Default elf_backend_post_process_headers to set OSABI
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993-2013 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-psinfo.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
301 || bfd_seek (abfd, offset, SEEK_SET) != 0)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 shstrtab = NULL;
308 /* Once we've failed to read it, make sure we don't keep
309 trying. Otherwise, we'll keep allocating space for
310 the string table over and over. */
311 i_shdrp[shindex]->sh_size = 0;
312 }
313 else
314 shstrtab[shstrtabsize] = '\0';
315 i_shdrp[shindex]->contents = shstrtab;
316 }
317 return (char *) shstrtab;
318 }
319
320 char *
321 bfd_elf_string_from_elf_section (bfd *abfd,
322 unsigned int shindex,
323 unsigned int strindex)
324 {
325 Elf_Internal_Shdr *hdr;
326
327 if (strindex == 0)
328 return "";
329
330 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
331 return NULL;
332
333 hdr = elf_elfsections (abfd)[shindex];
334
335 if (hdr->contents == NULL
336 && bfd_elf_get_str_section (abfd, shindex) == NULL)
337 return NULL;
338
339 if (strindex >= hdr->sh_size)
340 {
341 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
342 (*_bfd_error_handler)
343 (_("%B: invalid string offset %u >= %lu for section `%s'"),
344 abfd, strindex, (unsigned long) hdr->sh_size,
345 (shindex == shstrndx && strindex == hdr->sh_name
346 ? ".shstrtab"
347 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
348 return NULL;
349 }
350
351 return ((char *) hdr->contents) + strindex;
352 }
353
354 /* Read and convert symbols to internal format.
355 SYMCOUNT specifies the number of symbols to read, starting from
356 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
357 are non-NULL, they are used to store the internal symbols, external
358 symbols, and symbol section index extensions, respectively.
359 Returns a pointer to the internal symbol buffer (malloced if necessary)
360 or NULL if there were no symbols or some kind of problem. */
361
362 Elf_Internal_Sym *
363 bfd_elf_get_elf_syms (bfd *ibfd,
364 Elf_Internal_Shdr *symtab_hdr,
365 size_t symcount,
366 size_t symoffset,
367 Elf_Internal_Sym *intsym_buf,
368 void *extsym_buf,
369 Elf_External_Sym_Shndx *extshndx_buf)
370 {
371 Elf_Internal_Shdr *shndx_hdr;
372 void *alloc_ext;
373 const bfd_byte *esym;
374 Elf_External_Sym_Shndx *alloc_extshndx;
375 Elf_External_Sym_Shndx *shndx;
376 Elf_Internal_Sym *alloc_intsym;
377 Elf_Internal_Sym *isym;
378 Elf_Internal_Sym *isymend;
379 const struct elf_backend_data *bed;
380 size_t extsym_size;
381 bfd_size_type amt;
382 file_ptr pos;
383
384 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
385 abort ();
386
387 if (symcount == 0)
388 return intsym_buf;
389
390 /* Normal syms might have section extension entries. */
391 shndx_hdr = NULL;
392 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
393 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
394
395 /* Read the symbols. */
396 alloc_ext = NULL;
397 alloc_extshndx = NULL;
398 alloc_intsym = NULL;
399 bed = get_elf_backend_data (ibfd);
400 extsym_size = bed->s->sizeof_sym;
401 amt = symcount * extsym_size;
402 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
403 if (extsym_buf == NULL)
404 {
405 alloc_ext = bfd_malloc2 (symcount, extsym_size);
406 extsym_buf = alloc_ext;
407 }
408 if (extsym_buf == NULL
409 || bfd_seek (ibfd, pos, SEEK_SET) != 0
410 || bfd_bread (extsym_buf, amt, ibfd) != amt)
411 {
412 intsym_buf = NULL;
413 goto out;
414 }
415
416 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
417 extshndx_buf = NULL;
418 else
419 {
420 amt = symcount * sizeof (Elf_External_Sym_Shndx);
421 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
422 if (extshndx_buf == NULL)
423 {
424 alloc_extshndx = (Elf_External_Sym_Shndx *)
425 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
426 extshndx_buf = alloc_extshndx;
427 }
428 if (extshndx_buf == NULL
429 || bfd_seek (ibfd, pos, SEEK_SET) != 0
430 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
431 {
432 intsym_buf = NULL;
433 goto out;
434 }
435 }
436
437 if (intsym_buf == NULL)
438 {
439 alloc_intsym = (Elf_Internal_Sym *)
440 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
441 intsym_buf = alloc_intsym;
442 if (intsym_buf == NULL)
443 goto out;
444 }
445
446 /* Convert the symbols to internal form. */
447 isymend = intsym_buf + symcount;
448 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
449 shndx = extshndx_buf;
450 isym < isymend;
451 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
452 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
453 {
454 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
455 (*_bfd_error_handler) (_("%B symbol number %lu references "
456 "nonexistent SHT_SYMTAB_SHNDX section"),
457 ibfd, (unsigned long) symoffset);
458 if (alloc_intsym != NULL)
459 free (alloc_intsym);
460 intsym_buf = NULL;
461 goto out;
462 }
463
464 out:
465 if (alloc_ext != NULL)
466 free (alloc_ext);
467 if (alloc_extshndx != NULL)
468 free (alloc_extshndx);
469
470 return intsym_buf;
471 }
472
473 /* Look up a symbol name. */
474 const char *
475 bfd_elf_sym_name (bfd *abfd,
476 Elf_Internal_Shdr *symtab_hdr,
477 Elf_Internal_Sym *isym,
478 asection *sym_sec)
479 {
480 const char *name;
481 unsigned int iname = isym->st_name;
482 unsigned int shindex = symtab_hdr->sh_link;
483
484 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
485 /* Check for a bogus st_shndx to avoid crashing. */
486 && isym->st_shndx < elf_numsections (abfd))
487 {
488 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
489 shindex = elf_elfheader (abfd)->e_shstrndx;
490 }
491
492 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
493 if (name == NULL)
494 name = "(null)";
495 else if (sym_sec && *name == '\0')
496 name = bfd_section_name (abfd, sym_sec);
497
498 return name;
499 }
500
501 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
502 sections. The first element is the flags, the rest are section
503 pointers. */
504
505 typedef union elf_internal_group {
506 Elf_Internal_Shdr *shdr;
507 unsigned int flags;
508 } Elf_Internal_Group;
509
510 /* Return the name of the group signature symbol. Why isn't the
511 signature just a string? */
512
513 static const char *
514 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
515 {
516 Elf_Internal_Shdr *hdr;
517 unsigned char esym[sizeof (Elf64_External_Sym)];
518 Elf_External_Sym_Shndx eshndx;
519 Elf_Internal_Sym isym;
520
521 /* First we need to ensure the symbol table is available. Make sure
522 that it is a symbol table section. */
523 if (ghdr->sh_link >= elf_numsections (abfd))
524 return NULL;
525 hdr = elf_elfsections (abfd) [ghdr->sh_link];
526 if (hdr->sh_type != SHT_SYMTAB
527 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
528 return NULL;
529
530 /* Go read the symbol. */
531 hdr = &elf_tdata (abfd)->symtab_hdr;
532 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
533 &isym, esym, &eshndx) == NULL)
534 return NULL;
535
536 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
537 }
538
539 /* Set next_in_group list pointer, and group name for NEWSECT. */
540
541 static bfd_boolean
542 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
543 {
544 unsigned int num_group = elf_tdata (abfd)->num_group;
545
546 /* If num_group is zero, read in all SHT_GROUP sections. The count
547 is set to -1 if there are no SHT_GROUP sections. */
548 if (num_group == 0)
549 {
550 unsigned int i, shnum;
551
552 /* First count the number of groups. If we have a SHT_GROUP
553 section with just a flag word (ie. sh_size is 4), ignore it. */
554 shnum = elf_numsections (abfd);
555 num_group = 0;
556
557 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
558 ( (shdr)->sh_type == SHT_GROUP \
559 && (shdr)->sh_size >= minsize \
560 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
561 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
562
563 for (i = 0; i < shnum; i++)
564 {
565 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
566
567 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
568 num_group += 1;
569 }
570
571 if (num_group == 0)
572 {
573 num_group = (unsigned) -1;
574 elf_tdata (abfd)->num_group = num_group;
575 }
576 else
577 {
578 /* We keep a list of elf section headers for group sections,
579 so we can find them quickly. */
580 bfd_size_type amt;
581
582 elf_tdata (abfd)->num_group = num_group;
583 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
584 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
585 if (elf_tdata (abfd)->group_sect_ptr == NULL)
586 return FALSE;
587
588 num_group = 0;
589 for (i = 0; i < shnum; i++)
590 {
591 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
592
593 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
594 {
595 unsigned char *src;
596 Elf_Internal_Group *dest;
597
598 /* Add to list of sections. */
599 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
600 num_group += 1;
601
602 /* Read the raw contents. */
603 BFD_ASSERT (sizeof (*dest) >= 4);
604 amt = shdr->sh_size * sizeof (*dest) / 4;
605 shdr->contents = (unsigned char *)
606 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
607 /* PR binutils/4110: Handle corrupt group headers. */
608 if (shdr->contents == NULL)
609 {
610 _bfd_error_handler
611 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
612 bfd_set_error (bfd_error_bad_value);
613 return FALSE;
614 }
615
616 memset (shdr->contents, 0, amt);
617
618 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
619 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
620 != shdr->sh_size))
621 return FALSE;
622
623 /* Translate raw contents, a flag word followed by an
624 array of elf section indices all in target byte order,
625 to the flag word followed by an array of elf section
626 pointers. */
627 src = shdr->contents + shdr->sh_size;
628 dest = (Elf_Internal_Group *) (shdr->contents + amt);
629 while (1)
630 {
631 unsigned int idx;
632
633 src -= 4;
634 --dest;
635 idx = H_GET_32 (abfd, src);
