2006-04-20 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
211 {
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
219
220 return TRUE;
221 }
222
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
225 {
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
228 }
229
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
232 {
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
237
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
241
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
244 {
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
248
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
256 {
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
260 }
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
264 }
265 return (char *) shstrtab;
266 }
267
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
272 {
273 Elf_Internal_Shdr *hdr;
274
275 if (strindex == 0)
276 return "";
277
278 hdr = elf_elfsections (abfd)[shindex];
279
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
283
284 if (strindex >= hdr->sh_size)
285 {
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
294 }
295
296 return ((char *) hdr->contents) + strindex;
297 }
298
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
304
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
313 {
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
325
326 if (symcount == 0)
327 return intsym_buf;
328
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
333
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
342 {
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
345 }
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
349 {
350 intsym_buf = NULL;
351 goto out;
352 }
353
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
357 {
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
361 {
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
365 }
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
369 {
370 intsym_buf = NULL;
371 goto out;
372 }
373 }
374
375 if (intsym_buf == NULL)
376 {
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
380 }
381
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
388
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
394
395 return intsym_buf;
396 }
397
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
404 {
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
408
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
423
424 return name;
425 }
426
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
430
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
435
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
438
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
441 {
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
446
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
453
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
459
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
461 }
462
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
464
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
467 {
468 unsigned int num_group = elf_tdata (abfd)->num_group;
469
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
473 {
474 unsigned int i, shnum;
475
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
481 {
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
485 }
486
487 if (num_group == 0)
488 {
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
491 }
492 else
493 {
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
497
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
503
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
506 {
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
509 {
510 unsigned char *src;
511 Elf_Internal_Group *dest;
512
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
516
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
527
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
535 {
536 unsigned int idx;
537
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
542 {
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
548 }
549 if (idx >= shnum)
550 {
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
554 }
555 dest->shdr = elf_elfsections (abfd)[idx];
556 }
557 }
558 }
559 }
560 }
561
562 if (num_group != (unsigned) -1)
563 {
564 unsigned int i;
565
566 for (i = 0; i < num_group; i++)
567 {
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
571
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
576 {
577 asection *s = NULL;
578
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
589 {
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
595 }
596 else
597 {
598 const char *gname;
599
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
604
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
607 }
608
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
613
614 i = num_group - 1;
615 break;
616 }
617 }
618 }
619
620 if (elf_group_name (newsect) == NULL)
621 {
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
624 }
625 return TRUE;
626 }
627
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
630 {
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
635
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
638 {
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
641 {
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
647 {
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
654 }
655 else
656 {
657 asection *link;
658
659 this_hdr = elf_elfsections (abfd)[elfsec];
660
661 /* PR 1991, 2008:
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link = this_hdr->bfd_section;
665 if (link == NULL)
666 {
667 (*_bfd_error_handler)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s->owner, s, elfsec);
670 result = FALSE;
671 }
672
673 elf_linked_to_section (s) = link;
674 }
675 }
676 }
677
678 /* Process section groups. */
679 if (num_group == (unsigned) -1)
680 return result;
681
682 for (i = 0; i < num_group; i++)
683 {
684 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
685 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
686 unsigned int n_elt = shdr->sh_size / 4;
687
688 while (--n_elt != 0)
689 if ((++idx)->shdr->bfd_section)
690 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
691 else if (idx->shdr->sh_type == SHT_RELA
692 || idx->shdr->sh_type == SHT_REL)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
697 files. */
698 shdr->bfd_section->size -= 4;
699 else
700 {
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
704 abfd,
705 (unsigned int) idx->shdr->sh_type,
706 bfd_elf_string_from_elf_section (abfd,
707 (elf_elfheader (abfd)
708 ->e_shstrndx),
709 idx->shdr->sh_name),
710 shdr->bfd_section->name);
711 result = FALSE;
712 }
713 }
714 return result;
715 }
716
717 bfd_boolean
718 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
719 {
720 return elf_next_in_group (sec) != NULL;
721 }
722
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
725
726 bfd_boolean
727 _bfd_elf_make_section_from_shdr (bfd *abfd,
728 Elf_Internal_Shdr *hdr,
729 const char *name,
730 int shindex)
731 {
732 asection *newsect;
733 flagword flags;
734 const struct elf_backend_data *bed;
735
736 if (hdr->bfd_section != NULL)
737 {
738 BFD_ASSERT (strcmp (name,
739 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
740 return TRUE;
741 }
742
743 newsect = bfd_make_section_anyway (abfd, name);
744 if (newsect == NULL)
745 return FALSE;
746
747 hdr->bfd_section = newsect;
748 elf_section_data (newsect)->this_hdr = *hdr;
749 elf_section_data (newsect)->this_idx = shindex;
750
751 /* Always use the real type/flags. */
752 elf_section_type (newsect) = hdr->sh_type;
753 elf_section_flags (newsect) = hdr->sh_flags;
754
755 newsect->filepos = hdr->sh_offset;
756
757 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
758 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
759 || ! bfd_set_section_alignment (abfd, newsect,
760 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
761 return FALSE;
762
763 flags = SEC_NO_FLAGS;
764 if (hdr->sh_type != SHT_NOBITS)
765 flags |= SEC_HAS_CONTENTS;
766 if (hdr->sh_type == SHT_GROUP)
767 flags |= SEC_GROUP | SEC_EXCLUDE;
768 if ((hdr->sh_flags & SHF_ALLOC) != 0)
769 {
770 flags |= SEC_ALLOC;
771 if (hdr->sh_type != SHT_NOBITS)
772 flags |= SEC_LOAD;
773 }
774 if ((hdr->sh_flags & SHF_WRITE) == 0)
775 flags |= SEC_READONLY;
776 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
777 flags |= SEC_CODE;
778 else if ((flags & SEC_LOAD) != 0)
779 flags |= SEC_DATA;
780 if ((hdr->sh_flags & SHF_MERGE) != 0)
781 {
782 flags |= SEC_MERGE;
783 newsect->entsize = hdr->sh_entsize;
784 if ((hdr->sh_flags & SHF_STRINGS) != 0)
785 flags |= SEC_STRINGS;
786 }
787 if (hdr->sh_flags & SHF_GROUP)
788 if (!setup_group (abfd, hdr, newsect))
789 return FALSE;
790 if ((hdr->sh_flags & SHF_TLS) != 0)
791 flags |= SEC_THREAD_LOCAL;
792
793 if ((flags & SEC_ALLOC) == 0)
794 {
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
797 static const struct
798 {
799 const char *name;
800 int len;
801 } debug_sections [] =
802 {
803 { "debug", 5 }, /* 'd' */
804 { NULL, 0 }, /* 'e' */
805 { NULL, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL, 0 }, /* 'h' */
808 { NULL, 0 }, /* 'i' */
809 { NULL, 0 }, /* 'j' */
810 { NULL, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL, 0 }, /* 'm' */
813 { NULL, 0 }, /* 'n' */
814 { NULL, 0 }, /* 'o' */
815 { NULL, 0 }, /* 'p' */
816 { NULL, 0 }, /* 'q' */
817 { NULL, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
819 };
820
821 if (name [0] == '.')
822 {
823 int i = name [1] - 'd';
824 if (i >= 0
825 && i < (int) ARRAY_SIZE (debug_sections)
826 && debug_sections [i].name != NULL
827 && strncmp (&name [1], debug_sections [i].name,
828 debug_sections [i].len) == 0)
829 flags |= SEC_DEBUGGING;
830 }
831 }
832
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect) == NULL)
841 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
842
843 bed = get_elf_backend_data (abfd);
844 if (bed->elf_backend_section_flags)
845 if (! bed->elf_backend_section_flags (&flags, hdr))
846 return FALSE;
847
848 if (! bfd_set_section_flags (abfd, newsect, flags))
849 return FALSE;
850
851 if ((flags & SEC_ALLOC) != 0)
852 {
853 Elf_Internal_Phdr *phdr;
854 unsigned int i;
855
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr = elf_tdata (abfd)->phdr;
860 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
861 {
862 if (phdr->p_paddr != 0)
863 break;
864 }
865 if (i < elf_elfheader (abfd)->e_phnum)
866 {
867 phdr = elf_tdata (abfd)->phdr;
868 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
869 {
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
874
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr->p_type == PT_LOAD
883 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
884 && (hdr->sh_offset + hdr->sh_size
885 <= phdr->p_offset + phdr->p_memsz)
886 && ((flags & SEC_LOAD) == 0
887 || (hdr->sh_offset + hdr->sh_size
888 <= phdr->p_offset + phdr->p_filesz)))
889 {
890 if ((flags & SEC_LOAD) == 0)
891 newsect->lma = (phdr->p_paddr
892 + hdr->sh_addr - phdr->p_vaddr);
893 else
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect->lma = (phdr->p_paddr
902 + hdr->sh_offset - phdr->p_offset);
903
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr->sh_addr >= phdr->p_vaddr
909 && (hdr->sh_addr + hdr->sh_size
910 <= phdr->p_vaddr + phdr->p_memsz))
911 break;
912 }
913 }
914 }
915 }
916
917 return TRUE;
918 }
919
920 /*
921 INTERNAL_FUNCTION
922 bfd_elf_find_section
923
924 SYNOPSIS
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
926
927 DESCRIPTION
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
933 */
934
935 struct elf_internal_shdr *
936 bfd_elf_find_section (bfd *abfd, char *name)
937 {
938 Elf_Internal_Shdr **i_shdrp;
939 char *shstrtab;
940 unsigned int max;
941 unsigned int i;
942
943 i_shdrp = elf_elfsections (abfd);
944 if (i_shdrp != NULL)
945 {
946 shstrtab = bfd_elf_get_str_section (abfd,
947 elf_elfheader (abfd)->e_shstrndx);
948 if (shstrtab != NULL)
949 {
950 max = elf_numsections (abfd);
951 for (i = 1; i < max; i++)
952 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
953 return i_shdrp[i];
954 }
955 }
956 return 0;
957 }
958
959 const char *const bfd_elf_section_type_names[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
963 };
964
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
974
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
977 arelent *reloc_entry,
978 asymbol *symbol,
979 void *data ATTRIBUTE_UNUSED,
980 asection *input_section,
981 bfd *output_bfd,
982 char **error_message ATTRIBUTE_UNUSED)
983 {
984 if (output_bfd != NULL
985 && (symbol->flags & BSF_SECTION_SYM) == 0
986 && (! reloc_entry->howto->partial_inplace
987 || reloc_entry->addend == 0))
988 {
989 reloc_entry->address += input_section->output_offset;
990 return bfd_reloc_ok;
991 }
992
993 return bfd_reloc_continue;
994 }
995 \f
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
997
998 static void
999 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1000 asection *sec)
1001 {
1002 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1003 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1004 }
1005
1006 /* Finish SHF_MERGE section merging. */
1007
1008 bfd_boolean
1009 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1010 {
1011 bfd *ibfd;
1012 asection *sec;
1013
1014 if (!is_elf_hash_table (info->hash))
1015 return FALSE;
1016
1017 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1018 if ((ibfd->flags & DYNAMIC) == 0)
1019 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1020 if ((sec->flags & SEC_MERGE) != 0
1021 && !bfd_is_abs_section (sec->output_section))
1022 {
1023 struct bfd_elf_section_data *secdata;
1024
1025 secdata = elf_section_data (sec);
1026 if (! _bfd_add_merge_section (abfd,
1027 &elf_hash_table (info)->merge_info,
1028 sec, &secdata->sec_info))
1029 return FALSE;
1030 else if (secdata->sec_info)
1031 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1032 }
1033
1034 if (elf_hash_table (info)->merge_info != NULL)
1035 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1036 merge_sections_remove_hook);
1037 return TRUE;
1038 }
1039
1040 void
1041 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1042 {
1043 sec->output_section = bfd_abs_section_ptr;
1044 sec->output_offset = sec->vma;
1045 if (!is_elf_hash_table (info->hash))
1046 return;
1047
1048 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1049 }
1050 \f
1051 /* Copy the program header and other data from one object module to
1052 another. */
1053
1054 bfd_boolean
1055 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1056 {
1057 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1059 return TRUE;
1060
1061 BFD_ASSERT (!elf_flags_init (obfd)
1062 || (elf_elfheader (obfd)->e_flags
1063 == elf_elfheader (ibfd)->e_flags));
1064
1065 elf_gp (obfd) = elf_gp (ibfd);
1066 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1067 elf_flags_init (obfd) = TRUE;
1068 return TRUE;
1069 }
1070
1071 static const char *
1072 get_segment_type (unsigned int p_type)
1073 {
1074 const char *pt;
1075 switch (p_type)
1076 {
1077 case PT_NULL: pt = "NULL"; break;
1078 case PT_LOAD: pt = "LOAD"; break;
1079 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1080 case PT_INTERP: pt = "INTERP"; break;
1081 case PT_NOTE: pt = "NOTE"; break;
1082 case PT_SHLIB: pt = "SHLIB"; break;
1083 case PT_PHDR: pt = "PHDR"; break;
1084 case PT_TLS: pt = "TLS"; break;
1085 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1086 case PT_GNU_STACK: pt = "STACK"; break;
1087 case PT_GNU_RELRO: pt = "RELRO"; break;
1088 default: pt = NULL; break;
1089 }
1090 return pt;
1091 }
1092
1093 /* Print out the program headers. */
1094
1095 bfd_boolean
1096 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1097 {
1098 FILE *f = farg;
1099 Elf_Internal_Phdr *p;
1100 asection *s;
1101 bfd_byte *dynbuf = NULL;
1102
1103 p = elf_tdata (abfd)->phdr;
1104 if (p != NULL)
1105 {
1106 unsigned int i, c;
1107
1108 fprintf (f, _("\nProgram Header:\n"));
1109 c = elf_elfheader (abfd)->e_phnum;
1110 for (i = 0; i < c; i++, p++)
1111 {
1112 const char *pt = get_segment_type (p->p_type);
1113 char buf[20];
1114
1115 if (pt == NULL)
1116 {
1117 sprintf (buf, "0x%lx", p->p_type);
1118 pt = buf;
1119 }
1120 fprintf (f, "%8s off 0x", pt);
1121 bfd_fprintf_vma (abfd, f, p->p_offset);
1122 fprintf (f, " vaddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1124 fprintf (f, " paddr 0x");
1125 bfd_fprintf_vma (abfd, f, p->p_paddr);
1126 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1127 fprintf (f, " filesz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_filesz);
1129 fprintf (f, " memsz 0x");
1130 bfd_fprintf_vma (abfd, f, p->p_memsz);
1131 fprintf (f, " flags %c%c%c",
1132 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1133 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1134 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1135 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1136 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1137 fprintf (f, "\n");
1138 }
1139 }
1140
1141 s = bfd_get_section_by_name (abfd, ".dynamic");
1142 if (s != NULL)
1143 {
1144 int elfsec;
1145 unsigned long shlink;
1146 bfd_byte *extdyn, *extdynend;
1147 size_t extdynsize;
1148 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1149
1150 fprintf (f, _("\nDynamic Section:\n"));
1151
1152 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1153 goto error_return;
1154
1155 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1156 if (elfsec == -1)
1157 goto error_return;
1158 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1159
1160 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1161 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1162
1163 extdyn = dynbuf;
1164 extdynend = extdyn + s->size;
1165 for (; extdyn < extdynend; extdyn += extdynsize)
1166 {
1167 Elf_Internal_Dyn dyn;
1168 const char *name;
1169 char ab[20];
1170 bfd_boolean stringp;
1171
1172 (*swap_dyn_in) (abfd, extdyn, &dyn);
1173
1174 if (dyn.d_tag == DT_NULL)
1175 break;
1176
1177 stringp = FALSE;
1178 switch (dyn.d_tag)
1179 {
1180 default:
1181 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1182 name = ab;
1183 break;
1184
1185 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1186 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1187 case DT_PLTGOT: name = "PLTGOT"; break;
1188 case DT_HASH: name = "HASH"; break;
1189 case DT_STRTAB: name = "STRTAB"; break;
1190 case DT_SYMTAB: name = "SYMTAB"; break;
1191 case DT_RELA: name = "RELA"; break;
1192 case DT_RELASZ: name = "RELASZ"; break;
1193 case DT_RELAENT: name = "RELAENT"; break;
1194 case DT_STRSZ: name = "STRSZ"; break;
1195 case DT_SYMENT: name = "SYMENT"; break;
1196 case DT_INIT: name = "INIT"; break;
1197 case DT_FINI: name = "FINI"; break;
1198 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1199 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1200 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1201 case DT_REL: name = "REL"; break;
1202 case DT_RELSZ: name = "RELSZ"; break;
1203 case DT_RELENT: name = "RELENT"; break;
1204 case DT_PLTREL: name = "PLTREL"; break;
1205 case DT_DEBUG: name = "DEBUG"; break;
1206 case DT_TEXTREL: name = "TEXTREL"; break;
1207 case DT_JMPREL: name = "JMPREL"; break;
1208 case DT_BIND_NOW: name = "BIND_NOW"; break;
1209 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1214 case DT_FLAGS: name = "FLAGS"; break;
1215 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM: name = "CHECKSUM"; break;
1218 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1219 case DT_MOVEENT: name = "MOVEENT"; break;
1220 case DT_MOVESZ: name = "MOVESZ"; break;
1221 case DT_FEATURE: name = "FEATURE"; break;
1222 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1223 case DT_SYMINSZ: name = "SYMINSZ"; break;
1224 case DT_SYMINENT: name = "SYMINENT"; break;
1225 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1226 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1227 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1228 case DT_PLTPAD: name = "PLTPAD"; break;
1229 case DT_MOVETAB: name = "MOVETAB"; break;
1230 case DT_SYMINFO: name = "SYMINFO"; break;
1231 case DT_RELACOUNT: name = "RELACOUNT"; break;
1232 case DT_RELCOUNT: name = "RELCOUNT"; break;
1233 case DT_FLAGS_1: name = "FLAGS_1"; break;
1234 case DT_VERSYM: name = "VERSYM"; break;
1235 case DT_VERDEF: name = "VERDEF"; break;
1236 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1237 case DT_VERNEED: name = "VERNEED"; break;
1238 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1239 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1240 case DT_USED: name = "USED"; break;
1241 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1242 }
1243
1244 fprintf (f, " %-11s ", name);
1245 if (! stringp)
1246 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1247 else
1248 {
1249 const char *string;
1250 unsigned int tagv = dyn.d_un.d_val;
1251
1252 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1253 if (string == NULL)
1254 goto error_return;
1255 fprintf (f, "%s", string);
1256 }
1257 fprintf (f, "\n");
1258 }
1259
1260 free (dynbuf);
1261 dynbuf = NULL;
1262 }
1263
1264 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1265 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1266 {
1267 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1268 return FALSE;
1269 }
1270
1271 if (elf_dynverdef (abfd) != 0)
1272 {
1273 Elf_Internal_Verdef *t;
1274
1275 fprintf (f, _("\nVersion definitions:\n"));
1276 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1277 {
1278 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1279 t->vd_flags, t->vd_hash,
1280 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1281 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1282 {
1283 Elf_Internal_Verdaux *a;
1284
1285 fprintf (f, "\t");
1286 for (a = t->vd_auxptr->vda_nextptr;
1287 a != NULL;
1288 a = a->vda_nextptr)
1289 fprintf (f, "%s ",
1290 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1291 fprintf (f, "\n");
1292 }
1293 }
1294 }
1295
1296 if (elf_dynverref (abfd) != 0)
1297 {
1298 Elf_Internal_Verneed *t;
1299
1300 fprintf (f, _("\nVersion References:\n"));
1301 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1302 {
1303 Elf_Internal_Vernaux *a;
1304
1305 fprintf (f, _(" required from %s:\n"),
1306 t->vn_filename ? t->vn_filename : "<corrupt>");
1307 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1308 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1309 a->vna_flags, a->vna_other,
1310 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1311 }
1312 }
1313
1314 return TRUE;
1315
1316 error_return:
1317 if (dynbuf != NULL)
1318 free (dynbuf);
1319 return FALSE;
1320 }
1321
1322 /* Display ELF-specific fields of a symbol. */
1323
1324 void
1325 bfd_elf_print_symbol (bfd *abfd,
1326 void *filep,
1327 asymbol *symbol,
1328 bfd_print_symbol_type how)
1329 {
1330 FILE *file = filep;
1331 switch (how)
1332 {
1333 case bfd_print_symbol_name:
1334 fprintf (file, "%s", symbol->name);
1335 break;
1336 case bfd_print_symbol_more:
1337 fprintf (file, "elf ");
1338 bfd_fprintf_vma (abfd, file, symbol->value);
1339 fprintf (file, " %lx", (long) symbol->flags);
1340 break;
1341 case bfd_print_symbol_all:
1342 {
1343 const char *section_name;
1344 const char *name = NULL;
1345 const struct elf_backend_data *bed;
1346 unsigned char st_other;
1347 bfd_vma val;
1348
1349 section_name = symbol->section ? symbol->section->name : "(*none*)";
1350
1351 bed = get_elf_backend_data (abfd);
1352 if (bed->elf_backend_print_symbol_all)
1353 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1354
1355 if (name == NULL)
1356 {
1357 name = symbol->name;
1358 bfd_print_symbol_vandf (abfd, file, symbol);
1359 }
1360
1361 fprintf (file, " %s\t", section_name);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol->section))
1367 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1368 else
1369 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1370 bfd_fprintf_vma (abfd, file, val);
1371
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd)->dynversym_section != 0
1374 && (elf_tdata (abfd)->dynverdef_section != 0
1375 || elf_tdata (abfd)->dynverref_section != 0))
1376 {
1377 unsigned int vernum;
1378 const char *version_string;
1379
1380 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1381
1382 if (vernum == 0)
1383 version_string = "";
1384 else if (vernum == 1)
1385 version_string = "Base";
1386 else if (vernum <= elf_tdata (abfd)->cverdefs)
1387 version_string =
1388 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1389 else
1390 {
1391 Elf_Internal_Verneed *t;
1392
1393 version_string = "";
1394 for (t = elf_tdata (abfd)->verref;
1395 t != NULL;
1396 t = t->vn_nextref)
1397 {
1398 Elf_Internal_Vernaux *a;
1399
1400 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1401 {
1402 if (a->vna_other == vernum)
1403 {
1404 version_string = a->vna_nodename;
1405 break;
1406 }
1407 }
1408 }
1409 }
1410
1411 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1412 fprintf (file, " %-11s", version_string);
1413 else
1414 {
1415 int i;
1416
1417 fprintf (file, " (%s)", version_string);
1418 for (i = 10 - strlen (version_string); i > 0; --i)
1419 putc (' ', file);
1420 }
1421 }
1422
1423 /* If the st_other field is not zero, print it. */
1424 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1425
1426 switch (st_other)
1427 {
1428 case 0: break;
1429 case STV_INTERNAL: fprintf (file, " .internal"); break;
1430 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1431 case STV_PROTECTED: fprintf (file, " .protected"); break;
1432 default:
1433 /* Some other non-defined flags are also present, so print
1434 everything hex. */
1435 fprintf (file, " 0x%02x", (unsigned int) st_other);
1436 }
1437
1438 fprintf (file, " %s", name);
1439 }
1440 break;
1441 }
1442 }
1443 \f
1444 /* Create an entry in an ELF linker hash table. */
1445
1446 struct bfd_hash_entry *
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1448 struct bfd_hash_table *table,
1449 const char *string)
1450 {
1451 /* Allocate the structure if it has not already been allocated by a
1452 subclass. */
1453 if (entry == NULL)
1454 {
1455 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1456 if (entry == NULL)
1457 return entry;
1458 }
1459
1460 /* Call the allocation method of the superclass. */
1461 entry = _bfd_link_hash_newfunc (entry, table, string);
1462 if (entry != NULL)
1463 {
1464 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1465 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1466
1467 /* Set local fields. */
1468 ret->indx = -1;
1469 ret->dynindx = -1;
1470 ret->got = htab->init_got_refcount;
1471 ret->plt = htab->init_plt_refcount;
1472 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1473 - offsetof (struct elf_link_hash_entry, size)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1478 ret->non_elf = 1;
1479 }
1480
1481 return entry;
1482 }
1483
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1486
1487 void
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1489 struct elf_link_hash_entry *dir,
1490 struct elf_link_hash_entry *ind)
1491 {
1492 struct elf_link_hash_table *htab;
1493
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1496
1497 dir->ref_dynamic |= ind->ref_dynamic;
1498 dir->ref_regular |= ind->ref_regular;
1499 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1500 dir->non_got_ref |= ind->non_got_ref;
1501 dir->needs_plt |= ind->needs_plt;
1502 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1503
1504 if (ind->root.type != bfd_link_hash_indirect)
1505 return;
1506
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab = elf_hash_table (info);
1510 if (ind->got.refcount > htab->init_got_refcount.refcount)
1511 {
1512 if (dir->got.refcount < 0)
1513 dir->got.refcount = 0;
1514 dir->got.refcount += ind->got.refcount;
1515 ind->got.refcount = htab->init_got_refcount.refcount;
1516 }
1517
1518 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1519 {
1520 if (dir->plt.refcount < 0)
1521 dir->plt.refcount = 0;
1522 dir->plt.refcount += ind->plt.refcount;
1523 ind->plt.refcount = htab->init_plt_refcount.refcount;
1524 }
1525
1526 if (ind->dynindx != -1)
1527 {
1528 if (dir->dynindx != -1)
1529 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1530 dir->dynindx = ind->dynindx;
1531 dir->dynstr_index = ind->dynstr_index;
1532 ind->dynindx = -1;
1533 ind->dynstr_index = 0;
1534 }
1535 }
1536
1537 void
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1539 struct elf_link_hash_entry *h,
1540 bfd_boolean force_local)
1541 {
1542 h->plt = elf_hash_table (info)->init_plt_offset;
1543 h->needs_plt = 0;
1544 if (force_local)
1545 {
1546 h->forced_local = 1;
1547 if (h->dynindx != -1)
1548 {
1549 h->dynindx = -1;
1550 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1551 h->dynstr_index);
1552 }
1553 }
1554 }
1555
1556 /* Initialize an ELF linker hash table. */
1557
1558 bfd_boolean
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table *table,
1561 bfd *abfd,
1562 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1563 struct bfd_hash_table *,
1564 const char *),
1565 unsigned int entsize)
1566 {
1567 bfd_boolean ret;
1568 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1569
1570 table->dynamic_sections_created = FALSE;
1571 table->dynobj = NULL;
1572 table->init_got_refcount.refcount = can_refcount - 1;
1573 table->init_plt_refcount.refcount = can_refcount - 1;
