Always consider infcall breakpoints as non-permanent.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2014 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-psinfo.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
301 || bfd_seek (abfd, offset, SEEK_SET) != 0)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 shstrtab = NULL;
308 /* Once we've failed to read it, make sure we don't keep
309 trying. Otherwise, we'll keep allocating space for
310 the string table over and over. */
311 i_shdrp[shindex]->sh_size = 0;
312 }
313 else
314 shstrtab[shstrtabsize] = '\0';
315 i_shdrp[shindex]->contents = shstrtab;
316 }
317 return (char *) shstrtab;
318 }
319
320 char *
321 bfd_elf_string_from_elf_section (bfd *abfd,
322 unsigned int shindex,
323 unsigned int strindex)
324 {
325 Elf_Internal_Shdr *hdr;
326
327 if (strindex == 0)
328 return "";
329
330 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
331 return NULL;
332
333 hdr = elf_elfsections (abfd)[shindex];
334
335 if (hdr->contents == NULL
336 && bfd_elf_get_str_section (abfd, shindex) == NULL)
337 return NULL;
338
339 if (strindex >= hdr->sh_size)
340 {
341 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
342 (*_bfd_error_handler)
343 (_("%B: invalid string offset %u >= %lu for section `%s'"),
344 abfd, strindex, (unsigned long) hdr->sh_size,
345 (shindex == shstrndx && strindex == hdr->sh_name
346 ? ".shstrtab"
347 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
348 return NULL;
349 }
350
351 return ((char *) hdr->contents) + strindex;
352 }
353
354 /* Read and convert symbols to internal format.
355 SYMCOUNT specifies the number of symbols to read, starting from
356 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
357 are non-NULL, they are used to store the internal symbols, external
358 symbols, and symbol section index extensions, respectively.
359 Returns a pointer to the internal symbol buffer (malloced if necessary)
360 or NULL if there were no symbols or some kind of problem. */
361
362 Elf_Internal_Sym *
363 bfd_elf_get_elf_syms (bfd *ibfd,
364 Elf_Internal_Shdr *symtab_hdr,
365 size_t symcount,
366 size_t symoffset,
367 Elf_Internal_Sym *intsym_buf,
368 void *extsym_buf,
369 Elf_External_Sym_Shndx *extshndx_buf)
370 {
371 Elf_Internal_Shdr *shndx_hdr;
372 void *alloc_ext;
373 const bfd_byte *esym;
374 Elf_External_Sym_Shndx *alloc_extshndx;
375 Elf_External_Sym_Shndx *shndx;
376 Elf_Internal_Sym *alloc_intsym;
377 Elf_Internal_Sym *isym;
378 Elf_Internal_Sym *isymend;
379 const struct elf_backend_data *bed;
380 size_t extsym_size;
381 bfd_size_type amt;
382 file_ptr pos;
383
384 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
385 abort ();
386
387 if (symcount == 0)
388 return intsym_buf;
389
390 /* Normal syms might have section extension entries. */
391 shndx_hdr = NULL;
392 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
393 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
394
395 /* Read the symbols. */
396 alloc_ext = NULL;
397 alloc_extshndx = NULL;
398 alloc_intsym = NULL;
399 bed = get_elf_backend_data (ibfd);
400 extsym_size = bed->s->sizeof_sym;
401 amt = symcount * extsym_size;
402 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
403 if (extsym_buf == NULL)
404 {
405 alloc_ext = bfd_malloc2 (symcount, extsym_size);
406 extsym_buf = alloc_ext;
407 }
408 if (extsym_buf == NULL
409 || bfd_seek (ibfd, pos, SEEK_SET) != 0
410 || bfd_bread (extsym_buf, amt, ibfd) != amt)
411 {
412 intsym_buf = NULL;
413 goto out;
414 }
415
416 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
417 extshndx_buf = NULL;
418 else
419 {
420 amt = symcount * sizeof (Elf_External_Sym_Shndx);
421 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
422 if (extshndx_buf == NULL)
423 {
424 alloc_extshndx = (Elf_External_Sym_Shndx *)
425 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
426 extshndx_buf = alloc_extshndx;
427 }
428 if (extshndx_buf == NULL
429 || bfd_seek (ibfd, pos, SEEK_SET) != 0
430 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
431 {
432 intsym_buf = NULL;
433 goto out;
434 }
435 }
436
437 if (intsym_buf == NULL)
438 {
439 alloc_intsym = (Elf_Internal_Sym *)
440 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
441 intsym_buf = alloc_intsym;
442 if (intsym_buf == NULL)
443 goto out;
444 }
445
446 /* Convert the symbols to internal form. */
447 isymend = intsym_buf + symcount;
448 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
449 shndx = extshndx_buf;
450 isym < isymend;
451 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
452 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
453 {
454 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
455 (*_bfd_error_handler) (_("%B symbol number %lu references "
456 "nonexistent SHT_SYMTAB_SHNDX section"),
457 ibfd, (unsigned long) symoffset);
458 if (alloc_intsym != NULL)
459 free (alloc_intsym);
460 intsym_buf = NULL;
461 goto out;
462 }
463
464 out:
465 if (alloc_ext != NULL)
466 free (alloc_ext);
467 if (alloc_extshndx != NULL)
468 free (alloc_extshndx);
469
470 return intsym_buf;
471 }
472
473 /* Look up a symbol name. */
474 const char *
475 bfd_elf_sym_name (bfd *abfd,
476 Elf_Internal_Shdr *symtab_hdr,
477 Elf_Internal_Sym *isym,
478 asection *sym_sec)
479 {
480 const char *name;
481 unsigned int iname = isym->st_name;
482 unsigned int shindex = symtab_hdr->sh_link;
483
484 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
485 /* Check for a bogus st_shndx to avoid crashing. */
486 && isym->st_shndx < elf_numsections (abfd))
487 {
488 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
489 shindex = elf_elfheader (abfd)->e_shstrndx;
490 }
491
492 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
493 if (name == NULL)
494 name = "(null)";
495 else if (sym_sec && *name == '\0')
496 name = bfd_section_name (abfd, sym_sec);
497
498 return name;
499 }
500
501 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
502 sections. The first element is the flags, the rest are section
503 pointers. */
504
505 typedef union elf_internal_group {
506 Elf_Internal_Shdr *shdr;
507 unsigned int flags;
508 } Elf_Internal_Group;
509
510 /* Return the name of the group signature symbol. Why isn't the
511 signature just a string? */
512
513 static const char *
514 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
515 {
516 Elf_Internal_Shdr *hdr;
517 unsigned char esym[sizeof (Elf64_External_Sym)];
518 Elf_External_Sym_Shndx eshndx;
519 Elf_Internal_Sym isym;
520
521 /* First we need to ensure the symbol table is available. Make sure
522 that it is a symbol table section. */
523 if (ghdr->sh_link >= elf_numsections (abfd))
524 return NULL;
525 hdr = elf_elfsections (abfd) [ghdr->sh_link];
526 if (hdr->sh_type != SHT_SYMTAB
527 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
528 return NULL;
529
530 /* Go read the symbol. */
531 hdr = &elf_tdata (abfd)->symtab_hdr;
532 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
533 &isym, esym, &eshndx) == NULL)
534 return NULL;
535
536 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
537 }
538
539 /* Set next_in_group list pointer, and group name for NEWSECT. */
540
541 static bfd_boolean
542 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
543 {
544 unsigned int num_group = elf_tdata (abfd)->num_group;
545
546 /* If num_group is zero, read in all SHT_GROUP sections. The count
547 is set to -1 if there are no SHT_GROUP sections. */
548 if (num_group == 0)
549 {
550 unsigned int i, shnum;
551
552 /* First count the number of groups. If we have a SHT_GROUP
553 section with just a flag word (ie. sh_size is 4), ignore it. */
554 shnum = elf_numsections (abfd);
555 num_group = 0;
556
557 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
558 ( (shdr)->sh_type == SHT_GROUP \
559 && (shdr)->sh_size >= minsize \
560 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
561 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
562
563 for (i = 0; i < shnum; i++)
564 {
565 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
566
567 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
568 num_group += 1;
569 }
570
571 if (num_group == 0)
572 {
573 num_group = (unsigned) -1;
574 elf_tdata (abfd)->num_group = num_group;
575 }
576 else
577 {
578 /* We keep a list of elf section headers for group sections,
579 so we can find them quickly. */
580 bfd_size_type amt;
581
582 elf_tdata (abfd)->num_group = num_group;
583 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
584 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
585 if (elf_tdata (abfd)->group_sect_ptr == NULL)
586 return FALSE;
587
588 num_group = 0;
589 for (i = 0; i < shnum; i++)
590 {
591 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
592
593 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
594 {
595 unsigned char *src;
596 Elf_Internal_Group *dest;
597
598 /* Add to list of sections. */
599 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
600 num_group += 1;
601
602 /* Read the raw contents. */
603 BFD_ASSERT (sizeof (*dest) >= 4);
604 amt = shdr->sh_size * sizeof (*dest) / 4;
605 shdr->contents = (unsigned char *)
606 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
607 /* PR binutils/4110: Handle corrupt group headers. */
608 if (shdr->contents == NULL)
609 {
610 _bfd_error_handler
611 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
612 bfd_set_error (bfd_error_bad_value);
613 -- num_group;
614 continue;
615 }
616
617 memset (shdr->contents, 0, amt);
618
619 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
620 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
621 != shdr->sh_size))
622 {
623 _bfd_error_handler
624 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size);
625 bfd_set_error (bfd_error_bad_value);
626 -- num_group;
627 /* PR 17510: If the group contents are even partially
628 corrupt, do not allow any of the contents to be used. */
629 memset (shdr->contents, 0, amt);
630 continue;
631 }
632
633 /* Translate raw contents, a flag word followed by an
634 array of elf section indices all in target byte order,
635 to the flag word followed by an array of elf section
636 pointers. */
637 src = shdr->contents + shdr->sh_size;
638 dest = (Elf_Internal_Group *) (shdr->contents + amt);
639 while (1)
640 {
641 unsigned int idx;
642
643 src -= 4;
644 --dest;
645 idx = H_GET_32 (abfd, src);
646 if (src == shdr->contents)
647 {
648 dest->flags = idx;
649 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
650 shdr->bfd_section->flags
651 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
652 break;
653 }
654 if (idx >= shnum)
655 {
656 ((*_bfd_error_handler)
657 (_("%B: invalid SHT_GROUP entry"), abfd));
658 idx = 0;
659 }
660 dest->shdr = elf_elfsections (abfd)[idx];
661 }
662 }
663 }
664
665 /* PR 17510: Corrupt binaries might contain invalid groups. */
666 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
667 {
668 elf_tdata (abfd)->num_group = num_group;
669
670 /* If all groups are invalid then fail. */
671 if (num_group == 0)
672 {
673 elf_tdata (abfd)->group_sect_ptr = NULL;
674 elf_tdata (abfd)->num_group = num_group = -1;
675 (*_bfd_error_handler) (_("%B: no valid group sections found"), abfd);
676 bfd_set_error (bfd_error_bad_value);
677 }
678 }
679 }
680 }
681
682 if (num_group != (unsigned) -1)
683 {
684 unsigned int i;
685
686 for (i = 0; i < num_group; i++)
687 {
688 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
689 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
690 unsigned int n_elt = shdr->sh_size / 4;
691
692 /* Look through this group's sections to see if current
693 section is a member. */
694 while (--n_elt != 0)
695 if ((++idx)->shdr == hdr)
696 {
697 asection *s = NULL;
698
699 /* We are a member of this group. Go looking through
700 other members to see if any others are linked via
701 next_in_group. */
702 idx = (Elf_Internal_Group *) shdr->contents;
703 n_elt = shdr->sh_size / 4;
704 while (--n_elt != 0)
705 if ((s = (++idx)->shdr->bfd_section) != NULL
706 && elf_next_in_group (s) != NULL)
707 break;
708 if (n_elt != 0)
709 {
710 /* Snarf the group name from other member, and
711 insert current section in circular list. */
712 elf_group_name (newsect) = elf_group_name (s);
713 elf_next_in_group (newsect) = elf_next_in_group (s);
714 elf_next_in_group (s) = newsect;
715 }
716 else
717 {
718 const char *gname;
719
720 gname = group_signature (abfd, shdr);
721 if (gname == NULL)
722 return FALSE;
723 elf_group_name (newsect) = gname;
724
725 /* Start a circular list with one element. */
726 elf_next_in_group (newsect) = newsect;
727 }
728
729 /* If the group section has been created, point to the
730 new member. */
731 if (shdr->bfd_section != NULL)
732 elf_next_in_group (shdr->bfd_section) = newsect;
733
734 i = num_group - 1;
735 break;
736 }
737 }
738 }
739
740 if (elf_group_name (newsect) == NULL)
741 {
742 (*_bfd_error_handler) (_("%B: no group info for section %A"),
743 abfd, newsect);
744 return FALSE;
745 }
746 return TRUE;
747 }
748
749 bfd_boolean
750 _bfd_elf_setup_sections (bfd *abfd)
751 {
752 unsigned int i;
753 unsigned int num_group = elf_tdata (abfd)->num_group;
754 bfd_boolean result = TRUE;
755 asection *s;
756
757 /* Process SHF_LINK_ORDER. */
758 for (s = abfd->sections; s != NULL; s = s->next)
759 {
760 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
761 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
762 {
763 unsigned int elfsec = this_hdr->sh_link;
764 /* FIXME: The old Intel compiler and old strip/objcopy may
765 not set the sh_link or sh_info fields. Hence we could
766 get the situation where elfsec is 0. */
767 if (elfsec == 0)
768 {
769 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
770 if (bed->link_order_error_handler)
771 bed->link_order_error_handler
772 (_("%B: warning: sh_link not set for section `%A'"),
773 abfd, s);
774 }
775 else
776 {
777 asection *linksec = NULL;
778
779 if (elfsec < elf_numsections (abfd))
780 {
781 this_hdr = elf_elfsections (abfd)[elfsec];
782 linksec = this_hdr->bfd_section;
783 }
784
785 /* PR 1991, 2008:
786 Some strip/objcopy may leave an incorrect value in
787 sh_link. We don't want to proceed. */
788 if (linksec == NULL)
789 {
790 (*_bfd_error_handler)
791 (_("%B: sh_link [%d] in section `%A' is incorrect"),
792 s->owner, s, elfsec);
793 result = FALSE;
794 }
795
796 elf_linked_to_section (s) = linksec;
797 }
798 }
799 }
800
801 /* Process section groups. */
802 if (num_group == (unsigned) -1)
803 return result;
804
805 for (i = 0; i < num_group; i++)
806 {
807 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
808 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
809 unsigned int n_elt = shdr->sh_size / 4;
810
811 while (--n_elt != 0)
812 if ((++idx)->shdr->bfd_section)
813 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
814 else if (idx->shdr->sh_type == SHT_RELA
815 || idx->shdr->sh_type == SHT_REL)
816 /* We won't include relocation sections in section groups in
817 output object files. We adjust the group section size here
818 so that relocatable link will work correctly when
819 relocation sections are in section group in input object
820 files. */
821 shdr->bfd_section->size -= 4;
822 else
823 {
824 /* There are some unknown sections in the group. */
825 (*_bfd_error_handler)
826 (_("%B: unknown [%d] section `%s' in group [%s]"),
827 abfd,
828 (unsigned int) idx->shdr->sh_type,
829 bfd_elf_string_from_elf_section (abfd,
830 (elf_elfheader (abfd)
831 ->e_shstrndx),
832 idx->shdr->sh_name),
833 shdr->bfd_section->name);
834 result = FALSE;
835 }
836 }
837 return result;
838 }
839
840 bfd_boolean
841 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
842 {
843 return elf_next_in_group (sec) != NULL;
844 }
845
846 /* Make a BFD section from an ELF section. We store a pointer to the
847 BFD section in the bfd_section field of the header. */
848
849 bfd_boolean
850 _bfd_elf_make_section_from_shdr (bfd *abfd,
851 Elf_Internal_Shdr *hdr,
852 const char *name,
853 int shindex)
854 {
855 asection *newsect;
856 flagword flags;
857 const struct elf_backend_data *bed;
858
859 if (hdr->bfd_section != NULL)
860 return TRUE;
861
862 newsect = bfd_make_section_anyway (abfd, name);
863 if (newsect == NULL)
864 return FALSE;
865
866 hdr->bfd_section = newsect;
867 elf_section_data (newsect)->this_hdr = *hdr;
868 elf_section_data (newsect)->this_idx = shindex;
869
870 /* Always use the real type/flags. */
871 elf_section_type (newsect) = hdr->sh_type;
872 elf_section_flags (newsect) = hdr->sh_flags;
873
874 newsect->filepos = hdr->sh_offset;
875
876 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
877 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
878 || ! bfd_set_section_alignment (abfd, newsect,
879 bfd_log2 (hdr->sh_addralign)))
880 return FALSE;
881
882 flags = SEC_NO_FLAGS;
883 if (hdr->sh_type != SHT_NOBITS)
884 flags |= SEC_HAS_CONTENTS;
885 if (hdr->sh_type == SHT_GROUP)
886 flags |= SEC_GROUP | SEC_EXCLUDE;
887 if ((hdr->sh_flags & SHF_ALLOC) != 0)
888 {
889 flags |= SEC_ALLOC;
890 if (hdr->sh_type != SHT_NOBITS)
891 flags |= SEC_LOAD;
892 }
893 if ((hdr->sh_flags & SHF_WRITE) == 0)
894 flags |= SEC_READONLY;
895 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
896 flags |= SEC_CODE;
897 else if ((flags & SEC_LOAD) != 0)
898 flags |= SEC_DATA;
899 if ((hdr->sh_flags & SHF_MERGE) != 0)
900 {
901 flags |= SEC_MERGE;
902 newsect->entsize = hdr->sh_entsize;
903 if ((hdr->sh_flags & SHF_STRINGS) != 0)
904 flags |= SEC_STRINGS;
905 }
906 if (hdr->sh_flags & SHF_GROUP)
907 if (!setup_group (abfd, hdr, newsect))
908 return FALSE;
909 if ((hdr->sh_flags & SHF_TLS) != 0)
910 flags |= SEC_THREAD_LOCAL;
911 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
912 flags |= SEC_EXCLUDE;
913
914 if ((flags & SEC_ALLOC) == 0)
915 {
916 /* The debugging sections appear to be recognized only by name,
917 not any sort of flag. Their SEC_ALLOC bits are cleared. */
918 if (name [0] == '.')
919 {
920 const char *p;
921 int n;
922 if (name[1] == 'd')
923 p = ".debug", n = 6;
924 else if (name[1] == 'g' && name[2] == 'n')
925 p = ".gnu.linkonce.wi.", n = 17;
926 else if (name[1] == 'g' && name[2] == 'd')
927 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
928 else if (name[1] == 'l')
929 p = ".line", n = 5;
930 else if (name[1] == 's')
931 p = ".stab", n = 5;
932 else if (name[1] == 'z')
933 p = ".zdebug", n = 7;
934 else
935 p = NULL, n = 0;
936 if (p != NULL && strncmp (name, p, n) == 0)
937 flags |= SEC_DEBUGGING;
938 }
939 }
940
941 /* As a GNU extension, if the name begins with .gnu.linkonce, we
942 only link a single copy of the section. This is used to support
943 g++. g++ will emit each template expansion in its own section.
944 The symbols will be defined as weak, so that multiple definitions
945 are permitted. The GNU linker extension is to actually discard
946 all but one of the sections. */
947 if (CONST_STRNEQ (name, ".gnu.linkonce")
948 && elf_next_in_group (newsect) == NULL)
949 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
950
951 bed = get_elf_backend_data (abfd);
952 if (bed->elf_backend_section_flags)
953 if (! bed->elf_backend_section_flags (&flags, hdr))
954 return FALSE;
955
956 if (! bfd_set_section_flags (abfd, newsect, flags))
957 return FALSE;
958
959 /* We do not parse the PT_NOTE segments as we are interested even in the
960 separate debug info files which may have the segments offsets corrupted.
961 PT_NOTEs from the core files are currently not parsed using BFD. */
962 if (hdr->sh_type == SHT_NOTE)
963 {
964 bfd_byte *contents;
965
966 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
967 return FALSE;
968
969 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
970 free (contents);
971 }
972
973 if ((flags & SEC_ALLOC) != 0)
974 {
975 Elf_Internal_Phdr *phdr;
976 unsigned int i, nload;
977
978 /* Some ELF linkers produce binaries with all the program header
979 p_paddr fields zero. If we have such a binary with more than
980 one PT_LOAD header, then leave the section lma equal to vma
981 so that we don't create sections with overlapping lma. */
982 phdr = elf_tdata (abfd)->phdr;
983 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
984 if (phdr->p_paddr != 0)
985 break;
986 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
987 ++nload;
988 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
989 return TRUE;
990
991 phdr = elf_tdata (abfd)->phdr;
992 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
993 {
994 if (((phdr->p_type == PT_LOAD
995 && (hdr->sh_flags & SHF_TLS) == 0)
996 || phdr->p_type == PT_TLS)
997 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
998 {
999 if ((flags & SEC_LOAD) == 0)
1000 newsect->lma = (phdr->p_paddr
1001 + hdr->sh_addr - phdr->p_vaddr);
1002 else
1003 /* We used to use the same adjustment for SEC_LOAD
1004 sections, but that doesn't work if the segment
1005 is packed with code from multiple VMAs.
1006 Instead we calculate the section LMA based on
1007 the segment LMA. It is assumed that the
1008 segment will contain sections with contiguous
1009 LMAs, even if the VMAs are not. */
1010 newsect->lma = (phdr->p_paddr
1011 + hdr->sh_offset - phdr->p_offset);
1012
1013 /* With contiguous segments, we can't tell from file
1014 offsets whether a section with zero size should
1015 be placed at the end of one segment or the
1016 beginning of the next. Decide based on vaddr. */
1017 if (hdr->sh_addr >= phdr->p_vaddr
1018 && (hdr->sh_addr + hdr->sh_size
1019 <= phdr->p_vaddr + phdr->p_memsz))
1020 break;
1021 }
1022 }
1023 }
1024
1025 /* Compress/decompress DWARF debug sections with names: .debug_* and
1026 .zdebug_*, after the section flags is set. */
1027 if ((flags & SEC_DEBUGGING)
1028 && ((name[1] == 'd' && name[6] == '_')
1029 || (name[1] == 'z' && name[7] == '_')))
1030 {
1031 enum { nothing, compress, decompress } action = nothing;
1032 char *new_name;
1033
1034 if (bfd_is_section_compressed (abfd, newsect))
1035 {
1036 /* Compressed section. Check if we should decompress. */
1037 if ((abfd->flags & BFD_DECOMPRESS))
1038 action = decompress;
1039 }
1040 else
1041 {
1042 /* Normal section. Check if we should compress. */
1043 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1044 action = compress;
1045 }
1046
1047 new_name = NULL;
1048 switch (action)
1049 {
1050 case nothing:
1051 break;
1052 case compress:
1053 if (!bfd_init_section_compress_status (abfd, newsect))
1054 {
1055 (*_bfd_error_handler)
1056 (_("%B: unable to initialize compress status for section %s"),
1057 abfd, name);
1058 return FALSE;
1059 }
1060 if (name[1] != 'z')
1061 {
1062 unsigned int len = strlen (name);
1063
1064 new_name = bfd_alloc (abfd, len + 2);
1065 if (new_name == NULL)
1066 return FALSE;
1067 new_name[0] = '.';
1068 new_name[1] = 'z';
1069 memcpy (new_name + 2, name + 1, len);
1070 }
1071 break;
1072 case decompress:
1073 if (!bfd_init_section_decompress_status (abfd, newsect))
1074 {
1075 (*_bfd_error_handler)
1076 (_("%B: unable to initialize decompress status for section %s"),
1077 abfd, name);
1078 return FALSE;
1079 }
1080 if (name[1] == 'z')
1081 {
1082 unsigned int len = strlen (name);
1083
1084 new_name = bfd_alloc (abfd, len);
1085 if (new_name == NULL)
1086 return FALSE;
1087 new_name[0] = '.';
1088 memcpy (new_name + 1, name + 2, len - 1);
1089 }
1090 break;
1091 }
1092 if (new_name != NULL)
1093 bfd_rename_section (abfd, newsect, new_name);
1094 }
1095
1096 return TRUE;
1097 }
1098
1099 const char *const bfd_elf_section_type_names[] = {
1100 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1101 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1102 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1103 };
1104
1105 /* ELF relocs are against symbols. If we are producing relocatable
1106 output, and the reloc is against an external symbol, and nothing
1107 has given us any additional addend, the resulting reloc will also
1108 be against the same symbol. In such a case, we don't want to
1109 change anything about the way the reloc is handled, since it will
1110 all be done at final link time. Rather than put special case code
1111 into bfd_perform_relocation, all the reloc types use this howto
1112 function. It just short circuits the reloc if producing
1113 relocatable output against an external symbol. */
1114
1115 bfd_reloc_status_type
1116 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1117 arelent *reloc_entry,
1118 asymbol *symbol,
1119 void *data ATTRIBUTE_UNUSED,
1120 asection *input_section,
1121 bfd *output_bfd,
1122 char **error_message ATTRIBUTE_UNUSED)
1123 {
1124 if (output_bfd != NULL
1125 && (symbol->flags & BSF_SECTION_SYM) == 0
1126 && (! reloc_entry->howto->partial_inplace
1127 || reloc_entry->addend == 0))
1128 {
1129 reloc_entry->address += input_section->output_offset;
1130 return bfd_reloc_ok;
1131 }
1132
1133 return bfd_reloc_continue;
1134 }
1135 \f
1136 /* Copy the program header and other data from one object module to
1137 another. */
1138
1139 bfd_boolean
1140 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1141 {
1142 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1143 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1144 return TRUE;
1145
1146 if (!elf_flags_init (obfd))
1147 {
1148 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1149 elf_flags_init (obfd) = TRUE;
1150 }
1151
1152 elf_gp (obfd) = elf_gp (ibfd);
1153
1154 /* Also copy the EI_OSABI field. */
1155 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1156 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1157
1158 /* Copy object attributes. */
1159 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1160 return TRUE;
1161 }
1162
1163 static const char *
1164 get_segment_type (unsigned int p_type)
1165 {
1166 const char *pt;
1167 switch (p_type)
1168 {
1169 case PT_NULL: pt = "NULL"; break;
1170 case PT_LOAD: pt = "LOAD"; break;
1171 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1172 case PT_INTERP: pt = "INTERP"; break;
1173 case PT_NOTE: pt = "NOTE"; break;
1174 case PT_SHLIB: pt = "SHLIB"; break;
1175 case PT_PHDR: pt = "PHDR"; break;
1176 case PT_TLS: pt = "TLS"; break;
1177 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1178 case PT_GNU_STACK: pt = "STACK"; break;
1179 case PT_GNU_RELRO: pt = "RELRO"; break;
1180 default: pt = NULL; break;
1181 }
1182 return pt;
1183 }
1184
1185 /* Print out the program headers. */
1186
1187 bfd_boolean
1188 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1189 {
1190 FILE *f = (FILE *) farg;
1191 Elf_Internal_Phdr *p;
1192 asection *s;
1193 bfd_byte *dynbuf = NULL;
1194
1195 p = elf_tdata (abfd)->phdr;
1196 if (p != NULL)
1197 {
1198 unsigned int i, c;
1199
1200 fprintf (f, _("\nProgram Header:\n"));
1201 c = elf_elfheader (abfd)->e_phnum;
1202 for (i = 0; i < c; i++, p++)
1203 {
1204 const char *pt = get_segment_type (p->p_type);
1205 char buf[20];
1206
1207 if (pt == NULL)
1208 {
1209 sprintf (buf, "0x%lx", p->p_type);
1210 pt = buf;
1211 }
1212 fprintf (f, "%8s off 0x", pt);
1213 bfd_fprintf_vma (abfd, f, p->p_offset);
1214 fprintf (f, " vaddr 0x");
1215 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1216 fprintf (f, " paddr 0x");
1217 bfd_fprintf_vma (abfd, f, p->p_paddr);
1218 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1219 fprintf (f, " filesz 0x");
1220 bfd_fprintf_vma (abfd, f, p->p_filesz);
1221 fprintf (f, " memsz 0x");
1222 bfd_fprintf_vma (abfd, f, p->p_memsz);
1223 fprintf (f, " flags %c%c%c",
1224 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1225 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1226 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1227 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1228 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1229 fprintf (f, "\n");
1230 }
1231 }
1232
1233 s = bfd_get_section_by_name (abfd, ".dynamic");
1234 if (s != NULL)
1235 {
1236 unsigned int elfsec;
1237 unsigned long shlink;
1238 bfd_byte *extdyn, *extdynend;
1239 size_t extdynsize;
1240 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1241
1242 fprintf (f, _("\nDynamic Section:\n"));
1243
1244 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1245 goto error_return;
1246
1247 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1248 if (elfsec == SHN_BAD)
1249 goto error_return;
1250 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1251
1252 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1253 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1254
1255 extdyn = dynbuf;
1256 extdynend = extdyn + s->size;
1257 for (; extdyn < extdynend; extdyn += extdynsize)
1258 {
1259 Elf_Internal_Dyn dyn;
1260 const char *name = "";
1261 char ab[20];
1262 bfd_boolean stringp;
1263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1264
1265 (*swap_dyn_in) (abfd, extdyn, &dyn);
1266
1267 if (dyn.d_tag == DT_NULL)
1268 break;
1269
1270 stringp = FALSE;
1271 switch (dyn.d_tag)
1272 {
1273 default:
1274 if (bed->elf_backend_get_target_dtag)
1275 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1276
1277 if (!strcmp (name, ""))
1278 {
1279 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1280 name = ab;
1281 }
1282 break;
1283
1284 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1285 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1286 case DT_PLTGOT: name = "PLTGOT"; break;
1287 case DT_HASH: name = "HASH"; break;
1288 case DT_STRTAB: name = "STRTAB"; break;
1289 case DT_SYMTAB: name = "SYMTAB"; break;
1290 case DT_RELA: name = "RELA"; break;
1291 case DT_RELASZ: name = "RELASZ"; break;
1292 case DT_RELAENT: name = "RELAENT"; break;
1293 case DT_STRSZ: name = "STRSZ"; break;
1294 case DT_SYMENT: name = "SYMENT"; break;
1295 case DT_INIT: name = "INIT"; break;
1296 case DT_FINI: name = "FINI"; break;
1297 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1298 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1299 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1300 case DT_REL: name = "REL"; break;
1301 case DT_RELSZ: name = "RELSZ"; break;
1302 case DT_RELENT: name = "RELENT"; break;
1303 case DT_PLTREL: name = "PLTREL"; break;
1304 case DT_DEBUG: name = "DEBUG"; break;
1305 case DT_TEXTREL: name = "TEXTREL"; break;
1306 case DT_JMPREL: name = "JMPREL"; break;
1307 case DT_BIND_NOW: name = "BIND_NOW"; break;
1308 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1309 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1310 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1311 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1312 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1313 case DT_FLAGS: name = "FLAGS"; break;
1314 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1315 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1316 case DT_CHECKSUM: name = "CHECKSUM"; break;
1317 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1318 case DT_MOVEENT: name = "MOVEENT"; break;
1319 case DT_MOVESZ: name = "MOVESZ"; break;
1320 case DT_FEATURE: name = "FEATURE"; break;
1321 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1322 case DT_SYMINSZ: name = "SYMINSZ"; break;
1323 case DT_SYMINENT: name = "SYMINENT"; break;
1324 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1325 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1326 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1327 case DT_PLTPAD: name = "PLTPAD"; break;
1328 case DT_MOVETAB: name = "MOVETAB"; break;
1329 case DT_SYMINFO: name = "SYMINFO"; break;
1330 case DT_RELACOUNT: name = "RELACOUNT"; break;
1331 case DT_RELCOUNT: name = "RELCOUNT"; break;
1332 case DT_FLAGS_1: name = "FLAGS_1"; break;
1333 case DT_VERSYM: name = "VERSYM"; break;
1334 case DT_VERDEF: name = "VERDEF"; break;
1335 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1336 case DT_VERNEED: name = "VERNEED"; break;
1337 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1338 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1339 case DT_USED: name = "USED"; break;
1340 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1341 case DT_GNU_HASH: name = "GNU_HASH"; break;
1342 }
1343
1344 fprintf (f, " %-20s ", name);
1345 if (! stringp)
1346 {
1347 fprintf (f, "0x");
1348 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1349 }
1350 else
1351 {
1352 const char *string;
1353 unsigned int tagv = dyn.d_un.d_val;
1354
1355 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1356 if (string == NULL)
1357 goto error_return;
1358 fprintf (f, "%s", string);
1359 }
1360 fprintf (f, "\n");
1361 }
1362
1363 free (dynbuf);
1364 dynbuf = NULL;
1365 }
1366
1367 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1368 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1369 {
1370 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1371 return FALSE;
1372 }
1373
1374 if (elf_dynverdef (abfd) != 0)
1375 {
1376 Elf_Internal_Verdef *t;
1377
1378 fprintf (f, _("\nVersion definitions:\n"));
1379 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1380 {
1381 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1382 t->vd_flags, t->vd_hash,
1383 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1384 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1385 {
1386 Elf_Internal_Verdaux *a;
1387
1388 fprintf (f, "\t");
1389 for (a = t->vd_auxptr->vda_nextptr;
1390 a != NULL;
1391 a = a->vda_nextptr)
1392 fprintf (f, "%s ",
1393 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1394 fprintf (f, "\n");
1395 }
1396 }
1397 }
1398
1399 if (elf_dynverref (abfd) != 0)
1400 {
1401 Elf_Internal_Verneed *t;
1402
1403 fprintf (f, _("\nVersion References:\n"));
1404 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1405 {
1406 Elf_Internal_Vernaux *a;
1407
1408 fprintf (f, _(" required from %s:\n"),
1409 t->vn_filename ? t->vn_filename : "<corrupt>");
1410 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1411 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1412 a->vna_flags, a->vna_other,
1413 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1414 }
1415 }
1416
1417 return TRUE;
1418
1419 error_return:
1420 if (dynbuf != NULL)
1421 free (dynbuf);
1422 return FALSE;
1423 }
1424
1425 /* Display ELF-specific fields of a symbol. */
1426
1427 void
1428 bfd_elf_print_symbol (bfd *abfd,
1429 void *filep,
1430 asymbol *symbol,
1431 bfd_print_symbol_type how)
1432 {
1433 FILE *file = (FILE *) filep;
1434 switch (how)
1435 {
1436 case bfd_print_symbol_name:
1437 fprintf (file, "%s", symbol->name);
1438 break;
1439 case bfd_print_symbol_more:
1440 fprintf (file, "elf ");
1441 bfd_fprintf_vma (abfd, file, symbol->value);
1442 fprintf (file, " %lx", (unsigned long) symbol->flags);
1443 break;
1444 case bfd_print_symbol_all:
1445 {
1446 const char *section_name;
1447 const char *name = NULL;
1448 const struct elf_backend_data *bed;
1449 unsigned char st_other;
1450 bfd_vma val;
1451
1452 section_name = symbol->section ? symbol->section->name : "(*none*)";
1453
1454 bed = get_elf_backend_data (abfd);
1455 if (bed->elf_backend_print_symbol_all)
1456 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1457
1458 if (name == NULL)
1459 {
1460 name = symbol->name;
1461 bfd_print_symbol_vandf (abfd, file, symbol);
1462 }
1463
1464 fprintf (file, " %s\t", section_name);
1465 /* Print the "other" value for a symbol. For common symbols,
1466 we've already printed the size; now print the alignment.
