2005-10-10 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
211 {
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
219
220 return TRUE;
221 }
222
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
225 {
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
228 }
229
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
232 {
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
237
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
241
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
244 {
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
248
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
256 {
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
260 }
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
264 }
265 return (char *) shstrtab;
266 }
267
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
272 {
273 Elf_Internal_Shdr *hdr;
274
275 if (strindex == 0)
276 return "";
277
278 hdr = elf_elfsections (abfd)[shindex];
279
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
283
284 if (strindex >= hdr->sh_size)
285 {
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
294 }
295
296 return ((char *) hdr->contents) + strindex;
297 }
298
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
304
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
313 {
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
325
326 if (symcount == 0)
327 return intsym_buf;
328
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
333
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
342 {
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
345 }
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
349 {
350 intsym_buf = NULL;
351 goto out;
352 }
353
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
357 {
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
361 {
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
365 }
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
369 {
370 intsym_buf = NULL;
371 goto out;
372 }
373 }
374
375 if (intsym_buf == NULL)
376 {
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
380 }
381
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
388
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
394
395 return intsym_buf;
396 }
397
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
404 {
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
408
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
423
424 return name;
425 }
426
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
430
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
435
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
438
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
441 {
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
446
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
453
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
459
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
461 }
462
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
464
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
467 {
468 unsigned int num_group = elf_tdata (abfd)->num_group;
469
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
473 {
474 unsigned int i, shnum;
475
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
481 {
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
485 }
486
487 if (num_group == 0)
488 {
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
491 }
492 else
493 {
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
497
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
503
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
506 {
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
509 {
510 unsigned char *src;
511 Elf_Internal_Group *dest;
512
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
516
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
527
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
535 {
536 unsigned int idx;
537
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
542 {
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
548 }
549 if (idx >= shnum)
550 {
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
554 }
555 dest->shdr = elf_elfsections (abfd)[idx];
556 }
557 }
558 }
559 }
560 }
561
562 if (num_group != (unsigned) -1)
563 {
564 unsigned int i;
565
566 for (i = 0; i < num_group; i++)
567 {
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
571
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
576 {
577 asection *s = NULL;
578
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
589 {
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
595 }
596 else
597 {
598 const char *gname;
599
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
604
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
607 }
608
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
613
614 i = num_group - 1;
615 break;
616 }
617 }
618 }
619
620 if (elf_group_name (newsect) == NULL)
621 {
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
624 }
625 return TRUE;
626 }
627
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
630 {
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
635
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
638 {
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
641 {
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
647 {
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
654 }
655 else
656 {
657 this_hdr = elf_elfsections (abfd)[elfsec];
658 elf_linked_to_section (s) = this_hdr->bfd_section;
659 }
660 }
661 }
662
663 /* Process section groups. */
664 if (num_group == (unsigned) -1)
665 return result;
666
667 for (i = 0; i < num_group; i++)
668 {
669 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
670 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
671 unsigned int n_elt = shdr->sh_size / 4;
672
673 while (--n_elt != 0)
674 if ((++idx)->shdr->bfd_section)
675 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
676 else if (idx->shdr->sh_type == SHT_RELA
677 || idx->shdr->sh_type == SHT_REL)
678 /* We won't include relocation sections in section groups in
679 output object files. We adjust the group section size here
680 so that relocatable link will work correctly when
681 relocation sections are in section group in input object
682 files. */
683 shdr->bfd_section->size -= 4;
684 else
685 {
686 /* There are some unknown sections in the group. */
687 (*_bfd_error_handler)
688 (_("%B: unknown [%d] section `%s' in group [%s]"),
689 abfd,
690 (unsigned int) idx->shdr->sh_type,
691 bfd_elf_string_from_elf_section (abfd,
692 (elf_elfheader (abfd)
693 ->e_shstrndx),
694 idx->shdr->sh_name),
695 shdr->bfd_section->name);
696 result = FALSE;
697 }
698 }
699 return result;
700 }
701
702 bfd_boolean
703 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
704 {
705 return elf_next_in_group (sec) != NULL;
706 }
707
708 /* Make a BFD section from an ELF section. We store a pointer to the
709 BFD section in the bfd_section field of the header. */
710
711 bfd_boolean
712 _bfd_elf_make_section_from_shdr (bfd *abfd,
713 Elf_Internal_Shdr *hdr,
714 const char *name,
715 int shindex)
716 {
717 asection *newsect;
718 flagword flags;
719 const struct elf_backend_data *bed;
720
721 if (hdr->bfd_section != NULL)
722 {
723 BFD_ASSERT (strcmp (name,
724 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
725 return TRUE;
726 }
727
728 newsect = bfd_make_section_anyway (abfd, name);
729 if (newsect == NULL)
730 return FALSE;
731
732 hdr->bfd_section = newsect;
733 elf_section_data (newsect)->this_hdr = *hdr;
734 elf_section_data (newsect)->this_idx = shindex;
735
736 /* Always use the real type/flags. */
737 elf_section_type (newsect) = hdr->sh_type;
738 elf_section_flags (newsect) = hdr->sh_flags;
739
740 newsect->filepos = hdr->sh_offset;
741
742 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
743 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
744 || ! bfd_set_section_alignment (abfd, newsect,
745 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
746 return FALSE;
747
748 flags = SEC_NO_FLAGS;
749 if (hdr->sh_type != SHT_NOBITS)
750 flags |= SEC_HAS_CONTENTS;
751 if (hdr->sh_type == SHT_GROUP)
752 flags |= SEC_GROUP | SEC_EXCLUDE;
753 if ((hdr->sh_flags & SHF_ALLOC) != 0)
754 {
755 flags |= SEC_ALLOC;
756 if (hdr->sh_type != SHT_NOBITS)
757 flags |= SEC_LOAD;
758 }
759 if ((hdr->sh_flags & SHF_WRITE) == 0)
760 flags |= SEC_READONLY;
761 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
762 flags |= SEC_CODE;
763 else if ((flags & SEC_LOAD) != 0)
764 flags |= SEC_DATA;
765 if ((hdr->sh_flags & SHF_MERGE) != 0)
766 {
767 flags |= SEC_MERGE;
768 newsect->entsize = hdr->sh_entsize;
769 if ((hdr->sh_flags & SHF_STRINGS) != 0)
770 flags |= SEC_STRINGS;
771 }
772 if (hdr->sh_flags & SHF_GROUP)
773 if (!setup_group (abfd, hdr, newsect))
774 return FALSE;
775 if ((hdr->sh_flags & SHF_TLS) != 0)
776 flags |= SEC_THREAD_LOCAL;
777
778 if ((flags & SEC_ALLOC) == 0)
779 {
780 /* The debugging sections appear to be recognized only by name,
781 not any sort of flag. Their SEC_ALLOC bits are cleared. */
782 static const struct
783 {
784 const char *name;
785 int len;
786 } debug_sections [] =
787 {
788 { "debug", 5 }, /* 'd' */
789 { NULL, 0 }, /* 'e' */
790 { NULL, 0 }, /* 'f' */
791 { "gnu.linkonce.wi.", 17 }, /* 'g' */
792 { NULL, 0 }, /* 'h' */
793 { NULL, 0 }, /* 'i' */
794 { NULL, 0 }, /* 'j' */
795 { NULL, 0 }, /* 'k' */
796 { "line", 4 }, /* 'l' */
797 { NULL, 0 }, /* 'm' */
798 { NULL, 0 }, /* 'n' */
799 { NULL, 0 }, /* 'o' */
800 { NULL, 0 }, /* 'p' */
801 { NULL, 0 }, /* 'q' */
802 { NULL, 0 }, /* 'r' */
803 { "stab", 4 } /* 's' */
804 };
805
806 if (name [0] == '.')
807 {
808 int i = name [1] - 'd';
809 if (i >= 0
810 && i < (int) ARRAY_SIZE (debug_sections)
811 && debug_sections [i].name != NULL
812 && strncmp (&name [1], debug_sections [i].name,
813 debug_sections [i].len) == 0)
814 flags |= SEC_DEBUGGING;
815 }
816 }
817
818 /* As a GNU extension, if the name begins with .gnu.linkonce, we
819 only link a single copy of the section. This is used to support
820 g++. g++ will emit each template expansion in its own section.
821 The symbols will be defined as weak, so that multiple definitions
822 are permitted. The GNU linker extension is to actually discard
823 all but one of the sections. */
824 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
825 && elf_next_in_group (newsect) == NULL)
826 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
827
828 bed = get_elf_backend_data (abfd);
829 if (bed->elf_backend_section_flags)
830 if (! bed->elf_backend_section_flags (&flags, hdr))
831 return FALSE;
832
833 if (! bfd_set_section_flags (abfd, newsect, flags))
834 return FALSE;
835
836 if ((flags & SEC_ALLOC) != 0)
837 {
838 Elf_Internal_Phdr *phdr;
839 unsigned int i;
840
841 /* Look through the phdrs to see if we need to adjust the lma.
842 If all the p_paddr fields are zero, we ignore them, since
843 some ELF linkers produce such output. */
844 phdr = elf_tdata (abfd)->phdr;
845 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
846 {
847 if (phdr->p_paddr != 0)
848 break;
849 }
850 if (i < elf_elfheader (abfd)->e_phnum)
851 {
852 phdr = elf_tdata (abfd)->phdr;
853 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
854 {
855 /* This section is part of this segment if its file
856 offset plus size lies within the segment's memory
857 span and, if the section is loaded, the extent of the
858 loaded data lies within the extent of the segment.
859
860 Note - we used to check the p_paddr field as well, and
861 refuse to set the LMA if it was 0. This is wrong
862 though, as a perfectly valid initialised segment can
863 have a p_paddr of zero. Some architectures, eg ARM,
864 place special significance on the address 0 and
865 executables need to be able to have a segment which
866 covers this address. */
867 if (phdr->p_type == PT_LOAD
868 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
869 && (hdr->sh_offset + hdr->sh_size
870 <= phdr->p_offset + phdr->p_memsz)
871 && ((flags & SEC_LOAD) == 0
872 || (hdr->sh_offset + hdr->sh_size
873 <= phdr->p_offset + phdr->p_filesz)))
874 {
875 if ((flags & SEC_LOAD) == 0)
876 newsect->lma = (phdr->p_paddr
877 + hdr->sh_addr - phdr->p_vaddr);
878 else
879 /* We used to use the same adjustment for SEC_LOAD
880 sections, but that doesn't work if the segment
881 is packed with code from multiple VMAs.
882 Instead we calculate the section LMA based on
883 the segment LMA. It is assumed that the
884 segment will contain sections with contiguous
885 LMAs, even if the VMAs are not. */
886 newsect->lma = (phdr->p_paddr
887 + hdr->sh_offset - phdr->p_offset);
888
889 /* With contiguous segments, we can't tell from file
890 offsets whether a section with zero size should
891 be placed at the end of one segment or the
892 beginning of the next. Decide based on vaddr. */
893 if (hdr->sh_addr >= phdr->p_vaddr
894 && (hdr->sh_addr + hdr->sh_size
895 <= phdr->p_vaddr + phdr->p_memsz))
896 break;
897 }
898 }
899 }
900 }
901
902 return TRUE;
903 }
904
905 /*
906 INTERNAL_FUNCTION
907 bfd_elf_find_section
908
909 SYNOPSIS
910 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
911
912 DESCRIPTION
913 Helper functions for GDB to locate the string tables.
914 Since BFD hides string tables from callers, GDB needs to use an
915 internal hook to find them. Sun's .stabstr, in particular,
916 isn't even pointed to by the .stab section, so ordinary
917 mechanisms wouldn't work to find it, even if we had some.
918 */
919
920 struct elf_internal_shdr *
921 bfd_elf_find_section (bfd *abfd, char *name)
922 {
923 Elf_Internal_Shdr **i_shdrp;
924 char *shstrtab;
925 unsigned int max;
926 unsigned int i;
927
928 i_shdrp = elf_elfsections (abfd);
929 if (i_shdrp != NULL)
930 {
931 shstrtab = bfd_elf_get_str_section (abfd,
932 elf_elfheader (abfd)->e_shstrndx);
933 if (shstrtab != NULL)
934 {
935 max = elf_numsections (abfd);
936 for (i = 1; i < max; i++)
937 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
938 return i_shdrp[i];
939 }
940 }
941 return 0;
942 }
943
944 const char *const bfd_elf_section_type_names[] = {
945 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
946 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
947 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
948 };
949
950 /* ELF relocs are against symbols. If we are producing relocatable
951 output, and the reloc is against an external symbol, and nothing
952 has given us any additional addend, the resulting reloc will also
953 be against the same symbol. In such a case, we don't want to
954 change anything about the way the reloc is handled, since it will
955 all be done at final link time. Rather than put special case code
956 into bfd_perform_relocation, all the reloc types use this howto
957 function. It just short circuits the reloc if producing
958 relocatable output against an external symbol. */
959
960 bfd_reloc_status_type
961 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
962 arelent *reloc_entry,
963 asymbol *symbol,
964 void *data ATTRIBUTE_UNUSED,
965 asection *input_section,
966 bfd *output_bfd,
967 char **error_message ATTRIBUTE_UNUSED)
968 {
969 if (output_bfd != NULL
970 && (symbol->flags & BSF_SECTION_SYM) == 0
971 && (! reloc_entry->howto->partial_inplace
972 || reloc_entry->addend == 0))
973 {
974 reloc_entry->address += input_section->output_offset;
975 return bfd_reloc_ok;
976 }
977
978 return bfd_reloc_continue;
979 }
980 \f
981 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
982
983 static void
984 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
985 asection *sec)
986 {
987 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
988 sec->sec_info_type = ELF_INFO_TYPE_NONE;
989 }
990
991 /* Finish SHF_MERGE section merging. */
992
993 bfd_boolean
994 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
995 {
996 bfd *ibfd;
997 asection *sec;
998
999 if (!is_elf_hash_table (info->hash))
1000 return FALSE;
1001
1002 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1003 if ((ibfd->flags & DYNAMIC) == 0)
1004 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1005 if ((sec->flags & SEC_MERGE) != 0
1006 && !bfd_is_abs_section (sec->output_section))
1007 {
1008 struct bfd_elf_section_data *secdata;
1009
1010 secdata = elf_section_data (sec);
1011 if (! _bfd_add_merge_section (abfd,
1012 &elf_hash_table (info)->merge_info,
1013 sec, &secdata->sec_info))
1014 return FALSE;
1015 else if (secdata->sec_info)
1016 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1017 }
1018
1019 if (elf_hash_table (info)->merge_info != NULL)
1020 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1021 merge_sections_remove_hook);
1022 return TRUE;
1023 }
1024
1025 void
1026 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1027 {
1028 sec->output_section = bfd_abs_section_ptr;
1029 sec->output_offset = sec->vma;
1030 if (!is_elf_hash_table (info->hash))
1031 return;
1032
1033 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1034 }
1035 \f
1036 /* Copy the program header and other data from one object module to
1037 another. */
1038
1039 bfd_boolean
1040 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1041 {
1042 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1043 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1044 return TRUE;
1045
1046 BFD_ASSERT (!elf_flags_init (obfd)
1047 || (elf_elfheader (obfd)->e_flags
1048 == elf_elfheader (ibfd)->e_flags));
1049
1050 elf_gp (obfd) = elf_gp (ibfd);
1051 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1052 elf_flags_init (obfd) = TRUE;
1053 return TRUE;
1054 }
1055
1056 /* Print out the program headers. */
1057
1058 bfd_boolean
1059 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1060 {
1061 FILE *f = farg;
1062 Elf_Internal_Phdr *p;
1063 asection *s;
1064 bfd_byte *dynbuf = NULL;
1065
1066 p = elf_tdata (abfd)->phdr;
1067 if (p != NULL)
1068 {
1069 unsigned int i, c;
1070
1071 fprintf (f, _("\nProgram Header:\n"));
1072 c = elf_elfheader (abfd)->e_phnum;
1073 for (i = 0; i < c; i++, p++)
1074 {
1075 const char *pt;
1076 char buf[20];
1077
1078 switch (p->p_type)
1079 {
1080 case PT_NULL: pt = "NULL"; break;
1081 case PT_LOAD: pt = "LOAD"; break;
1082 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1083 case PT_INTERP: pt = "INTERP"; break;
1084 case PT_NOTE: pt = "NOTE"; break;
1085 case PT_SHLIB: pt = "SHLIB"; break;
1086 case PT_PHDR: pt = "PHDR"; break;
1087 case PT_TLS: pt = "TLS"; break;
1088 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1089 case PT_GNU_STACK: pt = "STACK"; break;
1090 case PT_GNU_RELRO: pt = "RELRO"; break;
1091 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1092 }
1093 fprintf (f, "%8s off 0x", pt);
1094 bfd_fprintf_vma (abfd, f, p->p_offset);
1095 fprintf (f, " vaddr 0x");
1096 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1097 fprintf (f, " paddr 0x");
1098 bfd_fprintf_vma (abfd, f, p->p_paddr);
1099 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1100 fprintf (f, " filesz 0x");
1101 bfd_fprintf_vma (abfd, f, p->p_filesz);
1102 fprintf (f, " memsz 0x");
1103 bfd_fprintf_vma (abfd, f, p->p_memsz);
1104 fprintf (f, " flags %c%c%c",
1105 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1106 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1107 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1108 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1109 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1110 fprintf (f, "\n");
1111 }
1112 }
1113
1114 s = bfd_get_section_by_name (abfd, ".dynamic");
1115 if (s != NULL)
1116 {
1117 int elfsec;
1118 unsigned long shlink;
1119 bfd_byte *extdyn, *extdynend;
1120 size_t extdynsize;
1121 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1122
1123 fprintf (f, _("\nDynamic Section:\n"));
1124
1125 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1126 goto error_return;
1127
1128 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1129 if (elfsec == -1)
1130 goto error_return;
1131 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1132
1133 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1134 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1135
1136 extdyn = dynbuf;
1137 extdynend = extdyn + s->size;
1138 for (; extdyn < extdynend; extdyn += extdynsize)
1139 {
1140 Elf_Internal_Dyn dyn;
1141 const char *name;
1142 char ab[20];
1143 bfd_boolean stringp;
1144
1145 (*swap_dyn_in) (abfd, extdyn, &dyn);
1146
1147 if (dyn.d_tag == DT_NULL)
1148 break;
1149
1150 stringp = FALSE;
1151 switch (dyn.d_tag)
1152 {
1153 default:
1154 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1155 name = ab;
1156 break;
1157
1158 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1159 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1160 case DT_PLTGOT: name = "PLTGOT"; break;
1161 case DT_HASH: name = "HASH"; break;
1162 case DT_STRTAB: name = "STRTAB"; break;
1163 case DT_SYMTAB: name = "SYMTAB"; break;
1164 case DT_RELA: name = "RELA"; break;
1165 case DT_RELASZ: name = "RELASZ"; break;
1166 case DT_RELAENT: name = "RELAENT"; break;
1167 case DT_STRSZ: name = "STRSZ"; break;
1168 case DT_SYMENT: name = "SYMENT"; break;
1169 case DT_INIT: name = "INIT"; break;
1170 case DT_FINI: name = "FINI"; break;
1171 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1172 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1173 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1174 case DT_REL: name = "REL"; break;
1175 case DT_RELSZ: name = "RELSZ"; break;
1176 case DT_RELENT: name = "RELENT"; break;
1177 case DT_PLTREL: name = "PLTREL"; break;
1178 case DT_DEBUG: name = "DEBUG"; break;
1179 case DT_TEXTREL: name = "TEXTREL"; break;
1180 case DT_JMPREL: name = "JMPREL"; break;
1181 case DT_BIND_NOW: name = "BIND_NOW"; break;
1182 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1183 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1184 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1185 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1186 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1187 case DT_FLAGS: name = "FLAGS"; break;
1188 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1189 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1190 case DT_CHECKSUM: name = "CHECKSUM"; break;
1191 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1192 case DT_MOVEENT: name = "MOVEENT"; break;
1193 case DT_MOVESZ: name = "MOVESZ"; break;
1194 case DT_FEATURE: name = "FEATURE"; break;
1195 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1196 case DT_SYMINSZ: name = "SYMINSZ"; break;
1197 case DT_SYMINENT: name = "SYMINENT"; break;
1198 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1199 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1200 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1201 case DT_PLTPAD: name = "PLTPAD"; break;
1202 case DT_MOVETAB: name = "MOVETAB"; break;
1203 case DT_SYMINFO: name = "SYMINFO"; break;
1204 case DT_RELACOUNT: name = "RELACOUNT"; break;
1205 case DT_RELCOUNT: name = "RELCOUNT"; break;
1206 case DT_FLAGS_1: name = "FLAGS_1"; break;
1207 case DT_VERSYM: name = "VERSYM"; break;
1208 case DT_VERDEF: name = "VERDEF"; break;
1209 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1210 case DT_VERNEED: name = "VERNEED"; break;
1211 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1212 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1213 case DT_USED: name = "USED"; break;
1214 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1215 }
1216
1217 fprintf (f, " %-11s ", name);
1218 if (! stringp)
1219 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1220 else
1221 {
1222 const char *string;
1223 unsigned int tagv = dyn.d_un.d_val;
1224
1225 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1226 if (string == NULL)
1227 goto error_return;
1228 fprintf (f, "%s", string);
1229 }
1230 fprintf (f, "\n");
1231 }
1232
1233 free (dynbuf);
1234 dynbuf = NULL;
1235 }
1236
1237 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1238 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1239 {
1240 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1241 return FALSE;
1242 }
1243
1244 if (elf_dynverdef (abfd) != 0)
1245 {
1246 Elf_Internal_Verdef *t;
1247
1248 fprintf (f, _("\nVersion definitions:\n"));
1249 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1250 {
1251 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1252 t->vd_flags, t->vd_hash,
1253 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1254 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1255 {
1256 Elf_Internal_Verdaux *a;
1257
1258 fprintf (f, "\t");
1259 for (a = t->vd_auxptr->vda_nextptr;
1260 a != NULL;
1261 a = a->vda_nextptr)
1262 fprintf (f, "%s ",
1263 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1264 fprintf (f, "\n");
1265 }
1266 }
1267 }
1268
1269 if (elf_dynverref (abfd) != 0)
1270 {
1271 Elf_Internal_Verneed *t;
1272
1273 fprintf (f, _("\nVersion References:\n"));
1274 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1275 {
1276 Elf_Internal_Vernaux *a;
1277
1278 fprintf (f, _(" required from %s:\n"),
1279 t->vn_filename ? t->vn_filename : "<corrupt>");
1280 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1281 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1282 a->vna_flags, a->vna_other,
1283 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1284 }
1285 }
1286
1287 return TRUE;
1288
1289 error_return:
1290 if (dynbuf != NULL)
1291 free (dynbuf);
1292 return FALSE;
1293 }
1294
1295 /* Display ELF-specific fields of a symbol. */
1296
1297 void
1298 bfd_elf_print_symbol (bfd *abfd,
1299 void *filep,
1300 asymbol *symbol,
1301 bfd_print_symbol_type how)
1302 {
1303 FILE *file = filep;
1304 switch (how)
1305 {
1306 case bfd_print_symbol_name:
1307 fprintf (file, "%s", symbol->name);
1308 break;
1309 case bfd_print_symbol_more:
1310 fprintf (file, "elf ");
1311 bfd_fprintf_vma (abfd, file, symbol->value);
1312 fprintf (file, " %lx", (long) symbol->flags);
1313 break;
1314 case bfd_print_symbol_all:
1315 {
1316 const char *section_name;
1317 const char *name = NULL;
1318 const struct elf_backend_data *bed;
1319 unsigned char st_other;
1320 bfd_vma val;
1321
1322 section_name = symbol->section ? symbol->section->name : "(*none*)";
1323
1324 bed = get_elf_backend_data (abfd);
1325 if (bed->elf_backend_print_symbol_all)
1326 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1327
1328 if (name == NULL)
1329 {
1330 name = symbol->name;
1331 bfd_print_symbol_vandf (abfd, file, symbol);
1332 }
1333
1334 fprintf (file, " %s\t", section_name);
1335 /* Print the "other" value for a symbol. For common symbols,
1336 we've already printed the size; now print the alignment.
1337 For other symbols, we have no specified alignment, and
1338 we've printed the address; now print the size. */
1339 if (bfd_is_com_section (symbol->section))
1340 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1341 else
1342 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1343 bfd_fprintf_vma (abfd, file, val);
1344
1345 /* If we have version information, print it. */
1346 if (elf_tdata (abfd)->dynversym_section != 0
1347 && (elf_tdata (abfd)->dynverdef_section != 0
1348 || elf_tdata (abfd)->dynverref_section != 0))
1349 {
1350 unsigned int vernum;
1351 const char *version_string;
1352
1353 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1354
1355 if (vernum == 0)
1356 version_string = "";
1357 else if (vernum == 1)
1358 version_string = "Base";
1359 else if (vernum <= elf_tdata (abfd)->cverdefs)
1360 version_string =
1361 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1362 else
1363 {
1364 Elf_Internal_Verneed *t;
1365
1366 version_string = "";
1367 for (t = elf_tdata (abfd)->verref;
1368 t != NULL;
1369 t = t->vn_nextref)
1370 {
1371 Elf_Internal_Vernaux *a;
1372
1373 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1374 {
1375 if (a->vna_other == vernum)
1376 {
1377 version_string = a->vna_nodename;
1378 break;
1379 }
1380 }
1381 }
1382 }
1383
1384 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1385 fprintf (file, " %-11s", version_string);
1386 else
1387 {
1388 int i;
1389
1390 fprintf (file, " (%s)", version_string);
1391 for (i = 10 - strlen (version_string); i > 0; --i)
1392 putc (' ', file);
1393 }
1394 }
1395
1396 /* If the st_other field is not zero, print it. */
1397 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1398
1399 switch (st_other)
1400 {
1401 case 0: break;
1402 case STV_INTERNAL: fprintf (file, " .internal"); break;
1403 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1404 case STV_PROTECTED: fprintf (file, " .protected"); break;
1405 default:
1406 /* Some other non-defined flags are also present, so print
1407 everything hex. */
1408 fprintf (file, " 0x%02x", (unsigned int) st_other);
1409 }
1410
1411 fprintf (file, " %s", name);
1412 }
1413 break;
1414 }
1415 }
1416 \f
1417 /* Create an entry in an ELF linker hash table. */
1418
1419 struct bfd_hash_entry *
1420 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1421 struct bfd_hash_table *table,
1422 const char *string)
1423 {
1424 /* Allocate the structure if it has not already been allocated by a
1425 subclass. */
1426 if (entry == NULL)
1427 {
1428 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1429 if (entry == NULL)
1430 return entry;
1431 }
1432
1433 /* Call the allocation method of the superclass. */
1434 entry = _bfd_link_hash_newfunc (entry, table, string);
1435 if (entry != NULL)
1436 {
1437 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1438 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1439
1440 /* Set local fields. */
1441 ret->indx = -1;
1442 ret->dynindx = -1;
1443 ret->got = htab->init_got_refcount;
1444 ret->plt = htab->init_plt_refcount;
1445 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1446 - offsetof (struct elf_link_hash_entry, size)));
1447 /* Assume that we have been called by a non-ELF symbol reader.
1448 This flag is then reset by the code which reads an ELF input
1449 file. This ensures that a symbol created by a non-ELF symbol
1450 reader will have the flag set correctly. */
1451 ret->non_elf = 1;
1452 }
1453
1454 return entry;
1455 }
1456
1457 /* Copy data from an indirect symbol to its direct symbol, hiding the
1458 old indirect symbol. Also used for copying flags to a weakdef. */
1459
1460 void
1461 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1462 struct elf_link_hash_entry *dir,
1463 struct elf_link_hash_entry *ind)
1464 {
1465 bfd_signed_vma tmp;
1466 bfd_signed_vma lowest_valid = bed->can_refcount;
1467
1468 /* Copy down any references that we may have already seen to the
1469 symbol which just became indirect. */
1470
1471 dir->ref_dynamic |= ind->ref_dynamic;
1472 dir->ref_regular |= ind->ref_regular;
1473 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1474 dir->non_got_ref |= ind->non_got_ref;
1475 dir->needs_plt |= ind->needs_plt;
1476 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1477
1478 if (ind->root.type != bfd_link_hash_indirect)
1479 return;
1480
1481 /* Copy over the global and procedure linkage table refcount entries.
