508 asection *sect2;
9509
9510 if (bfd_get_section_by_name (abfd, name) != NULL)
9511 return TRUE;
9512
9513 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9514 if (sect2 == NULL)
9515 return FALSE;
9516
9517 sect2->size = sect->size;
9518 sect2->filepos = sect->filepos;
9519 sect2->alignment_power = sect->alignment_power;
9520 return TRUE;
9521 }
9522
9523 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9524 actually creates up to two pseudosections:
9525 - For the single-threaded case, a section named NAME, unless
9526 such a section already exists.
9527 - For the multi-threaded case, a section named "NAME/PID", where
9528 PID is elfcore_make_pid (abfd).
9529 Both pseudosections have identical contents. */
9530 bfd_boolean
9531 _bfd_elfcore_make_pseudosection (bfd *abfd,
9532 char *name,
9533 size_t size,
9534 ufile_ptr filepos)
9535 {
9536 char buf[100];
9537 char *threaded_name;
9538 size_t len;
9539 asection *sect;
9540
9541 /* Build the section name. */
9542
9543 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9544 len = strlen (buf) + 1;
9545 threaded_name = (char *) bfd_alloc (abfd, len);
9546 if (threaded_name == NULL)
9547 return FALSE;
9548 memcpy (threaded_name, buf, len);
9549
9550 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9551 SEC_HAS_CONTENTS);
9552 if (sect == NULL)
9553 return FALSE;
9554 sect->size = size;
9555 sect->filepos = filepos;
9556 sect->alignment_power = 2;
9557
9558 return elfcore_maybe_make_sect (abfd, name, sect);
9559 }
9560
9561 static bfd_boolean
9562 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9563 size_t offs)
9564 {
9565 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9566 SEC_HAS_CONTENTS);
9567
9568 if (sect == NULL)
9569 return FALSE;
9570
9571 sect->size = note->descsz - offs;
9572 sect->filepos = note->descpos + offs;
9573 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9574
9575 return TRUE;
9576 }
9577
9578 /* prstatus_t exists on:
9579 solaris 2.5+
9580 linux 2.[01] + glibc
9581 unixware 4.2
9582 */
9583
9584 #if defined (HAVE_PRSTATUS_T)
9585
9586 static bfd_boolean
9587 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9588 {
9589 size_t size;
9590 int offset;
9591
9592 if (note->descsz == sizeof (prstatus_t))
9593 {
9594 prstatus_t prstat;
9595
9596 size = sizeof (prstat.pr_reg);
9597 offset = offsetof (prstatus_t, pr_reg);
9598 memcpy (&prstat, note->descdata, sizeof (prstat));
9599
9600 /* Do not overwrite the core signal if it
9601 has already been set by another thread. */
9602 if (elf_tdata (abfd)->core->signal == 0)
9603 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9604 if (elf_tdata (abfd)->core->pid == 0)
9605 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9606
9607 /* pr_who exists on:
9608 solaris 2.5+
9609 unixware 4.2
9610 pr_who doesn't exist on:
9611 linux 2.[01]
9612 */
9613 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9614 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9615 #else
9616 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9617 #endif
9618 }
9619 #if defined (HAVE_PRSTATUS32_T)
9620 else if (note->descsz == sizeof (prstatus32_t))
9621 {
9622 /* 64-bit host, 32-bit corefile */
9623 prstatus32_t prstat;
9624
9625 size = sizeof (prstat.pr_reg);
9626 offset = offsetof (prstatus32_t, pr_reg);
9627 memcpy (&prstat, note->descdata, sizeof (prstat));
9628
9629 /* Do not overwrite the core signal if it
9630 has already been set by another thread. */
9631 if (elf_tdata (abfd)->core->signal == 0)
9632 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9633 if (elf_tdata (abfd)->core->pid == 0)
9634 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9635
9636 /* pr_who exists on:
9637 solaris 2.5+
9638 unixware 4.2
9639 pr_who doesn't exist on:
9640 linux 2.[01]
9641 */
9642 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9643 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9644 #else
9645 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9646 #endif
9647 }
9648 #endif /* HAVE_PRSTATUS32_T */
9649 else
9650 {
9651 /* Fail - we don't know how to handle any other
9652 note size (ie. data object type). */
9653 return TRUE;
9654 }
9655
9656 /* Make a ".reg/999" section and a ".reg" section. */
9657 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9658 size, note->descpos + offset);
9659 }
9660 #endif /* defined (HAVE_PRSTATUS_T) */
9661
9662 /* Create a pseudosection containing the exact contents of NOTE. */
9663 static bfd_boolean
9664 elfcore_make_note_pseudosection (bfd *abfd,
9665 char *name,
9666 Elf_Internal_Note *note)
9667 {
9668 return _bfd_elfcore_make_pseudosection (abfd, name,
9669 note->descsz, note->descpos);
9670 }
9671
9672 /* There isn't a consistent prfpregset_t across platforms,
9673 but it doesn't matter, because we don't have to pick this
9674 data structure apart. */
9675
9676 static bfd_boolean
9677 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9678 {
9679 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9680 }
9681
9682 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9683 type of NT_PRXFPREG. Just include the whole note's contents
9684 literally. */
9685
9686 static bfd_boolean
9687 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9688 {
9689 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9690 }
9691
9692 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9693 with a note type of NT_X86_XSTATE. Just include the whole note's
9694 contents literally. */
9695
9696 static bfd_boolean
9697 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9698 {
9699 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9700 }
9701
9702 static bfd_boolean
9703 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9704 {
9705 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9706 }
9707
9708 static bfd_boolean
9709 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9710 {
9711 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9712 }
9713
9714 static bfd_boolean
9715 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9716 {
9717 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9718 }
9719
9720 static bfd_boolean
9721 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9722 {
9723 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9724 }
9725
9726 static bfd_boolean
9727 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9728 {
9729 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9730 }
9731
9732 static bfd_boolean
9733 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9734 {
9735 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9736 }
9737
9738 static bfd_boolean
9739 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9740 {
9741 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9742 }
9743
9744 static bfd_boolean
9745 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9746 {
9747 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9748 }
9749
9750 static bfd_boolean
9751 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9752 {
9753 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9754 }
9755
9756 static bfd_boolean
9757 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9758 {
9759 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9760 }
9761
9762 static bfd_boolean
9763 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9764 {
9765 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9766 }
9767
9768 static bfd_boolean
9769 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9770 {
9771 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9772 }
9773
9774 static bfd_boolean
9775 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9776 {
9777 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9778 }
9779
9780 static bfd_boolean
9781 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9782 {
9783 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9784 }
9785
9786 static bfd_boolean
9787 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9788 {
9789 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9790 }
9791
9792 static bfd_boolean
9793 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9794 {
9795 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9796 }
9797
9798 static bfd_boolean
9799 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9800 {
9801 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9802 }
9803
9804 static bfd_boolean
9805 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9806 {
9807 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9808 }
9809
9810 static bfd_boolean
9811 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9812 {
9813 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9814 }
9815
9816 static bfd_boolean
9817 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9818 {
9819 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9820 }
9821
9822 static bfd_boolean
9823 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9824 {
9825 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9826 }
9827
9828 static bfd_boolean
9829 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9830 {
9831 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9832 }
9833
9834 static bfd_boolean
9835 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9836 {
9837 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9838 }
9839
9840 static bfd_boolean
9841 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9842 {
9843 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9844 }
9845
9846 static bfd_boolean
9847 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9848 {
9849 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9850 }
9851
9852 static bfd_boolean
9853 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9854 {
9855 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9856 }
9857
9858 static bfd_boolean
9859 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9860 {
9861 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9862 }
9863
9864 static bfd_boolean
9865 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9866 {
9867 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9868 }
9869
9870 static bfd_boolean
9871 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9872 {
9873 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9874 }
9875
9876 static bfd_boolean
9877 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9878 {
9879 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9880 }
9881
9882 static bfd_boolean
9883 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9884 {
9885 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9886 }
9887
9888 static bfd_boolean
9889 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9890 {
9891 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9892 }
9893
9894 static bfd_boolean
9895 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9896 {
9897 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9898 }
9899
9900 static bfd_boolean
9901 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9902 {
9903 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9904 }
9905
9906 static bfd_boolean
9907 elfcore_grok_arc_v2 (bfd *abfd, Elf_Internal_Note *note)
9908 {
9909 return elfcore_make_note_pseudosection (abfd, ".reg-arc-v2", note);
9910 }
9911
9912 #if defined (HAVE_PRPSINFO_T)
9913 typedef prpsinfo_t elfcore_psinfo_t;
9914 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9915 typedef prpsinfo32_t elfcore_psinfo32_t;
9916 #endif
9917 #endif
9918
9919 #if defined (HAVE_PSINFO_T)
9920 typedef psinfo_t elfcore_psinfo_t;
9921 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9922 typedef psinfo32_t elfcore_psinfo32_t;
9923 #endif
9924 #endif
9925
9926 /* return a malloc'ed copy of a string at START which is at
9927 most MAX bytes long, possibly without a terminating '\0'.