636 if (src == shdr->contents)
637 {
638 dest->flags = idx;
639 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
640 shdr->bfd_section->flags
641 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
642 break;
643 }
644 if (idx >= shnum)
645 {
646 ((*_bfd_error_handler)
647 (_("%B: invalid SHT_GROUP entry"), abfd));
648 idx = 0;
649 }
650 dest->shdr = elf_elfsections (abfd)[idx];
651 }
652 }
653 }
654 }
655 }
656
657 if (num_group != (unsigned) -1)
658 {
659 unsigned int i;
660
661 for (i = 0; i < num_group; i++)
662 {
663 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
664 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
665 unsigned int n_elt = shdr->sh_size / 4;
666
667 /* Look through this group's sections to see if current
668 section is a member. */
669 while (--n_elt != 0)
670 if ((++idx)->shdr == hdr)
671 {
672 asection *s = NULL;
673
674 /* We are a member of this group. Go looking through
675 other members to see if any others are linked via
676 next_in_group. */
677 idx = (Elf_Internal_Group *) shdr->contents;
678 n_elt = shdr->sh_size / 4;
679 while (--n_elt != 0)
680 if ((s = (++idx)->shdr->bfd_section) != NULL
681 && elf_next_in_group (s) != NULL)
682 break;
683 if (n_elt != 0)
684 {
685 /* Snarf the group name from other member, and
686 insert current section in circular list. */
687 elf_group_name (newsect) = elf_group_name (s);
688 elf_next_in_group (newsect) = elf_next_in_group (s);
689 elf_next_in_group (s) = newsect;
690 }
691 else
692 {
693 const char *gname;
694
695 gname = group_signature (abfd, shdr);
696 if (gname == NULL)
697 return FALSE;
698 elf_group_name (newsect) = gname;
699
700 /* Start a circular list with one element. */
701 elf_next_in_group (newsect) = newsect;
702 }
703
704 /* If the group section has been created, point to the
705 new member. */
706 if (shdr->bfd_section != NULL)
707 elf_next_in_group (shdr->bfd_section) = newsect;
708
709 i = num_group - 1;
710 break;
711 }
712 }
713 }
714
715 if (elf_group_name (newsect) == NULL)
716 {
717 (*_bfd_error_handler) (_("%B: no group info for section %A"),
718 abfd, newsect);
719 }
720 return TRUE;
721 }
722
723 bfd_boolean
724 _bfd_elf_setup_sections (bfd *abfd)
725 {
726 unsigned int i;
727 unsigned int num_group = elf_tdata (abfd)->num_group;
728 bfd_boolean result = TRUE;
729 asection *s;
730
731 /* Process SHF_LINK_ORDER. */
732 for (s = abfd->sections; s != NULL; s = s->next)
733 {
734 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
735 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
736 {
737 unsigned int elfsec = this_hdr->sh_link;
738 /* FIXME: The old Intel compiler and old strip/objcopy may
739 not set the sh_link or sh_info fields. Hence we could
740 get the situation where elfsec is 0. */
741 if (elfsec == 0)
742 {
743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
744 if (bed->link_order_error_handler)
745 bed->link_order_error_handler
746 (_("%B: warning: sh_link not set for section `%A'"),
747 abfd, s);
748 }
749 else
750 {
751 asection *linksec = NULL;
752
753 if (elfsec < elf_numsections (abfd))
754 {
755 this_hdr = elf_elfsections (abfd)[elfsec];
756 linksec = this_hdr->bfd_section;
757 }
758
759 /* PR 1991, 2008:
760 Some strip/objcopy may leave an incorrect value in
761 sh_link. We don't want to proceed. */
762 if (linksec == NULL)
763 {
764 (*_bfd_error_handler)
765 (_("%B: sh_link [%d] in section `%A' is incorrect"),
766 s->owner, s, elfsec);
767 result = FALSE;
768 }
769
770 elf_linked_to_section (s) = linksec;
771 }
772 }
773 }
774
775 /* Process section groups. */
776 if (num_group == (unsigned) -1)
777 return result;
778
779 for (i = 0; i < num_group; i++)
780 {
781 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
782 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
783 unsigned int n_elt = shdr->sh_size / 4;
784
785 while (--n_elt != 0)
786 if ((++idx)->shdr->bfd_section)
787 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
788 else if (idx->shdr->sh_type == SHT_RELA
789 || idx->shdr->sh_type == SHT_REL)
790 /* We won't include relocation sections in section groups in
791 output object files. We adjust the group section size here
792 so that relocatable link will work correctly when
793 relocation sections are in section group in input object
794 files. */
795 shdr->bfd_section->size -= 4;
796 else
797 {
798 /* There are some unknown sections in the group. */
799 (*_bfd_error_handler)
800 (_("%B: unknown [%d] section `%s' in group [%s]"),
801 abfd,
802 (unsigned int) idx->shdr->sh_type,
803 bfd_elf_string_from_elf_section (abfd,
804 (elf_elfheader (abfd)
805 ->e_shstrndx),
806 idx->shdr->sh_name),
807 shdr->bfd_section->name);
808 result = FALSE;
809 }
810 }
811 return result;
812 }
813
814 bfd_boolean
815 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
816 {
817 return elf_next_in_group (sec) != NULL;
818 }
819
820 /* Make a BFD section from an ELF section. We store a pointer to the
821 BFD section in the bfd_section field of the header. */
822
823 bfd_boolean
824 _bfd_elf_make_section_from_shdr (bfd *abfd,
825 Elf_Internal_Shdr *hdr,
826 const char *name,
827 int shindex)
828 {
829 asection *newsect;
830 flagword flags;
831 const struct elf_backend_data *bed;
832
833 if (hdr->bfd_section != NULL)
834 return TRUE;
835
836 newsect = bfd_make_section_anyway (abfd, name);
837 if (newsect == NULL)
838 return FALSE;
839
840 hdr->bfd_section = newsect;
841 elf_section_data (newsect)->this_hdr = *hdr;
842 elf_section_data (newsect)->this_idx = shindex;
843
844 /* Always use the real type/flags. */
845 elf_section_type (newsect) = hdr->sh_type;
846 elf_section_flags (newsect) = hdr->sh_flags;
847
848 newsect->filepos = hdr->sh_offset;
849
850 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
851 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
852 || ! bfd_set_section_alignment (abfd, newsect,
853 bfd_log2 (hdr->sh_addralign)))
854 return FALSE;
855
856 flags = SEC_NO_FLAGS;
857 if (hdr->sh_type != SHT_NOBITS)
858 flags |= SEC_HAS_CONTENTS;
859 if (hdr->sh_type == SHT_GROUP)
860 flags |= SEC_GROUP | SEC_EXCLUDE;
861 if ((hdr->sh_flags & SHF_ALLOC) != 0)
862 {
863 flags |= SEC_ALLOC;
864 if (hdr->sh_type != SHT_NOBITS)
865 flags |= SEC_LOAD;
866 }
867 if ((hdr->sh_flags & SHF_WRITE) == 0)
868 flags |= SEC_READONLY;
869 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
870 flags |= SEC_CODE;
871 else if ((flags & SEC_LOAD) != 0)
872 flags |= SEC_DATA;
873 if ((hdr->sh_flags & SHF_MERGE) != 0)
874 {
875 flags |= SEC_MERGE;
876 newsect->entsize = hdr->sh_entsize;
877 if ((hdr->sh_flags & SHF_STRINGS) != 0)
878 flags |= SEC_STRINGS;
879 }
880 if (hdr->sh_flags & SHF_GROUP)
881 if (!setup_group (abfd, hdr, newsect))
882 return FALSE;
883 if ((hdr->sh_flags & SHF_TLS) != 0)
884 flags |= SEC_THREAD_LOCAL;
885 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
886 flags |= SEC_EXCLUDE;
887
888 if ((flags & SEC_ALLOC) == 0)
889 {
890 /* The debugging sections appear to be recognized only by name,
891 not any sort of flag. Their SEC_ALLOC bits are cleared. */
892 if (name [0] == '.')
893 {
894 const char *p;
895 int n;
896 if (name[1] == 'd')
897 p = ".debug", n = 6;
898 else if (name[1] == 'g' && name[2] == 'n')
899 p = ".gnu.linkonce.wi.", n = 17;
900 else if (name[1] == 'g' && name[2] == 'd')
901 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
902 else if (name[1] == 'l')
903 p = ".line", n = 5;
904 else if (name[1] == 's')
905 p = ".stab", n = 5;
906 else if (name[1] == 'z')
907 p = ".zdebug", n = 7;
908 else
909 p = NULL, n = 0;
910 if (p != NULL && strncmp (name, p, n) == 0)
911 flags |= SEC_DEBUGGING;
912 }
913 }
914
915 /* As a GNU extension, if the name begins with .gnu.linkonce, we
916 only link a single copy of the section. This is used to support
917 g++. g++ will emit each template expansion in its own section.
918 The symbols will be defined as weak, so that multiple definitions
919 are permitted. The GNU linker extension is to actually discard
920 all but one of the sections. */
921 if (CONST_STRNEQ (name, ".gnu.linkonce")
922 && elf_next_in_group (newsect) == NULL)
923 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
924
925 bed = get_elf_backend_data (abfd);
926 if (bed->elf_backend_section_flags)
927 if (! bed->elf_backend_section_flags (&flags, hdr))
928 return FALSE;
929
930 if (! bfd_set_section_flags (abfd, newsect, flags))
931 return FALSE;
932
933 /* We do not parse the PT_NOTE segments as we are interested even in the
934 separate debug info files which may have the segments offsets corrupted.
935 PT_NOTEs from the core files are currently not parsed using BFD. */
936 if (hdr->sh_type == SHT_NOTE)
937 {
938 bfd_byte *contents;
939
940 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
941 return FALSE;
942
943 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
944 free (contents);
945 }
946
947 if ((flags & SEC_ALLOC) != 0)
948 {
949 Elf_Internal_Phdr *phdr;
950 unsigned int i, nload;
951
952 /* Some ELF linkers produce binaries with all the program header
953 p_paddr fields zero. If we have such a binary with more than
954 one PT_LOAD header, then leave the section lma equal to vma
955 so that we don't create sections with overlapping lma. */
956 phdr = elf_tdata (abfd)->phdr;
957 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
958 if (phdr->p_paddr != 0)
959 break;
960 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
961 ++nload;
962 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
963 return TRUE;
964
965 phdr = elf_tdata (abfd)->phdr;
966 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
967 {
968 if (((phdr->p_type == PT_LOAD
969 && (hdr->sh_flags & SHF_TLS) == 0)
970 || phdr->p_type == PT_TLS)
971 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
972 {
973 if ((flags & SEC_LOAD) == 0)
974 newsect->lma = (phdr->p_paddr
975 + hdr->sh_addr - phdr->p_vaddr);
976 else
977 /* We used to use the same adjustment for SEC_LOAD
978 sections, but that doesn't work if the segment
979 is packed with code from multiple VMAs.