1482 These may have been already set up by a check_relocs routine. */
1483 tmp = dir->got.refcount;
1484 if (tmp < lowest_valid)
1485 {
1486 dir->got.refcount = ind->got.refcount;
1487 ind->got.refcount = tmp;
1488 }
1489 else
1490 BFD_ASSERT (ind->got.refcount < lowest_valid);
1491
1492 tmp = dir->plt.refcount;
1493 if (tmp < lowest_valid)
1494 {
1495 dir->plt.refcount = ind->plt.refcount;
1496 ind->plt.refcount = tmp;
1497 }
1498 else
1499 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1500
1501 if (dir->dynindx == -1)
1502 {
1503 dir->dynindx = ind->dynindx;
1504 dir->dynstr_index = ind->dynstr_index;
1505 ind->dynindx = -1;
1506 ind->dynstr_index = 0;
1507 }
1508 else
1509 BFD_ASSERT (ind->dynindx == -1);
1510 }
1511
1512 void
1513 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1514 struct elf_link_hash_entry *h,
1515 bfd_boolean force_local)
1516 {
1517 h->plt = elf_hash_table (info)->init_plt_offset;
1518 h->needs_plt = 0;
1519 if (force_local)
1520 {
1521 h->forced_local = 1;
1522 if (h->dynindx != -1)
1523 {
1524 h->dynindx = -1;
1525 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1526 h->dynstr_index);
1527 }
1528 }
1529 }
1530
1531 /* Initialize an ELF linker hash table. */
1532
1533 bfd_boolean
1534 _bfd_elf_link_hash_table_init
1535 (struct elf_link_hash_table *table,
1536 bfd *abfd,
1537 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1538 struct bfd_hash_table *,
1539 const char *))
1540 {
1541 bfd_boolean ret;
1542 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1543
1544 table->dynamic_sections_created = FALSE;
1545 table->dynobj = NULL;
1546 table->init_got_refcount.refcount = can_refcount - 1;
1547 table->init_plt_refcount.refcount = can_refcount - 1;
1548 table->init_got_offset.offset = -(bfd_vma) 1;
1549 table->init_plt_offset.offset = -(bfd_vma) 1;
1550 /* The first dynamic symbol is a dummy. */
1551 table->dynsymcount = 1;
1552 table->dynstr = NULL;
1553 table->bucketcount = 0;
1554 table->needed = NULL;
1555 table->hgot = NULL;
1556 table->merge_info = NULL;
1557 memset (&table->stab_info, 0, sizeof (table->stab_info));
1558 memset (&table->eh_info, 0, sizeof (table->eh_info));
1559 table->dynlocal = NULL;
1560 table->runpath = NULL;
1561 table->tls_sec = NULL;
1562 table->tls_size = 0;
1563 table->loaded = NULL;
1564 table->is_relocatable_executable = FALSE;
1565
1566 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1567 table->root.type = bfd_link_elf_hash_table;
1568
1569 return ret;
1570 }
1571
1572 /* Create an ELF linker hash table. */
1573
1574 struct bfd_link_hash_table *
1575 _bfd_elf_link_hash_table_create (bfd *abfd)
1576 {
1577 struct elf_link_hash_table *ret;
1578 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1579
1580 ret = bfd_malloc (amt);
1581 if (ret == NULL)
1582 return NULL;
1583
1584 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1585 {
1586 free (ret);
1587 return NULL;
1588 }
1589
1590 return &ret->root;
1591 }
1592
1593 /* This is a hook for the ELF emulation code in the generic linker to
1594 tell the backend linker what file name to use for the DT_NEEDED
1595 entry for a dynamic object. */
1596
1597 void
1598 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1599 {
1600 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1601 && bfd_get_format (abfd) == bfd_object)
1602 elf_dt_name (abfd) = name;
1603 }
1604
1605 int
1606 bfd_elf_get_dyn_lib_class (bfd *abfd)
1607 {
1608 int lib_class;
1609 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1610 && bfd_get_format (abfd) == bfd_object)
1611 lib_class = elf_dyn_lib_class (abfd);
1612 else
1613 lib_class = 0;
1614 return lib_class;
1615 }
1616
1617 void
1618 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1619 {
1620 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1621 && bfd_get_format (abfd) == bfd_object)
1622 elf_dyn_lib_class (abfd) = lib_class;
1623 }
1624
1625 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1626 the linker ELF emulation code. */
1627
1628 struct bfd_link_needed_list *
1629 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1630 struct bfd_link_info *info)
1631 {
1632 if (! is_elf_hash_table (info->hash))
1633 return NULL;
1634 return elf_hash_table (info)->needed;
1635 }
1636
1637 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1638 hook for the linker ELF emulation code. */
1639
1640 struct bfd_link_needed_list *
1641 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1642 struct bfd_link_info *info)
1643 {
1644 if (! is_elf_hash_table (info->hash))
1645 return NULL;
1646 return elf_hash_table (info)->runpath;
1647 }
1648
1649 /* Get the name actually used for a dynamic object for a link. This
1650 is the SONAME entry if there is one. Otherwise, it is the string
1651 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1652
1653 const char *
1654 bfd_elf_get_dt_soname (bfd *abfd)
1655 {
1656 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1657 && bfd_get_format (abfd) == bfd_object)
1658 return elf_dt_name (abfd);
1659 return NULL;
1660 }
1661
1662 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1663 the ELF linker emulation code. */
1664
1665 bfd_boolean
1666 bfd_elf_get_bfd_needed_list (bfd *abfd,
1667 struct bfd_link_needed_list **pneeded)
1668 {
1669 asection *s;
1670 bfd_byte *dynbuf = NULL;
1671 int elfsec;
1672 unsigned long shlink;
1673 bfd_byte *extdyn, *extdynend;
1674 size_t extdynsize;
1675 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1676
1677 *pneeded = NULL;
1678
1679 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1680 || bfd_get_format (abfd) != bfd_object)
1681 return TRUE;
1682
1683 s = bfd_get_section_by_name (abfd, ".dynamic");
1684 if (s == NULL || s->size == 0)
1685 return TRUE;
1686
1687 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1688 goto error_return;
1689
1690 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1691 if (elfsec == -1)
1692 goto error_return;
1693
1694 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1695
1696 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1697 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1698
1699 extdyn = dynbuf;
1700 extdynend = extdyn + s->size;
1701 for (; extdyn < extdynend; extdyn += extdynsize)
1702 {
1703 Elf_Internal_Dyn dyn;
1704
1705 (*swap_dyn_in) (abfd, extdyn, &dyn);
1706
1707 if (dyn.d_tag == DT_NULL)
1708 break;
1709
1710 if (dyn.d_tag == DT_NEEDED)
1711 {
1712 const char *string;
1713 struct bfd_link_needed_list *l;
1714 unsigned int tagv = dyn.d_un.d_val;
1715 bfd_size_type amt;
1716
1717 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1718 if (string == NULL)
1719 goto error_return;
1720
1721 amt = sizeof *l;
1722 l = bfd_alloc (abfd, amt);
1723 if (l == NULL)
1724 goto error_return;
1725
1726 l->by = abfd;
1727 l->name = string;
1728 l->next = *pneeded;
1729 *pneeded = l;
1730 }
1731 }
1732
1733 free (dynbuf);
1734
1735 return TRUE;
1736
1737 error_return:
1738 if (dynbuf != NULL)
1739 free (dynbuf);
1740 return FALSE;
1741 }
1742 \f
1743 /* Allocate an ELF string table--force the first byte to be zero. */
1744
1745 struct bfd_strtab_hash *
1746 _bfd_elf_stringtab_init (void)
1747 {
1748 struct bfd_strtab_hash *ret;
1749
1750 ret = _bfd_stringtab_init ();
1751 if (ret != NULL)
1752 {
1753 bfd_size_type loc;
1754
1755 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1756 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1757 if (loc == (bfd_size_type) -1)
1758 {
1759 _bfd_stringtab_free (ret);
1760 ret = NULL;
1761 }
1762 }
1763 return ret;
1764 }
1765 \f
1766 /* ELF .o/exec file reading */
1767
1768 /* Create a new bfd section from an ELF section header. */
1769
1770 bfd_boolean
1771 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1772 {
1773 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1774 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1775 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1776 const char *name;
1777
1778 name = bfd_elf_string_from_elf_section (abfd,
1779 elf_elfheader (abfd)->e_shstrndx,
1780 hdr->sh_name);
1781 if (name == NULL)
1782 return FALSE;
1783
1784 switch (hdr->sh_type)
1785 {
1786 case SHT_NULL:
1787 /* Inactive section. Throw it away. */
1788 return TRUE;
1789
1790 case SHT_PROGBITS: /* Normal section with contents. */
1791 case SHT_NOBITS: /* .bss section. */
1792 case SHT_HASH: /* .hash section. */
1793 case SHT_NOTE: /* .note section. */
1794 case SHT_INIT_ARRAY: /* .init_array section. */
1795 case SHT_FINI_ARRAY: /* .fini_array section. */
1796 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1797 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1798 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1799
1800 case SHT_DYNAMIC: /* Dynamic linking information. */
1801 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1802 return FALSE;
1803 if (hdr->sh_link > elf_numsections (abfd)
1804 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1805 return FALSE;
1806 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1807 {
1808 Elf_Internal_Shdr *dynsymhdr;
1809
1810 /* The shared libraries distributed with hpux11 have a bogus
1811 sh_link field for the ".dynamic" section. Find the
1812 string table for the ".dynsym" section instead. */
1813 if (elf_dynsymtab (abfd) != 0)
1814 {
1815 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1816 hdr->sh_link = dynsymhdr->sh_link;
1817 }
1818 else
1819 {
1820 unsigned int i, num_sec;
1821
1822 num_sec = elf_numsections (abfd);
1823 for (i = 1; i < num_sec; i++)
1824 {
1825 dynsymhdr = elf_elfsections (abfd)[i];
1826 if (dynsymhdr->sh_type == SHT_DYNSYM)
1827 {
1828 hdr->sh_link = dynsymhdr->sh_link;
1829 break;
1830 }
1831 }
1832 }
1833 }
1834 break;
1835
1836 case SHT_SYMTAB: /* A symbol table */
1837 if (elf_onesymtab (abfd) == shindex)
1838 return TRUE;
1839
1840 if (hdr->sh_entsize != bed->s->sizeof_sym)
1841 return FALSE;
1842 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1843 elf_onesymtab (abfd) = shindex;
1844 elf_tdata (abfd)->symtab_hdr = *hdr;
1845 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1846 abfd->flags |= HAS_SYMS;
1847
1848 /* Sometimes a shared object will map in the symbol table. If
1849 SHF_ALLOC is set, and this is a shared object, then we also
1850 treat this section as a BFD section. We can not base the
1851 decision purely on SHF_ALLOC, because that flag is sometimes
1852 set in a relocatable object file, which would confuse the
1853 linker. */
1854 if ((hdr->sh_flags & SHF_ALLOC) != 0
1855 && (abfd->flags & DYNAMIC) != 0
1856 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1857 shindex))
1858 return FALSE;
1859
1860 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1861 can't read symbols without that section loaded as well. It
1862 is most likely specified by the next section header. */
1863 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1864 {
1865 unsigned int i, num_sec;
1866
1867 num_sec = elf_numsections (abfd);
1868 for (i = shindex + 1; i < num_sec; i++)
1869 {
1870 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1871 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1872 && hdr2->sh_link == shindex)
1873 break;
1874 }
1875 if (i == num_sec)
1876 for (i = 1; i < shindex; i++)
1877 {
1878 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1879 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1880 && hdr2->sh_link == shindex)
1881 break;
1882 }
1883 if (i != shindex)
1884 return bfd_section_from_shdr (abfd, i);
1885 }
1886 return TRUE;
1887
1888 case SHT_DYNSYM: /* A dynamic symbol table */
1889 if (elf_dynsymtab (abfd) == shindex)
1890 return TRUE;
1891
1892 if (hdr->sh_entsize != bed->s->sizeof_sym)
1893 return FALSE;
1894 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1895 elf_dynsymtab (abfd) = shindex;
1896 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1897 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1898 abfd->flags |= HAS_SYMS;
1899
1900 /* Besides being a symbol table, we also treat this as a regular
1901 section, so that objcopy can handle it. */
1902 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1903
1904 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1905 if (elf_symtab_shndx (abfd) == shindex)
1906 return TRUE;
1907
1908 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1909 elf_symtab_shndx (abfd) = shindex;
1910 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1911 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1912 return TRUE;
1913
1914 case SHT_STRTAB: /* A string table */
1915 if (hdr->bfd_section != NULL)
1916 return TRUE;
1917 if (ehdr->e_shstrndx == shindex)
1918 {
1919 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1920 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1921 return TRUE;
1922 }
1923 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1924 {
1925 symtab_strtab:
1926 elf_tdata (abfd)->strtab_hdr = *hdr;
1927 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1928 return TRUE;
1929 }
1930 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1931 {
1932 dynsymtab_strtab:
1933 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1934 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1935 elf_elfsections (abfd)[shindex] = hdr;
1936 /* We also treat this as a regular section, so that objcopy
1937 can handle it. */
1938 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1939 shindex);
1940 }
1941
1942 /* If the string table isn't one of the above, then treat it as a
1943 regular section. We need to scan all the headers to be sure,
1944 just in case this strtab section appeared before the above. */
1945 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1946 {
1947 unsigned int i, num_sec;
1948
1949 num_sec = elf_numsections (abfd);
1950 for (i = 1; i < num_sec; i++)
1951 {
1952 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1953 if (hdr2->sh_link == shindex)
1954 {
1955 /* Prevent endless recursion on broken objects. */
1956 if (i == shindex)
1957 return FALSE;
1958 if (! bfd_section_from_shdr (abfd, i))
1959 return FALSE;
1960 if (elf_onesymtab (abfd) == i)
1961 goto symtab_strtab;
1962 if (elf_dynsymtab (abfd) == i)
1963 goto dynsymtab_strtab;
1964 }
1965 }
1966 }
1967 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1968
1969 case SHT_REL:
1970 case SHT_RELA:
1971 /* *These* do a lot of work -- but build no sections! */
1972 {
1973 asection *target_sect;
1974 Elf_Internal_Shdr *hdr2;
1975 unsigned int num_sec = elf_numsections (abfd);
1976
1977 if (hdr->sh_entsize
1978 != (bfd_size_type) (hdr->sh_type == SHT_REL
1979 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1980 return FALSE;
1981
1982 /* Check for a bogus link to avoid crashing. */
1983 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1984 || hdr->sh_link >= num_sec)
1985 {
1986 ((*_bfd_error_handler)
1987 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1988 abfd, hdr->sh_link, name, shindex));
1989 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1990 shindex);
1991 }
1992
1993 /* For some incomprehensible reason Oracle distributes
1994 libraries for Solaris in which some of the objects have
1995 bogus sh_link fields. It would be nice if we could just
1996 reject them, but, unfortunately, some people need to use
1997 them. We scan through the section headers; if we find only
1998 one suitable symbol table, we clobber the sh_link to point
1999 to it. I hope this doesn't break anything. */
2000 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2001 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2002 {
2003 unsigned int scan;
2004 int found;
2005
2006 found = 0;
2007 for (scan = 1; scan < num_sec; scan++)
2008 {
2009 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2010 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2011 {
2012 if (found != 0)
2013 {
2014 found = 0;
2015 break;
2016 }
2017 found = scan;
2018 }
2019 }
2020 if (found != 0)
2021 hdr->sh_link = found;
2022 }
2023
2024 /* Get the symbol table. */
2025 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2026 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2027 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2028 return FALSE;
2029
2030 /* If this reloc section does not use the main symbol table we
2031 don't treat it as a reloc section. BFD can't adequately
2032 represent such a section, so at least for now, we don't
2033 try. We just present it as a normal section. We also
2034 can't use it as a reloc section if it points to the null
2035 section. */
2036 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
2037 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2038 shindex);
2039
2040 /* Prevent endless recursion on broken objects. */
2041 if (elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2042 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2043 return FALSE;
2044 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2045 return FALSE;
2046 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2047 if (target_sect == NULL)
2048 return FALSE;
2049
2050 if ((target_sect->flags & SEC_RELOC) == 0
2051 || target_sect->reloc_count == 0)
2052 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2053 else
2054 {
2055 bfd_size_type amt;
2056 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2057 amt = sizeof (*hdr2);
2058 hdr2 = bfd_alloc (abfd, amt);
2059 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2060 }
2061 *hdr2 = *hdr;
2062 elf_elfsections (abfd)[shindex] = hdr2;
2063 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2064 target_sect->flags |= SEC_RELOC;
2065 target_sect->relocation = NULL;
2066 target_sect->rel_filepos = hdr->sh_offset;
2067 /* In the section to which the relocations apply, mark whether
2068 its relocations are of the REL or RELA variety. */
2069 if (hdr->sh_size != 0)
2070 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2071 abfd->flags |= HAS_RELOC;
2072 return TRUE;
2073 }
2074 break;
2075
2076 case SHT_GNU_verdef:
2077 elf_dynverdef (abfd) = shindex;
2078 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2079 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2080 break;
2081
2082 case SHT_GNU_versym:
2083 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2084 return FALSE;
2085 elf_dynversym (abfd) = shindex;
2086 elf_tdata (abfd)->dynversym_hdr = *hdr;
2087 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2088 break;
2089
2090 case SHT_GNU_verneed:
2091 elf_dynverref (abfd) = shindex;
2092 elf_tdata (abfd)->dynverref_hdr = *hdr;
2093 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2094 break;
2095
2096 case SHT_SHLIB:
2097 return TRUE;
2098
2099 case SHT_GROUP:
2100 /* We need a BFD section for objcopy and relocatable linking,
2101 and it's handy to have the signature available as the section
2102 name. */
2103 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2104 return FALSE;
2105 name = group_signature (abfd, hdr);
2106 if (name == NULL)
2107 return FALSE;
2108 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2109 return FALSE;
2110 if (hdr->contents != NULL)
2111 {
2112 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2113 unsigned int n_elt = hdr->sh_size / 4;
2114 asection *s;
2115
2116 if (idx->flags & GRP_COMDAT)
2117 hdr->bfd_section->flags
2118 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2119
2120 /* We try to keep the same section order as it comes in. */
2121 idx += n_elt;
2122 while (--n_elt != 0)
2123 if ((s = (--idx)->shdr->bfd_section) != NULL
2124 && elf_next_in_group (s) != NULL)
2125 {
2126 elf_next_in_group (hdr->bfd_section) = s;
2127 break;
2128 }
2129 }
2130 break;
2131
2132 default:
2133 /* Check for any processor-specific section types. */
2134 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2135 shindex);
2136 }
2137
2138 return TRUE;
2139 }
2140
2141 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2142 Return SEC for sections that have no elf section, and NULL on error. */
2143
2144 asection *
2145 bfd_section_from_r_symndx (bfd *abfd,
2146 struct sym_sec_cache *cache,
2147 asection *sec,
2148 unsigned long r_symndx)
2149 {
2150 Elf_Internal_Shdr *symtab_hdr;
2151 unsigned char esym[sizeof (Elf64_External_Sym)];
2152 Elf_External_Sym_Shndx eshndx;
2153 Elf_Internal_Sym isym;
2154 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2155
2156 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2157 return cache->sec[ent];
2158
2159 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2160 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2161 &isym, esym, &eshndx) == NULL)
2162 return NULL;
2163
2164 if (cache->abfd != abfd)
2165 {
2166 memset (cache->indx, -1, sizeof (cache->indx));
2167 cache->abfd = abfd;
2168 }
2169 cache->indx[ent] = r_symndx;
2170 cache->sec[ent] = sec;
2171 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2172 || isym.st_shndx > SHN_HIRESERVE)
2173 {
2174 asection *s;
2175 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2176 if (s != NULL)
2177 cache->sec[ent] = s;
2178 }
2179 return cache->sec[ent];
2180 }
2181
2182 /* Given an ELF section number, retrieve the corresponding BFD
2183 section. */
2184
2185 asection *
2186 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2187 {
2188 if (index >= elf_numsections (abfd))
2189 return NULL;
2190 return elf_elfsections (abfd)[index]->bfd_section;
2191 }
2192
2193 static const struct bfd_elf_special_section special_sections_b[] =
2194 {
2195 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2196 { NULL, 0, 0, 0, 0 }
2197 };
2198
2199 static const struct bfd_elf_special_section special_sections_c[] =
2200 {
2201 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2202 { NULL, 0, 0, 0, 0 }
2203 };
2204
2205 static const struct bfd_elf_special_section special_sections_d[] =
2206 {
2207 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2208 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2209 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2210 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2211 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2212 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2213 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2214 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2215 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2216 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2217 { NULL, 0, 0, 0, 0 }
2218 };
2219
2220 static const struct bfd_elf_special_section special_sections_f[] =
2221 {
2222 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2223 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2224 { NULL, 0, 0, 0, 0 }
2225 };
2226
2227 static const struct bfd_elf_special_section special_sections_g[] =
2228 {
2229 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2230 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2231 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2232 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2233 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2234 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2235 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2236 { NULL, 0, 0, 0, 0 }
2237 };
2238
2239 static const struct bfd_elf_special_section special_sections_h[] =
2240 {
2241 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2242 { NULL, 0, 0, 0, 0 }
2243 };
2244
2245 static const struct bfd_elf_special_section special_sections_i[] =
2246 {
2247 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2248 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2249 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2250 { NULL, 0, 0, 0, 0 }
2251 };
2252
2253 static const struct bfd_elf_special_section special_sections_l[] =
2254 {
2255 { ".line", 5, 0, SHT_PROGBITS, 0 },
2256 { NULL, 0, 0, 0, 0 }
2257 };
2258
2259 static const struct bfd_elf_special_section special_sections_n[] =
2260 {
2261 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2262 { ".note", 5, -1, SHT_NOTE, 0 },
2263 { NULL, 0, 0, 0, 0 }
2264 };
2265
2266 static const struct bfd_elf_special_section special_sections_p[] =
2267 {
2268 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2269 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2270 { NULL, 0, 0, 0, 0 }
2271 };
2272
2273 static const struct bfd_elf_special_section special_sections_r[] =
2274 {
2275 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2276 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2277 { ".rela", 5, -1, SHT_RELA, 0 },
2278 { ".rel", 4, -1, SHT_REL, 0 },
2279 { NULL, 0, 0, 0, 0 }
2280 };
2281
2282 static const struct bfd_elf_special_section special_sections_s[] =
2283 {
2284 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2285 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2286 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2287 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2288 { NULL, 0, 0, 0, 0 }
2289 };
2290
2291 static const struct bfd_elf_special_section special_sections_t[] =
2292 {
2293 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2294 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2295 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2296 { NULL, 0, 0, 0, 0 }
2297 };
2298
2299 static const struct bfd_elf_special_section *special_sections[] =
2300 {
2301 special_sections_b, /* 'b' */
2302 special_sections_c, /* 'b' */
2303 special_sections_d, /* 'd' */
2304 NULL, /* 'e' */
2305 special_sections_f, /* 'f' */
2306 special_sections_g, /* 'g' */
2307 special_sections_h, /* 'h' */
2308 special_sections_i, /* 'i' */
2309 NULL, /* 'j' */
2310 NULL, /* 'k' */
2311 special_sections_l, /* 'l' */
2312 NULL, /* 'm' */
2313 special_sections_n, /* 'n' */
2314 NULL, /* 'o' */
2315 special_sections_p, /* 'p' */
2316 NULL, /* 'q' */
2317 special_sections_r, /* 'r' */
2318 special_sections_s, /* 's' */
2319 special_sections_t, /* 't' */
2320 };
2321
2322 const struct bfd_elf_special_section *
2323 _bfd_elf_get_special_section (const char *name,
2324 const struct bfd_elf_special_section *spec,
2325 unsigned int rela)
2326 {
2327 int i;
2328 int len;
2329
2330 len = strlen (name);
2331
2332 for (i = 0; spec[i].prefix != NULL; i++)
2333 {
2334 int suffix_len;
2335 int prefix_len = spec[i].prefix_length;
2336
2337 if (len < prefix_len)
2338 continue;
2339 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2340 continue;
2341
2342 suffix_len = spec[i].suffix_length;
2343 if (suffix_len <= 0)
2344 {
2345 if (name[prefix_len] != 0)
2346 {
2347 if (suffix_len == 0)
2348 continue;
2349 if (name[prefix_len] != '.'
2350 && (suffix_len == -2
2351 || (rela && spec[i].type == SHT_REL)))
2352 continue;
2353 }
2354 }
2355 else
2356 {
2357 if (len < prefix_len + suffix_len)
2358 continue;
2359 if (memcmp (name + len - suffix_len,
2360 spec[i].prefix + prefix_len,
2361 suffix_len) != 0)
2362 continue;
2363 }
2364 return &spec[i];
2365 }
2366
2367 return NULL;
2368 }
2369
2370 const struct bfd_elf_special_section *
2371 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2372 {
2373 int i;
2374 const struct bfd_elf_special_section *spec;
2375 const struct elf_backend_data *bed;
2376
2377 /* See if this is one of the special sections. */
2378 if (sec->name == NULL)
2379 return NULL;
2380
2381 bed = get_elf_backend_data (abfd);
2382 spec = bed->special_sections;
2383 if (spec)
2384 {
2385 spec = _bfd_elf_get_special_section (sec->name,
2386 bed->special_sections,
2387 sec->use_rela_p);
2388 if (spec != NULL)
2389 return spec;
2390 }
2391
2392 if (sec->name[0] != '.')
2393 return NULL;
2394
2395 i = sec->name[1] - 'b';
2396 if (i < 0 || i > 't' - 'b')
2397 return NULL;
2398
2399 spec = special_sections[i];
2400
2401 if (spec == NULL)
2402 return NULL;
2403
2404 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2405 }
2406
2407 bfd_boolean
2408 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2409 {
2410 struct bfd_elf_section_data *sdata;
2411 const struct elf_backend_data *bed;
2412 const struct bfd_elf_special_section *ssect;
2413
2414 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2415 if (sdata == NULL)
2416 {
2417 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2418 if (sdata == NULL)
2419 return FALSE;
2420 sec->used_by_bfd = sdata;
2421 }
2422
2423 /* Indicate whether or not this section should use RELA relocations. */
2424 bed = get_elf_backend_data (abfd);
2425 sec->use_rela_p = bed->default_use_rela_p;
2426
2427 /* When we read a file, we don't need section type and flags unless
2428 it is a linker created section. They will be overridden in
2429 _bfd_elf_make_section_from_shdr anyway. */
2430 if (abfd->direction != read_direction
2431 || (sec->flags & SEC_LINKER_CREATED) != 0)
2432 {
2433 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2434 if (ssect != NULL)
2435 {
2436 elf_section_type (sec) = ssect->type;
2437 elf_section_flags (sec) = ssect->attr;
2438 }
2439 }
2440
2441 return TRUE;
2442 }
2443
2444 /* Create a new bfd section from an ELF program header.
2445
2446 Since program segments have no names, we generate a synthetic name
2447 of the form segment<NUM>, where NUM is generally the index in the
2448 program header table. For segments that are split (see below) we
2449 generate the names segment<NUM>a and segment<NUM>b.
2450
2451 Note that some program segments may have a file size that is different than
2452 (less than) the memory size. All this means is that at execution the
2453 system must allocate the amount of memory specified by the memory size,
2454 but only initialize it with the first "file size" bytes read from the
2455 file. This would occur for example, with program segments consisting
2456 of combined data+bss.
2457
2458 To handle the above situation, this routine generates TWO bfd sections
2459 for the single program segment. The first has the length specified by
2460 the file size of the segment, and the second has the length specified
2461 by the difference between the two sizes. In effect, the segment is split
2462 into it's initialized and uninitialized parts.
