PowerPC VLE typo fix
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2017 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 /* xgettext:c-format */
342 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"),
343 abfd, shindex);
344 return NULL;
345 }
346
347 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
348 return NULL;
349 }
350
351 if (strindex >= hdr->sh_size)
352 {
353 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
354 _bfd_error_handler
355 /* xgettext:c-format */
356 (_("%B: invalid string offset %u >= %lu for section `%s'"),
357 abfd, strindex, (unsigned long) hdr->sh_size,
358 (shindex == shstrndx && strindex == hdr->sh_name
359 ? ".shstrtab"
360 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
361 return NULL;
362 }
363
364 return ((char *) hdr->contents) + strindex;
365 }
366
367 /* Read and convert symbols to internal format.
368 SYMCOUNT specifies the number of symbols to read, starting from
369 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
370 are non-NULL, they are used to store the internal symbols, external
371 symbols, and symbol section index extensions, respectively.
372 Returns a pointer to the internal symbol buffer (malloced if necessary)
373 or NULL if there were no symbols or some kind of problem. */
374
375 Elf_Internal_Sym *
376 bfd_elf_get_elf_syms (bfd *ibfd,
377 Elf_Internal_Shdr *symtab_hdr,
378 size_t symcount,
379 size_t symoffset,
380 Elf_Internal_Sym *intsym_buf,
381 void *extsym_buf,
382 Elf_External_Sym_Shndx *extshndx_buf)
383 {
384 Elf_Internal_Shdr *shndx_hdr;
385 void *alloc_ext;
386 const bfd_byte *esym;
387 Elf_External_Sym_Shndx *alloc_extshndx;
388 Elf_External_Sym_Shndx *shndx;
389 Elf_Internal_Sym *alloc_intsym;
390 Elf_Internal_Sym *isym;
391 Elf_Internal_Sym *isymend;
392 const struct elf_backend_data *bed;
393 size_t extsym_size;
394 bfd_size_type amt;
395 file_ptr pos;
396
397 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
398 abort ();
399
400 if (symcount == 0)
401 return intsym_buf;
402
403 /* Normal syms might have section extension entries. */
404 shndx_hdr = NULL;
405 if (elf_symtab_shndx_list (ibfd) != NULL)
406 {
407 elf_section_list * entry;
408 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
409
410 /* Find an index section that is linked to this symtab section. */
411 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
412 {
413 /* PR 20063. */
414 if (entry->hdr.sh_link >= elf_numsections (ibfd))
415 continue;
416
417 if (sections[entry->hdr.sh_link] == symtab_hdr)
418 {
419 shndx_hdr = & entry->hdr;
420 break;
421 };
422 }
423
424 if (shndx_hdr == NULL)
425 {
426 if (symtab_hdr == & elf_symtab_hdr (ibfd))
427 /* Not really accurate, but this was how the old code used to work. */
428 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
429 /* Otherwise we do nothing. The assumption is that
430 the index table will not be needed. */
431 }
432 }
433
434 /* Read the symbols. */
435 alloc_ext = NULL;
436 alloc_extshndx = NULL;
437 alloc_intsym = NULL;
438 bed = get_elf_backend_data (ibfd);
439 extsym_size = bed->s->sizeof_sym;
440 amt = (bfd_size_type) symcount * extsym_size;
441 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
442 if (extsym_buf == NULL)
443 {
444 alloc_ext = bfd_malloc2 (symcount, extsym_size);
445 extsym_buf = alloc_ext;
446 }
447 if (extsym_buf == NULL
448 || bfd_seek (ibfd, pos, SEEK_SET) != 0
449 || bfd_bread (extsym_buf, amt, ibfd) != amt)
450 {
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
456 extshndx_buf = NULL;
457 else
458 {
459 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
460 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
461 if (extshndx_buf == NULL)
462 {
463 alloc_extshndx = (Elf_External_Sym_Shndx *)
464 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
465 extshndx_buf = alloc_extshndx;
466 }
467 if (extshndx_buf == NULL
468 || bfd_seek (ibfd, pos, SEEK_SET) != 0
469 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
470 {
471 intsym_buf = NULL;
472 goto out;
473 }
474 }
475
476 if (intsym_buf == NULL)
477 {
478 alloc_intsym = (Elf_Internal_Sym *)
479 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
480 intsym_buf = alloc_intsym;
481 if (intsym_buf == NULL)
482 goto out;
483 }
484
485 /* Convert the symbols to internal form. */
486 isymend = intsym_buf + symcount;
487 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
488 shndx = extshndx_buf;
489 isym < isymend;
490 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
491 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
492 {
493 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
494 /* xgettext:c-format */
495 _bfd_error_handler (_("%B symbol number %lu references "
496 "nonexistent SHT_SYMTAB_SHNDX section"),
497 ibfd, (unsigned long) symoffset);
498 if (alloc_intsym != NULL)
499 free (alloc_intsym);
500 intsym_buf = NULL;
501 goto out;
502 }
503
504 out:
505 if (alloc_ext != NULL)
506 free (alloc_ext);
507 if (alloc_extshndx != NULL)
508 free (alloc_extshndx);
509
510 return intsym_buf;
511 }
512
513 /* Look up a symbol name. */
514 const char *
515 bfd_elf_sym_name (bfd *abfd,
516 Elf_Internal_Shdr *symtab_hdr,
517 Elf_Internal_Sym *isym,
518 asection *sym_sec)
519 {
520 const char *name;
521 unsigned int iname = isym->st_name;
522 unsigned int shindex = symtab_hdr->sh_link;
523
524 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
525 /* Check for a bogus st_shndx to avoid crashing. */
526 && isym->st_shndx < elf_numsections (abfd))
527 {
528 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
529 shindex = elf_elfheader (abfd)->e_shstrndx;
530 }
531
532 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
533 if (name == NULL)
534 name = "(null)";
535 else if (sym_sec && *name == '\0')
536 name = bfd_section_name (abfd, sym_sec);
537
538 return name;
539 }
540
541 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
542 sections. The first element is the flags, the rest are section
543 pointers. */
544
545 typedef union elf_internal_group {
546 Elf_Internal_Shdr *shdr;
547 unsigned int flags;
548 } Elf_Internal_Group;
549
550 /* Return the name of the group signature symbol. Why isn't the
551 signature just a string? */
552
553 static const char *
554 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
555 {
556 Elf_Internal_Shdr *hdr;
557 unsigned char esym[sizeof (Elf64_External_Sym)];
558 Elf_External_Sym_Shndx eshndx;
559 Elf_Internal_Sym isym;
560
561 /* First we need to ensure the symbol table is available. Make sure
562 that it is a symbol table section. */
563 if (ghdr->sh_link >= elf_numsections (abfd))
564 return NULL;
565 hdr = elf_elfsections (abfd) [ghdr->sh_link];
566 if (hdr->sh_type != SHT_SYMTAB
567 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
568 return NULL;
569
570 /* Go read the symbol. */
571 hdr = &elf_tdata (abfd)->symtab_hdr;
572 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
573 &isym, esym, &eshndx) == NULL)
574 return NULL;
575
576 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
577 }
578
579 /* Set next_in_group list pointer, and group name for NEWSECT. */
580
581 static bfd_boolean
582 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
583 {
584 unsigned int num_group = elf_tdata (abfd)->num_group;
585
586 /* If num_group is zero, read in all SHT_GROUP sections. The count
587 is set to -1 if there are no SHT_GROUP sections. */
588 if (num_group == 0)
589 {
590 unsigned int i, shnum;
591
592 /* First count the number of groups. If we have a SHT_GROUP
593 section with just a flag word (ie. sh_size is 4), ignore it. */
594 shnum = elf_numsections (abfd);
595 num_group = 0;
596
597 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
598 ( (shdr)->sh_type == SHT_GROUP \
599 && (shdr)->sh_size >= minsize \
600 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
601 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
602
603 for (i = 0; i < shnum; i++)
604 {
605 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
606
607 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
608 num_group += 1;
609 }
610
611 if (num_group == 0)
612 {
613 num_group = (unsigned) -1;
614 elf_tdata (abfd)->num_group = num_group;
615 }
616 else
617 {
618 /* We keep a list of elf section headers for group sections,
619 so we can find them quickly. */
620 bfd_size_type amt;
621
622 elf_tdata (abfd)->num_group = num_group;
623 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
624 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
625 if (elf_tdata (abfd)->group_sect_ptr == NULL)
626 return FALSE;
627
628 num_group = 0;
629 for (i = 0; i < shnum; i++)
630 {
631 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
632
633 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
634 {
635 unsigned char *src;
636 Elf_Internal_Group *dest;
637
638 /* Add to list of sections. */
639 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
640 num_group += 1;
641
642 /* Read the raw contents. */
643 BFD_ASSERT (sizeof (*dest) >= 4);
644 amt = shdr->sh_size * sizeof (*dest) / 4;
645 shdr->contents = (unsigned char *)
646 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
647 /* PR binutils/4110: Handle corrupt group headers. */
648 if (shdr->contents == NULL)
649 {
650 _bfd_error_handler
651 /* xgettext:c-format */
652 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
653 bfd_set_error (bfd_error_bad_value);
654 -- num_group;
655 continue;
656 }
657
658 memset (shdr->contents, 0, amt);
659
660 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
661 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
662 != shdr->sh_size))
663 {
664 _bfd_error_handler
665 /* xgettext:c-format */
666 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size);
667 bfd_set_error (bfd_error_bad_value);
668 -- num_group;
669 /* PR 17510: If the group contents are even partially
670 corrupt, do not allow any of the contents to be used. */
671 memset (shdr->contents, 0, amt);
672 continue;
673 }
674
675 /* Translate raw contents, a flag word followed by an
676 array of elf section indices all in target byte order,
677 to the flag word followed by an array of elf section
678 pointers. */
679 src = shdr->contents + shdr->sh_size;
680 dest = (Elf_Internal_Group *) (shdr->contents + amt);
681
682 while (1)
683 {
684 unsigned int idx;
685
686 src -= 4;
687 --dest;
688 idx = H_GET_32 (abfd, src);
689 if (src == shdr->contents)
690 {
691 dest->flags = idx;
692 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
693 shdr->bfd_section->flags
694 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
695 break;
696 }
697 if (idx >= shnum)
698 {
699 _bfd_error_handler
700 (_("%B: invalid SHT_GROUP entry"), abfd);
701 idx = 0;
702 }
703 dest->shdr = elf_elfsections (abfd)[idx];
704 }
705 }
706 }
707
708 /* PR 17510: Corrupt binaries might contain invalid groups. */
709 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
710 {
711 elf_tdata (abfd)->num_group = num_group;
712
713 /* If all groups are invalid then fail. */
714 if (num_group == 0)
715 {
716 elf_tdata (abfd)->group_sect_ptr = NULL;
717 elf_tdata (abfd)->num_group = num_group = -1;
718 _bfd_error_handler
719 (_("%B: no valid group sections found"), abfd);
720 bfd_set_error (bfd_error_bad_value);
721 }
722 }
723 }
724 }
725
726 if (num_group != (unsigned) -1)
727 {
728 unsigned int i;
729
730 for (i = 0; i < num_group; i++)
731 {
732 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
733 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
734 unsigned int n_elt = shdr->sh_size / 4;
735
736 /* Look through this group's sections to see if current
737 section is a member. */
738 while (--n_elt != 0)
739 if ((++idx)->shdr == hdr)
740 {
741 asection *s = NULL;
742
743 /* We are a member of this group. Go looking through
744 other members to see if any others are linked via
745 next_in_group. */
746 idx = (Elf_Internal_Group *) shdr->contents;
747 n_elt = shdr->sh_size / 4;
748 while (--n_elt != 0)
749 if ((s = (++idx)->shdr->bfd_section) != NULL
750 && elf_next_in_group (s) != NULL)
751 break;
752 if (n_elt != 0)
753 {
754 /* Snarf the group name from other member, and
755 insert current section in circular list. */
756 elf_group_name (newsect) = elf_group_name (s);
757 elf_next_in_group (newsect) = elf_next_in_group (s);
758 elf_next_in_group (s) = newsect;
759 }
760 else
761 {
762 const char *gname;
763
764 gname = group_signature (abfd, shdr);
765 if (gname == NULL)
766 return FALSE;
767 elf_group_name (newsect) = gname;
768
769 /* Start a circular list with one element. */
770 elf_next_in_group (newsect) = newsect;
771 }
772
773 /* If the group section has been created, point to the
774 new member. */
775 if (shdr->bfd_section != NULL)
776 elf_next_in_group (shdr->bfd_section) = newsect;
777
778 i = num_group - 1;
779 break;
780 }
781 }
782 }
783
784 if (elf_group_name (newsect) == NULL)
785 {
786 /* xgettext:c-format */
787 _bfd_error_handler (_("%B: no group info for section %A"),
788 abfd, newsect);
789 return FALSE;
790 }
791 return TRUE;
792 }
793
794 bfd_boolean
795 _bfd_elf_setup_sections (bfd *abfd)
796 {
797 unsigned int i;
798 unsigned int num_group = elf_tdata (abfd)->num_group;
799 bfd_boolean result = TRUE;
800 asection *s;
801
802 /* Process SHF_LINK_ORDER. */
803 for (s = abfd->sections; s != NULL; s = s->next)
804 {
805 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
806 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
807 {
808 unsigned int elfsec = this_hdr->sh_link;
809 /* FIXME: The old Intel compiler and old strip/objcopy may
810 not set the sh_link or sh_info fields. Hence we could
811 get the situation where elfsec is 0. */
812 if (elfsec == 0)
813 {
814 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
815 if (bed->link_order_error_handler)
816 bed->link_order_error_handler
817 /* xgettext:c-format */
818 (_("%B: warning: sh_link not set for section `%A'"),
819 abfd, s);
820 }
821 else
822 {
823 asection *linksec = NULL;
824
825 if (elfsec < elf_numsections (abfd))
826 {
827 this_hdr = elf_elfsections (abfd)[elfsec];
828 linksec = this_hdr->bfd_section;
829 }
830
831 /* PR 1991, 2008:
832 Some strip/objcopy may leave an incorrect value in
833 sh_link. We don't want to proceed. */
834 if (linksec == NULL)
835 {
836 _bfd_error_handler
837 /* xgettext:c-format */
838 (_("%B: sh_link [%d] in section `%A' is incorrect"),
839 s->owner, s, elfsec);
840 result = FALSE;
841 }
842
843 elf_linked_to_section (s) = linksec;
844 }
845 }
846 else if (this_hdr->sh_type == SHT_GROUP
847 && elf_next_in_group (s) == NULL)
848 {
849 _bfd_error_handler
850 /* xgettext:c-format */
851 (_("%B: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
852 abfd, elf_section_data (s)->this_idx);
853 result = FALSE;
854 }
855 }
856
857 /* Process section groups. */
858 if (num_group == (unsigned) -1)
859 return result;
860
861 for (i = 0; i < num_group; i++)
862 {
863 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
864 Elf_Internal_Group *idx;
865 unsigned int n_elt;
866
867 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
868 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
869 {
870 _bfd_error_handler
871 /* xgettext:c-format */
872 (_("%B: section group entry number %u is corrupt"),
873 abfd, i);
874 result = FALSE;
875 continue;
876 }
877
878 idx = (Elf_Internal_Group *) shdr->contents;
879 n_elt = shdr->sh_size / 4;
880
881 while (--n_elt != 0)
882 if ((++idx)->shdr->bfd_section)
883 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
884 else if (idx->shdr->sh_type == SHT_RELA
885 || idx->shdr->sh_type == SHT_REL)
886 /* We won't include relocation sections in section groups in
887 output object files. We adjust the group section size here
888 so that relocatable link will work correctly when
889 relocation sections are in section group in input object
890 files. */
891 shdr->bfd_section->size -= 4;
892 else
893 {
894 /* There are some unknown sections in the group. */
895 _bfd_error_handler
896 /* xgettext:c-format */
897 (_("%B: unknown [%d] section `%s' in group [%s]"),
898 abfd,
899 (unsigned int) idx->shdr->sh_type,
900 bfd_elf_string_from_elf_section (abfd,
901 (elf_elfheader (abfd)
902 ->e_shstrndx),
903 idx->shdr->sh_name),
904 shdr->bfd_section->name);
905 result = FALSE;
906 }
907 }
908 return result;
909 }
910
911 bfd_boolean
912 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
913 {
914 return elf_next_in_group (sec) != NULL;
915 }
916
917 static char *
918 convert_debug_to_zdebug (bfd *abfd, const char *name)
919 {
920 unsigned int len = strlen (name);
921 char *new_name = bfd_alloc (abfd, len + 2);
922 if (new_name == NULL)
923 return NULL;
924 new_name[0] = '.';
925 new_name[1] = 'z';
926 memcpy (new_name + 2, name + 1, len);
927 return new_name;
928 }
929
930 static char *
931 convert_zdebug_to_debug (bfd *abfd, const char *name)
932 {
933 unsigned int len = strlen (name);
934 char *new_name = bfd_alloc (abfd, len);
935 if (new_name == NULL)
936 return NULL;
937 new_name[0] = '.';
938 memcpy (new_name + 1, name + 2, len - 1);
939 return new_name;
940 }
941
942 /* Make a BFD section from an ELF section. We store a pointer to the
943 BFD section in the bfd_section field of the header. */
944
945 bfd_boolean
946 _bfd_elf_make_section_from_shdr (bfd *abfd,
947 Elf_Internal_Shdr *hdr,
948 const char *name,
949 int shindex)
950 {
951 asection *newsect;
952 flagword flags;
953 const struct elf_backend_data *bed;
954
955 if (hdr->bfd_section != NULL)
956 return TRUE;
957
958 newsect = bfd_make_section_anyway (abfd, name);
959 if (newsect == NULL)
960 return FALSE;
961
962 hdr->bfd_section = newsect;
963 elf_section_data (newsect)->this_hdr = *hdr;
964 elf_section_data (newsect)->this_idx = shindex;
965
966 /* Always use the real type/flags. */
967 elf_section_type (newsect) = hdr->sh_type;
968 elf_section_flags (newsect) = hdr->sh_flags;
969
970 newsect->filepos = hdr->sh_offset;
971
972 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
973 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
974 || ! bfd_set_section_alignment (abfd, newsect,
975 bfd_log2 (hdr->sh_addralign)))
976 return FALSE;
977
978 flags = SEC_NO_FLAGS;
979 if (hdr->sh_type != SHT_NOBITS)
980 flags |= SEC_HAS_CONTENTS;
981 if (hdr->sh_type == SHT_GROUP)
982 flags |= SEC_GROUP | SEC_EXCLUDE;
983 if ((hdr->sh_flags & SHF_ALLOC) != 0)
984 {
985 flags |= SEC_ALLOC;
986 if (hdr->sh_type != SHT_NOBITS)
987 flags |= SEC_LOAD;
988 }
989 if ((hdr->sh_flags & SHF_WRITE) == 0)
990 flags |= SEC_READONLY;
991 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
992 flags |= SEC_CODE;
993 else if ((flags & SEC_LOAD) != 0)
994 flags |= SEC_DATA;
995 if ((hdr->sh_flags & SHF_MERGE) != 0)
996 {
997 flags |= SEC_MERGE;
998 newsect->entsize = hdr->sh_entsize;
999 }
1000 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1001 flags |= SEC_STRINGS;
1002 if (hdr->sh_flags & SHF_GROUP)
1003 if (!setup_group (abfd, hdr, newsect))
1004 return FALSE;
1005 if ((hdr->sh_flags & SHF_TLS) != 0)
1006 flags |= SEC_THREAD_LOCAL;
1007 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1008 flags |= SEC_EXCLUDE;
1009
1010 if ((flags & SEC_ALLOC) == 0)
1011 {
1012 /* The debugging sections appear to be recognized only by name,
1013 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1014 if (name [0] == '.')
1015 {
1016 const char *p;
1017 int n;
1018 if (name[1] == 'd')
1019 p = ".debug", n = 6;
1020 else if (name[1] == 'g' && name[2] == 'n')
1021 p = ".gnu.linkonce.wi.", n = 17;
1022 else if (name[1] == 'g' && name[2] == 'd')
1023 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1024 else if (name[1] == 'l')
1025 p = ".line", n = 5;
1026 else if (name[1] == 's')
1027 p = ".stab", n = 5;
1028 else if (name[1] == 'z')
1029 p = ".zdebug", n = 7;
1030 else
1031 p = NULL, n = 0;
1032 if (p != NULL && strncmp (name, p, n) == 0)
1033 flags |= SEC_DEBUGGING;
1034 }
1035 }
1036
1037 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1038 only link a single copy of the section. This is used to support
1039 g++. g++ will emit each template expansion in its own section.
1040 The symbols will be defined as weak, so that multiple definitions
1041 are permitted. The GNU linker extension is to actually discard
1042 all but one of the sections. */
1043 if (CONST_STRNEQ (name, ".gnu.linkonce")
1044 && elf_next_in_group (newsect) == NULL)
1045 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1046
1047 bed = get_elf_backend_data (abfd);
1048 if (bed->elf_backend_section_flags)
1049 if (! bed->elf_backend_section_flags (&flags, hdr))
1050 return FALSE;
1051
1052 if (! bfd_set_section_flags (abfd, newsect, flags))
1053 return FALSE;
1054
1055 /* We do not parse the PT_NOTE segments as we are interested even in the
1056 separate debug info files which may have the segments offsets corrupted.
1057 PT_NOTEs from the core files are currently not parsed using BFD. */
1058 if (hdr->sh_type == SHT_NOTE)
1059 {
1060 bfd_byte *contents;
1061
1062 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1063 return FALSE;
1064
1065 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, hdr->sh_offset);
1066 free (contents);
1067 }
1068
1069 if ((flags & SEC_ALLOC) != 0)
1070 {
1071 Elf_Internal_Phdr *phdr;
1072 unsigned int i, nload;
1073
1074 /* Some ELF linkers produce binaries with all the program header
1075 p_paddr fields zero. If we have such a binary with more than
1076 one PT_LOAD header, then leave the section lma equal to vma
1077 so that we don't create sections with overlapping lma. */
1078 phdr = elf_tdata (abfd)->phdr;
1079 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1080 if (phdr->p_paddr != 0)
1081 break;
1082 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1083 ++nload;
1084 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1085 return TRUE;
1086
1087 phdr = elf_tdata (abfd)->phdr;
1088 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1089 {
1090 if (((phdr->p_type == PT_LOAD
1091 && (hdr->sh_flags & SHF_TLS) == 0)
1092 || phdr->p_type == PT_TLS)
1093 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1094 {
1095 if ((flags & SEC_LOAD) == 0)
1096 newsect->lma = (phdr->p_paddr
1097 + hdr->sh_addr - phdr->p_vaddr);
1098 else
1099 /* We used to use the same adjustment for SEC_LOAD
1100 sections, but that doesn't work if the segment
1101 is packed with code from multiple VMAs.
1102 Instead we calculate the section LMA based on
1103 the segment LMA. It is assumed that the
1104 segment will contain sections with contiguous
1105 LMAs, even if the VMAs are not. */
1106 newsect->lma = (phdr->p_paddr
1107 + hdr->sh_offset - phdr->p_offset);
1108
1109 /* With contiguous segments, we can't tell from file
1110 offsets whether a section with zero size should
1111 be placed at the end of one segment or the
1112 beginning of the next. Decide based on vaddr. */
1113 if (hdr->sh_addr >= phdr->p_vaddr
1114 && (hdr->sh_addr + hdr->sh_size
1115 <= phdr->p_vaddr + phdr->p_memsz))
1116 break;
1117 }
1118 }
1119 }
1120
1121 /* Compress/decompress DWARF debug sections with names: .debug_* and
1122 .zdebug_*, after the section flags is set. */
1123 if ((flags & SEC_DEBUGGING)
1124 && ((name[1] == 'd' && name[6] == '_')
1125 || (name[1] == 'z' && name[7] == '_')))
1126 {
1127 enum { nothing, compress, decompress } action = nothing;
1128 int compression_header_size;
1129 bfd_size_type uncompressed_size;
1130 bfd_boolean compressed
1131 = bfd_is_section_compressed_with_header (abfd, newsect,
1132 &compression_header_size,
1133 &uncompressed_size);
1134
1135 if (compressed)
1136 {
1137 /* Compressed section. Check if we should decompress. */
1138 if ((abfd->flags & BFD_DECOMPRESS))
1139 action = decompress;
1140 }
1141
1142 /* Compress the uncompressed section or convert from/to .zdebug*
1143 section. Check if we should compress. */
1144 if (action == nothing)
1145 {
1146 if (newsect->size != 0
1147 && (abfd->flags & BFD_COMPRESS)
1148 && compression_header_size >= 0
1149 && uncompressed_size > 0
1150 && (!compressed
1151 || ((compression_header_size > 0)
1152 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1153 action = compress;
1154 else
1155 return TRUE;
1156 }
1157
1158 if (action == compress)
1159 {
1160 if (!bfd_init_section_compress_status (abfd, newsect))
1161 {
1162 _bfd_error_handler
1163 /* xgettext:c-format */
1164 (_("%B: unable to initialize compress status for section %s"),
1165 abfd, name);
1166 return FALSE;
1167 }
1168 }
1169 else
1170 {
1171 if (!bfd_init_section_decompress_status (abfd, newsect))
1172 {
1173 _bfd_error_handler
1174 /* xgettext:c-format */
1175 (_("%B: unable to initialize decompress status for section %s"),
1176 abfd, name);
1177 return FALSE;
1178 }
1179 }
1180
1181 if (abfd->is_linker_input)
1182 {
1183 if (name[1] == 'z'
1184 && (action == decompress
1185 || (action == compress
1186 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1187 {
1188 /* Convert section name from .zdebug_* to .debug_* so
1189 that linker will consider this section as a debug
1190 section. */
1191 char *new_name = convert_zdebug_to_debug (abfd, name);
1192 if (new_name == NULL)
1193 return FALSE;
1194 bfd_rename_section (abfd, newsect, new_name);
1195 }
1196 }
1197 else
1198 /* For objdump, don't rename the section. For objcopy, delay
1199 section rename to elf_fake_sections. */
1200 newsect->flags |= SEC_ELF_RENAME;
1201 }
1202
1203 return TRUE;
1204 }
1205
1206 const char *const bfd_elf_section_type_names[] =
1207 {
1208 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1209 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1210 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1211 };
1212
1213 /* ELF relocs are against symbols. If we are producing relocatable
1214 output, and the reloc is against an external symbol, and nothing
1215 has given us any additional addend, the resulting reloc will also
1216 be against the same symbol. In such a case, we don't want to
1217 change anything about the way the reloc is handled, since it will
1218 all be done at final link time. Rather than put special case code
1219 into bfd_perform_relocation, all the reloc types use this howto
1220 function. It just short circuits the reloc if producing
1221 relocatable output against an external symbol. */
1222
1223 bfd_reloc_status_type
1224 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1225 arelent *reloc_entry,
1226 asymbol *symbol,
1227 void *data ATTRIBUTE_UNUSED,
1228 asection *input_section,
1229 bfd *output_bfd,
1230 char **error_message ATTRIBUTE_UNUSED)
1231 {
1232 if (output_bfd != NULL
1233 && (symbol->flags & BSF_SECTION_SYM) == 0
1234 && (! reloc_entry->howto->partial_inplace
1235 || reloc_entry->addend == 0))
1236 {
1237 reloc_entry->address += input_section->output_offset;
1238 return bfd_reloc_ok;
1239 }
1240
1241 return bfd_reloc_continue;
1242 }
1243 \f
1244 /* Returns TRUE if section A matches section B.
1245 Names, addresses and links may be different, but everything else
1246 should be the same. */
1247
1248 static bfd_boolean
1249 section_match (const Elf_Internal_Shdr * a,
1250 const Elf_Internal_Shdr * b)
1251 {
1252 return
1253 a->sh_type == b->sh_type
1254 && (a->sh_flags & ~ SHF_INFO_LINK)
1255 == (b->sh_flags & ~ SHF_INFO_LINK)
1256 && a->sh_addralign == b->sh_addralign
1257 && a->sh_size == b->sh_size
1258 && a->sh_entsize == b->sh_entsize
1259 /* FIXME: Check sh_addr ? */
1260 ;
1261 }
1262
1263 /* Find a section in OBFD that has the same characteristics
1264 as IHEADER. Return the index of this section or SHN_UNDEF if
1265 none can be found. Check's section HINT first, as this is likely
1266 to be the correct section. */
1267
1268 static unsigned int
1269 find_link (const bfd * obfd, const Elf_Internal_Shdr * iheader, const unsigned int hint)
1270 {
1271 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1272 unsigned int i;
1273
1274 BFD_ASSERT (iheader != NULL);
1275
1276 /* See PR 20922 for a reproducer of the NULL test. */
1277 if (oheaders[hint] != NULL
1278 && section_match (oheaders[hint], iheader))
1279 return hint;
1280
1281 for (i = 1; i < elf_numsections (obfd); i++)
1282 {
1283 Elf_Internal_Shdr * oheader = oheaders[i];
1284
1285 if (oheader == NULL)
1286 continue;
1287 if (section_match (oheader, iheader))
1288 /* FIXME: Do we care if there is a potential for
1289 multiple matches ? */
1290 return i;
1291 }
1292
1293 return SHN_UNDEF;
1294 }
1295
1296 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1297 Processor specific section, based upon a matching input section.
1298 Returns TRUE upon success, FALSE otherwise. */
1299
1300 static bfd_boolean
1301 copy_special_section_fields (const bfd *ibfd,
1302 bfd *obfd,
1303 const Elf_Internal_Shdr *iheader,
1304 Elf_Internal_Shdr *oheader,
1305 const unsigned int secnum)
1306 {
1307 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1308 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1309 bfd_boolean changed = FALSE;
1310 unsigned int sh_link;
1311
1312 if (oheader->sh_type == SHT_NOBITS)
1313 {
1314 /* This is a feature for objcopy --only-keep-debug:
1315 When a section's type is changed to NOBITS, we preserve
1316 the sh_link and sh_info fields so that they can be
1317 matched up with the original.
1318
1319 Note: Strictly speaking these assignments are wrong.
1320 The sh_link and sh_info fields should point to the
1321 relevent sections in the output BFD, which may not be in
1322 the same location as they were in the input BFD. But
1323 the whole point of this action is to preserve the
1324 original values of the sh_link and sh_info fields, so
1325 that they can be matched up with the section headers in
1326 the original file. So strictly speaking we may be
1327 creating an invalid ELF file, but it is only for a file
1328 that just contains debug info and only for sections
1329 without any contents. */
1330 if (oheader->sh_link == 0)
1331 oheader->sh_link = iheader->sh_link;
1332 if (oheader->sh_info == 0)
1333 oheader->sh_info = iheader->sh_info;
1334 return TRUE;
1335 }
1336
1337 /* Allow the target a chance to decide how these fields should be set. */
1338 if (bed->elf_backend_copy_special_section_fields != NULL
1339 && bed->elf_backend_copy_special_section_fields
1340 (ibfd, obfd, iheader, oheader))
1341 return TRUE;
1342
1343 /* We have an iheader which might match oheader, and which has non-zero
1344 sh_info and/or sh_link fields. Attempt to follow those links and find
1345 the section in the output bfd which corresponds to the linked section
1346 in the input bfd. */
1347 if (iheader->sh_link != SHN_UNDEF)
1348 {
1349 /* See PR 20931 for a reproducer. */
1350 if (iheader->sh_link >= elf_numsections (ibfd))
1351 {
1352 (* _bfd_error_handler)
1353 /* xgettext:c-format */
1354 (_("%B: Invalid sh_link field (%d) in section number %d"),
1355 ibfd, iheader->sh_link, secnum);
1356 return FALSE;
1357 }
1358
1359 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1360 if (sh_link != SHN_UNDEF)
1361 {
1362 oheader->sh_link = sh_link;
1363 changed = TRUE;
1364 }
1365 else
1366 /* FIXME: Should we install iheader->sh_link
1367 if we could not find a match ? */
1368 (* _bfd_error_handler)
1369 /* xgettext:c-format */
1370 (_("%B: Failed to find link section for section %d"), obfd, secnum);
1371 }
1372
1373 if (iheader->sh_info)
1374 {
1375 /* The sh_info field can hold arbitrary information, but if the
1376 SHF_LINK_INFO flag is set then it should be interpreted as a
1377 section index. */
1378 if (iheader->sh_flags & SHF_INFO_LINK)
1379 {
1380 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1381 iheader->sh_info);
1382 if (sh_link != SHN_UNDEF)
1383 oheader->sh_flags |= SHF_INFO_LINK;
1384 }
1385 else
1386 /* No idea what it means - just copy it. */
1387 sh_link = iheader->sh_info;
1388
1389 if (sh_link != SHN_UNDEF)
1390 {
1391 oheader->sh_info = sh_link;
1392 changed = TRUE;
1393 }
1394 else
1395 (* _bfd_error_handler)
1396 /* xgettext:c-format */
1397 (_("%B: Failed to find info section for section %d"), obfd, secnum);
1398 }
1399
1400 return changed;
1401 }
1402
1403 /* Copy the program header and other data from one object module to
1404 another. */
1405
1406 bfd_boolean
1407 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1408 {
1409 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1410 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1411 const struct elf_backend_data *bed;
1412 unsigned int i;
1413
1414 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1415 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1416 return TRUE;
1417
1418 if (!elf_flags_init (obfd))
1419 {
1420 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1421 elf_flags_init (obfd) = TRUE;
1422 }
1423
1424 elf_gp (obfd) = elf_gp (ibfd);
1425
1426 /* Also copy the EI_OSABI field. */
1427 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1428 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1429
1430 /* If set, copy the EI_ABIVERSION field. */
1431 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1432 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1433 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1434
1435 /* Copy object attributes. */
1436 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1437
1438 if (iheaders == NULL || oheaders == NULL)
1439 return TRUE;
1440
1441 bed = get_elf_backend_data (obfd);
1442
1443 /* Possibly copy other fields in the section header. */
1444 for (i = 1; i < elf_numsections (obfd); i++)
1445 {
1446 unsigned int j;
1447 Elf_Internal_Shdr * oheader = oheaders[i];
1448
1449 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1450 because of a special case need for generating separate debug info
1451 files. See below for more details. */
1452 if (oheader == NULL
1453 || (oheader->sh_type != SHT_NOBITS
1454 && oheader->sh_type < SHT_LOOS))
1455 continue;
1456
1457 /* Ignore empty sections, and sections whose
1458 fields have already been initialised. */
1459 if (oheader->sh_size == 0
1460 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1461 continue;
1462
1463 /* Scan for the matching section in the input bfd.
1464 First we try for a direct mapping between the input and output sections. */
1465 for (j = 1; j < elf_numsections (ibfd); j++)
1466 {
1467 const Elf_Internal_Shdr * iheader = iheaders[j];
1468
1469 if (iheader == NULL)
1470 continue;
1471
1472 if (oheader->bfd_section != NULL
1473 && iheader->bfd_section != NULL
1474 && iheader->bfd_section->output_section != NULL
1475 && iheader->bfd_section->output_section == oheader->bfd_section)
1476 {
1477 /* We have found a connection from the input section to the
1478 output section. Attempt to copy the header fields. If
1479 this fails then do not try any further sections - there
1480 should only be a one-to-one mapping between input and output. */
1481 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1482 j = elf_numsections (ibfd);
1483 break;
1484 }
1485 }
1486
1487 if (j < elf_numsections (ibfd))
1488 continue;
1489
1490 /* That failed. So try to deduce the corresponding input section.
1491 Unfortunately we cannot compare names as the output string table
1492 is empty, so instead we check size, address and type. */
1493 for (j = 1; j < elf_numsections (ibfd); j++)
1494 {
1495 const Elf_Internal_Shdr * iheader = iheaders[j];
1496
1497 if (iheader == NULL)
1498 continue;
1499
1500 /* Try matching fields in the input section's header.