980 Instead we calculate the section LMA based on
981 the segment LMA. It is assumed that the
982 segment will contain sections with contiguous
983 LMAs, even if the VMAs are not. */
984 newsect->lma = (phdr->p_paddr
985 + hdr->sh_offset - phdr->p_offset);
986
987 /* With contiguous segments, we can't tell from file
988 offsets whether a section with zero size should
989 be placed at the end of one segment or the
990 beginning of the next. Decide based on vaddr. */
991 if (hdr->sh_addr >= phdr->p_vaddr
992 && (hdr->sh_addr + hdr->sh_size
993 <= phdr->p_vaddr + phdr->p_memsz))
994 break;
995 }
996 }
997 }
998
999 /* Compress/decompress DWARF debug sections with names: .debug_* and
1000 .zdebug_*, after the section flags is set. */
1001 if ((flags & SEC_DEBUGGING)
1002 && ((name[1] == 'd' && name[6] == '_')
1003 || (name[1] == 'z' && name[7] == '_')))
1004 {
1005 enum { nothing, compress, decompress } action = nothing;
1006 char *new_name;
1007
1008 if (bfd_is_section_compressed (abfd, newsect))
1009 {
1010 /* Compressed section. Check if we should decompress. */
1011 if ((abfd->flags & BFD_DECOMPRESS))
1012 action = decompress;
1013 }
1014 else
1015 {
1016 /* Normal section. Check if we should compress. */
1017 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1018 action = compress;
1019 }
1020
1021 new_name = NULL;
1022 switch (action)
1023 {
1024 case nothing:
1025 break;
1026 case compress:
1027 if (!bfd_init_section_compress_status (abfd, newsect))
1028 {
1029 (*_bfd_error_handler)
1030 (_("%B: unable to initialize compress status for section %s"),
1031 abfd, name);
1032 return FALSE;
1033 }
1034 if (name[1] != 'z')
1035 {
1036 unsigned int len = strlen (name);
1037
1038 new_name = bfd_alloc (abfd, len + 2);
1039 if (new_name == NULL)
1040 return FALSE;
1041 new_name[0] = '.';
1042 new_name[1] = 'z';
1043 memcpy (new_name + 2, name + 1, len);
1044 }
1045 break;
1046 case decompress:
1047 if (!bfd_init_section_decompress_status (abfd, newsect))
1048 {
1049 (*_bfd_error_handler)
1050 (_("%B: unable to initialize decompress status for section %s"),
1051 abfd, name);
1052 return FALSE;
1053 }
1054 if (name[1] == 'z')
1055 {
1056 unsigned int len = strlen (name);
1057
1058 new_name = bfd_alloc (abfd, len);
1059 if (new_name == NULL)
1060 return FALSE;
1061 new_name[0] = '.';
1062 memcpy (new_name + 1, name + 2, len - 1);
1063 }
1064 break;
1065 }
1066 if (new_name != NULL)
1067 bfd_rename_section (abfd, newsect, new_name);
1068 }
1069
1070 return TRUE;
1071 }
1072
1073 const char *const bfd_elf_section_type_names[] = {
1074 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1075 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1076 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1077 };
1078
1079 /* ELF relocs are against symbols. If we are producing relocatable
1080 output, and the reloc is against an external symbol, and nothing
1081 has given us any additional addend, the resulting reloc will also
1082 be against the same symbol. In such a case, we don't want to
1083 change anything about the way the reloc is handled, since it will
1084 all be done at final link time. Rather than put special case code
1085 into bfd_perform_relocation, all the reloc types use this howto
1086 function. It just short circuits the reloc if producing
1087 relocatable output against an external symbol. */
1088
1089 bfd_reloc_status_type
1090 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1091 arelent *reloc_entry,
1092 asymbol *symbol,
1093 void *data ATTRIBUTE_UNUSED,
1094 asection *input_section,
1095 bfd *output_bfd,
1096 char **error_message ATTRIBUTE_UNUSED)
1097 {
1098 if (output_bfd != NULL
1099 && (symbol->flags & BSF_SECTION_SYM) == 0
1100 && (! reloc_entry->howto->partial_inplace
1101 || reloc_entry->addend == 0))
1102 {
1103 reloc_entry->address += input_section->output_offset;
1104 return bfd_reloc_ok;
1105 }
1106
1107 return bfd_reloc_continue;
1108 }
1109 \f
1110 /* Copy the program header and other data from one object module to
1111 another. */
1112
1113 bfd_boolean
1114 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1115 {
1116 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1117 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1118 return TRUE;
1119
1120 if (!elf_flags_init (obfd))
1121 {
1122 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1123 elf_flags_init (obfd) = TRUE;
1124 }
1125
1126 elf_gp (obfd) = elf_gp (ibfd);
1127
1128 /* Also copy the EI_OSABI field. */
1129 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1130 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1131
1132 /* Copy object attributes. */
1133 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1134 return TRUE;
1135 }
1136
1137 static const char *
1138 get_segment_type (unsigned int p_type)
1139 {
1140 const char *pt;
1141 switch (p_type)
1142 {
1143 case PT_NULL: pt = "NULL"; break;
1144 case PT_LOAD: pt = "LOAD"; break;
1145 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1146 case PT_INTERP: pt = "INTERP"; break;
1147 case PT_NOTE: pt = "NOTE"; break;
1148 case PT_SHLIB: pt = "SHLIB"; break;
1149 case PT_PHDR: pt = "PHDR"; break;
1150 case PT_TLS: pt = "TLS"; break;
1151 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1152 case PT_GNU_STACK: pt = "STACK"; break;
1153 case PT_GNU_RELRO: pt = "RELRO"; break;
1154 default: pt = NULL; break;
1155 }
1156 return pt;
1157 }
1158
1159 /* Print out the program headers. */
1160
1161 bfd_boolean
1162 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1163 {
1164 FILE *f = (FILE *) farg;
1165 Elf_Internal_Phdr *p;
1166 asection *s;
1167 bfd_byte *dynbuf = NULL;
1168
1169 p = elf_tdata (abfd)->phdr;
1170 if (p != NULL)
1171 {
1172 unsigned int i, c;
1173
1174 fprintf (f, _("\nProgram Header:\n"));
1175 c = elf_elfheader (abfd)->e_phnum;
1176 for (i = 0; i < c; i++, p++)
1177 {
1178 const char *pt = get_segment_type (p->p_type);
1179 char buf[20];
1180
1181 if (pt == NULL)
1182 {
1183 sprintf (buf, "0x%lx", p->p_type);
1184 pt = buf;
1185 }
1186 fprintf (f, "%8s off 0x", pt);
1187 bfd_fprintf_vma (abfd, f, p->p_offset);
1188 fprintf (f, " vaddr 0x");
1189 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1190 fprintf (f, " paddr 0x");
1191 bfd_fprintf_vma (abfd, f, p->p_paddr);
1192 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1193 fprintf (f, " filesz 0x");
1194 bfd_fprintf_vma (abfd, f, p->p_filesz);
1195 fprintf (f, " memsz 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_memsz);
1197 fprintf (f, " flags %c%c%c",
1198 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1199 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1200 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1201 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1202 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1203 fprintf (f, "\n");
1204 }
1205 }
1206
1207 s = bfd_get_section_by_name (abfd, ".dynamic");
1208 if (s != NULL)
1209 {
1210 unsigned int elfsec;
1211 unsigned long shlink;
1212 bfd_byte *extdyn, *extdynend;
1213 size_t extdynsize;
1214 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1215
1216 fprintf (f, _("\nDynamic Section:\n"));
1217
1218 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1219 goto error_return;
1220
1221 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1222 if (elfsec == SHN_BAD)
1223 goto error_return;
1224 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1225
1226 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1227 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1228
1229 extdyn = dynbuf;
1230 extdynend = extdyn + s->size;
1231 for (; extdyn < extdynend; extdyn += extdynsize)
1232 {
1233 Elf_Internal_Dyn dyn;
1234 const char *name = "";
1235 char ab[20];
1236 bfd_boolean stringp;
1237 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1238
1239 (*swap_dyn_in) (abfd, extdyn, &dyn);
1240
1241 if (dyn.d_tag == DT_NULL)
1242 break;
1243
1244 stringp = FALSE;
1245 switch (dyn.d_tag)
1246 {
1247 default:
1248 if (bed->elf_backend_get_target_dtag)
1249 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1250
1251 if (!strcmp (name, ""))
1252 {
1253 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1254 name = ab;
1255 }
1256 break;
1257
1258 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1259 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1260 case DT_PLTGOT: name = "PLTGOT"; break;
1261 case DT_HASH: name = "HASH"; break;
1262 case DT_STRTAB: name = "STRTAB"; break;
1263 case DT_SYMTAB: name = "SYMTAB"; break;
1264 case DT_RELA: name = "RELA"; break;
1265 case DT_RELASZ: name = "RELASZ"; break;
1266 case DT_RELAENT: name = "RELAENT"; break;
1267 case DT_STRSZ: name = "STRSZ"; break;
1268 case DT_SYMENT: name = "SYMENT"; break;
1269 case DT_INIT: name = "INIT"; break;
1270 case DT_FINI: name = "FINI"; break;
1271 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1272 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1273 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1274 case DT_REL: name = "REL"; break;
1275 case DT_RELSZ: name = "RELSZ"; break;
1276 case DT_RELENT: name = "RELENT"; break;
1277 case DT_PLTREL: name = "PLTREL"; break;
1278 case DT_DEBUG: name = "DEBUG"; break;
1279 case DT_TEXTREL: name = "TEXTREL"; break;
1280 case DT_JMPREL: name = "JMPREL"; break;
1281 case DT_BIND_NOW: name = "BIND_NOW"; break;
1282 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1283 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1284 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1285 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1286 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1287 case DT_FLAGS: name = "FLAGS"; break;
1288 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1289 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1290 case DT_CHECKSUM: name = "CHECKSUM"; break;
1291 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1292 case DT_MOVEENT: name = "MOVEENT"; break;
1293 case DT_MOVESZ: name = "MOVESZ"; break;
1294 case DT_FEATURE: name = "FEATURE"; break;
1295 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1296 case DT_SYMINSZ: name = "SYMINSZ"; break;
1297 case DT_SYMINENT: name = "SYMINENT"; break;
1298 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1299 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1300 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1301 case DT_PLTPAD: name = "PLTPAD"; break;
1302 case DT_MOVETAB: name = "MOVETAB"; break;
1303 case DT_SYMINFO: name = "SYMINFO"; break;
1304 case DT_RELACOUNT: name = "RELACOUNT"; break;
1305 case DT_RELCOUNT: name = "RELCOUNT"; break;
1306 case DT_FLAGS_1: name = "FLAGS_1"; break;
1307 case DT_VERSYM: name = "VERSYM"; break;
1308 case DT_VERDEF: name = "VERDEF"; break;
1309 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1310 case DT_VERNEED: name = "VERNEED"; break;
1311 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1312 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1313 case DT_USED: name = "USED"; break;
1314 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1315 case DT_GNU_HASH: name = "GNU_HASH"; break;
1316 }
1317
1318 fprintf (f, " %-20s ", name);
1319 if (! stringp)
1320 {
1321 fprintf (f, "0x");
1322 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1323 }
1324 else
1325 {
1326 const char *string;
1327 unsigned int tagv = dyn.d_un.d_val;
1328
1329 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1330 if (string == NULL)
1331 goto error_return;
1332 fprintf (f, "%s", string);
1333 }
1334 fprintf (f, "\n");
1335 }
1336
1337 free (dynbuf);
1338 dynbuf = NULL;
1339 }
1340
1341 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1342 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1343 {
1344 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1345 return FALSE;
1346 }
1347
1348 if (elf_dynverdef (abfd) != 0)
1349 {
1350 Elf_Internal_Verdef *t;
1351
1352 fprintf (f, _("\nVersion definitions:\n"));
1353 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1354 {
1355 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1356 t->vd_flags, t->vd_hash,
1357 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1358 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1359 {
1360 Elf_Internal_Verdaux *a;
1361
1362 fprintf (f, "\t");
1363 for (a = t->vd_auxptr->vda_nextptr;
1364 a != NULL;
1365 a = a->vda_nextptr)
1366 fprintf (f, "%s ",
1367 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1368 fprintf (f, "\n");
1369 }
1370 }
1371 }
1372
1373 if (elf_dynverref (abfd) != 0)
1374 {
1375 Elf_Internal_Verneed *t;
1376
1377 fprintf (f, _("\nVersion References:\n"));
1378 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1379 {
1380 Elf_Internal_Vernaux *a;
1381
1382 fprintf (f, _(" required from %s:\n"),
1383 t->vn_filename ? t->vn_filename : "<corrupt>");
1384 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1385 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1386 a->vna_flags, a->vna_other,
1387 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1388 }
1389 }
1390
1391 return TRUE;
1392
1393 error_return:
1394 if (dynbuf != NULL)
1395 free (dynbuf);
1396 return FALSE;
1397 }
1398
1399 /* Display ELF-specific fields of a symbol. */
1400
1401 void
1402 bfd_elf_print_symbol (bfd *abfd,
1403 void *filep,
1404 asymbol *symbol,
1405 bfd_print_symbol_type how)
1406 {
1407 FILE *file = (FILE *) filep;
1408 switch (how)
1409 {
1410 case bfd_print_symbol_name:
1411 fprintf (file, "%s", symbol->name);
1412 break;
1413 case bfd_print_symbol_more:
1414 fprintf (file, "elf ");
1415 bfd_fprintf_vma (abfd, file, symbol->value);
1416 fprintf (file, " %lx", (unsigned long) symbol->flags);
1417 break;
1418 case bfd_print_symbol_all:
1419 {
1420 const char *section_name;
1421 const char *name = NULL;
1422 const struct elf_backend_data *bed;
1423 unsigned char st_other;
1424 bfd_vma val;
1425
1426 section_name = symbol->section ? symbol->section->name : "(*none*)";
1427
1428 bed = get_elf_backend_data (abfd);
1429 if (bed->elf_backend_print_symbol_all)
1430 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1431
1432 if (name == NULL)
1433 {
1434 name = symbol->name;
1435 bfd_print_symbol_vandf (abfd, file, symbol);
1436 }
1437
1438 fprintf (file, " %s\t", section_name);
1439 /* Print the "other" value for a symbol. For common symbols,
1440 we've already printed the size; now print the alignment.
