daily update
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /*
25 SECTION
26 ELF backends
27
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
31
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
35
36 /* For sparc64-cross-sparc32. */
37 #define _SYSCALL32
38 #include "sysdep.h"
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46
47 static int elf_sort_sections (const void *, const void *);
48 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
49 static bfd_boolean prep_headers (bfd *);
50 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
51 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
52 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
53 file_ptr offset);
54
55 /* Swap version information in and out. The version information is
56 currently size independent. If that ever changes, this code will
57 need to move into elfcode.h. */
58
59 /* Swap in a Verdef structure. */
60
61 void
62 _bfd_elf_swap_verdef_in (bfd *abfd,
63 const Elf_External_Verdef *src,
64 Elf_Internal_Verdef *dst)
65 {
66 dst->vd_version = H_GET_16 (abfd, src->vd_version);
67 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
68 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
69 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
70 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
71 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
72 dst->vd_next = H_GET_32 (abfd, src->vd_next);
73 }
74
75 /* Swap out a Verdef structure. */
76
77 void
78 _bfd_elf_swap_verdef_out (bfd *abfd,
79 const Elf_Internal_Verdef *src,
80 Elf_External_Verdef *dst)
81 {
82 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
83 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
84 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
85 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
86 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
87 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
88 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
89 }
90
91 /* Swap in a Verdaux structure. */
92
93 void
94 _bfd_elf_swap_verdaux_in (bfd *abfd,
95 const Elf_External_Verdaux *src,
96 Elf_Internal_Verdaux *dst)
97 {
98 dst->vda_name = H_GET_32 (abfd, src->vda_name);
99 dst->vda_next = H_GET_32 (abfd, src->vda_next);
100 }
101
102 /* Swap out a Verdaux structure. */
103
104 void
105 _bfd_elf_swap_verdaux_out (bfd *abfd,
106 const Elf_Internal_Verdaux *src,
107 Elf_External_Verdaux *dst)
108 {
109 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
110 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
111 }
112
113 /* Swap in a Verneed structure. */
114
115 void
116 _bfd_elf_swap_verneed_in (bfd *abfd,
117 const Elf_External_Verneed *src,
118 Elf_Internal_Verneed *dst)
119 {
120 dst->vn_version = H_GET_16 (abfd, src->vn_version);
121 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
122 dst->vn_file = H_GET_32 (abfd, src->vn_file);
123 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
124 dst->vn_next = H_GET_32 (abfd, src->vn_next);
125 }
126
127 /* Swap out a Verneed structure. */
128
129 void
130 _bfd_elf_swap_verneed_out (bfd *abfd,
131 const Elf_Internal_Verneed *src,
132 Elf_External_Verneed *dst)
133 {
134 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
135 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
136 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
137 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
138 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
139 }
140
141 /* Swap in a Vernaux structure. */
142
143 void
144 _bfd_elf_swap_vernaux_in (bfd *abfd,
145 const Elf_External_Vernaux *src,
146 Elf_Internal_Vernaux *dst)
147 {
148 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
149 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
150 dst->vna_other = H_GET_16 (abfd, src->vna_other);
151 dst->vna_name = H_GET_32 (abfd, src->vna_name);
152 dst->vna_next = H_GET_32 (abfd, src->vna_next);
153 }
154
155 /* Swap out a Vernaux structure. */
156
157 void
158 _bfd_elf_swap_vernaux_out (bfd *abfd,
159 const Elf_Internal_Vernaux *src,
160 Elf_External_Vernaux *dst)
161 {
162 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
163 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
164 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
165 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
166 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
167 }
168
169 /* Swap in a Versym structure. */
170
171 void
172 _bfd_elf_swap_versym_in (bfd *abfd,
173 const Elf_External_Versym *src,
174 Elf_Internal_Versym *dst)
175 {
176 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
177 }
178
179 /* Swap out a Versym structure. */
180
181 void
182 _bfd_elf_swap_versym_out (bfd *abfd,
183 const Elf_Internal_Versym *src,
184 Elf_External_Versym *dst)
185 {
186 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
187 }
188
189 /* Standard ELF hash function. Do not change this function; you will
190 cause invalid hash tables to be generated. */
191
192 unsigned long
193 bfd_elf_hash (const char *namearg)
194 {
195 const unsigned char *name = (const unsigned char *) namearg;
196 unsigned long h = 0;
197 unsigned long g;
198 int ch;
199
200 while ((ch = *name++) != '\0')
201 {
202 h = (h << 4) + ch;
203 if ((g = (h & 0xf0000000)) != 0)
204 {
205 h ^= g >> 24;
206 /* The ELF ABI says `h &= ~g', but this is equivalent in
207 this case and on some machines one insn instead of two. */
208 h ^= g;
209 }
210 }
211 return h & 0xffffffff;
212 }
213
214 /* DT_GNU_HASH hash function. Do not change this function; you will
215 cause invalid hash tables to be generated. */
216
217 unsigned long
218 bfd_elf_gnu_hash (const char *namearg)
219 {
220 const unsigned char *name = (const unsigned char *) namearg;
221 unsigned long h = 5381;
222 unsigned char ch;
223
224 while ((ch = *name++) != '\0')
225 h = (h << 5) + h + ch;
226 return h & 0xffffffff;
227 }
228
229 bfd_boolean
230 bfd_elf_mkobject (bfd *abfd)
231 {
232 if (abfd->tdata.any == NULL)
233 {
234 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
235 if (abfd->tdata.any == NULL)
236 return FALSE;
237 }
238
239 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
240
241 return TRUE;
242 }
243
244 bfd_boolean
245 bfd_elf_mkcorefile (bfd *abfd)
246 {
247 /* I think this can be done just like an object file. */
248 return bfd_elf_mkobject (abfd);
249 }
250
251 char *
252 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
253 {
254 Elf_Internal_Shdr **i_shdrp;
255 bfd_byte *shstrtab = NULL;
256 file_ptr offset;
257 bfd_size_type shstrtabsize;
258
259 i_shdrp = elf_elfsections (abfd);
260 if (i_shdrp == 0
261 || shindex >= elf_numsections (abfd)
262 || i_shdrp[shindex] == 0)
263 return NULL;
264
265 shstrtab = i_shdrp[shindex]->contents;
266 if (shstrtab == NULL)
267 {
268 /* No cached one, attempt to read, and cache what we read. */
269 offset = i_shdrp[shindex]->sh_offset;
270 shstrtabsize = i_shdrp[shindex]->sh_size;
271
272 /* Allocate and clear an extra byte at the end, to prevent crashes
273 in case the string table is not terminated. */
274 if (shstrtabsize + 1 == 0
275 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
276 || bfd_seek (abfd, offset, SEEK_SET) != 0)
277 shstrtab = NULL;
278 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
279 {
280 if (bfd_get_error () != bfd_error_system_call)
281 bfd_set_error (bfd_error_file_truncated);
282 shstrtab = NULL;
283 }
284 else
285 shstrtab[shstrtabsize] = '\0';
286 i_shdrp[shindex]->contents = shstrtab;
287 }
288 return (char *) shstrtab;
289 }
290
291 char *
292 bfd_elf_string_from_elf_section (bfd *abfd,
293 unsigned int shindex,
294 unsigned int strindex)
295 {
296 Elf_Internal_Shdr *hdr;
297
298 if (strindex == 0)
299 return "";
300
301 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
302 return NULL;
303
304 hdr = elf_elfsections (abfd)[shindex];
305
306 if (hdr->contents == NULL
307 && bfd_elf_get_str_section (abfd, shindex) == NULL)
308 return NULL;
309
310 if (strindex >= hdr->sh_size)
311 {
312 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
313 (*_bfd_error_handler)
314 (_("%B: invalid string offset %u >= %lu for section `%s'"),
315 abfd, strindex, (unsigned long) hdr->sh_size,
316 (shindex == shstrndx && strindex == hdr->sh_name
317 ? ".shstrtab"
318 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
319 return "";
320 }
321
322 return ((char *) hdr->contents) + strindex;
323 }
324
325 /* Read and convert symbols to internal format.
326 SYMCOUNT specifies the number of symbols to read, starting from
327 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
328 are non-NULL, they are used to store the internal symbols, external
329 symbols, and symbol section index extensions, respectively. */
330
331 Elf_Internal_Sym *
332 bfd_elf_get_elf_syms (bfd *ibfd,
333 Elf_Internal_Shdr *symtab_hdr,
334 size_t symcount,
335 size_t symoffset,
336 Elf_Internal_Sym *intsym_buf,
337 void *extsym_buf,
338 Elf_External_Sym_Shndx *extshndx_buf)
339 {
340 Elf_Internal_Shdr *shndx_hdr;
341 void *alloc_ext;
342 const bfd_byte *esym;
343 Elf_External_Sym_Shndx *alloc_extshndx;
344 Elf_External_Sym_Shndx *shndx;
345 Elf_Internal_Sym *isym;
346 Elf_Internal_Sym *isymend;
347 const struct elf_backend_data *bed;
348 size_t extsym_size;
349 bfd_size_type amt;
350 file_ptr pos;
351
352 if (symcount == 0)
353 return intsym_buf;
354
355 /* Normal syms might have section extension entries. */
356 shndx_hdr = NULL;
357 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
358 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
359
360 /* Read the symbols. */
361 alloc_ext = NULL;
362 alloc_extshndx = NULL;
363 bed = get_elf_backend_data (ibfd);
364 extsym_size = bed->s->sizeof_sym;
365 amt = symcount * extsym_size;
366 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
367 if (extsym_buf == NULL)
368 {
369 alloc_ext = bfd_malloc2 (symcount, extsym_size);
370 extsym_buf = alloc_ext;
371 }
372 if (extsym_buf == NULL
373 || bfd_seek (ibfd, pos, SEEK_SET) != 0
374 || bfd_bread (extsym_buf, amt, ibfd) != amt)
375 {
376 intsym_buf = NULL;
377 goto out;
378 }
379
380 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
381 extshndx_buf = NULL;
382 else
383 {
384 amt = symcount * sizeof (Elf_External_Sym_Shndx);
385 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
386 if (extshndx_buf == NULL)
387 {
388 alloc_extshndx = bfd_malloc2 (symcount,
389 sizeof (Elf_External_Sym_Shndx));
390 extshndx_buf = alloc_extshndx;
391 }
392 if (extshndx_buf == NULL
393 || bfd_seek (ibfd, pos, SEEK_SET) != 0
394 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
395 {
396 intsym_buf = NULL;
397 goto out;
398 }
399 }
400
401 if (intsym_buf == NULL)
402 {
403 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
404 if (intsym_buf == NULL)
405 goto out;
406 }
407
408 /* Convert the symbols to internal form. */
409 isymend = intsym_buf + symcount;
410 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
411 isym < isymend;
412 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
413 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
414 {
415 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
416 (*_bfd_error_handler) (_("%B symbol number %lu references "
417 "nonexistent SHT_SYMTAB_SHNDX section"),
418 ibfd, (unsigned long) symoffset);
419 intsym_buf = NULL;
420 goto out;
421 }
422
423 out:
424 if (alloc_ext != NULL)
425 free (alloc_ext);
426 if (alloc_extshndx != NULL)
427 free (alloc_extshndx);
428
429 return intsym_buf;
430 }
431
432 /* Look up a symbol name. */
433 const char *
434 bfd_elf_sym_name (bfd *abfd,
435 Elf_Internal_Shdr *symtab_hdr,
436 Elf_Internal_Sym *isym,
437 asection *sym_sec)
438 {
439 const char *name;
440 unsigned int iname = isym->st_name;
441 unsigned int shindex = symtab_hdr->sh_link;
442
443 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
444 /* Check for a bogus st_shndx to avoid crashing. */
445 && isym->st_shndx < elf_numsections (abfd)
446 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
447 {
448 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
449 shindex = elf_elfheader (abfd)->e_shstrndx;
450 }
451
452 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
453 if (name == NULL)
454 name = "(null)";
455 else if (sym_sec && *name == '\0')
456 name = bfd_section_name (abfd, sym_sec);
457
458 return name;
459 }
460
461 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
462 sections. The first element is the flags, the rest are section
463 pointers. */
464
465 typedef union elf_internal_group {
466 Elf_Internal_Shdr *shdr;
467 unsigned int flags;
468 } Elf_Internal_Group;
469
470 /* Return the name of the group signature symbol. Why isn't the
471 signature just a string? */
472
473 static const char *
474 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
475 {
476 Elf_Internal_Shdr *hdr;
477 unsigned char esym[sizeof (Elf64_External_Sym)];
478 Elf_External_Sym_Shndx eshndx;
479 Elf_Internal_Sym isym;
480
481 /* First we need to ensure the symbol table is available. Make sure
482 that it is a symbol table section. */
483 hdr = elf_elfsections (abfd) [ghdr->sh_link];
484 if (hdr->sh_type != SHT_SYMTAB
485 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
486 return NULL;
487
488 /* Go read the symbol. */
489 hdr = &elf_tdata (abfd)->symtab_hdr;
490 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
491 &isym, esym, &eshndx) == NULL)
492 return NULL;
493
494 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
495 }
496
497 /* Set next_in_group list pointer, and group name for NEWSECT. */
498
499 static bfd_boolean
500 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
501 {
502 unsigned int num_group = elf_tdata (abfd)->num_group;
503
504 /* If num_group is zero, read in all SHT_GROUP sections. The count
505 is set to -1 if there are no SHT_GROUP sections. */
506 if (num_group == 0)
507 {
508 unsigned int i, shnum;
509
510 /* First count the number of groups. If we have a SHT_GROUP
511 section with just a flag word (ie. sh_size is 4), ignore it. */
512 shnum = elf_numsections (abfd);
513 num_group = 0;
514
515 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
516 ( (shdr)->sh_type == SHT_GROUP \
517 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
518 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
519 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
520
521 for (i = 0; i < shnum; i++)
522 {
523 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
524
525 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
526 num_group += 1;
527 }
528
529 if (num_group == 0)
530 {
531 num_group = (unsigned) -1;
532 elf_tdata (abfd)->num_group = num_group;
533 }
534 else
535 {
536 /* We keep a list of elf section headers for group sections,
537 so we can find them quickly. */
538 bfd_size_type amt;
539
540 elf_tdata (abfd)->num_group = num_group;
541 elf_tdata (abfd)->group_sect_ptr
542 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
543 if (elf_tdata (abfd)->group_sect_ptr == NULL)
544 return FALSE;
545
546 num_group = 0;
547 for (i = 0; i < shnum; i++)
548 {
549 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
550
551 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
552 {
553 unsigned char *src;
554 Elf_Internal_Group *dest;
555
556 /* Add to list of sections. */
557 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
558 num_group += 1;
559
560 /* Read the raw contents. */
561 BFD_ASSERT (sizeof (*dest) >= 4);
562 amt = shdr->sh_size * sizeof (*dest) / 4;
563 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
564 sizeof (*dest) / 4);
565 /* PR binutils/4110: Handle corrupt group headers. */
566 if (shdr->contents == NULL)
567 {
568 _bfd_error_handler
569 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
570 bfd_set_error (bfd_error_bad_value);
571 return FALSE;
572 }
573
574 memset (shdr->contents, 0, amt);
575
576 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
577 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
578 != shdr->sh_size))
579 return FALSE;
580
581 /* Translate raw contents, a flag word followed by an
582 array of elf section indices all in target byte order,
583 to the flag word followed by an array of elf section
584 pointers. */
585 src = shdr->contents + shdr->sh_size;
586 dest = (Elf_Internal_Group *) (shdr->contents + amt);
587 while (1)
588 {
589 unsigned int idx;
590
591 src -= 4;
592 --dest;
593 idx = H_GET_32 (abfd, src);
594 if (src == shdr->contents)
595 {
596 dest->flags = idx;
597 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
598 shdr->bfd_section->flags
599 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
600 break;
601 }
602 if (idx >= shnum)
603 {
604 ((*_bfd_error_handler)
605 (_("%B: invalid SHT_GROUP entry"), abfd));
606 idx = 0;
607 }
608 dest->shdr = elf_elfsections (abfd)[idx];
609 }
610 }
611 }
612 }
613 }
614
615 if (num_group != (unsigned) -1)
616 {
617 unsigned int i;
618
619 for (i = 0; i < num_group; i++)
620 {
621 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
622 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
623 unsigned int n_elt = shdr->sh_size / 4;
624
625 /* Look through this group's sections to see if current
626 section is a member. */
627 while (--n_elt != 0)
628 if ((++idx)->shdr == hdr)
629 {
630 asection *s = NULL;
631
632 /* We are a member of this group. Go looking through
633 other members to see if any others are linked via
634 next_in_group. */
635 idx = (Elf_Internal_Group *) shdr->contents;
636 n_elt = shdr->sh_size / 4;
637 while (--n_elt != 0)
638 if ((s = (++idx)->shdr->bfd_section) != NULL
639 && elf_next_in_group (s) != NULL)
640 break;
641 if (n_elt != 0)
642 {
643 /* Snarf the group name from other member, and
644 insert current section in circular list. */
645 elf_group_name (newsect) = elf_group_name (s);
646 elf_next_in_group (newsect) = elf_next_in_group (s);
647 elf_next_in_group (s) = newsect;
648 }
649 else
650 {
651 const char *gname;
652
653 gname = group_signature (abfd, shdr);
654 if (gname == NULL)
655 return FALSE;
656 elf_group_name (newsect) = gname;
657
658 /* Start a circular list with one element. */
659 elf_next_in_group (newsect) = newsect;
660 }
661
662 /* If the group section has been created, point to the
663 new member. */
664 if (shdr->bfd_section != NULL)
665 elf_next_in_group (shdr->bfd_section) = newsect;
666
667 i = num_group - 1;
668 break;
669 }
670 }
671 }
672
673 if (elf_group_name (newsect) == NULL)
674 {
675 (*_bfd_error_handler) (_("%B: no group info for section %A"),
676 abfd, newsect);
677 }
678 return TRUE;
679 }
680
681 bfd_boolean
682 _bfd_elf_setup_sections (bfd *abfd)
683 {
684 unsigned int i;
685 unsigned int num_group = elf_tdata (abfd)->num_group;
686 bfd_boolean result = TRUE;
687 asection *s;
688
689 /* Process SHF_LINK_ORDER. */
690 for (s = abfd->sections; s != NULL; s = s->next)
691 {
692 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
693 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
694 {
695 unsigned int elfsec = this_hdr->sh_link;
696 /* FIXME: The old Intel compiler and old strip/objcopy may
697 not set the sh_link or sh_info fields. Hence we could
698 get the situation where elfsec is 0. */
699 if (elfsec == 0)
700 {
701 const struct elf_backend_data *bed
702 = get_elf_backend_data (abfd);
703 if (bed->link_order_error_handler)
704 bed->link_order_error_handler
705 (_("%B: warning: sh_link not set for section `%A'"),
706 abfd, s);
707 }
708 else
709 {
710 asection *link;
711
712 this_hdr = elf_elfsections (abfd)[elfsec];
713
714 /* PR 1991, 2008:
715 Some strip/objcopy may leave an incorrect value in
716 sh_link. We don't want to proceed. */
717 link = this_hdr->bfd_section;
718 if (link == NULL)
719 {
720 (*_bfd_error_handler)
721 (_("%B: sh_link [%d] in section `%A' is incorrect"),
722 s->owner, s, elfsec);
723 result = FALSE;
724 }
725
726 elf_linked_to_section (s) = link;
727 }
728 }
729 }
730
731 /* Process section groups. */
732 if (num_group == (unsigned) -1)
733 return result;
734
735 for (i = 0; i < num_group; i++)
736 {
737 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
738 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
739 unsigned int n_elt = shdr->sh_size / 4;
740
741 while (--n_elt != 0)
742 if ((++idx)->shdr->bfd_section)
743 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
744 else if (idx->shdr->sh_type == SHT_RELA
745 || idx->shdr->sh_type == SHT_REL)
746 /* We won't include relocation sections in section groups in
747 output object files. We adjust the group section size here
748 so that relocatable link will work correctly when
749 relocation sections are in section group in input object
750 files. */
751 shdr->bfd_section->size -= 4;
752 else
753 {
754 /* There are some unknown sections in the group. */
755 (*_bfd_error_handler)
756 (_("%B: unknown [%d] section `%s' in group [%s]"),
757 abfd,
758 (unsigned int) idx->shdr->sh_type,
759 bfd_elf_string_from_elf_section (abfd,
760 (elf_elfheader (abfd)
761 ->e_shstrndx),
762 idx->shdr->sh_name),
763 shdr->bfd_section->name);
764 result = FALSE;
765 }
766 }
767 return result;
768 }
769
770 bfd_boolean
771 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
772 {
773 return elf_next_in_group (sec) != NULL;
774 }
775
776 /* Make a BFD section from an ELF section. We store a pointer to the
777 BFD section in the bfd_section field of the header. */
778
779 bfd_boolean
780 _bfd_elf_make_section_from_shdr (bfd *abfd,
781 Elf_Internal_Shdr *hdr,
782 const char *name,
783 int shindex)
784 {
785 asection *newsect;
786 flagword flags;
787 const struct elf_backend_data *bed;
788
789 if (hdr->bfd_section != NULL)
790 {
791 BFD_ASSERT (strcmp (name,
792 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
793 return TRUE;
794 }
795
796 newsect = bfd_make_section_anyway (abfd, name);
797 if (newsect == NULL)
798 return FALSE;
799
800 hdr->bfd_section = newsect;
801 elf_section_data (newsect)->this_hdr = *hdr;
802 elf_section_data (newsect)->this_idx = shindex;
803
804 /* Always use the real type/flags. */
805 elf_section_type (newsect) = hdr->sh_type;
806 elf_section_flags (newsect) = hdr->sh_flags;
807
808 newsect->filepos = hdr->sh_offset;
809
810 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
811 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
812 || ! bfd_set_section_alignment (abfd, newsect,
813 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
814 return FALSE;
815
816 flags = SEC_NO_FLAGS;
817 if (hdr->sh_type != SHT_NOBITS)
818 flags |= SEC_HAS_CONTENTS;
819 if (hdr->sh_type == SHT_GROUP)
820 flags |= SEC_GROUP | SEC_EXCLUDE;
821 if ((hdr->sh_flags & SHF_ALLOC) != 0)
822 {
823 flags |= SEC_ALLOC;
824 if (hdr->sh_type != SHT_NOBITS)
825 flags |= SEC_LOAD;
826 }
827 if ((hdr->sh_flags & SHF_WRITE) == 0)
828 flags |= SEC_READONLY;
829 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
830 flags |= SEC_CODE;
831 else if ((flags & SEC_LOAD) != 0)
832 flags |= SEC_DATA;
833 if ((hdr->sh_flags & SHF_MERGE) != 0)
834 {
835 flags |= SEC_MERGE;
836 newsect->entsize = hdr->sh_entsize;
837 if ((hdr->sh_flags & SHF_STRINGS) != 0)
838 flags |= SEC_STRINGS;
839 }
840 if (hdr->sh_flags & SHF_GROUP)
841 if (!setup_group (abfd, hdr, newsect))
842 return FALSE;
843 if ((hdr->sh_flags & SHF_TLS) != 0)
844 flags |= SEC_THREAD_LOCAL;
845
846 if ((flags & SEC_ALLOC) == 0)
847 {
848 /* The debugging sections appear to be recognized only by name,
849 not any sort of flag. Their SEC_ALLOC bits are cleared. */
850 static const struct
851 {
852 const char *name;
853 int len;
854 } debug_sections [] =
855 {
856 { STRING_COMMA_LEN ("debug") }, /* 'd' */
857 { NULL, 0 }, /* 'e' */
858 { NULL, 0 }, /* 'f' */
859 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
860 { NULL, 0 }, /* 'h' */
861 { NULL, 0 }, /* 'i' */
862 { NULL, 0 }, /* 'j' */
863 { NULL, 0 }, /* 'k' */
864 { STRING_COMMA_LEN ("line") }, /* 'l' */
865 { NULL, 0 }, /* 'm' */
866 { NULL, 0 }, /* 'n' */
867 { NULL, 0 }, /* 'o' */
868 { NULL, 0 }, /* 'p' */
869 { NULL, 0 }, /* 'q' */
870 { NULL, 0 }, /* 'r' */
871 { STRING_COMMA_LEN ("stab") } /* 's' */
872 };
873
874 if (name [0] == '.')
875 {
876 int i = name [1] - 'd';
877 if (i >= 0
878 && i < (int) ARRAY_SIZE (debug_sections)
879 && debug_sections [i].name != NULL
880 && strncmp (&name [1], debug_sections [i].name,
881 debug_sections [i].len) == 0)
882 flags |= SEC_DEBUGGING;
883 }
884 }
885
886 /* As a GNU extension, if the name begins with .gnu.linkonce, we
887 only link a single copy of the section. This is used to support
888 g++. g++ will emit each template expansion in its own section.
889 The symbols will be defined as weak, so that multiple definitions
890 are permitted. The GNU linker extension is to actually discard
891 all but one of the sections. */
892 if (CONST_STRNEQ (name, ".gnu.linkonce")
893 && elf_next_in_group (newsect) == NULL)
894 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
895
896 bed = get_elf_backend_data (abfd);
897 if (bed->elf_backend_section_flags)
898 if (! bed->elf_backend_section_flags (&flags, hdr))
899 return FALSE;
900
901 if (! bfd_set_section_flags (abfd, newsect, flags))
902 return FALSE;
903
904 /* We do not parse the PT_NOTE segments as we are interested even in the
905 separate debug info files which may have the segments offsets corrupted.
906 PT_NOTEs from the core files are currently not parsed using BFD. */
907 if (hdr->sh_type == SHT_NOTE)
908 {
909 char *contents;
910
911 contents = bfd_malloc (hdr->sh_size);
912 if (!contents)
913 return FALSE;
914
915 if (!bfd_get_section_contents (abfd, hdr->bfd_section, contents, 0,
916 hdr->sh_size)
917 || !elf_parse_notes (abfd, contents, hdr->sh_size, -1))
918 {
919 free (contents);
920 return FALSE;
921 }
922
923 free (contents);
924 }
925
926 if ((flags & SEC_ALLOC) != 0)
927 {
928 Elf_Internal_Phdr *phdr;
929 unsigned int i;
930
931 /* Look through the phdrs to see if we need to adjust the lma.
932 If all the p_paddr fields are zero, we ignore them, since
933 some ELF linkers produce such output. */
934 phdr = elf_tdata (abfd)->phdr;
935 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
936 {
937 if (phdr->p_paddr != 0)
938 break;
939 }
940 if (i < elf_elfheader (abfd)->e_phnum)
941 {
942 phdr = elf_tdata (abfd)->phdr;
943 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
944 {
945 /* This section is part of this segment if its file
946 offset plus size lies within the segment's memory
947 span and, if the section is loaded, the extent of the
948 loaded data lies within the extent of the segment.
949
950 Note - we used to check the p_paddr field as well, and
951 refuse to set the LMA if it was 0. This is wrong
952 though, as a perfectly valid initialised segment can
953 have a p_paddr of zero. Some architectures, eg ARM,
954 place special significance on the address 0 and
955 executables need to be able to have a segment which
956 covers this address. */
957 if (phdr->p_type == PT_LOAD
958 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
959 && (hdr->sh_offset + hdr->sh_size
960 <= phdr->p_offset + phdr->p_memsz)
961 && ((flags & SEC_LOAD) == 0
962 || (hdr->sh_offset + hdr->sh_size
963 <= phdr->p_offset + phdr->p_filesz)))
964 {
965 if ((flags & SEC_LOAD) == 0)
966 newsect->lma = (phdr->p_paddr
967 + hdr->sh_addr - phdr->p_vaddr);
968 else
969 /* We used to use the same adjustment for SEC_LOAD
970 sections, but that doesn't work if the segment
971 is packed with code from multiple VMAs.
972 Instead we calculate the section LMA based on
973 the segment LMA. It is assumed that the
974 segment will contain sections with contiguous
975 LMAs, even if the VMAs are not. */
976 newsect->lma = (phdr->p_paddr
977 + hdr->sh_offset - phdr->p_offset);
978
979 /* With contiguous segments, we can't tell from file
980 offsets whether a section with zero size should
981 be placed at the end of one segment or the
982 beginning of the next. Decide based on vaddr. */
983 if (hdr->sh_addr >= phdr->p_vaddr
984 && (hdr->sh_addr + hdr->sh_size
985 <= phdr->p_vaddr + phdr->p_memsz))
986 break;
987 }
988 }
989 }
990 }
991
992 return TRUE;
993 }
994
995 /*
996 INTERNAL_FUNCTION
997 bfd_elf_find_section
998
999 SYNOPSIS
1000 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
1001
1002 DESCRIPTION
1003 Helper functions for GDB to locate the string tables.
1004 Since BFD hides string tables from callers, GDB needs to use an
1005 internal hook to find them. Sun's .stabstr, in particular,
1006 isn't even pointed to by the .stab section, so ordinary
1007 mechanisms wouldn't work to find it, even if we had some.
