daily update
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993-2014 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-psinfo.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
301 || bfd_seek (abfd, offset, SEEK_SET) != 0)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 shstrtab = NULL;
308 /* Once we've failed to read it, make sure we don't keep
309 trying. Otherwise, we'll keep allocating space for
310 the string table over and over. */
311 i_shdrp[shindex]->sh_size = 0;
312 }
313 else
314 shstrtab[shstrtabsize] = '\0';
315 i_shdrp[shindex]->contents = shstrtab;
316 }
317 return (char *) shstrtab;
318 }
319
320 char *
321 bfd_elf_string_from_elf_section (bfd *abfd,
322 unsigned int shindex,
323 unsigned int strindex)
324 {
325 Elf_Internal_Shdr *hdr;
326
327 if (strindex == 0)
328 return "";
329
330 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
331 return NULL;
332
333 hdr = elf_elfsections (abfd)[shindex];
334
335 if (hdr->contents == NULL
336 && bfd_elf_get_str_section (abfd, shindex) == NULL)
337 return NULL;
338
339 if (strindex >= hdr->sh_size)
340 {
341 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
342 (*_bfd_error_handler)
343 (_("%B: invalid string offset %u >= %lu for section `%s'"),
344 abfd, strindex, (unsigned long) hdr->sh_size,
345 (shindex == shstrndx && strindex == hdr->sh_name
346 ? ".shstrtab"
347 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
348 return NULL;
349 }
350
351 return ((char *) hdr->contents) + strindex;
352 }
353
354 /* Read and convert symbols to internal format.
355 SYMCOUNT specifies the number of symbols to read, starting from
356 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
357 are non-NULL, they are used to store the internal symbols, external
358 symbols, and symbol section index extensions, respectively.
359 Returns a pointer to the internal symbol buffer (malloced if necessary)
360 or NULL if there were no symbols or some kind of problem. */
361
362 Elf_Internal_Sym *
363 bfd_elf_get_elf_syms (bfd *ibfd,
364 Elf_Internal_Shdr *symtab_hdr,
365 size_t symcount,
366 size_t symoffset,
367 Elf_Internal_Sym *intsym_buf,
368 void *extsym_buf,
369 Elf_External_Sym_Shndx *extshndx_buf)
370 {
371 Elf_Internal_Shdr *shndx_hdr;
372 void *alloc_ext;
373 const bfd_byte *esym;
374 Elf_External_Sym_Shndx *alloc_extshndx;
375 Elf_External_Sym_Shndx *shndx;
376 Elf_Internal_Sym *alloc_intsym;
377 Elf_Internal_Sym *isym;
378 Elf_Internal_Sym *isymend;
379 const struct elf_backend_data *bed;
380 size_t extsym_size;
381 bfd_size_type amt;
382 file_ptr pos;
383
384 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
385 abort ();
386
387 if (symcount == 0)
388 return intsym_buf;
389
390 /* Normal syms might have section extension entries. */
391 shndx_hdr = NULL;
392 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
393 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
394
395 /* Read the symbols. */
396 alloc_ext = NULL;
397 alloc_extshndx = NULL;
398 alloc_intsym = NULL;
399 bed = get_elf_backend_data (ibfd);
400 extsym_size = bed->s->sizeof_sym;
401 amt = symcount * extsym_size;
402 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
403 if (extsym_buf == NULL)
404 {
405 alloc_ext = bfd_malloc2 (symcount, extsym_size);
406 extsym_buf = alloc_ext;
407 }
408 if (extsym_buf == NULL
409 || bfd_seek (ibfd, pos, SEEK_SET) != 0
410 || bfd_bread (extsym_buf, amt, ibfd) != amt)
411 {
412 intsym_buf = NULL;
413 goto out;
414 }
415
416 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
417 extshndx_buf = NULL;
418 else
419 {
420 amt = symcount * sizeof (Elf_External_Sym_Shndx);
421 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
422 if (extshndx_buf == NULL)
423 {
424 alloc_extshndx = (Elf_External_Sym_Shndx *)
425 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
426 extshndx_buf = alloc_extshndx;
427 }
428 if (extshndx_buf == NULL
429 || bfd_seek (ibfd, pos, SEEK_SET) != 0
430 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
431 {
432 intsym_buf = NULL;
433 goto out;
434 }
435 }
436
437 if (intsym_buf == NULL)
438 {
439 alloc_intsym = (Elf_Internal_Sym *)
440 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
441 intsym_buf = alloc_intsym;
442 if (intsym_buf == NULL)
443 goto out;
444 }
445
446 /* Convert the symbols to internal form. */
447 isymend = intsym_buf + symcount;
448 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
449 shndx = extshndx_buf;
450 isym < isymend;
451 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
452 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
453 {
454 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
455 (*_bfd_error_handler) (_("%B symbol number %lu references "
456 "nonexistent SHT_SYMTAB_SHNDX section"),
457 ibfd, (unsigned long) symoffset);
458 if (alloc_intsym != NULL)
459 free (alloc_intsym);
460 intsym_buf = NULL;
461 goto out;
462 }
463
464 out:
465 if (alloc_ext != NULL)
466 free (alloc_ext);
467 if (alloc_extshndx != NULL)
468 free (alloc_extshndx);
469
470 return intsym_buf;
471 }
472
473 /* Look up a symbol name. */
474 const char *
475 bfd_elf_sym_name (bfd *abfd,
476 Elf_Internal_Shdr *symtab_hdr,
477 Elf_Internal_Sym *isym,
478 asection *sym_sec)
479 {
480 const char *name;
481 unsigned int iname = isym->st_name;
482 unsigned int shindex = symtab_hdr->sh_link;
483
484 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
485 /* Check for a bogus st_shndx to avoid crashing. */
486 && isym->st_shndx < elf_numsections (abfd))
487 {
488 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
489 shindex = elf_elfheader (abfd)->e_shstrndx;
490 }
491
492 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
493 if (name == NULL)
494 name = "(null)";
495 else if (sym_sec && *name == '\0')
496 name = bfd_section_name (abfd, sym_sec);
497
498 return name;
499 }
500
501 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
502 sections. The first element is the flags, the rest are section
503 pointers. */
504
505 typedef union elf_internal_group {
506 Elf_Internal_Shdr *shdr;
507 unsigned int flags;
508 } Elf_Internal_Group;
509
510 /* Return the name of the group signature symbol. Why isn't the
511 signature just a string? */
512
513 static const char *
514 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
515 {
516 Elf_Internal_Shdr *hdr;
517 unsigned char esym[sizeof (Elf64_External_Sym)];
518 Elf_External_Sym_Shndx eshndx;
519 Elf_Internal_Sym isym;
520
521 /* First we need to ensure the symbol table is available. Make sure
522 that it is a symbol table section. */
523 if (ghdr->sh_link >= elf_numsections (abfd))
524 return NULL;
525 hdr = elf_elfsections (abfd) [ghdr->sh_link];
526 if (hdr->sh_type != SHT_SYMTAB
527 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
528 return NULL;
529
530 /* Go read the symbol. */
531 hdr = &elf_tdata (abfd)->symtab_hdr;
532 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
533 &isym, esym, &eshndx) == NULL)
534 return NULL;
535
536 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
537 }
538
539 /* Set next_in_group list pointer, and group name for NEWSECT. */
540
541 static bfd_boolean
542 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
543 {
544 unsigned int num_group = elf_tdata (abfd)->num_group;
545
546 /* If num_group is zero, read in all SHT_GROUP sections. The count
547 is set to -1 if there are no SHT_GROUP sections. */
548 if (num_group == 0)
549 {
550 unsigned int i, shnum;
551
552 /* First count the number of groups. If we have a SHT_GROUP
553 section with just a flag word (ie. sh_size is 4), ignore it. */
554 shnum = elf_numsections (abfd);
555 num_group = 0;
556
557 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
558 ( (shdr)->sh_type == SHT_GROUP \
559 && (shdr)->sh_size >= minsize \
560 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
561 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
562
563 for (i = 0; i < shnum; i++)
564 {
565 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
566
567 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
568 num_group += 1;
569 }
570
571 if (num_group == 0)
572 {
573 num_group = (unsigned) -1;
574 elf_tdata (abfd)->num_group = num_group;
575 }
576 else
577 {
578 /* We keep a list of elf section headers for group sections,
579 so we can find them quickly. */
580 bfd_size_type amt;
581
582 elf_tdata (abfd)->num_group = num_group;
583 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
584 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
585 if (elf_tdata (abfd)->group_sect_ptr == NULL)
586 return FALSE;
587
588 num_group = 0;
589 for (i = 0; i < shnum; i++)
590 {
591 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
592
593 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
594 {
595 unsigned char *src;
596 Elf_Internal_Group *dest;
597
598 /* Add to list of sections. */
599 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
600 num_group += 1;
601
602 /* Read the raw contents. */
603 BFD_ASSERT (sizeof (*dest) >= 4);
604 amt = shdr->sh_size * sizeof (*dest) / 4;
605 shdr->contents = (unsigned char *)
606 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
607 /* PR binutils/4110: Handle corrupt group headers. */
608 if (shdr->contents == NULL)
609 {
610 _bfd_error_handler
611 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
612 bfd_set_error (bfd_error_bad_value);
613 return FALSE;
614 }
615
616 memset (shdr->contents, 0, amt);
617
618 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
619 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
620 != shdr->sh_size))
621 return FALSE;
622
623 /* Translate raw contents, a flag word followed by an
624 array of elf section indices all in target byte order,
625 to the flag word followed by an array of elf section
626 pointers. */
627 src = shdr->contents + shdr->sh_size;
628 dest = (Elf_Internal_Group *) (shdr->contents + amt);
629 while (1)
630 {
631 unsigned int idx;
632
633 src -= 4;
634 --dest;
635 idx = H_GET_32 (abfd, src);
636 if (src == shdr->contents)
637 {
638 dest->flags = idx;
639 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
640 shdr->bfd_section->flags
641 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
642 break;
643 }
644 if (idx >= shnum)
645 {
646 ((*_bfd_error_handler)
647 (_("%B: invalid SHT_GROUP entry"), abfd));
648 idx = 0;
649 }
650 dest->shdr = elf_elfsections (abfd)[idx];
651 }
652 }
653 }
654 }
655 }
656
657 if (num_group != (unsigned) -1)
658 {
659 unsigned int i;
660
661 for (i = 0; i < num_group; i++)
662 {
663 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
664 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
665 unsigned int n_elt = shdr->sh_size / 4;
666
667 /* Look through this group's sections to see if current
668 section is a member. */
669 while (--n_elt != 0)
670 if ((++idx)->shdr == hdr)
671 {
672 asection *s = NULL;
673
674 /* We are a member of this group. Go looking through
675 other members to see if any others are linked via
676 next_in_group. */
677 idx = (Elf_Internal_Group *) shdr->contents;
678 n_elt = shdr->sh_size / 4;
679 while (--n_elt != 0)
680 if ((s = (++idx)->shdr->bfd_section) != NULL
681 && elf_next_in_group (s) != NULL)
682 break;
683 if (n_elt != 0)
684 {
685 /* Snarf the group name from other member, and
686 insert current section in circular list. */
687 elf_group_name (newsect) = elf_group_name (s);
688 elf_next_in_group (newsect) = elf_next_in_group (s);
689 elf_next_in_group (s) = newsect;
690 }
691 else
692 {
693 const char *gname;
694
695 gname = group_signature (abfd, shdr);
696 if (gname == NULL)
697 return FALSE;
698 elf_group_name (newsect) = gname;
699
700 /* Start a circular list with one element. */
701 elf_next_in_group (newsect) = newsect;
702 }
703
704 /* If the group section has been created, point to the
705 new member. */
706 if (shdr->bfd_section != NULL)
707 elf_next_in_group (shdr->bfd_section) = newsect;
708
709 i = num_group - 1;
710 break;
711 }
712 }
713 }
714
715 if (elf_group_name (newsect) == NULL)
716 {
717 (*_bfd_error_handler) (_("%B: no group info for section %A"),
718 abfd, newsect);
719 }
720 return TRUE;
721 }
722
723 bfd_boolean
724 _bfd_elf_setup_sections (bfd *abfd)
725 {
726 unsigned int i;
727 unsigned int num_group = elf_tdata (abfd)->num_group;
728 bfd_boolean result = TRUE;
729 asection *s;
730
731 /* Process SHF_LINK_ORDER. */
732 for (s = abfd->sections; s != NULL; s = s->next)
733 {
734 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
735 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
736 {
737 unsigned int elfsec = this_hdr->sh_link;
738 /* FIXME: The old Intel compiler and old strip/objcopy may
739 not set the sh_link or sh_info fields. Hence we could
740 get the situation where elfsec is 0. */
741 if (elfsec == 0)
742 {
743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
744 if (bed->link_order_error_handler)
745 bed->link_order_error_handler
746 (_("%B: warning: sh_link not set for section `%A'"),
747 abfd, s);
748 }
749 else
750 {
751 asection *linksec = NULL;
752
753 if (elfsec < elf_numsections (abfd))
754 {
755 this_hdr = elf_elfsections (abfd)[elfsec];
756 linksec = this_hdr->bfd_section;
757 }
758
759 /* PR 1991, 2008:
760 Some strip/objcopy may leave an incorrect value in
761 sh_link. We don't want to proceed. */
762 if (linksec == NULL)
763 {
764 (*_bfd_error_handler)
765 (_("%B: sh_link [%d] in section `%A' is incorrect"),
766 s->owner, s, elfsec);
767 result = FALSE;
768 }
769
770 elf_linked_to_section (s) = linksec;
771 }
772 }
773 }
774
775 /* Process section groups. */
776 if (num_group == (unsigned) -1)
777 return result;
778
779 for (i = 0; i < num_group; i++)
780 {
781 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
782 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
783 unsigned int n_elt = shdr->sh_size / 4;
784
785 while (--n_elt != 0)
786 if ((++idx)->shdr->bfd_section)
787 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
788 else if (idx->shdr->sh_type == SHT_RELA
789 || idx->shdr->sh_type == SHT_REL)
790 /* We won't include relocation sections in section groups in
791 output object files. We adjust the group section size here
792 so that relocatable link will work correctly when
793 relocation sections are in section group in input object
794 files. */
795 shdr->bfd_section->size -= 4;
796 else
797 {
798 /* There are some unknown sections in the group. */
799 (*_bfd_error_handler)
800 (_("%B: unknown [%d] section `%s' in group [%s]"),
801 abfd,
802 (unsigned int) idx->shdr->sh_type,
803 bfd_elf_string_from_elf_section (abfd,
804 (elf_elfheader (abfd)
805 ->e_shstrndx),
806 idx->shdr->sh_name),
807 shdr->bfd_section->name);
808 result = FALSE;
809 }
810 }
811 return result;
812 }
813
814 bfd_boolean
815 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
816 {
817 return elf_next_in_group (sec) != NULL;
818 }
819
820 /* Make a BFD section from an ELF section. We store a pointer to the
821 BFD section in the bfd_section field of the header. */
822
823 bfd_boolean
824 _bfd_elf_make_section_from_shdr (bfd *abfd,
825 Elf_Internal_Shdr *hdr,
826 const char *name,
827 int shindex)
828 {
829 asection *newsect;
830 flagword flags;
831 const struct elf_backend_data *bed;
832
833 if (hdr->bfd_section != NULL)
834 return TRUE;
835
836 newsect = bfd_make_section_anyway (abfd, name);
837 if (newsect == NULL)
838 return FALSE;
839
840 hdr->bfd_section = newsect;
841 elf_section_data (newsect)->this_hdr = *hdr;
842 elf_section_data (newsect)->this_idx = shindex;
843
844 /* Always use the real type/flags. */
845 elf_section_type (newsect) = hdr->sh_type;
846 elf_section_flags (newsect) = hdr->sh_flags;
847
848 newsect->filepos = hdr->sh_offset;
849
850 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
851 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
852 || ! bfd_set_section_alignment (abfd, newsect,
853 bfd_log2 (hdr->sh_addralign)))
854 return FALSE;
855
856 flags = SEC_NO_FLAGS;
857 if (hdr->sh_type != SHT_NOBITS)
858 flags |= SEC_HAS_CONTENTS;
859 if (hdr->sh_type == SHT_GROUP)
860 flags |= SEC_GROUP | SEC_EXCLUDE;
861 if ((hdr->sh_flags & SHF_ALLOC) != 0)
862 {
863 flags |= SEC_ALLOC;
864 if (hdr->sh_type != SHT_NOBITS)
865 flags |= SEC_LOAD;
866 }
867 if ((hdr->sh_flags & SHF_WRITE) == 0)
868 flags |= SEC_READONLY;
869 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
870 flags |= SEC_CODE;
871 else if ((flags & SEC_LOAD) != 0)
872 flags |= SEC_DATA;
873 if ((hdr->sh_flags & SHF_MERGE) != 0)
874 {
875 flags |= SEC_MERGE;
876 newsect->entsize = hdr->sh_entsize;
877 if ((hdr->sh_flags & SHF_STRINGS) != 0)
878 flags |= SEC_STRINGS;
879 }
880 if (hdr->sh_flags & SHF_GROUP)
881 if (!setup_group (abfd, hdr, newsect))
882 return FALSE;
883 if ((hdr->sh_flags & SHF_TLS) != 0)
884 flags |= SEC_THREAD_LOCAL;
885 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
886 flags |= SEC_EXCLUDE;
887
888 if ((flags & SEC_ALLOC) == 0)
889 {
890 /* The debugging sections appear to be recognized only by name,
891 not any sort of flag. Their SEC_ALLOC bits are cleared. */
892 if (name [0] == '.')
893 {
894 const char *p;
895 int n;
896 if (name[1] == 'd')
897 p = ".debug", n = 6;
898 else if (name[1] == 'g' && name[2] == 'n')
899 p = ".gnu.linkonce.wi.", n = 17;
900 else if (name[1] == 'g' && name[2] == 'd')
901 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
902 else if (name[1] == 'l')
903 p = ".line", n = 5;
904 else if (name[1] == 's')
905 p = ".stab", n = 5;
906 else if (name[1] == 'z')
907 p = ".zdebug", n = 7;
908 else
909 p = NULL, n = 0;
910 if (p != NULL && strncmp (name, p, n) == 0)
911 flags |= SEC_DEBUGGING;
912 }
913 }
914
915 /* As a GNU extension, if the name begins with .gnu.linkonce, we
916 only link a single copy of the section. This is used to support
917 g++. g++ will emit each template expansion in its own section.
918 The symbols will be defined as weak, so that multiple definitions
919 are permitted. The GNU linker extension is to actually discard
920 all but one of the sections. */
921 if (CONST_STRNEQ (name, ".gnu.linkonce")
922 && elf_next_in_group (newsect) == NULL)
923 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
924
925 bed = get_elf_backend_data (abfd);
926 if (bed->elf_backend_section_flags)
927 if (! bed->elf_backend_section_flags (&flags, hdr))
928 return FALSE;
929
930 if (! bfd_set_section_flags (abfd, newsect, flags))
931 return FALSE;
932
933 /* We do not parse the PT_NOTE segments as we are interested even in the
934 separate debug info files which may have the segments offsets corrupted.
935 PT_NOTEs from the core files are currently not parsed using BFD. */
936 if (hdr->sh_type == SHT_NOTE)
937 {
938 bfd_byte *contents;
939
940 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
941 return FALSE;
942
943 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
944 free (contents);
945 }
946
947 if ((flags & SEC_ALLOC) != 0)
948 {
949 Elf_Internal_Phdr *phdr;
950 unsigned int i, nload;
951
952 /* Some ELF linkers produce binaries with all the program header
953 p_paddr fields zero. If we have such a binary with more than
954 one PT_LOAD header, then leave the section lma equal to vma
955 so that we don't create sections with overlapping lma. */
956 phdr = elf_tdata (abfd)->phdr;
957 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
958 if (phdr->p_paddr != 0)
959 break;
960 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
961 ++nload;
962 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
963 return TRUE;
964
965 phdr = elf_tdata (abfd)->phdr;
966 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
967 {
968 if (((phdr->p_type == PT_LOAD
969 && (hdr->sh_flags & SHF_TLS) == 0)
970 || phdr->p_type == PT_TLS)
971 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
972 {
973 if ((flags & SEC_LOAD) == 0)
974 newsect->lma = (phdr->p_paddr
975 + hdr->sh_addr - phdr->p_vaddr);
976 else
977 /* We used to use the same adjustment for SEC_LOAD
978 sections, but that doesn't work if the segment
979 is packed with code from multiple VMAs.
980 Instead we calculate the section LMA based on
981 the segment LMA. It is assumed that the
982 segment will contain sections with contiguous
983 LMAs, even if the VMAs are not. */
984 newsect->lma = (phdr->p_paddr
985 + hdr->sh_offset - phdr->p_offset);
986
987 /* With contiguous segments, we can't tell from file
988 offsets whether a section with zero size should
989 be placed at the end of one segment or the
990 beginning of the next. Decide based on vaddr. */
991 if (hdr->sh_addr >= phdr->p_vaddr
992 && (hdr->sh_addr + hdr->sh_size
993 <= phdr->p_vaddr + phdr->p_memsz))
994 break;
995 }
996 }
997 }
998
999 /* Compress/decompress DWARF debug sections with names: .debug_* and
1000 .zdebug_*, after the section flags is set. */
1001 if ((flags & SEC_DEBUGGING)
1002 && ((name[1] == 'd' && name[6] == '_')
1003 || (name[1] == 'z' && name[7] == '_')))
1004 {
1005 enum { nothing, compress, decompress } action = nothing;
1006 char *new_name;
1007
1008 if (bfd_is_section_compressed (abfd, newsect))
1009 {
1010 /* Compressed section. Check if we should decompress. */
1011 if ((abfd->flags & BFD_DECOMPRESS))
1012 action = decompress;
1013 }
1014 else
1015 {
1016 /* Normal section. Check if we should compress. */
1017 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1018 action = compress;
1019 }
1020
1021 new_name = NULL;
1022 switch (action)
1023 {
1024 case nothing:
1025 break;
1026 case compress:
1027 if (!bfd_init_section_compress_status (abfd, newsect))
1028 {
1029 (*_bfd_error_handler)
1030 (_("%B: unable to initialize compress status for section %s"),
1031 abfd, name);
1032 return FALSE;
1033 }
1034 if (name[1] != 'z')
1035 {
1036 unsigned int len = strlen (name);
1037
1038 new_name = bfd_alloc (abfd, len + 2);
1039 if (new_name == NULL)
1040 return FALSE;
1041 new_name[0] = '.';
1042 new_name[1] = 'z';
1043 memcpy (new_name + 2, name + 1, len);
1044 }
1045 break;
1046 case decompress:
1047 if (!bfd_init_section_decompress_status (abfd, newsect))
1048 {
1049 (*_bfd_error_handler)
1050 (_("%B: unable to initialize decompress status for section %s"),
1051 abfd, name);
1052 return FALSE;
1053 }
1054 if (name[1] == 'z')
1055 {
1056 unsigned int len = strlen (name);
1057
1058 new_name = bfd_alloc (abfd, len);
1059 if (new_name == NULL)
1060 return FALSE;
1061 new_name[0] = '.';
1062 memcpy (new_name + 1, name + 2, len - 1);
1063 }
1064 break;
1065 }
1066 if (new_name != NULL)
1067 bfd_rename_section (abfd, newsect, new_name);
1068 }
1069
1070 return TRUE;
1071 }
1072
1073 const char *const bfd_elf_section_type_names[] = {
1074 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1075 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1076 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1077 };
1078
1079 /* ELF relocs are against symbols. If we are producing relocatable
1080 output, and the reloc is against an external symbol, and nothing
1081 has given us any additional addend, the resulting reloc will also
1082 be against the same symbol. In such a case, we don't want to
1083 change anything about the way the reloc is handled, since it will
1084 all be done at final link time. Rather than put special case code
1085 into bfd_perform_relocation, all the reloc types use this howto
1086 function. It just short circuits the reloc if producing
1087 relocatable output against an external symbol. */
1088
1089 bfd_reloc_status_type
1090 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1091 arelent *reloc_entry,
1092 asymbol *symbol,
1093 void *data ATTRIBUTE_UNUSED,
1094 asection *input_section,
1095 bfd *output_bfd,
1096 char **error_message ATTRIBUTE_UNUSED)
1097 {
1098 if (output_bfd != NULL
1099 && (symbol->flags & BSF_SECTION_SYM) == 0
1100 && (! reloc_entry->howto->partial_inplace
1101 || reloc_entry->addend == 0))
1102 {
1103 reloc_entry->address += input_section->output_offset;
1104 return bfd_reloc_ok;
1105 }
1106
1107 return bfd_reloc_continue;
1108 }
1109 \f
1110 /* Copy the program header and other data from one object module to
1111 another. */
1112
1113 bfd_boolean
1114 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1115 {
1116 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1117 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1118 return TRUE;
1119
1120 if (!elf_flags_init (obfd))
1121 {
1122 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1123 elf_flags_init (obfd) = TRUE;
1124 }
1125
1126 elf_gp (obfd) = elf_gp (ibfd);
1127
1128 /* Also copy the EI_OSABI field. */
1129 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1130 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1131
1132 /* Copy object attributes. */
1133 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1134 return TRUE;
1135 }
1136
1137 static const char *
1138 get_segment_type (unsigned int p_type)
1139 {
1140 const char *pt;
1141 switch (p_type)
1142 {
1143 case PT_NULL: pt = "NULL"; break;
1144 case PT_LOAD: pt = "LOAD"; break;
1145 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1146 case PT_INTERP: pt = "INTERP"; break;
1147 case PT_NOTE: pt = "NOTE"; break;
1148 case PT_SHLIB: pt = "SHLIB"; break;
1149 case PT_PHDR: pt = "PHDR"; break;
1150 case PT_TLS: pt = "TLS"; break;
1151 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1152 case PT_GNU_STACK: pt = "STACK"; break;
1153 case PT_GNU_RELRO: pt = "RELRO"; break;
1154 default: pt = NULL; break;
1155 }
1156 return pt;
1157 }
1158
1159 /* Print out the program headers. */
1160
1161 bfd_boolean
1162 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1163 {
1164 FILE *f = (FILE *) farg;
1165 Elf_Internal_Phdr *p;
1166 asection *s;
1167 bfd_byte *dynbuf = NULL;
1168
1169 p = elf_tdata (abfd)->phdr;
1170 if (p != NULL)
1171 {
1172 unsigned int i, c;
1173
1174 fprintf (f, _("\nProgram Header:\n"));
1175 c = elf_elfheader (abfd)->e_phnum;
1176 for (i = 0; i < c; i++, p++)
1177 {
1178 const char *pt = get_segment_type (p->p_type);
1179 char buf[20];
1180
1181 if (pt == NULL)
1182 {
1183 sprintf (buf, "0x%lx", p->p_type);
1184 pt = buf;
1185 }
1186 fprintf (f, "%8s off 0x", pt);
1187 bfd_fprintf_vma (abfd, f, p->p_offset);
1188 fprintf (f, " vaddr 0x");
1189 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1190 fprintf (f, " paddr 0x");
1191 bfd_fprintf_vma (abfd, f, p->p_paddr);
1192 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1193 fprintf (f, " filesz 0x");
1194 bfd_fprintf_vma (abfd, f, p->p_filesz);
1195 fprintf (f, " memsz 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_memsz);
1197 fprintf (f, " flags %c%c%c",
1198 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1199 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1200 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1201 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1202 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1203 fprintf (f, "\n");
1204 }
1205 }
1206
1207 s = bfd_get_section_by_name (abfd, ".dynamic");
1208 if (s != NULL)
1209 {
1210 unsigned int elfsec;
1211 unsigned long shlink;
1212 bfd_byte *extdyn, *extdynend;
1213 size_t extdynsize;
1214 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1215
1216 fprintf (f, _("\nDynamic Section:\n"));
1217
1218 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1219 goto error_return;
1220
1221 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1222 if (elfsec == SHN_BAD)
1223 goto error_return;
1224 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1225
1226 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1227 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1228
1229 extdyn = dynbuf;
1230 extdynend = extdyn + s->size;
1231 for (; extdyn < extdynend; extdyn += extdynsize)
1232 {
1233 Elf_Internal_Dyn dyn;
1234 const char *name = "";
1235 char ab[20];
1236 bfd_boolean stringp;
1237 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1238
1239 (*swap_dyn_in) (abfd, extdyn, &dyn);
1240
1241 if (dyn.d_tag == DT_NULL)
1242 break;
1243
1244 stringp = FALSE;
1245 switch (dyn.d_tag)
1246 {
1247 default:
1248 if (bed->elf_backend_get_target_dtag)
1249 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1250
1251 if (!strcmp (name, ""))
1252 {
1253 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1254 name = ab;
1255 }
1256 break;
1257
1258 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1259 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1260 case DT_PLTGOT: name = "PLTGOT"; break;
1261 case DT_HASH: name = "HASH"; break;
1262 case DT_STRTAB: name = "STRTAB"; break;
1263 case DT_SYMTAB: name = "SYMTAB"; break;
1264 case DT_RELA: name = "RELA"; break;
1265 case DT_RELASZ: name = "RELASZ"; break;
1266 case DT_RELAENT: name = "RELAENT"; break;
1267 case DT_STRSZ: name = "STRSZ"; break;
1268 case DT_SYMENT: name = "SYMENT"; break;
1269 case DT_INIT: name = "INIT"; break;
1270 case DT_FINI: name = "FINI"; break;
1271 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1272 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1273 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1274 case DT_REL: name = "REL"; break;
1275 case DT_RELSZ: name = "RELSZ"; break;
1276 case DT_RELENT: name = "RELENT"; break;
1277 case DT_PLTREL: name = "PLTREL"; break;
1278 case DT_DEBUG: name = "DEBUG"; break;
1279 case DT_TEXTREL: name = "TEXTREL"; break;
1280 case DT_JMPREL: name = "JMPREL"; break;
1281 case DT_BIND_NOW: name = "BIND_NOW"; break;
1282 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1283 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1284 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1285 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1286 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1287 case DT_FLAGS: name = "FLAGS"; break;
1288 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1289 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1290 case DT_CHECKSUM: name = "CHECKSUM"; break;
1291 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1292 case DT_MOVEENT: name = "MOVEENT"; break;
1293 case DT_MOVESZ: name = "MOVESZ"; break;
1294 case DT_FEATURE: name = "FEATURE"; break;
1295 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1296 case DT_SYMINSZ: name = "SYMINSZ"; break;
1297 case DT_SYMINENT: name = "SYMINENT"; break;
1298 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1299 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1300 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1301 case DT_PLTPAD: name = "PLTPAD"; break;
1302 case DT_MOVETAB: name = "MOVETAB"; break;
1303 case DT_SYMINFO: name = "SYMINFO"; break;
1304 case DT_RELACOUNT: name = "RELACOUNT"; break;
1305 case DT_RELCOUNT: name = "RELCOUNT"; break;
1306 case DT_FLAGS_1: name = "FLAGS_1"; break;
1307 case DT_VERSYM: name = "VERSYM"; break;
1308 case DT_VERDEF: name = "VERDEF"; break;
1309 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1310 case DT_VERNEED: name = "VERNEED"; break;
1311 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1312 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1313 case DT_USED: name = "USED"; break;
1314 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1315 case DT_GNU_HASH: name = "GNU_HASH"; break;
1316 }
1317
1318 fprintf (f, " %-20s ", name);
1319 if (! stringp)
1320 {
1321 fprintf (f, "0x");
1322 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1323 }
1324 else
1325 {
1326 const char *string;
1327 unsigned int tagv = dyn.d_un.d_val;
1328
1329 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1330 if (string == NULL)
1331 goto error_return;
1332 fprintf (f, "%s", string);
1333 }
1334 fprintf (f, "\n");
1335 }
1336
1337 free (dynbuf);
1338 dynbuf = NULL;
1339 }
1340
1341 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1342 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1343 {
1344 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1345 return FALSE;
1346 }
1347
1348 if (elf_dynverdef (abfd) != 0)
1349 {
1350 Elf_Internal_Verdef *t;
1351
1352 fprintf (f, _("\nVersion definitions:\n"));
1353 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1354 {
1355 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1356 t->vd_flags, t->vd_hash,
1357 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1358 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1359 {
1360 Elf_Internal_Verdaux *a;
1361
1362 fprintf (f, "\t");
1363 for (a = t->vd_auxptr->vda_nextptr;
1364 a != NULL;
1365 a = a->vda_nextptr)
1366 fprintf (f, "%s ",
1367 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1368 fprintf (f, "\n");
1369 }
1370 }
1371 }
1372
1373 if (elf_dynverref (abfd) != 0)
1374 {
1375 Elf_Internal_Verneed *t;
1376
1377 fprintf (f, _("\nVersion References:\n"));
1378 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1379 {
1380 Elf_Internal_Vernaux *a;
1381
1382 fprintf (f, _(" required from %s:\n"),
1383 t->vn_filename ? t->vn_filename : "<corrupt>");
1384 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1385 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1386 a->vna_flags, a->vna_other,
1387 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1388 }
1389 }
1390
1391 return TRUE;
1392
1393 error_return:
1394 if (dynbuf != NULL)
1395 free (dynbuf);
1396 return FALSE;
1397 }
1398
1399 /* Display ELF-specific fields of a symbol. */
1400
1401 void
1402 bfd_elf_print_symbol (bfd *abfd,
1403 void *filep,
1404 asymbol *symbol,
1405 bfd_print_symbol_type how)
1406 {
1407 FILE *file = (FILE *) filep;
1408 switch (how)
1409 {
1410 case bfd_print_symbol_name:
1411 fprintf (file, "%s", symbol->name);
1412 break;
1413 case bfd_print_symbol_more:
1414 fprintf (file, "elf ");
1415 bfd_fprintf_vma (abfd, file, symbol->value);
1416 fprintf (file, " %lx", (unsigned long) symbol->flags);
1417 break;
1418 case bfd_print_symbol_all:
1419 {
1420 const char *section_name;
1421 const char *name = NULL;
1422 const struct elf_backend_data *bed;
1423 unsigned char st_other;
1424 bfd_vma val;
1425
1426 section_name = symbol->section ? symbol->section->name : "(*none*)";
1427
1428 bed = get_elf_backend_data (abfd);
1429 if (bed->elf_backend_print_symbol_all)
1430 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1431
1432 if (name == NULL)
1433 {
1434 name = symbol->name;
1435 bfd_print_symbol_vandf (abfd, file, symbol);
1436 }
1437
1438 fprintf (file, " %s\t", section_name);
1439 /* Print the "other" value for a symbol. For common symbols,
1440 we've already printed the size; now print the alignment.