9928 the copy will always have a terminating '\0'. */
9929
9930 char *
9931 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9932 {
9933 char *dups;
9934 char *end = (char *) memchr (start, '\0', max);
9935 size_t len;
9936
9937 if (end == NULL)
9938 len = max;
9939 else
9940 len = end - start;
9941
9942 dups = (char *) bfd_alloc (abfd, len + 1);
9943 if (dups == NULL)
9944 return NULL;
9945
9946 memcpy (dups, start, len);
9947 dups[len] = '\0';
9948
9949 return dups;
9950 }
9951
9952 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9953 static bfd_boolean
9954 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9955 {
9956 if (note->descsz == sizeof (elfcore_psinfo_t))
9957 {
9958 elfcore_psinfo_t psinfo;
9959
9960 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9961
9962 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9963 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9964 #endif
9965 elf_tdata (abfd)->core->program
9966 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9967 sizeof (psinfo.pr_fname));
9968
9969 elf_tdata (abfd)->core->command
9970 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9971 sizeof (psinfo.pr_psargs));
9972 }
9973 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9974 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9975 {
9976 /* 64-bit host, 32-bit corefile */
9977 elfcore_psinfo32_t psinfo;
9978
9979 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9980
9981 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9982 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9983 #endif
9984 elf_tdata (abfd)->core->program
9985 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9986 sizeof (psinfo.pr_fname));
9987
9988 elf_tdata (abfd)->core->command
9989 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9990 sizeof (psinfo.pr_psargs));
9991 }
9992 #endif
9993
9994 else
9995 {
9996 /* Fail - we don't know how to handle any other
9997 note size (ie. data object type). */
9998 return TRUE;
9999 }
10000
10001 /* Note that for some reason, a spurious space is tacked
10002 onto the end of the args in some (at least one anyway)
10003 implementations, so strip it off if it exists. */
10004
10005 {
10006 char *command = elf_tdata (abfd)->core->command;
10007 int n = strlen (command);
10008
10009 if (0 < n && command[n - 1] == ' ')
10010 command[n - 1] = '\0';
10011 }
10012
10013 return TRUE;
10014 }
10015 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
10016
10017 #if defined (HAVE_PSTATUS_T)
10018 static bfd_boolean
10019 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
10020 {
10021 if (note->descsz == sizeof (pstatus_t)
10022 #if defined (HAVE_PXSTATUS_T)
10023 || note->descsz == sizeof (pxstatus_t)
10024 #endif
10025 )
10026 {
10027 pstatus_t pstat;
10028
10029 memcpy (&pstat, note->descdata, sizeof (pstat));
10030
10031 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10032 }
10033 #if defined (HAVE_PSTATUS32_T)
10034 else if (note->descsz == sizeof (pstatus32_t))
10035 {
10036 /* 64-bit host, 32-bit corefile */
10037 pstatus32_t pstat;
10038
10039 memcpy (&pstat, note->descdata, sizeof (pstat));
10040
10041 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10042 }
10043 #endif
10044 /* Could grab some more details from the "representative"
10045 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
10046 NT_LWPSTATUS note, presumably. */
10047
10048 return TRUE;
10049 }
10050 #endif /* defined (HAVE_PSTATUS_T) */
10051
10052 #if defined (HAVE_LWPSTATUS_T)
10053 static bfd_boolean
10054 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
10055 {
10056 lwpstatus_t lwpstat;
10057 char buf[100];
10058 char *name;
10059 size_t len;
10060 asection *sect;
10061
10062 if (note->descsz != sizeof (lwpstat)
10063 #if defined (HAVE_LWPXSTATUS_T)
10064 && note->descsz != sizeof (lwpxstatus_t)
10065 #endif
10066 )
10067 return TRUE;
10068
10069 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
10070
10071 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
10072 /* Do not overwrite the core signal if it has already been set by
10073 another thread. */
10074 if (elf_tdata (abfd)->core->signal == 0)
10075 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
10076
10077 /* Make a ".reg/999" section. */
10078
10079 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
10080 len = strlen (buf) + 1;
10081 name = bfd_alloc (abfd, len);
10082 if (name == NULL)
10083 return FALSE;
10084 memcpy (name, buf, len);
10085
10086 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10087 if (sect == NULL)
10088 return FALSE;
10089
10090 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10091 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
10092 sect->filepos = note->descpos
10093 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
10094 #endif
10095
10096 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10097 sect->size = sizeof (lwpstat.pr_reg);
10098 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
10099 #endif
10100
10101 sect->alignment_power = 2;
10102
10103 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
10104 return FALSE;
10105
10106 /* Make a ".reg2/999" section */
10107
10108 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
10109 len = strlen (buf) + 1;
10110 name = bfd_alloc (abfd, len);
10111 if (name == NULL)
10112 return FALSE;
10113 memcpy (name, buf, len);
10114
10115 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10116 if (sect == NULL)
10117 return FALSE;
10118
10119 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10120 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
10121 sect->filepos = note->descpos
10122 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
10123 #endif
10124
10125 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
10126 sect->size = sizeof (lwpstat.pr_fpreg);
10127 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
10128 #endif
10129
10130 sect->alignment_power = 2;
10131
10132 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
10133 }
10134 #endif /* defined (HAVE_LWPSTATUS_T) */
10135
10136 /* These constants, and the structure offsets used below, are defined by
10137 Cygwin's core_dump.h */
10138 #define NOTE_INFO_PROCESS 1
10139 #define NOTE_INFO_THREAD 2
10140 #define NOTE_INFO_MODULE 3
10141 #define NOTE_INFO_MODULE64 4
10142
10143 static bfd_boolean
10144 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
10145 {
10146 char buf[30];
10147 char *name;
10148 size_t len;
10149 unsigned int name_size;
10150 asection *sect;
10151 unsigned int type;
10152 int is_active_thread;
10153 bfd_vma base_addr;
10154
10155 if (note->descsz < 4)
10156 return TRUE;
10157
10158 if (! CONST_STRNEQ (note->namedata, "win32"))
10159 return TRUE;
10160
10161 type = bfd_get_32 (abfd, note->descdata);
10162
10163 struct {
10164 const char *type_name;
10165 unsigned long min_size;
10166 } size_check[] =
10167 {
10168 { "NOTE_INFO_PROCESS", 12 },
10169 { "NOTE_INFO_THREAD", 12 },
10170 { "NOTE_INFO_MODULE", 12 },
10171 { "NOTE_INFO_MODULE64", 16 },
10172 };
10173
10174 if (type > (sizeof(size_check)/sizeof(size_check[0])))
10175 return TRUE;
10176
10177 if (note->descsz < size_check[type - 1].min_size)
10178 {
10179 _bfd_error_handler (_("%pB: warning: win32pstatus %s of size %lu bytes is too small"),
10180 abfd, size_check[type - 1].type_name, note->descsz);
10181 return TRUE;
10182 }
10183
10184 switch (type)
10185 {
10186 case NOTE_INFO_PROCESS:
10187 /* FIXME: need to add ->core->command. */
10188 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 4);
10189 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 8);
10190 break;
10191
10192 case NOTE_INFO_THREAD:
10193 /* Make a ".reg/<tid>" section containing the Win32 API thread CONTEXT
10194 structure. */
10195 /* thread_info.tid */
10196 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 4));
10197
10198 len = strlen (buf) + 1;
10199 name = (char *) bfd_alloc (abfd, len);
10200 if (name == NULL)
10201 return FALSE;
10202
10203 memcpy (name, buf, len);
10204
10205 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10206 if (sect == NULL)
10207 return FALSE;
10208
10209 /* sizeof (thread_info.thread_context) */
10210 sect->size = note->descsz - 12;
10211 /* offsetof (thread_info.thread_context) */
10212 sect->filepos = note->descpos + 12;
10213 sect->alignment_power = 2;
10214
10215 /* thread_info.is_active_thread */
10216 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10217
10218 if (is_active_thread)
10219 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10220 return FALSE;
10221 break;
10222
10223 case NOTE_INFO_MODULE:
10224 case NOTE_INFO_MODULE64:
10225 /* Make a ".module/xxxxxxxx" section. */
10226 if (type == NOTE_INFO_MODULE)
10227 {
10228 /* module_info.base_address */
10229 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10230 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10231 /* module_info.module_name_size */
10232 name_size = bfd_get_32 (abfd, note->descdata + 8);
10233 }
10234 else /* NOTE_INFO_MODULE64 */
10235 {
10236 /* module_info.base_address */
10237 base_addr = bfd_get_64 (abfd, note->descdata + 4);
10238 sprintf (buf, ".module/%016lx", (unsigned long) base_addr);
10239 /* module_info.module_name_size */
10240 name_size = bfd_get_32 (abfd, note->descdata + 12);
10241 }
10242
10243 len = strlen (buf) + 1;
10244 name = (char *) bfd_alloc (abfd, len);
10245 if (name == NULL)
10246 return FALSE;
10247
10248 memcpy (name, buf, len);
10249
10250 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10251
10252 if (sect == NULL)
10253 return FALSE;
10254
10255 if (note->descsz < 12 + name_size)
10256 {
10257 _bfd_error_handler (_("%pB: win32pstatus NOTE_INFO_MODULE of size %lu is too small to contain a name of size %u"),
10258 abfd, note->descsz, name_size);
10259 return TRUE;
10260 }
10261
10262 sect->size = note->descsz;
10263 sect->filepos = note->descpos;
10264 sect->alignment_power = 2;
10265 break;
10266
10267 default:
10268 return TRUE;
10269 }
10270
10271 return TRUE;
10272 }
10273
10274 static bfd_boolean
10275 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10276 {
10277 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10278
10279 switch (note->type)
10280 {
10281 default:
10282 return TRUE;
10283
10284 case NT_PRSTATUS:
10285 if (bed->elf_backend_grok_prstatus)
10286 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10287 return TRUE;
10288 #if defined (HAVE_PRSTATUS_T)
10289 return elfcore_grok_prstatus (abfd, note);
10290 #else
10291 return TRUE;
10292 #endif
10293
10294 #if defined (HAVE_PSTATUS_T)
10295 case NT_PSTATUS:
10296 return elfcore_grok_pstatus (abfd, note);
10297 #endif
10298
10299 #if defined (HAVE_LWPSTATUS_T)
10300 case NT_LWPSTATUS:
10301 return elfcore_grok_lwpstatus (abfd, note);
10302 #endif
10303
10304 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10305 return elfcore_grok_prfpreg (abfd, note);
10306
10307 case NT_WIN32PSTATUS:
10308 return elfcore_grok_win32pstatus (abfd, note);
10309
10310 case NT_PRXFPREG: /* Linux SSE extension */
10311 if (note->namesz == 6
10312 && strcmp (note->namedata, "LINUX") == 0)
10313 return elfcore_grok_prxfpreg (abfd, note);
10314 else
10315 return TRUE;
10316
10317 case NT_X86_XSTATE: /* Linux XSAVE extension */
10318 if (note->namesz == 6
10319 && strcmp (note->namedata, "LINUX") == 0)
10320 return elfcore_grok_xstatereg (abfd, note);
10321 else
10322 return TRUE;
10323
10324 case NT_PPC_VMX:
10325 if (note->namesz == 6
10326 && strcmp (note->namedata, "LINUX") == 0)
10327 return elfcore_grok_ppc_vmx (abfd, note);
10328 else
10329 return TRUE;
10330
10331 case NT_PPC_VSX:
10332 if (note->namesz == 6
10333 && strcmp (note->namedata, "LINUX") == 0)
10334 return elfcore_grok_ppc_vsx (abfd, note);
10335 else
10336 return TRUE;
10337
10338 case NT_PPC_TAR:
10339 if (note->namesz == 6
10340 && strcmp (note->namedata, "LINUX") == 0)
10341 return elfcore_grok_ppc_tar (abfd, note);
10342 else
10343 return TRUE;
10344
10345 case NT_PPC_PPR:
10346 if (note->namesz == 6
10347 && strcmp (note->namedata, "LINUX") == 0)
10348 return elfcore_grok_ppc_ppr (abfd, note);
10349 else
10350 return TRUE;
10351
10352 case NT_PPC_DSCR:
10353 if (note->namesz == 6
10354 && strcmp (note->namedata, "LINUX") == 0)
10355 return elfcore_grok_ppc_dscr (abfd, note);
10356 else
10357 return TRUE;
10358
10359 case NT_PPC_EBB:
10360 if (note->namesz == 6
10361 && strcmp (note->namedata, "LINUX") == 0)
10362 return elfcore_grok_ppc_ebb (abfd, note);
10363 else
10364 return TRUE;
10365
10366 case NT_PPC_PMU:
10367 if (note->namesz == 6
10368 && strcmp (note->namedata, "LINUX") == 0)
10369 return elfcore_grok_ppc_pmu (abfd, note);
10370 else
10371 return TRUE;
10372
10373 case NT_PPC_TM_CGPR:
10374 if (note->namesz == 6
10375 && strcmp (note->namedata, "LINUX") == 0)
10376 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10377 else
10378 return TRUE;
10379
10380 case NT_PPC_TM_CFPR:
10381 if (note->namesz == 6
10382 && strcmp (note->namedata, "LINUX") == 0)
10383 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10384 else
10385 return TRUE;
10386
10387 case NT_PPC_TM_CVMX:
10388 if (note->namesz == 6
10389 && strcmp (note->namedata, "LINUX") == 0)
10390 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10391 else
10392 return TRUE;
10393
10394 case NT_PPC_TM_CVSX:
10395 if (note->namesz == 6
10396 && strcmp (note->namedata, "LINUX") == 0)