2463
2464 */
2465
2466 bfd_boolean
2467 _bfd_elf_make_section_from_phdr (bfd *abfd,
2468 Elf_Internal_Phdr *hdr,
2469 int index,
2470 const char *typename)
2471 {
2472 asection *newsect;
2473 char *name;
2474 char namebuf[64];
2475 size_t len;
2476 int split;
2477
2478 split = ((hdr->p_memsz > 0)
2479 && (hdr->p_filesz > 0)
2480 && (hdr->p_memsz > hdr->p_filesz));
2481 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2482 len = strlen (namebuf) + 1;
2483 name = bfd_alloc (abfd, len);
2484 if (!name)
2485 return FALSE;
2486 memcpy (name, namebuf, len);
2487 newsect = bfd_make_section (abfd, name);
2488 if (newsect == NULL)
2489 return FALSE;
2490 newsect->vma = hdr->p_vaddr;
2491 newsect->lma = hdr->p_paddr;
2492 newsect->size = hdr->p_filesz;
2493 newsect->filepos = hdr->p_offset;
2494 newsect->flags |= SEC_HAS_CONTENTS;
2495 newsect->alignment_power = bfd_log2 (hdr->p_align);
2496 if (hdr->p_type == PT_LOAD)
2497 {
2498 newsect->flags |= SEC_ALLOC;
2499 newsect->flags |= SEC_LOAD;
2500 if (hdr->p_flags & PF_X)
2501 {
2502 /* FIXME: all we known is that it has execute PERMISSION,
2503 may be data. */
2504 newsect->flags |= SEC_CODE;
2505 }
2506 }
2507 if (!(hdr->p_flags & PF_W))
2508 {
2509 newsect->flags |= SEC_READONLY;
2510 }
2511
2512 if (split)
2513 {
2514 sprintf (namebuf, "%s%db", typename, index);
2515 len = strlen (namebuf) + 1;
2516 name = bfd_alloc (abfd, len);
2517 if (!name)
2518 return FALSE;
2519 memcpy (name, namebuf, len);
2520 newsect = bfd_make_section (abfd, name);
2521 if (newsect == NULL)
2522 return FALSE;
2523 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2524 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2525 newsect->size = hdr->p_memsz - hdr->p_filesz;
2526 if (hdr->p_type == PT_LOAD)
2527 {
2528 newsect->flags |= SEC_ALLOC;
2529 if (hdr->p_flags & PF_X)
2530 newsect->flags |= SEC_CODE;
2531 }
2532 if (!(hdr->p_flags & PF_W))
2533 newsect->flags |= SEC_READONLY;
2534 }
2535
2536 return TRUE;
2537 }
2538
2539 bfd_boolean
2540 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2541 {
2542 const struct elf_backend_data *bed;
2543
2544 switch (hdr->p_type)
2545 {
2546 case PT_NULL:
2547 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2548
2549 case PT_LOAD:
2550 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2551
2552 case PT_DYNAMIC:
2553 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2554
2555 case PT_INTERP:
2556 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2557
2558 case PT_NOTE:
2559 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2560 return FALSE;
2561 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2562 return FALSE;
2563 return TRUE;
2564
2565 case PT_SHLIB:
2566 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2567
2568 case PT_PHDR:
2569 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2570
2571 case PT_GNU_EH_FRAME:
2572 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2573 "eh_frame_hdr");
2574
2575 case PT_GNU_STACK:
2576 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2577
2578 case PT_GNU_RELRO:
2579 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2580
2581 default:
2582 /* Check for any processor-specific program segment types. */
2583 bed = get_elf_backend_data (abfd);
2584 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2585 }
2586 }
2587
2588 /* Initialize REL_HDR, the section-header for new section, containing
2589 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2590 relocations; otherwise, we use REL relocations. */
2591
2592 bfd_boolean
2593 _bfd_elf_init_reloc_shdr (bfd *abfd,
2594 Elf_Internal_Shdr *rel_hdr,
2595 asection *asect,
2596 bfd_boolean use_rela_p)
2597 {
2598 char *name;
2599 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2600 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2601
2602 name = bfd_alloc (abfd, amt);
2603 if (name == NULL)
2604 return FALSE;
2605 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2606 rel_hdr->sh_name =
2607 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2608 FALSE);
2609 if (rel_hdr->sh_name == (unsigned int) -1)
2610 return FALSE;
2611 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2612 rel_hdr->sh_entsize = (use_rela_p
2613 ? bed->s->sizeof_rela
2614 : bed->s->sizeof_rel);
2615 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2616 rel_hdr->sh_flags = 0;
2617 rel_hdr->sh_addr = 0;
2618 rel_hdr->sh_size = 0;
2619 rel_hdr->sh_offset = 0;
2620
2621 return TRUE;
2622 }
2623
2624 /* Set up an ELF internal section header for a section. */
2625
2626 static void
2627 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2628 {
2629 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2630 bfd_boolean *failedptr = failedptrarg;
2631 Elf_Internal_Shdr *this_hdr;
2632
2633 if (*failedptr)
2634 {
2635 /* We already failed; just get out of the bfd_map_over_sections
2636 loop. */
2637 return;
2638 }
2639
2640 this_hdr = &elf_section_data (asect)->this_hdr;
2641
2642 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2643 asect->name, FALSE);
2644 if (this_hdr->sh_name == (unsigned int) -1)
2645 {
2646 *failedptr = TRUE;
2647 return;
2648 }
2649
2650 /* Don't clear sh_flags. Assembler may set additional bits. */
2651
2652 if ((asect->flags & SEC_ALLOC) != 0
2653 || asect->user_set_vma)
2654 this_hdr->sh_addr = asect->vma;
2655 else
2656 this_hdr->sh_addr = 0;
2657
2658 this_hdr->sh_offset = 0;
2659 this_hdr->sh_size = asect->size;
2660 this_hdr->sh_link = 0;
2661 this_hdr->sh_addralign = 1 << asect->alignment_power;
2662 /* The sh_entsize and sh_info fields may have been set already by
2663 copy_private_section_data. */
2664
2665 this_hdr->bfd_section = asect;
2666 this_hdr->contents = NULL;
2667
2668 /* If the section type is unspecified, we set it based on
2669 asect->flags. */
2670 if (this_hdr->sh_type == SHT_NULL)
2671 {
2672 if ((asect->flags & SEC_GROUP) != 0)
2673 {
2674 /* We also need to mark SHF_GROUP here for relocatable
2675 link. */
2676 struct bfd_link_order *l;
2677 asection *elt;
2678
2679 for (l = asect->map_head.link_order; l != NULL; l = l->next)
2680 if (l->type == bfd_indirect_link_order
2681 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2682 do
2683 {
2684 /* The name is not important. Anything will do. */
2685 elf_group_name (elt->output_section) = "G";
2686 elf_section_flags (elt->output_section) |= SHF_GROUP;
2687
2688 elt = elf_next_in_group (elt);
2689 /* During a relocatable link, the lists are
2690 circular. */
2691 }
2692 while (elt != elf_next_in_group (l->u.indirect.section));
2693
2694 this_hdr->sh_type = SHT_GROUP;
2695 }
2696 else if ((asect->flags & SEC_ALLOC) != 0
2697 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2698 || (asect->flags & SEC_NEVER_LOAD) != 0))
2699 this_hdr->sh_type = SHT_NOBITS;
2700 else
2701 this_hdr->sh_type = SHT_PROGBITS;
2702 }
2703
2704 switch (this_hdr->sh_type)
2705 {
2706 default:
2707 break;
2708
2709 case SHT_STRTAB:
2710 case SHT_INIT_ARRAY:
2711 case SHT_FINI_ARRAY:
2712 case SHT_PREINIT_ARRAY:
2713 case SHT_NOTE:
2714 case SHT_NOBITS:
2715 case SHT_PROGBITS:
2716 break;
2717
2718 case SHT_HASH:
2719 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2720 break;
2721
2722 case SHT_DYNSYM:
2723 this_hdr->sh_entsize = bed->s->sizeof_sym;
2724 break;
2725
2726 case SHT_DYNAMIC:
2727 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2728 break;
2729
2730 case SHT_RELA:
2731 if (get_elf_backend_data (abfd)->may_use_rela_p)
2732 this_hdr->sh_entsize = bed->s->sizeof_rela;
2733 break;
2734
2735 case SHT_REL:
2736 if (get_elf_backend_data (abfd)->may_use_rel_p)
2737 this_hdr->sh_entsize = bed->s->sizeof_rel;
2738 break;
2739
2740 case SHT_GNU_versym:
2741 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2742 break;
2743
2744 case SHT_GNU_verdef:
2745 this_hdr->sh_entsize = 0;
2746 /* objcopy or strip will copy over sh_info, but may not set
2747 cverdefs. The linker will set cverdefs, but sh_info will be
2748 zero. */
2749 if (this_hdr->sh_info == 0)
2750 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2751 else
2752 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2753 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2754 break;
2755
2756 case SHT_GNU_verneed:
2757 this_hdr->sh_entsize = 0;
2758 /* objcopy or strip will copy over sh_info, but may not set
2759 cverrefs. The linker will set cverrefs, but sh_info will be
2760 zero. */
2761 if (this_hdr->sh_info == 0)
2762 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2763 else
2764 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2765 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2766 break;
2767
2768 case SHT_GROUP:
2769 this_hdr->sh_entsize = 4;
2770 break;
2771 }
2772
2773 if ((asect->flags & SEC_ALLOC) != 0)
2774 this_hdr->sh_flags |= SHF_ALLOC;
2775 if ((asect->flags & SEC_READONLY) == 0)
2776 this_hdr->sh_flags |= SHF_WRITE;
2777 if ((asect->flags & SEC_CODE) != 0)
2778 this_hdr->sh_flags |= SHF_EXECINSTR;
2779 if ((asect->flags & SEC_MERGE) != 0)
2780 {
2781 this_hdr->sh_flags |= SHF_MERGE;
2782 this_hdr->sh_entsize = asect->entsize;
2783 if ((asect->flags & SEC_STRINGS) != 0)
2784 this_hdr->sh_flags |= SHF_STRINGS;
2785 }
2786 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2787 this_hdr->sh_flags |= SHF_GROUP;
2788 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2789 {
2790 this_hdr->sh_flags |= SHF_TLS;
2791 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2792 {
2793 struct bfd_link_order *o;
2794
2795 this_hdr->sh_size = 0;
2796 for (o = asect->map_head.link_order; o != NULL; o = o->next)
2797 if (this_hdr->sh_size < o->offset + o->size)
2798 this_hdr->sh_size = o->offset + o->size;
2799 if (this_hdr->sh_size)
2800 this_hdr->sh_type = SHT_NOBITS;
2801 }
2802 }
2803
2804 /* Check for processor-specific section types. */
2805 if (bed->elf_backend_fake_sections
2806 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2807 *failedptr = TRUE;
2808
2809 /* If the section has relocs, set up a section header for the
2810 SHT_REL[A] section. If two relocation sections are required for
2811 this section, it is up to the processor-specific back-end to
2812 create the other. */
2813 if ((asect->flags & SEC_RELOC) != 0
2814 && !_bfd_elf_init_reloc_shdr (abfd,
2815 &elf_section_data (asect)->rel_hdr,
2816 asect,
2817 asect->use_rela_p))
2818 *failedptr = TRUE;
2819 }
2820
2821 /* Fill in the contents of a SHT_GROUP section. */
2822
2823 void
2824 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2825 {
2826 bfd_boolean *failedptr = failedptrarg;
2827 unsigned long symindx;
2828 asection *elt, *first;
2829 unsigned char *loc;
2830 struct bfd_link_order *l;
2831 bfd_boolean gas;
2832
2833 /* Ignore linker created group section. See elfNN_ia64_object_p in
2834 elfxx-ia64.c. */
2835 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2836 || *failedptr)
2837 return;
2838
2839 symindx = 0;
2840 if (elf_group_id (sec) != NULL)
2841 symindx = elf_group_id (sec)->udata.i;
2842
2843 if (symindx == 0)
2844 {
2845 /* If called from the assembler, swap_out_syms will have set up
2846 elf_section_syms; If called for "ld -r", use target_index. */
2847 if (elf_section_syms (abfd) != NULL)
2848 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2849 else
2850 symindx = sec->target_index;
2851 }
2852 elf_section_data (sec)->this_hdr.sh_info = symindx;
2853
2854 /* The contents won't be allocated for "ld -r" or objcopy. */
2855 gas = TRUE;
2856 if (sec->contents == NULL)
2857 {
2858 gas = FALSE;
2859 sec->contents = bfd_alloc (abfd, sec->size);
2860
2861 /* Arrange for the section to be written out. */
2862 elf_section_data (sec)->this_hdr.contents = sec->contents;
2863 if (sec->contents == NULL)
2864 {
2865 *failedptr = TRUE;
2866 return;
2867 }
2868 }
2869
2870 loc = sec->contents + sec->size;
2871
2872 /* Get the pointer to the first section in the group that gas
2873 squirreled away here. objcopy arranges for this to be set to the
2874 start of the input section group. */
2875 first = elt = elf_next_in_group (sec);
2876
2877 /* First element is a flag word. Rest of section is elf section
2878 indices for all the sections of the group. Write them backwards
2879 just to keep the group in the same order as given in .section
2880 directives, not that it matters. */
2881 while (elt != NULL)
2882 {
2883 asection *s;
2884 unsigned int idx;
2885
2886 loc -= 4;
2887 s = elt;
2888 if (!gas)
2889 s = s->output_section;
2890 idx = 0;
2891 if (s != NULL)
2892 idx = elf_section_data (s)->this_idx;
2893 H_PUT_32 (abfd, idx, loc);
2894 elt = elf_next_in_group (elt);
2895 if (elt == first)
2896 break;
2897 }
2898
2899 /* If this is a relocatable link, then the above did nothing because
2900 SEC is the output section. Look through the input sections
2901 instead. */
2902 for (l = sec->map_head.link_order; l != NULL; l = l->next)
2903 if (l->type == bfd_indirect_link_order
2904 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2905 do
2906 {
2907 loc -= 4;
2908 H_PUT_32 (abfd,
2909 elf_section_data (elt->output_section)->this_idx, loc);
2910 elt = elf_next_in_group (elt);
2911 /* During a relocatable link, the lists are circular. */
2912 }
2913 while (elt != elf_next_in_group (l->u.indirect.section));
2914
2915 if ((loc -= 4) != sec->contents)
2916 abort ();
2917
2918 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2919 }
2920
2921 /* Assign all ELF section numbers. The dummy first section is handled here
2922 too. The link/info pointers for the standard section types are filled
2923 in here too, while we're at it. */
2924
2925 static bfd_boolean
2926 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2927 {
2928 struct elf_obj_tdata *t = elf_tdata (abfd);
2929 asection *sec;
2930 unsigned int section_number, secn;
2931 Elf_Internal_Shdr **i_shdrp;
2932 struct bfd_elf_section_data *d;
2933
2934 section_number = 1;
2935
2936 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2937
2938 /* SHT_GROUP sections are in relocatable files only. */
2939 if (link_info == NULL || link_info->relocatable)
2940 {
2941 /* Put SHT_GROUP sections first. */
2942 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2943 {
2944 d = elf_section_data (sec);
2945
2946 if (d->this_hdr.sh_type == SHT_GROUP)
2947 {
2948 if (sec->flags & SEC_LINKER_CREATED)
2949 {
2950 /* Remove the linker created SHT_GROUP sections. */
2951 bfd_section_list_remove (abfd, sec);
2952 abfd->section_count--;
2953 }
2954 else
2955 {
2956 if (section_number == SHN_LORESERVE)
2957 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2958 d->this_idx = section_number++;
2959 }
2960 }
2961 }
2962 }
2963
2964 for (sec = abfd->sections; sec; sec = sec->next)
2965 {
2966 d = elf_section_data (sec);
2967
2968 if (d->this_hdr.sh_type != SHT_GROUP)
2969 {
2970 if (section_number == SHN_LORESERVE)
2971 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2972 d->this_idx = section_number++;
2973 }
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2975 if ((sec->flags & SEC_RELOC) == 0)
2976 d->rel_idx = 0;
2977 else
2978 {
2979 if (section_number == SHN_LORESERVE)
2980 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2981 d->rel_idx = section_number++;
2982 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2983 }
2984
2985 if (d->rel_hdr2)
2986 {
2987 if (section_number == SHN_LORESERVE)
2988 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2989 d->rel_idx2 = section_number++;
2990 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2991 }
2992 else
2993 d->rel_idx2 = 0;
2994 }
2995
2996 if (section_number == SHN_LORESERVE)
2997 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2998 t->shstrtab_section = section_number++;
2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3000 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3001
3002 if (bfd_get_symcount (abfd) > 0)
3003 {
3004 if (section_number == SHN_LORESERVE)
3005 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3006 t->symtab_section = section_number++;
3007 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3008 if (section_number > SHN_LORESERVE - 2)
3009 {
3010 if (section_number == SHN_LORESERVE)
3011 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3012 t->symtab_shndx_section = section_number++;
3013 t->symtab_shndx_hdr.sh_name
3014 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3015 ".symtab_shndx", FALSE);
3016 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3017 return FALSE;
3018 }
3019 if (section_number == SHN_LORESERVE)
3020 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3021 t->strtab_section = section_number++;
3022 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3023 }
3024
3025 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3026 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3027
3028 elf_numsections (abfd) = section_number;
3029 elf_elfheader (abfd)->e_shnum = section_number;
3030 if (section_number > SHN_LORESERVE)
3031 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3032
3033 /* Set up the list of section header pointers, in agreement with the
3034 indices. */
3035 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3036 if (i_shdrp == NULL)
3037 return FALSE;
3038
3039 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3040 if (i_shdrp[0] == NULL)
3041 {
3042 bfd_release (abfd, i_shdrp);
3043 return FALSE;
3044 }
3045
3046 elf_elfsections (abfd) = i_shdrp;
3047
3048 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3049 if (bfd_get_symcount (abfd) > 0)
3050 {
3051 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3052 if (elf_numsections (abfd) > SHN_LORESERVE)
3053 {
3054 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3055 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3056 }
3057 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3058 t->symtab_hdr.sh_link = t->strtab_section;
3059 }
3060
3061 for (sec = abfd->sections; sec; sec = sec->next)
3062 {
3063 struct bfd_elf_section_data *d = elf_section_data (sec);
3064 asection *s;
3065 const char *name;
3066
3067 i_shdrp[d->this_idx] = &d->this_hdr;
3068 if (d->rel_idx != 0)
3069 i_shdrp[d->rel_idx] = &d->rel_hdr;
3070 if (d->rel_idx2 != 0)
3071 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3072
3073 /* Fill in the sh_link and sh_info fields while we're at it. */
3074
3075 /* sh_link of a reloc section is the section index of the symbol
3076 table. sh_info is the section index of the section to which
3077 the relocation entries apply. */
3078 if (d->rel_idx != 0)
3079 {
3080 d->rel_hdr.sh_link = t->symtab_section;
3081 d->rel_hdr.sh_info = d->this_idx;
3082 }
3083 if (d->rel_idx2 != 0)
3084 {
3085 d->rel_hdr2->sh_link = t->symtab_section;
3086 d->rel_hdr2->sh_info = d->this_idx;
3087 }
3088
3089 /* We need to set up sh_link for SHF_LINK_ORDER. */
3090 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3091 {
3092 s = elf_linked_to_section (sec);
3093 if (s)
3094 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3095 else
3096 {
3097 struct bfd_link_order *p;
3098
3099 /* Find out what the corresponding section in output
3100 is. */
3101 for (p = sec->map_head.link_order; p != NULL; p = p->next)
3102 {
3103 s = p->u.indirect.section;
3104 if (p->type == bfd_indirect_link_order
3105 && (bfd_get_flavour (s->owner)
3106 == bfd_target_elf_flavour))
3107 {
3108 Elf_Internal_Shdr ** const elf_shdrp
3109 = elf_elfsections (s->owner);
3110 int elfsec
3111 = _bfd_elf_section_from_bfd_section (s->owner, s);
3112 elfsec = elf_shdrp[elfsec]->sh_link;
3113 /* PR 290:
3114 The Intel C compiler generates SHT_IA_64_UNWIND with
3115 SHF_LINK_ORDER. But it doesn't set the sh_link or
3116 sh_info fields. Hence we could get the situation
3117 where elfsec is 0. */
3118 if (elfsec == 0)
3119 {
3120 const struct elf_backend_data *bed
3121 = get_elf_backend_data (abfd);
3122 if (bed->link_order_error_handler)
3123 bed->link_order_error_handler
3124 (_("%B: warning: sh_link not set for section `%A'"),
3125 abfd, s);
3126 }
3127 else
3128 {
3129 s = elf_shdrp[elfsec]->bfd_section;
3130 if (elf_discarded_section (s))
3131 {
3132 asection *kept;
3133 (*_bfd_error_handler)
3134 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3135 abfd, d->this_hdr.bfd_section,
3136 s, s->owner);
3137 /* Point to the kept section if it has
3138 the same size as the discarded
3139 one. */
3140 kept = _bfd_elf_check_kept_section (s);
3141 if (kept == NULL)
3142 {
3143 bfd_set_error (bfd_error_bad_value);
3144 return FALSE;
3145 }
3146 s = kept;
3147 }
3148 s = s->output_section;
3149 BFD_ASSERT (s != NULL);
3150 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3151 }
3152 break;
3153 }
3154 }
3155 }
3156 }
3157
3158 switch (d->this_hdr.sh_type)
3159 {
3160 case SHT_REL:
3161 case SHT_RELA:
3162 /* A reloc section which we are treating as a normal BFD
3163 section. sh_link is the section index of the symbol
3164 table. sh_info is the section index of the section to
3165 which the relocation entries apply. We assume that an
3166 allocated reloc section uses the dynamic symbol table.
3167 FIXME: How can we be sure? */
3168 s = bfd_get_section_by_name (abfd, ".dynsym");
3169 if (s != NULL)
3170 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3171
3172 /* We look up the section the relocs apply to by name. */
3173 name = sec->name;
3174 if (d->this_hdr.sh_type == SHT_REL)
3175 name += 4;
3176 else
3177 name += 5;
3178 s = bfd_get_section_by_name (abfd, name);
3179 if (s != NULL)
3180 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3181 break;
3182
3183 case SHT_STRTAB:
3184 /* We assume that a section named .stab*str is a stabs
3185 string section. We look for a section with the same name
3186 but without the trailing ``str'', and set its sh_link
3187 field to point to this section. */
3188 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3189 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3190 {
3191 size_t len;
3192 char *alc;
3193
3194 len = strlen (sec->name);
3195 alc = bfd_malloc (len - 2);
3196 if (alc == NULL)
3197 return FALSE;
3198 memcpy (alc, sec->name, len - 3);
3199 alc[len - 3] = '\0';
3200 s = bfd_get_section_by_name (abfd, alc);
3201 free (alc);
3202 if (s != NULL)
3203 {
3204 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3205
3206 /* This is a .stab section. */
3207 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3208 elf_section_data (s)->this_hdr.sh_entsize
3209 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3210 }
3211 }
3212 break;
3213
3214 case SHT_DYNAMIC:
3215 case SHT_DYNSYM:
3216 case SHT_GNU_verneed:
3217 case SHT_GNU_verdef:
3218 /* sh_link is the section header index of the string table
3219 used for the dynamic entries, or the symbol table, or the
3220 version strings. */
3221 s = bfd_get_section_by_name (abfd, ".dynstr");
3222 if (s != NULL)
3223 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3224 break;
3225
3226 case SHT_GNU_LIBLIST:
3227 /* sh_link is the section header index of the prelink library
3228 list
3229 used for the dynamic entries, or the symbol table, or the
3230 version strings. */
3231 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3232 ? ".dynstr" : ".gnu.libstr");
3233 if (s != NULL)
3234 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3235 break;
3236
3237 case SHT_HASH:
3238 case SHT_GNU_versym:
3239 /* sh_link is the section header index of the symbol table
3240 this hash table or version table is for. */
3241 s = bfd_get_section_by_name (abfd, ".dynsym");
3242 if (s != NULL)
3243 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3244 break;
3245
3246 case SHT_GROUP:
3247 d->this_hdr.sh_link = t->symtab_section;
3248 }
3249 }
3250
3251 for (secn = 1; secn < section_number; ++secn)
3252 if (i_shdrp[secn] == NULL)
3253 i_shdrp[secn] = i_shdrp[0];
3254 else
3255 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3256 i_shdrp[secn]->sh_name);
3257 return TRUE;
3258 }
3259
3260 /* Map symbol from it's internal number to the external number, moving
3261 all local symbols to be at the head of the list. */
3262
3263 static int
3264 sym_is_global (bfd *abfd, asymbol *sym)
3265 {
3266 /* If the backend has a special mapping, use it. */
3267 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3268 if (bed->elf_backend_sym_is_global)
3269 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3270
3271 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3272 || bfd_is_und_section (bfd_get_section (sym))
3273 || bfd_is_com_section (bfd_get_section (sym)));
3274 }
3275
3276 static bfd_boolean
3277 elf_map_symbols (bfd *abfd)
3278 {
3279 unsigned int symcount = bfd_get_symcount (abfd);
3280 asymbol **syms = bfd_get_outsymbols (abfd);
3281 asymbol **sect_syms;
3282 unsigned int num_locals = 0;
3283 unsigned int num_globals = 0;
3284 unsigned int num_locals2 = 0;
3285 unsigned int num_globals2 = 0;
3286 int max_index = 0;
3287 unsigned int idx;
3288 asection *asect;
3289 asymbol **new_syms;
3290
3291 #ifdef DEBUG
3292 fprintf (stderr, "elf_map_symbols\n");
3293 fflush (stderr);
3294 #endif
3295
3296 for (asect = abfd->sections; asect; asect = asect->next)
3297 {
3298 if (max_index < asect->index)
3299 max_index = asect->index;
3300 }
3301
3302 max_index++;
3303 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3304 if (sect_syms == NULL)
3305 return FALSE;
3306 elf_section_syms (abfd) = sect_syms;
3307 elf_num_section_syms (abfd) = max_index;
3308
3309 /* Init sect_syms entries for any section symbols we have already
3310 decided to output. */
3311 for (idx = 0; idx < symcount; idx++)
3312 {
3313 asymbol *sym = syms[idx];
3314
3315 if ((sym->flags & BSF_SECTION_SYM) != 0
3316 && sym->value == 0)
3317 {
3318 asection *sec;
3319
3320 sec = sym->section;
3321
3322 if (sec->owner != NULL)
3323 {
3324 if (sec->owner != abfd)
3325 {
3326 if (sec->output_offset != 0)
3327 continue;
3328
3329 sec = sec->output_section;
3330
3331 /* Empty sections in the input files may have had a
3332 section symbol created for them. (See the comment
3333 near the end of _bfd_generic_link_output_symbols in
3334 linker.c). If the linker script discards such
3335 sections then we will reach this point. Since we know
3336 that we cannot avoid this case, we detect it and skip
3337 the abort and the assignment to the sect_syms array.
