Fix spelling in comments in .y files (ld)
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 /* xgettext:c-format */
342 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"),
343 abfd, shindex);
344 return NULL;
345 }
346
347 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
348 return NULL;
349 }
350
351 if (strindex >= hdr->sh_size)
352 {
353 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
354 _bfd_error_handler
355 /* xgettext:c-format */
356 (_("%B: invalid string offset %u >= %lu for section `%s'"),
357 abfd, strindex, (unsigned long) hdr->sh_size,
358 (shindex == shstrndx && strindex == hdr->sh_name
359 ? ".shstrtab"
360 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
361 return NULL;
362 }
363
364 return ((char *) hdr->contents) + strindex;
365 }
366
367 /* Read and convert symbols to internal format.
368 SYMCOUNT specifies the number of symbols to read, starting from
369 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
370 are non-NULL, they are used to store the internal symbols, external
371 symbols, and symbol section index extensions, respectively.
372 Returns a pointer to the internal symbol buffer (malloced if necessary)
373 or NULL if there were no symbols or some kind of problem. */
374
375 Elf_Internal_Sym *
376 bfd_elf_get_elf_syms (bfd *ibfd,
377 Elf_Internal_Shdr *symtab_hdr,
378 size_t symcount,
379 size_t symoffset,
380 Elf_Internal_Sym *intsym_buf,
381 void *extsym_buf,
382 Elf_External_Sym_Shndx *extshndx_buf)
383 {
384 Elf_Internal_Shdr *shndx_hdr;
385 void *alloc_ext;
386 const bfd_byte *esym;
387 Elf_External_Sym_Shndx *alloc_extshndx;
388 Elf_External_Sym_Shndx *shndx;
389 Elf_Internal_Sym *alloc_intsym;
390 Elf_Internal_Sym *isym;
391 Elf_Internal_Sym *isymend;
392 const struct elf_backend_data *bed;
393 size_t extsym_size;
394 bfd_size_type amt;
395 file_ptr pos;
396
397 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
398 abort ();
399
400 if (symcount == 0)
401 return intsym_buf;
402
403 /* Normal syms might have section extension entries. */
404 shndx_hdr = NULL;
405 if (elf_symtab_shndx_list (ibfd) != NULL)
406 {
407 elf_section_list * entry;
408 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
409
410 /* Find an index section that is linked to this symtab section. */
411 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
412 {
413 /* PR 20063. */
414 if (entry->hdr.sh_link >= elf_numsections (ibfd))
415 continue;
416
417 if (sections[entry->hdr.sh_link] == symtab_hdr)
418 {
419 shndx_hdr = & entry->hdr;
420 break;
421 };
422 }
423
424 if (shndx_hdr == NULL)
425 {
426 if (symtab_hdr == & elf_symtab_hdr (ibfd))
427 /* Not really accurate, but this was how the old code used to work. */
428 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
429 /* Otherwise we do nothing. The assumption is that
430 the index table will not be needed. */
431 }
432 }
433
434 /* Read the symbols. */
435 alloc_ext = NULL;
436 alloc_extshndx = NULL;
437 alloc_intsym = NULL;
438 bed = get_elf_backend_data (ibfd);
439 extsym_size = bed->s->sizeof_sym;
440 amt = (bfd_size_type) symcount * extsym_size;
441 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
442 if (extsym_buf == NULL)
443 {
444 alloc_ext = bfd_malloc2 (symcount, extsym_size);
445 extsym_buf = alloc_ext;
446 }
447 if (extsym_buf == NULL
448 || bfd_seek (ibfd, pos, SEEK_SET) != 0
449 || bfd_bread (extsym_buf, amt, ibfd) != amt)
450 {
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
456 extshndx_buf = NULL;
457 else
458 {
459 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
460 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
461 if (extshndx_buf == NULL)
462 {
463 alloc_extshndx = (Elf_External_Sym_Shndx *)
464 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
465 extshndx_buf = alloc_extshndx;
466 }
467 if (extshndx_buf == NULL
468 || bfd_seek (ibfd, pos, SEEK_SET) != 0
469 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
470 {
471 intsym_buf = NULL;
472 goto out;
473 }
474 }
475
476 if (intsym_buf == NULL)
477 {
478 alloc_intsym = (Elf_Internal_Sym *)
479 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
480 intsym_buf = alloc_intsym;
481 if (intsym_buf == NULL)
482 goto out;
483 }
484
485 /* Convert the symbols to internal form. */
486 isymend = intsym_buf + symcount;
487 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
488 shndx = extshndx_buf;
489 isym < isymend;
490 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
491 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
492 {
493 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
494 /* xgettext:c-format */
495 _bfd_error_handler (_("%B symbol number %lu references "
496 "nonexistent SHT_SYMTAB_SHNDX section"),
497 ibfd, (unsigned long) symoffset);
498 if (alloc_intsym != NULL)
499 free (alloc_intsym);
500 intsym_buf = NULL;
501 goto out;
502 }
503
504 out:
505 if (alloc_ext != NULL)
506 free (alloc_ext);
507 if (alloc_extshndx != NULL)
508 free (alloc_extshndx);
509
510 return intsym_buf;
511 }
512
513 /* Look up a symbol name. */
514 const char *
515 bfd_elf_sym_name (bfd *abfd,
516 Elf_Internal_Shdr *symtab_hdr,
517 Elf_Internal_Sym *isym,
518 asection *sym_sec)
519 {
520 const char *name;
521 unsigned int iname = isym->st_name;
522 unsigned int shindex = symtab_hdr->sh_link;
523
524 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
525 /* Check for a bogus st_shndx to avoid crashing. */
526 && isym->st_shndx < elf_numsections (abfd))
527 {
528 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
529 shindex = elf_elfheader (abfd)->e_shstrndx;
530 }
531
532 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
533 if (name == NULL)
534 name = "(null)";
535 else if (sym_sec && *name == '\0')
536 name = bfd_section_name (abfd, sym_sec);
537
538 return name;
539 }
540
541 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
542 sections. The first element is the flags, the rest are section
543 pointers. */
544
545 typedef union elf_internal_group {
546 Elf_Internal_Shdr *shdr;
547 unsigned int flags;
548 } Elf_Internal_Group;
549
550 /* Return the name of the group signature symbol. Why isn't the
551 signature just a string? */
552
553 static const char *
554 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
555 {
556 Elf_Internal_Shdr *hdr;
557 unsigned char esym[sizeof (Elf64_External_Sym)];
558 Elf_External_Sym_Shndx eshndx;
559 Elf_Internal_Sym isym;
560
561 /* First we need to ensure the symbol table is available. Make sure
562 that it is a symbol table section. */
563 if (ghdr->sh_link >= elf_numsections (abfd))
564 return NULL;
565 hdr = elf_elfsections (abfd) [ghdr->sh_link];
566 if (hdr->sh_type != SHT_SYMTAB
567 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
568 return NULL;
569
570 /* Go read the symbol. */
571 hdr = &elf_tdata (abfd)->symtab_hdr;
572 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
573 &isym, esym, &eshndx) == NULL)
574 return NULL;
575
576 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
577 }
578
579 /* Set next_in_group list pointer, and group name for NEWSECT. */
580
581 static bfd_boolean
582 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
583 {
584 unsigned int num_group = elf_tdata (abfd)->num_group;
585
586 /* If num_group is zero, read in all SHT_GROUP sections. The count
587 is set to -1 if there are no SHT_GROUP sections. */
588 if (num_group == 0)
589 {
590 unsigned int i, shnum;
591
592 /* First count the number of groups. If we have a SHT_GROUP
593 section with just a flag word (ie. sh_size is 4), ignore it. */
594 shnum = elf_numsections (abfd);
595 num_group = 0;
596
597 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
598 ( (shdr)->sh_type == SHT_GROUP \
599 && (shdr)->sh_size >= minsize \
600 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
601 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
602
603 for (i = 0; i < shnum; i++)
604 {
605 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
606
607 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
608 num_group += 1;
609 }
610
611 if (num_group == 0)
612 {
613 num_group = (unsigned) -1;
614 elf_tdata (abfd)->num_group = num_group;
615 }
616 else
617 {
618 /* We keep a list of elf section headers for group sections,
619 so we can find them quickly. */
620 bfd_size_type amt;
621
622 elf_tdata (abfd)->num_group = num_group;
623 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
624 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
625 if (elf_tdata (abfd)->group_sect_ptr == NULL)
626 return FALSE;
627
628 num_group = 0;
629 for (i = 0; i < shnum; i++)
630 {
631 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
632
633 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
634 {
635 unsigned char *src;
636 Elf_Internal_Group *dest;
637
638 /* Add to list of sections. */
639 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
640 num_group += 1;
641
642 /* Read the raw contents. */
643 BFD_ASSERT (sizeof (*dest) >= 4);
644 amt = shdr->sh_size * sizeof (*dest) / 4;
645 shdr->contents = (unsigned char *)
646 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
647 /* PR binutils/4110: Handle corrupt group headers. */
648 if (shdr->contents == NULL)
649 {
650 _bfd_error_handler
651 /* xgettext:c-format */
652 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
653 bfd_set_error (bfd_error_bad_value);
654 -- num_group;
655 continue;
656 }
657
658 memset (shdr->contents, 0, amt);
659
660 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
661 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
662 != shdr->sh_size))
663 {
664 _bfd_error_handler
665 /* xgettext:c-format */
666 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size);
667 bfd_set_error (bfd_error_bad_value);
668 -- num_group;
669 /* PR 17510: If the group contents are even partially
670 corrupt, do not allow any of the contents to be used. */
671 memset (shdr->contents, 0, amt);
672 continue;
673 }
674
675 /* Translate raw contents, a flag word followed by an
676 array of elf section indices all in target byte order,
677 to the flag word followed by an array of elf section
678 pointers. */
679 src = shdr->contents + shdr->sh_size;
680 dest = (Elf_Internal_Group *) (shdr->contents + amt);
681
682 while (1)
683 {
684 unsigned int idx;
685
686 src -= 4;
687 --dest;
688 idx = H_GET_32 (abfd, src);
689 if (src == shdr->contents)
690 {
691 dest->flags = idx;
692 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
693 shdr->bfd_section->flags
694 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
695 break;
696 }
697 if (idx >= shnum)
698 {
699 _bfd_error_handler
700 (_("%B: invalid SHT_GROUP entry"), abfd);
701 idx = 0;
702 }
703 dest->shdr = elf_elfsections (abfd)[idx];
704 }
705 }
706 }
707
708 /* PR 17510: Corrupt binaries might contain invalid groups. */
709 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
710 {
711 elf_tdata (abfd)->num_group = num_group;
712
713 /* If all groups are invalid then fail. */
714 if (num_group == 0)
715 {
716 elf_tdata (abfd)->group_sect_ptr = NULL;
717 elf_tdata (abfd)->num_group = num_group = -1;
718 _bfd_error_handler
719 (_("%B: no valid group sections found"), abfd);
720 bfd_set_error (bfd_error_bad_value);
721 }
722 }
723 }
724 }
725
726 if (num_group != (unsigned) -1)
727 {
728 unsigned int i;
729
730 for (i = 0; i < num_group; i++)
731 {
732 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
733 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
734 unsigned int n_elt = shdr->sh_size / 4;
735
736 /* Look through this group's sections to see if current
737 section is a member. */
738 while (--n_elt != 0)
739 if ((++idx)->shdr == hdr)
740 {
741 asection *s = NULL;
742
743 /* We are a member of this group. Go looking through
744 other members to see if any others are linked via
745 next_in_group. */
746 idx = (Elf_Internal_Group *) shdr->contents;
747 n_elt = shdr->sh_size / 4;
748 while (--n_elt != 0)
749 if ((s = (++idx)->shdr->bfd_section) != NULL
750 && elf_next_in_group (s) != NULL)
751 break;
752 if (n_elt != 0)
753 {
754 /* Snarf the group name from other member, and
755 insert current section in circular list. */
756 elf_group_name (newsect) = elf_group_name (s);
757 elf_next_in_group (newsect) = elf_next_in_group (s);
758 elf_next_in_group (s) = newsect;
759 }
760 else
761 {
762 const char *gname;
763
764 gname = group_signature (abfd, shdr);
765 if (gname == NULL)
766 return FALSE;
767 elf_group_name (newsect) = gname;
768
769 /* Start a circular list with one element. */
770 elf_next_in_group (newsect) = newsect;
771 }
772
773 /* If the group section has been created, point to the
774 new member. */
775 if (shdr->bfd_section != NULL)
776 elf_next_in_group (shdr->bfd_section) = newsect;
777
778 i = num_group - 1;
779 break;
780 }
781 }
782 }
783
784 if (elf_group_name (newsect) == NULL)
785 {
786 /* xgettext:c-format */
787 _bfd_error_handler (_("%B: no group info for section %A"),
788 abfd, newsect);
789 return FALSE;
790 }
791 return TRUE;
792 }
793
794 bfd_boolean
795 _bfd_elf_setup_sections (bfd *abfd)
796 {
797 unsigned int i;
798 unsigned int num_group = elf_tdata (abfd)->num_group;
799 bfd_boolean result = TRUE;
800 asection *s;
801
802 /* Process SHF_LINK_ORDER. */
803 for (s = abfd->sections; s != NULL; s = s->next)
804 {
805 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
806 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
807 {
808 unsigned int elfsec = this_hdr->sh_link;
809 /* FIXME: The old Intel compiler and old strip/objcopy may
810 not set the sh_link or sh_info fields. Hence we could
811 get the situation where elfsec is 0. */
812 if (elfsec == 0)
813 {
814 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
815 if (bed->link_order_error_handler)
816 bed->link_order_error_handler
817 /* xgettext:c-format */
818 (_("%B: warning: sh_link not set for section `%A'"),
819 abfd, s);
820 }
821 else
822 {
823 asection *linksec = NULL;
824
825 if (elfsec < elf_numsections (abfd))
826 {
827 this_hdr = elf_elfsections (abfd)[elfsec];
828 linksec = this_hdr->bfd_section;
829 }
830
831 /* PR 1991, 2008:
832 Some strip/objcopy may leave an incorrect value in
833 sh_link. We don't want to proceed. */
834 if (linksec == NULL)
835 {
836 _bfd_error_handler
837 /* xgettext:c-format */
838 (_("%B: sh_link [%d] in section `%A' is incorrect"),
839 s->owner, s, elfsec);
840 result = FALSE;
841 }
842
843 elf_linked_to_section (s) = linksec;
844 }
845 }
846 else if (this_hdr->sh_type == SHT_GROUP
847 && elf_next_in_group (s) == NULL)
848 {
849 _bfd_error_handler
850 /* xgettext:c-format */
851 (_("%B: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
852 abfd, elf_section_data (s)->this_idx);
853 result = FALSE;
854 }
855 }
856
857 /* Process section groups. */
858 if (num_group == (unsigned) -1)
859 return result;
860
861 for (i = 0; i < num_group; i++)
862 {
863 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
864 Elf_Internal_Group *idx;
865 unsigned int n_elt;
866
867 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
868 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
869 {
870 _bfd_error_handler
871 /* xgettext:c-format */
872 (_("%B: section group entry number %u is corrupt"),
873 abfd, i);
874 result = FALSE;
875 continue;
876 }
877
878 idx = (Elf_Internal_Group *) shdr->contents;
879 n_elt = shdr->sh_size / 4;
880
881 while (--n_elt != 0)
882 if ((++idx)->shdr->bfd_section)
883 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
884 else if (idx->shdr->sh_type == SHT_RELA
885 || idx->shdr->sh_type == SHT_REL)
886 /* We won't include relocation sections in section groups in
887 output object files. We adjust the group section size here
888 so that relocatable link will work correctly when
889 relocation sections are in section group in input object
890 files. */
891 shdr->bfd_section->size -= 4;
892 else
893 {
894 /* There are some unknown sections in the group. */
895 _bfd_error_handler
896 /* xgettext:c-format */
897 (_("%B: unknown [%d] section `%s' in group [%s]"),
898 abfd,
899 (unsigned int) idx->shdr->sh_type,
900 bfd_elf_string_from_elf_section (abfd,
901 (elf_elfheader (abfd)
902 ->e_shstrndx),
903 idx->shdr->sh_name),
904 shdr->bfd_section->name);
905 result = FALSE;
906 }
907 }
908 return result;
909 }
910
911 bfd_boolean
912 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
913 {
914 return elf_next_in_group (sec) != NULL;
915 }
916
917 static char *
918 convert_debug_to_zdebug (bfd *abfd, const char *name)
919 {
920 unsigned int len = strlen (name);
921 char *new_name = bfd_alloc (abfd, len + 2);
922 if (new_name == NULL)
923 return NULL;
924 new_name[0] = '.';
925 new_name[1] = 'z';
926 memcpy (new_name + 2, name + 1, len);
927 return new_name;
928 }
929
930 static char *
931 convert_zdebug_to_debug (bfd *abfd, const char *name)
932 {
933 unsigned int len = strlen (name);
934 char *new_name = bfd_alloc (abfd, len);
935 if (new_name == NULL)
936 return NULL;
937 new_name[0] = '.';
938 memcpy (new_name + 1, name + 2, len - 1);
939 return new_name;
940 }
941
942 /* Make a BFD section from an ELF section. We store a pointer to the
943 BFD section in the bfd_section field of the header. */
944
945 bfd_boolean
946 _bfd_elf_make_section_from_shdr (bfd *abfd,
947 Elf_Internal_Shdr *hdr,
948 const char *name,
949 int shindex)
950 {
951 asection *newsect;
952 flagword flags;
953 const struct elf_backend_data *bed;
954
955 if (hdr->bfd_section != NULL)
956 return TRUE;
957
958 newsect = bfd_make_section_anyway (abfd, name);
959 if (newsect == NULL)
960 return FALSE;
961
962 hdr->bfd_section = newsect;
963 elf_section_data (newsect)->this_hdr = *hdr;
964 elf_section_data (newsect)->this_idx = shindex;
965
966 /* Always use the real type/flags. */
967 elf_section_type (newsect) = hdr->sh_type;
968 elf_section_flags (newsect) = hdr->sh_flags;
969
970 newsect->filepos = hdr->sh_offset;
971
972 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
973 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
974 || ! bfd_set_section_alignment (abfd, newsect,
975 bfd_log2 (hdr->sh_addralign)))
976 return FALSE;
977
978 flags = SEC_NO_FLAGS;
979 if (hdr->sh_type != SHT_NOBITS)
980 flags |= SEC_HAS_CONTENTS;
981 if (hdr->sh_type == SHT_GROUP)
982 flags |= SEC_GROUP | SEC_EXCLUDE;
983 if ((hdr->sh_flags & SHF_ALLOC) != 0)
984 {
985 flags |= SEC_ALLOC;
986 if (hdr->sh_type != SHT_NOBITS)
987 flags |= SEC_LOAD;
988 }
989 if ((hdr->sh_flags & SHF_WRITE) == 0)
990 flags |= SEC_READONLY;
991 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
992 flags |= SEC_CODE;
993 else if ((flags & SEC_LOAD) != 0)
994 flags |= SEC_DATA;
995 if ((hdr->sh_flags & SHF_MERGE) != 0)
996 {
997 flags |= SEC_MERGE;
998 newsect->entsize = hdr->sh_entsize;
999 }
1000 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1001 flags |= SEC_STRINGS;
1002 if (hdr->sh_flags & SHF_GROUP)
1003 if (!setup_group (abfd, hdr, newsect))
1004 return FALSE;
1005 if ((hdr->sh_flags & SHF_TLS) != 0)
1006 flags |= SEC_THREAD_LOCAL;
1007 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1008 flags |= SEC_EXCLUDE;
1009
1010 if ((flags & SEC_ALLOC) == 0)
1011 {
1012 /* The debugging sections appear to be recognized only by name,
1013 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1014 if (name [0] == '.')
1015 {
1016 const char *p;
1017 int n;
1018 if (name[1] == 'd')
1019 p = ".debug", n = 6;
1020 else if (name[1] == 'g' && name[2] == 'n')
1021 p = ".gnu.linkonce.wi.", n = 17;
1022 else if (name[1] == 'g' && name[2] == 'd')
1023 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1024 else if (name[1] == 'l')
1025 p = ".line", n = 5;
1026 else if (name[1] == 's')
1027 p = ".stab", n = 5;
1028 else if (name[1] == 'z')
1029 p = ".zdebug", n = 7;
1030 else
1031 p = NULL, n = 0;
1032 if (p != NULL && strncmp (name, p, n) == 0)
1033 flags |= SEC_DEBUGGING;
1034 }
1035 }
1036
1037 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1038 only link a single copy of the section. This is used to support
1039 g++. g++ will emit each template expansion in its own section.
1040 The symbols will be defined as weak, so that multiple definitions
1041 are permitted. The GNU linker extension is to actually discard
1042 all but one of the sections. */
1043 if (CONST_STRNEQ (name, ".gnu.linkonce")
1044 && elf_next_in_group (newsect) == NULL)
1045 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1046
1047 bed = get_elf_backend_data (abfd);
1048 if (bed->elf_backend_section_flags)
1049 if (! bed->elf_backend_section_flags (&flags, hdr))
1050 return FALSE;
1051
1052 if (! bfd_set_section_flags (abfd, newsect, flags))
1053 return FALSE;
1054
1055 /* We do not parse the PT_NOTE segments as we are interested even in the
1056 separate debug info files which may have the segments offsets corrupted.
1057 PT_NOTEs from the core files are currently not parsed using BFD. */
1058 if (hdr->sh_type == SHT_NOTE)
1059 {
1060 bfd_byte *contents;
1061
1062 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1063 return FALSE;
1064
1065 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
1066 free (contents);
1067 }
1068
1069 if ((flags & SEC_ALLOC) != 0)
1070 {
1071 Elf_Internal_Phdr *phdr;
1072 unsigned int i, nload;
1073
1074 /* Some ELF linkers produce binaries with all the program header
1075 p_paddr fields zero. If we have such a binary with more than
1076 one PT_LOAD header, then leave the section lma equal to vma
1077 so that we don't create sections with overlapping lma. */
1078 phdr = elf_tdata (abfd)->phdr;
1079 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1080 if (phdr->p_paddr != 0)
1081 break;
1082 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1083 ++nload;
1084 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1085 return TRUE;
1086
1087 phdr = elf_tdata (abfd)->phdr;
1088 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1089 {
1090 if (((phdr->p_type == PT_LOAD
1091 && (hdr->sh_flags & SHF_TLS) == 0)
1092 || phdr->p_type == PT_TLS)
1093 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1094 {
1095 if ((flags & SEC_LOAD) == 0)
1096 newsect->lma = (phdr->p_paddr
1097 + hdr->sh_addr - phdr->p_vaddr);
1098 else
1099 /* We used to use the same adjustment for SEC_LOAD
1100 sections, but that doesn't work if the segment
1101 is packed with code from multiple VMAs.
1102 Instead we calculate the section LMA based on
1103 the segment LMA. It is assumed that the
1104 segment will contain sections with contiguous
1105 LMAs, even if the VMAs are not. */
1106 newsect->lma = (phdr->p_paddr
1107 + hdr->sh_offset - phdr->p_offset);
1108
1109 /* With contiguous segments, we can't tell from file
1110 offsets whether a section with zero size should
1111 be placed at the end of one segment or the
1112 beginning of the next. Decide based on vaddr. */
1113 if (hdr->sh_addr >= phdr->p_vaddr
1114 && (hdr->sh_addr + hdr->sh_size
1115 <= phdr->p_vaddr + phdr->p_memsz))
1116 break;
1117 }
1118 }
1119 }
1120
1121 /* Compress/decompress DWARF debug sections with names: .debug_* and
1122 .zdebug_*, after the section flags is set. */
1123 if ((flags & SEC_DEBUGGING)
1124 && ((name[1] == 'd' && name[6] == '_')
1125 || (name[1] == 'z' && name[7] == '_')))
1126 {
1127 enum { nothing, compress, decompress } action = nothing;
1128 int compression_header_size;
1129 bfd_size_type uncompressed_size;
1130 bfd_boolean compressed
1131 = bfd_is_section_compressed_with_header (abfd, newsect,
1132 &compression_header_size,
1133 &uncompressed_size);
1134
1135 if (compressed)
1136 {
1137 /* Compressed section. Check if we should decompress. */
1138 if ((abfd->flags & BFD_DECOMPRESS))
1139 action = decompress;
1140 }
1141
1142 /* Compress the uncompressed section or convert from/to .zdebug*
1143 section. Check if we should compress. */
1144 if (action == nothing)
1145 {
1146 if (newsect->size != 0
1147 && (abfd->flags & BFD_COMPRESS)
1148 && compression_header_size >= 0
1149 && uncompressed_size > 0
1150 && (!compressed
1151 || ((compression_header_size > 0)
1152 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1153 action = compress;
1154 else
1155 return TRUE;
1156 }
1157
1158 if (action == compress)
1159 {
1160 if (!bfd_init_section_compress_status (abfd, newsect))
1161 {
1162 _bfd_error_handler
1163 /* xgettext:c-format */
1164 (_("%B: unable to initialize compress status for section %s"),
1165 abfd, name);
1166 return FALSE;
1167 }
1168 }
1169 else
1170 {
1171 if (!bfd_init_section_decompress_status (abfd, newsect))
1172 {
1173 _bfd_error_handler
1174 /* xgettext:c-format */
1175 (_("%B: unable to initialize decompress status for section %s"),
1176 abfd, name);
1177 return FALSE;
1178 }
1179 }
1180
1181 if (abfd->is_linker_input)
1182 {
1183 if (name[1] == 'z'
1184 && (action == decompress
1185 || (action == compress
1186 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1187 {
1188 /* Convert section name from .zdebug_* to .debug_* so
1189 that linker will consider this section as a debug
1190 section. */
1191 char *new_name = convert_zdebug_to_debug (abfd, name);
1192 if (new_name == NULL)
1193 return FALSE;
1194 bfd_rename_section (abfd, newsect, new_name);
1195 }
1196 }
1197 else
1198 /* For objdump, don't rename the section. For objcopy, delay
1199 section rename to elf_fake_sections. */
1200 newsect->flags |= SEC_ELF_RENAME;
1201 }
1202
1203 return TRUE;
1204 }
1205
1206 const char *const bfd_elf_section_type_names[] =
1207 {
1208 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1209 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1210 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1211 };
1212
1213 /* ELF relocs are against symbols. If we are producing relocatable
1214 output, and the reloc is against an external symbol, and nothing
1215 has given us any additional addend, the resulting reloc will also
1216 be against the same symbol. In such a case, we don't want to
1217 change anything about the way the reloc is handled, since it will
1218 all be done at final link time. Rather than put special case code
1219 into bfd_perform_relocation, all the reloc types use this howto
1220 function. It just short circuits the reloc if producing
1221 relocatable output against an external symbol. */
1222
1223 bfd_reloc_status_type
1224 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1225 arelent *reloc_entry,
1226 asymbol *symbol,
1227 void *data ATTRIBUTE_UNUSED,
1228 asection *input_section,
1229 bfd *output_bfd,
1230 char **error_message ATTRIBUTE_UNUSED)
1231 {
1232 if (output_bfd != NULL
1233 && (symbol->flags & BSF_SECTION_SYM) == 0
1234 && (! reloc_entry->howto->partial_inplace
1235 || reloc_entry->addend == 0))
1236 {
1237 reloc_entry->address += input_section->output_offset;
1238 return bfd_reloc_ok;
1239 }
1240
1241 return bfd_reloc_continue;
1242 }
1243 \f
1244 /* Returns TRUE if section A matches section B.
1245 Names, addresses and links may be different, but everything else
1246 should be the same. */
1247
1248 static bfd_boolean
1249 section_match (const Elf_Internal_Shdr * a,
1250 const Elf_Internal_Shdr * b)
1251 {
1252 return
1253 a->sh_type == b->sh_type
1254 && (a->sh_flags & ~ SHF_INFO_LINK)
1255 == (b->sh_flags & ~ SHF_INFO_LINK)
1256 && a->sh_addralign == b->sh_addralign
1257 && a->sh_size == b->sh_size
1258 && a->sh_entsize == b->sh_entsize
1259 /* FIXME: Check sh_addr ? */
1260 ;
1261 }
1262
1263 /* Find a section in OBFD that has the same characteristics
1264 as IHEADER. Return the index of this section or SHN_UNDEF if
1265 none can be found. Check's section HINT first, as this is likely
1266 to be the correct section. */
1267
1268 static unsigned int
1269 find_link (const bfd * obfd, const Elf_Internal_Shdr * iheader, const unsigned int hint)
1270 {
1271 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1272 unsigned int i;
1273
1274 if (section_match (oheaders[hint], iheader))
1275 return hint;
1276
1277 for (i = 1; i < elf_numsections (obfd); i++)
1278 {
1279 Elf_Internal_Shdr * oheader = oheaders[i];
1280
1281 if (section_match (oheader, iheader))
1282 /* FIXME: Do we care if there is a potential for
1283 multiple matches ? */
1284 return i;
1285 }
1286
1287 return SHN_UNDEF;
1288 }
1289
1290 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1291 Processor specific section, based upon a matching input section.
1292 Returns TRUE upon success, FALSE otherwise. */
1293
1294 static bfd_boolean
1295 copy_special_section_fields (const bfd *ibfd,
1296 bfd *obfd,
1297 const Elf_Internal_Shdr *iheader,
1298 Elf_Internal_Shdr *oheader,
1299 const unsigned int secnum)
1300 {
1301 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1302 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1303 bfd_boolean changed = FALSE;
1304 unsigned int sh_link;
1305
1306 if (oheader->sh_type == SHT_NOBITS)
1307 {
1308 /* This is a feature for objcopy --only-keep-debug:
1309 When a section's type is changed to NOBITS, we preserve
1310 the sh_link and sh_info fields so that they can be
1311 matched up with the original.
1312
1313 Note: Strictly speaking these assignments are wrong.
1314 The sh_link and sh_info fields should point to the
1315 relevent sections in the output BFD, which may not be in
1316 the same location as they were in the input BFD. But
1317 the whole point of this action is to preserve the
1318 original values of the sh_link and sh_info fields, so
1319 that they can be matched up with the section headers in
1320 the original file. So strictly speaking we may be
1321 creating an invalid ELF file, but it is only for a file
1322 that just contains debug info and only for sections
1323 without any contents. */
1324 if (oheader->sh_link == 0)
1325 oheader->sh_link = iheader->sh_link;
1326 if (oheader->sh_info == 0)
1327 oheader->sh_info = iheader->sh_info;
1328 return TRUE;
1329 }
1330
1331 /* Allow the target a chance to decide how these fields should be set. */
1332 if (bed->elf_backend_copy_special_section_fields != NULL
1333 && bed->elf_backend_copy_special_section_fields
1334 (ibfd, obfd, iheader, oheader))
1335 return TRUE;
1336
1337 /* We have an iheader which might match oheader, and which has non-zero
1338 sh_info and/or sh_link fields. Attempt to follow those links and find
1339 the section in the output bfd which corresponds to the linked section
1340 in the input bfd. */
1341 if (iheader->sh_link != SHN_UNDEF)
1342 {
1343 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1344 if (sh_link != SHN_UNDEF)
1345 {
1346 oheader->sh_link = sh_link;
1347 changed = TRUE;
1348 }
1349 else
1350 /* FIXME: Should we install iheader->sh_link
1351 if we could not find a match ? */
1352 (* _bfd_error_handler)
1353 /* xgettext:c-format */
1354 (_("%B: Failed to find link section for section %d"), obfd, secnum);
1355 }
1356
1357 if (iheader->sh_info)
1358 {
1359 /* The sh_info field can hold arbitrary information, but if the
1360 SHF_LINK_INFO flag is set then it should be interpreted as a
1361 section index. */
1362 if (iheader->sh_flags & SHF_INFO_LINK)
1363 {
1364 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1365 iheader->sh_info);
1366 if (sh_link != SHN_UNDEF)
1367 oheader->sh_flags |= SHF_INFO_LINK;
1368 }
1369 else
1370 /* No idea what it means - just copy it. */
1371 sh_link = iheader->sh_info;
1372
1373 if (sh_link != SHN_UNDEF)
1374 {
1375 oheader->sh_info = sh_link;
1376 changed = TRUE;
1377 }
1378 else
1379 (* _bfd_error_handler)
1380 /* xgettext:c-format */
1381 (_("%B: Failed to find info section for section %d"), obfd, secnum);
1382 }
1383
1384 return changed;
1385 }
1386
1387 /* Copy the program header and other data from one object module to
1388 another. */
1389
1390 bfd_boolean
1391 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1392 {
1393 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1394 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1395 const struct elf_backend_data *bed;
1396 unsigned int i;
1397
1398 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1399 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1400 return TRUE;
1401
1402 if (!elf_flags_init (obfd))
1403 {
1404 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1405 elf_flags_init (obfd) = TRUE;
1406 }
1407
1408 elf_gp (obfd) = elf_gp (ibfd);
1409
1410 /* Also copy the EI_OSABI field. */
1411 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1412 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1413
1414 /* If set, copy the EI_ABIVERSION field. */
1415 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1416 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1417 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1418
1419 /* Copy object attributes. */
1420 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1421
1422 if (iheaders == NULL || oheaders == NULL)
1423 return TRUE;
1424
1425 bed = get_elf_backend_data (obfd);
1426
1427 /* Possibly copy other fields in the section header. */
1428 for (i = 1; i < elf_numsections (obfd); i++)
1429 {
1430 unsigned int j;
1431 Elf_Internal_Shdr * oheader = oheaders[i];
1432
1433 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1434 because of a special case need for generating separate debug info
1435 files. See below for more details. */
1436 if (oheader == NULL
1437 || (oheader->sh_type != SHT_NOBITS
1438 && oheader->sh_type < SHT_LOOS))
1439 continue;
1440
1441 /* Ignore empty sections, and sections whose
1442 fields have already been initialised. */
1443 if (oheader->sh_size == 0
1444 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1445 continue;
1446
1447 /* Scan for the matching section in the input bfd.
1448 First we try for a direct mapping between the input and output sections. */
1449 for (j = 1; j < elf_numsections (ibfd); j++)
1450 {
1451 const Elf_Internal_Shdr * iheader = iheaders[j];
1452
1453 if (iheader == NULL)
1454 continue;
1455
1456 if (oheader->bfd_section != NULL
1457 && iheader->bfd_section != NULL
1458 && iheader->bfd_section->output_section != NULL
1459 && iheader->bfd_section->output_section == oheader->bfd_section)
1460 {
1461 /* We have found a connection from the input section to the
1462 output section. Attempt to copy the header fields. If
1463 this fails then do not try any further sections - there
1464 should only be a one-to-one mapping between input and output. */
1465 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1466 j = elf_numsections (ibfd);
1467 break;
1468 }
1469 }
1470
1471 if (j < elf_numsections (ibfd))
1472 continue;
1473
1474 /* That failed. So try to deduce the corresponding input section.
1475 Unfortunately we cannot compare names as the output string table
1476 is empty, so instead we check size, address and type. */
1477 for (j = 1; j < elf_numsections (ibfd); j++)
1478 {
1479 const Elf_Internal_Shdr * iheader = iheaders[j];
1480
1481 if (iheader == NULL)
1482 continue;
1483
1484 /* Try matching fields in the input section's header.
