daily update
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
211 {
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
219
220 return TRUE;
221 }
222
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
225 {
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
228 }
229
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
232 {
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
237
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
241
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
244 {
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
248
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
256 {
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
260 }
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
264 }
265 return (char *) shstrtab;
266 }
267
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
272 {
273 Elf_Internal_Shdr *hdr;
274
275 if (strindex == 0)
276 return "";
277
278 hdr = elf_elfsections (abfd)[shindex];
279
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
283
284 if (strindex >= hdr->sh_size)
285 {
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
294 }
295
296 return ((char *) hdr->contents) + strindex;
297 }
298
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
304
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
313 {
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
325
326 if (symcount == 0)
327 return intsym_buf;
328
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
333
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
342 {
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
345 }
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
349 {
350 intsym_buf = NULL;
351 goto out;
352 }
353
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
357 {
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
361 {
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
365 }
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
369 {
370 intsym_buf = NULL;
371 goto out;
372 }
373 }
374
375 if (intsym_buf == NULL)
376 {
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
380 }
381
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
388
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
394
395 return intsym_buf;
396 }
397
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
404 {
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
408
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
423
424 return name;
425 }
426
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
430
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
435
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
438
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
441 {
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
446
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
453
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
459
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
461 }
462
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
464
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
467 {
468 unsigned int num_group = elf_tdata (abfd)->num_group;
469
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
473 {
474 unsigned int i, shnum;
475
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
481 {
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
485 }
486
487 if (num_group == 0)
488 {
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
491 }
492 else
493 {
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
497
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
503
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
506 {
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
509 {
510 unsigned char *src;
511 Elf_Internal_Group *dest;
512
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
516
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
527
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
535 {
536 unsigned int idx;
537
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
542 {
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
548 }
549 if (idx >= shnum)
550 {
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
554 }
555 dest->shdr = elf_elfsections (abfd)[idx];
556 }
557 }
558 }
559 }
560 }
561
562 if (num_group != (unsigned) -1)
563 {
564 unsigned int i;
565
566 for (i = 0; i < num_group; i++)
567 {
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
571
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
576 {
577 asection *s = NULL;
578
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
589 {
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
595 }
596 else
597 {
598 const char *gname;
599
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
604
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
607 }
608
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
613
614 i = num_group - 1;
615 break;
616 }
617 }
618 }
619
620 if (elf_group_name (newsect) == NULL)
621 {
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
624 }
625 return TRUE;
626 }
627
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
630 {
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
635
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
638 {
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
641 {
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
647 {
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
654 }
655 else
656 {
657 asection *link;
658
659 this_hdr = elf_elfsections (abfd)[elfsec];
660
661 /* PR 1991, 2008:
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link = this_hdr->bfd_section;
665 if (link == NULL)
666 {
667 (*_bfd_error_handler)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s->owner, s, elfsec);
670 result = FALSE;
671 }
672
673 elf_linked_to_section (s) = link;
674 }
675 }
676 }
677
678 /* Process section groups. */
679 if (num_group == (unsigned) -1)
680 return result;
681
682 for (i = 0; i < num_group; i++)
683 {
684 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
685 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
686 unsigned int n_elt = shdr->sh_size / 4;
687
688 while (--n_elt != 0)
689 if ((++idx)->shdr->bfd_section)
690 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
691 else if (idx->shdr->sh_type == SHT_RELA
692 || idx->shdr->sh_type == SHT_REL)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
697 files. */
698 shdr->bfd_section->size -= 4;
699 else
700 {
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
704 abfd,
705 (unsigned int) idx->shdr->sh_type,
706 bfd_elf_string_from_elf_section (abfd,
707 (elf_elfheader (abfd)
708 ->e_shstrndx),
709 idx->shdr->sh_name),
710 shdr->bfd_section->name);
711 result = FALSE;
712 }
713 }
714 return result;
715 }
716
717 bfd_boolean
718 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
719 {
720 return elf_next_in_group (sec) != NULL;
721 }
722
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
725
726 bfd_boolean
727 _bfd_elf_make_section_from_shdr (bfd *abfd,
728 Elf_Internal_Shdr *hdr,
729 const char *name,
730 int shindex)
731 {
732 asection *newsect;
733 flagword flags;
734 const struct elf_backend_data *bed;
735
736 if (hdr->bfd_section != NULL)
737 {
738 BFD_ASSERT (strcmp (name,
739 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
740 return TRUE;
741 }
742
743 newsect = bfd_make_section_anyway (abfd, name);
744 if (newsect == NULL)
745 return FALSE;
746
747 hdr->bfd_section = newsect;
748 elf_section_data (newsect)->this_hdr = *hdr;
749 elf_section_data (newsect)->this_idx = shindex;
750
751 /* Always use the real type/flags. */
752 elf_section_type (newsect) = hdr->sh_type;
753 elf_section_flags (newsect) = hdr->sh_flags;
754
755 newsect->filepos = hdr->sh_offset;
756
757 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
758 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
759 || ! bfd_set_section_alignment (abfd, newsect,
760 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
761 return FALSE;
762
763 flags = SEC_NO_FLAGS;
764 if (hdr->sh_type != SHT_NOBITS)
765 flags |= SEC_HAS_CONTENTS;
766 if (hdr->sh_type == SHT_GROUP)
767 flags |= SEC_GROUP | SEC_EXCLUDE;
768 if ((hdr->sh_flags & SHF_ALLOC) != 0)
769 {
770 flags |= SEC_ALLOC;
771 if (hdr->sh_type != SHT_NOBITS)
772 flags |= SEC_LOAD;
773 }
774 if ((hdr->sh_flags & SHF_WRITE) == 0)
775 flags |= SEC_READONLY;
776 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
777 flags |= SEC_CODE;
778 else if ((flags & SEC_LOAD) != 0)
779 flags |= SEC_DATA;
780 if ((hdr->sh_flags & SHF_MERGE) != 0)
781 {
782 flags |= SEC_MERGE;
783 newsect->entsize = hdr->sh_entsize;
784 if ((hdr->sh_flags & SHF_STRINGS) != 0)
785 flags |= SEC_STRINGS;
786 }
787 if (hdr->sh_flags & SHF_GROUP)
788 if (!setup_group (abfd, hdr, newsect))
789 return FALSE;
790 if ((hdr->sh_flags & SHF_TLS) != 0)
791 flags |= SEC_THREAD_LOCAL;
792
793 if ((flags & SEC_ALLOC) == 0)
794 {
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
797 static const struct
798 {
799 const char *name;
800 int len;
801 } debug_sections [] =
802 {
803 { "debug", 5 }, /* 'd' */
804 { NULL, 0 }, /* 'e' */
805 { NULL, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL, 0 }, /* 'h' */
808 { NULL, 0 }, /* 'i' */
809 { NULL, 0 }, /* 'j' */
810 { NULL, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL, 0 }, /* 'm' */
813 { NULL, 0 }, /* 'n' */
814 { NULL, 0 }, /* 'o' */
815 { NULL, 0 }, /* 'p' */
816 { NULL, 0 }, /* 'q' */
817 { NULL, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
819 };
820
821 if (name [0] == '.')
822 {
823 int i = name [1] - 'd';
824 if (i >= 0
825 && i < (int) ARRAY_SIZE (debug_sections)
826 && debug_sections [i].name != NULL
827 && strncmp (&name [1], debug_sections [i].name,
828 debug_sections [i].len) == 0)
829 flags |= SEC_DEBUGGING;
830 }
831 }
832
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect) == NULL)
841 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
842
843 bed = get_elf_backend_data (abfd);
844 if (bed->elf_backend_section_flags)
845 if (! bed->elf_backend_section_flags (&flags, hdr))
846 return FALSE;
847
848 if (! bfd_set_section_flags (abfd, newsect, flags))
849 return FALSE;
850
851 if ((flags & SEC_ALLOC) != 0)
852 {
853 Elf_Internal_Phdr *phdr;
854 unsigned int i;
855
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr = elf_tdata (abfd)->phdr;
860 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
861 {
862 if (phdr->p_paddr != 0)
863 break;
864 }
865 if (i < elf_elfheader (abfd)->e_phnum)
866 {
867 phdr = elf_tdata (abfd)->phdr;
868 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
869 {
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
874
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr->p_type == PT_LOAD
883 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
884 && (hdr->sh_offset + hdr->sh_size
885 <= phdr->p_offset + phdr->p_memsz)
886 && ((flags & SEC_LOAD) == 0
887 || (hdr->sh_offset + hdr->sh_size
888 <= phdr->p_offset + phdr->p_filesz)))
889 {
890 if ((flags & SEC_LOAD) == 0)
891 newsect->lma = (phdr->p_paddr
892 + hdr->sh_addr - phdr->p_vaddr);
893 else
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect->lma = (phdr->p_paddr
902 + hdr->sh_offset - phdr->p_offset);
903
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr->sh_addr >= phdr->p_vaddr
909 && (hdr->sh_addr + hdr->sh_size
910 <= phdr->p_vaddr + phdr->p_memsz))
911 break;
912 }
913 }
914 }
915 }
916
917 return TRUE;
918 }
919
920 /*
921 INTERNAL_FUNCTION
922 bfd_elf_find_section
923
924 SYNOPSIS
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
926
927 DESCRIPTION
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
933 */
934
935 struct elf_internal_shdr *
936 bfd_elf_find_section (bfd *abfd, char *name)
937 {
938 Elf_Internal_Shdr **i_shdrp;
939 char *shstrtab;
940 unsigned int max;
941 unsigned int i;
942
943 i_shdrp = elf_elfsections (abfd);
944 if (i_shdrp != NULL)
945 {
946 shstrtab = bfd_elf_get_str_section (abfd,
947 elf_elfheader (abfd)->e_shstrndx);
948 if (shstrtab != NULL)
949 {
950 max = elf_numsections (abfd);
951 for (i = 1; i < max; i++)
952 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
953 return i_shdrp[i];
954 }
955 }
956 return 0;
957 }
958
959 const char *const bfd_elf_section_type_names[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
963 };
964
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
974
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
977 arelent *reloc_entry,
978 asymbol *symbol,
979 void *data ATTRIBUTE_UNUSED,
980 asection *input_section,
981 bfd *output_bfd,
982 char **error_message ATTRIBUTE_UNUSED)
983 {
984 if (output_bfd != NULL
985 && (symbol->flags & BSF_SECTION_SYM) == 0
986 && (! reloc_entry->howto->partial_inplace
987 || reloc_entry->addend == 0))
988 {
989 reloc_entry->address += input_section->output_offset;
990 return bfd_reloc_ok;
991 }
992
993 return bfd_reloc_continue;
994 }
995 \f
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
997
998 static void
999 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1000 asection *sec)
1001 {
1002 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1003 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1004 }
1005
1006 /* Finish SHF_MERGE section merging. */
1007
1008 bfd_boolean
1009 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1010 {
1011 bfd *ibfd;
1012 asection *sec;
1013
1014 if (!is_elf_hash_table (info->hash))
1015 return FALSE;
1016
1017 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1018 if ((ibfd->flags & DYNAMIC) == 0)
1019 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1020 if ((sec->flags & SEC_MERGE) != 0
1021 && !bfd_is_abs_section (sec->output_section))
1022 {
1023 struct bfd_elf_section_data *secdata;
1024
1025 secdata = elf_section_data (sec);
1026 if (! _bfd_add_merge_section (abfd,
1027 &elf_hash_table (info)->merge_info,
1028 sec, &secdata->sec_info))
1029 return FALSE;
1030 else if (secdata->sec_info)
1031 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1032 }
1033
1034 if (elf_hash_table (info)->merge_info != NULL)
1035 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1036 merge_sections_remove_hook);
1037 return TRUE;
1038 }
1039
1040 void
1041 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1042 {
1043 sec->output_section = bfd_abs_section_ptr;
1044 sec->output_offset = sec->vma;
1045 if (!is_elf_hash_table (info->hash))
1046 return;
1047
1048 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1049 }
1050 \f
1051 /* Copy the program header and other data from one object module to
1052 another. */
1053
1054 bfd_boolean
1055 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1056 {
1057 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1059 return TRUE;
1060
1061 BFD_ASSERT (!elf_flags_init (obfd)
1062 || (elf_elfheader (obfd)->e_flags
1063 == elf_elfheader (ibfd)->e_flags));
1064
1065 elf_gp (obfd) = elf_gp (ibfd);
1066 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1067 elf_flags_init (obfd) = TRUE;
1068 return TRUE;
1069 }
1070
1071 /* Print out the program headers. */
1072
1073 bfd_boolean
1074 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1075 {
1076 FILE *f = farg;
1077 Elf_Internal_Phdr *p;
1078 asection *s;
1079 bfd_byte *dynbuf = NULL;
1080
1081 p = elf_tdata (abfd)->phdr;
1082 if (p != NULL)
1083 {
1084 unsigned int i, c;
1085
1086 fprintf (f, _("\nProgram Header:\n"));
1087 c = elf_elfheader (abfd)->e_phnum;
1088 for (i = 0; i < c; i++, p++)
1089 {
1090 const char *pt;
1091 char buf[20];
1092
1093 switch (p->p_type)
1094 {
1095 case PT_NULL: pt = "NULL"; break;
1096 case PT_LOAD: pt = "LOAD"; break;
1097 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1098 case PT_INTERP: pt = "INTERP"; break;
1099 case PT_NOTE: pt = "NOTE"; break;
1100 case PT_SHLIB: pt = "SHLIB"; break;
1101 case PT_PHDR: pt = "PHDR"; break;
1102 case PT_TLS: pt = "TLS"; break;
1103 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1104 case PT_GNU_STACK: pt = "STACK"; break;
1105 case PT_GNU_RELRO: pt = "RELRO"; break;
1106 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1107 }
1108 fprintf (f, "%8s off 0x", pt);
1109 bfd_fprintf_vma (abfd, f, p->p_offset);
1110 fprintf (f, " vaddr 0x");
1111 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1112 fprintf (f, " paddr 0x");
1113 bfd_fprintf_vma (abfd, f, p->p_paddr);
1114 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1115 fprintf (f, " filesz 0x");
1116 bfd_fprintf_vma (abfd, f, p->p_filesz);
1117 fprintf (f, " memsz 0x");
1118 bfd_fprintf_vma (abfd, f, p->p_memsz);
1119 fprintf (f, " flags %c%c%c",
1120 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1121 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1122 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1123 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1124 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1125 fprintf (f, "\n");
1126 }
1127 }
1128
1129 s = bfd_get_section_by_name (abfd, ".dynamic");
1130 if (s != NULL)
1131 {
1132 int elfsec;
1133 unsigned long shlink;
1134 bfd_byte *extdyn, *extdynend;
1135 size_t extdynsize;
1136 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1137
1138 fprintf (f, _("\nDynamic Section:\n"));
1139
1140 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1141 goto error_return;
1142
1143 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1144 if (elfsec == -1)
1145 goto error_return;
1146 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1147
1148 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1149 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1150
1151 extdyn = dynbuf;
1152 extdynend = extdyn + s->size;
1153 for (; extdyn < extdynend; extdyn += extdynsize)
1154 {
1155 Elf_Internal_Dyn dyn;
1156 const char *name;
1157 char ab[20];
1158 bfd_boolean stringp;
1159
1160 (*swap_dyn_in) (abfd, extdyn, &dyn);
1161
1162 if (dyn.d_tag == DT_NULL)
1163 break;
1164
1165 stringp = FALSE;
1166 switch (dyn.d_tag)
1167 {
1168 default:
1169 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1170 name = ab;
1171 break;
1172
1173 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1174 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1175 case DT_PLTGOT: name = "PLTGOT"; break;
1176 case DT_HASH: name = "HASH"; break;
1177 case DT_STRTAB: name = "STRTAB"; break;
1178 case DT_SYMTAB: name = "SYMTAB"; break;
1179 case DT_RELA: name = "RELA"; break;
1180 case DT_RELASZ: name = "RELASZ"; break;
1181 case DT_RELAENT: name = "RELAENT"; break;
1182 case DT_STRSZ: name = "STRSZ"; break;
1183 case DT_SYMENT: name = "SYMENT"; break;
1184 case DT_INIT: name = "INIT"; break;
1185 case DT_FINI: name = "FINI"; break;
1186 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1187 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1188 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1189 case DT_REL: name = "REL"; break;
1190 case DT_RELSZ: name = "RELSZ"; break;
1191 case DT_RELENT: name = "RELENT"; break;
1192 case DT_PLTREL: name = "PLTREL"; break;
1193 case DT_DEBUG: name = "DEBUG"; break;
1194 case DT_TEXTREL: name = "TEXTREL"; break;
1195 case DT_JMPREL: name = "JMPREL"; break;
1196 case DT_BIND_NOW: name = "BIND_NOW"; break;
1197 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1198 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1199 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1200 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1201 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1202 case DT_FLAGS: name = "FLAGS"; break;
1203 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1204 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1205 case DT_CHECKSUM: name = "CHECKSUM"; break;
1206 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1207 case DT_MOVEENT: name = "MOVEENT"; break;
1208 case DT_MOVESZ: name = "MOVESZ"; break;
1209 case DT_FEATURE: name = "FEATURE"; break;
1210 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1211 case DT_SYMINSZ: name = "SYMINSZ"; break;
1212 case DT_SYMINENT: name = "SYMINENT"; break;
1213 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1214 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1215 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1216 case DT_PLTPAD: name = "PLTPAD"; break;
1217 case DT_MOVETAB: name = "MOVETAB"; break;
1218 case DT_SYMINFO: name = "SYMINFO"; break;
1219 case DT_RELACOUNT: name = "RELACOUNT"; break;
1220 case DT_RELCOUNT: name = "RELCOUNT"; break;
1221 case DT_FLAGS_1: name = "FLAGS_1"; break;
1222 case DT_VERSYM: name = "VERSYM"; break;
1223 case DT_VERDEF: name = "VERDEF"; break;
1224 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1225 case DT_VERNEED: name = "VERNEED"; break;
1226 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1227 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1228 case DT_USED: name = "USED"; break;
1229 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1230 }
1231
1232 fprintf (f, " %-11s ", name);
1233 if (! stringp)
1234 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1235 else
1236 {
1237 const char *string;
1238 unsigned int tagv = dyn.d_un.d_val;
1239
1240 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1241 if (string == NULL)
1242 goto error_return;
1243 fprintf (f, "%s", string);
1244 }
1245 fprintf (f, "\n");
1246 }
1247
1248 free (dynbuf);
1249 dynbuf = NULL;
1250 }
1251
1252 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1253 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1254 {
1255 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1256 return FALSE;
1257 }
1258
1259 if (elf_dynverdef (abfd) != 0)
1260 {
1261 Elf_Internal_Verdef *t;
1262
1263 fprintf (f, _("\nVersion definitions:\n"));
1264 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1265 {
1266 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1267 t->vd_flags, t->vd_hash,
1268 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1269 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1270 {
1271 Elf_Internal_Verdaux *a;
1272
1273 fprintf (f, "\t");
1274 for (a = t->vd_auxptr->vda_nextptr;
1275 a != NULL;
1276 a = a->vda_nextptr)
1277 fprintf (f, "%s ",
1278 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1279 fprintf (f, "\n");
1280 }
1281 }
1282 }
1283
1284 if (elf_dynverref (abfd) != 0)
1285 {
1286 Elf_Internal_Verneed *t;
1287
1288 fprintf (f, _("\nVersion References:\n"));
1289 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1290 {
1291 Elf_Internal_Vernaux *a;
1292
1293 fprintf (f, _(" required from %s:\n"),
1294 t->vn_filename ? t->vn_filename : "<corrupt>");
1295 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1296 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1297 a->vna_flags, a->vna_other,
1298 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1299 }
1300 }
1301
1302 return TRUE;
1303
1304 error_return:
1305 if (dynbuf != NULL)
1306 free (dynbuf);
1307 return FALSE;
1308 }
1309
1310 /* Display ELF-specific fields of a symbol. */
1311
1312 void
1313 bfd_elf_print_symbol (bfd *abfd,
1314 void *filep,
1315 asymbol *symbol,
1316 bfd_print_symbol_type how)
1317 {
1318 FILE *file = filep;
1319 switch (how)
1320 {
1321 case bfd_print_symbol_name:
1322 fprintf (file, "%s", symbol->name);
1323 break;
1324 case bfd_print_symbol_more:
1325 fprintf (file, "elf ");
1326 bfd_fprintf_vma (abfd, file, symbol->value);
1327 fprintf (file, " %lx", (long) symbol->flags);
1328 break;
1329 case bfd_print_symbol_all:
1330 {
1331 const char *section_name;
1332 const char *name = NULL;
1333 const struct elf_backend_data *bed;
1334 unsigned char st_other;
1335 bfd_vma val;
1336
1337 section_name = symbol->section ? symbol->section->name : "(*none*)";
1338
1339 bed = get_elf_backend_data (abfd);
1340 if (bed->elf_backend_print_symbol_all)
1341 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1342
1343 if (name == NULL)
1344 {
1345 name = symbol->name;
1346 bfd_print_symbol_vandf (abfd, file, symbol);
1347 }
1348
1349 fprintf (file, " %s\t", section_name);
1350 /* Print the "other" value for a symbol. For common symbols,
1351 we've already printed the size; now print the alignment.
1352 For other symbols, we have no specified alignment, and
1353 we've printed the address; now print the size. */
1354 if (bfd_is_com_section (symbol->section))
1355 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1356 else
1357 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1358 bfd_fprintf_vma (abfd, file, val);
1359
1360 /* If we have version information, print it. */
1361 if (elf_tdata (abfd)->dynversym_section != 0
1362 && (elf_tdata (abfd)->dynverdef_section != 0
1363 || elf_tdata (abfd)->dynverref_section != 0))
1364 {
1365 unsigned int vernum;
1366 const char *version_string;
1367
1368 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1369
1370 if (vernum == 0)
1371 version_string = "";
1372 else if (vernum == 1)
1373 version_string = "Base";
1374 else if (vernum <= elf_tdata (abfd)->cverdefs)
1375 version_string =
1376 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1377 else
1378 {
1379 Elf_Internal_Verneed *t;
1380
1381 version_string = "";
1382 for (t = elf_tdata (abfd)->verref;
1383 t != NULL;
1384 t = t->vn_nextref)
1385 {
1386 Elf_Internal_Vernaux *a;
1387
1388 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1389 {
1390 if (a->vna_other == vernum)
1391 {
1392 version_string = a->vna_nodename;
1393 break;
1394 }
1395 }
1396 }
1397 }
1398
1399 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1400 fprintf (file, " %-11s", version_string);
1401 else
1402 {
1403 int i;
1404
1405 fprintf (file, " (%s)", version_string);
1406 for (i = 10 - strlen (version_string); i > 0; --i)
1407 putc (' ', file);
1408 }
1409 }
1410
1411 /* If the st_other field is not zero, print it. */
1412 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1413
1414 switch (st_other)
1415 {
1416 case 0: break;
1417 case STV_INTERNAL: fprintf (file, " .internal"); break;
1418 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1419 case STV_PROTECTED: fprintf (file, " .protected"); break;
1420 default:
1421 /* Some other non-defined flags are also present, so print
1422 everything hex. */
1423 fprintf (file, " 0x%02x", (unsigned int) st_other);
1424 }
1425
1426 fprintf (file, " %s", name);
1427 }
1428 break;
1429 }
1430 }
1431 \f
1432 /* Create an entry in an ELF linker hash table. */
1433
1434 struct bfd_hash_entry *
1435 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1436 struct bfd_hash_table *table,
1437 const char *string)
1438 {
1439 /* Allocate the structure if it has not already been allocated by a
1440 subclass. */
1441 if (entry == NULL)
1442 {
1443 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1444 if (entry == NULL)
1445 return entry;
1446 }
1447
1448 /* Call the allocation method of the superclass. */
1449 entry = _bfd_link_hash_newfunc (entry, table, string);
1450 if (entry != NULL)
1451 {
1452 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1453 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1454
1455 /* Set local fields. */
1456 ret->indx = -1;
1457 ret->dynindx = -1;
1458 ret->got = htab->init_got_refcount;
1459 ret->plt = htab->init_plt_refcount;
1460 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1461 - offsetof (struct elf_link_hash_entry, size)));
1462 /* Assume that we have been called by a non-ELF symbol reader.
1463 This flag is then reset by the code which reads an ELF input
1464 file. This ensures that a symbol created by a non-ELF symbol
1465 reader will have the flag set correctly. */
1466 ret->non_elf = 1;
1467 }
1468
1469 return entry;
1470 }
1471
1472 /* Copy data from an indirect symbol to its direct symbol, hiding the
1473 old indirect symbol. Also used for copying flags to a weakdef. */
1474
1475 void
1476 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1477 struct elf_link_hash_entry *dir,
1478 struct elf_link_hash_entry *ind)
1479 {
1480 struct elf_link_hash_table *htab;
1481
1482 /* Copy down any references that we may have already seen to the
1483 symbol which just became indirect. */
1484
1485 dir->ref_dynamic |= ind->ref_dynamic;
1486 dir->ref_regular |= ind->ref_regular;
1487 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1488 dir->non_got_ref |= ind->non_got_ref;
1489 dir->needs_plt |= ind->needs_plt;
1490 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1491
1492 if (ind->root.type != bfd_link_hash_indirect)
1493 return;
1494
1495 /* Copy over the global and procedure linkage table refcount entries.