1441 For other symbols, we have no specified alignment, and
1442 we've printed the address; now print the size. */
1443 if (symbol->section && bfd_is_com_section (symbol->section))
1444 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1445 else
1446 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1447 bfd_fprintf_vma (abfd, file, val);
1448
1449 /* If we have version information, print it. */
1450 if (elf_dynversym (abfd) != 0
1451 && (elf_dynverdef (abfd) != 0
1452 || elf_dynverref (abfd) != 0))
1453 {
1454 unsigned int vernum;
1455 const char *version_string;
1456
1457 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1458
1459 if (vernum == 0)
1460 version_string = "";
1461 else if (vernum == 1)
1462 version_string = "Base";
1463 else if (vernum <= elf_tdata (abfd)->cverdefs)
1464 version_string =
1465 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1466 else
1467 {
1468 Elf_Internal_Verneed *t;
1469
1470 version_string = "";
1471 for (t = elf_tdata (abfd)->verref;
1472 t != NULL;
1473 t = t->vn_nextref)
1474 {
1475 Elf_Internal_Vernaux *a;
1476
1477 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1478 {
1479 if (a->vna_other == vernum)
1480 {
1481 version_string = a->vna_nodename;
1482 break;
1483 }
1484 }
1485 }
1486 }
1487
1488 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1489 fprintf (file, " %-11s", version_string);
1490 else
1491 {
1492 int i;
1493
1494 fprintf (file, " (%s)", version_string);
1495 for (i = 10 - strlen (version_string); i > 0; --i)
1496 putc (' ', file);
1497 }
1498 }
1499
1500 /* If the st_other field is not zero, print it. */
1501 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1502
1503 switch (st_other)
1504 {
1505 case 0: break;
1506 case STV_INTERNAL: fprintf (file, " .internal"); break;
1507 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1508 case STV_PROTECTED: fprintf (file, " .protected"); break;
1509 default:
1510 /* Some other non-defined flags are also present, so print
1511 everything hex. */
1512 fprintf (file, " 0x%02x", (unsigned int) st_other);
1513 }
1514
1515 fprintf (file, " %s", name);
1516 }
1517 break;
1518 }
1519 }
1520
1521 /* Allocate an ELF string table--force the first byte to be zero. */
1522
1523 struct bfd_strtab_hash *
1524 _bfd_elf_stringtab_init (void)
1525 {
1526 struct bfd_strtab_hash *ret;
1527
1528 ret = _bfd_stringtab_init ();
1529 if (ret != NULL)
1530 {
1531 bfd_size_type loc;
1532
1533 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1534 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1535 if (loc == (bfd_size_type) -1)
1536 {
1537 _bfd_stringtab_free (ret);
1538 ret = NULL;
1539 }
1540 }
1541 return ret;
1542 }
1543 \f
1544 /* ELF .o/exec file reading */
1545
1546 /* Create a new bfd section from an ELF section header. */
1547
1548 bfd_boolean
1549 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1550 {
1551 Elf_Internal_Shdr *hdr;
1552 Elf_Internal_Ehdr *ehdr;
1553 const struct elf_backend_data *bed;
1554 const char *name;
1555
1556 if (shindex >= elf_numsections (abfd))
1557 return FALSE;
1558
1559 hdr = elf_elfsections (abfd)[shindex];
1560 ehdr = elf_elfheader (abfd);
1561 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1562 hdr->sh_name);
1563 if (name == NULL)
1564 return FALSE;
1565
1566 bed = get_elf_backend_data (abfd);
1567 switch (hdr->sh_type)
1568 {
1569 case SHT_NULL:
1570 /* Inactive section. Throw it away. */
1571 return TRUE;
1572
1573 case SHT_PROGBITS: /* Normal section with contents. */
1574 case SHT_NOBITS: /* .bss section. */
1575 case SHT_HASH: /* .hash section. */
1576 case SHT_NOTE: /* .note section. */
1577 case SHT_INIT_ARRAY: /* .init_array section. */
1578 case SHT_FINI_ARRAY: /* .fini_array section. */
1579 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1580 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1581 case SHT_GNU_HASH: /* .gnu.hash section. */
1582 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1583
1584 case SHT_DYNAMIC: /* Dynamic linking information. */
1585 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1586 return FALSE;
1587 if (hdr->sh_link > elf_numsections (abfd))
1588 {
1589 /* PR 10478: Accept Solaris binaries with a sh_link
1590 field set to SHN_BEFORE or SHN_AFTER. */
1591 switch (bfd_get_arch (abfd))
1592 {
1593 case bfd_arch_i386:
1594 case bfd_arch_sparc:
1595 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1596 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1597 break;
1598 /* Otherwise fall through. */
1599 default:
1600 return FALSE;
1601 }
1602 }
1603 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1604 return FALSE;
1605 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1606 {
1607 Elf_Internal_Shdr *dynsymhdr;
1608
1609 /* The shared libraries distributed with hpux11 have a bogus
1610 sh_link field for the ".dynamic" section. Find the
1611 string table for the ".dynsym" section instead. */
1612 if (elf_dynsymtab (abfd) != 0)
1613 {
1614 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1615 hdr->sh_link = dynsymhdr->sh_link;
1616 }
1617 else
1618 {
1619 unsigned int i, num_sec;
1620
1621 num_sec = elf_numsections (abfd);
1622 for (i = 1; i < num_sec; i++)
1623 {
1624 dynsymhdr = elf_elfsections (abfd)[i];
1625 if (dynsymhdr->sh_type == SHT_DYNSYM)
1626 {
1627 hdr->sh_link = dynsymhdr->sh_link;
1628 break;
1629 }
1630 }
1631 }
1632 }
1633 break;
1634
1635 case SHT_SYMTAB: /* A symbol table */
1636 if (elf_onesymtab (abfd) == shindex)
1637 return TRUE;
1638
1639 if (hdr->sh_entsize != bed->s->sizeof_sym)
1640 return FALSE;
1641 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1642 {
1643 if (hdr->sh_size != 0)
1644 return FALSE;
1645 /* Some assemblers erroneously set sh_info to one with a
1646 zero sh_size. ld sees this as a global symbol count
1647 of (unsigned) -1. Fix it here. */
1648 hdr->sh_info = 0;
1649 return TRUE;
1650 }
1651 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1652 elf_onesymtab (abfd) = shindex;
1653 elf_tdata (abfd)->symtab_hdr = *hdr;
1654 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1655 abfd->flags |= HAS_SYMS;
1656
1657 /* Sometimes a shared object will map in the symbol table. If
1658 SHF_ALLOC is set, and this is a shared object, then we also
1659 treat this section as a BFD section. We can not base the
1660 decision purely on SHF_ALLOC, because that flag is sometimes
1661 set in a relocatable object file, which would confuse the
1662 linker. */
1663 if ((hdr->sh_flags & SHF_ALLOC) != 0
1664 && (abfd->flags & DYNAMIC) != 0
1665 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1666 shindex))
1667 return FALSE;
1668
1669 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1670 can't read symbols without that section loaded as well. It
1671 is most likely specified by the next section header. */
1672 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1673 {
1674 unsigned int i, num_sec;
1675
1676 num_sec = elf_numsections (abfd);
1677 for (i = shindex + 1; i < num_sec; i++)
1678 {
1679 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1680 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1681 && hdr2->sh_link == shindex)
1682 break;
1683 }
1684 if (i == num_sec)
1685 for (i = 1; i < shindex; i++)
1686 {
1687 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1688 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1689 && hdr2->sh_link == shindex)
1690 break;
1691 }
1692 if (i != shindex)
1693 return bfd_section_from_shdr (abfd, i);
1694 }
1695 return TRUE;
1696
1697 case SHT_DYNSYM: /* A dynamic symbol table */
1698 if (elf_dynsymtab (abfd) == shindex)
1699 return TRUE;
1700
1701 if (hdr->sh_entsize != bed->s->sizeof_sym)
1702 return FALSE;
1703 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1704 {
1705 if (hdr->sh_size != 0)
1706 return FALSE;
1707 /* Some linkers erroneously set sh_info to one with a
1708 zero sh_size. ld sees this as a global symbol count
1709 of (unsigned) -1. Fix it here. */
1710 hdr->sh_info = 0;
1711 return TRUE;
1712 }
1713 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1714 elf_dynsymtab (abfd) = shindex;
1715 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1716 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1717 abfd->flags |= HAS_SYMS;
1718
1719 /* Besides being a symbol table, we also treat this as a regular
1720 section, so that objcopy can handle it. */
1721 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1722
1723 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1724 if (elf_symtab_shndx (abfd) == shindex)
1725 return TRUE;
1726
1727 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1728 elf_symtab_shndx (abfd) = shindex;
1729 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1730 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1731 return TRUE;
1732
1733 case SHT_STRTAB: /* A string table */
1734 if (hdr->bfd_section != NULL)
1735 return TRUE;
1736 if (ehdr->e_shstrndx == shindex)
1737 {
1738 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1739 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1740 return TRUE;
1741 }
1742 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1743 {
1744 symtab_strtab:
1745 elf_tdata (abfd)->strtab_hdr = *hdr;
1746 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1747 return TRUE;
1748 }
1749 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1750 {
1751 dynsymtab_strtab:
1752 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1753 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1754 elf_elfsections (abfd)[shindex] = hdr;
1755 /* We also treat this as a regular section, so that objcopy
1756 can handle it. */
1757 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1758 shindex);
1759 }
1760
1761 /* If the string table isn't one of the above, then treat it as a
1762 regular section. We need to scan all the headers to be sure,
1763 just in case this strtab section appeared before the above. */
1764 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1765 {
1766 unsigned int i, num_sec;
1767
1768 num_sec = elf_numsections (abfd);
1769 for (i = 1; i < num_sec; i++)
1770 {
1771 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1772 if (hdr2->sh_link == shindex)
1773 {
1774 /* Prevent endless recursion on broken objects. */
1775 if (i == shindex)
1776 return FALSE;
1777 if (! bfd_section_from_shdr (abfd, i))
1778 return FALSE;
1779 if (elf_onesymtab (abfd) == i)
1780 goto symtab_strtab;
1781 if (elf_dynsymtab (abfd) == i)
1782 goto dynsymtab_strtab;
1783 }
1784 }
1785 }
1786 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1787
1788 case SHT_REL:
1789 case SHT_RELA:
1790 /* *These* do a lot of work -- but build no sections! */
1791 {
1792 asection *target_sect;
1793 Elf_Internal_Shdr *hdr2, **p_hdr;
1794 unsigned int num_sec = elf_numsections (abfd);
1795 struct bfd_elf_section_data *esdt;
1796 bfd_size_type amt;
1797
1798 if (hdr->sh_entsize
1799 != (bfd_size_type) (hdr->sh_type == SHT_REL
1800 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1801 return FALSE;
1802
1803 /* Check for a bogus link to avoid crashing. */
1804 if (hdr->sh_link >= num_sec)
1805 {
1806 ((*_bfd_error_handler)
1807 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1808 abfd, hdr->sh_link, name, shindex));
1809 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1810 shindex);
1811 }
1812
1813 /* For some incomprehensible reason Oracle distributes
1814 libraries for Solaris in which some of the objects have
1815 bogus sh_link fields. It would be nice if we could just
1816 reject them, but, unfortunately, some people need to use
1817 them. We scan through the section headers; if we find only
1818 one suitable symbol table, we clobber the sh_link to point
1819 to it. I hope this doesn't break anything.