1574 table->init_got_offset.offset = -(bfd_vma) 1;
1575 table->init_plt_offset.offset = -(bfd_vma) 1;
1576 /* The first dynamic symbol is a dummy. */
1577 table->dynsymcount = 1;
1578 table->dynstr = NULL;
1579 table->bucketcount = 0;
1580 table->needed = NULL;
1581 table->hgot = NULL;
1582 table->merge_info = NULL;
1583 memset (&table->stab_info, 0, sizeof (table->stab_info));
1584 memset (&table->eh_info, 0, sizeof (table->eh_info));
1585 table->dynlocal = NULL;
1586 table->runpath = NULL;
1587 table->tls_sec = NULL;
1588 table->tls_size = 0;
1589 table->loaded = NULL;
1590 table->is_relocatable_executable = FALSE;
1591
1592 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1593 table->root.type = bfd_link_elf_hash_table;
1594
1595 return ret;
1596 }
1597
1598 /* Create an ELF linker hash table. */
1599
1600 struct bfd_link_hash_table *
1601 _bfd_elf_link_hash_table_create (bfd *abfd)
1602 {
1603 struct elf_link_hash_table *ret;
1604 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1605
1606 ret = bfd_malloc (amt);
1607 if (ret == NULL)
1608 return NULL;
1609
1610 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1611 sizeof (struct elf_link_hash_entry)))
1612 {
1613 free (ret);
1614 return NULL;
1615 }
1616
1617 return &ret->root;
1618 }
1619
1620 /* This is a hook for the ELF emulation code in the generic linker to
1621 tell the backend linker what file name to use for the DT_NEEDED
1622 entry for a dynamic object. */
1623
1624 void
1625 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1626 {
1627 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1628 && bfd_get_format (abfd) == bfd_object)
1629 elf_dt_name (abfd) = name;
1630 }
1631
1632 int
1633 bfd_elf_get_dyn_lib_class (bfd *abfd)
1634 {
1635 int lib_class;
1636 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1637 && bfd_get_format (abfd) == bfd_object)
1638 lib_class = elf_dyn_lib_class (abfd);
1639 else
1640 lib_class = 0;
1641 return lib_class;
1642 }
1643
1644 void
1645 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1646 {
1647 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd) == bfd_object)
1649 elf_dyn_lib_class (abfd) = lib_class;
1650 }
1651
1652 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1653 the linker ELF emulation code. */
1654
1655 struct bfd_link_needed_list *
1656 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1657 struct bfd_link_info *info)
1658 {
1659 if (! is_elf_hash_table (info->hash))
1660 return NULL;
1661 return elf_hash_table (info)->needed;
1662 }
1663
1664 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1665 hook for the linker ELF emulation code. */
1666
1667 struct bfd_link_needed_list *
1668 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1669 struct bfd_link_info *info)
1670 {
1671 if (! is_elf_hash_table (info->hash))
1672 return NULL;
1673 return elf_hash_table (info)->runpath;
1674 }
1675
1676 /* Get the name actually used for a dynamic object for a link. This
1677 is the SONAME entry if there is one. Otherwise, it is the string
1678 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1679
1680 const char *
1681 bfd_elf_get_dt_soname (bfd *abfd)
1682 {
1683 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1684 && bfd_get_format (abfd) == bfd_object)
1685 return elf_dt_name (abfd);
1686 return NULL;
1687 }
1688
1689 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1690 the ELF linker emulation code. */
1691
1692 bfd_boolean
1693 bfd_elf_get_bfd_needed_list (bfd *abfd,
1694 struct bfd_link_needed_list **pneeded)
1695 {
1696 asection *s;
1697 bfd_byte *dynbuf = NULL;
1698 int elfsec;
1699 unsigned long shlink;
1700 bfd_byte *extdyn, *extdynend;
1701 size_t extdynsize;
1702 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1703
1704 *pneeded = NULL;
1705
1706 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1707 || bfd_get_format (abfd) != bfd_object)
1708 return TRUE;
1709
1710 s = bfd_get_section_by_name (abfd, ".dynamic");
1711 if (s == NULL || s->size == 0)
1712 return TRUE;
1713
1714 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1715 goto error_return;
1716
1717 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1718 if (elfsec == -1)
1719 goto error_return;
1720
1721 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1722
1723 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1724 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1725
1726 extdyn = dynbuf;
1727 extdynend = extdyn + s->size;
1728 for (; extdyn < extdynend; extdyn += extdynsize)
1729 {
1730 Elf_Internal_Dyn dyn;
1731
1732 (*swap_dyn_in) (abfd, extdyn, &dyn);
1733
1734 if (dyn.d_tag == DT_NULL)
1735 break;
1736
1737 if (dyn.d_tag == DT_NEEDED)
1738 {
1739 const char *string;
1740 struct bfd_link_needed_list *l;
1741 unsigned int tagv = dyn.d_un.d_val;
1742 bfd_size_type amt;
1743
1744 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1745 if (string == NULL)
1746 goto error_return;
1747
1748 amt = sizeof *l;
1749 l = bfd_alloc (abfd, amt);
1750 if (l == NULL)
1751 goto error_return;
1752
1753 l->by = abfd;
1754 l->name = string;
1755 l->next = *pneeded;
1756 *pneeded = l;
1757 }
1758 }
1759
1760 free (dynbuf);
1761
1762 return TRUE;
1763
1764 error_return:
1765 if (dynbuf != NULL)
1766 free (dynbuf);
1767 return FALSE;
1768 }
1769 \f
1770 /* Allocate an ELF string table--force the first byte to be zero. */
1771
1772 struct bfd_strtab_hash *
1773 _bfd_elf_stringtab_init (void)
1774 {
1775 struct bfd_strtab_hash *ret;
1776
1777 ret = _bfd_stringtab_init ();
1778 if (ret != NULL)
1779 {
1780 bfd_size_type loc;
1781
1782 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1783 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1784 if (loc == (bfd_size_type) -1)
1785 {
1786 _bfd_stringtab_free (ret);
1787 ret = NULL;
1788 }
1789 }
1790 return ret;
1791 }
1792 \f
1793 /* ELF .o/exec file reading */
1794
1795 /* Create a new bfd section from an ELF section header. */
1796
1797 bfd_boolean
1798 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1799 {
1800 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1801 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1803 const char *name;
1804
1805 name = bfd_elf_string_from_elf_section (abfd,
1806 elf_elfheader (abfd)->e_shstrndx,
1807 hdr->sh_name);
1808 if (name == NULL)
1809 return FALSE;
1810
1811 switch (hdr->sh_type)
1812 {
1813 case SHT_NULL:
1814 /* Inactive section. Throw it away. */
1815 return TRUE;
1816
1817 case SHT_PROGBITS: /* Normal section with contents. */
1818 case SHT_NOBITS: /* .bss section. */
1819 case SHT_HASH: /* .hash section. */
1820 case SHT_NOTE: /* .note section. */
1821 case SHT_INIT_ARRAY: /* .init_array section. */
1822 case SHT_FINI_ARRAY: /* .fini_array section. */
1823 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1824 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1825 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1826
1827 case SHT_DYNAMIC: /* Dynamic linking information. */
1828 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1829 return FALSE;
1830 if (hdr->sh_link > elf_numsections (abfd)
1831 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1832 return FALSE;
1833 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1834 {
1835 Elf_Internal_Shdr *dynsymhdr;
1836
1837 /* The shared libraries distributed with hpux11 have a bogus
1838 sh_link field for the ".dynamic" section. Find the
1839 string table for the ".dynsym" section instead. */
1840 if (elf_dynsymtab (abfd) != 0)
1841 {
1842 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1843 hdr->sh_link = dynsymhdr->sh_link;
1844 }
1845 else
1846 {
1847 unsigned int i, num_sec;
1848
1849 num_sec = elf_numsections (abfd);
1850 for (i = 1; i < num_sec; i++)
1851 {
1852 dynsymhdr = elf_elfsections (abfd)[i];
1853 if (dynsymhdr->sh_type == SHT_DYNSYM)
1854 {
1855 hdr->sh_link = dynsymhdr->sh_link;
1856 break;
1857 }
1858 }
1859 }
1860 }
1861 break;
1862
1863 case SHT_SYMTAB: /* A symbol table */
1864 if (elf_onesymtab (abfd) == shindex)
1865 return TRUE;
1866
1867 if (hdr->sh_entsize != bed->s->sizeof_sym)
1868 return FALSE;
1869 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1870 elf_onesymtab (abfd) = shindex;
1871 elf_tdata (abfd)->symtab_hdr = *hdr;
1872 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1873 abfd->flags |= HAS_SYMS;
1874
1875 /* Sometimes a shared object will map in the symbol table. If
1876 SHF_ALLOC is set, and this is a shared object, then we also
1877 treat this section as a BFD section. We can not base the
1878 decision purely on SHF_ALLOC, because that flag is sometimes
1879 set in a relocatable object file, which would confuse the
1880 linker. */
1881 if ((hdr->sh_flags & SHF_ALLOC) != 0
1882 && (abfd->flags & DYNAMIC) != 0
1883 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1884 shindex))
1885 return FALSE;
1886
1887 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1888 can't read symbols without that section loaded as well. It
1889 is most likely specified by the next section header. */
1890 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1891 {
1892 unsigned int i, num_sec;
1893
1894 num_sec = elf_numsections (abfd);
1895 for (i = shindex + 1; i < num_sec; i++)
1896 {
1897 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1898 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1899 && hdr2->sh_link == shindex)
1900 break;
1901 }
1902 if (i == num_sec)
1903 for (i = 1; i < shindex; i++)
1904 {
1905 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1906 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1907 && hdr2->sh_link == shindex)
1908 break;
1909 }
1910 if (i != shindex)
1911 return bfd_section_from_shdr (abfd, i);
1912 }
1913 return TRUE;
1914
1915 case SHT_DYNSYM: /* A dynamic symbol table */
1916 if (elf_dynsymtab (abfd) == shindex)
1917 return TRUE;
1918
1919 if (hdr->sh_entsize != bed->s->sizeof_sym)
1920 return FALSE;
1921 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1922 elf_dynsymtab (abfd) = shindex;
1923 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1924 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1925 abfd->flags |= HAS_SYMS;
1926
1927 /* Besides being a symbol table, we also treat this as a regular
1928 section, so that objcopy can handle it. */
1929 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1930
1931 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1932 if (elf_symtab_shndx (abfd) == shindex)
1933 return TRUE;
1934
1935 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1936 elf_symtab_shndx (abfd) = shindex;
1937 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1938 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1939 return TRUE;
1940
1941 case SHT_STRTAB: /* A string table */
1942 if (hdr->bfd_section != NULL)
1943 return TRUE;
1944 if (ehdr->e_shstrndx == shindex)
1945 {
1946 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1947 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1948 return TRUE;
1949 }
1950 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1951 {
1952 symtab_strtab:
1953 elf_tdata (abfd)->strtab_hdr = *hdr;
1954 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1955 return TRUE;
1956 }
1957 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1958 {
1959 dynsymtab_strtab:
1960 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1961 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1962 elf_elfsections (abfd)[shindex] = hdr;
1963 /* We also treat this as a regular section, so that objcopy
1964 can handle it. */
1965 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1966 shindex);
1967 }
1968
1969 /* If the string table isn't one of the above, then treat it as a
1970 regular section. We need to scan all the headers to be sure,
1971 just in case this strtab section appeared before the above. */
1972 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1973 {
1974 unsigned int i, num_sec;
1975
1976 num_sec = elf_numsections (abfd);
1977 for (i = 1; i < num_sec; i++)
1978 {
1979 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1980 if (hdr2->sh_link == shindex)
1981 {
1982 /* Prevent endless recursion on broken objects. */
1983 if (i == shindex)
1984 return FALSE;
1985 if (! bfd_section_from_shdr (abfd, i))
1986 return FALSE;
1987 if (elf_onesymtab (abfd) == i)
1988 goto symtab_strtab;
1989 if (elf_dynsymtab (abfd) == i)
1990 goto dynsymtab_strtab;
1991 }
1992 }
1993 }
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995
1996 case SHT_REL:
1997 case SHT_RELA:
1998 /* *These* do a lot of work -- but build no sections! */
1999 {
2000 asection *target_sect;
2001 Elf_Internal_Shdr *hdr2;
2002 unsigned int num_sec = elf_numsections (abfd);
2003
2004 if (hdr->sh_entsize
2005 != (bfd_size_type) (hdr->sh_type == SHT_REL
2006 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2007 return FALSE;
2008
2009 /* Check for a bogus link to avoid crashing. */
2010 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2011 || hdr->sh_link >= num_sec)
2012 {
2013 ((*_bfd_error_handler)
2014 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2015 abfd, hdr->sh_link, name, shindex));
2016 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2017 shindex);
2018 }
2019
2020 /* For some incomprehensible reason Oracle distributes
2021 libraries for Solaris in which some of the objects have
2022 bogus sh_link fields. It would be nice if we could just
2023 reject them, but, unfortunately, some people need to use
2024 them. We scan through the section headers; if we find only
2025 one suitable symbol table, we clobber the sh_link to point
2026 to it. I hope this doesn't break anything. */
2027 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2028 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2029 {
2030 unsigned int scan;
2031 int found;
2032
2033 found = 0;
2034 for (scan = 1; scan < num_sec; scan++)
2035 {
2036 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2037 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2038 {
2039 if (found != 0)
2040 {
2041 found = 0;
2042 break;
2043 }
2044 found = scan;
2045 }
2046 }
2047 if (found != 0)
2048 hdr->sh_link = found;
2049 }
2050
2051 /* Get the symbol table. */
2052 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2053 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2054 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2055 return FALSE;
2056
2057 /* If this reloc section does not use the main symbol table we
2058 don't treat it as a reloc section. BFD can't adequately
2059 represent such a section, so at least for now, we don't
2060 try. We just present it as a normal section. We also
2061 can't use it as a reloc section if it points to the null
2062 section, an invalid section, or another reloc section. */
2063 if (hdr->sh_link != elf_onesymtab (abfd)
2064 || hdr->sh_info == SHN_UNDEF
2065 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2066 || hdr->sh_info >= num_sec
2067 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2068 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2069 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2070 shindex);
2071
2072 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2073 return FALSE;
2074 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2075 if (target_sect == NULL)
2076 return FALSE;
2077
2078 if ((target_sect->flags & SEC_RELOC) == 0
2079 || target_sect->reloc_count == 0)
2080 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2081 else
2082 {
2083 bfd_size_type amt;
2084 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2085 amt = sizeof (*hdr2);
2086 hdr2 = bfd_alloc (abfd, amt);
2087 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2088 }
2089 *hdr2 = *hdr;
2090 elf_elfsections (abfd)[shindex] = hdr2;
2091 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2092 target_sect->flags |= SEC_RELOC;
2093 target_sect->relocation = NULL;
2094 target_sect->rel_filepos = hdr->sh_offset;
2095 /* In the section to which the relocations apply, mark whether
2096 its relocations are of the REL or RELA variety. */
2097 if (hdr->sh_size != 0)
2098 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2099 abfd->flags |= HAS_RELOC;
2100 return TRUE;
2101 }
2102 break;
2103
2104 case SHT_GNU_verdef:
2105 elf_dynverdef (abfd) = shindex;
2106 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2107 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2108 break;
2109
2110 case SHT_GNU_versym:
2111 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2112 return FALSE;
2113 elf_dynversym (abfd) = shindex;
2114 elf_tdata (abfd)->dynversym_hdr = *hdr;
2115 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2116 break;
2117
2118 case SHT_GNU_verneed:
2119 elf_dynverref (abfd) = shindex;
2120 elf_tdata (abfd)->dynverref_hdr = *hdr;
2121 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2122 break;
2123
2124 case SHT_SHLIB:
2125 return TRUE;
2126
2127 case SHT_GROUP:
2128 /* We need a BFD section for objcopy and relocatable linking,
2129 and it's handy to have the signature available as the section
2130 name. */
2131 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2132 return FALSE;
2133 name = group_signature (abfd, hdr);
2134 if (name == NULL)
2135 return FALSE;
2136 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2137 return FALSE;
2138 if (hdr->contents != NULL)
2139 {
2140 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2141 unsigned int n_elt = hdr->sh_size / 4;
2142 asection *s;
2143
2144 if (idx->flags & GRP_COMDAT)
2145 hdr->bfd_section->flags
2146 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2147
2148 /* We try to keep the same section order as it comes in. */
2149 idx += n_elt;
2150 while (--n_elt != 0)
2151 if ((s = (--idx)->shdr->bfd_section) != NULL
2152 && elf_next_in_group (s) != NULL)
2153 {
2154 elf_next_in_group (hdr->bfd_section) = s;
2155 break;
2156 }
2157 }
2158 break;
2159
2160 default:
2161 /* Check for any processor-specific section types. */
2162 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2163 return TRUE;
2164
2165 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2166 {
2167 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2168 /* FIXME: How to properly handle allocated section reserved
2169 for applications? */
2170 (*_bfd_error_handler)
2171 (_("%B: don't know how to handle allocated, application "
2172 "specific section `%s' [0x%8x]"),
2173 abfd, name, hdr->sh_type);
2174 else
2175 /* Allow sections reserved for applications. */
2176 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2177 shindex);
2178 }
2179 else if (hdr->sh_type >= SHT_LOPROC
2180 && hdr->sh_type <= SHT_HIPROC)
2181 /* FIXME: We should handle this section. */
2182 (*_bfd_error_handler)
2183 (_("%B: don't know how to handle processor specific section "
2184 "`%s' [0x%8x]"),
2185 abfd, name, hdr->sh_type);
2186 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2187 /* FIXME: We should handle this section. */
2188 (*_bfd_error_handler)
2189 (_("%B: don't know how to handle OS specific section "
2190 "`%s' [0x%8x]"),
2191 abfd, name, hdr->sh_type);
2192 else
2193 /* FIXME: We should handle this section. */
2194 (*_bfd_error_handler)
2195 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2196 abfd, name, hdr->sh_type);
2197
2198 return FALSE;
2199 }
2200
2201 return TRUE;
2202 }
2203
2204 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2205 Return SEC for sections that have no elf section, and NULL on error. */
2206
2207 asection *
2208 bfd_section_from_r_symndx (bfd *abfd,
2209 struct sym_sec_cache *cache,
2210 asection *sec,
2211 unsigned long r_symndx)
2212 {
2213 Elf_Internal_Shdr *symtab_hdr;
2214 unsigned char esym[sizeof (Elf64_External_Sym)];
2215 Elf_External_Sym_Shndx eshndx;
2216 Elf_Internal_Sym isym;
2217 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2218
2219 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2220 return cache->sec[ent];
2221
2222 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2223 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2224 &isym, esym, &eshndx) == NULL)
2225 return NULL;
2226
2227 if (cache->abfd != abfd)
2228 {
2229 memset (cache->indx, -1, sizeof (cache->indx));
2230 cache->abfd = abfd;
2231 }
2232 cache->indx[ent] = r_symndx;
2233 cache->sec[ent] = sec;
2234 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2235 || isym.st_shndx > SHN_HIRESERVE)
2236 {
2237 asection *s;
2238 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2239 if (s != NULL)
2240 cache->sec[ent] = s;
2241 }
2242 return cache->sec[ent];
2243 }
2244
2245 /* Given an ELF section number, retrieve the corresponding BFD
2246 section. */
2247
2248 asection *
2249 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2250 {
2251 if (index >= elf_numsections (abfd))
2252 return NULL;
2253 return elf_elfsections (abfd)[index]->bfd_section;
2254 }
2255
2256 static const struct bfd_elf_special_section special_sections_b[] =
2257 {
2258 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2259 { NULL, 0, 0, 0, 0 }
2260 };
2261
2262 static const struct bfd_elf_special_section special_sections_c[] =
2263 {
2264 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2265 { NULL, 0, 0, 0, 0 }
2266 };
2267
2268 static const struct bfd_elf_special_section special_sections_d[] =
2269 {
2270 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2271 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2272 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2273 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2274 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2275 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2276 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2277 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2278 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2279 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2280 { NULL, 0, 0, 0, 0 }
2281 };
2282
2283 static const struct bfd_elf_special_section special_sections_f[] =
2284 {
2285 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2286 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2287 { NULL, 0, 0, 0, 0 }
2288 };
2289
2290 static const struct bfd_elf_special_section special_sections_g[] =
2291 {
2292 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2293 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2294 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2295 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2296 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2297 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2298 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2299 { NULL, 0, 0, 0, 0 }
2300 };
2301
2302 static const struct bfd_elf_special_section special_sections_h[] =
2303 {
2304 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2305 { NULL, 0, 0, 0, 0 }
2306 };
2307
2308 static const struct bfd_elf_special_section special_sections_i[] =
2309 {
2310 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2311 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2312 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2313 { NULL, 0, 0, 0, 0 }
2314 };
2315
2316 static const struct bfd_elf_special_section special_sections_l[] =
2317 {
2318 { ".line", 5, 0, SHT_PROGBITS, 0 },
2319 { NULL, 0, 0, 0, 0 }
2320 };
2321
2322 static const struct bfd_elf_special_section special_sections_n[] =
2323 {
2324 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2325 { ".note", 5, -1, SHT_NOTE, 0 },
2326 { NULL, 0, 0, 0, 0 }
2327 };
2328
2329 static const struct bfd_elf_special_section special_sections_p[] =
2330 {
2331 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2332 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2333 { NULL, 0, 0, 0, 0 }
2334 };
2335
2336 static const struct bfd_elf_special_section special_sections_r[] =
2337 {
2338 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2339 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2340 { ".rela", 5, -1, SHT_RELA, 0 },
2341 { ".rel", 4, -1, SHT_REL, 0 },
2342 { NULL, 0, 0, 0, 0 }
2343 };
2344
2345 static const struct bfd_elf_special_section special_sections_s[] =
2346 {
2347 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2348 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2349 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2350 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2351 { NULL, 0, 0, 0, 0 }
2352 };
2353
2354 static const struct bfd_elf_special_section special_sections_t[] =
2355 {
2356 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2357 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2358 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2359 { NULL, 0, 0, 0, 0 }
2360 };
2361
2362 static const struct bfd_elf_special_section *special_sections[] =
2363 {
2364 special_sections_b, /* 'b' */
2365 special_sections_c, /* 'b' */
2366 special_sections_d, /* 'd' */
2367 NULL, /* 'e' */
2368 special_sections_f, /* 'f' */
2369 special_sections_g, /* 'g' */
2370 special_sections_h, /* 'h' */
2371 special_sections_i, /* 'i' */
2372 NULL, /* 'j' */
2373 NULL, /* 'k' */
2374 special_sections_l, /* 'l' */
2375 NULL, /* 'm' */
2376 special_sections_n, /* 'n' */
2377 NULL, /* 'o' */
2378 special_sections_p, /* 'p' */
2379 NULL, /* 'q' */
2380 special_sections_r, /* 'r' */
2381 special_sections_s, /* 's' */
2382 special_sections_t, /* 't' */
2383 };
2384
2385 const struct bfd_elf_special_section *
2386 _bfd_elf_get_special_section (const char *name,
2387 const struct bfd_elf_special_section *spec,
2388 unsigned int rela)
2389 {
2390 int i;
2391 int len;
2392
2393 len = strlen (name);
2394
2395 for (i = 0; spec[i].prefix != NULL; i++)
2396 {
2397 int suffix_len;
2398 int prefix_len = spec[i].prefix_length;
2399
2400 if (len < prefix_len)
2401 continue;
2402 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2403 continue;
2404
2405 suffix_len = spec[i].suffix_length;
2406 if (suffix_len <= 0)
2407 {
2408 if (name[prefix_len] != 0)
2409 {
2410 if (suffix_len == 0)
2411 continue;
2412 if (name[prefix_len] != '.'
2413 && (suffix_len == -2
2414 || (rela && spec[i].type == SHT_REL)))
2415 continue;
2416 }
2417 }
2418 else
2419 {
2420 if (len < prefix_len + suffix_len)
2421 continue;
2422 if (memcmp (name + len - suffix_len,
2423 spec[i].prefix + prefix_len,
2424 suffix_len) != 0)
2425 continue;
2426 }
2427 return &spec[i];
2428 }
2429
2430 return NULL;
2431 }
2432
2433 const struct bfd_elf_special_section *
2434 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2435 {
2436 int i;
2437 const struct bfd_elf_special_section *spec;
2438 const struct elf_backend_data *bed;
2439
2440 /* See if this is one of the special sections. */
2441 if (sec->name == NULL)
2442 return NULL;
2443
2444 bed = get_elf_backend_data (abfd);
2445 spec = bed->special_sections;
2446 if (spec)
2447 {
2448 spec = _bfd_elf_get_special_section (sec->name,
2449 bed->special_sections,
2450 sec->use_rela_p);
2451 if (spec != NULL)
2452 return spec;
2453 }
2454
2455 if (sec->name[0] != '.')
2456 return NULL;
2457
2458 i = sec->name[1] - 'b';
2459 if (i < 0 || i > 't' - 'b')
2460 return NULL;
2461
2462 spec = special_sections[i];
2463
2464 if (spec == NULL)
2465 return NULL;
2466
2467 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2468 }
2469
2470 bfd_boolean
2471 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2472 {
2473 struct bfd_elf_section_data *sdata;
2474 const struct elf_backend_data *bed;
2475 const struct bfd_elf_special_section *ssect;
2476
2477 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2478 if (sdata == NULL)
2479 {
2480 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2481 if (sdata == NULL)
2482 return FALSE;
2483 sec->used_by_bfd = sdata;
2484 }
2485
2486 /* Indicate whether or not this section should use RELA relocations. */
2487 bed = get_elf_backend_data (abfd);
2488 sec->use_rela_p = bed->default_use_rela_p;
2489
2490 /* When we read a file, we don't need section type and flags unless
2491 it is a linker created section. They will be overridden in
2492 _bfd_elf_make_section_from_shdr anyway. */
2493 if (abfd->direction != read_direction
2494 || (sec->flags & SEC_LINKER_CREATED) != 0)
2495 {
2496 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2497 if (ssect != NULL)
2498 {
2499 elf_section_type (sec) = ssect->type;
2500 elf_section_flags (sec) = ssect->attr;
2501 }
2502 }
2503
2504 return TRUE;
2505 }
2506
2507 /* Create a new bfd section from an ELF program header.
2508
2509 Since program segments have no names, we generate a synthetic name
2510 of the form segment<NUM>, where NUM is generally the index in the
2511 program header table. For segments that are split (see below) we
2512 generate the names segment<NUM>a and segment<NUM>b.
2513
2514 Note that some program segments may have a file size that is different than
2515 (less than) the memory size. All this means is that at execution the
2516 system must allocate the amount of memory specified by the memory size,
2517 but only initialize it with the first "file size" bytes read from the
2518 file. This would occur for example, with program segments consisting
2519 of combined data+bss.
2520
2521 To handle the above situation, this routine generates TWO bfd sections
2522 for the single program segment. The first has the length specified by
2523 the file size of the segment, and the second has the length specified
2524 by the difference between the two sizes. In effect, the segment is split
2525 into it's initialized and uninitialized parts.