1467 For other symbols, we have no specified alignment, and
1468 we've printed the address; now print the size. */
1469 if (symbol->section && bfd_is_com_section (symbol->section))
1470 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1471 else
1472 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1473 bfd_fprintf_vma (abfd, file, val);
1474
1475 /* If we have version information, print it. */
1476 if (elf_dynversym (abfd) != 0
1477 && (elf_dynverdef (abfd) != 0
1478 || elf_dynverref (abfd) != 0))
1479 {
1480 unsigned int vernum;
1481 const char *version_string;
1482
1483 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1484
1485 if (vernum == 0)
1486 version_string = "";
1487 else if (vernum == 1)
1488 version_string = "Base";
1489 else if (vernum <= elf_tdata (abfd)->cverdefs)
1490 version_string =
1491 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1492 else
1493 {
1494 Elf_Internal_Verneed *t;
1495
1496 version_string = "";
1497 for (t = elf_tdata (abfd)->verref;
1498 t != NULL;
1499 t = t->vn_nextref)
1500 {
1501 Elf_Internal_Vernaux *a;
1502
1503 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1504 {
1505 if (a->vna_other == vernum)
1506 {
1507 version_string = a->vna_nodename;
1508 break;
1509 }
1510 }
1511 }
1512 }
1513
1514 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1515 fprintf (file, " %-11s", version_string);
1516 else
1517 {
1518 int i;
1519
1520 fprintf (file, " (%s)", version_string);
1521 for (i = 10 - strlen (version_string); i > 0; --i)
1522 putc (' ', file);
1523 }
1524 }
1525
1526 /* If the st_other field is not zero, print it. */
1527 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1528
1529 switch (st_other)
1530 {
1531 case 0: break;
1532 case STV_INTERNAL: fprintf (file, " .internal"); break;
1533 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1534 case STV_PROTECTED: fprintf (file, " .protected"); break;
1535 default:
1536 /* Some other non-defined flags are also present, so print
1537 everything hex. */
1538 fprintf (file, " 0x%02x", (unsigned int) st_other);
1539 }
1540
1541 fprintf (file, " %s", name);
1542 }
1543 break;
1544 }
1545 }
1546
1547 /* Allocate an ELF string table--force the first byte to be zero. */
1548
1549 struct bfd_strtab_hash *
1550 _bfd_elf_stringtab_init (void)
1551 {
1552 struct bfd_strtab_hash *ret;
1553
1554 ret = _bfd_stringtab_init ();
1555 if (ret != NULL)
1556 {
1557 bfd_size_type loc;
1558
1559 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1560 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1561 if (loc == (bfd_size_type) -1)
1562 {
1563 _bfd_stringtab_free (ret);
1564 ret = NULL;
1565 }
1566 }
1567 return ret;
1568 }
1569 \f
1570 /* ELF .o/exec file reading */
1571
1572 /* Create a new bfd section from an ELF section header. */
1573
1574 bfd_boolean
1575 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1576 {
1577 Elf_Internal_Shdr *hdr;
1578 Elf_Internal_Ehdr *ehdr;
1579 const struct elf_backend_data *bed;
1580 const char *name;
1581 bfd_boolean ret = TRUE;
1582 static bfd_boolean * sections_being_created = NULL;
1583 static bfd * sections_being_created_abfd = NULL;
1584 static unsigned int nesting = 0;
1585
1586 if (shindex >= elf_numsections (abfd))
1587 return FALSE;
1588
1589 if (++ nesting > 3)
1590 {
1591 /* PR17512: A corrupt ELF binary might contain a recursive group of
1592 sections, each the string indicies pointing to the next in the
1593 loop. Detect this here, by refusing to load a section that we are
1594 already in the process of loading. We only trigger this test if
1595 we have nested at least three sections deep as normal ELF binaries
1596 can expect to recurse at least once.
1597
1598 FIXME: It would be better if this array was attached to the bfd,
1599 rather than being held in a static pointer. */
1600
1601 if (sections_being_created_abfd != abfd)
1602 sections_being_created = NULL;
1603 if (sections_being_created == NULL)
1604 {
1605 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1606 sections_being_created = (bfd_boolean *)
1607 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1608 sections_being_created_abfd = abfd;
1609 }
1610 if (sections_being_created [shindex])
1611 {
1612 (*_bfd_error_handler)
1613 (_("%B: warning: loop in section dependencies detected"), abfd);
1614 return FALSE;
1615 }
1616 sections_being_created [shindex] = TRUE;
1617 }
1618
1619 hdr = elf_elfsections (abfd)[shindex];
1620 ehdr = elf_elfheader (abfd);
1621 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1622 hdr->sh_name);
1623 if (name == NULL)
1624 goto fail;
1625
1626 bed = get_elf_backend_data (abfd);
1627 switch (hdr->sh_type)
1628 {
1629 case SHT_NULL:
1630 /* Inactive section. Throw it away. */
1631 goto success;
1632
1633 case SHT_PROGBITS: /* Normal section with contents. */
1634 case SHT_NOBITS: /* .bss section. */
1635 case SHT_HASH: /* .hash section. */
1636 case SHT_NOTE: /* .note section. */
1637 case SHT_INIT_ARRAY: /* .init_array section. */
1638 case SHT_FINI_ARRAY: /* .fini_array section. */
1639 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1640 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1641 case SHT_GNU_HASH: /* .gnu.hash section. */
1642 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1643 goto success;
1644
1645 case SHT_DYNAMIC: /* Dynamic linking information. */
1646 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1647 goto fail;
1648
1649 if (hdr->sh_link > elf_numsections (abfd))
1650 {
1651 /* PR 10478: Accept Solaris binaries with a sh_link
1652 field set to SHN_BEFORE or SHN_AFTER. */
1653 switch (bfd_get_arch (abfd))
1654 {
1655 case bfd_arch_i386:
1656 case bfd_arch_sparc:
1657 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1658 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1659 break;
1660 /* Otherwise fall through. */
1661 default:
1662 goto fail;
1663 }
1664 }
1665 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1666 goto fail;
1667 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1668 {
1669 Elf_Internal_Shdr *dynsymhdr;
1670
1671 /* The shared libraries distributed with hpux11 have a bogus
1672 sh_link field for the ".dynamic" section. Find the
1673 string table for the ".dynsym" section instead. */
1674 if (elf_dynsymtab (abfd) != 0)
1675 {
1676 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1677 hdr->sh_link = dynsymhdr->sh_link;
1678 }
1679 else
1680 {
1681 unsigned int i, num_sec;
1682
1683 num_sec = elf_numsections (abfd);
1684 for (i = 1; i < num_sec; i++)
1685 {
1686 dynsymhdr = elf_elfsections (abfd)[i];
1687 if (dynsymhdr->sh_type == SHT_DYNSYM)
1688 {
1689 hdr->sh_link = dynsymhdr->sh_link;
1690 break;
1691 }
1692 }
1693 }
1694 }
1695 goto success;
1696
1697 case SHT_SYMTAB: /* A symbol table. */
1698 if (elf_onesymtab (abfd) == shindex)
1699 goto success;
1700
1701 if (hdr->sh_entsize != bed->s->sizeof_sym)
1702 goto fail;
1703
1704 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1705 {
1706 if (hdr->sh_size != 0)
1707 goto fail;
1708 /* Some assemblers erroneously set sh_info to one with a
1709 zero sh_size. ld sees this as a global symbol count
1710 of (unsigned) -1. Fix it here. */
1711 hdr->sh_info = 0;
1712 goto success;
1713 }
1714
1715 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1716 elf_onesymtab (abfd) = shindex;
1717 elf_tdata (abfd)->symtab_hdr = *hdr;
1718 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1719 abfd->flags |= HAS_SYMS;
1720
1721 /* Sometimes a shared object will map in the symbol table. If
1722 SHF_ALLOC is set, and this is a shared object, then we also
1723 treat this section as a BFD section. We can not base the
1724 decision purely on SHF_ALLOC, because that flag is sometimes
1725 set in a relocatable object file, which would confuse the
1726 linker. */
1727 if ((hdr->sh_flags & SHF_ALLOC) != 0
1728 && (abfd->flags & DYNAMIC) != 0
1729 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1730 shindex))
1731 goto fail;
1732
1733 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1734 can't read symbols without that section loaded as well. It
1735 is most likely specified by the next section header. */
1736 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1737 {
1738 unsigned int i, num_sec;
1739
1740 num_sec = elf_numsections (abfd);
1741 for (i = shindex + 1; i < num_sec; i++)
1742 {
1743 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1744 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1745 && hdr2->sh_link == shindex)
1746 break;
1747 }
1748 if (i == num_sec)
1749 for (i = 1; i < shindex; i++)
1750 {
1751 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1752 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1753 && hdr2->sh_link == shindex)
1754 break;
1755 }
1756 if (i != shindex)
1757 ret = bfd_section_from_shdr (abfd, i);
1758 }
1759 goto success;
1760
1761 case SHT_DYNSYM: /* A dynamic symbol table. */
1762 if (elf_dynsymtab (abfd) == shindex)
1763 goto success;
1764
1765 if (hdr->sh_entsize != bed->s->sizeof_sym)
1766 goto fail;
1767
1768 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1769 {
1770 if (hdr->sh_size != 0)
1771 goto fail;
1772
1773 /* Some linkers erroneously set sh_info to one with a
1774 zero sh_size. ld sees this as a global symbol count
1775 of (unsigned) -1. Fix it here. */
1776 hdr->sh_info = 0;
1777 goto success;
1778 }
1779
1780 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1781 elf_dynsymtab (abfd) = shindex;
1782 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1783 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1784 abfd->flags |= HAS_SYMS;
1785
1786 /* Besides being a symbol table, we also treat this as a regular
1787 section, so that objcopy can handle it. */
1788 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1789 goto success;
1790
1791 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
1792 if (elf_symtab_shndx (abfd) == shindex)
1793 goto success;
1794
1795 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1796 elf_symtab_shndx (abfd) = shindex;
1797 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1798 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1799 goto success;
1800
1801 case SHT_STRTAB: /* A string table. */
1802 if (hdr->bfd_section != NULL)
1803 goto success;
1804
1805 if (ehdr->e_shstrndx == shindex)
1806 {
1807 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1808 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1809 goto success;
1810 }
1811
1812 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1813 {
1814 symtab_strtab:
1815 elf_tdata (abfd)->strtab_hdr = *hdr;
1816 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1817 goto success;
1818 }
1819
1820 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1821 {
1822 dynsymtab_strtab:
1823 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1824 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1825 elf_elfsections (abfd)[shindex] = hdr;
1826 /* We also treat this as a regular section, so that objcopy
1827 can handle it. */
1828 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1829 shindex);
1830 goto success;
1831 }
1832
1833 /* If the string table isn't one of the above, then treat it as a
1834 regular section. We need to scan all the headers to be sure,
1835 just in case this strtab section appeared before the above. */
1836 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1837 {
1838 unsigned int i, num_sec;
1839
1840 num_sec = elf_numsections (abfd);
1841 for (i = 1; i < num_sec; i++)
1842 {
1843 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1844 if (hdr2->sh_link == shindex)
1845 {
1846 /* Prevent endless recursion on broken objects. */
1847 if (i == shindex)
1848 goto fail;
1849 if (! bfd_section_from_shdr (abfd, i))
1850 goto fail;
1851 if (elf_onesymtab (abfd) == i)
1852 goto symtab_strtab;
1853 if (elf_dynsymtab (abfd) == i)
1854 goto dynsymtab_strtab;
1855 }
1856 }
1857 }
1858 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1859 goto success;
1860
1861 case SHT_REL:
1862 case SHT_RELA:
1863 /* *These* do a lot of work -- but build no sections! */
1864 {
1865 asection *target_sect;
1866 Elf_Internal_Shdr *hdr2, **p_hdr;
1867 unsigned int num_sec = elf_numsections (abfd);
1868 struct bfd_elf_section_data *esdt;
1869 bfd_size_type amt;
1870
1871 if (hdr->sh_entsize
1872 != (bfd_size_type) (hdr->sh_type == SHT_REL
1873 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1874 goto fail;
1875
1876 /* Check for a bogus link to avoid crashing. */
1877 if (hdr->sh_link >= num_sec)
1878 {
1879 ((*_bfd_error_handler)
1880 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1881 abfd, hdr->sh_link, name, shindex));
1882 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1883 shindex);
1884 goto success;
1885 }
1886
1887 /* For some incomprehensible reason Oracle distributes
1888 libraries for Solaris in which some of the objects have
1889 bogus sh_link fields. It would be nice if we could just
1890 reject them, but, unfortunately, some people need to use
1891 them. We scan through the section headers; if we find only
1892 one suitable symbol table, we clobber the sh_link to point
1893 to it. I hope this doesn't break anything.
1894
1895 Don't do it on executable nor shared library. */
1896 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1897 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1898 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1899 {
1900 unsigned int scan;
1901 int found;
1902
1903 found = 0;
1904 for (scan = 1; scan < num_sec; scan++)
1905 {
1906 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1907 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1908 {
1909 if (found != 0)
1910 {
1911 found = 0;
1912 break;
1913 }
1914 found = scan;
1915 }
1916 }
1917 if (found != 0)
1918 hdr->sh_link = found;
1919 }
1920
1921 /* Get the symbol table. */
1922 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1923 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1924 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1925 goto fail;
1926
1927 /* If this reloc section does not use the main symbol table we
1928 don't treat it as a reloc section. BFD can't adequately
1929 represent such a section, so at least for now, we don't
1930 try. We just present it as a normal section. We also
1931 can't use it as a reloc section if it points to the null
1932 section, an invalid section, another reloc section, or its
1933 sh_link points to the null section. */
1934 if (hdr->sh_link != elf_onesymtab (abfd)
1935 || hdr->sh_link == SHN_UNDEF
1936 || hdr->sh_info == SHN_UNDEF
1937 || hdr->sh_info >= num_sec
1938 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1939 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1940 {
1941 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1942 shindex);
1943 goto success;
1944 }
1945
1946 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1947 goto fail;
1948
1949 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1950 if (target_sect == NULL)
1951 goto fail;
1952
1953 esdt = elf_section_data (target_sect);
1954 if (hdr->sh_type == SHT_RELA)
1955 p_hdr = &esdt->rela.hdr;
1956 else
1957 p_hdr = &esdt->rel.hdr;
1958
1959 BFD_ASSERT (*p_hdr == NULL);
1960 amt = sizeof (*hdr2);
1961 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1962 if (hdr2 == NULL)
1963 goto fail;
1964 *hdr2 = *hdr;
1965 *p_hdr = hdr2;
1966 elf_elfsections (abfd)[shindex] = hdr2;
1967 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1968 target_sect->flags |= SEC_RELOC;
1969 target_sect->relocation = NULL;
1970 target_sect->rel_filepos = hdr->sh_offset;
1971 /* In the section to which the relocations apply, mark whether
1972 its relocations are of the REL or RELA variety. */
1973 if (hdr->sh_size != 0)
1974 {
1975 if (hdr->sh_type == SHT_RELA)
1976 target_sect->use_rela_p = 1;
1977 }
1978 abfd->flags |= HAS_RELOC;
1979 goto success;
1980 }
1981
1982 case SHT_GNU_verdef:
1983 elf_dynverdef (abfd) = shindex;
1984 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1985 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1986 goto success;
1987
1988 case SHT_GNU_versym:
1989 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1990 goto fail;
1991
1992 elf_dynversym (abfd) = shindex;
1993 elf_tdata (abfd)->dynversym_hdr = *hdr;
1994 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995 goto success;
1996
1997 case SHT_GNU_verneed:
1998 elf_dynverref (abfd) = shindex;
1999 elf_tdata (abfd)->dynverref_hdr = *hdr;
2000 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2001 goto success;
2002
2003 case SHT_SHLIB:
2004 goto success;
2005
2006 case SHT_GROUP:
2007 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2008 goto fail;
2009
2010 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2011 goto fail;
2012
2013 if (hdr->contents != NULL)
2014 {
2015 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2016 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
2017 asection *s;
2018
2019 if (idx->flags & GRP_COMDAT)
2020 hdr->bfd_section->flags
2021 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2022
2023 /* We try to keep the same section order as it comes in. */
2024 idx += n_elt;
2025 while (--n_elt != 0)
2026 {
2027 --idx;
2028
2029 if (idx->shdr != NULL
2030 && (s = idx->shdr->bfd_section) != NULL
2031 && elf_next_in_group (s) != NULL)
2032 {
2033 elf_next_in_group (hdr->bfd_section) = s;
2034 break;
2035 }
2036 }
2037 }
2038 goto success;
2039
2040 default:
2041 /* Possibly an attributes section. */
2042 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2043 || hdr->sh_type == bed->obj_attrs_section_type)
2044 {
2045 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2046 goto fail;
2047 _bfd_elf_parse_attributes (abfd, hdr);
2048 goto success;
2049 }
2050
2051 /* Check for any processor-specific section types. */
2052 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2053 goto success;
2054
2055 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2056 {
2057 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2058 /* FIXME: How to properly handle allocated section reserved
2059 for applications? */
2060 (*_bfd_error_handler)
2061 (_("%B: don't know how to handle allocated, application "
2062 "specific section `%s' [0x%8x]"),
2063 abfd, name, hdr->sh_type);
2064 else
2065 {
2066 /* Allow sections reserved for applications. */
2067 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2068 shindex);
2069 goto success;
2070 }
2071 }
2072 else if (hdr->sh_type >= SHT_LOPROC
2073 && hdr->sh_type <= SHT_HIPROC)
2074 /* FIXME: We should handle this section. */
2075 (*_bfd_error_handler)
2076 (_("%B: don't know how to handle processor specific section "
2077 "`%s' [0x%8x]"),
2078 abfd, name, hdr->sh_type);
2079 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2080 {
2081 /* Unrecognised OS-specific sections. */
2082 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2083 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2084 required to correctly process the section and the file should
2085 be rejected with an error message. */
2086 (*_bfd_error_handler)
2087 (_("%B: don't know how to handle OS specific section "
2088 "`%s' [0x%8x]"),
2089 abfd, name, hdr->sh_type);
2090 else
2091 {
2092 /* Otherwise it should be processed. */
2093 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2094 goto success;
2095 }
2096 }
2097 else
2098 /* FIXME: We should handle this section. */
2099 (*_bfd_error_handler)
2100 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2101 abfd, name, hdr->sh_type);
2102
2103 goto fail;
2104 }
2105
2106 fail:
2107 ret = FALSE;
2108 success:
2109 if (sections_being_created && sections_being_created_abfd == abfd)
2110 sections_being_created [shindex] = FALSE;
2111 if (-- nesting == 0)
2112 {
2113 sections_being_created = NULL;
2114 sections_being_created_abfd = abfd;
2115 }
2116 return ret;
2117 }
2118
2119 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2120
2121 Elf_Internal_Sym *
2122 bfd_sym_from_r_symndx (struct sym_cache *cache,
2123 bfd *abfd,
2124 unsigned long r_symndx)
2125 {
2126 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2127
2128 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2129 {
2130 Elf_Internal_Shdr *symtab_hdr;
2131 unsigned char esym[sizeof (Elf64_External_Sym)];
2132 Elf_External_Sym_Shndx eshndx;
2133
2134 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2135 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2136 &cache->sym[ent], esym, &eshndx) == NULL)
2137 return NULL;
2138
2139 if (cache->abfd != abfd)
2140 {
2141 memset (cache->indx, -1, sizeof (cache->indx));
2142 cache->abfd = abfd;
2143 }
2144 cache->indx[ent] = r_symndx;
2145 }
2146
2147 return &cache->sym[ent];
2148 }
2149
2150 /* Given an ELF section number, retrieve the corresponding BFD
2151 section. */
2152
2153 asection *
2154 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2155 {
2156 if (sec_index >= elf_numsections (abfd))
2157 return NULL;
2158 return elf_elfsections (abfd)[sec_index]->bfd_section;
2159 }
2160
2161 static const struct bfd_elf_special_section special_sections_b[] =
2162 {
2163 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2164 { NULL, 0, 0, 0, 0 }
2165 };
2166
2167 static const struct bfd_elf_special_section special_sections_c[] =
2168 {
2169 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2170 { NULL, 0, 0, 0, 0 }
2171 };
2172
2173 static const struct bfd_elf_special_section special_sections_d[] =
2174 {
2175 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2176 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2177 /* There are more DWARF sections than these, but they needn't be added here
2178 unless you have to cope with broken compilers that don't emit section
2179 attributes or you want to help the user writing assembler. */
2180 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2181 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2182 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2183 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2184 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2185 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2186 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2187 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2188 { NULL, 0, 0, 0, 0 }
2189 };
2190
2191 static const struct bfd_elf_special_section special_sections_f[] =
2192 {
2193 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2194 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2195 { NULL, 0, 0, 0, 0 }
2196 };
2197
2198 static const struct bfd_elf_special_section special_sections_g[] =
2199 {
2200 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2201 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2202 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2203 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2204 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2205 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2206 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2207 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2208 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2209 { NULL, 0, 0, 0, 0 }
2210 };
2211
2212 static const struct bfd_elf_special_section special_sections_h[] =
2213 {
2214 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2215 { NULL, 0, 0, 0, 0 }
2216 };
2217
2218 static const struct bfd_elf_special_section special_sections_i[] =
2219 {
2220 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2221 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2222 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2223 { NULL, 0, 0, 0, 0 }
2224 };
2225
2226 static const struct bfd_elf_special_section special_sections_l[] =
2227 {
2228 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2229 { NULL, 0, 0, 0, 0 }
2230 };
2231
2232 static const struct bfd_elf_special_section special_sections_n[] =
2233 {
2234 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2235 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2236 { NULL, 0, 0, 0, 0 }
2237 };
2238
2239 static const struct bfd_elf_special_section special_sections_p[] =
2240 {
2241 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2242 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2243 { NULL, 0, 0, 0, 0 }
2244 };
2245
2246 static const struct bfd_elf_special_section special_sections_r[] =
2247 {
2248 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2249 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2250 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2251 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2252 { NULL, 0, 0, 0, 0 }
2253 };
2254
2255 static const struct bfd_elf_special_section special_sections_s[] =
2256 {
2257 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2258 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2259 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2260 /* See struct bfd_elf_special_section declaration for the semantics of
2261 this special case where .prefix_length != strlen (.prefix). */
2262 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2263 { NULL, 0, 0, 0, 0 }
2264 };
2265
2266 static const struct bfd_elf_special_section special_sections_t[] =
2267 {
2268 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2269 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2270 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2271 { NULL, 0, 0, 0, 0 }
2272 };
2273
2274 static const struct bfd_elf_special_section special_sections_z[] =
2275 {
2276 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2277 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2278 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2279 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2280 { NULL, 0, 0, 0, 0 }
2281 };
2282
2283 static const struct bfd_elf_special_section * const special_sections[] =
2284 {
2285 special_sections_b, /* 'b' */
2286 special_sections_c, /* 'c' */
2287 special_sections_d, /* 'd' */
2288 NULL, /* 'e' */
2289 special_sections_f, /* 'f' */
2290 special_sections_g, /* 'g' */
2291 special_sections_h, /* 'h' */
2292 special_sections_i, /* 'i' */
2293 NULL, /* 'j' */
2294 NULL, /* 'k' */
2295 special_sections_l, /* 'l' */
2296 NULL, /* 'm' */
2297 special_sections_n, /* 'n' */
2298 NULL, /* 'o' */
2299 special_sections_p, /* 'p' */
2300 NULL, /* 'q' */
2301 special_sections_r, /* 'r' */
2302 special_sections_s, /* 's' */
2303 special_sections_t, /* 't' */
2304 NULL, /* 'u' */
2305 NULL, /* 'v' */
2306 NULL, /* 'w' */
2307 NULL, /* 'x' */
2308 NULL, /* 'y' */
2309 special_sections_z /* 'z' */
2310 };
2311
2312 const struct bfd_elf_special_section *
2313 _bfd_elf_get_special_section (const char *name,
2314 const struct bfd_elf_special_section *spec,
2315 unsigned int rela)
2316 {
2317 int i;
2318 int len;
2319
2320 len = strlen (name);
2321
2322 for (i = 0; spec[i].prefix != NULL; i++)
2323 {
2324 int suffix_len;
2325 int prefix_len = spec[i].prefix_length;
2326
2327 if (len < prefix_len)
2328 continue;
2329 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2330 continue;
2331
2332 suffix_len = spec[i].suffix_length;
2333 if (suffix_len <= 0)
2334 {
2335 if (name[prefix_len] != 0)
2336 {
2337 if (suffix_len == 0)
2338 continue;
2339 if (name[prefix_len] != '.'
2340 && (suffix_len == -2
2341 || (rela && spec[i].type == SHT_REL)))
2342 continue;
2343 }
2344 }
2345 else
2346 {
2347 if (len < prefix_len + suffix_len)
2348 continue;
2349 if (memcmp (name + len - suffix_len,
2350 spec[i].prefix + prefix_len,
2351 suffix_len) != 0)
2352 continue;
2353 }
2354 return &spec[i];
2355 }
2356
2357 return NULL;
2358 }
2359
2360 const struct bfd_elf_special_section *
2361 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2362 {
2363 int i;
2364 const struct bfd_elf_special_section *spec;
2365 const struct elf_backend_data *bed;
2366
2367 /* See if this is one of the special sections. */
2368 if (sec->name == NULL)
2369 return NULL;
2370
2371 bed = get_elf_backend_data (abfd);
2372 spec = bed->special_sections;
2373 if (spec)
2374 {
2375 spec = _bfd_elf_get_special_section (sec->name,
2376 bed->special_sections,
2377 sec->use_rela_p);
2378 if (spec != NULL)
2379 return spec;
2380 }
2381
2382 if (sec->name[0] != '.')
2383 return NULL;
2384
2385 i = sec->name[1] - 'b';
2386 if (i < 0 || i > 'z' - 'b')
2387 return NULL;
2388
2389 spec = special_sections[i];
2390
2391 if (spec == NULL)
2392 return NULL;
2393
2394 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2395 }
2396
2397 bfd_boolean
2398 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2399 {
2400 struct bfd_elf_section_data *sdata;
2401 const struct elf_backend_data *bed;
2402 const struct bfd_elf_special_section *ssect;
2403
2404 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2405 if (sdata == NULL)
2406 {
2407 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2408 sizeof (*sdata));
2409 if (sdata == NULL)
2410 return FALSE;
2411 sec->used_by_bfd = sdata;
2412 }
2413
2414 /* Indicate whether or not this section should use RELA relocations. */
2415 bed = get_elf_backend_data (abfd);
2416 sec->use_rela_p = bed->default_use_rela_p;
2417
2418 /* When we read a file, we don't need to set ELF section type and
2419 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2420 anyway. We will set ELF section type and flags for all linker
2421 created sections. If user specifies BFD section flags, we will
2422 set ELF section type and flags based on BFD section flags in
2423 elf_fake_sections. Special handling for .init_array/.fini_array
2424 output sections since they may contain .ctors/.dtors input
2425 sections. We don't want _bfd_elf_init_private_section_data to
2426 copy ELF section type from .ctors/.dtors input sections. */
2427 if (abfd->direction != read_direction
2428 || (sec->flags & SEC_LINKER_CREATED) != 0)
2429 {
2430 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2431 if (ssect != NULL
2432 && (!sec->flags
2433 || (sec->flags & SEC_LINKER_CREATED) != 0
2434 || ssect->type == SHT_INIT_ARRAY
2435 || ssect->type == SHT_FINI_ARRAY))
2436 {
2437 elf_section_type (sec) = ssect->type;
2438 elf_section_flags (sec) = ssect->attr;
2439 }
2440 }
2441
2442 return _bfd_generic_new_section_hook (abfd, sec);
2443 }
2444
2445 /* Create a new bfd section from an ELF program header.
2446
2447 Since program segments have no names, we generate a synthetic name
2448 of the form segment<NUM>, where NUM is generally the index in the
2449 program header table. For segments that are split (see below) we
2450 generate the names segment<NUM>a and segment<NUM>b.
2451
2452 Note that some program segments may have a file size that is different than
2453 (less than) the memory size. All this means is that at execution the
2454 system must allocate the amount of memory specified by the memory size,
2455 but only initialize it with the first "file size" bytes read from the
2456 file. This would occur for example, with program segments consisting
2457 of combined data+bss.
2458
2459 To handle the above situation, this routine generates TWO bfd sections
2460 for the single program segment. The first has the length specified by
2461 the file size of the segment, and the second has the length specified
2462 by the difference between the two sizes. In effect, the segment is split
2463 into its initialized and uninitialized parts.