1501 Since --only-keep-debug turns all non-debug sections into
1502 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1503 input type. */
1504 if ((oheader->sh_type == SHT_NOBITS
1505 || iheader->sh_type == oheader->sh_type)
1506 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1507 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1508 && iheader->sh_addralign == oheader->sh_addralign
1509 && iheader->sh_entsize == oheader->sh_entsize
1510 && iheader->sh_size == oheader->sh_size
1511 && iheader->sh_addr == oheader->sh_addr
1512 && (iheader->sh_info != oheader->sh_info
1513 || iheader->sh_link != oheader->sh_link))
1514 {
1515 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1516 break;
1517 }
1518 }
1519
1520 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1521 {
1522 /* Final attempt. Call the backend copy function
1523 with a NULL input section. */
1524 if (bed->elf_backend_copy_special_section_fields != NULL)
1525 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1526 }
1527 }
1528
1529 return TRUE;
1530 }
1531
1532 static const char *
1533 get_segment_type (unsigned int p_type)
1534 {
1535 const char *pt;
1536 switch (p_type)
1537 {
1538 case PT_NULL: pt = "NULL"; break;
1539 case PT_LOAD: pt = "LOAD"; break;
1540 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1541 case PT_INTERP: pt = "INTERP"; break;
1542 case PT_NOTE: pt = "NOTE"; break;
1543 case PT_SHLIB: pt = "SHLIB"; break;
1544 case PT_PHDR: pt = "PHDR"; break;
1545 case PT_TLS: pt = "TLS"; break;
1546 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1547 case PT_GNU_STACK: pt = "STACK"; break;
1548 case PT_GNU_RELRO: pt = "RELRO"; break;
1549 default: pt = NULL; break;
1550 }
1551 return pt;
1552 }
1553
1554 /* Print out the program headers. */
1555
1556 bfd_boolean
1557 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1558 {
1559 FILE *f = (FILE *) farg;
1560 Elf_Internal_Phdr *p;
1561 asection *s;
1562 bfd_byte *dynbuf = NULL;
1563
1564 p = elf_tdata (abfd)->phdr;
1565 if (p != NULL)
1566 {
1567 unsigned int i, c;
1568
1569 fprintf (f, _("\nProgram Header:\n"));
1570 c = elf_elfheader (abfd)->e_phnum;
1571 for (i = 0; i < c; i++, p++)
1572 {
1573 const char *pt = get_segment_type (p->p_type);
1574 char buf[20];
1575
1576 if (pt == NULL)
1577 {
1578 sprintf (buf, "0x%lx", p->p_type);
1579 pt = buf;
1580 }
1581 fprintf (f, "%8s off 0x", pt);
1582 bfd_fprintf_vma (abfd, f, p->p_offset);
1583 fprintf (f, " vaddr 0x");
1584 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1585 fprintf (f, " paddr 0x");
1586 bfd_fprintf_vma (abfd, f, p->p_paddr);
1587 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1588 fprintf (f, " filesz 0x");
1589 bfd_fprintf_vma (abfd, f, p->p_filesz);
1590 fprintf (f, " memsz 0x");
1591 bfd_fprintf_vma (abfd, f, p->p_memsz);
1592 fprintf (f, " flags %c%c%c",
1593 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1594 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1595 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1596 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1597 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1598 fprintf (f, "\n");
1599 }
1600 }
1601
1602 s = bfd_get_section_by_name (abfd, ".dynamic");
1603 if (s != NULL)
1604 {
1605 unsigned int elfsec;
1606 unsigned long shlink;
1607 bfd_byte *extdyn, *extdynend;
1608 size_t extdynsize;
1609 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1610
1611 fprintf (f, _("\nDynamic Section:\n"));
1612
1613 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1614 goto error_return;
1615
1616 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1617 if (elfsec == SHN_BAD)
1618 goto error_return;
1619 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1620
1621 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1622 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1623
1624 extdyn = dynbuf;
1625 /* PR 17512: file: 6f427532. */
1626 if (s->size < extdynsize)
1627 goto error_return;
1628 extdynend = extdyn + s->size;
1629 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1630 Fix range check. */
1631 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1632 {
1633 Elf_Internal_Dyn dyn;
1634 const char *name = "";
1635 char ab[20];
1636 bfd_boolean stringp;
1637 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1638
1639 (*swap_dyn_in) (abfd, extdyn, &dyn);
1640
1641 if (dyn.d_tag == DT_NULL)
1642 break;
1643
1644 stringp = FALSE;
1645 switch (dyn.d_tag)
1646 {
1647 default:
1648 if (bed->elf_backend_get_target_dtag)
1649 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1650
1651 if (!strcmp (name, ""))
1652 {
1653 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1654 name = ab;
1655 }
1656 break;
1657
1658 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1659 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1660 case DT_PLTGOT: name = "PLTGOT"; break;
1661 case DT_HASH: name = "HASH"; break;
1662 case DT_STRTAB: name = "STRTAB"; break;
1663 case DT_SYMTAB: name = "SYMTAB"; break;
1664 case DT_RELA: name = "RELA"; break;
1665 case DT_RELASZ: name = "RELASZ"; break;
1666 case DT_RELAENT: name = "RELAENT"; break;
1667 case DT_STRSZ: name = "STRSZ"; break;
1668 case DT_SYMENT: name = "SYMENT"; break;
1669 case DT_INIT: name = "INIT"; break;
1670 case DT_FINI: name = "FINI"; break;
1671 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1672 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1673 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1674 case DT_REL: name = "REL"; break;
1675 case DT_RELSZ: name = "RELSZ"; break;
1676 case DT_RELENT: name = "RELENT"; break;
1677 case DT_PLTREL: name = "PLTREL"; break;
1678 case DT_DEBUG: name = "DEBUG"; break;
1679 case DT_TEXTREL: name = "TEXTREL"; break;
1680 case DT_JMPREL: name = "JMPREL"; break;
1681 case DT_BIND_NOW: name = "BIND_NOW"; break;
1682 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1683 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1684 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1685 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1686 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1687 case DT_FLAGS: name = "FLAGS"; break;
1688 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1689 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1690 case DT_CHECKSUM: name = "CHECKSUM"; break;
1691 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1692 case DT_MOVEENT: name = "MOVEENT"; break;
1693 case DT_MOVESZ: name = "MOVESZ"; break;
1694 case DT_FEATURE: name = "FEATURE"; break;
1695 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1696 case DT_SYMINSZ: name = "SYMINSZ"; break;
1697 case DT_SYMINENT: name = "SYMINENT"; break;
1698 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1699 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1700 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1701 case DT_PLTPAD: name = "PLTPAD"; break;
1702 case DT_MOVETAB: name = "MOVETAB"; break;
1703 case DT_SYMINFO: name = "SYMINFO"; break;
1704 case DT_RELACOUNT: name = "RELACOUNT"; break;
1705 case DT_RELCOUNT: name = "RELCOUNT"; break;
1706 case DT_FLAGS_1: name = "FLAGS_1"; break;
1707 case DT_VERSYM: name = "VERSYM"; break;
1708 case DT_VERDEF: name = "VERDEF"; break;
1709 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1710 case DT_VERNEED: name = "VERNEED"; break;
1711 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1712 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1713 case DT_USED: name = "USED"; break;
1714 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1715 case DT_GNU_HASH: name = "GNU_HASH"; break;
1716 }
1717
1718 fprintf (f, " %-20s ", name);
1719 if (! stringp)
1720 {
1721 fprintf (f, "0x");
1722 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1723 }
1724 else
1725 {
1726 const char *string;
1727 unsigned int tagv = dyn.d_un.d_val;
1728
1729 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1730 if (string == NULL)
1731 goto error_return;
1732 fprintf (f, "%s", string);
1733 }
1734 fprintf (f, "\n");
1735 }
1736
1737 free (dynbuf);
1738 dynbuf = NULL;
1739 }
1740
1741 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1742 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1743 {
1744 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1745 return FALSE;
1746 }
1747
1748 if (elf_dynverdef (abfd) != 0)
1749 {
1750 Elf_Internal_Verdef *t;
1751
1752 fprintf (f, _("\nVersion definitions:\n"));
1753 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1754 {
1755 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1756 t->vd_flags, t->vd_hash,
1757 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1758 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1759 {
1760 Elf_Internal_Verdaux *a;
1761
1762 fprintf (f, "\t");
1763 for (a = t->vd_auxptr->vda_nextptr;
1764 a != NULL;
1765 a = a->vda_nextptr)
1766 fprintf (f, "%s ",
1767 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1768 fprintf (f, "\n");
1769 }
1770 }
1771 }
1772
1773 if (elf_dynverref (abfd) != 0)
1774 {
1775 Elf_Internal_Verneed *t;
1776
1777 fprintf (f, _("\nVersion References:\n"));
1778 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1779 {
1780 Elf_Internal_Vernaux *a;
1781
1782 fprintf (f, _(" required from %s:\n"),
1783 t->vn_filename ? t->vn_filename : "<corrupt>");
1784 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1785 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1786 a->vna_flags, a->vna_other,
1787 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1788 }
1789 }
1790
1791 return TRUE;
1792
1793 error_return:
1794 if (dynbuf != NULL)
1795 free (dynbuf);
1796 return FALSE;
1797 }
1798
1799 /* Get version string. */
1800
1801 const char *
1802 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1803 bfd_boolean *hidden)
1804 {
1805 const char *version_string = NULL;
1806 if (elf_dynversym (abfd) != 0
1807 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1808 {
1809 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1810
1811 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1812 vernum &= VERSYM_VERSION;
1813
1814 if (vernum == 0)
1815 version_string = "";
1816 else if (vernum == 1)
1817 version_string = "Base";
1818 else if (vernum <= elf_tdata (abfd)->cverdefs)
1819 version_string =
1820 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1821 else
1822 {
1823 Elf_Internal_Verneed *t;
1824
1825 version_string = "";
1826 for (t = elf_tdata (abfd)->verref;
1827 t != NULL;
1828 t = t->vn_nextref)
1829 {
1830 Elf_Internal_Vernaux *a;
1831
1832 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1833 {
1834 if (a->vna_other == vernum)
1835 {
1836 version_string = a->vna_nodename;
1837 break;
1838 }
1839 }
1840 }
1841 }
1842 }
1843 return version_string;
1844 }
1845
1846 /* Display ELF-specific fields of a symbol. */
1847
1848 void
1849 bfd_elf_print_symbol (bfd *abfd,
1850 void *filep,
1851 asymbol *symbol,
1852 bfd_print_symbol_type how)
1853 {
1854 FILE *file = (FILE *) filep;
1855 switch (how)
1856 {
1857 case bfd_print_symbol_name:
1858 fprintf (file, "%s", symbol->name);
1859 break;
1860 case bfd_print_symbol_more:
1861 fprintf (file, "elf ");
1862 bfd_fprintf_vma (abfd, file, symbol->value);
1863 fprintf (file, " %lx", (unsigned long) symbol->flags);
1864 break;
1865 case bfd_print_symbol_all:
1866 {
1867 const char *section_name;
1868 const char *name = NULL;
1869 const struct elf_backend_data *bed;
1870 unsigned char st_other;
1871 bfd_vma val;
1872 const char *version_string;
1873 bfd_boolean hidden;
1874
1875 section_name = symbol->section ? symbol->section->name : "(*none*)";
1876
1877 bed = get_elf_backend_data (abfd);
1878 if (bed->elf_backend_print_symbol_all)
1879 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1880
1881 if (name == NULL)
1882 {
1883 name = symbol->name;
1884 bfd_print_symbol_vandf (abfd, file, symbol);
1885 }
1886
1887 fprintf (file, " %s\t", section_name);
1888 /* Print the "other" value for a symbol. For common symbols,
1889 we've already printed the size; now print the alignment.
1890 For other symbols, we have no specified alignment, and
1891 we've printed the address; now print the size. */
1892 if (symbol->section && bfd_is_com_section (symbol->section))
1893 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1894 else
1895 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1896 bfd_fprintf_vma (abfd, file, val);
1897
1898 /* If we have version information, print it. */
1899 version_string = _bfd_elf_get_symbol_version_string (abfd,
1900 symbol,
1901 &hidden);
1902 if (version_string)
1903 {
1904 if (!hidden)
1905 fprintf (file, " %-11s", version_string);
1906 else
1907 {
1908 int i;
1909
1910 fprintf (file, " (%s)", version_string);
1911 for (i = 10 - strlen (version_string); i > 0; --i)
1912 putc (' ', file);
1913 }
1914 }
1915
1916 /* If the st_other field is not zero, print it. */
1917 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1918
1919 switch (st_other)
1920 {
1921 case 0: break;
1922 case STV_INTERNAL: fprintf (file, " .internal"); break;
1923 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1924 case STV_PROTECTED: fprintf (file, " .protected"); break;
1925 default:
1926 /* Some other non-defined flags are also present, so print
1927 everything hex. */
1928 fprintf (file, " 0x%02x", (unsigned int) st_other);
1929 }
1930
1931 fprintf (file, " %s", name);
1932 }
1933 break;
1934 }
1935 }
1936 \f
1937 /* ELF .o/exec file reading */
1938
1939 /* Create a new bfd section from an ELF section header. */
1940
1941 bfd_boolean
1942 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1943 {
1944 Elf_Internal_Shdr *hdr;
1945 Elf_Internal_Ehdr *ehdr;
1946 const struct elf_backend_data *bed;
1947 const char *name;
1948 bfd_boolean ret = TRUE;
1949 static bfd_boolean * sections_being_created = NULL;
1950 static bfd * sections_being_created_abfd = NULL;
1951 static unsigned int nesting = 0;
1952
1953 if (shindex >= elf_numsections (abfd))
1954 return FALSE;
1955
1956 if (++ nesting > 3)
1957 {
1958 /* PR17512: A corrupt ELF binary might contain a recursive group of
1959 sections, with each the string indicies pointing to the next in the
1960 loop. Detect this here, by refusing to load a section that we are
1961 already in the process of loading. We only trigger this test if
1962 we have nested at least three sections deep as normal ELF binaries
1963 can expect to recurse at least once.
1964
1965 FIXME: It would be better if this array was attached to the bfd,
1966 rather than being held in a static pointer. */
1967
1968 if (sections_being_created_abfd != abfd)
1969 sections_being_created = NULL;
1970 if (sections_being_created == NULL)
1971 {
1972 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1973 sections_being_created = (bfd_boolean *)
1974 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1975 sections_being_created_abfd = abfd;
1976 }
1977 if (sections_being_created [shindex])
1978 {
1979 _bfd_error_handler
1980 (_("%B: warning: loop in section dependencies detected"), abfd);
1981 return FALSE;
1982 }
1983 sections_being_created [shindex] = TRUE;
1984 }
1985
1986 hdr = elf_elfsections (abfd)[shindex];
1987 ehdr = elf_elfheader (abfd);
1988 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1989 hdr->sh_name);
1990 if (name == NULL)
1991 goto fail;
1992
1993 bed = get_elf_backend_data (abfd);
1994 switch (hdr->sh_type)
1995 {
1996 case SHT_NULL:
1997 /* Inactive section. Throw it away. */
1998 goto success;
1999
2000 case SHT_PROGBITS: /* Normal section with contents. */
2001 case SHT_NOBITS: /* .bss section. */
2002 case SHT_HASH: /* .hash section. */
2003 case SHT_NOTE: /* .note section. */
2004 case SHT_INIT_ARRAY: /* .init_array section. */
2005 case SHT_FINI_ARRAY: /* .fini_array section. */
2006 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2007 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2008 case SHT_GNU_HASH: /* .gnu.hash section. */
2009 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2010 goto success;
2011
2012 case SHT_DYNAMIC: /* Dynamic linking information. */
2013 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2014 goto fail;
2015
2016 if (hdr->sh_link > elf_numsections (abfd))
2017 {
2018 /* PR 10478: Accept Solaris binaries with a sh_link
2019 field set to SHN_BEFORE or SHN_AFTER. */
2020 switch (bfd_get_arch (abfd))
2021 {
2022 case bfd_arch_i386:
2023 case bfd_arch_sparc:
2024 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2025 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2026 break;
2027 /* Otherwise fall through. */
2028 default:
2029 goto fail;
2030 }
2031 }
2032 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2033 goto fail;
2034 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2035 {
2036 Elf_Internal_Shdr *dynsymhdr;
2037
2038 /* The shared libraries distributed with hpux11 have a bogus
2039 sh_link field for the ".dynamic" section. Find the
2040 string table for the ".dynsym" section instead. */
2041 if (elf_dynsymtab (abfd) != 0)
2042 {
2043 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2044 hdr->sh_link = dynsymhdr->sh_link;
2045 }
2046 else
2047 {
2048 unsigned int i, num_sec;
2049
2050 num_sec = elf_numsections (abfd);
2051 for (i = 1; i < num_sec; i++)
2052 {
2053 dynsymhdr = elf_elfsections (abfd)[i];
2054 if (dynsymhdr->sh_type == SHT_DYNSYM)
2055 {
2056 hdr->sh_link = dynsymhdr->sh_link;
2057 break;
2058 }
2059 }
2060 }
2061 }
2062 goto success;
2063
2064 case SHT_SYMTAB: /* A symbol table. */
2065 if (elf_onesymtab (abfd) == shindex)
2066 goto success;
2067
2068 if (hdr->sh_entsize != bed->s->sizeof_sym)
2069 goto fail;
2070
2071 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2072 {
2073 if (hdr->sh_size != 0)
2074 goto fail;
2075 /* Some assemblers erroneously set sh_info to one with a
2076 zero sh_size. ld sees this as a global symbol count
2077 of (unsigned) -1. Fix it here. */
2078 hdr->sh_info = 0;
2079 goto success;
2080 }
2081
2082 /* PR 18854: A binary might contain more than one symbol table.
2083 Unusual, but possible. Warn, but continue. */
2084 if (elf_onesymtab (abfd) != 0)
2085 {
2086 _bfd_error_handler
2087 /* xgettext:c-format */
2088 (_("%B: warning: multiple symbol tables detected - ignoring the table in section %u"),
2089 abfd, shindex);
2090 goto success;
2091 }
2092 elf_onesymtab (abfd) = shindex;
2093 elf_symtab_hdr (abfd) = *hdr;
2094 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2095 abfd->flags |= HAS_SYMS;
2096
2097 /* Sometimes a shared object will map in the symbol table. If
2098 SHF_ALLOC is set, and this is a shared object, then we also
2099 treat this section as a BFD section. We can not base the
2100 decision purely on SHF_ALLOC, because that flag is sometimes
2101 set in a relocatable object file, which would confuse the
2102 linker. */
2103 if ((hdr->sh_flags & SHF_ALLOC) != 0
2104 && (abfd->flags & DYNAMIC) != 0
2105 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2106 shindex))
2107 goto fail;
2108
2109 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2110 can't read symbols without that section loaded as well. It
2111 is most likely specified by the next section header. */
2112 {
2113 elf_section_list * entry;
2114 unsigned int i, num_sec;
2115
2116 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2117 if (entry->hdr.sh_link == shindex)
2118 goto success;
2119
2120 num_sec = elf_numsections (abfd);
2121 for (i = shindex + 1; i < num_sec; i++)
2122 {
2123 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2124
2125 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2126 && hdr2->sh_link == shindex)
2127 break;
2128 }
2129
2130 if (i == num_sec)
2131 for (i = 1; i < shindex; i++)
2132 {
2133 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2134
2135 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2136 && hdr2->sh_link == shindex)
2137 break;
2138 }
2139
2140 if (i != shindex)
2141 ret = bfd_section_from_shdr (abfd, i);
2142 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2143 goto success;
2144 }
2145
2146 case SHT_DYNSYM: /* A dynamic symbol table. */
2147 if (elf_dynsymtab (abfd) == shindex)
2148 goto success;
2149
2150 if (hdr->sh_entsize != bed->s->sizeof_sym)
2151 goto fail;
2152
2153 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2154 {
2155 if (hdr->sh_size != 0)
2156 goto fail;
2157
2158 /* Some linkers erroneously set sh_info to one with a
2159 zero sh_size. ld sees this as a global symbol count
2160 of (unsigned) -1. Fix it here. */
2161 hdr->sh_info = 0;
2162 goto success;
2163 }
2164
2165 /* PR 18854: A binary might contain more than one dynamic symbol table.
2166 Unusual, but possible. Warn, but continue. */
2167 if (elf_dynsymtab (abfd) != 0)
2168 {
2169 _bfd_error_handler
2170 /* xgettext:c-format */
2171 (_("%B: warning: multiple dynamic symbol tables detected - ignoring the table in section %u"),
2172 abfd, shindex);
2173 goto success;
2174 }
2175 elf_dynsymtab (abfd) = shindex;
2176 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2177 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2178 abfd->flags |= HAS_SYMS;
2179
2180 /* Besides being a symbol table, we also treat this as a regular
2181 section, so that objcopy can handle it. */
2182 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2183 goto success;
2184
2185 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2186 {
2187 elf_section_list * entry;
2188
2189 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2190 if (entry->ndx == shindex)
2191 goto success;
2192
2193 entry = bfd_alloc (abfd, sizeof * entry);
2194 if (entry == NULL)
2195 goto fail;
2196 entry->ndx = shindex;
2197 entry->hdr = * hdr;
2198 entry->next = elf_symtab_shndx_list (abfd);
2199 elf_symtab_shndx_list (abfd) = entry;
2200 elf_elfsections (abfd)[shindex] = & entry->hdr;
2201 goto success;
2202 }
2203
2204 case SHT_STRTAB: /* A string table. */
2205 if (hdr->bfd_section != NULL)
2206 goto success;
2207
2208 if (ehdr->e_shstrndx == shindex)
2209 {
2210 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2211 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2212 goto success;
2213 }
2214
2215 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2216 {
2217 symtab_strtab:
2218 elf_tdata (abfd)->strtab_hdr = *hdr;
2219 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2220 goto success;
2221 }
2222
2223 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2224 {
2225 dynsymtab_strtab:
2226 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2227 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2228 elf_elfsections (abfd)[shindex] = hdr;
2229 /* We also treat this as a regular section, so that objcopy
2230 can handle it. */
2231 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2232 shindex);
2233 goto success;
2234 }
2235
2236 /* If the string table isn't one of the above, then treat it as a
2237 regular section. We need to scan all the headers to be sure,
2238 just in case this strtab section appeared before the above. */
2239 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2240 {
2241 unsigned int i, num_sec;
2242
2243 num_sec = elf_numsections (abfd);
2244 for (i = 1; i < num_sec; i++)
2245 {
2246 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2247 if (hdr2->sh_link == shindex)
2248 {
2249 /* Prevent endless recursion on broken objects. */
2250 if (i == shindex)
2251 goto fail;
2252 if (! bfd_section_from_shdr (abfd, i))
2253 goto fail;
2254 if (elf_onesymtab (abfd) == i)
2255 goto symtab_strtab;
2256 if (elf_dynsymtab (abfd) == i)
2257 goto dynsymtab_strtab;
2258 }
2259 }
2260 }
2261 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2262 goto success;
2263
2264 case SHT_REL:
2265 case SHT_RELA:
2266 /* *These* do a lot of work -- but build no sections! */
2267 {
2268 asection *target_sect;
2269 Elf_Internal_Shdr *hdr2, **p_hdr;
2270 unsigned int num_sec = elf_numsections (abfd);
2271 struct bfd_elf_section_data *esdt;
2272
2273 if (hdr->sh_entsize
2274 != (bfd_size_type) (hdr->sh_type == SHT_REL
2275 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2276 goto fail;
2277
2278 /* Check for a bogus link to avoid crashing. */
2279 if (hdr->sh_link >= num_sec)
2280 {
2281 _bfd_error_handler
2282 /* xgettext:c-format */
2283 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2284 abfd, hdr->sh_link, name, shindex);
2285 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2286 shindex);
2287 goto success;
2288 }
2289
2290 /* For some incomprehensible reason Oracle distributes
2291 libraries for Solaris in which some of the objects have
2292 bogus sh_link fields. It would be nice if we could just
2293 reject them, but, unfortunately, some people need to use
2294 them. We scan through the section headers; if we find only
2295 one suitable symbol table, we clobber the sh_link to point
2296 to it. I hope this doesn't break anything.
2297
2298 Don't do it on executable nor shared library. */
2299 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2300 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2301 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2302 {
2303 unsigned int scan;
2304 int found;
2305
2306 found = 0;
2307 for (scan = 1; scan < num_sec; scan++)
2308 {
2309 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2310 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2311 {
2312 if (found != 0)
2313 {
2314 found = 0;
2315 break;
2316 }
2317 found = scan;
2318 }
2319 }
2320 if (found != 0)
2321 hdr->sh_link = found;
2322 }
2323
2324 /* Get the symbol table. */
2325 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2326 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2327 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2328 goto fail;
2329
2330 /* If this reloc section does not use the main symbol table we
2331 don't treat it as a reloc section. BFD can't adequately
2332 represent such a section, so at least for now, we don't
2333 try. We just present it as a normal section. We also
2334 can't use it as a reloc section if it points to the null
2335 section, an invalid section, another reloc section, or its
2336 sh_link points to the null section. */
2337 if (hdr->sh_link != elf_onesymtab (abfd)
2338 || hdr->sh_link == SHN_UNDEF
2339 || hdr->sh_info == SHN_UNDEF
2340 || hdr->sh_info >= num_sec
2341 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2342 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2343 {
2344 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2345 shindex);
2346 goto success;
2347 }
2348
2349 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2350 goto fail;
2351
2352 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2353 if (target_sect == NULL)
2354 goto fail;
2355
2356 esdt = elf_section_data (target_sect);
2357 if (hdr->sh_type == SHT_RELA)
2358 p_hdr = &esdt->rela.hdr;
2359 else
2360 p_hdr = &esdt->rel.hdr;
2361
2362 /* PR 17512: file: 0b4f81b7. */
2363 if (*p_hdr != NULL)
2364 goto fail;
2365 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2366 if (hdr2 == NULL)
2367 goto fail;
2368 *hdr2 = *hdr;
2369 *p_hdr = hdr2;
2370 elf_elfsections (abfd)[shindex] = hdr2;
2371 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2372 target_sect->flags |= SEC_RELOC;
2373 target_sect->relocation = NULL;
2374 target_sect->rel_filepos = hdr->sh_offset;
2375 /* In the section to which the relocations apply, mark whether
2376 its relocations are of the REL or RELA variety. */
2377 if (hdr->sh_size != 0)
2378 {
2379 if (hdr->sh_type == SHT_RELA)
2380 target_sect->use_rela_p = 1;
2381 }
2382 abfd->flags |= HAS_RELOC;
2383 goto success;
2384 }
2385
2386 case SHT_GNU_verdef:
2387 elf_dynverdef (abfd) = shindex;
2388 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2389 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2390 goto success;
2391
2392 case SHT_GNU_versym:
2393 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2394 goto fail;
2395
2396 elf_dynversym (abfd) = shindex;
2397 elf_tdata (abfd)->dynversym_hdr = *hdr;
2398 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2399 goto success;
2400
2401 case SHT_GNU_verneed:
2402 elf_dynverref (abfd) = shindex;
2403 elf_tdata (abfd)->dynverref_hdr = *hdr;
2404 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2405 goto success;
2406
2407 case SHT_SHLIB:
2408 goto success;
2409
2410 case SHT_GROUP:
2411 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2412 goto fail;
2413
2414 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2415 goto fail;
2416
2417 if (hdr->contents != NULL)
2418 {
2419 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2420 unsigned int n_elt = hdr->sh_size / sizeof (* idx);
2421 asection *s;
2422
2423 if (n_elt == 0)
2424 goto fail;
2425 if (idx->flags & GRP_COMDAT)
2426 hdr->bfd_section->flags
2427 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2428
2429 /* We try to keep the same section order as it comes in. */
2430 idx += n_elt;
2431
2432 while (--n_elt != 0)
2433 {
2434 --idx;
2435
2436 if (idx->shdr != NULL
2437 && (s = idx->shdr->bfd_section) != NULL
2438 && elf_next_in_group (s) != NULL)
2439 {
2440 elf_next_in_group (hdr->bfd_section) = s;
2441 break;
2442 }
2443 }
2444 }
2445 goto success;
2446
2447 default:
2448 /* Possibly an attributes section. */
2449 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2450 || hdr->sh_type == bed->obj_attrs_section_type)
2451 {
2452 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2453 goto fail;
2454 _bfd_elf_parse_attributes (abfd, hdr);
2455 goto success;
2456 }
2457
2458 /* Check for any processor-specific section types. */
2459 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2460 goto success;
2461
2462 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2463 {
2464 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2465 /* FIXME: How to properly handle allocated section reserved
2466 for applications? */
2467 _bfd_error_handler
2468 /* xgettext:c-format */
2469 (_("%B: don't know how to handle allocated, application "
2470 "specific section `%s' [0x%8x]"),
2471 abfd, name, hdr->sh_type);
2472 else
2473 {
2474 /* Allow sections reserved for applications. */
2475 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2476 shindex);
2477 goto success;
2478 }
2479 }
2480 else if (hdr->sh_type >= SHT_LOPROC
2481 && hdr->sh_type <= SHT_HIPROC)
2482 /* FIXME: We should handle this section. */
2483 _bfd_error_handler
2484 /* xgettext:c-format */
2485 (_("%B: don't know how to handle processor specific section "
2486 "`%s' [0x%8x]"),
2487 abfd, name, hdr->sh_type);
2488 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2489 {
2490 /* Unrecognised OS-specific sections. */
2491 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2492 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2493 required to correctly process the section and the file should
2494 be rejected with an error message. */
2495 _bfd_error_handler
2496 /* xgettext:c-format */
2497 (_("%B: don't know how to handle OS specific section "
2498 "`%s' [0x%8x]"),
2499 abfd, name, hdr->sh_type);
2500 else
2501 {
2502 /* Otherwise it should be processed. */
2503 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2504 goto success;
2505 }
2506 }
2507 else
2508 /* FIXME: We should handle this section. */
2509 _bfd_error_handler
2510 /* xgettext:c-format */
2511 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2512 abfd, name, hdr->sh_type);
2513
2514 goto fail;
2515 }
2516
2517 fail:
2518 ret = FALSE;
2519 success:
2520 if (sections_being_created && sections_being_created_abfd == abfd)
2521 sections_being_created [shindex] = FALSE;
2522 if (-- nesting == 0)
2523 {
2524 sections_being_created = NULL;
2525 sections_being_created_abfd = abfd;
2526 }
2527 return ret;
2528 }
2529
2530 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2531
2532 Elf_Internal_Sym *
2533 bfd_sym_from_r_symndx (struct sym_cache *cache,
2534 bfd *abfd,
2535 unsigned long r_symndx)
2536 {
2537 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2538
2539 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2540 {
2541 Elf_Internal_Shdr *symtab_hdr;
2542 unsigned char esym[sizeof (Elf64_External_Sym)];
2543 Elf_External_Sym_Shndx eshndx;
2544
2545 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2546 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2547 &cache->sym[ent], esym, &eshndx) == NULL)
2548 return NULL;
2549
2550 if (cache->abfd != abfd)
2551 {
2552 memset (cache->indx, -1, sizeof (cache->indx));
2553 cache->abfd = abfd;
2554 }
2555 cache->indx[ent] = r_symndx;
2556 }
2557
2558 return &cache->sym[ent];
2559 }
2560
2561 /* Given an ELF section number, retrieve the corresponding BFD
2562 section. */
2563
2564 asection *
2565 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2566 {
2567 if (sec_index >= elf_numsections (abfd))
2568 return NULL;
2569 return elf_elfsections (abfd)[sec_index]->bfd_section;
2570 }
2571
2572 static const struct bfd_elf_special_section special_sections_b[] =
2573 {
2574 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2575 { NULL, 0, 0, 0, 0 }
2576 };
2577
2578 static const struct bfd_elf_special_section special_sections_c[] =
2579 {
2580 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2581 { NULL, 0, 0, 0, 0 }
2582 };
2583
2584 static const struct bfd_elf_special_section special_sections_d[] =
2585 {
2586 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2587 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2588 /* There are more DWARF sections than these, but they needn't be added here
2589 unless you have to cope with broken compilers that don't emit section
2590 attributes or you want to help the user writing assembler. */
2591 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2592 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2593 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2594 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2595 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2596 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2597 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2598 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2599 { NULL, 0, 0, 0, 0 }
2600 };
2601
2602 static const struct bfd_elf_special_section special_sections_f[] =
2603 {
2604 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2605 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2606 { NULL, 0, 0, 0, 0 }
2607 };
2608
2609 static const struct bfd_elf_special_section special_sections_g[] =
2610 {
2611 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2612 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2613 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2614 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2615 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2616 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2617 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2618 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2619 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2620 { NULL, 0, 0, 0, 0 }
2621 };
2622
2623 static const struct bfd_elf_special_section special_sections_h[] =
2624 {
2625 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2626 { NULL, 0, 0, 0, 0 }
2627 };
2628
2629 static const struct bfd_elf_special_section special_sections_i[] =
2630 {
2631 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2632 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2633 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2634 { NULL, 0, 0, 0, 0 }
2635 };
2636
2637 static const struct bfd_elf_special_section special_sections_l[] =
2638 {
2639 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2640 { NULL, 0, 0, 0, 0 }
2641 };
2642
2643 static const struct bfd_elf_special_section special_sections_n[] =
2644 {
2645 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2646 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2647 { NULL, 0, 0, 0, 0 }
2648 };
2649
2650 static const struct bfd_elf_special_section special_sections_p[] =
2651 {
2652 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2653 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2654 { NULL, 0, 0, 0, 0 }
2655 };
2656
2657 static const struct bfd_elf_special_section special_sections_r[] =
2658 {
2659 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2660 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2661 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2662 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2663 { NULL, 0, 0, 0, 0 }
2664 };
2665
2666 static const struct bfd_elf_special_section special_sections_s[] =
2667 {
2668 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2669 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2670 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2671 /* See struct bfd_elf_special_section declaration for the semantics of
2672 this special case where .prefix_length != strlen (.prefix). */
2673 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2674 { NULL, 0, 0, 0, 0 }
2675 };
2676
2677 static const struct bfd_elf_special_section special_sections_t[] =
2678 {
2679 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2680 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2681 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2682 { NULL, 0, 0, 0, 0 }
2683 };
2684
2685 static const struct bfd_elf_special_section special_sections_z[] =
2686 {
2687 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2688 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2689 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2690 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2691 { NULL, 0, 0, 0, 0 }
2692 };
2693
2694 static const struct bfd_elf_special_section * const special_sections[] =
2695 {
2696 special_sections_b, /* 'b' */
2697 special_sections_c, /* 'c' */
2698 special_sections_d, /* 'd' */
2699 NULL, /* 'e' */
2700 special_sections_f, /* 'f' */
2701 special_sections_g, /* 'g' */
2702 special_sections_h, /* 'h' */
2703 special_sections_i, /* 'i' */
2704 NULL, /* 'j' */
2705 NULL, /* 'k' */
2706 special_sections_l, /* 'l' */
2707 NULL, /* 'm' */
2708 special_sections_n, /* 'n' */
2709 NULL, /* 'o' */
2710 special_sections_p, /* 'p' */
2711 NULL, /* 'q' */
2712 special_sections_r, /* 'r' */
2713 special_sections_s, /* 's' */
2714 special_sections_t, /* 't' */
2715 NULL, /* 'u' */
2716 NULL, /* 'v' */
2717 NULL, /* 'w' */
2718 NULL, /* 'x' */
2719 NULL, /* 'y' */
2720 special_sections_z /* 'z' */
2721 };
2722
2723 const struct bfd_elf_special_section *
2724 _bfd_elf_get_special_section (const char *name,
2725 const struct bfd_elf_special_section *spec,
2726 unsigned int rela)
2727 {
2728 int i;
2729 int len;
2730
2731 len = strlen (name);
2732
2733 for (i = 0; spec[i].prefix != NULL; i++)
2734 {
2735 int suffix_len;
2736 int prefix_len = spec[i].prefix_length;
2737
2738 if (len < prefix_len)
2739 continue;
2740 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2741 continue;
2742
2743 suffix_len = spec[i].suffix_length;
2744 if (suffix_len <= 0)
2745 {
2746 if (name[prefix_len] != 0)
2747 {
2748 if (suffix_len == 0)
2749 continue;
2750 if (name[prefix_len] != '.'
2751 && (suffix_len == -2
2752 || (rela && spec[i].type == SHT_REL)))
2753 continue;
2754 }
2755 }
2756 else
2757 {
2758 if (len < prefix_len + suffix_len)
2759 continue;
2760 if (memcmp (name + len - suffix_len,
2761 spec[i].prefix + prefix_len,
2762 suffix_len) != 0)
2763 continue;
2764 }
2765 return &spec[i];
2766 }
2767
2768 return NULL;
2769 }
2770
2771 const struct bfd_elf_special_section *
2772 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2773 {
2774 int i;
2775 const struct bfd_elf_special_section *spec;
2776 const struct elf_backend_data *bed;
2777
2778 /* See if this is one of the special sections. */
2779 if (sec->name == NULL)
2780 return NULL;
2781
2782 bed = get_elf_backend_data (abfd);
2783 spec = bed->special_sections;
2784 if (spec)
2785 {
2786 spec = _bfd_elf_get_special_section (sec->name,
2787 bed->special_sections,
2788 sec->use_rela_p);
2789 if (spec != NULL)
2790 return spec;
2791 }
2792
2793 if (sec->name[0] != '.')
2794 return NULL;
2795
2796 i = sec->name[1] - 'b';
2797 if (i < 0 || i > 'z' - 'b')
2798 return NULL;
2799
2800 spec = special_sections[i];
2801
2802 if (spec == NULL)
2803 return NULL;
2804
2805 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2806 }
2807
2808 bfd_boolean
2809 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2810 {
2811 struct bfd_elf_section_data *sdata;
2812 const struct elf_backend_data *bed;
2813 const struct bfd_elf_special_section *ssect;
2814
2815 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2816 if (sdata == NULL)
2817 {
2818 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2819 sizeof (*sdata));
2820 if (sdata == NULL)
2821 return FALSE;
2822 sec->used_by_bfd = sdata;
2823 }
2824
2825 /* Indicate whether or not this section should use RELA relocations. */
2826 bed = get_elf_backend_data (abfd);
2827 sec->use_rela_p = bed->default_use_rela_p;
2828
2829 /* When we read a file, we don't need to set ELF section type and
2830 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2831 anyway. We will set ELF section type and flags for all linker
2832 created sections. If user specifies BFD section flags, we will
2833 set ELF section type and flags based on BFD section flags in
2834 elf_fake_sections. Special handling for .init_array/.fini_array
2835 output sections since they may contain .ctors/.dtors input
2836 sections. We don't want _bfd_elf_init_private_section_data to
2837 copy ELF section type from .ctors/.dtors input sections. */
2838 if (abfd->direction != read_direction
2839 || (sec->flags & SEC_LINKER_CREATED) != 0)
2840 {
2841 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2842 if (ssect != NULL
2843 && (!sec->flags
2844 || (sec->flags & SEC_LINKER_CREATED) != 0
2845 || ssect->type == SHT_INIT_ARRAY
2846 || ssect->type == SHT_FINI_ARRAY))
2847 {
2848 elf_section_type (sec) = ssect->type;
2849 elf_section_flags (sec) = ssect->attr;
2850 }
2851 }
2852
2853 return _bfd_generic_new_section_hook (abfd, sec);
2854 }
2855
2856 /* Create a new bfd section from an ELF program header.
2857
2858 Since program segments have no names, we generate a synthetic name
2859 of the form segment<NUM>, where NUM is generally the index in the
2860 program header table. For segments that are split (see below) we
2861 generate the names segment<NUM>a and segment<NUM>b.
2862
2863 Note that some program segments may have a file size that is different than
2864 (less than) the memory size. All this means is that at execution the
2865 system must allocate the amount of memory specified by the memory size,
2866 but only initialize it with the first "file size" bytes read from the
2867 file. This would occur for example, with program segments consisting
2868 of combined data+bss.
2869
2870 To handle the above situation, this routine generates TWO bfd sections
2871 for the single program segment. The first has the length specified by
2872 the file size of the segment, and the second has the length specified
2873 by the difference between the two sizes. In effect, the segment is split
2874 into its initialized and uninitialized parts.
