Fix my ChangeLog entry date.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 static int elf_sort_sections (const void *, const void *);
49 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
50 static bfd_boolean prep_headers (bfd *);
51 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
52 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
53 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
54 file_ptr offset);
55
56 /* Swap version information in and out. The version information is
57 currently size independent. If that ever changes, this code will
58 need to move into elfcode.h. */
59
60 /* Swap in a Verdef structure. */
61
62 void
63 _bfd_elf_swap_verdef_in (bfd *abfd,
64 const Elf_External_Verdef *src,
65 Elf_Internal_Verdef *dst)
66 {
67 dst->vd_version = H_GET_16 (abfd, src->vd_version);
68 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
69 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
70 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
71 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
72 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
73 dst->vd_next = H_GET_32 (abfd, src->vd_next);
74 }
75
76 /* Swap out a Verdef structure. */
77
78 void
79 _bfd_elf_swap_verdef_out (bfd *abfd,
80 const Elf_Internal_Verdef *src,
81 Elf_External_Verdef *dst)
82 {
83 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
84 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
85 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
86 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
87 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
88 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
89 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
90 }
91
92 /* Swap in a Verdaux structure. */
93
94 void
95 _bfd_elf_swap_verdaux_in (bfd *abfd,
96 const Elf_External_Verdaux *src,
97 Elf_Internal_Verdaux *dst)
98 {
99 dst->vda_name = H_GET_32 (abfd, src->vda_name);
100 dst->vda_next = H_GET_32 (abfd, src->vda_next);
101 }
102
103 /* Swap out a Verdaux structure. */
104
105 void
106 _bfd_elf_swap_verdaux_out (bfd *abfd,
107 const Elf_Internal_Verdaux *src,
108 Elf_External_Verdaux *dst)
109 {
110 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
111 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
112 }
113
114 /* Swap in a Verneed structure. */
115
116 void
117 _bfd_elf_swap_verneed_in (bfd *abfd,
118 const Elf_External_Verneed *src,
119 Elf_Internal_Verneed *dst)
120 {
121 dst->vn_version = H_GET_16 (abfd, src->vn_version);
122 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
123 dst->vn_file = H_GET_32 (abfd, src->vn_file);
124 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
125 dst->vn_next = H_GET_32 (abfd, src->vn_next);
126 }
127
128 /* Swap out a Verneed structure. */
129
130 void
131 _bfd_elf_swap_verneed_out (bfd *abfd,
132 const Elf_Internal_Verneed *src,
133 Elf_External_Verneed *dst)
134 {
135 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
136 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
137 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
138 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
139 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
140 }
141
142 /* Swap in a Vernaux structure. */
143
144 void
145 _bfd_elf_swap_vernaux_in (bfd *abfd,
146 const Elf_External_Vernaux *src,
147 Elf_Internal_Vernaux *dst)
148 {
149 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
150 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
151 dst->vna_other = H_GET_16 (abfd, src->vna_other);
152 dst->vna_name = H_GET_32 (abfd, src->vna_name);
153 dst->vna_next = H_GET_32 (abfd, src->vna_next);
154 }
155
156 /* Swap out a Vernaux structure. */
157
158 void
159 _bfd_elf_swap_vernaux_out (bfd *abfd,
160 const Elf_Internal_Vernaux *src,
161 Elf_External_Vernaux *dst)
162 {
163 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
164 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
165 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
166 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
167 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
168 }
169
170 /* Swap in a Versym structure. */
171
172 void
173 _bfd_elf_swap_versym_in (bfd *abfd,
174 const Elf_External_Versym *src,
175 Elf_Internal_Versym *dst)
176 {
177 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
178 }
179
180 /* Swap out a Versym structure. */
181
182 void
183 _bfd_elf_swap_versym_out (bfd *abfd,
184 const Elf_Internal_Versym *src,
185 Elf_External_Versym *dst)
186 {
187 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
188 }
189
190 /* Standard ELF hash function. Do not change this function; you will
191 cause invalid hash tables to be generated. */
192
193 unsigned long
194 bfd_elf_hash (const char *namearg)
195 {
196 const unsigned char *name = (const unsigned char *) namearg;
197 unsigned long h = 0;
198 unsigned long g;
199 int ch;
200
201 while ((ch = *name++) != '\0')
202 {
203 h = (h << 4) + ch;
204 if ((g = (h & 0xf0000000)) != 0)
205 {
206 h ^= g >> 24;
207 /* The ELF ABI says `h &= ~g', but this is equivalent in
208 this case and on some machines one insn instead of two. */
209 h ^= g;
210 }
211 }
212 return h & 0xffffffff;
213 }
214
215 /* DT_GNU_HASH hash function. Do not change this function; you will
216 cause invalid hash tables to be generated. */
217
218 unsigned long
219 bfd_elf_gnu_hash (const char *namearg)
220 {
221 const unsigned char *name = (const unsigned char *) namearg;
222 unsigned long h = 5381;
223 unsigned char ch;
224
225 while ((ch = *name++) != '\0')
226 h = (h << 5) + h + ch;
227 return h & 0xffffffff;
228 }
229
230 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
231 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
232 bfd_boolean
233 bfd_elf_allocate_object (bfd *abfd,
234 size_t object_size,
235 enum elf_object_id object_id)
236 {
237 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
238 abfd->tdata.any = bfd_zalloc (abfd, object_size);
239 if (abfd->tdata.any == NULL)
240 return FALSE;
241
242 elf_object_id (abfd) = object_id;
243 elf_program_header_size (abfd) = (bfd_size_type) -1;
244 return TRUE;
245 }
246
247
248 bfd_boolean
249 bfd_elf_make_generic_object (bfd *abfd)
250 {
251 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
252 GENERIC_ELF_TDATA);
253 }
254
255 bfd_boolean
256 bfd_elf_mkcorefile (bfd *abfd)
257 {
258 /* I think this can be done just like an object file. */
259 return bfd_elf_make_generic_object (abfd);
260 }
261
262 static char *
263 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
264 {
265 Elf_Internal_Shdr **i_shdrp;
266 bfd_byte *shstrtab = NULL;
267 file_ptr offset;
268 bfd_size_type shstrtabsize;
269
270 i_shdrp = elf_elfsections (abfd);
271 if (i_shdrp == 0
272 || shindex >= elf_numsections (abfd)
273 || i_shdrp[shindex] == 0)
274 return NULL;
275
276 shstrtab = i_shdrp[shindex]->contents;
277 if (shstrtab == NULL)
278 {
279 /* No cached one, attempt to read, and cache what we read. */
280 offset = i_shdrp[shindex]->sh_offset;
281 shstrtabsize = i_shdrp[shindex]->sh_size;
282
283 /* Allocate and clear an extra byte at the end, to prevent crashes
284 in case the string table is not terminated. */
285 if (shstrtabsize + 1 <= 1
286 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
287 || bfd_seek (abfd, offset, SEEK_SET) != 0)
288 shstrtab = NULL;
289 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
290 {
291 if (bfd_get_error () != bfd_error_system_call)
292 bfd_set_error (bfd_error_file_truncated);
293 shstrtab = NULL;
294 /* Once we've failed to read it, make sure we don't keep
295 trying. Otherwise, we'll keep allocating space for
296 the string table over and over. */
297 i_shdrp[shindex]->sh_size = 0;
298 }
299 else
300 shstrtab[shstrtabsize] = '\0';
301 i_shdrp[shindex]->contents = shstrtab;
302 }
303 return (char *) shstrtab;
304 }
305
306 char *
307 bfd_elf_string_from_elf_section (bfd *abfd,
308 unsigned int shindex,
309 unsigned int strindex)
310 {
311 Elf_Internal_Shdr *hdr;
312
313 if (strindex == 0)
314 return "";
315
316 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
317 return NULL;
318
319 hdr = elf_elfsections (abfd)[shindex];
320
321 if (hdr->contents == NULL
322 && bfd_elf_get_str_section (abfd, shindex) == NULL)
323 return NULL;
324
325 if (strindex >= hdr->sh_size)
326 {
327 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
328 (*_bfd_error_handler)
329 (_("%B: invalid string offset %u >= %lu for section `%s'"),
330 abfd, strindex, (unsigned long) hdr->sh_size,
331 (shindex == shstrndx && strindex == hdr->sh_name
332 ? ".shstrtab"
333 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
334 return "";
335 }
336
337 return ((char *) hdr->contents) + strindex;
338 }
339
340 /* Read and convert symbols to internal format.
341 SYMCOUNT specifies the number of symbols to read, starting from
342 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
343 are non-NULL, they are used to store the internal symbols, external
344 symbols, and symbol section index extensions, respectively.
345 Returns a pointer to the internal symbol buffer (malloced if necessary)
346 or NULL if there were no symbols or some kind of problem. */
347
348 Elf_Internal_Sym *
349 bfd_elf_get_elf_syms (bfd *ibfd,
350 Elf_Internal_Shdr *symtab_hdr,
351 size_t symcount,
352 size_t symoffset,
353 Elf_Internal_Sym *intsym_buf,
354 void *extsym_buf,
355 Elf_External_Sym_Shndx *extshndx_buf)
356 {
357 Elf_Internal_Shdr *shndx_hdr;
358 void *alloc_ext;
359 const bfd_byte *esym;
360 Elf_External_Sym_Shndx *alloc_extshndx;
361 Elf_External_Sym_Shndx *shndx;
362 Elf_Internal_Sym *alloc_intsym;
363 Elf_Internal_Sym *isym;
364 Elf_Internal_Sym *isymend;
365 const struct elf_backend_data *bed;
366 size_t extsym_size;
367 bfd_size_type amt;
368 file_ptr pos;
369
370 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
371 abort ();
372
373 if (symcount == 0)
374 return intsym_buf;
375
376 /* Normal syms might have section extension entries. */
377 shndx_hdr = NULL;
378 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
379 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
380
381 /* Read the symbols. */
382 alloc_ext = NULL;
383 alloc_extshndx = NULL;
384 alloc_intsym = NULL;
385 bed = get_elf_backend_data (ibfd);
386 extsym_size = bed->s->sizeof_sym;
387 amt = symcount * extsym_size;
388 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
389 if (extsym_buf == NULL)
390 {
391 alloc_ext = bfd_malloc2 (symcount, extsym_size);
392 extsym_buf = alloc_ext;
393 }
394 if (extsym_buf == NULL
395 || bfd_seek (ibfd, pos, SEEK_SET) != 0
396 || bfd_bread (extsym_buf, amt, ibfd) != amt)
397 {
398 intsym_buf = NULL;
399 goto out;
400 }
401
402 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
403 extshndx_buf = NULL;
404 else
405 {
406 amt = symcount * sizeof (Elf_External_Sym_Shndx);
407 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
408 if (extshndx_buf == NULL)
409 {
410 alloc_extshndx = bfd_malloc2 (symcount,
411 sizeof (Elf_External_Sym_Shndx));
412 extshndx_buf = alloc_extshndx;
413 }
414 if (extshndx_buf == NULL
415 || bfd_seek (ibfd, pos, SEEK_SET) != 0
416 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
417 {
418 intsym_buf = NULL;
419 goto out;
420 }
421 }
422
423 if (intsym_buf == NULL)
424 {
425 alloc_intsym = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
426 intsym_buf = alloc_intsym;
427 if (intsym_buf == NULL)
428 goto out;
429 }
430
431 /* Convert the symbols to internal form. */
432 isymend = intsym_buf + symcount;
433 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
434 isym < isymend;
435 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
436 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
437 {
438 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
439 (*_bfd_error_handler) (_("%B symbol number %lu references "
440 "nonexistent SHT_SYMTAB_SHNDX section"),
441 ibfd, (unsigned long) symoffset);
442 if (alloc_intsym != NULL)
443 free (alloc_intsym);
444 intsym_buf = NULL;
445 goto out;
446 }
447
448 out:
449 if (alloc_ext != NULL)
450 free (alloc_ext);
451 if (alloc_extshndx != NULL)
452 free (alloc_extshndx);
453
454 return intsym_buf;
455 }
456
457 /* Look up a symbol name. */
458 const char *
459 bfd_elf_sym_name (bfd *abfd,
460 Elf_Internal_Shdr *symtab_hdr,
461 Elf_Internal_Sym *isym,
462 asection *sym_sec)
463 {
464 const char *name;
465 unsigned int iname = isym->st_name;
466 unsigned int shindex = symtab_hdr->sh_link;
467
468 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
469 /* Check for a bogus st_shndx to avoid crashing. */
470 && isym->st_shndx < elf_numsections (abfd))
471 {
472 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
473 shindex = elf_elfheader (abfd)->e_shstrndx;
474 }
475
476 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
477 if (name == NULL)
478 name = "(null)";
479 else if (sym_sec && *name == '\0')
480 name = bfd_section_name (abfd, sym_sec);
481
482 return name;
483 }
484
485 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
486 sections. The first element is the flags, the rest are section
487 pointers. */
488
489 typedef union elf_internal_group {
490 Elf_Internal_Shdr *shdr;
491 unsigned int flags;
492 } Elf_Internal_Group;
493
494 /* Return the name of the group signature symbol. Why isn't the
495 signature just a string? */
496
497 static const char *
498 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
499 {
500 Elf_Internal_Shdr *hdr;
501 unsigned char esym[sizeof (Elf64_External_Sym)];
502 Elf_External_Sym_Shndx eshndx;
503 Elf_Internal_Sym isym;
504
505 /* First we need to ensure the symbol table is available. Make sure
506 that it is a symbol table section. */
507 if (ghdr->sh_link >= elf_numsections (abfd))
508 return NULL;
509 hdr = elf_elfsections (abfd) [ghdr->sh_link];
510 if (hdr->sh_type != SHT_SYMTAB
511 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
512 return NULL;
513
514 /* Go read the symbol. */
515 hdr = &elf_tdata (abfd)->symtab_hdr;
516 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
517 &isym, esym, &eshndx) == NULL)
518 return NULL;
519
520 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
521 }
522
523 /* Set next_in_group list pointer, and group name for NEWSECT. */
524
525 static bfd_boolean
526 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
527 {
528 unsigned int num_group = elf_tdata (abfd)->num_group;
529
530 /* If num_group is zero, read in all SHT_GROUP sections. The count
531 is set to -1 if there are no SHT_GROUP sections. */
532 if (num_group == 0)
533 {
534 unsigned int i, shnum;
535
536 /* First count the number of groups. If we have a SHT_GROUP
537 section with just a flag word (ie. sh_size is 4), ignore it. */
538 shnum = elf_numsections (abfd);
539 num_group = 0;
540
541 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
542 ( (shdr)->sh_type == SHT_GROUP \
543 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
544 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
545 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
546
547 for (i = 0; i < shnum; i++)
548 {
549 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
550
551 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
552 num_group += 1;
553 }
554
555 if (num_group == 0)
556 {
557 num_group = (unsigned) -1;
558 elf_tdata (abfd)->num_group = num_group;
559 }
560 else
561 {
562 /* We keep a list of elf section headers for group sections,
563 so we can find them quickly. */
564 bfd_size_type amt;
565
566 elf_tdata (abfd)->num_group = num_group;
567 elf_tdata (abfd)->group_sect_ptr
568 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
569 if (elf_tdata (abfd)->group_sect_ptr == NULL)
570 return FALSE;
571
572 num_group = 0;
573 for (i = 0; i < shnum; i++)
574 {
575 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
576
577 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
578 {
579 unsigned char *src;
580 Elf_Internal_Group *dest;
581
582 /* Add to list of sections. */
583 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
584 num_group += 1;
585
586 /* Read the raw contents. */
587 BFD_ASSERT (sizeof (*dest) >= 4);
588 amt = shdr->sh_size * sizeof (*dest) / 4;
589 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
590 sizeof (*dest) / 4);
591 /* PR binutils/4110: Handle corrupt group headers. */
592 if (shdr->contents == NULL)
593 {
594 _bfd_error_handler
595 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
596 bfd_set_error (bfd_error_bad_value);
597 return FALSE;
598 }
599
600 memset (shdr->contents, 0, amt);
601
602 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
603 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
604 != shdr->sh_size))
605 return FALSE;
606
607 /* Translate raw contents, a flag word followed by an
608 array of elf section indices all in target byte order,
609 to the flag word followed by an array of elf section
610 pointers. */
611 src = shdr->contents + shdr->sh_size;
612 dest = (Elf_Internal_Group *) (shdr->contents + amt);
613 while (1)
614 {
615 unsigned int idx;
616
617 src -= 4;
618 --dest;
619 idx = H_GET_32 (abfd, src);
620 if (src == shdr->contents)
621 {
622 dest->flags = idx;
623 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
624 shdr->bfd_section->flags
625 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
626 break;
627 }
628 if (idx >= shnum)
629 {
630 ((*_bfd_error_handler)
631 (_("%B: invalid SHT_GROUP entry"), abfd));
632 idx = 0;
633 }
634 dest->shdr = elf_elfsections (abfd)[idx];
635 }
636 }
637 }
638 }
639 }
640
641 if (num_group != (unsigned) -1)
642 {
643 unsigned int i;
644
645 for (i = 0; i < num_group; i++)
646 {
647 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
648 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
649 unsigned int n_elt = shdr->sh_size / 4;
650
651 /* Look through this group's sections to see if current
652 section is a member. */
653 while (--n_elt != 0)
654 if ((++idx)->shdr == hdr)
655 {
656 asection *s = NULL;
657
658 /* We are a member of this group. Go looking through
659 other members to see if any others are linked via
660 next_in_group. */
661 idx = (Elf_Internal_Group *) shdr->contents;
662 n_elt = shdr->sh_size / 4;
663 while (--n_elt != 0)
664 if ((s = (++idx)->shdr->bfd_section) != NULL
665 && elf_next_in_group (s) != NULL)
666 break;
667 if (n_elt != 0)
668 {
669 /* Snarf the group name from other member, and
670 insert current section in circular list. */
671 elf_group_name (newsect) = elf_group_name (s);
672 elf_next_in_group (newsect) = elf_next_in_group (s);
673 elf_next_in_group (s) = newsect;
674 }
675 else
676 {
677 const char *gname;
678
679 gname = group_signature (abfd, shdr);
680 if (gname == NULL)
681 return FALSE;
682 elf_group_name (newsect) = gname;
683
684 /* Start a circular list with one element. */
685 elf_next_in_group (newsect) = newsect;
686 }
687
688 /* If the group section has been created, point to the
689 new member. */
690 if (shdr->bfd_section != NULL)
691 elf_next_in_group (shdr->bfd_section) = newsect;
692
693 i = num_group - 1;
694 break;
695 }
696 }
697 }
698
699 if (elf_group_name (newsect) == NULL)
700 {
701 (*_bfd_error_handler) (_("%B: no group info for section %A"),
702 abfd, newsect);
703 }
704 return TRUE;
705 }
706
707 bfd_boolean
708 _bfd_elf_setup_sections (bfd *abfd)
709 {
710 unsigned int i;
711 unsigned int num_group = elf_tdata (abfd)->num_group;
712 bfd_boolean result = TRUE;
713 asection *s;
714
715 /* Process SHF_LINK_ORDER. */
716 for (s = abfd->sections; s != NULL; s = s->next)
717 {
718 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
719 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
720 {
721 unsigned int elfsec = this_hdr->sh_link;
722 /* FIXME: The old Intel compiler and old strip/objcopy may
723 not set the sh_link or sh_info fields. Hence we could
724 get the situation where elfsec is 0. */
725 if (elfsec == 0)
726 {
727 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
728 if (bed->link_order_error_handler)
729 bed->link_order_error_handler
730 (_("%B: warning: sh_link not set for section `%A'"),
731 abfd, s);
732 }
733 else
734 {
735 asection *link = NULL;
736
737 if (elfsec < elf_numsections (abfd))
738 {
739 this_hdr = elf_elfsections (abfd)[elfsec];
740 link = this_hdr->bfd_section;
741 }
742
743 /* PR 1991, 2008:
744 Some strip/objcopy may leave an incorrect value in
745 sh_link. We don't want to proceed. */
746 if (link == NULL)
747 {
748 (*_bfd_error_handler)
749 (_("%B: sh_link [%d] in section `%A' is incorrect"),
750 s->owner, s, elfsec);
751 result = FALSE;
752 }
753
754 elf_linked_to_section (s) = link;
755 }
756 }
757 }
758
759 /* Process section groups. */
760 if (num_group == (unsigned) -1)
761 return result;
762
763 for (i = 0; i < num_group; i++)
764 {
765 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
766 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
767 unsigned int n_elt = shdr->sh_size / 4;
768
769 while (--n_elt != 0)
770 if ((++idx)->shdr->bfd_section)
771 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
772 else if (idx->shdr->sh_type == SHT_RELA
773 || idx->shdr->sh_type == SHT_REL)
774 /* We won't include relocation sections in section groups in
775 output object files. We adjust the group section size here
776 so that relocatable link will work correctly when
777 relocation sections are in section group in input object
778 files. */
779 shdr->bfd_section->size -= 4;
780 else
781 {
782 /* There are some unknown sections in the group. */
783 (*_bfd_error_handler)
784 (_("%B: unknown [%d] section `%s' in group [%s]"),
785 abfd,
786 (unsigned int) idx->shdr->sh_type,
787 bfd_elf_string_from_elf_section (abfd,
788 (elf_elfheader (abfd)
789 ->e_shstrndx),
790 idx->shdr->sh_name),
791 shdr->bfd_section->name);
792 result = FALSE;
793 }
794 }
795 return result;
796 }
797
798 bfd_boolean
799 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
800 {
801 return elf_next_in_group (sec) != NULL;
802 }
803
804 /* Make a BFD section from an ELF section. We store a pointer to the
805 BFD section in the bfd_section field of the header. */
806
807 bfd_boolean
808 _bfd_elf_make_section_from_shdr (bfd *abfd,
809 Elf_Internal_Shdr *hdr,
810 const char *name,
811 int shindex)
812 {
813 asection *newsect;
814 flagword flags;
815 const struct elf_backend_data *bed;
816
817 if (hdr->bfd_section != NULL)
818 {
819 BFD_ASSERT (strcmp (name,
820 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
821 return TRUE;
822 }
823
824 newsect = bfd_make_section_anyway (abfd, name);
825 if (newsect == NULL)
826 return FALSE;
827
828 hdr->bfd_section = newsect;
829 elf_section_data (newsect)->this_hdr = *hdr;
830 elf_section_data (newsect)->this_idx = shindex;
831
832 /* Always use the real type/flags. */
833 elf_section_type (newsect) = hdr->sh_type;
834 elf_section_flags (newsect) = hdr->sh_flags;
835
836 newsect->filepos = hdr->sh_offset;
837
838 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
839 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
840 || ! bfd_set_section_alignment (abfd, newsect,
841 bfd_log2 (hdr->sh_addralign)))
842 return FALSE;
843
844 flags = SEC_NO_FLAGS;
845 if (hdr->sh_type != SHT_NOBITS)
846 flags |= SEC_HAS_CONTENTS;
847 if (hdr->sh_type == SHT_GROUP)
848 flags |= SEC_GROUP | SEC_EXCLUDE;
849 if ((hdr->sh_flags & SHF_ALLOC) != 0)
850 {
851 flags |= SEC_ALLOC;
852 if (hdr->sh_type != SHT_NOBITS)
853 flags |= SEC_LOAD;
854 }
855 if ((hdr->sh_flags & SHF_WRITE) == 0)
856 flags |= SEC_READONLY;
857 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
858 flags |= SEC_CODE;
859 else if ((flags & SEC_LOAD) != 0)
860 flags |= SEC_DATA;
861 if ((hdr->sh_flags & SHF_MERGE) != 0)
862 {
863 flags |= SEC_MERGE;
864 newsect->entsize = hdr->sh_entsize;
865 if ((hdr->sh_flags & SHF_STRINGS) != 0)
866 flags |= SEC_STRINGS;
867 }
868 if (hdr->sh_flags & SHF_GROUP)
869 if (!setup_group (abfd, hdr, newsect))
870 return FALSE;
871 if ((hdr->sh_flags & SHF_TLS) != 0)
872 flags |= SEC_THREAD_LOCAL;
873
874 if ((flags & SEC_ALLOC) == 0)
875 {
876 /* The debugging sections appear to be recognized only by name,
877 not any sort of flag. Their SEC_ALLOC bits are cleared. */
878 static const struct
879 {
880 const char *name;
881 int len;
882 } debug_sections [] =
883 {
884 { STRING_COMMA_LEN ("debug") }, /* 'd' */
885 { NULL, 0 }, /* 'e' */
886 { NULL, 0 }, /* 'f' */
887 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
888 { NULL, 0 }, /* 'h' */
889 { NULL, 0 }, /* 'i' */
890 { NULL, 0 }, /* 'j' */
891 { NULL, 0 }, /* 'k' */
892 { STRING_COMMA_LEN ("line") }, /* 'l' */
893 { NULL, 0 }, /* 'm' */
894 { NULL, 0 }, /* 'n' */
895 { NULL, 0 }, /* 'o' */
896 { NULL, 0 }, /* 'p' */
897 { NULL, 0 }, /* 'q' */
898 { NULL, 0 }, /* 'r' */
899 { STRING_COMMA_LEN ("stab") }, /* 's' */
900 { NULL, 0 }, /* 't' */
901 { NULL, 0 }, /* 'u' */
902 { NULL, 0 }, /* 'v' */
903 { NULL, 0 }, /* 'w' */
904 { NULL, 0 }, /* 'x' */
905 { NULL, 0 }, /* 'y' */
906 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
907 };
908
909 if (name [0] == '.')
910 {
911 int i = name [1] - 'd';
912 if (i >= 0
913 && i < (int) ARRAY_SIZE (debug_sections)
914 && debug_sections [i].name != NULL
915 && strncmp (&name [1], debug_sections [i].name,
916 debug_sections [i].len) == 0)
917 flags |= SEC_DEBUGGING;
918 }
919 }
920
921 /* As a GNU extension, if the name begins with .gnu.linkonce, we
922 only link a single copy of the section. This is used to support
923 g++. g++ will emit each template expansion in its own section.
924 The symbols will be defined as weak, so that multiple definitions
925 are permitted. The GNU linker extension is to actually discard
926 all but one of the sections. */
927 if (CONST_STRNEQ (name, ".gnu.linkonce")
928 && elf_next_in_group (newsect) == NULL)
929 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
930
931 bed = get_elf_backend_data (abfd);
932 if (bed->elf_backend_section_flags)
933 if (! bed->elf_backend_section_flags (&flags, hdr))
934 return FALSE;
935
936 if (! bfd_set_section_flags (abfd, newsect, flags))
937 return FALSE;
938
939 /* We do not parse the PT_NOTE segments as we are interested even in the
940 separate debug info files which may have the segments offsets corrupted.
941 PT_NOTEs from the core files are currently not parsed using BFD. */
942 if (hdr->sh_type == SHT_NOTE)
943 {
944 bfd_byte *contents;
945
946 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
947 return FALSE;
948
949 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
950 free (contents);
951 }
952
953 if ((flags & SEC_ALLOC) != 0)
954 {
955 Elf_Internal_Phdr *phdr;
956 unsigned int i, nload;
957
958 /* Some ELF linkers produce binaries with all the program header
959 p_paddr fields zero. If we have such a binary with more than
960 one PT_LOAD header, then leave the section lma equal to vma
961 so that we don't create sections with overlapping lma. */
962 phdr = elf_tdata (abfd)->phdr;
963 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
964 if (phdr->p_paddr != 0)
965 break;
966 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
967 ++nload;
968 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
969 return TRUE;
970
971 phdr = elf_tdata (abfd)->phdr;
972 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
973 {
974 /* This section is part of this segment if its file
975 offset plus size lies within the segment's memory
976 span and, if the section is loaded, the extent of the
977 loaded data lies within the extent of the segment.
978
979 Note - we used to check the p_paddr field as well, and
980 refuse to set the LMA if it was 0. This is wrong
981 though, as a perfectly valid initialised segment can
982 have a p_paddr of zero. Some architectures, eg ARM,
983 place special significance on the address 0 and
984 executables need to be able to have a segment which
985 covers this address. */
986 if (phdr->p_type == PT_LOAD
987 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
988 && (hdr->sh_offset + hdr->sh_size
989 <= phdr->p_offset + phdr->p_memsz)
990 && ((flags & SEC_LOAD) == 0
991 || (hdr->sh_offset + hdr->sh_size
992 <= phdr->p_offset + phdr->p_filesz)))
993 {
994 if ((flags & SEC_LOAD) == 0)
995 newsect->lma = (phdr->p_paddr
996 + hdr->sh_addr - phdr->p_vaddr);
997 else
998 /* We used to use the same adjustment for SEC_LOAD
999 sections, but that doesn't work if the segment
1000 is packed with code from multiple VMAs.