2526
2527 */
2528
2529 bfd_boolean
2530 _bfd_elf_make_section_from_phdr (bfd *abfd,
2531 Elf_Internal_Phdr *hdr,
2532 int index,
2533 const char *typename)
2534 {
2535 asection *newsect;
2536 char *name;
2537 char namebuf[64];
2538 size_t len;
2539 int split;
2540
2541 split = ((hdr->p_memsz > 0)
2542 && (hdr->p_filesz > 0)
2543 && (hdr->p_memsz > hdr->p_filesz));
2544 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2545 len = strlen (namebuf) + 1;
2546 name = bfd_alloc (abfd, len);
2547 if (!name)
2548 return FALSE;
2549 memcpy (name, namebuf, len);
2550 newsect = bfd_make_section (abfd, name);
2551 if (newsect == NULL)
2552 return FALSE;
2553 newsect->vma = hdr->p_vaddr;
2554 newsect->lma = hdr->p_paddr;
2555 newsect->size = hdr->p_filesz;
2556 newsect->filepos = hdr->p_offset;
2557 newsect->flags |= SEC_HAS_CONTENTS;
2558 newsect->alignment_power = bfd_log2 (hdr->p_align);
2559 if (hdr->p_type == PT_LOAD)
2560 {
2561 newsect->flags |= SEC_ALLOC;
2562 newsect->flags |= SEC_LOAD;
2563 if (hdr->p_flags & PF_X)
2564 {
2565 /* FIXME: all we known is that it has execute PERMISSION,
2566 may be data. */
2567 newsect->flags |= SEC_CODE;
2568 }
2569 }
2570 if (!(hdr->p_flags & PF_W))
2571 {
2572 newsect->flags |= SEC_READONLY;
2573 }
2574
2575 if (split)
2576 {
2577 sprintf (namebuf, "%s%db", typename, index);
2578 len = strlen (namebuf) + 1;
2579 name = bfd_alloc (abfd, len);
2580 if (!name)
2581 return FALSE;
2582 memcpy (name, namebuf, len);
2583 newsect = bfd_make_section (abfd, name);
2584 if (newsect == NULL)
2585 return FALSE;
2586 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2587 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2588 newsect->size = hdr->p_memsz - hdr->p_filesz;
2589 if (hdr->p_type == PT_LOAD)
2590 {
2591 newsect->flags |= SEC_ALLOC;
2592 if (hdr->p_flags & PF_X)
2593 newsect->flags |= SEC_CODE;
2594 }
2595 if (!(hdr->p_flags & PF_W))
2596 newsect->flags |= SEC_READONLY;
2597 }
2598
2599 return TRUE;
2600 }
2601
2602 bfd_boolean
2603 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2604 {
2605 const struct elf_backend_data *bed;
2606
2607 switch (hdr->p_type)
2608 {
2609 case PT_NULL:
2610 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2611
2612 case PT_LOAD:
2613 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2614
2615 case PT_DYNAMIC:
2616 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2617
2618 case PT_INTERP:
2619 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2620
2621 case PT_NOTE:
2622 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2623 return FALSE;
2624 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2625 return FALSE;
2626 return TRUE;
2627
2628 case PT_SHLIB:
2629 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2630
2631 case PT_PHDR:
2632 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2633
2634 case PT_GNU_EH_FRAME:
2635 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2636 "eh_frame_hdr");
2637
2638 case PT_GNU_STACK:
2639 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2640
2641 case PT_GNU_RELRO:
2642 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2643
2644 default:
2645 /* Check for any processor-specific program segment types. */
2646 bed = get_elf_backend_data (abfd);
2647 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2648 }
2649 }
2650
2651 /* Initialize REL_HDR, the section-header for new section, containing
2652 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2653 relocations; otherwise, we use REL relocations. */
2654
2655 bfd_boolean
2656 _bfd_elf_init_reloc_shdr (bfd *abfd,
2657 Elf_Internal_Shdr *rel_hdr,
2658 asection *asect,
2659 bfd_boolean use_rela_p)
2660 {
2661 char *name;
2662 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2663 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2664
2665 name = bfd_alloc (abfd, amt);
2666 if (name == NULL)
2667 return FALSE;
2668 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2669 rel_hdr->sh_name =
2670 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2671 FALSE);
2672 if (rel_hdr->sh_name == (unsigned int) -1)
2673 return FALSE;
2674 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2675 rel_hdr->sh_entsize = (use_rela_p
2676 ? bed->s->sizeof_rela
2677 : bed->s->sizeof_rel);
2678 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2679 rel_hdr->sh_flags = 0;
2680 rel_hdr->sh_addr = 0;
2681 rel_hdr->sh_size = 0;
2682 rel_hdr->sh_offset = 0;
2683
2684 return TRUE;
2685 }
2686
2687 /* Set up an ELF internal section header for a section. */
2688
2689 static void
2690 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2691 {
2692 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2693 bfd_boolean *failedptr = failedptrarg;
2694 Elf_Internal_Shdr *this_hdr;
2695
2696 if (*failedptr)
2697 {
2698 /* We already failed; just get out of the bfd_map_over_sections
2699 loop. */
2700 return;
2701 }
2702
2703 this_hdr = &elf_section_data (asect)->this_hdr;
2704
2705 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2706 asect->name, FALSE);
2707 if (this_hdr->sh_name == (unsigned int) -1)
2708 {
2709 *failedptr = TRUE;
2710 return;
2711 }
2712
2713 /* Don't clear sh_flags. Assembler may set additional bits. */
2714
2715 if ((asect->flags & SEC_ALLOC) != 0
2716 || asect->user_set_vma)
2717 this_hdr->sh_addr = asect->vma;
2718 else
2719 this_hdr->sh_addr = 0;
2720
2721 this_hdr->sh_offset = 0;
2722 this_hdr->sh_size = asect->size;
2723 this_hdr->sh_link = 0;
2724 this_hdr->sh_addralign = 1 << asect->alignment_power;
2725 /* The sh_entsize and sh_info fields may have been set already by
2726 copy_private_section_data. */
2727
2728 this_hdr->bfd_section = asect;
2729 this_hdr->contents = NULL;
2730
2731 /* If the section type is unspecified, we set it based on
2732 asect->flags. */
2733 if (this_hdr->sh_type == SHT_NULL)
2734 {
2735 if ((asect->flags & SEC_GROUP) != 0)
2736 this_hdr->sh_type = SHT_GROUP;
2737 else if ((asect->flags & SEC_ALLOC) != 0
2738 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2739 || (asect->flags & SEC_NEVER_LOAD) != 0))
2740 this_hdr->sh_type = SHT_NOBITS;
2741 else
2742 this_hdr->sh_type = SHT_PROGBITS;
2743 }
2744
2745 switch (this_hdr->sh_type)
2746 {
2747 default:
2748 break;
2749
2750 case SHT_STRTAB:
2751 case SHT_INIT_ARRAY:
2752 case SHT_FINI_ARRAY:
2753 case SHT_PREINIT_ARRAY:
2754 case SHT_NOTE:
2755 case SHT_NOBITS:
2756 case SHT_PROGBITS:
2757 break;
2758
2759 case SHT_HASH:
2760 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2761 break;
2762
2763 case SHT_DYNSYM:
2764 this_hdr->sh_entsize = bed->s->sizeof_sym;
2765 break;
2766
2767 case SHT_DYNAMIC:
2768 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2769 break;
2770
2771 case SHT_RELA:
2772 if (get_elf_backend_data (abfd)->may_use_rela_p)
2773 this_hdr->sh_entsize = bed->s->sizeof_rela;
2774 break;
2775
2776 case SHT_REL:
2777 if (get_elf_backend_data (abfd)->may_use_rel_p)
2778 this_hdr->sh_entsize = bed->s->sizeof_rel;
2779 break;
2780
2781 case SHT_GNU_versym:
2782 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2783 break;
2784
2785 case SHT_GNU_verdef:
2786 this_hdr->sh_entsize = 0;
2787 /* objcopy or strip will copy over sh_info, but may not set
2788 cverdefs. The linker will set cverdefs, but sh_info will be
2789 zero. */
2790 if (this_hdr->sh_info == 0)
2791 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2792 else
2793 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2794 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2795 break;
2796
2797 case SHT_GNU_verneed:
2798 this_hdr->sh_entsize = 0;
2799 /* objcopy or strip will copy over sh_info, but may not set
2800 cverrefs. The linker will set cverrefs, but sh_info will be
2801 zero. */
2802 if (this_hdr->sh_info == 0)
2803 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2804 else
2805 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2806 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2807 break;
2808
2809 case SHT_GROUP:
2810 this_hdr->sh_entsize = 4;
2811 break;
2812 }
2813
2814 if ((asect->flags & SEC_ALLOC) != 0)
2815 this_hdr->sh_flags |= SHF_ALLOC;
2816 if ((asect->flags & SEC_READONLY) == 0)
2817 this_hdr->sh_flags |= SHF_WRITE;
2818 if ((asect->flags & SEC_CODE) != 0)
2819 this_hdr->sh_flags |= SHF_EXECINSTR;
2820 if ((asect->flags & SEC_MERGE) != 0)
2821 {
2822 this_hdr->sh_flags |= SHF_MERGE;
2823 this_hdr->sh_entsize = asect->entsize;
2824 if ((asect->flags & SEC_STRINGS) != 0)
2825 this_hdr->sh_flags |= SHF_STRINGS;
2826 }
2827 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2828 this_hdr->sh_flags |= SHF_GROUP;
2829 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2830 {
2831 this_hdr->sh_flags |= SHF_TLS;
2832 if (asect->size == 0
2833 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2834 {
2835 struct bfd_link_order *o = asect->map_tail.link_order;
2836
2837 this_hdr->sh_size = 0;
2838 if (o != NULL)
2839 {
2840 this_hdr->sh_size = o->offset + o->size;
2841 if (this_hdr->sh_size != 0)
2842 this_hdr->sh_type = SHT_NOBITS;
2843 }
2844 }
2845 }
2846
2847 /* Check for processor-specific section types. */
2848 if (bed->elf_backend_fake_sections
2849 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2850 *failedptr = TRUE;
2851
2852 /* If the section has relocs, set up a section header for the
2853 SHT_REL[A] section. If two relocation sections are required for
2854 this section, it is up to the processor-specific back-end to
2855 create the other. */
2856 if ((asect->flags & SEC_RELOC) != 0
2857 && !_bfd_elf_init_reloc_shdr (abfd,
2858 &elf_section_data (asect)->rel_hdr,
2859 asect,
2860 asect->use_rela_p))
2861 *failedptr = TRUE;
2862 }
2863
2864 /* Fill in the contents of a SHT_GROUP section. */
2865
2866 void
2867 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2868 {
2869 bfd_boolean *failedptr = failedptrarg;
2870 unsigned long symindx;
2871 asection *elt, *first;
2872 unsigned char *loc;
2873 bfd_boolean gas;
2874
2875 /* Ignore linker created group section. See elfNN_ia64_object_p in
2876 elfxx-ia64.c. */
2877 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2878 || *failedptr)
2879 return;
2880
2881 symindx = 0;
2882 if (elf_group_id (sec) != NULL)
2883 symindx = elf_group_id (sec)->udata.i;
2884
2885 if (symindx == 0)
2886 {
2887 /* If called from the assembler, swap_out_syms will have set up
2888 elf_section_syms; If called for "ld -r", use target_index. */
2889 if (elf_section_syms (abfd) != NULL)
2890 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2891 else
2892 symindx = sec->target_index;
2893 }
2894 elf_section_data (sec)->this_hdr.sh_info = symindx;
2895
2896 /* The contents won't be allocated for "ld -r" or objcopy. */
2897 gas = TRUE;
2898 if (sec->contents == NULL)
2899 {
2900 gas = FALSE;
2901 sec->contents = bfd_alloc (abfd, sec->size);
2902
2903 /* Arrange for the section to be written out. */
2904 elf_section_data (sec)->this_hdr.contents = sec->contents;
2905 if (sec->contents == NULL)
2906 {
2907 *failedptr = TRUE;
2908 return;
2909 }
2910 }
2911
2912 loc = sec->contents + sec->size;
2913
2914 /* Get the pointer to the first section in the group that gas
2915 squirreled away here. objcopy arranges for this to be set to the
2916 start of the input section group. */
2917 first = elt = elf_next_in_group (sec);
2918
2919 /* First element is a flag word. Rest of section is elf section
2920 indices for all the sections of the group. Write them backwards
2921 just to keep the group in the same order as given in .section
2922 directives, not that it matters. */
2923 while (elt != NULL)
2924 {
2925 asection *s;
2926 unsigned int idx;
2927
2928 loc -= 4;
2929 s = elt;
2930 if (!gas)
2931 s = s->output_section;
2932 idx = 0;
2933 if (s != NULL)
2934 idx = elf_section_data (s)->this_idx;
2935 H_PUT_32 (abfd, idx, loc);
2936 elt = elf_next_in_group (elt);
2937 if (elt == first)
2938 break;
2939 }
2940
2941 if ((loc -= 4) != sec->contents)
2942 abort ();
2943
2944 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2945 }
2946
2947 /* Assign all ELF section numbers. The dummy first section is handled here
2948 too. The link/info pointers for the standard section types are filled
2949 in here too, while we're at it. */
2950
2951 static bfd_boolean
2952 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2953 {
2954 struct elf_obj_tdata *t = elf_tdata (abfd);
2955 asection *sec;
2956 unsigned int section_number, secn;
2957 Elf_Internal_Shdr **i_shdrp;
2958 struct bfd_elf_section_data *d;
2959
2960 section_number = 1;
2961
2962 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2963
2964 /* SHT_GROUP sections are in relocatable files only. */
2965 if (link_info == NULL || link_info->relocatable)
2966 {
2967 /* Put SHT_GROUP sections first. */
2968 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2969 {
2970 d = elf_section_data (sec);
2971
2972 if (d->this_hdr.sh_type == SHT_GROUP)
2973 {
2974 if (sec->flags & SEC_LINKER_CREATED)
2975 {
2976 /* Remove the linker created SHT_GROUP sections. */
2977 bfd_section_list_remove (abfd, sec);
2978 abfd->section_count--;
2979 }
2980 else
2981 {
2982 if (section_number == SHN_LORESERVE)
2983 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2984 d->this_idx = section_number++;
2985 }
2986 }
2987 }
2988 }
2989
2990 for (sec = abfd->sections; sec; sec = sec->next)
2991 {
2992 d = elf_section_data (sec);
2993
2994 if (d->this_hdr.sh_type != SHT_GROUP)
2995 {
2996 if (section_number == SHN_LORESERVE)
2997 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2998 d->this_idx = section_number++;
2999 }
3000 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3001 if ((sec->flags & SEC_RELOC) == 0)
3002 d->rel_idx = 0;
3003 else
3004 {
3005 if (section_number == SHN_LORESERVE)
3006 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3007 d->rel_idx = section_number++;
3008 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3009 }
3010
3011 if (d->rel_hdr2)
3012 {
3013 if (section_number == SHN_LORESERVE)
3014 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3015 d->rel_idx2 = section_number++;
3016 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3017 }
3018 else
3019 d->rel_idx2 = 0;
3020 }
3021
3022 if (section_number == SHN_LORESERVE)
3023 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3024 t->shstrtab_section = section_number++;
3025 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3026 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3027
3028 if (bfd_get_symcount (abfd) > 0)
3029 {
3030 if (section_number == SHN_LORESERVE)
3031 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3032 t->symtab_section = section_number++;
3033 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3034 if (section_number > SHN_LORESERVE - 2)
3035 {
3036 if (section_number == SHN_LORESERVE)
3037 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3038 t->symtab_shndx_section = section_number++;
3039 t->symtab_shndx_hdr.sh_name
3040 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3041 ".symtab_shndx", FALSE);
3042 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3043 return FALSE;
3044 }
3045 if (section_number == SHN_LORESERVE)
3046 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3047 t->strtab_section = section_number++;
3048 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3049 }
3050
3051 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3052 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3053
3054 elf_numsections (abfd) = section_number;
3055 elf_elfheader (abfd)->e_shnum = section_number;
3056 if (section_number > SHN_LORESERVE)
3057 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3058
3059 /* Set up the list of section header pointers, in agreement with the
3060 indices. */
3061 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3062 if (i_shdrp == NULL)
3063 return FALSE;
3064
3065 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3066 if (i_shdrp[0] == NULL)
3067 {
3068 bfd_release (abfd, i_shdrp);
3069 return FALSE;
3070 }
3071
3072 elf_elfsections (abfd) = i_shdrp;
3073
3074 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3075 if (bfd_get_symcount (abfd) > 0)
3076 {
3077 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3078 if (elf_numsections (abfd) > SHN_LORESERVE)
3079 {
3080 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3081 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3082 }
3083 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3084 t->symtab_hdr.sh_link = t->strtab_section;
3085 }
3086
3087 for (sec = abfd->sections; sec; sec = sec->next)
3088 {
3089 struct bfd_elf_section_data *d = elf_section_data (sec);
3090 asection *s;
3091 const char *name;
3092
3093 i_shdrp[d->this_idx] = &d->this_hdr;
3094 if (d->rel_idx != 0)
3095 i_shdrp[d->rel_idx] = &d->rel_hdr;
3096 if (d->rel_idx2 != 0)
3097 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3098
3099 /* Fill in the sh_link and sh_info fields while we're at it. */
3100
3101 /* sh_link of a reloc section is the section index of the symbol
3102 table. sh_info is the section index of the section to which
3103 the relocation entries apply. */
3104 if (d->rel_idx != 0)
3105 {
3106 d->rel_hdr.sh_link = t->symtab_section;
3107 d->rel_hdr.sh_info = d->this_idx;
3108 }
3109 if (d->rel_idx2 != 0)
3110 {
3111 d->rel_hdr2->sh_link = t->symtab_section;
3112 d->rel_hdr2->sh_info = d->this_idx;
3113 }
3114
3115 /* We need to set up sh_link for SHF_LINK_ORDER. */
3116 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3117 {
3118 s = elf_linked_to_section (sec);
3119 if (s)
3120 {
3121 /* elf_linked_to_section points to the input section. */
3122 if (link_info != NULL)
3123 {
3124 /* Check discarded linkonce section. */
3125 if (elf_discarded_section (s))
3126 {
3127 asection *kept;
3128 (*_bfd_error_handler)
3129 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3130 abfd, d->this_hdr.bfd_section,
3131 s, s->owner);
3132 /* Point to the kept section if it has the same
3133 size as the discarded one. */
3134 kept = _bfd_elf_check_kept_section (s);
3135 if (kept == NULL)
3136 {
3137 bfd_set_error (bfd_error_bad_value);
3138 return FALSE;
3139 }
3140 s = kept;
3141 }
3142
3143 s = s->output_section;
3144 BFD_ASSERT (s != NULL);
3145 }
3146 else
3147 {
3148 /* Handle objcopy. */
3149 if (s->output_section == NULL)
3150 {
3151 (*_bfd_error_handler)
3152 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3153 abfd, d->this_hdr.bfd_section, s, s->owner);
3154 bfd_set_error (bfd_error_bad_value);
3155 return FALSE;
3156 }
3157 s = s->output_section;
3158 }
3159 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3160 }
3161 else
3162 {
3163 /* PR 290:
3164 The Intel C compiler generates SHT_IA_64_UNWIND with
3165 SHF_LINK_ORDER. But it doesn't set the sh_link or
3166 sh_info fields. Hence we could get the situation
3167 where s is NULL. */
3168 const struct elf_backend_data *bed
3169 = get_elf_backend_data (abfd);
3170 if (bed->link_order_error_handler)
3171 bed->link_order_error_handler
3172 (_("%B: warning: sh_link not set for section `%A'"),
3173 abfd, sec);
3174 }
3175 }
3176
3177 switch (d->this_hdr.sh_type)
3178 {
3179 case SHT_REL:
3180 case SHT_RELA:
3181 /* A reloc section which we are treating as a normal BFD
3182 section. sh_link is the section index of the symbol
3183 table. sh_info is the section index of the section to
3184 which the relocation entries apply. We assume that an
3185 allocated reloc section uses the dynamic symbol table.
3186 FIXME: How can we be sure? */
3187 s = bfd_get_section_by_name (abfd, ".dynsym");
3188 if (s != NULL)
3189 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3190
3191 /* We look up the section the relocs apply to by name. */
3192 name = sec->name;
3193 if (d->this_hdr.sh_type == SHT_REL)
3194 name += 4;
3195 else
3196 name += 5;
3197 s = bfd_get_section_by_name (abfd, name);
3198 if (s != NULL)
3199 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3200 break;
3201
3202 case SHT_STRTAB:
3203 /* We assume that a section named .stab*str is a stabs
3204 string section. We look for a section with the same name
3205 but without the trailing ``str'', and set its sh_link
3206 field to point to this section. */
3207 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3208 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3209 {
3210 size_t len;
3211 char *alc;
3212
3213 len = strlen (sec->name);
3214 alc = bfd_malloc (len - 2);
3215 if (alc == NULL)
3216 return FALSE;
3217 memcpy (alc, sec->name, len - 3);
3218 alc[len - 3] = '\0';
3219 s = bfd_get_section_by_name (abfd, alc);
3220 free (alc);
3221 if (s != NULL)
3222 {
3223 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3224
3225 /* This is a .stab section. */
3226 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3227 elf_section_data (s)->this_hdr.sh_entsize
3228 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3229 }
3230 }
3231 break;
3232
3233 case SHT_DYNAMIC:
3234 case SHT_DYNSYM:
3235 case SHT_GNU_verneed:
3236 case SHT_GNU_verdef:
3237 /* sh_link is the section header index of the string table
3238 used for the dynamic entries, or the symbol table, or the
3239 version strings. */
3240 s = bfd_get_section_by_name (abfd, ".dynstr");
3241 if (s != NULL)
3242 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3243 break;
3244
3245 case SHT_GNU_LIBLIST:
3246 /* sh_link is the section header index of the prelink library
3247 list
3248 used for the dynamic entries, or the symbol table, or the
3249 version strings. */
3250 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3251 ? ".dynstr" : ".gnu.libstr");
3252 if (s != NULL)
3253 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3254 break;
3255
3256 case SHT_HASH:
3257 case SHT_GNU_versym:
3258 /* sh_link is the section header index of the symbol table
3259 this hash table or version table is for. */
3260 s = bfd_get_section_by_name (abfd, ".dynsym");
3261 if (s != NULL)
3262 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3263 break;
3264
3265 case SHT_GROUP:
3266 d->this_hdr.sh_link = t->symtab_section;
3267 }
3268 }
3269
3270 for (secn = 1; secn < section_number; ++secn)
3271 if (i_shdrp[secn] == NULL)
3272 i_shdrp[secn] = i_shdrp[0];
3273 else
3274 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3275 i_shdrp[secn]->sh_name);
3276 return TRUE;
3277 }
3278
3279 /* Map symbol from it's internal number to the external number, moving
3280 all local symbols to be at the head of the list. */
3281
3282 static int
3283 sym_is_global (bfd *abfd, asymbol *sym)
3284 {
3285 /* If the backend has a special mapping, use it. */
3286 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3287 if (bed->elf_backend_sym_is_global)
3288 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3289
3290 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3291 || bfd_is_und_section (bfd_get_section (sym))
3292 || bfd_is_com_section (bfd_get_section (sym)));
3293 }
3294
3295 static bfd_boolean
3296 elf_map_symbols (bfd *abfd)
3297 {
3298 unsigned int symcount = bfd_get_symcount (abfd);
3299 asymbol **syms = bfd_get_outsymbols (abfd);
3300 asymbol **sect_syms;
3301 unsigned int num_locals = 0;
3302 unsigned int num_globals = 0;
3303 unsigned int num_locals2 = 0;
3304 unsigned int num_globals2 = 0;
3305 int max_index = 0;
3306 unsigned int idx;
3307 asection *asect;
3308 asymbol **new_syms;
3309
3310 #ifdef DEBUG
3311 fprintf (stderr, "elf_map_symbols\n");
3312 fflush (stderr);
3313 #endif
3314
3315 for (asect = abfd->sections; asect; asect = asect->next)
3316 {
3317 if (max_index < asect->index)
3318 max_index = asect->index;
3319 }
3320
3321 max_index++;
3322 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3323 if (sect_syms == NULL)
3324 return FALSE;
3325 elf_section_syms (abfd) = sect_syms;
3326 elf_num_section_syms (abfd) = max_index;
3327
3328 /* Init sect_syms entries for any section symbols we have already
3329 decided to output. */
3330 for (idx = 0; idx < symcount; idx++)
3331 {
3332 asymbol *sym = syms[idx];
3333
3334 if ((sym->flags & BSF_SECTION_SYM) != 0
3335 && sym->value == 0)
3336 {
3337 asection *sec;
3338
3339 sec = sym->section;
3340
3341 if (sec->owner != NULL)
3342 {
3343 if (sec->owner != abfd)
3344 {
3345 if (sec->output_offset != 0)
3346 continue;
3347
3348 sec = sec->output_section;
3349
3350 /* Empty sections in the input files may have had a
3351 section symbol created for them. (See the comment
3352 near the end of _bfd_generic_link_output_symbols in
3353 linker.c). If the linker script discards such
3354 sections then we will reach this point. Since we know
3355 that we cannot avoid this case, we detect it and skip
3356 the abort and the assignment to the sect_syms array.
3357 To reproduce this particular case try running the
3358 linker testsuite test ld-scripts/weak.exp for an ELF
3359 port that uses the generic linker. */
3360 if (sec->owner == NULL)
3361 continue;
3362
3363 BFD_ASSERT (sec->owner == abfd);
3364 }
3365 sect_syms[sec->index] = syms[idx];
3366 }
3367 }
3368 }
3369
3370 /* Classify all of the symbols. */
3371 for (idx = 0; idx < symcount; idx++)
3372 {
3373 if (!sym_is_global (abfd, syms[idx]))
3374 num_locals++;
3375 else
3376 num_globals++;
3377 }
3378
3379 /* We will be adding a section symbol for each BFD section. Most normal
3380 sections will already have a section symbol in outsymbols, but
3381 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3382 at least in that case. */
3383 for (asect = abfd->sections; asect; asect = asect->next)
3384 {
3385 if (sect_syms[asect->index] == NULL)
3386 {
3387 if (!sym_is_global (abfd, asect->symbol))
3388 num_locals++;
3389 else
3390 num_globals++;
3391 }
3392 }
3393
3394 /* Now sort the symbols so the local symbols are first. */
3395 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3396
3397 if (new_syms == NULL)
3398 return FALSE;
3399
3400 for (idx = 0; idx < symcount; idx++)
3401 {
3402 asymbol *sym = syms[idx];
3403 unsigned int i;
3404
3405 if (!sym_is_global (abfd, sym))
3406 i = num_locals2++;
3407 else
3408 i = num_locals + num_globals2++;
3409 new_syms[i] = sym;
3410 sym->udata.i = i + 1;
3411 }
3412 for (asect = abfd->sections; asect; asect = asect->next)
3413 {
3414 if (sect_syms[asect->index] == NULL)
3415 {
3416 asymbol *sym = asect->symbol;
3417 unsigned int i;
3418
3419 sect_syms[asect->index] = sym;
3420 if (!sym_is_global (abfd, sym))
3421 i = num_locals2++;
3422 else
3423 i = num_locals + num_globals2++;
3424 new_syms[i] = sym;
3425 sym->udata.i = i + 1;
3426 }
3427 }
3428
3429 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3430
3431 elf_num_locals (abfd) = num_locals;
3432 elf_num_globals (abfd) = num_globals;
3433 return TRUE;
3434 }
3435
3436 /* Align to the maximum file alignment that could be required for any
3437 ELF data structure. */
3438
3439 static inline file_ptr
3440 align_file_position (file_ptr off, int align)
3441 {
3442 return (off + align - 1) & ~(align - 1);
3443 }
3444
3445 /* Assign a file position to a section, optionally aligning to the
3446 required section alignment. */
3447
3448 file_ptr
3449 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3450 file_ptr offset,
3451 bfd_boolean align)
3452 {
3453 if (align)
3454 {
3455 unsigned int al;
3456
3457 al = i_shdrp->sh_addralign;
3458 if (al > 1)
3459 offset = BFD_ALIGN (offset, al);
3460 }
3461 i_shdrp->sh_offset = offset;
3462 if (i_shdrp->bfd_section != NULL)
3463 i_shdrp->bfd_section->filepos = offset;
3464 if (i_shdrp->sh_type != SHT_NOBITS)
3465 offset += i_shdrp->sh_size;
3466 return offset;
3467 }
3468
3469 /* Compute the file positions we are going to put the sections at, and
3470 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3471 is not NULL, this is being called by the ELF backend linker. */
3472
3473 bfd_boolean
3474 _bfd_elf_compute_section_file_positions (bfd *abfd,
3475 struct bfd_link_info *link_info)
3476 {
3477 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3478 bfd_boolean failed;
3479 struct bfd_strtab_hash *strtab = NULL;
3480 Elf_Internal_Shdr *shstrtab_hdr;
3481
3482 if (abfd->output_has_begun)
3483 return TRUE;
3484
3485 /* Do any elf backend specific processing first. */
3486 if (bed->elf_backend_begin_write_processing)
3487 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3488
3489 if (! prep_headers (abfd))
3490 return FALSE;
3491
3492 /* Post process the headers if necessary. */
3493 if (bed->elf_backend_post_process_headers)
3494 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3495
3496 failed = FALSE;
3497 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3498 if (failed)
3499 return FALSE;
3500
3501 if (!assign_section_numbers (abfd, link_info))
3502 return FALSE;
3503
3504 /* The backend linker builds symbol table information itself. */
3505 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3506 {
3507 /* Non-zero if doing a relocatable link. */
3508 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3509
3510 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3511 return FALSE;
3512 }
3513
3514 if (link_info == NULL)
3515 {
3516 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3517 if (failed)
3518 return FALSE;
3519 }
3520
3521 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3522 /* sh_name was set in prep_headers. */
3523 shstrtab_hdr->sh_type = SHT_STRTAB;
3524 shstrtab_hdr->sh_flags = 0;
3525 shstrtab_hdr->sh_addr = 0;
3526 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3527 shstrtab_hdr->sh_entsize = 0;
3528 shstrtab_hdr->sh_link = 0;
3529 shstrtab_hdr->sh_info = 0;
3530 /* sh_offset is set in assign_file_positions_except_relocs. */
3531 shstrtab_hdr->sh_addralign = 1;
3532
3533 if (!assign_file_positions_except_relocs (abfd, link_info))
3534 return FALSE;
3535
3536 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3537 {
3538 file_ptr off;
3539 Elf_Internal_Shdr *hdr;
3540
3541 off = elf_tdata (abfd)->next_file_pos;
3542
3543 hdr = &elf_tdata (abfd)->symtab_hdr;
3544 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3545
3546 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3547 if (hdr->sh_size != 0)
3548 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3549
3550 hdr = &elf_tdata (abfd)->strtab_hdr;
3551 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3552
3553 elf_tdata (abfd)->next_file_pos = off;
3554
3555 /* Now that we know where the .strtab section goes, write it
3556 out. */
3557 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3558 || ! _bfd_stringtab_emit (abfd, strtab))
3559 return FALSE;
3560 _bfd_stringtab_free (strtab);
3561 }
3562
3563 abfd->output_has_begun = TRUE;
3564
3565 return TRUE;
3566 }
3567
3568 /* Create a mapping from a set of sections to a program segment. */
3569
3570 static struct elf_segment_map *
3571 make_mapping (bfd *abfd,
3572 asection **sections,
3573 unsigned int from,
3574 unsigned int to,
3575 bfd_boolean phdr)
3576 {
3577 struct elf_segment_map *m;
3578 unsigned int i;
3579 asection **hdrpp;
3580 bfd_size_type amt;
3581
3582 amt = sizeof (struct elf_segment_map);
3583 amt += (to - from - 1) * sizeof (asection *);
3584 m = bfd_zalloc (abfd, amt);
3585 if (m == NULL)
3586 return NULL;
3587 m->next = NULL;
3588 m->p_type = PT_LOAD;
3589 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3590 m->sections[i - from] = *hdrpp;
3591 m->count = to - from;
3592
3593 if (from == 0 && phdr)
3594 {
3595 /* Include the headers in the first PT_LOAD segment. */
3596 m->includes_filehdr = 1;
3597 m->includes_phdrs = 1;
3598 }
3599
3600 return m;
3601 }
3602
3603 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3604 on failure. */
3605
3606 struct elf_segment_map *
3607 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3608 {
3609 struct elf_segment_map *m;
3610
3611 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3612 if (m == NULL)
3613 return NULL;
3614 m->next = NULL;
3615 m->p_type = PT_DYNAMIC;
3616 m->count = 1;
3617 m->sections[0] = dynsec;
3618
3619 return m;
3620 }
3621
3622 /* Set up a mapping from BFD sections to program segments. */
3623
3624 static bfd_boolean
3625 map_sections_to_segments (bfd *abfd)
3626 {
3627 asection **sections = NULL;
3628 asection *s;
3629 unsigned int i;
3630 unsigned int count;
3631 struct elf_segment_map *mfirst;
3632 struct elf_segment_map **pm;
3633 struct elf_segment_map *m;
3634 asection *last_hdr;
3635 bfd_vma last_size;
3636 unsigned int phdr_index;
3637 bfd_vma maxpagesize;
3638 asection **hdrpp;
3639 bfd_boolean phdr_in_segment = TRUE;
3640 bfd_boolean writable;
3641 int tls_count = 0;
3642 asection *first_tls = NULL;
3643 asection *dynsec, *eh_frame_hdr;
3644 bfd_size_type amt;
3645
3646 if (elf_tdata (abfd)->segment_map != NULL)
3647 return TRUE;
3648
3649 if (bfd_count_sections (abfd) == 0)
3650 return TRUE;
3651
3652 /* Select the allocated sections, and sort them. */
3653
3654 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3655 if (sections == NULL)
3656 goto error_return;
3657
3658 i = 0;
3659 for (s = abfd->sections; s != NULL; s = s->next)
3660 {
3661 if ((s->flags & SEC_ALLOC) != 0)
3662 {
3663 sections[i] = s;
3664 ++i;
3665 }
3666 }
3667 BFD_ASSERT (i <= bfd_count_sections (abfd));
3668 count = i;
3669
3670 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3671
3672 /* Build the mapping. */
3673
3674 mfirst = NULL;
3675 pm = &mfirst;
3676
3677 /* If we have a .interp section, then create a PT_PHDR segment for
3678 the program headers and a PT_INTERP segment for the .interp
3679 section. */
3680 s = bfd_get_section_by_name (abfd, ".interp");
3681 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3682 {
3683 amt = sizeof (struct elf_segment_map);
3684 m = bfd_zalloc (abfd, amt);
3685 if (m == NULL)
3686 goto error_return;
3687 m->next = NULL;
3688 m->p_type = PT_PHDR;
3689 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3690 m->p_flags = PF_R | PF_X;
3691 m->p_flags_valid = 1;
3692 m->includes_phdrs = 1;
3693
3694 *pm = m;
3695 pm = &m->next;
3696
3697 amt = sizeof (struct elf_segment_map);
3698 m = bfd_zalloc (abfd, amt);
3699 if (m == NULL)
3700 goto error_return;
3701 m->next = NULL;
3702 m->p_type = PT_INTERP;
3703 m->count = 1;
3704 m->sections[0] = s;
3705
3706 *pm = m;
3707 pm = &m->next;
3708 }
3709
3710 /* Look through the sections. We put sections in the same program
3711 segment when the start of the second section can be placed within
3712 a few bytes of the end of the first section. */
3713 last_hdr = NULL;
3714 last_size = 0;
3715 phdr_index = 0;
3716 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3717 writable = FALSE;
3718 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3719 if (dynsec != NULL
3720 && (dynsec->flags & SEC_LOAD) == 0)
3721 dynsec = NULL;
3722
3723 /* Deal with -Ttext or something similar such that the first section
3724 is not adjacent to the program headers. This is an
3725 approximation, since at this point we don't know exactly how many
3726 program headers we will need. */
3727 if (count > 0)
3728 {
3729 bfd_size_type phdr_size;
3730
3731 phdr_size = elf_tdata (abfd)->program_header_size;
3732 if (phdr_size == 0)
3733 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3734 if ((abfd->flags & D_PAGED) == 0
3735 || sections[0]->lma < phdr_size
3736 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3737 phdr_in_segment = FALSE;
3738 }
3739
3740 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3741 {
3742 asection *hdr;
3743 bfd_boolean new_segment;
3744
3745 hdr = *hdrpp;
3746
3747 /* See if this section and the last one will fit in the same
3748 segment. */
3749
3750 if (last_hdr == NULL)
3751 {
3752 /* If we don't have a segment yet, then we don't need a new
3753 one (we build the last one after this loop). */
3754 new_segment = FALSE;
3755 }
3756 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3757 {
3758 /* If this section has a different relation between the
3759 virtual address and the load address, then we need a new
3760 segment. */
3761 new_segment = TRUE;
3762 }
3763 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3764 < BFD_ALIGN (hdr->lma, maxpagesize))
3765 {
3766 /* If putting this section in this segment would force us to
3767 skip a page in the segment, then we need a new segment. */
3768 new_segment = TRUE;
3769 }
3770 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3771 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3772 {
3773 /* We don't want to put a loadable section after a
3774 nonloadable section in the same segment.