1496 These may have been already set up by a check_relocs routine. */
1497 htab = elf_hash_table (info);
1498 if (ind->got.refcount > htab->init_got_refcount.refcount)
1499 {
1500 if (dir->got.refcount < 0)
1501 dir->got.refcount = 0;
1502 dir->got.refcount += ind->got.refcount;
1503 ind->got.refcount = htab->init_got_refcount.refcount;
1504 }
1505
1506 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1507 {
1508 if (dir->plt.refcount < 0)
1509 dir->plt.refcount = 0;
1510 dir->plt.refcount += ind->plt.refcount;
1511 ind->plt.refcount = htab->init_plt_refcount.refcount;
1512 }
1513
1514 if (ind->dynindx != -1)
1515 {
1516 if (dir->dynindx != -1)
1517 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1518 dir->dynindx = ind->dynindx;
1519 dir->dynstr_index = ind->dynstr_index;
1520 ind->dynindx = -1;
1521 ind->dynstr_index = 0;
1522 }
1523 }
1524
1525 void
1526 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1527 struct elf_link_hash_entry *h,
1528 bfd_boolean force_local)
1529 {
1530 h->plt = elf_hash_table (info)->init_plt_offset;
1531 h->needs_plt = 0;
1532 if (force_local)
1533 {
1534 h->forced_local = 1;
1535 if (h->dynindx != -1)
1536 {
1537 h->dynindx = -1;
1538 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1539 h->dynstr_index);
1540 }
1541 }
1542 }
1543
1544 /* Initialize an ELF linker hash table. */
1545
1546 bfd_boolean
1547 _bfd_elf_link_hash_table_init
1548 (struct elf_link_hash_table *table,
1549 bfd *abfd,
1550 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1551 struct bfd_hash_table *,
1552 const char *))
1553 {
1554 bfd_boolean ret;
1555 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1556
1557 table->dynamic_sections_created = FALSE;
1558 table->dynobj = NULL;
1559 table->init_got_refcount.refcount = can_refcount - 1;
1560 table->init_plt_refcount.refcount = can_refcount - 1;
1561 table->init_got_offset.offset = -(bfd_vma) 1;
1562 table->init_plt_offset.offset = -(bfd_vma) 1;
1563 /* The first dynamic symbol is a dummy. */
1564 table->dynsymcount = 1;
1565 table->dynstr = NULL;
1566 table->bucketcount = 0;
1567 table->needed = NULL;
1568 table->hgot = NULL;
1569 table->merge_info = NULL;
1570 memset (&table->stab_info, 0, sizeof (table->stab_info));
1571 memset (&table->eh_info, 0, sizeof (table->eh_info));
1572 table->dynlocal = NULL;
1573 table->runpath = NULL;
1574 table->tls_sec = NULL;
1575 table->tls_size = 0;
1576 table->loaded = NULL;
1577 table->is_relocatable_executable = FALSE;
1578
1579 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1580 table->root.type = bfd_link_elf_hash_table;
1581
1582 return ret;
1583 }
1584
1585 /* Create an ELF linker hash table. */
1586
1587 struct bfd_link_hash_table *
1588 _bfd_elf_link_hash_table_create (bfd *abfd)
1589 {
1590 struct elf_link_hash_table *ret;
1591 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1592
1593 ret = bfd_malloc (amt);
1594 if (ret == NULL)
1595 return NULL;
1596
1597 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1598 {
1599 free (ret);
1600 return NULL;
1601 }
1602
1603 return &ret->root;
1604 }
1605
1606 /* This is a hook for the ELF emulation code in the generic linker to
1607 tell the backend linker what file name to use for the DT_NEEDED
1608 entry for a dynamic object. */
1609
1610 void
1611 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1612 {
1613 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1614 && bfd_get_format (abfd) == bfd_object)
1615 elf_dt_name (abfd) = name;
1616 }
1617
1618 int
1619 bfd_elf_get_dyn_lib_class (bfd *abfd)
1620 {
1621 int lib_class;
1622 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1623 && bfd_get_format (abfd) == bfd_object)
1624 lib_class = elf_dyn_lib_class (abfd);
1625 else
1626 lib_class = 0;
1627 return lib_class;
1628 }
1629
1630 void
1631 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1632 {
1633 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1634 && bfd_get_format (abfd) == bfd_object)
1635 elf_dyn_lib_class (abfd) = lib_class;
1636 }
1637
1638 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1639 the linker ELF emulation code. */
1640
1641 struct bfd_link_needed_list *
1642 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1643 struct bfd_link_info *info)
1644 {
1645 if (! is_elf_hash_table (info->hash))
1646 return NULL;
1647 return elf_hash_table (info)->needed;
1648 }
1649
1650 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1651 hook for the linker ELF emulation code. */
1652
1653 struct bfd_link_needed_list *
1654 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1655 struct bfd_link_info *info)
1656 {
1657 if (! is_elf_hash_table (info->hash))
1658 return NULL;
1659 return elf_hash_table (info)->runpath;
1660 }
1661
1662 /* Get the name actually used for a dynamic object for a link. This
1663 is the SONAME entry if there is one. Otherwise, it is the string
1664 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1665
1666 const char *
1667 bfd_elf_get_dt_soname (bfd *abfd)
1668 {
1669 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1670 && bfd_get_format (abfd) == bfd_object)
1671 return elf_dt_name (abfd);
1672 return NULL;
1673 }
1674
1675 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1676 the ELF linker emulation code. */
1677
1678 bfd_boolean
1679 bfd_elf_get_bfd_needed_list (bfd *abfd,
1680 struct bfd_link_needed_list **pneeded)
1681 {
1682 asection *s;
1683 bfd_byte *dynbuf = NULL;
1684 int elfsec;
1685 unsigned long shlink;
1686 bfd_byte *extdyn, *extdynend;
1687 size_t extdynsize;
1688 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1689
1690 *pneeded = NULL;
1691
1692 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1693 || bfd_get_format (abfd) != bfd_object)
1694 return TRUE;
1695
1696 s = bfd_get_section_by_name (abfd, ".dynamic");
1697 if (s == NULL || s->size == 0)
1698 return TRUE;
1699
1700 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1701 goto error_return;
1702
1703 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1704 if (elfsec == -1)
1705 goto error_return;
1706
1707 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1708
1709 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1710 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1711
1712 extdyn = dynbuf;
1713 extdynend = extdyn + s->size;
1714 for (; extdyn < extdynend; extdyn += extdynsize)
1715 {
1716 Elf_Internal_Dyn dyn;
1717
1718 (*swap_dyn_in) (abfd, extdyn, &dyn);
1719
1720 if (dyn.d_tag == DT_NULL)
1721 break;
1722
1723 if (dyn.d_tag == DT_NEEDED)
1724 {
1725 const char *string;
1726 struct bfd_link_needed_list *l;
1727 unsigned int tagv = dyn.d_un.d_val;
1728 bfd_size_type amt;
1729
1730 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1731 if (string == NULL)
1732 goto error_return;
1733
1734 amt = sizeof *l;
1735 l = bfd_alloc (abfd, amt);
1736 if (l == NULL)
1737 goto error_return;
1738
1739 l->by = abfd;
1740 l->name = string;
1741 l->next = *pneeded;
1742 *pneeded = l;
1743 }
1744 }
1745
1746 free (dynbuf);
1747
1748 return TRUE;
1749
1750 error_return:
1751 if (dynbuf != NULL)
1752 free (dynbuf);
1753 return FALSE;
1754 }
1755 \f
1756 /* Allocate an ELF string table--force the first byte to be zero. */
1757
1758 struct bfd_strtab_hash *
1759 _bfd_elf_stringtab_init (void)
1760 {
1761 struct bfd_strtab_hash *ret;
1762
1763 ret = _bfd_stringtab_init ();
1764 if (ret != NULL)
1765 {
1766 bfd_size_type loc;
1767
1768 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1769 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1770 if (loc == (bfd_size_type) -1)
1771 {
1772 _bfd_stringtab_free (ret);
1773 ret = NULL;
1774 }
1775 }
1776 return ret;
1777 }
1778 \f
1779 /* ELF .o/exec file reading */
1780
1781 /* Create a new bfd section from an ELF section header. */
1782
1783 bfd_boolean
1784 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1785 {
1786 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1787 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1788 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1789 const char *name;
1790
1791 name = bfd_elf_string_from_elf_section (abfd,
1792 elf_elfheader (abfd)->e_shstrndx,
1793 hdr->sh_name);
1794 if (name == NULL)
1795 return FALSE;
1796
1797 switch (hdr->sh_type)
1798 {
1799 case SHT_NULL:
1800 /* Inactive section. Throw it away. */
1801 return TRUE;
1802
1803 case SHT_PROGBITS: /* Normal section with contents. */
1804 case SHT_NOBITS: /* .bss section. */
1805 case SHT_HASH: /* .hash section. */
1806 case SHT_NOTE: /* .note section. */
1807 case SHT_INIT_ARRAY: /* .init_array section. */
1808 case SHT_FINI_ARRAY: /* .fini_array section. */
1809 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1810 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1811 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1812
1813 case SHT_DYNAMIC: /* Dynamic linking information. */
1814 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1815 return FALSE;
1816 if (hdr->sh_link > elf_numsections (abfd)
1817 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1818 return FALSE;
1819 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1820 {
1821 Elf_Internal_Shdr *dynsymhdr;
1822
1823 /* The shared libraries distributed with hpux11 have a bogus
1824 sh_link field for the ".dynamic" section. Find the
1825 string table for the ".dynsym" section instead. */
1826 if (elf_dynsymtab (abfd) != 0)
1827 {
1828 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1829 hdr->sh_link = dynsymhdr->sh_link;
1830 }
1831 else
1832 {
1833 unsigned int i, num_sec;
1834
1835 num_sec = elf_numsections (abfd);
1836 for (i = 1; i < num_sec; i++)
1837 {
1838 dynsymhdr = elf_elfsections (abfd)[i];
1839 if (dynsymhdr->sh_type == SHT_DYNSYM)
1840 {
1841 hdr->sh_link = dynsymhdr->sh_link;
1842 break;
1843 }
1844 }
1845 }
1846 }
1847 break;
1848
1849 case SHT_SYMTAB: /* A symbol table */
1850 if (elf_onesymtab (abfd) == shindex)
1851 return TRUE;
1852
1853 if (hdr->sh_entsize != bed->s->sizeof_sym)
1854 return FALSE;
1855 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1856 elf_onesymtab (abfd) = shindex;
1857 elf_tdata (abfd)->symtab_hdr = *hdr;
1858 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1859 abfd->flags |= HAS_SYMS;
1860
1861 /* Sometimes a shared object will map in the symbol table. If
1862 SHF_ALLOC is set, and this is a shared object, then we also
1863 treat this section as a BFD section. We can not base the
1864 decision purely on SHF_ALLOC, because that flag is sometimes
1865 set in a relocatable object file, which would confuse the
1866 linker. */
1867 if ((hdr->sh_flags & SHF_ALLOC) != 0
1868 && (abfd->flags & DYNAMIC) != 0
1869 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1870 shindex))
1871 return FALSE;
1872
1873 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1874 can't read symbols without that section loaded as well. It
1875 is most likely specified by the next section header. */
1876 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1877 {
1878 unsigned int i, num_sec;
1879
1880 num_sec = elf_numsections (abfd);
1881 for (i = shindex + 1; i < num_sec; i++)
1882 {
1883 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1884 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1885 && hdr2->sh_link == shindex)
1886 break;
1887 }
1888 if (i == num_sec)
1889 for (i = 1; i < shindex; i++)
1890 {
1891 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1892 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1893 && hdr2->sh_link == shindex)
1894 break;
1895 }
1896 if (i != shindex)
1897 return bfd_section_from_shdr (abfd, i);
1898 }
1899 return TRUE;
1900
1901 case SHT_DYNSYM: /* A dynamic symbol table */
1902 if (elf_dynsymtab (abfd) == shindex)
1903 return TRUE;
1904
1905 if (hdr->sh_entsize != bed->s->sizeof_sym)
1906 return FALSE;
1907 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1908 elf_dynsymtab (abfd) = shindex;
1909 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1910 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1911 abfd->flags |= HAS_SYMS;
1912
1913 /* Besides being a symbol table, we also treat this as a regular
1914 section, so that objcopy can handle it. */
1915 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1916
1917 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1918 if (elf_symtab_shndx (abfd) == shindex)
1919 return TRUE;
1920
1921 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1922 elf_symtab_shndx (abfd) = shindex;
1923 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1924 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1925 return TRUE;
1926
1927 case SHT_STRTAB: /* A string table */
1928 if (hdr->bfd_section != NULL)
1929 return TRUE;
1930 if (ehdr->e_shstrndx == shindex)
1931 {
1932 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1933 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1934 return TRUE;
1935 }
1936 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1937 {
1938 symtab_strtab:
1939 elf_tdata (abfd)->strtab_hdr = *hdr;
1940 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1941 return TRUE;
1942 }
1943 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1944 {
1945 dynsymtab_strtab:
1946 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1947 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1948 elf_elfsections (abfd)[shindex] = hdr;
1949 /* We also treat this as a regular section, so that objcopy
1950 can handle it. */
1951 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1952 shindex);
1953 }
1954
1955 /* If the string table isn't one of the above, then treat it as a
1956 regular section. We need to scan all the headers to be sure,
1957 just in case this strtab section appeared before the above. */
1958 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1959 {
1960 unsigned int i, num_sec;
1961
1962 num_sec = elf_numsections (abfd);
1963 for (i = 1; i < num_sec; i++)
1964 {
1965 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1966 if (hdr2->sh_link == shindex)
1967 {
1968 /* Prevent endless recursion on broken objects. */
1969 if (i == shindex)
1970 return FALSE;
1971 if (! bfd_section_from_shdr (abfd, i))
1972 return FALSE;
1973 if (elf_onesymtab (abfd) == i)
1974 goto symtab_strtab;
1975 if (elf_dynsymtab (abfd) == i)
1976 goto dynsymtab_strtab;
1977 }
1978 }
1979 }
1980 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1981
1982 case SHT_REL:
1983 case SHT_RELA:
1984 /* *These* do a lot of work -- but build no sections! */
1985 {
1986 asection *target_sect;
1987 Elf_Internal_Shdr *hdr2;
1988 unsigned int num_sec = elf_numsections (abfd);
1989
1990 if (hdr->sh_entsize
1991 != (bfd_size_type) (hdr->sh_type == SHT_REL
1992 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1993 return FALSE;
1994
1995 /* Check for a bogus link to avoid crashing. */
1996 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1997 || hdr->sh_link >= num_sec)
1998 {
1999 ((*_bfd_error_handler)
2000 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2001 abfd, hdr->sh_link, name, shindex));
2002 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2003 shindex);
2004 }
2005
2006 /* For some incomprehensible reason Oracle distributes
2007 libraries for Solaris in which some of the objects have
2008 bogus sh_link fields. It would be nice if we could just
2009 reject them, but, unfortunately, some people need to use
2010 them. We scan through the section headers; if we find only
2011 one suitable symbol table, we clobber the sh_link to point
2012 to it. I hope this doesn't break anything. */
2013 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2014 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2015 {
2016 unsigned int scan;
2017 int found;
2018
2019 found = 0;
2020 for (scan = 1; scan < num_sec; scan++)
2021 {
2022 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2023 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2024 {
2025 if (found != 0)
2026 {
2027 found = 0;
2028 break;
2029 }
2030 found = scan;
2031 }
2032 }
2033 if (found != 0)
2034 hdr->sh_link = found;
2035 }
2036
2037 /* Get the symbol table. */
2038 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2039 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2040 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2041 return FALSE;
2042
2043 /* If this reloc section does not use the main symbol table we
2044 don't treat it as a reloc section. BFD can't adequately
2045 represent such a section, so at least for now, we don't
2046 try. We just present it as a normal section. We also
2047 can't use it as a reloc section if it points to the null
2048 section, an invalid section, or another reloc section. */
2049 if (hdr->sh_link != elf_onesymtab (abfd)
2050 || hdr->sh_info == SHN_UNDEF
2051 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2052 || hdr->sh_info >= num_sec
2053 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2054 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2055 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2056 shindex);
2057
2058 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2059 return FALSE;
2060 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2061 if (target_sect == NULL)
2062 return FALSE;
2063
2064 if ((target_sect->flags & SEC_RELOC) == 0
2065 || target_sect->reloc_count == 0)
2066 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2067 else
2068 {
2069 bfd_size_type amt;
2070 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2071 amt = sizeof (*hdr2);
2072 hdr2 = bfd_alloc (abfd, amt);
2073 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2074 }
2075 *hdr2 = *hdr;
2076 elf_elfsections (abfd)[shindex] = hdr2;
2077 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2078 target_sect->flags |= SEC_RELOC;
2079 target_sect->relocation = NULL;
2080 target_sect->rel_filepos = hdr->sh_offset;
2081 /* In the section to which the relocations apply, mark whether
2082 its relocations are of the REL or RELA variety. */
2083 if (hdr->sh_size != 0)
2084 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2085 abfd->flags |= HAS_RELOC;
2086 return TRUE;
2087 }
2088 break;
2089
2090 case SHT_GNU_verdef:
2091 elf_dynverdef (abfd) = shindex;
2092 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2093 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2094 break;
2095
2096 case SHT_GNU_versym:
2097 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2098 return FALSE;
2099 elf_dynversym (abfd) = shindex;
2100 elf_tdata (abfd)->dynversym_hdr = *hdr;
2101 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2102 break;
2103
2104 case SHT_GNU_verneed:
2105 elf_dynverref (abfd) = shindex;
2106 elf_tdata (abfd)->dynverref_hdr = *hdr;
2107 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2108 break;
2109
2110 case SHT_SHLIB:
2111 return TRUE;
2112
2113 case SHT_GROUP:
2114 /* We need a BFD section for objcopy and relocatable linking,
2115 and it's handy to have the signature available as the section
2116 name. */
2117 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2118 return FALSE;
2119 name = group_signature (abfd, hdr);
2120 if (name == NULL)
2121 return FALSE;
2122 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2123 return FALSE;
2124 if (hdr->contents != NULL)
2125 {
2126 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2127 unsigned int n_elt = hdr->sh_size / 4;
2128 asection *s;
2129
2130 if (idx->flags & GRP_COMDAT)
2131 hdr->bfd_section->flags
2132 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2133
2134 /* We try to keep the same section order as it comes in. */
2135 idx += n_elt;
2136 while (--n_elt != 0)
2137 if ((s = (--idx)->shdr->bfd_section) != NULL
2138 && elf_next_in_group (s) != NULL)
2139 {
2140 elf_next_in_group (hdr->bfd_section) = s;
2141 break;
2142 }
2143 }
2144 break;
2145
2146 default:
2147 /* Check for any processor-specific section types. */
2148 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2149 shindex);
2150 }
2151
2152 return TRUE;
2153 }
2154
2155 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2156 Return SEC for sections that have no elf section, and NULL on error. */
2157
2158 asection *
2159 bfd_section_from_r_symndx (bfd *abfd,
2160 struct sym_sec_cache *cache,
2161 asection *sec,
2162 unsigned long r_symndx)
2163 {
2164 Elf_Internal_Shdr *symtab_hdr;
2165 unsigned char esym[sizeof (Elf64_External_Sym)];
2166 Elf_External_Sym_Shndx eshndx;
2167 Elf_Internal_Sym isym;
2168 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2169
2170 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2171 return cache->sec[ent];
2172
2173 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2174 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2175 &isym, esym, &eshndx) == NULL)
2176 return NULL;
2177
2178 if (cache->abfd != abfd)
2179 {
2180 memset (cache->indx, -1, sizeof (cache->indx));
2181 cache->abfd = abfd;
2182 }
2183 cache->indx[ent] = r_symndx;
2184 cache->sec[ent] = sec;
2185 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2186 || isym.st_shndx > SHN_HIRESERVE)
2187 {
2188 asection *s;
2189 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2190 if (s != NULL)
2191 cache->sec[ent] = s;
2192 }
2193 return cache->sec[ent];
2194 }
2195
2196 /* Given an ELF section number, retrieve the corresponding BFD
2197 section. */
2198
2199 asection *
2200 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2201 {
2202 if (index >= elf_numsections (abfd))
2203 return NULL;
2204 return elf_elfsections (abfd)[index]->bfd_section;
2205 }
2206
2207 static const struct bfd_elf_special_section special_sections_b[] =
2208 {
2209 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2210 { NULL, 0, 0, 0, 0 }
2211 };
2212
2213 static const struct bfd_elf_special_section special_sections_c[] =
2214 {
2215 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2216 { NULL, 0, 0, 0, 0 }
2217 };
2218
2219 static const struct bfd_elf_special_section special_sections_d[] =
2220 {
2221 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2222 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2223 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2224 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2225 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2226 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2227 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2228 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2229 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2230 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2231 { NULL, 0, 0, 0, 0 }
2232 };
2233
2234 static const struct bfd_elf_special_section special_sections_f[] =
2235 {
2236 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2237 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2238 { NULL, 0, 0, 0, 0 }
2239 };
2240
2241 static const struct bfd_elf_special_section special_sections_g[] =
2242 {
2243 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2244 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2245 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2246 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2247 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2248 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2249 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2250 { NULL, 0, 0, 0, 0 }
2251 };
2252
2253 static const struct bfd_elf_special_section special_sections_h[] =
2254 {
2255 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2256 { NULL, 0, 0, 0, 0 }
2257 };
2258
2259 static const struct bfd_elf_special_section special_sections_i[] =
2260 {
2261 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2262 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2263 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2264 { NULL, 0, 0, 0, 0 }
2265 };
2266
2267 static const struct bfd_elf_special_section special_sections_l[] =
2268 {
2269 { ".line", 5, 0, SHT_PROGBITS, 0 },
2270 { NULL, 0, 0, 0, 0 }
2271 };
2272
2273 static const struct bfd_elf_special_section special_sections_n[] =
2274 {
2275 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2276 { ".note", 5, -1, SHT_NOTE, 0 },
2277 { NULL, 0, 0, 0, 0 }
2278 };
2279
2280 static const struct bfd_elf_special_section special_sections_p[] =
2281 {
2282 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2283 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2284 { NULL, 0, 0, 0, 0 }
2285 };
2286
2287 static const struct bfd_elf_special_section special_sections_r[] =
2288 {
2289 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2290 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2291 { ".rela", 5, -1, SHT_RELA, 0 },
2292 { ".rel", 4, -1, SHT_REL, 0 },
2293 { NULL, 0, 0, 0, 0 }
2294 };
2295
2296 static const struct bfd_elf_special_section special_sections_s[] =
2297 {
2298 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2299 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2300 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2301 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2302 { NULL, 0, 0, 0, 0 }
2303 };
2304
2305 static const struct bfd_elf_special_section special_sections_t[] =
2306 {
2307 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2308 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2309 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2310 { NULL, 0, 0, 0, 0 }
2311 };
2312
2313 static const struct bfd_elf_special_section *special_sections[] =
2314 {
2315 special_sections_b, /* 'b' */
2316 special_sections_c, /* 'b' */
2317 special_sections_d, /* 'd' */
2318 NULL, /* 'e' */
2319 special_sections_f, /* 'f' */
2320 special_sections_g, /* 'g' */
2321 special_sections_h, /* 'h' */
2322 special_sections_i, /* 'i' */
2323 NULL, /* 'j' */
2324 NULL, /* 'k' */
2325 special_sections_l, /* 'l' */
2326 NULL, /* 'm' */
2327 special_sections_n, /* 'n' */
2328 NULL, /* 'o' */
2329 special_sections_p, /* 'p' */
2330 NULL, /* 'q' */
2331 special_sections_r, /* 'r' */
2332 special_sections_s, /* 's' */
2333 special_sections_t, /* 't' */
2334 };
2335
2336 const struct bfd_elf_special_section *
2337 _bfd_elf_get_special_section (const char *name,
2338 const struct bfd_elf_special_section *spec,
2339 unsigned int rela)
2340 {
2341 int i;
2342 int len;
2343
2344 len = strlen (name);
2345
2346 for (i = 0; spec[i].prefix != NULL; i++)
2347 {
2348 int suffix_len;
2349 int prefix_len = spec[i].prefix_length;
2350
2351 if (len < prefix_len)
2352 continue;
2353 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2354 continue;
2355
2356 suffix_len = spec[i].suffix_length;
2357 if (suffix_len <= 0)
2358 {
2359 if (name[prefix_len] != 0)
2360 {
2361 if (suffix_len == 0)
2362 continue;
2363 if (name[prefix_len] != '.'
2364 && (suffix_len == -2
2365 || (rela && spec[i].type == SHT_REL)))
2366 continue;
2367 }
2368 }
2369 else
2370 {
2371 if (len < prefix_len + suffix_len)
2372 continue;
2373 if (memcmp (name + len - suffix_len,
2374 spec[i].prefix + prefix_len,
2375 suffix_len) != 0)
2376 continue;
2377 }
2378 return &spec[i];
2379 }
2380
2381 return NULL;
2382 }
2383
2384 const struct bfd_elf_special_section *
2385 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2386 {
2387 int i;
2388 const struct bfd_elf_special_section *spec;
2389 const struct elf_backend_data *bed;
2390
2391 /* See if this is one of the special sections. */
2392 if (sec->name == NULL)
2393 return NULL;
2394
2395 bed = get_elf_backend_data (abfd);
2396 spec = bed->special_sections;
2397 if (spec)
2398 {
2399 spec = _bfd_elf_get_special_section (sec->name,
2400 bed->special_sections,
2401 sec->use_rela_p);
2402 if (spec != NULL)
2403 return spec;
2404 }
2405
2406 if (sec->name[0] != '.')
2407 return NULL;
2408
2409 i = sec->name[1] - 'b';
2410 if (i < 0 || i > 't' - 'b')
2411 return NULL;
2412
2413 spec = special_sections[i];
2414
2415 if (spec == NULL)
2416 return NULL;
2417
2418 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2419 }
2420
2421 bfd_boolean
2422 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2423 {
2424 struct bfd_elf_section_data *sdata;
2425 const struct elf_backend_data *bed;
2426 const struct bfd_elf_special_section *ssect;
2427
2428 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2429 if (sdata == NULL)
2430 {
2431 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2432 if (sdata == NULL)
2433 return FALSE;
2434 sec->used_by_bfd = sdata;
2435 }
2436
2437 /* Indicate whether or not this section should use RELA relocations. */
2438 bed = get_elf_backend_data (abfd);
2439 sec->use_rela_p = bed->default_use_rela_p;
2440
2441 /* When we read a file, we don't need section type and flags unless
2442 it is a linker created section. They will be overridden in
2443 _bfd_elf_make_section_from_shdr anyway. */
2444 if (abfd->direction != read_direction
2445 || (sec->flags & SEC_LINKER_CREATED) != 0)
2446 {
2447 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2448 if (ssect != NULL)
2449 {
2450 elf_section_type (sec) = ssect->type;
2451 elf_section_flags (sec) = ssect->attr;
2452 }
2453 }
2454
2455 return TRUE;
2456 }
2457
2458 /* Create a new bfd section from an ELF program header.
2459
2460 Since program segments have no names, we generate a synthetic name
2461 of the form segment<NUM>, where NUM is generally the index in the
2462 program header table. For segments that are split (see below) we
2463 generate the names segment<NUM>a and segment<NUM>b.
2464
2465 Note that some program segments may have a file size that is different than
2466 (less than) the memory size. All this means is that at execution the
2467 system must allocate the amount of memory specified by the memory size,
2468 but only initialize it with the first "file size" bytes read from the
2469 file. This would occur for example, with program segments consisting
2470 of combined data+bss.
2471
2472 To handle the above situation, this routine generates TWO bfd sections
2473 for the single program segment. The first has the length specified by
2474 the file size of the segment, and the second has the length specified
2475 by the difference between the two sizes. In effect, the segment is split
2476 into it's initialized and uninitialized parts.