1001 Instead we calculate the section LMA based on
1002 the segment LMA. It is assumed that the
1003 segment will contain sections with contiguous
1004 LMAs, even if the VMAs are not. */
1005 newsect->lma = (phdr->p_paddr
1006 + hdr->sh_offset - phdr->p_offset);
1007
1008 /* With contiguous segments, we can't tell from file
1009 offsets whether a section with zero size should
1010 be placed at the end of one segment or the
1011 beginning of the next. Decide based on vaddr. */
1012 if (hdr->sh_addr >= phdr->p_vaddr
1013 && (hdr->sh_addr + hdr->sh_size
1014 <= phdr->p_vaddr + phdr->p_memsz))
1015 break;
1016 }
1017 }
1018 }
1019
1020 return TRUE;
1021 }
1022
1023 const char *const bfd_elf_section_type_names[] = {
1024 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1025 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1026 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1027 };
1028
1029 /* ELF relocs are against symbols. If we are producing relocatable
1030 output, and the reloc is against an external symbol, and nothing
1031 has given us any additional addend, the resulting reloc will also
1032 be against the same symbol. In such a case, we don't want to
1033 change anything about the way the reloc is handled, since it will
1034 all be done at final link time. Rather than put special case code
1035 into bfd_perform_relocation, all the reloc types use this howto
1036 function. It just short circuits the reloc if producing
1037 relocatable output against an external symbol. */
1038
1039 bfd_reloc_status_type
1040 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1041 arelent *reloc_entry,
1042 asymbol *symbol,
1043 void *data ATTRIBUTE_UNUSED,
1044 asection *input_section,
1045 bfd *output_bfd,
1046 char **error_message ATTRIBUTE_UNUSED)
1047 {
1048 if (output_bfd != NULL
1049 && (symbol->flags & BSF_SECTION_SYM) == 0
1050 && (! reloc_entry->howto->partial_inplace
1051 || reloc_entry->addend == 0))
1052 {
1053 reloc_entry->address += input_section->output_offset;
1054 return bfd_reloc_ok;
1055 }
1056
1057 return bfd_reloc_continue;
1058 }
1059 \f
1060 /* Copy the program header and other data from one object module to
1061 another. */
1062
1063 bfd_boolean
1064 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1065 {
1066 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1067 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1068 return TRUE;
1069
1070 BFD_ASSERT (!elf_flags_init (obfd)
1071 || (elf_elfheader (obfd)->e_flags
1072 == elf_elfheader (ibfd)->e_flags));
1073
1074 elf_gp (obfd) = elf_gp (ibfd);
1075 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1076 elf_flags_init (obfd) = TRUE;
1077
1078 /* Copy object attributes. */
1079 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1080
1081 return TRUE;
1082 }
1083
1084 static const char *
1085 get_segment_type (unsigned int p_type)
1086 {
1087 const char *pt;
1088 switch (p_type)
1089 {
1090 case PT_NULL: pt = "NULL"; break;
1091 case PT_LOAD: pt = "LOAD"; break;
1092 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1093 case PT_INTERP: pt = "INTERP"; break;
1094 case PT_NOTE: pt = "NOTE"; break;
1095 case PT_SHLIB: pt = "SHLIB"; break;
1096 case PT_PHDR: pt = "PHDR"; break;
1097 case PT_TLS: pt = "TLS"; break;
1098 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1099 case PT_GNU_STACK: pt = "STACK"; break;
1100 case PT_GNU_RELRO: pt = "RELRO"; break;
1101 default: pt = NULL; break;
1102 }
1103 return pt;
1104 }
1105
1106 /* Print out the program headers. */
1107
1108 bfd_boolean
1109 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1110 {
1111 FILE *f = farg;
1112 Elf_Internal_Phdr *p;
1113 asection *s;
1114 bfd_byte *dynbuf = NULL;
1115
1116 p = elf_tdata (abfd)->phdr;
1117 if (p != NULL)
1118 {
1119 unsigned int i, c;
1120
1121 fprintf (f, _("\nProgram Header:\n"));
1122 c = elf_elfheader (abfd)->e_phnum;
1123 for (i = 0; i < c; i++, p++)
1124 {
1125 const char *pt = get_segment_type (p->p_type);
1126 char buf[20];
1127
1128 if (pt == NULL)
1129 {
1130 sprintf (buf, "0x%lx", p->p_type);
1131 pt = buf;
1132 }
1133 fprintf (f, "%8s off 0x", pt);
1134 bfd_fprintf_vma (abfd, f, p->p_offset);
1135 fprintf (f, " vaddr 0x");
1136 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1137 fprintf (f, " paddr 0x");
1138 bfd_fprintf_vma (abfd, f, p->p_paddr);
1139 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1140 fprintf (f, " filesz 0x");
1141 bfd_fprintf_vma (abfd, f, p->p_filesz);
1142 fprintf (f, " memsz 0x");
1143 bfd_fprintf_vma (abfd, f, p->p_memsz);
1144 fprintf (f, " flags %c%c%c",
1145 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1146 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1147 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1148 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1149 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1150 fprintf (f, "\n");
1151 }
1152 }
1153
1154 s = bfd_get_section_by_name (abfd, ".dynamic");
1155 if (s != NULL)
1156 {
1157 unsigned int elfsec;
1158 unsigned long shlink;
1159 bfd_byte *extdyn, *extdynend;
1160 size_t extdynsize;
1161 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1162
1163 fprintf (f, _("\nDynamic Section:\n"));
1164
1165 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1166 goto error_return;
1167
1168 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1169 if (elfsec == SHN_BAD)
1170 goto error_return;
1171 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1172
1173 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1174 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1175
1176 extdyn = dynbuf;
1177 extdynend = extdyn + s->size;
1178 for (; extdyn < extdynend; extdyn += extdynsize)
1179 {
1180 Elf_Internal_Dyn dyn;
1181 const char *name = "";
1182 char ab[20];
1183 bfd_boolean stringp;
1184 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1185
1186 (*swap_dyn_in) (abfd, extdyn, &dyn);
1187
1188 if (dyn.d_tag == DT_NULL)
1189 break;
1190
1191 stringp = FALSE;
1192 switch (dyn.d_tag)
1193 {
1194 default:
1195 if (bed->elf_backend_get_target_dtag)
1196 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1197
1198 if (!strcmp (name, ""))
1199 {
1200 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1201 name = ab;
1202 }
1203 break;
1204
1205 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1206 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1207 case DT_PLTGOT: name = "PLTGOT"; break;
1208 case DT_HASH: name = "HASH"; break;
1209 case DT_STRTAB: name = "STRTAB"; break;
1210 case DT_SYMTAB: name = "SYMTAB"; break;
1211 case DT_RELA: name = "RELA"; break;
1212 case DT_RELASZ: name = "RELASZ"; break;
1213 case DT_RELAENT: name = "RELAENT"; break;
1214 case DT_STRSZ: name = "STRSZ"; break;
1215 case DT_SYMENT: name = "SYMENT"; break;
1216 case DT_INIT: name = "INIT"; break;
1217 case DT_FINI: name = "FINI"; break;
1218 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1219 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1220 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1221 case DT_REL: name = "REL"; break;
1222 case DT_RELSZ: name = "RELSZ"; break;
1223 case DT_RELENT: name = "RELENT"; break;
1224 case DT_PLTREL: name = "PLTREL"; break;
1225 case DT_DEBUG: name = "DEBUG"; break;
1226 case DT_TEXTREL: name = "TEXTREL"; break;
1227 case DT_JMPREL: name = "JMPREL"; break;
1228 case DT_BIND_NOW: name = "BIND_NOW"; break;
1229 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1230 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1231 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1232 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1233 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1234 case DT_FLAGS: name = "FLAGS"; break;
1235 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1236 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1237 case DT_CHECKSUM: name = "CHECKSUM"; break;
1238 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1239 case DT_MOVEENT: name = "MOVEENT"; break;
1240 case DT_MOVESZ: name = "MOVESZ"; break;
1241 case DT_FEATURE: name = "FEATURE"; break;
1242 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1243 case DT_SYMINSZ: name = "SYMINSZ"; break;
1244 case DT_SYMINENT: name = "SYMINENT"; break;
1245 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1246 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1247 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1248 case DT_PLTPAD: name = "PLTPAD"; break;
1249 case DT_MOVETAB: name = "MOVETAB"; break;
1250 case DT_SYMINFO: name = "SYMINFO"; break;
1251 case DT_RELACOUNT: name = "RELACOUNT"; break;
1252 case DT_RELCOUNT: name = "RELCOUNT"; break;
1253 case DT_FLAGS_1: name = "FLAGS_1"; break;
1254 case DT_VERSYM: name = "VERSYM"; break;
1255 case DT_VERDEF: name = "VERDEF"; break;
1256 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1257 case DT_VERNEED: name = "VERNEED"; break;
1258 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1259 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1260 case DT_USED: name = "USED"; break;
1261 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1262 case DT_GNU_HASH: name = "GNU_HASH"; break;
1263 }
1264
1265 fprintf (f, " %-20s ", name);
1266 if (! stringp)
1267 {
1268 fprintf (f, "0x");
1269 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1270 }
1271 else
1272 {
1273 const char *string;
1274 unsigned int tagv = dyn.d_un.d_val;
1275
1276 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1277 if (string == NULL)
1278 goto error_return;
1279 fprintf (f, "%s", string);
1280 }
1281 fprintf (f, "\n");
1282 }
1283
1284 free (dynbuf);
1285 dynbuf = NULL;
1286 }
1287
1288 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1289 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1290 {
1291 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1292 return FALSE;
1293 }
1294
1295 if (elf_dynverdef (abfd) != 0)
1296 {
1297 Elf_Internal_Verdef *t;
1298
1299 fprintf (f, _("\nVersion definitions:\n"));
1300 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1301 {
1302 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1303 t->vd_flags, t->vd_hash,
1304 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1305 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1306 {
1307 Elf_Internal_Verdaux *a;
1308
1309 fprintf (f, "\t");
1310 for (a = t->vd_auxptr->vda_nextptr;
1311 a != NULL;
1312 a = a->vda_nextptr)
1313 fprintf (f, "%s ",
1314 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1315 fprintf (f, "\n");
1316 }
1317 }
1318 }
1319
1320 if (elf_dynverref (abfd) != 0)
1321 {
1322 Elf_Internal_Verneed *t;
1323
1324 fprintf (f, _("\nVersion References:\n"));
1325 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1326 {
1327 Elf_Internal_Vernaux *a;
1328
1329 fprintf (f, _(" required from %s:\n"),
1330 t->vn_filename ? t->vn_filename : "<corrupt>");
1331 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1332 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1333 a->vna_flags, a->vna_other,
1334 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1335 }
1336 }
1337
1338 return TRUE;
1339
1340 error_return:
1341 if (dynbuf != NULL)
1342 free (dynbuf);
1343 return FALSE;
1344 }
1345
1346 /* Display ELF-specific fields of a symbol. */
1347
1348 void
1349 bfd_elf_print_symbol (bfd *abfd,
1350 void *filep,
1351 asymbol *symbol,
1352 bfd_print_symbol_type how)
1353 {
1354 FILE *file = filep;
1355 switch (how)
1356 {
1357 case bfd_print_symbol_name:
1358 fprintf (file, "%s", symbol->name);
1359 break;
1360 case bfd_print_symbol_more:
1361 fprintf (file, "elf ");
1362 bfd_fprintf_vma (abfd, file, symbol->value);
1363 fprintf (file, " %lx", (unsigned long) symbol->flags);
1364 break;
1365 case bfd_print_symbol_all:
1366 {
1367 const char *section_name;
1368 const char *name = NULL;
1369 const struct elf_backend_data *bed;
1370 unsigned char st_other;
1371 bfd_vma val;
1372
1373 section_name = symbol->section ? symbol->section->name : "(*none*)";
1374
1375 bed = get_elf_backend_data (abfd);
1376 if (bed->elf_backend_print_symbol_all)
1377 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1378
1379 if (name == NULL)
1380 {
1381 name = symbol->name;
1382 bfd_print_symbol_vandf (abfd, file, symbol);
1383 }
1384
1385 fprintf (file, " %s\t", section_name);
1386 /* Print the "other" value for a symbol. For common symbols,
1387 we've already printed the size; now print the alignment.
1388 For other symbols, we have no specified alignment, and
1389 we've printed the address; now print the size. */
1390 if (symbol->section && bfd_is_com_section (symbol->section))
1391 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1392 else
1393 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1394 bfd_fprintf_vma (abfd, file, val);
1395
1396 /* If we have version information, print it. */
1397 if (elf_tdata (abfd)->dynversym_section != 0
1398 && (elf_tdata (abfd)->dynverdef_section != 0
1399 || elf_tdata (abfd)->dynverref_section != 0))
1400 {
1401 unsigned int vernum;
1402 const char *version_string;
1403
1404 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1405
1406 if (vernum == 0)
1407 version_string = "";
1408 else if (vernum == 1)
1409 version_string = "Base";
1410 else if (vernum <= elf_tdata (abfd)->cverdefs)
1411 version_string =
1412 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1413 else
1414 {
1415 Elf_Internal_Verneed *t;
1416
1417 version_string = "";
1418 for (t = elf_tdata (abfd)->verref;
1419 t != NULL;
1420 t = t->vn_nextref)
1421 {
1422 Elf_Internal_Vernaux *a;
1423
1424 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1425 {
1426 if (a->vna_other == vernum)
1427 {
1428 version_string = a->vna_nodename;
1429 break;
1430 }
1431 }
1432 }
1433 }
1434
1435 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1436 fprintf (file, " %-11s", version_string);
1437 else
1438 {
1439 int i;
1440
1441 fprintf (file, " (%s)", version_string);
1442 for (i = 10 - strlen (version_string); i > 0; --i)
1443 putc (' ', file);
1444 }
1445 }
1446
1447 /* If the st_other field is not zero, print it. */
1448 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1449
1450 switch (st_other)
1451 {
1452 case 0: break;
1453 case STV_INTERNAL: fprintf (file, " .internal"); break;
1454 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1455 case STV_PROTECTED: fprintf (file, " .protected"); break;
1456 default:
1457 /* Some other non-defined flags are also present, so print
1458 everything hex. */
1459 fprintf (file, " 0x%02x", (unsigned int) st_other);
1460 }
1461
1462 fprintf (file, " %s", name);
1463 }
1464 break;
1465 }
1466 }
1467
1468 /* Allocate an ELF string table--force the first byte to be zero. */
1469
1470 struct bfd_strtab_hash *
1471 _bfd_elf_stringtab_init (void)
1472 {
1473 struct bfd_strtab_hash *ret;
1474
1475 ret = _bfd_stringtab_init ();
1476 if (ret != NULL)
1477 {
1478 bfd_size_type loc;
1479
1480 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1481 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1482 if (loc == (bfd_size_type) -1)
1483 {
1484 _bfd_stringtab_free (ret);
1485 ret = NULL;
1486 }
1487 }
1488 return ret;
1489 }
1490 \f
1491 /* ELF .o/exec file reading */
1492
1493 /* Create a new bfd section from an ELF section header. */
1494
1495 bfd_boolean
1496 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1497 {
1498 Elf_Internal_Shdr *hdr;
1499 Elf_Internal_Ehdr *ehdr;
1500 const struct elf_backend_data *bed;
1501 const char *name;
1502
1503 if (shindex >= elf_numsections (abfd))
1504 return FALSE;
1505
1506 hdr = elf_elfsections (abfd)[shindex];
1507 ehdr = elf_elfheader (abfd);
1508 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1509 hdr->sh_name);
1510 if (name == NULL)
1511 return FALSE;
1512
1513 bed = get_elf_backend_data (abfd);
1514 switch (hdr->sh_type)
1515 {
1516 case SHT_NULL:
1517 /* Inactive section. Throw it away. */
1518 return TRUE;
1519
1520 case SHT_PROGBITS: /* Normal section with contents. */
1521 case SHT_NOBITS: /* .bss section. */
1522 case SHT_HASH: /* .hash section. */
1523 case SHT_NOTE: /* .note section. */
1524 case SHT_INIT_ARRAY: /* .init_array section. */
1525 case SHT_FINI_ARRAY: /* .fini_array section. */
1526 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1527 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1528 case SHT_GNU_HASH: /* .gnu.hash section. */
1529 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1530
1531 case SHT_DYNAMIC: /* Dynamic linking information. */
1532 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1533 return FALSE;
1534 if (hdr->sh_link > elf_numsections (abfd)
1535 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1536 return FALSE;
1537 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1538 {
1539 Elf_Internal_Shdr *dynsymhdr;
1540
1541 /* The shared libraries distributed with hpux11 have a bogus
1542 sh_link field for the ".dynamic" section. Find the
1543 string table for the ".dynsym" section instead. */
1544 if (elf_dynsymtab (abfd) != 0)
1545 {
1546 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1547 hdr->sh_link = dynsymhdr->sh_link;
1548 }
1549 else
1550 {
1551 unsigned int i, num_sec;
1552
1553 num_sec = elf_numsections (abfd);
1554 for (i = 1; i < num_sec; i++)
1555 {
1556 dynsymhdr = elf_elfsections (abfd)[i];
1557 if (dynsymhdr->sh_type == SHT_DYNSYM)
1558 {
1559 hdr->sh_link = dynsymhdr->sh_link;
1560 break;
1561 }
1562 }
1563 }
1564 }
1565 break;
1566
1567 case SHT_SYMTAB: /* A symbol table */
1568 if (elf_onesymtab (abfd) == shindex)
1569 return TRUE;
1570
1571 if (hdr->sh_entsize != bed->s->sizeof_sym)
1572 return FALSE;
1573 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1574 return FALSE;
1575 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1576 elf_onesymtab (abfd) = shindex;
1577 elf_tdata (abfd)->symtab_hdr = *hdr;
1578 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1579 abfd->flags |= HAS_SYMS;
1580
1581 /* Sometimes a shared object will map in the symbol table. If
1582 SHF_ALLOC is set, and this is a shared object, then we also
1583 treat this section as a BFD section. We can not base the
1584 decision purely on SHF_ALLOC, because that flag is sometimes
1585 set in a relocatable object file, which would confuse the
1586 linker. */
1587 if ((hdr->sh_flags & SHF_ALLOC) != 0
1588 && (abfd->flags & DYNAMIC) != 0
1589 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1590 shindex))
1591 return FALSE;
1592
1593 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1594 can't read symbols without that section loaded as well. It
1595 is most likely specified by the next section header. */
1596 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1597 {
1598 unsigned int i, num_sec;
1599
1600 num_sec = elf_numsections (abfd);
1601 for (i = shindex + 1; i < num_sec; i++)
1602 {
1603 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1604 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1605 && hdr2->sh_link == shindex)
1606 break;
1607 }
1608 if (i == num_sec)
1609 for (i = 1; i < shindex; i++)
1610 {
1611 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1612 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1613 && hdr2->sh_link == shindex)
1614 break;
1615 }
1616 if (i != shindex)
1617 return bfd_section_from_shdr (abfd, i);
1618 }
1619 return TRUE;
1620
1621 case SHT_DYNSYM: /* A dynamic symbol table */
1622 if (elf_dynsymtab (abfd) == shindex)
1623 return TRUE;
1624
1625 if (hdr->sh_entsize != bed->s->sizeof_sym)
1626 return FALSE;
1627 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1628 elf_dynsymtab (abfd) = shindex;
1629 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1630 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1631 abfd->flags |= HAS_SYMS;
1632
1633 /* Besides being a symbol table, we also treat this as a regular
1634 section, so that objcopy can handle it. */
1635 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1636
1637 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1638 if (elf_symtab_shndx (abfd) == shindex)
1639 return TRUE;
1640
1641 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1642 elf_symtab_shndx (abfd) = shindex;
1643 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1644 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1645 return TRUE;
1646
1647 case SHT_STRTAB: /* A string table */
1648 if (hdr->bfd_section != NULL)
1649 return TRUE;
1650 if (ehdr->e_shstrndx == shindex)
1651 {
1652 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1653 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1654 return TRUE;
1655 }
1656 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1657 {
1658 symtab_strtab:
1659 elf_tdata (abfd)->strtab_hdr = *hdr;
1660 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1661 return TRUE;
1662 }
1663 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1664 {
1665 dynsymtab_strtab:
1666 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1667 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1668 elf_elfsections (abfd)[shindex] = hdr;
1669 /* We also treat this as a regular section, so that objcopy
1670 can handle it. */
1671 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1672 shindex);
1673 }
1674
1675 /* If the string table isn't one of the above, then treat it as a
1676 regular section. We need to scan all the headers to be sure,
1677 just in case this strtab section appeared before the above. */
1678 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1679 {
1680 unsigned int i, num_sec;
1681
1682 num_sec = elf_numsections (abfd);
1683 for (i = 1; i < num_sec; i++)
1684 {
1685 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1686 if (hdr2->sh_link == shindex)
1687 {
1688 /* Prevent endless recursion on broken objects. */
1689 if (i == shindex)
1690 return FALSE;
1691 if (! bfd_section_from_shdr (abfd, i))
1692 return FALSE;
1693 if (elf_onesymtab (abfd) == i)
1694 goto symtab_strtab;
1695 if (elf_dynsymtab (abfd) == i)
1696 goto dynsymtab_strtab;
1697 }
1698 }
1699 }
1700 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1701
1702 case SHT_REL:
1703 case SHT_RELA:
1704 /* *These* do a lot of work -- but build no sections! */
1705 {
1706 asection *target_sect;
1707 Elf_Internal_Shdr *hdr2;
1708 unsigned int num_sec = elf_numsections (abfd);
1709
1710 if (hdr->sh_entsize
1711 != (bfd_size_type) (hdr->sh_type == SHT_REL
1712 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1713 return FALSE;
1714
1715 /* Check for a bogus link to avoid crashing. */
1716 if (hdr->sh_link >= num_sec)
1717 {
1718 ((*_bfd_error_handler)
1719 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1720 abfd, hdr->sh_link, name, shindex));
1721 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1722 shindex);
1723 }
1724
1725 /* For some incomprehensible reason Oracle distributes
1726 libraries for Solaris in which some of the objects have
1727 bogus sh_link fields. It would be nice if we could just
1728 reject them, but, unfortunately, some people need to use
1729 them. We scan through the section headers; if we find only
1730 one suitable symbol table, we clobber the sh_link to point
1731 to it. I hope this doesn't break anything. */
1732 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1733 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1734 {
1735 unsigned int scan;
1736 int found;
1737
1738 found = 0;
1739 for (scan = 1; scan < num_sec; scan++)
1740 {
1741 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1742 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1743 {
1744 if (found != 0)
1745 {
1746 found = 0;
1747 break;
1748 }
1749 found = scan;
1750 }
1751 }
1752 if (found != 0)
1753 hdr->sh_link = found;
1754 }
1755
1756 /* Get the symbol table. */
1757 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1758 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1759 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1760 return FALSE;
1761
1762 /* If this reloc section does not use the main symbol table we
1763 don't treat it as a reloc section. BFD can't adequately
1764 represent such a section, so at least for now, we don't
1765 try. We just present it as a normal section. We also
1766 can't use it as a reloc section if it points to the null
1767 section, an invalid section, or another reloc section. */
1768 if (hdr->sh_link != elf_onesymtab (abfd)
1769 || hdr->sh_info == SHN_UNDEF
1770 || hdr->sh_info >= num_sec
1771 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1772 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1773 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1774 shindex);
1775
1776 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1777 return FALSE;
1778 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1779 if (target_sect == NULL)
1780 return FALSE;
1781
1782 if ((target_sect->flags & SEC_RELOC) == 0
1783 || target_sect->reloc_count == 0)
1784 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1785 else
1786 {
1787 bfd_size_type amt;
1788 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1789 amt = sizeof (*hdr2);
1790 hdr2 = bfd_alloc (abfd, amt);
1791 if (hdr2 == NULL)
1792 return FALSE;
1793 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1794 }
1795 *hdr2 = *hdr;
1796 elf_elfsections (abfd)[shindex] = hdr2;
1797 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1798 target_sect->flags |= SEC_RELOC;
1799 target_sect->relocation = NULL;
1800 target_sect->rel_filepos = hdr->sh_offset;
1801 /* In the section to which the relocations apply, mark whether
1802 its relocations are of the REL or RELA variety. */
1803 if (hdr->sh_size != 0)
1804 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1805 abfd->flags |= HAS_RELOC;
1806 return TRUE;
1807 }
1808
1809 case SHT_GNU_verdef:
1810 elf_dynverdef (abfd) = shindex;
1811 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1812 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1813
1814 case SHT_GNU_versym:
1815 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1816 return FALSE;
1817 elf_dynversym (abfd) = shindex;
1818 elf_tdata (abfd)->dynversym_hdr = *hdr;
1819 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1820
1821 case SHT_GNU_verneed:
1822 elf_dynverref (abfd) = shindex;
1823 elf_tdata (abfd)->dynverref_hdr = *hdr;
1824 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1825
1826 case SHT_SHLIB:
1827 return TRUE;
1828
1829 case SHT_GROUP:
1830 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1831 return FALSE;
1832 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1833 return FALSE;
1834 if (hdr->contents != NULL)
1835 {
1836 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1837 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1838 asection *s;
1839
1840 if (idx->flags & GRP_COMDAT)
1841 hdr->bfd_section->flags
1842 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1843
1844 /* We try to keep the same section order as it comes in. */
1845 idx += n_elt;
1846 while (--n_elt != 0)
1847 {
1848 --idx;
1849
1850 if (idx->shdr != NULL
1851 && (s = idx->shdr->bfd_section) != NULL
1852 && elf_next_in_group (s) != NULL)
1853 {
1854 elf_next_in_group (hdr->bfd_section) = s;
1855 break;
1856 }
1857 }
1858 }
1859 break;
1860
1861 default:
1862 /* Possibly an attributes section. */
1863 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1864 || hdr->sh_type == bed->obj_attrs_section_type)
1865 {
1866 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1867 return FALSE;
1868 _bfd_elf_parse_attributes (abfd, hdr);
1869 return TRUE;
1870 }
1871
1872 /* Check for any processor-specific section types. */
1873 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1874 return TRUE;
1875
1876 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1877 {
1878 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1879 /* FIXME: How to properly handle allocated section reserved
1880 for applications? */
1881 (*_bfd_error_handler)
1882 (_("%B: don't know how to handle allocated, application "
1883 "specific section `%s' [0x%8x]"),
1884 abfd, name, hdr->sh_type);
1885 else
1886 /* Allow sections reserved for applications. */
1887 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1888 shindex);
1889 }
1890 else if (hdr->sh_type >= SHT_LOPROC
1891 && hdr->sh_type <= SHT_HIPROC)
1892 /* FIXME: We should handle this section. */
1893 (*_bfd_error_handler)
1894 (_("%B: don't know how to handle processor specific section "
1895 "`%s' [0x%8x]"),
1896 abfd, name, hdr->sh_type);
1897 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1898 {
1899 /* Unrecognised OS-specific sections. */
1900 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1901 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1902 required to correctly process the section and the file should
1903 be rejected with an error message. */
1904 (*_bfd_error_handler)
1905 (_("%B: don't know how to handle OS specific section "
1906 "`%s' [0x%8x]"),
1907 abfd, name, hdr->sh_type);
1908 else
1909 /* Otherwise it should be processed. */
1910 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1911 }
1912 else
1913 /* FIXME: We should handle this section. */
1914 (*_bfd_error_handler)
1915 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1916 abfd, name, hdr->sh_type);
1917
1918 return FALSE;
1919 }
1920
1921 return TRUE;
1922 }
1923
1924 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1925 Return SEC for sections that have no elf section, and NULL on error. */
1926
1927 asection *
1928 bfd_section_from_r_symndx (bfd *abfd,
1929 struct sym_sec_cache *cache,
1930 asection *sec,
1931 unsigned long r_symndx)
1932 {
1933 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1934 asection *s;
1935
1936 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1937 {
1938 Elf_Internal_Shdr *symtab_hdr;
1939 unsigned char esym[sizeof (Elf64_External_Sym)];
1940 Elf_External_Sym_Shndx eshndx;
1941 Elf_Internal_Sym isym;
1942
1943 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1944 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1945 &isym, esym, &eshndx) == NULL)
1946 return NULL;
1947
1948 if (cache->abfd != abfd)
1949 {
1950 memset (cache->indx, -1, sizeof (cache->indx));
1951 cache->abfd = abfd;
1952 }
1953 cache->indx[ent] = r_symndx;
1954 cache->shndx[ent] = isym.st_shndx;
1955 }
1956
1957 s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
1958 if (s != NULL)
1959 return s;
1960
1961 return sec;
1962 }
1963
1964 /* Given an ELF section number, retrieve the corresponding BFD
1965 section. */
1966
1967 asection *
1968 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
1969 {
1970 if (index >= elf_numsections (abfd))
1971 return NULL;
1972 return elf_elfsections (abfd)[index]->bfd_section;
1973 }
1974
1975 static const struct bfd_elf_special_section special_sections_b[] =
1976 {
1977 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1978 { NULL, 0, 0, 0, 0 }
1979 };
1980
1981 static const struct bfd_elf_special_section special_sections_c[] =
1982 {
1983 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
1984 { NULL, 0, 0, 0, 0 }
1985 };
1986
1987 static const struct bfd_elf_special_section special_sections_d[] =
1988 {
1989 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1990 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1991 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
1992 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
1993 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
1994 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
1995 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
1996 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
1997 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
1998 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
1999 { NULL, 0, 0, 0, 0 }
2000 };
2001
2002 static const struct bfd_elf_special_section special_sections_f[] =
2003 {
2004 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2005 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2006 { NULL, 0, 0, 0, 0 }
2007 };
2008
2009 static const struct bfd_elf_special_section special_sections_g[] =
2010 {
2011 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2012 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2013 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2014 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2015 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2016 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2017 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2018 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2019 { NULL, 0, 0, 0, 0 }
2020 };
2021
2022 static const struct bfd_elf_special_section special_sections_h[] =
2023 {
2024 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2025 { NULL, 0, 0, 0, 0 }
2026 };
2027
2028 static const struct bfd_elf_special_section special_sections_i[] =
2029 {
2030 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2031 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2032 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2033 { NULL, 0, 0, 0, 0 }
2034 };
2035
2036 static const struct bfd_elf_special_section special_sections_l[] =
2037 {
2038 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2039 { NULL, 0, 0, 0, 0 }
2040 };
2041
2042 static const struct bfd_elf_special_section special_sections_n[] =
2043 {
2044 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2045 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2046 { NULL, 0, 0, 0, 0 }
2047 };
2048
2049 static const struct bfd_elf_special_section special_sections_p[] =
2050 {
2051 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2052 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2053 { NULL, 0, 0, 0, 0 }
2054 };
2055
2056 static const struct bfd_elf_special_section special_sections_r[] =
2057 {
2058 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2059 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2060 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2061 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2062 { NULL, 0, 0, 0, 0 }
2063 };
2064
2065 static const struct bfd_elf_special_section special_sections_s[] =
2066 {
2067 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2068 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2069 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2070 /* See struct bfd_elf_special_section declaration for the semantics of
2071 this special case where .prefix_length != strlen (.prefix). */
2072 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2073 { NULL, 0, 0, 0, 0 }
2074 };
2075
2076 static const struct bfd_elf_special_section special_sections_t[] =
2077 {
2078 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2079 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2080 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2081 { NULL, 0, 0, 0, 0 }
2082 };
2083
2084 static const struct bfd_elf_special_section special_sections_z[] =
2085 {
2086 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2087 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2088 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2089 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2090 { NULL, 0, 0, 0, 0 }
2091 };
2092
2093 static const struct bfd_elf_special_section *special_sections[] =
2094 {
2095 special_sections_b, /* 'b' */
2096 special_sections_c, /* 'c' */
2097 special_sections_d, /* 'd' */
2098 NULL, /* 'e' */
2099 special_sections_f, /* 'f' */
2100 special_sections_g, /* 'g' */
2101 special_sections_h, /* 'h' */
2102 special_sections_i, /* 'i' */
2103 NULL, /* 'j' */
2104 NULL, /* 'k' */
2105 special_sections_l, /* 'l' */
2106 NULL, /* 'm' */
2107 special_sections_n, /* 'n' */
2108 NULL, /* 'o' */
2109 special_sections_p, /* 'p' */
2110 NULL, /* 'q' */
2111 special_sections_r, /* 'r' */
2112 special_sections_s, /* 's' */
2113 special_sections_t, /* 't' */
2114 NULL, /* 'u' */
2115 NULL, /* 'v' */
2116 NULL, /* 'w' */
2117 NULL, /* 'x' */
2118 NULL, /* 'y' */
2119 special_sections_z /* 'z' */
2120 };
2121
2122 const struct bfd_elf_special_section *
2123 _bfd_elf_get_special_section (const char *name,
2124 const struct bfd_elf_special_section *spec,
2125 unsigned int rela)
2126 {
2127 int i;
2128 int len;
2129
2130 len = strlen (name);
2131
2132 for (i = 0; spec[i].prefix != NULL; i++)
2133 {
2134 int suffix_len;
2135 int prefix_len = spec[i].prefix_length;
2136
2137 if (len < prefix_len)
2138 continue;
2139 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2140 continue;
2141
2142 suffix_len = spec[i].suffix_length;
2143 if (suffix_len <= 0)
2144 {
2145 if (name[prefix_len] != 0)
2146 {
2147 if (suffix_len == 0)
2148 continue;
2149 if (name[prefix_len] != '.'
2150 && (suffix_len == -2
2151 || (rela && spec[i].type == SHT_REL)))
2152 continue;
2153 }
2154 }
2155 else
2156 {
2157 if (len < prefix_len + suffix_len)
2158 continue;
2159 if (memcmp (name + len - suffix_len,
2160 spec[i].prefix + prefix_len,
2161 suffix_len) != 0)
2162 continue;
2163 }
2164 return &spec[i];
2165 }
2166
2167 return NULL;
2168 }
2169
2170 const struct bfd_elf_special_section *
2171 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2172 {
2173 int i;
2174 const struct bfd_elf_special_section *spec;
2175 const struct elf_backend_data *bed;
2176
2177 /* See if this is one of the special sections. */
2178 if (sec->name == NULL)
2179 return NULL;
2180
2181 bed = get_elf_backend_data (abfd);
2182 spec = bed->special_sections;
2183 if (spec)
2184 {
2185 spec = _bfd_elf_get_special_section (sec->name,
2186 bed->special_sections,
2187 sec->use_rela_p);
2188 if (spec != NULL)
2189 return spec;
2190 }
2191
2192 if (sec->name[0] != '.')
2193 return NULL;
2194
2195 i = sec->name[1] - 'b';
2196 if (i < 0 || i > 'z' - 'b')
2197 return NULL;
2198
2199 spec = special_sections[i];
2200
2201 if (spec == NULL)
2202 return NULL;
2203
2204 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2205 }
2206
2207 bfd_boolean
2208 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2209 {
2210 struct bfd_elf_section_data *sdata;
2211 const struct elf_backend_data *bed;
2212 const struct bfd_elf_special_section *ssect;
2213
2214 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2215 if (sdata == NULL)
2216 {
2217 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2218 if (sdata == NULL)
2219 return FALSE;
2220 sec->used_by_bfd = sdata;
2221 }
2222
2223 /* Indicate whether or not this section should use RELA relocations. */
2224 bed = get_elf_backend_data (abfd);
2225 sec->use_rela_p = bed->default_use_rela_p;
2226
2227 /* When we read a file, we don't need to set ELF section type and
2228 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2229 anyway. We will set ELF section type and flags for all linker
2230 created sections. If user specifies BFD section flags, we will
2231 set ELF section type and flags based on BFD section flags in
2232 elf_fake_sections. */
2233 if ((!sec->flags && abfd->direction != read_direction)
2234 || (sec->flags & SEC_LINKER_CREATED) != 0)
2235 {
2236 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2237 if (ssect != NULL)
2238 {
2239 elf_section_type (sec) = ssect->type;
2240 elf_section_flags (sec) = ssect->attr;
2241 }
2242 }
2243
2244 return _bfd_generic_new_section_hook (abfd, sec);
2245 }
2246
2247 /* Create a new bfd section from an ELF program header.
2248
2249 Since program segments have no names, we generate a synthetic name
2250 of the form segment<NUM>, where NUM is generally the index in the
2251 program header table. For segments that are split (see below) we
2252 generate the names segment<NUM>a and segment<NUM>b.
2253
2254 Note that some program segments may have a file size that is different than
2255 (less than) the memory size. All this means is that at execution the
2256 system must allocate the amount of memory specified by the memory size,
2257 but only initialize it with the first "file size" bytes read from the
2258 file. This would occur for example, with program segments consisting
2259 of combined data+bss.
2260
2261 To handle the above situation, this routine generates TWO bfd sections
2262 for the single program segment. The first has the length specified by
2263 the file size of the segment, and the second has the length specified
2264 by the difference between the two sizes. In effect, the segment is split
2265 into its initialized and uninitialized parts.