2464
2465 */
2466
2467 bfd_boolean
2468 _bfd_elf_make_section_from_phdr (bfd *abfd,
2469 Elf_Internal_Phdr *hdr,
2470 int hdr_index,
2471 const char *type_name)
2472 {
2473 asection *newsect;
2474 char *name;
2475 char namebuf[64];
2476 size_t len;
2477 int split;
2478
2479 split = ((hdr->p_memsz > 0)
2480 && (hdr->p_filesz > 0)
2481 && (hdr->p_memsz > hdr->p_filesz));
2482
2483 if (hdr->p_filesz > 0)
2484 {
2485 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2486 len = strlen (namebuf) + 1;
2487 name = (char *) bfd_alloc (abfd, len);
2488 if (!name)
2489 return FALSE;
2490 memcpy (name, namebuf, len);
2491 newsect = bfd_make_section (abfd, name);
2492 if (newsect == NULL)
2493 return FALSE;
2494 newsect->vma = hdr->p_vaddr;
2495 newsect->lma = hdr->p_paddr;
2496 newsect->size = hdr->p_filesz;
2497 newsect->filepos = hdr->p_offset;
2498 newsect->flags |= SEC_HAS_CONTENTS;
2499 newsect->alignment_power = bfd_log2 (hdr->p_align);
2500 if (hdr->p_type == PT_LOAD)
2501 {
2502 newsect->flags |= SEC_ALLOC;
2503 newsect->flags |= SEC_LOAD;
2504 if (hdr->p_flags & PF_X)
2505 {
2506 /* FIXME: all we known is that it has execute PERMISSION,
2507 may be data. */
2508 newsect->flags |= SEC_CODE;
2509 }
2510 }
2511 if (!(hdr->p_flags & PF_W))
2512 {
2513 newsect->flags |= SEC_READONLY;
2514 }
2515 }
2516
2517 if (hdr->p_memsz > hdr->p_filesz)
2518 {
2519 bfd_vma align;
2520
2521 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2522 len = strlen (namebuf) + 1;
2523 name = (char *) bfd_alloc (abfd, len);
2524 if (!name)
2525 return FALSE;
2526 memcpy (name, namebuf, len);
2527 newsect = bfd_make_section (abfd, name);
2528 if (newsect == NULL)
2529 return FALSE;
2530 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2531 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2532 newsect->size = hdr->p_memsz - hdr->p_filesz;
2533 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2534 align = newsect->vma & -newsect->vma;
2535 if (align == 0 || align > hdr->p_align)
2536 align = hdr->p_align;
2537 newsect->alignment_power = bfd_log2 (align);
2538 if (hdr->p_type == PT_LOAD)
2539 {
2540 /* Hack for gdb. Segments that have not been modified do
2541 not have their contents written to a core file, on the
2542 assumption that a debugger can find the contents in the
2543 executable. We flag this case by setting the fake
2544 section size to zero. Note that "real" bss sections will
2545 always have their contents dumped to the core file. */
2546 if (bfd_get_format (abfd) == bfd_core)
2547 newsect->size = 0;
2548 newsect->flags |= SEC_ALLOC;
2549 if (hdr->p_flags & PF_X)
2550 newsect->flags |= SEC_CODE;
2551 }
2552 if (!(hdr->p_flags & PF_W))
2553 newsect->flags |= SEC_READONLY;
2554 }
2555
2556 return TRUE;
2557 }
2558
2559 bfd_boolean
2560 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2561 {
2562 const struct elf_backend_data *bed;
2563
2564 switch (hdr->p_type)
2565 {
2566 case PT_NULL:
2567 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2568
2569 case PT_LOAD:
2570 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2571
2572 case PT_DYNAMIC:
2573 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2574
2575 case PT_INTERP:
2576 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2577
2578 case PT_NOTE:
2579 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2580 return FALSE;
2581 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2582 return FALSE;
2583 return TRUE;
2584
2585 case PT_SHLIB:
2586 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2587
2588 case PT_PHDR:
2589 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2590
2591 case PT_GNU_EH_FRAME:
2592 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2593 "eh_frame_hdr");
2594
2595 case PT_GNU_STACK:
2596 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2597
2598 case PT_GNU_RELRO:
2599 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2600
2601 default:
2602 /* Check for any processor-specific program segment types. */
2603 bed = get_elf_backend_data (abfd);
2604 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2605 }
2606 }
2607
2608 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2609 REL or RELA. */
2610
2611 Elf_Internal_Shdr *
2612 _bfd_elf_single_rel_hdr (asection *sec)
2613 {
2614 if (elf_section_data (sec)->rel.hdr)
2615 {
2616 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2617 return elf_section_data (sec)->rel.hdr;
2618 }
2619 else
2620 return elf_section_data (sec)->rela.hdr;
2621 }
2622
2623 /* Allocate and initialize a section-header for a new reloc section,
2624 containing relocations against ASECT. It is stored in RELDATA. If
2625 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2626 relocations. */
2627
2628 static bfd_boolean
2629 _bfd_elf_init_reloc_shdr (bfd *abfd,
2630 struct bfd_elf_section_reloc_data *reldata,
2631 asection *asect,
2632 bfd_boolean use_rela_p)
2633 {
2634 Elf_Internal_Shdr *rel_hdr;
2635 char *name;
2636 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2637 bfd_size_type amt;
2638
2639 amt = sizeof (Elf_Internal_Shdr);
2640 BFD_ASSERT (reldata->hdr == NULL);
2641 rel_hdr = bfd_zalloc (abfd, amt);
2642 reldata->hdr = rel_hdr;
2643
2644 amt = sizeof ".rela" + strlen (asect->name);
2645 name = (char *) bfd_alloc (abfd, amt);
2646 if (name == NULL)
2647 return FALSE;
2648 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2649 rel_hdr->sh_name =
2650 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2651 FALSE);
2652 if (rel_hdr->sh_name == (unsigned int) -1)
2653 return FALSE;
2654 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2655 rel_hdr->sh_entsize = (use_rela_p
2656 ? bed->s->sizeof_rela
2657 : bed->s->sizeof_rel);
2658 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2659 rel_hdr->sh_flags = 0;
2660 rel_hdr->sh_addr = 0;
2661 rel_hdr->sh_size = 0;
2662 rel_hdr->sh_offset = 0;
2663
2664 return TRUE;
2665 }
2666
2667 /* Return the default section type based on the passed in section flags. */
2668
2669 int
2670 bfd_elf_get_default_section_type (flagword flags)
2671 {
2672 if ((flags & SEC_ALLOC) != 0
2673 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2674 return SHT_NOBITS;
2675 return SHT_PROGBITS;
2676 }
2677
2678 struct fake_section_arg
2679 {
2680 struct bfd_link_info *link_info;
2681 bfd_boolean failed;
2682 };
2683
2684 /* Set up an ELF internal section header for a section. */
2685
2686 static void
2687 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2688 {
2689 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2690 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2691 struct bfd_elf_section_data *esd = elf_section_data (asect);
2692 Elf_Internal_Shdr *this_hdr;
2693 unsigned int sh_type;
2694
2695 if (arg->failed)
2696 {
2697 /* We already failed; just get out of the bfd_map_over_sections
2698 loop. */
2699 return;
2700 }
2701
2702 this_hdr = &esd->this_hdr;
2703
2704 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2705 asect->name, FALSE);
2706 if (this_hdr->sh_name == (unsigned int) -1)
2707 {
2708 arg->failed = TRUE;
2709 return;
2710 }
2711
2712 /* Don't clear sh_flags. Assembler may set additional bits. */
2713
2714 if ((asect->flags & SEC_ALLOC) != 0
2715 || asect->user_set_vma)
2716 this_hdr->sh_addr = asect->vma;
2717 else
2718 this_hdr->sh_addr = 0;
2719
2720 this_hdr->sh_offset = 0;
2721 this_hdr->sh_size = asect->size;
2722 this_hdr->sh_link = 0;
2723 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2724 /* The sh_entsize and sh_info fields may have been set already by
2725 copy_private_section_data. */
2726
2727 this_hdr->bfd_section = asect;
2728 this_hdr->contents = NULL;
2729
2730 /* If the section type is unspecified, we set it based on
2731 asect->flags. */
2732 if ((asect->flags & SEC_GROUP) != 0)
2733 sh_type = SHT_GROUP;
2734 else
2735 sh_type = bfd_elf_get_default_section_type (asect->flags);
2736
2737 if (this_hdr->sh_type == SHT_NULL)
2738 this_hdr->sh_type = sh_type;
2739 else if (this_hdr->sh_type == SHT_NOBITS
2740 && sh_type == SHT_PROGBITS
2741 && (asect->flags & SEC_ALLOC) != 0)
2742 {
2743 /* Warn if we are changing a NOBITS section to PROGBITS, but
2744 allow the link to proceed. This can happen when users link
2745 non-bss input sections to bss output sections, or emit data
2746 to a bss output section via a linker script. */
2747 (*_bfd_error_handler)
2748 (_("warning: section `%A' type changed to PROGBITS"), asect);
2749 this_hdr->sh_type = sh_type;
2750 }
2751
2752 switch (this_hdr->sh_type)
2753 {
2754 default:
2755 break;
2756
2757 case SHT_STRTAB:
2758 case SHT_INIT_ARRAY:
2759 case SHT_FINI_ARRAY:
2760 case SHT_PREINIT_ARRAY:
2761 case SHT_NOTE:
2762 case SHT_NOBITS:
2763 case SHT_PROGBITS:
2764 break;
2765
2766 case SHT_HASH:
2767 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2768 break;
2769
2770 case SHT_DYNSYM:
2771 this_hdr->sh_entsize = bed->s->sizeof_sym;
2772 break;
2773
2774 case SHT_DYNAMIC:
2775 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2776 break;
2777
2778 case SHT_RELA:
2779 if (get_elf_backend_data (abfd)->may_use_rela_p)
2780 this_hdr->sh_entsize = bed->s->sizeof_rela;
2781 break;
2782
2783 case SHT_REL:
2784 if (get_elf_backend_data (abfd)->may_use_rel_p)
2785 this_hdr->sh_entsize = bed->s->sizeof_rel;
2786 break;
2787
2788 case SHT_GNU_versym:
2789 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2790 break;
2791
2792 case SHT_GNU_verdef:
2793 this_hdr->sh_entsize = 0;
2794 /* objcopy or strip will copy over sh_info, but may not set
2795 cverdefs. The linker will set cverdefs, but sh_info will be
2796 zero. */
2797 if (this_hdr->sh_info == 0)
2798 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2799 else
2800 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2801 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2802 break;
2803
2804 case SHT_GNU_verneed:
2805 this_hdr->sh_entsize = 0;
2806 /* objcopy or strip will copy over sh_info, but may not set
2807 cverrefs. The linker will set cverrefs, but sh_info will be
2808 zero. */
2809 if (this_hdr->sh_info == 0)
2810 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2811 else
2812 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2813 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2814 break;
2815
2816 case SHT_GROUP:
2817 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2818 break;
2819
2820 case SHT_GNU_HASH:
2821 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2822 break;
2823 }
2824
2825 if ((asect->flags & SEC_ALLOC) != 0)
2826 this_hdr->sh_flags |= SHF_ALLOC;
2827 if ((asect->flags & SEC_READONLY) == 0)
2828 this_hdr->sh_flags |= SHF_WRITE;
2829 if ((asect->flags & SEC_CODE) != 0)
2830 this_hdr->sh_flags |= SHF_EXECINSTR;
2831 if ((asect->flags & SEC_MERGE) != 0)
2832 {
2833 this_hdr->sh_flags |= SHF_MERGE;
2834 this_hdr->sh_entsize = asect->entsize;
2835 if ((asect->flags & SEC_STRINGS) != 0)
2836 this_hdr->sh_flags |= SHF_STRINGS;
2837 }
2838 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2839 this_hdr->sh_flags |= SHF_GROUP;
2840 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2841 {
2842 this_hdr->sh_flags |= SHF_TLS;
2843 if (asect->size == 0
2844 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2845 {
2846 struct bfd_link_order *o = asect->map_tail.link_order;
2847
2848 this_hdr->sh_size = 0;
2849 if (o != NULL)
2850 {
2851 this_hdr->sh_size = o->offset + o->size;
2852 if (this_hdr->sh_size != 0)
2853 this_hdr->sh_type = SHT_NOBITS;
2854 }
2855 }
2856 }
2857 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2858 this_hdr->sh_flags |= SHF_EXCLUDE;
2859
2860 /* If the section has relocs, set up a section header for the
2861 SHT_REL[A] section. If two relocation sections are required for
2862 this section, it is up to the processor-specific back-end to
2863 create the other. */
2864 if ((asect->flags & SEC_RELOC) != 0)
2865 {
2866 /* When doing a relocatable link, create both REL and RELA sections if
2867 needed. */
2868 if (arg->link_info
2869 /* Do the normal setup if we wouldn't create any sections here. */
2870 && esd->rel.count + esd->rela.count > 0
2871 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2872 {
2873 if (esd->rel.count && esd->rel.hdr == NULL
2874 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2875 {
2876 arg->failed = TRUE;
2877 return;
2878 }
2879 if (esd->rela.count && esd->rela.hdr == NULL
2880 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2881 {
2882 arg->failed = TRUE;
2883 return;
2884 }
2885 }
2886 else if (!_bfd_elf_init_reloc_shdr (abfd,
2887 (asect->use_rela_p
2888 ? &esd->rela : &esd->rel),
2889 asect,
2890 asect->use_rela_p))
2891 arg->failed = TRUE;
2892 }
2893
2894 /* Check for processor-specific section types. */
2895 sh_type = this_hdr->sh_type;
2896 if (bed->elf_backend_fake_sections
2897 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2898 arg->failed = TRUE;
2899
2900 if (sh_type == SHT_NOBITS && asect->size != 0)
2901 {
2902 /* Don't change the header type from NOBITS if we are being
2903 called for objcopy --only-keep-debug. */
2904 this_hdr->sh_type = sh_type;
2905 }
2906 }
2907
2908 /* Fill in the contents of a SHT_GROUP section. Called from
2909 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2910 when ELF targets use the generic linker, ld. Called for ld -r
2911 from bfd_elf_final_link. */
2912
2913 void
2914 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2915 {
2916 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2917 asection *elt, *first;
2918 unsigned char *loc;
2919 bfd_boolean gas;
2920
2921 /* Ignore linker created group section. See elfNN_ia64_object_p in
2922 elfxx-ia64.c. */
2923 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2924 || *failedptr)
2925 return;
2926
2927 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2928 {
2929 unsigned long symindx = 0;
2930
2931 /* elf_group_id will have been set up by objcopy and the
2932 generic linker. */
2933 if (elf_group_id (sec) != NULL)
2934 symindx = elf_group_id (sec)->udata.i;
2935
2936 if (symindx == 0)
2937 {
2938 /* If called from the assembler, swap_out_syms will have set up
2939 elf_section_syms. */
2940 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2941 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2942 }
2943 elf_section_data (sec)->this_hdr.sh_info = symindx;
2944 }
2945 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2946 {
2947 /* The ELF backend linker sets sh_info to -2 when the group
2948 signature symbol is global, and thus the index can't be
2949 set until all local symbols are output. */
2950 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2951 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2952 unsigned long symndx = sec_data->this_hdr.sh_info;
2953 unsigned long extsymoff = 0;
2954 struct elf_link_hash_entry *h;
2955
2956 if (!elf_bad_symtab (igroup->owner))
2957 {
2958 Elf_Internal_Shdr *symtab_hdr;
2959
2960 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2961 extsymoff = symtab_hdr->sh_info;
2962 }
2963 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2964 while (h->root.type == bfd_link_hash_indirect
2965 || h->root.type == bfd_link_hash_warning)
2966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2967
2968 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2969 }
2970
2971 /* The contents won't be allocated for "ld -r" or objcopy. */
2972 gas = TRUE;
2973 if (sec->contents == NULL)
2974 {
2975 gas = FALSE;
2976 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2977
2978 /* Arrange for the section to be written out. */
2979 elf_section_data (sec)->this_hdr.contents = sec->contents;
2980 if (sec->contents == NULL)
2981 {
2982 *failedptr = TRUE;
2983 return;
2984 }
2985 }
2986
2987 loc = sec->contents + sec->size;
2988
2989 /* Get the pointer to the first section in the group that gas
2990 squirreled away here. objcopy arranges for this to be set to the
2991 start of the input section group. */
2992 first = elt = elf_next_in_group (sec);
2993
2994 /* First element is a flag word. Rest of section is elf section
2995 indices for all the sections of the group. Write them backwards
2996 just to keep the group in the same order as given in .section
2997 directives, not that it matters. */
2998 while (elt != NULL)
2999 {
3000 asection *s;
3001
3002 s = elt;
3003 if (!gas)
3004 s = s->output_section;
3005 if (s != NULL
3006 && !bfd_is_abs_section (s))
3007 {
3008 unsigned int idx = elf_section_data (s)->this_idx;
3009
3010 loc -= 4;
3011 H_PUT_32 (abfd, idx, loc);
3012 }
3013 elt = elf_next_in_group (elt);
3014 if (elt == first)
3015 break;
3016 }
3017
3018 if ((loc -= 4) != sec->contents)
3019 abort ();
3020
3021 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3022 }
3023
3024 /* Assign all ELF section numbers. The dummy first section is handled here
3025 too. The link/info pointers for the standard section types are filled
3026 in here too, while we're at it. */
3027
3028 static bfd_boolean
3029 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3030 {
3031 struct elf_obj_tdata *t = elf_tdata (abfd);
3032 asection *sec;
3033 unsigned int section_number, secn;
3034 Elf_Internal_Shdr **i_shdrp;
3035 struct bfd_elf_section_data *d;
3036 bfd_boolean need_symtab;
3037
3038 section_number = 1;
3039
3040 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3041
3042 /* SHT_GROUP sections are in relocatable files only. */
3043 if (link_info == NULL || link_info->relocatable)
3044 {
3045 /* Put SHT_GROUP sections first. */
3046 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3047 {
3048 d = elf_section_data (sec);
3049
3050 if (d->this_hdr.sh_type == SHT_GROUP)
3051 {
3052 if (sec->flags & SEC_LINKER_CREATED)
3053 {
3054 /* Remove the linker created SHT_GROUP sections. */
3055 bfd_section_list_remove (abfd, sec);
3056 abfd->section_count--;
3057 }
3058 else
3059 d->this_idx = section_number++;
3060 }
3061 }
3062 }
3063
3064 for (sec = abfd->sections; sec; sec = sec->next)
3065 {
3066 d = elf_section_data (sec);
3067
3068 if (d->this_hdr.sh_type != SHT_GROUP)
3069 d->this_idx = section_number++;
3070 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3071 if (d->rel.hdr)
3072 {
3073 d->rel.idx = section_number++;
3074 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3075 }
3076 else
3077 d->rel.idx = 0;
3078
3079 if (d->rela.hdr)
3080 {
3081 d->rela.idx = section_number++;
3082 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3083 }
3084 else
3085 d->rela.idx = 0;
3086 }
3087
3088 elf_shstrtab_sec (abfd) = section_number++;
3089 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3090 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3091
3092 need_symtab = (bfd_get_symcount (abfd) > 0
3093 || (link_info == NULL
3094 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3095 == HAS_RELOC)));
3096 if (need_symtab)
3097 {
3098 elf_onesymtab (abfd) = section_number++;
3099 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3100 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3101 {
3102 elf_symtab_shndx (abfd) = section_number++;
3103 t->symtab_shndx_hdr.sh_name
3104 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3105 ".symtab_shndx", FALSE);
3106 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3107 return FALSE;
3108 }
3109 elf_strtab_sec (abfd) = section_number++;
3110 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3111 }
3112
3113 if (section_number >= SHN_LORESERVE)
3114 {
3115 _bfd_error_handler (_("%B: too many sections: %u"),
3116 abfd, section_number);
3117 return FALSE;
3118 }
3119
3120 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3121 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3122
3123 elf_numsections (abfd) = section_number;
3124 elf_elfheader (abfd)->e_shnum = section_number;
3125
3126 /* Set up the list of section header pointers, in agreement with the
3127 indices. */
3128 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3129 sizeof (Elf_Internal_Shdr *));
3130 if (i_shdrp == NULL)
3131 return FALSE;
3132
3133 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3134 sizeof (Elf_Internal_Shdr));
3135 if (i_shdrp[0] == NULL)
3136 {
3137 bfd_release (abfd, i_shdrp);
3138 return FALSE;
3139 }
3140
3141 elf_elfsections (abfd) = i_shdrp;
3142
3143 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3144 if (need_symtab)
3145 {
3146 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3147 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3148 {
3149 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3150 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3151 }
3152 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3153 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3154 }
3155
3156 for (sec = abfd->sections; sec; sec = sec->next)
3157 {
3158 asection *s;
3159 const char *name;
3160
3161 d = elf_section_data (sec);
3162
3163 i_shdrp[d->this_idx] = &d->this_hdr;
3164 if (d->rel.idx != 0)
3165 i_shdrp[d->rel.idx] = d->rel.hdr;
3166 if (d->rela.idx != 0)
3167 i_shdrp[d->rela.idx] = d->rela.hdr;
3168
3169 /* Fill in the sh_link and sh_info fields while we're at it. */
3170
3171 /* sh_link of a reloc section is the section index of the symbol
3172 table. sh_info is the section index of the section to which
3173 the relocation entries apply. */
3174 if (d->rel.idx != 0)
3175 {
3176 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3177 d->rel.hdr->sh_info = d->this_idx;
3178 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3179 }
3180 if (d->rela.idx != 0)
3181 {
3182 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3183 d->rela.hdr->sh_info = d->this_idx;
3184 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3185 }
3186
3187 /* We need to set up sh_link for SHF_LINK_ORDER. */
3188 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3189 {
3190 s = elf_linked_to_section (sec);
3191 if (s)
3192 {
3193 /* elf_linked_to_section points to the input section. */
3194 if (link_info != NULL)
3195 {
3196 /* Check discarded linkonce section. */
3197 if (discarded_section (s))
3198 {
3199 asection *kept;
3200 (*_bfd_error_handler)
3201 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3202 abfd, d->this_hdr.bfd_section,
3203 s, s->owner);
3204 /* Point to the kept section if it has the same
3205 size as the discarded one. */
3206 kept = _bfd_elf_check_kept_section (s, link_info);
3207 if (kept == NULL)
3208 {
3209 bfd_set_error (bfd_error_bad_value);
3210 return FALSE;
3211 }
3212 s = kept;
3213 }
3214
3215 s = s->output_section;
3216 BFD_ASSERT (s != NULL);
3217 }
3218 else
3219 {
3220 /* Handle objcopy. */
3221 if (s->output_section == NULL)
3222 {
3223 (*_bfd_error_handler)
3224 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3225 abfd, d->this_hdr.bfd_section, s, s->owner);
3226 bfd_set_error (bfd_error_bad_value);
3227 return FALSE;
3228 }
3229 s = s->output_section;
3230 }
3231 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3232 }
3233 else
3234 {
3235 /* PR 290:
3236 The Intel C compiler generates SHT_IA_64_UNWIND with
3237 SHF_LINK_ORDER. But it doesn't set the sh_link or
3238 sh_info fields. Hence we could get the situation
3239 where s is NULL. */
3240 const struct elf_backend_data *bed
3241 = get_elf_backend_data (abfd);
3242 if (bed->link_order_error_handler)
3243 bed->link_order_error_handler
3244 (_("%B: warning: sh_link not set for section `%A'"),
3245 abfd, sec);
3246 }
3247 }
3248
3249 switch (d->this_hdr.sh_type)
3250 {
3251 case SHT_REL:
3252 case SHT_RELA:
3253 /* A reloc section which we are treating as a normal BFD
3254 section. sh_link is the section index of the symbol
3255 table. sh_info is the section index of the section to
3256 which the relocation entries apply. We assume that an
3257 allocated reloc section uses the dynamic symbol table.
3258 FIXME: How can we be sure? */
3259 s = bfd_get_section_by_name (abfd, ".dynsym");
3260 if (s != NULL)
3261 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3262
3263 /* We look up the section the relocs apply to by name. */
3264 name = sec->name;
3265 if (d->this_hdr.sh_type == SHT_REL)
3266 name += 4;
3267 else
3268 name += 5;
3269 s = bfd_get_section_by_name (abfd, name);
3270 if (s != NULL)
3271 {
3272 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3273 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3274 }
3275 break;
3276
3277 case SHT_STRTAB:
3278 /* We assume that a section named .stab*str is a stabs
3279 string section. We look for a section with the same name
3280 but without the trailing ``str'', and set its sh_link
3281 field to point to this section. */
3282 if (CONST_STRNEQ (sec->name, ".stab")
3283 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3284 {
3285 size_t len;
3286 char *alc;
3287
3288 len = strlen (sec->name);
3289 alc = (char *) bfd_malloc (len - 2);
3290 if (alc == NULL)
3291 return FALSE;
3292 memcpy (alc, sec->name, len - 3);
3293 alc[len - 3] = '\0';
3294 s = bfd_get_section_by_name (abfd, alc);
3295 free (alc);
3296 if (s != NULL)
3297 {
3298 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3299
3300 /* This is a .stab section. */
3301 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3302 elf_section_data (s)->this_hdr.sh_entsize
3303 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3304 }
3305 }
3306 break;
3307
3308 case SHT_DYNAMIC:
3309 case SHT_DYNSYM:
3310 case SHT_GNU_verneed:
3311 case SHT_GNU_verdef:
3312 /* sh_link is the section header index of the string table
3313 used for the dynamic entries, or the symbol table, or the
3314 version strings. */
3315 s = bfd_get_section_by_name (abfd, ".dynstr");
3316 if (s != NULL)
3317 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3318 break;
3319
3320 case SHT_GNU_LIBLIST:
3321 /* sh_link is the section header index of the prelink library
3322 list used for the dynamic entries, or the symbol table, or
3323 the version strings. */
3324 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3325 ? ".dynstr" : ".gnu.libstr");
3326 if (s != NULL)
3327 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3328 break;
3329
3330 case SHT_HASH:
3331 case SHT_GNU_HASH:
3332 case SHT_GNU_versym:
3333 /* sh_link is the section header index of the symbol table
3334 this hash table or version table is for. */
3335 s = bfd_get_section_by_name (abfd, ".dynsym");
3336 if (s != NULL)
3337 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3338 break;
3339
3340 case SHT_GROUP:
3341 d->this_hdr.sh_link = elf_onesymtab (abfd);
3342 }
3343 }
3344
3345 for (secn = 1; secn < section_number; ++secn)
3346 if (i_shdrp[secn] == NULL)
3347 i_shdrp[secn] = i_shdrp[0];
3348 else
3349 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3350 i_shdrp[secn]->sh_name);
3351 return TRUE;
3352 }
3353
3354 static bfd_boolean
3355 sym_is_global (bfd *abfd, asymbol *sym)
3356 {
3357 /* If the backend has a special mapping, use it. */
3358 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3359 if (bed->elf_backend_sym_is_global)
3360 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3361
3362 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3363 || bfd_is_und_section (bfd_get_section (sym))
3364 || bfd_is_com_section (bfd_get_section (sym)));
3365 }
3366
3367 /* Don't output section symbols for sections that are not going to be
3368 output, that are duplicates or there is no BFD section. */
3369
3370 static bfd_boolean
3371 ignore_section_sym (bfd *abfd, asymbol *sym)
3372 {
3373 elf_symbol_type *type_ptr;
3374
3375 if ((sym->flags & BSF_SECTION_SYM) == 0)
3376 return FALSE;
3377
3378 type_ptr = elf_symbol_from (abfd, sym);
3379 return ((type_ptr != NULL
3380 && type_ptr->internal_elf_sym.st_shndx != 0
3381 && bfd_is_abs_section (sym->section))
3382 || !(sym->section->owner == abfd
3383 || (sym->section->output_section->owner == abfd
3384 && sym->section->output_offset == 0)
3385 || bfd_is_abs_section (sym->section)));
3386 }
3387
3388 /* Map symbol from it's internal number to the external number, moving
3389 all local symbols to be at the head of the list. */
3390
3391 static bfd_boolean
3392 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3393 {
3394 unsigned int symcount = bfd_get_symcount (abfd);
3395 asymbol **syms = bfd_get_outsymbols (abfd);
3396 asymbol **sect_syms;
3397 unsigned int num_locals = 0;
3398 unsigned int num_globals = 0;
3399 unsigned int num_locals2 = 0;
3400 unsigned int num_globals2 = 0;
3401 int max_index = 0;
3402 unsigned int idx;
3403 asection *asect;
3404 asymbol **new_syms;
3405
3406 #ifdef DEBUG
3407 fprintf (stderr, "elf_map_symbols\n");
3408 fflush (stderr);
3409 #endif
3410
3411 for (asect = abfd->sections; asect; asect = asect->next)
3412 {
3413 if (max_index < asect->index)
3414 max_index = asect->index;
3415 }
3416
3417 max_index++;
3418 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3419 if (sect_syms == NULL)
3420 return FALSE;
3421 elf_section_syms (abfd) = sect_syms;
3422 elf_num_section_syms (abfd) = max_index;
3423
3424 /* Init sect_syms entries for any section symbols we have already
3425 decided to output. */
3426 for (idx = 0; idx < symcount; idx++)
3427 {
3428 asymbol *sym = syms[idx];
3429
3430 if ((sym->flags & BSF_SECTION_SYM) != 0
3431 && sym->value == 0
3432 && !ignore_section_sym (abfd, sym)
3433 && !bfd_is_abs_section (sym->section))
3434 {
3435 asection *sec = sym->section;
3436
3437 if (sec->owner != abfd)
3438 sec = sec->output_section;
3439
3440 sect_syms[sec->index] = syms[idx];
3441 }
3442 }
3443
3444 /* Classify all of the symbols. */
3445 for (idx = 0; idx < symcount; idx++)
3446 {
3447 if (sym_is_global (abfd, syms[idx]))
3448 num_globals++;
3449 else if (!ignore_section_sym (abfd, syms[idx]))
3450 num_locals++;
3451 }
3452
3453 /* We will be adding a section symbol for each normal BFD section. Most
3454 sections will already have a section symbol in outsymbols, but
3455 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3456 at least in that case. */
3457 for (asect = abfd->sections; asect; asect = asect->next)
3458 {
3459 if (sect_syms[asect->index] == NULL)
3460 {
3461 if (!sym_is_global (abfd, asect->symbol))
3462 num_locals++;
3463 else
3464 num_globals++;
3465 }
3466 }
3467
3468 /* Now sort the symbols so the local symbols are first. */
3469 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3470 sizeof (asymbol *));
3471
3472 if (new_syms == NULL)
3473 return FALSE;
3474
3475 for (idx = 0; idx < symcount; idx++)
3476 {
3477 asymbol *sym = syms[idx];
3478 unsigned int i;
3479
3480 if (sym_is_global (abfd, sym))
3481 i = num_locals + num_globals2++;
3482 else if (!ignore_section_sym (abfd, sym))
3483 i = num_locals2++;
3484 else
3485 continue;
3486 new_syms[i] = sym;
3487 sym->udata.i = i + 1;
3488 }
3489 for (asect = abfd->sections; asect; asect = asect->next)
3490 {
3491 if (sect_syms[asect->index] == NULL)
3492 {
3493 asymbol *sym = asect->symbol;
3494 unsigned int i;
3495
3496 sect_syms[asect->index] = sym;
3497 if (!sym_is_global (abfd, sym))
3498 i = num_locals2++;
3499 else
3500 i = num_locals + num_globals2++;
3501 new_syms[i] = sym;
3502 sym->udata.i = i + 1;
3503 }
3504 }
3505
3506 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3507
3508 *pnum_locals = num_locals;
3509 return TRUE;
3510 }
3511
3512 /* Align to the maximum file alignment that could be required for any
3513 ELF data structure. */
3514
3515 static inline file_ptr
3516 align_file_position (file_ptr off, int align)
3517 {
3518 return (off + align - 1) & ~(align - 1);
3519 }
3520
3521 /* Assign a file position to a section, optionally aligning to the
3522 required section alignment. */
3523
3524 file_ptr
3525 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3526 file_ptr offset,
3527 bfd_boolean align)
3528 {
3529 if (align && i_shdrp->sh_addralign > 1)
3530 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3531 i_shdrp->sh_offset = offset;
3532 if (i_shdrp->bfd_section != NULL)
3533 i_shdrp->bfd_section->filepos = offset;
3534 if (i_shdrp->sh_type != SHT_NOBITS)
3535 offset += i_shdrp->sh_size;
3536 return offset;
3537 }
3538
3539 /* Compute the file positions we are going to put the sections at, and
3540 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3541 is not NULL, this is being called by the ELF backend linker. */
3542
3543 bfd_boolean
3544 _bfd_elf_compute_section_file_positions (bfd *abfd,
3545 struct bfd_link_info *link_info)
3546 {
3547 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3548 struct fake_section_arg fsargs;
3549 bfd_boolean failed;
3550 struct bfd_strtab_hash *strtab = NULL;
3551 Elf_Internal_Shdr *shstrtab_hdr;
3552 bfd_boolean need_symtab;
3553
3554 if (abfd->output_has_begun)
3555 return TRUE;
3556
3557 /* Do any elf backend specific processing first. */
3558 if (bed->elf_backend_begin_write_processing)
3559 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3560
3561 if (! prep_headers (abfd))
3562 return FALSE;
3563
3564 /* Post process the headers if necessary. */
3565 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3566
3567 fsargs.failed = FALSE;
3568 fsargs.link_info = link_info;
3569 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3570 if (fsargs.failed)
3571 return FALSE;
3572
3573 if (!assign_section_numbers (abfd, link_info))
3574 return FALSE;
3575
3576 /* The backend linker builds symbol table information itself. */
3577 need_symtab = (link_info == NULL
3578 && (bfd_get_symcount (abfd) > 0
3579 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3580 == HAS_RELOC)));
3581 if (need_symtab)
3582 {
3583 /* Non-zero if doing a relocatable link. */
3584 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3585
3586 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3587 return FALSE;
3588 }
3589
3590 failed = FALSE;
3591 if (link_info == NULL)
3592 {
3593 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3594 if (failed)
3595 return FALSE;
3596 }
3597
3598 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3599 /* sh_name was set in prep_headers. */
3600 shstrtab_hdr->sh_type = SHT_STRTAB;
3601 shstrtab_hdr->sh_flags = 0;
3602 shstrtab_hdr->sh_addr = 0;
3603 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3604 shstrtab_hdr->sh_entsize = 0;
3605 shstrtab_hdr->sh_link = 0;
3606 shstrtab_hdr->sh_info = 0;
3607 /* sh_offset is set in assign_file_positions_except_relocs. */
3608 shstrtab_hdr->sh_addralign = 1;
3609
3610 if (!assign_file_positions_except_relocs (abfd, link_info))
3611 return FALSE;
3612
3613 if (need_symtab)
3614 {
3615 file_ptr off;
3616 Elf_Internal_Shdr *hdr;
3617
3618 off = elf_next_file_pos (abfd);
3619
3620 hdr = &elf_tdata (abfd)->symtab_hdr;
3621 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3622
3623 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3624 if (hdr->sh_size != 0)
3625 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3626
3627 hdr = &elf_tdata (abfd)->strtab_hdr;
3628 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3629
3630 elf_next_file_pos (abfd) = off;
3631
3632 /* Now that we know where the .strtab section goes, write it
3633 out. */
3634 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3635 || ! _bfd_stringtab_emit (abfd, strtab))
3636 return FALSE;
3637 _bfd_stringtab_free (strtab);
3638 }
3639
3640 abfd->output_has_begun = TRUE;
3641
3642 return TRUE;
3643 }
3644
3645 /* Make an initial estimate of the size of the program header. If we
3646 get the number wrong here, we'll redo section placement. */
3647
3648 static bfd_size_type
3649 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3650 {
3651 size_t segs;
3652 asection *s;
3653 const struct elf_backend_data *bed;
3654
3655 /* Assume we will need exactly two PT_LOAD segments: one for text
3656 and one for data. */
3657 segs = 2;
3658
3659 s = bfd_get_section_by_name (abfd, ".interp");
3660 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3661 {
3662 /* If we have a loadable interpreter section, we need a
3663 PT_INTERP segment. In this case, assume we also need a
3664 PT_PHDR segment, although that may not be true for all
3665 targets. */
3666 segs += 2;
3667 }
3668
3669 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3670 {
3671 /* We need a PT_DYNAMIC segment. */
3672 ++segs;
3673 }
3674
3675 if (info != NULL && info->relro)
3676 {
3677 /* We need a PT_GNU_RELRO segment. */
3678 ++segs;
3679 }
3680
3681 if (elf_eh_frame_hdr (abfd))
3682 {
3683 /* We need a PT_GNU_EH_FRAME segment. */
3684 ++segs;
3685 }
3686
3687 if (elf_stack_flags (abfd))
3688 {
3689 /* We need a PT_GNU_STACK segment. */
3690 ++segs;
3691 }
3692
3693 for (s = abfd->sections; s != NULL; s = s->next)
3694 {
3695 if ((s->flags & SEC_LOAD) != 0
3696 && CONST_STRNEQ (s->name, ".note"))
3697 {
3698 /* We need a PT_NOTE segment. */
3699 ++segs;
3700 /* Try to create just one PT_NOTE segment
3701 for all adjacent loadable .note* sections.
3702 gABI requires that within a PT_NOTE segment
3703 (and also inside of each SHT_NOTE section)
3704 each note is padded to a multiple of 4 size,
3705 so we check whether the sections are correctly
3706 aligned. */
3707 if (s->alignment_power == 2)
3708 while (s->next != NULL
3709 && s->next->alignment_power == 2
3710 && (s->next->flags & SEC_LOAD) != 0
3711 && CONST_STRNEQ (s->next->name, ".note"))
3712 s = s->next;
3713 }
3714 }
3715
3716 for (s = abfd->sections; s != NULL; s = s->next)
3717 {
3718 if (s->flags & SEC_THREAD_LOCAL)
3719 {
3720 /* We need a PT_TLS segment. */
3721 ++segs;
3722 break;
3723 }
3724 }
3725
3726 /* Let the backend count up any program headers it might need. */
3727 bed = get_elf_backend_data (abfd);
3728 if (bed->elf_backend_additional_program_headers)
3729 {
3730 int a;
3731
3732 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3733 if (a == -1)
3734 abort ();
3735 segs += a;
3736 }
3737
3738 return segs * bed->s->sizeof_phdr;
3739 }
3740
3741 /* Find the segment that contains the output_section of section. */
3742
3743 Elf_Internal_Phdr *
3744 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3745 {
3746 struct elf_segment_map *m;
3747 Elf_Internal_Phdr *p;
3748
3749 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3750 m != NULL;
3751 m = m->next, p++)
3752 {
3753 int i;
3754
3755 for (i = m->count - 1; i >= 0; i--)
3756 if (m->sections[i] == section)
3757 return p;
3758 }
3759
3760 return NULL;
3761 }
3762
3763 /* Create a mapping from a set of sections to a program segment. */
3764
3765 static struct elf_segment_map *
3766 make_mapping (bfd *abfd,
3767 asection **sections,
3768 unsigned int from,
3769 unsigned int to,
3770 bfd_boolean phdr)
3771 {
3772 struct elf_segment_map *m;
3773 unsigned int i;
3774 asection **hdrpp;
3775 bfd_size_type amt;
3776
3777 amt = sizeof (struct elf_segment_map);
3778 amt += (to - from - 1) * sizeof (asection *);
3779 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3780 if (m == NULL)
3781 return NULL;
3782 m->next = NULL;
3783 m->p_type = PT_LOAD;
3784 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3785 m->sections[i - from] = *hdrpp;
3786 m->count = to - from;
3787
3788 if (from == 0 && phdr)
3789 {
3790 /* Include the headers in the first PT_LOAD segment. */
3791 m->includes_filehdr = 1;
3792 m->includes_phdrs = 1;
3793 }
3794
3795 return m;
3796 }
3797
3798 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3799 on failure. */
3800
3801 struct elf_segment_map *
3802 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3803 {
3804 struct elf_segment_map *m;
3805
3806 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3807 sizeof (struct elf_segment_map));
3808 if (m == NULL)
3809 return NULL;
3810 m->next = NULL;
3811 m->p_type = PT_DYNAMIC;
3812 m->count = 1;
3813 m->sections[0] = dynsec;
3814
3815 return m;
3816 }
3817
3818 /* Possibly add or remove segments from the segment map. */
3819
3820 static bfd_boolean
3821 elf_modify_segment_map (bfd *abfd,
3822 struct bfd_link_info *info,
3823 bfd_boolean remove_empty_load)
3824 {
3825 struct elf_segment_map **m;
3826 const struct elf_backend_data *bed;
3827
3828 /* The placement algorithm assumes that non allocated sections are
3829 not in PT_LOAD segments. We ensure this here by removing such
3830 sections from the segment map. We also remove excluded
3831 sections. Finally, any PT_LOAD segment without sections is
3832 removed. */
3833 m = &elf_seg_map (abfd);
3834 while (*m)
3835 {
3836 unsigned int i, new_count;
3837
3838 for (new_count = 0, i = 0; i < (*m)->count; i++)
3839 {
3840 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3841 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3842 || (*m)->p_type != PT_LOAD))
3843 {
3844 (*m)->sections[new_count] = (*m)->sections[i];
3845 new_count++;
3846 }
3847 }
3848 (*m)->count = new_count;
3849
3850 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3851 *m = (*m)->next;
3852 else
3853 m = &(*m)->next;
3854 }
3855
3856 bed = get_elf_backend_data (abfd);
3857 if (bed->elf_backend_modify_segment_map != NULL)
3858 {
3859 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3860 return FALSE;
3861 }
3862
3863 return TRUE;
3864 }
3865
3866 /* Set up a mapping from BFD sections to program segments. */
3867
3868 bfd_boolean
3869 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3870 {
3871 unsigned int count;
3872 struct elf_segment_map *m;
3873 asection **sections = NULL;
3874 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3875 bfd_boolean no_user_phdrs;
3876
3877 no_user_phdrs = elf_seg_map (abfd) == NULL;
3878
3879 if (info != NULL)
3880 info->user_phdrs = !no_user_phdrs;
3881
3882 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3883 {
3884 asection *s;
3885 unsigned int i;
3886 struct elf_segment_map *mfirst;
3887 struct elf_segment_map **pm;
3888 asection *last_hdr;
3889 bfd_vma last_size;
3890 unsigned int phdr_index;
3891 bfd_vma maxpagesize;
3892 asection **hdrpp;
3893 bfd_boolean phdr_in_segment = TRUE;
3894 bfd_boolean writable;
3895 int tls_count = 0;
3896 asection *first_tls = NULL;
3897 asection *dynsec, *eh_frame_hdr;
3898 bfd_size_type amt;
3899 bfd_vma addr_mask, wrap_to = 0;
3900
3901 /* Select the allocated sections, and sort them. */
3902
3903 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3904 sizeof (asection *));
3905 if (sections == NULL)
3906 goto error_return;
3907
3908 /* Calculate top address, avoiding undefined behaviour of shift
3909 left operator when shift count is equal to size of type
3910 being shifted. */
3911 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3912 addr_mask = (addr_mask << 1) + 1;
3913
3914 i = 0;
3915 for (s = abfd->sections; s != NULL; s = s->next)
3916 {
3917 if ((s->flags & SEC_ALLOC) != 0)
3918 {
3919 sections[i] = s;
3920 ++i;
3921 /* A wrapping section potentially clashes with header. */
3922 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3923 wrap_to = (s->lma + s->size) & addr_mask;
3924 }
3925 }
3926 BFD_ASSERT (i <= bfd_count_sections (abfd));
3927 count = i;
3928
3929 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3930
3931 /* Build the mapping. */
3932
3933 mfirst = NULL;
3934 pm = &mfirst;
3935
3936 /* If we have a .interp section, then create a PT_PHDR segment for
3937 the program headers and a PT_INTERP segment for the .interp
3938 section. */
3939 s = bfd_get_section_by_name (abfd, ".interp");
3940 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3941 {
3942 amt = sizeof (struct elf_segment_map);
3943 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3944 if (m == NULL)
3945 goto error_return;
3946 m->next = NULL;
3947 m->p_type = PT_PHDR;
3948 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3949 m->p_flags = PF_R | PF_X;
3950 m->p_flags_valid = 1;
3951 m->includes_phdrs = 1;
3952
3953 *pm = m;
3954 pm = &m->next;
3955
3956 amt = sizeof (struct elf_segment_map);
3957 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3958 if (m == NULL)
3959 goto error_return;
3960 m->next = NULL;
3961 m->p_type = PT_INTERP;
3962 m->count = 1;
3963 m->sections[0] = s;
3964
3965 *pm = m;
3966 pm = &m->next;
3967 }
3968
3969 /* Look through the sections. We put sections in the same program
3970 segment when the start of the second section can be placed within
3971 a few bytes of the end of the first section. */
3972 last_hdr = NULL;
3973 last_size = 0;
3974 phdr_index = 0;
3975 maxpagesize = bed->maxpagesize;
3976 writable = FALSE;
3977 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3978 if (dynsec != NULL
3979 && (dynsec->flags & SEC_LOAD) == 0)
3980 dynsec = NULL;
3981
3982 /* Deal with -Ttext or something similar such that the first section
3983 is not adjacent to the program headers. This is an
3984 approximation, since at this point we don't know exactly how many
3985 program headers we will need. */
3986 if (count > 0)
3987 {
3988 bfd_size_type phdr_size = elf_program_header_size (abfd);
3989
3990 if (phdr_size == (bfd_size_type) -1)
3991 phdr_size = get_program_header_size (abfd, info);
3992 phdr_size += bed->s->sizeof_ehdr;
3993 if ((abfd->flags & D_PAGED) == 0
3994 || (sections[0]->lma & addr_mask) < phdr_size
3995 || ((sections[0]->lma & addr_mask) % maxpagesize
3996 < phdr_size % maxpagesize)
3997 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3998 phdr_in_segment = FALSE;
3999 }
4000
4001 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4002 {
4003 asection *hdr;
4004 bfd_boolean new_segment;
4005
4006 hdr = *hdrpp;
4007
4008 /* See if this section and the last one will fit in the same
4009 segment. */
4010
4011 if (last_hdr == NULL)
4012 {
4013 /* If we don't have a segment yet, then we don't need a new
4014 one (we build the last one after this loop). */
4015 new_segment = FALSE;
4016 }
4017 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4018 {
4019 /* If this section has a different relation between the
4020 virtual address and the load address, then we need a new
4021 segment. */
4022 new_segment = TRUE;
4023 }
4024 else if (hdr->lma < last_hdr->lma + last_size
4025 || last_hdr->lma + last_size < last_hdr->lma)
4026 {
4027 /* If this section has a load address that makes it overlap
4028 the previous section, then we need a new segment. */
4029 new_segment = TRUE;
4030 }
4031 /* In the next test we have to be careful when last_hdr->lma is close
4032 to the end of the address space. If the aligned address wraps
4033 around to the start of the address space, then there are no more
4034 pages left in memory and it is OK to assume that the current
4035 section can be included in the current segment. */
4036 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4037 > last_hdr->lma)
4038 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4039 <= hdr->lma))
4040 {
4041 /* If putting this section in this segment would force us to
4042 skip a page in the segment, then we need a new segment. */
4043 new_segment = TRUE;
4044 }
4045 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4046 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4047 {
4048 /* We don't want to put a loadable section after a
4049 nonloadable section in the same segment.