1441 For other symbols, we have no specified alignment, and
1442 we've printed the address; now print the size. */
1443 if (symbol->section && bfd_is_com_section (symbol->section))
1444 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1445 else
1446 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1447 bfd_fprintf_vma (abfd, file, val);
1448
1449 /* If we have version information, print it. */
1450 if (elf_dynversym (abfd) != 0
1451 && (elf_dynverdef (abfd) != 0
1452 || elf_dynverref (abfd) != 0))
1453 {
1454 unsigned int vernum;
1455 const char *version_string;
1456
1457 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1458
1459 if (vernum == 0)
1460 version_string = "";
1461 else if (vernum == 1)
1462 version_string = "Base";
1463 else if (vernum <= elf_tdata (abfd)->cverdefs)
1464 version_string =
1465 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1466 else
1467 {
1468 Elf_Internal_Verneed *t;
1469
1470 version_string = "";
1471 for (t = elf_tdata (abfd)->verref;
1472 t != NULL;
1473 t = t->vn_nextref)
1474 {
1475 Elf_Internal_Vernaux *a;
1476
1477 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1478 {
1479 if (a->vna_other == vernum)
1480 {
1481 version_string = a->vna_nodename;
1482 break;
1483 }
1484 }
1485 }
1486 }
1487
1488 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1489 fprintf (file, " %-11s", version_string);
1490 else
1491 {
1492 int i;
1493
1494 fprintf (file, " (%s)", version_string);
1495 for (i = 10 - strlen (version_string); i > 0; --i)
1496 putc (' ', file);
1497 }
1498 }
1499
1500 /* If the st_other field is not zero, print it. */
1501 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1502
1503 switch (st_other)
1504 {
1505 case 0: break;
1506 case STV_INTERNAL: fprintf (file, " .internal"); break;
1507 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1508 case STV_PROTECTED: fprintf (file, " .protected"); break;
1509 default:
1510 /* Some other non-defined flags are also present, so print
1511 everything hex. */
1512 fprintf (file, " 0x%02x", (unsigned int) st_other);
1513 }
1514
1515 fprintf (file, " %s", name);
1516 }
1517 break;
1518 }
1519 }
1520
1521 /* Allocate an ELF string table--force the first byte to be zero. */
1522
1523 struct bfd_strtab_hash *
1524 _bfd_elf_stringtab_init (void)
1525 {
1526 struct bfd_strtab_hash *ret;
1527
1528 ret = _bfd_stringtab_init ();
1529 if (ret != NULL)
1530 {
1531 bfd_size_type loc;
1532
1533 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1534 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1535 if (loc == (bfd_size_type) -1)
1536 {
1537 _bfd_stringtab_free (ret);
1538 ret = NULL;
1539 }
1540 }
1541 return ret;
1542 }
1543 \f
1544 /* ELF .o/exec file reading */
1545
1546 /* Create a new bfd section from an ELF section header. */
1547
1548 bfd_boolean
1549 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1550 {
1551 Elf_Internal_Shdr *hdr;
1552 Elf_Internal_Ehdr *ehdr;
1553 const struct elf_backend_data *bed;
1554 const char *name;
1555
1556 if (shindex >= elf_numsections (abfd))
1557 return FALSE;
1558
1559 hdr = elf_elfsections (abfd)[shindex];
1560 ehdr = elf_elfheader (abfd);
1561 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1562 hdr->sh_name);
1563 if (name == NULL)
1564 return FALSE;
1565
1566 bed = get_elf_backend_data (abfd);
1567 switch (hdr->sh_type)
1568 {
1569 case SHT_NULL:
1570 /* Inactive section. Throw it away. */
1571 return TRUE;
1572
1573 case SHT_PROGBITS: /* Normal section with contents. */
1574 case SHT_NOBITS: /* .bss section. */
1575 case SHT_HASH: /* .hash section. */
1576 case SHT_NOTE: /* .note section. */
1577 case SHT_INIT_ARRAY: /* .init_array section. */
1578 case SHT_FINI_ARRAY: /* .fini_array section. */
1579 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1580 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1581 case SHT_GNU_HASH: /* .gnu.hash section. */
1582 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1583
1584 case SHT_DYNAMIC: /* Dynamic linking information. */
1585 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1586 return FALSE;
1587 if (hdr->sh_link > elf_numsections (abfd))
1588 {
1589 /* PR 10478: Accept Solaris binaries with a sh_link
1590 field set to SHN_BEFORE or SHN_AFTER. */
1591 switch (bfd_get_arch (abfd))
1592 {
1593 case bfd_arch_i386:
1594 case bfd_arch_sparc:
1595 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1596 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1597 break;
1598 /* Otherwise fall through. */
1599 default:
1600 return FALSE;
1601 }
1602 }
1603 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1604 return FALSE;
1605 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1606 {
1607 Elf_Internal_Shdr *dynsymhdr;
1608
1609 /* The shared libraries distributed with hpux11 have a bogus
1610 sh_link field for the ".dynamic" section. Find the
1611 string table for the ".dynsym" section instead. */
1612 if (elf_dynsymtab (abfd) != 0)
1613 {
1614 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1615 hdr->sh_link = dynsymhdr->sh_link;
1616 }
1617 else
1618 {
1619 unsigned int i, num_sec;
1620
1621 num_sec = elf_numsections (abfd);
1622 for (i = 1; i < num_sec; i++)
1623 {
1624 dynsymhdr = elf_elfsections (abfd)[i];
1625 if (dynsymhdr->sh_type == SHT_DYNSYM)
1626 {
1627 hdr->sh_link = dynsymhdr->sh_link;
1628 break;
1629 }
1630 }
1631 }
1632 }
1633 break;
1634
1635 case SHT_SYMTAB: /* A symbol table */
1636 if (elf_onesymtab (abfd) == shindex)
1637 return TRUE;
1638
1639 if (hdr->sh_entsize != bed->s->sizeof_sym)
1640 return FALSE;
1641 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1642 {
1643 if (hdr->sh_size != 0)
1644 return FALSE;
1645 /* Some assemblers erroneously set sh_info to one with a
1646 zero sh_size. ld sees this as a global symbol count
1647 of (unsigned) -1. Fix it here. */
1648 hdr->sh_info = 0;
1649 return TRUE;
1650 }
1651 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1652 elf_onesymtab (abfd) = shindex;
1653 elf_tdata (abfd)->symtab_hdr = *hdr;
1654 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1655 abfd->flags |= HAS_SYMS;
1656
1657 /* Sometimes a shared object will map in the symbol table. If
1658 SHF_ALLOC is set, and this is a shared object, then we also
1659 treat this section as a BFD section. We can not base the
1660 decision purely on SHF_ALLOC, because that flag is sometimes
1661 set in a relocatable object file, which would confuse the
1662 linker. */
1663 if ((hdr->sh_flags & SHF_ALLOC) != 0
1664 && (abfd->flags & DYNAMIC) != 0
1665 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1666 shindex))
1667 return FALSE;
1668
1669 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1670 can't read symbols without that section loaded as well. It
1671 is most likely specified by the next section header. */
1672 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1673 {
1674 unsigned int i, num_sec;
1675
1676 num_sec = elf_numsections (abfd);
1677 for (i = shindex + 1; i < num_sec; i++)
1678 {
1679 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1680 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1681 && hdr2->sh_link == shindex)
1682 break;
1683 }
1684 if (i == num_sec)
1685 for (i = 1; i < shindex; i++)
1686 {
1687 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1688 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1689 && hdr2->sh_link == shindex)
1690 break;
1691 }
1692 if (i != shindex)
1693 return bfd_section_from_shdr (abfd, i);
1694 }
1695 return TRUE;
1696
1697 case SHT_DYNSYM: /* A dynamic symbol table */
1698 if (elf_dynsymtab (abfd) == shindex)
1699 return TRUE;
1700
1701 if (hdr->sh_entsize != bed->s->sizeof_sym)
1702 return FALSE;
1703 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1704 {
1705 if (hdr->sh_size != 0)
1706 return FALSE;
1707 /* Some linkers erroneously set sh_info to one with a
1708 zero sh_size. ld sees this as a global symbol count
1709 of (unsigned) -1. Fix it here. */
1710 hdr->sh_info = 0;
1711 return TRUE;
1712 }
1713 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1714 elf_dynsymtab (abfd) = shindex;
1715 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1716 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1717 abfd->flags |= HAS_SYMS;
1718
1719 /* Besides being a symbol table, we also treat this as a regular
1720 section, so that objcopy can handle it. */
1721 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1722
1723 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1724 if (elf_symtab_shndx (abfd) == shindex)
1725 return TRUE;
1726
1727 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1728 elf_symtab_shndx (abfd) = shindex;
1729 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1730 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1731 return TRUE;
1732
1733 case SHT_STRTAB: /* A string table */
1734 if (hdr->bfd_section != NULL)
1735 return TRUE;
1736 if (ehdr->e_shstrndx == shindex)
1737 {
1738 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1739 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1740 return TRUE;
1741 }
1742 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1743 {
1744 symtab_strtab:
1745 elf_tdata (abfd)->strtab_hdr = *hdr;
1746 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1747 return TRUE;
1748 }
1749 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1750 {
1751 dynsymtab_strtab:
1752 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1753 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1754 elf_elfsections (abfd)[shindex] = hdr;
1755 /* We also treat this as a regular section, so that objcopy
1756 can handle it. */
1757 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1758 shindex);
1759 }
1760
1761 /* If the string table isn't one of the above, then treat it as a
1762 regular section. We need to scan all the headers to be sure,
1763 just in case this strtab section appeared before the above. */
1764 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1765 {
1766 unsigned int i, num_sec;
1767
1768 num_sec = elf_numsections (abfd);
1769 for (i = 1; i < num_sec; i++)
1770 {
1771 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1772 if (hdr2->sh_link == shindex)
1773 {
1774 /* Prevent endless recursion on broken objects. */
1775 if (i == shindex)
1776 return FALSE;
1777 if (! bfd_section_from_shdr (abfd, i))
1778 return FALSE;
1779 if (elf_onesymtab (abfd) == i)
1780 goto symtab_strtab;
1781 if (elf_dynsymtab (abfd) == i)
1782 goto dynsymtab_strtab;
1783 }
1784 }
1785 }
1786 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1787
1788 case SHT_REL:
1789 case SHT_RELA:
1790 /* *These* do a lot of work -- but build no sections! */
1791 {
1792 asection *target_sect;
1793 Elf_Internal_Shdr *hdr2, **p_hdr;
1794 unsigned int num_sec = elf_numsections (abfd);
1795 struct bfd_elf_section_data *esdt;
1796 bfd_size_type amt;
1797
1798 if (hdr->sh_entsize
1799 != (bfd_size_type) (hdr->sh_type == SHT_REL
1800 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1801 return FALSE;
1802
1803 /* Check for a bogus link to avoid crashing. */
1804 if (hdr->sh_link >= num_sec)
1805 {
1806 ((*_bfd_error_handler)
1807 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1808 abfd, hdr->sh_link, name, shindex));
1809 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1810 shindex);
1811 }
1812
1813 /* For some incomprehensible reason Oracle distributes
1814 libraries for Solaris in which some of the objects have
1815 bogus sh_link fields. It would be nice if we could just
1816 reject them, but, unfortunately, some people need to use
1817 them. We scan through the section headers; if we find only
1818 one suitable symbol table, we clobber the sh_link to point
1819 to it. I hope this doesn't break anything.
1820
1821 Don't do it on executable nor shared library. */
1822 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1823 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1824 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1825 {
1826 unsigned int scan;
1827 int found;
1828
1829 found = 0;
1830 for (scan = 1; scan < num_sec; scan++)
1831 {
1832 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1833 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1834 {
1835 if (found != 0)
1836 {
1837 found = 0;
1838 break;
1839 }
1840 found = scan;
1841 }
1842 }
1843 if (found != 0)
1844 hdr->sh_link = found;
1845 }
1846
1847 /* Get the symbol table. */
1848 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1849 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1850 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1851 return FALSE;
1852
1853 /* If this reloc section does not use the main symbol table we
1854 don't treat it as a reloc section. BFD can't adequately
1855 represent such a section, so at least for now, we don't
1856 try. We just present it as a normal section. We also
1857 can't use it as a reloc section if it points to the null
1858 section, an invalid section, another reloc section, or its
1859 sh_link points to the null section. */
1860 if (hdr->sh_link != elf_onesymtab (abfd)
1861 || hdr->sh_link == SHN_UNDEF
1862 || hdr->sh_info == SHN_UNDEF
1863 || hdr->sh_info >= num_sec
1864 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1865 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1866 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1867 shindex);
1868
1869 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1870 return FALSE;
1871 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1872 if (target_sect == NULL)
1873 return FALSE;
1874
1875 esdt = elf_section_data (target_sect);
1876 if (hdr->sh_type == SHT_RELA)
1877 p_hdr = &esdt->rela.hdr;
1878 else
1879 p_hdr = &esdt->rel.hdr;
1880
1881 BFD_ASSERT (*p_hdr == NULL);
1882 amt = sizeof (*hdr2);
1883 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1884 if (hdr2 == NULL)
1885 return FALSE;
1886 *hdr2 = *hdr;
1887 *p_hdr = hdr2;
1888 elf_elfsections (abfd)[shindex] = hdr2;
1889 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1890 target_sect->flags |= SEC_RELOC;
1891 target_sect->relocation = NULL;
1892 target_sect->rel_filepos = hdr->sh_offset;
1893 /* In the section to which the relocations apply, mark whether
1894 its relocations are of the REL or RELA variety. */
1895 if (hdr->sh_size != 0)
1896 {
1897 if (hdr->sh_type == SHT_RELA)
1898 target_sect->use_rela_p = 1;
1899 }
1900 abfd->flags |= HAS_RELOC;
1901 return TRUE;
1902 }
1903
1904 case SHT_GNU_verdef:
1905 elf_dynverdef (abfd) = shindex;
1906 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1907 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1908
1909 case SHT_GNU_versym:
1910 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1911 return FALSE;
1912 elf_dynversym (abfd) = shindex;
1913 elf_tdata (abfd)->dynversym_hdr = *hdr;
1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1915
1916 case SHT_GNU_verneed:
1917 elf_dynverref (abfd) = shindex;
1918 elf_tdata (abfd)->dynverref_hdr = *hdr;
1919 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1920
1921 case SHT_SHLIB:
1922 return TRUE;
1923
1924 case SHT_GROUP:
1925 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1926 return FALSE;
1927 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1928 return FALSE;
1929 if (hdr->contents != NULL)
1930 {
1931 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1932 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1933 asection *s;
1934
1935 if (idx->flags & GRP_COMDAT)
1936 hdr->bfd_section->flags
1937 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1938
1939 /* We try to keep the same section order as it comes in. */
1940 idx += n_elt;
1941 while (--n_elt != 0)
1942 {
1943 --idx;
1944
1945 if (idx->shdr != NULL
1946 && (s = idx->shdr->bfd_section) != NULL
1947 && elf_next_in_group (s) != NULL)
1948 {
1949 elf_next_in_group (hdr->bfd_section) = s;
1950 break;
1951 }
1952 }
1953 }
1954 break;
1955
1956 default:
1957 /* Possibly an attributes section. */
1958 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1959 || hdr->sh_type == bed->obj_attrs_section_type)
1960 {
1961 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1962 return FALSE;
1963 _bfd_elf_parse_attributes (abfd, hdr);
1964 return TRUE;
1965 }
1966
1967 /* Check for any processor-specific section types. */
1968 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1969 return TRUE;
1970
1971 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1972 {
1973 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1974 /* FIXME: How to properly handle allocated section reserved
1975 for applications? */
1976 (*_bfd_error_handler)
1977 (_("%B: don't know how to handle allocated, application "
1978 "specific section `%s' [0x%8x]"),
1979 abfd, name, hdr->sh_type);
1980 else
1981 /* Allow sections reserved for applications. */
1982 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1983 shindex);
1984 }
1985 else if (hdr->sh_type >= SHT_LOPROC
1986 && hdr->sh_type <= SHT_HIPROC)
1987 /* FIXME: We should handle this section. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle processor specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1993 {
1994 /* Unrecognised OS-specific sections. */
1995 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1996 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1997 required to correctly process the section and the file should
1998 be rejected with an error message. */
1999 (*_bfd_error_handler)
2000 (_("%B: don't know how to handle OS specific section "
2001 "`%s' [0x%8x]"),
2002 abfd, name, hdr->sh_type);
2003 else
2004 /* Otherwise it should be processed. */
2005 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2006 }
2007 else
2008 /* FIXME: We should handle this section. */
2009 (*_bfd_error_handler)
2010 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2011 abfd, name, hdr->sh_type);
2012
2013 return FALSE;
2014 }
2015
2016 return TRUE;
2017 }
2018
2019 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2020
2021 Elf_Internal_Sym *
2022 bfd_sym_from_r_symndx (struct sym_cache *cache,
2023 bfd *abfd,
2024 unsigned long r_symndx)
2025 {
2026 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2027
2028 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2029 {
2030 Elf_Internal_Shdr *symtab_hdr;
2031 unsigned char esym[sizeof (Elf64_External_Sym)];
2032 Elf_External_Sym_Shndx eshndx;
2033
2034 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2035 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2036 &cache->sym[ent], esym, &eshndx) == NULL)
2037 return NULL;
2038
2039 if (cache->abfd != abfd)
2040 {
2041 memset (cache->indx, -1, sizeof (cache->indx));
2042 cache->abfd = abfd;
2043 }
2044 cache->indx[ent] = r_symndx;
2045 }
2046
2047 return &cache->sym[ent];
2048 }
2049
2050 /* Given an ELF section number, retrieve the corresponding BFD
2051 section. */
2052
2053 asection *
2054 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2055 {
2056 if (sec_index >= elf_numsections (abfd))
2057 return NULL;
2058 return elf_elfsections (abfd)[sec_index]->bfd_section;
2059 }
2060
2061 static const struct bfd_elf_special_section special_sections_b[] =
2062 {
2063 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2064 { NULL, 0, 0, 0, 0 }
2065 };
2066
2067 static const struct bfd_elf_special_section special_sections_c[] =
2068 {
2069 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2070 { NULL, 0, 0, 0, 0 }
2071 };
2072
2073 static const struct bfd_elf_special_section special_sections_d[] =
2074 {
2075 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2076 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2077 /* There are more DWARF sections than these, but they needn't be added here
2078 unless you have to cope with broken compilers that don't emit section
2079 attributes or you want to help the user writing assembler. */
2080 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2081 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2082 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2083 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2084 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2086 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2087 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2088 { NULL, 0, 0, 0, 0 }
2089 };
2090
2091 static const struct bfd_elf_special_section special_sections_f[] =
2092 {
2093 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2094 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2095 { NULL, 0, 0, 0, 0 }
2096 };
2097
2098 static const struct bfd_elf_special_section special_sections_g[] =
2099 {
2100 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2101 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2102 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2103 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2104 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2105 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2106 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2107 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2108 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2109 { NULL, 0, 0, 0, 0 }
2110 };
2111
2112 static const struct bfd_elf_special_section special_sections_h[] =
2113 {
2114 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2115 { NULL, 0, 0, 0, 0 }
2116 };
2117
2118 static const struct bfd_elf_special_section special_sections_i[] =
2119 {
2120 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2121 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2122 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2123 { NULL, 0, 0, 0, 0 }
2124 };
2125
2126 static const struct bfd_elf_special_section special_sections_l[] =
2127 {
2128 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2129 { NULL, 0, 0, 0, 0 }
2130 };
2131
2132 static const struct bfd_elf_special_section special_sections_n[] =
2133 {
2134 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2135 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2136 { NULL, 0, 0, 0, 0 }
2137 };
2138
2139 static const struct bfd_elf_special_section special_sections_p[] =
2140 {
2141 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2142 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2143 { NULL, 0, 0, 0, 0 }
2144 };
2145
2146 static const struct bfd_elf_special_section special_sections_r[] =
2147 {
2148 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2149 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2150 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2151 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2152 { NULL, 0, 0, 0, 0 }
2153 };
2154
2155 static const struct bfd_elf_special_section special_sections_s[] =
2156 {
2157 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2158 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2159 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2160 /* See struct bfd_elf_special_section declaration for the semantics of
2161 this special case where .prefix_length != strlen (.prefix). */
2162 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2163 { NULL, 0, 0, 0, 0 }
2164 };
2165
2166 static const struct bfd_elf_special_section special_sections_t[] =
2167 {
2168 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2169 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2170 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2171 { NULL, 0, 0, 0, 0 }
2172 };
2173
2174 static const struct bfd_elf_special_section special_sections_z[] =
2175 {
2176 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2177 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2178 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2179 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2180 { NULL, 0, 0, 0, 0 }
2181 };
2182
2183 static const struct bfd_elf_special_section * const special_sections[] =
2184 {
2185 special_sections_b, /* 'b' */
2186 special_sections_c, /* 'c' */
2187 special_sections_d, /* 'd' */
2188 NULL, /* 'e' */
2189 special_sections_f, /* 'f' */
2190 special_sections_g, /* 'g' */
2191 special_sections_h, /* 'h' */
2192 special_sections_i, /* 'i' */
2193 NULL, /* 'j' */
2194 NULL, /* 'k' */
2195 special_sections_l, /* 'l' */
2196 NULL, /* 'm' */
2197 special_sections_n, /* 'n' */
2198 NULL, /* 'o' */
2199 special_sections_p, /* 'p' */
2200 NULL, /* 'q' */
2201 special_sections_r, /* 'r' */
2202 special_sections_s, /* 's' */
2203 special_sections_t, /* 't' */
2204 NULL, /* 'u' */
2205 NULL, /* 'v' */
2206 NULL, /* 'w' */
2207 NULL, /* 'x' */
2208 NULL, /* 'y' */
2209 special_sections_z /* 'z' */
2210 };
2211
2212 const struct bfd_elf_special_section *
2213 _bfd_elf_get_special_section (const char *name,
2214 const struct bfd_elf_special_section *spec,
2215 unsigned int rela)
2216 {
2217 int i;
2218 int len;
2219
2220 len = strlen (name);
2221
2222 for (i = 0; spec[i].prefix != NULL; i++)
2223 {
2224 int suffix_len;
2225 int prefix_len = spec[i].prefix_length;
2226
2227 if (len < prefix_len)
2228 continue;
2229 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2230 continue;
2231
2232 suffix_len = spec[i].suffix_length;
2233 if (suffix_len <= 0)
2234 {
2235 if (name[prefix_len] != 0)
2236 {
2237 if (suffix_len == 0)
2238 continue;
2239 if (name[prefix_len] != '.'
2240 && (suffix_len == -2
2241 || (rela && spec[i].type == SHT_REL)))
2242 continue;
2243 }
2244 }
2245 else
2246 {
2247 if (len < prefix_len + suffix_len)
2248 continue;
2249 if (memcmp (name + len - suffix_len,
2250 spec[i].prefix + prefix_len,
2251 suffix_len) != 0)
2252 continue;
2253 }
2254 return &spec[i];
2255 }
2256
2257 return NULL;
2258 }
2259
2260 const struct bfd_elf_special_section *
2261 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2262 {
2263 int i;
2264 const struct bfd_elf_special_section *spec;
2265 const struct elf_backend_data *bed;
2266
2267 /* See if this is one of the special sections. */
2268 if (sec->name == NULL)
2269 return NULL;
2270
2271 bed = get_elf_backend_data (abfd);
2272 spec = bed->special_sections;
2273 if (spec)
2274 {
2275 spec = _bfd_elf_get_special_section (sec->name,
2276 bed->special_sections,
2277 sec->use_rela_p);
2278 if (spec != NULL)
2279 return spec;
2280 }
2281
2282 if (sec->name[0] != '.')
2283 return NULL;
2284
2285 i = sec->name[1] - 'b';
2286 if (i < 0 || i > 'z' - 'b')
2287 return NULL;
2288
2289 spec = special_sections[i];
2290
2291 if (spec == NULL)
2292 return NULL;
2293
2294 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2295 }
2296
2297 bfd_boolean
2298 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2299 {
2300 struct bfd_elf_section_data *sdata;
2301 const struct elf_backend_data *bed;
2302 const struct bfd_elf_special_section *ssect;
2303
2304 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2305 if (sdata == NULL)
2306 {
2307 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2308 sizeof (*sdata));
2309 if (sdata == NULL)
2310 return FALSE;
2311 sec->used_by_bfd = sdata;
2312 }
2313
2314 /* Indicate whether or not this section should use RELA relocations. */
2315 bed = get_elf_backend_data (abfd);
2316 sec->use_rela_p = bed->default_use_rela_p;
2317
2318 /* When we read a file, we don't need to set ELF section type and
2319 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2320 anyway. We will set ELF section type and flags for all linker
2321 created sections. If user specifies BFD section flags, we will
2322 set ELF section type and flags based on BFD section flags in
2323 elf_fake_sections. Special handling for .init_array/.fini_array
2324 output sections since they may contain .ctors/.dtors input
2325 sections. We don't want _bfd_elf_init_private_section_data to
2326 copy ELF section type from .ctors/.dtors input sections. */
2327 if (abfd->direction != read_direction
2328 || (sec->flags & SEC_LINKER_CREATED) != 0)
2329 {
2330 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2331 if (ssect != NULL
2332 && (!sec->flags
2333 || (sec->flags & SEC_LINKER_CREATED) != 0
2334 || ssect->type == SHT_INIT_ARRAY
2335 || ssect->type == SHT_FINI_ARRAY))
2336 {
2337 elf_section_type (sec) = ssect->type;
2338 elf_section_flags (sec) = ssect->attr;
2339 }
2340 }
2341
2342 return _bfd_generic_new_section_hook (abfd, sec);
2343 }
2344
2345 /* Create a new bfd section from an ELF program header.
2346
2347 Since program segments have no names, we generate a synthetic name
2348 of the form segment<NUM>, where NUM is generally the index in the
2349 program header table. For segments that are split (see below) we
2350 generate the names segment<NUM>a and segment<NUM>b.
2351
2352 Note that some program segments may have a file size that is different than
2353 (less than) the memory size. All this means is that at execution the
2354 system must allocate the amount of memory specified by the memory size,
2355 but only initialize it with the first "file size" bytes read from the
2356 file. This would occur for example, with program segments consisting
2357 of combined data+bss.
2358
2359 To handle the above situation, this routine generates TWO bfd sections
2360 for the single program segment. The first has the length specified by
2361 the file size of the segment, and the second has the length specified
2362 by the difference between the two sizes. In effect, the segment is split
2363 into its initialized and uninitialized parts.
2364
2365 */
2366
2367 bfd_boolean
2368 _bfd_elf_make_section_from_phdr (bfd *abfd,
2369 Elf_Internal_Phdr *hdr,
2370 int hdr_index,
2371 const char *type_name)
2372 {
2373 asection *newsect;
2374 char *name;
2375 char namebuf[64];
2376 size_t len;
2377 int split;
2378
2379 split = ((hdr->p_memsz > 0)
2380 && (hdr->p_filesz > 0)
2381 && (hdr->p_memsz > hdr->p_filesz));
2382
2383 if (hdr->p_filesz > 0)
2384 {
2385 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2386 len = strlen (namebuf) + 1;
2387 name = (char *) bfd_alloc (abfd, len);
2388 if (!name)
2389 return FALSE;
2390 memcpy (name, namebuf, len);
2391 newsect = bfd_make_section (abfd, name);
2392 if (newsect == NULL)
2393 return FALSE;
2394 newsect->vma = hdr->p_vaddr;
2395 newsect->lma = hdr->p_paddr;
2396 newsect->size = hdr->p_filesz;
2397 newsect->filepos = hdr->p_offset;
2398 newsect->flags |= SEC_HAS_CONTENTS;
2399 newsect->alignment_power = bfd_log2 (hdr->p_align);
2400 if (hdr->p_type == PT_LOAD)
2401 {
2402 newsect->flags |= SEC_ALLOC;
2403 newsect->flags |= SEC_LOAD;
2404 if (hdr->p_flags & PF_X)
2405 {
2406 /* FIXME: all we known is that it has execute PERMISSION,
2407 may be data. */
2408 newsect->flags |= SEC_CODE;
2409 }
2410 }
2411 if (!(hdr->p_flags & PF_W))
2412 {
2413 newsect->flags |= SEC_READONLY;
2414 }
2415 }
2416
2417 if (hdr->p_memsz > hdr->p_filesz)
2418 {
2419 bfd_vma align;
2420
2421 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2422 len = strlen (namebuf) + 1;
2423 name = (char *) bfd_alloc (abfd, len);
2424 if (!name)
2425 return FALSE;
2426 memcpy (name, namebuf, len);
2427 newsect = bfd_make_section (abfd, name);
2428 if (newsect == NULL)
2429 return FALSE;
2430 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2431 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2432 newsect->size = hdr->p_memsz - hdr->p_filesz;
2433 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2434 align = newsect->vma & -newsect->vma;
2435 if (align == 0 || align > hdr->p_align)
2436 align = hdr->p_align;
2437 newsect->alignment_power = bfd_log2 (align);
2438 if (hdr->p_type == PT_LOAD)
2439 {
2440 /* Hack for gdb. Segments that have not been modified do
2441 not have their contents written to a core file, on the
2442 assumption that a debugger can find the contents in the
2443 executable. We flag this case by setting the fake
2444 section size to zero. Note that "real" bss sections will
2445 always have their contents dumped to the core file. */
2446 if (bfd_get_format (abfd) == bfd_core)
2447 newsect->size = 0;
2448 newsect->flags |= SEC_ALLOC;
2449 if (hdr->p_flags & PF_X)
2450 newsect->flags |= SEC_CODE;
2451 }
2452 if (!(hdr->p_flags & PF_W))
2453 newsect->flags |= SEC_READONLY;
2454 }
2455
2456 return TRUE;
2457 }
2458
2459 bfd_boolean
2460 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2461 {
2462 const struct elf_backend_data *bed;
2463
2464 switch (hdr->p_type)
2465 {
2466 case PT_NULL:
2467 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2468
2469 case PT_LOAD:
2470 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2471
2472 case PT_DYNAMIC:
2473 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2474
2475 case PT_INTERP:
2476 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2477
2478 case PT_NOTE:
2479 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2480 return FALSE;
2481 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2482 return FALSE;
2483 return TRUE;
2484
2485 case PT_SHLIB:
2486 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2487
2488 case PT_PHDR:
2489 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2490
2491 case PT_GNU_EH_FRAME:
2492 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2493 "eh_frame_hdr");
2494
2495 case PT_GNU_STACK:
2496 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2497
2498 case PT_GNU_RELRO:
2499 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2500
2501 default:
2502 /* Check for any processor-specific program segment types. */
2503 bed = get_elf_backend_data (abfd);
2504 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2505 }
2506 }
2507
2508 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2509 REL or RELA. */
2510
2511 Elf_Internal_Shdr *
2512 _bfd_elf_single_rel_hdr (asection *sec)
2513 {
2514 if (elf_section_data (sec)->rel.hdr)
2515 {
2516 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2517 return elf_section_data (sec)->rel.hdr;
2518 }
2519 else
2520 return elf_section_data (sec)->rela.hdr;
2521 }
2522
2523 /* Allocate and initialize a section-header for a new reloc section,
2524 containing relocations against ASECT. It is stored in RELDATA. If
2525 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2526 relocations. */
2527
2528 static bfd_boolean
2529 _bfd_elf_init_reloc_shdr (bfd *abfd,
2530 struct bfd_elf_section_reloc_data *reldata,
2531 asection *asect,
2532 bfd_boolean use_rela_p)
2533 {
2534 Elf_Internal_Shdr *rel_hdr;
2535 char *name;
2536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2537 bfd_size_type amt;
2538
2539 amt = sizeof (Elf_Internal_Shdr);
2540 BFD_ASSERT (reldata->hdr == NULL);
2541 rel_hdr = bfd_zalloc (abfd, amt);
2542 reldata->hdr = rel_hdr;
2543
2544 amt = sizeof ".rela" + strlen (asect->name);
2545 name = (char *) bfd_alloc (abfd, amt);
2546 if (name == NULL)
2547 return FALSE;
2548 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2549 rel_hdr->sh_name =
2550 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2551 FALSE);
2552 if (rel_hdr->sh_name == (unsigned int) -1)
2553 return FALSE;
2554 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2555 rel_hdr->sh_entsize = (use_rela_p
2556 ? bed->s->sizeof_rela
2557 : bed->s->sizeof_rel);
2558 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2559 rel_hdr->sh_flags = 0;
2560 rel_hdr->sh_addr = 0;
2561 rel_hdr->sh_size = 0;
2562 rel_hdr->sh_offset = 0;
2563
2564 return TRUE;
2565 }
2566
2567 /* Return the default section type based on the passed in section flags. */
2568
2569 int
2570 bfd_elf_get_default_section_type (flagword flags)
2571 {
2572 if ((flags & SEC_ALLOC) != 0
2573 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2574 return SHT_NOBITS;
2575 return SHT_PROGBITS;
2576 }
2577
2578 struct fake_section_arg
2579 {
2580 struct bfd_link_info *link_info;
2581 bfd_boolean failed;
2582 };
2583
2584 /* Set up an ELF internal section header for a section. */
2585
2586 static void
2587 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2588 {
2589 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2590 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2591 struct bfd_elf_section_data *esd = elf_section_data (asect);
2592 Elf_Internal_Shdr *this_hdr;
2593 unsigned int sh_type;
2594
2595 if (arg->failed)
2596 {
2597 /* We already failed; just get out of the bfd_map_over_sections
2598 loop. */
2599 return;
2600 }
2601
2602 this_hdr = &esd->this_hdr;
2603
2604 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2605 asect->name, FALSE);
2606 if (this_hdr->sh_name == (unsigned int) -1)
2607 {
2608 arg->failed = TRUE;
2609 return;
2610 }
2611
2612 /* Don't clear sh_flags. Assembler may set additional bits. */
2613
2614 if ((asect->flags & SEC_ALLOC) != 0
2615 || asect->user_set_vma)
2616 this_hdr->sh_addr = asect->vma;
2617 else
2618 this_hdr->sh_addr = 0;
2619
2620 this_hdr->sh_offset = 0;
2621 this_hdr->sh_size = asect->size;
2622 this_hdr->sh_link = 0;
2623 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2624 /* The sh_entsize and sh_info fields may have been set already by
2625 copy_private_section_data. */
2626
2627 this_hdr->bfd_section = asect;
2628 this_hdr->contents = NULL;
2629
2630 /* If the section type is unspecified, we set it based on
2631 asect->flags. */
2632 if ((asect->flags & SEC_GROUP) != 0)
2633 sh_type = SHT_GROUP;
2634 else
2635 sh_type = bfd_elf_get_default_section_type (asect->flags);
2636
2637 if (this_hdr->sh_type == SHT_NULL)
2638 this_hdr->sh_type = sh_type;
2639 else if (this_hdr->sh_type == SHT_NOBITS
2640 && sh_type == SHT_PROGBITS
2641 && (asect->flags & SEC_ALLOC) != 0)
2642 {
2643 /* Warn if we are changing a NOBITS section to PROGBITS, but
2644 allow the link to proceed. This can happen when users link
2645 non-bss input sections to bss output sections, or emit data
2646 to a bss output section via a linker script. */
2647 (*_bfd_error_handler)
2648 (_("warning: section `%A' type changed to PROGBITS"), asect);
2649 this_hdr->sh_type = sh_type;
2650 }
2651
2652 switch (this_hdr->sh_type)
2653 {
2654 default:
2655 break;
2656
2657 case SHT_STRTAB:
2658 case SHT_INIT_ARRAY:
2659 case SHT_FINI_ARRAY:
2660 case SHT_PREINIT_ARRAY:
2661 case SHT_NOTE:
2662 case SHT_NOBITS:
2663 case SHT_PROGBITS:
2664 break;
2665
2666 case SHT_HASH:
2667 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2668 break;
