* elf64-alpha.c (elf64_alpha_create_got_section): Always create
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static bfd_byte *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 bfd_byte *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 bfd_byte *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return NULL;
263
264 shstrtab = i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return (char *) shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
295 (*_bfd_error_handler)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd, strindex, (unsigned long) hdr->sh_size,
298 (shindex == shstrndx && strindex == hdr->sh_name
299 ? ".shstrtab"
300 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_sym_name (bfd *abfd,
409 Elf_Internal_Shdr *symtab_hdr,
410 Elf_Internal_Sym *isym,
411 asection *sym_sec)
412 {
413 const char *name;
414 unsigned int iname = isym->st_name;
415 unsigned int shindex = symtab_hdr->sh_link;
416
417 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
418 /* Check for a bogus st_shndx to avoid crashing. */
419 && isym->st_shndx < elf_numsections (abfd)
420 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
421 {
422 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
423 shindex = elf_elfheader (abfd)->e_shstrndx;
424 }
425
426 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
427 if (name == NULL)
428 name = "(null)";
429 else if (sym_sec && *name == '\0')
430 name = bfd_section_name (abfd, sym_sec);
431
432 return name;
433 }
434
435 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
436 sections. The first element is the flags, the rest are section
437 pointers. */
438
439 typedef union elf_internal_group {
440 Elf_Internal_Shdr *shdr;
441 unsigned int flags;
442 } Elf_Internal_Group;
443
444 /* Return the name of the group signature symbol. Why isn't the
445 signature just a string? */
446
447 static const char *
448 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
449 {
450 Elf_Internal_Shdr *hdr;
451 unsigned char esym[sizeof (Elf64_External_Sym)];
452 Elf_External_Sym_Shndx eshndx;
453 Elf_Internal_Sym isym;
454
455 /* First we need to ensure the symbol table is available. Make sure
456 that it is a symbol table section. */
457 hdr = elf_elfsections (abfd) [ghdr->sh_link];
458 if (hdr->sh_type != SHT_SYMTAB
459 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
460 return NULL;
461
462 /* Go read the symbol. */
463 hdr = &elf_tdata (abfd)->symtab_hdr;
464 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
465 &isym, esym, &eshndx) == NULL)
466 return NULL;
467
468 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
469 }
470
471 /* Set next_in_group list pointer, and group name for NEWSECT. */
472
473 static bfd_boolean
474 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
475 {
476 unsigned int num_group = elf_tdata (abfd)->num_group;
477
478 /* If num_group is zero, read in all SHT_GROUP sections. The count
479 is set to -1 if there are no SHT_GROUP sections. */
480 if (num_group == 0)
481 {
482 unsigned int i, shnum;
483
484 /* First count the number of groups. If we have a SHT_GROUP
485 section with just a flag word (ie. sh_size is 4), ignore it. */
486 shnum = elf_numsections (abfd);
487 num_group = 0;
488 for (i = 0; i < shnum; i++)
489 {
490 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
491 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
492 num_group += 1;
493 }
494
495 if (num_group == 0)
496 {
497 num_group = (unsigned) -1;
498 elf_tdata (abfd)->num_group = num_group;
499 }
500 else
501 {
502 /* We keep a list of elf section headers for group sections,
503 so we can find them quickly. */
504 bfd_size_type amt;
505
506 elf_tdata (abfd)->num_group = num_group;
507 amt = num_group * sizeof (Elf_Internal_Shdr *);
508 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
509 if (elf_tdata (abfd)->group_sect_ptr == NULL)
510 return FALSE;
511
512 num_group = 0;
513 for (i = 0; i < shnum; i++)
514 {
515 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
516 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
517 {
518 unsigned char *src;
519 Elf_Internal_Group *dest;
520
521 /* Add to list of sections. */
522 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
523 num_group += 1;
524
525 /* Read the raw contents. */
526 BFD_ASSERT (sizeof (*dest) >= 4);
527 amt = shdr->sh_size * sizeof (*dest) / 4;
528 shdr->contents = bfd_alloc (abfd, amt);
529 if (shdr->contents == NULL
530 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
531 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
532 != shdr->sh_size))
533 return FALSE;
534
535 /* Translate raw contents, a flag word followed by an
536 array of elf section indices all in target byte order,
537 to the flag word followed by an array of elf section
538 pointers. */
539 src = shdr->contents + shdr->sh_size;
540 dest = (Elf_Internal_Group *) (shdr->contents + amt);
541 while (1)
542 {
543 unsigned int idx;
544
545 src -= 4;
546 --dest;
547 idx = H_GET_32 (abfd, src);
548 if (src == shdr->contents)
549 {
550 dest->flags = idx;
551 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
552 shdr->bfd_section->flags
553 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
554 break;
555 }
556 if (idx >= shnum)
557 {
558 ((*_bfd_error_handler)
559 (_("%B: invalid SHT_GROUP entry"), abfd));
560 idx = 0;
561 }
562 dest->shdr = elf_elfsections (abfd)[idx];
563 }
564 }
565 }
566 }
567 }
568
569 if (num_group != (unsigned) -1)
570 {
571 unsigned int i;
572
573 for (i = 0; i < num_group; i++)
574 {
575 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
576 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
577 unsigned int n_elt = shdr->sh_size / 4;
578
579 /* Look through this group's sections to see if current
580 section is a member. */
581 while (--n_elt != 0)
582 if ((++idx)->shdr == hdr)
583 {
584 asection *s = NULL;
585
586 /* We are a member of this group. Go looking through
587 other members to see if any others are linked via
588 next_in_group. */
589 idx = (Elf_Internal_Group *) shdr->contents;
590 n_elt = shdr->sh_size / 4;
591 while (--n_elt != 0)
592 if ((s = (++idx)->shdr->bfd_section) != NULL
593 && elf_next_in_group (s) != NULL)
594 break;
595 if (n_elt != 0)
596 {
597 /* Snarf the group name from other member, and
598 insert current section in circular list. */
599 elf_group_name (newsect) = elf_group_name (s);
600 elf_next_in_group (newsect) = elf_next_in_group (s);
601 elf_next_in_group (s) = newsect;
602 }
603 else
604 {
605 const char *gname;
606
607 gname = group_signature (abfd, shdr);
608 if (gname == NULL)
609 return FALSE;
610 elf_group_name (newsect) = gname;
611
612 /* Start a circular list with one element. */
613 elf_next_in_group (newsect) = newsect;
614 }
615
616 /* If the group section has been created, point to the
617 new member. */
618 if (shdr->bfd_section != NULL)
619 elf_next_in_group (shdr->bfd_section) = newsect;
620
621 i = num_group - 1;
622 break;
623 }
624 }
625 }
626
627 if (elf_group_name (newsect) == NULL)
628 {
629 (*_bfd_error_handler) (_("%B: no group info for section %A"),
630 abfd, newsect);
631 }
632 return TRUE;
633 }
634
635 bfd_boolean
636 _bfd_elf_setup_group_pointers (bfd *abfd)
637 {
638 unsigned int i;
639 unsigned int num_group = elf_tdata (abfd)->num_group;
640 bfd_boolean result = TRUE;
641
642 if (num_group == (unsigned) -1)
643 return result;
644
645 for (i = 0; i < num_group; i++)
646 {
647 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
648 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
649 unsigned int n_elt = shdr->sh_size / 4;
650
651 while (--n_elt != 0)
652 if ((++idx)->shdr->bfd_section)
653 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
654 else if (idx->shdr->sh_type == SHT_RELA
655 || idx->shdr->sh_type == SHT_REL)
656 /* We won't include relocation sections in section groups in
657 output object files. We adjust the group section size here
658 so that relocatable link will work correctly when
659 relocation sections are in section group in input object
660 files. */
661 shdr->bfd_section->size -= 4;
662 else
663 {
664 /* There are some unknown sections in the group. */
665 (*_bfd_error_handler)
666 (_("%B: unknown [%d] section `%s' in group [%s]"),
667 abfd,
668 (unsigned int) idx->shdr->sh_type,
669 bfd_elf_string_from_elf_section (abfd,
670 (elf_elfheader (abfd)
671 ->e_shstrndx),
672 idx->shdr->sh_name),
673 shdr->bfd_section->name);
674 result = FALSE;
675 }
676 }
677 return result;
678 }
679
680 bfd_boolean
681 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
682 {
683 return elf_next_in_group (sec) != NULL;
684 }
685
686 /* Make a BFD section from an ELF section. We store a pointer to the
687 BFD section in the bfd_section field of the header. */
688
689 bfd_boolean
690 _bfd_elf_make_section_from_shdr (bfd *abfd,
691 Elf_Internal_Shdr *hdr,
692 const char *name,
693 int shindex)
694 {
695 asection *newsect;
696 flagword flags;
697 const struct elf_backend_data *bed;
698
699 if (hdr->bfd_section != NULL)
700 {
701 BFD_ASSERT (strcmp (name,
702 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
703 return TRUE;
704 }
705
706 newsect = bfd_make_section_anyway (abfd, name);
707 if (newsect == NULL)
708 return FALSE;
709
710 hdr->bfd_section = newsect;
711 elf_section_data (newsect)->this_hdr = *hdr;
712 elf_section_data (newsect)->this_idx = shindex;
713
714 /* Always use the real type/flags. */
715 elf_section_type (newsect) = hdr->sh_type;
716 elf_section_flags (newsect) = hdr->sh_flags;
717
718 newsect->filepos = hdr->sh_offset;
719
720 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
721 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
722 || ! bfd_set_section_alignment (abfd, newsect,
723 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
724 return FALSE;
725
726 flags = SEC_NO_FLAGS;
727 if (hdr->sh_type != SHT_NOBITS)
728 flags |= SEC_HAS_CONTENTS;
729 if (hdr->sh_type == SHT_GROUP)
730 flags |= SEC_GROUP | SEC_EXCLUDE;
731 if ((hdr->sh_flags & SHF_ALLOC) != 0)
732 {
733 flags |= SEC_ALLOC;
734 if (hdr->sh_type != SHT_NOBITS)
735 flags |= SEC_LOAD;
736 }
737 if ((hdr->sh_flags & SHF_WRITE) == 0)
738 flags |= SEC_READONLY;
739 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
740 flags |= SEC_CODE;
741 else if ((flags & SEC_LOAD) != 0)
742 flags |= SEC_DATA;
743 if ((hdr->sh_flags & SHF_MERGE) != 0)
744 {
745 flags |= SEC_MERGE;
746 newsect->entsize = hdr->sh_entsize;
747 if ((hdr->sh_flags & SHF_STRINGS) != 0)
748 flags |= SEC_STRINGS;
749 }
750 if (hdr->sh_flags & SHF_GROUP)
751 if (!setup_group (abfd, hdr, newsect))
752 return FALSE;
753 if ((hdr->sh_flags & SHF_TLS) != 0)
754 flags |= SEC_THREAD_LOCAL;
755
756 if ((flags & SEC_ALLOC) == 0)
757 {
758 /* The debugging sections appear to be recognized only by name,
759 not any sort of flag. Their SEC_ALLOC bits are cleared. */
760 static const struct
761 {
762 const char *name;
763 int len;
764 } debug_sections [] =
765 {
766 { "debug", 5 }, /* 'd' */
767 { NULL, 0 }, /* 'e' */
768 { NULL, 0 }, /* 'f' */
769 { "gnu.linkonce.wi.", 17 }, /* 'g' */
770 { NULL, 0 }, /* 'h' */
771 { NULL, 0 }, /* 'i' */
772 { NULL, 0 }, /* 'j' */
773 { NULL, 0 }, /* 'k' */
774 { "line", 4 }, /* 'l' */
775 { NULL, 0 }, /* 'm' */
776 { NULL, 0 }, /* 'n' */
777 { NULL, 0 }, /* 'o' */
778 { NULL, 0 }, /* 'p' */
779 { NULL, 0 }, /* 'q' */
780 { NULL, 0 }, /* 'r' */
781 { "stab", 4 } /* 's' */
782 };
783
784 if (name [0] == '.')
785 {
786 int i = name [1] - 'd';
787 if (i >= 0
788 && i < (int) ARRAY_SIZE (debug_sections)
789 && debug_sections [i].name != NULL
790 && strncmp (&name [1], debug_sections [i].name,
791 debug_sections [i].len) == 0)
792 flags |= SEC_DEBUGGING;
793 }
794 }
795
796 /* As a GNU extension, if the name begins with .gnu.linkonce, we
797 only link a single copy of the section. This is used to support
798 g++. g++ will emit each template expansion in its own section.
799 The symbols will be defined as weak, so that multiple definitions
800 are permitted. The GNU linker extension is to actually discard
801 all but one of the sections. */
802 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
803 && elf_next_in_group (newsect) == NULL)
804 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
805
806 bed = get_elf_backend_data (abfd);
807 if (bed->elf_backend_section_flags)
808 if (! bed->elf_backend_section_flags (&flags, hdr))
809 return FALSE;
810
811 if (! bfd_set_section_flags (abfd, newsect, flags))
812 return FALSE;
813
814 if ((flags & SEC_ALLOC) != 0)
815 {
816 Elf_Internal_Phdr *phdr;
817 unsigned int i;
818
819 /* Look through the phdrs to see if we need to adjust the lma.
820 If all the p_paddr fields are zero, we ignore them, since
821 some ELF linkers produce such output. */
822 phdr = elf_tdata (abfd)->phdr;
823 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
824 {
825 if (phdr->p_paddr != 0)
826 break;
827 }
828 if (i < elf_elfheader (abfd)->e_phnum)
829 {
830 phdr = elf_tdata (abfd)->phdr;
831 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
832 {
833 /* This section is part of this segment if its file
834 offset plus size lies within the segment's memory
835 span and, if the section is loaded, the extent of the
836 loaded data lies within the extent of the segment.
837
838 Note - we used to check the p_paddr field as well, and
839 refuse to set the LMA if it was 0. This is wrong
840 though, as a perfectly valid initialised segment can
841 have a p_paddr of zero. Some architectures, eg ARM,
842 place special significance on the address 0 and
843 executables need to be able to have a segment which
844 covers this address. */
845 if (phdr->p_type == PT_LOAD
846 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
847 && (hdr->sh_offset + hdr->sh_size
848 <= phdr->p_offset + phdr->p_memsz)
849 && ((flags & SEC_LOAD) == 0
850 || (hdr->sh_offset + hdr->sh_size
851 <= phdr->p_offset + phdr->p_filesz)))
852 {
853 if ((flags & SEC_LOAD) == 0)
854 newsect->lma = (phdr->p_paddr
855 + hdr->sh_addr - phdr->p_vaddr);
856 else
857 /* We used to use the same adjustment for SEC_LOAD
858 sections, but that doesn't work if the segment
859 is packed with code from multiple VMAs.
860 Instead we calculate the section LMA based on
861 the segment LMA. It is assumed that the
862 segment will contain sections with contiguous
863 LMAs, even if the VMAs are not. */
864 newsect->lma = (phdr->p_paddr
865 + hdr->sh_offset - phdr->p_offset);
866
867 /* With contiguous segments, we can't tell from file
868 offsets whether a section with zero size should
869 be placed at the end of one segment or the
870 beginning of the next. Decide based on vaddr. */
871 if (hdr->sh_addr >= phdr->p_vaddr
872 && (hdr->sh_addr + hdr->sh_size
873 <= phdr->p_vaddr + phdr->p_memsz))
874 break;
875 }
876 }
877 }
878 }
879
880 return TRUE;
881 }
882
883 /*
884 INTERNAL_FUNCTION
885 bfd_elf_find_section
886
887 SYNOPSIS
888 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
889
890 DESCRIPTION
891 Helper functions for GDB to locate the string tables.
892 Since BFD hides string tables from callers, GDB needs to use an
893 internal hook to find them. Sun's .stabstr, in particular,
894 isn't even pointed to by the .stab section, so ordinary
895 mechanisms wouldn't work to find it, even if we had some.
896 */
897
898 struct elf_internal_shdr *
899 bfd_elf_find_section (bfd *abfd, char *name)
900 {
901 Elf_Internal_Shdr **i_shdrp;
902 char *shstrtab;
903 unsigned int max;
904 unsigned int i;
905
906 i_shdrp = elf_elfsections (abfd);
907 if (i_shdrp != NULL)
908 {
909 shstrtab = bfd_elf_get_str_section (abfd,
910 elf_elfheader (abfd)->e_shstrndx);
911 if (shstrtab != NULL)
912 {
913 max = elf_numsections (abfd);
914 for (i = 1; i < max; i++)
915 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
916 return i_shdrp[i];
917 }
918 }
919 return 0;
920 }
921
922 const char *const bfd_elf_section_type_names[] = {
923 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
924 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
925 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
926 };
927
928 /* ELF relocs are against symbols. If we are producing relocatable
929 output, and the reloc is against an external symbol, and nothing
930 has given us any additional addend, the resulting reloc will also
931 be against the same symbol. In such a case, we don't want to
932 change anything about the way the reloc is handled, since it will
933 all be done at final link time. Rather than put special case code
934 into bfd_perform_relocation, all the reloc types use this howto
935 function. It just short circuits the reloc if producing
936 relocatable output against an external symbol. */
937
938 bfd_reloc_status_type
939 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
940 arelent *reloc_entry,
941 asymbol *symbol,
942 void *data ATTRIBUTE_UNUSED,
943 asection *input_section,
944 bfd *output_bfd,
945 char **error_message ATTRIBUTE_UNUSED)
946 {
947 if (output_bfd != NULL
948 && (symbol->flags & BSF_SECTION_SYM) == 0
949 && (! reloc_entry->howto->partial_inplace
950 || reloc_entry->addend == 0))
951 {
952 reloc_entry->address += input_section->output_offset;
953 return bfd_reloc_ok;
954 }
955
956 return bfd_reloc_continue;
957 }
958 \f
959 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
960
961 static void
962 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
963 asection *sec)
964 {
965 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
966 sec->sec_info_type = ELF_INFO_TYPE_NONE;
967 }
968
969 /* Finish SHF_MERGE section merging. */
970
971 bfd_boolean
972 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
973 {
974 bfd *ibfd;
975 asection *sec;
976
977 if (!is_elf_hash_table (info->hash))
978 return FALSE;
979
980 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
981 if ((ibfd->flags & DYNAMIC) == 0)
982 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
983 if ((sec->flags & SEC_MERGE) != 0
984 && !bfd_is_abs_section (sec->output_section))
985 {
986 struct bfd_elf_section_data *secdata;
987
988 secdata = elf_section_data (sec);
989 if (! _bfd_add_merge_section (abfd,
990 &elf_hash_table (info)->merge_info,
991 sec, &secdata->sec_info))
992 return FALSE;
993 else if (secdata->sec_info)
994 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
995 }
996
997 if (elf_hash_table (info)->merge_info != NULL)
998 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
999 merge_sections_remove_hook);
1000 return TRUE;
1001 }
1002
1003 void
1004 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1005 {
1006 sec->output_section = bfd_abs_section_ptr;
1007 sec->output_offset = sec->vma;
1008 if (!is_elf_hash_table (info->hash))
1009 return;
1010
1011 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1012 }
1013 \f
1014 /* Copy the program header and other data from one object module to
1015 another. */
1016
1017 bfd_boolean
1018 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1019 {
1020 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1021 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1022 return TRUE;
1023
1024 BFD_ASSERT (!elf_flags_init (obfd)
1025 || (elf_elfheader (obfd)->e_flags
1026 == elf_elfheader (ibfd)->e_flags));
1027
1028 elf_gp (obfd) = elf_gp (ibfd);
1029 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1030 elf_flags_init (obfd) = TRUE;
1031 return TRUE;
1032 }
1033
1034 /* Print out the program headers. */
1035
1036 bfd_boolean
1037 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1038 {
1039 FILE *f = farg;
1040 Elf_Internal_Phdr *p;
1041 asection *s;
1042 bfd_byte *dynbuf = NULL;
1043
1044 p = elf_tdata (abfd)->phdr;
1045 if (p != NULL)
1046 {
1047 unsigned int i, c;
1048
1049 fprintf (f, _("\nProgram Header:\n"));
1050 c = elf_elfheader (abfd)->e_phnum;
1051 for (i = 0; i < c; i++, p++)
1052 {
1053 const char *pt;
1054 char buf[20];
1055
1056 switch (p->p_type)
1057 {
1058 case PT_NULL: pt = "NULL"; break;
1059 case PT_LOAD: pt = "LOAD"; break;
1060 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1061 case PT_INTERP: pt = "INTERP"; break;
1062 case PT_NOTE: pt = "NOTE"; break;
1063 case PT_SHLIB: pt = "SHLIB"; break;
1064 case PT_PHDR: pt = "PHDR"; break;
1065 case PT_TLS: pt = "TLS"; break;
1066 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1067 case PT_GNU_STACK: pt = "STACK"; break;
1068 case PT_GNU_RELRO: pt = "RELRO"; break;
1069 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1070 }
1071 fprintf (f, "%8s off 0x", pt);
1072 bfd_fprintf_vma (abfd, f, p->p_offset);
1073 fprintf (f, " vaddr 0x");
1074 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1075 fprintf (f, " paddr 0x");
1076 bfd_fprintf_vma (abfd, f, p->p_paddr);
1077 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1078 fprintf (f, " filesz 0x");
1079 bfd_fprintf_vma (abfd, f, p->p_filesz);
1080 fprintf (f, " memsz 0x");
1081 bfd_fprintf_vma (abfd, f, p->p_memsz);
1082 fprintf (f, " flags %c%c%c",
1083 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1084 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1085 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1086 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1087 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1088 fprintf (f, "\n");
1089 }
1090 }
1091
1092 s = bfd_get_section_by_name (abfd, ".dynamic");
1093 if (s != NULL)
1094 {
1095 int elfsec;
1096 unsigned long shlink;
1097 bfd_byte *extdyn, *extdynend;
1098 size_t extdynsize;
1099 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1100
1101 fprintf (f, _("\nDynamic Section:\n"));
1102
1103 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1104 goto error_return;
1105
1106 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1107 if (elfsec == -1)
1108 goto error_return;
1109 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1110
1111 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1112 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1113
1114 extdyn = dynbuf;
1115 extdynend = extdyn + s->size;
1116 for (; extdyn < extdynend; extdyn += extdynsize)
1117 {
1118 Elf_Internal_Dyn dyn;
1119 const char *name;
1120 char ab[20];
1121 bfd_boolean stringp;
1122
1123 (*swap_dyn_in) (abfd, extdyn, &dyn);
1124
1125 if (dyn.d_tag == DT_NULL)
1126 break;
1127
1128 stringp = FALSE;
1129 switch (dyn.d_tag)
1130 {
1131 default:
1132 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1133 name = ab;
1134 break;
1135
1136 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1137 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1138 case DT_PLTGOT: name = "PLTGOT"; break;
1139 case DT_HASH: name = "HASH"; break;
1140 case DT_STRTAB: name = "STRTAB"; break;
1141 case DT_SYMTAB: name = "SYMTAB"; break;
1142 case DT_RELA: name = "RELA"; break;
1143 case DT_RELASZ: name = "RELASZ"; break;
1144 case DT_RELAENT: name = "RELAENT"; break;
1145 case DT_STRSZ: name = "STRSZ"; break;
1146 case DT_SYMENT: name = "SYMENT"; break;
1147 case DT_INIT: name = "INIT"; break;
1148 case DT_FINI: name = "FINI"; break;
1149 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1150 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1151 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1152 case DT_REL: name = "REL"; break;
1153 case DT_RELSZ: name = "RELSZ"; break;
1154 case DT_RELENT: name = "RELENT"; break;
1155 case DT_PLTREL: name = "PLTREL"; break;
1156 case DT_DEBUG: name = "DEBUG"; break;
1157 case DT_TEXTREL: name = "TEXTREL"; break;
1158 case DT_JMPREL: name = "JMPREL"; break;
1159 case DT_BIND_NOW: name = "BIND_NOW"; break;
1160 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1161 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1162 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1163 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1164 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1165 case DT_FLAGS: name = "FLAGS"; break;
1166 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1167 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1168 case DT_CHECKSUM: name = "CHECKSUM"; break;
1169 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1170 case DT_MOVEENT: name = "MOVEENT"; break;
1171 case DT_MOVESZ: name = "MOVESZ"; break;
1172 case DT_FEATURE: name = "FEATURE"; break;
1173 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1174 case DT_SYMINSZ: name = "SYMINSZ"; break;
1175 case DT_SYMINENT: name = "SYMINENT"; break;
1176 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1177 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1178 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1179 case DT_PLTPAD: name = "PLTPAD"; break;
1180 case DT_MOVETAB: name = "MOVETAB"; break;
1181 case DT_SYMINFO: name = "SYMINFO"; break;
1182 case DT_RELACOUNT: name = "RELACOUNT"; break;
1183 case DT_RELCOUNT: name = "RELCOUNT"; break;
1184 case DT_FLAGS_1: name = "FLAGS_1"; break;
1185 case DT_VERSYM: name = "VERSYM"; break;
1186 case DT_VERDEF: name = "VERDEF"; break;
1187 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1188 case DT_VERNEED: name = "VERNEED"; break;
1189 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1190 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1191 case DT_USED: name = "USED"; break;
1192 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1193 }
1194
1195 fprintf (f, " %-11s ", name);
1196 if (! stringp)
1197 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1198 else
1199 {
1200 const char *string;
1201 unsigned int tagv = dyn.d_un.d_val;
1202
1203 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1204 if (string == NULL)
1205 goto error_return;
1206 fprintf (f, "%s", string);
1207 }
1208 fprintf (f, "\n");
1209 }
1210
1211 free (dynbuf);
1212 dynbuf = NULL;
1213 }
1214
1215 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1216 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1217 {
1218 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1219 return FALSE;
1220 }
1221
1222 if (elf_dynverdef (abfd) != 0)
1223 {
1224 Elf_Internal_Verdef *t;
1225
1226 fprintf (f, _("\nVersion definitions:\n"));
1227 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1228 {
1229 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1230 t->vd_flags, t->vd_hash, t->vd_nodename);
1231 if (t->vd_auxptr->vda_nextptr != NULL)
1232 {
1233 Elf_Internal_Verdaux *a;
1234
1235 fprintf (f, "\t");
1236 for (a = t->vd_auxptr->vda_nextptr;
1237 a != NULL;
1238 a = a->vda_nextptr)
1239 fprintf (f, "%s ", a->vda_nodename);
1240 fprintf (f, "\n");
1241 }
1242 }
1243 }
1244
1245 if (elf_dynverref (abfd) != 0)
1246 {
1247 Elf_Internal_Verneed *t;
1248
1249 fprintf (f, _("\nVersion References:\n"));
1250 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1251 {
1252 Elf_Internal_Vernaux *a;
1253
1254 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1255 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1256 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1257 a->vna_flags, a->vna_other, a->vna_nodename);
1258 }
1259 }
1260
1261 return TRUE;
1262
1263 error_return:
1264 if (dynbuf != NULL)
1265 free (dynbuf);
1266 return FALSE;
1267 }
1268
1269 /* Display ELF-specific fields of a symbol. */
1270
1271 void
1272 bfd_elf_print_symbol (bfd *abfd,
1273 void *filep,
1274 asymbol *symbol,
1275 bfd_print_symbol_type how)
1276 {
1277 FILE *file = filep;
1278 switch (how)
1279 {
1280 case bfd_print_symbol_name:
1281 fprintf (file, "%s", symbol->name);
1282 break;
1283 case bfd_print_symbol_more:
1284 fprintf (file, "elf ");
1285 bfd_fprintf_vma (abfd, file, symbol->value);
1286 fprintf (file, " %lx", (long) symbol->flags);
1287 break;
1288 case bfd_print_symbol_all:
1289 {
1290 const char *section_name;
1291 const char *name = NULL;
1292 const struct elf_backend_data *bed;
1293 unsigned char st_other;
1294 bfd_vma val;
1295
1296 section_name = symbol->section ? symbol->section->name : "(*none*)";
1297
1298 bed = get_elf_backend_data (abfd);
1299 if (bed->elf_backend_print_symbol_all)
1300 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1301
1302 if (name == NULL)
1303 {
1304 name = symbol->name;
1305 bfd_print_symbol_vandf (abfd, file, symbol);
1306 }
1307
1308 fprintf (file, " %s\t", section_name);
1309 /* Print the "other" value for a symbol. For common symbols,
1310 we've already printed the size; now print the alignment.