4050 Consider .tbss sections as loadable for this purpose. */
4051 new_segment = TRUE;
4052 }
4053 else if ((abfd->flags & D_PAGED) == 0)
4054 {
4055 /* If the file is not demand paged, which means that we
4056 don't require the sections to be correctly aligned in the
4057 file, then there is no other reason for a new segment. */
4058 new_segment = FALSE;
4059 }
4060 else if (! writable
4061 && (hdr->flags & SEC_READONLY) == 0
4062 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4063 != (hdr->lma & -maxpagesize)))
4064 {
4065 /* We don't want to put a writable section in a read only
4066 segment, unless they are on the same page in memory
4067 anyhow. We already know that the last section does not
4068 bring us past the current section on the page, so the
4069 only case in which the new section is not on the same
4070 page as the previous section is when the previous section
4071 ends precisely on a page boundary. */
4072 new_segment = TRUE;
4073 }
4074 else
4075 {
4076 /* Otherwise, we can use the same segment. */
4077 new_segment = FALSE;
4078 }
4079
4080 /* Allow interested parties a chance to override our decision. */
4081 if (last_hdr != NULL
4082 && info != NULL
4083 && info->callbacks->override_segment_assignment != NULL)
4084 new_segment
4085 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4086 last_hdr,
4087 new_segment);
4088
4089 if (! new_segment)
4090 {
4091 if ((hdr->flags & SEC_READONLY) == 0)
4092 writable = TRUE;
4093 last_hdr = hdr;
4094 /* .tbss sections effectively have zero size. */
4095 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4096 != SEC_THREAD_LOCAL)
4097 last_size = hdr->size;
4098 else
4099 last_size = 0;
4100 continue;
4101 }
4102
4103 /* We need a new program segment. We must create a new program
4104 header holding all the sections from phdr_index until hdr. */
4105
4106 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4107 if (m == NULL)
4108 goto error_return;
4109
4110 *pm = m;
4111 pm = &m->next;
4112
4113 if ((hdr->flags & SEC_READONLY) == 0)
4114 writable = TRUE;
4115 else
4116 writable = FALSE;
4117
4118 last_hdr = hdr;
4119 /* .tbss sections effectively have zero size. */
4120 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4121 last_size = hdr->size;
4122 else
4123 last_size = 0;
4124 phdr_index = i;
4125 phdr_in_segment = FALSE;
4126 }
4127
4128 /* Create a final PT_LOAD program segment, but not if it's just
4129 for .tbss. */
4130 if (last_hdr != NULL
4131 && (i - phdr_index != 1
4132 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4133 != SEC_THREAD_LOCAL)))
4134 {
4135 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4136 if (m == NULL)
4137 goto error_return;
4138
4139 *pm = m;
4140 pm = &m->next;
4141 }
4142
4143 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4144 if (dynsec != NULL)
4145 {
4146 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4147 if (m == NULL)
4148 goto error_return;
4149 *pm = m;
4150 pm = &m->next;
4151 }
4152
4153 /* For each batch of consecutive loadable .note sections,
4154 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4155 because if we link together nonloadable .note sections and
4156 loadable .note sections, we will generate two .note sections
4157 in the output file. FIXME: Using names for section types is
4158 bogus anyhow. */
4159 for (s = abfd->sections; s != NULL; s = s->next)
4160 {
4161 if ((s->flags & SEC_LOAD) != 0
4162 && CONST_STRNEQ (s->name, ".note"))
4163 {
4164 asection *s2;
4165
4166 count = 1;
4167 amt = sizeof (struct elf_segment_map);
4168 if (s->alignment_power == 2)
4169 for (s2 = s; s2->next != NULL; s2 = s2->next)
4170 {
4171 if (s2->next->alignment_power == 2
4172 && (s2->next->flags & SEC_LOAD) != 0
4173 && CONST_STRNEQ (s2->next->name, ".note")
4174 && align_power (s2->lma + s2->size, 2)
4175 == s2->next->lma)
4176 count++;
4177 else
4178 break;
4179 }
4180 amt += (count - 1) * sizeof (asection *);
4181 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4182 if (m == NULL)
4183 goto error_return;
4184 m->next = NULL;
4185 m->p_type = PT_NOTE;
4186 m->count = count;
4187 while (count > 1)
4188 {
4189 m->sections[m->count - count--] = s;
4190 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4191 s = s->next;
4192 }
4193 m->sections[m->count - 1] = s;
4194 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4195 *pm = m;
4196 pm = &m->next;
4197 }
4198 if (s->flags & SEC_THREAD_LOCAL)
4199 {
4200 if (! tls_count)
4201 first_tls = s;
4202 tls_count++;
4203 }
4204 }
4205
4206 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4207 if (tls_count > 0)
4208 {
4209 amt = sizeof (struct elf_segment_map);
4210 amt += (tls_count - 1) * sizeof (asection *);
4211 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4212 if (m == NULL)
4213 goto error_return;
4214 m->next = NULL;
4215 m->p_type = PT_TLS;
4216 m->count = tls_count;
4217 /* Mandated PF_R. */
4218 m->p_flags = PF_R;
4219 m->p_flags_valid = 1;
4220 s = first_tls;
4221 for (i = 0; i < (unsigned int) tls_count; ++i)
4222 {
4223 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4224 {
4225 _bfd_error_handler
4226 (_("%B: TLS sections are not adjacent:"), abfd);
4227 s = first_tls;
4228 i = 0;
4229 while (i < (unsigned int) tls_count)
4230 {
4231 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4232 {
4233 _bfd_error_handler (_(" TLS: %A"), s);
4234 i++;
4235 }
4236 else
4237 _bfd_error_handler (_(" non-TLS: %A"), s);
4238 s = s->next;
4239 }
4240 bfd_set_error (bfd_error_bad_value);
4241 goto error_return;
4242 }
4243 m->sections[i] = s;
4244 s = s->next;
4245 }
4246
4247 *pm = m;
4248 pm = &m->next;
4249 }
4250
4251 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4252 segment. */
4253 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4254 if (eh_frame_hdr != NULL
4255 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4256 {
4257 amt = sizeof (struct elf_segment_map);
4258 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4259 if (m == NULL)
4260 goto error_return;
4261 m->next = NULL;
4262 m->p_type = PT_GNU_EH_FRAME;
4263 m->count = 1;
4264 m->sections[0] = eh_frame_hdr->output_section;
4265
4266 *pm = m;
4267 pm = &m->next;
4268 }
4269
4270 if (elf_stack_flags (abfd))
4271 {
4272 amt = sizeof (struct elf_segment_map);
4273 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4274 if (m == NULL)
4275 goto error_return;
4276 m->next = NULL;
4277 m->p_type = PT_GNU_STACK;
4278 m->p_flags = elf_stack_flags (abfd);
4279 m->p_align = bed->stack_align;
4280 m->p_flags_valid = 1;
4281 m->p_align_valid = m->p_align != 0;
4282 if (info->stacksize > 0)
4283 {
4284 m->p_size = info->stacksize;
4285 m->p_size_valid = 1;
4286 }
4287
4288 *pm = m;
4289 pm = &m->next;
4290 }
4291
4292 if (info != NULL && info->relro)
4293 {
4294 for (m = mfirst; m != NULL; m = m->next)
4295 {
4296 if (m->p_type == PT_LOAD
4297 && m->count != 0
4298 && m->sections[0]->vma >= info->relro_start
4299 && m->sections[0]->vma < info->relro_end)
4300 {
4301 i = m->count;
4302 while (--i != (unsigned) -1)
4303 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4304 == (SEC_LOAD | SEC_HAS_CONTENTS))
4305 break;
4306
4307 if (i != (unsigned) -1)
4308 break;
4309 }
4310 }
4311
4312 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4313 if (m != NULL)
4314 {
4315 amt = sizeof (struct elf_segment_map);
4316 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4317 if (m == NULL)
4318 goto error_return;
4319 m->next = NULL;
4320 m->p_type = PT_GNU_RELRO;
4321 m->p_flags = PF_R;
4322 m->p_flags_valid = 1;
4323
4324 *pm = m;
4325 pm = &m->next;
4326 }
4327 }
4328
4329 free (sections);
4330 elf_seg_map (abfd) = mfirst;
4331 }
4332
4333 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4334 return FALSE;
4335
4336 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4337 ++count;
4338 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4339
4340 return TRUE;
4341
4342 error_return:
4343 if (sections != NULL)
4344 free (sections);
4345 return FALSE;
4346 }
4347
4348 /* Sort sections by address. */
4349
4350 static int
4351 elf_sort_sections (const void *arg1, const void *arg2)
4352 {
4353 const asection *sec1 = *(const asection **) arg1;
4354 const asection *sec2 = *(const asection **) arg2;
4355 bfd_size_type size1, size2;
4356
4357 /* Sort by LMA first, since this is the address used to
4358 place the section into a segment. */
4359 if (sec1->lma < sec2->lma)
4360 return -1;
4361 else if (sec1->lma > sec2->lma)
4362 return 1;
4363
4364 /* Then sort by VMA. Normally the LMA and the VMA will be
4365 the same, and this will do nothing. */
4366 if (sec1->vma < sec2->vma)
4367 return -1;
4368 else if (sec1->vma > sec2->vma)
4369 return 1;
4370
4371 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4372
4373 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4374
4375 if (TOEND (sec1))
4376 {
4377 if (TOEND (sec2))
4378 {
4379 /* If the indicies are the same, do not return 0
4380 here, but continue to try the next comparison. */
4381 if (sec1->target_index - sec2->target_index != 0)
4382 return sec1->target_index - sec2->target_index;
4383 }
4384 else
4385 return 1;
4386 }
4387 else if (TOEND (sec2))
4388 return -1;
4389
4390 #undef TOEND
4391
4392 /* Sort by size, to put zero sized sections
4393 before others at the same address. */
4394
4395 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4396 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4397
4398 if (size1 < size2)
4399 return -1;
4400 if (size1 > size2)
4401 return 1;
4402
4403 return sec1->target_index - sec2->target_index;
4404 }
4405
4406 /* Ian Lance Taylor writes:
4407
4408 We shouldn't be using % with a negative signed number. That's just
4409 not good. We have to make sure either that the number is not
4410 negative, or that the number has an unsigned type. When the types
4411 are all the same size they wind up as unsigned. When file_ptr is a
4412 larger signed type, the arithmetic winds up as signed long long,
4413 which is wrong.
4414
4415 What we're trying to say here is something like ``increase OFF by
4416 the least amount that will cause it to be equal to the VMA modulo
4417 the page size.'' */
4418 /* In other words, something like:
4419
4420 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4421 off_offset = off % bed->maxpagesize;
4422 if (vma_offset < off_offset)
4423 adjustment = vma_offset + bed->maxpagesize - off_offset;
4424 else
4425 adjustment = vma_offset - off_offset;
4426
4427 which can can be collapsed into the expression below. */
4428
4429 static file_ptr
4430 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4431 {
4432 /* PR binutils/16199: Handle an alignment of zero. */
4433 if (maxpagesize == 0)
4434 maxpagesize = 1;
4435 return ((vma - off) % maxpagesize);
4436 }
4437
4438 static void
4439 print_segment_map (const struct elf_segment_map *m)
4440 {
4441 unsigned int j;
4442 const char *pt = get_segment_type (m->p_type);
4443 char buf[32];
4444
4445 if (pt == NULL)
4446 {
4447 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4448 sprintf (buf, "LOPROC+%7.7x",
4449 (unsigned int) (m->p_type - PT_LOPROC));
4450 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4451 sprintf (buf, "LOOS+%7.7x",
4452 (unsigned int) (m->p_type - PT_LOOS));
4453 else
4454 snprintf (buf, sizeof (buf), "%8.8x",
4455 (unsigned int) m->p_type);
4456 pt = buf;
4457 }
4458 fflush (stdout);
4459 fprintf (stderr, "%s:", pt);
4460 for (j = 0; j < m->count; j++)
4461 fprintf (stderr, " %s", m->sections [j]->name);
4462 putc ('\n',stderr);
4463 fflush (stderr);
4464 }
4465
4466 static bfd_boolean
4467 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4468 {
4469 void *buf;
4470 bfd_boolean ret;
4471
4472 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4473 return FALSE;
4474 buf = bfd_zmalloc (len);
4475 if (buf == NULL)
4476 return FALSE;
4477 ret = bfd_bwrite (buf, len, abfd) == len;
4478 free (buf);
4479 return ret;
4480 }
4481
4482 /* Assign file positions to the sections based on the mapping from
4483 sections to segments. This function also sets up some fields in
4484 the file header. */
4485
4486 static bfd_boolean
4487 assign_file_positions_for_load_sections (bfd *abfd,
4488 struct bfd_link_info *link_info)
4489 {
4490 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4491 struct elf_segment_map *m;
4492 Elf_Internal_Phdr *phdrs;
4493 Elf_Internal_Phdr *p;
4494 file_ptr off;
4495 bfd_size_type maxpagesize;
4496 unsigned int alloc;
4497 unsigned int i, j;
4498 bfd_vma header_pad = 0;
4499
4500 if (link_info == NULL
4501 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4502 return FALSE;
4503
4504 alloc = 0;
4505 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4506 {
4507 ++alloc;
4508 if (m->header_size)
4509 header_pad = m->header_size;
4510 }
4511
4512 if (alloc)
4513 {
4514 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4515 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4516 }
4517 else
4518 {
4519 /* PR binutils/12467. */
4520 elf_elfheader (abfd)->e_phoff = 0;
4521 elf_elfheader (abfd)->e_phentsize = 0;
4522 }
4523
4524 elf_elfheader (abfd)->e_phnum = alloc;
4525
4526 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4527 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4528 else
4529 BFD_ASSERT (elf_program_header_size (abfd)
4530 >= alloc * bed->s->sizeof_phdr);
4531
4532 if (alloc == 0)
4533 {
4534 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4535 return TRUE;
4536 }
4537
4538 /* We're writing the size in elf_program_header_size (abfd),
4539 see assign_file_positions_except_relocs, so make sure we have
4540 that amount allocated, with trailing space cleared.
4541 The variable alloc contains the computed need, while
4542 elf_program_header_size (abfd) contains the size used for the
4543 layout.
4544 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4545 where the layout is forced to according to a larger size in the
4546 last iterations for the testcase ld-elf/header. */
4547 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4548 == 0);
4549 phdrs = (Elf_Internal_Phdr *)
4550 bfd_zalloc2 (abfd,
4551 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4552 sizeof (Elf_Internal_Phdr));
4553 elf_tdata (abfd)->phdr = phdrs;
4554 if (phdrs == NULL)
4555 return FALSE;
4556
4557 maxpagesize = 1;
4558 if ((abfd->flags & D_PAGED) != 0)
4559 maxpagesize = bed->maxpagesize;
4560
4561 off = bed->s->sizeof_ehdr;
4562 off += alloc * bed->s->sizeof_phdr;
4563 if (header_pad < (bfd_vma) off)
4564 header_pad = 0;
4565 else
4566 header_pad -= off;
4567 off += header_pad;
4568
4569 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4570 m != NULL;
4571 m = m->next, p++, j++)
4572 {
4573 asection **secpp;
4574 bfd_vma off_adjust;
4575 bfd_boolean no_contents;
4576
4577 /* If elf_segment_map is not from map_sections_to_segments, the
4578 sections may not be correctly ordered. NOTE: sorting should
4579 not be done to the PT_NOTE section of a corefile, which may
4580 contain several pseudo-sections artificially created by bfd.
4581 Sorting these pseudo-sections breaks things badly. */
4582 if (m->count > 1
4583 && !(elf_elfheader (abfd)->e_type == ET_CORE
4584 && m->p_type == PT_NOTE))
4585 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4586 elf_sort_sections);
4587
4588 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4589 number of sections with contents contributing to both p_filesz
4590 and p_memsz, followed by a number of sections with no contents
4591 that just contribute to p_memsz. In this loop, OFF tracks next
4592 available file offset for PT_LOAD and PT_NOTE segments. */
4593 p->p_type = m->p_type;
4594 p->p_flags = m->p_flags;
4595
4596 if (m->count == 0)
4597 p->p_vaddr = 0;
4598 else
4599 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4600
4601 if (m->p_paddr_valid)
4602 p->p_paddr = m->p_paddr;
4603 else if (m->count == 0)
4604 p->p_paddr = 0;
4605 else
4606 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4607
4608 if (p->p_type == PT_LOAD
4609 && (abfd->flags & D_PAGED) != 0)
4610 {
4611 /* p_align in demand paged PT_LOAD segments effectively stores
4612 the maximum page size. When copying an executable with
4613 objcopy, we set m->p_align from the input file. Use this
4614 value for maxpagesize rather than bed->maxpagesize, which
4615 may be different. Note that we use maxpagesize for PT_TLS
4616 segment alignment later in this function, so we are relying
4617 on at least one PT_LOAD segment appearing before a PT_TLS
4618 segment. */
4619 if (m->p_align_valid)
4620 maxpagesize = m->p_align;
4621
4622 p->p_align = maxpagesize;
4623 }
4624 else if (m->p_align_valid)
4625 p->p_align = m->p_align;
4626 else if (m->count == 0)
4627 p->p_align = 1 << bed->s->log_file_align;
4628 else
4629 p->p_align = 0;
4630
4631 no_contents = FALSE;
4632 off_adjust = 0;
4633 if (p->p_type == PT_LOAD
4634 && m->count > 0)
4635 {
4636 bfd_size_type align;
4637 unsigned int align_power = 0;
4638
4639 if (m->p_align_valid)
4640 align = p->p_align;
4641 else
4642 {
4643 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4644 {
4645 unsigned int secalign;
4646
4647 secalign = bfd_get_section_alignment (abfd, *secpp);
4648 if (secalign > align_power)
4649 align_power = secalign;
4650 }
4651 align = (bfd_size_type) 1 << align_power;
4652 if (align < maxpagesize)
4653 align = maxpagesize;
4654 }
4655
4656 for (i = 0; i < m->count; i++)
4657 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4658 /* If we aren't making room for this section, then
4659 it must be SHT_NOBITS regardless of what we've
4660 set via struct bfd_elf_special_section. */
4661 elf_section_type (m->sections[i]) = SHT_NOBITS;
4662
4663 /* Find out whether this segment contains any loadable
4664 sections. */
4665 no_contents = TRUE;
4666 for (i = 0; i < m->count; i++)
4667 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4668 {
4669 no_contents = FALSE;
4670 break;
4671 }
4672
4673 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4674 off += off_adjust;
4675 if (no_contents)
4676 {
4677 /* We shouldn't need to align the segment on disk since
4678 the segment doesn't need file space, but the gABI
4679 arguably requires the alignment and glibc ld.so
4680 checks it. So to comply with the alignment
4681 requirement but not waste file space, we adjust
4682 p_offset for just this segment. (OFF_ADJUST is
4683 subtracted from OFF later.) This may put p_offset
4684 past the end of file, but that shouldn't matter. */
4685 }
4686 else
4687 off_adjust = 0;
4688 }
4689 /* Make sure the .dynamic section is the first section in the
4690 PT_DYNAMIC segment. */
4691 else if (p->p_type == PT_DYNAMIC
4692 && m->count > 1
4693 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4694 {
4695 _bfd_error_handler
4696 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4697 abfd);
4698 bfd_set_error (bfd_error_bad_value);
4699 return FALSE;
4700 }
4701 /* Set the note section type to SHT_NOTE. */
4702 else if (p->p_type == PT_NOTE)
4703 for (i = 0; i < m->count; i++)
4704 elf_section_type (m->sections[i]) = SHT_NOTE;
4705
4706 p->p_offset = 0;
4707 p->p_filesz = 0;
4708 p->p_memsz = 0;
4709
4710 if (m->includes_filehdr)
4711 {
4712 if (!m->p_flags_valid)
4713 p->p_flags |= PF_R;
4714 p->p_filesz = bed->s->sizeof_ehdr;
4715 p->p_memsz = bed->s->sizeof_ehdr;
4716 if (m->count > 0)
4717 {
4718 if (p->p_vaddr < (bfd_vma) off)
4719 {
4720 (*_bfd_error_handler)
4721 (_("%B: Not enough room for program headers, try linking with -N"),
4722 abfd);
4723 bfd_set_error (bfd_error_bad_value);
4724 return FALSE;
4725 }
4726
4727 p->p_vaddr -= off;
4728 if (!m->p_paddr_valid)
4729 p->p_paddr -= off;
4730 }
4731 }
4732
4733 if (m->includes_phdrs)
4734 {
4735 if (!m->p_flags_valid)
4736 p->p_flags |= PF_R;
4737
4738 if (!m->includes_filehdr)
4739 {
4740 p->p_offset = bed->s->sizeof_ehdr;
4741
4742 if (m->count > 0)
4743 {
4744 p->p_vaddr -= off - p->p_offset;
4745 if (!m->p_paddr_valid)
4746 p->p_paddr -= off - p->p_offset;
4747 }
4748 }
4749
4750 p->p_filesz += alloc * bed->s->sizeof_phdr;
4751 p->p_memsz += alloc * bed->s->sizeof_phdr;
4752 if (m->count)
4753 {
4754 p->p_filesz += header_pad;
4755 p->p_memsz += header_pad;
4756 }
4757 }
4758
4759 if (p->p_type == PT_LOAD
4760 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4761 {
4762 if (!m->includes_filehdr && !m->includes_phdrs)
4763 p->p_offset = off;
4764 else
4765 {
4766 file_ptr adjust;
4767
4768 adjust = off - (p->p_offset + p->p_filesz);
4769 if (!no_contents)
4770 p->p_filesz += adjust;
4771 p->p_memsz += adjust;
4772 }
4773 }
4774
4775 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4776 maps. Set filepos for sections in PT_LOAD segments, and in
4777 core files, for sections in PT_NOTE segments.
4778 assign_file_positions_for_non_load_sections will set filepos
4779 for other sections and update p_filesz for other segments. */
4780 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4781 {
4782 asection *sec;
4783 bfd_size_type align;
4784 Elf_Internal_Shdr *this_hdr;
4785
4786 sec = *secpp;
4787 this_hdr = &elf_section_data (sec)->this_hdr;
4788 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4789
4790 if ((p->p_type == PT_LOAD
4791 || p->p_type == PT_TLS)
4792 && (this_hdr->sh_type != SHT_NOBITS
4793 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4794 && ((this_hdr->sh_flags & SHF_TLS) == 0
4795 || p->p_type == PT_TLS))))
4796 {
4797 bfd_vma p_start = p->p_paddr;
4798 bfd_vma p_end = p_start + p->p_memsz;
4799 bfd_vma s_start = sec->lma;
4800 bfd_vma adjust = s_start - p_end;
4801
4802 if (adjust != 0
4803 && (s_start < p_end
4804 || p_end < p_start))
4805 {
4806 (*_bfd_error_handler)
4807 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4808 (unsigned long) s_start, (unsigned long) p_end);
4809 adjust = 0;
4810 sec->lma = p_end;
4811 }
4812 p->p_memsz += adjust;
4813
4814 if (this_hdr->sh_type != SHT_NOBITS)
4815 {
4816 if (p->p_filesz + adjust < p->p_memsz)
4817 {
4818 /* We have a PROGBITS section following NOBITS ones.
4819 Allocate file space for the NOBITS section(s) and
4820 zero it. */
4821 adjust = p->p_memsz - p->p_filesz;
4822 if (!write_zeros (abfd, off, adjust))
4823 return FALSE;
4824 }
4825 off += adjust;
4826 p->p_filesz += adjust;
4827 }
4828 }
4829
4830 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4831 {
4832 /* The section at i == 0 is the one that actually contains
4833 everything. */
4834 if (i == 0)
4835 {
4836 this_hdr->sh_offset = sec->filepos = off;
4837 off += this_hdr->sh_size;
4838 p->p_filesz = this_hdr->sh_size;
4839 p->p_memsz = 0;
4840 p->p_align = 1;
4841 }
4842 else
4843 {
4844 /* The rest are fake sections that shouldn't be written. */
4845 sec->filepos = 0;
4846 sec->size = 0;
4847 sec->flags = 0;
4848 continue;
4849 }
4850 }
4851 else
4852 {
4853 if (p->p_type == PT_LOAD)
4854 {
4855 this_hdr->sh_offset = sec->filepos = off;
4856 if (this_hdr->sh_type != SHT_NOBITS)
4857 off += this_hdr->sh_size;
4858 }
4859 else if (this_hdr->sh_type == SHT_NOBITS
4860 && (this_hdr->sh_flags & SHF_TLS) != 0
4861 && this_hdr->sh_offset == 0)
4862 {
4863 /* This is a .tbss section that didn't get a PT_LOAD.
4864 (See _bfd_elf_map_sections_to_segments "Create a
4865 final PT_LOAD".) Set sh_offset to the value it
4866 would have if we had created a zero p_filesz and
4867 p_memsz PT_LOAD header for the section. This
4868 also makes the PT_TLS header have the same
4869 p_offset value. */
4870 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4871 off, align);
4872 this_hdr->sh_offset = sec->filepos = off + adjust;
4873 }
4874
4875 if (this_hdr->sh_type != SHT_NOBITS)
4876 {
4877 p->p_filesz += this_hdr->sh_size;
4878 /* A load section without SHF_ALLOC is something like
4879 a note section in a PT_NOTE segment. These take
4880 file space but are not loaded into memory. */
4881 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4882 p->p_memsz += this_hdr->sh_size;
4883 }
4884 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4885 {
4886 if (p->p_type == PT_TLS)
4887 p->p_memsz += this_hdr->sh_size;
4888
4889 /* .tbss is special. It doesn't contribute to p_memsz of
4890 normal segments. */
4891 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4892 p->p_memsz += this_hdr->sh_size;
4893 }
4894
4895 if (align > p->p_align
4896 && !m->p_align_valid
4897 && (p->p_type != PT_LOAD
4898 || (abfd->flags & D_PAGED) == 0))
4899 p->p_align = align;
4900 }
4901
4902 if (!m->p_flags_valid)
4903 {
4904 p->p_flags |= PF_R;
4905 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4906 p->p_flags |= PF_X;
4907 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4908 p->p_flags |= PF_W;
4909 }
4910 }
4911
4912 off -= off_adjust;
4913
4914 /* Check that all sections are in a PT_LOAD segment.
4915 Don't check funky gdb generated core files. */
4916 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4917 {
4918 bfd_boolean check_vma = TRUE;
4919
4920 for (i = 1; i < m->count; i++)
4921 if (m->sections[i]->vma == m->sections[i - 1]->vma
4922 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4923 ->this_hdr), p) != 0
4924 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4925 ->this_hdr), p) != 0)
4926 {
4927 /* Looks like we have overlays packed into the segment. */
4928 check_vma = FALSE;
4929 break;
4930 }
4931
4932 for (i = 0; i < m->count; i++)
4933 {
4934 Elf_Internal_Shdr *this_hdr;
4935 asection *sec;
4936
4937 sec = m->sections[i];
4938 this_hdr = &(elf_section_data(sec)->this_hdr);
4939 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4940 && !ELF_TBSS_SPECIAL (this_hdr, p))
4941 {
4942 (*_bfd_error_handler)
4943 (_("%B: section `%A' can't be allocated in segment %d"),
4944 abfd, sec, j);
4945 print_segment_map (m);
4946 }
4947 }
4948 }
4949 }
4950
4951 elf_next_file_pos (abfd) = off;
4952 return TRUE;
4953 }
4954
4955 /* Assign file positions for the other sections. */
4956
4957 static bfd_boolean
4958 assign_file_positions_for_non_load_sections (bfd *abfd,
4959 struct bfd_link_info *link_info)
4960 {
4961 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4962 Elf_Internal_Shdr **i_shdrpp;
4963 Elf_Internal_Shdr **hdrpp;
4964 Elf_Internal_Phdr *phdrs;
4965 Elf_Internal_Phdr *p;
4966 struct elf_segment_map *m;
4967 struct elf_segment_map *hdrs_segment;
4968 bfd_vma filehdr_vaddr, filehdr_paddr;
4969 bfd_vma phdrs_vaddr, phdrs_paddr;
4970 file_ptr off;
4971 unsigned int num_sec;
4972 unsigned int i;
4973 unsigned int count;
4974
4975 i_shdrpp = elf_elfsections (abfd);
4976 num_sec = elf_numsections (abfd);
4977 off = elf_next_file_pos (abfd);
4978 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4979 {
4980 Elf_Internal_Shdr *hdr;
4981
4982 hdr = *hdrpp;
4983 if (hdr->bfd_section != NULL
4984 && (hdr->bfd_section->filepos != 0
4985 || (hdr->sh_type == SHT_NOBITS
4986 && hdr->contents == NULL)))
4987 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4988 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4989 {
4990 if (hdr->sh_size != 0)
4991 (*_bfd_error_handler)
4992 (_("%B: warning: allocated section `%s' not in segment"),
4993 abfd,
4994 (hdr->bfd_section == NULL
4995 ? "*unknown*"
4996 : hdr->bfd_section->name));
4997 /* We don't need to page align empty sections. */
4998 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4999 off += vma_page_aligned_bias (hdr->sh_addr, off,
5000 bed->maxpagesize);
5001 else
5002 off += vma_page_aligned_bias (hdr->sh_addr, off,
5003 hdr->sh_addralign);
5004 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5005 FALSE);
5006 }
5007 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5008 && hdr->bfd_section == NULL)
5009 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5010 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
5011 || hdr == i_shdrpp[elf_strtab_sec (abfd)])
5012 hdr->sh_offset = -1;
5013 else
5014 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5015 }
5016
5017 /* Now that we have set the section file positions, we can set up
5018 the file positions for the non PT_LOAD segments. */
5019 count = 0;
5020 filehdr_vaddr = 0;
5021 filehdr_paddr = 0;
5022 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5023 phdrs_paddr = 0;
5024 hdrs_segment = NULL;
5025 phdrs = elf_tdata (abfd)->phdr;
5026 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5027 {
5028 ++count;
5029 if (p->p_type != PT_LOAD)
5030 continue;
5031
5032 if (m->includes_filehdr)
5033 {
5034 filehdr_vaddr = p->p_vaddr;
5035 filehdr_paddr = p->p_paddr;
5036 }
5037 if (m->includes_phdrs)
5038 {
5039 phdrs_vaddr = p->p_vaddr;
5040 phdrs_paddr = p->p_paddr;
5041 if (m->includes_filehdr)
5042 {
5043 hdrs_segment = m;
5044 phdrs_vaddr += bed->s->sizeof_ehdr;
5045 phdrs_paddr += bed->s->sizeof_ehdr;
5046 }
5047 }
5048 }
5049
5050 if (hdrs_segment != NULL && link_info != NULL)
5051 {
5052 /* There is a segment that contains both the file headers and the
5053 program headers, so provide a symbol __ehdr_start pointing there.
5054 A program can use this to examine itself robustly. */
5055
5056 struct elf_link_hash_entry *hash
5057 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5058 FALSE, FALSE, TRUE);
5059 /* If the symbol was referenced and not defined, define it. */
5060 if (hash != NULL
5061 && (hash->root.type == bfd_link_hash_new
5062 || hash->root.type == bfd_link_hash_undefined
5063 || hash->root.type == bfd_link_hash_undefweak
5064 || hash->root.type == bfd_link_hash_common))
5065 {
5066 asection *s = NULL;
5067 if (hdrs_segment->count != 0)
5068 /* The segment contains sections, so use the first one. */
5069 s = hdrs_segment->sections[0];
5070 else
5071 /* Use the first (i.e. lowest-addressed) section in any segment. */
5072 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5073 if (m->count != 0)
5074 {
5075 s = m->sections[0];
5076 break;
5077 }
5078
5079 if (s != NULL)
5080 {
5081 hash->root.u.def.value = filehdr_vaddr - s->vma;
5082 hash->root.u.def.section = s;
5083 }
5084 else
5085 {
5086 hash->root.u.def.value = filehdr_vaddr;
5087 hash->root.u.def.section = bfd_abs_section_ptr;
5088 }
5089
5090 hash->root.type = bfd_link_hash_defined;
5091 hash->def_regular = 1;
5092 hash->non_elf = 0;
5093 }
5094 }
5095
5096 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5097 {
5098 if (p->p_type == PT_GNU_RELRO)
5099 {
5100 const Elf_Internal_Phdr *lp;
5101 struct elf_segment_map *lm;
5102
5103 if (link_info != NULL)
5104 {
5105 /* During linking the range of the RELRO segment is passed
5106 in link_info. */
5107 for (lm = elf_seg_map (abfd), lp = phdrs;
5108 lm != NULL;
5109 lm = lm->next, lp++)
5110 {
5111 if (lp->p_type == PT_LOAD
5112 && lp->p_vaddr < link_info->relro_end
5113 && lm->count != 0
5114 && lm->sections[0]->vma >= link_info->relro_start)
5115 break;
5116 }
5117
5118 BFD_ASSERT (lm != NULL);
5119 }
5120 else
5121 {
5122 /* Otherwise we are copying an executable or shared
5123 library, but we need to use the same linker logic. */
5124 for (lp = phdrs; lp < phdrs + count; ++lp)
5125 {
5126 if (lp->p_type == PT_LOAD
5127 && lp->p_paddr == p->p_paddr)
5128 break;
5129 }
5130 }
5131
5132 if (lp < phdrs + count)
5133 {
5134 p->p_vaddr = lp->p_vaddr;
5135 p->p_paddr = lp->p_paddr;
5136 p->p_offset = lp->p_offset;
5137 if (link_info != NULL)
5138 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5139 else if (m->p_size_valid)
5140 p->p_filesz = m->p_size;
5141 else
5142 abort ();
5143 p->p_memsz = p->p_filesz;
5144 /* Preserve the alignment and flags if they are valid. The
5145 gold linker generates RW/4 for the PT_GNU_RELRO section.
5146 It is better for objcopy/strip to honor these attributes
5147 otherwise gdb will choke when using separate debug files.
