daily update
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
211 {
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
219
220 return TRUE;
221 }
222
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
225 {
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
228 }
229
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
232 {
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
237
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
241
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
244 {
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
248
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
256 {
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
260 }
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
264 }
265 return (char *) shstrtab;
266 }
267
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
272 {
273 Elf_Internal_Shdr *hdr;
274
275 if (strindex == 0)
276 return "";
277
278 hdr = elf_elfsections (abfd)[shindex];
279
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
283
284 if (strindex >= hdr->sh_size)
285 {
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
294 }
295
296 return ((char *) hdr->contents) + strindex;
297 }
298
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
304
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
313 {
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
325
326 if (symcount == 0)
327 return intsym_buf;
328
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
333
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
342 {
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
345 }
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
349 {
350 intsym_buf = NULL;
351 goto out;
352 }
353
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
357 {
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
361 {
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
365 }
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
369 {
370 intsym_buf = NULL;
371 goto out;
372 }
373 }
374
375 if (intsym_buf == NULL)
376 {
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
380 }
381
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
388
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
394
395 return intsym_buf;
396 }
397
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
404 {
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
408
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
423
424 return name;
425 }
426
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
430
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
435
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
438
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
441 {
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
446
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
453
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
459
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
461 }
462
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
464
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
467 {
468 unsigned int num_group = elf_tdata (abfd)->num_group;
469
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
473 {
474 unsigned int i, shnum;
475
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
481 {
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
485 }
486
487 if (num_group == 0)
488 {
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
491 }
492 else
493 {
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
497
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
503
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
506 {
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
509 {
510 unsigned char *src;
511 Elf_Internal_Group *dest;
512
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
516
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
527
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
535 {
536 unsigned int idx;
537
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
542 {
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
548 }
549 if (idx >= shnum)
550 {
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
554 }
555 dest->shdr = elf_elfsections (abfd)[idx];
556 }
557 }
558 }
559 }
560 }
561
562 if (num_group != (unsigned) -1)
563 {
564 unsigned int i;
565
566 for (i = 0; i < num_group; i++)
567 {
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
571
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
576 {
577 asection *s = NULL;
578
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
589 {
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
595 }
596 else
597 {
598 const char *gname;
599
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
604
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
607 }
608
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
613
614 i = num_group - 1;
615 break;
616 }
617 }
618 }
619
620 if (elf_group_name (newsect) == NULL)
621 {
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
624 }
625 return TRUE;
626 }
627
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
630 {
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
635
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
638 {
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
641 {
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
647 {
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
654 }
655 else
656 {
657 asection *link;
658
659 this_hdr = elf_elfsections (abfd)[elfsec];
660
661 /* PR 1991, 2008:
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link = this_hdr->bfd_section;
665 if (link == NULL)
666 {
667 (*_bfd_error_handler)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s->owner, s, elfsec);
670 result = FALSE;
671 }
672
673 elf_linked_to_section (s) = link;
674 }
675 }
676 }
677
678 /* Process section groups. */
679 if (num_group == (unsigned) -1)
680 return result;
681
682 for (i = 0; i < num_group; i++)
683 {
684 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
685 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
686 unsigned int n_elt = shdr->sh_size / 4;
687
688 while (--n_elt != 0)
689 if ((++idx)->shdr->bfd_section)
690 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
691 else if (idx->shdr->sh_type == SHT_RELA
692 || idx->shdr->sh_type == SHT_REL)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
697 files. */
698 shdr->bfd_section->size -= 4;
699 else
700 {
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
704 abfd,
705 (unsigned int) idx->shdr->sh_type,
706 bfd_elf_string_from_elf_section (abfd,
707 (elf_elfheader (abfd)
708 ->e_shstrndx),
709 idx->shdr->sh_name),
710 shdr->bfd_section->name);
711 result = FALSE;
712 }
713 }
714 return result;
715 }
716
717 bfd_boolean
718 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
719 {
720 return elf_next_in_group (sec) != NULL;
721 }
722
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
725
726 bfd_boolean
727 _bfd_elf_make_section_from_shdr (bfd *abfd,
728 Elf_Internal_Shdr *hdr,
729 const char *name,
730 int shindex)
731 {
732 asection *newsect;
733 flagword flags;
734 const struct elf_backend_data *bed;
735
736 if (hdr->bfd_section != NULL)
737 {
738 BFD_ASSERT (strcmp (name,
739 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
740 return TRUE;
741 }
742
743 newsect = bfd_make_section_anyway (abfd, name);
744 if (newsect == NULL)
745 return FALSE;
746
747 hdr->bfd_section = newsect;
748 elf_section_data (newsect)->this_hdr = *hdr;
749 elf_section_data (newsect)->this_idx = shindex;
750
751 /* Always use the real type/flags. */
752 elf_section_type (newsect) = hdr->sh_type;
753 elf_section_flags (newsect) = hdr->sh_flags;
754
755 newsect->filepos = hdr->sh_offset;
756
757 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
758 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
759 || ! bfd_set_section_alignment (abfd, newsect,
760 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
761 return FALSE;
762
763 flags = SEC_NO_FLAGS;
764 if (hdr->sh_type != SHT_NOBITS)
765 flags |= SEC_HAS_CONTENTS;
766 if (hdr->sh_type == SHT_GROUP)
767 flags |= SEC_GROUP | SEC_EXCLUDE;
768 if ((hdr->sh_flags & SHF_ALLOC) != 0)
769 {
770 flags |= SEC_ALLOC;
771 if (hdr->sh_type != SHT_NOBITS)
772 flags |= SEC_LOAD;
773 }
774 if ((hdr->sh_flags & SHF_WRITE) == 0)
775 flags |= SEC_READONLY;
776 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
777 flags |= SEC_CODE;
778 else if ((flags & SEC_LOAD) != 0)
779 flags |= SEC_DATA;
780 if ((hdr->sh_flags & SHF_MERGE) != 0)
781 {
782 flags |= SEC_MERGE;
783 newsect->entsize = hdr->sh_entsize;
784 if ((hdr->sh_flags & SHF_STRINGS) != 0)
785 flags |= SEC_STRINGS;
786 }
787 if (hdr->sh_flags & SHF_GROUP)
788 if (!setup_group (abfd, hdr, newsect))
789 return FALSE;
790 if ((hdr->sh_flags & SHF_TLS) != 0)
791 flags |= SEC_THREAD_LOCAL;
792
793 if ((flags & SEC_ALLOC) == 0)
794 {
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
797 static const struct
798 {
799 const char *name;
800 int len;
801 } debug_sections [] =
802 {
803 { "debug", 5 }, /* 'd' */
804 { NULL, 0 }, /* 'e' */
805 { NULL, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL, 0 }, /* 'h' */
808 { NULL, 0 }, /* 'i' */
809 { NULL, 0 }, /* 'j' */
810 { NULL, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL, 0 }, /* 'm' */
813 { NULL, 0 }, /* 'n' */
814 { NULL, 0 }, /* 'o' */
815 { NULL, 0 }, /* 'p' */
816 { NULL, 0 }, /* 'q' */
817 { NULL, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
819 };
820
821 if (name [0] == '.')
822 {
823 int i = name [1] - 'd';
824 if (i >= 0
825 && i < (int) ARRAY_SIZE (debug_sections)
826 && debug_sections [i].name != NULL
827 && strncmp (&name [1], debug_sections [i].name,
828 debug_sections [i].len) == 0)
829 flags |= SEC_DEBUGGING;
830 }
831 }
832
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect) == NULL)
841 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
842
843 bed = get_elf_backend_data (abfd);
844 if (bed->elf_backend_section_flags)
845 if (! bed->elf_backend_section_flags (&flags, hdr))
846 return FALSE;
847
848 if (! bfd_set_section_flags (abfd, newsect, flags))
849 return FALSE;
850
851 if ((flags & SEC_ALLOC) != 0)
852 {
853 Elf_Internal_Phdr *phdr;
854 unsigned int i;
855
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr = elf_tdata (abfd)->phdr;
860 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
861 {
862 if (phdr->p_paddr != 0)
863 break;
864 }
865 if (i < elf_elfheader (abfd)->e_phnum)
866 {
867 phdr = elf_tdata (abfd)->phdr;
868 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
869 {
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
874
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr->p_type == PT_LOAD
883 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
884 && (hdr->sh_offset + hdr->sh_size
885 <= phdr->p_offset + phdr->p_memsz)
886 && ((flags & SEC_LOAD) == 0
887 || (hdr->sh_offset + hdr->sh_size
888 <= phdr->p_offset + phdr->p_filesz)))
889 {
890 if ((flags & SEC_LOAD) == 0)
891 newsect->lma = (phdr->p_paddr
892 + hdr->sh_addr - phdr->p_vaddr);
893 else
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect->lma = (phdr->p_paddr
902 + hdr->sh_offset - phdr->p_offset);
903
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr->sh_addr >= phdr->p_vaddr
909 && (hdr->sh_addr + hdr->sh_size
910 <= phdr->p_vaddr + phdr->p_memsz))
911 break;
912 }
913 }
914 }
915 }
916
917 return TRUE;
918 }
919
920 /*
921 INTERNAL_FUNCTION
922 bfd_elf_find_section
923
924 SYNOPSIS
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
926
927 DESCRIPTION
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
933 */
934
935 struct elf_internal_shdr *
936 bfd_elf_find_section (bfd *abfd, char *name)
937 {
938 Elf_Internal_Shdr **i_shdrp;
939 char *shstrtab;
940 unsigned int max;
941 unsigned int i;
942
943 i_shdrp = elf_elfsections (abfd);
944 if (i_shdrp != NULL)
945 {
946 shstrtab = bfd_elf_get_str_section (abfd,
947 elf_elfheader (abfd)->e_shstrndx);
948 if (shstrtab != NULL)
949 {
950 max = elf_numsections (abfd);
951 for (i = 1; i < max; i++)
952 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
953 return i_shdrp[i];
954 }
955 }
956 return 0;
957 }
958
959 const char *const bfd_elf_section_type_names[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
963 };
964
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
974
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
977 arelent *reloc_entry,
978 asymbol *symbol,
979 void *data ATTRIBUTE_UNUSED,
980 asection *input_section,
981 bfd *output_bfd,
982 char **error_message ATTRIBUTE_UNUSED)
983 {
984 if (output_bfd != NULL
985 && (symbol->flags & BSF_SECTION_SYM) == 0
986 && (! reloc_entry->howto->partial_inplace
987 || reloc_entry->addend == 0))
988 {
989 reloc_entry->address += input_section->output_offset;
990 return bfd_reloc_ok;
991 }
992
993 return bfd_reloc_continue;
994 }
995 \f
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
997
998 static void
999 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1000 asection *sec)
1001 {
1002 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1003 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1004 }
1005
1006 /* Finish SHF_MERGE section merging. */
1007
1008 bfd_boolean
1009 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1010 {
1011 bfd *ibfd;
1012 asection *sec;
1013
1014 if (!is_elf_hash_table (info->hash))
1015 return FALSE;
1016
1017 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1018 if ((ibfd->flags & DYNAMIC) == 0)
1019 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1020 if ((sec->flags & SEC_MERGE) != 0
1021 && !bfd_is_abs_section (sec->output_section))
1022 {
1023 struct bfd_elf_section_data *secdata;
1024
1025 secdata = elf_section_data (sec);
1026 if (! _bfd_add_merge_section (abfd,
1027 &elf_hash_table (info)->merge_info,
1028 sec, &secdata->sec_info))
1029 return FALSE;
1030 else if (secdata->sec_info)
1031 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1032 }
1033
1034 if (elf_hash_table (info)->merge_info != NULL)
1035 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1036 merge_sections_remove_hook);
1037 return TRUE;
1038 }
1039
1040 void
1041 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1042 {
1043 sec->output_section = bfd_abs_section_ptr;
1044 sec->output_offset = sec->vma;
1045 if (!is_elf_hash_table (info->hash))
1046 return;
1047
1048 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1049 }
1050 \f
1051 /* Copy the program header and other data from one object module to
1052 another. */
1053
1054 bfd_boolean
1055 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1056 {
1057 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1059 return TRUE;
1060
1061 BFD_ASSERT (!elf_flags_init (obfd)
1062 || (elf_elfheader (obfd)->e_flags
1063 == elf_elfheader (ibfd)->e_flags));
1064
1065 elf_gp (obfd) = elf_gp (ibfd);
1066 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1067 elf_flags_init (obfd) = TRUE;
1068 return TRUE;
1069 }
1070
1071 static const char *
1072 get_segment_type (unsigned int p_type)
1073 {
1074 const char *pt;
1075 switch (p_type)
1076 {
1077 case PT_NULL: pt = "NULL"; break;
1078 case PT_LOAD: pt = "LOAD"; break;
1079 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1080 case PT_INTERP: pt = "INTERP"; break;
1081 case PT_NOTE: pt = "NOTE"; break;
1082 case PT_SHLIB: pt = "SHLIB"; break;
1083 case PT_PHDR: pt = "PHDR"; break;
1084 case PT_TLS: pt = "TLS"; break;
1085 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1086 case PT_GNU_STACK: pt = "STACK"; break;
1087 case PT_GNU_RELRO: pt = "RELRO"; break;
1088 default: pt = NULL; break;
1089 }
1090 return pt;
1091 }
1092
1093 /* Print out the program headers. */
1094
1095 bfd_boolean
1096 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1097 {
1098 FILE *f = farg;
1099 Elf_Internal_Phdr *p;
1100 asection *s;
1101 bfd_byte *dynbuf = NULL;
1102
1103 p = elf_tdata (abfd)->phdr;
1104 if (p != NULL)
1105 {
1106 unsigned int i, c;
1107
1108 fprintf (f, _("\nProgram Header:\n"));
1109 c = elf_elfheader (abfd)->e_phnum;
1110 for (i = 0; i < c; i++, p++)
1111 {
1112 const char *pt = get_segment_type (p->p_type);
1113 char buf[20];
1114
1115 if (pt == NULL)
1116 {
1117 sprintf (buf, "0x%lx", p->p_type);
1118 pt = buf;
1119 }
1120 fprintf (f, "%8s off 0x", pt);
1121 bfd_fprintf_vma (abfd, f, p->p_offset);
1122 fprintf (f, " vaddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1124 fprintf (f, " paddr 0x");
1125 bfd_fprintf_vma (abfd, f, p->p_paddr);
1126 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1127 fprintf (f, " filesz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_filesz);
1129 fprintf (f, " memsz 0x");
1130 bfd_fprintf_vma (abfd, f, p->p_memsz);
1131 fprintf (f, " flags %c%c%c",
1132 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1133 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1134 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1135 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1136 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1137 fprintf (f, "\n");
1138 }
1139 }
1140
1141 s = bfd_get_section_by_name (abfd, ".dynamic");
1142 if (s != NULL)
1143 {
1144 int elfsec;
1145 unsigned long shlink;
1146 bfd_byte *extdyn, *extdynend;
1147 size_t extdynsize;
1148 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1149
1150 fprintf (f, _("\nDynamic Section:\n"));
1151
1152 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1153 goto error_return;
1154
1155 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1156 if (elfsec == -1)
1157 goto error_return;
1158 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1159
1160 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1161 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1162
1163 extdyn = dynbuf;
1164 extdynend = extdyn + s->size;
1165 for (; extdyn < extdynend; extdyn += extdynsize)
1166 {
1167 Elf_Internal_Dyn dyn;
1168 const char *name;
1169 char ab[20];
1170 bfd_boolean stringp;
1171
1172 (*swap_dyn_in) (abfd, extdyn, &dyn);
1173
1174 if (dyn.d_tag == DT_NULL)
1175 break;
1176
1177 stringp = FALSE;
1178 switch (dyn.d_tag)
1179 {
1180 default:
1181 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1182 name = ab;
1183 break;
1184
1185 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1186 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1187 case DT_PLTGOT: name = "PLTGOT"; break;
1188 case DT_HASH: name = "HASH"; break;
1189 case DT_STRTAB: name = "STRTAB"; break;
1190 case DT_SYMTAB: name = "SYMTAB"; break;
1191 case DT_RELA: name = "RELA"; break;
1192 case DT_RELASZ: name = "RELASZ"; break;
1193 case DT_RELAENT: name = "RELAENT"; break;
1194 case DT_STRSZ: name = "STRSZ"; break;
1195 case DT_SYMENT: name = "SYMENT"; break;
1196 case DT_INIT: name = "INIT"; break;
1197 case DT_FINI: name = "FINI"; break;
1198 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1199 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1200 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1201 case DT_REL: name = "REL"; break;
1202 case DT_RELSZ: name = "RELSZ"; break;
1203 case DT_RELENT: name = "RELENT"; break;
1204 case DT_PLTREL: name = "PLTREL"; break;
1205 case DT_DEBUG: name = "DEBUG"; break;
1206 case DT_TEXTREL: name = "TEXTREL"; break;
1207 case DT_JMPREL: name = "JMPREL"; break;
1208 case DT_BIND_NOW: name = "BIND_NOW"; break;
1209 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1214 case DT_FLAGS: name = "FLAGS"; break;
1215 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM: name = "CHECKSUM"; break;
1218 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1219 case DT_MOVEENT: name = "MOVEENT"; break;
1220 case DT_MOVESZ: name = "MOVESZ"; break;
1221 case DT_FEATURE: name = "FEATURE"; break;
1222 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1223 case DT_SYMINSZ: name = "SYMINSZ"; break;
1224 case DT_SYMINENT: name = "SYMINENT"; break;
1225 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1226 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1227 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1228 case DT_PLTPAD: name = "PLTPAD"; break;
1229 case DT_MOVETAB: name = "MOVETAB"; break;
1230 case DT_SYMINFO: name = "SYMINFO"; break;
1231 case DT_RELACOUNT: name = "RELACOUNT"; break;
1232 case DT_RELCOUNT: name = "RELCOUNT"; break;
1233 case DT_FLAGS_1: name = "FLAGS_1"; break;
1234 case DT_VERSYM: name = "VERSYM"; break;
1235 case DT_VERDEF: name = "VERDEF"; break;
1236 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1237 case DT_VERNEED: name = "VERNEED"; break;
1238 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1239 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1240 case DT_USED: name = "USED"; break;
1241 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1242 }
1243
1244 fprintf (f, " %-11s ", name);
1245 if (! stringp)
1246 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1247 else
1248 {
1249 const char *string;
1250 unsigned int tagv = dyn.d_un.d_val;
1251
1252 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1253 if (string == NULL)
1254 goto error_return;
1255 fprintf (f, "%s", string);
1256 }
1257 fprintf (f, "\n");
1258 }
1259
1260 free (dynbuf);
1261 dynbuf = NULL;
1262 }
1263
1264 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1265 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1266 {
1267 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1268 return FALSE;
1269 }
1270
1271 if (elf_dynverdef (abfd) != 0)
1272 {
1273 Elf_Internal_Verdef *t;
1274
1275 fprintf (f, _("\nVersion definitions:\n"));
1276 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1277 {
1278 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1279 t->vd_flags, t->vd_hash,
1280 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1281 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1282 {
1283 Elf_Internal_Verdaux *a;
1284
1285 fprintf (f, "\t");
1286 for (a = t->vd_auxptr->vda_nextptr;
1287 a != NULL;
1288 a = a->vda_nextptr)
1289 fprintf (f, "%s ",
1290 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1291 fprintf (f, "\n");
1292 }
1293 }
1294 }
1295
1296 if (elf_dynverref (abfd) != 0)
1297 {
1298 Elf_Internal_Verneed *t;
1299
1300 fprintf (f, _("\nVersion References:\n"));
1301 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1302 {
1303 Elf_Internal_Vernaux *a;
1304
1305 fprintf (f, _(" required from %s:\n"),
1306 t->vn_filename ? t->vn_filename : "<corrupt>");
1307 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1308 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1309 a->vna_flags, a->vna_other,
1310 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1311 }
1312 }
1313
1314 return TRUE;
1315
1316 error_return:
1317 if (dynbuf != NULL)
1318 free (dynbuf);
1319 return FALSE;
1320 }
1321
1322 /* Display ELF-specific fields of a symbol. */
1323
1324 void
1325 bfd_elf_print_symbol (bfd *abfd,
1326 void *filep,
1327 asymbol *symbol,
1328 bfd_print_symbol_type how)
1329 {
1330 FILE *file = filep;
1331 switch (how)
1332 {
1333 case bfd_print_symbol_name:
1334 fprintf (file, "%s", symbol->name);
1335 break;
1336 case bfd_print_symbol_more:
1337 fprintf (file, "elf ");
1338 bfd_fprintf_vma (abfd, file, symbol->value);
1339 fprintf (file, " %lx", (long) symbol->flags);
1340 break;
1341 case bfd_print_symbol_all:
1342 {
1343 const char *section_name;
1344 const char *name = NULL;
1345 const struct elf_backend_data *bed;
1346 unsigned char st_other;
1347 bfd_vma val;
1348
1349 section_name = symbol->section ? symbol->section->name : "(*none*)";
1350
1351 bed = get_elf_backend_data (abfd);
1352 if (bed->elf_backend_print_symbol_all)
1353 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1354
1355 if (name == NULL)
1356 {
1357 name = symbol->name;
1358 bfd_print_symbol_vandf (abfd, file, symbol);
1359 }
1360
1361 fprintf (file, " %s\t", section_name);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol->section))
1367 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1368 else
1369 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1370 bfd_fprintf_vma (abfd, file, val);
1371
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd)->dynversym_section != 0
1374 && (elf_tdata (abfd)->dynverdef_section != 0
1375 || elf_tdata (abfd)->dynverref_section != 0))
1376 {
1377 unsigned int vernum;
1378 const char *version_string;
1379
1380 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1381
1382 if (vernum == 0)
1383 version_string = "";
1384 else if (vernum == 1)
1385 version_string = "Base";
1386 else if (vernum <= elf_tdata (abfd)->cverdefs)
1387 version_string =
1388 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1389 else
1390 {
1391 Elf_Internal_Verneed *t;
1392
1393 version_string = "";
1394 for (t = elf_tdata (abfd)->verref;
1395 t != NULL;
1396 t = t->vn_nextref)
1397 {
1398 Elf_Internal_Vernaux *a;
1399
1400 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1401 {
1402 if (a->vna_other == vernum)
1403 {
1404 version_string = a->vna_nodename;
1405 break;
1406 }
1407 }
1408 }
1409 }
1410
1411 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1412 fprintf (file, " %-11s", version_string);
1413 else
1414 {
1415 int i;
1416
1417 fprintf (file, " (%s)", version_string);
1418 for (i = 10 - strlen (version_string); i > 0; --i)
1419 putc (' ', file);
1420 }
1421 }
1422
1423 /* If the st_other field is not zero, print it. */
1424 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1425
1426 switch (st_other)
1427 {
1428 case 0: break;
1429 case STV_INTERNAL: fprintf (file, " .internal"); break;
1430 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1431 case STV_PROTECTED: fprintf (file, " .protected"); break;
1432 default:
1433 /* Some other non-defined flags are also present, so print
1434 everything hex. */
1435 fprintf (file, " 0x%02x", (unsigned int) st_other);
1436 }
1437
1438 fprintf (file, " %s", name);
1439 }
1440 break;
1441 }
1442 }
1443 \f
1444 /* Create an entry in an ELF linker hash table. */
1445
1446 struct bfd_hash_entry *
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1448 struct bfd_hash_table *table,
1449 const char *string)
1450 {
1451 /* Allocate the structure if it has not already been allocated by a
1452 subclass. */
1453 if (entry == NULL)
1454 {
1455 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1456 if (entry == NULL)
1457 return entry;
1458 }
1459
1460 /* Call the allocation method of the superclass. */
1461 entry = _bfd_link_hash_newfunc (entry, table, string);
1462 if (entry != NULL)
1463 {
1464 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1465 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1466
1467 /* Set local fields. */
1468 ret->indx = -1;
1469 ret->dynindx = -1;
1470 ret->got = htab->init_got_refcount;
1471 ret->plt = htab->init_plt_refcount;
1472 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1473 - offsetof (struct elf_link_hash_entry, size)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1478 ret->non_elf = 1;
1479 }
1480
1481 return entry;
1482 }
1483
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1486
1487 void
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1489 struct elf_link_hash_entry *dir,
1490 struct elf_link_hash_entry *ind)
1491 {
1492 struct elf_link_hash_table *htab;
1493
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1496
1497 dir->ref_dynamic |= ind->ref_dynamic;
1498 dir->ref_regular |= ind->ref_regular;
1499 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1500 dir->non_got_ref |= ind->non_got_ref;
1501 dir->needs_plt |= ind->needs_plt;
1502 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1503
1504 if (ind->root.type != bfd_link_hash_indirect)
1505 return;
1506
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab = elf_hash_table (info);
1510 if (ind->got.refcount > htab->init_got_refcount.refcount)
1511 {
1512 if (dir->got.refcount < 0)
1513 dir->got.refcount = 0;
1514 dir->got.refcount += ind->got.refcount;
1515 ind->got.refcount = htab->init_got_refcount.refcount;
1516 }
1517
1518 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1519 {
1520 if (dir->plt.refcount < 0)
1521 dir->plt.refcount = 0;
1522 dir->plt.refcount += ind->plt.refcount;
1523 ind->plt.refcount = htab->init_plt_refcount.refcount;
1524 }
1525
1526 if (ind->dynindx != -1)
1527 {
1528 if (dir->dynindx != -1)
1529 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1530 dir->dynindx = ind->dynindx;
1531 dir->dynstr_index = ind->dynstr_index;
1532 ind->dynindx = -1;
1533 ind->dynstr_index = 0;
1534 }
1535 }
1536
1537 void
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1539 struct elf_link_hash_entry *h,
1540 bfd_boolean force_local)
1541 {
1542 h->plt = elf_hash_table (info)->init_plt_offset;
1543 h->needs_plt = 0;
1544 if (force_local)
1545 {
1546 h->forced_local = 1;
1547 if (h->dynindx != -1)
1548 {
1549 h->dynindx = -1;
1550 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1551 h->dynstr_index);
1552 }
1553 }
1554 }
1555
1556 /* Initialize an ELF linker hash table. */
1557
1558 bfd_boolean
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table *table,
1561 bfd *abfd,
1562 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1563 struct bfd_hash_table *,
1564 const char *),
1565 unsigned int entsize)
1566 {
1567 bfd_boolean ret;
1568 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1569
1570 table->dynamic_sections_created = FALSE;
1571 table->dynobj = NULL;
1572 table->init_got_refcount.refcount = can_refcount - 1;
1573 table->init_plt_refcount.refcount = can_refcount - 1;
1574 table->init_got_offset.offset = -(bfd_vma) 1;
1575 table->init_plt_offset.offset = -(bfd_vma) 1;