1485 Since --only-keep-debug turns all non-debug sections into
1486 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1487 input type. */
1488 if ((oheader->sh_type == SHT_NOBITS
1489 || iheader->sh_type == oheader->sh_type)
1490 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1491 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1492 && iheader->sh_addralign == oheader->sh_addralign
1493 && iheader->sh_entsize == oheader->sh_entsize
1494 && iheader->sh_size == oheader->sh_size
1495 && iheader->sh_addr == oheader->sh_addr
1496 && (iheader->sh_info != oheader->sh_info
1497 || iheader->sh_link != oheader->sh_link))
1498 {
1499 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1500 break;
1501 }
1502 }
1503
1504 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1505 {
1506 /* Final attempt. Call the backend copy function
1507 with a NULL input section. */
1508 if (bed->elf_backend_copy_special_section_fields != NULL)
1509 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1510 }
1511 }
1512
1513 return TRUE;
1514 }
1515
1516 static const char *
1517 get_segment_type (unsigned int p_type)
1518 {
1519 const char *pt;
1520 switch (p_type)
1521 {
1522 case PT_NULL: pt = "NULL"; break;
1523 case PT_LOAD: pt = "LOAD"; break;
1524 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1525 case PT_INTERP: pt = "INTERP"; break;
1526 case PT_NOTE: pt = "NOTE"; break;
1527 case PT_SHLIB: pt = "SHLIB"; break;
1528 case PT_PHDR: pt = "PHDR"; break;
1529 case PT_TLS: pt = "TLS"; break;
1530 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1531 case PT_GNU_STACK: pt = "STACK"; break;
1532 case PT_GNU_RELRO: pt = "RELRO"; break;
1533 default: pt = NULL; break;
1534 }
1535 return pt;
1536 }
1537
1538 /* Print out the program headers. */
1539
1540 bfd_boolean
1541 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1542 {
1543 FILE *f = (FILE *) farg;
1544 Elf_Internal_Phdr *p;
1545 asection *s;
1546 bfd_byte *dynbuf = NULL;
1547
1548 p = elf_tdata (abfd)->phdr;
1549 if (p != NULL)
1550 {
1551 unsigned int i, c;
1552
1553 fprintf (f, _("\nProgram Header:\n"));
1554 c = elf_elfheader (abfd)->e_phnum;
1555 for (i = 0; i < c; i++, p++)
1556 {
1557 const char *pt = get_segment_type (p->p_type);
1558 char buf[20];
1559
1560 if (pt == NULL)
1561 {
1562 sprintf (buf, "0x%lx", p->p_type);
1563 pt = buf;
1564 }
1565 fprintf (f, "%8s off 0x", pt);
1566 bfd_fprintf_vma (abfd, f, p->p_offset);
1567 fprintf (f, " vaddr 0x");
1568 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1569 fprintf (f, " paddr 0x");
1570 bfd_fprintf_vma (abfd, f, p->p_paddr);
1571 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1572 fprintf (f, " filesz 0x");
1573 bfd_fprintf_vma (abfd, f, p->p_filesz);
1574 fprintf (f, " memsz 0x");
1575 bfd_fprintf_vma (abfd, f, p->p_memsz);
1576 fprintf (f, " flags %c%c%c",
1577 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1578 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1579 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1580 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1581 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1582 fprintf (f, "\n");
1583 }
1584 }
1585
1586 s = bfd_get_section_by_name (abfd, ".dynamic");
1587 if (s != NULL)
1588 {
1589 unsigned int elfsec;
1590 unsigned long shlink;
1591 bfd_byte *extdyn, *extdynend;
1592 size_t extdynsize;
1593 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1594
1595 fprintf (f, _("\nDynamic Section:\n"));
1596
1597 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1598 goto error_return;
1599
1600 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1601 if (elfsec == SHN_BAD)
1602 goto error_return;
1603 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1604
1605 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1606 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1607
1608 extdyn = dynbuf;
1609 /* PR 17512: file: 6f427532. */
1610 if (s->size < extdynsize)
1611 goto error_return;
1612 extdynend = extdyn + s->size;
1613 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1614 Fix range check. */
1615 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1616 {
1617 Elf_Internal_Dyn dyn;
1618 const char *name = "";
1619 char ab[20];
1620 bfd_boolean stringp;
1621 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1622
1623 (*swap_dyn_in) (abfd, extdyn, &dyn);
1624
1625 if (dyn.d_tag == DT_NULL)
1626 break;
1627
1628 stringp = FALSE;
1629 switch (dyn.d_tag)
1630 {
1631 default:
1632 if (bed->elf_backend_get_target_dtag)
1633 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1634
1635 if (!strcmp (name, ""))
1636 {
1637 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1638 name = ab;
1639 }
1640 break;
1641
1642 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1643 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1644 case DT_PLTGOT: name = "PLTGOT"; break;
1645 case DT_HASH: name = "HASH"; break;
1646 case DT_STRTAB: name = "STRTAB"; break;
1647 case DT_SYMTAB: name = "SYMTAB"; break;
1648 case DT_RELA: name = "RELA"; break;
1649 case DT_RELASZ: name = "RELASZ"; break;
1650 case DT_RELAENT: name = "RELAENT"; break;
1651 case DT_STRSZ: name = "STRSZ"; break;
1652 case DT_SYMENT: name = "SYMENT"; break;
1653 case DT_INIT: name = "INIT"; break;
1654 case DT_FINI: name = "FINI"; break;
1655 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1656 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1657 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1658 case DT_REL: name = "REL"; break;
1659 case DT_RELSZ: name = "RELSZ"; break;
1660 case DT_RELENT: name = "RELENT"; break;
1661 case DT_PLTREL: name = "PLTREL"; break;
1662 case DT_DEBUG: name = "DEBUG"; break;
1663 case DT_TEXTREL: name = "TEXTREL"; break;
1664 case DT_JMPREL: name = "JMPREL"; break;
1665 case DT_BIND_NOW: name = "BIND_NOW"; break;
1666 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1667 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1668 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1669 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1670 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1671 case DT_FLAGS: name = "FLAGS"; break;
1672 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1673 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1674 case DT_CHECKSUM: name = "CHECKSUM"; break;
1675 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1676 case DT_MOVEENT: name = "MOVEENT"; break;
1677 case DT_MOVESZ: name = "MOVESZ"; break;
1678 case DT_FEATURE: name = "FEATURE"; break;
1679 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1680 case DT_SYMINSZ: name = "SYMINSZ"; break;
1681 case DT_SYMINENT: name = "SYMINENT"; break;
1682 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1683 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1684 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1685 case DT_PLTPAD: name = "PLTPAD"; break;
1686 case DT_MOVETAB: name = "MOVETAB"; break;
1687 case DT_SYMINFO: name = "SYMINFO"; break;
1688 case DT_RELACOUNT: name = "RELACOUNT"; break;
1689 case DT_RELCOUNT: name = "RELCOUNT"; break;
1690 case DT_FLAGS_1: name = "FLAGS_1"; break;
1691 case DT_VERSYM: name = "VERSYM"; break;
1692 case DT_VERDEF: name = "VERDEF"; break;
1693 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1694 case DT_VERNEED: name = "VERNEED"; break;
1695 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1696 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1697 case DT_USED: name = "USED"; break;
1698 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1699 case DT_GNU_HASH: name = "GNU_HASH"; break;
1700 }
1701
1702 fprintf (f, " %-20s ", name);
1703 if (! stringp)
1704 {
1705 fprintf (f, "0x");
1706 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1707 }
1708 else
1709 {
1710 const char *string;
1711 unsigned int tagv = dyn.d_un.d_val;
1712
1713 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1714 if (string == NULL)
1715 goto error_return;
1716 fprintf (f, "%s", string);
1717 }
1718 fprintf (f, "\n");
1719 }
1720
1721 free (dynbuf);
1722 dynbuf = NULL;
1723 }
1724
1725 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1726 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1727 {
1728 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1729 return FALSE;
1730 }
1731
1732 if (elf_dynverdef (abfd) != 0)
1733 {
1734 Elf_Internal_Verdef *t;
1735
1736 fprintf (f, _("\nVersion definitions:\n"));
1737 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1738 {
1739 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1740 t->vd_flags, t->vd_hash,
1741 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1742 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1743 {
1744 Elf_Internal_Verdaux *a;
1745
1746 fprintf (f, "\t");
1747 for (a = t->vd_auxptr->vda_nextptr;
1748 a != NULL;
1749 a = a->vda_nextptr)
1750 fprintf (f, "%s ",
1751 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1752 fprintf (f, "\n");
1753 }
1754 }
1755 }
1756
1757 if (elf_dynverref (abfd) != 0)
1758 {
1759 Elf_Internal_Verneed *t;
1760
1761 fprintf (f, _("\nVersion References:\n"));
1762 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1763 {
1764 Elf_Internal_Vernaux *a;
1765
1766 fprintf (f, _(" required from %s:\n"),
1767 t->vn_filename ? t->vn_filename : "<corrupt>");
1768 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1769 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1770 a->vna_flags, a->vna_other,
1771 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1772 }
1773 }
1774
1775 return TRUE;
1776
1777 error_return:
1778 if (dynbuf != NULL)
1779 free (dynbuf);
1780 return FALSE;
1781 }
1782
1783 /* Get version string. */
1784
1785 const char *
1786 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1787 bfd_boolean *hidden)
1788 {
1789 const char *version_string = NULL;
1790 if (elf_dynversym (abfd) != 0
1791 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1792 {
1793 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1794
1795 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1796 vernum &= VERSYM_VERSION;
1797
1798 if (vernum == 0)
1799 version_string = "";
1800 else if (vernum == 1)
1801 version_string = "Base";
1802 else if (vernum <= elf_tdata (abfd)->cverdefs)
1803 version_string =
1804 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1805 else
1806 {
1807 Elf_Internal_Verneed *t;
1808
1809 version_string = "";
1810 for (t = elf_tdata (abfd)->verref;
1811 t != NULL;
1812 t = t->vn_nextref)
1813 {
1814 Elf_Internal_Vernaux *a;
1815
1816 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1817 {
1818 if (a->vna_other == vernum)
1819 {
1820 version_string = a->vna_nodename;
1821 break;
1822 }
1823 }
1824 }
1825 }
1826 }
1827 return version_string;
1828 }
1829
1830 /* Display ELF-specific fields of a symbol. */
1831
1832 void
1833 bfd_elf_print_symbol (bfd *abfd,
1834 void *filep,
1835 asymbol *symbol,
1836 bfd_print_symbol_type how)
1837 {
1838 FILE *file = (FILE *) filep;
1839 switch (how)
1840 {
1841 case bfd_print_symbol_name:
1842 fprintf (file, "%s", symbol->name);
1843 break;
1844 case bfd_print_symbol_more:
1845 fprintf (file, "elf ");
1846 bfd_fprintf_vma (abfd, file, symbol->value);
1847 fprintf (file, " %lx", (unsigned long) symbol->flags);
1848 break;
1849 case bfd_print_symbol_all:
1850 {
1851 const char *section_name;
1852 const char *name = NULL;
1853 const struct elf_backend_data *bed;
1854 unsigned char st_other;
1855 bfd_vma val;
1856 const char *version_string;
1857 bfd_boolean hidden;
1858
1859 section_name = symbol->section ? symbol->section->name : "(*none*)";
1860
1861 bed = get_elf_backend_data (abfd);
1862 if (bed->elf_backend_print_symbol_all)
1863 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1864
1865 if (name == NULL)
1866 {
1867 name = symbol->name;
1868 bfd_print_symbol_vandf (abfd, file, symbol);
1869 }
1870
1871 fprintf (file, " %s\t", section_name);
1872 /* Print the "other" value for a symbol. For common symbols,
1873 we've already printed the size; now print the alignment.
1874 For other symbols, we have no specified alignment, and
1875 we've printed the address; now print the size. */
1876 if (symbol->section && bfd_is_com_section (symbol->section))
1877 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1878 else
1879 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1880 bfd_fprintf_vma (abfd, file, val);
1881
1882 /* If we have version information, print it. */
1883 version_string = _bfd_elf_get_symbol_version_string (abfd,
1884 symbol,
1885 &hidden);
1886 if (version_string)
1887 {
1888 if (!hidden)
1889 fprintf (file, " %-11s", version_string);
1890 else
1891 {
1892 int i;
1893
1894 fprintf (file, " (%s)", version_string);
1895 for (i = 10 - strlen (version_string); i > 0; --i)
1896 putc (' ', file);
1897 }
1898 }
1899
1900 /* If the st_other field is not zero, print it. */
1901 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1902
1903 switch (st_other)
1904 {
1905 case 0: break;
1906 case STV_INTERNAL: fprintf (file, " .internal"); break;
1907 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1908 case STV_PROTECTED: fprintf (file, " .protected"); break;
1909 default:
1910 /* Some other non-defined flags are also present, so print
1911 everything hex. */
1912 fprintf (file, " 0x%02x", (unsigned int) st_other);
1913 }
1914
1915 fprintf (file, " %s", name);
1916 }
1917 break;
1918 }
1919 }
1920 \f
1921 /* ELF .o/exec file reading */
1922
1923 /* Create a new bfd section from an ELF section header. */
1924
1925 bfd_boolean
1926 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1927 {
1928 Elf_Internal_Shdr *hdr;
1929 Elf_Internal_Ehdr *ehdr;
1930 const struct elf_backend_data *bed;
1931 const char *name;
1932 bfd_boolean ret = TRUE;
1933 static bfd_boolean * sections_being_created = NULL;
1934 static bfd * sections_being_created_abfd = NULL;
1935 static unsigned int nesting = 0;
1936
1937 if (shindex >= elf_numsections (abfd))
1938 return FALSE;
1939
1940 if (++ nesting > 3)
1941 {
1942 /* PR17512: A corrupt ELF binary might contain a recursive group of
1943 sections, with each the string indicies pointing to the next in the
1944 loop. Detect this here, by refusing to load a section that we are
1945 already in the process of loading. We only trigger this test if
1946 we have nested at least three sections deep as normal ELF binaries
1947 can expect to recurse at least once.
1948
1949 FIXME: It would be better if this array was attached to the bfd,
1950 rather than being held in a static pointer. */
1951
1952 if (sections_being_created_abfd != abfd)
1953 sections_being_created = NULL;
1954 if (sections_being_created == NULL)
1955 {
1956 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1957 sections_being_created = (bfd_boolean *)
1958 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1959 sections_being_created_abfd = abfd;
1960 }
1961 if (sections_being_created [shindex])
1962 {
1963 _bfd_error_handler
1964 (_("%B: warning: loop in section dependencies detected"), abfd);
1965 return FALSE;
1966 }
1967 sections_being_created [shindex] = TRUE;
1968 }
1969
1970 hdr = elf_elfsections (abfd)[shindex];
1971 ehdr = elf_elfheader (abfd);
1972 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1973 hdr->sh_name);
1974 if (name == NULL)
1975 goto fail;
1976
1977 bed = get_elf_backend_data (abfd);
1978 switch (hdr->sh_type)
1979 {
1980 case SHT_NULL:
1981 /* Inactive section. Throw it away. */
1982 goto success;
1983
1984 case SHT_PROGBITS: /* Normal section with contents. */
1985 case SHT_NOBITS: /* .bss section. */
1986 case SHT_HASH: /* .hash section. */
1987 case SHT_NOTE: /* .note section. */
1988 case SHT_INIT_ARRAY: /* .init_array section. */
1989 case SHT_FINI_ARRAY: /* .fini_array section. */
1990 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1991 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1992 case SHT_GNU_HASH: /* .gnu.hash section. */
1993 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1994 goto success;
1995
1996 case SHT_DYNAMIC: /* Dynamic linking information. */
1997 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1998 goto fail;
1999
2000 if (hdr->sh_link > elf_numsections (abfd))
2001 {
2002 /* PR 10478: Accept Solaris binaries with a sh_link
2003 field set to SHN_BEFORE or SHN_AFTER. */
2004 switch (bfd_get_arch (abfd))
2005 {
2006 case bfd_arch_i386:
2007 case bfd_arch_sparc:
2008 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2009 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2010 break;
2011 /* Otherwise fall through. */
2012 default:
2013 goto fail;
2014 }
2015 }
2016 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2017 goto fail;
2018 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2019 {
2020 Elf_Internal_Shdr *dynsymhdr;
2021
2022 /* The shared libraries distributed with hpux11 have a bogus
2023 sh_link field for the ".dynamic" section. Find the
2024 string table for the ".dynsym" section instead. */
2025 if (elf_dynsymtab (abfd) != 0)
2026 {
2027 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2028 hdr->sh_link = dynsymhdr->sh_link;
2029 }
2030 else
2031 {
2032 unsigned int i, num_sec;
2033
2034 num_sec = elf_numsections (abfd);
2035 for (i = 1; i < num_sec; i++)
2036 {
2037 dynsymhdr = elf_elfsections (abfd)[i];
2038 if (dynsymhdr->sh_type == SHT_DYNSYM)
2039 {
2040 hdr->sh_link = dynsymhdr->sh_link;
2041 break;
2042 }
2043 }
2044 }
2045 }
2046 goto success;
2047
2048 case SHT_SYMTAB: /* A symbol table. */
2049 if (elf_onesymtab (abfd) == shindex)
2050 goto success;
2051
2052 if (hdr->sh_entsize != bed->s->sizeof_sym)
2053 goto fail;
2054
2055 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2056 {
2057 if (hdr->sh_size != 0)
2058 goto fail;
2059 /* Some assemblers erroneously set sh_info to one with a
2060 zero sh_size. ld sees this as a global symbol count
2061 of (unsigned) -1. Fix it here. */
2062 hdr->sh_info = 0;
2063 goto success;
2064 }
2065
2066 /* PR 18854: A binary might contain more than one symbol table.
2067 Unusual, but possible. Warn, but continue. */
2068 if (elf_onesymtab (abfd) != 0)
2069 {
2070 _bfd_error_handler
2071 /* xgettext:c-format */
2072 (_("%B: warning: multiple symbol tables detected - ignoring the table in section %u"),
2073 abfd, shindex);
2074 goto success;
2075 }
2076 elf_onesymtab (abfd) = shindex;
2077 elf_symtab_hdr (abfd) = *hdr;
2078 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2079 abfd->flags |= HAS_SYMS;
2080
2081 /* Sometimes a shared object will map in the symbol table. If
2082 SHF_ALLOC is set, and this is a shared object, then we also
2083 treat this section as a BFD section. We can not base the
2084 decision purely on SHF_ALLOC, because that flag is sometimes
2085 set in a relocatable object file, which would confuse the
2086 linker. */
2087 if ((hdr->sh_flags & SHF_ALLOC) != 0
2088 && (abfd->flags & DYNAMIC) != 0
2089 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2090 shindex))
2091 goto fail;
2092
2093 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2094 can't read symbols without that section loaded as well. It
2095 is most likely specified by the next section header. */
2096 {
2097 elf_section_list * entry;
2098 unsigned int i, num_sec;
2099
2100 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2101 if (entry->hdr.sh_link == shindex)
2102 goto success;
2103
2104 num_sec = elf_numsections (abfd);
2105 for (i = shindex + 1; i < num_sec; i++)
2106 {
2107 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2108
2109 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2110 && hdr2->sh_link == shindex)
2111 break;
2112 }
2113
2114 if (i == num_sec)
2115 for (i = 1; i < shindex; i++)
2116 {
2117 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2118
2119 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2120 && hdr2->sh_link == shindex)
2121 break;
2122 }
2123
2124 if (i != shindex)
2125 ret = bfd_section_from_shdr (abfd, i);
2126 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2127 goto success;
2128 }
2129
2130 case SHT_DYNSYM: /* A dynamic symbol table. */
2131 if (elf_dynsymtab (abfd) == shindex)
2132 goto success;
2133
2134 if (hdr->sh_entsize != bed->s->sizeof_sym)
2135 goto fail;
2136
2137 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2138 {
2139 if (hdr->sh_size != 0)
2140 goto fail;
2141
2142 /* Some linkers erroneously set sh_info to one with a
2143 zero sh_size. ld sees this as a global symbol count
2144 of (unsigned) -1. Fix it here. */
2145 hdr->sh_info = 0;
2146 goto success;
2147 }
2148
2149 /* PR 18854: A binary might contain more than one dynamic symbol table.
2150 Unusual, but possible. Warn, but continue. */
2151 if (elf_dynsymtab (abfd) != 0)
2152 {
2153 _bfd_error_handler
2154 /* xgettext:c-format */
2155 (_("%B: warning: multiple dynamic symbol tables detected - ignoring the table in section %u"),
2156 abfd, shindex);
2157 goto success;
2158 }
2159 elf_dynsymtab (abfd) = shindex;
2160 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2161 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2162 abfd->flags |= HAS_SYMS;
2163
2164 /* Besides being a symbol table, we also treat this as a regular
2165 section, so that objcopy can handle it. */
2166 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2167 goto success;
2168
2169 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2170 {
2171 elf_section_list * entry;
2172
2173 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2174 if (entry->ndx == shindex)
2175 goto success;
2176
2177 entry = bfd_alloc (abfd, sizeof * entry);
2178 if (entry == NULL)
2179 goto fail;
2180 entry->ndx = shindex;
2181 entry->hdr = * hdr;
2182 entry->next = elf_symtab_shndx_list (abfd);
2183 elf_symtab_shndx_list (abfd) = entry;
2184 elf_elfsections (abfd)[shindex] = & entry->hdr;
2185 goto success;
2186 }
2187
2188 case SHT_STRTAB: /* A string table. */
2189 if (hdr->bfd_section != NULL)
2190 goto success;
2191
2192 if (ehdr->e_shstrndx == shindex)
2193 {
2194 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2195 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2196 goto success;
2197 }
2198
2199 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2200 {
2201 symtab_strtab:
2202 elf_tdata (abfd)->strtab_hdr = *hdr;
2203 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2204 goto success;
2205 }
2206
2207 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2208 {
2209 dynsymtab_strtab:
2210 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2211 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2212 elf_elfsections (abfd)[shindex] = hdr;
2213 /* We also treat this as a regular section, so that objcopy
2214 can handle it. */
2215 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2216 shindex);
2217 goto success;
2218 }
2219
2220 /* If the string table isn't one of the above, then treat it as a
2221 regular section. We need to scan all the headers to be sure,
2222 just in case this strtab section appeared before the above. */
2223 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2224 {
2225 unsigned int i, num_sec;
2226
2227 num_sec = elf_numsections (abfd);
2228 for (i = 1; i < num_sec; i++)
2229 {
2230 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2231 if (hdr2->sh_link == shindex)
2232 {
2233 /* Prevent endless recursion on broken objects. */
2234 if (i == shindex)
2235 goto fail;
2236 if (! bfd_section_from_shdr (abfd, i))
2237 goto fail;
2238 if (elf_onesymtab (abfd) == i)
2239 goto symtab_strtab;
2240 if (elf_dynsymtab (abfd) == i)
2241 goto dynsymtab_strtab;
2242 }
2243 }
2244 }
2245 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2246 goto success;
2247
2248 case SHT_REL:
2249 case SHT_RELA:
2250 /* *These* do a lot of work -- but build no sections! */
2251 {
2252 asection *target_sect;
2253 Elf_Internal_Shdr *hdr2, **p_hdr;
2254 unsigned int num_sec = elf_numsections (abfd);
2255 struct bfd_elf_section_data *esdt;
2256
2257 if (hdr->sh_entsize
2258 != (bfd_size_type) (hdr->sh_type == SHT_REL
2259 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2260 goto fail;
2261
2262 /* Check for a bogus link to avoid crashing. */
2263 if (hdr->sh_link >= num_sec)
2264 {
2265 _bfd_error_handler
2266 /* xgettext:c-format */
2267 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2268 abfd, hdr->sh_link, name, shindex);
2269 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2270 shindex);
2271 goto success;
2272 }
2273
2274 /* For some incomprehensible reason Oracle distributes
2275 libraries for Solaris in which some of the objects have
2276 bogus sh_link fields. It would be nice if we could just
2277 reject them, but, unfortunately, some people need to use
2278 them. We scan through the section headers; if we find only
2279 one suitable symbol table, we clobber the sh_link to point
2280 to it. I hope this doesn't break anything.
2281
2282 Don't do it on executable nor shared library. */
2283 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2284 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2285 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2286 {
2287 unsigned int scan;
2288 int found;
2289
2290 found = 0;
2291 for (scan = 1; scan < num_sec; scan++)
2292 {
2293 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2294 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2295 {
2296 if (found != 0)
2297 {
2298 found = 0;
2299 break;
2300 }
2301 found = scan;
2302 }
2303 }
2304 if (found != 0)
2305 hdr->sh_link = found;
2306 }
2307
2308 /* Get the symbol table. */
2309 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2310 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2311 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2312 goto fail;
2313
2314 /* If this reloc section does not use the main symbol table we
2315 don't treat it as a reloc section. BFD can't adequately
2316 represent such a section, so at least for now, we don't
2317 try. We just present it as a normal section. We also
2318 can't use it as a reloc section if it points to the null
2319 section, an invalid section, another reloc section, or its
2320 sh_link points to the null section. */
2321 if (hdr->sh_link != elf_onesymtab (abfd)
2322 || hdr->sh_link == SHN_UNDEF
2323 || hdr->sh_info == SHN_UNDEF
2324 || hdr->sh_info >= num_sec
2325 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2326 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2327 {
2328 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2329 shindex);
2330 goto success;
2331 }
2332
2333 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2334 goto fail;
2335
2336 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2337 if (target_sect == NULL)
2338 goto fail;
2339
2340 esdt = elf_section_data (target_sect);
2341 if (hdr->sh_type == SHT_RELA)
2342 p_hdr = &esdt->rela.hdr;
2343 else
2344 p_hdr = &esdt->rel.hdr;
2345
2346 /* PR 17512: file: 0b4f81b7. */
2347 if (*p_hdr != NULL)
2348 goto fail;
2349 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2350 if (hdr2 == NULL)
2351 goto fail;
2352 *hdr2 = *hdr;
2353 *p_hdr = hdr2;
2354 elf_elfsections (abfd)[shindex] = hdr2;
2355 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2356 target_sect->flags |= SEC_RELOC;
2357 target_sect->relocation = NULL;
2358 target_sect->rel_filepos = hdr->sh_offset;
2359 /* In the section to which the relocations apply, mark whether
2360 its relocations are of the REL or RELA variety. */
2361 if (hdr->sh_size != 0)
2362 {
2363 if (hdr->sh_type == SHT_RELA)
2364 target_sect->use_rela_p = 1;
2365 }
2366 abfd->flags |= HAS_RELOC;
2367 goto success;
2368 }
2369
2370 case SHT_GNU_verdef:
2371 elf_dynverdef (abfd) = shindex;
2372 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2373 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2374 goto success;
2375
2376 case SHT_GNU_versym:
2377 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2378 goto fail;
2379
2380 elf_dynversym (abfd) = shindex;
2381 elf_tdata (abfd)->dynversym_hdr = *hdr;
2382 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2383 goto success;
2384
2385 case SHT_GNU_verneed:
2386 elf_dynverref (abfd) = shindex;
2387 elf_tdata (abfd)->dynverref_hdr = *hdr;
2388 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2389 goto success;
2390
2391 case SHT_SHLIB:
2392 goto success;
2393
2394 case SHT_GROUP:
2395 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2396 goto fail;
2397
2398 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2399 goto fail;
2400
2401 if (hdr->contents != NULL)
2402 {
2403 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2404 unsigned int n_elt = hdr->sh_size / sizeof (* idx);
2405 asection *s;
2406
2407 if (n_elt == 0)
2408 goto fail;
2409 if (idx->flags & GRP_COMDAT)
2410 hdr->bfd_section->flags
2411 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2412
2413 /* We try to keep the same section order as it comes in. */
2414 idx += n_elt;
2415
2416 while (--n_elt != 0)
2417 {
2418 --idx;
2419
2420 if (idx->shdr != NULL
2421 && (s = idx->shdr->bfd_section) != NULL
2422 && elf_next_in_group (s) != NULL)
2423 {
2424 elf_next_in_group (hdr->bfd_section) = s;
2425 break;
2426 }
2427 }
2428 }
2429 goto success;
2430
2431 default:
2432 /* Possibly an attributes section. */
2433 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2434 || hdr->sh_type == bed->obj_attrs_section_type)
2435 {
2436 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2437 goto fail;
2438 _bfd_elf_parse_attributes (abfd, hdr);
2439 goto success;
2440 }
2441
2442 /* Check for any processor-specific section types. */
2443 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2444 goto success;
2445
2446 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2447 {
2448 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2449 /* FIXME: How to properly handle allocated section reserved
2450 for applications? */
2451 _bfd_error_handler
2452 /* xgettext:c-format */
2453 (_("%B: don't know how to handle allocated, application "
2454 "specific section `%s' [0x%8x]"),
2455 abfd, name, hdr->sh_type);
2456 else
2457 {
2458 /* Allow sections reserved for applications. */
2459 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2460 shindex);
2461 goto success;
2462 }
2463 }
2464 else if (hdr->sh_type >= SHT_LOPROC
2465 && hdr->sh_type <= SHT_HIPROC)
2466 /* FIXME: We should handle this section. */
2467 _bfd_error_handler
2468 /* xgettext:c-format */
2469 (_("%B: don't know how to handle processor specific section "
2470 "`%s' [0x%8x]"),
2471 abfd, name, hdr->sh_type);
2472 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2473 {
2474 /* Unrecognised OS-specific sections. */
2475 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2476 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2477 required to correctly process the section and the file should
2478 be rejected with an error message. */
2479 _bfd_error_handler
2480 /* xgettext:c-format */
2481 (_("%B: don't know how to handle OS specific section "
2482 "`%s' [0x%8x]"),
2483 abfd, name, hdr->sh_type);
2484 else
2485 {
2486 /* Otherwise it should be processed. */
2487 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2488 goto success;
2489 }
2490 }
2491 else
2492 /* FIXME: We should handle this section. */
2493 _bfd_error_handler
2494 /* xgettext:c-format */
2495 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2496 abfd, name, hdr->sh_type);
2497
2498 goto fail;
2499 }
2500
2501 fail:
2502 ret = FALSE;
2503 success:
2504 if (sections_being_created && sections_being_created_abfd == abfd)
2505 sections_being_created [shindex] = FALSE;
2506 if (-- nesting == 0)
2507 {
2508 sections_being_created = NULL;
2509 sections_being_created_abfd = abfd;
2510 }
2511 return ret;
2512 }
2513
2514 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2515
2516 Elf_Internal_Sym *
2517 bfd_sym_from_r_symndx (struct sym_cache *cache,
2518 bfd *abfd,
2519 unsigned long r_symndx)
2520 {
2521 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2522
2523 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2524 {
2525 Elf_Internal_Shdr *symtab_hdr;
2526 unsigned char esym[sizeof (Elf64_External_Sym)];
2527 Elf_External_Sym_Shndx eshndx;
2528
2529 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2530 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2531 &cache->sym[ent], esym, &eshndx) == NULL)
2532 return NULL;
2533
2534 if (cache->abfd != abfd)
2535 {
2536 memset (cache->indx, -1, sizeof (cache->indx));
2537 cache->abfd = abfd;
2538 }
2539 cache->indx[ent] = r_symndx;
2540 }
2541
2542 return &cache->sym[ent];
2543 }
2544
2545 /* Given an ELF section number, retrieve the corresponding BFD
2546 section. */
2547
2548 asection *
2549 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2550 {
2551 if (sec_index >= elf_numsections (abfd))
2552 return NULL;
2553 return elf_elfsections (abfd)[sec_index]->bfd_section;
2554 }
2555
2556 static const struct bfd_elf_special_section special_sections_b[] =
2557 {
2558 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2559 { NULL, 0, 0, 0, 0 }
2560 };
2561
2562 static const struct bfd_elf_special_section special_sections_c[] =
2563 {
2564 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2565 { NULL, 0, 0, 0, 0 }
2566 };
2567
2568 static const struct bfd_elf_special_section special_sections_d[] =
2569 {
2570 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2571 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2572 /* There are more DWARF sections than these, but they needn't be added here
2573 unless you have to cope with broken compilers that don't emit section
2574 attributes or you want to help the user writing assembler. */
2575 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2576 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2577 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2578 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2579 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2580 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2581 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2582 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2583 { NULL, 0, 0, 0, 0 }
2584 };
2585
2586 static const struct bfd_elf_special_section special_sections_f[] =
2587 {
2588 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2589 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2590 { NULL, 0, 0, 0, 0 }
2591 };
2592
2593 static const struct bfd_elf_special_section special_sections_g[] =
2594 {
2595 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2596 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2597 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2598 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2599 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2600 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2601 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2602 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2603 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2604 { NULL, 0, 0, 0, 0 }
2605 };
2606
2607 static const struct bfd_elf_special_section special_sections_h[] =
2608 {
2609 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2610 { NULL, 0, 0, 0, 0 }
2611 };
2612
2613 static const struct bfd_elf_special_section special_sections_i[] =
2614 {
2615 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2616 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2617 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2618 { NULL, 0, 0, 0, 0 }
2619 };
2620
2621 static const struct bfd_elf_special_section special_sections_l[] =
2622 {
2623 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2624 { NULL, 0, 0, 0, 0 }
2625 };
2626
2627 static const struct bfd_elf_special_section special_sections_n[] =
2628 {
2629 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2630 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2631 { NULL, 0, 0, 0, 0 }
2632 };
2633
2634 static const struct bfd_elf_special_section special_sections_p[] =
2635 {
2636 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2637 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2638 { NULL, 0, 0, 0, 0 }
2639 };
2640
2641 static const struct bfd_elf_special_section special_sections_r[] =
2642 {
2643 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2644 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2645 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2646 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2647 { NULL, 0, 0, 0, 0 }
2648 };
2649
2650 static const struct bfd_elf_special_section special_sections_s[] =
2651 {
2652 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2653 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2654 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2655 /* See struct bfd_elf_special_section declaration for the semantics of
2656 this special case where .prefix_length != strlen (.prefix). */
2657 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2658 { NULL, 0, 0, 0, 0 }
2659 };
2660
2661 static const struct bfd_elf_special_section special_sections_t[] =
2662 {
2663 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2664 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2665 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2666 { NULL, 0, 0, 0, 0 }
2667 };
2668
2669 static const struct bfd_elf_special_section special_sections_z[] =
2670 {
2671 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2672 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2673 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2674 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2675 { NULL, 0, 0, 0, 0 }
2676 };
2677
2678 static const struct bfd_elf_special_section * const special_sections[] =
2679 {
2680 special_sections_b, /* 'b' */
2681 special_sections_c, /* 'c' */
2682 special_sections_d, /* 'd' */
2683 NULL, /* 'e' */
2684 special_sections_f, /* 'f' */
2685 special_sections_g, /* 'g' */
2686 special_sections_h, /* 'h' */
2687 special_sections_i, /* 'i' */
2688 NULL, /* 'j' */
2689 NULL, /* 'k' */
2690 special_sections_l, /* 'l' */
2691 NULL, /* 'm' */
2692 special_sections_n, /* 'n' */
2693 NULL, /* 'o' */
2694 special_sections_p, /* 'p' */
2695 NULL, /* 'q' */
2696 special_sections_r, /* 'r' */
2697 special_sections_s, /* 's' */
2698 special_sections_t, /* 't' */
2699 NULL, /* 'u' */
2700 NULL, /* 'v' */
2701 NULL, /* 'w' */
2702 NULL, /* 'x' */
2703 NULL, /* 'y' */
2704 special_sections_z /* 'z' */
2705 };
2706
2707 const struct bfd_elf_special_section *
2708 _bfd_elf_get_special_section (const char *name,
2709 const struct bfd_elf_special_section *spec,
2710 unsigned int rela)
2711 {
2712 int i;
2713 int len;
2714
2715 len = strlen (name);
2716
2717 for (i = 0; spec[i].prefix != NULL; i++)
2718 {
2719 int suffix_len;
2720 int prefix_len = spec[i].prefix_length;
2721
2722 if (len < prefix_len)
2723 continue;
2724 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2725 continue;
2726
2727 suffix_len = spec[i].suffix_length;
2728 if (suffix_len <= 0)
2729 {
2730 if (name[prefix_len] != 0)
2731 {
2732 if (suffix_len == 0)
2733 continue;
2734 if (name[prefix_len] != '.'
2735 && (suffix_len == -2
2736 || (rela && spec[i].type == SHT_REL)))
2737 continue;
2738 }
2739 }
2740 else
2741 {
2742 if (len < prefix_len + suffix_len)
2743 continue;
2744 if (memcmp (name + len - suffix_len,
2745 spec[i].prefix + prefix_len,
2746 suffix_len) != 0)
2747 continue;
2748 }
2749 return &spec[i];
2750 }
2751
2752 return NULL;
2753 }
2754
2755 const struct bfd_elf_special_section *
2756 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2757 {
2758 int i;
2759 const struct bfd_elf_special_section *spec;
2760 const struct elf_backend_data *bed;
2761
2762 /* See if this is one of the special sections. */
2763 if (sec->name == NULL)
2764 return NULL;
2765
2766 bed = get_elf_backend_data (abfd);
2767 spec = bed->special_sections;
2768 if (spec)
2769 {
2770 spec = _bfd_elf_get_special_section (sec->name,
2771 bed->special_sections,
2772 sec->use_rela_p);
2773 if (spec != NULL)
2774 return spec;
2775 }
2776
2777 if (sec->name[0] != '.')
2778 return NULL;
2779
2780 i = sec->name[1] - 'b';
2781 if (i < 0 || i > 'z' - 'b')
2782 return NULL;
2783
2784 spec = special_sections[i];
2785
2786 if (spec == NULL)
2787 return NULL;
2788
2789 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2790 }
2791
2792 bfd_boolean
2793 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2794 {
2795 struct bfd_elf_section_data *sdata;
2796 const struct elf_backend_data *bed;
2797 const struct bfd_elf_special_section *ssect;
2798
2799 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2800 if (sdata == NULL)
2801 {
2802 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2803 sizeof (*sdata));
2804 if (sdata == NULL)
2805 return FALSE;
2806 sec->used_by_bfd = sdata;
2807 }
2808
2809 /* Indicate whether or not this section should use RELA relocations. */
2810 bed = get_elf_backend_data (abfd);
2811 sec->use_rela_p = bed->default_use_rela_p;
2812
2813 /* When we read a file, we don't need to set ELF section type and
2814 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2815 anyway. We will set ELF section type and flags for all linker
2816 created sections. If user specifies BFD section flags, we will
2817 set ELF section type and flags based on BFD section flags in
2818 elf_fake_sections. Special handling for .init_array/.fini_array
2819 output sections since they may contain .ctors/.dtors input
2820 sections. We don't want _bfd_elf_init_private_section_data to
2821 copy ELF section type from .ctors/.dtors input sections. */
2822 if (abfd->direction != read_direction
2823 || (sec->flags & SEC_LINKER_CREATED) != 0)
2824 {
2825 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2826 if (ssect != NULL
2827 && (!sec->flags
2828 || (sec->flags & SEC_LINKER_CREATED) != 0
2829 || ssect->type == SHT_INIT_ARRAY
2830 || ssect->type == SHT_FINI_ARRAY))
2831 {
2832 elf_section_type (sec) = ssect->type;
2833 elf_section_flags (sec) = ssect->attr;
2834 }
2835 }
2836
2837 return _bfd_generic_new_section_hook (abfd, sec);
2838 }
2839
2840 /* Create a new bfd section from an ELF program header.
2841
2842 Since program segments have no names, we generate a synthetic name
2843 of the form segment<NUM>, where NUM is generally the index in the
2844 program header table. For segments that are split (see below) we
2845 generate the names segment<NUM>a and segment<NUM>b.
2846
2847 Note that some program segments may have a file size that is different than
2848 (less than) the memory size. All this means is that at execution the
2849 system must allocate the amount of memory specified by the memory size,
2850 but only initialize it with the first "file size" bytes read from the
2851 file. This would occur for example, with program segments consisting
2852 of combined data+bss.
2853
2854 To handle the above situation, this routine generates TWO bfd sections
2855 for the single program segment. The first has the length specified by
2856 the file size of the segment, and the second has the length specified
2857 by the difference between the two sizes. In effect, the segment is split
2858 into its initialized and uninitialized parts.