3775 Consider .tbss sections as loadable for this purpose. */
3776 new_segment = TRUE;
3777 }
3778 else if ((abfd->flags & D_PAGED) == 0)
3779 {
3780 /* If the file is not demand paged, which means that we
3781 don't require the sections to be correctly aligned in the
3782 file, then there is no other reason for a new segment. */
3783 new_segment = FALSE;
3784 }
3785 else if (! writable
3786 && (hdr->flags & SEC_READONLY) == 0
3787 && (((last_hdr->lma + last_size - 1)
3788 & ~(maxpagesize - 1))
3789 != (hdr->lma & ~(maxpagesize - 1))))
3790 {
3791 /* We don't want to put a writable section in a read only
3792 segment, unless they are on the same page in memory
3793 anyhow. We already know that the last section does not
3794 bring us past the current section on the page, so the
3795 only case in which the new section is not on the same
3796 page as the previous section is when the previous section
3797 ends precisely on a page boundary. */
3798 new_segment = TRUE;
3799 }
3800 else
3801 {
3802 /* Otherwise, we can use the same segment. */
3803 new_segment = FALSE;
3804 }
3805
3806 if (! new_segment)
3807 {
3808 if ((hdr->flags & SEC_READONLY) == 0)
3809 writable = TRUE;
3810 last_hdr = hdr;
3811 /* .tbss sections effectively have zero size. */
3812 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3813 last_size = hdr->size;
3814 else
3815 last_size = 0;
3816 continue;
3817 }
3818
3819 /* We need a new program segment. We must create a new program
3820 header holding all the sections from phdr_index until hdr. */
3821
3822 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3823 if (m == NULL)
3824 goto error_return;
3825
3826 *pm = m;
3827 pm = &m->next;
3828
3829 if ((hdr->flags & SEC_READONLY) == 0)
3830 writable = TRUE;
3831 else
3832 writable = FALSE;
3833
3834 last_hdr = hdr;
3835 /* .tbss sections effectively have zero size. */
3836 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3837 last_size = hdr->size;
3838 else
3839 last_size = 0;
3840 phdr_index = i;
3841 phdr_in_segment = FALSE;
3842 }
3843
3844 /* Create a final PT_LOAD program segment. */
3845 if (last_hdr != NULL)
3846 {
3847 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3848 if (m == NULL)
3849 goto error_return;
3850
3851 *pm = m;
3852 pm = &m->next;
3853 }
3854
3855 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3856 if (dynsec != NULL)
3857 {
3858 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3859 if (m == NULL)
3860 goto error_return;
3861 *pm = m;
3862 pm = &m->next;
3863 }
3864
3865 /* For each loadable .note section, add a PT_NOTE segment. We don't
3866 use bfd_get_section_by_name, because if we link together
3867 nonloadable .note sections and loadable .note sections, we will
3868 generate two .note sections in the output file. FIXME: Using
3869 names for section types is bogus anyhow. */
3870 for (s = abfd->sections; s != NULL; s = s->next)
3871 {
3872 if ((s->flags & SEC_LOAD) != 0
3873 && strncmp (s->name, ".note", 5) == 0)
3874 {
3875 amt = sizeof (struct elf_segment_map);
3876 m = bfd_zalloc (abfd, amt);
3877 if (m == NULL)
3878 goto error_return;
3879 m->next = NULL;
3880 m->p_type = PT_NOTE;
3881 m->count = 1;
3882 m->sections[0] = s;
3883
3884 *pm = m;
3885 pm = &m->next;
3886 }
3887 if (s->flags & SEC_THREAD_LOCAL)
3888 {
3889 if (! tls_count)
3890 first_tls = s;
3891 tls_count++;
3892 }
3893 }
3894
3895 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3896 if (tls_count > 0)
3897 {
3898 int i;
3899
3900 amt = sizeof (struct elf_segment_map);
3901 amt += (tls_count - 1) * sizeof (asection *);
3902 m = bfd_zalloc (abfd, amt);
3903 if (m == NULL)
3904 goto error_return;
3905 m->next = NULL;
3906 m->p_type = PT_TLS;
3907 m->count = tls_count;
3908 /* Mandated PF_R. */
3909 m->p_flags = PF_R;
3910 m->p_flags_valid = 1;
3911 for (i = 0; i < tls_count; ++i)
3912 {
3913 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3914 m->sections[i] = first_tls;
3915 first_tls = first_tls->next;
3916 }
3917
3918 *pm = m;
3919 pm = &m->next;
3920 }
3921
3922 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3923 segment. */
3924 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3925 if (eh_frame_hdr != NULL
3926 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3927 {
3928 amt = sizeof (struct elf_segment_map);
3929 m = bfd_zalloc (abfd, amt);
3930 if (m == NULL)
3931 goto error_return;
3932 m->next = NULL;
3933 m->p_type = PT_GNU_EH_FRAME;
3934 m->count = 1;
3935 m->sections[0] = eh_frame_hdr->output_section;
3936
3937 *pm = m;
3938 pm = &m->next;
3939 }
3940
3941 if (elf_tdata (abfd)->stack_flags)
3942 {
3943 amt = sizeof (struct elf_segment_map);
3944 m = bfd_zalloc (abfd, amt);
3945 if (m == NULL)
3946 goto error_return;
3947 m->next = NULL;
3948 m->p_type = PT_GNU_STACK;
3949 m->p_flags = elf_tdata (abfd)->stack_flags;
3950 m->p_flags_valid = 1;
3951
3952 *pm = m;
3953 pm = &m->next;
3954 }
3955
3956 if (elf_tdata (abfd)->relro)
3957 {
3958 amt = sizeof (struct elf_segment_map);
3959 m = bfd_zalloc (abfd, amt);
3960 if (m == NULL)
3961 goto error_return;
3962 m->next = NULL;
3963 m->p_type = PT_GNU_RELRO;
3964 m->p_flags = PF_R;
3965 m->p_flags_valid = 1;
3966
3967 *pm = m;
3968 pm = &m->next;
3969 }
3970
3971 free (sections);
3972 sections = NULL;
3973
3974 elf_tdata (abfd)->segment_map = mfirst;
3975 return TRUE;
3976
3977 error_return:
3978 if (sections != NULL)
3979 free (sections);
3980 return FALSE;
3981 }
3982
3983 /* Sort sections by address. */
3984
3985 static int
3986 elf_sort_sections (const void *arg1, const void *arg2)
3987 {
3988 const asection *sec1 = *(const asection **) arg1;
3989 const asection *sec2 = *(const asection **) arg2;
3990 bfd_size_type size1, size2;
3991
3992 /* Sort by LMA first, since this is the address used to
3993 place the section into a segment. */
3994 if (sec1->lma < sec2->lma)
3995 return -1;
3996 else if (sec1->lma > sec2->lma)
3997 return 1;
3998
3999 /* Then sort by VMA. Normally the LMA and the VMA will be
4000 the same, and this will do nothing. */
4001 if (sec1->vma < sec2->vma)
4002 return -1;
4003 else if (sec1->vma > sec2->vma)
4004 return 1;
4005
4006 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4007
4008 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4009
4010 if (TOEND (sec1))
4011 {
4012 if (TOEND (sec2))
4013 {
4014 /* If the indicies are the same, do not return 0
4015 here, but continue to try the next comparison. */
4016 if (sec1->target_index - sec2->target_index != 0)
4017 return sec1->target_index - sec2->target_index;
4018 }
4019 else
4020 return 1;
4021 }
4022 else if (TOEND (sec2))
4023 return -1;
4024
4025 #undef TOEND
4026
4027 /* Sort by size, to put zero sized sections
4028 before others at the same address. */
4029
4030 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4031 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4032
4033 if (size1 < size2)
4034 return -1;
4035 if (size1 > size2)
4036 return 1;
4037
4038 return sec1->target_index - sec2->target_index;
4039 }
4040
4041 /* Ian Lance Taylor writes:
4042
4043 We shouldn't be using % with a negative signed number. That's just
4044 not good. We have to make sure either that the number is not
4045 negative, or that the number has an unsigned type. When the types
4046 are all the same size they wind up as unsigned. When file_ptr is a
4047 larger signed type, the arithmetic winds up as signed long long,
4048 which is wrong.
4049
4050 What we're trying to say here is something like ``increase OFF by
4051 the least amount that will cause it to be equal to the VMA modulo
4052 the page size.'' */
4053 /* In other words, something like:
4054
4055 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4056 off_offset = off % bed->maxpagesize;
4057 if (vma_offset < off_offset)
4058 adjustment = vma_offset + bed->maxpagesize - off_offset;
4059 else
4060 adjustment = vma_offset - off_offset;
4061
4062 which can can be collapsed into the expression below. */
4063
4064 static file_ptr
4065 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4066 {
4067 return ((vma - off) % maxpagesize);
4068 }
4069
4070 static void
4071 print_segment_map (bfd *abfd)
4072 {
4073 struct elf_segment_map *m;
4074 unsigned int i, j;
4075
4076 fprintf (stderr, _(" Section to Segment mapping:\n"));
4077 fprintf (stderr, _(" Segment Sections...\n"));
4078
4079 for (i= 0, m = elf_tdata (abfd)->segment_map;
4080 m != NULL;
4081 i++, m = m->next)
4082 {
4083 const char *pt = get_segment_type (m->p_type);
4084 char buf[32];
4085
4086 if (pt == NULL)
4087 {
4088 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4089 sprintf (buf, "LOPROC+%7.7x",
4090 (unsigned int) (m->p_type - PT_LOPROC));
4091 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4092 sprintf (buf, "LOOS+%7.7x",
4093 (unsigned int) (m->p_type - PT_LOOS));
4094 else
4095 snprintf (buf, sizeof (buf), "%8.8x",
4096 (unsigned int) m->p_type);
4097 pt = buf;
4098 }
4099 fprintf (stderr, " %2.2d: %14.14s: ", i, pt);
4100 for (j = 0; j < m->count; j++)
4101 fprintf (stderr, "%s ", m->sections [j]->name);
4102 putc ('\n',stderr);
4103 }
4104 }
4105
4106 /* Assign file positions to the sections based on the mapping from
4107 sections to segments. This function also sets up some fields in
4108 the file header, and writes out the program headers. */
4109
4110 static bfd_boolean
4111 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
4112 {
4113 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4114 unsigned int count;
4115 struct elf_segment_map *m;
4116 unsigned int alloc;
4117 Elf_Internal_Phdr *phdrs;
4118 file_ptr off, voff;
4119 bfd_vma filehdr_vaddr, filehdr_paddr;
4120 bfd_vma phdrs_vaddr, phdrs_paddr;
4121 Elf_Internal_Phdr *p;
4122
4123 if (elf_tdata (abfd)->segment_map == NULL)
4124 {
4125 if (! map_sections_to_segments (abfd))
4126 return FALSE;
4127 }
4128 else
4129 {
4130 /* The placement algorithm assumes that non allocated sections are
4131 not in PT_LOAD segments. We ensure this here by removing such
4132 sections from the segment map. We also remove excluded
4133 sections. */
4134 for (m = elf_tdata (abfd)->segment_map;
4135 m != NULL;
4136 m = m->next)
4137 {
4138 unsigned int new_count;
4139 unsigned int i;
4140
4141 new_count = 0;
4142 for (i = 0; i < m->count; i ++)
4143 {
4144 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4145 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4146 || m->p_type != PT_LOAD))
4147 {
4148 if (i != new_count)
4149 m->sections[new_count] = m->sections[i];
4150
4151 new_count ++;
4152 }
4153 }
4154
4155 if (new_count != m->count)
4156 m->count = new_count;
4157 }
4158 }
4159
4160 if (bed->elf_backend_modify_segment_map)
4161 {
4162 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4163 return FALSE;
4164 }
4165
4166 count = 0;
4167 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4168 ++count;
4169
4170 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4171 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4172 elf_elfheader (abfd)->e_phnum = count;
4173
4174 if (count == 0)
4175 {
4176 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4177 return TRUE;
4178 }
4179
4180 /* If we already counted the number of program segments, make sure
4181 that we allocated enough space. This happens when SIZEOF_HEADERS
4182 is used in a linker script. */
4183 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4184 if (alloc != 0 && count > alloc)
4185 {
4186 ((*_bfd_error_handler)
4187 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4188 abfd, alloc, count));
4189 print_segment_map (abfd);
4190 bfd_set_error (bfd_error_bad_value);
4191 return FALSE;
4192 }
4193
4194 if (alloc == 0)
4195 alloc = count;
4196
4197 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4198 if (phdrs == NULL)
4199 return FALSE;
4200
4201 off = bed->s->sizeof_ehdr;
4202 off += alloc * bed->s->sizeof_phdr;
4203
4204 filehdr_vaddr = 0;
4205 filehdr_paddr = 0;
4206 phdrs_vaddr = 0;
4207 phdrs_paddr = 0;
4208
4209 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4210 m != NULL;
4211 m = m->next, p++)
4212 {
4213 unsigned int i;
4214 asection **secpp;
4215
4216 /* If elf_segment_map is not from map_sections_to_segments, the
4217 sections may not be correctly ordered. NOTE: sorting should
4218 not be done to the PT_NOTE section of a corefile, which may
4219 contain several pseudo-sections artificially created by bfd.
4220 Sorting these pseudo-sections breaks things badly. */
4221 if (m->count > 1
4222 && !(elf_elfheader (abfd)->e_type == ET_CORE
4223 && m->p_type == PT_NOTE))
4224 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4225 elf_sort_sections);
4226
4227 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4228 number of sections with contents contributing to both p_filesz
4229 and p_memsz, followed by a number of sections with no contents
4230 that just contribute to p_memsz. In this loop, OFF tracks next
4231 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4232 an adjustment we use for segments that have no file contents
4233 but need zero filled memory allocation. */
4234 voff = 0;
4235 p->p_type = m->p_type;
4236 p->p_flags = m->p_flags;
4237
4238 if (p->p_type == PT_LOAD
4239 && m->count > 0)
4240 {
4241 bfd_size_type align;
4242 bfd_vma adjust;
4243 unsigned int align_power = 0;
4244
4245 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4246 {
4247 unsigned int secalign;
4248
4249 secalign = bfd_get_section_alignment (abfd, *secpp);
4250 if (secalign > align_power)
4251 align_power = secalign;
4252 }
4253 align = (bfd_size_type) 1 << align_power;
4254
4255 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4256 align = bed->maxpagesize;
4257
4258 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4259 off += adjust;
4260 if (adjust != 0
4261 && !m->includes_filehdr
4262 && !m->includes_phdrs
4263 && (ufile_ptr) off >= align)
4264 {
4265 /* If the first section isn't loadable, the same holds for
4266 any other sections. Since the segment won't need file
4267 space, we can make p_offset overlap some prior segment.
4268 However, .tbss is special. If a segment starts with
4269 .tbss, we need to look at the next section to decide
4270 whether the segment has any loadable sections. */
4271 i = 0;
4272 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4273 {
4274 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4275 || ++i >= m->count)
4276 {
4277 off -= adjust;
4278 voff = adjust - align;
4279 break;
4280 }
4281 }
4282 }
4283 }
4284 /* Make sure the .dynamic section is the first section in the
4285 PT_DYNAMIC segment. */
4286 else if (p->p_type == PT_DYNAMIC
4287 && m->count > 1
4288 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4289 {
4290 _bfd_error_handler
4291 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4292 abfd);
4293 bfd_set_error (bfd_error_bad_value);
4294 return FALSE;
4295 }
4296
4297 if (m->count == 0)
4298 p->p_vaddr = 0;
4299 else
4300 p->p_vaddr = m->sections[0]->vma;
4301
4302 if (m->p_paddr_valid)
4303 p->p_paddr = m->p_paddr;
4304 else if (m->count == 0)
4305 p->p_paddr = 0;
4306 else
4307 p->p_paddr = m->sections[0]->lma;
4308
4309 if (p->p_type == PT_LOAD
4310 && (abfd->flags & D_PAGED) != 0)
4311 p->p_align = bed->maxpagesize;
4312 else if (m->count == 0)
4313 p->p_align = 1 << bed->s->log_file_align;
4314 else
4315 p->p_align = 0;
4316
4317 p->p_offset = 0;
4318 p->p_filesz = 0;
4319 p->p_memsz = 0;
4320
4321 if (m->includes_filehdr)
4322 {
4323 if (! m->p_flags_valid)
4324 p->p_flags |= PF_R;
4325 p->p_offset = 0;
4326 p->p_filesz = bed->s->sizeof_ehdr;
4327 p->p_memsz = bed->s->sizeof_ehdr;
4328 if (m->count > 0)
4329 {
4330 BFD_ASSERT (p->p_type == PT_LOAD);
4331
4332 if (p->p_vaddr < (bfd_vma) off)
4333 {
4334 (*_bfd_error_handler)
4335 (_("%B: Not enough room for program headers, try linking with -N"),
4336 abfd);
4337 bfd_set_error (bfd_error_bad_value);
4338 return FALSE;
4339 }
4340
4341 p->p_vaddr -= off;
4342 if (! m->p_paddr_valid)
4343 p->p_paddr -= off;
4344 }
4345 if (p->p_type == PT_LOAD)
4346 {
4347 filehdr_vaddr = p->p_vaddr;
4348 filehdr_paddr = p->p_paddr;
4349 }
4350 }
4351
4352 if (m->includes_phdrs)
4353 {
4354 if (! m->p_flags_valid)
4355 p->p_flags |= PF_R;
4356
4357 if (m->includes_filehdr)
4358 {
4359 if (p->p_type == PT_LOAD)
4360 {
4361 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4362 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4363 }
4364 }
4365 else
4366 {
4367 p->p_offset = bed->s->sizeof_ehdr;
4368
4369 if (m->count > 0)
4370 {
4371 BFD_ASSERT (p->p_type == PT_LOAD);
4372 p->p_vaddr -= off - p->p_offset;
4373 if (! m->p_paddr_valid)
4374 p->p_paddr -= off - p->p_offset;
4375 }
4376
4377 if (p->p_type == PT_LOAD)
4378 {
4379 phdrs_vaddr = p->p_vaddr;
4380 phdrs_paddr = p->p_paddr;
4381 }
4382 else
4383 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4384 }
4385
4386 p->p_filesz += alloc * bed->s->sizeof_phdr;
4387 p->p_memsz += alloc * bed->s->sizeof_phdr;
4388 }
4389
4390 if (p->p_type == PT_LOAD
4391 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4392 {
4393 if (! m->includes_filehdr && ! m->includes_phdrs)
4394 p->p_offset = off + voff;
4395 else
4396 {
4397 file_ptr adjust;
4398
4399 adjust = off - (p->p_offset + p->p_filesz);
4400 p->p_filesz += adjust;
4401 p->p_memsz += adjust;
4402 }
4403 }
4404
4405 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4406 {
4407 asection *sec;
4408 flagword flags;
4409 bfd_size_type align;
4410
4411 sec = *secpp;
4412 flags = sec->flags;
4413 align = 1 << bfd_get_section_alignment (abfd, sec);
4414
4415 if (p->p_type == PT_LOAD
4416 || p->p_type == PT_TLS)
4417 {
4418 bfd_signed_vma adjust;
4419
4420 if ((flags & SEC_LOAD) != 0)
4421 {
4422 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4423 if (adjust < 0)
4424 {
4425 (*_bfd_error_handler)
4426 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4427 abfd, sec, (unsigned long) sec->lma);
4428 adjust = 0;
4429 }
4430 off += adjust;
4431 p->p_filesz += adjust;
4432 p->p_memsz += adjust;
4433 }
4434 /* .tbss is special. It doesn't contribute to p_memsz of
4435 normal segments. */
4436 else if ((flags & SEC_THREAD_LOCAL) == 0
4437 || p->p_type == PT_TLS)
4438 {
4439 /* The section VMA must equal the file position
4440 modulo the page size. */
4441 bfd_size_type page = align;
4442 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4443 page = bed->maxpagesize;
4444 adjust = vma_page_aligned_bias (sec->vma,
4445 p->p_vaddr + p->p_memsz,
4446 page);
4447 p->p_memsz += adjust;
4448 }
4449 }
4450
4451 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4452 {
4453 /* The section at i == 0 is the one that actually contains
4454 everything. */
4455 if (i == 0)
4456 {
4457 sec->filepos = off;
4458 off += sec->size;
4459 p->p_filesz = sec->size;
4460 p->p_memsz = 0;
4461 p->p_align = 1;
4462 }
4463 else
4464 {
4465 /* The rest are fake sections that shouldn't be written. */
4466 sec->filepos = 0;
4467 sec->size = 0;
4468 sec->flags = 0;
4469 continue;
4470 }
4471 }
4472 else
4473 {
4474 if (p->p_type == PT_LOAD)
4475 {
4476 sec->filepos = off;
4477 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4478 1997, and the exact reason for it isn't clear. One
4479 plausible explanation is that it is to work around
4480 a problem we have with linker scripts using data
4481 statements in NOLOAD sections. I don't think it
4482 makes a great deal of sense to have such a section
4483 assigned to a PT_LOAD segment, but apparently
4484 people do this. The data statement results in a
4485 bfd_data_link_order being built, and these need
4486 section contents to write into. Eventually, we get
4487 to _bfd_elf_write_object_contents which writes any
4488 section with contents to the output. Make room
4489 here for the write, so that following segments are
4490 not trashed. */
4491 if ((flags & SEC_LOAD) != 0
4492 || (flags & SEC_HAS_CONTENTS) != 0)
4493 off += sec->size;
4494 }
4495
4496 if ((flags & SEC_LOAD) != 0)
4497 {
4498 p->p_filesz += sec->size;
4499 p->p_memsz += sec->size;
4500 }
4501 /* PR ld/594: Sections in note segments which are not loaded
4502 contribute to the file size but not the in-memory size. */
4503 else if (p->p_type == PT_NOTE
4504 && (flags & SEC_HAS_CONTENTS) != 0)
4505 p->p_filesz += sec->size;
4506
4507 /* .tbss is special. It doesn't contribute to p_memsz of
4508 normal segments. */
4509 else if ((flags & SEC_THREAD_LOCAL) == 0
4510 || p->p_type == PT_TLS)
4511 p->p_memsz += sec->size;
4512
4513 if (p->p_type == PT_TLS
4514 && sec->size == 0
4515 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4516 {
4517 struct bfd_link_order *o = sec->map_tail.link_order;
4518 if (o != NULL)
4519 p->p_memsz += o->offset + o->size;
4520 }
4521
4522 if (align > p->p_align
4523 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4524 p->p_align = align;
4525 }
4526
4527 if (! m->p_flags_valid)
4528 {
4529 p->p_flags |= PF_R;
4530 if ((flags & SEC_CODE) != 0)
4531 p->p_flags |= PF_X;
4532 if ((flags & SEC_READONLY) == 0)
4533 p->p_flags |= PF_W;
4534 }
4535 }
4536 }
4537
4538 /* Now that we have set the section file positions, we can set up
4539 the file positions for the non PT_LOAD segments. */
4540 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4541 m != NULL;
4542 m = m->next, p++)
4543 {
4544 if (p->p_type != PT_LOAD && m->count > 0)
4545 {
4546 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4547 /* If the section has not yet been assigned a file position,
4548 do so now. The ARM BPABI requires that .dynamic section
4549 not be marked SEC_ALLOC because it is not part of any
4550 PT_LOAD segment, so it will not be processed above. */
4551 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4552 {
4553 unsigned int i;
4554 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4555
4556 i = 1;
4557 while (i_shdrpp[i]->bfd_section != m->sections[0])
4558 ++i;
4559 off = (_bfd_elf_assign_file_position_for_section
4560 (i_shdrpp[i], off, TRUE));
4561 p->p_filesz = m->sections[0]->size;
4562 }
4563 p->p_offset = m->sections[0]->filepos;
4564 }
4565 if (m->count == 0)
4566 {
4567 if (m->includes_filehdr)
4568 {
4569 p->p_vaddr = filehdr_vaddr;
4570 if (! m->p_paddr_valid)
4571 p->p_paddr = filehdr_paddr;
4572 }
4573 else if (m->includes_phdrs)
4574 {
4575 p->p_vaddr = phdrs_vaddr;
4576 if (! m->p_paddr_valid)
4577 p->p_paddr = phdrs_paddr;
4578 }
4579 else if (p->p_type == PT_GNU_RELRO)
4580 {
4581 Elf_Internal_Phdr *lp;
4582
4583 for (lp = phdrs; lp < phdrs + count; ++lp)
4584 {
4585 if (lp->p_type == PT_LOAD
4586 && lp->p_vaddr <= link_info->relro_end
4587 && lp->p_vaddr >= link_info->relro_start
4588 && lp->p_vaddr + lp->p_filesz
4589 >= link_info->relro_end)
4590 break;
4591 }
4592
4593 if (lp < phdrs + count
4594 && link_info->relro_end > lp->p_vaddr)
4595 {
4596 p->p_vaddr = lp->p_vaddr;
4597 p->p_paddr = lp->p_paddr;
4598 p->p_offset = lp->p_offset;
4599 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4600 p->p_memsz = p->p_filesz;
4601 p->p_align = 1;
4602 p->p_flags = (lp->p_flags & ~PF_W);
4603 }
4604 else
4605 {
4606 memset (p, 0, sizeof *p);
4607 p->p_type = PT_NULL;
4608 }
4609 }
4610 }
4611 }
4612
4613 /* Clear out any program headers we allocated but did not use. */
4614 for (; count < alloc; count++, p++)
4615 {
4616 memset (p, 0, sizeof *p);
4617 p->p_type = PT_NULL;
4618 }
4619
4620 elf_tdata (abfd)->phdr = phdrs;
4621
4622 elf_tdata (abfd)->next_file_pos = off;
4623
4624 /* Write out the program headers. */
4625 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4626 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4627 return FALSE;
4628
4629 return TRUE;
4630 }
4631
4632 /* Get the size of the program header.
4633
4634 If this is called by the linker before any of the section VMA's are set, it
4635 can't calculate the correct value for a strange memory layout. This only
4636 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4637 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4638 data segment (exclusive of .interp and .dynamic).
4639
4640 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4641 will be two segments. */
4642
4643 static bfd_size_type
4644 get_program_header_size (bfd *abfd)
4645 {
4646 size_t segs;
4647 asection *s;
4648 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4649
4650 /* We can't return a different result each time we're called. */
4651 if (elf_tdata (abfd)->program_header_size != 0)
4652 return elf_tdata (abfd)->program_header_size;
4653
4654 if (elf_tdata (abfd)->segment_map != NULL)
4655 {
4656 struct elf_segment_map *m;
4657
4658 segs = 0;
4659 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4660 ++segs;
4661 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4662 return elf_tdata (abfd)->program_header_size;
4663 }
4664
4665 /* Assume we will need exactly two PT_LOAD segments: one for text
4666 and one for data. */
4667 segs = 2;
4668
4669 s = bfd_get_section_by_name (abfd, ".interp");
4670 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4671 {
4672 /* If we have a loadable interpreter section, we need a
4673 PT_INTERP segment. In this case, assume we also need a
4674 PT_PHDR segment, although that may not be true for all
4675 targets. */
4676 segs += 2;
4677 }
4678
4679 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4680 {
4681 /* We need a PT_DYNAMIC segment. */
4682 ++segs;
4683 }
4684
4685 if (elf_tdata (abfd)->eh_frame_hdr)
4686 {
4687 /* We need a PT_GNU_EH_FRAME segment. */
4688 ++segs;
4689 }
4690
4691 if (elf_tdata (abfd)->stack_flags)
4692 {
4693 /* We need a PT_GNU_STACK segment. */
4694 ++segs;
4695 }
4696
4697 if (elf_tdata (abfd)->relro)
4698 {
4699 /* We need a PT_GNU_RELRO segment. */
4700 ++segs;
4701 }
4702
4703 for (s = abfd->sections; s != NULL; s = s->next)
4704 {
4705 if ((s->flags & SEC_LOAD) != 0
4706 && strncmp (s->name, ".note", 5) == 0)
4707 {
4708 /* We need a PT_NOTE segment. */
4709 ++segs;
4710 }
4711 }
4712
4713 for (s = abfd->sections; s != NULL; s = s->next)
4714 {
4715 if (s->flags & SEC_THREAD_LOCAL)
4716 {
4717 /* We need a PT_TLS segment. */
4718 ++segs;
4719 break;
4720 }
4721 }
4722
4723 /* Let the backend count up any program headers it might need. */
4724 if (bed->elf_backend_additional_program_headers)
4725 {
4726 int a;
4727
4728 a = (*bed->elf_backend_additional_program_headers) (abfd);
4729 if (a == -1)
4730 abort ();
4731 segs += a;
4732 }
4733
4734 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4735 return elf_tdata (abfd)->program_header_size;
4736 }
4737
4738 /* Work out the file positions of all the sections. This is called by
4739 _bfd_elf_compute_section_file_positions. All the section sizes and
4740 VMAs must be known before this is called.
4741
4742 Reloc sections come in two flavours: Those processed specially as
4743 "side-channel" data attached to a section to which they apply, and
4744 those that bfd doesn't process as relocations. The latter sort are
4745 stored in a normal bfd section by bfd_section_from_shdr. We don't
4746 consider the former sort here, unless they form part of the loadable
4747 image. Reloc sections not assigned here will be handled later by
4748 assign_file_positions_for_relocs.