2477
2478 */
2479
2480 bfd_boolean
2481 _bfd_elf_make_section_from_phdr (bfd *abfd,
2482 Elf_Internal_Phdr *hdr,
2483 int index,
2484 const char *typename)
2485 {
2486 asection *newsect;
2487 char *name;
2488 char namebuf[64];
2489 size_t len;
2490 int split;
2491
2492 split = ((hdr->p_memsz > 0)
2493 && (hdr->p_filesz > 0)
2494 && (hdr->p_memsz > hdr->p_filesz));
2495 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2496 len = strlen (namebuf) + 1;
2497 name = bfd_alloc (abfd, len);
2498 if (!name)
2499 return FALSE;
2500 memcpy (name, namebuf, len);
2501 newsect = bfd_make_section (abfd, name);
2502 if (newsect == NULL)
2503 return FALSE;
2504 newsect->vma = hdr->p_vaddr;
2505 newsect->lma = hdr->p_paddr;
2506 newsect->size = hdr->p_filesz;
2507 newsect->filepos = hdr->p_offset;
2508 newsect->flags |= SEC_HAS_CONTENTS;
2509 newsect->alignment_power = bfd_log2 (hdr->p_align);
2510 if (hdr->p_type == PT_LOAD)
2511 {
2512 newsect->flags |= SEC_ALLOC;
2513 newsect->flags |= SEC_LOAD;
2514 if (hdr->p_flags & PF_X)
2515 {
2516 /* FIXME: all we known is that it has execute PERMISSION,
2517 may be data. */
2518 newsect->flags |= SEC_CODE;
2519 }
2520 }
2521 if (!(hdr->p_flags & PF_W))
2522 {
2523 newsect->flags |= SEC_READONLY;
2524 }
2525
2526 if (split)
2527 {
2528 sprintf (namebuf, "%s%db", typename, index);
2529 len = strlen (namebuf) + 1;
2530 name = bfd_alloc (abfd, len);
2531 if (!name)
2532 return FALSE;
2533 memcpy (name, namebuf, len);
2534 newsect = bfd_make_section (abfd, name);
2535 if (newsect == NULL)
2536 return FALSE;
2537 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2538 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2539 newsect->size = hdr->p_memsz - hdr->p_filesz;
2540 if (hdr->p_type == PT_LOAD)
2541 {
2542 newsect->flags |= SEC_ALLOC;
2543 if (hdr->p_flags & PF_X)
2544 newsect->flags |= SEC_CODE;
2545 }
2546 if (!(hdr->p_flags & PF_W))
2547 newsect->flags |= SEC_READONLY;
2548 }
2549
2550 return TRUE;
2551 }
2552
2553 bfd_boolean
2554 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2555 {
2556 const struct elf_backend_data *bed;
2557
2558 switch (hdr->p_type)
2559 {
2560 case PT_NULL:
2561 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2562
2563 case PT_LOAD:
2564 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2565
2566 case PT_DYNAMIC:
2567 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2568
2569 case PT_INTERP:
2570 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2571
2572 case PT_NOTE:
2573 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2574 return FALSE;
2575 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2576 return FALSE;
2577 return TRUE;
2578
2579 case PT_SHLIB:
2580 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2581
2582 case PT_PHDR:
2583 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2584
2585 case PT_GNU_EH_FRAME:
2586 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2587 "eh_frame_hdr");
2588
2589 case PT_GNU_STACK:
2590 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2591
2592 case PT_GNU_RELRO:
2593 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2594
2595 default:
2596 /* Check for any processor-specific program segment types. */
2597 bed = get_elf_backend_data (abfd);
2598 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2599 }
2600 }
2601
2602 /* Initialize REL_HDR, the section-header for new section, containing
2603 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2604 relocations; otherwise, we use REL relocations. */
2605
2606 bfd_boolean
2607 _bfd_elf_init_reloc_shdr (bfd *abfd,
2608 Elf_Internal_Shdr *rel_hdr,
2609 asection *asect,
2610 bfd_boolean use_rela_p)
2611 {
2612 char *name;
2613 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2614 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2615
2616 name = bfd_alloc (abfd, amt);
2617 if (name == NULL)
2618 return FALSE;
2619 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2620 rel_hdr->sh_name =
2621 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2622 FALSE);
2623 if (rel_hdr->sh_name == (unsigned int) -1)
2624 return FALSE;
2625 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2626 rel_hdr->sh_entsize = (use_rela_p
2627 ? bed->s->sizeof_rela
2628 : bed->s->sizeof_rel);
2629 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2630 rel_hdr->sh_flags = 0;
2631 rel_hdr->sh_addr = 0;
2632 rel_hdr->sh_size = 0;
2633 rel_hdr->sh_offset = 0;
2634
2635 return TRUE;
2636 }
2637
2638 /* Set up an ELF internal section header for a section. */
2639
2640 static void
2641 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2642 {
2643 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2644 bfd_boolean *failedptr = failedptrarg;
2645 Elf_Internal_Shdr *this_hdr;
2646
2647 if (*failedptr)
2648 {
2649 /* We already failed; just get out of the bfd_map_over_sections
2650 loop. */
2651 return;
2652 }
2653
2654 this_hdr = &elf_section_data (asect)->this_hdr;
2655
2656 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2657 asect->name, FALSE);
2658 if (this_hdr->sh_name == (unsigned int) -1)
2659 {
2660 *failedptr = TRUE;
2661 return;
2662 }
2663
2664 /* Don't clear sh_flags. Assembler may set additional bits. */
2665
2666 if ((asect->flags & SEC_ALLOC) != 0
2667 || asect->user_set_vma)
2668 this_hdr->sh_addr = asect->vma;
2669 else
2670 this_hdr->sh_addr = 0;
2671
2672 this_hdr->sh_offset = 0;
2673 this_hdr->sh_size = asect->size;
2674 this_hdr->sh_link = 0;
2675 this_hdr->sh_addralign = 1 << asect->alignment_power;
2676 /* The sh_entsize and sh_info fields may have been set already by
2677 copy_private_section_data. */
2678
2679 this_hdr->bfd_section = asect;
2680 this_hdr->contents = NULL;
2681
2682 /* If the section type is unspecified, we set it based on
2683 asect->flags. */
2684 if (this_hdr->sh_type == SHT_NULL)
2685 {
2686 if ((asect->flags & SEC_GROUP) != 0)
2687 this_hdr->sh_type = SHT_GROUP;
2688 else if ((asect->flags & SEC_ALLOC) != 0
2689 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2690 || (asect->flags & SEC_NEVER_LOAD) != 0))
2691 this_hdr->sh_type = SHT_NOBITS;
2692 else
2693 this_hdr->sh_type = SHT_PROGBITS;
2694 }
2695
2696 switch (this_hdr->sh_type)
2697 {
2698 default:
2699 break;
2700
2701 case SHT_STRTAB:
2702 case SHT_INIT_ARRAY:
2703 case SHT_FINI_ARRAY:
2704 case SHT_PREINIT_ARRAY:
2705 case SHT_NOTE:
2706 case SHT_NOBITS:
2707 case SHT_PROGBITS:
2708 break;
2709
2710 case SHT_HASH:
2711 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2712 break;
2713
2714 case SHT_DYNSYM:
2715 this_hdr->sh_entsize = bed->s->sizeof_sym;
2716 break;
2717
2718 case SHT_DYNAMIC:
2719 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2720 break;
2721
2722 case SHT_RELA:
2723 if (get_elf_backend_data (abfd)->may_use_rela_p)
2724 this_hdr->sh_entsize = bed->s->sizeof_rela;
2725 break;
2726
2727 case SHT_REL:
2728 if (get_elf_backend_data (abfd)->may_use_rel_p)
2729 this_hdr->sh_entsize = bed->s->sizeof_rel;
2730 break;
2731
2732 case SHT_GNU_versym:
2733 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2734 break;
2735
2736 case SHT_GNU_verdef:
2737 this_hdr->sh_entsize = 0;
2738 /* objcopy or strip will copy over sh_info, but may not set
2739 cverdefs. The linker will set cverdefs, but sh_info will be
2740 zero. */
2741 if (this_hdr->sh_info == 0)
2742 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2743 else
2744 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2745 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2746 break;
2747
2748 case SHT_GNU_verneed:
2749 this_hdr->sh_entsize = 0;
2750 /* objcopy or strip will copy over sh_info, but may not set
2751 cverrefs. The linker will set cverrefs, but sh_info will be
2752 zero. */
2753 if (this_hdr->sh_info == 0)
2754 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2755 else
2756 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2757 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2758 break;
2759
2760 case SHT_GROUP:
2761 this_hdr->sh_entsize = 4;
2762 break;
2763 }
2764
2765 if ((asect->flags & SEC_ALLOC) != 0)
2766 this_hdr->sh_flags |= SHF_ALLOC;
2767 if ((asect->flags & SEC_READONLY) == 0)
2768 this_hdr->sh_flags |= SHF_WRITE;
2769 if ((asect->flags & SEC_CODE) != 0)
2770 this_hdr->sh_flags |= SHF_EXECINSTR;
2771 if ((asect->flags & SEC_MERGE) != 0)
2772 {
2773 this_hdr->sh_flags |= SHF_MERGE;
2774 this_hdr->sh_entsize = asect->entsize;
2775 if ((asect->flags & SEC_STRINGS) != 0)
2776 this_hdr->sh_flags |= SHF_STRINGS;
2777 }
2778 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2779 this_hdr->sh_flags |= SHF_GROUP;
2780 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2781 {
2782 this_hdr->sh_flags |= SHF_TLS;
2783 if (asect->size == 0
2784 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2785 {
2786 struct bfd_link_order *o = asect->map_tail.link_order;
2787
2788 this_hdr->sh_size = 0;
2789 if (o != NULL)
2790 {
2791 this_hdr->sh_size = o->offset + o->size;
2792 if (this_hdr->sh_size != 0)
2793 this_hdr->sh_type = SHT_NOBITS;
2794 }
2795 }
2796 }
2797
2798 /* Check for processor-specific section types. */
2799 if (bed->elf_backend_fake_sections
2800 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2801 *failedptr = TRUE;
2802
2803 /* If the section has relocs, set up a section header for the
2804 SHT_REL[A] section. If two relocation sections are required for
2805 this section, it is up to the processor-specific back-end to
2806 create the other. */
2807 if ((asect->flags & SEC_RELOC) != 0
2808 && !_bfd_elf_init_reloc_shdr (abfd,
2809 &elf_section_data (asect)->rel_hdr,
2810 asect,
2811 asect->use_rela_p))
2812 *failedptr = TRUE;
2813 }
2814
2815 /* Fill in the contents of a SHT_GROUP section. */
2816
2817 void
2818 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2819 {
2820 bfd_boolean *failedptr = failedptrarg;
2821 unsigned long symindx;
2822 asection *elt, *first;
2823 unsigned char *loc;
2824 bfd_boolean gas;
2825
2826 /* Ignore linker created group section. See elfNN_ia64_object_p in
2827 elfxx-ia64.c. */
2828 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2829 || *failedptr)
2830 return;
2831
2832 symindx = 0;
2833 if (elf_group_id (sec) != NULL)
2834 symindx = elf_group_id (sec)->udata.i;
2835
2836 if (symindx == 0)
2837 {
2838 /* If called from the assembler, swap_out_syms will have set up
2839 elf_section_syms; If called for "ld -r", use target_index. */
2840 if (elf_section_syms (abfd) != NULL)
2841 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2842 else
2843 symindx = sec->target_index;
2844 }
2845 elf_section_data (sec)->this_hdr.sh_info = symindx;
2846
2847 /* The contents won't be allocated for "ld -r" or objcopy. */
2848 gas = TRUE;
2849 if (sec->contents == NULL)
2850 {
2851 gas = FALSE;
2852 sec->contents = bfd_alloc (abfd, sec->size);
2853
2854 /* Arrange for the section to be written out. */
2855 elf_section_data (sec)->this_hdr.contents = sec->contents;
2856 if (sec->contents == NULL)
2857 {
2858 *failedptr = TRUE;
2859 return;
2860 }
2861 }
2862
2863 loc = sec->contents + sec->size;
2864
2865 /* Get the pointer to the first section in the group that gas
2866 squirreled away here. objcopy arranges for this to be set to the
2867 start of the input section group. */
2868 first = elt = elf_next_in_group (sec);
2869
2870 /* First element is a flag word. Rest of section is elf section
2871 indices for all the sections of the group. Write them backwards
2872 just to keep the group in the same order as given in .section
2873 directives, not that it matters. */
2874 while (elt != NULL)
2875 {
2876 asection *s;
2877 unsigned int idx;
2878
2879 loc -= 4;
2880 s = elt;
2881 if (!gas)
2882 s = s->output_section;
2883 idx = 0;
2884 if (s != NULL)
2885 idx = elf_section_data (s)->this_idx;
2886 H_PUT_32 (abfd, idx, loc);
2887 elt = elf_next_in_group (elt);
2888 if (elt == first)
2889 break;
2890 }
2891
2892 if ((loc -= 4) != sec->contents)
2893 abort ();
2894
2895 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2896 }
2897
2898 /* Assign all ELF section numbers. The dummy first section is handled here
2899 too. The link/info pointers for the standard section types are filled
2900 in here too, while we're at it. */
2901
2902 static bfd_boolean
2903 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2904 {
2905 struct elf_obj_tdata *t = elf_tdata (abfd);
2906 asection *sec;
2907 unsigned int section_number, secn;
2908 Elf_Internal_Shdr **i_shdrp;
2909 struct bfd_elf_section_data *d;
2910
2911 section_number = 1;
2912
2913 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2914
2915 /* SHT_GROUP sections are in relocatable files only. */
2916 if (link_info == NULL || link_info->relocatable)
2917 {
2918 /* Put SHT_GROUP sections first. */
2919 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2920 {
2921 d = elf_section_data (sec);
2922
2923 if (d->this_hdr.sh_type == SHT_GROUP)
2924 {
2925 if (sec->flags & SEC_LINKER_CREATED)
2926 {
2927 /* Remove the linker created SHT_GROUP sections. */
2928 bfd_section_list_remove (abfd, sec);
2929 abfd->section_count--;
2930 }
2931 else
2932 {
2933 if (section_number == SHN_LORESERVE)
2934 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2935 d->this_idx = section_number++;
2936 }
2937 }
2938 }
2939 }
2940
2941 for (sec = abfd->sections; sec; sec = sec->next)
2942 {
2943 d = elf_section_data (sec);
2944
2945 if (d->this_hdr.sh_type != SHT_GROUP)
2946 {
2947 if (section_number == SHN_LORESERVE)
2948 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2949 d->this_idx = section_number++;
2950 }
2951 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2952 if ((sec->flags & SEC_RELOC) == 0)
2953 d->rel_idx = 0;
2954 else
2955 {
2956 if (section_number == SHN_LORESERVE)
2957 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2958 d->rel_idx = section_number++;
2959 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2960 }
2961
2962 if (d->rel_hdr2)
2963 {
2964 if (section_number == SHN_LORESERVE)
2965 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2966 d->rel_idx2 = section_number++;
2967 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2968 }
2969 else
2970 d->rel_idx2 = 0;
2971 }
2972
2973 if (section_number == SHN_LORESERVE)
2974 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2975 t->shstrtab_section = section_number++;
2976 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2977 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2978
2979 if (bfd_get_symcount (abfd) > 0)
2980 {
2981 if (section_number == SHN_LORESERVE)
2982 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2983 t->symtab_section = section_number++;
2984 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2985 if (section_number > SHN_LORESERVE - 2)
2986 {
2987 if (section_number == SHN_LORESERVE)
2988 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2989 t->symtab_shndx_section = section_number++;
2990 t->symtab_shndx_hdr.sh_name
2991 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2992 ".symtab_shndx", FALSE);
2993 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2994 return FALSE;
2995 }
2996 if (section_number == SHN_LORESERVE)
2997 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2998 t->strtab_section = section_number++;
2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3000 }
3001
3002 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3003 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3004
3005 elf_numsections (abfd) = section_number;
3006 elf_elfheader (abfd)->e_shnum = section_number;
3007 if (section_number > SHN_LORESERVE)
3008 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3009
3010 /* Set up the list of section header pointers, in agreement with the
3011 indices. */
3012 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3013 if (i_shdrp == NULL)
3014 return FALSE;
3015
3016 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3017 if (i_shdrp[0] == NULL)
3018 {
3019 bfd_release (abfd, i_shdrp);
3020 return FALSE;
3021 }
3022
3023 elf_elfsections (abfd) = i_shdrp;
3024
3025 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3026 if (bfd_get_symcount (abfd) > 0)
3027 {
3028 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3029 if (elf_numsections (abfd) > SHN_LORESERVE)
3030 {
3031 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3032 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3033 }
3034 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3035 t->symtab_hdr.sh_link = t->strtab_section;
3036 }
3037
3038 for (sec = abfd->sections; sec; sec = sec->next)
3039 {
3040 struct bfd_elf_section_data *d = elf_section_data (sec);
3041 asection *s;
3042 const char *name;
3043
3044 i_shdrp[d->this_idx] = &d->this_hdr;
3045 if (d->rel_idx != 0)
3046 i_shdrp[d->rel_idx] = &d->rel_hdr;
3047 if (d->rel_idx2 != 0)
3048 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3049
3050 /* Fill in the sh_link and sh_info fields while we're at it. */
3051
3052 /* sh_link of a reloc section is the section index of the symbol
3053 table. sh_info is the section index of the section to which
3054 the relocation entries apply. */
3055 if (d->rel_idx != 0)
3056 {
3057 d->rel_hdr.sh_link = t->symtab_section;
3058 d->rel_hdr.sh_info = d->this_idx;
3059 }
3060 if (d->rel_idx2 != 0)
3061 {
3062 d->rel_hdr2->sh_link = t->symtab_section;
3063 d->rel_hdr2->sh_info = d->this_idx;
3064 }
3065
3066 /* We need to set up sh_link for SHF_LINK_ORDER. */
3067 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3068 {
3069 s = elf_linked_to_section (sec);
3070 if (s)
3071 {
3072 /* elf_linked_to_section points to the input section. */
3073 if (link_info != NULL)
3074 {
3075 /* Check discarded linkonce section. */
3076 if (elf_discarded_section (s))
3077 {
3078 asection *kept;
3079 (*_bfd_error_handler)
3080 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3081 abfd, d->this_hdr.bfd_section,
3082 s, s->owner);
3083 /* Point to the kept section if it has the same
3084 size as the discarded one. */
3085 kept = _bfd_elf_check_kept_section (s);
3086 if (kept == NULL)
3087 {
3088 bfd_set_error (bfd_error_bad_value);
3089 return FALSE;
3090 }
3091 s = kept;
3092 }
3093
3094 s = s->output_section;
3095 BFD_ASSERT (s != NULL);
3096 }
3097 else
3098 {
3099 /* Handle objcopy. */
3100 if (s->output_section == NULL)
3101 {
3102 (*_bfd_error_handler)
3103 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3104 abfd, d->this_hdr.bfd_section, s, s->owner);
3105 bfd_set_error (bfd_error_bad_value);
3106 return FALSE;
3107 }
3108 s = s->output_section;
3109 }
3110 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3111 }
3112 else
3113 {
3114 /* PR 290:
3115 The Intel C compiler generates SHT_IA_64_UNWIND with
3116 SHF_LINK_ORDER. But it doesn't set the sh_link or
3117 sh_info fields. Hence we could get the situation
3118 where s is NULL. */
3119 const struct elf_backend_data *bed
3120 = get_elf_backend_data (abfd);
3121 if (bed->link_order_error_handler)
3122 bed->link_order_error_handler
3123 (_("%B: warning: sh_link not set for section `%A'"),
3124 abfd, sec);
3125 }
3126 }
3127
3128 switch (d->this_hdr.sh_type)
3129 {
3130 case SHT_REL:
3131 case SHT_RELA:
3132 /* A reloc section which we are treating as a normal BFD
3133 section. sh_link is the section index of the symbol
3134 table. sh_info is the section index of the section to
3135 which the relocation entries apply. We assume that an
3136 allocated reloc section uses the dynamic symbol table.
3137 FIXME: How can we be sure? */
3138 s = bfd_get_section_by_name (abfd, ".dynsym");
3139 if (s != NULL)
3140 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3141
3142 /* We look up the section the relocs apply to by name. */
3143 name = sec->name;
3144 if (d->this_hdr.sh_type == SHT_REL)
3145 name += 4;
3146 else
3147 name += 5;
3148 s = bfd_get_section_by_name (abfd, name);
3149 if (s != NULL)
3150 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3151 break;
3152
3153 case SHT_STRTAB:
3154 /* We assume that a section named .stab*str is a stabs
3155 string section. We look for a section with the same name
3156 but without the trailing ``str'', and set its sh_link
3157 field to point to this section. */
3158 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3159 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3160 {
3161 size_t len;
3162 char *alc;
3163
3164 len = strlen (sec->name);
3165 alc = bfd_malloc (len - 2);
3166 if (alc == NULL)
3167 return FALSE;
3168 memcpy (alc, sec->name, len - 3);
3169 alc[len - 3] = '\0';
3170 s = bfd_get_section_by_name (abfd, alc);
3171 free (alc);
3172 if (s != NULL)
3173 {
3174 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3175
3176 /* This is a .stab section. */
3177 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3178 elf_section_data (s)->this_hdr.sh_entsize
3179 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3180 }
3181 }
3182 break;
3183
3184 case SHT_DYNAMIC:
3185 case SHT_DYNSYM:
3186 case SHT_GNU_verneed:
3187 case SHT_GNU_verdef:
3188 /* sh_link is the section header index of the string table
3189 used for the dynamic entries, or the symbol table, or the
3190 version strings. */
3191 s = bfd_get_section_by_name (abfd, ".dynstr");
3192 if (s != NULL)
3193 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3194 break;
3195
3196 case SHT_GNU_LIBLIST:
3197 /* sh_link is the section header index of the prelink library
3198 list
3199 used for the dynamic entries, or the symbol table, or the
3200 version strings. */
3201 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3202 ? ".dynstr" : ".gnu.libstr");
3203 if (s != NULL)
3204 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3205 break;
3206
3207 case SHT_HASH:
3208 case SHT_GNU_versym:
3209 /* sh_link is the section header index of the symbol table
3210 this hash table or version table is for. */
3211 s = bfd_get_section_by_name (abfd, ".dynsym");
3212 if (s != NULL)
3213 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3214 break;
3215
3216 case SHT_GROUP:
3217 d->this_hdr.sh_link = t->symtab_section;
3218 }
3219 }
3220
3221 for (secn = 1; secn < section_number; ++secn)
3222 if (i_shdrp[secn] == NULL)
3223 i_shdrp[secn] = i_shdrp[0];
3224 else
3225 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3226 i_shdrp[secn]->sh_name);
3227 return TRUE;
3228 }
3229
3230 /* Map symbol from it's internal number to the external number, moving
3231 all local symbols to be at the head of the list. */
3232
3233 static int
3234 sym_is_global (bfd *abfd, asymbol *sym)
3235 {
3236 /* If the backend has a special mapping, use it. */
3237 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3238 if (bed->elf_backend_sym_is_global)
3239 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3240
3241 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3242 || bfd_is_und_section (bfd_get_section (sym))
3243 || bfd_is_com_section (bfd_get_section (sym)));
3244 }
3245
3246 static bfd_boolean
3247 elf_map_symbols (bfd *abfd)
3248 {
3249 unsigned int symcount = bfd_get_symcount (abfd);
3250 asymbol **syms = bfd_get_outsymbols (abfd);
3251 asymbol **sect_syms;
3252 unsigned int num_locals = 0;
3253 unsigned int num_globals = 0;
3254 unsigned int num_locals2 = 0;
3255 unsigned int num_globals2 = 0;
3256 int max_index = 0;
3257 unsigned int idx;
3258 asection *asect;
3259 asymbol **new_syms;
3260
3261 #ifdef DEBUG
3262 fprintf (stderr, "elf_map_symbols\n");
3263 fflush (stderr);
3264 #endif
3265
3266 for (asect = abfd->sections; asect; asect = asect->next)
3267 {
3268 if (max_index < asect->index)
3269 max_index = asect->index;
3270 }
3271
3272 max_index++;
3273 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3274 if (sect_syms == NULL)
3275 return FALSE;
3276 elf_section_syms (abfd) = sect_syms;
3277 elf_num_section_syms (abfd) = max_index;
3278
3279 /* Init sect_syms entries for any section symbols we have already
3280 decided to output. */
3281 for (idx = 0; idx < symcount; idx++)
3282 {
3283 asymbol *sym = syms[idx];
3284
3285 if ((sym->flags & BSF_SECTION_SYM) != 0
3286 && sym->value == 0)
3287 {
3288 asection *sec;
3289
3290 sec = sym->section;
3291
3292 if (sec->owner != NULL)
3293 {
3294 if (sec->owner != abfd)
3295 {
3296 if (sec->output_offset != 0)
3297 continue;
3298
3299 sec = sec->output_section;
3300
3301 /* Empty sections in the input files may have had a
3302 section symbol created for them. (See the comment
3303 near the end of _bfd_generic_link_output_symbols in
3304 linker.c). If the linker script discards such
3305 sections then we will reach this point. Since we know
3306 that we cannot avoid this case, we detect it and skip
3307 the abort and the assignment to the sect_syms array.
3308 To reproduce this particular case try running the
3309 linker testsuite test ld-scripts/weak.exp for an ELF
3310 port that uses the generic linker. */
3311 if (sec->owner == NULL)
3312 continue;
3313
3314 BFD_ASSERT (sec->owner == abfd);
3315 }
3316 sect_syms[sec->index] = syms[idx];
3317 }
3318 }
3319 }
3320
3321 /* Classify all of the symbols. */
3322 for (idx = 0; idx < symcount; idx++)
3323 {
3324 if (!sym_is_global (abfd, syms[idx]))
3325 num_locals++;
3326 else
3327 num_globals++;
3328 }
3329
3330 /* We will be adding a section symbol for each BFD section. Most normal
3331 sections will already have a section symbol in outsymbols, but
3332 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3333 at least in that case. */
3334 for (asect = abfd->sections; asect; asect = asect->next)
3335 {
3336 if (sect_syms[asect->index] == NULL)
3337 {
3338 if (!sym_is_global (abfd, asect->symbol))
3339 num_locals++;
3340 else
3341 num_globals++;
3342 }
3343 }
3344
3345 /* Now sort the symbols so the local symbols are first. */
3346 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3347
3348 if (new_syms == NULL)
3349 return FALSE;
3350
3351 for (idx = 0; idx < symcount; idx++)
3352 {
3353 asymbol *sym = syms[idx];
3354 unsigned int i;
3355
3356 if (!sym_is_global (abfd, sym))
3357 i = num_locals2++;
3358 else
3359 i = num_locals + num_globals2++;
3360 new_syms[i] = sym;
3361 sym->udata.i = i + 1;
3362 }
3363 for (asect = abfd->sections; asect; asect = asect->next)
3364 {
3365 if (sect_syms[asect->index] == NULL)
3366 {
3367 asymbol *sym = asect->symbol;
3368 unsigned int i;
3369
3370 sect_syms[asect->index] = sym;
3371 if (!sym_is_global (abfd, sym))
3372 i = num_locals2++;
3373 else
3374 i = num_locals + num_globals2++;
3375 new_syms[i] = sym;
3376 sym->udata.i = i + 1;
3377 }
3378 }
3379
3380 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3381
3382 elf_num_locals (abfd) = num_locals;
3383 elf_num_globals (abfd) = num_globals;
3384 return TRUE;
3385 }
3386
3387 /* Align to the maximum file alignment that could be required for any
3388 ELF data structure. */
3389
3390 static inline file_ptr
3391 align_file_position (file_ptr off, int align)
3392 {
3393 return (off + align - 1) & ~(align - 1);
3394 }
3395
3396 /* Assign a file position to a section, optionally aligning to the
3397 required section alignment. */
3398
3399 file_ptr
3400 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3401 file_ptr offset,
3402 bfd_boolean align)
3403 {
3404 if (align)
3405 {
3406 unsigned int al;
3407
3408 al = i_shdrp->sh_addralign;
3409 if (al > 1)
3410 offset = BFD_ALIGN (offset, al);
3411 }
3412 i_shdrp->sh_offset = offset;
3413 if (i_shdrp->bfd_section != NULL)
3414 i_shdrp->bfd_section->filepos = offset;
3415 if (i_shdrp->sh_type != SHT_NOBITS)
3416 offset += i_shdrp->sh_size;
3417 return offset;
3418 }
3419
3420 /* Compute the file positions we are going to put the sections at, and
3421 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3422 is not NULL, this is being called by the ELF backend linker. */
3423
3424 bfd_boolean
3425 _bfd_elf_compute_section_file_positions (bfd *abfd,
3426 struct bfd_link_info *link_info)
3427 {
3428 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3429 bfd_boolean failed;
3430 struct bfd_strtab_hash *strtab = NULL;
3431 Elf_Internal_Shdr *shstrtab_hdr;
3432
3433 if (abfd->output_has_begun)
3434 return TRUE;
3435
3436 /* Do any elf backend specific processing first. */
3437 if (bed->elf_backend_begin_write_processing)
3438 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3439
3440 if (! prep_headers (abfd))
3441 return FALSE;
3442
3443 /* Post process the headers if necessary. */
3444 if (bed->elf_backend_post_process_headers)
3445 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3446
3447 failed = FALSE;
3448 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3449 if (failed)
3450 return FALSE;
3451
3452 if (!assign_section_numbers (abfd, link_info))
3453 return FALSE;
3454
3455 /* The backend linker builds symbol table information itself. */
3456 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3457 {
3458 /* Non-zero if doing a relocatable link. */
3459 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3460
3461 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3462 return FALSE;
3463 }
3464
3465 if (link_info == NULL)
3466 {
3467 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3468 if (failed)
3469 return FALSE;
3470 }
3471
3472 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3473 /* sh_name was set in prep_headers. */
3474 shstrtab_hdr->sh_type = SHT_STRTAB;
3475 shstrtab_hdr->sh_flags = 0;
3476 shstrtab_hdr->sh_addr = 0;
3477 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3478 shstrtab_hdr->sh_entsize = 0;
3479 shstrtab_hdr->sh_link = 0;
3480 shstrtab_hdr->sh_info = 0;
3481 /* sh_offset is set in assign_file_positions_except_relocs. */
3482 shstrtab_hdr->sh_addralign = 1;
3483
3484 if (!assign_file_positions_except_relocs (abfd, link_info))
3485 return FALSE;
3486
3487 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3488 {
3489 file_ptr off;
3490 Elf_Internal_Shdr *hdr;
3491
3492 off = elf_tdata (abfd)->next_file_pos;
3493
3494 hdr = &elf_tdata (abfd)->symtab_hdr;
3495 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3496
3497 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3498 if (hdr->sh_size != 0)
3499 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3500
3501 hdr = &elf_tdata (abfd)->strtab_hdr;
3502 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3503
3504 elf_tdata (abfd)->next_file_pos = off;
3505
3506 /* Now that we know where the .strtab section goes, write it
3507 out. */
3508 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3509 || ! _bfd_stringtab_emit (abfd, strtab))
3510 return FALSE;
3511 _bfd_stringtab_free (strtab);
3512 }
3513
3514 abfd->output_has_begun = TRUE;
3515
3516 return TRUE;
3517 }
3518
3519 /* Create a mapping from a set of sections to a program segment. */
3520
3521 static struct elf_segment_map *
3522 make_mapping (bfd *abfd,
3523 asection **sections,
3524 unsigned int from,
3525 unsigned int to,
3526 bfd_boolean phdr)
3527 {
3528 struct elf_segment_map *m;
3529 unsigned int i;
3530 asection **hdrpp;
3531 bfd_size_type amt;
3532
3533 amt = sizeof (struct elf_segment_map);
3534 amt += (to - from - 1) * sizeof (asection *);
3535 m = bfd_zalloc (abfd, amt);
3536 if (m == NULL)
3537 return NULL;
3538 m->next = NULL;
3539 m->p_type = PT_LOAD;
3540 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3541 m->sections[i - from] = *hdrpp;
3542 m->count = to - from;
3543
3544 if (from == 0 && phdr)
3545 {
3546 /* Include the headers in the first PT_LOAD segment. */
3547 m->includes_filehdr = 1;
3548 m->includes_phdrs = 1;
3549 }
3550
3551 return m;
3552 }
3553
3554 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3555 on failure. */
3556
3557 struct elf_segment_map *
3558 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3559 {
3560 struct elf_segment_map *m;
3561
3562 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3563 if (m == NULL)
3564 return NULL;
3565 m->next = NULL;
3566 m->p_type = PT_DYNAMIC;
3567 m->count = 1;
3568 m->sections[0] = dynsec;
3569
3570 return m;
3571 }
3572
3573 /* Set up a mapping from BFD sections to program segments. */
3574
3575 static bfd_boolean
3576 map_sections_to_segments (bfd *abfd)
3577 {
3578 asection **sections = NULL;
3579 asection *s;
3580 unsigned int i;
3581 unsigned int count;
3582 struct elf_segment_map *mfirst;
3583 struct elf_segment_map **pm;
3584 struct elf_segment_map *m;
3585 asection *last_hdr;
3586 bfd_vma last_size;
3587 unsigned int phdr_index;
3588 bfd_vma maxpagesize;
3589 asection **hdrpp;
3590 bfd_boolean phdr_in_segment = TRUE;
3591 bfd_boolean writable;
3592 int tls_count = 0;
3593 asection *first_tls = NULL;
3594 asection *dynsec, *eh_frame_hdr;
3595 bfd_size_type amt;
3596
3597 if (elf_tdata (abfd)->segment_map != NULL)
3598 return TRUE;
3599
3600 if (bfd_count_sections (abfd) == 0)
3601 return TRUE;
3602
3603 /* Select the allocated sections, and sort them. */
3604
3605 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3606 if (sections == NULL)
3607 goto error_return;
3608
3609 i = 0;
3610 for (s = abfd->sections; s != NULL; s = s->next)
3611 {
3612 if ((s->flags & SEC_ALLOC) != 0)
3613 {
3614 sections[i] = s;
3615 ++i;
3616 }
3617 }
3618 BFD_ASSERT (i <= bfd_count_sections (abfd));
3619 count = i;
3620
3621 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3622
3623 /* Build the mapping. */
3624
3625 mfirst = NULL;
3626 pm = &mfirst;
3627
3628 /* If we have a .interp section, then create a PT_PHDR segment for
3629 the program headers and a PT_INTERP segment for the .interp
3630 section. */
3631 s = bfd_get_section_by_name (abfd, ".interp");
3632 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3633 {
3634 amt = sizeof (struct elf_segment_map);
3635 m = bfd_zalloc (abfd, amt);
3636 if (m == NULL)
3637 goto error_return;
3638 m->next = NULL;
3639 m->p_type = PT_PHDR;
3640 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3641 m->p_flags = PF_R | PF_X;
3642 m->p_flags_valid = 1;
3643 m->includes_phdrs = 1;
3644
3645 *pm = m;
3646 pm = &m->next;
3647
3648 amt = sizeof (struct elf_segment_map);
3649 m = bfd_zalloc (abfd, amt);
3650 if (m == NULL)
3651 goto error_return;
3652 m->next = NULL;
3653 m->p_type = PT_INTERP;
3654 m->count = 1;
3655 m->sections[0] = s;
3656
3657 *pm = m;
3658 pm = &m->next;
3659 }
3660
3661 /* Look through the sections. We put sections in the same program
3662 segment when the start of the second section can be placed within
3663 a few bytes of the end of the first section. */
3664 last_hdr = NULL;
3665 last_size = 0;
3666 phdr_index = 0;
3667 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3668 writable = FALSE;
3669 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3670 if (dynsec != NULL
3671 && (dynsec->flags & SEC_LOAD) == 0)
3672 dynsec = NULL;
3673
3674 /* Deal with -Ttext or something similar such that the first section
3675 is not adjacent to the program headers. This is an
3676 approximation, since at this point we don't know exactly how many
3677 program headers we will need. */
3678 if (count > 0)
3679 {
3680 bfd_size_type phdr_size;
3681
3682 phdr_size = elf_tdata (abfd)->program_header_size;
3683 if (phdr_size == 0)
3684 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3685 if ((abfd->flags & D_PAGED) == 0
3686 || sections[0]->lma < phdr_size
3687 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3688 phdr_in_segment = FALSE;
3689 }
3690
3691 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3692 {
3693 asection *hdr;
3694 bfd_boolean new_segment;
3695
3696 hdr = *hdrpp;
3697
3698 /* See if this section and the last one will fit in the same
3699 segment. */
3700
3701 if (last_hdr == NULL)
3702 {
3703 /* If we don't have a segment yet, then we don't need a new
3704 one (we build the last one after this loop). */
3705 new_segment = FALSE;
3706 }
3707 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3708 {
3709 /* If this section has a different relation between the
3710 virtual address and the load address, then we need a new
3711 segment. */
3712 new_segment = TRUE;
3713 }
3714 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3715 < BFD_ALIGN (hdr->lma, maxpagesize))
3716 {
3717 /* If putting this section in this segment would force us to
3718 skip a page in the segment, then we need a new segment. */
3719 new_segment = TRUE;
3720 }
3721 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3722 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3723 {
3724 /* We don't want to put a loadable section after a
3725 nonloadable section in the same segment.