10397 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10398 else
10399 return TRUE;
10400
10401 case NT_PPC_TM_SPR:
10402 if (note->namesz == 6
10403 && strcmp (note->namedata, "LINUX") == 0)
10404 return elfcore_grok_ppc_tm_spr (abfd, note);
10405 else
10406 return TRUE;
10407
10408 case NT_PPC_TM_CTAR:
10409 if (note->namesz == 6
10410 && strcmp (note->namedata, "LINUX") == 0)
10411 return elfcore_grok_ppc_tm_ctar (abfd, note);
10412 else
10413 return TRUE;
10414
10415 case NT_PPC_TM_CPPR:
10416 if (note->namesz == 6
10417 && strcmp (note->namedata, "LINUX") == 0)
10418 return elfcore_grok_ppc_tm_cppr (abfd, note);
10419 else
10420 return TRUE;
10421
10422 case NT_PPC_TM_CDSCR:
10423 if (note->namesz == 6
10424 && strcmp (note->namedata, "LINUX") == 0)
10425 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10426 else
10427 return TRUE;
10428
10429 case NT_S390_HIGH_GPRS:
10430 if (note->namesz == 6
10431 && strcmp (note->namedata, "LINUX") == 0)
10432 return elfcore_grok_s390_high_gprs (abfd, note);
10433 else
10434 return TRUE;
10435
10436 case NT_S390_TIMER:
10437 if (note->namesz == 6
10438 && strcmp (note->namedata, "LINUX") == 0)
10439 return elfcore_grok_s390_timer (abfd, note);
10440 else
10441 return TRUE;
10442
10443 case NT_S390_TODCMP:
10444 if (note->namesz == 6
10445 && strcmp (note->namedata, "LINUX") == 0)
10446 return elfcore_grok_s390_todcmp (abfd, note);
10447 else
10448 return TRUE;
10449
10450 case NT_S390_TODPREG:
10451 if (note->namesz == 6
10452 && strcmp (note->namedata, "LINUX") == 0)
10453 return elfcore_grok_s390_todpreg (abfd, note);
10454 else
10455 return TRUE;
10456
10457 case NT_S390_CTRS:
10458 if (note->namesz == 6
10459 && strcmp (note->namedata, "LINUX") == 0)
10460 return elfcore_grok_s390_ctrs (abfd, note);
10461 else
10462 return TRUE;
10463
10464 case NT_S390_PREFIX:
10465 if (note->namesz == 6
10466 && strcmp (note->namedata, "LINUX") == 0)
10467 return elfcore_grok_s390_prefix (abfd, note);
10468 else
10469 return TRUE;
10470
10471 case NT_S390_LAST_BREAK:
10472 if (note->namesz == 6
10473 && strcmp (note->namedata, "LINUX") == 0)
10474 return elfcore_grok_s390_last_break (abfd, note);
10475 else
10476 return TRUE;
10477
10478 case NT_S390_SYSTEM_CALL:
10479 if (note->namesz == 6
10480 && strcmp (note->namedata, "LINUX") == 0)
10481 return elfcore_grok_s390_system_call (abfd, note);
10482 else
10483 return TRUE;
10484
10485 case NT_S390_TDB:
10486 if (note->namesz == 6
10487 && strcmp (note->namedata, "LINUX") == 0)
10488 return elfcore_grok_s390_tdb (abfd, note);
10489 else
10490 return TRUE;
10491
10492 case NT_S390_VXRS_LOW:
10493 if (note->namesz == 6
10494 && strcmp (note->namedata, "LINUX") == 0)
10495 return elfcore_grok_s390_vxrs_low (abfd, note);
10496 else
10497 return TRUE;
10498
10499 case NT_S390_VXRS_HIGH:
10500 if (note->namesz == 6
10501 && strcmp (note->namedata, "LINUX") == 0)
10502 return elfcore_grok_s390_vxrs_high (abfd, note);
10503 else
10504 return TRUE;
10505
10506 case NT_S390_GS_CB:
10507 if (note->namesz == 6
10508 && strcmp (note->namedata, "LINUX") == 0)
10509 return elfcore_grok_s390_gs_cb (abfd, note);
10510 else
10511 return TRUE;
10512
10513 case NT_S390_GS_BC:
10514 if (note->namesz == 6
10515 && strcmp (note->namedata, "LINUX") == 0)
10516 return elfcore_grok_s390_gs_bc (abfd, note);
10517 else
10518 return TRUE;
10519
10520 case NT_ARC_V2:
10521 if (note->namesz == 6
10522 && strcmp (note->namedata, "LINUX") == 0)
10523 return elfcore_grok_arc_v2 (abfd, note);
10524 else
10525 return TRUE;
10526
10527 case NT_ARM_VFP:
10528 if (note->namesz == 6
10529 && strcmp (note->namedata, "LINUX") == 0)
10530 return elfcore_grok_arm_vfp (abfd, note);
10531 else
10532 return TRUE;
10533
10534 case NT_ARM_TLS:
10535 if (note->namesz == 6
10536 && strcmp (note->namedata, "LINUX") == 0)
10537 return elfcore_grok_aarch_tls (abfd, note);
10538 else
10539 return TRUE;
10540
10541 case NT_ARM_HW_BREAK:
10542 if (note->namesz == 6
10543 && strcmp (note->namedata, "LINUX") == 0)
10544 return elfcore_grok_aarch_hw_break (abfd, note);
10545 else
10546 return TRUE;
10547
10548 case NT_ARM_HW_WATCH:
10549 if (note->namesz == 6
10550 && strcmp (note->namedata, "LINUX") == 0)
10551 return elfcore_grok_aarch_hw_watch (abfd, note);
10552 else
10553 return TRUE;
10554
10555 case NT_ARM_SVE:
10556 if (note->namesz == 6
10557 && strcmp (note->namedata, "LINUX") == 0)
10558 return elfcore_grok_aarch_sve (abfd, note);
10559 else
10560 return TRUE;
10561
10562 case NT_ARM_PAC_MASK:
10563 if (note->namesz == 6
10564 && strcmp (note->namedata, "LINUX") == 0)
10565 return elfcore_grok_aarch_pauth (abfd, note);
10566 else
10567 return TRUE;
10568
10569 case NT_PRPSINFO:
10570 case NT_PSINFO:
10571 if (bed->elf_backend_grok_psinfo)
10572 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10573 return TRUE;
10574 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10575 return elfcore_grok_psinfo (abfd, note);
10576 #else
10577 return TRUE;
10578 #endif
10579
10580 case NT_AUXV:
10581 return elfcore_make_auxv_note_section (abfd, note, 0);
10582
10583 case NT_FILE:
10584 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10585 note);
10586
10587 case NT_SIGINFO:
10588 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10589 note);
10590
10591 }
10592 }
10593
10594 static bfd_boolean
10595 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10596 {
10597 struct bfd_build_id* build_id;
10598
10599 if (note->descsz == 0)
10600 return FALSE;
10601
10602 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10603 if (build_id == NULL)
10604 return FALSE;
10605
10606 build_id->size = note->descsz;
10607 memcpy (build_id->data, note->descdata, note->descsz);
10608 abfd->build_id = build_id;
10609
10610 return TRUE;
10611 }
10612
10613 static bfd_boolean
10614 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10615 {
10616 switch (note->type)
10617 {
10618 default:
10619 return TRUE;
10620
10621 case NT_GNU_PROPERTY_TYPE_0:
10622 return _bfd_elf_parse_gnu_properties (abfd, note);
10623
10624 case NT_GNU_BUILD_ID:
10625 return elfobj_grok_gnu_build_id (abfd, note);
10626 }
10627 }
10628
10629 static bfd_boolean
10630 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10631 {
10632 struct sdt_note *cur =
10633 (struct sdt_note *) bfd_alloc (abfd,
10634 sizeof (struct sdt_note) + note->descsz);
10635
10636 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10637 cur->size = (bfd_size_type) note->descsz;
10638 memcpy (cur->data, note->descdata, note->descsz);
10639
10640 elf_tdata (abfd)->sdt_note_head = cur;
10641
10642 return TRUE;
10643 }
10644
10645 static bfd_boolean
10646 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10647 {
10648 switch (note->type)
10649 {
10650 case NT_STAPSDT:
10651 return elfobj_grok_stapsdt_note_1 (abfd, note);
10652
10653 default:
10654 return TRUE;
10655 }
10656 }
10657
10658 static bfd_boolean
10659 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10660 {
10661 size_t offset;
10662
10663 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10664 {
10665 case ELFCLASS32:
10666 if (note->descsz < 108)
10667 return FALSE;
10668 break;
10669
10670 case ELFCLASS64:
10671 if (note->descsz < 120)
10672 return FALSE;
10673 break;
10674
10675 default:
10676 return FALSE;
10677 }
10678
10679 /* Check for version 1 in pr_version. */
10680 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10681 return FALSE;
10682
10683 offset = 4;
10684
10685 /* Skip over pr_psinfosz. */
10686 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10687 offset += 4;
10688 else
10689 {
10690 offset += 4; /* Padding before pr_psinfosz. */
10691 offset += 8;
10692 }
10693
10694 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10695 elf_tdata (abfd)->core->program
10696 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10697 offset += 17;
10698
10699 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10700 elf_tdata (abfd)->core->command
10701 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10702 offset += 81;
10703
10704 /* Padding before pr_pid. */
10705 offset += 2;
10706
10707 /* The pr_pid field was added in version "1a". */
10708 if (note->descsz < offset + 4)
10709 return TRUE;
10710
10711 elf_tdata (abfd)->core->pid
10712 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10713
10714 return TRUE;
10715 }
10716
10717 static bfd_boolean
10718 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10719 {
10720 size_t offset;
10721 size_t size;
10722 size_t min_size;
10723
10724 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10725 Also compute minimum size of this note. */
10726 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10727 {
10728 case ELFCLASS32:
10729 offset = 4 + 4;
10730 min_size = offset + (4 * 2) + 4 + 4 + 4;
10731 break;
10732
10733 case ELFCLASS64:
10734 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10735 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10736 break;
10737
10738 default:
10739 return FALSE;
10740 }
10741
10742 if (note->descsz < min_size)
10743 return FALSE;
10744
10745 /* Check for version 1 in pr_version. */
10746 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10747 return FALSE;
10748
10749 /* Extract size of pr_reg from pr_gregsetsz. */
10750 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10751 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10752 {
10753 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10754 offset += 4 * 2;
10755 }
10756 else
10757 {
10758 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10759 offset += 8 * 2;
10760 }
10761
10762 /* Skip over pr_osreldate. */
10763 offset += 4;
10764
10765 /* Read signal from pr_cursig. */
10766 if (elf_tdata (abfd)->core->signal == 0)
10767 elf_tdata (abfd)->core->signal
10768 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10769 offset += 4;
10770
10771 /* Read TID from pr_pid. */
10772 elf_tdata (abfd)->core->lwpid
10773 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10774 offset += 4;
10775
10776 /* Padding before pr_reg. */
10777 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10778 offset += 4;
10779
10780 /* Make sure that there is enough data remaining in the note. */
10781 if ((note->descsz - offset) < size)
10782 return FALSE;
10783
10784 /* Make a ".reg/999" section and a ".reg" section. */
10785 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10786 size, note->descpos + offset);
10787 }
10788
10789 static bfd_boolean
10790 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10791 {
10792 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10793
10794 switch (note->type)
10795 {
10796 case NT_PRSTATUS:
10797 if (bed->elf_backend_grok_freebsd_prstatus)
10798 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10799 return TRUE;
10800 return elfcore_grok_freebsd_prstatus (abfd, note);
10801
10802 case NT_FPREGSET:
10803 return elfcore_grok_prfpreg (abfd, note);
10804
10805 case NT_PRPSINFO:
10806 return elfcore_grok_freebsd_psinfo (abfd, note);
10807
10808 case NT_FREEBSD_THRMISC:
10809 if (note->namesz == 8)
10810 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10811 else
10812 return TRUE;
10813
10814 case NT_FREEBSD_PROCSTAT_PROC:
10815 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10816 note);
10817
10818 case NT_FREEBSD_PROCSTAT_FILES:
10819 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10820 note);
10821
10822 case NT_FREEBSD_PROCSTAT_VMMAP:
10823 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10824 note);
10825
10826 case NT_FREEBSD_PROCSTAT_AUXV:
10827 return elfcore_make_auxv_note_section (abfd, note, 4);
10828
10829 case NT_X86_XSTATE:
10830 if (note->namesz == 8)
10831 return elfcore_grok_xstatereg (abfd, note);
10832 else
10833 return TRUE;
10834
10835 case NT_FREEBSD_PTLWPINFO:
10836 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10837 note);
10838
10839 case NT_ARM_VFP:
10840 return elfcore_grok_arm_vfp (abfd, note);
10841
10842 default:
10843 return TRUE;
10844 }
10845 }
10846
10847 static bfd_boolean
10848 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10849 {
10850 char *cp;
10851
10852 cp = strchr (note->namedata, '@');
10853 if (cp != NULL)
10854 {
10855 *lwpidp = atoi(cp + 1);
10856 return TRUE;
10857 }
10858 return FALSE;
10859 }
10860
10861 static bfd_boolean
10862 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10863 {
10864 if (note->descsz <= 0x7c + 31)
10865 return FALSE;
10866
10867 /* Signal number at offset 0x08. */
10868 elf_tdata (abfd)->core->signal
10869 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10870
10871 /* Process ID at offset 0x50. */
10872 elf_tdata (abfd)->core->pid
10873 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10874
10875 /* Command name at 0x7c (max 32 bytes, including nul). */
10876 elf_tdata (abfd)->core->command
10877 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10878
10879 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10880 note);
10881 }
10882
10883 static bfd_boolean
10884 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10885 {
10886 int lwp;
10887
10888 if (elfcore_netbsd_get_lwpid (note, &lwp))
10889 elf_tdata (abfd)->core->lwpid = lwp;
10890
10891 switch (note->type)
10892 {
10893 case NT_NETBSDCORE_PROCINFO:
10894 /* NetBSD-specific core "procinfo". Note that we expect to
10895 find this note before any of the others, which is fine,