4749
4750 We also don't set the positions of the .symtab and .strtab here. */
4751
4752 static bfd_boolean
4753 assign_file_positions_except_relocs (bfd *abfd,
4754 struct bfd_link_info *link_info)
4755 {
4756 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4757 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4758 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4759 unsigned int num_sec = elf_numsections (abfd);
4760 file_ptr off;
4761 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4762
4763 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4764 && bfd_get_format (abfd) != bfd_core)
4765 {
4766 Elf_Internal_Shdr **hdrpp;
4767 unsigned int i;
4768
4769 /* Start after the ELF header. */
4770 off = i_ehdrp->e_ehsize;
4771
4772 /* We are not creating an executable, which means that we are
4773 not creating a program header, and that the actual order of
4774 the sections in the file is unimportant. */
4775 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4776 {
4777 Elf_Internal_Shdr *hdr;
4778
4779 hdr = *hdrpp;
4780 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4781 && hdr->bfd_section == NULL)
4782 || i == tdata->symtab_section
4783 || i == tdata->symtab_shndx_section
4784 || i == tdata->strtab_section)
4785 {
4786 hdr->sh_offset = -1;
4787 }
4788 else
4789 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4790
4791 if (i == SHN_LORESERVE - 1)
4792 {
4793 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4794 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4795 }
4796 }
4797 }
4798 else
4799 {
4800 unsigned int i;
4801 Elf_Internal_Shdr **hdrpp;
4802
4803 /* Assign file positions for the loaded sections based on the
4804 assignment of sections to segments. */
4805 if (! assign_file_positions_for_segments (abfd, link_info))
4806 return FALSE;
4807
4808 /* Assign file positions for the other sections. */
4809
4810 off = elf_tdata (abfd)->next_file_pos;
4811 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4812 {
4813 Elf_Internal_Shdr *hdr;
4814
4815 hdr = *hdrpp;
4816 if (hdr->bfd_section != NULL
4817 && hdr->bfd_section->filepos != 0)
4818 hdr->sh_offset = hdr->bfd_section->filepos;
4819 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4820 {
4821 ((*_bfd_error_handler)
4822 (_("%B: warning: allocated section `%s' not in segment"),
4823 abfd,
4824 (hdr->bfd_section == NULL
4825 ? "*unknown*"
4826 : hdr->bfd_section->name)));
4827 if ((abfd->flags & D_PAGED) != 0)
4828 off += vma_page_aligned_bias (hdr->sh_addr, off,
4829 bed->maxpagesize);
4830 else
4831 off += vma_page_aligned_bias (hdr->sh_addr, off,
4832 hdr->sh_addralign);
4833 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4834 FALSE);
4835 }
4836 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4837 && hdr->bfd_section == NULL)
4838 || hdr == i_shdrpp[tdata->symtab_section]
4839 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4840 || hdr == i_shdrpp[tdata->strtab_section])
4841 hdr->sh_offset = -1;
4842 else
4843 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4844
4845 if (i == SHN_LORESERVE - 1)
4846 {
4847 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4848 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4849 }
4850 }
4851 }
4852
4853 /* Place the section headers. */
4854 off = align_file_position (off, 1 << bed->s->log_file_align);
4855 i_ehdrp->e_shoff = off;
4856 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4857
4858 elf_tdata (abfd)->next_file_pos = off;
4859
4860 return TRUE;
4861 }
4862
4863 static bfd_boolean
4864 prep_headers (bfd *abfd)
4865 {
4866 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4867 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4868 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4869 struct elf_strtab_hash *shstrtab;
4870 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4871
4872 i_ehdrp = elf_elfheader (abfd);
4873 i_shdrp = elf_elfsections (abfd);
4874
4875 shstrtab = _bfd_elf_strtab_init ();
4876 if (shstrtab == NULL)
4877 return FALSE;
4878
4879 elf_shstrtab (abfd) = shstrtab;
4880
4881 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4882 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4883 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4884 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4885
4886 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4887 i_ehdrp->e_ident[EI_DATA] =
4888 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4889 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4890
4891 if ((abfd->flags & DYNAMIC) != 0)
4892 i_ehdrp->e_type = ET_DYN;
4893 else if ((abfd->flags & EXEC_P) != 0)
4894 i_ehdrp->e_type = ET_EXEC;
4895 else if (bfd_get_format (abfd) == bfd_core)
4896 i_ehdrp->e_type = ET_CORE;
4897 else
4898 i_ehdrp->e_type = ET_REL;
4899
4900 switch (bfd_get_arch (abfd))
4901 {
4902 case bfd_arch_unknown:
4903 i_ehdrp->e_machine = EM_NONE;
4904 break;
4905
4906 /* There used to be a long list of cases here, each one setting
4907 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4908 in the corresponding bfd definition. To avoid duplication,
4909 the switch was removed. Machines that need special handling
4910 can generally do it in elf_backend_final_write_processing(),
4911 unless they need the information earlier than the final write.
4912 Such need can generally be supplied by replacing the tests for
4913 e_machine with the conditions used to determine it. */
4914 default:
4915 i_ehdrp->e_machine = bed->elf_machine_code;
4916 }
4917
4918 i_ehdrp->e_version = bed->s->ev_current;
4919 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4920
4921 /* No program header, for now. */
4922 i_ehdrp->e_phoff = 0;
4923 i_ehdrp->e_phentsize = 0;
4924 i_ehdrp->e_phnum = 0;
4925
4926 /* Each bfd section is section header entry. */
4927 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4928 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4929
4930 /* If we're building an executable, we'll need a program header table. */
4931 if (abfd->flags & EXEC_P)
4932 /* It all happens later. */
4933 ;
4934 else
4935 {
4936 i_ehdrp->e_phentsize = 0;
4937 i_phdrp = 0;
4938 i_ehdrp->e_phoff = 0;
4939 }
4940
4941 elf_tdata (abfd)->symtab_hdr.sh_name =
4942 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4943 elf_tdata (abfd)->strtab_hdr.sh_name =
4944 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4945 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4946 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4947 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4948 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4949 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4950 return FALSE;
4951
4952 return TRUE;
4953 }
4954
4955 /* Assign file positions for all the reloc sections which are not part
4956 of the loadable file image. */
4957
4958 void
4959 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4960 {
4961 file_ptr off;
4962 unsigned int i, num_sec;
4963 Elf_Internal_Shdr **shdrpp;
4964
4965 off = elf_tdata (abfd)->next_file_pos;
4966
4967 num_sec = elf_numsections (abfd);
4968 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4969 {
4970 Elf_Internal_Shdr *shdrp;
4971
4972 shdrp = *shdrpp;
4973 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4974 && shdrp->sh_offset == -1)
4975 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4976 }
4977
4978 elf_tdata (abfd)->next_file_pos = off;
4979 }
4980
4981 bfd_boolean
4982 _bfd_elf_write_object_contents (bfd *abfd)
4983 {
4984 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4985 Elf_Internal_Ehdr *i_ehdrp;
4986 Elf_Internal_Shdr **i_shdrp;
4987 bfd_boolean failed;
4988 unsigned int count, num_sec;
4989
4990 if (! abfd->output_has_begun
4991 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4992 return FALSE;
4993
4994 i_shdrp = elf_elfsections (abfd);
4995 i_ehdrp = elf_elfheader (abfd);
4996
4997 failed = FALSE;
4998 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4999 if (failed)
5000 return FALSE;
5001
5002 _bfd_elf_assign_file_positions_for_relocs (abfd);
5003
5004 /* After writing the headers, we need to write the sections too... */
5005 num_sec = elf_numsections (abfd);
5006 for (count = 1; count < num_sec; count++)
5007 {
5008 if (bed->elf_backend_section_processing)
5009 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5010 if (i_shdrp[count]->contents)
5011 {
5012 bfd_size_type amt = i_shdrp[count]->sh_size;
5013
5014 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5015 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5016 return FALSE;
5017 }
5018 if (count == SHN_LORESERVE - 1)
5019 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5020 }
5021
5022 /* Write out the section header names. */
5023 if (elf_shstrtab (abfd) != NULL
5024 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5025 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5026 return FALSE;
5027
5028 if (bed->elf_backend_final_write_processing)
5029 (*bed->elf_backend_final_write_processing) (abfd,
5030 elf_tdata (abfd)->linker);
5031
5032 return bed->s->write_shdrs_and_ehdr (abfd);
5033 }
5034
5035 bfd_boolean
5036 _bfd_elf_write_corefile_contents (bfd *abfd)
5037 {
5038 /* Hopefully this can be done just like an object file. */
5039 return _bfd_elf_write_object_contents (abfd);
5040 }
5041
5042 /* Given a section, search the header to find them. */
5043
5044 int
5045 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5046 {
5047 const struct elf_backend_data *bed;
5048 int index;
5049
5050 if (elf_section_data (asect) != NULL
5051 && elf_section_data (asect)->this_idx != 0)
5052 return elf_section_data (asect)->this_idx;
5053
5054 if (bfd_is_abs_section (asect))
5055 index = SHN_ABS;
5056 else if (bfd_is_com_section (asect))
5057 index = SHN_COMMON;
5058 else if (bfd_is_und_section (asect))
5059 index = SHN_UNDEF;
5060 else
5061 index = -1;
5062
5063 bed = get_elf_backend_data (abfd);
5064 if (bed->elf_backend_section_from_bfd_section)
5065 {
5066 int retval = index;
5067
5068 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5069 return retval;
5070 }
5071
5072 if (index == -1)
5073 bfd_set_error (bfd_error_nonrepresentable_section);
5074
5075 return index;
5076 }
5077
5078 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5079 on error. */
5080
5081 int
5082 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5083 {
5084 asymbol *asym_ptr = *asym_ptr_ptr;
5085 int idx;
5086 flagword flags = asym_ptr->flags;
5087
5088 /* When gas creates relocations against local labels, it creates its
5089 own symbol for the section, but does put the symbol into the
5090 symbol chain, so udata is 0. When the linker is generating
5091 relocatable output, this section symbol may be for one of the
5092 input sections rather than the output section. */
5093 if (asym_ptr->udata.i == 0
5094 && (flags & BSF_SECTION_SYM)
5095 && asym_ptr->section)
5096 {
5097 int indx;
5098
5099 if (asym_ptr->section->output_section != NULL)
5100 indx = asym_ptr->section->output_section->index;
5101 else
5102 indx = asym_ptr->section->index;
5103 if (indx < elf_num_section_syms (abfd)
5104 && elf_section_syms (abfd)[indx] != NULL)
5105 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5106 }
5107
5108 idx = asym_ptr->udata.i;
5109
5110 if (idx == 0)
5111 {
5112 /* This case can occur when using --strip-symbol on a symbol
5113 which is used in a relocation entry. */
5114 (*_bfd_error_handler)
5115 (_("%B: symbol `%s' required but not present"),
5116 abfd, bfd_asymbol_name (asym_ptr));
5117 bfd_set_error (bfd_error_no_symbols);
5118 return -1;
5119 }
5120
5121 #if DEBUG & 4
5122 {
5123 fprintf (stderr,
5124 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5125 (long) asym_ptr, asym_ptr->name, idx, flags,
5126 elf_symbol_flags (flags));
5127 fflush (stderr);
5128 }
5129 #endif
5130
5131 return idx;
5132 }
5133
5134 /* Rewrite program header information. */
5135
5136 static bfd_boolean
5137 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5138 {
5139 Elf_Internal_Ehdr *iehdr;
5140 struct elf_segment_map *map;
5141 struct elf_segment_map *map_first;
5142 struct elf_segment_map **pointer_to_map;
5143 Elf_Internal_Phdr *segment;
5144 asection *section;
5145 unsigned int i;
5146 unsigned int num_segments;
5147 bfd_boolean phdr_included = FALSE;
5148 bfd_vma maxpagesize;
5149 struct elf_segment_map *phdr_adjust_seg = NULL;
5150 unsigned int phdr_adjust_num = 0;
5151 const struct elf_backend_data *bed;
5152
5153 bed = get_elf_backend_data (ibfd);
5154 iehdr = elf_elfheader (ibfd);
5155
5156 map_first = NULL;
5157 pointer_to_map = &map_first;
5158
5159 num_segments = elf_elfheader (ibfd)->e_phnum;
5160 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5161
5162 /* Returns the end address of the segment + 1. */
5163 #define SEGMENT_END(segment, start) \
5164 (start + (segment->p_memsz > segment->p_filesz \
5165 ? segment->p_memsz : segment->p_filesz))
5166
5167 #define SECTION_SIZE(section, segment) \
5168 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5169 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5170 ? section->size : 0)
5171
5172 /* Returns TRUE if the given section is contained within
5173 the given segment. VMA addresses are compared. */
5174 #define IS_CONTAINED_BY_VMA(section, segment) \
5175 (section->vma >= segment->p_vaddr \
5176 && (section->vma + SECTION_SIZE (section, segment) \
5177 <= (SEGMENT_END (segment, segment->p_vaddr))))
5178
5179 /* Returns TRUE if the given section is contained within
5180 the given segment. LMA addresses are compared. */
5181 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5182 (section->lma >= base \
5183 && (section->lma + SECTION_SIZE (section, segment) \
5184 <= SEGMENT_END (segment, base)))
5185
5186 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5187 #define IS_COREFILE_NOTE(p, s) \
5188 (p->p_type == PT_NOTE \
5189 && bfd_get_format (ibfd) == bfd_core \
5190 && s->vma == 0 && s->lma == 0 \
5191 && (bfd_vma) s->filepos >= p->p_offset \
5192 && ((bfd_vma) s->filepos + s->size \
5193 <= p->p_offset + p->p_filesz))
5194
5195 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5196 linker, which generates a PT_INTERP section with p_vaddr and
5197 p_memsz set to 0. */
5198 #define IS_SOLARIS_PT_INTERP(p, s) \
5199 (p->p_vaddr == 0 \
5200 && p->p_paddr == 0 \
5201 && p->p_memsz == 0 \
5202 && p->p_filesz > 0 \
5203 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5204 && s->size > 0 \
5205 && (bfd_vma) s->filepos >= p->p_offset \
5206 && ((bfd_vma) s->filepos + s->size \
5207 <= p->p_offset + p->p_filesz))
5208
5209 /* Decide if the given section should be included in the given segment.
5210 A section will be included if:
5211 1. It is within the address space of the segment -- we use the LMA
5212 if that is set for the segment and the VMA otherwise,
5213 2. It is an allocated segment,
5214 3. There is an output section associated with it,
5215 4. The section has not already been allocated to a previous segment.
5216 5. PT_GNU_STACK segments do not include any sections.
5217 6. PT_TLS segment includes only SHF_TLS sections.
5218 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5219 8. PT_DYNAMIC should not contain empty sections at the beginning
5220 (with the possible exception of .dynamic). */
5221 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5222 ((((segment->p_paddr \
5223 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5224 : IS_CONTAINED_BY_VMA (section, segment)) \
5225 && (section->flags & SEC_ALLOC) != 0) \
5226 || IS_COREFILE_NOTE (segment, section)) \
5227 && section->output_section != NULL \
5228 && segment->p_type != PT_GNU_STACK \
5229 && (segment->p_type != PT_TLS \
5230 || (section->flags & SEC_THREAD_LOCAL)) \
5231 && (segment->p_type == PT_LOAD \
5232 || segment->p_type == PT_TLS \
5233 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5234 && (segment->p_type != PT_DYNAMIC \
5235 || SECTION_SIZE (section, segment) > 0 \
5236 || (segment->p_paddr \
5237 ? segment->p_paddr != section->lma \
5238 : segment->p_vaddr != section->vma) \
5239 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5240 == 0)) \
5241 && ! section->segment_mark)
5242
5243 /* Returns TRUE iff seg1 starts after the end of seg2. */
5244 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5245 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5246
5247 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5248 their VMA address ranges and their LMA address ranges overlap.
5249 It is possible to have overlapping VMA ranges without overlapping LMA
5250 ranges. RedBoot images for example can have both .data and .bss mapped
5251 to the same VMA range, but with the .data section mapped to a different
5252 LMA. */
5253 #define SEGMENT_OVERLAPS(seg1, seg2) \
5254 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5255 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5256 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5257 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5258
5259 /* Initialise the segment mark field. */
5260 for (section = ibfd->sections; section != NULL; section = section->next)
5261 section->segment_mark = FALSE;
5262
5263 /* Scan through the segments specified in the program header
5264 of the input BFD. For this first scan we look for overlaps
5265 in the loadable segments. These can be created by weird
5266 parameters to objcopy. Also, fix some solaris weirdness. */
5267 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5268 i < num_segments;
5269 i++, segment++)
5270 {
5271 unsigned int j;
5272 Elf_Internal_Phdr *segment2;
5273
5274 if (segment->p_type == PT_INTERP)
5275 for (section = ibfd->sections; section; section = section->next)
5276 if (IS_SOLARIS_PT_INTERP (segment, section))
5277 {
5278 /* Mininal change so that the normal section to segment
5279 assignment code will work. */
5280 segment->p_vaddr = section->vma;
5281 break;
5282 }
5283
5284 if (segment->p_type != PT_LOAD)
5285 continue;
5286
5287 /* Determine if this segment overlaps any previous segments. */
5288 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5289 {
5290 bfd_signed_vma extra_length;
5291
5292 if (segment2->p_type != PT_LOAD
5293 || ! SEGMENT_OVERLAPS (segment, segment2))
5294 continue;
5295
5296 /* Merge the two segments together. */
5297 if (segment2->p_vaddr < segment->p_vaddr)
5298 {
5299 /* Extend SEGMENT2 to include SEGMENT and then delete
5300 SEGMENT. */
5301 extra_length =
5302 SEGMENT_END (segment, segment->p_vaddr)
5303 - SEGMENT_END (segment2, segment2->p_vaddr);
5304
5305 if (extra_length > 0)
5306 {
5307 segment2->p_memsz += extra_length;
5308 segment2->p_filesz += extra_length;
5309 }
5310
5311 segment->p_type = PT_NULL;
5312
5313 /* Since we have deleted P we must restart the outer loop. */
5314 i = 0;
5315 segment = elf_tdata (ibfd)->phdr;
5316 break;
5317 }
5318 else
5319 {
5320 /* Extend SEGMENT to include SEGMENT2 and then delete
5321 SEGMENT2. */
5322 extra_length =
5323 SEGMENT_END (segment2, segment2->p_vaddr)
5324 - SEGMENT_END (segment, segment->p_vaddr);
5325
5326 if (extra_length > 0)
5327 {
5328 segment->p_memsz += extra_length;
5329 segment->p_filesz += extra_length;
5330 }
5331
5332 segment2->p_type = PT_NULL;
5333 }
5334 }
5335 }
5336
5337 /* The second scan attempts to assign sections to segments. */
5338 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5339 i < num_segments;
5340 i ++, segment ++)
5341 {
5342 unsigned int section_count;
5343 asection ** sections;
5344 asection * output_section;
5345 unsigned int isec;
5346 bfd_vma matching_lma;
5347 bfd_vma suggested_lma;
5348 unsigned int j;
5349 bfd_size_type amt;
5350
5351 if (segment->p_type == PT_NULL)
5352 continue;
5353
5354 /* Compute how many sections might be placed into this segment. */
5355 for (section = ibfd->sections, section_count = 0;
5356 section != NULL;
5357 section = section->next)
5358 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5359 ++section_count;
5360
5361 /* Allocate a segment map big enough to contain
5362 all of the sections we have selected. */
5363 amt = sizeof (struct elf_segment_map);
5364 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5365 map = bfd_alloc (obfd, amt);
5366 if (map == NULL)
5367 return FALSE;
5368
5369 /* Initialise the fields of the segment map. Default to
5370 using the physical address of the segment in the input BFD. */
5371 map->next = NULL;
5372 map->p_type = segment->p_type;
5373 map->p_flags = segment->p_flags;
5374 map->p_flags_valid = 1;
5375 map->p_paddr = segment->p_paddr;
5376 map->p_paddr_valid = 1;
5377
5378 /* Determine if this segment contains the ELF file header
5379 and if it contains the program headers themselves. */
5380 map->includes_filehdr = (segment->p_offset == 0
5381 && segment->p_filesz >= iehdr->e_ehsize);
5382
5383 map->includes_phdrs = 0;
5384
5385 if (! phdr_included || segment->p_type != PT_LOAD)
5386 {
5387 map->includes_phdrs =
5388 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5389 && (segment->p_offset + segment->p_filesz
5390 >= ((bfd_vma) iehdr->e_phoff
5391 + iehdr->e_phnum * iehdr->e_phentsize)));
5392
5393 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5394 phdr_included = TRUE;
5395 }
5396
5397 if (section_count == 0)
5398 {
5399 /* Special segments, such as the PT_PHDR segment, may contain
5400 no sections, but ordinary, loadable segments should contain
5401 something. They are allowed by the ELF spec however, so only
5402 a warning is produced. */
5403 if (segment->p_type == PT_LOAD)
5404 (*_bfd_error_handler)
5405 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5406 ibfd);
5407
5408 map->count = 0;
5409 *pointer_to_map = map;
5410 pointer_to_map = &map->next;
5411
5412 continue;
5413 }
5414
5415 /* Now scan the sections in the input BFD again and attempt
5416 to add their corresponding output sections to the segment map.
5417 The problem here is how to handle an output section which has
5418 been moved (ie had its LMA changed). There are four possibilities:
5419
5420 1. None of the sections have been moved.
5421 In this case we can continue to use the segment LMA from the
5422 input BFD.
5423
5424 2. All of the sections have been moved by the same amount.
5425 In this case we can change the segment's LMA to match the LMA
5426 of the first section.
5427
5428 3. Some of the sections have been moved, others have not.
5429 In this case those sections which have not been moved can be
5430 placed in the current segment which will have to have its size,
5431 and possibly its LMA changed, and a new segment or segments will
5432 have to be created to contain the other sections.
5433
5434 4. The sections have been moved, but not by the same amount.
5435 In this case we can change the segment's LMA to match the LMA
5436 of the first section and we will have to create a new segment
5437 or segments to contain the other sections.
5438
5439 In order to save time, we allocate an array to hold the section
5440 pointers that we are interested in. As these sections get assigned
5441 to a segment, they are removed from this array. */
5442
5443 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5444 to work around this long long bug. */
5445 sections = bfd_malloc2 (section_count, sizeof (asection *));
5446 if (sections == NULL)
5447 return FALSE;
5448
5449 /* Step One: Scan for segment vs section LMA conflicts.
5450 Also add the sections to the section array allocated above.
5451 Also add the sections to the current segment. In the common
5452 case, where the sections have not been moved, this means that
5453 we have completely filled the segment, and there is nothing
5454 more to do. */
5455 isec = 0;
5456 matching_lma = 0;
5457 suggested_lma = 0;
5458
5459 for (j = 0, section = ibfd->sections;
5460 section != NULL;
5461 section = section->next)
5462 {
5463 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5464 {
5465 output_section = section->output_section;
5466
5467 sections[j ++] = section;
5468
5469 /* The Solaris native linker always sets p_paddr to 0.
5470 We try to catch that case here, and set it to the
5471 correct value. Note - some backends require that
5472 p_paddr be left as zero. */
5473 if (segment->p_paddr == 0
5474 && segment->p_vaddr != 0
5475 && (! bed->want_p_paddr_set_to_zero)
5476 && isec == 0
5477 && output_section->lma != 0
5478 && (output_section->vma == (segment->p_vaddr
5479 + (map->includes_filehdr
5480 ? iehdr->e_ehsize
5481 : 0)
5482 + (map->includes_phdrs
5483 ? (iehdr->e_phnum
5484 * iehdr->e_phentsize)
5485 : 0))))
5486 map->p_paddr = segment->p_vaddr;
5487
5488 /* Match up the physical address of the segment with the
5489 LMA address of the output section. */
5490 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5491 || IS_COREFILE_NOTE (segment, section)
5492 || (bed->want_p_paddr_set_to_zero &&
5493 IS_CONTAINED_BY_VMA (output_section, segment))
5494 )
5495 {
5496 if (matching_lma == 0)
5497 matching_lma = output_section->lma;
5498
5499 /* We assume that if the section fits within the segment
5500 then it does not overlap any other section within that
5501 segment. */
5502 map->sections[isec ++] = output_section;
5503 }
5504 else if (suggested_lma == 0)
5505 suggested_lma = output_section->lma;
5506 }
5507 }
5508
5509 BFD_ASSERT (j == section_count);
5510
5511 /* Step Two: Adjust the physical address of the current segment,
5512 if necessary. */
5513 if (isec == section_count)
5514 {
5515 /* All of the sections fitted within the segment as currently
5516 specified. This is the default case. Add the segment to
5517 the list of built segments and carry on to process the next
5518 program header in the input BFD. */
5519 map->count = section_count;
5520 *pointer_to_map = map;
5521 pointer_to_map = &map->next;
5522
5523 free (sections);
5524 continue;
5525 }
5526 else
5527 {
5528 if (matching_lma != 0)
5529 {
5530 /* At least one section fits inside the current segment.
5531 Keep it, but modify its physical address to match the
5532 LMA of the first section that fitted. */
5533 map->p_paddr = matching_lma;
5534 }
5535 else
5536 {
5537 /* None of the sections fitted inside the current segment.