2669
2670 case SHT_DYNSYM:
2671 this_hdr->sh_entsize = bed->s->sizeof_sym;
2672 break;
2673
2674 case SHT_DYNAMIC:
2675 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2676 break;
2677
2678 case SHT_RELA:
2679 if (get_elf_backend_data (abfd)->may_use_rela_p)
2680 this_hdr->sh_entsize = bed->s->sizeof_rela;
2681 break;
2682
2683 case SHT_REL:
2684 if (get_elf_backend_data (abfd)->may_use_rel_p)
2685 this_hdr->sh_entsize = bed->s->sizeof_rel;
2686 break;
2687
2688 case SHT_GNU_versym:
2689 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2690 break;
2691
2692 case SHT_GNU_verdef:
2693 this_hdr->sh_entsize = 0;
2694 /* objcopy or strip will copy over sh_info, but may not set
2695 cverdefs. The linker will set cverdefs, but sh_info will be
2696 zero. */
2697 if (this_hdr->sh_info == 0)
2698 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2699 else
2700 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2701 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2702 break;
2703
2704 case SHT_GNU_verneed:
2705 this_hdr->sh_entsize = 0;
2706 /* objcopy or strip will copy over sh_info, but may not set
2707 cverrefs. The linker will set cverrefs, but sh_info will be
2708 zero. */
2709 if (this_hdr->sh_info == 0)
2710 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2711 else
2712 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2713 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2714 break;
2715
2716 case SHT_GROUP:
2717 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2718 break;
2719
2720 case SHT_GNU_HASH:
2721 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2722 break;
2723 }
2724
2725 if ((asect->flags & SEC_ALLOC) != 0)
2726 this_hdr->sh_flags |= SHF_ALLOC;
2727 if ((asect->flags & SEC_READONLY) == 0)
2728 this_hdr->sh_flags |= SHF_WRITE;
2729 if ((asect->flags & SEC_CODE) != 0)
2730 this_hdr->sh_flags |= SHF_EXECINSTR;
2731 if ((asect->flags & SEC_MERGE) != 0)
2732 {
2733 this_hdr->sh_flags |= SHF_MERGE;
2734 this_hdr->sh_entsize = asect->entsize;
2735 if ((asect->flags & SEC_STRINGS) != 0)
2736 this_hdr->sh_flags |= SHF_STRINGS;
2737 }
2738 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2739 this_hdr->sh_flags |= SHF_GROUP;
2740 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2741 {
2742 this_hdr->sh_flags |= SHF_TLS;
2743 if (asect->size == 0
2744 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2745 {
2746 struct bfd_link_order *o = asect->map_tail.link_order;
2747
2748 this_hdr->sh_size = 0;
2749 if (o != NULL)
2750 {
2751 this_hdr->sh_size = o->offset + o->size;
2752 if (this_hdr->sh_size != 0)
2753 this_hdr->sh_type = SHT_NOBITS;
2754 }
2755 }
2756 }
2757 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2758 this_hdr->sh_flags |= SHF_EXCLUDE;
2759
2760 /* If the section has relocs, set up a section header for the
2761 SHT_REL[A] section. If two relocation sections are required for
2762 this section, it is up to the processor-specific back-end to
2763 create the other. */
2764 if ((asect->flags & SEC_RELOC) != 0)
2765 {
2766 /* When doing a relocatable link, create both REL and RELA sections if
2767 needed. */
2768 if (arg->link_info
2769 /* Do the normal setup if we wouldn't create any sections here. */
2770 && esd->rel.count + esd->rela.count > 0
2771 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2772 {
2773 if (esd->rel.count && esd->rel.hdr == NULL
2774 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2775 {
2776 arg->failed = TRUE;
2777 return;
2778 }
2779 if (esd->rela.count && esd->rela.hdr == NULL
2780 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2781 {
2782 arg->failed = TRUE;
2783 return;
2784 }
2785 }
2786 else if (!_bfd_elf_init_reloc_shdr (abfd,
2787 (asect->use_rela_p
2788 ? &esd->rela : &esd->rel),
2789 asect,
2790 asect->use_rela_p))
2791 arg->failed = TRUE;
2792 }
2793
2794 /* Check for processor-specific section types. */
2795 sh_type = this_hdr->sh_type;
2796 if (bed->elf_backend_fake_sections
2797 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2798 arg->failed = TRUE;
2799
2800 if (sh_type == SHT_NOBITS && asect->size != 0)
2801 {
2802 /* Don't change the header type from NOBITS if we are being
2803 called for objcopy --only-keep-debug. */
2804 this_hdr->sh_type = sh_type;
2805 }
2806 }
2807
2808 /* Fill in the contents of a SHT_GROUP section. Called from
2809 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2810 when ELF targets use the generic linker, ld. Called for ld -r
2811 from bfd_elf_final_link. */
2812
2813 void
2814 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2815 {
2816 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2817 asection *elt, *first;
2818 unsigned char *loc;
2819 bfd_boolean gas;
2820
2821 /* Ignore linker created group section. See elfNN_ia64_object_p in
2822 elfxx-ia64.c. */
2823 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2824 || *failedptr)
2825 return;
2826
2827 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2828 {
2829 unsigned long symindx = 0;
2830
2831 /* elf_group_id will have been set up by objcopy and the
2832 generic linker. */
2833 if (elf_group_id (sec) != NULL)
2834 symindx = elf_group_id (sec)->udata.i;
2835
2836 if (symindx == 0)
2837 {
2838 /* If called from the assembler, swap_out_syms will have set up
2839 elf_section_syms. */
2840 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2841 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2842 }
2843 elf_section_data (sec)->this_hdr.sh_info = symindx;
2844 }
2845 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2846 {
2847 /* The ELF backend linker sets sh_info to -2 when the group
2848 signature symbol is global, and thus the index can't be
2849 set until all local symbols are output. */
2850 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2851 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2852 unsigned long symndx = sec_data->this_hdr.sh_info;
2853 unsigned long extsymoff = 0;
2854 struct elf_link_hash_entry *h;
2855
2856 if (!elf_bad_symtab (igroup->owner))
2857 {
2858 Elf_Internal_Shdr *symtab_hdr;
2859
2860 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2861 extsymoff = symtab_hdr->sh_info;
2862 }
2863 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2864 while (h->root.type == bfd_link_hash_indirect
2865 || h->root.type == bfd_link_hash_warning)
2866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2867
2868 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2869 }
2870
2871 /* The contents won't be allocated for "ld -r" or objcopy. */
2872 gas = TRUE;
2873 if (sec->contents == NULL)
2874 {
2875 gas = FALSE;
2876 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2877
2878 /* Arrange for the section to be written out. */
2879 elf_section_data (sec)->this_hdr.contents = sec->contents;
2880 if (sec->contents == NULL)
2881 {
2882 *failedptr = TRUE;
2883 return;
2884 }
2885 }
2886
2887 loc = sec->contents + sec->size;
2888
2889 /* Get the pointer to the first section in the group that gas
2890 squirreled away here. objcopy arranges for this to be set to the
2891 start of the input section group. */
2892 first = elt = elf_next_in_group (sec);
2893
2894 /* First element is a flag word. Rest of section is elf section
2895 indices for all the sections of the group. Write them backwards
2896 just to keep the group in the same order as given in .section
2897 directives, not that it matters. */
2898 while (elt != NULL)
2899 {
2900 asection *s;
2901
2902 s = elt;
2903 if (!gas)
2904 s = s->output_section;
2905 if (s != NULL
2906 && !bfd_is_abs_section (s))
2907 {
2908 unsigned int idx = elf_section_data (s)->this_idx;
2909
2910 loc -= 4;
2911 H_PUT_32 (abfd, idx, loc);
2912 }
2913 elt = elf_next_in_group (elt);
2914 if (elt == first)
2915 break;
2916 }
2917
2918 if ((loc -= 4) != sec->contents)
2919 abort ();
2920
2921 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2922 }
2923
2924 /* Assign all ELF section numbers. The dummy first section is handled here
2925 too. The link/info pointers for the standard section types are filled
2926 in here too, while we're at it. */
2927
2928 static bfd_boolean
2929 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2930 {
2931 struct elf_obj_tdata *t = elf_tdata (abfd);
2932 asection *sec;
2933 unsigned int section_number, secn;
2934 Elf_Internal_Shdr **i_shdrp;
2935 struct bfd_elf_section_data *d;
2936 bfd_boolean need_symtab;
2937
2938 section_number = 1;
2939
2940 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2941
2942 /* SHT_GROUP sections are in relocatable files only. */
2943 if (link_info == NULL || link_info->relocatable)
2944 {
2945 /* Put SHT_GROUP sections first. */
2946 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2947 {
2948 d = elf_section_data (sec);
2949
2950 if (d->this_hdr.sh_type == SHT_GROUP)
2951 {
2952 if (sec->flags & SEC_LINKER_CREATED)
2953 {
2954 /* Remove the linker created SHT_GROUP sections. */
2955 bfd_section_list_remove (abfd, sec);
2956 abfd->section_count--;
2957 }
2958 else
2959 d->this_idx = section_number++;
2960 }
2961 }
2962 }
2963
2964 for (sec = abfd->sections; sec; sec = sec->next)
2965 {
2966 d = elf_section_data (sec);
2967
2968 if (d->this_hdr.sh_type != SHT_GROUP)
2969 d->this_idx = section_number++;
2970 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2971 if (d->rel.hdr)
2972 {
2973 d->rel.idx = section_number++;
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2975 }
2976 else
2977 d->rel.idx = 0;
2978
2979 if (d->rela.hdr)
2980 {
2981 d->rela.idx = section_number++;
2982 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2983 }
2984 else
2985 d->rela.idx = 0;
2986 }
2987
2988 elf_shstrtab_sec (abfd) = section_number++;
2989 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2990 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
2991
2992 need_symtab = (bfd_get_symcount (abfd) > 0
2993 || (link_info == NULL
2994 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2995 == HAS_RELOC)));
2996 if (need_symtab)
2997 {
2998 elf_onesymtab (abfd) = section_number++;
2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3000 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3001 {
3002 elf_symtab_shndx (abfd) = section_number++;
3003 t->symtab_shndx_hdr.sh_name
3004 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3005 ".symtab_shndx", FALSE);
3006 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3007 return FALSE;
3008 }
3009 elf_strtab_sec (abfd) = section_number++;
3010 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3011 }
3012
3013 if (section_number >= SHN_LORESERVE)
3014 {
3015 _bfd_error_handler (_("%B: too many sections: %u"),
3016 abfd, section_number);
3017 return FALSE;
3018 }
3019
3020 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3021 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3022
3023 elf_numsections (abfd) = section_number;
3024 elf_elfheader (abfd)->e_shnum = section_number;
3025
3026 /* Set up the list of section header pointers, in agreement with the
3027 indices. */
3028 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3029 sizeof (Elf_Internal_Shdr *));
3030 if (i_shdrp == NULL)
3031 return FALSE;
3032
3033 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3034 sizeof (Elf_Internal_Shdr));
3035 if (i_shdrp[0] == NULL)
3036 {
3037 bfd_release (abfd, i_shdrp);
3038 return FALSE;
3039 }
3040
3041 elf_elfsections (abfd) = i_shdrp;
3042
3043 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3044 if (need_symtab)
3045 {
3046 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3047 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3048 {
3049 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3050 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3051 }
3052 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3053 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3054 }
3055
3056 for (sec = abfd->sections; sec; sec = sec->next)
3057 {
3058 asection *s;
3059 const char *name;
3060
3061 d = elf_section_data (sec);
3062
3063 i_shdrp[d->this_idx] = &d->this_hdr;
3064 if (d->rel.idx != 0)
3065 i_shdrp[d->rel.idx] = d->rel.hdr;
3066 if (d->rela.idx != 0)
3067 i_shdrp[d->rela.idx] = d->rela.hdr;
3068
3069 /* Fill in the sh_link and sh_info fields while we're at it. */
3070
3071 /* sh_link of a reloc section is the section index of the symbol
3072 table. sh_info is the section index of the section to which
3073 the relocation entries apply. */
3074 if (d->rel.idx != 0)
3075 {
3076 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3077 d->rel.hdr->sh_info = d->this_idx;
3078 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3079 }
3080 if (d->rela.idx != 0)
3081 {
3082 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3083 d->rela.hdr->sh_info = d->this_idx;
3084 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3085 }
3086
3087 /* We need to set up sh_link for SHF_LINK_ORDER. */
3088 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3089 {
3090 s = elf_linked_to_section (sec);
3091 if (s)
3092 {
3093 /* elf_linked_to_section points to the input section. */
3094 if (link_info != NULL)
3095 {
3096 /* Check discarded linkonce section. */
3097 if (discarded_section (s))
3098 {
3099 asection *kept;
3100 (*_bfd_error_handler)
3101 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3102 abfd, d->this_hdr.bfd_section,
3103 s, s->owner);
3104 /* Point to the kept section if it has the same
3105 size as the discarded one. */
3106 kept = _bfd_elf_check_kept_section (s, link_info);
3107 if (kept == NULL)
3108 {
3109 bfd_set_error (bfd_error_bad_value);
3110 return FALSE;
3111 }
3112 s = kept;
3113 }
3114
3115 s = s->output_section;
3116 BFD_ASSERT (s != NULL);
3117 }
3118 else
3119 {
3120 /* Handle objcopy. */
3121 if (s->output_section == NULL)
3122 {
3123 (*_bfd_error_handler)
3124 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3125 abfd, d->this_hdr.bfd_section, s, s->owner);
3126 bfd_set_error (bfd_error_bad_value);
3127 return FALSE;
3128 }
3129 s = s->output_section;
3130 }
3131 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3132 }
3133 else
3134 {
3135 /* PR 290:
3136 The Intel C compiler generates SHT_IA_64_UNWIND with
3137 SHF_LINK_ORDER. But it doesn't set the sh_link or
3138 sh_info fields. Hence we could get the situation
3139 where s is NULL. */
3140 const struct elf_backend_data *bed
3141 = get_elf_backend_data (abfd);
3142 if (bed->link_order_error_handler)
3143 bed->link_order_error_handler
3144 (_("%B: warning: sh_link not set for section `%A'"),
3145 abfd, sec);
3146 }
3147 }
3148
3149 switch (d->this_hdr.sh_type)
3150 {
3151 case SHT_REL:
3152 case SHT_RELA:
3153 /* A reloc section which we are treating as a normal BFD
3154 section. sh_link is the section index of the symbol
3155 table. sh_info is the section index of the section to
3156 which the relocation entries apply. We assume that an
3157 allocated reloc section uses the dynamic symbol table.
3158 FIXME: How can we be sure? */
3159 s = bfd_get_section_by_name (abfd, ".dynsym");
3160 if (s != NULL)
3161 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3162
3163 /* We look up the section the relocs apply to by name. */
3164 name = sec->name;
3165 if (d->this_hdr.sh_type == SHT_REL)
3166 name += 4;
3167 else
3168 name += 5;
3169 s = bfd_get_section_by_name (abfd, name);
3170 if (s != NULL)
3171 {
3172 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3173 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3174 }
3175 break;
3176
3177 case SHT_STRTAB:
3178 /* We assume that a section named .stab*str is a stabs
3179 string section. We look for a section with the same name
3180 but without the trailing ``str'', and set its sh_link
3181 field to point to this section. */
3182 if (CONST_STRNEQ (sec->name, ".stab")
3183 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3184 {
3185 size_t len;
3186 char *alc;
3187
3188 len = strlen (sec->name);
3189 alc = (char *) bfd_malloc (len - 2);
3190 if (alc == NULL)
3191 return FALSE;
3192 memcpy (alc, sec->name, len - 3);
3193 alc[len - 3] = '\0';
3194 s = bfd_get_section_by_name (abfd, alc);
3195 free (alc);
3196 if (s != NULL)
3197 {
3198 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3199
3200 /* This is a .stab section. */
3201 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3202 elf_section_data (s)->this_hdr.sh_entsize
3203 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3204 }
3205 }
3206 break;
3207
3208 case SHT_DYNAMIC:
3209 case SHT_DYNSYM:
3210 case SHT_GNU_verneed:
3211 case SHT_GNU_verdef:
3212 /* sh_link is the section header index of the string table
3213 used for the dynamic entries, or the symbol table, or the
3214 version strings. */
3215 s = bfd_get_section_by_name (abfd, ".dynstr");
3216 if (s != NULL)
3217 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3218 break;
3219
3220 case SHT_GNU_LIBLIST:
3221 /* sh_link is the section header index of the prelink library
3222 list used for the dynamic entries, or the symbol table, or
3223 the version strings. */
3224 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3225 ? ".dynstr" : ".gnu.libstr");
3226 if (s != NULL)
3227 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3228 break;
3229
3230 case SHT_HASH:
3231 case SHT_GNU_HASH:
3232 case SHT_GNU_versym:
3233 /* sh_link is the section header index of the symbol table
3234 this hash table or version table is for. */
3235 s = bfd_get_section_by_name (abfd, ".dynsym");
3236 if (s != NULL)
3237 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3238 break;
3239
3240 case SHT_GROUP:
3241 d->this_hdr.sh_link = elf_onesymtab (abfd);
3242 }
3243 }
3244
3245 for (secn = 1; secn < section_number; ++secn)
3246 if (i_shdrp[secn] == NULL)
3247 i_shdrp[secn] = i_shdrp[0];
3248 else
3249 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3250 i_shdrp[secn]->sh_name);
3251 return TRUE;
3252 }
3253
3254 static bfd_boolean
3255 sym_is_global (bfd *abfd, asymbol *sym)
3256 {
3257 /* If the backend has a special mapping, use it. */
3258 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3259 if (bed->elf_backend_sym_is_global)
3260 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3261
3262 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3263 || bfd_is_und_section (bfd_get_section (sym))
3264 || bfd_is_com_section (bfd_get_section (sym)));
3265 }
3266
3267 /* Don't output section symbols for sections that are not going to be
3268 output, that are duplicates or there is no BFD section. */
3269
3270 static bfd_boolean
3271 ignore_section_sym (bfd *abfd, asymbol *sym)
3272 {
3273 elf_symbol_type *type_ptr;
3274
3275 if ((sym->flags & BSF_SECTION_SYM) == 0)
3276 return FALSE;
3277
3278 type_ptr = elf_symbol_from (abfd, sym);
3279 return ((type_ptr != NULL
3280 && type_ptr->internal_elf_sym.st_shndx != 0
3281 && bfd_is_abs_section (sym->section))
3282 || !(sym->section->owner == abfd
3283 || (sym->section->output_section->owner == abfd
3284 && sym->section->output_offset == 0)
3285 || bfd_is_abs_section (sym->section)));
3286 }
3287
3288 /* Map symbol from it's internal number to the external number, moving
3289 all local symbols to be at the head of the list. */
3290
3291 static bfd_boolean
3292 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3293 {
3294 unsigned int symcount = bfd_get_symcount (abfd);
3295 asymbol **syms = bfd_get_outsymbols (abfd);
3296 asymbol **sect_syms;
3297 unsigned int num_locals = 0;
3298 unsigned int num_globals = 0;
3299 unsigned int num_locals2 = 0;
3300 unsigned int num_globals2 = 0;
3301 int max_index = 0;
3302 unsigned int idx;
3303 asection *asect;
3304 asymbol **new_syms;
3305
3306 #ifdef DEBUG
3307 fprintf (stderr, "elf_map_symbols\n");
3308 fflush (stderr);
3309 #endif
3310
3311 for (asect = abfd->sections; asect; asect = asect->next)
3312 {
3313 if (max_index < asect->index)
3314 max_index = asect->index;
3315 }
3316
3317 max_index++;
3318 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3319 if (sect_syms == NULL)
3320 return FALSE;
3321 elf_section_syms (abfd) = sect_syms;
3322 elf_num_section_syms (abfd) = max_index;
3323
3324 /* Init sect_syms entries for any section symbols we have already
3325 decided to output. */
3326 for (idx = 0; idx < symcount; idx++)
3327 {
3328 asymbol *sym = syms[idx];
3329
3330 if ((sym->flags & BSF_SECTION_SYM) != 0
3331 && sym->value == 0
3332 && !ignore_section_sym (abfd, sym)
3333 && !bfd_is_abs_section (sym->section))
3334 {
3335 asection *sec = sym->section;
3336
3337 if (sec->owner != abfd)
3338 sec = sec->output_section;
3339
3340 sect_syms[sec->index] = syms[idx];
3341 }
3342 }
3343
3344 /* Classify all of the symbols. */
3345 for (idx = 0; idx < symcount; idx++)
3346 {
3347 if (sym_is_global (abfd, syms[idx]))
3348 num_globals++;
3349 else if (!ignore_section_sym (abfd, syms[idx]))
3350 num_locals++;
3351 }
3352
3353 /* We will be adding a section symbol for each normal BFD section. Most
3354 sections will already have a section symbol in outsymbols, but
3355 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3356 at least in that case. */
3357 for (asect = abfd->sections; asect; asect = asect->next)
3358 {
3359 if (sect_syms[asect->index] == NULL)
3360 {
3361 if (!sym_is_global (abfd, asect->symbol))
3362 num_locals++;
3363 else
3364 num_globals++;
3365 }
3366 }
3367
3368 /* Now sort the symbols so the local symbols are first. */
3369 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3370 sizeof (asymbol *));
3371
3372 if (new_syms == NULL)
3373 return FALSE;
3374
3375 for (idx = 0; idx < symcount; idx++)
3376 {
3377 asymbol *sym = syms[idx];
3378 unsigned int i;
3379
3380 if (sym_is_global (abfd, sym))
3381 i = num_locals + num_globals2++;
3382 else if (!ignore_section_sym (abfd, sym))
3383 i = num_locals2++;
3384 else
3385 continue;
3386 new_syms[i] = sym;
3387 sym->udata.i = i + 1;
3388 }
3389 for (asect = abfd->sections; asect; asect = asect->next)
3390 {
3391 if (sect_syms[asect->index] == NULL)
3392 {
3393 asymbol *sym = asect->symbol;
3394 unsigned int i;
3395
3396 sect_syms[asect->index] = sym;
3397 if (!sym_is_global (abfd, sym))
3398 i = num_locals2++;
3399 else
3400 i = num_locals + num_globals2++;
3401 new_syms[i] = sym;
3402 sym->udata.i = i + 1;
3403 }
3404 }
3405
3406 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3407
3408 *pnum_locals = num_locals;
3409 return TRUE;
3410 }
3411
3412 /* Align to the maximum file alignment that could be required for any
3413 ELF data structure. */
3414
3415 static inline file_ptr
3416 align_file_position (file_ptr off, int align)
3417 {
3418 return (off + align - 1) & ~(align - 1);
3419 }
3420
3421 /* Assign a file position to a section, optionally aligning to the
3422 required section alignment. */
3423
3424 file_ptr
3425 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3426 file_ptr offset,
3427 bfd_boolean align)
3428 {
3429 if (align && i_shdrp->sh_addralign > 1)
3430 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3431 i_shdrp->sh_offset = offset;
3432 if (i_shdrp->bfd_section != NULL)
3433 i_shdrp->bfd_section->filepos = offset;
3434 if (i_shdrp->sh_type != SHT_NOBITS)
3435 offset += i_shdrp->sh_size;
3436 return offset;
3437 }
3438
3439 /* Compute the file positions we are going to put the sections at, and
3440 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3441 is not NULL, this is being called by the ELF backend linker. */
3442
3443 bfd_boolean
3444 _bfd_elf_compute_section_file_positions (bfd *abfd,
3445 struct bfd_link_info *link_info)
3446 {
3447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3448 struct fake_section_arg fsargs;
3449 bfd_boolean failed;
3450 struct bfd_strtab_hash *strtab = NULL;
3451 Elf_Internal_Shdr *shstrtab_hdr;
3452 bfd_boolean need_symtab;
3453
3454 if (abfd->output_has_begun)
3455 return TRUE;
3456
3457 /* Do any elf backend specific processing first. */
3458 if (bed->elf_backend_begin_write_processing)
3459 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3460
3461 if (! prep_headers (abfd))
3462 return FALSE;
3463
3464 /* Post process the headers if necessary. */
3465 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3466
3467 fsargs.failed = FALSE;
3468 fsargs.link_info = link_info;
3469 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3470 if (fsargs.failed)
3471 return FALSE;
3472
3473 if (!assign_section_numbers (abfd, link_info))
3474 return FALSE;
3475
3476 /* The backend linker builds symbol table information itself. */
3477 need_symtab = (link_info == NULL
3478 && (bfd_get_symcount (abfd) > 0
3479 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3480 == HAS_RELOC)));
3481 if (need_symtab)
3482 {
3483 /* Non-zero if doing a relocatable link. */
3484 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3485
3486 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3487 return FALSE;
3488 }
3489
3490 failed = FALSE;
3491 if (link_info == NULL)
3492 {
3493 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3494 if (failed)
3495 return FALSE;
3496 }
3497
3498 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3499 /* sh_name was set in prep_headers. */
3500 shstrtab_hdr->sh_type = SHT_STRTAB;
3501 shstrtab_hdr->sh_flags = 0;
3502 shstrtab_hdr->sh_addr = 0;
3503 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3504 shstrtab_hdr->sh_entsize = 0;
3505 shstrtab_hdr->sh_link = 0;
3506 shstrtab_hdr->sh_info = 0;
3507 /* sh_offset is set in assign_file_positions_except_relocs. */
3508 shstrtab_hdr->sh_addralign = 1;
3509
3510 if (!assign_file_positions_except_relocs (abfd, link_info))
3511 return FALSE;
3512
3513 if (need_symtab)
3514 {
3515 file_ptr off;
3516 Elf_Internal_Shdr *hdr;
3517
3518 off = elf_next_file_pos (abfd);
3519
3520 hdr = &elf_tdata (abfd)->symtab_hdr;
3521 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3522
3523 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3524 if (hdr->sh_size != 0)
3525 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3526
3527 hdr = &elf_tdata (abfd)->strtab_hdr;
3528 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3529
3530 elf_next_file_pos (abfd) = off;
3531
3532 /* Now that we know where the .strtab section goes, write it
3533 out. */
3534 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3535 || ! _bfd_stringtab_emit (abfd, strtab))
3536 return FALSE;
3537 _bfd_stringtab_free (strtab);
3538 }
3539
3540 abfd->output_has_begun = TRUE;
3541
3542 return TRUE;
3543 }
3544
3545 /* Make an initial estimate of the size of the program header. If we
3546 get the number wrong here, we'll redo section placement. */
3547
3548 static bfd_size_type
3549 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3550 {
3551 size_t segs;
3552 asection *s;
3553 const struct elf_backend_data *bed;
3554
3555 /* Assume we will need exactly two PT_LOAD segments: one for text
3556 and one for data. */
3557 segs = 2;
3558
3559 s = bfd_get_section_by_name (abfd, ".interp");
3560 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3561 {
3562 /* If we have a loadable interpreter section, we need a
3563 PT_INTERP segment. In this case, assume we also need a
3564 PT_PHDR segment, although that may not be true for all
3565 targets. */
3566 segs += 2;
3567 }
3568
3569 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3570 {
3571 /* We need a PT_DYNAMIC segment. */
3572 ++segs;
3573 }
3574
3575 if (info != NULL && info->relro)
3576 {
3577 /* We need a PT_GNU_RELRO segment. */
3578 ++segs;
3579 }
3580
3581 if (elf_eh_frame_hdr (abfd))
3582 {
3583 /* We need a PT_GNU_EH_FRAME segment. */
3584 ++segs;
3585 }
3586
3587 if (elf_stack_flags (abfd))
3588 {
3589 /* We need a PT_GNU_STACK segment. */
3590 ++segs;
3591 }
3592
3593 for (s = abfd->sections; s != NULL; s = s->next)
3594 {
3595 if ((s->flags & SEC_LOAD) != 0
3596 && CONST_STRNEQ (s->name, ".note"))
3597 {
3598 /* We need a PT_NOTE segment. */
3599 ++segs;
3600 /* Try to create just one PT_NOTE segment
3601 for all adjacent loadable .note* sections.
3602 gABI requires that within a PT_NOTE segment
3603 (and also inside of each SHT_NOTE section)
3604 each note is padded to a multiple of 4 size,
3605 so we check whether the sections are correctly
3606 aligned. */
3607 if (s->alignment_power == 2)
3608 while (s->next != NULL
3609 && s->next->alignment_power == 2
3610 && (s->next->flags & SEC_LOAD) != 0
3611 && CONST_STRNEQ (s->next->name, ".note"))
3612 s = s->next;
3613 }
3614 }
3615
3616 for (s = abfd->sections; s != NULL; s = s->next)
3617 {
3618 if (s->flags & SEC_THREAD_LOCAL)
3619 {
3620 /* We need a PT_TLS segment. */
3621 ++segs;
3622 break;
3623 }
3624 }
3625
3626 /* Let the backend count up any program headers it might need. */
3627 bed = get_elf_backend_data (abfd);
3628 if (bed->elf_backend_additional_program_headers)
3629 {
3630 int a;
3631
3632 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3633 if (a == -1)
3634 abort ();
3635 segs += a;
3636 }
3637
3638 return segs * bed->s->sizeof_phdr;
3639 }
3640
3641 /* Find the segment that contains the output_section of section. */
3642
3643 Elf_Internal_Phdr *
3644 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3645 {
3646 struct elf_segment_map *m;
3647 Elf_Internal_Phdr *p;
3648
3649 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3650 m != NULL;
3651 m = m->next, p++)
3652 {
3653 int i;
3654
3655 for (i = m->count - 1; i >= 0; i--)
3656 if (m->sections[i] == section)
3657 return p;
3658 }
3659
3660 return NULL;
3661 }
3662
3663 /* Create a mapping from a set of sections to a program segment. */
3664
3665 static struct elf_segment_map *
3666 make_mapping (bfd *abfd,
3667 asection **sections,
3668 unsigned int from,
3669 unsigned int to,
3670 bfd_boolean phdr)
3671 {
3672 struct elf_segment_map *m;
3673 unsigned int i;
3674 asection **hdrpp;
3675 bfd_size_type amt;
3676
3677 amt = sizeof (struct elf_segment_map);
3678 amt += (to - from - 1) * sizeof (asection *);
3679 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3680 if (m == NULL)
3681 return NULL;
3682 m->next = NULL;
3683 m->p_type = PT_LOAD;
3684 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3685 m->sections[i - from] = *hdrpp;
3686 m->count = to - from;
3687
3688 if (from == 0 && phdr)
3689 {
3690 /* Include the headers in the first PT_LOAD segment. */
3691 m->includes_filehdr = 1;
3692 m->includes_phdrs = 1;
3693 }
3694
3695 return m;
3696 }
3697
3698 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3699 on failure. */
3700
3701 struct elf_segment_map *
3702 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3703 {
3704 struct elf_segment_map *m;
3705
3706 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3707 sizeof (struct elf_segment_map));
3708 if (m == NULL)
3709 return NULL;
3710 m->next = NULL;
3711 m->p_type = PT_DYNAMIC;
3712 m->count = 1;
3713 m->sections[0] = dynsec;
3714
3715 return m;
3716 }
3717
3718 /* Possibly add or remove segments from the segment map. */
3719
3720 static bfd_boolean
3721 elf_modify_segment_map (bfd *abfd,
3722 struct bfd_link_info *info,
3723 bfd_boolean remove_empty_load)
3724 {
3725 struct elf_segment_map **m;
3726 const struct elf_backend_data *bed;
3727
3728 /* The placement algorithm assumes that non allocated sections are
3729 not in PT_LOAD segments. We ensure this here by removing such
3730 sections from the segment map. We also remove excluded
3731 sections. Finally, any PT_LOAD segment without sections is
3732 removed. */
3733 m = &elf_seg_map (abfd);
3734 while (*m)
3735 {
3736 unsigned int i, new_count;
3737
3738 for (new_count = 0, i = 0; i < (*m)->count; i++)
3739 {
3740 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3741 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3742 || (*m)->p_type != PT_LOAD))
3743 {
3744 (*m)->sections[new_count] = (*m)->sections[i];
3745 new_count++;
3746 }
3747 }
3748 (*m)->count = new_count;
3749
3750 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3751 *m = (*m)->next;
3752 else
3753 m = &(*m)->next;
3754 }
3755
3756 bed = get_elf_backend_data (abfd);
3757 if (bed->elf_backend_modify_segment_map != NULL)
3758 {
3759 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3760 return FALSE;
3761 }
3762
3763 return TRUE;
3764 }
3765
3766 /* Set up a mapping from BFD sections to program segments. */
3767
3768 bfd_boolean
3769 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3770 {
3771 unsigned int count;
3772 struct elf_segment_map *m;
3773 asection **sections = NULL;
3774 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3775 bfd_boolean no_user_phdrs;
3776
3777 no_user_phdrs = elf_seg_map (abfd) == NULL;
3778
3779 if (info != NULL)
3780 info->user_phdrs = !no_user_phdrs;
3781
3782 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3783 {
3784 asection *s;
3785 unsigned int i;
3786 struct elf_segment_map *mfirst;
3787 struct elf_segment_map **pm;
3788 asection *last_hdr;
3789 bfd_vma last_size;
3790 unsigned int phdr_index;
3791 bfd_vma maxpagesize;
3792 asection **hdrpp;
3793 bfd_boolean phdr_in_segment = TRUE;
3794 bfd_boolean writable;
3795 int tls_count = 0;
3796 asection *first_tls = NULL;
3797 asection *dynsec, *eh_frame_hdr;
3798 bfd_size_type amt;
3799 bfd_vma addr_mask, wrap_to = 0;
3800
3801 /* Select the allocated sections, and sort them. */
3802
3803 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3804 sizeof (asection *));
3805 if (sections == NULL)
3806 goto error_return;
3807
3808 /* Calculate top address, avoiding undefined behaviour of shift
3809 left operator when shift count is equal to size of type
3810 being shifted. */
3811 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3812 addr_mask = (addr_mask << 1) + 1;
3813
3814 i = 0;
3815 for (s = abfd->sections; s != NULL; s = s->next)
3816 {
3817 if ((s->flags & SEC_ALLOC) != 0)
3818 {
3819 sections[i] = s;
3820 ++i;
3821 /* A wrapping section potentially clashes with header. */
3822 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3823 wrap_to = (s->lma + s->size) & addr_mask;
3824 }
3825 }
3826 BFD_ASSERT (i <= bfd_count_sections (abfd));
3827 count = i;
3828
3829 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3830
3831 /* Build the mapping. */
3832
3833 mfirst = NULL;
3834 pm = &mfirst;
3835
3836 /* If we have a .interp section, then create a PT_PHDR segment for
3837 the program headers and a PT_INTERP segment for the .interp
3838 section. */
3839 s = bfd_get_section_by_name (abfd, ".interp");
3840 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3841 {
3842 amt = sizeof (struct elf_segment_map);
3843 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3844 if (m == NULL)
3845 goto error_return;
3846 m->next = NULL;
3847 m->p_type = PT_PHDR;
3848 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3849 m->p_flags = PF_R | PF_X;
3850 m->p_flags_valid = 1;
3851 m->includes_phdrs = 1;
3852
3853 *pm = m;
3854 pm = &m->next;
3855
3856 amt = sizeof (struct elf_segment_map);
3857 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3858 if (m == NULL)
3859 goto error_return;
3860 m->next = NULL;
3861 m->p_type = PT_INTERP;
3862 m->count = 1;
3863 m->sections[0] = s;
3864
3865 *pm = m;
3866 pm = &m->next;
3867 }
3868
3869 /* Look through the sections. We put sections in the same program
3870 segment when the start of the second section can be placed within
3871 a few bytes of the end of the first section. */
3872 last_hdr = NULL;
3873 last_size = 0;
3874 phdr_index = 0;
3875 maxpagesize = bed->maxpagesize;
3876 writable = FALSE;
3877 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3878 if (dynsec != NULL
3879 && (dynsec->flags & SEC_LOAD) == 0)
3880 dynsec = NULL;
3881
3882 /* Deal with -Ttext or something similar such that the first section
3883 is not adjacent to the program headers. This is an
3884 approximation, since at this point we don't know exactly how many
3885 program headers we will need. */
3886 if (count > 0)
3887 {
3888 bfd_size_type phdr_size = elf_program_header_size (abfd);
3889
3890 if (phdr_size == (bfd_size_type) -1)
3891 phdr_size = get_program_header_size (abfd, info);
3892 phdr_size += bed->s->sizeof_ehdr;
3893 if ((abfd->flags & D_PAGED) == 0
3894 || (sections[0]->lma & addr_mask) < phdr_size
3895 || ((sections[0]->lma & addr_mask) % maxpagesize
3896 < phdr_size % maxpagesize)
3897 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3898 phdr_in_segment = FALSE;
3899 }
3900
3901 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3902 {
3903 asection *hdr;
3904 bfd_boolean new_segment;
3905
3906 hdr = *hdrpp;
3907
3908 /* See if this section and the last one will fit in the same
3909 segment. */
3910
3911 if (last_hdr == NULL)
3912 {
3913 /* If we don't have a segment yet, then we don't need a new
3914 one (we build the last one after this loop). */
3915 new_segment = FALSE;
3916 }
3917 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3918 {
3919 /* If this section has a different relation between the
3920 virtual address and the load address, then we need a new
3921 segment. */
3922 new_segment = TRUE;
3923 }
3924 else if (hdr->lma < last_hdr->lma + last_size
3925 || last_hdr->lma + last_size < last_hdr->lma)
3926 {
3927 /* If this section has a load address that makes it overlap
3928 the previous section, then we need a new segment. */
3929 new_segment = TRUE;
3930 }
3931 /* In the next test we have to be careful when last_hdr->lma is close
3932 to the end of the address space. If the aligned address wraps
3933 around to the start of the address space, then there are no more
3934 pages left in memory and it is OK to assume that the current
3935 section can be included in the current segment. */
3936 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3937 > last_hdr->lma)
3938 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3939 <= hdr->lma))
3940 {
3941 /* If putting this section in this segment would force us to
3942 skip a page in the segment, then we need a new segment. */
3943 new_segment = TRUE;
3944 }
3945 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3946 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3947 {
3948 /* We don't want to put a loadable section after a
3949 nonloadable section in the same segment.