10896 since the kernel writes this note out first when it
10897 creates a core file. */
10898 return elfcore_grok_netbsd_procinfo (abfd, note);
10899 #ifdef NT_NETBSDCORE_AUXV
10900 case NT_NETBSDCORE_AUXV:
10901 /* NetBSD-specific Elf Auxiliary Vector data. */
10902 return elfcore_make_auxv_note_section (abfd, note, 4);
10903 #endif
10904 #ifdef NT_NETBSDCORE_LWPSTATUS
10905 case NT_NETBSDCORE_LWPSTATUS:
10906 return elfcore_make_note_pseudosection (abfd,
10907 ".note.netbsdcore.lwpstatus",
10908 note);
10909 #endif
10910 default:
10911 break;
10912 }
10913
10914 /* As of March 2020 there are no other machine-independent notes
10915 defined for NetBSD core files. If the note type is less
10916 than the start of the machine-dependent note types, we don't
10917 understand it. */
10918
10919 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10920 return TRUE;
10921
10922
10923 switch (bfd_get_arch (abfd))
10924 {
10925 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10926 PT_GETFPREGS == mach+2. */
10927
10928 case bfd_arch_aarch64:
10929 case bfd_arch_alpha:
10930 case bfd_arch_sparc:
10931 switch (note->type)
10932 {
10933 case NT_NETBSDCORE_FIRSTMACH+0:
10934 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10935
10936 case NT_NETBSDCORE_FIRSTMACH+2:
10937 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10938
10939 default:
10940 return TRUE;
10941 }
10942
10943 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10944 There's also old PT___GETREGS40 == mach + 1 for old reg
10945 structure which lacks GBR. */
10946
10947 case bfd_arch_sh:
10948 switch (note->type)
10949 {
10950 case NT_NETBSDCORE_FIRSTMACH+3:
10951 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10952
10953 case NT_NETBSDCORE_FIRSTMACH+5:
10954 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10955
10956 default:
10957 return TRUE;
10958 }
10959
10960 /* On all other arch's, PT_GETREGS == mach+1 and
10961 PT_GETFPREGS == mach+3. */
10962
10963 default:
10964 switch (note->type)
10965 {
10966 case NT_NETBSDCORE_FIRSTMACH+1:
10967 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10968
10969 case NT_NETBSDCORE_FIRSTMACH+3:
10970 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10971
10972 default:
10973 return TRUE;
10974 }
10975 }
10976 /* NOTREACHED */
10977 }
10978
10979 static bfd_boolean
10980 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10981 {
10982 if (note->descsz <= 0x48 + 31)
10983 return FALSE;
10984
10985 /* Signal number at offset 0x08. */
10986 elf_tdata (abfd)->core->signal
10987 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10988
10989 /* Process ID at offset 0x20. */
10990 elf_tdata (abfd)->core->pid
10991 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10992
10993 /* Command name at 0x48 (max 32 bytes, including nul). */
10994 elf_tdata (abfd)->core->command
10995 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10996
10997 return TRUE;
10998 }
10999
11000 static bfd_boolean
11001 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
11002 {
11003 if (note->type == NT_OPENBSD_PROCINFO)
11004 return elfcore_grok_openbsd_procinfo (abfd, note);
11005
11006 if (note->type == NT_OPENBSD_REGS)
11007 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11008
11009 if (note->type == NT_OPENBSD_FPREGS)
11010 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11011
11012 if (note->type == NT_OPENBSD_XFPREGS)
11013 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
11014
11015 if (note->type == NT_OPENBSD_AUXV)
11016 return elfcore_make_auxv_note_section (abfd, note, 0);
11017
11018 if (note->type == NT_OPENBSD_WCOOKIE)
11019 {
11020 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
11021 SEC_HAS_CONTENTS);
11022
11023 if (sect == NULL)
11024 return FALSE;
11025 sect->size = note->descsz;
11026 sect->filepos = note->descpos;
11027 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
11028
11029 return TRUE;
11030 }
11031
11032 return TRUE;
11033 }
11034
11035 static bfd_boolean
11036 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
11037 {
11038 void *ddata = note->descdata;
11039 char buf[100];
11040 char *name;
11041 asection *sect;
11042 short sig;
11043 unsigned flags;
11044
11045 if (note->descsz < 16)
11046 return FALSE;
11047
11048 /* nto_procfs_status 'pid' field is at offset 0. */
11049 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
11050
11051 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
11052 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
11053
11054 /* nto_procfs_status 'flags' field is at offset 8. */
11055 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
11056
11057 /* nto_procfs_status 'what' field is at offset 14. */
11058 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
11059 {
11060 elf_tdata (abfd)->core->signal = sig;
11061 elf_tdata (abfd)->core->lwpid = *tid;
11062 }
11063
11064 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
11065 do not come from signals so we make sure we set the current
11066 thread just in case. */
11067 if (flags & 0x00000080)
11068 elf_tdata (abfd)->core->lwpid = *tid;
11069
11070 /* Make a ".qnx_core_status/%d" section. */
11071 sprintf (buf, ".qnx_core_status/%ld", *tid);
11072
11073 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11074 if (name == NULL)
11075 return FALSE;
11076 strcpy (name, buf);
11077
11078 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11079 if (sect == NULL)
11080 return FALSE;
11081
11082 sect->size = note->descsz;
11083 sect->filepos = note->descpos;
11084 sect->alignment_power = 2;
11085
11086 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
11087 }
11088
11089 static bfd_boolean
11090 elfcore_grok_nto_regs (bfd *abfd,
11091 Elf_Internal_Note *note,
11092 long tid,
11093 char *base)
11094 {
11095 char buf[100];
11096 char *name;
11097 asection *sect;
11098
11099 /* Make a "(base)/%d" section. */
11100 sprintf (buf, "%s/%ld", base, tid);
11101
11102 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11103 if (name == NULL)
11104 return FALSE;
11105 strcpy (name, buf);
11106
11107 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11108 if (sect == NULL)
11109 return FALSE;
11110
11111 sect->size = note->descsz;
11112 sect->filepos = note->descpos;
11113 sect->alignment_power = 2;
11114
11115 /* This is the current thread. */
11116 if (elf_tdata (abfd)->core->lwpid == tid)
11117 return elfcore_maybe_make_sect (abfd, base, sect);
11118
11119 return TRUE;
11120 }
11121
11122 #define BFD_QNT_CORE_INFO 7
11123 #define BFD_QNT_CORE_STATUS 8
11124 #define BFD_QNT_CORE_GREG 9
11125 #define BFD_QNT_CORE_FPREG 10
11126
11127 static bfd_boolean
11128 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
11129 {
11130 /* Every GREG section has a STATUS section before it. Store the
11131 tid from the previous call to pass down to the next gregs
11132 function. */
11133 static long tid = 1;
11134
11135 switch (note->type)
11136 {
11137 case BFD_QNT_CORE_INFO:
11138 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
11139 case BFD_QNT_CORE_STATUS:
11140 return elfcore_grok_nto_status (abfd, note, &tid);
11141 case BFD_QNT_CORE_GREG:
11142 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
11143 case BFD_QNT_CORE_FPREG:
11144 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
11145 default:
11146 return TRUE;
11147 }
11148 }
11149
11150 static bfd_boolean
11151 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
11152 {
11153 char *name;
11154 asection *sect;
11155 size_t len;
11156
11157 /* Use note name as section name. */
11158 len = note->namesz;
11159 name = (char *) bfd_alloc (abfd, len);
11160 if (name == NULL)
11161 return FALSE;
11162 memcpy (name, note->namedata, len);
11163 name[len - 1] = '\0';
11164
11165 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11166 if (sect == NULL)
11167 return FALSE;
11168
11169 sect->size = note->descsz;
11170 sect->filepos = note->descpos;
11171 sect->alignment_power = 1;
11172
11173 return TRUE;
11174 }
11175
11176 /* Function: elfcore_write_note
11177
11178 Inputs:
11179 buffer to hold note, and current size of buffer
11180 name of note
11181 type of note
11182 data for note
11183 size of data for note
11184
11185 Writes note to end of buffer. ELF64 notes are written exactly as
11186 for ELF32, despite the current (as of 2006) ELF gabi specifying
11187 that they ought to have 8-byte namesz and descsz field, and have
11188 8-byte alignment. Other writers, eg. Linux kernel, do the same.
11189
11190 Return:
11191 Pointer to realloc'd buffer, *BUFSIZ updated. */
11192
11193 char *
11194 elfcore_write_note (bfd *abfd,
11195 char *buf,
11196 int *bufsiz,
11197 const char *name,
11198 int type,
11199 const void *input,
11200 int size)
11201 {
11202 Elf_External_Note *xnp;
11203 size_t namesz;
11204 size_t newspace;
11205 char *dest;
11206
11207 namesz = 0;
11208 if (name != NULL)
11209 namesz = strlen (name) + 1;
11210
11211 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
11212
11213 buf = (char *) realloc (buf, *bufsiz + newspace);
11214 if (buf == NULL)
11215 return buf;
11216 dest = buf + *bufsiz;
11217 *bufsiz += newspace;
11218 xnp = (Elf_External_Note *) dest;
11219 H_PUT_32 (abfd, namesz, xnp->namesz);
11220 H_PUT_32 (abfd, size, xnp->descsz);
11221 H_PUT_32 (abfd, type, xnp->type);
11222 dest = xnp->name;
11223 if (name != NULL)
11224 {
11225 memcpy (dest, name, namesz);
11226 dest += namesz;
11227 while (namesz & 3)
11228 {
11229 *dest++ = '\0';
11230 ++namesz;
11231 }
11232 }
11233 memcpy (dest, input, size);
11234 dest += size;
11235 while (size & 3)
11236 {
11237 *dest++ = '\0';
11238 ++size;
11239 }
11240 return buf;
11241 }
11242
11243 /* gcc-8 warns (*) on all the strncpy calls in this function about
11244 possible string truncation. The "truncation" is not a bug. We
11245 have an external representation of structs with fields that are not
11246 necessarily NULL terminated and corresponding internal
11247 representation fields that are one larger so that they can always
11248 be NULL terminated.
11249 gcc versions between 4.2 and 4.6 do not allow pragma control of
11250 diagnostics inside functions, giving a hard error if you try to use
11251 the finer control available with later versions.
11252 gcc prior to 4.2 warns about diagnostic push and pop.
11253 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11254 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11255 (*) Depending on your system header files! */
11256 #if GCC_VERSION >= 8000
11257 # pragma GCC diagnostic push
11258 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11259 #endif
11260 char *
11261 elfcore_write_prpsinfo (bfd *abfd,
11262 char *buf,
11263 int *bufsiz,
11264 const char *fname,
11265 const char *psargs)
11266 {
11267 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11268
11269 if (bed->elf_backend_write_core_note != NULL)
11270 {
11271 char *ret;
11272 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11273 NT_PRPSINFO, fname, psargs);
11274 if (ret != NULL)
11275 return ret;
11276 }
11277
11278 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11279 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11280 if (bed->s->elfclass == ELFCLASS32)
11281 {
11282 # if defined (HAVE_PSINFO32_T)
11283 psinfo32_t data;
11284 int note_type = NT_PSINFO;
11285 # else
11286 prpsinfo32_t data;
11287 int note_type = NT_PRPSINFO;
11288 # endif
11289
11290 memset (&data, 0, sizeof (data));
11291 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11292 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11293 return elfcore_write_note (abfd, buf, bufsiz,
11294 "CORE", note_type, &data, sizeof (data));
11295 }
11296 else
11297 # endif
11298 {
11299 # if defined (HAVE_PSINFO_T)
11300 psinfo_t data;
11301 int note_type = NT_PSINFO;
11302 # else
11303 prpsinfo_t data;
11304 int note_type = NT_PRPSINFO;
11305 # endif
11306
11307 memset (&data, 0, sizeof (data));
11308 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11309 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11310 return elfcore_write_note (abfd, buf, bufsiz,
11311 "CORE", note_type, &data, sizeof (data));
11312 }
11313 #endif /* PSINFO_T or PRPSINFO_T */
11314
11315 free (buf);
11316 return NULL;
11317 }
11318 #if GCC_VERSION >= 8000
11319 # pragma GCC diagnostic pop
11320 #endif
11321
11322 char *
11323 elfcore_write_linux_prpsinfo32
11324 (bfd *abfd, char *buf, int *bufsiz,
11325 const struct elf_internal_linux_prpsinfo *prpsinfo)
11326 {
11327 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11328 {
11329 struct elf_external_linux_prpsinfo32_ugid16 data;
11330
11331 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11332 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11333 &data, sizeof (data));
11334 }
11335 else
11336 {
11337 struct elf_external_linux_prpsinfo32_ugid32 data;
11338
11339 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11340 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11341 &data, sizeof (data));
11342 }
11343 }
11344
11345 char *
11346 elfcore_write_linux_prpsinfo64
11347 (bfd *abfd, char *buf, int *bufsiz,
11348 const struct elf_internal_linux_prpsinfo *prpsinfo)
11349 {
11350 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11351 {
11352 struct elf_external_linux_prpsinfo64_ugid16 data;
11353
11354 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11355 return elfcore_write_note (abfd, buf, bufsiz,