5538 Change the current segment's physical address to match
5539 the LMA of the first section. */
5540 map->p_paddr = suggested_lma;
5541 }
5542
5543 /* Offset the segment physical address from the lma
5544 to allow for space taken up by elf headers. */
5545 if (map->includes_filehdr)
5546 map->p_paddr -= iehdr->e_ehsize;
5547
5548 if (map->includes_phdrs)
5549 {
5550 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5551
5552 /* iehdr->e_phnum is just an estimate of the number
5553 of program headers that we will need. Make a note
5554 here of the number we used and the segment we chose
5555 to hold these headers, so that we can adjust the
5556 offset when we know the correct value. */
5557 phdr_adjust_num = iehdr->e_phnum;
5558 phdr_adjust_seg = map;
5559 }
5560 }
5561
5562 /* Step Three: Loop over the sections again, this time assigning
5563 those that fit to the current segment and removing them from the
5564 sections array; but making sure not to leave large gaps. Once all
5565 possible sections have been assigned to the current segment it is
5566 added to the list of built segments and if sections still remain
5567 to be assigned, a new segment is constructed before repeating
5568 the loop. */
5569 isec = 0;
5570 do
5571 {
5572 map->count = 0;
5573 suggested_lma = 0;
5574
5575 /* Fill the current segment with sections that fit. */
5576 for (j = 0; j < section_count; j++)
5577 {
5578 section = sections[j];
5579
5580 if (section == NULL)
5581 continue;
5582
5583 output_section = section->output_section;
5584
5585 BFD_ASSERT (output_section != NULL);
5586
5587 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5588 || IS_COREFILE_NOTE (segment, section))
5589 {
5590 if (map->count == 0)
5591 {
5592 /* If the first section in a segment does not start at
5593 the beginning of the segment, then something is
5594 wrong. */
5595 if (output_section->lma !=
5596 (map->p_paddr
5597 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5598 + (map->includes_phdrs
5599 ? iehdr->e_phnum * iehdr->e_phentsize
5600 : 0)))
5601 abort ();
5602 }
5603 else
5604 {
5605 asection * prev_sec;
5606
5607 prev_sec = map->sections[map->count - 1];
5608
5609 /* If the gap between the end of the previous section
5610 and the start of this section is more than
5611 maxpagesize then we need to start a new segment. */
5612 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5613 maxpagesize)
5614 < BFD_ALIGN (output_section->lma, maxpagesize))
5615 || ((prev_sec->lma + prev_sec->size)
5616 > output_section->lma))
5617 {
5618 if (suggested_lma == 0)
5619 suggested_lma = output_section->lma;
5620
5621 continue;
5622 }
5623 }
5624
5625 map->sections[map->count++] = output_section;
5626 ++isec;
5627 sections[j] = NULL;
5628 section->segment_mark = TRUE;
5629 }
5630 else if (suggested_lma == 0)
5631 suggested_lma = output_section->lma;
5632 }
5633
5634 BFD_ASSERT (map->count > 0);
5635
5636 /* Add the current segment to the list of built segments. */
5637 *pointer_to_map = map;
5638 pointer_to_map = &map->next;
5639
5640 if (isec < section_count)
5641 {
5642 /* We still have not allocated all of the sections to
5643 segments. Create a new segment here, initialise it
5644 and carry on looping. */
5645 amt = sizeof (struct elf_segment_map);
5646 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5647 map = bfd_alloc (obfd, amt);
5648 if (map == NULL)
5649 {
5650 free (sections);
5651 return FALSE;
5652 }
5653
5654 /* Initialise the fields of the segment map. Set the physical
5655 physical address to the LMA of the first section that has
5656 not yet been assigned. */
5657 map->next = NULL;
5658 map->p_type = segment->p_type;
5659 map->p_flags = segment->p_flags;
5660 map->p_flags_valid = 1;
5661 map->p_paddr = suggested_lma;
5662 map->p_paddr_valid = 1;
5663 map->includes_filehdr = 0;
5664 map->includes_phdrs = 0;
5665 }
5666 }
5667 while (isec < section_count);
5668
5669 free (sections);
5670 }
5671
5672 /* The Solaris linker creates program headers in which all the
5673 p_paddr fields are zero. When we try to objcopy or strip such a
5674 file, we get confused. Check for this case, and if we find it
5675 reset the p_paddr_valid fields. */
5676 for (map = map_first; map != NULL; map = map->next)
5677 if (map->p_paddr != 0)
5678 break;
5679 if (map == NULL)
5680 for (map = map_first; map != NULL; map = map->next)
5681 map->p_paddr_valid = 0;
5682
5683 elf_tdata (obfd)->segment_map = map_first;
5684
5685 /* If we had to estimate the number of program headers that were
5686 going to be needed, then check our estimate now and adjust
5687 the offset if necessary. */
5688 if (phdr_adjust_seg != NULL)
5689 {
5690 unsigned int count;
5691
5692 for (count = 0, map = map_first; map != NULL; map = map->next)
5693 count++;
5694
5695 if (count > phdr_adjust_num)
5696 phdr_adjust_seg->p_paddr
5697 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5698 }
5699
5700 #undef SEGMENT_END
5701 #undef SECTION_SIZE
5702 #undef IS_CONTAINED_BY_VMA
5703 #undef IS_CONTAINED_BY_LMA
5704 #undef IS_COREFILE_NOTE
5705 #undef IS_SOLARIS_PT_INTERP
5706 #undef INCLUDE_SECTION_IN_SEGMENT
5707 #undef SEGMENT_AFTER_SEGMENT
5708 #undef SEGMENT_OVERLAPS
5709 return TRUE;
5710 }
5711
5712 /* Copy ELF program header information. */
5713
5714 static bfd_boolean
5715 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5716 {
5717 Elf_Internal_Ehdr *iehdr;
5718 struct elf_segment_map *map;
5719 struct elf_segment_map *map_first;
5720 struct elf_segment_map **pointer_to_map;
5721 Elf_Internal_Phdr *segment;
5722 unsigned int i;
5723 unsigned int num_segments;
5724 bfd_boolean phdr_included = FALSE;
5725
5726 iehdr = elf_elfheader (ibfd);
5727
5728 map_first = NULL;
5729 pointer_to_map = &map_first;
5730
5731 num_segments = elf_elfheader (ibfd)->e_phnum;
5732 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5733 i < num_segments;
5734 i++, segment++)
5735 {
5736 asection *section;
5737 unsigned int section_count;
5738 bfd_size_type amt;
5739 Elf_Internal_Shdr *this_hdr;
5740
5741 /* FIXME: Do we need to copy PT_NULL segment? */
5742 if (segment->p_type == PT_NULL)
5743 continue;
5744
5745 /* Compute how many sections are in this segment. */
5746 for (section = ibfd->sections, section_count = 0;
5747 section != NULL;
5748 section = section->next)
5749 {
5750 this_hdr = &(elf_section_data(section)->this_hdr);
5751 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5752 section_count++;
5753 }
5754
5755 /* Allocate a segment map big enough to contain
5756 all of the sections we have selected. */
5757 amt = sizeof (struct elf_segment_map);
5758 if (section_count != 0)
5759 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5760 map = bfd_alloc (obfd, amt);
5761 if (map == NULL)
5762 return FALSE;
5763
5764 /* Initialize the fields of the output segment map with the
5765 input segment. */
5766 map->next = NULL;
5767 map->p_type = segment->p_type;
5768 map->p_flags = segment->p_flags;
5769 map->p_flags_valid = 1;
5770 map->p_paddr = segment->p_paddr;
5771 map->p_paddr_valid = 1;
5772
5773 /* Determine if this segment contains the ELF file header
5774 and if it contains the program headers themselves. */
5775 map->includes_filehdr = (segment->p_offset == 0
5776 && segment->p_filesz >= iehdr->e_ehsize);
5777
5778 map->includes_phdrs = 0;
5779 if (! phdr_included || segment->p_type != PT_LOAD)
5780 {
5781 map->includes_phdrs =
5782 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5783 && (segment->p_offset + segment->p_filesz
5784 >= ((bfd_vma) iehdr->e_phoff
5785 + iehdr->e_phnum * iehdr->e_phentsize)));
5786
5787 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5788 phdr_included = TRUE;
5789 }
5790
5791 if (section_count != 0)
5792 {
5793 unsigned int isec = 0;
5794
5795 for (section = ibfd->sections;
5796 section != NULL;
5797 section = section->next)
5798 {
5799 this_hdr = &(elf_section_data(section)->this_hdr);
5800 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5801 map->sections[isec++] = section->output_section;
5802 }
5803 }
5804
5805 map->count = section_count;
5806 *pointer_to_map = map;
5807 pointer_to_map = &map->next;
5808 }
5809
5810 elf_tdata (obfd)->segment_map = map_first;
5811 return TRUE;
5812 }
5813
5814 /* Copy private BFD data. This copies or rewrites ELF program header
5815 information. */
5816
5817 static bfd_boolean
5818 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5819 {
5820 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5821 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5822 return TRUE;
5823
5824 if (elf_tdata (ibfd)->phdr == NULL)
5825 return TRUE;
5826
5827 if (ibfd->xvec == obfd->xvec)
5828 {
5829 /* Check if any sections in the input BFD covered by ELF program
5830 header are changed. */
5831 Elf_Internal_Phdr *segment;
5832 asection *section, *osec;
5833 unsigned int i, num_segments;
5834 Elf_Internal_Shdr *this_hdr;
5835
5836 /* Initialize the segment mark field. */
5837 for (section = obfd->sections; section != NULL;
5838 section = section->next)
5839 section->segment_mark = FALSE;
5840
5841 num_segments = elf_elfheader (ibfd)->e_phnum;
5842 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5843 i < num_segments;
5844 i++, segment++)
5845 {
5846 for (section = ibfd->sections;
5847 section != NULL; section = section->next)
5848 {
5849 /* We mark the output section so that we know it comes
5850 from the input BFD. */
5851 osec = section->output_section;
5852 if (osec)
5853 osec->segment_mark = TRUE;
5854
5855 /* Check if this section is covered by the segment. */
5856 this_hdr = &(elf_section_data(section)->this_hdr);
5857 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5858 {
5859 /* FIXME: Check if its output section is changed or
5860 removed. What else do we need to check? */
5861 if (osec == NULL
5862 || section->flags != osec->flags
5863 || section->lma != osec->lma
5864 || section->vma != osec->vma
5865 || section->size != osec->size
5866 || section->rawsize != osec->rawsize
5867 || section->alignment_power != osec->alignment_power)
5868 goto rewrite;
5869 }
5870 }
5871 }
5872
5873 /* Check to see if any output section doesn't come from the
5874 input BFD. */
5875 for (section = obfd->sections; section != NULL;
5876 section = section->next)
5877 {
5878 if (section->segment_mark == FALSE)
5879 goto rewrite;
5880 else
5881 section->segment_mark = FALSE;
5882 }
5883
5884 return copy_elf_program_header (ibfd, obfd);
5885 }
5886
5887 rewrite:
5888 return rewrite_elf_program_header (ibfd, obfd);
5889 }
5890
5891 /* Initialize private output section information from input section. */
5892
5893 bfd_boolean
5894 _bfd_elf_init_private_section_data (bfd *ibfd,
5895 asection *isec,
5896 bfd *obfd,
5897 asection *osec,
5898 struct bfd_link_info *link_info)
5899
5900 {
5901 Elf_Internal_Shdr *ihdr, *ohdr;
5902 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5903
5904 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5905 || obfd->xvec->flavour != bfd_target_elf_flavour)
5906 return TRUE;
5907
5908 /* FIXME: What if the output ELF section type has been set to
5909 something different? */
5910 if (elf_section_type (osec) == SHT_NULL)
5911 elf_section_type (osec) = elf_section_type (isec);
5912
5913 /* Set things up for objcopy and relocatable link. The output
5914 SHT_GROUP section will have its elf_next_in_group pointing back
5915 to the input group members. Ignore linker created group section.
5916 See elfNN_ia64_object_p in elfxx-ia64.c. */
5917
5918 if (need_group)
5919 {
5920 if (elf_sec_group (isec) == NULL
5921 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5922 {
5923 if (elf_section_flags (isec) & SHF_GROUP)
5924 elf_section_flags (osec) |= SHF_GROUP;
5925 elf_next_in_group (osec) = elf_next_in_group (isec);
5926 elf_group_name (osec) = elf_group_name (isec);
5927 }
5928 }
5929
5930 ihdr = &elf_section_data (isec)->this_hdr;
5931
5932 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5933 don't use the output section of the linked-to section since it
5934 may be NULL at this point. */
5935 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5936 {
5937 ohdr = &elf_section_data (osec)->this_hdr;
5938 ohdr->sh_flags |= SHF_LINK_ORDER;
5939 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5940 }
5941
5942 osec->use_rela_p = isec->use_rela_p;
5943
5944 return TRUE;
5945 }
5946
5947 /* Copy private section information. This copies over the entsize
5948 field, and sometimes the info field. */
5949
5950 bfd_boolean
5951 _bfd_elf_copy_private_section_data (bfd *ibfd,
5952 asection *isec,
5953 bfd *obfd,
5954 asection *osec)
5955 {
5956 Elf_Internal_Shdr *ihdr, *ohdr;
5957
5958 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5959 || obfd->xvec->flavour != bfd_target_elf_flavour)
5960 return TRUE;
5961
5962 ihdr = &elf_section_data (isec)->this_hdr;
5963 ohdr = &elf_section_data (osec)->this_hdr;
5964
5965 ohdr->sh_entsize = ihdr->sh_entsize;
5966
5967 if (ihdr->sh_type == SHT_SYMTAB
5968 || ihdr->sh_type == SHT_DYNSYM
5969 || ihdr->sh_type == SHT_GNU_verneed
5970 || ihdr->sh_type == SHT_GNU_verdef)
5971 ohdr->sh_info = ihdr->sh_info;
5972
5973 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5974 NULL);
5975 }
5976
5977 /* Copy private header information. */
5978
5979 bfd_boolean
5980 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5981 {
5982 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5983 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5984 return TRUE;
5985
5986 /* Copy over private BFD data if it has not already been copied.
5987 This must be done here, rather than in the copy_private_bfd_data
5988 entry point, because the latter is called after the section
5989 contents have been set, which means that the program headers have
5990 already been worked out. */
5991 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5992 {
5993 if (! copy_private_bfd_data (ibfd, obfd))
5994 return FALSE;
5995 }
5996
5997 return TRUE;
5998 }
5999
6000 /* Copy private symbol information. If this symbol is in a section
6001 which we did not map into a BFD section, try to map the section
6002 index correctly. We use special macro definitions for the mapped
6003 section indices; these definitions are interpreted by the
6004 swap_out_syms function. */
6005
6006 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6007 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6008 #define MAP_STRTAB (SHN_HIOS + 3)
6009 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6010 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6011
6012 bfd_boolean
6013 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6014 asymbol *isymarg,
6015 bfd *obfd,
6016 asymbol *osymarg)
6017 {
6018 elf_symbol_type *isym, *osym;
6019
6020 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6021 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6022 return TRUE;
6023
6024 isym = elf_symbol_from (ibfd, isymarg);
6025 osym = elf_symbol_from (obfd, osymarg);
6026
6027 if (isym != NULL
6028 && osym != NULL
6029 && bfd_is_abs_section (isym->symbol.section))
6030 {
6031 unsigned int shndx;
6032
6033 shndx = isym->internal_elf_sym.st_shndx;
6034 if (shndx == elf_onesymtab (ibfd))
6035 shndx = MAP_ONESYMTAB;
6036 else if (shndx == elf_dynsymtab (ibfd))
6037 shndx = MAP_DYNSYMTAB;
6038 else if (shndx == elf_tdata (ibfd)->strtab_section)
6039 shndx = MAP_STRTAB;
6040 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6041 shndx = MAP_SHSTRTAB;
6042 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6043 shndx = MAP_SYM_SHNDX;
6044 osym->internal_elf_sym.st_shndx = shndx;
6045 }
6046
6047 return TRUE;
6048 }
6049
6050 /* Swap out the symbols. */
6051
6052 static bfd_boolean
6053 swap_out_syms (bfd *abfd,
6054 struct bfd_strtab_hash **sttp,
6055 int relocatable_p)
6056 {
6057 const struct elf_backend_data *bed;
6058 int symcount;
6059 asymbol **syms;
6060 struct bfd_strtab_hash *stt;
6061 Elf_Internal_Shdr *symtab_hdr;
6062 Elf_Internal_Shdr *symtab_shndx_hdr;
6063 Elf_Internal_Shdr *symstrtab_hdr;
6064 bfd_byte *outbound_syms;
6065 bfd_byte *outbound_shndx;
6066 int idx;
6067 bfd_size_type amt;
6068 bfd_boolean name_local_sections;
6069
6070 if (!elf_map_symbols (abfd))
6071 return FALSE;
6072
6073 /* Dump out the symtabs. */
6074 stt = _bfd_elf_stringtab_init ();
6075 if (stt == NULL)
6076 return FALSE;
6077
6078 bed = get_elf_backend_data (abfd);
6079 symcount = bfd_get_symcount (abfd);
6080 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6081 symtab_hdr->sh_type = SHT_SYMTAB;
6082 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6083 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6084 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6085 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6086
6087 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6088 symstrtab_hdr->sh_type = SHT_STRTAB;
6089
6090 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6091 if (outbound_syms == NULL)
6092 {
6093 _bfd_stringtab_free (stt);
6094 return FALSE;
6095 }
6096 symtab_hdr->contents = outbound_syms;
6097
6098 outbound_shndx = NULL;
6099 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6100 if (symtab_shndx_hdr->sh_name != 0)
6101 {
6102 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6103 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6104 sizeof (Elf_External_Sym_Shndx));
6105 if (outbound_shndx == NULL)
6106 {
6107 _bfd_stringtab_free (stt);
6108 return FALSE;
6109 }
6110
6111 symtab_shndx_hdr->contents = outbound_shndx;
6112 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6113 symtab_shndx_hdr->sh_size = amt;
6114 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6115 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6116 }
6117
6118 /* Now generate the data (for "contents"). */
6119 {
6120 /* Fill in zeroth symbol and swap it out. */
6121 Elf_Internal_Sym sym;
6122 sym.st_name = 0;
6123 sym.st_value = 0;
6124 sym.st_size = 0;
6125 sym.st_info = 0;
6126 sym.st_other = 0;
6127 sym.st_shndx = SHN_UNDEF;
6128 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6129 outbound_syms += bed->s->sizeof_sym;
6130 if (outbound_shndx != NULL)
6131 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6132 }
6133
6134 name_local_sections
6135 = (bed->elf_backend_name_local_section_symbols
6136 && bed->elf_backend_name_local_section_symbols (abfd));
6137
6138 syms = bfd_get_outsymbols (abfd);
6139 for (idx = 0; idx < symcount; idx++)
6140 {
6141 Elf_Internal_Sym sym;
6142 bfd_vma value = syms[idx]->value;
6143 elf_symbol_type *type_ptr;
6144 flagword flags = syms[idx]->flags;
6145 int type;
6146
6147 if (!name_local_sections
6148 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6149 {
6150 /* Local section symbols have no name. */
6151 sym.st_name = 0;
6152 }
6153 else
6154 {
6155 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6156 syms[idx]->name,
6157 TRUE, FALSE);
6158 if (sym.st_name == (unsigned long) -1)
6159 {
6160 _bfd_stringtab_free (stt);
6161 return FALSE;
6162 }
6163 }
6164
6165 type_ptr = elf_symbol_from (abfd, syms[idx]);
6166
6167 if ((flags & BSF_SECTION_SYM) == 0
6168 && bfd_is_com_section (syms[idx]->section))
6169 {
6170 /* ELF common symbols put the alignment into the `value' field,
6171 and the size into the `size' field. This is backwards from
6172 how BFD handles it, so reverse it here. */
6173 sym.st_size = value;
6174 if (type_ptr == NULL
6175 || type_ptr->internal_elf_sym.st_value == 0)
6176 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6177 else
6178 sym.st_value = type_ptr->internal_elf_sym.st_value;
6179 sym.st_shndx = _bfd_elf_section_from_bfd_section
6180 (abfd, syms[idx]->section);
6181 }
6182 else
6183 {
6184 asection *sec = syms[idx]->section;
6185 int shndx;
6186
6187 if (sec->output_section)
6188 {
6189 value += sec->output_offset;
6190 sec = sec->output_section;
6191 }
6192
6193 /* Don't add in the section vma for relocatable output. */
6194 if (! relocatable_p)
6195 value += sec->vma;
6196 sym.st_value = value;
6197 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6198
6199 if (bfd_is_abs_section (sec)
6200 && type_ptr != NULL
6201 && type_ptr->internal_elf_sym.st_shndx != 0)
6202 {
6203 /* This symbol is in a real ELF section which we did
6204 not create as a BFD section. Undo the mapping done
6205 by copy_private_symbol_data. */
6206 shndx = type_ptr->internal_elf_sym.st_shndx;
6207 switch (shndx)
6208 {
6209 case MAP_ONESYMTAB:
6210 shndx = elf_onesymtab (abfd);
6211 break;
6212 case MAP_DYNSYMTAB:
6213 shndx = elf_dynsymtab (abfd);
6214 break;
6215 case MAP_STRTAB:
6216 shndx = elf_tdata (abfd)->strtab_section;
6217 break;
6218 case MAP_SHSTRTAB:
6219 shndx = elf_tdata (abfd)->shstrtab_section;
6220 break;
6221 case MAP_SYM_SHNDX:
6222 shndx = elf_tdata (abfd)->symtab_shndx_section;
6223 break;
6224 default:
6225 break;
6226 }
6227 }
6228 else
6229 {
6230 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6231
6232 if (shndx == -1)
6233 {
6234 asection *sec2;
6235
6236 /* Writing this would be a hell of a lot easier if
6237 we had some decent documentation on bfd, and
6238 knew what to expect of the library, and what to
6239 demand of applications. For example, it
6240 appears that `objcopy' might not set the
6241 section of a symbol to be a section that is
6242 actually in the output file. */
6243 sec2 = bfd_get_section_by_name (abfd, sec->name);
6244 if (sec2 == NULL)
6245 {
6246 _bfd_error_handler (_("\
6247 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6248 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6249 sec->name);
6250 bfd_set_error (bfd_error_invalid_operation);
6251 _bfd_stringtab_free (stt);
6252 return FALSE;
6253 }
6254
6255 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6256 BFD_ASSERT (shndx != -1);
6257 }
6258 }
6259
6260 sym.st_shndx = shndx;
6261 }
6262
6263 if ((flags & BSF_THREAD_LOCAL) != 0)
6264 type = STT_TLS;
6265 else if ((flags & BSF_FUNCTION) != 0)
6266 type = STT_FUNC;
6267 else if ((flags & BSF_OBJECT) != 0)
6268 type = STT_OBJECT;
6269 else
6270 type = STT_NOTYPE;
6271
6272 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6273 type = STT_TLS;
6274
6275 /* Processor-specific types. */
6276 if (type_ptr != NULL
6277 && bed->elf_backend_get_symbol_type)
6278 type = ((*bed->elf_backend_get_symbol_type)
6279 (&type_ptr->internal_elf_sym, type));
6280
6281 if (flags & BSF_SECTION_SYM)
6282 {
6283 if (flags & BSF_GLOBAL)
6284 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6285 else
6286 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6287 }
6288 else if (bfd_is_com_section (syms[idx]->section))
6289 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6290 else if (bfd_is_und_section (syms[idx]->section))
6291 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6292 ? STB_WEAK
6293 : STB_GLOBAL),
6294 type);
6295 else if (flags & BSF_FILE)
6296 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6297 else
6298 {
6299 int bind = STB_LOCAL;
6300
6301 if (flags & BSF_LOCAL)
6302 bind = STB_LOCAL;
6303 else if (flags & BSF_WEAK)
6304 bind = STB_WEAK;
6305 else if (flags & BSF_GLOBAL)
6306 bind = STB_GLOBAL;
6307
6308 sym.st_info = ELF_ST_INFO (bind, type);
6309 }
6310
6311 if (type_ptr != NULL)
6312 sym.st_other = type_ptr->internal_elf_sym.st_other;
6313 else
6314 sym.st_other = 0;
6315
6316 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6317 outbound_syms += bed->s->sizeof_sym;
6318 if (outbound_shndx != NULL)
6319 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6320 }
6321
6322 *sttp = stt;
6323 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6324 symstrtab_hdr->sh_type = SHT_STRTAB;
6325
6326 symstrtab_hdr->sh_flags = 0;
6327 symstrtab_hdr->sh_addr = 0;
6328 symstrtab_hdr->sh_entsize = 0;
6329 symstrtab_hdr->sh_link = 0;
6330 symstrtab_hdr->sh_info = 0;
6331 symstrtab_hdr->sh_addralign = 1;
6332
6333 return TRUE;
6334 }
6335
6336 /* Return the number of bytes required to hold the symtab vector.
6337
6338 Note that we base it on the count plus 1, since we will null terminate
6339 the vector allocated based on this size. However, the ELF symbol table
6340 always has a dummy entry as symbol #0, so it ends up even. */
6341
6342 long
6343 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6344 {
6345 long symcount;
6346 long symtab_size;
6347 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6348
6349 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6350 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6351 if (symcount > 0)
6352 symtab_size -= sizeof (asymbol *);
6353
6354 return symtab_size;
6355 }
6356
6357 long
6358 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6359 {
6360 long symcount;
6361 long symtab_size;
6362 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6363
6364 if (elf_dynsymtab (abfd) == 0)
6365 {
6366 bfd_set_error (bfd_error_invalid_operation);
6367 return -1;
6368 }
6369
6370 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6371 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6372 if (symcount > 0)
6373 symtab_size -= sizeof (asymbol *);
6374
6375 return symtab_size;
6376 }
6377
6378 long
6379 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6380 sec_ptr asect)
6381 {
6382 return (asect->reloc_count + 1) * sizeof (arelent *);
6383 }
6384
6385 /* Canonicalize the relocs. */
6386
6387 long
6388 _bfd_elf_canonicalize_reloc (bfd *abfd,
6389 sec_ptr section,
6390 arelent **relptr,
6391 asymbol **symbols)
6392 {
6393 arelent *tblptr;
6394 unsigned int i;
6395 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6396
6397 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6398 return -1;
6399
6400 tblptr = section->relocation;
6401 for (i = 0; i < section->reloc_count; i++)
6402 *relptr++ = tblptr++;
6403
6404 *relptr = NULL;
6405
6406 return section->reloc_count;
6407 }
6408
6409 long
6410 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6411 {
6412 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6413 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6414
6415 if (symcount >= 0)
6416 bfd_get_symcount (abfd) = symcount;
6417 return symcount;
6418 }
6419
6420 long
6421 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6422 asymbol **allocation)
6423 {
6424 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6425 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6426
6427 if (symcount >= 0)
6428 bfd_get_dynamic_symcount (abfd) = symcount;
6429 return symcount;
6430 }
6431
6432 /* Return the size required for the dynamic reloc entries. Any loadable
6433 section that was actually installed in the BFD, and has type SHT_REL
6434 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6435 dynamic reloc section. */
6436
6437 long
6438 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6439 {
6440 long ret;
6441 asection *s;
6442
6443 if (elf_dynsymtab (abfd) == 0)
6444 {
6445 bfd_set_error (bfd_error_invalid_operation);
6446 return -1;
6447 }
6448
6449 ret = sizeof (arelent *);
6450 for (s = abfd->sections; s != NULL; s = s->next)
6451 if ((s->flags & SEC_LOAD) != 0
6452 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6453 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6454 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6455 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6456 * sizeof (arelent *));
6457
6458 return ret;
6459 }
6460
6461 /* Canonicalize the dynamic relocation entries. Note that we return the
6462 dynamic relocations as a single block, although they are actually
6463 associated with particular sections; the interface, which was
6464 designed for SunOS style shared libraries, expects that there is only
6465 one set of dynamic relocs. Any loadable section that was actually
6466 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6467 dynamic symbol table, is considered to be a dynamic reloc section. */
6468
6469 long
6470 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6471 arelent **storage,
6472 asymbol **syms)
6473 {
6474 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6475 asection *s;
6476 long ret;
6477
6478 if (elf_dynsymtab (abfd) == 0)
6479 {
6480 bfd_set_error (bfd_error_invalid_operation);
6481 return -1;
6482 }
6483
6484 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6485 ret = 0;
6486 for (s = abfd->sections; s != NULL; s = s->next)
6487 {
6488 if ((s->flags & SEC_LOAD) != 0
6489 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6490 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6491 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6492 {
6493 arelent *p;
6494 long count, i;
6495
6496 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6497 return -1;
6498 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6499 p = s->relocation;
6500 for (i = 0; i < count; i++)
6501 *storage++ = p++;
6502 ret += count;
6503 }
6504 }
6505
6506 *storage = NULL;
6507
6508 return ret;
6509 }
6510 \f
6511 /* Read in the version information. */
6512
6513 bfd_boolean
6514 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6515 {
6516 bfd_byte *contents = NULL;
6517 unsigned int freeidx = 0;
6518
6519 if (elf_dynverref (abfd) != 0)
6520 {
6521 Elf_Internal_Shdr *hdr;
6522 Elf_External_Verneed *everneed;
6523 Elf_Internal_Verneed *iverneed;
6524 unsigned int i;
6525 bfd_byte *contents_end;
6526
6527 hdr = &elf_tdata (abfd)->dynverref_hdr;
6528
6529 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6530 sizeof (Elf_Internal_Verneed));
6531 if (elf_tdata (abfd)->verref == NULL)
6532 goto error_return;
6533
6534 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6535
6536 contents = bfd_malloc (hdr->sh_size);
6537 if (contents == NULL)
6538 {
6539 error_return_verref:
6540 elf_tdata (abfd)->verref = NULL;
6541 elf_tdata (abfd)->cverrefs = 0;
6542 goto error_return;
6543 }
6544 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6545 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6546 goto error_return_verref;
6547
6548 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6549 goto error_return_verref;
6550
6551 BFD_ASSERT (sizeof (Elf_External_Verneed)
6552 == sizeof (Elf_External_Vernaux));
6553 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6554 everneed = (Elf_External_Verneed *) contents;
6555 iverneed = elf_tdata (abfd)->verref;
6556 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6557 {
6558 Elf_External_Vernaux *evernaux;
6559 Elf_Internal_Vernaux *ivernaux;
6560 unsigned int j;
6561
6562 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6563
6564 iverneed->vn_bfd = abfd;
6565
6566 iverneed->vn_filename =
6567 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6568 iverneed->vn_file);
6569 if (iverneed->vn_filename == NULL)
6570 goto error_return_verref;
6571
6572 if (iverneed->vn_cnt == 0)
6573 iverneed->vn_auxptr = NULL;
6574 else
6575 {
6576 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6577 sizeof (Elf_Internal_Vernaux));
6578 if (iverneed->vn_auxptr == NULL)
6579 goto error_return_verref;
6580 }
6581
6582 if (iverneed->vn_aux
6583 > (size_t) (contents_end - (bfd_byte *) everneed))
6584 goto error_return_verref;
6585
6586 evernaux = ((Elf_External_Vernaux *)
6587 ((bfd_byte *) everneed + iverneed->vn_aux));
6588 ivernaux = iverneed->vn_auxptr;
6589 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6590 {
6591 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6592
6593 ivernaux->vna_nodename =
6594 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6595 ivernaux->vna_name);
6596 if (ivernaux->vna_nodename == NULL)
6597 goto error_return_verref;
6598
6599 if (j + 1 < iverneed->vn_cnt)
6600 ivernaux->vna_nextptr = ivernaux + 1;
6601 else
6602 ivernaux->vna_nextptr = NULL;
6603
6604 if (ivernaux->vna_next
6605 > (size_t) (contents_end - (bfd_byte *) evernaux))
6606 goto error_return_verref;
6607
6608 evernaux = ((Elf_External_Vernaux *)
6609 ((bfd_byte *) evernaux + ivernaux->vna_next));
6610
6611 if (ivernaux->vna_other > freeidx)
6612 freeidx = ivernaux->vna_other;
6613 }
6614
6615 if (i + 1 < hdr->sh_info)
6616 iverneed->vn_nextref = iverneed + 1;
6617 else
6618 iverneed->vn_nextref = NULL;
6619
6620 if (iverneed->vn_next
6621 > (size_t) (contents_end - (bfd_byte *) everneed))
6622 goto error_return_verref;
6623
6624 everneed = ((Elf_External_Verneed *)
6625 ((bfd_byte *) everneed + iverneed->vn_next));
6626 }
6627
6628 free (contents);
6629 contents = NULL;
6630 }
6631
6632 if (elf_dynverdef (abfd) != 0)
6633 {
6634 Elf_Internal_Shdr *hdr;
6635 Elf_External_Verdef *everdef;
6636 Elf_Internal_Verdef *iverdef;
6637 Elf_Internal_Verdef *iverdefarr;
6638 Elf_Internal_Verdef iverdefmem;
6639 unsigned int i;
6640 unsigned int maxidx;
6641 bfd_byte *contents_end_def, *contents_end_aux;
6642
6643 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6644
6645 contents = bfd_malloc (hdr->sh_size);
6646 if (contents == NULL)
6647 goto error_return;
6648 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6649 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6650 goto error_return;
6651
6652 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6653 goto error_return;
6654
6655 BFD_ASSERT (sizeof (Elf_External_Verdef)
6656 >= sizeof (Elf_External_Verdaux));
6657 contents_end_def = contents + hdr->sh_size
6658 - sizeof (Elf_External_Verdef);
6659 contents_end_aux = contents + hdr->sh_size
6660 - sizeof (Elf_External_Verdaux);
6661
6662 /* We know the number of entries in the section but not the maximum
6663 index. Therefore we have to run through all entries and find
6664 the maximum. */
6665 everdef = (Elf_External_Verdef *) contents;
6666 maxidx = 0;
6667 for (i = 0; i < hdr->sh_info; ++i)
6668 {
6669 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6670
6671 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6672 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6673
6674 if (iverdefmem.vd_next
6675 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6676 goto error_return;
6677
6678 everdef = ((Elf_External_Verdef *)
6679 ((bfd_byte *) everdef + iverdefmem.vd_next));
6680 }
6681
6682 if (default_imported_symver)
6683 {
6684 if (freeidx > maxidx)
6685 maxidx = ++freeidx;
6686 else
6687 freeidx = ++maxidx;
6688 }
6689 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6690 sizeof (Elf_Internal_Verdef));
6691 if (elf_tdata (abfd)->verdef == NULL)
6692 goto error_return;
6693
6694 elf_tdata (abfd)->cverdefs = maxidx;
6695
6696 everdef = (Elf_External_Verdef *) contents;
6697 iverdefarr = elf_tdata (abfd)->verdef;
6698 for (i = 0; i < hdr->sh_info; i++)
6699 {
6700 Elf_External_Verdaux *everdaux;
6701 Elf_Internal_Verdaux *iverdaux;
6702 unsigned int j;
6703
6704 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6705
6706 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6707 {
6708 error_return_verdef:
6709 elf_tdata (abfd)->verdef = NULL;
6710 elf_tdata (abfd)->cverdefs = 0;
6711 goto error_return;
6712 }
6713
6714 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6715 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6716
6717 iverdef->vd_bfd = abfd;
6718
6719 if (iverdef->vd_cnt == 0)
6720 iverdef->vd_auxptr = NULL;
6721 else
6722 {
6723 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6724 sizeof (Elf_Internal_Verdaux));
6725 if (iverdef->vd_auxptr == NULL)
6726 goto error_return_verdef;
6727 }
6728
6729 if (iverdef->vd_aux
6730 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6731 goto error_return_verdef;
6732
6733 everdaux = ((Elf_External_Verdaux *)
6734 ((bfd_byte *) everdef + iverdef->vd_aux));
6735 iverdaux = iverdef->vd_auxptr;
6736 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6737 {
6738 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6739
6740 iverdaux->vda_nodename =
6741 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6742 iverdaux->vda_name);
6743 if (iverdaux->vda_nodename == NULL)
6744 goto error_return_verdef;
6745
6746 if (j + 1 < iverdef->vd_cnt)
6747 iverdaux->vda_nextptr = iverdaux + 1;
6748 else
6749 iverdaux->vda_nextptr = NULL;
6750
6751 if (iverdaux->vda_next
6752 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6753 goto error_return_verdef;
6754
6755 everdaux = ((Elf_External_Verdaux *)
6756 ((bfd_byte *) everdaux + iverdaux->vda_next));
6757 }
6758
6759 if (iverdef->vd_cnt)
6760 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6761
6762 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6763 iverdef->vd_nextdef = iverdef + 1;
6764 else
6765 iverdef->vd_nextdef = NULL;
6766
6767 everdef = ((Elf_External_Verdef *)
6768 ((bfd_byte *) everdef + iverdef->vd_next));
6769 }
6770
6771 free (contents);
6772 contents = NULL;
6773 }
6774 else if (default_imported_symver)
6775 {
6776 if (freeidx < 3)
6777 freeidx = 3;
6778 else
6779 freeidx++;
6780
6781 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6782 sizeof (Elf_Internal_Verdef));
6783 if (elf_tdata (abfd)->verdef == NULL)
6784 goto error_return;
6785
6786 elf_tdata (abfd)->cverdefs = freeidx;
6787 }
6788
6789 /* Create a default version based on the soname. */
6790 if (default_imported_symver)
6791 {
6792 Elf_Internal_Verdef *iverdef;
6793 Elf_Internal_Verdaux *iverdaux;
6794
6795 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6796
6797 iverdef->vd_version = VER_DEF_CURRENT;
6798 iverdef->vd_flags = 0;
6799 iverdef->vd_ndx = freeidx;
6800 iverdef->vd_cnt = 1;
6801
6802 iverdef->vd_bfd = abfd;
6803
6804 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6805 if (iverdef->vd_nodename == NULL)
6806 goto error_return_verdef;
6807 iverdef->vd_nextdef = NULL;
6808 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6809 if (iverdef->vd_auxptr == NULL)
6810 goto error_return_verdef;
6811
6812 iverdaux = iverdef->vd_auxptr;
6813 iverdaux->vda_nodename = iverdef->vd_nodename;
6814 iverdaux->vda_nextptr = NULL;
6815 }
6816
6817 return TRUE;
6818
6819 error_return:
6820 if (contents != NULL)
6821 free (contents);
6822 return FALSE;
6823 }
6824 \f
6825 asymbol *
6826 _bfd_elf_make_empty_symbol (bfd *abfd)
6827 {
6828 elf_symbol_type *newsym;
6829 bfd_size_type amt = sizeof (elf_symbol_type);
6830
6831 newsym = bfd_zalloc (abfd, amt);
6832 if (!newsym)
6833 return NULL;
6834 else
6835 {
6836 newsym->symbol.the_bfd = abfd;
6837 return &newsym->symbol;
6838 }
6839 }
6840
6841 void
6842 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6843 asymbol *symbol,
6844 symbol_info *ret)
6845 {
6846 bfd_symbol_info (symbol, ret);
6847 }
6848
6849 /* Return whether a symbol name implies a local symbol. Most targets
6850 use this function for the is_local_label_name entry point, but some
6851 override it. */
6852
6853 bfd_boolean
6854 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6855 const char *name)
6856 {
6857 /* Normal local symbols start with ``.L''. */
6858 if (name[0] == '.' && name[1] == 'L')
6859 return TRUE;
6860
6861 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6862 DWARF debugging symbols starting with ``..''. */
6863 if (name[0] == '.' && name[1] == '.')