5148 */
5149 if (!m->p_align_valid)
5150 p->p_align = 1;
5151 if (!m->p_flags_valid)
5152 p->p_flags = (lp->p_flags & ~PF_W);
5153 }
5154 else
5155 {
5156 memset (p, 0, sizeof *p);
5157 p->p_type = PT_NULL;
5158 }
5159 }
5160 else if (p->p_type == PT_GNU_STACK)
5161 {
5162 if (m->p_size_valid)
5163 p->p_memsz = m->p_size;
5164 }
5165 else if (m->count != 0)
5166 {
5167 if (p->p_type != PT_LOAD
5168 && (p->p_type != PT_NOTE
5169 || bfd_get_format (abfd) != bfd_core))
5170 {
5171 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5172
5173 p->p_filesz = 0;
5174 p->p_offset = m->sections[0]->filepos;
5175 for (i = m->count; i-- != 0;)
5176 {
5177 asection *sect = m->sections[i];
5178 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5179 if (hdr->sh_type != SHT_NOBITS)
5180 {
5181 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5182 + hdr->sh_size);
5183 break;
5184 }
5185 }
5186 }
5187 }
5188 else if (m->includes_filehdr)
5189 {
5190 p->p_vaddr = filehdr_vaddr;
5191 if (! m->p_paddr_valid)
5192 p->p_paddr = filehdr_paddr;
5193 }
5194 else if (m->includes_phdrs)
5195 {
5196 p->p_vaddr = phdrs_vaddr;
5197 if (! m->p_paddr_valid)
5198 p->p_paddr = phdrs_paddr;
5199 }
5200 }
5201
5202 elf_next_file_pos (abfd) = off;
5203
5204 return TRUE;
5205 }
5206
5207 /* Work out the file positions of all the sections. This is called by
5208 _bfd_elf_compute_section_file_positions. All the section sizes and
5209 VMAs must be known before this is called.
5210
5211 Reloc sections come in two flavours: Those processed specially as
5212 "side-channel" data attached to a section to which they apply, and
5213 those that bfd doesn't process as relocations. The latter sort are
5214 stored in a normal bfd section by bfd_section_from_shdr. We don't
5215 consider the former sort here, unless they form part of the loadable
5216 image. Reloc sections not assigned here will be handled later by
5217 assign_file_positions_for_relocs.
5218
5219 We also don't set the positions of the .symtab and .strtab here. */
5220
5221 static bfd_boolean
5222 assign_file_positions_except_relocs (bfd *abfd,
5223 struct bfd_link_info *link_info)
5224 {
5225 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5226 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5227 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5228
5229 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5230 && bfd_get_format (abfd) != bfd_core)
5231 {
5232 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5233 unsigned int num_sec = elf_numsections (abfd);
5234 Elf_Internal_Shdr **hdrpp;
5235 unsigned int i;
5236 file_ptr off;
5237
5238 /* Start after the ELF header. */
5239 off = i_ehdrp->e_ehsize;
5240
5241 /* We are not creating an executable, which means that we are
5242 not creating a program header, and that the actual order of
5243 the sections in the file is unimportant. */
5244 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5245 {
5246 Elf_Internal_Shdr *hdr;
5247
5248 hdr = *hdrpp;
5249 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5250 && hdr->bfd_section == NULL)
5251 || i == elf_onesymtab (abfd)
5252 || i == elf_symtab_shndx (abfd)
5253 || i == elf_strtab_sec (abfd))
5254 {
5255 hdr->sh_offset = -1;
5256 }
5257 else
5258 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5259 }
5260
5261 elf_next_file_pos (abfd) = off;
5262 }
5263 else
5264 {
5265 unsigned int alloc;
5266
5267 /* Assign file positions for the loaded sections based on the
5268 assignment of sections to segments. */
5269 if (!assign_file_positions_for_load_sections (abfd, link_info))
5270 return FALSE;
5271
5272 /* And for non-load sections. */
5273 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5274 return FALSE;
5275
5276 if (bed->elf_backend_modify_program_headers != NULL)
5277 {
5278 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5279 return FALSE;
5280 }
5281
5282 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5283 if (link_info != NULL
5284 && link_info->executable
5285 && link_info->shared)
5286 {
5287 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5288 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5289 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5290
5291 /* Find the lowest p_vaddr in PT_LOAD segments. */
5292 bfd_vma p_vaddr = (bfd_vma) -1;
5293 for (; segment < end_segment; segment++)
5294 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5295 p_vaddr = segment->p_vaddr;
5296
5297 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5298 segments is non-zero. */
5299 if (p_vaddr)
5300 i_ehdrp->e_type = ET_EXEC;
5301 }
5302
5303 /* Write out the program headers. */
5304 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5305 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5306 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5307 return FALSE;
5308 }
5309
5310 return TRUE;
5311 }
5312
5313 static bfd_boolean
5314 prep_headers (bfd *abfd)
5315 {
5316 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5317 struct elf_strtab_hash *shstrtab;
5318 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5319
5320 i_ehdrp = elf_elfheader (abfd);
5321
5322 shstrtab = _bfd_elf_strtab_init ();
5323 if (shstrtab == NULL)
5324 return FALSE;
5325
5326 elf_shstrtab (abfd) = shstrtab;
5327
5328 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5329 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5330 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5331 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5332
5333 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5334 i_ehdrp->e_ident[EI_DATA] =
5335 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5336 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5337
5338 if ((abfd->flags & DYNAMIC) != 0)
5339 i_ehdrp->e_type = ET_DYN;
5340 else if ((abfd->flags & EXEC_P) != 0)
5341 i_ehdrp->e_type = ET_EXEC;
5342 else if (bfd_get_format (abfd) == bfd_core)
5343 i_ehdrp->e_type = ET_CORE;
5344 else
5345 i_ehdrp->e_type = ET_REL;
5346
5347 switch (bfd_get_arch (abfd))
5348 {
5349 case bfd_arch_unknown:
5350 i_ehdrp->e_machine = EM_NONE;
5351 break;
5352
5353 /* There used to be a long list of cases here, each one setting
5354 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5355 in the corresponding bfd definition. To avoid duplication,
5356 the switch was removed. Machines that need special handling
5357 can generally do it in elf_backend_final_write_processing(),
5358 unless they need the information earlier than the final write.
5359 Such need can generally be supplied by replacing the tests for
5360 e_machine with the conditions used to determine it. */
5361 default:
5362 i_ehdrp->e_machine = bed->elf_machine_code;
5363 }
5364
5365 i_ehdrp->e_version = bed->s->ev_current;
5366 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5367
5368 /* No program header, for now. */
5369 i_ehdrp->e_phoff = 0;
5370 i_ehdrp->e_phentsize = 0;
5371 i_ehdrp->e_phnum = 0;
5372
5373 /* Each bfd section is section header entry. */
5374 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5375 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5376
5377 /* If we're building an executable, we'll need a program header table. */
5378 if (abfd->flags & EXEC_P)
5379 /* It all happens later. */
5380 ;
5381 else
5382 {
5383 i_ehdrp->e_phentsize = 0;
5384 i_ehdrp->e_phoff = 0;
5385 }
5386
5387 elf_tdata (abfd)->symtab_hdr.sh_name =
5388 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5389 elf_tdata (abfd)->strtab_hdr.sh_name =
5390 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5391 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5392 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5393 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5394 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
5395 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5396 return FALSE;
5397
5398 return TRUE;
5399 }
5400
5401 /* Assign file positions for all the reloc sections which are not part
5402 of the loadable file image, and the file position of section headers. */
5403
5404 static void
5405 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5406 {
5407 file_ptr off;
5408 unsigned int i, num_sec;
5409 Elf_Internal_Shdr **shdrpp;
5410 Elf_Internal_Ehdr *i_ehdrp;
5411 const struct elf_backend_data *bed;
5412
5413 off = elf_next_file_pos (abfd);
5414
5415 num_sec = elf_numsections (abfd);
5416 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5417 {
5418 Elf_Internal_Shdr *shdrp;
5419
5420 shdrp = *shdrpp;
5421 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5422 && shdrp->sh_offset == -1)
5423 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5424 }
5425
5426 /* Place the section headers. */
5427 i_ehdrp = elf_elfheader (abfd);
5428 bed = get_elf_backend_data (abfd);
5429 off = align_file_position (off, 1 << bed->s->log_file_align);
5430 i_ehdrp->e_shoff = off;
5431 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5432 elf_next_file_pos (abfd) = off;
5433 }
5434
5435 bfd_boolean
5436 _bfd_elf_write_object_contents (bfd *abfd)
5437 {
5438 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5439 Elf_Internal_Shdr **i_shdrp;
5440 bfd_boolean failed;
5441 unsigned int count, num_sec;
5442 struct elf_obj_tdata *t;
5443
5444 if (! abfd->output_has_begun
5445 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5446 return FALSE;
5447
5448 i_shdrp = elf_elfsections (abfd);
5449
5450 failed = FALSE;
5451 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5452 if (failed)
5453 return FALSE;
5454
5455 _bfd_elf_assign_file_positions_for_relocs (abfd);
5456
5457 /* After writing the headers, we need to write the sections too... */
5458 num_sec = elf_numsections (abfd);
5459 for (count = 1; count < num_sec; count++)
5460 {
5461 if (bed->elf_backend_section_processing)
5462 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5463 if (i_shdrp[count]->contents)
5464 {
5465 bfd_size_type amt = i_shdrp[count]->sh_size;
5466
5467 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5468 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5469 return FALSE;
5470 }
5471 }
5472
5473 /* Write out the section header names. */
5474 t = elf_tdata (abfd);
5475 if (elf_shstrtab (abfd) != NULL
5476 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5477 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5478 return FALSE;
5479
5480 if (bed->elf_backend_final_write_processing)
5481 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5482
5483 if (!bed->s->write_shdrs_and_ehdr (abfd))
5484 return FALSE;
5485
5486 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5487 if (t->o->build_id.after_write_object_contents != NULL)
5488 return (*t->o->build_id.after_write_object_contents) (abfd);
5489
5490 return TRUE;
5491 }
5492
5493 bfd_boolean
5494 _bfd_elf_write_corefile_contents (bfd *abfd)
5495 {
5496 /* Hopefully this can be done just like an object file. */
5497 return _bfd_elf_write_object_contents (abfd);
5498 }
5499
5500 /* Given a section, search the header to find them. */
5501
5502 unsigned int
5503 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5504 {
5505 const struct elf_backend_data *bed;
5506 unsigned int sec_index;
5507
5508 if (elf_section_data (asect) != NULL
5509 && elf_section_data (asect)->this_idx != 0)
5510 return elf_section_data (asect)->this_idx;
5511
5512 if (bfd_is_abs_section (asect))
5513 sec_index = SHN_ABS;
5514 else if (bfd_is_com_section (asect))
5515 sec_index = SHN_COMMON;
5516 else if (bfd_is_und_section (asect))
5517 sec_index = SHN_UNDEF;
5518 else
5519 sec_index = SHN_BAD;
5520
5521 bed = get_elf_backend_data (abfd);
5522 if (bed->elf_backend_section_from_bfd_section)
5523 {
5524 int retval = sec_index;
5525
5526 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5527 return retval;
5528 }
5529
5530 if (sec_index == SHN_BAD)
5531 bfd_set_error (bfd_error_nonrepresentable_section);
5532
5533 return sec_index;
5534 }
5535
5536 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5537 on error. */
5538
5539 int
5540 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5541 {
5542 asymbol *asym_ptr = *asym_ptr_ptr;
5543 int idx;
5544 flagword flags = asym_ptr->flags;
5545
5546 /* When gas creates relocations against local labels, it creates its
5547 own symbol for the section, but does put the symbol into the
5548 symbol chain, so udata is 0. When the linker is generating
5549 relocatable output, this section symbol may be for one of the
5550 input sections rather than the output section. */
5551 if (asym_ptr->udata.i == 0
5552 && (flags & BSF_SECTION_SYM)
5553 && asym_ptr->section)
5554 {
5555 asection *sec;
5556 int indx;
5557
5558 sec = asym_ptr->section;
5559 if (sec->owner != abfd && sec->output_section != NULL)
5560 sec = sec->output_section;
5561 if (sec->owner == abfd
5562 && (indx = sec->index) < elf_num_section_syms (abfd)
5563 && elf_section_syms (abfd)[indx] != NULL)
5564 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5565 }
5566
5567 idx = asym_ptr->udata.i;
5568
5569 if (idx == 0)
5570 {
5571 /* This case can occur when using --strip-symbol on a symbol
5572 which is used in a relocation entry. */
5573 (*_bfd_error_handler)
5574 (_("%B: symbol `%s' required but not present"),
5575 abfd, bfd_asymbol_name (asym_ptr));
5576 bfd_set_error (bfd_error_no_symbols);
5577 return -1;
5578 }
5579
5580 #if DEBUG & 4
5581 {
5582 fprintf (stderr,
5583 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5584 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5585 fflush (stderr);
5586 }
5587 #endif
5588
5589 return idx;
5590 }
5591
5592 /* Rewrite program header information. */
5593
5594 static bfd_boolean
5595 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5596 {
5597 Elf_Internal_Ehdr *iehdr;
5598 struct elf_segment_map *map;
5599 struct elf_segment_map *map_first;
5600 struct elf_segment_map **pointer_to_map;
5601 Elf_Internal_Phdr *segment;
5602 asection *section;
5603 unsigned int i;
5604 unsigned int num_segments;
5605 bfd_boolean phdr_included = FALSE;
5606 bfd_boolean p_paddr_valid;
5607 bfd_vma maxpagesize;
5608 struct elf_segment_map *phdr_adjust_seg = NULL;
5609 unsigned int phdr_adjust_num = 0;
5610 const struct elf_backend_data *bed;
5611
5612 bed = get_elf_backend_data (ibfd);
5613 iehdr = elf_elfheader (ibfd);
5614
5615 map_first = NULL;
5616 pointer_to_map = &map_first;
5617
5618 num_segments = elf_elfheader (ibfd)->e_phnum;
5619 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5620
5621 /* Returns the end address of the segment + 1. */
5622 #define SEGMENT_END(segment, start) \
5623 (start + (segment->p_memsz > segment->p_filesz \
5624 ? segment->p_memsz : segment->p_filesz))
5625
5626 #define SECTION_SIZE(section, segment) \
5627 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5628 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5629 ? section->size : 0)
5630
5631 /* Returns TRUE if the given section is contained within
5632 the given segment. VMA addresses are compared. */
5633 #define IS_CONTAINED_BY_VMA(section, segment) \
5634 (section->vma >= segment->p_vaddr \
5635 && (section->vma + SECTION_SIZE (section, segment) \
5636 <= (SEGMENT_END (segment, segment->p_vaddr))))
5637
5638 /* Returns TRUE if the given section is contained within
5639 the given segment. LMA addresses are compared. */
5640 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5641 (section->lma >= base \
5642 && (section->lma + SECTION_SIZE (section, segment) \
5643 <= SEGMENT_END (segment, base)))
5644
5645 /* Handle PT_NOTE segment. */
5646 #define IS_NOTE(p, s) \
5647 (p->p_type == PT_NOTE \
5648 && elf_section_type (s) == SHT_NOTE \
5649 && (bfd_vma) s->filepos >= p->p_offset \
5650 && ((bfd_vma) s->filepos + s->size \
5651 <= p->p_offset + p->p_filesz))
5652
5653 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5654 etc. */
5655 #define IS_COREFILE_NOTE(p, s) \
5656 (IS_NOTE (p, s) \
5657 && bfd_get_format (ibfd) == bfd_core \
5658 && s->vma == 0 \
5659 && s->lma == 0)
5660
5661 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5662 linker, which generates a PT_INTERP section with p_vaddr and
5663 p_memsz set to 0. */
5664 #define IS_SOLARIS_PT_INTERP(p, s) \
5665 (p->p_vaddr == 0 \
5666 && p->p_paddr == 0 \
5667 && p->p_memsz == 0 \
5668 && p->p_filesz > 0 \
5669 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5670 && s->size > 0 \
5671 && (bfd_vma) s->filepos >= p->p_offset \
5672 && ((bfd_vma) s->filepos + s->size \
5673 <= p->p_offset + p->p_filesz))
5674
5675 /* Decide if the given section should be included in the given segment.
5676 A section will be included if:
5677 1. It is within the address space of the segment -- we use the LMA
5678 if that is set for the segment and the VMA otherwise,
5679 2. It is an allocated section or a NOTE section in a PT_NOTE
5680 segment.
5681 3. There is an output section associated with it,
5682 4. The section has not already been allocated to a previous segment.
5683 5. PT_GNU_STACK segments do not include any sections.
5684 6. PT_TLS segment includes only SHF_TLS sections.
5685 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5686 8. PT_DYNAMIC should not contain empty sections at the beginning
5687 (with the possible exception of .dynamic). */
5688 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5689 ((((segment->p_paddr \
5690 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5691 : IS_CONTAINED_BY_VMA (section, segment)) \
5692 && (section->flags & SEC_ALLOC) != 0) \
5693 || IS_NOTE (segment, section)) \
5694 && segment->p_type != PT_GNU_STACK \
5695 && (segment->p_type != PT_TLS \
5696 || (section->flags & SEC_THREAD_LOCAL)) \
5697 && (segment->p_type == PT_LOAD \
5698 || segment->p_type == PT_TLS \
5699 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5700 && (segment->p_type != PT_DYNAMIC \
5701 || SECTION_SIZE (section, segment) > 0 \
5702 || (segment->p_paddr \
5703 ? segment->p_paddr != section->lma \
5704 : segment->p_vaddr != section->vma) \
5705 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5706 == 0)) \
5707 && !section->segment_mark)
5708
5709 /* If the output section of a section in the input segment is NULL,
5710 it is removed from the corresponding output segment. */
5711 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5712 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5713 && section->output_section != NULL)
5714
5715 /* Returns TRUE iff seg1 starts after the end of seg2. */
5716 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5717 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5718
5719 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5720 their VMA address ranges and their LMA address ranges overlap.
5721 It is possible to have overlapping VMA ranges without overlapping LMA
5722 ranges. RedBoot images for example can have both .data and .bss mapped
5723 to the same VMA range, but with the .data section mapped to a different
5724 LMA. */
5725 #define SEGMENT_OVERLAPS(seg1, seg2) \
5726 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5727 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5728 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5729 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5730
5731 /* Initialise the segment mark field. */
5732 for (section = ibfd->sections; section != NULL; section = section->next)
5733 section->segment_mark = FALSE;
5734
5735 /* The Solaris linker creates program headers in which all the
5736 p_paddr fields are zero. When we try to objcopy or strip such a
5737 file, we get confused. Check for this case, and if we find it
5738 don't set the p_paddr_valid fields. */
5739 p_paddr_valid = FALSE;
5740 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5741 i < num_segments;
5742 i++, segment++)
5743 if (segment->p_paddr != 0)
5744 {
5745 p_paddr_valid = TRUE;
5746 break;
5747 }
5748
5749 /* Scan through the segments specified in the program header
5750 of the input BFD. For this first scan we look for overlaps
5751 in the loadable segments. These can be created by weird
5752 parameters to objcopy. Also, fix some solaris weirdness. */
5753 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5754 i < num_segments;
5755 i++, segment++)
5756 {
5757 unsigned int j;
5758 Elf_Internal_Phdr *segment2;
5759
5760 if (segment->p_type == PT_INTERP)
5761 for (section = ibfd->sections; section; section = section->next)
5762 if (IS_SOLARIS_PT_INTERP (segment, section))
5763 {
5764 /* Mininal change so that the normal section to segment
5765 assignment code will work. */
5766 segment->p_vaddr = section->vma;
5767 break;
5768 }
5769
5770 if (segment->p_type != PT_LOAD)
5771 {
5772 /* Remove PT_GNU_RELRO segment. */
5773 if (segment->p_type == PT_GNU_RELRO)
5774 segment->p_type = PT_NULL;
5775 continue;
5776 }
5777
5778 /* Determine if this segment overlaps any previous segments. */
5779 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5780 {
5781 bfd_signed_vma extra_length;
5782
5783 if (segment2->p_type != PT_LOAD
5784 || !SEGMENT_OVERLAPS (segment, segment2))
5785 continue;
5786
5787 /* Merge the two segments together. */
5788 if (segment2->p_vaddr < segment->p_vaddr)
5789 {
5790 /* Extend SEGMENT2 to include SEGMENT and then delete
5791 SEGMENT. */
5792 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5793 - SEGMENT_END (segment2, segment2->p_vaddr));
5794
5795 if (extra_length > 0)
5796 {
5797 segment2->p_memsz += extra_length;
5798 segment2->p_filesz += extra_length;
5799 }
5800
5801 segment->p_type = PT_NULL;
5802
5803 /* Since we have deleted P we must restart the outer loop. */
5804 i = 0;
5805 segment = elf_tdata (ibfd)->phdr;
5806 break;
5807 }
5808 else
5809 {
5810 /* Extend SEGMENT to include SEGMENT2 and then delete
5811 SEGMENT2. */
5812 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5813 - SEGMENT_END (segment, segment->p_vaddr));
5814
5815 if (extra_length > 0)
5816 {
5817 segment->p_memsz += extra_length;
5818 segment->p_filesz += extra_length;
5819 }
5820
5821 segment2->p_type = PT_NULL;
5822 }
5823 }
5824 }
5825
5826 /* The second scan attempts to assign sections to segments. */
5827 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5828 i < num_segments;
5829 i++, segment++)
5830 {
5831 unsigned int section_count;
5832 asection **sections;
5833 asection *output_section;
5834 unsigned int isec;
5835 bfd_vma matching_lma;
5836 bfd_vma suggested_lma;
5837 unsigned int j;
5838 bfd_size_type amt;
5839 asection *first_section;
5840 bfd_boolean first_matching_lma;
5841 bfd_boolean first_suggested_lma;
5842
5843 if (segment->p_type == PT_NULL)
5844 continue;
5845
5846 first_section = NULL;
5847 /* Compute how many sections might be placed into this segment. */
5848 for (section = ibfd->sections, section_count = 0;
5849 section != NULL;
5850 section = section->next)
5851 {
5852 /* Find the first section in the input segment, which may be
5853 removed from the corresponding output segment. */
5854 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5855 {
5856 if (first_section == NULL)
5857 first_section = section;
5858 if (section->output_section != NULL)
5859 ++section_count;
5860 }
5861 }
5862
5863 /* Allocate a segment map big enough to contain
5864 all of the sections we have selected. */
5865 amt = sizeof (struct elf_segment_map);
5866 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5867 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5868 if (map == NULL)
5869 return FALSE;
5870
5871 /* Initialise the fields of the segment map. Default to
5872 using the physical address of the segment in the input BFD. */
5873 map->next = NULL;
5874 map->p_type = segment->p_type;
5875 map->p_flags = segment->p_flags;
5876 map->p_flags_valid = 1;
5877
5878 /* If the first section in the input segment is removed, there is
5879 no need to preserve segment physical address in the corresponding
5880 output segment. */
5881 if (!first_section || first_section->output_section != NULL)
5882 {
5883 map->p_paddr = segment->p_paddr;
5884 map->p_paddr_valid = p_paddr_valid;
5885 }
5886
5887 /* Determine if this segment contains the ELF file header
5888 and if it contains the program headers themselves. */
5889 map->includes_filehdr = (segment->p_offset == 0
5890 && segment->p_filesz >= iehdr->e_ehsize);
5891 map->includes_phdrs = 0;
5892
5893 if (!phdr_included || segment->p_type != PT_LOAD)
5894 {
5895 map->includes_phdrs =
5896 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5897 && (segment->p_offset + segment->p_filesz
5898 >= ((bfd_vma) iehdr->e_phoff
5899 + iehdr->e_phnum * iehdr->e_phentsize)));
5900
5901 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5902 phdr_included = TRUE;
5903 }
5904
5905 if (section_count == 0)
5906 {
5907 /* Special segments, such as the PT_PHDR segment, may contain
5908 no sections, but ordinary, loadable segments should contain
5909 something. They are allowed by the ELF spec however, so only
5910 a warning is produced. */
5911 if (segment->p_type == PT_LOAD)
5912 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5913 " detected, is this intentional ?\n"),
5914 ibfd);
5915
5916 map->count = 0;
5917 *pointer_to_map = map;
5918 pointer_to_map = &map->next;
5919
5920 continue;
5921 }
5922
5923 /* Now scan the sections in the input BFD again and attempt
5924 to add their corresponding output sections to the segment map.
5925 The problem here is how to handle an output section which has
5926 been moved (ie had its LMA changed). There are four possibilities:
5927
5928 1. None of the sections have been moved.
5929 In this case we can continue to use the segment LMA from the
5930 input BFD.
5931
5932 2. All of the sections have been moved by the same amount.
5933 In this case we can change the segment's LMA to match the LMA
5934 of the first section.
5935
5936 3. Some of the sections have been moved, others have not.
5937 In this case those sections which have not been moved can be
5938 placed in the current segment which will have to have its size,
5939 and possibly its LMA changed, and a new segment or segments will
5940 have to be created to contain the other sections.
5941
5942 4. The sections have been moved, but not by the same amount.
5943 In this case we can change the segment's LMA to match the LMA
5944 of the first section and we will have to create a new segment
5945 or segments to contain the other sections.
5946
5947 In order to save time, we allocate an array to hold the section
5948 pointers that we are interested in. As these sections get assigned
5949 to a segment, they are removed from this array. */
5950
5951 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5952 if (sections == NULL)
5953 return FALSE;
5954
5955 /* Step One: Scan for segment vs section LMA conflicts.
5956 Also add the sections to the section array allocated above.
5957 Also add the sections to the current segment. In the common
5958 case, where the sections have not been moved, this means that
5959 we have completely filled the segment, and there is nothing
5960 more to do. */
5961 isec = 0;
5962 matching_lma = 0;
5963 suggested_lma = 0;
5964 first_matching_lma = TRUE;
5965 first_suggested_lma = TRUE;
5966
5967 for (section = ibfd->sections;
5968 section != NULL;
5969 section = section->next)
5970 if (section == first_section)
5971 break;
5972
5973 for (j = 0; section != NULL; section = section->next)
5974 {
5975 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5976 {
5977 output_section = section->output_section;
5978
5979 sections[j++] = section;
5980
5981 /* The Solaris native linker always sets p_paddr to 0.
5982 We try to catch that case here, and set it to the
5983 correct value. Note - some backends require that
5984 p_paddr be left as zero. */
5985 if (!p_paddr_valid
5986 && segment->p_vaddr != 0
5987 && !bed->want_p_paddr_set_to_zero
5988 && isec == 0
5989 && output_section->lma != 0
5990 && output_section->vma == (segment->p_vaddr
5991 + (map->includes_filehdr
5992 ? iehdr->e_ehsize
5993 : 0)
5994 + (map->includes_phdrs
5995 ? (iehdr->e_phnum
5996 * iehdr->e_phentsize)
5997 : 0)))
5998 map->p_paddr = segment->p_vaddr;
5999
6000 /* Match up the physical address of the segment with the
6001 LMA address of the output section. */
6002 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6003 || IS_COREFILE_NOTE (segment, section)
6004 || (bed->want_p_paddr_set_to_zero
6005 && IS_CONTAINED_BY_VMA (output_section, segment)))
6006 {
6007 if (first_matching_lma || output_section->lma < matching_lma)
6008 {
6009 matching_lma = output_section->lma;
6010 first_matching_lma = FALSE;
6011 }
6012
6013 /* We assume that if the section fits within the segment
6014 then it does not overlap any other section within that
6015 segment. */
6016 map->sections[isec++] = output_section;
6017 }
6018 else if (first_suggested_lma)
6019 {
6020 suggested_lma = output_section->lma;
6021 first_suggested_lma = FALSE;
6022 }
6023
6024 if (j == section_count)
6025 break;
6026 }
6027 }
6028
6029 BFD_ASSERT (j == section_count);
6030
6031 /* Step Two: Adjust the physical address of the current segment,
6032 if necessary. */
6033 if (isec == section_count)
6034 {
6035 /* All of the sections fitted within the segment as currently
6036 specified. This is the default case. Add the segment to
6037 the list of built segments and carry on to process the next
6038 program header in the input BFD. */
6039 map->count = section_count;
6040 *pointer_to_map = map;
6041 pointer_to_map = &map->next;
6042
6043 if (p_paddr_valid
6044 && !bed->want_p_paddr_set_to_zero
6045 && matching_lma != map->p_paddr
6046 && !map->includes_filehdr
6047 && !map->includes_phdrs)
6048 /* There is some padding before the first section in the
6049 segment. So, we must account for that in the output
6050 segment's vma. */
6051 map->p_vaddr_offset = matching_lma - map->p_paddr;
6052
6053 free (sections);
6054 continue;
6055 }
6056 else
6057 {
6058 if (!first_matching_lma)
6059 {
6060 /* At least one section fits inside the current segment.
6061 Keep it, but modify its physical address to match the
6062 LMA of the first section that fitted. */
6063 map->p_paddr = matching_lma;
6064 }
6065 else
6066 {
6067 /* None of the sections fitted inside the current segment.
6068 Change the current segment's physical address to match
6069 the LMA of the first section. */
6070 map->p_paddr = suggested_lma;
6071 }
6072
6073 /* Offset the segment physical address from the lma
6074 to allow for space taken up by elf headers. */
6075 if (map->includes_filehdr)
6076 {
6077 if (map->p_paddr >= iehdr->e_ehsize)
6078 map->p_paddr -= iehdr->e_ehsize;
6079 else
6080 {
6081 map->includes_filehdr = FALSE;
6082 map->includes_phdrs = FALSE;
6083 }
6084 }
6085
6086 if (map->includes_phdrs)
6087 {
6088 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6089 {
6090 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6091
6092 /* iehdr->e_phnum is just an estimate of the number
6093 of program headers that we will need. Make a note
6094 here of the number we used and the segment we chose
6095 to hold these headers, so that we can adjust the
6096 offset when we know the correct value. */
6097 phdr_adjust_num = iehdr->e_phnum;
6098 phdr_adjust_seg = map;
6099 }
6100 else
6101 map->includes_phdrs = FALSE;
6102 }
6103 }
6104
6105 /* Step Three: Loop over the sections again, this time assigning
6106 those that fit to the current segment and removing them from the
6107 sections array; but making sure not to leave large gaps. Once all
6108 possible sections have been assigned to the current segment it is
6109 added to the list of built segments and if sections still remain
6110 to be assigned, a new segment is constructed before repeating
6111 the loop. */
6112 isec = 0;
6113 do
6114 {
6115 map->count = 0;
6116 suggested_lma = 0;
6117 first_suggested_lma = TRUE;
6118
6119 /* Fill the current segment with sections that fit. */
6120 for (j = 0; j < section_count; j++)
6121 {
6122 section = sections[j];
6123
6124 if (section == NULL)
6125 continue;
6126
6127 output_section = section->output_section;
6128
6129 BFD_ASSERT (output_section != NULL);
6130
6131 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6132 || IS_COREFILE_NOTE (segment, section))
6133 {
6134 if (map->count == 0)
6135 {
6136 /* If the first section in a segment does not start at
6137 the beginning of the segment, then something is
6138 wrong. */
6139 if (output_section->lma
6140 != (map->p_paddr
6141 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6142 + (map->includes_phdrs
6143 ? iehdr->e_phnum * iehdr->e_phentsize
6144 : 0)))
6145 abort ();
6146 }
6147 else
6148 {
6149 asection *prev_sec;
6150
6151 prev_sec = map->sections[map->count - 1];
6152
6153 /* If the gap between the end of the previous section
6154 and the start of this section is more than
6155 maxpagesize then we need to start a new segment. */
6156 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6157 maxpagesize)
6158 < BFD_ALIGN (output_section->lma, maxpagesize))
6159 || (prev_sec->lma + prev_sec->size
6160 > output_section->lma))
6161 {
6162 if (first_suggested_lma)
6163 {
6164 suggested_lma = output_section->lma;
6165 first_suggested_lma = FALSE;
6166 }
6167
6168 continue;
6169 }
6170 }
6171
6172 map->sections[map->count++] = output_section;
6173 ++isec;
6174 sections[j] = NULL;
6175 section->segment_mark = TRUE;
6176 }
6177 else if (first_suggested_lma)
6178 {
6179 suggested_lma = output_section->lma;
6180 first_suggested_lma = FALSE;
6181 }
6182 }
6183
6184 BFD_ASSERT (map->count > 0);
6185
6186 /* Add the current segment to the list of built segments. */
6187 *pointer_to_map = map;
6188 pointer_to_map = &map->next;
6189
6190 if (isec < section_count)
6191 {
6192 /* We still have not allocated all of the sections to
6193 segments. Create a new segment here, initialise it
6194 and carry on looping. */
6195 amt = sizeof (struct elf_segment_map);
6196 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6197 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6198 if (map == NULL)
6199 {
6200 free (sections);
6201 return FALSE;
6202 }
6203
6204 /* Initialise the fields of the segment map. Set the physical
6205 physical address to the LMA of the first section that has
6206 not yet been assigned. */
6207 map->next = NULL;
6208 map->p_type = segment->p_type;
6209 map->p_flags = segment->p_flags;
6210 map->p_flags_valid = 1;
6211 map->p_paddr = suggested_lma;
6212 map->p_paddr_valid = p_paddr_valid;
6213 map->includes_filehdr = 0;
6214 map->includes_phdrs = 0;
6215 }
6216 }
6217 while (isec < section_count);
6218
6219 free (sections);
6220 }
6221
6222 elf_seg_map (obfd) = map_first;
6223
6224 /* If we had to estimate the number of program headers that were
6225 going to be needed, then check our estimate now and adjust
6226 the offset if necessary. */
6227 if (phdr_adjust_seg != NULL)
6228 {
6229 unsigned int count;
6230
6231 for (count = 0, map = map_first; map != NULL; map = map->next)
6232 count++;
6233
6234 if (count > phdr_adjust_num)
6235 phdr_adjust_seg->p_paddr
6236 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6237 }
6238
6239 #undef SEGMENT_END
6240 #undef SECTION_SIZE
6241 #undef IS_CONTAINED_BY_VMA
6242 #undef IS_CONTAINED_BY_LMA
6243 #undef IS_NOTE
6244 #undef IS_COREFILE_NOTE
6245 #undef IS_SOLARIS_PT_INTERP
6246 #undef IS_SECTION_IN_INPUT_SEGMENT
6247 #undef INCLUDE_SECTION_IN_SEGMENT
6248 #undef SEGMENT_AFTER_SEGMENT
6249 #undef SEGMENT_OVERLAPS
6250 return TRUE;
6251 }
6252
6253 /* Copy ELF program header information. */
6254
6255 static bfd_boolean
6256 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6257 {
6258 Elf_Internal_Ehdr *iehdr;
6259 struct elf_segment_map *map;
6260 struct elf_segment_map *map_first;
6261 struct elf_segment_map **pointer_to_map;
6262 Elf_Internal_Phdr *segment;
6263 unsigned int i;
6264 unsigned int num_segments;
6265 bfd_boolean phdr_included = FALSE;
6266 bfd_boolean p_paddr_valid;
6267
6268 iehdr = elf_elfheader (ibfd);
6269
6270 map_first = NULL;
6271 pointer_to_map = &map_first;
6272
6273 /* If all the segment p_paddr fields are zero, don't set
6274 map->p_paddr_valid. */
6275 p_paddr_valid = FALSE;
6276 num_segments = elf_elfheader (ibfd)->e_phnum;
6277 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6278 i < num_segments;
6279 i++, segment++)
6280 if (segment->p_paddr != 0)
6281 {
6282 p_paddr_valid = TRUE;
6283 break;
6284 }
6285
6286 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6287 i < num_segments;
6288 i++, segment++)
6289 {
6290 asection *section;
6291 unsigned int section_count;
6292 bfd_size_type amt;
6293 Elf_Internal_Shdr *this_hdr;
6294 asection *first_section = NULL;
6295 asection *lowest_section;
6296
6297 /* Compute how many sections are in this segment. */
6298 for (section = ibfd->sections, section_count = 0;
6299 section != NULL;
6300 section = section->next)
6301 {
6302 this_hdr = &(elf_section_data(section)->this_hdr);
6303 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6304 {
6305 if (first_section == NULL)
6306 first_section = section;
6307 section_count++;
6308 }
6309 }
6310
6311 /* Allocate a segment map big enough to contain
6312 all of the sections we have selected. */
6313 amt = sizeof (struct elf_segment_map);
6314 if (section_count != 0)
6315 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6316 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6317 if (map == NULL)
6318 return FALSE;
6319
6320 /* Initialize the fields of the output segment map with the
6321 input segment. */
6322 map->next = NULL;
6323 map->p_type = segment->p_type;
6324 map->p_flags = segment->p_flags;
6325 map->p_flags_valid = 1;
6326 map->p_paddr = segment->p_paddr;
6327 map->p_paddr_valid = p_paddr_valid;
6328 map->p_align = segment->p_align;
6329 map->p_align_valid = 1;
6330 map->p_vaddr_offset = 0;
6331
6332 if (map->p_type == PT_GNU_RELRO
6333 || map->p_type == PT_GNU_STACK)
6334 {
6335 /* The PT_GNU_RELRO segment may contain the first a few
6336 bytes in the .got.plt section even if the whole .got.plt
6337 section isn't in the PT_GNU_RELRO segment. We won't
6338 change the size of the PT_GNU_RELRO segment.