2859
2860 */
2861
2862 bfd_boolean
2863 _bfd_elf_make_section_from_phdr (bfd *abfd,
2864 Elf_Internal_Phdr *hdr,
2865 int hdr_index,
2866 const char *type_name)
2867 {
2868 asection *newsect;
2869 char *name;
2870 char namebuf[64];
2871 size_t len;
2872 int split;
2873
2874 split = ((hdr->p_memsz > 0)
2875 && (hdr->p_filesz > 0)
2876 && (hdr->p_memsz > hdr->p_filesz));
2877
2878 if (hdr->p_filesz > 0)
2879 {
2880 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2881 len = strlen (namebuf) + 1;
2882 name = (char *) bfd_alloc (abfd, len);
2883 if (!name)
2884 return FALSE;
2885 memcpy (name, namebuf, len);
2886 newsect = bfd_make_section (abfd, name);
2887 if (newsect == NULL)
2888 return FALSE;
2889 newsect->vma = hdr->p_vaddr;
2890 newsect->lma = hdr->p_paddr;
2891 newsect->size = hdr->p_filesz;
2892 newsect->filepos = hdr->p_offset;
2893 newsect->flags |= SEC_HAS_CONTENTS;
2894 newsect->alignment_power = bfd_log2 (hdr->p_align);
2895 if (hdr->p_type == PT_LOAD)
2896 {
2897 newsect->flags |= SEC_ALLOC;
2898 newsect->flags |= SEC_LOAD;
2899 if (hdr->p_flags & PF_X)
2900 {
2901 /* FIXME: all we known is that it has execute PERMISSION,
2902 may be data. */
2903 newsect->flags |= SEC_CODE;
2904 }
2905 }
2906 if (!(hdr->p_flags & PF_W))
2907 {
2908 newsect->flags |= SEC_READONLY;
2909 }
2910 }
2911
2912 if (hdr->p_memsz > hdr->p_filesz)
2913 {
2914 bfd_vma align;
2915
2916 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2917 len = strlen (namebuf) + 1;
2918 name = (char *) bfd_alloc (abfd, len);
2919 if (!name)
2920 return FALSE;
2921 memcpy (name, namebuf, len);
2922 newsect = bfd_make_section (abfd, name);
2923 if (newsect == NULL)
2924 return FALSE;
2925 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2926 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2927 newsect->size = hdr->p_memsz - hdr->p_filesz;
2928 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2929 align = newsect->vma & -newsect->vma;
2930 if (align == 0 || align > hdr->p_align)
2931 align = hdr->p_align;
2932 newsect->alignment_power = bfd_log2 (align);
2933 if (hdr->p_type == PT_LOAD)
2934 {
2935 /* Hack for gdb. Segments that have not been modified do
2936 not have their contents written to a core file, on the
2937 assumption that a debugger can find the contents in the
2938 executable. We flag this case by setting the fake
2939 section size to zero. Note that "real" bss sections will
2940 always have their contents dumped to the core file. */
2941 if (bfd_get_format (abfd) == bfd_core)
2942 newsect->size = 0;
2943 newsect->flags |= SEC_ALLOC;
2944 if (hdr->p_flags & PF_X)
2945 newsect->flags |= SEC_CODE;
2946 }
2947 if (!(hdr->p_flags & PF_W))
2948 newsect->flags |= SEC_READONLY;
2949 }
2950
2951 return TRUE;
2952 }
2953
2954 bfd_boolean
2955 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2956 {
2957 const struct elf_backend_data *bed;
2958
2959 switch (hdr->p_type)
2960 {
2961 case PT_NULL:
2962 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2963
2964 case PT_LOAD:
2965 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2966
2967 case PT_DYNAMIC:
2968 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2969
2970 case PT_INTERP:
2971 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2972
2973 case PT_NOTE:
2974 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2975 return FALSE;
2976 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2977 return FALSE;
2978 return TRUE;
2979
2980 case PT_SHLIB:
2981 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2982
2983 case PT_PHDR:
2984 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2985
2986 case PT_GNU_EH_FRAME:
2987 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2988 "eh_frame_hdr");
2989
2990 case PT_GNU_STACK:
2991 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2992
2993 case PT_GNU_RELRO:
2994 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2995
2996 default:
2997 /* Check for any processor-specific program segment types. */
2998 bed = get_elf_backend_data (abfd);
2999 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3000 }
3001 }
3002
3003 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3004 REL or RELA. */
3005
3006 Elf_Internal_Shdr *
3007 _bfd_elf_single_rel_hdr (asection *sec)
3008 {
3009 if (elf_section_data (sec)->rel.hdr)
3010 {
3011 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3012 return elf_section_data (sec)->rel.hdr;
3013 }
3014 else
3015 return elf_section_data (sec)->rela.hdr;
3016 }
3017
3018 static bfd_boolean
3019 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3020 Elf_Internal_Shdr *rel_hdr,
3021 const char *sec_name,
3022 bfd_boolean use_rela_p)
3023 {
3024 char *name = (char *) bfd_alloc (abfd,
3025 sizeof ".rela" + strlen (sec_name));
3026 if (name == NULL)
3027 return FALSE;
3028
3029 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3030 rel_hdr->sh_name =
3031 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3032 FALSE);
3033 if (rel_hdr->sh_name == (unsigned int) -1)
3034 return FALSE;
3035
3036 return TRUE;
3037 }
3038
3039 /* Allocate and initialize a section-header for a new reloc section,
3040 containing relocations against ASECT. It is stored in RELDATA. If
3041 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3042 relocations. */
3043
3044 static bfd_boolean
3045 _bfd_elf_init_reloc_shdr (bfd *abfd,
3046 struct bfd_elf_section_reloc_data *reldata,
3047 const char *sec_name,
3048 bfd_boolean use_rela_p,
3049 bfd_boolean delay_st_name_p)
3050 {
3051 Elf_Internal_Shdr *rel_hdr;
3052 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3053
3054 BFD_ASSERT (reldata->hdr == NULL);
3055 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3056 reldata->hdr = rel_hdr;
3057
3058 if (delay_st_name_p)
3059 rel_hdr->sh_name = (unsigned int) -1;
3060 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3061 use_rela_p))
3062 return FALSE;
3063 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3064 rel_hdr->sh_entsize = (use_rela_p
3065 ? bed->s->sizeof_rela
3066 : bed->s->sizeof_rel);
3067 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3068 rel_hdr->sh_flags = 0;
3069 rel_hdr->sh_addr = 0;
3070 rel_hdr->sh_size = 0;
3071 rel_hdr->sh_offset = 0;
3072
3073 return TRUE;
3074 }
3075
3076 /* Return the default section type based on the passed in section flags. */
3077
3078 int
3079 bfd_elf_get_default_section_type (flagword flags)
3080 {
3081 if ((flags & SEC_ALLOC) != 0
3082 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3083 return SHT_NOBITS;
3084 return SHT_PROGBITS;
3085 }
3086
3087 struct fake_section_arg
3088 {
3089 struct bfd_link_info *link_info;
3090 bfd_boolean failed;
3091 };
3092
3093 /* Set up an ELF internal section header for a section. */
3094
3095 static void
3096 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3097 {
3098 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3099 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3100 struct bfd_elf_section_data *esd = elf_section_data (asect);
3101 Elf_Internal_Shdr *this_hdr;
3102 unsigned int sh_type;
3103 const char *name = asect->name;
3104 bfd_boolean delay_st_name_p = FALSE;
3105
3106 if (arg->failed)
3107 {
3108 /* We already failed; just get out of the bfd_map_over_sections
3109 loop. */
3110 return;
3111 }
3112
3113 this_hdr = &esd->this_hdr;
3114
3115 if (arg->link_info)
3116 {
3117 /* ld: compress DWARF debug sections with names: .debug_*. */
3118 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3119 && (asect->flags & SEC_DEBUGGING)
3120 && name[1] == 'd'
3121 && name[6] == '_')
3122 {
3123 /* Set SEC_ELF_COMPRESS to indicate this section should be
3124 compressed. */
3125 asect->flags |= SEC_ELF_COMPRESS;
3126
3127 /* If this section will be compressed, delay adding section
3128 name to section name section after it is compressed in
3129 _bfd_elf_assign_file_positions_for_non_load. */
3130 delay_st_name_p = TRUE;
3131 }
3132 }
3133 else if ((asect->flags & SEC_ELF_RENAME))
3134 {
3135 /* objcopy: rename output DWARF debug section. */
3136 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3137 {
3138 /* When we decompress or compress with SHF_COMPRESSED,
3139 convert section name from .zdebug_* to .debug_* if
3140 needed. */
3141 if (name[1] == 'z')
3142 {
3143 char *new_name = convert_zdebug_to_debug (abfd, name);
3144 if (new_name == NULL)
3145 {
3146 arg->failed = TRUE;
3147 return;
3148 }
3149 name = new_name;
3150 }
3151 }
3152 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3153 {
3154 /* PR binutils/18087: Compression does not always make a
3155 section smaller. So only rename the section when
3156 compression has actually taken place. If input section
3157 name is .zdebug_*, we should never compress it again. */
3158 char *new_name = convert_debug_to_zdebug (abfd, name);
3159 if (new_name == NULL)
3160 {
3161 arg->failed = TRUE;
3162 return;
3163 }
3164 BFD_ASSERT (name[1] != 'z');
3165 name = new_name;
3166 }
3167 }
3168
3169 if (delay_st_name_p)
3170 this_hdr->sh_name = (unsigned int) -1;
3171 else
3172 {
3173 this_hdr->sh_name
3174 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3175 name, FALSE);
3176 if (this_hdr->sh_name == (unsigned int) -1)
3177 {
3178 arg->failed = TRUE;
3179 return;
3180 }
3181 }
3182
3183 /* Don't clear sh_flags. Assembler may set additional bits. */
3184
3185 if ((asect->flags & SEC_ALLOC) != 0
3186 || asect->user_set_vma)
3187 this_hdr->sh_addr = asect->vma;
3188 else
3189 this_hdr->sh_addr = 0;
3190
3191 this_hdr->sh_offset = 0;
3192 this_hdr->sh_size = asect->size;
3193 this_hdr->sh_link = 0;
3194 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3195 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3196 {
3197 _bfd_error_handler
3198 /* xgettext:c-format */
3199 (_("%B: error: Alignment power %d of section `%A' is too big"),
3200 abfd, asect, asect->alignment_power);
3201 arg->failed = TRUE;
3202 return;
3203 }
3204 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3205 /* The sh_entsize and sh_info fields may have been set already by
3206 copy_private_section_data. */
3207
3208 this_hdr->bfd_section = asect;
3209 this_hdr->contents = NULL;
3210
3211 /* If the section type is unspecified, we set it based on
3212 asect->flags. */
3213 if ((asect->flags & SEC_GROUP) != 0)
3214 sh_type = SHT_GROUP;
3215 else
3216 sh_type = bfd_elf_get_default_section_type (asect->flags);
3217
3218 if (this_hdr->sh_type == SHT_NULL)
3219 this_hdr->sh_type = sh_type;
3220 else if (this_hdr->sh_type == SHT_NOBITS
3221 && sh_type == SHT_PROGBITS
3222 && (asect->flags & SEC_ALLOC) != 0)
3223 {
3224 /* Warn if we are changing a NOBITS section to PROGBITS, but
3225 allow the link to proceed. This can happen when users link
3226 non-bss input sections to bss output sections, or emit data
3227 to a bss output section via a linker script. */
3228 _bfd_error_handler
3229 (_("warning: section `%A' type changed to PROGBITS"), asect);
3230 this_hdr->sh_type = sh_type;
3231 }
3232
3233 switch (this_hdr->sh_type)
3234 {
3235 default:
3236 break;
3237
3238 case SHT_STRTAB:
3239 case SHT_NOTE:
3240 case SHT_NOBITS:
3241 case SHT_PROGBITS:
3242 break;
3243
3244 case SHT_INIT_ARRAY:
3245 case SHT_FINI_ARRAY:
3246 case SHT_PREINIT_ARRAY:
3247 this_hdr->sh_entsize = bed->s->arch_size / 8;
3248 break;
3249
3250 case SHT_HASH:
3251 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3252 break;
3253
3254 case SHT_DYNSYM:
3255 this_hdr->sh_entsize = bed->s->sizeof_sym;
3256 break;
3257
3258 case SHT_DYNAMIC:
3259 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3260 break;
3261
3262 case SHT_RELA:
3263 if (get_elf_backend_data (abfd)->may_use_rela_p)
3264 this_hdr->sh_entsize = bed->s->sizeof_rela;
3265 break;
3266
3267 case SHT_REL:
3268 if (get_elf_backend_data (abfd)->may_use_rel_p)
3269 this_hdr->sh_entsize = bed->s->sizeof_rel;
3270 break;
3271
3272 case SHT_GNU_versym:
3273 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3274 break;
3275
3276 case SHT_GNU_verdef:
3277 this_hdr->sh_entsize = 0;
3278 /* objcopy or strip will copy over sh_info, but may not set
3279 cverdefs. The linker will set cverdefs, but sh_info will be
3280 zero. */
3281 if (this_hdr->sh_info == 0)
3282 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3283 else
3284 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3285 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3286 break;
3287
3288 case SHT_GNU_verneed:
3289 this_hdr->sh_entsize = 0;
3290 /* objcopy or strip will copy over sh_info, but may not set
3291 cverrefs. The linker will set cverrefs, but sh_info will be
3292 zero. */
3293 if (this_hdr->sh_info == 0)
3294 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3295 else
3296 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3297 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3298 break;
3299
3300 case SHT_GROUP:
3301 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3302 break;
3303
3304 case SHT_GNU_HASH:
3305 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3306 break;
3307 }
3308
3309 if ((asect->flags & SEC_ALLOC) != 0)
3310 this_hdr->sh_flags |= SHF_ALLOC;
3311 if ((asect->flags & SEC_READONLY) == 0)
3312 this_hdr->sh_flags |= SHF_WRITE;
3313 if ((asect->flags & SEC_CODE) != 0)
3314 this_hdr->sh_flags |= SHF_EXECINSTR;
3315 if ((asect->flags & SEC_MERGE) != 0)
3316 {
3317 this_hdr->sh_flags |= SHF_MERGE;
3318 this_hdr->sh_entsize = asect->entsize;
3319 }
3320 if ((asect->flags & SEC_STRINGS) != 0)
3321 this_hdr->sh_flags |= SHF_STRINGS;
3322 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3323 this_hdr->sh_flags |= SHF_GROUP;
3324 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3325 {
3326 this_hdr->sh_flags |= SHF_TLS;
3327 if (asect->size == 0
3328 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3329 {
3330 struct bfd_link_order *o = asect->map_tail.link_order;
3331
3332 this_hdr->sh_size = 0;
3333 if (o != NULL)
3334 {
3335 this_hdr->sh_size = o->offset + o->size;
3336 if (this_hdr->sh_size != 0)
3337 this_hdr->sh_type = SHT_NOBITS;
3338 }
3339 }
3340 }
3341 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3342 this_hdr->sh_flags |= SHF_EXCLUDE;
3343
3344 /* If the section has relocs, set up a section header for the
3345 SHT_REL[A] section. If two relocation sections are required for
3346 this section, it is up to the processor-specific back-end to
3347 create the other. */
3348 if ((asect->flags & SEC_RELOC) != 0)
3349 {
3350 /* When doing a relocatable link, create both REL and RELA sections if
3351 needed. */
3352 if (arg->link_info
3353 /* Do the normal setup if we wouldn't create any sections here. */
3354 && esd->rel.count + esd->rela.count > 0
3355 && (bfd_link_relocatable (arg->link_info)
3356 || arg->link_info->emitrelocations))
3357 {
3358 if (esd->rel.count && esd->rel.hdr == NULL
3359 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE,
3360 delay_st_name_p))
3361 {
3362 arg->failed = TRUE;
3363 return;
3364 }
3365 if (esd->rela.count && esd->rela.hdr == NULL
3366 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE,
3367 delay_st_name_p))
3368 {
3369 arg->failed = TRUE;
3370 return;
3371 }
3372 }
3373 else if (!_bfd_elf_init_reloc_shdr (abfd,
3374 (asect->use_rela_p
3375 ? &esd->rela : &esd->rel),
3376 name,
3377 asect->use_rela_p,
3378 delay_st_name_p))
3379 arg->failed = TRUE;
3380 }
3381
3382 /* Check for processor-specific section types. */
3383 sh_type = this_hdr->sh_type;
3384 if (bed->elf_backend_fake_sections
3385 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3386 arg->failed = TRUE;
3387
3388 if (sh_type == SHT_NOBITS && asect->size != 0)
3389 {
3390 /* Don't change the header type from NOBITS if we are being
3391 called for objcopy --only-keep-debug. */
3392 this_hdr->sh_type = sh_type;
3393 }
3394 }
3395
3396 /* Fill in the contents of a SHT_GROUP section. Called from
3397 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3398 when ELF targets use the generic linker, ld. Called for ld -r
3399 from bfd_elf_final_link. */
3400
3401 void
3402 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3403 {
3404 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3405 asection *elt, *first;
3406 unsigned char *loc;
3407 bfd_boolean gas;
3408
3409 /* Ignore linker created group section. See elfNN_ia64_object_p in
3410 elfxx-ia64.c. */
3411 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3412 || *failedptr)
3413 return;
3414
3415 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3416 {
3417 unsigned long symindx = 0;
3418
3419 /* elf_group_id will have been set up by objcopy and the
3420 generic linker. */
3421 if (elf_group_id (sec) != NULL)
3422 symindx = elf_group_id (sec)->udata.i;
3423
3424 if (symindx == 0)
3425 {
3426 /* If called from the assembler, swap_out_syms will have set up
3427 elf_section_syms. */
3428 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3429 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3430 }
3431 elf_section_data (sec)->this_hdr.sh_info = symindx;
3432 }
3433 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3434 {
3435 /* The ELF backend linker sets sh_info to -2 when the group
3436 signature symbol is global, and thus the index can't be
3437 set until all local symbols are output. */
3438 asection *igroup;
3439 struct bfd_elf_section_data *sec_data;
3440 unsigned long symndx;
3441 unsigned long extsymoff;
3442 struct elf_link_hash_entry *h;
3443
3444 /* The point of this little dance to the first SHF_GROUP section
3445 then back to the SHT_GROUP section is that this gets us to
3446 the SHT_GROUP in the input object. */
3447 igroup = elf_sec_group (elf_next_in_group (sec));
3448 sec_data = elf_section_data (igroup);
3449 symndx = sec_data->this_hdr.sh_info;
3450 extsymoff = 0;
3451 if (!elf_bad_symtab (igroup->owner))
3452 {
3453 Elf_Internal_Shdr *symtab_hdr;
3454
3455 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3456 extsymoff = symtab_hdr->sh_info;
3457 }
3458 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3459 while (h->root.type == bfd_link_hash_indirect
3460 || h->root.type == bfd_link_hash_warning)
3461 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3462
3463 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3464 }
3465
3466 /* The contents won't be allocated for "ld -r" or objcopy. */
3467 gas = TRUE;
3468 if (sec->contents == NULL)
3469 {
3470 gas = FALSE;
3471 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3472
3473 /* Arrange for the section to be written out. */
3474 elf_section_data (sec)->this_hdr.contents = sec->contents;
3475 if (sec->contents == NULL)
3476 {
3477 *failedptr = TRUE;
3478 return;
3479 }
3480 }
3481
3482 loc = sec->contents + sec->size;
3483
3484 /* Get the pointer to the first section in the group that gas
3485 squirreled away here. objcopy arranges for this to be set to the
3486 start of the input section group. */
3487 first = elt = elf_next_in_group (sec);
3488
3489 /* First element is a flag word. Rest of section is elf section
3490 indices for all the sections of the group. Write them backwards
3491 just to keep the group in the same order as given in .section
3492 directives, not that it matters. */
3493 while (elt != NULL)
3494 {
3495 asection *s;
3496
3497 s = elt;
3498 if (!gas)
3499 s = s->output_section;
3500 if (s != NULL
3501 && !bfd_is_abs_section (s))
3502 {
3503 unsigned int idx = elf_section_data (s)->this_idx;
3504
3505 loc -= 4;
3506 H_PUT_32 (abfd, idx, loc);
3507 }
3508 elt = elf_next_in_group (elt);
3509 if (elt == first)
3510 break;
3511 }
3512
3513 if ((loc -= 4) != sec->contents)
3514 abort ();
3515
3516 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3517 }
3518
3519 /* Return the section which RELOC_SEC applies to. */
3520
3521 asection *
3522 _bfd_elf_get_reloc_section (asection *reloc_sec)
3523 {
3524 const char *name;
3525 unsigned int type;
3526 bfd *abfd;
3527
3528 if (reloc_sec == NULL)
3529 return NULL;
3530
3531 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3532 if (type != SHT_REL && type != SHT_RELA)
3533 return NULL;
3534
3535 /* We look up the section the relocs apply to by name. */
3536 name = reloc_sec->name;
3537 if (type == SHT_REL)
3538 name += 4;
3539 else
3540 name += 5;
3541
3542 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3543 section apply to .got.plt section. */
3544 abfd = reloc_sec->owner;
3545 if (get_elf_backend_data (abfd)->want_got_plt
3546 && strcmp (name, ".plt") == 0)
3547 {
3548 /* .got.plt is a linker created input section. It may be mapped
3549 to some other output section. Try two likely sections. */
3550 name = ".got.plt";
3551 reloc_sec = bfd_get_section_by_name (abfd, name);
3552 if (reloc_sec != NULL)
3553 return reloc_sec;
3554 name = ".got";
3555 }
3556
3557 reloc_sec = bfd_get_section_by_name (abfd, name);
3558 return reloc_sec;
3559 }
3560
3561 /* Assign all ELF section numbers. The dummy first section is handled here
3562 too. The link/info pointers for the standard section types are filled
3563 in here too, while we're at it. */
3564
3565 static bfd_boolean
3566 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3567 {
3568 struct elf_obj_tdata *t = elf_tdata (abfd);
3569 asection *sec;
3570 unsigned int section_number;
3571 Elf_Internal_Shdr **i_shdrp;
3572 struct bfd_elf_section_data *d;
3573 bfd_boolean need_symtab;
3574
3575 section_number = 1;
3576
3577 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3578
3579 /* SHT_GROUP sections are in relocatable files only. */
3580 if (link_info == NULL || bfd_link_relocatable (link_info))
3581 {
3582 size_t reloc_count = 0;
3583
3584 /* Put SHT_GROUP sections first. */
3585 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3586 {
3587 d = elf_section_data (sec);
3588
3589 if (d->this_hdr.sh_type == SHT_GROUP)
3590 {
3591 if (sec->flags & SEC_LINKER_CREATED)
3592 {
3593 /* Remove the linker created SHT_GROUP sections. */
3594 bfd_section_list_remove (abfd, sec);
3595 abfd->section_count--;
3596 }
3597 else
3598 d->this_idx = section_number++;
3599 }
3600
3601 /* Count relocations. */
3602 reloc_count += sec->reloc_count;
3603 }
3604
3605 /* Clear HAS_RELOC if there are no relocations. */
3606 if (reloc_count == 0)
3607 abfd->flags &= ~HAS_RELOC;
3608 }
3609
3610 for (sec = abfd->sections; sec; sec = sec->next)
3611 {
3612 d = elf_section_data (sec);
3613
3614 if (d->this_hdr.sh_type != SHT_GROUP)
3615 d->this_idx = section_number++;
3616 if (d->this_hdr.sh_name != (unsigned int) -1)
3617 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3618 if (d->rel.hdr)
3619 {
3620 d->rel.idx = section_number++;
3621 if (d->rel.hdr->sh_name != (unsigned int) -1)
3622 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3623 }
3624 else
3625 d->rel.idx = 0;
3626
3627 if (d->rela.hdr)
3628 {
3629 d->rela.idx = section_number++;
3630 if (d->rela.hdr->sh_name != (unsigned int) -1)
3631 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3632 }
3633 else
3634 d->rela.idx = 0;
3635 }
3636
3637 need_symtab = (bfd_get_symcount (abfd) > 0
3638 || (link_info == NULL
3639 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3640 == HAS_RELOC)));
3641 if (need_symtab)
3642 {
3643 elf_onesymtab (abfd) = section_number++;
3644 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3645 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3646 {
3647 elf_section_list * entry;
3648
3649 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3650
3651 entry = bfd_zalloc (abfd, sizeof * entry);
3652 entry->ndx = section_number++;
3653 elf_symtab_shndx_list (abfd) = entry;
3654 entry->hdr.sh_name
3655 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3656 ".symtab_shndx", FALSE);
3657 if (entry->hdr.sh_name == (unsigned int) -1)
3658 return FALSE;
3659 }
3660 elf_strtab_sec (abfd) = section_number++;
3661 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3662 }
3663
3664 elf_shstrtab_sec (abfd) = section_number++;
3665 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3666 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3667
3668 if (section_number >= SHN_LORESERVE)
3669 {
3670 /* xgettext:c-format */
3671 _bfd_error_handler (_("%B: too many sections: %u"),
3672 abfd, section_number);
3673 return FALSE;
3674 }
3675
3676 elf_numsections (abfd) = section_number;
3677 elf_elfheader (abfd)->e_shnum = section_number;
3678
3679 /* Set up the list of section header pointers, in agreement with the
3680 indices. */
3681 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3682 sizeof (Elf_Internal_Shdr *));
3683 if (i_shdrp == NULL)
3684 return FALSE;
3685
3686 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3687 sizeof (Elf_Internal_Shdr));
3688 if (i_shdrp[0] == NULL)
3689 {
3690 bfd_release (abfd, i_shdrp);
3691 return FALSE;
3692 }
3693
3694 elf_elfsections (abfd) = i_shdrp;
3695
3696 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3697 if (need_symtab)
3698 {
3699 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3700 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3701 {
3702 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3703 BFD_ASSERT (entry != NULL);
3704 i_shdrp[entry->ndx] = & entry->hdr;
3705 entry->hdr.sh_link = elf_onesymtab (abfd);
3706 }
3707 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3708 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3709 }
3710
3711 for (sec = abfd->sections; sec; sec = sec->next)
3712 {
3713 asection *s;
3714
3715 d = elf_section_data (sec);
3716
3717 i_shdrp[d->this_idx] = &d->this_hdr;
3718 if (d->rel.idx != 0)
3719 i_shdrp[d->rel.idx] = d->rel.hdr;
3720 if (d->rela.idx != 0)
3721 i_shdrp[d->rela.idx] = d->rela.hdr;
3722
3723 /* Fill in the sh_link and sh_info fields while we're at it. */
3724
3725 /* sh_link of a reloc section is the section index of the symbol
3726 table. sh_info is the section index of the section to which
3727 the relocation entries apply. */
3728 if (d->rel.idx != 0)
3729 {
3730 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3731 d->rel.hdr->sh_info = d->this_idx;
3732 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3733 }
3734 if (d->rela.idx != 0)
3735 {
3736 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3737 d->rela.hdr->sh_info = d->this_idx;
3738 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3739 }
3740
3741 /* We need to set up sh_link for SHF_LINK_ORDER. */
3742 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3743 {
3744 s = elf_linked_to_section (sec);
3745 if (s)
3746 {
3747 /* elf_linked_to_section points to the input section. */
3748 if (link_info != NULL)
3749 {
3750 /* Check discarded linkonce section. */
3751 if (discarded_section (s))
3752 {
3753 asection *kept;
3754 _bfd_error_handler
3755 /* xgettext:c-format */
3756 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3757 abfd, d->this_hdr.bfd_section,
3758 s, s->owner);
3759 /* Point to the kept section if it has the same
3760 size as the discarded one. */
3761 kept = _bfd_elf_check_kept_section (s, link_info);
3762 if (kept == NULL)
3763 {
3764 bfd_set_error (bfd_error_bad_value);
3765 return FALSE;
3766 }
3767 s = kept;
3768 }
3769
3770 s = s->output_section;
3771 BFD_ASSERT (s != NULL);
3772 }
3773 else
3774 {
3775 /* Handle objcopy. */
3776 if (s->output_section == NULL)
3777 {
3778 _bfd_error_handler
3779 /* xgettext:c-format */
3780 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3781 abfd, d->this_hdr.bfd_section, s, s->owner);
3782 bfd_set_error (bfd_error_bad_value);
3783 return FALSE;
3784 }
3785 s = s->output_section;
3786 }
3787 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3788 }
3789 else
3790 {
3791 /* PR 290:
3792 The Intel C compiler generates SHT_IA_64_UNWIND with
3793 SHF_LINK_ORDER. But it doesn't set the sh_link or
3794 sh_info fields. Hence we could get the situation
3795 where s is NULL. */
3796 const struct elf_backend_data *bed
3797 = get_elf_backend_data (abfd);
3798 if (bed->link_order_error_handler)
3799 bed->link_order_error_handler
3800 /* xgettext:c-format */
3801 (_("%B: warning: sh_link not set for section `%A'"),
3802 abfd, sec);
3803 }
3804 }
3805
3806 switch (d->this_hdr.sh_type)
3807 {
3808 case SHT_REL:
3809 case SHT_RELA:
3810 /* A reloc section which we are treating as a normal BFD
3811 section. sh_link is the section index of the symbol
3812 table. sh_info is the section index of the section to
3813 which the relocation entries apply. We assume that an
3814 allocated reloc section uses the dynamic symbol table.
3815 FIXME: How can we be sure? */
3816 s = bfd_get_section_by_name (abfd, ".dynsym");
3817 if (s != NULL)
3818 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3819
3820 s = get_elf_backend_data (abfd)->get_reloc_section (sec);
3821 if (s != NULL)
3822 {
3823 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3824 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3825 }
3826 break;
3827
3828 case SHT_STRTAB:
3829 /* We assume that a section named .stab*str is a stabs
3830 string section. We look for a section with the same name
3831 but without the trailing ``str'', and set its sh_link
3832 field to point to this section. */
3833 if (CONST_STRNEQ (sec->name, ".stab")
3834 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3835 {
3836 size_t len;
3837 char *alc;
3838
3839 len = strlen (sec->name);
3840 alc = (char *) bfd_malloc (len - 2);
3841 if (alc == NULL)
3842 return FALSE;
3843 memcpy (alc, sec->name, len - 3);
3844 alc[len - 3] = '\0';
3845 s = bfd_get_section_by_name (abfd, alc);
3846 free (alc);
3847 if (s != NULL)
3848 {
3849 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3850
3851 /* This is a .stab section. */
3852 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3853 elf_section_data (s)->this_hdr.sh_entsize
3854 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3855 }
3856 }
3857 break;
3858
3859 case SHT_DYNAMIC:
3860 case SHT_DYNSYM:
3861 case SHT_GNU_verneed:
3862 case SHT_GNU_verdef:
3863 /* sh_link is the section header index of the string table
3864 used for the dynamic entries, or the symbol table, or the
3865 version strings. */
3866 s = bfd_get_section_by_name (abfd, ".dynstr");
3867 if (s != NULL)
3868 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3869 break;
3870
3871 case SHT_GNU_LIBLIST:
3872 /* sh_link is the section header index of the prelink library
3873 list used for the dynamic entries, or the symbol table, or
3874 the version strings. */
3875 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3876 ? ".dynstr" : ".gnu.libstr");
3877 if (s != NULL)
3878 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3879 break;
3880
3881 case SHT_HASH:
3882 case SHT_GNU_HASH:
3883 case SHT_GNU_versym:
3884 /* sh_link is the section header index of the symbol table
3885 this hash table or version table is for. */
3886 s = bfd_get_section_by_name (abfd, ".dynsym");
3887 if (s != NULL)
3888 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3889 break;
3890
3891 case SHT_GROUP:
3892 d->this_hdr.sh_link = elf_onesymtab (abfd);
3893 }
3894 }
3895
3896 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3897 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3898 debug section name from .debug_* to .zdebug_* if needed. */
3899
3900 return TRUE;
3901 }
3902
3903 static bfd_boolean
3904 sym_is_global (bfd *abfd, asymbol *sym)
3905 {
3906 /* If the backend has a special mapping, use it. */
3907 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3908 if (bed->elf_backend_sym_is_global)
3909 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3910
3911 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3912 || bfd_is_und_section (bfd_get_section (sym))
3913 || bfd_is_com_section (bfd_get_section (sym)));
3914 }
3915
3916 /* Filter global symbols of ABFD to include in the import library. All
3917 SYMCOUNT symbols of ABFD can be examined from their pointers in
3918 SYMS. Pointers of symbols to keep should be stored contiguously at
3919 the beginning of that array.
3920
3921 Returns the number of symbols to keep. */
3922
3923 unsigned int
3924 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
3925 asymbol **syms, long symcount)
3926 {
3927 long src_count, dst_count = 0;
3928
3929 for (src_count = 0; src_count < symcount; src_count++)
3930 {
3931 asymbol *sym = syms[src_count];
3932 char *name = (char *) bfd_asymbol_name (sym);
3933 struct bfd_link_hash_entry *h;
3934
3935 if (!sym_is_global (abfd, sym))
3936 continue;
3937
3938 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
3939 if (h == NULL)
3940 continue;
3941 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
3942 continue;
3943 if (h->linker_def || h->ldscript_def)
3944 continue;
3945
3946 syms[dst_count++] = sym;
3947 }
3948
3949 syms[dst_count] = NULL;
3950
3951 return dst_count;
3952 }
3953
3954 /* Don't output section symbols for sections that are not going to be
3955 output, that are duplicates or there is no BFD section. */
3956
3957 static bfd_boolean
3958 ignore_section_sym (bfd *abfd, asymbol *sym)
3959 {
3960 elf_symbol_type *type_ptr;
3961
3962 if ((sym->flags & BSF_SECTION_SYM) == 0)
3963 return FALSE;
3964
3965 type_ptr = elf_symbol_from (abfd, sym);
3966 return ((type_ptr != NULL
3967 && type_ptr->internal_elf_sym.st_shndx != 0
3968 && bfd_is_abs_section (sym->section))
3969 || !(sym->section->owner == abfd
3970 || (sym->section->output_section->owner == abfd
3971 && sym->section->output_offset == 0)
3972 || bfd_is_abs_section (sym->section)));
3973 }
3974
3975 /* Map symbol from it's internal number to the external number, moving
3976 all local symbols to be at the head of the list. */
3977
3978 static bfd_boolean
3979 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3980 {
3981 unsigned int symcount = bfd_get_symcount (abfd);
3982 asymbol **syms = bfd_get_outsymbols (abfd);
3983 asymbol **sect_syms;
3984 unsigned int num_locals = 0;
3985 unsigned int num_globals = 0;
3986 unsigned int num_locals2 = 0;
3987 unsigned int num_globals2 = 0;
3988 unsigned int max_index = 0;
3989 unsigned int idx;
3990 asection *asect;
3991 asymbol **new_syms;
3992
3993 #ifdef DEBUG
3994 fprintf (stderr, "elf_map_symbols\n");
3995 fflush (stderr);
3996 #endif
3997
3998 for (asect = abfd->sections; asect; asect = asect->next)
3999 {
4000 if (max_index < asect->index)
4001 max_index = asect->index;
4002 }
4003
4004 max_index++;
4005 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4006 if (sect_syms == NULL)
4007 return FALSE;
4008 elf_section_syms (abfd) = sect_syms;
4009 elf_num_section_syms (abfd) = max_index;
4010
4011 /* Init sect_syms entries for any section symbols we have already
4012 decided to output. */
4013 for (idx = 0; idx < symcount; idx++)
4014 {
4015 asymbol *sym = syms[idx];
4016
4017 if ((sym->flags & BSF_SECTION_SYM) != 0
4018 && sym->value == 0
4019 && !ignore_section_sym (abfd, sym)
4020 && !bfd_is_abs_section (sym->section))
4021 {
4022 asection *sec = sym->section;
4023
4024 if (sec->owner != abfd)
4025 sec = sec->output_section;
4026
4027 sect_syms[sec->index] = syms[idx];
4028 }
4029 }
4030
4031 /* Classify all of the symbols. */
4032 for (idx = 0; idx < symcount; idx++)
4033 {
4034 if (sym_is_global (abfd, syms[idx]))
4035 num_globals++;
4036 else if (!ignore_section_sym (abfd, syms[idx]))
4037 num_locals++;
4038 }
4039
4040 /* We will be adding a section symbol for each normal BFD section. Most
4041 sections will already have a section symbol in outsymbols, but
4042 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4043 at least in that case. */
4044 for (asect = abfd->sections; asect; asect = asect->next)
4045 {
4046 if (sect_syms[asect->index] == NULL)
4047 {
4048 if (!sym_is_global (abfd, asect->symbol))
4049 num_locals++;
4050 else
4051 num_globals++;
4052 }
4053 }
4054
4055 /* Now sort the symbols so the local symbols are first. */
4056 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4057 sizeof (asymbol *));
4058
4059 if (new_syms == NULL)
4060 return FALSE;
4061
4062 for (idx = 0; idx < symcount; idx++)
4063 {
4064 asymbol *sym = syms[idx];
4065 unsigned int i;
4066
4067 if (sym_is_global (abfd, sym))
4068 i = num_locals + num_globals2++;
4069 else if (!ignore_section_sym (abfd, sym))
4070 i = num_locals2++;
4071 else
4072 continue;
4073 new_syms[i] = sym;
4074 sym->udata.i = i + 1;
4075 }
4076 for (asect = abfd->sections; asect; asect = asect->next)
4077 {
4078 if (sect_syms[asect->index] == NULL)
4079 {
4080 asymbol *sym = asect->symbol;
4081 unsigned int i;
4082
4083 sect_syms[asect->index] = sym;
4084 if (!sym_is_global (abfd, sym))
4085 i = num_locals2++;
4086 else
4087 i = num_locals + num_globals2++;
4088 new_syms[i] = sym;
4089 sym->udata.i = i + 1;
4090 }
4091 }
4092
4093 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4094
4095 *pnum_locals = num_locals;
4096 return TRUE;
4097 }
4098
4099 /* Align to the maximum file alignment that could be required for any
4100 ELF data structure. */
4101
4102 static inline file_ptr
4103 align_file_position (file_ptr off, int align)
4104 {
4105 return (off + align - 1) & ~(align - 1);
4106 }
4107
4108 /* Assign a file position to a section, optionally aligning to the
4109 required section alignment. */
4110
4111 file_ptr
4112 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4113 file_ptr offset,
4114 bfd_boolean align)
4115 {
4116 if (align && i_shdrp->sh_addralign > 1)
4117 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4118 i_shdrp->sh_offset = offset;
4119 if (i_shdrp->bfd_section != NULL)
4120 i_shdrp->bfd_section->filepos = offset;
4121 if (i_shdrp->sh_type != SHT_NOBITS)
4122 offset += i_shdrp->sh_size;
4123 return offset;
4124 }
4125
4126 /* Compute the file positions we are going to put the sections at, and
4127 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4128 is not NULL, this is being called by the ELF backend linker. */
4129
4130 bfd_boolean
4131 _bfd_elf_compute_section_file_positions (bfd *abfd,
4132 struct bfd_link_info *link_info)
4133 {
4134 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4135 struct fake_section_arg fsargs;
4136 bfd_boolean failed;
4137 struct elf_strtab_hash *strtab = NULL;
4138 Elf_Internal_Shdr *shstrtab_hdr;
4139 bfd_boolean need_symtab;
4140
4141 if (abfd->output_has_begun)
4142 return TRUE;
4143
4144 /* Do any elf backend specific processing first. */
4145 if (bed->elf_backend_begin_write_processing)
4146 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4147
4148 if (! prep_headers (abfd))
4149 return FALSE;
4150
4151 /* Post process the headers if necessary. */
4152 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4153
4154 fsargs.failed = FALSE;
4155 fsargs.link_info = link_info;
4156 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4157 if (fsargs.failed)
4158 return FALSE;
4159
4160 if (!assign_section_numbers (abfd, link_info))
4161 return FALSE;
4162
4163 /* The backend linker builds symbol table information itself. */
4164 need_symtab = (link_info == NULL
4165 && (bfd_get_symcount (abfd) > 0
4166 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4167 == HAS_RELOC)));
4168 if (need_symtab)
4169 {
4170 /* Non-zero if doing a relocatable link. */
4171 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4172
4173 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4174 return FALSE;
4175 }
4176
4177 failed = FALSE;
4178 if (link_info == NULL)
4179 {
4180 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4181 if (failed)
4182 return FALSE;
4183 }
4184
4185 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4186 /* sh_name was set in prep_headers. */
4187 shstrtab_hdr->sh_type = SHT_STRTAB;
4188 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4189 shstrtab_hdr->sh_addr = 0;
4190 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4191 shstrtab_hdr->sh_entsize = 0;
4192 shstrtab_hdr->sh_link = 0;
4193 shstrtab_hdr->sh_info = 0;
4194 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4195 shstrtab_hdr->sh_addralign = 1;
4196
4197 if (!assign_file_positions_except_relocs (abfd, link_info))
4198 return FALSE;
4199
4200 if (need_symtab)
4201 {
4202 file_ptr off;
4203 Elf_Internal_Shdr *hdr;
4204
4205 off = elf_next_file_pos (abfd);
4206
4207 hdr = & elf_symtab_hdr (abfd);
4208 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4209
4210 if (elf_symtab_shndx_list (abfd) != NULL)
4211 {
4212 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4213 if (hdr->sh_size != 0)
4214 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4215 /* FIXME: What about other symtab_shndx sections in the list ? */
4216 }
4217
4218 hdr = &elf_tdata (abfd)->strtab_hdr;
4219 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4220
4221 elf_next_file_pos (abfd) = off;
4222
4223 /* Now that we know where the .strtab section goes, write it
4224 out. */
4225 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4226 || ! _bfd_elf_strtab_emit (abfd, strtab))
4227 return FALSE;
4228 _bfd_elf_strtab_free (strtab);
4229 }
4230
4231 abfd->output_has_begun = TRUE;
4232
4233 return TRUE;
4234 }
4235
4236 /* Make an initial estimate of the size of the program header. If we
4237 get the number wrong here, we'll redo section placement. */
4238
4239 static bfd_size_type
4240 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4241 {
4242 size_t segs;
4243 asection *s;
4244 const struct elf_backend_data *bed;
4245
4246 /* Assume we will need exactly two PT_LOAD segments: one for text
4247 and one for data. */
4248 segs = 2;
4249
4250 s = bfd_get_section_by_name (abfd, ".interp");
4251 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4252 {
4253 /* If we have a loadable interpreter section, we need a
4254 PT_INTERP segment. In this case, assume we also need a
4255 PT_PHDR segment, although that may not be true for all
4256 targets. */
4257 segs += 3;
4258 }
4259
4260 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4261 {
4262 /* We need a PT_DYNAMIC segment. */
4263 ++segs;
4264 }
4265
4266 if (info != NULL && info->relro)
4267 {
4268 /* We need a PT_GNU_RELRO segment. */
4269 ++segs;
4270 }
4271
4272 if (elf_eh_frame_hdr (abfd))
4273 {
4274 /* We need a PT_GNU_EH_FRAME segment. */
4275 ++segs;
4276 }
4277
4278 if (elf_stack_flags (abfd))
4279 {
4280 /* We need a PT_GNU_STACK segment. */
4281 ++segs;
4282 }
4283
4284 for (s = abfd->sections; s != NULL; s = s->next)
4285 {
4286 if ((s->flags & SEC_LOAD) != 0
4287 && CONST_STRNEQ (s->name, ".note"))
4288 {
4289 /* We need a PT_NOTE segment. */
4290 ++segs;
4291 /* Try to create just one PT_NOTE segment
4292 for all adjacent loadable .note* sections.