1008 */
1009
1010 struct elf_internal_shdr *
1011 bfd_elf_find_section (bfd *abfd, char *name)
1012 {
1013 Elf_Internal_Shdr **i_shdrp;
1014 char *shstrtab;
1015 unsigned int max;
1016 unsigned int i;
1017
1018 i_shdrp = elf_elfsections (abfd);
1019 if (i_shdrp != NULL)
1020 {
1021 shstrtab = bfd_elf_get_str_section (abfd,
1022 elf_elfheader (abfd)->e_shstrndx);
1023 if (shstrtab != NULL)
1024 {
1025 max = elf_numsections (abfd);
1026 for (i = 1; i < max; i++)
1027 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
1028 return i_shdrp[i];
1029 }
1030 }
1031 return 0;
1032 }
1033
1034 const char *const bfd_elf_section_type_names[] = {
1035 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1036 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1037 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1038 };
1039
1040 /* ELF relocs are against symbols. If we are producing relocatable
1041 output, and the reloc is against an external symbol, and nothing
1042 has given us any additional addend, the resulting reloc will also
1043 be against the same symbol. In such a case, we don't want to
1044 change anything about the way the reloc is handled, since it will
1045 all be done at final link time. Rather than put special case code
1046 into bfd_perform_relocation, all the reloc types use this howto
1047 function. It just short circuits the reloc if producing
1048 relocatable output against an external symbol. */
1049
1050 bfd_reloc_status_type
1051 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1052 arelent *reloc_entry,
1053 asymbol *symbol,
1054 void *data ATTRIBUTE_UNUSED,
1055 asection *input_section,
1056 bfd *output_bfd,
1057 char **error_message ATTRIBUTE_UNUSED)
1058 {
1059 if (output_bfd != NULL
1060 && (symbol->flags & BSF_SECTION_SYM) == 0
1061 && (! reloc_entry->howto->partial_inplace
1062 || reloc_entry->addend == 0))
1063 {
1064 reloc_entry->address += input_section->output_offset;
1065 return bfd_reloc_ok;
1066 }
1067
1068 return bfd_reloc_continue;
1069 }
1070 \f
1071 /* Copy the program header and other data from one object module to
1072 another. */
1073
1074 bfd_boolean
1075 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1076 {
1077 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1078 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1079 return TRUE;
1080
1081 BFD_ASSERT (!elf_flags_init (obfd)
1082 || (elf_elfheader (obfd)->e_flags
1083 == elf_elfheader (ibfd)->e_flags));
1084
1085 elf_gp (obfd) = elf_gp (ibfd);
1086 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1087 elf_flags_init (obfd) = TRUE;
1088
1089 /* Copy object attributes. */
1090 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1091
1092 return TRUE;
1093 }
1094
1095 static const char *
1096 get_segment_type (unsigned int p_type)
1097 {
1098 const char *pt;
1099 switch (p_type)
1100 {
1101 case PT_NULL: pt = "NULL"; break;
1102 case PT_LOAD: pt = "LOAD"; break;
1103 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1104 case PT_INTERP: pt = "INTERP"; break;
1105 case PT_NOTE: pt = "NOTE"; break;
1106 case PT_SHLIB: pt = "SHLIB"; break;
1107 case PT_PHDR: pt = "PHDR"; break;
1108 case PT_TLS: pt = "TLS"; break;
1109 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1110 case PT_GNU_STACK: pt = "STACK"; break;
1111 case PT_GNU_RELRO: pt = "RELRO"; break;
1112 default: pt = NULL; break;
1113 }
1114 return pt;
1115 }
1116
1117 /* Print out the program headers. */
1118
1119 bfd_boolean
1120 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1121 {
1122 FILE *f = farg;
1123 Elf_Internal_Phdr *p;
1124 asection *s;
1125 bfd_byte *dynbuf = NULL;
1126
1127 p = elf_tdata (abfd)->phdr;
1128 if (p != NULL)
1129 {
1130 unsigned int i, c;
1131
1132 fprintf (f, _("\nProgram Header:\n"));
1133 c = elf_elfheader (abfd)->e_phnum;
1134 for (i = 0; i < c; i++, p++)
1135 {
1136 const char *pt = get_segment_type (p->p_type);
1137 char buf[20];
1138
1139 if (pt == NULL)
1140 {
1141 sprintf (buf, "0x%lx", p->p_type);
1142 pt = buf;
1143 }
1144 fprintf (f, "%8s off 0x", pt);
1145 bfd_fprintf_vma (abfd, f, p->p_offset);
1146 fprintf (f, " vaddr 0x");
1147 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1148 fprintf (f, " paddr 0x");
1149 bfd_fprintf_vma (abfd, f, p->p_paddr);
1150 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1151 fprintf (f, " filesz 0x");
1152 bfd_fprintf_vma (abfd, f, p->p_filesz);
1153 fprintf (f, " memsz 0x");
1154 bfd_fprintf_vma (abfd, f, p->p_memsz);
1155 fprintf (f, " flags %c%c%c",
1156 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1157 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1158 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1159 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1160 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1161 fprintf (f, "\n");
1162 }
1163 }
1164
1165 s = bfd_get_section_by_name (abfd, ".dynamic");
1166 if (s != NULL)
1167 {
1168 int elfsec;
1169 unsigned long shlink;
1170 bfd_byte *extdyn, *extdynend;
1171 size_t extdynsize;
1172 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1173
1174 fprintf (f, _("\nDynamic Section:\n"));
1175
1176 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1177 goto error_return;
1178
1179 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1180 if (elfsec == -1)
1181 goto error_return;
1182 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1183
1184 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1185 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1186
1187 extdyn = dynbuf;
1188 extdynend = extdyn + s->size;
1189 for (; extdyn < extdynend; extdyn += extdynsize)
1190 {
1191 Elf_Internal_Dyn dyn;
1192 const char *name;
1193 char ab[20];
1194 bfd_boolean stringp;
1195
1196 (*swap_dyn_in) (abfd, extdyn, &dyn);
1197
1198 if (dyn.d_tag == DT_NULL)
1199 break;
1200
1201 stringp = FALSE;
1202 switch (dyn.d_tag)
1203 {
1204 default:
1205 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1206 name = ab;
1207 break;
1208
1209 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1210 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1211 case DT_PLTGOT: name = "PLTGOT"; break;
1212 case DT_HASH: name = "HASH"; break;
1213 case DT_STRTAB: name = "STRTAB"; break;
1214 case DT_SYMTAB: name = "SYMTAB"; break;
1215 case DT_RELA: name = "RELA"; break;
1216 case DT_RELASZ: name = "RELASZ"; break;
1217 case DT_RELAENT: name = "RELAENT"; break;
1218 case DT_STRSZ: name = "STRSZ"; break;
1219 case DT_SYMENT: name = "SYMENT"; break;
1220 case DT_INIT: name = "INIT"; break;
1221 case DT_FINI: name = "FINI"; break;
1222 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1223 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1224 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1225 case DT_REL: name = "REL"; break;
1226 case DT_RELSZ: name = "RELSZ"; break;
1227 case DT_RELENT: name = "RELENT"; break;
1228 case DT_PLTREL: name = "PLTREL"; break;
1229 case DT_DEBUG: name = "DEBUG"; break;
1230 case DT_TEXTREL: name = "TEXTREL"; break;
1231 case DT_JMPREL: name = "JMPREL"; break;
1232 case DT_BIND_NOW: name = "BIND_NOW"; break;
1233 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1238 case DT_FLAGS: name = "FLAGS"; break;
1239 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM: name = "CHECKSUM"; break;
1242 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1243 case DT_MOVEENT: name = "MOVEENT"; break;
1244 case DT_MOVESZ: name = "MOVESZ"; break;
1245 case DT_FEATURE: name = "FEATURE"; break;
1246 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1247 case DT_SYMINSZ: name = "SYMINSZ"; break;
1248 case DT_SYMINENT: name = "SYMINENT"; break;
1249 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1250 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1251 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1252 case DT_PLTPAD: name = "PLTPAD"; break;
1253 case DT_MOVETAB: name = "MOVETAB"; break;
1254 case DT_SYMINFO: name = "SYMINFO"; break;
1255 case DT_RELACOUNT: name = "RELACOUNT"; break;
1256 case DT_RELCOUNT: name = "RELCOUNT"; break;
1257 case DT_FLAGS_1: name = "FLAGS_1"; break;
1258 case DT_VERSYM: name = "VERSYM"; break;
1259 case DT_VERDEF: name = "VERDEF"; break;
1260 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1261 case DT_VERNEED: name = "VERNEED"; break;
1262 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1263 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1264 case DT_USED: name = "USED"; break;
1265 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1266 case DT_GNU_HASH: name = "GNU_HASH"; break;
1267 }
1268
1269 fprintf (f, " %-11s ", name);
1270 if (! stringp)
1271 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1272 else
1273 {
1274 const char *string;
1275 unsigned int tagv = dyn.d_un.d_val;
1276
1277 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1278 if (string == NULL)
1279 goto error_return;
1280 fprintf (f, "%s", string);
1281 }
1282 fprintf (f, "\n");
1283 }
1284
1285 free (dynbuf);
1286 dynbuf = NULL;
1287 }
1288
1289 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1290 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1291 {
1292 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1293 return FALSE;
1294 }
1295
1296 if (elf_dynverdef (abfd) != 0)
1297 {
1298 Elf_Internal_Verdef *t;
1299
1300 fprintf (f, _("\nVersion definitions:\n"));
1301 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1302 {
1303 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1304 t->vd_flags, t->vd_hash,
1305 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1306 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1307 {
1308 Elf_Internal_Verdaux *a;
1309
1310 fprintf (f, "\t");
1311 for (a = t->vd_auxptr->vda_nextptr;
1312 a != NULL;
1313 a = a->vda_nextptr)
1314 fprintf (f, "%s ",
1315 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1316 fprintf (f, "\n");
1317 }
1318 }
1319 }
1320
1321 if (elf_dynverref (abfd) != 0)
1322 {
1323 Elf_Internal_Verneed *t;
1324
1325 fprintf (f, _("\nVersion References:\n"));
1326 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1327 {
1328 Elf_Internal_Vernaux *a;
1329
1330 fprintf (f, _(" required from %s:\n"),
1331 t->vn_filename ? t->vn_filename : "<corrupt>");
1332 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1333 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1334 a->vna_flags, a->vna_other,
1335 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1336 }
1337 }
1338
1339 return TRUE;
1340
1341 error_return:
1342 if (dynbuf != NULL)
1343 free (dynbuf);
1344 return FALSE;
1345 }
1346
1347 /* Display ELF-specific fields of a symbol. */
1348
1349 void
1350 bfd_elf_print_symbol (bfd *abfd,
1351 void *filep,
1352 asymbol *symbol,
1353 bfd_print_symbol_type how)
1354 {
1355 FILE *file = filep;
1356 switch (how)
1357 {
1358 case bfd_print_symbol_name:
1359 fprintf (file, "%s", symbol->name);
1360 break;
1361 case bfd_print_symbol_more:
1362 fprintf (file, "elf ");
1363 bfd_fprintf_vma (abfd, file, symbol->value);
1364 fprintf (file, " %lx", (long) symbol->flags);
1365 break;
1366 case bfd_print_symbol_all:
1367 {
1368 const char *section_name;
1369 const char *name = NULL;
1370 const struct elf_backend_data *bed;
1371 unsigned char st_other;
1372 bfd_vma val;
1373
1374 section_name = symbol->section ? symbol->section->name : "(*none*)";
1375
1376 bed = get_elf_backend_data (abfd);
1377 if (bed->elf_backend_print_symbol_all)
1378 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1379
1380 if (name == NULL)
1381 {
1382 name = symbol->name;
1383 bfd_print_symbol_vandf (abfd, file, symbol);
1384 }
1385
1386 fprintf (file, " %s\t", section_name);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (symbol->section && bfd_is_com_section (symbol->section))
1392 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1393 else
1394 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1395 bfd_fprintf_vma (abfd, file, val);
1396
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd)->dynversym_section != 0
1399 && (elf_tdata (abfd)->dynverdef_section != 0
1400 || elf_tdata (abfd)->dynverref_section != 0))
1401 {
1402 unsigned int vernum;
1403 const char *version_string;
1404
1405 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1406
1407 if (vernum == 0)
1408 version_string = "";
1409 else if (vernum == 1)
1410 version_string = "Base";
1411 else if (vernum <= elf_tdata (abfd)->cverdefs)
1412 version_string =
1413 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1414 else
1415 {
1416 Elf_Internal_Verneed *t;
1417
1418 version_string = "";
1419 for (t = elf_tdata (abfd)->verref;
1420 t != NULL;
1421 t = t->vn_nextref)
1422 {
1423 Elf_Internal_Vernaux *a;
1424
1425 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1426 {
1427 if (a->vna_other == vernum)
1428 {
1429 version_string = a->vna_nodename;
1430 break;
1431 }
1432 }
1433 }
1434 }
1435
1436 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1437 fprintf (file, " %-11s", version_string);
1438 else
1439 {
1440 int i;
1441
1442 fprintf (file, " (%s)", version_string);
1443 for (i = 10 - strlen (version_string); i > 0; --i)
1444 putc (' ', file);
1445 }
1446 }
1447
1448 /* If the st_other field is not zero, print it. */
1449 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1450
1451 switch (st_other)
1452 {
1453 case 0: break;
1454 case STV_INTERNAL: fprintf (file, " .internal"); break;
1455 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1456 case STV_PROTECTED: fprintf (file, " .protected"); break;
1457 default:
1458 /* Some other non-defined flags are also present, so print
1459 everything hex. */
1460 fprintf (file, " 0x%02x", (unsigned int) st_other);
1461 }
1462
1463 fprintf (file, " %s", name);
1464 }
1465 break;
1466 }
1467 }
1468
1469 /* Allocate an ELF string table--force the first byte to be zero. */
1470
1471 struct bfd_strtab_hash *
1472 _bfd_elf_stringtab_init (void)
1473 {
1474 struct bfd_strtab_hash *ret;
1475
1476 ret = _bfd_stringtab_init ();
1477 if (ret != NULL)
1478 {
1479 bfd_size_type loc;
1480
1481 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1482 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1483 if (loc == (bfd_size_type) -1)
1484 {
1485 _bfd_stringtab_free (ret);
1486 ret = NULL;
1487 }
1488 }
1489 return ret;
1490 }
1491 \f
1492 /* ELF .o/exec file reading */
1493
1494 /* Create a new bfd section from an ELF section header. */
1495
1496 bfd_boolean
1497 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1498 {
1499 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1500 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1501 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1502 const char *name;
1503
1504 name = bfd_elf_string_from_elf_section (abfd,
1505 elf_elfheader (abfd)->e_shstrndx,
1506 hdr->sh_name);
1507 if (name == NULL)
1508 return FALSE;
1509
1510 switch (hdr->sh_type)
1511 {
1512 case SHT_NULL:
1513 /* Inactive section. Throw it away. */
1514 return TRUE;
1515
1516 case SHT_PROGBITS: /* Normal section with contents. */
1517 case SHT_NOBITS: /* .bss section. */
1518 case SHT_HASH: /* .hash section. */
1519 case SHT_NOTE: /* .note section. */
1520 case SHT_INIT_ARRAY: /* .init_array section. */
1521 case SHT_FINI_ARRAY: /* .fini_array section. */
1522 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1523 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1524 case SHT_GNU_HASH: /* .gnu.hash section. */
1525 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1526
1527 case SHT_DYNAMIC: /* Dynamic linking information. */
1528 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1529 return FALSE;
1530 if (hdr->sh_link > elf_numsections (abfd)
1531 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1532 return FALSE;
1533 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1534 {
1535 Elf_Internal_Shdr *dynsymhdr;
1536
1537 /* The shared libraries distributed with hpux11 have a bogus
1538 sh_link field for the ".dynamic" section. Find the
1539 string table for the ".dynsym" section instead. */
1540 if (elf_dynsymtab (abfd) != 0)
1541 {
1542 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1543 hdr->sh_link = dynsymhdr->sh_link;
1544 }
1545 else
1546 {
1547 unsigned int i, num_sec;
1548
1549 num_sec = elf_numsections (abfd);
1550 for (i = 1; i < num_sec; i++)
1551 {
1552 dynsymhdr = elf_elfsections (abfd)[i];
1553 if (dynsymhdr->sh_type == SHT_DYNSYM)
1554 {
1555 hdr->sh_link = dynsymhdr->sh_link;
1556 break;
1557 }
1558 }
1559 }
1560 }
1561 break;
1562
1563 case SHT_SYMTAB: /* A symbol table */
1564 if (elf_onesymtab (abfd) == shindex)
1565 return TRUE;
1566
1567 if (hdr->sh_entsize != bed->s->sizeof_sym)
1568 return FALSE;
1569 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1570 elf_onesymtab (abfd) = shindex;
1571 elf_tdata (abfd)->symtab_hdr = *hdr;
1572 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1573 abfd->flags |= HAS_SYMS;
1574
1575 /* Sometimes a shared object will map in the symbol table. If
1576 SHF_ALLOC is set, and this is a shared object, then we also
1577 treat this section as a BFD section. We can not base the
1578 decision purely on SHF_ALLOC, because that flag is sometimes
1579 set in a relocatable object file, which would confuse the
1580 linker. */
1581 if ((hdr->sh_flags & SHF_ALLOC) != 0
1582 && (abfd->flags & DYNAMIC) != 0
1583 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1584 shindex))
1585 return FALSE;
1586
1587 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1588 can't read symbols without that section loaded as well. It
1589 is most likely specified by the next section header. */
1590 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1591 {
1592 unsigned int i, num_sec;
1593
1594 num_sec = elf_numsections (abfd);
1595 for (i = shindex + 1; i < num_sec; i++)
1596 {
1597 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1598 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1599 && hdr2->sh_link == shindex)
1600 break;
1601 }
1602 if (i == num_sec)
1603 for (i = 1; i < shindex; i++)
1604 {
1605 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1606 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1607 && hdr2->sh_link == shindex)
1608 break;
1609 }
1610 if (i != shindex)
1611 return bfd_section_from_shdr (abfd, i);
1612 }
1613 return TRUE;
1614
1615 case SHT_DYNSYM: /* A dynamic symbol table */
1616 if (elf_dynsymtab (abfd) == shindex)
1617 return TRUE;
1618
1619 if (hdr->sh_entsize != bed->s->sizeof_sym)
1620 return FALSE;
1621 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1622 elf_dynsymtab (abfd) = shindex;
1623 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1624 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1625 abfd->flags |= HAS_SYMS;
1626
1627 /* Besides being a symbol table, we also treat this as a regular
1628 section, so that objcopy can handle it. */
1629 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1630
1631 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1632 if (elf_symtab_shndx (abfd) == shindex)
1633 return TRUE;
1634
1635 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1636 elf_symtab_shndx (abfd) = shindex;
1637 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1638 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1639 return TRUE;
1640
1641 case SHT_STRTAB: /* A string table */
1642 if (hdr->bfd_section != NULL)
1643 return TRUE;
1644 if (ehdr->e_shstrndx == shindex)
1645 {
1646 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1647 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1648 return TRUE;
1649 }
1650 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1651 {
1652 symtab_strtab:
1653 elf_tdata (abfd)->strtab_hdr = *hdr;
1654 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1655 return TRUE;
1656 }
1657 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1658 {
1659 dynsymtab_strtab:
1660 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1661 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1662 elf_elfsections (abfd)[shindex] = hdr;
1663 /* We also treat this as a regular section, so that objcopy
1664 can handle it. */
1665 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1666 shindex);
1667 }
1668
1669 /* If the string table isn't one of the above, then treat it as a
1670 regular section. We need to scan all the headers to be sure,
1671 just in case this strtab section appeared before the above. */
1672 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1673 {
1674 unsigned int i, num_sec;
1675
1676 num_sec = elf_numsections (abfd);
1677 for (i = 1; i < num_sec; i++)
1678 {
1679 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1680 if (hdr2->sh_link == shindex)
1681 {
1682 /* Prevent endless recursion on broken objects. */
1683 if (i == shindex)
1684 return FALSE;
1685 if (! bfd_section_from_shdr (abfd, i))
1686 return FALSE;
1687 if (elf_onesymtab (abfd) == i)
1688 goto symtab_strtab;
1689 if (elf_dynsymtab (abfd) == i)
1690 goto dynsymtab_strtab;
1691 }
1692 }
1693 }
1694 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1695
1696 case SHT_REL:
1697 case SHT_RELA:
1698 /* *These* do a lot of work -- but build no sections! */
1699 {
1700 asection *target_sect;
1701 Elf_Internal_Shdr *hdr2;
1702 unsigned int num_sec = elf_numsections (abfd);
1703
1704 if (hdr->sh_entsize
1705 != (bfd_size_type) (hdr->sh_type == SHT_REL
1706 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1707 return FALSE;
1708
1709 /* Check for a bogus link to avoid crashing. */
1710 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1711 || hdr->sh_link >= num_sec)
1712 {
1713 ((*_bfd_error_handler)
1714 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1715 abfd, hdr->sh_link, name, shindex));
1716 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1717 shindex);
1718 }
1719
1720 /* For some incomprehensible reason Oracle distributes
1721 libraries for Solaris in which some of the objects have
1722 bogus sh_link fields. It would be nice if we could just
1723 reject them, but, unfortunately, some people need to use
1724 them. We scan through the section headers; if we find only
1725 one suitable symbol table, we clobber the sh_link to point
1726 to it. I hope this doesn't break anything. */
1727 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1728 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1729 {
1730 unsigned int scan;
1731 int found;
1732
1733 found = 0;
1734 for (scan = 1; scan < num_sec; scan++)
1735 {
1736 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1737 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1738 {
1739 if (found != 0)
1740 {
1741 found = 0;
1742 break;
1743 }
1744 found = scan;
1745 }
1746 }
1747 if (found != 0)
1748 hdr->sh_link = found;
1749 }
1750
1751 /* Get the symbol table. */
1752 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1753 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1754 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1755 return FALSE;
1756
1757 /* If this reloc section does not use the main symbol table we
1758 don't treat it as a reloc section. BFD can't adequately
1759 represent such a section, so at least for now, we don't
1760 try. We just present it as a normal section. We also
1761 can't use it as a reloc section if it points to the null
1762 section, an invalid section, or another reloc section. */
1763 if (hdr->sh_link != elf_onesymtab (abfd)
1764 || hdr->sh_info == SHN_UNDEF
1765 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
1766 || hdr->sh_info >= num_sec
1767 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1768 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1769 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1770 shindex);
1771
1772 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1773 return FALSE;
1774 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1775 if (target_sect == NULL)
1776 return FALSE;
1777
1778 if ((target_sect->flags & SEC_RELOC) == 0
1779 || target_sect->reloc_count == 0)
1780 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1781 else
1782 {
1783 bfd_size_type amt;
1784 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1785 amt = sizeof (*hdr2);
1786 hdr2 = bfd_alloc (abfd, amt);
1787 if (hdr2 == NULL)
1788 return FALSE;
1789 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1790 }
1791 *hdr2 = *hdr;
1792 elf_elfsections (abfd)[shindex] = hdr2;
1793 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1794 target_sect->flags |= SEC_RELOC;
1795 target_sect->relocation = NULL;
1796 target_sect->rel_filepos = hdr->sh_offset;
1797 /* In the section to which the relocations apply, mark whether
1798 its relocations are of the REL or RELA variety. */
1799 if (hdr->sh_size != 0)
1800 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1801 abfd->flags |= HAS_RELOC;
1802 return TRUE;
1803 }
1804
1805 case SHT_GNU_verdef:
1806 elf_dynverdef (abfd) = shindex;
1807 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1808 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1809
1810 case SHT_GNU_versym:
1811 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1812 return FALSE;
1813 elf_dynversym (abfd) = shindex;
1814 elf_tdata (abfd)->dynversym_hdr = *hdr;
1815 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1816
1817 case SHT_GNU_verneed:
1818 elf_dynverref (abfd) = shindex;
1819 elf_tdata (abfd)->dynverref_hdr = *hdr;
1820 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1821
1822 case SHT_SHLIB:
1823 return TRUE;
1824
1825 case SHT_GROUP:
1826 /* We need a BFD section for objcopy and relocatable linking,
1827 and it's handy to have the signature available as the section
1828 name. */
1829 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1830 return FALSE;
1831 name = group_signature (abfd, hdr);
1832 if (name == NULL)
1833 return FALSE;
1834 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1835 return FALSE;
1836 if (hdr->contents != NULL)
1837 {
1838 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1839 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1840 asection *s;
1841
1842 if (idx->flags & GRP_COMDAT)
1843 hdr->bfd_section->flags
1844 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1845
1846 /* We try to keep the same section order as it comes in. */
1847 idx += n_elt;
1848 while (--n_elt != 0)
1849 {
1850 --idx;
1851
1852 if (idx->shdr != NULL
1853 && (s = idx->shdr->bfd_section) != NULL
1854 && elf_next_in_group (s) != NULL)
1855 {
1856 elf_next_in_group (hdr->bfd_section) = s;
1857 break;
1858 }
1859 }
1860 }
1861 break;
1862
1863 default:
1864 /* Possibly an attributes section. */
1865 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1866 || hdr->sh_type == bed->obj_attrs_section_type)
1867 {
1868 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1869 return FALSE;
1870 _bfd_elf_parse_attributes (abfd, hdr);
1871 return TRUE;
1872 }
1873
1874 /* Check for any processor-specific section types. */
1875 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1876 return TRUE;
1877
1878 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1879 {
1880 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1881 /* FIXME: How to properly handle allocated section reserved
1882 for applications? */
1883 (*_bfd_error_handler)
1884 (_("%B: don't know how to handle allocated, application "
1885 "specific section `%s' [0x%8x]"),
1886 abfd, name, hdr->sh_type);
1887 else
1888 /* Allow sections reserved for applications. */
1889 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1890 shindex);
1891 }
1892 else if (hdr->sh_type >= SHT_LOPROC
1893 && hdr->sh_type <= SHT_HIPROC)
1894 /* FIXME: We should handle this section. */
1895 (*_bfd_error_handler)
1896 (_("%B: don't know how to handle processor specific section "
1897 "`%s' [0x%8x]"),
1898 abfd, name, hdr->sh_type);
1899 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1900 {
1901 /* Unrecognised OS-specific sections. */
1902 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1903 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1904 required to correctly process the section and the file should
1905 be rejected with an error message. */
1906 (*_bfd_error_handler)
1907 (_("%B: don't know how to handle OS specific section "
1908 "`%s' [0x%8x]"),
1909 abfd, name, hdr->sh_type);
1910 else
1911 /* Otherwise it should be processed. */
1912 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1913 }
1914 else
1915 /* FIXME: We should handle this section. */
1916 (*_bfd_error_handler)
1917 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1918 abfd, name, hdr->sh_type);
1919
1920 return FALSE;
1921 }
1922
1923 return TRUE;
1924 }
1925
1926 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1927 Return SEC for sections that have no elf section, and NULL on error. */
1928
1929 asection *
1930 bfd_section_from_r_symndx (bfd *abfd,
1931 struct sym_sec_cache *cache,
1932 asection *sec,
1933 unsigned long r_symndx)
1934 {
1935 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1936 asection *s;
1937
1938 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1939 {
1940 Elf_Internal_Shdr *symtab_hdr;
1941 unsigned char esym[sizeof (Elf64_External_Sym)];
1942 Elf_External_Sym_Shndx eshndx;
1943 Elf_Internal_Sym isym;
1944
1945 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1946 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1947 &isym, esym, &eshndx) == NULL)
1948 return NULL;
1949
1950 if (cache->abfd != abfd)
1951 {
1952 memset (cache->indx, -1, sizeof (cache->indx));
1953 cache->abfd = abfd;
1954 }
1955 cache->indx[ent] = r_symndx;
1956 cache->shndx[ent] = isym.st_shndx;
1957 }
1958
1959 s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
1960 if (s != NULL)
1961 return s;
1962
1963 return sec;
1964 }
1965
1966 /* Given an ELF section number, retrieve the corresponding BFD
1967 section. */
1968
1969 asection *
1970 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
1971 {
1972 if (index >= elf_numsections (abfd))
1973 return NULL;
1974 return elf_elfsections (abfd)[index]->bfd_section;
1975 }
1976
1977 static const struct bfd_elf_special_section special_sections_b[] =
1978 {
1979 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1980 { NULL, 0, 0, 0, 0 }
1981 };
1982
1983 static const struct bfd_elf_special_section special_sections_c[] =
1984 {
1985 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
1986 { NULL, 0, 0, 0, 0 }
1987 };
1988
1989 static const struct bfd_elf_special_section special_sections_d[] =
1990 {
1991 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1992 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1993 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
1994 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
1995 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
1996 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
1997 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
1998 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
1999 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2000 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2001 { NULL, 0, 0, 0, 0 }
2002 };
2003
2004 static const struct bfd_elf_special_section special_sections_f[] =
2005 {
2006 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2007 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2008 { NULL, 0, 0, 0, 0 }
2009 };
2010
2011 static const struct bfd_elf_special_section special_sections_g[] =
2012 {
2013 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2014 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2015 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2016 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2017 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2018 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2019 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2020 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2021 { NULL, 0, 0, 0, 0 }
2022 };
2023
2024 static const struct bfd_elf_special_section special_sections_h[] =
2025 {
2026 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2027 { NULL, 0, 0, 0, 0 }
2028 };
2029
2030 static const struct bfd_elf_special_section special_sections_i[] =
2031 {
2032 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2033 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2034 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2035 { NULL, 0, 0, 0, 0 }
2036 };
2037
2038 static const struct bfd_elf_special_section special_sections_l[] =
2039 {
2040 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2041 { NULL, 0, 0, 0, 0 }
2042 };
2043
2044 static const struct bfd_elf_special_section special_sections_n[] =
2045 {
2046 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2047 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2048 { NULL, 0, 0, 0, 0 }
2049 };
2050
2051 static const struct bfd_elf_special_section special_sections_p[] =
2052 {
2053 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2054 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2055 { NULL, 0, 0, 0, 0 }
2056 };
2057
2058 static const struct bfd_elf_special_section special_sections_r[] =
2059 {
2060 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2061 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2062 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2063 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2064 { NULL, 0, 0, 0, 0 }
2065 };
2066
2067 static const struct bfd_elf_special_section special_sections_s[] =
2068 {
2069 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2070 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2071 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2072 /* See struct bfd_elf_special_section declaration for the semantics of
2073 this special case where .prefix_length != strlen (.prefix). */
2074 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2075 { NULL, 0, 0, 0, 0 }
2076 };
2077
2078 static const struct bfd_elf_special_section special_sections_t[] =
2079 {
2080 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2081 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2082 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2083 { NULL, 0, 0, 0, 0 }
2084 };
2085
2086 static const struct bfd_elf_special_section *special_sections[] =
2087 {
2088 special_sections_b, /* 'b' */
2089 special_sections_c, /* 'c' */
2090 special_sections_d, /* 'd' */
2091 NULL, /* 'e' */
2092 special_sections_f, /* 'f' */
2093 special_sections_g, /* 'g' */
2094 special_sections_h, /* 'h' */
2095 special_sections_i, /* 'i' */
2096 NULL, /* 'j' */
2097 NULL, /* 'k' */
2098 special_sections_l, /* 'l' */
2099 NULL, /* 'm' */
2100 special_sections_n, /* 'n' */
2101 NULL, /* 'o' */
2102 special_sections_p, /* 'p' */
2103 NULL, /* 'q' */
2104 special_sections_r, /* 'r' */
2105 special_sections_s, /* 's' */
2106 special_sections_t, /* 't' */
2107 };
2108
2109 const struct bfd_elf_special_section *
2110 _bfd_elf_get_special_section (const char *name,
2111 const struct bfd_elf_special_section *spec,
2112 unsigned int rela)
2113 {
2114 int i;
2115 int len;
2116
2117 len = strlen (name);
2118
2119 for (i = 0; spec[i].prefix != NULL; i++)
2120 {
2121 int suffix_len;
2122 int prefix_len = spec[i].prefix_length;
2123
2124 if (len < prefix_len)
2125 continue;
2126 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2127 continue;
2128
2129 suffix_len = spec[i].suffix_length;
2130 if (suffix_len <= 0)
2131 {
2132 if (name[prefix_len] != 0)
2133 {
2134 if (suffix_len == 0)
2135 continue;
2136 if (name[prefix_len] != '.'
2137 && (suffix_len == -2
2138 || (rela && spec[i].type == SHT_REL)))
2139 continue;
2140 }
2141 }
2142 else
2143 {
2144 if (len < prefix_len + suffix_len)
2145 continue;
2146 if (memcmp (name + len - suffix_len,
2147 spec[i].prefix + prefix_len,
2148 suffix_len) != 0)
2149 continue;
2150 }
2151 return &spec[i];
2152 }
2153
2154 return NULL;
2155 }
2156
2157 const struct bfd_elf_special_section *
2158 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2159 {
2160 int i;
2161 const struct bfd_elf_special_section *spec;
2162 const struct elf_backend_data *bed;
2163
2164 /* See if this is one of the special sections. */
2165 if (sec->name == NULL)
2166 return NULL;
2167
2168 bed = get_elf_backend_data (abfd);
2169 spec = bed->special_sections;
2170 if (spec)
2171 {
2172 spec = _bfd_elf_get_special_section (sec->name,
2173 bed->special_sections,
2174 sec->use_rela_p);
2175 if (spec != NULL)
2176 return spec;
2177 }
2178
2179 if (sec->name[0] != '.')
2180 return NULL;
2181
2182 i = sec->name[1] - 'b';
2183 if (i < 0 || i > 't' - 'b')
2184 return NULL;
2185
2186 spec = special_sections[i];
2187
2188 if (spec == NULL)
2189 return NULL;
2190
2191 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2192 }
2193
2194 bfd_boolean
2195 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2196 {
2197 struct bfd_elf_section_data *sdata;
2198 const struct elf_backend_data *bed;
2199 const struct bfd_elf_special_section *ssect;
2200
2201 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2202 if (sdata == NULL)
2203 {
2204 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2205 if (sdata == NULL)
2206 return FALSE;
2207 sec->used_by_bfd = sdata;
2208 }
2209
2210 /* Indicate whether or not this section should use RELA relocations. */
2211 bed = get_elf_backend_data (abfd);
2212 sec->use_rela_p = bed->default_use_rela_p;
2213
2214 /* When we read a file, we don't need to set ELF section type and
2215 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2216 anyway. We will set ELF section type and flags for all linker
2217 created sections. If user specifies BFD section flags, we will
2218 set ELF section type and flags based on BFD section flags in
2219 elf_fake_sections. */
2220 if ((!sec->flags && abfd->direction != read_direction)
2221 || (sec->flags & SEC_LINKER_CREATED) != 0)
2222 {
2223 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2224 if (ssect != NULL)
2225 {
2226 elf_section_type (sec) = ssect->type;
2227 elf_section_flags (sec) = ssect->attr;
2228 }
2229 }
2230
2231 return _bfd_generic_new_section_hook (abfd, sec);
2232 }
2233
2234 /* Create a new bfd section from an ELF program header.
2235
2236 Since program segments have no names, we generate a synthetic name
2237 of the form segment<NUM>, where NUM is generally the index in the
2238 program header table. For segments that are split (see below) we
2239 generate the names segment<NUM>a and segment<NUM>b.
2240
2241 Note that some program segments may have a file size that is different than
2242 (less than) the memory size. All this means is that at execution the
2243 system must allocate the amount of memory specified by the memory size,
2244 but only initialize it with the first "file size" bytes read from the
2245 file. This would occur for example, with program segments consisting
2246 of combined data+bss.
2247
2248 To handle the above situation, this routine generates TWO bfd sections
2249 for the single program segment. The first has the length specified by
2250 the file size of the segment, and the second has the length specified
2251 by the difference between the two sizes. In effect, the segment is split
2252 into its initialized and uninitialized parts.