6339 Similarly, PT_GNU_STACK size is significant on uclinux
6340 systems. */
6341 map->p_size = segment->p_memsz;
6342 map->p_size_valid = 1;
6343 }
6344
6345 /* Determine if this segment contains the ELF file header
6346 and if it contains the program headers themselves. */
6347 map->includes_filehdr = (segment->p_offset == 0
6348 && segment->p_filesz >= iehdr->e_ehsize);
6349
6350 map->includes_phdrs = 0;
6351 if (! phdr_included || segment->p_type != PT_LOAD)
6352 {
6353 map->includes_phdrs =
6354 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6355 && (segment->p_offset + segment->p_filesz
6356 >= ((bfd_vma) iehdr->e_phoff
6357 + iehdr->e_phnum * iehdr->e_phentsize)));
6358
6359 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6360 phdr_included = TRUE;
6361 }
6362
6363 lowest_section = NULL;
6364 if (section_count != 0)
6365 {
6366 unsigned int isec = 0;
6367
6368 for (section = first_section;
6369 section != NULL;
6370 section = section->next)
6371 {
6372 this_hdr = &(elf_section_data(section)->this_hdr);
6373 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6374 {
6375 map->sections[isec++] = section->output_section;
6376 if ((section->flags & SEC_ALLOC) != 0)
6377 {
6378 bfd_vma seg_off;
6379
6380 if (lowest_section == NULL
6381 || section->lma < lowest_section->lma)
6382 lowest_section = section;
6383
6384 /* Section lmas are set up from PT_LOAD header
6385 p_paddr in _bfd_elf_make_section_from_shdr.
6386 If this header has a p_paddr that disagrees
6387 with the section lma, flag the p_paddr as
6388 invalid. */
6389 if ((section->flags & SEC_LOAD) != 0)
6390 seg_off = this_hdr->sh_offset - segment->p_offset;
6391 else
6392 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6393 if (section->lma - segment->p_paddr != seg_off)
6394 map->p_paddr_valid = FALSE;
6395 }
6396 if (isec == section_count)
6397 break;
6398 }
6399 }
6400 }
6401
6402 if (map->includes_filehdr && lowest_section != NULL)
6403 /* We need to keep the space used by the headers fixed. */
6404 map->header_size = lowest_section->vma - segment->p_vaddr;
6405
6406 if (!map->includes_phdrs
6407 && !map->includes_filehdr
6408 && map->p_paddr_valid)
6409 /* There is some other padding before the first section. */
6410 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6411 - segment->p_paddr);
6412
6413 map->count = section_count;
6414 *pointer_to_map = map;
6415 pointer_to_map = &map->next;
6416 }
6417
6418 elf_seg_map (obfd) = map_first;
6419 return TRUE;
6420 }
6421
6422 /* Copy private BFD data. This copies or rewrites ELF program header
6423 information. */
6424
6425 static bfd_boolean
6426 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6427 {
6428 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6429 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6430 return TRUE;
6431
6432 if (elf_tdata (ibfd)->phdr == NULL)
6433 return TRUE;
6434
6435 if (ibfd->xvec == obfd->xvec)
6436 {
6437 /* Check to see if any sections in the input BFD
6438 covered by ELF program header have changed. */
6439 Elf_Internal_Phdr *segment;
6440 asection *section, *osec;
6441 unsigned int i, num_segments;
6442 Elf_Internal_Shdr *this_hdr;
6443 const struct elf_backend_data *bed;
6444
6445 bed = get_elf_backend_data (ibfd);
6446
6447 /* Regenerate the segment map if p_paddr is set to 0. */
6448 if (bed->want_p_paddr_set_to_zero)
6449 goto rewrite;
6450
6451 /* Initialize the segment mark field. */
6452 for (section = obfd->sections; section != NULL;
6453 section = section->next)
6454 section->segment_mark = FALSE;
6455
6456 num_segments = elf_elfheader (ibfd)->e_phnum;
6457 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6458 i < num_segments;
6459 i++, segment++)
6460 {
6461 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6462 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6463 which severly confuses things, so always regenerate the segment
6464 map in this case. */
6465 if (segment->p_paddr == 0
6466 && segment->p_memsz == 0
6467 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6468 goto rewrite;
6469
6470 for (section = ibfd->sections;
6471 section != NULL; section = section->next)
6472 {
6473 /* We mark the output section so that we know it comes
6474 from the input BFD. */
6475 osec = section->output_section;
6476 if (osec)
6477 osec->segment_mark = TRUE;
6478
6479 /* Check if this section is covered by the segment. */
6480 this_hdr = &(elf_section_data(section)->this_hdr);
6481 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6482 {
6483 /* FIXME: Check if its output section is changed or
6484 removed. What else do we need to check? */
6485 if (osec == NULL
6486 || section->flags != osec->flags
6487 || section->lma != osec->lma
6488 || section->vma != osec->vma
6489 || section->size != osec->size
6490 || section->rawsize != osec->rawsize
6491 || section->alignment_power != osec->alignment_power)
6492 goto rewrite;
6493 }
6494 }
6495 }
6496
6497 /* Check to see if any output section do not come from the
6498 input BFD. */
6499 for (section = obfd->sections; section != NULL;
6500 section = section->next)
6501 {
6502 if (section->segment_mark == FALSE)
6503 goto rewrite;
6504 else
6505 section->segment_mark = FALSE;
6506 }
6507
6508 return copy_elf_program_header (ibfd, obfd);
6509 }
6510
6511 rewrite:
6512 if (ibfd->xvec == obfd->xvec)
6513 {
6514 /* When rewriting program header, set the output maxpagesize to
6515 the maximum alignment of input PT_LOAD segments. */
6516 Elf_Internal_Phdr *segment;
6517 unsigned int i;
6518 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6519 bfd_vma maxpagesize = 0;
6520
6521 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6522 i < num_segments;
6523 i++, segment++)
6524 if (segment->p_type == PT_LOAD
6525 && maxpagesize < segment->p_align)
6526 maxpagesize = segment->p_align;
6527
6528 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6529 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6530 }
6531
6532 return rewrite_elf_program_header (ibfd, obfd);
6533 }
6534
6535 /* Initialize private output section information from input section. */
6536
6537 bfd_boolean
6538 _bfd_elf_init_private_section_data (bfd *ibfd,
6539 asection *isec,
6540 bfd *obfd,
6541 asection *osec,
6542 struct bfd_link_info *link_info)
6543
6544 {
6545 Elf_Internal_Shdr *ihdr, *ohdr;
6546 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6547
6548 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6549 || obfd->xvec->flavour != bfd_target_elf_flavour)
6550 return TRUE;
6551
6552 BFD_ASSERT (elf_section_data (osec) != NULL);
6553
6554 /* For objcopy and relocatable link, don't copy the output ELF
6555 section type from input if the output BFD section flags have been
6556 set to something different. For a final link allow some flags
6557 that the linker clears to differ. */
6558 if (elf_section_type (osec) == SHT_NULL
6559 && (osec->flags == isec->flags
6560 || (final_link
6561 && ((osec->flags ^ isec->flags)
6562 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6563 elf_section_type (osec) = elf_section_type (isec);
6564
6565 /* FIXME: Is this correct for all OS/PROC specific flags? */
6566 elf_section_flags (osec) |= (elf_section_flags (isec)
6567 & (SHF_MASKOS | SHF_MASKPROC));
6568
6569 /* Set things up for objcopy and relocatable link. The output
6570 SHT_GROUP section will have its elf_next_in_group pointing back
6571 to the input group members. Ignore linker created group section.
6572 See elfNN_ia64_object_p in elfxx-ia64.c. */
6573 if (!final_link)
6574 {
6575 if (elf_sec_group (isec) == NULL
6576 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6577 {
6578 if (elf_section_flags (isec) & SHF_GROUP)
6579 elf_section_flags (osec) |= SHF_GROUP;
6580 elf_next_in_group (osec) = elf_next_in_group (isec);
6581 elf_section_data (osec)->group = elf_section_data (isec)->group;
6582 }
6583 }
6584
6585 ihdr = &elf_section_data (isec)->this_hdr;
6586
6587 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6588 don't use the output section of the linked-to section since it
6589 may be NULL at this point. */
6590 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6591 {
6592 ohdr = &elf_section_data (osec)->this_hdr;
6593 ohdr->sh_flags |= SHF_LINK_ORDER;
6594 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6595 }
6596
6597 osec->use_rela_p = isec->use_rela_p;
6598
6599 return TRUE;
6600 }
6601
6602 /* Copy private section information. This copies over the entsize
6603 field, and sometimes the info field. */
6604
6605 bfd_boolean
6606 _bfd_elf_copy_private_section_data (bfd *ibfd,
6607 asection *isec,
6608 bfd *obfd,
6609 asection *osec)
6610 {
6611 Elf_Internal_Shdr *ihdr, *ohdr;
6612
6613 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6614 || obfd->xvec->flavour != bfd_target_elf_flavour)
6615 return TRUE;
6616
6617 ihdr = &elf_section_data (isec)->this_hdr;
6618 ohdr = &elf_section_data (osec)->this_hdr;
6619
6620 ohdr->sh_entsize = ihdr->sh_entsize;
6621
6622 if (ihdr->sh_type == SHT_SYMTAB
6623 || ihdr->sh_type == SHT_DYNSYM
6624 || ihdr->sh_type == SHT_GNU_verneed
6625 || ihdr->sh_type == SHT_GNU_verdef)
6626 ohdr->sh_info = ihdr->sh_info;
6627
6628 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6629 NULL);
6630 }
6631
6632 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6633 necessary if we are removing either the SHT_GROUP section or any of
6634 the group member sections. DISCARDED is the value that a section's
6635 output_section has if the section will be discarded, NULL when this
6636 function is called from objcopy, bfd_abs_section_ptr when called
6637 from the linker. */
6638
6639 bfd_boolean
6640 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6641 {
6642 asection *isec;
6643
6644 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6645 if (elf_section_type (isec) == SHT_GROUP)
6646 {
6647 asection *first = elf_next_in_group (isec);
6648 asection *s = first;
6649 bfd_size_type removed = 0;
6650
6651 while (s != NULL)
6652 {
6653 /* If this member section is being output but the
6654 SHT_GROUP section is not, then clear the group info
6655 set up by _bfd_elf_copy_private_section_data. */
6656 if (s->output_section != discarded
6657 && isec->output_section == discarded)
6658 {
6659 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6660 elf_group_name (s->output_section) = NULL;
6661 }
6662 /* Conversely, if the member section is not being output
6663 but the SHT_GROUP section is, then adjust its size. */
6664 else if (s->output_section == discarded
6665 && isec->output_section != discarded)
6666 removed += 4;
6667 s = elf_next_in_group (s);
6668 if (s == first)
6669 break;
6670 }
6671 if (removed != 0)
6672 {
6673 if (discarded != NULL)
6674 {
6675 /* If we've been called for ld -r, then we need to
6676 adjust the input section size. This function may
6677 be called multiple times, so save the original
6678 size. */
6679 if (isec->rawsize == 0)
6680 isec->rawsize = isec->size;
6681 isec->size = isec->rawsize - removed;
6682 }
6683 else
6684 {
6685 /* Adjust the output section size when called from
6686 objcopy. */
6687 isec->output_section->size -= removed;
6688 }
6689 }
6690 }
6691
6692 return TRUE;
6693 }
6694
6695 /* Copy private header information. */
6696
6697 bfd_boolean
6698 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6699 {
6700 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6701 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6702 return TRUE;
6703
6704 /* Copy over private BFD data if it has not already been copied.
6705 This must be done here, rather than in the copy_private_bfd_data
6706 entry point, because the latter is called after the section
6707 contents have been set, which means that the program headers have
6708 already been worked out. */
6709 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
6710 {
6711 if (! copy_private_bfd_data (ibfd, obfd))
6712 return FALSE;
6713 }
6714
6715 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6716 }
6717
6718 /* Copy private symbol information. If this symbol is in a section
6719 which we did not map into a BFD section, try to map the section
6720 index correctly. We use special macro definitions for the mapped
6721 section indices; these definitions are interpreted by the
6722 swap_out_syms function. */
6723
6724 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6725 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6726 #define MAP_STRTAB (SHN_HIOS + 3)
6727 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6728 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6729
6730 bfd_boolean
6731 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6732 asymbol *isymarg,
6733 bfd *obfd,
6734 asymbol *osymarg)
6735 {
6736 elf_symbol_type *isym, *osym;
6737
6738 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6739 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6740 return TRUE;
6741
6742 isym = elf_symbol_from (ibfd, isymarg);
6743 osym = elf_symbol_from (obfd, osymarg);
6744
6745 if (isym != NULL
6746 && isym->internal_elf_sym.st_shndx != 0
6747 && osym != NULL
6748 && bfd_is_abs_section (isym->symbol.section))
6749 {
6750 unsigned int shndx;
6751
6752 shndx = isym->internal_elf_sym.st_shndx;
6753 if (shndx == elf_onesymtab (ibfd))
6754 shndx = MAP_ONESYMTAB;
6755 else if (shndx == elf_dynsymtab (ibfd))
6756 shndx = MAP_DYNSYMTAB;
6757 else if (shndx == elf_strtab_sec (ibfd))
6758 shndx = MAP_STRTAB;
6759 else if (shndx == elf_shstrtab_sec (ibfd))
6760 shndx = MAP_SHSTRTAB;
6761 else if (shndx == elf_symtab_shndx (ibfd))
6762 shndx = MAP_SYM_SHNDX;
6763 osym->internal_elf_sym.st_shndx = shndx;
6764 }
6765
6766 return TRUE;
6767 }
6768
6769 /* Swap out the symbols. */
6770
6771 static bfd_boolean
6772 swap_out_syms (bfd *abfd,
6773 struct bfd_strtab_hash **sttp,
6774 int relocatable_p)
6775 {
6776 const struct elf_backend_data *bed;
6777 int symcount;
6778 asymbol **syms;
6779 struct bfd_strtab_hash *stt;
6780 Elf_Internal_Shdr *symtab_hdr;
6781 Elf_Internal_Shdr *symtab_shndx_hdr;
6782 Elf_Internal_Shdr *symstrtab_hdr;
6783 bfd_byte *outbound_syms;
6784 bfd_byte *outbound_shndx;
6785 int idx;
6786 unsigned int num_locals;
6787 bfd_size_type amt;
6788 bfd_boolean name_local_sections;
6789
6790 if (!elf_map_symbols (abfd, &num_locals))
6791 return FALSE;
6792
6793 /* Dump out the symtabs. */
6794 stt = _bfd_elf_stringtab_init ();
6795 if (stt == NULL)
6796 return FALSE;
6797
6798 bed = get_elf_backend_data (abfd);
6799 symcount = bfd_get_symcount (abfd);
6800 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6801 symtab_hdr->sh_type = SHT_SYMTAB;
6802 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6803 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6804 symtab_hdr->sh_info = num_locals + 1;
6805 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6806
6807 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6808 symstrtab_hdr->sh_type = SHT_STRTAB;
6809
6810 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6811 bed->s->sizeof_sym);
6812 if (outbound_syms == NULL)
6813 {
6814 _bfd_stringtab_free (stt);
6815 return FALSE;
6816 }
6817 symtab_hdr->contents = outbound_syms;
6818
6819 outbound_shndx = NULL;
6820 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6821 if (symtab_shndx_hdr->sh_name != 0)
6822 {
6823 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6824 outbound_shndx = (bfd_byte *)
6825 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6826 if (outbound_shndx == NULL)
6827 {
6828 _bfd_stringtab_free (stt);
6829 return FALSE;
6830 }
6831
6832 symtab_shndx_hdr->contents = outbound_shndx;
6833 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6834 symtab_shndx_hdr->sh_size = amt;
6835 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6836 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6837 }
6838
6839 /* Now generate the data (for "contents"). */
6840 {
6841 /* Fill in zeroth symbol and swap it out. */
6842 Elf_Internal_Sym sym;
6843 sym.st_name = 0;
6844 sym.st_value = 0;
6845 sym.st_size = 0;
6846 sym.st_info = 0;
6847 sym.st_other = 0;
6848 sym.st_shndx = SHN_UNDEF;
6849 sym.st_target_internal = 0;
6850 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6851 outbound_syms += bed->s->sizeof_sym;
6852 if (outbound_shndx != NULL)
6853 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6854 }
6855
6856 name_local_sections
6857 = (bed->elf_backend_name_local_section_symbols
6858 && bed->elf_backend_name_local_section_symbols (abfd));
6859
6860 syms = bfd_get_outsymbols (abfd);
6861 for (idx = 0; idx < symcount; idx++)
6862 {
6863 Elf_Internal_Sym sym;
6864 bfd_vma value = syms[idx]->value;
6865 elf_symbol_type *type_ptr;
6866 flagword flags = syms[idx]->flags;
6867 int type;
6868
6869 if (!name_local_sections
6870 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6871 {
6872 /* Local section symbols have no name. */
6873 sym.st_name = 0;
6874 }
6875 else
6876 {
6877 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6878 syms[idx]->name,
6879 TRUE, FALSE);
6880 if (sym.st_name == (unsigned long) -1)
6881 {
6882 _bfd_stringtab_free (stt);
6883 return FALSE;
6884 }
6885 }
6886
6887 type_ptr = elf_symbol_from (abfd, syms[idx]);
6888
6889 if ((flags & BSF_SECTION_SYM) == 0
6890 && bfd_is_com_section (syms[idx]->section))
6891 {
6892 /* ELF common symbols put the alignment into the `value' field,
6893 and the size into the `size' field. This is backwards from
6894 how BFD handles it, so reverse it here. */
6895 sym.st_size = value;
6896 if (type_ptr == NULL
6897 || type_ptr->internal_elf_sym.st_value == 0)
6898 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6899 else
6900 sym.st_value = type_ptr->internal_elf_sym.st_value;
6901 sym.st_shndx = _bfd_elf_section_from_bfd_section
6902 (abfd, syms[idx]->section);
6903 }
6904 else
6905 {
6906 asection *sec = syms[idx]->section;
6907 unsigned int shndx;
6908
6909 if (sec->output_section)
6910 {
6911 value += sec->output_offset;
6912 sec = sec->output_section;
6913 }
6914
6915 /* Don't add in the section vma for relocatable output. */
6916 if (! relocatable_p)
6917 value += sec->vma;
6918 sym.st_value = value;
6919 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6920
6921 if (bfd_is_abs_section (sec)
6922 && type_ptr != NULL
6923 && type_ptr->internal_elf_sym.st_shndx != 0)
6924 {
6925 /* This symbol is in a real ELF section which we did
6926 not create as a BFD section. Undo the mapping done
6927 by copy_private_symbol_data. */
6928 shndx = type_ptr->internal_elf_sym.st_shndx;
6929 switch (shndx)
6930 {
6931 case MAP_ONESYMTAB:
6932 shndx = elf_onesymtab (abfd);
6933 break;
6934 case MAP_DYNSYMTAB:
6935 shndx = elf_dynsymtab (abfd);
6936 break;
6937 case MAP_STRTAB:
6938 shndx = elf_strtab_sec (abfd);
6939 break;
6940 case MAP_SHSTRTAB:
6941 shndx = elf_shstrtab_sec (abfd);
6942 break;
6943 case MAP_SYM_SHNDX:
6944 shndx = elf_symtab_shndx (abfd);
6945 break;
6946 default:
6947 shndx = SHN_ABS;
6948 break;
6949 }
6950 }
6951 else
6952 {
6953 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6954
6955 if (shndx == SHN_BAD)
6956 {
6957 asection *sec2;
6958
6959 /* Writing this would be a hell of a lot easier if
6960 we had some decent documentation on bfd, and
6961 knew what to expect of the library, and what to
6962 demand of applications. For example, it
6963 appears that `objcopy' might not set the
6964 section of a symbol to be a section that is
6965 actually in the output file. */
6966 sec2 = bfd_get_section_by_name (abfd, sec->name);
6967 if (sec2 == NULL)
6968 {
6969 _bfd_error_handler (_("\
6970 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6971 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6972 sec->name);
6973 bfd_set_error (bfd_error_invalid_operation);
6974 _bfd_stringtab_free (stt);
6975 return FALSE;
6976 }
6977
6978 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6979 BFD_ASSERT (shndx != SHN_BAD);
6980 }
6981 }
6982
6983 sym.st_shndx = shndx;
6984 }
6985
6986 if ((flags & BSF_THREAD_LOCAL) != 0)
6987 type = STT_TLS;
6988 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6989 type = STT_GNU_IFUNC;
6990 else if ((flags & BSF_FUNCTION) != 0)
6991 type = STT_FUNC;
6992 else if ((flags & BSF_OBJECT) != 0)
6993 type = STT_OBJECT;
6994 else if ((flags & BSF_RELC) != 0)
6995 type = STT_RELC;
6996 else if ((flags & BSF_SRELC) != 0)
6997 type = STT_SRELC;
6998 else
6999 type = STT_NOTYPE;
7000
7001 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7002 type = STT_TLS;
7003
7004 /* Processor-specific types. */
7005 if (type_ptr != NULL
7006 && bed->elf_backend_get_symbol_type)
7007 type = ((*bed->elf_backend_get_symbol_type)
7008 (&type_ptr->internal_elf_sym, type));
7009
7010 if (flags & BSF_SECTION_SYM)
7011 {
7012 if (flags & BSF_GLOBAL)
7013 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7014 else
7015 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7016 }
7017 else if (bfd_is_com_section (syms[idx]->section))
7018 {
7019 #ifdef USE_STT_COMMON
7020 if (type == STT_OBJECT)
7021 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
7022 else
7023 #endif
7024 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7025 }
7026 else if (bfd_is_und_section (syms[idx]->section))
7027 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7028 ? STB_WEAK
7029 : STB_GLOBAL),
7030 type);
7031 else if (flags & BSF_FILE)
7032 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7033 else
7034 {
7035 int bind = STB_LOCAL;
7036
7037 if (flags & BSF_LOCAL)
7038 bind = STB_LOCAL;
7039 else if (flags & BSF_GNU_UNIQUE)
7040 bind = STB_GNU_UNIQUE;
7041 else if (flags & BSF_WEAK)
7042 bind = STB_WEAK;
7043 else if (flags & BSF_GLOBAL)
7044 bind = STB_GLOBAL;
7045
7046 sym.st_info = ELF_ST_INFO (bind, type);
7047 }
7048
7049 if (type_ptr != NULL)
7050 {
7051 sym.st_other = type_ptr->internal_elf_sym.st_other;
7052 sym.st_target_internal
7053 = type_ptr->internal_elf_sym.st_target_internal;
7054 }
7055 else
7056 {
7057 sym.st_other = 0;
7058 sym.st_target_internal = 0;
7059 }
7060
7061 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
7062 outbound_syms += bed->s->sizeof_sym;
7063 if (outbound_shndx != NULL)
7064 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
7065 }
7066
7067 *sttp = stt;
7068 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
7069 symstrtab_hdr->sh_type = SHT_STRTAB;
7070
7071 symstrtab_hdr->sh_flags = 0;
7072 symstrtab_hdr->sh_addr = 0;
7073 symstrtab_hdr->sh_entsize = 0;
7074 symstrtab_hdr->sh_link = 0;
7075 symstrtab_hdr->sh_info = 0;
7076 symstrtab_hdr->sh_addralign = 1;
7077
7078 return TRUE;
7079 }
7080
7081 /* Return the number of bytes required to hold the symtab vector.
7082
7083 Note that we base it on the count plus 1, since we will null terminate
7084 the vector allocated based on this size. However, the ELF symbol table
7085 always has a dummy entry as symbol #0, so it ends up even. */
7086
7087 long
7088 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7089 {
7090 long symcount;
7091 long symtab_size;
7092 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7093
7094 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7095 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7096 if (symcount > 0)
7097 symtab_size -= sizeof (asymbol *);
7098
7099 return symtab_size;
7100 }
7101
7102 long
7103 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7104 {
7105 long symcount;
7106 long symtab_size;
7107 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7108
7109 if (elf_dynsymtab (abfd) == 0)
7110 {
7111 bfd_set_error (bfd_error_invalid_operation);
7112 return -1;
7113 }
7114
7115 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7116 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7117 if (symcount > 0)
7118 symtab_size -= sizeof (asymbol *);
7119
7120 return symtab_size;
7121 }
7122
7123 long
7124 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7125 sec_ptr asect)
7126 {
7127 return (asect->reloc_count + 1) * sizeof (arelent *);
7128 }
7129
7130 /* Canonicalize the relocs. */
7131
7132 long
7133 _bfd_elf_canonicalize_reloc (bfd *abfd,
7134 sec_ptr section,
7135 arelent **relptr,
7136 asymbol **symbols)
7137 {
7138 arelent *tblptr;
7139 unsigned int i;
7140 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7141
7142 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7143 return -1;
7144
7145 tblptr = section->relocation;
7146 for (i = 0; i < section->reloc_count; i++)
7147 *relptr++ = tblptr++;
7148
7149 *relptr = NULL;
7150
7151 return section->reloc_count;
7152 }
7153
7154 long
7155 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7156 {
7157 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7158 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7159
7160 if (symcount >= 0)
7161 bfd_get_symcount (abfd) = symcount;
7162 return symcount;
7163 }
7164
7165 long
7166 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7167 asymbol **allocation)
7168 {
7169 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7170 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7171
7172 if (symcount >= 0)
7173 bfd_get_dynamic_symcount (abfd) = symcount;
7174 return symcount;
7175 }
7176
7177 /* Return the size required for the dynamic reloc entries. Any loadable
7178 section that was actually installed in the BFD, and has type SHT_REL
7179 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7180 dynamic reloc section. */
7181
7182 long
7183 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7184 {
7185 long ret;
7186 asection *s;
7187
7188 if (elf_dynsymtab (abfd) == 0)
7189 {
7190 bfd_set_error (bfd_error_invalid_operation);
7191 return -1;
7192 }
7193
7194 ret = sizeof (arelent *);
7195 for (s = abfd->sections; s != NULL; s = s->next)
7196 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7197 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7198 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7199 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7200 * sizeof (arelent *));
7201
7202 return ret;
7203 }
7204
7205 /* Canonicalize the dynamic relocation entries. Note that we return the
7206 dynamic relocations as a single block, although they are actually
7207 associated with particular sections; the interface, which was
7208 designed for SunOS style shared libraries, expects that there is only
7209 one set of dynamic relocs. Any loadable section that was actually
7210 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7211 dynamic symbol table, is considered to be a dynamic reloc section. */
7212
7213 long
7214 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7215 arelent **storage,
7216 asymbol **syms)
7217 {
7218 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7219 asection *s;
7220 long ret;
7221
7222 if (elf_dynsymtab (abfd) == 0)
7223 {
7224 bfd_set_error (bfd_error_invalid_operation);
7225 return -1;
7226 }
7227
7228 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7229 ret = 0;
7230 for (s = abfd->sections; s != NULL; s = s->next)
7231 {
7232 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7233 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7234 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7235 {
7236 arelent *p;
7237 long count, i;
7238
7239 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7240 return -1;
7241 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7242 p = s->relocation;
7243 for (i = 0; i < count; i++)
7244 *storage++ = p++;
7245 ret += count;
7246 }
7247 }
7248
7249 *storage = NULL;
7250
7251 return ret;
7252 }
7253 \f
7254 /* Read in the version information. */
7255
7256 bfd_boolean
7257 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7258 {
7259 bfd_byte *contents = NULL;
7260 unsigned int freeidx = 0;
7261
7262 if (elf_dynverref (abfd) != 0)
7263 {
7264 Elf_Internal_Shdr *hdr;
7265 Elf_External_Verneed *everneed;
7266 Elf_Internal_Verneed *iverneed;
7267 unsigned int i;
7268 bfd_byte *contents_end;
7269
7270 hdr = &elf_tdata (abfd)->dynverref_hdr;
7271
7272 if (hdr->sh_info)
7273 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7274 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7275 else
7276 elf_tdata (abfd)->verref = NULL;
7277
7278 if (elf_tdata (abfd)->verref == NULL)
7279 goto error_return;
7280
7281 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7282
7283 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7284 if (contents == NULL)
7285 {
7286 error_return_verref:
7287 elf_tdata (abfd)->verref = NULL;
7288 elf_tdata (abfd)->cverrefs = 0;
7289 goto error_return;
7290 }
7291 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7292 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7293 goto error_return_verref;
7294
7295 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7296 goto error_return_verref;
7297
7298 BFD_ASSERT (sizeof (Elf_External_Verneed)
7299 == sizeof (Elf_External_Vernaux));
7300 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7301 everneed = (Elf_External_Verneed *) contents;
7302 iverneed = elf_tdata (abfd)->verref;
7303 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7304 {
7305 Elf_External_Vernaux *evernaux;
7306 Elf_Internal_Vernaux *ivernaux;
7307 unsigned int j;
7308
7309 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7310
7311 iverneed->vn_bfd = abfd;
7312
7313 iverneed->vn_filename =
7314 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7315 iverneed->vn_file);
7316 if (iverneed->vn_filename == NULL)
7317 goto error_return_verref;
7318
7319 if (iverneed->vn_cnt == 0)
7320 iverneed->vn_auxptr = NULL;
7321 else
7322 {
7323 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7324 bfd_alloc2 (abfd, iverneed->vn_cnt,
7325 sizeof (Elf_Internal_Vernaux));
7326 if (iverneed->vn_auxptr == NULL)
7327 goto error_return_verref;
7328 }
7329
7330 if (iverneed->vn_aux
7331 > (size_t) (contents_end - (bfd_byte *) everneed))
7332 goto error_return_verref;
7333
7334 evernaux = ((Elf_External_Vernaux *)
7335 ((bfd_byte *) everneed + iverneed->vn_aux));
7336 ivernaux = iverneed->vn_auxptr;
7337 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7338 {
7339 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7340
7341 ivernaux->vna_nodename =
7342 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7343 ivernaux->vna_name);
7344 if (ivernaux->vna_nodename == NULL)
7345 goto error_return_verref;
7346
7347 if (j + 1 < iverneed->vn_cnt)
7348 ivernaux->vna_nextptr = ivernaux + 1;
7349 else
7350 ivernaux->vna_nextptr = NULL;
7351
7352 if (ivernaux->vna_next
7353 > (size_t) (contents_end - (bfd_byte *) evernaux))
7354 goto error_return_verref;
7355
7356 evernaux = ((Elf_External_Vernaux *)
7357 ((bfd_byte *) evernaux + ivernaux->vna_next));
7358
7359 if (ivernaux->vna_other > freeidx)
7360 freeidx = ivernaux->vna_other;
7361 }
7362
7363 if (i + 1 < hdr->sh_info)
7364 iverneed->vn_nextref = iverneed + 1;
7365 else
7366 iverneed->vn_nextref = NULL;
7367
7368 if (iverneed->vn_next
7369 > (size_t) (contents_end - (bfd_byte *) everneed))
7370 goto error_return_verref;
7371
7372 everneed = ((Elf_External_Verneed *)
7373 ((bfd_byte *) everneed + iverneed->vn_next));
7374 }
7375
7376 free (contents);
7377 contents = NULL;
7378 }
7379
7380 if (elf_dynverdef (abfd) != 0)
7381 {
7382 Elf_Internal_Shdr *hdr;
7383 Elf_External_Verdef *everdef;
7384 Elf_Internal_Verdef *iverdef;
7385 Elf_Internal_Verdef *iverdefarr;
7386 Elf_Internal_Verdef iverdefmem;
7387 unsigned int i;
7388 unsigned int maxidx;
7389 bfd_byte *contents_end_def, *contents_end_aux;
7390
7391 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7392
7393 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7394 if (contents == NULL)
7395 goto error_return;
7396 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7397 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7398 goto error_return;
7399
7400 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7401 goto error_return;
7402
7403 BFD_ASSERT (sizeof (Elf_External_Verdef)
7404 >= sizeof (Elf_External_Verdaux));
7405 contents_end_def = contents + hdr->sh_size
7406 - sizeof (Elf_External_Verdef);
7407 contents_end_aux = contents + hdr->sh_size
7408 - sizeof (Elf_External_Verdaux);
7409
7410 /* We know the number of entries in the section but not the maximum
7411 index. Therefore we have to run through all entries and find
7412 the maximum. */
7413 everdef = (Elf_External_Verdef *) contents;
7414 maxidx = 0;
7415 for (i = 0; i < hdr->sh_info; ++i)
7416 {
7417 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7418
7419 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7420 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7421
7422 if (iverdefmem.vd_next
7423 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7424 goto error_return;
7425
7426 everdef = ((Elf_External_Verdef *)
7427 ((bfd_byte *) everdef + iverdefmem.vd_next));
7428 }
7429
7430 if (default_imported_symver)
7431 {
7432 if (freeidx > maxidx)
7433 maxidx = ++freeidx;
7434 else
7435 freeidx = ++maxidx;
7436 }
7437 if (maxidx)
7438 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7439 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7440 else
7441 elf_tdata (abfd)->verdef = NULL;
7442
7443 if (elf_tdata (abfd)->verdef == NULL)
7444 goto error_return;
7445
7446 elf_tdata (abfd)->cverdefs = maxidx;
7447
7448 everdef = (Elf_External_Verdef *) contents;
7449 iverdefarr = elf_tdata (abfd)->verdef;
7450 for (i = 0; i < hdr->sh_info; i++)
7451 {
7452 Elf_External_Verdaux *everdaux;
7453 Elf_Internal_Verdaux *iverdaux;
7454 unsigned int j;
7455
7456 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7457
7458 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7459 {
7460 error_return_verdef:
7461 elf_tdata (abfd)->verdef = NULL;
7462 elf_tdata (abfd)->cverdefs = 0;
7463 goto error_return;
7464 }
7465
7466 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7467 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7468
7469 iverdef->vd_bfd = abfd;
7470
7471 if (iverdef->vd_cnt == 0)
7472 iverdef->vd_auxptr = NULL;
7473 else
7474 {
7475 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7476 bfd_alloc2 (abfd, iverdef->vd_cnt,
7477 sizeof (Elf_Internal_Verdaux));
7478 if (iverdef->vd_auxptr == NULL)
7479 goto error_return_verdef;
7480 }
7481
7482 if (iverdef->vd_aux
7483 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7484 goto error_return_verdef;
7485
7486 everdaux = ((Elf_External_Verdaux *)
7487 ((bfd_byte *) everdef + iverdef->vd_aux));
7488 iverdaux = iverdef->vd_auxptr;
7489 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7490 {
7491 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7492
7493 iverdaux->vda_nodename =
7494 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7495 iverdaux->vda_name);
7496 if (iverdaux->vda_nodename == NULL)
7497 goto error_return_verdef;
7498
7499 if (j + 1 < iverdef->vd_cnt)
7500 iverdaux->vda_nextptr = iverdaux + 1;
7501 else
7502 iverdaux->vda_nextptr = NULL;
7503
7504 if (iverdaux->vda_next
7505 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7506 goto error_return_verdef;
7507
7508 everdaux = ((Elf_External_Verdaux *)
7509 ((bfd_byte *) everdaux + iverdaux->vda_next));
7510 }
7511
7512 if (iverdef->vd_cnt)
7513 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7514
7515 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7516 iverdef->vd_nextdef = iverdef + 1;
7517 else
7518 iverdef->vd_nextdef = NULL;
7519
7520 everdef = ((Elf_External_Verdef *)
7521 ((bfd_byte *) everdef + iverdef->vd_next));
7522 }
7523
7524 free (contents);
7525 contents = NULL;
7526 }
7527 else if (default_imported_symver)
7528 {
7529 if (freeidx < 3)
7530 freeidx = 3;
7531 else
7532 freeidx++;
7533
7534 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7535 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7536 if (elf_tdata (abfd)->verdef == NULL)
7537 goto error_return;
7538
7539 elf_tdata (abfd)->cverdefs = freeidx;
7540 }
7541
7542 /* Create a default version based on the soname. */
7543 if (default_imported_symver)
7544 {
7545 Elf_Internal_Verdef *iverdef;
7546 Elf_Internal_Verdaux *iverdaux;
7547
7548 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7549
7550 iverdef->vd_version = VER_DEF_CURRENT;
7551 iverdef->vd_flags = 0;
7552 iverdef->vd_ndx = freeidx;
7553 iverdef->vd_cnt = 1;
7554
7555 iverdef->vd_bfd = abfd;
7556
7557 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7558 if (iverdef->vd_nodename == NULL)
7559 goto error_return_verdef;
7560 iverdef->vd_nextdef = NULL;
7561 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7562 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7563 if (iverdef->vd_auxptr == NULL)
7564 goto error_return_verdef;
7565
7566 iverdaux = iverdef->vd_auxptr;
7567 iverdaux->vda_nodename = iverdef->vd_nodename;
7568 iverdaux->vda_nextptr = NULL;
7569 }
7570
7571 return TRUE;
7572
7573 error_return:
7574 if (contents != NULL)
7575 free (contents);
7576 return FALSE;
7577 }
7578 \f
7579 asymbol *
7580 _bfd_elf_make_empty_symbol (bfd *abfd)
7581 {
7582 elf_symbol_type *newsym;
7583
7584 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
7585 if (!newsym)
7586 return NULL;
7587 newsym->symbol.the_bfd = abfd;
7588 return &newsym->symbol;
7589 }
7590
7591 void
7592 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7593 asymbol *symbol,
7594 symbol_info *ret)
7595 {
7596 bfd_symbol_info (symbol, ret);
7597 }
7598
7599 /* Return whether a symbol name implies a local symbol. Most targets
7600 use this function for the is_local_label_name entry point, but some
7601 override it. */
7602
7603 bfd_boolean
7604 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7605 const char *name)
7606 {
7607 /* Normal local symbols start with ``.L''. */
7608 if (name[0] == '.' && name[1] == 'L')
7609 return TRUE;
7610
7611 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7612 DWARF debugging symbols starting with ``..''. */
7613 if (name[0] == '.' && name[1] == '.')