3950 Consider .tbss sections as loadable for this purpose. */
3951 new_segment = TRUE;
3952 }
3953 else if ((abfd->flags & D_PAGED) == 0)
3954 {
3955 /* If the file is not demand paged, which means that we
3956 don't require the sections to be correctly aligned in the
3957 file, then there is no other reason for a new segment. */
3958 new_segment = FALSE;
3959 }
3960 else if (! writable
3961 && (hdr->flags & SEC_READONLY) == 0
3962 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3963 != (hdr->lma & -maxpagesize)))
3964 {
3965 /* We don't want to put a writable section in a read only
3966 segment, unless they are on the same page in memory
3967 anyhow. We already know that the last section does not
3968 bring us past the current section on the page, so the
3969 only case in which the new section is not on the same
3970 page as the previous section is when the previous section
3971 ends precisely on a page boundary. */
3972 new_segment = TRUE;
3973 }
3974 else
3975 {
3976 /* Otherwise, we can use the same segment. */
3977 new_segment = FALSE;
3978 }
3979
3980 /* Allow interested parties a chance to override our decision. */
3981 if (last_hdr != NULL
3982 && info != NULL
3983 && info->callbacks->override_segment_assignment != NULL)
3984 new_segment
3985 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3986 last_hdr,
3987 new_segment);
3988
3989 if (! new_segment)
3990 {
3991 if ((hdr->flags & SEC_READONLY) == 0)
3992 writable = TRUE;
3993 last_hdr = hdr;
3994 /* .tbss sections effectively have zero size. */
3995 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3996 != SEC_THREAD_LOCAL)
3997 last_size = hdr->size;
3998 else
3999 last_size = 0;
4000 continue;
4001 }
4002
4003 /* We need a new program segment. We must create a new program
4004 header holding all the sections from phdr_index until hdr. */
4005
4006 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4007 if (m == NULL)
4008 goto error_return;
4009
4010 *pm = m;
4011 pm = &m->next;
4012
4013 if ((hdr->flags & SEC_READONLY) == 0)
4014 writable = TRUE;
4015 else
4016 writable = FALSE;
4017
4018 last_hdr = hdr;
4019 /* .tbss sections effectively have zero size. */
4020 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4021 last_size = hdr->size;
4022 else
4023 last_size = 0;
4024 phdr_index = i;
4025 phdr_in_segment = FALSE;
4026 }
4027
4028 /* Create a final PT_LOAD program segment, but not if it's just
4029 for .tbss. */
4030 if (last_hdr != NULL
4031 && (i - phdr_index != 1
4032 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4033 != SEC_THREAD_LOCAL)))
4034 {
4035 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4036 if (m == NULL)
4037 goto error_return;
4038
4039 *pm = m;
4040 pm = &m->next;
4041 }
4042
4043 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4044 if (dynsec != NULL)
4045 {
4046 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4047 if (m == NULL)
4048 goto error_return;
4049 *pm = m;
4050 pm = &m->next;
4051 }
4052
4053 /* For each batch of consecutive loadable .note sections,
4054 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4055 because if we link together nonloadable .note sections and
4056 loadable .note sections, we will generate two .note sections
4057 in the output file. FIXME: Using names for section types is
4058 bogus anyhow. */
4059 for (s = abfd->sections; s != NULL; s = s->next)
4060 {
4061 if ((s->flags & SEC_LOAD) != 0
4062 && CONST_STRNEQ (s->name, ".note"))
4063 {
4064 asection *s2;
4065
4066 count = 1;
4067 amt = sizeof (struct elf_segment_map);
4068 if (s->alignment_power == 2)
4069 for (s2 = s; s2->next != NULL; s2 = s2->next)
4070 {
4071 if (s2->next->alignment_power == 2
4072 && (s2->next->flags & SEC_LOAD) != 0
4073 && CONST_STRNEQ (s2->next->name, ".note")
4074 && align_power (s2->lma + s2->size, 2)
4075 == s2->next->lma)
4076 count++;
4077 else
4078 break;
4079 }
4080 amt += (count - 1) * sizeof (asection *);
4081 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4082 if (m == NULL)
4083 goto error_return;
4084 m->next = NULL;
4085 m->p_type = PT_NOTE;
4086 m->count = count;
4087 while (count > 1)
4088 {
4089 m->sections[m->count - count--] = s;
4090 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4091 s = s->next;
4092 }
4093 m->sections[m->count - 1] = s;
4094 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4095 *pm = m;
4096 pm = &m->next;
4097 }
4098 if (s->flags & SEC_THREAD_LOCAL)
4099 {
4100 if (! tls_count)
4101 first_tls = s;
4102 tls_count++;
4103 }
4104 }
4105
4106 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4107 if (tls_count > 0)
4108 {
4109 amt = sizeof (struct elf_segment_map);
4110 amt += (tls_count - 1) * sizeof (asection *);
4111 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4112 if (m == NULL)
4113 goto error_return;
4114 m->next = NULL;
4115 m->p_type = PT_TLS;
4116 m->count = tls_count;
4117 /* Mandated PF_R. */
4118 m->p_flags = PF_R;
4119 m->p_flags_valid = 1;
4120 for (i = 0; i < (unsigned int) tls_count; ++i)
4121 {
4122 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4123 m->sections[i] = first_tls;
4124 first_tls = first_tls->next;
4125 }
4126
4127 *pm = m;
4128 pm = &m->next;
4129 }
4130
4131 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4132 segment. */
4133 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4134 if (eh_frame_hdr != NULL
4135 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4136 {
4137 amt = sizeof (struct elf_segment_map);
4138 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4139 if (m == NULL)
4140 goto error_return;
4141 m->next = NULL;
4142 m->p_type = PT_GNU_EH_FRAME;
4143 m->count = 1;
4144 m->sections[0] = eh_frame_hdr->output_section;
4145
4146 *pm = m;
4147 pm = &m->next;
4148 }
4149
4150 if (elf_stack_flags (abfd))
4151 {
4152 amt = sizeof (struct elf_segment_map);
4153 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4154 if (m == NULL)
4155 goto error_return;
4156 m->next = NULL;
4157 m->p_type = PT_GNU_STACK;
4158 m->p_flags = elf_stack_flags (abfd);
4159 m->p_align = bed->stack_align;
4160 m->p_flags_valid = 1;
4161 m->p_align_valid = m->p_align != 0;
4162 if (info->stacksize > 0)
4163 {
4164 m->p_size = info->stacksize;
4165 m->p_size_valid = 1;
4166 }
4167
4168 *pm = m;
4169 pm = &m->next;
4170 }
4171
4172 if (info != NULL && info->relro)
4173 {
4174 for (m = mfirst; m != NULL; m = m->next)
4175 {
4176 if (m->p_type == PT_LOAD
4177 && m->count != 0
4178 && m->sections[0]->vma >= info->relro_start
4179 && m->sections[0]->vma < info->relro_end)
4180 {
4181 i = m->count;
4182 while (--i != (unsigned) -1)
4183 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4184 == (SEC_LOAD | SEC_HAS_CONTENTS))
4185 break;
4186
4187 if (i != (unsigned) -1)
4188 break;
4189 }
4190 }
4191
4192 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4193 if (m != NULL)
4194 {
4195 amt = sizeof (struct elf_segment_map);
4196 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4197 if (m == NULL)
4198 goto error_return;
4199 m->next = NULL;
4200 m->p_type = PT_GNU_RELRO;
4201 m->p_flags = PF_R;
4202 m->p_flags_valid = 1;
4203
4204 *pm = m;
4205 pm = &m->next;
4206 }
4207 }
4208
4209 free (sections);
4210 elf_seg_map (abfd) = mfirst;
4211 }
4212
4213 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4214 return FALSE;
4215
4216 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4217 ++count;
4218 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4219
4220 return TRUE;
4221
4222 error_return:
4223 if (sections != NULL)
4224 free (sections);
4225 return FALSE;
4226 }
4227
4228 /* Sort sections by address. */
4229
4230 static int
4231 elf_sort_sections (const void *arg1, const void *arg2)
4232 {
4233 const asection *sec1 = *(const asection **) arg1;
4234 const asection *sec2 = *(const asection **) arg2;
4235 bfd_size_type size1, size2;
4236
4237 /* Sort by LMA first, since this is the address used to
4238 place the section into a segment. */
4239 if (sec1->lma < sec2->lma)
4240 return -1;
4241 else if (sec1->lma > sec2->lma)
4242 return 1;
4243
4244 /* Then sort by VMA. Normally the LMA and the VMA will be
4245 the same, and this will do nothing. */
4246 if (sec1->vma < sec2->vma)
4247 return -1;
4248 else if (sec1->vma > sec2->vma)
4249 return 1;
4250
4251 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4252
4253 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4254
4255 if (TOEND (sec1))
4256 {
4257 if (TOEND (sec2))
4258 {
4259 /* If the indicies are the same, do not return 0
4260 here, but continue to try the next comparison. */
4261 if (sec1->target_index - sec2->target_index != 0)
4262 return sec1->target_index - sec2->target_index;
4263 }
4264 else
4265 return 1;
4266 }
4267 else if (TOEND (sec2))
4268 return -1;
4269
4270 #undef TOEND
4271
4272 /* Sort by size, to put zero sized sections
4273 before others at the same address. */
4274
4275 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4276 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4277
4278 if (size1 < size2)
4279 return -1;
4280 if (size1 > size2)
4281 return 1;
4282
4283 return sec1->target_index - sec2->target_index;
4284 }
4285
4286 /* Ian Lance Taylor writes:
4287
4288 We shouldn't be using % with a negative signed number. That's just
4289 not good. We have to make sure either that the number is not
4290 negative, or that the number has an unsigned type. When the types
4291 are all the same size they wind up as unsigned. When file_ptr is a
4292 larger signed type, the arithmetic winds up as signed long long,
4293 which is wrong.
4294
4295 What we're trying to say here is something like ``increase OFF by
4296 the least amount that will cause it to be equal to the VMA modulo
4297 the page size.'' */
4298 /* In other words, something like:
4299
4300 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4301 off_offset = off % bed->maxpagesize;
4302 if (vma_offset < off_offset)
4303 adjustment = vma_offset + bed->maxpagesize - off_offset;
4304 else
4305 adjustment = vma_offset - off_offset;
4306
4307 which can can be collapsed into the expression below. */
4308
4309 static file_ptr
4310 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4311 {
4312 /* PR binutils/16199: Handle an alignment of zero. */
4313 if (maxpagesize == 0)
4314 maxpagesize = 1;
4315 return ((vma - off) % maxpagesize);
4316 }
4317
4318 static void
4319 print_segment_map (const struct elf_segment_map *m)
4320 {
4321 unsigned int j;
4322 const char *pt = get_segment_type (m->p_type);
4323 char buf[32];
4324
4325 if (pt == NULL)
4326 {
4327 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4328 sprintf (buf, "LOPROC+%7.7x",
4329 (unsigned int) (m->p_type - PT_LOPROC));
4330 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4331 sprintf (buf, "LOOS+%7.7x",
4332 (unsigned int) (m->p_type - PT_LOOS));
4333 else
4334 snprintf (buf, sizeof (buf), "%8.8x",
4335 (unsigned int) m->p_type);
4336 pt = buf;
4337 }
4338 fflush (stdout);
4339 fprintf (stderr, "%s:", pt);
4340 for (j = 0; j < m->count; j++)
4341 fprintf (stderr, " %s", m->sections [j]->name);
4342 putc ('\n',stderr);
4343 fflush (stderr);
4344 }
4345
4346 static bfd_boolean
4347 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4348 {
4349 void *buf;
4350 bfd_boolean ret;
4351
4352 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4353 return FALSE;
4354 buf = bfd_zmalloc (len);
4355 if (buf == NULL)
4356 return FALSE;
4357 ret = bfd_bwrite (buf, len, abfd) == len;
4358 free (buf);
4359 return ret;
4360 }
4361
4362 /* Assign file positions to the sections based on the mapping from
4363 sections to segments. This function also sets up some fields in
4364 the file header. */
4365
4366 static bfd_boolean
4367 assign_file_positions_for_load_sections (bfd *abfd,
4368 struct bfd_link_info *link_info)
4369 {
4370 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4371 struct elf_segment_map *m;
4372 Elf_Internal_Phdr *phdrs;
4373 Elf_Internal_Phdr *p;
4374 file_ptr off;
4375 bfd_size_type maxpagesize;
4376 unsigned int alloc;
4377 unsigned int i, j;
4378 bfd_vma header_pad = 0;
4379 bfd_vma relro_start = 0, relro_end = 0;
4380
4381 if (link_info == NULL
4382 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4383 return FALSE;
4384
4385 alloc = 0;
4386 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4387 {
4388 ++alloc;
4389 if (m->header_size)
4390 header_pad = m->header_size;
4391 }
4392
4393 if (alloc)
4394 {
4395 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4396 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4397 }
4398 else
4399 {
4400 /* PR binutils/12467. */
4401 elf_elfheader (abfd)->e_phoff = 0;
4402 elf_elfheader (abfd)->e_phentsize = 0;
4403 }
4404
4405 elf_elfheader (abfd)->e_phnum = alloc;
4406
4407 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4408 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4409 else
4410 BFD_ASSERT (elf_program_header_size (abfd)
4411 >= alloc * bed->s->sizeof_phdr);
4412
4413 if (alloc == 0)
4414 {
4415 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4416 return TRUE;
4417 }
4418
4419 /* We're writing the size in elf_program_header_size (abfd),
4420 see assign_file_positions_except_relocs, so make sure we have
4421 that amount allocated, with trailing space cleared.
4422 The variable alloc contains the computed need, while
4423 elf_program_header_size (abfd) contains the size used for the
4424 layout.
4425 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4426 where the layout is forced to according to a larger size in the
4427 last iterations for the testcase ld-elf/header. */
4428 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4429 == 0);
4430 phdrs = (Elf_Internal_Phdr *)
4431 bfd_zalloc2 (abfd,
4432 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4433 sizeof (Elf_Internal_Phdr));
4434 elf_tdata (abfd)->phdr = phdrs;
4435 if (phdrs == NULL)
4436 return FALSE;
4437
4438 maxpagesize = 1;
4439 if ((abfd->flags & D_PAGED) != 0)
4440 maxpagesize = bed->maxpagesize;
4441
4442 off = bed->s->sizeof_ehdr;
4443 off += alloc * bed->s->sizeof_phdr;
4444 if (header_pad < (bfd_vma) off)
4445 header_pad = 0;
4446 else
4447 header_pad -= off;
4448 off += header_pad;
4449
4450 /* Get start and end of PT_GNU_RELRO segment. */
4451 if (link_info != NULL)
4452 {
4453 relro_start = link_info->relro_start;
4454 relro_end = link_info->relro_end;
4455 }
4456 else
4457 {
4458 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4459 if (m->p_type == PT_GNU_RELRO)
4460 {
4461 relro_start = m->p_paddr;
4462 relro_end = relro_start + m->p_size;
4463 break;
4464 }
4465 }
4466
4467 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4468 m != NULL;
4469 m = m->next, p++, j++)
4470 {
4471 asection **secpp;
4472 bfd_vma off_adjust;
4473 bfd_boolean no_contents;
4474
4475 /* If elf_segment_map is not from map_sections_to_segments, the
4476 sections may not be correctly ordered. NOTE: sorting should
4477 not be done to the PT_NOTE section of a corefile, which may
4478 contain several pseudo-sections artificially created by bfd.
4479 Sorting these pseudo-sections breaks things badly. */
4480 if (m->count > 1
4481 && !(elf_elfheader (abfd)->e_type == ET_CORE
4482 && m->p_type == PT_NOTE))
4483 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4484 elf_sort_sections);
4485
4486 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4487 number of sections with contents contributing to both p_filesz
4488 and p_memsz, followed by a number of sections with no contents
4489 that just contribute to p_memsz. In this loop, OFF tracks next
4490 available file offset for PT_LOAD and PT_NOTE segments. */
4491 p->p_type = m->p_type;
4492 p->p_flags = m->p_flags;
4493
4494 if (m->count == 0)
4495 p->p_vaddr = 0;
4496 else
4497 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4498
4499 if (m->p_paddr_valid)
4500 p->p_paddr = m->p_paddr;
4501 else if (m->count == 0)
4502 p->p_paddr = 0;
4503 else
4504 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4505
4506 if (p->p_type == PT_LOAD
4507 && (abfd->flags & D_PAGED) != 0)
4508 {
4509 /* p_align in demand paged PT_LOAD segments effectively stores
4510 the maximum page size. When copying an executable with
4511 objcopy, we set m->p_align from the input file. Use this
4512 value for maxpagesize rather than bed->maxpagesize, which
4513 may be different. Note that we use maxpagesize for PT_TLS
4514 segment alignment later in this function, so we are relying
4515 on at least one PT_LOAD segment appearing before a PT_TLS
4516 segment. */
4517 if (m->p_align_valid)
4518 maxpagesize = m->p_align;
4519
4520 p->p_align = maxpagesize;
4521 }
4522 else if (m->p_align_valid)
4523 p->p_align = m->p_align;
4524 else if (m->count == 0)
4525 p->p_align = 1 << bed->s->log_file_align;
4526 else
4527 p->p_align = 0;
4528
4529 no_contents = FALSE;
4530 off_adjust = 0;
4531 if (p->p_type == PT_LOAD
4532 && m->count > 0)
4533 {
4534 bfd_size_type align;
4535 unsigned int align_power = 0;
4536
4537 if (m->p_align_valid)
4538 align = p->p_align;
4539 else
4540 {
4541 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4542 {
4543 unsigned int secalign;
4544
4545 secalign = bfd_get_section_alignment (abfd, *secpp);
4546 if (secalign > align_power)
4547 align_power = secalign;
4548 }
4549 align = (bfd_size_type) 1 << align_power;
4550 if (align < maxpagesize)
4551 align = maxpagesize;
4552 }
4553
4554 for (i = 0; i < m->count; i++)
4555 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4556 /* If we aren't making room for this section, then
4557 it must be SHT_NOBITS regardless of what we've
4558 set via struct bfd_elf_special_section. */
4559 elf_section_type (m->sections[i]) = SHT_NOBITS;
4560
4561 /* Find out whether this segment contains any loadable
4562 sections. */
4563 no_contents = TRUE;
4564 for (i = 0; i < m->count; i++)
4565 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4566 {
4567 no_contents = FALSE;
4568 break;
4569 }
4570
4571 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4572 off += off_adjust;
4573 if (no_contents)
4574 {
4575 /* We shouldn't need to align the segment on disk since
4576 the segment doesn't need file space, but the gABI
4577 arguably requires the alignment and glibc ld.so
4578 checks it. So to comply with the alignment
4579 requirement but not waste file space, we adjust
4580 p_offset for just this segment. (OFF_ADJUST is
4581 subtracted from OFF later.) This may put p_offset
4582 past the end of file, but that shouldn't matter. */
4583 }
4584 else
4585 off_adjust = 0;
4586 }
4587 /* Make sure the .dynamic section is the first section in the
4588 PT_DYNAMIC segment. */
4589 else if (p->p_type == PT_DYNAMIC
4590 && m->count > 1
4591 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4592 {
4593 _bfd_error_handler
4594 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4595 abfd);
4596 bfd_set_error (bfd_error_bad_value);
4597 return FALSE;
4598 }
4599 /* Set the note section type to SHT_NOTE. */
4600 else if (p->p_type == PT_NOTE)
4601 for (i = 0; i < m->count; i++)
4602 elf_section_type (m->sections[i]) = SHT_NOTE;
4603
4604 p->p_offset = 0;
4605 p->p_filesz = 0;
4606 p->p_memsz = 0;
4607
4608 if (m->includes_filehdr)
4609 {
4610 if (!m->p_flags_valid)
4611 p->p_flags |= PF_R;
4612 p->p_filesz = bed->s->sizeof_ehdr;
4613 p->p_memsz = bed->s->sizeof_ehdr;
4614 if (m->count > 0)
4615 {
4616 if (p->p_vaddr < (bfd_vma) off)
4617 {
4618 (*_bfd_error_handler)
4619 (_("%B: Not enough room for program headers, try linking with -N"),
4620 abfd);
4621 bfd_set_error (bfd_error_bad_value);
4622 return FALSE;
4623 }
4624
4625 p->p_vaddr -= off;
4626 if (!m->p_paddr_valid)
4627 p->p_paddr -= off;
4628 }
4629 }
4630
4631 if (m->includes_phdrs)
4632 {
4633 if (!m->p_flags_valid)
4634 p->p_flags |= PF_R;
4635
4636 if (!m->includes_filehdr)
4637 {
4638 p->p_offset = bed->s->sizeof_ehdr;
4639
4640 if (m->count > 0)
4641 {
4642 p->p_vaddr -= off - p->p_offset;
4643 if (!m->p_paddr_valid)
4644 p->p_paddr -= off - p->p_offset;
4645 }
4646 }
4647
4648 p->p_filesz += alloc * bed->s->sizeof_phdr;
4649 p->p_memsz += alloc * bed->s->sizeof_phdr;
4650 if (m->count)
4651 {
4652 p->p_filesz += header_pad;
4653 p->p_memsz += header_pad;
4654 }
4655 }
4656
4657 if (p->p_type == PT_LOAD
4658 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4659 {
4660 if (!m->includes_filehdr && !m->includes_phdrs)
4661 p->p_offset = off;
4662 else
4663 {
4664 file_ptr adjust;
4665
4666 adjust = off - (p->p_offset + p->p_filesz);
4667 if (!no_contents)
4668 p->p_filesz += adjust;
4669 p->p_memsz += adjust;
4670 }
4671 }
4672
4673 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4674 maps. Set filepos for sections in PT_LOAD segments, and in
4675 core files, for sections in PT_NOTE segments.
4676 assign_file_positions_for_non_load_sections will set filepos
4677 for other sections and update p_filesz for other segments. */
4678 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4679 {
4680 asection *sec;
4681 bfd_size_type align;
4682 Elf_Internal_Shdr *this_hdr;
4683
4684 sec = *secpp;
4685 this_hdr = &elf_section_data (sec)->this_hdr;
4686 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4687
4688 if ((p->p_type == PT_LOAD
4689 || p->p_type == PT_TLS)
4690 && (this_hdr->sh_type != SHT_NOBITS
4691 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4692 && ((this_hdr->sh_flags & SHF_TLS) == 0
4693 || p->p_type == PT_TLS))))
4694 {
4695 bfd_vma p_start = p->p_paddr;
4696 bfd_vma p_end = p_start + p->p_memsz;
4697 bfd_vma s_start = sec->lma;
4698 bfd_vma adjust = s_start - p_end;
4699
4700 if (adjust != 0
4701 && (s_start < p_end
4702 || p_end < p_start))
4703 {
4704 (*_bfd_error_handler)
4705 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4706 (unsigned long) s_start, (unsigned long) p_end);
4707 adjust = 0;
4708 sec->lma = p_end;
4709 }
4710 p->p_memsz += adjust;
4711
4712 if (this_hdr->sh_type != SHT_NOBITS)
4713 {
4714 if (p->p_filesz + adjust < p->p_memsz)
4715 {
4716 /* We have a PROGBITS section following NOBITS ones.
4717 Allocate file space for the NOBITS section(s) and
4718 zero it. */
4719 adjust = p->p_memsz - p->p_filesz;
4720 if (!write_zeros (abfd, off, adjust))
4721 return FALSE;
4722 }
4723 off += adjust;
4724 p->p_filesz += adjust;
4725 }
4726 }
4727
4728 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4729 {
4730 /* The section at i == 0 is the one that actually contains
4731 everything. */
4732 if (i == 0)
4733 {
4734 this_hdr->sh_offset = sec->filepos = off;
4735 off += this_hdr->sh_size;
4736 p->p_filesz = this_hdr->sh_size;
4737 p->p_memsz = 0;
4738 p->p_align = 1;
4739 }
4740 else
4741 {
4742 /* The rest are fake sections that shouldn't be written. */
4743 sec->filepos = 0;
4744 sec->size = 0;
4745 sec->flags = 0;
4746 continue;
4747 }
4748 }
4749 else
4750 {
4751 if (p->p_type == PT_LOAD)
4752 {
4753 this_hdr->sh_offset = sec->filepos = off;
4754 if (this_hdr->sh_type != SHT_NOBITS)
4755 off += this_hdr->sh_size;
4756 }
4757 else if (this_hdr->sh_type == SHT_NOBITS
4758 && (this_hdr->sh_flags & SHF_TLS) != 0
4759 && this_hdr->sh_offset == 0)
4760 {
4761 /* This is a .tbss section that didn't get a PT_LOAD.
4762 (See _bfd_elf_map_sections_to_segments "Create a
4763 final PT_LOAD".) Set sh_offset to the value it
4764 would have if we had created a zero p_filesz and
4765 p_memsz PT_LOAD header for the section. This
4766 also makes the PT_TLS header have the same
4767 p_offset value. */
4768 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4769 off, align);
4770 this_hdr->sh_offset = sec->filepos = off + adjust;
4771 }
4772
4773 if (this_hdr->sh_type != SHT_NOBITS)
4774 {
4775 p->p_filesz += this_hdr->sh_size;
4776 /* A load section without SHF_ALLOC is something like
4777 a note section in a PT_NOTE segment. These take
4778 file space but are not loaded into memory. */
4779 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4780 p->p_memsz += this_hdr->sh_size;
4781 }
4782 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4783 {
4784 if (p->p_type == PT_TLS)
4785 p->p_memsz += this_hdr->sh_size;
4786
4787 /* .tbss is special. It doesn't contribute to p_memsz of
4788 normal segments. */
4789 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4790 p->p_memsz += this_hdr->sh_size;
4791 }
4792
4793 if (align > p->p_align
4794 && !m->p_align_valid
4795 && (p->p_type != PT_LOAD
4796 || (abfd->flags & D_PAGED) == 0))
4797 p->p_align = align;
4798 }
4799
4800 if (!m->p_flags_valid)
4801 {
4802 p->p_flags |= PF_R;
4803 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4804 p->p_flags |= PF_X;
4805 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4806 p->p_flags |= PF_W;
4807 }
4808 }
4809
4810 if (relro_start != 0
4811 && p->p_type == PT_LOAD
4812 && p->p_vaddr >= relro_start)
4813 {
4814 /* If PT_LOAD segment doesn't fit PT_GNU_RELRO segment,
4815 adjust its p_filesz and p_memsz. */
4816 if (p->p_vaddr + p->p_filesz < relro_end)
4817 {
4818 bfd_vma adjust = relro_end - (p->p_vaddr + p->p_filesz);
4819 p->p_filesz += adjust;
4820 off += adjust;
4821 }
4822 if (p->p_vaddr + p->p_memsz < relro_end)
4823 p->p_memsz += relro_end - (p->p_vaddr + p->p_memsz);
4824 }
4825
4826 off -= off_adjust;
4827
4828 /* Check that all sections are in a PT_LOAD segment.
4829 Don't check funky gdb generated core files. */
4830 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4831 {
4832 bfd_boolean check_vma = TRUE;
4833
4834 for (i = 1; i < m->count; i++)
4835 if (m->sections[i]->vma == m->sections[i - 1]->vma
4836 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4837 ->this_hdr), p) != 0
4838 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4839 ->this_hdr), p) != 0)
4840 {
4841 /* Looks like we have overlays packed into the segment. */
4842 check_vma = FALSE;
4843 break;
4844 }
4845
4846 for (i = 0; i < m->count; i++)
4847 {
4848 Elf_Internal_Shdr *this_hdr;
4849 asection *sec;
4850
4851 sec = m->sections[i];
4852 this_hdr = &(elf_section_data(sec)->this_hdr);
4853 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4854 && !ELF_TBSS_SPECIAL (this_hdr, p))
4855 {
4856 (*_bfd_error_handler)
4857 (_("%B: section `%A' can't be allocated in segment %d"),
4858 abfd, sec, j);
4859 print_segment_map (m);
4860 }
4861 }
4862 }
4863 }
4864
4865 elf_next_file_pos (abfd) = off;
4866 return TRUE;
4867 }
4868
4869 /* Assign file positions for the other sections. */
4870
4871 static bfd_boolean
4872 assign_file_positions_for_non_load_sections (bfd *abfd,
4873 struct bfd_link_info *link_info)
4874 {
4875 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4876 Elf_Internal_Shdr **i_shdrpp;
4877 Elf_Internal_Shdr **hdrpp;
4878 Elf_Internal_Phdr *phdrs;
4879 Elf_Internal_Phdr *p;
4880 struct elf_segment_map *m;
4881 struct elf_segment_map *hdrs_segment;
4882 bfd_vma filehdr_vaddr, filehdr_paddr;
4883 bfd_vma phdrs_vaddr, phdrs_paddr;
4884 file_ptr off;
4885 unsigned int num_sec;
4886 unsigned int i;
4887 unsigned int count;
4888
4889 i_shdrpp = elf_elfsections (abfd);
4890 num_sec = elf_numsections (abfd);
4891 off = elf_next_file_pos (abfd);
4892 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4893 {
4894 Elf_Internal_Shdr *hdr;
4895
4896 hdr = *hdrpp;
4897 if (hdr->bfd_section != NULL
4898 && (hdr->bfd_section->filepos != 0
4899 || (hdr->sh_type == SHT_NOBITS
4900 && hdr->contents == NULL)))
4901 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4902 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4903 {
4904 if (hdr->sh_size != 0)
4905 (*_bfd_error_handler)
4906 (_("%B: warning: allocated section `%s' not in segment"),
4907 abfd,
4908 (hdr->bfd_section == NULL
4909 ? "*unknown*"
4910 : hdr->bfd_section->name));
4911 /* We don't need to page align empty sections. */
4912 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4913 off += vma_page_aligned_bias (hdr->sh_addr, off,
4914 bed->maxpagesize);
4915 else
4916 off += vma_page_aligned_bias (hdr->sh_addr, off,
4917 hdr->sh_addralign);
4918 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4919 FALSE);
4920 }
4921 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4922 && hdr->bfd_section == NULL)
4923 || hdr == i_shdrpp[elf_onesymtab (abfd)]
4924 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
4925 || hdr == i_shdrpp[elf_strtab_sec (abfd)])
4926 hdr->sh_offset = -1;
4927 else
4928 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4929 }
4930
4931 /* Now that we have set the section file positions, we can set up
4932 the file positions for the non PT_LOAD segments. */
4933 count = 0;
4934 filehdr_vaddr = 0;
4935 filehdr_paddr = 0;
4936 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4937 phdrs_paddr = 0;
4938 hdrs_segment = NULL;
4939 phdrs = elf_tdata (abfd)->phdr;
4940 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4941 {
4942 ++count;
4943 if (p->p_type != PT_LOAD)
4944 continue;
4945
4946 if (m->includes_filehdr)
4947 {
4948 filehdr_vaddr = p->p_vaddr;
4949 filehdr_paddr = p->p_paddr;
4950 }
4951 if (m->includes_phdrs)
4952 {
4953 phdrs_vaddr = p->p_vaddr;
4954 phdrs_paddr = p->p_paddr;
4955 if (m->includes_filehdr)
4956 {
4957 hdrs_segment = m;
4958 phdrs_vaddr += bed->s->sizeof_ehdr;
4959 phdrs_paddr += bed->s->sizeof_ehdr;
4960 }
4961 }
4962 }
4963
4964 if (hdrs_segment != NULL && link_info != NULL)
4965 {
4966 /* There is a segment that contains both the file headers and the
4967 program headers, so provide a symbol __ehdr_start pointing there.
4968 A program can use this to examine itself robustly. */
4969
4970 struct elf_link_hash_entry *hash
4971 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4972 FALSE, FALSE, TRUE);
4973 /* If the symbol was referenced and not defined, define it. */
4974 if (hash != NULL
4975 && (hash->root.type == bfd_link_hash_new
4976 || hash->root.type == bfd_link_hash_undefined
4977 || hash->root.type == bfd_link_hash_undefweak
4978 || hash->root.type == bfd_link_hash_common))
4979 {
4980 asection *s = NULL;
4981 if (hdrs_segment->count != 0)
4982 /* The segment contains sections, so use the first one. */
4983 s = hdrs_segment->sections[0];
4984 else
4985 /* Use the first (i.e. lowest-addressed) section in any segment. */
4986 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4987 if (m->count != 0)
4988 {
4989 s = m->sections[0];
4990 break;
4991 }
4992
4993 if (s != NULL)
4994 {
4995 hash->root.u.def.value = filehdr_vaddr - s->vma;
4996 hash->root.u.def.section = s;
4997 }
4998 else
4999 {
5000 hash->root.u.def.value = filehdr_vaddr;
5001 hash->root.u.def.section = bfd_abs_section_ptr;
5002 }
5003
5004 hash->root.type = bfd_link_hash_defined;
5005 hash->def_regular = 1;
5006 hash->non_elf = 0;
5007 }
5008 }
5009
5010 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5011 {
5012 if (p->p_type == PT_GNU_RELRO)
5013 {
5014 const Elf_Internal_Phdr *lp;
5015 struct elf_segment_map *lm;
5016
5017 if (link_info != NULL)
5018 {
5019 /* During linking the range of the RELRO segment is passed
5020 in link_info. */
5021 for (lm = elf_seg_map (abfd), lp = phdrs;
5022 lm != NULL;
5023 lm = lm->next, lp++)
5024 {
5025 if (lp->p_type == PT_LOAD
5026 && lp->p_vaddr < link_info->relro_end
5027 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end
5028 && lm->count != 0
5029 && lm->sections[0]->vma >= link_info->relro_start)
5030 break;
5031 }
5032
5033 /* PR ld/14207. If the RELRO segment doesn't fit in the
5034 LOAD segment, it should be removed. */
5035 BFD_ASSERT (lm != NULL);
5036 }
5037 else
5038 {
5039 /* Otherwise we are copying an executable or shared
5040 library, but we need to use the same linker logic. */
5041 for (lp = phdrs; lp < phdrs + count; ++lp)
5042 {
5043 if (lp->p_type == PT_LOAD
5044 && lp->p_paddr == p->p_paddr)
5045 break;
5046 }
5047 }
5048
5049 if (lp < phdrs + count)
5050 {
5051 p->p_vaddr = lp->p_vaddr;
5052 p->p_paddr = lp->p_paddr;
5053 p->p_offset = lp->p_offset;
5054 if (link_info != NULL)
5055 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5056 else if (m->p_size_valid)
5057 p->p_filesz = m->p_size;
5058 else
5059 abort ();
5060 p->p_memsz = p->p_filesz;
5061 /* Preserve the alignment and flags if they are valid. The
5062 gold linker generates RW/4 for the PT_GNU_RELRO section.
5063 It is better for objcopy/strip to honor these attributes
5064 otherwise gdb will choke when using separate debug files.
5065 */
5066 if (!m->p_align_valid)
5067 p->p_align = 1;
5068 if (!m->p_flags_valid)
5069 p->p_flags = (lp->p_flags & ~PF_W);
5070 }
5071 else
5072 {
5073 memset (p, 0, sizeof *p);
5074 p->p_type = PT_NULL;
5075 }
5076 }
5077 else if (p->p_type == PT_GNU_STACK)
5078 {
5079 if (m->p_size_valid)
5080 p->p_memsz = m->p_size;
5081 }
5082 else if (m->count != 0)
5083 {
5084 if (p->p_type != PT_LOAD
5085 && (p->p_type != PT_NOTE
5086 || bfd_get_format (abfd) != bfd_core))
5087 {
5088 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5089
5090 p->p_filesz = 0;
5091 p->p_offset = m->sections[0]->filepos;
5092 for (i = m->count; i-- != 0;)
5093 {
5094 asection *sect = m->sections[i];
5095 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5096 if (hdr->sh_type != SHT_NOBITS)
5097 {
5098 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5099 + hdr->sh_size);
5100 break;
5101 }
5102 }
5103 }
5104 }
5105 else if (m->includes_filehdr)
5106 {
5107 p->p_vaddr = filehdr_vaddr;
5108 if (! m->p_paddr_valid)
5109 p->p_paddr = filehdr_paddr;
5110 }
5111 else if (m->includes_phdrs)
5112 {
5113 p->p_vaddr = phdrs_vaddr;
5114 if (! m->p_paddr_valid)
5115 p->p_paddr = phdrs_paddr;
5116 }
5117 }
5118
5119 elf_next_file_pos (abfd) = off;
5120
5121 return TRUE;
5122 }
5123
5124 /* Work out the file positions of all the sections. This is called by
5125 _bfd_elf_compute_section_file_positions. All the section sizes and
5126 VMAs must be known before this is called.
5127
5128 Reloc sections come in two flavours: Those processed specially as
5129 "side-channel" data attached to a section to which they apply, and
5130 those that bfd doesn't process as relocations. The latter sort are
5131 stored in a normal bfd section by bfd_section_from_shdr. We don't
5132 consider the former sort here, unless they form part of the loadable
5133 image. Reloc sections not assigned here will be handled later by
5134 assign_file_positions_for_relocs.