1311 For other symbols, we have no specified alignment, and
1312 we've printed the address; now print the size. */
1313 if (bfd_is_com_section (symbol->section))
1314 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1315 else
1316 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1317 bfd_fprintf_vma (abfd, file, val);
1318
1319 /* If we have version information, print it. */
1320 if (elf_tdata (abfd)->dynversym_section != 0
1321 && (elf_tdata (abfd)->dynverdef_section != 0
1322 || elf_tdata (abfd)->dynverref_section != 0))
1323 {
1324 unsigned int vernum;
1325 const char *version_string;
1326
1327 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1328
1329 if (vernum == 0)
1330 version_string = "";
1331 else if (vernum == 1)
1332 version_string = "Base";
1333 else if (vernum <= elf_tdata (abfd)->cverdefs)
1334 version_string =
1335 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1336 else
1337 {
1338 Elf_Internal_Verneed *t;
1339
1340 version_string = "";
1341 for (t = elf_tdata (abfd)->verref;
1342 t != NULL;
1343 t = t->vn_nextref)
1344 {
1345 Elf_Internal_Vernaux *a;
1346
1347 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1348 {
1349 if (a->vna_other == vernum)
1350 {
1351 version_string = a->vna_nodename;
1352 break;
1353 }
1354 }
1355 }
1356 }
1357
1358 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1359 fprintf (file, " %-11s", version_string);
1360 else
1361 {
1362 int i;
1363
1364 fprintf (file, " (%s)", version_string);
1365 for (i = 10 - strlen (version_string); i > 0; --i)
1366 putc (' ', file);
1367 }
1368 }
1369
1370 /* If the st_other field is not zero, print it. */
1371 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1372
1373 switch (st_other)
1374 {
1375 case 0: break;
1376 case STV_INTERNAL: fprintf (file, " .internal"); break;
1377 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1378 case STV_PROTECTED: fprintf (file, " .protected"); break;
1379 default:
1380 /* Some other non-defined flags are also present, so print
1381 everything hex. */
1382 fprintf (file, " 0x%02x", (unsigned int) st_other);
1383 }
1384
1385 fprintf (file, " %s", name);
1386 }
1387 break;
1388 }
1389 }
1390 \f
1391 /* Create an entry in an ELF linker hash table. */
1392
1393 struct bfd_hash_entry *
1394 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1395 struct bfd_hash_table *table,
1396 const char *string)
1397 {
1398 /* Allocate the structure if it has not already been allocated by a
1399 subclass. */
1400 if (entry == NULL)
1401 {
1402 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1403 if (entry == NULL)
1404 return entry;
1405 }
1406
1407 /* Call the allocation method of the superclass. */
1408 entry = _bfd_link_hash_newfunc (entry, table, string);
1409 if (entry != NULL)
1410 {
1411 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1412 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1413
1414 /* Set local fields. */
1415 ret->indx = -1;
1416 ret->dynindx = -1;
1417 ret->got = htab->init_got_refcount;
1418 ret->plt = htab->init_plt_refcount;
1419 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1420 - offsetof (struct elf_link_hash_entry, size)));
1421 /* Assume that we have been called by a non-ELF symbol reader.
1422 This flag is then reset by the code which reads an ELF input
1423 file. This ensures that a symbol created by a non-ELF symbol
1424 reader will have the flag set correctly. */
1425 ret->non_elf = 1;
1426 }
1427
1428 return entry;
1429 }
1430
1431 /* Copy data from an indirect symbol to its direct symbol, hiding the
1432 old indirect symbol. Also used for copying flags to a weakdef. */
1433
1434 void
1435 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1436 struct elf_link_hash_entry *dir,
1437 struct elf_link_hash_entry *ind)
1438 {
1439 bfd_signed_vma tmp;
1440 bfd_signed_vma lowest_valid = bed->can_refcount;
1441
1442 /* Copy down any references that we may have already seen to the
1443 symbol which just became indirect. */
1444
1445 dir->ref_dynamic |= ind->ref_dynamic;
1446 dir->ref_regular |= ind->ref_regular;
1447 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1448 dir->non_got_ref |= ind->non_got_ref;
1449 dir->needs_plt |= ind->needs_plt;
1450 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1451
1452 if (ind->root.type != bfd_link_hash_indirect)
1453 return;
1454
1455 /* Copy over the global and procedure linkage table refcount entries.
1456 These may have been already set up by a check_relocs routine. */
1457 tmp = dir->got.refcount;
1458 if (tmp < lowest_valid)
1459 {
1460 dir->got.refcount = ind->got.refcount;
1461 ind->got.refcount = tmp;
1462 }
1463 else
1464 BFD_ASSERT (ind->got.refcount < lowest_valid);
1465
1466 tmp = dir->plt.refcount;
1467 if (tmp < lowest_valid)
1468 {
1469 dir->plt.refcount = ind->plt.refcount;
1470 ind->plt.refcount = tmp;
1471 }
1472 else
1473 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1474
1475 if (dir->dynindx == -1)
1476 {
1477 dir->dynindx = ind->dynindx;
1478 dir->dynstr_index = ind->dynstr_index;
1479 ind->dynindx = -1;
1480 ind->dynstr_index = 0;
1481 }
1482 else
1483 BFD_ASSERT (ind->dynindx == -1);
1484 }
1485
1486 void
1487 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1488 struct elf_link_hash_entry *h,
1489 bfd_boolean force_local)
1490 {
1491 h->plt = elf_hash_table (info)->init_plt_offset;
1492 h->needs_plt = 0;
1493 if (force_local)
1494 {
1495 h->forced_local = 1;
1496 if (h->dynindx != -1)
1497 {
1498 h->dynindx = -1;
1499 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1500 h->dynstr_index);
1501 }
1502 }
1503 }
1504
1505 /* Initialize an ELF linker hash table. */
1506
1507 bfd_boolean
1508 _bfd_elf_link_hash_table_init
1509 (struct elf_link_hash_table *table,
1510 bfd *abfd,
1511 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1512 struct bfd_hash_table *,
1513 const char *))
1514 {
1515 bfd_boolean ret;
1516 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1517
1518 table->dynamic_sections_created = FALSE;
1519 table->dynobj = NULL;
1520 table->init_got_refcount.refcount = can_refcount - 1;
1521 table->init_plt_refcount.refcount = can_refcount - 1;
1522 table->init_got_offset.offset = -(bfd_vma) 1;
1523 table->init_plt_offset.offset = -(bfd_vma) 1;
1524 /* The first dynamic symbol is a dummy. */
1525 table->dynsymcount = 1;
1526 table->dynstr = NULL;
1527 table->bucketcount = 0;
1528 table->needed = NULL;
1529 table->hgot = NULL;
1530 table->merge_info = NULL;
1531 memset (&table->stab_info, 0, sizeof (table->stab_info));
1532 memset (&table->eh_info, 0, sizeof (table->eh_info));
1533 table->dynlocal = NULL;
1534 table->runpath = NULL;
1535 table->tls_sec = NULL;
1536 table->tls_size = 0;
1537 table->loaded = NULL;
1538 table->is_relocatable_executable = FALSE;
1539
1540 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1541 table->root.type = bfd_link_elf_hash_table;
1542
1543 return ret;
1544 }
1545
1546 /* Create an ELF linker hash table. */
1547
1548 struct bfd_link_hash_table *
1549 _bfd_elf_link_hash_table_create (bfd *abfd)
1550 {
1551 struct elf_link_hash_table *ret;
1552 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1553
1554 ret = bfd_malloc (amt);
1555 if (ret == NULL)
1556 return NULL;
1557
1558 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1559 {
1560 free (ret);
1561 return NULL;
1562 }
1563
1564 return &ret->root;
1565 }
1566
1567 /* This is a hook for the ELF emulation code in the generic linker to
1568 tell the backend linker what file name to use for the DT_NEEDED
1569 entry for a dynamic object. */
1570
1571 void
1572 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1573 {
1574 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1575 && bfd_get_format (abfd) == bfd_object)
1576 elf_dt_name (abfd) = name;
1577 }
1578
1579 int
1580 bfd_elf_get_dyn_lib_class (bfd *abfd)
1581 {
1582 int lib_class;
1583 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1584 && bfd_get_format (abfd) == bfd_object)
1585 lib_class = elf_dyn_lib_class (abfd);
1586 else
1587 lib_class = 0;
1588 return lib_class;
1589 }
1590
1591 void
1592 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1593 {
1594 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1595 && bfd_get_format (abfd) == bfd_object)
1596 elf_dyn_lib_class (abfd) = lib_class;
1597 }
1598
1599 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1600 the linker ELF emulation code. */
1601
1602 struct bfd_link_needed_list *
1603 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1604 struct bfd_link_info *info)
1605 {
1606 if (! is_elf_hash_table (info->hash))
1607 return NULL;
1608 return elf_hash_table (info)->needed;
1609 }
1610
1611 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1612 hook for the linker ELF emulation code. */
1613
1614 struct bfd_link_needed_list *
1615 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1616 struct bfd_link_info *info)
1617 {
1618 if (! is_elf_hash_table (info->hash))
1619 return NULL;
1620 return elf_hash_table (info)->runpath;
1621 }
1622
1623 /* Get the name actually used for a dynamic object for a link. This
1624 is the SONAME entry if there is one. Otherwise, it is the string
1625 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1626
1627 const char *
1628 bfd_elf_get_dt_soname (bfd *abfd)
1629 {
1630 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1631 && bfd_get_format (abfd) == bfd_object)
1632 return elf_dt_name (abfd);
1633 return NULL;
1634 }
1635
1636 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1637 the ELF linker emulation code. */
1638
1639 bfd_boolean
1640 bfd_elf_get_bfd_needed_list (bfd *abfd,
1641 struct bfd_link_needed_list **pneeded)
1642 {
1643 asection *s;
1644 bfd_byte *dynbuf = NULL;
1645 int elfsec;
1646 unsigned long shlink;
1647 bfd_byte *extdyn, *extdynend;
1648 size_t extdynsize;
1649 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1650
1651 *pneeded = NULL;
1652
1653 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1654 || bfd_get_format (abfd) != bfd_object)
1655 return TRUE;
1656
1657 s = bfd_get_section_by_name (abfd, ".dynamic");
1658 if (s == NULL || s->size == 0)
1659 return TRUE;
1660
1661 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1662 goto error_return;
1663
1664 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1665 if (elfsec == -1)
1666 goto error_return;
1667
1668 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1669
1670 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1671 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1672
1673 extdyn = dynbuf;
1674 extdynend = extdyn + s->size;
1675 for (; extdyn < extdynend; extdyn += extdynsize)
1676 {
1677 Elf_Internal_Dyn dyn;
1678
1679 (*swap_dyn_in) (abfd, extdyn, &dyn);
1680
1681 if (dyn.d_tag == DT_NULL)
1682 break;
1683
1684 if (dyn.d_tag == DT_NEEDED)
1685 {
1686 const char *string;
1687 struct bfd_link_needed_list *l;
1688 unsigned int tagv = dyn.d_un.d_val;
1689 bfd_size_type amt;
1690
1691 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1692 if (string == NULL)
1693 goto error_return;
1694
1695 amt = sizeof *l;
1696 l = bfd_alloc (abfd, amt);
1697 if (l == NULL)
1698 goto error_return;
1699
1700 l->by = abfd;
1701 l->name = string;
1702 l->next = *pneeded;
1703 *pneeded = l;
1704 }
1705 }
1706
1707 free (dynbuf);
1708
1709 return TRUE;
1710
1711 error_return:
1712 if (dynbuf != NULL)
1713 free (dynbuf);
1714 return FALSE;
1715 }
1716 \f
1717 /* Allocate an ELF string table--force the first byte to be zero. */
1718
1719 struct bfd_strtab_hash *
1720 _bfd_elf_stringtab_init (void)
1721 {
1722 struct bfd_strtab_hash *ret;
1723
1724 ret = _bfd_stringtab_init ();
1725 if (ret != NULL)
1726 {
1727 bfd_size_type loc;
1728
1729 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1730 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1731 if (loc == (bfd_size_type) -1)
1732 {
1733 _bfd_stringtab_free (ret);
1734 ret = NULL;
1735 }
1736 }
1737 return ret;
1738 }
1739 \f
1740 /* ELF .o/exec file reading */
1741
1742 /* Create a new bfd section from an ELF section header. */
1743
1744 bfd_boolean
1745 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1746 {
1747 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1748 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1749 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1750 const char *name;
1751
1752 name = bfd_elf_string_from_elf_section (abfd,
1753 elf_elfheader (abfd)->e_shstrndx,
1754 hdr->sh_name);
1755 if (name == NULL)
1756 return FALSE;
1757
1758 switch (hdr->sh_type)
1759 {
1760 case SHT_NULL:
1761 /* Inactive section. Throw it away. */
1762 return TRUE;
1763
1764 case SHT_PROGBITS: /* Normal section with contents. */
1765 case SHT_NOBITS: /* .bss section. */
1766 case SHT_HASH: /* .hash section. */
1767 case SHT_NOTE: /* .note section. */
1768 case SHT_INIT_ARRAY: /* .init_array section. */
1769 case SHT_FINI_ARRAY: /* .fini_array section. */
1770 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1771 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1772 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1773
1774 case SHT_DYNAMIC: /* Dynamic linking information. */
1775 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1776 return FALSE;
1777 if (hdr->sh_link > elf_numsections (abfd)
1778 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1779 return FALSE;
1780 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1781 {
1782 Elf_Internal_Shdr *dynsymhdr;
1783
1784 /* The shared libraries distributed with hpux11 have a bogus
1785 sh_link field for the ".dynamic" section. Find the
1786 string table for the ".dynsym" section instead. */
1787 if (elf_dynsymtab (abfd) != 0)
1788 {
1789 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1790 hdr->sh_link = dynsymhdr->sh_link;
1791 }
1792 else
1793 {
1794 unsigned int i, num_sec;
1795
1796 num_sec = elf_numsections (abfd);
1797 for (i = 1; i < num_sec; i++)
1798 {
1799 dynsymhdr = elf_elfsections (abfd)[i];
1800 if (dynsymhdr->sh_type == SHT_DYNSYM)
1801 {
1802 hdr->sh_link = dynsymhdr->sh_link;
1803 break;
1804 }
1805 }
1806 }
1807 }
1808 break;
1809
1810 case SHT_SYMTAB: /* A symbol table */
1811 if (elf_onesymtab (abfd) == shindex)
1812 return TRUE;
1813
1814 if (hdr->sh_entsize != bed->s->sizeof_sym)
1815 return FALSE;
1816 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1817 elf_onesymtab (abfd) = shindex;
1818 elf_tdata (abfd)->symtab_hdr = *hdr;
1819 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1820 abfd->flags |= HAS_SYMS;
1821
1822 /* Sometimes a shared object will map in the symbol table. If
1823 SHF_ALLOC is set, and this is a shared object, then we also
1824 treat this section as a BFD section. We can not base the
1825 decision purely on SHF_ALLOC, because that flag is sometimes
1826 set in a relocatable object file, which would confuse the
1827 linker. */
1828 if ((hdr->sh_flags & SHF_ALLOC) != 0
1829 && (abfd->flags & DYNAMIC) != 0
1830 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1831 shindex))
1832 return FALSE;
1833
1834 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1835 can't read symbols without that section loaded as well. It
1836 is most likely specified by the next section header. */
1837 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1838 {
1839 unsigned int i, num_sec;
1840
1841 num_sec = elf_numsections (abfd);
1842 for (i = shindex + 1; i < num_sec; i++)
1843 {
1844 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1845 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1846 && hdr2->sh_link == shindex)
1847 break;
1848 }
1849 if (i == num_sec)
1850 for (i = 1; i < shindex; i++)
1851 {
1852 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1853 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1854 && hdr2->sh_link == shindex)
1855 break;
1856 }
1857 if (i != shindex)
1858 return bfd_section_from_shdr (abfd, i);
1859 }
1860 return TRUE;
1861
1862 case SHT_DYNSYM: /* A dynamic symbol table */
1863 if (elf_dynsymtab (abfd) == shindex)
1864 return TRUE;
1865
1866 if (hdr->sh_entsize != bed->s->sizeof_sym)
1867 return FALSE;
1868 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1869 elf_dynsymtab (abfd) = shindex;
1870 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1871 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1872 abfd->flags |= HAS_SYMS;
1873
1874 /* Besides being a symbol table, we also treat this as a regular
1875 section, so that objcopy can handle it. */
1876 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1877
1878 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1879 if (elf_symtab_shndx (abfd) == shindex)
1880 return TRUE;
1881
1882 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1883 elf_symtab_shndx (abfd) = shindex;
1884 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1885 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1886 return TRUE;
1887
1888 case SHT_STRTAB: /* A string table */
1889 if (hdr->bfd_section != NULL)
1890 return TRUE;
1891 if (ehdr->e_shstrndx == shindex)
1892 {
1893 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1894 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1895 return TRUE;
1896 }
1897 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1898 {
1899 symtab_strtab:
1900 elf_tdata (abfd)->strtab_hdr = *hdr;
1901 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1902 return TRUE;
1903 }
1904 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1905 {
1906 dynsymtab_strtab:
1907 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1908 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1909 elf_elfsections (abfd)[shindex] = hdr;
1910 /* We also treat this as a regular section, so that objcopy
1911 can handle it. */
1912 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1913 shindex);
1914 }
1915
1916 /* If the string table isn't one of the above, then treat it as a
1917 regular section. We need to scan all the headers to be sure,
1918 just in case this strtab section appeared before the above. */
1919 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1920 {
1921 unsigned int i, num_sec;
1922
1923 num_sec = elf_numsections (abfd);
1924 for (i = 1; i < num_sec; i++)
1925 {
1926 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1927 if (hdr2->sh_link == shindex)
1928 {
1929 /* Prevent endless recursion on broken objects. */
1930 if (i == shindex)
1931 return FALSE;
1932 if (! bfd_section_from_shdr (abfd, i))
1933 return FALSE;
1934 if (elf_onesymtab (abfd) == i)
1935 goto symtab_strtab;
1936 if (elf_dynsymtab (abfd) == i)
1937 goto dynsymtab_strtab;
1938 }
1939 }
1940 }
1941 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1942
1943 case SHT_REL:
1944 case SHT_RELA:
1945 /* *These* do a lot of work -- but build no sections! */
1946 {
1947 asection *target_sect;
1948 Elf_Internal_Shdr *hdr2;
1949 unsigned int num_sec = elf_numsections (abfd);
1950
1951 if (hdr->sh_entsize
1952 != (bfd_size_type) (hdr->sh_type == SHT_REL
1953 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1954 return FALSE;
1955
1956 /* Check for a bogus link to avoid crashing. */
1957 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1958 || hdr->sh_link >= num_sec)
1959 {
1960 ((*_bfd_error_handler)
1961 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1962 abfd, hdr->sh_link, name, shindex));
1963 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1964 shindex);
1965 }
1966
1967 /* For some incomprehensible reason Oracle distributes
1968 libraries for Solaris in which some of the objects have
1969 bogus sh_link fields. It would be nice if we could just
1970 reject them, but, unfortunately, some people need to use
1971 them. We scan through the section headers; if we find only
1972 one suitable symbol table, we clobber the sh_link to point
1973 to it. I hope this doesn't break anything. */
1974 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1975 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1976 {
1977 unsigned int scan;
1978 int found;
1979
1980 found = 0;
1981 for (scan = 1; scan < num_sec; scan++)
1982 {
1983 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1984 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1985 {
1986 if (found != 0)
1987 {
1988 found = 0;
1989 break;
1990 }
1991 found = scan;
1992 }
1993 }
1994 if (found != 0)
1995 hdr->sh_link = found;
1996 }
1997
1998 /* Get the symbol table. */
1999 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2000 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2001 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2002 return FALSE;
2003
2004 /* If this reloc section does not use the main symbol table we
2005 don't treat it as a reloc section. BFD can't adequately
2006 represent such a section, so at least for now, we don't
2007 try. We just present it as a normal section. We also
2008 can't use it as a reloc section if it points to the null
2009 section. */
2010 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
2011 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2012 shindex);
2013
2014 /* Prevent endless recursion on broken objects. */
2015 if (elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2016 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2017 return FALSE;
2018 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2019 return FALSE;
2020 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2021 if (target_sect == NULL)
2022 return FALSE;
2023
2024 if ((target_sect->flags & SEC_RELOC) == 0
2025 || target_sect->reloc_count == 0)
2026 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2027 else
2028 {
2029 bfd_size_type amt;
2030 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2031 amt = sizeof (*hdr2);
2032 hdr2 = bfd_alloc (abfd, amt);
2033 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2034 }
2035 *hdr2 = *hdr;
2036 elf_elfsections (abfd)[shindex] = hdr2;
2037 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2038 target_sect->flags |= SEC_RELOC;
2039 target_sect->relocation = NULL;
2040 target_sect->rel_filepos = hdr->sh_offset;
2041 /* In the section to which the relocations apply, mark whether
2042 its relocations are of the REL or RELA variety. */
2043 if (hdr->sh_size != 0)
2044 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2045 abfd->flags |= HAS_RELOC;
2046 return TRUE;
2047 }
2048 break;
2049
2050 case SHT_GNU_verdef:
2051 elf_dynverdef (abfd) = shindex;
2052 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2053 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2054 break;
2055
2056 case SHT_GNU_versym:
2057 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2058 return FALSE;
2059 elf_dynversym (abfd) = shindex;
2060 elf_tdata (abfd)->dynversym_hdr = *hdr;
2061 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2062 break;
2063
2064 case SHT_GNU_verneed:
2065 elf_dynverref (abfd) = shindex;
2066 elf_tdata (abfd)->dynverref_hdr = *hdr;
2067 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2068 break;
2069
2070 case SHT_SHLIB:
2071 return TRUE;
2072
2073 case SHT_GROUP:
2074 /* We need a BFD section for objcopy and relocatable linking,
2075 and it's handy to have the signature available as the section
2076 name. */
2077 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2078 return FALSE;
2079 name = group_signature (abfd, hdr);
2080 if (name == NULL)
2081 return FALSE;
2082 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2083 return FALSE;
2084 if (hdr->contents != NULL)
2085 {
2086 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2087 unsigned int n_elt = hdr->sh_size / 4;
2088 asection *s;
2089
2090 if (idx->flags & GRP_COMDAT)
2091 hdr->bfd_section->flags
2092 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2093
2094 /* We try to keep the same section order as it comes in. */
2095 idx += n_elt;
2096 while (--n_elt != 0)
2097 if ((s = (--idx)->shdr->bfd_section) != NULL
2098 && elf_next_in_group (s) != NULL)
2099 {
2100 elf_next_in_group (hdr->bfd_section) = s;
2101 break;
2102 }
2103 }
2104 break;
2105
2106 default:
2107 /* Check for any processor-specific section types. */
2108 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2109 shindex);
2110 }
2111
2112 return TRUE;
2113 }
2114
2115 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2116 Return SEC for sections that have no elf section, and NULL on error. */
2117
2118 asection *
2119 bfd_section_from_r_symndx (bfd *abfd,
2120 struct sym_sec_cache *cache,
2121 asection *sec,
2122 unsigned long r_symndx)
2123 {
2124 Elf_Internal_Shdr *symtab_hdr;
2125 unsigned char esym[sizeof (Elf64_External_Sym)];
2126 Elf_External_Sym_Shndx eshndx;
2127 Elf_Internal_Sym isym;
2128 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2129
2130 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2131 return cache->sec[ent];
2132
2133 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2134 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2135 &isym, esym, &eshndx) == NULL)
2136 return NULL;
2137
2138 if (cache->abfd != abfd)
2139 {
2140 memset (cache->indx, -1, sizeof (cache->indx));
2141 cache->abfd = abfd;
2142 }
2143 cache->indx[ent] = r_symndx;
2144 cache->sec[ent] = sec;
2145 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2146 || isym.st_shndx > SHN_HIRESERVE)
2147 {
2148 asection *s;
2149 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2150 if (s != NULL)
2151 cache->sec[ent] = s;
2152 }
2153 return cache->sec[ent];
2154 }
2155
2156 /* Given an ELF section number, retrieve the corresponding BFD
2157 section. */
2158
2159 asection *
2160 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2161 {
2162 if (index >= elf_numsections (abfd))
2163 return NULL;
2164 return elf_elfsections (abfd)[index]->bfd_section;
2165 }
2166
2167 static struct bfd_elf_special_section const special_sections_b[] =
2168 {
2169 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2170 { NULL, 0, 0, 0, 0 }
2171 };
2172
2173 static struct bfd_elf_special_section const special_sections_c[] =
2174 {
2175 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2176 { NULL, 0, 0, 0, 0 }
2177 };
2178
2179 static struct bfd_elf_special_section const special_sections_d[] =
2180 {
2181 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2182 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2183 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2184 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2185 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2186 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2187 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2188 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2189 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2190 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2191 { NULL, 0, 0, 0, 0 }
2192 };
2193
2194 static struct bfd_elf_special_section const special_sections_f[] =
2195 {
2196 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2197 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2198 { NULL, 0, 0, 0, 0 }
2199 };
2200
2201 static struct bfd_elf_special_section const special_sections_g[] =
2202 {
2203 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2204 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2205 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2206 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2207 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2208 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2209 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2210 { NULL, 0, 0, 0, 0 }
2211 };
2212
2213 static struct bfd_elf_special_section const special_sections_h[] =
2214 {
2215 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2216 { NULL, 0, 0, 0, 0 }
2217 };
2218
2219 static struct bfd_elf_special_section const special_sections_i[] =
2220 {
2221 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2222 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2223 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2224 { NULL, 0, 0, 0, 0 }
2225 };
2226
2227 static struct bfd_elf_special_section const special_sections_l[] =
2228 {
2229 { ".line", 5, 0, SHT_PROGBITS, 0 },
2230 { NULL, 0, 0, 0, 0 }
2231 };
2232
2233 static struct bfd_elf_special_section const special_sections_n[] =
2234 {
2235 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2236 { ".note", 5, -1, SHT_NOTE, 0 },
2237 { NULL, 0, 0, 0, 0 }
2238 };
2239
2240 static struct bfd_elf_special_section const special_sections_p[] =
2241 {
2242 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2243 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2244 { NULL, 0, 0, 0, 0 }
2245 };
2246
2247 static struct bfd_elf_special_section const special_sections_r[] =
2248 {
2249 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2250 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2251 { ".rela", 5, -1, SHT_RELA, 0 },
2252 { ".rel", 4, -1, SHT_REL, 0 },
2253 { NULL, 0, 0, 0, 0 }
2254 };
2255
2256 static struct bfd_elf_special_section const special_sections_s[] =
2257 {
2258 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2259 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2260 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2261 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2262 { NULL, 0, 0, 0, 0 }
2263 };
2264
2265 static struct bfd_elf_special_section const special_sections_t[] =
2266 {
2267 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2268 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2269 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2270 { NULL, 0, 0, 0, 0 }
2271 };
2272
2273 static struct bfd_elf_special_section const *special_sections [27] =
2274 {
2275 NULL, /* 'a' */
2276 special_sections_b, /* 'b' */
2277 special_sections_c, /* 'b' */
2278 special_sections_d, /* 'd' */
2279 NULL, /* 'e' */
2280 special_sections_f, /* 'f' */
2281 special_sections_g, /* 'g' */
2282 special_sections_h, /* 'h' */
2283 special_sections_i, /* 'i' */
2284 NULL, /* 'j' */
2285 NULL, /* 'k' */
2286 special_sections_l, /* 'l' */
2287 NULL, /* 'm' */
2288 special_sections_n, /* 'n' */
2289 NULL, /* 'o' */
2290 special_sections_p, /* 'p' */
2291 NULL, /* 'q' */
2292 special_sections_r, /* 'r' */
2293 special_sections_s, /* 's' */
2294 special_sections_t, /* 't' */
2295 NULL, /* 'u' */
2296 NULL, /* 'v' */
2297 NULL, /* 'w' */
2298 NULL, /* 'x' */
2299 NULL, /* 'y' */
2300 NULL, /* 'z' */
2301 NULL /* other */
2302 };
2303
2304 static const struct bfd_elf_special_section *
2305 get_special_section (const char *name,
2306 const struct bfd_elf_special_section **special_sections_p,
2307 unsigned int rela)
2308 {
2309 int i;
2310 int len;
2311 const struct bfd_elf_special_section *special_sections;
2312
2313 if (name [0] == '.')
2314 {
2315 i = name [1] - 'a';
2316 if (i < 0 || i > 25)
2317 i = 26;
2318 }
2319 else
2320 i = 26;
2321
2322 special_sections = special_sections_p [i];
2323
2324 if (!special_sections)
2325 return special_sections;
2326
2327 len= strlen (name);
2328
2329 for (i = 0; special_sections[i].prefix != NULL; i++)
2330 {
2331 int suffix_len;
2332 int prefix_len = special_sections[i].prefix_length;
2333
2334 if (len < prefix_len)
2335 continue;
2336 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2337 continue;
2338
2339 suffix_len = special_sections[i].suffix_length;
2340 if (suffix_len <= 0)
2341 {
2342 if (name[prefix_len] != 0)
2343 {
2344 if (suffix_len == 0)
2345 continue;
2346 if (name[prefix_len] != '.'
2347 && (suffix_len == -2
2348 || (rela && special_sections[i].type == SHT_REL)))
2349 continue;
2350 }
2351 }
2352 else
2353 {
2354 if (len < prefix_len + suffix_len)
2355 continue;
2356 if (memcmp (name + len - suffix_len,
2357 special_sections[i].prefix + prefix_len,
2358 suffix_len) != 0)
2359 continue;
2360 }
2361 return &special_sections[i];
2362 }
2363
2364 return NULL;
2365 }
2366
2367 const struct bfd_elf_special_section *
2368 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2369 {
2370 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2371 const struct bfd_elf_special_section *ssect = NULL;
2372
2373 /* See if this is one of the special sections. */
2374 if (name)
2375 {
2376 unsigned int rela = bed->default_use_rela_p;
2377
2378 if (bed->special_sections)
2379 ssect = get_special_section (name, bed->special_sections, rela);
2380
2381 if (! ssect)
2382 ssect = get_special_section (name, special_sections, rela);
2383 }
2384
2385 return ssect;
2386 }
2387
2388 bfd_boolean
2389 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2390 {
2391 struct bfd_elf_section_data *sdata;
2392 const struct bfd_elf_special_section *ssect;
2393
2394 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2395 if (sdata == NULL)
2396 {
2397 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2398 if (sdata == NULL)
2399 return FALSE;
2400 sec->used_by_bfd = sdata;
2401 }
2402
2403 /* When we read a file, we don't need section type and flags unless
2404 it is a linker created section. They will be overridden in
2405 _bfd_elf_make_section_from_shdr anyway. */
2406 if (abfd->direction != read_direction
2407 || (sec->flags & SEC_LINKER_CREATED) != 0)
2408 {
2409 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2410 if (ssect != NULL)
2411 {
2412 elf_section_type (sec) = ssect->type;
2413 elf_section_flags (sec) = ssect->attr;
2414 }
2415 }
2416
2417 /* Indicate whether or not this section should use RELA relocations. */
2418 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2419
2420 return TRUE;
2421 }
2422
2423 /* Create a new bfd section from an ELF program header.