3726 Consider .tbss sections as loadable for this purpose. */
3727 new_segment = TRUE;
3728 }
3729 else if ((abfd->flags & D_PAGED) == 0)
3730 {
3731 /* If the file is not demand paged, which means that we
3732 don't require the sections to be correctly aligned in the
3733 file, then there is no other reason for a new segment. */
3734 new_segment = FALSE;
3735 }
3736 else if (! writable
3737 && (hdr->flags & SEC_READONLY) == 0
3738 && (((last_hdr->lma + last_size - 1)
3739 & ~(maxpagesize - 1))
3740 != (hdr->lma & ~(maxpagesize - 1))))
3741 {
3742 /* We don't want to put a writable section in a read only
3743 segment, unless they are on the same page in memory
3744 anyhow. We already know that the last section does not
3745 bring us past the current section on the page, so the
3746 only case in which the new section is not on the same
3747 page as the previous section is when the previous section
3748 ends precisely on a page boundary. */
3749 new_segment = TRUE;
3750 }
3751 else
3752 {
3753 /* Otherwise, we can use the same segment. */
3754 new_segment = FALSE;
3755 }
3756
3757 if (! new_segment)
3758 {
3759 if ((hdr->flags & SEC_READONLY) == 0)
3760 writable = TRUE;
3761 last_hdr = hdr;
3762 /* .tbss sections effectively have zero size. */
3763 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3764 last_size = hdr->size;
3765 else
3766 last_size = 0;
3767 continue;
3768 }
3769
3770 /* We need a new program segment. We must create a new program
3771 header holding all the sections from phdr_index until hdr. */
3772
3773 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3774 if (m == NULL)
3775 goto error_return;
3776
3777 *pm = m;
3778 pm = &m->next;
3779
3780 if ((hdr->flags & SEC_READONLY) == 0)
3781 writable = TRUE;
3782 else
3783 writable = FALSE;
3784
3785 last_hdr = hdr;
3786 /* .tbss sections effectively have zero size. */
3787 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3788 last_size = hdr->size;
3789 else
3790 last_size = 0;
3791 phdr_index = i;
3792 phdr_in_segment = FALSE;
3793 }
3794
3795 /* Create a final PT_LOAD program segment. */
3796 if (last_hdr != NULL)
3797 {
3798 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3799 if (m == NULL)
3800 goto error_return;
3801
3802 *pm = m;
3803 pm = &m->next;
3804 }
3805
3806 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3807 if (dynsec != NULL)
3808 {
3809 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3810 if (m == NULL)
3811 goto error_return;
3812 *pm = m;
3813 pm = &m->next;
3814 }
3815
3816 /* For each loadable .note section, add a PT_NOTE segment. We don't
3817 use bfd_get_section_by_name, because if we link together
3818 nonloadable .note sections and loadable .note sections, we will
3819 generate two .note sections in the output file. FIXME: Using
3820 names for section types is bogus anyhow. */
3821 for (s = abfd->sections; s != NULL; s = s->next)
3822 {
3823 if ((s->flags & SEC_LOAD) != 0
3824 && strncmp (s->name, ".note", 5) == 0)
3825 {
3826 amt = sizeof (struct elf_segment_map);
3827 m = bfd_zalloc (abfd, amt);
3828 if (m == NULL)
3829 goto error_return;
3830 m->next = NULL;
3831 m->p_type = PT_NOTE;
3832 m->count = 1;
3833 m->sections[0] = s;
3834
3835 *pm = m;
3836 pm = &m->next;
3837 }
3838 if (s->flags & SEC_THREAD_LOCAL)
3839 {
3840 if (! tls_count)
3841 first_tls = s;
3842 tls_count++;
3843 }
3844 }
3845
3846 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3847 if (tls_count > 0)
3848 {
3849 int i;
3850
3851 amt = sizeof (struct elf_segment_map);
3852 amt += (tls_count - 1) * sizeof (asection *);
3853 m = bfd_zalloc (abfd, amt);
3854 if (m == NULL)
3855 goto error_return;
3856 m->next = NULL;
3857 m->p_type = PT_TLS;
3858 m->count = tls_count;
3859 /* Mandated PF_R. */
3860 m->p_flags = PF_R;
3861 m->p_flags_valid = 1;
3862 for (i = 0; i < tls_count; ++i)
3863 {
3864 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3865 m->sections[i] = first_tls;
3866 first_tls = first_tls->next;
3867 }
3868
3869 *pm = m;
3870 pm = &m->next;
3871 }
3872
3873 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3874 segment. */
3875 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3876 if (eh_frame_hdr != NULL
3877 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3878 {
3879 amt = sizeof (struct elf_segment_map);
3880 m = bfd_zalloc (abfd, amt);
3881 if (m == NULL)
3882 goto error_return;
3883 m->next = NULL;
3884 m->p_type = PT_GNU_EH_FRAME;
3885 m->count = 1;
3886 m->sections[0] = eh_frame_hdr->output_section;
3887
3888 *pm = m;
3889 pm = &m->next;
3890 }
3891
3892 if (elf_tdata (abfd)->stack_flags)
3893 {
3894 amt = sizeof (struct elf_segment_map);
3895 m = bfd_zalloc (abfd, amt);
3896 if (m == NULL)
3897 goto error_return;
3898 m->next = NULL;
3899 m->p_type = PT_GNU_STACK;
3900 m->p_flags = elf_tdata (abfd)->stack_flags;
3901 m->p_flags_valid = 1;
3902
3903 *pm = m;
3904 pm = &m->next;
3905 }
3906
3907 if (elf_tdata (abfd)->relro)
3908 {
3909 amt = sizeof (struct elf_segment_map);
3910 m = bfd_zalloc (abfd, amt);
3911 if (m == NULL)
3912 goto error_return;
3913 m->next = NULL;
3914 m->p_type = PT_GNU_RELRO;
3915 m->p_flags = PF_R;
3916 m->p_flags_valid = 1;
3917
3918 *pm = m;
3919 pm = &m->next;
3920 }
3921
3922 free (sections);
3923 sections = NULL;
3924
3925 elf_tdata (abfd)->segment_map = mfirst;
3926 return TRUE;
3927
3928 error_return:
3929 if (sections != NULL)
3930 free (sections);
3931 return FALSE;
3932 }
3933
3934 /* Sort sections by address. */
3935
3936 static int
3937 elf_sort_sections (const void *arg1, const void *arg2)
3938 {
3939 const asection *sec1 = *(const asection **) arg1;
3940 const asection *sec2 = *(const asection **) arg2;
3941 bfd_size_type size1, size2;
3942
3943 /* Sort by LMA first, since this is the address used to
3944 place the section into a segment. */
3945 if (sec1->lma < sec2->lma)
3946 return -1;
3947 else if (sec1->lma > sec2->lma)
3948 return 1;
3949
3950 /* Then sort by VMA. Normally the LMA and the VMA will be
3951 the same, and this will do nothing. */
3952 if (sec1->vma < sec2->vma)
3953 return -1;
3954 else if (sec1->vma > sec2->vma)
3955 return 1;
3956
3957 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3958
3959 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3960
3961 if (TOEND (sec1))
3962 {
3963 if (TOEND (sec2))
3964 {
3965 /* If the indicies are the same, do not return 0
3966 here, but continue to try the next comparison. */
3967 if (sec1->target_index - sec2->target_index != 0)
3968 return sec1->target_index - sec2->target_index;
3969 }
3970 else
3971 return 1;
3972 }
3973 else if (TOEND (sec2))
3974 return -1;
3975
3976 #undef TOEND
3977
3978 /* Sort by size, to put zero sized sections
3979 before others at the same address. */
3980
3981 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3982 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3983
3984 if (size1 < size2)
3985 return -1;
3986 if (size1 > size2)
3987 return 1;
3988
3989 return sec1->target_index - sec2->target_index;
3990 }
3991
3992 /* Ian Lance Taylor writes:
3993
3994 We shouldn't be using % with a negative signed number. That's just
3995 not good. We have to make sure either that the number is not
3996 negative, or that the number has an unsigned type. When the types
3997 are all the same size they wind up as unsigned. When file_ptr is a
3998 larger signed type, the arithmetic winds up as signed long long,
3999 which is wrong.
4000
4001 What we're trying to say here is something like ``increase OFF by
4002 the least amount that will cause it to be equal to the VMA modulo
4003 the page size.'' */
4004 /* In other words, something like:
4005
4006 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4007 off_offset = off % bed->maxpagesize;
4008 if (vma_offset < off_offset)
4009 adjustment = vma_offset + bed->maxpagesize - off_offset;
4010 else
4011 adjustment = vma_offset - off_offset;
4012
4013 which can can be collapsed into the expression below. */
4014
4015 static file_ptr
4016 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4017 {
4018 return ((vma - off) % maxpagesize);
4019 }
4020
4021 /* Assign file positions to the sections based on the mapping from
4022 sections to segments. This function also sets up some fields in
4023 the file header, and writes out the program headers. */
4024
4025 static bfd_boolean
4026 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
4027 {
4028 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4029 unsigned int count;
4030 struct elf_segment_map *m;
4031 unsigned int alloc;
4032 Elf_Internal_Phdr *phdrs;
4033 file_ptr off, voff;
4034 bfd_vma filehdr_vaddr, filehdr_paddr;
4035 bfd_vma phdrs_vaddr, phdrs_paddr;
4036 Elf_Internal_Phdr *p;
4037
4038 if (elf_tdata (abfd)->segment_map == NULL)
4039 {
4040 if (! map_sections_to_segments (abfd))
4041 return FALSE;
4042 }
4043 else
4044 {
4045 /* The placement algorithm assumes that non allocated sections are
4046 not in PT_LOAD segments. We ensure this here by removing such
4047 sections from the segment map. We also remove excluded
4048 sections. */
4049 for (m = elf_tdata (abfd)->segment_map;
4050 m != NULL;
4051 m = m->next)
4052 {
4053 unsigned int new_count;
4054 unsigned int i;
4055
4056 new_count = 0;
4057 for (i = 0; i < m->count; i ++)
4058 {
4059 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4060 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4061 || m->p_type != PT_LOAD))
4062 {
4063 if (i != new_count)
4064 m->sections[new_count] = m->sections[i];
4065
4066 new_count ++;
4067 }
4068 }
4069
4070 if (new_count != m->count)
4071 m->count = new_count;
4072 }
4073 }
4074
4075 if (bed->elf_backend_modify_segment_map)
4076 {
4077 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4078 return FALSE;
4079 }
4080
4081 count = 0;
4082 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4083 ++count;
4084
4085 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4086 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4087 elf_elfheader (abfd)->e_phnum = count;
4088
4089 if (count == 0)
4090 {
4091 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4092 return TRUE;
4093 }
4094
4095 /* If we already counted the number of program segments, make sure
4096 that we allocated enough space. This happens when SIZEOF_HEADERS
4097 is used in a linker script. */
4098 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4099 if (alloc != 0 && count > alloc)
4100 {
4101 ((*_bfd_error_handler)
4102 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4103 abfd, alloc, count));
4104 bfd_set_error (bfd_error_bad_value);
4105 return FALSE;
4106 }
4107
4108 if (alloc == 0)
4109 alloc = count;
4110
4111 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4112 if (phdrs == NULL)
4113 return FALSE;
4114
4115 off = bed->s->sizeof_ehdr;
4116 off += alloc * bed->s->sizeof_phdr;
4117
4118 filehdr_vaddr = 0;
4119 filehdr_paddr = 0;
4120 phdrs_vaddr = 0;
4121 phdrs_paddr = 0;
4122
4123 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4124 m != NULL;
4125 m = m->next, p++)
4126 {
4127 unsigned int i;
4128 asection **secpp;
4129
4130 /* If elf_segment_map is not from map_sections_to_segments, the
4131 sections may not be correctly ordered. NOTE: sorting should
4132 not be done to the PT_NOTE section of a corefile, which may
4133 contain several pseudo-sections artificially created by bfd.
4134 Sorting these pseudo-sections breaks things badly. */
4135 if (m->count > 1
4136 && !(elf_elfheader (abfd)->e_type == ET_CORE
4137 && m->p_type == PT_NOTE))
4138 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4139 elf_sort_sections);
4140
4141 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4142 number of sections with contents contributing to both p_filesz
4143 and p_memsz, followed by a number of sections with no contents
4144 that just contribute to p_memsz. In this loop, OFF tracks next
4145 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4146 an adjustment we use for segments that have no file contents
4147 but need zero filled memory allocation. */
4148 voff = 0;
4149 p->p_type = m->p_type;
4150 p->p_flags = m->p_flags;
4151
4152 if (p->p_type == PT_LOAD
4153 && m->count > 0)
4154 {
4155 bfd_size_type align;
4156 bfd_vma adjust;
4157 unsigned int align_power = 0;
4158
4159 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4160 {
4161 unsigned int secalign;
4162
4163 secalign = bfd_get_section_alignment (abfd, *secpp);
4164 if (secalign > align_power)
4165 align_power = secalign;
4166 }
4167 align = (bfd_size_type) 1 << align_power;
4168
4169 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4170 align = bed->maxpagesize;
4171
4172 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4173 off += adjust;
4174 if (adjust != 0
4175 && !m->includes_filehdr
4176 && !m->includes_phdrs
4177 && (ufile_ptr) off >= align)
4178 {
4179 /* If the first section isn't loadable, the same holds for
4180 any other sections. Since the segment won't need file
4181 space, we can make p_offset overlap some prior segment.
4182 However, .tbss is special. If a segment starts with
4183 .tbss, we need to look at the next section to decide
4184 whether the segment has any loadable sections. */
4185 i = 0;
4186 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4187 {
4188 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4189 || ++i >= m->count)
4190 {
4191 off -= adjust;
4192 voff = adjust - align;
4193 break;
4194 }
4195 }
4196 }
4197 }
4198 /* Make sure the .dynamic section is the first section in the
4199 PT_DYNAMIC segment. */
4200 else if (p->p_type == PT_DYNAMIC
4201 && m->count > 1
4202 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4203 {
4204 _bfd_error_handler
4205 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4206 abfd);
4207 bfd_set_error (bfd_error_bad_value);
4208 return FALSE;
4209 }
4210
4211 if (m->count == 0)
4212 p->p_vaddr = 0;
4213 else
4214 p->p_vaddr = m->sections[0]->vma;
4215
4216 if (m->p_paddr_valid)
4217 p->p_paddr = m->p_paddr;
4218 else if (m->count == 0)
4219 p->p_paddr = 0;
4220 else
4221 p->p_paddr = m->sections[0]->lma;
4222
4223 if (p->p_type == PT_LOAD
4224 && (abfd->flags & D_PAGED) != 0)
4225 p->p_align = bed->maxpagesize;
4226 else if (m->count == 0)
4227 p->p_align = 1 << bed->s->log_file_align;
4228 else
4229 p->p_align = 0;
4230
4231 p->p_offset = 0;
4232 p->p_filesz = 0;
4233 p->p_memsz = 0;
4234
4235 if (m->includes_filehdr)
4236 {
4237 if (! m->p_flags_valid)
4238 p->p_flags |= PF_R;
4239 p->p_offset = 0;
4240 p->p_filesz = bed->s->sizeof_ehdr;
4241 p->p_memsz = bed->s->sizeof_ehdr;
4242 if (m->count > 0)
4243 {
4244 BFD_ASSERT (p->p_type == PT_LOAD);
4245
4246 if (p->p_vaddr < (bfd_vma) off)
4247 {
4248 (*_bfd_error_handler)
4249 (_("%B: Not enough room for program headers, try linking with -N"),
4250 abfd);
4251 bfd_set_error (bfd_error_bad_value);
4252 return FALSE;
4253 }
4254
4255 p->p_vaddr -= off;
4256 if (! m->p_paddr_valid)
4257 p->p_paddr -= off;
4258 }
4259 if (p->p_type == PT_LOAD)
4260 {
4261 filehdr_vaddr = p->p_vaddr;
4262 filehdr_paddr = p->p_paddr;
4263 }
4264 }
4265
4266 if (m->includes_phdrs)
4267 {
4268 if (! m->p_flags_valid)
4269 p->p_flags |= PF_R;
4270
4271 if (m->includes_filehdr)
4272 {
4273 if (p->p_type == PT_LOAD)
4274 {
4275 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4276 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4277 }
4278 }
4279 else
4280 {
4281 p->p_offset = bed->s->sizeof_ehdr;
4282
4283 if (m->count > 0)
4284 {
4285 BFD_ASSERT (p->p_type == PT_LOAD);
4286 p->p_vaddr -= off - p->p_offset;
4287 if (! m->p_paddr_valid)
4288 p->p_paddr -= off - p->p_offset;
4289 }
4290
4291 if (p->p_type == PT_LOAD)
4292 {
4293 phdrs_vaddr = p->p_vaddr;
4294 phdrs_paddr = p->p_paddr;
4295 }
4296 else
4297 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4298 }
4299
4300 p->p_filesz += alloc * bed->s->sizeof_phdr;
4301 p->p_memsz += alloc * bed->s->sizeof_phdr;
4302 }
4303
4304 if (p->p_type == PT_LOAD
4305 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4306 {
4307 if (! m->includes_filehdr && ! m->includes_phdrs)
4308 p->p_offset = off + voff;
4309 else
4310 {
4311 file_ptr adjust;
4312
4313 adjust = off - (p->p_offset + p->p_filesz);
4314 p->p_filesz += adjust;
4315 p->p_memsz += adjust;
4316 }
4317 }
4318
4319 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4320 {
4321 asection *sec;
4322 flagword flags;
4323 bfd_size_type align;
4324
4325 sec = *secpp;
4326 flags = sec->flags;
4327 align = 1 << bfd_get_section_alignment (abfd, sec);
4328
4329 if (p->p_type == PT_LOAD
4330 || p->p_type == PT_TLS)
4331 {
4332 bfd_signed_vma adjust;
4333
4334 if ((flags & SEC_LOAD) != 0)
4335 {
4336 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4337 if (adjust < 0)
4338 {
4339 (*_bfd_error_handler)
4340 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4341 abfd, sec, (unsigned long) sec->lma);
4342 adjust = 0;
4343 }
4344 off += adjust;
4345 p->p_filesz += adjust;
4346 p->p_memsz += adjust;
4347 }
4348 /* .tbss is special. It doesn't contribute to p_memsz of
4349 normal segments. */
4350 else if ((flags & SEC_THREAD_LOCAL) == 0
4351 || p->p_type == PT_TLS)
4352 {
4353 /* The section VMA must equal the file position
4354 modulo the page size. */
4355 bfd_size_type page = align;
4356 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4357 page = bed->maxpagesize;
4358 adjust = vma_page_aligned_bias (sec->vma,
4359 p->p_vaddr + p->p_memsz,
4360 page);
4361 p->p_memsz += adjust;
4362 }
4363 }
4364
4365 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4366 {
4367 /* The section at i == 0 is the one that actually contains
4368 everything. */
4369 if (i == 0)
4370 {
4371 sec->filepos = off;
4372 off += sec->size;
4373 p->p_filesz = sec->size;
4374 p->p_memsz = 0;
4375 p->p_align = 1;
4376 }
4377 else
4378 {
4379 /* The rest are fake sections that shouldn't be written. */
4380 sec->filepos = 0;
4381 sec->size = 0;
4382 sec->flags = 0;
4383 continue;
4384 }
4385 }
4386 else
4387 {
4388 if (p->p_type == PT_LOAD)
4389 {
4390 sec->filepos = off;
4391 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4392 1997, and the exact reason for it isn't clear. One
4393 plausible explanation is that it is to work around
4394 a problem we have with linker scripts using data
4395 statements in NOLOAD sections. I don't think it
4396 makes a great deal of sense to have such a section
4397 assigned to a PT_LOAD segment, but apparently
4398 people do this. The data statement results in a
4399 bfd_data_link_order being built, and these need
4400 section contents to write into. Eventually, we get
4401 to _bfd_elf_write_object_contents which writes any
4402 section with contents to the output. Make room
4403 here for the write, so that following segments are
4404 not trashed. */
4405 if ((flags & SEC_LOAD) != 0
4406 || (flags & SEC_HAS_CONTENTS) != 0)
4407 off += sec->size;
4408 }
4409
4410 if ((flags & SEC_LOAD) != 0)
4411 {
4412 p->p_filesz += sec->size;
4413 p->p_memsz += sec->size;
4414 }
4415 /* PR ld/594: Sections in note segments which are not loaded
4416 contribute to the file size but not the in-memory size. */
4417 else if (p->p_type == PT_NOTE
4418 && (flags & SEC_HAS_CONTENTS) != 0)
4419 p->p_filesz += sec->size;
4420
4421 /* .tbss is special. It doesn't contribute to p_memsz of
4422 normal segments. */
4423 else if ((flags & SEC_THREAD_LOCAL) == 0
4424 || p->p_type == PT_TLS)
4425 p->p_memsz += sec->size;
4426
4427 if (p->p_type == PT_TLS
4428 && sec->size == 0
4429 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4430 {
4431 struct bfd_link_order *o = sec->map_tail.link_order;
4432 if (o != NULL)
4433 p->p_memsz += o->offset + o->size;
4434 }
4435
4436 if (align > p->p_align
4437 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4438 p->p_align = align;
4439 }
4440
4441 if (! m->p_flags_valid)
4442 {
4443 p->p_flags |= PF_R;
4444 if ((flags & SEC_CODE) != 0)
4445 p->p_flags |= PF_X;
4446 if ((flags & SEC_READONLY) == 0)
4447 p->p_flags |= PF_W;
4448 }
4449 }
4450 }
4451
4452 /* Now that we have set the section file positions, we can set up
4453 the file positions for the non PT_LOAD segments. */
4454 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4455 m != NULL;
4456 m = m->next, p++)
4457 {
4458 if (p->p_type != PT_LOAD && m->count > 0)
4459 {
4460 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4461 /* If the section has not yet been assigned a file position,
4462 do so now. The ARM BPABI requires that .dynamic section
4463 not be marked SEC_ALLOC because it is not part of any
4464 PT_LOAD segment, so it will not be processed above. */
4465 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4466 {
4467 unsigned int i;
4468 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4469
4470 i = 1;
4471 while (i_shdrpp[i]->bfd_section != m->sections[0])
4472 ++i;
4473 off = (_bfd_elf_assign_file_position_for_section
4474 (i_shdrpp[i], off, TRUE));
4475 p->p_filesz = m->sections[0]->size;
4476 }
4477 p->p_offset = m->sections[0]->filepos;
4478 }
4479 if (m->count == 0)
4480 {
4481 if (m->includes_filehdr)
4482 {
4483 p->p_vaddr = filehdr_vaddr;
4484 if (! m->p_paddr_valid)
4485 p->p_paddr = filehdr_paddr;
4486 }
4487 else if (m->includes_phdrs)
4488 {
4489 p->p_vaddr = phdrs_vaddr;
4490 if (! m->p_paddr_valid)
4491 p->p_paddr = phdrs_paddr;
4492 }
4493 else if (p->p_type == PT_GNU_RELRO)
4494 {
4495 Elf_Internal_Phdr *lp;
4496
4497 for (lp = phdrs; lp < phdrs + count; ++lp)
4498 {
4499 if (lp->p_type == PT_LOAD
4500 && lp->p_vaddr <= link_info->relro_end
4501 && lp->p_vaddr >= link_info->relro_start
4502 && lp->p_vaddr + lp->p_filesz
4503 >= link_info->relro_end)
4504 break;
4505 }
4506
4507 if (lp < phdrs + count
4508 && link_info->relro_end > lp->p_vaddr)
4509 {
4510 p->p_vaddr = lp->p_vaddr;
4511 p->p_paddr = lp->p_paddr;
4512 p->p_offset = lp->p_offset;
4513 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4514 p->p_memsz = p->p_filesz;
4515 p->p_align = 1;
4516 p->p_flags = (lp->p_flags & ~PF_W);
4517 }
4518 else
4519 {
4520 memset (p, 0, sizeof *p);
4521 p->p_type = PT_NULL;
4522 }
4523 }
4524 }
4525 }
4526
4527 /* Clear out any program headers we allocated but did not use. */
4528 for (; count < alloc; count++, p++)
4529 {
4530 memset (p, 0, sizeof *p);
4531 p->p_type = PT_NULL;
4532 }
4533
4534 elf_tdata (abfd)->phdr = phdrs;
4535
4536 elf_tdata (abfd)->next_file_pos = off;
4537
4538 /* Write out the program headers. */
4539 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4540 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4541 return FALSE;
4542
4543 return TRUE;
4544 }
4545
4546 /* Get the size of the program header.
4547
4548 If this is called by the linker before any of the section VMA's are set, it
4549 can't calculate the correct value for a strange memory layout. This only
4550 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4551 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4552 data segment (exclusive of .interp and .dynamic).
4553
4554 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4555 will be two segments. */
4556
4557 static bfd_size_type
4558 get_program_header_size (bfd *abfd)
4559 {
4560 size_t segs;
4561 asection *s;
4562 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4563
4564 /* We can't return a different result each time we're called. */
4565 if (elf_tdata (abfd)->program_header_size != 0)
4566 return elf_tdata (abfd)->program_header_size;
4567
4568 if (elf_tdata (abfd)->segment_map != NULL)
4569 {
4570 struct elf_segment_map *m;
4571
4572 segs = 0;
4573 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4574 ++segs;
4575 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4576 return elf_tdata (abfd)->program_header_size;
4577 }
4578
4579 /* Assume we will need exactly two PT_LOAD segments: one for text
4580 and one for data. */
4581 segs = 2;
4582
4583 s = bfd_get_section_by_name (abfd, ".interp");
4584 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4585 {
4586 /* If we have a loadable interpreter section, we need a
4587 PT_INTERP segment. In this case, assume we also need a
4588 PT_PHDR segment, although that may not be true for all
4589 targets. */
4590 segs += 2;
4591 }
4592
4593 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4594 {
4595 /* We need a PT_DYNAMIC segment. */
4596 ++segs;
4597 }
4598
4599 if (elf_tdata (abfd)->eh_frame_hdr)
4600 {
4601 /* We need a PT_GNU_EH_FRAME segment. */
4602 ++segs;
4603 }
4604
4605 if (elf_tdata (abfd)->stack_flags)
4606 {
4607 /* We need a PT_GNU_STACK segment. */
4608 ++segs;
4609 }
4610
4611 if (elf_tdata (abfd)->relro)
4612 {
4613 /* We need a PT_GNU_RELRO segment. */
4614 ++segs;
4615 }
4616
4617 for (s = abfd->sections; s != NULL; s = s->next)
4618 {
4619 if ((s->flags & SEC_LOAD) != 0
4620 && strncmp (s->name, ".note", 5) == 0)
4621 {
4622 /* We need a PT_NOTE segment. */
4623 ++segs;
4624 }
4625 }
4626
4627 for (s = abfd->sections; s != NULL; s = s->next)
4628 {
4629 if (s->flags & SEC_THREAD_LOCAL)
4630 {
4631 /* We need a PT_TLS segment. */
4632 ++segs;
4633 break;
4634 }
4635 }
4636
4637 /* Let the backend count up any program headers it might need. */
4638 if (bed->elf_backend_additional_program_headers)
4639 {
4640 int a;
4641
4642 a = (*bed->elf_backend_additional_program_headers) (abfd);
4643 if (a == -1)
4644 abort ();
4645 segs += a;
4646 }
4647
4648 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4649 return elf_tdata (abfd)->program_header_size;
4650 }
4651
4652 /* Work out the file positions of all the sections. This is called by
4653 _bfd_elf_compute_section_file_positions. All the section sizes and
4654 VMAs must be known before this is called.
4655
4656 Reloc sections come in two flavours: Those processed specially as
4657 "side-channel" data attached to a section to which they apply, and
4658 those that bfd doesn't process as relocations. The latter sort are
4659 stored in a normal bfd section by bfd_section_from_shdr. We don't
4660 consider the former sort here, unless they form part of the loadable
4661 image. Reloc sections not assigned here will be handled later by
4662 assign_file_positions_for_relocs.