11356 "CORE", NT_PRPSINFO, &data, sizeof (data));
11357 }
11358 else
11359 {
11360 struct elf_external_linux_prpsinfo64_ugid32 data;
11361
11362 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11363 return elfcore_write_note (abfd, buf, bufsiz,
11364 "CORE", NT_PRPSINFO, &data, sizeof (data));
11365 }
11366 }
11367
11368 char *
11369 elfcore_write_prstatus (bfd *abfd,
11370 char *buf,
11371 int *bufsiz,
11372 long pid,
11373 int cursig,
11374 const void *gregs)
11375 {
11376 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11377
11378 if (bed->elf_backend_write_core_note != NULL)
11379 {
11380 char *ret;
11381 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11382 NT_PRSTATUS,
11383 pid, cursig, gregs);
11384 if (ret != NULL)
11385 return ret;
11386 }
11387
11388 #if defined (HAVE_PRSTATUS_T)
11389 #if defined (HAVE_PRSTATUS32_T)
11390 if (bed->s->elfclass == ELFCLASS32)
11391 {
11392 prstatus32_t prstat;
11393
11394 memset (&prstat, 0, sizeof (prstat));
11395 prstat.pr_pid = pid;
11396 prstat.pr_cursig = cursig;
11397 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11398 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11399 NT_PRSTATUS, &prstat, sizeof (prstat));
11400 }
11401 else
11402 #endif
11403 {
11404 prstatus_t prstat;
11405
11406 memset (&prstat, 0, sizeof (prstat));
11407 prstat.pr_pid = pid;
11408 prstat.pr_cursig = cursig;
11409 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11410 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11411 NT_PRSTATUS, &prstat, sizeof (prstat));
11412 }
11413 #endif /* HAVE_PRSTATUS_T */
11414
11415 free (buf);
11416 return NULL;
11417 }
11418
11419 #if defined (HAVE_LWPSTATUS_T)
11420 char *
11421 elfcore_write_lwpstatus (bfd *abfd,
11422 char *buf,
11423 int *bufsiz,
11424 long pid,
11425 int cursig,
11426 const void *gregs)
11427 {
11428 lwpstatus_t lwpstat;
11429 const char *note_name = "CORE";
11430
11431 memset (&lwpstat, 0, sizeof (lwpstat));
11432 lwpstat.pr_lwpid = pid >> 16;
11433 lwpstat.pr_cursig = cursig;
11434 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11435 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11436 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11437 #if !defined(gregs)
11438 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11439 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11440 #else
11441 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11442 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11443 #endif
11444 #endif
11445 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11446 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11447 }
11448 #endif /* HAVE_LWPSTATUS_T */
11449
11450 #if defined (HAVE_PSTATUS_T)
11451 char *
11452 elfcore_write_pstatus (bfd *abfd,
11453 char *buf,
11454 int *bufsiz,
11455 long pid,
11456 int cursig ATTRIBUTE_UNUSED,
11457 const void *gregs ATTRIBUTE_UNUSED)
11458 {
11459 const char *note_name = "CORE";
11460 #if defined (HAVE_PSTATUS32_T)
11461 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11462
11463 if (bed->s->elfclass == ELFCLASS32)
11464 {
11465 pstatus32_t pstat;
11466
11467 memset (&pstat, 0, sizeof (pstat));
11468 pstat.pr_pid = pid & 0xffff;
11469 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11470 NT_PSTATUS, &pstat, sizeof (pstat));
11471 return buf;
11472 }
11473 else
11474 #endif
11475 {
11476 pstatus_t pstat;
11477
11478 memset (&pstat, 0, sizeof (pstat));
11479 pstat.pr_pid = pid & 0xffff;
11480 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11481 NT_PSTATUS, &pstat, sizeof (pstat));
11482 return buf;
11483 }
11484 }
11485 #endif /* HAVE_PSTATUS_T */
11486
11487 char *
11488 elfcore_write_prfpreg (bfd *abfd,
11489 char *buf,
11490 int *bufsiz,
11491 const void *fpregs,
11492 int size)
11493 {
11494 const char *note_name = "CORE";
11495 return elfcore_write_note (abfd, buf, bufsiz,
11496 note_name, NT_FPREGSET, fpregs, size);
11497 }
11498
11499 char *
11500 elfcore_write_prxfpreg (bfd *abfd,
11501 char *buf,
11502 int *bufsiz,
11503 const void *xfpregs,
11504 int size)
11505 {
11506 char *note_name = "LINUX";
11507 return elfcore_write_note (abfd, buf, bufsiz,
11508 note_name, NT_PRXFPREG, xfpregs, size);
11509 }
11510
11511 char *
11512 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11513 const void *xfpregs, int size)
11514 {
11515 char *note_name;
11516 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11517 note_name = "FreeBSD";
11518 else
11519 note_name = "LINUX";
11520 return elfcore_write_note (abfd, buf, bufsiz,
11521 note_name, NT_X86_XSTATE, xfpregs, size);
11522 }
11523
11524 char *
11525 elfcore_write_ppc_vmx (bfd *abfd,
11526 char *buf,
11527 int *bufsiz,
11528 const void *ppc_vmx,
11529 int size)
11530 {
11531 char *note_name = "LINUX";
11532 return elfcore_write_note (abfd, buf, bufsiz,
11533 note_name, NT_PPC_VMX, ppc_vmx, size);
11534 }
11535
11536 char *
11537 elfcore_write_ppc_vsx (bfd *abfd,
11538 char *buf,
11539 int *bufsiz,
11540 const void *ppc_vsx,
11541 int size)
11542 {
11543 char *note_name = "LINUX";
11544 return elfcore_write_note (abfd, buf, bufsiz,
11545 note_name, NT_PPC_VSX, ppc_vsx, size);
11546 }
11547
11548 char *
11549 elfcore_write_ppc_tar (bfd *abfd,
11550 char *buf,
11551 int *bufsiz,
11552 const void *ppc_tar,
11553 int size)
11554 {
11555 char *note_name = "LINUX";
11556 return elfcore_write_note (abfd, buf, bufsiz,
11557 note_name, NT_PPC_TAR, ppc_tar, size);
11558 }
11559
11560 char *
11561 elfcore_write_ppc_ppr (bfd *abfd,
11562 char *buf,
11563 int *bufsiz,
11564 const void *ppc_ppr,
11565 int size)
11566 {
11567 char *note_name = "LINUX";
11568 return elfcore_write_note (abfd, buf, bufsiz,
11569 note_name, NT_PPC_PPR, ppc_ppr, size);
11570 }
11571
11572 char *
11573 elfcore_write_ppc_dscr (bfd *abfd,
11574 char *buf,
11575 int *bufsiz,
11576 const void *ppc_dscr,
11577 int size)
11578 {
11579 char *note_name = "LINUX";
11580 return elfcore_write_note (abfd, buf, bufsiz,
11581 note_name, NT_PPC_DSCR, ppc_dscr, size);
11582 }
11583
11584 char *
11585 elfcore_write_ppc_ebb (bfd *abfd,
11586 char *buf,
11587 int *bufsiz,
11588 const void *ppc_ebb,
11589 int size)
11590 {
11591 char *note_name = "LINUX";
11592 return elfcore_write_note (abfd, buf, bufsiz,
11593 note_name, NT_PPC_EBB, ppc_ebb, size);
11594 }
11595
11596 char *
11597 elfcore_write_ppc_pmu (bfd *abfd,
11598 char *buf,
11599 int *bufsiz,
11600 const void *ppc_pmu,
11601 int size)
11602 {
11603 char *note_name = "LINUX";
11604 return elfcore_write_note (abfd, buf, bufsiz,
11605 note_name, NT_PPC_PMU, ppc_pmu, size);
11606 }
11607
11608 char *
11609 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11610 char *buf,
11611 int *bufsiz,
11612 const void *ppc_tm_cgpr,
11613 int size)
11614 {
11615 char *note_name = "LINUX";
11616 return elfcore_write_note (abfd, buf, bufsiz,
11617 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11618 }
11619
11620 char *
11621 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11622 char *buf,
11623 int *bufsiz,
11624 const void *ppc_tm_cfpr,
11625 int size)
11626 {
11627 char *note_name = "LINUX";
11628 return elfcore_write_note (abfd, buf, bufsiz,
11629 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11630 }
11631
11632 char *
11633 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11634 char *buf,
11635 int *bufsiz,
11636 const void *ppc_tm_cvmx,
11637 int size)
11638 {
11639 char *note_name = "LINUX";
11640 return elfcore_write_note (abfd, buf, bufsiz,
11641 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11642 }
11643
11644 char *
11645 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11646 char *buf,
11647 int *bufsiz,
11648 const void *ppc_tm_cvsx,
11649 int size)
11650 {
11651 char *note_name = "LINUX";
11652 return elfcore_write_note (abfd, buf, bufsiz,
11653 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11654 }
11655
11656 char *
11657 elfcore_write_ppc_tm_spr (bfd *abfd,
11658 char *buf,
11659 int *bufsiz,
11660 const void *ppc_tm_spr,
11661 int size)
11662 {
11663 char *note_name = "LINUX";
11664 return elfcore_write_note (abfd, buf, bufsiz,
11665 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11666 }
11667
11668 char *
11669 elfcore_write_ppc_tm_ctar (bfd *abfd,
11670 char *buf,
11671 int *bufsiz,
11672 const void *ppc_tm_ctar,
11673 int size)
11674 {
11675 char *note_name = "LINUX";
11676 return elfcore_write_note (abfd, buf, bufsiz,
11677 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11678 }
11679
11680 char *
11681 elfcore_write_ppc_tm_cppr (bfd *abfd,
11682 char *buf,
11683 int *bufsiz,
11684 const void *ppc_tm_cppr,
11685 int size)
11686 {
11687 char *note_name = "LINUX";
11688 return elfcore_write_note (abfd, buf, bufsiz,
11689 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11690 }
11691
11692 char *
11693 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11694 char *buf,
11695 int *bufsiz,
11696 const void *ppc_tm_cdscr,
11697 int size)
11698 {
11699 char *note_name = "LINUX";
11700 return elfcore_write_note (abfd, buf, bufsiz,
11701 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11702 }
11703
11704 static char *
11705 elfcore_write_s390_high_gprs (bfd *abfd,
11706 char *buf,
11707 int *bufsiz,
11708 const void *s390_high_gprs,
11709 int size)
11710 {
11711 char *note_name = "LINUX";
11712 return elfcore_write_note (abfd, buf, bufsiz,
11713 note_name, NT_S390_HIGH_GPRS,
11714 s390_high_gprs, size);
11715 }
11716
11717 char *
11718 elfcore_write_s390_timer (bfd *abfd,
11719 char *buf,
11720 int *bufsiz,
11721 const void *s390_timer,
11722 int size)
11723 {
11724 char *note_name = "LINUX";
11725 return elfcore_write_note (abfd, buf, bufsiz,
11726 note_name, NT_S390_TIMER, s390_timer, size);
11727 }
11728
11729 char *
11730 elfcore_write_s390_todcmp (bfd *abfd,
11731 char *buf,
11732 int *bufsiz,
11733 const void *s390_todcmp,
11734 int size)
11735 {
11736 char *note_name = "LINUX";
11737 return elfcore_write_note (abfd, buf, bufsiz,
11738 note_name, NT_S390_TODCMP, s390_todcmp, size);
11739 }
11740
11741 char *
11742 elfcore_write_s390_todpreg (bfd *abfd,
11743 char *buf,
11744 int *bufsiz,
11745 const void *s390_todpreg,
11746 int size)
11747 {
11748 char *note_name = "LINUX";
11749 return elfcore_write_note (abfd, buf, bufsiz,
11750 note_name, NT_S390_TODPREG, s390_todpreg, size);
11751 }
11752
11753 char *
11754 elfcore_write_s390_ctrs (bfd *abfd,
11755 char *buf,
11756 int *bufsiz,
11757 const void *s390_ctrs,
11758 int size)
11759 {
11760 char *note_name = "LINUX";
11761 return elfcore_write_note (abfd, buf, bufsiz,
11762 note_name, NT_S390_CTRS, s390_ctrs, size);
11763 }
11764
11765 char *
11766 elfcore_write_s390_prefix (bfd *abfd,
11767 char *buf,
11768 int *bufsiz,
11769 const void *s390_prefix,
11770 int size)
11771 {
11772 char *note_name = "LINUX";
11773 return elfcore_write_note (abfd, buf, bufsiz,
11774 note_name, NT_S390_PREFIX, s390_prefix, size);
11775 }
11776
11777 char *
11778 elfcore_write_s390_last_break (bfd *abfd,
11779 char *buf,
11780 int *bufsiz,
11781 const void *s390_last_break,
11782 int size)
11783 {
11784 char *note_name = "LINUX";
11785 return elfcore_write_note (abfd, buf, bufsiz,
11786 note_name, NT_S390_LAST_BREAK,
11787 s390_last_break, size);
11788 }
11789
11790 char *
11791 elfcore_write_s390_system_call (bfd *abfd,
11792 char *buf,
11793 int *bufsiz,
11794 const void *s390_system_call,
11795 int size)
11796 {
11797 char *note_name = "LINUX";
11798 return elfcore_write_note (abfd, buf, bufsiz,
11799 note_name, NT_S390_SYSTEM_CALL,
11800 s390_system_call, size);
11801 }
11802
11803 char *
11804 elfcore_write_s390_tdb (bfd *abfd,
11805 char *buf,
11806 int *bufsiz,
11807 const void *s390_tdb,
11808 int size)
11809 {
11810 char *note_name = "LINUX";
11811 return elfcore_write_note (abfd, buf, bufsiz,
11812 note_name, NT_S390_TDB, s390_tdb, size);
11813 }
11814
11815 char *
11816 elfcore_write_s390_vxrs_low (bfd *abfd,
11817 char *buf,
11818 int *bufsiz,
11819 const void *s390_vxrs_low,
11820 int size)
11821 {
11822 char *note_name = "LINUX";
11823 return elfcore_write_note (abfd, buf, bufsiz,
11824 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11825 }
11826
11827 char *
11828 elfcore_write_s390_vxrs_high (bfd *abfd,
11829 char *buf,
11830 int *bufsiz,
11831 const void *s390_vxrs_high,
11832 int size)
11833 {
11834 char *note_name = "LINUX";
11835 return elfcore_write_note (abfd, buf, bufsiz,
11836 note_name, NT_S390_VXRS_HIGH,
11837 s390_vxrs_high, size);
11838 }
11839
11840 char *
11841 elfcore_write_s390_gs_cb (bfd *abfd,
11842 char *buf,
11843 int *bufsiz,
11844 const void *s390_gs_cb,
11845 int size)
11846 {
11847 char *note_name = "LINUX";
11848 return elfcore_write_note (abfd, buf, bufsiz,
11849 note_name, NT_S390_GS_CB,
11850 s390_gs_cb, size);
11851 }
11852
11853 char *
11854 elfcore_write_s390_gs_bc (bfd *abfd,
11855 char *buf,
11856 int *bufsiz,
11857 const void *s390_gs_bc,
11858 int size)
11859 {
11860 char *note_name = "LINUX";
11861 return elfcore_write_note (abfd, buf, bufsiz,
11862 note_name, NT_S390_GS_BC,
11863 s390_gs_bc, size);
11864 }
11865
11866 char *
11867 elfcore_write_arm_vfp (bfd *abfd,
11868 char *buf,
11869 int *bufsiz,
11870 const void *arm_vfp,
11871 int size)
11872 {
11873 char *note_name = "LINUX";
11874 return elfcore_write_note (abfd, buf, bufsiz,
11875 note_name, NT_ARM_VFP, arm_vfp, size);
11876 }
11877
11878 char *