2875
2876 */
2877
2878 bfd_boolean
2879 _bfd_elf_make_section_from_phdr (bfd *abfd,
2880 Elf_Internal_Phdr *hdr,
2881 int hdr_index,
2882 const char *type_name)
2883 {
2884 asection *newsect;
2885 char *name;
2886 char namebuf[64];
2887 size_t len;
2888 int split;
2889
2890 split = ((hdr->p_memsz > 0)
2891 && (hdr->p_filesz > 0)
2892 && (hdr->p_memsz > hdr->p_filesz));
2893
2894 if (hdr->p_filesz > 0)
2895 {
2896 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2897 len = strlen (namebuf) + 1;
2898 name = (char *) bfd_alloc (abfd, len);
2899 if (!name)
2900 return FALSE;
2901 memcpy (name, namebuf, len);
2902 newsect = bfd_make_section (abfd, name);
2903 if (newsect == NULL)
2904 return FALSE;
2905 newsect->vma = hdr->p_vaddr;
2906 newsect->lma = hdr->p_paddr;
2907 newsect->size = hdr->p_filesz;
2908 newsect->filepos = hdr->p_offset;
2909 newsect->flags |= SEC_HAS_CONTENTS;
2910 newsect->alignment_power = bfd_log2 (hdr->p_align);
2911 if (hdr->p_type == PT_LOAD)
2912 {
2913 newsect->flags |= SEC_ALLOC;
2914 newsect->flags |= SEC_LOAD;
2915 if (hdr->p_flags & PF_X)
2916 {
2917 /* FIXME: all we known is that it has execute PERMISSION,
2918 may be data. */
2919 newsect->flags |= SEC_CODE;
2920 }
2921 }
2922 if (!(hdr->p_flags & PF_W))
2923 {
2924 newsect->flags |= SEC_READONLY;
2925 }
2926 }
2927
2928 if (hdr->p_memsz > hdr->p_filesz)
2929 {
2930 bfd_vma align;
2931
2932 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2933 len = strlen (namebuf) + 1;
2934 name = (char *) bfd_alloc (abfd, len);
2935 if (!name)
2936 return FALSE;
2937 memcpy (name, namebuf, len);
2938 newsect = bfd_make_section (abfd, name);
2939 if (newsect == NULL)
2940 return FALSE;
2941 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2942 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2943 newsect->size = hdr->p_memsz - hdr->p_filesz;
2944 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2945 align = newsect->vma & -newsect->vma;
2946 if (align == 0 || align > hdr->p_align)
2947 align = hdr->p_align;
2948 newsect->alignment_power = bfd_log2 (align);
2949 if (hdr->p_type == PT_LOAD)
2950 {
2951 /* Hack for gdb. Segments that have not been modified do
2952 not have their contents written to a core file, on the
2953 assumption that a debugger can find the contents in the
2954 executable. We flag this case by setting the fake
2955 section size to zero. Note that "real" bss sections will
2956 always have their contents dumped to the core file. */
2957 if (bfd_get_format (abfd) == bfd_core)
2958 newsect->size = 0;
2959 newsect->flags |= SEC_ALLOC;
2960 if (hdr->p_flags & PF_X)
2961 newsect->flags |= SEC_CODE;
2962 }
2963 if (!(hdr->p_flags & PF_W))
2964 newsect->flags |= SEC_READONLY;
2965 }
2966
2967 return TRUE;
2968 }
2969
2970 bfd_boolean
2971 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2972 {
2973 const struct elf_backend_data *bed;
2974
2975 switch (hdr->p_type)
2976 {
2977 case PT_NULL:
2978 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2979
2980 case PT_LOAD:
2981 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2982
2983 case PT_DYNAMIC:
2984 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2985
2986 case PT_INTERP:
2987 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2988
2989 case PT_NOTE:
2990 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2991 return FALSE;
2992 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2993 return FALSE;
2994 return TRUE;
2995
2996 case PT_SHLIB:
2997 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2998
2999 case PT_PHDR:
3000 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3001
3002 case PT_GNU_EH_FRAME:
3003 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3004 "eh_frame_hdr");
3005
3006 case PT_GNU_STACK:
3007 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3008
3009 case PT_GNU_RELRO:
3010 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3011
3012 default:
3013 /* Check for any processor-specific program segment types. */
3014 bed = get_elf_backend_data (abfd);
3015 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3016 }
3017 }
3018
3019 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3020 REL or RELA. */
3021
3022 Elf_Internal_Shdr *
3023 _bfd_elf_single_rel_hdr (asection *sec)
3024 {
3025 if (elf_section_data (sec)->rel.hdr)
3026 {
3027 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3028 return elf_section_data (sec)->rel.hdr;
3029 }
3030 else
3031 return elf_section_data (sec)->rela.hdr;
3032 }
3033
3034 static bfd_boolean
3035 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3036 Elf_Internal_Shdr *rel_hdr,
3037 const char *sec_name,
3038 bfd_boolean use_rela_p)
3039 {
3040 char *name = (char *) bfd_alloc (abfd,
3041 sizeof ".rela" + strlen (sec_name));
3042 if (name == NULL)
3043 return FALSE;
3044
3045 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3046 rel_hdr->sh_name =
3047 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3048 FALSE);
3049 if (rel_hdr->sh_name == (unsigned int) -1)
3050 return FALSE;
3051
3052 return TRUE;
3053 }
3054
3055 /* Allocate and initialize a section-header for a new reloc section,
3056 containing relocations against ASECT. It is stored in RELDATA. If
3057 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3058 relocations. */
3059
3060 static bfd_boolean
3061 _bfd_elf_init_reloc_shdr (bfd *abfd,
3062 struct bfd_elf_section_reloc_data *reldata,
3063 const char *sec_name,
3064 bfd_boolean use_rela_p,
3065 bfd_boolean delay_st_name_p)
3066 {
3067 Elf_Internal_Shdr *rel_hdr;
3068 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3069
3070 BFD_ASSERT (reldata->hdr == NULL);
3071 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3072 reldata->hdr = rel_hdr;
3073
3074 if (delay_st_name_p)
3075 rel_hdr->sh_name = (unsigned int) -1;
3076 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3077 use_rela_p))
3078 return FALSE;
3079 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3080 rel_hdr->sh_entsize = (use_rela_p
3081 ? bed->s->sizeof_rela
3082 : bed->s->sizeof_rel);
3083 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3084 rel_hdr->sh_flags = 0;
3085 rel_hdr->sh_addr = 0;
3086 rel_hdr->sh_size = 0;
3087 rel_hdr->sh_offset = 0;
3088
3089 return TRUE;
3090 }
3091
3092 /* Return the default section type based on the passed in section flags. */
3093
3094 int
3095 bfd_elf_get_default_section_type (flagword flags)
3096 {
3097 if ((flags & SEC_ALLOC) != 0
3098 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3099 return SHT_NOBITS;
3100 return SHT_PROGBITS;
3101 }
3102
3103 struct fake_section_arg
3104 {
3105 struct bfd_link_info *link_info;
3106 bfd_boolean failed;
3107 };
3108
3109 /* Set up an ELF internal section header for a section. */
3110
3111 static void
3112 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3113 {
3114 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3115 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3116 struct bfd_elf_section_data *esd = elf_section_data (asect);
3117 Elf_Internal_Shdr *this_hdr;
3118 unsigned int sh_type;
3119 const char *name = asect->name;
3120 bfd_boolean delay_st_name_p = FALSE;
3121
3122 if (arg->failed)
3123 {
3124 /* We already failed; just get out of the bfd_map_over_sections
3125 loop. */
3126 return;
3127 }
3128
3129 this_hdr = &esd->this_hdr;
3130
3131 if (arg->link_info)
3132 {
3133 /* ld: compress DWARF debug sections with names: .debug_*. */
3134 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3135 && (asect->flags & SEC_DEBUGGING)
3136 && name[1] == 'd'
3137 && name[6] == '_')
3138 {
3139 /* Set SEC_ELF_COMPRESS to indicate this section should be
3140 compressed. */
3141 asect->flags |= SEC_ELF_COMPRESS;
3142
3143 /* If this section will be compressed, delay adding section
3144 name to section name section after it is compressed in
3145 _bfd_elf_assign_file_positions_for_non_load. */
3146 delay_st_name_p = TRUE;
3147 }
3148 }
3149 else if ((asect->flags & SEC_ELF_RENAME))
3150 {
3151 /* objcopy: rename output DWARF debug section. */
3152 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3153 {
3154 /* When we decompress or compress with SHF_COMPRESSED,
3155 convert section name from .zdebug_* to .debug_* if
3156 needed. */
3157 if (name[1] == 'z')
3158 {
3159 char *new_name = convert_zdebug_to_debug (abfd, name);
3160 if (new_name == NULL)
3161 {
3162 arg->failed = TRUE;
3163 return;
3164 }
3165 name = new_name;
3166 }
3167 }
3168 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3169 {
3170 /* PR binutils/18087: Compression does not always make a
3171 section smaller. So only rename the section when
3172 compression has actually taken place. If input section
3173 name is .zdebug_*, we should never compress it again. */
3174 char *new_name = convert_debug_to_zdebug (abfd, name);
3175 if (new_name == NULL)
3176 {
3177 arg->failed = TRUE;
3178 return;
3179 }
3180 BFD_ASSERT (name[1] != 'z');
3181 name = new_name;
3182 }
3183 }
3184
3185 if (delay_st_name_p)
3186 this_hdr->sh_name = (unsigned int) -1;
3187 else
3188 {
3189 this_hdr->sh_name
3190 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3191 name, FALSE);
3192 if (this_hdr->sh_name == (unsigned int) -1)
3193 {
3194 arg->failed = TRUE;
3195 return;
3196 }
3197 }
3198
3199 /* Don't clear sh_flags. Assembler may set additional bits. */
3200
3201 if ((asect->flags & SEC_ALLOC) != 0
3202 || asect->user_set_vma)
3203 this_hdr->sh_addr = asect->vma;
3204 else
3205 this_hdr->sh_addr = 0;
3206
3207 this_hdr->sh_offset = 0;
3208 this_hdr->sh_size = asect->size;
3209 this_hdr->sh_link = 0;
3210 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3211 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3212 {
3213 _bfd_error_handler
3214 /* xgettext:c-format */
3215 (_("%B: error: Alignment power %d of section `%A' is too big"),
3216 abfd, asect, asect->alignment_power);
3217 arg->failed = TRUE;
3218 return;
3219 }
3220 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3221 /* The sh_entsize and sh_info fields may have been set already by
3222 copy_private_section_data. */
3223
3224 this_hdr->bfd_section = asect;
3225 this_hdr->contents = NULL;
3226
3227 /* If the section type is unspecified, we set it based on
3228 asect->flags. */
3229 if ((asect->flags & SEC_GROUP) != 0)
3230 sh_type = SHT_GROUP;
3231 else
3232 sh_type = bfd_elf_get_default_section_type (asect->flags);
3233
3234 if (this_hdr->sh_type == SHT_NULL)
3235 this_hdr->sh_type = sh_type;
3236 else if (this_hdr->sh_type == SHT_NOBITS
3237 && sh_type == SHT_PROGBITS
3238 && (asect->flags & SEC_ALLOC) != 0)
3239 {
3240 /* Warn if we are changing a NOBITS section to PROGBITS, but
3241 allow the link to proceed. This can happen when users link
3242 non-bss input sections to bss output sections, or emit data
3243 to a bss output section via a linker script. */
3244 _bfd_error_handler
3245 (_("warning: section `%A' type changed to PROGBITS"), asect);
3246 this_hdr->sh_type = sh_type;
3247 }
3248
3249 switch (this_hdr->sh_type)
3250 {
3251 default:
3252 break;
3253
3254 case SHT_STRTAB:
3255 case SHT_NOTE:
3256 case SHT_NOBITS:
3257 case SHT_PROGBITS:
3258 break;
3259
3260 case SHT_INIT_ARRAY:
3261 case SHT_FINI_ARRAY:
3262 case SHT_PREINIT_ARRAY:
3263 this_hdr->sh_entsize = bed->s->arch_size / 8;
3264 break;
3265
3266 case SHT_HASH:
3267 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3268 break;
3269
3270 case SHT_DYNSYM:
3271 this_hdr->sh_entsize = bed->s->sizeof_sym;
3272 break;
3273
3274 case SHT_DYNAMIC:
3275 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3276 break;
3277
3278 case SHT_RELA:
3279 if (get_elf_backend_data (abfd)->may_use_rela_p)
3280 this_hdr->sh_entsize = bed->s->sizeof_rela;
3281 break;
3282
3283 case SHT_REL:
3284 if (get_elf_backend_data (abfd)->may_use_rel_p)
3285 this_hdr->sh_entsize = bed->s->sizeof_rel;
3286 break;
3287
3288 case SHT_GNU_versym:
3289 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3290 break;
3291
3292 case SHT_GNU_verdef:
3293 this_hdr->sh_entsize = 0;
3294 /* objcopy or strip will copy over sh_info, but may not set
3295 cverdefs. The linker will set cverdefs, but sh_info will be
3296 zero. */
3297 if (this_hdr->sh_info == 0)
3298 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3299 else
3300 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3301 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3302 break;
3303
3304 case SHT_GNU_verneed:
3305 this_hdr->sh_entsize = 0;
3306 /* objcopy or strip will copy over sh_info, but may not set
3307 cverrefs. The linker will set cverrefs, but sh_info will be
3308 zero. */
3309 if (this_hdr->sh_info == 0)
3310 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3311 else
3312 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3313 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3314 break;
3315
3316 case SHT_GROUP:
3317 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3318 break;
3319
3320 case SHT_GNU_HASH:
3321 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3322 break;
3323 }
3324
3325 if ((asect->flags & SEC_ALLOC) != 0)
3326 this_hdr->sh_flags |= SHF_ALLOC;
3327 if ((asect->flags & SEC_READONLY) == 0)
3328 this_hdr->sh_flags |= SHF_WRITE;
3329 if ((asect->flags & SEC_CODE) != 0)
3330 this_hdr->sh_flags |= SHF_EXECINSTR;
3331 if ((asect->flags & SEC_MERGE) != 0)
3332 {
3333 this_hdr->sh_flags |= SHF_MERGE;
3334 this_hdr->sh_entsize = asect->entsize;
3335 }
3336 if ((asect->flags & SEC_STRINGS) != 0)
3337 this_hdr->sh_flags |= SHF_STRINGS;
3338 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3339 this_hdr->sh_flags |= SHF_GROUP;
3340 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3341 {
3342 this_hdr->sh_flags |= SHF_TLS;
3343 if (asect->size == 0
3344 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3345 {
3346 struct bfd_link_order *o = asect->map_tail.link_order;
3347
3348 this_hdr->sh_size = 0;
3349 if (o != NULL)
3350 {
3351 this_hdr->sh_size = o->offset + o->size;
3352 if (this_hdr->sh_size != 0)
3353 this_hdr->sh_type = SHT_NOBITS;
3354 }
3355 }
3356 }
3357 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3358 this_hdr->sh_flags |= SHF_EXCLUDE;
3359
3360 /* If the section has relocs, set up a section header for the
3361 SHT_REL[A] section. If two relocation sections are required for
3362 this section, it is up to the processor-specific back-end to
3363 create the other. */
3364 if ((asect->flags & SEC_RELOC) != 0)
3365 {
3366 /* When doing a relocatable link, create both REL and RELA sections if
3367 needed. */
3368 if (arg->link_info
3369 /* Do the normal setup if we wouldn't create any sections here. */
3370 && esd->rel.count + esd->rela.count > 0
3371 && (bfd_link_relocatable (arg->link_info)
3372 || arg->link_info->emitrelocations))
3373 {
3374 if (esd->rel.count && esd->rel.hdr == NULL
3375 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE,
3376 delay_st_name_p))
3377 {
3378 arg->failed = TRUE;
3379 return;
3380 }
3381 if (esd->rela.count && esd->rela.hdr == NULL
3382 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE,
3383 delay_st_name_p))
3384 {
3385 arg->failed = TRUE;
3386 return;
3387 }
3388 }
3389 else if (!_bfd_elf_init_reloc_shdr (abfd,
3390 (asect->use_rela_p
3391 ? &esd->rela : &esd->rel),
3392 name,
3393 asect->use_rela_p,
3394 delay_st_name_p))
3395 arg->failed = TRUE;
3396 }
3397
3398 /* Check for processor-specific section types. */
3399 sh_type = this_hdr->sh_type;
3400 if (bed->elf_backend_fake_sections
3401 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3402 arg->failed = TRUE;
3403
3404 if (sh_type == SHT_NOBITS && asect->size != 0)
3405 {
3406 /* Don't change the header type from NOBITS if we are being
3407 called for objcopy --only-keep-debug. */
3408 this_hdr->sh_type = sh_type;
3409 }
3410 }
3411
3412 /* Fill in the contents of a SHT_GROUP section. Called from
3413 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3414 when ELF targets use the generic linker, ld. Called for ld -r
3415 from bfd_elf_final_link. */
3416
3417 void
3418 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3419 {
3420 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3421 asection *elt, *first;
3422 unsigned char *loc;
3423 bfd_boolean gas;
3424
3425 /* Ignore linker created group section. See elfNN_ia64_object_p in
3426 elfxx-ia64.c. */
3427 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3428 || *failedptr)
3429 return;
3430
3431 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3432 {
3433 unsigned long symindx = 0;
3434
3435 /* elf_group_id will have been set up by objcopy and the
3436 generic linker. */
3437 if (elf_group_id (sec) != NULL)
3438 symindx = elf_group_id (sec)->udata.i;
3439
3440 if (symindx == 0)
3441 {
3442 /* If called from the assembler, swap_out_syms will have set up
3443 elf_section_syms. */
3444 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3445 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3446 }
3447 elf_section_data (sec)->this_hdr.sh_info = symindx;
3448 }
3449 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3450 {
3451 /* The ELF backend linker sets sh_info to -2 when the group
3452 signature symbol is global, and thus the index can't be
3453 set until all local symbols are output. */
3454 asection *igroup;
3455 struct bfd_elf_section_data *sec_data;
3456 unsigned long symndx;
3457 unsigned long extsymoff;
3458 struct elf_link_hash_entry *h;
3459
3460 /* The point of this little dance to the first SHF_GROUP section
3461 then back to the SHT_GROUP section is that this gets us to
3462 the SHT_GROUP in the input object. */
3463 igroup = elf_sec_group (elf_next_in_group (sec));
3464 sec_data = elf_section_data (igroup);
3465 symndx = sec_data->this_hdr.sh_info;
3466 extsymoff = 0;
3467 if (!elf_bad_symtab (igroup->owner))
3468 {
3469 Elf_Internal_Shdr *symtab_hdr;
3470
3471 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3472 extsymoff = symtab_hdr->sh_info;
3473 }
3474 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3475 while (h->root.type == bfd_link_hash_indirect
3476 || h->root.type == bfd_link_hash_warning)
3477 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3478
3479 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3480 }
3481
3482 /* The contents won't be allocated for "ld -r" or objcopy. */
3483 gas = TRUE;
3484 if (sec->contents == NULL)
3485 {
3486 gas = FALSE;
3487 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3488
3489 /* Arrange for the section to be written out. */
3490 elf_section_data (sec)->this_hdr.contents = sec->contents;
3491 if (sec->contents == NULL)
3492 {
3493 *failedptr = TRUE;
3494 return;
3495 }
3496 }
3497
3498 loc = sec->contents + sec->size;
3499
3500 /* Get the pointer to the first section in the group that gas
3501 squirreled away here. objcopy arranges for this to be set to the
3502 start of the input section group. */
3503 first = elt = elf_next_in_group (sec);
3504
3505 /* First element is a flag word. Rest of section is elf section
3506 indices for all the sections of the group. Write them backwards
3507 just to keep the group in the same order as given in .section
3508 directives, not that it matters. */
3509 while (elt != NULL)
3510 {
3511 asection *s;
3512
3513 s = elt;
3514 if (!gas)
3515 s = s->output_section;
3516 if (s != NULL
3517 && !bfd_is_abs_section (s))
3518 {
3519 unsigned int idx = elf_section_data (s)->this_idx;
3520
3521 loc -= 4;
3522 H_PUT_32 (abfd, idx, loc);
3523 }
3524 elt = elf_next_in_group (elt);
3525 if (elt == first)
3526 break;
3527 }
3528
3529 if ((loc -= 4) != sec->contents)
3530 abort ();
3531
3532 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3533 }
3534
3535 /* Return the section which RELOC_SEC applies to. */
3536
3537 asection *
3538 _bfd_elf_get_reloc_section (asection *reloc_sec)
3539 {
3540 const char *name;
3541 unsigned int type;
3542 bfd *abfd;
3543
3544 if (reloc_sec == NULL)
3545 return NULL;
3546
3547 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3548 if (type != SHT_REL && type != SHT_RELA)
3549 return NULL;
3550
3551 /* We look up the section the relocs apply to by name. */
3552 name = reloc_sec->name;
3553 if (type == SHT_REL)
3554 name += 4;
3555 else
3556 name += 5;
3557
3558 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3559 section apply to .got.plt section. */
3560 abfd = reloc_sec->owner;
3561 if (get_elf_backend_data (abfd)->want_got_plt
3562 && strcmp (name, ".plt") == 0)
3563 {
3564 /* .got.plt is a linker created input section. It may be mapped
3565 to some other output section. Try two likely sections. */
3566 name = ".got.plt";
3567 reloc_sec = bfd_get_section_by_name (abfd, name);
3568 if (reloc_sec != NULL)
3569 return reloc_sec;
3570 name = ".got";
3571 }
3572
3573 reloc_sec = bfd_get_section_by_name (abfd, name);
3574 return reloc_sec;
3575 }
3576
3577 /* Assign all ELF section numbers. The dummy first section is handled here
3578 too. The link/info pointers for the standard section types are filled
3579 in here too, while we're at it. */
3580
3581 static bfd_boolean
3582 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3583 {
3584 struct elf_obj_tdata *t = elf_tdata (abfd);
3585 asection *sec;
3586 unsigned int section_number;
3587 Elf_Internal_Shdr **i_shdrp;
3588 struct bfd_elf_section_data *d;
3589 bfd_boolean need_symtab;
3590
3591 section_number = 1;
3592
3593 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3594
3595 /* SHT_GROUP sections are in relocatable files only. */
3596 if (link_info == NULL || bfd_link_relocatable (link_info))
3597 {
3598 size_t reloc_count = 0;
3599
3600 /* Put SHT_GROUP sections first. */
3601 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3602 {
3603 d = elf_section_data (sec);
3604
3605 if (d->this_hdr.sh_type == SHT_GROUP)
3606 {
3607 if (sec->flags & SEC_LINKER_CREATED)
3608 {
3609 /* Remove the linker created SHT_GROUP sections. */
3610 bfd_section_list_remove (abfd, sec);
3611 abfd->section_count--;
3612 }
3613 else
3614 d->this_idx = section_number++;
3615 }
3616
3617 /* Count relocations. */
3618 reloc_count += sec->reloc_count;
3619 }
3620
3621 /* Clear HAS_RELOC if there are no relocations. */
3622 if (reloc_count == 0)
3623 abfd->flags &= ~HAS_RELOC;
3624 }
3625
3626 for (sec = abfd->sections; sec; sec = sec->next)
3627 {
3628 d = elf_section_data (sec);
3629
3630 if (d->this_hdr.sh_type != SHT_GROUP)
3631 d->this_idx = section_number++;
3632 if (d->this_hdr.sh_name != (unsigned int) -1)
3633 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3634 if (d->rel.hdr)
3635 {
3636 d->rel.idx = section_number++;
3637 if (d->rel.hdr->sh_name != (unsigned int) -1)
3638 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3639 }
3640 else
3641 d->rel.idx = 0;
3642
3643 if (d->rela.hdr)
3644 {
3645 d->rela.idx = section_number++;
3646 if (d->rela.hdr->sh_name != (unsigned int) -1)
3647 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3648 }
3649 else
3650 d->rela.idx = 0;
3651 }
3652
3653 need_symtab = (bfd_get_symcount (abfd) > 0
3654 || (link_info == NULL
3655 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3656 == HAS_RELOC)));
3657 if (need_symtab)
3658 {
3659 elf_onesymtab (abfd) = section_number++;
3660 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3661 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3662 {
3663 elf_section_list * entry;
3664
3665 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3666
3667 entry = bfd_zalloc (abfd, sizeof * entry);
3668 entry->ndx = section_number++;
3669 elf_symtab_shndx_list (abfd) = entry;
3670 entry->hdr.sh_name
3671 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3672 ".symtab_shndx", FALSE);
3673 if (entry->hdr.sh_name == (unsigned int) -1)
3674 return FALSE;
3675 }
3676 elf_strtab_sec (abfd) = section_number++;
3677 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3678 }
3679
3680 elf_shstrtab_sec (abfd) = section_number++;
3681 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3682 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3683
3684 if (section_number >= SHN_LORESERVE)
3685 {
3686 /* xgettext:c-format */
3687 _bfd_error_handler (_("%B: too many sections: %u"),
3688 abfd, section_number);
3689 return FALSE;
3690 }
3691
3692 elf_numsections (abfd) = section_number;
3693 elf_elfheader (abfd)->e_shnum = section_number;
3694
3695 /* Set up the list of section header pointers, in agreement with the
3696 indices. */
3697 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3698 sizeof (Elf_Internal_Shdr *));
3699 if (i_shdrp == NULL)
3700 return FALSE;
3701
3702 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3703 sizeof (Elf_Internal_Shdr));
3704 if (i_shdrp[0] == NULL)
3705 {
3706 bfd_release (abfd, i_shdrp);
3707 return FALSE;
3708 }
3709
3710 elf_elfsections (abfd) = i_shdrp;
3711
3712 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3713 if (need_symtab)
3714 {
3715 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3716 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3717 {
3718 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3719 BFD_ASSERT (entry != NULL);
3720 i_shdrp[entry->ndx] = & entry->hdr;
3721 entry->hdr.sh_link = elf_onesymtab (abfd);
3722 }
3723 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3724 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3725 }
3726
3727 for (sec = abfd->sections; sec; sec = sec->next)
3728 {
3729 asection *s;
3730
3731 d = elf_section_data (sec);
3732
3733 i_shdrp[d->this_idx] = &d->this_hdr;
3734 if (d->rel.idx != 0)
3735 i_shdrp[d->rel.idx] = d->rel.hdr;
3736 if (d->rela.idx != 0)
3737 i_shdrp[d->rela.idx] = d->rela.hdr;
3738
3739 /* Fill in the sh_link and sh_info fields while we're at it. */
3740
3741 /* sh_link of a reloc section is the section index of the symbol
3742 table. sh_info is the section index of the section to which
3743 the relocation entries apply. */
3744 if (d->rel.idx != 0)
3745 {
3746 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3747 d->rel.hdr->sh_info = d->this_idx;
3748 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3749 }
3750 if (d->rela.idx != 0)
3751 {
3752 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3753 d->rela.hdr->sh_info = d->this_idx;
3754 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3755 }
3756
3757 /* We need to set up sh_link for SHF_LINK_ORDER. */
3758 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3759 {
3760 s = elf_linked_to_section (sec);
3761 if (s)
3762 {
3763 /* elf_linked_to_section points to the input section. */
3764 if (link_info != NULL)
3765 {
3766 /* Check discarded linkonce section. */
3767 if (discarded_section (s))
3768 {
3769 asection *kept;
3770 _bfd_error_handler
3771 /* xgettext:c-format */
3772 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3773 abfd, d->this_hdr.bfd_section,
3774 s, s->owner);
3775 /* Point to the kept section if it has the same
3776 size as the discarded one. */
3777 kept = _bfd_elf_check_kept_section (s, link_info);
3778 if (kept == NULL)
3779 {
3780 bfd_set_error (bfd_error_bad_value);
3781 return FALSE;
3782 }
3783 s = kept;
3784 }
3785
3786 s = s->output_section;
3787 BFD_ASSERT (s != NULL);
3788 }
3789 else
3790 {
3791 /* Handle objcopy. */
3792 if (s->output_section == NULL)
3793 {
3794 _bfd_error_handler
3795 /* xgettext:c-format */
3796 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3797 abfd, d->this_hdr.bfd_section, s, s->owner);
3798 bfd_set_error (bfd_error_bad_value);
3799 return FALSE;
3800 }
3801 s = s->output_section;
3802 }
3803 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3804 }
3805 else
3806 {
3807 /* PR 290:
3808 The Intel C compiler generates SHT_IA_64_UNWIND with
3809 SHF_LINK_ORDER. But it doesn't set the sh_link or
3810 sh_info fields. Hence we could get the situation
3811 where s is NULL. */
3812 const struct elf_backend_data *bed
3813 = get_elf_backend_data (abfd);
3814 if (bed->link_order_error_handler)
3815 bed->link_order_error_handler
3816 /* xgettext:c-format */
3817 (_("%B: warning: sh_link not set for section `%A'"),
3818 abfd, sec);
3819 }
3820 }
3821
3822 switch (d->this_hdr.sh_type)
3823 {
3824 case SHT_REL:
3825 case SHT_RELA:
3826 /* A reloc section which we are treating as a normal BFD
3827 section. sh_link is the section index of the symbol
3828 table. sh_info is the section index of the section to
3829 which the relocation entries apply. We assume that an
3830 allocated reloc section uses the dynamic symbol table.
3831 FIXME: How can we be sure? */
3832 s = bfd_get_section_by_name (abfd, ".dynsym");
3833 if (s != NULL)
3834 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3835
3836 s = get_elf_backend_data (abfd)->get_reloc_section (sec);
3837 if (s != NULL)
3838 {
3839 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3840 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3841 }
3842 break;
3843
3844 case SHT_STRTAB:
3845 /* We assume that a section named .stab*str is a stabs
3846 string section. We look for a section with the same name
3847 but without the trailing ``str'', and set its sh_link
3848 field to point to this section. */
3849 if (CONST_STRNEQ (sec->name, ".stab")
3850 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3851 {
3852 size_t len;
3853 char *alc;
3854
3855 len = strlen (sec->name);
3856 alc = (char *) bfd_malloc (len - 2);
3857 if (alc == NULL)
3858 return FALSE;
3859 memcpy (alc, sec->name, len - 3);
3860 alc[len - 3] = '\0';
3861 s = bfd_get_section_by_name (abfd, alc);
3862 free (alc);
3863 if (s != NULL)
3864 {
3865 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3866
3867 /* This is a .stab section. */
3868 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3869 elf_section_data (s)->this_hdr.sh_entsize
3870 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3871 }
3872 }
3873 break;
3874
3875 case SHT_DYNAMIC:
3876 case SHT_DYNSYM:
3877 case SHT_GNU_verneed:
3878 case SHT_GNU_verdef:
3879 /* sh_link is the section header index of the string table
3880 used for the dynamic entries, or the symbol table, or the
3881 version strings. */
3882 s = bfd_get_section_by_name (abfd, ".dynstr");
3883 if (s != NULL)
3884 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3885 break;
3886
3887 case SHT_GNU_LIBLIST:
3888 /* sh_link is the section header index of the prelink library
3889 list used for the dynamic entries, or the symbol table, or
3890 the version strings. */
3891 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3892 ? ".dynstr" : ".gnu.libstr");
3893 if (s != NULL)
3894 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3895 break;
3896
3897 case SHT_HASH:
3898 case SHT_GNU_HASH:
3899 case SHT_GNU_versym:
3900 /* sh_link is the section header index of the symbol table
3901 this hash table or version table is for. */
3902 s = bfd_get_section_by_name (abfd, ".dynsym");
3903 if (s != NULL)
3904 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3905 break;
3906
3907 case SHT_GROUP:
3908 d->this_hdr.sh_link = elf_onesymtab (abfd);
3909 }
3910 }
3911
3912 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3913 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3914 debug section name from .debug_* to .zdebug_* if needed. */
3915
3916 return TRUE;
3917 }
3918
3919 static bfd_boolean
3920 sym_is_global (bfd *abfd, asymbol *sym)
3921 {
3922 /* If the backend has a special mapping, use it. */
3923 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3924 if (bed->elf_backend_sym_is_global)
3925 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3926
3927 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3928 || bfd_is_und_section (bfd_get_section (sym))
3929 || bfd_is_com_section (bfd_get_section (sym)));
3930 }
3931
3932 /* Filter global symbols of ABFD to include in the import library. All
3933 SYMCOUNT symbols of ABFD can be examined from their pointers in
3934 SYMS. Pointers of symbols to keep should be stored contiguously at
3935 the beginning of that array.
3936
3937 Returns the number of symbols to keep. */
3938
3939 unsigned int
3940 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
3941 asymbol **syms, long symcount)
3942 {
3943 long src_count, dst_count = 0;
3944
3945 for (src_count = 0; src_count < symcount; src_count++)
3946 {
3947 asymbol *sym = syms[src_count];
3948 char *name = (char *) bfd_asymbol_name (sym);
3949 struct bfd_link_hash_entry *h;
3950
3951 if (!sym_is_global (abfd, sym))
3952 continue;
3953
3954 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
3955 if (h == NULL)
3956 continue;
3957 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
3958 continue;
3959 if (h->linker_def || h->ldscript_def)
3960 continue;
3961
3962 syms[dst_count++] = sym;
3963 }
3964
3965 syms[dst_count] = NULL;
3966
3967 return dst_count;
3968 }
3969
3970 /* Don't output section symbols for sections that are not going to be
3971 output, that are duplicates or there is no BFD section. */
3972
3973 static bfd_boolean
3974 ignore_section_sym (bfd *abfd, asymbol *sym)
3975 {
3976 elf_symbol_type *type_ptr;
3977
3978 if ((sym->flags & BSF_SECTION_SYM) == 0)
3979 return FALSE;
3980
3981 type_ptr = elf_symbol_from (abfd, sym);
3982 return ((type_ptr != NULL
3983 && type_ptr->internal_elf_sym.st_shndx != 0
3984 && bfd_is_abs_section (sym->section))
3985 || !(sym->section->owner == abfd
3986 || (sym->section->output_section->owner == abfd
3987 && sym->section->output_offset == 0)
3988 || bfd_is_abs_section (sym->section)));
3989 }
3990
3991 /* Map symbol from it's internal number to the external number, moving
3992 all local symbols to be at the head of the list. */
3993
3994 static bfd_boolean
3995 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3996 {
3997 unsigned int symcount = bfd_get_symcount (abfd);
3998 asymbol **syms = bfd_get_outsymbols (abfd);
3999 asymbol **sect_syms;
4000 unsigned int num_locals = 0;
4001 unsigned int num_globals = 0;
4002 unsigned int num_locals2 = 0;
4003 unsigned int num_globals2 = 0;
4004 unsigned int max_index = 0;
4005 unsigned int idx;
4006 asection *asect;
4007 asymbol **new_syms;
4008
4009 #ifdef DEBUG
4010 fprintf (stderr, "elf_map_symbols\n");
4011 fflush (stderr);
4012 #endif
4013
4014 for (asect = abfd->sections; asect; asect = asect->next)
4015 {
4016 if (max_index < asect->index)
4017 max_index = asect->index;
4018 }
4019
4020 max_index++;
4021 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4022 if (sect_syms == NULL)
4023 return FALSE;
4024 elf_section_syms (abfd) = sect_syms;
4025 elf_num_section_syms (abfd) = max_index;
4026
4027 /* Init sect_syms entries for any section symbols we have already
4028 decided to output. */
4029 for (idx = 0; idx < symcount; idx++)
4030 {
4031 asymbol *sym = syms[idx];
4032
4033 if ((sym->flags & BSF_SECTION_SYM) != 0
4034 && sym->value == 0
4035 && !ignore_section_sym (abfd, sym)
4036 && !bfd_is_abs_section (sym->section))
4037 {
4038 asection *sec = sym->section;
4039
4040 if (sec->owner != abfd)
4041 sec = sec->output_section;
4042
4043 sect_syms[sec->index] = syms[idx];
4044 }
4045 }
4046
4047 /* Classify all of the symbols. */
4048 for (idx = 0; idx < symcount; idx++)
4049 {
4050 if (sym_is_global (abfd, syms[idx]))
4051 num_globals++;
4052 else if (!ignore_section_sym (abfd, syms[idx]))
4053 num_locals++;
4054 }
4055
4056 /* We will be adding a section symbol for each normal BFD section. Most
4057 sections will already have a section symbol in outsymbols, but
4058 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4059 at least in that case. */
4060 for (asect = abfd->sections; asect; asect = asect->next)
4061 {
4062 if (sect_syms[asect->index] == NULL)
4063 {
4064 if (!sym_is_global (abfd, asect->symbol))
4065 num_locals++;
4066 else
4067 num_globals++;
4068 }
4069 }
4070
4071 /* Now sort the symbols so the local symbols are first. */
4072 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4073 sizeof (asymbol *));
4074
4075 if (new_syms == NULL)
4076 return FALSE;
4077
4078 for (idx = 0; idx < symcount; idx++)
4079 {
4080 asymbol *sym = syms[idx];
4081 unsigned int i;
4082
4083 if (sym_is_global (abfd, sym))
4084 i = num_locals + num_globals2++;
4085 else if (!ignore_section_sym (abfd, sym))
4086 i = num_locals2++;
4087 else
4088 continue;
4089 new_syms[i] = sym;
4090 sym->udata.i = i + 1;
4091 }
4092 for (asect = abfd->sections; asect; asect = asect->next)
4093 {
4094 if (sect_syms[asect->index] == NULL)
4095 {
4096 asymbol *sym = asect->symbol;
4097 unsigned int i;
4098
4099 sect_syms[asect->index] = sym;
4100 if (!sym_is_global (abfd, sym))
4101 i = num_locals2++;
4102 else
4103 i = num_locals + num_globals2++;
4104 new_syms[i] = sym;
4105 sym->udata.i = i + 1;
4106 }
4107 }
4108
4109 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4110
4111 *pnum_locals = num_locals;
4112 return TRUE;
4113 }
4114
4115 /* Align to the maximum file alignment that could be required for any
4116 ELF data structure. */
4117
4118 static inline file_ptr
4119 align_file_position (file_ptr off, int align)
4120 {
4121 return (off + align - 1) & ~(align - 1);
4122 }
4123
4124 /* Assign a file position to a section, optionally aligning to the
4125 required section alignment. */
4126
4127 file_ptr
4128 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4129 file_ptr offset,
4130 bfd_boolean align)
4131 {
4132 if (align && i_shdrp->sh_addralign > 1)
4133 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4134 i_shdrp->sh_offset = offset;
4135 if (i_shdrp->bfd_section != NULL)
4136 i_shdrp->bfd_section->filepos = offset;
4137 if (i_shdrp->sh_type != SHT_NOBITS)
4138 offset += i_shdrp->sh_size;
4139 return offset;
4140 }
4141
4142 /* Compute the file positions we are going to put the sections at, and
4143 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4144 is not NULL, this is being called by the ELF backend linker. */
4145
4146 bfd_boolean
4147 _bfd_elf_compute_section_file_positions (bfd *abfd,
4148 struct bfd_link_info *link_info)
4149 {
4150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4151 struct fake_section_arg fsargs;
4152 bfd_boolean failed;
4153 struct elf_strtab_hash *strtab = NULL;
4154 Elf_Internal_Shdr *shstrtab_hdr;
4155 bfd_boolean need_symtab;
4156
4157 if (abfd->output_has_begun)
4158 return TRUE;
4159
4160 /* Do any elf backend specific processing first. */
4161 if (bed->elf_backend_begin_write_processing)
4162 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4163
4164 if (! prep_headers (abfd))
4165 return FALSE;
4166
4167 /* Post process the headers if necessary. */
4168 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4169
4170 fsargs.failed = FALSE;
4171 fsargs.link_info = link_info;
4172 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4173 if (fsargs.failed)
4174 return FALSE;
4175
4176 if (!assign_section_numbers (abfd, link_info))
4177 return FALSE;
4178
4179 /* The backend linker builds symbol table information itself. */
4180 need_symtab = (link_info == NULL
4181 && (bfd_get_symcount (abfd) > 0
4182 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4183 == HAS_RELOC)));
4184 if (need_symtab)
4185 {
4186 /* Non-zero if doing a relocatable link. */
4187 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4188
4189 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4190 return FALSE;
4191 }
4192
4193 failed = FALSE;
4194 if (link_info == NULL)
4195 {
4196 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4197 if (failed)
4198 return FALSE;
4199 }
4200
4201 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4202 /* sh_name was set in prep_headers. */
4203 shstrtab_hdr->sh_type = SHT_STRTAB;
4204 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4205 shstrtab_hdr->sh_addr = 0;
4206 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4207 shstrtab_hdr->sh_entsize = 0;
4208 shstrtab_hdr->sh_link = 0;
4209 shstrtab_hdr->sh_info = 0;
4210 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4211 shstrtab_hdr->sh_addralign = 1;
4212
4213 if (!assign_file_positions_except_relocs (abfd, link_info))
4214 return FALSE;
4215
4216 if (need_symtab)
4217 {
4218 file_ptr off;
4219 Elf_Internal_Shdr *hdr;
4220
4221 off = elf_next_file_pos (abfd);
4222
4223 hdr = & elf_symtab_hdr (abfd);
4224 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4225
4226 if (elf_symtab_shndx_list (abfd) != NULL)
4227 {
4228 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4229 if (hdr->sh_size != 0)
4230 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4231 /* FIXME: What about other symtab_shndx sections in the list ? */
4232 }
4233
4234 hdr = &elf_tdata (abfd)->strtab_hdr;
4235 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4236
4237 elf_next_file_pos (abfd) = off;
4238
4239 /* Now that we know where the .strtab section goes, write it
4240 out. */
4241 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4242 || ! _bfd_elf_strtab_emit (abfd, strtab))
4243 return FALSE;
4244 _bfd_elf_strtab_free (strtab);
4245 }
4246
4247 abfd->output_has_begun = TRUE;
4248
4249 return TRUE;
4250 }
4251
4252 /* Make an initial estimate of the size of the program header. If we
4253 get the number wrong here, we'll redo section placement. */
4254
4255 static bfd_size_type
4256 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4257 {
4258 size_t segs;
4259 asection *s;
4260 const struct elf_backend_data *bed;
4261
4262 /* Assume we will need exactly two PT_LOAD segments: one for text
4263 and one for data. */
4264 segs = 2;
4265
4266 s = bfd_get_section_by_name (abfd, ".interp");
4267 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4268 {
4269 /* If we have a loadable interpreter section, we need a
4270 PT_INTERP segment. In this case, assume we also need a
4271 PT_PHDR segment, although that may not be true for all
4272 targets. */
4273 segs += 2;
4274 }
4275
4276 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4277 {
4278 /* We need a PT_DYNAMIC segment. */
4279 ++segs;
4280 }
4281
4282 if (info != NULL && info->relro)
4283 {
4284 /* We need a PT_GNU_RELRO segment. */
4285 ++segs;
4286 }
4287
4288 if (elf_eh_frame_hdr (abfd))
4289 {
4290 /* We need a PT_GNU_EH_FRAME segment. */
4291 ++segs;
4292 }
4293
4294 if (elf_stack_flags (abfd))
4295 {
4296 /* We need a PT_GNU_STACK segment. */
4297 ++segs;
4298 }
4299
4300 for (s = abfd->sections; s != NULL; s = s->next)
4301 {
4302 if ((s->flags & SEC_LOAD) != 0
4303 && CONST_STRNEQ (s->name, ".note"))
4304 {
4305 /* We need a PT_NOTE segment. */
4306 ++segs;
4307 /* Try to create just one PT_NOTE segment
4308 for all adjacent loadable .note* sections.