2424
2425 Since program segments have no names, we generate a synthetic name
2426 of the form segment<NUM>, where NUM is generally the index in the
2427 program header table. For segments that are split (see below) we
2428 generate the names segment<NUM>a and segment<NUM>b.
2429
2430 Note that some program segments may have a file size that is different than
2431 (less than) the memory size. All this means is that at execution the
2432 system must allocate the amount of memory specified by the memory size,
2433 but only initialize it with the first "file size" bytes read from the
2434 file. This would occur for example, with program segments consisting
2435 of combined data+bss.
2436
2437 To handle the above situation, this routine generates TWO bfd sections
2438 for the single program segment. The first has the length specified by
2439 the file size of the segment, and the second has the length specified
2440 by the difference between the two sizes. In effect, the segment is split
2441 into it's initialized and uninitialized parts.
2442
2443 */
2444
2445 bfd_boolean
2446 _bfd_elf_make_section_from_phdr (bfd *abfd,
2447 Elf_Internal_Phdr *hdr,
2448 int index,
2449 const char *typename)
2450 {
2451 asection *newsect;
2452 char *name;
2453 char namebuf[64];
2454 size_t len;
2455 int split;
2456
2457 split = ((hdr->p_memsz > 0)
2458 && (hdr->p_filesz > 0)
2459 && (hdr->p_memsz > hdr->p_filesz));
2460 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2461 len = strlen (namebuf) + 1;
2462 name = bfd_alloc (abfd, len);
2463 if (!name)
2464 return FALSE;
2465 memcpy (name, namebuf, len);
2466 newsect = bfd_make_section (abfd, name);
2467 if (newsect == NULL)
2468 return FALSE;
2469 newsect->vma = hdr->p_vaddr;
2470 newsect->lma = hdr->p_paddr;
2471 newsect->size = hdr->p_filesz;
2472 newsect->filepos = hdr->p_offset;
2473 newsect->flags |= SEC_HAS_CONTENTS;
2474 newsect->alignment_power = bfd_log2 (hdr->p_align);
2475 if (hdr->p_type == PT_LOAD)
2476 {
2477 newsect->flags |= SEC_ALLOC;
2478 newsect->flags |= SEC_LOAD;
2479 if (hdr->p_flags & PF_X)
2480 {
2481 /* FIXME: all we known is that it has execute PERMISSION,
2482 may be data. */
2483 newsect->flags |= SEC_CODE;
2484 }
2485 }
2486 if (!(hdr->p_flags & PF_W))
2487 {
2488 newsect->flags |= SEC_READONLY;
2489 }
2490
2491 if (split)
2492 {
2493 sprintf (namebuf, "%s%db", typename, index);
2494 len = strlen (namebuf) + 1;
2495 name = bfd_alloc (abfd, len);
2496 if (!name)
2497 return FALSE;
2498 memcpy (name, namebuf, len);
2499 newsect = bfd_make_section (abfd, name);
2500 if (newsect == NULL)
2501 return FALSE;
2502 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2503 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2504 newsect->size = hdr->p_memsz - hdr->p_filesz;
2505 if (hdr->p_type == PT_LOAD)
2506 {
2507 newsect->flags |= SEC_ALLOC;
2508 if (hdr->p_flags & PF_X)
2509 newsect->flags |= SEC_CODE;
2510 }
2511 if (!(hdr->p_flags & PF_W))
2512 newsect->flags |= SEC_READONLY;
2513 }
2514
2515 return TRUE;
2516 }
2517
2518 bfd_boolean
2519 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2520 {
2521 const struct elf_backend_data *bed;
2522
2523 switch (hdr->p_type)
2524 {
2525 case PT_NULL:
2526 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2527
2528 case PT_LOAD:
2529 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2530
2531 case PT_DYNAMIC:
2532 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2533
2534 case PT_INTERP:
2535 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2536
2537 case PT_NOTE:
2538 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2539 return FALSE;
2540 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2541 return FALSE;
2542 return TRUE;
2543
2544 case PT_SHLIB:
2545 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2546
2547 case PT_PHDR:
2548 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2549
2550 case PT_GNU_EH_FRAME:
2551 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2552 "eh_frame_hdr");
2553
2554 case PT_GNU_STACK:
2555 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2556
2557 case PT_GNU_RELRO:
2558 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2559
2560 default:
2561 /* Check for any processor-specific program segment types. */
2562 bed = get_elf_backend_data (abfd);
2563 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2564 }
2565 }
2566
2567 /* Initialize REL_HDR, the section-header for new section, containing
2568 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2569 relocations; otherwise, we use REL relocations. */
2570
2571 bfd_boolean
2572 _bfd_elf_init_reloc_shdr (bfd *abfd,
2573 Elf_Internal_Shdr *rel_hdr,
2574 asection *asect,
2575 bfd_boolean use_rela_p)
2576 {
2577 char *name;
2578 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2579 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2580
2581 name = bfd_alloc (abfd, amt);
2582 if (name == NULL)
2583 return FALSE;
2584 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2585 rel_hdr->sh_name =
2586 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2587 FALSE);
2588 if (rel_hdr->sh_name == (unsigned int) -1)
2589 return FALSE;
2590 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2591 rel_hdr->sh_entsize = (use_rela_p
2592 ? bed->s->sizeof_rela
2593 : bed->s->sizeof_rel);
2594 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2595 rel_hdr->sh_flags = 0;
2596 rel_hdr->sh_addr = 0;
2597 rel_hdr->sh_size = 0;
2598 rel_hdr->sh_offset = 0;
2599
2600 return TRUE;
2601 }
2602
2603 /* Set up an ELF internal section header for a section. */
2604
2605 static void
2606 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2607 {
2608 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2609 bfd_boolean *failedptr = failedptrarg;
2610 Elf_Internal_Shdr *this_hdr;
2611
2612 if (*failedptr)
2613 {
2614 /* We already failed; just get out of the bfd_map_over_sections
2615 loop. */
2616 return;
2617 }
2618
2619 this_hdr = &elf_section_data (asect)->this_hdr;
2620
2621 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2622 asect->name, FALSE);
2623 if (this_hdr->sh_name == (unsigned int) -1)
2624 {
2625 *failedptr = TRUE;
2626 return;
2627 }
2628
2629 this_hdr->sh_flags = 0;
2630
2631 if ((asect->flags & SEC_ALLOC) != 0
2632 || asect->user_set_vma)
2633 this_hdr->sh_addr = asect->vma;
2634 else
2635 this_hdr->sh_addr = 0;
2636
2637 this_hdr->sh_offset = 0;
2638 this_hdr->sh_size = asect->size;
2639 this_hdr->sh_link = 0;
2640 this_hdr->sh_addralign = 1 << asect->alignment_power;
2641 /* The sh_entsize and sh_info fields may have been set already by
2642 copy_private_section_data. */
2643
2644 this_hdr->bfd_section = asect;
2645 this_hdr->contents = NULL;
2646
2647 /* If the section type is unspecified, we set it based on
2648 asect->flags. */
2649 if (this_hdr->sh_type == SHT_NULL)
2650 {
2651 if ((asect->flags & SEC_GROUP) != 0)
2652 {
2653 /* We also need to mark SHF_GROUP here for relocatable
2654 link. */
2655 struct bfd_link_order *l;
2656 asection *elt;
2657
2658 for (l = asect->map_head.link_order; l != NULL; l = l->next)
2659 if (l->type == bfd_indirect_link_order
2660 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2661 do
2662 {
2663 /* The name is not important. Anything will do. */
2664 elf_group_name (elt->output_section) = "G";
2665 elf_section_flags (elt->output_section) |= SHF_GROUP;
2666
2667 elt = elf_next_in_group (elt);
2668 /* During a relocatable link, the lists are
2669 circular. */
2670 }
2671 while (elt != elf_next_in_group (l->u.indirect.section));
2672
2673 this_hdr->sh_type = SHT_GROUP;
2674 }
2675 else if ((asect->flags & SEC_ALLOC) != 0
2676 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2677 || (asect->flags & SEC_NEVER_LOAD) != 0))
2678 this_hdr->sh_type = SHT_NOBITS;
2679 else
2680 this_hdr->sh_type = SHT_PROGBITS;
2681 }
2682
2683 switch (this_hdr->sh_type)
2684 {
2685 default:
2686 break;
2687
2688 case SHT_STRTAB:
2689 case SHT_INIT_ARRAY:
2690 case SHT_FINI_ARRAY:
2691 case SHT_PREINIT_ARRAY:
2692 case SHT_NOTE:
2693 case SHT_NOBITS:
2694 case SHT_PROGBITS:
2695 break;
2696
2697 case SHT_HASH:
2698 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2699 break;
2700
2701 case SHT_DYNSYM:
2702 this_hdr->sh_entsize = bed->s->sizeof_sym;
2703 break;
2704
2705 case SHT_DYNAMIC:
2706 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2707 break;
2708
2709 case SHT_RELA:
2710 if (get_elf_backend_data (abfd)->may_use_rela_p)
2711 this_hdr->sh_entsize = bed->s->sizeof_rela;
2712 break;
2713
2714 case SHT_REL:
2715 if (get_elf_backend_data (abfd)->may_use_rel_p)
2716 this_hdr->sh_entsize = bed->s->sizeof_rel;
2717 break;
2718
2719 case SHT_GNU_versym:
2720 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2721 break;
2722
2723 case SHT_GNU_verdef:
2724 this_hdr->sh_entsize = 0;
2725 /* objcopy or strip will copy over sh_info, but may not set
2726 cverdefs. The linker will set cverdefs, but sh_info will be
2727 zero. */
2728 if (this_hdr->sh_info == 0)
2729 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2730 else
2731 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2732 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2733 break;
2734
2735 case SHT_GNU_verneed:
2736 this_hdr->sh_entsize = 0;
2737 /* objcopy or strip will copy over sh_info, but may not set
2738 cverrefs. The linker will set cverrefs, but sh_info will be
2739 zero. */
2740 if (this_hdr->sh_info == 0)
2741 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2742 else
2743 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2744 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2745 break;
2746
2747 case SHT_GROUP:
2748 this_hdr->sh_entsize = 4;
2749 break;
2750 }
2751
2752 if ((asect->flags & SEC_ALLOC) != 0)
2753 this_hdr->sh_flags |= SHF_ALLOC;
2754 if ((asect->flags & SEC_READONLY) == 0)
2755 this_hdr->sh_flags |= SHF_WRITE;
2756 if ((asect->flags & SEC_CODE) != 0)
2757 this_hdr->sh_flags |= SHF_EXECINSTR;
2758 if ((asect->flags & SEC_MERGE) != 0)
2759 {
2760 this_hdr->sh_flags |= SHF_MERGE;
2761 this_hdr->sh_entsize = asect->entsize;
2762 if ((asect->flags & SEC_STRINGS) != 0)
2763 this_hdr->sh_flags |= SHF_STRINGS;
2764 }
2765 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2766 this_hdr->sh_flags |= SHF_GROUP;
2767 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2768 {
2769 this_hdr->sh_flags |= SHF_TLS;
2770 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2771 {
2772 struct bfd_link_order *o;
2773
2774 this_hdr->sh_size = 0;
2775 for (o = asect->map_head.link_order; o != NULL; o = o->next)
2776 if (this_hdr->sh_size < o->offset + o->size)
2777 this_hdr->sh_size = o->offset + o->size;
2778 if (this_hdr->sh_size)
2779 this_hdr->sh_type = SHT_NOBITS;
2780 }
2781 }
2782
2783 /* Check for processor-specific section types. */
2784 if (bed->elf_backend_fake_sections
2785 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2786 *failedptr = TRUE;
2787
2788 /* If the section has relocs, set up a section header for the
2789 SHT_REL[A] section. If two relocation sections are required for
2790 this section, it is up to the processor-specific back-end to
2791 create the other. */
2792 if ((asect->flags & SEC_RELOC) != 0
2793 && !_bfd_elf_init_reloc_shdr (abfd,
2794 &elf_section_data (asect)->rel_hdr,
2795 asect,
2796 asect->use_rela_p))
2797 *failedptr = TRUE;
2798 }
2799
2800 /* Fill in the contents of a SHT_GROUP section. */
2801
2802 void
2803 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2804 {
2805 bfd_boolean *failedptr = failedptrarg;
2806 unsigned long symindx;
2807 asection *elt, *first;
2808 unsigned char *loc;
2809 struct bfd_link_order *l;
2810 bfd_boolean gas;
2811
2812 /* Ignore linker created group section. See elfNN_ia64_object_p in
2813 elfxx-ia64.c. */
2814 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2815 || *failedptr)
2816 return;
2817
2818 symindx = 0;
2819 if (elf_group_id (sec) != NULL)
2820 symindx = elf_group_id (sec)->udata.i;
2821
2822 if (symindx == 0)
2823 {
2824 /* If called from the assembler, swap_out_syms will have set up
2825 elf_section_syms; If called for "ld -r", use target_index. */
2826 if (elf_section_syms (abfd) != NULL)
2827 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2828 else
2829 symindx = sec->target_index;
2830 }
2831 elf_section_data (sec)->this_hdr.sh_info = symindx;
2832
2833 /* The contents won't be allocated for "ld -r" or objcopy. */
2834 gas = TRUE;
2835 if (sec->contents == NULL)
2836 {
2837 gas = FALSE;
2838 sec->contents = bfd_alloc (abfd, sec->size);
2839
2840 /* Arrange for the section to be written out. */
2841 elf_section_data (sec)->this_hdr.contents = sec->contents;
2842 if (sec->contents == NULL)
2843 {
2844 *failedptr = TRUE;
2845 return;
2846 }
2847 }
2848
2849 loc = sec->contents + sec->size;
2850
2851 /* Get the pointer to the first section in the group that gas
2852 squirreled away here. objcopy arranges for this to be set to the
2853 start of the input section group. */
2854 first = elt = elf_next_in_group (sec);
2855
2856 /* First element is a flag word. Rest of section is elf section
2857 indices for all the sections of the group. Write them backwards
2858 just to keep the group in the same order as given in .section
2859 directives, not that it matters. */
2860 while (elt != NULL)
2861 {
2862 asection *s;
2863 unsigned int idx;
2864
2865 loc -= 4;
2866 s = elt;
2867 if (!gas)
2868 s = s->output_section;
2869 idx = 0;
2870 if (s != NULL)
2871 idx = elf_section_data (s)->this_idx;
2872 H_PUT_32 (abfd, idx, loc);
2873 elt = elf_next_in_group (elt);
2874 if (elt == first)
2875 break;
2876 }
2877
2878 /* If this is a relocatable link, then the above did nothing because
2879 SEC is the output section. Look through the input sections
2880 instead. */
2881 for (l = sec->map_head.link_order; l != NULL; l = l->next)
2882 if (l->type == bfd_indirect_link_order
2883 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2884 do
2885 {
2886 loc -= 4;
2887 H_PUT_32 (abfd,
2888 elf_section_data (elt->output_section)->this_idx, loc);
2889 elt = elf_next_in_group (elt);
2890 /* During a relocatable link, the lists are circular. */
2891 }
2892 while (elt != elf_next_in_group (l->u.indirect.section));
2893
2894 if ((loc -= 4) != sec->contents)
2895 abort ();
2896
2897 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2898 }
2899
2900 /* Assign all ELF section numbers. The dummy first section is handled here
2901 too. The link/info pointers for the standard section types are filled
2902 in here too, while we're at it. */
2903
2904 static bfd_boolean
2905 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2906 {
2907 struct elf_obj_tdata *t = elf_tdata (abfd);
2908 asection *sec;
2909 unsigned int section_number, secn;
2910 Elf_Internal_Shdr **i_shdrp;
2911 bfd_size_type amt;
2912 struct bfd_elf_section_data *d;
2913
2914 section_number = 1;
2915
2916 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2917
2918 /* SHT_GROUP sections are in relocatable files only. */
2919 if (link_info == NULL || link_info->relocatable)
2920 {
2921 /* Put SHT_GROUP sections first. */
2922 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2923 {
2924 d = elf_section_data (sec);
2925
2926 if (d->this_hdr.sh_type == SHT_GROUP)
2927 {
2928 if (sec->flags & SEC_LINKER_CREATED)
2929 {
2930 /* Remove the linker created SHT_GROUP sections. */
2931 bfd_section_list_remove (abfd, sec);
2932 abfd->section_count--;
2933 }
2934 else
2935 {
2936 if (section_number == SHN_LORESERVE)
2937 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2938 d->this_idx = section_number++;
2939 }
2940 }
2941 }
2942 }
2943
2944 for (sec = abfd->sections; sec; sec = sec->next)
2945 {
2946 d = elf_section_data (sec);
2947
2948 if (d->this_hdr.sh_type != SHT_GROUP)
2949 {
2950 if (section_number == SHN_LORESERVE)
2951 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2952 d->this_idx = section_number++;
2953 }
2954 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2955 if ((sec->flags & SEC_RELOC) == 0)
2956 d->rel_idx = 0;
2957 else
2958 {
2959 if (section_number == SHN_LORESERVE)
2960 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2961 d->rel_idx = section_number++;
2962 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2963 }
2964
2965 if (d->rel_hdr2)
2966 {
2967 if (section_number == SHN_LORESERVE)
2968 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2969 d->rel_idx2 = section_number++;
2970 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2971 }
2972 else
2973 d->rel_idx2 = 0;
2974 }
2975
2976 if (section_number == SHN_LORESERVE)
2977 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2978 t->shstrtab_section = section_number++;
2979 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2980 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2981
2982 if (bfd_get_symcount (abfd) > 0)
2983 {
2984 if (section_number == SHN_LORESERVE)
2985 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2986 t->symtab_section = section_number++;
2987 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2988 if (section_number > SHN_LORESERVE - 2)
2989 {
2990 if (section_number == SHN_LORESERVE)
2991 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2992 t->symtab_shndx_section = section_number++;
2993 t->symtab_shndx_hdr.sh_name
2994 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2995 ".symtab_shndx", FALSE);
2996 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2997 return FALSE;
2998 }
2999 if (section_number == SHN_LORESERVE)
3000 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3001 t->strtab_section = section_number++;
3002 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3003 }
3004
3005 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3006 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3007
3008 elf_numsections (abfd) = section_number;
3009 elf_elfheader (abfd)->e_shnum = section_number;
3010 if (section_number > SHN_LORESERVE)
3011 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3012
3013 /* Set up the list of section header pointers, in agreement with the
3014 indices. */
3015 amt = section_number * sizeof (Elf_Internal_Shdr *);
3016 i_shdrp = bfd_zalloc (abfd, amt);
3017 if (i_shdrp == NULL)
3018 return FALSE;
3019
3020 amt = sizeof (Elf_Internal_Shdr);
3021 i_shdrp[0] = bfd_zalloc (abfd, amt);
3022 if (i_shdrp[0] == NULL)
3023 {
3024 bfd_release (abfd, i_shdrp);
3025 return FALSE;
3026 }
3027
3028 elf_elfsections (abfd) = i_shdrp;
3029
3030 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3031 if (bfd_get_symcount (abfd) > 0)
3032 {
3033 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3034 if (elf_numsections (abfd) > SHN_LORESERVE)
3035 {
3036 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3037 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3038 }
3039 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3040 t->symtab_hdr.sh_link = t->strtab_section;
3041 }
3042
3043 for (sec = abfd->sections; sec; sec = sec->next)
3044 {
3045 struct bfd_elf_section_data *d = elf_section_data (sec);
3046 asection *s;
3047 const char *name;
3048
3049 i_shdrp[d->this_idx] = &d->this_hdr;
3050 if (d->rel_idx != 0)
3051 i_shdrp[d->rel_idx] = &d->rel_hdr;
3052 if (d->rel_idx2 != 0)
3053 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3054
3055 /* Fill in the sh_link and sh_info fields while we're at it. */
3056
3057 /* sh_link of a reloc section is the section index of the symbol
3058 table. sh_info is the section index of the section to which
3059 the relocation entries apply. */
3060 if (d->rel_idx != 0)
3061 {
3062 d->rel_hdr.sh_link = t->symtab_section;
3063 d->rel_hdr.sh_info = d->this_idx;
3064 }
3065 if (d->rel_idx2 != 0)
3066 {
3067 d->rel_hdr2->sh_link = t->symtab_section;
3068 d->rel_hdr2->sh_info = d->this_idx;
3069 }
3070
3071 /* We need to set up sh_link for SHF_LINK_ORDER. */
3072 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3073 {
3074 s = elf_linked_to_section (sec);
3075 if (s)
3076 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3077 else
3078 {
3079 struct bfd_link_order *p;
3080
3081 /* Find out what the corresponding section in output
3082 is. */
3083 for (p = sec->map_head.link_order; p != NULL; p = p->next)
3084 {
3085 s = p->u.indirect.section;
3086 if (p->type == bfd_indirect_link_order
3087 && (bfd_get_flavour (s->owner)
3088 == bfd_target_elf_flavour))
3089 {
3090 Elf_Internal_Shdr ** const elf_shdrp
3091 = elf_elfsections (s->owner);
3092 int elfsec
3093 = _bfd_elf_section_from_bfd_section (s->owner, s);
3094 elfsec = elf_shdrp[elfsec]->sh_link;
3095 /* PR 290:
3096 The Intel C compiler generates SHT_IA_64_UNWIND with
3097 SHF_LINK_ORDER. But it doesn't set the sh_link or
3098 sh_info fields. Hence we could get the situation
3099 where elfsec is 0. */
3100 if (elfsec == 0)
3101 {
3102 const struct elf_backend_data *bed
3103 = get_elf_backend_data (abfd);
3104 if (bed->link_order_error_handler)
3105 bed->link_order_error_handler
3106 (_("%B: warning: sh_link not set for section `%A'"),
3107 abfd, s);
3108 }
3109 else
3110 {
3111 s = elf_shdrp[elfsec]->bfd_section;
3112 if (elf_discarded_section (s))
3113 {
3114 asection *kept;
3115 (*_bfd_error_handler)
3116 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3117 abfd, d->this_hdr.bfd_section,
3118 s, s->owner);
3119 /* Point to the kept section if it has
3120 the same size as the discarded
3121 one. */
3122 kept = _bfd_elf_check_kept_section (s);
3123 if (kept == NULL)
3124 {
3125 bfd_set_error (bfd_error_bad_value);
3126 return FALSE;
3127 }
3128 s = kept;
3129 }
3130 s = s->output_section;
3131 BFD_ASSERT (s != NULL);
3132 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3133 }
3134 break;
3135 }
3136 }
3137 }
3138 }
3139
3140 switch (d->this_hdr.sh_type)
3141 {
3142 case SHT_REL:
3143 case SHT_RELA:
3144 /* A reloc section which we are treating as a normal BFD
3145 section. sh_link is the section index of the symbol
3146 table. sh_info is the section index of the section to
3147 which the relocation entries apply. We assume that an
3148 allocated reloc section uses the dynamic symbol table.
3149 FIXME: How can we be sure? */
3150 s = bfd_get_section_by_name (abfd, ".dynsym");
3151 if (s != NULL)
3152 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3153
3154 /* We look up the section the relocs apply to by name. */
3155 name = sec->name;
3156 if (d->this_hdr.sh_type == SHT_REL)
3157 name += 4;
3158 else
3159 name += 5;
3160 s = bfd_get_section_by_name (abfd, name);
3161 if (s != NULL)
3162 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3163 break;
3164
3165 case SHT_STRTAB:
3166 /* We assume that a section named .stab*str is a stabs
3167 string section. We look for a section with the same name
3168 but without the trailing ``str'', and set its sh_link
3169 field to point to this section. */
3170 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3171 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3172 {
3173 size_t len;
3174 char *alc;
3175
3176 len = strlen (sec->name);
3177 alc = bfd_malloc (len - 2);
3178 if (alc == NULL)
3179 return FALSE;
3180 memcpy (alc, sec->name, len - 3);
3181 alc[len - 3] = '\0';
3182 s = bfd_get_section_by_name (abfd, alc);
3183 free (alc);
3184 if (s != NULL)
3185 {
3186 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3187
3188 /* This is a .stab section. */
3189 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3190 elf_section_data (s)->this_hdr.sh_entsize
3191 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3192 }
3193 }
3194 break;
3195
3196 case SHT_DYNAMIC:
3197 case SHT_DYNSYM:
3198 case SHT_GNU_verneed:
3199 case SHT_GNU_verdef:
3200 /* sh_link is the section header index of the string table
3201 used for the dynamic entries, or the symbol table, or the
3202 version strings. */
3203 s = bfd_get_section_by_name (abfd, ".dynstr");
3204 if (s != NULL)
3205 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3206 break;
3207
3208 case SHT_GNU_LIBLIST:
3209 /* sh_link is the section header index of the prelink library
3210 list
3211 used for the dynamic entries, or the symbol table, or the
3212 version strings. */
3213 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3214 ? ".dynstr" : ".gnu.libstr");
3215 if (s != NULL)
3216 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3217 break;
3218
3219 case SHT_HASH:
3220 case SHT_GNU_versym:
3221 /* sh_link is the section header index of the symbol table
3222 this hash table or version table is for. */
3223 s = bfd_get_section_by_name (abfd, ".dynsym");
3224 if (s != NULL)
3225 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3226 break;
3227
3228 case SHT_GROUP:
3229 d->this_hdr.sh_link = t->symtab_section;
3230 }
3231 }
3232
3233 for (secn = 1; secn < section_number; ++secn)
3234 if (i_shdrp[secn] == NULL)
3235 i_shdrp[secn] = i_shdrp[0];
3236 else
3237 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3238 i_shdrp[secn]->sh_name);
3239 return TRUE;
3240 }
3241
3242 /* Map symbol from it's internal number to the external number, moving
3243 all local symbols to be at the head of the list. */
3244
3245 static int
3246 sym_is_global (bfd *abfd, asymbol *sym)
3247 {
3248 /* If the backend has a special mapping, use it. */
3249 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3250 if (bed->elf_backend_sym_is_global)
3251 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3252
3253 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3254 || bfd_is_und_section (bfd_get_section (sym))
3255 || bfd_is_com_section (bfd_get_section (sym)));
3256 }
3257
3258 static bfd_boolean
3259 elf_map_symbols (bfd *abfd)
3260 {
3261 unsigned int symcount = bfd_get_symcount (abfd);
3262 asymbol **syms = bfd_get_outsymbols (abfd);
3263 asymbol **sect_syms;
3264 unsigned int num_locals = 0;
3265 unsigned int num_globals = 0;
3266 unsigned int num_locals2 = 0;
3267 unsigned int num_globals2 = 0;
3268 int max_index = 0;
3269 unsigned int idx;
3270 asection *asect;
3271 asymbol **new_syms;
3272 bfd_size_type amt;
3273
3274 #ifdef DEBUG
3275 fprintf (stderr, "elf_map_symbols\n");
3276 fflush (stderr);
3277 #endif
3278
3279 for (asect = abfd->sections; asect; asect = asect->next)
3280 {
3281 if (max_index < asect->index)
3282 max_index = asect->index;
3283 }
3284
3285 max_index++;
3286 amt = max_index * sizeof (asymbol *);
3287 sect_syms = bfd_zalloc (abfd, amt);
3288 if (sect_syms == NULL)
3289 return FALSE;
3290 elf_section_syms (abfd) = sect_syms;
3291 elf_num_section_syms (abfd) = max_index;
3292
3293 /* Init sect_syms entries for any section symbols we have already
3294 decided to output. */
3295 for (idx = 0; idx < symcount; idx++)
3296 {
3297 asymbol *sym = syms[idx];
3298
3299 if ((sym->flags & BSF_SECTION_SYM) != 0
3300 && sym->value == 0)
3301 {
3302 asection *sec;
3303
3304 sec = sym->section;
3305
3306 if (sec->owner != NULL)
3307 {
3308 if (sec->owner != abfd)
3309 {
3310 if (sec->output_offset != 0)
3311 continue;
3312
3313 sec = sec->output_section;
3314
3315 /* Empty sections in the input files may have had a
3316 section symbol created for them. (See the comment
3317 near the end of _bfd_generic_link_output_symbols in
3318 linker.c). If the linker script discards such
3319 sections then we will reach this point. Since we know
3320 that we cannot avoid this case, we detect it and skip
3321 the abort and the assignment to the sect_syms array.