7614 return TRUE;
7615
7616 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7617 emitting DWARF debugging output. I suspect this is actually a
7618 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7619 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7620 underscore to be emitted on some ELF targets). For ease of use,
7621 we treat such symbols as local. */
7622 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7623 return TRUE;
7624
7625 return FALSE;
7626 }
7627
7628 alent *
7629 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7630 asymbol *symbol ATTRIBUTE_UNUSED)
7631 {
7632 abort ();
7633 return NULL;
7634 }
7635
7636 bfd_boolean
7637 _bfd_elf_set_arch_mach (bfd *abfd,
7638 enum bfd_architecture arch,
7639 unsigned long machine)
7640 {
7641 /* If this isn't the right architecture for this backend, and this
7642 isn't the generic backend, fail. */
7643 if (arch != get_elf_backend_data (abfd)->arch
7644 && arch != bfd_arch_unknown
7645 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7646 return FALSE;
7647
7648 return bfd_default_set_arch_mach (abfd, arch, machine);
7649 }
7650
7651 /* Find the function to a particular section and offset,
7652 for error reporting. */
7653
7654 static bfd_boolean
7655 elf_find_function (bfd *abfd,
7656 asymbol **symbols,
7657 asection *section,
7658 bfd_vma offset,
7659 const char **filename_ptr,
7660 const char **functionname_ptr)
7661 {
7662 struct elf_find_function_cache
7663 {
7664 asection *last_section;
7665 asymbol *func;
7666 const char *filename;
7667 bfd_size_type func_size;
7668 } *cache;
7669
7670 if (symbols == NULL)
7671 return FALSE;
7672
7673 cache = elf_tdata (abfd)->elf_find_function_cache;
7674 if (cache == NULL)
7675 {
7676 cache = bfd_zalloc (abfd, sizeof (*cache));
7677 elf_tdata (abfd)->elf_find_function_cache = cache;
7678 if (cache == NULL)
7679 return FALSE;
7680 }
7681 if (cache->last_section != section
7682 || cache->func == NULL
7683 || offset < cache->func->value
7684 || offset >= cache->func->value + cache->func_size)
7685 {
7686 asymbol *file;
7687 bfd_vma low_func;
7688 asymbol **p;
7689 /* ??? Given multiple file symbols, it is impossible to reliably
7690 choose the right file name for global symbols. File symbols are
7691 local symbols, and thus all file symbols must sort before any
7692 global symbols. The ELF spec may be interpreted to say that a
7693 file symbol must sort before other local symbols, but currently
7694 ld -r doesn't do this. So, for ld -r output, it is possible to
7695 make a better choice of file name for local symbols by ignoring
7696 file symbols appearing after a given local symbol. */
7697 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7698 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7699
7700 file = NULL;
7701 low_func = 0;
7702 state = nothing_seen;
7703 cache->filename = NULL;
7704 cache->func = NULL;
7705 cache->func_size = 0;
7706 cache->last_section = section;
7707
7708 for (p = symbols; *p != NULL; p++)
7709 {
7710 asymbol *sym = *p;
7711 bfd_vma code_off;
7712 bfd_size_type size;
7713
7714 if ((sym->flags & BSF_FILE) != 0)
7715 {
7716 file = sym;
7717 if (state == symbol_seen)
7718 state = file_after_symbol_seen;
7719 continue;
7720 }
7721
7722 size = bed->maybe_function_sym (sym, section, &code_off);
7723 if (size != 0
7724 && code_off <= offset
7725 && (code_off > low_func
7726 || (code_off == low_func
7727 && size > cache->func_size)))
7728 {
7729 cache->func = sym;
7730 cache->func_size = size;
7731 cache->filename = NULL;
7732 low_func = code_off;
7733 if (file != NULL
7734 && ((sym->flags & BSF_LOCAL) != 0
7735 || state != file_after_symbol_seen))
7736 cache->filename = bfd_asymbol_name (file);
7737 }
7738 if (state == nothing_seen)
7739 state = symbol_seen;
7740 }
7741 }
7742
7743 if (cache->func == NULL)
7744 return FALSE;
7745
7746 if (filename_ptr)
7747 *filename_ptr = cache->filename;
7748 if (functionname_ptr)
7749 *functionname_ptr = bfd_asymbol_name (cache->func);
7750
7751 return TRUE;
7752 }
7753
7754 /* Find the nearest line to a particular section and offset,
7755 for error reporting. */
7756
7757 bfd_boolean
7758 _bfd_elf_find_nearest_line (bfd *abfd,
7759 asymbol **symbols,
7760 asection *section,
7761 bfd_vma offset,
7762 const char **filename_ptr,
7763 const char **functionname_ptr,
7764 unsigned int *line_ptr,
7765 unsigned int *discriminator_ptr)
7766 {
7767 bfd_boolean found;
7768
7769 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7770 filename_ptr, functionname_ptr,
7771 line_ptr, discriminator_ptr,
7772 dwarf_debug_sections, 0,
7773 &elf_tdata (abfd)->dwarf2_find_line_info))
7774 {
7775 if (!*functionname_ptr)
7776 elf_find_function (abfd, symbols, section, offset,
7777 *filename_ptr ? NULL : filename_ptr,
7778 functionname_ptr);
7779
7780 return TRUE;
7781 }
7782
7783 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
7784 filename_ptr, functionname_ptr, line_ptr))
7785 {
7786 if (!*functionname_ptr)
7787 elf_find_function (abfd, symbols, section, offset,
7788 *filename_ptr ? NULL : filename_ptr,
7789 functionname_ptr);
7790
7791 return TRUE;
7792 }
7793
7794 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7795 &found, filename_ptr,
7796 functionname_ptr, line_ptr,
7797 &elf_tdata (abfd)->line_info))
7798 return FALSE;
7799 if (found && (*functionname_ptr || *line_ptr))
7800 return TRUE;
7801
7802 if (symbols == NULL)
7803 return FALSE;
7804
7805 if (! elf_find_function (abfd, symbols, section, offset,
7806 filename_ptr, functionname_ptr))
7807 return FALSE;
7808
7809 *line_ptr = 0;
7810 return TRUE;
7811 }
7812
7813 /* Find the line for a symbol. */
7814
7815 bfd_boolean
7816 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7817 const char **filename_ptr, unsigned int *line_ptr)
7818 {
7819 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
7820 filename_ptr, NULL, line_ptr, NULL,
7821 dwarf_debug_sections, 0,
7822 &elf_tdata (abfd)->dwarf2_find_line_info);
7823 }
7824
7825 /* After a call to bfd_find_nearest_line, successive calls to
7826 bfd_find_inliner_info can be used to get source information about
7827 each level of function inlining that terminated at the address
7828 passed to bfd_find_nearest_line. Currently this is only supported
7829 for DWARF2 with appropriate DWARF3 extensions. */
7830
7831 bfd_boolean
7832 _bfd_elf_find_inliner_info (bfd *abfd,
7833 const char **filename_ptr,
7834 const char **functionname_ptr,
7835 unsigned int *line_ptr)
7836 {
7837 bfd_boolean found;
7838 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7839 functionname_ptr, line_ptr,
7840 & elf_tdata (abfd)->dwarf2_find_line_info);
7841 return found;
7842 }
7843
7844 int
7845 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7846 {
7847 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7848 int ret = bed->s->sizeof_ehdr;
7849
7850 if (!info->relocatable)
7851 {
7852 bfd_size_type phdr_size = elf_program_header_size (abfd);
7853
7854 if (phdr_size == (bfd_size_type) -1)
7855 {
7856 struct elf_segment_map *m;
7857
7858 phdr_size = 0;
7859 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
7860 phdr_size += bed->s->sizeof_phdr;
7861
7862 if (phdr_size == 0)
7863 phdr_size = get_program_header_size (abfd, info);
7864 }
7865
7866 elf_program_header_size (abfd) = phdr_size;
7867 ret += phdr_size;
7868 }
7869
7870 return ret;
7871 }
7872
7873 bfd_boolean
7874 _bfd_elf_set_section_contents (bfd *abfd,
7875 sec_ptr section,
7876 const void *location,
7877 file_ptr offset,
7878 bfd_size_type count)
7879 {
7880 Elf_Internal_Shdr *hdr;
7881 file_ptr pos;
7882
7883 if (! abfd->output_has_begun
7884 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7885 return FALSE;
7886
7887 hdr = &elf_section_data (section)->this_hdr;
7888 pos = hdr->sh_offset + offset;
7889 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7890 || bfd_bwrite (location, count, abfd) != count)
7891 return FALSE;
7892
7893 return TRUE;
7894 }
7895
7896 void
7897 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7898 arelent *cache_ptr ATTRIBUTE_UNUSED,
7899 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7900 {
7901 abort ();
7902 }
7903
7904 /* Try to convert a non-ELF reloc into an ELF one. */
7905
7906 bfd_boolean
7907 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7908 {
7909 /* Check whether we really have an ELF howto. */
7910
7911 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7912 {
7913 bfd_reloc_code_real_type code;
7914 reloc_howto_type *howto;
7915
7916 /* Alien reloc: Try to determine its type to replace it with an
7917 equivalent ELF reloc. */
7918
7919 if (areloc->howto->pc_relative)
7920 {
7921 switch (areloc->howto->bitsize)
7922 {
7923 case 8:
7924 code = BFD_RELOC_8_PCREL;
7925 break;
7926 case 12:
7927 code = BFD_RELOC_12_PCREL;
7928 break;
7929 case 16:
7930 code = BFD_RELOC_16_PCREL;
7931 break;
7932 case 24:
7933 code = BFD_RELOC_24_PCREL;
7934 break;
7935 case 32:
7936 code = BFD_RELOC_32_PCREL;
7937 break;
7938 case 64:
7939 code = BFD_RELOC_64_PCREL;
7940 break;
7941 default:
7942 goto fail;
7943 }
7944
7945 howto = bfd_reloc_type_lookup (abfd, code);
7946
7947 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7948 {
7949 if (howto->pcrel_offset)
7950 areloc->addend += areloc->address;
7951 else
7952 areloc->addend -= areloc->address; /* addend is unsigned!! */
7953 }
7954 }
7955 else
7956 {
7957 switch (areloc->howto->bitsize)
7958 {
7959 case 8:
7960 code = BFD_RELOC_8;
7961 break;
7962 case 14:
7963 code = BFD_RELOC_14;
7964 break;
7965 case 16:
7966 code = BFD_RELOC_16;
7967 break;
7968 case 26:
7969 code = BFD_RELOC_26;
7970 break;
7971 case 32:
7972 code = BFD_RELOC_32;
7973 break;
7974 case 64:
7975 code = BFD_RELOC_64;
7976 break;
7977 default:
7978 goto fail;
7979 }
7980
7981 howto = bfd_reloc_type_lookup (abfd, code);
7982 }
7983
7984 if (howto)
7985 areloc->howto = howto;
7986 else
7987 goto fail;
7988 }
7989
7990 return TRUE;
7991
7992 fail:
7993 (*_bfd_error_handler)
7994 (_("%B: unsupported relocation type %s"),
7995 abfd, areloc->howto->name);
7996 bfd_set_error (bfd_error_bad_value);
7997 return FALSE;
7998 }
7999
8000 bfd_boolean
8001 _bfd_elf_close_and_cleanup (bfd *abfd)
8002 {
8003 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8004 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8005 {
8006 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8007 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8008 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8009 }
8010
8011 return _bfd_generic_close_and_cleanup (abfd);
8012 }
8013
8014 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8015 in the relocation's offset. Thus we cannot allow any sort of sanity
8016 range-checking to interfere. There is nothing else to do in processing
8017 this reloc. */
8018
8019 bfd_reloc_status_type
8020 _bfd_elf_rel_vtable_reloc_fn
8021 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8022 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8023 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8024 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8025 {
8026 return bfd_reloc_ok;
8027 }
8028 \f
8029 /* Elf core file support. Much of this only works on native
8030 toolchains, since we rely on knowing the
8031 machine-dependent procfs structure in order to pick
8032 out details about the corefile. */
8033
8034 #ifdef HAVE_SYS_PROCFS_H
8035 /* Needed for new procfs interface on sparc-solaris. */
8036 # define _STRUCTURED_PROC 1
8037 # include <sys/procfs.h>
8038 #endif
8039
8040 /* Return a PID that identifies a "thread" for threaded cores, or the
8041 PID of the main process for non-threaded cores. */
8042
8043 static int
8044 elfcore_make_pid (bfd *abfd)
8045 {
8046 int pid;
8047
8048 pid = elf_tdata (abfd)->core->lwpid;
8049 if (pid == 0)
8050 pid = elf_tdata (abfd)->core->pid;
8051
8052 return pid;
8053 }
8054
8055 /* If there isn't a section called NAME, make one, using
8056 data from SECT. Note, this function will generate a
8057 reference to NAME, so you shouldn't deallocate or
8058 overwrite it. */
8059
8060 static bfd_boolean
8061 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8062 {
8063 asection *sect2;
8064
8065 if (bfd_get_section_by_name (abfd, name) != NULL)
8066 return TRUE;
8067
8068 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8069 if (sect2 == NULL)
8070 return FALSE;
8071
8072 sect2->size = sect->size;
8073 sect2->filepos = sect->filepos;
8074 sect2->alignment_power = sect->alignment_power;
8075 return TRUE;
8076 }
8077
8078 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8079 actually creates up to two pseudosections:
8080 - For the single-threaded case, a section named NAME, unless
8081 such a section already exists.
8082 - For the multi-threaded case, a section named "NAME/PID", where
8083 PID is elfcore_make_pid (abfd).
8084 Both pseudosections have identical contents. */
8085 bfd_boolean
8086 _bfd_elfcore_make_pseudosection (bfd *abfd,
8087 char *name,
8088 size_t size,
8089 ufile_ptr filepos)
8090 {
8091 char buf[100];
8092 char *threaded_name;
8093 size_t len;
8094 asection *sect;
8095
8096 /* Build the section name. */
8097
8098 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8099 len = strlen (buf) + 1;
8100 threaded_name = (char *) bfd_alloc (abfd, len);
8101 if (threaded_name == NULL)
8102 return FALSE;
8103 memcpy (threaded_name, buf, len);
8104
8105 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8106 SEC_HAS_CONTENTS);
8107 if (sect == NULL)
8108 return FALSE;
8109 sect->size = size;
8110 sect->filepos = filepos;
8111 sect->alignment_power = 2;
8112
8113 return elfcore_maybe_make_sect (abfd, name, sect);
8114 }
8115
8116 /* prstatus_t exists on:
8117 solaris 2.5+
8118 linux 2.[01] + glibc
8119 unixware 4.2
8120 */
8121
8122 #if defined (HAVE_PRSTATUS_T)
8123
8124 static bfd_boolean
8125 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8126 {
8127 size_t size;
8128 int offset;
8129
8130 if (note->descsz == sizeof (prstatus_t))
8131 {
8132 prstatus_t prstat;
8133
8134 size = sizeof (prstat.pr_reg);
8135 offset = offsetof (prstatus_t, pr_reg);
8136 memcpy (&prstat, note->descdata, sizeof (prstat));
8137
8138 /* Do not overwrite the core signal if it
8139 has already been set by another thread. */
8140 if (elf_tdata (abfd)->core->signal == 0)
8141 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8142 if (elf_tdata (abfd)->core->pid == 0)
8143 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8144
8145 /* pr_who exists on:
8146 solaris 2.5+
8147 unixware 4.2
8148 pr_who doesn't exist on:
8149 linux 2.[01]
8150 */
8151 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8152 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8153 #else
8154 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8155 #endif
8156 }
8157 #if defined (HAVE_PRSTATUS32_T)
8158 else if (note->descsz == sizeof (prstatus32_t))
8159 {
8160 /* 64-bit host, 32-bit corefile */
8161 prstatus32_t prstat;
8162
8163 size = sizeof (prstat.pr_reg);
8164 offset = offsetof (prstatus32_t, pr_reg);
8165 memcpy (&prstat, note->descdata, sizeof (prstat));
8166
8167 /* Do not overwrite the core signal if it
8168 has already been set by another thread. */
8169 if (elf_tdata (abfd)->core->signal == 0)
8170 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8171 if (elf_tdata (abfd)->core->pid == 0)
8172 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8173
8174 /* pr_who exists on:
8175 solaris 2.5+
8176 unixware 4.2
8177 pr_who doesn't exist on:
8178 linux 2.[01]
8179 */
8180 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8181 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8182 #else
8183 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8184 #endif
8185 }
8186 #endif /* HAVE_PRSTATUS32_T */
8187 else
8188 {
8189 /* Fail - we don't know how to handle any other
8190 note size (ie. data object type). */
8191 return TRUE;
8192 }
8193
8194 /* Make a ".reg/999" section and a ".reg" section. */
8195 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8196 size, note->descpos + offset);
8197 }
8198 #endif /* defined (HAVE_PRSTATUS_T) */
8199
8200 /* Create a pseudosection containing the exact contents of NOTE. */
8201 static bfd_boolean
8202 elfcore_make_note_pseudosection (bfd *abfd,
8203 char *name,
8204 Elf_Internal_Note *note)
8205 {
8206 return _bfd_elfcore_make_pseudosection (abfd, name,
8207 note->descsz, note->descpos);
8208 }
8209
8210 /* There isn't a consistent prfpregset_t across platforms,
8211 but it doesn't matter, because we don't have to pick this
8212 data structure apart. */
8213
8214 static bfd_boolean
8215 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8216 {
8217 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8218 }
8219
8220 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8221 type of NT_PRXFPREG. Just include the whole note's contents
8222 literally. */
8223
8224 static bfd_boolean
8225 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8226 {
8227 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8228 }
8229
8230 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8231 with a note type of NT_X86_XSTATE. Just include the whole note's
8232 contents literally. */
8233
8234 static bfd_boolean
8235 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8236 {
8237 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8238 }
8239
8240 static bfd_boolean
8241 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8242 {
8243 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8244 }
8245
8246 static bfd_boolean
8247 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8248 {
8249 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8250 }
8251
8252 static bfd_boolean
8253 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8254 {
8255 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8256 }
8257
8258 static bfd_boolean
8259 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8260 {
8261 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8262 }
8263
8264 static bfd_boolean
8265 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8266 {
8267 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8268 }
8269
8270 static bfd_boolean
8271 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8272 {
8273 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8274 }
8275
8276 static bfd_boolean
8277 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8278 {
8279 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8280 }
8281
8282 static bfd_boolean
8283 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8284 {
8285 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8286 }
8287
8288 static bfd_boolean
8289 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8290 {
8291 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8292 }
8293
8294 static bfd_boolean
8295 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8296 {
8297 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8298 }
8299
8300 static bfd_boolean
8301 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8302 {
8303 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8304 }
8305
8306 static bfd_boolean
8307 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8308 {
8309 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8310 }
8311
8312 static bfd_boolean
8313 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8314 {
8315 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8316 }
8317
8318 static bfd_boolean
8319 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8320 {
8321 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8322 }
8323
8324 static bfd_boolean
8325 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8326 {
8327 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8328 }
8329
8330 #if defined (HAVE_PRPSINFO_T)
8331 typedef prpsinfo_t elfcore_psinfo_t;
8332 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8333 typedef prpsinfo32_t elfcore_psinfo32_t;
8334 #endif
8335 #endif
8336
8337 #if defined (HAVE_PSINFO_T)
8338 typedef psinfo_t elfcore_psinfo_t;
8339 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8340 typedef psinfo32_t elfcore_psinfo32_t;
8341 #endif
8342 #endif
8343
8344 /* return a malloc'ed copy of a string at START which is at
8345 most MAX bytes long, possibly without a terminating '\0'.
8346 the copy will always have a terminating '\0'. */
8347
8348 char *
8349 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8350 {
8351 char *dups;
8352 char *end = (char *) memchr (start, '\0', max);
8353 size_t len;
8354
8355 if (end == NULL)
8356 len = max;
8357 else
8358 len = end - start;
8359
8360 dups = (char *) bfd_alloc (abfd, len + 1);
8361 if (dups == NULL)
8362 return NULL;
8363
8364 memcpy (dups, start, len);
8365 dups[len] = '\0';
8366
8367 return dups;
8368 }
8369
8370 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8371 static bfd_boolean
8372 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8373 {
8374 if (note->descsz == sizeof (elfcore_psinfo_t))
8375 {
8376 elfcore_psinfo_t psinfo;
8377
8378 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8379
8380 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8381 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8382 #endif
8383 elf_tdata (abfd)->core->program
8384 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8385 sizeof (psinfo.pr_fname));
8386
8387 elf_tdata (abfd)->core->command
8388 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8389 sizeof (psinfo.pr_psargs));
8390 }
8391 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8392 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8393 {
8394 /* 64-bit host, 32-bit corefile */
8395 elfcore_psinfo32_t psinfo;
8396
8397 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8398
8399 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8400 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8401 #endif
8402 elf_tdata (abfd)->core->program
8403 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8404 sizeof (psinfo.pr_fname));
8405
8406 elf_tdata (abfd)->core->command
8407 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8408 sizeof (psinfo.pr_psargs));
8409 }
8410 #endif
8411
8412 else
8413 {
8414 /* Fail - we don't know how to handle any other
8415 note size (ie. data object type). */
8416 return TRUE;
8417 }
8418
8419 /* Note that for some reason, a spurious space is tacked
8420 onto the end of the args in some (at least one anyway)
8421 implementations, so strip it off if it exists. */
8422
8423 {
8424 char *command = elf_tdata (abfd)->core->command;
8425 int n = strlen (command);
8426
8427 if (0 < n && command[n - 1] == ' ')
8428 command[n - 1] = '\0';
8429 }
8430
8431 return TRUE;
8432 }
8433 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8434
8435 #if defined (HAVE_PSTATUS_T)
8436 static bfd_boolean
8437 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8438 {
8439 if (note->descsz == sizeof (pstatus_t)
8440 #if defined (HAVE_PXSTATUS_T)
8441 || note->descsz == sizeof (pxstatus_t)
8442 #endif
8443 )
8444 {
8445 pstatus_t pstat;
8446
8447 memcpy (&pstat, note->descdata, sizeof (pstat));
8448
8449 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8450 }
8451 #if defined (HAVE_PSTATUS32_T)
8452 else if (note->descsz == sizeof (pstatus32_t))
8453 {
8454 /* 64-bit host, 32-bit corefile */
8455 pstatus32_t pstat;
8456
8457 memcpy (&pstat, note->descdata, sizeof (pstat));
8458
8459 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8460 }
8461 #endif
8462 /* Could grab some more details from the "representative"
8463 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8464 NT_LWPSTATUS note, presumably. */
8465
8466 return TRUE;
8467 }
8468 #endif /* defined (HAVE_PSTATUS_T) */
8469
8470 #if defined (HAVE_LWPSTATUS_T)
8471 static bfd_boolean
8472 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8473 {
8474 lwpstatus_t lwpstat;
8475 char buf[100];
8476 char *name;
8477 size_t len;
8478 asection *sect;
8479
8480 if (note->descsz != sizeof (lwpstat)
8481 #if defined (HAVE_LWPXSTATUS_T)
8482 && note->descsz != sizeof (lwpxstatus_t)
8483 #endif
8484 )
8485 return TRUE;
8486
8487 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8488
8489 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8490 /* Do not overwrite the core signal if it has already been set by
8491 another thread. */
8492 if (elf_tdata (abfd)->core->signal == 0)
8493 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8494
8495 /* Make a ".reg/999" section. */
8496
8497 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8498 len = strlen (buf) + 1;
8499 name = bfd_alloc (abfd, len);
8500 if (name == NULL)
8501 return FALSE;
8502 memcpy (name, buf, len);
8503
8504 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8505 if (sect == NULL)
8506 return FALSE;
8507
8508 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8509 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8510 sect->filepos = note->descpos
8511 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8512 #endif
8513
8514 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8515 sect->size = sizeof (lwpstat.pr_reg);
8516 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8517 #endif
8518
8519 sect->alignment_power = 2;
8520
8521 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8522 return FALSE;
8523
8524 /* Make a ".reg2/999" section */
8525
8526 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8527 len = strlen (buf) + 1;
8528 name = bfd_alloc (abfd, len);
8529 if (name == NULL)
8530 return FALSE;
8531 memcpy (name, buf, len);
8532
8533 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8534 if (sect == NULL)
8535 return FALSE;
8536
8537 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8538 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8539 sect->filepos = note->descpos
8540 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8541 #endif
8542
8543 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8544 sect->size = sizeof (lwpstat.pr_fpreg);
8545 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8546 #endif
8547
8548 sect->alignment_power = 2;
8549
8550 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8551 }
8552 #endif /* defined (HAVE_LWPSTATUS_T) */
8553
8554 static bfd_boolean
8555 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8556 {
8557 char buf[30];
8558 char *name;
8559 size_t len;
8560 asection *sect;
8561 int type;
8562 int is_active_thread;
8563 bfd_vma base_addr;
8564
8565 if (note->descsz < 728)
8566 return TRUE;
8567
8568 if (! CONST_STRNEQ (note->namedata, "win32"))
8569 return TRUE;
8570
8571 type = bfd_get_32 (abfd, note->descdata);
8572
8573 switch (type)
8574 {
8575 case 1 /* NOTE_INFO_PROCESS */:
8576 /* FIXME: need to add ->core->command. */
8577 /* process_info.pid */
8578 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
8579 /* process_info.signal */
8580 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
8581 break;
8582
8583 case 2 /* NOTE_INFO_THREAD */:
8584 /* Make a ".reg/999" section. */
8585 /* thread_info.tid */
8586 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8587
8588 len = strlen (buf) + 1;
8589 name = (char *) bfd_alloc (abfd, len);
8590 if (name == NULL)
8591 return FALSE;
8592
8593 memcpy (name, buf, len);
8594
8595 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8596 if (sect == NULL)
8597 return FALSE;
8598
8599 /* sizeof (thread_info.thread_context) */
8600 sect->size = 716;
8601 /* offsetof (thread_info.thread_context) */
8602 sect->filepos = note->descpos + 12;
8603 sect->alignment_power = 2;
8604
8605 /* thread_info.is_active_thread */
8606 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8607
8608 if (is_active_thread)
8609 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8610 return FALSE;
8611 break;
8612
8613 case 3 /* NOTE_INFO_MODULE */:
8614 /* Make a ".module/xxxxxxxx" section. */
8615 /* module_info.base_address */
8616 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8617 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8618
8619 len = strlen (buf) + 1;
8620 name = (char *) bfd_alloc (abfd, len);
8621 if (name == NULL)
8622 return FALSE;
8623
8624 memcpy (name, buf, len);
8625
8626 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8627
8628 if (sect == NULL)
8629 return FALSE;
8630
8631 sect->size = note->descsz;
8632 sect->filepos = note->descpos;
8633 sect->alignment_power = 2;
8634 break;
8635
8636 default:
8637 return TRUE;
8638 }
8639
8640 return TRUE;
8641 }
8642
8643 static bfd_boolean
8644 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8645 {
8646 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8647
8648 switch (note->type)
8649 {
8650 default:
8651 return TRUE;
8652
8653 case NT_PRSTATUS:
8654 if (bed->elf_backend_grok_prstatus)
8655 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8656 return TRUE;
8657 #if defined (HAVE_PRSTATUS_T)
8658 return elfcore_grok_prstatus (abfd, note);
8659 #else
8660 return TRUE;
8661 #endif
8662
8663 #if defined (HAVE_PSTATUS_T)
8664 case NT_PSTATUS:
8665 return elfcore_grok_pstatus (abfd, note);
8666 #endif
8667
8668 #if defined (HAVE_LWPSTATUS_T)
8669 case NT_LWPSTATUS:
8670 return elfcore_grok_lwpstatus (abfd, note);
8671 #endif
8672
8673 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8674 return elfcore_grok_prfpreg (abfd, note);
8675
8676 case NT_WIN32PSTATUS:
8677 return elfcore_grok_win32pstatus (abfd, note);
8678
8679 case NT_PRXFPREG: /* Linux SSE extension */
8680 if (note->namesz == 6
8681 && strcmp (note->namedata, "LINUX") == 0)
8682 return elfcore_grok_prxfpreg (abfd, note);
8683 else
8684 return TRUE;
8685
8686 case NT_X86_XSTATE: /* Linux XSAVE extension */
8687 if (note->namesz == 6
8688 && strcmp (note->namedata, "LINUX") == 0)
8689 return elfcore_grok_xstatereg (abfd, note);
8690 else
8691 return TRUE;
8692
8693 case NT_PPC_VMX:
8694 if (note->namesz == 6
8695 && strcmp (note->namedata, "LINUX") == 0)
8696 return elfcore_grok_ppc_vmx (abfd, note);
8697 else
8698 return TRUE;
8699
8700 case NT_PPC_VSX:
8701 if (note->namesz == 6
8702 && strcmp (note->namedata, "LINUX") == 0)
8703 return elfcore_grok_ppc_vsx (abfd, note);
8704 else
8705 return TRUE;
8706
8707 case NT_S390_HIGH_GPRS:
8708 if (note->namesz == 6
8709 && strcmp (note->namedata, "LINUX") == 0)
8710 return elfcore_grok_s390_high_gprs (abfd, note);
8711 else
8712 return TRUE;
8713
8714 case NT_S390_TIMER:
8715 if (note->namesz == 6
8716 && strcmp (note->namedata, "LINUX") == 0)
8717 return elfcore_grok_s390_timer (abfd, note);
8718 else
8719 return TRUE;
8720
8721 case NT_S390_TODCMP:
8722 if (note->namesz == 6
8723 && strcmp (note->namedata, "LINUX") == 0)
8724 return elfcore_grok_s390_todcmp (abfd, note);
8725 else
8726 return TRUE;
8727
8728 case NT_S390_TODPREG:
8729 if (note->namesz == 6
8730 && strcmp (note->namedata, "LINUX") == 0)
8731 return elfcore_grok_s390_todpreg (abfd, note);
8732 else
8733 return TRUE;
8734
8735 case NT_S390_CTRS:
8736 if (note->namesz == 6
8737 && strcmp (note->namedata, "LINUX") == 0)
8738 return elfcore_grok_s390_ctrs (abfd, note);
8739 else
8740 return TRUE;
8741
8742 case NT_S390_PREFIX:
8743 if (note->namesz == 6
8744 && strcmp (note->namedata, "LINUX") == 0)
8745 return elfcore_grok_s390_prefix (abfd, note);
8746 else
8747 return TRUE;
8748
8749 case NT_S390_LAST_BREAK:
8750 if (note->namesz == 6
8751 && strcmp (note->namedata, "LINUX") == 0)
8752 return elfcore_grok_s390_last_break (abfd, note);
8753 else
8754 return TRUE;
8755
8756 case NT_S390_SYSTEM_CALL:
8757 if (note->namesz == 6
8758 && strcmp (note->namedata, "LINUX") == 0)
8759 return elfcore_grok_s390_system_call (abfd, note);
8760 else
8761 return TRUE;
8762
8763 case NT_S390_TDB:
8764 if (note->namesz == 6
8765 && strcmp (note->namedata, "LINUX") == 0)
8766 return elfcore_grok_s390_tdb (abfd, note);
8767 else
8768 return TRUE;
8769
8770 case NT_ARM_VFP:
8771 if (note->namesz == 6
8772 && strcmp (note->namedata, "LINUX") == 0)
8773 return elfcore_grok_arm_vfp (abfd, note);
8774 else
8775 return TRUE;
8776
8777 case NT_ARM_TLS:
8778 if (note->namesz == 6
8779 && strcmp (note->namedata, "LINUX") == 0)
8780 return elfcore_grok_aarch_tls (abfd, note);
8781 else
8782 return TRUE;
8783
8784 case NT_ARM_HW_BREAK:
8785 if (note->namesz == 6
8786 && strcmp (note->namedata, "LINUX") == 0)
8787 return elfcore_grok_aarch_hw_break (abfd, note);
8788 else
8789 return TRUE;
8790
8791 case NT_ARM_HW_WATCH:
8792 if (note->namesz == 6
8793 && strcmp (note->namedata, "LINUX") == 0)
8794 return elfcore_grok_aarch_hw_watch (abfd, note);
8795 else
8796 return TRUE;
8797
8798 case NT_PRPSINFO:
8799 case NT_PSINFO:
8800 if (bed->elf_backend_grok_psinfo)
8801 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8802 return TRUE;
8803 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8804 return elfcore_grok_psinfo (abfd, note);
8805 #else
8806 return TRUE;
8807 #endif
8808
8809 case NT_AUXV:
8810 {
8811 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8812 SEC_HAS_CONTENTS);
8813
8814 if (sect == NULL)
8815 return FALSE;
8816 sect->size = note->descsz;
8817 sect->filepos = note->descpos;
8818 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8819
8820 return TRUE;
8821 }
8822
8823 case NT_FILE:
8824 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
8825 note);
8826
8827 case NT_SIGINFO:
8828 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8829 note);
8830 }
8831 }
8832
8833 static bfd_boolean
8834 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8835 {
8836 struct elf_obj_tdata *t;
8837
8838 if (note->descsz == 0)
8839 return FALSE;
8840
8841 t = elf_tdata (abfd);
8842 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz);
8843 if (t->build_id == NULL)
8844 return FALSE;
8845
8846 t->build_id->size = note->descsz;
8847 memcpy (t->build_id->data, note->descdata, note->descsz);
8848
8849 return TRUE;
8850 }
8851
8852 static bfd_boolean
8853 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8854 {
8855 switch (note->type)
8856 {
8857 default:
8858 return TRUE;
8859
8860 case NT_GNU_BUILD_ID:
8861 return elfobj_grok_gnu_build_id (abfd, note);
8862 }
8863 }
8864
8865 static bfd_boolean
8866 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8867 {
8868 struct sdt_note *cur =
8869 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8870 + note->descsz);
8871
8872 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8873 cur->size = (bfd_size_type) note->descsz;
8874 memcpy (cur->data, note->descdata, note->descsz);
8875
8876 elf_tdata (abfd)->sdt_note_head = cur;
8877
8878 return TRUE;
8879 }
8880
8881 static bfd_boolean
8882 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8883 {
8884 switch (note->type)
8885 {
8886 case NT_STAPSDT:
8887 return elfobj_grok_stapsdt_note_1 (abfd, note);
8888
8889 default:
8890 return TRUE;
8891 }
8892 }
8893
8894 static bfd_boolean
8895 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8896 {
8897 char *cp;
8898
8899 cp = strchr (note->namedata, '@');
8900 if (cp != NULL)
8901 {
8902 *lwpidp = atoi(cp + 1);
8903 return TRUE;
8904 }
8905 return FALSE;
8906 }
8907
8908 static bfd_boolean
8909 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8910 {