4293 gABI requires that within a PT_NOTE segment
4294 (and also inside of each SHT_NOTE section)
4295 each note is padded to a multiple of 4 size,
4296 so we check whether the sections are correctly
4297 aligned. */
4298 if (s->alignment_power == 2)
4299 while (s->next != NULL
4300 && s->next->alignment_power == 2
4301 && (s->next->flags & SEC_LOAD) != 0
4302 && CONST_STRNEQ (s->next->name, ".note"))
4303 s = s->next;
4304 }
4305 }
4306
4307 for (s = abfd->sections; s != NULL; s = s->next)
4308 {
4309 if (s->flags & SEC_THREAD_LOCAL)
4310 {
4311 /* We need a PT_TLS segment. */
4312 ++segs;
4313 break;
4314 }
4315 }
4316
4317 /* Let the backend count up any program headers it might need. */
4318 bed = get_elf_backend_data (abfd);
4319 if (bed->elf_backend_additional_program_headers)
4320 {
4321 int a;
4322
4323 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4324 if (a == -1)
4325 abort ();
4326 segs += a;
4327 }
4328
4329 return segs * bed->s->sizeof_phdr;
4330 }
4331
4332 /* Find the segment that contains the output_section of section. */
4333
4334 Elf_Internal_Phdr *
4335 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4336 {
4337 struct elf_segment_map *m;
4338 Elf_Internal_Phdr *p;
4339
4340 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4341 m != NULL;
4342 m = m->next, p++)
4343 {
4344 int i;
4345
4346 for (i = m->count - 1; i >= 0; i--)
4347 if (m->sections[i] == section)
4348 return p;
4349 }
4350
4351 return NULL;
4352 }
4353
4354 /* Create a mapping from a set of sections to a program segment. */
4355
4356 static struct elf_segment_map *
4357 make_mapping (bfd *abfd,
4358 asection **sections,
4359 unsigned int from,
4360 unsigned int to,
4361 bfd_boolean phdr)
4362 {
4363 struct elf_segment_map *m;
4364 unsigned int i;
4365 asection **hdrpp;
4366 bfd_size_type amt;
4367
4368 amt = sizeof (struct elf_segment_map);
4369 amt += (to - from - 1) * sizeof (asection *);
4370 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4371 if (m == NULL)
4372 return NULL;
4373 m->next = NULL;
4374 m->p_type = PT_LOAD;
4375 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4376 m->sections[i - from] = *hdrpp;
4377 m->count = to - from;
4378
4379 if (from == 0 && phdr)
4380 {
4381 /* Include the headers in the first PT_LOAD segment. */
4382 m->includes_filehdr = 1;
4383 m->includes_phdrs = 1;
4384 }
4385
4386 return m;
4387 }
4388
4389 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4390 on failure. */
4391
4392 struct elf_segment_map *
4393 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4394 {
4395 struct elf_segment_map *m;
4396
4397 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4398 sizeof (struct elf_segment_map));
4399 if (m == NULL)
4400 return NULL;
4401 m->next = NULL;
4402 m->p_type = PT_DYNAMIC;
4403 m->count = 1;
4404 m->sections[0] = dynsec;
4405
4406 return m;
4407 }
4408
4409 /* Possibly add or remove segments from the segment map. */
4410
4411 static bfd_boolean
4412 elf_modify_segment_map (bfd *abfd,
4413 struct bfd_link_info *info,
4414 bfd_boolean remove_empty_load)
4415 {
4416 struct elf_segment_map **m;
4417 const struct elf_backend_data *bed;
4418
4419 /* The placement algorithm assumes that non allocated sections are
4420 not in PT_LOAD segments. We ensure this here by removing such
4421 sections from the segment map. We also remove excluded
4422 sections. Finally, any PT_LOAD segment without sections is
4423 removed. */
4424 m = &elf_seg_map (abfd);
4425 while (*m)
4426 {
4427 unsigned int i, new_count;
4428
4429 for (new_count = 0, i = 0; i < (*m)->count; i++)
4430 {
4431 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4432 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4433 || (*m)->p_type != PT_LOAD))
4434 {
4435 (*m)->sections[new_count] = (*m)->sections[i];
4436 new_count++;
4437 }
4438 }
4439 (*m)->count = new_count;
4440
4441 if (remove_empty_load
4442 && (*m)->p_type == PT_LOAD
4443 && (*m)->count == 0
4444 && !(*m)->includes_phdrs)
4445 *m = (*m)->next;
4446 else
4447 m = &(*m)->next;
4448 }
4449
4450 bed = get_elf_backend_data (abfd);
4451 if (bed->elf_backend_modify_segment_map != NULL)
4452 {
4453 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4454 return FALSE;
4455 }
4456
4457 return TRUE;
4458 }
4459
4460 /* Set up a mapping from BFD sections to program segments. */
4461
4462 bfd_boolean
4463 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4464 {
4465 unsigned int count;
4466 struct elf_segment_map *m;
4467 asection **sections = NULL;
4468 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4469 bfd_boolean no_user_phdrs;
4470
4471 no_user_phdrs = elf_seg_map (abfd) == NULL;
4472
4473 if (info != NULL)
4474 info->user_phdrs = !no_user_phdrs;
4475
4476 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4477 {
4478 asection *s;
4479 unsigned int i;
4480 struct elf_segment_map *mfirst;
4481 struct elf_segment_map **pm;
4482 asection *last_hdr;
4483 bfd_vma last_size;
4484 unsigned int phdr_index;
4485 bfd_vma maxpagesize;
4486 asection **hdrpp;
4487 bfd_boolean phdr_in_segment = TRUE;
4488 bfd_boolean writable;
4489 int tls_count = 0;
4490 asection *first_tls = NULL;
4491 asection *dynsec, *eh_frame_hdr;
4492 bfd_size_type amt;
4493 bfd_vma addr_mask, wrap_to = 0;
4494 bfd_boolean linker_created_pt_phdr_segment = FALSE;
4495
4496 /* Select the allocated sections, and sort them. */
4497
4498 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4499 sizeof (asection *));
4500 if (sections == NULL)
4501 goto error_return;
4502
4503 /* Calculate top address, avoiding undefined behaviour of shift
4504 left operator when shift count is equal to size of type
4505 being shifted. */
4506 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4507 addr_mask = (addr_mask << 1) + 1;
4508
4509 i = 0;
4510 for (s = abfd->sections; s != NULL; s = s->next)
4511 {
4512 if ((s->flags & SEC_ALLOC) != 0)
4513 {
4514 sections[i] = s;
4515 ++i;
4516 /* A wrapping section potentially clashes with header. */
4517 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4518 wrap_to = (s->lma + s->size) & addr_mask;
4519 }
4520 }
4521 BFD_ASSERT (i <= bfd_count_sections (abfd));
4522 count = i;
4523
4524 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4525
4526 /* Build the mapping. */
4527
4528 mfirst = NULL;
4529 pm = &mfirst;
4530
4531 /* If we have a .interp section, then create a PT_PHDR segment for
4532 the program headers and a PT_INTERP segment for the .interp
4533 section. */
4534 s = bfd_get_section_by_name (abfd, ".interp");
4535 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4536 {
4537 amt = sizeof (struct elf_segment_map);
4538 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4539 if (m == NULL)
4540 goto error_return;
4541 m->next = NULL;
4542 m->p_type = PT_PHDR;
4543 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
4544 m->p_flags = PF_R | PF_X;
4545 m->p_flags_valid = 1;
4546 m->includes_phdrs = 1;
4547 linker_created_pt_phdr_segment = TRUE;
4548 *pm = m;
4549 pm = &m->next;
4550
4551 amt = sizeof (struct elf_segment_map);
4552 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4553 if (m == NULL)
4554 goto error_return;
4555 m->next = NULL;
4556 m->p_type = PT_INTERP;
4557 m->count = 1;
4558 m->sections[0] = s;
4559
4560 *pm = m;
4561 pm = &m->next;
4562 }
4563
4564 /* Look through the sections. We put sections in the same program
4565 segment when the start of the second section can be placed within
4566 a few bytes of the end of the first section. */
4567 last_hdr = NULL;
4568 last_size = 0;
4569 phdr_index = 0;
4570 maxpagesize = bed->maxpagesize;
4571 /* PR 17512: file: c8455299.
4572 Avoid divide-by-zero errors later on.
4573 FIXME: Should we abort if the maxpagesize is zero ? */
4574 if (maxpagesize == 0)
4575 maxpagesize = 1;
4576 writable = FALSE;
4577 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4578 if (dynsec != NULL
4579 && (dynsec->flags & SEC_LOAD) == 0)
4580 dynsec = NULL;
4581
4582 /* Deal with -Ttext or something similar such that the first section
4583 is not adjacent to the program headers. This is an
4584 approximation, since at this point we don't know exactly how many
4585 program headers we will need. */
4586 if (count > 0)
4587 {
4588 bfd_size_type phdr_size = elf_program_header_size (abfd);
4589
4590 if (phdr_size == (bfd_size_type) -1)
4591 phdr_size = get_program_header_size (abfd, info);
4592 phdr_size += bed->s->sizeof_ehdr;
4593 if ((abfd->flags & D_PAGED) == 0
4594 || (sections[0]->lma & addr_mask) < phdr_size
4595 || ((sections[0]->lma & addr_mask) % maxpagesize
4596 < phdr_size % maxpagesize)
4597 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4598 {
4599 /* PR 20815: The ELF standard says that a PT_PHDR segment, if
4600 present, must be included as part of the memory image of the
4601 program. Ie it must be part of a PT_LOAD segment as well.
4602 If we have had to create our own PT_PHDR segment, but it is
4603 not going to be covered by the first PT_LOAD segment, then
4604 force the inclusion if we can... */
4605 if ((abfd->flags & D_PAGED) != 0
4606 && linker_created_pt_phdr_segment)
4607 phdr_in_segment = TRUE;
4608 else
4609 phdr_in_segment = FALSE;
4610 }
4611 }
4612
4613 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4614 {
4615 asection *hdr;
4616 bfd_boolean new_segment;
4617
4618 hdr = *hdrpp;
4619
4620 /* See if this section and the last one will fit in the same
4621 segment. */
4622
4623 if (last_hdr == NULL)
4624 {
4625 /* If we don't have a segment yet, then we don't need a new
4626 one (we build the last one after this loop). */
4627 new_segment = FALSE;
4628 }
4629 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4630 {
4631 /* If this section has a different relation between the
4632 virtual address and the load address, then we need a new
4633 segment. */
4634 new_segment = TRUE;
4635 }
4636 else if (hdr->lma < last_hdr->lma + last_size
4637 || last_hdr->lma + last_size < last_hdr->lma)
4638 {
4639 /* If this section has a load address that makes it overlap
4640 the previous section, then we need a new segment. */
4641 new_segment = TRUE;
4642 }
4643 /* In the next test we have to be careful when last_hdr->lma is close
4644 to the end of the address space. If the aligned address wraps
4645 around to the start of the address space, then there are no more
4646 pages left in memory and it is OK to assume that the current
4647 section can be included in the current segment. */
4648 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4649 > last_hdr->lma)
4650 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4651 <= hdr->lma))
4652 {
4653 /* If putting this section in this segment would force us to
4654 skip a page in the segment, then we need a new segment. */
4655 new_segment = TRUE;
4656 }
4657 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4658 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0
4659 && ((abfd->flags & D_PAGED) == 0
4660 || (((last_hdr->lma + last_size - 1) & -maxpagesize)
4661 != (hdr->lma & -maxpagesize))))
4662 {
4663 /* We don't want to put a loaded section after a
4664 nonloaded (ie. bss style) section in the same segment
4665 as that will force the non-loaded section to be loaded.
4666 Consider .tbss sections as loaded for this purpose.
4667 However, like the writable/non-writable case below,
4668 if they are on the same page then they must be put
4669 in the same segment. */
4670 new_segment = TRUE;
4671 }
4672 else if ((abfd->flags & D_PAGED) == 0)
4673 {
4674 /* If the file is not demand paged, which means that we
4675 don't require the sections to be correctly aligned in the
4676 file, then there is no other reason for a new segment. */
4677 new_segment = FALSE;
4678 }
4679 else if (! writable
4680 && (hdr->flags & SEC_READONLY) == 0
4681 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4682 != (hdr->lma & -maxpagesize)))
4683 {
4684 /* We don't want to put a writable section in a read only
4685 segment, unless they are on the same page in memory
4686 anyhow. We already know that the last section does not
4687 bring us past the current section on the page, so the
4688 only case in which the new section is not on the same
4689 page as the previous section is when the previous section
4690 ends precisely on a page boundary. */
4691 new_segment = TRUE;
4692 }
4693 else
4694 {
4695 /* Otherwise, we can use the same segment. */
4696 new_segment = FALSE;
4697 }
4698
4699 /* Allow interested parties a chance to override our decision. */
4700 if (last_hdr != NULL
4701 && info != NULL
4702 && info->callbacks->override_segment_assignment != NULL)
4703 new_segment
4704 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4705 last_hdr,
4706 new_segment);
4707
4708 if (! new_segment)
4709 {
4710 if ((hdr->flags & SEC_READONLY) == 0)
4711 writable = TRUE;
4712 last_hdr = hdr;
4713 /* .tbss sections effectively have zero size. */
4714 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4715 != SEC_THREAD_LOCAL)
4716 last_size = hdr->size;
4717 else
4718 last_size = 0;
4719 continue;
4720 }
4721
4722 /* We need a new program segment. We must create a new program
4723 header holding all the sections from phdr_index until hdr. */
4724
4725 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4726 if (m == NULL)
4727 goto error_return;
4728
4729 *pm = m;
4730 pm = &m->next;
4731
4732 if ((hdr->flags & SEC_READONLY) == 0)
4733 writable = TRUE;
4734 else
4735 writable = FALSE;
4736
4737 last_hdr = hdr;
4738 /* .tbss sections effectively have zero size. */
4739 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4740 last_size = hdr->size;
4741 else
4742 last_size = 0;
4743 phdr_index = i;
4744 phdr_in_segment = FALSE;
4745 }
4746
4747 /* Create a final PT_LOAD program segment, but not if it's just
4748 for .tbss. */
4749 if (last_hdr != NULL
4750 && (i - phdr_index != 1
4751 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4752 != SEC_THREAD_LOCAL)))
4753 {
4754 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4755 if (m == NULL)
4756 goto error_return;
4757
4758 *pm = m;
4759 pm = &m->next;
4760 }
4761
4762 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4763 if (dynsec != NULL)
4764 {
4765 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4766 if (m == NULL)
4767 goto error_return;
4768 *pm = m;
4769 pm = &m->next;
4770 }
4771
4772 /* For each batch of consecutive loadable .note sections,
4773 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4774 because if we link together nonloadable .note sections and
4775 loadable .note sections, we will generate two .note sections
4776 in the output file. FIXME: Using names for section types is
4777 bogus anyhow. */
4778 for (s = abfd->sections; s != NULL; s = s->next)
4779 {
4780 if ((s->flags & SEC_LOAD) != 0
4781 && CONST_STRNEQ (s->name, ".note"))
4782 {
4783 asection *s2;
4784
4785 count = 1;
4786 amt = sizeof (struct elf_segment_map);
4787 if (s->alignment_power == 2)
4788 for (s2 = s; s2->next != NULL; s2 = s2->next)
4789 {
4790 if (s2->next->alignment_power == 2
4791 && (s2->next->flags & SEC_LOAD) != 0
4792 && CONST_STRNEQ (s2->next->name, ".note")
4793 && align_power (s2->lma + s2->size, 2)
4794 == s2->next->lma)
4795 count++;
4796 else
4797 break;
4798 }
4799 amt += (count - 1) * sizeof (asection *);
4800 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4801 if (m == NULL)
4802 goto error_return;
4803 m->next = NULL;
4804 m->p_type = PT_NOTE;
4805 m->count = count;
4806 while (count > 1)
4807 {
4808 m->sections[m->count - count--] = s;
4809 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4810 s = s->next;
4811 }
4812 m->sections[m->count - 1] = s;
4813 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4814 *pm = m;
4815 pm = &m->next;
4816 }
4817 if (s->flags & SEC_THREAD_LOCAL)
4818 {
4819 if (! tls_count)
4820 first_tls = s;
4821 tls_count++;
4822 }
4823 }
4824
4825 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4826 if (tls_count > 0)
4827 {
4828 amt = sizeof (struct elf_segment_map);
4829 amt += (tls_count - 1) * sizeof (asection *);
4830 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4831 if (m == NULL)
4832 goto error_return;
4833 m->next = NULL;
4834 m->p_type = PT_TLS;
4835 m->count = tls_count;
4836 /* Mandated PF_R. */
4837 m->p_flags = PF_R;
4838 m->p_flags_valid = 1;
4839 s = first_tls;
4840 for (i = 0; i < (unsigned int) tls_count; ++i)
4841 {
4842 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4843 {
4844 _bfd_error_handler
4845 (_("%B: TLS sections are not adjacent:"), abfd);
4846 s = first_tls;
4847 i = 0;
4848 while (i < (unsigned int) tls_count)
4849 {
4850 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4851 {
4852 _bfd_error_handler (_(" TLS: %A"), s);
4853 i++;
4854 }
4855 else
4856 _bfd_error_handler (_(" non-TLS: %A"), s);
4857 s = s->next;
4858 }
4859 bfd_set_error (bfd_error_bad_value);
4860 goto error_return;
4861 }
4862 m->sections[i] = s;
4863 s = s->next;
4864 }
4865
4866 *pm = m;
4867 pm = &m->next;
4868 }
4869
4870 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4871 segment. */
4872 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4873 if (eh_frame_hdr != NULL
4874 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4875 {
4876 amt = sizeof (struct elf_segment_map);
4877 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4878 if (m == NULL)
4879 goto error_return;
4880 m->next = NULL;
4881 m->p_type = PT_GNU_EH_FRAME;
4882 m->count = 1;
4883 m->sections[0] = eh_frame_hdr->output_section;
4884
4885 *pm = m;
4886 pm = &m->next;
4887 }
4888
4889 if (elf_stack_flags (abfd))
4890 {
4891 amt = sizeof (struct elf_segment_map);
4892 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4893 if (m == NULL)
4894 goto error_return;
4895 m->next = NULL;
4896 m->p_type = PT_GNU_STACK;
4897 m->p_flags = elf_stack_flags (abfd);
4898 m->p_align = bed->stack_align;
4899 m->p_flags_valid = 1;
4900 m->p_align_valid = m->p_align != 0;
4901 if (info->stacksize > 0)
4902 {
4903 m->p_size = info->stacksize;
4904 m->p_size_valid = 1;
4905 }
4906
4907 *pm = m;
4908 pm = &m->next;
4909 }
4910
4911 if (info != NULL && info->relro)
4912 {
4913 for (m = mfirst; m != NULL; m = m->next)
4914 {
4915 if (m->p_type == PT_LOAD
4916 && m->count != 0
4917 && m->sections[0]->vma >= info->relro_start
4918 && m->sections[0]->vma < info->relro_end)
4919 {
4920 i = m->count;
4921 while (--i != (unsigned) -1)
4922 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4923 == (SEC_LOAD | SEC_HAS_CONTENTS))
4924 break;
4925
4926 if (i != (unsigned) -1)
4927 break;
4928 }
4929 }
4930
4931 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4932 if (m != NULL)
4933 {
4934 amt = sizeof (struct elf_segment_map);
4935 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4936 if (m == NULL)
4937 goto error_return;
4938 m->next = NULL;
4939 m->p_type = PT_GNU_RELRO;
4940 *pm = m;
4941 pm = &m->next;
4942 }
4943 }
4944
4945 free (sections);
4946 elf_seg_map (abfd) = mfirst;
4947 }
4948
4949 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4950 return FALSE;
4951
4952 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4953 ++count;
4954 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4955
4956 return TRUE;
4957
4958 error_return:
4959 if (sections != NULL)
4960 free (sections);
4961 return FALSE;
4962 }
4963
4964 /* Sort sections by address. */
4965
4966 static int
4967 elf_sort_sections (const void *arg1, const void *arg2)
4968 {
4969 const asection *sec1 = *(const asection **) arg1;
4970 const asection *sec2 = *(const asection **) arg2;
4971 bfd_size_type size1, size2;
4972
4973 /* Sort by LMA first, since this is the address used to
4974 place the section into a segment. */
4975 if (sec1->lma < sec2->lma)
4976 return -1;
4977 else if (sec1->lma > sec2->lma)
4978 return 1;
4979
4980 /* Then sort by VMA. Normally the LMA and the VMA will be
4981 the same, and this will do nothing. */
4982 if (sec1->vma < sec2->vma)
4983 return -1;
4984 else if (sec1->vma > sec2->vma)
4985 return 1;
4986
4987 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4988
4989 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4990
4991 if (TOEND (sec1))
4992 {
4993 if (TOEND (sec2))
4994 {
4995 /* If the indicies are the same, do not return 0
4996 here, but continue to try the next comparison. */
4997 if (sec1->target_index - sec2->target_index != 0)
4998 return sec1->target_index - sec2->target_index;
4999 }
5000 else
5001 return 1;
5002 }
5003 else if (TOEND (sec2))
5004 return -1;
5005
5006 #undef TOEND
5007
5008 /* Sort by size, to put zero sized sections
5009 before others at the same address. */
5010
5011 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5012 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5013
5014 if (size1 < size2)
5015 return -1;
5016 if (size1 > size2)
5017 return 1;
5018
5019 return sec1->target_index - sec2->target_index;
5020 }
5021
5022 /* Ian Lance Taylor writes:
5023
5024 We shouldn't be using % with a negative signed number. That's just
5025 not good. We have to make sure either that the number is not
5026 negative, or that the number has an unsigned type. When the types
5027 are all the same size they wind up as unsigned. When file_ptr is a
5028 larger signed type, the arithmetic winds up as signed long long,
5029 which is wrong.
5030
5031 What we're trying to say here is something like ``increase OFF by
5032 the least amount that will cause it to be equal to the VMA modulo
5033 the page size.'' */
5034 /* In other words, something like:
5035
5036 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5037 off_offset = off % bed->maxpagesize;
5038 if (vma_offset < off_offset)
5039 adjustment = vma_offset + bed->maxpagesize - off_offset;
5040 else
5041 adjustment = vma_offset - off_offset;
5042
5043 which can can be collapsed into the expression below. */
5044
5045 static file_ptr
5046 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5047 {
5048 /* PR binutils/16199: Handle an alignment of zero. */
5049 if (maxpagesize == 0)
5050 maxpagesize = 1;
5051 return ((vma - off) % maxpagesize);
5052 }
5053
5054 static void
5055 print_segment_map (const struct elf_segment_map *m)
5056 {
5057 unsigned int j;
5058 const char *pt = get_segment_type (m->p_type);
5059 char buf[32];
5060
5061 if (pt == NULL)
5062 {
5063 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5064 sprintf (buf, "LOPROC+%7.7x",
5065 (unsigned int) (m->p_type - PT_LOPROC));
5066 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5067 sprintf (buf, "LOOS+%7.7x",
5068 (unsigned int) (m->p_type - PT_LOOS));
5069 else
5070 snprintf (buf, sizeof (buf), "%8.8x",
5071 (unsigned int) m->p_type);
5072 pt = buf;
5073 }
5074 fflush (stdout);
5075 fprintf (stderr, "%s:", pt);
5076 for (j = 0; j < m->count; j++)
5077 fprintf (stderr, " %s", m->sections [j]->name);
5078 putc ('\n',stderr);
5079 fflush (stderr);
5080 }
5081
5082 static bfd_boolean
5083 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5084 {
5085 void *buf;
5086 bfd_boolean ret;
5087
5088 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5089 return FALSE;
5090 buf = bfd_zmalloc (len);
5091 if (buf == NULL)
5092 return FALSE;
5093 ret = bfd_bwrite (buf, len, abfd) == len;
5094 free (buf);
5095 return ret;
5096 }
5097
5098 /* Assign file positions to the sections based on the mapping from
5099 sections to segments. This function also sets up some fields in
5100 the file header. */
5101
5102 static bfd_boolean
5103 assign_file_positions_for_load_sections (bfd *abfd,
5104 struct bfd_link_info *link_info)
5105 {
5106 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5107 struct elf_segment_map *m;
5108 Elf_Internal_Phdr *phdrs;
5109 Elf_Internal_Phdr *p;
5110 file_ptr off;
5111 bfd_size_type maxpagesize;
5112 unsigned int alloc;
5113 unsigned int i, j;
5114 bfd_vma header_pad = 0;
5115
5116 if (link_info == NULL
5117 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5118 return FALSE;
5119
5120 alloc = 0;
5121 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5122 {
5123 ++alloc;
5124 if (m->header_size)
5125 header_pad = m->header_size;
5126 }
5127
5128 if (alloc)
5129 {
5130 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5131 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5132 }
5133 else
5134 {
5135 /* PR binutils/12467. */
5136 elf_elfheader (abfd)->e_phoff = 0;
5137 elf_elfheader (abfd)->e_phentsize = 0;
5138 }
5139
5140 elf_elfheader (abfd)->e_phnum = alloc;
5141
5142 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5143 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5144 else
5145 BFD_ASSERT (elf_program_header_size (abfd)
5146 >= alloc * bed->s->sizeof_phdr);
5147
5148 if (alloc == 0)
5149 {
5150 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5151 return TRUE;
5152 }
5153
5154 /* We're writing the size in elf_program_header_size (abfd),
5155 see assign_file_positions_except_relocs, so make sure we have
5156 that amount allocated, with trailing space cleared.
5157 The variable alloc contains the computed need, while
5158 elf_program_header_size (abfd) contains the size used for the
5159 layout.
5160 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5161 where the layout is forced to according to a larger size in the
5162 last iterations for the testcase ld-elf/header. */
5163 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5164 == 0);
5165 phdrs = (Elf_Internal_Phdr *)
5166 bfd_zalloc2 (abfd,
5167 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5168 sizeof (Elf_Internal_Phdr));
5169 elf_tdata (abfd)->phdr = phdrs;
5170 if (phdrs == NULL)
5171 return FALSE;
5172
5173 maxpagesize = 1;
5174 if ((abfd->flags & D_PAGED) != 0)
5175 maxpagesize = bed->maxpagesize;
5176
5177 off = bed->s->sizeof_ehdr;
5178 off += alloc * bed->s->sizeof_phdr;
5179 if (header_pad < (bfd_vma) off)
5180 header_pad = 0;
5181 else
5182 header_pad -= off;
5183 off += header_pad;
5184
5185 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5186 m != NULL;
5187 m = m->next, p++, j++)
5188 {
5189 asection **secpp;
5190 bfd_vma off_adjust;
5191 bfd_boolean no_contents;
5192
5193 /* If elf_segment_map is not from map_sections_to_segments, the
5194 sections may not be correctly ordered. NOTE: sorting should
5195 not be done to the PT_NOTE section of a corefile, which may
5196 contain several pseudo-sections artificially created by bfd.
5197 Sorting these pseudo-sections breaks things badly. */
5198 if (m->count > 1
5199 && !(elf_elfheader (abfd)->e_type == ET_CORE
5200 && m->p_type == PT_NOTE))
5201 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5202 elf_sort_sections);
5203
5204 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5205 number of sections with contents contributing to both p_filesz
5206 and p_memsz, followed by a number of sections with no contents
5207 that just contribute to p_memsz. In this loop, OFF tracks next
5208 available file offset for PT_LOAD and PT_NOTE segments. */
5209 p->p_type = m->p_type;
5210 p->p_flags = m->p_flags;
5211
5212 if (m->count == 0)
5213 p->p_vaddr = 0;
5214 else
5215 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5216
5217 if (m->p_paddr_valid)
5218 p->p_paddr = m->p_paddr;
5219 else if (m->count == 0)
5220 p->p_paddr = 0;
5221 else
5222 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5223
5224 if (p->p_type == PT_LOAD
5225 && (abfd->flags & D_PAGED) != 0)
5226 {
5227 /* p_align in demand paged PT_LOAD segments effectively stores
5228 the maximum page size. When copying an executable with
5229 objcopy, we set m->p_align from the input file. Use this
5230 value for maxpagesize rather than bed->maxpagesize, which
5231 may be different. Note that we use maxpagesize for PT_TLS
5232 segment alignment later in this function, so we are relying
5233 on at least one PT_LOAD segment appearing before a PT_TLS
5234 segment. */
5235 if (m->p_align_valid)
5236 maxpagesize = m->p_align;
5237
5238 p->p_align = maxpagesize;
5239 }
5240 else if (m->p_align_valid)
5241 p->p_align = m->p_align;
5242 else if (m->count == 0)
5243 p->p_align = 1 << bed->s->log_file_align;
5244 else
5245 p->p_align = 0;
5246
5247 no_contents = FALSE;
5248 off_adjust = 0;
5249 if (p->p_type == PT_LOAD
5250 && m->count > 0)
5251 {
5252 bfd_size_type align;
5253 unsigned int align_power = 0;
5254
5255 if (m->p_align_valid)
5256 align = p->p_align;
5257 else
5258 {
5259 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5260 {
5261 unsigned int secalign;
5262
5263 secalign = bfd_get_section_alignment (abfd, *secpp);
5264 if (secalign > align_power)
5265 align_power = secalign;
5266 }
5267 align = (bfd_size_type) 1 << align_power;
5268 if (align < maxpagesize)
5269 align = maxpagesize;
5270 }
5271
5272 for (i = 0; i < m->count; i++)
5273 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5274 /* If we aren't making room for this section, then
5275 it must be SHT_NOBITS regardless of what we've
5276 set via struct bfd_elf_special_section. */
5277 elf_section_type (m->sections[i]) = SHT_NOBITS;
5278
5279 /* Find out whether this segment contains any loadable
5280 sections. */
5281 no_contents = TRUE;
5282 for (i = 0; i < m->count; i++)
5283 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5284 {
5285 no_contents = FALSE;
5286 break;
5287 }
5288
5289 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5290 off += off_adjust;
5291 if (no_contents)
5292 {
5293 /* We shouldn't need to align the segment on disk since
5294 the segment doesn't need file space, but the gABI
5295 arguably requires the alignment and glibc ld.so
5296 checks it. So to comply with the alignment
5297 requirement but not waste file space, we adjust
5298 p_offset for just this segment. (OFF_ADJUST is
5299 subtracted from OFF later.) This may put p_offset
5300 past the end of file, but that shouldn't matter. */
5301 }
5302 else
5303 off_adjust = 0;
5304 }
5305 /* Make sure the .dynamic section is the first section in the
5306 PT_DYNAMIC segment. */
5307 else if (p->p_type == PT_DYNAMIC
5308 && m->count > 1
5309 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5310 {
5311 _bfd_error_handler
5312 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
5313 abfd);
5314 bfd_set_error (bfd_error_bad_value);
5315 return FALSE;
5316 }
5317 /* Set the note section type to SHT_NOTE. */
5318 else if (p->p_type == PT_NOTE)
5319 for (i = 0; i < m->count; i++)
5320 elf_section_type (m->sections[i]) = SHT_NOTE;
5321
5322 p->p_offset = 0;
5323 p->p_filesz = 0;
5324 p->p_memsz = 0;
5325
5326 if (m->includes_filehdr)
5327 {
5328 if (!m->p_flags_valid)
5329 p->p_flags |= PF_R;
5330 p->p_filesz = bed->s->sizeof_ehdr;
5331 p->p_memsz = bed->s->sizeof_ehdr;
5332 if (m->count > 0)
5333 {
5334 if (p->p_vaddr < (bfd_vma) off
5335 || (!m->p_paddr_valid
5336 && p->p_paddr < (bfd_vma) off))
5337 {
5338 _bfd_error_handler
5339 (_("%B: Not enough room for program headers, try linking with -N"),
5340 abfd);
5341 bfd_set_error (bfd_error_bad_value);
5342 return FALSE;
5343 }
5344
5345 p->p_vaddr -= off;
5346 if (!m->p_paddr_valid)
5347 p->p_paddr -= off;
5348 }
5349 }
5350
5351 if (m->includes_phdrs)
5352 {
5353 if (!m->p_flags_valid)
5354 p->p_flags |= PF_R;
5355
5356 if (!m->includes_filehdr)
5357 {
5358 p->p_offset = bed->s->sizeof_ehdr;
5359
5360 if (m->count > 0)
5361 {
5362 p->p_vaddr -= off - p->p_offset;
5363 if (!m->p_paddr_valid)
5364 p->p_paddr -= off - p->p_offset;
5365 }
5366 }
5367
5368 p->p_filesz += alloc * bed->s->sizeof_phdr;
5369 p->p_memsz += alloc * bed->s->sizeof_phdr;
5370 if (m->count)
5371 {
5372 p->p_filesz += header_pad;
5373 p->p_memsz += header_pad;
5374 }
5375 }
5376
5377 if (p->p_type == PT_LOAD
5378 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5379 {
5380 if (!m->includes_filehdr && !m->includes_phdrs)
5381 p->p_offset = off;
5382 else
5383 {
5384 file_ptr adjust;
5385
5386 adjust = off - (p->p_offset + p->p_filesz);
5387 if (!no_contents)
5388 p->p_filesz += adjust;
5389 p->p_memsz += adjust;
5390 }
5391 }
5392
5393 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5394 maps. Set filepos for sections in PT_LOAD segments, and in
5395 core files, for sections in PT_NOTE segments.
5396 assign_file_positions_for_non_load_sections will set filepos
5397 for other sections and update p_filesz for other segments. */
5398 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5399 {
5400 asection *sec;
5401 bfd_size_type align;
5402 Elf_Internal_Shdr *this_hdr;
5403
5404 sec = *secpp;
5405 this_hdr = &elf_section_data (sec)->this_hdr;
5406 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5407
5408 if ((p->p_type == PT_LOAD
5409 || p->p_type == PT_TLS)
5410 && (this_hdr->sh_type != SHT_NOBITS
5411 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5412 && ((this_hdr->sh_flags & SHF_TLS) == 0
5413 || p->p_type == PT_TLS))))
5414 {
5415 bfd_vma p_start = p->p_paddr;
5416 bfd_vma p_end = p_start + p->p_memsz;
5417 bfd_vma s_start = sec->lma;
5418 bfd_vma adjust = s_start - p_end;
5419
5420 if (adjust != 0
5421 && (s_start < p_end
5422 || p_end < p_start))
5423 {
5424 _bfd_error_handler
5425 /* xgettext:c-format */
5426 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
5427 (unsigned long) s_start, (unsigned long) p_end);
5428 adjust = 0;
5429 sec->lma = p_end;
5430 }
5431 p->p_memsz += adjust;
5432
5433 if (this_hdr->sh_type != SHT_NOBITS)
5434 {
5435 if (p->p_filesz + adjust < p->p_memsz)
5436 {
5437 /* We have a PROGBITS section following NOBITS ones.
5438 Allocate file space for the NOBITS section(s) and
5439 zero it. */
5440 adjust = p->p_memsz - p->p_filesz;
5441 if (!write_zeros (abfd, off, adjust))
5442 return FALSE;
5443 }
5444 off += adjust;
5445 p->p_filesz += adjust;
5446 }
5447 }
5448
5449 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5450 {
5451 /* The section at i == 0 is the one that actually contains
5452 everything. */
5453 if (i == 0)
5454 {
5455 this_hdr->sh_offset = sec->filepos = off;
5456 off += this_hdr->sh_size;
5457 p->p_filesz = this_hdr->sh_size;
5458 p->p_memsz = 0;
5459 p->p_align = 1;
5460 }
5461 else
5462 {
5463 /* The rest are fake sections that shouldn't be written. */
5464 sec->filepos = 0;
5465 sec->size = 0;
5466 sec->flags = 0;
5467 continue;
5468 }
5469 }
5470 else
5471 {
5472 if (p->p_type == PT_LOAD)
5473 {
5474 this_hdr->sh_offset = sec->filepos = off;
5475 if (this_hdr->sh_type != SHT_NOBITS)
5476 off += this_hdr->sh_size;
5477 }
5478 else if (this_hdr->sh_type == SHT_NOBITS
5479 && (this_hdr->sh_flags & SHF_TLS) != 0
5480 && this_hdr->sh_offset == 0)
5481 {
5482 /* This is a .tbss section that didn't get a PT_LOAD.
5483 (See _bfd_elf_map_sections_to_segments "Create a
5484 final PT_LOAD".) Set sh_offset to the value it
5485 would have if we had created a zero p_filesz and
5486 p_memsz PT_LOAD header for the section. This
5487 also makes the PT_TLS header have the same
5488 p_offset value. */
5489 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5490 off, align);
5491 this_hdr->sh_offset = sec->filepos = off + adjust;
5492 }
5493
5494 if (this_hdr->sh_type != SHT_NOBITS)
5495 {
5496 p->p_filesz += this_hdr->sh_size;
5497 /* A load section without SHF_ALLOC is something like
5498 a note section in a PT_NOTE segment. These take
5499 file space but are not loaded into memory. */
5500 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5501 p->p_memsz += this_hdr->sh_size;
5502 }
5503 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5504 {
5505 if (p->p_type == PT_TLS)
5506 p->p_memsz += this_hdr->sh_size;
5507
5508 /* .tbss is special. It doesn't contribute to p_memsz of
5509 normal segments. */
5510 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5511 p->p_memsz += this_hdr->sh_size;
5512 }
5513
5514 if (align > p->p_align
5515 && !m->p_align_valid
5516 && (p->p_type != PT_LOAD
5517 || (abfd->flags & D_PAGED) == 0))
5518 p->p_align = align;
5519 }
5520
5521 if (!m->p_flags_valid)
5522 {
5523 p->p_flags |= PF_R;
5524 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5525 p->p_flags |= PF_X;
5526 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5527 p->p_flags |= PF_W;
5528 }
5529 }
5530
5531 off -= off_adjust;
5532
5533 /* Check that all sections are in a PT_LOAD segment.
5534 Don't check funky gdb generated core files. */
5535 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5536 {
5537 bfd_boolean check_vma = TRUE;
5538
5539 for (i = 1; i < m->count; i++)
5540 if (m->sections[i]->vma == m->sections[i - 1]->vma
5541 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5542 ->this_hdr), p) != 0
5543 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5544 ->this_hdr), p) != 0)
5545 {
5546 /* Looks like we have overlays packed into the segment. */
5547 check_vma = FALSE;
5548 break;
5549 }
5550
5551 for (i = 0; i < m->count; i++)
5552 {
5553 Elf_Internal_Shdr *this_hdr;
5554 asection *sec;
5555
5556 sec = m->sections[i];
5557 this_hdr = &(elf_section_data(sec)->this_hdr);
5558 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5559 && !ELF_TBSS_SPECIAL (this_hdr, p))
5560 {
5561 _bfd_error_handler
5562 /* xgettext:c-format */
5563 (_("%B: section `%A' can't be allocated in segment %d"),
5564 abfd, sec, j);
5565 print_segment_map (m);
5566 }
5567 }
5568 }
5569 }
5570
5571 elf_next_file_pos (abfd) = off;
5572 return TRUE;
5573 }
5574
5575 /* Assign file positions for the other sections. */
5576
5577 static bfd_boolean
5578 assign_file_positions_for_non_load_sections (bfd *abfd,
5579 struct bfd_link_info *link_info)
5580 {
5581 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5582 Elf_Internal_Shdr **i_shdrpp;
5583 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5584 Elf_Internal_Phdr *phdrs;
5585 Elf_Internal_Phdr *p;
5586 struct elf_segment_map *m;
5587 struct elf_segment_map *hdrs_segment;
5588 bfd_vma filehdr_vaddr, filehdr_paddr;
5589 bfd_vma phdrs_vaddr, phdrs_paddr;
5590 file_ptr off;
5591 unsigned int count;
5592
5593 i_shdrpp = elf_elfsections (abfd);
5594 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5595 off = elf_next_file_pos (abfd);
5596 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5597 {
5598 Elf_Internal_Shdr *hdr;
5599
5600 hdr = *hdrpp;
5601 if (hdr->bfd_section != NULL
5602 && (hdr->bfd_section->filepos != 0
5603 || (hdr->sh_type == SHT_NOBITS
5604 && hdr->contents == NULL)))
5605 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5606 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5607 {
5608 if (hdr->sh_size != 0)
5609 _bfd_error_handler
5610 /* xgettext:c-format */
5611 (_("%B: warning: allocated section `%s' not in segment"),
5612 abfd,
5613 (hdr->bfd_section == NULL
5614 ? "*unknown*"
5615 : hdr->bfd_section->name));
5616 /* We don't need to page align empty sections. */
5617 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5618 off += vma_page_aligned_bias (hdr->sh_addr, off,
5619 bed->maxpagesize);
5620 else
5621 off += vma_page_aligned_bias (hdr->sh_addr, off,
5622 hdr->sh_addralign);
5623 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5624 FALSE);
5625 }
5626 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5627 && hdr->bfd_section == NULL)
5628 || (hdr->bfd_section != NULL
5629 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5630 /* Compress DWARF debug sections. */
5631 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5632 || (elf_symtab_shndx_list (abfd) != NULL
5633 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5634 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5635 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5636 hdr->sh_offset = -1;
5637 else
5638 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5639 }
5640
5641 /* Now that we have set the section file positions, we can set up
5642 the file positions for the non PT_LOAD segments. */
5643 count = 0;
5644 filehdr_vaddr = 0;
5645 filehdr_paddr = 0;
5646 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5647 phdrs_paddr = 0;
5648 hdrs_segment = NULL;
5649 phdrs = elf_tdata (abfd)->phdr;
5650 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5651 {
5652 ++count;
5653 if (p->p_type != PT_LOAD)
5654 continue;
5655
5656 if (m->includes_filehdr)
5657 {
5658 filehdr_vaddr = p->p_vaddr;
5659 filehdr_paddr = p->p_paddr;
5660 }
5661 if (m->includes_phdrs)
5662 {
5663 phdrs_vaddr = p->p_vaddr;
5664 phdrs_paddr = p->p_paddr;
5665 if (m->includes_filehdr)
5666 {
5667 hdrs_segment = m;
5668 phdrs_vaddr += bed->s->sizeof_ehdr;
5669 phdrs_paddr += bed->s->sizeof_ehdr;
5670 }
5671 }
5672 }
5673
5674 if (hdrs_segment != NULL && link_info != NULL)
5675 {
5676 /* There is a segment that contains both the file headers and the
5677 program headers, so provide a symbol __ehdr_start pointing there.