11879 elfcore_write_aarch_tls (bfd *abfd,
11880 char *buf,
11881 int *bufsiz,
11882 const void *aarch_tls,
11883 int size)
11884 {
11885 char *note_name = "LINUX";
11886 return elfcore_write_note (abfd, buf, bufsiz,
11887 note_name, NT_ARM_TLS, aarch_tls, size);
11888 }
11889
11890 char *
11891 elfcore_write_aarch_hw_break (bfd *abfd,
11892 char *buf,
11893 int *bufsiz,
11894 const void *aarch_hw_break,
11895 int size)
11896 {
11897 char *note_name = "LINUX";
11898 return elfcore_write_note (abfd, buf, bufsiz,
11899 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11900 }
11901
11902 char *
11903 elfcore_write_aarch_hw_watch (bfd *abfd,
11904 char *buf,
11905 int *bufsiz,
11906 const void *aarch_hw_watch,
11907 int size)
11908 {
11909 char *note_name = "LINUX";
11910 return elfcore_write_note (abfd, buf, bufsiz,
11911 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11912 }
11913
11914 char *
11915 elfcore_write_aarch_sve (bfd *abfd,
11916 char *buf,
11917 int *bufsiz,
11918 const void *aarch_sve,
11919 int size)
11920 {
11921 char *note_name = "LINUX";
11922 return elfcore_write_note (abfd, buf, bufsiz,
11923 note_name, NT_ARM_SVE, aarch_sve, size);
11924 }
11925
11926 char *
11927 elfcore_write_aarch_pauth (bfd *abfd,
11928 char *buf,
11929 int *bufsiz,
11930 const void *aarch_pauth,
11931 int size)
11932 {
11933 char *note_name = "LINUX";
11934 return elfcore_write_note (abfd, buf, bufsiz,
11935 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11936 }
11937
11938 char *
11939 elfcore_write_arc_v2 (bfd *abfd,
11940 char *buf,
11941 int *bufsiz,
11942 const void *arc_v2,
11943 int size)
11944 {
11945 char *note_name = "LINUX";
11946 return elfcore_write_note (abfd, buf, bufsiz,
11947 note_name, NT_ARC_V2, arc_v2, size);
11948 }
11949
11950 char *
11951 elfcore_write_register_note (bfd *abfd,
11952 char *buf,
11953 int *bufsiz,
11954 const char *section,
11955 const void *data,
11956 int size)
11957 {
11958 if (strcmp (section, ".reg2") == 0)
11959 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11960 if (strcmp (section, ".reg-xfp") == 0)
11961 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11962 if (strcmp (section, ".reg-xstate") == 0)
11963 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11964 if (strcmp (section, ".reg-ppc-vmx") == 0)
11965 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11966 if (strcmp (section, ".reg-ppc-vsx") == 0)
11967 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11968 if (strcmp (section, ".reg-ppc-tar") == 0)
11969 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11970 if (strcmp (section, ".reg-ppc-ppr") == 0)
11971 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11972 if (strcmp (section, ".reg-ppc-dscr") == 0)
11973 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11974 if (strcmp (section, ".reg-ppc-ebb") == 0)
11975 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11976 if (strcmp (section, ".reg-ppc-pmu") == 0)
11977 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11978 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11979 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11980 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11981 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11982 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11983 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11984 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11985 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11986 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11987 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11988 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11989 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11990 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11991 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11992 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11993 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11994 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11995 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11996 if (strcmp (section, ".reg-s390-timer") == 0)
11997 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11998 if (strcmp (section, ".reg-s390-todcmp") == 0)
11999 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
12000 if (strcmp (section, ".reg-s390-todpreg") == 0)
12001 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
12002 if (strcmp (section, ".reg-s390-ctrs") == 0)
12003 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
12004 if (strcmp (section, ".reg-s390-prefix") == 0)
12005 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
12006 if (strcmp (section, ".reg-s390-last-break") == 0)
12007 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
12008 if (strcmp (section, ".reg-s390-system-call") == 0)
12009 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
12010 if (strcmp (section, ".reg-s390-tdb") == 0)
12011 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
12012 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
12013 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
12014 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
12015 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
12016 if (strcmp (section, ".reg-s390-gs-cb") == 0)
12017 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
12018 if (strcmp (section, ".reg-s390-gs-bc") == 0)
12019 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
12020 if (strcmp (section, ".reg-arm-vfp") == 0)
12021 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
12022 if (strcmp (section, ".reg-aarch-tls") == 0)
12023 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
12024 if (strcmp (section, ".reg-aarch-hw-break") == 0)
12025 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
12026 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
12027 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
12028 if (strcmp (section, ".reg-aarch-sve") == 0)
12029 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
12030 if (strcmp (section, ".reg-aarch-pauth") == 0)
12031 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
12032 if (strcmp (section, ".reg-arc-v2") == 0)
12033 return elfcore_write_arc_v2 (abfd, buf, bufsiz, data, size);
12034 return NULL;
12035 }
12036
12037 static bfd_boolean
12038 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
12039 size_t align)
12040 {
12041 char *p;
12042
12043 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
12044 gABI specifies that PT_NOTE alignment should be aligned to 4
12045 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
12046 align is less than 4, we use 4 byte alignment. */
12047 if (align < 4)
12048 align = 4;
12049 if (align != 4 && align != 8)
12050 return FALSE;
12051
12052 p = buf;
12053 while (p < buf + size)
12054 {
12055 Elf_External_Note *xnp = (Elf_External_Note *) p;
12056 Elf_Internal_Note in;
12057
12058 if (offsetof (Elf_External_Note, name) > buf - p + size)
12059 return FALSE;
12060
12061 in.type = H_GET_32 (abfd, xnp->type);
12062
12063 in.namesz = H_GET_32 (abfd, xnp->namesz);
12064 in.namedata = xnp->name;
12065 if (in.namesz > buf - in.namedata + size)
12066 return FALSE;
12067
12068 in.descsz = H_GET_32 (abfd, xnp->descsz);
12069 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
12070 in.descpos = offset + (in.descdata - buf);
12071 if (in.descsz != 0
12072 && (in.descdata >= buf + size
12073 || in.descsz > buf - in.descdata + size))
12074 return FALSE;
12075
12076 switch (bfd_get_format (abfd))
12077 {
12078 default:
12079 return TRUE;
12080
12081 case bfd_core:
12082 {
12083 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
12084 struct
12085 {
12086 const char * string;
12087 size_t len;
12088 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
12089 }
12090 grokers[] =
12091 {
12092 GROKER_ELEMENT ("", elfcore_grok_note),
12093 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
12094 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
12095 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
12096 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
12097 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
12098 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
12099 };
12100 #undef GROKER_ELEMENT
12101 int i;
12102
12103 for (i = ARRAY_SIZE (grokers); i--;)
12104 {
12105 if (in.namesz >= grokers[i].len
12106 && strncmp (in.namedata, grokers[i].string,
12107 grokers[i].len) == 0)
12108 {
12109 if (! grokers[i].func (abfd, & in))
12110 return FALSE;
12111 break;
12112 }
12113 }
12114 break;
12115 }
12116
12117 case bfd_object:
12118 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
12119 {
12120 if (! elfobj_grok_gnu_note (abfd, &in))
12121 return FALSE;
12122 }
12123 else if (in.namesz == sizeof "stapsdt"
12124 && strcmp (in.namedata, "stapsdt") == 0)
12125 {
12126 if (! elfobj_grok_stapsdt_note (abfd, &in))
12127 return FALSE;
12128 }
12129 break;
12130 }
12131
12132 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
12133 }
12134
12135 return TRUE;
12136 }
12137
12138 bfd_boolean
12139 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
12140 size_t align)
12141 {
12142 char *buf;
12143
12144 if (size == 0 || (size + 1) == 0)
12145 return TRUE;
12146
12147 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
12148 return FALSE;
12149
12150 buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size);
12151 if (buf == NULL)
12152 return FALSE;
12153
12154 /* PR 17512: file: ec08f814
12155 0-termintate the buffer so that string searches will not overflow. */
12156 buf[size] = 0;
12157
12158 if (!elf_parse_notes (abfd, buf, size, offset, align))
12159 {
12160 free (buf);
12161 return FALSE;
12162 }
12163
12164 free (buf);
12165 return TRUE;
12166 }
12167 \f
12168 /* Providing external access to the ELF program header table. */
12169
12170 /* Return an upper bound on the number of bytes required to store a
12171 copy of ABFD's program header table entries. Return -1 if an error
12172 occurs; bfd_get_error will return an appropriate code. */
12173
12174 long
12175 bfd_get_elf_phdr_upper_bound (bfd *abfd)
12176 {
12177 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12178 {
12179 bfd_set_error (bfd_error_wrong_format);
12180 return -1;
12181 }
12182
12183 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
12184 }
12185
12186 /* Copy ABFD's program header table entries to *PHDRS. The entries
12187 will be stored as an array of Elf_Internal_Phdr structures, as
12188 defined in include/elf/internal.h. To find out how large the
12189 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
12190
12191 Return the number of program header table entries read, or -1 if an
12192 error occurs; bfd_get_error will return an appropriate code. */
12193
12194 int
12195 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
12196 {
12197 int num_phdrs;
12198
12199 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12200 {
12201 bfd_set_error (bfd_error_wrong_format);
12202 return -1;
12203 }
12204
12205 num_phdrs = elf_elfheader (abfd)->e_phnum;
12206 if (num_phdrs != 0)
12207 memcpy (phdrs, elf_tdata (abfd)->phdr,
12208 num_phdrs * sizeof (Elf_Internal_Phdr));
12209
12210 return num_phdrs;
12211 }
12212
12213 enum elf_reloc_type_class
12214 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
12215 const asection *rel_sec ATTRIBUTE_UNUSED,
12216 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
12217 {
12218 return reloc_class_normal;
12219 }
12220
12221 /* For RELA architectures, return the relocation value for a
12222 relocation against a local symbol. */
12223
12224 bfd_vma
12225 _bfd_elf_rela_local_sym (bfd *abfd,
12226 Elf_Internal_Sym *sym,
12227 asection **psec,
12228 Elf_Internal_Rela *rel)
12229 {
12230 asection *sec = *psec;
12231 bfd_vma relocation;
12232
12233 relocation = (sec->output_section->vma
12234 + sec->output_offset
12235 + sym->st_value);
12236 if ((sec->flags & SEC_MERGE)
12237 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12238 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12239 {
12240 rel->r_addend =
12241 _bfd_merged_section_offset (abfd, psec,
12242 elf_section_data (sec)->sec_info,
12243 sym->st_value + rel->r_addend);
12244 if (sec != *psec)
12245 {
12246 /* If we have changed the section, and our original section is
12247 marked with SEC_EXCLUDE, it means that the original
12248 SEC_MERGE section has been completely subsumed in some
12249 other SEC_MERGE section. In this case, we need to leave
12250 some info around for --emit-relocs. */
12251 if ((sec->flags & SEC_EXCLUDE) != 0)
12252 sec->kept_section = *psec;
12253 sec = *psec;
12254 }
12255 rel->r_addend -= relocation;
12256 rel->r_addend += sec->output_section->vma + sec->output_offset;
12257 }
12258 return relocation;
12259 }
12260
12261 bfd_vma
12262 _bfd_elf_rel_local_sym (bfd *abfd,
12263 Elf_Internal_Sym *sym,
12264 asection **psec,
12265 bfd_vma addend)
12266 {
12267 asection *sec = *psec;
12268
12269 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12270 return sym->st_value + addend;
12271
12272 return _bfd_merged_section_offset (abfd, psec,
12273 elf_section_data (sec)->sec_info,
12274 sym->st_value + addend);
12275 }
12276
12277 /* Adjust an address within a section. Given OFFSET within SEC, return
12278 the new offset within the section, based upon changes made to the
12279 section. Returns -1 if the offset is now invalid.