3338 To reproduce this particular case try running the
3339 linker testsuite test ld-scripts/weak.exp for an ELF
3340 port that uses the generic linker. */
3341 if (sec->owner == NULL)
3342 continue;
3343
3344 BFD_ASSERT (sec->owner == abfd);
3345 }
3346 sect_syms[sec->index] = syms[idx];
3347 }
3348 }
3349 }
3350
3351 /* Classify all of the symbols. */
3352 for (idx = 0; idx < symcount; idx++)
3353 {
3354 if (!sym_is_global (abfd, syms[idx]))
3355 num_locals++;
3356 else
3357 num_globals++;
3358 }
3359
3360 /* We will be adding a section symbol for each BFD section. Most normal
3361 sections will already have a section symbol in outsymbols, but
3362 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3363 at least in that case. */
3364 for (asect = abfd->sections; asect; asect = asect->next)
3365 {
3366 if (sect_syms[asect->index] == NULL)
3367 {
3368 if (!sym_is_global (abfd, asect->symbol))
3369 num_locals++;
3370 else
3371 num_globals++;
3372 }
3373 }
3374
3375 /* Now sort the symbols so the local symbols are first. */
3376 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3377
3378 if (new_syms == NULL)
3379 return FALSE;
3380
3381 for (idx = 0; idx < symcount; idx++)
3382 {
3383 asymbol *sym = syms[idx];
3384 unsigned int i;
3385
3386 if (!sym_is_global (abfd, sym))
3387 i = num_locals2++;
3388 else
3389 i = num_locals + num_globals2++;
3390 new_syms[i] = sym;
3391 sym->udata.i = i + 1;
3392 }
3393 for (asect = abfd->sections; asect; asect = asect->next)
3394 {
3395 if (sect_syms[asect->index] == NULL)
3396 {
3397 asymbol *sym = asect->symbol;
3398 unsigned int i;
3399
3400 sect_syms[asect->index] = sym;
3401 if (!sym_is_global (abfd, sym))
3402 i = num_locals2++;
3403 else
3404 i = num_locals + num_globals2++;
3405 new_syms[i] = sym;
3406 sym->udata.i = i + 1;
3407 }
3408 }
3409
3410 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3411
3412 elf_num_locals (abfd) = num_locals;
3413 elf_num_globals (abfd) = num_globals;
3414 return TRUE;
3415 }
3416
3417 /* Align to the maximum file alignment that could be required for any
3418 ELF data structure. */
3419
3420 static inline file_ptr
3421 align_file_position (file_ptr off, int align)
3422 {
3423 return (off + align - 1) & ~(align - 1);
3424 }
3425
3426 /* Assign a file position to a section, optionally aligning to the
3427 required section alignment. */
3428
3429 file_ptr
3430 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3431 file_ptr offset,
3432 bfd_boolean align)
3433 {
3434 if (align)
3435 {
3436 unsigned int al;
3437
3438 al = i_shdrp->sh_addralign;
3439 if (al > 1)
3440 offset = BFD_ALIGN (offset, al);
3441 }
3442 i_shdrp->sh_offset = offset;
3443 if (i_shdrp->bfd_section != NULL)
3444 i_shdrp->bfd_section->filepos = offset;
3445 if (i_shdrp->sh_type != SHT_NOBITS)
3446 offset += i_shdrp->sh_size;
3447 return offset;
3448 }
3449
3450 /* Compute the file positions we are going to put the sections at, and
3451 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3452 is not NULL, this is being called by the ELF backend linker. */
3453
3454 bfd_boolean
3455 _bfd_elf_compute_section_file_positions (bfd *abfd,
3456 struct bfd_link_info *link_info)
3457 {
3458 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3459 bfd_boolean failed;
3460 struct bfd_strtab_hash *strtab = NULL;
3461 Elf_Internal_Shdr *shstrtab_hdr;
3462
3463 if (abfd->output_has_begun)
3464 return TRUE;
3465
3466 /* Do any elf backend specific processing first. */
3467 if (bed->elf_backend_begin_write_processing)
3468 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3469
3470 if (! prep_headers (abfd))
3471 return FALSE;
3472
3473 /* Post process the headers if necessary. */
3474 if (bed->elf_backend_post_process_headers)
3475 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3476
3477 failed = FALSE;
3478 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3479 if (failed)
3480 return FALSE;
3481
3482 if (!assign_section_numbers (abfd, link_info))
3483 return FALSE;
3484
3485 /* The backend linker builds symbol table information itself. */
3486 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3487 {
3488 /* Non-zero if doing a relocatable link. */
3489 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3490
3491 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3492 return FALSE;
3493 }
3494
3495 if (link_info == NULL)
3496 {
3497 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3498 if (failed)
3499 return FALSE;
3500 }
3501
3502 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3503 /* sh_name was set in prep_headers. */
3504 shstrtab_hdr->sh_type = SHT_STRTAB;
3505 shstrtab_hdr->sh_flags = 0;
3506 shstrtab_hdr->sh_addr = 0;
3507 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3508 shstrtab_hdr->sh_entsize = 0;
3509 shstrtab_hdr->sh_link = 0;
3510 shstrtab_hdr->sh_info = 0;
3511 /* sh_offset is set in assign_file_positions_except_relocs. */
3512 shstrtab_hdr->sh_addralign = 1;
3513
3514 if (!assign_file_positions_except_relocs (abfd, link_info))
3515 return FALSE;
3516
3517 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3518 {
3519 file_ptr off;
3520 Elf_Internal_Shdr *hdr;
3521
3522 off = elf_tdata (abfd)->next_file_pos;
3523
3524 hdr = &elf_tdata (abfd)->symtab_hdr;
3525 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3526
3527 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3528 if (hdr->sh_size != 0)
3529 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3530
3531 hdr = &elf_tdata (abfd)->strtab_hdr;
3532 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3533
3534 elf_tdata (abfd)->next_file_pos = off;
3535
3536 /* Now that we know where the .strtab section goes, write it
3537 out. */
3538 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3539 || ! _bfd_stringtab_emit (abfd, strtab))
3540 return FALSE;
3541 _bfd_stringtab_free (strtab);
3542 }
3543
3544 abfd->output_has_begun = TRUE;
3545
3546 return TRUE;
3547 }
3548
3549 /* Create a mapping from a set of sections to a program segment. */
3550
3551 static struct elf_segment_map *
3552 make_mapping (bfd *abfd,
3553 asection **sections,
3554 unsigned int from,
3555 unsigned int to,
3556 bfd_boolean phdr)
3557 {
3558 struct elf_segment_map *m;
3559 unsigned int i;
3560 asection **hdrpp;
3561 bfd_size_type amt;
3562
3563 amt = sizeof (struct elf_segment_map);
3564 amt += (to - from - 1) * sizeof (asection *);
3565 m = bfd_zalloc (abfd, amt);
3566 if (m == NULL)
3567 return NULL;
3568 m->next = NULL;
3569 m->p_type = PT_LOAD;
3570 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3571 m->sections[i - from] = *hdrpp;
3572 m->count = to - from;
3573
3574 if (from == 0 && phdr)
3575 {
3576 /* Include the headers in the first PT_LOAD segment. */
3577 m->includes_filehdr = 1;
3578 m->includes_phdrs = 1;
3579 }
3580
3581 return m;
3582 }
3583
3584 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3585 on failure. */
3586
3587 struct elf_segment_map *
3588 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3589 {
3590 struct elf_segment_map *m;
3591
3592 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3593 if (m == NULL)
3594 return NULL;
3595 m->next = NULL;
3596 m->p_type = PT_DYNAMIC;
3597 m->count = 1;
3598 m->sections[0] = dynsec;
3599
3600 return m;
3601 }
3602
3603 /* Set up a mapping from BFD sections to program segments. */
3604
3605 static bfd_boolean
3606 map_sections_to_segments (bfd *abfd)
3607 {
3608 asection **sections = NULL;
3609 asection *s;
3610 unsigned int i;
3611 unsigned int count;
3612 struct elf_segment_map *mfirst;
3613 struct elf_segment_map **pm;
3614 struct elf_segment_map *m;
3615 asection *last_hdr;
3616 bfd_vma last_size;
3617 unsigned int phdr_index;
3618 bfd_vma maxpagesize;
3619 asection **hdrpp;
3620 bfd_boolean phdr_in_segment = TRUE;
3621 bfd_boolean writable;
3622 int tls_count = 0;
3623 asection *first_tls = NULL;
3624 asection *dynsec, *eh_frame_hdr;
3625 bfd_size_type amt;
3626
3627 if (elf_tdata (abfd)->segment_map != NULL)
3628 return TRUE;
3629
3630 if (bfd_count_sections (abfd) == 0)
3631 return TRUE;
3632
3633 /* Select the allocated sections, and sort them. */
3634
3635 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3636 if (sections == NULL)
3637 goto error_return;
3638
3639 i = 0;
3640 for (s = abfd->sections; s != NULL; s = s->next)
3641 {
3642 if ((s->flags & SEC_ALLOC) != 0)
3643 {
3644 sections[i] = s;
3645 ++i;
3646 }
3647 }
3648 BFD_ASSERT (i <= bfd_count_sections (abfd));
3649 count = i;
3650
3651 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3652
3653 /* Build the mapping. */
3654
3655 mfirst = NULL;
3656 pm = &mfirst;
3657
3658 /* If we have a .interp section, then create a PT_PHDR segment for
3659 the program headers and a PT_INTERP segment for the .interp
3660 section. */
3661 s = bfd_get_section_by_name (abfd, ".interp");
3662 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3663 {
3664 amt = sizeof (struct elf_segment_map);
3665 m = bfd_zalloc (abfd, amt);
3666 if (m == NULL)
3667 goto error_return;
3668 m->next = NULL;
3669 m->p_type = PT_PHDR;
3670 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3671 m->p_flags = PF_R | PF_X;
3672 m->p_flags_valid = 1;
3673 m->includes_phdrs = 1;
3674
3675 *pm = m;
3676 pm = &m->next;
3677
3678 amt = sizeof (struct elf_segment_map);
3679 m = bfd_zalloc (abfd, amt);
3680 if (m == NULL)
3681 goto error_return;
3682 m->next = NULL;
3683 m->p_type = PT_INTERP;
3684 m->count = 1;
3685 m->sections[0] = s;
3686
3687 *pm = m;
3688 pm = &m->next;
3689 }
3690
3691 /* Look through the sections. We put sections in the same program
3692 segment when the start of the second section can be placed within
3693 a few bytes of the end of the first section. */
3694 last_hdr = NULL;
3695 last_size = 0;
3696 phdr_index = 0;
3697 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3698 writable = FALSE;
3699 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3700 if (dynsec != NULL
3701 && (dynsec->flags & SEC_LOAD) == 0)
3702 dynsec = NULL;
3703
3704 /* Deal with -Ttext or something similar such that the first section
3705 is not adjacent to the program headers. This is an
3706 approximation, since at this point we don't know exactly how many
3707 program headers we will need. */
3708 if (count > 0)
3709 {
3710 bfd_size_type phdr_size;
3711
3712 phdr_size = elf_tdata (abfd)->program_header_size;
3713 if (phdr_size == 0)
3714 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3715 if ((abfd->flags & D_PAGED) == 0
3716 || sections[0]->lma < phdr_size
3717 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3718 phdr_in_segment = FALSE;
3719 }
3720
3721 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3722 {
3723 asection *hdr;
3724 bfd_boolean new_segment;
3725
3726 hdr = *hdrpp;
3727
3728 /* See if this section and the last one will fit in the same
3729 segment. */
3730
3731 if (last_hdr == NULL)
3732 {
3733 /* If we don't have a segment yet, then we don't need a new
3734 one (we build the last one after this loop). */
3735 new_segment = FALSE;
3736 }
3737 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3738 {
3739 /* If this section has a different relation between the
3740 virtual address and the load address, then we need a new
3741 segment. */
3742 new_segment = TRUE;
3743 }
3744 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3745 < BFD_ALIGN (hdr->lma, maxpagesize))
3746 {
3747 /* If putting this section in this segment would force us to
3748 skip a page in the segment, then we need a new segment. */
3749 new_segment = TRUE;
3750 }
3751 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3752 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3753 {
3754 /* We don't want to put a loadable section after a
3755 nonloadable section in the same segment.
3756 Consider .tbss sections as loadable for this purpose. */
3757 new_segment = TRUE;
3758 }
3759 else if ((abfd->flags & D_PAGED) == 0)
3760 {
3761 /* If the file is not demand paged, which means that we
3762 don't require the sections to be correctly aligned in the
3763 file, then there is no other reason for a new segment. */
3764 new_segment = FALSE;
3765 }
3766 else if (! writable
3767 && (hdr->flags & SEC_READONLY) == 0
3768 && (((last_hdr->lma + last_size - 1)
3769 & ~(maxpagesize - 1))
3770 != (hdr->lma & ~(maxpagesize - 1))))
3771 {
3772 /* We don't want to put a writable section in a read only
3773 segment, unless they are on the same page in memory
3774 anyhow. We already know that the last section does not
3775 bring us past the current section on the page, so the
3776 only case in which the new section is not on the same
3777 page as the previous section is when the previous section
3778 ends precisely on a page boundary. */
3779 new_segment = TRUE;
3780 }
3781 else
3782 {
3783 /* Otherwise, we can use the same segment. */
3784 new_segment = FALSE;
3785 }
3786
3787 if (! new_segment)
3788 {
3789 if ((hdr->flags & SEC_READONLY) == 0)
3790 writable = TRUE;
3791 last_hdr = hdr;
3792 /* .tbss sections effectively have zero size. */
3793 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3794 last_size = hdr->size;
3795 else
3796 last_size = 0;
3797 continue;
3798 }
3799
3800 /* We need a new program segment. We must create a new program
3801 header holding all the sections from phdr_index until hdr. */
3802
3803 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3804 if (m == NULL)
3805 goto error_return;
3806
3807 *pm = m;
3808 pm = &m->next;
3809
3810 if ((hdr->flags & SEC_READONLY) == 0)
3811 writable = TRUE;
3812 else
3813 writable = FALSE;
3814
3815 last_hdr = hdr;
3816 /* .tbss sections effectively have zero size. */
3817 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3818 last_size = hdr->size;
3819 else
3820 last_size = 0;
3821 phdr_index = i;
3822 phdr_in_segment = FALSE;
3823 }
3824
3825 /* Create a final PT_LOAD program segment. */
3826 if (last_hdr != NULL)
3827 {
3828 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3829 if (m == NULL)
3830 goto error_return;
3831
3832 *pm = m;
3833 pm = &m->next;
3834 }
3835
3836 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3837 if (dynsec != NULL)
3838 {
3839 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3840 if (m == NULL)
3841 goto error_return;
3842 *pm = m;
3843 pm = &m->next;
3844 }
3845
3846 /* For each loadable .note section, add a PT_NOTE segment. We don't
3847 use bfd_get_section_by_name, because if we link together
3848 nonloadable .note sections and loadable .note sections, we will
3849 generate two .note sections in the output file. FIXME: Using
3850 names for section types is bogus anyhow. */
3851 for (s = abfd->sections; s != NULL; s = s->next)
3852 {
3853 if ((s->flags & SEC_LOAD) != 0
3854 && strncmp (s->name, ".note", 5) == 0)
3855 {
3856 amt = sizeof (struct elf_segment_map);
3857 m = bfd_zalloc (abfd, amt);
3858 if (m == NULL)
3859 goto error_return;
3860 m->next = NULL;
3861 m->p_type = PT_NOTE;
3862 m->count = 1;
3863 m->sections[0] = s;
3864
3865 *pm = m;
3866 pm = &m->next;
3867 }
3868 if (s->flags & SEC_THREAD_LOCAL)
3869 {
3870 if (! tls_count)
3871 first_tls = s;
3872 tls_count++;
3873 }
3874 }
3875
3876 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3877 if (tls_count > 0)
3878 {
3879 int i;
3880
3881 amt = sizeof (struct elf_segment_map);
3882 amt += (tls_count - 1) * sizeof (asection *);
3883 m = bfd_zalloc (abfd, amt);
3884 if (m == NULL)
3885 goto error_return;
3886 m->next = NULL;
3887 m->p_type = PT_TLS;
3888 m->count = tls_count;
3889 /* Mandated PF_R. */
3890 m->p_flags = PF_R;
3891 m->p_flags_valid = 1;
3892 for (i = 0; i < tls_count; ++i)
3893 {
3894 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3895 m->sections[i] = first_tls;
3896 first_tls = first_tls->next;
3897 }
3898
3899 *pm = m;
3900 pm = &m->next;
3901 }
3902
3903 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3904 segment. */
3905 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3906 if (eh_frame_hdr != NULL
3907 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3908 {
3909 amt = sizeof (struct elf_segment_map);
3910 m = bfd_zalloc (abfd, amt);
3911 if (m == NULL)
3912 goto error_return;
3913 m->next = NULL;
3914 m->p_type = PT_GNU_EH_FRAME;
3915 m->count = 1;
3916 m->sections[0] = eh_frame_hdr->output_section;
3917
3918 *pm = m;
3919 pm = &m->next;
3920 }
3921
3922 if (elf_tdata (abfd)->stack_flags)
3923 {
3924 amt = sizeof (struct elf_segment_map);
3925 m = bfd_zalloc (abfd, amt);
3926 if (m == NULL)
3927 goto error_return;
3928 m->next = NULL;
3929 m->p_type = PT_GNU_STACK;
3930 m->p_flags = elf_tdata (abfd)->stack_flags;
3931 m->p_flags_valid = 1;
3932
3933 *pm = m;
3934 pm = &m->next;
3935 }
3936
3937 if (elf_tdata (abfd)->relro)
3938 {
3939 amt = sizeof (struct elf_segment_map);
3940 m = bfd_zalloc (abfd, amt);
3941 if (m == NULL)
3942 goto error_return;
3943 m->next = NULL;
3944 m->p_type = PT_GNU_RELRO;
3945 m->p_flags = PF_R;
3946 m->p_flags_valid = 1;
3947
3948 *pm = m;
3949 pm = &m->next;
3950 }
3951
3952 free (sections);
3953 sections = NULL;
3954
3955 elf_tdata (abfd)->segment_map = mfirst;
3956 return TRUE;
3957
3958 error_return:
3959 if (sections != NULL)
3960 free (sections);
3961 return FALSE;
3962 }
3963
3964 /* Sort sections by address. */
3965
3966 static int
3967 elf_sort_sections (const void *arg1, const void *arg2)
3968 {
3969 const asection *sec1 = *(const asection **) arg1;
3970 const asection *sec2 = *(const asection **) arg2;
3971 bfd_size_type size1, size2;
3972
3973 /* Sort by LMA first, since this is the address used to
3974 place the section into a segment. */
3975 if (sec1->lma < sec2->lma)
3976 return -1;
3977 else if (sec1->lma > sec2->lma)
3978 return 1;
3979
3980 /* Then sort by VMA. Normally the LMA and the VMA will be
3981 the same, and this will do nothing. */
3982 if (sec1->vma < sec2->vma)
3983 return -1;
3984 else if (sec1->vma > sec2->vma)
3985 return 1;
3986
3987 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3988
3989 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3990
3991 if (TOEND (sec1))
3992 {
3993 if (TOEND (sec2))
3994 {
3995 /* If the indicies are the same, do not return 0
3996 here, but continue to try the next comparison. */
3997 if (sec1->target_index - sec2->target_index != 0)
3998 return sec1->target_index - sec2->target_index;
3999 }
4000 else
4001 return 1;
4002 }
4003 else if (TOEND (sec2))
4004 return -1;
4005
4006 #undef TOEND
4007
4008 /* Sort by size, to put zero sized sections
4009 before others at the same address. */
4010
4011 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4012 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4013
4014 if (size1 < size2)
4015 return -1;
4016 if (size1 > size2)
4017 return 1;
4018
4019 return sec1->target_index - sec2->target_index;
4020 }
4021
4022 /* Ian Lance Taylor writes:
4023
4024 We shouldn't be using % with a negative signed number. That's just
4025 not good. We have to make sure either that the number is not
4026 negative, or that the number has an unsigned type. When the types
4027 are all the same size they wind up as unsigned. When file_ptr is a
4028 larger signed type, the arithmetic winds up as signed long long,
4029 which is wrong.
4030
4031 What we're trying to say here is something like ``increase OFF by
4032 the least amount that will cause it to be equal to the VMA modulo
4033 the page size.'' */
4034 /* In other words, something like:
4035
4036 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4037 off_offset = off % bed->maxpagesize;
4038 if (vma_offset < off_offset)
4039 adjustment = vma_offset + bed->maxpagesize - off_offset;
4040 else
4041 adjustment = vma_offset - off_offset;
4042
4043 which can can be collapsed into the expression below. */
4044
4045 static file_ptr
4046 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4047 {
4048 return ((vma - off) % maxpagesize);
4049 }
4050
4051 /* Assign file positions to the sections based on the mapping from
4052 sections to segments. This function also sets up some fields in
4053 the file header, and writes out the program headers. */
4054
4055 static bfd_boolean
4056 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
4057 {
4058 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4059 unsigned int count;
4060 struct elf_segment_map *m;
4061 unsigned int alloc;
4062 Elf_Internal_Phdr *phdrs;
4063 file_ptr off, voff;
4064 bfd_vma filehdr_vaddr, filehdr_paddr;
4065 bfd_vma phdrs_vaddr, phdrs_paddr;
4066 Elf_Internal_Phdr *p;
4067
4068 if (elf_tdata (abfd)->segment_map == NULL)
4069 {
4070 if (! map_sections_to_segments (abfd))
4071 return FALSE;
4072 }
4073 else
4074 {
4075 /* The placement algorithm assumes that non allocated sections are
4076 not in PT_LOAD segments. We ensure this here by removing such
4077 sections from the segment map. We also remove excluded
4078 sections. */
4079 for (m = elf_tdata (abfd)->segment_map;
4080 m != NULL;
4081 m = m->next)
4082 {
4083 unsigned int new_count;
4084 unsigned int i;
4085
4086 new_count = 0;
4087 for (i = 0; i < m->count; i ++)
4088 {
4089 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4090 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4091 || m->p_type != PT_LOAD))
4092 {
4093 if (i != new_count)
4094 m->sections[new_count] = m->sections[i];
4095
4096 new_count ++;
4097 }
4098 }
4099
4100 if (new_count != m->count)
4101 m->count = new_count;
4102 }
4103 }
4104
4105 if (bed->elf_backend_modify_segment_map)
4106 {
4107 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4108 return FALSE;
4109 }
4110
4111 count = 0;
4112 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4113 ++count;
4114
4115 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4116 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4117 elf_elfheader (abfd)->e_phnum = count;
4118
4119 if (count == 0)
4120 {
4121 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4122 return TRUE;
4123 }
4124
4125 /* If we already counted the number of program segments, make sure
4126 that we allocated enough space. This happens when SIZEOF_HEADERS
4127 is used in a linker script. */
4128 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4129 if (alloc != 0 && count > alloc)
4130 {
4131 ((*_bfd_error_handler)
4132 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4133 abfd, alloc, count));
4134 bfd_set_error (bfd_error_bad_value);
4135 return FALSE;
4136 }
4137
4138 if (alloc == 0)
4139 alloc = count;
4140
4141 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4142 if (phdrs == NULL)
4143 return FALSE;
4144
4145 off = bed->s->sizeof_ehdr;
4146 off += alloc * bed->s->sizeof_phdr;
4147
4148 filehdr_vaddr = 0;
4149 filehdr_paddr = 0;
4150 phdrs_vaddr = 0;
4151 phdrs_paddr = 0;
4152
4153 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4154 m != NULL;
4155 m = m->next, p++)
4156 {
4157 unsigned int i;
4158 asection **secpp;
4159
4160 /* If elf_segment_map is not from map_sections_to_segments, the
4161 sections may not be correctly ordered. NOTE: sorting should
4162 not be done to the PT_NOTE section of a corefile, which may
4163 contain several pseudo-sections artificially created by bfd.
4164 Sorting these pseudo-sections breaks things badly. */
4165 if (m->count > 1
4166 && !(elf_elfheader (abfd)->e_type == ET_CORE
4167 && m->p_type == PT_NOTE))
4168 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4169 elf_sort_sections);
4170
4171 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4172 number of sections with contents contributing to both p_filesz
4173 and p_memsz, followed by a number of sections with no contents
4174 that just contribute to p_memsz. In this loop, OFF tracks next
4175 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4176 an adjustment we use for segments that have no file contents
4177 but need zero filled memory allocation. */
4178 voff = 0;
4179 p->p_type = m->p_type;
4180 p->p_flags = m->p_flags;
4181
4182 if (p->p_type == PT_LOAD
4183 && m->count > 0)
4184 {
4185 bfd_size_type align;
4186 bfd_vma adjust;
4187 unsigned int align_power = 0;
4188
4189 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4190 {
4191 unsigned int secalign;
4192
4193 secalign = bfd_get_section_alignment (abfd, *secpp);
4194 if (secalign > align_power)
4195 align_power = secalign;
4196 }
4197 align = (bfd_size_type) 1 << align_power;
4198
4199 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4200 align = bed->maxpagesize;
4201
4202 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4203 off += adjust;
4204 if (adjust != 0
4205 && !m->includes_filehdr
4206 && !m->includes_phdrs
4207 && (ufile_ptr) off >= align)
4208 {
4209 /* If the first section isn't loadable, the same holds for
4210 any other sections. Since the segment won't need file
4211 space, we can make p_offset overlap some prior segment.
4212 However, .tbss is special. If a segment starts with
4213 .tbss, we need to look at the next section to decide
4214 whether the segment has any loadable sections. */
4215 i = 0;
4216 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4217 {
4218 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4219 || ++i >= m->count)
4220 {
4221 off -= adjust;
4222 voff = adjust - align;
4223 break;
4224 }
4225 }
4226 }
4227 }
4228 /* Make sure the .dynamic section is the first section in the
4229 PT_DYNAMIC segment. */
4230 else if (p->p_type == PT_DYNAMIC
4231 && m->count > 1
4232 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4233 {
4234 _bfd_error_handler
4235 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4236 abfd);
4237 bfd_set_error (bfd_error_bad_value);
4238 return FALSE;
4239 }
4240
4241 if (m->count == 0)
4242 p->p_vaddr = 0;
4243 else
4244 p->p_vaddr = m->sections[0]->vma;
4245
4246 if (m->p_paddr_valid)
4247 p->p_paddr = m->p_paddr;
4248 else if (m->count == 0)
4249 p->p_paddr = 0;
4250 else
4251 p->p_paddr = m->sections[0]->lma;
4252
4253 if (p->p_type == PT_LOAD
4254 && (abfd->flags & D_PAGED) != 0)
4255 p->p_align = bed->maxpagesize;
4256 else if (m->count == 0)
4257 p->p_align = 1 << bed->s->log_file_align;
4258 else
4259 p->p_align = 0;
4260
4261 p->p_offset = 0;
4262 p->p_filesz = 0;
4263 p->p_memsz = 0;
4264
4265 if (m->includes_filehdr)
4266 {
4267 if (! m->p_flags_valid)
4268 p->p_flags |= PF_R;
4269 p->p_offset = 0;
4270 p->p_filesz = bed->s->sizeof_ehdr;
4271 p->p_memsz = bed->s->sizeof_ehdr;
4272 if (m->count > 0)
4273 {
4274 BFD_ASSERT (p->p_type == PT_LOAD);
4275
4276 if (p->p_vaddr < (bfd_vma) off)
4277 {
4278 (*_bfd_error_handler)
4279 (_("%B: Not enough room for program headers, try linking with -N"),
4280 abfd);
4281 bfd_set_error (bfd_error_bad_value);
4282 return FALSE;
4283 }
4284
4285 p->p_vaddr -= off;
4286 if (! m->p_paddr_valid)
4287 p->p_paddr -= off;
4288 }
4289 if (p->p_type == PT_LOAD)
4290 {
4291 filehdr_vaddr = p->p_vaddr;
4292 filehdr_paddr = p->p_paddr;
4293 }
4294 }
4295
4296 if (m->includes_phdrs)
4297 {
4298 if (! m->p_flags_valid)
4299 p->p_flags |= PF_R;
4300
4301 if (m->includes_filehdr)
4302 {
4303 if (p->p_type == PT_LOAD)
4304 {
4305 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4306 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4307 }
4308 }
4309 else
4310 {
4311 p->p_offset = bed->s->sizeof_ehdr;
4312
4313 if (m->count > 0)
4314 {
4315 BFD_ASSERT (p->p_type == PT_LOAD);
4316 p->p_vaddr -= off - p->p_offset;
4317 if (! m->p_paddr_valid)
4318 p->p_paddr -= off - p->p_offset;
4319 }
4320
4321 if (p->p_type == PT_LOAD)
4322 {
4323 phdrs_vaddr = p->p_vaddr;
4324 phdrs_paddr = p->p_paddr;
4325 }
4326 else
4327 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4328 }
4329
4330 p->p_filesz += alloc * bed->s->sizeof_phdr;
4331 p->p_memsz += alloc * bed->s->sizeof_phdr;
4332 }
4333
4334 if (p->p_type == PT_LOAD
4335 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4336 {
4337 if (! m->includes_filehdr && ! m->includes_phdrs)
4338 p->p_offset = off + voff;
4339 else
4340 {
4341 file_ptr adjust;
4342
4343 adjust = off - (p->p_offset + p->p_filesz);
4344 p->p_filesz += adjust;
4345 p->p_memsz += adjust;
4346 }
4347 }
4348
4349 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4350 {
4351 asection *sec;
4352 flagword flags;
4353 bfd_size_type align;
4354
4355 sec = *secpp;
4356 flags = sec->flags;
4357 align = 1 << bfd_get_section_alignment (abfd, sec);
4358
4359 if (p->p_type == PT_LOAD
4360 || p->p_type == PT_TLS)
4361 {
4362 bfd_signed_vma adjust;
4363
4364 if ((flags & SEC_LOAD) != 0)
4365 {
4366 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4367 if (adjust < 0)
4368 {
4369 (*_bfd_error_handler)
4370 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4371 abfd, sec, (unsigned long) sec->lma);
4372 adjust = 0;
4373 }
4374 off += adjust;
4375 p->p_filesz += adjust;
4376 p->p_memsz += adjust;
4377 }
4378 /* .tbss is special. It doesn't contribute to p_memsz of
4379 normal segments. */
4380 else if ((flags & SEC_THREAD_LOCAL) == 0
4381 || p->p_type == PT_TLS)
4382 {
4383 /* The section VMA must equal the file position
4384 modulo the page size. */
4385 bfd_size_type page = align;
4386 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4387 page = bed->maxpagesize;
4388 adjust = vma_page_aligned_bias (sec->vma,
4389 p->p_vaddr + p->p_memsz,
4390 page);
4391 p->p_memsz += adjust;
4392 }
4393 }
4394
4395 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4396 {
4397 /* The section at i == 0 is the one that actually contains
4398 everything. */
4399 if (i == 0)
4400 {
4401 sec->filepos = off;
4402 off += sec->size;
4403 p->p_filesz = sec->size;
4404 p->p_memsz = 0;
4405 p->p_align = 1;
4406 }
4407 else
4408 {
4409 /* The rest are fake sections that shouldn't be written. */
4410 sec->filepos = 0;
4411 sec->size = 0;
4412 sec->flags = 0;
4413 continue;
4414 }
4415 }
4416 else
4417 {
4418 if (p->p_type == PT_LOAD)
4419 {
4420 sec->filepos = off;
4421 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4422 1997, and the exact reason for it isn't clear. One
4423 plausible explanation is that it is to work around
4424 a problem we have with linker scripts using data
4425 statements in NOLOAD sections. I don't think it
4426 makes a great deal of sense to have such a section
4427 assigned to a PT_LOAD segment, but apparently
4428 people do this. The data statement results in a
4429 bfd_data_link_order being built, and these need
4430 section contents to write into. Eventually, we get
4431 to _bfd_elf_write_object_contents which writes any
4432 section with contents to the output. Make room
4433 here for the write, so that following segments are
4434 not trashed. */
4435 if ((flags & SEC_LOAD) != 0
4436 || (flags & SEC_HAS_CONTENTS) != 0)
4437 off += sec->size;
4438 }
4439
4440 if ((flags & SEC_LOAD) != 0)
4441 {
4442 p->p_filesz += sec->size;
4443 p->p_memsz += sec->size;
4444 }
4445 /* PR ld/594: Sections in note segments which are not loaded
4446 contribute to the file size but not the in-memory size. */
4447 else if (p->p_type == PT_NOTE
4448 && (flags & SEC_HAS_CONTENTS) != 0)
4449 p->p_filesz += sec->size;
4450
4451 /* .tbss is special. It doesn't contribute to p_memsz of
4452 normal segments. */
4453 else if ((flags & SEC_THREAD_LOCAL) == 0
4454 || p->p_type == PT_TLS)
4455 p->p_memsz += sec->size;
4456
4457 if (p->p_type == PT_TLS
4458 && sec->size == 0
4459 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4460 {
4461 struct bfd_link_order *o;
4462 bfd_vma tbss_size = 0;
4463
4464 for (o = sec->map_head.link_order; o != NULL; o = o->next)
4465 if (tbss_size < o->offset + o->size)
4466 tbss_size = o->offset + o->size;
4467
4468 p->p_memsz += tbss_size;
4469 }
4470
4471 if (align > p->p_align
4472 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4473 p->p_align = align;
4474 }
4475
4476 if (! m->p_flags_valid)
4477 {
4478 p->p_flags |= PF_R;
4479 if ((flags & SEC_CODE) != 0)
4480 p->p_flags |= PF_X;
4481 if ((flags & SEC_READONLY) == 0)
4482 p->p_flags |= PF_W;
4483 }
4484 }
4485 }
4486
4487 /* Now that we have set the section file positions, we can set up
4488 the file positions for the non PT_LOAD segments. */
4489 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4490 m != NULL;
4491 m = m->next, p++)
4492 {
4493 if (p->p_type != PT_LOAD && m->count > 0)
4494 {
4495 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4496 /* If the section has not yet been assigned a file position,
4497 do so now. The ARM BPABI requires that .dynamic section
4498 not be marked SEC_ALLOC because it is not part of any
4499 PT_LOAD segment, so it will not be processed above. */
4500 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4501 {
4502 unsigned int i;
4503 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4504
4505 i = 1;
4506 while (i_shdrpp[i]->bfd_section != m->sections[0])
4507 ++i;
4508 off = (_bfd_elf_assign_file_position_for_section
4509 (i_shdrpp[i], off, TRUE));
4510 p->p_filesz = m->sections[0]->size;
4511 }
4512 p->p_offset = m->sections[0]->filepos;
4513 }
4514 if (m->count == 0)
4515 {
4516 if (m->includes_filehdr)
4517 {
4518 p->p_vaddr = filehdr_vaddr;
4519 if (! m->p_paddr_valid)
4520 p->p_paddr = filehdr_paddr;
4521 }
4522 else if (m->includes_phdrs)
4523 {
4524 p->p_vaddr = phdrs_vaddr;
4525 if (! m->p_paddr_valid)
4526 p->p_paddr = phdrs_paddr;
4527 }
4528 else if (p->p_type == PT_GNU_RELRO)
4529 {
4530 Elf_Internal_Phdr *lp;
4531
4532 for (lp = phdrs; lp < phdrs + count; ++lp)
4533 {
4534 if (lp->p_type == PT_LOAD
4535 && lp->p_vaddr <= link_info->relro_end
4536 && lp->p_vaddr >= link_info->relro_start
4537 && lp->p_vaddr + lp->p_filesz
4538 >= link_info->relro_end)
4539 break;
4540 }
4541
4542 if (lp < phdrs + count
4543 && link_info->relro_end > lp->p_vaddr)
4544 {
4545 p->p_vaddr = lp->p_vaddr;
4546 p->p_paddr = lp->p_paddr;
4547 p->p_offset = lp->p_offset;
4548 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4549 p->p_memsz = p->p_filesz;
4550 p->p_align = 1;
4551 p->p_flags = (lp->p_flags & ~PF_W);
4552 }
4553 else
4554 {
4555 memset (p, 0, sizeof *p);
4556 p->p_type = PT_NULL;
4557 }
4558 }
4559 }
4560 }
4561
4562 /* Clear out any program headers we allocated but did not use. */
4563 for (; count < alloc; count++, p++)
4564 {
4565 memset (p, 0, sizeof *p);
4566 p->p_type = PT_NULL;
4567 }
4568
4569 elf_tdata (abfd)->phdr = phdrs;
4570
4571 elf_tdata (abfd)->next_file_pos = off;
4572
4573 /* Write out the program headers. */
4574 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4575 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4576 return FALSE;
4577
4578 return TRUE;
4579 }
4580
4581 /* Get the size of the program header.