5678 A program can use this to examine itself robustly. */
5679
5680 struct elf_link_hash_entry *hash
5681 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5682 FALSE, FALSE, TRUE);
5683 /* If the symbol was referenced and not defined, define it. */
5684 if (hash != NULL
5685 && (hash->root.type == bfd_link_hash_new
5686 || hash->root.type == bfd_link_hash_undefined
5687 || hash->root.type == bfd_link_hash_undefweak
5688 || hash->root.type == bfd_link_hash_common))
5689 {
5690 asection *s = NULL;
5691 if (hdrs_segment->count != 0)
5692 /* The segment contains sections, so use the first one. */
5693 s = hdrs_segment->sections[0];
5694 else
5695 /* Use the first (i.e. lowest-addressed) section in any segment. */
5696 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5697 if (m->count != 0)
5698 {
5699 s = m->sections[0];
5700 break;
5701 }
5702
5703 if (s != NULL)
5704 {
5705 hash->root.u.def.value = filehdr_vaddr - s->vma;
5706 hash->root.u.def.section = s;
5707 }
5708 else
5709 {
5710 hash->root.u.def.value = filehdr_vaddr;
5711 hash->root.u.def.section = bfd_abs_section_ptr;
5712 }
5713
5714 hash->root.type = bfd_link_hash_defined;
5715 hash->def_regular = 1;
5716 hash->non_elf = 0;
5717 }
5718 }
5719
5720 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5721 {
5722 if (p->p_type == PT_GNU_RELRO)
5723 {
5724 const Elf_Internal_Phdr *lp;
5725 struct elf_segment_map *lm;
5726
5727 if (link_info != NULL)
5728 {
5729 /* During linking the range of the RELRO segment is passed
5730 in link_info. */
5731 for (lm = elf_seg_map (abfd), lp = phdrs;
5732 lm != NULL;
5733 lm = lm->next, lp++)
5734 {
5735 if (lp->p_type == PT_LOAD
5736 && lp->p_vaddr < link_info->relro_end
5737 && lm->count != 0
5738 && lm->sections[0]->vma >= link_info->relro_start)
5739 break;
5740 }
5741
5742 BFD_ASSERT (lm != NULL);
5743 }
5744 else
5745 {
5746 /* Otherwise we are copying an executable or shared
5747 library, but we need to use the same linker logic. */
5748 for (lp = phdrs; lp < phdrs + count; ++lp)
5749 {
5750 if (lp->p_type == PT_LOAD
5751 && lp->p_paddr == p->p_paddr)
5752 break;
5753 }
5754 }
5755
5756 if (lp < phdrs + count)
5757 {
5758 p->p_vaddr = lp->p_vaddr;
5759 p->p_paddr = lp->p_paddr;
5760 p->p_offset = lp->p_offset;
5761 if (link_info != NULL)
5762 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5763 else if (m->p_size_valid)
5764 p->p_filesz = m->p_size;
5765 else
5766 abort ();
5767 p->p_memsz = p->p_filesz;
5768 /* Preserve the alignment and flags if they are valid. The
5769 gold linker generates RW/4 for the PT_GNU_RELRO section.
5770 It is better for objcopy/strip to honor these attributes
5771 otherwise gdb will choke when using separate debug files.
5772 */
5773 if (!m->p_align_valid)
5774 p->p_align = 1;
5775 if (!m->p_flags_valid)
5776 p->p_flags = PF_R;
5777 }
5778 else
5779 {
5780 memset (p, 0, sizeof *p);
5781 p->p_type = PT_NULL;
5782 }
5783 }
5784 else if (p->p_type == PT_GNU_STACK)
5785 {
5786 if (m->p_size_valid)
5787 p->p_memsz = m->p_size;
5788 }
5789 else if (m->count != 0)
5790 {
5791 unsigned int i;
5792
5793 if (p->p_type != PT_LOAD
5794 && (p->p_type != PT_NOTE
5795 || bfd_get_format (abfd) != bfd_core))
5796 {
5797 /* A user specified segment layout may include a PHDR
5798 segment that overlaps with a LOAD segment... */
5799 if (p->p_type == PT_PHDR)
5800 {
5801 m->count = 0;
5802 continue;
5803 }
5804
5805 if (m->includes_filehdr || m->includes_phdrs)
5806 {
5807 /* PR 17512: file: 2195325e. */
5808 _bfd_error_handler
5809 (_("%B: error: non-load segment %d includes file header and/or program header"),
5810 abfd, (int)(p - phdrs));
5811 return FALSE;
5812 }
5813
5814 p->p_filesz = 0;
5815 p->p_offset = m->sections[0]->filepos;
5816 for (i = m->count; i-- != 0;)
5817 {
5818 asection *sect = m->sections[i];
5819 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5820 if (hdr->sh_type != SHT_NOBITS)
5821 {
5822 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5823 + hdr->sh_size);
5824 break;
5825 }
5826 }
5827 }
5828 }
5829 else if (m->includes_filehdr)
5830 {
5831 p->p_vaddr = filehdr_vaddr;
5832 if (! m->p_paddr_valid)
5833 p->p_paddr = filehdr_paddr;
5834 }
5835 else if (m->includes_phdrs)
5836 {
5837 p->p_vaddr = phdrs_vaddr;
5838 if (! m->p_paddr_valid)
5839 p->p_paddr = phdrs_paddr;
5840 }
5841 }
5842
5843 elf_next_file_pos (abfd) = off;
5844
5845 return TRUE;
5846 }
5847
5848 static elf_section_list *
5849 find_section_in_list (unsigned int i, elf_section_list * list)
5850 {
5851 for (;list != NULL; list = list->next)
5852 if (list->ndx == i)
5853 break;
5854 return list;
5855 }
5856
5857 /* Compare function used when sorting the program header table.
5858 The ELF standard requires that a PT_PHDR segment, if present,
5859 must appear before any PT_LOAD segments. It also requires
5860 that all PT_LOAD segments are sorted into order of increasing
5861 p_vaddr. */
5862
5863 static signed int
5864 phdr_sorter (const void * a, const void * b)
5865 {
5866 Elf_Internal_Phdr * ahdr = (Elf_Internal_Phdr *) a;
5867 Elf_Internal_Phdr * bhdr = (Elf_Internal_Phdr *) b;
5868
5869 switch (ahdr->p_type)
5870 {
5871 case PT_LOAD:
5872 switch (bhdr->p_type)
5873 {
5874 case PT_PHDR:
5875 return 1;
5876 case PT_LOAD:
5877 if (ahdr->p_vaddr < bhdr->p_vaddr)
5878 return -1;
5879 if (ahdr->p_vaddr > bhdr->p_vaddr)
5880 return 1;
5881 return 0;
5882 default:
5883 return 0;
5884 }
5885 break;
5886 case PT_PHDR:
5887 switch (bhdr->p_type)
5888 {
5889 case PT_PHDR:
5890 _bfd_error_handler (_("error: multiple PHDR segments detecetd"));
5891 return 0;
5892 case PT_LOAD:
5893 return -1;
5894 default:
5895 return 0;
5896 }
5897 break;
5898 default:
5899 return 0;
5900 }
5901 }
5902
5903 /* Work out the file positions of all the sections. This is called by
5904 _bfd_elf_compute_section_file_positions. All the section sizes and
5905 VMAs must be known before this is called.
5906
5907 Reloc sections come in two flavours: Those processed specially as
5908 "side-channel" data attached to a section to which they apply, and
5909 those that bfd doesn't process as relocations. The latter sort are
5910 stored in a normal bfd section by bfd_section_from_shdr. We don't
5911 consider the former sort here, unless they form part of the loadable
5912 image. Reloc sections not assigned here will be handled later by
5913 assign_file_positions_for_relocs.
5914
5915 We also don't set the positions of the .symtab and .strtab here. */
5916
5917 static bfd_boolean
5918 assign_file_positions_except_relocs (bfd *abfd,
5919 struct bfd_link_info *link_info)
5920 {
5921 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5922 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5923 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5924
5925 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5926 && bfd_get_format (abfd) != bfd_core)
5927 {
5928 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5929 unsigned int num_sec = elf_numsections (abfd);
5930 Elf_Internal_Shdr **hdrpp;
5931 unsigned int i;
5932 file_ptr off;
5933
5934 /* Start after the ELF header. */
5935 off = i_ehdrp->e_ehsize;
5936
5937 /* We are not creating an executable, which means that we are
5938 not creating a program header, and that the actual order of
5939 the sections in the file is unimportant. */
5940 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5941 {
5942 Elf_Internal_Shdr *hdr;
5943
5944 hdr = *hdrpp;
5945 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5946 && hdr->bfd_section == NULL)
5947 || (hdr->bfd_section != NULL
5948 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5949 /* Compress DWARF debug sections. */
5950 || i == elf_onesymtab (abfd)
5951 || (elf_symtab_shndx_list (abfd) != NULL
5952 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5953 || i == elf_strtab_sec (abfd)
5954 || i == elf_shstrtab_sec (abfd))
5955 {
5956 hdr->sh_offset = -1;
5957 }
5958 else
5959 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5960 }
5961
5962 elf_next_file_pos (abfd) = off;
5963 }
5964 else
5965 {
5966 Elf_Internal_Phdr * map;
5967 unsigned int alloc;
5968
5969 /* Assign file positions for the loaded sections based on the
5970 assignment of sections to segments. */
5971 if (!assign_file_positions_for_load_sections (abfd, link_info))
5972 return FALSE;
5973
5974 /* And for non-load sections. */
5975 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5976 return FALSE;
5977
5978 if (bed->elf_backend_modify_program_headers != NULL)
5979 {
5980 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5981 return FALSE;
5982 }
5983
5984 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5985 if (link_info != NULL && bfd_link_pie (link_info))
5986 {
5987 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5988 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5989 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5990
5991 /* Find the lowest p_vaddr in PT_LOAD segments. */
5992 bfd_vma p_vaddr = (bfd_vma) -1;
5993 for (; segment < end_segment; segment++)
5994 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5995 p_vaddr = segment->p_vaddr;
5996
5997 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5998 segments is non-zero. */
5999 if (p_vaddr)
6000 i_ehdrp->e_type = ET_EXEC;
6001 }
6002
6003 /* Write out the program headers. */
6004 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
6005
6006 /* Sort the program headers into the ordering required by the ELF standard. */
6007 if (alloc == 0)
6008 return TRUE;
6009
6010 map = (Elf_Internal_Phdr *) xmalloc (alloc * sizeof (* tdata->phdr));
6011 memcpy (map, tdata->phdr, alloc * sizeof (* tdata->phdr));
6012 qsort (map, alloc, sizeof (* tdata->phdr), phdr_sorter);
6013
6014 /* PR ld/20815 - Check that the program header segment, if present, will
6015 be loaded into memory. FIXME: The check below is not sufficient as
6016 really all PT_LOAD segments should be checked before issuing an error
6017 message. Plus the PHDR segment does not have to be the first segment
6018 in the program header table. But this version of the check should
6019 catch all real world use cases. */
6020 if (alloc > 1
6021 && map[0].p_type == PT_PHDR
6022 && ! bed->elf_backend_allow_non_load_phdr (abfd, map, alloc)
6023 && map[1].p_type == PT_LOAD
6024 && (map[1].p_vaddr > map[0].p_vaddr
6025 || (map[1].p_vaddr + map[1].p_memsz) < (map[0].p_vaddr + map[0].p_memsz)))
6026 {
6027 /* The fix for this error is usually to edit the linker script being
6028 used and set up the program headers manually. Either that or
6029 leave room for the headers at the start of the SECTIONS. */
6030 _bfd_error_handler (_("\
6031 %B: error: PHDR segment not covered by LOAD segment"),
6032 abfd);
6033 free (map);
6034 return FALSE;
6035 }
6036
6037 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6038 || bed->s->write_out_phdrs (abfd, map, alloc) != 0)
6039 {
6040 free (map);
6041 return FALSE;
6042 }
6043
6044 free (map);
6045 }
6046
6047 return TRUE;
6048 }
6049
6050 static bfd_boolean
6051 prep_headers (bfd *abfd)
6052 {
6053 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6054 struct elf_strtab_hash *shstrtab;
6055 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6056
6057 i_ehdrp = elf_elfheader (abfd);
6058
6059 shstrtab = _bfd_elf_strtab_init ();
6060 if (shstrtab == NULL)
6061 return FALSE;
6062
6063 elf_shstrtab (abfd) = shstrtab;
6064
6065 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6066 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6067 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6068 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6069
6070 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6071 i_ehdrp->e_ident[EI_DATA] =
6072 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6073 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6074
6075 if ((abfd->flags & DYNAMIC) != 0)
6076 i_ehdrp->e_type = ET_DYN;
6077 else if ((abfd->flags & EXEC_P) != 0)
6078 i_ehdrp->e_type = ET_EXEC;
6079 else if (bfd_get_format (abfd) == bfd_core)
6080 i_ehdrp->e_type = ET_CORE;
6081 else
6082 i_ehdrp->e_type = ET_REL;
6083
6084 switch (bfd_get_arch (abfd))
6085 {
6086 case bfd_arch_unknown:
6087 i_ehdrp->e_machine = EM_NONE;
6088 break;
6089
6090 /* There used to be a long list of cases here, each one setting
6091 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6092 in the corresponding bfd definition. To avoid duplication,
6093 the switch was removed. Machines that need special handling
6094 can generally do it in elf_backend_final_write_processing(),
6095 unless they need the information earlier than the final write.
6096 Such need can generally be supplied by replacing the tests for
6097 e_machine with the conditions used to determine it. */
6098 default:
6099 i_ehdrp->e_machine = bed->elf_machine_code;
6100 }
6101
6102 i_ehdrp->e_version = bed->s->ev_current;
6103 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6104
6105 /* No program header, for now. */
6106 i_ehdrp->e_phoff = 0;
6107 i_ehdrp->e_phentsize = 0;
6108 i_ehdrp->e_phnum = 0;
6109
6110 /* Each bfd section is section header entry. */
6111 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6112 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6113
6114 /* If we're building an executable, we'll need a program header table. */
6115 if (abfd->flags & EXEC_P)
6116 /* It all happens later. */
6117 ;
6118 else
6119 {
6120 i_ehdrp->e_phentsize = 0;
6121 i_ehdrp->e_phoff = 0;
6122 }
6123
6124 elf_tdata (abfd)->symtab_hdr.sh_name =
6125 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6126 elf_tdata (abfd)->strtab_hdr.sh_name =
6127 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6128 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6129 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6130 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6131 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6132 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6133 return FALSE;
6134
6135 return TRUE;
6136 }
6137
6138 /* Assign file positions for all the reloc sections which are not part
6139 of the loadable file image, and the file position of section headers. */
6140
6141 static bfd_boolean
6142 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6143 {
6144 file_ptr off;
6145 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6146 Elf_Internal_Shdr *shdrp;
6147 Elf_Internal_Ehdr *i_ehdrp;
6148 const struct elf_backend_data *bed;
6149
6150 off = elf_next_file_pos (abfd);
6151
6152 shdrpp = elf_elfsections (abfd);
6153 end_shdrpp = shdrpp + elf_numsections (abfd);
6154 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6155 {
6156 shdrp = *shdrpp;
6157 if (shdrp->sh_offset == -1)
6158 {
6159 asection *sec = shdrp->bfd_section;
6160 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6161 || shdrp->sh_type == SHT_RELA);
6162 if (is_rel
6163 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6164 {
6165 if (!is_rel)
6166 {
6167 const char *name = sec->name;
6168 struct bfd_elf_section_data *d;
6169
6170 /* Compress DWARF debug sections. */
6171 if (!bfd_compress_section (abfd, sec,
6172 shdrp->contents))
6173 return FALSE;
6174
6175 if (sec->compress_status == COMPRESS_SECTION_DONE
6176 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6177 {
6178 /* If section is compressed with zlib-gnu, convert
6179 section name from .debug_* to .zdebug_*. */
6180 char *new_name
6181 = convert_debug_to_zdebug (abfd, name);
6182 if (new_name == NULL)
6183 return FALSE;
6184 name = new_name;
6185 }
6186 /* Add section name to section name section. */
6187 if (shdrp->sh_name != (unsigned int) -1)
6188 abort ();
6189 shdrp->sh_name
6190 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6191 name, FALSE);
6192 d = elf_section_data (sec);
6193
6194 /* Add reloc section name to section name section. */
6195 if (d->rel.hdr
6196 && !_bfd_elf_set_reloc_sh_name (abfd,
6197 d->rel.hdr,
6198 name, FALSE))
6199 return FALSE;
6200 if (d->rela.hdr
6201 && !_bfd_elf_set_reloc_sh_name (abfd,
6202 d->rela.hdr,
6203 name, TRUE))
6204 return FALSE;
6205
6206 /* Update section size and contents. */
6207 shdrp->sh_size = sec->size;
6208 shdrp->contents = sec->contents;
6209 shdrp->bfd_section->contents = NULL;
6210 }
6211 off = _bfd_elf_assign_file_position_for_section (shdrp,
6212 off,
6213 TRUE);
6214 }
6215 }
6216 }
6217
6218 /* Place section name section after DWARF debug sections have been
6219 compressed. */
6220 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6221 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6222 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6223 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6224
6225 /* Place the section headers. */
6226 i_ehdrp = elf_elfheader (abfd);
6227 bed = get_elf_backend_data (abfd);
6228 off = align_file_position (off, 1 << bed->s->log_file_align);
6229 i_ehdrp->e_shoff = off;
6230 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6231 elf_next_file_pos (abfd) = off;
6232
6233 return TRUE;
6234 }
6235
6236 bfd_boolean
6237 _bfd_elf_write_object_contents (bfd *abfd)
6238 {
6239 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6240 Elf_Internal_Shdr **i_shdrp;
6241 bfd_boolean failed;
6242 unsigned int count, num_sec;
6243 struct elf_obj_tdata *t;
6244
6245 if (! abfd->output_has_begun
6246 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6247 return FALSE;
6248
6249 i_shdrp = elf_elfsections (abfd);
6250
6251 failed = FALSE;
6252 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6253 if (failed)
6254 return FALSE;
6255
6256 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6257 return FALSE;
6258
6259 /* After writing the headers, we need to write the sections too... */
6260 num_sec = elf_numsections (abfd);
6261 for (count = 1; count < num_sec; count++)
6262 {
6263 i_shdrp[count]->sh_name
6264 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6265 i_shdrp[count]->sh_name);
6266 if (bed->elf_backend_section_processing)
6267 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
6268 if (i_shdrp[count]->contents)
6269 {
6270 bfd_size_type amt = i_shdrp[count]->sh_size;
6271
6272 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6273 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6274 return FALSE;
6275 }
6276 }
6277
6278 /* Write out the section header names. */
6279 t = elf_tdata (abfd);
6280 if (elf_shstrtab (abfd) != NULL
6281 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6282 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6283 return FALSE;
6284
6285 if (bed->elf_backend_final_write_processing)
6286 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6287
6288 if (!bed->s->write_shdrs_and_ehdr (abfd))
6289 return FALSE;
6290
6291 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6292 if (t->o->build_id.after_write_object_contents != NULL)
6293 return (*t->o->build_id.after_write_object_contents) (abfd);
6294
6295 return TRUE;
6296 }
6297
6298 bfd_boolean
6299 _bfd_elf_write_corefile_contents (bfd *abfd)
6300 {
6301 /* Hopefully this can be done just like an object file. */
6302 return _bfd_elf_write_object_contents (abfd);
6303 }
6304
6305 /* Given a section, search the header to find them. */
6306
6307 unsigned int
6308 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6309 {
6310 const struct elf_backend_data *bed;
6311 unsigned int sec_index;
6312
6313 if (elf_section_data (asect) != NULL
6314 && elf_section_data (asect)->this_idx != 0)
6315 return elf_section_data (asect)->this_idx;
6316
6317 if (bfd_is_abs_section (asect))
6318 sec_index = SHN_ABS;
6319 else if (bfd_is_com_section (asect))
6320 sec_index = SHN_COMMON;
6321 else if (bfd_is_und_section (asect))
6322 sec_index = SHN_UNDEF;
6323 else
6324 sec_index = SHN_BAD;
6325
6326 bed = get_elf_backend_data (abfd);
6327 if (bed->elf_backend_section_from_bfd_section)
6328 {
6329 int retval = sec_index;
6330
6331 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6332 return retval;
6333 }
6334
6335 if (sec_index == SHN_BAD)
6336 bfd_set_error (bfd_error_nonrepresentable_section);
6337
6338 return sec_index;
6339 }
6340
6341 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6342 on error. */
6343
6344 int
6345 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6346 {
6347 asymbol *asym_ptr = *asym_ptr_ptr;
6348 int idx;
6349 flagword flags = asym_ptr->flags;
6350
6351 /* When gas creates relocations against local labels, it creates its
6352 own symbol for the section, but does put the symbol into the
6353 symbol chain, so udata is 0. When the linker is generating
6354 relocatable output, this section symbol may be for one of the
6355 input sections rather than the output section. */
6356 if (asym_ptr->udata.i == 0
6357 && (flags & BSF_SECTION_SYM)
6358 && asym_ptr->section)
6359 {
6360 asection *sec;
6361 int indx;
6362
6363 sec = asym_ptr->section;
6364 if (sec->owner != abfd && sec->output_section != NULL)
6365 sec = sec->output_section;
6366 if (sec->owner == abfd
6367 && (indx = sec->index) < elf_num_section_syms (abfd)
6368 && elf_section_syms (abfd)[indx] != NULL)
6369 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6370 }
6371
6372 idx = asym_ptr->udata.i;
6373
6374 if (idx == 0)
6375 {
6376 /* This case can occur when using --strip-symbol on a symbol
6377 which is used in a relocation entry. */
6378 _bfd_error_handler
6379 /* xgettext:c-format */
6380 (_("%B: symbol `%s' required but not present"),
6381 abfd, bfd_asymbol_name (asym_ptr));
6382 bfd_set_error (bfd_error_no_symbols);
6383 return -1;
6384 }
6385
6386 #if DEBUG & 4
6387 {
6388 fprintf (stderr,
6389 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
6390 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
6391 fflush (stderr);
6392 }
6393 #endif
6394
6395 return idx;
6396 }
6397
6398 /* Rewrite program header information. */
6399
6400 static bfd_boolean
6401 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6402 {
6403 Elf_Internal_Ehdr *iehdr;
6404 struct elf_segment_map *map;
6405 struct elf_segment_map *map_first;
6406 struct elf_segment_map **pointer_to_map;
6407 Elf_Internal_Phdr *segment;
6408 asection *section;
6409 unsigned int i;
6410 unsigned int num_segments;
6411 bfd_boolean phdr_included = FALSE;
6412 bfd_boolean p_paddr_valid;
6413 bfd_vma maxpagesize;
6414 struct elf_segment_map *phdr_adjust_seg = NULL;
6415 unsigned int phdr_adjust_num = 0;
6416 const struct elf_backend_data *bed;
6417
6418 bed = get_elf_backend_data (ibfd);
6419 iehdr = elf_elfheader (ibfd);
6420
6421 map_first = NULL;
6422 pointer_to_map = &map_first;
6423
6424 num_segments = elf_elfheader (ibfd)->e_phnum;
6425 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6426
6427 /* Returns the end address of the segment + 1. */
6428 #define SEGMENT_END(segment, start) \
6429 (start + (segment->p_memsz > segment->p_filesz \
6430 ? segment->p_memsz : segment->p_filesz))
6431
6432 #define SECTION_SIZE(section, segment) \
6433 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6434 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6435 ? section->size : 0)
6436
6437 /* Returns TRUE if the given section is contained within
6438 the given segment. VMA addresses are compared. */
6439 #define IS_CONTAINED_BY_VMA(section, segment) \
6440 (section->vma >= segment->p_vaddr \
6441 && (section->vma + SECTION_SIZE (section, segment) \
6442 <= (SEGMENT_END (segment, segment->p_vaddr))))
6443
6444 /* Returns TRUE if the given section is contained within
6445 the given segment. LMA addresses are compared. */
6446 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6447 (section->lma >= base \
6448 && (section->lma + SECTION_SIZE (section, segment) \
6449 <= SEGMENT_END (segment, base)))
6450
6451 /* Handle PT_NOTE segment. */
6452 #define IS_NOTE(p, s) \
6453 (p->p_type == PT_NOTE \
6454 && elf_section_type (s) == SHT_NOTE \
6455 && (bfd_vma) s->filepos >= p->p_offset \
6456 && ((bfd_vma) s->filepos + s->size \
6457 <= p->p_offset + p->p_filesz))
6458
6459 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6460 etc. */
6461 #define IS_COREFILE_NOTE(p, s) \
6462 (IS_NOTE (p, s) \
6463 && bfd_get_format (ibfd) == bfd_core \
6464 && s->vma == 0 \
6465 && s->lma == 0)
6466
6467 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6468 linker, which generates a PT_INTERP section with p_vaddr and
6469 p_memsz set to 0. */
6470 #define IS_SOLARIS_PT_INTERP(p, s) \
6471 (p->p_vaddr == 0 \
6472 && p->p_paddr == 0 \
6473 && p->p_memsz == 0 \
6474 && p->p_filesz > 0 \
6475 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6476 && s->size > 0 \
6477 && (bfd_vma) s->filepos >= p->p_offset \
6478 && ((bfd_vma) s->filepos + s->size \
6479 <= p->p_offset + p->p_filesz))
6480
6481 /* Decide if the given section should be included in the given segment.
6482 A section will be included if:
6483 1. It is within the address space of the segment -- we use the LMA
6484 if that is set for the segment and the VMA otherwise,
6485 2. It is an allocated section or a NOTE section in a PT_NOTE
6486 segment.
6487 3. There is an output section associated with it,
6488 4. The section has not already been allocated to a previous segment.
6489 5. PT_GNU_STACK segments do not include any sections.
6490 6. PT_TLS segment includes only SHF_TLS sections.
6491 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6492 8. PT_DYNAMIC should not contain empty sections at the beginning
6493 (with the possible exception of .dynamic). */
6494 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6495 ((((segment->p_paddr \
6496 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6497 : IS_CONTAINED_BY_VMA (section, segment)) \
6498 && (section->flags & SEC_ALLOC) != 0) \
6499 || IS_NOTE (segment, section)) \
6500 && segment->p_type != PT_GNU_STACK \
6501 && (segment->p_type != PT_TLS \
6502 || (section->flags & SEC_THREAD_LOCAL)) \
6503 && (segment->p_type == PT_LOAD \
6504 || segment->p_type == PT_TLS \
6505 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6506 && (segment->p_type != PT_DYNAMIC \
6507 || SECTION_SIZE (section, segment) > 0 \
6508 || (segment->p_paddr \
6509 ? segment->p_paddr != section->lma \
6510 : segment->p_vaddr != section->vma) \
6511 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6512 == 0)) \
6513 && !section->segment_mark)
6514
6515 /* If the output section of a section in the input segment is NULL,
6516 it is removed from the corresponding output segment. */
6517 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6518 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6519 && section->output_section != NULL)
6520
6521 /* Returns TRUE iff seg1 starts after the end of seg2. */
6522 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6523 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6524
6525 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6526 their VMA address ranges and their LMA address ranges overlap.
6527 It is possible to have overlapping VMA ranges without overlapping LMA
6528 ranges. RedBoot images for example can have both .data and .bss mapped
6529 to the same VMA range, but with the .data section mapped to a different
6530 LMA. */
6531 #define SEGMENT_OVERLAPS(seg1, seg2) \
6532 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6533 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6534 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6535 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6536
6537 /* Initialise the segment mark field. */
6538 for (section = ibfd->sections; section != NULL; section = section->next)
6539 section->segment_mark = FALSE;
6540
6541 /* The Solaris linker creates program headers in which all the
6542 p_paddr fields are zero. When we try to objcopy or strip such a
6543 file, we get confused. Check for this case, and if we find it
6544 don't set the p_paddr_valid fields. */
6545 p_paddr_valid = FALSE;
6546 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6547 i < num_segments;
6548 i++, segment++)
6549 if (segment->p_paddr != 0)
6550 {
6551 p_paddr_valid = TRUE;
6552 break;
6553 }
6554
6555 /* Scan through the segments specified in the program header
6556 of the input BFD. For this first scan we look for overlaps
6557 in the loadable segments. These can be created by weird
6558 parameters to objcopy. Also, fix some solaris weirdness. */
6559 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6560 i < num_segments;
6561 i++, segment++)
6562 {
6563 unsigned int j;
6564 Elf_Internal_Phdr *segment2;
6565
6566 if (segment->p_type == PT_INTERP)
6567 for (section = ibfd->sections; section; section = section->next)
6568 if (IS_SOLARIS_PT_INTERP (segment, section))
6569 {
6570 /* Mininal change so that the normal section to segment
6571 assignment code will work. */
6572 segment->p_vaddr = section->vma;
6573 break;
6574 }
6575
6576 if (segment->p_type != PT_LOAD)
6577 {
6578 /* Remove PT_GNU_RELRO segment. */
6579 if (segment->p_type == PT_GNU_RELRO)
6580 segment->p_type = PT_NULL;
6581 continue;
6582 }
6583
6584 /* Determine if this segment overlaps any previous segments. */
6585 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6586 {
6587 bfd_signed_vma extra_length;
6588
6589 if (segment2->p_type != PT_LOAD
6590 || !SEGMENT_OVERLAPS (segment, segment2))
6591 continue;
6592
6593 /* Merge the two segments together. */
6594 if (segment2->p_vaddr < segment->p_vaddr)
6595 {
6596 /* Extend SEGMENT2 to include SEGMENT and then delete
6597 SEGMENT. */
6598 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6599 - SEGMENT_END (segment2, segment2->p_vaddr));
6600
6601 if (extra_length > 0)
6602 {
6603 segment2->p_memsz += extra_length;
6604 segment2->p_filesz += extra_length;
6605 }
6606
6607 segment->p_type = PT_NULL;
6608
6609 /* Since we have deleted P we must restart the outer loop. */
6610 i = 0;
6611 segment = elf_tdata (ibfd)->phdr;
6612 break;
6613 }
6614 else
6615 {
6616 /* Extend SEGMENT to include SEGMENT2 and then delete
6617 SEGMENT2. */
6618 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6619 - SEGMENT_END (segment, segment->p_vaddr));
6620
6621 if (extra_length > 0)
6622 {
6623 segment->p_memsz += extra_length;
6624 segment->p_filesz += extra_length;
6625 }
6626
6627 segment2->p_type = PT_NULL;
6628 }
6629 }
6630 }
6631
6632 /* The second scan attempts to assign sections to segments. */
6633 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6634 i < num_segments;
6635 i++, segment++)
6636 {
6637 unsigned int section_count;
6638 asection **sections;
6639 asection *output_section;
6640 unsigned int isec;
6641 bfd_vma matching_lma;
6642 bfd_vma suggested_lma;
6643 unsigned int j;
6644 bfd_size_type amt;
6645 asection *first_section;
6646 bfd_boolean first_matching_lma;
6647 bfd_boolean first_suggested_lma;
6648
6649 if (segment->p_type == PT_NULL)
6650 continue;
6651
6652 first_section = NULL;
6653 /* Compute how many sections might be placed into this segment. */
6654 for (section = ibfd->sections, section_count = 0;
6655 section != NULL;
6656 section = section->next)
6657 {
6658 /* Find the first section in the input segment, which may be
6659 removed from the corresponding output segment. */
6660 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6661 {
6662 if (first_section == NULL)
6663 first_section = section;
6664 if (section->output_section != NULL)
6665 ++section_count;
6666 }
6667 }
6668
6669 /* Allocate a segment map big enough to contain
6670 all of the sections we have selected. */
6671 amt = sizeof (struct elf_segment_map);
6672 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6673 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6674 if (map == NULL)
6675 return FALSE;
6676
6677 /* Initialise the fields of the segment map. Default to
6678 using the physical address of the segment in the input BFD. */
6679 map->next = NULL;
6680 map->p_type = segment->p_type;
6681 map->p_flags = segment->p_flags;
6682 map->p_flags_valid = 1;
6683
6684 /* If the first section in the input segment is removed, there is
6685 no need to preserve segment physical address in the corresponding
6686 output segment. */
6687 if (!first_section || first_section->output_section != NULL)
6688 {
6689 map->p_paddr = segment->p_paddr;
6690 map->p_paddr_valid = p_paddr_valid;
6691 }
6692
6693 /* Determine if this segment contains the ELF file header
6694 and if it contains the program headers themselves. */
6695 map->includes_filehdr = (segment->p_offset == 0
6696 && segment->p_filesz >= iehdr->e_ehsize);
6697 map->includes_phdrs = 0;
6698
6699 if (!phdr_included || segment->p_type != PT_LOAD)
6700 {
6701 map->includes_phdrs =
6702 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6703 && (segment->p_offset + segment->p_filesz
6704 >= ((bfd_vma) iehdr->e_phoff
6705 + iehdr->e_phnum * iehdr->e_phentsize)));
6706
6707 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6708 phdr_included = TRUE;
6709 }
6710
6711 if (section_count == 0)
6712 {
6713 /* Special segments, such as the PT_PHDR segment, may contain
6714 no sections, but ordinary, loadable segments should contain
6715 something. They are allowed by the ELF spec however, so only
6716 a warning is produced. */
6717 if (segment->p_type == PT_LOAD)
6718 _bfd_error_handler (_("\
6719 %B: warning: Empty loadable segment detected, is this intentional ?"),
6720 ibfd);
6721
6722 map->count = 0;
6723 *pointer_to_map = map;
6724 pointer_to_map = &map->next;
6725
6726 continue;
6727 }
6728
6729 /* Now scan the sections in the input BFD again and attempt
6730 to add their corresponding output sections to the segment map.
6731 The problem here is how to handle an output section which has
6732 been moved (ie had its LMA changed). There are four possibilities:
6733
6734 1. None of the sections have been moved.
6735 In this case we can continue to use the segment LMA from the
6736 input BFD.
6737
6738 2. All of the sections have been moved by the same amount.
6739 In this case we can change the segment's LMA to match the LMA
6740 of the first section.
6741
6742 3. Some of the sections have been moved, others have not.
6743 In this case those sections which have not been moved can be
6744 placed in the current segment which will have to have its size,
6745 and possibly its LMA changed, and a new segment or segments will
6746 have to be created to contain the other sections.
6747
6748 4. The sections have been moved, but not by the same amount.
6749 In this case we can change the segment's LMA to match the LMA
6750 of the first section and we will have to create a new segment
6751 or segments to contain the other sections.
6752
6753 In order to save time, we allocate an array to hold the section
6754 pointers that we are interested in. As these sections get assigned
6755 to a segment, they are removed from this array. */
6756
6757 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6758 if (sections == NULL)
6759 return FALSE;
6760
6761 /* Step One: Scan for segment vs section LMA conflicts.
6762 Also add the sections to the section array allocated above.
6763 Also add the sections to the current segment. In the common
6764 case, where the sections have not been moved, this means that
6765 we have completely filled the segment, and there is nothing
6766 more to do. */
6767 isec = 0;
6768 matching_lma = 0;
6769 suggested_lma = 0;
6770 first_matching_lma = TRUE;
6771 first_suggested_lma = TRUE;
6772
6773 for (section = first_section, j = 0;
6774 section != NULL;
6775 section = section->next)
6776 {
6777 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6778 {
6779 output_section = section->output_section;
6780
6781 sections[j++] = section;
6782
6783 /* The Solaris native linker always sets p_paddr to 0.
6784 We try to catch that case here, and set it to the
6785 correct value. Note - some backends require that
6786 p_paddr be left as zero. */
6787 if (!p_paddr_valid
6788 && segment->p_vaddr != 0
6789 && !bed->want_p_paddr_set_to_zero
6790 && isec == 0
6791 && output_section->lma != 0
6792 && output_section->vma == (segment->p_vaddr
6793 + (map->includes_filehdr
6794 ? iehdr->e_ehsize
6795 : 0)
6796 + (map->includes_phdrs
6797 ? (iehdr->e_phnum
6798 * iehdr->e_phentsize)
6799 : 0)))
6800 map->p_paddr = segment->p_vaddr;
6801
6802 /* Match up the physical address of the segment with the
6803 LMA address of the output section. */
6804 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6805 || IS_COREFILE_NOTE (segment, section)
6806 || (bed->want_p_paddr_set_to_zero
6807 && IS_CONTAINED_BY_VMA (output_section, segment)))
6808 {
6809 if (first_matching_lma || output_section->lma < matching_lma)
6810 {
6811 matching_lma = output_section->lma;
6812 first_matching_lma = FALSE;
6813 }
6814
6815 /* We assume that if the section fits within the segment
6816 then it does not overlap any other section within that
6817 segment. */
6818 map->sections[isec++] = output_section;
6819 }
6820 else if (first_suggested_lma)
6821 {
6822 suggested_lma = output_section->lma;
6823 first_suggested_lma = FALSE;
6824 }
6825
6826 if (j == section_count)
6827 break;
6828 }
6829 }
6830
6831 BFD_ASSERT (j == section_count);
6832
6833 /* Step Two: Adjust the physical address of the current segment,
6834 if necessary. */
6835 if (isec == section_count)
6836 {
6837 /* All of the sections fitted within the segment as currently
6838 specified. This is the default case. Add the segment to
6839 the list of built segments and carry on to process the next
6840 program header in the input BFD. */
6841 map->count = section_count;
6842 *pointer_to_map = map;
6843 pointer_to_map = &map->next;
6844
6845 if (p_paddr_valid
6846 && !bed->want_p_paddr_set_to_zero
6847 && matching_lma != map->p_paddr
6848 && !map->includes_filehdr
6849 && !map->includes_phdrs)
6850 /* There is some padding before the first section in the
6851 segment. So, we must account for that in the output
6852 segment's vma. */
6853 map->p_vaddr_offset = matching_lma - map->p_paddr;
6854
6855 free (sections);
6856 continue;
6857 }
6858 else
6859 {
6860 if (!first_matching_lma)
6861 {
6862 /* At least one section fits inside the current segment.
6863 Keep it, but modify its physical address to match the
6864 LMA of the first section that fitted. */
6865 map->p_paddr = matching_lma;
6866 }
6867 else
6868 {
6869 /* None of the sections fitted inside the current segment.