2253
2254 */
2255
2256 bfd_boolean
2257 _bfd_elf_make_section_from_phdr (bfd *abfd,
2258 Elf_Internal_Phdr *hdr,
2259 int index,
2260 const char *typename)
2261 {
2262 asection *newsect;
2263 char *name;
2264 char namebuf[64];
2265 size_t len;
2266 int split;
2267
2268 split = ((hdr->p_memsz > 0)
2269 && (hdr->p_filesz > 0)
2270 && (hdr->p_memsz > hdr->p_filesz));
2271
2272 if (hdr->p_filesz > 0)
2273 {
2274 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2275 len = strlen (namebuf) + 1;
2276 name = bfd_alloc (abfd, len);
2277 if (!name)
2278 return FALSE;
2279 memcpy (name, namebuf, len);
2280 newsect = bfd_make_section (abfd, name);
2281 if (newsect == NULL)
2282 return FALSE;
2283 newsect->vma = hdr->p_vaddr;
2284 newsect->lma = hdr->p_paddr;
2285 newsect->size = hdr->p_filesz;
2286 newsect->filepos = hdr->p_offset;
2287 newsect->flags |= SEC_HAS_CONTENTS;
2288 newsect->alignment_power = bfd_log2 (hdr->p_align);
2289 if (hdr->p_type == PT_LOAD)
2290 {
2291 newsect->flags |= SEC_ALLOC;
2292 newsect->flags |= SEC_LOAD;
2293 if (hdr->p_flags & PF_X)
2294 {
2295 /* FIXME: all we known is that it has execute PERMISSION,
2296 may be data. */
2297 newsect->flags |= SEC_CODE;
2298 }
2299 }
2300 if (!(hdr->p_flags & PF_W))
2301 {
2302 newsect->flags |= SEC_READONLY;
2303 }
2304 }
2305
2306 if (hdr->p_memsz > hdr->p_filesz)
2307 {
2308 bfd_vma align;
2309
2310 sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : "");
2311 len = strlen (namebuf) + 1;
2312 name = bfd_alloc (abfd, len);
2313 if (!name)
2314 return FALSE;
2315 memcpy (name, namebuf, len);
2316 newsect = bfd_make_section (abfd, name);
2317 if (newsect == NULL)
2318 return FALSE;
2319 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2320 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2321 newsect->size = hdr->p_memsz - hdr->p_filesz;
2322 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2323 align = newsect->vma & -newsect->vma;
2324 if (align == 0 || align > hdr->p_align)
2325 align = hdr->p_align;
2326 newsect->alignment_power = bfd_log2 (align);
2327 if (hdr->p_type == PT_LOAD)
2328 {
2329 /* Hack for gdb. Segments that have not been modified do
2330 not have their contents written to a core file, on the
2331 assumption that a debugger can find the contents in the
2332 executable. We flag this case by setting the fake
2333 section size to zero. Note that "real" bss sections will
2334 always have their contents dumped to the core file. */
2335 if (bfd_get_format (abfd) == bfd_core)
2336 newsect->size = 0;
2337 newsect->flags |= SEC_ALLOC;
2338 if (hdr->p_flags & PF_X)
2339 newsect->flags |= SEC_CODE;
2340 }
2341 if (!(hdr->p_flags & PF_W))
2342 newsect->flags |= SEC_READONLY;
2343 }
2344
2345 return TRUE;
2346 }
2347
2348 bfd_boolean
2349 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2350 {
2351 const struct elf_backend_data *bed;
2352
2353 switch (hdr->p_type)
2354 {
2355 case PT_NULL:
2356 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2357
2358 case PT_LOAD:
2359 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2360
2361 case PT_DYNAMIC:
2362 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2363
2364 case PT_INTERP:
2365 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2366
2367 case PT_NOTE:
2368 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2369 return FALSE;
2370 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2371 return FALSE;
2372 return TRUE;
2373
2374 case PT_SHLIB:
2375 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2376
2377 case PT_PHDR:
2378 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2379
2380 case PT_GNU_EH_FRAME:
2381 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2382 "eh_frame_hdr");
2383
2384 case PT_GNU_STACK:
2385 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2386
2387 case PT_GNU_RELRO:
2388 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2389
2390 default:
2391 /* Check for any processor-specific program segment types. */
2392 bed = get_elf_backend_data (abfd);
2393 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2394 }
2395 }
2396
2397 /* Initialize REL_HDR, the section-header for new section, containing
2398 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2399 relocations; otherwise, we use REL relocations. */
2400
2401 bfd_boolean
2402 _bfd_elf_init_reloc_shdr (bfd *abfd,
2403 Elf_Internal_Shdr *rel_hdr,
2404 asection *asect,
2405 bfd_boolean use_rela_p)
2406 {
2407 char *name;
2408 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2409 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2410
2411 name = bfd_alloc (abfd, amt);
2412 if (name == NULL)
2413 return FALSE;
2414 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2415 rel_hdr->sh_name =
2416 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2417 FALSE);
2418 if (rel_hdr->sh_name == (unsigned int) -1)
2419 return FALSE;
2420 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2421 rel_hdr->sh_entsize = (use_rela_p
2422 ? bed->s->sizeof_rela
2423 : bed->s->sizeof_rel);
2424 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2425 rel_hdr->sh_flags = 0;
2426 rel_hdr->sh_addr = 0;
2427 rel_hdr->sh_size = 0;
2428 rel_hdr->sh_offset = 0;
2429
2430 return TRUE;
2431 }
2432
2433 /* Set up an ELF internal section header for a section. */
2434
2435 static void
2436 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2437 {
2438 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2439 bfd_boolean *failedptr = failedptrarg;
2440 Elf_Internal_Shdr *this_hdr;
2441 unsigned int sh_type;
2442
2443 if (*failedptr)
2444 {
2445 /* We already failed; just get out of the bfd_map_over_sections
2446 loop. */
2447 return;
2448 }
2449
2450 this_hdr = &elf_section_data (asect)->this_hdr;
2451
2452 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2453 asect->name, FALSE);
2454 if (this_hdr->sh_name == (unsigned int) -1)
2455 {
2456 *failedptr = TRUE;
2457 return;
2458 }
2459
2460 /* Don't clear sh_flags. Assembler may set additional bits. */
2461
2462 if ((asect->flags & SEC_ALLOC) != 0
2463 || asect->user_set_vma)
2464 this_hdr->sh_addr = asect->vma;
2465 else
2466 this_hdr->sh_addr = 0;
2467
2468 this_hdr->sh_offset = 0;
2469 this_hdr->sh_size = asect->size;
2470 this_hdr->sh_link = 0;
2471 this_hdr->sh_addralign = 1 << asect->alignment_power;
2472 /* The sh_entsize and sh_info fields may have been set already by
2473 copy_private_section_data. */
2474
2475 this_hdr->bfd_section = asect;
2476 this_hdr->contents = NULL;
2477
2478 /* If the section type is unspecified, we set it based on
2479 asect->flags. */
2480 if ((asect->flags & SEC_GROUP) != 0)
2481 sh_type = SHT_GROUP;
2482 else if ((asect->flags & SEC_ALLOC) != 0
2483 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2484 || (asect->flags & SEC_NEVER_LOAD) != 0))
2485 sh_type = SHT_NOBITS;
2486 else
2487 sh_type = SHT_PROGBITS;
2488
2489 if (this_hdr->sh_type == SHT_NULL)
2490 this_hdr->sh_type = sh_type;
2491 else if (this_hdr->sh_type == SHT_NOBITS
2492 && sh_type == SHT_PROGBITS
2493 && (asect->flags & SEC_ALLOC) != 0)
2494 {
2495 /* Warn if we are changing a NOBITS section to PROGBITS, but
2496 allow the link to proceed. This can happen when users link
2497 non-bss input sections to bss output sections, or emit data
2498 to a bss output section via a linker script. */
2499 (*_bfd_error_handler)
2500 (_("warning: section `%A' type changed to PROGBITS"), asect);
2501 this_hdr->sh_type = sh_type;
2502 }
2503
2504 switch (this_hdr->sh_type)
2505 {
2506 default:
2507 break;
2508
2509 case SHT_STRTAB:
2510 case SHT_INIT_ARRAY:
2511 case SHT_FINI_ARRAY:
2512 case SHT_PREINIT_ARRAY:
2513 case SHT_NOTE:
2514 case SHT_NOBITS:
2515 case SHT_PROGBITS:
2516 break;
2517
2518 case SHT_HASH:
2519 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2520 break;
2521
2522 case SHT_DYNSYM:
2523 this_hdr->sh_entsize = bed->s->sizeof_sym;
2524 break;
2525
2526 case SHT_DYNAMIC:
2527 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2528 break;
2529
2530 case SHT_RELA:
2531 if (get_elf_backend_data (abfd)->may_use_rela_p)
2532 this_hdr->sh_entsize = bed->s->sizeof_rela;
2533 break;
2534
2535 case SHT_REL:
2536 if (get_elf_backend_data (abfd)->may_use_rel_p)
2537 this_hdr->sh_entsize = bed->s->sizeof_rel;
2538 break;
2539
2540 case SHT_GNU_versym:
2541 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2542 break;
2543
2544 case SHT_GNU_verdef:
2545 this_hdr->sh_entsize = 0;
2546 /* objcopy or strip will copy over sh_info, but may not set
2547 cverdefs. The linker will set cverdefs, but sh_info will be
2548 zero. */
2549 if (this_hdr->sh_info == 0)
2550 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2551 else
2552 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2553 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2554 break;
2555
2556 case SHT_GNU_verneed:
2557 this_hdr->sh_entsize = 0;
2558 /* objcopy or strip will copy over sh_info, but may not set
2559 cverrefs. The linker will set cverrefs, but sh_info will be
2560 zero. */
2561 if (this_hdr->sh_info == 0)
2562 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2563 else
2564 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2565 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2566 break;
2567
2568 case SHT_GROUP:
2569 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2570 break;
2571
2572 case SHT_GNU_HASH:
2573 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2574 break;
2575 }
2576
2577 if ((asect->flags & SEC_ALLOC) != 0)
2578 this_hdr->sh_flags |= SHF_ALLOC;
2579 if ((asect->flags & SEC_READONLY) == 0)
2580 this_hdr->sh_flags |= SHF_WRITE;
2581 if ((asect->flags & SEC_CODE) != 0)
2582 this_hdr->sh_flags |= SHF_EXECINSTR;
2583 if ((asect->flags & SEC_MERGE) != 0)
2584 {
2585 this_hdr->sh_flags |= SHF_MERGE;
2586 this_hdr->sh_entsize = asect->entsize;
2587 if ((asect->flags & SEC_STRINGS) != 0)
2588 this_hdr->sh_flags |= SHF_STRINGS;
2589 }
2590 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2591 this_hdr->sh_flags |= SHF_GROUP;
2592 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2593 {
2594 this_hdr->sh_flags |= SHF_TLS;
2595 if (asect->size == 0
2596 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2597 {
2598 struct bfd_link_order *o = asect->map_tail.link_order;
2599
2600 this_hdr->sh_size = 0;
2601 if (o != NULL)
2602 {
2603 this_hdr->sh_size = o->offset + o->size;
2604 if (this_hdr->sh_size != 0)
2605 this_hdr->sh_type = SHT_NOBITS;
2606 }
2607 }
2608 }
2609
2610 /* Check for processor-specific section types. */
2611 sh_type = this_hdr->sh_type;
2612 if (bed->elf_backend_fake_sections
2613 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2614 *failedptr = TRUE;
2615
2616 if (sh_type == SHT_NOBITS && asect->size != 0)
2617 {
2618 /* Don't change the header type from NOBITS if we are being
2619 called for objcopy --only-keep-debug. */
2620 this_hdr->sh_type = sh_type;
2621 }
2622
2623 /* If the section has relocs, set up a section header for the
2624 SHT_REL[A] section. If two relocation sections are required for
2625 this section, it is up to the processor-specific back-end to
2626 create the other. */
2627 if ((asect->flags & SEC_RELOC) != 0
2628 && !_bfd_elf_init_reloc_shdr (abfd,
2629 &elf_section_data (asect)->rel_hdr,
2630 asect,
2631 asect->use_rela_p))
2632 *failedptr = TRUE;
2633 }
2634
2635 /* Fill in the contents of a SHT_GROUP section. */
2636
2637 void
2638 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2639 {
2640 bfd_boolean *failedptr = failedptrarg;
2641 unsigned long symindx;
2642 asection *elt, *first;
2643 unsigned char *loc;
2644 bfd_boolean gas;
2645
2646 /* Ignore linker created group section. See elfNN_ia64_object_p in
2647 elfxx-ia64.c. */
2648 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2649 || *failedptr)
2650 return;
2651
2652 symindx = 0;
2653 if (elf_group_id (sec) != NULL)
2654 symindx = elf_group_id (sec)->udata.i;
2655
2656 if (symindx == 0)
2657 {
2658 /* If called from the assembler, swap_out_syms will have set up
2659 elf_section_syms; If called for "ld -r", use target_index. */
2660 if (elf_section_syms (abfd) != NULL)
2661 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2662 else
2663 symindx = sec->target_index;
2664 }
2665 elf_section_data (sec)->this_hdr.sh_info = symindx;
2666
2667 /* The contents won't be allocated for "ld -r" or objcopy. */
2668 gas = TRUE;
2669 if (sec->contents == NULL)
2670 {
2671 gas = FALSE;
2672 sec->contents = bfd_alloc (abfd, sec->size);
2673
2674 /* Arrange for the section to be written out. */
2675 elf_section_data (sec)->this_hdr.contents = sec->contents;
2676 if (sec->contents == NULL)
2677 {
2678 *failedptr = TRUE;
2679 return;
2680 }
2681 }
2682
2683 loc = sec->contents + sec->size;
2684
2685 /* Get the pointer to the first section in the group that gas
2686 squirreled away here. objcopy arranges for this to be set to the
2687 start of the input section group. */
2688 first = elt = elf_next_in_group (sec);
2689
2690 /* First element is a flag word. Rest of section is elf section
2691 indices for all the sections of the group. Write them backwards
2692 just to keep the group in the same order as given in .section
2693 directives, not that it matters. */
2694 while (elt != NULL)
2695 {
2696 asection *s;
2697 unsigned int idx;
2698
2699 loc -= 4;
2700 s = elt;
2701 if (!gas)
2702 s = s->output_section;
2703 idx = 0;
2704 if (s != NULL)
2705 idx = elf_section_data (s)->this_idx;
2706 H_PUT_32 (abfd, idx, loc);
2707 elt = elf_next_in_group (elt);
2708 if (elt == first)
2709 break;
2710 }
2711
2712 if ((loc -= 4) != sec->contents)
2713 abort ();
2714
2715 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2716 }
2717
2718 /* Assign all ELF section numbers. The dummy first section is handled here
2719 too. The link/info pointers for the standard section types are filled
2720 in here too, while we're at it. */
2721
2722 static bfd_boolean
2723 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2724 {
2725 struct elf_obj_tdata *t = elf_tdata (abfd);
2726 asection *sec;
2727 unsigned int section_number, secn;
2728 Elf_Internal_Shdr **i_shdrp;
2729 struct bfd_elf_section_data *d;
2730
2731 section_number = 1;
2732
2733 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2734
2735 /* SHT_GROUP sections are in relocatable files only. */
2736 if (link_info == NULL || link_info->relocatable)
2737 {
2738 /* Put SHT_GROUP sections first. */
2739 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2740 {
2741 d = elf_section_data (sec);
2742
2743 if (d->this_hdr.sh_type == SHT_GROUP)
2744 {
2745 if (sec->flags & SEC_LINKER_CREATED)
2746 {
2747 /* Remove the linker created SHT_GROUP sections. */
2748 bfd_section_list_remove (abfd, sec);
2749 abfd->section_count--;
2750 }
2751 else
2752 {
2753 if (section_number == SHN_LORESERVE)
2754 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2755 d->this_idx = section_number++;
2756 }
2757 }
2758 }
2759 }
2760
2761 for (sec = abfd->sections; sec; sec = sec->next)
2762 {
2763 d = elf_section_data (sec);
2764
2765 if (d->this_hdr.sh_type != SHT_GROUP)
2766 {
2767 if (section_number == SHN_LORESERVE)
2768 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2769 d->this_idx = section_number++;
2770 }
2771 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2772 if ((sec->flags & SEC_RELOC) == 0)
2773 d->rel_idx = 0;
2774 else
2775 {
2776 if (section_number == SHN_LORESERVE)
2777 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2778 d->rel_idx = section_number++;
2779 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2780 }
2781
2782 if (d->rel_hdr2)
2783 {
2784 if (section_number == SHN_LORESERVE)
2785 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2786 d->rel_idx2 = section_number++;
2787 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2788 }
2789 else
2790 d->rel_idx2 = 0;
2791 }
2792
2793 if (section_number == SHN_LORESERVE)
2794 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2795 t->shstrtab_section = section_number++;
2796 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2797 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2798
2799 if (bfd_get_symcount (abfd) > 0)
2800 {
2801 if (section_number == SHN_LORESERVE)
2802 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2803 t->symtab_section = section_number++;
2804 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2805 if (section_number > SHN_LORESERVE - 2)
2806 {
2807 if (section_number == SHN_LORESERVE)
2808 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2809 t->symtab_shndx_section = section_number++;
2810 t->symtab_shndx_hdr.sh_name
2811 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2812 ".symtab_shndx", FALSE);
2813 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2814 return FALSE;
2815 }
2816 if (section_number == SHN_LORESERVE)
2817 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2818 t->strtab_section = section_number++;
2819 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2820 }
2821
2822 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2823 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2824
2825 elf_numsections (abfd) = section_number;
2826 elf_elfheader (abfd)->e_shnum = section_number;
2827 if (section_number > SHN_LORESERVE)
2828 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2829
2830 /* Set up the list of section header pointers, in agreement with the
2831 indices. */
2832 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2833 if (i_shdrp == NULL)
2834 return FALSE;
2835
2836 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2837 if (i_shdrp[0] == NULL)
2838 {
2839 bfd_release (abfd, i_shdrp);
2840 return FALSE;
2841 }
2842
2843 elf_elfsections (abfd) = i_shdrp;
2844
2845 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2846 if (bfd_get_symcount (abfd) > 0)
2847 {
2848 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2849 if (elf_numsections (abfd) > SHN_LORESERVE)
2850 {
2851 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2852 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2853 }
2854 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2855 t->symtab_hdr.sh_link = t->strtab_section;
2856 }
2857
2858 for (sec = abfd->sections; sec; sec = sec->next)
2859 {
2860 struct bfd_elf_section_data *d = elf_section_data (sec);
2861 asection *s;
2862 const char *name;
2863
2864 i_shdrp[d->this_idx] = &d->this_hdr;
2865 if (d->rel_idx != 0)
2866 i_shdrp[d->rel_idx] = &d->rel_hdr;
2867 if (d->rel_idx2 != 0)
2868 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2869
2870 /* Fill in the sh_link and sh_info fields while we're at it. */
2871
2872 /* sh_link of a reloc section is the section index of the symbol
2873 table. sh_info is the section index of the section to which
2874 the relocation entries apply. */
2875 if (d->rel_idx != 0)
2876 {
2877 d->rel_hdr.sh_link = t->symtab_section;
2878 d->rel_hdr.sh_info = d->this_idx;
2879 }
2880 if (d->rel_idx2 != 0)
2881 {
2882 d->rel_hdr2->sh_link = t->symtab_section;
2883 d->rel_hdr2->sh_info = d->this_idx;
2884 }
2885
2886 /* We need to set up sh_link for SHF_LINK_ORDER. */
2887 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2888 {
2889 s = elf_linked_to_section (sec);
2890 if (s)
2891 {
2892 /* elf_linked_to_section points to the input section. */
2893 if (link_info != NULL)
2894 {
2895 /* Check discarded linkonce section. */
2896 if (elf_discarded_section (s))
2897 {
2898 asection *kept;
2899 (*_bfd_error_handler)
2900 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2901 abfd, d->this_hdr.bfd_section,
2902 s, s->owner);
2903 /* Point to the kept section if it has the same
2904 size as the discarded one. */
2905 kept = _bfd_elf_check_kept_section (s, link_info);
2906 if (kept == NULL)
2907 {
2908 bfd_set_error (bfd_error_bad_value);
2909 return FALSE;
2910 }
2911 s = kept;
2912 }
2913
2914 s = s->output_section;
2915 BFD_ASSERT (s != NULL);
2916 }
2917 else
2918 {
2919 /* Handle objcopy. */
2920 if (s->output_section == NULL)
2921 {
2922 (*_bfd_error_handler)
2923 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2924 abfd, d->this_hdr.bfd_section, s, s->owner);
2925 bfd_set_error (bfd_error_bad_value);
2926 return FALSE;
2927 }
2928 s = s->output_section;
2929 }
2930 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2931 }
2932 else
2933 {
2934 /* PR 290:
2935 The Intel C compiler generates SHT_IA_64_UNWIND with
2936 SHF_LINK_ORDER. But it doesn't set the sh_link or
2937 sh_info fields. Hence we could get the situation
2938 where s is NULL. */
2939 const struct elf_backend_data *bed
2940 = get_elf_backend_data (abfd);
2941 if (bed->link_order_error_handler)
2942 bed->link_order_error_handler
2943 (_("%B: warning: sh_link not set for section `%A'"),
2944 abfd, sec);
2945 }
2946 }
2947
2948 switch (d->this_hdr.sh_type)
2949 {
2950 case SHT_REL:
2951 case SHT_RELA:
2952 /* A reloc section which we are treating as a normal BFD
2953 section. sh_link is the section index of the symbol
2954 table. sh_info is the section index of the section to
2955 which the relocation entries apply. We assume that an
2956 allocated reloc section uses the dynamic symbol table.
2957 FIXME: How can we be sure? */
2958 s = bfd_get_section_by_name (abfd, ".dynsym");
2959 if (s != NULL)
2960 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2961
2962 /* We look up the section the relocs apply to by name. */
2963 name = sec->name;
2964 if (d->this_hdr.sh_type == SHT_REL)
2965 name += 4;
2966 else
2967 name += 5;
2968 s = bfd_get_section_by_name (abfd, name);
2969 if (s != NULL)
2970 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2971 break;
2972
2973 case SHT_STRTAB:
2974 /* We assume that a section named .stab*str is a stabs
2975 string section. We look for a section with the same name
2976 but without the trailing ``str'', and set its sh_link
2977 field to point to this section. */
2978 if (CONST_STRNEQ (sec->name, ".stab")
2979 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2980 {
2981 size_t len;
2982 char *alc;
2983
2984 len = strlen (sec->name);
2985 alc = bfd_malloc (len - 2);
2986 if (alc == NULL)
2987 return FALSE;
2988 memcpy (alc, sec->name, len - 3);
2989 alc[len - 3] = '\0';
2990 s = bfd_get_section_by_name (abfd, alc);
2991 free (alc);
2992 if (s != NULL)
2993 {
2994 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2995
2996 /* This is a .stab section. */
2997 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2998 elf_section_data (s)->this_hdr.sh_entsize
2999 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3000 }
3001 }
3002 break;
3003
3004 case SHT_DYNAMIC:
3005 case SHT_DYNSYM:
3006 case SHT_GNU_verneed:
3007 case SHT_GNU_verdef:
3008 /* sh_link is the section header index of the string table
3009 used for the dynamic entries, or the symbol table, or the
3010 version strings. */
3011 s = bfd_get_section_by_name (abfd, ".dynstr");
3012 if (s != NULL)
3013 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3014 break;
3015
3016 case SHT_GNU_LIBLIST:
3017 /* sh_link is the section header index of the prelink library
3018 list used for the dynamic entries, or the symbol table, or
3019 the version strings. */
3020 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3021 ? ".dynstr" : ".gnu.libstr");
3022 if (s != NULL)
3023 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3024 break;
3025
3026 case SHT_HASH:
3027 case SHT_GNU_HASH:
3028 case SHT_GNU_versym:
3029 /* sh_link is the section header index of the symbol table
3030 this hash table or version table is for. */
3031 s = bfd_get_section_by_name (abfd, ".dynsym");
3032 if (s != NULL)
3033 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3034 break;
3035
3036 case SHT_GROUP:
3037 d->this_hdr.sh_link = t->symtab_section;
3038 }
3039 }
3040
3041 for (secn = 1; secn < section_number; ++secn)
3042 if (i_shdrp[secn] == NULL)
3043 i_shdrp[secn] = i_shdrp[0];
3044 else
3045 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3046 i_shdrp[secn]->sh_name);
3047 return TRUE;
3048 }
3049
3050 /* Map symbol from it's internal number to the external number, moving
3051 all local symbols to be at the head of the list. */
3052
3053 static bfd_boolean
3054 sym_is_global (bfd *abfd, asymbol *sym)
3055 {
3056 /* If the backend has a special mapping, use it. */
3057 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3058 if (bed->elf_backend_sym_is_global)
3059 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3060
3061 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3062 || bfd_is_und_section (bfd_get_section (sym))
3063 || bfd_is_com_section (bfd_get_section (sym)));
3064 }
3065
3066 /* Don't output section symbols for sections that are not going to be
3067 output. Also, don't output section symbols for reloc and other
3068 special sections. */
3069
3070 static bfd_boolean
3071 ignore_section_sym (bfd *abfd, asymbol *sym)
3072 {
3073 return ((sym->flags & BSF_SECTION_SYM) != 0
3074 && (sym->value != 0
3075 || (sym->section->owner != abfd
3076 && (sym->section->output_section->owner != abfd
3077 || sym->section->output_offset != 0))));
3078 }
3079
3080 static bfd_boolean
3081 elf_map_symbols (bfd *abfd)
3082 {
3083 unsigned int symcount = bfd_get_symcount (abfd);
3084 asymbol **syms = bfd_get_outsymbols (abfd);
3085 asymbol **sect_syms;
3086 unsigned int num_locals = 0;
3087 unsigned int num_globals = 0;
3088 unsigned int num_locals2 = 0;
3089 unsigned int num_globals2 = 0;
3090 int max_index = 0;
3091 unsigned int idx;
3092 asection *asect;
3093 asymbol **new_syms;
3094
3095 #ifdef DEBUG
3096 fprintf (stderr, "elf_map_symbols\n");
3097 fflush (stderr);
3098 #endif
3099
3100 for (asect = abfd->sections; asect; asect = asect->next)
3101 {
3102 if (max_index < asect->index)
3103 max_index = asect->index;
3104 }
3105
3106 max_index++;
3107 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3108 if (sect_syms == NULL)
3109 return FALSE;
3110 elf_section_syms (abfd) = sect_syms;
3111 elf_num_section_syms (abfd) = max_index;
3112
3113 /* Init sect_syms entries for any section symbols we have already
3114 decided to output. */
3115 for (idx = 0; idx < symcount; idx++)
3116 {
3117 asymbol *sym = syms[idx];
3118
3119 if ((sym->flags & BSF_SECTION_SYM) != 0
3120 && !ignore_section_sym (abfd, sym))
3121 {
3122 asection *sec = sym->section;
3123
3124 if (sec->owner != abfd)
3125 sec = sec->output_section;
3126
3127 sect_syms[sec->index] = syms[idx];
3128 }
3129 }
3130
3131 /* Classify all of the symbols. */
3132 for (idx = 0; idx < symcount; idx++)
3133 {
3134 if (ignore_section_sym (abfd, syms[idx]))
3135 continue;
3136 if (!sym_is_global (abfd, syms[idx]))
3137 num_locals++;
3138 else
3139 num_globals++;
3140 }
3141
3142 /* We will be adding a section symbol for each normal BFD section. Most
3143 sections will already have a section symbol in outsymbols, but
3144 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3145 at least in that case. */
3146 for (asect = abfd->sections; asect; asect = asect->next)
3147 {
3148 if (sect_syms[asect->index] == NULL)
3149 {
3150 if (!sym_is_global (abfd, asect->symbol))
3151 num_locals++;
3152 else
3153 num_globals++;
3154 }
3155 }
3156
3157 /* Now sort the symbols so the local symbols are first. */
3158 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3159
3160 if (new_syms == NULL)
3161 return FALSE;
3162
3163 for (idx = 0; idx < symcount; idx++)
3164 {
3165 asymbol *sym = syms[idx];
3166 unsigned int i;
3167
3168 if (ignore_section_sym (abfd, sym))
3169 continue;
3170 if (!sym_is_global (abfd, sym))
3171 i = num_locals2++;
3172 else
3173 i = num_locals + num_globals2++;
3174 new_syms[i] = sym;
3175 sym->udata.i = i + 1;
3176 }
3177 for (asect = abfd->sections; asect; asect = asect->next)
3178 {
3179 if (sect_syms[asect->index] == NULL)
3180 {
3181 asymbol *sym = asect->symbol;
3182 unsigned int i;
3183
3184 sect_syms[asect->index] = sym;
3185 if (!sym_is_global (abfd, sym))
3186 i = num_locals2++;
3187 else
3188 i = num_locals + num_globals2++;
3189 new_syms[i] = sym;
3190 sym->udata.i = i + 1;
3191 }
3192 }
3193
3194 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3195
3196 elf_num_locals (abfd) = num_locals;
3197 elf_num_globals (abfd) = num_globals;
3198 return TRUE;
3199 }
3200
3201 /* Align to the maximum file alignment that could be required for any
3202 ELF data structure. */
3203
3204 static inline file_ptr
3205 align_file_position (file_ptr off, int align)
3206 {
3207 return (off + align - 1) & ~(align - 1);
3208 }
3209
3210 /* Assign a file position to a section, optionally aligning to the
3211 required section alignment. */
3212
3213 file_ptr
3214 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3215 file_ptr offset,
3216 bfd_boolean align)
3217 {
3218 if (align)
3219 {
3220 unsigned int al;
3221
3222 al = i_shdrp->sh_addralign;
3223 if (al > 1)
3224 offset = BFD_ALIGN (offset, al);
3225 }
3226 i_shdrp->sh_offset = offset;
3227 if (i_shdrp->bfd_section != NULL)
3228 i_shdrp->bfd_section->filepos = offset;
3229 if (i_shdrp->sh_type != SHT_NOBITS)
3230 offset += i_shdrp->sh_size;
3231 return offset;
3232 }
3233
3234 /* Compute the file positions we are going to put the sections at, and
3235 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3236 is not NULL, this is being called by the ELF backend linker. */
3237
3238 bfd_boolean
3239 _bfd_elf_compute_section_file_positions (bfd *abfd,
3240 struct bfd_link_info *link_info)
3241 {
3242 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3243 bfd_boolean failed;
3244 struct bfd_strtab_hash *strtab = NULL;
3245 Elf_Internal_Shdr *shstrtab_hdr;
3246
3247 if (abfd->output_has_begun)
3248 return TRUE;
3249
3250 /* Do any elf backend specific processing first. */
3251 if (bed->elf_backend_begin_write_processing)
3252 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3253
3254 if (! prep_headers (abfd))
3255 return FALSE;
3256
3257 /* Post process the headers if necessary. */
3258 if (bed->elf_backend_post_process_headers)
3259 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3260
3261 failed = FALSE;
3262 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3263 if (failed)
3264 return FALSE;
3265
3266 if (!assign_section_numbers (abfd, link_info))
3267 return FALSE;
3268
3269 /* The backend linker builds symbol table information itself. */
3270 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3271 {
3272 /* Non-zero if doing a relocatable link. */
3273 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3274
3275 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3276 return FALSE;
3277 }
3278
3279 if (link_info == NULL)
3280 {
3281 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3282 if (failed)
3283 return FALSE;
3284 }
3285
3286 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3287 /* sh_name was set in prep_headers. */
3288 shstrtab_hdr->sh_type = SHT_STRTAB;
3289 shstrtab_hdr->sh_flags = 0;
3290 shstrtab_hdr->sh_addr = 0;
3291 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3292 shstrtab_hdr->sh_entsize = 0;
3293 shstrtab_hdr->sh_link = 0;
3294 shstrtab_hdr->sh_info = 0;
3295 /* sh_offset is set in assign_file_positions_except_relocs. */
3296 shstrtab_hdr->sh_addralign = 1;
3297
3298 if (!assign_file_positions_except_relocs (abfd, link_info))
3299 return FALSE;
3300
3301 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3302 {
3303 file_ptr off;
3304 Elf_Internal_Shdr *hdr;
3305
3306 off = elf_tdata (abfd)->next_file_pos;
3307
3308 hdr = &elf_tdata (abfd)->symtab_hdr;
3309 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3310
3311 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3312 if (hdr->sh_size != 0)
3313 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3314
3315 hdr = &elf_tdata (abfd)->strtab_hdr;
3316 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3317
3318 elf_tdata (abfd)->next_file_pos = off;
3319
3320 /* Now that we know where the .strtab section goes, write it
3321 out. */
3322 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3323 || ! _bfd_stringtab_emit (abfd, strtab))
3324 return FALSE;
3325 _bfd_stringtab_free (strtab);
3326 }
3327
3328 abfd->output_has_begun = TRUE;
3329
3330 return TRUE;
3331 }
3332
3333 /* Make an initial estimate of the size of the program header. If we
3334 get the number wrong here, we'll redo section placement. */
3335
3336 static bfd_size_type
3337 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3338 {
3339 size_t segs;
3340 asection *s;
3341 const struct elf_backend_data *bed;
3342
3343 /* Assume we will need exactly two PT_LOAD segments: one for text
3344 and one for data. */
3345 segs = 2;
3346
3347 s = bfd_get_section_by_name (abfd, ".interp");
3348 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3349 {
3350 /* If we have a loadable interpreter section, we need a
3351 PT_INTERP segment. In this case, assume we also need a
3352 PT_PHDR segment, although that may not be true for all
3353 targets. */
3354 segs += 2;
3355 }
3356
3357 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3358 {
3359 /* We need a PT_DYNAMIC segment. */
3360 ++segs;
3361 }
3362
3363 if (info->relro)
3364 {
3365 /* We need a PT_GNU_RELRO segment. */
3366 ++segs;
3367 }
3368
3369 if (elf_tdata (abfd)->eh_frame_hdr)
3370 {
3371 /* We need a PT_GNU_EH_FRAME segment. */
3372 ++segs;
3373 }
3374
3375 if (elf_tdata (abfd)->stack_flags)
3376 {
3377 /* We need a PT_GNU_STACK segment. */
3378 ++segs;
3379 }
3380
3381 for (s = abfd->sections; s != NULL; s = s->next)
3382 {
3383 if ((s->flags & SEC_LOAD) != 0
3384 && CONST_STRNEQ (s->name, ".note"))
3385 {
3386 /* We need a PT_NOTE segment. */
3387 ++segs;
3388 /* Try to create just one PT_NOTE segment
3389 for all adjacent loadable .note* sections.