4582
4583 If this is called by the linker before any of the section VMA's are set, it
4584 can't calculate the correct value for a strange memory layout. This only
4585 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4586 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4587 data segment (exclusive of .interp and .dynamic).
4588
4589 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4590 will be two segments. */
4591
4592 static bfd_size_type
4593 get_program_header_size (bfd *abfd)
4594 {
4595 size_t segs;
4596 asection *s;
4597 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4598
4599 /* We can't return a different result each time we're called. */
4600 if (elf_tdata (abfd)->program_header_size != 0)
4601 return elf_tdata (abfd)->program_header_size;
4602
4603 if (elf_tdata (abfd)->segment_map != NULL)
4604 {
4605 struct elf_segment_map *m;
4606
4607 segs = 0;
4608 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4609 ++segs;
4610 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4611 return elf_tdata (abfd)->program_header_size;
4612 }
4613
4614 /* Assume we will need exactly two PT_LOAD segments: one for text
4615 and one for data. */
4616 segs = 2;
4617
4618 s = bfd_get_section_by_name (abfd, ".interp");
4619 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4620 {
4621 /* If we have a loadable interpreter section, we need a
4622 PT_INTERP segment. In this case, assume we also need a
4623 PT_PHDR segment, although that may not be true for all
4624 targets. */
4625 segs += 2;
4626 }
4627
4628 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4629 {
4630 /* We need a PT_DYNAMIC segment. */
4631 ++segs;
4632 }
4633
4634 if (elf_tdata (abfd)->eh_frame_hdr)
4635 {
4636 /* We need a PT_GNU_EH_FRAME segment. */
4637 ++segs;
4638 }
4639
4640 if (elf_tdata (abfd)->stack_flags)
4641 {
4642 /* We need a PT_GNU_STACK segment. */
4643 ++segs;
4644 }
4645
4646 if (elf_tdata (abfd)->relro)
4647 {
4648 /* We need a PT_GNU_RELRO segment. */
4649 ++segs;
4650 }
4651
4652 for (s = abfd->sections; s != NULL; s = s->next)
4653 {
4654 if ((s->flags & SEC_LOAD) != 0
4655 && strncmp (s->name, ".note", 5) == 0)
4656 {
4657 /* We need a PT_NOTE segment. */
4658 ++segs;
4659 }
4660 }
4661
4662 for (s = abfd->sections; s != NULL; s = s->next)
4663 {
4664 if (s->flags & SEC_THREAD_LOCAL)
4665 {
4666 /* We need a PT_TLS segment. */
4667 ++segs;
4668 break;
4669 }
4670 }
4671
4672 /* Let the backend count up any program headers it might need. */
4673 if (bed->elf_backend_additional_program_headers)
4674 {
4675 int a;
4676
4677 a = (*bed->elf_backend_additional_program_headers) (abfd);
4678 if (a == -1)
4679 abort ();
4680 segs += a;
4681 }
4682
4683 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4684 return elf_tdata (abfd)->program_header_size;
4685 }
4686
4687 /* Work out the file positions of all the sections. This is called by
4688 _bfd_elf_compute_section_file_positions. All the section sizes and
4689 VMAs must be known before this is called.
4690
4691 Reloc sections come in two flavours: Those processed specially as
4692 "side-channel" data attached to a section to which they apply, and
4693 those that bfd doesn't process as relocations. The latter sort are
4694 stored in a normal bfd section by bfd_section_from_shdr. We don't
4695 consider the former sort here, unless they form part of the loadable
4696 image. Reloc sections not assigned here will be handled later by
4697 assign_file_positions_for_relocs.
4698
4699 We also don't set the positions of the .symtab and .strtab here. */
4700
4701 static bfd_boolean
4702 assign_file_positions_except_relocs (bfd *abfd,
4703 struct bfd_link_info *link_info)
4704 {
4705 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4706 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4707 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4708 unsigned int num_sec = elf_numsections (abfd);
4709 file_ptr off;
4710 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4711
4712 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4713 && bfd_get_format (abfd) != bfd_core)
4714 {
4715 Elf_Internal_Shdr **hdrpp;
4716 unsigned int i;
4717
4718 /* Start after the ELF header. */
4719 off = i_ehdrp->e_ehsize;
4720
4721 /* We are not creating an executable, which means that we are
4722 not creating a program header, and that the actual order of
4723 the sections in the file is unimportant. */
4724 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4725 {
4726 Elf_Internal_Shdr *hdr;
4727
4728 hdr = *hdrpp;
4729 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4730 && hdr->bfd_section == NULL)
4731 || i == tdata->symtab_section
4732 || i == tdata->symtab_shndx_section
4733 || i == tdata->strtab_section)
4734 {
4735 hdr->sh_offset = -1;
4736 }
4737 else
4738 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4739
4740 if (i == SHN_LORESERVE - 1)
4741 {
4742 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4743 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4744 }
4745 }
4746 }
4747 else
4748 {
4749 unsigned int i;
4750 Elf_Internal_Shdr **hdrpp;
4751
4752 /* Assign file positions for the loaded sections based on the
4753 assignment of sections to segments. */
4754 if (! assign_file_positions_for_segments (abfd, link_info))
4755 return FALSE;
4756
4757 /* Assign file positions for the other sections. */
4758
4759 off = elf_tdata (abfd)->next_file_pos;
4760 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4761 {
4762 Elf_Internal_Shdr *hdr;
4763
4764 hdr = *hdrpp;
4765 if (hdr->bfd_section != NULL
4766 && hdr->bfd_section->filepos != 0)
4767 hdr->sh_offset = hdr->bfd_section->filepos;
4768 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4769 {
4770 ((*_bfd_error_handler)
4771 (_("%B: warning: allocated section `%s' not in segment"),
4772 abfd,
4773 (hdr->bfd_section == NULL
4774 ? "*unknown*"
4775 : hdr->bfd_section->name)));
4776 if ((abfd->flags & D_PAGED) != 0)
4777 off += vma_page_aligned_bias (hdr->sh_addr, off,
4778 bed->maxpagesize);
4779 else
4780 off += vma_page_aligned_bias (hdr->sh_addr, off,
4781 hdr->sh_addralign);
4782 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4783 FALSE);
4784 }
4785 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4786 && hdr->bfd_section == NULL)
4787 || hdr == i_shdrpp[tdata->symtab_section]
4788 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4789 || hdr == i_shdrpp[tdata->strtab_section])
4790 hdr->sh_offset = -1;
4791 else
4792 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4793
4794 if (i == SHN_LORESERVE - 1)
4795 {
4796 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4797 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4798 }
4799 }
4800 }
4801
4802 /* Place the section headers. */
4803 off = align_file_position (off, 1 << bed->s->log_file_align);
4804 i_ehdrp->e_shoff = off;
4805 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4806
4807 elf_tdata (abfd)->next_file_pos = off;
4808
4809 return TRUE;
4810 }
4811
4812 static bfd_boolean
4813 prep_headers (bfd *abfd)
4814 {
4815 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4816 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4817 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4818 struct elf_strtab_hash *shstrtab;
4819 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4820
4821 i_ehdrp = elf_elfheader (abfd);
4822 i_shdrp = elf_elfsections (abfd);
4823
4824 shstrtab = _bfd_elf_strtab_init ();
4825 if (shstrtab == NULL)
4826 return FALSE;
4827
4828 elf_shstrtab (abfd) = shstrtab;
4829
4830 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4831 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4832 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4833 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4834
4835 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4836 i_ehdrp->e_ident[EI_DATA] =
4837 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4838 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4839
4840 if ((abfd->flags & DYNAMIC) != 0)
4841 i_ehdrp->e_type = ET_DYN;
4842 else if ((abfd->flags & EXEC_P) != 0)
4843 i_ehdrp->e_type = ET_EXEC;
4844 else if (bfd_get_format (abfd) == bfd_core)
4845 i_ehdrp->e_type = ET_CORE;
4846 else
4847 i_ehdrp->e_type = ET_REL;
4848
4849 switch (bfd_get_arch (abfd))
4850 {
4851 case bfd_arch_unknown:
4852 i_ehdrp->e_machine = EM_NONE;
4853 break;
4854
4855 /* There used to be a long list of cases here, each one setting
4856 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4857 in the corresponding bfd definition. To avoid duplication,
4858 the switch was removed. Machines that need special handling
4859 can generally do it in elf_backend_final_write_processing(),
4860 unless they need the information earlier than the final write.
4861 Such need can generally be supplied by replacing the tests for
4862 e_machine with the conditions used to determine it. */
4863 default:
4864 i_ehdrp->e_machine = bed->elf_machine_code;
4865 }
4866
4867 i_ehdrp->e_version = bed->s->ev_current;
4868 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4869
4870 /* No program header, for now. */
4871 i_ehdrp->e_phoff = 0;
4872 i_ehdrp->e_phentsize = 0;
4873 i_ehdrp->e_phnum = 0;
4874
4875 /* Each bfd section is section header entry. */
4876 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4877 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4878
4879 /* If we're building an executable, we'll need a program header table. */
4880 if (abfd->flags & EXEC_P)
4881 /* It all happens later. */
4882 ;
4883 else
4884 {
4885 i_ehdrp->e_phentsize = 0;
4886 i_phdrp = 0;
4887 i_ehdrp->e_phoff = 0;
4888 }
4889
4890 elf_tdata (abfd)->symtab_hdr.sh_name =
4891 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4892 elf_tdata (abfd)->strtab_hdr.sh_name =
4893 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4894 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4895 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4896 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4897 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4898 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4899 return FALSE;
4900
4901 return TRUE;
4902 }
4903
4904 /* Assign file positions for all the reloc sections which are not part
4905 of the loadable file image. */
4906
4907 void
4908 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4909 {
4910 file_ptr off;
4911 unsigned int i, num_sec;
4912 Elf_Internal_Shdr **shdrpp;
4913
4914 off = elf_tdata (abfd)->next_file_pos;
4915
4916 num_sec = elf_numsections (abfd);
4917 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4918 {
4919 Elf_Internal_Shdr *shdrp;
4920
4921 shdrp = *shdrpp;
4922 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4923 && shdrp->sh_offset == -1)
4924 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4925 }
4926
4927 elf_tdata (abfd)->next_file_pos = off;
4928 }
4929
4930 bfd_boolean
4931 _bfd_elf_write_object_contents (bfd *abfd)
4932 {
4933 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4934 Elf_Internal_Ehdr *i_ehdrp;
4935 Elf_Internal_Shdr **i_shdrp;
4936 bfd_boolean failed;
4937 unsigned int count, num_sec;
4938
4939 if (! abfd->output_has_begun
4940 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4941 return FALSE;
4942
4943 i_shdrp = elf_elfsections (abfd);
4944 i_ehdrp = elf_elfheader (abfd);
4945
4946 failed = FALSE;
4947 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4948 if (failed)
4949 return FALSE;
4950
4951 _bfd_elf_assign_file_positions_for_relocs (abfd);
4952
4953 /* After writing the headers, we need to write the sections too... */
4954 num_sec = elf_numsections (abfd);
4955 for (count = 1; count < num_sec; count++)
4956 {
4957 if (bed->elf_backend_section_processing)
4958 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4959 if (i_shdrp[count]->contents)
4960 {
4961 bfd_size_type amt = i_shdrp[count]->sh_size;
4962
4963 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4964 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4965 return FALSE;
4966 }
4967 if (count == SHN_LORESERVE - 1)
4968 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4969 }
4970
4971 /* Write out the section header names. */
4972 if (elf_shstrtab (abfd) != NULL
4973 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4974 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4975 return FALSE;
4976
4977 if (bed->elf_backend_final_write_processing)
4978 (*bed->elf_backend_final_write_processing) (abfd,
4979 elf_tdata (abfd)->linker);
4980
4981 return bed->s->write_shdrs_and_ehdr (abfd);
4982 }
4983
4984 bfd_boolean
4985 _bfd_elf_write_corefile_contents (bfd *abfd)
4986 {
4987 /* Hopefully this can be done just like an object file. */
4988 return _bfd_elf_write_object_contents (abfd);
4989 }
4990
4991 /* Given a section, search the header to find them. */
4992
4993 int
4994 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4995 {
4996 const struct elf_backend_data *bed;
4997 int index;
4998
4999 if (elf_section_data (asect) != NULL
5000 && elf_section_data (asect)->this_idx != 0)
5001 return elf_section_data (asect)->this_idx;
5002
5003 if (bfd_is_abs_section (asect))
5004 index = SHN_ABS;
5005 else if (bfd_is_com_section (asect))
5006 index = SHN_COMMON;
5007 else if (bfd_is_und_section (asect))
5008 index = SHN_UNDEF;
5009 else
5010 index = -1;
5011
5012 bed = get_elf_backend_data (abfd);
5013 if (bed->elf_backend_section_from_bfd_section)
5014 {
5015 int retval = index;
5016
5017 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5018 return retval;
5019 }
5020
5021 if (index == -1)
5022 bfd_set_error (bfd_error_nonrepresentable_section);
5023
5024 return index;
5025 }
5026
5027 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5028 on error. */
5029
5030 int
5031 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5032 {
5033 asymbol *asym_ptr = *asym_ptr_ptr;
5034 int idx;
5035 flagword flags = asym_ptr->flags;
5036
5037 /* When gas creates relocations against local labels, it creates its
5038 own symbol for the section, but does put the symbol into the
5039 symbol chain, so udata is 0. When the linker is generating
5040 relocatable output, this section symbol may be for one of the
5041 input sections rather than the output section. */
5042 if (asym_ptr->udata.i == 0
5043 && (flags & BSF_SECTION_SYM)
5044 && asym_ptr->section)
5045 {
5046 int indx;
5047
5048 if (asym_ptr->section->output_section != NULL)
5049 indx = asym_ptr->section->output_section->index;
5050 else
5051 indx = asym_ptr->section->index;
5052 if (indx < elf_num_section_syms (abfd)
5053 && elf_section_syms (abfd)[indx] != NULL)
5054 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5055 }
5056
5057 idx = asym_ptr->udata.i;
5058
5059 if (idx == 0)
5060 {
5061 /* This case can occur when using --strip-symbol on a symbol
5062 which is used in a relocation entry. */
5063 (*_bfd_error_handler)
5064 (_("%B: symbol `%s' required but not present"),
5065 abfd, bfd_asymbol_name (asym_ptr));
5066 bfd_set_error (bfd_error_no_symbols);
5067 return -1;
5068 }
5069
5070 #if DEBUG & 4
5071 {
5072 fprintf (stderr,
5073 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5074 (long) asym_ptr, asym_ptr->name, idx, flags,
5075 elf_symbol_flags (flags));
5076 fflush (stderr);
5077 }
5078 #endif
5079
5080 return idx;
5081 }
5082
5083 /* Copy private BFD data. This copies any program header information. */
5084
5085 static bfd_boolean
5086 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5087 {
5088 Elf_Internal_Ehdr *iehdr;
5089 struct elf_segment_map *map;
5090 struct elf_segment_map *map_first;
5091 struct elf_segment_map **pointer_to_map;
5092 Elf_Internal_Phdr *segment;
5093 asection *section;
5094 unsigned int i;
5095 unsigned int num_segments;
5096 bfd_boolean phdr_included = FALSE;
5097 bfd_vma maxpagesize;
5098 struct elf_segment_map *phdr_adjust_seg = NULL;
5099 unsigned int phdr_adjust_num = 0;
5100 const struct elf_backend_data *bed;
5101
5102 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5103 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5104 return TRUE;
5105
5106 if (elf_tdata (ibfd)->phdr == NULL)
5107 return TRUE;
5108
5109 bed = get_elf_backend_data (ibfd);
5110 iehdr = elf_elfheader (ibfd);
5111
5112 map_first = NULL;
5113 pointer_to_map = &map_first;
5114
5115 num_segments = elf_elfheader (ibfd)->e_phnum;
5116 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5117
5118 /* Returns the end address of the segment + 1. */
5119 #define SEGMENT_END(segment, start) \
5120 (start + (segment->p_memsz > segment->p_filesz \
5121 ? segment->p_memsz : segment->p_filesz))
5122
5123 #define SECTION_SIZE(section, segment) \
5124 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5125 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5126 ? section->size : 0)
5127
5128 /* Returns TRUE if the given section is contained within
5129 the given segment. VMA addresses are compared. */
5130 #define IS_CONTAINED_BY_VMA(section, segment) \
5131 (section->vma >= segment->p_vaddr \
5132 && (section->vma + SECTION_SIZE (section, segment) \
5133 <= (SEGMENT_END (segment, segment->p_vaddr))))
5134
5135 /* Returns TRUE if the given section is contained within
5136 the given segment. LMA addresses are compared. */
5137 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5138 (section->lma >= base \
5139 && (section->lma + SECTION_SIZE (section, segment) \
5140 <= SEGMENT_END (segment, base)))
5141
5142 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5143 #define IS_COREFILE_NOTE(p, s) \
5144 (p->p_type == PT_NOTE \
5145 && bfd_get_format (ibfd) == bfd_core \
5146 && s->vma == 0 && s->lma == 0 \
5147 && (bfd_vma) s->filepos >= p->p_offset \
5148 && ((bfd_vma) s->filepos + s->size \
5149 <= p->p_offset + p->p_filesz))
5150
5151 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5152 linker, which generates a PT_INTERP section with p_vaddr and
5153 p_memsz set to 0. */
5154 #define IS_SOLARIS_PT_INTERP(p, s) \
5155 (p->p_vaddr == 0 \
5156 && p->p_paddr == 0 \
5157 && p->p_memsz == 0 \
5158 && p->p_filesz > 0 \
5159 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5160 && s->size > 0 \
5161 && (bfd_vma) s->filepos >= p->p_offset \
5162 && ((bfd_vma) s->filepos + s->size \
5163 <= p->p_offset + p->p_filesz))
5164
5165 /* Decide if the given section should be included in the given segment.
5166 A section will be included if:
5167 1. It is within the address space of the segment -- we use the LMA
5168 if that is set for the segment and the VMA otherwise,
5169 2. It is an allocated segment,
5170 3. There is an output section associated with it,
5171 4. The section has not already been allocated to a previous segment.
5172 5. PT_GNU_STACK segments do not include any sections.
5173 6. PT_TLS segment includes only SHF_TLS sections.
5174 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5175 8. PT_DYNAMIC should not contain empty sections at the beginning
5176 (with the possible exception of .dynamic). */
5177 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5178 ((((segment->p_paddr \
5179 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5180 : IS_CONTAINED_BY_VMA (section, segment)) \
5181 && (section->flags & SEC_ALLOC) != 0) \
5182 || IS_COREFILE_NOTE (segment, section)) \
5183 && section->output_section != NULL \
5184 && segment->p_type != PT_GNU_STACK \
5185 && (segment->p_type != PT_TLS \
5186 || (section->flags & SEC_THREAD_LOCAL)) \
5187 && (segment->p_type == PT_LOAD \
5188 || segment->p_type == PT_TLS \
5189 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5190 && (segment->p_type != PT_DYNAMIC \
5191 || SECTION_SIZE (section, segment) > 0 \
5192 || (segment->p_paddr \
5193 ? segment->p_paddr != section->lma \
5194 : segment->p_vaddr != section->vma) \
5195 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5196 == 0)) \
5197 && ! section->segment_mark)
5198
5199 /* Returns TRUE iff seg1 starts after the end of seg2. */
5200 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5201 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5202
5203 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5204 their VMA address ranges and their LMA address ranges overlap.
5205 It is possible to have overlapping VMA ranges without overlapping LMA
5206 ranges. RedBoot images for example can have both .data and .bss mapped
5207 to the same VMA range, but with the .data section mapped to a different
5208 LMA. */
5209 #define SEGMENT_OVERLAPS(seg1, seg2) \
5210 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5211 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5212 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5213 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5214
5215 /* Initialise the segment mark field. */
5216 for (section = ibfd->sections; section != NULL; section = section->next)
5217 section->segment_mark = FALSE;
5218
5219 /* Scan through the segments specified in the program header
5220 of the input BFD. For this first scan we look for overlaps
5221 in the loadable segments. These can be created by weird
5222 parameters to objcopy. Also, fix some solaris weirdness. */
5223 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5224 i < num_segments;
5225 i++, segment++)
5226 {
5227 unsigned int j;
5228 Elf_Internal_Phdr *segment2;
5229
5230 if (segment->p_type == PT_INTERP)
5231 for (section = ibfd->sections; section; section = section->next)
5232 if (IS_SOLARIS_PT_INTERP (segment, section))
5233 {
5234 /* Mininal change so that the normal section to segment
5235 assignment code will work. */
5236 segment->p_vaddr = section->vma;
5237 break;
5238 }
5239
5240 if (segment->p_type != PT_LOAD)
5241 continue;
5242
5243 /* Determine if this segment overlaps any previous segments. */
5244 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5245 {
5246 bfd_signed_vma extra_length;
5247
5248 if (segment2->p_type != PT_LOAD
5249 || ! SEGMENT_OVERLAPS (segment, segment2))
5250 continue;
5251
5252 /* Merge the two segments together. */
5253 if (segment2->p_vaddr < segment->p_vaddr)
5254 {
5255 /* Extend SEGMENT2 to include SEGMENT and then delete
5256 SEGMENT. */
5257 extra_length =
5258 SEGMENT_END (segment, segment->p_vaddr)
5259 - SEGMENT_END (segment2, segment2->p_vaddr);
5260
5261 if (extra_length > 0)
5262 {
5263 segment2->p_memsz += extra_length;
5264 segment2->p_filesz += extra_length;
5265 }
5266
5267 segment->p_type = PT_NULL;
5268
5269 /* Since we have deleted P we must restart the outer loop. */
5270 i = 0;
5271 segment = elf_tdata (ibfd)->phdr;
5272 break;
5273 }
5274 else
5275 {
5276 /* Extend SEGMENT to include SEGMENT2 and then delete
5277 SEGMENT2. */
5278 extra_length =
5279 SEGMENT_END (segment2, segment2->p_vaddr)
5280 - SEGMENT_END (segment, segment->p_vaddr);
5281
5282 if (extra_length > 0)
5283 {
5284 segment->p_memsz += extra_length;
5285 segment->p_filesz += extra_length;
5286 }
5287
5288 segment2->p_type = PT_NULL;
5289 }
5290 }
5291 }
5292
5293 /* The second scan attempts to assign sections to segments. */
5294 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5295 i < num_segments;
5296 i ++, segment ++)
5297 {
5298 unsigned int section_count;
5299 asection ** sections;
5300 asection * output_section;
5301 unsigned int isec;
5302 bfd_vma matching_lma;
5303 bfd_vma suggested_lma;
5304 unsigned int j;
5305 bfd_size_type amt;
5306
5307 if (segment->p_type == PT_NULL)
5308 continue;
5309
5310 /* Compute how many sections might be placed into this segment. */
5311 for (section = ibfd->sections, section_count = 0;
5312 section != NULL;
5313 section = section->next)
5314 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5315 ++section_count;
5316
5317 /* Allocate a segment map big enough to contain
5318 all of the sections we have selected. */
5319 amt = sizeof (struct elf_segment_map);
5320 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5321 map = bfd_alloc (obfd, amt);
5322 if (map == NULL)
5323 return FALSE;
5324
5325 /* Initialise the fields of the segment map. Default to
5326 using the physical address of the segment in the input BFD. */
5327 map->next = NULL;
5328 map->p_type = segment->p_type;
5329 map->p_flags = segment->p_flags;
5330 map->p_flags_valid = 1;
5331 map->p_paddr = segment->p_paddr;
5332 map->p_paddr_valid = 1;
5333
5334 /* Determine if this segment contains the ELF file header
5335 and if it contains the program headers themselves. */
5336 map->includes_filehdr = (segment->p_offset == 0
5337 && segment->p_filesz >= iehdr->e_ehsize);
5338
5339 map->includes_phdrs = 0;
5340
5341 if (! phdr_included || segment->p_type != PT_LOAD)
5342 {
5343 map->includes_phdrs =
5344 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5345 && (segment->p_offset + segment->p_filesz
5346 >= ((bfd_vma) iehdr->e_phoff
5347 + iehdr->e_phnum * iehdr->e_phentsize)));
5348
5349 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5350 phdr_included = TRUE;
5351 }
5352
5353 if (section_count == 0)
5354 {
5355 /* Special segments, such as the PT_PHDR segment, may contain
5356 no sections, but ordinary, loadable segments should contain
5357 something. They are allowed by the ELF spec however, so only
5358 a warning is produced. */
5359 if (segment->p_type == PT_LOAD)
5360 (*_bfd_error_handler)
5361 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5362 ibfd);
5363
5364 map->count = 0;
5365 *pointer_to_map = map;
5366 pointer_to_map = &map->next;
5367
5368 continue;
5369 }
5370
5371 /* Now scan the sections in the input BFD again and attempt
5372 to add their corresponding output sections to the segment map.
5373 The problem here is how to handle an output section which has
5374 been moved (ie had its LMA changed). There are four possibilities:
5375
5376 1. None of the sections have been moved.
5377 In this case we can continue to use the segment LMA from the
5378 input BFD.
5379
5380 2. All of the sections have been moved by the same amount.
5381 In this case we can change the segment's LMA to match the LMA
5382 of the first section.
5383
5384 3. Some of the sections have been moved, others have not.
5385 In this case those sections which have not been moved can be
5386 placed in the current segment which will have to have its size,
5387 and possibly its LMA changed, and a new segment or segments will
5388 have to be created to contain the other sections.
5389
5390 4. The sections have been moved, but not by the same amount.
5391 In this case we can change the segment's LMA to match the LMA
5392 of the first section and we will have to create a new segment
5393 or segments to contain the other sections.
5394
5395 In order to save time, we allocate an array to hold the section
5396 pointers that we are interested in. As these sections get assigned
5397 to a segment, they are removed from this array. */
5398
5399 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5400 to work around this long long bug. */
5401 sections = bfd_malloc2 (section_count, sizeof (asection *));
5402 if (sections == NULL)
5403 return FALSE;
5404
5405 /* Step One: Scan for segment vs section LMA conflicts.
5406 Also add the sections to the section array allocated above.
5407 Also add the sections to the current segment. In the common
5408 case, where the sections have not been moved, this means that
5409 we have completely filled the segment, and there is nothing
5410 more to do. */
5411 isec = 0;
5412 matching_lma = 0;
5413 suggested_lma = 0;
5414
5415 for (j = 0, section = ibfd->sections;
5416 section != NULL;
5417 section = section->next)
5418 {
5419 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5420 {
5421 output_section = section->output_section;
5422
5423 sections[j ++] = section;
5424
5425 /* The Solaris native linker always sets p_paddr to 0.