4309 gABI requires that within a PT_NOTE segment
4310 (and also inside of each SHT_NOTE section)
4311 each note is padded to a multiple of 4 size,
4312 so we check whether the sections are correctly
4313 aligned. */
4314 if (s->alignment_power == 2)
4315 while (s->next != NULL
4316 && s->next->alignment_power == 2
4317 && (s->next->flags & SEC_LOAD) != 0
4318 && CONST_STRNEQ (s->next->name, ".note"))
4319 s = s->next;
4320 }
4321 }
4322
4323 for (s = abfd->sections; s != NULL; s = s->next)
4324 {
4325 if (s->flags & SEC_THREAD_LOCAL)
4326 {
4327 /* We need a PT_TLS segment. */
4328 ++segs;
4329 break;
4330 }
4331 }
4332
4333 /* Let the backend count up any program headers it might need. */
4334 bed = get_elf_backend_data (abfd);
4335 if (bed->elf_backend_additional_program_headers)
4336 {
4337 int a;
4338
4339 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4340 if (a == -1)
4341 abort ();
4342 segs += a;
4343 }
4344
4345 return segs * bed->s->sizeof_phdr;
4346 }
4347
4348 /* Find the segment that contains the output_section of section. */
4349
4350 Elf_Internal_Phdr *
4351 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4352 {
4353 struct elf_segment_map *m;
4354 Elf_Internal_Phdr *p;
4355
4356 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4357 m != NULL;
4358 m = m->next, p++)
4359 {
4360 int i;
4361
4362 for (i = m->count - 1; i >= 0; i--)
4363 if (m->sections[i] == section)
4364 return p;
4365 }
4366
4367 return NULL;
4368 }
4369
4370 /* Create a mapping from a set of sections to a program segment. */
4371
4372 static struct elf_segment_map *
4373 make_mapping (bfd *abfd,
4374 asection **sections,
4375 unsigned int from,
4376 unsigned int to,
4377 bfd_boolean phdr)
4378 {
4379 struct elf_segment_map *m;
4380 unsigned int i;
4381 asection **hdrpp;
4382 bfd_size_type amt;
4383
4384 amt = sizeof (struct elf_segment_map);
4385 amt += (to - from - 1) * sizeof (asection *);
4386 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4387 if (m == NULL)
4388 return NULL;
4389 m->next = NULL;
4390 m->p_type = PT_LOAD;
4391 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4392 m->sections[i - from] = *hdrpp;
4393 m->count = to - from;
4394
4395 if (from == 0 && phdr)
4396 {
4397 /* Include the headers in the first PT_LOAD segment. */
4398 m->includes_filehdr = 1;
4399 m->includes_phdrs = 1;
4400 }
4401
4402 return m;
4403 }
4404
4405 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4406 on failure. */
4407
4408 struct elf_segment_map *
4409 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4410 {
4411 struct elf_segment_map *m;
4412
4413 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4414 sizeof (struct elf_segment_map));
4415 if (m == NULL)
4416 return NULL;
4417 m->next = NULL;
4418 m->p_type = PT_DYNAMIC;
4419 m->count = 1;
4420 m->sections[0] = dynsec;
4421
4422 return m;
4423 }
4424
4425 /* Possibly add or remove segments from the segment map. */
4426
4427 static bfd_boolean
4428 elf_modify_segment_map (bfd *abfd,
4429 struct bfd_link_info *info,
4430 bfd_boolean remove_empty_load)
4431 {
4432 struct elf_segment_map **m;
4433 const struct elf_backend_data *bed;
4434
4435 /* The placement algorithm assumes that non allocated sections are
4436 not in PT_LOAD segments. We ensure this here by removing such
4437 sections from the segment map. We also remove excluded
4438 sections. Finally, any PT_LOAD segment without sections is
4439 removed. */
4440 m = &elf_seg_map (abfd);
4441 while (*m)
4442 {
4443 unsigned int i, new_count;
4444
4445 for (new_count = 0, i = 0; i < (*m)->count; i++)
4446 {
4447 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4448 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4449 || (*m)->p_type != PT_LOAD))
4450 {
4451 (*m)->sections[new_count] = (*m)->sections[i];
4452 new_count++;
4453 }
4454 }
4455 (*m)->count = new_count;
4456
4457 if (remove_empty_load
4458 && (*m)->p_type == PT_LOAD
4459 && (*m)->count == 0
4460 && !(*m)->includes_phdrs)
4461 *m = (*m)->next;
4462 else
4463 m = &(*m)->next;
4464 }
4465
4466 bed = get_elf_backend_data (abfd);
4467 if (bed->elf_backend_modify_segment_map != NULL)
4468 {
4469 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4470 return FALSE;
4471 }
4472
4473 return TRUE;
4474 }
4475
4476 /* Set up a mapping from BFD sections to program segments. */
4477
4478 bfd_boolean
4479 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4480 {
4481 unsigned int count;
4482 struct elf_segment_map *m;
4483 asection **sections = NULL;
4484 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4485 bfd_boolean no_user_phdrs;
4486
4487 no_user_phdrs = elf_seg_map (abfd) == NULL;
4488
4489 if (info != NULL)
4490 info->user_phdrs = !no_user_phdrs;
4491
4492 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4493 {
4494 asection *s;
4495 unsigned int i;
4496 struct elf_segment_map *mfirst;
4497 struct elf_segment_map **pm;
4498 asection *last_hdr;
4499 bfd_vma last_size;
4500 unsigned int phdr_index;
4501 bfd_vma maxpagesize;
4502 asection **hdrpp;
4503 bfd_boolean phdr_in_segment = TRUE;
4504 bfd_boolean writable;
4505 int tls_count = 0;
4506 asection *first_tls = NULL;
4507 asection *dynsec, *eh_frame_hdr;
4508 bfd_size_type amt;
4509 bfd_vma addr_mask, wrap_to = 0;
4510 bfd_boolean linker_created_pt_phdr_segment = FALSE;
4511
4512 /* Select the allocated sections, and sort them. */
4513
4514 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4515 sizeof (asection *));
4516 if (sections == NULL)
4517 goto error_return;
4518
4519 /* Calculate top address, avoiding undefined behaviour of shift
4520 left operator when shift count is equal to size of type
4521 being shifted. */
4522 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4523 addr_mask = (addr_mask << 1) + 1;
4524
4525 i = 0;
4526 for (s = abfd->sections; s != NULL; s = s->next)
4527 {
4528 if ((s->flags & SEC_ALLOC) != 0)
4529 {
4530 sections[i] = s;
4531 ++i;
4532 /* A wrapping section potentially clashes with header. */
4533 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4534 wrap_to = (s->lma + s->size) & addr_mask;
4535 }
4536 }
4537 BFD_ASSERT (i <= bfd_count_sections (abfd));
4538 count = i;
4539
4540 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4541
4542 /* Build the mapping. */
4543
4544 mfirst = NULL;
4545 pm = &mfirst;
4546
4547 /* If we have a .interp section, then create a PT_PHDR segment for
4548 the program headers and a PT_INTERP segment for the .interp
4549 section. */
4550 s = bfd_get_section_by_name (abfd, ".interp");
4551 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4552 {
4553 amt = sizeof (struct elf_segment_map);
4554 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4555 if (m == NULL)
4556 goto error_return;
4557 m->next = NULL;
4558 m->p_type = PT_PHDR;
4559 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
4560 m->p_flags = PF_R | PF_X;
4561 m->p_flags_valid = 1;
4562 m->includes_phdrs = 1;
4563 linker_created_pt_phdr_segment = TRUE;
4564 *pm = m;
4565 pm = &m->next;
4566
4567 amt = sizeof (struct elf_segment_map);
4568 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4569 if (m == NULL)
4570 goto error_return;
4571 m->next = NULL;
4572 m->p_type = PT_INTERP;
4573 m->count = 1;
4574 m->sections[0] = s;
4575
4576 *pm = m;
4577 pm = &m->next;
4578 }
4579
4580 /* Look through the sections. We put sections in the same program
4581 segment when the start of the second section can be placed within
4582 a few bytes of the end of the first section. */
4583 last_hdr = NULL;
4584 last_size = 0;
4585 phdr_index = 0;
4586 maxpagesize = bed->maxpagesize;
4587 /* PR 17512: file: c8455299.
4588 Avoid divide-by-zero errors later on.
4589 FIXME: Should we abort if the maxpagesize is zero ? */
4590 if (maxpagesize == 0)
4591 maxpagesize = 1;
4592 writable = FALSE;
4593 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4594 if (dynsec != NULL
4595 && (dynsec->flags & SEC_LOAD) == 0)
4596 dynsec = NULL;
4597
4598 /* Deal with -Ttext or something similar such that the first section
4599 is not adjacent to the program headers. This is an
4600 approximation, since at this point we don't know exactly how many
4601 program headers we will need. */
4602 if (count > 0)
4603 {
4604 bfd_size_type phdr_size = elf_program_header_size (abfd);
4605
4606 if (phdr_size == (bfd_size_type) -1)
4607 phdr_size = get_program_header_size (abfd, info);
4608 phdr_size += bed->s->sizeof_ehdr;
4609 if ((abfd->flags & D_PAGED) == 0
4610 || (sections[0]->lma & addr_mask) < phdr_size
4611 || ((sections[0]->lma & addr_mask) % maxpagesize
4612 < phdr_size % maxpagesize)
4613 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4614 {
4615 /* PR 20815: The ELF standard says that a PT_PHDR segment, if
4616 present, must be included as part of the memory image of the
4617 program. Ie it must be part of a PT_LOAD segment as well.
4618 If we have had to create our own PT_PHDR segment, but it is
4619 not going to be covered by the first PT_LOAD segment, then
4620 force the inclusion if we can... */
4621 if ((abfd->flags & D_PAGED) != 0
4622 && linker_created_pt_phdr_segment)
4623 phdr_in_segment = TRUE;
4624 else
4625 phdr_in_segment = FALSE;
4626 }
4627 }
4628
4629 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4630 {
4631 asection *hdr;
4632 bfd_boolean new_segment;
4633
4634 hdr = *hdrpp;
4635
4636 /* See if this section and the last one will fit in the same
4637 segment. */
4638
4639 if (last_hdr == NULL)
4640 {
4641 /* If we don't have a segment yet, then we don't need a new
4642 one (we build the last one after this loop). */
4643 new_segment = FALSE;
4644 }
4645 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4646 {
4647 /* If this section has a different relation between the
4648 virtual address and the load address, then we need a new
4649 segment. */
4650 new_segment = TRUE;
4651 }
4652 else if (hdr->lma < last_hdr->lma + last_size
4653 || last_hdr->lma + last_size < last_hdr->lma)
4654 {
4655 /* If this section has a load address that makes it overlap
4656 the previous section, then we need a new segment. */
4657 new_segment = TRUE;
4658 }
4659 /* In the next test we have to be careful when last_hdr->lma is close
4660 to the end of the address space. If the aligned address wraps
4661 around to the start of the address space, then there are no more
4662 pages left in memory and it is OK to assume that the current
4663 section can be included in the current segment. */
4664 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4665 > last_hdr->lma)
4666 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4667 <= hdr->lma))
4668 {
4669 /* If putting this section in this segment would force us to
4670 skip a page in the segment, then we need a new segment. */
4671 new_segment = TRUE;
4672 }
4673 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4674 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0
4675 && ((abfd->flags & D_PAGED) == 0
4676 || (((last_hdr->lma + last_size - 1) & -maxpagesize)
4677 != (hdr->lma & -maxpagesize))))
4678 {
4679 /* We don't want to put a loaded section after a
4680 nonloaded (ie. bss style) section in the same segment
4681 as that will force the non-loaded section to be loaded.
4682 Consider .tbss sections as loaded for this purpose.
4683 However, like the writable/non-writable case below,
4684 if they are on the same page then they must be put
4685 in the same segment. */
4686 new_segment = TRUE;
4687 }
4688 else if ((abfd->flags & D_PAGED) == 0)
4689 {
4690 /* If the file is not demand paged, which means that we
4691 don't require the sections to be correctly aligned in the
4692 file, then there is no other reason for a new segment. */
4693 new_segment = FALSE;
4694 }
4695 else if (! writable
4696 && (hdr->flags & SEC_READONLY) == 0
4697 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4698 != (hdr->lma & -maxpagesize)))
4699 {
4700 /* We don't want to put a writable section in a read only
4701 segment, unless they are on the same page in memory
4702 anyhow. We already know that the last section does not
4703 bring us past the current section on the page, so the
4704 only case in which the new section is not on the same
4705 page as the previous section is when the previous section
4706 ends precisely on a page boundary. */
4707 new_segment = TRUE;
4708 }
4709 else
4710 {
4711 /* Otherwise, we can use the same segment. */
4712 new_segment = FALSE;
4713 }
4714
4715 /* Allow interested parties a chance to override our decision. */
4716 if (last_hdr != NULL
4717 && info != NULL
4718 && info->callbacks->override_segment_assignment != NULL)
4719 new_segment
4720 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4721 last_hdr,
4722 new_segment);
4723
4724 if (! new_segment)
4725 {
4726 if ((hdr->flags & SEC_READONLY) == 0)
4727 writable = TRUE;
4728 last_hdr = hdr;
4729 /* .tbss sections effectively have zero size. */
4730 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4731 != SEC_THREAD_LOCAL)
4732 last_size = hdr->size;
4733 else
4734 last_size = 0;
4735 continue;
4736 }
4737
4738 /* We need a new program segment. We must create a new program
4739 header holding all the sections from phdr_index until hdr. */
4740
4741 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4742 if (m == NULL)
4743 goto error_return;
4744
4745 *pm = m;
4746 pm = &m->next;
4747
4748 if ((hdr->flags & SEC_READONLY) == 0)
4749 writable = TRUE;
4750 else
4751 writable = FALSE;
4752
4753 last_hdr = hdr;
4754 /* .tbss sections effectively have zero size. */
4755 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4756 last_size = hdr->size;
4757 else
4758 last_size = 0;
4759 phdr_index = i;
4760 phdr_in_segment = FALSE;
4761 }
4762
4763 /* Create a final PT_LOAD program segment, but not if it's just
4764 for .tbss. */
4765 if (last_hdr != NULL
4766 && (i - phdr_index != 1
4767 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4768 != SEC_THREAD_LOCAL)))
4769 {
4770 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4771 if (m == NULL)
4772 goto error_return;
4773
4774 *pm = m;
4775 pm = &m->next;
4776 }
4777
4778 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4779 if (dynsec != NULL)
4780 {
4781 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4782 if (m == NULL)
4783 goto error_return;
4784 *pm = m;
4785 pm = &m->next;
4786 }
4787
4788 /* For each batch of consecutive loadable .note sections,
4789 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4790 because if we link together nonloadable .note sections and
4791 loadable .note sections, we will generate two .note sections
4792 in the output file. FIXME: Using names for section types is
4793 bogus anyhow. */
4794 for (s = abfd->sections; s != NULL; s = s->next)
4795 {
4796 if ((s->flags & SEC_LOAD) != 0
4797 && CONST_STRNEQ (s->name, ".note"))
4798 {
4799 asection *s2;
4800
4801 count = 1;
4802 amt = sizeof (struct elf_segment_map);
4803 if (s->alignment_power == 2)
4804 for (s2 = s; s2->next != NULL; s2 = s2->next)
4805 {
4806 if (s2->next->alignment_power == 2
4807 && (s2->next->flags & SEC_LOAD) != 0
4808 && CONST_STRNEQ (s2->next->name, ".note")
4809 && align_power (s2->lma + s2->size, 2)
4810 == s2->next->lma)
4811 count++;
4812 else
4813 break;
4814 }
4815 amt += (count - 1) * sizeof (asection *);
4816 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4817 if (m == NULL)
4818 goto error_return;
4819 m->next = NULL;
4820 m->p_type = PT_NOTE;
4821 m->count = count;
4822 while (count > 1)
4823 {
4824 m->sections[m->count - count--] = s;
4825 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4826 s = s->next;
4827 }
4828 m->sections[m->count - 1] = s;
4829 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4830 *pm = m;
4831 pm = &m->next;
4832 }
4833 if (s->flags & SEC_THREAD_LOCAL)
4834 {
4835 if (! tls_count)
4836 first_tls = s;
4837 tls_count++;
4838 }
4839 }
4840
4841 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4842 if (tls_count > 0)
4843 {
4844 amt = sizeof (struct elf_segment_map);
4845 amt += (tls_count - 1) * sizeof (asection *);
4846 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4847 if (m == NULL)
4848 goto error_return;
4849 m->next = NULL;
4850 m->p_type = PT_TLS;
4851 m->count = tls_count;
4852 /* Mandated PF_R. */
4853 m->p_flags = PF_R;
4854 m->p_flags_valid = 1;
4855 s = first_tls;
4856 for (i = 0; i < (unsigned int) tls_count; ++i)
4857 {
4858 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4859 {
4860 _bfd_error_handler
4861 (_("%B: TLS sections are not adjacent:"), abfd);
4862 s = first_tls;
4863 i = 0;
4864 while (i < (unsigned int) tls_count)
4865 {
4866 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4867 {
4868 _bfd_error_handler (_(" TLS: %A"), s);
4869 i++;
4870 }
4871 else
4872 _bfd_error_handler (_(" non-TLS: %A"), s);
4873 s = s->next;
4874 }
4875 bfd_set_error (bfd_error_bad_value);
4876 goto error_return;
4877 }
4878 m->sections[i] = s;
4879 s = s->next;
4880 }
4881
4882 *pm = m;
4883 pm = &m->next;
4884 }
4885
4886 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4887 segment. */
4888 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4889 if (eh_frame_hdr != NULL
4890 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4891 {
4892 amt = sizeof (struct elf_segment_map);
4893 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4894 if (m == NULL)
4895 goto error_return;
4896 m->next = NULL;
4897 m->p_type = PT_GNU_EH_FRAME;
4898 m->count = 1;
4899 m->sections[0] = eh_frame_hdr->output_section;
4900
4901 *pm = m;
4902 pm = &m->next;
4903 }
4904
4905 if (elf_stack_flags (abfd))
4906 {
4907 amt = sizeof (struct elf_segment_map);
4908 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4909 if (m == NULL)
4910 goto error_return;
4911 m->next = NULL;
4912 m->p_type = PT_GNU_STACK;
4913 m->p_flags = elf_stack_flags (abfd);
4914 m->p_align = bed->stack_align;
4915 m->p_flags_valid = 1;
4916 m->p_align_valid = m->p_align != 0;
4917 if (info->stacksize > 0)
4918 {
4919 m->p_size = info->stacksize;
4920 m->p_size_valid = 1;
4921 }
4922
4923 *pm = m;
4924 pm = &m->next;
4925 }
4926
4927 if (info != NULL && info->relro)
4928 {
4929 for (m = mfirst; m != NULL; m = m->next)
4930 {
4931 if (m->p_type == PT_LOAD
4932 && m->count != 0
4933 && m->sections[0]->vma >= info->relro_start
4934 && m->sections[0]->vma < info->relro_end)
4935 {
4936 i = m->count;
4937 while (--i != (unsigned) -1)
4938 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4939 == (SEC_LOAD | SEC_HAS_CONTENTS))
4940 break;
4941
4942 if (i != (unsigned) -1)
4943 break;
4944 }
4945 }
4946
4947 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4948 if (m != NULL)
4949 {
4950 amt = sizeof (struct elf_segment_map);
4951 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4952 if (m == NULL)
4953 goto error_return;
4954 m->next = NULL;
4955 m->p_type = PT_GNU_RELRO;
4956 *pm = m;
4957 pm = &m->next;
4958 }
4959 }
4960
4961 free (sections);
4962 elf_seg_map (abfd) = mfirst;
4963 }
4964
4965 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4966 return FALSE;
4967
4968 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4969 ++count;
4970 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4971
4972 return TRUE;
4973
4974 error_return:
4975 if (sections != NULL)
4976 free (sections);
4977 return FALSE;
4978 }
4979
4980 /* Sort sections by address. */
4981
4982 static int
4983 elf_sort_sections (const void *arg1, const void *arg2)
4984 {
4985 const asection *sec1 = *(const asection **) arg1;
4986 const asection *sec2 = *(const asection **) arg2;
4987 bfd_size_type size1, size2;
4988
4989 /* Sort by LMA first, since this is the address used to
4990 place the section into a segment. */
4991 if (sec1->lma < sec2->lma)
4992 return -1;
4993 else if (sec1->lma > sec2->lma)
4994 return 1;
4995
4996 /* Then sort by VMA. Normally the LMA and the VMA will be
4997 the same, and this will do nothing. */
4998 if (sec1->vma < sec2->vma)
4999 return -1;
5000 else if (sec1->vma > sec2->vma)
5001 return 1;
5002
5003 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5004
5005 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5006
5007 if (TOEND (sec1))
5008 {
5009 if (TOEND (sec2))
5010 {
5011 /* If the indicies are the same, do not return 0
5012 here, but continue to try the next comparison. */
5013 if (sec1->target_index - sec2->target_index != 0)
5014 return sec1->target_index - sec2->target_index;
5015 }
5016 else
5017 return 1;
5018 }
5019 else if (TOEND (sec2))
5020 return -1;
5021
5022 #undef TOEND
5023
5024 /* Sort by size, to put zero sized sections
5025 before others at the same address. */
5026
5027 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5028 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5029
5030 if (size1 < size2)
5031 return -1;
5032 if (size1 > size2)
5033 return 1;
5034
5035 return sec1->target_index - sec2->target_index;
5036 }
5037
5038 /* Ian Lance Taylor writes:
5039
5040 We shouldn't be using % with a negative signed number. That's just
5041 not good. We have to make sure either that the number is not
5042 negative, or that the number has an unsigned type. When the types
5043 are all the same size they wind up as unsigned. When file_ptr is a
5044 larger signed type, the arithmetic winds up as signed long long,
5045 which is wrong.
5046
5047 What we're trying to say here is something like ``increase OFF by
5048 the least amount that will cause it to be equal to the VMA modulo
5049 the page size.'' */
5050 /* In other words, something like:
5051
5052 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5053 off_offset = off % bed->maxpagesize;
5054 if (vma_offset < off_offset)
5055 adjustment = vma_offset + bed->maxpagesize - off_offset;
5056 else
5057 adjustment = vma_offset - off_offset;
5058
5059 which can can be collapsed into the expression below. */
5060
5061 static file_ptr
5062 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5063 {
5064 /* PR binutils/16199: Handle an alignment of zero. */
5065 if (maxpagesize == 0)
5066 maxpagesize = 1;
5067 return ((vma - off) % maxpagesize);
5068 }
5069
5070 static void
5071 print_segment_map (const struct elf_segment_map *m)
5072 {
5073 unsigned int j;
5074 const char *pt = get_segment_type (m->p_type);
5075 char buf[32];
5076
5077 if (pt == NULL)
5078 {
5079 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5080 sprintf (buf, "LOPROC+%7.7x",
5081 (unsigned int) (m->p_type - PT_LOPROC));
5082 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5083 sprintf (buf, "LOOS+%7.7x",
5084 (unsigned int) (m->p_type - PT_LOOS));
5085 else
5086 snprintf (buf, sizeof (buf), "%8.8x",
5087 (unsigned int) m->p_type);
5088 pt = buf;
5089 }
5090 fflush (stdout);
5091 fprintf (stderr, "%s:", pt);
5092 for (j = 0; j < m->count; j++)
5093 fprintf (stderr, " %s", m->sections [j]->name);
5094 putc ('\n',stderr);
5095 fflush (stderr);
5096 }
5097
5098 static bfd_boolean
5099 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5100 {
5101 void *buf;
5102 bfd_boolean ret;
5103
5104 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5105 return FALSE;
5106 buf = bfd_zmalloc (len);
5107 if (buf == NULL)
5108 return FALSE;
5109 ret = bfd_bwrite (buf, len, abfd) == len;
5110 free (buf);
5111 return ret;
5112 }
5113
5114 /* Assign file positions to the sections based on the mapping from
5115 sections to segments. This function also sets up some fields in
5116 the file header. */
5117
5118 static bfd_boolean
5119 assign_file_positions_for_load_sections (bfd *abfd,
5120 struct bfd_link_info *link_info)
5121 {
5122 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5123 struct elf_segment_map *m;
5124 Elf_Internal_Phdr *phdrs;
5125 Elf_Internal_Phdr *p;
5126 file_ptr off;
5127 bfd_size_type maxpagesize;
5128 unsigned int pt_load_count = 0;
5129 unsigned int alloc;
5130 unsigned int i, j;
5131 bfd_vma header_pad = 0;
5132
5133 if (link_info == NULL
5134 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5135 return FALSE;
5136
5137 alloc = 0;
5138 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5139 {
5140 ++alloc;
5141 if (m->header_size)
5142 header_pad = m->header_size;
5143 }
5144
5145 if (alloc)
5146 {
5147 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5148 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5149 }
5150 else
5151 {
5152 /* PR binutils/12467. */
5153 elf_elfheader (abfd)->e_phoff = 0;
5154 elf_elfheader (abfd)->e_phentsize = 0;
5155 }
5156
5157 elf_elfheader (abfd)->e_phnum = alloc;
5158
5159 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5160 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5161 else
5162 BFD_ASSERT (elf_program_header_size (abfd)
5163 >= alloc * bed->s->sizeof_phdr);
5164
5165 if (alloc == 0)
5166 {
5167 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5168 return TRUE;
5169 }
5170
5171 /* We're writing the size in elf_program_header_size (abfd),
5172 see assign_file_positions_except_relocs, so make sure we have
5173 that amount allocated, with trailing space cleared.
5174 The variable alloc contains the computed need, while
5175 elf_program_header_size (abfd) contains the size used for the
5176 layout.
5177 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5178 where the layout is forced to according to a larger size in the
5179 last iterations for the testcase ld-elf/header. */
5180 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5181 == 0);
5182 phdrs = (Elf_Internal_Phdr *)
5183 bfd_zalloc2 (abfd,
5184 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5185 sizeof (Elf_Internal_Phdr));
5186 elf_tdata (abfd)->phdr = phdrs;
5187 if (phdrs == NULL)
5188 return FALSE;
5189
5190 maxpagesize = 1;
5191 if ((abfd->flags & D_PAGED) != 0)
5192 maxpagesize = bed->maxpagesize;
5193
5194 off = bed->s->sizeof_ehdr;
5195 off += alloc * bed->s->sizeof_phdr;
5196 if (header_pad < (bfd_vma) off)
5197 header_pad = 0;
5198 else
5199 header_pad -= off;
5200 off += header_pad;
5201
5202 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5203 m != NULL;
5204 m = m->next, p++, j++)
5205 {
5206 asection **secpp;
5207 bfd_vma off_adjust;
5208 bfd_boolean no_contents;
5209
5210 /* If elf_segment_map is not from map_sections_to_segments, the
5211 sections may not be correctly ordered. NOTE: sorting should
5212 not be done to the PT_NOTE section of a corefile, which may
5213 contain several pseudo-sections artificially created by bfd.
5214 Sorting these pseudo-sections breaks things badly. */
5215 if (m->count > 1
5216 && !(elf_elfheader (abfd)->e_type == ET_CORE
5217 && m->p_type == PT_NOTE))
5218 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5219 elf_sort_sections);
5220
5221 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5222 number of sections with contents contributing to both p_filesz
5223 and p_memsz, followed by a number of sections with no contents
5224 that just contribute to p_memsz. In this loop, OFF tracks next
5225 available file offset for PT_LOAD and PT_NOTE segments. */
5226 p->p_type = m->p_type;
5227 p->p_flags = m->p_flags;
5228
5229 if (m->count == 0)
5230 p->p_vaddr = 0;
5231 else
5232 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5233
5234 if (m->p_paddr_valid)
5235 p->p_paddr = m->p_paddr;
5236 else if (m->count == 0)
5237 p->p_paddr = 0;
5238 else
5239 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5240
5241 if (p->p_type == PT_LOAD
5242 && (abfd->flags & D_PAGED) != 0)
5243 {
5244 /* p_align in demand paged PT_LOAD segments effectively stores
5245 the maximum page size. When copying an executable with
5246 objcopy, we set m->p_align from the input file. Use this
5247 value for maxpagesize rather than bed->maxpagesize, which
5248 may be different. Note that we use maxpagesize for PT_TLS
5249 segment alignment later in this function, so we are relying
5250 on at least one PT_LOAD segment appearing before a PT_TLS
5251 segment. */
5252 if (m->p_align_valid)
5253 maxpagesize = m->p_align;
5254
5255 p->p_align = maxpagesize;
5256 pt_load_count += 1;
5257 }
5258 else if (m->p_align_valid)
5259 p->p_align = m->p_align;
5260 else if (m->count == 0)
5261 p->p_align = 1 << bed->s->log_file_align;
5262 else
5263 p->p_align = 0;
5264
5265 no_contents = FALSE;
5266 off_adjust = 0;
5267 if (p->p_type == PT_LOAD
5268 && m->count > 0)
5269 {
5270 bfd_size_type align;
5271 unsigned int align_power = 0;
5272
5273 if (m->p_align_valid)
5274 align = p->p_align;
5275 else
5276 {
5277 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5278 {
5279 unsigned int secalign;
5280
5281 secalign = bfd_get_section_alignment (abfd, *secpp);
5282 if (secalign > align_power)
5283 align_power = secalign;
5284 }
5285 align = (bfd_size_type) 1 << align_power;
5286 if (align < maxpagesize)
5287 align = maxpagesize;
5288 }
5289
5290 for (i = 0; i < m->count; i++)
5291 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5292 /* If we aren't making room for this section, then
5293 it must be SHT_NOBITS regardless of what we've
5294 set via struct bfd_elf_special_section. */
5295 elf_section_type (m->sections[i]) = SHT_NOBITS;
5296
5297 /* Find out whether this segment contains any loadable
5298 sections. */
5299 no_contents = TRUE;
5300 for (i = 0; i < m->count; i++)
5301 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5302 {
5303 no_contents = FALSE;
5304 break;
5305 }
5306
5307 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5308
5309 /* Broken hardware and/or kernel require that files do not
5310 map the same page with different permissions on some hppa
5311 processors. */
5312 if (pt_load_count > 1
5313 && bed->no_page_alias
5314 && (off & (maxpagesize - 1)) != 0
5315 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5316 off_adjust += maxpagesize;
5317 off += off_adjust;
5318 if (no_contents)
5319 {
5320 /* We shouldn't need to align the segment on disk since
5321 the segment doesn't need file space, but the gABI
5322 arguably requires the alignment and glibc ld.so
5323 checks it. So to comply with the alignment
5324 requirement but not waste file space, we adjust
5325 p_offset for just this segment. (OFF_ADJUST is
5326 subtracted from OFF later.) This may put p_offset
5327 past the end of file, but that shouldn't matter. */
5328 }
5329 else
5330 off_adjust = 0;
5331 }
5332 /* Make sure the .dynamic section is the first section in the
5333 PT_DYNAMIC segment. */
5334 else if (p->p_type == PT_DYNAMIC
5335 && m->count > 1
5336 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5337 {
5338 _bfd_error_handler
5339 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
5340 abfd);
5341 bfd_set_error (bfd_error_bad_value);
5342 return FALSE;
5343 }
5344 /* Set the note section type to SHT_NOTE. */
5345 else if (p->p_type == PT_NOTE)
5346 for (i = 0; i < m->count; i++)
5347 elf_section_type (m->sections[i]) = SHT_NOTE;
5348
5349 p->p_offset = 0;
5350 p->p_filesz = 0;
5351 p->p_memsz = 0;
5352
5353 if (m->includes_filehdr)
5354 {
5355 if (!m->p_flags_valid)
5356 p->p_flags |= PF_R;
5357 p->p_filesz = bed->s->sizeof_ehdr;
5358 p->p_memsz = bed->s->sizeof_ehdr;
5359 if (m->count > 0)
5360 {
5361 if (p->p_vaddr < (bfd_vma) off
5362 || (!m->p_paddr_valid
5363 && p->p_paddr < (bfd_vma) off))
5364 {
5365 _bfd_error_handler
5366 (_("%B: Not enough room for program headers, try linking with -N"),
5367 abfd);
5368 bfd_set_error (bfd_error_bad_value);
5369 return FALSE;
5370 }
5371
5372 p->p_vaddr -= off;
5373 if (!m->p_paddr_valid)
5374 p->p_paddr -= off;
5375 }
5376 }
5377
5378 if (m->includes_phdrs)
5379 {
5380 if (!m->p_flags_valid)
5381 p->p_flags |= PF_R;
5382
5383 if (!m->includes_filehdr)
5384 {
5385 p->p_offset = bed->s->sizeof_ehdr;
5386
5387 if (m->count > 0)
5388 {
5389 p->p_vaddr -= off - p->p_offset;
5390 if (!m->p_paddr_valid)
5391 p->p_paddr -= off - p->p_offset;
5392 }
5393 }
5394
5395 p->p_filesz += alloc * bed->s->sizeof_phdr;
5396 p->p_memsz += alloc * bed->s->sizeof_phdr;
5397 if (m->count)
5398 {
5399 p->p_filesz += header_pad;
5400 p->p_memsz += header_pad;
5401 }
5402 }
5403
5404 if (p->p_type == PT_LOAD
5405 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5406 {
5407 if (!m->includes_filehdr && !m->includes_phdrs)
5408 p->p_offset = off;
5409 else
5410 {
5411 file_ptr adjust;
5412
5413 adjust = off - (p->p_offset + p->p_filesz);
5414 if (!no_contents)
5415 p->p_filesz += adjust;
5416 p->p_memsz += adjust;
5417 }
5418 }
5419
5420 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5421 maps. Set filepos for sections in PT_LOAD segments, and in
5422 core files, for sections in PT_NOTE segments.
5423 assign_file_positions_for_non_load_sections will set filepos
5424 for other sections and update p_filesz for other segments. */
5425 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5426 {
5427 asection *sec;
5428 bfd_size_type align;
5429 Elf_Internal_Shdr *this_hdr;
5430
5431 sec = *secpp;
5432 this_hdr = &elf_section_data (sec)->this_hdr;
5433 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5434
5435 if ((p->p_type == PT_LOAD
5436 || p->p_type == PT_TLS)
5437 && (this_hdr->sh_type != SHT_NOBITS
5438 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5439 && ((this_hdr->sh_flags & SHF_TLS) == 0
5440 || p->p_type == PT_TLS))))
5441 {
5442 bfd_vma p_start = p->p_paddr;
5443 bfd_vma p_end = p_start + p->p_memsz;
5444 bfd_vma s_start = sec->lma;
5445 bfd_vma adjust = s_start - p_end;
5446
5447 if (adjust != 0
5448 && (s_start < p_end
5449 || p_end < p_start))
5450 {
5451 _bfd_error_handler
5452 /* xgettext:c-format */
5453 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
5454 (unsigned long) s_start, (unsigned long) p_end);
5455 adjust = 0;
5456 sec->lma = p_end;
5457 }
5458 p->p_memsz += adjust;
5459
5460 if (this_hdr->sh_type != SHT_NOBITS)
5461 {
5462 if (p->p_filesz + adjust < p->p_memsz)
5463 {
5464 /* We have a PROGBITS section following NOBITS ones.
5465 Allocate file space for the NOBITS section(s) and
5466 zero it. */
5467 adjust = p->p_memsz - p->p_filesz;
5468 if (!write_zeros (abfd, off, adjust))
5469 return FALSE;
5470 }
5471 off += adjust;
5472 p->p_filesz += adjust;
5473 }
5474 }
5475
5476 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5477 {
5478 /* The section at i == 0 is the one that actually contains
5479 everything. */
5480 if (i == 0)
5481 {
5482 this_hdr->sh_offset = sec->filepos = off;
5483 off += this_hdr->sh_size;
5484 p->p_filesz = this_hdr->sh_size;
5485 p->p_memsz = 0;
5486 p->p_align = 1;
5487 }
5488 else
5489 {
5490 /* The rest are fake sections that shouldn't be written. */
5491 sec->filepos = 0;
5492 sec->size = 0;
5493 sec->flags = 0;
5494 continue;
5495 }
5496 }
5497 else
5498 {
5499 if (p->p_type == PT_LOAD)
5500 {
5501 this_hdr->sh_offset = sec->filepos = off;
5502 if (this_hdr->sh_type != SHT_NOBITS)
5503 off += this_hdr->sh_size;
5504 }
5505 else if (this_hdr->sh_type == SHT_NOBITS
5506 && (this_hdr->sh_flags & SHF_TLS) != 0
5507 && this_hdr->sh_offset == 0)
5508 {
5509 /* This is a .tbss section that didn't get a PT_LOAD.
5510 (See _bfd_elf_map_sections_to_segments "Create a
5511 final PT_LOAD".) Set sh_offset to the value it
5512 would have if we had created a zero p_filesz and
5513 p_memsz PT_LOAD header for the section. This
5514 also makes the PT_TLS header have the same
5515 p_offset value. */
5516 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5517 off, align);
5518 this_hdr->sh_offset = sec->filepos = off + adjust;
5519 }
5520
5521 if (this_hdr->sh_type != SHT_NOBITS)
5522 {
5523 p->p_filesz += this_hdr->sh_size;
5524 /* A load section without SHF_ALLOC is something like
5525 a note section in a PT_NOTE segment. These take
5526 file space but are not loaded into memory. */
5527 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5528 p->p_memsz += this_hdr->sh_size;
5529 }
5530 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5531 {
5532 if (p->p_type == PT_TLS)
5533 p->p_memsz += this_hdr->sh_size;
5534
5535 /* .tbss is special. It doesn't contribute to p_memsz of
5536 normal segments. */
5537 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5538 p->p_memsz += this_hdr->sh_size;
5539 }
5540
5541 if (align > p->p_align
5542 && !m->p_align_valid
5543 && (p->p_type != PT_LOAD
5544 || (abfd->flags & D_PAGED) == 0))
5545 p->p_align = align;
5546 }
5547
5548 if (!m->p_flags_valid)
5549 {
5550 p->p_flags |= PF_R;
5551 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5552 p->p_flags |= PF_X;
5553 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5554 p->p_flags |= PF_W;
5555 }
5556 }
5557
5558 off -= off_adjust;
5559
5560 /* Check that all sections are in a PT_LOAD segment.
5561 Don't check funky gdb generated core files. */
5562 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5563 {
5564 bfd_boolean check_vma = TRUE;
5565
5566 for (i = 1; i < m->count; i++)
5567 if (m->sections[i]->vma == m->sections[i - 1]->vma
5568 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5569 ->this_hdr), p) != 0
5570 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5571 ->this_hdr), p) != 0)
5572 {
5573 /* Looks like we have overlays packed into the segment. */
5574 check_vma = FALSE;
5575 break;
5576 }
5577
5578 for (i = 0; i < m->count; i++)
5579 {
5580 Elf_Internal_Shdr *this_hdr;
5581 asection *sec;
5582
5583 sec = m->sections[i];
5584 this_hdr = &(elf_section_data(sec)->this_hdr);
5585 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5586 && !ELF_TBSS_SPECIAL (this_hdr, p))
5587 {
5588 _bfd_error_handler
5589 /* xgettext:c-format */
5590 (_("%B: section `%A' can't be allocated in segment %d"),
5591 abfd, sec, j);
5592 print_segment_map (m);
5593 }
5594 }
5595 }
5596 }
5597
5598 elf_next_file_pos (abfd) = off;
5599 return TRUE;
5600 }
5601
5602 /* Assign file positions for the other sections. */
5603
5604 static bfd_boolean
5605 assign_file_positions_for_non_load_sections (bfd *abfd,
5606 struct bfd_link_info *link_info)
5607 {
5608 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5609 Elf_Internal_Shdr **i_shdrpp;
5610 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5611 Elf_Internal_Phdr *phdrs;
5612 Elf_Internal_Phdr *p;
5613 struct elf_segment_map *m;
5614 struct elf_segment_map *hdrs_segment;
5615 bfd_vma filehdr_vaddr, filehdr_paddr;
5616 bfd_vma phdrs_vaddr, phdrs_paddr;
5617 file_ptr off;
5618 unsigned int count;
5619
5620 i_shdrpp = elf_elfsections (abfd);
5621 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5622 off = elf_next_file_pos (abfd);
5623 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5624 {
5625 Elf_Internal_Shdr *hdr;
5626
5627 hdr = *hdrpp;
5628 if (hdr->bfd_section != NULL
5629 && (hdr->bfd_section->filepos != 0
5630 || (hdr->sh_type == SHT_NOBITS
5631 && hdr->contents == NULL)))
5632 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5633 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5634 {
5635 if (hdr->sh_size != 0)
5636 _bfd_error_handler
5637 /* xgettext:c-format */
5638 (_("%B: warning: allocated section `%s' not in segment"),
5639 abfd,
5640 (hdr->bfd_section == NULL
5641 ? "*unknown*"
5642 : hdr->bfd_section->name));
5643 /* We don't need to page align empty sections. */
5644 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5645 off += vma_page_aligned_bias (hdr->sh_addr, off,
5646 bed->maxpagesize);
5647 else
5648 off += vma_page_aligned_bias (hdr->sh_addr, off,
5649 hdr->sh_addralign);
5650 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5651 FALSE);
5652 }
5653 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5654 && hdr->bfd_section == NULL)
5655 || (hdr->bfd_section != NULL
5656 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5657 /* Compress DWARF debug sections. */
5658 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5659 || (elf_symtab_shndx_list (abfd) != NULL
5660 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5661 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5662 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5663 hdr->sh_offset = -1;
5664 else
5665 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5666 }
5667
5668 /* Now that we have set the section file positions, we can set up
5669 the file positions for the non PT_LOAD segments. */
5670 count = 0;
5671 filehdr_vaddr = 0;
5672 filehdr_paddr = 0;
5673 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5674 phdrs_paddr = 0;
5675 hdrs_segment = NULL;
5676 phdrs = elf_tdata (abfd)->phdr;
5677 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5678 {
5679 ++count;
5680 if (p->p_type != PT_LOAD)
5681 continue;
5682
5683 if (m->includes_filehdr)
5684 {
5685 filehdr_vaddr = p->p_vaddr;
5686 filehdr_paddr = p->p_paddr;
5687 }
5688 if (m->includes_phdrs)
5689 {
5690 phdrs_vaddr = p->p_vaddr;
5691 phdrs_paddr = p->p_paddr;
5692 if (m->includes_filehdr)
5693 {
5694 hdrs_segment = m;
5695 phdrs_vaddr += bed->s->sizeof_ehdr;
5696 phdrs_paddr += bed->s->sizeof_ehdr;
5697 }
5698 }
5699 }
5700
5701 if (hdrs_segment != NULL && link_info != NULL)
5702 {
5703 /* There is a segment that contains both the file headers and the
5704 program headers, so provide a symbol __ehdr_start pointing there.