3390 gABI requires that within a PT_NOTE segment
3391 (and also inside of each SHT_NOTE section)
3392 each note is padded to a multiple of 4 size,
3393 so we check whether the sections are correctly
3394 aligned. */
3395 if (s->alignment_power == 2)
3396 while (s->next != NULL
3397 && s->next->alignment_power == 2
3398 && (s->next->flags & SEC_LOAD) != 0
3399 && CONST_STRNEQ (s->next->name, ".note"))
3400 s = s->next;
3401 }
3402 }
3403
3404 for (s = abfd->sections; s != NULL; s = s->next)
3405 {
3406 if (s->flags & SEC_THREAD_LOCAL)
3407 {
3408 /* We need a PT_TLS segment. */
3409 ++segs;
3410 break;
3411 }
3412 }
3413
3414 /* Let the backend count up any program headers it might need. */
3415 bed = get_elf_backend_data (abfd);
3416 if (bed->elf_backend_additional_program_headers)
3417 {
3418 int a;
3419
3420 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3421 if (a == -1)
3422 abort ();
3423 segs += a;
3424 }
3425
3426 return segs * bed->s->sizeof_phdr;
3427 }
3428
3429 /* Find the segment that contains the output_section of section. */
3430
3431 Elf_Internal_Phdr *
3432 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3433 {
3434 struct elf_segment_map *m;
3435 Elf_Internal_Phdr *p;
3436
3437 for (m = elf_tdata (abfd)->segment_map,
3438 p = elf_tdata (abfd)->phdr;
3439 m != NULL;
3440 m = m->next, p++)
3441 {
3442 int i;
3443
3444 for (i = m->count - 1; i >= 0; i--)
3445 if (m->sections[i] == section)
3446 return p;
3447 }
3448
3449 return NULL;
3450 }
3451
3452 /* Create a mapping from a set of sections to a program segment. */
3453
3454 static struct elf_segment_map *
3455 make_mapping (bfd *abfd,
3456 asection **sections,
3457 unsigned int from,
3458 unsigned int to,
3459 bfd_boolean phdr)
3460 {
3461 struct elf_segment_map *m;
3462 unsigned int i;
3463 asection **hdrpp;
3464 bfd_size_type amt;
3465
3466 amt = sizeof (struct elf_segment_map);
3467 amt += (to - from - 1) * sizeof (asection *);
3468 m = bfd_zalloc (abfd, amt);
3469 if (m == NULL)
3470 return NULL;
3471 m->next = NULL;
3472 m->p_type = PT_LOAD;
3473 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3474 m->sections[i - from] = *hdrpp;
3475 m->count = to - from;
3476
3477 if (from == 0 && phdr)
3478 {
3479 /* Include the headers in the first PT_LOAD segment. */
3480 m->includes_filehdr = 1;
3481 m->includes_phdrs = 1;
3482 }
3483
3484 return m;
3485 }
3486
3487 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3488 on failure. */
3489
3490 struct elf_segment_map *
3491 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3492 {
3493 struct elf_segment_map *m;
3494
3495 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3496 if (m == NULL)
3497 return NULL;
3498 m->next = NULL;
3499 m->p_type = PT_DYNAMIC;
3500 m->count = 1;
3501 m->sections[0] = dynsec;
3502
3503 return m;
3504 }
3505
3506 /* Possibly add or remove segments from the segment map. */
3507
3508 static bfd_boolean
3509 elf_modify_segment_map (bfd *abfd,
3510 struct bfd_link_info *info,
3511 bfd_boolean remove_empty_load)
3512 {
3513 struct elf_segment_map **m;
3514 const struct elf_backend_data *bed;
3515
3516 /* The placement algorithm assumes that non allocated sections are
3517 not in PT_LOAD segments. We ensure this here by removing such
3518 sections from the segment map. We also remove excluded
3519 sections. Finally, any PT_LOAD segment without sections is
3520 removed. */
3521 m = &elf_tdata (abfd)->segment_map;
3522 while (*m)
3523 {
3524 unsigned int i, new_count;
3525
3526 for (new_count = 0, i = 0; i < (*m)->count; i++)
3527 {
3528 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3529 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3530 || (*m)->p_type != PT_LOAD))
3531 {
3532 (*m)->sections[new_count] = (*m)->sections[i];
3533 new_count++;
3534 }
3535 }
3536 (*m)->count = new_count;
3537
3538 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3539 *m = (*m)->next;
3540 else
3541 m = &(*m)->next;
3542 }
3543
3544 bed = get_elf_backend_data (abfd);
3545 if (bed->elf_backend_modify_segment_map != NULL)
3546 {
3547 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3548 return FALSE;
3549 }
3550
3551 return TRUE;
3552 }
3553
3554 /* Set up a mapping from BFD sections to program segments. */
3555
3556 bfd_boolean
3557 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3558 {
3559 unsigned int count;
3560 struct elf_segment_map *m;
3561 asection **sections = NULL;
3562 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3563 bfd_boolean no_user_phdrs;
3564
3565 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3566 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3567 {
3568 asection *s;
3569 unsigned int i;
3570 struct elf_segment_map *mfirst;
3571 struct elf_segment_map **pm;
3572 asection *last_hdr;
3573 bfd_vma last_size;
3574 unsigned int phdr_index;
3575 bfd_vma maxpagesize;
3576 asection **hdrpp;
3577 bfd_boolean phdr_in_segment = TRUE;
3578 bfd_boolean writable;
3579 int tls_count = 0;
3580 asection *first_tls = NULL;
3581 asection *dynsec, *eh_frame_hdr;
3582 bfd_size_type amt;
3583
3584 /* Select the allocated sections, and sort them. */
3585
3586 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3587 if (sections == NULL)
3588 goto error_return;
3589
3590 i = 0;
3591 for (s = abfd->sections; s != NULL; s = s->next)
3592 {
3593 if ((s->flags & SEC_ALLOC) != 0)
3594 {
3595 sections[i] = s;
3596 ++i;
3597 }
3598 }
3599 BFD_ASSERT (i <= bfd_count_sections (abfd));
3600 count = i;
3601
3602 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3603
3604 /* Build the mapping. */
3605
3606 mfirst = NULL;
3607 pm = &mfirst;
3608
3609 /* If we have a .interp section, then create a PT_PHDR segment for
3610 the program headers and a PT_INTERP segment for the .interp
3611 section. */
3612 s = bfd_get_section_by_name (abfd, ".interp");
3613 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3614 {
3615 amt = sizeof (struct elf_segment_map);
3616 m = bfd_zalloc (abfd, amt);
3617 if (m == NULL)
3618 goto error_return;
3619 m->next = NULL;
3620 m->p_type = PT_PHDR;
3621 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3622 m->p_flags = PF_R | PF_X;
3623 m->p_flags_valid = 1;
3624 m->includes_phdrs = 1;
3625
3626 *pm = m;
3627 pm = &m->next;
3628
3629 amt = sizeof (struct elf_segment_map);
3630 m = bfd_zalloc (abfd, amt);
3631 if (m == NULL)
3632 goto error_return;
3633 m->next = NULL;
3634 m->p_type = PT_INTERP;
3635 m->count = 1;
3636 m->sections[0] = s;
3637
3638 *pm = m;
3639 pm = &m->next;
3640 }
3641
3642 /* Look through the sections. We put sections in the same program
3643 segment when the start of the second section can be placed within
3644 a few bytes of the end of the first section. */
3645 last_hdr = NULL;
3646 last_size = 0;
3647 phdr_index = 0;
3648 maxpagesize = bed->maxpagesize;
3649 writable = FALSE;
3650 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3651 if (dynsec != NULL
3652 && (dynsec->flags & SEC_LOAD) == 0)
3653 dynsec = NULL;
3654
3655 /* Deal with -Ttext or something similar such that the first section
3656 is not adjacent to the program headers. This is an
3657 approximation, since at this point we don't know exactly how many
3658 program headers we will need. */
3659 if (count > 0)
3660 {
3661 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3662
3663 if (phdr_size == (bfd_size_type) -1)
3664 phdr_size = get_program_header_size (abfd, info);
3665 if ((abfd->flags & D_PAGED) == 0
3666 || sections[0]->lma < phdr_size
3667 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3668 phdr_in_segment = FALSE;
3669 }
3670
3671 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3672 {
3673 asection *hdr;
3674 bfd_boolean new_segment;
3675
3676 hdr = *hdrpp;
3677
3678 /* See if this section and the last one will fit in the same
3679 segment. */
3680
3681 if (last_hdr == NULL)
3682 {
3683 /* If we don't have a segment yet, then we don't need a new
3684 one (we build the last one after this loop). */
3685 new_segment = FALSE;
3686 }
3687 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3688 {
3689 /* If this section has a different relation between the
3690 virtual address and the load address, then we need a new
3691 segment. */
3692 new_segment = TRUE;
3693 }
3694 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3695 < BFD_ALIGN (hdr->lma, maxpagesize))
3696 {
3697 /* If putting this section in this segment would force us to
3698 skip a page in the segment, then we need a new segment. */
3699 new_segment = TRUE;
3700 }
3701 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3702 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3703 {
3704 /* We don't want to put a loadable section after a
3705 nonloadable section in the same segment.
3706 Consider .tbss sections as loadable for this purpose. */
3707 new_segment = TRUE;
3708 }
3709 else if ((abfd->flags & D_PAGED) == 0)
3710 {
3711 /* If the file is not demand paged, which means that we
3712 don't require the sections to be correctly aligned in the
3713 file, then there is no other reason for a new segment. */
3714 new_segment = FALSE;
3715 }
3716 else if (! writable
3717 && (hdr->flags & SEC_READONLY) == 0
3718 && (((last_hdr->lma + last_size - 1)
3719 & ~(maxpagesize - 1))
3720 != (hdr->lma & ~(maxpagesize - 1))))
3721 {
3722 /* We don't want to put a writable section in a read only
3723 segment, unless they are on the same page in memory
3724 anyhow. We already know that the last section does not
3725 bring us past the current section on the page, so the
3726 only case in which the new section is not on the same
3727 page as the previous section is when the previous section
3728 ends precisely on a page boundary. */
3729 new_segment = TRUE;
3730 }
3731 else
3732 {
3733 /* Otherwise, we can use the same segment. */
3734 new_segment = FALSE;
3735 }
3736
3737 /* Allow interested parties a chance to override our decision. */
3738 if (last_hdr && info->callbacks->override_segment_assignment)
3739 new_segment = info->callbacks->override_segment_assignment (info, abfd, hdr, last_hdr, new_segment);
3740
3741 if (! new_segment)
3742 {
3743 if ((hdr->flags & SEC_READONLY) == 0)
3744 writable = TRUE;
3745 last_hdr = hdr;
3746 /* .tbss sections effectively have zero size. */
3747 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3748 != SEC_THREAD_LOCAL)
3749 last_size = hdr->size;
3750 else
3751 last_size = 0;
3752 continue;
3753 }
3754
3755 /* We need a new program segment. We must create a new program
3756 header holding all the sections from phdr_index until hdr. */
3757
3758 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3759 if (m == NULL)
3760 goto error_return;
3761
3762 *pm = m;
3763 pm = &m->next;
3764
3765 if ((hdr->flags & SEC_READONLY) == 0)
3766 writable = TRUE;
3767 else
3768 writable = FALSE;
3769
3770 last_hdr = hdr;
3771 /* .tbss sections effectively have zero size. */
3772 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3773 last_size = hdr->size;
3774 else
3775 last_size = 0;
3776 phdr_index = i;
3777 phdr_in_segment = FALSE;
3778 }
3779
3780 /* Create a final PT_LOAD program segment. */
3781 if (last_hdr != NULL)
3782 {
3783 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3784 if (m == NULL)
3785 goto error_return;
3786
3787 *pm = m;
3788 pm = &m->next;
3789 }
3790
3791 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3792 if (dynsec != NULL)
3793 {
3794 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3795 if (m == NULL)
3796 goto error_return;
3797 *pm = m;
3798 pm = &m->next;
3799 }
3800
3801 /* For each batch of consecutive loadable .note sections,
3802 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3803 because if we link together nonloadable .note sections and
3804 loadable .note sections, we will generate two .note sections
3805 in the output file. FIXME: Using names for section types is
3806 bogus anyhow. */
3807 for (s = abfd->sections; s != NULL; s = s->next)
3808 {
3809 if ((s->flags & SEC_LOAD) != 0
3810 && CONST_STRNEQ (s->name, ".note"))
3811 {
3812 asection *s2;
3813 unsigned count = 1;
3814 amt = sizeof (struct elf_segment_map);
3815 if (s->alignment_power == 2)
3816 for (s2 = s; s2->next != NULL; s2 = s2->next)
3817 {
3818 if (s2->next->alignment_power == 2
3819 && (s2->next->flags & SEC_LOAD) != 0
3820 && CONST_STRNEQ (s2->next->name, ".note")
3821 && align_power (s2->vma + s2->size, 2)
3822 == s2->next->vma)
3823 count++;
3824 else
3825 break;
3826 }
3827 amt += (count - 1) * sizeof (asection *);
3828 m = bfd_zalloc (abfd, amt);
3829 if (m == NULL)
3830 goto error_return;
3831 m->next = NULL;
3832 m->p_type = PT_NOTE;
3833 m->count = count;
3834 while (count > 1)
3835 {
3836 m->sections[m->count - count--] = s;
3837 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3838 s = s->next;
3839 }
3840 m->sections[m->count - 1] = s;
3841 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3842 *pm = m;
3843 pm = &m->next;
3844 }
3845 if (s->flags & SEC_THREAD_LOCAL)
3846 {
3847 if (! tls_count)
3848 first_tls = s;
3849 tls_count++;
3850 }
3851 }
3852
3853 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3854 if (tls_count > 0)
3855 {
3856 int i;
3857
3858 amt = sizeof (struct elf_segment_map);
3859 amt += (tls_count - 1) * sizeof (asection *);
3860 m = bfd_zalloc (abfd, amt);
3861 if (m == NULL)
3862 goto error_return;
3863 m->next = NULL;
3864 m->p_type = PT_TLS;
3865 m->count = tls_count;
3866 /* Mandated PF_R. */
3867 m->p_flags = PF_R;
3868 m->p_flags_valid = 1;
3869 for (i = 0; i < tls_count; ++i)
3870 {
3871 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3872 m->sections[i] = first_tls;
3873 first_tls = first_tls->next;
3874 }
3875
3876 *pm = m;
3877 pm = &m->next;
3878 }
3879
3880 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3881 segment. */
3882 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3883 if (eh_frame_hdr != NULL
3884 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3885 {
3886 amt = sizeof (struct elf_segment_map);
3887 m = bfd_zalloc (abfd, amt);
3888 if (m == NULL)
3889 goto error_return;
3890 m->next = NULL;
3891 m->p_type = PT_GNU_EH_FRAME;
3892 m->count = 1;
3893 m->sections[0] = eh_frame_hdr->output_section;
3894
3895 *pm = m;
3896 pm = &m->next;
3897 }
3898
3899 if (elf_tdata (abfd)->stack_flags)
3900 {
3901 amt = sizeof (struct elf_segment_map);
3902 m = bfd_zalloc (abfd, amt);
3903 if (m == NULL)
3904 goto error_return;
3905 m->next = NULL;
3906 m->p_type = PT_GNU_STACK;
3907 m->p_flags = elf_tdata (abfd)->stack_flags;
3908 m->p_flags_valid = 1;
3909
3910 *pm = m;
3911 pm = &m->next;
3912 }
3913
3914 if (info->relro)
3915 {
3916 for (m = mfirst; m != NULL; m = m->next)
3917 {
3918 if (m->p_type == PT_LOAD)
3919 {
3920 asection *last = m->sections[m->count - 1];
3921 bfd_vma vaddr = m->sections[0]->vma;
3922 bfd_vma filesz = last->vma - vaddr + last->size;
3923
3924 if (vaddr < info->relro_end
3925 && vaddr >= info->relro_start
3926 && (vaddr + filesz) >= info->relro_end)
3927 break;
3928 }
3929 }
3930
3931 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3932 if (m != NULL)
3933 {
3934 amt = sizeof (struct elf_segment_map);
3935 m = bfd_zalloc (abfd, amt);
3936 if (m == NULL)
3937 goto error_return;
3938 m->next = NULL;
3939 m->p_type = PT_GNU_RELRO;
3940 m->p_flags = PF_R;
3941 m->p_flags_valid = 1;
3942
3943 *pm = m;
3944 pm = &m->next;
3945 }
3946 }
3947
3948 free (sections);
3949 elf_tdata (abfd)->segment_map = mfirst;
3950 }
3951
3952 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
3953 return FALSE;
3954
3955 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3956 ++count;
3957 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
3958
3959 return TRUE;
3960
3961 error_return:
3962 if (sections != NULL)
3963 free (sections);
3964 return FALSE;
3965 }
3966
3967 /* Sort sections by address. */
3968
3969 static int
3970 elf_sort_sections (const void *arg1, const void *arg2)
3971 {
3972 const asection *sec1 = *(const asection **) arg1;
3973 const asection *sec2 = *(const asection **) arg2;
3974 bfd_size_type size1, size2;
3975
3976 /* Sort by LMA first, since this is the address used to
3977 place the section into a segment. */
3978 if (sec1->lma < sec2->lma)
3979 return -1;
3980 else if (sec1->lma > sec2->lma)
3981 return 1;
3982
3983 /* Then sort by VMA. Normally the LMA and the VMA will be
3984 the same, and this will do nothing. */
3985 if (sec1->vma < sec2->vma)
3986 return -1;
3987 else if (sec1->vma > sec2->vma)
3988 return 1;
3989
3990 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3991
3992 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3993
3994 if (TOEND (sec1))
3995 {
3996 if (TOEND (sec2))
3997 {
3998 /* If the indicies are the same, do not return 0
3999 here, but continue to try the next comparison. */
4000 if (sec1->target_index - sec2->target_index != 0)
4001 return sec1->target_index - sec2->target_index;
4002 }
4003 else
4004 return 1;
4005 }
4006 else if (TOEND (sec2))
4007 return -1;
4008
4009 #undef TOEND
4010
4011 /* Sort by size, to put zero sized sections
4012 before others at the same address. */
4013
4014 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4015 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4016
4017 if (size1 < size2)
4018 return -1;
4019 if (size1 > size2)
4020 return 1;
4021
4022 return sec1->target_index - sec2->target_index;
4023 }
4024
4025 /* Ian Lance Taylor writes:
4026
4027 We shouldn't be using % with a negative signed number. That's just
4028 not good. We have to make sure either that the number is not
4029 negative, or that the number has an unsigned type. When the types
4030 are all the same size they wind up as unsigned. When file_ptr is a
4031 larger signed type, the arithmetic winds up as signed long long,
4032 which is wrong.
4033
4034 What we're trying to say here is something like ``increase OFF by
4035 the least amount that will cause it to be equal to the VMA modulo
4036 the page size.'' */
4037 /* In other words, something like:
4038
4039 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4040 off_offset = off % bed->maxpagesize;
4041 if (vma_offset < off_offset)
4042 adjustment = vma_offset + bed->maxpagesize - off_offset;
4043 else
4044 adjustment = vma_offset - off_offset;
4045
4046 which can can be collapsed into the expression below. */
4047
4048 static file_ptr
4049 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4050 {
4051 return ((vma - off) % maxpagesize);
4052 }
4053
4054 static void
4055 print_segment_map (const struct elf_segment_map *m)
4056 {
4057 unsigned int j;
4058 const char *pt = get_segment_type (m->p_type);
4059 char buf[32];
4060
4061 if (pt == NULL)
4062 {
4063 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4064 sprintf (buf, "LOPROC+%7.7x",
4065 (unsigned int) (m->p_type - PT_LOPROC));
4066 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4067 sprintf (buf, "LOOS+%7.7x",
4068 (unsigned int) (m->p_type - PT_LOOS));
4069 else
4070 snprintf (buf, sizeof (buf), "%8.8x",
4071 (unsigned int) m->p_type);
4072 pt = buf;
4073 }
4074 fprintf (stderr, "%s:", pt);
4075 for (j = 0; j < m->count; j++)
4076 fprintf (stderr, " %s", m->sections [j]->name);
4077 putc ('\n',stderr);
4078 }
4079
4080 /* Assign file positions to the sections based on the mapping from
4081 sections to segments. This function also sets up some fields in
4082 the file header. */
4083
4084 static bfd_boolean
4085 assign_file_positions_for_load_sections (bfd *abfd,
4086 struct bfd_link_info *link_info)
4087 {
4088 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4089 struct elf_segment_map *m;
4090 Elf_Internal_Phdr *phdrs;
4091 Elf_Internal_Phdr *p;
4092 file_ptr off;
4093 bfd_size_type maxpagesize;
4094 unsigned int alloc;
4095 unsigned int i, j;
4096
4097 if (link_info == NULL
4098 && !elf_modify_segment_map (abfd, link_info, FALSE))
4099 return FALSE;
4100
4101 alloc = 0;
4102 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4103 ++alloc;
4104
4105 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4106 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4107 elf_elfheader (abfd)->e_phnum = alloc;
4108
4109 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4110 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4111 else
4112 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4113 >= alloc * bed->s->sizeof_phdr);
4114
4115 if (alloc == 0)
4116 {
4117 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4118 return TRUE;
4119 }
4120
4121 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4122 elf_tdata (abfd)->phdr = phdrs;
4123 if (phdrs == NULL)
4124 return FALSE;
4125
4126 maxpagesize = 1;
4127 if ((abfd->flags & D_PAGED) != 0)
4128 maxpagesize = bed->maxpagesize;
4129
4130 off = bed->s->sizeof_ehdr;
4131 off += alloc * bed->s->sizeof_phdr;
4132
4133 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4134 m != NULL;
4135 m = m->next, p++, j++)
4136 {
4137 asection **secpp;
4138 bfd_vma off_adjust;
4139 bfd_boolean no_contents;
4140
4141 /* If elf_segment_map is not from map_sections_to_segments, the
4142 sections may not be correctly ordered. NOTE: sorting should
4143 not be done to the PT_NOTE section of a corefile, which may
4144 contain several pseudo-sections artificially created by bfd.
4145 Sorting these pseudo-sections breaks things badly. */
4146 if (m->count > 1
4147 && !(elf_elfheader (abfd)->e_type == ET_CORE
4148 && m->p_type == PT_NOTE))
4149 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4150 elf_sort_sections);
4151
4152 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4153 number of sections with contents contributing to both p_filesz
4154 and p_memsz, followed by a number of sections with no contents
4155 that just contribute to p_memsz. In this loop, OFF tracks next
4156 available file offset for PT_LOAD and PT_NOTE segments. */
4157 p->p_type = m->p_type;
4158 p->p_flags = m->p_flags;
4159
4160 if (m->count == 0)
4161 p->p_vaddr = 0;
4162 else
4163 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4164
4165 if (m->p_paddr_valid)
4166 p->p_paddr = m->p_paddr;
4167 else if (m->count == 0)
4168 p->p_paddr = 0;
4169 else
4170 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4171
4172 if (p->p_type == PT_LOAD
4173 && (abfd->flags & D_PAGED) != 0)
4174 {
4175 /* p_align in demand paged PT_LOAD segments effectively stores
4176 the maximum page size. When copying an executable with
4177 objcopy, we set m->p_align from the input file. Use this
4178 value for maxpagesize rather than bed->maxpagesize, which
4179 may be different. Note that we use maxpagesize for PT_TLS
4180 segment alignment later in this function, so we are relying
4181 on at least one PT_LOAD segment appearing before a PT_TLS
4182 segment. */
4183 if (m->p_align_valid)
4184 maxpagesize = m->p_align;
4185
4186 p->p_align = maxpagesize;
4187 }
4188 else if (m->p_align_valid)
4189 p->p_align = m->p_align;
4190 else if (m->count == 0)
4191 p->p_align = 1 << bed->s->log_file_align;
4192 else
4193 p->p_align = 0;
4194
4195 no_contents = FALSE;
4196 off_adjust = 0;
4197 if (p->p_type == PT_LOAD
4198 && m->count > 0)
4199 {
4200 bfd_size_type align;
4201 unsigned int align_power = 0;
4202
4203 if (m->p_align_valid)
4204 align = p->p_align;
4205 else
4206 {
4207 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4208 {
4209 unsigned int secalign;
4210
4211 secalign = bfd_get_section_alignment (abfd, *secpp);
4212 if (secalign > align_power)
4213 align_power = secalign;
4214 }
4215 align = (bfd_size_type) 1 << align_power;
4216 if (align < maxpagesize)
4217 align = maxpagesize;
4218 }
4219
4220 for (i = 0; i < m->count; i++)
4221 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4222 /* If we aren't making room for this section, then
4223 it must be SHT_NOBITS regardless of what we've
4224 set via struct bfd_elf_special_section. */
4225 elf_section_type (m->sections[i]) = SHT_NOBITS;
4226
4227 /* Find out whether this segment contains any loadable
4228 sections. If the first section isn't loadable, the same
4229 holds for any other sections. */
4230 i = 0;
4231 while (elf_section_type (m->sections[i]) == SHT_NOBITS)
4232 {
4233 /* If a segment starts with .tbss, we need to look
4234 at the next section to decide whether the segment
4235 has any loadable sections. */
4236 if ((elf_section_flags (m->sections[i]) & SHF_TLS) == 0
4237 || ++i >= m->count)
4238 {
4239 no_contents = TRUE;
4240 break;
4241 }
4242 }
4243
4244 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4245 off += off_adjust;
4246 if (no_contents)
4247 {
4248 /* We shouldn't need to align the segment on disk since
4249 the segment doesn't need file space, but the gABI
4250 arguably requires the alignment and glibc ld.so
4251 checks it. So to comply with the alignment
4252 requirement but not waste file space, we adjust
4253 p_offset for just this segment. (OFF_ADJUST is
4254 subtracted from OFF later.) This may put p_offset
4255 past the end of file, but that shouldn't matter. */
4256 }
4257 else
4258 off_adjust = 0;
4259 }
4260 /* Make sure the .dynamic section is the first section in the
4261 PT_DYNAMIC segment. */
4262 else if (p->p_type == PT_DYNAMIC
4263 && m->count > 1
4264 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4265 {
4266 _bfd_error_handler
4267 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4268 abfd);
4269 bfd_set_error (bfd_error_bad_value);
4270 return FALSE;
4271 }
4272
4273 p->p_offset = 0;
4274 p->p_filesz = 0;
4275 p->p_memsz = 0;
4276
4277 if (m->includes_filehdr)
4278 {
4279 if (!m->p_flags_valid)
4280 p->p_flags |= PF_R;
4281 p->p_filesz = bed->s->sizeof_ehdr;
4282 p->p_memsz = bed->s->sizeof_ehdr;
4283 if (m->count > 0)
4284 {
4285 BFD_ASSERT (p->p_type == PT_LOAD);
4286
4287 if (p->p_vaddr < (bfd_vma) off)
4288 {
4289 (*_bfd_error_handler)
4290 (_("%B: Not enough room for program headers, try linking with -N"),
4291 abfd);
4292 bfd_set_error (bfd_error_bad_value);
4293 return FALSE;
4294 }
4295
4296 p->p_vaddr -= off;
4297 if (!m->p_paddr_valid)
4298 p->p_paddr -= off;
4299 }
4300 }
4301
4302 if (m->includes_phdrs)
4303 {
4304 if (!m->p_flags_valid)
4305 p->p_flags |= PF_R;
4306
4307 if (!m->includes_filehdr)
4308 {
4309 p->p_offset = bed->s->sizeof_ehdr;
4310
4311 if (m->count > 0)
4312 {
4313 BFD_ASSERT (p->p_type == PT_LOAD);
4314 p->p_vaddr -= off - p->p_offset;
4315 if (!m->p_paddr_valid)
4316 p->p_paddr -= off - p->p_offset;
4317 }
4318 }
4319
4320 p->p_filesz += alloc * bed->s->sizeof_phdr;
4321 p->p_memsz += alloc * bed->s->sizeof_phdr;
4322 }
4323
4324 if (p->p_type == PT_LOAD
4325 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4326 {
4327 if (!m->includes_filehdr && !m->includes_phdrs)
4328 p->p_offset = off;
4329 else
4330 {
4331 file_ptr adjust;
4332
4333 adjust = off - (p->p_offset + p->p_filesz);
4334 if (!no_contents)
4335 p->p_filesz += adjust;
4336 p->p_memsz += adjust;
4337 }
4338 }
4339
4340 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4341 maps. Set filepos for sections in PT_LOAD segments, and in
4342 core files, for sections in PT_NOTE segments.