1576 /* The first dynamic symbol is a dummy. */
1577 table->dynsymcount = 1;
1578 table->dynstr = NULL;
1579 table->bucketcount = 0;
1580 table->needed = NULL;
1581 table->hgot = NULL;
1582 table->merge_info = NULL;
1583 memset (&table->stab_info, 0, sizeof (table->stab_info));
1584 memset (&table->eh_info, 0, sizeof (table->eh_info));
1585 table->dynlocal = NULL;
1586 table->runpath = NULL;
1587 table->tls_sec = NULL;
1588 table->tls_size = 0;
1589 table->loaded = NULL;
1590 table->is_relocatable_executable = FALSE;
1591
1592 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1593 table->root.type = bfd_link_elf_hash_table;
1594
1595 return ret;
1596 }
1597
1598 /* Create an ELF linker hash table. */
1599
1600 struct bfd_link_hash_table *
1601 _bfd_elf_link_hash_table_create (bfd *abfd)
1602 {
1603 struct elf_link_hash_table *ret;
1604 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1605
1606 ret = bfd_malloc (amt);
1607 if (ret == NULL)
1608 return NULL;
1609
1610 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1611 sizeof (struct elf_link_hash_entry)))
1612 {
1613 free (ret);
1614 return NULL;
1615 }
1616
1617 return &ret->root;
1618 }
1619
1620 /* This is a hook for the ELF emulation code in the generic linker to
1621 tell the backend linker what file name to use for the DT_NEEDED
1622 entry for a dynamic object. */
1623
1624 void
1625 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1626 {
1627 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1628 && bfd_get_format (abfd) == bfd_object)
1629 elf_dt_name (abfd) = name;
1630 }
1631
1632 int
1633 bfd_elf_get_dyn_lib_class (bfd *abfd)
1634 {
1635 int lib_class;
1636 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1637 && bfd_get_format (abfd) == bfd_object)
1638 lib_class = elf_dyn_lib_class (abfd);
1639 else
1640 lib_class = 0;
1641 return lib_class;
1642 }
1643
1644 void
1645 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1646 {
1647 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd) == bfd_object)
1649 elf_dyn_lib_class (abfd) = lib_class;
1650 }
1651
1652 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1653 the linker ELF emulation code. */
1654
1655 struct bfd_link_needed_list *
1656 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1657 struct bfd_link_info *info)
1658 {
1659 if (! is_elf_hash_table (info->hash))
1660 return NULL;
1661 return elf_hash_table (info)->needed;
1662 }
1663
1664 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1665 hook for the linker ELF emulation code. */
1666
1667 struct bfd_link_needed_list *
1668 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1669 struct bfd_link_info *info)
1670 {
1671 if (! is_elf_hash_table (info->hash))
1672 return NULL;
1673 return elf_hash_table (info)->runpath;
1674 }
1675
1676 /* Get the name actually used for a dynamic object for a link. This
1677 is the SONAME entry if there is one. Otherwise, it is the string
1678 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1679
1680 const char *
1681 bfd_elf_get_dt_soname (bfd *abfd)
1682 {
1683 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1684 && bfd_get_format (abfd) == bfd_object)
1685 return elf_dt_name (abfd);
1686 return NULL;
1687 }
1688
1689 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1690 the ELF linker emulation code. */
1691
1692 bfd_boolean
1693 bfd_elf_get_bfd_needed_list (bfd *abfd,
1694 struct bfd_link_needed_list **pneeded)
1695 {
1696 asection *s;
1697 bfd_byte *dynbuf = NULL;
1698 int elfsec;
1699 unsigned long shlink;
1700 bfd_byte *extdyn, *extdynend;
1701 size_t extdynsize;
1702 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1703
1704 *pneeded = NULL;
1705
1706 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1707 || bfd_get_format (abfd) != bfd_object)
1708 return TRUE;
1709
1710 s = bfd_get_section_by_name (abfd, ".dynamic");
1711 if (s == NULL || s->size == 0)
1712 return TRUE;
1713
1714 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1715 goto error_return;
1716
1717 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1718 if (elfsec == -1)
1719 goto error_return;
1720
1721 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1722
1723 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1724 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1725
1726 extdyn = dynbuf;
1727 extdynend = extdyn + s->size;
1728 for (; extdyn < extdynend; extdyn += extdynsize)
1729 {
1730 Elf_Internal_Dyn dyn;
1731
1732 (*swap_dyn_in) (abfd, extdyn, &dyn);
1733
1734 if (dyn.d_tag == DT_NULL)
1735 break;
1736
1737 if (dyn.d_tag == DT_NEEDED)
1738 {
1739 const char *string;
1740 struct bfd_link_needed_list *l;
1741 unsigned int tagv = dyn.d_un.d_val;
1742 bfd_size_type amt;
1743
1744 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1745 if (string == NULL)
1746 goto error_return;
1747
1748 amt = sizeof *l;
1749 l = bfd_alloc (abfd, amt);
1750 if (l == NULL)
1751 goto error_return;
1752
1753 l->by = abfd;
1754 l->name = string;
1755 l->next = *pneeded;
1756 *pneeded = l;
1757 }
1758 }
1759
1760 free (dynbuf);
1761
1762 return TRUE;
1763
1764 error_return:
1765 if (dynbuf != NULL)
1766 free (dynbuf);
1767 return FALSE;
1768 }
1769 \f
1770 /* Allocate an ELF string table--force the first byte to be zero. */
1771
1772 struct bfd_strtab_hash *
1773 _bfd_elf_stringtab_init (void)
1774 {
1775 struct bfd_strtab_hash *ret;
1776
1777 ret = _bfd_stringtab_init ();
1778 if (ret != NULL)
1779 {
1780 bfd_size_type loc;
1781
1782 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1783 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1784 if (loc == (bfd_size_type) -1)
1785 {
1786 _bfd_stringtab_free (ret);
1787 ret = NULL;
1788 }
1789 }
1790 return ret;
1791 }
1792 \f
1793 /* ELF .o/exec file reading */
1794
1795 /* Create a new bfd section from an ELF section header. */
1796
1797 bfd_boolean
1798 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1799 {
1800 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1801 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1803 const char *name;
1804
1805 name = bfd_elf_string_from_elf_section (abfd,
1806 elf_elfheader (abfd)->e_shstrndx,
1807 hdr->sh_name);
1808 if (name == NULL)
1809 return FALSE;
1810
1811 switch (hdr->sh_type)
1812 {
1813 case SHT_NULL:
1814 /* Inactive section. Throw it away. */
1815 return TRUE;
1816
1817 case SHT_PROGBITS: /* Normal section with contents. */
1818 case SHT_NOBITS: /* .bss section. */
1819 case SHT_HASH: /* .hash section. */
1820 case SHT_NOTE: /* .note section. */
1821 case SHT_INIT_ARRAY: /* .init_array section. */
1822 case SHT_FINI_ARRAY: /* .fini_array section. */
1823 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1824 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1825 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1826
1827 case SHT_DYNAMIC: /* Dynamic linking information. */
1828 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1829 return FALSE;
1830 if (hdr->sh_link > elf_numsections (abfd)
1831 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1832 return FALSE;
1833 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1834 {
1835 Elf_Internal_Shdr *dynsymhdr;
1836
1837 /* The shared libraries distributed with hpux11 have a bogus
1838 sh_link field for the ".dynamic" section. Find the
1839 string table for the ".dynsym" section instead. */
1840 if (elf_dynsymtab (abfd) != 0)
1841 {
1842 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1843 hdr->sh_link = dynsymhdr->sh_link;
1844 }
1845 else
1846 {
1847 unsigned int i, num_sec;
1848
1849 num_sec = elf_numsections (abfd);
1850 for (i = 1; i < num_sec; i++)
1851 {
1852 dynsymhdr = elf_elfsections (abfd)[i];
1853 if (dynsymhdr->sh_type == SHT_DYNSYM)
1854 {
1855 hdr->sh_link = dynsymhdr->sh_link;
1856 break;
1857 }
1858 }
1859 }
1860 }
1861 break;
1862
1863 case SHT_SYMTAB: /* A symbol table */
1864 if (elf_onesymtab (abfd) == shindex)
1865 return TRUE;
1866
1867 if (hdr->sh_entsize != bed->s->sizeof_sym)
1868 return FALSE;
1869 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1870 elf_onesymtab (abfd) = shindex;
1871 elf_tdata (abfd)->symtab_hdr = *hdr;
1872 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1873 abfd->flags |= HAS_SYMS;
1874
1875 /* Sometimes a shared object will map in the symbol table. If
1876 SHF_ALLOC is set, and this is a shared object, then we also
1877 treat this section as a BFD section. We can not base the
1878 decision purely on SHF_ALLOC, because that flag is sometimes
1879 set in a relocatable object file, which would confuse the
1880 linker. */
1881 if ((hdr->sh_flags & SHF_ALLOC) != 0
1882 && (abfd->flags & DYNAMIC) != 0
1883 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1884 shindex))
1885 return FALSE;
1886
1887 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1888 can't read symbols without that section loaded as well. It
1889 is most likely specified by the next section header. */
1890 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1891 {
1892 unsigned int i, num_sec;
1893
1894 num_sec = elf_numsections (abfd);
1895 for (i = shindex + 1; i < num_sec; i++)
1896 {
1897 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1898 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1899 && hdr2->sh_link == shindex)
1900 break;
1901 }
1902 if (i == num_sec)
1903 for (i = 1; i < shindex; i++)
1904 {
1905 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1906 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1907 && hdr2->sh_link == shindex)
1908 break;
1909 }
1910 if (i != shindex)
1911 return bfd_section_from_shdr (abfd, i);
1912 }
1913 return TRUE;
1914
1915 case SHT_DYNSYM: /* A dynamic symbol table */
1916 if (elf_dynsymtab (abfd) == shindex)
1917 return TRUE;
1918
1919 if (hdr->sh_entsize != bed->s->sizeof_sym)
1920 return FALSE;
1921 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1922 elf_dynsymtab (abfd) = shindex;
1923 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1924 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1925 abfd->flags |= HAS_SYMS;
1926
1927 /* Besides being a symbol table, we also treat this as a regular
1928 section, so that objcopy can handle it. */
1929 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1930
1931 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1932 if (elf_symtab_shndx (abfd) == shindex)
1933 return TRUE;
1934
1935 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1936 elf_symtab_shndx (abfd) = shindex;
1937 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1938 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1939 return TRUE;
1940
1941 case SHT_STRTAB: /* A string table */
1942 if (hdr->bfd_section != NULL)
1943 return TRUE;
1944 if (ehdr->e_shstrndx == shindex)
1945 {
1946 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1947 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1948 return TRUE;
1949 }
1950 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1951 {
1952 symtab_strtab:
1953 elf_tdata (abfd)->strtab_hdr = *hdr;
1954 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1955 return TRUE;
1956 }
1957 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1958 {
1959 dynsymtab_strtab:
1960 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1961 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1962 elf_elfsections (abfd)[shindex] = hdr;
1963 /* We also treat this as a regular section, so that objcopy
1964 can handle it. */
1965 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1966 shindex);
1967 }
1968
1969 /* If the string table isn't one of the above, then treat it as a
1970 regular section. We need to scan all the headers to be sure,
1971 just in case this strtab section appeared before the above. */
1972 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1973 {
1974 unsigned int i, num_sec;
1975
1976 num_sec = elf_numsections (abfd);
1977 for (i = 1; i < num_sec; i++)
1978 {
1979 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1980 if (hdr2->sh_link == shindex)
1981 {
1982 /* Prevent endless recursion on broken objects. */
1983 if (i == shindex)
1984 return FALSE;
1985 if (! bfd_section_from_shdr (abfd, i))
1986 return FALSE;
1987 if (elf_onesymtab (abfd) == i)
1988 goto symtab_strtab;
1989 if (elf_dynsymtab (abfd) == i)
1990 goto dynsymtab_strtab;
1991 }
1992 }
1993 }
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995
1996 case SHT_REL:
1997 case SHT_RELA:
1998 /* *These* do a lot of work -- but build no sections! */
1999 {
2000 asection *target_sect;
2001 Elf_Internal_Shdr *hdr2;
2002 unsigned int num_sec = elf_numsections (abfd);
2003
2004 if (hdr->sh_entsize
2005 != (bfd_size_type) (hdr->sh_type == SHT_REL
2006 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2007 return FALSE;
2008
2009 /* Check for a bogus link to avoid crashing. */
2010 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2011 || hdr->sh_link >= num_sec)
2012 {
2013 ((*_bfd_error_handler)
2014 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2015 abfd, hdr->sh_link, name, shindex));
2016 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2017 shindex);
2018 }
2019
2020 /* For some incomprehensible reason Oracle distributes
2021 libraries for Solaris in which some of the objects have
2022 bogus sh_link fields. It would be nice if we could just
2023 reject them, but, unfortunately, some people need to use
2024 them. We scan through the section headers; if we find only
2025 one suitable symbol table, we clobber the sh_link to point
2026 to it. I hope this doesn't break anything. */
2027 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2028 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2029 {
2030 unsigned int scan;
2031 int found;
2032
2033 found = 0;
2034 for (scan = 1; scan < num_sec; scan++)
2035 {
2036 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2037 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2038 {
2039 if (found != 0)
2040 {
2041 found = 0;
2042 break;
2043 }
2044 found = scan;
2045 }
2046 }
2047 if (found != 0)
2048 hdr->sh_link = found;
2049 }
2050
2051 /* Get the symbol table. */
2052 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2053 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2054 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2055 return FALSE;
2056
2057 /* If this reloc section does not use the main symbol table we
2058 don't treat it as a reloc section. BFD can't adequately
2059 represent such a section, so at least for now, we don't
2060 try. We just present it as a normal section. We also
2061 can't use it as a reloc section if it points to the null
2062 section, an invalid section, or another reloc section. */
2063 if (hdr->sh_link != elf_onesymtab (abfd)
2064 || hdr->sh_info == SHN_UNDEF
2065 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2066 || hdr->sh_info >= num_sec
2067 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2068 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2069 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2070 shindex);
2071
2072 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2073 return FALSE;
2074 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2075 if (target_sect == NULL)
2076 return FALSE;
2077
2078 if ((target_sect->flags & SEC_RELOC) == 0
2079 || target_sect->reloc_count == 0)
2080 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2081 else
2082 {
2083 bfd_size_type amt;
2084 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2085 amt = sizeof (*hdr2);
2086 hdr2 = bfd_alloc (abfd, amt);
2087 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2088 }
2089 *hdr2 = *hdr;
2090 elf_elfsections (abfd)[shindex] = hdr2;
2091 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2092 target_sect->flags |= SEC_RELOC;
2093 target_sect->relocation = NULL;
2094 target_sect->rel_filepos = hdr->sh_offset;
2095 /* In the section to which the relocations apply, mark whether
2096 its relocations are of the REL or RELA variety. */
2097 if (hdr->sh_size != 0)
2098 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2099 abfd->flags |= HAS_RELOC;
2100 return TRUE;
2101 }
2102 break;
2103
2104 case SHT_GNU_verdef:
2105 elf_dynverdef (abfd) = shindex;
2106 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2107 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2108 break;
2109
2110 case SHT_GNU_versym:
2111 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2112 return FALSE;
2113 elf_dynversym (abfd) = shindex;
2114 elf_tdata (abfd)->dynversym_hdr = *hdr;
2115 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2116
2117 case SHT_GNU_verneed:
2118 elf_dynverref (abfd) = shindex;
2119 elf_tdata (abfd)->dynverref_hdr = *hdr;
2120 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2121
2122 case SHT_SHLIB:
2123 return TRUE;
2124
2125 case SHT_GROUP:
2126 /* We need a BFD section for objcopy and relocatable linking,
2127 and it's handy to have the signature available as the section
2128 name. */
2129 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2130 return FALSE;
2131 name = group_signature (abfd, hdr);
2132 if (name == NULL)
2133 return FALSE;
2134 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2135 return FALSE;
2136 if (hdr->contents != NULL)
2137 {
2138 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2139 unsigned int n_elt = hdr->sh_size / 4;
2140 asection *s;
2141
2142 if (idx->flags & GRP_COMDAT)
2143 hdr->bfd_section->flags
2144 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2145
2146 /* We try to keep the same section order as it comes in. */
2147 idx += n_elt;
2148 while (--n_elt != 0)
2149 if ((s = (--idx)->shdr->bfd_section) != NULL
2150 && elf_next_in_group (s) != NULL)
2151 {
2152 elf_next_in_group (hdr->bfd_section) = s;
2153 break;
2154 }
2155 }
2156 break;
2157
2158 default:
2159 /* Check for any processor-specific section types. */
2160 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2161 return TRUE;
2162
2163 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2164 {
2165 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2166 /* FIXME: How to properly handle allocated section reserved
2167 for applications? */
2168 (*_bfd_error_handler)
2169 (_("%B: don't know how to handle allocated, application "
2170 "specific section `%s' [0x%8x]"),
2171 abfd, name, hdr->sh_type);
2172 else
2173 /* Allow sections reserved for applications. */
2174 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2175 shindex);
2176 }
2177 else if (hdr->sh_type >= SHT_LOPROC
2178 && hdr->sh_type <= SHT_HIPROC)
2179 /* FIXME: We should handle this section. */
2180 (*_bfd_error_handler)
2181 (_("%B: don't know how to handle processor specific section "
2182 "`%s' [0x%8x]"),
2183 abfd, name, hdr->sh_type);
2184 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2185 /* FIXME: We should handle this section. */
2186 (*_bfd_error_handler)
2187 (_("%B: don't know how to handle OS specific section "
2188 "`%s' [0x%8x]"),
2189 abfd, name, hdr->sh_type);
2190 else
2191 /* FIXME: We should handle this section. */
2192 (*_bfd_error_handler)
2193 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2194 abfd, name, hdr->sh_type);
2195
2196 return FALSE;
2197 }
2198
2199 return TRUE;
2200 }
2201
2202 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2203 Return SEC for sections that have no elf section, and NULL on error. */
2204
2205 asection *
2206 bfd_section_from_r_symndx (bfd *abfd,
2207 struct sym_sec_cache *cache,
2208 asection *sec,
2209 unsigned long r_symndx)
2210 {
2211 Elf_Internal_Shdr *symtab_hdr;
2212 unsigned char esym[sizeof (Elf64_External_Sym)];
2213 Elf_External_Sym_Shndx eshndx;
2214 Elf_Internal_Sym isym;
2215 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2216
2217 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2218 return cache->sec[ent];
2219
2220 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2221 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2222 &isym, esym, &eshndx) == NULL)
2223 return NULL;
2224
2225 if (cache->abfd != abfd)
2226 {
2227 memset (cache->indx, -1, sizeof (cache->indx));
2228 cache->abfd = abfd;
2229 }
2230 cache->indx[ent] = r_symndx;
2231 cache->sec[ent] = sec;
2232 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2233 || isym.st_shndx > SHN_HIRESERVE)
2234 {
2235 asection *s;
2236 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2237 if (s != NULL)
2238 cache->sec[ent] = s;
2239 }
2240 return cache->sec[ent];
2241 }
2242
2243 /* Given an ELF section number, retrieve the corresponding BFD
2244 section. */
2245
2246 asection *
2247 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2248 {
2249 if (index >= elf_numsections (abfd))
2250 return NULL;
2251 return elf_elfsections (abfd)[index]->bfd_section;
2252 }
2253
2254 static const struct bfd_elf_special_section special_sections_b[] =
2255 {
2256 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2257 { NULL, 0, 0, 0, 0 }
2258 };
2259
2260 static const struct bfd_elf_special_section special_sections_c[] =
2261 {
2262 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2263 { NULL, 0, 0, 0, 0 }
2264 };
2265
2266 static const struct bfd_elf_special_section special_sections_d[] =
2267 {
2268 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2269 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2270 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2271 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2272 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2273 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2274 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2275 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2276 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2277 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2278 { NULL, 0, 0, 0, 0 }
2279 };
2280
2281 static const struct bfd_elf_special_section special_sections_f[] =
2282 {
2283 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2284 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2285 { NULL, 0, 0, 0, 0 }
2286 };
2287
2288 static const struct bfd_elf_special_section special_sections_g[] =
2289 {
2290 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2291 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2292 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2293 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2294 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2295 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2296 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2297 { NULL, 0, 0, 0, 0 }
2298 };
2299
2300 static const struct bfd_elf_special_section special_sections_h[] =
2301 {
2302 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2303 { NULL, 0, 0, 0, 0 }
2304 };
2305
2306 static const struct bfd_elf_special_section special_sections_i[] =
2307 {
2308 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2309 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2310 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2311 { NULL, 0, 0, 0, 0 }
2312 };
2313
2314 static const struct bfd_elf_special_section special_sections_l[] =
2315 {
2316 { ".line", 5, 0, SHT_PROGBITS, 0 },
2317 { NULL, 0, 0, 0, 0 }
2318 };
2319
2320 static const struct bfd_elf_special_section special_sections_n[] =
2321 {
2322 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2323 { ".note", 5, -1, SHT_NOTE, 0 },
2324 { NULL, 0, 0, 0, 0 }
2325 };
2326
2327 static const struct bfd_elf_special_section special_sections_p[] =
2328 {
2329 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2330 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2331 { NULL, 0, 0, 0, 0 }
2332 };
2333
2334 static const struct bfd_elf_special_section special_sections_r[] =
2335 {
2336 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2337 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2338 { ".rela", 5, -1, SHT_RELA, 0 },
2339 { ".rel", 4, -1, SHT_REL, 0 },
2340 { NULL, 0, 0, 0, 0 }
2341 };
2342
2343 static const struct bfd_elf_special_section special_sections_s[] =
2344 {
2345 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2346 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2347 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2348 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2349 { NULL, 0, 0, 0, 0 }
2350 };
2351
2352 static const struct bfd_elf_special_section special_sections_t[] =
2353 {
2354 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2355 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2356 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2357 { NULL, 0, 0, 0, 0 }
2358 };
2359
2360 static const struct bfd_elf_special_section *special_sections[] =
2361 {
2362 special_sections_b, /* 'b' */
2363 special_sections_c, /* 'b' */
2364 special_sections_d, /* 'd' */
2365 NULL, /* 'e' */
2366 special_sections_f, /* 'f' */
2367 special_sections_g, /* 'g' */
2368 special_sections_h, /* 'h' */
2369 special_sections_i, /* 'i' */
2370 NULL, /* 'j' */
2371 NULL, /* 'k' */
2372 special_sections_l, /* 'l' */
2373 NULL, /* 'm' */
2374 special_sections_n, /* 'n' */
2375 NULL, /* 'o' */
2376 special_sections_p, /* 'p' */
2377 NULL, /* 'q' */
2378 special_sections_r, /* 'r' */
2379 special_sections_s, /* 's' */
2380 special_sections_t, /* 't' */
2381 };
2382
2383 const struct bfd_elf_special_section *
2384 _bfd_elf_get_special_section (const char *name,
2385 const struct bfd_elf_special_section *spec,
2386 unsigned int rela)
2387 {
2388 int i;
2389 int len;
2390
2391 len = strlen (name);
2392
2393 for (i = 0; spec[i].prefix != NULL; i++)
2394 {
2395 int suffix_len;
2396 int prefix_len = spec[i].prefix_length;
2397
2398 if (len < prefix_len)
2399 continue;
2400 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2401 continue;
2402
2403 suffix_len = spec[i].suffix_length;
2404 if (suffix_len <= 0)
2405 {
2406 if (name[prefix_len] != 0)
2407 {
2408 if (suffix_len == 0)
2409 continue;
2410 if (name[prefix_len] != '.'
2411 && (suffix_len == -2
2412 || (rela && spec[i].type == SHT_REL)))
2413 continue;
2414 }
2415 }
2416 else
2417 {
2418 if (len < prefix_len + suffix_len)
2419 continue;
2420 if (memcmp (name + len - suffix_len,
2421 spec[i].prefix + prefix_len,
2422 suffix_len) != 0)
2423 continue;
2424 }
2425 return &spec[i];
2426 }
2427
2428 return NULL;
2429 }
2430
2431 const struct bfd_elf_special_section *
2432 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2433 {
2434 int i;
2435 const struct bfd_elf_special_section *spec;
2436 const struct elf_backend_data *bed;
2437
2438 /* See if this is one of the special sections. */
2439 if (sec->name == NULL)
2440 return NULL;
2441
2442 bed = get_elf_backend_data (abfd);
2443 spec = bed->special_sections;
2444 if (spec)
2445 {
2446 spec = _bfd_elf_get_special_section (sec->name,
2447 bed->special_sections,
2448 sec->use_rela_p);
2449 if (spec != NULL)
2450 return spec;
2451 }
2452
2453 if (sec->name[0] != '.')
2454 return NULL;
2455
2456 i = sec->name[1] - 'b';
2457 if (i < 0 || i > 't' - 'b')
2458 return NULL;
2459
2460 spec = special_sections[i];
2461
2462 if (spec == NULL)
2463 return NULL;
2464
2465 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2466 }
2467
2468 bfd_boolean
2469 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2470 {
2471 struct bfd_elf_section_data *sdata;
2472 const struct elf_backend_data *bed;
2473 const struct bfd_elf_special_section *ssect;
2474
2475 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2476 if (sdata == NULL)
2477 {
2478 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2479 if (sdata == NULL)
2480 return FALSE;
2481 sec->used_by_bfd = sdata;
2482 }
2483
2484 /* Indicate whether or not this section should use RELA relocations. */
2485 bed = get_elf_backend_data (abfd);
2486 sec->use_rela_p = bed->default_use_rela_p;
2487
2488 /* When we read a file, we don't need to set ELF section type and
2489 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2490 anyway. We will set ELF section type and flags for all linker
2491 created sections. If user specifies BFD section flags, we will
2492 set ELF section type and flags based on BFD section flags in
2493 elf_fake_sections. */
2494 if ((!sec->flags && abfd->direction != read_direction)
2495 || (sec->flags & SEC_LINKER_CREATED) != 0)
2496 {
2497 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2498 if (ssect != NULL)
2499 {
2500 elf_section_type (sec) = ssect->type;
2501 elf_section_flags (sec) = ssect->attr;
2502 }
2503 }
2504
2505 return _bfd_generic_new_section_hook (abfd, sec);
2506 }
2507
2508 /* Create a new bfd section from an ELF program header.
2509
2510 Since program segments have no names, we generate a synthetic name
2511 of the form segment<NUM>, where NUM is generally the index in the
2512 program header table. For segments that are split (see below) we
2513 generate the names segment<NUM>a and segment<NUM>b.
2514
2515 Note that some program segments may have a file size that is different than
2516 (less than) the memory size. All this means is that at execution the
2517 system must allocate the amount of memory specified by the memory size,
2518 but only initialize it with the first "file size" bytes read from the
2519 file. This would occur for example, with program segments consisting
2520 of combined data+bss.
2521
2522 To handle the above situation, this routine generates TWO bfd sections
2523 for the single program segment. The first has the length specified by
2524 the file size of the segment, and the second has the length specified
2525 by the difference between the two sizes. In effect, the segment is split
2526 into it's initialized and uninitialized parts.