12280 The offset (in abnd out) is in target sized bytes, however big a
12281 byte may be. */
12282
12283 bfd_vma
12284 _bfd_elf_section_offset (bfd *abfd,
12285 struct bfd_link_info *info,
12286 asection *sec,
12287 bfd_vma offset)
12288 {
12289 switch (sec->sec_info_type)
12290 {
12291 case SEC_INFO_TYPE_STABS:
12292 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12293 offset);
12294 case SEC_INFO_TYPE_EH_FRAME:
12295 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12296
12297 default:
12298 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12299 {
12300 /* Reverse the offset. */
12301 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12302 bfd_size_type address_size = bed->s->arch_size / 8;
12303
12304 /* address_size and sec->size are in octets. Convert
12305 to bytes before subtracting the original offset. */
12306 offset = ((sec->size - address_size)
12307 / bfd_octets_per_byte (abfd, sec) - offset);
12308 }
12309 return offset;
12310 }
12311 }
12312 \f
12313 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12314 reconstruct an ELF file by reading the segments out of remote memory
12315 based on the ELF file header at EHDR_VMA and the ELF program headers it
12316 points to. If not null, *LOADBASEP is filled in with the difference
12317 between the VMAs from which the segments were read, and the VMAs the
12318 file headers (and hence BFD's idea of each section's VMA) put them at.
12319
12320 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12321 remote memory at target address VMA into the local buffer at MYADDR; it
12322 should return zero on success or an `errno' code on failure. TEMPL must
12323 be a BFD for an ELF target with the word size and byte order found in
12324 the remote memory. */
12325
12326 bfd *
12327 bfd_elf_bfd_from_remote_memory
12328 (bfd *templ,
12329 bfd_vma ehdr_vma,
12330 bfd_size_type size,
12331 bfd_vma *loadbasep,
12332 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12333 {
12334 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12335 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12336 }
12337 \f
12338 long
12339 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12340 long symcount ATTRIBUTE_UNUSED,
12341 asymbol **syms ATTRIBUTE_UNUSED,
12342 long dynsymcount,
12343 asymbol **dynsyms,
12344 asymbol **ret)
12345 {
12346 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12347 asection *relplt;
12348 asymbol *s;
12349 const char *relplt_name;
12350 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12351 arelent *p;
12352 long count, i, n;
12353 size_t size;
12354 Elf_Internal_Shdr *hdr;
12355 char *names;
12356 asection *plt;
12357
12358 *ret = NULL;
12359
12360 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12361 return 0;
12362
12363 if (dynsymcount <= 0)
12364 return 0;
12365
12366 if (!bed->plt_sym_val)
12367 return 0;
12368
12369 relplt_name = bed->relplt_name;
12370 if (relplt_name == NULL)
12371 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12372 relplt = bfd_get_section_by_name (abfd, relplt_name);
12373 if (relplt == NULL)
12374 return 0;
12375
12376 hdr = &elf_section_data (relplt)->this_hdr;
12377 if (hdr->sh_link != elf_dynsymtab (abfd)
12378 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12379 return 0;
12380
12381 plt = bfd_get_section_by_name (abfd, ".plt");
12382 if (plt == NULL)
12383 return 0;
12384
12385 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12386 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12387 return -1;
12388
12389 count = relplt->size / hdr->sh_entsize;
12390 size = count * sizeof (asymbol);
12391 p = relplt->relocation;
12392 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12393 {
12394 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12395 if (p->addend != 0)
12396 {
12397 #ifdef BFD64
12398 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12399 #else
12400 size += sizeof ("+0x") - 1 + 8;
12401 #endif
12402 }
12403 }
12404
12405 s = *ret = (asymbol *) bfd_malloc (size);
12406 if (s == NULL)
12407 return -1;
12408
12409 names = (char *) (s + count);
12410 p = relplt->relocation;
12411 n = 0;
12412 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12413 {
12414 size_t len;
12415 bfd_vma addr;
12416
12417 addr = bed->plt_sym_val (i, plt, p);
12418 if (addr == (bfd_vma) -1)
12419 continue;
12420
12421 *s = **p->sym_ptr_ptr;
12422 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12423 we are defining a symbol, ensure one of them is set. */
12424 if ((s->flags & BSF_LOCAL) == 0)
12425 s->flags |= BSF_GLOBAL;
12426 s->flags |= BSF_SYNTHETIC;
12427 s->section = plt;
12428 s->value = addr - plt->vma;
12429 s->name = names;
12430 s->udata.p = NULL;
12431 len = strlen ((*p->sym_ptr_ptr)->name);
12432 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12433 names += len;
12434 if (p->addend != 0)
12435 {
12436 char buf[30], *a;
12437
12438 memcpy (names, "+0x", sizeof ("+0x") - 1);
12439 names += sizeof ("+0x") - 1;
12440 bfd_sprintf_vma (abfd, buf, p->addend);
12441 for (a = buf; *a == '0'; ++a)
12442 ;
12443 len = strlen (a);
12444 memcpy (names, a, len);
12445 names += len;
12446 }
12447 memcpy (names, "@plt", sizeof ("@plt"));
12448 names += sizeof ("@plt");
12449 ++s, ++n;
12450 }
12451
12452 return n;
12453 }
12454
12455 /* It is only used by x86-64 so far.
12456 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12457 but current usage would allow all of _bfd_std_section to be zero. */
12458 static const asymbol lcomm_sym
12459 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12460 asection _bfd_elf_large_com_section
12461 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12462 "LARGE_COMMON", 0, SEC_IS_COMMON);
12463
12464 bfd_boolean
12465 _bfd_elf_final_write_processing (bfd *abfd)
12466 {
12467 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12468
12469 i_ehdrp = elf_elfheader (abfd);
12470
12471 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12472 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12473
12474 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12475 SHF_GNU_MBIND or SHF_GNU_RETAIN sections or symbols of STT_GNU_IFUNC type
12476 or STB_GNU_UNIQUE binding. */
12477 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12478 {
12479 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12480 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12481 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12482 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12483 {
12484 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12485 _bfd_error_handler (_("GNU_MBIND section is supported only by GNU "
12486 "and FreeBSD targets"));
12487 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12488 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is supported "
12489 "only by GNU and FreeBSD targets"));
12490 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12491 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is supported "
12492 "only by GNU and FreeBSD targets"));
12493 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_retain)
12494 _bfd_error_handler (_("GNU_RETAIN section is supported "
12495 "only by GNU and FreeBSD targets"));
12496 bfd_set_error (bfd_error_sorry);
12497 return FALSE;
12498 }
12499 }
12500 return TRUE;
12501 }
12502
12503
12504 /* Return TRUE for ELF symbol types that represent functions.
12505 This is the default version of this function, which is sufficient for
12506 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12507
12508 bfd_boolean
12509 _bfd_elf_is_function_type (unsigned int type)
12510 {
12511 return (type == STT_FUNC
12512 || type == STT_GNU_IFUNC);
12513 }
12514
12515 /* If the ELF symbol SYM might be a function in SEC, return the
12516 function size and set *CODE_OFF to the function's entry point,
12517 otherwise return zero. */
12518
12519 bfd_size_type
12520 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12521 bfd_vma *code_off)
12522 {
12523 bfd_size_type size;
12524
12525 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12526 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12527 || sym->section != sec)
12528 return 0;
12529
12530 *code_off = sym->value;
12531 size = 0;
12532 if (!(sym->flags & BSF_SYNTHETIC))
12533 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12534 if (size == 0)
12535 size = 1;
12536 return size;
12537 }
12538
12539 /* Set to non-zero to enable some debug messages. */
12540 #define DEBUG_SECONDARY_RELOCS 0
12541
12542 /* An internal-to-the-bfd-library only section type
12543 used to indicate a cached secondary reloc section. */
12544 #define SHT_SECONDARY_RELOC (SHT_LOOS + SHT_RELA)
12545
12546 /* Create a BFD section to hold a secondary reloc section. */
12547
12548 bfd_boolean
12549 _bfd_elf_init_secondary_reloc_section (bfd * abfd,
12550 Elf_Internal_Shdr *hdr,
12551 const char * name,
12552 unsigned int shindex)
12553 {
12554 /* We only support RELA secondary relocs. */
12555 if (hdr->sh_type != SHT_RELA)
12556 return FALSE;
12557
12558 #if DEBUG_SECONDARY_RELOCS
12559 fprintf (stderr, "secondary reloc section %s encountered\n", name);
12560 #endif
12561 hdr->sh_type = SHT_SECONDARY_RELOC;
12562 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
12563 }
12564
12565 /* Read in any secondary relocs associated with SEC. */
12566
12567 bfd_boolean
12568 _bfd_elf_slurp_secondary_reloc_section (bfd * abfd,
12569 asection * sec,
12570 asymbol ** symbols,
12571 bfd_boolean dynamic)
12572 {
12573 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12574 asection * relsec;
12575 bfd_boolean result = TRUE;
12576 bfd_vma (*r_sym) (bfd_vma);
12577
12578 #if BFD_DEFAULT_TARGET_SIZE > 32
12579 if (bfd_arch_bits_per_address (abfd) != 32)
12580 r_sym = elf64_r_sym;
12581 else
12582 #endif
12583 r_sym = elf32_r_sym;
12584
12585 /* Discover if there are any secondary reloc sections
12586 associated with SEC. */
12587 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12588 {
12589 Elf_Internal_Shdr * hdr = & elf_section_data (relsec)->this_hdr;
12590
12591 if (hdr->sh_type == SHT_SECONDARY_RELOC
12592 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx
12593 && (hdr->sh_entsize == ebd->s->sizeof_rel
12594 || hdr->sh_entsize == ebd->s->sizeof_rela))
12595 {
12596 bfd_byte * native_relocs;
12597 bfd_byte * native_reloc;
12598 arelent * internal_relocs;
12599 arelent * internal_reloc;
12600 unsigned int i;
12601 unsigned int entsize;
12602 unsigned int symcount;
12603 unsigned int reloc_count;
12604 size_t amt;
12605
12606 if (ebd->elf_info_to_howto == NULL)
12607 return FALSE;
12608
12609 #if DEBUG_SECONDARY_RELOCS
12610 fprintf (stderr, "read secondary relocs for %s from %s\n",
12611 sec->name, relsec->name);
12612 #endif
12613 entsize = hdr->sh_entsize;
12614
12615 native_relocs = bfd_malloc (hdr->sh_size);
12616 if (native_relocs == NULL)
12617 {
12618 result = FALSE;
12619 continue;
12620 }
12621
12622 reloc_count = NUM_SHDR_ENTRIES (hdr);
12623 if (_bfd_mul_overflow (reloc_count, sizeof (arelent), & amt))
12624 {
12625 free (native_relocs);
12626 bfd_set_error (bfd_error_file_too_big);
12627 result = FALSE;
12628 continue;
12629 }
12630
12631 internal_relocs = (arelent *) bfd_alloc (abfd, amt);
12632 if (internal_relocs == NULL)
12633 {
12634 free (native_relocs);
12635 result = FALSE;
12636 continue;
12637 }
12638
12639 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
12640 || (bfd_bread (native_relocs, hdr->sh_size, abfd)
12641 != hdr->sh_size))
12642 {
12643 free (native_relocs);
12644 /* The internal_relocs will be freed when
12645 the memory for the bfd is released. */
12646 result = FALSE;
12647 continue;
12648 }
12649
12650 if (dynamic)
12651 symcount = bfd_get_dynamic_symcount (abfd);
12652 else
12653 symcount = bfd_get_symcount (abfd);
12654
12655 for (i = 0, internal_reloc = internal_relocs,
12656 native_reloc = native_relocs;
12657 i < reloc_count;
12658 i++, internal_reloc++, native_reloc += entsize)
12659 {
12660 bfd_boolean res;
12661 Elf_Internal_Rela rela;
12662
12663 if (entsize == ebd->s->sizeof_rel)
12664 ebd->s->swap_reloc_in (abfd, native_reloc, & rela);
12665 else /* entsize == ebd->s->sizeof_rela */
12666 ebd->s->swap_reloca_in (abfd, native_reloc, & rela);
12667
12668 /* The address of an ELF reloc is section relative for an object
12669 file, and absolute for an executable file or shared library.