4343 assign_file_positions_for_non_load_sections will set filepos
4344 for other sections and update p_filesz for other segments. */
4345 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4346 {
4347 asection *sec;
4348 bfd_size_type align;
4349 Elf_Internal_Shdr *this_hdr;
4350
4351 sec = *secpp;
4352 this_hdr = &elf_section_data (sec)->this_hdr;
4353 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4354
4355 if (p->p_type == PT_LOAD
4356 || p->p_type == PT_TLS)
4357 {
4358 bfd_signed_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
4359
4360 if (this_hdr->sh_type != SHT_NOBITS
4361 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4362 && ((this_hdr->sh_flags & SHF_TLS) == 0
4363 || p->p_type == PT_TLS)))
4364 {
4365 if (adjust < 0)
4366 {
4367 (*_bfd_error_handler)
4368 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4369 abfd, sec, (unsigned long) sec->lma);
4370 adjust = 0;
4371 }
4372 p->p_memsz += adjust;
4373
4374 if (this_hdr->sh_type != SHT_NOBITS)
4375 {
4376 off += adjust;
4377 p->p_filesz += adjust;
4378 }
4379 }
4380 }
4381
4382 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4383 {
4384 /* The section at i == 0 is the one that actually contains
4385 everything. */
4386 if (i == 0)
4387 {
4388 this_hdr->sh_offset = sec->filepos = off;
4389 off += this_hdr->sh_size;
4390 p->p_filesz = this_hdr->sh_size;
4391 p->p_memsz = 0;
4392 p->p_align = 1;
4393 }
4394 else
4395 {
4396 /* The rest are fake sections that shouldn't be written. */
4397 sec->filepos = 0;
4398 sec->size = 0;
4399 sec->flags = 0;
4400 continue;
4401 }
4402 }
4403 else
4404 {
4405 if (p->p_type == PT_LOAD)
4406 {
4407 this_hdr->sh_offset = sec->filepos = off;
4408 if (this_hdr->sh_type != SHT_NOBITS)
4409 off += this_hdr->sh_size;
4410 }
4411
4412 if (this_hdr->sh_type != SHT_NOBITS)
4413 {
4414 p->p_filesz += this_hdr->sh_size;
4415 /* A load section without SHF_ALLOC is something like
4416 a note section in a PT_NOTE segment. These take
4417 file space but are not loaded into memory. */
4418 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4419 p->p_memsz += this_hdr->sh_size;
4420 }
4421 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4422 {
4423 if (p->p_type == PT_TLS)
4424 p->p_memsz += this_hdr->sh_size;
4425
4426 /* .tbss is special. It doesn't contribute to p_memsz of
4427 normal segments. */
4428 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4429 p->p_memsz += this_hdr->sh_size;
4430 }
4431
4432 if (align > p->p_align
4433 && !m->p_align_valid
4434 && (p->p_type != PT_LOAD
4435 || (abfd->flags & D_PAGED) == 0))
4436 p->p_align = align;
4437 }
4438
4439 if (!m->p_flags_valid)
4440 {
4441 p->p_flags |= PF_R;
4442 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4443 p->p_flags |= PF_X;
4444 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4445 p->p_flags |= PF_W;
4446 }
4447 }
4448 off -= off_adjust;
4449
4450 /* Check that all sections are in a PT_LOAD segment.
4451 Don't check funky gdb generated core files. */
4452 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4453 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4454 {
4455 Elf_Internal_Shdr *this_hdr;
4456 asection *sec;
4457
4458 sec = *secpp;
4459 this_hdr = &(elf_section_data(sec)->this_hdr);
4460 if (this_hdr->sh_size != 0
4461 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4462 {
4463 (*_bfd_error_handler)
4464 (_("%B: section `%A' can't be allocated in segment %d"),
4465 abfd, sec, j);
4466 print_segment_map (m);
4467 bfd_set_error (bfd_error_bad_value);
4468 return FALSE;
4469 }
4470 }
4471 }
4472
4473 elf_tdata (abfd)->next_file_pos = off;
4474 return TRUE;
4475 }
4476
4477 /* Assign file positions for the other sections. */
4478
4479 static bfd_boolean
4480 assign_file_positions_for_non_load_sections (bfd *abfd,
4481 struct bfd_link_info *link_info)
4482 {
4483 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4484 Elf_Internal_Shdr **i_shdrpp;
4485 Elf_Internal_Shdr **hdrpp;
4486 Elf_Internal_Phdr *phdrs;
4487 Elf_Internal_Phdr *p;
4488 struct elf_segment_map *m;
4489 bfd_vma filehdr_vaddr, filehdr_paddr;
4490 bfd_vma phdrs_vaddr, phdrs_paddr;
4491 file_ptr off;
4492 unsigned int num_sec;
4493 unsigned int i;
4494 unsigned int count;
4495
4496 i_shdrpp = elf_elfsections (abfd);
4497 num_sec = elf_numsections (abfd);
4498 off = elf_tdata (abfd)->next_file_pos;
4499 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4500 {
4501 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4502 Elf_Internal_Shdr *hdr;
4503
4504 hdr = *hdrpp;
4505 if (hdr->bfd_section != NULL
4506 && (hdr->bfd_section->filepos != 0
4507 || (hdr->sh_type == SHT_NOBITS
4508 && hdr->contents == NULL)))
4509 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4510 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4511 {
4512 if (hdr->sh_size != 0)
4513 ((*_bfd_error_handler)
4514 (_("%B: warning: allocated section `%s' not in segment"),
4515 abfd,
4516 (hdr->bfd_section == NULL
4517 ? "*unknown*"
4518 : hdr->bfd_section->name)));
4519 /* We don't need to page align empty sections. */
4520 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4521 off += vma_page_aligned_bias (hdr->sh_addr, off,
4522 bed->maxpagesize);
4523 else
4524 off += vma_page_aligned_bias (hdr->sh_addr, off,
4525 hdr->sh_addralign);
4526 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4527 FALSE);
4528 }
4529 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4530 && hdr->bfd_section == NULL)
4531 || hdr == i_shdrpp[tdata->symtab_section]
4532 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4533 || hdr == i_shdrpp[tdata->strtab_section])
4534 hdr->sh_offset = -1;
4535 else
4536 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4537
4538 if (i == SHN_LORESERVE - 1)
4539 {
4540 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4541 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4542 }
4543 }
4544
4545 /* Now that we have set the section file positions, we can set up
4546 the file positions for the non PT_LOAD segments. */
4547 count = 0;
4548 filehdr_vaddr = 0;
4549 filehdr_paddr = 0;
4550 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4551 phdrs_paddr = 0;
4552 phdrs = elf_tdata (abfd)->phdr;
4553 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4554 m != NULL;
4555 m = m->next, p++)
4556 {
4557 ++count;
4558 if (p->p_type != PT_LOAD)
4559 continue;
4560
4561 if (m->includes_filehdr)
4562 {
4563 filehdr_vaddr = p->p_vaddr;
4564 filehdr_paddr = p->p_paddr;
4565 }
4566 if (m->includes_phdrs)
4567 {
4568 phdrs_vaddr = p->p_vaddr;
4569 phdrs_paddr = p->p_paddr;
4570 if (m->includes_filehdr)
4571 {
4572 phdrs_vaddr += bed->s->sizeof_ehdr;
4573 phdrs_paddr += bed->s->sizeof_ehdr;
4574 }
4575 }
4576 }
4577
4578 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4579 m != NULL;
4580 m = m->next, p++)
4581 {
4582 if (m->count != 0)
4583 {
4584 if (p->p_type != PT_LOAD
4585 && (p->p_type != PT_NOTE
4586 || bfd_get_format (abfd) != bfd_core))
4587 {
4588 Elf_Internal_Shdr *hdr;
4589 asection *sect;
4590
4591 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4592
4593 sect = m->sections[m->count - 1];
4594 hdr = &elf_section_data (sect)->this_hdr;
4595 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4596 if (hdr->sh_type != SHT_NOBITS)
4597 p->p_filesz += hdr->sh_size;
4598
4599 if (p->p_type == PT_GNU_RELRO)
4600 {
4601 /* When we get here, we are copying executable
4602 or shared library. But we need to use the same
4603 linker logic. */
4604 Elf_Internal_Phdr *lp;
4605
4606 for (lp = phdrs; lp < phdrs + count; ++lp)
4607 {
4608 if (lp->p_type == PT_LOAD
4609 && lp->p_paddr == p->p_paddr)
4610 break;
4611 }
4612
4613 if (lp < phdrs + count)
4614 {
4615 /* We should use p_size if it is valid since it
4616 may contain the first few bytes of the next
4617 SEC_ALLOC section. */
4618 if (m->p_size_valid)
4619 p->p_filesz = m->p_size;
4620 else
4621 abort ();
4622 p->p_vaddr = lp->p_vaddr;
4623 p->p_offset = lp->p_offset;
4624 p->p_memsz = p->p_filesz;
4625 p->p_align = 1;
4626 }
4627 else
4628 abort ();
4629 }
4630 else
4631 p->p_offset = m->sections[0]->filepos;
4632 }
4633 }
4634 else
4635 {
4636 if (m->includes_filehdr)
4637 {
4638 p->p_vaddr = filehdr_vaddr;
4639 if (! m->p_paddr_valid)
4640 p->p_paddr = filehdr_paddr;
4641 }
4642 else if (m->includes_phdrs)
4643 {
4644 p->p_vaddr = phdrs_vaddr;
4645 if (! m->p_paddr_valid)
4646 p->p_paddr = phdrs_paddr;
4647 }
4648 else if (p->p_type == PT_GNU_RELRO)
4649 {
4650 Elf_Internal_Phdr *lp;
4651
4652 for (lp = phdrs; lp < phdrs + count; ++lp)
4653 {
4654 if (lp->p_type == PT_LOAD
4655 && lp->p_vaddr <= link_info->relro_end
4656 && lp->p_vaddr >= link_info->relro_start
4657 && (lp->p_vaddr + lp->p_filesz
4658 >= link_info->relro_end))
4659 break;
4660 }
4661
4662 if (lp < phdrs + count
4663 && link_info->relro_end > lp->p_vaddr)
4664 {
4665 p->p_vaddr = lp->p_vaddr;
4666 p->p_paddr = lp->p_paddr;
4667 p->p_offset = lp->p_offset;
4668 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4669 p->p_memsz = p->p_filesz;
4670 p->p_align = 1;
4671 p->p_flags = (lp->p_flags & ~PF_W);
4672 }
4673 else
4674 {
4675 memset (p, 0, sizeof *p);
4676 p->p_type = PT_NULL;
4677 }
4678 }
4679 }
4680 }
4681
4682 elf_tdata (abfd)->next_file_pos = off;
4683
4684 return TRUE;
4685 }
4686
4687 /* Work out the file positions of all the sections. This is called by
4688 _bfd_elf_compute_section_file_positions. All the section sizes and
4689 VMAs must be known before this is called.
4690
4691 Reloc sections come in two flavours: Those processed specially as
4692 "side-channel" data attached to a section to which they apply, and
4693 those that bfd doesn't process as relocations. The latter sort are
4694 stored in a normal bfd section by bfd_section_from_shdr. We don't
4695 consider the former sort here, unless they form part of the loadable
4696 image. Reloc sections not assigned here will be handled later by
4697 assign_file_positions_for_relocs.
4698
4699 We also don't set the positions of the .symtab and .strtab here. */
4700
4701 static bfd_boolean
4702 assign_file_positions_except_relocs (bfd *abfd,
4703 struct bfd_link_info *link_info)
4704 {
4705 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4706 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4707 file_ptr off;
4708 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4709
4710 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4711 && bfd_get_format (abfd) != bfd_core)
4712 {
4713 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4714 unsigned int num_sec = elf_numsections (abfd);
4715 Elf_Internal_Shdr **hdrpp;
4716 unsigned int i;
4717
4718 /* Start after the ELF header. */
4719 off = i_ehdrp->e_ehsize;
4720
4721 /* We are not creating an executable, which means that we are
4722 not creating a program header, and that the actual order of
4723 the sections in the file is unimportant. */
4724 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4725 {
4726 Elf_Internal_Shdr *hdr;
4727
4728 hdr = *hdrpp;
4729 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4730 && hdr->bfd_section == NULL)
4731 || i == tdata->symtab_section
4732 || i == tdata->symtab_shndx_section
4733 || i == tdata->strtab_section)
4734 {
4735 hdr->sh_offset = -1;
4736 }
4737 else
4738 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4739
4740 if (i == SHN_LORESERVE - 1)
4741 {
4742 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4743 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4744 }
4745 }
4746 }
4747 else
4748 {
4749 unsigned int alloc;
4750
4751 /* Assign file positions for the loaded sections based on the
4752 assignment of sections to segments. */
4753 if (!assign_file_positions_for_load_sections (abfd, link_info))
4754 return FALSE;
4755
4756 /* And for non-load sections. */
4757 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4758 return FALSE;
4759
4760 if (bed->elf_backend_modify_program_headers != NULL)
4761 {
4762 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4763 return FALSE;
4764 }
4765
4766 /* Write out the program headers. */
4767 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4768 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4769 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4770 return FALSE;
4771
4772 off = tdata->next_file_pos;
4773 }
4774
4775 /* Place the section headers. */
4776 off = align_file_position (off, 1 << bed->s->log_file_align);
4777 i_ehdrp->e_shoff = off;
4778 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4779
4780 tdata->next_file_pos = off;
4781
4782 return TRUE;
4783 }
4784
4785 static bfd_boolean
4786 prep_headers (bfd *abfd)
4787 {
4788 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4789 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4790 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4791 struct elf_strtab_hash *shstrtab;
4792 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4793
4794 i_ehdrp = elf_elfheader (abfd);
4795 i_shdrp = elf_elfsections (abfd);
4796
4797 shstrtab = _bfd_elf_strtab_init ();
4798 if (shstrtab == NULL)
4799 return FALSE;
4800
4801 elf_shstrtab (abfd) = shstrtab;
4802
4803 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4804 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4805 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4806 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4807
4808 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4809 i_ehdrp->e_ident[EI_DATA] =
4810 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4811 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4812
4813 if ((abfd->flags & DYNAMIC) != 0)
4814 i_ehdrp->e_type = ET_DYN;
4815 else if ((abfd->flags & EXEC_P) != 0)
4816 i_ehdrp->e_type = ET_EXEC;
4817 else if (bfd_get_format (abfd) == bfd_core)
4818 i_ehdrp->e_type = ET_CORE;
4819 else
4820 i_ehdrp->e_type = ET_REL;
4821
4822 switch (bfd_get_arch (abfd))
4823 {
4824 case bfd_arch_unknown:
4825 i_ehdrp->e_machine = EM_NONE;
4826 break;
4827
4828 /* There used to be a long list of cases here, each one setting
4829 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4830 in the corresponding bfd definition. To avoid duplication,
4831 the switch was removed. Machines that need special handling
4832 can generally do it in elf_backend_final_write_processing(),
4833 unless they need the information earlier than the final write.
4834 Such need can generally be supplied by replacing the tests for
4835 e_machine with the conditions used to determine it. */
4836 default:
4837 i_ehdrp->e_machine = bed->elf_machine_code;
4838 }
4839
4840 i_ehdrp->e_version = bed->s->ev_current;
4841 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4842
4843 /* No program header, for now. */
4844 i_ehdrp->e_phoff = 0;
4845 i_ehdrp->e_phentsize = 0;
4846 i_ehdrp->e_phnum = 0;
4847
4848 /* Each bfd section is section header entry. */
4849 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4850 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4851
4852 /* If we're building an executable, we'll need a program header table. */
4853 if (abfd->flags & EXEC_P)
4854 /* It all happens later. */
4855 ;
4856 else
4857 {
4858 i_ehdrp->e_phentsize = 0;
4859 i_phdrp = 0;
4860 i_ehdrp->e_phoff = 0;
4861 }
4862
4863 elf_tdata (abfd)->symtab_hdr.sh_name =
4864 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4865 elf_tdata (abfd)->strtab_hdr.sh_name =
4866 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4867 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4868 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4869 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4870 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4871 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4872 return FALSE;
4873
4874 return TRUE;
4875 }
4876
4877 /* Assign file positions for all the reloc sections which are not part
4878 of the loadable file image. */
4879
4880 void
4881 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4882 {
4883 file_ptr off;
4884 unsigned int i, num_sec;
4885 Elf_Internal_Shdr **shdrpp;
4886
4887 off = elf_tdata (abfd)->next_file_pos;
4888
4889 num_sec = elf_numsections (abfd);
4890 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4891 {
4892 Elf_Internal_Shdr *shdrp;
4893
4894 shdrp = *shdrpp;
4895 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4896 && shdrp->sh_offset == -1)
4897 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4898 }
4899
4900 elf_tdata (abfd)->next_file_pos = off;
4901 }
4902
4903 bfd_boolean
4904 _bfd_elf_write_object_contents (bfd *abfd)
4905 {
4906 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4907 Elf_Internal_Ehdr *i_ehdrp;
4908 Elf_Internal_Shdr **i_shdrp;
4909 bfd_boolean failed;
4910 unsigned int count, num_sec;
4911
4912 if (! abfd->output_has_begun
4913 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4914 return FALSE;
4915
4916 i_shdrp = elf_elfsections (abfd);
4917 i_ehdrp = elf_elfheader (abfd);
4918
4919 failed = FALSE;
4920 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4921 if (failed)
4922 return FALSE;
4923
4924 _bfd_elf_assign_file_positions_for_relocs (abfd);
4925
4926 /* After writing the headers, we need to write the sections too... */
4927 num_sec = elf_numsections (abfd);
4928 for (count = 1; count < num_sec; count++)
4929 {
4930 if (bed->elf_backend_section_processing)
4931 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4932 if (i_shdrp[count]->contents)
4933 {
4934 bfd_size_type amt = i_shdrp[count]->sh_size;
4935
4936 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4937 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4938 return FALSE;
4939 }
4940 if (count == SHN_LORESERVE - 1)
4941 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4942 }
4943
4944 /* Write out the section header names. */
4945 if (elf_shstrtab (abfd) != NULL
4946 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4947 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4948 return FALSE;
4949
4950 if (bed->elf_backend_final_write_processing)
4951 (*bed->elf_backend_final_write_processing) (abfd,
4952 elf_tdata (abfd)->linker);
4953
4954 if (!bed->s->write_shdrs_and_ehdr (abfd))
4955 return FALSE;
4956
4957 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
4958 if (elf_tdata (abfd)->after_write_object_contents)
4959 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
4960
4961 return TRUE;
4962 }
4963
4964 bfd_boolean
4965 _bfd_elf_write_corefile_contents (bfd *abfd)
4966 {
4967 /* Hopefully this can be done just like an object file. */
4968 return _bfd_elf_write_object_contents (abfd);
4969 }
4970
4971 /* Given a section, search the header to find them. */
4972
4973 int
4974 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4975 {
4976 const struct elf_backend_data *bed;
4977 int index;
4978
4979 if (elf_section_data (asect) != NULL
4980 && elf_section_data (asect)->this_idx != 0)
4981 return elf_section_data (asect)->this_idx;
4982
4983 if (bfd_is_abs_section (asect))
4984 index = SHN_ABS;
4985 else if (bfd_is_com_section (asect))
4986 index = SHN_COMMON;
4987 else if (bfd_is_und_section (asect))
4988 index = SHN_UNDEF;
4989 else
4990 index = -1;
4991
4992 bed = get_elf_backend_data (abfd);
4993 if (bed->elf_backend_section_from_bfd_section)
4994 {
4995 int retval = index;
4996
4997 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4998 return retval;
4999 }
5000
5001 if (index == -1)
5002 bfd_set_error (bfd_error_nonrepresentable_section);
5003
5004 return index;
5005 }
5006
5007 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5008 on error. */
5009
5010 int
5011 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5012 {
5013 asymbol *asym_ptr = *asym_ptr_ptr;
5014 int idx;
5015 flagword flags = asym_ptr->flags;
5016
5017 /* When gas creates relocations against local labels, it creates its
5018 own symbol for the section, but does put the symbol into the
5019 symbol chain, so udata is 0. When the linker is generating
5020 relocatable output, this section symbol may be for one of the
5021 input sections rather than the output section. */
5022 if (asym_ptr->udata.i == 0
5023 && (flags & BSF_SECTION_SYM)
5024 && asym_ptr->section)
5025 {
5026 asection *sec;
5027 int indx;
5028
5029 sec = asym_ptr->section;
5030 if (sec->owner != abfd && sec->output_section != NULL)
5031 sec = sec->output_section;
5032 if (sec->owner == abfd
5033 && (indx = sec->index) < elf_num_section_syms (abfd)
5034 && elf_section_syms (abfd)[indx] != NULL)
5035 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5036 }
5037
5038 idx = asym_ptr->udata.i;
5039
5040 if (idx == 0)
5041 {
5042 /* This case can occur when using --strip-symbol on a symbol
5043 which is used in a relocation entry. */
5044 (*_bfd_error_handler)
5045 (_("%B: symbol `%s' required but not present"),
5046 abfd, bfd_asymbol_name (asym_ptr));
5047 bfd_set_error (bfd_error_no_symbols);
5048 return -1;
5049 }
5050
5051 #if DEBUG & 4
5052 {
5053 fprintf (stderr,
5054 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5055 (long) asym_ptr, asym_ptr->name, idx, flags,
5056 elf_symbol_flags (flags));
5057 fflush (stderr);
5058 }
5059 #endif
5060
5061 return idx;
5062 }
5063
5064 /* Rewrite program header information. */
5065
5066 static bfd_boolean
5067 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5068 {
5069 Elf_Internal_Ehdr *iehdr;
5070 struct elf_segment_map *map;
5071 struct elf_segment_map *map_first;
5072 struct elf_segment_map **pointer_to_map;
5073 Elf_Internal_Phdr *segment;
5074 asection *section;
5075 unsigned int i;
5076 unsigned int num_segments;
5077 bfd_boolean phdr_included = FALSE;
5078 bfd_vma maxpagesize;
5079 struct elf_segment_map *phdr_adjust_seg = NULL;
5080 unsigned int phdr_adjust_num = 0;
5081 const struct elf_backend_data *bed;
5082
5083 bed = get_elf_backend_data (ibfd);
5084 iehdr = elf_elfheader (ibfd);
5085
5086 map_first = NULL;
5087 pointer_to_map = &map_first;
5088
5089 num_segments = elf_elfheader (ibfd)->e_phnum;
5090 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5091
5092 /* Returns the end address of the segment + 1. */
5093 #define SEGMENT_END(segment, start) \
5094 (start + (segment->p_memsz > segment->p_filesz \
5095 ? segment->p_memsz : segment->p_filesz))
5096
5097 #define SECTION_SIZE(section, segment) \
5098 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5099 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5100 ? section->size : 0)
5101
5102 /* Returns TRUE if the given section is contained within
5103 the given segment. VMA addresses are compared. */
5104 #define IS_CONTAINED_BY_VMA(section, segment) \
5105 (section->vma >= segment->p_vaddr \
5106 && (section->vma + SECTION_SIZE (section, segment) \
5107 <= (SEGMENT_END (segment, segment->p_vaddr))))
5108
5109 /* Returns TRUE if the given section is contained within
5110 the given segment. LMA addresses are compared. */
5111 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5112 (section->lma >= base \
5113 && (section->lma + SECTION_SIZE (section, segment) \
5114 <= SEGMENT_END (segment, base)))
5115
5116 /* Handle PT_NOTE segment. */
5117 #define IS_NOTE(p, s) \
5118 (p->p_type == PT_NOTE \
5119 && elf_section_type (s) == SHT_NOTE \
5120 && (bfd_vma) s->filepos >= p->p_offset \
5121 && ((bfd_vma) s->filepos + s->size \
5122 <= p->p_offset + p->p_filesz))
5123
5124 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5125 etc. */
5126 #define IS_COREFILE_NOTE(p, s) \
5127 (IS_NOTE (p, s) \
5128 && bfd_get_format (ibfd) == bfd_core \
5129 && s->vma == 0 \
5130 && s->lma == 0)
5131
5132 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5133 linker, which generates a PT_INTERP section with p_vaddr and
5134 p_memsz set to 0. */
5135 #define IS_SOLARIS_PT_INTERP(p, s) \
5136 (p->p_vaddr == 0 \
5137 && p->p_paddr == 0 \
5138 && p->p_memsz == 0 \
5139 && p->p_filesz > 0 \
5140 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5141 && s->size > 0 \
5142 && (bfd_vma) s->filepos >= p->p_offset \
5143 && ((bfd_vma) s->filepos + s->size \
5144 <= p->p_offset + p->p_filesz))
5145
5146 /* Decide if the given section should be included in the given segment.
5147 A section will be included if:
5148 1. It is within the address space of the segment -- we use the LMA
5149 if that is set for the segment and the VMA otherwise,
5150 2. It is an allocated section or a NOTE section in a PT_NOTE
5151 segment.
5152 3. There is an output section associated with it,
5153 4. The section has not already been allocated to a previous segment.
5154 5. PT_GNU_STACK segments do not include any sections.
5155 6. PT_TLS segment includes only SHF_TLS sections.
5156 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5157 8. PT_DYNAMIC should not contain empty sections at the beginning
5158 (with the possible exception of .dynamic). */
5159 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5160 ((((segment->p_paddr \
5161 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5162 : IS_CONTAINED_BY_VMA (section, segment)) \
5163 && (section->flags & SEC_ALLOC) != 0) \
5164 || IS_NOTE (segment, section)) \
5165 && segment->p_type != PT_GNU_STACK \
5166 && (segment->p_type != PT_TLS \
5167 || (section->flags & SEC_THREAD_LOCAL)) \
5168 && (segment->p_type == PT_LOAD \
5169 || segment->p_type == PT_TLS \
5170 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5171 && (segment->p_type != PT_DYNAMIC \
5172 || SECTION_SIZE (section, segment) > 0 \
5173 || (segment->p_paddr \
5174 ? segment->p_paddr != section->lma \
5175 : segment->p_vaddr != section->vma) \
5176 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5177 == 0)) \
5178 && !section->segment_mark)
5179
5180 /* If the output section of a section in the input segment is NULL,
5181 it is removed from the corresponding output segment. */
5182 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5183 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5184 && section->output_section != NULL)
5185
5186 /* Returns TRUE iff seg1 starts after the end of seg2. */
5187 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5188 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5189
5190 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5191 their VMA address ranges and their LMA address ranges overlap.
5192 It is possible to have overlapping VMA ranges without overlapping LMA
5193 ranges. RedBoot images for example can have both .data and .bss mapped
5194 to the same VMA range, but with the .data section mapped to a different
5195 LMA. */
5196 #define SEGMENT_OVERLAPS(seg1, seg2) \
5197 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5198 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5199 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5200 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5201
5202 /* Initialise the segment mark field. */
5203 for (section = ibfd->sections; section != NULL; section = section->next)
5204 section->segment_mark = FALSE;
5205
5206 /* Scan through the segments specified in the program header
5207 of the input BFD. For this first scan we look for overlaps
5208 in the loadable segments. These can be created by weird
5209 parameters to objcopy. Also, fix some solaris weirdness. */
5210 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5211 i < num_segments;
5212 i++, segment++)
5213 {
5214 unsigned int j;
5215 Elf_Internal_Phdr *segment2;
5216
5217 if (segment->p_type == PT_INTERP)
5218 for (section = ibfd->sections; section; section = section->next)
5219 if (IS_SOLARIS_PT_INTERP (segment, section))
5220 {
5221 /* Mininal change so that the normal section to segment
5222 assignment code will work. */
5223 segment->p_vaddr = section->vma;
5224 break;
5225 }
5226
5227 if (segment->p_type != PT_LOAD)
5228 {
5229 /* Remove PT_GNU_RELRO segment. */
5230 if (segment->p_type == PT_GNU_RELRO)
5231 segment->p_type = PT_NULL;
5232 continue;
5233 }
5234
5235 /* Determine if this segment overlaps any previous segments. */
5236 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5237 {
5238 bfd_signed_vma extra_length;
5239
5240 if (segment2->p_type != PT_LOAD
5241 || !SEGMENT_OVERLAPS (segment, segment2))
5242 continue;
5243
5244 /* Merge the two segments together. */
5245 if (segment2->p_vaddr < segment->p_vaddr)
5246 {
5247 /* Extend SEGMENT2 to include SEGMENT and then delete
5248 SEGMENT. */
5249 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5250 - SEGMENT_END (segment2, segment2->p_vaddr));
5251
5252 if (extra_length > 0)
5253 {
5254 segment2->p_memsz += extra_length;
5255 segment2->p_filesz += extra_length;
5256 }
5257
5258 segment->p_type = PT_NULL;
5259
5260 /* Since we have deleted P we must restart the outer loop. */
5261 i = 0;
5262 segment = elf_tdata (ibfd)->phdr;
5263 break;
5264 }
5265 else
5266 {
5267 /* Extend SEGMENT to include SEGMENT2 and then delete
5268 SEGMENT2. */
5269 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5270 - SEGMENT_END (segment, segment->p_vaddr));
5271
5272 if (extra_length > 0)
5273 {
5274 segment->p_memsz += extra_length;
5275 segment->p_filesz += extra_length;
5276 }
5277
5278 segment2->p_type = PT_NULL;
5279 }
5280 }
5281 }
5282
5283 /* The second scan attempts to assign sections to segments. */
5284 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5285 i < num_segments;
5286 i++, segment++)
5287 {
5288 unsigned int section_count;
5289 asection **sections;
5290 asection *output_section;
5291 unsigned int isec;
5292 bfd_vma matching_lma;
5293 bfd_vma suggested_lma;
5294 unsigned int j;
5295 bfd_size_type amt;
5296 asection *first_section;
5297 bfd_boolean first_matching_lma;
5298 bfd_boolean first_suggested_lma;
5299
5300 if (segment->p_type == PT_NULL)
5301 continue;
5302
5303 first_section = NULL;
5304 /* Compute how many sections might be placed into this segment. */
5305 for (section = ibfd->sections, section_count = 0;
5306 section != NULL;
5307 section = section->next)
5308 {
5309 /* Find the first section in the input segment, which may be
5310 removed from the corresponding output segment. */
5311 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5312 {
5313 if (first_section == NULL)
5314 first_section = section;
5315 if (section->output_section != NULL)
5316 ++section_count;
5317 }
5318 }
5319
5320 /* Allocate a segment map big enough to contain
5321 all of the sections we have selected. */
5322 amt = sizeof (struct elf_segment_map);
5323 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5324 map = bfd_zalloc (obfd, amt);
5325 if (map == NULL)
5326 return FALSE;
5327
5328 /* Initialise the fields of the segment map. Default to
5329 using the physical address of the segment in the input BFD. */
5330 map->next = NULL;
5331 map->p_type = segment->p_type;
5332 map->p_flags = segment->p_flags;
5333 map->p_flags_valid = 1;
5334
5335 /* If the first section in the input segment is removed, there is
5336 no need to preserve segment physical address in the corresponding
5337 output segment. */
5338 if (!first_section || first_section->output_section != NULL)
5339 {
5340 map->p_paddr = segment->p_paddr;
5341 map->p_paddr_valid = 1;
5342 }
5343
5344 /* Determine if this segment contains the ELF file header
5345 and if it contains the program headers themselves. */
5346 map->includes_filehdr = (segment->p_offset == 0
5347 && segment->p_filesz >= iehdr->e_ehsize);
5348 map->includes_phdrs = 0;
5349
5350 if (!phdr_included || segment->p_type != PT_LOAD)
5351 {
5352 map->includes_phdrs =
5353 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5354 && (segment->p_offset + segment->p_filesz
5355 >= ((bfd_vma) iehdr->e_phoff
5356 + iehdr->e_phnum * iehdr->e_phentsize)));
5357
5358 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5359 phdr_included = TRUE;
5360 }
5361
5362 if (section_count == 0)
5363 {
5364 /* Special segments, such as the PT_PHDR segment, may contain
5365 no sections, but ordinary, loadable segments should contain
5366 something. They are allowed by the ELF spec however, so only
5367 a warning is produced. */
5368 if (segment->p_type == PT_LOAD)
5369 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5370 " detected, is this intentional ?\n"),
5371 ibfd);
5372
5373 map->count = 0;
5374 *pointer_to_map = map;
5375 pointer_to_map = &map->next;
5376
5377 continue;
5378 }
5379
5380 /* Now scan the sections in the input BFD again and attempt
5381 to add their corresponding output sections to the segment map.
5382 The problem here is how to handle an output section which has
5383 been moved (ie had its LMA changed). There are four possibilities:
5384
5385 1. None of the sections have been moved.
5386 In this case we can continue to use the segment LMA from the
5387 input BFD.
5388
5389 2. All of the sections have been moved by the same amount.
5390 In this case we can change the segment's LMA to match the LMA
5391 of the first section.
5392
5393 3. Some of the sections have been moved, others have not.
5394 In this case those sections which have not been moved can be
5395 placed in the current segment which will have to have its size,
5396 and possibly its LMA changed, and a new segment or segments will
5397 have to be created to contain the other sections.
5398
5399 4. The sections have been moved, but not by the same amount.
5400 In this case we can change the segment's LMA to match the LMA
5401 of the first section and we will have to create a new segment
5402 or segments to contain the other sections.
5403
5404 In order to save time, we allocate an array to hold the section
5405 pointers that we are interested in. As these sections get assigned
5406 to a segment, they are removed from this array. */
5407
5408 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5409 to work around this long long bug. */
5410 sections = bfd_malloc2 (section_count, sizeof (asection *));
5411 if (sections == NULL)
5412 return FALSE;
5413
5414 /* Step One: Scan for segment vs section LMA conflicts.