1820
1821 Don't do it on executable nor shared library. */
1822 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1823 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1824 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1825 {
1826 unsigned int scan;
1827 int found;
1828
1829 found = 0;
1830 for (scan = 1; scan < num_sec; scan++)
1831 {
1832 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1833 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1834 {
1835 if (found != 0)
1836 {
1837 found = 0;
1838 break;
1839 }
1840 found = scan;
1841 }
1842 }
1843 if (found != 0)
1844 hdr->sh_link = found;
1845 }
1846
1847 /* Get the symbol table. */
1848 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1849 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1850 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1851 return FALSE;
1852
1853 /* If this reloc section does not use the main symbol table we
1854 don't treat it as a reloc section. BFD can't adequately
1855 represent such a section, so at least for now, we don't
1856 try. We just present it as a normal section. We also
1857 can't use it as a reloc section if it points to the null
1858 section, an invalid section, another reloc section, or its
1859 sh_link points to the null section. */
1860 if (hdr->sh_link != elf_onesymtab (abfd)
1861 || hdr->sh_link == SHN_UNDEF
1862 || hdr->sh_info == SHN_UNDEF
1863 || hdr->sh_info >= num_sec
1864 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1865 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1866 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1867 shindex);
1868
1869 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1870 return FALSE;
1871 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1872 if (target_sect == NULL)
1873 return FALSE;
1874
1875 esdt = elf_section_data (target_sect);
1876 if (hdr->sh_type == SHT_RELA)
1877 p_hdr = &esdt->rela.hdr;
1878 else
1879 p_hdr = &esdt->rel.hdr;
1880
1881 BFD_ASSERT (*p_hdr == NULL);
1882 amt = sizeof (*hdr2);
1883 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1884 if (hdr2 == NULL)
1885 return FALSE;
1886 *hdr2 = *hdr;
1887 *p_hdr = hdr2;
1888 elf_elfsections (abfd)[shindex] = hdr2;
1889 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1890 target_sect->flags |= SEC_RELOC;
1891 target_sect->relocation = NULL;
1892 target_sect->rel_filepos = hdr->sh_offset;
1893 /* In the section to which the relocations apply, mark whether
1894 its relocations are of the REL or RELA variety. */
1895 if (hdr->sh_size != 0)
1896 {
1897 if (hdr->sh_type == SHT_RELA)
1898 target_sect->use_rela_p = 1;
1899 }
1900 abfd->flags |= HAS_RELOC;
1901 return TRUE;
1902 }
1903
1904 case SHT_GNU_verdef:
1905 elf_dynverdef (abfd) = shindex;
1906 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1907 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1908
1909 case SHT_GNU_versym:
1910 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1911 return FALSE;
1912 elf_dynversym (abfd) = shindex;
1913 elf_tdata (abfd)->dynversym_hdr = *hdr;
1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1915
1916 case SHT_GNU_verneed:
1917 elf_dynverref (abfd) = shindex;
1918 elf_tdata (abfd)->dynverref_hdr = *hdr;
1919 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1920
1921 case SHT_SHLIB:
1922 return TRUE;
1923
1924 case SHT_GROUP:
1925 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1926 return FALSE;
1927 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1928 return FALSE;
1929 if (hdr->contents != NULL)
1930 {
1931 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1932 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1933 asection *s;
1934
1935 if (idx->flags & GRP_COMDAT)
1936 hdr->bfd_section->flags
1937 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1938
1939 /* We try to keep the same section order as it comes in. */
1940 idx += n_elt;
1941 while (--n_elt != 0)
1942 {
1943 --idx;
1944
1945 if (idx->shdr != NULL
1946 && (s = idx->shdr->bfd_section) != NULL
1947 && elf_next_in_group (s) != NULL)
1948 {
1949 elf_next_in_group (hdr->bfd_section) = s;
1950 break;
1951 }
1952 }
1953 }
1954 break;
1955
1956 default:
1957 /* Possibly an attributes section. */
1958 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1959 || hdr->sh_type == bed->obj_attrs_section_type)
1960 {
1961 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1962 return FALSE;
1963 _bfd_elf_parse_attributes (abfd, hdr);
1964 return TRUE;
1965 }
1966
1967 /* Check for any processor-specific section types. */
1968 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1969 return TRUE;
1970
1971 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1972 {
1973 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1974 /* FIXME: How to properly handle allocated section reserved
1975 for applications? */
1976 (*_bfd_error_handler)
1977 (_("%B: don't know how to handle allocated, application "
1978 "specific section `%s' [0x%8x]"),
1979 abfd, name, hdr->sh_type);
1980 else
1981 /* Allow sections reserved for applications. */
1982 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1983 shindex);
1984 }
1985 else if (hdr->sh_type >= SHT_LOPROC
1986 && hdr->sh_type <= SHT_HIPROC)
1987 /* FIXME: We should handle this section. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle processor specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1993 {
1994 /* Unrecognised OS-specific sections. */
1995 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1996 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1997 required to correctly process the section and the file should
1998 be rejected with an error message. */
1999 (*_bfd_error_handler)
2000 (_("%B: don't know how to handle OS specific section "
2001 "`%s' [0x%8x]"),
2002 abfd, name, hdr->sh_type);
2003 else
2004 /* Otherwise it should be processed. */
2005 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2006 }
2007 else
2008 /* FIXME: We should handle this section. */
2009 (*_bfd_error_handler)
2010 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2011 abfd, name, hdr->sh_type);
2012
2013 return FALSE;
2014 }
2015
2016 return TRUE;
2017 }
2018
2019 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2020
2021 Elf_Internal_Sym *
2022 bfd_sym_from_r_symndx (struct sym_cache *cache,
2023 bfd *abfd,
2024 unsigned long r_symndx)
2025 {
2026 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2027
2028 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2029 {
2030 Elf_Internal_Shdr *symtab_hdr;
2031 unsigned char esym[sizeof (Elf64_External_Sym)];
2032 Elf_External_Sym_Shndx eshndx;
2033
2034 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2035 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2036 &cache->sym[ent], esym, &eshndx) == NULL)
2037 return NULL;
2038
2039 if (cache->abfd != abfd)
2040 {
2041 memset (cache->indx, -1, sizeof (cache->indx));
2042 cache->abfd = abfd;
2043 }
2044 cache->indx[ent] = r_symndx;
2045 }
2046
2047 return &cache->sym[ent];
2048 }
2049
2050 /* Given an ELF section number, retrieve the corresponding BFD
2051 section. */
2052
2053 asection *
2054 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2055 {
2056 if (sec_index >= elf_numsections (abfd))
2057 return NULL;
2058 return elf_elfsections (abfd)[sec_index]->bfd_section;
2059 }
2060
2061 static const struct bfd_elf_special_section special_sections_b[] =
2062 {
2063 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2064 { NULL, 0, 0, 0, 0 }
2065 };
2066
2067 static const struct bfd_elf_special_section special_sections_c[] =
2068 {
2069 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2070 { NULL, 0, 0, 0, 0 }
2071 };
2072
2073 static const struct bfd_elf_special_section special_sections_d[] =
2074 {
2075 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2076 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2077 /* There are more DWARF sections than these, but they needn't be added here
2078 unless you have to cope with broken compilers that don't emit section
2079 attributes or you want to help the user writing assembler. */
2080 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2081 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2082 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2083 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2084 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2086 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2087 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2088 { NULL, 0, 0, 0, 0 }
2089 };
2090
2091 static const struct bfd_elf_special_section special_sections_f[] =
2092 {
2093 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2094 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2095 { NULL, 0, 0, 0, 0 }
2096 };
2097
2098 static const struct bfd_elf_special_section special_sections_g[] =
2099 {
2100 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2101 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2102 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2103 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2104 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2105 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2106 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2107 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2108 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2109 { NULL, 0, 0, 0, 0 }
2110 };
2111
2112 static const struct bfd_elf_special_section special_sections_h[] =
2113 {
2114 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2115 { NULL, 0, 0, 0, 0 }
2116 };
2117
2118 static const struct bfd_elf_special_section special_sections_i[] =
2119 {
2120 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2121 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2122 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2123 { NULL, 0, 0, 0, 0 }
2124 };
2125
2126 static const struct bfd_elf_special_section special_sections_l[] =
2127 {
2128 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2129 { NULL, 0, 0, 0, 0 }
2130 };
2131
2132 static const struct bfd_elf_special_section special_sections_n[] =
2133 {
2134 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2135 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2136 { NULL, 0, 0, 0, 0 }
2137 };
2138
2139 static const struct bfd_elf_special_section special_sections_p[] =
2140 {
2141 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2142 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2143 { NULL, 0, 0, 0, 0 }
2144 };
2145
2146 static const struct bfd_elf_special_section special_sections_r[] =
2147 {
2148 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2149 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2150 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2151 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2152 { NULL, 0, 0, 0, 0 }
2153 };
2154
2155 static const struct bfd_elf_special_section special_sections_s[] =
2156 {
2157 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2158 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2159 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2160 /* See struct bfd_elf_special_section declaration for the semantics of
2161 this special case where .prefix_length != strlen (.prefix). */
2162 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2163 { NULL, 0, 0, 0, 0 }
2164 };
2165
2166 static const struct bfd_elf_special_section special_sections_t[] =
2167 {
2168 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2169 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2170 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2171 { NULL, 0, 0, 0, 0 }
2172 };
2173
2174 static const struct bfd_elf_special_section special_sections_z[] =
2175 {
2176 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2177 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2178 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2179 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2180 { NULL, 0, 0, 0, 0 }
2181 };
2182
2183 static const struct bfd_elf_special_section * const special_sections[] =
2184 {
2185 special_sections_b, /* 'b' */
2186 special_sections_c, /* 'c' */
2187 special_sections_d, /* 'd' */
2188 NULL, /* 'e' */
2189 special_sections_f, /* 'f' */
2190 special_sections_g, /* 'g' */
2191 special_sections_h, /* 'h' */
2192 special_sections_i, /* 'i' */
2193 NULL, /* 'j' */
2194 NULL, /* 'k' */
2195 special_sections_l, /* 'l' */
2196 NULL, /* 'm' */
2197 special_sections_n, /* 'n' */
2198 NULL, /* 'o' */
2199 special_sections_p, /* 'p' */
2200 NULL, /* 'q' */
2201 special_sections_r, /* 'r' */
2202 special_sections_s, /* 's' */
2203 special_sections_t, /* 't' */
2204 NULL, /* 'u' */
2205 NULL, /* 'v' */
2206 NULL, /* 'w' */
2207 NULL, /* 'x' */
2208 NULL, /* 'y' */
2209 special_sections_z /* 'z' */
2210 };
2211
2212 const struct bfd_elf_special_section *
2213 _bfd_elf_get_special_section (const char *name,
2214 const struct bfd_elf_special_section *spec,
2215 unsigned int rela)
2216 {
2217 int i;
2218 int len;
2219
2220 len = strlen (name);
2221
2222 for (i = 0; spec[i].prefix != NULL; i++)
2223 {
2224 int suffix_len;
2225 int prefix_len = spec[i].prefix_length;
2226
2227 if (len < prefix_len)
2228 continue;
2229 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2230 continue;
2231
2232 suffix_len = spec[i].suffix_length;
2233 if (suffix_len <= 0)
2234 {
2235 if (name[prefix_len] != 0)
2236 {
2237 if (suffix_len == 0)
2238 continue;
2239 if (name[prefix_len] != '.'