5135
5136 We also don't set the positions of the .symtab and .strtab here. */
5137
5138 static bfd_boolean
5139 assign_file_positions_except_relocs (bfd *abfd,
5140 struct bfd_link_info *link_info)
5141 {
5142 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5143 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5144 file_ptr off;
5145 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5146
5147 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5148 && bfd_get_format (abfd) != bfd_core)
5149 {
5150 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5151 unsigned int num_sec = elf_numsections (abfd);
5152 Elf_Internal_Shdr **hdrpp;
5153 unsigned int i;
5154
5155 /* Start after the ELF header. */
5156 off = i_ehdrp->e_ehsize;
5157
5158 /* We are not creating an executable, which means that we are
5159 not creating a program header, and that the actual order of
5160 the sections in the file is unimportant. */
5161 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5162 {
5163 Elf_Internal_Shdr *hdr;
5164
5165 hdr = *hdrpp;
5166 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5167 && hdr->bfd_section == NULL)
5168 || i == elf_onesymtab (abfd)
5169 || i == elf_symtab_shndx (abfd)
5170 || i == elf_strtab_sec (abfd))
5171 {
5172 hdr->sh_offset = -1;
5173 }
5174 else
5175 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5176 }
5177 }
5178 else
5179 {
5180 unsigned int alloc;
5181
5182 /* Assign file positions for the loaded sections based on the
5183 assignment of sections to segments. */
5184 if (!assign_file_positions_for_load_sections (abfd, link_info))
5185 return FALSE;
5186
5187 /* And for non-load sections. */
5188 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5189 return FALSE;
5190
5191 if (bed->elf_backend_modify_program_headers != NULL)
5192 {
5193 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5194 return FALSE;
5195 }
5196
5197 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5198 if (link_info != NULL
5199 && link_info->executable
5200 && link_info->shared)
5201 {
5202 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5203 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5204 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5205
5206 /* Find the lowest p_vaddr in PT_LOAD segments. */
5207 bfd_vma p_vaddr = (bfd_vma) -1;
5208 for (; segment < end_segment; segment++)
5209 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5210 p_vaddr = segment->p_vaddr;
5211
5212 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5213 segments is non-zero. */
5214 if (p_vaddr)
5215 i_ehdrp->e_type = ET_EXEC;
5216 }
5217
5218 /* Write out the program headers. */
5219 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5220 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5221 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5222 return FALSE;
5223
5224 off = elf_next_file_pos (abfd);
5225 }
5226
5227 /* Place the section headers. */
5228 off = align_file_position (off, 1 << bed->s->log_file_align);
5229 i_ehdrp->e_shoff = off;
5230 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5231
5232 elf_next_file_pos (abfd) = off;
5233
5234 return TRUE;
5235 }
5236
5237 static bfd_boolean
5238 prep_headers (bfd *abfd)
5239 {
5240 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5241 struct elf_strtab_hash *shstrtab;
5242 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5243
5244 i_ehdrp = elf_elfheader (abfd);
5245
5246 shstrtab = _bfd_elf_strtab_init ();
5247 if (shstrtab == NULL)
5248 return FALSE;
5249
5250 elf_shstrtab (abfd) = shstrtab;
5251
5252 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5253 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5254 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5255 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5256
5257 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5258 i_ehdrp->e_ident[EI_DATA] =
5259 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5260 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5261
5262 if ((abfd->flags & DYNAMIC) != 0)
5263 i_ehdrp->e_type = ET_DYN;
5264 else if ((abfd->flags & EXEC_P) != 0)
5265 i_ehdrp->e_type = ET_EXEC;
5266 else if (bfd_get_format (abfd) == bfd_core)
5267 i_ehdrp->e_type = ET_CORE;
5268 else
5269 i_ehdrp->e_type = ET_REL;
5270
5271 switch (bfd_get_arch (abfd))
5272 {
5273 case bfd_arch_unknown:
5274 i_ehdrp->e_machine = EM_NONE;
5275 break;
5276
5277 /* There used to be a long list of cases here, each one setting
5278 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5279 in the corresponding bfd definition. To avoid duplication,
5280 the switch was removed. Machines that need special handling
5281 can generally do it in elf_backend_final_write_processing(),
5282 unless they need the information earlier than the final write.
5283 Such need can generally be supplied by replacing the tests for
5284 e_machine with the conditions used to determine it. */
5285 default:
5286 i_ehdrp->e_machine = bed->elf_machine_code;
5287 }
5288
5289 i_ehdrp->e_version = bed->s->ev_current;
5290 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5291
5292 /* No program header, for now. */
5293 i_ehdrp->e_phoff = 0;
5294 i_ehdrp->e_phentsize = 0;
5295 i_ehdrp->e_phnum = 0;
5296
5297 /* Each bfd section is section header entry. */
5298 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5299 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5300
5301 /* If we're building an executable, we'll need a program header table. */
5302 if (abfd->flags & EXEC_P)
5303 /* It all happens later. */
5304 ;
5305 else
5306 {
5307 i_ehdrp->e_phentsize = 0;
5308 i_ehdrp->e_phoff = 0;
5309 }
5310
5311 elf_tdata (abfd)->symtab_hdr.sh_name =
5312 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5313 elf_tdata (abfd)->strtab_hdr.sh_name =
5314 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5315 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5316 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5317 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5318 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5319 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5320 return FALSE;
5321
5322 return TRUE;
5323 }
5324
5325 /* Assign file positions for all the reloc sections which are not part
5326 of the loadable file image. */
5327
5328 void
5329 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5330 {
5331 file_ptr off;
5332 unsigned int i, num_sec;
5333 Elf_Internal_Shdr **shdrpp;
5334
5335 off = elf_next_file_pos (abfd);
5336
5337 num_sec = elf_numsections (abfd);
5338 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5339 {
5340 Elf_Internal_Shdr *shdrp;
5341
5342 shdrp = *shdrpp;
5343 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5344 && shdrp->sh_offset == -1)
5345 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5346 }
5347
5348 elf_next_file_pos (abfd) = off;
5349 }
5350
5351 bfd_boolean
5352 _bfd_elf_write_object_contents (bfd *abfd)
5353 {
5354 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5355 Elf_Internal_Shdr **i_shdrp;
5356 bfd_boolean failed;
5357 unsigned int count, num_sec;
5358 struct elf_obj_tdata *t;
5359
5360 if (! abfd->output_has_begun
5361 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5362 return FALSE;
5363
5364 i_shdrp = elf_elfsections (abfd);
5365
5366 failed = FALSE;
5367 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5368 if (failed)
5369 return FALSE;
5370
5371 _bfd_elf_assign_file_positions_for_relocs (abfd);
5372
5373 /* After writing the headers, we need to write the sections too... */
5374 num_sec = elf_numsections (abfd);
5375 for (count = 1; count < num_sec; count++)
5376 {
5377 if (bed->elf_backend_section_processing)
5378 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5379 if (i_shdrp[count]->contents)
5380 {
5381 bfd_size_type amt = i_shdrp[count]->sh_size;
5382
5383 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5384 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5385 return FALSE;
5386 }
5387 }
5388
5389 /* Write out the section header names. */
5390 t = elf_tdata (abfd);
5391 if (elf_shstrtab (abfd) != NULL
5392 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5393 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5394 return FALSE;
5395
5396 if (bed->elf_backend_final_write_processing)
5397 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5398
5399 if (!bed->s->write_shdrs_and_ehdr (abfd))
5400 return FALSE;
5401
5402 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5403 if (t->o->build_id.after_write_object_contents != NULL)
5404 return (*t->o->build_id.after_write_object_contents) (abfd);
5405
5406 return TRUE;
5407 }
5408
5409 bfd_boolean
5410 _bfd_elf_write_corefile_contents (bfd *abfd)
5411 {
5412 /* Hopefully this can be done just like an object file. */
5413 return _bfd_elf_write_object_contents (abfd);
5414 }
5415
5416 /* Given a section, search the header to find them. */
5417
5418 unsigned int
5419 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5420 {
5421 const struct elf_backend_data *bed;
5422 unsigned int sec_index;
5423
5424 if (elf_section_data (asect) != NULL
5425 && elf_section_data (asect)->this_idx != 0)
5426 return elf_section_data (asect)->this_idx;
5427
5428 if (bfd_is_abs_section (asect))
5429 sec_index = SHN_ABS;
5430 else if (bfd_is_com_section (asect))
5431 sec_index = SHN_COMMON;
5432 else if (bfd_is_und_section (asect))
5433 sec_index = SHN_UNDEF;
5434 else
5435 sec_index = SHN_BAD;
5436
5437 bed = get_elf_backend_data (abfd);
5438 if (bed->elf_backend_section_from_bfd_section)
5439 {
5440 int retval = sec_index;
5441
5442 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5443 return retval;
5444 }
5445
5446 if (sec_index == SHN_BAD)
5447 bfd_set_error (bfd_error_nonrepresentable_section);
5448
5449 return sec_index;
5450 }
5451
5452 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5453 on error. */
5454
5455 int
5456 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5457 {
5458 asymbol *asym_ptr = *asym_ptr_ptr;
5459 int idx;
5460 flagword flags = asym_ptr->flags;
5461
5462 /* When gas creates relocations against local labels, it creates its
5463 own symbol for the section, but does put the symbol into the
5464 symbol chain, so udata is 0. When the linker is generating
5465 relocatable output, this section symbol may be for one of the
5466 input sections rather than the output section. */
5467 if (asym_ptr->udata.i == 0
5468 && (flags & BSF_SECTION_SYM)
5469 && asym_ptr->section)
5470 {
5471 asection *sec;
5472 int indx;
5473
5474 sec = asym_ptr->section;
5475 if (sec->owner != abfd && sec->output_section != NULL)
5476 sec = sec->output_section;
5477 if (sec->owner == abfd
5478 && (indx = sec->index) < elf_num_section_syms (abfd)
5479 && elf_section_syms (abfd)[indx] != NULL)
5480 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5481 }
5482
5483 idx = asym_ptr->udata.i;
5484
5485 if (idx == 0)
5486 {
5487 /* This case can occur when using --strip-symbol on a symbol
5488 which is used in a relocation entry. */
5489 (*_bfd_error_handler)
5490 (_("%B: symbol `%s' required but not present"),
5491 abfd, bfd_asymbol_name (asym_ptr));
5492 bfd_set_error (bfd_error_no_symbols);
5493 return -1;
5494 }
5495
5496 #if DEBUG & 4
5497 {
5498 fprintf (stderr,
5499 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5500 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5501 fflush (stderr);
5502 }
5503 #endif
5504
5505 return idx;
5506 }
5507
5508 /* Rewrite program header information. */
5509
5510 static bfd_boolean
5511 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5512 {
5513 Elf_Internal_Ehdr *iehdr;
5514 struct elf_segment_map *map;
5515 struct elf_segment_map *map_first;
5516 struct elf_segment_map **pointer_to_map;
5517 Elf_Internal_Phdr *segment;
5518 asection *section;
5519 unsigned int i;
5520 unsigned int num_segments;
5521 bfd_boolean phdr_included = FALSE;
5522 bfd_boolean p_paddr_valid;
5523 bfd_vma maxpagesize;
5524 struct elf_segment_map *phdr_adjust_seg = NULL;
5525 unsigned int phdr_adjust_num = 0;
5526 const struct elf_backend_data *bed;
5527
5528 bed = get_elf_backend_data (ibfd);
5529 iehdr = elf_elfheader (ibfd);
5530
5531 map_first = NULL;
5532 pointer_to_map = &map_first;
5533
5534 num_segments = elf_elfheader (ibfd)->e_phnum;
5535 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5536
5537 /* Returns the end address of the segment + 1. */
5538 #define SEGMENT_END(segment, start) \
5539 (start + (segment->p_memsz > segment->p_filesz \
5540 ? segment->p_memsz : segment->p_filesz))
5541
5542 #define SECTION_SIZE(section, segment) \
5543 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5544 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5545 ? section->size : 0)
5546
5547 /* Returns TRUE if the given section is contained within
5548 the given segment. VMA addresses are compared. */
5549 #define IS_CONTAINED_BY_VMA(section, segment) \
5550 (section->vma >= segment->p_vaddr \
5551 && (section->vma + SECTION_SIZE (section, segment) \
5552 <= (SEGMENT_END (segment, segment->p_vaddr))))
5553
5554 /* Returns TRUE if the given section is contained within
5555 the given segment. LMA addresses are compared. */
5556 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5557 (section->lma >= base \
5558 && (section->lma + SECTION_SIZE (section, segment) \
5559 <= SEGMENT_END (segment, base)))
5560
5561 /* Handle PT_NOTE segment. */
5562 #define IS_NOTE(p, s) \
5563 (p->p_type == PT_NOTE \
5564 && elf_section_type (s) == SHT_NOTE \
5565 && (bfd_vma) s->filepos >= p->p_offset \
5566 && ((bfd_vma) s->filepos + s->size \
5567 <= p->p_offset + p->p_filesz))
5568
5569 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5570 etc. */
5571 #define IS_COREFILE_NOTE(p, s) \
5572 (IS_NOTE (p, s) \
5573 && bfd_get_format (ibfd) == bfd_core \
5574 && s->vma == 0 \
5575 && s->lma == 0)
5576
5577 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5578 linker, which generates a PT_INTERP section with p_vaddr and
5579 p_memsz set to 0. */
5580 #define IS_SOLARIS_PT_INTERP(p, s) \
5581 (p->p_vaddr == 0 \
5582 && p->p_paddr == 0 \
5583 && p->p_memsz == 0 \
5584 && p->p_filesz > 0 \
5585 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5586 && s->size > 0 \
5587 && (bfd_vma) s->filepos >= p->p_offset \
5588 && ((bfd_vma) s->filepos + s->size \
5589 <= p->p_offset + p->p_filesz))
5590
5591 /* Decide if the given section should be included in the given segment.
5592 A section will be included if:
5593 1. It is within the address space of the segment -- we use the LMA
5594 if that is set for the segment and the VMA otherwise,
5595 2. It is an allocated section or a NOTE section in a PT_NOTE
5596 segment.
5597 3. There is an output section associated with it,
5598 4. The section has not already been allocated to a previous segment.
5599 5. PT_GNU_STACK segments do not include any sections.
5600 6. PT_TLS segment includes only SHF_TLS sections.
5601 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5602 8. PT_DYNAMIC should not contain empty sections at the beginning
5603 (with the possible exception of .dynamic). */
5604 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5605 ((((segment->p_paddr \
5606 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5607 : IS_CONTAINED_BY_VMA (section, segment)) \
5608 && (section->flags & SEC_ALLOC) != 0) \
5609 || IS_NOTE (segment, section)) \
5610 && segment->p_type != PT_GNU_STACK \
5611 && (segment->p_type != PT_TLS \
5612 || (section->flags & SEC_THREAD_LOCAL)) \
5613 && (segment->p_type == PT_LOAD \
5614 || segment->p_type == PT_TLS \
5615 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5616 && (segment->p_type != PT_DYNAMIC \
5617 || SECTION_SIZE (section, segment) > 0 \
5618 || (segment->p_paddr \
5619 ? segment->p_paddr != section->lma \
5620 : segment->p_vaddr != section->vma) \
5621 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5622 == 0)) \
5623 && !section->segment_mark)
5624
5625 /* If the output section of a section in the input segment is NULL,
5626 it is removed from the corresponding output segment. */
5627 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5628 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5629 && section->output_section != NULL)
5630
5631 /* Returns TRUE iff seg1 starts after the end of seg2. */
5632 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5633 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5634
5635 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5636 their VMA address ranges and their LMA address ranges overlap.
5637 It is possible to have overlapping VMA ranges without overlapping LMA
5638 ranges. RedBoot images for example can have both .data and .bss mapped
5639 to the same VMA range, but with the .data section mapped to a different
5640 LMA. */
5641 #define SEGMENT_OVERLAPS(seg1, seg2) \
5642 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5643 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5644 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5645 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5646
5647 /* Initialise the segment mark field. */
5648 for (section = ibfd->sections; section != NULL; section = section->next)
5649 section->segment_mark = FALSE;
5650
5651 /* The Solaris linker creates program headers in which all the
5652 p_paddr fields are zero. When we try to objcopy or strip such a
5653 file, we get confused. Check for this case, and if we find it
5654 don't set the p_paddr_valid fields. */
5655 p_paddr_valid = FALSE;
5656 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5657 i < num_segments;
5658 i++, segment++)
5659 if (segment->p_paddr != 0)
5660 {
5661 p_paddr_valid = TRUE;
5662 break;
5663 }
5664
5665 /* Scan through the segments specified in the program header
5666 of the input BFD. For this first scan we look for overlaps
5667 in the loadable segments. These can be created by weird
5668 parameters to objcopy. Also, fix some solaris weirdness. */
5669 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5670 i < num_segments;
5671 i++, segment++)
5672 {
5673 unsigned int j;
5674 Elf_Internal_Phdr *segment2;
5675
5676 if (segment->p_type == PT_INTERP)
5677 for (section = ibfd->sections; section; section = section->next)
5678 if (IS_SOLARIS_PT_INTERP (segment, section))
5679 {
5680 /* Mininal change so that the normal section to segment
5681 assignment code will work. */
5682 segment->p_vaddr = section->vma;
5683 break;
5684 }
5685
5686 if (segment->p_type != PT_LOAD)
5687 {
5688 /* Remove PT_GNU_RELRO segment. */
5689 if (segment->p_type == PT_GNU_RELRO)
5690 segment->p_type = PT_NULL;
5691 continue;
5692 }
5693
5694 /* Determine if this segment overlaps any previous segments. */
5695 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5696 {
5697 bfd_signed_vma extra_length;
5698
5699 if (segment2->p_type != PT_LOAD
5700 || !SEGMENT_OVERLAPS (segment, segment2))
5701 continue;
5702
5703 /* Merge the two segments together. */
5704 if (segment2->p_vaddr < segment->p_vaddr)
5705 {
5706 /* Extend SEGMENT2 to include SEGMENT and then delete
5707 SEGMENT. */
5708 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5709 - SEGMENT_END (segment2, segment2->p_vaddr));
5710
5711 if (extra_length > 0)
5712 {
5713 segment2->p_memsz += extra_length;
5714 segment2->p_filesz += extra_length;
5715 }
5716
5717 segment->p_type = PT_NULL;
5718
5719 /* Since we have deleted P we must restart the outer loop. */
5720 i = 0;
5721 segment = elf_tdata (ibfd)->phdr;
5722 break;
5723 }
5724 else
5725 {
5726 /* Extend SEGMENT to include SEGMENT2 and then delete
5727 SEGMENT2. */
5728 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5729 - SEGMENT_END (segment, segment->p_vaddr));
5730
5731 if (extra_length > 0)
5732 {
5733 segment->p_memsz += extra_length;
5734 segment->p_filesz += extra_length;
5735 }
5736
5737 segment2->p_type = PT_NULL;
5738 }
5739 }
5740 }
5741
5742 /* The second scan attempts to assign sections to segments. */
5743 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5744 i < num_segments;
5745 i++, segment++)
5746 {
5747 unsigned int section_count;
5748 asection **sections;
5749 asection *output_section;
5750 unsigned int isec;
5751 bfd_vma matching_lma;
5752 bfd_vma suggested_lma;
5753 unsigned int j;
5754 bfd_size_type amt;
5755 asection *first_section;
5756 bfd_boolean first_matching_lma;
5757 bfd_boolean first_suggested_lma;
5758
5759 if (segment->p_type == PT_NULL)
5760 continue;
5761
5762 first_section = NULL;
5763 /* Compute how many sections might be placed into this segment. */
5764 for (section = ibfd->sections, section_count = 0;
5765 section != NULL;
5766 section = section->next)
5767 {
5768 /* Find the first section in the input segment, which may be
5769 removed from the corresponding output segment. */
5770 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5771 {
5772 if (first_section == NULL)
5773 first_section = section;
5774 if (section->output_section != NULL)
5775 ++section_count;
5776 }
5777 }
5778
5779 /* Allocate a segment map big enough to contain
5780 all of the sections we have selected. */
5781 amt = sizeof (struct elf_segment_map);
5782 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5783 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5784 if (map == NULL)
5785 return FALSE;
5786
5787 /* Initialise the fields of the segment map. Default to
5788 using the physical address of the segment in the input BFD. */
5789 map->next = NULL;
5790 map->p_type = segment->p_type;
5791 map->p_flags = segment->p_flags;
5792 map->p_flags_valid = 1;
5793
5794 /* If the first section in the input segment is removed, there is
5795 no need to preserve segment physical address in the corresponding
5796 output segment. */
5797 if (!first_section || first_section->output_section != NULL)
5798 {
5799 map->p_paddr = segment->p_paddr;
5800 map->p_paddr_valid = p_paddr_valid;
5801 }
5802
5803 /* Determine if this segment contains the ELF file header
5804 and if it contains the program headers themselves. */
5805 map->includes_filehdr = (segment->p_offset == 0
5806 && segment->p_filesz >= iehdr->e_ehsize);
5807 map->includes_phdrs = 0;
5808
5809 if (!phdr_included || segment->p_type != PT_LOAD)
5810 {
5811 map->includes_phdrs =
5812 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5813 && (segment->p_offset + segment->p_filesz
5814 >= ((bfd_vma) iehdr->e_phoff
5815 + iehdr->e_phnum * iehdr->e_phentsize)));
5816
5817 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5818 phdr_included = TRUE;
5819 }
5820
5821 if (section_count == 0)
5822 {
5823 /* Special segments, such as the PT_PHDR segment, may contain
5824 no sections, but ordinary, loadable segments should contain
5825 something. They are allowed by the ELF spec however, so only
5826 a warning is produced. */
5827 if (segment->p_type == PT_LOAD)
5828 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5829 " detected, is this intentional ?\n"),
5830 ibfd);
5831
5832 map->count = 0;
5833 *pointer_to_map = map;
5834 pointer_to_map = &map->next;
5835
5836 continue;
5837 }
5838
5839 /* Now scan the sections in the input BFD again and attempt
5840 to add their corresponding output sections to the segment map.
5841 The problem here is how to handle an output section which has
5842 been moved (ie had its LMA changed). There are four possibilities:
5843
5844 1. None of the sections have been moved.
5845 In this case we can continue to use the segment LMA from the
5846 input BFD.
5847
5848 2. All of the sections have been moved by the same amount.
5849 In this case we can change the segment's LMA to match the LMA
5850 of the first section.
5851
5852 3. Some of the sections have been moved, others have not.
5853 In this case those sections which have not been moved can be
5854 placed in the current segment which will have to have its size,
5855 and possibly its LMA changed, and a new segment or segments will
5856 have to be created to contain the other sections.
5857
5858 4. The sections have been moved, but not by the same amount.
5859 In this case we can change the segment's LMA to match the LMA
5860 of the first section and we will have to create a new segment
5861 or segments to contain the other sections.
5862
5863 In order to save time, we allocate an array to hold the section
5864 pointers that we are interested in. As these sections get assigned
5865 to a segment, they are removed from this array. */
5866
5867 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5868 if (sections == NULL)
5869 return FALSE;
5870
5871 /* Step One: Scan for segment vs section LMA conflicts.
5872 Also add the sections to the section array allocated above.
5873 Also add the sections to the current segment. In the common
5874 case, where the sections have not been moved, this means that
5875 we have completely filled the segment, and there is nothing
5876 more to do. */
5877 isec = 0;
5878 matching_lma = 0;
5879 suggested_lma = 0;
5880 first_matching_lma = TRUE;
5881 first_suggested_lma = TRUE;
5882
5883 for (section = ibfd->sections;
5884 section != NULL;
5885 section = section->next)
5886 if (section == first_section)
5887 break;
5888
5889 for (j = 0; section != NULL; section = section->next)
5890 {
5891 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5892 {
5893 output_section = section->output_section;
5894
5895 sections[j++] = section;
5896
5897 /* The Solaris native linker always sets p_paddr to 0.
5898 We try to catch that case here, and set it to the
5899 correct value. Note - some backends require that
5900 p_paddr be left as zero. */
5901 if (!p_paddr_valid
5902 && segment->p_vaddr != 0
5903 && !bed->want_p_paddr_set_to_zero
5904 && isec == 0
5905 && output_section->lma != 0
5906 && output_section->vma == (segment->p_vaddr
5907 + (map->includes_filehdr
5908 ? iehdr->e_ehsize
5909 : 0)
5910 + (map->includes_phdrs
5911 ? (iehdr->e_phnum
5912 * iehdr->e_phentsize)
5913 : 0)))
5914 map->p_paddr = segment->p_vaddr;
5915
5916 /* Match up the physical address of the segment with the
5917 LMA address of the output section. */
5918 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5919 || IS_COREFILE_NOTE (segment, section)
5920 || (bed->want_p_paddr_set_to_zero
5921 && IS_CONTAINED_BY_VMA (output_section, segment)))
5922 {
5923 if (first_matching_lma || output_section->lma < matching_lma)
5924 {
5925 matching_lma = output_section->lma;
5926 first_matching_lma = FALSE;
5927 }
5928
5929 /* We assume that if the section fits within the segment
5930 then it does not overlap any other section within that
5931 segment. */
5932 map->sections[isec++] = output_section;
5933 }
5934 else if (first_suggested_lma)
5935 {
5936 suggested_lma = output_section->lma;
5937 first_suggested_lma = FALSE;
5938 }
5939
5940 if (j == section_count)
5941 break;
5942 }
5943 }
5944
5945 BFD_ASSERT (j == section_count);
5946
5947 /* Step Two: Adjust the physical address of the current segment,
5948 if necessary. */
5949 if (isec == section_count)
5950 {
5951 /* All of the sections fitted within the segment as currently
5952 specified. This is the default case. Add the segment to
5953 the list of built segments and carry on to process the next
5954 program header in the input BFD. */
5955 map->count = section_count;
5956 *pointer_to_map = map;
5957 pointer_to_map = &map->next;
5958
5959 if (p_paddr_valid
5960 && !bed->want_p_paddr_set_to_zero
5961 && matching_lma != map->p_paddr
5962 && !map->includes_filehdr
5963 && !map->includes_phdrs)
5964 /* There is some padding before the first section in the
5965 segment. So, we must account for that in the output
5966 segment's vma. */
5967 map->p_vaddr_offset = matching_lma - map->p_paddr;
5968
5969 free (sections);
5970 continue;
5971 }
5972 else
5973 {
5974 if (!first_matching_lma)
5975 {
5976 /* At least one section fits inside the current segment.
5977 Keep it, but modify its physical address to match the
5978 LMA of the first section that fitted. */
5979 map->p_paddr = matching_lma;
5980 }
5981 else
5982 {
5983 /* None of the sections fitted inside the current segment.
5984 Change the current segment's physical address to match
5985 the LMA of the first section. */
5986 map->p_paddr = suggested_lma;
5987 }
5988
5989 /* Offset the segment physical address from the lma
5990 to allow for space taken up by elf headers. */
5991 if (map->includes_filehdr)
5992 {
5993 if (map->p_paddr >= iehdr->e_ehsize)
5994 map->p_paddr -= iehdr->e_ehsize;
5995 else
5996 {
5997 map->includes_filehdr = FALSE;
5998 map->includes_phdrs = FALSE;
5999 }
6000 }
6001
6002 if (map->includes_phdrs)
6003 {
6004 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6005 {
6006 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6007
6008 /* iehdr->e_phnum is just an estimate of the number
6009 of program headers that we will need. Make a note
6010 here of the number we used and the segment we chose
6011 to hold these headers, so that we can adjust the
6012 offset when we know the correct value. */
6013 phdr_adjust_num = iehdr->e_phnum;
6014 phdr_adjust_seg = map;
6015 }
6016 else
6017 map->includes_phdrs = FALSE;
6018 }
6019 }
6020
6021 /* Step Three: Loop over the sections again, this time assigning
6022 those that fit to the current segment and removing them from the
6023 sections array; but making sure not to leave large gaps. Once all
6024 possible sections have been assigned to the current segment it is
6025 added to the list of built segments and if sections still remain
6026 to be assigned, a new segment is constructed before repeating
6027 the loop. */
6028 isec = 0;
6029 do
6030 {
6031 map->count = 0;
6032 suggested_lma = 0;
6033 first_suggested_lma = TRUE;
6034
6035 /* Fill the current segment with sections that fit. */
6036 for (j = 0; j < section_count; j++)
6037 {
6038 section = sections[j];
6039
6040 if (section == NULL)
6041 continue;
6042
6043 output_section = section->output_section;
6044
6045 BFD_ASSERT (output_section != NULL);
6046
6047 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6048 || IS_COREFILE_NOTE (segment, section))
6049 {
6050 if (map->count == 0)
6051 {
6052 /* If the first section in a segment does not start at
6053 the beginning of the segment, then something is
6054 wrong. */
6055 if (output_section->lma
6056 != (map->p_paddr
6057 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6058 + (map->includes_phdrs
6059 ? iehdr->e_phnum * iehdr->e_phentsize
6060 : 0)))
6061 abort ();
6062 }
6063 else
6064 {
6065 asection *prev_sec;
6066
6067 prev_sec = map->sections[map->count - 1];
6068
6069 /* If the gap between the end of the previous section
6070 and the start of this section is more than
6071 maxpagesize then we need to start a new segment. */
6072 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6073 maxpagesize)
6074 < BFD_ALIGN (output_section->lma, maxpagesize))
6075 || (prev_sec->lma + prev_sec->size
6076 > output_section->lma))
6077 {
6078 if (first_suggested_lma)
6079 {
6080 suggested_lma = output_section->lma;
6081 first_suggested_lma = FALSE;
6082 }
6083
6084 continue;
6085 }
6086 }
6087
6088 map->sections[map->count++] = output_section;
6089 ++isec;
6090 sections[j] = NULL;
6091 section->segment_mark = TRUE;
6092 }
6093 else if (first_suggested_lma)
6094 {
6095 suggested_lma = output_section->lma;
6096 first_suggested_lma = FALSE;
6097 }
6098 }
6099
6100 BFD_ASSERT (map->count > 0);
6101
6102 /* Add the current segment to the list of built segments. */
6103 *pointer_to_map = map;
6104 pointer_to_map = &map->next;
6105
6106 if (isec < section_count)
6107 {
6108 /* We still have not allocated all of the sections to
6109 segments. Create a new segment here, initialise it
6110 and carry on looping. */
6111 amt = sizeof (struct elf_segment_map);
6112 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6113 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6114 if (map == NULL)
6115 {
6116 free (sections);
6117 return FALSE;
6118 }
6119
6120 /* Initialise the fields of the segment map. Set the physical
6121 physical address to the LMA of the first section that has
6122 not yet been assigned. */
6123 map->next = NULL;
6124 map->p_type = segment->p_type;
6125 map->p_flags = segment->p_flags;
6126 map->p_flags_valid = 1;
6127 map->p_paddr = suggested_lma;
6128 map->p_paddr_valid = p_paddr_valid;
6129 map->includes_filehdr = 0;
6130 map->includes_phdrs = 0;
6131 }
6132 }
6133 while (isec < section_count);
6134
6135 free (sections);
6136 }
6137
6138 elf_seg_map (obfd) = map_first;
6139
6140 /* If we had to estimate the number of program headers that were
6141 going to be needed, then check our estimate now and adjust
6142 the offset if necessary. */
6143 if (phdr_adjust_seg != NULL)
6144 {
6145 unsigned int count;
6146
6147 for (count = 0, map = map_first; map != NULL; map = map->next)
6148 count++;
6149
6150 if (count > phdr_adjust_num)
6151 phdr_adjust_seg->p_paddr
6152 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6153 }
6154
6155 #undef SEGMENT_END
6156 #undef SECTION_SIZE
6157 #undef IS_CONTAINED_BY_VMA
6158 #undef IS_CONTAINED_BY_LMA
6159 #undef IS_NOTE
6160 #undef IS_COREFILE_NOTE
6161 #undef IS_SOLARIS_PT_INTERP
6162 #undef IS_SECTION_IN_INPUT_SEGMENT
6163 #undef INCLUDE_SECTION_IN_SEGMENT
6164 #undef SEGMENT_AFTER_SEGMENT
6165 #undef SEGMENT_OVERLAPS
6166 return TRUE;
6167 }
6168
6169 /* Copy ELF program header information. */
6170
6171 static bfd_boolean
6172 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6173 {
6174 Elf_Internal_Ehdr *iehdr;
6175 struct elf_segment_map *map;
6176 struct elf_segment_map *map_first;
6177 struct elf_segment_map **pointer_to_map;
6178 Elf_Internal_Phdr *segment;
6179 unsigned int i;
6180 unsigned int num_segments;
6181 bfd_boolean phdr_included = FALSE;
6182 bfd_boolean p_paddr_valid;
6183
6184 iehdr = elf_elfheader (ibfd);
6185
6186 map_first = NULL;
6187 pointer_to_map = &map_first;
6188
6189 /* If all the segment p_paddr fields are zero, don't set
6190 map->p_paddr_valid. */
6191 p_paddr_valid = FALSE;
6192 num_segments = elf_elfheader (ibfd)->e_phnum;
6193 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6194 i < num_segments;
6195 i++, segment++)
6196 if (segment->p_paddr != 0)
6197 {
6198 p_paddr_valid = TRUE;
6199 break;
6200 }
6201
6202 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6203 i < num_segments;
6204 i++, segment++)
6205 {
6206 asection *section;
6207 unsigned int section_count;
6208 bfd_size_type amt;
6209 Elf_Internal_Shdr *this_hdr;
6210 asection *first_section = NULL;
6211 asection *lowest_section;
6212
6213 /* Compute how many sections are in this segment. */
6214 for (section = ibfd->sections, section_count = 0;
6215 section != NULL;
6216 section = section->next)
6217 {
6218 this_hdr = &(elf_section_data(section)->this_hdr);
6219 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6220 {
6221 if (first_section == NULL)
6222 first_section = section;
6223 section_count++;
6224 }
6225 }
6226
6227 /* Allocate a segment map big enough to contain
6228 all of the sections we have selected. */
6229 amt = sizeof (struct elf_segment_map);
6230 if (section_count != 0)
6231 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6232 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6233 if (map == NULL)
6234 return FALSE;
6235
6236 /* Initialize the fields of the output segment map with the
6237 input segment. */
6238 map->next = NULL;
6239 map->p_type = segment->p_type;
6240 map->p_flags = segment->p_flags;
6241 map->p_flags_valid = 1;
6242 map->p_paddr = segment->p_paddr;
6243 map->p_paddr_valid = p_paddr_valid;
6244 map->p_align = segment->p_align;
6245 map->p_align_valid = 1;
6246 map->p_vaddr_offset = 0;
6247
6248 if (map->p_type == PT_GNU_RELRO
6249 || map->p_type == PT_GNU_STACK)
6250 {
6251 /* The PT_GNU_RELRO segment may contain the first a few
6252 bytes in the .got.plt section even if the whole .got.plt
6253 section isn't in the PT_GNU_RELRO segment. We won't
6254 change the size of the PT_GNU_RELRO segment.