6864 return TRUE;
6865
6866 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6867 emitting DWARF debugging output. I suspect this is actually a
6868 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6869 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6870 underscore to be emitted on some ELF targets). For ease of use,
6871 we treat such symbols as local. */
6872 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6873 return TRUE;
6874
6875 return FALSE;
6876 }
6877
6878 alent *
6879 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6880 asymbol *symbol ATTRIBUTE_UNUSED)
6881 {
6882 abort ();
6883 return NULL;
6884 }
6885
6886 bfd_boolean
6887 _bfd_elf_set_arch_mach (bfd *abfd,
6888 enum bfd_architecture arch,
6889 unsigned long machine)
6890 {
6891 /* If this isn't the right architecture for this backend, and this
6892 isn't the generic backend, fail. */
6893 if (arch != get_elf_backend_data (abfd)->arch
6894 && arch != bfd_arch_unknown
6895 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6896 return FALSE;
6897
6898 return bfd_default_set_arch_mach (abfd, arch, machine);
6899 }
6900
6901 /* Find the function to a particular section and offset,
6902 for error reporting. */
6903
6904 static bfd_boolean
6905 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6906 asection *section,
6907 asymbol **symbols,
6908 bfd_vma offset,
6909 const char **filename_ptr,
6910 const char **functionname_ptr)
6911 {
6912 const char *filename;
6913 asymbol *func, *file;
6914 bfd_vma low_func;
6915 asymbol **p;
6916 /* ??? Given multiple file symbols, it is impossible to reliably
6917 choose the right file name for global symbols. File symbols are
6918 local symbols, and thus all file symbols must sort before any
6919 global symbols. The ELF spec may be interpreted to say that a
6920 file symbol must sort before other local symbols, but currently
6921 ld -r doesn't do this. So, for ld -r output, it is possible to
6922 make a better choice of file name for local symbols by ignoring
6923 file symbols appearing after a given local symbol. */
6924 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6925
6926 filename = NULL;
6927 func = NULL;
6928 file = NULL;
6929 low_func = 0;
6930 state = nothing_seen;
6931
6932 for (p = symbols; *p != NULL; p++)
6933 {
6934 elf_symbol_type *q;
6935
6936 q = (elf_symbol_type *) *p;
6937
6938 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6939 {
6940 default:
6941 break;
6942 case STT_FILE:
6943 file = &q->symbol;
6944 if (state == symbol_seen)
6945 state = file_after_symbol_seen;
6946 continue;
6947 case STT_NOTYPE:
6948 case STT_FUNC:
6949 if (bfd_get_section (&q->symbol) == section
6950 && q->symbol.value >= low_func
6951 && q->symbol.value <= offset)
6952 {
6953 func = (asymbol *) q;
6954 low_func = q->symbol.value;
6955 filename = NULL;
6956 if (file != NULL
6957 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6958 || state != file_after_symbol_seen))
6959 filename = bfd_asymbol_name (file);
6960 }
6961 break;
6962 }
6963 if (state == nothing_seen)
6964 state = symbol_seen;
6965 }
6966
6967 if (func == NULL)
6968 return FALSE;
6969
6970 if (filename_ptr)
6971 *filename_ptr = filename;
6972 if (functionname_ptr)
6973 *functionname_ptr = bfd_asymbol_name (func);
6974
6975 return TRUE;
6976 }
6977
6978 /* Find the nearest line to a particular section and offset,
6979 for error reporting. */
6980
6981 bfd_boolean
6982 _bfd_elf_find_nearest_line (bfd *abfd,
6983 asection *section,
6984 asymbol **symbols,
6985 bfd_vma offset,
6986 const char **filename_ptr,
6987 const char **functionname_ptr,
6988 unsigned int *line_ptr)
6989 {
6990 bfd_boolean found;
6991
6992 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6993 filename_ptr, functionname_ptr,
6994 line_ptr))
6995 {
6996 if (!*functionname_ptr)
6997 elf_find_function (abfd, section, symbols, offset,
6998 *filename_ptr ? NULL : filename_ptr,
6999 functionname_ptr);
7000
7001 return TRUE;
7002 }
7003
7004 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7005 filename_ptr, functionname_ptr,
7006 line_ptr, 0,
7007 &elf_tdata (abfd)->dwarf2_find_line_info))
7008 {
7009 if (!*functionname_ptr)
7010 elf_find_function (abfd, section, symbols, offset,
7011 *filename_ptr ? NULL : filename_ptr,
7012 functionname_ptr);
7013
7014 return TRUE;
7015 }
7016
7017 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7018 &found, filename_ptr,
7019 functionname_ptr, line_ptr,
7020 &elf_tdata (abfd)->line_info))
7021 return FALSE;
7022 if (found && (*functionname_ptr || *line_ptr))
7023 return TRUE;
7024
7025 if (symbols == NULL)
7026 return FALSE;
7027
7028 if (! elf_find_function (abfd, section, symbols, offset,
7029 filename_ptr, functionname_ptr))
7030 return FALSE;
7031
7032 *line_ptr = 0;
7033 return TRUE;
7034 }
7035
7036 /* Find the line for a symbol. */
7037
7038 bfd_boolean
7039 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7040 const char **filename_ptr, unsigned int *line_ptr)
7041 {
7042 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7043 filename_ptr, line_ptr, 0,
7044 &elf_tdata (abfd)->dwarf2_find_line_info);
7045 }
7046
7047 /* After a call to bfd_find_nearest_line, successive calls to
7048 bfd_find_inliner_info can be used to get source information about
7049 each level of function inlining that terminated at the address
7050 passed to bfd_find_nearest_line. Currently this is only supported
7051 for DWARF2 with appropriate DWARF3 extensions. */
7052
7053 bfd_boolean
7054 _bfd_elf_find_inliner_info (bfd *abfd,
7055 const char **filename_ptr,
7056 const char **functionname_ptr,
7057 unsigned int *line_ptr)
7058 {
7059 bfd_boolean found;
7060 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7061 functionname_ptr, line_ptr,
7062 & elf_tdata (abfd)->dwarf2_find_line_info);
7063 return found;
7064 }
7065
7066 int
7067 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
7068 {
7069 int ret;
7070
7071 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
7072 if (! reloc)
7073 ret += get_program_header_size (abfd);
7074 return ret;
7075 }
7076
7077 bfd_boolean
7078 _bfd_elf_set_section_contents (bfd *abfd,
7079 sec_ptr section,
7080 const void *location,
7081 file_ptr offset,
7082 bfd_size_type count)
7083 {
7084 Elf_Internal_Shdr *hdr;
7085 bfd_signed_vma pos;
7086
7087 if (! abfd->output_has_begun
7088 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7089 return FALSE;
7090
7091 hdr = &elf_section_data (section)->this_hdr;
7092 pos = hdr->sh_offset + offset;
7093 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7094 || bfd_bwrite (location, count, abfd) != count)
7095 return FALSE;
7096
7097 return TRUE;
7098 }
7099
7100 void
7101 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7102 arelent *cache_ptr ATTRIBUTE_UNUSED,
7103 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7104 {
7105 abort ();
7106 }
7107
7108 /* Try to convert a non-ELF reloc into an ELF one. */
7109
7110 bfd_boolean
7111 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7112 {
7113 /* Check whether we really have an ELF howto. */
7114
7115 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7116 {
7117 bfd_reloc_code_real_type code;
7118 reloc_howto_type *howto;
7119
7120 /* Alien reloc: Try to determine its type to replace it with an
7121 equivalent ELF reloc. */
7122
7123 if (areloc->howto->pc_relative)
7124 {
7125 switch (areloc->howto->bitsize)
7126 {
7127 case 8:
7128 code = BFD_RELOC_8_PCREL;
7129 break;
7130 case 12:
7131 code = BFD_RELOC_12_PCREL;
7132 break;
7133 case 16:
7134 code = BFD_RELOC_16_PCREL;
7135 break;
7136 case 24:
7137 code = BFD_RELOC_24_PCREL;
7138 break;
7139 case 32:
7140 code = BFD_RELOC_32_PCREL;
7141 break;
7142 case 64:
7143 code = BFD_RELOC_64_PCREL;
7144 break;
7145 default:
7146 goto fail;
7147 }
7148
7149 howto = bfd_reloc_type_lookup (abfd, code);
7150
7151 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7152 {
7153 if (howto->pcrel_offset)
7154 areloc->addend += areloc->address;
7155 else
7156 areloc->addend -= areloc->address; /* addend is unsigned!! */
7157 }
7158 }
7159 else
7160 {
7161 switch (areloc->howto->bitsize)
7162 {
7163 case 8:
7164 code = BFD_RELOC_8;
7165 break;
7166 case 14:
7167 code = BFD_RELOC_14;
7168 break;
7169 case 16:
7170 code = BFD_RELOC_16;
7171 break;
7172 case 26:
7173 code = BFD_RELOC_26;
7174 break;
7175 case 32:
7176 code = BFD_RELOC_32;
7177 break;
7178 case 64:
7179 code = BFD_RELOC_64;
7180 break;
7181 default:
7182 goto fail;
7183 }
7184
7185 howto = bfd_reloc_type_lookup (abfd, code);
7186 }
7187
7188 if (howto)
7189 areloc->howto = howto;
7190 else
7191 goto fail;
7192 }
7193
7194 return TRUE;
7195
7196 fail:
7197 (*_bfd_error_handler)
7198 (_("%B: unsupported relocation type %s"),
7199 abfd, areloc->howto->name);
7200 bfd_set_error (bfd_error_bad_value);
7201 return FALSE;
7202 }
7203
7204 bfd_boolean
7205 _bfd_elf_close_and_cleanup (bfd *abfd)
7206 {
7207 if (bfd_get_format (abfd) == bfd_object)
7208 {
7209 if (elf_shstrtab (abfd) != NULL)
7210 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7211 _bfd_dwarf2_cleanup_debug_info (abfd);
7212 }
7213
7214 return _bfd_generic_close_and_cleanup (abfd);
7215 }
7216
7217 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7218 in the relocation's offset. Thus we cannot allow any sort of sanity
7219 range-checking to interfere. There is nothing else to do in processing
7220 this reloc. */
7221
7222 bfd_reloc_status_type
7223 _bfd_elf_rel_vtable_reloc_fn
7224 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7225 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7226 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7227 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7228 {
7229 return bfd_reloc_ok;
7230 }
7231 \f
7232 /* Elf core file support. Much of this only works on native
7233 toolchains, since we rely on knowing the
7234 machine-dependent procfs structure in order to pick
7235 out details about the corefile. */
7236
7237 #ifdef HAVE_SYS_PROCFS_H
7238 # include <sys/procfs.h>
7239 #endif
7240
7241 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7242
7243 static int
7244 elfcore_make_pid (bfd *abfd)
7245 {
7246 return ((elf_tdata (abfd)->core_lwpid << 16)
7247 + (elf_tdata (abfd)->core_pid));
7248 }
7249
7250 /* If there isn't a section called NAME, make one, using
7251 data from SECT. Note, this function will generate a
7252 reference to NAME, so you shouldn't deallocate or
7253 overwrite it. */
7254
7255 static bfd_boolean
7256 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7257 {
7258 asection *sect2;
7259
7260 if (bfd_get_section_by_name (abfd, name) != NULL)
7261 return TRUE;
7262
7263 sect2 = bfd_make_section (abfd, name);
7264 if (sect2 == NULL)
7265 return FALSE;
7266
7267 sect2->size = sect->size;
7268 sect2->filepos = sect->filepos;
7269 sect2->flags = sect->flags;
7270 sect2->alignment_power = sect->alignment_power;
7271 return TRUE;
7272 }
7273
7274 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7275 actually creates up to two pseudosections:
7276 - For the single-threaded case, a section named NAME, unless
7277 such a section already exists.
7278 - For the multi-threaded case, a section named "NAME/PID", where
7279 PID is elfcore_make_pid (abfd).
7280 Both pseudosections have identical contents. */
7281 bfd_boolean
7282 _bfd_elfcore_make_pseudosection (bfd *abfd,
7283 char *name,
7284 size_t size,
7285 ufile_ptr filepos)
7286 {
7287 char buf[100];
7288 char *threaded_name;
7289 size_t len;
7290 asection *sect;
7291
7292 /* Build the section name. */
7293
7294 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7295 len = strlen (buf) + 1;
7296 threaded_name = bfd_alloc (abfd, len);
7297 if (threaded_name == NULL)
7298 return FALSE;
7299 memcpy (threaded_name, buf, len);
7300
7301 sect = bfd_make_section_anyway (abfd, threaded_name);
7302 if (sect == NULL)
7303 return FALSE;
7304 sect->size = size;
7305 sect->filepos = filepos;
7306 sect->flags = SEC_HAS_CONTENTS;
7307 sect->alignment_power = 2;
7308
7309 return elfcore_maybe_make_sect (abfd, name, sect);
7310 }
7311
7312 /* prstatus_t exists on:
7313 solaris 2.5+
7314 linux 2.[01] + glibc
7315 unixware 4.2
7316 */
7317
7318 #if defined (HAVE_PRSTATUS_T)
7319
7320 static bfd_boolean
7321 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7322 {
7323 size_t size;
7324 int offset;
7325
7326 if (note->descsz == sizeof (prstatus_t))
7327 {
7328 prstatus_t prstat;
7329
7330 size = sizeof (prstat.pr_reg);
7331 offset = offsetof (prstatus_t, pr_reg);
7332 memcpy (&prstat, note->descdata, sizeof (prstat));
7333
7334 /* Do not overwrite the core signal if it
7335 has already been set by another thread. */
7336 if (elf_tdata (abfd)->core_signal == 0)
7337 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7338 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7339
7340 /* pr_who exists on:
7341 solaris 2.5+
7342 unixware 4.2
7343 pr_who doesn't exist on:
7344 linux 2.[01]
7345 */
7346 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7347 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7348 #endif
7349 }
7350 #if defined (HAVE_PRSTATUS32_T)
7351 else if (note->descsz == sizeof (prstatus32_t))
7352 {
7353 /* 64-bit host, 32-bit corefile */
7354 prstatus32_t prstat;
7355
7356 size = sizeof (prstat.pr_reg);
7357 offset = offsetof (prstatus32_t, pr_reg);
7358 memcpy (&prstat, note->descdata, sizeof (prstat));
7359
7360 /* Do not overwrite the core signal if it
7361 has already been set by another thread. */
7362 if (elf_tdata (abfd)->core_signal == 0)
7363 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7364 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7365
7366 /* pr_who exists on:
7367 solaris 2.5+
7368 unixware 4.2
7369 pr_who doesn't exist on:
7370 linux 2.[01]
7371 */
7372 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7373 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7374 #endif
7375 }
7376 #endif /* HAVE_PRSTATUS32_T */
7377 else
7378 {
7379 /* Fail - we don't know how to handle any other
7380 note size (ie. data object type). */
7381 return TRUE;
7382 }
7383
7384 /* Make a ".reg/999" section and a ".reg" section. */
7385 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7386 size, note->descpos + offset);
7387 }
7388 #endif /* defined (HAVE_PRSTATUS_T) */
7389
7390 /* Create a pseudosection containing the exact contents of NOTE. */
7391 static bfd_boolean
7392 elfcore_make_note_pseudosection (bfd *abfd,
7393 char *name,
7394 Elf_Internal_Note *note)
7395 {
7396 return _bfd_elfcore_make_pseudosection (abfd, name,
7397 note->descsz, note->descpos);
7398 }
7399
7400 /* There isn't a consistent prfpregset_t across platforms,
7401 but it doesn't matter, because we don't have to pick this
7402 data structure apart. */
7403
7404 static bfd_boolean
7405 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7406 {
7407 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7408 }
7409
7410 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7411 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7412 literally. */
7413
7414 static bfd_boolean
7415 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7416 {
7417 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7418 }
7419
7420 #if defined (HAVE_PRPSINFO_T)
7421 typedef prpsinfo_t elfcore_psinfo_t;
7422 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7423 typedef prpsinfo32_t elfcore_psinfo32_t;
7424 #endif
7425 #endif
7426
7427 #if defined (HAVE_PSINFO_T)
7428 typedef psinfo_t elfcore_psinfo_t;
7429 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7430 typedef psinfo32_t elfcore_psinfo32_t;
7431 #endif
7432 #endif
7433
7434 /* return a malloc'ed copy of a string at START which is at
7435 most MAX bytes long, possibly without a terminating '\0'.