2527
2528 */
2529
2530 bfd_boolean
2531 _bfd_elf_make_section_from_phdr (bfd *abfd,
2532 Elf_Internal_Phdr *hdr,
2533 int index,
2534 const char *typename)
2535 {
2536 asection *newsect;
2537 char *name;
2538 char namebuf[64];
2539 size_t len;
2540 int split;
2541
2542 split = ((hdr->p_memsz > 0)
2543 && (hdr->p_filesz > 0)
2544 && (hdr->p_memsz > hdr->p_filesz));
2545 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2546 len = strlen (namebuf) + 1;
2547 name = bfd_alloc (abfd, len);
2548 if (!name)
2549 return FALSE;
2550 memcpy (name, namebuf, len);
2551 newsect = bfd_make_section (abfd, name);
2552 if (newsect == NULL)
2553 return FALSE;
2554 newsect->vma = hdr->p_vaddr;
2555 newsect->lma = hdr->p_paddr;
2556 newsect->size = hdr->p_filesz;
2557 newsect->filepos = hdr->p_offset;
2558 newsect->flags |= SEC_HAS_CONTENTS;
2559 newsect->alignment_power = bfd_log2 (hdr->p_align);
2560 if (hdr->p_type == PT_LOAD)
2561 {
2562 newsect->flags |= SEC_ALLOC;
2563 newsect->flags |= SEC_LOAD;
2564 if (hdr->p_flags & PF_X)
2565 {
2566 /* FIXME: all we known is that it has execute PERMISSION,
2567 may be data. */
2568 newsect->flags |= SEC_CODE;
2569 }
2570 }
2571 if (!(hdr->p_flags & PF_W))
2572 {
2573 newsect->flags |= SEC_READONLY;
2574 }
2575
2576 if (split)
2577 {
2578 sprintf (namebuf, "%s%db", typename, index);
2579 len = strlen (namebuf) + 1;
2580 name = bfd_alloc (abfd, len);
2581 if (!name)
2582 return FALSE;
2583 memcpy (name, namebuf, len);
2584 newsect = bfd_make_section (abfd, name);
2585 if (newsect == NULL)
2586 return FALSE;
2587 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2588 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2589 newsect->size = hdr->p_memsz - hdr->p_filesz;
2590 if (hdr->p_type == PT_LOAD)
2591 {
2592 newsect->flags |= SEC_ALLOC;
2593 if (hdr->p_flags & PF_X)
2594 newsect->flags |= SEC_CODE;
2595 }
2596 if (!(hdr->p_flags & PF_W))
2597 newsect->flags |= SEC_READONLY;
2598 }
2599
2600 return TRUE;
2601 }
2602
2603 bfd_boolean
2604 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2605 {
2606 const struct elf_backend_data *bed;
2607
2608 switch (hdr->p_type)
2609 {
2610 case PT_NULL:
2611 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2612
2613 case PT_LOAD:
2614 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2615
2616 case PT_DYNAMIC:
2617 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2618
2619 case PT_INTERP:
2620 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2621
2622 case PT_NOTE:
2623 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2624 return FALSE;
2625 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2626 return FALSE;
2627 return TRUE;
2628
2629 case PT_SHLIB:
2630 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2631
2632 case PT_PHDR:
2633 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2634
2635 case PT_GNU_EH_FRAME:
2636 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2637 "eh_frame_hdr");
2638
2639 case PT_GNU_STACK:
2640 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2641
2642 case PT_GNU_RELRO:
2643 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2644
2645 default:
2646 /* Check for any processor-specific program segment types. */
2647 bed = get_elf_backend_data (abfd);
2648 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2649 }
2650 }
2651
2652 /* Initialize REL_HDR, the section-header for new section, containing
2653 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2654 relocations; otherwise, we use REL relocations. */
2655
2656 bfd_boolean
2657 _bfd_elf_init_reloc_shdr (bfd *abfd,
2658 Elf_Internal_Shdr *rel_hdr,
2659 asection *asect,
2660 bfd_boolean use_rela_p)
2661 {
2662 char *name;
2663 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2664 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2665
2666 name = bfd_alloc (abfd, amt);
2667 if (name == NULL)
2668 return FALSE;
2669 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2670 rel_hdr->sh_name =
2671 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2672 FALSE);
2673 if (rel_hdr->sh_name == (unsigned int) -1)
2674 return FALSE;
2675 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2676 rel_hdr->sh_entsize = (use_rela_p
2677 ? bed->s->sizeof_rela
2678 : bed->s->sizeof_rel);
2679 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2680 rel_hdr->sh_flags = 0;
2681 rel_hdr->sh_addr = 0;
2682 rel_hdr->sh_size = 0;
2683 rel_hdr->sh_offset = 0;
2684
2685 return TRUE;
2686 }
2687
2688 /* Set up an ELF internal section header for a section. */
2689
2690 static void
2691 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2692 {
2693 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2694 bfd_boolean *failedptr = failedptrarg;
2695 Elf_Internal_Shdr *this_hdr;
2696
2697 if (*failedptr)
2698 {
2699 /* We already failed; just get out of the bfd_map_over_sections
2700 loop. */
2701 return;
2702 }
2703
2704 this_hdr = &elf_section_data (asect)->this_hdr;
2705
2706 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2707 asect->name, FALSE);
2708 if (this_hdr->sh_name == (unsigned int) -1)
2709 {
2710 *failedptr = TRUE;
2711 return;
2712 }
2713
2714 /* Don't clear sh_flags. Assembler may set additional bits. */
2715
2716 if ((asect->flags & SEC_ALLOC) != 0
2717 || asect->user_set_vma)
2718 this_hdr->sh_addr = asect->vma;
2719 else
2720 this_hdr->sh_addr = 0;
2721
2722 this_hdr->sh_offset = 0;
2723 this_hdr->sh_size = asect->size;
2724 this_hdr->sh_link = 0;
2725 this_hdr->sh_addralign = 1 << asect->alignment_power;
2726 /* The sh_entsize and sh_info fields may have been set already by
2727 copy_private_section_data. */
2728
2729 this_hdr->bfd_section = asect;
2730 this_hdr->contents = NULL;
2731
2732 /* If the section type is unspecified, we set it based on
2733 asect->flags. */
2734 if (this_hdr->sh_type == SHT_NULL)
2735 {
2736 if ((asect->flags & SEC_GROUP) != 0)
2737 this_hdr->sh_type = SHT_GROUP;
2738 else if ((asect->flags & SEC_ALLOC) != 0
2739 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2740 || (asect->flags & SEC_NEVER_LOAD) != 0))
2741 this_hdr->sh_type = SHT_NOBITS;
2742 else
2743 this_hdr->sh_type = SHT_PROGBITS;
2744 }
2745
2746 switch (this_hdr->sh_type)
2747 {
2748 default:
2749 break;
2750
2751 case SHT_STRTAB:
2752 case SHT_INIT_ARRAY:
2753 case SHT_FINI_ARRAY:
2754 case SHT_PREINIT_ARRAY:
2755 case SHT_NOTE:
2756 case SHT_NOBITS:
2757 case SHT_PROGBITS:
2758 break;
2759
2760 case SHT_HASH:
2761 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2762 break;
2763
2764 case SHT_DYNSYM:
2765 this_hdr->sh_entsize = bed->s->sizeof_sym;
2766 break;
2767
2768 case SHT_DYNAMIC:
2769 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2770 break;
2771
2772 case SHT_RELA:
2773 if (get_elf_backend_data (abfd)->may_use_rela_p)
2774 this_hdr->sh_entsize = bed->s->sizeof_rela;
2775 break;
2776
2777 case SHT_REL:
2778 if (get_elf_backend_data (abfd)->may_use_rel_p)
2779 this_hdr->sh_entsize = bed->s->sizeof_rel;
2780 break;
2781
2782 case SHT_GNU_versym:
2783 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2784 break;
2785
2786 case SHT_GNU_verdef:
2787 this_hdr->sh_entsize = 0;
2788 /* objcopy or strip will copy over sh_info, but may not set
2789 cverdefs. The linker will set cverdefs, but sh_info will be
2790 zero. */
2791 if (this_hdr->sh_info == 0)
2792 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2793 else
2794 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2795 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2796 break;
2797
2798 case SHT_GNU_verneed:
2799 this_hdr->sh_entsize = 0;
2800 /* objcopy or strip will copy over sh_info, but may not set
2801 cverrefs. The linker will set cverrefs, but sh_info will be
2802 zero. */
2803 if (this_hdr->sh_info == 0)
2804 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2805 else
2806 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2807 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2808 break;
2809
2810 case SHT_GROUP:
2811 this_hdr->sh_entsize = 4;
2812 break;
2813 }
2814
2815 if ((asect->flags & SEC_ALLOC) != 0)
2816 this_hdr->sh_flags |= SHF_ALLOC;
2817 if ((asect->flags & SEC_READONLY) == 0)
2818 this_hdr->sh_flags |= SHF_WRITE;
2819 if ((asect->flags & SEC_CODE) != 0)
2820 this_hdr->sh_flags |= SHF_EXECINSTR;
2821 if ((asect->flags & SEC_MERGE) != 0)
2822 {
2823 this_hdr->sh_flags |= SHF_MERGE;
2824 this_hdr->sh_entsize = asect->entsize;
2825 if ((asect->flags & SEC_STRINGS) != 0)
2826 this_hdr->sh_flags |= SHF_STRINGS;
2827 }
2828 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2829 this_hdr->sh_flags |= SHF_GROUP;
2830 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2831 {
2832 this_hdr->sh_flags |= SHF_TLS;
2833 if (asect->size == 0
2834 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2835 {
2836 struct bfd_link_order *o = asect->map_tail.link_order;
2837
2838 this_hdr->sh_size = 0;
2839 if (o != NULL)
2840 {
2841 this_hdr->sh_size = o->offset + o->size;
2842 if (this_hdr->sh_size != 0)
2843 this_hdr->sh_type = SHT_NOBITS;
2844 }
2845 }
2846 }
2847
2848 /* Check for processor-specific section types. */
2849 if (bed->elf_backend_fake_sections
2850 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2851 *failedptr = TRUE;
2852
2853 /* If the section has relocs, set up a section header for the
2854 SHT_REL[A] section. If two relocation sections are required for
2855 this section, it is up to the processor-specific back-end to
2856 create the other. */
2857 if ((asect->flags & SEC_RELOC) != 0
2858 && !_bfd_elf_init_reloc_shdr (abfd,
2859 &elf_section_data (asect)->rel_hdr,
2860 asect,
2861 asect->use_rela_p))
2862 *failedptr = TRUE;
2863 }
2864
2865 /* Fill in the contents of a SHT_GROUP section. */
2866
2867 void
2868 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2869 {
2870 bfd_boolean *failedptr = failedptrarg;
2871 unsigned long symindx;
2872 asection *elt, *first;
2873 unsigned char *loc;
2874 bfd_boolean gas;
2875
2876 /* Ignore linker created group section. See elfNN_ia64_object_p in
2877 elfxx-ia64.c. */
2878 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2879 || *failedptr)
2880 return;
2881
2882 symindx = 0;
2883 if (elf_group_id (sec) != NULL)
2884 symindx = elf_group_id (sec)->udata.i;
2885
2886 if (symindx == 0)
2887 {
2888 /* If called from the assembler, swap_out_syms will have set up
2889 elf_section_syms; If called for "ld -r", use target_index. */
2890 if (elf_section_syms (abfd) != NULL)
2891 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2892 else
2893 symindx = sec->target_index;
2894 }
2895 elf_section_data (sec)->this_hdr.sh_info = symindx;
2896
2897 /* The contents won't be allocated for "ld -r" or objcopy. */
2898 gas = TRUE;
2899 if (sec->contents == NULL)
2900 {
2901 gas = FALSE;
2902 sec->contents = bfd_alloc (abfd, sec->size);
2903
2904 /* Arrange for the section to be written out. */
2905 elf_section_data (sec)->this_hdr.contents = sec->contents;
2906 if (sec->contents == NULL)
2907 {
2908 *failedptr = TRUE;
2909 return;
2910 }
2911 }
2912
2913 loc = sec->contents + sec->size;
2914
2915 /* Get the pointer to the first section in the group that gas
2916 squirreled away here. objcopy arranges for this to be set to the
2917 start of the input section group. */
2918 first = elt = elf_next_in_group (sec);
2919
2920 /* First element is a flag word. Rest of section is elf section
2921 indices for all the sections of the group. Write them backwards
2922 just to keep the group in the same order as given in .section
2923 directives, not that it matters. */
2924 while (elt != NULL)
2925 {
2926 asection *s;
2927 unsigned int idx;
2928
2929 loc -= 4;
2930 s = elt;
2931 if (!gas)
2932 s = s->output_section;
2933 idx = 0;
2934 if (s != NULL)
2935 idx = elf_section_data (s)->this_idx;
2936 H_PUT_32 (abfd, idx, loc);
2937 elt = elf_next_in_group (elt);
2938 if (elt == first)
2939 break;
2940 }
2941
2942 if ((loc -= 4) != sec->contents)
2943 abort ();
2944
2945 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2946 }
2947
2948 /* Assign all ELF section numbers. The dummy first section is handled here
2949 too. The link/info pointers for the standard section types are filled
2950 in here too, while we're at it. */
2951
2952 static bfd_boolean
2953 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2954 {
2955 struct elf_obj_tdata *t = elf_tdata (abfd);
2956 asection *sec;
2957 unsigned int section_number, secn;
2958 Elf_Internal_Shdr **i_shdrp;
2959 struct bfd_elf_section_data *d;
2960
2961 section_number = 1;
2962
2963 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2964
2965 /* SHT_GROUP sections are in relocatable files only. */
2966 if (link_info == NULL || link_info->relocatable)
2967 {
2968 /* Put SHT_GROUP sections first. */
2969 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2970 {
2971 d = elf_section_data (sec);
2972
2973 if (d->this_hdr.sh_type == SHT_GROUP)
2974 {
2975 if (sec->flags & SEC_LINKER_CREATED)
2976 {
2977 /* Remove the linker created SHT_GROUP sections. */
2978 bfd_section_list_remove (abfd, sec);
2979 abfd->section_count--;
2980 }
2981 else
2982 {
2983 if (section_number == SHN_LORESERVE)
2984 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2985 d->this_idx = section_number++;
2986 }
2987 }
2988 }
2989 }
2990
2991 for (sec = abfd->sections; sec; sec = sec->next)
2992 {
2993 d = elf_section_data (sec);
2994
2995 if (d->this_hdr.sh_type != SHT_GROUP)
2996 {
2997 if (section_number == SHN_LORESERVE)
2998 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2999 d->this_idx = section_number++;
3000 }
3001 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3002 if ((sec->flags & SEC_RELOC) == 0)
3003 d->rel_idx = 0;
3004 else
3005 {
3006 if (section_number == SHN_LORESERVE)
3007 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3008 d->rel_idx = section_number++;
3009 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3010 }
3011
3012 if (d->rel_hdr2)
3013 {
3014 if (section_number == SHN_LORESERVE)
3015 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3016 d->rel_idx2 = section_number++;
3017 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3018 }
3019 else
3020 d->rel_idx2 = 0;
3021 }
3022
3023 if (section_number == SHN_LORESERVE)
3024 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3025 t->shstrtab_section = section_number++;
3026 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3027 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3028
3029 if (bfd_get_symcount (abfd) > 0)
3030 {
3031 if (section_number == SHN_LORESERVE)
3032 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3033 t->symtab_section = section_number++;
3034 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3035 if (section_number > SHN_LORESERVE - 2)
3036 {
3037 if (section_number == SHN_LORESERVE)
3038 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3039 t->symtab_shndx_section = section_number++;
3040 t->symtab_shndx_hdr.sh_name
3041 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3042 ".symtab_shndx", FALSE);
3043 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3044 return FALSE;
3045 }
3046 if (section_number == SHN_LORESERVE)
3047 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3048 t->strtab_section = section_number++;
3049 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3050 }
3051
3052 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3053 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3054
3055 elf_numsections (abfd) = section_number;
3056 elf_elfheader (abfd)->e_shnum = section_number;
3057 if (section_number > SHN_LORESERVE)
3058 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3059
3060 /* Set up the list of section header pointers, in agreement with the
3061 indices. */
3062 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3063 if (i_shdrp == NULL)
3064 return FALSE;
3065
3066 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3067 if (i_shdrp[0] == NULL)
3068 {
3069 bfd_release (abfd, i_shdrp);
3070 return FALSE;
3071 }
3072
3073 elf_elfsections (abfd) = i_shdrp;
3074
3075 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3076 if (bfd_get_symcount (abfd) > 0)
3077 {
3078 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3079 if (elf_numsections (abfd) > SHN_LORESERVE)
3080 {
3081 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3082 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3083 }
3084 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3085 t->symtab_hdr.sh_link = t->strtab_section;
3086 }
3087
3088 for (sec = abfd->sections; sec; sec = sec->next)
3089 {
3090 struct bfd_elf_section_data *d = elf_section_data (sec);
3091 asection *s;
3092 const char *name;
3093
3094 i_shdrp[d->this_idx] = &d->this_hdr;
3095 if (d->rel_idx != 0)
3096 i_shdrp[d->rel_idx] = &d->rel_hdr;
3097 if (d->rel_idx2 != 0)
3098 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3099
3100 /* Fill in the sh_link and sh_info fields while we're at it. */
3101
3102 /* sh_link of a reloc section is the section index of the symbol
3103 table. sh_info is the section index of the section to which
3104 the relocation entries apply. */
3105 if (d->rel_idx != 0)
3106 {
3107 d->rel_hdr.sh_link = t->symtab_section;
3108 d->rel_hdr.sh_info = d->this_idx;
3109 }
3110 if (d->rel_idx2 != 0)
3111 {
3112 d->rel_hdr2->sh_link = t->symtab_section;
3113 d->rel_hdr2->sh_info = d->this_idx;
3114 }
3115
3116 /* We need to set up sh_link for SHF_LINK_ORDER. */
3117 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3118 {
3119 s = elf_linked_to_section (sec);
3120 if (s)
3121 {
3122 /* elf_linked_to_section points to the input section. */
3123 if (link_info != NULL)
3124 {
3125 /* Check discarded linkonce section. */
3126 if (elf_discarded_section (s))
3127 {
3128 asection *kept;
3129 (*_bfd_error_handler)
3130 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3131 abfd, d->this_hdr.bfd_section,
3132 s, s->owner);
3133 /* Point to the kept section if it has the same
3134 size as the discarded one. */
3135 kept = _bfd_elf_check_kept_section (s);
3136 if (kept == NULL)
3137 {
3138 bfd_set_error (bfd_error_bad_value);
3139 return FALSE;
3140 }
3141 s = kept;
3142 }
3143
3144 s = s->output_section;
3145 BFD_ASSERT (s != NULL);
3146 }
3147 else
3148 {
3149 /* Handle objcopy. */
3150 if (s->output_section == NULL)
3151 {
3152 (*_bfd_error_handler)
3153 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3154 abfd, d->this_hdr.bfd_section, s, s->owner);
3155 bfd_set_error (bfd_error_bad_value);
3156 return FALSE;
3157 }
3158 s = s->output_section;
3159 }
3160 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3161 }
3162 else
3163 {
3164 /* PR 290:
3165 The Intel C compiler generates SHT_IA_64_UNWIND with
3166 SHF_LINK_ORDER. But it doesn't set the sh_link or
3167 sh_info fields. Hence we could get the situation
3168 where s is NULL. */
3169 const struct elf_backend_data *bed
3170 = get_elf_backend_data (abfd);
3171 if (bed->link_order_error_handler)
3172 bed->link_order_error_handler
3173 (_("%B: warning: sh_link not set for section `%A'"),
3174 abfd, sec);
3175 }
3176 }
3177
3178 switch (d->this_hdr.sh_type)
3179 {
3180 case SHT_REL:
3181 case SHT_RELA:
3182 /* A reloc section which we are treating as a normal BFD
3183 section. sh_link is the section index of the symbol
3184 table. sh_info is the section index of the section to
3185 which the relocation entries apply. We assume that an
3186 allocated reloc section uses the dynamic symbol table.
3187 FIXME: How can we be sure? */
3188 s = bfd_get_section_by_name (abfd, ".dynsym");
3189 if (s != NULL)
3190 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3191
3192 /* We look up the section the relocs apply to by name. */
3193 name = sec->name;
3194 if (d->this_hdr.sh_type == SHT_REL)
3195 name += 4;
3196 else
3197 name += 5;
3198 s = bfd_get_section_by_name (abfd, name);
3199 if (s != NULL)
3200 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3201 break;
3202
3203 case SHT_STRTAB:
3204 /* We assume that a section named .stab*str is a stabs
3205 string section. We look for a section with the same name
3206 but without the trailing ``str'', and set its sh_link
3207 field to point to this section. */
3208 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3209 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3210 {
3211 size_t len;
3212 char *alc;
3213
3214 len = strlen (sec->name);
3215 alc = bfd_malloc (len - 2);
3216 if (alc == NULL)
3217 return FALSE;
3218 memcpy (alc, sec->name, len - 3);
3219 alc[len - 3] = '\0';
3220 s = bfd_get_section_by_name (abfd, alc);
3221 free (alc);
3222 if (s != NULL)
3223 {
3224 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3225
3226 /* This is a .stab section. */
3227 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3228 elf_section_data (s)->this_hdr.sh_entsize
3229 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3230 }
3231 }
3232 break;
3233
3234 case SHT_DYNAMIC:
3235 case SHT_DYNSYM:
3236 case SHT_GNU_verneed:
3237 case SHT_GNU_verdef:
3238 /* sh_link is the section header index of the string table
3239 used for the dynamic entries, or the symbol table, or the
3240 version strings. */
3241 s = bfd_get_section_by_name (abfd, ".dynstr");
3242 if (s != NULL)
3243 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3244 break;
3245
3246 case SHT_GNU_LIBLIST:
3247 /* sh_link is the section header index of the prelink library
3248 list
3249 used for the dynamic entries, or the symbol table, or the
3250 version strings. */
3251 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3252 ? ".dynstr" : ".gnu.libstr");
3253 if (s != NULL)
3254 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3255 break;
3256
3257 case SHT_HASH:
3258 case SHT_GNU_versym:
3259 /* sh_link is the section header index of the symbol table
3260 this hash table or version table is for. */
3261 s = bfd_get_section_by_name (abfd, ".dynsym");
3262 if (s != NULL)
3263 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3264 break;
3265
3266 case SHT_GROUP:
3267 d->this_hdr.sh_link = t->symtab_section;
3268 }
3269 }
3270
3271 for (secn = 1; secn < section_number; ++secn)
3272 if (i_shdrp[secn] == NULL)
3273 i_shdrp[secn] = i_shdrp[0];
3274 else
3275 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3276 i_shdrp[secn]->sh_name);
3277 return TRUE;
3278 }
3279
3280 /* Map symbol from it's internal number to the external number, moving
3281 all local symbols to be at the head of the list. */
3282
3283 static int
3284 sym_is_global (bfd *abfd, asymbol *sym)
3285 {
3286 /* If the backend has a special mapping, use it. */
3287 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3288 if (bed->elf_backend_sym_is_global)
3289 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3290
3291 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3292 || bfd_is_und_section (bfd_get_section (sym))
3293 || bfd_is_com_section (bfd_get_section (sym)));
3294 }
3295
3296 static bfd_boolean
3297 elf_map_symbols (bfd *abfd)
3298 {
3299 unsigned int symcount = bfd_get_symcount (abfd);
3300 asymbol **syms = bfd_get_outsymbols (abfd);
3301 asymbol **sect_syms;
3302 unsigned int num_locals = 0;
3303 unsigned int num_globals = 0;
3304 unsigned int num_locals2 = 0;
3305 unsigned int num_globals2 = 0;
3306 int max_index = 0;
3307 unsigned int idx;
3308 asection *asect;
3309 asymbol **new_syms;
3310
3311 #ifdef DEBUG
3312 fprintf (stderr, "elf_map_symbols\n");
3313 fflush (stderr);
3314 #endif
3315
3316 for (asect = abfd->sections; asect; asect = asect->next)
3317 {
3318 if (max_index < asect->index)
3319 max_index = asect->index;
3320 }
3321
3322 max_index++;
3323 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3324 if (sect_syms == NULL)
3325 return FALSE;
3326 elf_section_syms (abfd) = sect_syms;
3327 elf_num_section_syms (abfd) = max_index;
3328
3329 /* Init sect_syms entries for any section symbols we have already
3330 decided to output. */
3331 for (idx = 0; idx < symcount; idx++)
3332 {
3333 asymbol *sym = syms[idx];
3334
3335 if ((sym->flags & BSF_SECTION_SYM) != 0
3336 && sym->value == 0)
3337 {
3338 asection *sec;
3339
3340 sec = sym->section;
3341
3342 if (sec->owner != NULL)
3343 {
3344 if (sec->owner != abfd)
3345 {
3346 if (sec->output_offset != 0)
3347 continue;
3348
3349 sec = sec->output_section;
3350
3351 /* Empty sections in the input files may have had a
3352 section symbol created for them. (See the comment
3353 near the end of _bfd_generic_link_output_symbols in
3354 linker.c). If the linker script discards such
3355 sections then we will reach this point. Since we know
3356 that we cannot avoid this case, we detect it and skip
3357 the abort and the assignment to the sect_syms array.
3358 To reproduce this particular case try running the
3359 linker testsuite test ld-scripts/weak.exp for an ELF
3360 port that uses the generic linker. */
3361 if (sec->owner == NULL)
3362 continue;
3363
3364 BFD_ASSERT (sec->owner == abfd);
3365 }
3366 sect_syms[sec->index] = syms[idx];
3367 }
3368 }
3369 }
3370
3371 /* Classify all of the symbols. */
3372 for (idx = 0; idx < symcount; idx++)
3373 {
3374 if (!sym_is_global (abfd, syms[idx]))
3375 num_locals++;
3376 else
3377 num_globals++;
3378 }
3379
3380 /* We will be adding a section symbol for each BFD section. Most normal
3381 sections will already have a section symbol in outsymbols, but
3382 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3383 at least in that case. */
3384 for (asect = abfd->sections; asect; asect = asect->next)
3385 {
3386 if (sect_syms[asect->index] == NULL)
3387 {
3388 if (!sym_is_global (abfd, asect->symbol))
3389 num_locals++;
3390 else
3391 num_globals++;
3392 }
3393 }
3394
3395 /* Now sort the symbols so the local symbols are first. */
3396 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3397
3398 if (new_syms == NULL)
3399 return FALSE;
3400
3401 for (idx = 0; idx < symcount; idx++)
3402 {
3403 asymbol *sym = syms[idx];
3404 unsigned int i;
3405
3406 if (!sym_is_global (abfd, sym))
3407 i = num_locals2++;
3408 else
3409 i = num_locals + num_globals2++;
3410 new_syms[i] = sym;
3411 sym->udata.i = i + 1;
3412 }
3413 for (asect = abfd->sections; asect; asect = asect->next)
3414 {
3415 if (sect_syms[asect->index] == NULL)
3416 {
3417 asymbol *sym = asect->symbol;
3418 unsigned int i;
3419
3420 sect_syms[asect->index] = sym;
3421 if (!sym_is_global (abfd, sym))
3422 i = num_locals2++;
3423 else
3424 i = num_locals + num_globals2++;
3425 new_syms[i] = sym;
3426 sym->udata.i = i + 1;
3427 }
3428 }
3429
3430 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3431
3432 elf_num_locals (abfd) = num_locals;
3433 elf_num_globals (abfd) = num_globals;
3434 return TRUE;
3435 }
3436
3437 /* Align to the maximum file alignment that could be required for any
3438 ELF data structure. */
3439
3440 static inline file_ptr
3441 align_file_position (file_ptr off, int align)
3442 {
3443 return (off + align - 1) & ~(align - 1);
3444 }
3445
3446 /* Assign a file position to a section, optionally aligning to the
3447 required section alignment. */
3448
3449 file_ptr
3450 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3451 file_ptr offset,
3452 bfd_boolean align)
3453 {
3454 if (align)
3455 {
3456 unsigned int al;
3457
3458 al = i_shdrp->sh_addralign;
3459 if (al > 1)
3460 offset = BFD_ALIGN (offset, al);
3461 }
3462 i_shdrp->sh_offset = offset;
3463 if (i_shdrp->bfd_section != NULL)
3464 i_shdrp->bfd_section->filepos = offset;
3465 if (i_shdrp->sh_type != SHT_NOBITS)
3466 offset += i_shdrp->sh_size;
3467 return offset;
3468 }
3469
3470 /* Compute the file positions we are going to put the sections at, and
3471 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3472 is not NULL, this is being called by the ELF backend linker. */
3473
3474 bfd_boolean
3475 _bfd_elf_compute_section_file_positions (bfd *abfd,
3476 struct bfd_link_info *link_info)
3477 {
3478 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3479 bfd_boolean failed;
3480 struct bfd_strtab_hash *strtab = NULL;
3481 Elf_Internal_Shdr *shstrtab_hdr;
3482
3483 if (abfd->output_has_begun)
3484 return TRUE;
3485
3486 /* Do any elf backend specific processing first. */
3487 if (bed->elf_backend_begin_write_processing)
3488 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3489
3490 if (! prep_headers (abfd))
3491 return FALSE;
3492
3493 /* Post process the headers if necessary. */
3494 if (bed->elf_backend_post_process_headers)
3495 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3496
3497 failed = FALSE;
3498 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3499 if (failed)
3500 return FALSE;
3501
3502 if (!assign_section_numbers (abfd, link_info))
3503 return FALSE;
3504
3505 /* The backend linker builds symbol table information itself. */
3506 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3507 {
3508 /* Non-zero if doing a relocatable link. */
3509 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3510
3511 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3512 return FALSE;
3513 }
3514
3515 if (link_info == NULL)
3516 {
3517 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3518 if (failed)
3519 return FALSE;
3520 }
3521
3522 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3523 /* sh_name was set in prep_headers. */
3524 shstrtab_hdr->sh_type = SHT_STRTAB;
3525 shstrtab_hdr->sh_flags = 0;
3526 shstrtab_hdr->sh_addr = 0;
3527 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3528 shstrtab_hdr->sh_entsize = 0;
3529 shstrtab_hdr->sh_link = 0;
3530 shstrtab_hdr->sh_info = 0;
3531 /* sh_offset is set in assign_file_positions_except_relocs. */
3532 shstrtab_hdr->sh_addralign = 1;
3533
3534 if (!assign_file_positions_except_relocs (abfd, link_info))
3535 return FALSE;
3536
3537 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3538 {
3539 file_ptr off;
3540 Elf_Internal_Shdr *hdr;
3541
3542 off = elf_tdata (abfd)->next_file_pos;
3543
3544 hdr = &elf_tdata (abfd)->symtab_hdr;
3545 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3546
3547 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3548 if (hdr->sh_size != 0)
3549 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3550
3551 hdr = &elf_tdata (abfd)->strtab_hdr;
3552 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3553
3554 elf_tdata (abfd)->next_file_pos = off;
3555
3556 /* Now that we know where the .strtab section goes, write it
3557 out. */
3558 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3559 || ! _bfd_stringtab_emit (abfd, strtab))
3560 return FALSE;
3561 _bfd_stringtab_free (strtab);
3562 }
3563
3564 abfd->output_has_begun = TRUE;
3565
3566 return TRUE;
3567 }
3568
3569 /* Create a mapping from a set of sections to a program segment. */
3570
3571 static struct elf_segment_map *
3572 make_mapping (bfd *abfd,
3573 asection **sections,
3574 unsigned int from,
3575 unsigned int to,
3576 bfd_boolean phdr)
3577 {
3578 struct elf_segment_map *m;
3579 unsigned int i;
3580 asection **hdrpp;
3581 bfd_size_type amt;
3582
3583 amt = sizeof (struct elf_segment_map);
3584 amt += (to - from - 1) * sizeof (asection *);
3585 m = bfd_zalloc (abfd, amt);
3586 if (m == NULL)
3587 return NULL;
3588 m->next = NULL;
3589 m->p_type = PT_LOAD;
3590 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3591 m->sections[i - from] = *hdrpp;
3592 m->count = to - from;
3593
3594 if (from == 0 && phdr)
3595 {
3596 /* Include the headers in the first PT_LOAD segment. */
3597 m->includes_filehdr = 1;
3598 m->includes_phdrs = 1;
3599 }
3600
3601 return m;
3602 }
3603
3604 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3605 on failure. */
3606
3607 struct elf_segment_map *
3608 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3609 {
3610 struct elf_segment_map *m;
3611
3612 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3613 if (m == NULL)
3614 return NULL;
3615 m->next = NULL;
3616 m->p_type = PT_DYNAMIC;
3617 m->count = 1;
3618 m->sections[0] = dynsec;
3619
3620 return m;
3621 }
3622
3623 /* Set up a mapping from BFD sections to program segments. */
3624
3625 static bfd_boolean
3626 map_sections_to_segments (bfd *abfd)
3627 {
3628 asection **sections = NULL;
3629 asection *s;
3630 unsigned int i;
3631 unsigned int count;
3632 struct elf_segment_map *mfirst;
3633 struct elf_segment_map **pm;
3634 struct elf_segment_map *m;
3635 asection *last_hdr;
3636 bfd_vma last_size;
3637 unsigned int phdr_index;
3638 bfd_vma maxpagesize;
3639 asection **hdrpp;
3640 bfd_boolean phdr_in_segment = TRUE;
3641 bfd_boolean writable;
3642 int tls_count = 0;
3643 asection *first_tls = NULL;
3644 asection *dynsec, *eh_frame_hdr;
3645 bfd_size_type amt;
3646
3647 if (elf_tdata (abfd)->segment_map != NULL)
3648 return TRUE;
3649
3650 if (bfd_count_sections (abfd) == 0)
3651 return TRUE;
3652
3653 /* Select the allocated sections, and sort them. */
3654
3655 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3656 if (sections == NULL)
3657 goto error_return;
3658
3659 i = 0;
3660 for (s = abfd->sections; s != NULL; s = s->next)
3661 {
3662 if ((s->flags & SEC_ALLOC) != 0)
3663 {
3664 sections[i] = s;
3665 ++i;
3666 }
3667 }
3668 BFD_ASSERT (i <= bfd_count_sections (abfd));
3669 count = i;
3670
3671 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3672
3673 /* Build the mapping. */
3674
3675 mfirst = NULL;
3676 pm = &mfirst;
3677
3678 /* If we have a .interp section, then create a PT_PHDR segment for
3679 the program headers and a PT_INTERP segment for the .interp
3680 section. */
3681 s = bfd_get_section_by_name (abfd, ".interp");
3682 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3683 {
3684 amt = sizeof (struct elf_segment_map);
3685 m = bfd_zalloc (abfd, amt);
3686 if (m == NULL)
3687 goto error_return;
3688 m->next = NULL;
3689 m->p_type = PT_PHDR;
3690 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3691 m->p_flags = PF_R | PF_X;
3692 m->p_flags_valid = 1;
3693 m->includes_phdrs = 1;
3694
3695 *pm = m;
3696 pm = &m->next;
3697
3698 amt = sizeof (struct elf_segment_map);
3699 m = bfd_zalloc (abfd, amt);
3700 if (m == NULL)
3701 goto error_return;
3702 m->next = NULL;
3703 m->p_type = PT_INTERP;
3704 m->count = 1;
3705 m->sections[0] = s;
3706
3707 *pm = m;
3708 pm = &m->next;
3709 }
3710
3711 /* Look through the sections. We put sections in the same program
3712 segment when the start of the second section can be placed within
3713 a few bytes of the end of the first section. */
3714 last_hdr = NULL;
3715 last_size = 0;
3716 phdr_index = 0;
3717 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3718 writable = FALSE;
3719 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3720 if (dynsec != NULL
3721 && (dynsec->flags & SEC_LOAD) == 0)
3722 dynsec = NULL;
3723
3724 /* Deal with -Ttext or something similar such that the first section
3725 is not adjacent to the program headers. This is an
3726 approximation, since at this point we don't know exactly how many
3727 program headers we will need. */
3728 if (count > 0)
3729 {
3730 bfd_size_type phdr_size;
3731
3732 phdr_size = elf_tdata (abfd)->program_header_size;
3733 if (phdr_size == 0)
3734 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3735 if ((abfd->flags & D_PAGED) == 0
3736 || sections[0]->lma < phdr_size
3737 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3738 phdr_in_segment = FALSE;
3739 }
3740
3741 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3742 {
3743 asection *hdr;
3744 bfd_boolean new_segment;
3745
3746 hdr = *hdrpp;
3747
3748 /* See if this section and the last one will fit in the same
3749 segment. */
3750
3751 if (last_hdr == NULL)
3752 {
3753 /* If we don't have a segment yet, then we don't need a new
3754 one (we build the last one after this loop). */
3755 new_segment = FALSE;
3756 }
3757 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3758 {
3759 /* If this section has a different relation between the
3760 virtual address and the load address, then we need a new
3761 segment. */
3762 new_segment = TRUE;
3763 }
3764 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3765 < BFD_ALIGN (hdr->lma, maxpagesize))
3766 {
3767 /* If putting this section in this segment would force us to
3768 skip a page in the segment, then we need a new segment. */
3769 new_segment = TRUE;
3770 }
3771 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3772 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3773 {
3774 /* We don't want to put a loadable section after a
3775 nonloadable section in the same segment.