6255 Similarly, PT_GNU_STACK size is significant on uclinux
6256 systems. */
6257 map->p_size = segment->p_memsz;
6258 map->p_size_valid = 1;
6259 }
6260
6261 /* Determine if this segment contains the ELF file header
6262 and if it contains the program headers themselves. */
6263 map->includes_filehdr = (segment->p_offset == 0
6264 && segment->p_filesz >= iehdr->e_ehsize);
6265
6266 map->includes_phdrs = 0;
6267 if (! phdr_included || segment->p_type != PT_LOAD)
6268 {
6269 map->includes_phdrs =
6270 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6271 && (segment->p_offset + segment->p_filesz
6272 >= ((bfd_vma) iehdr->e_phoff
6273 + iehdr->e_phnum * iehdr->e_phentsize)));
6274
6275 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6276 phdr_included = TRUE;
6277 }
6278
6279 lowest_section = first_section;
6280 if (section_count != 0)
6281 {
6282 unsigned int isec = 0;
6283
6284 for (section = first_section;
6285 section != NULL;
6286 section = section->next)
6287 {
6288 this_hdr = &(elf_section_data(section)->this_hdr);
6289 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6290 {
6291 map->sections[isec++] = section->output_section;
6292 if ((section->flags & SEC_ALLOC) != 0)
6293 {
6294 bfd_vma seg_off;
6295
6296 if (section->lma < lowest_section->lma)
6297 lowest_section = section;
6298
6299 /* Section lmas are set up from PT_LOAD header
6300 p_paddr in _bfd_elf_make_section_from_shdr.
6301 If this header has a p_paddr that disagrees
6302 with the section lma, flag the p_paddr as
6303 invalid. */
6304 if ((section->flags & SEC_LOAD) != 0)
6305 seg_off = this_hdr->sh_offset - segment->p_offset;
6306 else
6307 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6308 if (section->lma - segment->p_paddr != seg_off)
6309 map->p_paddr_valid = FALSE;
6310 }
6311 if (isec == section_count)
6312 break;
6313 }
6314 }
6315 }
6316
6317 if (map->includes_filehdr && lowest_section != NULL)
6318 /* We need to keep the space used by the headers fixed. */
6319 map->header_size = lowest_section->vma - segment->p_vaddr;
6320
6321 if (!map->includes_phdrs
6322 && !map->includes_filehdr
6323 && map->p_paddr_valid)
6324 /* There is some other padding before the first section. */
6325 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6326 - segment->p_paddr);
6327
6328 map->count = section_count;
6329 *pointer_to_map = map;
6330 pointer_to_map = &map->next;
6331 }
6332
6333 elf_seg_map (obfd) = map_first;
6334 return TRUE;
6335 }
6336
6337 /* Copy private BFD data. This copies or rewrites ELF program header
6338 information. */
6339
6340 static bfd_boolean
6341 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6342 {
6343 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6344 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6345 return TRUE;
6346
6347 if (elf_tdata (ibfd)->phdr == NULL)
6348 return TRUE;
6349
6350 if (ibfd->xvec == obfd->xvec)
6351 {
6352 /* Check to see if any sections in the input BFD
6353 covered by ELF program header have changed. */
6354 Elf_Internal_Phdr *segment;
6355 asection *section, *osec;
6356 unsigned int i, num_segments;
6357 Elf_Internal_Shdr *this_hdr;
6358 const struct elf_backend_data *bed;
6359
6360 bed = get_elf_backend_data (ibfd);
6361
6362 /* Regenerate the segment map if p_paddr is set to 0. */
6363 if (bed->want_p_paddr_set_to_zero)
6364 goto rewrite;
6365
6366 /* Initialize the segment mark field. */
6367 for (section = obfd->sections; section != NULL;
6368 section = section->next)
6369 section->segment_mark = FALSE;
6370
6371 num_segments = elf_elfheader (ibfd)->e_phnum;
6372 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6373 i < num_segments;
6374 i++, segment++)
6375 {
6376 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6377 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6378 which severly confuses things, so always regenerate the segment
6379 map in this case. */
6380 if (segment->p_paddr == 0
6381 && segment->p_memsz == 0
6382 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6383 goto rewrite;
6384
6385 for (section = ibfd->sections;
6386 section != NULL; section = section->next)
6387 {
6388 /* We mark the output section so that we know it comes
6389 from the input BFD. */
6390 osec = section->output_section;
6391 if (osec)
6392 osec->segment_mark = TRUE;
6393
6394 /* Check if this section is covered by the segment. */
6395 this_hdr = &(elf_section_data(section)->this_hdr);
6396 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6397 {
6398 /* FIXME: Check if its output section is changed or
6399 removed. What else do we need to check? */
6400 if (osec == NULL
6401 || section->flags != osec->flags
6402 || section->lma != osec->lma
6403 || section->vma != osec->vma
6404 || section->size != osec->size
6405 || section->rawsize != osec->rawsize
6406 || section->alignment_power != osec->alignment_power)
6407 goto rewrite;
6408 }
6409 }
6410 }
6411
6412 /* Check to see if any output section do not come from the
6413 input BFD. */
6414 for (section = obfd->sections; section != NULL;
6415 section = section->next)
6416 {
6417 if (section->segment_mark == FALSE)
6418 goto rewrite;
6419 else
6420 section->segment_mark = FALSE;
6421 }
6422
6423 return copy_elf_program_header (ibfd, obfd);
6424 }
6425
6426 rewrite:
6427 if (ibfd->xvec == obfd->xvec)
6428 {
6429 /* When rewriting program header, set the output maxpagesize to
6430 the maximum alignment of input PT_LOAD segments. */
6431 Elf_Internal_Phdr *segment;
6432 unsigned int i;
6433 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6434 bfd_vma maxpagesize = 0;
6435
6436 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6437 i < num_segments;
6438 i++, segment++)
6439 if (segment->p_type == PT_LOAD
6440 && maxpagesize < segment->p_align)
6441 maxpagesize = segment->p_align;
6442
6443 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6444 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6445 }
6446
6447 return rewrite_elf_program_header (ibfd, obfd);
6448 }
6449
6450 /* Initialize private output section information from input section. */
6451
6452 bfd_boolean
6453 _bfd_elf_init_private_section_data (bfd *ibfd,
6454 asection *isec,
6455 bfd *obfd,
6456 asection *osec,
6457 struct bfd_link_info *link_info)
6458
6459 {
6460 Elf_Internal_Shdr *ihdr, *ohdr;
6461 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6462
6463 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6464 || obfd->xvec->flavour != bfd_target_elf_flavour)
6465 return TRUE;
6466
6467 BFD_ASSERT (elf_section_data (osec) != NULL);
6468
6469 /* For objcopy and relocatable link, don't copy the output ELF
6470 section type from input if the output BFD section flags have been
6471 set to something different. For a final link allow some flags
6472 that the linker clears to differ. */
6473 if (elf_section_type (osec) == SHT_NULL
6474 && (osec->flags == isec->flags
6475 || (final_link
6476 && ((osec->flags ^ isec->flags)
6477 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6478 elf_section_type (osec) = elf_section_type (isec);
6479
6480 /* FIXME: Is this correct for all OS/PROC specific flags? */
6481 elf_section_flags (osec) |= (elf_section_flags (isec)
6482 & (SHF_MASKOS | SHF_MASKPROC));
6483
6484 /* Set things up for objcopy and relocatable link. The output
6485 SHT_GROUP section will have its elf_next_in_group pointing back
6486 to the input group members. Ignore linker created group section.
6487 See elfNN_ia64_object_p in elfxx-ia64.c. */
6488 if (!final_link)
6489 {
6490 if (elf_sec_group (isec) == NULL
6491 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6492 {
6493 if (elf_section_flags (isec) & SHF_GROUP)
6494 elf_section_flags (osec) |= SHF_GROUP;
6495 elf_next_in_group (osec) = elf_next_in_group (isec);
6496 elf_section_data (osec)->group = elf_section_data (isec)->group;
6497 }
6498 }
6499
6500 ihdr = &elf_section_data (isec)->this_hdr;
6501
6502 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6503 don't use the output section of the linked-to section since it
6504 may be NULL at this point. */
6505 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6506 {
6507 ohdr = &elf_section_data (osec)->this_hdr;
6508 ohdr->sh_flags |= SHF_LINK_ORDER;
6509 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6510 }
6511
6512 osec->use_rela_p = isec->use_rela_p;
6513
6514 return TRUE;
6515 }
6516
6517 /* Copy private section information. This copies over the entsize
6518 field, and sometimes the info field. */
6519
6520 bfd_boolean
6521 _bfd_elf_copy_private_section_data (bfd *ibfd,
6522 asection *isec,
6523 bfd *obfd,
6524 asection *osec)
6525 {
6526 Elf_Internal_Shdr *ihdr, *ohdr;
6527
6528 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6529 || obfd->xvec->flavour != bfd_target_elf_flavour)
6530 return TRUE;
6531
6532 ihdr = &elf_section_data (isec)->this_hdr;
6533 ohdr = &elf_section_data (osec)->this_hdr;
6534
6535 ohdr->sh_entsize = ihdr->sh_entsize;
6536
6537 if (ihdr->sh_type == SHT_SYMTAB
6538 || ihdr->sh_type == SHT_DYNSYM
6539 || ihdr->sh_type == SHT_GNU_verneed
6540 || ihdr->sh_type == SHT_GNU_verdef)
6541 ohdr->sh_info = ihdr->sh_info;
6542
6543 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6544 NULL);
6545 }
6546
6547 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6548 necessary if we are removing either the SHT_GROUP section or any of
6549 the group member sections. DISCARDED is the value that a section's
6550 output_section has if the section will be discarded, NULL when this
6551 function is called from objcopy, bfd_abs_section_ptr when called
6552 from the linker. */
6553
6554 bfd_boolean
6555 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6556 {
6557 asection *isec;
6558
6559 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6560 if (elf_section_type (isec) == SHT_GROUP)
6561 {
6562 asection *first = elf_next_in_group (isec);
6563 asection *s = first;
6564 bfd_size_type removed = 0;
6565
6566 while (s != NULL)
6567 {
6568 /* If this member section is being output but the
6569 SHT_GROUP section is not, then clear the group info
6570 set up by _bfd_elf_copy_private_section_data. */
6571 if (s->output_section != discarded
6572 && isec->output_section == discarded)
6573 {
6574 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6575 elf_group_name (s->output_section) = NULL;
6576 }
6577 /* Conversely, if the member section is not being output
6578 but the SHT_GROUP section is, then adjust its size. */
6579 else if (s->output_section == discarded
6580 && isec->output_section != discarded)
6581 removed += 4;
6582 s = elf_next_in_group (s);
6583 if (s == first)
6584 break;
6585 }
6586 if (removed != 0)
6587 {
6588 if (discarded != NULL)
6589 {
6590 /* If we've been called for ld -r, then we need to
6591 adjust the input section size. This function may
6592 be called multiple times, so save the original
6593 size. */
6594 if (isec->rawsize == 0)
6595 isec->rawsize = isec->size;
6596 isec->size = isec->rawsize - removed;
6597 }
6598 else
6599 {
6600 /* Adjust the output section size when called from
6601 objcopy. */
6602 isec->output_section->size -= removed;
6603 }
6604 }
6605 }
6606
6607 return TRUE;
6608 }
6609
6610 /* Copy private header information. */
6611
6612 bfd_boolean
6613 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6614 {
6615 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6616 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6617 return TRUE;
6618
6619 /* Copy over private BFD data if it has not already been copied.
6620 This must be done here, rather than in the copy_private_bfd_data
6621 entry point, because the latter is called after the section
6622 contents have been set, which means that the program headers have
6623 already been worked out. */
6624 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
6625 {
6626 if (! copy_private_bfd_data (ibfd, obfd))
6627 return FALSE;
6628 }
6629
6630 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6631 }
6632
6633 /* Copy private symbol information. If this symbol is in a section
6634 which we did not map into a BFD section, try to map the section
6635 index correctly. We use special macro definitions for the mapped
6636 section indices; these definitions are interpreted by the
6637 swap_out_syms function. */
6638
6639 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6640 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6641 #define MAP_STRTAB (SHN_HIOS + 3)
6642 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6643 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6644
6645 bfd_boolean
6646 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6647 asymbol *isymarg,
6648 bfd *obfd,
6649 asymbol *osymarg)
6650 {
6651 elf_symbol_type *isym, *osym;
6652
6653 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6654 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6655 return TRUE;
6656
6657 isym = elf_symbol_from (ibfd, isymarg);
6658 osym = elf_symbol_from (obfd, osymarg);
6659
6660 if (isym != NULL
6661 && isym->internal_elf_sym.st_shndx != 0
6662 && osym != NULL
6663 && bfd_is_abs_section (isym->symbol.section))
6664 {
6665 unsigned int shndx;
6666
6667 shndx = isym->internal_elf_sym.st_shndx;
6668 if (shndx == elf_onesymtab (ibfd))
6669 shndx = MAP_ONESYMTAB;
6670 else if (shndx == elf_dynsymtab (ibfd))
6671 shndx = MAP_DYNSYMTAB;
6672 else if (shndx == elf_strtab_sec (ibfd))
6673 shndx = MAP_STRTAB;
6674 else if (shndx == elf_shstrtab_sec (ibfd))
6675 shndx = MAP_SHSTRTAB;
6676 else if (shndx == elf_symtab_shndx (ibfd))
6677 shndx = MAP_SYM_SHNDX;
6678 osym->internal_elf_sym.st_shndx = shndx;
6679 }
6680
6681 return TRUE;
6682 }
6683
6684 /* Swap out the symbols. */
6685
6686 static bfd_boolean
6687 swap_out_syms (bfd *abfd,
6688 struct bfd_strtab_hash **sttp,
6689 int relocatable_p)
6690 {
6691 const struct elf_backend_data *bed;
6692 int symcount;
6693 asymbol **syms;
6694 struct bfd_strtab_hash *stt;
6695 Elf_Internal_Shdr *symtab_hdr;
6696 Elf_Internal_Shdr *symtab_shndx_hdr;
6697 Elf_Internal_Shdr *symstrtab_hdr;
6698 bfd_byte *outbound_syms;
6699 bfd_byte *outbound_shndx;
6700 int idx;
6701 unsigned int num_locals;
6702 bfd_size_type amt;
6703 bfd_boolean name_local_sections;
6704
6705 if (!elf_map_symbols (abfd, &num_locals))
6706 return FALSE;
6707
6708 /* Dump out the symtabs. */
6709 stt = _bfd_elf_stringtab_init ();
6710 if (stt == NULL)
6711 return FALSE;
6712
6713 bed = get_elf_backend_data (abfd);
6714 symcount = bfd_get_symcount (abfd);
6715 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6716 symtab_hdr->sh_type = SHT_SYMTAB;
6717 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6718 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6719 symtab_hdr->sh_info = num_locals + 1;
6720 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6721
6722 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6723 symstrtab_hdr->sh_type = SHT_STRTAB;
6724
6725 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6726 bed->s->sizeof_sym);
6727 if (outbound_syms == NULL)
6728 {
6729 _bfd_stringtab_free (stt);
6730 return FALSE;
6731 }
6732 symtab_hdr->contents = outbound_syms;
6733
6734 outbound_shndx = NULL;
6735 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6736 if (symtab_shndx_hdr->sh_name != 0)
6737 {
6738 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6739 outbound_shndx = (bfd_byte *)
6740 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6741 if (outbound_shndx == NULL)
6742 {
6743 _bfd_stringtab_free (stt);
6744 return FALSE;
6745 }
6746
6747 symtab_shndx_hdr->contents = outbound_shndx;
6748 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6749 symtab_shndx_hdr->sh_size = amt;
6750 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6751 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6752 }
6753
6754 /* Now generate the data (for "contents"). */
6755 {
6756 /* Fill in zeroth symbol and swap it out. */
6757 Elf_Internal_Sym sym;
6758 sym.st_name = 0;
6759 sym.st_value = 0;
6760 sym.st_size = 0;
6761 sym.st_info = 0;
6762 sym.st_other = 0;
6763 sym.st_shndx = SHN_UNDEF;
6764 sym.st_target_internal = 0;
6765 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6766 outbound_syms += bed->s->sizeof_sym;
6767 if (outbound_shndx != NULL)
6768 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6769 }
6770
6771 name_local_sections
6772 = (bed->elf_backend_name_local_section_symbols
6773 && bed->elf_backend_name_local_section_symbols (abfd));
6774
6775 syms = bfd_get_outsymbols (abfd);
6776 for (idx = 0; idx < symcount; idx++)
6777 {
6778 Elf_Internal_Sym sym;
6779 bfd_vma value = syms[idx]->value;
6780 elf_symbol_type *type_ptr;
6781 flagword flags = syms[idx]->flags;
6782 int type;
6783
6784 if (!name_local_sections
6785 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6786 {
6787 /* Local section symbols have no name. */
6788 sym.st_name = 0;
6789 }
6790 else
6791 {
6792 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6793 syms[idx]->name,
6794 TRUE, FALSE);
6795 if (sym.st_name == (unsigned long) -1)
6796 {
6797 _bfd_stringtab_free (stt);
6798 return FALSE;
6799 }
6800 }
6801
6802 type_ptr = elf_symbol_from (abfd, syms[idx]);
6803
6804 if ((flags & BSF_SECTION_SYM) == 0
6805 && bfd_is_com_section (syms[idx]->section))
6806 {
6807 /* ELF common symbols put the alignment into the `value' field,
6808 and the size into the `size' field. This is backwards from
6809 how BFD handles it, so reverse it here. */
6810 sym.st_size = value;
6811 if (type_ptr == NULL
6812 || type_ptr->internal_elf_sym.st_value == 0)
6813 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6814 else
6815 sym.st_value = type_ptr->internal_elf_sym.st_value;
6816 sym.st_shndx = _bfd_elf_section_from_bfd_section
6817 (abfd, syms[idx]->section);
6818 }
6819 else
6820 {
6821 asection *sec = syms[idx]->section;
6822 unsigned int shndx;
6823
6824 if (sec->output_section)
6825 {
6826 value += sec->output_offset;
6827 sec = sec->output_section;
6828 }
6829
6830 /* Don't add in the section vma for relocatable output. */
6831 if (! relocatable_p)
6832 value += sec->vma;
6833 sym.st_value = value;
6834 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6835
6836 if (bfd_is_abs_section (sec)
6837 && type_ptr != NULL
6838 && type_ptr->internal_elf_sym.st_shndx != 0)
6839 {
6840 /* This symbol is in a real ELF section which we did
6841 not create as a BFD section. Undo the mapping done
6842 by copy_private_symbol_data. */
6843 shndx = type_ptr->internal_elf_sym.st_shndx;
6844 switch (shndx)
6845 {
6846 case MAP_ONESYMTAB:
6847 shndx = elf_onesymtab (abfd);
6848 break;
6849 case MAP_DYNSYMTAB:
6850 shndx = elf_dynsymtab (abfd);
6851 break;
6852 case MAP_STRTAB:
6853 shndx = elf_strtab_sec (abfd);
6854 break;
6855 case MAP_SHSTRTAB:
6856 shndx = elf_shstrtab_sec (abfd);
6857 break;
6858 case MAP_SYM_SHNDX:
6859 shndx = elf_symtab_shndx (abfd);
6860 break;
6861 default:
6862 shndx = SHN_ABS;
6863 break;
6864 }
6865 }
6866 else
6867 {
6868 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6869
6870 if (shndx == SHN_BAD)
6871 {
6872 asection *sec2;
6873
6874 /* Writing this would be a hell of a lot easier if
6875 we had some decent documentation on bfd, and
6876 knew what to expect of the library, and what to
6877 demand of applications. For example, it
6878 appears that `objcopy' might not set the
6879 section of a symbol to be a section that is
6880 actually in the output file. */
6881 sec2 = bfd_get_section_by_name (abfd, sec->name);
6882 if (sec2 == NULL)
6883 {
6884 _bfd_error_handler (_("\
6885 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6886 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6887 sec->name);
6888 bfd_set_error (bfd_error_invalid_operation);
6889 _bfd_stringtab_free (stt);
6890 return FALSE;
6891 }
6892
6893 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6894 BFD_ASSERT (shndx != SHN_BAD);
6895 }
6896 }
6897
6898 sym.st_shndx = shndx;
6899 }
6900
6901 if ((flags & BSF_THREAD_LOCAL) != 0)
6902 type = STT_TLS;
6903 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6904 type = STT_GNU_IFUNC;
6905 else if ((flags & BSF_FUNCTION) != 0)
6906 type = STT_FUNC;
6907 else if ((flags & BSF_OBJECT) != 0)
6908 type = STT_OBJECT;
6909 else if ((flags & BSF_RELC) != 0)
6910 type = STT_RELC;
6911 else if ((flags & BSF_SRELC) != 0)
6912 type = STT_SRELC;
6913 else
6914 type = STT_NOTYPE;
6915
6916 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6917 type = STT_TLS;
6918
6919 /* Processor-specific types. */
6920 if (type_ptr != NULL
6921 && bed->elf_backend_get_symbol_type)
6922 type = ((*bed->elf_backend_get_symbol_type)
6923 (&type_ptr->internal_elf_sym, type));
6924
6925 if (flags & BSF_SECTION_SYM)
6926 {
6927 if (flags & BSF_GLOBAL)
6928 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6929 else
6930 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6931 }
6932 else if (bfd_is_com_section (syms[idx]->section))
6933 {
6934 #ifdef USE_STT_COMMON
6935 if (type == STT_OBJECT)
6936 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6937 else
6938 #endif
6939 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6940 }
6941 else if (bfd_is_und_section (syms[idx]->section))
6942 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6943 ? STB_WEAK
6944 : STB_GLOBAL),
6945 type);
6946 else if (flags & BSF_FILE)
6947 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6948 else
6949 {
6950 int bind = STB_LOCAL;
6951
6952 if (flags & BSF_LOCAL)
6953 bind = STB_LOCAL;
6954 else if (flags & BSF_GNU_UNIQUE)
6955 bind = STB_GNU_UNIQUE;
6956 else if (flags & BSF_WEAK)
6957 bind = STB_WEAK;
6958 else if (flags & BSF_GLOBAL)
6959 bind = STB_GLOBAL;
6960
6961 sym.st_info = ELF_ST_INFO (bind, type);
6962 }
6963
6964 if (type_ptr != NULL)
6965 {
6966 sym.st_other = type_ptr->internal_elf_sym.st_other;
6967 sym.st_target_internal
6968 = type_ptr->internal_elf_sym.st_target_internal;
6969 }
6970 else
6971 {
6972 sym.st_other = 0;
6973 sym.st_target_internal = 0;
6974 }
6975
6976 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6977 outbound_syms += bed->s->sizeof_sym;
6978 if (outbound_shndx != NULL)
6979 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6980 }
6981
6982 *sttp = stt;
6983 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6984 symstrtab_hdr->sh_type = SHT_STRTAB;
6985
6986 symstrtab_hdr->sh_flags = 0;
6987 symstrtab_hdr->sh_addr = 0;
6988 symstrtab_hdr->sh_entsize = 0;
6989 symstrtab_hdr->sh_link = 0;
6990 symstrtab_hdr->sh_info = 0;
6991 symstrtab_hdr->sh_addralign = 1;
6992
6993 return TRUE;
6994 }
6995
6996 /* Return the number of bytes required to hold the symtab vector.
6997
6998 Note that we base it on the count plus 1, since we will null terminate
6999 the vector allocated based on this size. However, the ELF symbol table
7000 always has a dummy entry as symbol #0, so it ends up even. */
7001
7002 long
7003 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7004 {
7005 long symcount;
7006 long symtab_size;
7007 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7008
7009 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7010 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7011 if (symcount > 0)
7012 symtab_size -= sizeof (asymbol *);
7013
7014 return symtab_size;
7015 }
7016
7017 long
7018 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7019 {
7020 long symcount;
7021 long symtab_size;
7022 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7023
7024 if (elf_dynsymtab (abfd) == 0)
7025 {
7026 bfd_set_error (bfd_error_invalid_operation);
7027 return -1;
7028 }
7029
7030 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7031 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7032 if (symcount > 0)
7033 symtab_size -= sizeof (asymbol *);
7034
7035 return symtab_size;
7036 }
7037
7038 long
7039 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7040 sec_ptr asect)
7041 {
7042 return (asect->reloc_count + 1) * sizeof (arelent *);
7043 }
7044
7045 /* Canonicalize the relocs. */
7046
7047 long
7048 _bfd_elf_canonicalize_reloc (bfd *abfd,
7049 sec_ptr section,
7050 arelent **relptr,
7051 asymbol **symbols)
7052 {
7053 arelent *tblptr;
7054 unsigned int i;
7055 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7056
7057 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7058 return -1;
7059
7060 tblptr = section->relocation;
7061 for (i = 0; i < section->reloc_count; i++)
7062 *relptr++ = tblptr++;
7063
7064 *relptr = NULL;
7065
7066 return section->reloc_count;
7067 }
7068
7069 long
7070 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7071 {
7072 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7073 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7074
7075 if (symcount >= 0)
7076 bfd_get_symcount (abfd) = symcount;
7077 return symcount;
7078 }
7079
7080 long
7081 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7082 asymbol **allocation)
7083 {
7084 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7085 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7086
7087 if (symcount >= 0)
7088 bfd_get_dynamic_symcount (abfd) = symcount;
7089 return symcount;
7090 }
7091
7092 /* Return the size required for the dynamic reloc entries. Any loadable
7093 section that was actually installed in the BFD, and has type SHT_REL
7094 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7095 dynamic reloc section. */
7096
7097 long
7098 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7099 {
7100 long ret;
7101 asection *s;
7102
7103 if (elf_dynsymtab (abfd) == 0)
7104 {
7105 bfd_set_error (bfd_error_invalid_operation);
7106 return -1;
7107 }
7108
7109 ret = sizeof (arelent *);
7110 for (s = abfd->sections; s != NULL; s = s->next)
7111 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7112 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7113 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7114 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7115 * sizeof (arelent *));
7116
7117 return ret;
7118 }
7119
7120 /* Canonicalize the dynamic relocation entries. Note that we return the
7121 dynamic relocations as a single block, although they are actually
7122 associated with particular sections; the interface, which was
7123 designed for SunOS style shared libraries, expects that there is only
7124 one set of dynamic relocs. Any loadable section that was actually
7125 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7126 dynamic symbol table, is considered to be a dynamic reloc section. */
7127
7128 long
7129 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7130 arelent **storage,
7131 asymbol **syms)
7132 {
7133 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7134 asection *s;
7135 long ret;
7136
7137 if (elf_dynsymtab (abfd) == 0)
7138 {
7139 bfd_set_error (bfd_error_invalid_operation);
7140 return -1;
7141 }
7142
7143 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7144 ret = 0;
7145 for (s = abfd->sections; s != NULL; s = s->next)
7146 {
7147 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7148 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7149 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7150 {
7151 arelent *p;
7152 long count, i;
7153
7154 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7155 return -1;
7156 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7157 p = s->relocation;
7158 for (i = 0; i < count; i++)
7159 *storage++ = p++;
7160 ret += count;
7161 }
7162 }
7163
7164 *storage = NULL;
7165
7166 return ret;
7167 }
7168 \f
7169 /* Read in the version information. */
7170
7171 bfd_boolean
7172 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7173 {
7174 bfd_byte *contents = NULL;
7175 unsigned int freeidx = 0;
7176
7177 if (elf_dynverref (abfd) != 0)
7178 {
7179 Elf_Internal_Shdr *hdr;
7180 Elf_External_Verneed *everneed;
7181 Elf_Internal_Verneed *iverneed;
7182 unsigned int i;
7183 bfd_byte *contents_end;
7184
7185 hdr = &elf_tdata (abfd)->dynverref_hdr;
7186
7187 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7188 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7189 if (elf_tdata (abfd)->verref == NULL)
7190 goto error_return;
7191
7192 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7193
7194 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7195 if (contents == NULL)
7196 {
7197 error_return_verref:
7198 elf_tdata (abfd)->verref = NULL;
7199 elf_tdata (abfd)->cverrefs = 0;
7200 goto error_return;
7201 }
7202 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7203 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7204 goto error_return_verref;
7205
7206 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7207 goto error_return_verref;
7208
7209 BFD_ASSERT (sizeof (Elf_External_Verneed)
7210 == sizeof (Elf_External_Vernaux));
7211 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7212 everneed = (Elf_External_Verneed *) contents;
7213 iverneed = elf_tdata (abfd)->verref;
7214 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7215 {
7216 Elf_External_Vernaux *evernaux;
7217 Elf_Internal_Vernaux *ivernaux;
7218 unsigned int j;
7219
7220 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7221
7222 iverneed->vn_bfd = abfd;
7223
7224 iverneed->vn_filename =
7225 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7226 iverneed->vn_file);
7227 if (iverneed->vn_filename == NULL)
7228 goto error_return_verref;
7229
7230 if (iverneed->vn_cnt == 0)
7231 iverneed->vn_auxptr = NULL;
7232 else
7233 {
7234 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7235 bfd_alloc2 (abfd, iverneed->vn_cnt,
7236 sizeof (Elf_Internal_Vernaux));
7237 if (iverneed->vn_auxptr == NULL)
7238 goto error_return_verref;
7239 }
7240
7241 if (iverneed->vn_aux
7242 > (size_t) (contents_end - (bfd_byte *) everneed))
7243 goto error_return_verref;
7244
7245 evernaux = ((Elf_External_Vernaux *)
7246 ((bfd_byte *) everneed + iverneed->vn_aux));
7247 ivernaux = iverneed->vn_auxptr;
7248 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7249 {
7250 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7251
7252 ivernaux->vna_nodename =
7253 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7254 ivernaux->vna_name);
7255 if (ivernaux->vna_nodename == NULL)
7256 goto error_return_verref;
7257
7258 if (j + 1 < iverneed->vn_cnt)
7259 ivernaux->vna_nextptr = ivernaux + 1;
7260 else
7261 ivernaux->vna_nextptr = NULL;
7262
7263 if (ivernaux->vna_next
7264 > (size_t) (contents_end - (bfd_byte *) evernaux))
7265 goto error_return_verref;
7266
7267 evernaux = ((Elf_External_Vernaux *)
7268 ((bfd_byte *) evernaux + ivernaux->vna_next));
7269
7270 if (ivernaux->vna_other > freeidx)
7271 freeidx = ivernaux->vna_other;
7272 }
7273
7274 if (i + 1 < hdr->sh_info)
7275 iverneed->vn_nextref = iverneed + 1;
7276 else
7277 iverneed->vn_nextref = NULL;
7278
7279 if (iverneed->vn_next
7280 > (size_t) (contents_end - (bfd_byte *) everneed))
7281 goto error_return_verref;
7282
7283 everneed = ((Elf_External_Verneed *)
7284 ((bfd_byte *) everneed + iverneed->vn_next));
7285 }
7286
7287 free (contents);
7288 contents = NULL;
7289 }
7290
7291 if (elf_dynverdef (abfd) != 0)
7292 {
7293 Elf_Internal_Shdr *hdr;
7294 Elf_External_Verdef *everdef;
7295 Elf_Internal_Verdef *iverdef;
7296 Elf_Internal_Verdef *iverdefarr;
7297 Elf_Internal_Verdef iverdefmem;
7298 unsigned int i;
7299 unsigned int maxidx;
7300 bfd_byte *contents_end_def, *contents_end_aux;
7301
7302 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7303
7304 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7305 if (contents == NULL)
7306 goto error_return;
7307 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7308 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7309 goto error_return;
7310
7311 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7312 goto error_return;
7313
7314 BFD_ASSERT (sizeof (Elf_External_Verdef)
7315 >= sizeof (Elf_External_Verdaux));
7316 contents_end_def = contents + hdr->sh_size
7317 - sizeof (Elf_External_Verdef);
7318 contents_end_aux = contents + hdr->sh_size
7319 - sizeof (Elf_External_Verdaux);
7320
7321 /* We know the number of entries in the section but not the maximum
7322 index. Therefore we have to run through all entries and find
7323 the maximum. */
7324 everdef = (Elf_External_Verdef *) contents;
7325 maxidx = 0;
7326 for (i = 0; i < hdr->sh_info; ++i)
7327 {
7328 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7329
7330 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7331 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7332
7333 if (iverdefmem.vd_next
7334 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7335 goto error_return;
7336
7337 everdef = ((Elf_External_Verdef *)
7338 ((bfd_byte *) everdef + iverdefmem.vd_next));
7339 }
7340
7341 if (default_imported_symver)
7342 {
7343 if (freeidx > maxidx)
7344 maxidx = ++freeidx;
7345 else
7346 freeidx = ++maxidx;
7347 }
7348 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7349 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7350 if (elf_tdata (abfd)->verdef == NULL)
7351 goto error_return;
7352
7353 elf_tdata (abfd)->cverdefs = maxidx;
7354
7355 everdef = (Elf_External_Verdef *) contents;
7356 iverdefarr = elf_tdata (abfd)->verdef;
7357 for (i = 0; i < hdr->sh_info; i++)
7358 {
7359 Elf_External_Verdaux *everdaux;
7360 Elf_Internal_Verdaux *iverdaux;
7361 unsigned int j;
7362
7363 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7364
7365 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7366 {
7367 error_return_verdef:
7368 elf_tdata (abfd)->verdef = NULL;
7369 elf_tdata (abfd)->cverdefs = 0;
7370 goto error_return;
7371 }
7372
7373 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7374 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7375
7376 iverdef->vd_bfd = abfd;
7377
7378 if (iverdef->vd_cnt == 0)
7379 iverdef->vd_auxptr = NULL;
7380 else
7381 {
7382 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7383 bfd_alloc2 (abfd, iverdef->vd_cnt,
7384 sizeof (Elf_Internal_Verdaux));
7385 if (iverdef->vd_auxptr == NULL)
7386 goto error_return_verdef;
7387 }
7388
7389 if (iverdef->vd_aux
7390 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7391 goto error_return_verdef;
7392
7393 everdaux = ((Elf_External_Verdaux *)
7394 ((bfd_byte *) everdef + iverdef->vd_aux));
7395 iverdaux = iverdef->vd_auxptr;
7396 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7397 {
7398 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7399
7400 iverdaux->vda_nodename =
7401 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7402 iverdaux->vda_name);
7403 if (iverdaux->vda_nodename == NULL)
7404 goto error_return_verdef;
7405
7406 if (j + 1 < iverdef->vd_cnt)
7407 iverdaux->vda_nextptr = iverdaux + 1;
7408 else
7409 iverdaux->vda_nextptr = NULL;
7410
7411 if (iverdaux->vda_next
7412 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7413 goto error_return_verdef;
7414
7415 everdaux = ((Elf_External_Verdaux *)
7416 ((bfd_byte *) everdaux + iverdaux->vda_next));
7417 }
7418
7419 if (iverdef->vd_cnt)
7420 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7421
7422 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7423 iverdef->vd_nextdef = iverdef + 1;
7424 else
7425 iverdef->vd_nextdef = NULL;
7426
7427 everdef = ((Elf_External_Verdef *)
7428 ((bfd_byte *) everdef + iverdef->vd_next));
7429 }
7430
7431 free (contents);
7432 contents = NULL;
7433 }
7434 else if (default_imported_symver)
7435 {
7436 if (freeidx < 3)
7437 freeidx = 3;
7438 else
7439 freeidx++;
7440
7441 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7442 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7443 if (elf_tdata (abfd)->verdef == NULL)
7444 goto error_return;
7445
7446 elf_tdata (abfd)->cverdefs = freeidx;
7447 }
7448
7449 /* Create a default version based on the soname. */
7450 if (default_imported_symver)
7451 {
7452 Elf_Internal_Verdef *iverdef;
7453 Elf_Internal_Verdaux *iverdaux;
7454
7455 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7456
7457 iverdef->vd_version = VER_DEF_CURRENT;
7458 iverdef->vd_flags = 0;
7459 iverdef->vd_ndx = freeidx;
7460 iverdef->vd_cnt = 1;
7461
7462 iverdef->vd_bfd = abfd;
7463
7464 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7465 if (iverdef->vd_nodename == NULL)
7466 goto error_return_verdef;
7467 iverdef->vd_nextdef = NULL;
7468 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7469 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7470 if (iverdef->vd_auxptr == NULL)
7471 goto error_return_verdef;
7472
7473 iverdaux = iverdef->vd_auxptr;
7474 iverdaux->vda_nodename = iverdef->vd_nodename;
7475 iverdaux->vda_nextptr = NULL;
7476 }
7477
7478 return TRUE;
7479
7480 error_return:
7481 if (contents != NULL)
7482 free (contents);
7483 return FALSE;
7484 }
7485 \f
7486 asymbol *
7487 _bfd_elf_make_empty_symbol (bfd *abfd)
7488 {
7489 elf_symbol_type *newsym;
7490 bfd_size_type amt = sizeof (elf_symbol_type);
7491
7492 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7493 if (!newsym)
7494 return NULL;
7495 else
7496 {
7497 newsym->symbol.the_bfd = abfd;
7498 return &newsym->symbol;
7499 }
7500 }
7501
7502 void
7503 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7504 asymbol *symbol,
7505 symbol_info *ret)
7506 {
7507 bfd_symbol_info (symbol, ret);
7508 }
7509
7510 /* Return whether a symbol name implies a local symbol. Most targets
7511 use this function for the is_local_label_name entry point, but some
7512 override it. */
7513
7514 bfd_boolean
7515 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7516 const char *name)
7517 {
7518 /* Normal local symbols start with ``.L''. */
7519 if (name[0] == '.' && name[1] == 'L')
7520 return TRUE;
7521
7522 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7523 DWARF debugging symbols starting with ``..''. */
7524 if (name[0] == '.' && name[1] == '.')