2266
2267 */
2268
2269 bfd_boolean
2270 _bfd_elf_make_section_from_phdr (bfd *abfd,
2271 Elf_Internal_Phdr *hdr,
2272 int index,
2273 const char *typename)
2274 {
2275 asection *newsect;
2276 char *name;
2277 char namebuf[64];
2278 size_t len;
2279 int split;
2280
2281 split = ((hdr->p_memsz > 0)
2282 && (hdr->p_filesz > 0)
2283 && (hdr->p_memsz > hdr->p_filesz));
2284
2285 if (hdr->p_filesz > 0)
2286 {
2287 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2288 len = strlen (namebuf) + 1;
2289 name = bfd_alloc (abfd, len);
2290 if (!name)
2291 return FALSE;
2292 memcpy (name, namebuf, len);
2293 newsect = bfd_make_section (abfd, name);
2294 if (newsect == NULL)
2295 return FALSE;
2296 newsect->vma = hdr->p_vaddr;
2297 newsect->lma = hdr->p_paddr;
2298 newsect->size = hdr->p_filesz;
2299 newsect->filepos = hdr->p_offset;
2300 newsect->flags |= SEC_HAS_CONTENTS;
2301 newsect->alignment_power = bfd_log2 (hdr->p_align);
2302 if (hdr->p_type == PT_LOAD)
2303 {
2304 newsect->flags |= SEC_ALLOC;
2305 newsect->flags |= SEC_LOAD;
2306 if (hdr->p_flags & PF_X)
2307 {
2308 /* FIXME: all we known is that it has execute PERMISSION,
2309 may be data. */
2310 newsect->flags |= SEC_CODE;
2311 }
2312 }
2313 if (!(hdr->p_flags & PF_W))
2314 {
2315 newsect->flags |= SEC_READONLY;
2316 }
2317 }
2318
2319 if (hdr->p_memsz > hdr->p_filesz)
2320 {
2321 bfd_vma align;
2322
2323 sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : "");
2324 len = strlen (namebuf) + 1;
2325 name = bfd_alloc (abfd, len);
2326 if (!name)
2327 return FALSE;
2328 memcpy (name, namebuf, len);
2329 newsect = bfd_make_section (abfd, name);
2330 if (newsect == NULL)
2331 return FALSE;
2332 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2333 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2334 newsect->size = hdr->p_memsz - hdr->p_filesz;
2335 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2336 align = newsect->vma & -newsect->vma;
2337 if (align == 0 || align > hdr->p_align)
2338 align = hdr->p_align;
2339 newsect->alignment_power = bfd_log2 (align);
2340 if (hdr->p_type == PT_LOAD)
2341 {
2342 /* Hack for gdb. Segments that have not been modified do
2343 not have their contents written to a core file, on the
2344 assumption that a debugger can find the contents in the
2345 executable. We flag this case by setting the fake
2346 section size to zero. Note that "real" bss sections will
2347 always have their contents dumped to the core file. */
2348 if (bfd_get_format (abfd) == bfd_core)
2349 newsect->size = 0;
2350 newsect->flags |= SEC_ALLOC;
2351 if (hdr->p_flags & PF_X)
2352 newsect->flags |= SEC_CODE;
2353 }
2354 if (!(hdr->p_flags & PF_W))
2355 newsect->flags |= SEC_READONLY;
2356 }
2357
2358 return TRUE;
2359 }
2360
2361 bfd_boolean
2362 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2363 {
2364 const struct elf_backend_data *bed;
2365
2366 switch (hdr->p_type)
2367 {
2368 case PT_NULL:
2369 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2370
2371 case PT_LOAD:
2372 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2373
2374 case PT_DYNAMIC:
2375 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2376
2377 case PT_INTERP:
2378 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2379
2380 case PT_NOTE:
2381 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2382 return FALSE;
2383 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2384 return FALSE;
2385 return TRUE;
2386
2387 case PT_SHLIB:
2388 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2389
2390 case PT_PHDR:
2391 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2392
2393 case PT_GNU_EH_FRAME:
2394 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2395 "eh_frame_hdr");
2396
2397 case PT_GNU_STACK:
2398 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2399
2400 case PT_GNU_RELRO:
2401 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2402
2403 default:
2404 /* Check for any processor-specific program segment types. */
2405 bed = get_elf_backend_data (abfd);
2406 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2407 }
2408 }
2409
2410 /* Initialize REL_HDR, the section-header for new section, containing
2411 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2412 relocations; otherwise, we use REL relocations. */
2413
2414 bfd_boolean
2415 _bfd_elf_init_reloc_shdr (bfd *abfd,
2416 Elf_Internal_Shdr *rel_hdr,
2417 asection *asect,
2418 bfd_boolean use_rela_p)
2419 {
2420 char *name;
2421 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2422 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2423
2424 name = bfd_alloc (abfd, amt);
2425 if (name == NULL)
2426 return FALSE;
2427 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2428 rel_hdr->sh_name =
2429 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2430 FALSE);
2431 if (rel_hdr->sh_name == (unsigned int) -1)
2432 return FALSE;
2433 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2434 rel_hdr->sh_entsize = (use_rela_p
2435 ? bed->s->sizeof_rela
2436 : bed->s->sizeof_rel);
2437 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2438 rel_hdr->sh_flags = 0;
2439 rel_hdr->sh_addr = 0;
2440 rel_hdr->sh_size = 0;
2441 rel_hdr->sh_offset = 0;
2442
2443 return TRUE;
2444 }
2445
2446 /* Set up an ELF internal section header for a section. */
2447
2448 static void
2449 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2450 {
2451 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2452 bfd_boolean *failedptr = failedptrarg;
2453 Elf_Internal_Shdr *this_hdr;
2454 unsigned int sh_type;
2455
2456 if (*failedptr)
2457 {
2458 /* We already failed; just get out of the bfd_map_over_sections
2459 loop. */
2460 return;
2461 }
2462
2463 this_hdr = &elf_section_data (asect)->this_hdr;
2464
2465 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2466 asect->name, FALSE);
2467 if (this_hdr->sh_name == (unsigned int) -1)
2468 {
2469 *failedptr = TRUE;
2470 return;
2471 }
2472
2473 /* Don't clear sh_flags. Assembler may set additional bits. */
2474
2475 if ((asect->flags & SEC_ALLOC) != 0
2476 || asect->user_set_vma)
2477 this_hdr->sh_addr = asect->vma;
2478 else
2479 this_hdr->sh_addr = 0;
2480
2481 this_hdr->sh_offset = 0;
2482 this_hdr->sh_size = asect->size;
2483 this_hdr->sh_link = 0;
2484 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2485 /* The sh_entsize and sh_info fields may have been set already by
2486 copy_private_section_data. */
2487
2488 this_hdr->bfd_section = asect;
2489 this_hdr->contents = NULL;
2490
2491 /* If the section type is unspecified, we set it based on
2492 asect->flags. */
2493 if ((asect->flags & SEC_GROUP) != 0)
2494 sh_type = SHT_GROUP;
2495 else if ((asect->flags & SEC_ALLOC) != 0
2496 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2497 || (asect->flags & SEC_NEVER_LOAD) != 0))
2498 sh_type = SHT_NOBITS;
2499 else
2500 sh_type = SHT_PROGBITS;
2501
2502 if (this_hdr->sh_type == SHT_NULL)
2503 this_hdr->sh_type = sh_type;
2504 else if (this_hdr->sh_type == SHT_NOBITS
2505 && sh_type == SHT_PROGBITS
2506 && (asect->flags & SEC_ALLOC) != 0)
2507 {
2508 /* Warn if we are changing a NOBITS section to PROGBITS, but
2509 allow the link to proceed. This can happen when users link
2510 non-bss input sections to bss output sections, or emit data
2511 to a bss output section via a linker script. */
2512 (*_bfd_error_handler)
2513 (_("warning: section `%A' type changed to PROGBITS"), asect);
2514 this_hdr->sh_type = sh_type;
2515 }
2516
2517 switch (this_hdr->sh_type)
2518 {
2519 default:
2520 break;
2521
2522 case SHT_STRTAB:
2523 case SHT_INIT_ARRAY:
2524 case SHT_FINI_ARRAY:
2525 case SHT_PREINIT_ARRAY:
2526 case SHT_NOTE:
2527 case SHT_NOBITS:
2528 case SHT_PROGBITS:
2529 break;
2530
2531 case SHT_HASH:
2532 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2533 break;
2534
2535 case SHT_DYNSYM:
2536 this_hdr->sh_entsize = bed->s->sizeof_sym;
2537 break;
2538
2539 case SHT_DYNAMIC:
2540 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2541 break;
2542
2543 case SHT_RELA:
2544 if (get_elf_backend_data (abfd)->may_use_rela_p)
2545 this_hdr->sh_entsize = bed->s->sizeof_rela;
2546 break;
2547
2548 case SHT_REL:
2549 if (get_elf_backend_data (abfd)->may_use_rel_p)
2550 this_hdr->sh_entsize = bed->s->sizeof_rel;
2551 break;
2552
2553 case SHT_GNU_versym:
2554 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2555 break;
2556
2557 case SHT_GNU_verdef:
2558 this_hdr->sh_entsize = 0;
2559 /* objcopy or strip will copy over sh_info, but may not set
2560 cverdefs. The linker will set cverdefs, but sh_info will be
2561 zero. */
2562 if (this_hdr->sh_info == 0)
2563 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2564 else
2565 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2566 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2567 break;
2568
2569 case SHT_GNU_verneed:
2570 this_hdr->sh_entsize = 0;
2571 /* objcopy or strip will copy over sh_info, but may not set
2572 cverrefs. The linker will set cverrefs, but sh_info will be
2573 zero. */
2574 if (this_hdr->sh_info == 0)
2575 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2576 else
2577 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2578 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2579 break;
2580
2581 case SHT_GROUP:
2582 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2583 break;
2584
2585 case SHT_GNU_HASH:
2586 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2587 break;
2588 }
2589
2590 if ((asect->flags & SEC_ALLOC) != 0)
2591 this_hdr->sh_flags |= SHF_ALLOC;
2592 if ((asect->flags & SEC_READONLY) == 0)
2593 this_hdr->sh_flags |= SHF_WRITE;
2594 if ((asect->flags & SEC_CODE) != 0)
2595 this_hdr->sh_flags |= SHF_EXECINSTR;
2596 if ((asect->flags & SEC_MERGE) != 0)
2597 {
2598 this_hdr->sh_flags |= SHF_MERGE;
2599 this_hdr->sh_entsize = asect->entsize;
2600 if ((asect->flags & SEC_STRINGS) != 0)
2601 this_hdr->sh_flags |= SHF_STRINGS;
2602 }
2603 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2604 this_hdr->sh_flags |= SHF_GROUP;
2605 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2606 {
2607 this_hdr->sh_flags |= SHF_TLS;
2608 if (asect->size == 0
2609 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2610 {
2611 struct bfd_link_order *o = asect->map_tail.link_order;
2612
2613 this_hdr->sh_size = 0;
2614 if (o != NULL)
2615 {
2616 this_hdr->sh_size = o->offset + o->size;
2617 if (this_hdr->sh_size != 0)
2618 this_hdr->sh_type = SHT_NOBITS;
2619 }
2620 }
2621 }
2622
2623 /* Check for processor-specific section types. */
2624 sh_type = this_hdr->sh_type;
2625 if (bed->elf_backend_fake_sections
2626 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2627 *failedptr = TRUE;
2628
2629 if (sh_type == SHT_NOBITS && asect->size != 0)
2630 {
2631 /* Don't change the header type from NOBITS if we are being
2632 called for objcopy --only-keep-debug. */
2633 this_hdr->sh_type = sh_type;
2634 }
2635
2636 /* If the section has relocs, set up a section header for the
2637 SHT_REL[A] section. If two relocation sections are required for
2638 this section, it is up to the processor-specific back-end to
2639 create the other. */
2640 if ((asect->flags & SEC_RELOC) != 0
2641 && !_bfd_elf_init_reloc_shdr (abfd,
2642 &elf_section_data (asect)->rel_hdr,
2643 asect,
2644 asect->use_rela_p))
2645 *failedptr = TRUE;
2646 }
2647
2648 /* Fill in the contents of a SHT_GROUP section. Called from
2649 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2650 when ELF targets use the generic linker, ld. Called for ld -r
2651 from bfd_elf_final_link. */
2652
2653 void
2654 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2655 {
2656 bfd_boolean *failedptr = failedptrarg;
2657 asection *elt, *first;
2658 unsigned char *loc;
2659 bfd_boolean gas;
2660
2661 /* Ignore linker created group section. See elfNN_ia64_object_p in
2662 elfxx-ia64.c. */
2663 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2664 || *failedptr)
2665 return;
2666
2667 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2668 {
2669 unsigned long symindx = 0;
2670
2671 /* elf_group_id will have been set up by objcopy and the
2672 generic linker. */
2673 if (elf_group_id (sec) != NULL)
2674 symindx = elf_group_id (sec)->udata.i;
2675
2676 if (symindx == 0)
2677 {
2678 /* If called from the assembler, swap_out_syms will have set up
2679 elf_section_syms. */
2680 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2681 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2682 }
2683 elf_section_data (sec)->this_hdr.sh_info = symindx;
2684 }
2685 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2686 {
2687 /* The ELF backend linker sets sh_info to -2 when the group
2688 signature symbol is global, and thus the index can't be
2689 set until all local symbols are output. */
2690 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2691 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2692 unsigned long symndx = sec_data->this_hdr.sh_info;
2693 unsigned long extsymoff = 0;
2694 struct elf_link_hash_entry *h;
2695
2696 if (!elf_bad_symtab (igroup->owner))
2697 {
2698 Elf_Internal_Shdr *symtab_hdr;
2699
2700 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2701 extsymoff = symtab_hdr->sh_info;
2702 }
2703 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2704 while (h->root.type == bfd_link_hash_indirect
2705 || h->root.type == bfd_link_hash_warning)
2706 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2707
2708 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2709 }
2710
2711 /* The contents won't be allocated for "ld -r" or objcopy. */
2712 gas = TRUE;
2713 if (sec->contents == NULL)
2714 {
2715 gas = FALSE;
2716 sec->contents = bfd_alloc (abfd, sec->size);
2717
2718 /* Arrange for the section to be written out. */
2719 elf_section_data (sec)->this_hdr.contents = sec->contents;
2720 if (sec->contents == NULL)
2721 {
2722 *failedptr = TRUE;
2723 return;
2724 }
2725 }
2726
2727 loc = sec->contents + sec->size;
2728
2729 /* Get the pointer to the first section in the group that gas
2730 squirreled away here. objcopy arranges for this to be set to the
2731 start of the input section group. */
2732 first = elt = elf_next_in_group (sec);
2733
2734 /* First element is a flag word. Rest of section is elf section
2735 indices for all the sections of the group. Write them backwards
2736 just to keep the group in the same order as given in .section
2737 directives, not that it matters. */
2738 while (elt != NULL)
2739 {
2740 asection *s;
2741 unsigned int idx;
2742
2743 s = elt;
2744 if (! elf_discarded_section (s))
2745 {
2746 loc -= 4;
2747 if (!gas)
2748 s = s->output_section;
2749 idx = 0;
2750 if (s != NULL)
2751 idx = elf_section_data (s)->this_idx;
2752 H_PUT_32 (abfd, idx, loc);
2753 }
2754 elt = elf_next_in_group (elt);
2755 if (elt == first)
2756 break;
2757 }
2758
2759 if ((loc -= 4) != sec->contents)
2760 abort ();
2761
2762 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2763 }
2764
2765 /* Assign all ELF section numbers. The dummy first section is handled here
2766 too. The link/info pointers for the standard section types are filled
2767 in here too, while we're at it. */
2768
2769 static bfd_boolean
2770 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2771 {
2772 struct elf_obj_tdata *t = elf_tdata (abfd);
2773 asection *sec;
2774 unsigned int section_number, secn;
2775 Elf_Internal_Shdr **i_shdrp;
2776 struct bfd_elf_section_data *d;
2777
2778 section_number = 1;
2779
2780 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2781
2782 /* SHT_GROUP sections are in relocatable files only. */
2783 if (link_info == NULL || link_info->relocatable)
2784 {
2785 /* Put SHT_GROUP sections first. */
2786 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2787 {
2788 d = elf_section_data (sec);
2789
2790 if (d->this_hdr.sh_type == SHT_GROUP)
2791 {
2792 if (sec->flags & SEC_LINKER_CREATED)
2793 {
2794 /* Remove the linker created SHT_GROUP sections. */
2795 bfd_section_list_remove (abfd, sec);
2796 abfd->section_count--;
2797 }
2798 else
2799 d->this_idx = section_number++;
2800 }
2801 }
2802 }
2803
2804 for (sec = abfd->sections; sec; sec = sec->next)
2805 {
2806 d = elf_section_data (sec);
2807
2808 if (d->this_hdr.sh_type != SHT_GROUP)
2809 d->this_idx = section_number++;
2810 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2811 if ((sec->flags & SEC_RELOC) == 0)
2812 d->rel_idx = 0;
2813 else
2814 {
2815 d->rel_idx = section_number++;
2816 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2817 }
2818
2819 if (d->rel_hdr2)
2820 {
2821 d->rel_idx2 = section_number++;
2822 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2823 }
2824 else
2825 d->rel_idx2 = 0;
2826 }
2827
2828 t->shstrtab_section = section_number++;
2829 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2830 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2831
2832 if (bfd_get_symcount (abfd) > 0)
2833 {
2834 t->symtab_section = section_number++;
2835 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2836 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2837 {
2838 t->symtab_shndx_section = section_number++;
2839 t->symtab_shndx_hdr.sh_name
2840 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2841 ".symtab_shndx", FALSE);
2842 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2843 return FALSE;
2844 }
2845 t->strtab_section = section_number++;
2846 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2847 }
2848
2849 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2850 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2851
2852 elf_numsections (abfd) = section_number;
2853 elf_elfheader (abfd)->e_shnum = section_number;
2854
2855 /* Set up the list of section header pointers, in agreement with the
2856 indices. */
2857 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2858 if (i_shdrp == NULL)
2859 return FALSE;
2860
2861 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2862 if (i_shdrp[0] == NULL)
2863 {
2864 bfd_release (abfd, i_shdrp);
2865 return FALSE;
2866 }
2867
2868 elf_elfsections (abfd) = i_shdrp;
2869
2870 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2871 if (bfd_get_symcount (abfd) > 0)
2872 {
2873 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2874 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
2875 {
2876 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2877 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2878 }
2879 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2880 t->symtab_hdr.sh_link = t->strtab_section;
2881 }
2882
2883 for (sec = abfd->sections; sec; sec = sec->next)
2884 {
2885 struct bfd_elf_section_data *d = elf_section_data (sec);
2886 asection *s;
2887 const char *name;
2888
2889 i_shdrp[d->this_idx] = &d->this_hdr;
2890 if (d->rel_idx != 0)
2891 i_shdrp[d->rel_idx] = &d->rel_hdr;
2892 if (d->rel_idx2 != 0)
2893 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2894
2895 /* Fill in the sh_link and sh_info fields while we're at it. */
2896
2897 /* sh_link of a reloc section is the section index of the symbol
2898 table. sh_info is the section index of the section to which
2899 the relocation entries apply. */
2900 if (d->rel_idx != 0)
2901 {
2902 d->rel_hdr.sh_link = t->symtab_section;
2903 d->rel_hdr.sh_info = d->this_idx;
2904 }
2905 if (d->rel_idx2 != 0)
2906 {
2907 d->rel_hdr2->sh_link = t->symtab_section;
2908 d->rel_hdr2->sh_info = d->this_idx;
2909 }
2910
2911 /* We need to set up sh_link for SHF_LINK_ORDER. */
2912 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2913 {
2914 s = elf_linked_to_section (sec);
2915 if (s)
2916 {
2917 /* elf_linked_to_section points to the input section. */
2918 if (link_info != NULL)
2919 {
2920 /* Check discarded linkonce section. */
2921 if (elf_discarded_section (s))
2922 {
2923 asection *kept;
2924 (*_bfd_error_handler)
2925 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2926 abfd, d->this_hdr.bfd_section,
2927 s, s->owner);
2928 /* Point to the kept section if it has the same
2929 size as the discarded one. */
2930 kept = _bfd_elf_check_kept_section (s, link_info);
2931 if (kept == NULL)
2932 {
2933 bfd_set_error (bfd_error_bad_value);
2934 return FALSE;
2935 }
2936 s = kept;
2937 }
2938
2939 s = s->output_section;
2940 BFD_ASSERT (s != NULL);
2941 }
2942 else
2943 {
2944 /* Handle objcopy. */
2945 if (s->output_section == NULL)
2946 {
2947 (*_bfd_error_handler)
2948 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2949 abfd, d->this_hdr.bfd_section, s, s->owner);
2950 bfd_set_error (bfd_error_bad_value);
2951 return FALSE;
2952 }
2953 s = s->output_section;
2954 }
2955 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2956 }
2957 else
2958 {
2959 /* PR 290:
2960 The Intel C compiler generates SHT_IA_64_UNWIND with
2961 SHF_LINK_ORDER. But it doesn't set the sh_link or
2962 sh_info fields. Hence we could get the situation
2963 where s is NULL. */
2964 const struct elf_backend_data *bed
2965 = get_elf_backend_data (abfd);
2966 if (bed->link_order_error_handler)
2967 bed->link_order_error_handler
2968 (_("%B: warning: sh_link not set for section `%A'"),
2969 abfd, sec);
2970 }
2971 }
2972
2973 switch (d->this_hdr.sh_type)
2974 {
2975 case SHT_REL:
2976 case SHT_RELA:
2977 /* A reloc section which we are treating as a normal BFD
2978 section. sh_link is the section index of the symbol
2979 table. sh_info is the section index of the section to
2980 which the relocation entries apply. We assume that an
2981 allocated reloc section uses the dynamic symbol table.
2982 FIXME: How can we be sure? */
2983 s = bfd_get_section_by_name (abfd, ".dynsym");
2984 if (s != NULL)
2985 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2986
2987 /* We look up the section the relocs apply to by name. */
2988 name = sec->name;
2989 if (d->this_hdr.sh_type == SHT_REL)
2990 name += 4;
2991 else
2992 name += 5;
2993 s = bfd_get_section_by_name (abfd, name);
2994 if (s != NULL)
2995 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2996 break;
2997
2998 case SHT_STRTAB:
2999 /* We assume that a section named .stab*str is a stabs
3000 string section. We look for a section with the same name
3001 but without the trailing ``str'', and set its sh_link
3002 field to point to this section. */
3003 if (CONST_STRNEQ (sec->name, ".stab")
3004 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3005 {
3006 size_t len;
3007 char *alc;
3008
3009 len = strlen (sec->name);
3010 alc = bfd_malloc (len - 2);
3011 if (alc == NULL)
3012 return FALSE;
3013 memcpy (alc, sec->name, len - 3);
3014 alc[len - 3] = '\0';
3015 s = bfd_get_section_by_name (abfd, alc);
3016 free (alc);
3017 if (s != NULL)
3018 {
3019 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3020
3021 /* This is a .stab section. */
3022 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3023 elf_section_data (s)->this_hdr.sh_entsize
3024 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3025 }
3026 }
3027 break;
3028
3029 case SHT_DYNAMIC:
3030 case SHT_DYNSYM:
3031 case SHT_GNU_verneed:
3032 case SHT_GNU_verdef:
3033 /* sh_link is the section header index of the string table
3034 used for the dynamic entries, or the symbol table, or the
3035 version strings. */
3036 s = bfd_get_section_by_name (abfd, ".dynstr");
3037 if (s != NULL)
3038 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3039 break;
3040
3041 case SHT_GNU_LIBLIST:
3042 /* sh_link is the section header index of the prelink library
3043 list used for the dynamic entries, or the symbol table, or
3044 the version strings. */
3045 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3046 ? ".dynstr" : ".gnu.libstr");
3047 if (s != NULL)
3048 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3049 break;
3050
3051 case SHT_HASH:
3052 case SHT_GNU_HASH:
3053 case SHT_GNU_versym:
3054 /* sh_link is the section header index of the symbol table
3055 this hash table or version table is for. */
3056 s = bfd_get_section_by_name (abfd, ".dynsym");
3057 if (s != NULL)
3058 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3059 break;
3060
3061 case SHT_GROUP:
3062 d->this_hdr.sh_link = t->symtab_section;
3063 }
3064 }
3065
3066 for (secn = 1; secn < section_number; ++secn)
3067 if (i_shdrp[secn] == NULL)
3068 i_shdrp[secn] = i_shdrp[0];
3069 else
3070 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3071 i_shdrp[secn]->sh_name);
3072 return TRUE;
3073 }
3074
3075 /* Map symbol from it's internal number to the external number, moving
3076 all local symbols to be at the head of the list. */
3077
3078 static bfd_boolean
3079 sym_is_global (bfd *abfd, asymbol *sym)
3080 {
3081 /* If the backend has a special mapping, use it. */
3082 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3083 if (bed->elf_backend_sym_is_global)
3084 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3085
3086 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3087 || bfd_is_und_section (bfd_get_section (sym))
3088 || bfd_is_com_section (bfd_get_section (sym)));
3089 }
3090
3091 /* Don't output section symbols for sections that are not going to be
3092 output. */
3093
3094 static bfd_boolean
3095 ignore_section_sym (bfd *abfd, asymbol *sym)
3096 {
3097 return ((sym->flags & BSF_SECTION_SYM) != 0
3098 && !(sym->section->owner == abfd
3099 || (sym->section->output_section->owner == abfd
3100 && sym->section->output_offset == 0)));
3101 }
3102
3103 static bfd_boolean
3104 elf_map_symbols (bfd *abfd)
3105 {
3106 unsigned int symcount = bfd_get_symcount (abfd);
3107 asymbol **syms = bfd_get_outsymbols (abfd);
3108 asymbol **sect_syms;
3109 unsigned int num_locals = 0;
3110 unsigned int num_globals = 0;
3111 unsigned int num_locals2 = 0;
3112 unsigned int num_globals2 = 0;
3113 int max_index = 0;
3114 unsigned int idx;
3115 asection *asect;
3116 asymbol **new_syms;
3117
3118 #ifdef DEBUG
3119 fprintf (stderr, "elf_map_symbols\n");
3120 fflush (stderr);
3121 #endif
3122
3123 for (asect = abfd->sections; asect; asect = asect->next)
3124 {
3125 if (max_index < asect->index)
3126 max_index = asect->index;
3127 }
3128
3129 max_index++;
3130 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3131 if (sect_syms == NULL)
3132 return FALSE;
3133 elf_section_syms (abfd) = sect_syms;
3134 elf_num_section_syms (abfd) = max_index;
3135
3136 /* Init sect_syms entries for any section symbols we have already
3137 decided to output. */
3138 for (idx = 0; idx < symcount; idx++)
3139 {
3140 asymbol *sym = syms[idx];
3141
3142 if ((sym->flags & BSF_SECTION_SYM) != 0
3143 && sym->value == 0
3144 && !ignore_section_sym (abfd, sym))
3145 {
3146 asection *sec = sym->section;
3147
3148 if (sec->owner != abfd)
3149 sec = sec->output_section;
3150
3151 sect_syms[sec->index] = syms[idx];
3152 }
3153 }
3154
3155 /* Classify all of the symbols. */
3156 for (idx = 0; idx < symcount; idx++)
3157 {
3158 if (ignore_section_sym (abfd, syms[idx]))
3159 continue;
3160 if (!sym_is_global (abfd, syms[idx]))
3161 num_locals++;
3162 else
3163 num_globals++;
3164 }
3165
3166 /* We will be adding a section symbol for each normal BFD section. Most
3167 sections will already have a section symbol in outsymbols, but
3168 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3169 at least in that case. */
3170 for (asect = abfd->sections; asect; asect = asect->next)
3171 {
3172 if (sect_syms[asect->index] == NULL)
3173 {
3174 if (!sym_is_global (abfd, asect->symbol))
3175 num_locals++;
3176 else
3177 num_globals++;
3178 }
3179 }
3180
3181 /* Now sort the symbols so the local symbols are first. */
3182 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3183
3184 if (new_syms == NULL)
3185 return FALSE;
3186
3187 for (idx = 0; idx < symcount; idx++)
3188 {
3189 asymbol *sym = syms[idx];
3190 unsigned int i;
3191
3192 if (ignore_section_sym (abfd, sym))
3193 continue;
3194 if (!sym_is_global (abfd, sym))
3195 i = num_locals2++;
3196 else
3197 i = num_locals + num_globals2++;
3198 new_syms[i] = sym;
3199 sym->udata.i = i + 1;
3200 }
3201 for (asect = abfd->sections; asect; asect = asect->next)
3202 {
3203 if (sect_syms[asect->index] == NULL)
3204 {
3205 asymbol *sym = asect->symbol;
3206 unsigned int i;
3207
3208 sect_syms[asect->index] = sym;
3209 if (!sym_is_global (abfd, sym))
3210 i = num_locals2++;
3211 else
3212 i = num_locals + num_globals2++;
3213 new_syms[i] = sym;
3214 sym->udata.i = i + 1;
3215 }
3216 }
3217
3218 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3219
3220 elf_num_locals (abfd) = num_locals;
3221 elf_num_globals (abfd) = num_globals;
3222 return TRUE;
3223 }
3224
3225 /* Align to the maximum file alignment that could be required for any
3226 ELF data structure. */
3227
3228 static inline file_ptr
3229 align_file_position (file_ptr off, int align)
3230 {
3231 return (off + align - 1) & ~(align - 1);
3232 }
3233
3234 /* Assign a file position to a section, optionally aligning to the
3235 required section alignment. */
3236
3237 file_ptr
3238 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3239 file_ptr offset,
3240 bfd_boolean align)
3241 {
3242 if (align && i_shdrp->sh_addralign > 1)
3243 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3244 i_shdrp->sh_offset = offset;
3245 if (i_shdrp->bfd_section != NULL)
3246 i_shdrp->bfd_section->filepos = offset;
3247 if (i_shdrp->sh_type != SHT_NOBITS)
3248 offset += i_shdrp->sh_size;
3249 return offset;
3250 }
3251
3252 /* Compute the file positions we are going to put the sections at, and
3253 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3254 is not NULL, this is being called by the ELF backend linker. */
3255
3256 bfd_boolean
3257 _bfd_elf_compute_section_file_positions (bfd *abfd,
3258 struct bfd_link_info *link_info)
3259 {
3260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3261 bfd_boolean failed;
3262 struct bfd_strtab_hash *strtab = NULL;
3263 Elf_Internal_Shdr *shstrtab_hdr;
3264
3265 if (abfd->output_has_begun)
3266 return TRUE;
3267
3268 /* Do any elf backend specific processing first. */
3269 if (bed->elf_backend_begin_write_processing)
3270 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3271
3272 if (! prep_headers (abfd))
3273 return FALSE;
3274
3275 /* Post process the headers if necessary. */
3276 if (bed->elf_backend_post_process_headers)
3277 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3278
3279 failed = FALSE;
3280 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3281 if (failed)
3282 return FALSE;
3283
3284 if (!assign_section_numbers (abfd, link_info))
3285 return FALSE;
3286
3287 /* The backend linker builds symbol table information itself. */
3288 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3289 {
3290 /* Non-zero if doing a relocatable link. */
3291 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3292
3293 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3294 return FALSE;
3295 }
3296
3297 if (link_info == NULL)
3298 {
3299 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3300 if (failed)
3301 return FALSE;
3302 }
3303
3304 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3305 /* sh_name was set in prep_headers. */
3306 shstrtab_hdr->sh_type = SHT_STRTAB;
3307 shstrtab_hdr->sh_flags = 0;
3308 shstrtab_hdr->sh_addr = 0;
3309 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3310 shstrtab_hdr->sh_entsize = 0;
3311 shstrtab_hdr->sh_link = 0;
3312 shstrtab_hdr->sh_info = 0;
3313 /* sh_offset is set in assign_file_positions_except_relocs. */
3314 shstrtab_hdr->sh_addralign = 1;
3315
3316 if (!assign_file_positions_except_relocs (abfd, link_info))
3317 return FALSE;
3318
3319 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3320 {
3321 file_ptr off;
3322 Elf_Internal_Shdr *hdr;
3323
3324 off = elf_tdata (abfd)->next_file_pos;
3325
3326 hdr = &elf_tdata (abfd)->symtab_hdr;
3327 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3328
3329 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3330 if (hdr->sh_size != 0)
3331 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3332
3333 hdr = &elf_tdata (abfd)->strtab_hdr;
3334 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3335
3336 elf_tdata (abfd)->next_file_pos = off;
3337
3338 /* Now that we know where the .strtab section goes, write it
3339 out. */
3340 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3341 || ! _bfd_stringtab_emit (abfd, strtab))
3342 return FALSE;
3343 _bfd_stringtab_free (strtab);
3344 }
3345
3346 abfd->output_has_begun = TRUE;
3347
3348 return TRUE;
3349 }
3350
3351 /* Make an initial estimate of the size of the program header. If we
3352 get the number wrong here, we'll redo section placement. */
3353
3354 static bfd_size_type
3355 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3356 {
3357 size_t segs;
3358 asection *s;
3359 const struct elf_backend_data *bed;
3360
3361 /* Assume we will need exactly two PT_LOAD segments: one for text
3362 and one for data. */
3363 segs = 2;
3364
3365 s = bfd_get_section_by_name (abfd, ".interp");
3366 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3367 {
3368 /* If we have a loadable interpreter section, we need a
3369 PT_INTERP segment. In this case, assume we also need a
3370 PT_PHDR segment, although that may not be true for all
3371 targets. */
3372 segs += 2;
3373 }
3374
3375 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3376 {
3377 /* We need a PT_DYNAMIC segment. */
3378 ++segs;
3379 }
3380
3381 if (info != NULL && info->relro)
3382 {
3383 /* We need a PT_GNU_RELRO segment. */
3384 ++segs;
3385 }
3386
3387 if (elf_tdata (abfd)->eh_frame_hdr)
3388 {
3389 /* We need a PT_GNU_EH_FRAME segment. */
3390 ++segs;
3391 }
3392
3393 if (elf_tdata (abfd)->stack_flags)
3394 {
3395 /* We need a PT_GNU_STACK segment. */
3396 ++segs;
3397 }
3398
3399 for (s = abfd->sections; s != NULL; s = s->next)
3400 {
3401 if ((s->flags & SEC_LOAD) != 0
3402 && CONST_STRNEQ (s->name, ".note"))
3403 {
3404 /* We need a PT_NOTE segment. */
3405 ++segs;
3406 /* Try to create just one PT_NOTE segment
3407 for all adjacent loadable .note* sections.