4663
4664 We also don't set the positions of the .symtab and .strtab here. */
4665
4666 static bfd_boolean
4667 assign_file_positions_except_relocs (bfd *abfd,
4668 struct bfd_link_info *link_info)
4669 {
4670 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4671 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4672 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4673 unsigned int num_sec = elf_numsections (abfd);
4674 file_ptr off;
4675 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4676
4677 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4678 && bfd_get_format (abfd) != bfd_core)
4679 {
4680 Elf_Internal_Shdr **hdrpp;
4681 unsigned int i;
4682
4683 /* Start after the ELF header. */
4684 off = i_ehdrp->e_ehsize;
4685
4686 /* We are not creating an executable, which means that we are
4687 not creating a program header, and that the actual order of
4688 the sections in the file is unimportant. */
4689 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4690 {
4691 Elf_Internal_Shdr *hdr;
4692
4693 hdr = *hdrpp;
4694 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4695 && hdr->bfd_section == NULL)
4696 || i == tdata->symtab_section
4697 || i == tdata->symtab_shndx_section
4698 || i == tdata->strtab_section)
4699 {
4700 hdr->sh_offset = -1;
4701 }
4702 else
4703 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4704
4705 if (i == SHN_LORESERVE - 1)
4706 {
4707 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4708 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4709 }
4710 }
4711 }
4712 else
4713 {
4714 unsigned int i;
4715 Elf_Internal_Shdr **hdrpp;
4716
4717 /* Assign file positions for the loaded sections based on the
4718 assignment of sections to segments. */
4719 if (! assign_file_positions_for_segments (abfd, link_info))
4720 return FALSE;
4721
4722 /* Assign file positions for the other sections. */
4723
4724 off = elf_tdata (abfd)->next_file_pos;
4725 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4726 {
4727 Elf_Internal_Shdr *hdr;
4728
4729 hdr = *hdrpp;
4730 if (hdr->bfd_section != NULL
4731 && hdr->bfd_section->filepos != 0)
4732 hdr->sh_offset = hdr->bfd_section->filepos;
4733 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4734 {
4735 ((*_bfd_error_handler)
4736 (_("%B: warning: allocated section `%s' not in segment"),
4737 abfd,
4738 (hdr->bfd_section == NULL
4739 ? "*unknown*"
4740 : hdr->bfd_section->name)));
4741 if ((abfd->flags & D_PAGED) != 0)
4742 off += vma_page_aligned_bias (hdr->sh_addr, off,
4743 bed->maxpagesize);
4744 else
4745 off += vma_page_aligned_bias (hdr->sh_addr, off,
4746 hdr->sh_addralign);
4747 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4748 FALSE);
4749 }
4750 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4751 && hdr->bfd_section == NULL)
4752 || hdr == i_shdrpp[tdata->symtab_section]
4753 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4754 || hdr == i_shdrpp[tdata->strtab_section])
4755 hdr->sh_offset = -1;
4756 else
4757 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4758
4759 if (i == SHN_LORESERVE - 1)
4760 {
4761 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4762 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4763 }
4764 }
4765 }
4766
4767 /* Place the section headers. */
4768 off = align_file_position (off, 1 << bed->s->log_file_align);
4769 i_ehdrp->e_shoff = off;
4770 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4771
4772 elf_tdata (abfd)->next_file_pos = off;
4773
4774 return TRUE;
4775 }
4776
4777 static bfd_boolean
4778 prep_headers (bfd *abfd)
4779 {
4780 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4781 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4782 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4783 struct elf_strtab_hash *shstrtab;
4784 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4785
4786 i_ehdrp = elf_elfheader (abfd);
4787 i_shdrp = elf_elfsections (abfd);
4788
4789 shstrtab = _bfd_elf_strtab_init ();
4790 if (shstrtab == NULL)
4791 return FALSE;
4792
4793 elf_shstrtab (abfd) = shstrtab;
4794
4795 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4796 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4797 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4798 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4799
4800 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4801 i_ehdrp->e_ident[EI_DATA] =
4802 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4803 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4804
4805 if ((abfd->flags & DYNAMIC) != 0)
4806 i_ehdrp->e_type = ET_DYN;
4807 else if ((abfd->flags & EXEC_P) != 0)
4808 i_ehdrp->e_type = ET_EXEC;
4809 else if (bfd_get_format (abfd) == bfd_core)
4810 i_ehdrp->e_type = ET_CORE;
4811 else
4812 i_ehdrp->e_type = ET_REL;
4813
4814 switch (bfd_get_arch (abfd))
4815 {
4816 case bfd_arch_unknown:
4817 i_ehdrp->e_machine = EM_NONE;
4818 break;
4819
4820 /* There used to be a long list of cases here, each one setting
4821 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4822 in the corresponding bfd definition. To avoid duplication,
4823 the switch was removed. Machines that need special handling
4824 can generally do it in elf_backend_final_write_processing(),
4825 unless they need the information earlier than the final write.
4826 Such need can generally be supplied by replacing the tests for
4827 e_machine with the conditions used to determine it. */
4828 default:
4829 i_ehdrp->e_machine = bed->elf_machine_code;
4830 }
4831
4832 i_ehdrp->e_version = bed->s->ev_current;
4833 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4834
4835 /* No program header, for now. */
4836 i_ehdrp->e_phoff = 0;
4837 i_ehdrp->e_phentsize = 0;
4838 i_ehdrp->e_phnum = 0;
4839
4840 /* Each bfd section is section header entry. */
4841 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4842 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4843
4844 /* If we're building an executable, we'll need a program header table. */
4845 if (abfd->flags & EXEC_P)
4846 /* It all happens later. */
4847 ;
4848 else
4849 {
4850 i_ehdrp->e_phentsize = 0;
4851 i_phdrp = 0;
4852 i_ehdrp->e_phoff = 0;
4853 }
4854
4855 elf_tdata (abfd)->symtab_hdr.sh_name =
4856 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4857 elf_tdata (abfd)->strtab_hdr.sh_name =
4858 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4859 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4860 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4861 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4862 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4863 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4864 return FALSE;
4865
4866 return TRUE;
4867 }
4868
4869 /* Assign file positions for all the reloc sections which are not part
4870 of the loadable file image. */
4871
4872 void
4873 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4874 {
4875 file_ptr off;
4876 unsigned int i, num_sec;
4877 Elf_Internal_Shdr **shdrpp;
4878
4879 off = elf_tdata (abfd)->next_file_pos;
4880
4881 num_sec = elf_numsections (abfd);
4882 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4883 {
4884 Elf_Internal_Shdr *shdrp;
4885
4886 shdrp = *shdrpp;
4887 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4888 && shdrp->sh_offset == -1)
4889 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4890 }
4891
4892 elf_tdata (abfd)->next_file_pos = off;
4893 }
4894
4895 bfd_boolean
4896 _bfd_elf_write_object_contents (bfd *abfd)
4897 {
4898 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4899 Elf_Internal_Ehdr *i_ehdrp;
4900 Elf_Internal_Shdr **i_shdrp;
4901 bfd_boolean failed;
4902 unsigned int count, num_sec;
4903
4904 if (! abfd->output_has_begun
4905 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4906 return FALSE;
4907
4908 i_shdrp = elf_elfsections (abfd);
4909 i_ehdrp = elf_elfheader (abfd);
4910
4911 failed = FALSE;
4912 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4913 if (failed)
4914 return FALSE;
4915
4916 _bfd_elf_assign_file_positions_for_relocs (abfd);
4917
4918 /* After writing the headers, we need to write the sections too... */
4919 num_sec = elf_numsections (abfd);
4920 for (count = 1; count < num_sec; count++)
4921 {
4922 if (bed->elf_backend_section_processing)
4923 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4924 if (i_shdrp[count]->contents)
4925 {
4926 bfd_size_type amt = i_shdrp[count]->sh_size;
4927
4928 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4929 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4930 return FALSE;
4931 }
4932 if (count == SHN_LORESERVE - 1)
4933 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4934 }
4935
4936 /* Write out the section header names. */
4937 if (elf_shstrtab (abfd) != NULL
4938 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4939 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4940 return FALSE;
4941
4942 if (bed->elf_backend_final_write_processing)
4943 (*bed->elf_backend_final_write_processing) (abfd,
4944 elf_tdata (abfd)->linker);
4945
4946 return bed->s->write_shdrs_and_ehdr (abfd);
4947 }
4948
4949 bfd_boolean
4950 _bfd_elf_write_corefile_contents (bfd *abfd)
4951 {
4952 /* Hopefully this can be done just like an object file. */
4953 return _bfd_elf_write_object_contents (abfd);
4954 }
4955
4956 /* Given a section, search the header to find them. */
4957
4958 int
4959 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4960 {
4961 const struct elf_backend_data *bed;
4962 int index;
4963
4964 if (elf_section_data (asect) != NULL
4965 && elf_section_data (asect)->this_idx != 0)
4966 return elf_section_data (asect)->this_idx;
4967
4968 if (bfd_is_abs_section (asect))
4969 index = SHN_ABS;
4970 else if (bfd_is_com_section (asect))
4971 index = SHN_COMMON;
4972 else if (bfd_is_und_section (asect))
4973 index = SHN_UNDEF;
4974 else
4975 index = -1;
4976
4977 bed = get_elf_backend_data (abfd);
4978 if (bed->elf_backend_section_from_bfd_section)
4979 {
4980 int retval = index;
4981
4982 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4983 return retval;
4984 }
4985
4986 if (index == -1)
4987 bfd_set_error (bfd_error_nonrepresentable_section);
4988
4989 return index;
4990 }
4991
4992 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4993 on error. */
4994
4995 int
4996 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4997 {
4998 asymbol *asym_ptr = *asym_ptr_ptr;
4999 int idx;
5000 flagword flags = asym_ptr->flags;
5001
5002 /* When gas creates relocations against local labels, it creates its
5003 own symbol for the section, but does put the symbol into the
5004 symbol chain, so udata is 0. When the linker is generating
5005 relocatable output, this section symbol may be for one of the
5006 input sections rather than the output section. */
5007 if (asym_ptr->udata.i == 0
5008 && (flags & BSF_SECTION_SYM)
5009 && asym_ptr->section)
5010 {
5011 int indx;
5012
5013 if (asym_ptr->section->output_section != NULL)
5014 indx = asym_ptr->section->output_section->index;
5015 else
5016 indx = asym_ptr->section->index;
5017 if (indx < elf_num_section_syms (abfd)
5018 && elf_section_syms (abfd)[indx] != NULL)
5019 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5020 }
5021
5022 idx = asym_ptr->udata.i;
5023
5024 if (idx == 0)
5025 {
5026 /* This case can occur when using --strip-symbol on a symbol
5027 which is used in a relocation entry. */
5028 (*_bfd_error_handler)
5029 (_("%B: symbol `%s' required but not present"),
5030 abfd, bfd_asymbol_name (asym_ptr));
5031 bfd_set_error (bfd_error_no_symbols);
5032 return -1;
5033 }
5034
5035 #if DEBUG & 4
5036 {
5037 fprintf (stderr,
5038 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5039 (long) asym_ptr, asym_ptr->name, idx, flags,
5040 elf_symbol_flags (flags));
5041 fflush (stderr);
5042 }
5043 #endif
5044
5045 return idx;
5046 }
5047
5048 /* Rewrite program header information. */
5049
5050 static bfd_boolean
5051 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5052 {
5053 Elf_Internal_Ehdr *iehdr;
5054 struct elf_segment_map *map;
5055 struct elf_segment_map *map_first;
5056 struct elf_segment_map **pointer_to_map;
5057 Elf_Internal_Phdr *segment;
5058 asection *section;
5059 unsigned int i;
5060 unsigned int num_segments;
5061 bfd_boolean phdr_included = FALSE;
5062 bfd_vma maxpagesize;
5063 struct elf_segment_map *phdr_adjust_seg = NULL;
5064 unsigned int phdr_adjust_num = 0;
5065 const struct elf_backend_data *bed;
5066
5067 bed = get_elf_backend_data (ibfd);
5068 iehdr = elf_elfheader (ibfd);
5069
5070 map_first = NULL;
5071 pointer_to_map = &map_first;
5072
5073 num_segments = elf_elfheader (ibfd)->e_phnum;
5074 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5075
5076 /* Returns the end address of the segment + 1. */
5077 #define SEGMENT_END(segment, start) \
5078 (start + (segment->p_memsz > segment->p_filesz \
5079 ? segment->p_memsz : segment->p_filesz))
5080
5081 #define SECTION_SIZE(section, segment) \
5082 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5083 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5084 ? section->size : 0)
5085
5086 /* Returns TRUE if the given section is contained within
5087 the given segment. VMA addresses are compared. */
5088 #define IS_CONTAINED_BY_VMA(section, segment) \
5089 (section->vma >= segment->p_vaddr \
5090 && (section->vma + SECTION_SIZE (section, segment) \
5091 <= (SEGMENT_END (segment, segment->p_vaddr))))
5092
5093 /* Returns TRUE if the given section is contained within
5094 the given segment. LMA addresses are compared. */
5095 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5096 (section->lma >= base \
5097 && (section->lma + SECTION_SIZE (section, segment) \
5098 <= SEGMENT_END (segment, base)))
5099
5100 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5101 #define IS_COREFILE_NOTE(p, s) \
5102 (p->p_type == PT_NOTE \
5103 && bfd_get_format (ibfd) == bfd_core \
5104 && s->vma == 0 && s->lma == 0 \
5105 && (bfd_vma) s->filepos >= p->p_offset \
5106 && ((bfd_vma) s->filepos + s->size \
5107 <= p->p_offset + p->p_filesz))
5108
5109 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5110 linker, which generates a PT_INTERP section with p_vaddr and
5111 p_memsz set to 0. */
5112 #define IS_SOLARIS_PT_INTERP(p, s) \
5113 (p->p_vaddr == 0 \
5114 && p->p_paddr == 0 \
5115 && p->p_memsz == 0 \
5116 && p->p_filesz > 0 \
5117 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5118 && s->size > 0 \
5119 && (bfd_vma) s->filepos >= p->p_offset \
5120 && ((bfd_vma) s->filepos + s->size \
5121 <= p->p_offset + p->p_filesz))
5122
5123 /* Decide if the given section should be included in the given segment.
5124 A section will be included if:
5125 1. It is within the address space of the segment -- we use the LMA
5126 if that is set for the segment and the VMA otherwise,
5127 2. It is an allocated segment,
5128 3. There is an output section associated with it,
5129 4. The section has not already been allocated to a previous segment.
5130 5. PT_GNU_STACK segments do not include any sections.
5131 6. PT_TLS segment includes only SHF_TLS sections.
5132 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5133 8. PT_DYNAMIC should not contain empty sections at the beginning
5134 (with the possible exception of .dynamic). */
5135 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5136 ((((segment->p_paddr \
5137 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5138 : IS_CONTAINED_BY_VMA (section, segment)) \
5139 && (section->flags & SEC_ALLOC) != 0) \
5140 || IS_COREFILE_NOTE (segment, section)) \
5141 && section->output_section != NULL \
5142 && segment->p_type != PT_GNU_STACK \
5143 && (segment->p_type != PT_TLS \
5144 || (section->flags & SEC_THREAD_LOCAL)) \
5145 && (segment->p_type == PT_LOAD \
5146 || segment->p_type == PT_TLS \
5147 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5148 && (segment->p_type != PT_DYNAMIC \
5149 || SECTION_SIZE (section, segment) > 0 \
5150 || (segment->p_paddr \
5151 ? segment->p_paddr != section->lma \
5152 : segment->p_vaddr != section->vma) \
5153 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5154 == 0)) \
5155 && ! section->segment_mark)
5156
5157 /* Returns TRUE iff seg1 starts after the end of seg2. */
5158 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5159 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5160
5161 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5162 their VMA address ranges and their LMA address ranges overlap.
5163 It is possible to have overlapping VMA ranges without overlapping LMA
5164 ranges. RedBoot images for example can have both .data and .bss mapped
5165 to the same VMA range, but with the .data section mapped to a different
5166 LMA. */
5167 #define SEGMENT_OVERLAPS(seg1, seg2) \
5168 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5169 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5170 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5171 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5172
5173 /* Initialise the segment mark field. */
5174 for (section = ibfd->sections; section != NULL; section = section->next)
5175 section->segment_mark = FALSE;
5176
5177 /* Scan through the segments specified in the program header
5178 of the input BFD. For this first scan we look for overlaps
5179 in the loadable segments. These can be created by weird
5180 parameters to objcopy. Also, fix some solaris weirdness. */
5181 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5182 i < num_segments;
5183 i++, segment++)
5184 {
5185 unsigned int j;
5186 Elf_Internal_Phdr *segment2;
5187
5188 if (segment->p_type == PT_INTERP)
5189 for (section = ibfd->sections; section; section = section->next)
5190 if (IS_SOLARIS_PT_INTERP (segment, section))
5191 {
5192 /* Mininal change so that the normal section to segment
5193 assignment code will work. */
5194 segment->p_vaddr = section->vma;
5195 break;
5196 }
5197
5198 if (segment->p_type != PT_LOAD)
5199 continue;
5200
5201 /* Determine if this segment overlaps any previous segments. */
5202 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5203 {
5204 bfd_signed_vma extra_length;
5205
5206 if (segment2->p_type != PT_LOAD
5207 || ! SEGMENT_OVERLAPS (segment, segment2))
5208 continue;
5209
5210 /* Merge the two segments together. */
5211 if (segment2->p_vaddr < segment->p_vaddr)
5212 {
5213 /* Extend SEGMENT2 to include SEGMENT and then delete
5214 SEGMENT. */
5215 extra_length =
5216 SEGMENT_END (segment, segment->p_vaddr)
5217 - SEGMENT_END (segment2, segment2->p_vaddr);
5218
5219 if (extra_length > 0)
5220 {
5221 segment2->p_memsz += extra_length;
5222 segment2->p_filesz += extra_length;
5223 }
5224
5225 segment->p_type = PT_NULL;
5226
5227 /* Since we have deleted P we must restart the outer loop. */
5228 i = 0;
5229 segment = elf_tdata (ibfd)->phdr;
5230 break;
5231 }
5232 else
5233 {
5234 /* Extend SEGMENT to include SEGMENT2 and then delete
5235 SEGMENT2. */
5236 extra_length =
5237 SEGMENT_END (segment2, segment2->p_vaddr)
5238 - SEGMENT_END (segment, segment->p_vaddr);
5239
5240 if (extra_length > 0)
5241 {
5242 segment->p_memsz += extra_length;
5243 segment->p_filesz += extra_length;
5244 }
5245
5246 segment2->p_type = PT_NULL;
5247 }
5248 }
5249 }
5250
5251 /* The second scan attempts to assign sections to segments. */
5252 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5253 i < num_segments;
5254 i ++, segment ++)
5255 {
5256 unsigned int section_count;
5257 asection ** sections;
5258 asection * output_section;
5259 unsigned int isec;
5260 bfd_vma matching_lma;
5261 bfd_vma suggested_lma;
5262 unsigned int j;
5263 bfd_size_type amt;
5264
5265 if (segment->p_type == PT_NULL)
5266 continue;
5267
5268 /* Compute how many sections might be placed into this segment. */
5269 for (section = ibfd->sections, section_count = 0;
5270 section != NULL;
5271 section = section->next)
5272 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5273 ++section_count;
5274
5275 /* Allocate a segment map big enough to contain
5276 all of the sections we have selected. */
5277 amt = sizeof (struct elf_segment_map);
5278 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5279 map = bfd_alloc (obfd, amt);
5280 if (map == NULL)
5281 return FALSE;
5282
5283 /* Initialise the fields of the segment map. Default to
5284 using the physical address of the segment in the input BFD. */
5285 map->next = NULL;
5286 map->p_type = segment->p_type;
5287 map->p_flags = segment->p_flags;
5288 map->p_flags_valid = 1;
5289 map->p_paddr = segment->p_paddr;
5290 map->p_paddr_valid = 1;
5291
5292 /* Determine if this segment contains the ELF file header
5293 and if it contains the program headers themselves. */
5294 map->includes_filehdr = (segment->p_offset == 0
5295 && segment->p_filesz >= iehdr->e_ehsize);
5296
5297 map->includes_phdrs = 0;
5298
5299 if (! phdr_included || segment->p_type != PT_LOAD)
5300 {
5301 map->includes_phdrs =
5302 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5303 && (segment->p_offset + segment->p_filesz
5304 >= ((bfd_vma) iehdr->e_phoff
5305 + iehdr->e_phnum * iehdr->e_phentsize)));
5306
5307 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5308 phdr_included = TRUE;
5309 }
5310
5311 if (section_count == 0)
5312 {
5313 /* Special segments, such as the PT_PHDR segment, may contain
5314 no sections, but ordinary, loadable segments should contain
5315 something. They are allowed by the ELF spec however, so only
5316 a warning is produced. */
5317 if (segment->p_type == PT_LOAD)
5318 (*_bfd_error_handler)
5319 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5320 ibfd);
5321
5322 map->count = 0;
5323 *pointer_to_map = map;
5324 pointer_to_map = &map->next;
5325
5326 continue;
5327 }
5328
5329 /* Now scan the sections in the input BFD again and attempt
5330 to add their corresponding output sections to the segment map.
5331 The problem here is how to handle an output section which has
5332 been moved (ie had its LMA changed). There are four possibilities:
5333
5334 1. None of the sections have been moved.
5335 In this case we can continue to use the segment LMA from the
5336 input BFD.
5337
5338 2. All of the sections have been moved by the same amount.
5339 In this case we can change the segment's LMA to match the LMA
5340 of the first section.
5341
5342 3. Some of the sections have been moved, others have not.
5343 In this case those sections which have not been moved can be
5344 placed in the current segment which will have to have its size,
5345 and possibly its LMA changed, and a new segment or segments will
5346 have to be created to contain the other sections.
5347
5348 4. The sections have been moved, but not by the same amount.
5349 In this case we can change the segment's LMA to match the LMA
5350 of the first section and we will have to create a new segment
5351 or segments to contain the other sections.
5352
5353 In order to save time, we allocate an array to hold the section
5354 pointers that we are interested in. As these sections get assigned
5355 to a segment, they are removed from this array. */
5356
5357 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5358 to work around this long long bug. */
5359 sections = bfd_malloc2 (section_count, sizeof (asection *));
5360 if (sections == NULL)
5361 return FALSE;
5362
5363 /* Step One: Scan for segment vs section LMA conflicts.
5364 Also add the sections to the section array allocated above.
5365 Also add the sections to the current segment. In the common
5366 case, where the sections have not been moved, this means that
5367 we have completely filled the segment, and there is nothing
5368 more to do. */
5369 isec = 0;
5370 matching_lma = 0;
5371 suggested_lma = 0;
5372
5373 for (j = 0, section = ibfd->sections;
5374 section != NULL;
5375 section = section->next)
5376 {
5377 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5378 {
5379 output_section = section->output_section;
5380
5381 sections[j ++] = section;
5382
5383 /* The Solaris native linker always sets p_paddr to 0.
5384 We try to catch that case here, and set it to the
5385 correct value. Note - some backends require that
5386 p_paddr be left as zero. */
5387 if (segment->p_paddr == 0
5388 && segment->p_vaddr != 0
5389 && (! bed->want_p_paddr_set_to_zero)
5390 && isec == 0
5391 && output_section->lma != 0
5392 && (output_section->vma == (segment->p_vaddr
5393 + (map->includes_filehdr
5394 ? iehdr->e_ehsize
5395 : 0)
5396 + (map->includes_phdrs
5397 ? (iehdr->e_phnum
5398 * iehdr->e_phentsize)
5399 : 0))))
5400 map->p_paddr = segment->p_vaddr;
5401
5402 /* Match up the physical address of the segment with the
5403 LMA address of the output section. */
5404 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5405 || IS_COREFILE_NOTE (segment, section)
5406 || (bed->want_p_paddr_set_to_zero &&
5407 IS_CONTAINED_BY_VMA (output_section, segment))
5408 )
5409 {
5410 if (matching_lma == 0)
5411 matching_lma = output_section->lma;
5412
5413 /* We assume that if the section fits within the segment
5414 then it does not overlap any other section within that
5415 segment. */
5416 map->sections[isec ++] = output_section;
5417 }
5418 else if (suggested_lma == 0)
5419 suggested_lma = output_section->lma;
5420 }
5421 }
5422
5423 BFD_ASSERT (j == section_count);
5424
5425 /* Step Two: Adjust the physical address of the current segment,
5426 if necessary. */
5427 if (isec == section_count)
5428 {
5429 /* All of the sections fitted within the segment as currently
5430 specified. This is the default case. Add the segment to
5431 the list of built segments and carry on to process the next
5432 program header in the input BFD. */
5433 map->count = section_count;
5434 *pointer_to_map = map;
5435 pointer_to_map = &map->next;
5436
5437 free (sections);
5438 continue;
5439 }
5440 else
5441 {
5442 if (matching_lma != 0)
5443 {
5444 /* At least one section fits inside the current segment.
5445 Keep it, but modify its physical address to match the
5446 LMA of the first section that fitted. */
5447 map->p_paddr = matching_lma;
5448 }
5449 else
5450 {
5451 /* None of the sections fitted inside the current segment.