2240 && (suffix_len == -2
2241 || (rela && spec[i].type == SHT_REL)))
2242 continue;
2243 }
2244 }
2245 else
2246 {
2247 if (len < prefix_len + suffix_len)
2248 continue;
2249 if (memcmp (name + len - suffix_len,
2250 spec[i].prefix + prefix_len,
2251 suffix_len) != 0)
2252 continue;
2253 }
2254 return &spec[i];
2255 }
2256
2257 return NULL;
2258 }
2259
2260 const struct bfd_elf_special_section *
2261 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2262 {
2263 int i;
2264 const struct bfd_elf_special_section *spec;
2265 const struct elf_backend_data *bed;
2266
2267 /* See if this is one of the special sections. */
2268 if (sec->name == NULL)
2269 return NULL;
2270
2271 bed = get_elf_backend_data (abfd);
2272 spec = bed->special_sections;
2273 if (spec)
2274 {
2275 spec = _bfd_elf_get_special_section (sec->name,
2276 bed->special_sections,
2277 sec->use_rela_p);
2278 if (spec != NULL)
2279 return spec;
2280 }
2281
2282 if (sec->name[0] != '.')
2283 return NULL;
2284
2285 i = sec->name[1] - 'b';
2286 if (i < 0 || i > 'z' - 'b')
2287 return NULL;
2288
2289 spec = special_sections[i];
2290
2291 if (spec == NULL)
2292 return NULL;
2293
2294 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2295 }
2296
2297 bfd_boolean
2298 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2299 {
2300 struct bfd_elf_section_data *sdata;
2301 const struct elf_backend_data *bed;
2302 const struct bfd_elf_special_section *ssect;
2303
2304 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2305 if (sdata == NULL)
2306 {
2307 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2308 sizeof (*sdata));
2309 if (sdata == NULL)
2310 return FALSE;
2311 sec->used_by_bfd = sdata;
2312 }
2313
2314 /* Indicate whether or not this section should use RELA relocations. */
2315 bed = get_elf_backend_data (abfd);
2316 sec->use_rela_p = bed->default_use_rela_p;
2317
2318 /* When we read a file, we don't need to set ELF section type and
2319 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2320 anyway. We will set ELF section type and flags for all linker
2321 created sections. If user specifies BFD section flags, we will
2322 set ELF section type and flags based on BFD section flags in
2323 elf_fake_sections. Special handling for .init_array/.fini_array
2324 output sections since they may contain .ctors/.dtors input
2325 sections. We don't want _bfd_elf_init_private_section_data to
2326 copy ELF section type from .ctors/.dtors input sections. */
2327 if (abfd->direction != read_direction
2328 || (sec->flags & SEC_LINKER_CREATED) != 0)
2329 {
2330 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2331 if (ssect != NULL
2332 && (!sec->flags
2333 || (sec->flags & SEC_LINKER_CREATED) != 0
2334 || ssect->type == SHT_INIT_ARRAY
2335 || ssect->type == SHT_FINI_ARRAY))
2336 {
2337 elf_section_type (sec) = ssect->type;
2338 elf_section_flags (sec) = ssect->attr;
2339 }
2340 }
2341
2342 return _bfd_generic_new_section_hook (abfd, sec);
2343 }
2344
2345 /* Create a new bfd section from an ELF program header.
2346
2347 Since program segments have no names, we generate a synthetic name
2348 of the form segment<NUM>, where NUM is generally the index in the
2349 program header table. For segments that are split (see below) we
2350 generate the names segment<NUM>a and segment<NUM>b.
2351
2352 Note that some program segments may have a file size that is different than
2353 (less than) the memory size. All this means is that at execution the
2354 system must allocate the amount of memory specified by the memory size,
2355 but only initialize it with the first "file size" bytes read from the
2356 file. This would occur for example, with program segments consisting
2357 of combined data+bss.
2358
2359 To handle the above situation, this routine generates TWO bfd sections
2360 for the single program segment. The first has the length specified by
2361 the file size of the segment, and the second has the length specified
2362 by the difference between the two sizes. In effect, the segment is split
2363 into its initialized and uninitialized parts.
2364
2365 */
2366
2367 bfd_boolean
2368 _bfd_elf_make_section_from_phdr (bfd *abfd,
2369 Elf_Internal_Phdr *hdr,
2370 int hdr_index,
2371 const char *type_name)
2372 {
2373 asection *newsect;
2374 char *name;
2375 char namebuf[64];
2376 size_t len;
2377 int split;
2378
2379 split = ((hdr->p_memsz > 0)
2380 && (hdr->p_filesz > 0)
2381 && (hdr->p_memsz > hdr->p_filesz));
2382
2383 if (hdr->p_filesz > 0)
2384 {
2385 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2386 len = strlen (namebuf) + 1;
2387 name = (char *) bfd_alloc (abfd, len);
2388 if (!name)
2389 return FALSE;
2390 memcpy (name, namebuf, len);
2391 newsect = bfd_make_section (abfd, name);
2392 if (newsect == NULL)
2393 return FALSE;
2394 newsect->vma = hdr->p_vaddr;
2395 newsect->lma = hdr->p_paddr;
2396 newsect->size = hdr->p_filesz;
2397 newsect->filepos = hdr->p_offset;
2398 newsect->flags |= SEC_HAS_CONTENTS;
2399 newsect->alignment_power = bfd_log2 (hdr->p_align);
2400 if (hdr->p_type == PT_LOAD)
2401 {
2402 newsect->flags |= SEC_ALLOC;
2403 newsect->flags |= SEC_LOAD;
2404 if (hdr->p_flags & PF_X)
2405 {
2406 /* FIXME: all we known is that it has execute PERMISSION,
2407 may be data. */
2408 newsect->flags |= SEC_CODE;
2409 }
2410 }
2411 if (!(hdr->p_flags & PF_W))
2412 {
2413 newsect->flags |= SEC_READONLY;
2414 }
2415 }
2416
2417 if (hdr->p_memsz > hdr->p_filesz)
2418 {
2419 bfd_vma align;
2420
2421 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2422 len = strlen (namebuf) + 1;
2423 name = (char *) bfd_alloc (abfd, len);
2424 if (!name)
2425 return FALSE;
2426 memcpy (name, namebuf, len);
2427 newsect = bfd_make_section (abfd, name);
2428 if (newsect == NULL)
2429 return FALSE;
2430 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2431 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2432 newsect->size = hdr->p_memsz - hdr->p_filesz;
2433 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2434 align = newsect->vma & -newsect->vma;
2435 if (align == 0 || align > hdr->p_align)
2436 align = hdr->p_align;
2437 newsect->alignment_power = bfd_log2 (align);
2438 if (hdr->p_type == PT_LOAD)
2439 {
2440 /* Hack for gdb. Segments that have not been modified do
2441 not have their contents written to a core file, on the
2442 assumption that a debugger can find the contents in the
2443 executable. We flag this case by setting the fake
2444 section size to zero. Note that "real" bss sections will
2445 always have their contents dumped to the core file. */
2446 if (bfd_get_format (abfd) == bfd_core)
2447 newsect->size = 0;
2448 newsect->flags |= SEC_ALLOC;
2449 if (hdr->p_flags & PF_X)
2450 newsect->flags |= SEC_CODE;
2451 }
2452 if (!(hdr->p_flags & PF_W))
2453 newsect->flags |= SEC_READONLY;
2454 }
2455
2456 return TRUE;
2457 }
2458
2459 bfd_boolean
2460 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2461 {
2462 const struct elf_backend_data *bed;
2463
2464 switch (hdr->p_type)
2465 {
2466 case PT_NULL:
2467 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2468
2469 case PT_LOAD:
2470 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2471
2472 case PT_DYNAMIC:
2473 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2474
2475 case PT_INTERP:
2476 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2477
2478 case PT_NOTE:
2479 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2480 return FALSE;
2481 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2482 return FALSE;
2483 return TRUE;
2484
2485 case PT_SHLIB:
2486 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2487
2488 case PT_PHDR:
2489 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2490
2491 case PT_GNU_EH_FRAME:
2492 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2493 "eh_frame_hdr");
2494
2495 case PT_GNU_STACK:
2496 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2497
2498 case PT_GNU_RELRO:
2499 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2500
2501 default:
2502 /* Check for any processor-specific program segment types. */
2503 bed = get_elf_backend_data (abfd);
2504 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2505 }
2506 }
2507
2508 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2509 REL or RELA. */
2510
2511 Elf_Internal_Shdr *
2512 _bfd_elf_single_rel_hdr (asection *sec)
2513 {
2514 if (elf_section_data (sec)->rel.hdr)
2515 {
2516 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2517 return elf_section_data (sec)->rel.hdr;
2518 }
2519 else
2520 return elf_section_data (sec)->rela.hdr;
2521 }
2522
2523 /* Allocate and initialize a section-header for a new reloc section,
2524 containing relocations against ASECT. It is stored in RELDATA. If
2525 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2526 relocations. */
2527
2528 static bfd_boolean
2529 _bfd_elf_init_reloc_shdr (bfd *abfd,
2530 struct bfd_elf_section_reloc_data *reldata,
2531 asection *asect,
2532 bfd_boolean use_rela_p)
2533 {
2534 Elf_Internal_Shdr *rel_hdr;
2535 char *name;
2536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2537 bfd_size_type amt;
2538
2539 amt = sizeof (Elf_Internal_Shdr);
2540 BFD_ASSERT (reldata->hdr == NULL);
2541 rel_hdr = bfd_zalloc (abfd, amt);
2542 reldata->hdr = rel_hdr;
2543
2544 amt = sizeof ".rela" + strlen (asect->name);
2545 name = (char *) bfd_alloc (abfd, amt);
2546 if (name == NULL)
2547 return FALSE;
2548 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2549 rel_hdr->sh_name =
2550 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2551 FALSE);
2552 if (rel_hdr->sh_name == (unsigned int) -1)
2553 return FALSE;
2554 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2555 rel_hdr->sh_entsize = (use_rela_p
2556 ? bed->s->sizeof_rela
2557 : bed->s->sizeof_rel);
2558 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2559 rel_hdr->sh_flags = 0;
2560 rel_hdr->sh_addr = 0;
2561 rel_hdr->sh_size = 0;
2562 rel_hdr->sh_offset = 0;
2563
2564 return TRUE;
2565 }
2566
2567 /* Return the default section type based on the passed in section flags. */
2568
2569 int
2570 bfd_elf_get_default_section_type (flagword flags)
2571 {
2572 if ((flags & SEC_ALLOC) != 0
2573 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2574 return SHT_NOBITS;
2575 return SHT_PROGBITS;
2576 }
2577
2578 struct fake_section_arg
2579 {
2580 struct bfd_link_info *link_info;
2581 bfd_boolean failed;
2582 };
2583
2584 /* Set up an ELF internal section header for a section. */
2585
2586 static void
2587 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2588 {
2589 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2590 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2591 struct bfd_elf_section_data *esd = elf_section_data (asect);
2592 Elf_Internal_Shdr *this_hdr;
2593 unsigned int sh_type;
2594
2595 if (arg->failed)
2596 {
2597 /* We already failed; just get out of the bfd_map_over_sections
2598 loop. */
2599 return;
2600 }
2601
2602 this_hdr = &esd->this_hdr;
2603
2604 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2605 asect->name, FALSE);
2606 if (this_hdr->sh_name == (unsigned int) -1)
2607 {
2608 arg->failed = TRUE;
2609 return;
2610 }
2611