12670 The address of a normal BFD reloc is always section relative,
12671 and the address of a dynamic reloc is absolute.. */
12672 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
12673 internal_reloc->address = rela.r_offset;
12674 else
12675 internal_reloc->address = rela.r_offset - sec->vma;
12676
12677 if (r_sym (rela.r_info) == STN_UNDEF)
12678 {
12679 /* FIXME: This and the error case below mean that we
12680 have a symbol on relocs that is not elf_symbol_type. */
12681 internal_reloc->sym_ptr_ptr =
12682 bfd_abs_section_ptr->symbol_ptr_ptr;
12683 }
12684 else if (r_sym (rela.r_info) > symcount)
12685 {
12686 _bfd_error_handler
12687 /* xgettext:c-format */
12688 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
12689 abfd, sec, i, (long) r_sym (rela.r_info));
12690 bfd_set_error (bfd_error_bad_value);
12691 internal_reloc->sym_ptr_ptr =
12692 bfd_abs_section_ptr->symbol_ptr_ptr;
12693 result = FALSE;
12694 }
12695 else
12696 {
12697 asymbol **ps;
12698
12699 ps = symbols + r_sym (rela.r_info) - 1;
12700 internal_reloc->sym_ptr_ptr = ps;
12701 /* Make sure that this symbol is not removed by strip. */
12702 (*ps)->flags |= BSF_KEEP;
12703 }
12704
12705 internal_reloc->addend = rela.r_addend;
12706
12707 res = ebd->elf_info_to_howto (abfd, internal_reloc, & rela);
12708 if (! res || internal_reloc->howto == NULL)
12709 {
12710 #if DEBUG_SECONDARY_RELOCS
12711 fprintf (stderr, "there is no howto associated with reloc %lx\n",
12712 rela.r_info);
12713 #endif
12714 result = FALSE;
12715 }
12716 }
12717
12718 free (native_relocs);
12719 /* Store the internal relocs. */
12720 elf_section_data (relsec)->sec_info = internal_relocs;
12721 }
12722 }
12723
12724 return result;
12725 }
12726
12727 /* Set the ELF section header fields of an output secondary reloc section. */
12728
12729 bfd_boolean
12730 _bfd_elf_copy_special_section_fields (const bfd * ibfd ATTRIBUTE_UNUSED,
12731 bfd * obfd ATTRIBUTE_UNUSED,
12732 const Elf_Internal_Shdr * isection,
12733 Elf_Internal_Shdr * osection)
12734 {
12735 asection * isec;
12736 asection * osec;
12737 struct bfd_elf_section_data * esd;
12738
12739 if (isection == NULL)
12740 return FALSE;
12741
12742 if (isection->sh_type != SHT_SECONDARY_RELOC)
12743 return TRUE;
12744
12745 isec = isection->bfd_section;
12746 if (isec == NULL)
12747 return FALSE;
12748
12749 osec = osection->bfd_section;
12750 if (osec == NULL)
12751 return FALSE;
12752
12753 esd = elf_section_data (osec);
12754 BFD_ASSERT (esd->sec_info == NULL);
12755 esd->sec_info = elf_section_data (isec)->sec_info;
12756 osection->sh_type = SHT_RELA;
12757 osection->sh_link = elf_onesymtab (obfd);
12758 if (osection->sh_link == 0)
12759 {
12760 /* There is no symbol table - we are hosed... */
12761 _bfd_error_handler
12762 /* xgettext:c-format */
12763 (_("%pB(%pA): link section cannot be set because the output file does not have a symbol table"),
12764 obfd, osec);
12765 bfd_set_error (bfd_error_bad_value);
12766 return FALSE;
12767 }
12768
12769 /* Find the output section that corresponds to the isection's sh_info link. */
12770 if (isection->sh_info == 0
12771 || isection->sh_info >= elf_numsections (ibfd))
12772 {
12773 _bfd_error_handler
12774 /* xgettext:c-format */
12775 (_("%pB(%pA): info section index is invalid"),
12776 obfd, osec);
12777 bfd_set_error (bfd_error_bad_value);
12778 return FALSE;
12779 }
12780
12781 isection = elf_elfsections (ibfd)[isection->sh_info];
12782
12783 if (isection == NULL
12784 || isection->bfd_section == NULL
12785 || isection->bfd_section->output_section == NULL)
12786 {
12787 _bfd_error_handler
12788 /* xgettext:c-format */
12789 (_("%pB(%pA): info section index cannot be set because the section is not in the output"),
12790 obfd, osec);
12791 bfd_set_error (bfd_error_bad_value);
12792 return FALSE;
12793 }
12794
12795 esd = elf_section_data (isection->bfd_section->output_section);
12796 BFD_ASSERT (esd != NULL);
12797 osection->sh_info = esd->this_idx;
12798 esd->has_secondary_relocs = TRUE;
12799 #if DEBUG_SECONDARY_RELOCS
12800 fprintf (stderr, "update header of %s, sh_link = %u, sh_info = %u\n",
12801 osec->name, osection->sh_link, osection->sh_info);
12802 fprintf (stderr, "mark section %s as having secondary relocs\n",
12803 bfd_section_name (isection->bfd_section->output_section));
12804 #endif
12805
12806 return TRUE;
12807 }
12808
12809 /* Write out a secondary reloc section.
12810
12811 FIXME: Currently this function can result in a serious performance penalty
12812 for files with secondary relocs and lots of sections. The proper way to
12813 fix this is for _bfd_elf_copy_special_section_fields() to chain secondary
12814 relocs together and then to have this function just walk that chain. */
12815
12816 bfd_boolean
12817 _bfd_elf_write_secondary_reloc_section (bfd *abfd, asection *sec)
12818 {
12819 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12820 bfd_vma addr_offset;
12821 asection * relsec;
12822 bfd_vma (*r_info) (bfd_vma, bfd_vma);
12823 bfd_boolean result = TRUE;
12824
12825 if (sec == NULL)
12826 return FALSE;
12827
12828 #if BFD_DEFAULT_TARGET_SIZE > 32
12829 if (bfd_arch_bits_per_address (abfd) != 32)
12830 r_info = elf64_r_info;
12831 else
12832 #endif
12833 r_info = elf32_r_info;
12834
12835 /* The address of an ELF reloc is section relative for an object
12836 file, and absolute for an executable file or shared library.
12837 The address of a BFD reloc is always section relative. */
12838 addr_offset = 0;
12839 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
12840 addr_offset = sec->vma;
12841
12842 /* Discover if there are any secondary reloc sections
12843 associated with SEC. */
12844 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12845 {
12846 const struct bfd_elf_section_data * const esd = elf_section_data (relsec);
12847 Elf_Internal_Shdr * const hdr = (Elf_Internal_Shdr *) & esd->this_hdr;
12848
12849 if (hdr->sh_type == SHT_RELA
12850 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx)
12851 {
12852 asymbol * last_sym;
12853 int last_sym_idx;
12854 unsigned int reloc_count;
12855 unsigned int idx;
12856 unsigned int entsize;
12857 arelent * src_irel;
12858 bfd_byte * dst_rela;
12859
12860 if (hdr->contents != NULL)
12861 {
12862 _bfd_error_handler
12863 /* xgettext:c-format */
12864 (_("%pB(%pA): error: secondary reloc section processed twice"),
12865 abfd, relsec);
12866 bfd_set_error (bfd_error_bad_value);
12867 result = FALSE;
12868 continue;
12869 }
12870
12871 entsize = hdr->sh_entsize;
12872 if (entsize == 0)
12873 {
12874 _bfd_error_handler
12875 /* xgettext:c-format */
12876 (_("%pB(%pA): error: secondary reloc section has zero sized entries"),
12877 abfd, relsec);
12878 bfd_set_error (bfd_error_bad_value);
12879 result = FALSE;
12880 continue;
12881 }
12882 else if (entsize != ebd->s->sizeof_rel
12883 && entsize != ebd->s->sizeof_rela)
12884 {
12885 _bfd_error_handler
12886 /* xgettext:c-format */
12887 (_("%pB(%pA): error: secondary reloc section has non-standard sized entries"),
12888 abfd, relsec);
12889 bfd_set_error (bfd_error_bad_value);
12890 result = FALSE;
12891 continue;
12892 }
12893
12894 reloc_count = hdr->sh_size / entsize;
12895 if (reloc_count <= 0)
12896 {
12897 _bfd_error_handler
12898 /* xgettext:c-format */
12899 (_("%pB(%pA): error: secondary reloc section is empty!"),
12900 abfd, relsec);
12901 bfd_set_error (bfd_error_bad_value);
12902 result = FALSE;
12903 continue;
12904 }
12905
12906 hdr->contents = bfd_alloc (abfd, hdr->sh_size);
12907 if (hdr->contents == NULL)
12908 continue;
12909
12910 #if DEBUG_SECONDARY_RELOCS
12911 fprintf (stderr, "write %u secondary relocs for %s from %s\n",
12912 reloc_count, sec->name, relsec->name);
12913 #endif
12914 last_sym = NULL;
12915 last_sym_idx = 0;
12916 dst_rela = hdr->contents;
12917 src_irel = (arelent *) esd->sec_info;
12918 if (src_irel == NULL)
12919 {
12920 _bfd_error_handler
12921 /* xgettext:c-format */
12922 (_("%pB(%pA): error: internal relocs missing for secondary reloc section"),
12923 abfd, relsec);
12924 bfd_set_error (bfd_error_bad_value);
12925 result = FALSE;
12926 continue;
12927 }
12928
12929 for (idx = 0; idx < reloc_count; idx++, dst_rela += entsize)
12930 {
12931 Elf_Internal_Rela src_rela;
12932 arelent *ptr;
12933 asymbol *sym;
12934 int n;
12935
12936 ptr = src_irel + idx;
12937 if (ptr == NULL)
12938 {
12939 _bfd_error_handler
12940 /* xgettext:c-format */
12941 (_("%pB(%pA): error: reloc table entry %u is empty"),
12942 abfd, relsec, idx);
12943 bfd_set_error (bfd_error_bad_value);
12944 result = FALSE;
12945 break;
12946 }
12947
12948 if (ptr->sym_ptr_ptr == NULL)
12949 {
12950 /* FIXME: Is this an error ? */
12951 n = 0;
12952 }
12953 else
12954 {
12955 sym = *ptr->sym_ptr_ptr;
12956
12957 if (sym == last_sym)
12958 n = last_sym_idx;
12959 else
12960 {
12961 n = _bfd_elf_symbol_from_bfd_symbol (abfd, & sym);
12962 if (n < 0)
12963 {
12964 _bfd_error_handler
12965 /* xgettext:c-format */
12966 (_("%pB(%pA): error: secondary reloc %u references a missing symbol"),
12967 abfd, relsec, idx);
12968 bfd_set_error (bfd_error_bad_value);
12969 result = FALSE;
12970 n = 0;
12971 }
12972
12973 last_sym = sym;
12974 last_sym_idx = n;
12975 }
12976
12977 if (sym->the_bfd != NULL
12978 && sym->the_bfd->xvec != abfd->xvec
12979 && ! _bfd_elf_validate_reloc (abfd, ptr))
12980 {
12981 _bfd_error_handler
12982 /* xgettext:c-format */
12983 (_("%pB(%pA): error: secondary reloc %u references a deleted symbol"),
12984 abfd, relsec, idx);
12985 bfd_set_error (bfd_error_bad_value);
12986 result = FALSE;
12987 n = 0;
12988 }
12989 }
12990
12991 src_rela.r_offset = ptr->address + addr_offset;
12992 if (ptr->howto == NULL)
12993 {
12994 _bfd_error_handler
12995 /* xgettext:c-format */
12996 (_("%pB(%pA): error: secondary reloc %u is of an unknown type"),
12997 abfd, relsec, idx);
12998 bfd_set_error (bfd_error_bad_value);
12999 result = FALSE;
13000 src_rela.r_info = r_info (0, 0);
13001 }
13002 else
13003 src_rela.r_info = r_info (n, ptr->howto->type);
13004 src_rela.r_addend = ptr->addend;
13005
13006 if (entsize == ebd->s->sizeof_rel)
13007 ebd->s->swap_reloc_out (abfd, &src_rela, dst_rela);
13008 else /* entsize == ebd->s->sizeof_rela */
13009 ebd->s->swap_reloca_out (abfd, &src_rela, dst_rela);
13010 }
13011 }
13012 }
13013
13014 return result;
13015 }
This page took 0.298808 seconds and 4 git commands to generate.