7525 return TRUE;
7526
7527 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7528 emitting DWARF debugging output. I suspect this is actually a
7529 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7530 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7531 underscore to be emitted on some ELF targets). For ease of use,
7532 we treat such symbols as local. */
7533 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7534 return TRUE;
7535
7536 return FALSE;
7537 }
7538
7539 alent *
7540 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7541 asymbol *symbol ATTRIBUTE_UNUSED)
7542 {
7543 abort ();
7544 return NULL;
7545 }
7546
7547 bfd_boolean
7548 _bfd_elf_set_arch_mach (bfd *abfd,
7549 enum bfd_architecture arch,
7550 unsigned long machine)
7551 {
7552 /* If this isn't the right architecture for this backend, and this
7553 isn't the generic backend, fail. */
7554 if (arch != get_elf_backend_data (abfd)->arch
7555 && arch != bfd_arch_unknown
7556 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7557 return FALSE;
7558
7559 return bfd_default_set_arch_mach (abfd, arch, machine);
7560 }
7561
7562 /* Find the function to a particular section and offset,
7563 for error reporting. */
7564
7565 static bfd_boolean
7566 elf_find_function (bfd *abfd,
7567 asection *section,
7568 asymbol **symbols,
7569 bfd_vma offset,
7570 const char **filename_ptr,
7571 const char **functionname_ptr)
7572 {
7573 struct elf_find_function_cache
7574 {
7575 asection *last_section;
7576 asymbol *func;
7577 const char *filename;
7578 bfd_size_type func_size;
7579 } *cache;
7580
7581 if (symbols == NULL)
7582 return FALSE;
7583
7584 cache = elf_tdata (abfd)->elf_find_function_cache;
7585 if (cache == NULL)
7586 {
7587 cache = bfd_zalloc (abfd, sizeof (*cache));
7588 elf_tdata (abfd)->elf_find_function_cache = cache;
7589 if (cache == NULL)
7590 return FALSE;
7591 }
7592 if (cache->last_section != section
7593 || cache->func == NULL
7594 || offset < cache->func->value
7595 || offset >= cache->func->value + cache->func_size)
7596 {
7597 asymbol *file;
7598 bfd_vma low_func;
7599 asymbol **p;
7600 /* ??? Given multiple file symbols, it is impossible to reliably
7601 choose the right file name for global symbols. File symbols are
7602 local symbols, and thus all file symbols must sort before any
7603 global symbols. The ELF spec may be interpreted to say that a
7604 file symbol must sort before other local symbols, but currently
7605 ld -r doesn't do this. So, for ld -r output, it is possible to
7606 make a better choice of file name for local symbols by ignoring
7607 file symbols appearing after a given local symbol. */
7608 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7609 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7610
7611 file = NULL;
7612 low_func = 0;
7613 state = nothing_seen;
7614 cache->filename = NULL;
7615 cache->func = NULL;
7616 cache->func_size = 0;
7617 cache->last_section = section;
7618
7619 for (p = symbols; *p != NULL; p++)
7620 {
7621 asymbol *sym = *p;
7622 bfd_vma code_off;
7623 bfd_size_type size;
7624
7625 if ((sym->flags & BSF_FILE) != 0)
7626 {
7627 file = sym;
7628 if (state == symbol_seen)
7629 state = file_after_symbol_seen;
7630 continue;
7631 }
7632
7633 size = bed->maybe_function_sym (sym, section, &code_off);
7634 if (size != 0
7635 && code_off <= offset
7636 && (code_off > low_func
7637 || (code_off == low_func
7638 && size > cache->func_size)))
7639 {
7640 cache->func = sym;
7641 cache->func_size = size;
7642 cache->filename = NULL;
7643 low_func = code_off;
7644 if (file != NULL
7645 && ((sym->flags & BSF_LOCAL) != 0
7646 || state != file_after_symbol_seen))
7647 cache->filename = bfd_asymbol_name (file);
7648 }
7649 if (state == nothing_seen)
7650 state = symbol_seen;
7651 }
7652 }
7653
7654 if (cache->func == NULL)
7655 return FALSE;
7656
7657 if (filename_ptr)
7658 *filename_ptr = cache->filename;
7659 if (functionname_ptr)
7660 *functionname_ptr = bfd_asymbol_name (cache->func);
7661
7662 return TRUE;
7663 }
7664
7665 /* Find the nearest line to a particular section and offset,
7666 for error reporting. */
7667
7668 bfd_boolean
7669 _bfd_elf_find_nearest_line (bfd *abfd,
7670 asection *section,
7671 asymbol **symbols,
7672 bfd_vma offset,
7673 const char **filename_ptr,
7674 const char **functionname_ptr,
7675 unsigned int *line_ptr)
7676 {
7677 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7678 offset, filename_ptr,
7679 functionname_ptr,
7680 line_ptr,
7681 NULL);
7682 }
7683
7684 bfd_boolean
7685 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7686 asection *section,
7687 asymbol **symbols,
7688 bfd_vma offset,
7689 const char **filename_ptr,
7690 const char **functionname_ptr,
7691 unsigned int *line_ptr,
7692 unsigned int *discriminator_ptr)
7693 {
7694 bfd_boolean found;
7695
7696 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7697 filename_ptr, functionname_ptr,
7698 line_ptr))
7699 {
7700 if (!*functionname_ptr)
7701 elf_find_function (abfd, section, symbols, offset,
7702 *filename_ptr ? NULL : filename_ptr,
7703 functionname_ptr);
7704
7705 return TRUE;
7706 }
7707
7708 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7709 section, symbols, offset,
7710 filename_ptr, functionname_ptr,
7711 line_ptr, discriminator_ptr, 0,
7712 &elf_tdata (abfd)->dwarf2_find_line_info))
7713 {
7714 if (!*functionname_ptr)
7715 elf_find_function (abfd, section, symbols, offset,
7716 *filename_ptr ? NULL : filename_ptr,
7717 functionname_ptr);
7718
7719 return TRUE;
7720 }
7721
7722 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7723 &found, filename_ptr,
7724 functionname_ptr, line_ptr,
7725 &elf_tdata (abfd)->line_info))
7726 return FALSE;
7727 if (found && (*functionname_ptr || *line_ptr))
7728 return TRUE;
7729
7730 if (symbols == NULL)
7731 return FALSE;
7732
7733 if (! elf_find_function (abfd, section, symbols, offset,
7734 filename_ptr, functionname_ptr))
7735 return FALSE;
7736
7737 *line_ptr = 0;
7738 return TRUE;
7739 }
7740
7741 /* Find the line for a symbol. */
7742
7743 bfd_boolean
7744 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7745 const char **filename_ptr, unsigned int *line_ptr)
7746 {
7747 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7748 filename_ptr, line_ptr,
7749 NULL);
7750 }
7751
7752 bfd_boolean
7753 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7754 const char **filename_ptr,
7755 unsigned int *line_ptr,
7756 unsigned int *discriminator_ptr)
7757 {
7758 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7759 filename_ptr, line_ptr, discriminator_ptr, 0,
7760 &elf_tdata (abfd)->dwarf2_find_line_info);
7761 }
7762
7763 /* After a call to bfd_find_nearest_line, successive calls to
7764 bfd_find_inliner_info can be used to get source information about
7765 each level of function inlining that terminated at the address
7766 passed to bfd_find_nearest_line. Currently this is only supported
7767 for DWARF2 with appropriate DWARF3 extensions. */
7768
7769 bfd_boolean
7770 _bfd_elf_find_inliner_info (bfd *abfd,
7771 const char **filename_ptr,
7772 const char **functionname_ptr,
7773 unsigned int *line_ptr)
7774 {
7775 bfd_boolean found;
7776 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7777 functionname_ptr, line_ptr,
7778 & elf_tdata (abfd)->dwarf2_find_line_info);
7779 return found;
7780 }
7781
7782 int
7783 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7784 {
7785 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7786 int ret = bed->s->sizeof_ehdr;
7787
7788 if (!info->relocatable)
7789 {
7790 bfd_size_type phdr_size = elf_program_header_size (abfd);
7791
7792 if (phdr_size == (bfd_size_type) -1)
7793 {
7794 struct elf_segment_map *m;
7795
7796 phdr_size = 0;
7797 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
7798 phdr_size += bed->s->sizeof_phdr;
7799
7800 if (phdr_size == 0)
7801 phdr_size = get_program_header_size (abfd, info);
7802 }
7803
7804 elf_program_header_size (abfd) = phdr_size;
7805 ret += phdr_size;
7806 }
7807
7808 return ret;
7809 }
7810
7811 bfd_boolean
7812 _bfd_elf_set_section_contents (bfd *abfd,
7813 sec_ptr section,
7814 const void *location,
7815 file_ptr offset,
7816 bfd_size_type count)
7817 {
7818 Elf_Internal_Shdr *hdr;
7819 bfd_signed_vma pos;
7820
7821 if (! abfd->output_has_begun
7822 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7823 return FALSE;
7824
7825 hdr = &elf_section_data (section)->this_hdr;
7826 pos = hdr->sh_offset + offset;
7827 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7828 || bfd_bwrite (location, count, abfd) != count)
7829 return FALSE;
7830
7831 return TRUE;
7832 }
7833
7834 void
7835 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7836 arelent *cache_ptr ATTRIBUTE_UNUSED,
7837 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7838 {
7839 abort ();
7840 }
7841
7842 /* Try to convert a non-ELF reloc into an ELF one. */
7843
7844 bfd_boolean
7845 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7846 {
7847 /* Check whether we really have an ELF howto. */
7848
7849 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7850 {
7851 bfd_reloc_code_real_type code;
7852 reloc_howto_type *howto;
7853
7854 /* Alien reloc: Try to determine its type to replace it with an
7855 equivalent ELF reloc. */
7856
7857 if (areloc->howto->pc_relative)
7858 {
7859 switch (areloc->howto->bitsize)
7860 {
7861 case 8:
7862 code = BFD_RELOC_8_PCREL;
7863 break;
7864 case 12:
7865 code = BFD_RELOC_12_PCREL;
7866 break;
7867 case 16:
7868 code = BFD_RELOC_16_PCREL;
7869 break;
7870 case 24:
7871 code = BFD_RELOC_24_PCREL;
7872 break;
7873 case 32:
7874 code = BFD_RELOC_32_PCREL;
7875 break;
7876 case 64:
7877 code = BFD_RELOC_64_PCREL;
7878 break;
7879 default:
7880 goto fail;
7881 }
7882
7883 howto = bfd_reloc_type_lookup (abfd, code);
7884
7885 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7886 {
7887 if (howto->pcrel_offset)
7888 areloc->addend += areloc->address;
7889 else
7890 areloc->addend -= areloc->address; /* addend is unsigned!! */
7891 }
7892 }
7893 else
7894 {
7895 switch (areloc->howto->bitsize)
7896 {
7897 case 8:
7898 code = BFD_RELOC_8;
7899 break;
7900 case 14:
7901 code = BFD_RELOC_14;
7902 break;
7903 case 16:
7904 code = BFD_RELOC_16;
7905 break;
7906 case 26:
7907 code = BFD_RELOC_26;
7908 break;
7909 case 32:
7910 code = BFD_RELOC_32;
7911 break;
7912 case 64:
7913 code = BFD_RELOC_64;
7914 break;
7915 default:
7916 goto fail;
7917 }
7918
7919 howto = bfd_reloc_type_lookup (abfd, code);
7920 }
7921
7922 if (howto)
7923 areloc->howto = howto;
7924 else
7925 goto fail;
7926 }
7927
7928 return TRUE;
7929
7930 fail:
7931 (*_bfd_error_handler)
7932 (_("%B: unsupported relocation type %s"),
7933 abfd, areloc->howto->name);
7934 bfd_set_error (bfd_error_bad_value);
7935 return FALSE;
7936 }
7937
7938 bfd_boolean
7939 _bfd_elf_close_and_cleanup (bfd *abfd)
7940 {
7941 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7942 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7943 {
7944 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
7945 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7946 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7947 }
7948
7949 return _bfd_generic_close_and_cleanup (abfd);
7950 }
7951
7952 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7953 in the relocation's offset. Thus we cannot allow any sort of sanity
7954 range-checking to interfere. There is nothing else to do in processing
7955 this reloc. */
7956
7957 bfd_reloc_status_type
7958 _bfd_elf_rel_vtable_reloc_fn
7959 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7960 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7961 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7962 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7963 {
7964 return bfd_reloc_ok;
7965 }
7966 \f
7967 /* Elf core file support. Much of this only works on native
7968 toolchains, since we rely on knowing the
7969 machine-dependent procfs structure in order to pick
7970 out details about the corefile. */
7971
7972 #ifdef HAVE_SYS_PROCFS_H
7973 /* Needed for new procfs interface on sparc-solaris. */
7974 # define _STRUCTURED_PROC 1
7975 # include <sys/procfs.h>
7976 #endif
7977
7978 /* Return a PID that identifies a "thread" for threaded cores, or the
7979 PID of the main process for non-threaded cores. */
7980
7981 static int
7982 elfcore_make_pid (bfd *abfd)
7983 {
7984 int pid;
7985
7986 pid = elf_tdata (abfd)->core->lwpid;
7987 if (pid == 0)
7988 pid = elf_tdata (abfd)->core->pid;
7989
7990 return pid;
7991 }
7992
7993 /* If there isn't a section called NAME, make one, using
7994 data from SECT. Note, this function will generate a
7995 reference to NAME, so you shouldn't deallocate or
7996 overwrite it. */
7997
7998 static bfd_boolean
7999 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8000 {
8001 asection *sect2;
8002
8003 if (bfd_get_section_by_name (abfd, name) != NULL)
8004 return TRUE;
8005
8006 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8007 if (sect2 == NULL)
8008 return FALSE;
8009
8010 sect2->size = sect->size;
8011 sect2->filepos = sect->filepos;
8012 sect2->alignment_power = sect->alignment_power;
8013 return TRUE;
8014 }
8015
8016 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8017 actually creates up to two pseudosections:
8018 - For the single-threaded case, a section named NAME, unless
8019 such a section already exists.
8020 - For the multi-threaded case, a section named "NAME/PID", where
8021 PID is elfcore_make_pid (abfd).
8022 Both pseudosections have identical contents. */
8023 bfd_boolean
8024 _bfd_elfcore_make_pseudosection (bfd *abfd,
8025 char *name,
8026 size_t size,
8027 ufile_ptr filepos)
8028 {
8029 char buf[100];
8030 char *threaded_name;
8031 size_t len;
8032 asection *sect;
8033
8034 /* Build the section name. */
8035
8036 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8037 len = strlen (buf) + 1;
8038 threaded_name = (char *) bfd_alloc (abfd, len);
8039 if (threaded_name == NULL)
8040 return FALSE;
8041 memcpy (threaded_name, buf, len);
8042
8043 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8044 SEC_HAS_CONTENTS);
8045 if (sect == NULL)
8046 return FALSE;
8047 sect->size = size;
8048 sect->filepos = filepos;
8049 sect->alignment_power = 2;
8050
8051 return elfcore_maybe_make_sect (abfd, name, sect);
8052 }
8053
8054 /* prstatus_t exists on:
8055 solaris 2.5+
8056 linux 2.[01] + glibc
8057 unixware 4.2
8058 */
8059
8060 #if defined (HAVE_PRSTATUS_T)
8061
8062 static bfd_boolean
8063 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8064 {
8065 size_t size;
8066 int offset;
8067
8068 if (note->descsz == sizeof (prstatus_t))
8069 {
8070 prstatus_t prstat;
8071
8072 size = sizeof (prstat.pr_reg);
8073 offset = offsetof (prstatus_t, pr_reg);
8074 memcpy (&prstat, note->descdata, sizeof (prstat));
8075
8076 /* Do not overwrite the core signal if it
8077 has already been set by another thread. */
8078 if (elf_tdata (abfd)->core->signal == 0)
8079 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8080 if (elf_tdata (abfd)->core->pid == 0)
8081 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8082
8083 /* pr_who exists on:
8084 solaris 2.5+
8085 unixware 4.2
8086 pr_who doesn't exist on:
8087 linux 2.[01]
8088 */
8089 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8090 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8091 #else
8092 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8093 #endif
8094 }
8095 #if defined (HAVE_PRSTATUS32_T)
8096 else if (note->descsz == sizeof (prstatus32_t))
8097 {
8098 /* 64-bit host, 32-bit corefile */
8099 prstatus32_t prstat;
8100
8101 size = sizeof (prstat.pr_reg);
8102 offset = offsetof (prstatus32_t, pr_reg);
8103 memcpy (&prstat, note->descdata, sizeof (prstat));
8104
8105 /* Do not overwrite the core signal if it
8106 has already been set by another thread. */
8107 if (elf_tdata (abfd)->core->signal == 0)
8108 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8109 if (elf_tdata (abfd)->core->pid == 0)
8110 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8111
8112 /* pr_who exists on:
8113 solaris 2.5+
8114 unixware 4.2
8115 pr_who doesn't exist on:
8116 linux 2.[01]
8117 */
8118 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8119 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8120 #else
8121 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8122 #endif
8123 }
8124 #endif /* HAVE_PRSTATUS32_T */
8125 else
8126 {
8127 /* Fail - we don't know how to handle any other
8128 note size (ie. data object type). */
8129 return TRUE;
8130 }
8131
8132 /* Make a ".reg/999" section and a ".reg" section. */
8133 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8134 size, note->descpos + offset);
8135 }
8136 #endif /* defined (HAVE_PRSTATUS_T) */
8137
8138 /* Create a pseudosection containing the exact contents of NOTE. */
8139 static bfd_boolean
8140 elfcore_make_note_pseudosection (bfd *abfd,
8141 char *name,
8142 Elf_Internal_Note *note)
8143 {
8144 return _bfd_elfcore_make_pseudosection (abfd, name,
8145 note->descsz, note->descpos);
8146 }
8147
8148 /* There isn't a consistent prfpregset_t across platforms,
8149 but it doesn't matter, because we don't have to pick this
8150 data structure apart. */
8151
8152 static bfd_boolean
8153 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8154 {
8155 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8156 }
8157
8158 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8159 type of NT_PRXFPREG. Just include the whole note's contents
8160 literally. */
8161
8162 static bfd_boolean
8163 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8164 {
8165 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8166 }
8167
8168 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8169 with a note type of NT_X86_XSTATE. Just include the whole note's
8170 contents literally. */
8171
8172 static bfd_boolean
8173 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8174 {
8175 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8176 }
8177
8178 static bfd_boolean
8179 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8180 {
8181 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8182 }
8183
8184 static bfd_boolean
8185 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8186 {
8187 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8188 }
8189
8190 static bfd_boolean
8191 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8192 {
8193 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8194 }
8195
8196 static bfd_boolean
8197 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8198 {
8199 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8200 }
8201
8202 static bfd_boolean
8203 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8204 {
8205 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8206 }
8207
8208 static bfd_boolean
8209 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8210 {
8211 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8212 }
8213
8214 static bfd_boolean
8215 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8216 {
8217 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8218 }
8219
8220 static bfd_boolean
8221 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8222 {
8223 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8224 }
8225
8226 static bfd_boolean
8227 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8228 {
8229 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8230 }
8231
8232 static bfd_boolean
8233 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8234 {
8235 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8236 }
8237
8238 static bfd_boolean
8239 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8240 {
8241 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8242 }
8243
8244 static bfd_boolean
8245 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8246 {
8247 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8248 }
8249
8250 static bfd_boolean
8251 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8252 {
8253 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8254 }
8255
8256 static bfd_boolean
8257 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8258 {
8259 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8260 }
8261
8262 static bfd_boolean
8263 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8264 {
8265 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8266 }
8267
8268 #if defined (HAVE_PRPSINFO_T)
8269 typedef prpsinfo_t elfcore_psinfo_t;
8270 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8271 typedef prpsinfo32_t elfcore_psinfo32_t;
8272 #endif
8273 #endif
8274
8275 #if defined (HAVE_PSINFO_T)
8276 typedef psinfo_t elfcore_psinfo_t;
8277 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8278 typedef psinfo32_t elfcore_psinfo32_t;
8279 #endif
8280 #endif
8281
8282 /* return a malloc'ed copy of a string at START which is at
8283 most MAX bytes long, possibly without a terminating '\0'.
8284 the copy will always have a terminating '\0'. */
8285
8286 char *
8287 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8288 {
8289 char *dups;
8290 char *end = (char *) memchr (start, '\0', max);
8291 size_t len;
8292
8293 if (end == NULL)
8294 len = max;
8295 else
8296 len = end - start;
8297
8298 dups = (char *) bfd_alloc (abfd, len + 1);
8299 if (dups == NULL)
8300 return NULL;
8301
8302 memcpy (dups, start, len);
8303 dups[len] = '\0';
8304
8305 return dups;
8306 }
8307
8308 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8309 static bfd_boolean
8310 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8311 {
8312 if (note->descsz == sizeof (elfcore_psinfo_t))
8313 {
8314 elfcore_psinfo_t psinfo;
8315
8316 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8317
8318 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8319 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8320 #endif
8321 elf_tdata (abfd)->core->program
8322 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8323 sizeof (psinfo.pr_fname));
8324
8325 elf_tdata (abfd)->core->command
8326 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8327 sizeof (psinfo.pr_psargs));
8328 }
8329 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8330 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8331 {
8332 /* 64-bit host, 32-bit corefile */
8333 elfcore_psinfo32_t psinfo;
8334
8335 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8336
8337 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8338 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8339 #endif
8340 elf_tdata (abfd)->core->program
8341 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8342 sizeof (psinfo.pr_fname));
8343
8344 elf_tdata (abfd)->core->command
8345 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8346 sizeof (psinfo.pr_psargs));
8347 }
8348 #endif
8349
8350 else
8351 {
8352 /* Fail - we don't know how to handle any other
8353 note size (ie. data object type). */
8354 return TRUE;
8355 }
8356
8357 /* Note that for some reason, a spurious space is tacked
8358 onto the end of the args in some (at least one anyway)
8359 implementations, so strip it off if it exists. */
8360
8361 {
8362 char *command = elf_tdata (abfd)->core->command;
8363 int n = strlen (command);
8364
8365 if (0 < n && command[n - 1] == ' ')
8366 command[n - 1] = '\0';
8367 }
8368
8369 return TRUE;
8370 }
8371 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8372
8373 #if defined (HAVE_PSTATUS_T)
8374 static bfd_boolean
8375 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8376 {
8377 if (note->descsz == sizeof (pstatus_t)
8378 #if defined (HAVE_PXSTATUS_T)
8379 || note->descsz == sizeof (pxstatus_t)
8380 #endif
8381 )
8382 {
8383 pstatus_t pstat;
8384
8385 memcpy (&pstat, note->descdata, sizeof (pstat));
8386
8387 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8388 }
8389 #if defined (HAVE_PSTATUS32_T)
8390 else if (note->descsz == sizeof (pstatus32_t))
8391 {
8392 /* 64-bit host, 32-bit corefile */
8393 pstatus32_t pstat;
8394
8395 memcpy (&pstat, note->descdata, sizeof (pstat));
8396
8397 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8398 }
8399 #endif
8400 /* Could grab some more details from the "representative"
8401 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8402 NT_LWPSTATUS note, presumably. */
8403
8404 return TRUE;
8405 }
8406 #endif /* defined (HAVE_PSTATUS_T) */
8407
8408 #if defined (HAVE_LWPSTATUS_T)
8409 static bfd_boolean
8410 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8411 {
8412 lwpstatus_t lwpstat;
8413 char buf[100];
8414 char *name;
8415 size_t len;
8416 asection *sect;
8417
8418 if (note->descsz != sizeof (lwpstat)
8419 #if defined (HAVE_LWPXSTATUS_T)
8420 && note->descsz != sizeof (lwpxstatus_t)
8421 #endif
8422 )
8423 return TRUE;
8424
8425 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8426
8427 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8428 /* Do not overwrite the core signal if it has already been set by
8429 another thread. */
8430 if (elf_tdata (abfd)->core->signal == 0)
8431 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8432
8433 /* Make a ".reg/999" section. */
8434
8435 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8436 len = strlen (buf) + 1;
8437 name = bfd_alloc (abfd, len);
8438 if (name == NULL)
8439 return FALSE;
8440 memcpy (name, buf, len);
8441
8442 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8443 if (sect == NULL)
8444 return FALSE;
8445
8446 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8447 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8448 sect->filepos = note->descpos
8449 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8450 #endif
8451
8452 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8453 sect->size = sizeof (lwpstat.pr_reg);
8454 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8455 #endif
8456
8457 sect->alignment_power = 2;
8458
8459 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8460 return FALSE;
8461
8462 /* Make a ".reg2/999" section */
8463
8464 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8465 len = strlen (buf) + 1;
8466 name = bfd_alloc (abfd, len);
8467 if (name == NULL)
8468 return FALSE;
8469 memcpy (name, buf, len);
8470
8471 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8472 if (sect == NULL)
8473 return FALSE;
8474
8475 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8476 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8477 sect->filepos = note->descpos
8478 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8479 #endif
8480
8481 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8482 sect->size = sizeof (lwpstat.pr_fpreg);
8483 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8484 #endif
8485
8486 sect->alignment_power = 2;
8487
8488 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8489 }
8490 #endif /* defined (HAVE_LWPSTATUS_T) */
8491
8492 static bfd_boolean
8493 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8494 {
8495 char buf[30];
8496 char *name;
8497 size_t len;
8498 asection *sect;
8499 int type;
8500 int is_active_thread;
8501 bfd_vma base_addr;
8502
8503 if (note->descsz < 728)
8504 return TRUE;
8505
8506 if (! CONST_STRNEQ (note->namedata, "win32"))
8507 return TRUE;
8508
8509 type = bfd_get_32 (abfd, note->descdata);
8510
8511 switch (type)
8512 {
8513 case 1 /* NOTE_INFO_PROCESS */:
8514 /* FIXME: need to add ->core->command. */
8515 /* process_info.pid */
8516 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
8517 /* process_info.signal */
8518 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
8519 break;
8520
8521 case 2 /* NOTE_INFO_THREAD */:
8522 /* Make a ".reg/999" section. */
8523 /* thread_info.tid */
8524 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8525
8526 len = strlen (buf) + 1;
8527 name = (char *) bfd_alloc (abfd, len);
8528 if (name == NULL)
8529 return FALSE;
8530
8531 memcpy (name, buf, len);
8532
8533 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8534 if (sect == NULL)
8535 return FALSE;
8536
8537 /* sizeof (thread_info.thread_context) */
8538 sect->size = 716;
8539 /* offsetof (thread_info.thread_context) */
8540 sect->filepos = note->descpos + 12;
8541 sect->alignment_power = 2;
8542
8543 /* thread_info.is_active_thread */
8544 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8545
8546 if (is_active_thread)
8547 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8548 return FALSE;
8549 break;
8550
8551 case 3 /* NOTE_INFO_MODULE */:
8552 /* Make a ".module/xxxxxxxx" section. */
8553 /* module_info.base_address */
8554 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8555 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8556
8557 len = strlen (buf) + 1;
8558 name = (char *) bfd_alloc (abfd, len);
8559 if (name == NULL)
8560 return FALSE;
8561
8562 memcpy (name, buf, len);
8563
8564 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8565
8566 if (sect == NULL)
8567 return FALSE;
8568
8569 sect->size = note->descsz;
8570 sect->filepos = note->descpos;
8571 sect->alignment_power = 2;
8572 break;
8573
8574 default:
8575 return TRUE;
8576 }
8577
8578 return TRUE;
8579 }
8580
8581 static bfd_boolean
8582 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8583 {
8584 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8585
8586 switch (note->type)
8587 {
8588 default:
8589 return TRUE;
8590
8591 case NT_PRSTATUS:
8592 if (bed->elf_backend_grok_prstatus)
8593 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8594 return TRUE;
8595 #if defined (HAVE_PRSTATUS_T)
8596 return elfcore_grok_prstatus (abfd, note);
8597 #else
8598 return TRUE;
8599 #endif
8600
8601 #if defined (HAVE_PSTATUS_T)
8602 case NT_PSTATUS:
8603 return elfcore_grok_pstatus (abfd, note);
8604 #endif
8605
8606 #if defined (HAVE_LWPSTATUS_T)
8607 case NT_LWPSTATUS:
8608 return elfcore_grok_lwpstatus (abfd, note);
8609 #endif
8610
8611 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8612 return elfcore_grok_prfpreg (abfd, note);
8613
8614 case NT_WIN32PSTATUS:
8615 return elfcore_grok_win32pstatus (abfd, note);
8616
8617 case NT_PRXFPREG: /* Linux SSE extension */
8618 if (note->namesz == 6
8619 && strcmp (note->namedata, "LINUX") == 0)
8620 return elfcore_grok_prxfpreg (abfd, note);
8621 else
8622 return TRUE;
8623
8624 case NT_X86_XSTATE: /* Linux XSAVE extension */
8625 if (note->namesz == 6
8626 && strcmp (note->namedata, "LINUX") == 0)
8627 return elfcore_grok_xstatereg (abfd, note);
8628 else
8629 return TRUE;
8630
8631 case NT_PPC_VMX:
8632 if (note->namesz == 6
8633 && strcmp (note->namedata, "LINUX") == 0)
8634 return elfcore_grok_ppc_vmx (abfd, note);
8635 else
8636 return TRUE;
8637
8638 case NT_PPC_VSX:
8639 if (note->namesz == 6
8640 && strcmp (note->namedata, "LINUX") == 0)
8641 return elfcore_grok_ppc_vsx (abfd, note);
8642 else
8643 return TRUE;
8644
8645 case NT_S390_HIGH_GPRS:
8646 if (note->namesz == 6
8647 && strcmp (note->namedata, "LINUX") == 0)
8648 return elfcore_grok_s390_high_gprs (abfd, note);
8649 else
8650 return TRUE;
8651
8652 case NT_S390_TIMER:
8653 if (note->namesz == 6
8654 && strcmp (note->namedata, "LINUX") == 0)
8655 return elfcore_grok_s390_timer (abfd, note);
8656 else
8657 return TRUE;
8658
8659 case NT_S390_TODCMP:
8660 if (note->namesz == 6
8661 && strcmp (note->namedata, "LINUX") == 0)
8662 return elfcore_grok_s390_todcmp (abfd, note);
8663 else
8664 return TRUE;
8665
8666 case NT_S390_TODPREG:
8667 if (note->namesz == 6
8668 && strcmp (note->namedata, "LINUX") == 0)
8669 return elfcore_grok_s390_todpreg (abfd, note);
8670 else
8671 return TRUE;
8672
8673 case NT_S390_CTRS:
8674 if (note->namesz == 6
8675 && strcmp (note->namedata, "LINUX") == 0)
8676 return elfcore_grok_s390_ctrs (abfd, note);
8677 else
8678 return TRUE;
8679
8680 case NT_S390_PREFIX:
8681 if (note->namesz == 6
8682 && strcmp (note->namedata, "LINUX") == 0)
8683 return elfcore_grok_s390_prefix (abfd, note);
8684 else
8685 return TRUE;
8686
8687 case NT_S390_LAST_BREAK:
8688 if (note->namesz == 6
8689 && strcmp (note->namedata, "LINUX") == 0)
8690 return elfcore_grok_s390_last_break (abfd, note);
8691 else
8692 return TRUE;
8693
8694 case NT_S390_SYSTEM_CALL:
8695 if (note->namesz == 6
8696 && strcmp (note->namedata, "LINUX") == 0)
8697 return elfcore_grok_s390_system_call (abfd, note);
8698 else
8699 return TRUE;
8700
8701 case NT_S390_TDB:
8702 if (note->namesz == 6
8703 && strcmp (note->namedata, "LINUX") == 0)
8704 return elfcore_grok_s390_tdb (abfd, note);
8705 else
8706 return TRUE;
8707
8708 case NT_ARM_VFP:
8709 if (note->namesz == 6
8710 && strcmp (note->namedata, "LINUX") == 0)
8711 return elfcore_grok_arm_vfp (abfd, note);
8712 else
8713 return TRUE;
8714
8715 case NT_ARM_TLS:
8716 if (note->namesz == 6
8717 && strcmp (note->namedata, "LINUX") == 0)
8718 return elfcore_grok_aarch_tls (abfd, note);
8719 else
8720 return TRUE;
8721
8722 case NT_ARM_HW_BREAK:
8723 if (note->namesz == 6
8724 && strcmp (note->namedata, "LINUX") == 0)
8725 return elfcore_grok_aarch_hw_break (abfd, note);
8726 else
8727 return TRUE;
8728
8729 case NT_ARM_HW_WATCH:
8730 if (note->namesz == 6
8731 && strcmp (note->namedata, "LINUX") == 0)
8732 return elfcore_grok_aarch_hw_watch (abfd, note);
8733 else
8734 return TRUE;
8735
8736 case NT_PRPSINFO:
8737 case NT_PSINFO:
8738 if (bed->elf_backend_grok_psinfo)
8739 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8740 return TRUE;
8741 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8742 return elfcore_grok_psinfo (abfd, note);
8743 #else
8744 return TRUE;
8745 #endif
8746
8747 case NT_AUXV:
8748 {
8749 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8750 SEC_HAS_CONTENTS);
8751
8752 if (sect == NULL)
8753 return FALSE;
8754 sect->size = note->descsz;
8755 sect->filepos = note->descpos;
8756 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8757
8758 return TRUE;
8759 }
8760
8761 case NT_FILE:
8762 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
8763 note);
8764
8765 case NT_SIGINFO:
8766 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8767 note);
8768 }
8769 }
8770
8771 static bfd_boolean
8772 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8773 {
8774 struct elf_obj_tdata *t;
8775
8776 if (note->descsz == 0)
8777 return FALSE;
8778
8779 t = elf_tdata (abfd);
8780 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz);
8781 if (t->build_id == NULL)
8782 return FALSE;
8783
8784 t->build_id->size = note->descsz;
8785 memcpy (t->build_id->data, note->descdata, note->descsz);
8786
8787 return TRUE;
8788 }
8789
8790 static bfd_boolean
8791 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8792 {
8793 switch (note->type)
8794 {
8795 default:
8796 return TRUE;
8797
8798 case NT_GNU_BUILD_ID:
8799 return elfobj_grok_gnu_build_id (abfd, note);
8800 }
8801 }
8802
8803 static bfd_boolean
8804 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8805 {
8806 struct sdt_note *cur =
8807 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8808 + note->descsz);
8809
8810 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8811 cur->size = (bfd_size_type) note->descsz;
8812 memcpy (cur->data, note->descdata, note->descsz);
8813
8814 elf_tdata (abfd)->sdt_note_head = cur;
8815
8816 return TRUE;
8817 }
8818
8819 static bfd_boolean
8820 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8821 {
8822 switch (note->type)
8823 {
8824 case NT_STAPSDT:
8825 return elfobj_grok_stapsdt_note_1 (abfd, note);
8826
8827 default:
8828 return TRUE;
8829 }
8830 }
8831
8832 static bfd_boolean
8833 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8834 {
8835 char *cp;
8836
8837 cp = strchr (note->namedata, '@');
8838 if (cp != NULL)
8839 {
8840 *lwpidp = atoi(cp + 1);
8841 return TRUE;
8842 }
8843 return FALSE;
8844 }
8845
8846 static bfd_boolean
8847 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8848 {
8849 /* Signal number at offset 0x08. */
8850 elf_tdata (abfd)->core->signal
8851 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8852
8853 /* Process ID at offset 0x50. */
8854 elf_tdata (abfd)->core->pid
8855 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8856
8857 /* Command name at 0x7c (max 32 bytes, including nul). */
8858 elf_tdata (abfd)->core->command
8859 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8860
8861 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8862 note);
8863 }
8864
8865 static bfd_boolean
8866 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8867 {
8868 int lwp;
8869
8870 if (elfcore_netbsd_get_lwpid (note, &lwp))
8871 elf_tdata (abfd)->core->lwpid = lwp;
8872
8873 if (note->type == NT_NETBSDCORE_PROCINFO)
8874 {
8875 /* NetBSD-specific core "procinfo". Note that we expect to
8876 find this note before any of the others, which is fine,
8877 since the kernel writes this note out first when it
8878 creates a core file. */
8879
8880 return elfcore_grok_netbsd_procinfo (abfd, note);
8881 }
8882
8883 /* As of Jan 2002 there are no other machine-independent notes
8884 defined for NetBSD core files. If the note type is less
8885 than the start of the machine-dependent note types, we don't
8886 understand it. */
8887
8888 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8889 return TRUE;
8890
8891
8892 switch (bfd_get_arch (abfd))
8893 {
8894 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8895 PT_GETFPREGS == mach+2. */
8896
8897 case bfd_arch_alpha:
8898 case bfd_arch_sparc:
8899 switch (note->type)
8900 {
8901 case NT_NETBSDCORE_FIRSTMACH+0:
8902 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8903
8904 case NT_NETBSDCORE_FIRSTMACH+2:
8905 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8906
8907 default:
8908 return TRUE;
8909 }
8910
8911 /* On all other arch's, PT_GETREGS == mach+1 and
8912 PT_GETFPREGS == mach+3. */
8913
8914 default:
8915 switch (note->type)
8916 {
8917 case NT_NETBSDCORE_FIRSTMACH+1:
8918 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8919
8920 case NT_NETBSDCORE_FIRSTMACH+3:
8921 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8922
8923 default:
8924 return TRUE;
8925 }
8926 }
8927 /* NOTREACHED */
8928 }
8929
8930 static bfd_boolean
8931 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8932 {
8933 /* Signal number at offset 0x08. */
8934 elf_tdata (abfd)->core->signal
8935 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8936
8937 /* Process ID at offset 0x20. */
8938 elf_tdata (abfd)->core->pid
8939 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8940
8941 /* Command name at 0x48 (max 32 bytes, including nul). */
8942 elf_tdata (abfd)->core->command
8943 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8944
8945 return TRUE;
8946 }
8947
8948 static bfd_boolean
8949 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8950 {
8951 if (note->type == NT_OPENBSD_PROCINFO)
8952 return elfcore_grok_openbsd_procinfo (abfd, note);
8953
8954 if (note->type == NT_OPENBSD_REGS)
8955 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8956
8957 if (note->type == NT_OPENBSD_FPREGS)
8958 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8959
8960 if (note->type == NT_OPENBSD_XFPREGS)
8961 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8962
8963 if (note->type == NT_OPENBSD_AUXV)
8964 {
8965 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8966 SEC_HAS_CONTENTS);
8967
8968 if (sect == NULL)
8969 return FALSE;
8970 sect->size = note->descsz;
8971 sect->filepos = note->descpos;
8972 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8973
8974 return TRUE;
8975 }
8976
8977 if (note->type == NT_OPENBSD_WCOOKIE)
8978 {
8979 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8980 SEC_HAS_CONTENTS);
8981
8982 if (sect == NULL)
8983 return FALSE;
8984 sect->size = note->descsz;
8985 sect->filepos = note->descpos;
8986 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8987
8988 return TRUE;
8989 }
8990
8991 return TRUE;
8992 }
8993
8994 static bfd_boolean
8995 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8996 {
8997 void *ddata = note->descdata;
8998 char buf[100];
8999 char *name;
9000 asection *sect;
9001 short sig;
9002 unsigned flags;
9003
9004 /* nto_procfs_status 'pid' field is at offset 0. */
9005 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
9006
9007 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
9008 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
9009
9010 /* nto_procfs_status 'flags' field is at offset 8. */
9011 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
9012
9013 /* nto_procfs_status 'what' field is at offset 14. */
9014 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
9015 {
9016 elf_tdata (abfd)->core->signal = sig;
9017 elf_tdata (abfd)->core->lwpid = *tid;
9018 }
9019
9020 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
9021 do not come from signals so we make sure we set the current
9022 thread just in case. */
9023 if (flags & 0x00000080)
9024 elf_tdata (abfd)->core->lwpid = *tid;
9025
9026 /* Make a ".qnx_core_status/%d" section. */
9027 sprintf (buf, ".qnx_core_status/%ld", *tid);
9028
9029 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9030 if (name == NULL)
9031 return FALSE;
9032 strcpy (name, buf);
9033
9034 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9035 if (sect == NULL)
9036 return FALSE;
9037
9038 sect->size = note->descsz;
9039 sect->filepos = note->descpos;
9040 sect->alignment_power = 2;
9041
9042 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9043 }
9044
9045 static bfd_boolean
9046 elfcore_grok_nto_regs (bfd *abfd,
9047 Elf_Internal_Note *note,
9048 long tid,
9049 char *base)
9050 {
9051 char buf[100];
9052 char *name;
9053 asection *sect;
9054
9055 /* Make a "(base)/%d" section. */
9056 sprintf (buf, "%s/%ld", base, tid);
9057
9058 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9059 if (name == NULL)
9060 return FALSE;
9061 strcpy (name, buf);
9062
9063 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9064 if (sect == NULL)
9065 return FALSE;
9066
9067 sect->size = note->descsz;
9068 sect->filepos = note->descpos;
9069 sect->alignment_power = 2;
9070
9071 /* This is the current thread. */
9072 if (elf_tdata (abfd)->core->lwpid == tid)
9073 return elfcore_maybe_make_sect (abfd, base, sect);
9074
9075 return TRUE;
9076 }
9077
9078 #define BFD_QNT_CORE_INFO 7
9079 #define BFD_QNT_CORE_STATUS 8
9080 #define BFD_QNT_CORE_GREG 9
9081 #define BFD_QNT_CORE_FPREG 10
9082
9083 static bfd_boolean
9084 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9085 {
9086 /* Every GREG section has a STATUS section before it. Store the
9087 tid from the previous call to pass down to the next gregs
9088 function. */
9089 static long tid = 1;
9090
9091 switch (note->type)
9092 {
9093 case BFD_QNT_CORE_INFO:
9094 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9095 case BFD_QNT_CORE_STATUS:
9096 return elfcore_grok_nto_status (abfd, note, &tid);
9097 case BFD_QNT_CORE_GREG:
9098 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9099 case BFD_QNT_CORE_FPREG:
9100 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9101 default:
9102 return TRUE;
9103 }
9104 }
9105
9106 static bfd_boolean
9107 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9108 {
9109 char *name;
9110 asection *sect;
9111 size_t len;
9112
9113 /* Use note name as section name. */
9114 len = note->namesz;
9115 name = (char *) bfd_alloc (abfd, len);
9116 if (name == NULL)
9117 return FALSE;
9118 memcpy (name, note->namedata, len);
9119 name[len - 1] = '\0';
9120
9121 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9122 if (sect == NULL)
9123 return FALSE;
9124
9125 sect->size = note->descsz;
9126 sect->filepos = note->descpos;
9127 sect->alignment_power = 1;
9128
9129 return TRUE;
9130 }
9131
9132 /* Function: elfcore_write_note
9133
9134 Inputs:
9135 buffer to hold note, and current size of buffer
9136 name of note
9137 type of note
9138 data for note
9139 size of data for note
9140
9141 Writes note to end of buffer. ELF64 notes are written exactly as
9142 for ELF32, despite the current (as of 2006) ELF gabi specifying
9143 that they ought to have 8-byte namesz and descsz field, and have
9144 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9145
9146 Return:
9147 Pointer to realloc'd buffer, *BUFSIZ updated. */
9148
9149 char *
9150 elfcore_write_note (bfd *abfd,
9151 char *buf,
9152 int *bufsiz,
9153 const char *name,
9154 int type,
9155 const void *input,
9156 int size)
9157 {
9158 Elf_External_Note *xnp;
9159 size_t namesz;
9160 size_t newspace;
9161 char *dest;
9162
9163 namesz = 0;
9164 if (name != NULL)
9165 namesz = strlen (name) + 1;
9166
9167 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9168
9169 buf = (char *) realloc (buf, *bufsiz + newspace);
9170 if (buf == NULL)
9171 return buf;
9172 dest = buf + *bufsiz;
9173 *bufsiz += newspace;
9174 xnp = (Elf_External_Note *) dest;
9175 H_PUT_32 (abfd, namesz, xnp->namesz);
9176 H_PUT_32 (abfd, size, xnp->descsz);
9177 H_PUT_32 (abfd, type, xnp->type);
9178 dest = xnp->name;
9179 if (name != NULL)
9180 {
9181 memcpy (dest, name, namesz);
9182 dest += namesz;
9183 while (namesz & 3)
9184 {
9185 *dest++ = '\0';
9186 ++namesz;
9187 }
9188 }
9189 memcpy (dest, input, size);
9190 dest += size;
9191 while (size & 3)
9192 {
9193 *dest++ = '\0';
9194 ++size;
9195 }
9196 return buf;
9197 }
9198
9199 char *
9200 elfcore_write_prpsinfo (bfd *abfd,
9201 char *buf,
9202 int *bufsiz,
9203 const char *fname,
9204 const char *psargs)
9205 {
9206 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9207
9208 if (bed->elf_backend_write_core_note != NULL)
9209 {
9210 char *ret;
9211 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9212 NT_PRPSINFO, fname, psargs);
9213 if (ret != NULL)
9214 return ret;
9215 }
9216
9217 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9218 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9219 if (bed->s->elfclass == ELFCLASS32)
9220 {
9221 #if defined (HAVE_PSINFO32_T)
9222 psinfo32_t data;
9223 int note_type = NT_PSINFO;
9224 #else
9225 prpsinfo32_t data;
9226 int note_type = NT_PRPSINFO;
9227 #endif
9228
9229 memset (&data, 0, sizeof (data));
9230 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9231 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9232 return elfcore_write_note (abfd, buf, bufsiz,
9233 "CORE", note_type, &data, sizeof (data));
9234 }
9235 else
9236 #endif
9237 {
9238 #if defined (HAVE_PSINFO_T)
9239 psinfo_t data;
9240 int note_type = NT_PSINFO;
9241 #else
9242 prpsinfo_t data;
9243 int note_type = NT_PRPSINFO;
9244 #endif
9245
9246 memset (&data, 0, sizeof (data));
9247 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9248 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9249 return elfcore_write_note (abfd, buf, bufsiz,
9250 "CORE", note_type, &data, sizeof (data));
9251 }
9252 #endif /* PSINFO_T or PRPSINFO_T */
9253
9254 free (buf);
9255 return NULL;
9256 }
9257
9258 char *
9259 elfcore_write_linux_prpsinfo32
9260 (bfd *abfd, char *buf, int *bufsiz,
9261 const struct elf_internal_linux_prpsinfo *prpsinfo)
9262 {
9263 struct elf_external_linux_prpsinfo32 data;
9264
9265 memset (&data, 0, sizeof (data));
9266 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9267
9268 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9269 &data, sizeof (data));
9270 }
9271
9272 char *
9273 elfcore_write_linux_prpsinfo64
9274 (bfd *abfd, char *buf, int *bufsiz,
9275 const struct elf_internal_linux_prpsinfo *prpsinfo)
9276 {
9277 struct elf_external_linux_prpsinfo64 data;
9278
9279 memset (&data, 0, sizeof (data));
9280 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9281
9282 return elfcore_write_note (abfd, buf, bufsiz,
9283 "CORE", NT_PRPSINFO, &data, sizeof (data));
9284 }
9285
9286 char *
9287 elfcore_write_prstatus (bfd *abfd,
9288 char *buf,
9289 int *bufsiz,
9290 long pid,
9291 int cursig,
9292 const void *gregs)
9293 {
9294 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9295
9296 if (bed->elf_backend_write_core_note != NULL)
9297 {
9298 char *ret;
9299 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9300 NT_PRSTATUS,
9301 pid, cursig, gregs);
9302 if (ret != NULL)
9303 return ret;
9304 }
9305
9306 #if defined (HAVE_PRSTATUS_T)
9307 #if defined (HAVE_PRSTATUS32_T)
9308 if (bed->s->elfclass == ELFCLASS32)
9309 {
9310 prstatus32_t prstat;
9311
9312 memset (&prstat, 0, sizeof (prstat));
9313 prstat.pr_pid = pid;
9314 prstat.pr_cursig = cursig;
9315 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9316 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9317 NT_PRSTATUS, &prstat, sizeof (prstat));
9318 }
9319 else
9320 #endif
9321 {
9322 prstatus_t prstat;
9323
9324 memset (&prstat, 0, sizeof (prstat));
9325 prstat.pr_pid = pid;
9326 prstat.pr_cursig = cursig;
9327 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9328 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9329 NT_PRSTATUS, &prstat, sizeof (prstat));
9330 }
9331 #endif /* HAVE_PRSTATUS_T */
9332
9333 free (buf);
9334 return NULL;
9335 }
9336
9337 #if defined (HAVE_LWPSTATUS_T)
9338 char *
9339 elfcore_write_lwpstatus (bfd *abfd,
9340 char *buf,
9341 int *bufsiz,
9342 long pid,
9343 int cursig,
9344 const void *gregs)
9345 {
9346 lwpstatus_t lwpstat;
9347 const char *note_name = "CORE";
9348
9349 memset (&lwpstat, 0, sizeof (lwpstat));
9350 lwpstat.pr_lwpid = pid >> 16;
9351 lwpstat.pr_cursig = cursig;
9352 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9353 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9354 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9355 #if !defined(gregs)
9356 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9357 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9358 #else
9359 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9360 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9361 #endif
9362 #endif
9363 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9364 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9365 }
9366 #endif /* HAVE_LWPSTATUS_T */
9367
9368 #if defined (HAVE_PSTATUS_T)
9369 char *
9370 elfcore_write_pstatus (bfd *abfd,
9371 char *buf,
9372 int *bufsiz,
9373 long pid,
9374 int cursig ATTRIBUTE_UNUSED,
9375 const void *gregs ATTRIBUTE_UNUSED)
9376 {
9377 const char *note_name = "CORE";
9378 #if defined (HAVE_PSTATUS32_T)
9379 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9380
9381 if (bed->s->elfclass == ELFCLASS32)
9382 {
9383 pstatus32_t pstat;
9384
9385 memset (&pstat, 0, sizeof (pstat));
9386 pstat.pr_pid = pid & 0xffff;
9387 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9388 NT_PSTATUS, &pstat, sizeof (pstat));
9389 return buf;
9390 }
9391 else
9392 #endif
9393 {
9394 pstatus_t pstat;
9395
9396 memset (&pstat, 0, sizeof (pstat));
9397 pstat.pr_pid = pid & 0xffff;
9398 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9399 NT_PSTATUS, &pstat, sizeof (pstat));
9400 return buf;
9401 }
9402 }
9403 #endif /* HAVE_PSTATUS_T */
9404
9405 char *
9406 elfcore_write_prfpreg (bfd *abfd,
9407 char *buf,
9408 int *bufsiz,
9409 const void *fpregs,
9410 int size)
9411 {
9412 const char *note_name = "CORE";
9413 return elfcore_write_note (abfd, buf, bufsiz,
9414 note_name, NT_FPREGSET, fpregs, size);
9415 }
9416
9417 char *
9418 elfcore_write_prxfpreg (bfd *abfd,
9419 char *buf,
9420 int *bufsiz,
9421 const void *xfpregs,
9422 int size)
9423 {
9424 char *note_name = "LINUX";
9425 return elfcore_write_note (abfd, buf, bufsiz,
9426 note_name, NT_PRXFPREG, xfpregs, size);
9427 }
9428
9429 char *
9430 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9431 const void *xfpregs, int size)
9432 {
9433 char *note_name = "LINUX";
9434 return elfcore_write_note (abfd, buf, bufsiz,
9435 note_name, NT_X86_XSTATE, xfpregs, size);
9436 }
9437
9438 char *
9439 elfcore_write_ppc_vmx (bfd *abfd,
9440 char *buf,
9441 int *bufsiz,
9442 const void *ppc_vmx,
9443 int size)
9444 {
9445 char *note_name = "LINUX";
9446 return elfcore_write_note (abfd, buf, bufsiz,
9447 note_name, NT_PPC_VMX, ppc_vmx, size);
9448 }
9449
9450 char *
9451 elfcore_write_ppc_vsx (bfd *abfd,
9452 char *buf,
9453 int *bufsiz,
9454 const void *ppc_vsx,
9455 int size)
9456 {
9457 char *note_name = "LINUX";
9458 return elfcore_write_note (abfd, buf, bufsiz,
9459 note_name, NT_PPC_VSX, ppc_vsx, size);
9460 }
9461
9462 static char *
9463 elfcore_write_s390_high_gprs (bfd *abfd,
9464 char *buf,
9465 int *bufsiz,
9466 const void *s390_high_gprs,
9467 int size)
9468 {
9469 char *note_name = "LINUX";
9470 return elfcore_write_note (abfd, buf, bufsiz,
9471 note_name, NT_S390_HIGH_GPRS,
9472 s390_high_gprs, size);
9473 }
9474
9475 char *
9476 elfcore_write_s390_timer (bfd *abfd,
9477 char *buf,
9478 int *bufsiz,
9479 const void *s390_timer,
9480 int size)
9481 {
9482 char *note_name = "LINUX";
9483 return elfcore_write_note (abfd, buf, bufsiz,
9484 note_name, NT_S390_TIMER, s390_timer, size);
9485 }
9486
9487 char *
9488 elfcore_write_s390_todcmp (bfd *abfd,
9489 char *buf,
9490 int *bufsiz,
9491 const void *s390_todcmp,
9492 int size)
9493 {
9494 char *note_name = "LINUX";
9495 return elfcore_write_note (abfd, buf, bufsiz,
9496 note_name, NT_S390_TODCMP, s390_todcmp, size);
9497 }
9498
9499 char *
9500 elfcore_write_s390_todpreg (bfd *abfd,
9501 char *buf,
9502 int *bufsiz,
9503 const void *s390_todpreg,
9504 int size)
9505 {
9506 char *note_name = "LINUX";
9507 return elfcore_write_note (abfd, buf, bufsiz,
9508 note_name, NT_S390_TODPREG, s390_todpreg, size);
9509 }
9510
9511 char *
9512 elfcore_write_s390_ctrs (bfd *abfd,
9513 char *buf,
9514 int *bufsiz,
9515 const void *s390_ctrs,
9516 int size)
9517 {
9518 char *note_name = "LINUX";
9519 return elfcore_write_note (abfd, buf, bufsiz,
9520 note_name, NT_S390_CTRS, s390_ctrs, size);
9521 }
9522
9523 char *
9524 elfcore_write_s390_prefix (bfd *abfd,
9525 char *buf,
9526 int *bufsiz,
9527 const void *s390_prefix,
9528 int size)
9529 {
9530 char *note_name = "LINUX";
9531 return elfcore_write_note (abfd, buf, bufsiz,
9532 note_name, NT_S390_PREFIX, s390_prefix, size);
9533 }
9534
9535 char *
9536 elfcore_write_s390_last_break (bfd *abfd,
9537 char *buf,
9538 int *bufsiz,
9539 const void *s390_last_break,
9540 int size)
9541 {
9542 char *note_name = "LINUX";
9543 return elfcore_write_note (abfd, buf, bufsiz,
9544 note_name, NT_S390_LAST_BREAK,
9545 s390_last_break, size);
9546 }
9547
9548 char *
9549 elfcore_write_s390_system_call (bfd *abfd,
9550 char *buf,
9551 int *bufsiz,
9552 const void *s390_system_call,
9553 int size)
9554 {
9555 char *note_name = "LINUX";
9556 return elfcore_write_note (abfd, buf, bufsiz,
9557 note_name, NT_S390_SYSTEM_CALL,
9558 s390_system_call, size);
9559 }
9560
9561 char *
9562 elfcore_write_s390_tdb (bfd *abfd,
9563 char *buf,
9564 int *bufsiz,
9565 const void *s390_tdb,
9566 int size)
9567 {
9568 char *note_name = "LINUX";
9569 return elfcore_write_note (abfd, buf, bufsiz,
9570 note_name, NT_S390_TDB, s390_tdb, size);
9571 }
9572
9573 char *
9574 elfcore_write_arm_vfp (bfd *abfd,
9575 char *buf,
9576 int *bufsiz,
9577 const void *arm_vfp,
9578 int size)
9579 {
9580 char *note_name = "LINUX";
9581 return elfcore_write_note (abfd, buf, bufsiz,
9582 note_name, NT_ARM_VFP, arm_vfp, size);
9583 }
9584
9585 char *
9586 elfcore_write_aarch_tls (bfd *abfd,
9587 char *buf,
9588 int *bufsiz,
9589 const void *aarch_tls,
9590 int size)
9591 {
9592 char *note_name = "LINUX";
9593 return elfcore_write_note (abfd, buf, bufsiz,
9594 note_name, NT_ARM_TLS, aarch_tls, size);
9595 }
9596
9597 char *
9598 elfcore_write_aarch_hw_break (bfd *abfd,
9599 char *buf,
9600 int *bufsiz,
9601 const void *aarch_hw_break,
9602 int size)
9603 {
9604 char *note_name = "LINUX";
9605 return elfcore_write_note (abfd, buf, bufsiz,
9606 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9607 }
9608
9609 char *
9610 elfcore_write_aarch_hw_watch (bfd *abfd,
9611 char *buf,
9612 int *bufsiz,
9613 const void *aarch_hw_watch,
9614 int size)
9615 {
9616 char *note_name = "LINUX";
9617 return elfcore_write_note (abfd, buf, bufsiz,
9618 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9619 }
9620
9621 char *
9622 elfcore_write_register_note (bfd *abfd,
9623 char *buf,
9624 int *bufsiz,
9625 const char *section,
9626 const void *data,
9627 int size)
9628 {
9629 if (strcmp (section, ".reg2") == 0)
9630 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9631 if (strcmp (section, ".reg-xfp") == 0)
9632 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9633 if (strcmp (section, ".reg-xstate") == 0)
9634 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9635 if (strcmp (section, ".reg-ppc-vmx") == 0)
9636 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9637 if (strcmp (section, ".reg-ppc-vsx") == 0)
9638 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9639 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9640 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9641 if (strcmp (section, ".reg-s390-timer") == 0)
9642 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9643 if (strcmp (section, ".reg-s390-todcmp") == 0)
9644 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9645 if (strcmp (section, ".reg-s390-todpreg") == 0)
9646 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9647 if (strcmp (section, ".reg-s390-ctrs") == 0)
9648 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9649 if (strcmp (section, ".reg-s390-prefix") == 0)
9650 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9651 if (strcmp (section, ".reg-s390-last-break") == 0)
9652 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9653 if (strcmp (section, ".reg-s390-system-call") == 0)
9654 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9655 if (strcmp (section, ".reg-s390-tdb") == 0)
9656 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
9657 if (strcmp (section, ".reg-arm-vfp") == 0)
9658 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9659 if (strcmp (section, ".reg-aarch-tls") == 0)
9660 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
9661 if (strcmp (section, ".reg-aarch-hw-break") == 0)
9662 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
9663 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
9664 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
9665 return NULL;
9666 }
9667
9668 static bfd_boolean
9669 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9670 {
9671 char *p;
9672
9673 p = buf;
9674 while (p < buf + size)
9675 {
9676 /* FIXME: bad alignment assumption. */
9677 Elf_External_Note *xnp = (Elf_External_Note *) p;
9678 Elf_Internal_Note in;
9679
9680 if (offsetof (Elf_External_Note, name) > buf - p + size)
9681 return FALSE;
9682
9683 in.type = H_GET_32 (abfd, xnp->type);
9684
9685 in.namesz = H_GET_32 (abfd, xnp->namesz);
9686 in.namedata = xnp->name;
9687 if (in.namesz > buf - in.namedata + size)
9688 return FALSE;
9689
9690 in.descsz = H_GET_32 (abfd, xnp->descsz);
9691 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9692 in.descpos = offset + (in.descdata - buf);
9693 if (in.descsz != 0
9694 && (in.descdata >= buf + size
9695 || in.descsz > buf - in.descdata + size))
9696 return FALSE;
9697
9698 switch (bfd_get_format (abfd))
9699 {
9700 default:
9701 return TRUE;
9702
9703 case bfd_core:
9704 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9705 {
9706 if (! elfcore_grok_netbsd_note (abfd, &in))
9707 return FALSE;
9708 }
9709 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9710 {
9711 if (! elfcore_grok_openbsd_note (abfd, &in))
9712 return FALSE;
9713 }
9714 else if (CONST_STRNEQ (in.namedata, "QNX"))
9715 {
9716 if (! elfcore_grok_nto_note (abfd, &in))
9717 return FALSE;
9718 }
9719 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9720 {
9721 if (! elfcore_grok_spu_note (abfd, &in))
9722 return FALSE;
9723 }
9724 else
9725 {
9726 if (! elfcore_grok_note (abfd, &in))
9727 return FALSE;
9728 }
9729 break;
9730
9731 case bfd_object:
9732 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9733 {
9734 if (! elfobj_grok_gnu_note (abfd, &in))
9735 return FALSE;
9736 }
9737 else if (in.namesz == sizeof "stapsdt"
9738 && strcmp (in.namedata, "stapsdt") == 0)
9739 {
9740 if (! elfobj_grok_stapsdt_note (abfd, &in))
9741 return FALSE;
9742 }
9743 break;
9744 }
9745
9746 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9747 }
9748
9749 return TRUE;
9750 }
9751
9752 static bfd_boolean
9753 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9754 {
9755 char *buf;
9756
9757 if (size <= 0)
9758 return TRUE;
9759
9760 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9761 return FALSE;
9762
9763 buf = (char *) bfd_malloc (size);
9764 if (buf == NULL)
9765 return FALSE;
9766
9767 if (bfd_bread (buf, size, abfd) != size
9768 || !elf_parse_notes (abfd, buf, size, offset))
9769 {
9770 free (buf);
9771 return FALSE;
9772 }
9773
9774 free (buf);
9775 return TRUE;
9776 }
9777 \f
9778 /* Providing external access to the ELF program header table. */
9779
9780 /* Return an upper bound on the number of bytes required to store a
9781 copy of ABFD's program header table entries. Return -1 if an error
9782 occurs; bfd_get_error will return an appropriate code. */
9783
9784 long
9785 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9786 {
9787 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9788 {
9789 bfd_set_error (bfd_error_wrong_format);
9790 return -1;
9791 }
9792
9793 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9794 }
9795
9796 /* Copy ABFD's program header table entries to *PHDRS. The entries
9797 will be stored as an array of Elf_Internal_Phdr structures, as
9798 defined in include/elf/internal.h. To find out how large the
9799 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9800
9801 Return the number of program header table entries read, or -1 if an
9802 error occurs; bfd_get_error will return an appropriate code. */
9803
9804 int
9805 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9806 {
9807 int num_phdrs;
9808
9809 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9810 {
9811 bfd_set_error (bfd_error_wrong_format);
9812 return -1;
9813 }
9814
9815 num_phdrs = elf_elfheader (abfd)->e_phnum;
9816 memcpy (phdrs, elf_tdata (abfd)->phdr,
9817 num_phdrs * sizeof (Elf_Internal_Phdr));
9818
9819 return num_phdrs;
9820 }
9821
9822 enum elf_reloc_type_class
9823 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
9824 const asection *rel_sec ATTRIBUTE_UNUSED,
9825 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9826 {
9827 return reloc_class_normal;
9828 }
9829
9830 /* For RELA architectures, return the relocation value for a
9831 relocation against a local symbol. */
9832
9833 bfd_vma
9834 _bfd_elf_rela_local_sym (bfd *abfd,
9835 Elf_Internal_Sym *sym,
9836 asection **psec,
9837 Elf_Internal_Rela *rel)
9838 {
9839 asection *sec = *psec;
9840 bfd_vma relocation;
9841
9842 relocation = (sec->output_section->vma
9843 + sec->output_offset
9844 + sym->st_value);
9845 if ((sec->flags & SEC_MERGE)
9846 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9847 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9848 {
9849 rel->r_addend =
9850 _bfd_merged_section_offset (abfd, psec,
9851 elf_section_data (sec)->sec_info,
9852 sym->st_value + rel->r_addend);
9853 if (sec != *psec)
9854 {
9855 /* If we have changed the section, and our original section is
9856 marked with SEC_EXCLUDE, it means that the original
9857 SEC_MERGE section has been completely subsumed in some
9858 other SEC_MERGE section. In this case, we need to leave
9859 some info around for --emit-relocs. */
9860 if ((sec->flags & SEC_EXCLUDE) != 0)
9861 sec->kept_section = *psec;
9862 sec = *psec;
9863 }
9864 rel->r_addend -= relocation;
9865 rel->r_addend += sec->output_section->vma + sec->output_offset;
9866 }
9867 return relocation;
9868 }
9869
9870 bfd_vma
9871 _bfd_elf_rel_local_sym (bfd *abfd,
9872 Elf_Internal_Sym *sym,
9873 asection **psec,
9874 bfd_vma addend)
9875 {
9876 asection *sec = *psec;
9877
9878 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9879 return sym->st_value + addend;
9880
9881 return _bfd_merged_section_offset (abfd, psec,
9882 elf_section_data (sec)->sec_info,
9883 sym->st_value + addend);
9884 }
9885
9886 bfd_vma
9887 _bfd_elf_section_offset (bfd *abfd,
9888 struct bfd_link_info *info,
9889 asection *sec,
9890 bfd_vma offset)
9891 {
9892 switch (sec->sec_info_type)
9893 {
9894 case SEC_INFO_TYPE_STABS:
9895 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9896 offset);
9897 case SEC_INFO_TYPE_EH_FRAME:
9898 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9899 default:
9900 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9901 {
9902 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9903 bfd_size_type address_size = bed->s->arch_size / 8;
9904 offset = sec->size - offset - address_size;
9905 }
9906 return offset;
9907 }
9908 }
9909 \f
9910 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9911 reconstruct an ELF file by reading the segments out of remote memory
9912 based on the ELF file header at EHDR_VMA and the ELF program headers it
9913 points to. If not null, *LOADBASEP is filled in with the difference
9914 between the VMAs from which the segments were read, and the VMAs the
9915 file headers (and hence BFD's idea of each section's VMA) put them at.
9916
9917 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9918 remote memory at target address VMA into the local buffer at MYADDR; it
9919 should return zero on success or an `errno' code on failure. TEMPL must
9920 be a BFD for an ELF target with the word size and byte order found in
9921 the remote memory. */
9922
9923 bfd *
9924 bfd_elf_bfd_from_remote_memory
9925 (bfd *templ,
9926 bfd_vma ehdr_vma,
9927 bfd_vma *loadbasep,
9928 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9929 {
9930 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9931 (templ, ehdr_vma, loadbasep, target_read_memory);
9932 }
9933 \f
9934 long
9935 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9936 long symcount ATTRIBUTE_UNUSED,
9937 asymbol **syms ATTRIBUTE_UNUSED,
9938 long dynsymcount,
9939 asymbol **dynsyms,
9940 asymbol **ret)
9941 {
9942 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9943 asection *relplt;
9944 asymbol *s;
9945 const char *relplt_name;
9946 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9947 arelent *p;
9948 long count, i, n;
9949 size_t size;
9950 Elf_Internal_Shdr *hdr;
9951 char *names;
9952 asection *plt;
9953
9954 *ret = NULL;
9955
9956 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9957 return 0;
9958
9959 if (dynsymcount <= 0)
9960 return 0;
9961
9962 if (!bed->plt_sym_val)
9963 return 0;
9964
9965 relplt_name = bed->relplt_name;
9966 if (relplt_name == NULL)
9967 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9968 relplt = bfd_get_section_by_name (abfd, relplt_name);
9969 if (relplt == NULL)
9970 return 0;
9971
9972 hdr = &elf_section_data (relplt)->this_hdr;
9973 if (hdr->sh_link != elf_dynsymtab (abfd)
9974 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9975 return 0;
9976
9977 plt = bfd_get_section_by_name (abfd, ".plt");
9978 if (plt == NULL)
9979 return 0;
9980
9981 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9982 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9983 return -1;
9984
9985 count = relplt->size / hdr->sh_entsize;
9986 size = count * sizeof (asymbol);
9987 p = relplt->relocation;
9988 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9989 {
9990 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9991 if (p->addend != 0)
9992 {
9993 #ifdef BFD64
9994 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9995 #else
9996 size += sizeof ("+0x") - 1 + 8;
9997 #endif
9998 }
9999 }
10000
10001 s = *ret = (asymbol *) bfd_malloc (size);
10002 if (s == NULL)
10003 return -1;
10004
10005 names = (char *) (s + count);
10006 p = relplt->relocation;
10007 n = 0;
10008 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10009 {
10010 size_t len;
10011 bfd_vma addr;
10012
10013 addr = bed->plt_sym_val (i, plt, p);
10014 if (addr == (bfd_vma) -1)
10015 continue;
10016
10017 *s = **p->sym_ptr_ptr;
10018 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
10019 we are defining a symbol, ensure one of them is set. */
10020 if ((s->flags & BSF_LOCAL) == 0)
10021 s->flags |= BSF_GLOBAL;
10022 s->flags |= BSF_SYNTHETIC;
10023 s->section = plt;
10024 s->value = addr - plt->vma;
10025 s->name = names;
10026 s->udata.p = NULL;
10027 len = strlen ((*p->sym_ptr_ptr)->name);
10028 memcpy (names, (*p->sym_ptr_ptr)->name, len);
10029 names += len;
10030 if (p->addend != 0)
10031 {
10032 char buf[30], *a;
10033
10034 memcpy (names, "+0x", sizeof ("+0x") - 1);
10035 names += sizeof ("+0x") - 1;
10036 bfd_sprintf_vma (abfd, buf, p->addend);
10037 for (a = buf; *a == '0'; ++a)
10038 ;
10039 len = strlen (a);
10040 memcpy (names, a, len);
10041 names += len;
10042 }
10043 memcpy (names, "@plt", sizeof ("@plt"));
10044 names += sizeof ("@plt");
10045 ++s, ++n;
10046 }
10047
10048 return n;
10049 }
10050
10051 /* It is only used by x86-64 so far. */
10052 asection _bfd_elf_large_com_section
10053 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10054 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10055
10056 void
10057 _bfd_elf_post_process_headers (bfd * abfd,
10058 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10059 {
10060 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10061
10062 i_ehdrp = elf_elfheader (abfd);
10063
10064 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10065
10066 /* To make things simpler for the loader on Linux systems we set the
10067 osabi field to ELFOSABI_GNU if the binary contains symbols of
10068 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10069 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10070 && elf_tdata (abfd)->has_gnu_symbols)
10071 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10072 }
10073
10074
10075 /* Return TRUE for ELF symbol types that represent functions.
10076 This is the default version of this function, which is sufficient for
10077 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10078
10079 bfd_boolean
10080 _bfd_elf_is_function_type (unsigned int type)
10081 {
10082 return (type == STT_FUNC
10083 || type == STT_GNU_IFUNC);
10084 }
10085
10086 /* If the ELF symbol SYM might be a function in SEC, return the
10087 function size and set *CODE_OFF to the function's entry point,
10088 otherwise return zero. */
10089
10090 bfd_size_type
10091 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10092 bfd_vma *code_off)
10093 {
10094 bfd_size_type size;
10095
10096 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10097 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10098 || sym->section != sec)
10099 return 0;
10100
10101 *code_off = sym->value;
10102 size = 0;
10103 if (!(sym->flags & BSF_SYNTHETIC))
10104 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10105 if (size == 0)
10106 size = 1;
10107 return size;
10108 }
This page took 0.335433 seconds and 4 git commands to generate.