3408 gABI requires that within a PT_NOTE segment
3409 (and also inside of each SHT_NOTE section)
3410 each note is padded to a multiple of 4 size,
3411 so we check whether the sections are correctly
3412 aligned. */
3413 if (s->alignment_power == 2)
3414 while (s->next != NULL
3415 && s->next->alignment_power == 2
3416 && (s->next->flags & SEC_LOAD) != 0
3417 && CONST_STRNEQ (s->next->name, ".note"))
3418 s = s->next;
3419 }
3420 }
3421
3422 for (s = abfd->sections; s != NULL; s = s->next)
3423 {
3424 if (s->flags & SEC_THREAD_LOCAL)
3425 {
3426 /* We need a PT_TLS segment. */
3427 ++segs;
3428 break;
3429 }
3430 }
3431
3432 /* Let the backend count up any program headers it might need. */
3433 bed = get_elf_backend_data (abfd);
3434 if (bed->elf_backend_additional_program_headers)
3435 {
3436 int a;
3437
3438 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3439 if (a == -1)
3440 abort ();
3441 segs += a;
3442 }
3443
3444 return segs * bed->s->sizeof_phdr;
3445 }
3446
3447 /* Find the segment that contains the output_section of section. */
3448
3449 Elf_Internal_Phdr *
3450 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3451 {
3452 struct elf_segment_map *m;
3453 Elf_Internal_Phdr *p;
3454
3455 for (m = elf_tdata (abfd)->segment_map,
3456 p = elf_tdata (abfd)->phdr;
3457 m != NULL;
3458 m = m->next, p++)
3459 {
3460 int i;
3461
3462 for (i = m->count - 1; i >= 0; i--)
3463 if (m->sections[i] == section)
3464 return p;
3465 }
3466
3467 return NULL;
3468 }
3469
3470 /* Create a mapping from a set of sections to a program segment. */
3471
3472 static struct elf_segment_map *
3473 make_mapping (bfd *abfd,
3474 asection **sections,
3475 unsigned int from,
3476 unsigned int to,
3477 bfd_boolean phdr)
3478 {
3479 struct elf_segment_map *m;
3480 unsigned int i;
3481 asection **hdrpp;
3482 bfd_size_type amt;
3483
3484 amt = sizeof (struct elf_segment_map);
3485 amt += (to - from - 1) * sizeof (asection *);
3486 m = bfd_zalloc (abfd, amt);
3487 if (m == NULL)
3488 return NULL;
3489 m->next = NULL;
3490 m->p_type = PT_LOAD;
3491 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3492 m->sections[i - from] = *hdrpp;
3493 m->count = to - from;
3494
3495 if (from == 0 && phdr)
3496 {
3497 /* Include the headers in the first PT_LOAD segment. */
3498 m->includes_filehdr = 1;
3499 m->includes_phdrs = 1;
3500 }
3501
3502 return m;
3503 }
3504
3505 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3506 on failure. */
3507
3508 struct elf_segment_map *
3509 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3510 {
3511 struct elf_segment_map *m;
3512
3513 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3514 if (m == NULL)
3515 return NULL;
3516 m->next = NULL;
3517 m->p_type = PT_DYNAMIC;
3518 m->count = 1;
3519 m->sections[0] = dynsec;
3520
3521 return m;
3522 }
3523
3524 /* Possibly add or remove segments from the segment map. */
3525
3526 static bfd_boolean
3527 elf_modify_segment_map (bfd *abfd,
3528 struct bfd_link_info *info,
3529 bfd_boolean remove_empty_load)
3530 {
3531 struct elf_segment_map **m;
3532 const struct elf_backend_data *bed;
3533
3534 /* The placement algorithm assumes that non allocated sections are
3535 not in PT_LOAD segments. We ensure this here by removing such
3536 sections from the segment map. We also remove excluded
3537 sections. Finally, any PT_LOAD segment without sections is
3538 removed. */
3539 m = &elf_tdata (abfd)->segment_map;
3540 while (*m)
3541 {
3542 unsigned int i, new_count;
3543
3544 for (new_count = 0, i = 0; i < (*m)->count; i++)
3545 {
3546 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3547 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3548 || (*m)->p_type != PT_LOAD))
3549 {
3550 (*m)->sections[new_count] = (*m)->sections[i];
3551 new_count++;
3552 }
3553 }
3554 (*m)->count = new_count;
3555
3556 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3557 *m = (*m)->next;
3558 else
3559 m = &(*m)->next;
3560 }
3561
3562 bed = get_elf_backend_data (abfd);
3563 if (bed->elf_backend_modify_segment_map != NULL)
3564 {
3565 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3566 return FALSE;
3567 }
3568
3569 return TRUE;
3570 }
3571
3572 /* Set up a mapping from BFD sections to program segments. */
3573
3574 bfd_boolean
3575 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3576 {
3577 unsigned int count;
3578 struct elf_segment_map *m;
3579 asection **sections = NULL;
3580 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3581 bfd_boolean no_user_phdrs;
3582
3583 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3584 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3585 {
3586 asection *s;
3587 unsigned int i;
3588 struct elf_segment_map *mfirst;
3589 struct elf_segment_map **pm;
3590 asection *last_hdr;
3591 bfd_vma last_size;
3592 unsigned int phdr_index;
3593 bfd_vma maxpagesize;
3594 asection **hdrpp;
3595 bfd_boolean phdr_in_segment = TRUE;
3596 bfd_boolean writable;
3597 int tls_count = 0;
3598 asection *first_tls = NULL;
3599 asection *dynsec, *eh_frame_hdr;
3600 bfd_size_type amt;
3601
3602 /* Select the allocated sections, and sort them. */
3603
3604 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3605 if (sections == NULL)
3606 goto error_return;
3607
3608 i = 0;
3609 for (s = abfd->sections; s != NULL; s = s->next)
3610 {
3611 if ((s->flags & SEC_ALLOC) != 0)
3612 {
3613 sections[i] = s;
3614 ++i;
3615 }
3616 }
3617 BFD_ASSERT (i <= bfd_count_sections (abfd));
3618 count = i;
3619
3620 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3621
3622 /* Build the mapping. */
3623
3624 mfirst = NULL;
3625 pm = &mfirst;
3626
3627 /* If we have a .interp section, then create a PT_PHDR segment for
3628 the program headers and a PT_INTERP segment for the .interp
3629 section. */
3630 s = bfd_get_section_by_name (abfd, ".interp");
3631 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3632 {
3633 amt = sizeof (struct elf_segment_map);
3634 m = bfd_zalloc (abfd, amt);
3635 if (m == NULL)
3636 goto error_return;
3637 m->next = NULL;
3638 m->p_type = PT_PHDR;
3639 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3640 m->p_flags = PF_R | PF_X;
3641 m->p_flags_valid = 1;
3642 m->includes_phdrs = 1;
3643
3644 *pm = m;
3645 pm = &m->next;
3646
3647 amt = sizeof (struct elf_segment_map);
3648 m = bfd_zalloc (abfd, amt);
3649 if (m == NULL)
3650 goto error_return;
3651 m->next = NULL;
3652 m->p_type = PT_INTERP;
3653 m->count = 1;
3654 m->sections[0] = s;
3655
3656 *pm = m;
3657 pm = &m->next;
3658 }
3659
3660 /* Look through the sections. We put sections in the same program
3661 segment when the start of the second section can be placed within
3662 a few bytes of the end of the first section. */
3663 last_hdr = NULL;
3664 last_size = 0;
3665 phdr_index = 0;
3666 maxpagesize = bed->maxpagesize;
3667 writable = FALSE;
3668 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3669 if (dynsec != NULL
3670 && (dynsec->flags & SEC_LOAD) == 0)
3671 dynsec = NULL;
3672
3673 /* Deal with -Ttext or something similar such that the first section
3674 is not adjacent to the program headers. This is an
3675 approximation, since at this point we don't know exactly how many
3676 program headers we will need. */
3677 if (count > 0)
3678 {
3679 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3680
3681 if (phdr_size == (bfd_size_type) -1)
3682 phdr_size = get_program_header_size (abfd, info);
3683 if ((abfd->flags & D_PAGED) == 0
3684 || sections[0]->lma < phdr_size
3685 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3686 phdr_in_segment = FALSE;
3687 }
3688
3689 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3690 {
3691 asection *hdr;
3692 bfd_boolean new_segment;
3693
3694 hdr = *hdrpp;
3695
3696 /* See if this section and the last one will fit in the same
3697 segment. */
3698
3699 if (last_hdr == NULL)
3700 {
3701 /* If we don't have a segment yet, then we don't need a new
3702 one (we build the last one after this loop). */
3703 new_segment = FALSE;
3704 }
3705 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3706 {
3707 /* If this section has a different relation between the
3708 virtual address and the load address, then we need a new
3709 segment. */
3710 new_segment = TRUE;
3711 }
3712 /* In the next test we have to be careful when last_hdr->lma is close
3713 to the end of the address space. If the aligned address wraps
3714 around to the start of the address space, then there are no more
3715 pages left in memory and it is OK to assume that the current
3716 section can be included in the current segment. */
3717 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3718 > last_hdr->lma)
3719 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3720 <= hdr->lma))
3721 {
3722 /* If putting this section in this segment would force us to
3723 skip a page in the segment, then we need a new segment. */
3724 new_segment = TRUE;
3725 }
3726 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3727 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3728 {
3729 /* We don't want to put a loadable section after a
3730 nonloadable section in the same segment.
3731 Consider .tbss sections as loadable for this purpose. */
3732 new_segment = TRUE;
3733 }
3734 else if ((abfd->flags & D_PAGED) == 0)
3735 {
3736 /* If the file is not demand paged, which means that we
3737 don't require the sections to be correctly aligned in the
3738 file, then there is no other reason for a new segment. */
3739 new_segment = FALSE;
3740 }
3741 else if (! writable
3742 && (hdr->flags & SEC_READONLY) == 0
3743 && (((last_hdr->lma + last_size - 1)
3744 & ~(maxpagesize - 1))
3745 != (hdr->lma & ~(maxpagesize - 1))))
3746 {
3747 /* We don't want to put a writable section in a read only
3748 segment, unless they are on the same page in memory
3749 anyhow. We already know that the last section does not
3750 bring us past the current section on the page, so the
3751 only case in which the new section is not on the same
3752 page as the previous section is when the previous section
3753 ends precisely on a page boundary. */
3754 new_segment = TRUE;
3755 }
3756 else
3757 {
3758 /* Otherwise, we can use the same segment. */
3759 new_segment = FALSE;
3760 }
3761
3762 /* Allow interested parties a chance to override our decision. */
3763 if (last_hdr != NULL
3764 && info != NULL
3765 && info->callbacks->override_segment_assignment != NULL)
3766 new_segment
3767 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3768 last_hdr,
3769 new_segment);
3770
3771 if (! new_segment)
3772 {
3773 if ((hdr->flags & SEC_READONLY) == 0)
3774 writable = TRUE;
3775 last_hdr = hdr;
3776 /* .tbss sections effectively have zero size. */
3777 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3778 != SEC_THREAD_LOCAL)
3779 last_size = hdr->size;
3780 else
3781 last_size = 0;
3782 continue;
3783 }
3784
3785 /* We need a new program segment. We must create a new program
3786 header holding all the sections from phdr_index until hdr. */
3787
3788 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3789 if (m == NULL)
3790 goto error_return;
3791
3792 *pm = m;
3793 pm = &m->next;
3794
3795 if ((hdr->flags & SEC_READONLY) == 0)
3796 writable = TRUE;
3797 else
3798 writable = FALSE;
3799
3800 last_hdr = hdr;
3801 /* .tbss sections effectively have zero size. */
3802 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3803 last_size = hdr->size;
3804 else
3805 last_size = 0;
3806 phdr_index = i;
3807 phdr_in_segment = FALSE;
3808 }
3809
3810 /* Create a final PT_LOAD program segment. */
3811 if (last_hdr != NULL)
3812 {
3813 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3814 if (m == NULL)
3815 goto error_return;
3816
3817 *pm = m;
3818 pm = &m->next;
3819 }
3820
3821 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3822 if (dynsec != NULL)
3823 {
3824 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3825 if (m == NULL)
3826 goto error_return;
3827 *pm = m;
3828 pm = &m->next;
3829 }
3830
3831 /* For each batch of consecutive loadable .note sections,
3832 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3833 because if we link together nonloadable .note sections and
3834 loadable .note sections, we will generate two .note sections
3835 in the output file. FIXME: Using names for section types is
3836 bogus anyhow. */
3837 for (s = abfd->sections; s != NULL; s = s->next)
3838 {
3839 if ((s->flags & SEC_LOAD) != 0
3840 && CONST_STRNEQ (s->name, ".note"))
3841 {
3842 asection *s2;
3843 unsigned count = 1;
3844 amt = sizeof (struct elf_segment_map);
3845 if (s->alignment_power == 2)
3846 for (s2 = s; s2->next != NULL; s2 = s2->next)
3847 {
3848 if (s2->next->alignment_power == 2
3849 && (s2->next->flags & SEC_LOAD) != 0
3850 && CONST_STRNEQ (s2->next->name, ".note")
3851 && align_power (s2->vma + s2->size, 2)
3852 == s2->next->vma)
3853 count++;
3854 else
3855 break;
3856 }
3857 amt += (count - 1) * sizeof (asection *);
3858 m = bfd_zalloc (abfd, amt);
3859 if (m == NULL)
3860 goto error_return;
3861 m->next = NULL;
3862 m->p_type = PT_NOTE;
3863 m->count = count;
3864 while (count > 1)
3865 {
3866 m->sections[m->count - count--] = s;
3867 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3868 s = s->next;
3869 }
3870 m->sections[m->count - 1] = s;
3871 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3872 *pm = m;
3873 pm = &m->next;
3874 }
3875 if (s->flags & SEC_THREAD_LOCAL)
3876 {
3877 if (! tls_count)
3878 first_tls = s;
3879 tls_count++;
3880 }
3881 }
3882
3883 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3884 if (tls_count > 0)
3885 {
3886 int i;
3887
3888 amt = sizeof (struct elf_segment_map);
3889 amt += (tls_count - 1) * sizeof (asection *);
3890 m = bfd_zalloc (abfd, amt);
3891 if (m == NULL)
3892 goto error_return;
3893 m->next = NULL;
3894 m->p_type = PT_TLS;
3895 m->count = tls_count;
3896 /* Mandated PF_R. */
3897 m->p_flags = PF_R;
3898 m->p_flags_valid = 1;
3899 for (i = 0; i < tls_count; ++i)
3900 {
3901 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3902 m->sections[i] = first_tls;
3903 first_tls = first_tls->next;
3904 }
3905
3906 *pm = m;
3907 pm = &m->next;
3908 }
3909
3910 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3911 segment. */
3912 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3913 if (eh_frame_hdr != NULL
3914 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3915 {
3916 amt = sizeof (struct elf_segment_map);
3917 m = bfd_zalloc (abfd, amt);
3918 if (m == NULL)
3919 goto error_return;
3920 m->next = NULL;
3921 m->p_type = PT_GNU_EH_FRAME;
3922 m->count = 1;
3923 m->sections[0] = eh_frame_hdr->output_section;
3924
3925 *pm = m;
3926 pm = &m->next;
3927 }
3928
3929 if (elf_tdata (abfd)->stack_flags)
3930 {
3931 amt = sizeof (struct elf_segment_map);
3932 m = bfd_zalloc (abfd, amt);
3933 if (m == NULL)
3934 goto error_return;
3935 m->next = NULL;
3936 m->p_type = PT_GNU_STACK;
3937 m->p_flags = elf_tdata (abfd)->stack_flags;
3938 m->p_flags_valid = 1;
3939
3940 *pm = m;
3941 pm = &m->next;
3942 }
3943
3944 if (info != NULL && info->relro)
3945 {
3946 for (m = mfirst; m != NULL; m = m->next)
3947 {
3948 if (m->p_type == PT_LOAD)
3949 {
3950 asection *last = m->sections[m->count - 1];
3951 bfd_vma vaddr = m->sections[0]->vma;
3952 bfd_vma filesz = last->vma - vaddr + last->size;
3953
3954 if (vaddr < info->relro_end
3955 && vaddr >= info->relro_start
3956 && (vaddr + filesz) >= info->relro_end)
3957 break;
3958 }
3959 }
3960
3961 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3962 if (m != NULL)
3963 {
3964 amt = sizeof (struct elf_segment_map);
3965 m = bfd_zalloc (abfd, amt);
3966 if (m == NULL)
3967 goto error_return;
3968 m->next = NULL;
3969 m->p_type = PT_GNU_RELRO;
3970 m->p_flags = PF_R;
3971 m->p_flags_valid = 1;
3972
3973 *pm = m;
3974 pm = &m->next;
3975 }
3976 }
3977
3978 free (sections);
3979 elf_tdata (abfd)->segment_map = mfirst;
3980 }
3981
3982 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
3983 return FALSE;
3984
3985 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3986 ++count;
3987 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
3988
3989 return TRUE;
3990
3991 error_return:
3992 if (sections != NULL)
3993 free (sections);
3994 return FALSE;
3995 }
3996
3997 /* Sort sections by address. */
3998
3999 static int
4000 elf_sort_sections (const void *arg1, const void *arg2)
4001 {
4002 const asection *sec1 = *(const asection **) arg1;
4003 const asection *sec2 = *(const asection **) arg2;
4004 bfd_size_type size1, size2;
4005
4006 /* Sort by LMA first, since this is the address used to
4007 place the section into a segment. */
4008 if (sec1->lma < sec2->lma)
4009 return -1;
4010 else if (sec1->lma > sec2->lma)
4011 return 1;
4012
4013 /* Then sort by VMA. Normally the LMA and the VMA will be
4014 the same, and this will do nothing. */
4015 if (sec1->vma < sec2->vma)
4016 return -1;
4017 else if (sec1->vma > sec2->vma)
4018 return 1;
4019
4020 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4021
4022 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4023
4024 if (TOEND (sec1))
4025 {
4026 if (TOEND (sec2))
4027 {
4028 /* If the indicies are the same, do not return 0
4029 here, but continue to try the next comparison. */
4030 if (sec1->target_index - sec2->target_index != 0)
4031 return sec1->target_index - sec2->target_index;
4032 }
4033 else
4034 return 1;
4035 }
4036 else if (TOEND (sec2))
4037 return -1;
4038
4039 #undef TOEND
4040
4041 /* Sort by size, to put zero sized sections
4042 before others at the same address. */
4043
4044 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4045 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4046
4047 if (size1 < size2)
4048 return -1;
4049 if (size1 > size2)
4050 return 1;
4051
4052 return sec1->target_index - sec2->target_index;
4053 }
4054
4055 /* Ian Lance Taylor writes:
4056
4057 We shouldn't be using % with a negative signed number. That's just
4058 not good. We have to make sure either that the number is not
4059 negative, or that the number has an unsigned type. When the types
4060 are all the same size they wind up as unsigned. When file_ptr is a
4061 larger signed type, the arithmetic winds up as signed long long,
4062 which is wrong.
4063
4064 What we're trying to say here is something like ``increase OFF by
4065 the least amount that will cause it to be equal to the VMA modulo
4066 the page size.'' */
4067 /* In other words, something like:
4068
4069 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4070 off_offset = off % bed->maxpagesize;
4071 if (vma_offset < off_offset)
4072 adjustment = vma_offset + bed->maxpagesize - off_offset;
4073 else
4074 adjustment = vma_offset - off_offset;
4075
4076 which can can be collapsed into the expression below. */
4077
4078 static file_ptr
4079 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4080 {
4081 return ((vma - off) % maxpagesize);
4082 }
4083
4084 static void
4085 print_segment_map (const struct elf_segment_map *m)
4086 {
4087 unsigned int j;
4088 const char *pt = get_segment_type (m->p_type);
4089 char buf[32];
4090
4091 if (pt == NULL)
4092 {
4093 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4094 sprintf (buf, "LOPROC+%7.7x",
4095 (unsigned int) (m->p_type - PT_LOPROC));
4096 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4097 sprintf (buf, "LOOS+%7.7x",
4098 (unsigned int) (m->p_type - PT_LOOS));
4099 else
4100 snprintf (buf, sizeof (buf), "%8.8x",
4101 (unsigned int) m->p_type);
4102 pt = buf;
4103 }
4104 fprintf (stderr, "%s:", pt);
4105 for (j = 0; j < m->count; j++)
4106 fprintf (stderr, " %s", m->sections [j]->name);
4107 putc ('\n',stderr);
4108 }
4109
4110 /* Assign file positions to the sections based on the mapping from
4111 sections to segments. This function also sets up some fields in
4112 the file header. */
4113
4114 static bfd_boolean
4115 assign_file_positions_for_load_sections (bfd *abfd,
4116 struct bfd_link_info *link_info)
4117 {
4118 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4119 struct elf_segment_map *m;
4120 Elf_Internal_Phdr *phdrs;
4121 Elf_Internal_Phdr *p;
4122 file_ptr off;
4123 bfd_size_type maxpagesize;
4124 unsigned int alloc;
4125 unsigned int i, j;
4126 bfd_vma header_pad = 0;
4127
4128 if (link_info == NULL
4129 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4130 return FALSE;
4131
4132 alloc = 0;
4133 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4134 {
4135 ++alloc;
4136 if (m->header_size)
4137 header_pad = m->header_size;
4138 }
4139
4140 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4141 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4142 elf_elfheader (abfd)->e_phnum = alloc;
4143
4144 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4145 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4146 else
4147 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4148 >= alloc * bed->s->sizeof_phdr);
4149
4150 if (alloc == 0)
4151 {
4152 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4153 return TRUE;
4154 }
4155
4156 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4157 see assign_file_positions_except_relocs, so make sure we have
4158 that amount allocated, with trailing space cleared.
4159 The variable alloc contains the computed need, while elf_tdata
4160 (abfd)->program_header_size contains the size used for the
4161 layout.
4162 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4163 where the layout is forced to according to a larger size in the
4164 last iterations for the testcase ld-elf/header. */
4165 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4166 == 0);
4167 phdrs = bfd_zalloc2 (abfd,
4168 (elf_tdata (abfd)->program_header_size
4169 / bed->s->sizeof_phdr),
4170 sizeof (Elf_Internal_Phdr));
4171 elf_tdata (abfd)->phdr = phdrs;
4172 if (phdrs == NULL)
4173 return FALSE;
4174
4175 maxpagesize = 1;
4176 if ((abfd->flags & D_PAGED) != 0)
4177 maxpagesize = bed->maxpagesize;
4178
4179 off = bed->s->sizeof_ehdr;
4180 off += alloc * bed->s->sizeof_phdr;
4181 if (header_pad < (bfd_vma) off)
4182 header_pad = 0;
4183 else
4184 header_pad -= off;
4185 off += header_pad;
4186
4187 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4188 m != NULL;
4189 m = m->next, p++, j++)
4190 {
4191 asection **secpp;
4192 bfd_vma off_adjust;
4193 bfd_boolean no_contents;
4194
4195 /* If elf_segment_map is not from map_sections_to_segments, the
4196 sections may not be correctly ordered. NOTE: sorting should
4197 not be done to the PT_NOTE section of a corefile, which may
4198 contain several pseudo-sections artificially created by bfd.
4199 Sorting these pseudo-sections breaks things badly. */
4200 if (m->count > 1
4201 && !(elf_elfheader (abfd)->e_type == ET_CORE
4202 && m->p_type == PT_NOTE))
4203 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4204 elf_sort_sections);
4205
4206 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4207 number of sections with contents contributing to both p_filesz
4208 and p_memsz, followed by a number of sections with no contents
4209 that just contribute to p_memsz. In this loop, OFF tracks next
4210 available file offset for PT_LOAD and PT_NOTE segments. */
4211 p->p_type = m->p_type;
4212 p->p_flags = m->p_flags;
4213
4214 if (m->count == 0)
4215 p->p_vaddr = 0;
4216 else
4217 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4218
4219 if (m->p_paddr_valid)
4220 p->p_paddr = m->p_paddr;
4221 else if (m->count == 0)
4222 p->p_paddr = 0;
4223 else
4224 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4225
4226 if (p->p_type == PT_LOAD
4227 && (abfd->flags & D_PAGED) != 0)
4228 {
4229 /* p_align in demand paged PT_LOAD segments effectively stores
4230 the maximum page size. When copying an executable with
4231 objcopy, we set m->p_align from the input file. Use this
4232 value for maxpagesize rather than bed->maxpagesize, which
4233 may be different. Note that we use maxpagesize for PT_TLS
4234 segment alignment later in this function, so we are relying
4235 on at least one PT_LOAD segment appearing before a PT_TLS
4236 segment. */
4237 if (m->p_align_valid)
4238 maxpagesize = m->p_align;
4239
4240 p->p_align = maxpagesize;
4241 }
4242 else if (m->p_align_valid)
4243 p->p_align = m->p_align;
4244 else if (m->count == 0)
4245 p->p_align = 1 << bed->s->log_file_align;
4246 else
4247 p->p_align = 0;
4248
4249 no_contents = FALSE;
4250 off_adjust = 0;
4251 if (p->p_type == PT_LOAD
4252 && m->count > 0)
4253 {
4254 bfd_size_type align;
4255 unsigned int align_power = 0;
4256
4257 if (m->p_align_valid)
4258 align = p->p_align;
4259 else
4260 {
4261 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4262 {
4263 unsigned int secalign;
4264
4265 secalign = bfd_get_section_alignment (abfd, *secpp);
4266 if (secalign > align_power)
4267 align_power = secalign;
4268 }
4269 align = (bfd_size_type) 1 << align_power;
4270 if (align < maxpagesize)
4271 align = maxpagesize;
4272 }
4273
4274 for (i = 0; i < m->count; i++)
4275 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4276 /* If we aren't making room for this section, then
4277 it must be SHT_NOBITS regardless of what we've
4278 set via struct bfd_elf_special_section. */
4279 elf_section_type (m->sections[i]) = SHT_NOBITS;
4280
4281 /* Find out whether this segment contains any loadable
4282 sections. */
4283 no_contents = TRUE;
4284 for (i = 0; i < m->count; i++)
4285 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4286 {
4287 no_contents = FALSE;
4288 break;
4289 }
4290
4291 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4292 off += off_adjust;
4293 if (no_contents)
4294 {
4295 /* We shouldn't need to align the segment on disk since
4296 the segment doesn't need file space, but the gABI
4297 arguably requires the alignment and glibc ld.so
4298 checks it. So to comply with the alignment
4299 requirement but not waste file space, we adjust
4300 p_offset for just this segment. (OFF_ADJUST is
4301 subtracted from OFF later.) This may put p_offset
4302 past the end of file, but that shouldn't matter. */
4303 }
4304 else
4305 off_adjust = 0;
4306 }
4307 /* Make sure the .dynamic section is the first section in the
4308 PT_DYNAMIC segment. */
4309 else if (p->p_type == PT_DYNAMIC
4310 && m->count > 1
4311 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4312 {
4313 _bfd_error_handler
4314 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4315 abfd);
4316 bfd_set_error (bfd_error_bad_value);
4317 return FALSE;
4318 }
4319 /* Set the note section type to SHT_NOTE. */
4320 else if (p->p_type == PT_NOTE)
4321 for (i = 0; i < m->count; i++)
4322 elf_section_type (m->sections[i]) = SHT_NOTE;
4323
4324 p->p_offset = 0;
4325 p->p_filesz = 0;
4326 p->p_memsz = 0;
4327
4328 if (m->includes_filehdr)
4329 {
4330 if (!m->p_flags_valid)
4331 p->p_flags |= PF_R;
4332 p->p_filesz = bed->s->sizeof_ehdr;
4333 p->p_memsz = bed->s->sizeof_ehdr;
4334 if (m->count > 0)
4335 {
4336 BFD_ASSERT (p->p_type == PT_LOAD);
4337
4338 if (p->p_vaddr < (bfd_vma) off)
4339 {
4340 (*_bfd_error_handler)
4341 (_("%B: Not enough room for program headers, try linking with -N"),
4342 abfd);
4343 bfd_set_error (bfd_error_bad_value);
4344 return FALSE;
4345 }
4346
4347 p->p_vaddr -= off;
4348 if (!m->p_paddr_valid)
4349 p->p_paddr -= off;
4350 }
4351 }
4352
4353 if (m->includes_phdrs)
4354 {
4355 if (!m->p_flags_valid)
4356 p->p_flags |= PF_R;
4357
4358 if (!m->includes_filehdr)
4359 {
4360 p->p_offset = bed->s->sizeof_ehdr;
4361
4362 if (m->count > 0)
4363 {
4364 BFD_ASSERT (p->p_type == PT_LOAD);
4365 p->p_vaddr -= off - p->p_offset;
4366 if (!m->p_paddr_valid)
4367 p->p_paddr -= off - p->p_offset;
4368 }
4369 }
4370
4371 p->p_filesz += alloc * bed->s->sizeof_phdr;
4372 p->p_memsz += alloc * bed->s->sizeof_phdr;
4373 if (m->count)
4374 {
4375 p->p_filesz += header_pad;
4376 p->p_memsz += header_pad;
4377 }
4378 }
4379
4380 if (p->p_type == PT_LOAD
4381 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4382 {
4383 if (!m->includes_filehdr && !m->includes_phdrs)
4384 p->p_offset = off;
4385 else
4386 {
4387 file_ptr adjust;
4388
4389 adjust = off - (p->p_offset + p->p_filesz);
4390 if (!no_contents)
4391 p->p_filesz += adjust;
4392 p->p_memsz += adjust;
4393 }
4394 }
4395
4396 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4397 maps. Set filepos for sections in PT_LOAD segments, and in
4398 core files, for sections in PT_NOTE segments.