3322 To reproduce this particular case try running the
3323 linker testsuite test ld-scripts/weak.exp for an ELF
3324 port that uses the generic linker. */
3325 if (sec->owner == NULL)
3326 continue;
3327
3328 BFD_ASSERT (sec->owner == abfd);
3329 }
3330 sect_syms[sec->index] = syms[idx];
3331 }
3332 }
3333 }
3334
3335 /* Classify all of the symbols. */
3336 for (idx = 0; idx < symcount; idx++)
3337 {
3338 if (!sym_is_global (abfd, syms[idx]))
3339 num_locals++;
3340 else
3341 num_globals++;
3342 }
3343
3344 /* We will be adding a section symbol for each BFD section. Most normal
3345 sections will already have a section symbol in outsymbols, but
3346 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3347 at least in that case. */
3348 for (asect = abfd->sections; asect; asect = asect->next)
3349 {
3350 if (sect_syms[asect->index] == NULL)
3351 {
3352 if (!sym_is_global (abfd, asect->symbol))
3353 num_locals++;
3354 else
3355 num_globals++;
3356 }
3357 }
3358
3359 /* Now sort the symbols so the local symbols are first. */
3360 amt = (num_locals + num_globals) * sizeof (asymbol *);
3361 new_syms = bfd_alloc (abfd, amt);
3362
3363 if (new_syms == NULL)
3364 return FALSE;
3365
3366 for (idx = 0; idx < symcount; idx++)
3367 {
3368 asymbol *sym = syms[idx];
3369 unsigned int i;
3370
3371 if (!sym_is_global (abfd, sym))
3372 i = num_locals2++;
3373 else
3374 i = num_locals + num_globals2++;
3375 new_syms[i] = sym;
3376 sym->udata.i = i + 1;
3377 }
3378 for (asect = abfd->sections; asect; asect = asect->next)
3379 {
3380 if (sect_syms[asect->index] == NULL)
3381 {
3382 asymbol *sym = asect->symbol;
3383 unsigned int i;
3384
3385 sect_syms[asect->index] = sym;
3386 if (!sym_is_global (abfd, sym))
3387 i = num_locals2++;
3388 else
3389 i = num_locals + num_globals2++;
3390 new_syms[i] = sym;
3391 sym->udata.i = i + 1;
3392 }
3393 }
3394
3395 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3396
3397 elf_num_locals (abfd) = num_locals;
3398 elf_num_globals (abfd) = num_globals;
3399 return TRUE;
3400 }
3401
3402 /* Align to the maximum file alignment that could be required for any
3403 ELF data structure. */
3404
3405 static inline file_ptr
3406 align_file_position (file_ptr off, int align)
3407 {
3408 return (off + align - 1) & ~(align - 1);
3409 }
3410
3411 /* Assign a file position to a section, optionally aligning to the
3412 required section alignment. */
3413
3414 file_ptr
3415 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3416 file_ptr offset,
3417 bfd_boolean align)
3418 {
3419 if (align)
3420 {
3421 unsigned int al;
3422
3423 al = i_shdrp->sh_addralign;
3424 if (al > 1)
3425 offset = BFD_ALIGN (offset, al);
3426 }
3427 i_shdrp->sh_offset = offset;
3428 if (i_shdrp->bfd_section != NULL)
3429 i_shdrp->bfd_section->filepos = offset;
3430 if (i_shdrp->sh_type != SHT_NOBITS)
3431 offset += i_shdrp->sh_size;
3432 return offset;
3433 }
3434
3435 /* Compute the file positions we are going to put the sections at, and
3436 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3437 is not NULL, this is being called by the ELF backend linker. */
3438
3439 bfd_boolean
3440 _bfd_elf_compute_section_file_positions (bfd *abfd,
3441 struct bfd_link_info *link_info)
3442 {
3443 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3444 bfd_boolean failed;
3445 struct bfd_strtab_hash *strtab = NULL;
3446 Elf_Internal_Shdr *shstrtab_hdr;
3447
3448 if (abfd->output_has_begun)
3449 return TRUE;
3450
3451 /* Do any elf backend specific processing first. */
3452 if (bed->elf_backend_begin_write_processing)
3453 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3454
3455 if (! prep_headers (abfd))
3456 return FALSE;
3457
3458 /* Post process the headers if necessary. */
3459 if (bed->elf_backend_post_process_headers)
3460 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3461
3462 failed = FALSE;
3463 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3464 if (failed)
3465 return FALSE;
3466
3467 if (!assign_section_numbers (abfd, link_info))
3468 return FALSE;
3469
3470 /* The backend linker builds symbol table information itself. */
3471 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3472 {
3473 /* Non-zero if doing a relocatable link. */
3474 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3475
3476 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3477 return FALSE;
3478 }
3479
3480 if (link_info == NULL)
3481 {
3482 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3483 if (failed)
3484 return FALSE;
3485 }
3486
3487 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3488 /* sh_name was set in prep_headers. */
3489 shstrtab_hdr->sh_type = SHT_STRTAB;
3490 shstrtab_hdr->sh_flags = 0;
3491 shstrtab_hdr->sh_addr = 0;
3492 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3493 shstrtab_hdr->sh_entsize = 0;
3494 shstrtab_hdr->sh_link = 0;
3495 shstrtab_hdr->sh_info = 0;
3496 /* sh_offset is set in assign_file_positions_except_relocs. */
3497 shstrtab_hdr->sh_addralign = 1;
3498
3499 if (!assign_file_positions_except_relocs (abfd, link_info))
3500 return FALSE;
3501
3502 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3503 {
3504 file_ptr off;
3505 Elf_Internal_Shdr *hdr;
3506
3507 off = elf_tdata (abfd)->next_file_pos;
3508
3509 hdr = &elf_tdata (abfd)->symtab_hdr;
3510 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3511
3512 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3513 if (hdr->sh_size != 0)
3514 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3515
3516 hdr = &elf_tdata (abfd)->strtab_hdr;
3517 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3518
3519 elf_tdata (abfd)->next_file_pos = off;
3520
3521 /* Now that we know where the .strtab section goes, write it
3522 out. */
3523 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3524 || ! _bfd_stringtab_emit (abfd, strtab))
3525 return FALSE;
3526 _bfd_stringtab_free (strtab);
3527 }
3528
3529 abfd->output_has_begun = TRUE;
3530
3531 return TRUE;
3532 }
3533
3534 /* Create a mapping from a set of sections to a program segment. */
3535
3536 static struct elf_segment_map *
3537 make_mapping (bfd *abfd,
3538 asection **sections,
3539 unsigned int from,
3540 unsigned int to,
3541 bfd_boolean phdr)
3542 {
3543 struct elf_segment_map *m;
3544 unsigned int i;
3545 asection **hdrpp;
3546 bfd_size_type amt;
3547
3548 amt = sizeof (struct elf_segment_map);
3549 amt += (to - from - 1) * sizeof (asection *);
3550 m = bfd_zalloc (abfd, amt);
3551 if (m == NULL)
3552 return NULL;
3553 m->next = NULL;
3554 m->p_type = PT_LOAD;
3555 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3556 m->sections[i - from] = *hdrpp;
3557 m->count = to - from;
3558
3559 if (from == 0 && phdr)
3560 {
3561 /* Include the headers in the first PT_LOAD segment. */
3562 m->includes_filehdr = 1;
3563 m->includes_phdrs = 1;
3564 }
3565
3566 return m;
3567 }
3568
3569 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3570 on failure. */
3571
3572 struct elf_segment_map *
3573 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3574 {
3575 struct elf_segment_map *m;
3576
3577 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3578 if (m == NULL)
3579 return NULL;
3580 m->next = NULL;
3581 m->p_type = PT_DYNAMIC;
3582 m->count = 1;
3583 m->sections[0] = dynsec;
3584
3585 return m;
3586 }
3587
3588 /* Set up a mapping from BFD sections to program segments. */
3589
3590 static bfd_boolean
3591 map_sections_to_segments (bfd *abfd)
3592 {
3593 asection **sections = NULL;
3594 asection *s;
3595 unsigned int i;
3596 unsigned int count;
3597 struct elf_segment_map *mfirst;
3598 struct elf_segment_map **pm;
3599 struct elf_segment_map *m;
3600 asection *last_hdr;
3601 bfd_vma last_size;
3602 unsigned int phdr_index;
3603 bfd_vma maxpagesize;
3604 asection **hdrpp;
3605 bfd_boolean phdr_in_segment = TRUE;
3606 bfd_boolean writable;
3607 int tls_count = 0;
3608 asection *first_tls = NULL;
3609 asection *dynsec, *eh_frame_hdr;
3610 bfd_size_type amt;
3611
3612 if (elf_tdata (abfd)->segment_map != NULL)
3613 return TRUE;
3614
3615 if (bfd_count_sections (abfd) == 0)
3616 return TRUE;
3617
3618 /* Select the allocated sections, and sort them. */
3619
3620 amt = bfd_count_sections (abfd) * sizeof (asection *);
3621 sections = bfd_malloc (amt);
3622 if (sections == NULL)
3623 goto error_return;
3624
3625 i = 0;
3626 for (s = abfd->sections; s != NULL; s = s->next)
3627 {
3628 if ((s->flags & SEC_ALLOC) != 0)
3629 {
3630 sections[i] = s;
3631 ++i;
3632 }
3633 }
3634 BFD_ASSERT (i <= bfd_count_sections (abfd));
3635 count = i;
3636
3637 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3638
3639 /* Build the mapping. */
3640
3641 mfirst = NULL;
3642 pm = &mfirst;
3643
3644 /* If we have a .interp section, then create a PT_PHDR segment for
3645 the program headers and a PT_INTERP segment for the .interp
3646 section. */
3647 s = bfd_get_section_by_name (abfd, ".interp");
3648 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3649 {
3650 amt = sizeof (struct elf_segment_map);
3651 m = bfd_zalloc (abfd, amt);
3652 if (m == NULL)
3653 goto error_return;
3654 m->next = NULL;
3655 m->p_type = PT_PHDR;
3656 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3657 m->p_flags = PF_R | PF_X;
3658 m->p_flags_valid = 1;
3659 m->includes_phdrs = 1;
3660
3661 *pm = m;
3662 pm = &m->next;
3663
3664 amt = sizeof (struct elf_segment_map);
3665 m = bfd_zalloc (abfd, amt);
3666 if (m == NULL)
3667 goto error_return;
3668 m->next = NULL;
3669 m->p_type = PT_INTERP;
3670 m->count = 1;
3671 m->sections[0] = s;
3672
3673 *pm = m;
3674 pm = &m->next;
3675 }
3676
3677 /* Look through the sections. We put sections in the same program
3678 segment when the start of the second section can be placed within
3679 a few bytes of the end of the first section. */
3680 last_hdr = NULL;
3681 last_size = 0;
3682 phdr_index = 0;
3683 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3684 writable = FALSE;
3685 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3686 if (dynsec != NULL
3687 && (dynsec->flags & SEC_LOAD) == 0)
3688 dynsec = NULL;
3689
3690 /* Deal with -Ttext or something similar such that the first section
3691 is not adjacent to the program headers. This is an
3692 approximation, since at this point we don't know exactly how many
3693 program headers we will need. */
3694 if (count > 0)
3695 {
3696 bfd_size_type phdr_size;
3697
3698 phdr_size = elf_tdata (abfd)->program_header_size;
3699 if (phdr_size == 0)
3700 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3701 if ((abfd->flags & D_PAGED) == 0
3702 || sections[0]->lma < phdr_size
3703 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3704 phdr_in_segment = FALSE;
3705 }
3706
3707 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3708 {
3709 asection *hdr;
3710 bfd_boolean new_segment;
3711
3712 hdr = *hdrpp;
3713
3714 /* See if this section and the last one will fit in the same
3715 segment. */
3716
3717 if (last_hdr == NULL)
3718 {
3719 /* If we don't have a segment yet, then we don't need a new
3720 one (we build the last one after this loop). */
3721 new_segment = FALSE;
3722 }
3723 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3724 {
3725 /* If this section has a different relation between the
3726 virtual address and the load address, then we need a new
3727 segment. */
3728 new_segment = TRUE;
3729 }
3730 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3731 < BFD_ALIGN (hdr->lma, maxpagesize))
3732 {
3733 /* If putting this section in this segment would force us to
3734 skip a page in the segment, then we need a new segment. */
3735 new_segment = TRUE;
3736 }
3737 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3738 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3739 {
3740 /* We don't want to put a loadable section after a
3741 nonloadable section in the same segment.
3742 Consider .tbss sections as loadable for this purpose. */
3743 new_segment = TRUE;
3744 }
3745 else if ((abfd->flags & D_PAGED) == 0)
3746 {
3747 /* If the file is not demand paged, which means that we
3748 don't require the sections to be correctly aligned in the
3749 file, then there is no other reason for a new segment. */
3750 new_segment = FALSE;
3751 }
3752 else if (! writable
3753 && (hdr->flags & SEC_READONLY) == 0
3754 && (((last_hdr->lma + last_size - 1)
3755 & ~(maxpagesize - 1))
3756 != (hdr->lma & ~(maxpagesize - 1))))
3757 {
3758 /* We don't want to put a writable section in a read only
3759 segment, unless they are on the same page in memory
3760 anyhow. We already know that the last section does not
3761 bring us past the current section on the page, so the
3762 only case in which the new section is not on the same
3763 page as the previous section is when the previous section
3764 ends precisely on a page boundary. */
3765 new_segment = TRUE;
3766 }
3767 else
3768 {
3769 /* Otherwise, we can use the same segment. */
3770 new_segment = FALSE;
3771 }
3772
3773 if (! new_segment)
3774 {
3775 if ((hdr->flags & SEC_READONLY) == 0)
3776 writable = TRUE;
3777 last_hdr = hdr;
3778 /* .tbss sections effectively have zero size. */
3779 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3780 last_size = hdr->size;
3781 else
3782 last_size = 0;
3783 continue;
3784 }
3785
3786 /* We need a new program segment. We must create a new program
3787 header holding all the sections from phdr_index until hdr. */
3788
3789 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3790 if (m == NULL)
3791 goto error_return;
3792
3793 *pm = m;
3794 pm = &m->next;
3795
3796 if ((hdr->flags & SEC_READONLY) == 0)
3797 writable = TRUE;
3798 else
3799 writable = FALSE;
3800
3801 last_hdr = hdr;
3802 /* .tbss sections effectively have zero size. */
3803 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3804 last_size = hdr->size;
3805 else
3806 last_size = 0;
3807 phdr_index = i;
3808 phdr_in_segment = FALSE;
3809 }
3810
3811 /* Create a final PT_LOAD program segment. */
3812 if (last_hdr != NULL)
3813 {
3814 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3815 if (m == NULL)
3816 goto error_return;
3817
3818 *pm = m;
3819 pm = &m->next;
3820 }
3821
3822 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3823 if (dynsec != NULL)
3824 {
3825 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3826 if (m == NULL)
3827 goto error_return;
3828 *pm = m;
3829 pm = &m->next;
3830 }
3831
3832 /* For each loadable .note section, add a PT_NOTE segment. We don't
3833 use bfd_get_section_by_name, because if we link together
3834 nonloadable .note sections and loadable .note sections, we will
3835 generate two .note sections in the output file. FIXME: Using
3836 names for section types is bogus anyhow. */
3837 for (s = abfd->sections; s != NULL; s = s->next)
3838 {
3839 if ((s->flags & SEC_LOAD) != 0
3840 && strncmp (s->name, ".note", 5) == 0)
3841 {
3842 amt = sizeof (struct elf_segment_map);
3843 m = bfd_zalloc (abfd, amt);
3844 if (m == NULL)
3845 goto error_return;
3846 m->next = NULL;
3847 m->p_type = PT_NOTE;
3848 m->count = 1;
3849 m->sections[0] = s;
3850
3851 *pm = m;
3852 pm = &m->next;
3853 }
3854 if (s->flags & SEC_THREAD_LOCAL)
3855 {
3856 if (! tls_count)
3857 first_tls = s;
3858 tls_count++;
3859 }
3860 }
3861
3862 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3863 if (tls_count > 0)
3864 {
3865 int i;
3866
3867 amt = sizeof (struct elf_segment_map);
3868 amt += (tls_count - 1) * sizeof (asection *);
3869 m = bfd_zalloc (abfd, amt);
3870 if (m == NULL)
3871 goto error_return;
3872 m->next = NULL;
3873 m->p_type = PT_TLS;
3874 m->count = tls_count;
3875 /* Mandated PF_R. */
3876 m->p_flags = PF_R;
3877 m->p_flags_valid = 1;
3878 for (i = 0; i < tls_count; ++i)
3879 {
3880 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3881 m->sections[i] = first_tls;
3882 first_tls = first_tls->next;
3883 }
3884
3885 *pm = m;
3886 pm = &m->next;
3887 }
3888
3889 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3890 segment. */
3891 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3892 if (eh_frame_hdr != NULL
3893 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3894 {
3895 amt = sizeof (struct elf_segment_map);
3896 m = bfd_zalloc (abfd, amt);
3897 if (m == NULL)
3898 goto error_return;
3899 m->next = NULL;
3900 m->p_type = PT_GNU_EH_FRAME;
3901 m->count = 1;
3902 m->sections[0] = eh_frame_hdr->output_section;
3903
3904 *pm = m;
3905 pm = &m->next;
3906 }
3907
3908 if (elf_tdata (abfd)->stack_flags)
3909 {
3910 amt = sizeof (struct elf_segment_map);
3911 m = bfd_zalloc (abfd, amt);
3912 if (m == NULL)
3913 goto error_return;
3914 m->next = NULL;
3915 m->p_type = PT_GNU_STACK;
3916 m->p_flags = elf_tdata (abfd)->stack_flags;
3917 m->p_flags_valid = 1;
3918
3919 *pm = m;
3920 pm = &m->next;
3921 }
3922
3923 if (elf_tdata (abfd)->relro)
3924 {
3925 amt = sizeof (struct elf_segment_map);
3926 m = bfd_zalloc (abfd, amt);
3927 if (m == NULL)
3928 goto error_return;
3929 m->next = NULL;
3930 m->p_type = PT_GNU_RELRO;
3931 m->p_flags = PF_R;
3932 m->p_flags_valid = 1;
3933
3934 *pm = m;
3935 pm = &m->next;
3936 }
3937
3938 free (sections);
3939 sections = NULL;
3940
3941 elf_tdata (abfd)->segment_map = mfirst;
3942 return TRUE;
3943
3944 error_return:
3945 if (sections != NULL)
3946 free (sections);
3947 return FALSE;
3948 }
3949
3950 /* Sort sections by address. */
3951
3952 static int
3953 elf_sort_sections (const void *arg1, const void *arg2)
3954 {
3955 const asection *sec1 = *(const asection **) arg1;
3956 const asection *sec2 = *(const asection **) arg2;
3957 bfd_size_type size1, size2;
3958
3959 /* Sort by LMA first, since this is the address used to
3960 place the section into a segment. */
3961 if (sec1->lma < sec2->lma)
3962 return -1;
3963 else if (sec1->lma > sec2->lma)
3964 return 1;
3965
3966 /* Then sort by VMA. Normally the LMA and the VMA will be
3967 the same, and this will do nothing. */
3968 if (sec1->vma < sec2->vma)
3969 return -1;
3970 else if (sec1->vma > sec2->vma)
3971 return 1;
3972
3973 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3974
3975 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3976
3977 if (TOEND (sec1))
3978 {
3979 if (TOEND (sec2))
3980 {
3981 /* If the indicies are the same, do not return 0
3982 here, but continue to try the next comparison. */
3983 if (sec1->target_index - sec2->target_index != 0)
3984 return sec1->target_index - sec2->target_index;
3985 }
3986 else
3987 return 1;
3988 }
3989 else if (TOEND (sec2))
3990 return -1;
3991
3992 #undef TOEND
3993
3994 /* Sort by size, to put zero sized sections
3995 before others at the same address. */
3996
3997 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3998 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3999
4000 if (size1 < size2)
4001 return -1;
4002 if (size1 > size2)
4003 return 1;
4004
4005 return sec1->target_index - sec2->target_index;
4006 }
4007
4008 /* Ian Lance Taylor writes:
4009
4010 We shouldn't be using % with a negative signed number. That's just
4011 not good. We have to make sure either that the number is not
4012 negative, or that the number has an unsigned type. When the types
4013 are all the same size they wind up as unsigned. When file_ptr is a
4014 larger signed type, the arithmetic winds up as signed long long,
4015 which is wrong.
4016
4017 What we're trying to say here is something like ``increase OFF by
4018 the least amount that will cause it to be equal to the VMA modulo
4019 the page size.'' */
4020 /* In other words, something like:
4021
4022 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4023 off_offset = off % bed->maxpagesize;
4024 if (vma_offset < off_offset)
4025 adjustment = vma_offset + bed->maxpagesize - off_offset;
4026 else
4027 adjustment = vma_offset - off_offset;
4028
4029 which can can be collapsed into the expression below. */
4030
4031 static file_ptr
4032 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4033 {
4034 return ((vma - off) % maxpagesize);
4035 }
4036
4037 /* Assign file positions to the sections based on the mapping from
4038 sections to segments. This function also sets up some fields in
4039 the file header, and writes out the program headers. */
4040
4041 static bfd_boolean
4042 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
4043 {
4044 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4045 unsigned int count;
4046 struct elf_segment_map *m;
4047 unsigned int alloc;
4048 Elf_Internal_Phdr *phdrs;
4049 file_ptr off, voff;
4050 bfd_vma filehdr_vaddr, filehdr_paddr;
4051 bfd_vma phdrs_vaddr, phdrs_paddr;
4052 Elf_Internal_Phdr *p;
4053 bfd_size_type amt;
4054
4055 if (elf_tdata (abfd)->segment_map == NULL)
4056 {
4057 if (! map_sections_to_segments (abfd))
4058 return FALSE;
4059 }
4060 else
4061 {
4062 /* The placement algorithm assumes that non allocated sections are
4063 not in PT_LOAD segments. We ensure this here by removing such
4064 sections from the segment map. */
4065 for (m = elf_tdata (abfd)->segment_map;
4066 m != NULL;
4067 m = m->next)
4068 {
4069 unsigned int new_count;
4070 unsigned int i;
4071
4072 if (m->p_type != PT_LOAD)
4073 continue;
4074
4075 new_count = 0;
4076 for (i = 0; i < m->count; i ++)
4077 {
4078 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
4079 {
4080 if (i != new_count)
4081 m->sections[new_count] = m->sections[i];
4082
4083 new_count ++;
4084 }
4085 }
4086
4087 if (new_count != m->count)
4088 m->count = new_count;
4089 }
4090 }
4091
4092 if (bed->elf_backend_modify_segment_map)
4093 {
4094 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4095 return FALSE;
4096 }
4097
4098 count = 0;
4099 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4100 ++count;
4101
4102 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4103 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4104 elf_elfheader (abfd)->e_phnum = count;
4105
4106 if (count == 0)
4107 {
4108 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4109 return TRUE;
4110 }
4111
4112 /* If we already counted the number of program segments, make sure
4113 that we allocated enough space. This happens when SIZEOF_HEADERS
4114 is used in a linker script. */
4115 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4116 if (alloc != 0 && count > alloc)
4117 {
4118 ((*_bfd_error_handler)
4119 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4120 abfd, alloc, count));
4121 bfd_set_error (bfd_error_bad_value);
4122 return FALSE;
4123 }
4124
4125 if (alloc == 0)
4126 alloc = count;
4127
4128 amt = alloc * sizeof (Elf_Internal_Phdr);
4129 phdrs = bfd_alloc (abfd, amt);
4130 if (phdrs == NULL)
4131 return FALSE;
4132
4133 off = bed->s->sizeof_ehdr;
4134 off += alloc * bed->s->sizeof_phdr;
4135
4136 filehdr_vaddr = 0;
4137 filehdr_paddr = 0;
4138 phdrs_vaddr = 0;
4139 phdrs_paddr = 0;
4140
4141 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4142 m != NULL;
4143 m = m->next, p++)
4144 {
4145 unsigned int i;
4146 asection **secpp;
4147
4148 /* If elf_segment_map is not from map_sections_to_segments, the
4149 sections may not be correctly ordered. NOTE: sorting should
4150 not be done to the PT_NOTE section of a corefile, which may
4151 contain several pseudo-sections artificially created by bfd.
4152 Sorting these pseudo-sections breaks things badly. */
4153 if (m->count > 1
4154 && !(elf_elfheader (abfd)->e_type == ET_CORE
4155 && m->p_type == PT_NOTE))
4156 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4157 elf_sort_sections);
4158
4159 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4160 number of sections with contents contributing to both p_filesz
4161 and p_memsz, followed by a number of sections with no contents
4162 that just contribute to p_memsz. In this loop, OFF tracks next
4163 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4164 an adjustment we use for segments that have no file contents
4165 but need zero filled memory allocation. */
4166 voff = 0;
4167 p->p_type = m->p_type;
4168 p->p_flags = m->p_flags;
4169
4170 if (p->p_type == PT_LOAD
4171 && m->count > 0)
4172 {
4173 bfd_size_type align;
4174 bfd_vma adjust;
4175 unsigned int align_power = 0;
4176
4177 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4178 {
4179 unsigned int secalign;
4180
4181 secalign = bfd_get_section_alignment (abfd, *secpp);
4182 if (secalign > align_power)
4183 align_power = secalign;
4184 }
4185 align = (bfd_size_type) 1 << align_power;
4186
4187 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4188 align = bed->maxpagesize;
4189
4190 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4191 off += adjust;
4192 if (adjust != 0
4193 && !m->includes_filehdr
4194 && !m->includes_phdrs
4195 && (ufile_ptr) off >= align)
4196 {
4197 /* If the first section isn't loadable, the same holds for
4198 any other sections. Since the segment won't need file
4199 space, we can make p_offset overlap some prior segment.