5705 A program can use this to examine itself robustly. */
5706
5707 struct elf_link_hash_entry *hash
5708 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5709 FALSE, FALSE, TRUE);
5710 /* If the symbol was referenced and not defined, define it. */
5711 if (hash != NULL
5712 && (hash->root.type == bfd_link_hash_new
5713 || hash->root.type == bfd_link_hash_undefined
5714 || hash->root.type == bfd_link_hash_undefweak
5715 || hash->root.type == bfd_link_hash_common))
5716 {
5717 asection *s = NULL;
5718 if (hdrs_segment->count != 0)
5719 /* The segment contains sections, so use the first one. */
5720 s = hdrs_segment->sections[0];
5721 else
5722 /* Use the first (i.e. lowest-addressed) section in any segment. */
5723 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5724 if (m->count != 0)
5725 {
5726 s = m->sections[0];
5727 break;
5728 }
5729
5730 if (s != NULL)
5731 {
5732 hash->root.u.def.value = filehdr_vaddr - s->vma;
5733 hash->root.u.def.section = s;
5734 }
5735 else
5736 {
5737 hash->root.u.def.value = filehdr_vaddr;
5738 hash->root.u.def.section = bfd_abs_section_ptr;
5739 }
5740
5741 hash->root.type = bfd_link_hash_defined;
5742 hash->def_regular = 1;
5743 hash->non_elf = 0;
5744 }
5745 }
5746
5747 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5748 {
5749 if (p->p_type == PT_GNU_RELRO)
5750 {
5751 const Elf_Internal_Phdr *lp;
5752 struct elf_segment_map *lm;
5753
5754 if (link_info != NULL)
5755 {
5756 /* During linking the range of the RELRO segment is passed
5757 in link_info. */
5758 for (lm = elf_seg_map (abfd), lp = phdrs;
5759 lm != NULL;
5760 lm = lm->next, lp++)
5761 {
5762 if (lp->p_type == PT_LOAD
5763 && lp->p_vaddr < link_info->relro_end
5764 && lm->count != 0
5765 && lm->sections[0]->vma >= link_info->relro_start)
5766 break;
5767 }
5768
5769 BFD_ASSERT (lm != NULL);
5770 }
5771 else
5772 {
5773 /* Otherwise we are copying an executable or shared
5774 library, but we need to use the same linker logic. */
5775 for (lp = phdrs; lp < phdrs + count; ++lp)
5776 {
5777 if (lp->p_type == PT_LOAD
5778 && lp->p_paddr == p->p_paddr)
5779 break;
5780 }
5781 }
5782
5783 if (lp < phdrs + count)
5784 {
5785 p->p_vaddr = lp->p_vaddr;
5786 p->p_paddr = lp->p_paddr;
5787 p->p_offset = lp->p_offset;
5788 if (link_info != NULL)
5789 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5790 else if (m->p_size_valid)
5791 p->p_filesz = m->p_size;
5792 else
5793 abort ();
5794 p->p_memsz = p->p_filesz;
5795 /* Preserve the alignment and flags if they are valid. The
5796 gold linker generates RW/4 for the PT_GNU_RELRO section.
5797 It is better for objcopy/strip to honor these attributes
5798 otherwise gdb will choke when using separate debug files.
5799 */
5800 if (!m->p_align_valid)
5801 p->p_align = 1;
5802 if (!m->p_flags_valid)
5803 p->p_flags = PF_R;
5804 }
5805 else
5806 {
5807 memset (p, 0, sizeof *p);
5808 p->p_type = PT_NULL;
5809 }
5810 }
5811 else if (p->p_type == PT_GNU_STACK)
5812 {
5813 if (m->p_size_valid)
5814 p->p_memsz = m->p_size;
5815 }
5816 else if (m->count != 0)
5817 {
5818 unsigned int i;
5819
5820 if (p->p_type != PT_LOAD
5821 && (p->p_type != PT_NOTE
5822 || bfd_get_format (abfd) != bfd_core))
5823 {
5824 /* A user specified segment layout may include a PHDR
5825 segment that overlaps with a LOAD segment... */
5826 if (p->p_type == PT_PHDR)
5827 {
5828 m->count = 0;
5829 continue;
5830 }
5831
5832 if (m->includes_filehdr || m->includes_phdrs)
5833 {
5834 /* PR 17512: file: 2195325e. */
5835 _bfd_error_handler
5836 (_("%B: error: non-load segment %d includes file header and/or program header"),
5837 abfd, (int)(p - phdrs));
5838 return FALSE;
5839 }
5840
5841 p->p_filesz = 0;
5842 p->p_offset = m->sections[0]->filepos;
5843 for (i = m->count; i-- != 0;)
5844 {
5845 asection *sect = m->sections[i];
5846 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5847 if (hdr->sh_type != SHT_NOBITS)
5848 {
5849 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5850 + hdr->sh_size);
5851 break;
5852 }
5853 }
5854 }
5855 }
5856 else if (m->includes_filehdr)
5857 {
5858 p->p_vaddr = filehdr_vaddr;
5859 if (! m->p_paddr_valid)
5860 p->p_paddr = filehdr_paddr;
5861 }
5862 else if (m->includes_phdrs)
5863 {
5864 p->p_vaddr = phdrs_vaddr;
5865 if (! m->p_paddr_valid)
5866 p->p_paddr = phdrs_paddr;
5867 }
5868 }
5869
5870 elf_next_file_pos (abfd) = off;
5871
5872 return TRUE;
5873 }
5874
5875 static elf_section_list *
5876 find_section_in_list (unsigned int i, elf_section_list * list)
5877 {
5878 for (;list != NULL; list = list->next)
5879 if (list->ndx == i)
5880 break;
5881 return list;
5882 }
5883
5884 /* Work out the file positions of all the sections. This is called by
5885 _bfd_elf_compute_section_file_positions. All the section sizes and
5886 VMAs must be known before this is called.
5887
5888 Reloc sections come in two flavours: Those processed specially as
5889 "side-channel" data attached to a section to which they apply, and
5890 those that bfd doesn't process as relocations. The latter sort are
5891 stored in a normal bfd section by bfd_section_from_shdr. We don't
5892 consider the former sort here, unless they form part of the loadable
5893 image. Reloc sections not assigned here will be handled later by
5894 assign_file_positions_for_relocs.
5895
5896 We also don't set the positions of the .symtab and .strtab here. */
5897
5898 static bfd_boolean
5899 assign_file_positions_except_relocs (bfd *abfd,
5900 struct bfd_link_info *link_info)
5901 {
5902 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5903 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5904 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5905
5906 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5907 && bfd_get_format (abfd) != bfd_core)
5908 {
5909 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5910 unsigned int num_sec = elf_numsections (abfd);
5911 Elf_Internal_Shdr **hdrpp;
5912 unsigned int i;
5913 file_ptr off;
5914
5915 /* Start after the ELF header. */
5916 off = i_ehdrp->e_ehsize;
5917
5918 /* We are not creating an executable, which means that we are
5919 not creating a program header, and that the actual order of
5920 the sections in the file is unimportant. */
5921 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5922 {
5923 Elf_Internal_Shdr *hdr;
5924
5925 hdr = *hdrpp;
5926 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5927 && hdr->bfd_section == NULL)
5928 || (hdr->bfd_section != NULL
5929 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5930 /* Compress DWARF debug sections. */
5931 || i == elf_onesymtab (abfd)
5932 || (elf_symtab_shndx_list (abfd) != NULL
5933 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5934 || i == elf_strtab_sec (abfd)
5935 || i == elf_shstrtab_sec (abfd))
5936 {
5937 hdr->sh_offset = -1;
5938 }
5939 else
5940 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5941 }
5942
5943 elf_next_file_pos (abfd) = off;
5944 }
5945 else
5946 {
5947 unsigned int alloc;
5948
5949 /* Assign file positions for the loaded sections based on the
5950 assignment of sections to segments. */
5951 if (!assign_file_positions_for_load_sections (abfd, link_info))
5952 return FALSE;
5953
5954 /* And for non-load sections. */
5955 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5956 return FALSE;
5957
5958 if (bed->elf_backend_modify_program_headers != NULL)
5959 {
5960 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5961 return FALSE;
5962 }
5963
5964 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5965 if (link_info != NULL && bfd_link_pie (link_info))
5966 {
5967 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5968 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5969 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5970
5971 /* Find the lowest p_vaddr in PT_LOAD segments. */
5972 bfd_vma p_vaddr = (bfd_vma) -1;
5973 for (; segment < end_segment; segment++)
5974 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5975 p_vaddr = segment->p_vaddr;
5976
5977 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5978 segments is non-zero. */
5979 if (p_vaddr)
5980 i_ehdrp->e_type = ET_EXEC;
5981 }
5982
5983 /* Write out the program headers. */
5984 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5985
5986 /* Sort the program headers into the ordering required by the ELF standard. */
5987 if (alloc == 0)
5988 return TRUE;
5989
5990 /* PR ld/20815 - Check that the program header segment, if present, will
5991 be loaded into memory. FIXME: The check below is not sufficient as
5992 really all PT_LOAD segments should be checked before issuing an error
5993 message. Plus the PHDR segment does not have to be the first segment
5994 in the program header table. But this version of the check should
5995 catch all real world use cases.
5996
5997 FIXME: We used to have code here to sort the PT_LOAD segments into
5998 ascending order, as per the ELF spec. But this breaks some programs,
5999 including the Linux kernel. But really either the spec should be
6000 changed or the programs updated. */
6001 if (alloc > 1
6002 && tdata->phdr[0].p_type == PT_PHDR
6003 && ! bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr, alloc)
6004 && tdata->phdr[1].p_type == PT_LOAD
6005 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6006 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz)
6007 < (tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6008 {
6009 /* The fix for this error is usually to edit the linker script being
6010 used and set up the program headers manually. Either that or
6011 leave room for the headers at the start of the SECTIONS. */
6012 _bfd_error_handler (_("\
6013 %B: error: PHDR segment not covered by LOAD segment"),
6014 abfd);
6015 return FALSE;
6016 }
6017
6018 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6019 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6020 return FALSE;
6021 }
6022
6023 return TRUE;
6024 }
6025
6026 static bfd_boolean
6027 prep_headers (bfd *abfd)
6028 {
6029 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6030 struct elf_strtab_hash *shstrtab;
6031 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6032
6033 i_ehdrp = elf_elfheader (abfd);
6034
6035 shstrtab = _bfd_elf_strtab_init ();
6036 if (shstrtab == NULL)
6037 return FALSE;
6038
6039 elf_shstrtab (abfd) = shstrtab;
6040
6041 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6042 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6043 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6044 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6045
6046 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6047 i_ehdrp->e_ident[EI_DATA] =
6048 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6049 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6050
6051 if ((abfd->flags & DYNAMIC) != 0)
6052 i_ehdrp->e_type = ET_DYN;
6053 else if ((abfd->flags & EXEC_P) != 0)
6054 i_ehdrp->e_type = ET_EXEC;
6055 else if (bfd_get_format (abfd) == bfd_core)
6056 i_ehdrp->e_type = ET_CORE;
6057 else
6058 i_ehdrp->e_type = ET_REL;
6059
6060 switch (bfd_get_arch (abfd))
6061 {
6062 case bfd_arch_unknown:
6063 i_ehdrp->e_machine = EM_NONE;
6064 break;
6065
6066 /* There used to be a long list of cases here, each one setting
6067 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6068 in the corresponding bfd definition. To avoid duplication,
6069 the switch was removed. Machines that need special handling
6070 can generally do it in elf_backend_final_write_processing(),
6071 unless they need the information earlier than the final write.
6072 Such need can generally be supplied by replacing the tests for
6073 e_machine with the conditions used to determine it. */
6074 default:
6075 i_ehdrp->e_machine = bed->elf_machine_code;
6076 }
6077
6078 i_ehdrp->e_version = bed->s->ev_current;
6079 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6080
6081 /* No program header, for now. */
6082 i_ehdrp->e_phoff = 0;
6083 i_ehdrp->e_phentsize = 0;
6084 i_ehdrp->e_phnum = 0;
6085
6086 /* Each bfd section is section header entry. */
6087 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6088 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6089
6090 /* If we're building an executable, we'll need a program header table. */
6091 if (abfd->flags & EXEC_P)
6092 /* It all happens later. */
6093 ;
6094 else
6095 {
6096 i_ehdrp->e_phentsize = 0;
6097 i_ehdrp->e_phoff = 0;
6098 }
6099
6100 elf_tdata (abfd)->symtab_hdr.sh_name =
6101 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6102 elf_tdata (abfd)->strtab_hdr.sh_name =
6103 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6104 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6105 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6106 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6107 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6108 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6109 return FALSE;
6110
6111 return TRUE;
6112 }
6113
6114 /* Assign file positions for all the reloc sections which are not part
6115 of the loadable file image, and the file position of section headers. */
6116
6117 static bfd_boolean
6118 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6119 {
6120 file_ptr off;
6121 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6122 Elf_Internal_Shdr *shdrp;
6123 Elf_Internal_Ehdr *i_ehdrp;
6124 const struct elf_backend_data *bed;
6125
6126 off = elf_next_file_pos (abfd);
6127
6128 shdrpp = elf_elfsections (abfd);
6129 end_shdrpp = shdrpp + elf_numsections (abfd);
6130 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6131 {
6132 shdrp = *shdrpp;
6133 if (shdrp->sh_offset == -1)
6134 {
6135 asection *sec = shdrp->bfd_section;
6136 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6137 || shdrp->sh_type == SHT_RELA);
6138 if (is_rel
6139 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6140 {
6141 if (!is_rel)
6142 {
6143 const char *name = sec->name;
6144 struct bfd_elf_section_data *d;
6145
6146 /* Compress DWARF debug sections. */
6147 if (!bfd_compress_section (abfd, sec,
6148 shdrp->contents))
6149 return FALSE;
6150
6151 if (sec->compress_status == COMPRESS_SECTION_DONE
6152 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6153 {
6154 /* If section is compressed with zlib-gnu, convert
6155 section name from .debug_* to .zdebug_*. */
6156 char *new_name
6157 = convert_debug_to_zdebug (abfd, name);
6158 if (new_name == NULL)
6159 return FALSE;
6160 name = new_name;
6161 }
6162 /* Add section name to section name section. */
6163 if (shdrp->sh_name != (unsigned int) -1)
6164 abort ();
6165 shdrp->sh_name
6166 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6167 name, FALSE);
6168 d = elf_section_data (sec);
6169
6170 /* Add reloc section name to section name section. */
6171 if (d->rel.hdr
6172 && !_bfd_elf_set_reloc_sh_name (abfd,
6173 d->rel.hdr,
6174 name, FALSE))
6175 return FALSE;
6176 if (d->rela.hdr
6177 && !_bfd_elf_set_reloc_sh_name (abfd,
6178 d->rela.hdr,
6179 name, TRUE))
6180 return FALSE;
6181
6182 /* Update section size and contents. */
6183 shdrp->sh_size = sec->size;
6184 shdrp->contents = sec->contents;
6185 shdrp->bfd_section->contents = NULL;
6186 }
6187 off = _bfd_elf_assign_file_position_for_section (shdrp,
6188 off,
6189 TRUE);
6190 }
6191 }
6192 }
6193
6194 /* Place section name section after DWARF debug sections have been
6195 compressed. */
6196 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6197 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6198 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6199 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6200
6201 /* Place the section headers. */
6202 i_ehdrp = elf_elfheader (abfd);
6203 bed = get_elf_backend_data (abfd);
6204 off = align_file_position (off, 1 << bed->s->log_file_align);
6205 i_ehdrp->e_shoff = off;
6206 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6207 elf_next_file_pos (abfd) = off;
6208
6209 return TRUE;
6210 }
6211
6212 bfd_boolean
6213 _bfd_elf_write_object_contents (bfd *abfd)
6214 {
6215 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6216 Elf_Internal_Shdr **i_shdrp;
6217 bfd_boolean failed;
6218 unsigned int count, num_sec;
6219 struct elf_obj_tdata *t;
6220
6221 if (! abfd->output_has_begun
6222 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6223 return FALSE;
6224
6225 i_shdrp = elf_elfsections (abfd);
6226
6227 failed = FALSE;
6228 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6229 if (failed)
6230 return FALSE;
6231
6232 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6233 return FALSE;
6234
6235 /* After writing the headers, we need to write the sections too... */
6236 num_sec = elf_numsections (abfd);
6237 for (count = 1; count < num_sec; count++)
6238 {
6239 i_shdrp[count]->sh_name
6240 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6241 i_shdrp[count]->sh_name);
6242 if (bed->elf_backend_section_processing)
6243 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
6244 if (i_shdrp[count]->contents)
6245 {
6246 bfd_size_type amt = i_shdrp[count]->sh_size;
6247
6248 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6249 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6250 return FALSE;
6251 }
6252 }
6253
6254 /* Write out the section header names. */
6255 t = elf_tdata (abfd);
6256 if (elf_shstrtab (abfd) != NULL
6257 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6258 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6259 return FALSE;
6260
6261 if (bed->elf_backend_final_write_processing)
6262 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6263
6264 if (!bed->s->write_shdrs_and_ehdr (abfd))
6265 return FALSE;
6266
6267 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6268 if (t->o->build_id.after_write_object_contents != NULL)
6269 return (*t->o->build_id.after_write_object_contents) (abfd);
6270
6271 return TRUE;
6272 }
6273
6274 bfd_boolean
6275 _bfd_elf_write_corefile_contents (bfd *abfd)
6276 {
6277 /* Hopefully this can be done just like an object file. */
6278 return _bfd_elf_write_object_contents (abfd);
6279 }
6280
6281 /* Given a section, search the header to find them. */
6282
6283 unsigned int
6284 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6285 {
6286 const struct elf_backend_data *bed;
6287 unsigned int sec_index;
6288
6289 if (elf_section_data (asect) != NULL
6290 && elf_section_data (asect)->this_idx != 0)
6291 return elf_section_data (asect)->this_idx;
6292
6293 if (bfd_is_abs_section (asect))
6294 sec_index = SHN_ABS;
6295 else if (bfd_is_com_section (asect))
6296 sec_index = SHN_COMMON;
6297 else if (bfd_is_und_section (asect))
6298 sec_index = SHN_UNDEF;
6299 else
6300 sec_index = SHN_BAD;
6301
6302 bed = get_elf_backend_data (abfd);
6303 if (bed->elf_backend_section_from_bfd_section)
6304 {
6305 int retval = sec_index;
6306
6307 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6308 return retval;
6309 }
6310
6311 if (sec_index == SHN_BAD)
6312 bfd_set_error (bfd_error_nonrepresentable_section);
6313
6314 return sec_index;
6315 }
6316
6317 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6318 on error. */
6319
6320 int
6321 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6322 {
6323 asymbol *asym_ptr = *asym_ptr_ptr;
6324 int idx;
6325 flagword flags = asym_ptr->flags;
6326
6327 /* When gas creates relocations against local labels, it creates its
6328 own symbol for the section, but does put the symbol into the
6329 symbol chain, so udata is 0. When the linker is generating
6330 relocatable output, this section symbol may be for one of the
6331 input sections rather than the output section. */
6332 if (asym_ptr->udata.i == 0
6333 && (flags & BSF_SECTION_SYM)
6334 && asym_ptr->section)
6335 {
6336 asection *sec;
6337 int indx;
6338
6339 sec = asym_ptr->section;
6340 if (sec->owner != abfd && sec->output_section != NULL)
6341 sec = sec->output_section;
6342 if (sec->owner == abfd
6343 && (indx = sec->index) < elf_num_section_syms (abfd)
6344 && elf_section_syms (abfd)[indx] != NULL)
6345 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6346 }
6347
6348 idx = asym_ptr->udata.i;
6349
6350 if (idx == 0)
6351 {
6352 /* This case can occur when using --strip-symbol on a symbol
6353 which is used in a relocation entry. */
6354 _bfd_error_handler
6355 /* xgettext:c-format */
6356 (_("%B: symbol `%s' required but not present"),
6357 abfd, bfd_asymbol_name (asym_ptr));
6358 bfd_set_error (bfd_error_no_symbols);
6359 return -1;
6360 }
6361
6362 #if DEBUG & 4
6363 {
6364 fprintf (stderr,
6365 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
6366 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
6367 fflush (stderr);
6368 }
6369 #endif
6370
6371 return idx;
6372 }
6373
6374 /* Rewrite program header information. */
6375
6376 static bfd_boolean
6377 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6378 {
6379 Elf_Internal_Ehdr *iehdr;
6380 struct elf_segment_map *map;
6381 struct elf_segment_map *map_first;
6382 struct elf_segment_map **pointer_to_map;
6383 Elf_Internal_Phdr *segment;
6384 asection *section;
6385 unsigned int i;
6386 unsigned int num_segments;
6387 bfd_boolean phdr_included = FALSE;
6388 bfd_boolean p_paddr_valid;
6389 bfd_vma maxpagesize;
6390 struct elf_segment_map *phdr_adjust_seg = NULL;
6391 unsigned int phdr_adjust_num = 0;
6392 const struct elf_backend_data *bed;
6393
6394 bed = get_elf_backend_data (ibfd);
6395 iehdr = elf_elfheader (ibfd);
6396
6397 map_first = NULL;
6398 pointer_to_map = &map_first;
6399
6400 num_segments = elf_elfheader (ibfd)->e_phnum;
6401 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6402
6403 /* Returns the end address of the segment + 1. */
6404 #define SEGMENT_END(segment, start) \
6405 (start + (segment->p_memsz > segment->p_filesz \
6406 ? segment->p_memsz : segment->p_filesz))
6407
6408 #define SECTION_SIZE(section, segment) \
6409 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6410 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6411 ? section->size : 0)
6412
6413 /* Returns TRUE if the given section is contained within
6414 the given segment. VMA addresses are compared. */
6415 #define IS_CONTAINED_BY_VMA(section, segment) \
6416 (section->vma >= segment->p_vaddr \
6417 && (section->vma + SECTION_SIZE (section, segment) \
6418 <= (SEGMENT_END (segment, segment->p_vaddr))))
6419
6420 /* Returns TRUE if the given section is contained within
6421 the given segment. LMA addresses are compared. */
6422 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6423 (section->lma >= base \
6424 && (section->lma + SECTION_SIZE (section, segment) \
6425 <= SEGMENT_END (segment, base)))
6426
6427 /* Handle PT_NOTE segment. */
6428 #define IS_NOTE(p, s) \
6429 (p->p_type == PT_NOTE \
6430 && elf_section_type (s) == SHT_NOTE \
6431 && (bfd_vma) s->filepos >= p->p_offset \
6432 && ((bfd_vma) s->filepos + s->size \
6433 <= p->p_offset + p->p_filesz))
6434
6435 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6436 etc. */
6437 #define IS_COREFILE_NOTE(p, s) \
6438 (IS_NOTE (p, s) \
6439 && bfd_get_format (ibfd) == bfd_core \
6440 && s->vma == 0 \
6441 && s->lma == 0)
6442
6443 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6444 linker, which generates a PT_INTERP section with p_vaddr and
6445 p_memsz set to 0. */
6446 #define IS_SOLARIS_PT_INTERP(p, s) \
6447 (p->p_vaddr == 0 \
6448 && p->p_paddr == 0 \
6449 && p->p_memsz == 0 \
6450 && p->p_filesz > 0 \
6451 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6452 && s->size > 0 \
6453 && (bfd_vma) s->filepos >= p->p_offset \
6454 && ((bfd_vma) s->filepos + s->size \
6455 <= p->p_offset + p->p_filesz))
6456
6457 /* Decide if the given section should be included in the given segment.
6458 A section will be included if:
6459 1. It is within the address space of the segment -- we use the LMA
6460 if that is set for the segment and the VMA otherwise,
6461 2. It is an allocated section or a NOTE section in a PT_NOTE
6462 segment.
6463 3. There is an output section associated with it,
6464 4. The section has not already been allocated to a previous segment.
6465 5. PT_GNU_STACK segments do not include any sections.
6466 6. PT_TLS segment includes only SHF_TLS sections.
6467 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6468 8. PT_DYNAMIC should not contain empty sections at the beginning
6469 (with the possible exception of .dynamic). */
6470 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6471 ((((segment->p_paddr \
6472 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6473 : IS_CONTAINED_BY_VMA (section, segment)) \
6474 && (section->flags & SEC_ALLOC) != 0) \
6475 || IS_NOTE (segment, section)) \
6476 && segment->p_type != PT_GNU_STACK \
6477 && (segment->p_type != PT_TLS \
6478 || (section->flags & SEC_THREAD_LOCAL)) \
6479 && (segment->p_type == PT_LOAD \
6480 || segment->p_type == PT_TLS \
6481 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6482 && (segment->p_type != PT_DYNAMIC \
6483 || SECTION_SIZE (section, segment) > 0 \
6484 || (segment->p_paddr \
6485 ? segment->p_paddr != section->lma \
6486 : segment->p_vaddr != section->vma) \
6487 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6488 == 0)) \
6489 && !section->segment_mark)
6490
6491 /* If the output section of a section in the input segment is NULL,
6492 it is removed from the corresponding output segment. */
6493 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6494 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6495 && section->output_section != NULL)
6496
6497 /* Returns TRUE iff seg1 starts after the end of seg2. */
6498 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6499 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6500
6501 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6502 their VMA address ranges and their LMA address ranges overlap.
6503 It is possible to have overlapping VMA ranges without overlapping LMA
6504 ranges. RedBoot images for example can have both .data and .bss mapped
6505 to the same VMA range, but with the .data section mapped to a different
6506 LMA. */
6507 #define SEGMENT_OVERLAPS(seg1, seg2) \
6508 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6509 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6510 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6511 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6512
6513 /* Initialise the segment mark field. */
6514 for (section = ibfd->sections; section != NULL; section = section->next)
6515 section->segment_mark = FALSE;
6516
6517 /* The Solaris linker creates program headers in which all the
6518 p_paddr fields are zero. When we try to objcopy or strip such a
6519 file, we get confused. Check for this case, and if we find it
6520 don't set the p_paddr_valid fields. */
6521 p_paddr_valid = FALSE;
6522 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6523 i < num_segments;
6524 i++, segment++)
6525 if (segment->p_paddr != 0)
6526 {
6527 p_paddr_valid = TRUE;
6528 break;
6529 }
6530
6531 /* Scan through the segments specified in the program header
6532 of the input BFD. For this first scan we look for overlaps
6533 in the loadable segments. These can be created by weird
6534 parameters to objcopy. Also, fix some solaris weirdness. */
6535 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6536 i < num_segments;
6537 i++, segment++)
6538 {
6539 unsigned int j;
6540 Elf_Internal_Phdr *segment2;
6541
6542 if (segment->p_type == PT_INTERP)
6543 for (section = ibfd->sections; section; section = section->next)
6544 if (IS_SOLARIS_PT_INTERP (segment, section))
6545 {
6546 /* Mininal change so that the normal section to segment
6547 assignment code will work. */
6548 segment->p_vaddr = section->vma;
6549 break;
6550 }
6551
6552 if (segment->p_type != PT_LOAD)
6553 {
6554 /* Remove PT_GNU_RELRO segment. */
6555 if (segment->p_type == PT_GNU_RELRO)
6556 segment->p_type = PT_NULL;
6557 continue;
6558 }
6559
6560 /* Determine if this segment overlaps any previous segments. */
6561 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6562 {
6563 bfd_signed_vma extra_length;
6564
6565 if (segment2->p_type != PT_LOAD
6566 || !SEGMENT_OVERLAPS (segment, segment2))
6567 continue;
6568
6569 /* Merge the two segments together. */
6570 if (segment2->p_vaddr < segment->p_vaddr)
6571 {
6572 /* Extend SEGMENT2 to include SEGMENT and then delete
6573 SEGMENT. */
6574 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6575 - SEGMENT_END (segment2, segment2->p_vaddr));
6576
6577 if (extra_length > 0)
6578 {
6579 segment2->p_memsz += extra_length;
6580 segment2->p_filesz += extra_length;
6581 }
6582
6583 segment->p_type = PT_NULL;
6584
6585 /* Since we have deleted P we must restart the outer loop. */
6586 i = 0;
6587 segment = elf_tdata (ibfd)->phdr;
6588 break;
6589 }
6590 else
6591 {
6592 /* Extend SEGMENT to include SEGMENT2 and then delete
6593 SEGMENT2. */
6594 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6595 - SEGMENT_END (segment, segment->p_vaddr));
6596
6597 if (extra_length > 0)
6598 {
6599 segment->p_memsz += extra_length;
6600 segment->p_filesz += extra_length;
6601 }
6602
6603 segment2->p_type = PT_NULL;
6604 }
6605 }
6606 }
6607
6608 /* The second scan attempts to assign sections to segments. */
6609 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6610 i < num_segments;
6611 i++, segment++)
6612 {
6613 unsigned int section_count;
6614 asection **sections;
6615 asection *output_section;
6616 unsigned int isec;
6617 bfd_vma matching_lma;
6618 bfd_vma suggested_lma;
6619 unsigned int j;
6620 bfd_size_type amt;
6621 asection *first_section;
6622 bfd_boolean first_matching_lma;
6623 bfd_boolean first_suggested_lma;
6624
6625 if (segment->p_type == PT_NULL)
6626 continue;
6627
6628 first_section = NULL;
6629 /* Compute how many sections might be placed into this segment. */
6630 for (section = ibfd->sections, section_count = 0;
6631 section != NULL;
6632 section = section->next)
6633 {
6634 /* Find the first section in the input segment, which may be
6635 removed from the corresponding output segment. */
6636 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6637 {
6638 if (first_section == NULL)
6639 first_section = section;
6640 if (section->output_section != NULL)
6641 ++section_count;
6642 }
6643 }
6644
6645 /* Allocate a segment map big enough to contain
6646 all of the sections we have selected. */
6647 amt = sizeof (struct elf_segment_map);
6648 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6649 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6650 if (map == NULL)
6651 return FALSE;
6652
6653 /* Initialise the fields of the segment map. Default to
6654 using the physical address of the segment in the input BFD. */
6655 map->next = NULL;
6656 map->p_type = segment->p_type;
6657 map->p_flags = segment->p_flags;
6658 map->p_flags_valid = 1;
6659
6660 /* If the first section in the input segment is removed, there is
6661 no need to preserve segment physical address in the corresponding
6662 output segment. */
6663 if (!first_section || first_section->output_section != NULL)
6664 {
6665 map->p_paddr = segment->p_paddr;
6666 map->p_paddr_valid = p_paddr_valid;
6667 }
6668
6669 /* Determine if this segment contains the ELF file header
6670 and if it contains the program headers themselves. */
6671 map->includes_filehdr = (segment->p_offset == 0
6672 && segment->p_filesz >= iehdr->e_ehsize);
6673 map->includes_phdrs = 0;
6674
6675 if (!phdr_included || segment->p_type != PT_LOAD)
6676 {
6677 map->includes_phdrs =
6678 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6679 && (segment->p_offset + segment->p_filesz
6680 >= ((bfd_vma) iehdr->e_phoff
6681 + iehdr->e_phnum * iehdr->e_phentsize)));
6682
6683 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6684 phdr_included = TRUE;
6685 }
6686
6687 if (section_count == 0)
6688 {
6689 /* Special segments, such as the PT_PHDR segment, may contain
6690 no sections, but ordinary, loadable segments should contain
6691 something. They are allowed by the ELF spec however, so only
6692 a warning is produced. */
6693 if (segment->p_type == PT_LOAD)
6694 _bfd_error_handler (_("\
6695 %B: warning: Empty loadable segment detected, is this intentional ?"),
6696 ibfd);
6697
6698 map->count = 0;
6699 *pointer_to_map = map;
6700 pointer_to_map = &map->next;
6701
6702 continue;
6703 }
6704
6705 /* Now scan the sections in the input BFD again and attempt
6706 to add their corresponding output sections to the segment map.
6707 The problem here is how to handle an output section which has
6708 been moved (ie had its LMA changed). There are four possibilities:
6709
6710 1. None of the sections have been moved.
6711 In this case we can continue to use the segment LMA from the
6712 input BFD.
6713
6714 2. All of the sections have been moved by the same amount.
6715 In this case we can change the segment's LMA to match the LMA
6716 of the first section.
6717
6718 3. Some of the sections have been moved, others have not.
6719 In this case those sections which have not been moved can be
6720 placed in the current segment which will have to have its size,
6721 and possibly its LMA changed, and a new segment or segments will
6722 have to be created to contain the other sections.
6723
6724 4. The sections have been moved, but not by the same amount.
6725 In this case we can change the segment's LMA to match the LMA
6726 of the first section and we will have to create a new segment
6727 or segments to contain the other sections.
6728
6729 In order to save time, we allocate an array to hold the section
6730 pointers that we are interested in. As these sections get assigned
6731 to a segment, they are removed from this array. */
6732
6733 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6734 if (sections == NULL)
6735 return FALSE;
6736
6737 /* Step One: Scan for segment vs section LMA conflicts.
6738 Also add the sections to the section array allocated above.
6739 Also add the sections to the current segment. In the common
6740 case, where the sections have not been moved, this means that
6741 we have completely filled the segment, and there is nothing
6742 more to do. */
6743 isec = 0;
6744 matching_lma = 0;
6745 suggested_lma = 0;
6746 first_matching_lma = TRUE;
6747 first_suggested_lma = TRUE;
6748
6749 for (section = first_section, j = 0;
6750 section != NULL;
6751 section = section->next)
6752 {
6753 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6754 {
6755 output_section = section->output_section;
6756
6757 sections[j++] = section;
6758
6759 /* The Solaris native linker always sets p_paddr to 0.
6760 We try to catch that case here, and set it to the
6761 correct value. Note - some backends require that
6762 p_paddr be left as zero. */
6763 if (!p_paddr_valid
6764 && segment->p_vaddr != 0
6765 && !bed->want_p_paddr_set_to_zero
6766 && isec == 0
6767 && output_section->lma != 0
6768 && output_section->vma == (segment->p_vaddr
6769 + (map->includes_filehdr
6770 ? iehdr->e_ehsize
6771 : 0)
6772 + (map->includes_phdrs
6773 ? (iehdr->e_phnum
6774 * iehdr->e_phentsize)
6775 : 0)))
6776 map->p_paddr = segment->p_vaddr;
6777
6778 /* Match up the physical address of the segment with the
6779 LMA address of the output section. */
6780 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6781 || IS_COREFILE_NOTE (segment, section)
6782 || (bed->want_p_paddr_set_to_zero
6783 && IS_CONTAINED_BY_VMA (output_section, segment)))
6784 {
6785 if (first_matching_lma || output_section->lma < matching_lma)
6786 {
6787 matching_lma = output_section->lma;
6788 first_matching_lma = FALSE;
6789 }
6790
6791 /* We assume that if the section fits within the segment
6792 then it does not overlap any other section within that
6793 segment. */
6794 map->sections[isec++] = output_section;
6795 }
6796 else if (first_suggested_lma)
6797 {
6798 suggested_lma = output_section->lma;
6799 first_suggested_lma = FALSE;
6800 }
6801
6802 if (j == section_count)
6803 break;
6804 }
6805 }
6806
6807 BFD_ASSERT (j == section_count);
6808
6809 /* Step Two: Adjust the physical address of the current segment,
6810 if necessary. */
6811 if (isec == section_count)
6812 {
6813 /* All of the sections fitted within the segment as currently
6814 specified. This is the default case. Add the segment to
6815 the list of built segments and carry on to process the next
6816 program header in the input BFD. */
6817 map->count = section_count;
6818 *pointer_to_map = map;
6819 pointer_to_map = &map->next;
6820
6821 if (p_paddr_valid
6822 && !bed->want_p_paddr_set_to_zero
6823 && matching_lma != map->p_paddr
6824 && !map->includes_filehdr
6825 && !map->includes_phdrs)
6826 /* There is some padding before the first section in the
6827 segment. So, we must account for that in the output
6828 segment's vma. */
6829 map->p_vaddr_offset = matching_lma - map->p_paddr;
6830
6831 free (sections);
6832 continue;
6833 }
6834 else
6835 {
6836 if (!first_matching_lma)
6837 {
6838 /* At least one section fits inside the current segment.
6839 Keep it, but modify its physical address to match the
6840 LMA of the first section that fitted. */
6841 map->p_paddr = matching_lma;
6842 }
6843 else
6844 {
6845 /* None of the sections fitted inside the current segment.