4399 assign_file_positions_for_non_load_sections will set filepos
4400 for other sections and update p_filesz for other segments. */
4401 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4402 {
4403 asection *sec;
4404 bfd_size_type align;
4405 Elf_Internal_Shdr *this_hdr;
4406
4407 sec = *secpp;
4408 this_hdr = &elf_section_data (sec)->this_hdr;
4409 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4410
4411 if ((p->p_type == PT_LOAD
4412 || p->p_type == PT_TLS)
4413 && (this_hdr->sh_type != SHT_NOBITS
4414 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4415 && ((this_hdr->sh_flags & SHF_TLS) == 0
4416 || p->p_type == PT_TLS))))
4417 {
4418 bfd_signed_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
4419
4420 if (adjust < 0)
4421 {
4422 (*_bfd_error_handler)
4423 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4424 abfd, sec, (unsigned long) sec->vma);
4425 adjust = 0;
4426 }
4427 p->p_memsz += adjust;
4428
4429 if (this_hdr->sh_type != SHT_NOBITS)
4430 {
4431 off += adjust;
4432 p->p_filesz += adjust;
4433 }
4434 }
4435
4436 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4437 {
4438 /* The section at i == 0 is the one that actually contains
4439 everything. */
4440 if (i == 0)
4441 {
4442 this_hdr->sh_offset = sec->filepos = off;
4443 off += this_hdr->sh_size;
4444 p->p_filesz = this_hdr->sh_size;
4445 p->p_memsz = 0;
4446 p->p_align = 1;
4447 }
4448 else
4449 {
4450 /* The rest are fake sections that shouldn't be written. */
4451 sec->filepos = 0;
4452 sec->size = 0;
4453 sec->flags = 0;
4454 continue;
4455 }
4456 }
4457 else
4458 {
4459 if (p->p_type == PT_LOAD)
4460 {
4461 this_hdr->sh_offset = sec->filepos = off;
4462 if (this_hdr->sh_type != SHT_NOBITS)
4463 off += this_hdr->sh_size;
4464 }
4465
4466 if (this_hdr->sh_type != SHT_NOBITS)
4467 {
4468 p->p_filesz += this_hdr->sh_size;
4469 /* A load section without SHF_ALLOC is something like
4470 a note section in a PT_NOTE segment. These take
4471 file space but are not loaded into memory. */
4472 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4473 p->p_memsz += this_hdr->sh_size;
4474 }
4475 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4476 {
4477 if (p->p_type == PT_TLS)
4478 p->p_memsz += this_hdr->sh_size;
4479
4480 /* .tbss is special. It doesn't contribute to p_memsz of
4481 normal segments. */
4482 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4483 p->p_memsz += this_hdr->sh_size;
4484 }
4485
4486 if (align > p->p_align
4487 && !m->p_align_valid
4488 && (p->p_type != PT_LOAD
4489 || (abfd->flags & D_PAGED) == 0))
4490 p->p_align = align;
4491 }
4492
4493 if (!m->p_flags_valid)
4494 {
4495 p->p_flags |= PF_R;
4496 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4497 p->p_flags |= PF_X;
4498 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4499 p->p_flags |= PF_W;
4500 }
4501 }
4502 off -= off_adjust;
4503
4504 /* Check that all sections are in a PT_LOAD segment.
4505 Don't check funky gdb generated core files. */
4506 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4507 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4508 {
4509 Elf_Internal_Shdr *this_hdr;
4510 asection *sec;
4511
4512 sec = *secpp;
4513 this_hdr = &(elf_section_data(sec)->this_hdr);
4514 if (this_hdr->sh_size != 0
4515 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4516 {
4517 (*_bfd_error_handler)
4518 (_("%B: section `%A' can't be allocated in segment %d"),
4519 abfd, sec, j);
4520 print_segment_map (m);
4521 bfd_set_error (bfd_error_bad_value);
4522 return FALSE;
4523 }
4524 }
4525 }
4526
4527 elf_tdata (abfd)->next_file_pos = off;
4528 return TRUE;
4529 }
4530
4531 /* Assign file positions for the other sections. */
4532
4533 static bfd_boolean
4534 assign_file_positions_for_non_load_sections (bfd *abfd,
4535 struct bfd_link_info *link_info)
4536 {
4537 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4538 Elf_Internal_Shdr **i_shdrpp;
4539 Elf_Internal_Shdr **hdrpp;
4540 Elf_Internal_Phdr *phdrs;
4541 Elf_Internal_Phdr *p;
4542 struct elf_segment_map *m;
4543 bfd_vma filehdr_vaddr, filehdr_paddr;
4544 bfd_vma phdrs_vaddr, phdrs_paddr;
4545 file_ptr off;
4546 unsigned int num_sec;
4547 unsigned int i;
4548 unsigned int count;
4549
4550 i_shdrpp = elf_elfsections (abfd);
4551 num_sec = elf_numsections (abfd);
4552 off = elf_tdata (abfd)->next_file_pos;
4553 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4554 {
4555 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4556 Elf_Internal_Shdr *hdr;
4557
4558 hdr = *hdrpp;
4559 if (hdr->bfd_section != NULL
4560 && (hdr->bfd_section->filepos != 0
4561 || (hdr->sh_type == SHT_NOBITS
4562 && hdr->contents == NULL)))
4563 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4564 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4565 {
4566 if (hdr->sh_size != 0)
4567 ((*_bfd_error_handler)
4568 (_("%B: warning: allocated section `%s' not in segment"),
4569 abfd,
4570 (hdr->bfd_section == NULL
4571 ? "*unknown*"
4572 : hdr->bfd_section->name)));
4573 /* We don't need to page align empty sections. */
4574 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4575 off += vma_page_aligned_bias (hdr->sh_addr, off,
4576 bed->maxpagesize);
4577 else
4578 off += vma_page_aligned_bias (hdr->sh_addr, off,
4579 hdr->sh_addralign);
4580 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4581 FALSE);
4582 }
4583 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4584 && hdr->bfd_section == NULL)
4585 || hdr == i_shdrpp[tdata->symtab_section]
4586 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4587 || hdr == i_shdrpp[tdata->strtab_section])
4588 hdr->sh_offset = -1;
4589 else
4590 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4591 }
4592
4593 /* Now that we have set the section file positions, we can set up
4594 the file positions for the non PT_LOAD segments. */
4595 count = 0;
4596 filehdr_vaddr = 0;
4597 filehdr_paddr = 0;
4598 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4599 phdrs_paddr = 0;
4600 phdrs = elf_tdata (abfd)->phdr;
4601 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4602 m != NULL;
4603 m = m->next, p++)
4604 {
4605 ++count;
4606 if (p->p_type != PT_LOAD)
4607 continue;
4608
4609 if (m->includes_filehdr)
4610 {
4611 filehdr_vaddr = p->p_vaddr;
4612 filehdr_paddr = p->p_paddr;
4613 }
4614 if (m->includes_phdrs)
4615 {
4616 phdrs_vaddr = p->p_vaddr;
4617 phdrs_paddr = p->p_paddr;
4618 if (m->includes_filehdr)
4619 {
4620 phdrs_vaddr += bed->s->sizeof_ehdr;
4621 phdrs_paddr += bed->s->sizeof_ehdr;
4622 }
4623 }
4624 }
4625
4626 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4627 m != NULL;
4628 m = m->next, p++)
4629 {
4630 if (p->p_type == PT_GNU_RELRO)
4631 {
4632 const Elf_Internal_Phdr *lp;
4633
4634 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4635
4636 if (link_info != NULL)
4637 {
4638 /* During linking the range of the RELRO segment is passed
4639 in link_info. */
4640 for (lp = phdrs; lp < phdrs + count; ++lp)
4641 {
4642 if (lp->p_type == PT_LOAD
4643 && lp->p_vaddr >= link_info->relro_start
4644 && lp->p_vaddr < link_info->relro_end
4645 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4646 break;
4647 }
4648 }
4649 else
4650 {
4651 /* Otherwise we are copying an executable or shared
4652 library, but we need to use the same linker logic. */
4653 for (lp = phdrs; lp < phdrs + count; ++lp)
4654 {
4655 if (lp->p_type == PT_LOAD
4656 && lp->p_paddr == p->p_paddr)
4657 break;
4658 }
4659 }
4660
4661 if (lp < phdrs + count)
4662 {
4663 p->p_vaddr = lp->p_vaddr;
4664 p->p_paddr = lp->p_paddr;
4665 p->p_offset = lp->p_offset;
4666 if (link_info != NULL)
4667 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4668 else if (m->p_size_valid)
4669 p->p_filesz = m->p_size;
4670 else
4671 abort ();
4672 p->p_memsz = p->p_filesz;
4673 p->p_align = 1;
4674 p->p_flags = (lp->p_flags & ~PF_W);
4675 }
4676 else if (link_info != NULL)
4677 {
4678 memset (p, 0, sizeof *p);
4679 p->p_type = PT_NULL;
4680 }
4681 else
4682 abort ();
4683 }
4684 else if (m->count != 0)
4685 {
4686 if (p->p_type != PT_LOAD
4687 && (p->p_type != PT_NOTE
4688 || bfd_get_format (abfd) != bfd_core))
4689 {
4690 Elf_Internal_Shdr *hdr;
4691 asection *sect;
4692
4693 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4694
4695 sect = m->sections[m->count - 1];
4696 hdr = &elf_section_data (sect)->this_hdr;
4697 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4698 if (hdr->sh_type != SHT_NOBITS)
4699 p->p_filesz += hdr->sh_size;
4700 p->p_offset = m->sections[0]->filepos;
4701 }
4702 }
4703 else if (m->includes_filehdr)
4704 {
4705 p->p_vaddr = filehdr_vaddr;
4706 if (! m->p_paddr_valid)
4707 p->p_paddr = filehdr_paddr;
4708 }
4709 else if (m->includes_phdrs)
4710 {
4711 p->p_vaddr = phdrs_vaddr;
4712 if (! m->p_paddr_valid)
4713 p->p_paddr = phdrs_paddr;
4714 }
4715 }
4716
4717 elf_tdata (abfd)->next_file_pos = off;
4718
4719 return TRUE;
4720 }
4721
4722 /* Work out the file positions of all the sections. This is called by
4723 _bfd_elf_compute_section_file_positions. All the section sizes and
4724 VMAs must be known before this is called.
4725
4726 Reloc sections come in two flavours: Those processed specially as
4727 "side-channel" data attached to a section to which they apply, and
4728 those that bfd doesn't process as relocations. The latter sort are
4729 stored in a normal bfd section by bfd_section_from_shdr. We don't
4730 consider the former sort here, unless they form part of the loadable
4731 image. Reloc sections not assigned here will be handled later by
4732 assign_file_positions_for_relocs.
4733
4734 We also don't set the positions of the .symtab and .strtab here. */
4735
4736 static bfd_boolean
4737 assign_file_positions_except_relocs (bfd *abfd,
4738 struct bfd_link_info *link_info)
4739 {
4740 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4741 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4742 file_ptr off;
4743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4744
4745 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4746 && bfd_get_format (abfd) != bfd_core)
4747 {
4748 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4749 unsigned int num_sec = elf_numsections (abfd);
4750 Elf_Internal_Shdr **hdrpp;
4751 unsigned int i;
4752
4753 /* Start after the ELF header. */
4754 off = i_ehdrp->e_ehsize;
4755
4756 /* We are not creating an executable, which means that we are
4757 not creating a program header, and that the actual order of
4758 the sections in the file is unimportant. */
4759 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4760 {
4761 Elf_Internal_Shdr *hdr;
4762
4763 hdr = *hdrpp;
4764 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4765 && hdr->bfd_section == NULL)
4766 || i == tdata->symtab_section
4767 || i == tdata->symtab_shndx_section
4768 || i == tdata->strtab_section)
4769 {
4770 hdr->sh_offset = -1;
4771 }
4772 else
4773 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4774 }
4775 }
4776 else
4777 {
4778 unsigned int alloc;
4779
4780 /* Assign file positions for the loaded sections based on the
4781 assignment of sections to segments. */
4782 if (!assign_file_positions_for_load_sections (abfd, link_info))
4783 return FALSE;
4784
4785 /* And for non-load sections. */
4786 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4787 return FALSE;
4788
4789 if (bed->elf_backend_modify_program_headers != NULL)
4790 {
4791 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4792 return FALSE;
4793 }
4794
4795 /* Write out the program headers. */
4796 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4797 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4798 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4799 return FALSE;
4800
4801 off = tdata->next_file_pos;
4802 }
4803
4804 /* Place the section headers. */
4805 off = align_file_position (off, 1 << bed->s->log_file_align);
4806 i_ehdrp->e_shoff = off;
4807 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4808
4809 tdata->next_file_pos = off;
4810
4811 return TRUE;
4812 }
4813
4814 static bfd_boolean
4815 prep_headers (bfd *abfd)
4816 {
4817 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4818 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4819 struct elf_strtab_hash *shstrtab;
4820 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4821
4822 i_ehdrp = elf_elfheader (abfd);
4823
4824 shstrtab = _bfd_elf_strtab_init ();
4825 if (shstrtab == NULL)
4826 return FALSE;
4827
4828 elf_shstrtab (abfd) = shstrtab;
4829
4830 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4831 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4832 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4833 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4834
4835 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4836 i_ehdrp->e_ident[EI_DATA] =
4837 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4838 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4839
4840 if ((abfd->flags & DYNAMIC) != 0)
4841 i_ehdrp->e_type = ET_DYN;
4842 else if ((abfd->flags & EXEC_P) != 0)
4843 i_ehdrp->e_type = ET_EXEC;
4844 else if (bfd_get_format (abfd) == bfd_core)
4845 i_ehdrp->e_type = ET_CORE;
4846 else
4847 i_ehdrp->e_type = ET_REL;
4848
4849 switch (bfd_get_arch (abfd))
4850 {
4851 case bfd_arch_unknown:
4852 i_ehdrp->e_machine = EM_NONE;
4853 break;
4854
4855 /* There used to be a long list of cases here, each one setting
4856 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4857 in the corresponding bfd definition. To avoid duplication,
4858 the switch was removed. Machines that need special handling
4859 can generally do it in elf_backend_final_write_processing(),
4860 unless they need the information earlier than the final write.
4861 Such need can generally be supplied by replacing the tests for
4862 e_machine with the conditions used to determine it. */
4863 default:
4864 i_ehdrp->e_machine = bed->elf_machine_code;
4865 }
4866
4867 i_ehdrp->e_version = bed->s->ev_current;
4868 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4869
4870 /* No program header, for now. */
4871 i_ehdrp->e_phoff = 0;
4872 i_ehdrp->e_phentsize = 0;
4873 i_ehdrp->e_phnum = 0;
4874
4875 /* Each bfd section is section header entry. */
4876 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4877 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4878
4879 /* If we're building an executable, we'll need a program header table. */
4880 if (abfd->flags & EXEC_P)
4881 /* It all happens later. */
4882 ;
4883 else
4884 {
4885 i_ehdrp->e_phentsize = 0;
4886 i_phdrp = 0;
4887 i_ehdrp->e_phoff = 0;
4888 }
4889
4890 elf_tdata (abfd)->symtab_hdr.sh_name =
4891 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4892 elf_tdata (abfd)->strtab_hdr.sh_name =
4893 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4894 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4895 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4896 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4897 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4898 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4899 return FALSE;
4900
4901 return TRUE;
4902 }
4903
4904 /* Assign file positions for all the reloc sections which are not part
4905 of the loadable file image. */
4906
4907 void
4908 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4909 {
4910 file_ptr off;
4911 unsigned int i, num_sec;
4912 Elf_Internal_Shdr **shdrpp;
4913
4914 off = elf_tdata (abfd)->next_file_pos;
4915
4916 num_sec = elf_numsections (abfd);
4917 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4918 {
4919 Elf_Internal_Shdr *shdrp;
4920
4921 shdrp = *shdrpp;
4922 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4923 && shdrp->sh_offset == -1)
4924 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4925 }
4926
4927 elf_tdata (abfd)->next_file_pos = off;
4928 }
4929
4930 bfd_boolean
4931 _bfd_elf_write_object_contents (bfd *abfd)
4932 {
4933 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4934 Elf_Internal_Ehdr *i_ehdrp;
4935 Elf_Internal_Shdr **i_shdrp;
4936 bfd_boolean failed;
4937 unsigned int count, num_sec;
4938
4939 if (! abfd->output_has_begun
4940 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4941 return FALSE;
4942
4943 i_shdrp = elf_elfsections (abfd);
4944 i_ehdrp = elf_elfheader (abfd);
4945
4946 failed = FALSE;
4947 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4948 if (failed)
4949 return FALSE;
4950
4951 _bfd_elf_assign_file_positions_for_relocs (abfd);
4952
4953 /* After writing the headers, we need to write the sections too... */
4954 num_sec = elf_numsections (abfd);
4955 for (count = 1; count < num_sec; count++)
4956 {
4957 if (bed->elf_backend_section_processing)
4958 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4959 if (i_shdrp[count]->contents)
4960 {
4961 bfd_size_type amt = i_shdrp[count]->sh_size;
4962
4963 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4964 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4965 return FALSE;
4966 }
4967 }
4968
4969 /* Write out the section header names. */
4970 if (elf_shstrtab (abfd) != NULL
4971 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4972 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4973 return FALSE;
4974
4975 if (bed->elf_backend_final_write_processing)
4976 (*bed->elf_backend_final_write_processing) (abfd,
4977 elf_tdata (abfd)->linker);
4978
4979 if (!bed->s->write_shdrs_and_ehdr (abfd))
4980 return FALSE;
4981
4982 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
4983 if (elf_tdata (abfd)->after_write_object_contents)
4984 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
4985
4986 return TRUE;
4987 }
4988
4989 bfd_boolean
4990 _bfd_elf_write_corefile_contents (bfd *abfd)
4991 {
4992 /* Hopefully this can be done just like an object file. */
4993 return _bfd_elf_write_object_contents (abfd);
4994 }
4995
4996 /* Given a section, search the header to find them. */
4997
4998 unsigned int
4999 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5000 {
5001 const struct elf_backend_data *bed;
5002 unsigned int index;
5003
5004 if (elf_section_data (asect) != NULL
5005 && elf_section_data (asect)->this_idx != 0)
5006 return elf_section_data (asect)->this_idx;
5007
5008 if (bfd_is_abs_section (asect))
5009 index = SHN_ABS;
5010 else if (bfd_is_com_section (asect))
5011 index = SHN_COMMON;
5012 else if (bfd_is_und_section (asect))
5013 index = SHN_UNDEF;
5014 else
5015 index = SHN_BAD;
5016
5017 bed = get_elf_backend_data (abfd);
5018 if (bed->elf_backend_section_from_bfd_section)
5019 {
5020 int retval = index;
5021
5022 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5023 return retval;
5024 }
5025
5026 if (index == SHN_BAD)
5027 bfd_set_error (bfd_error_nonrepresentable_section);
5028
5029 return index;
5030 }
5031
5032 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5033 on error. */
5034
5035 int
5036 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5037 {
5038 asymbol *asym_ptr = *asym_ptr_ptr;
5039 int idx;
5040 flagword flags = asym_ptr->flags;
5041
5042 /* When gas creates relocations against local labels, it creates its
5043 own symbol for the section, but does put the symbol into the
5044 symbol chain, so udata is 0. When the linker is generating
5045 relocatable output, this section symbol may be for one of the
5046 input sections rather than the output section. */
5047 if (asym_ptr->udata.i == 0
5048 && (flags & BSF_SECTION_SYM)
5049 && asym_ptr->section)
5050 {
5051 asection *sec;
5052 int indx;
5053
5054 sec = asym_ptr->section;
5055 if (sec->owner != abfd && sec->output_section != NULL)
5056 sec = sec->output_section;
5057 if (sec->owner == abfd
5058 && (indx = sec->index) < elf_num_section_syms (abfd)
5059 && elf_section_syms (abfd)[indx] != NULL)
5060 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5061 }
5062
5063 idx = asym_ptr->udata.i;
5064
5065 if (idx == 0)
5066 {
5067 /* This case can occur when using --strip-symbol on a symbol
5068 which is used in a relocation entry. */
5069 (*_bfd_error_handler)
5070 (_("%B: symbol `%s' required but not present"),
5071 abfd, bfd_asymbol_name (asym_ptr));
5072 bfd_set_error (bfd_error_no_symbols);
5073 return -1;
5074 }
5075
5076 #if DEBUG & 4
5077 {
5078 fprintf (stderr,
5079 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5080 (long) asym_ptr, asym_ptr->name, idx, flags,
5081 elf_symbol_flags (flags));
5082 fflush (stderr);
5083 }
5084 #endif
5085
5086 return idx;
5087 }
5088
5089 /* Rewrite program header information. */
5090
5091 static bfd_boolean
5092 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5093 {
5094 Elf_Internal_Ehdr *iehdr;
5095 struct elf_segment_map *map;
5096 struct elf_segment_map *map_first;
5097 struct elf_segment_map **pointer_to_map;
5098 Elf_Internal_Phdr *segment;
5099 asection *section;
5100 unsigned int i;
5101 unsigned int num_segments;
5102 bfd_boolean phdr_included = FALSE;
5103 bfd_boolean p_paddr_valid;
5104 bfd_vma maxpagesize;
5105 struct elf_segment_map *phdr_adjust_seg = NULL;
5106 unsigned int phdr_adjust_num = 0;
5107 const struct elf_backend_data *bed;
5108
5109 bed = get_elf_backend_data (ibfd);
5110 iehdr = elf_elfheader (ibfd);
5111
5112 map_first = NULL;
5113 pointer_to_map = &map_first;
5114
5115 num_segments = elf_elfheader (ibfd)->e_phnum;
5116 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5117
5118 /* Returns the end address of the segment + 1. */
5119 #define SEGMENT_END(segment, start) \
5120 (start + (segment->p_memsz > segment->p_filesz \
5121 ? segment->p_memsz : segment->p_filesz))
5122
5123 #define SECTION_SIZE(section, segment) \
5124 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5125 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5126 ? section->size : 0)
5127
5128 /* Returns TRUE if the given section is contained within
5129 the given segment. VMA addresses are compared. */
5130 #define IS_CONTAINED_BY_VMA(section, segment) \
5131 (section->vma >= segment->p_vaddr \
5132 && (section->vma + SECTION_SIZE (section, segment) \
5133 <= (SEGMENT_END (segment, segment->p_vaddr))))
5134
5135 /* Returns TRUE if the given section is contained within
5136 the given segment. LMA addresses are compared. */
5137 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5138 (section->lma >= base \
5139 && (section->lma + SECTION_SIZE (section, segment) \
5140 <= SEGMENT_END (segment, base)))
5141
5142 /* Handle PT_NOTE segment. */
5143 #define IS_NOTE(p, s) \
5144 (p->p_type == PT_NOTE \
5145 && elf_section_type (s) == SHT_NOTE \
5146 && (bfd_vma) s->filepos >= p->p_offset \
5147 && ((bfd_vma) s->filepos + s->size \
5148 <= p->p_offset + p->p_filesz))
5149
5150 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5151 etc. */
5152 #define IS_COREFILE_NOTE(p, s) \
5153 (IS_NOTE (p, s) \
5154 && bfd_get_format (ibfd) == bfd_core \
5155 && s->vma == 0 \
5156 && s->lma == 0)
5157
5158 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5159 linker, which generates a PT_INTERP section with p_vaddr and
5160 p_memsz set to 0. */
5161 #define IS_SOLARIS_PT_INTERP(p, s) \
5162 (p->p_vaddr == 0 \
5163 && p->p_paddr == 0 \
5164 && p->p_memsz == 0 \
5165 && p->p_filesz > 0 \
5166 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5167 && s->size > 0 \
5168 && (bfd_vma) s->filepos >= p->p_offset \
5169 && ((bfd_vma) s->filepos + s->size \
5170 <= p->p_offset + p->p_filesz))
5171
5172 /* Decide if the given section should be included in the given segment.
5173 A section will be included if:
5174 1. It is within the address space of the segment -- we use the LMA
5175 if that is set for the segment and the VMA otherwise,
5176 2. It is an allocated section or a NOTE section in a PT_NOTE
5177 segment.
5178 3. There is an output section associated with it,
5179 4. The section has not already been allocated to a previous segment.
5180 5. PT_GNU_STACK segments do not include any sections.
5181 6. PT_TLS segment includes only SHF_TLS sections.
5182 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5183 8. PT_DYNAMIC should not contain empty sections at the beginning
5184 (with the possible exception of .dynamic). */
5185 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5186 ((((segment->p_paddr \
5187 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5188 : IS_CONTAINED_BY_VMA (section, segment)) \
5189 && (section->flags & SEC_ALLOC) != 0) \
5190 || IS_NOTE (segment, section)) \
5191 && segment->p_type != PT_GNU_STACK \
5192 && (segment->p_type != PT_TLS \
5193 || (section->flags & SEC_THREAD_LOCAL)) \
5194 && (segment->p_type == PT_LOAD \
5195 || segment->p_type == PT_TLS \
5196 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5197 && (segment->p_type != PT_DYNAMIC \
5198 || SECTION_SIZE (section, segment) > 0 \
5199 || (segment->p_paddr \
5200 ? segment->p_paddr != section->lma \
5201 : segment->p_vaddr != section->vma) \
5202 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5203 == 0)) \
5204 && !section->segment_mark)
5205
5206 /* If the output section of a section in the input segment is NULL,
5207 it is removed from the corresponding output segment. */
5208 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5209 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5210 && section->output_section != NULL)
5211
5212 /* Returns TRUE iff seg1 starts after the end of seg2. */
5213 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5214 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5215
5216 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5217 their VMA address ranges and their LMA address ranges overlap.
5218 It is possible to have overlapping VMA ranges without overlapping LMA
5219 ranges. RedBoot images for example can have both .data and .bss mapped
5220 to the same VMA range, but with the .data section mapped to a different
5221 LMA. */
5222 #define SEGMENT_OVERLAPS(seg1, seg2) \
5223 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5224 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5225 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5226 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5227
5228 /* Initialise the segment mark field. */
5229 for (section = ibfd->sections; section != NULL; section = section->next)
5230 section->segment_mark = FALSE;
5231
5232 /* The Solaris linker creates program headers in which all the
5233 p_paddr fields are zero. When we try to objcopy or strip such a
5234 file, we get confused. Check for this case, and if we find it
5235 don't set the p_paddr_valid fields. */
5236 p_paddr_valid = FALSE;
5237 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5238 i < num_segments;
5239 i++, segment++)
5240 if (segment->p_paddr != 0)
5241 {
5242 p_paddr_valid = TRUE;
5243 break;
5244 }
5245
5246 /* Scan through the segments specified in the program header
5247 of the input BFD. For this first scan we look for overlaps
5248 in the loadable segments. These can be created by weird
5249 parameters to objcopy. Also, fix some solaris weirdness. */
5250 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5251 i < num_segments;
5252 i++, segment++)
5253 {
5254 unsigned int j;
5255 Elf_Internal_Phdr *segment2;
5256
5257 if (segment->p_type == PT_INTERP)
5258 for (section = ibfd->sections; section; section = section->next)
5259 if (IS_SOLARIS_PT_INTERP (segment, section))
5260 {
5261 /* Mininal change so that the normal section to segment
5262 assignment code will work. */
5263 segment->p_vaddr = section->vma;
5264 break;
5265 }
5266
5267 if (segment->p_type != PT_LOAD)
5268 {
5269 /* Remove PT_GNU_RELRO segment. */
5270 if (segment->p_type == PT_GNU_RELRO)
5271 segment->p_type = PT_NULL;
5272 continue;
5273 }
5274
5275 /* Determine if this segment overlaps any previous segments. */
5276 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5277 {
5278 bfd_signed_vma extra_length;
5279
5280 if (segment2->p_type != PT_LOAD
5281 || !SEGMENT_OVERLAPS (segment, segment2))
5282 continue;
5283
5284 /* Merge the two segments together. */
5285 if (segment2->p_vaddr < segment->p_vaddr)
5286 {
5287 /* Extend SEGMENT2 to include SEGMENT and then delete
5288 SEGMENT. */
5289 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5290 - SEGMENT_END (segment2, segment2->p_vaddr));
5291
5292 if (extra_length > 0)
5293 {
5294 segment2->p_memsz += extra_length;
5295 segment2->p_filesz += extra_length;
5296 }
5297
5298 segment->p_type = PT_NULL;
5299
5300 /* Since we have deleted P we must restart the outer loop. */
5301 i = 0;
5302 segment = elf_tdata (ibfd)->phdr;
5303 break;
5304 }
5305 else
5306 {
5307 /* Extend SEGMENT to include SEGMENT2 and then delete
5308 SEGMENT2. */
5309 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5310 - SEGMENT_END (segment, segment->p_vaddr));
5311
5312 if (extra_length > 0)
5313 {
5314 segment->p_memsz += extra_length;
5315 segment->p_filesz += extra_length;
5316 }
5317
5318 segment2->p_type = PT_NULL;
5319 }
5320 }
5321 }
5322
5323 /* The second scan attempts to assign sections to segments. */
5324 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5325 i < num_segments;
5326 i++, segment++)
5327 {
5328 unsigned int section_count;
5329 asection **sections;
5330 asection *output_section;
5331 unsigned int isec;
5332 bfd_vma matching_lma;
5333 bfd_vma suggested_lma;
5334 unsigned int j;
5335 bfd_size_type amt;
5336 asection *first_section;
5337 bfd_boolean first_matching_lma;
5338 bfd_boolean first_suggested_lma;
5339
5340 if (segment->p_type == PT_NULL)
5341 continue;
5342
5343 first_section = NULL;
5344 /* Compute how many sections might be placed into this segment. */
5345 for (section = ibfd->sections, section_count = 0;
5346 section != NULL;
5347 section = section->next)
5348 {
5349 /* Find the first section in the input segment, which may be
5350 removed from the corresponding output segment. */
5351 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5352 {
5353 if (first_section == NULL)
5354 first_section = section;
5355 if (section->output_section != NULL)
5356 ++section_count;
5357 }
5358 }
5359
5360 /* Allocate a segment map big enough to contain
5361 all of the sections we have selected. */
5362 amt = sizeof (struct elf_segment_map);
5363 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5364 map = bfd_zalloc (obfd, amt);
5365 if (map == NULL)
5366 return FALSE;
5367
5368 /* Initialise the fields of the segment map. Default to
5369 using the physical address of the segment in the input BFD. */
5370 map->next = NULL;
5371 map->p_type = segment->p_type;
5372 map->p_flags = segment->p_flags;
5373 map->p_flags_valid = 1;
5374
5375 /* If the first section in the input segment is removed, there is
5376 no need to preserve segment physical address in the corresponding
5377 output segment. */
5378 if (!first_section || first_section->output_section != NULL)
5379 {
5380 map->p_paddr = segment->p_paddr;
5381 map->p_paddr_valid = p_paddr_valid;
5382 }
5383
5384 /* Determine if this segment contains the ELF file header
5385 and if it contains the program headers themselves. */
5386 map->includes_filehdr = (segment->p_offset == 0
5387 && segment->p_filesz >= iehdr->e_ehsize);
5388 map->includes_phdrs = 0;
5389
5390 if (!phdr_included || segment->p_type != PT_LOAD)
5391 {
5392 map->includes_phdrs =
5393 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5394 && (segment->p_offset + segment->p_filesz
5395 >= ((bfd_vma) iehdr->e_phoff
5396 + iehdr->e_phnum * iehdr->e_phentsize)));
5397
5398 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5399 phdr_included = TRUE;
5400 }
5401
5402 if (section_count == 0)
5403 {
5404 /* Special segments, such as the PT_PHDR segment, may contain
5405 no sections, but ordinary, loadable segments should contain
5406 something. They are allowed by the ELF spec however, so only
5407 a warning is produced. */
5408 if (segment->p_type == PT_LOAD)
5409 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5410 " detected, is this intentional ?\n"),
5411 ibfd);
5412
5413 map->count = 0;
5414 *pointer_to_map = map;
5415 pointer_to_map = &map->next;
5416
5417 continue;
5418 }
5419
5420 /* Now scan the sections in the input BFD again and attempt
5421 to add their corresponding output sections to the segment map.
5422 The problem here is how to handle an output section which has
5423 been moved (ie had its LMA changed). There are four possibilities:
5424
5425 1. None of the sections have been moved.
5426 In this case we can continue to use the segment LMA from the
5427 input BFD.
5428
5429 2. All of the sections have been moved by the same amount.
5430 In this case we can change the segment's LMA to match the LMA
5431 of the first section.
5432
5433 3. Some of the sections have been moved, others have not.
5434 In this case those sections which have not been moved can be
5435 placed in the current segment which will have to have its size,
5436 and possibly its LMA changed, and a new segment or segments will
5437 have to be created to contain the other sections.
5438
5439 4. The sections have been moved, but not by the same amount.
5440 In this case we can change the segment's LMA to match the LMA
5441 of the first section and we will have to create a new segment
5442 or segments to contain the other sections.
5443
5444 In order to save time, we allocate an array to hold the section
5445 pointers that we are interested in. As these sections get assigned
5446 to a segment, they are removed from this array. */
5447
5448 sections = bfd_malloc2 (section_count, sizeof (asection *));
5449 if (sections == NULL)
5450 return FALSE;
5451
5452 /* Step One: Scan for segment vs section LMA conflicts.
5453 Also add the sections to the section array allocated above.
5454 Also add the sections to the current segment. In the common
5455 case, where the sections have not been moved, this means that
5456 we have completely filled the segment, and there is nothing
5457 more to do. */
5458 isec = 0;
5459 matching_lma = 0;
5460 suggested_lma = 0;
5461 first_matching_lma = TRUE;
5462 first_suggested_lma = TRUE;
5463
5464 for (section = ibfd->sections;
5465 section != NULL;
5466 section = section->next)
5467 if (section == first_section)
5468 break;
5469
5470 for (j = 0; section != NULL; section = section->next)
5471 {
5472 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5473 {
5474 output_section = section->output_section;
5475
5476 sections[j++] = section;
5477
5478 /* The Solaris native linker always sets p_paddr to 0.