4200 However, .tbss is special. If a segment starts with
4201 .tbss, we need to look at the next section to decide
4202 whether the segment has any loadable sections. */
4203 i = 0;
4204 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4205 {
4206 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4207 || ++i >= m->count)
4208 {
4209 off -= adjust;
4210 voff = adjust - align;
4211 break;
4212 }
4213 }
4214 }
4215 }
4216 /* Make sure the .dynamic section is the first section in the
4217 PT_DYNAMIC segment. */
4218 else if (p->p_type == PT_DYNAMIC
4219 && m->count > 1
4220 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4221 {
4222 _bfd_error_handler
4223 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4224 abfd);
4225 bfd_set_error (bfd_error_bad_value);
4226 return FALSE;
4227 }
4228
4229 if (m->count == 0)
4230 p->p_vaddr = 0;
4231 else
4232 p->p_vaddr = m->sections[0]->vma;
4233
4234 if (m->p_paddr_valid)
4235 p->p_paddr = m->p_paddr;
4236 else if (m->count == 0)
4237 p->p_paddr = 0;
4238 else
4239 p->p_paddr = m->sections[0]->lma;
4240
4241 if (p->p_type == PT_LOAD
4242 && (abfd->flags & D_PAGED) != 0)
4243 p->p_align = bed->maxpagesize;
4244 else if (m->count == 0)
4245 p->p_align = 1 << bed->s->log_file_align;
4246 else
4247 p->p_align = 0;
4248
4249 p->p_offset = 0;
4250 p->p_filesz = 0;
4251 p->p_memsz = 0;
4252
4253 if (m->includes_filehdr)
4254 {
4255 if (! m->p_flags_valid)
4256 p->p_flags |= PF_R;
4257 p->p_offset = 0;
4258 p->p_filesz = bed->s->sizeof_ehdr;
4259 p->p_memsz = bed->s->sizeof_ehdr;
4260 if (m->count > 0)
4261 {
4262 BFD_ASSERT (p->p_type == PT_LOAD);
4263
4264 if (p->p_vaddr < (bfd_vma) off)
4265 {
4266 (*_bfd_error_handler)
4267 (_("%B: Not enough room for program headers, try linking with -N"),
4268 abfd);
4269 bfd_set_error (bfd_error_bad_value);
4270 return FALSE;
4271 }
4272
4273 p->p_vaddr -= off;
4274 if (! m->p_paddr_valid)
4275 p->p_paddr -= off;
4276 }
4277 if (p->p_type == PT_LOAD)
4278 {
4279 filehdr_vaddr = p->p_vaddr;
4280 filehdr_paddr = p->p_paddr;
4281 }
4282 }
4283
4284 if (m->includes_phdrs)
4285 {
4286 if (! m->p_flags_valid)
4287 p->p_flags |= PF_R;
4288
4289 if (m->includes_filehdr)
4290 {
4291 if (p->p_type == PT_LOAD)
4292 {
4293 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4294 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4295 }
4296 }
4297 else
4298 {
4299 p->p_offset = bed->s->sizeof_ehdr;
4300
4301 if (m->count > 0)
4302 {
4303 BFD_ASSERT (p->p_type == PT_LOAD);
4304 p->p_vaddr -= off - p->p_offset;
4305 if (! m->p_paddr_valid)
4306 p->p_paddr -= off - p->p_offset;
4307 }
4308
4309 if (p->p_type == PT_LOAD)
4310 {
4311 phdrs_vaddr = p->p_vaddr;
4312 phdrs_paddr = p->p_paddr;
4313 }
4314 else
4315 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4316 }
4317
4318 p->p_filesz += alloc * bed->s->sizeof_phdr;
4319 p->p_memsz += alloc * bed->s->sizeof_phdr;
4320 }
4321
4322 if (p->p_type == PT_LOAD
4323 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4324 {
4325 if (! m->includes_filehdr && ! m->includes_phdrs)
4326 p->p_offset = off + voff;
4327 else
4328 {
4329 file_ptr adjust;
4330
4331 adjust = off - (p->p_offset + p->p_filesz);
4332 p->p_filesz += adjust;
4333 p->p_memsz += adjust;
4334 }
4335 }
4336
4337 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4338 {
4339 asection *sec;
4340 flagword flags;
4341 bfd_size_type align;
4342
4343 sec = *secpp;
4344 flags = sec->flags;
4345 align = 1 << bfd_get_section_alignment (abfd, sec);
4346
4347 if (p->p_type == PT_LOAD
4348 || p->p_type == PT_TLS)
4349 {
4350 bfd_signed_vma adjust;
4351
4352 if ((flags & SEC_LOAD) != 0)
4353 {
4354 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4355 if (adjust < 0)
4356 {
4357 (*_bfd_error_handler)
4358 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4359 abfd, sec, (unsigned long) sec->lma);
4360 adjust = 0;
4361 }
4362 off += adjust;
4363 p->p_filesz += adjust;
4364 p->p_memsz += adjust;
4365 }
4366 /* .tbss is special. It doesn't contribute to p_memsz of
4367 normal segments. */
4368 else if ((flags & SEC_THREAD_LOCAL) == 0
4369 || p->p_type == PT_TLS)
4370 {
4371 /* The section VMA must equal the file position
4372 modulo the page size. */
4373 bfd_size_type page = align;
4374 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4375 page = bed->maxpagesize;
4376 adjust = vma_page_aligned_bias (sec->vma,
4377 p->p_vaddr + p->p_memsz,
4378 page);
4379 p->p_memsz += adjust;
4380 }
4381 }
4382
4383 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4384 {
4385 /* The section at i == 0 is the one that actually contains
4386 everything. */
4387 if (i == 0)
4388 {
4389 sec->filepos = off;
4390 off += sec->size;
4391 p->p_filesz = sec->size;
4392 p->p_memsz = 0;
4393 p->p_align = 1;
4394 }
4395 else
4396 {
4397 /* The rest are fake sections that shouldn't be written. */
4398 sec->filepos = 0;
4399 sec->size = 0;
4400 sec->flags = 0;
4401 continue;
4402 }
4403 }
4404 else
4405 {
4406 if (p->p_type == PT_LOAD)
4407 {
4408 sec->filepos = off;
4409 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4410 1997, and the exact reason for it isn't clear. One
4411 plausible explanation is that it is to work around
4412 a problem we have with linker scripts using data
4413 statements in NOLOAD sections. I don't think it
4414 makes a great deal of sense to have such a section
4415 assigned to a PT_LOAD segment, but apparently
4416 people do this. The data statement results in a
4417 bfd_data_link_order being built, and these need
4418 section contents to write into. Eventually, we get
4419 to _bfd_elf_write_object_contents which writes any
4420 section with contents to the output. Make room
4421 here for the write, so that following segments are
4422 not trashed. */
4423 if ((flags & SEC_LOAD) != 0
4424 || (flags & SEC_HAS_CONTENTS) != 0)
4425 off += sec->size;
4426 }
4427
4428 if ((flags & SEC_LOAD) != 0)
4429 {
4430 p->p_filesz += sec->size;
4431 p->p_memsz += sec->size;
4432 }
4433 /* PR ld/594: Sections in note segments which are not loaded
4434 contribute to the file size but not the in-memory size. */
4435 else if (p->p_type == PT_NOTE
4436 && (flags & SEC_HAS_CONTENTS) != 0)
4437 p->p_filesz += sec->size;
4438
4439 /* .tbss is special. It doesn't contribute to p_memsz of
4440 normal segments. */
4441 else if ((flags & SEC_THREAD_LOCAL) == 0
4442 || p->p_type == PT_TLS)
4443 p->p_memsz += sec->size;
4444
4445 if (p->p_type == PT_TLS
4446 && sec->size == 0
4447 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4448 {
4449 struct bfd_link_order *o;
4450 bfd_vma tbss_size = 0;
4451
4452 for (o = sec->map_head.link_order; o != NULL; o = o->next)
4453 if (tbss_size < o->offset + o->size)
4454 tbss_size = o->offset + o->size;
4455
4456 p->p_memsz += tbss_size;
4457 }
4458
4459 if (align > p->p_align
4460 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4461 p->p_align = align;
4462 }
4463
4464 if (! m->p_flags_valid)
4465 {
4466 p->p_flags |= PF_R;
4467 if ((flags & SEC_CODE) != 0)
4468 p->p_flags |= PF_X;
4469 if ((flags & SEC_READONLY) == 0)
4470 p->p_flags |= PF_W;
4471 }
4472 }
4473 }
4474
4475 /* Now that we have set the section file positions, we can set up
4476 the file positions for the non PT_LOAD segments. */
4477 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4478 m != NULL;
4479 m = m->next, p++)
4480 {
4481 if (p->p_type != PT_LOAD && m->count > 0)
4482 {
4483 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4484 /* If the section has not yet been assigned a file position,
4485 do so now. The ARM BPABI requires that .dynamic section
4486 not be marked SEC_ALLOC because it is not part of any
4487 PT_LOAD segment, so it will not be processed above. */
4488 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4489 {
4490 unsigned int i;
4491 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4492
4493 i = 1;
4494 while (i_shdrpp[i]->bfd_section != m->sections[0])
4495 ++i;
4496 off = (_bfd_elf_assign_file_position_for_section
4497 (i_shdrpp[i], off, TRUE));
4498 p->p_filesz = m->sections[0]->size;
4499 }
4500 p->p_offset = m->sections[0]->filepos;
4501 }
4502 if (m->count == 0)
4503 {
4504 if (m->includes_filehdr)
4505 {
4506 p->p_vaddr = filehdr_vaddr;
4507 if (! m->p_paddr_valid)
4508 p->p_paddr = filehdr_paddr;
4509 }
4510 else if (m->includes_phdrs)
4511 {
4512 p->p_vaddr = phdrs_vaddr;
4513 if (! m->p_paddr_valid)
4514 p->p_paddr = phdrs_paddr;
4515 }
4516 else if (p->p_type == PT_GNU_RELRO)
4517 {
4518 Elf_Internal_Phdr *lp;
4519
4520 for (lp = phdrs; lp < phdrs + count; ++lp)
4521 {
4522 if (lp->p_type == PT_LOAD
4523 && lp->p_vaddr <= link_info->relro_end
4524 && lp->p_vaddr >= link_info->relro_start
4525 && lp->p_vaddr + lp->p_filesz
4526 >= link_info->relro_end)
4527 break;
4528 }
4529
4530 if (lp < phdrs + count
4531 && link_info->relro_end > lp->p_vaddr)
4532 {
4533 p->p_vaddr = lp->p_vaddr;
4534 p->p_paddr = lp->p_paddr;
4535 p->p_offset = lp->p_offset;
4536 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4537 p->p_memsz = p->p_filesz;
4538 p->p_align = 1;
4539 p->p_flags = (lp->p_flags & ~PF_W);
4540 }
4541 else
4542 {
4543 memset (p, 0, sizeof *p);
4544 p->p_type = PT_NULL;
4545 }
4546 }
4547 }
4548 }
4549
4550 /* Clear out any program headers we allocated but did not use. */
4551 for (; count < alloc; count++, p++)
4552 {
4553 memset (p, 0, sizeof *p);
4554 p->p_type = PT_NULL;
4555 }
4556
4557 elf_tdata (abfd)->phdr = phdrs;
4558
4559 elf_tdata (abfd)->next_file_pos = off;
4560
4561 /* Write out the program headers. */
4562 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4563 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4564 return FALSE;
4565
4566 return TRUE;
4567 }
4568
4569 /* Get the size of the program header.
4570
4571 If this is called by the linker before any of the section VMA's are set, it
4572 can't calculate the correct value for a strange memory layout. This only
4573 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4574 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4575 data segment (exclusive of .interp and .dynamic).
4576
4577 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4578 will be two segments. */
4579
4580 static bfd_size_type
4581 get_program_header_size (bfd *abfd)
4582 {
4583 size_t segs;
4584 asection *s;
4585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4586
4587 /* We can't return a different result each time we're called. */
4588 if (elf_tdata (abfd)->program_header_size != 0)
4589 return elf_tdata (abfd)->program_header_size;
4590
4591 if (elf_tdata (abfd)->segment_map != NULL)
4592 {
4593 struct elf_segment_map *m;
4594
4595 segs = 0;
4596 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4597 ++segs;
4598 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4599 return elf_tdata (abfd)->program_header_size;
4600 }
4601
4602 /* Assume we will need exactly two PT_LOAD segments: one for text
4603 and one for data. */
4604 segs = 2;
4605
4606 s = bfd_get_section_by_name (abfd, ".interp");
4607 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4608 {
4609 /* If we have a loadable interpreter section, we need a
4610 PT_INTERP segment. In this case, assume we also need a
4611 PT_PHDR segment, although that may not be true for all
4612 targets. */
4613 segs += 2;
4614 }
4615
4616 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4617 {
4618 /* We need a PT_DYNAMIC segment. */
4619 ++segs;
4620 }
4621
4622 if (elf_tdata (abfd)->eh_frame_hdr)
4623 {
4624 /* We need a PT_GNU_EH_FRAME segment. */
4625 ++segs;
4626 }
4627
4628 if (elf_tdata (abfd)->stack_flags)
4629 {
4630 /* We need a PT_GNU_STACK segment. */
4631 ++segs;
4632 }
4633
4634 if (elf_tdata (abfd)->relro)
4635 {
4636 /* We need a PT_GNU_RELRO segment. */
4637 ++segs;
4638 }
4639
4640 for (s = abfd->sections; s != NULL; s = s->next)
4641 {
4642 if ((s->flags & SEC_LOAD) != 0
4643 && strncmp (s->name, ".note", 5) == 0)
4644 {
4645 /* We need a PT_NOTE segment. */
4646 ++segs;
4647 }
4648 }
4649
4650 for (s = abfd->sections; s != NULL; s = s->next)
4651 {
4652 if (s->flags & SEC_THREAD_LOCAL)
4653 {
4654 /* We need a PT_TLS segment. */
4655 ++segs;
4656 break;
4657 }
4658 }
4659
4660 /* Let the backend count up any program headers it might need. */
4661 if (bed->elf_backend_additional_program_headers)
4662 {
4663 int a;
4664
4665 a = (*bed->elf_backend_additional_program_headers) (abfd);
4666 if (a == -1)
4667 abort ();
4668 segs += a;
4669 }
4670
4671 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4672 return elf_tdata (abfd)->program_header_size;
4673 }
4674
4675 /* Work out the file positions of all the sections. This is called by
4676 _bfd_elf_compute_section_file_positions. All the section sizes and
4677 VMAs must be known before this is called.
4678
4679 Reloc sections come in two flavours: Those processed specially as
4680 "side-channel" data attached to a section to which they apply, and
4681 those that bfd doesn't process as relocations. The latter sort are
4682 stored in a normal bfd section by bfd_section_from_shdr. We don't
4683 consider the former sort here, unless they form part of the loadable
4684 image. Reloc sections not assigned here will be handled later by
4685 assign_file_positions_for_relocs.
4686
4687 We also don't set the positions of the .symtab and .strtab here. */
4688
4689 static bfd_boolean
4690 assign_file_positions_except_relocs (bfd *abfd,
4691 struct bfd_link_info *link_info)
4692 {
4693 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4694 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4695 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4696 unsigned int num_sec = elf_numsections (abfd);
4697 file_ptr off;
4698 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4699
4700 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4701 && bfd_get_format (abfd) != bfd_core)
4702 {
4703 Elf_Internal_Shdr **hdrpp;
4704 unsigned int i;
4705
4706 /* Start after the ELF header. */
4707 off = i_ehdrp->e_ehsize;
4708
4709 /* We are not creating an executable, which means that we are
4710 not creating a program header, and that the actual order of
4711 the sections in the file is unimportant. */
4712 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4713 {
4714 Elf_Internal_Shdr *hdr;
4715
4716 hdr = *hdrpp;
4717 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4718 && hdr->bfd_section == NULL)
4719 || i == tdata->symtab_section
4720 || i == tdata->symtab_shndx_section
4721 || i == tdata->strtab_section)
4722 {
4723 hdr->sh_offset = -1;
4724 }
4725 else
4726 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4727
4728 if (i == SHN_LORESERVE - 1)
4729 {
4730 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4731 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4732 }
4733 }
4734 }
4735 else
4736 {
4737 unsigned int i;
4738 Elf_Internal_Shdr **hdrpp;
4739
4740 /* Assign file positions for the loaded sections based on the
4741 assignment of sections to segments. */
4742 if (! assign_file_positions_for_segments (abfd, link_info))
4743 return FALSE;
4744
4745 /* Assign file positions for the other sections. */
4746
4747 off = elf_tdata (abfd)->next_file_pos;
4748 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4749 {
4750 Elf_Internal_Shdr *hdr;
4751
4752 hdr = *hdrpp;
4753 if (hdr->bfd_section != NULL
4754 && hdr->bfd_section->filepos != 0)
4755 hdr->sh_offset = hdr->bfd_section->filepos;
4756 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4757 {
4758 ((*_bfd_error_handler)
4759 (_("%B: warning: allocated section `%s' not in segment"),
4760 abfd,
4761 (hdr->bfd_section == NULL
4762 ? "*unknown*"
4763 : hdr->bfd_section->name)));
4764 if ((abfd->flags & D_PAGED) != 0)
4765 off += vma_page_aligned_bias (hdr->sh_addr, off,
4766 bed->maxpagesize);
4767 else
4768 off += vma_page_aligned_bias (hdr->sh_addr, off,
4769 hdr->sh_addralign);
4770 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4771 FALSE);
4772 }
4773 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4774 && hdr->bfd_section == NULL)
4775 || hdr == i_shdrpp[tdata->symtab_section]
4776 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4777 || hdr == i_shdrpp[tdata->strtab_section])
4778 hdr->sh_offset = -1;
4779 else
4780 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4781
4782 if (i == SHN_LORESERVE - 1)
4783 {
4784 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4785 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4786 }
4787 }
4788 }
4789
4790 /* Place the section headers. */
4791 off = align_file_position (off, 1 << bed->s->log_file_align);
4792 i_ehdrp->e_shoff = off;
4793 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4794
4795 elf_tdata (abfd)->next_file_pos = off;
4796
4797 return TRUE;
4798 }
4799
4800 static bfd_boolean
4801 prep_headers (bfd *abfd)
4802 {
4803 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4804 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4805 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4806 struct elf_strtab_hash *shstrtab;
4807 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4808
4809 i_ehdrp = elf_elfheader (abfd);
4810 i_shdrp = elf_elfsections (abfd);
4811
4812 shstrtab = _bfd_elf_strtab_init ();
4813 if (shstrtab == NULL)
4814 return FALSE;
4815
4816 elf_shstrtab (abfd) = shstrtab;
4817
4818 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4819 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4820 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4821 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4822
4823 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4824 i_ehdrp->e_ident[EI_DATA] =
4825 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4826 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4827
4828 if ((abfd->flags & DYNAMIC) != 0)
4829 i_ehdrp->e_type = ET_DYN;
4830 else if ((abfd->flags & EXEC_P) != 0)
4831 i_ehdrp->e_type = ET_EXEC;
4832 else if (bfd_get_format (abfd) == bfd_core)
4833 i_ehdrp->e_type = ET_CORE;
4834 else
4835 i_ehdrp->e_type = ET_REL;
4836
4837 switch (bfd_get_arch (abfd))
4838 {
4839 case bfd_arch_unknown:
4840 i_ehdrp->e_machine = EM_NONE;
4841 break;
4842
4843 /* There used to be a long list of cases here, each one setting
4844 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4845 in the corresponding bfd definition. To avoid duplication,
4846 the switch was removed. Machines that need special handling
4847 can generally do it in elf_backend_final_write_processing(),
4848 unless they need the information earlier than the final write.
4849 Such need can generally be supplied by replacing the tests for
4850 e_machine with the conditions used to determine it. */
4851 default:
4852 i_ehdrp->e_machine = bed->elf_machine_code;
4853 }
4854
4855 i_ehdrp->e_version = bed->s->ev_current;
4856 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4857
4858 /* No program header, for now. */
4859 i_ehdrp->e_phoff = 0;
4860 i_ehdrp->e_phentsize = 0;
4861 i_ehdrp->e_phnum = 0;
4862
4863 /* Each bfd section is section header entry. */
4864 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4865 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4866
4867 /* If we're building an executable, we'll need a program header table. */
4868 if (abfd->flags & EXEC_P)
4869 /* It all happens later. */
4870 ;
4871 else
4872 {
4873 i_ehdrp->e_phentsize = 0;
4874 i_phdrp = 0;
4875 i_ehdrp->e_phoff = 0;
4876 }
4877
4878 elf_tdata (abfd)->symtab_hdr.sh_name =
4879 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4880 elf_tdata (abfd)->strtab_hdr.sh_name =
4881 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4882 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4883 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4884 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4885 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4886 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4887 return FALSE;
4888
4889 return TRUE;
4890 }
4891
4892 /* Assign file positions for all the reloc sections which are not part
4893 of the loadable file image. */
4894
4895 void
4896 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4897 {
4898 file_ptr off;
4899 unsigned int i, num_sec;
4900 Elf_Internal_Shdr **shdrpp;
4901
4902 off = elf_tdata (abfd)->next_file_pos;
4903
4904 num_sec = elf_numsections (abfd);
4905 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4906 {
4907 Elf_Internal_Shdr *shdrp;
4908
4909 shdrp = *shdrpp;
4910 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4911 && shdrp->sh_offset == -1)
4912 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4913 }
4914
4915 elf_tdata (abfd)->next_file_pos = off;
4916 }
4917
4918 bfd_boolean
4919 _bfd_elf_write_object_contents (bfd *abfd)
4920 {
4921 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4922 Elf_Internal_Ehdr *i_ehdrp;
4923 Elf_Internal_Shdr **i_shdrp;
4924 bfd_boolean failed;
4925 unsigned int count, num_sec;
4926
4927 if (! abfd->output_has_begun
4928 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4929 return FALSE;
4930
4931 i_shdrp = elf_elfsections (abfd);
4932 i_ehdrp = elf_elfheader (abfd);
4933
4934 failed = FALSE;
4935 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4936 if (failed)
4937 return FALSE;
4938
4939 _bfd_elf_assign_file_positions_for_relocs (abfd);
4940
4941 /* After writing the headers, we need to write the sections too... */
4942 num_sec = elf_numsections (abfd);
4943 for (count = 1; count < num_sec; count++)
4944 {
4945 if (bed->elf_backend_section_processing)
4946 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4947 if (i_shdrp[count]->contents)
4948 {
4949 bfd_size_type amt = i_shdrp[count]->sh_size;
4950
4951 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4952 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4953 return FALSE;
4954 }
4955 if (count == SHN_LORESERVE - 1)
4956 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4957 }
4958
4959 /* Write out the section header names. */
4960 if (elf_shstrtab (abfd) != NULL
4961 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4962 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4963 return FALSE;
4964
4965 if (bed->elf_backend_final_write_processing)
4966 (*bed->elf_backend_final_write_processing) (abfd,
4967 elf_tdata (abfd)->linker);
4968
4969 return bed->s->write_shdrs_and_ehdr (abfd);
4970 }
4971
4972 bfd_boolean
4973 _bfd_elf_write_corefile_contents (bfd *abfd)
4974 {
4975 /* Hopefully this can be done just like an object file. */
4976 return _bfd_elf_write_object_contents (abfd);
4977 }
4978
4979 /* Given a section, search the header to find them. */
4980
4981 int
4982 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4983 {
4984 const struct elf_backend_data *bed;
4985 int index;
4986
4987 if (elf_section_data (asect) != NULL
4988 && elf_section_data (asect)->this_idx != 0)
4989 return elf_section_data (asect)->this_idx;
4990
4991 if (bfd_is_abs_section (asect))
4992 index = SHN_ABS;
4993 else if (bfd_is_com_section (asect))
4994 index = SHN_COMMON;
4995 else if (bfd_is_und_section (asect))
4996 index = SHN_UNDEF;
4997 else
4998 index = -1;
4999
5000 bed = get_elf_backend_data (abfd);
5001 if (bed->elf_backend_section_from_bfd_section)
5002 {
5003 int retval = index;
5004
5005 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5006 return retval;
5007 }
5008
5009 if (index == -1)
5010 bfd_set_error (bfd_error_nonrepresentable_section);
5011
5012 return index;
5013 }
5014
5015 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5016 on error. */
5017
5018 int
5019 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5020 {
5021 asymbol *asym_ptr = *asym_ptr_ptr;
5022 int idx;
5023 flagword flags = asym_ptr->flags;
5024
5025 /* When gas creates relocations against local labels, it creates its
5026 own symbol for the section, but does put the symbol into the
5027 symbol chain, so udata is 0. When the linker is generating
5028 relocatable output, this section symbol may be for one of the
5029 input sections rather than the output section. */
5030 if (asym_ptr->udata.i == 0
5031 && (flags & BSF_SECTION_SYM)
5032 && asym_ptr->section)
5033 {
5034 int indx;
5035
5036 if (asym_ptr->section->output_section != NULL)
5037 indx = asym_ptr->section->output_section->index;
5038 else
5039 indx = asym_ptr->section->index;
5040 if (indx < elf_num_section_syms (abfd)
5041 && elf_section_syms (abfd)[indx] != NULL)
5042 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5043 }
5044
5045 idx = asym_ptr->udata.i;
5046
5047 if (idx == 0)
5048 {
5049 /* This case can occur when using --strip-symbol on a symbol
5050 which is used in a relocation entry. */
5051 (*_bfd_error_handler)
5052 (_("%B: symbol `%s' required but not present"),
5053 abfd, bfd_asymbol_name (asym_ptr));
5054 bfd_set_error (bfd_error_no_symbols);
5055 return -1;
5056 }
5057
5058 #if DEBUG & 4
5059 {
5060 fprintf (stderr,
5061 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5062 (long) asym_ptr, asym_ptr->name, idx, flags,
5063 elf_symbol_flags (flags));
5064 fflush (stderr);
5065 }
5066 #endif
5067
5068 return idx;
5069 }
5070
5071 /* Copy private BFD data. This copies any program header information. */
5072
5073 static bfd_boolean
5074 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5075 {
5076 Elf_Internal_Ehdr *iehdr;
5077 struct elf_segment_map *map;
5078 struct elf_segment_map *map_first;
5079 struct elf_segment_map **pointer_to_map;
5080 Elf_Internal_Phdr *segment;
5081 asection *section;
5082 unsigned int i;
5083 unsigned int num_segments;
5084 bfd_boolean phdr_included = FALSE;
5085 bfd_vma maxpagesize;
5086 struct elf_segment_map *phdr_adjust_seg = NULL;
5087 unsigned int phdr_adjust_num = 0;
5088 const struct elf_backend_data *bed;
5089
5090 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5091 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5092 return TRUE;
5093
5094 if (elf_tdata (ibfd)->phdr == NULL)
5095 return TRUE;
5096
5097 bed = get_elf_backend_data (ibfd);
5098 iehdr = elf_elfheader (ibfd);
5099
5100 map_first = NULL;
5101 pointer_to_map = &map_first;
5102
5103 num_segments = elf_elfheader (ibfd)->e_phnum;
5104 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5105
5106 /* Returns the end address of the segment + 1. */
5107 #define SEGMENT_END(segment, start) \
5108 (start + (segment->p_memsz > segment->p_filesz \
5109 ? segment->p_memsz : segment->p_filesz))
5110
5111 #define SECTION_SIZE(section, segment) \
5112 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5113 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5114 ? section->size : 0)
5115
5116 /* Returns TRUE if the given section is contained within
5117 the given segment. VMA addresses are compared. */
5118 #define IS_CONTAINED_BY_VMA(section, segment) \
5119 (section->vma >= segment->p_vaddr \
5120 && (section->vma + SECTION_SIZE (section, segment) \
5121 <= (SEGMENT_END (segment, segment->p_vaddr))))
5122
5123 /* Returns TRUE if the given section is contained within
5124 the given segment. LMA addresses are compared. */
5125 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5126 (section->lma >= base \
5127 && (section->lma + SECTION_SIZE (section, segment) \
5128 <= SEGMENT_END (segment, base)))
5129
5130 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5131 #define IS_COREFILE_NOTE(p, s) \
5132 (p->p_type == PT_NOTE \
5133 && bfd_get_format (ibfd) == bfd_core \
5134 && s->vma == 0 && s->lma == 0 \
5135 && (bfd_vma) s->filepos >= p->p_offset \
5136 && ((bfd_vma) s->filepos + s->size \
5137 <= p->p_offset + p->p_filesz))
5138
5139 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5140 linker, which generates a PT_INTERP section with p_vaddr and
5141 p_memsz set to 0. */
5142 #define IS_SOLARIS_PT_INTERP(p, s) \
5143 (p->p_vaddr == 0 \
5144 && p->p_paddr == 0 \
5145 && p->p_memsz == 0 \
5146 && p->p_filesz > 0 \
5147 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5148 && s->size > 0 \
5149 && (bfd_vma) s->filepos >= p->p_offset \
5150 && ((bfd_vma) s->filepos + s->size \
5151 <= p->p_offset + p->p_filesz))
5152
5153 /* Decide if the given section should be included in the given segment.
5154 A section will be included if:
5155 1. It is within the address space of the segment -- we use the LMA
5156 if that is set for the segment and the VMA otherwise,
5157 2. It is an allocated segment,
5158 3. There is an output section associated with it,
5159 4. The section has not already been allocated to a previous segment.
5160 5. PT_GNU_STACK segments do not include any sections.
5161 6. PT_TLS segment includes only SHF_TLS sections.
5162 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5163 8. PT_DYNAMIC should not contain empty sections at the beginning
5164 (with the possible exception of .dynamic). */
5165 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5166 ((((segment->p_paddr \
5167 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5168 : IS_CONTAINED_BY_VMA (section, segment)) \
5169 && (section->flags & SEC_ALLOC) != 0) \
5170 || IS_COREFILE_NOTE (segment, section)) \
5171 && section->output_section != NULL \
5172 && segment->p_type != PT_GNU_STACK \
5173 && (segment->p_type != PT_TLS \
5174 || (section->flags & SEC_THREAD_LOCAL)) \
5175 && (segment->p_type == PT_LOAD \
5176 || segment->p_type == PT_TLS \
5177 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5178 && (segment->p_type != PT_DYNAMIC \
5179 || SECTION_SIZE (section, segment) > 0 \
5180 || (segment->p_paddr \
5181 ? segment->p_paddr != section->lma \
5182 : segment->p_vaddr != section->vma) \
5183 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5184 == 0)) \
5185 && ! section->segment_mark)
5186
5187 /* Returns TRUE iff seg1 starts after the end of seg2. */
5188 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5189 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5190
5191 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5192 their VMA address ranges and their LMA address ranges overlap.
5193 It is possible to have overlapping VMA ranges without overlapping LMA
5194 ranges. RedBoot images for example can have both .data and .bss mapped
5195 to the same VMA range, but with the .data section mapped to a different
5196 LMA. */
5197 #define SEGMENT_OVERLAPS(seg1, seg2) \
5198 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5199 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5200 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5201 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5202
5203 /* Initialise the segment mark field. */
5204 for (section = ibfd->sections; section != NULL; section = section->next)
5205 section->segment_mark = FALSE;
5206
5207 /* Scan through the segments specified in the program header
5208 of the input BFD. For this first scan we look for overlaps
5209 in the loadable segments. These can be created by weird
5210 parameters to objcopy. Also, fix some solaris weirdness. */
5211 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5212 i < num_segments;
5213 i++, segment++)
5214 {
5215 unsigned int j;
5216 Elf_Internal_Phdr *segment2;
5217
5218 if (segment->p_type == PT_INTERP)
5219 for (section = ibfd->sections; section; section = section->next)
5220 if (IS_SOLARIS_PT_INTERP (segment, section))
5221 {
5222 /* Mininal change so that the normal section to segment
5223 assignment code will work. */
5224 segment->p_vaddr = section->vma;
5225 break;
5226 }
5227
5228 if (segment->p_type != PT_LOAD)
5229 continue;
5230
5231 /* Determine if this segment overlaps any previous segments. */
5232 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5233 {
5234 bfd_signed_vma extra_length;
5235
5236 if (segment2->p_type != PT_LOAD
5237 || ! SEGMENT_OVERLAPS (segment, segment2))
5238 continue;
5239
5240 /* Merge the two segments together. */
5241 if (segment2->p_vaddr < segment->p_vaddr)
5242 {
5243 /* Extend SEGMENT2 to include SEGMENT and then delete
5244 SEGMENT. */
5245 extra_length =
5246 SEGMENT_END (segment, segment->p_vaddr)
5247 - SEGMENT_END (segment2, segment2->p_vaddr);
5248
5249 if (extra_length > 0)
5250 {
5251 segment2->p_memsz += extra_length;
5252 segment2->p_filesz += extra_length;
5253 }
5254
5255 segment->p_type = PT_NULL;
5256
5257 /* Since we have deleted P we must restart the outer loop. */
5258 i = 0;
5259 segment = elf_tdata (ibfd)->phdr;
5260 break;
5261 }
5262 else
5263 {
5264 /* Extend SEGMENT to include SEGMENT2 and then delete
5265 SEGMENT2. */
5266 extra_length =
5267 SEGMENT_END (segment2, segment2->p_vaddr)
5268 - SEGMENT_END (segment, segment->p_vaddr);
5269
5270 if (extra_length > 0)
5271 {
5272 segment->p_memsz += extra_length;
5273 segment->p_filesz += extra_length;
5274 }
5275
5276 segment2->p_type = PT_NULL;
5277 }
5278 }
5279 }
5280
5281 /* The second scan attempts to assign sections to segments. */
5282 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5283 i < num_segments;
5284 i ++, segment ++)
5285 {
5286 unsigned int section_count;
5287 asection ** sections;
5288 asection * output_section;
5289 unsigned int isec;
5290 bfd_vma matching_lma;
5291 bfd_vma suggested_lma;
5292 unsigned int j;
5293 bfd_size_type amt;
5294
5295 if (segment->p_type == PT_NULL)
5296 continue;
5297
5298 /* Compute how many sections might be placed into this segment. */
5299 for (section = ibfd->sections, section_count = 0;
5300 section != NULL;
5301 section = section->next)
5302 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5303 ++section_count;
5304
5305 /* Allocate a segment map big enough to contain
5306 all of the sections we have selected. */
5307 amt = sizeof (struct elf_segment_map);
5308 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5309 map = bfd_alloc (obfd, amt);
5310 if (map == NULL)
5311 return FALSE;
5312
5313 /* Initialise the fields of the segment map. Default to
5314 using the physical address of the segment in the input BFD. */
5315 map->next = NULL;
5316 map->p_type = segment->p_type;
5317 map->p_flags = segment->p_flags;
5318 map->p_flags_valid = 1;
5319 map->p_paddr = segment->p_paddr;
5320 map->p_paddr_valid = 1;
5321
5322 /* Determine if this segment contains the ELF file header
5323 and if it contains the program headers themselves. */
5324 map->includes_filehdr = (segment->p_offset == 0
5325 && segment->p_filesz >= iehdr->e_ehsize);
5326
5327 map->includes_phdrs = 0;
5328
5329 if (! phdr_included || segment->p_type != PT_LOAD)
5330 {
5331 map->includes_phdrs =
5332 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5333 && (segment->p_offset + segment->p_filesz
5334 >= ((bfd_vma) iehdr->e_phoff
5335 + iehdr->e_phnum * iehdr->e_phentsize)));
5336
5337 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5338 phdr_included = TRUE;
5339 }
5340
5341 if (section_count == 0)
5342 {
5343 /* Special segments, such as the PT_PHDR segment, may contain
5344 no sections, but ordinary, loadable segments should contain
5345 something. They are allowed by the ELF spec however, so only
5346 a warning is produced. */
5347 if (segment->p_type == PT_LOAD)
5348 (*_bfd_error_handler)
5349 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5350 ibfd);
5351
5352 map->count = 0;
5353 *pointer_to_map = map;
5354 pointer_to_map = &map->next;
5355
5356 continue;
5357 }
5358
5359 /* Now scan the sections in the input BFD again and attempt
5360 to add their corresponding output sections to the segment map.