5426 We try to catch that case here, and set it to the
5427 correct value. Note - some backends require that
5428 p_paddr be left as zero. */
5429 if (segment->p_paddr == 0
5430 && segment->p_vaddr != 0
5431 && (! bed->want_p_paddr_set_to_zero)
5432 && isec == 0
5433 && output_section->lma != 0
5434 && (output_section->vma == (segment->p_vaddr
5435 + (map->includes_filehdr
5436 ? iehdr->e_ehsize
5437 : 0)
5438 + (map->includes_phdrs
5439 ? (iehdr->e_phnum
5440 * iehdr->e_phentsize)
5441 : 0))))
5442 map->p_paddr = segment->p_vaddr;
5443
5444 /* Match up the physical address of the segment with the
5445 LMA address of the output section. */
5446 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5447 || IS_COREFILE_NOTE (segment, section)
5448 || (bed->want_p_paddr_set_to_zero &&
5449 IS_CONTAINED_BY_VMA (output_section, segment))
5450 )
5451 {
5452 if (matching_lma == 0)
5453 matching_lma = output_section->lma;
5454
5455 /* We assume that if the section fits within the segment
5456 then it does not overlap any other section within that
5457 segment. */
5458 map->sections[isec ++] = output_section;
5459 }
5460 else if (suggested_lma == 0)
5461 suggested_lma = output_section->lma;
5462 }
5463 }
5464
5465 BFD_ASSERT (j == section_count);
5466
5467 /* Step Two: Adjust the physical address of the current segment,
5468 if necessary. */
5469 if (isec == section_count)
5470 {
5471 /* All of the sections fitted within the segment as currently
5472 specified. This is the default case. Add the segment to
5473 the list of built segments and carry on to process the next
5474 program header in the input BFD. */
5475 map->count = section_count;
5476 *pointer_to_map = map;
5477 pointer_to_map = &map->next;
5478
5479 free (sections);
5480 continue;
5481 }
5482 else
5483 {
5484 if (matching_lma != 0)
5485 {
5486 /* At least one section fits inside the current segment.
5487 Keep it, but modify its physical address to match the
5488 LMA of the first section that fitted. */
5489 map->p_paddr = matching_lma;
5490 }
5491 else
5492 {
5493 /* None of the sections fitted inside the current segment.
5494 Change the current segment's physical address to match
5495 the LMA of the first section. */
5496 map->p_paddr = suggested_lma;
5497 }
5498
5499 /* Offset the segment physical address from the lma
5500 to allow for space taken up by elf headers. */
5501 if (map->includes_filehdr)
5502 map->p_paddr -= iehdr->e_ehsize;
5503
5504 if (map->includes_phdrs)
5505 {
5506 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5507
5508 /* iehdr->e_phnum is just an estimate of the number
5509 of program headers that we will need. Make a note
5510 here of the number we used and the segment we chose
5511 to hold these headers, so that we can adjust the
5512 offset when we know the correct value. */
5513 phdr_adjust_num = iehdr->e_phnum;
5514 phdr_adjust_seg = map;
5515 }
5516 }
5517
5518 /* Step Three: Loop over the sections again, this time assigning
5519 those that fit to the current segment and removing them from the
5520 sections array; but making sure not to leave large gaps. Once all
5521 possible sections have been assigned to the current segment it is
5522 added to the list of built segments and if sections still remain
5523 to be assigned, a new segment is constructed before repeating
5524 the loop. */
5525 isec = 0;
5526 do
5527 {
5528 map->count = 0;
5529 suggested_lma = 0;
5530
5531 /* Fill the current segment with sections that fit. */
5532 for (j = 0; j < section_count; j++)
5533 {
5534 section = sections[j];
5535
5536 if (section == NULL)
5537 continue;
5538
5539 output_section = section->output_section;
5540
5541 BFD_ASSERT (output_section != NULL);
5542
5543 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5544 || IS_COREFILE_NOTE (segment, section))
5545 {
5546 if (map->count == 0)
5547 {
5548 /* If the first section in a segment does not start at
5549 the beginning of the segment, then something is
5550 wrong. */
5551 if (output_section->lma !=
5552 (map->p_paddr
5553 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5554 + (map->includes_phdrs
5555 ? iehdr->e_phnum * iehdr->e_phentsize
5556 : 0)))
5557 abort ();
5558 }
5559 else
5560 {
5561 asection * prev_sec;
5562
5563 prev_sec = map->sections[map->count - 1];
5564
5565 /* If the gap between the end of the previous section
5566 and the start of this section is more than
5567 maxpagesize then we need to start a new segment. */
5568 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5569 maxpagesize)
5570 < BFD_ALIGN (output_section->lma, maxpagesize))
5571 || ((prev_sec->lma + prev_sec->size)
5572 > output_section->lma))
5573 {
5574 if (suggested_lma == 0)
5575 suggested_lma = output_section->lma;
5576
5577 continue;
5578 }
5579 }
5580
5581 map->sections[map->count++] = output_section;
5582 ++isec;
5583 sections[j] = NULL;
5584 section->segment_mark = TRUE;
5585 }
5586 else if (suggested_lma == 0)
5587 suggested_lma = output_section->lma;
5588 }
5589
5590 BFD_ASSERT (map->count > 0);
5591
5592 /* Add the current segment to the list of built segments. */
5593 *pointer_to_map = map;
5594 pointer_to_map = &map->next;
5595
5596 if (isec < section_count)
5597 {
5598 /* We still have not allocated all of the sections to
5599 segments. Create a new segment here, initialise it
5600 and carry on looping. */
5601 amt = sizeof (struct elf_segment_map);
5602 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5603 map = bfd_alloc (obfd, amt);
5604 if (map == NULL)
5605 {
5606 free (sections);
5607 return FALSE;
5608 }
5609
5610 /* Initialise the fields of the segment map. Set the physical
5611 physical address to the LMA of the first section that has
5612 not yet been assigned. */
5613 map->next = NULL;
5614 map->p_type = segment->p_type;
5615 map->p_flags = segment->p_flags;
5616 map->p_flags_valid = 1;
5617 map->p_paddr = suggested_lma;
5618 map->p_paddr_valid = 1;
5619 map->includes_filehdr = 0;
5620 map->includes_phdrs = 0;
5621 }
5622 }
5623 while (isec < section_count);
5624
5625 free (sections);
5626 }
5627
5628 /* The Solaris linker creates program headers in which all the
5629 p_paddr fields are zero. When we try to objcopy or strip such a
5630 file, we get confused. Check for this case, and if we find it
5631 reset the p_paddr_valid fields. */
5632 for (map = map_first; map != NULL; map = map->next)
5633 if (map->p_paddr != 0)
5634 break;
5635 if (map == NULL)
5636 for (map = map_first; map != NULL; map = map->next)
5637 map->p_paddr_valid = 0;
5638
5639 elf_tdata (obfd)->segment_map = map_first;
5640
5641 /* If we had to estimate the number of program headers that were
5642 going to be needed, then check our estimate now and adjust
5643 the offset if necessary. */
5644 if (phdr_adjust_seg != NULL)
5645 {
5646 unsigned int count;
5647
5648 for (count = 0, map = map_first; map != NULL; map = map->next)
5649 count++;
5650
5651 if (count > phdr_adjust_num)
5652 phdr_adjust_seg->p_paddr
5653 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5654 }
5655
5656 #undef SEGMENT_END
5657 #undef SECTION_SIZE
5658 #undef IS_CONTAINED_BY_VMA
5659 #undef IS_CONTAINED_BY_LMA
5660 #undef IS_COREFILE_NOTE
5661 #undef IS_SOLARIS_PT_INTERP
5662 #undef INCLUDE_SECTION_IN_SEGMENT
5663 #undef SEGMENT_AFTER_SEGMENT
5664 #undef SEGMENT_OVERLAPS
5665 return TRUE;
5666 }
5667
5668 /* Copy private section information. This copies over the entsize
5669 field, and sometimes the info field. */
5670
5671 bfd_boolean
5672 _bfd_elf_copy_private_section_data (bfd *ibfd,
5673 asection *isec,
5674 bfd *obfd,
5675 asection *osec)
5676 {
5677 Elf_Internal_Shdr *ihdr, *ohdr;
5678
5679 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5680 || obfd->xvec->flavour != bfd_target_elf_flavour)
5681 return TRUE;
5682
5683 ihdr = &elf_section_data (isec)->this_hdr;
5684 ohdr = &elf_section_data (osec)->this_hdr;
5685
5686 ohdr->sh_entsize = ihdr->sh_entsize;
5687
5688 if (ihdr->sh_type == SHT_SYMTAB
5689 || ihdr->sh_type == SHT_DYNSYM
5690 || ihdr->sh_type == SHT_GNU_verneed
5691 || ihdr->sh_type == SHT_GNU_verdef)
5692 ohdr->sh_info = ihdr->sh_info;
5693
5694 /* Set things up for objcopy. The output SHT_GROUP section will
5695 have its elf_next_in_group pointing back to the input group
5696 members. Ignore linker created group section. See
5697 elfNN_ia64_object_p in elfxx-ia64.c. We also need to handle
5698 elf_linked_to_section for SHF_LINK_ORDER. */
5699
5700 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0
5701 && elf_linked_to_section (isec) != 0)
5702 elf_linked_to_section (osec)
5703 = elf_linked_to_section (isec)->output_section;
5704
5705 if (elf_sec_group (isec) == NULL
5706 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5707 {
5708 elf_next_in_group (osec) = elf_next_in_group (isec);
5709 elf_group_name (osec) = elf_group_name (isec);
5710 }
5711
5712 osec->use_rela_p = isec->use_rela_p;
5713
5714 return TRUE;
5715 }
5716
5717 /* Copy private header information. */
5718
5719 bfd_boolean
5720 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5721 {
5722 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5723 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5724 return TRUE;
5725
5726 /* Copy over private BFD data if it has not already been copied.
5727 This must be done here, rather than in the copy_private_bfd_data
5728 entry point, because the latter is called after the section
5729 contents have been set, which means that the program headers have
5730 already been worked out. */
5731 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5732 {
5733 if (! copy_private_bfd_data (ibfd, obfd))
5734 return FALSE;
5735 }
5736
5737 return TRUE;
5738 }
5739
5740 /* Copy private symbol information. If this symbol is in a section
5741 which we did not map into a BFD section, try to map the section
5742 index correctly. We use special macro definitions for the mapped
5743 section indices; these definitions are interpreted by the
5744 swap_out_syms function. */
5745
5746 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5747 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5748 #define MAP_STRTAB (SHN_HIOS + 3)
5749 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5750 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5751
5752 bfd_boolean
5753 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5754 asymbol *isymarg,
5755 bfd *obfd,
5756 asymbol *osymarg)
5757 {
5758 elf_symbol_type *isym, *osym;
5759
5760 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5761 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5762 return TRUE;
5763
5764 isym = elf_symbol_from (ibfd, isymarg);
5765 osym = elf_symbol_from (obfd, osymarg);
5766
5767 if (isym != NULL
5768 && osym != NULL
5769 && bfd_is_abs_section (isym->symbol.section))
5770 {
5771 unsigned int shndx;
5772
5773 shndx = isym->internal_elf_sym.st_shndx;
5774 if (shndx == elf_onesymtab (ibfd))
5775 shndx = MAP_ONESYMTAB;
5776 else if (shndx == elf_dynsymtab (ibfd))
5777 shndx = MAP_DYNSYMTAB;
5778 else if (shndx == elf_tdata (ibfd)->strtab_section)
5779 shndx = MAP_STRTAB;
5780 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5781 shndx = MAP_SHSTRTAB;
5782 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5783 shndx = MAP_SYM_SHNDX;
5784 osym->internal_elf_sym.st_shndx = shndx;
5785 }
5786
5787 return TRUE;
5788 }
5789
5790 /* Swap out the symbols. */
5791
5792 static bfd_boolean
5793 swap_out_syms (bfd *abfd,
5794 struct bfd_strtab_hash **sttp,
5795 int relocatable_p)
5796 {
5797 const struct elf_backend_data *bed;
5798 int symcount;
5799 asymbol **syms;
5800 struct bfd_strtab_hash *stt;
5801 Elf_Internal_Shdr *symtab_hdr;
5802 Elf_Internal_Shdr *symtab_shndx_hdr;
5803 Elf_Internal_Shdr *symstrtab_hdr;
5804 bfd_byte *outbound_syms;
5805 bfd_byte *outbound_shndx;
5806 int idx;
5807 bfd_size_type amt;
5808 bfd_boolean name_local_sections;
5809
5810 if (!elf_map_symbols (abfd))
5811 return FALSE;
5812
5813 /* Dump out the symtabs. */
5814 stt = _bfd_elf_stringtab_init ();
5815 if (stt == NULL)
5816 return FALSE;
5817
5818 bed = get_elf_backend_data (abfd);
5819 symcount = bfd_get_symcount (abfd);
5820 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5821 symtab_hdr->sh_type = SHT_SYMTAB;
5822 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5823 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5824 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5825 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5826
5827 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5828 symstrtab_hdr->sh_type = SHT_STRTAB;
5829
5830 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
5831 if (outbound_syms == NULL)
5832 {
5833 _bfd_stringtab_free (stt);
5834 return FALSE;
5835 }
5836 symtab_hdr->contents = outbound_syms;
5837
5838 outbound_shndx = NULL;
5839 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5840 if (symtab_shndx_hdr->sh_name != 0)
5841 {
5842 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5843 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
5844 sizeof (Elf_External_Sym_Shndx));
5845 if (outbound_shndx == NULL)
5846 {
5847 _bfd_stringtab_free (stt);
5848 return FALSE;
5849 }
5850
5851 symtab_shndx_hdr->contents = outbound_shndx;
5852 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5853 symtab_shndx_hdr->sh_size = amt;
5854 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5855 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5856 }
5857
5858 /* Now generate the data (for "contents"). */
5859 {
5860 /* Fill in zeroth symbol and swap it out. */
5861 Elf_Internal_Sym sym;
5862 sym.st_name = 0;
5863 sym.st_value = 0;
5864 sym.st_size = 0;
5865 sym.st_info = 0;
5866 sym.st_other = 0;
5867 sym.st_shndx = SHN_UNDEF;
5868 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5869 outbound_syms += bed->s->sizeof_sym;
5870 if (outbound_shndx != NULL)
5871 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5872 }
5873
5874 name_local_sections
5875 = (bed->elf_backend_name_local_section_symbols
5876 && bed->elf_backend_name_local_section_symbols (abfd));
5877
5878 syms = bfd_get_outsymbols (abfd);
5879 for (idx = 0; idx < symcount; idx++)
5880 {
5881 Elf_Internal_Sym sym;
5882 bfd_vma value = syms[idx]->value;
5883 elf_symbol_type *type_ptr;
5884 flagword flags = syms[idx]->flags;
5885 int type;
5886
5887 if (!name_local_sections
5888 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5889 {
5890 /* Local section symbols have no name. */
5891 sym.st_name = 0;
5892 }
5893 else
5894 {
5895 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5896 syms[idx]->name,
5897 TRUE, FALSE);
5898 if (sym.st_name == (unsigned long) -1)
5899 {
5900 _bfd_stringtab_free (stt);
5901 return FALSE;
5902 }
5903 }
5904
5905 type_ptr = elf_symbol_from (abfd, syms[idx]);
5906
5907 if ((flags & BSF_SECTION_SYM) == 0
5908 && bfd_is_com_section (syms[idx]->section))
5909 {
5910 /* ELF common symbols put the alignment into the `value' field,
5911 and the size into the `size' field. This is backwards from
5912 how BFD handles it, so reverse it here. */
5913 sym.st_size = value;
5914 if (type_ptr == NULL
5915 || type_ptr->internal_elf_sym.st_value == 0)
5916 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5917 else
5918 sym.st_value = type_ptr->internal_elf_sym.st_value;
5919 sym.st_shndx = _bfd_elf_section_from_bfd_section
5920 (abfd, syms[idx]->section);
5921 }
5922 else
5923 {
5924 asection *sec = syms[idx]->section;
5925 int shndx;
5926
5927 if (sec->output_section)
5928 {
5929 value += sec->output_offset;
5930 sec = sec->output_section;
5931 }
5932
5933 /* Don't add in the section vma for relocatable output. */
5934 if (! relocatable_p)
5935 value += sec->vma;
5936 sym.st_value = value;
5937 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5938
5939 if (bfd_is_abs_section (sec)
5940 && type_ptr != NULL
5941 && type_ptr->internal_elf_sym.st_shndx != 0)
5942 {
5943 /* This symbol is in a real ELF section which we did
5944 not create as a BFD section. Undo the mapping done
5945 by copy_private_symbol_data. */
5946 shndx = type_ptr->internal_elf_sym.st_shndx;
5947 switch (shndx)
5948 {
5949 case MAP_ONESYMTAB:
5950 shndx = elf_onesymtab (abfd);
5951 break;
5952 case MAP_DYNSYMTAB:
5953 shndx = elf_dynsymtab (abfd);
5954 break;
5955 case MAP_STRTAB:
5956 shndx = elf_tdata (abfd)->strtab_section;
5957 break;
5958 case MAP_SHSTRTAB:
5959 shndx = elf_tdata (abfd)->shstrtab_section;
5960 break;
5961 case MAP_SYM_SHNDX:
5962 shndx = elf_tdata (abfd)->symtab_shndx_section;
5963 break;
5964 default:
5965 break;
5966 }
5967 }
5968 else
5969 {
5970 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5971
5972 if (shndx == -1)
5973 {
5974 asection *sec2;
5975
5976 /* Writing this would be a hell of a lot easier if
5977 we had some decent documentation on bfd, and
5978 knew what to expect of the library, and what to
5979 demand of applications. For example, it
5980 appears that `objcopy' might not set the
5981 section of a symbol to be a section that is
5982 actually in the output file. */
5983 sec2 = bfd_get_section_by_name (abfd, sec->name);
5984 if (sec2 == NULL)
5985 {
5986 _bfd_error_handler (_("\
5987 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5988 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5989 sec->name);
5990 bfd_set_error (bfd_error_invalid_operation);
5991 _bfd_stringtab_free (stt);
5992 return FALSE;
5993 }
5994
5995 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5996 BFD_ASSERT (shndx != -1);
5997 }
5998 }
5999
6000 sym.st_shndx = shndx;
6001 }
6002
6003 if ((flags & BSF_THREAD_LOCAL) != 0)
6004 type = STT_TLS;
6005 else if ((flags & BSF_FUNCTION) != 0)
6006 type = STT_FUNC;
6007 else if ((flags & BSF_OBJECT) != 0)
6008 type = STT_OBJECT;
6009 else
6010 type = STT_NOTYPE;
6011
6012 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6013 type = STT_TLS;
6014
6015 /* Processor-specific types. */
6016 if (type_ptr != NULL
6017 && bed->elf_backend_get_symbol_type)
6018 type = ((*bed->elf_backend_get_symbol_type)
6019 (&type_ptr->internal_elf_sym, type));
6020
6021 if (flags & BSF_SECTION_SYM)
6022 {
6023 if (flags & BSF_GLOBAL)
6024 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6025 else
6026 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6027 }
6028 else if (bfd_is_com_section (syms[idx]->section))
6029 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6030 else if (bfd_is_und_section (syms[idx]->section))
6031 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6032 ? STB_WEAK
6033 : STB_GLOBAL),
6034 type);
6035 else if (flags & BSF_FILE)
6036 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6037 else
6038 {
6039 int bind = STB_LOCAL;
6040
6041 if (flags & BSF_LOCAL)
6042 bind = STB_LOCAL;
6043 else if (flags & BSF_WEAK)
6044 bind = STB_WEAK;
6045 else if (flags & BSF_GLOBAL)
6046 bind = STB_GLOBAL;
6047
6048 sym.st_info = ELF_ST_INFO (bind, type);
6049 }
6050
6051 if (type_ptr != NULL)
6052 sym.st_other = type_ptr->internal_elf_sym.st_other;
6053 else
6054 sym.st_other = 0;
6055
6056 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6057 outbound_syms += bed->s->sizeof_sym;
6058 if (outbound_shndx != NULL)
6059 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6060 }
6061
6062 *sttp = stt;
6063 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6064 symstrtab_hdr->sh_type = SHT_STRTAB;
6065
6066 symstrtab_hdr->sh_flags = 0;
6067 symstrtab_hdr->sh_addr = 0;
6068 symstrtab_hdr->sh_entsize = 0;
6069 symstrtab_hdr->sh_link = 0;
6070 symstrtab_hdr->sh_info = 0;
6071 symstrtab_hdr->sh_addralign = 1;
6072
6073 return TRUE;
6074 }
6075
6076 /* Return the number of bytes required to hold the symtab vector.
6077
6078 Note that we base it on the count plus 1, since we will null terminate
6079 the vector allocated based on this size. However, the ELF symbol table
6080 always has a dummy entry as symbol #0, so it ends up even. */
6081
6082 long
6083 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6084 {
6085 long symcount;
6086 long symtab_size;
6087 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6088
6089 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6090 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6091 if (symcount > 0)
6092 symtab_size -= sizeof (asymbol *);
6093
6094 return symtab_size;
6095 }
6096
6097 long
6098 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6099 {
6100 long symcount;
6101 long symtab_size;
6102 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6103
6104 if (elf_dynsymtab (abfd) == 0)
6105 {
6106 bfd_set_error (bfd_error_invalid_operation);
6107 return -1;
6108 }
6109
6110 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6111 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6112 if (symcount > 0)
6113 symtab_size -= sizeof (asymbol *);
6114
6115 return symtab_size;
6116 }
6117
6118 long
6119 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6120 sec_ptr asect)
6121 {
6122 return (asect->reloc_count + 1) * sizeof (arelent *);
6123 }
6124
6125 /* Canonicalize the relocs. */
6126
6127 long
6128 _bfd_elf_canonicalize_reloc (bfd *abfd,
6129 sec_ptr section,
6130 arelent **relptr,
6131 asymbol **symbols)
6132 {
6133 arelent *tblptr;
6134 unsigned int i;
6135 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6136
6137 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6138 return -1;
6139
6140 tblptr = section->relocation;
6141 for (i = 0; i < section->reloc_count; i++)
6142 *relptr++ = tblptr++;
6143
6144 *relptr = NULL;
6145
6146 return section->reloc_count;
6147 }
6148
6149 long
6150 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6151 {
6152 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6153 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6154
6155 if (symcount >= 0)
6156 bfd_get_symcount (abfd) = symcount;
6157 return symcount;
6158 }
6159
6160 long
6161 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6162 asymbol **allocation)
6163 {
6164 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6165 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6166
6167 if (symcount >= 0)
6168 bfd_get_dynamic_symcount (abfd) = symcount;
6169 return symcount;
6170 }
6171
6172 /* Return the size required for the dynamic reloc entries. Any loadable
6173 section that was actually installed in the BFD, and has type SHT_REL
6174 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6175 dynamic reloc section. */
6176
6177 long
6178 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6179 {
6180 long ret;
6181 asection *s;
6182
6183 if (elf_dynsymtab (abfd) == 0)
6184 {
6185 bfd_set_error (bfd_error_invalid_operation);
6186 return -1;
6187 }
6188
6189 ret = sizeof (arelent *);
6190 for (s = abfd->sections; s != NULL; s = s->next)
6191 if ((s->flags & SEC_LOAD) != 0
6192 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6193 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6194 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6195 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6196 * sizeof (arelent *));
6197
6198 return ret;
6199 }
6200
6201 /* Canonicalize the dynamic relocation entries. Note that we return the
6202 dynamic relocations as a single block, although they are actually
6203 associated with particular sections; the interface, which was
6204 designed for SunOS style shared libraries, expects that there is only
6205 one set of dynamic relocs. Any loadable section that was actually
6206 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6207 dynamic symbol table, is considered to be a dynamic reloc section. */
6208
6209 long
6210 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6211 arelent **storage,
6212 asymbol **syms)
6213 {
6214 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6215 asection *s;
6216 long ret;
6217
6218 if (elf_dynsymtab (abfd) == 0)
6219 {
6220 bfd_set_error (bfd_error_invalid_operation);
6221 return -1;
6222 }
6223
6224 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6225 ret = 0;
6226 for (s = abfd->sections; s != NULL; s = s->next)
6227 {
6228 if ((s->flags & SEC_LOAD) != 0
6229 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6230 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6231 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6232 {
6233 arelent *p;
6234 long count, i;
6235
6236 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6237 return -1;
6238 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6239 p = s->relocation;
6240 for (i = 0; i < count; i++)
6241 *storage++ = p++;
6242 ret += count;
6243 }
6244 }
6245
6246 *storage = NULL;
6247
6248 return ret;
6249 }
6250 \f
6251 /* Read in the version information. */
6252
6253 bfd_boolean
6254 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6255 {
6256 bfd_byte *contents = NULL;
6257 unsigned int freeidx = 0;
6258
6259 if (elf_dynverref (abfd) != 0)
6260 {
6261 Elf_Internal_Shdr *hdr;
6262 Elf_External_Verneed *everneed;
6263 Elf_Internal_Verneed *iverneed;
6264 unsigned int i;
6265 bfd_byte *contents_end;
6266
6267 hdr = &elf_tdata (abfd)->dynverref_hdr;
6268
6269 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6270 sizeof (Elf_Internal_Verneed));
6271 if (elf_tdata (abfd)->verref == NULL)
6272 goto error_return;
6273
6274 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6275
6276 contents = bfd_malloc (hdr->sh_size);
6277 if (contents == NULL)
6278 {
6279 error_return_verref:
6280 elf_tdata (abfd)->verref = NULL;
6281 elf_tdata (abfd)->cverrefs = 0;
6282 goto error_return;
6283 }
6284 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6285 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6286 goto error_return_verref;
6287
6288 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6289 goto error_return_verref;
6290
6291 BFD_ASSERT (sizeof (Elf_External_Verneed)
6292 == sizeof (Elf_External_Vernaux));
6293 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6294 everneed = (Elf_External_Verneed *) contents;
6295 iverneed = elf_tdata (abfd)->verref;
6296 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6297 {
6298 Elf_External_Vernaux *evernaux;
6299 Elf_Internal_Vernaux *ivernaux;
6300 unsigned int j;
6301
6302 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6303
6304 iverneed->vn_bfd = abfd;
6305
6306 iverneed->vn_filename =
6307 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6308 iverneed->vn_file);
6309 if (iverneed->vn_filename == NULL)
6310 goto error_return_verref;
6311
6312 if (iverneed->vn_cnt == 0)
6313 iverneed->vn_auxptr = NULL;
6314 else
6315 {
6316 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6317 sizeof (Elf_Internal_Vernaux));
6318 if (iverneed->vn_auxptr == NULL)
6319 goto error_return_verref;
6320 }
6321
6322 if (iverneed->vn_aux
6323 > (size_t) (contents_end - (bfd_byte *) everneed))
6324 goto error_return_verref;
6325
6326 evernaux = ((Elf_External_Vernaux *)
6327 ((bfd_byte *) everneed + iverneed->vn_aux));
6328 ivernaux = iverneed->vn_auxptr;
6329 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6330 {
6331 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6332
6333 ivernaux->vna_nodename =
6334 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6335 ivernaux->vna_name);
6336 if (ivernaux->vna_nodename == NULL)
6337 goto error_return_verref;
6338
6339 if (j + 1 < iverneed->vn_cnt)
6340 ivernaux->vna_nextptr = ivernaux + 1;
6341 else
6342 ivernaux->vna_nextptr = NULL;
6343
6344 if (ivernaux->vna_next
6345 > (size_t) (contents_end - (bfd_byte *) evernaux))
6346 goto error_return_verref;
6347
6348 evernaux = ((Elf_External_Vernaux *)
6349 ((bfd_byte *) evernaux + ivernaux->vna_next));
6350
6351 if (ivernaux->vna_other > freeidx)
6352 freeidx = ivernaux->vna_other;
6353 }
6354
6355 if (i + 1 < hdr->sh_info)
6356 iverneed->vn_nextref = iverneed + 1;
6357 else
6358 iverneed->vn_nextref = NULL;
6359
6360 if (iverneed->vn_next
6361 > (size_t) (contents_end - (bfd_byte *) everneed))
6362 goto error_return_verref;
6363
6364 everneed = ((Elf_External_Verneed *)
6365 ((bfd_byte *) everneed + iverneed->vn_next));
6366 }
6367
6368 free (contents);
6369 contents = NULL;
6370 }
6371
6372 if (elf_dynverdef (abfd) != 0)
6373 {
6374 Elf_Internal_Shdr *hdr;
6375 Elf_External_Verdef *everdef;
6376 Elf_Internal_Verdef *iverdef;
6377 Elf_Internal_Verdef *iverdefarr;
6378 Elf_Internal_Verdef iverdefmem;
6379 unsigned int i;
6380 unsigned int maxidx;
6381 bfd_byte *contents_end_def, *contents_end_aux;
6382
6383 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6384
6385 contents = bfd_malloc (hdr->sh_size);
6386 if (contents == NULL)
6387 goto error_return;
6388 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6389 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6390 goto error_return;
6391
6392 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6393 goto error_return;
6394
6395 BFD_ASSERT (sizeof (Elf_External_Verdef)
6396 >= sizeof (Elf_External_Verdaux));
6397 contents_end_def = contents + hdr->sh_size
6398 - sizeof (Elf_External_Verdef);
6399 contents_end_aux = contents + hdr->sh_size
6400 - sizeof (Elf_External_Verdaux);
6401
6402 /* We know the number of entries in the section but not the maximum
6403 index. Therefore we have to run through all entries and find
6404 the maximum. */
6405 everdef = (Elf_External_Verdef *) contents;
6406 maxidx = 0;
6407 for (i = 0; i < hdr->sh_info; ++i)
6408 {
6409 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6410
6411 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6412 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6413
6414 if (iverdefmem.vd_next
6415 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6416 goto error_return;
6417
6418 everdef = ((Elf_External_Verdef *)
6419 ((bfd_byte *) everdef + iverdefmem.vd_next));
6420 }
6421
6422 if (default_imported_symver)
6423 {
6424 if (freeidx > maxidx)
6425 maxidx = ++freeidx;
6426 else
6427 freeidx = ++maxidx;
6428 }
6429 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6430 sizeof (Elf_Internal_Verdef));
6431 if (elf_tdata (abfd)->verdef == NULL)
6432 goto error_return;
6433
6434 elf_tdata (abfd)->cverdefs = maxidx;
6435
6436 everdef = (Elf_External_Verdef *) contents;
6437 iverdefarr = elf_tdata (abfd)->verdef;
6438 for (i = 0; i < hdr->sh_info; i++)
6439 {
6440 Elf_External_Verdaux *everdaux;
6441 Elf_Internal_Verdaux *iverdaux;
6442 unsigned int j;
6443
6444 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6445
6446 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6447 {
6448 error_return_verdef:
6449 elf_tdata (abfd)->verdef = NULL;
6450 elf_tdata (abfd)->cverdefs = 0;
6451 goto error_return;
6452 }
6453
6454 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6455 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6456
6457 iverdef->vd_bfd = abfd;
6458
6459 if (iverdef->vd_cnt == 0)
6460 iverdef->vd_auxptr = NULL;
6461 else
6462 {
6463 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6464 sizeof (Elf_Internal_Verdaux));
6465 if (iverdef->vd_auxptr == NULL)
6466 goto error_return_verdef;
6467 }
6468
6469 if (iverdef->vd_aux
6470 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6471 goto error_return_verdef;
6472
6473 everdaux = ((Elf_External_Verdaux *)
6474 ((bfd_byte *) everdef + iverdef->vd_aux));
6475 iverdaux = iverdef->vd_auxptr;
6476 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6477 {
6478 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6479
6480 iverdaux->vda_nodename =
6481 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6482 iverdaux->vda_name);
6483 if (iverdaux->vda_nodename == NULL)
6484 goto error_return_verdef;
6485
6486 if (j + 1 < iverdef->vd_cnt)
6487 iverdaux->vda_nextptr = iverdaux + 1;
6488 else
6489 iverdaux->vda_nextptr = NULL;
6490
6491 if (iverdaux->vda_next
6492 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6493 goto error_return_verdef;
6494
6495 everdaux = ((Elf_External_Verdaux *)
6496 ((bfd_byte *) everdaux + iverdaux->vda_next));
6497 }
6498
6499 if (iverdef->vd_cnt)
6500 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6501
6502 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6503 iverdef->vd_nextdef = iverdef + 1;
6504 else
6505 iverdef->vd_nextdef = NULL;
6506
6507 everdef = ((Elf_External_Verdef *)
6508 ((bfd_byte *) everdef + iverdef->vd_next));
6509 }
6510
6511 free (contents);
6512 contents = NULL;
6513 }
6514 else if (default_imported_symver)
6515 {
6516 if (freeidx < 3)
6517 freeidx = 3;
6518 else
6519 freeidx++;
6520
6521 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6522 sizeof (Elf_Internal_Verdef));
6523 if (elf_tdata (abfd)->verdef == NULL)
6524 goto error_return;
6525
6526 elf_tdata (abfd)->cverdefs = freeidx;
6527 }
6528
6529 /* Create a default version based on the soname. */
6530 if (default_imported_symver)
6531 {
6532 Elf_Internal_Verdef *iverdef;
6533 Elf_Internal_Verdaux *iverdaux;
6534
6535 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6536
6537 iverdef->vd_version = VER_DEF_CURRENT;
6538 iverdef->vd_flags = 0;
6539 iverdef->vd_ndx = freeidx;
6540 iverdef->vd_cnt = 1;
6541
6542 iverdef->vd_bfd = abfd;
6543
6544 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6545 if (iverdef->vd_nodename == NULL)
6546 goto error_return_verdef;
6547 iverdef->vd_nextdef = NULL;
6548 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6549 if (iverdef->vd_auxptr == NULL)
6550 goto error_return_verdef;
6551
6552 iverdaux = iverdef->vd_auxptr;
6553 iverdaux->vda_nodename = iverdef->vd_nodename;
6554 iverdaux->vda_nextptr = NULL;
6555 }
6556
6557 return TRUE;
6558
6559 error_return:
6560 if (contents != NULL)
6561 free (contents);
6562 return FALSE;
6563 }
6564 \f
6565 asymbol *
6566 _bfd_elf_make_empty_symbol (bfd *abfd)
6567 {
6568 elf_symbol_type *newsym;
6569 bfd_size_type amt = sizeof (elf_symbol_type);
6570
6571 newsym = bfd_zalloc (abfd, amt);
6572 if (!newsym)
6573 return NULL;
6574 else
6575 {
6576 newsym->symbol.the_bfd = abfd;
6577 return &newsym->symbol;
6578 }
6579 }
6580
6581 void
6582 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6583 asymbol *symbol,
6584 symbol_info *ret)
6585 {
6586 bfd_symbol_info (symbol, ret);
6587 }
6588
6589 /* Return whether a symbol name implies a local symbol. Most targets
6590 use this function for the is_local_label_name entry point, but some
6591 override it. */
6592
6593 bfd_boolean
6594 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6595 const char *name)
6596 {
6597 /* Normal local symbols start with ``.L''. */
6598 if (name[0] == '.' && name[1] == 'L')
6599 return TRUE;
6600
6601 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6602 DWARF debugging symbols starting with ``..''. */
6603 if (name[0] == '.' && name[1] == '.')