3776 Consider .tbss sections as loadable for this purpose. */
3777 new_segment = TRUE;
3778 }
3779 else if ((abfd->flags & D_PAGED) == 0)
3780 {
3781 /* If the file is not demand paged, which means that we
3782 don't require the sections to be correctly aligned in the
3783 file, then there is no other reason for a new segment. */
3784 new_segment = FALSE;
3785 }
3786 else if (! writable
3787 && (hdr->flags & SEC_READONLY) == 0
3788 && (((last_hdr->lma + last_size - 1)
3789 & ~(maxpagesize - 1))
3790 != (hdr->lma & ~(maxpagesize - 1))))
3791 {
3792 /* We don't want to put a writable section in a read only
3793 segment, unless they are on the same page in memory
3794 anyhow. We already know that the last section does not
3795 bring us past the current section on the page, so the
3796 only case in which the new section is not on the same
3797 page as the previous section is when the previous section
3798 ends precisely on a page boundary. */
3799 new_segment = TRUE;
3800 }
3801 else
3802 {
3803 /* Otherwise, we can use the same segment. */
3804 new_segment = FALSE;
3805 }
3806
3807 if (! new_segment)
3808 {
3809 if ((hdr->flags & SEC_READONLY) == 0)
3810 writable = TRUE;
3811 last_hdr = hdr;
3812 /* .tbss sections effectively have zero size. */
3813 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3814 last_size = hdr->size;
3815 else
3816 last_size = 0;
3817 continue;
3818 }
3819
3820 /* We need a new program segment. We must create a new program
3821 header holding all the sections from phdr_index until hdr. */
3822
3823 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3824 if (m == NULL)
3825 goto error_return;
3826
3827 *pm = m;
3828 pm = &m->next;
3829
3830 if ((hdr->flags & SEC_READONLY) == 0)
3831 writable = TRUE;
3832 else
3833 writable = FALSE;
3834
3835 last_hdr = hdr;
3836 /* .tbss sections effectively have zero size. */
3837 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3838 last_size = hdr->size;
3839 else
3840 last_size = 0;
3841 phdr_index = i;
3842 phdr_in_segment = FALSE;
3843 }
3844
3845 /* Create a final PT_LOAD program segment. */
3846 if (last_hdr != NULL)
3847 {
3848 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3849 if (m == NULL)
3850 goto error_return;
3851
3852 *pm = m;
3853 pm = &m->next;
3854 }
3855
3856 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3857 if (dynsec != NULL)
3858 {
3859 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3860 if (m == NULL)
3861 goto error_return;
3862 *pm = m;
3863 pm = &m->next;
3864 }
3865
3866 /* For each loadable .note section, add a PT_NOTE segment. We don't
3867 use bfd_get_section_by_name, because if we link together
3868 nonloadable .note sections and loadable .note sections, we will
3869 generate two .note sections in the output file. FIXME: Using
3870 names for section types is bogus anyhow. */
3871 for (s = abfd->sections; s != NULL; s = s->next)
3872 {
3873 if ((s->flags & SEC_LOAD) != 0
3874 && strncmp (s->name, ".note", 5) == 0)
3875 {
3876 amt = sizeof (struct elf_segment_map);
3877 m = bfd_zalloc (abfd, amt);
3878 if (m == NULL)
3879 goto error_return;
3880 m->next = NULL;
3881 m->p_type = PT_NOTE;
3882 m->count = 1;
3883 m->sections[0] = s;
3884
3885 *pm = m;
3886 pm = &m->next;
3887 }
3888 if (s->flags & SEC_THREAD_LOCAL)
3889 {
3890 if (! tls_count)
3891 first_tls = s;
3892 tls_count++;
3893 }
3894 }
3895
3896 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3897 if (tls_count > 0)
3898 {
3899 int i;
3900
3901 amt = sizeof (struct elf_segment_map);
3902 amt += (tls_count - 1) * sizeof (asection *);
3903 m = bfd_zalloc (abfd, amt);
3904 if (m == NULL)
3905 goto error_return;
3906 m->next = NULL;
3907 m->p_type = PT_TLS;
3908 m->count = tls_count;
3909 /* Mandated PF_R. */
3910 m->p_flags = PF_R;
3911 m->p_flags_valid = 1;
3912 for (i = 0; i < tls_count; ++i)
3913 {
3914 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3915 m->sections[i] = first_tls;
3916 first_tls = first_tls->next;
3917 }
3918
3919 *pm = m;
3920 pm = &m->next;
3921 }
3922
3923 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3924 segment. */
3925 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3926 if (eh_frame_hdr != NULL
3927 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3928 {
3929 amt = sizeof (struct elf_segment_map);
3930 m = bfd_zalloc (abfd, amt);
3931 if (m == NULL)
3932 goto error_return;
3933 m->next = NULL;
3934 m->p_type = PT_GNU_EH_FRAME;
3935 m->count = 1;
3936 m->sections[0] = eh_frame_hdr->output_section;
3937
3938 *pm = m;
3939 pm = &m->next;
3940 }
3941
3942 if (elf_tdata (abfd)->stack_flags)
3943 {
3944 amt = sizeof (struct elf_segment_map);
3945 m = bfd_zalloc (abfd, amt);
3946 if (m == NULL)
3947 goto error_return;
3948 m->next = NULL;
3949 m->p_type = PT_GNU_STACK;
3950 m->p_flags = elf_tdata (abfd)->stack_flags;
3951 m->p_flags_valid = 1;
3952
3953 *pm = m;
3954 pm = &m->next;
3955 }
3956
3957 if (elf_tdata (abfd)->relro)
3958 {
3959 amt = sizeof (struct elf_segment_map);
3960 m = bfd_zalloc (abfd, amt);
3961 if (m == NULL)
3962 goto error_return;
3963 m->next = NULL;
3964 m->p_type = PT_GNU_RELRO;
3965 m->p_flags = PF_R;
3966 m->p_flags_valid = 1;
3967
3968 *pm = m;
3969 pm = &m->next;
3970 }
3971
3972 free (sections);
3973 sections = NULL;
3974
3975 elf_tdata (abfd)->segment_map = mfirst;
3976 return TRUE;
3977
3978 error_return:
3979 if (sections != NULL)
3980 free (sections);
3981 return FALSE;
3982 }
3983
3984 /* Sort sections by address. */
3985
3986 static int
3987 elf_sort_sections (const void *arg1, const void *arg2)
3988 {
3989 const asection *sec1 = *(const asection **) arg1;
3990 const asection *sec2 = *(const asection **) arg2;
3991 bfd_size_type size1, size2;
3992
3993 /* Sort by LMA first, since this is the address used to
3994 place the section into a segment. */
3995 if (sec1->lma < sec2->lma)
3996 return -1;
3997 else if (sec1->lma > sec2->lma)
3998 return 1;
3999
4000 /* Then sort by VMA. Normally the LMA and the VMA will be
4001 the same, and this will do nothing. */
4002 if (sec1->vma < sec2->vma)
4003 return -1;
4004 else if (sec1->vma > sec2->vma)
4005 return 1;
4006
4007 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4008
4009 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4010
4011 if (TOEND (sec1))
4012 {
4013 if (TOEND (sec2))
4014 {
4015 /* If the indicies are the same, do not return 0
4016 here, but continue to try the next comparison. */
4017 if (sec1->target_index - sec2->target_index != 0)
4018 return sec1->target_index - sec2->target_index;
4019 }
4020 else
4021 return 1;
4022 }
4023 else if (TOEND (sec2))
4024 return -1;
4025
4026 #undef TOEND
4027
4028 /* Sort by size, to put zero sized sections
4029 before others at the same address. */
4030
4031 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4032 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4033
4034 if (size1 < size2)
4035 return -1;
4036 if (size1 > size2)
4037 return 1;
4038
4039 return sec1->target_index - sec2->target_index;
4040 }
4041
4042 /* Ian Lance Taylor writes:
4043
4044 We shouldn't be using % with a negative signed number. That's just
4045 not good. We have to make sure either that the number is not
4046 negative, or that the number has an unsigned type. When the types
4047 are all the same size they wind up as unsigned. When file_ptr is a
4048 larger signed type, the arithmetic winds up as signed long long,
4049 which is wrong.
4050
4051 What we're trying to say here is something like ``increase OFF by
4052 the least amount that will cause it to be equal to the VMA modulo
4053 the page size.'' */
4054 /* In other words, something like:
4055
4056 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4057 off_offset = off % bed->maxpagesize;
4058 if (vma_offset < off_offset)
4059 adjustment = vma_offset + bed->maxpagesize - off_offset;
4060 else
4061 adjustment = vma_offset - off_offset;
4062
4063 which can can be collapsed into the expression below. */
4064
4065 static file_ptr
4066 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4067 {
4068 return ((vma - off) % maxpagesize);
4069 }
4070
4071 static void
4072 print_segment_map (bfd *abfd)
4073 {
4074 struct elf_segment_map *m;
4075 unsigned int i, j;
4076
4077 fprintf (stderr, _(" Section to Segment mapping:\n"));
4078 fprintf (stderr, _(" Segment Sections...\n"));
4079
4080 for (i= 0, m = elf_tdata (abfd)->segment_map;
4081 m != NULL;
4082 i++, m = m->next)
4083 {
4084 const char *pt = get_segment_type (m->p_type);
4085 char buf[32];
4086
4087 if (pt == NULL)
4088 {
4089 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4090 sprintf (buf, "LOPROC+%7.7x",
4091 (unsigned int) (m->p_type - PT_LOPROC));
4092 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4093 sprintf (buf, "LOOS+%7.7x",
4094 (unsigned int) (m->p_type - PT_LOOS));
4095 else
4096 snprintf (buf, sizeof (buf), "%8.8x",
4097 (unsigned int) m->p_type);
4098 pt = buf;
4099 }
4100 fprintf (stderr, " %2.2d: %14.14s: ", i, pt);
4101 for (j = 0; j < m->count; j++)
4102 fprintf (stderr, "%s ", m->sections [j]->name);
4103 putc ('\n',stderr);
4104 }
4105 }
4106
4107 /* Assign file positions to the sections based on the mapping from
4108 sections to segments. This function also sets up some fields in
4109 the file header. */
4110
4111 static bfd_boolean
4112 assign_file_positions_for_load_sections (bfd *abfd,
4113 struct bfd_link_info *link_info)
4114 {
4115 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4116 struct elf_segment_map *m;
4117 Elf_Internal_Phdr *phdrs;
4118 Elf_Internal_Phdr *p;
4119 file_ptr off, voff;
4120 unsigned int count;
4121 unsigned int alloc;
4122 unsigned int i;
4123
4124 if (elf_tdata (abfd)->segment_map == NULL)
4125 {
4126 if (! map_sections_to_segments (abfd))
4127 return FALSE;
4128 }
4129 else
4130 {
4131 /* The placement algorithm assumes that non allocated sections are
4132 not in PT_LOAD segments. We ensure this here by removing such
4133 sections from the segment map. We also remove excluded
4134 sections. */
4135 for (m = elf_tdata (abfd)->segment_map;
4136 m != NULL;
4137 m = m->next)
4138 {
4139 unsigned int new_count;
4140
4141 new_count = 0;
4142 for (i = 0; i < m->count; i ++)
4143 {
4144 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4145 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4146 || m->p_type != PT_LOAD))
4147 {
4148 if (i != new_count)
4149 m->sections[new_count] = m->sections[i];
4150
4151 new_count ++;
4152 }
4153 }
4154
4155 if (new_count != m->count)
4156 m->count = new_count;
4157 }
4158 }
4159
4160 if (bed->elf_backend_modify_segment_map)
4161 {
4162 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4163 return FALSE;
4164 }
4165
4166 count = 0;
4167 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4168 ++count;
4169
4170 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4171 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4172 elf_elfheader (abfd)->e_phnum = count;
4173
4174 if (count == 0)
4175 {
4176 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4177 return TRUE;
4178 }
4179
4180 /* If we already counted the number of program segments, make sure
4181 that we allocated enough space. This happens when SIZEOF_HEADERS
4182 is used in a linker script. */
4183 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4184 if (alloc != 0 && count > alloc)
4185 {
4186 ((*_bfd_error_handler)
4187 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4188 abfd, alloc, count));
4189 print_segment_map (abfd);
4190 bfd_set_error (bfd_error_bad_value);
4191 return FALSE;
4192 }
4193
4194 if (alloc == 0)
4195 {
4196 alloc = count;
4197 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4198 }
4199
4200 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4201 elf_tdata (abfd)->phdr = phdrs;
4202 if (phdrs == NULL)
4203 return FALSE;
4204
4205 off = bed->s->sizeof_ehdr;
4206 off += alloc * bed->s->sizeof_phdr;
4207
4208 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4209 m != NULL;
4210 m = m->next, p++)
4211 {
4212 asection **secpp;
4213
4214 /* If elf_segment_map is not from map_sections_to_segments, the
4215 sections may not be correctly ordered. NOTE: sorting should
4216 not be done to the PT_NOTE section of a corefile, which may
4217 contain several pseudo-sections artificially created by bfd.
4218 Sorting these pseudo-sections breaks things badly. */
4219 if (m->count > 1
4220 && !(elf_elfheader (abfd)->e_type == ET_CORE
4221 && m->p_type == PT_NOTE))
4222 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4223 elf_sort_sections);
4224
4225 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4226 number of sections with contents contributing to both p_filesz
4227 and p_memsz, followed by a number of sections with no contents
4228 that just contribute to p_memsz. In this loop, OFF tracks next
4229 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4230 an adjustment we use for segments that have no file contents
4231 but need zero filled memory allocation. */
4232 voff = 0;
4233 p->p_type = m->p_type;
4234 p->p_flags = m->p_flags;
4235
4236 if (p->p_type == PT_LOAD
4237 && m->count > 0)
4238 {
4239 bfd_size_type align;
4240 bfd_vma adjust;
4241 unsigned int align_power = 0;
4242
4243 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4244 {
4245 unsigned int secalign;
4246
4247 secalign = bfd_get_section_alignment (abfd, *secpp);
4248 if (secalign > align_power)
4249 align_power = secalign;
4250 }
4251 align = (bfd_size_type) 1 << align_power;
4252
4253 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4254 align = bed->maxpagesize;
4255
4256 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4257 off += adjust;
4258 if (adjust != 0
4259 && !m->includes_filehdr
4260 && !m->includes_phdrs
4261 && (ufile_ptr) off >= align)
4262 {
4263 /* If the first section isn't loadable, the same holds for
4264 any other sections. Since the segment won't need file
4265 space, we can make p_offset overlap some prior segment.
4266 However, .tbss is special. If a segment starts with
4267 .tbss, we need to look at the next section to decide
4268 whether the segment has any loadable sections. */
4269 i = 0;
4270 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4271 {
4272 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4273 || ++i >= m->count)
4274 {
4275 off -= adjust;
4276 voff = adjust - align;
4277 break;
4278 }
4279 }
4280 }
4281 }
4282 /* Make sure the .dynamic section is the first section in the
4283 PT_DYNAMIC segment. */
4284 else if (p->p_type == PT_DYNAMIC
4285 && m->count > 1
4286 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4287 {
4288 _bfd_error_handler
4289 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4290 abfd);
4291 bfd_set_error (bfd_error_bad_value);
4292 return FALSE;
4293 }
4294
4295 if (m->count == 0)
4296 p->p_vaddr = 0;
4297 else
4298 p->p_vaddr = m->sections[0]->vma;
4299
4300 if (m->p_paddr_valid)
4301 p->p_paddr = m->p_paddr;
4302 else if (m->count == 0)
4303 p->p_paddr = 0;
4304 else
4305 p->p_paddr = m->sections[0]->lma;
4306
4307 if (p->p_type == PT_LOAD
4308 && (abfd->flags & D_PAGED) != 0)
4309 p->p_align = bed->maxpagesize;
4310 else if (m->count == 0)
4311 p->p_align = 1 << bed->s->log_file_align;
4312 else
4313 p->p_align = 0;
4314
4315 p->p_offset = 0;
4316 p->p_filesz = 0;
4317 p->p_memsz = 0;
4318
4319 if (m->includes_filehdr)
4320 {
4321 if (! m->p_flags_valid)
4322 p->p_flags |= PF_R;
4323 p->p_offset = 0;
4324 p->p_filesz = bed->s->sizeof_ehdr;
4325 p->p_memsz = bed->s->sizeof_ehdr;
4326 if (m->count > 0)
4327 {
4328 BFD_ASSERT (p->p_type == PT_LOAD);
4329
4330 if (p->p_vaddr < (bfd_vma) off)
4331 {
4332 (*_bfd_error_handler)
4333 (_("%B: Not enough room for program headers, try linking with -N"),
4334 abfd);
4335 bfd_set_error (bfd_error_bad_value);
4336 return FALSE;
4337 }
4338
4339 p->p_vaddr -= off;
4340 if (! m->p_paddr_valid)
4341 p->p_paddr -= off;
4342 }
4343 }
4344
4345 if (m->includes_phdrs)
4346 {
4347 if (! m->p_flags_valid)
4348 p->p_flags |= PF_R;
4349
4350 if (!m->includes_filehdr)
4351 {
4352 p->p_offset = bed->s->sizeof_ehdr;
4353
4354 if (m->count > 0)
4355 {
4356 BFD_ASSERT (p->p_type == PT_LOAD);
4357 p->p_vaddr -= off - p->p_offset;
4358 if (! m->p_paddr_valid)
4359 p->p_paddr -= off - p->p_offset;
4360 }
4361 }
4362
4363 p->p_filesz += alloc * bed->s->sizeof_phdr;
4364 p->p_memsz += alloc * bed->s->sizeof_phdr;
4365 }
4366
4367 if (p->p_type == PT_LOAD
4368 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4369 {
4370 if (! m->includes_filehdr && ! m->includes_phdrs)
4371 p->p_offset = off + voff;
4372 else
4373 {
4374 file_ptr adjust;
4375
4376 adjust = off - (p->p_offset + p->p_filesz);
4377 p->p_filesz += adjust;
4378 p->p_memsz += adjust;
4379 }
4380 }
4381
4382 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4383 {
4384 asection *sec;
4385 flagword flags;
4386 bfd_size_type align;
4387
4388 sec = *secpp;
4389 flags = sec->flags;
4390 align = 1 << bfd_get_section_alignment (abfd, sec);
4391
4392 if (p->p_type == PT_LOAD
4393 || p->p_type == PT_TLS)
4394 {
4395 bfd_signed_vma adjust;
4396
4397 if ((flags & SEC_LOAD) != 0)
4398 {
4399 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4400 if (adjust < 0)
4401 {
4402 (*_bfd_error_handler)
4403 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4404 abfd, sec, (unsigned long) sec->lma);
4405 adjust = 0;
4406 }
4407 off += adjust;
4408 p->p_filesz += adjust;
4409 p->p_memsz += adjust;
4410 }
4411 /* .tbss is special. It doesn't contribute to p_memsz of
4412 normal segments. */
4413 else if ((flags & SEC_THREAD_LOCAL) == 0
4414 || p->p_type == PT_TLS)
4415 {
4416 /* The section VMA must equal the file position
4417 modulo the page size. */
4418 bfd_size_type page = align;
4419 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4420 page = bed->maxpagesize;
4421 adjust = vma_page_aligned_bias (sec->vma,
4422 p->p_vaddr + p->p_memsz,
4423 page);
4424 p->p_memsz += adjust;
4425 }
4426 }
4427
4428 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4429 {
4430 /* The section at i == 0 is the one that actually contains
4431 everything. */
4432 if (i == 0)
4433 {
4434 sec->filepos = off;
4435 off += sec->size;
4436 p->p_filesz = sec->size;
4437 p->p_memsz = 0;
4438 p->p_align = 1;
4439 }
4440 else
4441 {
4442 /* The rest are fake sections that shouldn't be written. */
4443 sec->filepos = 0;
4444 sec->size = 0;
4445 sec->flags = 0;
4446 continue;
4447 }
4448 }
4449 else
4450 {
4451 if (p->p_type == PT_LOAD)
4452 {
4453 sec->filepos = off;
4454 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4455 1997, and the exact reason for it isn't clear. One
4456 plausible explanation is that it is to work around
4457 a problem we have with linker scripts using data
4458 statements in NOLOAD sections. I don't think it
4459 makes a great deal of sense to have such a section
4460 assigned to a PT_LOAD segment, but apparently
4461 people do this. The data statement results in a
4462 bfd_data_link_order being built, and these need
4463 section contents to write into. Eventually, we get
4464 to _bfd_elf_write_object_contents which writes any
4465 section with contents to the output. Make room
4466 here for the write, so that following segments are
4467 not trashed. */
4468 if ((flags & SEC_LOAD) != 0
4469 || (flags & SEC_HAS_CONTENTS) != 0)
4470 off += sec->size;
4471 }
4472
4473 if ((flags & SEC_LOAD) != 0)
4474 {
4475 p->p_filesz += sec->size;
4476 p->p_memsz += sec->size;
4477 }
4478 /* PR ld/594: Sections in note segments which are not loaded
4479 contribute to the file size but not the in-memory size. */
4480 else if (p->p_type == PT_NOTE
4481 && (flags & SEC_HAS_CONTENTS) != 0)
4482 p->p_filesz += sec->size;
4483
4484 /* .tbss is special. It doesn't contribute to p_memsz of
4485 normal segments. */
4486 else if ((flags & SEC_THREAD_LOCAL) == 0
4487 || p->p_type == PT_TLS)
4488 p->p_memsz += sec->size;
4489
4490 if (p->p_type == PT_TLS
4491 && sec->size == 0
4492 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4493 {
4494 struct bfd_link_order *o = sec->map_tail.link_order;
4495 if (o != NULL)
4496 p->p_memsz += o->offset + o->size;
4497 }
4498
4499 if (align > p->p_align
4500 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4501 p->p_align = align;
4502 }
4503
4504 if (! m->p_flags_valid)
4505 {
4506 p->p_flags |= PF_R;
4507 if ((flags & SEC_CODE) != 0)
4508 p->p_flags |= PF_X;
4509 if ((flags & SEC_READONLY) == 0)
4510 p->p_flags |= PF_W;
4511 }
4512 }
4513 }
4514
4515 /* Clear out any program headers we allocated but did not use. */
4516 for (; count < alloc; count++, p++)
4517 {
4518 memset (p, 0, sizeof *p);
4519 p->p_type = PT_NULL;
4520 }
4521
4522 elf_tdata (abfd)->next_file_pos = off;
4523 return TRUE;
4524 }
4525
4526 /* Assign file positions for the other sections. */
4527
4528 static bfd_boolean
4529 assign_file_positions_for_non_load_sections (bfd *abfd,
4530 struct bfd_link_info *link_info)
4531 {
4532 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4533 Elf_Internal_Shdr **i_shdrpp;
4534 Elf_Internal_Shdr **hdrpp;
4535 Elf_Internal_Phdr *phdrs;
4536 Elf_Internal_Phdr *p;
4537 struct elf_segment_map *m;
4538 bfd_vma filehdr_vaddr, filehdr_paddr;
4539 bfd_vma phdrs_vaddr, phdrs_paddr;
4540 file_ptr off;
4541 unsigned int num_sec;
4542 unsigned int i;
4543 unsigned int count;
4544
4545 i_shdrpp = elf_elfsections (abfd);
4546 num_sec = elf_numsections (abfd);
4547 off = elf_tdata (abfd)->next_file_pos;
4548 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4549 {
4550 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4551 Elf_Internal_Shdr *hdr;
4552
4553 hdr = *hdrpp;
4554 if (hdr->bfd_section != NULL
4555 && hdr->bfd_section->filepos != 0)
4556 hdr->sh_offset = hdr->bfd_section->filepos;
4557 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4558 {
4559 ((*_bfd_error_handler)
4560 (_("%B: warning: allocated section `%s' not in segment"),
4561 abfd,
4562 (hdr->bfd_section == NULL
4563 ? "*unknown*"
4564 : hdr->bfd_section->name)));
4565 if ((abfd->flags & D_PAGED) != 0)
4566 off += vma_page_aligned_bias (hdr->sh_addr, off,
4567 bed->maxpagesize);
4568 else
4569 off += vma_page_aligned_bias (hdr->sh_addr, off,
4570 hdr->sh_addralign);
4571 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4572 FALSE);
4573 }
4574 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4575 && hdr->bfd_section == NULL)
4576 || hdr == i_shdrpp[tdata->symtab_section]
4577 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4578 || hdr == i_shdrpp[tdata->strtab_section])
4579 hdr->sh_offset = -1;
4580 else
4581 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4582
4583 if (i == SHN_LORESERVE - 1)
4584 {
4585 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4586 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4587 }
4588 }
4589
4590 /* Now that we have set the section file positions, we can set up
4591 the file positions for the non PT_LOAD segments. */
4592 count = 0;
4593 filehdr_vaddr = 0;
4594 filehdr_paddr = 0;
4595 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4596 phdrs_paddr = 0;
4597 phdrs = elf_tdata (abfd)->phdr;
4598 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4599 m != NULL;
4600 m = m->next, p++)
4601 {
4602 ++count;
4603 if (p->p_type != PT_LOAD)
4604 continue;
4605
4606 if (m->includes_filehdr)
4607 {
4608 filehdr_vaddr = p->p_vaddr;
4609 filehdr_paddr = p->p_paddr;
4610 }
4611 if (m->includes_phdrs)
4612 {
4613 phdrs_vaddr = p->p_vaddr;
4614 phdrs_paddr = p->p_paddr;
4615 if (m->includes_filehdr)
4616 {
4617 phdrs_vaddr += bed->s->sizeof_ehdr;
4618 phdrs_paddr += bed->s->sizeof_ehdr;
4619 }
4620 }
4621 }
4622
4623 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4624 m != NULL;
4625 m = m->next, p++)
4626 {
4627 if (p->p_type != PT_LOAD && m->count > 0)
4628 {
4629 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4630 /* If the section has not yet been assigned a file position,
4631 do so now. The ARM BPABI requires that .dynamic section
4632 not be marked SEC_ALLOC because it is not part of any
4633 PT_LOAD segment, so it will not be processed above. */
4634 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4635 {
4636 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4637
4638 i = 1;
4639 while (i_shdrpp[i]->bfd_section != m->sections[0])
4640 ++i;
4641 off = (_bfd_elf_assign_file_position_for_section
4642 (i_shdrpp[i], off, TRUE));
4643 p->p_filesz = m->sections[0]->size;
4644 }
4645 p->p_offset = m->sections[0]->filepos;
4646 }
4647 if (m->count == 0)
4648 {
4649 if (m->includes_filehdr)
4650 {
4651 p->p_vaddr = filehdr_vaddr;
4652 if (! m->p_paddr_valid)
4653 p->p_paddr = filehdr_paddr;
4654 }
4655 else if (m->includes_phdrs)
4656 {
4657 p->p_vaddr = phdrs_vaddr;
4658 if (! m->p_paddr_valid)
4659 p->p_paddr = phdrs_paddr;
4660 }
4661 else if (p->p_type == PT_GNU_RELRO)
4662 {
4663 Elf_Internal_Phdr *lp;
4664
4665 for (lp = phdrs; lp < phdrs + count; ++lp)
4666 {
4667 if (lp->p_type == PT_LOAD
4668 && lp->p_vaddr <= link_info->relro_end
4669 && lp->p_vaddr >= link_info->relro_start
4670 && lp->p_vaddr + lp->p_filesz
4671 >= link_info->relro_end)
4672 break;
4673 }
4674
4675 if (lp < phdrs + count
4676 && link_info->relro_end > lp->p_vaddr)
4677 {
4678 p->p_vaddr = lp->p_vaddr;
4679 p->p_paddr = lp->p_paddr;
4680 p->p_offset = lp->p_offset;
4681 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4682 p->p_memsz = p->p_filesz;
4683 p->p_align = 1;
4684 p->p_flags = (lp->p_flags & ~PF_W);
4685 }
4686 else
4687 {
4688 memset (p, 0, sizeof *p);
4689 p->p_type = PT_NULL;
4690 }
4691 }
4692 }
4693 }
4694
4695 elf_tdata (abfd)->next_file_pos = off;
4696
4697 return TRUE;
4698 }
4699
4700 /* Get the size of the program header.
4701
4702 If this is called by the linker before any of the section VMA's are set, it
4703 can't calculate the correct value for a strange memory layout. This only
4704 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4705 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4706 data segment (exclusive of .interp and .dynamic).