5361 The problem here is how to handle an output section which has
5362 been moved (ie had its LMA changed). There are four possibilities:
5363
5364 1. None of the sections have been moved.
5365 In this case we can continue to use the segment LMA from the
5366 input BFD.
5367
5368 2. All of the sections have been moved by the same amount.
5369 In this case we can change the segment's LMA to match the LMA
5370 of the first section.
5371
5372 3. Some of the sections have been moved, others have not.
5373 In this case those sections which have not been moved can be
5374 placed in the current segment which will have to have its size,
5375 and possibly its LMA changed, and a new segment or segments will
5376 have to be created to contain the other sections.
5377
5378 4. The sections have been moved, but not by the same amount.
5379 In this case we can change the segment's LMA to match the LMA
5380 of the first section and we will have to create a new segment
5381 or segments to contain the other sections.
5382
5383 In order to save time, we allocate an array to hold the section
5384 pointers that we are interested in. As these sections get assigned
5385 to a segment, they are removed from this array. */
5386
5387 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5388 to work around this long long bug. */
5389 amt = section_count * sizeof (asection *);
5390 sections = bfd_malloc (amt);
5391 if (sections == NULL)
5392 return FALSE;
5393
5394 /* Step One: Scan for segment vs section LMA conflicts.
5395 Also add the sections to the section array allocated above.
5396 Also add the sections to the current segment. In the common
5397 case, where the sections have not been moved, this means that
5398 we have completely filled the segment, and there is nothing
5399 more to do. */
5400 isec = 0;
5401 matching_lma = 0;
5402 suggested_lma = 0;
5403
5404 for (j = 0, section = ibfd->sections;
5405 section != NULL;
5406 section = section->next)
5407 {
5408 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5409 {
5410 output_section = section->output_section;
5411
5412 sections[j ++] = section;
5413
5414 /* The Solaris native linker always sets p_paddr to 0.
5415 We try to catch that case here, and set it to the
5416 correct value. Note - some backends require that
5417 p_paddr be left as zero. */
5418 if (segment->p_paddr == 0
5419 && segment->p_vaddr != 0
5420 && (! bed->want_p_paddr_set_to_zero)
5421 && isec == 0
5422 && output_section->lma != 0
5423 && (output_section->vma == (segment->p_vaddr
5424 + (map->includes_filehdr
5425 ? iehdr->e_ehsize
5426 : 0)
5427 + (map->includes_phdrs
5428 ? (iehdr->e_phnum
5429 * iehdr->e_phentsize)
5430 : 0))))
5431 map->p_paddr = segment->p_vaddr;
5432
5433 /* Match up the physical address of the segment with the
5434 LMA address of the output section. */
5435 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5436 || IS_COREFILE_NOTE (segment, section)
5437 || (bed->want_p_paddr_set_to_zero &&
5438 IS_CONTAINED_BY_VMA (output_section, segment))
5439 )
5440 {
5441 if (matching_lma == 0)
5442 matching_lma = output_section->lma;
5443
5444 /* We assume that if the section fits within the segment
5445 then it does not overlap any other section within that
5446 segment. */
5447 map->sections[isec ++] = output_section;
5448 }
5449 else if (suggested_lma == 0)
5450 suggested_lma = output_section->lma;
5451 }
5452 }
5453
5454 BFD_ASSERT (j == section_count);
5455
5456 /* Step Two: Adjust the physical address of the current segment,
5457 if necessary. */
5458 if (isec == section_count)
5459 {
5460 /* All of the sections fitted within the segment as currently
5461 specified. This is the default case. Add the segment to
5462 the list of built segments and carry on to process the next
5463 program header in the input BFD. */
5464 map->count = section_count;
5465 *pointer_to_map = map;
5466 pointer_to_map = &map->next;
5467
5468 free (sections);
5469 continue;
5470 }
5471 else
5472 {
5473 if (matching_lma != 0)
5474 {
5475 /* At least one section fits inside the current segment.
5476 Keep it, but modify its physical address to match the
5477 LMA of the first section that fitted. */
5478 map->p_paddr = matching_lma;
5479 }
5480 else
5481 {
5482 /* None of the sections fitted inside the current segment.
5483 Change the current segment's physical address to match
5484 the LMA of the first section. */
5485 map->p_paddr = suggested_lma;
5486 }
5487
5488 /* Offset the segment physical address from the lma
5489 to allow for space taken up by elf headers. */
5490 if (map->includes_filehdr)
5491 map->p_paddr -= iehdr->e_ehsize;
5492
5493 if (map->includes_phdrs)
5494 {
5495 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5496
5497 /* iehdr->e_phnum is just an estimate of the number
5498 of program headers that we will need. Make a note
5499 here of the number we used and the segment we chose
5500 to hold these headers, so that we can adjust the
5501 offset when we know the correct value. */
5502 phdr_adjust_num = iehdr->e_phnum;
5503 phdr_adjust_seg = map;
5504 }
5505 }
5506
5507 /* Step Three: Loop over the sections again, this time assigning
5508 those that fit to the current segment and removing them from the
5509 sections array; but making sure not to leave large gaps. Once all
5510 possible sections have been assigned to the current segment it is
5511 added to the list of built segments and if sections still remain
5512 to be assigned, a new segment is constructed before repeating
5513 the loop. */
5514 isec = 0;
5515 do
5516 {
5517 map->count = 0;
5518 suggested_lma = 0;
5519
5520 /* Fill the current segment with sections that fit. */
5521 for (j = 0; j < section_count; j++)
5522 {
5523 section = sections[j];
5524
5525 if (section == NULL)
5526 continue;
5527
5528 output_section = section->output_section;
5529
5530 BFD_ASSERT (output_section != NULL);
5531
5532 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5533 || IS_COREFILE_NOTE (segment, section))
5534 {
5535 if (map->count == 0)
5536 {
5537 /* If the first section in a segment does not start at
5538 the beginning of the segment, then something is
5539 wrong. */
5540 if (output_section->lma !=
5541 (map->p_paddr
5542 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5543 + (map->includes_phdrs
5544 ? iehdr->e_phnum * iehdr->e_phentsize
5545 : 0)))
5546 abort ();
5547 }
5548 else
5549 {
5550 asection * prev_sec;
5551
5552 prev_sec = map->sections[map->count - 1];
5553
5554 /* If the gap between the end of the previous section
5555 and the start of this section is more than
5556 maxpagesize then we need to start a new segment. */
5557 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5558 maxpagesize)
5559 < BFD_ALIGN (output_section->lma, maxpagesize))
5560 || ((prev_sec->lma + prev_sec->size)
5561 > output_section->lma))
5562 {
5563 if (suggested_lma == 0)
5564 suggested_lma = output_section->lma;
5565
5566 continue;
5567 }
5568 }
5569
5570 map->sections[map->count++] = output_section;
5571 ++isec;
5572 sections[j] = NULL;
5573 section->segment_mark = TRUE;
5574 }
5575 else if (suggested_lma == 0)
5576 suggested_lma = output_section->lma;
5577 }
5578
5579 BFD_ASSERT (map->count > 0);
5580
5581 /* Add the current segment to the list of built segments. */
5582 *pointer_to_map = map;
5583 pointer_to_map = &map->next;
5584
5585 if (isec < section_count)
5586 {
5587 /* We still have not allocated all of the sections to
5588 segments. Create a new segment here, initialise it
5589 and carry on looping. */
5590 amt = sizeof (struct elf_segment_map);
5591 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5592 map = bfd_alloc (obfd, amt);
5593 if (map == NULL)
5594 {
5595 free (sections);
5596 return FALSE;
5597 }
5598
5599 /* Initialise the fields of the segment map. Set the physical
5600 physical address to the LMA of the first section that has
5601 not yet been assigned. */
5602 map->next = NULL;
5603 map->p_type = segment->p_type;
5604 map->p_flags = segment->p_flags;
5605 map->p_flags_valid = 1;
5606 map->p_paddr = suggested_lma;
5607 map->p_paddr_valid = 1;
5608 map->includes_filehdr = 0;
5609 map->includes_phdrs = 0;
5610 }
5611 }
5612 while (isec < section_count);
5613
5614 free (sections);
5615 }
5616
5617 /* The Solaris linker creates program headers in which all the
5618 p_paddr fields are zero. When we try to objcopy or strip such a
5619 file, we get confused. Check for this case, and if we find it
5620 reset the p_paddr_valid fields. */
5621 for (map = map_first; map != NULL; map = map->next)
5622 if (map->p_paddr != 0)
5623 break;
5624 if (map == NULL)
5625 for (map = map_first; map != NULL; map = map->next)
5626 map->p_paddr_valid = 0;
5627
5628 elf_tdata (obfd)->segment_map = map_first;
5629
5630 /* If we had to estimate the number of program headers that were
5631 going to be needed, then check our estimate now and adjust
5632 the offset if necessary. */
5633 if (phdr_adjust_seg != NULL)
5634 {
5635 unsigned int count;
5636
5637 for (count = 0, map = map_first; map != NULL; map = map->next)
5638 count++;
5639
5640 if (count > phdr_adjust_num)
5641 phdr_adjust_seg->p_paddr
5642 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5643 }
5644
5645 #undef SEGMENT_END
5646 #undef SECTION_SIZE
5647 #undef IS_CONTAINED_BY_VMA
5648 #undef IS_CONTAINED_BY_LMA
5649 #undef IS_COREFILE_NOTE
5650 #undef IS_SOLARIS_PT_INTERP
5651 #undef INCLUDE_SECTION_IN_SEGMENT
5652 #undef SEGMENT_AFTER_SEGMENT
5653 #undef SEGMENT_OVERLAPS
5654 return TRUE;
5655 }
5656
5657 /* Copy private section information. This copies over the entsize
5658 field, and sometimes the info field. */
5659
5660 bfd_boolean
5661 _bfd_elf_copy_private_section_data (bfd *ibfd,
5662 asection *isec,
5663 bfd *obfd,
5664 asection *osec)
5665 {
5666 Elf_Internal_Shdr *ihdr, *ohdr;
5667
5668 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5669 || obfd->xvec->flavour != bfd_target_elf_flavour)
5670 return TRUE;
5671
5672 ihdr = &elf_section_data (isec)->this_hdr;
5673 ohdr = &elf_section_data (osec)->this_hdr;
5674
5675 ohdr->sh_entsize = ihdr->sh_entsize;
5676
5677 if (ihdr->sh_type == SHT_SYMTAB
5678 || ihdr->sh_type == SHT_DYNSYM
5679 || ihdr->sh_type == SHT_GNU_verneed
5680 || ihdr->sh_type == SHT_GNU_verdef)
5681 ohdr->sh_info = ihdr->sh_info;
5682
5683 /* Set things up for objcopy. The output SHT_GROUP section will
5684 have its elf_next_in_group pointing back to the input group
5685 members. Ignore linker created group section. See
5686 elfNN_ia64_object_p in elfxx-ia64.c. */
5687 if (elf_sec_group (isec) == NULL
5688 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5689 {
5690 elf_next_in_group (osec) = elf_next_in_group (isec);
5691 elf_group_name (osec) = elf_group_name (isec);
5692 }
5693
5694 osec->use_rela_p = isec->use_rela_p;
5695
5696 return TRUE;
5697 }
5698
5699 /* Copy private header information. */
5700
5701 bfd_boolean
5702 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5703 {
5704 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5705 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5706 return TRUE;
5707
5708 /* Copy over private BFD data if it has not already been copied.
5709 This must be done here, rather than in the copy_private_bfd_data
5710 entry point, because the latter is called after the section
5711 contents have been set, which means that the program headers have
5712 already been worked out. */
5713 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5714 {
5715 if (! copy_private_bfd_data (ibfd, obfd))
5716 return FALSE;
5717 }
5718
5719 return TRUE;
5720 }
5721
5722 /* Copy private symbol information. If this symbol is in a section
5723 which we did not map into a BFD section, try to map the section
5724 index correctly. We use special macro definitions for the mapped
5725 section indices; these definitions are interpreted by the
5726 swap_out_syms function. */
5727
5728 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5729 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5730 #define MAP_STRTAB (SHN_HIOS + 3)
5731 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5732 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5733
5734 bfd_boolean
5735 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5736 asymbol *isymarg,
5737 bfd *obfd,
5738 asymbol *osymarg)
5739 {
5740 elf_symbol_type *isym, *osym;
5741
5742 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5743 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5744 return TRUE;
5745
5746 isym = elf_symbol_from (ibfd, isymarg);
5747 osym = elf_symbol_from (obfd, osymarg);
5748
5749 if (isym != NULL
5750 && osym != NULL
5751 && bfd_is_abs_section (isym->symbol.section))
5752 {
5753 unsigned int shndx;
5754
5755 shndx = isym->internal_elf_sym.st_shndx;
5756 if (shndx == elf_onesymtab (ibfd))
5757 shndx = MAP_ONESYMTAB;
5758 else if (shndx == elf_dynsymtab (ibfd))
5759 shndx = MAP_DYNSYMTAB;
5760 else if (shndx == elf_tdata (ibfd)->strtab_section)
5761 shndx = MAP_STRTAB;
5762 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5763 shndx = MAP_SHSTRTAB;
5764 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5765 shndx = MAP_SYM_SHNDX;
5766 osym->internal_elf_sym.st_shndx = shndx;
5767 }
5768
5769 return TRUE;
5770 }
5771
5772 /* Swap out the symbols. */
5773
5774 static bfd_boolean
5775 swap_out_syms (bfd *abfd,
5776 struct bfd_strtab_hash **sttp,
5777 int relocatable_p)
5778 {
5779 const struct elf_backend_data *bed;
5780 int symcount;
5781 asymbol **syms;
5782 struct bfd_strtab_hash *stt;
5783 Elf_Internal_Shdr *symtab_hdr;
5784 Elf_Internal_Shdr *symtab_shndx_hdr;
5785 Elf_Internal_Shdr *symstrtab_hdr;
5786 bfd_byte *outbound_syms;
5787 bfd_byte *outbound_shndx;
5788 int idx;
5789 bfd_size_type amt;
5790 bfd_boolean name_local_sections;
5791
5792 if (!elf_map_symbols (abfd))
5793 return FALSE;
5794
5795 /* Dump out the symtabs. */
5796 stt = _bfd_elf_stringtab_init ();
5797 if (stt == NULL)
5798 return FALSE;
5799
5800 bed = get_elf_backend_data (abfd);
5801 symcount = bfd_get_symcount (abfd);
5802 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5803 symtab_hdr->sh_type = SHT_SYMTAB;
5804 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5805 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5806 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5807 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5808
5809 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5810 symstrtab_hdr->sh_type = SHT_STRTAB;
5811
5812 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5813 outbound_syms = bfd_alloc (abfd, amt);
5814 if (outbound_syms == NULL)
5815 {
5816 _bfd_stringtab_free (stt);
5817 return FALSE;
5818 }
5819 symtab_hdr->contents = outbound_syms;
5820
5821 outbound_shndx = NULL;
5822 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5823 if (symtab_shndx_hdr->sh_name != 0)
5824 {
5825 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5826 outbound_shndx = bfd_zalloc (abfd, amt);
5827 if (outbound_shndx == NULL)
5828 {
5829 _bfd_stringtab_free (stt);
5830 return FALSE;
5831 }
5832
5833 symtab_shndx_hdr->contents = outbound_shndx;
5834 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5835 symtab_shndx_hdr->sh_size = amt;
5836 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5837 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5838 }
5839
5840 /* Now generate the data (for "contents"). */
5841 {
5842 /* Fill in zeroth symbol and swap it out. */
5843 Elf_Internal_Sym sym;
5844 sym.st_name = 0;
5845 sym.st_value = 0;
5846 sym.st_size = 0;
5847 sym.st_info = 0;
5848 sym.st_other = 0;
5849 sym.st_shndx = SHN_UNDEF;
5850 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5851 outbound_syms += bed->s->sizeof_sym;
5852 if (outbound_shndx != NULL)
5853 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5854 }
5855
5856 name_local_sections
5857 = (bed->elf_backend_name_local_section_symbols
5858 && bed->elf_backend_name_local_section_symbols (abfd));
5859
5860 syms = bfd_get_outsymbols (abfd);
5861 for (idx = 0; idx < symcount; idx++)
5862 {
5863 Elf_Internal_Sym sym;
5864 bfd_vma value = syms[idx]->value;
5865 elf_symbol_type *type_ptr;
5866 flagword flags = syms[idx]->flags;
5867 int type;
5868
5869 if (!name_local_sections
5870 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5871 {
5872 /* Local section symbols have no name. */
5873 sym.st_name = 0;
5874 }
5875 else
5876 {
5877 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5878 syms[idx]->name,
5879 TRUE, FALSE);
5880 if (sym.st_name == (unsigned long) -1)
5881 {
5882 _bfd_stringtab_free (stt);
5883 return FALSE;
5884 }
5885 }
5886
5887 type_ptr = elf_symbol_from (abfd, syms[idx]);
5888
5889 if ((flags & BSF_SECTION_SYM) == 0
5890 && bfd_is_com_section (syms[idx]->section))
5891 {
5892 /* ELF common symbols put the alignment into the `value' field,
5893 and the size into the `size' field. This is backwards from
5894 how BFD handles it, so reverse it here. */
5895 sym.st_size = value;
5896 if (type_ptr == NULL
5897 || type_ptr->internal_elf_sym.st_value == 0)
5898 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5899 else
5900 sym.st_value = type_ptr->internal_elf_sym.st_value;
5901 sym.st_shndx = _bfd_elf_section_from_bfd_section
5902 (abfd, syms[idx]->section);
5903 }
5904 else
5905 {
5906 asection *sec = syms[idx]->section;
5907 int shndx;
5908
5909 if (sec->output_section)
5910 {
5911 value += sec->output_offset;
5912 sec = sec->output_section;
5913 }
5914
5915 /* Don't add in the section vma for relocatable output. */
5916 if (! relocatable_p)
5917 value += sec->vma;
5918 sym.st_value = value;
5919 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5920
5921 if (bfd_is_abs_section (sec)
5922 && type_ptr != NULL
5923 && type_ptr->internal_elf_sym.st_shndx != 0)
5924 {
5925 /* This symbol is in a real ELF section which we did
5926 not create as a BFD section. Undo the mapping done
5927 by copy_private_symbol_data. */
5928 shndx = type_ptr->internal_elf_sym.st_shndx;
5929 switch (shndx)
5930 {
5931 case MAP_ONESYMTAB:
5932 shndx = elf_onesymtab (abfd);
5933 break;
5934 case MAP_DYNSYMTAB:
5935 shndx = elf_dynsymtab (abfd);
5936 break;
5937 case MAP_STRTAB:
5938 shndx = elf_tdata (abfd)->strtab_section;
5939 break;
5940 case MAP_SHSTRTAB:
5941 shndx = elf_tdata (abfd)->shstrtab_section;
5942 break;
5943 case MAP_SYM_SHNDX:
5944 shndx = elf_tdata (abfd)->symtab_shndx_section;
5945 break;
5946 default:
5947 break;
5948 }
5949 }
5950 else
5951 {
5952 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5953
5954 if (shndx == -1)
5955 {
5956 asection *sec2;
5957
5958 /* Writing this would be a hell of a lot easier if
5959 we had some decent documentation on bfd, and
5960 knew what to expect of the library, and what to
5961 demand of applications. For example, it
5962 appears that `objcopy' might not set the
5963 section of a symbol to be a section that is
5964 actually in the output file. */
5965 sec2 = bfd_get_section_by_name (abfd, sec->name);
5966 if (sec2 == NULL)
5967 {
5968 _bfd_error_handler (_("\
5969 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5970 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5971 sec->name);
5972 bfd_set_error (bfd_error_invalid_operation);
5973 _bfd_stringtab_free (stt);
5974 return FALSE;
5975 }
5976
5977 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5978 BFD_ASSERT (shndx != -1);
5979 }
5980 }
5981
5982 sym.st_shndx = shndx;
5983 }
5984
5985 if ((flags & BSF_THREAD_LOCAL) != 0)
5986 type = STT_TLS;
5987 else if ((flags & BSF_FUNCTION) != 0)
5988 type = STT_FUNC;
5989 else if ((flags & BSF_OBJECT) != 0)
5990 type = STT_OBJECT;
5991 else
5992 type = STT_NOTYPE;
5993
5994 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5995 type = STT_TLS;
5996
5997 /* Processor-specific types. */
5998 if (type_ptr != NULL
5999 && bed->elf_backend_get_symbol_type)
6000 type = ((*bed->elf_backend_get_symbol_type)
6001 (&type_ptr->internal_elf_sym, type));
6002
6003 if (flags & BSF_SECTION_SYM)
6004 {
6005 if (flags & BSF_GLOBAL)
6006 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6007 else
6008 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6009 }
6010 else if (bfd_is_com_section (syms[idx]->section))
6011 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6012 else if (bfd_is_und_section (syms[idx]->section))
6013 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6014 ? STB_WEAK
6015 : STB_GLOBAL),
6016 type);
6017 else if (flags & BSF_FILE)
6018 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6019 else
6020 {
6021 int bind = STB_LOCAL;
6022
6023 if (flags & BSF_LOCAL)
6024 bind = STB_LOCAL;
6025 else if (flags & BSF_WEAK)
6026 bind = STB_WEAK;
6027 else if (flags & BSF_GLOBAL)
6028 bind = STB_GLOBAL;
6029
6030 sym.st_info = ELF_ST_INFO (bind, type);
6031 }
6032
6033 if (type_ptr != NULL)
6034 sym.st_other = type_ptr->internal_elf_sym.st_other;
6035 else
6036 sym.st_other = 0;
6037
6038 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6039 outbound_syms += bed->s->sizeof_sym;
6040 if (outbound_shndx != NULL)
6041 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6042 }
6043
6044 *sttp = stt;
6045 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6046 symstrtab_hdr->sh_type = SHT_STRTAB;
6047
6048 symstrtab_hdr->sh_flags = 0;
6049 symstrtab_hdr->sh_addr = 0;
6050 symstrtab_hdr->sh_entsize = 0;
6051 symstrtab_hdr->sh_link = 0;
6052 symstrtab_hdr->sh_info = 0;
6053 symstrtab_hdr->sh_addralign = 1;
6054
6055 return TRUE;
6056 }
6057
6058 /* Return the number of bytes required to hold the symtab vector.