5452 Change the current segment's physical address to match
5453 the LMA of the first section. */
5454 map->p_paddr = suggested_lma;
5455 }
5456
5457 /* Offset the segment physical address from the lma
5458 to allow for space taken up by elf headers. */
5459 if (map->includes_filehdr)
5460 map->p_paddr -= iehdr->e_ehsize;
5461
5462 if (map->includes_phdrs)
5463 {
5464 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5465
5466 /* iehdr->e_phnum is just an estimate of the number
5467 of program headers that we will need. Make a note
5468 here of the number we used and the segment we chose
5469 to hold these headers, so that we can adjust the
5470 offset when we know the correct value. */
5471 phdr_adjust_num = iehdr->e_phnum;
5472 phdr_adjust_seg = map;
5473 }
5474 }
5475
5476 /* Step Three: Loop over the sections again, this time assigning
5477 those that fit to the current segment and removing them from the
5478 sections array; but making sure not to leave large gaps. Once all
5479 possible sections have been assigned to the current segment it is
5480 added to the list of built segments and if sections still remain
5481 to be assigned, a new segment is constructed before repeating
5482 the loop. */
5483 isec = 0;
5484 do
5485 {
5486 map->count = 0;
5487 suggested_lma = 0;
5488
5489 /* Fill the current segment with sections that fit. */
5490 for (j = 0; j < section_count; j++)
5491 {
5492 section = sections[j];
5493
5494 if (section == NULL)
5495 continue;
5496
5497 output_section = section->output_section;
5498
5499 BFD_ASSERT (output_section != NULL);
5500
5501 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5502 || IS_COREFILE_NOTE (segment, section))
5503 {
5504 if (map->count == 0)
5505 {
5506 /* If the first section in a segment does not start at
5507 the beginning of the segment, then something is
5508 wrong. */
5509 if (output_section->lma !=
5510 (map->p_paddr
5511 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5512 + (map->includes_phdrs
5513 ? iehdr->e_phnum * iehdr->e_phentsize
5514 : 0)))
5515 abort ();
5516 }
5517 else
5518 {
5519 asection * prev_sec;
5520
5521 prev_sec = map->sections[map->count - 1];
5522
5523 /* If the gap between the end of the previous section
5524 and the start of this section is more than
5525 maxpagesize then we need to start a new segment. */
5526 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5527 maxpagesize)
5528 < BFD_ALIGN (output_section->lma, maxpagesize))
5529 || ((prev_sec->lma + prev_sec->size)
5530 > output_section->lma))
5531 {
5532 if (suggested_lma == 0)
5533 suggested_lma = output_section->lma;
5534
5535 continue;
5536 }
5537 }
5538
5539 map->sections[map->count++] = output_section;
5540 ++isec;
5541 sections[j] = NULL;
5542 section->segment_mark = TRUE;
5543 }
5544 else if (suggested_lma == 0)
5545 suggested_lma = output_section->lma;
5546 }
5547
5548 BFD_ASSERT (map->count > 0);
5549
5550 /* Add the current segment to the list of built segments. */
5551 *pointer_to_map = map;
5552 pointer_to_map = &map->next;
5553
5554 if (isec < section_count)
5555 {
5556 /* We still have not allocated all of the sections to
5557 segments. Create a new segment here, initialise it
5558 and carry on looping. */
5559 amt = sizeof (struct elf_segment_map);
5560 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5561 map = bfd_alloc (obfd, amt);
5562 if (map == NULL)
5563 {
5564 free (sections);
5565 return FALSE;
5566 }
5567
5568 /* Initialise the fields of the segment map. Set the physical
5569 physical address to the LMA of the first section that has
5570 not yet been assigned. */
5571 map->next = NULL;
5572 map->p_type = segment->p_type;
5573 map->p_flags = segment->p_flags;
5574 map->p_flags_valid = 1;
5575 map->p_paddr = suggested_lma;
5576 map->p_paddr_valid = 1;
5577 map->includes_filehdr = 0;
5578 map->includes_phdrs = 0;
5579 }
5580 }
5581 while (isec < section_count);
5582
5583 free (sections);
5584 }
5585
5586 /* The Solaris linker creates program headers in which all the
5587 p_paddr fields are zero. When we try to objcopy or strip such a
5588 file, we get confused. Check for this case, and if we find it
5589 reset the p_paddr_valid fields. */
5590 for (map = map_first; map != NULL; map = map->next)
5591 if (map->p_paddr != 0)
5592 break;
5593 if (map == NULL)
5594 for (map = map_first; map != NULL; map = map->next)
5595 map->p_paddr_valid = 0;
5596
5597 elf_tdata (obfd)->segment_map = map_first;
5598
5599 /* If we had to estimate the number of program headers that were
5600 going to be needed, then check our estimate now and adjust
5601 the offset if necessary. */
5602 if (phdr_adjust_seg != NULL)
5603 {
5604 unsigned int count;
5605
5606 for (count = 0, map = map_first; map != NULL; map = map->next)
5607 count++;
5608
5609 if (count > phdr_adjust_num)
5610 phdr_adjust_seg->p_paddr
5611 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5612 }
5613
5614 #undef SEGMENT_END
5615 #undef SECTION_SIZE
5616 #undef IS_CONTAINED_BY_VMA
5617 #undef IS_CONTAINED_BY_LMA
5618 #undef IS_COREFILE_NOTE
5619 #undef IS_SOLARIS_PT_INTERP
5620 #undef INCLUDE_SECTION_IN_SEGMENT
5621 #undef SEGMENT_AFTER_SEGMENT
5622 #undef SEGMENT_OVERLAPS
5623 return TRUE;
5624 }
5625
5626 /* Copy ELF program header information. */
5627
5628 static bfd_boolean
5629 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5630 {
5631 Elf_Internal_Ehdr *iehdr;
5632 struct elf_segment_map *map;
5633 struct elf_segment_map *map_first;
5634 struct elf_segment_map **pointer_to_map;
5635 Elf_Internal_Phdr *segment;
5636 unsigned int i;
5637 unsigned int num_segments;
5638 bfd_boolean phdr_included = FALSE;
5639
5640 iehdr = elf_elfheader (ibfd);
5641
5642 map_first = NULL;
5643 pointer_to_map = &map_first;
5644
5645 num_segments = elf_elfheader (ibfd)->e_phnum;
5646 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5647 i < num_segments;
5648 i++, segment++)
5649 {
5650 asection *section;
5651 unsigned int section_count;
5652 bfd_size_type amt;
5653 Elf_Internal_Shdr *this_hdr;
5654
5655 /* FIXME: Do we need to copy PT_NULL segment? */
5656 if (segment->p_type == PT_NULL)
5657 continue;
5658
5659 /* Compute how many sections are in this segment. */
5660 for (section = ibfd->sections, section_count = 0;
5661 section != NULL;
5662 section = section->next)
5663 {
5664 this_hdr = &(elf_section_data(section)->this_hdr);
5665 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5666 section_count++;
5667 }
5668
5669 /* Allocate a segment map big enough to contain
5670 all of the sections we have selected. */
5671 amt = sizeof (struct elf_segment_map);
5672 if (section_count != 0)
5673 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5674 map = bfd_alloc (obfd, amt);
5675 if (map == NULL)
5676 return FALSE;
5677
5678 /* Initialize the fields of the output segment map with the
5679 input segment. */
5680 map->next = NULL;
5681 map->p_type = segment->p_type;
5682 map->p_flags = segment->p_flags;
5683 map->p_flags_valid = 1;
5684 map->p_paddr = segment->p_paddr;
5685 map->p_paddr_valid = 1;
5686
5687 /* Determine if this segment contains the ELF file header
5688 and if it contains the program headers themselves. */
5689 map->includes_filehdr = (segment->p_offset == 0
5690 && segment->p_filesz >= iehdr->e_ehsize);
5691
5692 map->includes_phdrs = 0;
5693 if (! phdr_included || segment->p_type != PT_LOAD)
5694 {
5695 map->includes_phdrs =
5696 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5697 && (segment->p_offset + segment->p_filesz
5698 >= ((bfd_vma) iehdr->e_phoff
5699 + iehdr->e_phnum * iehdr->e_phentsize)));
5700
5701 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5702 phdr_included = TRUE;
5703 }
5704
5705 if (section_count != 0)
5706 {
5707 unsigned int isec = 0;
5708
5709 for (section = ibfd->sections;
5710 section != NULL;
5711 section = section->next)
5712 {
5713 this_hdr = &(elf_section_data(section)->this_hdr);
5714 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5715 map->sections[isec++] = section->output_section;
5716 }
5717 }
5718
5719 map->count = section_count;
5720 *pointer_to_map = map;
5721 pointer_to_map = &map->next;
5722 }
5723
5724 elf_tdata (obfd)->segment_map = map_first;
5725 return TRUE;
5726 }
5727
5728 /* Copy private BFD data. This copies or rewrites ELF program header
5729 information. */
5730
5731 static bfd_boolean
5732 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5733 {
5734 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5735 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5736 return TRUE;
5737
5738 if (elf_tdata (ibfd)->phdr == NULL)
5739 return TRUE;
5740
5741 if (ibfd->xvec == obfd->xvec)
5742 {
5743 /* Check if any sections in the input BFD covered by ELF program
5744 header are changed. */
5745 Elf_Internal_Phdr *segment;
5746 asection *section, *osec;
5747 unsigned int i, num_segments;
5748 Elf_Internal_Shdr *this_hdr;
5749
5750 /* Initialize the segment mark field. */
5751 for (section = obfd->sections; section != NULL;
5752 section = section->next)
5753 section->segment_mark = FALSE;
5754
5755 num_segments = elf_elfheader (ibfd)->e_phnum;
5756 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5757 i < num_segments;
5758 i++, segment++)
5759 {
5760 for (section = ibfd->sections;
5761 section != NULL; section = section->next)
5762 {
5763 /* We mark the output section so that we know it comes
5764 from the input BFD. */
5765 osec = section->output_section;
5766 if (osec)
5767 osec->segment_mark = TRUE;
5768
5769 /* Check if this section is covered by the segment. */
5770 this_hdr = &(elf_section_data(section)->this_hdr);
5771 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5772 {
5773 /* FIXME: Check if its output section is changed or
5774 removed. What else do we need to check? */
5775 if (osec == NULL
5776 || section->flags != osec->flags
5777 || section->lma != osec->lma
5778 || section->vma != osec->vma
5779 || section->size != osec->size
5780 || section->rawsize != osec->rawsize
5781 || section->alignment_power != osec->alignment_power)
5782 goto rewrite;
5783 }
5784 }
5785 }
5786
5787 /* Check to see if any output section doesn't come from the
5788 input BFD. */
5789 for (section = obfd->sections; section != NULL;
5790 section = section->next)
5791 {
5792 if (section->segment_mark == FALSE)
5793 goto rewrite;
5794 else
5795 section->segment_mark = FALSE;
5796 }
5797
5798 return copy_elf_program_header (ibfd, obfd);
5799 }
5800
5801 rewrite:
5802 return rewrite_elf_program_header (ibfd, obfd);
5803 }
5804
5805 /* Initialize private output section information from input section. */
5806
5807 bfd_boolean
5808 _bfd_elf_init_private_section_data (bfd *ibfd,
5809 asection *isec,
5810 bfd *obfd,
5811 asection *osec,
5812 struct bfd_link_info *link_info)
5813
5814 {
5815 Elf_Internal_Shdr *ihdr, *ohdr;
5816 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5817
5818 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5819 || obfd->xvec->flavour != bfd_target_elf_flavour)
5820 return TRUE;
5821
5822 /* FIXME: What if the output ELF section type has been set to
5823 something different? */
5824 if (elf_section_type (osec) == SHT_NULL)
5825 elf_section_type (osec) = elf_section_type (isec);
5826
5827 /* Set things up for objcopy and relocatable link. The output
5828 SHT_GROUP section will have its elf_next_in_group pointing back
5829 to the input group members. Ignore linker created group section.
5830 See elfNN_ia64_object_p in elfxx-ia64.c. */
5831
5832 if (need_group)
5833 {
5834 if (elf_sec_group (isec) == NULL
5835 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5836 {
5837 if (elf_section_flags (isec) & SHF_GROUP)
5838 elf_section_flags (osec) |= SHF_GROUP;
5839 elf_next_in_group (osec) = elf_next_in_group (isec);
5840 elf_group_name (osec) = elf_group_name (isec);
5841 }
5842 }
5843
5844 ihdr = &elf_section_data (isec)->this_hdr;
5845
5846 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5847 don't use the output section of the linked-to section since it
5848 may be NULL at this point. */
5849 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5850 {
5851 ohdr = &elf_section_data (osec)->this_hdr;
5852 ohdr->sh_flags |= SHF_LINK_ORDER;
5853 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5854 }
5855
5856 osec->use_rela_p = isec->use_rela_p;
5857
5858 return TRUE;
5859 }
5860
5861 /* Copy private section information. This copies over the entsize
5862 field, and sometimes the info field. */
5863
5864 bfd_boolean
5865 _bfd_elf_copy_private_section_data (bfd *ibfd,
5866 asection *isec,
5867 bfd *obfd,
5868 asection *osec)
5869 {
5870 Elf_Internal_Shdr *ihdr, *ohdr;
5871
5872 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5873 || obfd->xvec->flavour != bfd_target_elf_flavour)
5874 return TRUE;
5875
5876 ihdr = &elf_section_data (isec)->this_hdr;
5877 ohdr = &elf_section_data (osec)->this_hdr;
5878
5879 ohdr->sh_entsize = ihdr->sh_entsize;
5880
5881 if (ihdr->sh_type == SHT_SYMTAB
5882 || ihdr->sh_type == SHT_DYNSYM
5883 || ihdr->sh_type == SHT_GNU_verneed
5884 || ihdr->sh_type == SHT_GNU_verdef)
5885 ohdr->sh_info = ihdr->sh_info;
5886
5887 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5888 NULL);
5889 }
5890
5891 /* Copy private header information. */
5892
5893 bfd_boolean
5894 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5895 {
5896 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5897 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5898 return TRUE;
5899
5900 /* Copy over private BFD data if it has not already been copied.
5901 This must be done here, rather than in the copy_private_bfd_data
5902 entry point, because the latter is called after the section
5903 contents have been set, which means that the program headers have
5904 already been worked out. */
5905 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5906 {
5907 if (! copy_private_bfd_data (ibfd, obfd))
5908 return FALSE;
5909 }
5910
5911 return TRUE;
5912 }
5913
5914 /* Copy private symbol information. If this symbol is in a section
5915 which we did not map into a BFD section, try to map the section
5916 index correctly. We use special macro definitions for the mapped
5917 section indices; these definitions are interpreted by the
5918 swap_out_syms function. */
5919
5920 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5921 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5922 #define MAP_STRTAB (SHN_HIOS + 3)
5923 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5924 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5925
5926 bfd_boolean
5927 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5928 asymbol *isymarg,
5929 bfd *obfd,
5930 asymbol *osymarg)
5931 {
5932 elf_symbol_type *isym, *osym;
5933
5934 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5935 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5936 return TRUE;
5937
5938 isym = elf_symbol_from (ibfd, isymarg);
5939 osym = elf_symbol_from (obfd, osymarg);
5940
5941 if (isym != NULL
5942 && osym != NULL
5943 && bfd_is_abs_section (isym->symbol.section))
5944 {
5945 unsigned int shndx;
5946
5947 shndx = isym->internal_elf_sym.st_shndx;
5948 if (shndx == elf_onesymtab (ibfd))
5949 shndx = MAP_ONESYMTAB;
5950 else if (shndx == elf_dynsymtab (ibfd))
5951 shndx = MAP_DYNSYMTAB;
5952 else if (shndx == elf_tdata (ibfd)->strtab_section)
5953 shndx = MAP_STRTAB;
5954 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5955 shndx = MAP_SHSTRTAB;
5956 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5957 shndx = MAP_SYM_SHNDX;
5958 osym->internal_elf_sym.st_shndx = shndx;
5959 }
5960
5961 return TRUE;
5962 }
5963
5964 /* Swap out the symbols. */
5965
5966 static bfd_boolean
5967 swap_out_syms (bfd *abfd,
5968 struct bfd_strtab_hash **sttp,
5969 int relocatable_p)
5970 {
5971 const struct elf_backend_data *bed;
5972 int symcount;
5973 asymbol **syms;
5974 struct bfd_strtab_hash *stt;
5975 Elf_Internal_Shdr *symtab_hdr;
5976 Elf_Internal_Shdr *symtab_shndx_hdr;
5977 Elf_Internal_Shdr *symstrtab_hdr;
5978 bfd_byte *outbound_syms;
5979 bfd_byte *outbound_shndx;
5980 int idx;
5981 bfd_size_type amt;
5982 bfd_boolean name_local_sections;
5983
5984 if (!elf_map_symbols (abfd))
5985 return FALSE;
5986
5987 /* Dump out the symtabs. */
5988 stt = _bfd_elf_stringtab_init ();
5989 if (stt == NULL)
5990 return FALSE;
5991
5992 bed = get_elf_backend_data (abfd);
5993 symcount = bfd_get_symcount (abfd);
5994 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5995 symtab_hdr->sh_type = SHT_SYMTAB;
5996 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5997 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5998 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5999 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6000
6001 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6002 symstrtab_hdr->sh_type = SHT_STRTAB;
6003
6004 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6005 if (outbound_syms == NULL)
6006 {
6007 _bfd_stringtab_free (stt);
6008 return FALSE;
6009 }
6010 symtab_hdr->contents = outbound_syms;
6011
6012 outbound_shndx = NULL;
6013 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6014 if (symtab_shndx_hdr->sh_name != 0)
6015 {
6016 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6017 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6018 sizeof (Elf_External_Sym_Shndx));
6019 if (outbound_shndx == NULL)
6020 {
6021 _bfd_stringtab_free (stt);
6022 return FALSE;
6023 }
6024
6025 symtab_shndx_hdr->contents = outbound_shndx;
6026 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6027 symtab_shndx_hdr->sh_size = amt;
6028 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6029 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6030 }
6031
6032 /* Now generate the data (for "contents"). */
6033 {
6034 /* Fill in zeroth symbol and swap it out. */
6035 Elf_Internal_Sym sym;
6036 sym.st_name = 0;
6037 sym.st_value = 0;
6038 sym.st_size = 0;
6039 sym.st_info = 0;
6040 sym.st_other = 0;
6041 sym.st_shndx = SHN_UNDEF;
6042 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6043 outbound_syms += bed->s->sizeof_sym;
6044 if (outbound_shndx != NULL)
6045 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6046 }
6047
6048 name_local_sections
6049 = (bed->elf_backend_name_local_section_symbols
6050 && bed->elf_backend_name_local_section_symbols (abfd));
6051
6052 syms = bfd_get_outsymbols (abfd);
6053 for (idx = 0; idx < symcount; idx++)
6054 {
6055 Elf_Internal_Sym sym;
6056 bfd_vma value = syms[idx]->value;
6057 elf_symbol_type *type_ptr;
6058 flagword flags = syms[idx]->flags;
6059 int type;
6060
6061 if (!name_local_sections
6062 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6063 {
6064 /* Local section symbols have no name. */
6065 sym.st_name = 0;
6066 }
6067 else
6068 {
6069 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6070 syms[idx]->name,
6071 TRUE, FALSE);
6072 if (sym.st_name == (unsigned long) -1)
6073 {
6074 _bfd_stringtab_free (stt);
6075 return FALSE;
6076 }
6077 }
6078
6079 type_ptr = elf_symbol_from (abfd, syms[idx]);
6080
6081 if ((flags & BSF_SECTION_SYM) == 0
6082 && bfd_is_com_section (syms[idx]->section))
6083 {
6084 /* ELF common symbols put the alignment into the `value' field,
6085 and the size into the `size' field. This is backwards from
6086 how BFD handles it, so reverse it here. */
6087 sym.st_size = value;
6088 if (type_ptr == NULL
6089 || type_ptr->internal_elf_sym.st_value == 0)
6090 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6091 else
6092 sym.st_value = type_ptr->internal_elf_sym.st_value;
6093 sym.st_shndx = _bfd_elf_section_from_bfd_section
6094 (abfd, syms[idx]->section);
6095 }
6096 else
6097 {
6098 asection *sec = syms[idx]->section;
6099 int shndx;
6100
6101 if (sec->output_section)
6102 {
6103 value += sec->output_offset;
6104 sec = sec->output_section;
6105 }
6106
6107 /* Don't add in the section vma for relocatable output. */
6108 if (! relocatable_p)
6109 value += sec->vma;
6110 sym.st_value = value;
6111 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6112
6113 if (bfd_is_abs_section (sec)
6114 && type_ptr != NULL
6115 && type_ptr->internal_elf_sym.st_shndx != 0)
6116 {
6117 /* This symbol is in a real ELF section which we did
6118 not create as a BFD section. Undo the mapping done
6119 by copy_private_symbol_data. */
6120 shndx = type_ptr->internal_elf_sym.st_shndx;
6121 switch (shndx)
6122 {
6123 case MAP_ONESYMTAB:
6124 shndx = elf_onesymtab (abfd);
6125 break;
6126 case MAP_DYNSYMTAB:
6127 shndx = elf_dynsymtab (abfd);
6128 break;
6129 case MAP_STRTAB:
6130 shndx = elf_tdata (abfd)->strtab_section;
6131 break;
6132 case MAP_SHSTRTAB:
6133 shndx = elf_tdata (abfd)->shstrtab_section;
6134 break;
6135 case MAP_SYM_SHNDX:
6136 shndx = elf_tdata (abfd)->symtab_shndx_section;
6137 break;
6138 default:
6139 break;
6140 }
6141 }
6142 else
6143 {
6144 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6145
6146 if (shndx == -1)
6147 {
6148 asection *sec2;
6149
6150 /* Writing this would be a hell of a lot easier if
6151 we had some decent documentation on bfd, and
6152 knew what to expect of the library, and what to
6153 demand of applications. For example, it
6154 appears that `objcopy' might not set the
6155 section of a symbol to be a section that is
6156 actually in the output file. */
6157 sec2 = bfd_get_section_by_name (abfd, sec->name);
6158 if (sec2 == NULL)
6159 {
6160 _bfd_error_handler (_("\
6161 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6162 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6163 sec->name);
6164 bfd_set_error (bfd_error_invalid_operation);
6165 _bfd_stringtab_free (stt);
6166 return FALSE;
6167 }
6168
6169 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6170 BFD_ASSERT (shndx != -1);
6171 }
6172 }
6173
6174 sym.st_shndx = shndx;
6175 }
6176
6177 if ((flags & BSF_THREAD_LOCAL) != 0)
6178 type = STT_TLS;
6179 else if ((flags & BSF_FUNCTION) != 0)
6180 type = STT_FUNC;
6181 else if ((flags & BSF_OBJECT) != 0)
6182 type = STT_OBJECT;
6183 else
6184 type = STT_NOTYPE;
6185
6186 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6187 type = STT_TLS;
6188
6189 /* Processor-specific types. */
6190 if (type_ptr != NULL
6191 && bed->elf_backend_get_symbol_type)
6192 type = ((*bed->elf_backend_get_symbol_type)
6193 (&type_ptr->internal_elf_sym, type));
6194
6195 if (flags & BSF_SECTION_SYM)
6196 {
6197 if (flags & BSF_GLOBAL)
6198 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6199 else
6200 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6201 }
6202 else if (bfd_is_com_section (syms[idx]->section))
6203 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6204 else if (bfd_is_und_section (syms[idx]->section))
6205 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6206 ? STB_WEAK
6207 : STB_GLOBAL),
6208 type);
6209 else if (flags & BSF_FILE)
6210 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6211 else
6212 {
6213 int bind = STB_LOCAL;
6214
6215 if (flags & BSF_LOCAL)
6216 bind = STB_LOCAL;
6217 else if (flags & BSF_WEAK)
6218 bind = STB_WEAK;
6219 else if (flags & BSF_GLOBAL)
6220 bind = STB_GLOBAL;
6221
6222 sym.st_info = ELF_ST_INFO (bind, type);
6223 }
6224
6225 if (type_ptr != NULL)
6226 sym.st_other = type_ptr->internal_elf_sym.st_other;
6227 else
6228 sym.st_other = 0;
6229
6230 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6231 outbound_syms += bed->s->sizeof_sym;
6232 if (outbound_shndx != NULL)
6233 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6234 }
6235
6236 *sttp = stt;
6237 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6238 symstrtab_hdr->sh_type = SHT_STRTAB;
6239
6240 symstrtab_hdr->sh_flags = 0;
6241 symstrtab_hdr->sh_addr = 0;
6242 symstrtab_hdr->sh_entsize = 0;
6243 symstrtab_hdr->sh_link = 0;
6244 symstrtab_hdr->sh_info = 0;
6245 symstrtab_hdr->sh_addralign = 1;
6246
6247 return TRUE;
6248 }
6249
6250 /* Return the number of bytes required to hold the symtab vector.
6251
6252 Note that we base it on the count plus 1, since we will null terminate
6253 the vector allocated based on this size. However, the ELF symbol table
6254 always has a dummy entry as symbol #0, so it ends up even. */
6255
6256 long
6257 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6258 {
6259 long symcount;
6260 long symtab_size;
6261 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6262
6263 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6264 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6265 if (symcount > 0)
6266 symtab_size -= sizeof (asymbol *);
6267
6268 return symtab_size;
6269 }
6270
6271 long
6272 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6273 {
6274 long symcount;
6275 long symtab_size;
6276 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6277
6278 if (elf_dynsymtab (abfd) == 0)
6279 {
6280 bfd_set_error (bfd_error_invalid_operation);
6281 return -1;
6282 }
6283
6284 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6285 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6286 if (symcount > 0)
6287 symtab_size -= sizeof (asymbol *);
6288
6289 return symtab_size;
6290 }
6291
6292 long
6293 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6294 sec_ptr asect)
6295 {
6296 return (asect->reloc_count + 1) * sizeof (arelent *);
6297 }
6298
6299 /* Canonicalize the relocs. */
6300
6301 long
6302 _bfd_elf_canonicalize_reloc (bfd *abfd,
6303 sec_ptr section,
6304 arelent **relptr,
6305 asymbol **symbols)
6306 {
6307 arelent *tblptr;
6308 unsigned int i;
6309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6310
6311 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6312 return -1;
6313
6314 tblptr = section->relocation;
6315 for (i = 0; i < section->reloc_count; i++)
6316 *relptr++ = tblptr++;
6317
6318 *relptr = NULL;
6319
6320 return section->reloc_count;
6321 }
6322
6323 long
6324 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6325 {
6326 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6327 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6328
6329 if (symcount >= 0)
6330 bfd_get_symcount (abfd) = symcount;
6331 return symcount;
6332 }
6333
6334 long
6335 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6336 asymbol **allocation)
6337 {
6338 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6339 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6340
6341 if (symcount >= 0)
6342 bfd_get_dynamic_symcount (abfd) = symcount;
6343 return symcount;
6344 }
6345
6346 /* Return the size required for the dynamic reloc entries. Any loadable
6347 section that was actually installed in the BFD, and has type SHT_REL
6348 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6349 dynamic reloc section. */
6350
6351 long
6352 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6353 {
6354 long ret;
6355 asection *s;
6356
6357 if (elf_dynsymtab (abfd) == 0)
6358 {
6359 bfd_set_error (bfd_error_invalid_operation);
6360 return -1;
6361 }
6362
6363 ret = sizeof (arelent *);
6364 for (s = abfd->sections; s != NULL; s = s->next)
6365 if ((s->flags & SEC_LOAD) != 0
6366 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6367 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6368 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6369 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6370 * sizeof (arelent *));
6371
6372 return ret;
6373 }
6374
6375 /* Canonicalize the dynamic relocation entries. Note that we return the
6376 dynamic relocations as a single block, although they are actually
6377 associated with particular sections; the interface, which was
6378 designed for SunOS style shared libraries, expects that there is only
6379 one set of dynamic relocs. Any loadable section that was actually
6380 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6381 dynamic symbol table, is considered to be a dynamic reloc section. */
6382
6383 long
6384 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6385 arelent **storage,
6386 asymbol **syms)
6387 {
6388 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6389 asection *s;
6390 long ret;
6391
6392 if (elf_dynsymtab (abfd) == 0)
6393 {
6394 bfd_set_error (bfd_error_invalid_operation);
6395 return -1;
6396 }
6397
6398 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6399 ret = 0;
6400 for (s = abfd->sections; s != NULL; s = s->next)
6401 {
6402 if ((s->flags & SEC_LOAD) != 0
6403 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6404 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6405 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6406 {
6407 arelent *p;
6408 long count, i;
6409
6410 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6411 return -1;
6412 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6413 p = s->relocation;
6414 for (i = 0; i < count; i++)
6415 *storage++ = p++;
6416 ret += count;
6417 }
6418 }
6419
6420 *storage = NULL;
6421
6422 return ret;
6423 }
6424 \f
6425 /* Read in the version information. */
6426
6427 bfd_boolean
6428 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6429 {
6430 bfd_byte *contents = NULL;
6431 unsigned int freeidx = 0;
6432
6433 if (elf_dynverref (abfd) != 0)
6434 {
6435 Elf_Internal_Shdr *hdr;
6436 Elf_External_Verneed *everneed;
6437 Elf_Internal_Verneed *iverneed;
6438 unsigned int i;
6439 bfd_byte *contents_end;
6440
6441 hdr = &elf_tdata (abfd)->dynverref_hdr;
6442
6443 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6444 sizeof (Elf_Internal_Verneed));
6445 if (elf_tdata (abfd)->verref == NULL)
6446 goto error_return;
6447
6448 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6449
6450 contents = bfd_malloc (hdr->sh_size);
6451 if (contents == NULL)
6452 {
6453 error_return_verref:
6454 elf_tdata (abfd)->verref = NULL;
6455 elf_tdata (abfd)->cverrefs = 0;
6456 goto error_return;
6457 }
6458 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6459 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6460 goto error_return_verref;
6461
6462 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6463 goto error_return_verref;
6464
6465 BFD_ASSERT (sizeof (Elf_External_Verneed)
6466 == sizeof (Elf_External_Vernaux));
6467 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6468 everneed = (Elf_External_Verneed *) contents;
6469 iverneed = elf_tdata (abfd)->verref;
6470 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6471 {
6472 Elf_External_Vernaux *evernaux;
6473 Elf_Internal_Vernaux *ivernaux;
6474 unsigned int j;
6475
6476 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6477
6478 iverneed->vn_bfd = abfd;
6479
6480 iverneed->vn_filename =
6481 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6482 iverneed->vn_file);
6483 if (iverneed->vn_filename == NULL)
6484 goto error_return_verref;
6485
6486 if (iverneed->vn_cnt == 0)
6487 iverneed->vn_auxptr = NULL;
6488 else
6489 {
6490 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6491 sizeof (Elf_Internal_Vernaux));
6492 if (iverneed->vn_auxptr == NULL)
6493 goto error_return_verref;
6494 }
6495
6496 if (iverneed->vn_aux
6497 > (size_t) (contents_end - (bfd_byte *) everneed))
6498 goto error_return_verref;
6499
6500 evernaux = ((Elf_External_Vernaux *)
6501 ((bfd_byte *) everneed + iverneed->vn_aux));
6502 ivernaux = iverneed->vn_auxptr;
6503 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6504 {
6505 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6506
6507 ivernaux->vna_nodename =
6508 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6509 ivernaux->vna_name);
6510 if (ivernaux->vna_nodename == NULL)
6511 goto error_return_verref;
6512
6513 if (j + 1 < iverneed->vn_cnt)
6514 ivernaux->vna_nextptr = ivernaux + 1;
6515 else
6516 ivernaux->vna_nextptr = NULL;
6517
6518 if (ivernaux->vna_next
6519 > (size_t) (contents_end - (bfd_byte *) evernaux))
6520 goto error_return_verref;
6521
6522 evernaux = ((Elf_External_Vernaux *)
6523 ((bfd_byte *) evernaux + ivernaux->vna_next));
6524
6525 if (ivernaux->vna_other > freeidx)
6526 freeidx = ivernaux->vna_other;
6527 }
6528
6529 if (i + 1 < hdr->sh_info)
6530 iverneed->vn_nextref = iverneed + 1;
6531 else
6532 iverneed->vn_nextref = NULL;
6533
6534 if (iverneed->vn_next
6535 > (size_t) (contents_end - (bfd_byte *) everneed))
6536 goto error_return_verref;
6537
6538 everneed = ((Elf_External_Verneed *)
6539 ((bfd_byte *) everneed + iverneed->vn_next));
6540 }
6541
6542 free (contents);
6543 contents = NULL;
6544 }
6545
6546 if (elf_dynverdef (abfd) != 0)
6547 {
6548 Elf_Internal_Shdr *hdr;
6549 Elf_External_Verdef *everdef;
6550 Elf_Internal_Verdef *iverdef;
6551 Elf_Internal_Verdef *iverdefarr;
6552 Elf_Internal_Verdef iverdefmem;
6553 unsigned int i;
6554 unsigned int maxidx;
6555 bfd_byte *contents_end_def, *contents_end_aux;
6556
6557 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6558
6559 contents = bfd_malloc (hdr->sh_size);
6560 if (contents == NULL)
6561 goto error_return;
6562 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6563 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6564 goto error_return;
6565
6566 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6567 goto error_return;
6568
6569 BFD_ASSERT (sizeof (Elf_External_Verdef)
6570 >= sizeof (Elf_External_Verdaux));
6571 contents_end_def = contents + hdr->sh_size
6572 - sizeof (Elf_External_Verdef);
6573 contents_end_aux = contents + hdr->sh_size
6574 - sizeof (Elf_External_Verdaux);
6575
6576 /* We know the number of entries in the section but not the maximum
6577 index. Therefore we have to run through all entries and find
6578 the maximum. */
6579 everdef = (Elf_External_Verdef *) contents;
6580 maxidx = 0;
6581 for (i = 0; i < hdr->sh_info; ++i)
6582 {
6583 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6584
6585 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6586 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6587
6588 if (iverdefmem.vd_next
6589 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6590 goto error_return;
6591
6592 everdef = ((Elf_External_Verdef *)
6593 ((bfd_byte *) everdef + iverdefmem.vd_next));
6594 }
6595
6596 if (default_imported_symver)
6597 {
6598 if (freeidx > maxidx)
6599 maxidx = ++freeidx;
6600 else
6601 freeidx = ++maxidx;
6602 }
6603 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6604 sizeof (Elf_Internal_Verdef));
6605 if (elf_tdata (abfd)->verdef == NULL)
6606 goto error_return;
6607
6608 elf_tdata (abfd)->cverdefs = maxidx;
6609
6610 everdef = (Elf_External_Verdef *) contents;
6611 iverdefarr = elf_tdata (abfd)->verdef;
6612 for (i = 0; i < hdr->sh_info; i++)
6613 {
6614 Elf_External_Verdaux *everdaux;
6615 Elf_Internal_Verdaux *iverdaux;
6616 unsigned int j;
6617
6618 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6619
6620 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6621 {
6622 error_return_verdef:
6623 elf_tdata (abfd)->verdef = NULL;
6624 elf_tdata (abfd)->cverdefs = 0;
6625 goto error_return;
6626 }
6627
6628 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6629 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6630
6631 iverdef->vd_bfd = abfd;
6632
6633 if (iverdef->vd_cnt == 0)
6634 iverdef->vd_auxptr = NULL;
6635 else
6636 {
6637 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6638 sizeof (Elf_Internal_Verdaux));
6639 if (iverdef->vd_auxptr == NULL)
6640 goto error_return_verdef;
6641 }
6642
6643 if (iverdef->vd_aux
6644 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6645 goto error_return_verdef;
6646
6647 everdaux = ((Elf_External_Verdaux *)
6648 ((bfd_byte *) everdef + iverdef->vd_aux));
6649 iverdaux = iverdef->vd_auxptr;
6650 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6651 {
6652 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6653
6654 iverdaux->vda_nodename =
6655 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6656 iverdaux->vda_name);
6657 if (iverdaux->vda_nodename == NULL)
6658 goto error_return_verdef;
6659
6660 if (j + 1 < iverdef->vd_cnt)
6661 iverdaux->vda_nextptr = iverdaux + 1;
6662 else
6663 iverdaux->vda_nextptr = NULL;
6664
6665 if (iverdaux->vda_next
6666 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6667 goto error_return_verdef;
6668
6669 everdaux = ((Elf_External_Verdaux *)
6670 ((bfd_byte *) everdaux + iverdaux->vda_next));
6671 }
6672
6673 if (iverdef->vd_cnt)
6674 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6675
6676 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6677 iverdef->vd_nextdef = iverdef + 1;
6678 else
6679 iverdef->vd_nextdef = NULL;
6680
6681 everdef = ((Elf_External_Verdef *)
6682 ((bfd_byte *) everdef + iverdef->vd_next));
6683 }
6684
6685 free (contents);
6686 contents = NULL;
6687 }
6688 else if (default_imported_symver)
6689 {
6690 if (freeidx < 3)
6691 freeidx = 3;
6692 else
6693 freeidx++;
6694
6695 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6696 sizeof (Elf_Internal_Verdef));
6697 if (elf_tdata (abfd)->verdef == NULL)
6698 goto error_return;
6699
6700 elf_tdata (abfd)->cverdefs = freeidx;
6701 }
6702
6703 /* Create a default version based on the soname. */
6704 if (default_imported_symver)
6705 {
6706 Elf_Internal_Verdef *iverdef;
6707 Elf_Internal_Verdaux *iverdaux;
6708
6709 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6710
6711 iverdef->vd_version = VER_DEF_CURRENT;
6712 iverdef->vd_flags = 0;
6713 iverdef->vd_ndx = freeidx;
6714 iverdef->vd_cnt = 1;
6715
6716 iverdef->vd_bfd = abfd;
6717
6718 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6719 if (iverdef->vd_nodename == NULL)
6720 goto error_return_verdef;
6721 iverdef->vd_nextdef = NULL;
6722 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6723 if (iverdef->vd_auxptr == NULL)
6724 goto error_return_verdef;
6725
6726 iverdaux = iverdef->vd_auxptr;
6727 iverdaux->vda_nodename = iverdef->vd_nodename;
6728 iverdaux->vda_nextptr = NULL;
6729 }
6730
6731 return TRUE;
6732
6733 error_return:
6734 if (contents != NULL)
6735 free (contents);
6736 return FALSE;
6737 }
6738 \f
6739 asymbol *
6740 _bfd_elf_make_empty_symbol (bfd *abfd)
6741 {
6742 elf_symbol_type *newsym;
6743 bfd_size_type amt = sizeof (elf_symbol_type);
6744
6745 newsym = bfd_zalloc (abfd, amt);
6746 if (!newsym)
6747 return NULL;
6748 else
6749 {
6750 newsym->symbol.the_bfd = abfd;
6751 return &newsym->symbol;
6752 }
6753 }
6754
6755 void
6756 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6757 asymbol *symbol,
6758 symbol_info *ret)
6759 {
6760 bfd_symbol_info (symbol, ret);
6761 }
6762
6763 /* Return whether a symbol name implies a local symbol. Most targets
6764 use this function for the is_local_label_name entry point, but some
6765 override it. */
6766
6767 bfd_boolean
6768 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6769 const char *name)
6770 {
6771 /* Normal local symbols start with ``.L''. */
6772 if (name[0] == '.' && name[1] == 'L')
6773 return TRUE;
6774
6775 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6776 DWARF debugging symbols starting with ``..''. */
6777 if (name[0] == '.' && name[1] == '.')