6604 return TRUE;
6605
6606 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6607 emitting DWARF debugging output. I suspect this is actually a
6608 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6609 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6610 underscore to be emitted on some ELF targets). For ease of use,
6611 we treat such symbols as local. */
6612 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6613 return TRUE;
6614
6615 return FALSE;
6616 }
6617
6618 alent *
6619 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6620 asymbol *symbol ATTRIBUTE_UNUSED)
6621 {
6622 abort ();
6623 return NULL;
6624 }
6625
6626 bfd_boolean
6627 _bfd_elf_set_arch_mach (bfd *abfd,
6628 enum bfd_architecture arch,
6629 unsigned long machine)
6630 {
6631 /* If this isn't the right architecture for this backend, and this
6632 isn't the generic backend, fail. */
6633 if (arch != get_elf_backend_data (abfd)->arch
6634 && arch != bfd_arch_unknown
6635 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6636 return FALSE;
6637
6638 return bfd_default_set_arch_mach (abfd, arch, machine);
6639 }
6640
6641 /* Find the function to a particular section and offset,
6642 for error reporting. */
6643
6644 static bfd_boolean
6645 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6646 asection *section,
6647 asymbol **symbols,
6648 bfd_vma offset,
6649 const char **filename_ptr,
6650 const char **functionname_ptr)
6651 {
6652 const char *filename;
6653 asymbol *func, *file;
6654 bfd_vma low_func;
6655 asymbol **p;
6656 /* ??? Given multiple file symbols, it is impossible to reliably
6657 choose the right file name for global symbols. File symbols are
6658 local symbols, and thus all file symbols must sort before any
6659 global symbols. The ELF spec may be interpreted to say that a
6660 file symbol must sort before other local symbols, but currently
6661 ld -r doesn't do this. So, for ld -r output, it is possible to
6662 make a better choice of file name for local symbols by ignoring
6663 file symbols appearing after a given local symbol. */
6664 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6665
6666 filename = NULL;
6667 func = NULL;
6668 file = NULL;
6669 low_func = 0;
6670 state = nothing_seen;
6671
6672 for (p = symbols; *p != NULL; p++)
6673 {
6674 elf_symbol_type *q;
6675
6676 q = (elf_symbol_type *) *p;
6677
6678 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6679 {
6680 default:
6681 break;
6682 case STT_FILE:
6683 file = &q->symbol;
6684 if (state == symbol_seen)
6685 state = file_after_symbol_seen;
6686 continue;
6687 case STT_SECTION:
6688 continue;
6689 case STT_NOTYPE:
6690 case STT_FUNC:
6691 if (bfd_get_section (&q->symbol) == section
6692 && q->symbol.value >= low_func
6693 && q->symbol.value <= offset)
6694 {
6695 func = (asymbol *) q;
6696 low_func = q->symbol.value;
6697 if (file == NULL)
6698 filename = NULL;
6699 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6700 && state == file_after_symbol_seen)
6701 filename = NULL;
6702 else
6703 filename = bfd_asymbol_name (file);
6704 }
6705 break;
6706 }
6707 if (state == nothing_seen)
6708 state = symbol_seen;
6709 }
6710
6711 if (func == NULL)
6712 return FALSE;
6713
6714 if (filename_ptr)
6715 *filename_ptr = filename;
6716 if (functionname_ptr)
6717 *functionname_ptr = bfd_asymbol_name (func);
6718
6719 return TRUE;
6720 }
6721
6722 /* Find the nearest line to a particular section and offset,
6723 for error reporting. */
6724
6725 bfd_boolean
6726 _bfd_elf_find_nearest_line (bfd *abfd,
6727 asection *section,
6728 asymbol **symbols,
6729 bfd_vma offset,
6730 const char **filename_ptr,
6731 const char **functionname_ptr,
6732 unsigned int *line_ptr)
6733 {
6734 bfd_boolean found;
6735
6736 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6737 filename_ptr, functionname_ptr,
6738 line_ptr))
6739 {
6740 if (!*functionname_ptr)
6741 elf_find_function (abfd, section, symbols, offset,
6742 *filename_ptr ? NULL : filename_ptr,
6743 functionname_ptr);
6744
6745 return TRUE;
6746 }
6747
6748 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6749 filename_ptr, functionname_ptr,
6750 line_ptr, 0,
6751 &elf_tdata (abfd)->dwarf2_find_line_info))
6752 {
6753 if (!*functionname_ptr)
6754 elf_find_function (abfd, section, symbols, offset,
6755 *filename_ptr ? NULL : filename_ptr,
6756 functionname_ptr);
6757
6758 return TRUE;
6759 }
6760
6761 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6762 &found, filename_ptr,
6763 functionname_ptr, line_ptr,
6764 &elf_tdata (abfd)->line_info))
6765 return FALSE;
6766 if (found && (*functionname_ptr || *line_ptr))
6767 return TRUE;
6768
6769 if (symbols == NULL)
6770 return FALSE;
6771
6772 if (! elf_find_function (abfd, section, symbols, offset,
6773 filename_ptr, functionname_ptr))
6774 return FALSE;
6775
6776 *line_ptr = 0;
6777 return TRUE;
6778 }
6779
6780 /* Find the line for a symbol. */
6781
6782 bfd_boolean
6783 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
6784 const char **filename_ptr, unsigned int *line_ptr)
6785 {
6786 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
6787 filename_ptr, line_ptr, 0,
6788 &elf_tdata (abfd)->dwarf2_find_line_info);
6789 }
6790
6791 /* After a call to bfd_find_nearest_line, successive calls to
6792 bfd_find_inliner_info can be used to get source information about
6793 each level of function inlining that terminated at the address
6794 passed to bfd_find_nearest_line. Currently this is only supported
6795 for DWARF2 with appropriate DWARF3 extensions. */
6796
6797 bfd_boolean
6798 _bfd_elf_find_inliner_info (bfd *abfd,
6799 const char **filename_ptr,
6800 const char **functionname_ptr,
6801 unsigned int *line_ptr)
6802 {
6803 bfd_boolean found;
6804 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
6805 functionname_ptr, line_ptr,
6806 & elf_tdata (abfd)->dwarf2_find_line_info);
6807 return found;
6808 }
6809
6810 int
6811 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6812 {
6813 int ret;
6814
6815 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6816 if (! reloc)
6817 ret += get_program_header_size (abfd);
6818 return ret;
6819 }
6820
6821 bfd_boolean
6822 _bfd_elf_set_section_contents (bfd *abfd,
6823 sec_ptr section,
6824 const void *location,
6825 file_ptr offset,
6826 bfd_size_type count)
6827 {
6828 Elf_Internal_Shdr *hdr;
6829 bfd_signed_vma pos;
6830
6831 if (! abfd->output_has_begun
6832 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6833 return FALSE;
6834
6835 hdr = &elf_section_data (section)->this_hdr;
6836 pos = hdr->sh_offset + offset;
6837 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6838 || bfd_bwrite (location, count, abfd) != count)
6839 return FALSE;
6840
6841 return TRUE;
6842 }
6843
6844 void
6845 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6846 arelent *cache_ptr ATTRIBUTE_UNUSED,
6847 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6848 {
6849 abort ();
6850 }
6851
6852 /* Try to convert a non-ELF reloc into an ELF one. */
6853
6854 bfd_boolean
6855 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6856 {
6857 /* Check whether we really have an ELF howto. */
6858
6859 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6860 {
6861 bfd_reloc_code_real_type code;
6862 reloc_howto_type *howto;
6863
6864 /* Alien reloc: Try to determine its type to replace it with an
6865 equivalent ELF reloc. */
6866
6867 if (areloc->howto->pc_relative)
6868 {
6869 switch (areloc->howto->bitsize)
6870 {
6871 case 8:
6872 code = BFD_RELOC_8_PCREL;
6873 break;
6874 case 12:
6875 code = BFD_RELOC_12_PCREL;
6876 break;
6877 case 16:
6878 code = BFD_RELOC_16_PCREL;
6879 break;
6880 case 24:
6881 code = BFD_RELOC_24_PCREL;
6882 break;
6883 case 32:
6884 code = BFD_RELOC_32_PCREL;
6885 break;
6886 case 64:
6887 code = BFD_RELOC_64_PCREL;
6888 break;
6889 default:
6890 goto fail;
6891 }
6892
6893 howto = bfd_reloc_type_lookup (abfd, code);
6894
6895 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6896 {
6897 if (howto->pcrel_offset)
6898 areloc->addend += areloc->address;
6899 else
6900 areloc->addend -= areloc->address; /* addend is unsigned!! */
6901 }
6902 }
6903 else
6904 {
6905 switch (areloc->howto->bitsize)
6906 {
6907 case 8:
6908 code = BFD_RELOC_8;
6909 break;
6910 case 14:
6911 code = BFD_RELOC_14;
6912 break;
6913 case 16:
6914 code = BFD_RELOC_16;
6915 break;
6916 case 26:
6917 code = BFD_RELOC_26;
6918 break;
6919 case 32:
6920 code = BFD_RELOC_32;
6921 break;
6922 case 64:
6923 code = BFD_RELOC_64;
6924 break;
6925 default:
6926 goto fail;
6927 }
6928
6929 howto = bfd_reloc_type_lookup (abfd, code);
6930 }
6931
6932 if (howto)
6933 areloc->howto = howto;
6934 else
6935 goto fail;
6936 }
6937
6938 return TRUE;
6939
6940 fail:
6941 (*_bfd_error_handler)
6942 (_("%B: unsupported relocation type %s"),
6943 abfd, areloc->howto->name);
6944 bfd_set_error (bfd_error_bad_value);
6945 return FALSE;
6946 }
6947
6948 bfd_boolean
6949 _bfd_elf_close_and_cleanup (bfd *abfd)
6950 {
6951 if (bfd_get_format (abfd) == bfd_object)
6952 {
6953 if (elf_shstrtab (abfd) != NULL)
6954 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6955 _bfd_dwarf2_cleanup_debug_info (abfd);
6956 }
6957
6958 return _bfd_generic_close_and_cleanup (abfd);
6959 }
6960
6961 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6962 in the relocation's offset. Thus we cannot allow any sort of sanity
6963 range-checking to interfere. There is nothing else to do in processing
6964 this reloc. */
6965
6966 bfd_reloc_status_type
6967 _bfd_elf_rel_vtable_reloc_fn
6968 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6969 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6970 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6971 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6972 {
6973 return bfd_reloc_ok;
6974 }
6975 \f
6976 /* Elf core file support. Much of this only works on native
6977 toolchains, since we rely on knowing the
6978 machine-dependent procfs structure in order to pick
6979 out details about the corefile. */
6980
6981 #ifdef HAVE_SYS_PROCFS_H
6982 # include <sys/procfs.h>
6983 #endif
6984
6985 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6986
6987 static int
6988 elfcore_make_pid (bfd *abfd)
6989 {
6990 return ((elf_tdata (abfd)->core_lwpid << 16)
6991 + (elf_tdata (abfd)->core_pid));
6992 }
6993
6994 /* If there isn't a section called NAME, make one, using
6995 data from SECT. Note, this function will generate a
6996 reference to NAME, so you shouldn't deallocate or
6997 overwrite it. */
6998
6999 static bfd_boolean
7000 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7001 {
7002 asection *sect2;
7003
7004 if (bfd_get_section_by_name (abfd, name) != NULL)
7005 return TRUE;
7006
7007 sect2 = bfd_make_section (abfd, name);
7008 if (sect2 == NULL)
7009 return FALSE;
7010
7011 sect2->size = sect->size;
7012 sect2->filepos = sect->filepos;
7013 sect2->flags = sect->flags;
7014 sect2->alignment_power = sect->alignment_power;
7015 return TRUE;
7016 }
7017
7018 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7019 actually creates up to two pseudosections:
7020 - For the single-threaded case, a section named NAME, unless
7021 such a section already exists.
7022 - For the multi-threaded case, a section named "NAME/PID", where
7023 PID is elfcore_make_pid (abfd).
7024 Both pseudosections have identical contents. */
7025 bfd_boolean
7026 _bfd_elfcore_make_pseudosection (bfd *abfd,
7027 char *name,
7028 size_t size,
7029 ufile_ptr filepos)
7030 {
7031 char buf[100];
7032 char *threaded_name;
7033 size_t len;
7034 asection *sect;
7035
7036 /* Build the section name. */
7037
7038 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7039 len = strlen (buf) + 1;
7040 threaded_name = bfd_alloc (abfd, len);
7041 if (threaded_name == NULL)
7042 return FALSE;
7043 memcpy (threaded_name, buf, len);
7044
7045 sect = bfd_make_section_anyway (abfd, threaded_name);
7046 if (sect == NULL)
7047 return FALSE;
7048 sect->size = size;
7049 sect->filepos = filepos;
7050 sect->flags = SEC_HAS_CONTENTS;
7051 sect->alignment_power = 2;
7052
7053 return elfcore_maybe_make_sect (abfd, name, sect);
7054 }
7055
7056 /* prstatus_t exists on:
7057 solaris 2.5+
7058 linux 2.[01] + glibc
7059 unixware 4.2
7060 */
7061
7062 #if defined (HAVE_PRSTATUS_T)
7063
7064 static bfd_boolean
7065 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7066 {
7067 size_t size;
7068 int offset;
7069
7070 if (note->descsz == sizeof (prstatus_t))
7071 {
7072 prstatus_t prstat;
7073
7074 size = sizeof (prstat.pr_reg);
7075 offset = offsetof (prstatus_t, pr_reg);
7076 memcpy (&prstat, note->descdata, sizeof (prstat));
7077
7078 /* Do not overwrite the core signal if it
7079 has already been set by another thread. */
7080 if (elf_tdata (abfd)->core_signal == 0)
7081 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7082 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7083
7084 /* pr_who exists on:
7085 solaris 2.5+
7086 unixware 4.2
7087 pr_who doesn't exist on:
7088 linux 2.[01]
7089 */
7090 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7091 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7092 #endif
7093 }
7094 #if defined (HAVE_PRSTATUS32_T)
7095 else if (note->descsz == sizeof (prstatus32_t))
7096 {
7097 /* 64-bit host, 32-bit corefile */
7098 prstatus32_t prstat;
7099
7100 size = sizeof (prstat.pr_reg);
7101 offset = offsetof (prstatus32_t, pr_reg);
7102 memcpy (&prstat, note->descdata, sizeof (prstat));
7103
7104 /* Do not overwrite the core signal if it
7105 has already been set by another thread. */
7106 if (elf_tdata (abfd)->core_signal == 0)
7107 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7108 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7109
7110 /* pr_who exists on:
7111 solaris 2.5+
7112 unixware 4.2
7113 pr_who doesn't exist on:
7114 linux 2.[01]
7115 */
7116 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7117 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7118 #endif
7119 }
7120 #endif /* HAVE_PRSTATUS32_T */
7121 else
7122 {
7123 /* Fail - we don't know how to handle any other
7124 note size (ie. data object type). */
7125 return TRUE;
7126 }
7127
7128 /* Make a ".reg/999" section and a ".reg" section. */
7129 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7130 size, note->descpos + offset);
7131 }
7132 #endif /* defined (HAVE_PRSTATUS_T) */
7133
7134 /* Create a pseudosection containing the exact contents of NOTE. */
7135 static bfd_boolean
7136 elfcore_make_note_pseudosection (bfd *abfd,
7137 char *name,
7138 Elf_Internal_Note *note)
7139 {
7140 return _bfd_elfcore_make_pseudosection (abfd, name,
7141 note->descsz, note->descpos);
7142 }
7143
7144 /* There isn't a consistent prfpregset_t across platforms,
7145 but it doesn't matter, because we don't have to pick this
7146 data structure apart. */
7147
7148 static bfd_boolean
7149 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7150 {
7151 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7152 }
7153
7154 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7155 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7156 literally. */
7157
7158 static bfd_boolean
7159 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7160 {
7161 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7162 }
7163
7164 #if defined (HAVE_PRPSINFO_T)
7165 typedef prpsinfo_t elfcore_psinfo_t;
7166 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7167 typedef prpsinfo32_t elfcore_psinfo32_t;
7168 #endif
7169 #endif
7170
7171 #if defined (HAVE_PSINFO_T)
7172 typedef psinfo_t elfcore_psinfo_t;
7173 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7174 typedef psinfo32_t elfcore_psinfo32_t;
7175 #endif
7176 #endif
7177
7178 /* return a malloc'ed copy of a string at START which is at
7179 most MAX bytes long, possibly without a terminating '\0'.