7436 the copy will always have a terminating '\0'. */
7437
7438 char *
7439 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7440 {
7441 char *dups;
7442 char *end = memchr (start, '\0', max);
7443 size_t len;
7444
7445 if (end == NULL)
7446 len = max;
7447 else
7448 len = end - start;
7449
7450 dups = bfd_alloc (abfd, len + 1);
7451 if (dups == NULL)
7452 return NULL;
7453
7454 memcpy (dups, start, len);
7455 dups[len] = '\0';
7456
7457 return dups;
7458 }
7459
7460 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7461 static bfd_boolean
7462 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7463 {
7464 if (note->descsz == sizeof (elfcore_psinfo_t))
7465 {
7466 elfcore_psinfo_t psinfo;
7467
7468 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7469
7470 elf_tdata (abfd)->core_program
7471 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7472 sizeof (psinfo.pr_fname));
7473
7474 elf_tdata (abfd)->core_command
7475 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7476 sizeof (psinfo.pr_psargs));
7477 }
7478 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7479 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7480 {
7481 /* 64-bit host, 32-bit corefile */
7482 elfcore_psinfo32_t psinfo;
7483
7484 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7485
7486 elf_tdata (abfd)->core_program
7487 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7488 sizeof (psinfo.pr_fname));
7489
7490 elf_tdata (abfd)->core_command
7491 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7492 sizeof (psinfo.pr_psargs));
7493 }
7494 #endif
7495
7496 else
7497 {
7498 /* Fail - we don't know how to handle any other
7499 note size (ie. data object type). */
7500 return TRUE;
7501 }
7502
7503 /* Note that for some reason, a spurious space is tacked
7504 onto the end of the args in some (at least one anyway)
7505 implementations, so strip it off if it exists. */
7506
7507 {
7508 char *command = elf_tdata (abfd)->core_command;
7509 int n = strlen (command);
7510
7511 if (0 < n && command[n - 1] == ' ')
7512 command[n - 1] = '\0';
7513 }
7514
7515 return TRUE;
7516 }
7517 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7518
7519 #if defined (HAVE_PSTATUS_T)
7520 static bfd_boolean
7521 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7522 {
7523 if (note->descsz == sizeof (pstatus_t)
7524 #if defined (HAVE_PXSTATUS_T)
7525 || note->descsz == sizeof (pxstatus_t)
7526 #endif
7527 )
7528 {
7529 pstatus_t pstat;
7530
7531 memcpy (&pstat, note->descdata, sizeof (pstat));
7532
7533 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7534 }
7535 #if defined (HAVE_PSTATUS32_T)
7536 else if (note->descsz == sizeof (pstatus32_t))
7537 {
7538 /* 64-bit host, 32-bit corefile */
7539 pstatus32_t pstat;
7540
7541 memcpy (&pstat, note->descdata, sizeof (pstat));
7542
7543 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7544 }
7545 #endif
7546 /* Could grab some more details from the "representative"
7547 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7548 NT_LWPSTATUS note, presumably. */
7549
7550 return TRUE;
7551 }
7552 #endif /* defined (HAVE_PSTATUS_T) */
7553
7554 #if defined (HAVE_LWPSTATUS_T)
7555 static bfd_boolean
7556 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7557 {
7558 lwpstatus_t lwpstat;
7559 char buf[100];
7560 char *name;
7561 size_t len;
7562 asection *sect;
7563
7564 if (note->descsz != sizeof (lwpstat)
7565 #if defined (HAVE_LWPXSTATUS_T)
7566 && note->descsz != sizeof (lwpxstatus_t)
7567 #endif
7568 )
7569 return TRUE;
7570
7571 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7572
7573 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7574 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7575
7576 /* Make a ".reg/999" section. */
7577
7578 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7579 len = strlen (buf) + 1;
7580 name = bfd_alloc (abfd, len);
7581 if (name == NULL)
7582 return FALSE;
7583 memcpy (name, buf, len);
7584
7585 sect = bfd_make_section_anyway (abfd, name);
7586 if (sect == NULL)
7587 return FALSE;
7588
7589 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7590 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7591 sect->filepos = note->descpos
7592 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7593 #endif
7594
7595 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7596 sect->size = sizeof (lwpstat.pr_reg);
7597 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7598 #endif
7599
7600 sect->flags = SEC_HAS_CONTENTS;
7601 sect->alignment_power = 2;
7602
7603 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7604 return FALSE;
7605
7606 /* Make a ".reg2/999" section */
7607
7608 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7609 len = strlen (buf) + 1;
7610 name = bfd_alloc (abfd, len);
7611 if (name == NULL)
7612 return FALSE;
7613 memcpy (name, buf, len);
7614
7615 sect = bfd_make_section_anyway (abfd, name);
7616 if (sect == NULL)
7617 return FALSE;
7618
7619 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7620 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7621 sect->filepos = note->descpos
7622 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7623 #endif
7624
7625 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7626 sect->size = sizeof (lwpstat.pr_fpreg);
7627 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7628 #endif
7629
7630 sect->flags = SEC_HAS_CONTENTS;
7631 sect->alignment_power = 2;
7632
7633 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7634 }
7635 #endif /* defined (HAVE_LWPSTATUS_T) */
7636
7637 #if defined (HAVE_WIN32_PSTATUS_T)
7638 static bfd_boolean
7639 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7640 {
7641 char buf[30];
7642 char *name;
7643 size_t len;
7644 asection *sect;
7645 win32_pstatus_t pstatus;
7646
7647 if (note->descsz < sizeof (pstatus))
7648 return TRUE;
7649
7650 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7651
7652 switch (pstatus.data_type)
7653 {
7654 case NOTE_INFO_PROCESS:
7655 /* FIXME: need to add ->core_command. */
7656 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7657 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7658 break;
7659
7660 case NOTE_INFO_THREAD:
7661 /* Make a ".reg/999" section. */
7662 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7663
7664 len = strlen (buf) + 1;
7665 name = bfd_alloc (abfd, len);
7666 if (name == NULL)
7667 return FALSE;
7668
7669 memcpy (name, buf, len);
7670
7671 sect = bfd_make_section_anyway (abfd, name);
7672 if (sect == NULL)
7673 return FALSE;
7674
7675 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7676 sect->filepos = (note->descpos
7677 + offsetof (struct win32_pstatus,
7678 data.thread_info.thread_context));
7679 sect->flags = SEC_HAS_CONTENTS;
7680 sect->alignment_power = 2;
7681
7682 if (pstatus.data.thread_info.is_active_thread)
7683 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7684 return FALSE;
7685 break;
7686
7687 case NOTE_INFO_MODULE:
7688 /* Make a ".module/xxxxxxxx" section. */
7689 sprintf (buf, ".module/%08lx",
7690 (long) pstatus.data.module_info.base_address);
7691
7692 len = strlen (buf) + 1;
7693 name = bfd_alloc (abfd, len);
7694 if (name == NULL)
7695 return FALSE;
7696
7697 memcpy (name, buf, len);
7698
7699 sect = bfd_make_section_anyway (abfd, name);
7700
7701 if (sect == NULL)
7702 return FALSE;
7703
7704 sect->size = note->descsz;
7705 sect->filepos = note->descpos;
7706 sect->flags = SEC_HAS_CONTENTS;
7707 sect->alignment_power = 2;
7708 break;
7709
7710 default:
7711 return TRUE;
7712 }
7713
7714 return TRUE;
7715 }
7716 #endif /* HAVE_WIN32_PSTATUS_T */
7717
7718 static bfd_boolean
7719 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7720 {
7721 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7722
7723 switch (note->type)
7724 {
7725 default:
7726 return TRUE;
7727
7728 case NT_PRSTATUS:
7729 if (bed->elf_backend_grok_prstatus)
7730 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7731 return TRUE;
7732 #if defined (HAVE_PRSTATUS_T)
7733 return elfcore_grok_prstatus (abfd, note);
7734 #else
7735 return TRUE;
7736 #endif
7737
7738 #if defined (HAVE_PSTATUS_T)
7739 case NT_PSTATUS:
7740 return elfcore_grok_pstatus (abfd, note);
7741 #endif
7742
7743 #if defined (HAVE_LWPSTATUS_T)
7744 case NT_LWPSTATUS:
7745 return elfcore_grok_lwpstatus (abfd, note);
7746 #endif
7747
7748 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7749 return elfcore_grok_prfpreg (abfd, note);
7750
7751 #if defined (HAVE_WIN32_PSTATUS_T)
7752 case NT_WIN32PSTATUS:
7753 return elfcore_grok_win32pstatus (abfd, note);
7754 #endif
7755
7756 case NT_PRXFPREG: /* Linux SSE extension */
7757 if (note->namesz == 6
7758 && strcmp (note->namedata, "LINUX") == 0)
7759 return elfcore_grok_prxfpreg (abfd, note);
7760 else
7761 return TRUE;
7762
7763 case NT_PRPSINFO:
7764 case NT_PSINFO:
7765 if (bed->elf_backend_grok_psinfo)
7766 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7767 return TRUE;
7768 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7769 return elfcore_grok_psinfo (abfd, note);
7770 #else
7771 return TRUE;
7772 #endif
7773
7774 case NT_AUXV:
7775 {
7776 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7777
7778 if (sect == NULL)
7779 return FALSE;
7780 sect->size = note->descsz;
7781 sect->filepos = note->descpos;
7782 sect->flags = SEC_HAS_CONTENTS;
7783 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7784
7785 return TRUE;
7786 }
7787 }
7788 }
7789
7790 static bfd_boolean
7791 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7792 {
7793 char *cp;
7794
7795 cp = strchr (note->namedata, '@');
7796 if (cp != NULL)
7797 {
7798 *lwpidp = atoi(cp + 1);
7799 return TRUE;
7800 }
7801 return FALSE;
7802 }
7803
7804 static bfd_boolean
7805 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7806 {
7807
7808 /* Signal number at offset 0x08. */
7809 elf_tdata (abfd)->core_signal
7810 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7811
7812 /* Process ID at offset 0x50. */
7813 elf_tdata (abfd)->core_pid
7814 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7815
7816 /* Command name at 0x7c (max 32 bytes, including nul). */
7817 elf_tdata (abfd)->core_command
7818 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7819
7820 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7821 note);
7822 }
7823
7824 static bfd_boolean
7825 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7826 {
7827 int lwp;
7828
7829 if (elfcore_netbsd_get_lwpid (note, &lwp))
7830 elf_tdata (abfd)->core_lwpid = lwp;
7831
7832 if (note->type == NT_NETBSDCORE_PROCINFO)
7833 {
7834 /* NetBSD-specific core "procinfo". Note that we expect to
7835 find this note before any of the others, which is fine,
7836 since the kernel writes this note out first when it
7837 creates a core file. */
7838
7839 return elfcore_grok_netbsd_procinfo (abfd, note);
7840 }
7841
7842 /* As of Jan 2002 there are no other machine-independent notes
7843 defined for NetBSD core files. If the note type is less
7844 than the start of the machine-dependent note types, we don't
7845 understand it. */
7846
7847 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7848 return TRUE;
7849
7850
7851 switch (bfd_get_arch (abfd))
7852 {
7853 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7854 PT_GETFPREGS == mach+2. */
7855
7856 case bfd_arch_alpha:
7857 case bfd_arch_sparc:
7858 switch (note->type)
7859 {
7860 case NT_NETBSDCORE_FIRSTMACH+0:
7861 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7862
7863 case NT_NETBSDCORE_FIRSTMACH+2:
7864 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7865
7866 default:
7867 return TRUE;
7868 }
7869
7870 /* On all other arch's, PT_GETREGS == mach+1 and
7871 PT_GETFPREGS == mach+3. */
7872
7873 default:
7874 switch (note->type)
7875 {
7876 case NT_NETBSDCORE_FIRSTMACH+1:
7877 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7878
7879 case NT_NETBSDCORE_FIRSTMACH+3:
7880 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7881
7882 default:
7883 return TRUE;
7884 }
7885 }
7886 /* NOTREACHED */
7887 }
7888
7889 static bfd_boolean
7890 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7891 {
7892 void *ddata = note->descdata;
7893 char buf[100];
7894 char *name;
7895 asection *sect;
7896 short sig;
7897 unsigned flags;
7898
7899 /* nto_procfs_status 'pid' field is at offset 0. */
7900 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7901
7902 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7903 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7904
7905 /* nto_procfs_status 'flags' field is at offset 8. */
7906 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7907
7908 /* nto_procfs_status 'what' field is at offset 14. */
7909 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7910 {
7911 elf_tdata (abfd)->core_signal = sig;
7912 elf_tdata (abfd)->core_lwpid = *tid;
7913 }
7914
7915 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7916 do not come from signals so we make sure we set the current
7917 thread just in case. */
7918 if (flags & 0x00000080)
7919 elf_tdata (abfd)->core_lwpid = *tid;
7920
7921 /* Make a ".qnx_core_status/%d" section. */
7922 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7923
7924 name = bfd_alloc (abfd, strlen (buf) + 1);
7925 if (name == NULL)
7926 return FALSE;
7927 strcpy (name, buf);
7928
7929 sect = bfd_make_section_anyway (abfd, name);
7930 if (sect == NULL)
7931 return FALSE;
7932
7933 sect->size = note->descsz;
7934 sect->filepos = note->descpos;
7935 sect->flags = SEC_HAS_CONTENTS;
7936 sect->alignment_power = 2;
7937
7938 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7939 }
7940
7941 static bfd_boolean
7942 elfcore_grok_nto_regs (bfd *abfd,
7943 Elf_Internal_Note *note,
7944 pid_t tid,
7945 char *base)
7946 {
7947 char buf[100];
7948 char *name;
7949 asection *sect;
7950
7951 /* Make a "(base)/%d" section. */
7952 sprintf (buf, "%s/%ld", base, (long) tid);
7953
7954 name = bfd_alloc (abfd, strlen (buf) + 1);
7955 if (name == NULL)
7956 return FALSE;
7957 strcpy (name, buf);
7958
7959 sect = bfd_make_section_anyway (abfd, name);
7960 if (sect == NULL)
7961 return FALSE;
7962
7963 sect->size = note->descsz;
7964 sect->filepos = note->descpos;
7965 sect->flags = SEC_HAS_CONTENTS;
7966 sect->alignment_power = 2;
7967
7968 /* This is the current thread. */
7969 if (elf_tdata (abfd)->core_lwpid == tid)
7970 return elfcore_maybe_make_sect (abfd, base, sect);
7971
7972 return TRUE;
7973 }
7974
7975 #define BFD_QNT_CORE_INFO 7
7976 #define BFD_QNT_CORE_STATUS 8
7977 #define BFD_QNT_CORE_GREG 9
7978 #define BFD_QNT_CORE_FPREG 10
7979
7980 static bfd_boolean
7981 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7982 {
7983 /* Every GREG section has a STATUS section before it. Store the
7984 tid from the previous call to pass down to the next gregs
7985 function. */
7986 static pid_t tid = 1;
7987
7988 switch (note->type)
7989 {
7990 case BFD_QNT_CORE_INFO:
7991 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7992 case BFD_QNT_CORE_STATUS:
7993 return elfcore_grok_nto_status (abfd, note, &tid);
7994 case BFD_QNT_CORE_GREG:
7995 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7996 case BFD_QNT_CORE_FPREG:
7997 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7998 default:
7999 return TRUE;
8000 }
8001 }
8002
8003 /* Function: elfcore_write_note
8004
8005 Inputs:
8006 buffer to hold note
8007 name of note
8008 type of note
8009 data for note
8010 size of data for note
8011
8012 Return:
8013 End of buffer containing note. */
8014
8015 char *
8016 elfcore_write_note (bfd *abfd,
8017 char *buf,
8018 int *bufsiz,
8019 const char *name,
8020 int type,
8021 const void *input,
8022 int size)
8023 {
8024 Elf_External_Note *xnp;
8025 size_t namesz;
8026 size_t pad;
8027 size_t newspace;
8028 char *p, *dest;
8029
8030 namesz = 0;
8031 pad = 0;
8032 if (name != NULL)
8033 {
8034 const struct elf_backend_data *bed;
8035
8036 namesz = strlen (name) + 1;
8037 bed = get_elf_backend_data (abfd);
8038 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
8039 }
8040
8041 newspace = 12 + namesz + pad + size;
8042
8043 p = realloc (buf, *bufsiz + newspace);
8044 dest = p + *bufsiz;
8045 *bufsiz += newspace;
8046 xnp = (Elf_External_Note *) dest;
8047 H_PUT_32 (abfd, namesz, xnp->namesz);
8048 H_PUT_32 (abfd, size, xnp->descsz);
8049 H_PUT_32 (abfd, type, xnp->type);
8050 dest = xnp->name;
8051 if (name != NULL)
8052 {
8053 memcpy (dest, name, namesz);
8054 dest += namesz;
8055 while (pad != 0)
8056 {
8057 *dest++ = '\0';
8058 --pad;
8059 }
8060 }
8061 memcpy (dest, input, size);
8062 return p;
8063 }
8064
8065 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8066 char *
8067 elfcore_write_prpsinfo (bfd *abfd,
8068 char *buf,
8069 int *bufsiz,
8070 const char *fname,
8071 const char *psargs)
8072 {
8073 int note_type;
8074 char *note_name = "CORE";
8075
8076 #if defined (HAVE_PSINFO_T)
8077 psinfo_t data;
8078 note_type = NT_PSINFO;
8079 #else
8080 prpsinfo_t data;
8081 note_type = NT_PRPSINFO;
8082 #endif
8083
8084 memset (&data, 0, sizeof (data));
8085 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8086 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8087 return elfcore_write_note (abfd, buf, bufsiz,
8088 note_name, note_type, &data, sizeof (data));
8089 }
8090 #endif /* PSINFO_T or PRPSINFO_T */
8091
8092 #if defined (HAVE_PRSTATUS_T)
8093 char *
8094 elfcore_write_prstatus (bfd *abfd,
8095 char *buf,
8096 int *bufsiz,
8097 long pid,
8098 int cursig,
8099 const void *gregs)
8100 {
8101 prstatus_t prstat;
8102 char *note_name = "CORE";
8103
8104 memset (&prstat, 0, sizeof (prstat));
8105 prstat.pr_pid = pid;
8106 prstat.pr_cursig = cursig;
8107 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8108 return elfcore_write_note (abfd, buf, bufsiz,
8109 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8110 }
8111 #endif /* HAVE_PRSTATUS_T */
8112
8113 #if defined (HAVE_LWPSTATUS_T)
8114 char *
8115 elfcore_write_lwpstatus (bfd *abfd,
8116 char *buf,
8117 int *bufsiz,
8118 long pid,
8119 int cursig,
8120 const void *gregs)
8121 {
8122 lwpstatus_t lwpstat;
8123 char *note_name = "CORE";
8124
8125 memset (&lwpstat, 0, sizeof (lwpstat));
8126 lwpstat.pr_lwpid = pid >> 16;
8127 lwpstat.pr_cursig = cursig;
8128 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8129 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8130 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8131 #if !defined(gregs)
8132 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8133 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8134 #else
8135 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8136 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8137 #endif
8138 #endif
8139 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8140 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8141 }
8142 #endif /* HAVE_LWPSTATUS_T */
8143
8144 #if defined (HAVE_PSTATUS_T)
8145 char *
8146 elfcore_write_pstatus (bfd *abfd,
8147 char *buf,
8148 int *bufsiz,
8149 long pid,
8150 int cursig ATTRIBUTE_UNUSED,
8151 const void *gregs ATTRIBUTE_UNUSED)
8152 {
8153 pstatus_t pstat;
8154 char *note_name = "CORE";
8155
8156 memset (&pstat, 0, sizeof (pstat));
8157 pstat.pr_pid = pid & 0xffff;
8158 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8159 NT_PSTATUS, &pstat, sizeof (pstat));
8160 return buf;
8161 }
8162 #endif /* HAVE_PSTATUS_T */
8163
8164 char *
8165 elfcore_write_prfpreg (bfd *abfd,
8166 char *buf,
8167 int *bufsiz,
8168 const void *fpregs,
8169 int size)
8170 {
8171 char *note_name = "CORE";
8172 return elfcore_write_note (abfd, buf, bufsiz,
8173 note_name, NT_FPREGSET, fpregs, size);
8174 }
8175
8176 char *
8177 elfcore_write_prxfpreg (bfd *abfd,
8178 char *buf,
8179 int *bufsiz,
8180 const void *xfpregs,
8181 int size)
8182 {
8183 char *note_name = "LINUX";
8184 return elfcore_write_note (abfd, buf, bufsiz,
8185 note_name, NT_PRXFPREG, xfpregs, size);
8186 }
8187
8188 static bfd_boolean
8189 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8190 {
8191 char *buf;
8192 char *p;
8193
8194 if (size <= 0)
8195 return TRUE;
8196
8197 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8198 return FALSE;
8199
8200 buf = bfd_malloc (size);
8201 if (buf == NULL)
8202 return FALSE;
8203
8204 if (bfd_bread (buf, size, abfd) != size)
8205 {
8206 error:
8207 free (buf);
8208 return FALSE;
8209 }
8210
8211 p = buf;
8212 while (p < buf + size)
8213 {
8214 /* FIXME: bad alignment assumption. */
8215 Elf_External_Note *xnp = (Elf_External_Note *) p;
8216 Elf_Internal_Note in;
8217
8218 in.type = H_GET_32 (abfd, xnp->type);
8219
8220 in.namesz = H_GET_32 (abfd, xnp->namesz);
8221 in.namedata = xnp->name;
8222
8223 in.descsz = H_GET_32 (abfd, xnp->descsz);
8224 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8225 in.descpos = offset + (in.descdata - buf);
8226
8227 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
8228 {
8229 if (! elfcore_grok_netbsd_note (abfd, &in))
8230 goto error;
8231 }
8232 else if (strncmp (in.namedata, "QNX", 3) == 0)
8233 {
8234 if (! elfcore_grok_nto_note (abfd, &in))
8235 goto error;
8236 }
8237 else
8238 {
8239 if (! elfcore_grok_note (abfd, &in))
8240 goto error;
8241 }
8242
8243 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8244 }
8245
8246 free (buf);
8247 return TRUE;
8248 }
8249 \f
8250 /* Providing external access to the ELF program header table. */
8251
8252 /* Return an upper bound on the number of bytes required to store a
8253 copy of ABFD's program header table entries. Return -1 if an error
8254 occurs; bfd_get_error will return an appropriate code. */
8255
8256 long
8257 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8258 {
8259 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8260 {
8261 bfd_set_error (bfd_error_wrong_format);
8262 return -1;
8263 }
8264
8265 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8266 }
8267
8268 /* Copy ABFD's program header table entries to *PHDRS. The entries
8269 will be stored as an array of Elf_Internal_Phdr structures, as
8270 defined in include/elf/internal.h. To find out how large the
8271 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8272
8273 Return the number of program header table entries read, or -1 if an
8274 error occurs; bfd_get_error will return an appropriate code. */
8275
8276 int
8277 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8278 {
8279 int num_phdrs;
8280
8281 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8282 {
8283 bfd_set_error (bfd_error_wrong_format);
8284 return -1;
8285 }
8286
8287 num_phdrs = elf_elfheader (abfd)->e_phnum;
8288 memcpy (phdrs, elf_tdata (abfd)->phdr,
8289 num_phdrs * sizeof (Elf_Internal_Phdr));
8290
8291 return num_phdrs;
8292 }
8293
8294 void
8295 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8296 {
8297 #ifdef BFD64
8298 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8299
8300 i_ehdrp = elf_elfheader (abfd);
8301 if (i_ehdrp == NULL)
8302 sprintf_vma (buf, value);
8303 else
8304 {
8305 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8306 {
8307 #if BFD_HOST_64BIT_LONG
8308 sprintf (buf, "%016lx", value);
8309 #else
8310 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8311 _bfd_int64_low (value));
8312 #endif
8313 }
8314 else
8315 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8316 }
8317 #else
8318 sprintf_vma (buf, value);
8319 #endif
8320 }
8321
8322 void
8323 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8324 {
8325 #ifdef BFD64
8326 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8327
8328 i_ehdrp = elf_elfheader (abfd);
8329 if (i_ehdrp == NULL)
8330 fprintf_vma ((FILE *) stream, value);
8331 else
8332 {
8333 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8334 {
8335 #if BFD_HOST_64BIT_LONG
8336 fprintf ((FILE *) stream, "%016lx", value);
8337 #else
8338 fprintf ((FILE *) stream, "%08lx%08lx",
8339 _bfd_int64_high (value), _bfd_int64_low (value));
8340 #endif
8341 }
8342 else
8343 fprintf ((FILE *) stream, "%08lx",
8344 (unsigned long) (value & 0xffffffff));
8345 }
8346 #else
8347 fprintf_vma ((FILE *) stream, value);
8348 #endif
8349 }
8350
8351 enum elf_reloc_type_class
8352 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8353 {
8354 return reloc_class_normal;
8355 }
8356
8357 /* For RELA architectures, return the relocation value for a
8358 relocation against a local symbol. */
8359
8360 bfd_vma
8361 _bfd_elf_rela_local_sym (bfd *abfd,
8362 Elf_Internal_Sym *sym,
8363 asection **psec,
8364 Elf_Internal_Rela *rel)
8365 {
8366 asection *sec = *psec;
8367 bfd_vma relocation;
8368
8369 relocation = (sec->output_section->vma
8370 + sec->output_offset
8371 + sym->st_value);
8372 if ((sec->flags & SEC_MERGE)
8373 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8374 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8375 {
8376 rel->r_addend =
8377 _bfd_merged_section_offset (abfd, psec,
8378 elf_section_data (sec)->sec_info,
8379 sym->st_value + rel->r_addend);
8380 if (sec != *psec)
8381 {
8382 /* If we have changed the section, and our original section is
8383 marked with SEC_EXCLUDE, it means that the original
8384 SEC_MERGE section has been completely subsumed in some
8385 other SEC_MERGE section. In this case, we need to leave
8386 some info around for --emit-relocs. */
8387 if ((sec->flags & SEC_EXCLUDE) != 0)
8388 sec->kept_section = *psec;
8389 sec = *psec;
8390 }
8391 rel->r_addend -= relocation;
8392 rel->r_addend += sec->output_section->vma + sec->output_offset;
8393 }
8394 return relocation;
8395 }
8396
8397 bfd_vma
8398 _bfd_elf_rel_local_sym (bfd *abfd,
8399 Elf_Internal_Sym *sym,
8400 asection **psec,
8401 bfd_vma addend)
8402 {
8403 asection *sec = *psec;
8404
8405 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8406 return sym->st_value + addend;
8407
8408 return _bfd_merged_section_offset (abfd, psec,
8409 elf_section_data (sec)->sec_info,
8410 sym->st_value + addend);
8411 }
8412
8413 bfd_vma
8414 _bfd_elf_section_offset (bfd *abfd,
8415 struct bfd_link_info *info,
8416 asection *sec,
8417 bfd_vma offset)
8418 {
8419 switch (sec->sec_info_type)
8420 {
8421 case ELF_INFO_TYPE_STABS:
8422 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8423 offset);
8424 case ELF_INFO_TYPE_EH_FRAME:
8425 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8426 default:
8427 return offset;
8428 }
8429 }
8430 \f
8431 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8432 reconstruct an ELF file by reading the segments out of remote memory
8433 based on the ELF file header at EHDR_VMA and the ELF program headers it
8434 points to. If not null, *LOADBASEP is filled in with the difference
8435 between the VMAs from which the segments were read, and the VMAs the
8436 file headers (and hence BFD's idea of each section's VMA) put them at.
8437
8438 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8439 remote memory at target address VMA into the local buffer at MYADDR; it
8440 should return zero on success or an `errno' code on failure. TEMPL must
8441 be a BFD for an ELF target with the word size and byte order found in
8442 the remote memory. */
8443
8444 bfd *
8445 bfd_elf_bfd_from_remote_memory
8446 (bfd *templ,
8447 bfd_vma ehdr_vma,
8448 bfd_vma *loadbasep,
8449 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8450 {
8451 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8452 (templ, ehdr_vma, loadbasep, target_read_memory);
8453 }
8454 \f
8455 long
8456 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8457 long symcount ATTRIBUTE_UNUSED,
8458 asymbol **syms ATTRIBUTE_UNUSED,
8459 long dynsymcount,
8460 asymbol **dynsyms,
8461 asymbol **ret)
8462 {
8463 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8464 asection *relplt;
8465 asymbol *s;
8466 const char *relplt_name;
8467 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8468 arelent *p;
8469 long count, i, n;
8470 size_t size;
8471 Elf_Internal_Shdr *hdr;
8472 char *names;
8473 asection *plt;
8474
8475 *ret = NULL;
8476
8477 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8478 return 0;
8479
8480 if (dynsymcount <= 0)
8481 return 0;
8482
8483 if (!bed->plt_sym_val)
8484 return 0;
8485
8486 relplt_name = bed->relplt_name;
8487 if (relplt_name == NULL)
8488 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8489 relplt = bfd_get_section_by_name (abfd, relplt_name);
8490 if (relplt == NULL)
8491 return 0;
8492
8493 hdr = &elf_section_data (relplt)->this_hdr;
8494 if (hdr->sh_link != elf_dynsymtab (abfd)
8495 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8496 return 0;
8497
8498 plt = bfd_get_section_by_name (abfd, ".plt");
8499 if (plt == NULL)
8500 return 0;
8501
8502 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8503 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8504 return -1;
8505
8506 count = relplt->size / hdr->sh_entsize;
8507 size = count * sizeof (asymbol);
8508 p = relplt->relocation;
8509 for (i = 0; i < count; i++, s++, p++)
8510 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8511
8512 s = *ret = bfd_malloc (size);
8513 if (s == NULL)
8514 return -1;
8515
8516 names = (char *) (s + count);
8517 p = relplt->relocation;
8518 n = 0;
8519 for (i = 0; i < count; i++, s++, p++)
8520 {
8521 size_t len;
8522 bfd_vma addr;
8523
8524 addr = bed->plt_sym_val (i, plt, p);
8525 if (addr == (bfd_vma) -1)
8526 continue;
8527
8528 *s = **p->sym_ptr_ptr;
8529 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8530 we are defining a symbol, ensure one of them is set. */
8531 if ((s->flags & BSF_LOCAL) == 0)
8532 s->flags |= BSF_GLOBAL;
8533 s->section = plt;
8534 s->value = addr - plt->vma;
8535 s->name = names;
8536 len = strlen ((*p->sym_ptr_ptr)->name);
8537 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8538 names += len;
8539 memcpy (names, "@plt", sizeof ("@plt"));
8540 names += sizeof ("@plt");
8541 ++n;
8542 }
8543
8544 return n;
8545 }
8546
8547 /* Sort symbol by binding and section. We want to put definitions
8548 sorted by section at the beginning. */
8549
8550 static int
8551 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8552 {
8553 const Elf_Internal_Sym *s1;
8554 const Elf_Internal_Sym *s2;
8555 int shndx;
8556
8557 /* Make sure that undefined symbols are at the end. */
8558 s1 = (const Elf_Internal_Sym *) arg1;
8559 if (s1->st_shndx == SHN_UNDEF)
8560 return 1;
8561 s2 = (const Elf_Internal_Sym *) arg2;
8562 if (s2->st_shndx == SHN_UNDEF)
8563 return -1;
8564
8565 /* Sorted by section index. */
8566 shndx = s1->st_shndx - s2->st_shndx;
8567 if (shndx != 0)
8568 return shndx;
8569
8570 /* Sorted by binding. */
8571 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8572 }
8573
8574 struct elf_symbol
8575 {
8576 Elf_Internal_Sym *sym;
8577 const char *name;
8578 };
8579
8580 static int
8581 elf_sym_name_compare (const void *arg1, const void *arg2)
8582 {
8583 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8584 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8585 return strcmp (s1->name, s2->name);
8586 }
8587
8588 /* Check if 2 sections define the same set of local and global
8589 symbols. */
8590
8591 bfd_boolean
8592 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8593 {
8594 bfd *bfd1, *bfd2;
8595 const struct elf_backend_data *bed1, *bed2;
8596 Elf_Internal_Shdr *hdr1, *hdr2;
8597 bfd_size_type symcount1, symcount2;
8598 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8599 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8600 Elf_Internal_Sym *isymend;
8601 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8602 bfd_size_type count1, count2, i;
8603 int shndx1, shndx2;
8604 bfd_boolean result;
8605
8606 bfd1 = sec1->owner;
8607 bfd2 = sec2->owner;
8608
8609 /* If both are .gnu.linkonce sections, they have to have the same
8610 section name. */
8611 if (strncmp (sec1->name, ".gnu.linkonce",
8612 sizeof ".gnu.linkonce" - 1) == 0
8613 && strncmp (sec2->name, ".gnu.linkonce",
8614 sizeof ".gnu.linkonce" - 1) == 0)
8615 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8616 sec2->name + sizeof ".gnu.linkonce") == 0;
8617
8618 /* Both sections have to be in ELF. */
8619 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8620 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8621 return FALSE;
8622
8623 if (elf_section_type (sec1) != elf_section_type (sec2))
8624 return FALSE;
8625
8626 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8627 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8628 {
8629 /* If both are members of section groups, they have to have the
8630 same group name. */
8631 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8632 return FALSE;
8633 }
8634
8635 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8636 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8637 if (shndx1 == -1 || shndx2 == -1)
8638 return FALSE;
8639
8640 bed1 = get_elf_backend_data (bfd1);
8641 bed2 = get_elf_backend_data (bfd2);
8642 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8643 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8644 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8645 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8646
8647 if (symcount1 == 0 || symcount2 == 0)
8648 return FALSE;
8649
8650 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8651 NULL, NULL, NULL);
8652 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8653 NULL, NULL, NULL);
8654
8655 result = FALSE;
8656 if (isymbuf1 == NULL || isymbuf2 == NULL)
8657 goto done;
8658
8659 /* Sort symbols by binding and section. Global definitions are at
8660 the beginning. */
8661 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8662 elf_sort_elf_symbol);
8663 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8664 elf_sort_elf_symbol);
8665
8666 /* Count definitions in the section. */
8667 count1 = 0;
8668 for (isym = isymbuf1, isymend = isym + symcount1;
8669 isym < isymend; isym++)
8670 {
8671 if (isym->st_shndx == (unsigned int) shndx1)
8672 {
8673 if (count1 == 0)
8674 isymstart1 = isym;
8675 count1++;
8676 }
8677
8678 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8679 break;
8680 }
8681
8682 count2 = 0;
8683 for (isym = isymbuf2, isymend = isym + symcount2;
8684 isym < isymend; isym++)
8685 {
8686 if (isym->st_shndx == (unsigned int) shndx2)
8687 {
8688 if (count2 == 0)
8689 isymstart2 = isym;
8690 count2++;
8691 }
8692
8693 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8694 break;
8695 }
8696
8697 if (count1 == 0 || count2 == 0 || count1 != count2)
8698 goto done;
8699
8700 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8701 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8702
8703 if (symtable1 == NULL || symtable2 == NULL)
8704 goto done;
8705
8706 symp = symtable1;
8707 for (isym = isymstart1, isymend = isym + count1;
8708 isym < isymend; isym++)
8709 {
8710 symp->sym = isym;
8711 symp->name = bfd_elf_string_from_elf_section (bfd1,
8712 hdr1->sh_link,
8713 isym->st_name);
8714 symp++;
8715 }
8716
8717 symp = symtable2;
8718 for (isym = isymstart2, isymend = isym + count1;
8719 isym < isymend; isym++)
8720 {
8721 symp->sym = isym;
8722 symp->name = bfd_elf_string_from_elf_section (bfd2,
8723 hdr2->sh_link,
8724 isym->st_name);
8725 symp++;
8726 }
8727
8728 /* Sort symbol by name. */
8729 qsort (symtable1, count1, sizeof (struct elf_symbol),
8730 elf_sym_name_compare);
8731 qsort (symtable2, count1, sizeof (struct elf_symbol),
8732 elf_sym_name_compare);
8733
8734 for (i = 0; i < count1; i++)
8735 /* Two symbols must have the same binding, type and name. */
8736 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8737 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8738 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8739 goto done;
8740
8741 result = TRUE;
8742
8743 done:
8744 if (symtable1)
8745 free (symtable1);
8746 if (symtable2)
8747 free (symtable2);
8748 if (isymbuf1)
8749 free (isymbuf1);
8750 if (isymbuf2)
8751 free (isymbuf2);
8752
8753 return result;
8754 }
8755
8756 /* It is only used by x86-64 so far. */
8757 asection _bfd_elf_large_com_section
8758 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8759 SEC_IS_COMMON, NULL, NULL, "LARGE_COMMON",
8760 0);
8761
8762 /* Return TRUE if 2 section types are compatible. */
8763
8764 bfd_boolean
8765 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8766 bfd *bbfd, const asection *bsec)
8767 {
8768 if (asec == NULL
8769 || bsec == NULL
8770 || abfd->xvec->flavour != bfd_target_elf_flavour
8771 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8772 return TRUE;
8773
8774 return elf_section_type (asec) == elf_section_type (bsec);
8775 }
This page took 0.307114 seconds and 4 git commands to generate.