5415 Also add the sections to the section array allocated above.
5416 Also add the sections to the current segment. In the common
5417 case, where the sections have not been moved, this means that
5418 we have completely filled the segment, and there is nothing
5419 more to do. */
5420 isec = 0;
5421 matching_lma = 0;
5422 suggested_lma = 0;
5423 first_matching_lma = TRUE;
5424 first_suggested_lma = TRUE;
5425
5426 for (section = ibfd->sections;
5427 section != NULL;
5428 section = section->next)
5429 if (section == first_section)
5430 break;
5431
5432 for (j = 0; section != NULL; section = section->next)
5433 {
5434 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5435 {
5436 output_section = section->output_section;
5437
5438 sections[j++] = section;
5439
5440 /* The Solaris native linker always sets p_paddr to 0.
5441 We try to catch that case here, and set it to the
5442 correct value. Note - some backends require that
5443 p_paddr be left as zero. */
5444 if (segment->p_paddr == 0
5445 && segment->p_vaddr != 0
5446 && !bed->want_p_paddr_set_to_zero
5447 && isec == 0
5448 && output_section->lma != 0
5449 && output_section->vma == (segment->p_vaddr
5450 + (map->includes_filehdr
5451 ? iehdr->e_ehsize
5452 : 0)
5453 + (map->includes_phdrs
5454 ? (iehdr->e_phnum
5455 * iehdr->e_phentsize)
5456 : 0)))
5457 map->p_paddr = segment->p_vaddr;
5458
5459 /* Match up the physical address of the segment with the
5460 LMA address of the output section. */
5461 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5462 || IS_COREFILE_NOTE (segment, section)
5463 || (bed->want_p_paddr_set_to_zero
5464 && IS_CONTAINED_BY_VMA (output_section, segment)))
5465 {
5466 if (first_matching_lma || output_section->lma < matching_lma)
5467 {
5468 matching_lma = output_section->lma;
5469 first_matching_lma = FALSE;
5470 }
5471
5472 /* We assume that if the section fits within the segment
5473 then it does not overlap any other section within that
5474 segment. */
5475 map->sections[isec++] = output_section;
5476 }
5477 else if (first_suggested_lma)
5478 {
5479 suggested_lma = output_section->lma;
5480 first_suggested_lma = FALSE;
5481 }
5482
5483 if (j == section_count)
5484 break;
5485 }
5486 }
5487
5488 BFD_ASSERT (j == section_count);
5489
5490 /* Step Two: Adjust the physical address of the current segment,
5491 if necessary. */
5492 if (isec == section_count)
5493 {
5494 /* All of the sections fitted within the segment as currently
5495 specified. This is the default case. Add the segment to
5496 the list of built segments and carry on to process the next
5497 program header in the input BFD. */
5498 map->count = section_count;
5499 *pointer_to_map = map;
5500 pointer_to_map = &map->next;
5501
5502 if (!bed->want_p_paddr_set_to_zero
5503 && matching_lma != map->p_paddr
5504 && !map->includes_filehdr && !map->includes_phdrs)
5505 /* There is some padding before the first section in the
5506 segment. So, we must account for that in the output
5507 segment's vma. */
5508 map->p_vaddr_offset = matching_lma - map->p_paddr;
5509
5510 free (sections);
5511 continue;
5512 }
5513 else
5514 {
5515 if (!first_matching_lma)
5516 {
5517 /* At least one section fits inside the current segment.
5518 Keep it, but modify its physical address to match the
5519 LMA of the first section that fitted. */
5520 map->p_paddr = matching_lma;
5521 }
5522 else
5523 {
5524 /* None of the sections fitted inside the current segment.
5525 Change the current segment's physical address to match
5526 the LMA of the first section. */
5527 map->p_paddr = suggested_lma;
5528 }
5529
5530 /* Offset the segment physical address from the lma
5531 to allow for space taken up by elf headers. */
5532 if (map->includes_filehdr)
5533 map->p_paddr -= iehdr->e_ehsize;
5534
5535 if (map->includes_phdrs)
5536 {
5537 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5538
5539 /* iehdr->e_phnum is just an estimate of the number
5540 of program headers that we will need. Make a note
5541 here of the number we used and the segment we chose
5542 to hold these headers, so that we can adjust the
5543 offset when we know the correct value. */
5544 phdr_adjust_num = iehdr->e_phnum;
5545 phdr_adjust_seg = map;
5546 }
5547 }
5548
5549 /* Step Three: Loop over the sections again, this time assigning
5550 those that fit to the current segment and removing them from the
5551 sections array; but making sure not to leave large gaps. Once all
5552 possible sections have been assigned to the current segment it is
5553 added to the list of built segments and if sections still remain
5554 to be assigned, a new segment is constructed before repeating
5555 the loop. */
5556 isec = 0;
5557 do
5558 {
5559 map->count = 0;
5560 suggested_lma = 0;
5561 first_suggested_lma = TRUE;
5562
5563 /* Fill the current segment with sections that fit. */
5564 for (j = 0; j < section_count; j++)
5565 {
5566 section = sections[j];
5567
5568 if (section == NULL)
5569 continue;
5570
5571 output_section = section->output_section;
5572
5573 BFD_ASSERT (output_section != NULL);
5574
5575 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5576 || IS_COREFILE_NOTE (segment, section))
5577 {
5578 if (map->count == 0)
5579 {
5580 /* If the first section in a segment does not start at
5581 the beginning of the segment, then something is
5582 wrong. */
5583 if (output_section->lma
5584 != (map->p_paddr
5585 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5586 + (map->includes_phdrs
5587 ? iehdr->e_phnum * iehdr->e_phentsize
5588 : 0)))
5589 abort ();
5590 }
5591 else
5592 {
5593 asection *prev_sec;
5594
5595 prev_sec = map->sections[map->count - 1];
5596
5597 /* If the gap between the end of the previous section
5598 and the start of this section is more than
5599 maxpagesize then we need to start a new segment. */
5600 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5601 maxpagesize)
5602 < BFD_ALIGN (output_section->lma, maxpagesize))
5603 || (prev_sec->lma + prev_sec->size
5604 > output_section->lma))
5605 {
5606 if (first_suggested_lma)
5607 {
5608 suggested_lma = output_section->lma;
5609 first_suggested_lma = FALSE;
5610 }
5611
5612 continue;
5613 }
5614 }
5615
5616 map->sections[map->count++] = output_section;
5617 ++isec;
5618 sections[j] = NULL;
5619 section->segment_mark = TRUE;
5620 }
5621 else if (first_suggested_lma)
5622 {
5623 suggested_lma = output_section->lma;
5624 first_suggested_lma = FALSE;
5625 }
5626 }
5627
5628 BFD_ASSERT (map->count > 0);
5629
5630 /* Add the current segment to the list of built segments. */
5631 *pointer_to_map = map;
5632 pointer_to_map = &map->next;
5633
5634 if (isec < section_count)
5635 {
5636 /* We still have not allocated all of the sections to
5637 segments. Create a new segment here, initialise it
5638 and carry on looping. */
5639 amt = sizeof (struct elf_segment_map);
5640 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5641 map = bfd_alloc (obfd, amt);
5642 if (map == NULL)
5643 {
5644 free (sections);
5645 return FALSE;
5646 }
5647
5648 /* Initialise the fields of the segment map. Set the physical
5649 physical address to the LMA of the first section that has
5650 not yet been assigned. */
5651 map->next = NULL;
5652 map->p_type = segment->p_type;
5653 map->p_flags = segment->p_flags;
5654 map->p_flags_valid = 1;
5655 map->p_paddr = suggested_lma;
5656 map->p_paddr_valid = 1;
5657 map->includes_filehdr = 0;
5658 map->includes_phdrs = 0;
5659 }
5660 }
5661 while (isec < section_count);
5662
5663 free (sections);
5664 }
5665
5666 /* The Solaris linker creates program headers in which all the
5667 p_paddr fields are zero. When we try to objcopy or strip such a
5668 file, we get confused. Check for this case, and if we find it
5669 reset the p_paddr_valid fields. */
5670 for (map = map_first; map != NULL; map = map->next)
5671 if (map->p_paddr != 0)
5672 break;
5673 if (map == NULL)
5674 for (map = map_first; map != NULL; map = map->next)
5675 map->p_paddr_valid = 0;
5676
5677 elf_tdata (obfd)->segment_map = map_first;
5678
5679 /* If we had to estimate the number of program headers that were
5680 going to be needed, then check our estimate now and adjust
5681 the offset if necessary. */
5682 if (phdr_adjust_seg != NULL)
5683 {
5684 unsigned int count;
5685
5686 for (count = 0, map = map_first; map != NULL; map = map->next)
5687 count++;
5688
5689 if (count > phdr_adjust_num)
5690 phdr_adjust_seg->p_paddr
5691 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5692 }
5693
5694 #undef SEGMENT_END
5695 #undef SECTION_SIZE
5696 #undef IS_CONTAINED_BY_VMA
5697 #undef IS_CONTAINED_BY_LMA
5698 #undef IS_NOTE
5699 #undef IS_COREFILE_NOTE
5700 #undef IS_SOLARIS_PT_INTERP
5701 #undef IS_SECTION_IN_INPUT_SEGMENT
5702 #undef INCLUDE_SECTION_IN_SEGMENT
5703 #undef SEGMENT_AFTER_SEGMENT
5704 #undef SEGMENT_OVERLAPS
5705 return TRUE;
5706 }
5707
5708 /* Copy ELF program header information. */
5709
5710 static bfd_boolean
5711 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5712 {
5713 Elf_Internal_Ehdr *iehdr;
5714 struct elf_segment_map *map;
5715 struct elf_segment_map *map_first;
5716 struct elf_segment_map **pointer_to_map;
5717 Elf_Internal_Phdr *segment;
5718 unsigned int i;
5719 unsigned int num_segments;
5720 bfd_boolean phdr_included = FALSE;
5721
5722 iehdr = elf_elfheader (ibfd);
5723
5724 map_first = NULL;
5725 pointer_to_map = &map_first;
5726
5727 num_segments = elf_elfheader (ibfd)->e_phnum;
5728 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5729 i < num_segments;
5730 i++, segment++)
5731 {
5732 asection *section;
5733 unsigned int section_count;
5734 bfd_size_type amt;
5735 Elf_Internal_Shdr *this_hdr;
5736 asection *first_section = NULL;
5737 asection *lowest_section = NULL;
5738
5739 /* Compute how many sections are in this segment. */
5740 for (section = ibfd->sections, section_count = 0;
5741 section != NULL;
5742 section = section->next)
5743 {
5744 this_hdr = &(elf_section_data(section)->this_hdr);
5745 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5746 {
5747 if (!first_section)
5748 first_section = lowest_section = section;
5749 if (section->lma < lowest_section->lma)
5750 lowest_section = section;
5751 section_count++;
5752 }
5753 }
5754
5755 /* Allocate a segment map big enough to contain
5756 all of the sections we have selected. */
5757 amt = sizeof (struct elf_segment_map);
5758 if (section_count != 0)
5759 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5760 map = bfd_zalloc (obfd, amt);
5761 if (map == NULL)
5762 return FALSE;
5763
5764 /* Initialize the fields of the output segment map with the
5765 input segment. */
5766 map->next = NULL;
5767 map->p_type = segment->p_type;
5768 map->p_flags = segment->p_flags;
5769 map->p_flags_valid = 1;
5770 map->p_paddr = segment->p_paddr;
5771 map->p_paddr_valid = 1;
5772 map->p_align = segment->p_align;
5773 map->p_align_valid = 1;
5774 map->p_vaddr_offset = 0;
5775
5776 if (map->p_type == PT_GNU_RELRO
5777 && segment->p_filesz == segment->p_memsz)
5778 {
5779 /* The PT_GNU_RELRO segment may contain the first a few
5780 bytes in the .got.plt section even if the whole .got.plt
5781 section isn't in the PT_GNU_RELRO segment. We won't
5782 change the size of the PT_GNU_RELRO segment. */
5783 map->p_size = segment->p_filesz;
5784 map->p_size_valid = 1;
5785 }
5786
5787 /* Determine if this segment contains the ELF file header
5788 and if it contains the program headers themselves. */
5789 map->includes_filehdr = (segment->p_offset == 0
5790 && segment->p_filesz >= iehdr->e_ehsize);
5791
5792 map->includes_phdrs = 0;
5793 if (! phdr_included || segment->p_type != PT_LOAD)
5794 {
5795 map->includes_phdrs =
5796 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5797 && (segment->p_offset + segment->p_filesz
5798 >= ((bfd_vma) iehdr->e_phoff
5799 + iehdr->e_phnum * iehdr->e_phentsize)));
5800
5801 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5802 phdr_included = TRUE;
5803 }
5804
5805 if (!map->includes_phdrs && !map->includes_filehdr)
5806 /* There is some other padding before the first section. */
5807 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5808 - segment->p_paddr);
5809
5810 if (section_count != 0)
5811 {
5812 unsigned int isec = 0;
5813
5814 for (section = first_section;
5815 section != NULL;
5816 section = section->next)
5817 {
5818 this_hdr = &(elf_section_data(section)->this_hdr);
5819 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5820 {
5821 map->sections[isec++] = section->output_section;
5822 if (isec == section_count)
5823 break;
5824 }
5825 }
5826 }
5827
5828 map->count = section_count;
5829 *pointer_to_map = map;
5830 pointer_to_map = &map->next;
5831 }
5832
5833 elf_tdata (obfd)->segment_map = map_first;
5834 return TRUE;
5835 }
5836
5837 /* Copy private BFD data. This copies or rewrites ELF program header
5838 information. */
5839
5840 static bfd_boolean
5841 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5842 {
5843 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5844 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5845 return TRUE;
5846
5847 if (elf_tdata (ibfd)->phdr == NULL)
5848 return TRUE;
5849
5850 if (ibfd->xvec == obfd->xvec)
5851 {
5852 /* Check to see if any sections in the input BFD
5853 covered by ELF program header have changed. */
5854 Elf_Internal_Phdr *segment;
5855 asection *section, *osec;
5856 unsigned int i, num_segments;
5857 Elf_Internal_Shdr *this_hdr;
5858 const struct elf_backend_data *bed;
5859
5860 bed = get_elf_backend_data (ibfd);
5861
5862 /* Regenerate the segment map if p_paddr is set to 0. */
5863 if (bed->want_p_paddr_set_to_zero)
5864 goto rewrite;
5865
5866 /* Initialize the segment mark field. */
5867 for (section = obfd->sections; section != NULL;
5868 section = section->next)
5869 section->segment_mark = FALSE;
5870
5871 num_segments = elf_elfheader (ibfd)->e_phnum;
5872 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5873 i < num_segments;
5874 i++, segment++)
5875 {
5876 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5877 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5878 which severly confuses things, so always regenerate the segment
5879 map in this case. */
5880 if (segment->p_paddr == 0
5881 && segment->p_memsz == 0
5882 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5883 goto rewrite;
5884
5885 for (section = ibfd->sections;
5886 section != NULL; section = section->next)
5887 {
5888 /* We mark the output section so that we know it comes
5889 from the input BFD. */
5890 osec = section->output_section;
5891 if (osec)
5892 osec->segment_mark = TRUE;
5893
5894 /* Check if this section is covered by the segment. */
5895 this_hdr = &(elf_section_data(section)->this_hdr);
5896 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5897 {
5898 /* FIXME: Check if its output section is changed or
5899 removed. What else do we need to check? */
5900 if (osec == NULL
5901 || section->flags != osec->flags
5902 || section->lma != osec->lma
5903 || section->vma != osec->vma
5904 || section->size != osec->size
5905 || section->rawsize != osec->rawsize
5906 || section->alignment_power != osec->alignment_power)
5907 goto rewrite;
5908 }
5909 }
5910 }
5911
5912 /* Check to see if any output section do not come from the
5913 input BFD. */
5914 for (section = obfd->sections; section != NULL;
5915 section = section->next)
5916 {
5917 if (section->segment_mark == FALSE)
5918 goto rewrite;
5919 else
5920 section->segment_mark = FALSE;
5921 }
5922
5923 return copy_elf_program_header (ibfd, obfd);
5924 }
5925
5926 rewrite:
5927 return rewrite_elf_program_header (ibfd, obfd);
5928 }
5929
5930 /* Initialize private output section information from input section. */
5931
5932 bfd_boolean
5933 _bfd_elf_init_private_section_data (bfd *ibfd,
5934 asection *isec,
5935 bfd *obfd,
5936 asection *osec,
5937 struct bfd_link_info *link_info)
5938
5939 {
5940 Elf_Internal_Shdr *ihdr, *ohdr;
5941 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5942
5943 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5944 || obfd->xvec->flavour != bfd_target_elf_flavour)
5945 return TRUE;
5946
5947 /* Don't copy the output ELF section type from input if the
5948 output BFD section flags have been set to something different.
5949 elf_fake_sections will set ELF section type based on BFD
5950 section flags. */
5951 if (elf_section_type (osec) == SHT_NULL
5952 && (osec->flags == isec->flags || !osec->flags))
5953 elf_section_type (osec) = elf_section_type (isec);
5954
5955 /* FIXME: Is this correct for all OS/PROC specific flags? */
5956 elf_section_flags (osec) |= (elf_section_flags (isec)
5957 & (SHF_MASKOS | SHF_MASKPROC));
5958
5959 /* Set things up for objcopy and relocatable link. The output
5960 SHT_GROUP section will have its elf_next_in_group pointing back
5961 to the input group members. Ignore linker created group section.
5962 See elfNN_ia64_object_p in elfxx-ia64.c. */
5963 if (need_group)
5964 {
5965 if (elf_sec_group (isec) == NULL
5966 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5967 {
5968 if (elf_section_flags (isec) & SHF_GROUP)
5969 elf_section_flags (osec) |= SHF_GROUP;
5970 elf_next_in_group (osec) = elf_next_in_group (isec);
5971 elf_group_name (osec) = elf_group_name (isec);
5972 }
5973 }
5974
5975 ihdr = &elf_section_data (isec)->this_hdr;
5976
5977 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5978 don't use the output section of the linked-to section since it
5979 may be NULL at this point. */
5980 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5981 {
5982 ohdr = &elf_section_data (osec)->this_hdr;
5983 ohdr->sh_flags |= SHF_LINK_ORDER;
5984 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5985 }
5986
5987 osec->use_rela_p = isec->use_rela_p;
5988
5989 return TRUE;
5990 }
5991
5992 /* Copy private section information. This copies over the entsize
5993 field, and sometimes the info field. */
5994
5995 bfd_boolean
5996 _bfd_elf_copy_private_section_data (bfd *ibfd,
5997 asection *isec,
5998 bfd *obfd,
5999 asection *osec)
6000 {
6001 Elf_Internal_Shdr *ihdr, *ohdr;
6002
6003 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6004 || obfd->xvec->flavour != bfd_target_elf_flavour)
6005 return TRUE;
6006
6007 ihdr = &elf_section_data (isec)->this_hdr;
6008 ohdr = &elf_section_data (osec)->this_hdr;
6009
6010 ohdr->sh_entsize = ihdr->sh_entsize;
6011
6012 if (ihdr->sh_type == SHT_SYMTAB
6013 || ihdr->sh_type == SHT_DYNSYM
6014 || ihdr->sh_type == SHT_GNU_verneed
6015 || ihdr->sh_type == SHT_GNU_verdef)
6016 ohdr->sh_info = ihdr->sh_info;
6017
6018 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6019 NULL);
6020 }
6021
6022 /* Copy private header information. */
6023
6024 bfd_boolean
6025 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6026 {
6027 asection *isec;
6028
6029 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6030 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6031 return TRUE;
6032
6033 /* Copy over private BFD data if it has not already been copied.
6034 This must be done here, rather than in the copy_private_bfd_data
6035 entry point, because the latter is called after the section
6036 contents have been set, which means that the program headers have
6037 already been worked out. */
6038 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6039 {
6040 if (! copy_private_bfd_data (ibfd, obfd))
6041 return FALSE;
6042 }
6043
6044 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6045 but this might be wrong if we deleted the group section. */
6046 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6047 if (elf_section_type (isec) == SHT_GROUP
6048 && isec->output_section == NULL)
6049 {
6050 asection *first = elf_next_in_group (isec);
6051 asection *s = first;
6052 while (s != NULL)
6053 {
6054 if (s->output_section != NULL)
6055 {
6056 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6057 elf_group_name (s->output_section) = NULL;
6058 }
6059 s = elf_next_in_group (s);
6060 if (s == first)
6061 break;
6062 }
6063 }
6064
6065 return TRUE;
6066 }
6067
6068 /* Copy private symbol information. If this symbol is in a section
6069 which we did not map into a BFD section, try to map the section
6070 index correctly. We use special macro definitions for the mapped
6071 section indices; these definitions are interpreted by the
6072 swap_out_syms function. */
6073
6074 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6075 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6076 #define MAP_STRTAB (SHN_HIOS + 3)
6077 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6078 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6079
6080 bfd_boolean
6081 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6082 asymbol *isymarg,
6083 bfd *obfd,
6084 asymbol *osymarg)
6085 {
6086 elf_symbol_type *isym, *osym;
6087
6088 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6089 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6090 return TRUE;
6091
6092 isym = elf_symbol_from (ibfd, isymarg);
6093 osym = elf_symbol_from (obfd, osymarg);
6094
6095 if (isym != NULL
6096 && isym->internal_elf_sym.st_shndx != 0
6097 && osym != NULL
6098 && bfd_is_abs_section (isym->symbol.section))
6099 {
6100 unsigned int shndx;
6101
6102 shndx = isym->internal_elf_sym.st_shndx;
6103 if (shndx == elf_onesymtab (ibfd))
6104 shndx = MAP_ONESYMTAB;
6105 else if (shndx == elf_dynsymtab (ibfd))
6106 shndx = MAP_DYNSYMTAB;
6107 else if (shndx == elf_tdata (ibfd)->strtab_section)
6108 shndx = MAP_STRTAB;
6109 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6110 shndx = MAP_SHSTRTAB;
6111 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6112 shndx = MAP_SYM_SHNDX;
6113 osym->internal_elf_sym.st_shndx = shndx;
6114 }
6115
6116 return TRUE;
6117 }
6118
6119 /* Swap out the symbols. */
6120
6121 static bfd_boolean
6122 swap_out_syms (bfd *abfd,
6123 struct bfd_strtab_hash **sttp,
6124 int relocatable_p)
6125 {
6126 const struct elf_backend_data *bed;
6127 int symcount;
6128 asymbol **syms;
6129 struct bfd_strtab_hash *stt;
6130 Elf_Internal_Shdr *symtab_hdr;
6131 Elf_Internal_Shdr *symtab_shndx_hdr;
6132 Elf_Internal_Shdr *symstrtab_hdr;
6133 bfd_byte *outbound_syms;
6134 bfd_byte *outbound_shndx;
6135 int idx;
6136 bfd_size_type amt;
6137 bfd_boolean name_local_sections;
6138
6139 if (!elf_map_symbols (abfd))
6140 return FALSE;
6141
6142 /* Dump out the symtabs. */
6143 stt = _bfd_elf_stringtab_init ();
6144 if (stt == NULL)
6145 return FALSE;
6146
6147 bed = get_elf_backend_data (abfd);
6148 symcount = bfd_get_symcount (abfd);
6149 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6150 symtab_hdr->sh_type = SHT_SYMTAB;
6151 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6152 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6153 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6154 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6155
6156 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6157 symstrtab_hdr->sh_type = SHT_STRTAB;
6158
6159 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6160 if (outbound_syms == NULL)
6161 {
6162 _bfd_stringtab_free (stt);
6163 return FALSE;
6164 }
6165 symtab_hdr->contents = outbound_syms;
6166
6167 outbound_shndx = NULL;
6168 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6169 if (symtab_shndx_hdr->sh_name != 0)
6170 {
6171 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6172 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6173 sizeof (Elf_External_Sym_Shndx));
6174 if (outbound_shndx == NULL)
6175 {
6176 _bfd_stringtab_free (stt);
6177 return FALSE;
6178 }
6179
6180 symtab_shndx_hdr->contents = outbound_shndx;
6181 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6182 symtab_shndx_hdr->sh_size = amt;
6183 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6184 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6185 }
6186
6187 /* Now generate the data (for "contents"). */
6188 {
6189 /* Fill in zeroth symbol and swap it out. */
6190 Elf_Internal_Sym sym;
6191 sym.st_name = 0;
6192 sym.st_value = 0;
6193 sym.st_size = 0;
6194 sym.st_info = 0;
6195 sym.st_other = 0;
6196 sym.st_shndx = SHN_UNDEF;
6197 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6198 outbound_syms += bed->s->sizeof_sym;
6199 if (outbound_shndx != NULL)
6200 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6201 }
6202
6203 name_local_sections
6204 = (bed->elf_backend_name_local_section_symbols
6205 && bed->elf_backend_name_local_section_symbols (abfd));
6206
6207 syms = bfd_get_outsymbols (abfd);
6208 for (idx = 0; idx < symcount; idx++)
6209 {
6210 Elf_Internal_Sym sym;
6211 bfd_vma value = syms[idx]->value;
6212 elf_symbol_type *type_ptr;
6213 flagword flags = syms[idx]->flags;
6214 int type;
6215
6216 if (!name_local_sections
6217 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6218 {
6219 /* Local section symbols have no name. */
6220 sym.st_name = 0;
6221 }
6222 else
6223 {
6224 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6225 syms[idx]->name,
6226 TRUE, FALSE);
6227 if (sym.st_name == (unsigned long) -1)
6228 {
6229 _bfd_stringtab_free (stt);
6230 return FALSE;
6231 }
6232 }
6233
6234 type_ptr = elf_symbol_from (abfd, syms[idx]);
6235
6236 if ((flags & BSF_SECTION_SYM) == 0
6237 && bfd_is_com_section (syms[idx]->section))
6238 {
6239 /* ELF common symbols put the alignment into the `value' field,
6240 and the size into the `size' field. This is backwards from
6241 how BFD handles it, so reverse it here. */
6242 sym.st_size = value;
6243 if (type_ptr == NULL
6244 || type_ptr->internal_elf_sym.st_value == 0)
6245 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6246 else
6247 sym.st_value = type_ptr->internal_elf_sym.st_value;
6248 sym.st_shndx = _bfd_elf_section_from_bfd_section
6249 (abfd, syms[idx]->section);
6250 }
6251 else
6252 {
6253 asection *sec = syms[idx]->section;
6254 int shndx;
6255
6256 if (sec->output_section)
6257 {
6258 value += sec->output_offset;
6259 sec = sec->output_section;
6260 }
6261
6262 /* Don't add in the section vma for relocatable output. */
6263 if (! relocatable_p)
6264 value += sec->vma;
6265 sym.st_value = value;
6266 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6267
6268 if (bfd_is_abs_section (sec)
6269 && type_ptr != NULL
6270 && type_ptr->internal_elf_sym.st_shndx != 0)
6271 {
6272 /* This symbol is in a real ELF section which we did
6273 not create as a BFD section. Undo the mapping done
6274 by copy_private_symbol_data. */
6275 shndx = type_ptr->internal_elf_sym.st_shndx;
6276 switch (shndx)
6277 {
6278 case MAP_ONESYMTAB:
6279 shndx = elf_onesymtab (abfd);
6280 break;
6281 case MAP_DYNSYMTAB:
6282 shndx = elf_dynsymtab (abfd);
6283 break;
6284 case MAP_STRTAB:
6285 shndx = elf_tdata (abfd)->strtab_section;
6286 break;
6287 case MAP_SHSTRTAB:
6288 shndx = elf_tdata (abfd)->shstrtab_section;
6289 break;
6290 case MAP_SYM_SHNDX:
6291 shndx = elf_tdata (abfd)->symtab_shndx_section;
6292 break;
6293 default:
6294 break;
6295 }
6296 }
6297 else
6298 {
6299 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6300
6301 if (shndx == -1)
6302 {
6303 asection *sec2;
6304
6305 /* Writing this would be a hell of a lot easier if
6306 we had some decent documentation on bfd, and
6307 knew what to expect of the library, and what to
6308 demand of applications. For example, it
6309 appears that `objcopy' might not set the
6310 section of a symbol to be a section that is
6311 actually in the output file. */
6312 sec2 = bfd_get_section_by_name (abfd, sec->name);
6313 if (sec2 == NULL)
6314 {
6315 _bfd_error_handler (_("\
6316 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6317 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6318 sec->name);
6319 bfd_set_error (bfd_error_invalid_operation);
6320 _bfd_stringtab_free (stt);
6321 return FALSE;
6322 }
6323
6324 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6325 BFD_ASSERT (shndx != -1);
6326 }
6327 }
6328
6329 sym.st_shndx = shndx;
6330 }
6331
6332 if ((flags & BSF_THREAD_LOCAL) != 0)
6333 type = STT_TLS;
6334 else if ((flags & BSF_FUNCTION) != 0)
6335 type = STT_FUNC;
6336 else if ((flags & BSF_OBJECT) != 0)
6337 type = STT_OBJECT;
6338 else if ((flags & BSF_RELC) != 0)
6339 type = STT_RELC;
6340 else if ((flags & BSF_SRELC) != 0)
6341 type = STT_SRELC;
6342 else
6343 type = STT_NOTYPE;
6344
6345 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6346 type = STT_TLS;
6347
6348 /* Processor-specific types. */
6349 if (type_ptr != NULL
6350 && bed->elf_backend_get_symbol_type)
6351 type = ((*bed->elf_backend_get_symbol_type)
6352 (&type_ptr->internal_elf_sym, type));
6353
6354 if (flags & BSF_SECTION_SYM)
6355 {
6356 if (flags & BSF_GLOBAL)
6357 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6358 else
6359 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6360 }
6361 else if (bfd_is_com_section (syms[idx]->section))
6362 sym.st_info = ELF_ST_INFO (STB_GLOBAL,
6363 #ifdef USE_STT_COMMON
6364 type == STT_OBJECT ? STT_COMMON :
6365 #endif
6366 type);
6367 else if (bfd_is_und_section (syms[idx]->section))
6368 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6369 ? STB_WEAK
6370 : STB_GLOBAL),
6371 type);
6372 else if (flags & BSF_FILE)
6373 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6374 else
6375 {
6376 int bind = STB_LOCAL;
6377
6378 if (flags & BSF_LOCAL)
6379 bind = STB_LOCAL;
6380 else if (flags & BSF_WEAK)
6381 bind = STB_WEAK;
6382 else if (flags & BSF_GLOBAL)
6383 bind = STB_GLOBAL;
6384
6385 sym.st_info = ELF_ST_INFO (bind, type);
6386 }
6387
6388 if (type_ptr != NULL)
6389 sym.st_other = type_ptr->internal_elf_sym.st_other;
6390 else
6391 sym.st_other = 0;
6392
6393 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6394 outbound_syms += bed->s->sizeof_sym;
6395 if (outbound_shndx != NULL)
6396 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6397 }
6398
6399 *sttp = stt;
6400 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6401 symstrtab_hdr->sh_type = SHT_STRTAB;
6402
6403 symstrtab_hdr->sh_flags = 0;
6404 symstrtab_hdr->sh_addr = 0;
6405 symstrtab_hdr->sh_entsize = 0;
6406 symstrtab_hdr->sh_link = 0;
6407 symstrtab_hdr->sh_info = 0;
6408 symstrtab_hdr->sh_addralign = 1;
6409
6410 return TRUE;
6411 }
6412
6413 /* Return the number of bytes required to hold the symtab vector.