5479 We try to catch that case here, and set it to the
5480 correct value. Note - some backends require that
5481 p_paddr be left as zero. */
5482 if (!p_paddr_valid
5483 && segment->p_vaddr != 0
5484 && !bed->want_p_paddr_set_to_zero
5485 && isec == 0
5486 && output_section->lma != 0
5487 && output_section->vma == (segment->p_vaddr
5488 + (map->includes_filehdr
5489 ? iehdr->e_ehsize
5490 : 0)
5491 + (map->includes_phdrs
5492 ? (iehdr->e_phnum
5493 * iehdr->e_phentsize)
5494 : 0)))
5495 map->p_paddr = segment->p_vaddr;
5496
5497 /* Match up the physical address of the segment with the
5498 LMA address of the output section. */
5499 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5500 || IS_COREFILE_NOTE (segment, section)
5501 || (bed->want_p_paddr_set_to_zero
5502 && IS_CONTAINED_BY_VMA (output_section, segment)))
5503 {
5504 if (first_matching_lma || output_section->lma < matching_lma)
5505 {
5506 matching_lma = output_section->lma;
5507 first_matching_lma = FALSE;
5508 }
5509
5510 /* We assume that if the section fits within the segment
5511 then it does not overlap any other section within that
5512 segment. */
5513 map->sections[isec++] = output_section;
5514 }
5515 else if (first_suggested_lma)
5516 {
5517 suggested_lma = output_section->lma;
5518 first_suggested_lma = FALSE;
5519 }
5520
5521 if (j == section_count)
5522 break;
5523 }
5524 }
5525
5526 BFD_ASSERT (j == section_count);
5527
5528 /* Step Two: Adjust the physical address of the current segment,
5529 if necessary. */
5530 if (isec == section_count)
5531 {
5532 /* All of the sections fitted within the segment as currently
5533 specified. This is the default case. Add the segment to
5534 the list of built segments and carry on to process the next
5535 program header in the input BFD. */
5536 map->count = section_count;
5537 *pointer_to_map = map;
5538 pointer_to_map = &map->next;
5539
5540 if (p_paddr_valid
5541 && !bed->want_p_paddr_set_to_zero
5542 && matching_lma != map->p_paddr
5543 && !map->includes_filehdr
5544 && !map->includes_phdrs)
5545 /* There is some padding before the first section in the
5546 segment. So, we must account for that in the output
5547 segment's vma. */
5548 map->p_vaddr_offset = matching_lma - map->p_paddr;
5549
5550 free (sections);
5551 continue;
5552 }
5553 else
5554 {
5555 if (!first_matching_lma)
5556 {
5557 /* At least one section fits inside the current segment.
5558 Keep it, but modify its physical address to match the
5559 LMA of the first section that fitted. */
5560 map->p_paddr = matching_lma;
5561 }
5562 else
5563 {
5564 /* None of the sections fitted inside the current segment.
5565 Change the current segment's physical address to match
5566 the LMA of the first section. */
5567 map->p_paddr = suggested_lma;
5568 }
5569
5570 /* Offset the segment physical address from the lma
5571 to allow for space taken up by elf headers. */
5572 if (map->includes_filehdr)
5573 {
5574 if (map->p_paddr >= iehdr->e_ehsize)
5575 map->p_paddr -= iehdr->e_ehsize;
5576 else
5577 {
5578 map->includes_filehdr = FALSE;
5579 map->includes_phdrs = FALSE;
5580 }
5581 }
5582
5583 if (map->includes_phdrs)
5584 {
5585 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5586 {
5587 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5588
5589 /* iehdr->e_phnum is just an estimate of the number
5590 of program headers that we will need. Make a note
5591 here of the number we used and the segment we chose
5592 to hold these headers, so that we can adjust the
5593 offset when we know the correct value. */
5594 phdr_adjust_num = iehdr->e_phnum;
5595 phdr_adjust_seg = map;
5596 }
5597 else
5598 map->includes_phdrs = FALSE;
5599 }
5600 }
5601
5602 /* Step Three: Loop over the sections again, this time assigning
5603 those that fit to the current segment and removing them from the
5604 sections array; but making sure not to leave large gaps. Once all
5605 possible sections have been assigned to the current segment it is
5606 added to the list of built segments and if sections still remain
5607 to be assigned, a new segment is constructed before repeating
5608 the loop. */
5609 isec = 0;
5610 do
5611 {
5612 map->count = 0;
5613 suggested_lma = 0;
5614 first_suggested_lma = TRUE;
5615
5616 /* Fill the current segment with sections that fit. */
5617 for (j = 0; j < section_count; j++)
5618 {
5619 section = sections[j];
5620
5621 if (section == NULL)
5622 continue;
5623
5624 output_section = section->output_section;
5625
5626 BFD_ASSERT (output_section != NULL);
5627
5628 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5629 || IS_COREFILE_NOTE (segment, section))
5630 {
5631 if (map->count == 0)
5632 {
5633 /* If the first section in a segment does not start at
5634 the beginning of the segment, then something is
5635 wrong. */
5636 if (output_section->lma
5637 != (map->p_paddr
5638 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5639 + (map->includes_phdrs
5640 ? iehdr->e_phnum * iehdr->e_phentsize
5641 : 0)))
5642 abort ();
5643 }
5644 else
5645 {
5646 asection *prev_sec;
5647
5648 prev_sec = map->sections[map->count - 1];
5649
5650 /* If the gap between the end of the previous section
5651 and the start of this section is more than
5652 maxpagesize then we need to start a new segment. */
5653 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5654 maxpagesize)
5655 < BFD_ALIGN (output_section->lma, maxpagesize))
5656 || (prev_sec->lma + prev_sec->size
5657 > output_section->lma))
5658 {
5659 if (first_suggested_lma)
5660 {
5661 suggested_lma = output_section->lma;
5662 first_suggested_lma = FALSE;
5663 }
5664
5665 continue;
5666 }
5667 }
5668
5669 map->sections[map->count++] = output_section;
5670 ++isec;
5671 sections[j] = NULL;
5672 section->segment_mark = TRUE;
5673 }
5674 else if (first_suggested_lma)
5675 {
5676 suggested_lma = output_section->lma;
5677 first_suggested_lma = FALSE;
5678 }
5679 }
5680
5681 BFD_ASSERT (map->count > 0);
5682
5683 /* Add the current segment to the list of built segments. */
5684 *pointer_to_map = map;
5685 pointer_to_map = &map->next;
5686
5687 if (isec < section_count)
5688 {
5689 /* We still have not allocated all of the sections to
5690 segments. Create a new segment here, initialise it
5691 and carry on looping. */
5692 amt = sizeof (struct elf_segment_map);
5693 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5694 map = bfd_alloc (obfd, amt);
5695 if (map == NULL)
5696 {
5697 free (sections);
5698 return FALSE;
5699 }
5700
5701 /* Initialise the fields of the segment map. Set the physical
5702 physical address to the LMA of the first section that has
5703 not yet been assigned. */
5704 map->next = NULL;
5705 map->p_type = segment->p_type;
5706 map->p_flags = segment->p_flags;
5707 map->p_flags_valid = 1;
5708 map->p_paddr = suggested_lma;
5709 map->p_paddr_valid = p_paddr_valid;
5710 map->includes_filehdr = 0;
5711 map->includes_phdrs = 0;
5712 }
5713 }
5714 while (isec < section_count);
5715
5716 free (sections);
5717 }
5718
5719 elf_tdata (obfd)->segment_map = map_first;
5720
5721 /* If we had to estimate the number of program headers that were
5722 going to be needed, then check our estimate now and adjust
5723 the offset if necessary. */
5724 if (phdr_adjust_seg != NULL)
5725 {
5726 unsigned int count;
5727
5728 for (count = 0, map = map_first; map != NULL; map = map->next)
5729 count++;
5730
5731 if (count > phdr_adjust_num)
5732 phdr_adjust_seg->p_paddr
5733 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5734 }
5735
5736 #undef SEGMENT_END
5737 #undef SECTION_SIZE
5738 #undef IS_CONTAINED_BY_VMA
5739 #undef IS_CONTAINED_BY_LMA
5740 #undef IS_NOTE
5741 #undef IS_COREFILE_NOTE
5742 #undef IS_SOLARIS_PT_INTERP
5743 #undef IS_SECTION_IN_INPUT_SEGMENT
5744 #undef INCLUDE_SECTION_IN_SEGMENT
5745 #undef SEGMENT_AFTER_SEGMENT
5746 #undef SEGMENT_OVERLAPS
5747 return TRUE;
5748 }
5749
5750 /* Copy ELF program header information. */
5751
5752 static bfd_boolean
5753 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5754 {
5755 Elf_Internal_Ehdr *iehdr;
5756 struct elf_segment_map *map;
5757 struct elf_segment_map *map_first;
5758 struct elf_segment_map **pointer_to_map;
5759 Elf_Internal_Phdr *segment;
5760 unsigned int i;
5761 unsigned int num_segments;
5762 bfd_boolean phdr_included = FALSE;
5763 bfd_boolean p_paddr_valid;
5764
5765 iehdr = elf_elfheader (ibfd);
5766
5767 map_first = NULL;
5768 pointer_to_map = &map_first;
5769
5770 /* If all the segment p_paddr fields are zero, don't set
5771 map->p_paddr_valid. */
5772 p_paddr_valid = FALSE;
5773 num_segments = elf_elfheader (ibfd)->e_phnum;
5774 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5775 i < num_segments;
5776 i++, segment++)
5777 if (segment->p_paddr != 0)
5778 {
5779 p_paddr_valid = TRUE;
5780 break;
5781 }
5782
5783 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5784 i < num_segments;
5785 i++, segment++)
5786 {
5787 asection *section;
5788 unsigned int section_count;
5789 bfd_size_type amt;
5790 Elf_Internal_Shdr *this_hdr;
5791 asection *first_section = NULL;
5792 asection *lowest_section = NULL;
5793
5794 /* Compute how many sections are in this segment. */
5795 for (section = ibfd->sections, section_count = 0;
5796 section != NULL;
5797 section = section->next)
5798 {
5799 this_hdr = &(elf_section_data(section)->this_hdr);
5800 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5801 {
5802 if (!first_section)
5803 first_section = lowest_section = section;
5804 if (section->lma < lowest_section->lma)
5805 lowest_section = section;
5806 section_count++;
5807 }
5808 }
5809
5810 /* Allocate a segment map big enough to contain
5811 all of the sections we have selected. */
5812 amt = sizeof (struct elf_segment_map);
5813 if (section_count != 0)
5814 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5815 map = bfd_zalloc (obfd, amt);
5816 if (map == NULL)
5817 return FALSE;
5818
5819 /* Initialize the fields of the output segment map with the
5820 input segment. */
5821 map->next = NULL;
5822 map->p_type = segment->p_type;
5823 map->p_flags = segment->p_flags;
5824 map->p_flags_valid = 1;
5825 map->p_paddr = segment->p_paddr;
5826 map->p_paddr_valid = p_paddr_valid;
5827 map->p_align = segment->p_align;
5828 map->p_align_valid = 1;
5829 map->p_vaddr_offset = 0;
5830
5831 if (map->p_type == PT_GNU_RELRO
5832 && segment->p_filesz == segment->p_memsz)
5833 {
5834 /* The PT_GNU_RELRO segment may contain the first a few
5835 bytes in the .got.plt section even if the whole .got.plt
5836 section isn't in the PT_GNU_RELRO segment. We won't
5837 change the size of the PT_GNU_RELRO segment. */
5838 map->p_size = segment->p_filesz;
5839 map->p_size_valid = 1;
5840 }
5841
5842 /* Determine if this segment contains the ELF file header
5843 and if it contains the program headers themselves. */
5844 map->includes_filehdr = (segment->p_offset == 0
5845 && segment->p_filesz >= iehdr->e_ehsize);
5846
5847 map->includes_phdrs = 0;
5848 if (! phdr_included || segment->p_type != PT_LOAD)
5849 {
5850 map->includes_phdrs =
5851 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5852 && (segment->p_offset + segment->p_filesz
5853 >= ((bfd_vma) iehdr->e_phoff
5854 + iehdr->e_phnum * iehdr->e_phentsize)));
5855
5856 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5857 phdr_included = TRUE;
5858 }
5859
5860 if (map->includes_filehdr && first_section)
5861 /* We need to keep the space used by the headers fixed. */
5862 map->header_size = first_section->vma - segment->p_vaddr;
5863
5864 if (!map->includes_phdrs
5865 && !map->includes_filehdr
5866 && map->p_paddr_valid)
5867 /* There is some other padding before the first section. */
5868 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5869 - segment->p_paddr);
5870
5871 if (section_count != 0)
5872 {
5873 unsigned int isec = 0;
5874
5875 for (section = first_section;
5876 section != NULL;
5877 section = section->next)
5878 {
5879 this_hdr = &(elf_section_data(section)->this_hdr);
5880 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5881 {
5882 map->sections[isec++] = section->output_section;
5883 if (isec == section_count)
5884 break;
5885 }
5886 }
5887 }
5888
5889 map->count = section_count;
5890 *pointer_to_map = map;
5891 pointer_to_map = &map->next;
5892 }
5893
5894 elf_tdata (obfd)->segment_map = map_first;
5895 return TRUE;
5896 }
5897
5898 /* Copy private BFD data. This copies or rewrites ELF program header
5899 information. */
5900
5901 static bfd_boolean
5902 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5903 {
5904 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5905 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5906 return TRUE;
5907
5908 if (elf_tdata (ibfd)->phdr == NULL)
5909 return TRUE;
5910
5911 if (ibfd->xvec == obfd->xvec)
5912 {
5913 /* Check to see if any sections in the input BFD
5914 covered by ELF program header have changed. */
5915 Elf_Internal_Phdr *segment;
5916 asection *section, *osec;
5917 unsigned int i, num_segments;
5918 Elf_Internal_Shdr *this_hdr;
5919 const struct elf_backend_data *bed;
5920
5921 bed = get_elf_backend_data (ibfd);
5922
5923 /* Regenerate the segment map if p_paddr is set to 0. */
5924 if (bed->want_p_paddr_set_to_zero)
5925 goto rewrite;
5926
5927 /* Initialize the segment mark field. */
5928 for (section = obfd->sections; section != NULL;
5929 section = section->next)
5930 section->segment_mark = FALSE;
5931
5932 num_segments = elf_elfheader (ibfd)->e_phnum;
5933 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5934 i < num_segments;
5935 i++, segment++)
5936 {
5937 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5938 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5939 which severly confuses things, so always regenerate the segment
5940 map in this case. */
5941 if (segment->p_paddr == 0
5942 && segment->p_memsz == 0
5943 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5944 goto rewrite;
5945
5946 for (section = ibfd->sections;
5947 section != NULL; section = section->next)
5948 {
5949 /* We mark the output section so that we know it comes
5950 from the input BFD. */
5951 osec = section->output_section;
5952 if (osec)
5953 osec->segment_mark = TRUE;
5954
5955 /* Check if this section is covered by the segment. */
5956 this_hdr = &(elf_section_data(section)->this_hdr);
5957 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5958 {
5959 /* FIXME: Check if its output section is changed or
5960 removed. What else do we need to check? */
5961 if (osec == NULL
5962 || section->flags != osec->flags
5963 || section->lma != osec->lma
5964 || section->vma != osec->vma
5965 || section->size != osec->size
5966 || section->rawsize != osec->rawsize
5967 || section->alignment_power != osec->alignment_power)
5968 goto rewrite;
5969 }
5970 }
5971 }
5972
5973 /* Check to see if any output section do not come from the
5974 input BFD. */
5975 for (section = obfd->sections; section != NULL;
5976 section = section->next)
5977 {
5978 if (section->segment_mark == FALSE)
5979 goto rewrite;
5980 else
5981 section->segment_mark = FALSE;
5982 }
5983
5984 return copy_elf_program_header (ibfd, obfd);
5985 }
5986
5987 rewrite:
5988 return rewrite_elf_program_header (ibfd, obfd);
5989 }
5990
5991 /* Initialize private output section information from input section. */
5992
5993 bfd_boolean
5994 _bfd_elf_init_private_section_data (bfd *ibfd,
5995 asection *isec,
5996 bfd *obfd,
5997 asection *osec,
5998 struct bfd_link_info *link_info)
5999
6000 {
6001 Elf_Internal_Shdr *ihdr, *ohdr;
6002 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
6003
6004 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6005 || obfd->xvec->flavour != bfd_target_elf_flavour)
6006 return TRUE;
6007
6008 /* Don't copy the output ELF section type from input if the
6009 output BFD section flags have been set to something different.
6010 elf_fake_sections will set ELF section type based on BFD
6011 section flags. */
6012 if (elf_section_type (osec) == SHT_NULL
6013 && (osec->flags == isec->flags || !osec->flags))
6014 elf_section_type (osec) = elf_section_type (isec);
6015
6016 /* FIXME: Is this correct for all OS/PROC specific flags? */
6017 elf_section_flags (osec) |= (elf_section_flags (isec)
6018 & (SHF_MASKOS | SHF_MASKPROC));
6019
6020 /* Set things up for objcopy and relocatable link. The output
6021 SHT_GROUP section will have its elf_next_in_group pointing back
6022 to the input group members. Ignore linker created group section.
6023 See elfNN_ia64_object_p in elfxx-ia64.c. */
6024 if (need_group)
6025 {
6026 if (elf_sec_group (isec) == NULL
6027 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6028 {
6029 if (elf_section_flags (isec) & SHF_GROUP)
6030 elf_section_flags (osec) |= SHF_GROUP;
6031 elf_next_in_group (osec) = elf_next_in_group (isec);
6032 elf_section_data (osec)->group = elf_section_data (isec)->group;
6033 }
6034 }
6035
6036 ihdr = &elf_section_data (isec)->this_hdr;
6037
6038 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6039 don't use the output section of the linked-to section since it
6040 may be NULL at this point. */
6041 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6042 {
6043 ohdr = &elf_section_data (osec)->this_hdr;
6044 ohdr->sh_flags |= SHF_LINK_ORDER;
6045 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6046 }
6047
6048 osec->use_rela_p = isec->use_rela_p;
6049
6050 return TRUE;
6051 }
6052
6053 /* Copy private section information. This copies over the entsize
6054 field, and sometimes the info field. */
6055
6056 bfd_boolean
6057 _bfd_elf_copy_private_section_data (bfd *ibfd,
6058 asection *isec,
6059 bfd *obfd,
6060 asection *osec)
6061 {
6062 Elf_Internal_Shdr *ihdr, *ohdr;
6063
6064 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6065 || obfd->xvec->flavour != bfd_target_elf_flavour)
6066 return TRUE;
6067
6068 ihdr = &elf_section_data (isec)->this_hdr;
6069 ohdr = &elf_section_data (osec)->this_hdr;
6070
6071 ohdr->sh_entsize = ihdr->sh_entsize;
6072
6073 if (ihdr->sh_type == SHT_SYMTAB
6074 || ihdr->sh_type == SHT_DYNSYM
6075 || ihdr->sh_type == SHT_GNU_verneed
6076 || ihdr->sh_type == SHT_GNU_verdef)
6077 ohdr->sh_info = ihdr->sh_info;
6078
6079 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6080 NULL);
6081 }
6082
6083 /* Copy private header information. */
6084
6085 bfd_boolean
6086 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6087 {
6088 asection *isec;
6089
6090 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6091 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6092 return TRUE;
6093
6094 /* Copy over private BFD data if it has not already been copied.
6095 This must be done here, rather than in the copy_private_bfd_data
6096 entry point, because the latter is called after the section
6097 contents have been set, which means that the program headers have
6098 already been worked out. */
6099 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6100 {
6101 if (! copy_private_bfd_data (ibfd, obfd))
6102 return FALSE;
6103 }
6104
6105 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6106 but this might be wrong if we deleted the group section. */
6107 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6108 if (elf_section_type (isec) == SHT_GROUP
6109 && isec->output_section == NULL)
6110 {
6111 asection *first = elf_next_in_group (isec);
6112 asection *s = first;
6113 while (s != NULL)
6114 {
6115 if (s->output_section != NULL)
6116 {
6117 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6118 elf_group_name (s->output_section) = NULL;
6119 }
6120 s = elf_next_in_group (s);
6121 if (s == first)
6122 break;
6123 }
6124 }
6125
6126 return TRUE;
6127 }
6128
6129 /* Copy private symbol information. If this symbol is in a section
6130 which we did not map into a BFD section, try to map the section
6131 index correctly. We use special macro definitions for the mapped
6132 section indices; these definitions are interpreted by the
6133 swap_out_syms function. */
6134
6135 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6136 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6137 #define MAP_STRTAB (SHN_HIOS + 3)
6138 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6139 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6140
6141 bfd_boolean
6142 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6143 asymbol *isymarg,
6144 bfd *obfd,
6145 asymbol *osymarg)
6146 {
6147 elf_symbol_type *isym, *osym;
6148
6149 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6150 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6151 return TRUE;
6152
6153 isym = elf_symbol_from (ibfd, isymarg);
6154 osym = elf_symbol_from (obfd, osymarg);
6155
6156 if (isym != NULL
6157 && isym->internal_elf_sym.st_shndx != 0
6158 && osym != NULL
6159 && bfd_is_abs_section (isym->symbol.section))
6160 {
6161 unsigned int shndx;
6162
6163 shndx = isym->internal_elf_sym.st_shndx;
6164 if (shndx == elf_onesymtab (ibfd))
6165 shndx = MAP_ONESYMTAB;
6166 else if (shndx == elf_dynsymtab (ibfd))
6167 shndx = MAP_DYNSYMTAB;
6168 else if (shndx == elf_tdata (ibfd)->strtab_section)
6169 shndx = MAP_STRTAB;
6170 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6171 shndx = MAP_SHSTRTAB;
6172 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6173 shndx = MAP_SYM_SHNDX;
6174 osym->internal_elf_sym.st_shndx = shndx;
6175 }
6176
6177 return TRUE;
6178 }
6179
6180 /* Swap out the symbols. */
6181
6182 static bfd_boolean
6183 swap_out_syms (bfd *abfd,
6184 struct bfd_strtab_hash **sttp,
6185 int relocatable_p)
6186 {
6187 const struct elf_backend_data *bed;
6188 int symcount;
6189 asymbol **syms;
6190 struct bfd_strtab_hash *stt;
6191 Elf_Internal_Shdr *symtab_hdr;
6192 Elf_Internal_Shdr *symtab_shndx_hdr;
6193 Elf_Internal_Shdr *symstrtab_hdr;
6194 bfd_byte *outbound_syms;
6195 bfd_byte *outbound_shndx;
6196 int idx;
6197 bfd_size_type amt;
6198 bfd_boolean name_local_sections;
6199
6200 if (!elf_map_symbols (abfd))
6201 return FALSE;
6202
6203 /* Dump out the symtabs. */
6204 stt = _bfd_elf_stringtab_init ();
6205 if (stt == NULL)
6206 return FALSE;
6207
6208 bed = get_elf_backend_data (abfd);
6209 symcount = bfd_get_symcount (abfd);
6210 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6211 symtab_hdr->sh_type = SHT_SYMTAB;
6212 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6213 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6214 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6215 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6216
6217 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6218 symstrtab_hdr->sh_type = SHT_STRTAB;
6219
6220 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6221 if (outbound_syms == NULL)
6222 {
6223 _bfd_stringtab_free (stt);
6224 return FALSE;
6225 }
6226 symtab_hdr->contents = outbound_syms;
6227
6228 outbound_shndx = NULL;
6229 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6230 if (symtab_shndx_hdr->sh_name != 0)
6231 {
6232 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6233 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6234 sizeof (Elf_External_Sym_Shndx));
6235 if (outbound_shndx == NULL)
6236 {
6237 _bfd_stringtab_free (stt);
6238 return FALSE;
6239 }
6240
6241 symtab_shndx_hdr->contents = outbound_shndx;
6242 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6243 symtab_shndx_hdr->sh_size = amt;
6244 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6245 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6246 }
6247
6248 /* Now generate the data (for "contents"). */
6249 {
6250 /* Fill in zeroth symbol and swap it out. */
6251 Elf_Internal_Sym sym;
6252 sym.st_name = 0;
6253 sym.st_value = 0;
6254 sym.st_size = 0;
6255 sym.st_info = 0;
6256 sym.st_other = 0;
6257 sym.st_shndx = SHN_UNDEF;
6258 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6259 outbound_syms += bed->s->sizeof_sym;
6260 if (outbound_shndx != NULL)
6261 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6262 }
6263
6264 name_local_sections
6265 = (bed->elf_backend_name_local_section_symbols
6266 && bed->elf_backend_name_local_section_symbols (abfd));
6267
6268 syms = bfd_get_outsymbols (abfd);
6269 for (idx = 0; idx < symcount; idx++)
6270 {
6271 Elf_Internal_Sym sym;
6272 bfd_vma value = syms[idx]->value;
6273 elf_symbol_type *type_ptr;
6274 flagword flags = syms[idx]->flags;
6275 int type;
6276
6277 if (!name_local_sections
6278 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6279 {
6280 /* Local section symbols have no name. */
6281 sym.st_name = 0;
6282 }
6283 else
6284 {
6285 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6286 syms[idx]->name,
6287 TRUE, FALSE);
6288 if (sym.st_name == (unsigned long) -1)
6289 {
6290 _bfd_stringtab_free (stt);
6291 return FALSE;
6292 }
6293 }
6294
6295 type_ptr = elf_symbol_from (abfd, syms[idx]);
6296
6297 if ((flags & BSF_SECTION_SYM) == 0
6298 && bfd_is_com_section (syms[idx]->section))
6299 {
6300 /* ELF common symbols put the alignment into the `value' field,
6301 and the size into the `size' field. This is backwards from
6302 how BFD handles it, so reverse it here. */
6303 sym.st_size = value;
6304 if (type_ptr == NULL
6305 || type_ptr->internal_elf_sym.st_value == 0)
6306 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6307 else
6308 sym.st_value = type_ptr->internal_elf_sym.st_value;
6309 sym.st_shndx = _bfd_elf_section_from_bfd_section
6310 (abfd, syms[idx]->section);
6311 }
6312 else
6313 {
6314 asection *sec = syms[idx]->section;
6315 unsigned int shndx;
6316
6317 if (sec->output_section)
6318 {
6319 value += sec->output_offset;
6320 sec = sec->output_section;
6321 }
6322
6323 /* Don't add in the section vma for relocatable output. */
6324 if (! relocatable_p)
6325 value += sec->vma;
6326 sym.st_value = value;
6327 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6328
6329 if (bfd_is_abs_section (sec)
6330 && type_ptr != NULL
6331 && type_ptr->internal_elf_sym.st_shndx != 0)
6332 {
6333 /* This symbol is in a real ELF section which we did
6334 not create as a BFD section. Undo the mapping done
6335 by copy_private_symbol_data. */
6336 shndx = type_ptr->internal_elf_sym.st_shndx;
6337 switch (shndx)
6338 {
6339 case MAP_ONESYMTAB:
6340 shndx = elf_onesymtab (abfd);
6341 break;
6342 case MAP_DYNSYMTAB:
6343 shndx = elf_dynsymtab (abfd);
6344 break;
6345 case MAP_STRTAB:
6346 shndx = elf_tdata (abfd)->strtab_section;
6347 break;
6348 case MAP_SHSTRTAB:
6349 shndx = elf_tdata (abfd)->shstrtab_section;
6350 break;
6351 case MAP_SYM_SHNDX:
6352 shndx = elf_tdata (abfd)->symtab_shndx_section;
6353 break;
6354 default:
6355 break;
6356 }
6357 }
6358 else
6359 {
6360 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6361
6362 if (shndx == SHN_BAD)
6363 {
6364 asection *sec2;
6365
6366 /* Writing this would be a hell of a lot easier if
6367 we had some decent documentation on bfd, and
6368 knew what to expect of the library, and what to
6369 demand of applications. For example, it
6370 appears that `objcopy' might not set the
6371 section of a symbol to be a section that is
6372 actually in the output file. */
6373 sec2 = bfd_get_section_by_name (abfd, sec->name);
6374 if (sec2 == NULL)
6375 {
6376 _bfd_error_handler (_("\
6377 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6378 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6379 sec->name);
6380 bfd_set_error (bfd_error_invalid_operation);
6381 _bfd_stringtab_free (stt);
6382 return FALSE;
6383 }
6384
6385 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6386 BFD_ASSERT (shndx != SHN_BAD);
6387 }
6388 }
6389
6390 sym.st_shndx = shndx;
6391 }
6392
6393 if ((flags & BSF_THREAD_LOCAL) != 0)
6394 type = STT_TLS;
6395 else if ((flags & BSF_FUNCTION) != 0)
6396 type = STT_FUNC;
6397 else if ((flags & BSF_OBJECT) != 0)
6398 type = STT_OBJECT;
6399 else if ((flags & BSF_RELC) != 0)
6400 type = STT_RELC;
6401 else if ((flags & BSF_SRELC) != 0)
6402 type = STT_SRELC;
6403 else
6404 type = STT_NOTYPE;
6405
6406 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6407 type = STT_TLS;
6408
6409 /* Processor-specific types. */
6410 if (type_ptr != NULL
6411 && bed->elf_backend_get_symbol_type)
6412 type = ((*bed->elf_backend_get_symbol_type)
6413 (&type_ptr->internal_elf_sym, type));
6414
6415 if (flags & BSF_SECTION_SYM)
6416 {
6417 if (flags & BSF_GLOBAL)
6418 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6419 else
6420 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6421 }
6422 else if (bfd_is_com_section (syms[idx]->section))
6423 {
6424 #ifdef USE_STT_COMMON
6425 if (type == STT_OBJECT)
6426 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6427 else
6428 #endif
6429 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6430 }
6431 else if (bfd_is_und_section (syms[idx]->section))
6432 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6433 ? STB_WEAK
6434 : STB_GLOBAL),
6435 type);
6436 else if (flags & BSF_FILE)
6437 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6438 else
6439 {
6440 int bind = STB_LOCAL;
6441
6442 if (flags & BSF_LOCAL)
6443 bind = STB_LOCAL;
6444 else if (flags & BSF_WEAK)
6445 bind = STB_WEAK;
6446 else if (flags & BSF_GLOBAL)
6447 bind = STB_GLOBAL;
6448
6449 sym.st_info = ELF_ST_INFO (bind, type);
6450 }
6451
6452 if (type_ptr != NULL)
6453 sym.st_other = type_ptr->internal_elf_sym.st_other;
6454 else
6455 sym.st_other = 0;
6456
6457 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6458 outbound_syms += bed->s->sizeof_sym;
6459 if (outbound_shndx != NULL)
6460 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6461 }
6462
6463 *sttp = stt;
6464 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6465 symstrtab_hdr->sh_type = SHT_STRTAB;
6466
6467 symstrtab_hdr->sh_flags = 0;
6468 symstrtab_hdr->sh_addr = 0;
6469 symstrtab_hdr->sh_entsize = 0;
6470 symstrtab_hdr->sh_link = 0;
6471 symstrtab_hdr->sh_info = 0;
6472 symstrtab_hdr->sh_addralign = 1;
6473
6474 return TRUE;
6475 }
6476
6477 /* Return the number of bytes required to hold the symtab vector.