6846 Change the current segment's physical address to match
6847 the LMA of the first section. */
6848 map->p_paddr = suggested_lma;
6849 }
6850
6851 /* Offset the segment physical address from the lma
6852 to allow for space taken up by elf headers. */
6853 if (map->includes_filehdr)
6854 {
6855 if (map->p_paddr >= iehdr->e_ehsize)
6856 map->p_paddr -= iehdr->e_ehsize;
6857 else
6858 {
6859 map->includes_filehdr = FALSE;
6860 map->includes_phdrs = FALSE;
6861 }
6862 }
6863
6864 if (map->includes_phdrs)
6865 {
6866 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6867 {
6868 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6869
6870 /* iehdr->e_phnum is just an estimate of the number
6871 of program headers that we will need. Make a note
6872 here of the number we used and the segment we chose
6873 to hold these headers, so that we can adjust the
6874 offset when we know the correct value. */
6875 phdr_adjust_num = iehdr->e_phnum;
6876 phdr_adjust_seg = map;
6877 }
6878 else
6879 map->includes_phdrs = FALSE;
6880 }
6881 }
6882
6883 /* Step Three: Loop over the sections again, this time assigning
6884 those that fit to the current segment and removing them from the
6885 sections array; but making sure not to leave large gaps. Once all
6886 possible sections have been assigned to the current segment it is
6887 added to the list of built segments and if sections still remain
6888 to be assigned, a new segment is constructed before repeating
6889 the loop. */
6890 isec = 0;
6891 do
6892 {
6893 map->count = 0;
6894 suggested_lma = 0;
6895 first_suggested_lma = TRUE;
6896
6897 /* Fill the current segment with sections that fit. */
6898 for (j = 0; j < section_count; j++)
6899 {
6900 section = sections[j];
6901
6902 if (section == NULL)
6903 continue;
6904
6905 output_section = section->output_section;
6906
6907 BFD_ASSERT (output_section != NULL);
6908
6909 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6910 || IS_COREFILE_NOTE (segment, section))
6911 {
6912 if (map->count == 0)
6913 {
6914 /* If the first section in a segment does not start at
6915 the beginning of the segment, then something is
6916 wrong. */
6917 if (output_section->lma
6918 != (map->p_paddr
6919 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6920 + (map->includes_phdrs
6921 ? iehdr->e_phnum * iehdr->e_phentsize
6922 : 0)))
6923 abort ();
6924 }
6925 else
6926 {
6927 asection *prev_sec;
6928
6929 prev_sec = map->sections[map->count - 1];
6930
6931 /* If the gap between the end of the previous section
6932 and the start of this section is more than
6933 maxpagesize then we need to start a new segment. */
6934 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6935 maxpagesize)
6936 < BFD_ALIGN (output_section->lma, maxpagesize))
6937 || (prev_sec->lma + prev_sec->size
6938 > output_section->lma))
6939 {
6940 if (first_suggested_lma)
6941 {
6942 suggested_lma = output_section->lma;
6943 first_suggested_lma = FALSE;
6944 }
6945
6946 continue;
6947 }
6948 }
6949
6950 map->sections[map->count++] = output_section;
6951 ++isec;
6952 sections[j] = NULL;
6953 section->segment_mark = TRUE;
6954 }
6955 else if (first_suggested_lma)
6956 {
6957 suggested_lma = output_section->lma;
6958 first_suggested_lma = FALSE;
6959 }
6960 }
6961
6962 BFD_ASSERT (map->count > 0);
6963
6964 /* Add the current segment to the list of built segments. */
6965 *pointer_to_map = map;
6966 pointer_to_map = &map->next;
6967
6968 if (isec < section_count)
6969 {
6970 /* We still have not allocated all of the sections to
6971 segments. Create a new segment here, initialise it
6972 and carry on looping. */
6973 amt = sizeof (struct elf_segment_map);
6974 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6975 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6976 if (map == NULL)
6977 {
6978 free (sections);
6979 return FALSE;
6980 }
6981
6982 /* Initialise the fields of the segment map. Set the physical
6983 physical address to the LMA of the first section that has
6984 not yet been assigned. */
6985 map->next = NULL;
6986 map->p_type = segment->p_type;
6987 map->p_flags = segment->p_flags;
6988 map->p_flags_valid = 1;
6989 map->p_paddr = suggested_lma;
6990 map->p_paddr_valid = p_paddr_valid;
6991 map->includes_filehdr = 0;
6992 map->includes_phdrs = 0;
6993 }
6994 }
6995 while (isec < section_count);
6996
6997 free (sections);
6998 }
6999
7000 elf_seg_map (obfd) = map_first;
7001
7002 /* If we had to estimate the number of program headers that were
7003 going to be needed, then check our estimate now and adjust
7004 the offset if necessary. */
7005 if (phdr_adjust_seg != NULL)
7006 {
7007 unsigned int count;
7008
7009 for (count = 0, map = map_first; map != NULL; map = map->next)
7010 count++;
7011
7012 if (count > phdr_adjust_num)
7013 phdr_adjust_seg->p_paddr
7014 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7015 }
7016
7017 #undef SEGMENT_END
7018 #undef SECTION_SIZE
7019 #undef IS_CONTAINED_BY_VMA
7020 #undef IS_CONTAINED_BY_LMA
7021 #undef IS_NOTE
7022 #undef IS_COREFILE_NOTE
7023 #undef IS_SOLARIS_PT_INTERP
7024 #undef IS_SECTION_IN_INPUT_SEGMENT
7025 #undef INCLUDE_SECTION_IN_SEGMENT
7026 #undef SEGMENT_AFTER_SEGMENT
7027 #undef SEGMENT_OVERLAPS
7028 return TRUE;
7029 }
7030
7031 /* Copy ELF program header information. */
7032
7033 static bfd_boolean
7034 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7035 {
7036 Elf_Internal_Ehdr *iehdr;
7037 struct elf_segment_map *map;
7038 struct elf_segment_map *map_first;
7039 struct elf_segment_map **pointer_to_map;
7040 Elf_Internal_Phdr *segment;
7041 unsigned int i;
7042 unsigned int num_segments;
7043 bfd_boolean phdr_included = FALSE;
7044 bfd_boolean p_paddr_valid;
7045
7046 iehdr = elf_elfheader (ibfd);
7047
7048 map_first = NULL;
7049 pointer_to_map = &map_first;
7050
7051 /* If all the segment p_paddr fields are zero, don't set
7052 map->p_paddr_valid. */
7053 p_paddr_valid = FALSE;
7054 num_segments = elf_elfheader (ibfd)->e_phnum;
7055 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7056 i < num_segments;
7057 i++, segment++)
7058 if (segment->p_paddr != 0)
7059 {
7060 p_paddr_valid = TRUE;
7061 break;
7062 }
7063
7064 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7065 i < num_segments;
7066 i++, segment++)
7067 {
7068 asection *section;
7069 unsigned int section_count;
7070 bfd_size_type amt;
7071 Elf_Internal_Shdr *this_hdr;
7072 asection *first_section = NULL;
7073 asection *lowest_section;
7074
7075 /* Compute how many sections are in this segment. */
7076 for (section = ibfd->sections, section_count = 0;
7077 section != NULL;
7078 section = section->next)
7079 {
7080 this_hdr = &(elf_section_data(section)->this_hdr);
7081 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7082 {
7083 if (first_section == NULL)
7084 first_section = section;
7085 section_count++;
7086 }
7087 }
7088
7089 /* Allocate a segment map big enough to contain
7090 all of the sections we have selected. */
7091 amt = sizeof (struct elf_segment_map);
7092 if (section_count != 0)
7093 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7094 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7095 if (map == NULL)
7096 return FALSE;
7097
7098 /* Initialize the fields of the output segment map with the
7099 input segment. */
7100 map->next = NULL;
7101 map->p_type = segment->p_type;
7102 map->p_flags = segment->p_flags;
7103 map->p_flags_valid = 1;
7104 map->p_paddr = segment->p_paddr;
7105 map->p_paddr_valid = p_paddr_valid;
7106 map->p_align = segment->p_align;
7107 map->p_align_valid = 1;
7108 map->p_vaddr_offset = 0;
7109
7110 if (map->p_type == PT_GNU_RELRO
7111 || map->p_type == PT_GNU_STACK)
7112 {
7113 /* The PT_GNU_RELRO segment may contain the first a few
7114 bytes in the .got.plt section even if the whole .got.plt
7115 section isn't in the PT_GNU_RELRO segment. We won't
7116 change the size of the PT_GNU_RELRO segment.
7117 Similarly, PT_GNU_STACK size is significant on uclinux
7118 systems. */
7119 map->p_size = segment->p_memsz;
7120 map->p_size_valid = 1;
7121 }
7122
7123 /* Determine if this segment contains the ELF file header
7124 and if it contains the program headers themselves. */
7125 map->includes_filehdr = (segment->p_offset == 0
7126 && segment->p_filesz >= iehdr->e_ehsize);
7127
7128 map->includes_phdrs = 0;
7129 if (! phdr_included || segment->p_type != PT_LOAD)
7130 {
7131 map->includes_phdrs =
7132 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7133 && (segment->p_offset + segment->p_filesz
7134 >= ((bfd_vma) iehdr->e_phoff
7135 + iehdr->e_phnum * iehdr->e_phentsize)));
7136
7137 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7138 phdr_included = TRUE;
7139 }
7140
7141 lowest_section = NULL;
7142 if (section_count != 0)
7143 {
7144 unsigned int isec = 0;
7145
7146 for (section = first_section;
7147 section != NULL;
7148 section = section->next)
7149 {
7150 this_hdr = &(elf_section_data(section)->this_hdr);
7151 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7152 {
7153 map->sections[isec++] = section->output_section;
7154 if ((section->flags & SEC_ALLOC) != 0)
7155 {
7156 bfd_vma seg_off;
7157
7158 if (lowest_section == NULL
7159 || section->lma < lowest_section->lma)
7160 lowest_section = section;
7161
7162 /* Section lmas are set up from PT_LOAD header
7163 p_paddr in _bfd_elf_make_section_from_shdr.
7164 If this header has a p_paddr that disagrees
7165 with the section lma, flag the p_paddr as
7166 invalid. */
7167 if ((section->flags & SEC_LOAD) != 0)
7168 seg_off = this_hdr->sh_offset - segment->p_offset;
7169 else
7170 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7171 if (section->lma - segment->p_paddr != seg_off)
7172 map->p_paddr_valid = FALSE;
7173 }
7174 if (isec == section_count)
7175 break;
7176 }
7177 }
7178 }
7179
7180 if (map->includes_filehdr && lowest_section != NULL)
7181 /* We need to keep the space used by the headers fixed. */
7182 map->header_size = lowest_section->vma - segment->p_vaddr;
7183
7184 if (!map->includes_phdrs
7185 && !map->includes_filehdr
7186 && map->p_paddr_valid)
7187 /* There is some other padding before the first section. */
7188 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7189 - segment->p_paddr);
7190
7191 map->count = section_count;
7192 *pointer_to_map = map;
7193 pointer_to_map = &map->next;
7194 }
7195
7196 elf_seg_map (obfd) = map_first;
7197 return TRUE;
7198 }
7199
7200 /* Copy private BFD data. This copies or rewrites ELF program header
7201 information. */
7202
7203 static bfd_boolean
7204 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7205 {
7206 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7207 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7208 return TRUE;
7209
7210 if (elf_tdata (ibfd)->phdr == NULL)
7211 return TRUE;
7212
7213 if (ibfd->xvec == obfd->xvec)
7214 {
7215 /* Check to see if any sections in the input BFD
7216 covered by ELF program header have changed. */
7217 Elf_Internal_Phdr *segment;
7218 asection *section, *osec;
7219 unsigned int i, num_segments;
7220 Elf_Internal_Shdr *this_hdr;
7221 const struct elf_backend_data *bed;
7222
7223 bed = get_elf_backend_data (ibfd);
7224
7225 /* Regenerate the segment map if p_paddr is set to 0. */
7226 if (bed->want_p_paddr_set_to_zero)
7227 goto rewrite;
7228
7229 /* Initialize the segment mark field. */
7230 for (section = obfd->sections; section != NULL;
7231 section = section->next)
7232 section->segment_mark = FALSE;
7233
7234 num_segments = elf_elfheader (ibfd)->e_phnum;
7235 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7236 i < num_segments;
7237 i++, segment++)
7238 {
7239 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7240 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7241 which severly confuses things, so always regenerate the segment
7242 map in this case. */
7243 if (segment->p_paddr == 0
7244 && segment->p_memsz == 0
7245 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7246 goto rewrite;
7247
7248 for (section = ibfd->sections;
7249 section != NULL; section = section->next)
7250 {
7251 /* We mark the output section so that we know it comes
7252 from the input BFD. */
7253 osec = section->output_section;
7254 if (osec)
7255 osec->segment_mark = TRUE;
7256
7257 /* Check if this section is covered by the segment. */
7258 this_hdr = &(elf_section_data(section)->this_hdr);
7259 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7260 {
7261 /* FIXME: Check if its output section is changed or
7262 removed. What else do we need to check? */
7263 if (osec == NULL
7264 || section->flags != osec->flags
7265 || section->lma != osec->lma
7266 || section->vma != osec->vma
7267 || section->size != osec->size
7268 || section->rawsize != osec->rawsize
7269 || section->alignment_power != osec->alignment_power)
7270 goto rewrite;
7271 }
7272 }
7273 }
7274
7275 /* Check to see if any output section do not come from the
7276 input BFD. */
7277 for (section = obfd->sections; section != NULL;
7278 section = section->next)
7279 {
7280 if (section->segment_mark == FALSE)
7281 goto rewrite;
7282 else
7283 section->segment_mark = FALSE;
7284 }
7285
7286 return copy_elf_program_header (ibfd, obfd);
7287 }
7288
7289 rewrite:
7290 if (ibfd->xvec == obfd->xvec)
7291 {
7292 /* When rewriting program header, set the output maxpagesize to
7293 the maximum alignment of input PT_LOAD segments. */
7294 Elf_Internal_Phdr *segment;
7295 unsigned int i;
7296 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7297 bfd_vma maxpagesize = 0;
7298
7299 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7300 i < num_segments;
7301 i++, segment++)
7302 if (segment->p_type == PT_LOAD
7303 && maxpagesize < segment->p_align)
7304 {
7305 /* PR 17512: file: f17299af. */
7306 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7307 /* xgettext:c-format */
7308 _bfd_error_handler (_("\
7309 %B: warning: segment alignment of 0x%llx is too large"),
7310 ibfd, (long long) segment->p_align);
7311 else
7312 maxpagesize = segment->p_align;
7313 }
7314
7315 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7316 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7317 }
7318
7319 return rewrite_elf_program_header (ibfd, obfd);
7320 }
7321
7322 /* Initialize private output section information from input section. */
7323
7324 bfd_boolean
7325 _bfd_elf_init_private_section_data (bfd *ibfd,
7326 asection *isec,
7327 bfd *obfd,
7328 asection *osec,
7329 struct bfd_link_info *link_info)
7330
7331 {
7332 Elf_Internal_Shdr *ihdr, *ohdr;
7333 bfd_boolean final_link = (link_info != NULL
7334 && !bfd_link_relocatable (link_info));
7335
7336 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7337 || obfd->xvec->flavour != bfd_target_elf_flavour)
7338 return TRUE;
7339
7340 BFD_ASSERT (elf_section_data (osec) != NULL);
7341
7342 /* For objcopy and relocatable link, don't copy the output ELF
7343 section type from input if the output BFD section flags have been
7344 set to something different. For a final link allow some flags
7345 that the linker clears to differ. */
7346 if (elf_section_type (osec) == SHT_NULL
7347 && (osec->flags == isec->flags
7348 || (final_link
7349 && ((osec->flags ^ isec->flags)
7350 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7351 elf_section_type (osec) = elf_section_type (isec);
7352
7353 /* FIXME: Is this correct for all OS/PROC specific flags? */
7354 elf_section_flags (osec) |= (elf_section_flags (isec)
7355 & (SHF_MASKOS | SHF_MASKPROC));
7356
7357 /* Set things up for objcopy and relocatable link. The output
7358 SHT_GROUP section will have its elf_next_in_group pointing back
7359 to the input group members. Ignore linker created group section.
7360 See elfNN_ia64_object_p in elfxx-ia64.c. */
7361 if (!final_link)
7362 {
7363 if (elf_sec_group (isec) == NULL
7364 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
7365 {
7366 if (elf_section_flags (isec) & SHF_GROUP)
7367 elf_section_flags (osec) |= SHF_GROUP;
7368 elf_next_in_group (osec) = elf_next_in_group (isec);
7369 elf_section_data (osec)->group = elf_section_data (isec)->group;
7370 }
7371
7372 /* If not decompress, preserve SHF_COMPRESSED. */
7373 if ((ibfd->flags & BFD_DECOMPRESS) == 0)
7374 elf_section_flags (osec) |= (elf_section_flags (isec)
7375 & SHF_COMPRESSED);
7376 }
7377
7378 ihdr = &elf_section_data (isec)->this_hdr;
7379
7380 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7381 don't use the output section of the linked-to section since it
7382 may be NULL at this point. */
7383 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7384 {
7385 ohdr = &elf_section_data (osec)->this_hdr;
7386 ohdr->sh_flags |= SHF_LINK_ORDER;
7387 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7388 }
7389
7390 osec->use_rela_p = isec->use_rela_p;
7391
7392 return TRUE;
7393 }
7394
7395 /* Copy private section information. This copies over the entsize
7396 field, and sometimes the info field. */
7397
7398 bfd_boolean
7399 _bfd_elf_copy_private_section_data (bfd *ibfd,
7400 asection *isec,
7401 bfd *obfd,
7402 asection *osec)
7403 {
7404 Elf_Internal_Shdr *ihdr, *ohdr;
7405
7406 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7407 || obfd->xvec->flavour != bfd_target_elf_flavour)
7408 return TRUE;
7409
7410 ihdr = &elf_section_data (isec)->this_hdr;
7411 ohdr = &elf_section_data (osec)->this_hdr;
7412
7413 ohdr->sh_entsize = ihdr->sh_entsize;
7414
7415 if (ihdr->sh_type == SHT_SYMTAB
7416 || ihdr->sh_type == SHT_DYNSYM
7417 || ihdr->sh_type == SHT_GNU_verneed
7418 || ihdr->sh_type == SHT_GNU_verdef)
7419 ohdr->sh_info = ihdr->sh_info;
7420
7421 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7422 NULL);
7423 }
7424
7425 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7426 necessary if we are removing either the SHT_GROUP section or any of
7427 the group member sections. DISCARDED is the value that a section's
7428 output_section has if the section will be discarded, NULL when this
7429 function is called from objcopy, bfd_abs_section_ptr when called
7430 from the linker. */
7431
7432 bfd_boolean
7433 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7434 {
7435 asection *isec;
7436
7437 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7438 if (elf_section_type (isec) == SHT_GROUP)
7439 {
7440 asection *first = elf_next_in_group (isec);
7441 asection *s = first;
7442 bfd_size_type removed = 0;
7443
7444 while (s != NULL)
7445 {
7446 /* If this member section is being output but the
7447 SHT_GROUP section is not, then clear the group info
7448 set up by _bfd_elf_copy_private_section_data. */
7449 if (s->output_section != discarded
7450 && isec->output_section == discarded)
7451 {
7452 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7453 elf_group_name (s->output_section) = NULL;
7454 }
7455 /* Conversely, if the member section is not being output
7456 but the SHT_GROUP section is, then adjust its size. */
7457 else if (s->output_section == discarded
7458 && isec->output_section != discarded)
7459 removed += 4;
7460 s = elf_next_in_group (s);
7461 if (s == first)
7462 break;
7463 }
7464 if (removed != 0)
7465 {
7466 if (discarded != NULL)
7467 {
7468 /* If we've been called for ld -r, then we need to
7469 adjust the input section size. This function may
7470 be called multiple times, so save the original
7471 size. */
7472 if (isec->rawsize == 0)
7473 isec->rawsize = isec->size;
7474 isec->size = isec->rawsize - removed;
7475 }
7476 else
7477 {
7478 /* Adjust the output section size when called from
7479 objcopy. */
7480 isec->output_section->size -= removed;
7481 }
7482 }
7483 }
7484
7485 return TRUE;
7486 }
7487
7488 /* Copy private header information. */
7489
7490 bfd_boolean
7491 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7492 {
7493 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7494 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7495 return TRUE;
7496
7497 /* Copy over private BFD data if it has not already been copied.
7498 This must be done here, rather than in the copy_private_bfd_data
7499 entry point, because the latter is called after the section
7500 contents have been set, which means that the program headers have
7501 already been worked out. */
7502 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7503 {
7504 if (! copy_private_bfd_data (ibfd, obfd))
7505 return FALSE;
7506 }
7507
7508 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7509 }
7510
7511 /* Copy private symbol information. If this symbol is in a section
7512 which we did not map into a BFD section, try to map the section
7513 index correctly. We use special macro definitions for the mapped
7514 section indices; these definitions are interpreted by the
7515 swap_out_syms function. */
7516
7517 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7518 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7519 #define MAP_STRTAB (SHN_HIOS + 3)
7520 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7521 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7522
7523 bfd_boolean
7524 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7525 asymbol *isymarg,
7526 bfd *obfd,
7527 asymbol *osymarg)
7528 {
7529 elf_symbol_type *isym, *osym;
7530
7531 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7532 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7533 return TRUE;
7534
7535 isym = elf_symbol_from (ibfd, isymarg);
7536 osym = elf_symbol_from (obfd, osymarg);
7537
7538 if (isym != NULL
7539 && isym->internal_elf_sym.st_shndx != 0
7540 && osym != NULL
7541 && bfd_is_abs_section (isym->symbol.section))
7542 {
7543 unsigned int shndx;
7544
7545 shndx = isym->internal_elf_sym.st_shndx;
7546 if (shndx == elf_onesymtab (ibfd))
7547 shndx = MAP_ONESYMTAB;
7548 else if (shndx == elf_dynsymtab (ibfd))
7549 shndx = MAP_DYNSYMTAB;
7550 else if (shndx == elf_strtab_sec (ibfd))
7551 shndx = MAP_STRTAB;
7552 else if (shndx == elf_shstrtab_sec (ibfd))
7553 shndx = MAP_SHSTRTAB;
7554 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7555 shndx = MAP_SYM_SHNDX;
7556 osym->internal_elf_sym.st_shndx = shndx;
7557 }
7558
7559 return TRUE;
7560 }
7561
7562 /* Swap out the symbols. */
7563
7564 static bfd_boolean
7565 swap_out_syms (bfd *abfd,
7566 struct elf_strtab_hash **sttp,
7567 int relocatable_p)
7568 {
7569 const struct elf_backend_data *bed;
7570 int symcount;
7571 asymbol **syms;
7572 struct elf_strtab_hash *stt;
7573 Elf_Internal_Shdr *symtab_hdr;
7574 Elf_Internal_Shdr *symtab_shndx_hdr;
7575 Elf_Internal_Shdr *symstrtab_hdr;
7576 struct elf_sym_strtab *symstrtab;
7577 bfd_byte *outbound_syms;
7578 bfd_byte *outbound_shndx;
7579 unsigned long outbound_syms_index;
7580 unsigned long outbound_shndx_index;
7581 int idx;
7582 unsigned int num_locals;
7583 bfd_size_type amt;
7584 bfd_boolean name_local_sections;
7585
7586 if (!elf_map_symbols (abfd, &num_locals))
7587 return FALSE;
7588
7589 /* Dump out the symtabs. */
7590 stt = _bfd_elf_strtab_init ();
7591 if (stt == NULL)
7592 return FALSE;
7593
7594 bed = get_elf_backend_data (abfd);
7595 symcount = bfd_get_symcount (abfd);
7596 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7597 symtab_hdr->sh_type = SHT_SYMTAB;
7598 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7599 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7600 symtab_hdr->sh_info = num_locals + 1;
7601 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7602
7603 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7604 symstrtab_hdr->sh_type = SHT_STRTAB;
7605
7606 /* Allocate buffer to swap out the .strtab section. */
7607 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7608 * sizeof (*symstrtab));
7609 if (symstrtab == NULL)
7610 {
7611 _bfd_elf_strtab_free (stt);
7612 return FALSE;
7613 }
7614
7615 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7616 bed->s->sizeof_sym);
7617 if (outbound_syms == NULL)
7618 {
7619 error_return:
7620 _bfd_elf_strtab_free (stt);
7621 free (symstrtab);
7622 return FALSE;
7623 }
7624 symtab_hdr->contents = outbound_syms;
7625 outbound_syms_index = 0;
7626
7627 outbound_shndx = NULL;
7628 outbound_shndx_index = 0;
7629
7630 if (elf_symtab_shndx_list (abfd))
7631 {
7632 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7633 if (symtab_shndx_hdr->sh_name != 0)
7634 {
7635 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7636 outbound_shndx = (bfd_byte *)
7637 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7638 if (outbound_shndx == NULL)
7639 goto error_return;
7640
7641 symtab_shndx_hdr->contents = outbound_shndx;
7642 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7643 symtab_shndx_hdr->sh_size = amt;
7644 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7645 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7646 }
7647 /* FIXME: What about any other headers in the list ? */
7648 }
7649
7650 /* Now generate the data (for "contents"). */
7651 {
7652 /* Fill in zeroth symbol and swap it out. */
7653 Elf_Internal_Sym sym;
7654 sym.st_name = 0;
7655 sym.st_value = 0;
7656 sym.st_size = 0;
7657 sym.st_info = 0;
7658 sym.st_other = 0;
7659 sym.st_shndx = SHN_UNDEF;
7660 sym.st_target_internal = 0;
7661 symstrtab[0].sym = sym;
7662 symstrtab[0].dest_index = outbound_syms_index;
7663 symstrtab[0].destshndx_index = outbound_shndx_index;
7664 outbound_syms_index++;
7665 if (outbound_shndx != NULL)
7666 outbound_shndx_index++;
7667 }
7668
7669 name_local_sections
7670 = (bed->elf_backend_name_local_section_symbols
7671 && bed->elf_backend_name_local_section_symbols (abfd));
7672
7673 syms = bfd_get_outsymbols (abfd);
7674 for (idx = 0; idx < symcount;)
7675 {
7676 Elf_Internal_Sym sym;
7677 bfd_vma value = syms[idx]->value;
7678 elf_symbol_type *type_ptr;
7679 flagword flags = syms[idx]->flags;
7680 int type;
7681
7682 if (!name_local_sections
7683 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7684 {
7685 /* Local section symbols have no name. */
7686 sym.st_name = (unsigned long) -1;
7687 }
7688 else
7689 {
7690 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7691 to get the final offset for st_name. */
7692 sym.st_name
7693 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7694 FALSE);
7695 if (sym.st_name == (unsigned long) -1)
7696 goto error_return;
7697 }
7698
7699 type_ptr = elf_symbol_from (abfd, syms[idx]);
7700
7701 if ((flags & BSF_SECTION_SYM) == 0
7702 && bfd_is_com_section (syms[idx]->section))
7703 {
7704 /* ELF common symbols put the alignment into the `value' field,
7705 and the size into the `size' field. This is backwards from
7706 how BFD handles it, so reverse it here. */
7707 sym.st_size = value;
7708 if (type_ptr == NULL
7709 || type_ptr->internal_elf_sym.st_value == 0)
7710 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7711 else
7712 sym.st_value = type_ptr->internal_elf_sym.st_value;
7713 sym.st_shndx = _bfd_elf_section_from_bfd_section
7714 (abfd, syms[idx]->section);
7715 }
7716 else
7717 {
7718 asection *sec = syms[idx]->section;
7719 unsigned int shndx;
7720
7721 if (sec->output_section)
7722 {
7723 value += sec->output_offset;
7724 sec = sec->output_section;
7725 }
7726
7727 /* Don't add in the section vma for relocatable output. */
7728 if (! relocatable_p)
7729 value += sec->vma;
7730 sym.st_value = value;
7731 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7732
7733 if (bfd_is_abs_section (sec)
7734 && type_ptr != NULL
7735 && type_ptr->internal_elf_sym.st_shndx != 0)
7736 {
7737 /* This symbol is in a real ELF section which we did
7738 not create as a BFD section. Undo the mapping done
7739 by copy_private_symbol_data. */
7740 shndx = type_ptr->internal_elf_sym.st_shndx;
7741 switch (shndx)
7742 {
7743 case MAP_ONESYMTAB:
7744 shndx = elf_onesymtab (abfd);
7745 break;
7746 case MAP_DYNSYMTAB:
7747 shndx = elf_dynsymtab (abfd);
7748 break;
7749 case MAP_STRTAB:
7750 shndx = elf_strtab_sec (abfd);
7751 break;
7752 case MAP_SHSTRTAB:
7753 shndx = elf_shstrtab_sec (abfd);
7754 break;
7755 case MAP_SYM_SHNDX:
7756 if (elf_symtab_shndx_list (abfd))
7757 shndx = elf_symtab_shndx_list (abfd)->ndx;
7758 break;
7759 default:
7760 shndx = SHN_ABS;
7761 break;
7762 }
7763 }
7764 else
7765 {
7766 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7767
7768 if (shndx == SHN_BAD)
7769 {
7770 asection *sec2;
7771
7772 /* Writing this would be a hell of a lot easier if
7773 we had some decent documentation on bfd, and
7774 knew what to expect of the library, and what to
7775 demand of applications. For example, it
7776 appears that `objcopy' might not set the
7777 section of a symbol to be a section that is
7778 actually in the output file. */
7779 sec2 = bfd_get_section_by_name (abfd, sec->name);
7780 if (sec2 != NULL)
7781 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7782 if (shndx == SHN_BAD)
7783 {
7784 /* xgettext:c-format */
7785 _bfd_error_handler (_("\
7786 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7787 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7788 sec->name);
7789 bfd_set_error (bfd_error_invalid_operation);
7790 goto error_return;
7791 }
7792 }
7793 }
7794
7795 sym.st_shndx = shndx;
7796 }
7797
7798 if ((flags & BSF_THREAD_LOCAL) != 0)
7799 type = STT_TLS;
7800 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7801 type = STT_GNU_IFUNC;
7802 else if ((flags & BSF_FUNCTION) != 0)
7803 type = STT_FUNC;
7804 else if ((flags & BSF_OBJECT) != 0)
7805 type = STT_OBJECT;
7806 else if ((flags & BSF_RELC) != 0)
7807 type = STT_RELC;
7808 else if ((flags & BSF_SRELC) != 0)
7809 type = STT_SRELC;
7810 else
7811 type = STT_NOTYPE;
7812
7813 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7814 type = STT_TLS;
7815
7816 /* Processor-specific types. */
7817 if (type_ptr != NULL
7818 && bed->elf_backend_get_symbol_type)
7819 type = ((*bed->elf_backend_get_symbol_type)
7820 (&type_ptr->internal_elf_sym, type));
7821
7822 if (flags & BSF_SECTION_SYM)
7823 {
7824 if (flags & BSF_GLOBAL)
7825 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7826 else
7827 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7828 }
7829 else if (bfd_is_com_section (syms[idx]->section))
7830 {
7831 if (type != STT_TLS)
7832 {
7833 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
7834 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
7835 ? STT_COMMON : STT_OBJECT);
7836 else
7837 type = ((flags & BSF_ELF_COMMON) != 0
7838 ? STT_COMMON : STT_OBJECT);
7839 }
7840 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7841 }
7842 else if (bfd_is_und_section (syms[idx]->section))
7843 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7844 ? STB_WEAK
7845 : STB_GLOBAL),
7846 type);
7847 else if (flags & BSF_FILE)
7848 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7849 else
7850 {
7851 int bind = STB_LOCAL;
7852
7853 if (flags & BSF_LOCAL)
7854 bind = STB_LOCAL;
7855 else if (flags & BSF_GNU_UNIQUE)
7856 bind = STB_GNU_UNIQUE;
7857 else if (flags & BSF_WEAK)
7858 bind = STB_WEAK;
7859 else if (flags & BSF_GLOBAL)
7860 bind = STB_GLOBAL;
7861
7862 sym.st_info = ELF_ST_INFO (bind, type);
7863 }
7864
7865 if (type_ptr != NULL)
7866 {
7867 sym.st_other = type_ptr->internal_elf_sym.st_other;
7868 sym.st_target_internal
7869 = type_ptr->internal_elf_sym.st_target_internal;
7870 }
7871 else
7872 {
7873 sym.st_other = 0;
7874 sym.st_target_internal = 0;
7875 }
7876
7877 idx++;
7878 symstrtab[idx].sym = sym;
7879 symstrtab[idx].dest_index = outbound_syms_index;
7880 symstrtab[idx].destshndx_index = outbound_shndx_index;
7881
7882 outbound_syms_index++;
7883 if (outbound_shndx != NULL)
7884 outbound_shndx_index++;
7885 }
7886
7887 /* Finalize the .strtab section. */
7888 _bfd_elf_strtab_finalize (stt);
7889
7890 /* Swap out the .strtab section. */
7891 for (idx = 0; idx <= symcount; idx++)
7892 {
7893 struct elf_sym_strtab *elfsym = &symstrtab[idx];
7894 if (elfsym->sym.st_name == (unsigned long) -1)
7895 elfsym->sym.st_name = 0;
7896 else
7897 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
7898 elfsym->sym.st_name);
7899 bed->s->swap_symbol_out (abfd, &elfsym->sym,
7900 (outbound_syms
7901 + (elfsym->dest_index
7902 * bed->s->sizeof_sym)),
7903 (outbound_shndx
7904 + (elfsym->destshndx_index
7905 * sizeof (Elf_External_Sym_Shndx))));
7906 }
7907 free (symstrtab);
7908
7909 *sttp = stt;
7910 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
7911 symstrtab_hdr->sh_type = SHT_STRTAB;
7912 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
7913 symstrtab_hdr->sh_addr = 0;
7914 symstrtab_hdr->sh_entsize = 0;
7915 symstrtab_hdr->sh_link = 0;
7916 symstrtab_hdr->sh_info = 0;
7917 symstrtab_hdr->sh_addralign = 1;
7918
7919 return TRUE;
7920 }
7921
7922 /* Return the number of bytes required to hold the symtab vector.
7923
7924 Note that we base it on the count plus 1, since we will null terminate
7925 the vector allocated based on this size. However, the ELF symbol table
7926 always has a dummy entry as symbol #0, so it ends up even. */
7927
7928 long
7929 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7930 {
7931 long symcount;
7932 long symtab_size;
7933 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7934
7935 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7936 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7937 if (symcount > 0)
7938 symtab_size -= sizeof (asymbol *);
7939
7940 return symtab_size;
7941 }
7942
7943 long
7944 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7945 {
7946 long symcount;
7947 long symtab_size;
7948 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7949
7950 if (elf_dynsymtab (abfd) == 0)
7951 {
7952 bfd_set_error (bfd_error_invalid_operation);
7953 return -1;
7954 }
7955
7956 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7957 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7958 if (symcount > 0)
7959 symtab_size -= sizeof (asymbol *);
7960
7961 return symtab_size;
7962 }
7963
7964 long
7965 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7966 sec_ptr asect)
7967 {
7968 return (asect->reloc_count + 1) * sizeof (arelent *);
7969 }
7970
7971 /* Canonicalize the relocs. */
7972
7973 long
7974 _bfd_elf_canonicalize_reloc (bfd *abfd,
7975 sec_ptr section,
7976 arelent **relptr,
7977 asymbol **symbols)
7978 {
7979 arelent *tblptr;
7980 unsigned int i;
7981 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7982
7983 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7984 return -1;
7985
7986 tblptr = section->relocation;
7987 for (i = 0; i < section->reloc_count; i++)
7988 *relptr++ = tblptr++;
7989
7990 *relptr = NULL;
7991
7992 return section->reloc_count;
7993 }
7994
7995 long
7996 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7997 {
7998 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7999 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8000
8001 if (symcount >= 0)
8002 bfd_get_symcount (abfd) = symcount;
8003 return symcount;
8004 }
8005
8006 long
8007 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8008 asymbol **allocation)
8009 {
8010 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8011 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8012
8013 if (symcount >= 0)
8014 bfd_get_dynamic_symcount (abfd) = symcount;
8015 return symcount;
8016 }
8017
8018 /* Return the size required for the dynamic reloc entries. Any loadable
8019 section that was actually installed in the BFD, and has type SHT_REL
8020 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8021 dynamic reloc section. */
8022
8023 long
8024 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8025 {
8026 long ret;
8027 asection *s;
8028
8029 if (elf_dynsymtab (abfd) == 0)
8030 {
8031 bfd_set_error (bfd_error_invalid_operation);
8032 return -1;
8033 }
8034
8035 ret = sizeof (arelent *);
8036 for (s = abfd->sections; s != NULL; s = s->next)
8037 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8038 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8039 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8040 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8041 * sizeof (arelent *));
8042
8043 return ret;
8044 }
8045
8046 /* Canonicalize the dynamic relocation entries. Note that we return the
8047 dynamic relocations as a single block, although they are actually
8048 associated with particular sections; the interface, which was
8049 designed for SunOS style shared libraries, expects that there is only
8050 one set of dynamic relocs. Any loadable section that was actually
8051 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8052 dynamic symbol table, is considered to be a dynamic reloc section. */
8053
8054 long
8055 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8056 arelent **storage,
8057 asymbol **syms)
8058 {
8059 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8060 asection *s;
8061 long ret;
8062
8063 if (elf_dynsymtab (abfd) == 0)
8064 {
8065 bfd_set_error (bfd_error_invalid_operation);
8066 return -1;
8067 }
8068
8069 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8070 ret = 0;
8071 for (s = abfd->sections; s != NULL; s = s->next)
8072 {
8073 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8074 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8075 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8076 {
8077 arelent *p;
8078 long count, i;
8079
8080 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8081 return -1;
8082 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8083 p = s->relocation;
8084 for (i = 0; i < count; i++)
8085 *storage++ = p++;
8086 ret += count;
8087 }
8088 }
8089
8090 *storage = NULL;
8091
8092 return ret;
8093 }
8094 \f
8095 /* Read in the version information. */
8096
8097 bfd_boolean
8098 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8099 {
8100 bfd_byte *contents = NULL;
8101 unsigned int freeidx = 0;
8102
8103 if (elf_dynverref (abfd) != 0)
8104 {
8105 Elf_Internal_Shdr *hdr;
8106 Elf_External_Verneed *everneed;
8107 Elf_Internal_Verneed *iverneed;
8108 unsigned int i;
8109 bfd_byte *contents_end;
8110
8111 hdr = &elf_tdata (abfd)->dynverref_hdr;
8112
8113 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
8114 {
8115 error_return_bad_verref:
8116 _bfd_error_handler
8117 (_("%B: .gnu.version_r invalid entry"), abfd);
8118 bfd_set_error (bfd_error_bad_value);
8119 error_return_verref:
8120 elf_tdata (abfd)->verref = NULL;
8121 elf_tdata (abfd)->cverrefs = 0;
8122 goto error_return;
8123 }
8124
8125 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8126 if (contents == NULL)
8127 goto error_return_verref;
8128
8129 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8130 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8131 goto error_return_verref;
8132
8133 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8134 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8135
8136 if (elf_tdata (abfd)->verref == NULL)
8137 goto error_return_verref;
8138
8139 BFD_ASSERT (sizeof (Elf_External_Verneed)
8140 == sizeof (Elf_External_Vernaux));
8141 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8142 everneed = (Elf_External_Verneed *) contents;
8143 iverneed = elf_tdata (abfd)->verref;
8144 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8145 {
8146 Elf_External_Vernaux *evernaux;
8147 Elf_Internal_Vernaux *ivernaux;
8148 unsigned int j;
8149
8150 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8151
8152 iverneed->vn_bfd = abfd;
8153
8154 iverneed->vn_filename =
8155 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8156 iverneed->vn_file);
8157 if (iverneed->vn_filename == NULL)
8158 goto error_return_bad_verref;
8159
8160 if (iverneed->vn_cnt == 0)
8161 iverneed->vn_auxptr = NULL;
8162 else
8163 {
8164 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8165 bfd_alloc2 (abfd, iverneed->vn_cnt,
8166 sizeof (Elf_Internal_Vernaux));
8167 if (iverneed->vn_auxptr == NULL)
8168 goto error_return_verref;
8169 }
8170
8171 if (iverneed->vn_aux
8172 > (size_t) (contents_end - (bfd_byte *) everneed))
8173 goto error_return_bad_verref;
8174
8175 evernaux = ((Elf_External_Vernaux *)
8176 ((bfd_byte *) everneed + iverneed->vn_aux));
8177 ivernaux = iverneed->vn_auxptr;
8178 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8179 {
8180 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8181
8182 ivernaux->vna_nodename =
8183 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8184 ivernaux->vna_name);
8185 if (ivernaux->vna_nodename == NULL)
8186 goto error_return_bad_verref;
8187
8188 if (ivernaux->vna_other > freeidx)
8189 freeidx = ivernaux->vna_other;
8190
8191 ivernaux->vna_nextptr = NULL;
8192 if (ivernaux->vna_next == 0)
8193 {
8194 iverneed->vn_cnt = j + 1;
8195 break;
8196 }
8197 if (j + 1 < iverneed->vn_cnt)
8198 ivernaux->vna_nextptr = ivernaux + 1;
8199
8200 if (ivernaux->vna_next
8201 > (size_t) (contents_end - (bfd_byte *) evernaux))
8202 goto error_return_bad_verref;
8203
8204 evernaux = ((Elf_External_Vernaux *)
8205 ((bfd_byte *) evernaux + ivernaux->vna_next));
8206 }
8207
8208 iverneed->vn_nextref = NULL;
8209 if (iverneed->vn_next == 0)
8210 break;
8211 if (i + 1 < hdr->sh_info)
8212 iverneed->vn_nextref = iverneed + 1;
8213
8214 if (iverneed->vn_next
8215 > (size_t) (contents_end - (bfd_byte *) everneed))
8216 goto error_return_bad_verref;
8217
8218 everneed = ((Elf_External_Verneed *)
8219 ((bfd_byte *) everneed + iverneed->vn_next));
8220 }
8221 elf_tdata (abfd)->cverrefs = i;
8222
8223 free (contents);
8224 contents = NULL;
8225 }
8226
8227 if (elf_dynverdef (abfd) != 0)
8228 {
8229 Elf_Internal_Shdr *hdr;
8230 Elf_External_Verdef *everdef;
8231 Elf_Internal_Verdef *iverdef;
8232 Elf_Internal_Verdef *iverdefarr;
8233 Elf_Internal_Verdef iverdefmem;
8234 unsigned int i;
8235 unsigned int maxidx;
8236 bfd_byte *contents_end_def, *contents_end_aux;
8237
8238 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8239
8240 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8241 {
8242 error_return_bad_verdef:
8243 _bfd_error_handler
8244 (_("%B: .gnu.version_d invalid entry"), abfd);
8245 bfd_set_error (bfd_error_bad_value);
8246 error_return_verdef:
8247 elf_tdata (abfd)->verdef = NULL;
8248 elf_tdata (abfd)->cverdefs = 0;
8249 goto error_return;
8250 }
8251
8252 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8253 if (contents == NULL)
8254 goto error_return_verdef;
8255 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8256 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8257 goto error_return_verdef;
8258
8259 BFD_ASSERT (sizeof (Elf_External_Verdef)
8260 >= sizeof (Elf_External_Verdaux));
8261 contents_end_def = contents + hdr->sh_size
8262 - sizeof (Elf_External_Verdef);
8263 contents_end_aux = contents + hdr->sh_size
8264 - sizeof (Elf_External_Verdaux);
8265
8266 /* We know the number of entries in the section but not the maximum
8267 index. Therefore we have to run through all entries and find
8268 the maximum. */
8269 everdef = (Elf_External_Verdef *) contents;
8270 maxidx = 0;
8271 for (i = 0; i < hdr->sh_info; ++i)
8272 {
8273 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8274
8275 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8276 goto error_return_bad_verdef;
8277 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8278 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8279
8280 if (iverdefmem.vd_next == 0)
8281 break;
8282
8283 if (iverdefmem.vd_next
8284 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8285 goto error_return_bad_verdef;
8286
8287 everdef = ((Elf_External_Verdef *)
8288 ((bfd_byte *) everdef + iverdefmem.vd_next));
8289 }
8290
8291 if (default_imported_symver)
8292 {
8293 if (freeidx > maxidx)
8294 maxidx = ++freeidx;
8295 else
8296 freeidx = ++maxidx;
8297 }
8298
8299 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8300 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8301 if (elf_tdata (abfd)->verdef == NULL)
8302 goto error_return_verdef;
8303
8304 elf_tdata (abfd)->cverdefs = maxidx;
8305
8306 everdef = (Elf_External_Verdef *) contents;
8307 iverdefarr = elf_tdata (abfd)->verdef;
8308 for (i = 0; i < hdr->sh_info; i++)
8309 {
8310 Elf_External_Verdaux *everdaux;
8311 Elf_Internal_Verdaux *iverdaux;
8312 unsigned int j;
8313
8314 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8315
8316 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8317 goto error_return_bad_verdef;
8318
8319 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8320 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8321
8322 iverdef->vd_bfd = abfd;
8323
8324 if (iverdef->vd_cnt == 0)
8325 iverdef->vd_auxptr = NULL;
8326 else
8327 {
8328 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8329 bfd_alloc2 (abfd, iverdef->vd_cnt,
8330 sizeof (Elf_Internal_Verdaux));
8331 if (iverdef->vd_auxptr == NULL)
8332 goto error_return_verdef;
8333 }
8334
8335 if (iverdef->vd_aux
8336 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8337 goto error_return_bad_verdef;
8338
8339 everdaux = ((Elf_External_Verdaux *)
8340 ((bfd_byte *) everdef + iverdef->vd_aux));
8341 iverdaux = iverdef->vd_auxptr;
8342 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8343 {
8344 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8345
8346 iverdaux->vda_nodename =
8347 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8348 iverdaux->vda_name);
8349 if (iverdaux->vda_nodename == NULL)
8350 goto error_return_bad_verdef;
8351
8352 iverdaux->vda_nextptr = NULL;
8353 if (iverdaux->vda_next == 0)
8354 {
8355 iverdef->vd_cnt = j + 1;
8356 break;
8357 }
8358 if (j + 1 < iverdef->vd_cnt)
8359 iverdaux->vda_nextptr = iverdaux + 1;
8360
8361 if (iverdaux->vda_next
8362 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8363 goto error_return_bad_verdef;
8364
8365 everdaux = ((Elf_External_Verdaux *)
8366 ((bfd_byte *) everdaux + iverdaux->vda_next));
8367 }
8368
8369 iverdef->vd_nodename = NULL;
8370 if (iverdef->vd_cnt)
8371 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8372
8373 iverdef->vd_nextdef = NULL;
8374 if (iverdef->vd_next == 0)
8375 break;
8376 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8377 iverdef->vd_nextdef = iverdef + 1;
8378
8379 everdef = ((Elf_External_Verdef *)
8380 ((bfd_byte *) everdef + iverdef->vd_next));
8381 }
8382
8383 free (contents);
8384 contents = NULL;
8385 }
8386 else if (default_imported_symver)
8387 {
8388 if (freeidx < 3)
8389 freeidx = 3;
8390 else
8391 freeidx++;
8392
8393 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8394 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8395 if (elf_tdata (abfd)->verdef == NULL)
8396 goto error_return;
8397
8398 elf_tdata (abfd)->cverdefs = freeidx;
8399 }
8400
8401 /* Create a default version based on the soname. */
8402 if (default_imported_symver)
8403 {
8404 Elf_Internal_Verdef *iverdef;
8405 Elf_Internal_Verdaux *iverdaux;
8406
8407 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8408
8409 iverdef->vd_version = VER_DEF_CURRENT;
8410 iverdef->vd_flags = 0;
8411 iverdef->vd_ndx = freeidx;
8412 iverdef->vd_cnt = 1;
8413
8414 iverdef->vd_bfd = abfd;
8415
8416 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8417 if (iverdef->vd_nodename == NULL)
8418 goto error_return_verdef;
8419 iverdef->vd_nextdef = NULL;
8420 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8421 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8422 if (iverdef->vd_auxptr == NULL)
8423 goto error_return_verdef;
8424
8425 iverdaux = iverdef->vd_auxptr;
8426 iverdaux->vda_nodename = iverdef->vd_nodename;
8427 }
8428
8429 return TRUE;
8430
8431 error_return:
8432 if (contents != NULL)
8433 free (contents);
8434 return FALSE;
8435 }
8436 \f
8437 asymbol *
8438 _bfd_elf_make_empty_symbol (bfd *abfd)
8439 {
8440 elf_symbol_type *newsym;
8441
8442 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8443 if (!newsym)
8444 return NULL;
8445 newsym->symbol.the_bfd = abfd;
8446 return &newsym->symbol;
8447 }
8448
8449 void
8450 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8451 asymbol *symbol,
8452 symbol_info *ret)
8453 {
8454 bfd_symbol_info (symbol, ret);
8455 }
8456
8457 /* Return whether a symbol name implies a local symbol. Most targets
8458 use this function for the is_local_label_name entry point, but some
8459 override it. */
8460
8461 bfd_boolean
8462 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8463 const char *name)
8464 {
8465 /* Normal local symbols start with ``.L''. */
8466 if (name[0] == '.' && name[1] == 'L')
8467 return TRUE;
8468
8469 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8470 DWARF debugging symbols starting with ``..''. */
8471 if (name[0] == '.' && name[1] == '.')