4707
4708 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4709 will be two segments. */
4710
4711 static bfd_size_type
4712 get_program_header_size (bfd *abfd)
4713 {
4714 size_t segs;
4715 asection *s;
4716 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4717
4718 /* We can't return a different result each time we're called. */
4719 if (elf_tdata (abfd)->program_header_size != 0)
4720 return elf_tdata (abfd)->program_header_size;
4721
4722 if (elf_tdata (abfd)->segment_map != NULL)
4723 {
4724 struct elf_segment_map *m;
4725
4726 segs = 0;
4727 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4728 ++segs;
4729 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4730 return elf_tdata (abfd)->program_header_size;
4731 }
4732
4733 /* Assume we will need exactly two PT_LOAD segments: one for text
4734 and one for data. */
4735 segs = 2;
4736
4737 s = bfd_get_section_by_name (abfd, ".interp");
4738 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4739 {
4740 /* If we have a loadable interpreter section, we need a
4741 PT_INTERP segment. In this case, assume we also need a
4742 PT_PHDR segment, although that may not be true for all
4743 targets. */
4744 segs += 2;
4745 }
4746
4747 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4748 {
4749 /* We need a PT_DYNAMIC segment. */
4750 ++segs;
4751 }
4752
4753 if (elf_tdata (abfd)->eh_frame_hdr)
4754 {
4755 /* We need a PT_GNU_EH_FRAME segment. */
4756 ++segs;
4757 }
4758
4759 if (elf_tdata (abfd)->stack_flags)
4760 {
4761 /* We need a PT_GNU_STACK segment. */
4762 ++segs;
4763 }
4764
4765 if (elf_tdata (abfd)->relro)
4766 {
4767 /* We need a PT_GNU_RELRO segment. */
4768 ++segs;
4769 }
4770
4771 for (s = abfd->sections; s != NULL; s = s->next)
4772 {
4773 if ((s->flags & SEC_LOAD) != 0
4774 && strncmp (s->name, ".note", 5) == 0)
4775 {
4776 /* We need a PT_NOTE segment. */
4777 ++segs;
4778 }
4779 }
4780
4781 for (s = abfd->sections; s != NULL; s = s->next)
4782 {
4783 if (s->flags & SEC_THREAD_LOCAL)
4784 {
4785 /* We need a PT_TLS segment. */
4786 ++segs;
4787 break;
4788 }
4789 }
4790
4791 /* Let the backend count up any program headers it might need. */
4792 if (bed->elf_backend_additional_program_headers)
4793 {
4794 int a;
4795
4796 a = (*bed->elf_backend_additional_program_headers) (abfd);
4797 if (a == -1)
4798 abort ();
4799 segs += a;
4800 }
4801
4802 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4803 return elf_tdata (abfd)->program_header_size;
4804 }
4805
4806 /* Work out the file positions of all the sections. This is called by
4807 _bfd_elf_compute_section_file_positions. All the section sizes and
4808 VMAs must be known before this is called.
4809
4810 Reloc sections come in two flavours: Those processed specially as
4811 "side-channel" data attached to a section to which they apply, and
4812 those that bfd doesn't process as relocations. The latter sort are
4813 stored in a normal bfd section by bfd_section_from_shdr. We don't
4814 consider the former sort here, unless they form part of the loadable
4815 image. Reloc sections not assigned here will be handled later by
4816 assign_file_positions_for_relocs.
4817
4818 We also don't set the positions of the .symtab and .strtab here. */
4819
4820 static bfd_boolean
4821 assign_file_positions_except_relocs (bfd *abfd,
4822 struct bfd_link_info *link_info)
4823 {
4824 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4825 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4826 file_ptr off;
4827 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4828
4829 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4830 && bfd_get_format (abfd) != bfd_core)
4831 {
4832 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4833 unsigned int num_sec = elf_numsections (abfd);
4834 Elf_Internal_Shdr **hdrpp;
4835 unsigned int i;
4836
4837 /* Start after the ELF header. */
4838 off = i_ehdrp->e_ehsize;
4839
4840 /* We are not creating an executable, which means that we are
4841 not creating a program header, and that the actual order of
4842 the sections in the file is unimportant. */
4843 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4844 {
4845 Elf_Internal_Shdr *hdr;
4846
4847 hdr = *hdrpp;
4848 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4849 && hdr->bfd_section == NULL)
4850 || i == tdata->symtab_section
4851 || i == tdata->symtab_shndx_section
4852 || i == tdata->strtab_section)
4853 {
4854 hdr->sh_offset = -1;
4855 }
4856 else
4857 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4858
4859 if (i == SHN_LORESERVE - 1)
4860 {
4861 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4862 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4863 }
4864 }
4865 }
4866 else
4867 {
4868 unsigned int alloc;
4869
4870 /* Assign file positions for the loaded sections based on the
4871 assignment of sections to segments. */
4872 if (!assign_file_positions_for_load_sections (abfd, link_info))
4873 return FALSE;
4874
4875 /* And for non-load sections. */
4876 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4877 return FALSE;
4878
4879 /* Write out the program headers. */
4880 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4881 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4882 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4883 return FALSE;
4884
4885 off = tdata->next_file_pos;
4886 }
4887
4888 /* Place the section headers. */
4889 off = align_file_position (off, 1 << bed->s->log_file_align);
4890 i_ehdrp->e_shoff = off;
4891 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4892
4893 tdata->next_file_pos = off;
4894
4895 return TRUE;
4896 }
4897
4898 static bfd_boolean
4899 prep_headers (bfd *abfd)
4900 {
4901 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4902 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4903 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4904 struct elf_strtab_hash *shstrtab;
4905 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4906
4907 i_ehdrp = elf_elfheader (abfd);
4908 i_shdrp = elf_elfsections (abfd);
4909
4910 shstrtab = _bfd_elf_strtab_init ();
4911 if (shstrtab == NULL)
4912 return FALSE;
4913
4914 elf_shstrtab (abfd) = shstrtab;
4915
4916 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4917 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4918 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4919 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4920
4921 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4922 i_ehdrp->e_ident[EI_DATA] =
4923 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4924 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4925
4926 if ((abfd->flags & DYNAMIC) != 0)
4927 i_ehdrp->e_type = ET_DYN;
4928 else if ((abfd->flags & EXEC_P) != 0)
4929 i_ehdrp->e_type = ET_EXEC;
4930 else if (bfd_get_format (abfd) == bfd_core)
4931 i_ehdrp->e_type = ET_CORE;
4932 else
4933 i_ehdrp->e_type = ET_REL;
4934
4935 switch (bfd_get_arch (abfd))
4936 {
4937 case bfd_arch_unknown:
4938 i_ehdrp->e_machine = EM_NONE;
4939 break;
4940
4941 /* There used to be a long list of cases here, each one setting
4942 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4943 in the corresponding bfd definition. To avoid duplication,
4944 the switch was removed. Machines that need special handling
4945 can generally do it in elf_backend_final_write_processing(),
4946 unless they need the information earlier than the final write.
4947 Such need can generally be supplied by replacing the tests for
4948 e_machine with the conditions used to determine it. */
4949 default:
4950 i_ehdrp->e_machine = bed->elf_machine_code;
4951 }
4952
4953 i_ehdrp->e_version = bed->s->ev_current;
4954 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4955
4956 /* No program header, for now. */
4957 i_ehdrp->e_phoff = 0;
4958 i_ehdrp->e_phentsize = 0;
4959 i_ehdrp->e_phnum = 0;
4960
4961 /* Each bfd section is section header entry. */
4962 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4963 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4964
4965 /* If we're building an executable, we'll need a program header table. */
4966 if (abfd->flags & EXEC_P)
4967 /* It all happens later. */
4968 ;
4969 else
4970 {
4971 i_ehdrp->e_phentsize = 0;
4972 i_phdrp = 0;
4973 i_ehdrp->e_phoff = 0;
4974 }
4975
4976 elf_tdata (abfd)->symtab_hdr.sh_name =
4977 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4978 elf_tdata (abfd)->strtab_hdr.sh_name =
4979 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4980 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4981 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4982 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4983 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4984 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4985 return FALSE;
4986
4987 return TRUE;
4988 }
4989
4990 /* Assign file positions for all the reloc sections which are not part
4991 of the loadable file image. */
4992
4993 void
4994 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4995 {
4996 file_ptr off;
4997 unsigned int i, num_sec;
4998 Elf_Internal_Shdr **shdrpp;
4999
5000 off = elf_tdata (abfd)->next_file_pos;
5001
5002 num_sec = elf_numsections (abfd);
5003 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5004 {
5005 Elf_Internal_Shdr *shdrp;
5006
5007 shdrp = *shdrpp;
5008 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5009 && shdrp->sh_offset == -1)
5010 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5011 }
5012
5013 elf_tdata (abfd)->next_file_pos = off;
5014 }
5015
5016 bfd_boolean
5017 _bfd_elf_write_object_contents (bfd *abfd)
5018 {
5019 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5020 Elf_Internal_Ehdr *i_ehdrp;
5021 Elf_Internal_Shdr **i_shdrp;
5022 bfd_boolean failed;
5023 unsigned int count, num_sec;
5024
5025 if (! abfd->output_has_begun
5026 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5027 return FALSE;
5028
5029 i_shdrp = elf_elfsections (abfd);
5030 i_ehdrp = elf_elfheader (abfd);
5031
5032 failed = FALSE;
5033 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5034 if (failed)
5035 return FALSE;
5036
5037 _bfd_elf_assign_file_positions_for_relocs (abfd);
5038
5039 /* After writing the headers, we need to write the sections too... */
5040 num_sec = elf_numsections (abfd);
5041 for (count = 1; count < num_sec; count++)
5042 {
5043 if (bed->elf_backend_section_processing)
5044 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5045 if (i_shdrp[count]->contents)
5046 {
5047 bfd_size_type amt = i_shdrp[count]->sh_size;
5048
5049 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5050 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5051 return FALSE;
5052 }
5053 if (count == SHN_LORESERVE - 1)
5054 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5055 }
5056
5057 /* Write out the section header names. */
5058 if (elf_shstrtab (abfd) != NULL
5059 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5060 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5061 return FALSE;
5062
5063 if (bed->elf_backend_final_write_processing)
5064 (*bed->elf_backend_final_write_processing) (abfd,
5065 elf_tdata (abfd)->linker);
5066
5067 return bed->s->write_shdrs_and_ehdr (abfd);
5068 }
5069
5070 bfd_boolean
5071 _bfd_elf_write_corefile_contents (bfd *abfd)
5072 {
5073 /* Hopefully this can be done just like an object file. */
5074 return _bfd_elf_write_object_contents (abfd);
5075 }
5076
5077 /* Given a section, search the header to find them. */
5078
5079 int
5080 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5081 {
5082 const struct elf_backend_data *bed;
5083 int index;
5084
5085 if (elf_section_data (asect) != NULL
5086 && elf_section_data (asect)->this_idx != 0)
5087 return elf_section_data (asect)->this_idx;
5088
5089 if (bfd_is_abs_section (asect))
5090 index = SHN_ABS;
5091 else if (bfd_is_com_section (asect))
5092 index = SHN_COMMON;
5093 else if (bfd_is_und_section (asect))
5094 index = SHN_UNDEF;
5095 else
5096 index = -1;
5097
5098 bed = get_elf_backend_data (abfd);
5099 if (bed->elf_backend_section_from_bfd_section)
5100 {
5101 int retval = index;
5102
5103 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5104 return retval;
5105 }
5106
5107 if (index == -1)
5108 bfd_set_error (bfd_error_nonrepresentable_section);
5109
5110 return index;
5111 }
5112
5113 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5114 on error. */
5115
5116 int
5117 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5118 {
5119 asymbol *asym_ptr = *asym_ptr_ptr;
5120 int idx;
5121 flagword flags = asym_ptr->flags;
5122
5123 /* When gas creates relocations against local labels, it creates its
5124 own symbol for the section, but does put the symbol into the
5125 symbol chain, so udata is 0. When the linker is generating
5126 relocatable output, this section symbol may be for one of the
5127 input sections rather than the output section. */
5128 if (asym_ptr->udata.i == 0
5129 && (flags & BSF_SECTION_SYM)
5130 && asym_ptr->section)
5131 {
5132 int indx;
5133
5134 if (asym_ptr->section->output_section != NULL)
5135 indx = asym_ptr->section->output_section->index;
5136 else
5137 indx = asym_ptr->section->index;
5138 if (indx < elf_num_section_syms (abfd)
5139 && elf_section_syms (abfd)[indx] != NULL)
5140 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5141 }
5142
5143 idx = asym_ptr->udata.i;
5144
5145 if (idx == 0)
5146 {
5147 /* This case can occur when using --strip-symbol on a symbol
5148 which is used in a relocation entry. */
5149 (*_bfd_error_handler)
5150 (_("%B: symbol `%s' required but not present"),
5151 abfd, bfd_asymbol_name (asym_ptr));
5152 bfd_set_error (bfd_error_no_symbols);
5153 return -1;
5154 }
5155
5156 #if DEBUG & 4
5157 {
5158 fprintf (stderr,
5159 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5160 (long) asym_ptr, asym_ptr->name, idx, flags,
5161 elf_symbol_flags (flags));
5162 fflush (stderr);
5163 }
5164 #endif
5165
5166 return idx;
5167 }
5168
5169 /* Rewrite program header information. */
5170
5171 static bfd_boolean
5172 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5173 {
5174 Elf_Internal_Ehdr *iehdr;
5175 struct elf_segment_map *map;
5176 struct elf_segment_map *map_first;
5177 struct elf_segment_map **pointer_to_map;
5178 Elf_Internal_Phdr *segment;
5179 asection *section;
5180 unsigned int i;
5181 unsigned int num_segments;
5182 bfd_boolean phdr_included = FALSE;
5183 bfd_vma maxpagesize;
5184 struct elf_segment_map *phdr_adjust_seg = NULL;
5185 unsigned int phdr_adjust_num = 0;
5186 const struct elf_backend_data *bed;
5187
5188 bed = get_elf_backend_data (ibfd);
5189 iehdr = elf_elfheader (ibfd);
5190
5191 map_first = NULL;
5192 pointer_to_map = &map_first;
5193
5194 num_segments = elf_elfheader (ibfd)->e_phnum;
5195 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5196
5197 /* Returns the end address of the segment + 1. */
5198 #define SEGMENT_END(segment, start) \
5199 (start + (segment->p_memsz > segment->p_filesz \
5200 ? segment->p_memsz : segment->p_filesz))
5201
5202 #define SECTION_SIZE(section, segment) \
5203 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5204 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5205 ? section->size : 0)
5206
5207 /* Returns TRUE if the given section is contained within
5208 the given segment. VMA addresses are compared. */
5209 #define IS_CONTAINED_BY_VMA(section, segment) \
5210 (section->vma >= segment->p_vaddr \
5211 && (section->vma + SECTION_SIZE (section, segment) \
5212 <= (SEGMENT_END (segment, segment->p_vaddr))))
5213
5214 /* Returns TRUE if the given section is contained within
5215 the given segment. LMA addresses are compared. */
5216 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5217 (section->lma >= base \
5218 && (section->lma + SECTION_SIZE (section, segment) \
5219 <= SEGMENT_END (segment, base)))
5220
5221 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5222 #define IS_COREFILE_NOTE(p, s) \
5223 (p->p_type == PT_NOTE \
5224 && bfd_get_format (ibfd) == bfd_core \
5225 && s->vma == 0 && s->lma == 0 \
5226 && (bfd_vma) s->filepos >= p->p_offset \
5227 && ((bfd_vma) s->filepos + s->size \
5228 <= p->p_offset + p->p_filesz))
5229
5230 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5231 linker, which generates a PT_INTERP section with p_vaddr and
5232 p_memsz set to 0. */
5233 #define IS_SOLARIS_PT_INTERP(p, s) \
5234 (p->p_vaddr == 0 \
5235 && p->p_paddr == 0 \
5236 && p->p_memsz == 0 \
5237 && p->p_filesz > 0 \
5238 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5239 && s->size > 0 \
5240 && (bfd_vma) s->filepos >= p->p_offset \
5241 && ((bfd_vma) s->filepos + s->size \
5242 <= p->p_offset + p->p_filesz))
5243
5244 /* Decide if the given section should be included in the given segment.
5245 A section will be included if:
5246 1. It is within the address space of the segment -- we use the LMA
5247 if that is set for the segment and the VMA otherwise,
5248 2. It is an allocated segment,
5249 3. There is an output section associated with it,
5250 4. The section has not already been allocated to a previous segment.
5251 5. PT_GNU_STACK segments do not include any sections.
5252 6. PT_TLS segment includes only SHF_TLS sections.
5253 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5254 8. PT_DYNAMIC should not contain empty sections at the beginning
5255 (with the possible exception of .dynamic). */
5256 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5257 ((((segment->p_paddr \
5258 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5259 : IS_CONTAINED_BY_VMA (section, segment)) \
5260 && (section->flags & SEC_ALLOC) != 0) \
5261 || IS_COREFILE_NOTE (segment, section)) \
5262 && section->output_section != NULL \
5263 && segment->p_type != PT_GNU_STACK \
5264 && (segment->p_type != PT_TLS \
5265 || (section->flags & SEC_THREAD_LOCAL)) \
5266 && (segment->p_type == PT_LOAD \
5267 || segment->p_type == PT_TLS \
5268 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5269 && (segment->p_type != PT_DYNAMIC \
5270 || SECTION_SIZE (section, segment) > 0 \
5271 || (segment->p_paddr \
5272 ? segment->p_paddr != section->lma \
5273 : segment->p_vaddr != section->vma) \
5274 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5275 == 0)) \
5276 && ! section->segment_mark)
5277
5278 /* Returns TRUE iff seg1 starts after the end of seg2. */
5279 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5280 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5281
5282 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5283 their VMA address ranges and their LMA address ranges overlap.
5284 It is possible to have overlapping VMA ranges without overlapping LMA
5285 ranges. RedBoot images for example can have both .data and .bss mapped
5286 to the same VMA range, but with the .data section mapped to a different
5287 LMA. */
5288 #define SEGMENT_OVERLAPS(seg1, seg2) \
5289 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5290 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5291 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5292 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5293
5294 /* Initialise the segment mark field. */
5295 for (section = ibfd->sections; section != NULL; section = section->next)
5296 section->segment_mark = FALSE;
5297
5298 /* Scan through the segments specified in the program header
5299 of the input BFD. For this first scan we look for overlaps
5300 in the loadable segments. These can be created by weird
5301 parameters to objcopy. Also, fix some solaris weirdness. */
5302 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5303 i < num_segments;
5304 i++, segment++)
5305 {
5306 unsigned int j;
5307 Elf_Internal_Phdr *segment2;
5308
5309 if (segment->p_type == PT_INTERP)
5310 for (section = ibfd->sections; section; section = section->next)
5311 if (IS_SOLARIS_PT_INTERP (segment, section))
5312 {
5313 /* Mininal change so that the normal section to segment
5314 assignment code will work. */
5315 segment->p_vaddr = section->vma;
5316 break;
5317 }
5318
5319 if (segment->p_type != PT_LOAD)
5320 continue;
5321
5322 /* Determine if this segment overlaps any previous segments. */
5323 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5324 {
5325 bfd_signed_vma extra_length;
5326
5327 if (segment2->p_type != PT_LOAD
5328 || ! SEGMENT_OVERLAPS (segment, segment2))
5329 continue;
5330
5331 /* Merge the two segments together. */
5332 if (segment2->p_vaddr < segment->p_vaddr)
5333 {
5334 /* Extend SEGMENT2 to include SEGMENT and then delete
5335 SEGMENT. */
5336 extra_length =
5337 SEGMENT_END (segment, segment->p_vaddr)
5338 - SEGMENT_END (segment2, segment2->p_vaddr);
5339
5340 if (extra_length > 0)
5341 {
5342 segment2->p_memsz += extra_length;
5343 segment2->p_filesz += extra_length;
5344 }
5345
5346 segment->p_type = PT_NULL;
5347
5348 /* Since we have deleted P we must restart the outer loop. */
5349 i = 0;
5350 segment = elf_tdata (ibfd)->phdr;
5351 break;
5352 }
5353 else
5354 {
5355 /* Extend SEGMENT to include SEGMENT2 and then delete
5356 SEGMENT2. */
5357 extra_length =
5358 SEGMENT_END (segment2, segment2->p_vaddr)
5359 - SEGMENT_END (segment, segment->p_vaddr);
5360
5361 if (extra_length > 0)
5362 {
5363 segment->p_memsz += extra_length;
5364 segment->p_filesz += extra_length;
5365 }
5366
5367 segment2->p_type = PT_NULL;
5368 }
5369 }
5370 }
5371
5372 /* The second scan attempts to assign sections to segments. */
5373 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5374 i < num_segments;
5375 i ++, segment ++)
5376 {
5377 unsigned int section_count;
5378 asection ** sections;
5379 asection * output_section;
5380 unsigned int isec;
5381 bfd_vma matching_lma;
5382 bfd_vma suggested_lma;
5383 unsigned int j;
5384 bfd_size_type amt;
5385
5386 if (segment->p_type == PT_NULL)
5387 continue;
5388
5389 /* Compute how many sections might be placed into this segment. */
5390 for (section = ibfd->sections, section_count = 0;
5391 section != NULL;
5392 section = section->next)
5393 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5394 ++section_count;
5395
5396 /* Allocate a segment map big enough to contain
5397 all of the sections we have selected. */
5398 amt = sizeof (struct elf_segment_map);
5399 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5400 map = bfd_alloc (obfd, amt);
5401 if (map == NULL)
5402 return FALSE;
5403
5404 /* Initialise the fields of the segment map. Default to
5405 using the physical address of the segment in the input BFD. */
5406 map->next = NULL;
5407 map->p_type = segment->p_type;
5408 map->p_flags = segment->p_flags;
5409 map->p_flags_valid = 1;
5410 map->p_paddr = segment->p_paddr;
5411 map->p_paddr_valid = 1;
5412
5413 /* Determine if this segment contains the ELF file header
5414 and if it contains the program headers themselves. */
5415 map->includes_filehdr = (segment->p_offset == 0
5416 && segment->p_filesz >= iehdr->e_ehsize);
5417
5418 map->includes_phdrs = 0;
5419
5420 if (! phdr_included || segment->p_type != PT_LOAD)
5421 {
5422 map->includes_phdrs =
5423 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5424 && (segment->p_offset + segment->p_filesz
5425 >= ((bfd_vma) iehdr->e_phoff
5426 + iehdr->e_phnum * iehdr->e_phentsize)));
5427
5428 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5429 phdr_included = TRUE;
5430 }
5431
5432 if (section_count == 0)
5433 {
5434 /* Special segments, such as the PT_PHDR segment, may contain
5435 no sections, but ordinary, loadable segments should contain
5436 something. They are allowed by the ELF spec however, so only
5437 a warning is produced. */
5438 if (segment->p_type == PT_LOAD)
5439 (*_bfd_error_handler)
5440 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5441 ibfd);
5442
5443 map->count = 0;
5444 *pointer_to_map = map;
5445 pointer_to_map = &map->next;
5446
5447 continue;
5448 }
5449
5450 /* Now scan the sections in the input BFD again and attempt
5451 to add their corresponding output sections to the segment map.
5452 The problem here is how to handle an output section which has
5453 been moved (ie had its LMA changed). There are four possibilities:
5454
5455 1. None of the sections have been moved.
5456 In this case we can continue to use the segment LMA from the
5457 input BFD.
5458
5459 2. All of the sections have been moved by the same amount.
5460 In this case we can change the segment's LMA to match the LMA
5461 of the first section.
5462
5463 3. Some of the sections have been moved, others have not.
5464 In this case those sections which have not been moved can be
5465 placed in the current segment which will have to have its size,
5466 and possibly its LMA changed, and a new segment or segments will
5467 have to be created to contain the other sections.
5468
5469 4. The sections have been moved, but not by the same amount.
5470 In this case we can change the segment's LMA to match the LMA
5471 of the first section and we will have to create a new segment
5472 or segments to contain the other sections.
5473
5474 In order to save time, we allocate an array to hold the section
5475 pointers that we are interested in. As these sections get assigned
5476 to a segment, they are removed from this array. */
5477
5478 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5479 to work around this long long bug. */
5480 sections = bfd_malloc2 (section_count, sizeof (asection *));
5481 if (sections == NULL)
5482 return FALSE;
5483
5484 /* Step One: Scan for segment vs section LMA conflicts.
5485 Also add the sections to the section array allocated above.
5486 Also add the sections to the current segment. In the common
5487 case, where the sections have not been moved, this means that
5488 we have completely filled the segment, and there is nothing
5489 more to do. */
5490 isec = 0;
5491 matching_lma = 0;
5492 suggested_lma = 0;
5493
5494 for (j = 0, section = ibfd->sections;
5495 section != NULL;
5496 section = section->next)
5497 {
5498 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5499 {
5500 output_section = section->output_section;
5501
5502 sections[j ++] = section;
5503
5504 /* The Solaris native linker always sets p_paddr to 0.
5505 We try to catch that case here, and set it to the
5506 correct value. Note - some backends require that
5507 p_paddr be left as zero. */
5508 if (segment->p_paddr == 0
5509 && segment->p_vaddr != 0
5510 && (! bed->want_p_paddr_set_to_zero)
5511 && isec == 0
5512 && output_section->lma != 0
5513 && (output_section->vma == (segment->p_vaddr
5514 + (map->includes_filehdr
5515 ? iehdr->e_ehsize
5516 : 0)
5517 + (map->includes_phdrs
5518 ? (iehdr->e_phnum
5519 * iehdr->e_phentsize)
5520 : 0))))
5521 map->p_paddr = segment->p_vaddr;
5522
5523 /* Match up the physical address of the segment with the
5524 LMA address of the output section. */
5525 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5526 || IS_COREFILE_NOTE (segment, section)
5527 || (bed->want_p_paddr_set_to_zero &&
5528 IS_CONTAINED_BY_VMA (output_section, segment))
5529 )
5530 {
5531 if (matching_lma == 0)
5532 matching_lma = output_section->lma;
5533
5534 /* We assume that if the section fits within the segment
5535 then it does not overlap any other section within that
5536 segment. */
5537 map->sections[isec ++] = output_section;
5538 }
5539 else if (suggested_lma == 0)
5540 suggested_lma = output_section->lma;
5541 }
5542 }
5543
5544 BFD_ASSERT (j == section_count);
5545
5546 /* Step Two: Adjust the physical address of the current segment,
5547 if necessary. */
5548 if (isec == section_count)
5549 {
5550 /* All of the sections fitted within the segment as currently
5551 specified. This is the default case. Add the segment to
5552 the list of built segments and carry on to process the next
5553 program header in the input BFD. */
5554 map->count = section_count;
5555 *pointer_to_map = map;
5556 pointer_to_map = &map->next;
5557
5558 free (sections);
5559 continue;
5560 }
5561 else
5562 {
5563 if (matching_lma != 0)
5564 {
5565 /* At least one section fits inside the current segment.
5566 Keep it, but modify its physical address to match the
5567 LMA of the first section that fitted. */
5568 map->p_paddr = matching_lma;
5569 }
5570 else
5571 {
5572 /* None of the sections fitted inside the current segment.