6778 return TRUE;
6779
6780 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6781 emitting DWARF debugging output. I suspect this is actually a
6782 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6783 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6784 underscore to be emitted on some ELF targets). For ease of use,
6785 we treat such symbols as local. */
6786 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6787 return TRUE;
6788
6789 return FALSE;
6790 }
6791
6792 alent *
6793 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6794 asymbol *symbol ATTRIBUTE_UNUSED)
6795 {
6796 abort ();
6797 return NULL;
6798 }
6799
6800 bfd_boolean
6801 _bfd_elf_set_arch_mach (bfd *abfd,
6802 enum bfd_architecture arch,
6803 unsigned long machine)
6804 {
6805 /* If this isn't the right architecture for this backend, and this
6806 isn't the generic backend, fail. */
6807 if (arch != get_elf_backend_data (abfd)->arch
6808 && arch != bfd_arch_unknown
6809 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6810 return FALSE;
6811
6812 return bfd_default_set_arch_mach (abfd, arch, machine);
6813 }
6814
6815 /* Find the function to a particular section and offset,
6816 for error reporting. */
6817
6818 static bfd_boolean
6819 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6820 asection *section,
6821 asymbol **symbols,
6822 bfd_vma offset,
6823 const char **filename_ptr,
6824 const char **functionname_ptr)
6825 {
6826 const char *filename;
6827 asymbol *func, *file;
6828 bfd_vma low_func;
6829 asymbol **p;
6830 /* ??? Given multiple file symbols, it is impossible to reliably
6831 choose the right file name for global symbols. File symbols are
6832 local symbols, and thus all file symbols must sort before any
6833 global symbols. The ELF spec may be interpreted to say that a
6834 file symbol must sort before other local symbols, but currently
6835 ld -r doesn't do this. So, for ld -r output, it is possible to
6836 make a better choice of file name for local symbols by ignoring
6837 file symbols appearing after a given local symbol. */
6838 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6839
6840 filename = NULL;
6841 func = NULL;
6842 file = NULL;
6843 low_func = 0;
6844 state = nothing_seen;
6845
6846 for (p = symbols; *p != NULL; p++)
6847 {
6848 elf_symbol_type *q;
6849
6850 q = (elf_symbol_type *) *p;
6851
6852 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6853 {
6854 default:
6855 break;
6856 case STT_FILE:
6857 file = &q->symbol;
6858 if (state == symbol_seen)
6859 state = file_after_symbol_seen;
6860 continue;
6861 case STT_NOTYPE:
6862 case STT_FUNC:
6863 if (bfd_get_section (&q->symbol) == section
6864 && q->symbol.value >= low_func
6865 && q->symbol.value <= offset)
6866 {
6867 func = (asymbol *) q;
6868 low_func = q->symbol.value;
6869 filename = NULL;
6870 if (file != NULL
6871 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6872 || state != file_after_symbol_seen))
6873 filename = bfd_asymbol_name (file);
6874 }
6875 break;
6876 }
6877 if (state == nothing_seen)
6878 state = symbol_seen;
6879 }
6880
6881 if (func == NULL)
6882 return FALSE;
6883
6884 if (filename_ptr)
6885 *filename_ptr = filename;
6886 if (functionname_ptr)
6887 *functionname_ptr = bfd_asymbol_name (func);
6888
6889 return TRUE;
6890 }
6891
6892 /* Find the nearest line to a particular section and offset,
6893 for error reporting. */
6894
6895 bfd_boolean
6896 _bfd_elf_find_nearest_line (bfd *abfd,
6897 asection *section,
6898 asymbol **symbols,
6899 bfd_vma offset,
6900 const char **filename_ptr,
6901 const char **functionname_ptr,
6902 unsigned int *line_ptr)
6903 {
6904 bfd_boolean found;
6905
6906 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6907 filename_ptr, functionname_ptr,
6908 line_ptr))
6909 {
6910 if (!*functionname_ptr)
6911 elf_find_function (abfd, section, symbols, offset,
6912 *filename_ptr ? NULL : filename_ptr,
6913 functionname_ptr);
6914
6915 return TRUE;
6916 }
6917
6918 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6919 filename_ptr, functionname_ptr,
6920 line_ptr, 0,
6921 &elf_tdata (abfd)->dwarf2_find_line_info))
6922 {
6923 if (!*functionname_ptr)
6924 elf_find_function (abfd, section, symbols, offset,
6925 *filename_ptr ? NULL : filename_ptr,
6926 functionname_ptr);
6927
6928 return TRUE;
6929 }
6930
6931 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6932 &found, filename_ptr,
6933 functionname_ptr, line_ptr,
6934 &elf_tdata (abfd)->line_info))
6935 return FALSE;
6936 if (found && (*functionname_ptr || *line_ptr))
6937 return TRUE;
6938
6939 if (symbols == NULL)
6940 return FALSE;
6941
6942 if (! elf_find_function (abfd, section, symbols, offset,
6943 filename_ptr, functionname_ptr))
6944 return FALSE;
6945
6946 *line_ptr = 0;
6947 return TRUE;
6948 }
6949
6950 /* Find the line for a symbol. */
6951
6952 bfd_boolean
6953 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
6954 const char **filename_ptr, unsigned int *line_ptr)
6955 {
6956 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
6957 filename_ptr, line_ptr, 0,
6958 &elf_tdata (abfd)->dwarf2_find_line_info);
6959 }
6960
6961 /* After a call to bfd_find_nearest_line, successive calls to
6962 bfd_find_inliner_info can be used to get source information about
6963 each level of function inlining that terminated at the address
6964 passed to bfd_find_nearest_line. Currently this is only supported
6965 for DWARF2 with appropriate DWARF3 extensions. */
6966
6967 bfd_boolean
6968 _bfd_elf_find_inliner_info (bfd *abfd,
6969 const char **filename_ptr,
6970 const char **functionname_ptr,
6971 unsigned int *line_ptr)
6972 {
6973 bfd_boolean found;
6974 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
6975 functionname_ptr, line_ptr,
6976 & elf_tdata (abfd)->dwarf2_find_line_info);
6977 return found;
6978 }
6979
6980 int
6981 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6982 {
6983 int ret;
6984
6985 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6986 if (! reloc)
6987 ret += get_program_header_size (abfd);
6988 return ret;
6989 }
6990
6991 bfd_boolean
6992 _bfd_elf_set_section_contents (bfd *abfd,
6993 sec_ptr section,
6994 const void *location,
6995 file_ptr offset,
6996 bfd_size_type count)
6997 {
6998 Elf_Internal_Shdr *hdr;
6999 bfd_signed_vma pos;
7000
7001 if (! abfd->output_has_begun
7002 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7003 return FALSE;
7004
7005 hdr = &elf_section_data (section)->this_hdr;
7006 pos = hdr->sh_offset + offset;
7007 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7008 || bfd_bwrite (location, count, abfd) != count)
7009 return FALSE;
7010
7011 return TRUE;
7012 }
7013
7014 void
7015 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7016 arelent *cache_ptr ATTRIBUTE_UNUSED,
7017 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7018 {
7019 abort ();
7020 }
7021
7022 /* Try to convert a non-ELF reloc into an ELF one. */
7023
7024 bfd_boolean
7025 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7026 {
7027 /* Check whether we really have an ELF howto. */
7028
7029 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7030 {
7031 bfd_reloc_code_real_type code;
7032 reloc_howto_type *howto;
7033
7034 /* Alien reloc: Try to determine its type to replace it with an
7035 equivalent ELF reloc. */
7036
7037 if (areloc->howto->pc_relative)
7038 {
7039 switch (areloc->howto->bitsize)
7040 {
7041 case 8:
7042 code = BFD_RELOC_8_PCREL;
7043 break;
7044 case 12:
7045 code = BFD_RELOC_12_PCREL;
7046 break;
7047 case 16:
7048 code = BFD_RELOC_16_PCREL;
7049 break;
7050 case 24:
7051 code = BFD_RELOC_24_PCREL;
7052 break;
7053 case 32:
7054 code = BFD_RELOC_32_PCREL;
7055 break;
7056 case 64:
7057 code = BFD_RELOC_64_PCREL;
7058 break;
7059 default:
7060 goto fail;
7061 }
7062
7063 howto = bfd_reloc_type_lookup (abfd, code);
7064
7065 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7066 {
7067 if (howto->pcrel_offset)
7068 areloc->addend += areloc->address;
7069 else
7070 areloc->addend -= areloc->address; /* addend is unsigned!! */
7071 }
7072 }
7073 else
7074 {
7075 switch (areloc->howto->bitsize)
7076 {
7077 case 8:
7078 code = BFD_RELOC_8;
7079 break;
7080 case 14:
7081 code = BFD_RELOC_14;
7082 break;
7083 case 16:
7084 code = BFD_RELOC_16;
7085 break;
7086 case 26:
7087 code = BFD_RELOC_26;
7088 break;
7089 case 32:
7090 code = BFD_RELOC_32;
7091 break;
7092 case 64:
7093 code = BFD_RELOC_64;
7094 break;
7095 default:
7096 goto fail;
7097 }
7098
7099 howto = bfd_reloc_type_lookup (abfd, code);
7100 }
7101
7102 if (howto)
7103 areloc->howto = howto;
7104 else
7105 goto fail;
7106 }
7107
7108 return TRUE;
7109
7110 fail:
7111 (*_bfd_error_handler)
7112 (_("%B: unsupported relocation type %s"),
7113 abfd, areloc->howto->name);
7114 bfd_set_error (bfd_error_bad_value);
7115 return FALSE;
7116 }
7117
7118 bfd_boolean
7119 _bfd_elf_close_and_cleanup (bfd *abfd)
7120 {
7121 if (bfd_get_format (abfd) == bfd_object)
7122 {
7123 if (elf_shstrtab (abfd) != NULL)
7124 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7125 _bfd_dwarf2_cleanup_debug_info (abfd);
7126 }
7127
7128 return _bfd_generic_close_and_cleanup (abfd);
7129 }
7130
7131 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7132 in the relocation's offset. Thus we cannot allow any sort of sanity
7133 range-checking to interfere. There is nothing else to do in processing
7134 this reloc. */
7135
7136 bfd_reloc_status_type
7137 _bfd_elf_rel_vtable_reloc_fn
7138 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7139 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7140 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7141 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7142 {
7143 return bfd_reloc_ok;
7144 }
7145 \f
7146 /* Elf core file support. Much of this only works on native
7147 toolchains, since we rely on knowing the
7148 machine-dependent procfs structure in order to pick
7149 out details about the corefile. */
7150
7151 #ifdef HAVE_SYS_PROCFS_H
7152 # include <sys/procfs.h>
7153 #endif
7154
7155 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7156
7157 static int
7158 elfcore_make_pid (bfd *abfd)
7159 {
7160 return ((elf_tdata (abfd)->core_lwpid << 16)
7161 + (elf_tdata (abfd)->core_pid));
7162 }
7163
7164 /* If there isn't a section called NAME, make one, using
7165 data from SECT. Note, this function will generate a
7166 reference to NAME, so you shouldn't deallocate or
7167 overwrite it. */
7168
7169 static bfd_boolean
7170 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7171 {
7172 asection *sect2;
7173
7174 if (bfd_get_section_by_name (abfd, name) != NULL)
7175 return TRUE;
7176
7177 sect2 = bfd_make_section (abfd, name);
7178 if (sect2 == NULL)
7179 return FALSE;
7180
7181 sect2->size = sect->size;
7182 sect2->filepos = sect->filepos;
7183 sect2->flags = sect->flags;
7184 sect2->alignment_power = sect->alignment_power;
7185 return TRUE;
7186 }
7187
7188 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7189 actually creates up to two pseudosections:
7190 - For the single-threaded case, a section named NAME, unless
7191 such a section already exists.
7192 - For the multi-threaded case, a section named "NAME/PID", where
7193 PID is elfcore_make_pid (abfd).
7194 Both pseudosections have identical contents. */
7195 bfd_boolean
7196 _bfd_elfcore_make_pseudosection (bfd *abfd,
7197 char *name,
7198 size_t size,
7199 ufile_ptr filepos)
7200 {
7201 char buf[100];
7202 char *threaded_name;
7203 size_t len;
7204 asection *sect;
7205
7206 /* Build the section name. */
7207
7208 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7209 len = strlen (buf) + 1;
7210 threaded_name = bfd_alloc (abfd, len);
7211 if (threaded_name == NULL)
7212 return FALSE;
7213 memcpy (threaded_name, buf, len);
7214
7215 sect = bfd_make_section_anyway (abfd, threaded_name);
7216 if (sect == NULL)
7217 return FALSE;
7218 sect->size = size;
7219 sect->filepos = filepos;
7220 sect->flags = SEC_HAS_CONTENTS;
7221 sect->alignment_power = 2;
7222
7223 return elfcore_maybe_make_sect (abfd, name, sect);
7224 }
7225
7226 /* prstatus_t exists on:
7227 solaris 2.5+
7228 linux 2.[01] + glibc
7229 unixware 4.2
7230 */
7231
7232 #if defined (HAVE_PRSTATUS_T)
7233
7234 static bfd_boolean
7235 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7236 {
7237 size_t size;
7238 int offset;
7239
7240 if (note->descsz == sizeof (prstatus_t))
7241 {
7242 prstatus_t prstat;
7243
7244 size = sizeof (prstat.pr_reg);
7245 offset = offsetof (prstatus_t, pr_reg);
7246 memcpy (&prstat, note->descdata, sizeof (prstat));
7247
7248 /* Do not overwrite the core signal if it
7249 has already been set by another thread. */
7250 if (elf_tdata (abfd)->core_signal == 0)
7251 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7252 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7253
7254 /* pr_who exists on:
7255 solaris 2.5+
7256 unixware 4.2
7257 pr_who doesn't exist on:
7258 linux 2.[01]
7259 */
7260 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7261 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7262 #endif
7263 }
7264 #if defined (HAVE_PRSTATUS32_T)
7265 else if (note->descsz == sizeof (prstatus32_t))
7266 {
7267 /* 64-bit host, 32-bit corefile */
7268 prstatus32_t prstat;
7269
7270 size = sizeof (prstat.pr_reg);
7271 offset = offsetof (prstatus32_t, pr_reg);
7272 memcpy (&prstat, note->descdata, sizeof (prstat));
7273
7274 /* Do not overwrite the core signal if it
7275 has already been set by another thread. */
7276 if (elf_tdata (abfd)->core_signal == 0)
7277 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7278 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7279
7280 /* pr_who exists on:
7281 solaris 2.5+
7282 unixware 4.2
7283 pr_who doesn't exist on:
7284 linux 2.[01]
7285 */
7286 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7287 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7288 #endif
7289 }
7290 #endif /* HAVE_PRSTATUS32_T */
7291 else
7292 {
7293 /* Fail - we don't know how to handle any other
7294 note size (ie. data object type). */
7295 return TRUE;
7296 }
7297
7298 /* Make a ".reg/999" section and a ".reg" section. */
7299 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7300 size, note->descpos + offset);
7301 }
7302 #endif /* defined (HAVE_PRSTATUS_T) */
7303
7304 /* Create a pseudosection containing the exact contents of NOTE. */
7305 static bfd_boolean
7306 elfcore_make_note_pseudosection (bfd *abfd,
7307 char *name,
7308 Elf_Internal_Note *note)
7309 {
7310 return _bfd_elfcore_make_pseudosection (abfd, name,
7311 note->descsz, note->descpos);
7312 }
7313
7314 /* There isn't a consistent prfpregset_t across platforms,
7315 but it doesn't matter, because we don't have to pick this
7316 data structure apart. */
7317
7318 static bfd_boolean
7319 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7320 {
7321 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7322 }
7323
7324 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7325 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7326 literally. */
7327
7328 static bfd_boolean
7329 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7330 {
7331 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7332 }
7333
7334 #if defined (HAVE_PRPSINFO_T)
7335 typedef prpsinfo_t elfcore_psinfo_t;
7336 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7337 typedef prpsinfo32_t elfcore_psinfo32_t;
7338 #endif
7339 #endif
7340
7341 #if defined (HAVE_PSINFO_T)
7342 typedef psinfo_t elfcore_psinfo_t;
7343 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7344 typedef psinfo32_t elfcore_psinfo32_t;
7345 #endif
7346 #endif
7347
7348 /* return a malloc'ed copy of a string at START which is at
7349 most MAX bytes long, possibly without a terminating '\0'.