6414
6415 Note that we base it on the count plus 1, since we will null terminate
6416 the vector allocated based on this size. However, the ELF symbol table
6417 always has a dummy entry as symbol #0, so it ends up even. */
6418
6419 long
6420 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6421 {
6422 long symcount;
6423 long symtab_size;
6424 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6425
6426 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6427 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6428 if (symcount > 0)
6429 symtab_size -= sizeof (asymbol *);
6430
6431 return symtab_size;
6432 }
6433
6434 long
6435 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6436 {
6437 long symcount;
6438 long symtab_size;
6439 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6440
6441 if (elf_dynsymtab (abfd) == 0)
6442 {
6443 bfd_set_error (bfd_error_invalid_operation);
6444 return -1;
6445 }
6446
6447 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6448 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6449 if (symcount > 0)
6450 symtab_size -= sizeof (asymbol *);
6451
6452 return symtab_size;
6453 }
6454
6455 long
6456 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6457 sec_ptr asect)
6458 {
6459 return (asect->reloc_count + 1) * sizeof (arelent *);
6460 }
6461
6462 /* Canonicalize the relocs. */
6463
6464 long
6465 _bfd_elf_canonicalize_reloc (bfd *abfd,
6466 sec_ptr section,
6467 arelent **relptr,
6468 asymbol **symbols)
6469 {
6470 arelent *tblptr;
6471 unsigned int i;
6472 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6473
6474 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6475 return -1;
6476
6477 tblptr = section->relocation;
6478 for (i = 0; i < section->reloc_count; i++)
6479 *relptr++ = tblptr++;
6480
6481 *relptr = NULL;
6482
6483 return section->reloc_count;
6484 }
6485
6486 long
6487 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6488 {
6489 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6490 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6491
6492 if (symcount >= 0)
6493 bfd_get_symcount (abfd) = symcount;
6494 return symcount;
6495 }
6496
6497 long
6498 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6499 asymbol **allocation)
6500 {
6501 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6502 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6503
6504 if (symcount >= 0)
6505 bfd_get_dynamic_symcount (abfd) = symcount;
6506 return symcount;
6507 }
6508
6509 /* Return the size required for the dynamic reloc entries. Any loadable
6510 section that was actually installed in the BFD, and has type SHT_REL
6511 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6512 dynamic reloc section. */
6513
6514 long
6515 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6516 {
6517 long ret;
6518 asection *s;
6519
6520 if (elf_dynsymtab (abfd) == 0)
6521 {
6522 bfd_set_error (bfd_error_invalid_operation);
6523 return -1;
6524 }
6525
6526 ret = sizeof (arelent *);
6527 for (s = abfd->sections; s != NULL; s = s->next)
6528 if ((s->flags & SEC_LOAD) != 0
6529 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6530 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6531 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6532 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6533 * sizeof (arelent *));
6534
6535 return ret;
6536 }
6537
6538 /* Canonicalize the dynamic relocation entries. Note that we return the
6539 dynamic relocations as a single block, although they are actually
6540 associated with particular sections; the interface, which was
6541 designed for SunOS style shared libraries, expects that there is only
6542 one set of dynamic relocs. Any loadable section that was actually
6543 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6544 dynamic symbol table, is considered to be a dynamic reloc section. */
6545
6546 long
6547 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6548 arelent **storage,
6549 asymbol **syms)
6550 {
6551 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6552 asection *s;
6553 long ret;
6554
6555 if (elf_dynsymtab (abfd) == 0)
6556 {
6557 bfd_set_error (bfd_error_invalid_operation);
6558 return -1;
6559 }
6560
6561 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6562 ret = 0;
6563 for (s = abfd->sections; s != NULL; s = s->next)
6564 {
6565 if ((s->flags & SEC_LOAD) != 0
6566 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6567 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6568 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6569 {
6570 arelent *p;
6571 long count, i;
6572
6573 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6574 return -1;
6575 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6576 p = s->relocation;
6577 for (i = 0; i < count; i++)
6578 *storage++ = p++;
6579 ret += count;
6580 }
6581 }
6582
6583 *storage = NULL;
6584
6585 return ret;
6586 }
6587 \f
6588 /* Read in the version information. */
6589
6590 bfd_boolean
6591 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6592 {
6593 bfd_byte *contents = NULL;
6594 unsigned int freeidx = 0;
6595
6596 if (elf_dynverref (abfd) != 0)
6597 {
6598 Elf_Internal_Shdr *hdr;
6599 Elf_External_Verneed *everneed;
6600 Elf_Internal_Verneed *iverneed;
6601 unsigned int i;
6602 bfd_byte *contents_end;
6603
6604 hdr = &elf_tdata (abfd)->dynverref_hdr;
6605
6606 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6607 sizeof (Elf_Internal_Verneed));
6608 if (elf_tdata (abfd)->verref == NULL)
6609 goto error_return;
6610
6611 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6612
6613 contents = bfd_malloc (hdr->sh_size);
6614 if (contents == NULL)
6615 {
6616 error_return_verref:
6617 elf_tdata (abfd)->verref = NULL;
6618 elf_tdata (abfd)->cverrefs = 0;
6619 goto error_return;
6620 }
6621 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6622 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6623 goto error_return_verref;
6624
6625 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6626 goto error_return_verref;
6627
6628 BFD_ASSERT (sizeof (Elf_External_Verneed)
6629 == sizeof (Elf_External_Vernaux));
6630 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6631 everneed = (Elf_External_Verneed *) contents;
6632 iverneed = elf_tdata (abfd)->verref;
6633 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6634 {
6635 Elf_External_Vernaux *evernaux;
6636 Elf_Internal_Vernaux *ivernaux;
6637 unsigned int j;
6638
6639 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6640
6641 iverneed->vn_bfd = abfd;
6642
6643 iverneed->vn_filename =
6644 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6645 iverneed->vn_file);
6646 if (iverneed->vn_filename == NULL)
6647 goto error_return_verref;
6648
6649 if (iverneed->vn_cnt == 0)
6650 iverneed->vn_auxptr = NULL;
6651 else
6652 {
6653 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6654 sizeof (Elf_Internal_Vernaux));
6655 if (iverneed->vn_auxptr == NULL)
6656 goto error_return_verref;
6657 }
6658
6659 if (iverneed->vn_aux
6660 > (size_t) (contents_end - (bfd_byte *) everneed))
6661 goto error_return_verref;
6662
6663 evernaux = ((Elf_External_Vernaux *)
6664 ((bfd_byte *) everneed + iverneed->vn_aux));
6665 ivernaux = iverneed->vn_auxptr;
6666 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6667 {
6668 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6669
6670 ivernaux->vna_nodename =
6671 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6672 ivernaux->vna_name);
6673 if (ivernaux->vna_nodename == NULL)
6674 goto error_return_verref;
6675
6676 if (j + 1 < iverneed->vn_cnt)
6677 ivernaux->vna_nextptr = ivernaux + 1;
6678 else
6679 ivernaux->vna_nextptr = NULL;
6680
6681 if (ivernaux->vna_next
6682 > (size_t) (contents_end - (bfd_byte *) evernaux))
6683 goto error_return_verref;
6684
6685 evernaux = ((Elf_External_Vernaux *)
6686 ((bfd_byte *) evernaux + ivernaux->vna_next));
6687
6688 if (ivernaux->vna_other > freeidx)
6689 freeidx = ivernaux->vna_other;
6690 }
6691
6692 if (i + 1 < hdr->sh_info)
6693 iverneed->vn_nextref = iverneed + 1;
6694 else
6695 iverneed->vn_nextref = NULL;
6696
6697 if (iverneed->vn_next
6698 > (size_t) (contents_end - (bfd_byte *) everneed))
6699 goto error_return_verref;
6700
6701 everneed = ((Elf_External_Verneed *)
6702 ((bfd_byte *) everneed + iverneed->vn_next));
6703 }
6704
6705 free (contents);
6706 contents = NULL;
6707 }
6708
6709 if (elf_dynverdef (abfd) != 0)
6710 {
6711 Elf_Internal_Shdr *hdr;
6712 Elf_External_Verdef *everdef;
6713 Elf_Internal_Verdef *iverdef;
6714 Elf_Internal_Verdef *iverdefarr;
6715 Elf_Internal_Verdef iverdefmem;
6716 unsigned int i;
6717 unsigned int maxidx;
6718 bfd_byte *contents_end_def, *contents_end_aux;
6719
6720 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6721
6722 contents = bfd_malloc (hdr->sh_size);
6723 if (contents == NULL)
6724 goto error_return;
6725 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6726 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6727 goto error_return;
6728
6729 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6730 goto error_return;
6731
6732 BFD_ASSERT (sizeof (Elf_External_Verdef)
6733 >= sizeof (Elf_External_Verdaux));
6734 contents_end_def = contents + hdr->sh_size
6735 - sizeof (Elf_External_Verdef);
6736 contents_end_aux = contents + hdr->sh_size
6737 - sizeof (Elf_External_Verdaux);
6738
6739 /* We know the number of entries in the section but not the maximum
6740 index. Therefore we have to run through all entries and find
6741 the maximum. */
6742 everdef = (Elf_External_Verdef *) contents;
6743 maxidx = 0;
6744 for (i = 0; i < hdr->sh_info; ++i)
6745 {
6746 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6747
6748 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6749 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6750
6751 if (iverdefmem.vd_next
6752 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6753 goto error_return;
6754
6755 everdef = ((Elf_External_Verdef *)
6756 ((bfd_byte *) everdef + iverdefmem.vd_next));
6757 }
6758
6759 if (default_imported_symver)
6760 {
6761 if (freeidx > maxidx)
6762 maxidx = ++freeidx;
6763 else
6764 freeidx = ++maxidx;
6765 }
6766 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6767 sizeof (Elf_Internal_Verdef));
6768 if (elf_tdata (abfd)->verdef == NULL)
6769 goto error_return;
6770
6771 elf_tdata (abfd)->cverdefs = maxidx;
6772
6773 everdef = (Elf_External_Verdef *) contents;
6774 iverdefarr = elf_tdata (abfd)->verdef;
6775 for (i = 0; i < hdr->sh_info; i++)
6776 {
6777 Elf_External_Verdaux *everdaux;
6778 Elf_Internal_Verdaux *iverdaux;
6779 unsigned int j;
6780
6781 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6782
6783 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6784 {
6785 error_return_verdef:
6786 elf_tdata (abfd)->verdef = NULL;
6787 elf_tdata (abfd)->cverdefs = 0;
6788 goto error_return;
6789 }
6790
6791 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6792 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6793
6794 iverdef->vd_bfd = abfd;
6795
6796 if (iverdef->vd_cnt == 0)
6797 iverdef->vd_auxptr = NULL;
6798 else
6799 {
6800 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6801 sizeof (Elf_Internal_Verdaux));
6802 if (iverdef->vd_auxptr == NULL)
6803 goto error_return_verdef;
6804 }
6805
6806 if (iverdef->vd_aux
6807 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6808 goto error_return_verdef;
6809
6810 everdaux = ((Elf_External_Verdaux *)
6811 ((bfd_byte *) everdef + iverdef->vd_aux));
6812 iverdaux = iverdef->vd_auxptr;
6813 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6814 {
6815 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6816
6817 iverdaux->vda_nodename =
6818 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6819 iverdaux->vda_name);
6820 if (iverdaux->vda_nodename == NULL)
6821 goto error_return_verdef;
6822
6823 if (j + 1 < iverdef->vd_cnt)
6824 iverdaux->vda_nextptr = iverdaux + 1;
6825 else
6826 iverdaux->vda_nextptr = NULL;
6827
6828 if (iverdaux->vda_next
6829 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6830 goto error_return_verdef;
6831
6832 everdaux = ((Elf_External_Verdaux *)
6833 ((bfd_byte *) everdaux + iverdaux->vda_next));
6834 }
6835
6836 if (iverdef->vd_cnt)
6837 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6838
6839 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6840 iverdef->vd_nextdef = iverdef + 1;
6841 else
6842 iverdef->vd_nextdef = NULL;
6843
6844 everdef = ((Elf_External_Verdef *)
6845 ((bfd_byte *) everdef + iverdef->vd_next));
6846 }
6847
6848 free (contents);
6849 contents = NULL;
6850 }
6851 else if (default_imported_symver)
6852 {
6853 if (freeidx < 3)
6854 freeidx = 3;
6855 else
6856 freeidx++;
6857
6858 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6859 sizeof (Elf_Internal_Verdef));
6860 if (elf_tdata (abfd)->verdef == NULL)
6861 goto error_return;
6862
6863 elf_tdata (abfd)->cverdefs = freeidx;
6864 }
6865
6866 /* Create a default version based on the soname. */
6867 if (default_imported_symver)
6868 {
6869 Elf_Internal_Verdef *iverdef;
6870 Elf_Internal_Verdaux *iverdaux;
6871
6872 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6873
6874 iverdef->vd_version = VER_DEF_CURRENT;
6875 iverdef->vd_flags = 0;
6876 iverdef->vd_ndx = freeidx;
6877 iverdef->vd_cnt = 1;
6878
6879 iverdef->vd_bfd = abfd;
6880
6881 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6882 if (iverdef->vd_nodename == NULL)
6883 goto error_return_verdef;
6884 iverdef->vd_nextdef = NULL;
6885 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6886 if (iverdef->vd_auxptr == NULL)
6887 goto error_return_verdef;
6888
6889 iverdaux = iverdef->vd_auxptr;
6890 iverdaux->vda_nodename = iverdef->vd_nodename;
6891 iverdaux->vda_nextptr = NULL;
6892 }
6893
6894 return TRUE;
6895
6896 error_return:
6897 if (contents != NULL)
6898 free (contents);
6899 return FALSE;
6900 }
6901 \f
6902 asymbol *
6903 _bfd_elf_make_empty_symbol (bfd *abfd)
6904 {
6905 elf_symbol_type *newsym;
6906 bfd_size_type amt = sizeof (elf_symbol_type);
6907
6908 newsym = bfd_zalloc (abfd, amt);
6909 if (!newsym)
6910 return NULL;
6911 else
6912 {
6913 newsym->symbol.the_bfd = abfd;
6914 return &newsym->symbol;
6915 }
6916 }
6917
6918 void
6919 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6920 asymbol *symbol,
6921 symbol_info *ret)
6922 {
6923 bfd_symbol_info (symbol, ret);
6924 }
6925
6926 /* Return whether a symbol name implies a local symbol. Most targets
6927 use this function for the is_local_label_name entry point, but some
6928 override it. */
6929
6930 bfd_boolean
6931 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6932 const char *name)
6933 {
6934 /* Normal local symbols start with ``.L''. */
6935 if (name[0] == '.' && name[1] == 'L')
6936 return TRUE;
6937
6938 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6939 DWARF debugging symbols starting with ``..''. */
6940 if (name[0] == '.' && name[1] == '.')
6941 return TRUE;
6942
6943 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6944 emitting DWARF debugging output. I suspect this is actually a
6945 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6946 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6947 underscore to be emitted on some ELF targets). For ease of use,
6948 we treat such symbols as local. */
6949 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6950 return TRUE;
6951
6952 return FALSE;
6953 }
6954
6955 alent *
6956 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6957 asymbol *symbol ATTRIBUTE_UNUSED)
6958 {
6959 abort ();
6960 return NULL;
6961 }
6962
6963 bfd_boolean
6964 _bfd_elf_set_arch_mach (bfd *abfd,
6965 enum bfd_architecture arch,
6966 unsigned long machine)
6967 {
6968 /* If this isn't the right architecture for this backend, and this
6969 isn't the generic backend, fail. */
6970 if (arch != get_elf_backend_data (abfd)->arch
6971 && arch != bfd_arch_unknown
6972 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6973 return FALSE;
6974
6975 return bfd_default_set_arch_mach (abfd, arch, machine);
6976 }
6977
6978 /* Find the function to a particular section and offset,
6979 for error reporting. */
6980
6981 static bfd_boolean
6982 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6983 asection *section,
6984 asymbol **symbols,
6985 bfd_vma offset,
6986 const char **filename_ptr,
6987 const char **functionname_ptr)
6988 {
6989 const char *filename;
6990 asymbol *func, *file;
6991 bfd_vma low_func;
6992 asymbol **p;
6993 /* ??? Given multiple file symbols, it is impossible to reliably
6994 choose the right file name for global symbols. File symbols are
6995 local symbols, and thus all file symbols must sort before any
6996 global symbols. The ELF spec may be interpreted to say that a
6997 file symbol must sort before other local symbols, but currently
6998 ld -r doesn't do this. So, for ld -r output, it is possible to
6999 make a better choice of file name for local symbols by ignoring
7000 file symbols appearing after a given local symbol. */
7001 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7002
7003 filename = NULL;
7004 func = NULL;
7005 file = NULL;
7006 low_func = 0;
7007 state = nothing_seen;
7008
7009 for (p = symbols; *p != NULL; p++)
7010 {
7011 elf_symbol_type *q;
7012
7013 q = (elf_symbol_type *) *p;
7014
7015 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7016 {
7017 default:
7018 break;
7019 case STT_FILE:
7020 file = &q->symbol;
7021 if (state == symbol_seen)
7022 state = file_after_symbol_seen;
7023 continue;
7024 case STT_NOTYPE:
7025 case STT_FUNC:
7026 if (bfd_get_section (&q->symbol) == section
7027 && q->symbol.value >= low_func
7028 && q->symbol.value <= offset)
7029 {
7030 func = (asymbol *) q;
7031 low_func = q->symbol.value;
7032 filename = NULL;
7033 if (file != NULL
7034 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7035 || state != file_after_symbol_seen))
7036 filename = bfd_asymbol_name (file);
7037 }
7038 break;
7039 }
7040 if (state == nothing_seen)
7041 state = symbol_seen;
7042 }
7043
7044 if (func == NULL)
7045 return FALSE;
7046
7047 if (filename_ptr)
7048 *filename_ptr = filename;
7049 if (functionname_ptr)
7050 *functionname_ptr = bfd_asymbol_name (func);
7051
7052 return TRUE;
7053 }
7054
7055 /* Find the nearest line to a particular section and offset,
7056 for error reporting. */
7057
7058 bfd_boolean
7059 _bfd_elf_find_nearest_line (bfd *abfd,
7060 asection *section,
7061 asymbol **symbols,
7062 bfd_vma offset,
7063 const char **filename_ptr,
7064 const char **functionname_ptr,
7065 unsigned int *line_ptr)
7066 {
7067 bfd_boolean found;
7068
7069 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7070 filename_ptr, functionname_ptr,
7071 line_ptr))
7072 {
7073 if (!*functionname_ptr)
7074 elf_find_function (abfd, section, symbols, offset,
7075 *filename_ptr ? NULL : filename_ptr,
7076 functionname_ptr);
7077
7078 return TRUE;
7079 }
7080
7081 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7082 filename_ptr, functionname_ptr,
7083 line_ptr, 0,
7084 &elf_tdata (abfd)->dwarf2_find_line_info))
7085 {
7086 if (!*functionname_ptr)
7087 elf_find_function (abfd, section, symbols, offset,
7088 *filename_ptr ? NULL : filename_ptr,
7089 functionname_ptr);
7090
7091 return TRUE;
7092 }
7093
7094 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7095 &found, filename_ptr,
7096 functionname_ptr, line_ptr,
7097 &elf_tdata (abfd)->line_info))
7098 return FALSE;
7099 if (found && (*functionname_ptr || *line_ptr))
7100 return TRUE;
7101
7102 if (symbols == NULL)
7103 return FALSE;
7104
7105 if (! elf_find_function (abfd, section, symbols, offset,
7106 filename_ptr, functionname_ptr))
7107 return FALSE;
7108
7109 *line_ptr = 0;
7110 return TRUE;
7111 }
7112
7113 /* Find the line for a symbol. */
7114
7115 bfd_boolean
7116 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7117 const char **filename_ptr, unsigned int *line_ptr)
7118 {
7119 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7120 filename_ptr, line_ptr, 0,
7121 &elf_tdata (abfd)->dwarf2_find_line_info);
7122 }
7123
7124 /* After a call to bfd_find_nearest_line, successive calls to
7125 bfd_find_inliner_info can be used to get source information about
7126 each level of function inlining that terminated at the address
7127 passed to bfd_find_nearest_line. Currently this is only supported
7128 for DWARF2 with appropriate DWARF3 extensions. */
7129
7130 bfd_boolean
7131 _bfd_elf_find_inliner_info (bfd *abfd,
7132 const char **filename_ptr,
7133 const char **functionname_ptr,
7134 unsigned int *line_ptr)
7135 {
7136 bfd_boolean found;
7137 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7138 functionname_ptr, line_ptr,
7139 & elf_tdata (abfd)->dwarf2_find_line_info);
7140 return found;
7141 }
7142
7143 int
7144 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7145 {
7146 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7147 int ret = bed->s->sizeof_ehdr;
7148
7149 if (!info->relocatable)
7150 {
7151 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7152
7153 if (phdr_size == (bfd_size_type) -1)
7154 {
7155 struct elf_segment_map *m;
7156
7157 phdr_size = 0;
7158 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7159 phdr_size += bed->s->sizeof_phdr;
7160
7161 if (phdr_size == 0)
7162 phdr_size = get_program_header_size (abfd, info);
7163 }
7164
7165 elf_tdata (abfd)->program_header_size = phdr_size;
7166 ret += phdr_size;
7167 }
7168
7169 return ret;
7170 }
7171
7172 bfd_boolean
7173 _bfd_elf_set_section_contents (bfd *abfd,
7174 sec_ptr section,
7175 const void *location,
7176 file_ptr offset,
7177 bfd_size_type count)
7178 {
7179 Elf_Internal_Shdr *hdr;
7180 bfd_signed_vma pos;
7181
7182 if (! abfd->output_has_begun
7183 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7184 return FALSE;
7185
7186 hdr = &elf_section_data (section)->this_hdr;
7187 pos = hdr->sh_offset + offset;
7188 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7189 || bfd_bwrite (location, count, abfd) != count)
7190 return FALSE;
7191
7192 return TRUE;
7193 }
7194
7195 void
7196 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7197 arelent *cache_ptr ATTRIBUTE_UNUSED,
7198 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7199 {
7200 abort ();
7201 }
7202
7203 /* Try to convert a non-ELF reloc into an ELF one. */
7204
7205 bfd_boolean
7206 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7207 {
7208 /* Check whether we really have an ELF howto. */
7209
7210 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7211 {
7212 bfd_reloc_code_real_type code;
7213 reloc_howto_type *howto;
7214
7215 /* Alien reloc: Try to determine its type to replace it with an
7216 equivalent ELF reloc. */
7217
7218 if (areloc->howto->pc_relative)
7219 {
7220 switch (areloc->howto->bitsize)
7221 {
7222 case 8:
7223 code = BFD_RELOC_8_PCREL;
7224 break;
7225 case 12:
7226 code = BFD_RELOC_12_PCREL;
7227 break;
7228 case 16:
7229 code = BFD_RELOC_16_PCREL;
7230 break;
7231 case 24:
7232 code = BFD_RELOC_24_PCREL;
7233 break;
7234 case 32:
7235 code = BFD_RELOC_32_PCREL;
7236 break;
7237 case 64:
7238 code = BFD_RELOC_64_PCREL;
7239 break;
7240 default:
7241 goto fail;
7242 }
7243
7244 howto = bfd_reloc_type_lookup (abfd, code);
7245
7246 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7247 {
7248 if (howto->pcrel_offset)
7249 areloc->addend += areloc->address;
7250 else
7251 areloc->addend -= areloc->address; /* addend is unsigned!! */
7252 }
7253 }
7254 else
7255 {
7256 switch (areloc->howto->bitsize)
7257 {
7258 case 8:
7259 code = BFD_RELOC_8;
7260 break;
7261 case 14:
7262 code = BFD_RELOC_14;
7263 break;
7264 case 16:
7265 code = BFD_RELOC_16;
7266 break;
7267 case 26:
7268 code = BFD_RELOC_26;
7269 break;
7270 case 32:
7271 code = BFD_RELOC_32;
7272 break;
7273 case 64:
7274 code = BFD_RELOC_64;
7275 break;
7276 default:
7277 goto fail;
7278 }
7279
7280 howto = bfd_reloc_type_lookup (abfd, code);
7281 }
7282
7283 if (howto)
7284 areloc->howto = howto;
7285 else
7286 goto fail;
7287 }
7288
7289 return TRUE;
7290
7291 fail:
7292 (*_bfd_error_handler)
7293 (_("%B: unsupported relocation type %s"),
7294 abfd, areloc->howto->name);
7295 bfd_set_error (bfd_error_bad_value);
7296 return FALSE;
7297 }
7298
7299 bfd_boolean
7300 _bfd_elf_close_and_cleanup (bfd *abfd)
7301 {
7302 if (bfd_get_format (abfd) == bfd_object)
7303 {
7304 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7305 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7306 _bfd_dwarf2_cleanup_debug_info (abfd);
7307 }
7308
7309 return _bfd_generic_close_and_cleanup (abfd);
7310 }
7311
7312 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7313 in the relocation's offset. Thus we cannot allow any sort of sanity
7314 range-checking to interfere. There is nothing else to do in processing
7315 this reloc. */
7316
7317 bfd_reloc_status_type
7318 _bfd_elf_rel_vtable_reloc_fn
7319 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7320 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7321 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7322 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7323 {
7324 return bfd_reloc_ok;
7325 }
7326 \f
7327 /* Elf core file support. Much of this only works on native
7328 toolchains, since we rely on knowing the
7329 machine-dependent procfs structure in order to pick
7330 out details about the corefile. */
7331
7332 #ifdef HAVE_SYS_PROCFS_H
7333 # include <sys/procfs.h>
7334 #endif
7335
7336 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7337
7338 static int
7339 elfcore_make_pid (bfd *abfd)
7340 {
7341 return ((elf_tdata (abfd)->core_lwpid << 16)
7342 + (elf_tdata (abfd)->core_pid));
7343 }
7344
7345 /* If there isn't a section called NAME, make one, using
7346 data from SECT. Note, this function will generate a
7347 reference to NAME, so you shouldn't deallocate or
7348 overwrite it. */
7349
7350 static bfd_boolean
7351 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7352 {
7353 asection *sect2;
7354
7355 if (bfd_get_section_by_name (abfd, name) != NULL)
7356 return TRUE;
7357
7358 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7359 if (sect2 == NULL)
7360 return FALSE;
7361
7362 sect2->size = sect->size;
7363 sect2->filepos = sect->filepos;
7364 sect2->alignment_power = sect->alignment_power;
7365 return TRUE;
7366 }
7367
7368 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7369 actually creates up to two pseudosections:
7370 - For the single-threaded case, a section named NAME, unless
7371 such a section already exists.
7372 - For the multi-threaded case, a section named "NAME/PID", where
7373 PID is elfcore_make_pid (abfd).
7374 Both pseudosections have identical contents. */
7375 bfd_boolean
7376 _bfd_elfcore_make_pseudosection (bfd *abfd,
7377 char *name,
7378 size_t size,
7379 ufile_ptr filepos)
7380 {
7381 char buf[100];
7382 char *threaded_name;
7383 size_t len;
7384 asection *sect;
7385
7386 /* Build the section name. */
7387
7388 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7389 len = strlen (buf) + 1;
7390 threaded_name = bfd_alloc (abfd, len);
7391 if (threaded_name == NULL)
7392 return FALSE;
7393 memcpy (threaded_name, buf, len);
7394
7395 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7396 SEC_HAS_CONTENTS);
7397 if (sect == NULL)
7398 return FALSE;
7399 sect->size = size;
7400 sect->filepos = filepos;
7401 sect->alignment_power = 2;
7402
7403 return elfcore_maybe_make_sect (abfd, name, sect);
7404 }
7405
7406 /* prstatus_t exists on:
7407 solaris 2.5+
7408 linux 2.[01] + glibc
7409 unixware 4.2
7410 */
7411
7412 #if defined (HAVE_PRSTATUS_T)
7413
7414 static bfd_boolean
7415 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7416 {
7417 size_t size;
7418 int offset;
7419
7420 if (note->descsz == sizeof (prstatus_t))
7421 {
7422 prstatus_t prstat;
7423
7424 size = sizeof (prstat.pr_reg);
7425 offset = offsetof (prstatus_t, pr_reg);
7426 memcpy (&prstat, note->descdata, sizeof (prstat));
7427
7428 /* Do not overwrite the core signal if it
7429 has already been set by another thread. */
7430 if (elf_tdata (abfd)->core_signal == 0)
7431 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7432 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7433
7434 /* pr_who exists on:
7435 solaris 2.5+
7436 unixware 4.2
7437 pr_who doesn't exist on:
7438 linux 2.[01]
7439 */
7440 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7441 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7442 #endif
7443 }
7444 #if defined (HAVE_PRSTATUS32_T)
7445 else if (note->descsz == sizeof (prstatus32_t))
7446 {
7447 /* 64-bit host, 32-bit corefile */
7448 prstatus32_t prstat;
7449
7450 size = sizeof (prstat.pr_reg);
7451 offset = offsetof (prstatus32_t, pr_reg);
7452 memcpy (&prstat, note->descdata, sizeof (prstat));
7453
7454 /* Do not overwrite the core signal if it
7455 has already been set by another thread. */
7456 if (elf_tdata (abfd)->core_signal == 0)
7457 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7458 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7459
7460 /* pr_who exists on:
7461 solaris 2.5+
7462 unixware 4.2
7463 pr_who doesn't exist on:
7464 linux 2.[01]
7465 */
7466 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7467 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7468 #endif
7469 }
7470 #endif /* HAVE_PRSTATUS32_T */
7471 else
7472 {
7473 /* Fail - we don't know how to handle any other
7474 note size (ie. data object type). */
7475 return TRUE;
7476 }
7477
7478 /* Make a ".reg/999" section and a ".reg" section. */
7479 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7480 size, note->descpos + offset);
7481 }
7482 #endif /* defined (HAVE_PRSTATUS_T) */
7483
7484 /* Create a pseudosection containing the exact contents of NOTE. */
7485 static bfd_boolean
7486 elfcore_make_note_pseudosection (bfd *abfd,
7487 char *name,
7488 Elf_Internal_Note *note)
7489 {
7490 return _bfd_elfcore_make_pseudosection (abfd, name,
7491 note->descsz, note->descpos);
7492 }
7493
7494 /* There isn't a consistent prfpregset_t across platforms,
7495 but it doesn't matter, because we don't have to pick this
7496 data structure apart. */
7497
7498 static bfd_boolean
7499 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7500 {
7501 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7502 }
7503
7504 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7505 type of NT_PRXFPREG. Just include the whole note's contents
7506 literally. */
7507
7508 static bfd_boolean
7509 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7510 {
7511 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7512 }
7513
7514 static bfd_boolean
7515 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7516 {
7517 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7518 }
7519
7520
7521 #if defined (HAVE_PRPSINFO_T)
7522 typedef prpsinfo_t elfcore_psinfo_t;
7523 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7524 typedef prpsinfo32_t elfcore_psinfo32_t;
7525 #endif
7526 #endif
7527
7528 #if defined (HAVE_PSINFO_T)
7529 typedef psinfo_t elfcore_psinfo_t;
7530 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7531 typedef psinfo32_t elfcore_psinfo32_t;
7532 #endif
7533 #endif
7534
7535 /* return a malloc'ed copy of a string at START which is at
7536 most MAX bytes long, possibly without a terminating '\0'.