6870 Change the current segment's physical address to match
6871 the LMA of the first section. */
6872 map->p_paddr = suggested_lma;
6873 }
6874
6875 /* Offset the segment physical address from the lma
6876 to allow for space taken up by elf headers. */
6877 if (map->includes_filehdr)
6878 {
6879 if (map->p_paddr >= iehdr->e_ehsize)
6880 map->p_paddr -= iehdr->e_ehsize;
6881 else
6882 {
6883 map->includes_filehdr = FALSE;
6884 map->includes_phdrs = FALSE;
6885 }
6886 }
6887
6888 if (map->includes_phdrs)
6889 {
6890 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6891 {
6892 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6893
6894 /* iehdr->e_phnum is just an estimate of the number
6895 of program headers that we will need. Make a note
6896 here of the number we used and the segment we chose
6897 to hold these headers, so that we can adjust the
6898 offset when we know the correct value. */
6899 phdr_adjust_num = iehdr->e_phnum;
6900 phdr_adjust_seg = map;
6901 }
6902 else
6903 map->includes_phdrs = FALSE;
6904 }
6905 }
6906
6907 /* Step Three: Loop over the sections again, this time assigning
6908 those that fit to the current segment and removing them from the
6909 sections array; but making sure not to leave large gaps. Once all
6910 possible sections have been assigned to the current segment it is
6911 added to the list of built segments and if sections still remain
6912 to be assigned, a new segment is constructed before repeating
6913 the loop. */
6914 isec = 0;
6915 do
6916 {
6917 map->count = 0;
6918 suggested_lma = 0;
6919 first_suggested_lma = TRUE;
6920
6921 /* Fill the current segment with sections that fit. */
6922 for (j = 0; j < section_count; j++)
6923 {
6924 section = sections[j];
6925
6926 if (section == NULL)
6927 continue;
6928
6929 output_section = section->output_section;
6930
6931 BFD_ASSERT (output_section != NULL);
6932
6933 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6934 || IS_COREFILE_NOTE (segment, section))
6935 {
6936 if (map->count == 0)
6937 {
6938 /* If the first section in a segment does not start at
6939 the beginning of the segment, then something is
6940 wrong. */
6941 if (output_section->lma
6942 != (map->p_paddr
6943 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6944 + (map->includes_phdrs
6945 ? iehdr->e_phnum * iehdr->e_phentsize
6946 : 0)))
6947 abort ();
6948 }
6949 else
6950 {
6951 asection *prev_sec;
6952
6953 prev_sec = map->sections[map->count - 1];
6954
6955 /* If the gap between the end of the previous section
6956 and the start of this section is more than
6957 maxpagesize then we need to start a new segment. */
6958 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6959 maxpagesize)
6960 < BFD_ALIGN (output_section->lma, maxpagesize))
6961 || (prev_sec->lma + prev_sec->size
6962 > output_section->lma))
6963 {
6964 if (first_suggested_lma)
6965 {
6966 suggested_lma = output_section->lma;
6967 first_suggested_lma = FALSE;
6968 }
6969
6970 continue;
6971 }
6972 }
6973
6974 map->sections[map->count++] = output_section;
6975 ++isec;
6976 sections[j] = NULL;
6977 section->segment_mark = TRUE;
6978 }
6979 else if (first_suggested_lma)
6980 {
6981 suggested_lma = output_section->lma;
6982 first_suggested_lma = FALSE;
6983 }
6984 }
6985
6986 BFD_ASSERT (map->count > 0);
6987
6988 /* Add the current segment to the list of built segments. */
6989 *pointer_to_map = map;
6990 pointer_to_map = &map->next;
6991
6992 if (isec < section_count)
6993 {
6994 /* We still have not allocated all of the sections to
6995 segments. Create a new segment here, initialise it
6996 and carry on looping. */
6997 amt = sizeof (struct elf_segment_map);
6998 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6999 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7000 if (map == NULL)
7001 {
7002 free (sections);
7003 return FALSE;
7004 }
7005
7006 /* Initialise the fields of the segment map. Set the physical
7007 physical address to the LMA of the first section that has
7008 not yet been assigned. */
7009 map->next = NULL;
7010 map->p_type = segment->p_type;
7011 map->p_flags = segment->p_flags;
7012 map->p_flags_valid = 1;
7013 map->p_paddr = suggested_lma;
7014 map->p_paddr_valid = p_paddr_valid;
7015 map->includes_filehdr = 0;
7016 map->includes_phdrs = 0;
7017 }
7018 }
7019 while (isec < section_count);
7020
7021 free (sections);
7022 }
7023
7024 elf_seg_map (obfd) = map_first;
7025
7026 /* If we had to estimate the number of program headers that were
7027 going to be needed, then check our estimate now and adjust
7028 the offset if necessary. */
7029 if (phdr_adjust_seg != NULL)
7030 {
7031 unsigned int count;
7032
7033 for (count = 0, map = map_first; map != NULL; map = map->next)
7034 count++;
7035
7036 if (count > phdr_adjust_num)
7037 phdr_adjust_seg->p_paddr
7038 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7039 }
7040
7041 #undef SEGMENT_END
7042 #undef SECTION_SIZE
7043 #undef IS_CONTAINED_BY_VMA
7044 #undef IS_CONTAINED_BY_LMA
7045 #undef IS_NOTE
7046 #undef IS_COREFILE_NOTE
7047 #undef IS_SOLARIS_PT_INTERP
7048 #undef IS_SECTION_IN_INPUT_SEGMENT
7049 #undef INCLUDE_SECTION_IN_SEGMENT
7050 #undef SEGMENT_AFTER_SEGMENT
7051 #undef SEGMENT_OVERLAPS
7052 return TRUE;
7053 }
7054
7055 /* Copy ELF program header information. */
7056
7057 static bfd_boolean
7058 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7059 {
7060 Elf_Internal_Ehdr *iehdr;
7061 struct elf_segment_map *map;
7062 struct elf_segment_map *map_first;
7063 struct elf_segment_map **pointer_to_map;
7064 Elf_Internal_Phdr *segment;
7065 unsigned int i;
7066 unsigned int num_segments;
7067 bfd_boolean phdr_included = FALSE;
7068 bfd_boolean p_paddr_valid;
7069
7070 iehdr = elf_elfheader (ibfd);
7071
7072 map_first = NULL;
7073 pointer_to_map = &map_first;
7074
7075 /* If all the segment p_paddr fields are zero, don't set
7076 map->p_paddr_valid. */
7077 p_paddr_valid = FALSE;
7078 num_segments = elf_elfheader (ibfd)->e_phnum;
7079 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7080 i < num_segments;
7081 i++, segment++)
7082 if (segment->p_paddr != 0)
7083 {
7084 p_paddr_valid = TRUE;
7085 break;
7086 }
7087
7088 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7089 i < num_segments;
7090 i++, segment++)
7091 {
7092 asection *section;
7093 unsigned int section_count;
7094 bfd_size_type amt;
7095 Elf_Internal_Shdr *this_hdr;
7096 asection *first_section = NULL;
7097 asection *lowest_section;
7098
7099 /* Compute how many sections are in this segment. */
7100 for (section = ibfd->sections, section_count = 0;
7101 section != NULL;
7102 section = section->next)
7103 {
7104 this_hdr = &(elf_section_data(section)->this_hdr);
7105 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7106 {
7107 if (first_section == NULL)
7108 first_section = section;
7109 section_count++;
7110 }
7111 }
7112
7113 /* Allocate a segment map big enough to contain
7114 all of the sections we have selected. */
7115 amt = sizeof (struct elf_segment_map);
7116 if (section_count != 0)
7117 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7118 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7119 if (map == NULL)
7120 return FALSE;
7121
7122 /* Initialize the fields of the output segment map with the
7123 input segment. */
7124 map->next = NULL;
7125 map->p_type = segment->p_type;
7126 map->p_flags = segment->p_flags;
7127 map->p_flags_valid = 1;
7128 map->p_paddr = segment->p_paddr;
7129 map->p_paddr_valid = p_paddr_valid;
7130 map->p_align = segment->p_align;
7131 map->p_align_valid = 1;
7132 map->p_vaddr_offset = 0;
7133
7134 if (map->p_type == PT_GNU_RELRO
7135 || map->p_type == PT_GNU_STACK)
7136 {
7137 /* The PT_GNU_RELRO segment may contain the first a few
7138 bytes in the .got.plt section even if the whole .got.plt
7139 section isn't in the PT_GNU_RELRO segment. We won't
7140 change the size of the PT_GNU_RELRO segment.
7141 Similarly, PT_GNU_STACK size is significant on uclinux
7142 systems. */
7143 map->p_size = segment->p_memsz;
7144 map->p_size_valid = 1;
7145 }
7146
7147 /* Determine if this segment contains the ELF file header
7148 and if it contains the program headers themselves. */
7149 map->includes_filehdr = (segment->p_offset == 0
7150 && segment->p_filesz >= iehdr->e_ehsize);
7151
7152 map->includes_phdrs = 0;
7153 if (! phdr_included || segment->p_type != PT_LOAD)
7154 {
7155 map->includes_phdrs =
7156 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7157 && (segment->p_offset + segment->p_filesz
7158 >= ((bfd_vma) iehdr->e_phoff
7159 + iehdr->e_phnum * iehdr->e_phentsize)));
7160
7161 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7162 phdr_included = TRUE;
7163 }
7164
7165 lowest_section = NULL;
7166 if (section_count != 0)
7167 {
7168 unsigned int isec = 0;
7169
7170 for (section = first_section;
7171 section != NULL;
7172 section = section->next)
7173 {
7174 this_hdr = &(elf_section_data(section)->this_hdr);
7175 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7176 {
7177 map->sections[isec++] = section->output_section;
7178 if ((section->flags & SEC_ALLOC) != 0)
7179 {
7180 bfd_vma seg_off;
7181
7182 if (lowest_section == NULL
7183 || section->lma < lowest_section->lma)
7184 lowest_section = section;
7185
7186 /* Section lmas are set up from PT_LOAD header
7187 p_paddr in _bfd_elf_make_section_from_shdr.
7188 If this header has a p_paddr that disagrees
7189 with the section lma, flag the p_paddr as
7190 invalid. */
7191 if ((section->flags & SEC_LOAD) != 0)
7192 seg_off = this_hdr->sh_offset - segment->p_offset;
7193 else
7194 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7195 if (section->lma - segment->p_paddr != seg_off)
7196 map->p_paddr_valid = FALSE;
7197 }
7198 if (isec == section_count)
7199 break;
7200 }
7201 }
7202 }
7203
7204 if (map->includes_filehdr && lowest_section != NULL)
7205 /* We need to keep the space used by the headers fixed. */
7206 map->header_size = lowest_section->vma - segment->p_vaddr;
7207
7208 if (!map->includes_phdrs
7209 && !map->includes_filehdr
7210 && map->p_paddr_valid)
7211 /* There is some other padding before the first section. */
7212 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7213 - segment->p_paddr);
7214
7215 map->count = section_count;
7216 *pointer_to_map = map;
7217 pointer_to_map = &map->next;
7218 }
7219
7220 elf_seg_map (obfd) = map_first;
7221 return TRUE;
7222 }
7223
7224 /* Copy private BFD data. This copies or rewrites ELF program header
7225 information. */
7226
7227 static bfd_boolean
7228 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7229 {
7230 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7231 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7232 return TRUE;
7233
7234 if (elf_tdata (ibfd)->phdr == NULL)
7235 return TRUE;
7236
7237 if (ibfd->xvec == obfd->xvec)
7238 {
7239 /* Check to see if any sections in the input BFD
7240 covered by ELF program header have changed. */
7241 Elf_Internal_Phdr *segment;
7242 asection *section, *osec;
7243 unsigned int i, num_segments;
7244 Elf_Internal_Shdr *this_hdr;
7245 const struct elf_backend_data *bed;
7246
7247 bed = get_elf_backend_data (ibfd);
7248
7249 /* Regenerate the segment map if p_paddr is set to 0. */
7250 if (bed->want_p_paddr_set_to_zero)
7251 goto rewrite;
7252
7253 /* Initialize the segment mark field. */
7254 for (section = obfd->sections; section != NULL;
7255 section = section->next)
7256 section->segment_mark = FALSE;
7257
7258 num_segments = elf_elfheader (ibfd)->e_phnum;
7259 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7260 i < num_segments;
7261 i++, segment++)
7262 {
7263 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7264 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7265 which severly confuses things, so always regenerate the segment
7266 map in this case. */
7267 if (segment->p_paddr == 0
7268 && segment->p_memsz == 0
7269 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7270 goto rewrite;
7271
7272 for (section = ibfd->sections;
7273 section != NULL; section = section->next)
7274 {
7275 /* We mark the output section so that we know it comes
7276 from the input BFD. */
7277 osec = section->output_section;
7278 if (osec)
7279 osec->segment_mark = TRUE;
7280
7281 /* Check if this section is covered by the segment. */
7282 this_hdr = &(elf_section_data(section)->this_hdr);
7283 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7284 {
7285 /* FIXME: Check if its output section is changed or
7286 removed. What else do we need to check? */
7287 if (osec == NULL
7288 || section->flags != osec->flags
7289 || section->lma != osec->lma
7290 || section->vma != osec->vma
7291 || section->size != osec->size
7292 || section->rawsize != osec->rawsize
7293 || section->alignment_power != osec->alignment_power)
7294 goto rewrite;
7295 }
7296 }
7297 }
7298
7299 /* Check to see if any output section do not come from the
7300 input BFD. */
7301 for (section = obfd->sections; section != NULL;
7302 section = section->next)
7303 {
7304 if (section->segment_mark == FALSE)
7305 goto rewrite;
7306 else
7307 section->segment_mark = FALSE;
7308 }
7309
7310 return copy_elf_program_header (ibfd, obfd);
7311 }
7312
7313 rewrite:
7314 if (ibfd->xvec == obfd->xvec)
7315 {
7316 /* When rewriting program header, set the output maxpagesize to
7317 the maximum alignment of input PT_LOAD segments. */
7318 Elf_Internal_Phdr *segment;
7319 unsigned int i;
7320 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7321 bfd_vma maxpagesize = 0;
7322
7323 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7324 i < num_segments;
7325 i++, segment++)
7326 if (segment->p_type == PT_LOAD
7327 && maxpagesize < segment->p_align)
7328 {
7329 /* PR 17512: file: f17299af. */
7330 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7331 /* xgettext:c-format */
7332 _bfd_error_handler (_("\
7333 %B: warning: segment alignment of 0x%llx is too large"),
7334 ibfd, (long long) segment->p_align);
7335 else
7336 maxpagesize = segment->p_align;
7337 }
7338
7339 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7340 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7341 }
7342
7343 return rewrite_elf_program_header (ibfd, obfd);
7344 }
7345
7346 /* Initialize private output section information from input section. */
7347
7348 bfd_boolean
7349 _bfd_elf_init_private_section_data (bfd *ibfd,
7350 asection *isec,
7351 bfd *obfd,
7352 asection *osec,
7353 struct bfd_link_info *link_info)
7354
7355 {
7356 Elf_Internal_Shdr *ihdr, *ohdr;
7357 bfd_boolean final_link = (link_info != NULL
7358 && !bfd_link_relocatable (link_info));
7359
7360 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7361 || obfd->xvec->flavour != bfd_target_elf_flavour)
7362 return TRUE;
7363
7364 BFD_ASSERT (elf_section_data (osec) != NULL);
7365
7366 /* For objcopy and relocatable link, don't copy the output ELF
7367 section type from input if the output BFD section flags have been
7368 set to something different. For a final link allow some flags
7369 that the linker clears to differ. */
7370 if (elf_section_type (osec) == SHT_NULL
7371 && (osec->flags == isec->flags
7372 || (final_link
7373 && ((osec->flags ^ isec->flags)
7374 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7375 elf_section_type (osec) = elf_section_type (isec);
7376
7377 /* FIXME: Is this correct for all OS/PROC specific flags? */
7378 elf_section_flags (osec) |= (elf_section_flags (isec)
7379 & (SHF_MASKOS | SHF_MASKPROC));
7380
7381 /* Set things up for objcopy and relocatable link. The output
7382 SHT_GROUP section will have its elf_next_in_group pointing back
7383 to the input group members. Ignore linker created group section.
7384 See elfNN_ia64_object_p in elfxx-ia64.c. */
7385 if (!final_link)
7386 {
7387 if (elf_sec_group (isec) == NULL
7388 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
7389 {
7390 if (elf_section_flags (isec) & SHF_GROUP)
7391 elf_section_flags (osec) |= SHF_GROUP;
7392 elf_next_in_group (osec) = elf_next_in_group (isec);
7393 elf_section_data (osec)->group = elf_section_data (isec)->group;
7394 }
7395
7396 /* If not decompress, preserve SHF_COMPRESSED. */
7397 if ((ibfd->flags & BFD_DECOMPRESS) == 0)
7398 elf_section_flags (osec) |= (elf_section_flags (isec)
7399 & SHF_COMPRESSED);
7400 }
7401
7402 ihdr = &elf_section_data (isec)->this_hdr;
7403
7404 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7405 don't use the output section of the linked-to section since it
7406 may be NULL at this point. */
7407 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7408 {
7409 ohdr = &elf_section_data (osec)->this_hdr;
7410 ohdr->sh_flags |= SHF_LINK_ORDER;
7411 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7412 }
7413
7414 osec->use_rela_p = isec->use_rela_p;
7415
7416 return TRUE;
7417 }
7418
7419 /* Copy private section information. This copies over the entsize
7420 field, and sometimes the info field. */
7421
7422 bfd_boolean
7423 _bfd_elf_copy_private_section_data (bfd *ibfd,
7424 asection *isec,
7425 bfd *obfd,
7426 asection *osec)
7427 {
7428 Elf_Internal_Shdr *ihdr, *ohdr;
7429
7430 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7431 || obfd->xvec->flavour != bfd_target_elf_flavour)
7432 return TRUE;
7433
7434 ihdr = &elf_section_data (isec)->this_hdr;
7435 ohdr = &elf_section_data (osec)->this_hdr;
7436
7437 ohdr->sh_entsize = ihdr->sh_entsize;
7438
7439 if (ihdr->sh_type == SHT_SYMTAB
7440 || ihdr->sh_type == SHT_DYNSYM
7441 || ihdr->sh_type == SHT_GNU_verneed
7442 || ihdr->sh_type == SHT_GNU_verdef)
7443 ohdr->sh_info = ihdr->sh_info;
7444
7445 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7446 NULL);
7447 }
7448
7449 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7450 necessary if we are removing either the SHT_GROUP section or any of
7451 the group member sections. DISCARDED is the value that a section's
7452 output_section has if the section will be discarded, NULL when this
7453 function is called from objcopy, bfd_abs_section_ptr when called
7454 from the linker. */
7455
7456 bfd_boolean
7457 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7458 {
7459 asection *isec;
7460
7461 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7462 if (elf_section_type (isec) == SHT_GROUP)
7463 {
7464 asection *first = elf_next_in_group (isec);
7465 asection *s = first;
7466 bfd_size_type removed = 0;
7467
7468 while (s != NULL)
7469 {
7470 /* If this member section is being output but the
7471 SHT_GROUP section is not, then clear the group info
7472 set up by _bfd_elf_copy_private_section_data. */
7473 if (s->output_section != discarded
7474 && isec->output_section == discarded)
7475 {
7476 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7477 elf_group_name (s->output_section) = NULL;
7478 }
7479 /* Conversely, if the member section is not being output
7480 but the SHT_GROUP section is, then adjust its size. */
7481 else if (s->output_section == discarded
7482 && isec->output_section != discarded)
7483 removed += 4;
7484 s = elf_next_in_group (s);
7485 if (s == first)
7486 break;
7487 }
7488 if (removed != 0)
7489 {
7490 if (discarded != NULL)
7491 {
7492 /* If we've been called for ld -r, then we need to
7493 adjust the input section size. This function may
7494 be called multiple times, so save the original
7495 size. */
7496 if (isec->rawsize == 0)
7497 isec->rawsize = isec->size;
7498 isec->size = isec->rawsize - removed;
7499 }
7500 else
7501 {
7502 /* Adjust the output section size when called from
7503 objcopy. */
7504 isec->output_section->size -= removed;
7505 }
7506 }
7507 }
7508
7509 return TRUE;
7510 }
7511
7512 /* Copy private header information. */
7513
7514 bfd_boolean
7515 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7516 {
7517 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7518 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7519 return TRUE;
7520
7521 /* Copy over private BFD data if it has not already been copied.
7522 This must be done here, rather than in the copy_private_bfd_data
7523 entry point, because the latter is called after the section
7524 contents have been set, which means that the program headers have
7525 already been worked out. */
7526 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7527 {
7528 if (! copy_private_bfd_data (ibfd, obfd))
7529 return FALSE;
7530 }
7531
7532 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7533 }
7534
7535 /* Copy private symbol information. If this symbol is in a section
7536 which we did not map into a BFD section, try to map the section
7537 index correctly. We use special macro definitions for the mapped
7538 section indices; these definitions are interpreted by the
7539 swap_out_syms function. */
7540
7541 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7542 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7543 #define MAP_STRTAB (SHN_HIOS + 3)
7544 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7545 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7546
7547 bfd_boolean
7548 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7549 asymbol *isymarg,
7550 bfd *obfd,
7551 asymbol *osymarg)
7552 {
7553 elf_symbol_type *isym, *osym;
7554
7555 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7556 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7557 return TRUE;
7558
7559 isym = elf_symbol_from (ibfd, isymarg);
7560 osym = elf_symbol_from (obfd, osymarg);
7561
7562 if (isym != NULL
7563 && isym->internal_elf_sym.st_shndx != 0
7564 && osym != NULL
7565 && bfd_is_abs_section (isym->symbol.section))
7566 {
7567 unsigned int shndx;
7568
7569 shndx = isym->internal_elf_sym.st_shndx;
7570 if (shndx == elf_onesymtab (ibfd))
7571 shndx = MAP_ONESYMTAB;
7572 else if (shndx == elf_dynsymtab (ibfd))
7573 shndx = MAP_DYNSYMTAB;
7574 else if (shndx == elf_strtab_sec (ibfd))
7575 shndx = MAP_STRTAB;
7576 else if (shndx == elf_shstrtab_sec (ibfd))
7577 shndx = MAP_SHSTRTAB;
7578 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7579 shndx = MAP_SYM_SHNDX;
7580 osym->internal_elf_sym.st_shndx = shndx;
7581 }
7582
7583 return TRUE;
7584 }
7585
7586 /* Swap out the symbols. */
7587
7588 static bfd_boolean
7589 swap_out_syms (bfd *abfd,
7590 struct elf_strtab_hash **sttp,
7591 int relocatable_p)
7592 {
7593 const struct elf_backend_data *bed;
7594 int symcount;
7595 asymbol **syms;
7596 struct elf_strtab_hash *stt;
7597 Elf_Internal_Shdr *symtab_hdr;
7598 Elf_Internal_Shdr *symtab_shndx_hdr;
7599 Elf_Internal_Shdr *symstrtab_hdr;
7600 struct elf_sym_strtab *symstrtab;
7601 bfd_byte *outbound_syms;
7602 bfd_byte *outbound_shndx;
7603 unsigned long outbound_syms_index;
7604 unsigned long outbound_shndx_index;
7605 int idx;
7606 unsigned int num_locals;
7607 bfd_size_type amt;
7608 bfd_boolean name_local_sections;
7609
7610 if (!elf_map_symbols (abfd, &num_locals))
7611 return FALSE;
7612
7613 /* Dump out the symtabs. */
7614 stt = _bfd_elf_strtab_init ();
7615 if (stt == NULL)
7616 return FALSE;
7617
7618 bed = get_elf_backend_data (abfd);
7619 symcount = bfd_get_symcount (abfd);
7620 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7621 symtab_hdr->sh_type = SHT_SYMTAB;
7622 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7623 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7624 symtab_hdr->sh_info = num_locals + 1;
7625 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7626
7627 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7628 symstrtab_hdr->sh_type = SHT_STRTAB;
7629
7630 /* Allocate buffer to swap out the .strtab section. */
7631 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7632 * sizeof (*symstrtab));
7633 if (symstrtab == NULL)
7634 {
7635 _bfd_elf_strtab_free (stt);
7636 return FALSE;
7637 }
7638
7639 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7640 bed->s->sizeof_sym);
7641 if (outbound_syms == NULL)
7642 {
7643 error_return:
7644 _bfd_elf_strtab_free (stt);
7645 free (symstrtab);
7646 return FALSE;
7647 }
7648 symtab_hdr->contents = outbound_syms;
7649 outbound_syms_index = 0;
7650
7651 outbound_shndx = NULL;
7652 outbound_shndx_index = 0;
7653
7654 if (elf_symtab_shndx_list (abfd))
7655 {
7656 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7657 if (symtab_shndx_hdr->sh_name != 0)
7658 {
7659 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7660 outbound_shndx = (bfd_byte *)
7661 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7662 if (outbound_shndx == NULL)
7663 goto error_return;
7664
7665 symtab_shndx_hdr->contents = outbound_shndx;
7666 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7667 symtab_shndx_hdr->sh_size = amt;
7668 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7669 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7670 }
7671 /* FIXME: What about any other headers in the list ? */
7672 }
7673
7674 /* Now generate the data (for "contents"). */
7675 {
7676 /* Fill in zeroth symbol and swap it out. */
7677 Elf_Internal_Sym sym;
7678 sym.st_name = 0;
7679 sym.st_value = 0;
7680 sym.st_size = 0;
7681 sym.st_info = 0;
7682 sym.st_other = 0;
7683 sym.st_shndx = SHN_UNDEF;
7684 sym.st_target_internal = 0;
7685 symstrtab[0].sym = sym;
7686 symstrtab[0].dest_index = outbound_syms_index;
7687 symstrtab[0].destshndx_index = outbound_shndx_index;
7688 outbound_syms_index++;
7689 if (outbound_shndx != NULL)
7690 outbound_shndx_index++;
7691 }
7692
7693 name_local_sections
7694 = (bed->elf_backend_name_local_section_symbols
7695 && bed->elf_backend_name_local_section_symbols (abfd));
7696
7697 syms = bfd_get_outsymbols (abfd);
7698 for (idx = 0; idx < symcount;)
7699 {
7700 Elf_Internal_Sym sym;
7701 bfd_vma value = syms[idx]->value;
7702 elf_symbol_type *type_ptr;
7703 flagword flags = syms[idx]->flags;
7704 int type;
7705
7706 if (!name_local_sections
7707 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7708 {
7709 /* Local section symbols have no name. */
7710 sym.st_name = (unsigned long) -1;
7711 }
7712 else
7713 {
7714 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7715 to get the final offset for st_name. */
7716 sym.st_name
7717 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7718 FALSE);
7719 if (sym.st_name == (unsigned long) -1)
7720 goto error_return;
7721 }
7722
7723 type_ptr = elf_symbol_from (abfd, syms[idx]);
7724
7725 if ((flags & BSF_SECTION_SYM) == 0
7726 && bfd_is_com_section (syms[idx]->section))
7727 {
7728 /* ELF common symbols put the alignment into the `value' field,
7729 and the size into the `size' field. This is backwards from
7730 how BFD handles it, so reverse it here. */
7731 sym.st_size = value;
7732 if (type_ptr == NULL
7733 || type_ptr->internal_elf_sym.st_value == 0)
7734 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7735 else
7736 sym.st_value = type_ptr->internal_elf_sym.st_value;
7737 sym.st_shndx = _bfd_elf_section_from_bfd_section
7738 (abfd, syms[idx]->section);
7739 }
7740 else
7741 {
7742 asection *sec = syms[idx]->section;
7743 unsigned int shndx;
7744
7745 if (sec->output_section)
7746 {
7747 value += sec->output_offset;
7748 sec = sec->output_section;
7749 }
7750
7751 /* Don't add in the section vma for relocatable output. */
7752 if (! relocatable_p)
7753 value += sec->vma;
7754 sym.st_value = value;
7755 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7756
7757 if (bfd_is_abs_section (sec)
7758 && type_ptr != NULL
7759 && type_ptr->internal_elf_sym.st_shndx != 0)
7760 {
7761 /* This symbol is in a real ELF section which we did
7762 not create as a BFD section. Undo the mapping done
7763 by copy_private_symbol_data. */
7764 shndx = type_ptr->internal_elf_sym.st_shndx;
7765 switch (shndx)
7766 {
7767 case MAP_ONESYMTAB:
7768 shndx = elf_onesymtab (abfd);
7769 break;
7770 case MAP_DYNSYMTAB:
7771 shndx = elf_dynsymtab (abfd);
7772 break;
7773 case MAP_STRTAB:
7774 shndx = elf_strtab_sec (abfd);
7775 break;
7776 case MAP_SHSTRTAB:
7777 shndx = elf_shstrtab_sec (abfd);
7778 break;
7779 case MAP_SYM_SHNDX:
7780 if (elf_symtab_shndx_list (abfd))
7781 shndx = elf_symtab_shndx_list (abfd)->ndx;
7782 break;
7783 default:
7784 shndx = SHN_ABS;
7785 break;
7786 }
7787 }
7788 else
7789 {
7790 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7791
7792 if (shndx == SHN_BAD)
7793 {
7794 asection *sec2;
7795
7796 /* Writing this would be a hell of a lot easier if
7797 we had some decent documentation on bfd, and
7798 knew what to expect of the library, and what to
7799 demand of applications. For example, it
7800 appears that `objcopy' might not set the
7801 section of a symbol to be a section that is
7802 actually in the output file. */
7803 sec2 = bfd_get_section_by_name (abfd, sec->name);
7804 if (sec2 != NULL)
7805 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7806 if (shndx == SHN_BAD)
7807 {
7808 /* xgettext:c-format */
7809 _bfd_error_handler (_("\
7810 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7811 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7812 sec->name);
7813 bfd_set_error (bfd_error_invalid_operation);
7814 goto error_return;
7815 }
7816 }
7817 }
7818
7819 sym.st_shndx = shndx;
7820 }
7821
7822 if ((flags & BSF_THREAD_LOCAL) != 0)
7823 type = STT_TLS;
7824 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7825 type = STT_GNU_IFUNC;
7826 else if ((flags & BSF_FUNCTION) != 0)
7827 type = STT_FUNC;
7828 else if ((flags & BSF_OBJECT) != 0)
7829 type = STT_OBJECT;
7830 else if ((flags & BSF_RELC) != 0)
7831 type = STT_RELC;
7832 else if ((flags & BSF_SRELC) != 0)
7833 type = STT_SRELC;
7834 else
7835 type = STT_NOTYPE;
7836
7837 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7838 type = STT_TLS;
7839
7840 /* Processor-specific types. */
7841 if (type_ptr != NULL
7842 && bed->elf_backend_get_symbol_type)
7843 type = ((*bed->elf_backend_get_symbol_type)
7844 (&type_ptr->internal_elf_sym, type));
7845
7846 if (flags & BSF_SECTION_SYM)
7847 {
7848 if (flags & BSF_GLOBAL)
7849 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7850 else
7851 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7852 }
7853 else if (bfd_is_com_section (syms[idx]->section))
7854 {
7855 if (type != STT_TLS)
7856 {
7857 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
7858 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
7859 ? STT_COMMON : STT_OBJECT);
7860 else
7861 type = ((flags & BSF_ELF_COMMON) != 0
7862 ? STT_COMMON : STT_OBJECT);
7863 }
7864 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7865 }
7866 else if (bfd_is_und_section (syms[idx]->section))
7867 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7868 ? STB_WEAK
7869 : STB_GLOBAL),
7870 type);
7871 else if (flags & BSF_FILE)
7872 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7873 else
7874 {
7875 int bind = STB_LOCAL;
7876
7877 if (flags & BSF_LOCAL)
7878 bind = STB_LOCAL;
7879 else if (flags & BSF_GNU_UNIQUE)
7880 bind = STB_GNU_UNIQUE;
7881 else if (flags & BSF_WEAK)
7882 bind = STB_WEAK;
7883 else if (flags & BSF_GLOBAL)
7884 bind = STB_GLOBAL;
7885
7886 sym.st_info = ELF_ST_INFO (bind, type);
7887 }
7888
7889 if (type_ptr != NULL)
7890 {
7891 sym.st_other = type_ptr->internal_elf_sym.st_other;
7892 sym.st_target_internal
7893 = type_ptr->internal_elf_sym.st_target_internal;
7894 }
7895 else
7896 {
7897 sym.st_other = 0;
7898 sym.st_target_internal = 0;
7899 }
7900
7901 idx++;
7902 symstrtab[idx].sym = sym;
7903 symstrtab[idx].dest_index = outbound_syms_index;
7904 symstrtab[idx].destshndx_index = outbound_shndx_index;
7905
7906 outbound_syms_index++;
7907 if (outbound_shndx != NULL)
7908 outbound_shndx_index++;
7909 }
7910
7911 /* Finalize the .strtab section. */
7912 _bfd_elf_strtab_finalize (stt);
7913
7914 /* Swap out the .strtab section. */
7915 for (idx = 0; idx <= symcount; idx++)
7916 {
7917 struct elf_sym_strtab *elfsym = &symstrtab[idx];
7918 if (elfsym->sym.st_name == (unsigned long) -1)
7919 elfsym->sym.st_name = 0;
7920 else
7921 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
7922 elfsym->sym.st_name);
7923 bed->s->swap_symbol_out (abfd, &elfsym->sym,
7924 (outbound_syms
7925 + (elfsym->dest_index
7926 * bed->s->sizeof_sym)),
7927 (outbound_shndx
7928 + (elfsym->destshndx_index
7929 * sizeof (Elf_External_Sym_Shndx))));
7930 }
7931 free (symstrtab);
7932
7933 *sttp = stt;
7934 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
7935 symstrtab_hdr->sh_type = SHT_STRTAB;
7936 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
7937 symstrtab_hdr->sh_addr = 0;
7938 symstrtab_hdr->sh_entsize = 0;
7939 symstrtab_hdr->sh_link = 0;
7940 symstrtab_hdr->sh_info = 0;
7941 symstrtab_hdr->sh_addralign = 1;
7942
7943 return TRUE;
7944 }
7945
7946 /* Return the number of bytes required to hold the symtab vector.
7947
7948 Note that we base it on the count plus 1, since we will null terminate
7949 the vector allocated based on this size. However, the ELF symbol table
7950 always has a dummy entry as symbol #0, so it ends up even. */
7951
7952 long
7953 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7954 {
7955 long symcount;
7956 long symtab_size;
7957 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7958
7959 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7960 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7961 if (symcount > 0)
7962 symtab_size -= sizeof (asymbol *);
7963
7964 return symtab_size;
7965 }
7966
7967 long
7968 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7969 {
7970 long symcount;
7971 long symtab_size;
7972 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7973
7974 if (elf_dynsymtab (abfd) == 0)
7975 {
7976 bfd_set_error (bfd_error_invalid_operation);
7977 return -1;
7978 }
7979
7980 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7981 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7982 if (symcount > 0)
7983 symtab_size -= sizeof (asymbol *);
7984
7985 return symtab_size;
7986 }
7987
7988 long
7989 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7990 sec_ptr asect)
7991 {
7992 return (asect->reloc_count + 1) * sizeof (arelent *);
7993 }
7994
7995 /* Canonicalize the relocs. */
7996
7997 long
7998 _bfd_elf_canonicalize_reloc (bfd *abfd,
7999 sec_ptr section,
8000 arelent **relptr,
8001 asymbol **symbols)
8002 {
8003 arelent *tblptr;
8004 unsigned int i;
8005 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8006
8007 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8008 return -1;
8009
8010 tblptr = section->relocation;
8011 for (i = 0; i < section->reloc_count; i++)
8012 *relptr++ = tblptr++;
8013
8014 *relptr = NULL;
8015
8016 return section->reloc_count;
8017 }
8018
8019 long
8020 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8021 {
8022 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8023 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8024
8025 if (symcount >= 0)
8026 bfd_get_symcount (abfd) = symcount;
8027 return symcount;
8028 }
8029
8030 long
8031 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8032 asymbol **allocation)
8033 {
8034 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8035 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8036
8037 if (symcount >= 0)
8038 bfd_get_dynamic_symcount (abfd) = symcount;
8039 return symcount;
8040 }
8041
8042 /* Return the size required for the dynamic reloc entries. Any loadable
8043 section that was actually installed in the BFD, and has type SHT_REL
8044 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8045 dynamic reloc section. */
8046
8047 long
8048 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8049 {
8050 long ret;
8051 asection *s;
8052
8053 if (elf_dynsymtab (abfd) == 0)
8054 {
8055 bfd_set_error (bfd_error_invalid_operation);
8056 return -1;
8057 }
8058
8059 ret = sizeof (arelent *);
8060 for (s = abfd->sections; s != NULL; s = s->next)
8061 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8062 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8063 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8064 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8065 * sizeof (arelent *));
8066
8067 return ret;
8068 }
8069
8070 /* Canonicalize the dynamic relocation entries. Note that we return the
8071 dynamic relocations as a single block, although they are actually
8072 associated with particular sections; the interface, which was
8073 designed for SunOS style shared libraries, expects that there is only
8074 one set of dynamic relocs. Any loadable section that was actually
8075 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8076 dynamic symbol table, is considered to be a dynamic reloc section. */
8077
8078 long
8079 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8080 arelent **storage,
8081 asymbol **syms)
8082 {
8083 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8084 asection *s;
8085 long ret;
8086
8087 if (elf_dynsymtab (abfd) == 0)
8088 {
8089 bfd_set_error (bfd_error_invalid_operation);
8090 return -1;
8091 }
8092
8093 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8094 ret = 0;
8095 for (s = abfd->sections; s != NULL; s = s->next)
8096 {
8097 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8098 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8099 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8100 {
8101 arelent *p;
8102 long count, i;
8103
8104 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8105 return -1;
8106 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8107 p = s->relocation;
8108 for (i = 0; i < count; i++)
8109 *storage++ = p++;
8110 ret += count;
8111 }
8112 }
8113
8114 *storage = NULL;
8115
8116 return ret;
8117 }
8118 \f
8119 /* Read in the version information. */
8120
8121 bfd_boolean
8122 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8123 {
8124 bfd_byte *contents = NULL;
8125 unsigned int freeidx = 0;
8126
8127 if (elf_dynverref (abfd) != 0)
8128 {
8129 Elf_Internal_Shdr *hdr;
8130 Elf_External_Verneed *everneed;
8131 Elf_Internal_Verneed *iverneed;
8132 unsigned int i;
8133 bfd_byte *contents_end;
8134
8135 hdr = &elf_tdata (abfd)->dynverref_hdr;
8136
8137 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
8138 {
8139 error_return_bad_verref:
8140 _bfd_error_handler
8141 (_("%B: .gnu.version_r invalid entry"), abfd);
8142 bfd_set_error (bfd_error_bad_value);
8143 error_return_verref:
8144 elf_tdata (abfd)->verref = NULL;
8145 elf_tdata (abfd)->cverrefs = 0;
8146 goto error_return;
8147 }
8148
8149 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8150 if (contents == NULL)
8151 goto error_return_verref;
8152
8153 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8154 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8155 goto error_return_verref;
8156
8157 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8158 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8159
8160 if (elf_tdata (abfd)->verref == NULL)
8161 goto error_return_verref;
8162
8163 BFD_ASSERT (sizeof (Elf_External_Verneed)
8164 == sizeof (Elf_External_Vernaux));
8165 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8166 everneed = (Elf_External_Verneed *) contents;
8167 iverneed = elf_tdata (abfd)->verref;
8168 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8169 {
8170 Elf_External_Vernaux *evernaux;
8171 Elf_Internal_Vernaux *ivernaux;
8172 unsigned int j;
8173
8174 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8175
8176 iverneed->vn_bfd = abfd;
8177
8178 iverneed->vn_filename =
8179 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8180 iverneed->vn_file);
8181 if (iverneed->vn_filename == NULL)
8182 goto error_return_bad_verref;
8183
8184 if (iverneed->vn_cnt == 0)
8185 iverneed->vn_auxptr = NULL;
8186 else
8187 {
8188 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8189 bfd_alloc2 (abfd, iverneed->vn_cnt,
8190 sizeof (Elf_Internal_Vernaux));
8191 if (iverneed->vn_auxptr == NULL)
8192 goto error_return_verref;
8193 }
8194
8195 if (iverneed->vn_aux
8196 > (size_t) (contents_end - (bfd_byte *) everneed))
8197 goto error_return_bad_verref;
8198
8199 evernaux = ((Elf_External_Vernaux *)
8200 ((bfd_byte *) everneed + iverneed->vn_aux));
8201 ivernaux = iverneed->vn_auxptr;
8202 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8203 {
8204 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8205
8206 ivernaux->vna_nodename =
8207 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8208 ivernaux->vna_name);
8209 if (ivernaux->vna_nodename == NULL)
8210 goto error_return_bad_verref;
8211
8212 if (ivernaux->vna_other > freeidx)
8213 freeidx = ivernaux->vna_other;
8214
8215 ivernaux->vna_nextptr = NULL;
8216 if (ivernaux->vna_next == 0)
8217 {
8218 iverneed->vn_cnt = j + 1;
8219 break;
8220 }
8221 if (j + 1 < iverneed->vn_cnt)
8222 ivernaux->vna_nextptr = ivernaux + 1;
8223
8224 if (ivernaux->vna_next
8225 > (size_t) (contents_end - (bfd_byte *) evernaux))
8226 goto error_return_bad_verref;
8227
8228 evernaux = ((Elf_External_Vernaux *)
8229 ((bfd_byte *) evernaux + ivernaux->vna_next));
8230 }
8231
8232 iverneed->vn_nextref = NULL;
8233 if (iverneed->vn_next == 0)
8234 break;
8235 if (i + 1 < hdr->sh_info)
8236 iverneed->vn_nextref = iverneed + 1;
8237
8238 if (iverneed->vn_next
8239 > (size_t) (contents_end - (bfd_byte *) everneed))
8240 goto error_return_bad_verref;
8241
8242 everneed = ((Elf_External_Verneed *)
8243 ((bfd_byte *) everneed + iverneed->vn_next));
8244 }
8245 elf_tdata (abfd)->cverrefs = i;
8246
8247 free (contents);
8248 contents = NULL;
8249 }
8250
8251 if (elf_dynverdef (abfd) != 0)
8252 {
8253 Elf_Internal_Shdr *hdr;
8254 Elf_External_Verdef *everdef;
8255 Elf_Internal_Verdef *iverdef;
8256 Elf_Internal_Verdef *iverdefarr;
8257 Elf_Internal_Verdef iverdefmem;
8258 unsigned int i;
8259 unsigned int maxidx;
8260 bfd_byte *contents_end_def, *contents_end_aux;
8261
8262 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8263
8264 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8265 {
8266 error_return_bad_verdef:
8267 _bfd_error_handler
8268 (_("%B: .gnu.version_d invalid entry"), abfd);
8269 bfd_set_error (bfd_error_bad_value);
8270 error_return_verdef:
8271 elf_tdata (abfd)->verdef = NULL;
8272 elf_tdata (abfd)->cverdefs = 0;
8273 goto error_return;
8274 }
8275
8276 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8277 if (contents == NULL)
8278 goto error_return_verdef;
8279 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8280 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8281 goto error_return_verdef;
8282
8283 BFD_ASSERT (sizeof (Elf_External_Verdef)
8284 >= sizeof (Elf_External_Verdaux));
8285 contents_end_def = contents + hdr->sh_size
8286 - sizeof (Elf_External_Verdef);
8287 contents_end_aux = contents + hdr->sh_size
8288 - sizeof (Elf_External_Verdaux);
8289
8290 /* We know the number of entries in the section but not the maximum
8291 index. Therefore we have to run through all entries and find
8292 the maximum. */
8293 everdef = (Elf_External_Verdef *) contents;
8294 maxidx = 0;
8295 for (i = 0; i < hdr->sh_info; ++i)
8296 {
8297 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8298
8299 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8300 goto error_return_bad_verdef;
8301 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8302 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8303
8304 if (iverdefmem.vd_next == 0)
8305 break;
8306
8307 if (iverdefmem.vd_next
8308 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8309 goto error_return_bad_verdef;
8310
8311 everdef = ((Elf_External_Verdef *)
8312 ((bfd_byte *) everdef + iverdefmem.vd_next));
8313 }
8314
8315 if (default_imported_symver)
8316 {
8317 if (freeidx > maxidx)
8318 maxidx = ++freeidx;
8319 else
8320 freeidx = ++maxidx;
8321 }
8322
8323 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8324 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8325 if (elf_tdata (abfd)->verdef == NULL)
8326 goto error_return_verdef;
8327
8328 elf_tdata (abfd)->cverdefs = maxidx;
8329
8330 everdef = (Elf_External_Verdef *) contents;
8331 iverdefarr = elf_tdata (abfd)->verdef;
8332 for (i = 0; i < hdr->sh_info; i++)
8333 {
8334 Elf_External_Verdaux *everdaux;
8335 Elf_Internal_Verdaux *iverdaux;
8336 unsigned int j;
8337
8338 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8339
8340 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8341 goto error_return_bad_verdef;
8342
8343 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8344 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8345
8346 iverdef->vd_bfd = abfd;
8347
8348 if (iverdef->vd_cnt == 0)
8349 iverdef->vd_auxptr = NULL;
8350 else
8351 {
8352 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8353 bfd_alloc2 (abfd, iverdef->vd_cnt,
8354 sizeof (Elf_Internal_Verdaux));
8355 if (iverdef->vd_auxptr == NULL)
8356 goto error_return_verdef;
8357 }
8358
8359 if (iverdef->vd_aux
8360 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8361 goto error_return_bad_verdef;
8362
8363 everdaux = ((Elf_External_Verdaux *)
8364 ((bfd_byte *) everdef + iverdef->vd_aux));
8365 iverdaux = iverdef->vd_auxptr;
8366 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8367 {
8368 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8369
8370 iverdaux->vda_nodename =
8371 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8372 iverdaux->vda_name);
8373 if (iverdaux->vda_nodename == NULL)
8374 goto error_return_bad_verdef;
8375
8376 iverdaux->vda_nextptr = NULL;
8377 if (iverdaux->vda_next == 0)
8378 {
8379 iverdef->vd_cnt = j + 1;
8380 break;
8381 }
8382 if (j + 1 < iverdef->vd_cnt)
8383 iverdaux->vda_nextptr = iverdaux + 1;
8384
8385 if (iverdaux->vda_next
8386 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8387 goto error_return_bad_verdef;
8388
8389 everdaux = ((Elf_External_Verdaux *)
8390 ((bfd_byte *) everdaux + iverdaux->vda_next));
8391 }
8392
8393 iverdef->vd_nodename = NULL;
8394 if (iverdef->vd_cnt)
8395 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8396
8397 iverdef->vd_nextdef = NULL;
8398 if (iverdef->vd_next == 0)
8399 break;
8400 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8401 iverdef->vd_nextdef = iverdef + 1;
8402
8403 everdef = ((Elf_External_Verdef *)
8404 ((bfd_byte *) everdef + iverdef->vd_next));
8405 }
8406
8407 free (contents);
8408 contents = NULL;
8409 }
8410 else if (default_imported_symver)
8411 {
8412 if (freeidx < 3)
8413 freeidx = 3;
8414 else
8415 freeidx++;
8416
8417 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8418 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8419 if (elf_tdata (abfd)->verdef == NULL)
8420 goto error_return;
8421
8422 elf_tdata (abfd)->cverdefs = freeidx;
8423 }
8424
8425 /* Create a default version based on the soname. */
8426 if (default_imported_symver)
8427 {
8428 Elf_Internal_Verdef *iverdef;
8429 Elf_Internal_Verdaux *iverdaux;
8430
8431 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8432
8433 iverdef->vd_version = VER_DEF_CURRENT;
8434 iverdef->vd_flags = 0;
8435 iverdef->vd_ndx = freeidx;
8436 iverdef->vd_cnt = 1;
8437
8438 iverdef->vd_bfd = abfd;
8439
8440 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8441 if (iverdef->vd_nodename == NULL)
8442 goto error_return_verdef;
8443 iverdef->vd_nextdef = NULL;
8444 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8445 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8446 if (iverdef->vd_auxptr == NULL)
8447 goto error_return_verdef;
8448
8449 iverdaux = iverdef->vd_auxptr;
8450 iverdaux->vda_nodename = iverdef->vd_nodename;
8451 }
8452
8453 return TRUE;
8454
8455 error_return:
8456 if (contents != NULL)
8457 free (contents);
8458 return FALSE;
8459 }
8460 \f
8461 asymbol *
8462 _bfd_elf_make_empty_symbol (bfd *abfd)
8463 {
8464 elf_symbol_type *newsym;
8465
8466 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8467 if (!newsym)
8468 return NULL;
8469 newsym->symbol.the_bfd = abfd;
8470 return &newsym->symbol;
8471 }
8472
8473 void
8474 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8475 asymbol *symbol,
8476 symbol_info *ret)
8477 {
8478 bfd_symbol_info (symbol, ret);
8479 }
8480
8481 /* Return whether a symbol name implies a local symbol. Most targets
8482 use this function for the is_local_label_name entry point, but some
8483 override it. */
8484
8485 bfd_boolean
8486 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8487 const char *name)
8488 {
8489 /* Normal local symbols start with ``.L''. */
8490 if (name[0] == '.' && name[1] == 'L')
8491 return TRUE;
8492
8493 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8494 DWARF debugging symbols starting with ``..''. */
8495 if (name[0] == '.' && name[1] == '.')