6059
6060 Note that we base it on the count plus 1, since we will null terminate
6061 the vector allocated based on this size. However, the ELF symbol table
6062 always has a dummy entry as symbol #0, so it ends up even. */
6063
6064 long
6065 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6066 {
6067 long symcount;
6068 long symtab_size;
6069 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6070
6071 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6072 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6073 if (symcount > 0)
6074 symtab_size -= sizeof (asymbol *);
6075
6076 return symtab_size;
6077 }
6078
6079 long
6080 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6081 {
6082 long symcount;
6083 long symtab_size;
6084 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6085
6086 if (elf_dynsymtab (abfd) == 0)
6087 {
6088 bfd_set_error (bfd_error_invalid_operation);
6089 return -1;
6090 }
6091
6092 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6093 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6094 if (symcount > 0)
6095 symtab_size -= sizeof (asymbol *);
6096
6097 return symtab_size;
6098 }
6099
6100 long
6101 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6102 sec_ptr asect)
6103 {
6104 return (asect->reloc_count + 1) * sizeof (arelent *);
6105 }
6106
6107 /* Canonicalize the relocs. */
6108
6109 long
6110 _bfd_elf_canonicalize_reloc (bfd *abfd,
6111 sec_ptr section,
6112 arelent **relptr,
6113 asymbol **symbols)
6114 {
6115 arelent *tblptr;
6116 unsigned int i;
6117 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6118
6119 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6120 return -1;
6121
6122 tblptr = section->relocation;
6123 for (i = 0; i < section->reloc_count; i++)
6124 *relptr++ = tblptr++;
6125
6126 *relptr = NULL;
6127
6128 return section->reloc_count;
6129 }
6130
6131 long
6132 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6133 {
6134 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6135 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6136
6137 if (symcount >= 0)
6138 bfd_get_symcount (abfd) = symcount;
6139 return symcount;
6140 }
6141
6142 long
6143 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6144 asymbol **allocation)
6145 {
6146 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6147 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6148
6149 if (symcount >= 0)
6150 bfd_get_dynamic_symcount (abfd) = symcount;
6151 return symcount;
6152 }
6153
6154 /* Return the size required for the dynamic reloc entries. Any loadable
6155 section that was actually installed in the BFD, and has type SHT_REL
6156 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6157 dynamic reloc section. */
6158
6159 long
6160 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6161 {
6162 long ret;
6163 asection *s;
6164
6165 if (elf_dynsymtab (abfd) == 0)
6166 {
6167 bfd_set_error (bfd_error_invalid_operation);
6168 return -1;
6169 }
6170
6171 ret = sizeof (arelent *);
6172 for (s = abfd->sections; s != NULL; s = s->next)
6173 if ((s->flags & SEC_LOAD) != 0
6174 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6175 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6176 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6177 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6178 * sizeof (arelent *));
6179
6180 return ret;
6181 }
6182
6183 /* Canonicalize the dynamic relocation entries. Note that we return the
6184 dynamic relocations as a single block, although they are actually
6185 associated with particular sections; the interface, which was
6186 designed for SunOS style shared libraries, expects that there is only
6187 one set of dynamic relocs. Any loadable section that was actually
6188 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6189 dynamic symbol table, is considered to be a dynamic reloc section. */
6190
6191 long
6192 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6193 arelent **storage,
6194 asymbol **syms)
6195 {
6196 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6197 asection *s;
6198 long ret;
6199
6200 if (elf_dynsymtab (abfd) == 0)
6201 {
6202 bfd_set_error (bfd_error_invalid_operation);
6203 return -1;
6204 }
6205
6206 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6207 ret = 0;
6208 for (s = abfd->sections; s != NULL; s = s->next)
6209 {
6210 if ((s->flags & SEC_LOAD) != 0
6211 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6212 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6213 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6214 {
6215 arelent *p;
6216 long count, i;
6217
6218 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6219 return -1;
6220 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6221 p = s->relocation;
6222 for (i = 0; i < count; i++)
6223 *storage++ = p++;
6224 ret += count;
6225 }
6226 }
6227
6228 *storage = NULL;
6229
6230 return ret;
6231 }
6232 \f
6233 /* Read in the version information. */
6234
6235 bfd_boolean
6236 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6237 {
6238 bfd_byte *contents = NULL;
6239 bfd_size_type amt;
6240 unsigned int freeidx = 0;
6241
6242 if (elf_dynverref (abfd) != 0)
6243 {
6244 Elf_Internal_Shdr *hdr;
6245 Elf_External_Verneed *everneed;
6246 Elf_Internal_Verneed *iverneed;
6247 unsigned int i;
6248
6249 hdr = &elf_tdata (abfd)->dynverref_hdr;
6250
6251 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6252 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6253 if (elf_tdata (abfd)->verref == NULL)
6254 goto error_return;
6255
6256 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6257
6258 contents = bfd_malloc (hdr->sh_size);
6259 if (contents == NULL)
6260 goto error_return;
6261 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6262 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6263 goto error_return;
6264
6265 everneed = (Elf_External_Verneed *) contents;
6266 iverneed = elf_tdata (abfd)->verref;
6267 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6268 {
6269 Elf_External_Vernaux *evernaux;
6270 Elf_Internal_Vernaux *ivernaux;
6271 unsigned int j;
6272
6273 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6274
6275 iverneed->vn_bfd = abfd;
6276
6277 iverneed->vn_filename =
6278 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6279 iverneed->vn_file);
6280 if (iverneed->vn_filename == NULL)
6281 goto error_return;
6282
6283 amt = iverneed->vn_cnt;
6284 amt *= sizeof (Elf_Internal_Vernaux);
6285 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6286
6287 evernaux = ((Elf_External_Vernaux *)
6288 ((bfd_byte *) everneed + iverneed->vn_aux));
6289 ivernaux = iverneed->vn_auxptr;
6290 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6291 {
6292 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6293
6294 ivernaux->vna_nodename =
6295 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6296 ivernaux->vna_name);
6297 if (ivernaux->vna_nodename == NULL)
6298 goto error_return;
6299
6300 if (j + 1 < iverneed->vn_cnt)
6301 ivernaux->vna_nextptr = ivernaux + 1;
6302 else
6303 ivernaux->vna_nextptr = NULL;
6304
6305 evernaux = ((Elf_External_Vernaux *)
6306 ((bfd_byte *) evernaux + ivernaux->vna_next));
6307
6308 if (ivernaux->vna_other > freeidx)
6309 freeidx = ivernaux->vna_other;
6310 }
6311
6312 if (i + 1 < hdr->sh_info)
6313 iverneed->vn_nextref = iverneed + 1;
6314 else
6315 iverneed->vn_nextref = NULL;
6316
6317 everneed = ((Elf_External_Verneed *)
6318 ((bfd_byte *) everneed + iverneed->vn_next));
6319 }
6320
6321 free (contents);
6322 contents = NULL;
6323 }
6324
6325 if (elf_dynverdef (abfd) != 0)
6326 {
6327 Elf_Internal_Shdr *hdr;
6328 Elf_External_Verdef *everdef;
6329 Elf_Internal_Verdef *iverdef;
6330 Elf_Internal_Verdef *iverdefarr;
6331 Elf_Internal_Verdef iverdefmem;
6332 unsigned int i;
6333 unsigned int maxidx;
6334
6335 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6336
6337 contents = bfd_malloc (hdr->sh_size);
6338 if (contents == NULL)
6339 goto error_return;
6340 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6341 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6342 goto error_return;
6343
6344 /* We know the number of entries in the section but not the maximum
6345 index. Therefore we have to run through all entries and find
6346 the maximum. */
6347 everdef = (Elf_External_Verdef *) contents;
6348 maxidx = 0;
6349 for (i = 0; i < hdr->sh_info; ++i)
6350 {
6351 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6352
6353 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6354 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6355
6356 everdef = ((Elf_External_Verdef *)
6357 ((bfd_byte *) everdef + iverdefmem.vd_next));
6358 }
6359
6360 if (default_imported_symver)
6361 {
6362 if (freeidx > maxidx)
6363 maxidx = ++freeidx;
6364 else
6365 freeidx = ++maxidx;
6366 }
6367 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6368 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6369 if (elf_tdata (abfd)->verdef == NULL)
6370 goto error_return;
6371
6372 elf_tdata (abfd)->cverdefs = maxidx;
6373
6374 everdef = (Elf_External_Verdef *) contents;
6375 iverdefarr = elf_tdata (abfd)->verdef;
6376 for (i = 0; i < hdr->sh_info; i++)
6377 {
6378 Elf_External_Verdaux *everdaux;
6379 Elf_Internal_Verdaux *iverdaux;
6380 unsigned int j;
6381
6382 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6383
6384 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6385 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6386
6387 iverdef->vd_bfd = abfd;
6388
6389 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6390 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6391 if (iverdef->vd_auxptr == NULL)
6392 goto error_return;
6393
6394 everdaux = ((Elf_External_Verdaux *)
6395 ((bfd_byte *) everdef + iverdef->vd_aux));
6396 iverdaux = iverdef->vd_auxptr;
6397 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6398 {
6399 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6400
6401 iverdaux->vda_nodename =
6402 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6403 iverdaux->vda_name);
6404 if (iverdaux->vda_nodename == NULL)
6405 goto error_return;
6406
6407 if (j + 1 < iverdef->vd_cnt)
6408 iverdaux->vda_nextptr = iverdaux + 1;
6409 else
6410 iverdaux->vda_nextptr = NULL;
6411
6412 everdaux = ((Elf_External_Verdaux *)
6413 ((bfd_byte *) everdaux + iverdaux->vda_next));
6414 }
6415
6416 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6417
6418 if (i + 1 < hdr->sh_info)
6419 iverdef->vd_nextdef = iverdef + 1;
6420 else
6421 iverdef->vd_nextdef = NULL;
6422
6423 everdef = ((Elf_External_Verdef *)
6424 ((bfd_byte *) everdef + iverdef->vd_next));
6425 }
6426
6427 free (contents);
6428 contents = NULL;
6429 }
6430 else if (default_imported_symver)
6431 {
6432 if (freeidx < 3)
6433 freeidx = 3;
6434 else
6435 freeidx++;
6436
6437 amt = (bfd_size_type) freeidx * sizeof (Elf_Internal_Verdef);
6438 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6439 if (elf_tdata (abfd)->verdef == NULL)
6440 goto error_return;
6441
6442 elf_tdata (abfd)->cverdefs = freeidx;
6443 }
6444
6445 /* Create a default version based on the soname. */
6446 if (default_imported_symver)
6447 {
6448 Elf_Internal_Verdef *iverdef;
6449 Elf_Internal_Verdaux *iverdaux;
6450
6451 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6452
6453 iverdef->vd_version = VER_DEF_CURRENT;
6454 iverdef->vd_flags = 0;
6455 iverdef->vd_ndx = freeidx;
6456 iverdef->vd_cnt = 1;
6457
6458 iverdef->vd_bfd = abfd;
6459
6460 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6461 if (iverdef->vd_nodename == NULL)
6462 goto error_return;
6463 iverdef->vd_nextdef = NULL;
6464 amt = (bfd_size_type) sizeof (Elf_Internal_Verdaux);
6465 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6466
6467 iverdaux = iverdef->vd_auxptr;
6468 iverdaux->vda_nodename = iverdef->vd_nodename;
6469 iverdaux->vda_nextptr = NULL;
6470 }
6471
6472 return TRUE;
6473
6474 error_return:
6475 if (contents != NULL)
6476 free (contents);
6477 return FALSE;
6478 }
6479 \f
6480 asymbol *
6481 _bfd_elf_make_empty_symbol (bfd *abfd)
6482 {
6483 elf_symbol_type *newsym;
6484 bfd_size_type amt = sizeof (elf_symbol_type);
6485
6486 newsym = bfd_zalloc (abfd, amt);
6487 if (!newsym)
6488 return NULL;
6489 else
6490 {
6491 newsym->symbol.the_bfd = abfd;
6492 return &newsym->symbol;
6493 }
6494 }
6495
6496 void
6497 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6498 asymbol *symbol,
6499 symbol_info *ret)
6500 {
6501 bfd_symbol_info (symbol, ret);
6502 }
6503
6504 /* Return whether a symbol name implies a local symbol. Most targets
6505 use this function for the is_local_label_name entry point, but some
6506 override it. */
6507
6508 bfd_boolean
6509 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6510 const char *name)
6511 {
6512 /* Normal local symbols start with ``.L''. */
6513 if (name[0] == '.' && name[1] == 'L')
6514 return TRUE;
6515
6516 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6517 DWARF debugging symbols starting with ``..''. */
6518 if (name[0] == '.' && name[1] == '.')
6519 return TRUE;
6520
6521 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6522 emitting DWARF debugging output. I suspect this is actually a
6523 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6524 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6525 underscore to be emitted on some ELF targets). For ease of use,
6526 we treat such symbols as local. */
6527 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6528 return TRUE;
6529
6530 return FALSE;
6531 }
6532
6533 alent *
6534 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6535 asymbol *symbol ATTRIBUTE_UNUSED)
6536 {
6537 abort ();
6538 return NULL;
6539 }
6540
6541 bfd_boolean
6542 _bfd_elf_set_arch_mach (bfd *abfd,
6543 enum bfd_architecture arch,
6544 unsigned long machine)
6545 {
6546 /* If this isn't the right architecture for this backend, and this
6547 isn't the generic backend, fail. */
6548 if (arch != get_elf_backend_data (abfd)->arch
6549 && arch != bfd_arch_unknown
6550 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6551 return FALSE;
6552
6553 return bfd_default_set_arch_mach (abfd, arch, machine);
6554 }
6555
6556 /* Find the function to a particular section and offset,
6557 for error reporting. */
6558
6559 static bfd_boolean
6560 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6561 asection *section,
6562 asymbol **symbols,
6563 bfd_vma offset,
6564 const char **filename_ptr,
6565 const char **functionname_ptr)
6566 {
6567 const char *filename;
6568 asymbol *func, *file;
6569 bfd_vma low_func;
6570 asymbol **p;
6571 /* ??? Given multiple file symbols, it is impossible to reliably
6572 choose the right file name for global symbols. File symbols are
6573 local symbols, and thus all file symbols must sort before any
6574 global symbols. The ELF spec may be interpreted to say that a
6575 file symbol must sort before other local symbols, but currently
6576 ld -r doesn't do this. So, for ld -r output, it is possible to
6577 make a better choice of file name for local symbols by ignoring
6578 file symbols appearing after a given local symbol. */
6579 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6580
6581 filename = NULL;
6582 func = NULL;
6583 file = NULL;
6584 low_func = 0;
6585 state = nothing_seen;
6586
6587 for (p = symbols; *p != NULL; p++)
6588 {
6589 elf_symbol_type *q;
6590
6591 q = (elf_symbol_type *) *p;
6592
6593 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6594 {
6595 default:
6596 break;
6597 case STT_FILE:
6598 file = &q->symbol;
6599 if (state == symbol_seen)
6600 state = file_after_symbol_seen;
6601 continue;
6602 case STT_SECTION:
6603 continue;
6604 case STT_NOTYPE:
6605 case STT_FUNC:
6606 if (bfd_get_section (&q->symbol) == section
6607 && q->symbol.value >= low_func
6608 && q->symbol.value <= offset)
6609 {
6610 func = (asymbol *) q;
6611 low_func = q->symbol.value;
6612 if (file == NULL)
6613 filename = NULL;
6614 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6615 && state == file_after_symbol_seen)
6616 filename = NULL;
6617 else
6618 filename = bfd_asymbol_name (file);
6619 }
6620 break;
6621 }
6622 if (state == nothing_seen)
6623 state = symbol_seen;
6624 }
6625
6626 if (func == NULL)
6627 return FALSE;
6628
6629 if (filename_ptr)
6630 *filename_ptr = filename;
6631 if (functionname_ptr)
6632 *functionname_ptr = bfd_asymbol_name (func);
6633
6634 return TRUE;
6635 }
6636
6637 /* Find the nearest line to a particular section and offset,
6638 for error reporting. */
6639
6640 bfd_boolean
6641 _bfd_elf_find_nearest_line (bfd *abfd,
6642 asection *section,
6643 asymbol **symbols,
6644 bfd_vma offset,
6645 const char **filename_ptr,
6646 const char **functionname_ptr,
6647 unsigned int *line_ptr)
6648 {
6649 bfd_boolean found;
6650
6651 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6652 filename_ptr, functionname_ptr,
6653 line_ptr))
6654 {
6655 if (!*functionname_ptr)
6656 elf_find_function (abfd, section, symbols, offset,
6657 *filename_ptr ? NULL : filename_ptr,
6658 functionname_ptr);
6659
6660 return TRUE;
6661 }
6662
6663 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6664 filename_ptr, functionname_ptr,
6665 line_ptr, 0,
6666 &elf_tdata (abfd)->dwarf2_find_line_info))
6667 {
6668 if (!*functionname_ptr)
6669 elf_find_function (abfd, section, symbols, offset,
6670 *filename_ptr ? NULL : filename_ptr,
6671 functionname_ptr);
6672
6673 return TRUE;
6674 }
6675
6676 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6677 &found, filename_ptr,
6678 functionname_ptr, line_ptr,
6679 &elf_tdata (abfd)->line_info))
6680 return FALSE;
6681 if (found && (*functionname_ptr || *line_ptr))
6682 return TRUE;
6683
6684 if (symbols == NULL)
6685 return FALSE;
6686
6687 if (! elf_find_function (abfd, section, symbols, offset,
6688 filename_ptr, functionname_ptr))
6689 return FALSE;
6690
6691 *line_ptr = 0;
6692 return TRUE;
6693 }
6694
6695 /* Find the line for a symbol. */
6696
6697 bfd_boolean
6698 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
6699 const char **filename_ptr, unsigned int *line_ptr)
6700 {
6701 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
6702 filename_ptr, line_ptr, 0,
6703 &elf_tdata (abfd)->dwarf2_find_line_info);
6704 }
6705
6706 /* After a call to bfd_find_nearest_line, successive calls to
6707 bfd_find_inliner_info can be used to get source information about
6708 each level of function inlining that terminated at the address
6709 passed to bfd_find_nearest_line. Currently this is only supported
6710 for DWARF2 with appropriate DWARF3 extensions. */
6711
6712 bfd_boolean
6713 _bfd_elf_find_inliner_info (bfd *abfd,
6714 const char **filename_ptr,
6715 const char **functionname_ptr,
6716 unsigned int *line_ptr)
6717 {
6718 bfd_boolean found;
6719 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
6720 functionname_ptr, line_ptr,
6721 & elf_tdata (abfd)->dwarf2_find_line_info);
6722 return found;
6723 }
6724
6725 int
6726 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6727 {
6728 int ret;
6729
6730 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6731 if (! reloc)
6732 ret += get_program_header_size (abfd);
6733 return ret;
6734 }
6735
6736 bfd_boolean
6737 _bfd_elf_set_section_contents (bfd *abfd,
6738 sec_ptr section,
6739 const void *location,
6740 file_ptr offset,
6741 bfd_size_type count)
6742 {
6743 Elf_Internal_Shdr *hdr;
6744 bfd_signed_vma pos;
6745
6746 if (! abfd->output_has_begun
6747 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6748 return FALSE;
6749
6750 hdr = &elf_section_data (section)->this_hdr;
6751 pos = hdr->sh_offset + offset;
6752 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6753 || bfd_bwrite (location, count, abfd) != count)
6754 return FALSE;
6755
6756 return TRUE;
6757 }
6758
6759 void
6760 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6761 arelent *cache_ptr ATTRIBUTE_UNUSED,
6762 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6763 {
6764 abort ();
6765 }
6766
6767 /* Try to convert a non-ELF reloc into an ELF one. */
6768
6769 bfd_boolean
6770 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6771 {
6772 /* Check whether we really have an ELF howto. */
6773
6774 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6775 {
6776 bfd_reloc_code_real_type code;
6777 reloc_howto_type *howto;
6778
6779 /* Alien reloc: Try to determine its type to replace it with an
6780 equivalent ELF reloc. */
6781
6782 if (areloc->howto->pc_relative)
6783 {
6784 switch (areloc->howto->bitsize)
6785 {
6786 case 8:
6787 code = BFD_RELOC_8_PCREL;
6788 break;
6789 case 12:
6790 code = BFD_RELOC_12_PCREL;
6791 break;
6792 case 16:
6793 code = BFD_RELOC_16_PCREL;
6794 break;
6795 case 24:
6796 code = BFD_RELOC_24_PCREL;
6797 break;
6798 case 32:
6799 code = BFD_RELOC_32_PCREL;
6800 break;
6801 case 64:
6802 code = BFD_RELOC_64_PCREL;
6803 break;
6804 default:
6805 goto fail;
6806 }
6807
6808 howto = bfd_reloc_type_lookup (abfd, code);
6809
6810 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6811 {
6812 if (howto->pcrel_offset)
6813 areloc->addend += areloc->address;
6814 else
6815 areloc->addend -= areloc->address; /* addend is unsigned!! */
6816 }
6817 }
6818 else
6819 {
6820 switch (areloc->howto->bitsize)
6821 {
6822 case 8:
6823 code = BFD_RELOC_8;
6824 break;
6825 case 14:
6826 code = BFD_RELOC_14;
6827 break;
6828 case 16:
6829 code = BFD_RELOC_16;
6830 break;
6831 case 26:
6832 code = BFD_RELOC_26;
6833 break;
6834 case 32:
6835 code = BFD_RELOC_32;
6836 break;
6837 case 64:
6838 code = BFD_RELOC_64;
6839 break;
6840 default:
6841 goto fail;
6842 }
6843
6844 howto = bfd_reloc_type_lookup (abfd, code);
6845 }
6846
6847 if (howto)
6848 areloc->howto = howto;
6849 else
6850 goto fail;
6851 }
6852
6853 return TRUE;
6854
6855 fail:
6856 (*_bfd_error_handler)
6857 (_("%B: unsupported relocation type %s"),
6858 abfd, areloc->howto->name);
6859 bfd_set_error (bfd_error_bad_value);
6860 return FALSE;
6861 }
6862
6863 bfd_boolean
6864 _bfd_elf_close_and_cleanup (bfd *abfd)
6865 {
6866 if (bfd_get_format (abfd) == bfd_object)
6867 {
6868 if (elf_shstrtab (abfd) != NULL)
6869 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6870 _bfd_dwarf2_cleanup_debug_info (abfd);
6871 }
6872
6873 return _bfd_generic_close_and_cleanup (abfd);
6874 }
6875
6876 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6877 in the relocation's offset. Thus we cannot allow any sort of sanity
6878 range-checking to interfere. There is nothing else to do in processing
6879 this reloc. */
6880
6881 bfd_reloc_status_type
6882 _bfd_elf_rel_vtable_reloc_fn
6883 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6884 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6885 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6886 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6887 {
6888 return bfd_reloc_ok;
6889 }
6890 \f
6891 /* Elf core file support. Much of this only works on native
6892 toolchains, since we rely on knowing the
6893 machine-dependent procfs structure in order to pick
6894 out details about the corefile. */
6895
6896 #ifdef HAVE_SYS_PROCFS_H
6897 # include <sys/procfs.h>
6898 #endif
6899
6900 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6901
6902 static int
6903 elfcore_make_pid (bfd *abfd)
6904 {
6905 return ((elf_tdata (abfd)->core_lwpid << 16)
6906 + (elf_tdata (abfd)->core_pid));
6907 }
6908
6909 /* If there isn't a section called NAME, make one, using
6910 data from SECT. Note, this function will generate a
6911 reference to NAME, so you shouldn't deallocate or
6912 overwrite it. */
6913
6914 static bfd_boolean
6915 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6916 {
6917 asection *sect2;
6918
6919 if (bfd_get_section_by_name (abfd, name) != NULL)
6920 return TRUE;
6921
6922 sect2 = bfd_make_section (abfd, name);
6923 if (sect2 == NULL)
6924 return FALSE;
6925
6926 sect2->size = sect->size;
6927 sect2->filepos = sect->filepos;
6928 sect2->flags = sect->flags;
6929 sect2->alignment_power = sect->alignment_power;
6930 return TRUE;
6931 }
6932
6933 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6934 actually creates up to two pseudosections:
6935 - For the single-threaded case, a section named NAME, unless
6936 such a section already exists.
6937 - For the multi-threaded case, a section named "NAME/PID", where
6938 PID is elfcore_make_pid (abfd).
6939 Both pseudosections have identical contents. */
6940 bfd_boolean
6941 _bfd_elfcore_make_pseudosection (bfd *abfd,
6942 char *name,
6943 size_t size,
6944 ufile_ptr filepos)
6945 {
6946 char buf[100];
6947 char *threaded_name;
6948 size_t len;
6949 asection *sect;
6950
6951 /* Build the section name. */
6952
6953 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6954 len = strlen (buf) + 1;
6955 threaded_name = bfd_alloc (abfd, len);
6956 if (threaded_name == NULL)
6957 return FALSE;
6958 memcpy (threaded_name, buf, len);
6959
6960 sect = bfd_make_section_anyway (abfd, threaded_name);
6961 if (sect == NULL)
6962 return FALSE;
6963 sect->size = size;
6964 sect->filepos = filepos;
6965 sect->flags = SEC_HAS_CONTENTS;
6966 sect->alignment_power = 2;
6967
6968 return elfcore_maybe_make_sect (abfd, name, sect);
6969 }
6970
6971 /* prstatus_t exists on:
6972 solaris 2.5+
6973 linux 2.[01] + glibc
6974 unixware 4.2
6975 */
6976
6977 #if defined (HAVE_PRSTATUS_T)
6978
6979 static bfd_boolean
6980 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6981 {
6982 size_t size;
6983 int offset;
6984
6985 if (note->descsz == sizeof (prstatus_t))
6986 {
6987 prstatus_t prstat;
6988
6989 size = sizeof (prstat.pr_reg);
6990 offset = offsetof (prstatus_t, pr_reg);
6991 memcpy (&prstat, note->descdata, sizeof (prstat));
6992
6993 /* Do not overwrite the core signal if it
6994 has already been set by another thread. */
6995 if (elf_tdata (abfd)->core_signal == 0)
6996 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6997 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6998
6999 /* pr_who exists on:
7000 solaris 2.5+
7001 unixware 4.2
7002 pr_who doesn't exist on:
7003 linux 2.[01]
7004 */
7005 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7006 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7007 #endif
7008 }
7009 #if defined (HAVE_PRSTATUS32_T)
7010 else if (note->descsz == sizeof (prstatus32_t))
7011 {
7012 /* 64-bit host, 32-bit corefile */
7013 prstatus32_t prstat;
7014
7015 size = sizeof (prstat.pr_reg);
7016 offset = offsetof (prstatus32_t, pr_reg);
7017 memcpy (&prstat, note->descdata, sizeof (prstat));
7018
7019 /* Do not overwrite the core signal if it
7020 has already been set by another thread. */
7021 if (elf_tdata (abfd)->core_signal == 0)
7022 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7023 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7024
7025 /* pr_who exists on:
7026 solaris 2.5+
7027 unixware 4.2
7028 pr_who doesn't exist on:
7029 linux 2.[01]
7030 */
7031 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7032 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7033 #endif
7034 }
7035 #endif /* HAVE_PRSTATUS32_T */
7036 else
7037 {
7038 /* Fail - we don't know how to handle any other
7039 note size (ie. data object type). */
7040 return TRUE;
7041 }
7042
7043 /* Make a ".reg/999" section and a ".reg" section. */
7044 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7045 size, note->descpos + offset);
7046 }
7047 #endif /* defined (HAVE_PRSTATUS_T) */
7048
7049 /* Create a pseudosection containing the exact contents of NOTE. */
7050 static bfd_boolean
7051 elfcore_make_note_pseudosection (bfd *abfd,
7052 char *name,
7053 Elf_Internal_Note *note)
7054 {
7055 return _bfd_elfcore_make_pseudosection (abfd, name,
7056 note->descsz, note->descpos);
7057 }
7058
7059 /* There isn't a consistent prfpregset_t across platforms,
7060 but it doesn't matter, because we don't have to pick this
7061 data structure apart. */
7062
7063 static bfd_boolean
7064 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7065 {
7066 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7067 }
7068
7069 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7070 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7071 literally. */
7072
7073 static bfd_boolean
7074 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7075 {
7076 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7077 }
7078
7079 #if defined (HAVE_PRPSINFO_T)
7080 typedef prpsinfo_t elfcore_psinfo_t;
7081 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7082 typedef prpsinfo32_t elfcore_psinfo32_t;
7083 #endif
7084 #endif
7085
7086 #if defined (HAVE_PSINFO_T)
7087 typedef psinfo_t elfcore_psinfo_t;
7088 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7089 typedef psinfo32_t elfcore_psinfo32_t;
7090 #endif
7091 #endif
7092
7093 /* return a malloc'ed copy of a string at START which is at
7094 most MAX bytes long, possibly without a terminating '\0'.