5573 Change the current segment's physical address to match
5574 the LMA of the first section. */
5575 map->p_paddr = suggested_lma;
5576 }
5577
5578 /* Offset the segment physical address from the lma
5579 to allow for space taken up by elf headers. */
5580 if (map->includes_filehdr)
5581 map->p_paddr -= iehdr->e_ehsize;
5582
5583 if (map->includes_phdrs)
5584 {
5585 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5586
5587 /* iehdr->e_phnum is just an estimate of the number
5588 of program headers that we will need. Make a note
5589 here of the number we used and the segment we chose
5590 to hold these headers, so that we can adjust the
5591 offset when we know the correct value. */
5592 phdr_adjust_num = iehdr->e_phnum;
5593 phdr_adjust_seg = map;
5594 }
5595 }
5596
5597 /* Step Three: Loop over the sections again, this time assigning
5598 those that fit to the current segment and removing them from the
5599 sections array; but making sure not to leave large gaps. Once all
5600 possible sections have been assigned to the current segment it is
5601 added to the list of built segments and if sections still remain
5602 to be assigned, a new segment is constructed before repeating
5603 the loop. */
5604 isec = 0;
5605 do
5606 {
5607 map->count = 0;
5608 suggested_lma = 0;
5609
5610 /* Fill the current segment with sections that fit. */
5611 for (j = 0; j < section_count; j++)
5612 {
5613 section = sections[j];
5614
5615 if (section == NULL)
5616 continue;
5617
5618 output_section = section->output_section;
5619
5620 BFD_ASSERT (output_section != NULL);
5621
5622 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5623 || IS_COREFILE_NOTE (segment, section))
5624 {
5625 if (map->count == 0)
5626 {
5627 /* If the first section in a segment does not start at
5628 the beginning of the segment, then something is
5629 wrong. */
5630 if (output_section->lma !=
5631 (map->p_paddr
5632 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5633 + (map->includes_phdrs
5634 ? iehdr->e_phnum * iehdr->e_phentsize
5635 : 0)))
5636 abort ();
5637 }
5638 else
5639 {
5640 asection * prev_sec;
5641
5642 prev_sec = map->sections[map->count - 1];
5643
5644 /* If the gap between the end of the previous section
5645 and the start of this section is more than
5646 maxpagesize then we need to start a new segment. */
5647 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5648 maxpagesize)
5649 < BFD_ALIGN (output_section->lma, maxpagesize))
5650 || ((prev_sec->lma + prev_sec->size)
5651 > output_section->lma))
5652 {
5653 if (suggested_lma == 0)
5654 suggested_lma = output_section->lma;
5655
5656 continue;
5657 }
5658 }
5659
5660 map->sections[map->count++] = output_section;
5661 ++isec;
5662 sections[j] = NULL;
5663 section->segment_mark = TRUE;
5664 }
5665 else if (suggested_lma == 0)
5666 suggested_lma = output_section->lma;
5667 }
5668
5669 BFD_ASSERT (map->count > 0);
5670
5671 /* Add the current segment to the list of built segments. */
5672 *pointer_to_map = map;
5673 pointer_to_map = &map->next;
5674
5675 if (isec < section_count)
5676 {
5677 /* We still have not allocated all of the sections to
5678 segments. Create a new segment here, initialise it
5679 and carry on looping. */
5680 amt = sizeof (struct elf_segment_map);
5681 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5682 map = bfd_alloc (obfd, amt);
5683 if (map == NULL)
5684 {
5685 free (sections);
5686 return FALSE;
5687 }
5688
5689 /* Initialise the fields of the segment map. Set the physical
5690 physical address to the LMA of the first section that has
5691 not yet been assigned. */
5692 map->next = NULL;
5693 map->p_type = segment->p_type;
5694 map->p_flags = segment->p_flags;
5695 map->p_flags_valid = 1;
5696 map->p_paddr = suggested_lma;
5697 map->p_paddr_valid = 1;
5698 map->includes_filehdr = 0;
5699 map->includes_phdrs = 0;
5700 }
5701 }
5702 while (isec < section_count);
5703
5704 free (sections);
5705 }
5706
5707 /* The Solaris linker creates program headers in which all the
5708 p_paddr fields are zero. When we try to objcopy or strip such a
5709 file, we get confused. Check for this case, and if we find it
5710 reset the p_paddr_valid fields. */
5711 for (map = map_first; map != NULL; map = map->next)
5712 if (map->p_paddr != 0)
5713 break;
5714 if (map == NULL)
5715 for (map = map_first; map != NULL; map = map->next)
5716 map->p_paddr_valid = 0;
5717
5718 elf_tdata (obfd)->segment_map = map_first;
5719
5720 /* If we had to estimate the number of program headers that were
5721 going to be needed, then check our estimate now and adjust
5722 the offset if necessary. */
5723 if (phdr_adjust_seg != NULL)
5724 {
5725 unsigned int count;
5726
5727 for (count = 0, map = map_first; map != NULL; map = map->next)
5728 count++;
5729
5730 if (count > phdr_adjust_num)
5731 phdr_adjust_seg->p_paddr
5732 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5733 }
5734
5735 #undef SEGMENT_END
5736 #undef SECTION_SIZE
5737 #undef IS_CONTAINED_BY_VMA
5738 #undef IS_CONTAINED_BY_LMA
5739 #undef IS_COREFILE_NOTE
5740 #undef IS_SOLARIS_PT_INTERP
5741 #undef INCLUDE_SECTION_IN_SEGMENT
5742 #undef SEGMENT_AFTER_SEGMENT
5743 #undef SEGMENT_OVERLAPS
5744 return TRUE;
5745 }
5746
5747 /* Copy ELF program header information. */
5748
5749 static bfd_boolean
5750 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5751 {
5752 Elf_Internal_Ehdr *iehdr;
5753 struct elf_segment_map *map;
5754 struct elf_segment_map *map_first;
5755 struct elf_segment_map **pointer_to_map;
5756 Elf_Internal_Phdr *segment;
5757 unsigned int i;
5758 unsigned int num_segments;
5759 bfd_boolean phdr_included = FALSE;
5760
5761 iehdr = elf_elfheader (ibfd);
5762
5763 map_first = NULL;
5764 pointer_to_map = &map_first;
5765
5766 num_segments = elf_elfheader (ibfd)->e_phnum;
5767 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5768 i < num_segments;
5769 i++, segment++)
5770 {
5771 asection *section;
5772 unsigned int section_count;
5773 bfd_size_type amt;
5774 Elf_Internal_Shdr *this_hdr;
5775
5776 /* FIXME: Do we need to copy PT_NULL segment? */
5777 if (segment->p_type == PT_NULL)
5778 continue;
5779
5780 /* Compute how many sections are in this segment. */
5781 for (section = ibfd->sections, section_count = 0;
5782 section != NULL;
5783 section = section->next)
5784 {
5785 this_hdr = &(elf_section_data(section)->this_hdr);
5786 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5787 section_count++;
5788 }
5789
5790 /* Allocate a segment map big enough to contain
5791 all of the sections we have selected. */
5792 amt = sizeof (struct elf_segment_map);
5793 if (section_count != 0)
5794 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5795 map = bfd_alloc (obfd, amt);
5796 if (map == NULL)
5797 return FALSE;
5798
5799 /* Initialize the fields of the output segment map with the
5800 input segment. */
5801 map->next = NULL;
5802 map->p_type = segment->p_type;
5803 map->p_flags = segment->p_flags;
5804 map->p_flags_valid = 1;
5805 map->p_paddr = segment->p_paddr;
5806 map->p_paddr_valid = 1;
5807
5808 /* Determine if this segment contains the ELF file header
5809 and if it contains the program headers themselves. */
5810 map->includes_filehdr = (segment->p_offset == 0
5811 && segment->p_filesz >= iehdr->e_ehsize);
5812
5813 map->includes_phdrs = 0;
5814 if (! phdr_included || segment->p_type != PT_LOAD)
5815 {
5816 map->includes_phdrs =
5817 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5818 && (segment->p_offset + segment->p_filesz
5819 >= ((bfd_vma) iehdr->e_phoff
5820 + iehdr->e_phnum * iehdr->e_phentsize)));
5821
5822 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5823 phdr_included = TRUE;
5824 }
5825
5826 if (section_count != 0)
5827 {
5828 unsigned int isec = 0;
5829
5830 for (section = ibfd->sections;
5831 section != NULL;
5832 section = section->next)
5833 {
5834 this_hdr = &(elf_section_data(section)->this_hdr);
5835 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5836 map->sections[isec++] = section->output_section;
5837 }
5838 }
5839
5840 map->count = section_count;
5841 *pointer_to_map = map;
5842 pointer_to_map = &map->next;
5843 }
5844
5845 elf_tdata (obfd)->segment_map = map_first;
5846 return TRUE;
5847 }
5848
5849 /* Copy private BFD data. This copies or rewrites ELF program header
5850 information. */
5851
5852 static bfd_boolean
5853 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5854 {
5855 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5856 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5857 return TRUE;
5858
5859 if (elf_tdata (ibfd)->phdr == NULL)
5860 return TRUE;
5861
5862 if (ibfd->xvec == obfd->xvec)
5863 {
5864 /* Check if any sections in the input BFD covered by ELF program
5865 header are changed. */
5866 Elf_Internal_Phdr *segment;
5867 asection *section, *osec;
5868 unsigned int i, num_segments;
5869 Elf_Internal_Shdr *this_hdr;
5870
5871 /* Initialize the segment mark field. */
5872 for (section = obfd->sections; section != NULL;
5873 section = section->next)
5874 section->segment_mark = FALSE;
5875
5876 num_segments = elf_elfheader (ibfd)->e_phnum;
5877 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5878 i < num_segments;
5879 i++, segment++)
5880 {
5881 for (section = ibfd->sections;
5882 section != NULL; section = section->next)
5883 {
5884 /* We mark the output section so that we know it comes
5885 from the input BFD. */
5886 osec = section->output_section;
5887 if (osec)
5888 osec->segment_mark = TRUE;
5889
5890 /* Check if this section is covered by the segment. */
5891 this_hdr = &(elf_section_data(section)->this_hdr);
5892 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5893 {
5894 /* FIXME: Check if its output section is changed or
5895 removed. What else do we need to check? */
5896 if (osec == NULL
5897 || section->flags != osec->flags
5898 || section->lma != osec->lma
5899 || section->vma != osec->vma
5900 || section->size != osec->size
5901 || section->rawsize != osec->rawsize
5902 || section->alignment_power != osec->alignment_power)
5903 goto rewrite;
5904 }
5905 }
5906 }
5907
5908 /* Check to see if any output section doesn't come from the
5909 input BFD. */
5910 for (section = obfd->sections; section != NULL;
5911 section = section->next)
5912 {
5913 if (section->segment_mark == FALSE)
5914 goto rewrite;
5915 else
5916 section->segment_mark = FALSE;
5917 }
5918
5919 return copy_elf_program_header (ibfd, obfd);
5920 }
5921
5922 rewrite:
5923 return rewrite_elf_program_header (ibfd, obfd);
5924 }
5925
5926 /* Initialize private output section information from input section. */
5927
5928 bfd_boolean
5929 _bfd_elf_init_private_section_data (bfd *ibfd,
5930 asection *isec,
5931 bfd *obfd,
5932 asection *osec,
5933 struct bfd_link_info *link_info)
5934
5935 {
5936 Elf_Internal_Shdr *ihdr, *ohdr;
5937 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5938
5939 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5940 || obfd->xvec->flavour != bfd_target_elf_flavour)
5941 return TRUE;
5942
5943 /* Don't copy the output ELF section type from input if the
5944 output BFD section flags has been set to something different.
5945 elf_fake_sections will set ELF section type based on BFD
5946 section flags. */
5947 if (osec->flags == isec->flags
5948 || (osec->flags == 0 && elf_section_type (osec) == SHT_NULL))
5949 elf_section_type (osec) = elf_section_type (isec);
5950
5951 /* Set things up for objcopy and relocatable link. The output
5952 SHT_GROUP section will have its elf_next_in_group pointing back
5953 to the input group members. Ignore linker created group section.
5954 See elfNN_ia64_object_p in elfxx-ia64.c. */
5955
5956 if (need_group)
5957 {
5958 if (elf_sec_group (isec) == NULL
5959 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5960 {
5961 if (elf_section_flags (isec) & SHF_GROUP)
5962 elf_section_flags (osec) |= SHF_GROUP;
5963 elf_next_in_group (osec) = elf_next_in_group (isec);
5964 elf_group_name (osec) = elf_group_name (isec);
5965 }
5966 }
5967
5968 ihdr = &elf_section_data (isec)->this_hdr;
5969
5970 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5971 don't use the output section of the linked-to section since it
5972 may be NULL at this point. */
5973 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5974 {
5975 ohdr = &elf_section_data (osec)->this_hdr;
5976 ohdr->sh_flags |= SHF_LINK_ORDER;
5977 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5978 }
5979
5980 osec->use_rela_p = isec->use_rela_p;
5981
5982 return TRUE;
5983 }
5984
5985 /* Copy private section information. This copies over the entsize
5986 field, and sometimes the info field. */
5987
5988 bfd_boolean
5989 _bfd_elf_copy_private_section_data (bfd *ibfd,
5990 asection *isec,
5991 bfd *obfd,
5992 asection *osec)
5993 {
5994 Elf_Internal_Shdr *ihdr, *ohdr;
5995
5996 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5997 || obfd->xvec->flavour != bfd_target_elf_flavour)
5998 return TRUE;
5999
6000 ihdr = &elf_section_data (isec)->this_hdr;
6001 ohdr = &elf_section_data (osec)->this_hdr;
6002
6003 ohdr->sh_entsize = ihdr->sh_entsize;
6004
6005 if (ihdr->sh_type == SHT_SYMTAB
6006 || ihdr->sh_type == SHT_DYNSYM
6007 || ihdr->sh_type == SHT_GNU_verneed
6008 || ihdr->sh_type == SHT_GNU_verdef)
6009 ohdr->sh_info = ihdr->sh_info;
6010
6011 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6012 NULL);
6013 }
6014
6015 /* Copy private header information. */
6016
6017 bfd_boolean
6018 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6019 {
6020 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6021 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6022 return TRUE;
6023
6024 /* Copy over private BFD data if it has not already been copied.
6025 This must be done here, rather than in the copy_private_bfd_data
6026 entry point, because the latter is called after the section
6027 contents have been set, which means that the program headers have
6028 already been worked out. */
6029 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6030 {
6031 if (! copy_private_bfd_data (ibfd, obfd))
6032 return FALSE;
6033 }
6034
6035 return TRUE;
6036 }
6037
6038 /* Copy private symbol information. If this symbol is in a section
6039 which we did not map into a BFD section, try to map the section
6040 index correctly. We use special macro definitions for the mapped
6041 section indices; these definitions are interpreted by the
6042 swap_out_syms function. */
6043
6044 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6045 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6046 #define MAP_STRTAB (SHN_HIOS + 3)
6047 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6048 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6049
6050 bfd_boolean
6051 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6052 asymbol *isymarg,
6053 bfd *obfd,
6054 asymbol *osymarg)
6055 {
6056 elf_symbol_type *isym, *osym;
6057
6058 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6059 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6060 return TRUE;
6061
6062 isym = elf_symbol_from (ibfd, isymarg);
6063 osym = elf_symbol_from (obfd, osymarg);
6064
6065 if (isym != NULL
6066 && osym != NULL
6067 && bfd_is_abs_section (isym->symbol.section))
6068 {
6069 unsigned int shndx;
6070
6071 shndx = isym->internal_elf_sym.st_shndx;
6072 if (shndx == elf_onesymtab (ibfd))
6073 shndx = MAP_ONESYMTAB;
6074 else if (shndx == elf_dynsymtab (ibfd))
6075 shndx = MAP_DYNSYMTAB;
6076 else if (shndx == elf_tdata (ibfd)->strtab_section)
6077 shndx = MAP_STRTAB;
6078 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6079 shndx = MAP_SHSTRTAB;
6080 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6081 shndx = MAP_SYM_SHNDX;
6082 osym->internal_elf_sym.st_shndx = shndx;
6083 }
6084
6085 return TRUE;
6086 }
6087
6088 /* Swap out the symbols. */
6089
6090 static bfd_boolean
6091 swap_out_syms (bfd *abfd,
6092 struct bfd_strtab_hash **sttp,
6093 int relocatable_p)
6094 {
6095 const struct elf_backend_data *bed;
6096 int symcount;
6097 asymbol **syms;
6098 struct bfd_strtab_hash *stt;
6099 Elf_Internal_Shdr *symtab_hdr;
6100 Elf_Internal_Shdr *symtab_shndx_hdr;
6101 Elf_Internal_Shdr *symstrtab_hdr;
6102 bfd_byte *outbound_syms;
6103 bfd_byte *outbound_shndx;
6104 int idx;
6105 bfd_size_type amt;
6106 bfd_boolean name_local_sections;
6107
6108 if (!elf_map_symbols (abfd))
6109 return FALSE;
6110
6111 /* Dump out the symtabs. */
6112 stt = _bfd_elf_stringtab_init ();
6113 if (stt == NULL)
6114 return FALSE;
6115
6116 bed = get_elf_backend_data (abfd);
6117 symcount = bfd_get_symcount (abfd);
6118 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6119 symtab_hdr->sh_type = SHT_SYMTAB;
6120 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6121 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6122 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6123 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6124
6125 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6126 symstrtab_hdr->sh_type = SHT_STRTAB;
6127
6128 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6129 if (outbound_syms == NULL)
6130 {
6131 _bfd_stringtab_free (stt);
6132 return FALSE;
6133 }
6134 symtab_hdr->contents = outbound_syms;
6135
6136 outbound_shndx = NULL;
6137 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6138 if (symtab_shndx_hdr->sh_name != 0)
6139 {
6140 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6141 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6142 sizeof (Elf_External_Sym_Shndx));
6143 if (outbound_shndx == NULL)
6144 {
6145 _bfd_stringtab_free (stt);
6146 return FALSE;
6147 }
6148
6149 symtab_shndx_hdr->contents = outbound_shndx;
6150 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6151 symtab_shndx_hdr->sh_size = amt;
6152 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6153 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6154 }
6155
6156 /* Now generate the data (for "contents"). */
6157 {
6158 /* Fill in zeroth symbol and swap it out. */
6159 Elf_Internal_Sym sym;
6160 sym.st_name = 0;
6161 sym.st_value = 0;
6162 sym.st_size = 0;
6163 sym.st_info = 0;
6164 sym.st_other = 0;
6165 sym.st_shndx = SHN_UNDEF;
6166 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6167 outbound_syms += bed->s->sizeof_sym;
6168 if (outbound_shndx != NULL)
6169 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6170 }
6171
6172 name_local_sections
6173 = (bed->elf_backend_name_local_section_symbols
6174 && bed->elf_backend_name_local_section_symbols (abfd));
6175
6176 syms = bfd_get_outsymbols (abfd);
6177 for (idx = 0; idx < symcount; idx++)
6178 {
6179 Elf_Internal_Sym sym;
6180 bfd_vma value = syms[idx]->value;
6181 elf_symbol_type *type_ptr;
6182 flagword flags = syms[idx]->flags;
6183 int type;
6184
6185 if (!name_local_sections
6186 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6187 {
6188 /* Local section symbols have no name. */
6189 sym.st_name = 0;
6190 }
6191 else
6192 {
6193 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6194 syms[idx]->name,
6195 TRUE, FALSE);
6196 if (sym.st_name == (unsigned long) -1)
6197 {
6198 _bfd_stringtab_free (stt);
6199 return FALSE;
6200 }
6201 }
6202
6203 type_ptr = elf_symbol_from (abfd, syms[idx]);
6204
6205 if ((flags & BSF_SECTION_SYM) == 0
6206 && bfd_is_com_section (syms[idx]->section))
6207 {
6208 /* ELF common symbols put the alignment into the `value' field,
6209 and the size into the `size' field. This is backwards from
6210 how BFD handles it, so reverse it here. */
6211 sym.st_size = value;
6212 if (type_ptr == NULL
6213 || type_ptr->internal_elf_sym.st_value == 0)
6214 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6215 else
6216 sym.st_value = type_ptr->internal_elf_sym.st_value;
6217 sym.st_shndx = _bfd_elf_section_from_bfd_section
6218 (abfd, syms[idx]->section);
6219 }
6220 else
6221 {
6222 asection *sec = syms[idx]->section;
6223 int shndx;
6224
6225 if (sec->output_section)
6226 {
6227 value += sec->output_offset;
6228 sec = sec->output_section;
6229 }
6230
6231 /* Don't add in the section vma for relocatable output. */
6232 if (! relocatable_p)
6233 value += sec->vma;
6234 sym.st_value = value;
6235 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6236
6237 if (bfd_is_abs_section (sec)
6238 && type_ptr != NULL
6239 && type_ptr->internal_elf_sym.st_shndx != 0)
6240 {
6241 /* This symbol is in a real ELF section which we did
6242 not create as a BFD section. Undo the mapping done
6243 by copy_private_symbol_data. */
6244 shndx = type_ptr->internal_elf_sym.st_shndx;
6245 switch (shndx)
6246 {
6247 case MAP_ONESYMTAB:
6248 shndx = elf_onesymtab (abfd);
6249 break;
6250 case MAP_DYNSYMTAB:
6251 shndx = elf_dynsymtab (abfd);
6252 break;
6253 case MAP_STRTAB:
6254 shndx = elf_tdata (abfd)->strtab_section;
6255 break;
6256 case MAP_SHSTRTAB:
6257 shndx = elf_tdata (abfd)->shstrtab_section;
6258 break;
6259 case MAP_SYM_SHNDX:
6260 shndx = elf_tdata (abfd)->symtab_shndx_section;
6261 break;
6262 default:
6263 break;
6264 }
6265 }
6266 else
6267 {
6268 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6269
6270 if (shndx == -1)
6271 {
6272 asection *sec2;
6273
6274 /* Writing this would be a hell of a lot easier if
6275 we had some decent documentation on bfd, and
6276 knew what to expect of the library, and what to
6277 demand of applications. For example, it
6278 appears that `objcopy' might not set the
6279 section of a symbol to be a section that is
6280 actually in the output file. */
6281 sec2 = bfd_get_section_by_name (abfd, sec->name);
6282 if (sec2 == NULL)
6283 {
6284 _bfd_error_handler (_("\
6285 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6286 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6287 sec->name);
6288 bfd_set_error (bfd_error_invalid_operation);
6289 _bfd_stringtab_free (stt);
6290 return FALSE;
6291 }
6292
6293 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6294 BFD_ASSERT (shndx != -1);
6295 }
6296 }
6297
6298 sym.st_shndx = shndx;
6299 }
6300
6301 if ((flags & BSF_THREAD_LOCAL) != 0)
6302 type = STT_TLS;
6303 else if ((flags & BSF_FUNCTION) != 0)
6304 type = STT_FUNC;
6305 else if ((flags & BSF_OBJECT) != 0)
6306 type = STT_OBJECT;
6307 else
6308 type = STT_NOTYPE;
6309
6310 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6311 type = STT_TLS;
6312
6313 /* Processor-specific types. */
6314 if (type_ptr != NULL
6315 && bed->elf_backend_get_symbol_type)
6316 type = ((*bed->elf_backend_get_symbol_type)
6317 (&type_ptr->internal_elf_sym, type));
6318
6319 if (flags & BSF_SECTION_SYM)
6320 {
6321 if (flags & BSF_GLOBAL)
6322 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6323 else
6324 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6325 }
6326 else if (bfd_is_com_section (syms[idx]->section))
6327 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6328 else if (bfd_is_und_section (syms[idx]->section))
6329 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6330 ? STB_WEAK
6331 : STB_GLOBAL),
6332 type);
6333 else if (flags & BSF_FILE)
6334 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6335 else
6336 {
6337 int bind = STB_LOCAL;
6338
6339 if (flags & BSF_LOCAL)
6340 bind = STB_LOCAL;
6341 else if (flags & BSF_WEAK)
6342 bind = STB_WEAK;
6343 else if (flags & BSF_GLOBAL)
6344 bind = STB_GLOBAL;
6345
6346 sym.st_info = ELF_ST_INFO (bind, type);
6347 }
6348
6349 if (type_ptr != NULL)
6350 sym.st_other = type_ptr->internal_elf_sym.st_other;
6351 else
6352 sym.st_other = 0;
6353
6354 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6355 outbound_syms += bed->s->sizeof_sym;
6356 if (outbound_shndx != NULL)
6357 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6358 }
6359
6360 *sttp = stt;
6361 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6362 symstrtab_hdr->sh_type = SHT_STRTAB;
6363
6364 symstrtab_hdr->sh_flags = 0;
6365 symstrtab_hdr->sh_addr = 0;
6366 symstrtab_hdr->sh_entsize = 0;
6367 symstrtab_hdr->sh_link = 0;
6368 symstrtab_hdr->sh_info = 0;
6369 symstrtab_hdr->sh_addralign = 1;
6370
6371 return TRUE;
6372 }
6373
6374 /* Return the number of bytes required to hold the symtab vector.
6375
6376 Note that we base it on the count plus 1, since we will null terminate
6377 the vector allocated based on this size. However, the ELF symbol table
6378 always has a dummy entry as symbol #0, so it ends up even. */
6379
6380 long
6381 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6382 {
6383 long symcount;
6384 long symtab_size;
6385 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6386
6387 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6388 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6389 if (symcount > 0)
6390 symtab_size -= sizeof (asymbol *);
6391
6392 return symtab_size;
6393 }
6394
6395 long
6396 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6397 {
6398 long symcount;
6399 long symtab_size;
6400 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6401
6402 if (elf_dynsymtab (abfd) == 0)
6403 {
6404 bfd_set_error (bfd_error_invalid_operation);
6405 return -1;
6406 }
6407
6408 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6409 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6410 if (symcount > 0)
6411 symtab_size -= sizeof (asymbol *);
6412
6413 return symtab_size;
6414 }
6415
6416 long
6417 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6418 sec_ptr asect)
6419 {
6420 return (asect->reloc_count + 1) * sizeof (arelent *);
6421 }
6422
6423 /* Canonicalize the relocs. */
6424
6425 long
6426 _bfd_elf_canonicalize_reloc (bfd *abfd,
6427 sec_ptr section,
6428 arelent **relptr,
6429 asymbol **symbols)
6430 {
6431 arelent *tblptr;
6432 unsigned int i;
6433 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6434
6435 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6436 return -1;
6437
6438 tblptr = section->relocation;
6439 for (i = 0; i < section->reloc_count; i++)
6440 *relptr++ = tblptr++;
6441
6442 *relptr = NULL;
6443
6444 return section->reloc_count;
6445 }
6446
6447 long
6448 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6449 {
6450 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6451 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6452
6453 if (symcount >= 0)
6454 bfd_get_symcount (abfd) = symcount;
6455 return symcount;
6456 }
6457
6458 long
6459 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6460 asymbol **allocation)
6461 {
6462 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6463 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6464
6465 if (symcount >= 0)
6466 bfd_get_dynamic_symcount (abfd) = symcount;
6467 return symcount;
6468 }
6469
6470 /* Return the size required for the dynamic reloc entries. Any loadable
6471 section that was actually installed in the BFD, and has type SHT_REL
6472 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6473 dynamic reloc section. */
6474
6475 long
6476 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6477 {
6478 long ret;
6479 asection *s;
6480
6481 if (elf_dynsymtab (abfd) == 0)
6482 {
6483 bfd_set_error (bfd_error_invalid_operation);
6484 return -1;
6485 }
6486
6487 ret = sizeof (arelent *);
6488 for (s = abfd->sections; s != NULL; s = s->next)
6489 if ((s->flags & SEC_LOAD) != 0
6490 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6491 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6492 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6493 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6494 * sizeof (arelent *));
6495
6496 return ret;
6497 }
6498
6499 /* Canonicalize the dynamic relocation entries. Note that we return the
6500 dynamic relocations as a single block, although they are actually
6501 associated with particular sections; the interface, which was
6502 designed for SunOS style shared libraries, expects that there is only
6503 one set of dynamic relocs. Any loadable section that was actually
6504 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6505 dynamic symbol table, is considered to be a dynamic reloc section. */
6506
6507 long
6508 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6509 arelent **storage,
6510 asymbol **syms)
6511 {
6512 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6513 asection *s;
6514 long ret;
6515
6516 if (elf_dynsymtab (abfd) == 0)
6517 {
6518 bfd_set_error (bfd_error_invalid_operation);
6519 return -1;
6520 }
6521
6522 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6523 ret = 0;
6524 for (s = abfd->sections; s != NULL; s = s->next)
6525 {
6526 if ((s->flags & SEC_LOAD) != 0
6527 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6528 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6529 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6530 {
6531 arelent *p;
6532 long count, i;
6533
6534 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6535 return -1;
6536 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6537 p = s->relocation;
6538 for (i = 0; i < count; i++)
6539 *storage++ = p++;
6540 ret += count;
6541 }
6542 }
6543
6544 *storage = NULL;
6545
6546 return ret;
6547 }
6548 \f
6549 /* Read in the version information. */
6550
6551 bfd_boolean
6552 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6553 {
6554 bfd_byte *contents = NULL;
6555 unsigned int freeidx = 0;
6556
6557 if (elf_dynverref (abfd) != 0)
6558 {
6559 Elf_Internal_Shdr *hdr;
6560 Elf_External_Verneed *everneed;
6561 Elf_Internal_Verneed *iverneed;
6562 unsigned int i;
6563 bfd_byte *contents_end;
6564
6565 hdr = &elf_tdata (abfd)->dynverref_hdr;
6566
6567 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6568 sizeof (Elf_Internal_Verneed));
6569 if (elf_tdata (abfd)->verref == NULL)
6570 goto error_return;
6571
6572 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6573
6574 contents = bfd_malloc (hdr->sh_size);
6575 if (contents == NULL)
6576 {
6577 error_return_verref:
6578 elf_tdata (abfd)->verref = NULL;
6579 elf_tdata (abfd)->cverrefs = 0;
6580 goto error_return;
6581 }
6582 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6583 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6584 goto error_return_verref;
6585
6586 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6587 goto error_return_verref;
6588
6589 BFD_ASSERT (sizeof (Elf_External_Verneed)
6590 == sizeof (Elf_External_Vernaux));
6591 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6592 everneed = (Elf_External_Verneed *) contents;
6593 iverneed = elf_tdata (abfd)->verref;
6594 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6595 {
6596 Elf_External_Vernaux *evernaux;
6597 Elf_Internal_Vernaux *ivernaux;
6598 unsigned int j;
6599
6600 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6601
6602 iverneed->vn_bfd = abfd;
6603
6604 iverneed->vn_filename =
6605 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6606 iverneed->vn_file);
6607 if (iverneed->vn_filename == NULL)
6608 goto error_return_verref;
6609
6610 if (iverneed->vn_cnt == 0)
6611 iverneed->vn_auxptr = NULL;
6612 else
6613 {
6614 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6615 sizeof (Elf_Internal_Vernaux));
6616 if (iverneed->vn_auxptr == NULL)
6617 goto error_return_verref;
6618 }
6619
6620 if (iverneed->vn_aux
6621 > (size_t) (contents_end - (bfd_byte *) everneed))
6622 goto error_return_verref;
6623
6624 evernaux = ((Elf_External_Vernaux *)
6625 ((bfd_byte *) everneed + iverneed->vn_aux));
6626 ivernaux = iverneed->vn_auxptr;
6627 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6628 {
6629 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6630
6631 ivernaux->vna_nodename =
6632 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6633 ivernaux->vna_name);
6634 if (ivernaux->vna_nodename == NULL)
6635 goto error_return_verref;
6636
6637 if (j + 1 < iverneed->vn_cnt)
6638 ivernaux->vna_nextptr = ivernaux + 1;
6639 else
6640 ivernaux->vna_nextptr = NULL;
6641
6642 if (ivernaux->vna_next
6643 > (size_t) (contents_end - (bfd_byte *) evernaux))
6644 goto error_return_verref;
6645
6646 evernaux = ((Elf_External_Vernaux *)
6647 ((bfd_byte *) evernaux + ivernaux->vna_next));
6648
6649 if (ivernaux->vna_other > freeidx)
6650 freeidx = ivernaux->vna_other;
6651 }
6652
6653 if (i + 1 < hdr->sh_info)
6654 iverneed->vn_nextref = iverneed + 1;
6655 else
6656 iverneed->vn_nextref = NULL;
6657
6658 if (iverneed->vn_next
6659 > (size_t) (contents_end - (bfd_byte *) everneed))
6660 goto error_return_verref;
6661
6662 everneed = ((Elf_External_Verneed *)
6663 ((bfd_byte *) everneed + iverneed->vn_next));
6664 }
6665
6666 free (contents);
6667 contents = NULL;
6668 }
6669
6670 if (elf_dynverdef (abfd) != 0)
6671 {
6672 Elf_Internal_Shdr *hdr;
6673 Elf_External_Verdef *everdef;
6674 Elf_Internal_Verdef *iverdef;
6675 Elf_Internal_Verdef *iverdefarr;
6676 Elf_Internal_Verdef iverdefmem;
6677 unsigned int i;
6678 unsigned int maxidx;
6679 bfd_byte *contents_end_def, *contents_end_aux;
6680
6681 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6682
6683 contents = bfd_malloc (hdr->sh_size);
6684 if (contents == NULL)
6685 goto error_return;
6686 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6687 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6688 goto error_return;
6689
6690 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6691 goto error_return;
6692
6693 BFD_ASSERT (sizeof (Elf_External_Verdef)
6694 >= sizeof (Elf_External_Verdaux));
6695 contents_end_def = contents + hdr->sh_size
6696 - sizeof (Elf_External_Verdef);
6697 contents_end_aux = contents + hdr->sh_size
6698 - sizeof (Elf_External_Verdaux);
6699
6700 /* We know the number of entries in the section but not the maximum
6701 index. Therefore we have to run through all entries and find
6702 the maximum. */
6703 everdef = (Elf_External_Verdef *) contents;
6704 maxidx = 0;
6705 for (i = 0; i < hdr->sh_info; ++i)
6706 {
6707 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6708
6709 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6710 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6711
6712 if (iverdefmem.vd_next
6713 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6714 goto error_return;
6715
6716 everdef = ((Elf_External_Verdef *)
6717 ((bfd_byte *) everdef + iverdefmem.vd_next));
6718 }
6719
6720 if (default_imported_symver)
6721 {
6722 if (freeidx > maxidx)
6723 maxidx = ++freeidx;
6724 else
6725 freeidx = ++maxidx;
6726 }
6727 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6728 sizeof (Elf_Internal_Verdef));
6729 if (elf_tdata (abfd)->verdef == NULL)
6730 goto error_return;
6731
6732 elf_tdata (abfd)->cverdefs = maxidx;
6733
6734 everdef = (Elf_External_Verdef *) contents;
6735 iverdefarr = elf_tdata (abfd)->verdef;
6736 for (i = 0; i < hdr->sh_info; i++)
6737 {
6738 Elf_External_Verdaux *everdaux;
6739 Elf_Internal_Verdaux *iverdaux;
6740 unsigned int j;
6741
6742 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6743
6744 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6745 {
6746 error_return_verdef:
6747 elf_tdata (abfd)->verdef = NULL;
6748 elf_tdata (abfd)->cverdefs = 0;
6749 goto error_return;
6750 }
6751
6752 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6753 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6754
6755 iverdef->vd_bfd = abfd;
6756
6757 if (iverdef->vd_cnt == 0)
6758 iverdef->vd_auxptr = NULL;
6759 else
6760 {
6761 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6762 sizeof (Elf_Internal_Verdaux));
6763 if (iverdef->vd_auxptr == NULL)
6764 goto error_return_verdef;
6765 }
6766
6767 if (iverdef->vd_aux
6768 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6769 goto error_return_verdef;
6770
6771 everdaux = ((Elf_External_Verdaux *)
6772 ((bfd_byte *) everdef + iverdef->vd_aux));
6773 iverdaux = iverdef->vd_auxptr;
6774 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6775 {
6776 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6777
6778 iverdaux->vda_nodename =
6779 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6780 iverdaux->vda_name);
6781 if (iverdaux->vda_nodename == NULL)
6782 goto error_return_verdef;
6783
6784 if (j + 1 < iverdef->vd_cnt)
6785 iverdaux->vda_nextptr = iverdaux + 1;
6786 else
6787 iverdaux->vda_nextptr = NULL;
6788
6789 if (iverdaux->vda_next
6790 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6791 goto error_return_verdef;
6792
6793 everdaux = ((Elf_External_Verdaux *)
6794 ((bfd_byte *) everdaux + iverdaux->vda_next));
6795 }
6796
6797 if (iverdef->vd_cnt)
6798 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6799
6800 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6801 iverdef->vd_nextdef = iverdef + 1;
6802 else
6803 iverdef->vd_nextdef = NULL;
6804
6805 everdef = ((Elf_External_Verdef *)
6806 ((bfd_byte *) everdef + iverdef->vd_next));
6807 }
6808
6809 free (contents);
6810 contents = NULL;
6811 }
6812 else if (default_imported_symver)
6813 {
6814 if (freeidx < 3)
6815 freeidx = 3;
6816 else
6817 freeidx++;
6818
6819 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6820 sizeof (Elf_Internal_Verdef));
6821 if (elf_tdata (abfd)->verdef == NULL)
6822 goto error_return;
6823
6824 elf_tdata (abfd)->cverdefs = freeidx;
6825 }
6826
6827 /* Create a default version based on the soname. */
6828 if (default_imported_symver)
6829 {
6830 Elf_Internal_Verdef *iverdef;
6831 Elf_Internal_Verdaux *iverdaux;
6832
6833 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6834
6835 iverdef->vd_version = VER_DEF_CURRENT;
6836 iverdef->vd_flags = 0;
6837 iverdef->vd_ndx = freeidx;
6838 iverdef->vd_cnt = 1;
6839
6840 iverdef->vd_bfd = abfd;
6841
6842 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6843 if (iverdef->vd_nodename == NULL)
6844 goto error_return_verdef;
6845 iverdef->vd_nextdef = NULL;
6846 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6847 if (iverdef->vd_auxptr == NULL)
6848 goto error_return_verdef;
6849
6850 iverdaux = iverdef->vd_auxptr;
6851 iverdaux->vda_nodename = iverdef->vd_nodename;
6852 iverdaux->vda_nextptr = NULL;
6853 }
6854
6855 return TRUE;
6856
6857 error_return:
6858 if (contents != NULL)
6859 free (contents);
6860 return FALSE;
6861 }
6862 \f
6863 asymbol *
6864 _bfd_elf_make_empty_symbol (bfd *abfd)
6865 {
6866 elf_symbol_type *newsym;
6867 bfd_size_type amt = sizeof (elf_symbol_type);
6868
6869 newsym = bfd_zalloc (abfd, amt);
6870 if (!newsym)
6871 return NULL;
6872 else
6873 {
6874 newsym->symbol.the_bfd = abfd;
6875 return &newsym->symbol;
6876 }
6877 }
6878
6879 void
6880 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6881 asymbol *symbol,
6882 symbol_info *ret)
6883 {
6884 bfd_symbol_info (symbol, ret);
6885 }
6886
6887 /* Return whether a symbol name implies a local symbol. Most targets
6888 use this function for the is_local_label_name entry point, but some
6889 override it. */
6890
6891 bfd_boolean
6892 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6893 const char *name)
6894 {
6895 /* Normal local symbols start with ``.L''. */
6896 if (name[0] == '.' && name[1] == 'L')
6897 return TRUE;
6898
6899 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6900 DWARF debugging symbols starting with ``..''. */
6901 if (name[0] == '.' && name[1] == '.')