8496 return TRUE;
8497
8498 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8499 emitting DWARF debugging output. I suspect this is actually a
8500 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8501 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8502 underscore to be emitted on some ELF targets). For ease of use,
8503 we treat such symbols as local. */
8504 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8505 return TRUE;
8506
8507 /* Treat assembler generated fake symbols, dollar local labels and
8508 forward-backward labels (aka local labels) as locals.
8509 These labels have the form:
8510
8511 L0^A.* (fake symbols)
8512
8513 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8514
8515 Versions which start with .L will have already been matched above,
8516 so we only need to match the rest. */
8517 if (name[0] == 'L' && ISDIGIT (name[1]))
8518 {
8519 bfd_boolean ret = FALSE;
8520 const char * p;
8521 char c;
8522
8523 for (p = name + 2; (c = *p); p++)
8524 {
8525 if (c == 1 || c == 2)
8526 {
8527 if (c == 1 && p == name + 2)
8528 /* A fake symbol. */
8529 return TRUE;
8530
8531 /* FIXME: We are being paranoid here and treating symbols like
8532 L0^Bfoo as if there were non-local, on the grounds that the
8533 assembler will never generate them. But can any symbol
8534 containing an ASCII value in the range 1-31 ever be anything
8535 other than some kind of local ? */
8536 ret = TRUE;
8537 }
8538
8539 if (! ISDIGIT (c))
8540 {
8541 ret = FALSE;
8542 break;
8543 }
8544 }
8545 return ret;
8546 }
8547
8548 return FALSE;
8549 }
8550
8551 alent *
8552 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8553 asymbol *symbol ATTRIBUTE_UNUSED)
8554 {
8555 abort ();
8556 return NULL;
8557 }
8558
8559 bfd_boolean
8560 _bfd_elf_set_arch_mach (bfd *abfd,
8561 enum bfd_architecture arch,
8562 unsigned long machine)
8563 {
8564 /* If this isn't the right architecture for this backend, and this
8565 isn't the generic backend, fail. */
8566 if (arch != get_elf_backend_data (abfd)->arch
8567 && arch != bfd_arch_unknown
8568 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8569 return FALSE;
8570
8571 return bfd_default_set_arch_mach (abfd, arch, machine);
8572 }
8573
8574 /* Find the nearest line to a particular section and offset,
8575 for error reporting. */
8576
8577 bfd_boolean
8578 _bfd_elf_find_nearest_line (bfd *abfd,
8579 asymbol **symbols,
8580 asection *section,
8581 bfd_vma offset,
8582 const char **filename_ptr,
8583 const char **functionname_ptr,
8584 unsigned int *line_ptr,
8585 unsigned int *discriminator_ptr)
8586 {
8587 bfd_boolean found;
8588
8589 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8590 filename_ptr, functionname_ptr,
8591 line_ptr, discriminator_ptr,
8592 dwarf_debug_sections, 0,
8593 &elf_tdata (abfd)->dwarf2_find_line_info)
8594 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8595 filename_ptr, functionname_ptr,
8596 line_ptr))
8597 {
8598 if (!*functionname_ptr)
8599 _bfd_elf_find_function (abfd, symbols, section, offset,
8600 *filename_ptr ? NULL : filename_ptr,
8601 functionname_ptr);
8602 return TRUE;
8603 }
8604
8605 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8606 &found, filename_ptr,
8607 functionname_ptr, line_ptr,
8608 &elf_tdata (abfd)->line_info))
8609 return FALSE;
8610 if (found && (*functionname_ptr || *line_ptr))
8611 return TRUE;
8612
8613 if (symbols == NULL)
8614 return FALSE;
8615
8616 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8617 filename_ptr, functionname_ptr))
8618 return FALSE;
8619
8620 *line_ptr = 0;
8621 return TRUE;
8622 }
8623
8624 /* Find the line for a symbol. */
8625
8626 bfd_boolean
8627 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8628 const char **filename_ptr, unsigned int *line_ptr)
8629 {
8630 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8631 filename_ptr, NULL, line_ptr, NULL,
8632 dwarf_debug_sections, 0,
8633 &elf_tdata (abfd)->dwarf2_find_line_info);
8634 }
8635
8636 /* After a call to bfd_find_nearest_line, successive calls to
8637 bfd_find_inliner_info can be used to get source information about
8638 each level of function inlining that terminated at the address
8639 passed to bfd_find_nearest_line. Currently this is only supported
8640 for DWARF2 with appropriate DWARF3 extensions. */
8641
8642 bfd_boolean
8643 _bfd_elf_find_inliner_info (bfd *abfd,
8644 const char **filename_ptr,
8645 const char **functionname_ptr,
8646 unsigned int *line_ptr)
8647 {
8648 bfd_boolean found;
8649 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8650 functionname_ptr, line_ptr,
8651 & elf_tdata (abfd)->dwarf2_find_line_info);
8652 return found;
8653 }
8654
8655 int
8656 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8657 {
8658 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8659 int ret = bed->s->sizeof_ehdr;
8660
8661 if (!bfd_link_relocatable (info))
8662 {
8663 bfd_size_type phdr_size = elf_program_header_size (abfd);
8664
8665 if (phdr_size == (bfd_size_type) -1)
8666 {
8667 struct elf_segment_map *m;
8668
8669 phdr_size = 0;
8670 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8671 phdr_size += bed->s->sizeof_phdr;
8672
8673 if (phdr_size == 0)
8674 phdr_size = get_program_header_size (abfd, info);
8675 }
8676
8677 elf_program_header_size (abfd) = phdr_size;
8678 ret += phdr_size;
8679 }
8680
8681 return ret;
8682 }
8683
8684 bfd_boolean
8685 _bfd_elf_set_section_contents (bfd *abfd,
8686 sec_ptr section,
8687 const void *location,
8688 file_ptr offset,
8689 bfd_size_type count)
8690 {
8691 Elf_Internal_Shdr *hdr;
8692 file_ptr pos;
8693
8694 if (! abfd->output_has_begun
8695 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8696 return FALSE;
8697
8698 if (!count)
8699 return TRUE;
8700
8701 hdr = &elf_section_data (section)->this_hdr;
8702 if (hdr->sh_offset == (file_ptr) -1)
8703 {
8704 /* We must compress this section. Write output to the buffer. */
8705 unsigned char *contents = hdr->contents;
8706 if ((offset + count) > hdr->sh_size
8707 || (section->flags & SEC_ELF_COMPRESS) == 0
8708 || contents == NULL)
8709 abort ();
8710 memcpy (contents + offset, location, count);
8711 return TRUE;
8712 }
8713 pos = hdr->sh_offset + offset;
8714 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8715 || bfd_bwrite (location, count, abfd) != count)
8716 return FALSE;
8717
8718 return TRUE;
8719 }
8720
8721 void
8722 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8723 arelent *cache_ptr ATTRIBUTE_UNUSED,
8724 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8725 {
8726 abort ();
8727 }
8728
8729 /* Try to convert a non-ELF reloc into an ELF one. */
8730
8731 bfd_boolean
8732 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8733 {
8734 /* Check whether we really have an ELF howto. */
8735
8736 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8737 {
8738 bfd_reloc_code_real_type code;
8739 reloc_howto_type *howto;
8740
8741 /* Alien reloc: Try to determine its type to replace it with an
8742 equivalent ELF reloc. */
8743
8744 if (areloc->howto->pc_relative)
8745 {
8746 switch (areloc->howto->bitsize)
8747 {
8748 case 8:
8749 code = BFD_RELOC_8_PCREL;
8750 break;
8751 case 12:
8752 code = BFD_RELOC_12_PCREL;
8753 break;
8754 case 16:
8755 code = BFD_RELOC_16_PCREL;
8756 break;
8757 case 24:
8758 code = BFD_RELOC_24_PCREL;
8759 break;
8760 case 32:
8761 code = BFD_RELOC_32_PCREL;
8762 break;
8763 case 64:
8764 code = BFD_RELOC_64_PCREL;
8765 break;
8766 default:
8767 goto fail;
8768 }
8769
8770 howto = bfd_reloc_type_lookup (abfd, code);
8771
8772 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8773 {
8774 if (howto->pcrel_offset)
8775 areloc->addend += areloc->address;
8776 else
8777 areloc->addend -= areloc->address; /* addend is unsigned!! */
8778 }
8779 }
8780 else
8781 {
8782 switch (areloc->howto->bitsize)
8783 {
8784 case 8:
8785 code = BFD_RELOC_8;
8786 break;
8787 case 14:
8788 code = BFD_RELOC_14;
8789 break;
8790 case 16:
8791 code = BFD_RELOC_16;
8792 break;
8793 case 26:
8794 code = BFD_RELOC_26;
8795 break;
8796 case 32:
8797 code = BFD_RELOC_32;
8798 break;
8799 case 64:
8800 code = BFD_RELOC_64;
8801 break;
8802 default:
8803 goto fail;
8804 }
8805
8806 howto = bfd_reloc_type_lookup (abfd, code);
8807 }
8808
8809 if (howto)
8810 areloc->howto = howto;
8811 else
8812 goto fail;
8813 }
8814
8815 return TRUE;
8816
8817 fail:
8818 _bfd_error_handler
8819 /* xgettext:c-format */
8820 (_("%B: unsupported relocation type %s"),
8821 abfd, areloc->howto->name);
8822 bfd_set_error (bfd_error_bad_value);
8823 return FALSE;
8824 }
8825
8826 bfd_boolean
8827 _bfd_elf_close_and_cleanup (bfd *abfd)
8828 {
8829 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8830 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8831 {
8832 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8833 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8834 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8835 }
8836
8837 return _bfd_generic_close_and_cleanup (abfd);
8838 }
8839
8840 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8841 in the relocation's offset. Thus we cannot allow any sort of sanity
8842 range-checking to interfere. There is nothing else to do in processing
8843 this reloc. */
8844
8845 bfd_reloc_status_type
8846 _bfd_elf_rel_vtable_reloc_fn
8847 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8848 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8849 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8850 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8851 {
8852 return bfd_reloc_ok;
8853 }
8854 \f
8855 /* Elf core file support. Much of this only works on native
8856 toolchains, since we rely on knowing the
8857 machine-dependent procfs structure in order to pick
8858 out details about the corefile. */
8859
8860 #ifdef HAVE_SYS_PROCFS_H
8861 /* Needed for new procfs interface on sparc-solaris. */
8862 # define _STRUCTURED_PROC 1
8863 # include <sys/procfs.h>
8864 #endif
8865
8866 /* Return a PID that identifies a "thread" for threaded cores, or the
8867 PID of the main process for non-threaded cores. */
8868
8869 static int
8870 elfcore_make_pid (bfd *abfd)
8871 {
8872 int pid;
8873
8874 pid = elf_tdata (abfd)->core->lwpid;
8875 if (pid == 0)
8876 pid = elf_tdata (abfd)->core->pid;
8877
8878 return pid;
8879 }
8880
8881 /* If there isn't a section called NAME, make one, using
8882 data from SECT. Note, this function will generate a
8883 reference to NAME, so you shouldn't deallocate or
8884 overwrite it. */
8885
8886 static bfd_boolean
8887 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8888 {
8889 asection *sect2;
8890
8891 if (bfd_get_section_by_name (abfd, name) != NULL)
8892 return TRUE;
8893
8894 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8895 if (sect2 == NULL)
8896 return FALSE;
8897
8898 sect2->size = sect->size;
8899 sect2->filepos = sect->filepos;
8900 sect2->alignment_power = sect->alignment_power;
8901 return TRUE;
8902 }
8903
8904 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8905 actually creates up to two pseudosections:
8906 - For the single-threaded case, a section named NAME, unless
8907 such a section already exists.
8908 - For the multi-threaded case, a section named "NAME/PID", where
8909 PID is elfcore_make_pid (abfd).
8910 Both pseudosections have identical contents. */
8911 bfd_boolean
8912 _bfd_elfcore_make_pseudosection (bfd *abfd,
8913 char *name,
8914 size_t size,
8915 ufile_ptr filepos)
8916 {
8917 char buf[100];
8918 char *threaded_name;
8919 size_t len;
8920 asection *sect;
8921
8922 /* Build the section name. */
8923
8924 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8925 len = strlen (buf) + 1;
8926 threaded_name = (char *) bfd_alloc (abfd, len);
8927 if (threaded_name == NULL)
8928 return FALSE;
8929 memcpy (threaded_name, buf, len);
8930
8931 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8932 SEC_HAS_CONTENTS);
8933 if (sect == NULL)
8934 return FALSE;
8935 sect->size = size;
8936 sect->filepos = filepos;
8937 sect->alignment_power = 2;
8938
8939 return elfcore_maybe_make_sect (abfd, name, sect);
8940 }
8941
8942 /* prstatus_t exists on:
8943 solaris 2.5+
8944 linux 2.[01] + glibc
8945 unixware 4.2
8946 */
8947
8948 #if defined (HAVE_PRSTATUS_T)
8949
8950 static bfd_boolean
8951 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8952 {
8953 size_t size;
8954 int offset;
8955
8956 if (note->descsz == sizeof (prstatus_t))
8957 {
8958 prstatus_t prstat;
8959
8960 size = sizeof (prstat.pr_reg);
8961 offset = offsetof (prstatus_t, pr_reg);
8962 memcpy (&prstat, note->descdata, sizeof (prstat));
8963
8964 /* Do not overwrite the core signal if it
8965 has already been set by another thread. */
8966 if (elf_tdata (abfd)->core->signal == 0)
8967 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8968 if (elf_tdata (abfd)->core->pid == 0)
8969 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8970
8971 /* pr_who exists on:
8972 solaris 2.5+
8973 unixware 4.2
8974 pr_who doesn't exist on:
8975 linux 2.[01]
8976 */
8977 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8978 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8979 #else
8980 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8981 #endif
8982 }
8983 #if defined (HAVE_PRSTATUS32_T)
8984 else if (note->descsz == sizeof (prstatus32_t))
8985 {
8986 /* 64-bit host, 32-bit corefile */
8987 prstatus32_t prstat;
8988
8989 size = sizeof (prstat.pr_reg);
8990 offset = offsetof (prstatus32_t, pr_reg);
8991 memcpy (&prstat, note->descdata, sizeof (prstat));
8992
8993 /* Do not overwrite the core signal if it
8994 has already been set by another thread. */
8995 if (elf_tdata (abfd)->core->signal == 0)
8996 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8997 if (elf_tdata (abfd)->core->pid == 0)
8998 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8999
9000 /* pr_who exists on:
9001 solaris 2.5+
9002 unixware 4.2
9003 pr_who doesn't exist on:
9004 linux 2.[01]
9005 */
9006 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9007 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9008 #else
9009 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9010 #endif
9011 }
9012 #endif /* HAVE_PRSTATUS32_T */
9013 else
9014 {
9015 /* Fail - we don't know how to handle any other
9016 note size (ie. data object type). */
9017 return TRUE;
9018 }
9019
9020 /* Make a ".reg/999" section and a ".reg" section. */
9021 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9022 size, note->descpos + offset);
9023 }
9024 #endif /* defined (HAVE_PRSTATUS_T) */
9025
9026 /* Create a pseudosection containing the exact contents of NOTE. */
9027 static bfd_boolean
9028 elfcore_make_note_pseudosection (bfd *abfd,
9029 char *name,
9030 Elf_Internal_Note *note)
9031 {
9032 return _bfd_elfcore_make_pseudosection (abfd, name,
9033 note->descsz, note->descpos);
9034 }
9035
9036 /* There isn't a consistent prfpregset_t across platforms,
9037 but it doesn't matter, because we don't have to pick this
9038 data structure apart. */
9039
9040 static bfd_boolean
9041 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9042 {
9043 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9044 }
9045
9046 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9047 type of NT_PRXFPREG. Just include the whole note's contents
9048 literally. */
9049
9050 static bfd_boolean
9051 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9052 {
9053 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9054 }
9055
9056 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9057 with a note type of NT_X86_XSTATE. Just include the whole note's
9058 contents literally. */
9059
9060 static bfd_boolean
9061 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9062 {
9063 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9064 }
9065
9066 static bfd_boolean
9067 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9068 {
9069 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9070 }
9071
9072 static bfd_boolean
9073 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9074 {
9075 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9076 }
9077
9078 static bfd_boolean
9079 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9080 {
9081 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9082 }
9083
9084 static bfd_boolean
9085 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9086 {
9087 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9088 }
9089
9090 static bfd_boolean
9091 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9092 {
9093 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9094 }
9095
9096 static bfd_boolean
9097 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9098 {
9099 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9100 }
9101
9102 static bfd_boolean
9103 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9104 {
9105 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9106 }
9107
9108 static bfd_boolean
9109 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9110 {
9111 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9112 }
9113
9114 static bfd_boolean
9115 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9116 {
9117 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9118 }
9119
9120 static bfd_boolean
9121 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9122 {
9123 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9124 }
9125
9126 static bfd_boolean
9127 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9128 {
9129 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9130 }
9131
9132 static bfd_boolean
9133 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9134 {
9135 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9136 }
9137
9138 static bfd_boolean
9139 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9140 {
9141 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9142 }
9143
9144 static bfd_boolean
9145 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9146 {
9147 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9148 }
9149
9150 static bfd_boolean
9151 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9152 {
9153 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9154 }
9155
9156 static bfd_boolean
9157 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9158 {
9159 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9160 }
9161
9162 static bfd_boolean
9163 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9164 {
9165 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9166 }
9167
9168 #if defined (HAVE_PRPSINFO_T)
9169 typedef prpsinfo_t elfcore_psinfo_t;
9170 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9171 typedef prpsinfo32_t elfcore_psinfo32_t;
9172 #endif
9173 #endif
9174
9175 #if defined (HAVE_PSINFO_T)
9176 typedef psinfo_t elfcore_psinfo_t;
9177 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9178 typedef psinfo32_t elfcore_psinfo32_t;
9179 #endif
9180 #endif
9181
9182 /* return a malloc'ed copy of a string at START which is at
9183 most MAX bytes long, possibly without a terminating '\0'.
9184 the copy will always have a terminating '\0'. */
9185
9186 char *
9187 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9188 {
9189 char *dups;
9190 char *end = (char *) memchr (start, '\0', max);
9191 size_t len;
9192
9193 if (end == NULL)
9194 len = max;
9195 else
9196 len = end - start;
9197
9198 dups = (char *) bfd_alloc (abfd, len + 1);
9199 if (dups == NULL)
9200 return NULL;
9201
9202 memcpy (dups, start, len);
9203 dups[len] = '\0';
9204
9205 return dups;
9206 }
9207
9208 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9209 static bfd_boolean
9210 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9211 {
9212 if (note->descsz == sizeof (elfcore_psinfo_t))
9213 {
9214 elfcore_psinfo_t psinfo;
9215
9216 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9217
9218 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9219 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9220 #endif
9221 elf_tdata (abfd)->core->program
9222 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9223 sizeof (psinfo.pr_fname));
9224
9225 elf_tdata (abfd)->core->command
9226 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9227 sizeof (psinfo.pr_psargs));
9228 }
9229 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9230 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9231 {
9232 /* 64-bit host, 32-bit corefile */
9233 elfcore_psinfo32_t psinfo;
9234
9235 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9236
9237 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9238 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9239 #endif
9240 elf_tdata (abfd)->core->program
9241 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9242 sizeof (psinfo.pr_fname));
9243
9244 elf_tdata (abfd)->core->command
9245 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9246 sizeof (psinfo.pr_psargs));
9247 }
9248 #endif
9249
9250 else
9251 {
9252 /* Fail - we don't know how to handle any other
9253 note size (ie. data object type). */
9254 return TRUE;
9255 }
9256
9257 /* Note that for some reason, a spurious space is tacked
9258 onto the end of the args in some (at least one anyway)
9259 implementations, so strip it off if it exists. */
9260
9261 {
9262 char *command = elf_tdata (abfd)->core->command;
9263 int n = strlen (command);
9264
9265 if (0 < n && command[n - 1] == ' ')
9266 command[n - 1] = '\0';
9267 }
9268
9269 return TRUE;
9270 }
9271 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9272
9273 #if defined (HAVE_PSTATUS_T)
9274 static bfd_boolean
9275 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9276 {
9277 if (note->descsz == sizeof (pstatus_t)
9278 #if defined (HAVE_PXSTATUS_T)
9279 || note->descsz == sizeof (pxstatus_t)
9280 #endif
9281 )
9282 {
9283 pstatus_t pstat;
9284
9285 memcpy (&pstat, note->descdata, sizeof (pstat));
9286
9287 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9288 }
9289 #if defined (HAVE_PSTATUS32_T)
9290 else if (note->descsz == sizeof (pstatus32_t))
9291 {
9292 /* 64-bit host, 32-bit corefile */
9293 pstatus32_t pstat;
9294
9295 memcpy (&pstat, note->descdata, sizeof (pstat));
9296
9297 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9298 }
9299 #endif
9300 /* Could grab some more details from the "representative"
9301 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9302 NT_LWPSTATUS note, presumably. */
9303
9304 return TRUE;
9305 }
9306 #endif /* defined (HAVE_PSTATUS_T) */
9307
9308 #if defined (HAVE_LWPSTATUS_T)
9309 static bfd_boolean
9310 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9311 {
9312 lwpstatus_t lwpstat;
9313 char buf[100];
9314 char *name;
9315 size_t len;
9316 asection *sect;
9317
9318 if (note->descsz != sizeof (lwpstat)
9319 #if defined (HAVE_LWPXSTATUS_T)
9320 && note->descsz != sizeof (lwpxstatus_t)
9321 #endif
9322 )
9323 return TRUE;
9324
9325 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9326
9327 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9328 /* Do not overwrite the core signal if it has already been set by
9329 another thread. */
9330 if (elf_tdata (abfd)->core->signal == 0)
9331 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9332
9333 /* Make a ".reg/999" section. */
9334
9335 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9336 len = strlen (buf) + 1;
9337 name = bfd_alloc (abfd, len);
9338 if (name == NULL)
9339 return FALSE;
9340 memcpy (name, buf, len);
9341
9342 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9343 if (sect == NULL)
9344 return FALSE;
9345
9346 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9347 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9348 sect->filepos = note->descpos
9349 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9350 #endif
9351
9352 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9353 sect->size = sizeof (lwpstat.pr_reg);
9354 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9355 #endif
9356
9357 sect->alignment_power = 2;
9358
9359 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9360 return FALSE;
9361
9362 /* Make a ".reg2/999" section */
9363
9364 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9365 len = strlen (buf) + 1;
9366 name = bfd_alloc (abfd, len);
9367 if (name == NULL)
9368 return FALSE;
9369 memcpy (name, buf, len);
9370
9371 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9372 if (sect == NULL)
9373 return FALSE;
9374
9375 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9376 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9377 sect->filepos = note->descpos
9378 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9379 #endif
9380
9381 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9382 sect->size = sizeof (lwpstat.pr_fpreg);
9383 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9384 #endif
9385
9386 sect->alignment_power = 2;
9387
9388 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9389 }
9390 #endif /* defined (HAVE_LWPSTATUS_T) */
9391
9392 static bfd_boolean
9393 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9394 {
9395 char buf[30];
9396 char *name;
9397 size_t len;
9398 asection *sect;
9399 int type;
9400 int is_active_thread;
9401 bfd_vma base_addr;
9402
9403 if (note->descsz < 728)
9404 return TRUE;
9405
9406 if (! CONST_STRNEQ (note->namedata, "win32"))
9407 return TRUE;
9408
9409 type = bfd_get_32 (abfd, note->descdata);
9410
9411 switch (type)
9412 {
9413 case 1 /* NOTE_INFO_PROCESS */:
9414 /* FIXME: need to add ->core->command. */
9415 /* process_info.pid */
9416 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9417 /* process_info.signal */
9418 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9419 break;
9420
9421 case 2 /* NOTE_INFO_THREAD */:
9422 /* Make a ".reg/999" section. */
9423 /* thread_info.tid */
9424 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9425
9426 len = strlen (buf) + 1;
9427 name = (char *) bfd_alloc (abfd, len);
9428 if (name == NULL)
9429 return FALSE;
9430
9431 memcpy (name, buf, len);
9432
9433 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9434 if (sect == NULL)
9435 return FALSE;
9436
9437 /* sizeof (thread_info.thread_context) */
9438 sect->size = 716;
9439 /* offsetof (thread_info.thread_context) */
9440 sect->filepos = note->descpos + 12;
9441 sect->alignment_power = 2;
9442
9443 /* thread_info.is_active_thread */
9444 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9445
9446 if (is_active_thread)
9447 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9448 return FALSE;
9449 break;
9450
9451 case 3 /* NOTE_INFO_MODULE */:
9452 /* Make a ".module/xxxxxxxx" section. */
9453 /* module_info.base_address */
9454 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9455 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9456
9457 len = strlen (buf) + 1;
9458 name = (char *) bfd_alloc (abfd, len);
9459 if (name == NULL)
9460 return FALSE;
9461
9462 memcpy (name, buf, len);
9463
9464 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9465
9466 if (sect == NULL)
9467 return FALSE;
9468
9469 sect->size = note->descsz;
9470 sect->filepos = note->descpos;
9471 sect->alignment_power = 2;
9472 break;
9473
9474 default:
9475 return TRUE;
9476 }
9477
9478 return TRUE;
9479 }
9480
9481 static bfd_boolean
9482 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9483 {
9484 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9485
9486 switch (note->type)
9487 {
9488 default:
9489 return TRUE;
9490
9491 case NT_PRSTATUS:
9492 if (bed->elf_backend_grok_prstatus)
9493 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9494 return TRUE;
9495 #if defined (HAVE_PRSTATUS_T)
9496 return elfcore_grok_prstatus (abfd, note);
9497 #else
9498 return TRUE;
9499 #endif
9500
9501 #if defined (HAVE_PSTATUS_T)
9502 case NT_PSTATUS:
9503 return elfcore_grok_pstatus (abfd, note);
9504 #endif
9505
9506 #if defined (HAVE_LWPSTATUS_T)
9507 case NT_LWPSTATUS:
9508 return elfcore_grok_lwpstatus (abfd, note);
9509 #endif
9510
9511 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9512 return elfcore_grok_prfpreg (abfd, note);
9513
9514 case NT_WIN32PSTATUS:
9515 return elfcore_grok_win32pstatus (abfd, note);
9516
9517 case NT_PRXFPREG: /* Linux SSE extension */
9518 if (note->namesz == 6
9519 && strcmp (note->namedata, "LINUX") == 0)
9520 return elfcore_grok_prxfpreg (abfd, note);
9521 else
9522 return TRUE;
9523
9524 case NT_X86_XSTATE: /* Linux XSAVE extension */
9525 if (note->namesz == 6
9526 && strcmp (note->namedata, "LINUX") == 0)
9527 return elfcore_grok_xstatereg (abfd, note);
9528 else
9529 return TRUE;
9530
9531 case NT_PPC_VMX:
9532 if (note->namesz == 6
9533 && strcmp (note->namedata, "LINUX") == 0)
9534 return elfcore_grok_ppc_vmx (abfd, note);
9535 else
9536 return TRUE;
9537
9538 case NT_PPC_VSX:
9539 if (note->namesz == 6
9540 && strcmp (note->namedata, "LINUX") == 0)
9541 return elfcore_grok_ppc_vsx (abfd, note);
9542 else
9543 return TRUE;
9544
9545 case NT_S390_HIGH_GPRS:
9546 if (note->namesz == 6
9547 && strcmp (note->namedata, "LINUX") == 0)
9548 return elfcore_grok_s390_high_gprs (abfd, note);
9549 else
9550 return TRUE;
9551
9552 case NT_S390_TIMER:
9553 if (note->namesz == 6
9554 && strcmp (note->namedata, "LINUX") == 0)
9555 return elfcore_grok_s390_timer (abfd, note);
9556 else
9557 return TRUE;
9558
9559 case NT_S390_TODCMP:
9560 if (note->namesz == 6
9561 && strcmp (note->namedata, "LINUX") == 0)
9562 return elfcore_grok_s390_todcmp (abfd, note);
9563 else
9564 return TRUE;
9565
9566 case NT_S390_TODPREG:
9567 if (note->namesz == 6
9568 && strcmp (note->namedata, "LINUX") == 0)
9569 return elfcore_grok_s390_todpreg (abfd, note);
9570 else
9571 return TRUE;
9572
9573 case NT_S390_CTRS:
9574 if (note->namesz == 6
9575 && strcmp (note->namedata, "LINUX") == 0)
9576 return elfcore_grok_s390_ctrs (abfd, note);
9577 else
9578 return TRUE;
9579
9580 case NT_S390_PREFIX:
9581 if (note->namesz == 6
9582 && strcmp (note->namedata, "LINUX") == 0)
9583 return elfcore_grok_s390_prefix (abfd, note);
9584 else
9585 return TRUE;
9586
9587 case NT_S390_LAST_BREAK:
9588 if (note->namesz == 6
9589 && strcmp (note->namedata, "LINUX") == 0)
9590 return elfcore_grok_s390_last_break (abfd, note);
9591 else
9592 return TRUE;
9593
9594 case NT_S390_SYSTEM_CALL:
9595 if (note->namesz == 6
9596 && strcmp (note->namedata, "LINUX") == 0)
9597 return elfcore_grok_s390_system_call (abfd, note);
9598 else
9599 return TRUE;
9600
9601 case NT_S390_TDB:
9602 if (note->namesz == 6
9603 && strcmp (note->namedata, "LINUX") == 0)
9604 return elfcore_grok_s390_tdb (abfd, note);
9605 else
9606 return TRUE;
9607
9608 case NT_S390_VXRS_LOW:
9609 if (note->namesz == 6
9610 && strcmp (note->namedata, "LINUX") == 0)
9611 return elfcore_grok_s390_vxrs_low (abfd, note);
9612 else
9613 return TRUE;
9614
9615 case NT_S390_VXRS_HIGH:
9616 if (note->namesz == 6
9617 && strcmp (note->namedata, "LINUX") == 0)
9618 return elfcore_grok_s390_vxrs_high (abfd, note);
9619 else
9620 return TRUE;
9621
9622 case NT_ARM_VFP:
9623 if (note->namesz == 6
9624 && strcmp (note->namedata, "LINUX") == 0)
9625 return elfcore_grok_arm_vfp (abfd, note);
9626 else
9627 return TRUE;
9628
9629 case NT_ARM_TLS:
9630 if (note->namesz == 6
9631 && strcmp (note->namedata, "LINUX") == 0)
9632 return elfcore_grok_aarch_tls (abfd, note);
9633 else
9634 return TRUE;
9635
9636 case NT_ARM_HW_BREAK:
9637 if (note->namesz == 6
9638 && strcmp (note->namedata, "LINUX") == 0)
9639 return elfcore_grok_aarch_hw_break (abfd, note);
9640 else
9641 return TRUE;
9642
9643 case NT_ARM_HW_WATCH:
9644 if (note->namesz == 6
9645 && strcmp (note->namedata, "LINUX") == 0)
9646 return elfcore_grok_aarch_hw_watch (abfd, note);
9647 else
9648 return TRUE;
9649
9650 case NT_PRPSINFO:
9651 case NT_PSINFO:
9652 if (bed->elf_backend_grok_psinfo)
9653 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9654 return TRUE;
9655 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9656 return elfcore_grok_psinfo (abfd, note);
9657 #else
9658 return TRUE;
9659 #endif
9660
9661 case NT_AUXV:
9662 {
9663 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9664 SEC_HAS_CONTENTS);
9665
9666 if (sect == NULL)
9667 return FALSE;
9668 sect->size = note->descsz;
9669 sect->filepos = note->descpos;
9670 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9671
9672 return TRUE;
9673 }
9674
9675 case NT_FILE:
9676 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9677 note);
9678
9679 case NT_SIGINFO:
9680 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9681 note);
9682
9683 }
9684 }
9685
9686 static bfd_boolean
9687 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9688 {
9689 struct bfd_build_id* build_id;
9690
9691 if (note->descsz == 0)
9692 return FALSE;
9693
9694 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9695 if (build_id == NULL)
9696 return FALSE;
9697
9698 build_id->size = note->descsz;
9699 memcpy (build_id->data, note->descdata, note->descsz);
9700 abfd->build_id = build_id;
9701
9702 return TRUE;
9703 }
9704
9705 static bfd_boolean
9706 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9707 {
9708 switch (note->type)
9709 {
9710 default:
9711 return TRUE;
9712
9713 case NT_GNU_BUILD_ID:
9714 return elfobj_grok_gnu_build_id (abfd, note);
9715 }
9716 }
9717
9718 static bfd_boolean
9719 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9720 {
9721 struct sdt_note *cur =
9722 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9723 + note->descsz);
9724
9725 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9726 cur->size = (bfd_size_type) note->descsz;
9727 memcpy (cur->data, note->descdata, note->descsz);
9728
9729 elf_tdata (abfd)->sdt_note_head = cur;
9730
9731 return TRUE;
9732 }
9733
9734 static bfd_boolean
9735 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9736 {
9737 switch (note->type)
9738 {
9739 case NT_STAPSDT:
9740 return elfobj_grok_stapsdt_note_1 (abfd, note);
9741
9742 default:
9743 return TRUE;
9744 }
9745 }
9746
9747 static bfd_boolean
9748 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
9749 {
9750 size_t offset;
9751
9752 switch (abfd->arch_info->bits_per_word)
9753 {
9754 case 32:
9755 if (note->descsz < 108)
9756 return FALSE;
9757 break;
9758
9759 case 64:
9760 if (note->descsz < 120)
9761 return FALSE;
9762 break;
9763
9764 default:
9765 return FALSE;
9766 }
9767
9768 /* Check for version 1 in pr_version. */
9769 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9770 return FALSE;
9771 offset = 4;
9772
9773 /* Skip over pr_psinfosz. */
9774 if (abfd->arch_info->bits_per_word == 32)
9775 offset += 4;
9776 else
9777 {
9778 offset += 4; /* Padding before pr_psinfosz. */
9779 offset += 8;
9780 }
9781
9782 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
9783 elf_tdata (abfd)->core->program
9784 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
9785 offset += 17;
9786
9787 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
9788 elf_tdata (abfd)->core->command
9789 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
9790 offset += 81;
9791
9792 /* Padding before pr_pid. */
9793 offset += 2;
9794
9795 /* The pr_pid field was added in version "1a". */
9796 if (note->descsz < offset + 4)
9797 return TRUE;
9798
9799 elf_tdata (abfd)->core->pid
9800 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9801
9802 return TRUE;
9803 }
9804
9805 static bfd_boolean
9806 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
9807 {
9808 size_t offset;
9809 size_t size;
9810
9811 /* Check for version 1 in pr_version. */
9812 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9813 return FALSE;
9814 offset = 4;
9815
9816 /* Skip over pr_statussz. */
9817 switch (abfd->arch_info->bits_per_word)
9818 {
9819 case 32:
9820 offset += 4;
9821 break;
9822
9823 case 64:
9824 offset += 4; /* Padding before pr_statussz. */
9825 offset += 8;
9826 break;
9827
9828 default:
9829 return FALSE;
9830 }
9831
9832 /* Extract size of pr_reg from pr_gregsetsz. */
9833 if (abfd->arch_info->bits_per_word == 32)
9834 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9835 else
9836 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
9837
9838 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
9839 offset += (abfd->arch_info->bits_per_word / 8) * 2;
9840
9841 /* Skip over pr_osreldate. */
9842 offset += 4;
9843
9844 /* Read signal from pr_cursig. */
9845 if (elf_tdata (abfd)->core->signal == 0)
9846 elf_tdata (abfd)->core->signal
9847 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9848 offset += 4;
9849
9850 /* Read TID from pr_pid. */
9851 elf_tdata (abfd)->core->lwpid
9852 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9853 offset += 4;
9854
9855 /* Padding before pr_reg. */
9856 if (abfd->arch_info->bits_per_word == 64)
9857 offset += 4;
9858
9859 /* Make a ".reg/999" section and a ".reg" section. */
9860 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9861 size, note->descpos + offset);
9862 }
9863
9864 static bfd_boolean
9865 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
9866 {
9867 switch (note->type)
9868 {
9869 case NT_PRSTATUS:
9870 return elfcore_grok_freebsd_prstatus (abfd, note);
9871
9872 case NT_FPREGSET:
9873 return elfcore_grok_prfpreg (abfd, note);
9874
9875 case NT_PRPSINFO:
9876 return elfcore_grok_freebsd_psinfo (abfd, note);
9877
9878 case NT_FREEBSD_THRMISC:
9879 if (note->namesz == 8)
9880 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
9881 else
9882 return TRUE;
9883
9884 case NT_FREEBSD_PROCSTAT_AUXV:
9885 {
9886 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9887 SEC_HAS_CONTENTS);
9888
9889 if (sect == NULL)
9890 return FALSE;
9891 sect->size = note->descsz - 4;
9892 sect->filepos = note->descpos + 4;
9893 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9894
9895 return TRUE;
9896 }
9897
9898 case NT_X86_XSTATE:
9899 if (note->namesz == 8)
9900 return elfcore_grok_xstatereg (abfd, note);
9901 else
9902 return TRUE;
9903
9904 default:
9905 return TRUE;
9906 }
9907 }
9908
9909 static bfd_boolean
9910 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
9911 {
9912 char *cp;
9913
9914 cp = strchr (note->namedata, '@');
9915 if (cp != NULL)
9916 {
9917 *lwpidp = atoi(cp + 1);
9918 return TRUE;