7350 the copy will always have a terminating '\0'. */
7351
7352 char *
7353 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7354 {
7355 char *dups;
7356 char *end = memchr (start, '\0', max);
7357 size_t len;
7358
7359 if (end == NULL)
7360 len = max;
7361 else
7362 len = end - start;
7363
7364 dups = bfd_alloc (abfd, len + 1);
7365 if (dups == NULL)
7366 return NULL;
7367
7368 memcpy (dups, start, len);
7369 dups[len] = '\0';
7370
7371 return dups;
7372 }
7373
7374 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7375 static bfd_boolean
7376 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7377 {
7378 if (note->descsz == sizeof (elfcore_psinfo_t))
7379 {
7380 elfcore_psinfo_t psinfo;
7381
7382 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7383
7384 elf_tdata (abfd)->core_program
7385 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7386 sizeof (psinfo.pr_fname));
7387
7388 elf_tdata (abfd)->core_command
7389 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7390 sizeof (psinfo.pr_psargs));
7391 }
7392 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7393 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7394 {
7395 /* 64-bit host, 32-bit corefile */
7396 elfcore_psinfo32_t psinfo;
7397
7398 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7399
7400 elf_tdata (abfd)->core_program
7401 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7402 sizeof (psinfo.pr_fname));
7403
7404 elf_tdata (abfd)->core_command
7405 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7406 sizeof (psinfo.pr_psargs));
7407 }
7408 #endif
7409
7410 else
7411 {
7412 /* Fail - we don't know how to handle any other
7413 note size (ie. data object type). */
7414 return TRUE;
7415 }
7416
7417 /* Note that for some reason, a spurious space is tacked
7418 onto the end of the args in some (at least one anyway)
7419 implementations, so strip it off if it exists. */
7420
7421 {
7422 char *command = elf_tdata (abfd)->core_command;
7423 int n = strlen (command);
7424
7425 if (0 < n && command[n - 1] == ' ')
7426 command[n - 1] = '\0';
7427 }
7428
7429 return TRUE;
7430 }
7431 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7432
7433 #if defined (HAVE_PSTATUS_T)
7434 static bfd_boolean
7435 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7436 {
7437 if (note->descsz == sizeof (pstatus_t)
7438 #if defined (HAVE_PXSTATUS_T)
7439 || note->descsz == sizeof (pxstatus_t)
7440 #endif
7441 )
7442 {
7443 pstatus_t pstat;
7444
7445 memcpy (&pstat, note->descdata, sizeof (pstat));
7446
7447 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7448 }
7449 #if defined (HAVE_PSTATUS32_T)
7450 else if (note->descsz == sizeof (pstatus32_t))
7451 {
7452 /* 64-bit host, 32-bit corefile */
7453 pstatus32_t pstat;
7454
7455 memcpy (&pstat, note->descdata, sizeof (pstat));
7456
7457 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7458 }
7459 #endif
7460 /* Could grab some more details from the "representative"
7461 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7462 NT_LWPSTATUS note, presumably. */
7463
7464 return TRUE;
7465 }
7466 #endif /* defined (HAVE_PSTATUS_T) */
7467
7468 #if defined (HAVE_LWPSTATUS_T)
7469 static bfd_boolean
7470 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7471 {
7472 lwpstatus_t lwpstat;
7473 char buf[100];
7474 char *name;
7475 size_t len;
7476 asection *sect;
7477
7478 if (note->descsz != sizeof (lwpstat)
7479 #if defined (HAVE_LWPXSTATUS_T)
7480 && note->descsz != sizeof (lwpxstatus_t)
7481 #endif
7482 )
7483 return TRUE;
7484
7485 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7486
7487 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7488 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7489
7490 /* Make a ".reg/999" section. */
7491
7492 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7493 len = strlen (buf) + 1;
7494 name = bfd_alloc (abfd, len);
7495 if (name == NULL)
7496 return FALSE;
7497 memcpy (name, buf, len);
7498
7499 sect = bfd_make_section_anyway (abfd, name);
7500 if (sect == NULL)
7501 return FALSE;
7502
7503 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7504 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7505 sect->filepos = note->descpos
7506 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7507 #endif
7508
7509 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7510 sect->size = sizeof (lwpstat.pr_reg);
7511 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7512 #endif
7513
7514 sect->flags = SEC_HAS_CONTENTS;
7515 sect->alignment_power = 2;
7516
7517 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7518 return FALSE;
7519
7520 /* Make a ".reg2/999" section */
7521
7522 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7523 len = strlen (buf) + 1;
7524 name = bfd_alloc (abfd, len);
7525 if (name == NULL)
7526 return FALSE;
7527 memcpy (name, buf, len);
7528
7529 sect = bfd_make_section_anyway (abfd, name);
7530 if (sect == NULL)
7531 return FALSE;
7532
7533 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7534 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7535 sect->filepos = note->descpos
7536 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7537 #endif
7538
7539 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7540 sect->size = sizeof (lwpstat.pr_fpreg);
7541 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7542 #endif
7543
7544 sect->flags = SEC_HAS_CONTENTS;
7545 sect->alignment_power = 2;
7546
7547 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7548 }
7549 #endif /* defined (HAVE_LWPSTATUS_T) */
7550
7551 #if defined (HAVE_WIN32_PSTATUS_T)
7552 static bfd_boolean
7553 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7554 {
7555 char buf[30];
7556 char *name;
7557 size_t len;
7558 asection *sect;
7559 win32_pstatus_t pstatus;
7560
7561 if (note->descsz < sizeof (pstatus))
7562 return TRUE;
7563
7564 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7565
7566 switch (pstatus.data_type)
7567 {
7568 case NOTE_INFO_PROCESS:
7569 /* FIXME: need to add ->core_command. */
7570 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7571 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7572 break;
7573
7574 case NOTE_INFO_THREAD:
7575 /* Make a ".reg/999" section. */
7576 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7577
7578 len = strlen (buf) + 1;
7579 name = bfd_alloc (abfd, len);
7580 if (name == NULL)
7581 return FALSE;
7582
7583 memcpy (name, buf, len);
7584
7585 sect = bfd_make_section_anyway (abfd, name);
7586 if (sect == NULL)
7587 return FALSE;
7588
7589 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7590 sect->filepos = (note->descpos
7591 + offsetof (struct win32_pstatus,
7592 data.thread_info.thread_context));
7593 sect->flags = SEC_HAS_CONTENTS;
7594 sect->alignment_power = 2;
7595
7596 if (pstatus.data.thread_info.is_active_thread)
7597 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7598 return FALSE;
7599 break;
7600
7601 case NOTE_INFO_MODULE:
7602 /* Make a ".module/xxxxxxxx" section. */
7603 sprintf (buf, ".module/%08lx",
7604 (long) pstatus.data.module_info.base_address);
7605
7606 len = strlen (buf) + 1;
7607 name = bfd_alloc (abfd, len);
7608 if (name == NULL)
7609 return FALSE;
7610
7611 memcpy (name, buf, len);
7612
7613 sect = bfd_make_section_anyway (abfd, name);
7614
7615 if (sect == NULL)
7616 return FALSE;
7617
7618 sect->size = note->descsz;
7619 sect->filepos = note->descpos;
7620 sect->flags = SEC_HAS_CONTENTS;
7621 sect->alignment_power = 2;
7622 break;
7623
7624 default:
7625 return TRUE;
7626 }
7627
7628 return TRUE;
7629 }
7630 #endif /* HAVE_WIN32_PSTATUS_T */
7631
7632 static bfd_boolean
7633 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7634 {
7635 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7636
7637 switch (note->type)
7638 {
7639 default:
7640 return TRUE;
7641
7642 case NT_PRSTATUS:
7643 if (bed->elf_backend_grok_prstatus)
7644 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7645 return TRUE;
7646 #if defined (HAVE_PRSTATUS_T)
7647 return elfcore_grok_prstatus (abfd, note);
7648 #else
7649 return TRUE;
7650 #endif
7651
7652 #if defined (HAVE_PSTATUS_T)
7653 case NT_PSTATUS:
7654 return elfcore_grok_pstatus (abfd, note);
7655 #endif
7656
7657 #if defined (HAVE_LWPSTATUS_T)
7658 case NT_LWPSTATUS:
7659 return elfcore_grok_lwpstatus (abfd, note);
7660 #endif
7661
7662 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7663 return elfcore_grok_prfpreg (abfd, note);
7664
7665 #if defined (HAVE_WIN32_PSTATUS_T)
7666 case NT_WIN32PSTATUS:
7667 return elfcore_grok_win32pstatus (abfd, note);
7668 #endif
7669
7670 case NT_PRXFPREG: /* Linux SSE extension */
7671 if (note->namesz == 6
7672 && strcmp (note->namedata, "LINUX") == 0)
7673 return elfcore_grok_prxfpreg (abfd, note);
7674 else
7675 return TRUE;
7676
7677 case NT_PRPSINFO:
7678 case NT_PSINFO:
7679 if (bed->elf_backend_grok_psinfo)
7680 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7681 return TRUE;
7682 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7683 return elfcore_grok_psinfo (abfd, note);
7684 #else
7685 return TRUE;
7686 #endif
7687
7688 case NT_AUXV:
7689 {
7690 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7691
7692 if (sect == NULL)
7693 return FALSE;
7694 sect->size = note->descsz;
7695 sect->filepos = note->descpos;
7696 sect->flags = SEC_HAS_CONTENTS;
7697 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7698
7699 return TRUE;
7700 }
7701 }
7702 }
7703
7704 static bfd_boolean
7705 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7706 {
7707 char *cp;
7708
7709 cp = strchr (note->namedata, '@');
7710 if (cp != NULL)
7711 {
7712 *lwpidp = atoi(cp + 1);
7713 return TRUE;
7714 }
7715 return FALSE;
7716 }
7717
7718 static bfd_boolean
7719 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7720 {
7721
7722 /* Signal number at offset 0x08. */
7723 elf_tdata (abfd)->core_signal
7724 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7725
7726 /* Process ID at offset 0x50. */
7727 elf_tdata (abfd)->core_pid
7728 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7729
7730 /* Command name at 0x7c (max 32 bytes, including nul). */
7731 elf_tdata (abfd)->core_command
7732 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7733
7734 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7735 note);
7736 }
7737
7738 static bfd_boolean
7739 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7740 {
7741 int lwp;
7742
7743 if (elfcore_netbsd_get_lwpid (note, &lwp))
7744 elf_tdata (abfd)->core_lwpid = lwp;
7745
7746 if (note->type == NT_NETBSDCORE_PROCINFO)
7747 {
7748 /* NetBSD-specific core "procinfo". Note that we expect to
7749 find this note before any of the others, which is fine,
7750 since the kernel writes this note out first when it
7751 creates a core file. */
7752
7753 return elfcore_grok_netbsd_procinfo (abfd, note);
7754 }
7755
7756 /* As of Jan 2002 there are no other machine-independent notes
7757 defined for NetBSD core files. If the note type is less
7758 than the start of the machine-dependent note types, we don't
7759 understand it. */
7760
7761 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7762 return TRUE;
7763
7764
7765 switch (bfd_get_arch (abfd))
7766 {
7767 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7768 PT_GETFPREGS == mach+2. */
7769
7770 case bfd_arch_alpha:
7771 case bfd_arch_sparc:
7772 switch (note->type)
7773 {
7774 case NT_NETBSDCORE_FIRSTMACH+0:
7775 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7776
7777 case NT_NETBSDCORE_FIRSTMACH+2:
7778 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7779
7780 default:
7781 return TRUE;
7782 }
7783
7784 /* On all other arch's, PT_GETREGS == mach+1 and
7785 PT_GETFPREGS == mach+3. */
7786
7787 default:
7788 switch (note->type)
7789 {
7790 case NT_NETBSDCORE_FIRSTMACH+1:
7791 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7792
7793 case NT_NETBSDCORE_FIRSTMACH+3:
7794 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7795
7796 default:
7797 return TRUE;
7798 }
7799 }
7800 /* NOTREACHED */
7801 }
7802
7803 static bfd_boolean
7804 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7805 {
7806 void *ddata = note->descdata;
7807 char buf[100];
7808 char *name;
7809 asection *sect;
7810 short sig;
7811 unsigned flags;
7812
7813 /* nto_procfs_status 'pid' field is at offset 0. */
7814 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7815
7816 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7817 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7818
7819 /* nto_procfs_status 'flags' field is at offset 8. */
7820 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7821
7822 /* nto_procfs_status 'what' field is at offset 14. */
7823 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7824 {
7825 elf_tdata (abfd)->core_signal = sig;
7826 elf_tdata (abfd)->core_lwpid = *tid;
7827 }
7828
7829 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7830 do not come from signals so we make sure we set the current
7831 thread just in case. */
7832 if (flags & 0x00000080)
7833 elf_tdata (abfd)->core_lwpid = *tid;
7834
7835 /* Make a ".qnx_core_status/%d" section. */
7836 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7837
7838 name = bfd_alloc (abfd, strlen (buf) + 1);
7839 if (name == NULL)
7840 return FALSE;
7841 strcpy (name, buf);
7842
7843 sect = bfd_make_section_anyway (abfd, name);
7844 if (sect == NULL)
7845 return FALSE;
7846
7847 sect->size = note->descsz;
7848 sect->filepos = note->descpos;
7849 sect->flags = SEC_HAS_CONTENTS;
7850 sect->alignment_power = 2;
7851
7852 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7853 }
7854
7855 static bfd_boolean
7856 elfcore_grok_nto_regs (bfd *abfd,
7857 Elf_Internal_Note *note,
7858 pid_t tid,
7859 char *base)
7860 {
7861 char buf[100];
7862 char *name;
7863 asection *sect;
7864
7865 /* Make a "(base)/%d" section. */
7866 sprintf (buf, "%s/%ld", base, (long) tid);
7867
7868 name = bfd_alloc (abfd, strlen (buf) + 1);
7869 if (name == NULL)
7870 return FALSE;
7871 strcpy (name, buf);
7872
7873 sect = bfd_make_section_anyway (abfd, name);
7874 if (sect == NULL)
7875 return FALSE;
7876
7877 sect->size = note->descsz;
7878 sect->filepos = note->descpos;
7879 sect->flags = SEC_HAS_CONTENTS;
7880 sect->alignment_power = 2;
7881
7882 /* This is the current thread. */
7883 if (elf_tdata (abfd)->core_lwpid == tid)
7884 return elfcore_maybe_make_sect (abfd, base, sect);
7885
7886 return TRUE;
7887 }
7888
7889 #define BFD_QNT_CORE_INFO 7
7890 #define BFD_QNT_CORE_STATUS 8
7891 #define BFD_QNT_CORE_GREG 9
7892 #define BFD_QNT_CORE_FPREG 10
7893
7894 static bfd_boolean
7895 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7896 {
7897 /* Every GREG section has a STATUS section before it. Store the
7898 tid from the previous call to pass down to the next gregs
7899 function. */
7900 static pid_t tid = 1;
7901
7902 switch (note->type)
7903 {
7904 case BFD_QNT_CORE_INFO:
7905 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7906 case BFD_QNT_CORE_STATUS:
7907 return elfcore_grok_nto_status (abfd, note, &tid);
7908 case BFD_QNT_CORE_GREG:
7909 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7910 case BFD_QNT_CORE_FPREG:
7911 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7912 default:
7913 return TRUE;
7914 }
7915 }
7916
7917 /* Function: elfcore_write_note
7918
7919 Inputs:
7920 buffer to hold note
7921 name of note
7922 type of note
7923 data for note
7924 size of data for note
7925
7926 Return:
7927 End of buffer containing note. */
7928
7929 char *
7930 elfcore_write_note (bfd *abfd,
7931 char *buf,
7932 int *bufsiz,
7933 const char *name,
7934 int type,
7935 const void *input,
7936 int size)
7937 {
7938 Elf_External_Note *xnp;
7939 size_t namesz;
7940 size_t pad;
7941 size_t newspace;
7942 char *p, *dest;
7943
7944 namesz = 0;
7945 pad = 0;
7946 if (name != NULL)
7947 {
7948 const struct elf_backend_data *bed;
7949
7950 namesz = strlen (name) + 1;
7951 bed = get_elf_backend_data (abfd);
7952 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7953 }
7954
7955 newspace = 12 + namesz + pad + size;
7956
7957 p = realloc (buf, *bufsiz + newspace);
7958 dest = p + *bufsiz;
7959 *bufsiz += newspace;
7960 xnp = (Elf_External_Note *) dest;
7961 H_PUT_32 (abfd, namesz, xnp->namesz);
7962 H_PUT_32 (abfd, size, xnp->descsz);
7963 H_PUT_32 (abfd, type, xnp->type);
7964 dest = xnp->name;
7965 if (name != NULL)
7966 {
7967 memcpy (dest, name, namesz);
7968 dest += namesz;
7969 while (pad != 0)
7970 {
7971 *dest++ = '\0';
7972 --pad;
7973 }
7974 }
7975 memcpy (dest, input, size);
7976 return p;
7977 }
7978
7979 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7980 char *
7981 elfcore_write_prpsinfo (bfd *abfd,
7982 char *buf,
7983 int *bufsiz,
7984 const char *fname,
7985 const char *psargs)
7986 {
7987 int note_type;
7988 char *note_name = "CORE";
7989
7990 #if defined (HAVE_PSINFO_T)
7991 psinfo_t data;
7992 note_type = NT_PSINFO;
7993 #else
7994 prpsinfo_t data;
7995 note_type = NT_PRPSINFO;
7996 #endif
7997
7998 memset (&data, 0, sizeof (data));
7999 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8000 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8001 return elfcore_write_note (abfd, buf, bufsiz,
8002 note_name, note_type, &data, sizeof (data));
8003 }
8004 #endif /* PSINFO_T or PRPSINFO_T */
8005
8006 #if defined (HAVE_PRSTATUS_T)
8007 char *
8008 elfcore_write_prstatus (bfd *abfd,
8009 char *buf,
8010 int *bufsiz,
8011 long pid,
8012 int cursig,
8013 const void *gregs)
8014 {
8015 prstatus_t prstat;
8016 char *note_name = "CORE";
8017
8018 memset (&prstat, 0, sizeof (prstat));
8019 prstat.pr_pid = pid;
8020 prstat.pr_cursig = cursig;
8021 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8022 return elfcore_write_note (abfd, buf, bufsiz,
8023 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8024 }
8025 #endif /* HAVE_PRSTATUS_T */
8026
8027 #if defined (HAVE_LWPSTATUS_T)
8028 char *
8029 elfcore_write_lwpstatus (bfd *abfd,
8030 char *buf,
8031 int *bufsiz,
8032 long pid,
8033 int cursig,
8034 const void *gregs)
8035 {
8036 lwpstatus_t lwpstat;
8037 char *note_name = "CORE";
8038
8039 memset (&lwpstat, 0, sizeof (lwpstat));
8040 lwpstat.pr_lwpid = pid >> 16;
8041 lwpstat.pr_cursig = cursig;
8042 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8043 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8044 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8045 #if !defined(gregs)
8046 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8047 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8048 #else
8049 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8050 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8051 #endif
8052 #endif
8053 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8054 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8055 }
8056 #endif /* HAVE_LWPSTATUS_T */
8057
8058 #if defined (HAVE_PSTATUS_T)
8059 char *
8060 elfcore_write_pstatus (bfd *abfd,
8061 char *buf,
8062 int *bufsiz,
8063 long pid,
8064 int cursig ATTRIBUTE_UNUSED,
8065 const void *gregs ATTRIBUTE_UNUSED)
8066 {
8067 pstatus_t pstat;
8068 char *note_name = "CORE";
8069
8070 memset (&pstat, 0, sizeof (pstat));
8071 pstat.pr_pid = pid & 0xffff;
8072 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8073 NT_PSTATUS, &pstat, sizeof (pstat));
8074 return buf;
8075 }
8076 #endif /* HAVE_PSTATUS_T */
8077
8078 char *
8079 elfcore_write_prfpreg (bfd *abfd,
8080 char *buf,
8081 int *bufsiz,
8082 const void *fpregs,
8083 int size)
8084 {
8085 char *note_name = "CORE";
8086 return elfcore_write_note (abfd, buf, bufsiz,
8087 note_name, NT_FPREGSET, fpregs, size);
8088 }
8089
8090 char *
8091 elfcore_write_prxfpreg (bfd *abfd,
8092 char *buf,
8093 int *bufsiz,
8094 const void *xfpregs,
8095 int size)
8096 {
8097 char *note_name = "LINUX";
8098 return elfcore_write_note (abfd, buf, bufsiz,
8099 note_name, NT_PRXFPREG, xfpregs, size);
8100 }
8101
8102 static bfd_boolean
8103 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8104 {
8105 char *buf;
8106 char *p;
8107
8108 if (size <= 0)
8109 return TRUE;
8110
8111 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8112 return FALSE;
8113
8114 buf = bfd_malloc (size);
8115 if (buf == NULL)
8116 return FALSE;
8117
8118 if (bfd_bread (buf, size, abfd) != size)
8119 {
8120 error:
8121 free (buf);
8122 return FALSE;
8123 }
8124
8125 p = buf;
8126 while (p < buf + size)
8127 {
8128 /* FIXME: bad alignment assumption. */
8129 Elf_External_Note *xnp = (Elf_External_Note *) p;
8130 Elf_Internal_Note in;
8131
8132 in.type = H_GET_32 (abfd, xnp->type);
8133
8134 in.namesz = H_GET_32 (abfd, xnp->namesz);
8135 in.namedata = xnp->name;
8136
8137 in.descsz = H_GET_32 (abfd, xnp->descsz);
8138 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8139 in.descpos = offset + (in.descdata - buf);
8140
8141 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
8142 {
8143 if (! elfcore_grok_netbsd_note (abfd, &in))
8144 goto error;
8145 }
8146 else if (strncmp (in.namedata, "QNX", 3) == 0)
8147 {
8148 if (! elfcore_grok_nto_note (abfd, &in))
8149 goto error;
8150 }
8151 else
8152 {
8153 if (! elfcore_grok_note (abfd, &in))
8154 goto error;
8155 }
8156
8157 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8158 }
8159
8160 free (buf);
8161 return TRUE;
8162 }
8163 \f
8164 /* Providing external access to the ELF program header table. */
8165
8166 /* Return an upper bound on the number of bytes required to store a
8167 copy of ABFD's program header table entries. Return -1 if an error
8168 occurs; bfd_get_error will return an appropriate code. */
8169
8170 long
8171 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8172 {
8173 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8174 {
8175 bfd_set_error (bfd_error_wrong_format);
8176 return -1;
8177 }
8178
8179 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8180 }
8181
8182 /* Copy ABFD's program header table entries to *PHDRS. The entries
8183 will be stored as an array of Elf_Internal_Phdr structures, as
8184 defined in include/elf/internal.h. To find out how large the
8185 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8186
8187 Return the number of program header table entries read, or -1 if an
8188 error occurs; bfd_get_error will return an appropriate code. */
8189
8190 int
8191 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8192 {
8193 int num_phdrs;
8194
8195 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8196 {
8197 bfd_set_error (bfd_error_wrong_format);
8198 return -1;
8199 }
8200
8201 num_phdrs = elf_elfheader (abfd)->e_phnum;
8202 memcpy (phdrs, elf_tdata (abfd)->phdr,
8203 num_phdrs * sizeof (Elf_Internal_Phdr));
8204
8205 return num_phdrs;
8206 }
8207
8208 void
8209 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8210 {
8211 #ifdef BFD64
8212 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8213
8214 i_ehdrp = elf_elfheader (abfd);
8215 if (i_ehdrp == NULL)
8216 sprintf_vma (buf, value);
8217 else
8218 {
8219 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8220 {
8221 #if BFD_HOST_64BIT_LONG
8222 sprintf (buf, "%016lx", value);
8223 #else
8224 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8225 _bfd_int64_low (value));
8226 #endif
8227 }
8228 else
8229 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8230 }
8231 #else
8232 sprintf_vma (buf, value);
8233 #endif
8234 }
8235
8236 void
8237 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8238 {
8239 #ifdef BFD64
8240 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8241
8242 i_ehdrp = elf_elfheader (abfd);
8243 if (i_ehdrp == NULL)
8244 fprintf_vma ((FILE *) stream, value);
8245 else
8246 {
8247 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8248 {
8249 #if BFD_HOST_64BIT_LONG
8250 fprintf ((FILE *) stream, "%016lx", value);
8251 #else
8252 fprintf ((FILE *) stream, "%08lx%08lx",
8253 _bfd_int64_high (value), _bfd_int64_low (value));
8254 #endif
8255 }
8256 else
8257 fprintf ((FILE *) stream, "%08lx",
8258 (unsigned long) (value & 0xffffffff));
8259 }
8260 #else
8261 fprintf_vma ((FILE *) stream, value);
8262 #endif
8263 }
8264
8265 enum elf_reloc_type_class
8266 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8267 {
8268 return reloc_class_normal;
8269 }
8270
8271 /* For RELA architectures, return the relocation value for a
8272 relocation against a local symbol. */
8273
8274 bfd_vma
8275 _bfd_elf_rela_local_sym (bfd *abfd,
8276 Elf_Internal_Sym *sym,
8277 asection **psec,
8278 Elf_Internal_Rela *rel)
8279 {
8280 asection *sec = *psec;
8281 bfd_vma relocation;
8282
8283 relocation = (sec->output_section->vma
8284 + sec->output_offset
8285 + sym->st_value);
8286 if ((sec->flags & SEC_MERGE)
8287 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8288 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8289 {
8290 rel->r_addend =
8291 _bfd_merged_section_offset (abfd, psec,
8292 elf_section_data (sec)->sec_info,
8293 sym->st_value + rel->r_addend);
8294 if (sec != *psec)
8295 {
8296 /* If we have changed the section, and our original section is
8297 marked with SEC_EXCLUDE, it means that the original
8298 SEC_MERGE section has been completely subsumed in some
8299 other SEC_MERGE section. In this case, we need to leave
8300 some info around for --emit-relocs. */
8301 if ((sec->flags & SEC_EXCLUDE) != 0)
8302 sec->kept_section = *psec;
8303 sec = *psec;
8304 }
8305 rel->r_addend -= relocation;
8306 rel->r_addend += sec->output_section->vma + sec->output_offset;
8307 }
8308 return relocation;
8309 }
8310
8311 bfd_vma
8312 _bfd_elf_rel_local_sym (bfd *abfd,
8313 Elf_Internal_Sym *sym,
8314 asection **psec,
8315 bfd_vma addend)
8316 {
8317 asection *sec = *psec;
8318
8319 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8320 return sym->st_value + addend;
8321
8322 return _bfd_merged_section_offset (abfd, psec,
8323 elf_section_data (sec)->sec_info,
8324 sym->st_value + addend);
8325 }
8326
8327 bfd_vma
8328 _bfd_elf_section_offset (bfd *abfd,
8329 struct bfd_link_info *info,
8330 asection *sec,
8331 bfd_vma offset)
8332 {
8333 switch (sec->sec_info_type)
8334 {
8335 case ELF_INFO_TYPE_STABS:
8336 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8337 offset);
8338 case ELF_INFO_TYPE_EH_FRAME:
8339 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8340 default:
8341 return offset;
8342 }
8343 }
8344 \f
8345 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8346 reconstruct an ELF file by reading the segments out of remote memory
8347 based on the ELF file header at EHDR_VMA and the ELF program headers it
8348 points to. If not null, *LOADBASEP is filled in with the difference
8349 between the VMAs from which the segments were read, and the VMAs the
8350 file headers (and hence BFD's idea of each section's VMA) put them at.
8351
8352 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8353 remote memory at target address VMA into the local buffer at MYADDR; it
8354 should return zero on success or an `errno' code on failure. TEMPL must
8355 be a BFD for an ELF target with the word size and byte order found in
8356 the remote memory. */
8357
8358 bfd *
8359 bfd_elf_bfd_from_remote_memory
8360 (bfd *templ,
8361 bfd_vma ehdr_vma,
8362 bfd_vma *loadbasep,
8363 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8364 {
8365 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8366 (templ, ehdr_vma, loadbasep, target_read_memory);
8367 }
8368 \f
8369 long
8370 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8371 long symcount ATTRIBUTE_UNUSED,
8372 asymbol **syms ATTRIBUTE_UNUSED,
8373 long dynsymcount,
8374 asymbol **dynsyms,
8375 asymbol **ret)
8376 {
8377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8378 asection *relplt;
8379 asymbol *s;
8380 const char *relplt_name;
8381 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8382 arelent *p;
8383 long count, i, n;
8384 size_t size;
8385 Elf_Internal_Shdr *hdr;
8386 char *names;
8387 asection *plt;
8388
8389 *ret = NULL;
8390
8391 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8392 return 0;
8393
8394 if (dynsymcount <= 0)
8395 return 0;
8396
8397 if (!bed->plt_sym_val)
8398 return 0;
8399
8400 relplt_name = bed->relplt_name;
8401 if (relplt_name == NULL)
8402 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8403 relplt = bfd_get_section_by_name (abfd, relplt_name);
8404 if (relplt == NULL)
8405 return 0;
8406
8407 hdr = &elf_section_data (relplt)->this_hdr;
8408 if (hdr->sh_link != elf_dynsymtab (abfd)
8409 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8410 return 0;
8411
8412 plt = bfd_get_section_by_name (abfd, ".plt");
8413 if (plt == NULL)
8414 return 0;
8415
8416 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8417 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8418 return -1;
8419
8420 count = relplt->size / hdr->sh_entsize;
8421 size = count * sizeof (asymbol);
8422 p = relplt->relocation;
8423 for (i = 0; i < count; i++, s++, p++)
8424 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8425
8426 s = *ret = bfd_malloc (size);
8427 if (s == NULL)
8428 return -1;
8429
8430 names = (char *) (s + count);
8431 p = relplt->relocation;
8432 n = 0;
8433 for (i = 0; i < count; i++, s++, p++)
8434 {
8435 size_t len;
8436 bfd_vma addr;
8437
8438 addr = bed->plt_sym_val (i, plt, p);
8439 if (addr == (bfd_vma) -1)
8440 continue;
8441
8442 *s = **p->sym_ptr_ptr;
8443 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8444 we are defining a symbol, ensure one of them is set. */
8445 if ((s->flags & BSF_LOCAL) == 0)
8446 s->flags |= BSF_GLOBAL;
8447 s->section = plt;
8448 s->value = addr - plt->vma;
8449 s->name = names;
8450 len = strlen ((*p->sym_ptr_ptr)->name);
8451 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8452 names += len;
8453 memcpy (names, "@plt", sizeof ("@plt"));
8454 names += sizeof ("@plt");
8455 ++n;
8456 }
8457
8458 return n;
8459 }
8460
8461 /* Sort symbol by binding and section. We want to put definitions
8462 sorted by section at the beginning. */
8463
8464 static int
8465 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8466 {
8467 const Elf_Internal_Sym *s1;
8468 const Elf_Internal_Sym *s2;
8469 int shndx;
8470
8471 /* Make sure that undefined symbols are at the end. */
8472 s1 = (const Elf_Internal_Sym *) arg1;
8473 if (s1->st_shndx == SHN_UNDEF)
8474 return 1;
8475 s2 = (const Elf_Internal_Sym *) arg2;
8476 if (s2->st_shndx == SHN_UNDEF)
8477 return -1;
8478
8479 /* Sorted by section index. */
8480 shndx = s1->st_shndx - s2->st_shndx;
8481 if (shndx != 0)
8482 return shndx;
8483
8484 /* Sorted by binding. */
8485 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8486 }
8487
8488 struct elf_symbol
8489 {
8490 Elf_Internal_Sym *sym;
8491 const char *name;
8492 };
8493
8494 static int
8495 elf_sym_name_compare (const void *arg1, const void *arg2)
8496 {
8497 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8498 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8499 return strcmp (s1->name, s2->name);
8500 }
8501
8502 /* Check if 2 sections define the same set of local and global
8503 symbols. */
8504
8505 bfd_boolean
8506 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8507 {
8508 bfd *bfd1, *bfd2;
8509 const struct elf_backend_data *bed1, *bed2;
8510 Elf_Internal_Shdr *hdr1, *hdr2;
8511 bfd_size_type symcount1, symcount2;
8512 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8513 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8514 Elf_Internal_Sym *isymend;
8515 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8516 bfd_size_type count1, count2, i;
8517 int shndx1, shndx2;
8518 bfd_boolean result;
8519
8520 bfd1 = sec1->owner;
8521 bfd2 = sec2->owner;
8522
8523 /* If both are .gnu.linkonce sections, they have to have the same
8524 section name. */
8525 if (strncmp (sec1->name, ".gnu.linkonce",
8526 sizeof ".gnu.linkonce" - 1) == 0
8527 && strncmp (sec2->name, ".gnu.linkonce",
8528 sizeof ".gnu.linkonce" - 1) == 0)
8529 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8530 sec2->name + sizeof ".gnu.linkonce") == 0;
8531
8532 /* Both sections have to be in ELF. */
8533 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8534 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8535 return FALSE;
8536
8537 if (elf_section_type (sec1) != elf_section_type (sec2))
8538 return FALSE;
8539
8540 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8541 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8542 {
8543 /* If both are members of section groups, they have to have the
8544 same group name. */
8545 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8546 return FALSE;
8547 }
8548
8549 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8550 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8551 if (shndx1 == -1 || shndx2 == -1)
8552 return FALSE;
8553
8554 bed1 = get_elf_backend_data (bfd1);
8555 bed2 = get_elf_backend_data (bfd2);
8556 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8557 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8558 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8559 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8560
8561 if (symcount1 == 0 || symcount2 == 0)
8562 return FALSE;
8563
8564 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8565 NULL, NULL, NULL);
8566 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8567 NULL, NULL, NULL);
8568
8569 result = FALSE;
8570 if (isymbuf1 == NULL || isymbuf2 == NULL)
8571 goto done;
8572
8573 /* Sort symbols by binding and section. Global definitions are at
8574 the beginning. */
8575 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8576 elf_sort_elf_symbol);
8577 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8578 elf_sort_elf_symbol);
8579
8580 /* Count definitions in the section. */
8581 count1 = 0;
8582 for (isym = isymbuf1, isymend = isym + symcount1;
8583 isym < isymend; isym++)
8584 {
8585 if (isym->st_shndx == (unsigned int) shndx1)
8586 {
8587 if (count1 == 0)
8588 isymstart1 = isym;
8589 count1++;
8590 }
8591
8592 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8593 break;
8594 }
8595
8596 count2 = 0;
8597 for (isym = isymbuf2, isymend = isym + symcount2;
8598 isym < isymend; isym++)
8599 {
8600 if (isym->st_shndx == (unsigned int) shndx2)
8601 {
8602 if (count2 == 0)
8603 isymstart2 = isym;
8604 count2++;
8605 }
8606
8607 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8608 break;
8609 }
8610
8611 if (count1 == 0 || count2 == 0 || count1 != count2)
8612 goto done;
8613
8614 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8615 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8616
8617 if (symtable1 == NULL || symtable2 == NULL)
8618 goto done;
8619
8620 symp = symtable1;
8621 for (isym = isymstart1, isymend = isym + count1;
8622 isym < isymend; isym++)
8623 {
8624 symp->sym = isym;
8625 symp->name = bfd_elf_string_from_elf_section (bfd1,
8626 hdr1->sh_link,
8627 isym->st_name);
8628 symp++;
8629 }
8630
8631 symp = symtable2;
8632 for (isym = isymstart2, isymend = isym + count1;
8633 isym < isymend; isym++)
8634 {
8635 symp->sym = isym;
8636 symp->name = bfd_elf_string_from_elf_section (bfd2,
8637 hdr2->sh_link,
8638 isym->st_name);
8639 symp++;
8640 }
8641
8642 /* Sort symbol by name. */
8643 qsort (symtable1, count1, sizeof (struct elf_symbol),
8644 elf_sym_name_compare);
8645 qsort (symtable2, count1, sizeof (struct elf_symbol),
8646 elf_sym_name_compare);
8647
8648 for (i = 0; i < count1; i++)
8649 /* Two symbols must have the same binding, type and name. */
8650 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8651 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8652 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8653 goto done;
8654
8655 result = TRUE;
8656
8657 done:
8658 if (symtable1)
8659 free (symtable1);
8660 if (symtable2)
8661 free (symtable2);
8662 if (isymbuf1)
8663 free (isymbuf1);
8664 if (isymbuf2)
8665 free (isymbuf2);
8666
8667 return result;
8668 }
8669
8670 /* It is only used by x86-64 so far. */
8671 asection _bfd_elf_large_com_section
8672 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8673 SEC_IS_COMMON, NULL, NULL, "LARGE_COMMON",
8674 0);
8675
8676 /* Return TRUE if 2 section types are compatible. */
8677
8678 bfd_boolean
8679 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8680 bfd *bbfd, const asection *bsec)
8681 {
8682 if (asec == NULL
8683 || bsec == NULL
8684 || abfd->xvec->flavour != bfd_target_elf_flavour
8685 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8686 return TRUE;
8687
8688 return elf_section_type (asec) == elf_section_type (bsec);
8689 }
This page took 0.208586 seconds and 4 git commands to generate.