2612 /* Don't clear sh_flags. Assembler may set additional bits. */
2613
2614 if ((asect->flags & SEC_ALLOC) != 0
2615 || asect->user_set_vma)
2616 this_hdr->sh_addr = asect->vma;
2617 else
2618 this_hdr->sh_addr = 0;
2619
2620 this_hdr->sh_offset = 0;
2621 this_hdr->sh_size = asect->size;
2622 this_hdr->sh_link = 0;
2623 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2624 /* The sh_entsize and sh_info fields may have been set already by
2625 copy_private_section_data. */
2626
2627 this_hdr->bfd_section = asect;
2628 this_hdr->contents = NULL;
2629
2630 /* If the section type is unspecified, we set it based on
2631 asect->flags. */
2632 if ((asect->flags & SEC_GROUP) != 0)
2633 sh_type = SHT_GROUP;
2634 else
2635 sh_type = bfd_elf_get_default_section_type (asect->flags);
2636
2637 if (this_hdr->sh_type == SHT_NULL)
2638 this_hdr->sh_type = sh_type;
2639 else if (this_hdr->sh_type == SHT_NOBITS
2640 && sh_type == SHT_PROGBITS
2641 && (asect->flags & SEC_ALLOC) != 0)
2642 {
2643 /* Warn if we are changing a NOBITS section to PROGBITS, but
2644 allow the link to proceed. This can happen when users link
2645 non-bss input sections to bss output sections, or emit data
2646 to a bss output section via a linker script. */
2647 (*_bfd_error_handler)
2648 (_("warning: section `%A' type changed to PROGBITS"), asect);
2649 this_hdr->sh_type = sh_type;
2650 }
2651
2652 switch (this_hdr->sh_type)
2653 {
2654 default:
2655 break;
2656
2657 case SHT_STRTAB:
2658 case SHT_INIT_ARRAY:
2659 case SHT_FINI_ARRAY:
2660 case SHT_PREINIT_ARRAY:
2661 case SHT_NOTE:
2662 case SHT_NOBITS:
2663 case SHT_PROGBITS:
2664 break;
2665
2666 case SHT_HASH:
2667 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2668 break;
2669
2670 case SHT_DYNSYM:
2671 this_hdr->sh_entsize = bed->s->sizeof_sym;
2672 break;
2673
2674 case SHT_DYNAMIC:
2675 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2676 break;
2677
2678 case SHT_RELA:
2679 if (get_elf_backend_data (abfd)->may_use_rela_p)
2680 this_hdr->sh_entsize = bed->s->sizeof_rela;
2681 break;
2682
2683 case SHT_REL:
2684 if (get_elf_backend_data (abfd)->may_use_rel_p)
2685 this_hdr->sh_entsize = bed->s->sizeof_rel;
2686 break;
2687
2688 case SHT_GNU_versym:
2689 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2690 break;
2691
2692 case SHT_GNU_verdef:
2693 this_hdr->sh_entsize = 0;
2694 /* objcopy or strip will copy over sh_info, but may not set
2695 cverdefs. The linker will set cverdefs, but sh_info will be
2696 zero. */
2697 if (this_hdr->sh_info == 0)
2698 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2699 else
2700 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2701 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2702 break;
2703
2704 case SHT_GNU_verneed:
2705 this_hdr->sh_entsize = 0;
2706 /* objcopy or strip will copy over sh_info, but may not set
2707 cverrefs. The linker will set cverrefs, but sh_info will be
2708 zero. */
2709 if (this_hdr->sh_info == 0)
2710 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2711 else
2712 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2713 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2714 break;
2715
2716 case SHT_GROUP:
2717 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2718 break;
2719
2720 case SHT_GNU_HASH:
2721 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2722 break;
2723 }
2724
2725 if ((asect->flags & SEC_ALLOC) != 0)
2726 this_hdr->sh_flags |= SHF_ALLOC;
2727 if ((asect->flags & SEC_READONLY) == 0)
2728 this_hdr->sh_flags |= SHF_WRITE;
2729 if ((asect->flags & SEC_CODE) != 0)
2730 this_hdr->sh_flags |= SHF_EXECINSTR;
2731 if ((asect->flags & SEC_MERGE) != 0)
2732 {
2733 this_hdr->sh_flags |= SHF_MERGE;
2734 this_hdr->sh_entsize = asect->entsize;
2735 if ((asect->flags & SEC_STRINGS) != 0)
2736 this_hdr->sh_flags |= SHF_STRINGS;
2737 }
2738 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2739 this_hdr->sh_flags |= SHF_GROUP;
2740 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2741 {
2742 this_hdr->sh_flags |= SHF_TLS;
2743 if (asect->size == 0
2744 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2745 {
2746 struct bfd_link_order *o = asect->map_tail.link_order;
2747
2748 this_hdr->sh_size = 0;
2749 if (o != NULL)
2750 {
2751 this_hdr->sh_size = o->offset + o->size;
2752 if (this_hdr->sh_size != 0)
2753 this_hdr->sh_type = SHT_NOBITS;
2754 }
2755 }
2756 }
2757 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2758 this_hdr->sh_flags |= SHF_EXCLUDE;
2759
2760 /* If the section has relocs, set up a section header for the
2761 SHT_REL[A] section. If two relocation sections are required for
2762 this section, it is up to the processor-specific back-end to
2763 create the other. */
2764 if ((asect->flags & SEC_RELOC) != 0)
2765 {
2766 /* When doing a relocatable link, create both REL and RELA sections if
2767 needed. */
2768 if (arg->link_info
2769 /* Do the normal setup if we wouldn't create any sections here. */
2770 && esd->rel.count + esd->rela.count > 0
2771 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2772 {
2773 if (esd->rel.count && esd->rel.hdr == NULL
2774 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2775 {
2776 arg->failed = TRUE;
2777 return;
2778 }
2779 if (esd->rela.count && esd->rela.hdr == NULL
2780 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2781 {
2782 arg->failed = TRUE;
2783 return;
2784 }
2785 }
2786 else if (!_bfd_elf_init_reloc_shdr (abfd,
2787 (asect->use_rela_p
2788 ? &esd->rela : &esd->rel),
2789 asect,
2790 asect->use_rela_p))
2791 arg->failed = TRUE;
2792 }
2793
2794 /* Check for processor-specific section types. */
2795 sh_type = this_hdr->sh_type;
2796 if (bed->elf_backend_fake_sections
2797 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2798 arg->failed = TRUE;
2799
2800 if (sh_type == SHT_NOBITS && asect->size != 0)
2801 {
2802 /* Don't change the header type from NOBITS if we are being
2803 called for objcopy --only-keep-debug. */
2804 this_hdr->sh_type = sh_type;
2805 }
2806 }
2807
2808 /* Fill in the contents of a SHT_GROUP section. Called from
2809 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2810 when ELF targets use the generic linker, ld. Called for ld -r
2811 from bfd_elf_final_link. */
2812
2813 void
2814 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2815 {
2816 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2817 asection *elt, *first;
2818 unsigned char *loc;
2819 bfd_boolean gas;
2820
2821 /* Ignore linker created group section. See elfNN_ia64_object_p in
2822 elfxx-ia64.c. */
2823 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2824 || *failedptr)
2825 return;
2826
2827 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2828 {
2829 unsigned long symindx = 0;
2830
2831 /* elf_group_id will have been set up by objcopy and the
2832 generic linker. */
2833 if (elf_group_id (sec) != NULL)
2834 symindx = elf_group_id (sec)->udata.i;
2835
2836 if (symindx == 0)
2837 {
2838 /* If called from the assembler, swap_out_syms will have set up
2839 elf_section_syms. */
2840 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2841 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2842 }
2843 elf_section_data (sec)->this_hdr.sh_info = symindx;
2844 }
2845 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2846 {
2847 /* The ELF backend linker sets sh_info to -2 when the group
2848 signature symbol is global, and thus the index can't be
2849 set until all local symbols are output. */
2850 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2851 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2852 unsigned long symndx = sec_data->this_hdr.sh_info;
2853 unsigned long extsymoff = 0;
2854 struct elf_link_hash_entry *h;
2855
2856 if (!elf_bad_symtab (igroup->owner))
2857 {
2858 Elf_Internal_Shdr *symtab_hdr;
2859
2860 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2861 extsymoff = symtab_hdr->sh_info;
2862 }
2863 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2864 while (h->root.type == bfd_link_hash_indirect
2865 || h->root.type == bfd_link_hash_warning)
2866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2867
2868 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2869 }
2870
2871 /* The contents won't be allocated for "ld -r" or objcopy. */
2872 gas = TRUE;
2873 if (sec->contents == NULL)
2874 {
2875 gas = FALSE;
2876 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2877
2878 /* Arrange for the section to be written out. */
2879 elf_section_data (sec)->this_hdr.contents = sec->contents;
2880 if (sec->contents == NULL)
2881 {
2882 *failedptr = TRUE;
2883 return;
2884 }
2885 }
2886
2887 loc = sec->contents + sec->size;
2888
2889 /* Get the pointer to the first section in the group that gas
2890 squirreled away here. objcopy arranges for this to be set to the
2891 start of the input section group. */
2892 first = elt = elf_next_in_group (sec);
2893
2894 /* First element is a flag word. Rest of section is elf section
2895 indices for all the sections of the group. Write them backwards
2896 just to keep the group in the same order as given in .section
2897 directives, not that it matters. */
2898 while (elt != NULL)
2899 {
2900 asection *s;
2901
2902 s = elt;
2903 if (!gas)
2904 s = s->output_section;
2905 if (s != NULL
2906 && !bfd_is_abs_section (s))
2907 {
2908 unsigned int idx = elf_section_data (s)->this_idx;
2909
2910 loc -= 4;
2911 H_PUT_32 (abfd, idx, loc);
2912 }
2913 elt = elf_next_in_group (elt);
2914 if (elt == first)
2915 break;
2916 }
2917
2918 if ((loc -= 4) != sec->contents)
2919 abort ();
2920
2921 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2922 }
2923
2924 /* Assign all ELF section numbers. The dummy first section is handled here
2925 too. The link/info pointers for the standard section types are filled
2926 in here too, while we're at it. */
2927
2928 static bfd_boolean
2929 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2930 {
2931 struct elf_obj_tdata *t = elf_tdata (abfd);
2932 asection *sec;
2933 unsigned int section_number, secn;
2934 Elf_Internal_Shdr **i_shdrp;
2935 struct bfd_elf_section_data *d;
2936 bfd_boolean need_symtab;
2937
2938 section_number = 1;
2939
2940 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2941
2942 /* SHT_GROUP sections are in relocatable files only. */
2943 if (link_info == NULL || link_info->relocatable)
2944 {
2945 /* Put SHT_GROUP sections first. */
2946 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2947 {
2948 d = elf_section_data (sec);
2949
2950 if (d->this_hdr.sh_type == SHT_GROUP)
2951 {
2952 if (sec->flags & SEC_LINKER_CREATED)
2953 {
2954 /* Remove the linker created SHT_GROUP sections. */
2955 bfd_section_list_remove (abfd, sec);
2956 abfd->section_count--;
2957 }
2958 else
2959 d->this_idx = section_number++;
2960 }
2961 }
2962 }
2963
2964 for (sec = abfd->sections; sec; sec = sec->next)
2965 {
2966 d = elf_section_data (sec);
2967
2968 if (d->this_hdr.sh_type != SHT_GROUP)
2969 d->this_idx = section_number++;
2970 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2971 if (d->rel.hdr)
2972 {
2973 d->rel.idx = section_number++;
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2975 }
2976 else
2977 d->rel.idx = 0;