7537 the copy will always have a terminating '\0'. */
7538
7539 char *
7540 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7541 {
7542 char *dups;
7543 char *end = memchr (start, '\0', max);
7544 size_t len;
7545
7546 if (end == NULL)
7547 len = max;
7548 else
7549 len = end - start;
7550
7551 dups = bfd_alloc (abfd, len + 1);
7552 if (dups == NULL)
7553 return NULL;
7554
7555 memcpy (dups, start, len);
7556 dups[len] = '\0';
7557
7558 return dups;
7559 }
7560
7561 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7562 static bfd_boolean
7563 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7564 {
7565 if (note->descsz == sizeof (elfcore_psinfo_t))
7566 {
7567 elfcore_psinfo_t psinfo;
7568
7569 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7570
7571 elf_tdata (abfd)->core_program
7572 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7573 sizeof (psinfo.pr_fname));
7574
7575 elf_tdata (abfd)->core_command
7576 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7577 sizeof (psinfo.pr_psargs));
7578 }
7579 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7580 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7581 {
7582 /* 64-bit host, 32-bit corefile */
7583 elfcore_psinfo32_t psinfo;
7584
7585 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7586
7587 elf_tdata (abfd)->core_program
7588 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7589 sizeof (psinfo.pr_fname));
7590
7591 elf_tdata (abfd)->core_command
7592 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7593 sizeof (psinfo.pr_psargs));
7594 }
7595 #endif
7596
7597 else
7598 {
7599 /* Fail - we don't know how to handle any other
7600 note size (ie. data object type). */
7601 return TRUE;
7602 }
7603
7604 /* Note that for some reason, a spurious space is tacked
7605 onto the end of the args in some (at least one anyway)
7606 implementations, so strip it off if it exists. */
7607
7608 {
7609 char *command = elf_tdata (abfd)->core_command;
7610 int n = strlen (command);
7611
7612 if (0 < n && command[n - 1] == ' ')
7613 command[n - 1] = '\0';
7614 }
7615
7616 return TRUE;
7617 }
7618 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7619
7620 #if defined (HAVE_PSTATUS_T)
7621 static bfd_boolean
7622 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7623 {
7624 if (note->descsz == sizeof (pstatus_t)
7625 #if defined (HAVE_PXSTATUS_T)
7626 || note->descsz == sizeof (pxstatus_t)
7627 #endif
7628 )
7629 {
7630 pstatus_t pstat;
7631
7632 memcpy (&pstat, note->descdata, sizeof (pstat));
7633
7634 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7635 }
7636 #if defined (HAVE_PSTATUS32_T)
7637 else if (note->descsz == sizeof (pstatus32_t))
7638 {
7639 /* 64-bit host, 32-bit corefile */
7640 pstatus32_t pstat;
7641
7642 memcpy (&pstat, note->descdata, sizeof (pstat));
7643
7644 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7645 }
7646 #endif
7647 /* Could grab some more details from the "representative"
7648 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7649 NT_LWPSTATUS note, presumably. */
7650
7651 return TRUE;
7652 }
7653 #endif /* defined (HAVE_PSTATUS_T) */
7654
7655 #if defined (HAVE_LWPSTATUS_T)
7656 static bfd_boolean
7657 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7658 {
7659 lwpstatus_t lwpstat;
7660 char buf[100];
7661 char *name;
7662 size_t len;
7663 asection *sect;
7664
7665 if (note->descsz != sizeof (lwpstat)
7666 #if defined (HAVE_LWPXSTATUS_T)
7667 && note->descsz != sizeof (lwpxstatus_t)
7668 #endif
7669 )
7670 return TRUE;
7671
7672 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7673
7674 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7675 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7676
7677 /* Make a ".reg/999" section. */
7678
7679 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7680 len = strlen (buf) + 1;
7681 name = bfd_alloc (abfd, len);
7682 if (name == NULL)
7683 return FALSE;
7684 memcpy (name, buf, len);
7685
7686 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7687 if (sect == NULL)
7688 return FALSE;
7689
7690 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7691 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7692 sect->filepos = note->descpos
7693 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7694 #endif
7695
7696 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7697 sect->size = sizeof (lwpstat.pr_reg);
7698 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7699 #endif
7700
7701 sect->alignment_power = 2;
7702
7703 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7704 return FALSE;
7705
7706 /* Make a ".reg2/999" section */
7707
7708 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7709 len = strlen (buf) + 1;
7710 name = bfd_alloc (abfd, len);
7711 if (name == NULL)
7712 return FALSE;
7713 memcpy (name, buf, len);
7714
7715 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7716 if (sect == NULL)
7717 return FALSE;
7718
7719 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7720 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7721 sect->filepos = note->descpos
7722 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7723 #endif
7724
7725 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7726 sect->size = sizeof (lwpstat.pr_fpreg);
7727 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7728 #endif
7729
7730 sect->alignment_power = 2;
7731
7732 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7733 }
7734 #endif /* defined (HAVE_LWPSTATUS_T) */
7735
7736 static bfd_boolean
7737 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7738 {
7739 char buf[30];
7740 char *name;
7741 size_t len;
7742 asection *sect;
7743 int type;
7744 int is_active_thread;
7745 bfd_vma base_addr;
7746
7747 if (note->descsz < 728)
7748 return TRUE;
7749
7750 if (! CONST_STRNEQ (note->namedata, "win32"))
7751 return TRUE;
7752
7753 type = bfd_get_32 (abfd, note->descdata);
7754
7755 switch (type)
7756 {
7757 case 1 /* NOTE_INFO_PROCESS */:
7758 /* FIXME: need to add ->core_command. */
7759 /* process_info.pid */
7760 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7761 /* process_info.signal */
7762 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7763 break;
7764
7765 case 2 /* NOTE_INFO_THREAD */:
7766 /* Make a ".reg/999" section. */
7767 /* thread_info.tid */
7768 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7769
7770 len = strlen (buf) + 1;
7771 name = bfd_alloc (abfd, len);
7772 if (name == NULL)
7773 return FALSE;
7774
7775 memcpy (name, buf, len);
7776
7777 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7778 if (sect == NULL)
7779 return FALSE;
7780
7781 /* sizeof (thread_info.thread_context) */
7782 sect->size = 716;
7783 /* offsetof (thread_info.thread_context) */
7784 sect->filepos = note->descpos + 12;
7785 sect->alignment_power = 2;
7786
7787 /* thread_info.is_active_thread */
7788 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
7789
7790 if (is_active_thread)
7791 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7792 return FALSE;
7793 break;
7794
7795 case 3 /* NOTE_INFO_MODULE */:
7796 /* Make a ".module/xxxxxxxx" section. */
7797 /* module_info.base_address */
7798 base_addr = bfd_get_32 (abfd, note->descdata + 4);
7799 sprintf (buf, ".module/%08lx", (long) base_addr);
7800
7801 len = strlen (buf) + 1;
7802 name = bfd_alloc (abfd, len);
7803 if (name == NULL)
7804 return FALSE;
7805
7806 memcpy (name, buf, len);
7807
7808 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7809
7810 if (sect == NULL)
7811 return FALSE;
7812
7813 sect->size = note->descsz;
7814 sect->filepos = note->descpos;
7815 sect->alignment_power = 2;
7816 break;
7817
7818 default:
7819 return TRUE;
7820 }
7821
7822 return TRUE;
7823 }
7824
7825 static bfd_boolean
7826 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7827 {
7828 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7829
7830 switch (note->type)
7831 {
7832 default:
7833 return TRUE;
7834
7835 case NT_PRSTATUS:
7836 if (bed->elf_backend_grok_prstatus)
7837 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7838 return TRUE;
7839 #if defined (HAVE_PRSTATUS_T)
7840 return elfcore_grok_prstatus (abfd, note);
7841 #else
7842 return TRUE;
7843 #endif
7844
7845 #if defined (HAVE_PSTATUS_T)
7846 case NT_PSTATUS:
7847 return elfcore_grok_pstatus (abfd, note);
7848 #endif
7849
7850 #if defined (HAVE_LWPSTATUS_T)
7851 case NT_LWPSTATUS:
7852 return elfcore_grok_lwpstatus (abfd, note);
7853 #endif
7854
7855 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7856 return elfcore_grok_prfpreg (abfd, note);
7857
7858 case NT_WIN32PSTATUS:
7859 return elfcore_grok_win32pstatus (abfd, note);
7860
7861 case NT_PRXFPREG: /* Linux SSE extension */
7862 if (note->namesz == 6
7863 && strcmp (note->namedata, "LINUX") == 0)
7864 return elfcore_grok_prxfpreg (abfd, note);
7865 else
7866 return TRUE;
7867
7868 case NT_PPC_VMX:
7869 if (note->namesz == 6
7870 && strcmp (note->namedata, "LINUX") == 0)
7871 return elfcore_grok_ppc_vmx (abfd, note);
7872 else
7873 return TRUE;
7874
7875 case NT_PRPSINFO:
7876 case NT_PSINFO:
7877 if (bed->elf_backend_grok_psinfo)
7878 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7879 return TRUE;
7880 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7881 return elfcore_grok_psinfo (abfd, note);
7882 #else
7883 return TRUE;
7884 #endif
7885
7886 case NT_AUXV:
7887 {
7888 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7889 SEC_HAS_CONTENTS);
7890
7891 if (sect == NULL)
7892 return FALSE;
7893 sect->size = note->descsz;
7894 sect->filepos = note->descpos;
7895 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7896
7897 return TRUE;
7898 }
7899 }
7900 }
7901
7902 static bfd_boolean
7903 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
7904 {
7905 elf_tdata (abfd)->build_id_size = note->descsz;
7906 elf_tdata (abfd)->build_id = bfd_alloc (abfd, note->descsz);
7907 if (elf_tdata (abfd)->build_id == NULL)
7908 return FALSE;
7909
7910 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
7911
7912 return TRUE;
7913 }
7914
7915 static bfd_boolean
7916 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
7917 {
7918 switch (note->type)
7919 {
7920 default:
7921 return TRUE;
7922
7923 case NT_GNU_BUILD_ID:
7924 return elfobj_grok_gnu_build_id (abfd, note);
7925 }
7926 }
7927
7928 static bfd_boolean
7929 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7930 {
7931 char *cp;
7932
7933 cp = strchr (note->namedata, '@');
7934 if (cp != NULL)
7935 {
7936 *lwpidp = atoi(cp + 1);
7937 return TRUE;
7938 }
7939 return FALSE;
7940 }
7941
7942 static bfd_boolean
7943 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7944 {
7945 /* Signal number at offset 0x08. */
7946 elf_tdata (abfd)->core_signal
7947 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7948
7949 /* Process ID at offset 0x50. */
7950 elf_tdata (abfd)->core_pid
7951 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7952
7953 /* Command name at 0x7c (max 32 bytes, including nul). */
7954 elf_tdata (abfd)->core_command
7955 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7956
7957 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7958 note);
7959 }
7960
7961 static bfd_boolean
7962 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7963 {
7964 int lwp;
7965
7966 if (elfcore_netbsd_get_lwpid (note, &lwp))
7967 elf_tdata (abfd)->core_lwpid = lwp;
7968
7969 if (note->type == NT_NETBSDCORE_PROCINFO)
7970 {
7971 /* NetBSD-specific core "procinfo". Note that we expect to
7972 find this note before any of the others, which is fine,
7973 since the kernel writes this note out first when it
7974 creates a core file. */
7975
7976 return elfcore_grok_netbsd_procinfo (abfd, note);
7977 }
7978
7979 /* As of Jan 2002 there are no other machine-independent notes
7980 defined for NetBSD core files. If the note type is less
7981 than the start of the machine-dependent note types, we don't
7982 understand it. */
7983
7984 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7985 return TRUE;
7986
7987
7988 switch (bfd_get_arch (abfd))
7989 {
7990 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7991 PT_GETFPREGS == mach+2. */
7992
7993 case bfd_arch_alpha:
7994 case bfd_arch_sparc:
7995 switch (note->type)
7996 {
7997 case NT_NETBSDCORE_FIRSTMACH+0:
7998 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7999
8000 case NT_NETBSDCORE_FIRSTMACH+2:
8001 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8002
8003 default:
8004 return TRUE;
8005 }
8006
8007 /* On all other arch's, PT_GETREGS == mach+1 and
8008 PT_GETFPREGS == mach+3. */
8009
8010 default:
8011 switch (note->type)
8012 {
8013 case NT_NETBSDCORE_FIRSTMACH+1:
8014 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8015
8016 case NT_NETBSDCORE_FIRSTMACH+3:
8017 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8018
8019 default:
8020 return TRUE;
8021 }
8022 }
8023 /* NOTREACHED */
8024 }
8025
8026 static bfd_boolean
8027 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8028 {
8029 void *ddata = note->descdata;
8030 char buf[100];
8031 char *name;
8032 asection *sect;
8033 short sig;
8034 unsigned flags;
8035
8036 /* nto_procfs_status 'pid' field is at offset 0. */
8037 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8038
8039 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8040 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8041
8042 /* nto_procfs_status 'flags' field is at offset 8. */
8043 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8044
8045 /* nto_procfs_status 'what' field is at offset 14. */
8046 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8047 {
8048 elf_tdata (abfd)->core_signal = sig;
8049 elf_tdata (abfd)->core_lwpid = *tid;
8050 }
8051
8052 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8053 do not come from signals so we make sure we set the current
8054 thread just in case. */
8055 if (flags & 0x00000080)
8056 elf_tdata (abfd)->core_lwpid = *tid;
8057
8058 /* Make a ".qnx_core_status/%d" section. */
8059 sprintf (buf, ".qnx_core_status/%ld", *tid);
8060
8061 name = bfd_alloc (abfd, strlen (buf) + 1);
8062 if (name == NULL)
8063 return FALSE;
8064 strcpy (name, buf);
8065
8066 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8067 if (sect == NULL)
8068 return FALSE;
8069
8070 sect->size = note->descsz;
8071 sect->filepos = note->descpos;
8072 sect->alignment_power = 2;
8073
8074 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8075 }
8076
8077 static bfd_boolean
8078 elfcore_grok_nto_regs (bfd *abfd,
8079 Elf_Internal_Note *note,
8080 long tid,
8081 char *base)
8082 {
8083 char buf[100];
8084 char *name;
8085 asection *sect;
8086
8087 /* Make a "(base)/%d" section. */
8088 sprintf (buf, "%s/%ld", base, tid);
8089
8090 name = bfd_alloc (abfd, strlen (buf) + 1);
8091 if (name == NULL)
8092 return FALSE;
8093 strcpy (name, buf);
8094
8095 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8096 if (sect == NULL)
8097 return FALSE;
8098
8099 sect->size = note->descsz;
8100 sect->filepos = note->descpos;
8101 sect->alignment_power = 2;
8102
8103 /* This is the current thread. */
8104 if (elf_tdata (abfd)->core_lwpid == tid)
8105 return elfcore_maybe_make_sect (abfd, base, sect);
8106
8107 return TRUE;
8108 }
8109
8110 #define BFD_QNT_CORE_INFO 7
8111 #define BFD_QNT_CORE_STATUS 8
8112 #define BFD_QNT_CORE_GREG 9
8113 #define BFD_QNT_CORE_FPREG 10
8114
8115 static bfd_boolean
8116 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8117 {
8118 /* Every GREG section has a STATUS section before it. Store the
8119 tid from the previous call to pass down to the next gregs
8120 function. */
8121 static long tid = 1;
8122
8123 switch (note->type)
8124 {
8125 case BFD_QNT_CORE_INFO:
8126 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8127 case BFD_QNT_CORE_STATUS:
8128 return elfcore_grok_nto_status (abfd, note, &tid);
8129 case BFD_QNT_CORE_GREG:
8130 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8131 case BFD_QNT_CORE_FPREG:
8132 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8133 default:
8134 return TRUE;
8135 }
8136 }
8137
8138 static bfd_boolean
8139 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8140 {
8141 char *name;
8142 asection *sect;
8143 size_t len;
8144
8145 /* Use note name as section name. */
8146 len = note->namesz;
8147 name = bfd_alloc (abfd, len);
8148 if (name == NULL)
8149 return FALSE;
8150 memcpy (name, note->namedata, len);
8151 name[len - 1] = '\0';
8152
8153 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8154 if (sect == NULL)
8155 return FALSE;
8156
8157 sect->size = note->descsz;
8158 sect->filepos = note->descpos;
8159 sect->alignment_power = 1;
8160
8161 return TRUE;
8162 }
8163
8164 /* Function: elfcore_write_note
8165
8166 Inputs:
8167 buffer to hold note, and current size of buffer
8168 name of note
8169 type of note
8170 data for note
8171 size of data for note
8172
8173 Writes note to end of buffer. ELF64 notes are written exactly as
8174 for ELF32, despite the current (as of 2006) ELF gabi specifying
8175 that they ought to have 8-byte namesz and descsz field, and have
8176 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8177
8178 Return:
8179 Pointer to realloc'd buffer, *BUFSIZ updated. */
8180
8181 char *
8182 elfcore_write_note (bfd *abfd,
8183 char *buf,
8184 int *bufsiz,
8185 const char *name,
8186 int type,
8187 const void *input,
8188 int size)
8189 {
8190 Elf_External_Note *xnp;
8191 size_t namesz;
8192 size_t newspace;
8193 char *dest;
8194
8195 namesz = 0;
8196 if (name != NULL)
8197 namesz = strlen (name) + 1;
8198
8199 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8200
8201 buf = realloc (buf, *bufsiz + newspace);
8202 if (buf == NULL)
8203 return buf;
8204 dest = buf + *bufsiz;
8205 *bufsiz += newspace;
8206 xnp = (Elf_External_Note *) dest;
8207 H_PUT_32 (abfd, namesz, xnp->namesz);
8208 H_PUT_32 (abfd, size, xnp->descsz);
8209 H_PUT_32 (abfd, type, xnp->type);
8210 dest = xnp->name;
8211 if (name != NULL)
8212 {
8213 memcpy (dest, name, namesz);
8214 dest += namesz;
8215 while (namesz & 3)
8216 {
8217 *dest++ = '\0';
8218 ++namesz;
8219 }
8220 }
8221 memcpy (dest, input, size);
8222 dest += size;
8223 while (size & 3)
8224 {
8225 *dest++ = '\0';
8226 ++size;
8227 }
8228 return buf;
8229 }
8230
8231 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8232 char *
8233 elfcore_write_prpsinfo (bfd *abfd,
8234 char *buf,
8235 int *bufsiz,
8236 const char *fname,
8237 const char *psargs)
8238 {
8239 const char *note_name = "CORE";
8240 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8241
8242 if (bed->elf_backend_write_core_note != NULL)
8243 {
8244 char *ret;
8245 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8246 NT_PRPSINFO, fname, psargs);
8247 if (ret != NULL)
8248 return ret;
8249 }
8250
8251 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8252 if (bed->s->elfclass == ELFCLASS32)
8253 {
8254 #if defined (HAVE_PSINFO32_T)
8255 psinfo32_t data;
8256 int note_type = NT_PSINFO;
8257 #else
8258 prpsinfo32_t data;
8259 int note_type = NT_PRPSINFO;
8260 #endif
8261
8262 memset (&data, 0, sizeof (data));
8263 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8264 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8265 return elfcore_write_note (abfd, buf, bufsiz,
8266 note_name, note_type, &data, sizeof (data));
8267 }
8268 else
8269 #endif
8270 {
8271 #if defined (HAVE_PSINFO_T)
8272 psinfo_t data;
8273 int note_type = NT_PSINFO;
8274 #else
8275 prpsinfo_t data;
8276 int note_type = NT_PRPSINFO;
8277 #endif
8278
8279 memset (&data, 0, sizeof (data));
8280 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8281 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8282 return elfcore_write_note (abfd, buf, bufsiz,
8283 note_name, note_type, &data, sizeof (data));
8284 }
8285 }
8286 #endif /* PSINFO_T or PRPSINFO_T */
8287
8288 #if defined (HAVE_PRSTATUS_T)
8289 char *
8290 elfcore_write_prstatus (bfd *abfd,
8291 char *buf,
8292 int *bufsiz,
8293 long pid,
8294 int cursig,
8295 const void *gregs)
8296 {
8297 const char *note_name = "CORE";
8298 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8299
8300 if (bed->elf_backend_write_core_note != NULL)
8301 {
8302 char *ret;
8303 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8304 NT_PRSTATUS,
8305 pid, cursig, gregs);
8306 if (ret != NULL)
8307 return ret;
8308 }
8309
8310 #if defined (HAVE_PRSTATUS32_T)
8311 if (bed->s->elfclass == ELFCLASS32)
8312 {
8313 prstatus32_t prstat;
8314
8315 memset (&prstat, 0, sizeof (prstat));
8316 prstat.pr_pid = pid;
8317 prstat.pr_cursig = cursig;
8318 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8319 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8320 NT_PRSTATUS, &prstat, sizeof (prstat));
8321 }
8322 else
8323 #endif
8324 {
8325 prstatus_t prstat;
8326
8327 memset (&prstat, 0, sizeof (prstat));
8328 prstat.pr_pid = pid;
8329 prstat.pr_cursig = cursig;
8330 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8331 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8332 NT_PRSTATUS, &prstat, sizeof (prstat));
8333 }
8334 }
8335 #endif /* HAVE_PRSTATUS_T */
8336
8337 #if defined (HAVE_LWPSTATUS_T)
8338 char *
8339 elfcore_write_lwpstatus (bfd *abfd,
8340 char *buf,
8341 int *bufsiz,
8342 long pid,
8343 int cursig,
8344 const void *gregs)
8345 {
8346 lwpstatus_t lwpstat;
8347 const char *note_name = "CORE";
8348
8349 memset (&lwpstat, 0, sizeof (lwpstat));
8350 lwpstat.pr_lwpid = pid >> 16;
8351 lwpstat.pr_cursig = cursig;
8352 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8353 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8354 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8355 #if !defined(gregs)
8356 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8357 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8358 #else
8359 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8360 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8361 #endif
8362 #endif
8363 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8364 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8365 }
8366 #endif /* HAVE_LWPSTATUS_T */
8367
8368 #if defined (HAVE_PSTATUS_T)
8369 char *
8370 elfcore_write_pstatus (bfd *abfd,
8371 char *buf,
8372 int *bufsiz,
8373 long pid,
8374 int cursig ATTRIBUTE_UNUSED,
8375 const void *gregs ATTRIBUTE_UNUSED)
8376 {
8377 const char *note_name = "CORE";
8378 #if defined (HAVE_PSTATUS32_T)
8379 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8380
8381 if (bed->s->elfclass == ELFCLASS32)
8382 {
8383 pstatus32_t pstat;
8384
8385 memset (&pstat, 0, sizeof (pstat));
8386 pstat.pr_pid = pid & 0xffff;
8387 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8388 NT_PSTATUS, &pstat, sizeof (pstat));
8389 return buf;
8390 }
8391 else
8392 #endif
8393 {
8394 pstatus_t pstat;
8395
8396 memset (&pstat, 0, sizeof (pstat));
8397 pstat.pr_pid = pid & 0xffff;
8398 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8399 NT_PSTATUS, &pstat, sizeof (pstat));
8400 return buf;
8401 }
8402 }
8403 #endif /* HAVE_PSTATUS_T */
8404
8405 char *
8406 elfcore_write_prfpreg (bfd *abfd,
8407 char *buf,
8408 int *bufsiz,
8409 const void *fpregs,
8410 int size)
8411 {
8412 const char *note_name = "CORE";
8413 return elfcore_write_note (abfd, buf, bufsiz,
8414 note_name, NT_FPREGSET, fpregs, size);
8415 }
8416
8417 char *
8418 elfcore_write_prxfpreg (bfd *abfd,
8419 char *buf,
8420 int *bufsiz,
8421 const void *xfpregs,
8422 int size)
8423 {
8424 char *note_name = "LINUX";
8425 return elfcore_write_note (abfd, buf, bufsiz,
8426 note_name, NT_PRXFPREG, xfpregs, size);
8427 }
8428
8429 char *
8430 elfcore_write_ppc_vmx (bfd *abfd,
8431 char *buf,
8432 int *bufsiz,
8433 const void *ppc_vmx,
8434 int size)
8435 {
8436 char *note_name = "LINUX";
8437 return elfcore_write_note (abfd, buf, bufsiz,
8438 note_name, NT_PPC_VMX, ppc_vmx, size);
8439 }
8440
8441 static bfd_boolean
8442 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8443 {
8444 char *p;
8445
8446 p = buf;
8447 while (p < buf + size)
8448 {
8449 /* FIXME: bad alignment assumption. */
8450 Elf_External_Note *xnp = (Elf_External_Note *) p;
8451 Elf_Internal_Note in;
8452
8453 in.type = H_GET_32 (abfd, xnp->type);
8454
8455 in.namesz = H_GET_32 (abfd, xnp->namesz);
8456 in.namedata = xnp->name;
8457
8458 in.descsz = H_GET_32 (abfd, xnp->descsz);
8459 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8460 in.descpos = offset + (in.descdata - buf);
8461
8462 switch (bfd_get_format (abfd))
8463 {
8464 default:
8465 return TRUE;
8466
8467 case bfd_core:
8468 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8469 {
8470 if (! elfcore_grok_netbsd_note (abfd, &in))
8471 return FALSE;
8472 }
8473 else if (CONST_STRNEQ (in.namedata, "QNX"))
8474 {
8475 if (! elfcore_grok_nto_note (abfd, &in))
8476 return FALSE;
8477 }
8478 else if (CONST_STRNEQ (in.namedata, "SPU/"))
8479 {
8480 if (! elfcore_grok_spu_note (abfd, &in))
8481 return FALSE;
8482 }
8483 else
8484 {
8485 if (! elfcore_grok_note (abfd, &in))
8486 return FALSE;
8487 }
8488 break;
8489
8490 case bfd_object:
8491 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8492 {
8493 if (! elfobj_grok_gnu_note (abfd, &in))
8494 return FALSE;
8495 }
8496 break;
8497 }
8498
8499 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8500 }
8501
8502 return TRUE;
8503 }
8504
8505 static bfd_boolean
8506 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8507 {
8508 char *buf;
8509
8510 if (size <= 0)
8511 return TRUE;
8512
8513 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8514 return FALSE;
8515
8516 buf = bfd_malloc (size);
8517 if (buf == NULL)
8518 return FALSE;
8519
8520 if (bfd_bread (buf, size, abfd) != size
8521 || !elf_parse_notes (abfd, buf, size, offset))
8522 {
8523 free (buf);
8524 return FALSE;
8525 }
8526
8527 free (buf);
8528 return TRUE;
8529 }
8530 \f
8531 /* Providing external access to the ELF program header table. */
8532
8533 /* Return an upper bound on the number of bytes required to store a
8534 copy of ABFD's program header table entries. Return -1 if an error
8535 occurs; bfd_get_error will return an appropriate code. */
8536
8537 long
8538 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8539 {
8540 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8541 {
8542 bfd_set_error (bfd_error_wrong_format);
8543 return -1;
8544 }
8545
8546 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8547 }
8548
8549 /* Copy ABFD's program header table entries to *PHDRS. The entries
8550 will be stored as an array of Elf_Internal_Phdr structures, as
8551 defined in include/elf/internal.h. To find out how large the
8552 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8553
8554 Return the number of program header table entries read, or -1 if an
8555 error occurs; bfd_get_error will return an appropriate code. */
8556
8557 int
8558 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8559 {
8560 int num_phdrs;
8561
8562 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8563 {
8564 bfd_set_error (bfd_error_wrong_format);
8565 return -1;
8566 }
8567
8568 num_phdrs = elf_elfheader (abfd)->e_phnum;
8569 memcpy (phdrs, elf_tdata (abfd)->phdr,
8570 num_phdrs * sizeof (Elf_Internal_Phdr));
8571
8572 return num_phdrs;
8573 }
8574
8575 enum elf_reloc_type_class
8576 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8577 {
8578 return reloc_class_normal;
8579 }
8580
8581 /* For RELA architectures, return the relocation value for a
8582 relocation against a local symbol. */
8583
8584 bfd_vma
8585 _bfd_elf_rela_local_sym (bfd *abfd,
8586 Elf_Internal_Sym *sym,
8587 asection **psec,
8588 Elf_Internal_Rela *rel)
8589 {
8590 asection *sec = *psec;
8591 bfd_vma relocation;
8592
8593 relocation = (sec->output_section->vma
8594 + sec->output_offset
8595 + sym->st_value);
8596 if ((sec->flags & SEC_MERGE)
8597 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8598 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8599 {
8600 rel->r_addend =
8601 _bfd_merged_section_offset (abfd, psec,
8602 elf_section_data (sec)->sec_info,
8603 sym->st_value + rel->r_addend);
8604 if (sec != *psec)
8605 {
8606 /* If we have changed the section, and our original section is
8607 marked with SEC_EXCLUDE, it means that the original
8608 SEC_MERGE section has been completely subsumed in some
8609 other SEC_MERGE section. In this case, we need to leave
8610 some info around for --emit-relocs. */
8611 if ((sec->flags & SEC_EXCLUDE) != 0)
8612 sec->kept_section = *psec;
8613 sec = *psec;
8614 }
8615 rel->r_addend -= relocation;
8616 rel->r_addend += sec->output_section->vma + sec->output_offset;
8617 }
8618 return relocation;
8619 }
8620
8621 bfd_vma
8622 _bfd_elf_rel_local_sym (bfd *abfd,
8623 Elf_Internal_Sym *sym,
8624 asection **psec,
8625 bfd_vma addend)
8626 {
8627 asection *sec = *psec;
8628
8629 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8630 return sym->st_value + addend;
8631
8632 return _bfd_merged_section_offset (abfd, psec,
8633 elf_section_data (sec)->sec_info,
8634 sym->st_value + addend);
8635 }
8636
8637 bfd_vma
8638 _bfd_elf_section_offset (bfd *abfd,
8639 struct bfd_link_info *info,
8640 asection *sec,
8641 bfd_vma offset)
8642 {
8643 switch (sec->sec_info_type)
8644 {
8645 case ELF_INFO_TYPE_STABS:
8646 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8647 offset);
8648 case ELF_INFO_TYPE_EH_FRAME:
8649 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8650 default:
8651 return offset;
8652 }
8653 }
8654 \f
8655 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8656 reconstruct an ELF file by reading the segments out of remote memory
8657 based on the ELF file header at EHDR_VMA and the ELF program headers it
8658 points to. If not null, *LOADBASEP is filled in with the difference
8659 between the VMAs from which the segments were read, and the VMAs the
8660 file headers (and hence BFD's idea of each section's VMA) put them at.
8661
8662 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8663 remote memory at target address VMA into the local buffer at MYADDR; it
8664 should return zero on success or an `errno' code on failure. TEMPL must
8665 be a BFD for an ELF target with the word size and byte order found in
8666 the remote memory. */
8667
8668 bfd *
8669 bfd_elf_bfd_from_remote_memory
8670 (bfd *templ,
8671 bfd_vma ehdr_vma,
8672 bfd_vma *loadbasep,
8673 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8674 {
8675 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8676 (templ, ehdr_vma, loadbasep, target_read_memory);
8677 }
8678 \f
8679 long
8680 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8681 long symcount ATTRIBUTE_UNUSED,
8682 asymbol **syms ATTRIBUTE_UNUSED,
8683 long dynsymcount,
8684 asymbol **dynsyms,
8685 asymbol **ret)
8686 {
8687 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8688 asection *relplt;
8689 asymbol *s;
8690 const char *relplt_name;
8691 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8692 arelent *p;
8693 long count, i, n;
8694 size_t size;
8695 Elf_Internal_Shdr *hdr;
8696 char *names;
8697 asection *plt;
8698
8699 *ret = NULL;
8700
8701 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8702 return 0;
8703
8704 if (dynsymcount <= 0)
8705 return 0;
8706
8707 if (!bed->plt_sym_val)
8708 return 0;
8709
8710 relplt_name = bed->relplt_name;
8711 if (relplt_name == NULL)
8712 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8713 relplt = bfd_get_section_by_name (abfd, relplt_name);
8714 if (relplt == NULL)
8715 return 0;
8716
8717 hdr = &elf_section_data (relplt)->this_hdr;
8718 if (hdr->sh_link != elf_dynsymtab (abfd)
8719 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8720 return 0;
8721
8722 plt = bfd_get_section_by_name (abfd, ".plt");
8723 if (plt == NULL)
8724 return 0;
8725
8726 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8727 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8728 return -1;
8729
8730 count = relplt->size / hdr->sh_entsize;
8731 size = count * sizeof (asymbol);
8732 p = relplt->relocation;
8733 for (i = 0; i < count; i++, p++)
8734 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8735
8736 s = *ret = bfd_malloc (size);
8737 if (s == NULL)
8738 return -1;
8739
8740 names = (char *) (s + count);
8741 p = relplt->relocation;
8742 n = 0;
8743 for (i = 0; i < count; i++, p++)
8744 {
8745 size_t len;
8746 bfd_vma addr;
8747
8748 addr = bed->plt_sym_val (i, plt, p);
8749 if (addr == (bfd_vma) -1)
8750 continue;
8751
8752 *s = **p->sym_ptr_ptr;
8753 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8754 we are defining a symbol, ensure one of them is set. */
8755 if ((s->flags & BSF_LOCAL) == 0)
8756 s->flags |= BSF_GLOBAL;
8757 s->section = plt;
8758 s->value = addr - plt->vma;
8759 s->name = names;
8760 s->udata.p = NULL;
8761 len = strlen ((*p->sym_ptr_ptr)->name);
8762 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8763 names += len;
8764 memcpy (names, "@plt", sizeof ("@plt"));
8765 names += sizeof ("@plt");
8766 ++s, ++n;
8767 }
8768
8769 return n;
8770 }
8771
8772 /* It is only used by x86-64 so far. */
8773 asection _bfd_elf_large_com_section
8774 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8775 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8776
8777 void
8778 _bfd_elf_set_osabi (bfd * abfd,
8779 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
8780 {
8781 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
8782
8783 i_ehdrp = elf_elfheader (abfd);
8784
8785 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
8786 }
8787
8788
8789 /* Return TRUE for ELF symbol types that represent functions.
8790 This is the default version of this function, which is sufficient for
8791 most targets. It returns true if TYPE is STT_FUNC. */
8792
8793 bfd_boolean
8794 _bfd_elf_is_function_type (unsigned int type)
8795 {
8796 return (type == STT_FUNC);
8797 }
This page took 0.347703 seconds and 4 git commands to generate.