7095 the copy will always have a terminating '\0'. */
7096
7097 char *
7098 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7099 {
7100 char *dups;
7101 char *end = memchr (start, '\0', max);
7102 size_t len;
7103
7104 if (end == NULL)
7105 len = max;
7106 else
7107 len = end - start;
7108
7109 dups = bfd_alloc (abfd, len + 1);
7110 if (dups == NULL)
7111 return NULL;
7112
7113 memcpy (dups, start, len);
7114 dups[len] = '\0';
7115
7116 return dups;
7117 }
7118
7119 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7120 static bfd_boolean
7121 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7122 {
7123 if (note->descsz == sizeof (elfcore_psinfo_t))
7124 {
7125 elfcore_psinfo_t psinfo;
7126
7127 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7128
7129 elf_tdata (abfd)->core_program
7130 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7131 sizeof (psinfo.pr_fname));
7132
7133 elf_tdata (abfd)->core_command
7134 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7135 sizeof (psinfo.pr_psargs));
7136 }
7137 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7138 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7139 {
7140 /* 64-bit host, 32-bit corefile */
7141 elfcore_psinfo32_t psinfo;
7142
7143 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7144
7145 elf_tdata (abfd)->core_program
7146 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7147 sizeof (psinfo.pr_fname));
7148
7149 elf_tdata (abfd)->core_command
7150 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7151 sizeof (psinfo.pr_psargs));
7152 }
7153 #endif
7154
7155 else
7156 {
7157 /* Fail - we don't know how to handle any other
7158 note size (ie. data object type). */
7159 return TRUE;
7160 }
7161
7162 /* Note that for some reason, a spurious space is tacked
7163 onto the end of the args in some (at least one anyway)
7164 implementations, so strip it off if it exists. */
7165
7166 {
7167 char *command = elf_tdata (abfd)->core_command;
7168 int n = strlen (command);
7169
7170 if (0 < n && command[n - 1] == ' ')
7171 command[n - 1] = '\0';
7172 }
7173
7174 return TRUE;
7175 }
7176 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7177
7178 #if defined (HAVE_PSTATUS_T)
7179 static bfd_boolean
7180 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7181 {
7182 if (note->descsz == sizeof (pstatus_t)
7183 #if defined (HAVE_PXSTATUS_T)
7184 || note->descsz == sizeof (pxstatus_t)
7185 #endif
7186 )
7187 {
7188 pstatus_t pstat;
7189
7190 memcpy (&pstat, note->descdata, sizeof (pstat));
7191
7192 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7193 }
7194 #if defined (HAVE_PSTATUS32_T)
7195 else if (note->descsz == sizeof (pstatus32_t))
7196 {
7197 /* 64-bit host, 32-bit corefile */
7198 pstatus32_t pstat;
7199
7200 memcpy (&pstat, note->descdata, sizeof (pstat));
7201
7202 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7203 }
7204 #endif
7205 /* Could grab some more details from the "representative"
7206 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7207 NT_LWPSTATUS note, presumably. */
7208
7209 return TRUE;
7210 }
7211 #endif /* defined (HAVE_PSTATUS_T) */
7212
7213 #if defined (HAVE_LWPSTATUS_T)
7214 static bfd_boolean
7215 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7216 {
7217 lwpstatus_t lwpstat;
7218 char buf[100];
7219 char *name;
7220 size_t len;
7221 asection *sect;
7222
7223 if (note->descsz != sizeof (lwpstat)
7224 #if defined (HAVE_LWPXSTATUS_T)
7225 && note->descsz != sizeof (lwpxstatus_t)
7226 #endif
7227 )
7228 return TRUE;
7229
7230 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7231
7232 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7233 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7234
7235 /* Make a ".reg/999" section. */
7236
7237 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7238 len = strlen (buf) + 1;
7239 name = bfd_alloc (abfd, len);
7240 if (name == NULL)
7241 return FALSE;
7242 memcpy (name, buf, len);
7243
7244 sect = bfd_make_section_anyway (abfd, name);
7245 if (sect == NULL)
7246 return FALSE;
7247
7248 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7249 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7250 sect->filepos = note->descpos
7251 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7252 #endif
7253
7254 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7255 sect->size = sizeof (lwpstat.pr_reg);
7256 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7257 #endif
7258
7259 sect->flags = SEC_HAS_CONTENTS;
7260 sect->alignment_power = 2;
7261
7262 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7263 return FALSE;
7264
7265 /* Make a ".reg2/999" section */
7266
7267 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7268 len = strlen (buf) + 1;
7269 name = bfd_alloc (abfd, len);
7270 if (name == NULL)
7271 return FALSE;
7272 memcpy (name, buf, len);
7273
7274 sect = bfd_make_section_anyway (abfd, name);
7275 if (sect == NULL)
7276 return FALSE;
7277
7278 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7279 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7280 sect->filepos = note->descpos
7281 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7282 #endif
7283
7284 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7285 sect->size = sizeof (lwpstat.pr_fpreg);
7286 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7287 #endif
7288
7289 sect->flags = SEC_HAS_CONTENTS;
7290 sect->alignment_power = 2;
7291
7292 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7293 }
7294 #endif /* defined (HAVE_LWPSTATUS_T) */
7295
7296 #if defined (HAVE_WIN32_PSTATUS_T)
7297 static bfd_boolean
7298 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7299 {
7300 char buf[30];
7301 char *name;
7302 size_t len;
7303 asection *sect;
7304 win32_pstatus_t pstatus;
7305
7306 if (note->descsz < sizeof (pstatus))
7307 return TRUE;
7308
7309 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7310
7311 switch (pstatus.data_type)
7312 {
7313 case NOTE_INFO_PROCESS:
7314 /* FIXME: need to add ->core_command. */
7315 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7316 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7317 break;
7318
7319 case NOTE_INFO_THREAD:
7320 /* Make a ".reg/999" section. */
7321 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7322
7323 len = strlen (buf) + 1;
7324 name = bfd_alloc (abfd, len);
7325 if (name == NULL)
7326 return FALSE;
7327
7328 memcpy (name, buf, len);
7329
7330 sect = bfd_make_section_anyway (abfd, name);
7331 if (sect == NULL)
7332 return FALSE;
7333
7334 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7335 sect->filepos = (note->descpos
7336 + offsetof (struct win32_pstatus,
7337 data.thread_info.thread_context));
7338 sect->flags = SEC_HAS_CONTENTS;
7339 sect->alignment_power = 2;
7340
7341 if (pstatus.data.thread_info.is_active_thread)
7342 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7343 return FALSE;
7344 break;
7345
7346 case NOTE_INFO_MODULE:
7347 /* Make a ".module/xxxxxxxx" section. */
7348 sprintf (buf, ".module/%08lx",
7349 (long) pstatus.data.module_info.base_address);
7350
7351 len = strlen (buf) + 1;
7352 name = bfd_alloc (abfd, len);
7353 if (name == NULL)
7354 return FALSE;
7355
7356 memcpy (name, buf, len);
7357
7358 sect = bfd_make_section_anyway (abfd, name);
7359
7360 if (sect == NULL)
7361 return FALSE;
7362
7363 sect->size = note->descsz;
7364 sect->filepos = note->descpos;
7365 sect->flags = SEC_HAS_CONTENTS;
7366 sect->alignment_power = 2;
7367 break;
7368
7369 default:
7370 return TRUE;
7371 }
7372
7373 return TRUE;
7374 }
7375 #endif /* HAVE_WIN32_PSTATUS_T */
7376
7377 static bfd_boolean
7378 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7379 {
7380 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7381
7382 switch (note->type)
7383 {
7384 default:
7385 return TRUE;
7386
7387 case NT_PRSTATUS:
7388 if (bed->elf_backend_grok_prstatus)
7389 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7390 return TRUE;
7391 #if defined (HAVE_PRSTATUS_T)
7392 return elfcore_grok_prstatus (abfd, note);
7393 #else
7394 return TRUE;
7395 #endif
7396
7397 #if defined (HAVE_PSTATUS_T)
7398 case NT_PSTATUS:
7399 return elfcore_grok_pstatus (abfd, note);
7400 #endif
7401
7402 #if defined (HAVE_LWPSTATUS_T)
7403 case NT_LWPSTATUS:
7404 return elfcore_grok_lwpstatus (abfd, note);
7405 #endif
7406
7407 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7408 return elfcore_grok_prfpreg (abfd, note);
7409
7410 #if defined (HAVE_WIN32_PSTATUS_T)
7411 case NT_WIN32PSTATUS:
7412 return elfcore_grok_win32pstatus (abfd, note);
7413 #endif
7414
7415 case NT_PRXFPREG: /* Linux SSE extension */
7416 if (note->namesz == 6
7417 && strcmp (note->namedata, "LINUX") == 0)
7418 return elfcore_grok_prxfpreg (abfd, note);
7419 else
7420 return TRUE;
7421
7422 case NT_PRPSINFO:
7423 case NT_PSINFO:
7424 if (bed->elf_backend_grok_psinfo)
7425 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7426 return TRUE;
7427 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7428 return elfcore_grok_psinfo (abfd, note);
7429 #else
7430 return TRUE;
7431 #endif
7432
7433 case NT_AUXV:
7434 {
7435 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7436
7437 if (sect == NULL)
7438 return FALSE;
7439 sect->size = note->descsz;
7440 sect->filepos = note->descpos;
7441 sect->flags = SEC_HAS_CONTENTS;
7442 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7443
7444 return TRUE;
7445 }
7446 }
7447 }
7448
7449 static bfd_boolean
7450 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7451 {
7452 char *cp;
7453
7454 cp = strchr (note->namedata, '@');
7455 if (cp != NULL)
7456 {
7457 *lwpidp = atoi(cp + 1);
7458 return TRUE;
7459 }
7460 return FALSE;
7461 }
7462
7463 static bfd_boolean
7464 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7465 {
7466
7467 /* Signal number at offset 0x08. */
7468 elf_tdata (abfd)->core_signal
7469 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7470
7471 /* Process ID at offset 0x50. */
7472 elf_tdata (abfd)->core_pid
7473 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7474
7475 /* Command name at 0x7c (max 32 bytes, including nul). */
7476 elf_tdata (abfd)->core_command
7477 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7478
7479 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7480 note);
7481 }
7482
7483 static bfd_boolean
7484 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7485 {
7486 int lwp;
7487
7488 if (elfcore_netbsd_get_lwpid (note, &lwp))
7489 elf_tdata (abfd)->core_lwpid = lwp;
7490
7491 if (note->type == NT_NETBSDCORE_PROCINFO)
7492 {
7493 /* NetBSD-specific core "procinfo". Note that we expect to
7494 find this note before any of the others, which is fine,
7495 since the kernel writes this note out first when it
7496 creates a core file. */
7497
7498 return elfcore_grok_netbsd_procinfo (abfd, note);
7499 }
7500
7501 /* As of Jan 2002 there are no other machine-independent notes
7502 defined for NetBSD core files. If the note type is less
7503 than the start of the machine-dependent note types, we don't
7504 understand it. */
7505
7506 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7507 return TRUE;
7508
7509
7510 switch (bfd_get_arch (abfd))
7511 {
7512 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7513 PT_GETFPREGS == mach+2. */
7514
7515 case bfd_arch_alpha:
7516 case bfd_arch_sparc:
7517 switch (note->type)
7518 {
7519 case NT_NETBSDCORE_FIRSTMACH+0:
7520 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7521
7522 case NT_NETBSDCORE_FIRSTMACH+2:
7523 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7524
7525 default:
7526 return TRUE;
7527 }
7528
7529 /* On all other arch's, PT_GETREGS == mach+1 and
7530 PT_GETFPREGS == mach+3. */
7531
7532 default:
7533 switch (note->type)
7534 {
7535 case NT_NETBSDCORE_FIRSTMACH+1:
7536 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7537
7538 case NT_NETBSDCORE_FIRSTMACH+3:
7539 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7540
7541 default:
7542 return TRUE;
7543 }
7544 }
7545 /* NOTREACHED */
7546 }
7547
7548 static bfd_boolean
7549 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7550 {
7551 void *ddata = note->descdata;
7552 char buf[100];
7553 char *name;
7554 asection *sect;
7555 short sig;
7556 unsigned flags;
7557
7558 /* nto_procfs_status 'pid' field is at offset 0. */
7559 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7560
7561 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7562 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7563
7564 /* nto_procfs_status 'flags' field is at offset 8. */
7565 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7566
7567 /* nto_procfs_status 'what' field is at offset 14. */
7568 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7569 {
7570 elf_tdata (abfd)->core_signal = sig;
7571 elf_tdata (abfd)->core_lwpid = *tid;
7572 }
7573
7574 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7575 do not come from signals so we make sure we set the current
7576 thread just in case. */
7577 if (flags & 0x00000080)
7578 elf_tdata (abfd)->core_lwpid = *tid;
7579
7580 /* Make a ".qnx_core_status/%d" section. */
7581 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7582
7583 name = bfd_alloc (abfd, strlen (buf) + 1);
7584 if (name == NULL)
7585 return FALSE;
7586 strcpy (name, buf);
7587
7588 sect = bfd_make_section_anyway (abfd, name);
7589 if (sect == NULL)
7590 return FALSE;
7591
7592 sect->size = note->descsz;
7593 sect->filepos = note->descpos;
7594 sect->flags = SEC_HAS_CONTENTS;
7595 sect->alignment_power = 2;
7596
7597 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7598 }
7599
7600 static bfd_boolean
7601 elfcore_grok_nto_regs (bfd *abfd,
7602 Elf_Internal_Note *note,
7603 pid_t tid,
7604 char *base)
7605 {
7606 char buf[100];
7607 char *name;
7608 asection *sect;
7609
7610 /* Make a "(base)/%d" section. */
7611 sprintf (buf, "%s/%ld", base, (long) tid);
7612
7613 name = bfd_alloc (abfd, strlen (buf) + 1);
7614 if (name == NULL)
7615 return FALSE;
7616 strcpy (name, buf);
7617
7618 sect = bfd_make_section_anyway (abfd, name);
7619 if (sect == NULL)
7620 return FALSE;
7621
7622 sect->size = note->descsz;
7623 sect->filepos = note->descpos;
7624 sect->flags = SEC_HAS_CONTENTS;
7625 sect->alignment_power = 2;
7626
7627 /* This is the current thread. */
7628 if (elf_tdata (abfd)->core_lwpid == tid)
7629 return elfcore_maybe_make_sect (abfd, base, sect);
7630
7631 return TRUE;
7632 }
7633
7634 #define BFD_QNT_CORE_INFO 7
7635 #define BFD_QNT_CORE_STATUS 8
7636 #define BFD_QNT_CORE_GREG 9
7637 #define BFD_QNT_CORE_FPREG 10
7638
7639 static bfd_boolean
7640 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7641 {
7642 /* Every GREG section has a STATUS section before it. Store the
7643 tid from the previous call to pass down to the next gregs
7644 function. */
7645 static pid_t tid = 1;
7646
7647 switch (note->type)
7648 {
7649 case BFD_QNT_CORE_INFO:
7650 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7651 case BFD_QNT_CORE_STATUS:
7652 return elfcore_grok_nto_status (abfd, note, &tid);
7653 case BFD_QNT_CORE_GREG:
7654 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7655 case BFD_QNT_CORE_FPREG:
7656 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7657 default:
7658 return TRUE;
7659 }
7660 }
7661
7662 /* Function: elfcore_write_note
7663
7664 Inputs:
7665 buffer to hold note
7666 name of note
7667 type of note
7668 data for note
7669 size of data for note
7670
7671 Return:
7672 End of buffer containing note. */
7673
7674 char *
7675 elfcore_write_note (bfd *abfd,
7676 char *buf,
7677 int *bufsiz,
7678 const char *name,
7679 int type,
7680 const void *input,
7681 int size)
7682 {
7683 Elf_External_Note *xnp;
7684 size_t namesz;
7685 size_t pad;
7686 size_t newspace;
7687 char *p, *dest;
7688
7689 namesz = 0;
7690 pad = 0;
7691 if (name != NULL)
7692 {
7693 const struct elf_backend_data *bed;
7694
7695 namesz = strlen (name) + 1;
7696 bed = get_elf_backend_data (abfd);
7697 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7698 }
7699
7700 newspace = 12 + namesz + pad + size;
7701
7702 p = realloc (buf, *bufsiz + newspace);
7703 dest = p + *bufsiz;
7704 *bufsiz += newspace;
7705 xnp = (Elf_External_Note *) dest;
7706 H_PUT_32 (abfd, namesz, xnp->namesz);
7707 H_PUT_32 (abfd, size, xnp->descsz);
7708 H_PUT_32 (abfd, type, xnp->type);
7709 dest = xnp->name;
7710 if (name != NULL)
7711 {
7712 memcpy (dest, name, namesz);
7713 dest += namesz;
7714 while (pad != 0)
7715 {
7716 *dest++ = '\0';
7717 --pad;
7718 }
7719 }
7720 memcpy (dest, input, size);
7721 return p;
7722 }
7723
7724 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7725 char *
7726 elfcore_write_prpsinfo (bfd *abfd,
7727 char *buf,
7728 int *bufsiz,
7729 const char *fname,
7730 const char *psargs)
7731 {
7732 int note_type;
7733 char *note_name = "CORE";
7734
7735 #if defined (HAVE_PSINFO_T)
7736 psinfo_t data;
7737 note_type = NT_PSINFO;
7738 #else
7739 prpsinfo_t data;
7740 note_type = NT_PRPSINFO;
7741 #endif
7742
7743 memset (&data, 0, sizeof (data));
7744 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7745 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7746 return elfcore_write_note (abfd, buf, bufsiz,
7747 note_name, note_type, &data, sizeof (data));
7748 }
7749 #endif /* PSINFO_T or PRPSINFO_T */
7750
7751 #if defined (HAVE_PRSTATUS_T)
7752 char *
7753 elfcore_write_prstatus (bfd *abfd,
7754 char *buf,
7755 int *bufsiz,
7756 long pid,
7757 int cursig,
7758 const void *gregs)
7759 {
7760 prstatus_t prstat;
7761 char *note_name = "CORE";
7762
7763 memset (&prstat, 0, sizeof (prstat));
7764 prstat.pr_pid = pid;
7765 prstat.pr_cursig = cursig;
7766 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7767 return elfcore_write_note (abfd, buf, bufsiz,
7768 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7769 }
7770 #endif /* HAVE_PRSTATUS_T */
7771
7772 #if defined (HAVE_LWPSTATUS_T)
7773 char *
7774 elfcore_write_lwpstatus (bfd *abfd,
7775 char *buf,
7776 int *bufsiz,
7777 long pid,
7778 int cursig,
7779 const void *gregs)
7780 {
7781 lwpstatus_t lwpstat;
7782 char *note_name = "CORE";
7783
7784 memset (&lwpstat, 0, sizeof (lwpstat));
7785 lwpstat.pr_lwpid = pid >> 16;
7786 lwpstat.pr_cursig = cursig;
7787 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7788 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7789 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7790 #if !defined(gregs)
7791 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7792 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7793 #else
7794 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7795 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7796 #endif
7797 #endif
7798 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7799 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7800 }
7801 #endif /* HAVE_LWPSTATUS_T */
7802
7803 #if defined (HAVE_PSTATUS_T)
7804 char *
7805 elfcore_write_pstatus (bfd *abfd,
7806 char *buf,
7807 int *bufsiz,
7808 long pid,
7809 int cursig,
7810 const void *gregs)
7811 {
7812 pstatus_t pstat;
7813 char *note_name = "CORE";
7814
7815 memset (&pstat, 0, sizeof (pstat));
7816 pstat.pr_pid = pid & 0xffff;
7817 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7818 NT_PSTATUS, &pstat, sizeof (pstat));
7819 return buf;
7820 }
7821 #endif /* HAVE_PSTATUS_T */
7822
7823 char *
7824 elfcore_write_prfpreg (bfd *abfd,
7825 char *buf,
7826 int *bufsiz,
7827 const void *fpregs,
7828 int size)
7829 {
7830 char *note_name = "CORE";
7831 return elfcore_write_note (abfd, buf, bufsiz,
7832 note_name, NT_FPREGSET, fpregs, size);
7833 }
7834
7835 char *
7836 elfcore_write_prxfpreg (bfd *abfd,
7837 char *buf,
7838 int *bufsiz,
7839 const void *xfpregs,
7840 int size)
7841 {
7842 char *note_name = "LINUX";
7843 return elfcore_write_note (abfd, buf, bufsiz,
7844 note_name, NT_PRXFPREG, xfpregs, size);
7845 }
7846
7847 static bfd_boolean
7848 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7849 {
7850 char *buf;
7851 char *p;
7852
7853 if (size <= 0)
7854 return TRUE;
7855
7856 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7857 return FALSE;
7858
7859 buf = bfd_malloc (size);
7860 if (buf == NULL)
7861 return FALSE;
7862
7863 if (bfd_bread (buf, size, abfd) != size)
7864 {
7865 error:
7866 free (buf);
7867 return FALSE;
7868 }
7869
7870 p = buf;
7871 while (p < buf + size)
7872 {
7873 /* FIXME: bad alignment assumption. */
7874 Elf_External_Note *xnp = (Elf_External_Note *) p;
7875 Elf_Internal_Note in;
7876
7877 in.type = H_GET_32 (abfd, xnp->type);
7878
7879 in.namesz = H_GET_32 (abfd, xnp->namesz);
7880 in.namedata = xnp->name;
7881
7882 in.descsz = H_GET_32 (abfd, xnp->descsz);
7883 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7884 in.descpos = offset + (in.descdata - buf);
7885
7886 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7887 {
7888 if (! elfcore_grok_netbsd_note (abfd, &in))
7889 goto error;
7890 }
7891 else if (strncmp (in.namedata, "QNX", 3) == 0)
7892 {
7893 if (! elfcore_grok_nto_note (abfd, &in))
7894 goto error;
7895 }
7896 else
7897 {
7898 if (! elfcore_grok_note (abfd, &in))
7899 goto error;
7900 }
7901
7902 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7903 }
7904
7905 free (buf);
7906 return TRUE;
7907 }
7908 \f
7909 /* Providing external access to the ELF program header table. */
7910
7911 /* Return an upper bound on the number of bytes required to store a
7912 copy of ABFD's program header table entries. Return -1 if an error
7913 occurs; bfd_get_error will return an appropriate code. */
7914
7915 long
7916 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7917 {
7918 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7919 {
7920 bfd_set_error (bfd_error_wrong_format);
7921 return -1;
7922 }
7923
7924 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7925 }
7926
7927 /* Copy ABFD's program header table entries to *PHDRS. The entries
7928 will be stored as an array of Elf_Internal_Phdr structures, as
7929 defined in include/elf/internal.h. To find out how large the
7930 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7931
7932 Return the number of program header table entries read, or -1 if an
7933 error occurs; bfd_get_error will return an appropriate code. */
7934
7935 int
7936 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7937 {
7938 int num_phdrs;
7939
7940 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7941 {
7942 bfd_set_error (bfd_error_wrong_format);
7943 return -1;
7944 }
7945
7946 num_phdrs = elf_elfheader (abfd)->e_phnum;
7947 memcpy (phdrs, elf_tdata (abfd)->phdr,
7948 num_phdrs * sizeof (Elf_Internal_Phdr));
7949
7950 return num_phdrs;
7951 }
7952
7953 void
7954 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7955 {
7956 #ifdef BFD64
7957 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7958
7959 i_ehdrp = elf_elfheader (abfd);
7960 if (i_ehdrp == NULL)
7961 sprintf_vma (buf, value);
7962 else
7963 {
7964 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7965 {
7966 #if BFD_HOST_64BIT_LONG
7967 sprintf (buf, "%016lx", value);
7968 #else
7969 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7970 _bfd_int64_low (value));
7971 #endif
7972 }
7973 else
7974 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7975 }
7976 #else
7977 sprintf_vma (buf, value);
7978 #endif
7979 }
7980
7981 void
7982 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7983 {
7984 #ifdef BFD64
7985 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7986
7987 i_ehdrp = elf_elfheader (abfd);
7988 if (i_ehdrp == NULL)
7989 fprintf_vma ((FILE *) stream, value);
7990 else
7991 {
7992 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7993 {
7994 #if BFD_HOST_64BIT_LONG
7995 fprintf ((FILE *) stream, "%016lx", value);
7996 #else
7997 fprintf ((FILE *) stream, "%08lx%08lx",
7998 _bfd_int64_high (value), _bfd_int64_low (value));
7999 #endif
8000 }
8001 else
8002 fprintf ((FILE *) stream, "%08lx",
8003 (unsigned long) (value & 0xffffffff));
8004 }
8005 #else
8006 fprintf_vma ((FILE *) stream, value);
8007 #endif
8008 }
8009
8010 enum elf_reloc_type_class
8011 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8012 {
8013 return reloc_class_normal;
8014 }
8015
8016 /* For RELA architectures, return the relocation value for a
8017 relocation against a local symbol. */
8018
8019 bfd_vma
8020 _bfd_elf_rela_local_sym (bfd *abfd,
8021 Elf_Internal_Sym *sym,
8022 asection **psec,
8023 Elf_Internal_Rela *rel)
8024 {
8025 asection *sec = *psec;
8026 bfd_vma relocation;
8027
8028 relocation = (sec->output_section->vma
8029 + sec->output_offset
8030 + sym->st_value);
8031 if ((sec->flags & SEC_MERGE)
8032 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8033 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8034 {
8035 rel->r_addend =
8036 _bfd_merged_section_offset (abfd, psec,
8037 elf_section_data (sec)->sec_info,
8038 sym->st_value + rel->r_addend);
8039 if (sec != *psec)
8040 {
8041 /* If we have changed the section, and our original section is
8042 marked with SEC_EXCLUDE, it means that the original
8043 SEC_MERGE section has been completely subsumed in some
8044 other SEC_MERGE section. In this case, we need to leave
8045 some info around for --emit-relocs. */
8046 if ((sec->flags & SEC_EXCLUDE) != 0)
8047 sec->kept_section = *psec;
8048 sec = *psec;
8049 }
8050 rel->r_addend -= relocation;
8051 rel->r_addend += sec->output_section->vma + sec->output_offset;
8052 }
8053 return relocation;
8054 }
8055
8056 bfd_vma
8057 _bfd_elf_rel_local_sym (bfd *abfd,
8058 Elf_Internal_Sym *sym,
8059 asection **psec,
8060 bfd_vma addend)
8061 {
8062 asection *sec = *psec;
8063
8064 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8065 return sym->st_value + addend;
8066
8067 return _bfd_merged_section_offset (abfd, psec,
8068 elf_section_data (sec)->sec_info,
8069 sym->st_value + addend);
8070 }
8071
8072 bfd_vma
8073 _bfd_elf_section_offset (bfd *abfd,
8074 struct bfd_link_info *info,
8075 asection *sec,
8076 bfd_vma offset)
8077 {
8078 switch (sec->sec_info_type)
8079 {
8080 case ELF_INFO_TYPE_STABS:
8081 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8082 offset);
8083 case ELF_INFO_TYPE_EH_FRAME:
8084 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8085 default:
8086 return offset;
8087 }
8088 }
8089 \f
8090 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8091 reconstruct an ELF file by reading the segments out of remote memory
8092 based on the ELF file header at EHDR_VMA and the ELF program headers it
8093 points to. If not null, *LOADBASEP is filled in with the difference
8094 between the VMAs from which the segments were read, and the VMAs the
8095 file headers (and hence BFD's idea of each section's VMA) put them at.
8096
8097 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8098 remote memory at target address VMA into the local buffer at MYADDR; it
8099 should return zero on success or an `errno' code on failure. TEMPL must
8100 be a BFD for an ELF target with the word size and byte order found in
8101 the remote memory. */
8102
8103 bfd *
8104 bfd_elf_bfd_from_remote_memory
8105 (bfd *templ,
8106 bfd_vma ehdr_vma,
8107 bfd_vma *loadbasep,
8108 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8109 {
8110 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8111 (templ, ehdr_vma, loadbasep, target_read_memory);
8112 }
8113 \f
8114 long
8115 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8116 long symcount ATTRIBUTE_UNUSED,
8117 asymbol **syms ATTRIBUTE_UNUSED,
8118 long dynsymcount,
8119 asymbol **dynsyms,
8120 asymbol **ret)
8121 {
8122 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8123 asection *relplt;
8124 asymbol *s;
8125 const char *relplt_name;
8126 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8127 arelent *p;
8128 long count, i, n;
8129 size_t size;
8130 Elf_Internal_Shdr *hdr;
8131 char *names;
8132 asection *plt;
8133
8134 *ret = NULL;
8135
8136 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8137 return 0;
8138
8139 if (dynsymcount <= 0)
8140 return 0;
8141
8142 if (!bed->plt_sym_val)
8143 return 0;
8144
8145 relplt_name = bed->relplt_name;
8146 if (relplt_name == NULL)
8147 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8148 relplt = bfd_get_section_by_name (abfd, relplt_name);
8149 if (relplt == NULL)
8150 return 0;
8151
8152 hdr = &elf_section_data (relplt)->this_hdr;
8153 if (hdr->sh_link != elf_dynsymtab (abfd)
8154 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8155 return 0;
8156
8157 plt = bfd_get_section_by_name (abfd, ".plt");
8158 if (plt == NULL)
8159 return 0;
8160
8161 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8162 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8163 return -1;
8164
8165 count = relplt->size / hdr->sh_entsize;
8166 size = count * sizeof (asymbol);
8167 p = relplt->relocation;
8168 for (i = 0; i < count; i++, s++, p++)
8169 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8170
8171 s = *ret = bfd_malloc (size);
8172 if (s == NULL)
8173 return -1;
8174
8175 names = (char *) (s + count);
8176 p = relplt->relocation;
8177 n = 0;
8178 for (i = 0; i < count; i++, s++, p++)
8179 {
8180 size_t len;
8181 bfd_vma addr;
8182
8183 addr = bed->plt_sym_val (i, plt, p);
8184 if (addr == (bfd_vma) -1)
8185 continue;
8186
8187 *s = **p->sym_ptr_ptr;
8188 s->section = plt;
8189 s->value = addr - plt->vma;
8190 s->name = names;
8191 len = strlen ((*p->sym_ptr_ptr)->name);
8192 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8193 names += len;
8194 memcpy (names, "@plt", sizeof ("@plt"));
8195 names += sizeof ("@plt");
8196 ++n;
8197 }
8198
8199 return n;
8200 }
8201
8202 /* Sort symbol by binding and section. We want to put definitions
8203 sorted by section at the beginning. */
8204
8205 static int
8206 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8207 {
8208 const Elf_Internal_Sym *s1;
8209 const Elf_Internal_Sym *s2;
8210 int shndx;
8211
8212 /* Make sure that undefined symbols are at the end. */
8213 s1 = (const Elf_Internal_Sym *) arg1;
8214 if (s1->st_shndx == SHN_UNDEF)
8215 return 1;
8216 s2 = (const Elf_Internal_Sym *) arg2;
8217 if (s2->st_shndx == SHN_UNDEF)
8218 return -1;
8219
8220 /* Sorted by section index. */
8221 shndx = s1->st_shndx - s2->st_shndx;
8222 if (shndx != 0)
8223 return shndx;
8224
8225 /* Sorted by binding. */
8226 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8227 }
8228
8229 struct elf_symbol
8230 {
8231 Elf_Internal_Sym *sym;
8232 const char *name;
8233 };
8234
8235 static int
8236 elf_sym_name_compare (const void *arg1, const void *arg2)
8237 {
8238 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8239 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8240 return strcmp (s1->name, s2->name);
8241 }
8242
8243 /* Check if 2 sections define the same set of local and global
8244 symbols. */
8245
8246 bfd_boolean
8247 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8248 {
8249 bfd *bfd1, *bfd2;
8250 const struct elf_backend_data *bed1, *bed2;
8251 Elf_Internal_Shdr *hdr1, *hdr2;
8252 bfd_size_type symcount1, symcount2;
8253 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8254 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8255 Elf_Internal_Sym *isymend;
8256 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8257 bfd_size_type count1, count2, i;
8258 int shndx1, shndx2;
8259 bfd_boolean result;
8260
8261 bfd1 = sec1->owner;
8262 bfd2 = sec2->owner;
8263
8264 /* If both are .gnu.linkonce sections, they have to have the same
8265 section name. */
8266 if (strncmp (sec1->name, ".gnu.linkonce",
8267 sizeof ".gnu.linkonce" - 1) == 0
8268 && strncmp (sec2->name, ".gnu.linkonce",
8269 sizeof ".gnu.linkonce" - 1) == 0)
8270 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8271 sec2->name + sizeof ".gnu.linkonce") == 0;
8272
8273 /* Both sections have to be in ELF. */
8274 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8275 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8276 return FALSE;
8277
8278 if (elf_section_type (sec1) != elf_section_type (sec2))
8279 return FALSE;
8280
8281 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8282 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8283 {
8284 /* If both are members of section groups, they have to have the
8285 same group name. */
8286 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8287 return FALSE;
8288 }
8289
8290 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8291 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8292 if (shndx1 == -1 || shndx2 == -1)
8293 return FALSE;
8294
8295 bed1 = get_elf_backend_data (bfd1);
8296 bed2 = get_elf_backend_data (bfd2);
8297 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8298 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8299 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8300 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8301
8302 if (symcount1 == 0 || symcount2 == 0)
8303 return FALSE;
8304
8305 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8306 NULL, NULL, NULL);
8307 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8308 NULL, NULL, NULL);
8309
8310 result = FALSE;
8311 if (isymbuf1 == NULL || isymbuf2 == NULL)
8312 goto done;
8313
8314 /* Sort symbols by binding and section. Global definitions are at
8315 the beginning. */
8316 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8317 elf_sort_elf_symbol);
8318 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8319 elf_sort_elf_symbol);
8320
8321 /* Count definitions in the section. */
8322 count1 = 0;
8323 for (isym = isymbuf1, isymend = isym + symcount1;
8324 isym < isymend; isym++)
8325 {
8326 if (isym->st_shndx == (unsigned int) shndx1)
8327 {
8328 if (count1 == 0)
8329 isymstart1 = isym;
8330 count1++;
8331 }
8332
8333 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8334 break;
8335 }
8336
8337 count2 = 0;
8338 for (isym = isymbuf2, isymend = isym + symcount2;
8339 isym < isymend; isym++)
8340 {
8341 if (isym->st_shndx == (unsigned int) shndx2)
8342 {
8343 if (count2 == 0)
8344 isymstart2 = isym;
8345 count2++;
8346 }
8347
8348 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8349 break;
8350 }
8351
8352 if (count1 == 0 || count2 == 0 || count1 != count2)
8353 goto done;
8354
8355 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8356 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8357
8358 if (symtable1 == NULL || symtable2 == NULL)
8359 goto done;
8360
8361 symp = symtable1;
8362 for (isym = isymstart1, isymend = isym + count1;
8363 isym < isymend; isym++)
8364 {
8365 symp->sym = isym;
8366 symp->name = bfd_elf_string_from_elf_section (bfd1,
8367 hdr1->sh_link,
8368 isym->st_name);
8369 symp++;
8370 }
8371
8372 symp = symtable2;
8373 for (isym = isymstart2, isymend = isym + count1;
8374 isym < isymend; isym++)
8375 {
8376 symp->sym = isym;
8377 symp->name = bfd_elf_string_from_elf_section (bfd2,
8378 hdr2->sh_link,
8379 isym->st_name);
8380 symp++;
8381 }
8382
8383 /* Sort symbol by name. */
8384 qsort (symtable1, count1, sizeof (struct elf_symbol),
8385 elf_sym_name_compare);
8386 qsort (symtable2, count1, sizeof (struct elf_symbol),
8387 elf_sym_name_compare);
8388
8389 for (i = 0; i < count1; i++)
8390 /* Two symbols must have the same binding, type and name. */
8391 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8392 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8393 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8394 goto done;
8395
8396 result = TRUE;
8397
8398 done:
8399 if (symtable1)
8400 free (symtable1);
8401 if (symtable2)
8402 free (symtable2);
8403 if (isymbuf1)
8404 free (isymbuf1);
8405 if (isymbuf2)
8406 free (isymbuf2);
8407
8408 return result;
8409 }
This page took 0.199314 seconds and 4 git commands to generate.