6902 return TRUE;
6903
6904 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6905 emitting DWARF debugging output. I suspect this is actually a
6906 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6907 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6908 underscore to be emitted on some ELF targets). For ease of use,
6909 we treat such symbols as local. */
6910 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6911 return TRUE;
6912
6913 return FALSE;
6914 }
6915
6916 alent *
6917 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6918 asymbol *symbol ATTRIBUTE_UNUSED)
6919 {
6920 abort ();
6921 return NULL;
6922 }
6923
6924 bfd_boolean
6925 _bfd_elf_set_arch_mach (bfd *abfd,
6926 enum bfd_architecture arch,
6927 unsigned long machine)
6928 {
6929 /* If this isn't the right architecture for this backend, and this
6930 isn't the generic backend, fail. */
6931 if (arch != get_elf_backend_data (abfd)->arch
6932 && arch != bfd_arch_unknown
6933 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6934 return FALSE;
6935
6936 return bfd_default_set_arch_mach (abfd, arch, machine);
6937 }
6938
6939 /* Find the function to a particular section and offset,
6940 for error reporting. */
6941
6942 static bfd_boolean
6943 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6944 asection *section,
6945 asymbol **symbols,
6946 bfd_vma offset,
6947 const char **filename_ptr,
6948 const char **functionname_ptr)
6949 {
6950 const char *filename;
6951 asymbol *func, *file;
6952 bfd_vma low_func;
6953 asymbol **p;
6954 /* ??? Given multiple file symbols, it is impossible to reliably
6955 choose the right file name for global symbols. File symbols are
6956 local symbols, and thus all file symbols must sort before any
6957 global symbols. The ELF spec may be interpreted to say that a
6958 file symbol must sort before other local symbols, but currently
6959 ld -r doesn't do this. So, for ld -r output, it is possible to
6960 make a better choice of file name for local symbols by ignoring
6961 file symbols appearing after a given local symbol. */
6962 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6963
6964 filename = NULL;
6965 func = NULL;
6966 file = NULL;
6967 low_func = 0;
6968 state = nothing_seen;
6969
6970 for (p = symbols; *p != NULL; p++)
6971 {
6972 elf_symbol_type *q;
6973
6974 q = (elf_symbol_type *) *p;
6975
6976 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6977 {
6978 default:
6979 break;
6980 case STT_FILE:
6981 file = &q->symbol;
6982 if (state == symbol_seen)
6983 state = file_after_symbol_seen;
6984 continue;
6985 case STT_NOTYPE:
6986 case STT_FUNC:
6987 if (bfd_get_section (&q->symbol) == section
6988 && q->symbol.value >= low_func
6989 && q->symbol.value <= offset)
6990 {
6991 func = (asymbol *) q;
6992 low_func = q->symbol.value;
6993 filename = NULL;
6994 if (file != NULL
6995 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6996 || state != file_after_symbol_seen))
6997 filename = bfd_asymbol_name (file);
6998 }
6999 break;
7000 }
7001 if (state == nothing_seen)
7002 state = symbol_seen;
7003 }
7004
7005 if (func == NULL)
7006 return FALSE;
7007
7008 if (filename_ptr)
7009 *filename_ptr = filename;
7010 if (functionname_ptr)
7011 *functionname_ptr = bfd_asymbol_name (func);
7012
7013 return TRUE;
7014 }
7015
7016 /* Find the nearest line to a particular section and offset,
7017 for error reporting. */
7018
7019 bfd_boolean
7020 _bfd_elf_find_nearest_line (bfd *abfd,
7021 asection *section,
7022 asymbol **symbols,
7023 bfd_vma offset,
7024 const char **filename_ptr,
7025 const char **functionname_ptr,
7026 unsigned int *line_ptr)
7027 {
7028 bfd_boolean found;
7029
7030 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7031 filename_ptr, functionname_ptr,
7032 line_ptr))
7033 {
7034 if (!*functionname_ptr)
7035 elf_find_function (abfd, section, symbols, offset,
7036 *filename_ptr ? NULL : filename_ptr,
7037 functionname_ptr);
7038
7039 return TRUE;
7040 }
7041
7042 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7043 filename_ptr, functionname_ptr,
7044 line_ptr, 0,
7045 &elf_tdata (abfd)->dwarf2_find_line_info))
7046 {
7047 if (!*functionname_ptr)
7048 elf_find_function (abfd, section, symbols, offset,
7049 *filename_ptr ? NULL : filename_ptr,
7050 functionname_ptr);
7051
7052 return TRUE;
7053 }
7054
7055 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7056 &found, filename_ptr,
7057 functionname_ptr, line_ptr,
7058 &elf_tdata (abfd)->line_info))
7059 return FALSE;
7060 if (found && (*functionname_ptr || *line_ptr))
7061 return TRUE;
7062
7063 if (symbols == NULL)
7064 return FALSE;
7065
7066 if (! elf_find_function (abfd, section, symbols, offset,
7067 filename_ptr, functionname_ptr))
7068 return FALSE;
7069
7070 *line_ptr = 0;
7071 return TRUE;
7072 }
7073
7074 /* Find the line for a symbol. */
7075
7076 bfd_boolean
7077 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7078 const char **filename_ptr, unsigned int *line_ptr)
7079 {
7080 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7081 filename_ptr, line_ptr, 0,
7082 &elf_tdata (abfd)->dwarf2_find_line_info);
7083 }
7084
7085 /* After a call to bfd_find_nearest_line, successive calls to
7086 bfd_find_inliner_info can be used to get source information about
7087 each level of function inlining that terminated at the address
7088 passed to bfd_find_nearest_line. Currently this is only supported
7089 for DWARF2 with appropriate DWARF3 extensions. */
7090
7091 bfd_boolean
7092 _bfd_elf_find_inliner_info (bfd *abfd,
7093 const char **filename_ptr,
7094 const char **functionname_ptr,
7095 unsigned int *line_ptr)
7096 {
7097 bfd_boolean found;
7098 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7099 functionname_ptr, line_ptr,
7100 & elf_tdata (abfd)->dwarf2_find_line_info);
7101 return found;
7102 }
7103
7104 int
7105 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
7106 {
7107 int ret;
7108
7109 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
7110 if (! reloc)
7111 ret += get_program_header_size (abfd);
7112 return ret;
7113 }
7114
7115 bfd_boolean
7116 _bfd_elf_set_section_contents (bfd *abfd,
7117 sec_ptr section,
7118 const void *location,
7119 file_ptr offset,
7120 bfd_size_type count)
7121 {
7122 Elf_Internal_Shdr *hdr;
7123 bfd_signed_vma pos;
7124
7125 if (! abfd->output_has_begun
7126 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7127 return FALSE;
7128
7129 hdr = &elf_section_data (section)->this_hdr;
7130 pos = hdr->sh_offset + offset;
7131 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7132 || bfd_bwrite (location, count, abfd) != count)
7133 return FALSE;
7134
7135 return TRUE;
7136 }
7137
7138 void
7139 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7140 arelent *cache_ptr ATTRIBUTE_UNUSED,
7141 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7142 {
7143 abort ();
7144 }
7145
7146 /* Try to convert a non-ELF reloc into an ELF one. */
7147
7148 bfd_boolean
7149 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7150 {
7151 /* Check whether we really have an ELF howto. */
7152
7153 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7154 {
7155 bfd_reloc_code_real_type code;
7156 reloc_howto_type *howto;
7157
7158 /* Alien reloc: Try to determine its type to replace it with an
7159 equivalent ELF reloc. */
7160
7161 if (areloc->howto->pc_relative)
7162 {
7163 switch (areloc->howto->bitsize)
7164 {
7165 case 8:
7166 code = BFD_RELOC_8_PCREL;
7167 break;
7168 case 12:
7169 code = BFD_RELOC_12_PCREL;
7170 break;
7171 case 16:
7172 code = BFD_RELOC_16_PCREL;
7173 break;
7174 case 24:
7175 code = BFD_RELOC_24_PCREL;
7176 break;
7177 case 32:
7178 code = BFD_RELOC_32_PCREL;
7179 break;
7180 case 64:
7181 code = BFD_RELOC_64_PCREL;
7182 break;
7183 default:
7184 goto fail;
7185 }
7186
7187 howto = bfd_reloc_type_lookup (abfd, code);
7188
7189 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7190 {
7191 if (howto->pcrel_offset)
7192 areloc->addend += areloc->address;
7193 else
7194 areloc->addend -= areloc->address; /* addend is unsigned!! */
7195 }
7196 }
7197 else
7198 {
7199 switch (areloc->howto->bitsize)
7200 {
7201 case 8:
7202 code = BFD_RELOC_8;
7203 break;
7204 case 14:
7205 code = BFD_RELOC_14;
7206 break;
7207 case 16:
7208 code = BFD_RELOC_16;
7209 break;
7210 case 26:
7211 code = BFD_RELOC_26;
7212 break;
7213 case 32:
7214 code = BFD_RELOC_32;
7215 break;
7216 case 64:
7217 code = BFD_RELOC_64;
7218 break;
7219 default:
7220 goto fail;
7221 }
7222
7223 howto = bfd_reloc_type_lookup (abfd, code);
7224 }
7225
7226 if (howto)
7227 areloc->howto = howto;
7228 else
7229 goto fail;
7230 }
7231
7232 return TRUE;
7233
7234 fail:
7235 (*_bfd_error_handler)
7236 (_("%B: unsupported relocation type %s"),
7237 abfd, areloc->howto->name);
7238 bfd_set_error (bfd_error_bad_value);
7239 return FALSE;
7240 }
7241
7242 bfd_boolean
7243 _bfd_elf_close_and_cleanup (bfd *abfd)
7244 {
7245 if (bfd_get_format (abfd) == bfd_object)
7246 {
7247 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7248 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7249 _bfd_dwarf2_cleanup_debug_info (abfd);
7250 }
7251
7252 return _bfd_generic_close_and_cleanup (abfd);
7253 }
7254
7255 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7256 in the relocation's offset. Thus we cannot allow any sort of sanity
7257 range-checking to interfere. There is nothing else to do in processing
7258 this reloc. */
7259
7260 bfd_reloc_status_type
7261 _bfd_elf_rel_vtable_reloc_fn
7262 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7263 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7264 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7265 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7266 {
7267 return bfd_reloc_ok;
7268 }
7269 \f
7270 /* Elf core file support. Much of this only works on native
7271 toolchains, since we rely on knowing the
7272 machine-dependent procfs structure in order to pick
7273 out details about the corefile. */
7274
7275 #ifdef HAVE_SYS_PROCFS_H
7276 # include <sys/procfs.h>
7277 #endif
7278
7279 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7280
7281 static int
7282 elfcore_make_pid (bfd *abfd)
7283 {
7284 return ((elf_tdata (abfd)->core_lwpid << 16)
7285 + (elf_tdata (abfd)->core_pid));
7286 }
7287
7288 /* If there isn't a section called NAME, make one, using
7289 data from SECT. Note, this function will generate a
7290 reference to NAME, so you shouldn't deallocate or
7291 overwrite it. */
7292
7293 static bfd_boolean
7294 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7295 {
7296 asection *sect2;
7297
7298 if (bfd_get_section_by_name (abfd, name) != NULL)
7299 return TRUE;
7300
7301 sect2 = bfd_make_section (abfd, name);
7302 if (sect2 == NULL)
7303 return FALSE;
7304
7305 sect2->size = sect->size;
7306 sect2->filepos = sect->filepos;
7307 sect2->flags = sect->flags;
7308 sect2->alignment_power = sect->alignment_power;
7309 return TRUE;
7310 }
7311
7312 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7313 actually creates up to two pseudosections:
7314 - For the single-threaded case, a section named NAME, unless
7315 such a section already exists.
7316 - For the multi-threaded case, a section named "NAME/PID", where
7317 PID is elfcore_make_pid (abfd).
7318 Both pseudosections have identical contents. */
7319 bfd_boolean
7320 _bfd_elfcore_make_pseudosection (bfd *abfd,
7321 char *name,
7322 size_t size,
7323 ufile_ptr filepos)
7324 {
7325 char buf[100];
7326 char *threaded_name;
7327 size_t len;
7328 asection *sect;
7329
7330 /* Build the section name. */
7331
7332 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7333 len = strlen (buf) + 1;
7334 threaded_name = bfd_alloc (abfd, len);
7335 if (threaded_name == NULL)
7336 return FALSE;
7337 memcpy (threaded_name, buf, len);
7338
7339 sect = bfd_make_section_anyway (abfd, threaded_name);
7340 if (sect == NULL)
7341 return FALSE;
7342 sect->size = size;
7343 sect->filepos = filepos;
7344 sect->flags = SEC_HAS_CONTENTS;
7345 sect->alignment_power = 2;
7346
7347 return elfcore_maybe_make_sect (abfd, name, sect);
7348 }
7349
7350 /* prstatus_t exists on:
7351 solaris 2.5+
7352 linux 2.[01] + glibc
7353 unixware 4.2
7354 */
7355
7356 #if defined (HAVE_PRSTATUS_T)
7357
7358 static bfd_boolean
7359 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7360 {
7361 size_t size;
7362 int offset;
7363
7364 if (note->descsz == sizeof (prstatus_t))
7365 {
7366 prstatus_t prstat;
7367
7368 size = sizeof (prstat.pr_reg);
7369 offset = offsetof (prstatus_t, pr_reg);
7370 memcpy (&prstat, note->descdata, sizeof (prstat));
7371
7372 /* Do not overwrite the core signal if it
7373 has already been set by another thread. */
7374 if (elf_tdata (abfd)->core_signal == 0)
7375 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7376 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7377
7378 /* pr_who exists on:
7379 solaris 2.5+
7380 unixware 4.2
7381 pr_who doesn't exist on:
7382 linux 2.[01]
7383 */
7384 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7385 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7386 #endif
7387 }
7388 #if defined (HAVE_PRSTATUS32_T)
7389 else if (note->descsz == sizeof (prstatus32_t))
7390 {
7391 /* 64-bit host, 32-bit corefile */
7392 prstatus32_t prstat;
7393
7394 size = sizeof (prstat.pr_reg);
7395 offset = offsetof (prstatus32_t, pr_reg);
7396 memcpy (&prstat, note->descdata, sizeof (prstat));
7397
7398 /* Do not overwrite the core signal if it
7399 has already been set by another thread. */
7400 if (elf_tdata (abfd)->core_signal == 0)
7401 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7402 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7403
7404 /* pr_who exists on:
7405 solaris 2.5+
7406 unixware 4.2
7407 pr_who doesn't exist on:
7408 linux 2.[01]
7409 */
7410 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7411 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7412 #endif
7413 }
7414 #endif /* HAVE_PRSTATUS32_T */
7415 else
7416 {
7417 /* Fail - we don't know how to handle any other
7418 note size (ie. data object type). */
7419 return TRUE;
7420 }
7421
7422 /* Make a ".reg/999" section and a ".reg" section. */
7423 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7424 size, note->descpos + offset);
7425 }
7426 #endif /* defined (HAVE_PRSTATUS_T) */
7427
7428 /* Create a pseudosection containing the exact contents of NOTE. */
7429 static bfd_boolean
7430 elfcore_make_note_pseudosection (bfd *abfd,
7431 char *name,
7432 Elf_Internal_Note *note)
7433 {
7434 return _bfd_elfcore_make_pseudosection (abfd, name,
7435 note->descsz, note->descpos);
7436 }
7437
7438 /* There isn't a consistent prfpregset_t across platforms,
7439 but it doesn't matter, because we don't have to pick this
7440 data structure apart. */
7441
7442 static bfd_boolean
7443 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7444 {
7445 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7446 }
7447
7448 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7449 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7450 literally. */
7451
7452 static bfd_boolean
7453 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7454 {
7455 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7456 }
7457
7458 #if defined (HAVE_PRPSINFO_T)
7459 typedef prpsinfo_t elfcore_psinfo_t;
7460 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7461 typedef prpsinfo32_t elfcore_psinfo32_t;
7462 #endif
7463 #endif
7464
7465 #if defined (HAVE_PSINFO_T)
7466 typedef psinfo_t elfcore_psinfo_t;
7467 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7468 typedef psinfo32_t elfcore_psinfo32_t;
7469 #endif
7470 #endif
7471
7472 /* return a malloc'ed copy of a string at START which is at
7473 most MAX bytes long, possibly without a terminating '\0'.