9919 }
9920 return FALSE;
9921 }
9922
9923 static bfd_boolean
9924 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9925 {
9926 /* Signal number at offset 0x08. */
9927 elf_tdata (abfd)->core->signal
9928 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9929
9930 /* Process ID at offset 0x50. */
9931 elf_tdata (abfd)->core->pid
9932 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
9933
9934 /* Command name at 0x7c (max 32 bytes, including nul). */
9935 elf_tdata (abfd)->core->command
9936 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
9937
9938 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
9939 note);
9940 }
9941
9942 static bfd_boolean
9943 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
9944 {
9945 int lwp;
9946
9947 if (elfcore_netbsd_get_lwpid (note, &lwp))
9948 elf_tdata (abfd)->core->lwpid = lwp;
9949
9950 if (note->type == NT_NETBSDCORE_PROCINFO)
9951 {
9952 /* NetBSD-specific core "procinfo". Note that we expect to
9953 find this note before any of the others, which is fine,
9954 since the kernel writes this note out first when it
9955 creates a core file. */
9956
9957 return elfcore_grok_netbsd_procinfo (abfd, note);
9958 }
9959
9960 /* As of Jan 2002 there are no other machine-independent notes
9961 defined for NetBSD core files. If the note type is less
9962 than the start of the machine-dependent note types, we don't
9963 understand it. */
9964
9965 if (note->type < NT_NETBSDCORE_FIRSTMACH)
9966 return TRUE;
9967
9968
9969 switch (bfd_get_arch (abfd))
9970 {
9971 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
9972 PT_GETFPREGS == mach+2. */
9973
9974 case bfd_arch_alpha:
9975 case bfd_arch_sparc:
9976 switch (note->type)
9977 {
9978 case NT_NETBSDCORE_FIRSTMACH+0:
9979 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9980
9981 case NT_NETBSDCORE_FIRSTMACH+2:
9982 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9983
9984 default:
9985 return TRUE;
9986 }
9987
9988 /* On all other arch's, PT_GETREGS == mach+1 and
9989 PT_GETFPREGS == mach+3. */
9990
9991 default:
9992 switch (note->type)
9993 {
9994 case NT_NETBSDCORE_FIRSTMACH+1:
9995 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9996
9997 case NT_NETBSDCORE_FIRSTMACH+3:
9998 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9999
10000 default:
10001 return TRUE;
10002 }
10003 }
10004 /* NOTREACHED */
10005 }
10006
10007 static bfd_boolean
10008 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10009 {
10010 /* Signal number at offset 0x08. */
10011 elf_tdata (abfd)->core->signal
10012 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10013
10014 /* Process ID at offset 0x20. */
10015 elf_tdata (abfd)->core->pid
10016 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10017
10018 /* Command name at 0x48 (max 32 bytes, including nul). */
10019 elf_tdata (abfd)->core->command
10020 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10021
10022 return TRUE;
10023 }
10024
10025 static bfd_boolean
10026 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10027 {
10028 if (note->type == NT_OPENBSD_PROCINFO)
10029 return elfcore_grok_openbsd_procinfo (abfd, note);
10030
10031 if (note->type == NT_OPENBSD_REGS)
10032 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10033
10034 if (note->type == NT_OPENBSD_FPREGS)
10035 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10036
10037 if (note->type == NT_OPENBSD_XFPREGS)
10038 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10039
10040 if (note->type == NT_OPENBSD_AUXV)
10041 {
10042 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10043 SEC_HAS_CONTENTS);
10044
10045 if (sect == NULL)
10046 return FALSE;
10047 sect->size = note->descsz;
10048 sect->filepos = note->descpos;
10049 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10050
10051 return TRUE;
10052 }
10053
10054 if (note->type == NT_OPENBSD_WCOOKIE)
10055 {
10056 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10057 SEC_HAS_CONTENTS);
10058
10059 if (sect == NULL)
10060 return FALSE;
10061 sect->size = note->descsz;
10062 sect->filepos = note->descpos;
10063 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10064
10065 return TRUE;
10066 }
10067
10068 return TRUE;
10069 }
10070
10071 static bfd_boolean
10072 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10073 {
10074 void *ddata = note->descdata;
10075 char buf[100];
10076 char *name;
10077 asection *sect;
10078 short sig;
10079 unsigned flags;
10080
10081 /* nto_procfs_status 'pid' field is at offset 0. */
10082 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10083
10084 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10085 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10086
10087 /* nto_procfs_status 'flags' field is at offset 8. */
10088 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10089
10090 /* nto_procfs_status 'what' field is at offset 14. */
10091 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10092 {
10093 elf_tdata (abfd)->core->signal = sig;
10094 elf_tdata (abfd)->core->lwpid = *tid;
10095 }
10096
10097 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10098 do not come from signals so we make sure we set the current
10099 thread just in case. */
10100 if (flags & 0x00000080)
10101 elf_tdata (abfd)->core->lwpid = *tid;
10102
10103 /* Make a ".qnx_core_status/%d" section. */
10104 sprintf (buf, ".qnx_core_status/%ld", *tid);
10105
10106 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10107 if (name == NULL)
10108 return FALSE;
10109 strcpy (name, buf);
10110
10111 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10112 if (sect == NULL)
10113 return FALSE;
10114
10115 sect->size = note->descsz;
10116 sect->filepos = note->descpos;
10117 sect->alignment_power = 2;
10118
10119 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10120 }
10121
10122 static bfd_boolean
10123 elfcore_grok_nto_regs (bfd *abfd,
10124 Elf_Internal_Note *note,
10125 long tid,
10126 char *base)
10127 {
10128 char buf[100];
10129 char *name;
10130 asection *sect;
10131
10132 /* Make a "(base)/%d" section. */
10133 sprintf (buf, "%s/%ld", base, tid);
10134
10135 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10136 if (name == NULL)
10137 return FALSE;
10138 strcpy (name, buf);
10139
10140 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10141 if (sect == NULL)
10142 return FALSE;
10143
10144 sect->size = note->descsz;
10145 sect->filepos = note->descpos;
10146 sect->alignment_power = 2;
10147
10148 /* This is the current thread. */
10149 if (elf_tdata (abfd)->core->lwpid == tid)
10150 return elfcore_maybe_make_sect (abfd, base, sect);
10151
10152 return TRUE;
10153 }
10154
10155 #define BFD_QNT_CORE_INFO 7
10156 #define BFD_QNT_CORE_STATUS 8
10157 #define BFD_QNT_CORE_GREG 9
10158 #define BFD_QNT_CORE_FPREG 10
10159
10160 static bfd_boolean
10161 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10162 {
10163 /* Every GREG section has a STATUS section before it. Store the
10164 tid from the previous call to pass down to the next gregs
10165 function. */
10166 static long tid = 1;
10167
10168 switch (note->type)
10169 {
10170 case BFD_QNT_CORE_INFO:
10171 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10172 case BFD_QNT_CORE_STATUS:
10173 return elfcore_grok_nto_status (abfd, note, &tid);
10174 case BFD_QNT_CORE_GREG:
10175 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10176 case BFD_QNT_CORE_FPREG:
10177 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10178 default:
10179 return TRUE;
10180 }
10181 }
10182
10183 static bfd_boolean
10184 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10185 {
10186 char *name;
10187 asection *sect;
10188 size_t len;
10189
10190 /* Use note name as section name. */
10191 len = note->namesz;
10192 name = (char *) bfd_alloc (abfd, len);
10193 if (name == NULL)
10194 return FALSE;
10195 memcpy (name, note->namedata, len);
10196 name[len - 1] = '\0';
10197
10198 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10199 if (sect == NULL)
10200 return FALSE;
10201
10202 sect->size = note->descsz;
10203 sect->filepos = note->descpos;
10204 sect->alignment_power = 1;
10205
10206 return TRUE;
10207 }
10208
10209 /* Function: elfcore_write_note
10210
10211 Inputs:
10212 buffer to hold note, and current size of buffer
10213 name of note
10214 type of note
10215 data for note
10216 size of data for note
10217
10218 Writes note to end of buffer. ELF64 notes are written exactly as
10219 for ELF32, despite the current (as of 2006) ELF gabi specifying
10220 that they ought to have 8-byte namesz and descsz field, and have
10221 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10222
10223 Return:
10224 Pointer to realloc'd buffer, *BUFSIZ updated. */
10225
10226 char *
10227 elfcore_write_note (bfd *abfd,
10228 char *buf,
10229 int *bufsiz,
10230 const char *name,
10231 int type,
10232 const void *input,
10233 int size)
10234 {
10235 Elf_External_Note *xnp;
10236 size_t namesz;
10237 size_t newspace;
10238 char *dest;
10239
10240 namesz = 0;
10241 if (name != NULL)
10242 namesz = strlen (name) + 1;
10243
10244 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10245
10246 buf = (char *) realloc (buf, *bufsiz + newspace);
10247 if (buf == NULL)
10248 return buf;
10249 dest = buf + *bufsiz;
10250 *bufsiz += newspace;
10251 xnp = (Elf_External_Note *) dest;
10252 H_PUT_32 (abfd, namesz, xnp->namesz);
10253 H_PUT_32 (abfd, size, xnp->descsz);
10254 H_PUT_32 (abfd, type, xnp->type);
10255 dest = xnp->name;
10256 if (name != NULL)
10257 {
10258 memcpy (dest, name, namesz);
10259 dest += namesz;
10260 while (namesz & 3)
10261 {
10262 *dest++ = '\0';
10263 ++namesz;
10264 }
10265 }
10266 memcpy (dest, input, size);
10267 dest += size;
10268 while (size & 3)
10269 {
10270 *dest++ = '\0';
10271 ++size;
10272 }
10273 return buf;
10274 }
10275
10276 char *
10277 elfcore_write_prpsinfo (bfd *abfd,
10278 char *buf,
10279 int *bufsiz,
10280 const char *fname,
10281 const char *psargs)
10282 {
10283 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10284
10285 if (bed->elf_backend_write_core_note != NULL)
10286 {
10287 char *ret;
10288 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10289 NT_PRPSINFO, fname, psargs);
10290 if (ret != NULL)
10291 return ret;
10292 }
10293
10294 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10295 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10296 if (bed->s->elfclass == ELFCLASS32)
10297 {
10298 #if defined (HAVE_PSINFO32_T)
10299 psinfo32_t data;
10300 int note_type = NT_PSINFO;
10301 #else
10302 prpsinfo32_t data;
10303 int note_type = NT_PRPSINFO;
10304 #endif
10305
10306 memset (&data, 0, sizeof (data));
10307 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10308 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10309 return elfcore_write_note (abfd, buf, bufsiz,
10310 "CORE", note_type, &data, sizeof (data));
10311 }
10312 else
10313 #endif
10314 {
10315 #if defined (HAVE_PSINFO_T)
10316 psinfo_t data;
10317 int note_type = NT_PSINFO;
10318 #else
10319 prpsinfo_t data;
10320 int note_type = NT_PRPSINFO;
10321 #endif
10322
10323 memset (&data, 0, sizeof (data));
10324 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10325 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10326 return elfcore_write_note (abfd, buf, bufsiz,
10327 "CORE", note_type, &data, sizeof (data));
10328 }
10329 #endif /* PSINFO_T or PRPSINFO_T */
10330
10331 free (buf);
10332 return NULL;
10333 }
10334
10335 char *
10336 elfcore_write_linux_prpsinfo32
10337 (bfd *abfd, char *buf, int *bufsiz,
10338 const struct elf_internal_linux_prpsinfo *prpsinfo)
10339 {
10340 struct elf_external_linux_prpsinfo32 data;
10341
10342 swap_linux_prpsinfo32_out (abfd, prpsinfo, &data);
10343 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10344 &data, sizeof (data));
10345 }
10346
10347 char *
10348 elfcore_write_linux_prpsinfo64
10349 (bfd *abfd, char *buf, int *bufsiz,
10350 const struct elf_internal_linux_prpsinfo *prpsinfo)
10351 {
10352 struct elf_external_linux_prpsinfo64 data;
10353
10354 swap_linux_prpsinfo64_out (abfd, prpsinfo, &data);
10355 return elfcore_write_note (abfd, buf, bufsiz,
10356 "CORE", NT_PRPSINFO, &data, sizeof (data));
10357 }
10358
10359 char *
10360 elfcore_write_prstatus (bfd *abfd,
10361 char *buf,
10362 int *bufsiz,
10363 long pid,
10364 int cursig,
10365 const void *gregs)
10366 {
10367 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10368
10369 if (bed->elf_backend_write_core_note != NULL)
10370 {
10371 char *ret;
10372 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10373 NT_PRSTATUS,
10374 pid, cursig, gregs);
10375 if (ret != NULL)
10376 return ret;
10377 }
10378
10379 #if defined (HAVE_PRSTATUS_T)
10380 #if defined (HAVE_PRSTATUS32_T)
10381 if (bed->s->elfclass == ELFCLASS32)
10382 {
10383 prstatus32_t prstat;
10384
10385 memset (&prstat, 0, sizeof (prstat));
10386 prstat.pr_pid = pid;
10387 prstat.pr_cursig = cursig;
10388 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10389 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10390 NT_PRSTATUS, &prstat, sizeof (prstat));
10391 }
10392 else
10393 #endif
10394 {
10395 prstatus_t prstat;
10396
10397 memset (&prstat, 0, sizeof (prstat));
10398 prstat.pr_pid = pid;
10399 prstat.pr_cursig = cursig;
10400 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10401 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10402 NT_PRSTATUS, &prstat, sizeof (prstat));
10403 }
10404 #endif /* HAVE_PRSTATUS_T */
10405
10406 free (buf);
10407 return NULL;
10408 }
10409
10410 #if defined (HAVE_LWPSTATUS_T)
10411 char *
10412 elfcore_write_lwpstatus (bfd *abfd,
10413 char *buf,
10414 int *bufsiz,
10415 long pid,
10416 int cursig,
10417 const void *gregs)
10418 {
10419 lwpstatus_t lwpstat;
10420 const char *note_name = "CORE";
10421
10422 memset (&lwpstat, 0, sizeof (lwpstat));
10423 lwpstat.pr_lwpid = pid >> 16;
10424 lwpstat.pr_cursig = cursig;
10425 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10426 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10427 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10428 #if !defined(gregs)
10429 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10430 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10431 #else
10432 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10433 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10434 #endif
10435 #endif
10436 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10437 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10438 }
10439 #endif /* HAVE_LWPSTATUS_T */
10440
10441 #if defined (HAVE_PSTATUS_T)
10442 char *
10443 elfcore_write_pstatus (bfd *abfd,
10444 char *buf,
10445 int *bufsiz,
10446 long pid,
10447 int cursig ATTRIBUTE_UNUSED,
10448 const void *gregs ATTRIBUTE_UNUSED)
10449 {
10450 const char *note_name = "CORE";
10451 #if defined (HAVE_PSTATUS32_T)
10452 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10453
10454 if (bed->s->elfclass == ELFCLASS32)
10455 {
10456 pstatus32_t pstat;
10457
10458 memset (&pstat, 0, sizeof (pstat));
10459 pstat.pr_pid = pid & 0xffff;
10460 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10461 NT_PSTATUS, &pstat, sizeof (pstat));
10462 return buf;
10463 }
10464 else
10465 #endif
10466 {
10467 pstatus_t pstat;
10468
10469 memset (&pstat, 0, sizeof (pstat));
10470 pstat.pr_pid = pid & 0xffff;
10471 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10472 NT_PSTATUS, &pstat, sizeof (pstat));
10473 return buf;
10474 }
10475 }
10476 #endif /* HAVE_PSTATUS_T */
10477
10478 char *
10479 elfcore_write_prfpreg (bfd *abfd,
10480 char *buf,
10481 int *bufsiz,
10482 const void *fpregs,
10483 int size)
10484 {
10485 const char *note_name = "CORE";
10486 return elfcore_write_note (abfd, buf, bufsiz,
10487 note_name, NT_FPREGSET, fpregs, size);
10488 }
10489
10490 char *
10491 elfcore_write_prxfpreg (bfd *abfd,
10492 char *buf,
10493 int *bufsiz,
10494 const void *xfpregs,
10495 int size)
10496 {
10497 char *note_name = "LINUX";
10498 return elfcore_write_note (abfd, buf, bufsiz,
10499 note_name, NT_PRXFPREG, xfpregs, size);
10500 }
10501
10502 char *
10503 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10504 const void *xfpregs, int size)
10505 {
10506 char *note_name;
10507 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10508 note_name = "FreeBSD";
10509 else
10510 note_name = "LINUX";
10511 return elfcore_write_note (abfd, buf, bufsiz,
10512 note_name, NT_X86_XSTATE, xfpregs, size);
10513 }
10514
10515 char *
10516 elfcore_write_ppc_vmx (bfd *abfd,
10517 char *buf,
10518 int *bufsiz,
10519 const void *ppc_vmx,
10520 int size)
10521 {
10522 char *note_name = "LINUX";
10523 return elfcore_write_note (abfd, buf, bufsiz,
10524 note_name, NT_PPC_VMX, ppc_vmx, size);
10525 }
10526
10527 char *
10528 elfcore_write_ppc_vsx (bfd *abfd,
10529 char *buf,
10530 int *bufsiz,
10531 const void *ppc_vsx,
10532 int size)
10533 {
10534 char *note_name = "LINUX";
10535 return elfcore_write_note (abfd, buf, bufsiz,
10536 note_name, NT_PPC_VSX, ppc_vsx, size);
10537 }
10538
10539 static char *
10540 elfcore_write_s390_high_gprs (bfd *abfd,
10541 char *buf,
10542 int *bufsiz,
10543 const void *s390_high_gprs,
10544 int size)
10545 {
10546 char *note_name = "LINUX";
10547 return elfcore_write_note (abfd, buf, bufsiz,
10548 note_name, NT_S390_HIGH_GPRS,
10549 s390_high_gprs, size);
10550 }
10551
10552 char *
10553 elfcore_write_s390_timer (bfd *abfd,
10554 char *buf,
10555 int *bufsiz,
10556 const void *s390_timer,
10557 int size)
10558 {
10559 char *note_name = "LINUX";
10560 return elfcore_write_note (abfd, buf, bufsiz,
10561 note_name, NT_S390_TIMER, s390_timer, size);
10562 }
10563
10564 char *
10565 elfcore_write_s390_todcmp (bfd *abfd,
10566 char *buf,
10567 int *bufsiz,
10568 const void *s390_todcmp,
10569 int size)
10570 {
10571 char *note_name = "LINUX";
10572 return elfcore_write_note (abfd, buf, bufsiz,
10573 note_name, NT_S390_TODCMP, s390_todcmp, size);
10574 }
10575
10576 char *
10577 elfcore_write_s390_todpreg (bfd *abfd,
10578 char *buf,
10579 int *bufsiz,
10580 const void *s390_todpreg,
10581 int size)
10582 {
10583 char *note_name = "LINUX";
10584 return elfcore_write_note (abfd, buf, bufsiz,
10585 note_name, NT_S390_TODPREG, s390_todpreg, size);
10586 }
10587
10588 char *
10589 elfcore_write_s390_ctrs (bfd *abfd,
10590 char *buf,
10591 int *bufsiz,
10592 const void *s390_ctrs,
10593 int size)
10594 {
10595 char *note_name = "LINUX";
10596 return elfcore_write_note (abfd, buf, bufsiz,
10597 note_name, NT_S390_CTRS, s390_ctrs, size);
10598 }
10599
10600 char *
10601 elfcore_write_s390_prefix (bfd *abfd,
10602 char *buf,
10603 int *bufsiz,
10604 const void *s390_prefix,
10605 int size)
10606 {
10607 char *note_name = "LINUX";
10608 return elfcore_write_note (abfd, buf, bufsiz,
10609 note_name, NT_S390_PREFIX, s390_prefix, size);
10610 }
10611
10612 char *
10613 elfcore_write_s390_last_break (bfd *abfd,
10614 char *buf,
10615 int *bufsiz,
10616 const void *s390_last_break,
10617 int size)
10618 {
10619 char *note_name = "LINUX";
10620 return elfcore_write_note (abfd, buf, bufsiz,
10621 note_name, NT_S390_LAST_BREAK,
10622 s390_last_break, size);
10623 }
10624
10625 char *
10626 elfcore_write_s390_system_call (bfd *abfd,
10627 char *buf,
10628 int *bufsiz,
10629 const void *s390_system_call,
10630 int size)
10631 {
10632 char *note_name = "LINUX";
10633 return elfcore_write_note (abfd, buf, bufsiz,
10634 note_name, NT_S390_SYSTEM_CALL,
10635 s390_system_call, size);
10636 }
10637
10638 char *
10639 elfcore_write_s390_tdb (bfd *abfd,
10640 char *buf,
10641 int *bufsiz,
10642 const void *s390_tdb,
10643 int size)
10644 {
10645 char *note_name = "LINUX";
10646 return elfcore_write_note (abfd, buf, bufsiz,
10647 note_name, NT_S390_TDB, s390_tdb, size);
10648 }
10649
10650 char *
10651 elfcore_write_s390_vxrs_low (bfd *abfd,
10652 char *buf,
10653 int *bufsiz,
10654 const void *s390_vxrs_low,
10655 int size)
10656 {
10657 char *note_name = "LINUX";
10658 return elfcore_write_note (abfd, buf, bufsiz,
10659 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10660 }
10661
10662 char *
10663 elfcore_write_s390_vxrs_high (bfd *abfd,
10664 char *buf,
10665 int *bufsiz,
10666 const void *s390_vxrs_high,
10667 int size)
10668 {
10669 char *note_name = "LINUX";
10670 return elfcore_write_note (abfd, buf, bufsiz,
10671 note_name, NT_S390_VXRS_HIGH,
10672 s390_vxrs_high, size);
10673 }
10674
10675 char *
10676 elfcore_write_arm_vfp (bfd *abfd,
10677 char *buf,
10678 int *bufsiz,
10679 const void *arm_vfp,
10680 int size)
10681 {
10682 char *note_name = "LINUX";
10683 return elfcore_write_note (abfd, buf, bufsiz,
10684 note_name, NT_ARM_VFP, arm_vfp, size);
10685 }
10686
10687 char *
10688 elfcore_write_aarch_tls (bfd *abfd,
10689 char *buf,
10690 int *bufsiz,
10691 const void *aarch_tls,
10692 int size)
10693 {
10694 char *note_name = "LINUX";
10695 return elfcore_write_note (abfd, buf, bufsiz,
10696 note_name, NT_ARM_TLS, aarch_tls, size);
10697 }
10698
10699 char *
10700 elfcore_write_aarch_hw_break (bfd *abfd,
10701 char *buf,
10702 int *bufsiz,
10703 const void *aarch_hw_break,
10704 int size)
10705 {
10706 char *note_name = "LINUX";
10707 return elfcore_write_note (abfd, buf, bufsiz,
10708 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10709 }
10710
10711 char *
10712 elfcore_write_aarch_hw_watch (bfd *abfd,
10713 char *buf,
10714 int *bufsiz,
10715 const void *aarch_hw_watch,
10716 int size)
10717 {
10718 char *note_name = "LINUX";
10719 return elfcore_write_note (abfd, buf, bufsiz,
10720 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10721 }
10722
10723 char *
10724 elfcore_write_register_note (bfd *abfd,
10725 char *buf,
10726 int *bufsiz,
10727 const char *section,
10728 const void *data,
10729 int size)
10730 {
10731 if (strcmp (section, ".reg2") == 0)
10732 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10733 if (strcmp (section, ".reg-xfp") == 0)
10734 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
10735 if (strcmp (section, ".reg-xstate") == 0)
10736 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
10737 if (strcmp (section, ".reg-ppc-vmx") == 0)
10738 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
10739 if (strcmp (section, ".reg-ppc-vsx") == 0)
10740 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
10741 if (strcmp (section, ".reg-s390-high-gprs") == 0)
10742 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
10743 if (strcmp (section, ".reg-s390-timer") == 0)
10744 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
10745 if (strcmp (section, ".reg-s390-todcmp") == 0)
10746 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
10747 if (strcmp (section, ".reg-s390-todpreg") == 0)
10748 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
10749 if (strcmp (section, ".reg-s390-ctrs") == 0)
10750 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
10751 if (strcmp (section, ".reg-s390-prefix") == 0)
10752 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
10753 if (strcmp (section, ".reg-s390-last-break") == 0)
10754 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
10755 if (strcmp (section, ".reg-s390-system-call") == 0)
10756 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
10757 if (strcmp (section, ".reg-s390-tdb") == 0)
10758 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
10759 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
10760 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
10761 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
10762 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
10763 if (strcmp (section, ".reg-arm-vfp") == 0)
10764 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
10765 if (strcmp (section, ".reg-aarch-tls") == 0)
10766 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
10767 if (strcmp (section, ".reg-aarch-hw-break") == 0)
10768 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
10769 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
10770 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
10771 return NULL;
10772 }
10773
10774 static bfd_boolean
10775 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
10776 {
10777 char *p;
10778
10779 p = buf;
10780 while (p < buf + size)
10781 {
10782 /* FIXME: bad alignment assumption. */
10783 Elf_External_Note *xnp = (Elf_External_Note *) p;
10784 Elf_Internal_Note in;
10785
10786 if (offsetof (Elf_External_Note, name) > buf - p + size)
10787 return FALSE;
10788
10789 in.type = H_GET_32 (abfd, xnp->type);
10790
10791 in.namesz = H_GET_32 (abfd, xnp->namesz);
10792 in.namedata = xnp->name;
10793 if (in.namesz > buf - in.namedata + size)
10794 return FALSE;
10795
10796 in.descsz = H_GET_32 (abfd, xnp->descsz);
10797 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
10798 in.descpos = offset + (in.descdata - buf);
10799 if (in.descsz != 0
10800 && (in.descdata >= buf + size
10801 || in.descsz > buf - in.descdata + size))
10802 return FALSE;
10803
10804 switch (bfd_get_format (abfd))
10805 {
10806 default:
10807 return TRUE;
10808
10809 case bfd_core:
10810 {
10811 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
10812 struct
10813 {
10814 const char * string;
10815 size_t len;
10816 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
10817 }
10818 grokers[] =
10819 {
10820 GROKER_ELEMENT ("", elfcore_grok_note),
10821 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
10822 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
10823 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
10824 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
10825 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
10826 };
10827 #undef GROKER_ELEMENT
10828 int i;
10829
10830 for (i = ARRAY_SIZE (grokers); i--;)
10831 {
10832 if (in.namesz >= grokers[i].len
10833 && strncmp (in.namedata, grokers[i].string,
10834 grokers[i].len) == 0)
10835 {
10836 if (! grokers[i].func (abfd, & in))
10837 return FALSE;
10838 break;
10839 }
10840 }
10841 break;
10842 }
10843
10844 case bfd_object:
10845 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
10846 {
10847 if (! elfobj_grok_gnu_note (abfd, &in))
10848 return FALSE;
10849 }
10850 else if (in.namesz == sizeof "stapsdt"
10851 && strcmp (in.namedata, "stapsdt") == 0)
10852 {
10853 if (! elfobj_grok_stapsdt_note (abfd, &in))
10854 return FALSE;
10855 }
10856 break;
10857 }
10858
10859 p = in.descdata + BFD_ALIGN (in.descsz, 4);
10860 }
10861
10862 return TRUE;
10863 }
10864
10865 static bfd_boolean
10866 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
10867 {
10868 char *buf;
10869
10870 if (size <= 0)
10871 return TRUE;
10872
10873 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
10874 return FALSE;
10875
10876 buf = (char *) bfd_malloc (size + 1);
10877 if (buf == NULL)
10878 return FALSE;
10879
10880 /* PR 17512: file: ec08f814
10881 0-termintate the buffer so that string searches will not overflow. */
10882 buf[size] = 0;
10883
10884 if (bfd_bread (buf, size, abfd) != size
10885 || !elf_parse_notes (abfd, buf, size, offset))
10886 {
10887 free (buf);
10888 return FALSE;
10889 }
10890
10891 free (buf);
10892 return TRUE;
10893 }
10894 \f
10895 /* Providing external access to the ELF program header table. */
10896
10897 /* Return an upper bound on the number of bytes required to store a
10898 copy of ABFD's program header table entries. Return -1 if an error
10899 occurs; bfd_get_error will return an appropriate code. */
10900
10901 long
10902 bfd_get_elf_phdr_upper_bound (bfd *abfd)
10903 {
10904 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10905 {
10906 bfd_set_error (bfd_error_wrong_format);
10907 return -1;
10908 }
10909
10910 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
10911 }
10912
10913 /* Copy ABFD's program header table entries to *PHDRS. The entries
10914 will be stored as an array of Elf_Internal_Phdr structures, as
10915 defined in include/elf/internal.h. To find out how large the
10916 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
10917
10918 Return the number of program header table entries read, or -1 if an
10919 error occurs; bfd_get_error will return an appropriate code. */
10920
10921 int
10922 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
10923 {
10924 int num_phdrs;
10925
10926 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10927 {
10928 bfd_set_error (bfd_error_wrong_format);
10929 return -1;
10930 }
10931
10932 num_phdrs = elf_elfheader (abfd)->e_phnum;
10933 memcpy (phdrs, elf_tdata (abfd)->phdr,
10934 num_phdrs * sizeof (Elf_Internal_Phdr));
10935
10936 return num_phdrs;
10937 }
10938
10939 enum elf_reloc_type_class
10940 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
10941 const asection *rel_sec ATTRIBUTE_UNUSED,
10942 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
10943 {
10944 return reloc_class_normal;
10945 }
10946
10947 /* For RELA architectures, return the relocation value for a
10948 relocation against a local symbol. */
10949
10950 bfd_vma
10951 _bfd_elf_rela_local_sym (bfd *abfd,
10952 Elf_Internal_Sym *sym,
10953 asection **psec,
10954 Elf_Internal_Rela *rel)
10955 {
10956 asection *sec = *psec;
10957 bfd_vma relocation;
10958
10959 relocation = (sec->output_section->vma
10960 + sec->output_offset
10961 + sym->st_value);
10962 if ((sec->flags & SEC_MERGE)
10963 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
10964 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
10965 {
10966 rel->r_addend =
10967 _bfd_merged_section_offset (abfd, psec,
10968 elf_section_data (sec)->sec_info,
10969 sym->st_value + rel->r_addend);
10970 if (sec != *psec)
10971 {
10972 /* If we have changed the section, and our original section is
10973 marked with SEC_EXCLUDE, it means that the original
10974 SEC_MERGE section has been completely subsumed in some
10975 other SEC_MERGE section. In this case, we need to leave
10976 some info around for --emit-relocs. */
10977 if ((sec->flags & SEC_EXCLUDE) != 0)
10978 sec->kept_section = *psec;
10979 sec = *psec;
10980 }
10981 rel->r_addend -= relocation;
10982 rel->r_addend += sec->output_section->vma + sec->output_offset;
10983 }
10984 return relocation;
10985 }
10986
10987 bfd_vma
10988 _bfd_elf_rel_local_sym (bfd *abfd,
10989 Elf_Internal_Sym *sym,
10990 asection **psec,
10991 bfd_vma addend)
10992 {
10993 asection *sec = *psec;
10994
10995 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
10996 return sym->st_value + addend;
10997
10998 return _bfd_merged_section_offset (abfd, psec,
10999 elf_section_data (sec)->sec_info,
11000 sym->st_value + addend);
11001 }
11002
11003 /* Adjust an address within a section. Given OFFSET within SEC, return
11004 the new offset within the section, based upon changes made to the
11005 section. Returns -1 if the offset is now invalid.
11006 The offset (in abnd out) is in target sized bytes, however big a
11007 byte may be. */
11008
11009 bfd_vma
11010 _bfd_elf_section_offset (bfd *abfd,
11011 struct bfd_link_info *info,
11012 asection *sec,
11013 bfd_vma offset)
11014 {
11015 switch (sec->sec_info_type)
11016 {
11017 case SEC_INFO_TYPE_STABS:
11018 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11019 offset);
11020 case SEC_INFO_TYPE_EH_FRAME:
11021 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11022
11023 default:
11024 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11025 {
11026 /* Reverse the offset. */
11027 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11028 bfd_size_type address_size = bed->s->arch_size / 8;
11029
11030 /* address_size and sec->size are in octets. Convert
11031 to bytes before subtracting the original offset. */
11032 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11033 }
11034 return offset;
11035 }
11036 }
11037 \f
11038 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11039 reconstruct an ELF file by reading the segments out of remote memory
11040 based on the ELF file header at EHDR_VMA and the ELF program headers it
11041 points to. If not null, *LOADBASEP is filled in with the difference
11042 between the VMAs from which the segments were read, and the VMAs the
11043 file headers (and hence BFD's idea of each section's VMA) put them at.
11044
11045 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11046 remote memory at target address VMA into the local buffer at MYADDR; it
11047 should return zero on success or an `errno' code on failure. TEMPL must
11048 be a BFD for an ELF target with the word size and byte order found in
11049 the remote memory. */
11050
11051 bfd *
11052 bfd_elf_bfd_from_remote_memory
11053 (bfd *templ,
11054 bfd_vma ehdr_vma,
11055 bfd_size_type size,
11056 bfd_vma *loadbasep,
11057 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11058 {
11059 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11060 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11061 }
11062 \f
11063 long
11064 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11065 long symcount ATTRIBUTE_UNUSED,
11066 asymbol **syms ATTRIBUTE_UNUSED,
11067 long dynsymcount,
11068 asymbol **dynsyms,
11069 asymbol **ret)
11070 {
11071 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11072 asection *relplt;
11073 asymbol *s;
11074 const char *relplt_name;
11075 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11076 arelent *p;
11077 long count, i, n;
11078 size_t size;
11079 Elf_Internal_Shdr *hdr;
11080 char *names;
11081 asection *plt;
11082
11083 *ret = NULL;
11084
11085 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11086 return 0;
11087
11088 if (dynsymcount <= 0)
11089 return 0;
11090
11091 if (!bed->plt_sym_val)
11092 return 0;
11093
11094 relplt_name = bed->relplt_name;
11095 if (relplt_name == NULL)
11096 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11097 relplt = bfd_get_section_by_name (abfd, relplt_name);
11098 if (relplt == NULL)
11099 return 0;
11100
11101 hdr = &elf_section_data (relplt)->this_hdr;
11102 if (hdr->sh_link != elf_dynsymtab (abfd)
11103 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11104 return 0;
11105
11106 plt = bfd_get_section_by_name (abfd, ".plt");
11107 if (plt == NULL)
11108 return 0;
11109
11110 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11111 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11112 return -1;
11113
11114 count = relplt->size / hdr->sh_entsize;
11115 size = count * sizeof (asymbol);
11116 p = relplt->relocation;
11117 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11118 {
11119 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11120 if (p->addend != 0)
11121 {
11122 #ifdef BFD64
11123 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11124 #else
11125 size += sizeof ("+0x") - 1 + 8;
11126 #endif
11127 }
11128 }
11129
11130 s = *ret = (asymbol *) bfd_malloc (size);
11131 if (s == NULL)
11132 return -1;
11133
11134 names = (char *) (s + count);
11135 p = relplt->relocation;
11136 n = 0;
11137 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11138 {
11139 size_t len;
11140 bfd_vma addr;
11141
11142 addr = bed->plt_sym_val (i, plt, p);
11143 if (addr == (bfd_vma) -1)
11144 continue;
11145
11146 *s = **p->sym_ptr_ptr;
11147 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11148 we are defining a symbol, ensure one of them is set. */
11149 if ((s->flags & BSF_LOCAL) == 0)
11150 s->flags |= BSF_GLOBAL;
11151 s->flags |= BSF_SYNTHETIC;
11152 s->section = plt;
11153 s->value = addr - plt->vma;
11154 s->name = names;
11155 s->udata.p = NULL;
11156 len = strlen ((*p->sym_ptr_ptr)->name);
11157 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11158 names += len;
11159 if (p->addend != 0)
11160 {
11161 char buf[30], *a;
11162
11163 memcpy (names, "+0x", sizeof ("+0x") - 1);
11164 names += sizeof ("+0x") - 1;
11165 bfd_sprintf_vma (abfd, buf, p->addend);
11166 for (a = buf; *a == '0'; ++a)
11167 ;
11168 len = strlen (a);
11169 memcpy (names, a, len);
11170 names += len;
11171 }
11172 memcpy (names, "@plt", sizeof ("@plt"));
11173 names += sizeof ("@plt");
11174 ++s, ++n;
11175 }
11176
11177 return n;
11178 }
11179
11180 /* It is only used by x86-64 so far.
11181 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11182 but current usage would allow all of _bfd_std_section to be zero. t*/
11183 asection _bfd_elf_large_com_section
11184 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, NULL,
11185 "LARGE_COMMON", 0, SEC_IS_COMMON);
11186
11187 void
11188 _bfd_elf_post_process_headers (bfd * abfd,
11189 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11190 {
11191 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11192
11193 i_ehdrp = elf_elfheader (abfd);
11194
11195 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11196
11197 /* To make things simpler for the loader on Linux systems we set the
11198 osabi field to ELFOSABI_GNU if the binary contains symbols of
11199 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11200 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11201 && elf_tdata (abfd)->has_gnu_symbols)
11202 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11203 }
11204
11205
11206 /* Return TRUE for ELF symbol types that represent functions.
11207 This is the default version of this function, which is sufficient for
11208 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11209
11210 bfd_boolean
11211 _bfd_elf_is_function_type (unsigned int type)
11212 {
11213 return (type == STT_FUNC
11214 || type == STT_GNU_IFUNC);
11215 }
11216
11217 /* If the ELF symbol SYM might be a function in SEC, return the
11218 function size and set *CODE_OFF to the function's entry point,
11219 otherwise return zero. */
11220
11221 bfd_size_type
11222 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11223 bfd_vma *code_off)
11224 {
11225 bfd_size_type size;
11226
11227 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11228 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11229 || sym->section != sec)
11230 return 0;
11231
11232 *code_off = sym->value;
11233 size = 0;
11234 if (!(sym->flags & BSF_SYNTHETIC))
11235 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11236 if (size == 0)
11237 size = 1;
11238 return size;
11239 }
This page took 0.287274 seconds and 4 git commands to generate.