8472 return TRUE;
8473
8474 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8475 emitting DWARF debugging output. I suspect this is actually a
8476 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8477 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8478 underscore to be emitted on some ELF targets). For ease of use,
8479 we treat such symbols as local. */
8480 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8481 return TRUE;
8482
8483 /* Treat assembler generated fake symbols, dollar local labels and
8484 forward-backward labels (aka local labels) as locals.
8485 These labels have the form:
8486
8487 L0^A.* (fake symbols)
8488
8489 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8490
8491 Versions which start with .L will have already been matched above,
8492 so we only need to match the rest. */
8493 if (name[0] == 'L' && ISDIGIT (name[1]))
8494 {
8495 bfd_boolean ret = FALSE;
8496 const char * p;
8497 char c;
8498
8499 for (p = name + 2; (c = *p); p++)
8500 {
8501 if (c == 1 || c == 2)
8502 {
8503 if (c == 1 && p == name + 2)
8504 /* A fake symbol. */
8505 return TRUE;
8506
8507 /* FIXME: We are being paranoid here and treating symbols like
8508 L0^Bfoo as if there were non-local, on the grounds that the
8509 assembler will never generate them. But can any symbol
8510 containing an ASCII value in the range 1-31 ever be anything
8511 other than some kind of local ? */
8512 ret = TRUE;
8513 }
8514
8515 if (! ISDIGIT (c))
8516 {
8517 ret = FALSE;
8518 break;
8519 }
8520 }
8521 return ret;
8522 }
8523
8524 return FALSE;
8525 }
8526
8527 alent *
8528 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8529 asymbol *symbol ATTRIBUTE_UNUSED)
8530 {
8531 abort ();
8532 return NULL;
8533 }
8534
8535 bfd_boolean
8536 _bfd_elf_set_arch_mach (bfd *abfd,
8537 enum bfd_architecture arch,
8538 unsigned long machine)
8539 {
8540 /* If this isn't the right architecture for this backend, and this
8541 isn't the generic backend, fail. */
8542 if (arch != get_elf_backend_data (abfd)->arch
8543 && arch != bfd_arch_unknown
8544 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8545 return FALSE;
8546
8547 return bfd_default_set_arch_mach (abfd, arch, machine);
8548 }
8549
8550 /* Find the nearest line to a particular section and offset,
8551 for error reporting. */
8552
8553 bfd_boolean
8554 _bfd_elf_find_nearest_line (bfd *abfd,
8555 asymbol **symbols,
8556 asection *section,
8557 bfd_vma offset,
8558 const char **filename_ptr,
8559 const char **functionname_ptr,
8560 unsigned int *line_ptr,
8561 unsigned int *discriminator_ptr)
8562 {
8563 bfd_boolean found;
8564
8565 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8566 filename_ptr, functionname_ptr,
8567 line_ptr, discriminator_ptr,
8568 dwarf_debug_sections, 0,
8569 &elf_tdata (abfd)->dwarf2_find_line_info)
8570 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8571 filename_ptr, functionname_ptr,
8572 line_ptr))
8573 {
8574 if (!*functionname_ptr)
8575 _bfd_elf_find_function (abfd, symbols, section, offset,
8576 *filename_ptr ? NULL : filename_ptr,
8577 functionname_ptr);
8578 return TRUE;
8579 }
8580
8581 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8582 &found, filename_ptr,
8583 functionname_ptr, line_ptr,
8584 &elf_tdata (abfd)->line_info))
8585 return FALSE;
8586 if (found && (*functionname_ptr || *line_ptr))
8587 return TRUE;
8588
8589 if (symbols == NULL)
8590 return FALSE;
8591
8592 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8593 filename_ptr, functionname_ptr))
8594 return FALSE;
8595
8596 *line_ptr = 0;
8597 return TRUE;
8598 }
8599
8600 /* Find the line for a symbol. */
8601
8602 bfd_boolean
8603 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8604 const char **filename_ptr, unsigned int *line_ptr)
8605 {
8606 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8607 filename_ptr, NULL, line_ptr, NULL,
8608 dwarf_debug_sections, 0,
8609 &elf_tdata (abfd)->dwarf2_find_line_info);
8610 }
8611
8612 /* After a call to bfd_find_nearest_line, successive calls to
8613 bfd_find_inliner_info can be used to get source information about
8614 each level of function inlining that terminated at the address
8615 passed to bfd_find_nearest_line. Currently this is only supported
8616 for DWARF2 with appropriate DWARF3 extensions. */
8617
8618 bfd_boolean
8619 _bfd_elf_find_inliner_info (bfd *abfd,
8620 const char **filename_ptr,
8621 const char **functionname_ptr,
8622 unsigned int *line_ptr)
8623 {
8624 bfd_boolean found;
8625 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8626 functionname_ptr, line_ptr,
8627 & elf_tdata (abfd)->dwarf2_find_line_info);
8628 return found;
8629 }
8630
8631 int
8632 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8633 {
8634 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8635 int ret = bed->s->sizeof_ehdr;
8636
8637 if (!bfd_link_relocatable (info))
8638 {
8639 bfd_size_type phdr_size = elf_program_header_size (abfd);
8640
8641 if (phdr_size == (bfd_size_type) -1)
8642 {
8643 struct elf_segment_map *m;
8644
8645 phdr_size = 0;
8646 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8647 phdr_size += bed->s->sizeof_phdr;
8648
8649 if (phdr_size == 0)
8650 phdr_size = get_program_header_size (abfd, info);
8651 }
8652
8653 elf_program_header_size (abfd) = phdr_size;
8654 ret += phdr_size;
8655 }
8656
8657 return ret;
8658 }
8659
8660 bfd_boolean
8661 _bfd_elf_set_section_contents (bfd *abfd,
8662 sec_ptr section,
8663 const void *location,
8664 file_ptr offset,
8665 bfd_size_type count)
8666 {
8667 Elf_Internal_Shdr *hdr;
8668 file_ptr pos;
8669
8670 if (! abfd->output_has_begun
8671 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8672 return FALSE;
8673
8674 if (!count)
8675 return TRUE;
8676
8677 hdr = &elf_section_data (section)->this_hdr;
8678 if (hdr->sh_offset == (file_ptr) -1)
8679 {
8680 /* We must compress this section. Write output to the buffer. */
8681 unsigned char *contents = hdr->contents;
8682 if ((offset + count) > hdr->sh_size
8683 || (section->flags & SEC_ELF_COMPRESS) == 0
8684 || contents == NULL)
8685 abort ();
8686 memcpy (contents + offset, location, count);
8687 return TRUE;
8688 }
8689 pos = hdr->sh_offset + offset;
8690 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8691 || bfd_bwrite (location, count, abfd) != count)
8692 return FALSE;
8693
8694 return TRUE;
8695 }
8696
8697 void
8698 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8699 arelent *cache_ptr ATTRIBUTE_UNUSED,
8700 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8701 {
8702 abort ();
8703 }
8704
8705 /* Try to convert a non-ELF reloc into an ELF one. */
8706
8707 bfd_boolean
8708 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8709 {
8710 /* Check whether we really have an ELF howto. */
8711
8712 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8713 {
8714 bfd_reloc_code_real_type code;
8715 reloc_howto_type *howto;
8716
8717 /* Alien reloc: Try to determine its type to replace it with an
8718 equivalent ELF reloc. */
8719
8720 if (areloc->howto->pc_relative)
8721 {
8722 switch (areloc->howto->bitsize)
8723 {
8724 case 8:
8725 code = BFD_RELOC_8_PCREL;
8726 break;
8727 case 12:
8728 code = BFD_RELOC_12_PCREL;
8729 break;
8730 case 16:
8731 code = BFD_RELOC_16_PCREL;
8732 break;
8733 case 24:
8734 code = BFD_RELOC_24_PCREL;
8735 break;
8736 case 32:
8737 code = BFD_RELOC_32_PCREL;
8738 break;
8739 case 64:
8740 code = BFD_RELOC_64_PCREL;
8741 break;
8742 default:
8743 goto fail;
8744 }
8745
8746 howto = bfd_reloc_type_lookup (abfd, code);
8747
8748 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8749 {
8750 if (howto->pcrel_offset)
8751 areloc->addend += areloc->address;
8752 else
8753 areloc->addend -= areloc->address; /* addend is unsigned!! */
8754 }
8755 }
8756 else
8757 {
8758 switch (areloc->howto->bitsize)
8759 {
8760 case 8:
8761 code = BFD_RELOC_8;
8762 break;
8763 case 14:
8764 code = BFD_RELOC_14;
8765 break;
8766 case 16:
8767 code = BFD_RELOC_16;
8768 break;
8769 case 26:
8770 code = BFD_RELOC_26;
8771 break;
8772 case 32:
8773 code = BFD_RELOC_32;
8774 break;
8775 case 64:
8776 code = BFD_RELOC_64;
8777 break;
8778 default:
8779 goto fail;
8780 }
8781
8782 howto = bfd_reloc_type_lookup (abfd, code);
8783 }
8784
8785 if (howto)
8786 areloc->howto = howto;
8787 else
8788 goto fail;
8789 }
8790
8791 return TRUE;
8792
8793 fail:
8794 _bfd_error_handler
8795 /* xgettext:c-format */
8796 (_("%B: unsupported relocation type %s"),
8797 abfd, areloc->howto->name);
8798 bfd_set_error (bfd_error_bad_value);
8799 return FALSE;
8800 }
8801
8802 bfd_boolean
8803 _bfd_elf_close_and_cleanup (bfd *abfd)
8804 {
8805 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8806 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8807 {
8808 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8809 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8810 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8811 }
8812
8813 return _bfd_generic_close_and_cleanup (abfd);
8814 }
8815
8816 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8817 in the relocation's offset. Thus we cannot allow any sort of sanity
8818 range-checking to interfere. There is nothing else to do in processing
8819 this reloc. */
8820
8821 bfd_reloc_status_type
8822 _bfd_elf_rel_vtable_reloc_fn
8823 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8824 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8825 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8826 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8827 {
8828 return bfd_reloc_ok;
8829 }
8830 \f
8831 /* Elf core file support. Much of this only works on native
8832 toolchains, since we rely on knowing the
8833 machine-dependent procfs structure in order to pick
8834 out details about the corefile. */
8835
8836 #ifdef HAVE_SYS_PROCFS_H
8837 /* Needed for new procfs interface on sparc-solaris. */
8838 # define _STRUCTURED_PROC 1
8839 # include <sys/procfs.h>
8840 #endif
8841
8842 /* Return a PID that identifies a "thread" for threaded cores, or the
8843 PID of the main process for non-threaded cores. */
8844
8845 static int
8846 elfcore_make_pid (bfd *abfd)
8847 {
8848 int pid;
8849
8850 pid = elf_tdata (abfd)->core->lwpid;
8851 if (pid == 0)
8852 pid = elf_tdata (abfd)->core->pid;
8853
8854 return pid;
8855 }
8856
8857 /* If there isn't a section called NAME, make one, using
8858 data from SECT. Note, this function will generate a
8859 reference to NAME, so you shouldn't deallocate or
8860 overwrite it. */
8861
8862 static bfd_boolean
8863 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8864 {
8865 asection *sect2;
8866
8867 if (bfd_get_section_by_name (abfd, name) != NULL)
8868 return TRUE;
8869
8870 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8871 if (sect2 == NULL)
8872 return FALSE;
8873
8874 sect2->size = sect->size;
8875 sect2->filepos = sect->filepos;
8876 sect2->alignment_power = sect->alignment_power;
8877 return TRUE;
8878 }
8879
8880 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8881 actually creates up to two pseudosections:
8882 - For the single-threaded case, a section named NAME, unless
8883 such a section already exists.
8884 - For the multi-threaded case, a section named "NAME/PID", where
8885 PID is elfcore_make_pid (abfd).
8886 Both pseudosections have identical contents. */
8887 bfd_boolean
8888 _bfd_elfcore_make_pseudosection (bfd *abfd,
8889 char *name,
8890 size_t size,
8891 ufile_ptr filepos)
8892 {
8893 char buf[100];
8894 char *threaded_name;
8895 size_t len;
8896 asection *sect;
8897
8898 /* Build the section name. */
8899
8900 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8901 len = strlen (buf) + 1;
8902 threaded_name = (char *) bfd_alloc (abfd, len);
8903 if (threaded_name == NULL)
8904 return FALSE;
8905 memcpy (threaded_name, buf, len);
8906
8907 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8908 SEC_HAS_CONTENTS);
8909 if (sect == NULL)
8910 return FALSE;
8911 sect->size = size;
8912 sect->filepos = filepos;
8913 sect->alignment_power = 2;
8914
8915 return elfcore_maybe_make_sect (abfd, name, sect);
8916 }
8917
8918 /* prstatus_t exists on:
8919 solaris 2.5+
8920 linux 2.[01] + glibc
8921 unixware 4.2
8922 */
8923
8924 #if defined (HAVE_PRSTATUS_T)
8925
8926 static bfd_boolean
8927 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8928 {
8929 size_t size;
8930 int offset;
8931
8932 if (note->descsz == sizeof (prstatus_t))
8933 {
8934 prstatus_t prstat;
8935
8936 size = sizeof (prstat.pr_reg);
8937 offset = offsetof (prstatus_t, pr_reg);
8938 memcpy (&prstat, note->descdata, sizeof (prstat));
8939
8940 /* Do not overwrite the core signal if it
8941 has already been set by another thread. */
8942 if (elf_tdata (abfd)->core->signal == 0)
8943 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8944 if (elf_tdata (abfd)->core->pid == 0)
8945 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8946
8947 /* pr_who exists on:
8948 solaris 2.5+
8949 unixware 4.2
8950 pr_who doesn't exist on:
8951 linux 2.[01]
8952 */
8953 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8954 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8955 #else
8956 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8957 #endif
8958 }
8959 #if defined (HAVE_PRSTATUS32_T)
8960 else if (note->descsz == sizeof (prstatus32_t))
8961 {
8962 /* 64-bit host, 32-bit corefile */
8963 prstatus32_t prstat;
8964
8965 size = sizeof (prstat.pr_reg);
8966 offset = offsetof (prstatus32_t, pr_reg);
8967 memcpy (&prstat, note->descdata, sizeof (prstat));
8968
8969 /* Do not overwrite the core signal if it
8970 has already been set by another thread. */
8971 if (elf_tdata (abfd)->core->signal == 0)
8972 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8973 if (elf_tdata (abfd)->core->pid == 0)
8974 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8975
8976 /* pr_who exists on:
8977 solaris 2.5+
8978 unixware 4.2
8979 pr_who doesn't exist on:
8980 linux 2.[01]
8981 */
8982 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8983 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8984 #else
8985 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8986 #endif
8987 }
8988 #endif /* HAVE_PRSTATUS32_T */
8989 else
8990 {
8991 /* Fail - we don't know how to handle any other
8992 note size (ie. data object type). */
8993 return TRUE;
8994 }
8995
8996 /* Make a ".reg/999" section and a ".reg" section. */
8997 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8998 size, note->descpos + offset);
8999 }
9000 #endif /* defined (HAVE_PRSTATUS_T) */
9001
9002 /* Create a pseudosection containing the exact contents of NOTE. */
9003 static bfd_boolean
9004 elfcore_make_note_pseudosection (bfd *abfd,
9005 char *name,
9006 Elf_Internal_Note *note)
9007 {
9008 return _bfd_elfcore_make_pseudosection (abfd, name,
9009 note->descsz, note->descpos);
9010 }
9011
9012 /* There isn't a consistent prfpregset_t across platforms,
9013 but it doesn't matter, because we don't have to pick this
9014 data structure apart. */
9015
9016 static bfd_boolean
9017 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9018 {
9019 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9020 }
9021
9022 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9023 type of NT_PRXFPREG. Just include the whole note's contents
9024 literally. */
9025
9026 static bfd_boolean
9027 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9028 {
9029 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9030 }
9031
9032 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9033 with a note type of NT_X86_XSTATE. Just include the whole note's
9034 contents literally. */
9035
9036 static bfd_boolean
9037 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9038 {
9039 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9040 }
9041
9042 static bfd_boolean
9043 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9044 {
9045 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9046 }
9047
9048 static bfd_boolean
9049 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9050 {
9051 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9052 }
9053
9054 static bfd_boolean
9055 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9056 {
9057 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9058 }
9059
9060 static bfd_boolean
9061 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9062 {
9063 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9064 }
9065
9066 static bfd_boolean
9067 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9068 {
9069 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9070 }
9071
9072 static bfd_boolean
9073 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9074 {
9075 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9076 }
9077
9078 static bfd_boolean
9079 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9080 {
9081 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9082 }
9083
9084 static bfd_boolean
9085 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9086 {
9087 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9088 }
9089
9090 static bfd_boolean
9091 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9092 {
9093 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9094 }
9095
9096 static bfd_boolean
9097 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9098 {
9099 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9100 }
9101
9102 static bfd_boolean
9103 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9104 {
9105 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9106 }
9107
9108 static bfd_boolean
9109 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9110 {
9111 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9112 }
9113
9114 static bfd_boolean
9115 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9116 {
9117 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9118 }
9119
9120 static bfd_boolean
9121 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9122 {
9123 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9124 }
9125
9126 static bfd_boolean
9127 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9128 {
9129 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9130 }
9131
9132 static bfd_boolean
9133 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9134 {
9135 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9136 }
9137
9138 static bfd_boolean
9139 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9140 {
9141 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9142 }
9143
9144 #if defined (HAVE_PRPSINFO_T)
9145 typedef prpsinfo_t elfcore_psinfo_t;
9146 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9147 typedef prpsinfo32_t elfcore_psinfo32_t;
9148 #endif
9149 #endif
9150
9151 #if defined (HAVE_PSINFO_T)
9152 typedef psinfo_t elfcore_psinfo_t;
9153 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9154 typedef psinfo32_t elfcore_psinfo32_t;
9155 #endif
9156 #endif
9157
9158 /* return a malloc'ed copy of a string at START which is at
9159 most MAX bytes long, possibly without a terminating '\0'.
9160 the copy will always have a terminating '\0'. */
9161
9162 char *
9163 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9164 {
9165 char *dups;
9166 char *end = (char *) memchr (start, '\0', max);
9167 size_t len;
9168
9169 if (end == NULL)
9170 len = max;
9171 else
9172 len = end - start;
9173
9174 dups = (char *) bfd_alloc (abfd, len + 1);
9175 if (dups == NULL)
9176 return NULL;
9177
9178 memcpy (dups, start, len);
9179 dups[len] = '\0';
9180
9181 return dups;
9182 }
9183
9184 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9185 static bfd_boolean
9186 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9187 {
9188 if (note->descsz == sizeof (elfcore_psinfo_t))
9189 {
9190 elfcore_psinfo_t psinfo;
9191
9192 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9193
9194 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9195 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9196 #endif
9197 elf_tdata (abfd)->core->program
9198 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9199 sizeof (psinfo.pr_fname));
9200
9201 elf_tdata (abfd)->core->command
9202 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9203 sizeof (psinfo.pr_psargs));
9204 }
9205 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9206 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9207 {
9208 /* 64-bit host, 32-bit corefile */
9209 elfcore_psinfo32_t psinfo;
9210
9211 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9212
9213 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9214 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9215 #endif
9216 elf_tdata (abfd)->core->program
9217 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9218 sizeof (psinfo.pr_fname));
9219
9220 elf_tdata (abfd)->core->command
9221 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9222 sizeof (psinfo.pr_psargs));
9223 }
9224 #endif
9225
9226 else
9227 {
9228 /* Fail - we don't know how to handle any other
9229 note size (ie. data object type). */
9230 return TRUE;
9231 }
9232
9233 /* Note that for some reason, a spurious space is tacked
9234 onto the end of the args in some (at least one anyway)
9235 implementations, so strip it off if it exists. */
9236
9237 {
9238 char *command = elf_tdata (abfd)->core->command;
9239 int n = strlen (command);
9240
9241 if (0 < n && command[n - 1] == ' ')
9242 command[n - 1] = '\0';
9243 }
9244
9245 return TRUE;
9246 }
9247 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9248
9249 #if defined (HAVE_PSTATUS_T)
9250 static bfd_boolean
9251 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9252 {
9253 if (note->descsz == sizeof (pstatus_t)
9254 #if defined (HAVE_PXSTATUS_T)
9255 || note->descsz == sizeof (pxstatus_t)
9256 #endif
9257 )
9258 {
9259 pstatus_t pstat;
9260
9261 memcpy (&pstat, note->descdata, sizeof (pstat));
9262
9263 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9264 }
9265 #if defined (HAVE_PSTATUS32_T)
9266 else if (note->descsz == sizeof (pstatus32_t))
9267 {
9268 /* 64-bit host, 32-bit corefile */
9269 pstatus32_t pstat;
9270
9271 memcpy (&pstat, note->descdata, sizeof (pstat));
9272
9273 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9274 }
9275 #endif
9276 /* Could grab some more details from the "representative"
9277 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9278 NT_LWPSTATUS note, presumably. */
9279
9280 return TRUE;
9281 }
9282 #endif /* defined (HAVE_PSTATUS_T) */
9283
9284 #if defined (HAVE_LWPSTATUS_T)
9285 static bfd_boolean
9286 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9287 {
9288 lwpstatus_t lwpstat;
9289 char buf[100];
9290 char *name;
9291 size_t len;
9292 asection *sect;
9293
9294 if (note->descsz != sizeof (lwpstat)
9295 #if defined (HAVE_LWPXSTATUS_T)
9296 && note->descsz != sizeof (lwpxstatus_t)
9297 #endif
9298 )
9299 return TRUE;
9300
9301 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9302
9303 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9304 /* Do not overwrite the core signal if it has already been set by
9305 another thread. */
9306 if (elf_tdata (abfd)->core->signal == 0)
9307 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9308
9309 /* Make a ".reg/999" section. */
9310
9311 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9312 len = strlen (buf) + 1;
9313 name = bfd_alloc (abfd, len);
9314 if (name == NULL)
9315 return FALSE;
9316 memcpy (name, buf, len);
9317
9318 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9319 if (sect == NULL)
9320 return FALSE;
9321
9322 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9323 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9324 sect->filepos = note->descpos
9325 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9326 #endif
9327
9328 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9329 sect->size = sizeof (lwpstat.pr_reg);
9330 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9331 #endif
9332
9333 sect->alignment_power = 2;
9334
9335 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9336 return FALSE;
9337
9338 /* Make a ".reg2/999" section */
9339
9340 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9341 len = strlen (buf) + 1;
9342 name = bfd_alloc (abfd, len);
9343 if (name == NULL)
9344 return FALSE;
9345 memcpy (name, buf, len);
9346
9347 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9348 if (sect == NULL)
9349 return FALSE;
9350
9351 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9352 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9353 sect->filepos = note->descpos
9354 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9355 #endif
9356
9357 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9358 sect->size = sizeof (lwpstat.pr_fpreg);
9359 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9360 #endif
9361
9362 sect->alignment_power = 2;
9363
9364 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9365 }
9366 #endif /* defined (HAVE_LWPSTATUS_T) */
9367
9368 static bfd_boolean
9369 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9370 {
9371 char buf[30];
9372 char *name;
9373 size_t len;
9374 asection *sect;
9375 int type;
9376 int is_active_thread;
9377 bfd_vma base_addr;
9378
9379 if (note->descsz < 728)
9380 return TRUE;
9381
9382 if (! CONST_STRNEQ (note->namedata, "win32"))
9383 return TRUE;
9384
9385 type = bfd_get_32 (abfd, note->descdata);
9386
9387 switch (type)
9388 {
9389 case 1 /* NOTE_INFO_PROCESS */:
9390 /* FIXME: need to add ->core->command. */
9391 /* process_info.pid */
9392 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9393 /* process_info.signal */
9394 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9395 break;
9396
9397 case 2 /* NOTE_INFO_THREAD */:
9398 /* Make a ".reg/999" section. */
9399 /* thread_info.tid */
9400 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9401
9402 len = strlen (buf) + 1;
9403 name = (char *) bfd_alloc (abfd, len);
9404 if (name == NULL)
9405 return FALSE;
9406
9407 memcpy (name, buf, len);
9408
9409 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9410 if (sect == NULL)
9411 return FALSE;
9412
9413 /* sizeof (thread_info.thread_context) */
9414 sect->size = 716;
9415 /* offsetof (thread_info.thread_context) */
9416 sect->filepos = note->descpos + 12;
9417 sect->alignment_power = 2;
9418
9419 /* thread_info.is_active_thread */
9420 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9421
9422 if (is_active_thread)
9423 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9424 return FALSE;
9425 break;
9426
9427 case 3 /* NOTE_INFO_MODULE */:
9428 /* Make a ".module/xxxxxxxx" section. */
9429 /* module_info.base_address */
9430 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9431 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9432
9433 len = strlen (buf) + 1;
9434 name = (char *) bfd_alloc (abfd, len);
9435 if (name == NULL)
9436 return FALSE;
9437
9438 memcpy (name, buf, len);
9439
9440 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9441
9442 if (sect == NULL)
9443 return FALSE;
9444
9445 sect->size = note->descsz;
9446 sect->filepos = note->descpos;
9447 sect->alignment_power = 2;
9448 break;
9449
9450 default:
9451 return TRUE;
9452 }
9453
9454 return TRUE;
9455 }
9456
9457 static bfd_boolean
9458 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9459 {
9460 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9461
9462 switch (note->type)
9463 {
9464 default:
9465 return TRUE;
9466
9467 case NT_PRSTATUS:
9468 if (bed->elf_backend_grok_prstatus)
9469 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9470 return TRUE;
9471 #if defined (HAVE_PRSTATUS_T)
9472 return elfcore_grok_prstatus (abfd, note);
9473 #else
9474 return TRUE;
9475 #endif
9476
9477 #if defined (HAVE_PSTATUS_T)
9478 case NT_PSTATUS:
9479 return elfcore_grok_pstatus (abfd, note);
9480 #endif
9481
9482 #if defined (HAVE_LWPSTATUS_T)
9483 case NT_LWPSTATUS:
9484 return elfcore_grok_lwpstatus (abfd, note);
9485 #endif
9486
9487 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9488 return elfcore_grok_prfpreg (abfd, note);
9489
9490 case NT_WIN32PSTATUS:
9491 return elfcore_grok_win32pstatus (abfd, note);
9492
9493 case NT_PRXFPREG: /* Linux SSE extension */
9494 if (note->namesz == 6
9495 && strcmp (note->namedata, "LINUX") == 0)
9496 return elfcore_grok_prxfpreg (abfd, note);
9497 else
9498 return TRUE;
9499
9500 case NT_X86_XSTATE: /* Linux XSAVE extension */
9501 if (note->namesz == 6
9502 && strcmp (note->namedata, "LINUX") == 0)
9503 return elfcore_grok_xstatereg (abfd, note);
9504 else
9505 return TRUE;
9506
9507 case NT_PPC_VMX:
9508 if (note->namesz == 6
9509 && strcmp (note->namedata, "LINUX") == 0)
9510 return elfcore_grok_ppc_vmx (abfd, note);
9511 else
9512 return TRUE;
9513
9514 case NT_PPC_VSX:
9515 if (note->namesz == 6
9516 && strcmp (note->namedata, "LINUX") == 0)
9517 return elfcore_grok_ppc_vsx (abfd, note);
9518 else
9519 return TRUE;
9520
9521 case NT_S390_HIGH_GPRS:
9522 if (note->namesz == 6
9523 && strcmp (note->namedata, "LINUX") == 0)
9524 return elfcore_grok_s390_high_gprs (abfd, note);
9525 else
9526 return TRUE;
9527
9528 case NT_S390_TIMER:
9529 if (note->namesz == 6
9530 && strcmp (note->namedata, "LINUX") == 0)
9531 return elfcore_grok_s390_timer (abfd, note);
9532 else
9533 return TRUE;
9534
9535 case NT_S390_TODCMP:
9536 if (note->namesz == 6
9537 && strcmp (note->namedata, "LINUX") == 0)
9538 return elfcore_grok_s390_todcmp (abfd, note);
9539 else
9540 return TRUE;
9541
9542 case NT_S390_TODPREG:
9543 if (note->namesz == 6
9544 && strcmp (note->namedata, "LINUX") == 0)
9545 return elfcore_grok_s390_todpreg (abfd, note);
9546 else
9547 return TRUE;
9548
9549 case NT_S390_CTRS:
9550 if (note->namesz == 6
9551 && strcmp (note->namedata, "LINUX") == 0)
9552 return elfcore_grok_s390_ctrs (abfd, note);
9553 else
9554 return TRUE;
9555
9556 case NT_S390_PREFIX:
9557 if (note->namesz == 6
9558 && strcmp (note->namedata, "LINUX") == 0)
9559 return elfcore_grok_s390_prefix (abfd, note);
9560 else
9561 return TRUE;
9562
9563 case NT_S390_LAST_BREAK:
9564 if (note->namesz == 6
9565 && strcmp (note->namedata, "LINUX") == 0)
9566 return elfcore_grok_s390_last_break (abfd, note);
9567 else
9568 return TRUE;
9569
9570 case NT_S390_SYSTEM_CALL:
9571 if (note->namesz == 6
9572 && strcmp (note->namedata, "LINUX") == 0)
9573 return elfcore_grok_s390_system_call (abfd, note);
9574 else
9575 return TRUE;
9576
9577 case NT_S390_TDB:
9578 if (note->namesz == 6
9579 && strcmp (note->namedata, "LINUX") == 0)
9580 return elfcore_grok_s390_tdb (abfd, note);
9581 else
9582 return TRUE;
9583
9584 case NT_S390_VXRS_LOW:
9585 if (note->namesz == 6
9586 && strcmp (note->namedata, "LINUX") == 0)
9587 return elfcore_grok_s390_vxrs_low (abfd, note);
9588 else
9589 return TRUE;
9590
9591 case NT_S390_VXRS_HIGH:
9592 if (note->namesz == 6
9593 && strcmp (note->namedata, "LINUX") == 0)
9594 return elfcore_grok_s390_vxrs_high (abfd, note);
9595 else
9596 return TRUE;
9597
9598 case NT_ARM_VFP:
9599 if (note->namesz == 6
9600 && strcmp (note->namedata, "LINUX") == 0)
9601 return elfcore_grok_arm_vfp (abfd, note);
9602 else
9603 return TRUE;
9604
9605 case NT_ARM_TLS:
9606 if (note->namesz == 6
9607 && strcmp (note->namedata, "LINUX") == 0)
9608 return elfcore_grok_aarch_tls (abfd, note);
9609 else
9610 return TRUE;
9611
9612 case NT_ARM_HW_BREAK:
9613 if (note->namesz == 6
9614 && strcmp (note->namedata, "LINUX") == 0)
9615 return elfcore_grok_aarch_hw_break (abfd, note);
9616 else
9617 return TRUE;
9618
9619 case NT_ARM_HW_WATCH:
9620 if (note->namesz == 6
9621 && strcmp (note->namedata, "LINUX") == 0)
9622 return elfcore_grok_aarch_hw_watch (abfd, note);
9623 else
9624 return TRUE;
9625
9626 case NT_PRPSINFO:
9627 case NT_PSINFO:
9628 if (bed->elf_backend_grok_psinfo)
9629 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9630 return TRUE;
9631 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9632 return elfcore_grok_psinfo (abfd, note);
9633 #else
9634 return TRUE;
9635 #endif
9636
9637 case NT_AUXV:
9638 {
9639 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9640 SEC_HAS_CONTENTS);
9641
9642 if (sect == NULL)
9643 return FALSE;
9644 sect->size = note->descsz;
9645 sect->filepos = note->descpos;
9646 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9647
9648 return TRUE;
9649 }
9650
9651 case NT_FILE:
9652 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9653 note);
9654
9655 case NT_SIGINFO:
9656 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9657 note);
9658
9659 }
9660 }
9661
9662 static bfd_boolean
9663 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9664 {
9665 struct bfd_build_id* build_id;
9666
9667 if (note->descsz == 0)
9668 return FALSE;
9669
9670 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9671 if (build_id == NULL)
9672 return FALSE;
9673
9674 build_id->size = note->descsz;
9675 memcpy (build_id->data, note->descdata, note->descsz);
9676 abfd->build_id = build_id;
9677
9678 return TRUE;
9679 }
9680
9681 static bfd_boolean
9682 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9683 {
9684 switch (note->type)
9685 {
9686 default:
9687 return TRUE;
9688
9689 case NT_GNU_BUILD_ID:
9690 return elfobj_grok_gnu_build_id (abfd, note);
9691 }
9692 }
9693
9694 static bfd_boolean
9695 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9696 {
9697 struct sdt_note *cur =
9698 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9699 + note->descsz);
9700
9701 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9702 cur->size = (bfd_size_type) note->descsz;
9703 memcpy (cur->data, note->descdata, note->descsz);
9704
9705 elf_tdata (abfd)->sdt_note_head = cur;
9706
9707 return TRUE;
9708 }
9709
9710 static bfd_boolean
9711 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9712 {
9713 switch (note->type)
9714 {
9715 case NT_STAPSDT:
9716 return elfobj_grok_stapsdt_note_1 (abfd, note);
9717
9718 default:
9719 return TRUE;
9720 }
9721 }
9722
9723 static bfd_boolean
9724 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
9725 {
9726 size_t offset;
9727
9728 switch (abfd->arch_info->bits_per_word)
9729 {
9730 case 32:
9731 if (note->descsz < 108)
9732 return FALSE;
9733 break;
9734
9735 case 64:
9736 if (note->descsz < 120)
9737 return FALSE;
9738 break;
9739
9740 default:
9741 return FALSE;
9742 }
9743
9744 /* Check for version 1 in pr_version. */
9745 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9746 return FALSE;
9747 offset = 4;
9748
9749 /* Skip over pr_psinfosz. */
9750 if (abfd->arch_info->bits_per_word == 32)
9751 offset += 4;
9752 else
9753 {
9754 offset += 4; /* Padding before pr_psinfosz. */
9755 offset += 8;
9756 }
9757
9758 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
9759 elf_tdata (abfd)->core->program
9760 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
9761 offset += 17;
9762
9763 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
9764 elf_tdata (abfd)->core->command
9765 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
9766 offset += 81;
9767
9768 /* Padding before pr_pid. */
9769 offset += 2;
9770
9771 /* The pr_pid field was added in version "1a". */
9772 if (note->descsz < offset + 4)
9773 return TRUE;
9774
9775 elf_tdata (abfd)->core->pid
9776 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9777
9778 return TRUE;
9779 }
9780
9781 static bfd_boolean
9782 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
9783 {
9784 size_t offset;
9785 size_t size;
9786
9787 /* Check for version 1 in pr_version. */
9788 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9789 return FALSE;
9790 offset = 4;
9791
9792 /* Skip over pr_statussz. */
9793 switch (abfd->arch_info->bits_per_word)
9794 {
9795 case 32:
9796 offset += 4;
9797 break;
9798
9799 case 64:
9800 offset += 4; /* Padding before pr_statussz. */
9801 offset += 8;
9802 break;
9803
9804 default:
9805 return FALSE;
9806 }
9807
9808 /* Extract size of pr_reg from pr_gregsetsz. */
9809 if (abfd->arch_info->bits_per_word == 32)
9810 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9811 else
9812 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
9813
9814 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
9815 offset += (abfd->arch_info->bits_per_word / 8) * 2;
9816
9817 /* Skip over pr_osreldate. */
9818 offset += 4;
9819
9820 /* Read signal from pr_cursig. */
9821 if (elf_tdata (abfd)->core->signal == 0)
9822 elf_tdata (abfd)->core->signal
9823 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9824 offset += 4;
9825
9826 /* Read TID from pr_pid. */
9827 elf_tdata (abfd)->core->lwpid
9828 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9829 offset += 4;
9830
9831 /* Padding before pr_reg. */
9832 if (abfd->arch_info->bits_per_word == 64)
9833 offset += 4;
9834
9835 /* Make a ".reg/999" section and a ".reg" section. */
9836 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9837 size, note->descpos + offset);
9838 }
9839
9840 static bfd_boolean
9841 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
9842 {
9843 switch (note->type)
9844 {
9845 case NT_PRSTATUS:
9846 return elfcore_grok_freebsd_prstatus (abfd, note);
9847
9848 case NT_FPREGSET:
9849 return elfcore_grok_prfpreg (abfd, note);
9850
9851 case NT_PRPSINFO:
9852 return elfcore_grok_freebsd_psinfo (abfd, note);
9853
9854 case NT_FREEBSD_THRMISC:
9855 if (note->namesz == 8)
9856 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
9857 else
9858 return TRUE;
9859
9860 case NT_FREEBSD_PROCSTAT_AUXV:
9861 {
9862 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9863 SEC_HAS_CONTENTS);
9864
9865 if (sect == NULL)
9866 return FALSE;
9867 sect->size = note->descsz - 4;
9868 sect->filepos = note->descpos + 4;
9869 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9870
9871 return TRUE;
9872 }
9873
9874 case NT_X86_XSTATE:
9875 if (note->namesz == 8)
9876 return elfcore_grok_xstatereg (abfd, note);
9877 else
9878 return TRUE;
9879
9880 default:
9881 return TRUE;
9882 }
9883 }
9884
9885 static bfd_boolean
9886 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
9887 {
9888 char *cp;
9889
9890 cp = strchr (note->namedata, '@');
9891 if (cp != NULL)
9892 {
9893 *lwpidp = atoi(cp + 1);