7474 the copy will always have a terminating '\0'. */
7475
7476 char *
7477 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7478 {
7479 char *dups;
7480 char *end = memchr (start, '\0', max);
7481 size_t len;
7482
7483 if (end == NULL)
7484 len = max;
7485 else
7486 len = end - start;
7487
7488 dups = bfd_alloc (abfd, len + 1);
7489 if (dups == NULL)
7490 return NULL;
7491
7492 memcpy (dups, start, len);
7493 dups[len] = '\0';
7494
7495 return dups;
7496 }
7497
7498 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7499 static bfd_boolean
7500 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7501 {
7502 if (note->descsz == sizeof (elfcore_psinfo_t))
7503 {
7504 elfcore_psinfo_t psinfo;
7505
7506 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7507
7508 elf_tdata (abfd)->core_program
7509 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7510 sizeof (psinfo.pr_fname));
7511
7512 elf_tdata (abfd)->core_command
7513 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7514 sizeof (psinfo.pr_psargs));
7515 }
7516 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7517 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7518 {
7519 /* 64-bit host, 32-bit corefile */
7520 elfcore_psinfo32_t psinfo;
7521
7522 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7523
7524 elf_tdata (abfd)->core_program
7525 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7526 sizeof (psinfo.pr_fname));
7527
7528 elf_tdata (abfd)->core_command
7529 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7530 sizeof (psinfo.pr_psargs));
7531 }
7532 #endif
7533
7534 else
7535 {
7536 /* Fail - we don't know how to handle any other
7537 note size (ie. data object type). */
7538 return TRUE;
7539 }
7540
7541 /* Note that for some reason, a spurious space is tacked
7542 onto the end of the args in some (at least one anyway)
7543 implementations, so strip it off if it exists. */
7544
7545 {
7546 char *command = elf_tdata (abfd)->core_command;
7547 int n = strlen (command);
7548
7549 if (0 < n && command[n - 1] == ' ')
7550 command[n - 1] = '\0';
7551 }
7552
7553 return TRUE;
7554 }
7555 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7556
7557 #if defined (HAVE_PSTATUS_T)
7558 static bfd_boolean
7559 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7560 {
7561 if (note->descsz == sizeof (pstatus_t)
7562 #if defined (HAVE_PXSTATUS_T)
7563 || note->descsz == sizeof (pxstatus_t)
7564 #endif
7565 )
7566 {
7567 pstatus_t pstat;
7568
7569 memcpy (&pstat, note->descdata, sizeof (pstat));
7570
7571 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7572 }
7573 #if defined (HAVE_PSTATUS32_T)
7574 else if (note->descsz == sizeof (pstatus32_t))
7575 {
7576 /* 64-bit host, 32-bit corefile */
7577 pstatus32_t pstat;
7578
7579 memcpy (&pstat, note->descdata, sizeof (pstat));
7580
7581 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7582 }
7583 #endif
7584 /* Could grab some more details from the "representative"
7585 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7586 NT_LWPSTATUS note, presumably. */
7587
7588 return TRUE;
7589 }
7590 #endif /* defined (HAVE_PSTATUS_T) */
7591
7592 #if defined (HAVE_LWPSTATUS_T)
7593 static bfd_boolean
7594 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7595 {
7596 lwpstatus_t lwpstat;
7597 char buf[100];
7598 char *name;
7599 size_t len;
7600 asection *sect;
7601
7602 if (note->descsz != sizeof (lwpstat)
7603 #if defined (HAVE_LWPXSTATUS_T)
7604 && note->descsz != sizeof (lwpxstatus_t)
7605 #endif
7606 )
7607 return TRUE;
7608
7609 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7610
7611 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7612 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7613
7614 /* Make a ".reg/999" section. */
7615
7616 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7617 len = strlen (buf) + 1;
7618 name = bfd_alloc (abfd, len);
7619 if (name == NULL)
7620 return FALSE;
7621 memcpy (name, buf, len);
7622
7623 sect = bfd_make_section_anyway (abfd, name);
7624 if (sect == NULL)
7625 return FALSE;
7626
7627 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7628 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7629 sect->filepos = note->descpos
7630 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7631 #endif
7632
7633 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7634 sect->size = sizeof (lwpstat.pr_reg);
7635 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7636 #endif
7637
7638 sect->flags = SEC_HAS_CONTENTS;
7639 sect->alignment_power = 2;
7640
7641 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7642 return FALSE;
7643
7644 /* Make a ".reg2/999" section */
7645
7646 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7647 len = strlen (buf) + 1;
7648 name = bfd_alloc (abfd, len);
7649 if (name == NULL)
7650 return FALSE;
7651 memcpy (name, buf, len);
7652
7653 sect = bfd_make_section_anyway (abfd, name);
7654 if (sect == NULL)
7655 return FALSE;
7656
7657 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7658 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7659 sect->filepos = note->descpos
7660 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7661 #endif
7662
7663 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7664 sect->size = sizeof (lwpstat.pr_fpreg);
7665 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7666 #endif
7667
7668 sect->flags = SEC_HAS_CONTENTS;
7669 sect->alignment_power = 2;
7670
7671 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7672 }
7673 #endif /* defined (HAVE_LWPSTATUS_T) */
7674
7675 #if defined (HAVE_WIN32_PSTATUS_T)
7676 static bfd_boolean
7677 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7678 {
7679 char buf[30];
7680 char *name;
7681 size_t len;
7682 asection *sect;
7683 win32_pstatus_t pstatus;
7684
7685 if (note->descsz < sizeof (pstatus))
7686 return TRUE;
7687
7688 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7689
7690 switch (pstatus.data_type)
7691 {
7692 case NOTE_INFO_PROCESS:
7693 /* FIXME: need to add ->core_command. */
7694 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7695 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7696 break;
7697
7698 case NOTE_INFO_THREAD:
7699 /* Make a ".reg/999" section. */
7700 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7701
7702 len = strlen (buf) + 1;
7703 name = bfd_alloc (abfd, len);
7704 if (name == NULL)
7705 return FALSE;
7706
7707 memcpy (name, buf, len);
7708
7709 sect = bfd_make_section_anyway (abfd, name);
7710 if (sect == NULL)
7711 return FALSE;
7712
7713 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7714 sect->filepos = (note->descpos
7715 + offsetof (struct win32_pstatus,
7716 data.thread_info.thread_context));
7717 sect->flags = SEC_HAS_CONTENTS;
7718 sect->alignment_power = 2;
7719
7720 if (pstatus.data.thread_info.is_active_thread)
7721 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7722 return FALSE;
7723 break;
7724
7725 case NOTE_INFO_MODULE:
7726 /* Make a ".module/xxxxxxxx" section. */
7727 sprintf (buf, ".module/%08lx",
7728 (long) pstatus.data.module_info.base_address);
7729
7730 len = strlen (buf) + 1;
7731 name = bfd_alloc (abfd, len);
7732 if (name == NULL)
7733 return FALSE;
7734
7735 memcpy (name, buf, len);
7736
7737 sect = bfd_make_section_anyway (abfd, name);
7738
7739 if (sect == NULL)
7740 return FALSE;
7741
7742 sect->size = note->descsz;
7743 sect->filepos = note->descpos;
7744 sect->flags = SEC_HAS_CONTENTS;
7745 sect->alignment_power = 2;
7746 break;
7747
7748 default:
7749 return TRUE;
7750 }
7751
7752 return TRUE;
7753 }
7754 #endif /* HAVE_WIN32_PSTATUS_T */
7755
7756 static bfd_boolean
7757 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7758 {
7759 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7760
7761 switch (note->type)
7762 {
7763 default:
7764 return TRUE;
7765
7766 case NT_PRSTATUS:
7767 if (bed->elf_backend_grok_prstatus)
7768 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7769 return TRUE;
7770 #if defined (HAVE_PRSTATUS_T)
7771 return elfcore_grok_prstatus (abfd, note);
7772 #else
7773 return TRUE;
7774 #endif
7775
7776 #if defined (HAVE_PSTATUS_T)
7777 case NT_PSTATUS:
7778 return elfcore_grok_pstatus (abfd, note);
7779 #endif
7780
7781 #if defined (HAVE_LWPSTATUS_T)
7782 case NT_LWPSTATUS:
7783 return elfcore_grok_lwpstatus (abfd, note);
7784 #endif
7785
7786 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7787 return elfcore_grok_prfpreg (abfd, note);
7788
7789 #if defined (HAVE_WIN32_PSTATUS_T)
7790 case NT_WIN32PSTATUS:
7791 return elfcore_grok_win32pstatus (abfd, note);
7792 #endif
7793
7794 case NT_PRXFPREG: /* Linux SSE extension */
7795 if (note->namesz == 6
7796 && strcmp (note->namedata, "LINUX") == 0)
7797 return elfcore_grok_prxfpreg (abfd, note);
7798 else
7799 return TRUE;
7800
7801 case NT_PRPSINFO:
7802 case NT_PSINFO:
7803 if (bed->elf_backend_grok_psinfo)
7804 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7805 return TRUE;
7806 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7807 return elfcore_grok_psinfo (abfd, note);
7808 #else
7809 return TRUE;
7810 #endif
7811
7812 case NT_AUXV:
7813 {
7814 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7815
7816 if (sect == NULL)
7817 return FALSE;
7818 sect->size = note->descsz;
7819 sect->filepos = note->descpos;
7820 sect->flags = SEC_HAS_CONTENTS;
7821 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7822
7823 return TRUE;
7824 }
7825 }
7826 }
7827
7828 static bfd_boolean
7829 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7830 {
7831 char *cp;
7832
7833 cp = strchr (note->namedata, '@');
7834 if (cp != NULL)
7835 {
7836 *lwpidp = atoi(cp + 1);
7837 return TRUE;
7838 }
7839 return FALSE;
7840 }
7841
7842 static bfd_boolean
7843 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7844 {
7845
7846 /* Signal number at offset 0x08. */
7847 elf_tdata (abfd)->core_signal
7848 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7849
7850 /* Process ID at offset 0x50. */
7851 elf_tdata (abfd)->core_pid
7852 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7853
7854 /* Command name at 0x7c (max 32 bytes, including nul). */
7855 elf_tdata (abfd)->core_command
7856 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7857
7858 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7859 note);
7860 }
7861
7862 static bfd_boolean
7863 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7864 {
7865 int lwp;
7866
7867 if (elfcore_netbsd_get_lwpid (note, &lwp))
7868 elf_tdata (abfd)->core_lwpid = lwp;
7869
7870 if (note->type == NT_NETBSDCORE_PROCINFO)
7871 {
7872 /* NetBSD-specific core "procinfo". Note that we expect to
7873 find this note before any of the others, which is fine,
7874 since the kernel writes this note out first when it
7875 creates a core file. */
7876
7877 return elfcore_grok_netbsd_procinfo (abfd, note);
7878 }
7879
7880 /* As of Jan 2002 there are no other machine-independent notes
7881 defined for NetBSD core files. If the note type is less
7882 than the start of the machine-dependent note types, we don't
7883 understand it. */
7884
7885 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7886 return TRUE;
7887
7888
7889 switch (bfd_get_arch (abfd))
7890 {
7891 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7892 PT_GETFPREGS == mach+2. */
7893
7894 case bfd_arch_alpha:
7895 case bfd_arch_sparc:
7896 switch (note->type)
7897 {
7898 case NT_NETBSDCORE_FIRSTMACH+0:
7899 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7900
7901 case NT_NETBSDCORE_FIRSTMACH+2:
7902 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7903
7904 default:
7905 return TRUE;
7906 }
7907
7908 /* On all other arch's, PT_GETREGS == mach+1 and
7909 PT_GETFPREGS == mach+3. */
7910
7911 default:
7912 switch (note->type)
7913 {
7914 case NT_NETBSDCORE_FIRSTMACH+1:
7915 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7916
7917 case NT_NETBSDCORE_FIRSTMACH+3:
7918 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7919
7920 default:
7921 return TRUE;
7922 }
7923 }
7924 /* NOTREACHED */
7925 }
7926
7927 static bfd_boolean
7928 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7929 {
7930 void *ddata = note->descdata;
7931 char buf[100];
7932 char *name;
7933 asection *sect;
7934 short sig;
7935 unsigned flags;
7936
7937 /* nto_procfs_status 'pid' field is at offset 0. */
7938 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7939
7940 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7941 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7942
7943 /* nto_procfs_status 'flags' field is at offset 8. */
7944 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7945
7946 /* nto_procfs_status 'what' field is at offset 14. */
7947 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7948 {
7949 elf_tdata (abfd)->core_signal = sig;
7950 elf_tdata (abfd)->core_lwpid = *tid;
7951 }
7952
7953 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7954 do not come from signals so we make sure we set the current
7955 thread just in case. */
7956 if (flags & 0x00000080)
7957 elf_tdata (abfd)->core_lwpid = *tid;
7958
7959 /* Make a ".qnx_core_status/%d" section. */
7960 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7961
7962 name = bfd_alloc (abfd, strlen (buf) + 1);
7963 if (name == NULL)
7964 return FALSE;
7965 strcpy (name, buf);
7966
7967 sect = bfd_make_section_anyway (abfd, name);
7968 if (sect == NULL)
7969 return FALSE;
7970
7971 sect->size = note->descsz;
7972 sect->filepos = note->descpos;
7973 sect->flags = SEC_HAS_CONTENTS;
7974 sect->alignment_power = 2;
7975
7976 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7977 }
7978
7979 static bfd_boolean
7980 elfcore_grok_nto_regs (bfd *abfd,
7981 Elf_Internal_Note *note,
7982 pid_t tid,
7983 char *base)
7984 {
7985 char buf[100];
7986 char *name;
7987 asection *sect;
7988
7989 /* Make a "(base)/%d" section. */
7990 sprintf (buf, "%s/%ld", base, (long) tid);
7991
7992 name = bfd_alloc (abfd, strlen (buf) + 1);
7993 if (name == NULL)
7994 return FALSE;
7995 strcpy (name, buf);
7996
7997 sect = bfd_make_section_anyway (abfd, name);
7998 if (sect == NULL)
7999 return FALSE;
8000
8001 sect->size = note->descsz;
8002 sect->filepos = note->descpos;
8003 sect->flags = SEC_HAS_CONTENTS;
8004 sect->alignment_power = 2;
8005
8006 /* This is the current thread. */
8007 if (elf_tdata (abfd)->core_lwpid == tid)
8008 return elfcore_maybe_make_sect (abfd, base, sect);
8009
8010 return TRUE;
8011 }
8012
8013 #define BFD_QNT_CORE_INFO 7
8014 #define BFD_QNT_CORE_STATUS 8
8015 #define BFD_QNT_CORE_GREG 9
8016 #define BFD_QNT_CORE_FPREG 10
8017
8018 static bfd_boolean
8019 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8020 {
8021 /* Every GREG section has a STATUS section before it. Store the
8022 tid from the previous call to pass down to the next gregs
8023 function. */
8024 static pid_t tid = 1;
8025
8026 switch (note->type)
8027 {
8028 case BFD_QNT_CORE_INFO:
8029 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8030 case BFD_QNT_CORE_STATUS:
8031 return elfcore_grok_nto_status (abfd, note, &tid);
8032 case BFD_QNT_CORE_GREG:
8033 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8034 case BFD_QNT_CORE_FPREG:
8035 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8036 default:
8037 return TRUE;
8038 }
8039 }
8040
8041 /* Function: elfcore_write_note
8042
8043 Inputs:
8044 buffer to hold note
8045 name of note
8046 type of note
8047 data for note
8048 size of data for note
8049
8050 Return:
8051 End of buffer containing note. */
8052
8053 char *
8054 elfcore_write_note (bfd *abfd,
8055 char *buf,
8056 int *bufsiz,
8057 const char *name,
8058 int type,
8059 const void *input,
8060 int size)
8061 {
8062 Elf_External_Note *xnp;
8063 size_t namesz;
8064 size_t pad;
8065 size_t newspace;
8066 char *p, *dest;
8067
8068 namesz = 0;
8069 pad = 0;
8070 if (name != NULL)
8071 {
8072 const struct elf_backend_data *bed;
8073
8074 namesz = strlen (name) + 1;
8075 bed = get_elf_backend_data (abfd);
8076 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
8077 }
8078
8079 newspace = 12 + namesz + pad + size;
8080
8081 p = realloc (buf, *bufsiz + newspace);
8082 dest = p + *bufsiz;
8083 *bufsiz += newspace;
8084 xnp = (Elf_External_Note *) dest;
8085 H_PUT_32 (abfd, namesz, xnp->namesz);
8086 H_PUT_32 (abfd, size, xnp->descsz);
8087 H_PUT_32 (abfd, type, xnp->type);
8088 dest = xnp->name;
8089 if (name != NULL)
8090 {
8091 memcpy (dest, name, namesz);
8092 dest += namesz;
8093 while (pad != 0)
8094 {
8095 *dest++ = '\0';
8096 --pad;
8097 }
8098 }
8099 memcpy (dest, input, size);
8100 return p;
8101 }
8102
8103 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8104 char *
8105 elfcore_write_prpsinfo (bfd *abfd,
8106 char *buf,
8107 int *bufsiz,
8108 const char *fname,
8109 const char *psargs)
8110 {
8111 int note_type;
8112 char *note_name = "CORE";
8113
8114 #if defined (HAVE_PSINFO_T)
8115 psinfo_t data;
8116 note_type = NT_PSINFO;
8117 #else
8118 prpsinfo_t data;
8119 note_type = NT_PRPSINFO;
8120 #endif
8121
8122 memset (&data, 0, sizeof (data));
8123 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8124 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8125 return elfcore_write_note (abfd, buf, bufsiz,
8126 note_name, note_type, &data, sizeof (data));
8127 }
8128 #endif /* PSINFO_T or PRPSINFO_T */
8129
8130 #if defined (HAVE_PRSTATUS_T)
8131 char *
8132 elfcore_write_prstatus (bfd *abfd,
8133 char *buf,
8134 int *bufsiz,
8135 long pid,
8136 int cursig,
8137 const void *gregs)
8138 {
8139 prstatus_t prstat;
8140 char *note_name = "CORE";
8141
8142 memset (&prstat, 0, sizeof (prstat));
8143 prstat.pr_pid = pid;
8144 prstat.pr_cursig = cursig;
8145 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8146 return elfcore_write_note (abfd, buf, bufsiz,
8147 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8148 }
8149 #endif /* HAVE_PRSTATUS_T */
8150
8151 #if defined (HAVE_LWPSTATUS_T)
8152 char *
8153 elfcore_write_lwpstatus (bfd *abfd,
8154 char *buf,
8155 int *bufsiz,
8156 long pid,
8157 int cursig,
8158 const void *gregs)
8159 {
8160 lwpstatus_t lwpstat;
8161 char *note_name = "CORE";
8162
8163 memset (&lwpstat, 0, sizeof (lwpstat));
8164 lwpstat.pr_lwpid = pid >> 16;
8165 lwpstat.pr_cursig = cursig;
8166 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8167 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8168 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8169 #if !defined(gregs)
8170 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8171 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8172 #else
8173 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8174 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8175 #endif
8176 #endif
8177 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8178 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8179 }
8180 #endif /* HAVE_LWPSTATUS_T */
8181
8182 #if defined (HAVE_PSTATUS_T)
8183 char *
8184 elfcore_write_pstatus (bfd *abfd,
8185 char *buf,
8186 int *bufsiz,
8187 long pid,
8188 int cursig ATTRIBUTE_UNUSED,
8189 const void *gregs ATTRIBUTE_UNUSED)
8190 {
8191 pstatus_t pstat;
8192 char *note_name = "CORE";
8193
8194 memset (&pstat, 0, sizeof (pstat));
8195 pstat.pr_pid = pid & 0xffff;
8196 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8197 NT_PSTATUS, &pstat, sizeof (pstat));
8198 return buf;
8199 }
8200 #endif /* HAVE_PSTATUS_T */
8201
8202 char *
8203 elfcore_write_prfpreg (bfd *abfd,
8204 char *buf,
8205 int *bufsiz,
8206 const void *fpregs,
8207 int size)
8208 {
8209 char *note_name = "CORE";
8210 return elfcore_write_note (abfd, buf, bufsiz,
8211 note_name, NT_FPREGSET, fpregs, size);
8212 }
8213
8214 char *
8215 elfcore_write_prxfpreg (bfd *abfd,
8216 char *buf,
8217 int *bufsiz,
8218 const void *xfpregs,
8219 int size)
8220 {
8221 char *note_name = "LINUX";
8222 return elfcore_write_note (abfd, buf, bufsiz,
8223 note_name, NT_PRXFPREG, xfpregs, size);
8224 }
8225
8226 static bfd_boolean
8227 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8228 {
8229 char *buf;
8230 char *p;
8231
8232 if (size <= 0)
8233 return TRUE;
8234
8235 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8236 return FALSE;
8237
8238 buf = bfd_malloc (size);
8239 if (buf == NULL)
8240 return FALSE;
8241
8242 if (bfd_bread (buf, size, abfd) != size)
8243 {
8244 error:
8245 free (buf);
8246 return FALSE;
8247 }
8248
8249 p = buf;
8250 while (p < buf + size)
8251 {
8252 /* FIXME: bad alignment assumption. */
8253 Elf_External_Note *xnp = (Elf_External_Note *) p;
8254 Elf_Internal_Note in;
8255
8256 in.type = H_GET_32 (abfd, xnp->type);
8257
8258 in.namesz = H_GET_32 (abfd, xnp->namesz);
8259 in.namedata = xnp->name;
8260
8261 in.descsz = H_GET_32 (abfd, xnp->descsz);
8262 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8263 in.descpos = offset + (in.descdata - buf);
8264
8265 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
8266 {
8267 if (! elfcore_grok_netbsd_note (abfd, &in))
8268 goto error;
8269 }
8270 else if (strncmp (in.namedata, "QNX", 3) == 0)
8271 {
8272 if (! elfcore_grok_nto_note (abfd, &in))
8273 goto error;
8274 }
8275 else
8276 {
8277 if (! elfcore_grok_note (abfd, &in))
8278 goto error;
8279 }
8280
8281 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8282 }
8283
8284 free (buf);
8285 return TRUE;
8286 }
8287 \f
8288 /* Providing external access to the ELF program header table. */
8289
8290 /* Return an upper bound on the number of bytes required to store a
8291 copy of ABFD's program header table entries. Return -1 if an error
8292 occurs; bfd_get_error will return an appropriate code. */
8293
8294 long
8295 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8296 {
8297 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8298 {
8299 bfd_set_error (bfd_error_wrong_format);
8300 return -1;
8301 }
8302
8303 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8304 }
8305
8306 /* Copy ABFD's program header table entries to *PHDRS. The entries
8307 will be stored as an array of Elf_Internal_Phdr structures, as
8308 defined in include/elf/internal.h. To find out how large the
8309 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8310
8311 Return the number of program header table entries read, or -1 if an
8312 error occurs; bfd_get_error will return an appropriate code. */
8313
8314 int
8315 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8316 {
8317 int num_phdrs;
8318
8319 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8320 {
8321 bfd_set_error (bfd_error_wrong_format);
8322 return -1;
8323 }
8324
8325 num_phdrs = elf_elfheader (abfd)->e_phnum;
8326 memcpy (phdrs, elf_tdata (abfd)->phdr,
8327 num_phdrs * sizeof (Elf_Internal_Phdr));
8328
8329 return num_phdrs;
8330 }
8331
8332 void
8333 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8334 {
8335 #ifdef BFD64
8336 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8337
8338 i_ehdrp = elf_elfheader (abfd);
8339 if (i_ehdrp == NULL)
8340 sprintf_vma (buf, value);
8341 else
8342 {
8343 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8344 {
8345 #if BFD_HOST_64BIT_LONG
8346 sprintf (buf, "%016lx", value);
8347 #else
8348 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8349 _bfd_int64_low (value));
8350 #endif
8351 }
8352 else
8353 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8354 }
8355 #else
8356 sprintf_vma (buf, value);
8357 #endif
8358 }
8359
8360 void
8361 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8362 {
8363 #ifdef BFD64
8364 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8365
8366 i_ehdrp = elf_elfheader (abfd);
8367 if (i_ehdrp == NULL)
8368 fprintf_vma ((FILE *) stream, value);
8369 else
8370 {
8371 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8372 {
8373 #if BFD_HOST_64BIT_LONG
8374 fprintf ((FILE *) stream, "%016lx", value);
8375 #else
8376 fprintf ((FILE *) stream, "%08lx%08lx",
8377 _bfd_int64_high (value), _bfd_int64_low (value));
8378 #endif
8379 }
8380 else
8381 fprintf ((FILE *) stream, "%08lx",
8382 (unsigned long) (value & 0xffffffff));
8383 }
8384 #else
8385 fprintf_vma ((FILE *) stream, value);
8386 #endif
8387 }
8388
8389 enum elf_reloc_type_class
8390 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8391 {
8392 return reloc_class_normal;
8393 }
8394
8395 /* For RELA architectures, return the relocation value for a
8396 relocation against a local symbol. */
8397
8398 bfd_vma
8399 _bfd_elf_rela_local_sym (bfd *abfd,
8400 Elf_Internal_Sym *sym,
8401 asection **psec,
8402 Elf_Internal_Rela *rel)
8403 {
8404 asection *sec = *psec;
8405 bfd_vma relocation;
8406
8407 relocation = (sec->output_section->vma
8408 + sec->output_offset
8409 + sym->st_value);
8410 if ((sec->flags & SEC_MERGE)
8411 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8412 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8413 {
8414 rel->r_addend =
8415 _bfd_merged_section_offset (abfd, psec,
8416 elf_section_data (sec)->sec_info,
8417 sym->st_value + rel->r_addend);
8418 if (sec != *psec)
8419 {
8420 /* If we have changed the section, and our original section is
8421 marked with SEC_EXCLUDE, it means that the original
8422 SEC_MERGE section has been completely subsumed in some
8423 other SEC_MERGE section. In this case, we need to leave
8424 some info around for --emit-relocs. */
8425 if ((sec->flags & SEC_EXCLUDE) != 0)
8426 sec->kept_section = *psec;
8427 sec = *psec;
8428 }
8429 rel->r_addend -= relocation;
8430 rel->r_addend += sec->output_section->vma + sec->output_offset;
8431 }
8432 return relocation;
8433 }
8434
8435 bfd_vma
8436 _bfd_elf_rel_local_sym (bfd *abfd,
8437 Elf_Internal_Sym *sym,
8438 asection **psec,
8439 bfd_vma addend)
8440 {
8441 asection *sec = *psec;
8442
8443 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8444 return sym->st_value + addend;
8445
8446 return _bfd_merged_section_offset (abfd, psec,
8447 elf_section_data (sec)->sec_info,
8448 sym->st_value + addend);
8449 }
8450
8451 bfd_vma
8452 _bfd_elf_section_offset (bfd *abfd,
8453 struct bfd_link_info *info,
8454 asection *sec,
8455 bfd_vma offset)
8456 {
8457 switch (sec->sec_info_type)
8458 {
8459 case ELF_INFO_TYPE_STABS:
8460 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8461 offset);
8462 case ELF_INFO_TYPE_EH_FRAME:
8463 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8464 default:
8465 return offset;
8466 }
8467 }
8468 \f
8469 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8470 reconstruct an ELF file by reading the segments out of remote memory
8471 based on the ELF file header at EHDR_VMA and the ELF program headers it
8472 points to. If not null, *LOADBASEP is filled in with the difference
8473 between the VMAs from which the segments were read, and the VMAs the
8474 file headers (and hence BFD's idea of each section's VMA) put them at.
8475
8476 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8477 remote memory at target address VMA into the local buffer at MYADDR; it
8478 should return zero on success or an `errno' code on failure. TEMPL must
8479 be a BFD for an ELF target with the word size and byte order found in
8480 the remote memory. */
8481
8482 bfd *
8483 bfd_elf_bfd_from_remote_memory
8484 (bfd *templ,
8485 bfd_vma ehdr_vma,
8486 bfd_vma *loadbasep,
8487 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8488 {
8489 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8490 (templ, ehdr_vma, loadbasep, target_read_memory);
8491 }
8492 \f
8493 long
8494 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8495 long symcount ATTRIBUTE_UNUSED,
8496 asymbol **syms ATTRIBUTE_UNUSED,
8497 long dynsymcount,
8498 asymbol **dynsyms,
8499 asymbol **ret)
8500 {
8501 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8502 asection *relplt;
8503 asymbol *s;
8504 const char *relplt_name;
8505 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8506 arelent *p;
8507 long count, i, n;
8508 size_t size;
8509 Elf_Internal_Shdr *hdr;
8510 char *names;
8511 asection *plt;
8512
8513 *ret = NULL;
8514
8515 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8516 return 0;
8517
8518 if (dynsymcount <= 0)
8519 return 0;
8520
8521 if (!bed->plt_sym_val)
8522 return 0;
8523
8524 relplt_name = bed->relplt_name;
8525 if (relplt_name == NULL)
8526 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8527 relplt = bfd_get_section_by_name (abfd, relplt_name);
8528 if (relplt == NULL)
8529 return 0;
8530
8531 hdr = &elf_section_data (relplt)->this_hdr;
8532 if (hdr->sh_link != elf_dynsymtab (abfd)
8533 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8534 return 0;
8535
8536 plt = bfd_get_section_by_name (abfd, ".plt");
8537 if (plt == NULL)
8538 return 0;
8539
8540 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8541 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8542 return -1;
8543
8544 count = relplt->size / hdr->sh_entsize;
8545 size = count * sizeof (asymbol);
8546 p = relplt->relocation;
8547 for (i = 0; i < count; i++, s++, p++)
8548 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8549
8550 s = *ret = bfd_malloc (size);
8551 if (s == NULL)
8552 return -1;
8553
8554 names = (char *) (s + count);
8555 p = relplt->relocation;
8556 n = 0;
8557 for (i = 0; i < count; i++, s++, p++)
8558 {
8559 size_t len;
8560 bfd_vma addr;
8561
8562 addr = bed->plt_sym_val (i, plt, p);
8563 if (addr == (bfd_vma) -1)
8564 continue;
8565
8566 *s = **p->sym_ptr_ptr;
8567 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8568 we are defining a symbol, ensure one of them is set. */
8569 if ((s->flags & BSF_LOCAL) == 0)
8570 s->flags |= BSF_GLOBAL;
8571 s->section = plt;
8572 s->value = addr - plt->vma;
8573 s->name = names;
8574 len = strlen ((*p->sym_ptr_ptr)->name);
8575 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8576 names += len;
8577 memcpy (names, "@plt", sizeof ("@plt"));
8578 names += sizeof ("@plt");
8579 ++n;
8580 }
8581
8582 return n;
8583 }
8584
8585 /* Sort symbol by binding and section. We want to put definitions
8586 sorted by section at the beginning. */
8587
8588 static int
8589 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8590 {
8591 const Elf_Internal_Sym *s1;
8592 const Elf_Internal_Sym *s2;
8593 int shndx;
8594
8595 /* Make sure that undefined symbols are at the end. */
8596 s1 = (const Elf_Internal_Sym *) arg1;
8597 if (s1->st_shndx == SHN_UNDEF)
8598 return 1;
8599 s2 = (const Elf_Internal_Sym *) arg2;
8600 if (s2->st_shndx == SHN_UNDEF)
8601 return -1;
8602
8603 /* Sorted by section index. */
8604 shndx = s1->st_shndx - s2->st_shndx;
8605 if (shndx != 0)
8606 return shndx;
8607
8608 /* Sorted by binding. */
8609 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8610 }
8611
8612 struct elf_symbol
8613 {
8614 Elf_Internal_Sym *sym;
8615 const char *name;
8616 };
8617
8618 static int
8619 elf_sym_name_compare (const void *arg1, const void *arg2)
8620 {
8621 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8622 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8623 return strcmp (s1->name, s2->name);
8624 }
8625
8626 /* Check if 2 sections define the same set of local and global
8627 symbols. */
8628
8629 bfd_boolean
8630 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8631 {
8632 bfd *bfd1, *bfd2;
8633 const struct elf_backend_data *bed1, *bed2;
8634 Elf_Internal_Shdr *hdr1, *hdr2;
8635 bfd_size_type symcount1, symcount2;
8636 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8637 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8638 Elf_Internal_Sym *isymend;
8639 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8640 bfd_size_type count1, count2, i;
8641 int shndx1, shndx2;
8642 bfd_boolean result;
8643
8644 bfd1 = sec1->owner;
8645 bfd2 = sec2->owner;
8646
8647 /* If both are .gnu.linkonce sections, they have to have the same
8648 section name. */
8649 if (strncmp (sec1->name, ".gnu.linkonce",
8650 sizeof ".gnu.linkonce" - 1) == 0
8651 && strncmp (sec2->name, ".gnu.linkonce",
8652 sizeof ".gnu.linkonce" - 1) == 0)
8653 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8654 sec2->name + sizeof ".gnu.linkonce") == 0;
8655
8656 /* Both sections have to be in ELF. */
8657 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8658 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8659 return FALSE;
8660
8661 if (elf_section_type (sec1) != elf_section_type (sec2))
8662 return FALSE;
8663
8664 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8665 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8666 {
8667 /* If both are members of section groups, they have to have the
8668 same group name. */
8669 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8670 return FALSE;
8671 }
8672
8673 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8674 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8675 if (shndx1 == -1 || shndx2 == -1)
8676 return FALSE;
8677
8678 bed1 = get_elf_backend_data (bfd1);
8679 bed2 = get_elf_backend_data (bfd2);
8680 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8681 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8682 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8683 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8684
8685 if (symcount1 == 0 || symcount2 == 0)
8686 return FALSE;
8687
8688 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8689 NULL, NULL, NULL);
8690 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8691 NULL, NULL, NULL);
8692
8693 result = FALSE;
8694 if (isymbuf1 == NULL || isymbuf2 == NULL)
8695 goto done;
8696
8697 /* Sort symbols by binding and section. Global definitions are at
8698 the beginning. */
8699 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8700 elf_sort_elf_symbol);
8701 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8702 elf_sort_elf_symbol);
8703
8704 /* Count definitions in the section. */
8705 count1 = 0;
8706 for (isym = isymbuf1, isymend = isym + symcount1;
8707 isym < isymend; isym++)
8708 {
8709 if (isym->st_shndx == (unsigned int) shndx1)
8710 {
8711 if (count1 == 0)
8712 isymstart1 = isym;
8713 count1++;
8714 }
8715
8716 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8717 break;
8718 }
8719
8720 count2 = 0;
8721 for (isym = isymbuf2, isymend = isym + symcount2;
8722 isym < isymend; isym++)
8723 {
8724 if (isym->st_shndx == (unsigned int) shndx2)
8725 {
8726 if (count2 == 0)
8727 isymstart2 = isym;
8728 count2++;
8729 }
8730
8731 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8732 break;
8733 }
8734
8735 if (count1 == 0 || count2 == 0 || count1 != count2)
8736 goto done;
8737
8738 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8739 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8740
8741 if (symtable1 == NULL || symtable2 == NULL)
8742 goto done;
8743
8744 symp = symtable1;
8745 for (isym = isymstart1, isymend = isym + count1;
8746 isym < isymend; isym++)
8747 {
8748 symp->sym = isym;
8749 symp->name = bfd_elf_string_from_elf_section (bfd1,
8750 hdr1->sh_link,
8751 isym->st_name);
8752 symp++;
8753 }
8754
8755 symp = symtable2;
8756 for (isym = isymstart2, isymend = isym + count1;
8757 isym < isymend; isym++)
8758 {
8759 symp->sym = isym;
8760 symp->name = bfd_elf_string_from_elf_section (bfd2,
8761 hdr2->sh_link,
8762 isym->st_name);
8763 symp++;
8764 }
8765
8766 /* Sort symbol by name. */
8767 qsort (symtable1, count1, sizeof (struct elf_symbol),
8768 elf_sym_name_compare);
8769 qsort (symtable2, count1, sizeof (struct elf_symbol),
8770 elf_sym_name_compare);
8771
8772 for (i = 0; i < count1; i++)
8773 /* Two symbols must have the same binding, type and name. */
8774 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8775 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8776 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8777 goto done;
8778
8779 result = TRUE;
8780
8781 done:
8782 if (symtable1)
8783 free (symtable1);
8784 if (symtable2)
8785 free (symtable2);
8786 if (isymbuf1)
8787 free (isymbuf1);
8788 if (isymbuf2)
8789 free (isymbuf2);
8790
8791 return result;
8792 }
8793
8794 /* It is only used by x86-64 so far. */
8795 asection _bfd_elf_large_com_section
8796 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8797 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8798
8799 /* Return TRUE if 2 section types are compatible. */
8800
8801 bfd_boolean
8802 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8803 bfd *bbfd, const asection *bsec)
8804 {
8805 if (asec == NULL
8806 || bsec == NULL
8807 || abfd->xvec->flavour != bfd_target_elf_flavour
8808 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8809 return TRUE;
8810
8811 return elf_section_type (asec) == elf_section_type (bsec);
8812 }
This page took 0.210348 seconds and 4 git commands to generate.