6478
6479 Note that we base it on the count plus 1, since we will null terminate
6480 the vector allocated based on this size. However, the ELF symbol table
6481 always has a dummy entry as symbol #0, so it ends up even. */
6482
6483 long
6484 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6485 {
6486 long symcount;
6487 long symtab_size;
6488 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6489
6490 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6491 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6492 if (symcount > 0)
6493 symtab_size -= sizeof (asymbol *);
6494
6495 return symtab_size;
6496 }
6497
6498 long
6499 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6500 {
6501 long symcount;
6502 long symtab_size;
6503 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6504
6505 if (elf_dynsymtab (abfd) == 0)
6506 {
6507 bfd_set_error (bfd_error_invalid_operation);
6508 return -1;
6509 }
6510
6511 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6512 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6513 if (symcount > 0)
6514 symtab_size -= sizeof (asymbol *);
6515
6516 return symtab_size;
6517 }
6518
6519 long
6520 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6521 sec_ptr asect)
6522 {
6523 return (asect->reloc_count + 1) * sizeof (arelent *);
6524 }
6525
6526 /* Canonicalize the relocs. */
6527
6528 long
6529 _bfd_elf_canonicalize_reloc (bfd *abfd,
6530 sec_ptr section,
6531 arelent **relptr,
6532 asymbol **symbols)
6533 {
6534 arelent *tblptr;
6535 unsigned int i;
6536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6537
6538 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6539 return -1;
6540
6541 tblptr = section->relocation;
6542 for (i = 0; i < section->reloc_count; i++)
6543 *relptr++ = tblptr++;
6544
6545 *relptr = NULL;
6546
6547 return section->reloc_count;
6548 }
6549
6550 long
6551 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6552 {
6553 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6554 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6555
6556 if (symcount >= 0)
6557 bfd_get_symcount (abfd) = symcount;
6558 return symcount;
6559 }
6560
6561 long
6562 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6563 asymbol **allocation)
6564 {
6565 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6566 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6567
6568 if (symcount >= 0)
6569 bfd_get_dynamic_symcount (abfd) = symcount;
6570 return symcount;
6571 }
6572
6573 /* Return the size required for the dynamic reloc entries. Any loadable
6574 section that was actually installed in the BFD, and has type SHT_REL
6575 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6576 dynamic reloc section. */
6577
6578 long
6579 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6580 {
6581 long ret;
6582 asection *s;
6583
6584 if (elf_dynsymtab (abfd) == 0)
6585 {
6586 bfd_set_error (bfd_error_invalid_operation);
6587 return -1;
6588 }
6589
6590 ret = sizeof (arelent *);
6591 for (s = abfd->sections; s != NULL; s = s->next)
6592 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6593 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6594 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6595 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6596 * sizeof (arelent *));
6597
6598 return ret;
6599 }
6600
6601 /* Canonicalize the dynamic relocation entries. Note that we return the
6602 dynamic relocations as a single block, although they are actually
6603 associated with particular sections; the interface, which was
6604 designed for SunOS style shared libraries, expects that there is only
6605 one set of dynamic relocs. Any loadable section that was actually
6606 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6607 dynamic symbol table, is considered to be a dynamic reloc section. */
6608
6609 long
6610 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6611 arelent **storage,
6612 asymbol **syms)
6613 {
6614 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6615 asection *s;
6616 long ret;
6617
6618 if (elf_dynsymtab (abfd) == 0)
6619 {
6620 bfd_set_error (bfd_error_invalid_operation);
6621 return -1;
6622 }
6623
6624 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6625 ret = 0;
6626 for (s = abfd->sections; s != NULL; s = s->next)
6627 {
6628 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6629 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6630 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6631 {
6632 arelent *p;
6633 long count, i;
6634
6635 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6636 return -1;
6637 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6638 p = s->relocation;
6639 for (i = 0; i < count; i++)
6640 *storage++ = p++;
6641 ret += count;
6642 }
6643 }
6644
6645 *storage = NULL;
6646
6647 return ret;
6648 }
6649 \f
6650 /* Read in the version information. */
6651
6652 bfd_boolean
6653 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6654 {
6655 bfd_byte *contents = NULL;
6656 unsigned int freeidx = 0;
6657
6658 if (elf_dynverref (abfd) != 0)
6659 {
6660 Elf_Internal_Shdr *hdr;
6661 Elf_External_Verneed *everneed;
6662 Elf_Internal_Verneed *iverneed;
6663 unsigned int i;
6664 bfd_byte *contents_end;
6665
6666 hdr = &elf_tdata (abfd)->dynverref_hdr;
6667
6668 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6669 sizeof (Elf_Internal_Verneed));
6670 if (elf_tdata (abfd)->verref == NULL)
6671 goto error_return;
6672
6673 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6674
6675 contents = bfd_malloc (hdr->sh_size);
6676 if (contents == NULL)
6677 {
6678 error_return_verref:
6679 elf_tdata (abfd)->verref = NULL;
6680 elf_tdata (abfd)->cverrefs = 0;
6681 goto error_return;
6682 }
6683 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6684 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6685 goto error_return_verref;
6686
6687 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6688 goto error_return_verref;
6689
6690 BFD_ASSERT (sizeof (Elf_External_Verneed)
6691 == sizeof (Elf_External_Vernaux));
6692 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6693 everneed = (Elf_External_Verneed *) contents;
6694 iverneed = elf_tdata (abfd)->verref;
6695 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6696 {
6697 Elf_External_Vernaux *evernaux;
6698 Elf_Internal_Vernaux *ivernaux;
6699 unsigned int j;
6700
6701 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6702
6703 iverneed->vn_bfd = abfd;
6704
6705 iverneed->vn_filename =
6706 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6707 iverneed->vn_file);
6708 if (iverneed->vn_filename == NULL)
6709 goto error_return_verref;
6710
6711 if (iverneed->vn_cnt == 0)
6712 iverneed->vn_auxptr = NULL;
6713 else
6714 {
6715 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6716 sizeof (Elf_Internal_Vernaux));
6717 if (iverneed->vn_auxptr == NULL)
6718 goto error_return_verref;
6719 }
6720
6721 if (iverneed->vn_aux
6722 > (size_t) (contents_end - (bfd_byte *) everneed))
6723 goto error_return_verref;
6724
6725 evernaux = ((Elf_External_Vernaux *)
6726 ((bfd_byte *) everneed + iverneed->vn_aux));
6727 ivernaux = iverneed->vn_auxptr;
6728 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6729 {
6730 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6731
6732 ivernaux->vna_nodename =
6733 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6734 ivernaux->vna_name);
6735 if (ivernaux->vna_nodename == NULL)
6736 goto error_return_verref;
6737
6738 if (j + 1 < iverneed->vn_cnt)
6739 ivernaux->vna_nextptr = ivernaux + 1;
6740 else
6741 ivernaux->vna_nextptr = NULL;
6742
6743 if (ivernaux->vna_next
6744 > (size_t) (contents_end - (bfd_byte *) evernaux))
6745 goto error_return_verref;
6746
6747 evernaux = ((Elf_External_Vernaux *)
6748 ((bfd_byte *) evernaux + ivernaux->vna_next));
6749
6750 if (ivernaux->vna_other > freeidx)
6751 freeidx = ivernaux->vna_other;
6752 }
6753
6754 if (i + 1 < hdr->sh_info)
6755 iverneed->vn_nextref = iverneed + 1;
6756 else
6757 iverneed->vn_nextref = NULL;
6758
6759 if (iverneed->vn_next
6760 > (size_t) (contents_end - (bfd_byte *) everneed))
6761 goto error_return_verref;
6762
6763 everneed = ((Elf_External_Verneed *)
6764 ((bfd_byte *) everneed + iverneed->vn_next));
6765 }
6766
6767 free (contents);
6768 contents = NULL;
6769 }
6770
6771 if (elf_dynverdef (abfd) != 0)
6772 {
6773 Elf_Internal_Shdr *hdr;
6774 Elf_External_Verdef *everdef;
6775 Elf_Internal_Verdef *iverdef;
6776 Elf_Internal_Verdef *iverdefarr;
6777 Elf_Internal_Verdef iverdefmem;
6778 unsigned int i;
6779 unsigned int maxidx;
6780 bfd_byte *contents_end_def, *contents_end_aux;
6781
6782 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6783
6784 contents = bfd_malloc (hdr->sh_size);
6785 if (contents == NULL)
6786 goto error_return;
6787 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6788 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6789 goto error_return;
6790
6791 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6792 goto error_return;
6793
6794 BFD_ASSERT (sizeof (Elf_External_Verdef)
6795 >= sizeof (Elf_External_Verdaux));
6796 contents_end_def = contents + hdr->sh_size
6797 - sizeof (Elf_External_Verdef);
6798 contents_end_aux = contents + hdr->sh_size
6799 - sizeof (Elf_External_Verdaux);
6800
6801 /* We know the number of entries in the section but not the maximum
6802 index. Therefore we have to run through all entries and find
6803 the maximum. */
6804 everdef = (Elf_External_Verdef *) contents;
6805 maxidx = 0;
6806 for (i = 0; i < hdr->sh_info; ++i)
6807 {
6808 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6809
6810 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6811 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6812
6813 if (iverdefmem.vd_next
6814 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6815 goto error_return;
6816
6817 everdef = ((Elf_External_Verdef *)
6818 ((bfd_byte *) everdef + iverdefmem.vd_next));
6819 }
6820
6821 if (default_imported_symver)
6822 {
6823 if (freeidx > maxidx)
6824 maxidx = ++freeidx;
6825 else
6826 freeidx = ++maxidx;
6827 }
6828 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6829 sizeof (Elf_Internal_Verdef));
6830 if (elf_tdata (abfd)->verdef == NULL)
6831 goto error_return;
6832
6833 elf_tdata (abfd)->cverdefs = maxidx;
6834
6835 everdef = (Elf_External_Verdef *) contents;
6836 iverdefarr = elf_tdata (abfd)->verdef;
6837 for (i = 0; i < hdr->sh_info; i++)
6838 {
6839 Elf_External_Verdaux *everdaux;
6840 Elf_Internal_Verdaux *iverdaux;
6841 unsigned int j;
6842
6843 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6844
6845 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6846 {
6847 error_return_verdef:
6848 elf_tdata (abfd)->verdef = NULL;
6849 elf_tdata (abfd)->cverdefs = 0;
6850 goto error_return;
6851 }
6852
6853 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6854 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6855
6856 iverdef->vd_bfd = abfd;
6857
6858 if (iverdef->vd_cnt == 0)
6859 iverdef->vd_auxptr = NULL;
6860 else
6861 {
6862 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6863 sizeof (Elf_Internal_Verdaux));
6864 if (iverdef->vd_auxptr == NULL)
6865 goto error_return_verdef;
6866 }
6867
6868 if (iverdef->vd_aux
6869 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6870 goto error_return_verdef;
6871
6872 everdaux = ((Elf_External_Verdaux *)
6873 ((bfd_byte *) everdef + iverdef->vd_aux));
6874 iverdaux = iverdef->vd_auxptr;
6875 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6876 {
6877 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6878
6879 iverdaux->vda_nodename =
6880 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6881 iverdaux->vda_name);
6882 if (iverdaux->vda_nodename == NULL)
6883 goto error_return_verdef;
6884
6885 if (j + 1 < iverdef->vd_cnt)
6886 iverdaux->vda_nextptr = iverdaux + 1;
6887 else
6888 iverdaux->vda_nextptr = NULL;
6889
6890 if (iverdaux->vda_next
6891 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6892 goto error_return_verdef;
6893
6894 everdaux = ((Elf_External_Verdaux *)
6895 ((bfd_byte *) everdaux + iverdaux->vda_next));
6896 }
6897
6898 if (iverdef->vd_cnt)
6899 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6900
6901 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6902 iverdef->vd_nextdef = iverdef + 1;
6903 else
6904 iverdef->vd_nextdef = NULL;
6905
6906 everdef = ((Elf_External_Verdef *)
6907 ((bfd_byte *) everdef + iverdef->vd_next));
6908 }
6909
6910 free (contents);
6911 contents = NULL;
6912 }
6913 else if (default_imported_symver)
6914 {
6915 if (freeidx < 3)
6916 freeidx = 3;
6917 else
6918 freeidx++;
6919
6920 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6921 sizeof (Elf_Internal_Verdef));
6922 if (elf_tdata (abfd)->verdef == NULL)
6923 goto error_return;
6924
6925 elf_tdata (abfd)->cverdefs = freeidx;
6926 }
6927
6928 /* Create a default version based on the soname. */
6929 if (default_imported_symver)
6930 {
6931 Elf_Internal_Verdef *iverdef;
6932 Elf_Internal_Verdaux *iverdaux;
6933
6934 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6935
6936 iverdef->vd_version = VER_DEF_CURRENT;
6937 iverdef->vd_flags = 0;
6938 iverdef->vd_ndx = freeidx;
6939 iverdef->vd_cnt = 1;
6940
6941 iverdef->vd_bfd = abfd;
6942
6943 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6944 if (iverdef->vd_nodename == NULL)
6945 goto error_return_verdef;
6946 iverdef->vd_nextdef = NULL;
6947 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6948 if (iverdef->vd_auxptr == NULL)
6949 goto error_return_verdef;
6950
6951 iverdaux = iverdef->vd_auxptr;
6952 iverdaux->vda_nodename = iverdef->vd_nodename;
6953 iverdaux->vda_nextptr = NULL;
6954 }
6955
6956 return TRUE;
6957
6958 error_return:
6959 if (contents != NULL)
6960 free (contents);
6961 return FALSE;
6962 }
6963 \f
6964 asymbol *
6965 _bfd_elf_make_empty_symbol (bfd *abfd)
6966 {
6967 elf_symbol_type *newsym;
6968 bfd_size_type amt = sizeof (elf_symbol_type);
6969
6970 newsym = bfd_zalloc (abfd, amt);
6971 if (!newsym)
6972 return NULL;
6973 else
6974 {
6975 newsym->symbol.the_bfd = abfd;
6976 return &newsym->symbol;
6977 }
6978 }
6979
6980 void
6981 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6982 asymbol *symbol,
6983 symbol_info *ret)
6984 {
6985 bfd_symbol_info (symbol, ret);
6986 }
6987
6988 /* Return whether a symbol name implies a local symbol. Most targets
6989 use this function for the is_local_label_name entry point, but some
6990 override it. */
6991
6992 bfd_boolean
6993 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6994 const char *name)
6995 {
6996 /* Normal local symbols start with ``.L''. */
6997 if (name[0] == '.' && name[1] == 'L')
6998 return TRUE;
6999
7000 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7001 DWARF debugging symbols starting with ``..''. */
7002 if (name[0] == '.' && name[1] == '.')
7003 return TRUE;
7004
7005 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7006 emitting DWARF debugging output. I suspect this is actually a
7007 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7008 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7009 underscore to be emitted on some ELF targets). For ease of use,
7010 we treat such symbols as local. */
7011 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7012 return TRUE;
7013
7014 return FALSE;
7015 }
7016
7017 alent *
7018 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7019 asymbol *symbol ATTRIBUTE_UNUSED)
7020 {
7021 abort ();
7022 return NULL;
7023 }
7024
7025 bfd_boolean
7026 _bfd_elf_set_arch_mach (bfd *abfd,
7027 enum bfd_architecture arch,
7028 unsigned long machine)
7029 {
7030 /* If this isn't the right architecture for this backend, and this
7031 isn't the generic backend, fail. */
7032 if (arch != get_elf_backend_data (abfd)->arch
7033 && arch != bfd_arch_unknown
7034 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7035 return FALSE;
7036
7037 return bfd_default_set_arch_mach (abfd, arch, machine);
7038 }
7039
7040 /* Find the function to a particular section and offset,
7041 for error reporting. */
7042
7043 static bfd_boolean
7044 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7045 asection *section,
7046 asymbol **symbols,
7047 bfd_vma offset,
7048 const char **filename_ptr,
7049 const char **functionname_ptr)
7050 {
7051 const char *filename;
7052 asymbol *func, *file;
7053 bfd_vma low_func;
7054 asymbol **p;
7055 /* ??? Given multiple file symbols, it is impossible to reliably
7056 choose the right file name for global symbols. File symbols are
7057 local symbols, and thus all file symbols must sort before any
7058 global symbols. The ELF spec may be interpreted to say that a
7059 file symbol must sort before other local symbols, but currently
7060 ld -r doesn't do this. So, for ld -r output, it is possible to
7061 make a better choice of file name for local symbols by ignoring
7062 file symbols appearing after a given local symbol. */
7063 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7064
7065 filename = NULL;
7066 func = NULL;
7067 file = NULL;
7068 low_func = 0;
7069 state = nothing_seen;
7070
7071 for (p = symbols; *p != NULL; p++)
7072 {
7073 elf_symbol_type *q;
7074
7075 q = (elf_symbol_type *) *p;
7076
7077 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7078 {
7079 default:
7080 break;
7081 case STT_FILE:
7082 file = &q->symbol;
7083 if (state == symbol_seen)
7084 state = file_after_symbol_seen;
7085 continue;
7086 case STT_NOTYPE:
7087 case STT_FUNC:
7088 if (bfd_get_section (&q->symbol) == section
7089 && q->symbol.value >= low_func
7090 && q->symbol.value <= offset)
7091 {
7092 func = (asymbol *) q;
7093 low_func = q->symbol.value;
7094 filename = NULL;
7095 if (file != NULL
7096 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7097 || state != file_after_symbol_seen))
7098 filename = bfd_asymbol_name (file);
7099 }
7100 break;
7101 }
7102 if (state == nothing_seen)
7103 state = symbol_seen;
7104 }
7105
7106 if (func == NULL)
7107 return FALSE;
7108
7109 if (filename_ptr)
7110 *filename_ptr = filename;
7111 if (functionname_ptr)
7112 *functionname_ptr = bfd_asymbol_name (func);
7113
7114 return TRUE;
7115 }
7116
7117 /* Find the nearest line to a particular section and offset,
7118 for error reporting. */
7119
7120 bfd_boolean
7121 _bfd_elf_find_nearest_line (bfd *abfd,
7122 asection *section,
7123 asymbol **symbols,
7124 bfd_vma offset,
7125 const char **filename_ptr,
7126 const char **functionname_ptr,
7127 unsigned int *line_ptr)
7128 {
7129 bfd_boolean found;
7130
7131 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7132 filename_ptr, functionname_ptr,
7133 line_ptr))
7134 {
7135 if (!*functionname_ptr)
7136 elf_find_function (abfd, section, symbols, offset,
7137 *filename_ptr ? NULL : filename_ptr,
7138 functionname_ptr);
7139
7140 return TRUE;
7141 }
7142
7143 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7144 filename_ptr, functionname_ptr,
7145 line_ptr, 0,
7146 &elf_tdata (abfd)->dwarf2_find_line_info))
7147 {
7148 if (!*functionname_ptr)
7149 elf_find_function (abfd, section, symbols, offset,
7150 *filename_ptr ? NULL : filename_ptr,
7151 functionname_ptr);
7152
7153 return TRUE;
7154 }
7155
7156 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7157 &found, filename_ptr,
7158 functionname_ptr, line_ptr,
7159 &elf_tdata (abfd)->line_info))
7160 return FALSE;
7161 if (found && (*functionname_ptr || *line_ptr))
7162 return TRUE;
7163
7164 if (symbols == NULL)
7165 return FALSE;
7166
7167 if (! elf_find_function (abfd, section, symbols, offset,
7168 filename_ptr, functionname_ptr))
7169 return FALSE;
7170
7171 *line_ptr = 0;
7172 return TRUE;
7173 }
7174
7175 /* Find the line for a symbol. */
7176
7177 bfd_boolean
7178 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7179 const char **filename_ptr, unsigned int *line_ptr)
7180 {
7181 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7182 filename_ptr, line_ptr, 0,
7183 &elf_tdata (abfd)->dwarf2_find_line_info);
7184 }
7185
7186 /* After a call to bfd_find_nearest_line, successive calls to
7187 bfd_find_inliner_info can be used to get source information about
7188 each level of function inlining that terminated at the address
7189 passed to bfd_find_nearest_line. Currently this is only supported
7190 for DWARF2 with appropriate DWARF3 extensions. */
7191
7192 bfd_boolean
7193 _bfd_elf_find_inliner_info (bfd *abfd,
7194 const char **filename_ptr,
7195 const char **functionname_ptr,
7196 unsigned int *line_ptr)
7197 {
7198 bfd_boolean found;
7199 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7200 functionname_ptr, line_ptr,
7201 & elf_tdata (abfd)->dwarf2_find_line_info);
7202 return found;
7203 }
7204
7205 int
7206 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7207 {
7208 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7209 int ret = bed->s->sizeof_ehdr;
7210
7211 if (!info->relocatable)
7212 {
7213 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7214
7215 if (phdr_size == (bfd_size_type) -1)
7216 {
7217 struct elf_segment_map *m;
7218
7219 phdr_size = 0;
7220 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7221 phdr_size += bed->s->sizeof_phdr;
7222
7223 if (phdr_size == 0)
7224 phdr_size = get_program_header_size (abfd, info);
7225 }
7226
7227 elf_tdata (abfd)->program_header_size = phdr_size;
7228 ret += phdr_size;
7229 }
7230
7231 return ret;
7232 }
7233
7234 bfd_boolean
7235 _bfd_elf_set_section_contents (bfd *abfd,
7236 sec_ptr section,
7237 const void *location,
7238 file_ptr offset,
7239 bfd_size_type count)
7240 {
7241 Elf_Internal_Shdr *hdr;
7242 bfd_signed_vma pos;
7243
7244 if (! abfd->output_has_begun
7245 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7246 return FALSE;
7247
7248 hdr = &elf_section_data (section)->this_hdr;
7249 pos = hdr->sh_offset + offset;
7250 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7251 || bfd_bwrite (location, count, abfd) != count)
7252 return FALSE;
7253
7254 return TRUE;
7255 }
7256
7257 void
7258 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7259 arelent *cache_ptr ATTRIBUTE_UNUSED,
7260 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7261 {
7262 abort ();
7263 }
7264
7265 /* Try to convert a non-ELF reloc into an ELF one. */
7266
7267 bfd_boolean
7268 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7269 {
7270 /* Check whether we really have an ELF howto. */
7271
7272 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7273 {
7274 bfd_reloc_code_real_type code;
7275 reloc_howto_type *howto;
7276
7277 /* Alien reloc: Try to determine its type to replace it with an
7278 equivalent ELF reloc. */
7279
7280 if (areloc->howto->pc_relative)
7281 {
7282 switch (areloc->howto->bitsize)
7283 {
7284 case 8:
7285 code = BFD_RELOC_8_PCREL;
7286 break;
7287 case 12:
7288 code = BFD_RELOC_12_PCREL;
7289 break;
7290 case 16:
7291 code = BFD_RELOC_16_PCREL;
7292 break;
7293 case 24:
7294 code = BFD_RELOC_24_PCREL;
7295 break;
7296 case 32:
7297 code = BFD_RELOC_32_PCREL;
7298 break;
7299 case 64:
7300 code = BFD_RELOC_64_PCREL;
7301 break;
7302 default:
7303 goto fail;
7304 }
7305
7306 howto = bfd_reloc_type_lookup (abfd, code);
7307
7308 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7309 {
7310 if (howto->pcrel_offset)
7311 areloc->addend += areloc->address;
7312 else
7313 areloc->addend -= areloc->address; /* addend is unsigned!! */
7314 }
7315 }
7316 else
7317 {
7318 switch (areloc->howto->bitsize)
7319 {
7320 case 8:
7321 code = BFD_RELOC_8;
7322 break;
7323 case 14:
7324 code = BFD_RELOC_14;
7325 break;
7326 case 16:
7327 code = BFD_RELOC_16;
7328 break;
7329 case 26:
7330 code = BFD_RELOC_26;
7331 break;
7332 case 32:
7333 code = BFD_RELOC_32;
7334 break;
7335 case 64:
7336 code = BFD_RELOC_64;
7337 break;
7338 default:
7339 goto fail;
7340 }
7341
7342 howto = bfd_reloc_type_lookup (abfd, code);
7343 }
7344
7345 if (howto)
7346 areloc->howto = howto;
7347 else
7348 goto fail;
7349 }
7350
7351 return TRUE;
7352
7353 fail:
7354 (*_bfd_error_handler)
7355 (_("%B: unsupported relocation type %s"),
7356 abfd, areloc->howto->name);
7357 bfd_set_error (bfd_error_bad_value);
7358 return FALSE;
7359 }
7360
7361 bfd_boolean
7362 _bfd_elf_close_and_cleanup (bfd *abfd)
7363 {
7364 if (bfd_get_format (abfd) == bfd_object)
7365 {
7366 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7367 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7368 _bfd_dwarf2_cleanup_debug_info (abfd);
7369 }
7370
7371 return _bfd_generic_close_and_cleanup (abfd);
7372 }
7373
7374 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7375 in the relocation's offset. Thus we cannot allow any sort of sanity
7376 range-checking to interfere. There is nothing else to do in processing
7377 this reloc. */
7378
7379 bfd_reloc_status_type
7380 _bfd_elf_rel_vtable_reloc_fn
7381 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7382 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7383 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7384 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7385 {
7386 return bfd_reloc_ok;
7387 }
7388 \f
7389 /* Elf core file support. Much of this only works on native
7390 toolchains, since we rely on knowing the
7391 machine-dependent procfs structure in order to pick
7392 out details about the corefile. */
7393
7394 #ifdef HAVE_SYS_PROCFS_H
7395 # include <sys/procfs.h>
7396 #endif
7397
7398 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7399
7400 static int
7401 elfcore_make_pid (bfd *abfd)
7402 {
7403 return ((elf_tdata (abfd)->core_lwpid << 16)
7404 + (elf_tdata (abfd)->core_pid));
7405 }
7406
7407 /* If there isn't a section called NAME, make one, using
7408 data from SECT. Note, this function will generate a
7409 reference to NAME, so you shouldn't deallocate or
7410 overwrite it. */
7411
7412 static bfd_boolean
7413 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7414 {
7415 asection *sect2;
7416
7417 if (bfd_get_section_by_name (abfd, name) != NULL)
7418 return TRUE;
7419
7420 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7421 if (sect2 == NULL)
7422 return FALSE;
7423
7424 sect2->size = sect->size;
7425 sect2->filepos = sect->filepos;
7426 sect2->alignment_power = sect->alignment_power;
7427 return TRUE;
7428 }
7429
7430 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7431 actually creates up to two pseudosections:
7432 - For the single-threaded case, a section named NAME, unless
7433 such a section already exists.
7434 - For the multi-threaded case, a section named "NAME/PID", where
7435 PID is elfcore_make_pid (abfd).
7436 Both pseudosections have identical contents. */
7437 bfd_boolean
7438 _bfd_elfcore_make_pseudosection (bfd *abfd,
7439 char *name,
7440 size_t size,
7441 ufile_ptr filepos)
7442 {
7443 char buf[100];
7444 char *threaded_name;
7445 size_t len;
7446 asection *sect;
7447
7448 /* Build the section name. */
7449
7450 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7451 len = strlen (buf) + 1;
7452 threaded_name = bfd_alloc (abfd, len);
7453 if (threaded_name == NULL)
7454 return FALSE;
7455 memcpy (threaded_name, buf, len);
7456
7457 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7458 SEC_HAS_CONTENTS);
7459 if (sect == NULL)
7460 return FALSE;
7461 sect->size = size;
7462 sect->filepos = filepos;
7463 sect->alignment_power = 2;
7464
7465 return elfcore_maybe_make_sect (abfd, name, sect);
7466 }
7467
7468 /* prstatus_t exists on:
7469 solaris 2.5+
7470 linux 2.[01] + glibc
7471 unixware 4.2
7472 */
7473
7474 #if defined (HAVE_PRSTATUS_T)
7475
7476 static bfd_boolean
7477 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7478 {
7479 size_t size;
7480 int offset;
7481
7482 if (note->descsz == sizeof (prstatus_t))
7483 {
7484 prstatus_t prstat;
7485
7486 size = sizeof (prstat.pr_reg);
7487 offset = offsetof (prstatus_t, pr_reg);
7488 memcpy (&prstat, note->descdata, sizeof (prstat));
7489
7490 /* Do not overwrite the core signal if it
7491 has already been set by another thread. */
7492 if (elf_tdata (abfd)->core_signal == 0)
7493 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7494 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7495
7496 /* pr_who exists on:
7497 solaris 2.5+
7498 unixware 4.2
7499 pr_who doesn't exist on:
7500 linux 2.[01]
7501 */
7502 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7503 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7504 #endif
7505 }
7506 #if defined (HAVE_PRSTATUS32_T)
7507 else if (note->descsz == sizeof (prstatus32_t))
7508 {
7509 /* 64-bit host, 32-bit corefile */
7510 prstatus32_t prstat;
7511
7512 size = sizeof (prstat.pr_reg);
7513 offset = offsetof (prstatus32_t, pr_reg);
7514 memcpy (&prstat, note->descdata, sizeof (prstat));
7515
7516 /* Do not overwrite the core signal if it
7517 has already been set by another thread. */
7518 if (elf_tdata (abfd)->core_signal == 0)
7519 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7520 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7521
7522 /* pr_who exists on:
7523 solaris 2.5+
7524 unixware 4.2
7525 pr_who doesn't exist on:
7526 linux 2.[01]
7527 */
7528 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7529 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7530 #endif
7531 }
7532 #endif /* HAVE_PRSTATUS32_T */
7533 else
7534 {
7535 /* Fail - we don't know how to handle any other
7536 note size (ie. data object type). */
7537 return TRUE;
7538 }
7539
7540 /* Make a ".reg/999" section and a ".reg" section. */
7541 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7542 size, note->descpos + offset);
7543 }
7544 #endif /* defined (HAVE_PRSTATUS_T) */
7545
7546 /* Create a pseudosection containing the exact contents of NOTE. */
7547 static bfd_boolean
7548 elfcore_make_note_pseudosection (bfd *abfd,
7549 char *name,
7550 Elf_Internal_Note *note)
7551 {
7552 return _bfd_elfcore_make_pseudosection (abfd, name,
7553 note->descsz, note->descpos);
7554 }
7555
7556 /* There isn't a consistent prfpregset_t across platforms,
7557 but it doesn't matter, because we don't have to pick this
7558 data structure apart. */
7559
7560 static bfd_boolean
7561 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7562 {
7563 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7564 }
7565
7566 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7567 type of NT_PRXFPREG. Just include the whole note's contents
7568 literally. */
7569
7570 static bfd_boolean
7571 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7572 {
7573 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7574 }
7575
7576 static bfd_boolean
7577 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7578 {
7579 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7580 }
7581
7582 static bfd_boolean
7583 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7584 {
7585 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7586 }
7587
7588 #if defined (HAVE_PRPSINFO_T)
7589 typedef prpsinfo_t elfcore_psinfo_t;
7590 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7591 typedef prpsinfo32_t elfcore_psinfo32_t;
7592 #endif
7593 #endif
7594
7595 #if defined (HAVE_PSINFO_T)
7596 typedef psinfo_t elfcore_psinfo_t;
7597 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7598 typedef psinfo32_t elfcore_psinfo32_t;
7599 #endif
7600 #endif
7601
7602 /* return a malloc'ed copy of a string at START which is at
7603 most MAX bytes long, possibly without a terminating '\0'.