9894 return TRUE;
9895 }
9896 return FALSE;
9897 }
9898
9899 static bfd_boolean
9900 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9901 {
9902 /* Signal number at offset 0x08. */
9903 elf_tdata (abfd)->core->signal
9904 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9905
9906 /* Process ID at offset 0x50. */
9907 elf_tdata (abfd)->core->pid
9908 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
9909
9910 /* Command name at 0x7c (max 32 bytes, including nul). */
9911 elf_tdata (abfd)->core->command
9912 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
9913
9914 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
9915 note);
9916 }
9917
9918 static bfd_boolean
9919 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
9920 {
9921 int lwp;
9922
9923 if (elfcore_netbsd_get_lwpid (note, &lwp))
9924 elf_tdata (abfd)->core->lwpid = lwp;
9925
9926 if (note->type == NT_NETBSDCORE_PROCINFO)
9927 {
9928 /* NetBSD-specific core "procinfo". Note that we expect to
9929 find this note before any of the others, which is fine,
9930 since the kernel writes this note out first when it
9931 creates a core file. */
9932
9933 return elfcore_grok_netbsd_procinfo (abfd, note);
9934 }
9935
9936 /* As of Jan 2002 there are no other machine-independent notes
9937 defined for NetBSD core files. If the note type is less
9938 than the start of the machine-dependent note types, we don't
9939 understand it. */
9940
9941 if (note->type < NT_NETBSDCORE_FIRSTMACH)
9942 return TRUE;
9943
9944
9945 switch (bfd_get_arch (abfd))
9946 {
9947 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
9948 PT_GETFPREGS == mach+2. */
9949
9950 case bfd_arch_alpha:
9951 case bfd_arch_sparc:
9952 switch (note->type)
9953 {
9954 case NT_NETBSDCORE_FIRSTMACH+0:
9955 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9956
9957 case NT_NETBSDCORE_FIRSTMACH+2:
9958 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9959
9960 default:
9961 return TRUE;
9962 }
9963
9964 /* On all other arch's, PT_GETREGS == mach+1 and
9965 PT_GETFPREGS == mach+3. */
9966
9967 default:
9968 switch (note->type)
9969 {
9970 case NT_NETBSDCORE_FIRSTMACH+1:
9971 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9972
9973 case NT_NETBSDCORE_FIRSTMACH+3:
9974 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9975
9976 default:
9977 return TRUE;
9978 }
9979 }
9980 /* NOTREACHED */
9981 }
9982
9983 static bfd_boolean
9984 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9985 {
9986 /* Signal number at offset 0x08. */
9987 elf_tdata (abfd)->core->signal
9988 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9989
9990 /* Process ID at offset 0x20. */
9991 elf_tdata (abfd)->core->pid
9992 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
9993
9994 /* Command name at 0x48 (max 32 bytes, including nul). */
9995 elf_tdata (abfd)->core->command
9996 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
9997
9998 return TRUE;
9999 }
10000
10001 static bfd_boolean
10002 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10003 {
10004 if (note->type == NT_OPENBSD_PROCINFO)
10005 return elfcore_grok_openbsd_procinfo (abfd, note);
10006
10007 if (note->type == NT_OPENBSD_REGS)
10008 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10009
10010 if (note->type == NT_OPENBSD_FPREGS)
10011 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10012
10013 if (note->type == NT_OPENBSD_XFPREGS)
10014 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10015
10016 if (note->type == NT_OPENBSD_AUXV)
10017 {
10018 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10019 SEC_HAS_CONTENTS);
10020
10021 if (sect == NULL)
10022 return FALSE;
10023 sect->size = note->descsz;
10024 sect->filepos = note->descpos;
10025 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10026
10027 return TRUE;
10028 }
10029
10030 if (note->type == NT_OPENBSD_WCOOKIE)
10031 {
10032 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10033 SEC_HAS_CONTENTS);
10034
10035 if (sect == NULL)
10036 return FALSE;
10037 sect->size = note->descsz;
10038 sect->filepos = note->descpos;
10039 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10040
10041 return TRUE;
10042 }
10043
10044 return TRUE;
10045 }
10046
10047 static bfd_boolean
10048 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10049 {
10050 void *ddata = note->descdata;
10051 char buf[100];
10052 char *name;
10053 asection *sect;
10054 short sig;
10055 unsigned flags;
10056
10057 /* nto_procfs_status 'pid' field is at offset 0. */
10058 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10059
10060 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10061 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10062
10063 /* nto_procfs_status 'flags' field is at offset 8. */
10064 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10065
10066 /* nto_procfs_status 'what' field is at offset 14. */
10067 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10068 {
10069 elf_tdata (abfd)->core->signal = sig;
10070 elf_tdata (abfd)->core->lwpid = *tid;
10071 }
10072
10073 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10074 do not come from signals so we make sure we set the current
10075 thread just in case. */
10076 if (flags & 0x00000080)
10077 elf_tdata (abfd)->core->lwpid = *tid;
10078
10079 /* Make a ".qnx_core_status/%d" section. */
10080 sprintf (buf, ".qnx_core_status/%ld", *tid);
10081
10082 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10083 if (name == NULL)
10084 return FALSE;
10085 strcpy (name, buf);
10086
10087 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10088 if (sect == NULL)
10089 return FALSE;
10090
10091 sect->size = note->descsz;
10092 sect->filepos = note->descpos;
10093 sect->alignment_power = 2;
10094
10095 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10096 }
10097
10098 static bfd_boolean
10099 elfcore_grok_nto_regs (bfd *abfd,
10100 Elf_Internal_Note *note,
10101 long tid,
10102 char *base)
10103 {
10104 char buf[100];
10105 char *name;
10106 asection *sect;
10107
10108 /* Make a "(base)/%d" section. */
10109 sprintf (buf, "%s/%ld", base, tid);
10110
10111 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10112 if (name == NULL)
10113 return FALSE;
10114 strcpy (name, buf);
10115
10116 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10117 if (sect == NULL)
10118 return FALSE;
10119
10120 sect->size = note->descsz;
10121 sect->filepos = note->descpos;
10122 sect->alignment_power = 2;
10123
10124 /* This is the current thread. */
10125 if (elf_tdata (abfd)->core->lwpid == tid)
10126 return elfcore_maybe_make_sect (abfd, base, sect);
10127
10128 return TRUE;
10129 }
10130
10131 #define BFD_QNT_CORE_INFO 7
10132 #define BFD_QNT_CORE_STATUS 8
10133 #define BFD_QNT_CORE_GREG 9
10134 #define BFD_QNT_CORE_FPREG 10
10135
10136 static bfd_boolean
10137 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10138 {
10139 /* Every GREG section has a STATUS section before it. Store the
10140 tid from the previous call to pass down to the next gregs
10141 function. */
10142 static long tid = 1;
10143
10144 switch (note->type)
10145 {
10146 case BFD_QNT_CORE_INFO:
10147 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10148 case BFD_QNT_CORE_STATUS:
10149 return elfcore_grok_nto_status (abfd, note, &tid);
10150 case BFD_QNT_CORE_GREG:
10151 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10152 case BFD_QNT_CORE_FPREG:
10153 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10154 default:
10155 return TRUE;
10156 }
10157 }
10158
10159 static bfd_boolean
10160 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10161 {
10162 char *name;
10163 asection *sect;
10164 size_t len;
10165
10166 /* Use note name as section name. */
10167 len = note->namesz;
10168 name = (char *) bfd_alloc (abfd, len);
10169 if (name == NULL)
10170 return FALSE;
10171 memcpy (name, note->namedata, len);
10172 name[len - 1] = '\0';
10173
10174 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10175 if (sect == NULL)
10176 return FALSE;
10177
10178 sect->size = note->descsz;
10179 sect->filepos = note->descpos;
10180 sect->alignment_power = 1;
10181
10182 return TRUE;
10183 }
10184
10185 /* Function: elfcore_write_note
10186
10187 Inputs:
10188 buffer to hold note, and current size of buffer
10189 name of note
10190 type of note
10191 data for note
10192 size of data for note
10193
10194 Writes note to end of buffer. ELF64 notes are written exactly as
10195 for ELF32, despite the current (as of 2006) ELF gabi specifying
10196 that they ought to have 8-byte namesz and descsz field, and have
10197 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10198
10199 Return:
10200 Pointer to realloc'd buffer, *BUFSIZ updated. */
10201
10202 char *
10203 elfcore_write_note (bfd *abfd,
10204 char *buf,
10205 int *bufsiz,
10206 const char *name,
10207 int type,
10208 const void *input,
10209 int size)
10210 {
10211 Elf_External_Note *xnp;
10212 size_t namesz;
10213 size_t newspace;
10214 char *dest;
10215
10216 namesz = 0;
10217 if (name != NULL)
10218 namesz = strlen (name) + 1;
10219
10220 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10221
10222 buf = (char *) realloc (buf, *bufsiz + newspace);
10223 if (buf == NULL)
10224 return buf;
10225 dest = buf + *bufsiz;
10226 *bufsiz += newspace;
10227 xnp = (Elf_External_Note *) dest;
10228 H_PUT_32 (abfd, namesz, xnp->namesz);
10229 H_PUT_32 (abfd, size, xnp->descsz);
10230 H_PUT_32 (abfd, type, xnp->type);
10231 dest = xnp->name;
10232 if (name != NULL)
10233 {
10234 memcpy (dest, name, namesz);
10235 dest += namesz;
10236 while (namesz & 3)
10237 {
10238 *dest++ = '\0';
10239 ++namesz;
10240 }
10241 }
10242 memcpy (dest, input, size);
10243 dest += size;
10244 while (size & 3)
10245 {
10246 *dest++ = '\0';
10247 ++size;
10248 }
10249 return buf;
10250 }
10251
10252 char *
10253 elfcore_write_prpsinfo (bfd *abfd,
10254 char *buf,
10255 int *bufsiz,
10256 const char *fname,
10257 const char *psargs)
10258 {
10259 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10260
10261 if (bed->elf_backend_write_core_note != NULL)
10262 {
10263 char *ret;
10264 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10265 NT_PRPSINFO, fname, psargs);
10266 if (ret != NULL)
10267 return ret;
10268 }
10269
10270 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10271 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10272 if (bed->s->elfclass == ELFCLASS32)
10273 {
10274 #if defined (HAVE_PSINFO32_T)
10275 psinfo32_t data;
10276 int note_type = NT_PSINFO;
10277 #else
10278 prpsinfo32_t data;
10279 int note_type = NT_PRPSINFO;
10280 #endif
10281
10282 memset (&data, 0, sizeof (data));
10283 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10284 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10285 return elfcore_write_note (abfd, buf, bufsiz,
10286 "CORE", note_type, &data, sizeof (data));
10287 }
10288 else
10289 #endif
10290 {
10291 #if defined (HAVE_PSINFO_T)
10292 psinfo_t data;
10293 int note_type = NT_PSINFO;
10294 #else
10295 prpsinfo_t data;
10296 int note_type = NT_PRPSINFO;
10297 #endif
10298
10299 memset (&data, 0, sizeof (data));
10300 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10301 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10302 return elfcore_write_note (abfd, buf, bufsiz,
10303 "CORE", note_type, &data, sizeof (data));
10304 }
10305 #endif /* PSINFO_T or PRPSINFO_T */
10306
10307 free (buf);
10308 return NULL;
10309 }
10310
10311 char *
10312 elfcore_write_linux_prpsinfo32
10313 (bfd *abfd, char *buf, int *bufsiz,
10314 const struct elf_internal_linux_prpsinfo *prpsinfo)
10315 {
10316 struct elf_external_linux_prpsinfo32 data;
10317
10318 swap_linux_prpsinfo32_out (abfd, prpsinfo, &data);
10319 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10320 &data, sizeof (data));
10321 }
10322
10323 char *
10324 elfcore_write_linux_prpsinfo64
10325 (bfd *abfd, char *buf, int *bufsiz,
10326 const struct elf_internal_linux_prpsinfo *prpsinfo)
10327 {
10328 struct elf_external_linux_prpsinfo64 data;
10329
10330 swap_linux_prpsinfo64_out (abfd, prpsinfo, &data);
10331 return elfcore_write_note (abfd, buf, bufsiz,
10332 "CORE", NT_PRPSINFO, &data, sizeof (data));
10333 }
10334
10335 char *
10336 elfcore_write_prstatus (bfd *abfd,
10337 char *buf,
10338 int *bufsiz,
10339 long pid,
10340 int cursig,
10341 const void *gregs)
10342 {
10343 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10344
10345 if (bed->elf_backend_write_core_note != NULL)
10346 {
10347 char *ret;
10348 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10349 NT_PRSTATUS,
10350 pid, cursig, gregs);
10351 if (ret != NULL)
10352 return ret;
10353 }
10354
10355 #if defined (HAVE_PRSTATUS_T)
10356 #if defined (HAVE_PRSTATUS32_T)
10357 if (bed->s->elfclass == ELFCLASS32)
10358 {
10359 prstatus32_t prstat;
10360
10361 memset (&prstat, 0, sizeof (prstat));
10362 prstat.pr_pid = pid;
10363 prstat.pr_cursig = cursig;
10364 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10365 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10366 NT_PRSTATUS, &prstat, sizeof (prstat));
10367 }
10368 else
10369 #endif
10370 {
10371 prstatus_t prstat;
10372
10373 memset (&prstat, 0, sizeof (prstat));
10374 prstat.pr_pid = pid;
10375 prstat.pr_cursig = cursig;
10376 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10377 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10378 NT_PRSTATUS, &prstat, sizeof (prstat));
10379 }
10380 #endif /* HAVE_PRSTATUS_T */
10381
10382 free (buf);
10383 return NULL;
10384 }
10385
10386 #if defined (HAVE_LWPSTATUS_T)
10387 char *
10388 elfcore_write_lwpstatus (bfd *abfd,
10389 char *buf,
10390 int *bufsiz,
10391 long pid,
10392 int cursig,
10393 const void *gregs)
10394 {
10395 lwpstatus_t lwpstat;
10396 const char *note_name = "CORE";
10397
10398 memset (&lwpstat, 0, sizeof (lwpstat));
10399 lwpstat.pr_lwpid = pid >> 16;
10400 lwpstat.pr_cursig = cursig;
10401 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10402 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10403 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10404 #if !defined(gregs)
10405 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10406 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10407 #else
10408 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10409 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10410 #endif
10411 #endif
10412 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10413 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10414 }
10415 #endif /* HAVE_LWPSTATUS_T */
10416
10417 #if defined (HAVE_PSTATUS_T)
10418 char *
10419 elfcore_write_pstatus (bfd *abfd,
10420 char *buf,
10421 int *bufsiz,
10422 long pid,
10423 int cursig ATTRIBUTE_UNUSED,
10424 const void *gregs ATTRIBUTE_UNUSED)
10425 {
10426 const char *note_name = "CORE";
10427 #if defined (HAVE_PSTATUS32_T)
10428 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10429
10430 if (bed->s->elfclass == ELFCLASS32)
10431 {
10432 pstatus32_t pstat;
10433
10434 memset (&pstat, 0, sizeof (pstat));
10435 pstat.pr_pid = pid & 0xffff;
10436 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10437 NT_PSTATUS, &pstat, sizeof (pstat));
10438 return buf;
10439 }
10440 else
10441 #endif
10442 {
10443 pstatus_t pstat;
10444
10445 memset (&pstat, 0, sizeof (pstat));
10446 pstat.pr_pid = pid & 0xffff;
10447 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10448 NT_PSTATUS, &pstat, sizeof (pstat));
10449 return buf;
10450 }
10451 }
10452 #endif /* HAVE_PSTATUS_T */
10453
10454 char *
10455 elfcore_write_prfpreg (bfd *abfd,
10456 char *buf,
10457 int *bufsiz,
10458 const void *fpregs,
10459 int size)
10460 {
10461 const char *note_name = "CORE";
10462 return elfcore_write_note (abfd, buf, bufsiz,
10463 note_name, NT_FPREGSET, fpregs, size);
10464 }
10465
10466 char *
10467 elfcore_write_prxfpreg (bfd *abfd,
10468 char *buf,
10469 int *bufsiz,
10470 const void *xfpregs,
10471 int size)
10472 {
10473 char *note_name = "LINUX";
10474 return elfcore_write_note (abfd, buf, bufsiz,
10475 note_name, NT_PRXFPREG, xfpregs, size);
10476 }
10477
10478 char *
10479 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10480 const void *xfpregs, int size)
10481 {
10482 char *note_name;
10483 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10484 note_name = "FreeBSD";
10485 else
10486 note_name = "LINUX";
10487 return elfcore_write_note (abfd, buf, bufsiz,
10488 note_name, NT_X86_XSTATE, xfpregs, size);
10489 }
10490
10491 char *
10492 elfcore_write_ppc_vmx (bfd *abfd,
10493 char *buf,
10494 int *bufsiz,
10495 const void *ppc_vmx,
10496 int size)
10497 {
10498 char *note_name = "LINUX";
10499 return elfcore_write_note (abfd, buf, bufsiz,
10500 note_name, NT_PPC_VMX, ppc_vmx, size);
10501 }
10502
10503 char *
10504 elfcore_write_ppc_vsx (bfd *abfd,
10505 char *buf,
10506 int *bufsiz,
10507 const void *ppc_vsx,
10508 int size)
10509 {
10510 char *note_name = "LINUX";
10511 return elfcore_write_note (abfd, buf, bufsiz,
10512 note_name, NT_PPC_VSX, ppc_vsx, size);
10513 }
10514
10515 static char *
10516 elfcore_write_s390_high_gprs (bfd *abfd,
10517 char *buf,
10518 int *bufsiz,
10519 const void *s390_high_gprs,
10520 int size)
10521 {
10522 char *note_name = "LINUX";
10523 return elfcore_write_note (abfd, buf, bufsiz,
10524 note_name, NT_S390_HIGH_GPRS,
10525 s390_high_gprs, size);
10526 }
10527
10528 char *
10529 elfcore_write_s390_timer (bfd *abfd,
10530 char *buf,
10531 int *bufsiz,
10532 const void *s390_timer,
10533 int size)
10534 {
10535 char *note_name = "LINUX";
10536 return elfcore_write_note (abfd, buf, bufsiz,
10537 note_name, NT_S390_TIMER, s390_timer, size);
10538 }
10539
10540 char *
10541 elfcore_write_s390_todcmp (bfd *abfd,
10542 char *buf,
10543 int *bufsiz,
10544 const void *s390_todcmp,
10545 int size)
10546 {
10547 char *note_name = "LINUX";
10548 return elfcore_write_note (abfd, buf, bufsiz,
10549 note_name, NT_S390_TODCMP, s390_todcmp, size);
10550 }
10551
10552 char *
10553 elfcore_write_s390_todpreg (bfd *abfd,
10554 char *buf,
10555 int *bufsiz,
10556 const void *s390_todpreg,
10557 int size)
10558 {
10559 char *note_name = "LINUX";
10560 return elfcore_write_note (abfd, buf, bufsiz,
10561 note_name, NT_S390_TODPREG, s390_todpreg, size);
10562 }
10563
10564 char *
10565 elfcore_write_s390_ctrs (bfd *abfd,
10566 char *buf,
10567 int *bufsiz,
10568 const void *s390_ctrs,
10569 int size)
10570 {
10571 char *note_name = "LINUX";
10572 return elfcore_write_note (abfd, buf, bufsiz,
10573 note_name, NT_S390_CTRS, s390_ctrs, size);
10574 }
10575
10576 char *
10577 elfcore_write_s390_prefix (bfd *abfd,
10578 char *buf,
10579 int *bufsiz,
10580 const void *s390_prefix,
10581 int size)
10582 {
10583 char *note_name = "LINUX";
10584 return elfcore_write_note (abfd, buf, bufsiz,
10585 note_name, NT_S390_PREFIX, s390_prefix, size);
10586 }
10587
10588 char *
10589 elfcore_write_s390_last_break (bfd *abfd,
10590 char *buf,
10591 int *bufsiz,
10592 const void *s390_last_break,
10593 int size)
10594 {
10595 char *note_name = "LINUX";
10596 return elfcore_write_note (abfd, buf, bufsiz,
10597 note_name, NT_S390_LAST_BREAK,
10598 s390_last_break, size);
10599 }
10600
10601 char *
10602 elfcore_write_s390_system_call (bfd *abfd,
10603 char *buf,
10604 int *bufsiz,
10605 const void *s390_system_call,
10606 int size)
10607 {
10608 char *note_name = "LINUX";
10609 return elfcore_write_note (abfd, buf, bufsiz,
10610 note_name, NT_S390_SYSTEM_CALL,
10611 s390_system_call, size);
10612 }
10613
10614 char *
10615 elfcore_write_s390_tdb (bfd *abfd,
10616 char *buf,
10617 int *bufsiz,
10618 const void *s390_tdb,
10619 int size)
10620 {
10621 char *note_name = "LINUX";
10622 return elfcore_write_note (abfd, buf, bufsiz,
10623 note_name, NT_S390_TDB, s390_tdb, size);
10624 }
10625
10626 char *
10627 elfcore_write_s390_vxrs_low (bfd *abfd,
10628 char *buf,
10629 int *bufsiz,
10630 const void *s390_vxrs_low,
10631 int size)
10632 {
10633 char *note_name = "LINUX";
10634 return elfcore_write_note (abfd, buf, bufsiz,
10635 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10636 }
10637
10638 char *
10639 elfcore_write_s390_vxrs_high (bfd *abfd,
10640 char *buf,
10641 int *bufsiz,
10642 const void *s390_vxrs_high,
10643 int size)
10644 {
10645 char *note_name = "LINUX";
10646 return elfcore_write_note (abfd, buf, bufsiz,
10647 note_name, NT_S390_VXRS_HIGH,
10648 s390_vxrs_high, size);
10649 }
10650
10651 char *
10652 elfcore_write_arm_vfp (bfd *abfd,
10653 char *buf,
10654 int *bufsiz,
10655 const void *arm_vfp,
10656 int size)
10657 {
10658 char *note_name = "LINUX";
10659 return elfcore_write_note (abfd, buf, bufsiz,
10660 note_name, NT_ARM_VFP, arm_vfp, size);
10661 }
10662
10663 char *
10664 elfcore_write_aarch_tls (bfd *abfd,
10665 char *buf,
10666 int *bufsiz,
10667 const void *aarch_tls,
10668 int size)
10669 {
10670 char *note_name = "LINUX";
10671 return elfcore_write_note (abfd, buf, bufsiz,
10672 note_name, NT_ARM_TLS, aarch_tls, size);
10673 }
10674
10675 char *
10676 elfcore_write_aarch_hw_break (bfd *abfd,
10677 char *buf,
10678 int *bufsiz,
10679 const void *aarch_hw_break,
10680 int size)
10681 {
10682 char *note_name = "LINUX";
10683 return elfcore_write_note (abfd, buf, bufsiz,
10684 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10685 }
10686
10687 char *
10688 elfcore_write_aarch_hw_watch (bfd *abfd,
10689 char *buf,
10690 int *bufsiz,
10691 const void *aarch_hw_watch,
10692 int size)
10693 {
10694 char *note_name = "LINUX";
10695 return elfcore_write_note (abfd, buf, bufsiz,
10696 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10697 }
10698
10699 char *
10700 elfcore_write_register_note (bfd *abfd,
10701 char *buf,
10702 int *bufsiz,
10703 const char *section,
10704 const void *data,
10705 int size)
10706 {
10707 if (strcmp (section, ".reg2") == 0)
10708 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10709 if (strcmp (section, ".reg-xfp") == 0)
10710 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
10711 if (strcmp (section, ".reg-xstate") == 0)
10712 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
10713 if (strcmp (section, ".reg-ppc-vmx") == 0)
10714 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
10715 if (strcmp (section, ".reg-ppc-vsx") == 0)
10716 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
10717 if (strcmp (section, ".reg-s390-high-gprs") == 0)
10718 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
10719 if (strcmp (section, ".reg-s390-timer") == 0)
10720 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
10721 if (strcmp (section, ".reg-s390-todcmp") == 0)
10722 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
10723 if (strcmp (section, ".reg-s390-todpreg") == 0)
10724 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
10725 if (strcmp (section, ".reg-s390-ctrs") == 0)
10726 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
10727 if (strcmp (section, ".reg-s390-prefix") == 0)
10728 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
10729 if (strcmp (section, ".reg-s390-last-break") == 0)
10730 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
10731 if (strcmp (section, ".reg-s390-system-call") == 0)
10732 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
10733 if (strcmp (section, ".reg-s390-tdb") == 0)
10734 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
10735 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
10736 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
10737 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
10738 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
10739 if (strcmp (section, ".reg-arm-vfp") == 0)
10740 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
10741 if (strcmp (section, ".reg-aarch-tls") == 0)
10742 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
10743 if (strcmp (section, ".reg-aarch-hw-break") == 0)
10744 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
10745 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
10746 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
10747 return NULL;
10748 }
10749
10750 static bfd_boolean
10751 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
10752 {
10753 char *p;
10754
10755 p = buf;
10756 while (p < buf + size)
10757 {
10758 /* FIXME: bad alignment assumption. */
10759 Elf_External_Note *xnp = (Elf_External_Note *) p;
10760 Elf_Internal_Note in;
10761
10762 if (offsetof (Elf_External_Note, name) > buf - p + size)
10763 return FALSE;
10764
10765 in.type = H_GET_32 (abfd, xnp->type);
10766
10767 in.namesz = H_GET_32 (abfd, xnp->namesz);
10768 in.namedata = xnp->name;
10769 if (in.namesz > buf - in.namedata + size)
10770 return FALSE;
10771
10772 in.descsz = H_GET_32 (abfd, xnp->descsz);
10773 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
10774 in.descpos = offset + (in.descdata - buf);
10775 if (in.descsz != 0
10776 && (in.descdata >= buf + size
10777 || in.descsz > buf - in.descdata + size))
10778 return FALSE;
10779
10780 switch (bfd_get_format (abfd))
10781 {
10782 default:
10783 return TRUE;
10784
10785 case bfd_core:
10786 {
10787 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
10788 struct
10789 {
10790 const char * string;
10791 size_t len;
10792 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
10793 }
10794 grokers[] =
10795 {
10796 GROKER_ELEMENT ("", elfcore_grok_note),
10797 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
10798 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
10799 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
10800 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
10801 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
10802 };
10803 #undef GROKER_ELEMENT
10804 int i;
10805
10806 for (i = ARRAY_SIZE (grokers); i--;)
10807 {
10808 if (in.namesz >= grokers[i].len
10809 && strncmp (in.namedata, grokers[i].string,
10810 grokers[i].len) == 0)
10811 {
10812 if (! grokers[i].func (abfd, & in))
10813 return FALSE;
10814 break;
10815 }
10816 }
10817 break;
10818 }
10819
10820 case bfd_object:
10821 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
10822 {
10823 if (! elfobj_grok_gnu_note (abfd, &in))
10824 return FALSE;
10825 }
10826 else if (in.namesz == sizeof "stapsdt"
10827 && strcmp (in.namedata, "stapsdt") == 0)
10828 {
10829 if (! elfobj_grok_stapsdt_note (abfd, &in))
10830 return FALSE;
10831 }
10832 break;
10833 }
10834
10835 p = in.descdata + BFD_ALIGN (in.descsz, 4);
10836 }
10837
10838 return TRUE;
10839 }
10840
10841 static bfd_boolean
10842 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
10843 {
10844 char *buf;
10845
10846 if (size <= 0)
10847 return TRUE;
10848
10849 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
10850 return FALSE;
10851
10852 buf = (char *) bfd_malloc (size + 1);
10853 if (buf == NULL)
10854 return FALSE;
10855
10856 /* PR 17512: file: ec08f814
10857 0-termintate the buffer so that string searches will not overflow. */
10858 buf[size] = 0;
10859
10860 if (bfd_bread (buf, size, abfd) != size
10861 || !elf_parse_notes (abfd, buf, size, offset))
10862 {
10863 free (buf);
10864 return FALSE;
10865 }
10866
10867 free (buf);
10868 return TRUE;
10869 }
10870 \f
10871 /* Providing external access to the ELF program header table. */
10872
10873 /* Return an upper bound on the number of bytes required to store a
10874 copy of ABFD's program header table entries. Return -1 if an error
10875 occurs; bfd_get_error will return an appropriate code. */
10876
10877 long
10878 bfd_get_elf_phdr_upper_bound (bfd *abfd)
10879 {
10880 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10881 {
10882 bfd_set_error (bfd_error_wrong_format);
10883 return -1;
10884 }
10885
10886 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
10887 }
10888
10889 /* Copy ABFD's program header table entries to *PHDRS. The entries
10890 will be stored as an array of Elf_Internal_Phdr structures, as
10891 defined in include/elf/internal.h. To find out how large the
10892 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
10893
10894 Return the number of program header table entries read, or -1 if an
10895 error occurs; bfd_get_error will return an appropriate code. */
10896
10897 int
10898 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
10899 {
10900 int num_phdrs;
10901
10902 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10903 {
10904 bfd_set_error (bfd_error_wrong_format);
10905 return -1;
10906 }
10907
10908 num_phdrs = elf_elfheader (abfd)->e_phnum;
10909 memcpy (phdrs, elf_tdata (abfd)->phdr,
10910 num_phdrs * sizeof (Elf_Internal_Phdr));
10911
10912 return num_phdrs;
10913 }
10914
10915 enum elf_reloc_type_class
10916 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
10917 const asection *rel_sec ATTRIBUTE_UNUSED,
10918 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
10919 {
10920 return reloc_class_normal;
10921 }
10922
10923 /* For RELA architectures, return the relocation value for a
10924 relocation against a local symbol. */
10925
10926 bfd_vma
10927 _bfd_elf_rela_local_sym (bfd *abfd,
10928 Elf_Internal_Sym *sym,
10929 asection **psec,
10930 Elf_Internal_Rela *rel)
10931 {
10932 asection *sec = *psec;
10933 bfd_vma relocation;
10934
10935 relocation = (sec->output_section->vma
10936 + sec->output_offset
10937 + sym->st_value);
10938 if ((sec->flags & SEC_MERGE)
10939 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
10940 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
10941 {
10942 rel->r_addend =
10943 _bfd_merged_section_offset (abfd, psec,
10944 elf_section_data (sec)->sec_info,
10945 sym->st_value + rel->r_addend);
10946 if (sec != *psec)
10947 {
10948 /* If we have changed the section, and our original section is
10949 marked with SEC_EXCLUDE, it means that the original
10950 SEC_MERGE section has been completely subsumed in some
10951 other SEC_MERGE section. In this case, we need to leave
10952 some info around for --emit-relocs. */
10953 if ((sec->flags & SEC_EXCLUDE) != 0)
10954 sec->kept_section = *psec;
10955 sec = *psec;
10956 }
10957 rel->r_addend -= relocation;
10958 rel->r_addend += sec->output_section->vma + sec->output_offset;
10959 }
10960 return relocation;
10961 }
10962
10963 bfd_vma
10964 _bfd_elf_rel_local_sym (bfd *abfd,
10965 Elf_Internal_Sym *sym,
10966 asection **psec,
10967 bfd_vma addend)
10968 {
10969 asection *sec = *psec;
10970
10971 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
10972 return sym->st_value + addend;
10973
10974 return _bfd_merged_section_offset (abfd, psec,
10975 elf_section_data (sec)->sec_info,
10976 sym->st_value + addend);
10977 }
10978
10979 /* Adjust an address within a section. Given OFFSET within SEC, return
10980 the new offset within the section, based upon changes made to the
10981 section. Returns -1 if the offset is now invalid.
10982 The offset (in abnd out) is in target sized bytes, however big a
10983 byte may be. */
10984
10985 bfd_vma
10986 _bfd_elf_section_offset (bfd *abfd,
10987 struct bfd_link_info *info,
10988 asection *sec,
10989 bfd_vma offset)
10990 {
10991 switch (sec->sec_info_type)
10992 {
10993 case SEC_INFO_TYPE_STABS:
10994 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
10995 offset);
10996 case SEC_INFO_TYPE_EH_FRAME:
10997 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
10998
10999 default:
11000 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11001 {
11002 /* Reverse the offset. */
11003 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11004 bfd_size_type address_size = bed->s->arch_size / 8;
11005
11006 /* address_size and sec->size are in octets. Convert
11007 to bytes before subtracting the original offset. */
11008 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11009 }
11010 return offset;
11011 }
11012 }
11013 \f
11014 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11015 reconstruct an ELF file by reading the segments out of remote memory
11016 based on the ELF file header at EHDR_VMA and the ELF program headers it
11017 points to. If not null, *LOADBASEP is filled in with the difference
11018 between the VMAs from which the segments were read, and the VMAs the
11019 file headers (and hence BFD's idea of each section's VMA) put them at.
11020
11021 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11022 remote memory at target address VMA into the local buffer at MYADDR; it
11023 should return zero on success or an `errno' code on failure. TEMPL must
11024 be a BFD for an ELF target with the word size and byte order found in
11025 the remote memory. */
11026
11027 bfd *
11028 bfd_elf_bfd_from_remote_memory
11029 (bfd *templ,
11030 bfd_vma ehdr_vma,
11031 bfd_size_type size,
11032 bfd_vma *loadbasep,
11033 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11034 {
11035 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11036 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11037 }
11038 \f
11039 long
11040 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11041 long symcount ATTRIBUTE_UNUSED,
11042 asymbol **syms ATTRIBUTE_UNUSED,
11043 long dynsymcount,
11044 asymbol **dynsyms,
11045 asymbol **ret)
11046 {
11047 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11048 asection *relplt;
11049 asymbol *s;
11050 const char *relplt_name;
11051 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11052 arelent *p;
11053 long count, i, n;
11054 size_t size;
11055 Elf_Internal_Shdr *hdr;
11056 char *names;
11057 asection *plt;
11058
11059 *ret = NULL;
11060
11061 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11062 return 0;
11063
11064 if (dynsymcount <= 0)
11065 return 0;
11066
11067 if (!bed->plt_sym_val)
11068 return 0;
11069
11070 relplt_name = bed->relplt_name;
11071 if (relplt_name == NULL)
11072 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11073 relplt = bfd_get_section_by_name (abfd, relplt_name);
11074 if (relplt == NULL)
11075 return 0;
11076
11077 hdr = &elf_section_data (relplt)->this_hdr;
11078 if (hdr->sh_link != elf_dynsymtab (abfd)
11079 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11080 return 0;
11081
11082 plt = bfd_get_section_by_name (abfd, ".plt");
11083 if (plt == NULL)
11084 return 0;
11085
11086 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11087 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11088 return -1;
11089
11090 count = relplt->size / hdr->sh_entsize;
11091 size = count * sizeof (asymbol);
11092 p = relplt->relocation;
11093 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11094 {
11095 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11096 if (p->addend != 0)
11097 {
11098 #ifdef BFD64
11099 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11100 #else
11101 size += sizeof ("+0x") - 1 + 8;
11102 #endif
11103 }
11104 }
11105
11106 s = *ret = (asymbol *) bfd_malloc (size);
11107 if (s == NULL)
11108 return -1;
11109
11110 names = (char *) (s + count);
11111 p = relplt->relocation;
11112 n = 0;
11113 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11114 {
11115 size_t len;
11116 bfd_vma addr;
11117
11118 addr = bed->plt_sym_val (i, plt, p);
11119 if (addr == (bfd_vma) -1)
11120 continue;
11121
11122 *s = **p->sym_ptr_ptr;
11123 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11124 we are defining a symbol, ensure one of them is set. */
11125 if ((s->flags & BSF_LOCAL) == 0)
11126 s->flags |= BSF_GLOBAL;
11127 s->flags |= BSF_SYNTHETIC;
11128 s->section = plt;
11129 s->value = addr - plt->vma;
11130 s->name = names;
11131 s->udata.p = NULL;
11132 len = strlen ((*p->sym_ptr_ptr)->name);
11133 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11134 names += len;
11135 if (p->addend != 0)
11136 {
11137 char buf[30], *a;
11138
11139 memcpy (names, "+0x", sizeof ("+0x") - 1);
11140 names += sizeof ("+0x") - 1;
11141 bfd_sprintf_vma (abfd, buf, p->addend);
11142 for (a = buf; *a == '0'; ++a)
11143 ;
11144 len = strlen (a);
11145 memcpy (names, a, len);
11146 names += len;
11147 }
11148 memcpy (names, "@plt", sizeof ("@plt"));
11149 names += sizeof ("@plt");
11150 ++s, ++n;
11151 }
11152
11153 return n;
11154 }
11155
11156 /* It is only used by x86-64 so far.
11157 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11158 but current usage would allow all of _bfd_std_section to be zero. t*/
11159 asection _bfd_elf_large_com_section
11160 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, NULL,
11161 "LARGE_COMMON", 0, SEC_IS_COMMON);
11162
11163 void
11164 _bfd_elf_post_process_headers (bfd * abfd,
11165 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11166 {
11167 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11168
11169 i_ehdrp = elf_elfheader (abfd);
11170
11171 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11172
11173 /* To make things simpler for the loader on Linux systems we set the
11174 osabi field to ELFOSABI_GNU if the binary contains symbols of
11175 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11176 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11177 && elf_tdata (abfd)->has_gnu_symbols)
11178 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11179 }
11180
11181
11182 /* Return TRUE for ELF symbol types that represent functions.
11183 This is the default version of this function, which is sufficient for
11184 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11185
11186 bfd_boolean
11187 _bfd_elf_is_function_type (unsigned int type)
11188 {
11189 return (type == STT_FUNC
11190 || type == STT_GNU_IFUNC);
11191 }
11192
11193 /* If the ELF symbol SYM might be a function in SEC, return the
11194 function size and set *CODE_OFF to the function's entry point,
11195 otherwise return zero. */
11196
11197 bfd_size_type
11198 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11199 bfd_vma *code_off)
11200 {
11201 bfd_size_type size;
11202
11203 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11204 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11205 || sym->section != sec)
11206 return 0;
11207
11208 *code_off = sym->value;
11209 size = 0;
11210 if (!(sym->flags & BSF_SYNTHETIC))
11211 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11212 if (size == 0)
11213 size = 1;
11214 return size;
11215 }
This page took 0.473516 seconds and 4 git commands to generate.