7180 the copy will always have a terminating '\0'. */
7181
7182 char *
7183 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7184 {
7185 char *dups;
7186 char *end = memchr (start, '\0', max);
7187 size_t len;
7188
7189 if (end == NULL)
7190 len = max;
7191 else
7192 len = end - start;
7193
7194 dups = bfd_alloc (abfd, len + 1);
7195 if (dups == NULL)
7196 return NULL;
7197
7198 memcpy (dups, start, len);
7199 dups[len] = '\0';
7200
7201 return dups;
7202 }
7203
7204 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7205 static bfd_boolean
7206 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7207 {
7208 if (note->descsz == sizeof (elfcore_psinfo_t))
7209 {
7210 elfcore_psinfo_t psinfo;
7211
7212 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7213
7214 elf_tdata (abfd)->core_program
7215 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7216 sizeof (psinfo.pr_fname));
7217
7218 elf_tdata (abfd)->core_command
7219 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7220 sizeof (psinfo.pr_psargs));
7221 }
7222 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7223 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7224 {
7225 /* 64-bit host, 32-bit corefile */
7226 elfcore_psinfo32_t psinfo;
7227
7228 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7229
7230 elf_tdata (abfd)->core_program
7231 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7232 sizeof (psinfo.pr_fname));
7233
7234 elf_tdata (abfd)->core_command
7235 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7236 sizeof (psinfo.pr_psargs));
7237 }
7238 #endif
7239
7240 else
7241 {
7242 /* Fail - we don't know how to handle any other
7243 note size (ie. data object type). */
7244 return TRUE;
7245 }
7246
7247 /* Note that for some reason, a spurious space is tacked
7248 onto the end of the args in some (at least one anyway)
7249 implementations, so strip it off if it exists. */
7250
7251 {
7252 char *command = elf_tdata (abfd)->core_command;
7253 int n = strlen (command);
7254
7255 if (0 < n && command[n - 1] == ' ')
7256 command[n - 1] = '\0';
7257 }
7258
7259 return TRUE;
7260 }
7261 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7262
7263 #if defined (HAVE_PSTATUS_T)
7264 static bfd_boolean
7265 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7266 {
7267 if (note->descsz == sizeof (pstatus_t)
7268 #if defined (HAVE_PXSTATUS_T)
7269 || note->descsz == sizeof (pxstatus_t)
7270 #endif
7271 )
7272 {
7273 pstatus_t pstat;
7274
7275 memcpy (&pstat, note->descdata, sizeof (pstat));
7276
7277 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7278 }
7279 #if defined (HAVE_PSTATUS32_T)
7280 else if (note->descsz == sizeof (pstatus32_t))
7281 {
7282 /* 64-bit host, 32-bit corefile */
7283 pstatus32_t pstat;
7284
7285 memcpy (&pstat, note->descdata, sizeof (pstat));
7286
7287 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7288 }
7289 #endif
7290 /* Could grab some more details from the "representative"
7291 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7292 NT_LWPSTATUS note, presumably. */
7293
7294 return TRUE;
7295 }
7296 #endif /* defined (HAVE_PSTATUS_T) */
7297
7298 #if defined (HAVE_LWPSTATUS_T)
7299 static bfd_boolean
7300 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7301 {
7302 lwpstatus_t lwpstat;
7303 char buf[100];
7304 char *name;
7305 size_t len;
7306 asection *sect;
7307
7308 if (note->descsz != sizeof (lwpstat)
7309 #if defined (HAVE_LWPXSTATUS_T)
7310 && note->descsz != sizeof (lwpxstatus_t)
7311 #endif
7312 )
7313 return TRUE;
7314
7315 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7316
7317 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7318 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7319
7320 /* Make a ".reg/999" section. */
7321
7322 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7323 len = strlen (buf) + 1;
7324 name = bfd_alloc (abfd, len);
7325 if (name == NULL)
7326 return FALSE;
7327 memcpy (name, buf, len);
7328
7329 sect = bfd_make_section_anyway (abfd, name);
7330 if (sect == NULL)
7331 return FALSE;
7332
7333 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7334 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7335 sect->filepos = note->descpos
7336 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7337 #endif
7338
7339 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7340 sect->size = sizeof (lwpstat.pr_reg);
7341 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7342 #endif
7343
7344 sect->flags = SEC_HAS_CONTENTS;
7345 sect->alignment_power = 2;
7346
7347 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7348 return FALSE;
7349
7350 /* Make a ".reg2/999" section */
7351
7352 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7353 len = strlen (buf) + 1;
7354 name = bfd_alloc (abfd, len);
7355 if (name == NULL)
7356 return FALSE;
7357 memcpy (name, buf, len);
7358
7359 sect = bfd_make_section_anyway (abfd, name);
7360 if (sect == NULL)
7361 return FALSE;
7362
7363 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7364 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7365 sect->filepos = note->descpos
7366 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7367 #endif
7368
7369 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7370 sect->size = sizeof (lwpstat.pr_fpreg);
7371 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7372 #endif
7373
7374 sect->flags = SEC_HAS_CONTENTS;
7375 sect->alignment_power = 2;
7376
7377 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7378 }
7379 #endif /* defined (HAVE_LWPSTATUS_T) */
7380
7381 #if defined (HAVE_WIN32_PSTATUS_T)
7382 static bfd_boolean
7383 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7384 {
7385 char buf[30];
7386 char *name;
7387 size_t len;
7388 asection *sect;
7389 win32_pstatus_t pstatus;
7390
7391 if (note->descsz < sizeof (pstatus))
7392 return TRUE;
7393
7394 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7395
7396 switch (pstatus.data_type)
7397 {
7398 case NOTE_INFO_PROCESS:
7399 /* FIXME: need to add ->core_command. */
7400 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7401 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7402 break;
7403
7404 case NOTE_INFO_THREAD:
7405 /* Make a ".reg/999" section. */
7406 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7407
7408 len = strlen (buf) + 1;
7409 name = bfd_alloc (abfd, len);
7410 if (name == NULL)
7411 return FALSE;
7412
7413 memcpy (name, buf, len);
7414
7415 sect = bfd_make_section_anyway (abfd, name);
7416 if (sect == NULL)
7417 return FALSE;
7418
7419 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7420 sect->filepos = (note->descpos
7421 + offsetof (struct win32_pstatus,
7422 data.thread_info.thread_context));
7423 sect->flags = SEC_HAS_CONTENTS;
7424 sect->alignment_power = 2;
7425
7426 if (pstatus.data.thread_info.is_active_thread)
7427 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7428 return FALSE;
7429 break;
7430
7431 case NOTE_INFO_MODULE:
7432 /* Make a ".module/xxxxxxxx" section. */
7433 sprintf (buf, ".module/%08lx",
7434 (long) pstatus.data.module_info.base_address);
7435
7436 len = strlen (buf) + 1;
7437 name = bfd_alloc (abfd, len);
7438 if (name == NULL)
7439 return FALSE;
7440
7441 memcpy (name, buf, len);
7442
7443 sect = bfd_make_section_anyway (abfd, name);
7444
7445 if (sect == NULL)
7446 return FALSE;
7447
7448 sect->size = note->descsz;
7449 sect->filepos = note->descpos;
7450 sect->flags = SEC_HAS_CONTENTS;
7451 sect->alignment_power = 2;
7452 break;
7453
7454 default:
7455 return TRUE;
7456 }
7457
7458 return TRUE;
7459 }
7460 #endif /* HAVE_WIN32_PSTATUS_T */
7461
7462 static bfd_boolean
7463 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7464 {
7465 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7466
7467 switch (note->type)
7468 {
7469 default:
7470 return TRUE;
7471
7472 case NT_PRSTATUS:
7473 if (bed->elf_backend_grok_prstatus)
7474 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7475 return TRUE;
7476 #if defined (HAVE_PRSTATUS_T)
7477 return elfcore_grok_prstatus (abfd, note);
7478 #else
7479 return TRUE;
7480 #endif
7481
7482 #if defined (HAVE_PSTATUS_T)
7483 case NT_PSTATUS:
7484 return elfcore_grok_pstatus (abfd, note);
7485 #endif
7486
7487 #if defined (HAVE_LWPSTATUS_T)
7488 case NT_LWPSTATUS:
7489 return elfcore_grok_lwpstatus (abfd, note);
7490 #endif
7491
7492 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7493 return elfcore_grok_prfpreg (abfd, note);
7494
7495 #if defined (HAVE_WIN32_PSTATUS_T)
7496 case NT_WIN32PSTATUS:
7497 return elfcore_grok_win32pstatus (abfd, note);
7498 #endif
7499
7500 case NT_PRXFPREG: /* Linux SSE extension */
7501 if (note->namesz == 6
7502 && strcmp (note->namedata, "LINUX") == 0)
7503 return elfcore_grok_prxfpreg (abfd, note);
7504 else
7505 return TRUE;
7506
7507 case NT_PRPSINFO:
7508 case NT_PSINFO:
7509 if (bed->elf_backend_grok_psinfo)
7510 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7511 return TRUE;
7512 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7513 return elfcore_grok_psinfo (abfd, note);
7514 #else
7515 return TRUE;
7516 #endif
7517
7518 case NT_AUXV:
7519 {
7520 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7521
7522 if (sect == NULL)
7523 return FALSE;
7524 sect->size = note->descsz;
7525 sect->filepos = note->descpos;
7526 sect->flags = SEC_HAS_CONTENTS;
7527 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7528
7529 return TRUE;
7530 }
7531 }
7532 }
7533
7534 static bfd_boolean
7535 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7536 {
7537 char *cp;
7538
7539 cp = strchr (note->namedata, '@');
7540 if (cp != NULL)
7541 {
7542 *lwpidp = atoi(cp + 1);
7543 return TRUE;
7544 }
7545 return FALSE;
7546 }
7547
7548 static bfd_boolean
7549 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7550 {
7551
7552 /* Signal number at offset 0x08. */
7553 elf_tdata (abfd)->core_signal
7554 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7555
7556 /* Process ID at offset 0x50. */
7557 elf_tdata (abfd)->core_pid
7558 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7559
7560 /* Command name at 0x7c (max 32 bytes, including nul). */
7561 elf_tdata (abfd)->core_command
7562 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7563
7564 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7565 note);
7566 }
7567
7568 static bfd_boolean
7569 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7570 {
7571 int lwp;
7572
7573 if (elfcore_netbsd_get_lwpid (note, &lwp))
7574 elf_tdata (abfd)->core_lwpid = lwp;
7575
7576 if (note->type == NT_NETBSDCORE_PROCINFO)
7577 {
7578 /* NetBSD-specific core "procinfo". Note that we expect to
7579 find this note before any of the others, which is fine,
7580 since the kernel writes this note out first when it
7581 creates a core file. */
7582
7583 return elfcore_grok_netbsd_procinfo (abfd, note);
7584 }
7585
7586 /* As of Jan 2002 there are no other machine-independent notes
7587 defined for NetBSD core files. If the note type is less
7588 than the start of the machine-dependent note types, we don't
7589 understand it. */
7590
7591 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7592 return TRUE;
7593
7594
7595 switch (bfd_get_arch (abfd))
7596 {
7597 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7598 PT_GETFPREGS == mach+2. */
7599
7600 case bfd_arch_alpha:
7601 case bfd_arch_sparc:
7602 switch (note->type)
7603 {
7604 case NT_NETBSDCORE_FIRSTMACH+0:
7605 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7606
7607 case NT_NETBSDCORE_FIRSTMACH+2:
7608 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7609
7610 default:
7611 return TRUE;
7612 }
7613
7614 /* On all other arch's, PT_GETREGS == mach+1 and
7615 PT_GETFPREGS == mach+3. */
7616
7617 default:
7618 switch (note->type)
7619 {
7620 case NT_NETBSDCORE_FIRSTMACH+1:
7621 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7622
7623 case NT_NETBSDCORE_FIRSTMACH+3:
7624 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7625
7626 default:
7627 return TRUE;
7628 }
7629 }
7630 /* NOTREACHED */
7631 }
7632
7633 static bfd_boolean
7634 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7635 {
7636 void *ddata = note->descdata;
7637 char buf[100];
7638 char *name;
7639 asection *sect;
7640 short sig;
7641 unsigned flags;
7642
7643 /* nto_procfs_status 'pid' field is at offset 0. */
7644 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7645
7646 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7647 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7648
7649 /* nto_procfs_status 'flags' field is at offset 8. */
7650 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7651
7652 /* nto_procfs_status 'what' field is at offset 14. */
7653 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7654 {
7655 elf_tdata (abfd)->core_signal = sig;
7656 elf_tdata (abfd)->core_lwpid = *tid;
7657 }
7658
7659 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7660 do not come from signals so we make sure we set the current
7661 thread just in case. */
7662 if (flags & 0x00000080)
7663 elf_tdata (abfd)->core_lwpid = *tid;
7664
7665 /* Make a ".qnx_core_status/%d" section. */
7666 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7667
7668 name = bfd_alloc (abfd, strlen (buf) + 1);
7669 if (name == NULL)
7670 return FALSE;
7671 strcpy (name, buf);
7672
7673 sect = bfd_make_section_anyway (abfd, name);
7674 if (sect == NULL)
7675 return FALSE;
7676
7677 sect->size = note->descsz;
7678 sect->filepos = note->descpos;
7679 sect->flags = SEC_HAS_CONTENTS;
7680 sect->alignment_power = 2;
7681
7682 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7683 }
7684
7685 static bfd_boolean
7686 elfcore_grok_nto_regs (bfd *abfd,
7687 Elf_Internal_Note *note,
7688 pid_t tid,
7689 char *base)
7690 {
7691 char buf[100];
7692 char *name;
7693 asection *sect;
7694
7695 /* Make a "(base)/%d" section. */
7696 sprintf (buf, "%s/%ld", base, (long) tid);
7697
7698 name = bfd_alloc (abfd, strlen (buf) + 1);
7699 if (name == NULL)
7700 return FALSE;
7701 strcpy (name, buf);
7702
7703 sect = bfd_make_section_anyway (abfd, name);
7704 if (sect == NULL)
7705 return FALSE;
7706
7707 sect->size = note->descsz;
7708 sect->filepos = note->descpos;
7709 sect->flags = SEC_HAS_CONTENTS;
7710 sect->alignment_power = 2;
7711
7712 /* This is the current thread. */
7713 if (elf_tdata (abfd)->core_lwpid == tid)
7714 return elfcore_maybe_make_sect (abfd, base, sect);
7715
7716 return TRUE;
7717 }
7718
7719 #define BFD_QNT_CORE_INFO 7
7720 #define BFD_QNT_CORE_STATUS 8
7721 #define BFD_QNT_CORE_GREG 9
7722 #define BFD_QNT_CORE_FPREG 10
7723
7724 static bfd_boolean
7725 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7726 {
7727 /* Every GREG section has a STATUS section before it. Store the
7728 tid from the previous call to pass down to the next gregs
7729 function. */
7730 static pid_t tid = 1;
7731
7732 switch (note->type)
7733 {
7734 case BFD_QNT_CORE_INFO:
7735 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7736 case BFD_QNT_CORE_STATUS:
7737 return elfcore_grok_nto_status (abfd, note, &tid);
7738 case BFD_QNT_CORE_GREG:
7739 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7740 case BFD_QNT_CORE_FPREG:
7741 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7742 default:
7743 return TRUE;
7744 }
7745 }
7746
7747 /* Function: elfcore_write_note
7748
7749 Inputs:
7750 buffer to hold note
7751 name of note
7752 type of note
7753 data for note
7754 size of data for note
7755
7756 Return:
7757 End of buffer containing note. */
7758
7759 char *
7760 elfcore_write_note (bfd *abfd,
7761 char *buf,
7762 int *bufsiz,
7763 const char *name,
7764 int type,
7765 const void *input,
7766 int size)
7767 {
7768 Elf_External_Note *xnp;
7769 size_t namesz;
7770 size_t pad;
7771 size_t newspace;
7772 char *p, *dest;
7773
7774 namesz = 0;
7775 pad = 0;
7776 if (name != NULL)
7777 {
7778 const struct elf_backend_data *bed;
7779
7780 namesz = strlen (name) + 1;
7781 bed = get_elf_backend_data (abfd);
7782 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7783 }
7784
7785 newspace = 12 + namesz + pad + size;
7786
7787 p = realloc (buf, *bufsiz + newspace);
7788 dest = p + *bufsiz;
7789 *bufsiz += newspace;
7790 xnp = (Elf_External_Note *) dest;
7791 H_PUT_32 (abfd, namesz, xnp->namesz);
7792 H_PUT_32 (abfd, size, xnp->descsz);
7793 H_PUT_32 (abfd, type, xnp->type);
7794 dest = xnp->name;
7795 if (name != NULL)
7796 {
7797 memcpy (dest, name, namesz);
7798 dest += namesz;
7799 while (pad != 0)
7800 {
7801 *dest++ = '\0';
7802 --pad;
7803 }
7804 }
7805 memcpy (dest, input, size);
7806 return p;
7807 }
7808
7809 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7810 char *
7811 elfcore_write_prpsinfo (bfd *abfd,
7812 char *buf,
7813 int *bufsiz,
7814 const char *fname,
7815 const char *psargs)
7816 {
7817 int note_type;
7818 char *note_name = "CORE";
7819
7820 #if defined (HAVE_PSINFO_T)
7821 psinfo_t data;
7822 note_type = NT_PSINFO;
7823 #else
7824 prpsinfo_t data;
7825 note_type = NT_PRPSINFO;
7826 #endif
7827
7828 memset (&data, 0, sizeof (data));
7829 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7830 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7831 return elfcore_write_note (abfd, buf, bufsiz,
7832 note_name, note_type, &data, sizeof (data));
7833 }
7834 #endif /* PSINFO_T or PRPSINFO_T */
7835
7836 #if defined (HAVE_PRSTATUS_T)
7837 char *
7838 elfcore_write_prstatus (bfd *abfd,
7839 char *buf,
7840 int *bufsiz,
7841 long pid,
7842 int cursig,
7843 const void *gregs)
7844 {
7845 prstatus_t prstat;
7846 char *note_name = "CORE";
7847
7848 memset (&prstat, 0, sizeof (prstat));
7849 prstat.pr_pid = pid;
7850 prstat.pr_cursig = cursig;
7851 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7852 return elfcore_write_note (abfd, buf, bufsiz,
7853 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7854 }
7855 #endif /* HAVE_PRSTATUS_T */
7856
7857 #if defined (HAVE_LWPSTATUS_T)
7858 char *
7859 elfcore_write_lwpstatus (bfd *abfd,
7860 char *buf,
7861 int *bufsiz,
7862 long pid,
7863 int cursig,
7864 const void *gregs)
7865 {
7866 lwpstatus_t lwpstat;
7867 char *note_name = "CORE";
7868
7869 memset (&lwpstat, 0, sizeof (lwpstat));
7870 lwpstat.pr_lwpid = pid >> 16;
7871 lwpstat.pr_cursig = cursig;
7872 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7873 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7874 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7875 #if !defined(gregs)
7876 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7877 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7878 #else
7879 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7880 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7881 #endif
7882 #endif
7883 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7884 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7885 }
7886 #endif /* HAVE_LWPSTATUS_T */
7887
7888 #if defined (HAVE_PSTATUS_T)
7889 char *
7890 elfcore_write_pstatus (bfd *abfd,
7891 char *buf,
7892 int *bufsiz,
7893 long pid,
7894 int cursig,
7895 const void *gregs)
7896 {
7897 pstatus_t pstat;
7898 char *note_name = "CORE";
7899
7900 memset (&pstat, 0, sizeof (pstat));
7901 pstat.pr_pid = pid & 0xffff;
7902 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7903 NT_PSTATUS, &pstat, sizeof (pstat));
7904 return buf;
7905 }
7906 #endif /* HAVE_PSTATUS_T */
7907
7908 char *
7909 elfcore_write_prfpreg (bfd *abfd,
7910 char *buf,
7911 int *bufsiz,
7912 const void *fpregs,
7913 int size)
7914 {
7915 char *note_name = "CORE";
7916 return elfcore_write_note (abfd, buf, bufsiz,
7917 note_name, NT_FPREGSET, fpregs, size);
7918 }
7919
7920 char *
7921 elfcore_write_prxfpreg (bfd *abfd,
7922 char *buf,
7923 int *bufsiz,
7924 const void *xfpregs,
7925 int size)
7926 {
7927 char *note_name = "LINUX";
7928 return elfcore_write_note (abfd, buf, bufsiz,
7929 note_name, NT_PRXFPREG, xfpregs, size);
7930 }
7931
7932 static bfd_boolean
7933 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7934 {
7935 char *buf;
7936 char *p;
7937
7938 if (size <= 0)
7939 return TRUE;
7940
7941 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7942 return FALSE;
7943
7944 buf = bfd_malloc (size);
7945 if (buf == NULL)
7946 return FALSE;
7947
7948 if (bfd_bread (buf, size, abfd) != size)
7949 {
7950 error:
7951 free (buf);
7952 return FALSE;
7953 }
7954
7955 p = buf;
7956 while (p < buf + size)
7957 {
7958 /* FIXME: bad alignment assumption. */
7959 Elf_External_Note *xnp = (Elf_External_Note *) p;
7960 Elf_Internal_Note in;
7961
7962 in.type = H_GET_32 (abfd, xnp->type);
7963
7964 in.namesz = H_GET_32 (abfd, xnp->namesz);
7965 in.namedata = xnp->name;
7966
7967 in.descsz = H_GET_32 (abfd, xnp->descsz);
7968 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7969 in.descpos = offset + (in.descdata - buf);
7970
7971 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7972 {
7973 if (! elfcore_grok_netbsd_note (abfd, &in))
7974 goto error;
7975 }
7976 else if (strncmp (in.namedata, "QNX", 3) == 0)
7977 {
7978 if (! elfcore_grok_nto_note (abfd, &in))
7979 goto error;
7980 }
7981 else
7982 {
7983 if (! elfcore_grok_note (abfd, &in))
7984 goto error;
7985 }
7986
7987 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7988 }
7989
7990 free (buf);
7991 return TRUE;
7992 }
7993 \f
7994 /* Providing external access to the ELF program header table. */
7995
7996 /* Return an upper bound on the number of bytes required to store a
7997 copy of ABFD's program header table entries. Return -1 if an error
7998 occurs; bfd_get_error will return an appropriate code. */
7999
8000 long
8001 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8002 {
8003 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8004 {
8005 bfd_set_error (bfd_error_wrong_format);
8006 return -1;
8007 }
8008
8009 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8010 }
8011
8012 /* Copy ABFD's program header table entries to *PHDRS. The entries
8013 will be stored as an array of Elf_Internal_Phdr structures, as
8014 defined in include/elf/internal.h. To find out how large the
8015 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8016
8017 Return the number of program header table entries read, or -1 if an
8018 error occurs; bfd_get_error will return an appropriate code. */
8019
8020 int
8021 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8022 {
8023 int num_phdrs;
8024
8025 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8026 {
8027 bfd_set_error (bfd_error_wrong_format);
8028 return -1;
8029 }
8030
8031 num_phdrs = elf_elfheader (abfd)->e_phnum;
8032 memcpy (phdrs, elf_tdata (abfd)->phdr,
8033 num_phdrs * sizeof (Elf_Internal_Phdr));
8034
8035 return num_phdrs;
8036 }
8037
8038 void
8039 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8040 {
8041 #ifdef BFD64
8042 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8043
8044 i_ehdrp = elf_elfheader (abfd);
8045 if (i_ehdrp == NULL)
8046 sprintf_vma (buf, value);
8047 else
8048 {
8049 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8050 {
8051 #if BFD_HOST_64BIT_LONG
8052 sprintf (buf, "%016lx", value);
8053 #else
8054 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8055 _bfd_int64_low (value));
8056 #endif
8057 }
8058 else
8059 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8060 }
8061 #else
8062 sprintf_vma (buf, value);
8063 #endif
8064 }
8065
8066 void
8067 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8068 {
8069 #ifdef BFD64
8070 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8071
8072 i_ehdrp = elf_elfheader (abfd);
8073 if (i_ehdrp == NULL)
8074 fprintf_vma ((FILE *) stream, value);
8075 else
8076 {
8077 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8078 {
8079 #if BFD_HOST_64BIT_LONG
8080 fprintf ((FILE *) stream, "%016lx", value);
8081 #else
8082 fprintf ((FILE *) stream, "%08lx%08lx",
8083 _bfd_int64_high (value), _bfd_int64_low (value));
8084 #endif
8085 }
8086 else
8087 fprintf ((FILE *) stream, "%08lx",
8088 (unsigned long) (value & 0xffffffff));
8089 }
8090 #else
8091 fprintf_vma ((FILE *) stream, value);
8092 #endif
8093 }
8094
8095 enum elf_reloc_type_class
8096 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8097 {
8098 return reloc_class_normal;
8099 }
8100
8101 /* For RELA architectures, return the relocation value for a
8102 relocation against a local symbol. */
8103
8104 bfd_vma
8105 _bfd_elf_rela_local_sym (bfd *abfd,
8106 Elf_Internal_Sym *sym,
8107 asection **psec,
8108 Elf_Internal_Rela *rel)
8109 {
8110 asection *sec = *psec;
8111 bfd_vma relocation;
8112
8113 relocation = (sec->output_section->vma
8114 + sec->output_offset
8115 + sym->st_value);
8116 if ((sec->flags & SEC_MERGE)
8117 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8118 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8119 {
8120 rel->r_addend =
8121 _bfd_merged_section_offset (abfd, psec,
8122 elf_section_data (sec)->sec_info,
8123 sym->st_value + rel->r_addend);
8124 if (sec != *psec)
8125 {
8126 /* If we have changed the section, and our original section is
8127 marked with SEC_EXCLUDE, it means that the original
8128 SEC_MERGE section has been completely subsumed in some
8129 other SEC_MERGE section. In this case, we need to leave
8130 some info around for --emit-relocs. */
8131 if ((sec->flags & SEC_EXCLUDE) != 0)
8132 sec->kept_section = *psec;
8133 sec = *psec;
8134 }
8135 rel->r_addend -= relocation;
8136 rel->r_addend += sec->output_section->vma + sec->output_offset;
8137 }
8138 return relocation;
8139 }
8140
8141 bfd_vma
8142 _bfd_elf_rel_local_sym (bfd *abfd,
8143 Elf_Internal_Sym *sym,
8144 asection **psec,
8145 bfd_vma addend)
8146 {
8147 asection *sec = *psec;
8148
8149 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8150 return sym->st_value + addend;
8151
8152 return _bfd_merged_section_offset (abfd, psec,
8153 elf_section_data (sec)->sec_info,
8154 sym->st_value + addend);
8155 }
8156
8157 bfd_vma
8158 _bfd_elf_section_offset (bfd *abfd,
8159 struct bfd_link_info *info,
8160 asection *sec,
8161 bfd_vma offset)
8162 {
8163 switch (sec->sec_info_type)
8164 {
8165 case ELF_INFO_TYPE_STABS:
8166 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8167 offset);
8168 case ELF_INFO_TYPE_EH_FRAME:
8169 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8170 default:
8171 return offset;
8172 }
8173 }
8174 \f
8175 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8176 reconstruct an ELF file by reading the segments out of remote memory
8177 based on the ELF file header at EHDR_VMA and the ELF program headers it
8178 points to. If not null, *LOADBASEP is filled in with the difference
8179 between the VMAs from which the segments were read, and the VMAs the
8180 file headers (and hence BFD's idea of each section's VMA) put them at.
8181
8182 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8183 remote memory at target address VMA into the local buffer at MYADDR; it
8184 should return zero on success or an `errno' code on failure. TEMPL must
8185 be a BFD for an ELF target with the word size and byte order found in
8186 the remote memory. */
8187
8188 bfd *
8189 bfd_elf_bfd_from_remote_memory
8190 (bfd *templ,
8191 bfd_vma ehdr_vma,
8192 bfd_vma *loadbasep,
8193 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8194 {
8195 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8196 (templ, ehdr_vma, loadbasep, target_read_memory);
8197 }
8198 \f
8199 long
8200 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8201 long symcount ATTRIBUTE_UNUSED,
8202 asymbol **syms ATTRIBUTE_UNUSED,
8203 long dynsymcount,
8204 asymbol **dynsyms,
8205 asymbol **ret)
8206 {
8207 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8208 asection *relplt;
8209 asymbol *s;
8210 const char *relplt_name;
8211 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8212 arelent *p;
8213 long count, i, n;
8214 size_t size;
8215 Elf_Internal_Shdr *hdr;
8216 char *names;
8217 asection *plt;
8218
8219 *ret = NULL;
8220
8221 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8222 return 0;
8223
8224 if (dynsymcount <= 0)
8225 return 0;
8226
8227 if (!bed->plt_sym_val)
8228 return 0;
8229
8230 relplt_name = bed->relplt_name;
8231 if (relplt_name == NULL)
8232 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8233 relplt = bfd_get_section_by_name (abfd, relplt_name);
8234 if (relplt == NULL)
8235 return 0;
8236
8237 hdr = &elf_section_data (relplt)->this_hdr;
8238 if (hdr->sh_link != elf_dynsymtab (abfd)
8239 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8240 return 0;
8241
8242 plt = bfd_get_section_by_name (abfd, ".plt");
8243 if (plt == NULL)
8244 return 0;
8245
8246 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8247 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8248 return -1;
8249
8250 count = relplt->size / hdr->sh_entsize;
8251 size = count * sizeof (asymbol);
8252 p = relplt->relocation;
8253 for (i = 0; i < count; i++, s++, p++)
8254 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8255
8256 s = *ret = bfd_malloc (size);
8257 if (s == NULL)
8258 return -1;
8259
8260 names = (char *) (s + count);
8261 p = relplt->relocation;
8262 n = 0;
8263 for (i = 0; i < count; i++, s++, p++)
8264 {
8265 size_t len;
8266 bfd_vma addr;
8267
8268 addr = bed->plt_sym_val (i, plt, p);
8269 if (addr == (bfd_vma) -1)
8270 continue;
8271
8272 *s = **p->sym_ptr_ptr;
8273 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8274 we are defining a symbol, ensure one of them is set. */
8275 if ((s->flags & BSF_LOCAL) == 0)
8276 s->flags |= BSF_GLOBAL;
8277 s->section = plt;
8278 s->value = addr - plt->vma;
8279 s->name = names;
8280 len = strlen ((*p->sym_ptr_ptr)->name);
8281 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8282 names += len;
8283 memcpy (names, "@plt", sizeof ("@plt"));
8284 names += sizeof ("@plt");
8285 ++n;
8286 }
8287
8288 return n;
8289 }
8290
8291 /* Sort symbol by binding and section. We want to put definitions
8292 sorted by section at the beginning. */
8293
8294 static int
8295 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8296 {
8297 const Elf_Internal_Sym *s1;
8298 const Elf_Internal_Sym *s2;
8299 int shndx;
8300
8301 /* Make sure that undefined symbols are at the end. */
8302 s1 = (const Elf_Internal_Sym *) arg1;
8303 if (s1->st_shndx == SHN_UNDEF)
8304 return 1;
8305 s2 = (const Elf_Internal_Sym *) arg2;
8306 if (s2->st_shndx == SHN_UNDEF)
8307 return -1;
8308
8309 /* Sorted by section index. */
8310 shndx = s1->st_shndx - s2->st_shndx;
8311 if (shndx != 0)
8312 return shndx;
8313
8314 /* Sorted by binding. */
8315 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8316 }
8317
8318 struct elf_symbol
8319 {
8320 Elf_Internal_Sym *sym;
8321 const char *name;
8322 };
8323
8324 static int
8325 elf_sym_name_compare (const void *arg1, const void *arg2)
8326 {
8327 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8328 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8329 return strcmp (s1->name, s2->name);
8330 }
8331
8332 /* Check if 2 sections define the same set of local and global
8333 symbols. */
8334
8335 bfd_boolean
8336 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8337 {
8338 bfd *bfd1, *bfd2;
8339 const struct elf_backend_data *bed1, *bed2;
8340 Elf_Internal_Shdr *hdr1, *hdr2;
8341 bfd_size_type symcount1, symcount2;
8342 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8343 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8344 Elf_Internal_Sym *isymend;
8345 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8346 bfd_size_type count1, count2, i;
8347 int shndx1, shndx2;
8348 bfd_boolean result;
8349
8350 bfd1 = sec1->owner;
8351 bfd2 = sec2->owner;
8352
8353 /* If both are .gnu.linkonce sections, they have to have the same
8354 section name. */
8355 if (strncmp (sec1->name, ".gnu.linkonce",
8356 sizeof ".gnu.linkonce" - 1) == 0
8357 && strncmp (sec2->name, ".gnu.linkonce",
8358 sizeof ".gnu.linkonce" - 1) == 0)
8359 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8360 sec2->name + sizeof ".gnu.linkonce") == 0;
8361
8362 /* Both sections have to be in ELF. */
8363 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8364 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8365 return FALSE;
8366
8367 if (elf_section_type (sec1) != elf_section_type (sec2))
8368 return FALSE;
8369
8370 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8371 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8372 {
8373 /* If both are members of section groups, they have to have the
8374 same group name. */
8375 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8376 return FALSE;
8377 }
8378
8379 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8380 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8381 if (shndx1 == -1 || shndx2 == -1)
8382 return FALSE;
8383
8384 bed1 = get_elf_backend_data (bfd1);
8385 bed2 = get_elf_backend_data (bfd2);
8386 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8387 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8388 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8389 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8390
8391 if (symcount1 == 0 || symcount2 == 0)
8392 return FALSE;
8393
8394 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8395 NULL, NULL, NULL);
8396 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8397 NULL, NULL, NULL);
8398
8399 result = FALSE;
8400 if (isymbuf1 == NULL || isymbuf2 == NULL)
8401 goto done;
8402
8403 /* Sort symbols by binding and section. Global definitions are at
8404 the beginning. */
8405 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8406 elf_sort_elf_symbol);
8407 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8408 elf_sort_elf_symbol);
8409
8410 /* Count definitions in the section. */
8411 count1 = 0;
8412 for (isym = isymbuf1, isymend = isym + symcount1;
8413 isym < isymend; isym++)
8414 {
8415 if (isym->st_shndx == (unsigned int) shndx1)
8416 {
8417 if (count1 == 0)
8418 isymstart1 = isym;
8419 count1++;
8420 }
8421
8422 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8423 break;
8424 }
8425
8426 count2 = 0;
8427 for (isym = isymbuf2, isymend = isym + symcount2;
8428 isym < isymend; isym++)
8429 {
8430 if (isym->st_shndx == (unsigned int) shndx2)
8431 {
8432 if (count2 == 0)
8433 isymstart2 = isym;
8434 count2++;
8435 }
8436
8437 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8438 break;
8439 }
8440
8441 if (count1 == 0 || count2 == 0 || count1 != count2)
8442 goto done;
8443
8444 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8445 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8446
8447 if (symtable1 == NULL || symtable2 == NULL)
8448 goto done;
8449
8450 symp = symtable1;
8451 for (isym = isymstart1, isymend = isym + count1;
8452 isym < isymend; isym++)
8453 {
8454 symp->sym = isym;
8455 symp->name = bfd_elf_string_from_elf_section (bfd1,
8456 hdr1->sh_link,
8457 isym->st_name);
8458 symp++;
8459 }
8460
8461 symp = symtable2;
8462 for (isym = isymstart2, isymend = isym + count1;
8463 isym < isymend; isym++)
8464 {
8465 symp->sym = isym;
8466 symp->name = bfd_elf_string_from_elf_section (bfd2,
8467 hdr2->sh_link,
8468 isym->st_name);
8469 symp++;
8470 }
8471
8472 /* Sort symbol by name. */
8473 qsort (symtable1, count1, sizeof (struct elf_symbol),
8474 elf_sym_name_compare);
8475 qsort (symtable2, count1, sizeof (struct elf_symbol),
8476 elf_sym_name_compare);
8477
8478 for (i = 0; i < count1; i++)
8479 /* Two symbols must have the same binding, type and name. */
8480 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8481 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8482 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8483 goto done;
8484
8485 result = TRUE;
8486
8487 done:
8488 if (symtable1)
8489 free (symtable1);
8490 if (symtable2)
8491 free (symtable2);
8492 if (isymbuf1)
8493 free (isymbuf1);
8494 if (isymbuf2)
8495 free (isymbuf2);
8496
8497 return result;
8498 }
8499
8500 /* It is only used by x86-64 so far. */
8501 asection _bfd_elf_large_com_section
8502 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8503 SEC_IS_COMMON, NULL, NULL, "LARGE_COMMON",
8504 0);
This page took 0.2098 seconds and 4 git commands to generate.