7604 the copy will always have a terminating '\0'. */
7605
7606 char *
7607 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7608 {
7609 char *dups;
7610 char *end = memchr (start, '\0', max);
7611 size_t len;
7612
7613 if (end == NULL)
7614 len = max;
7615 else
7616 len = end - start;
7617
7618 dups = bfd_alloc (abfd, len + 1);
7619 if (dups == NULL)
7620 return NULL;
7621
7622 memcpy (dups, start, len);
7623 dups[len] = '\0';
7624
7625 return dups;
7626 }
7627
7628 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7629 static bfd_boolean
7630 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7631 {
7632 if (note->descsz == sizeof (elfcore_psinfo_t))
7633 {
7634 elfcore_psinfo_t psinfo;
7635
7636 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7637
7638 elf_tdata (abfd)->core_program
7639 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7640 sizeof (psinfo.pr_fname));
7641
7642 elf_tdata (abfd)->core_command
7643 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7644 sizeof (psinfo.pr_psargs));
7645 }
7646 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7647 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7648 {
7649 /* 64-bit host, 32-bit corefile */
7650 elfcore_psinfo32_t psinfo;
7651
7652 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7653
7654 elf_tdata (abfd)->core_program
7655 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7656 sizeof (psinfo.pr_fname));
7657
7658 elf_tdata (abfd)->core_command
7659 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7660 sizeof (psinfo.pr_psargs));
7661 }
7662 #endif
7663
7664 else
7665 {
7666 /* Fail - we don't know how to handle any other
7667 note size (ie. data object type). */
7668 return TRUE;
7669 }
7670
7671 /* Note that for some reason, a spurious space is tacked
7672 onto the end of the args in some (at least one anyway)
7673 implementations, so strip it off if it exists. */
7674
7675 {
7676 char *command = elf_tdata (abfd)->core_command;
7677 int n = strlen (command);
7678
7679 if (0 < n && command[n - 1] == ' ')
7680 command[n - 1] = '\0';
7681 }
7682
7683 return TRUE;
7684 }
7685 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7686
7687 #if defined (HAVE_PSTATUS_T)
7688 static bfd_boolean
7689 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7690 {
7691 if (note->descsz == sizeof (pstatus_t)
7692 #if defined (HAVE_PXSTATUS_T)
7693 || note->descsz == sizeof (pxstatus_t)
7694 #endif
7695 )
7696 {
7697 pstatus_t pstat;
7698
7699 memcpy (&pstat, note->descdata, sizeof (pstat));
7700
7701 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7702 }
7703 #if defined (HAVE_PSTATUS32_T)
7704 else if (note->descsz == sizeof (pstatus32_t))
7705 {
7706 /* 64-bit host, 32-bit corefile */
7707 pstatus32_t pstat;
7708
7709 memcpy (&pstat, note->descdata, sizeof (pstat));
7710
7711 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7712 }
7713 #endif
7714 /* Could grab some more details from the "representative"
7715 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7716 NT_LWPSTATUS note, presumably. */
7717
7718 return TRUE;
7719 }
7720 #endif /* defined (HAVE_PSTATUS_T) */
7721
7722 #if defined (HAVE_LWPSTATUS_T)
7723 static bfd_boolean
7724 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7725 {
7726 lwpstatus_t lwpstat;
7727 char buf[100];
7728 char *name;
7729 size_t len;
7730 asection *sect;
7731
7732 if (note->descsz != sizeof (lwpstat)
7733 #if defined (HAVE_LWPXSTATUS_T)
7734 && note->descsz != sizeof (lwpxstatus_t)
7735 #endif
7736 )
7737 return TRUE;
7738
7739 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7740
7741 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7742 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7743
7744 /* Make a ".reg/999" section. */
7745
7746 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7747 len = strlen (buf) + 1;
7748 name = bfd_alloc (abfd, len);
7749 if (name == NULL)
7750 return FALSE;
7751 memcpy (name, buf, len);
7752
7753 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7754 if (sect == NULL)
7755 return FALSE;
7756
7757 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7758 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7759 sect->filepos = note->descpos
7760 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7761 #endif
7762
7763 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7764 sect->size = sizeof (lwpstat.pr_reg);
7765 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7766 #endif
7767
7768 sect->alignment_power = 2;
7769
7770 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7771 return FALSE;
7772
7773 /* Make a ".reg2/999" section */
7774
7775 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7776 len = strlen (buf) + 1;
7777 name = bfd_alloc (abfd, len);
7778 if (name == NULL)
7779 return FALSE;
7780 memcpy (name, buf, len);
7781
7782 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7783 if (sect == NULL)
7784 return FALSE;
7785
7786 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7787 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7788 sect->filepos = note->descpos
7789 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7790 #endif
7791
7792 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7793 sect->size = sizeof (lwpstat.pr_fpreg);
7794 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7795 #endif
7796
7797 sect->alignment_power = 2;
7798
7799 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7800 }
7801 #endif /* defined (HAVE_LWPSTATUS_T) */
7802
7803 static bfd_boolean
7804 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7805 {
7806 char buf[30];
7807 char *name;
7808 size_t len;
7809 asection *sect;
7810 int type;
7811 int is_active_thread;
7812 bfd_vma base_addr;
7813
7814 if (note->descsz < 728)
7815 return TRUE;
7816
7817 if (! CONST_STRNEQ (note->namedata, "win32"))
7818 return TRUE;
7819
7820 type = bfd_get_32 (abfd, note->descdata);
7821
7822 switch (type)
7823 {
7824 case 1 /* NOTE_INFO_PROCESS */:
7825 /* FIXME: need to add ->core_command. */
7826 /* process_info.pid */
7827 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7828 /* process_info.signal */
7829 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7830 break;
7831
7832 case 2 /* NOTE_INFO_THREAD */:
7833 /* Make a ".reg/999" section. */
7834 /* thread_info.tid */
7835 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7836
7837 len = strlen (buf) + 1;
7838 name = bfd_alloc (abfd, len);
7839 if (name == NULL)
7840 return FALSE;
7841
7842 memcpy (name, buf, len);
7843
7844 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7845 if (sect == NULL)
7846 return FALSE;
7847
7848 /* sizeof (thread_info.thread_context) */
7849 sect->size = 716;
7850 /* offsetof (thread_info.thread_context) */
7851 sect->filepos = note->descpos + 12;
7852 sect->alignment_power = 2;
7853
7854 /* thread_info.is_active_thread */
7855 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
7856
7857 if (is_active_thread)
7858 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7859 return FALSE;
7860 break;
7861
7862 case 3 /* NOTE_INFO_MODULE */:
7863 /* Make a ".module/xxxxxxxx" section. */
7864 /* module_info.base_address */
7865 base_addr = bfd_get_32 (abfd, note->descdata + 4);
7866 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
7867
7868 len = strlen (buf) + 1;
7869 name = bfd_alloc (abfd, len);
7870 if (name == NULL)
7871 return FALSE;
7872
7873 memcpy (name, buf, len);
7874
7875 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7876
7877 if (sect == NULL)
7878 return FALSE;
7879
7880 sect->size = note->descsz;
7881 sect->filepos = note->descpos;
7882 sect->alignment_power = 2;
7883 break;
7884
7885 default:
7886 return TRUE;
7887 }
7888
7889 return TRUE;
7890 }
7891
7892 static bfd_boolean
7893 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7894 {
7895 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7896
7897 switch (note->type)
7898 {
7899 default:
7900 return TRUE;
7901
7902 case NT_PRSTATUS:
7903 if (bed->elf_backend_grok_prstatus)
7904 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7905 return TRUE;
7906 #if defined (HAVE_PRSTATUS_T)
7907 return elfcore_grok_prstatus (abfd, note);
7908 #else
7909 return TRUE;
7910 #endif
7911
7912 #if defined (HAVE_PSTATUS_T)
7913 case NT_PSTATUS:
7914 return elfcore_grok_pstatus (abfd, note);
7915 #endif
7916
7917 #if defined (HAVE_LWPSTATUS_T)
7918 case NT_LWPSTATUS:
7919 return elfcore_grok_lwpstatus (abfd, note);
7920 #endif
7921
7922 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7923 return elfcore_grok_prfpreg (abfd, note);
7924
7925 case NT_WIN32PSTATUS:
7926 return elfcore_grok_win32pstatus (abfd, note);
7927
7928 case NT_PRXFPREG: /* Linux SSE extension */
7929 if (note->namesz == 6
7930 && strcmp (note->namedata, "LINUX") == 0)
7931 return elfcore_grok_prxfpreg (abfd, note);
7932 else
7933 return TRUE;
7934
7935 case NT_PPC_VMX:
7936 if (note->namesz == 6
7937 && strcmp (note->namedata, "LINUX") == 0)
7938 return elfcore_grok_ppc_vmx (abfd, note);
7939 else
7940 return TRUE;
7941
7942 case NT_PPC_VSX:
7943 if (note->namesz == 6
7944 && strcmp (note->namedata, "LINUX") == 0)
7945 return elfcore_grok_ppc_vsx (abfd, note);
7946 else
7947 return TRUE;
7948
7949 case NT_PRPSINFO:
7950 case NT_PSINFO:
7951 if (bed->elf_backend_grok_psinfo)
7952 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7953 return TRUE;
7954 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7955 return elfcore_grok_psinfo (abfd, note);
7956 #else
7957 return TRUE;
7958 #endif
7959
7960 case NT_AUXV:
7961 {
7962 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7963 SEC_HAS_CONTENTS);
7964
7965 if (sect == NULL)
7966 return FALSE;
7967 sect->size = note->descsz;
7968 sect->filepos = note->descpos;
7969 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7970
7971 return TRUE;
7972 }
7973 }
7974 }
7975
7976 static bfd_boolean
7977 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
7978 {
7979 elf_tdata (abfd)->build_id_size = note->descsz;
7980 elf_tdata (abfd)->build_id = bfd_alloc (abfd, note->descsz);
7981 if (elf_tdata (abfd)->build_id == NULL)
7982 return FALSE;
7983
7984 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
7985
7986 return TRUE;
7987 }
7988
7989 static bfd_boolean
7990 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
7991 {
7992 switch (note->type)
7993 {
7994 default:
7995 return TRUE;
7996
7997 case NT_GNU_BUILD_ID:
7998 return elfobj_grok_gnu_build_id (abfd, note);
7999 }
8000 }
8001
8002 static bfd_boolean
8003 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8004 {
8005 char *cp;
8006
8007 cp = strchr (note->namedata, '@');
8008 if (cp != NULL)
8009 {
8010 *lwpidp = atoi(cp + 1);
8011 return TRUE;
8012 }
8013 return FALSE;
8014 }
8015
8016 static bfd_boolean
8017 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8018 {
8019 /* Signal number at offset 0x08. */
8020 elf_tdata (abfd)->core_signal
8021 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8022
8023 /* Process ID at offset 0x50. */
8024 elf_tdata (abfd)->core_pid
8025 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8026
8027 /* Command name at 0x7c (max 32 bytes, including nul). */
8028 elf_tdata (abfd)->core_command
8029 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8030
8031 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8032 note);
8033 }
8034
8035 static bfd_boolean
8036 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8037 {
8038 int lwp;
8039
8040 if (elfcore_netbsd_get_lwpid (note, &lwp))
8041 elf_tdata (abfd)->core_lwpid = lwp;
8042
8043 if (note->type == NT_NETBSDCORE_PROCINFO)
8044 {
8045 /* NetBSD-specific core "procinfo". Note that we expect to
8046 find this note before any of the others, which is fine,
8047 since the kernel writes this note out first when it
8048 creates a core file. */
8049
8050 return elfcore_grok_netbsd_procinfo (abfd, note);
8051 }
8052
8053 /* As of Jan 2002 there are no other machine-independent notes
8054 defined for NetBSD core files. If the note type is less
8055 than the start of the machine-dependent note types, we don't
8056 understand it. */
8057
8058 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8059 return TRUE;
8060
8061
8062 switch (bfd_get_arch (abfd))
8063 {
8064 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8065 PT_GETFPREGS == mach+2. */
8066
8067 case bfd_arch_alpha:
8068 case bfd_arch_sparc:
8069 switch (note->type)
8070 {
8071 case NT_NETBSDCORE_FIRSTMACH+0:
8072 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8073
8074 case NT_NETBSDCORE_FIRSTMACH+2:
8075 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8076
8077 default:
8078 return TRUE;
8079 }
8080
8081 /* On all other arch's, PT_GETREGS == mach+1 and
8082 PT_GETFPREGS == mach+3. */
8083
8084 default:
8085 switch (note->type)
8086 {
8087 case NT_NETBSDCORE_FIRSTMACH+1:
8088 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8089
8090 case NT_NETBSDCORE_FIRSTMACH+3:
8091 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8092
8093 default:
8094 return TRUE;
8095 }
8096 }
8097 /* NOTREACHED */
8098 }
8099
8100 static bfd_boolean
8101 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8102 {
8103 void *ddata = note->descdata;
8104 char buf[100];
8105 char *name;
8106 asection *sect;
8107 short sig;
8108 unsigned flags;
8109
8110 /* nto_procfs_status 'pid' field is at offset 0. */
8111 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8112
8113 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8114 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8115
8116 /* nto_procfs_status 'flags' field is at offset 8. */
8117 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8118
8119 /* nto_procfs_status 'what' field is at offset 14. */
8120 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8121 {
8122 elf_tdata (abfd)->core_signal = sig;
8123 elf_tdata (abfd)->core_lwpid = *tid;
8124 }
8125
8126 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8127 do not come from signals so we make sure we set the current
8128 thread just in case. */
8129 if (flags & 0x00000080)
8130 elf_tdata (abfd)->core_lwpid = *tid;
8131
8132 /* Make a ".qnx_core_status/%d" section. */
8133 sprintf (buf, ".qnx_core_status/%ld", *tid);
8134
8135 name = bfd_alloc (abfd, strlen (buf) + 1);
8136 if (name == NULL)
8137 return FALSE;
8138 strcpy (name, buf);
8139
8140 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8141 if (sect == NULL)
8142 return FALSE;
8143
8144 sect->size = note->descsz;
8145 sect->filepos = note->descpos;
8146 sect->alignment_power = 2;
8147
8148 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8149 }
8150
8151 static bfd_boolean
8152 elfcore_grok_nto_regs (bfd *abfd,
8153 Elf_Internal_Note *note,
8154 long tid,
8155 char *base)
8156 {
8157 char buf[100];
8158 char *name;
8159 asection *sect;
8160
8161 /* Make a "(base)/%d" section. */
8162 sprintf (buf, "%s/%ld", base, tid);
8163
8164 name = bfd_alloc (abfd, strlen (buf) + 1);
8165 if (name == NULL)
8166 return FALSE;
8167 strcpy (name, buf);
8168
8169 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8170 if (sect == NULL)
8171 return FALSE;
8172
8173 sect->size = note->descsz;
8174 sect->filepos = note->descpos;
8175 sect->alignment_power = 2;
8176
8177 /* This is the current thread. */
8178 if (elf_tdata (abfd)->core_lwpid == tid)
8179 return elfcore_maybe_make_sect (abfd, base, sect);
8180
8181 return TRUE;
8182 }
8183
8184 #define BFD_QNT_CORE_INFO 7
8185 #define BFD_QNT_CORE_STATUS 8
8186 #define BFD_QNT_CORE_GREG 9
8187 #define BFD_QNT_CORE_FPREG 10
8188
8189 static bfd_boolean
8190 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8191 {
8192 /* Every GREG section has a STATUS section before it. Store the
8193 tid from the previous call to pass down to the next gregs
8194 function. */
8195 static long tid = 1;
8196
8197 switch (note->type)
8198 {
8199 case BFD_QNT_CORE_INFO:
8200 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8201 case BFD_QNT_CORE_STATUS:
8202 return elfcore_grok_nto_status (abfd, note, &tid);
8203 case BFD_QNT_CORE_GREG:
8204 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8205 case BFD_QNT_CORE_FPREG:
8206 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8207 default:
8208 return TRUE;
8209 }
8210 }
8211
8212 static bfd_boolean
8213 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8214 {
8215 char *name;
8216 asection *sect;
8217 size_t len;
8218
8219 /* Use note name as section name. */
8220 len = note->namesz;
8221 name = bfd_alloc (abfd, len);
8222 if (name == NULL)
8223 return FALSE;
8224 memcpy (name, note->namedata, len);
8225 name[len - 1] = '\0';
8226
8227 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8228 if (sect == NULL)
8229 return FALSE;
8230
8231 sect->size = note->descsz;
8232 sect->filepos = note->descpos;
8233 sect->alignment_power = 1;
8234
8235 return TRUE;
8236 }
8237
8238 /* Function: elfcore_write_note
8239
8240 Inputs:
8241 buffer to hold note, and current size of buffer
8242 name of note
8243 type of note
8244 data for note
8245 size of data for note
8246
8247 Writes note to end of buffer. ELF64 notes are written exactly as
8248 for ELF32, despite the current (as of 2006) ELF gabi specifying
8249 that they ought to have 8-byte namesz and descsz field, and have
8250 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8251
8252 Return:
8253 Pointer to realloc'd buffer, *BUFSIZ updated. */
8254
8255 char *
8256 elfcore_write_note (bfd *abfd,
8257 char *buf,
8258 int *bufsiz,
8259 const char *name,
8260 int type,
8261 const void *input,
8262 int size)
8263 {
8264 Elf_External_Note *xnp;
8265 size_t namesz;
8266 size_t newspace;
8267 char *dest;
8268
8269 namesz = 0;
8270 if (name != NULL)
8271 namesz = strlen (name) + 1;
8272
8273 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8274
8275 buf = realloc (buf, *bufsiz + newspace);
8276 if (buf == NULL)
8277 return buf;
8278 dest = buf + *bufsiz;
8279 *bufsiz += newspace;
8280 xnp = (Elf_External_Note *) dest;
8281 H_PUT_32 (abfd, namesz, xnp->namesz);
8282 H_PUT_32 (abfd, size, xnp->descsz);
8283 H_PUT_32 (abfd, type, xnp->type);
8284 dest = xnp->name;
8285 if (name != NULL)
8286 {
8287 memcpy (dest, name, namesz);
8288 dest += namesz;
8289 while (namesz & 3)
8290 {
8291 *dest++ = '\0';
8292 ++namesz;
8293 }
8294 }
8295 memcpy (dest, input, size);
8296 dest += size;
8297 while (size & 3)
8298 {
8299 *dest++ = '\0';
8300 ++size;
8301 }
8302 return buf;
8303 }
8304
8305 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8306 char *
8307 elfcore_write_prpsinfo (bfd *abfd,
8308 char *buf,
8309 int *bufsiz,
8310 const char *fname,
8311 const char *psargs)
8312 {
8313 const char *note_name = "CORE";
8314 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8315
8316 if (bed->elf_backend_write_core_note != NULL)
8317 {
8318 char *ret;
8319 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8320 NT_PRPSINFO, fname, psargs);
8321 if (ret != NULL)
8322 return ret;
8323 }
8324
8325 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8326 if (bed->s->elfclass == ELFCLASS32)
8327 {
8328 #if defined (HAVE_PSINFO32_T)
8329 psinfo32_t data;
8330 int note_type = NT_PSINFO;
8331 #else
8332 prpsinfo32_t data;
8333 int note_type = NT_PRPSINFO;
8334 #endif
8335
8336 memset (&data, 0, sizeof (data));
8337 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8338 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8339 return elfcore_write_note (abfd, buf, bufsiz,
8340 note_name, note_type, &data, sizeof (data));
8341 }
8342 else
8343 #endif
8344 {
8345 #if defined (HAVE_PSINFO_T)
8346 psinfo_t data;
8347 int note_type = NT_PSINFO;
8348 #else
8349 prpsinfo_t data;
8350 int note_type = NT_PRPSINFO;
8351 #endif
8352
8353 memset (&data, 0, sizeof (data));
8354 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8355 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8356 return elfcore_write_note (abfd, buf, bufsiz,
8357 note_name, note_type, &data, sizeof (data));
8358 }
8359 }
8360 #endif /* PSINFO_T or PRPSINFO_T */
8361
8362 #if defined (HAVE_PRSTATUS_T)
8363 char *
8364 elfcore_write_prstatus (bfd *abfd,
8365 char *buf,
8366 int *bufsiz,
8367 long pid,
8368 int cursig,
8369 const void *gregs)
8370 {
8371 const char *note_name = "CORE";
8372 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8373
8374 if (bed->elf_backend_write_core_note != NULL)
8375 {
8376 char *ret;
8377 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8378 NT_PRSTATUS,
8379 pid, cursig, gregs);
8380 if (ret != NULL)
8381 return ret;
8382 }
8383
8384 #if defined (HAVE_PRSTATUS32_T)
8385 if (bed->s->elfclass == ELFCLASS32)
8386 {
8387 prstatus32_t prstat;
8388
8389 memset (&prstat, 0, sizeof (prstat));
8390 prstat.pr_pid = pid;
8391 prstat.pr_cursig = cursig;
8392 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8393 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8394 NT_PRSTATUS, &prstat, sizeof (prstat));
8395 }
8396 else
8397 #endif
8398 {
8399 prstatus_t prstat;
8400
8401 memset (&prstat, 0, sizeof (prstat));
8402 prstat.pr_pid = pid;
8403 prstat.pr_cursig = cursig;
8404 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8405 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8406 NT_PRSTATUS, &prstat, sizeof (prstat));
8407 }
8408 }
8409 #endif /* HAVE_PRSTATUS_T */
8410
8411 #if defined (HAVE_LWPSTATUS_T)
8412 char *
8413 elfcore_write_lwpstatus (bfd *abfd,
8414 char *buf,
8415 int *bufsiz,
8416 long pid,
8417 int cursig,
8418 const void *gregs)
8419 {
8420 lwpstatus_t lwpstat;
8421 const char *note_name = "CORE";
8422
8423 memset (&lwpstat, 0, sizeof (lwpstat));
8424 lwpstat.pr_lwpid = pid >> 16;
8425 lwpstat.pr_cursig = cursig;
8426 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8427 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8428 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8429 #if !defined(gregs)
8430 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8431 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8432 #else
8433 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8434 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8435 #endif
8436 #endif
8437 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8438 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8439 }
8440 #endif /* HAVE_LWPSTATUS_T */
8441
8442 #if defined (HAVE_PSTATUS_T)
8443 char *
8444 elfcore_write_pstatus (bfd *abfd,
8445 char *buf,
8446 int *bufsiz,
8447 long pid,
8448 int cursig ATTRIBUTE_UNUSED,
8449 const void *gregs ATTRIBUTE_UNUSED)
8450 {
8451 const char *note_name = "CORE";
8452 #if defined (HAVE_PSTATUS32_T)
8453 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8454
8455 if (bed->s->elfclass == ELFCLASS32)
8456 {
8457 pstatus32_t pstat;
8458
8459 memset (&pstat, 0, sizeof (pstat));
8460 pstat.pr_pid = pid & 0xffff;
8461 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8462 NT_PSTATUS, &pstat, sizeof (pstat));
8463 return buf;
8464 }
8465 else
8466 #endif
8467 {
8468 pstatus_t pstat;
8469
8470 memset (&pstat, 0, sizeof (pstat));
8471 pstat.pr_pid = pid & 0xffff;
8472 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8473 NT_PSTATUS, &pstat, sizeof (pstat));
8474 return buf;
8475 }
8476 }
8477 #endif /* HAVE_PSTATUS_T */
8478
8479 char *
8480 elfcore_write_prfpreg (bfd *abfd,
8481 char *buf,
8482 int *bufsiz,
8483 const void *fpregs,
8484 int size)
8485 {
8486 const char *note_name = "CORE";
8487 return elfcore_write_note (abfd, buf, bufsiz,
8488 note_name, NT_FPREGSET, fpregs, size);
8489 }
8490
8491 char *
8492 elfcore_write_prxfpreg (bfd *abfd,
8493 char *buf,
8494 int *bufsiz,
8495 const void *xfpregs,
8496 int size)
8497 {
8498 char *note_name = "LINUX";
8499 return elfcore_write_note (abfd, buf, bufsiz,
8500 note_name, NT_PRXFPREG, xfpregs, size);
8501 }
8502
8503 char *
8504 elfcore_write_ppc_vmx (bfd *abfd,
8505 char *buf,
8506 int *bufsiz,
8507 const void *ppc_vmx,
8508 int size)
8509 {
8510 char *note_name = "LINUX";
8511 return elfcore_write_note (abfd, buf, bufsiz,
8512 note_name, NT_PPC_VMX, ppc_vmx, size);
8513 }
8514
8515 char *
8516 elfcore_write_ppc_vsx (bfd *abfd,
8517 char *buf,
8518 int *bufsiz,
8519 const void *ppc_vsx,
8520 int size)
8521 {
8522 char *note_name = "LINUX";
8523 return elfcore_write_note (abfd, buf, bufsiz,
8524 note_name, NT_PPC_VSX, ppc_vsx, size);
8525 }
8526
8527 char *
8528 elfcore_write_register_note (bfd *abfd,
8529 char *buf,
8530 int *bufsiz,
8531 const char *section,
8532 const void *data,
8533 int size)
8534 {
8535 if (strcmp (section, ".reg2") == 0)
8536 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
8537 if (strcmp (section, ".reg-xfp") == 0)
8538 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
8539 if (strcmp (section, ".reg-ppc-vmx") == 0)
8540 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
8541 if (strcmp (section, ".reg-ppc-vsx") == 0)
8542 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
8543 return NULL;
8544 }
8545
8546 static bfd_boolean
8547 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8548 {
8549 char *p;
8550
8551 p = buf;
8552 while (p < buf + size)
8553 {
8554 /* FIXME: bad alignment assumption. */
8555 Elf_External_Note *xnp = (Elf_External_Note *) p;
8556 Elf_Internal_Note in;
8557
8558 if (offsetof (Elf_External_Note, name) > buf - p + size)
8559 return FALSE;
8560
8561 in.type = H_GET_32 (abfd, xnp->type);
8562
8563 in.namesz = H_GET_32 (abfd, xnp->namesz);
8564 in.namedata = xnp->name;
8565 if (in.namesz > buf - in.namedata + size)
8566 return FALSE;
8567
8568 in.descsz = H_GET_32 (abfd, xnp->descsz);
8569 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8570 in.descpos = offset + (in.descdata - buf);
8571 if (in.descsz != 0
8572 && (in.descdata >= buf + size
8573 || in.descsz > buf - in.descdata + size))
8574 return FALSE;
8575
8576 switch (bfd_get_format (abfd))
8577 {
8578 default:
8579 return TRUE;
8580
8581 case bfd_core:
8582 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8583 {
8584 if (! elfcore_grok_netbsd_note (abfd, &in))
8585 return FALSE;
8586 }
8587 else if (CONST_STRNEQ (in.namedata, "QNX"))
8588 {
8589 if (! elfcore_grok_nto_note (abfd, &in))
8590 return FALSE;
8591 }
8592 else if (CONST_STRNEQ (in.namedata, "SPU/"))
8593 {
8594 if (! elfcore_grok_spu_note (abfd, &in))
8595 return FALSE;
8596 }
8597 else
8598 {
8599 if (! elfcore_grok_note (abfd, &in))
8600 return FALSE;
8601 }
8602 break;
8603
8604 case bfd_object:
8605 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8606 {
8607 if (! elfobj_grok_gnu_note (abfd, &in))
8608 return FALSE;
8609 }
8610 break;
8611 }
8612
8613 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8614 }
8615
8616 return TRUE;
8617 }
8618
8619 static bfd_boolean
8620 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8621 {
8622 char *buf;
8623
8624 if (size <= 0)
8625 return TRUE;
8626
8627 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8628 return FALSE;
8629
8630 buf = bfd_malloc (size);
8631 if (buf == NULL)
8632 return FALSE;
8633
8634 if (bfd_bread (buf, size, abfd) != size
8635 || !elf_parse_notes (abfd, buf, size, offset))
8636 {
8637 free (buf);
8638 return FALSE;
8639 }
8640
8641 free (buf);
8642 return TRUE;
8643 }
8644 \f
8645 /* Providing external access to the ELF program header table. */
8646
8647 /* Return an upper bound on the number of bytes required to store a
8648 copy of ABFD's program header table entries. Return -1 if an error
8649 occurs; bfd_get_error will return an appropriate code. */
8650
8651 long
8652 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8653 {
8654 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8655 {
8656 bfd_set_error (bfd_error_wrong_format);
8657 return -1;
8658 }
8659
8660 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8661 }
8662
8663 /* Copy ABFD's program header table entries to *PHDRS. The entries
8664 will be stored as an array of Elf_Internal_Phdr structures, as
8665 defined in include/elf/internal.h. To find out how large the
8666 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8667
8668 Return the number of program header table entries read, or -1 if an
8669 error occurs; bfd_get_error will return an appropriate code. */
8670
8671 int
8672 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8673 {
8674 int num_phdrs;
8675
8676 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8677 {
8678 bfd_set_error (bfd_error_wrong_format);
8679 return -1;
8680 }
8681
8682 num_phdrs = elf_elfheader (abfd)->e_phnum;
8683 memcpy (phdrs, elf_tdata (abfd)->phdr,
8684 num_phdrs * sizeof (Elf_Internal_Phdr));
8685
8686 return num_phdrs;
8687 }
8688
8689 enum elf_reloc_type_class
8690 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8691 {
8692 return reloc_class_normal;
8693 }
8694
8695 /* For RELA architectures, return the relocation value for a
8696 relocation against a local symbol. */
8697
8698 bfd_vma
8699 _bfd_elf_rela_local_sym (bfd *abfd,
8700 Elf_Internal_Sym *sym,
8701 asection **psec,
8702 Elf_Internal_Rela *rel)
8703 {
8704 asection *sec = *psec;
8705 bfd_vma relocation;
8706
8707 relocation = (sec->output_section->vma
8708 + sec->output_offset
8709 + sym->st_value);
8710 if ((sec->flags & SEC_MERGE)
8711 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8712 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8713 {
8714 rel->r_addend =
8715 _bfd_merged_section_offset (abfd, psec,
8716 elf_section_data (sec)->sec_info,
8717 sym->st_value + rel->r_addend);
8718 if (sec != *psec)
8719 {
8720 /* If we have changed the section, and our original section is
8721 marked with SEC_EXCLUDE, it means that the original
8722 SEC_MERGE section has been completely subsumed in some
8723 other SEC_MERGE section. In this case, we need to leave
8724 some info around for --emit-relocs. */
8725 if ((sec->flags & SEC_EXCLUDE) != 0)
8726 sec->kept_section = *psec;
8727 sec = *psec;
8728 }
8729 rel->r_addend -= relocation;
8730 rel->r_addend += sec->output_section->vma + sec->output_offset;
8731 }
8732 return relocation;
8733 }
8734
8735 bfd_vma
8736 _bfd_elf_rel_local_sym (bfd *abfd,
8737 Elf_Internal_Sym *sym,
8738 asection **psec,
8739 bfd_vma addend)
8740 {
8741 asection *sec = *psec;
8742
8743 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8744 return sym->st_value + addend;
8745
8746 return _bfd_merged_section_offset (abfd, psec,
8747 elf_section_data (sec)->sec_info,
8748 sym->st_value + addend);
8749 }
8750
8751 bfd_vma
8752 _bfd_elf_section_offset (bfd *abfd,
8753 struct bfd_link_info *info,
8754 asection *sec,
8755 bfd_vma offset)
8756 {
8757 switch (sec->sec_info_type)
8758 {
8759 case ELF_INFO_TYPE_STABS:
8760 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8761 offset);
8762 case ELF_INFO_TYPE_EH_FRAME:
8763 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8764 default:
8765 return offset;
8766 }
8767 }
8768 \f
8769 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8770 reconstruct an ELF file by reading the segments out of remote memory
8771 based on the ELF file header at EHDR_VMA and the ELF program headers it
8772 points to. If not null, *LOADBASEP is filled in with the difference
8773 between the VMAs from which the segments were read, and the VMAs the
8774 file headers (and hence BFD's idea of each section's VMA) put them at.
8775
8776 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8777 remote memory at target address VMA into the local buffer at MYADDR; it
8778 should return zero on success or an `errno' code on failure. TEMPL must
8779 be a BFD for an ELF target with the word size and byte order found in
8780 the remote memory. */
8781
8782 bfd *
8783 bfd_elf_bfd_from_remote_memory
8784 (bfd *templ,
8785 bfd_vma ehdr_vma,
8786 bfd_vma *loadbasep,
8787 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8788 {
8789 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8790 (templ, ehdr_vma, loadbasep, target_read_memory);
8791 }
8792 \f
8793 long
8794 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8795 long symcount ATTRIBUTE_UNUSED,
8796 asymbol **syms ATTRIBUTE_UNUSED,
8797 long dynsymcount,
8798 asymbol **dynsyms,
8799 asymbol **ret)
8800 {
8801 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8802 asection *relplt;
8803 asymbol *s;
8804 const char *relplt_name;
8805 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8806 arelent *p;
8807 long count, i, n;
8808 size_t size;
8809 Elf_Internal_Shdr *hdr;
8810 char *names;
8811 asection *plt;
8812
8813 *ret = NULL;
8814
8815 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8816 return 0;
8817
8818 if (dynsymcount <= 0)
8819 return 0;
8820
8821 if (!bed->plt_sym_val)
8822 return 0;
8823
8824 relplt_name = bed->relplt_name;
8825 if (relplt_name == NULL)
8826 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
8827 relplt = bfd_get_section_by_name (abfd, relplt_name);
8828 if (relplt == NULL)
8829 return 0;
8830
8831 hdr = &elf_section_data (relplt)->this_hdr;
8832 if (hdr->sh_link != elf_dynsymtab (abfd)
8833 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8834 return 0;
8835
8836 plt = bfd_get_section_by_name (abfd, ".plt");
8837 if (plt == NULL)
8838 return 0;
8839
8840 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8841 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8842 return -1;
8843
8844 count = relplt->size / hdr->sh_entsize;
8845 size = count * sizeof (asymbol);
8846 p = relplt->relocation;
8847 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
8848 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8849
8850 s = *ret = bfd_malloc (size);
8851 if (s == NULL)
8852 return -1;
8853
8854 names = (char *) (s + count);
8855 p = relplt->relocation;
8856 n = 0;
8857 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
8858 {
8859 size_t len;
8860 bfd_vma addr;
8861
8862 addr = bed->plt_sym_val (i, plt, p);
8863 if (addr == (bfd_vma) -1)
8864 continue;
8865
8866 *s = **p->sym_ptr_ptr;
8867 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8868 we are defining a symbol, ensure one of them is set. */
8869 if ((s->flags & BSF_LOCAL) == 0)
8870 s->flags |= BSF_GLOBAL;
8871 s->flags |= BSF_SYNTHETIC;
8872 s->section = plt;
8873 s->value = addr - plt->vma;
8874 s->name = names;
8875 s->udata.p = NULL;
8876 len = strlen ((*p->sym_ptr_ptr)->name);
8877 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8878 names += len;
8879 memcpy (names, "@plt", sizeof ("@plt"));
8880 names += sizeof ("@plt");
8881 ++s, ++n;
8882 }
8883
8884 return n;
8885 }
8886
8887 /* It is only used by x86-64 so far. */
8888 asection _bfd_elf_large_com_section
8889 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8890 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8891
8892 void
8893 _bfd_elf_set_osabi (bfd * abfd,
8894 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
8895 {
8896 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
8897
8898 i_ehdrp = elf_elfheader (abfd);
8899
8900 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
8901 }
8902
8903
8904 /* Return TRUE for ELF symbol types that represent functions.
8905 This is the default version of this function, which is sufficient for
8906 most targets. It returns true if TYPE is STT_FUNC. */
8907
8908 bfd_boolean
8909 _bfd_elf_is_function_type (unsigned int type)
8910 {
8911 return (type == STT_FUNC);
8912 }
This page took 0.220278 seconds and 4 git commands to generate.