8911 /* Signal number at offset 0x08. */
8912 elf_tdata (abfd)->core->signal
8913 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8914
8915 /* Process ID at offset 0x50. */
8916 elf_tdata (abfd)->core->pid
8917 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8918
8919 /* Command name at 0x7c (max 32 bytes, including nul). */
8920 elf_tdata (abfd)->core->command
8921 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8922
8923 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8924 note);
8925 }
8926
8927 static bfd_boolean
8928 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8929 {
8930 int lwp;
8931
8932 if (elfcore_netbsd_get_lwpid (note, &lwp))
8933 elf_tdata (abfd)->core->lwpid = lwp;
8934
8935 if (note->type == NT_NETBSDCORE_PROCINFO)
8936 {
8937 /* NetBSD-specific core "procinfo". Note that we expect to
8938 find this note before any of the others, which is fine,
8939 since the kernel writes this note out first when it
8940 creates a core file. */
8941
8942 return elfcore_grok_netbsd_procinfo (abfd, note);
8943 }
8944
8945 /* As of Jan 2002 there are no other machine-independent notes
8946 defined for NetBSD core files. If the note type is less
8947 than the start of the machine-dependent note types, we don't
8948 understand it. */
8949
8950 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8951 return TRUE;
8952
8953
8954 switch (bfd_get_arch (abfd))
8955 {
8956 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8957 PT_GETFPREGS == mach+2. */
8958
8959 case bfd_arch_alpha:
8960 case bfd_arch_sparc:
8961 switch (note->type)
8962 {
8963 case NT_NETBSDCORE_FIRSTMACH+0:
8964 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8965
8966 case NT_NETBSDCORE_FIRSTMACH+2:
8967 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8968
8969 default:
8970 return TRUE;
8971 }
8972
8973 /* On all other arch's, PT_GETREGS == mach+1 and
8974 PT_GETFPREGS == mach+3. */
8975
8976 default:
8977 switch (note->type)
8978 {
8979 case NT_NETBSDCORE_FIRSTMACH+1:
8980 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8981
8982 case NT_NETBSDCORE_FIRSTMACH+3:
8983 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8984
8985 default:
8986 return TRUE;
8987 }
8988 }
8989 /* NOTREACHED */
8990 }
8991
8992 static bfd_boolean
8993 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8994 {
8995 /* Signal number at offset 0x08. */
8996 elf_tdata (abfd)->core->signal
8997 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8998
8999 /* Process ID at offset 0x20. */
9000 elf_tdata (abfd)->core->pid
9001 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
9002
9003 /* Command name at 0x48 (max 32 bytes, including nul). */
9004 elf_tdata (abfd)->core->command
9005 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
9006
9007 return TRUE;
9008 }
9009
9010 static bfd_boolean
9011 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
9012 {
9013 if (note->type == NT_OPENBSD_PROCINFO)
9014 return elfcore_grok_openbsd_procinfo (abfd, note);
9015
9016 if (note->type == NT_OPENBSD_REGS)
9017 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9018
9019 if (note->type == NT_OPENBSD_FPREGS)
9020 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9021
9022 if (note->type == NT_OPENBSD_XFPREGS)
9023 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9024
9025 if (note->type == NT_OPENBSD_AUXV)
9026 {
9027 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9028 SEC_HAS_CONTENTS);
9029
9030 if (sect == NULL)
9031 return FALSE;
9032 sect->size = note->descsz;
9033 sect->filepos = note->descpos;
9034 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9035
9036 return TRUE;
9037 }
9038
9039 if (note->type == NT_OPENBSD_WCOOKIE)
9040 {
9041 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
9042 SEC_HAS_CONTENTS);
9043
9044 if (sect == NULL)
9045 return FALSE;
9046 sect->size = note->descsz;
9047 sect->filepos = note->descpos;
9048 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9049
9050 return TRUE;
9051 }
9052
9053 return TRUE;
9054 }
9055
9056 static bfd_boolean
9057 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
9058 {
9059 void *ddata = note->descdata;
9060 char buf[100];
9061 char *name;
9062 asection *sect;
9063 short sig;
9064 unsigned flags;
9065
9066 /* nto_procfs_status 'pid' field is at offset 0. */
9067 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
9068
9069 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
9070 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
9071
9072 /* nto_procfs_status 'flags' field is at offset 8. */
9073 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
9074
9075 /* nto_procfs_status 'what' field is at offset 14. */
9076 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
9077 {
9078 elf_tdata (abfd)->core->signal = sig;
9079 elf_tdata (abfd)->core->lwpid = *tid;
9080 }
9081
9082 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
9083 do not come from signals so we make sure we set the current
9084 thread just in case. */
9085 if (flags & 0x00000080)
9086 elf_tdata (abfd)->core->lwpid = *tid;
9087
9088 /* Make a ".qnx_core_status/%d" section. */
9089 sprintf (buf, ".qnx_core_status/%ld", *tid);
9090
9091 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9092 if (name == NULL)
9093 return FALSE;
9094 strcpy (name, buf);
9095
9096 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9097 if (sect == NULL)
9098 return FALSE;
9099
9100 sect->size = note->descsz;
9101 sect->filepos = note->descpos;
9102 sect->alignment_power = 2;
9103
9104 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9105 }
9106
9107 static bfd_boolean
9108 elfcore_grok_nto_regs (bfd *abfd,
9109 Elf_Internal_Note *note,
9110 long tid,
9111 char *base)
9112 {
9113 char buf[100];
9114 char *name;
9115 asection *sect;
9116
9117 /* Make a "(base)/%d" section. */
9118 sprintf (buf, "%s/%ld", base, tid);
9119
9120 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9121 if (name == NULL)
9122 return FALSE;
9123 strcpy (name, buf);
9124
9125 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9126 if (sect == NULL)
9127 return FALSE;
9128
9129 sect->size = note->descsz;
9130 sect->filepos = note->descpos;
9131 sect->alignment_power = 2;
9132
9133 /* This is the current thread. */
9134 if (elf_tdata (abfd)->core->lwpid == tid)
9135 return elfcore_maybe_make_sect (abfd, base, sect);
9136
9137 return TRUE;
9138 }
9139
9140 #define BFD_QNT_CORE_INFO 7
9141 #define BFD_QNT_CORE_STATUS 8
9142 #define BFD_QNT_CORE_GREG 9
9143 #define BFD_QNT_CORE_FPREG 10
9144
9145 static bfd_boolean
9146 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9147 {
9148 /* Every GREG section has a STATUS section before it. Store the
9149 tid from the previous call to pass down to the next gregs
9150 function. */
9151 static long tid = 1;
9152
9153 switch (note->type)
9154 {
9155 case BFD_QNT_CORE_INFO:
9156 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9157 case BFD_QNT_CORE_STATUS:
9158 return elfcore_grok_nto_status (abfd, note, &tid);
9159 case BFD_QNT_CORE_GREG:
9160 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9161 case BFD_QNT_CORE_FPREG:
9162 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9163 default:
9164 return TRUE;
9165 }
9166 }
9167
9168 static bfd_boolean
9169 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9170 {
9171 char *name;
9172 asection *sect;
9173 size_t len;
9174
9175 /* Use note name as section name. */
9176 len = note->namesz;
9177 name = (char *) bfd_alloc (abfd, len);
9178 if (name == NULL)
9179 return FALSE;
9180 memcpy (name, note->namedata, len);
9181 name[len - 1] = '\0';
9182
9183 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9184 if (sect == NULL)
9185 return FALSE;
9186
9187 sect->size = note->descsz;
9188 sect->filepos = note->descpos;
9189 sect->alignment_power = 1;
9190
9191 return TRUE;
9192 }
9193
9194 /* Function: elfcore_write_note
9195
9196 Inputs:
9197 buffer to hold note, and current size of buffer
9198 name of note
9199 type of note
9200 data for note
9201 size of data for note
9202
9203 Writes note to end of buffer. ELF64 notes are written exactly as
9204 for ELF32, despite the current (as of 2006) ELF gabi specifying
9205 that they ought to have 8-byte namesz and descsz field, and have
9206 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9207
9208 Return:
9209 Pointer to realloc'd buffer, *BUFSIZ updated. */
9210
9211 char *
9212 elfcore_write_note (bfd *abfd,
9213 char *buf,
9214 int *bufsiz,
9215 const char *name,
9216 int type,
9217 const void *input,
9218 int size)
9219 {
9220 Elf_External_Note *xnp;
9221 size_t namesz;
9222 size_t newspace;
9223 char *dest;
9224
9225 namesz = 0;
9226 if (name != NULL)
9227 namesz = strlen (name) + 1;
9228
9229 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9230
9231 buf = (char *) realloc (buf, *bufsiz + newspace);
9232 if (buf == NULL)
9233 return buf;
9234 dest = buf + *bufsiz;
9235 *bufsiz += newspace;
9236 xnp = (Elf_External_Note *) dest;
9237 H_PUT_32 (abfd, namesz, xnp->namesz);
9238 H_PUT_32 (abfd, size, xnp->descsz);
9239 H_PUT_32 (abfd, type, xnp->type);
9240 dest = xnp->name;
9241 if (name != NULL)
9242 {
9243 memcpy (dest, name, namesz);
9244 dest += namesz;
9245 while (namesz & 3)
9246 {
9247 *dest++ = '\0';
9248 ++namesz;
9249 }
9250 }
9251 memcpy (dest, input, size);
9252 dest += size;
9253 while (size & 3)
9254 {
9255 *dest++ = '\0';
9256 ++size;
9257 }
9258 return buf;
9259 }
9260
9261 char *
9262 elfcore_write_prpsinfo (bfd *abfd,
9263 char *buf,
9264 int *bufsiz,
9265 const char *fname,
9266 const char *psargs)
9267 {
9268 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9269
9270 if (bed->elf_backend_write_core_note != NULL)
9271 {
9272 char *ret;
9273 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9274 NT_PRPSINFO, fname, psargs);
9275 if (ret != NULL)
9276 return ret;
9277 }
9278
9279 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9280 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9281 if (bed->s->elfclass == ELFCLASS32)
9282 {
9283 #if defined (HAVE_PSINFO32_T)
9284 psinfo32_t data;
9285 int note_type = NT_PSINFO;
9286 #else
9287 prpsinfo32_t data;
9288 int note_type = NT_PRPSINFO;
9289 #endif
9290
9291 memset (&data, 0, sizeof (data));
9292 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9293 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9294 return elfcore_write_note (abfd, buf, bufsiz,
9295 "CORE", note_type, &data, sizeof (data));
9296 }
9297 else
9298 #endif
9299 {
9300 #if defined (HAVE_PSINFO_T)
9301 psinfo_t data;
9302 int note_type = NT_PSINFO;
9303 #else
9304 prpsinfo_t data;
9305 int note_type = NT_PRPSINFO;
9306 #endif
9307
9308 memset (&data, 0, sizeof (data));
9309 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9310 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9311 return elfcore_write_note (abfd, buf, bufsiz,
9312 "CORE", note_type, &data, sizeof (data));
9313 }
9314 #endif /* PSINFO_T or PRPSINFO_T */
9315
9316 free (buf);
9317 return NULL;
9318 }
9319
9320 char *
9321 elfcore_write_linux_prpsinfo32
9322 (bfd *abfd, char *buf, int *bufsiz,
9323 const struct elf_internal_linux_prpsinfo *prpsinfo)
9324 {
9325 struct elf_external_linux_prpsinfo32 data;
9326
9327 memset (&data, 0, sizeof (data));
9328 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9329
9330 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9331 &data, sizeof (data));
9332 }
9333
9334 char *
9335 elfcore_write_linux_prpsinfo64
9336 (bfd *abfd, char *buf, int *bufsiz,
9337 const struct elf_internal_linux_prpsinfo *prpsinfo)
9338 {
9339 struct elf_external_linux_prpsinfo64 data;
9340
9341 memset (&data, 0, sizeof (data));
9342 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9343
9344 return elfcore_write_note (abfd, buf, bufsiz,
9345 "CORE", NT_PRPSINFO, &data, sizeof (data));
9346 }
9347
9348 char *
9349 elfcore_write_prstatus (bfd *abfd,
9350 char *buf,
9351 int *bufsiz,
9352 long pid,
9353 int cursig,
9354 const void *gregs)
9355 {
9356 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9357
9358 if (bed->elf_backend_write_core_note != NULL)
9359 {
9360 char *ret;
9361 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9362 NT_PRSTATUS,
9363 pid, cursig, gregs);
9364 if (ret != NULL)
9365 return ret;
9366 }
9367
9368 #if defined (HAVE_PRSTATUS_T)
9369 #if defined (HAVE_PRSTATUS32_T)
9370 if (bed->s->elfclass == ELFCLASS32)
9371 {
9372 prstatus32_t prstat;
9373
9374 memset (&prstat, 0, sizeof (prstat));
9375 prstat.pr_pid = pid;
9376 prstat.pr_cursig = cursig;
9377 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9378 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9379 NT_PRSTATUS, &prstat, sizeof (prstat));
9380 }
9381 else
9382 #endif
9383 {
9384 prstatus_t prstat;
9385
9386 memset (&prstat, 0, sizeof (prstat));
9387 prstat.pr_pid = pid;
9388 prstat.pr_cursig = cursig;
9389 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9390 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9391 NT_PRSTATUS, &prstat, sizeof (prstat));
9392 }
9393 #endif /* HAVE_PRSTATUS_T */
9394
9395 free (buf);
9396 return NULL;
9397 }
9398
9399 #if defined (HAVE_LWPSTATUS_T)
9400 char *
9401 elfcore_write_lwpstatus (bfd *abfd,
9402 char *buf,
9403 int *bufsiz,
9404 long pid,
9405 int cursig,
9406 const void *gregs)
9407 {
9408 lwpstatus_t lwpstat;
9409 const char *note_name = "CORE";
9410
9411 memset (&lwpstat, 0, sizeof (lwpstat));
9412 lwpstat.pr_lwpid = pid >> 16;
9413 lwpstat.pr_cursig = cursig;
9414 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9415 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9416 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9417 #if !defined(gregs)
9418 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9419 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9420 #else
9421 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9422 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9423 #endif
9424 #endif
9425 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9426 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9427 }
9428 #endif /* HAVE_LWPSTATUS_T */
9429
9430 #if defined (HAVE_PSTATUS_T)
9431 char *
9432 elfcore_write_pstatus (bfd *abfd,
9433 char *buf,
9434 int *bufsiz,
9435 long pid,
9436 int cursig ATTRIBUTE_UNUSED,
9437 const void *gregs ATTRIBUTE_UNUSED)
9438 {
9439 const char *note_name = "CORE";
9440 #if defined (HAVE_PSTATUS32_T)
9441 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9442
9443 if (bed->s->elfclass == ELFCLASS32)
9444 {
9445 pstatus32_t pstat;
9446
9447 memset (&pstat, 0, sizeof (pstat));
9448 pstat.pr_pid = pid & 0xffff;
9449 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9450 NT_PSTATUS, &pstat, sizeof (pstat));
9451 return buf;
9452 }
9453 else
9454 #endif
9455 {
9456 pstatus_t pstat;
9457
9458 memset (&pstat, 0, sizeof (pstat));
9459 pstat.pr_pid = pid & 0xffff;
9460 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9461 NT_PSTATUS, &pstat, sizeof (pstat));
9462 return buf;
9463 }
9464 }
9465 #endif /* HAVE_PSTATUS_T */
9466
9467 char *
9468 elfcore_write_prfpreg (bfd *abfd,
9469 char *buf,
9470 int *bufsiz,
9471 const void *fpregs,
9472 int size)
9473 {
9474 const char *note_name = "CORE";
9475 return elfcore_write_note (abfd, buf, bufsiz,
9476 note_name, NT_FPREGSET, fpregs, size);
9477 }
9478
9479 char *
9480 elfcore_write_prxfpreg (bfd *abfd,
9481 char *buf,
9482 int *bufsiz,
9483 const void *xfpregs,
9484 int size)
9485 {
9486 char *note_name = "LINUX";
9487 return elfcore_write_note (abfd, buf, bufsiz,
9488 note_name, NT_PRXFPREG, xfpregs, size);
9489 }
9490
9491 char *
9492 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9493 const void *xfpregs, int size)
9494 {
9495 char *note_name = "LINUX";
9496 return elfcore_write_note (abfd, buf, bufsiz,
9497 note_name, NT_X86_XSTATE, xfpregs, size);
9498 }
9499
9500 char *
9501 elfcore_write_ppc_vmx (bfd *abfd,
9502 char *buf,
9503 int *bufsiz,
9504 const void *ppc_vmx,
9505 int size)
9506 {
9507 char *note_name = "LINUX";
9508 return elfcore_write_note (abfd, buf, bufsiz,
9509 note_name, NT_PPC_VMX, ppc_vmx, size);
9510 }
9511
9512 char *
9513 elfcore_write_ppc_vsx (bfd *abfd,
9514 char *buf,
9515 int *bufsiz,
9516 const void *ppc_vsx,
9517 int size)
9518 {
9519 char *note_name = "LINUX";
9520 return elfcore_write_note (abfd, buf, bufsiz,
9521 note_name, NT_PPC_VSX, ppc_vsx, size);
9522 }
9523
9524 static char *
9525 elfcore_write_s390_high_gprs (bfd *abfd,
9526 char *buf,
9527 int *bufsiz,
9528 const void *s390_high_gprs,
9529 int size)
9530 {
9531 char *note_name = "LINUX";
9532 return elfcore_write_note (abfd, buf, bufsiz,
9533 note_name, NT_S390_HIGH_GPRS,
9534 s390_high_gprs, size);
9535 }
9536
9537 char *
9538 elfcore_write_s390_timer (bfd *abfd,
9539 char *buf,
9540 int *bufsiz,
9541 const void *s390_timer,
9542 int size)
9543 {
9544 char *note_name = "LINUX";
9545 return elfcore_write_note (abfd, buf, bufsiz,
9546 note_name, NT_S390_TIMER, s390_timer, size);
9547 }
9548
9549 char *
9550 elfcore_write_s390_todcmp (bfd *abfd,
9551 char *buf,
9552 int *bufsiz,
9553 const void *s390_todcmp,
9554 int size)
9555 {
9556 char *note_name = "LINUX";
9557 return elfcore_write_note (abfd, buf, bufsiz,
9558 note_name, NT_S390_TODCMP, s390_todcmp, size);
9559 }
9560
9561 char *
9562 elfcore_write_s390_todpreg (bfd *abfd,
9563 char *buf,
9564 int *bufsiz,
9565 const void *s390_todpreg,
9566 int size)
9567 {
9568 char *note_name = "LINUX";
9569 return elfcore_write_note (abfd, buf, bufsiz,
9570 note_name, NT_S390_TODPREG, s390_todpreg, size);
9571 }
9572
9573 char *
9574 elfcore_write_s390_ctrs (bfd *abfd,
9575 char *buf,
9576 int *bufsiz,
9577 const void *s390_ctrs,
9578 int size)
9579 {
9580 char *note_name = "LINUX";
9581 return elfcore_write_note (abfd, buf, bufsiz,
9582 note_name, NT_S390_CTRS, s390_ctrs, size);
9583 }
9584
9585 char *
9586 elfcore_write_s390_prefix (bfd *abfd,
9587 char *buf,
9588 int *bufsiz,
9589 const void *s390_prefix,
9590 int size)
9591 {
9592 char *note_name = "LINUX";
9593 return elfcore_write_note (abfd, buf, bufsiz,
9594 note_name, NT_S390_PREFIX, s390_prefix, size);
9595 }
9596
9597 char *
9598 elfcore_write_s390_last_break (bfd *abfd,
9599 char *buf,
9600 int *bufsiz,
9601 const void *s390_last_break,
9602 int size)
9603 {
9604 char *note_name = "LINUX";
9605 return elfcore_write_note (abfd, buf, bufsiz,
9606 note_name, NT_S390_LAST_BREAK,
9607 s390_last_break, size);
9608 }
9609
9610 char *
9611 elfcore_write_s390_system_call (bfd *abfd,
9612 char *buf,
9613 int *bufsiz,
9614 const void *s390_system_call,
9615 int size)
9616 {
9617 char *note_name = "LINUX";
9618 return elfcore_write_note (abfd, buf, bufsiz,
9619 note_name, NT_S390_SYSTEM_CALL,
9620 s390_system_call, size);
9621 }
9622
9623 char *
9624 elfcore_write_s390_tdb (bfd *abfd,
9625 char *buf,
9626 int *bufsiz,
9627 const void *s390_tdb,
9628 int size)
9629 {
9630 char *note_name = "LINUX";
9631 return elfcore_write_note (abfd, buf, bufsiz,
9632 note_name, NT_S390_TDB, s390_tdb, size);
9633 }
9634
9635 char *
9636 elfcore_write_arm_vfp (bfd *abfd,
9637 char *buf,
9638 int *bufsiz,
9639 const void *arm_vfp,
9640 int size)
9641 {
9642 char *note_name = "LINUX";
9643 return elfcore_write_note (abfd, buf, bufsiz,
9644 note_name, NT_ARM_VFP, arm_vfp, size);
9645 }
9646
9647 char *
9648 elfcore_write_aarch_tls (bfd *abfd,
9649 char *buf,
9650 int *bufsiz,
9651 const void *aarch_tls,
9652 int size)
9653 {
9654 char *note_name = "LINUX";
9655 return elfcore_write_note (abfd, buf, bufsiz,
9656 note_name, NT_ARM_TLS, aarch_tls, size);
9657 }
9658
9659 char *
9660 elfcore_write_aarch_hw_break (bfd *abfd,
9661 char *buf,
9662 int *bufsiz,
9663 const void *aarch_hw_break,
9664 int size)
9665 {
9666 char *note_name = "LINUX";
9667 return elfcore_write_note (abfd, buf, bufsiz,
9668 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9669 }
9670
9671 char *
9672 elfcore_write_aarch_hw_watch (bfd *abfd,
9673 char *buf,
9674 int *bufsiz,
9675 const void *aarch_hw_watch,
9676 int size)
9677 {
9678 char *note_name = "LINUX";
9679 return elfcore_write_note (abfd, buf, bufsiz,
9680 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9681 }
9682
9683 char *
9684 elfcore_write_register_note (bfd *abfd,
9685 char *buf,
9686 int *bufsiz,
9687 const char *section,
9688 const void *data,
9689 int size)
9690 {
9691 if (strcmp (section, ".reg2") == 0)
9692 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9693 if (strcmp (section, ".reg-xfp") == 0)
9694 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9695 if (strcmp (section, ".reg-xstate") == 0)
9696 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9697 if (strcmp (section, ".reg-ppc-vmx") == 0)
9698 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9699 if (strcmp (section, ".reg-ppc-vsx") == 0)
9700 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9701 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9702 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9703 if (strcmp (section, ".reg-s390-timer") == 0)
9704 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9705 if (strcmp (section, ".reg-s390-todcmp") == 0)
9706 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9707 if (strcmp (section, ".reg-s390-todpreg") == 0)
9708 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9709 if (strcmp (section, ".reg-s390-ctrs") == 0)
9710 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9711 if (strcmp (section, ".reg-s390-prefix") == 0)
9712 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9713 if (strcmp (section, ".reg-s390-last-break") == 0)
9714 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9715 if (strcmp (section, ".reg-s390-system-call") == 0)
9716 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9717 if (strcmp (section, ".reg-s390-tdb") == 0)
9718 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
9719 if (strcmp (section, ".reg-arm-vfp") == 0)
9720 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9721 if (strcmp (section, ".reg-aarch-tls") == 0)
9722 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
9723 if (strcmp (section, ".reg-aarch-hw-break") == 0)
9724 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
9725 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
9726 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
9727 return NULL;
9728 }
9729
9730 static bfd_boolean
9731 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9732 {
9733 char *p;
9734
9735 p = buf;
9736 while (p < buf + size)
9737 {
9738 /* FIXME: bad alignment assumption. */
9739 Elf_External_Note *xnp = (Elf_External_Note *) p;
9740 Elf_Internal_Note in;
9741
9742 if (offsetof (Elf_External_Note, name) > buf - p + size)
9743 return FALSE;
9744
9745 in.type = H_GET_32 (abfd, xnp->type);
9746
9747 in.namesz = H_GET_32 (abfd, xnp->namesz);
9748 in.namedata = xnp->name;
9749 if (in.namesz > buf - in.namedata + size)
9750 return FALSE;
9751
9752 in.descsz = H_GET_32 (abfd, xnp->descsz);
9753 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9754 in.descpos = offset + (in.descdata - buf);
9755 if (in.descsz != 0
9756 && (in.descdata >= buf + size
9757 || in.descsz > buf - in.descdata + size))
9758 return FALSE;
9759
9760 switch (bfd_get_format (abfd))
9761 {
9762 default:
9763 return TRUE;
9764
9765 case bfd_core:
9766 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9767 {
9768 if (! elfcore_grok_netbsd_note (abfd, &in))
9769 return FALSE;
9770 }
9771 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9772 {
9773 if (! elfcore_grok_openbsd_note (abfd, &in))
9774 return FALSE;
9775 }
9776 else if (CONST_STRNEQ (in.namedata, "QNX"))
9777 {
9778 if (! elfcore_grok_nto_note (abfd, &in))
9779 return FALSE;
9780 }
9781 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9782 {
9783 if (! elfcore_grok_spu_note (abfd, &in))
9784 return FALSE;
9785 }
9786 else
9787 {
9788 if (! elfcore_grok_note (abfd, &in))
9789 return FALSE;
9790 }
9791 break;
9792
9793 case bfd_object:
9794 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9795 {
9796 if (! elfobj_grok_gnu_note (abfd, &in))
9797 return FALSE;
9798 }
9799 else if (in.namesz == sizeof "stapsdt"
9800 && strcmp (in.namedata, "stapsdt") == 0)
9801 {
9802 if (! elfobj_grok_stapsdt_note (abfd, &in))
9803 return FALSE;
9804 }
9805 break;
9806 }
9807
9808 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9809 }
9810
9811 return TRUE;
9812 }
9813
9814 static bfd_boolean
9815 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9816 {
9817 char *buf;
9818
9819 if (size <= 0)
9820 return TRUE;
9821
9822 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9823 return FALSE;
9824
9825 buf = (char *) bfd_malloc (size);
9826 if (buf == NULL)
9827 return FALSE;
9828
9829 if (bfd_bread (buf, size, abfd) != size
9830 || !elf_parse_notes (abfd, buf, size, offset))
9831 {
9832 free (buf);
9833 return FALSE;
9834 }
9835
9836 free (buf);
9837 return TRUE;
9838 }
9839 \f
9840 /* Providing external access to the ELF program header table. */
9841
9842 /* Return an upper bound on the number of bytes required to store a
9843 copy of ABFD's program header table entries. Return -1 if an error
9844 occurs; bfd_get_error will return an appropriate code. */
9845
9846 long
9847 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9848 {
9849 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9850 {
9851 bfd_set_error (bfd_error_wrong_format);
9852 return -1;
9853 }
9854
9855 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9856 }
9857
9858 /* Copy ABFD's program header table entries to *PHDRS. The entries
9859 will be stored as an array of Elf_Internal_Phdr structures, as
9860 defined in include/elf/internal.h. To find out how large the
9861 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9862
9863 Return the number of program header table entries read, or -1 if an
9864 error occurs; bfd_get_error will return an appropriate code. */
9865
9866 int
9867 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9868 {
9869 int num_phdrs;
9870
9871 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9872 {
9873 bfd_set_error (bfd_error_wrong_format);
9874 return -1;
9875 }
9876
9877 num_phdrs = elf_elfheader (abfd)->e_phnum;
9878 memcpy (phdrs, elf_tdata (abfd)->phdr,
9879 num_phdrs * sizeof (Elf_Internal_Phdr));
9880
9881 return num_phdrs;
9882 }
9883
9884 enum elf_reloc_type_class
9885 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
9886 const asection *rel_sec ATTRIBUTE_UNUSED,
9887 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9888 {
9889 return reloc_class_normal;
9890 }
9891
9892 /* For RELA architectures, return the relocation value for a
9893 relocation against a local symbol. */
9894
9895 bfd_vma
9896 _bfd_elf_rela_local_sym (bfd *abfd,
9897 Elf_Internal_Sym *sym,
9898 asection **psec,
9899 Elf_Internal_Rela *rel)
9900 {
9901 asection *sec = *psec;
9902 bfd_vma relocation;
9903
9904 relocation = (sec->output_section->vma
9905 + sec->output_offset
9906 + sym->st_value);
9907 if ((sec->flags & SEC_MERGE)
9908 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9909 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9910 {
9911 rel->r_addend =
9912 _bfd_merged_section_offset (abfd, psec,
9913 elf_section_data (sec)->sec_info,
9914 sym->st_value + rel->r_addend);
9915 if (sec != *psec)
9916 {
9917 /* If we have changed the section, and our original section is
9918 marked with SEC_EXCLUDE, it means that the original
9919 SEC_MERGE section has been completely subsumed in some
9920 other SEC_MERGE section. In this case, we need to leave
9921 some info around for --emit-relocs. */
9922 if ((sec->flags & SEC_EXCLUDE) != 0)
9923 sec->kept_section = *psec;
9924 sec = *psec;
9925 }
9926 rel->r_addend -= relocation;
9927 rel->r_addend += sec->output_section->vma + sec->output_offset;
9928 }
9929 return relocation;
9930 }
9931
9932 bfd_vma
9933 _bfd_elf_rel_local_sym (bfd *abfd,
9934 Elf_Internal_Sym *sym,
9935 asection **psec,
9936 bfd_vma addend)
9937 {
9938 asection *sec = *psec;
9939
9940 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9941 return sym->st_value + addend;
9942
9943 return _bfd_merged_section_offset (abfd, psec,
9944 elf_section_data (sec)->sec_info,
9945 sym->st_value + addend);
9946 }
9947
9948 bfd_vma
9949 _bfd_elf_section_offset (bfd *abfd,
9950 struct bfd_link_info *info,
9951 asection *sec,
9952 bfd_vma offset)
9953 {
9954 switch (sec->sec_info_type)
9955 {
9956 case SEC_INFO_TYPE_STABS:
9957 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9958 offset);
9959 case SEC_INFO_TYPE_EH_FRAME:
9960 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9961 default:
9962 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9963 {
9964 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9965 bfd_size_type address_size = bed->s->arch_size / 8;
9966 offset = sec->size - offset - address_size;
9967 }
9968 return offset;
9969 }
9970 }
9971 \f
9972 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9973 reconstruct an ELF file by reading the segments out of remote memory
9974 based on the ELF file header at EHDR_VMA and the ELF program headers it
9975 points to. If not null, *LOADBASEP is filled in with the difference
9976 between the VMAs from which the segments were read, and the VMAs the
9977 file headers (and hence BFD's idea of each section's VMA) put them at.
9978
9979 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9980 remote memory at target address VMA into the local buffer at MYADDR; it
9981 should return zero on success or an `errno' code on failure. TEMPL must
9982 be a BFD for an ELF target with the word size and byte order found in
9983 the remote memory. */
9984
9985 bfd *
9986 bfd_elf_bfd_from_remote_memory
9987 (bfd *templ,
9988 bfd_vma ehdr_vma,
9989 bfd_size_type size,
9990 bfd_vma *loadbasep,
9991 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9992 {
9993 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9994 (templ, ehdr_vma, size, loadbasep, target_read_memory);
9995 }
9996 \f
9997 long
9998 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9999 long symcount ATTRIBUTE_UNUSED,
10000 asymbol **syms ATTRIBUTE_UNUSED,
10001 long dynsymcount,
10002 asymbol **dynsyms,
10003 asymbol **ret)
10004 {
10005 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10006 asection *relplt;
10007 asymbol *s;
10008 const char *relplt_name;
10009 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
10010 arelent *p;
10011 long count, i, n;
10012 size_t size;
10013 Elf_Internal_Shdr *hdr;
10014 char *names;
10015 asection *plt;
10016
10017 *ret = NULL;
10018
10019 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
10020 return 0;
10021
10022 if (dynsymcount <= 0)
10023 return 0;
10024
10025 if (!bed->plt_sym_val)
10026 return 0;
10027
10028 relplt_name = bed->relplt_name;
10029 if (relplt_name == NULL)
10030 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
10031 relplt = bfd_get_section_by_name (abfd, relplt_name);
10032 if (relplt == NULL)
10033 return 0;
10034
10035 hdr = &elf_section_data (relplt)->this_hdr;
10036 if (hdr->sh_link != elf_dynsymtab (abfd)
10037 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
10038 return 0;
10039
10040 plt = bfd_get_section_by_name (abfd, ".plt");
10041 if (plt == NULL)
10042 return 0;
10043
10044 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
10045 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
10046 return -1;
10047
10048 count = relplt->size / hdr->sh_entsize;
10049 size = count * sizeof (asymbol);
10050 p = relplt->relocation;
10051 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10052 {
10053 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
10054 if (p->addend != 0)
10055 {
10056 #ifdef BFD64
10057 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
10058 #else
10059 size += sizeof ("+0x") - 1 + 8;
10060 #endif
10061 }
10062 }
10063
10064 s = *ret = (asymbol *) bfd_malloc (size);
10065 if (s == NULL)
10066 return -1;
10067
10068 names = (char *) (s + count);
10069 p = relplt->relocation;
10070 n = 0;
10071 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10072 {
10073 size_t len;
10074 bfd_vma addr;
10075
10076 addr = bed->plt_sym_val (i, plt, p);
10077 if (addr == (bfd_vma) -1)
10078 continue;
10079
10080 *s = **p->sym_ptr_ptr;
10081 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
10082 we are defining a symbol, ensure one of them is set. */
10083 if ((s->flags & BSF_LOCAL) == 0)
10084 s->flags |= BSF_GLOBAL;
10085 s->flags |= BSF_SYNTHETIC;
10086 s->section = plt;
10087 s->value = addr - plt->vma;
10088 s->name = names;
10089 s->udata.p = NULL;
10090 len = strlen ((*p->sym_ptr_ptr)->name);
10091 memcpy (names, (*p->sym_ptr_ptr)->name, len);
10092 names += len;
10093 if (p->addend != 0)
10094 {
10095 char buf[30], *a;
10096
10097 memcpy (names, "+0x", sizeof ("+0x") - 1);
10098 names += sizeof ("+0x") - 1;
10099 bfd_sprintf_vma (abfd, buf, p->addend);
10100 for (a = buf; *a == '0'; ++a)
10101 ;
10102 len = strlen (a);
10103 memcpy (names, a, len);
10104 names += len;
10105 }
10106 memcpy (names, "@plt", sizeof ("@plt"));
10107 names += sizeof ("@plt");
10108 ++s, ++n;
10109 }
10110
10111 return n;
10112 }
10113
10114 /* It is only used by x86-64 so far. */
10115 asection _bfd_elf_large_com_section
10116 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10117 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10118
10119 void
10120 _bfd_elf_post_process_headers (bfd * abfd,
10121 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10122 {
10123 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10124
10125 i_ehdrp = elf_elfheader (abfd);
10126
10127 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10128
10129 /* To make things simpler for the loader on Linux systems we set the
10130 osabi field to ELFOSABI_GNU if the binary contains symbols of
10131 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10132 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10133 && elf_tdata (abfd)->has_gnu_symbols)
10134 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10135 }
10136
10137
10138 /* Return TRUE for ELF symbol types that represent functions.
10139 This is the default version of this function, which is sufficient for
10140 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10141
10142 bfd_boolean
10143 _bfd_elf_is_function_type (unsigned int type)
10144 {
10145 return (type == STT_FUNC
10146 || type == STT_GNU_IFUNC);
10147 }
10148
10149 /* If the ELF symbol SYM might be a function in SEC, return the
10150 function size and set *CODE_OFF to the function's entry point,
10151 otherwise return zero. */
10152
10153 bfd_size_type
10154 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10155 bfd_vma *code_off)
10156 {
10157 bfd_size_type size;
10158
10159 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10160 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10161 || sym->section != sec)
10162 return 0;
10163
10164 *code_off = sym->value;
10165 size = 0;
10166 if (!(sym->flags & BSF_SYNTHETIC))
10167 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10168 if (size == 0)
10169 size = 1;
10170 return size;
10171 }
This page took 0.256975 seconds and 4 git commands to generate.