2978
2979 if (d->rela.hdr)
2980 {
2981 d->rela.idx = section_number++;
2982 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2983 }
2984 else
2985 d->rela.idx = 0;
2986 }
2987
2988 elf_shstrtab_sec (abfd) = section_number++;
2989 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2990 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
2991
2992 need_symtab = (bfd_get_symcount (abfd) > 0
2993 || (link_info == NULL
2994 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2995 == HAS_RELOC)));
2996 if (need_symtab)
2997 {
2998 elf_onesymtab (abfd) = section_number++;
2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3000 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3001 {
3002 elf_symtab_shndx (abfd) = section_number++;
3003 t->symtab_shndx_hdr.sh_name
3004 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3005 ".symtab_shndx", FALSE);
3006 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3007 return FALSE;
3008 }
3009 elf_strtab_sec (abfd) = section_number++;
3010 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3011 }
3012
3013 if (section_number >= SHN_LORESERVE)
3014 {
3015 _bfd_error_handler (_("%B: too many sections: %u"),
3016 abfd, section_number);
3017 return FALSE;
3018 }
3019
3020 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3021 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3022
3023 elf_numsections (abfd) = section_number;
3024 elf_elfheader (abfd)->e_shnum = section_number;
3025
3026 /* Set up the list of section header pointers, in agreement with the
3027 indices. */
3028 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3029 sizeof (Elf_Internal_Shdr *));
3030 if (i_shdrp == NULL)
3031 return FALSE;
3032
3033 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3034 sizeof (Elf_Internal_Shdr));
3035 if (i_shdrp[0] == NULL)
3036 {
3037 bfd_release (abfd, i_shdrp);
3038 return FALSE;
3039 }
3040
3041 elf_elfsections (abfd) = i_shdrp;
3042
3043 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3044 if (need_symtab)
3045 {
3046 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3047 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3048 {
3049 i_shdrp[elf_symtab_shndx (abfd)] = &t->symtab_shndx_hdr;
3050 t->symtab_shndx_hdr.sh_link = elf_onesymtab (abfd);
3051 }
3052 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3053 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3054 }
3055
3056 for (sec = abfd->sections; sec; sec = sec->next)
3057 {
3058 asection *s;
3059 const char *name;
3060
3061 d = elf_section_data (sec);
3062
3063 i_shdrp[d->this_idx] = &d->this_hdr;
3064 if (d->rel.idx != 0)
3065 i_shdrp[d->rel.idx] = d->rel.hdr;
3066 if (d->rela.idx != 0)
3067 i_shdrp[d->rela.idx] = d->rela.hdr;
3068
3069 /* Fill in the sh_link and sh_info fields while we're at it. */
3070
3071 /* sh_link of a reloc section is the section index of the symbol
3072 table. sh_info is the section index of the section to which
3073 the relocation entries apply. */
3074 if (d->rel.idx != 0)
3075 {
3076 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3077 d->rel.hdr->sh_info = d->this_idx;
3078 }
3079 if (d->rela.idx != 0)
3080 {
3081 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3082 d->rela.hdr->sh_info = d->this_idx;
3083 }
3084
3085 /* We need to set up sh_link for SHF_LINK_ORDER. */
3086 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3087 {
3088 s = elf_linked_to_section (sec);
3089 if (s)
3090 {
3091 /* elf_linked_to_section points to the input section. */
3092 if (link_info != NULL)
3093 {
3094 /* Check discarded linkonce section. */
3095 if (discarded_section (s))
3096 {
3097 asection *kept;
3098 (*_bfd_error_handler)
3099 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3100 abfd, d->this_hdr.bfd_section,
3101 s, s->owner);
3102 /* Point to the kept section if it has the same
3103 size as the discarded one. */
3104 kept = _bfd_elf_check_kept_section (s, link_info);
3105 if (kept == NULL)
3106 {
3107 bfd_set_error (bfd_error_bad_value);
3108 return FALSE;
3109 }
3110 s = kept;
3111 }
3112
3113 s = s->output_section;
3114 BFD_ASSERT (s != NULL);
3115 }
3116 else
3117 {
3118 /* Handle objcopy. */
3119 if (s->output_section == NULL)
3120 {
3121 (*_bfd_error_handler)
3122 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3123 abfd, d->this_hdr.bfd_section, s, s->owner);
3124 bfd_set_error (bfd_error_bad_value);
3125 return FALSE;
3126 }
3127 s = s->output_section;
3128 }
3129 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3130 }
3131 else
3132 {
3133 /* PR 290:
3134 The Intel C compiler generates SHT_IA_64_UNWIND with
3135 SHF_LINK_ORDER. But it doesn't set the sh_link or
3136 sh_info fields. Hence we could get the situation
3137 where s is NULL. */
3138 const struct elf_backend_data *bed
3139 = get_elf_backend_data (abfd);
3140 if (bed->link_order_error_handler)
3141 bed->link_order_error_handler
3142 (_("%B: warning: sh_link not set for section `%A'"),
3143 abfd, sec);
3144 }
3145 }
3146
3147 switch (d->this_hdr.sh_type)
3148 {
3149 case SHT_REL:
3150 case SHT_RELA:
3151 /* A reloc section which we are treating as a normal BFD
3152 section. sh_link is the section index of the symbol
3153 table. sh_info is the section index of the section to
3154 which the relocation entries apply. We assume that an
3155 allocated reloc section uses the dynamic symbol table.
3156 FIXME: How can we be sure? */
3157 s = bfd_get_section_by_name (abfd, ".dynsym");
3158 if (s != NULL)
3159 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3160
3161 /* We look up the section the relocs apply to by name. */
3162 name = sec->name;
3163 if (d->this_hdr.sh_type == SHT_REL)
3164 name += 4;
3165 else
3166 name += 5;
3167 s = bfd_get_section_by_name (abfd, name);
3168 if (s != NULL)
3169 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3170 break;
3171
3172 case SHT_STRTAB:
3173 /* We assume that a section named .stab*str is a stabs
3174 string section. We look for a section with the same name
3175 but without the trailing ``str'', and set its sh_link
3176 field to point to this section. */
3177 if (CONST_STRNEQ (sec->name, ".stab")
3178 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3179 {
3180 size_t len;
3181 char *alc;
3182
3183 len = strlen (sec->name);
3184 alc = (char *) bfd_malloc (len - 2);
3185 if (alc == NULL)
3186 return FALSE;
3187 memcpy (alc, sec->name, len - 3);
3188 alc[len - 3] = '\0';
3189 s = bfd_get_section_by_name (abfd, alc);
3190 free (alc);
3191 if (s != NULL)
3192 {
3193 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3194
3195 /* This is a .stab section. */
3196 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3197 elf_section_data (s)->this_hdr.sh_entsize
3198 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3199 }
3200 }
3201 break;
3202
3203 case SHT_DYNAMIC:
3204 case SHT_DYNSYM:
3205 case SHT_GNU_verneed:
3206 case SHT_GNU_verdef:
3207 /* sh_link is the section header index of the string table
3208 used for the dynamic entries, or the symbol table, or the
3209 version strings. */
3210 s = bfd_get_section_by_name (abfd, ".dynstr");
3211 if (s != NULL)
3212 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3213 break;
3214
3215 case SHT_GNU_LIBLIST:
3216 /* sh_link is the section header index of the prelink library
3217 list used for the dynamic entries, or the symbol table, or
3218 the version strings. */
3219 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3220 ? ".dynstr" : ".gnu.libstr");
3221 if (s != NULL)
3222 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3223 break;
3224
3225 case SHT_HASH:
3226 case SHT_GNU_HASH:
3227 case SHT_GNU_versym:
3228 /* sh_link is the section header index of the symbol table
3229 this hash table or version table is for. */
3230 s = bfd_get_section_by_name (abfd, ".dynsym");
3231 if (s != NULL)
3232 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3233 break;
3234
3235 case SHT_GROUP:
3236 d->this_hdr.sh_link = elf_onesymtab (abfd);
3237 }
3238 }
3239
3240 for (secn = 1; secn < section_number; ++secn)
3241 if (i_shdrp[secn] == NULL)
3242 i_shdrp[secn] = i_shdrp[0];
3243 else
3244 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3245 i_shdrp[secn]->sh_name);
3246 return TRUE;
3247 }
3248
3249 static bfd_boolean
3250 sym_is_global (bfd *abfd, asymbol *sym)
3251 {
3252 /* If the backend has a special mapping, use it. */
3253 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3254 if (bed->elf_backend_sym_is_global)
3255 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3256
3257 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3258 || bfd_is_und_section (bfd_get_section (sym))
3259 || bfd_is_com_section (bfd_get_section (sym)));
3260 }
3261
3262 /* Don't output section symbols for sections that are not going to be
3263 output, that are duplicates or there is no BFD section. */
3264
3265 static bfd_boolean
3266 ignore_section_sym (bfd *abfd, asymbol *sym)
3267 {
3268 elf_symbol_type *type_ptr;
3269
3270 if ((sym->flags & BSF_SECTION_SYM) == 0)
3271 return FALSE;
3272
3273 type_ptr = elf_symbol_from (abfd, sym);
3274 return ((type_ptr != NULL
3275 && type_ptr->internal_elf_sym.st_shndx != 0
3276 && bfd_is_abs_section (sym->section))
3277 || !(sym->section->owner == abfd
3278 || (sym->section->output_section->owner == abfd
3279 && sym->section->output_offset == 0)
3280 || bfd_is_abs_section (sym->section)));
3281 }
3282
3283 /* Map symbol from it's internal number to the external number, moving
3284 all local symbols to be at the head of the list. */
3285
3286 static bfd_boolean
3287 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3288 {
3289 unsigned int symcount = bfd_get_symcount (abfd);
3290 asymbol **syms = bfd_get_outsymbols (abfd);
3291 asymbol **sect_syms;
3292 unsigned int num_locals = 0;
3293 unsigned int num_globals = 0;
3294 unsigned int num_locals2 = 0;
3295 unsigned int num_globals2 = 0;
3296 int max_index = 0;
3297 unsigned int idx;
3298 asection *asect;
3299 asymbol **new_syms;
3300
3301 #ifdef DEBUG
3302 fprintf (stderr, "elf_map_symbols\n");
3303 fflush (stderr);
3304 #endif
3305
3306 for (asect = abfd->sections; asect; asect = asect->next)
3307 {
3308 if (max_index < asect->index)
3309 max_index = asect->index;
3310 }
3311
3312 max_index++;
3313 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3314 if (sect_syms == NULL)
3315 return FALSE;
3316 elf_section_syms (abfd) = sect_syms;
3317 elf_num_section_syms (abfd) = max_index;
3318
3319 /* Init sect_syms entries for any section symbols we have already
3320 decided to output. */
3321 for (idx = 0; idx < symcount; idx++)
3322 {
3323 asymbol *sym = syms[idx];
3324
3325 if ((sym->flags & BSF_SECTION_SYM) != 0
3326 && sym->value == 0
3327 && !ignore_section_sym (abfd, sym)
3328 && !bfd_is_abs_section (sym->section))
3329 {
3330 asection *sec = sym->section;
3331
3332 if (sec->owner != abfd)
3333 sec = sec->output_section;
3334
3335 sect_syms[sec->index] = syms[idx];
3336 }
3337 }
3338
3339 /* Classify all of the symbols. */
3340 for (idx = 0; idx < symcount; idx++)
3341 {
3342 if (sym_is_global (abfd, syms[idx]))
3343 num_globals++;
3344 else if (!ignore_section_sym (abfd, syms[idx]))
3345 num_locals++;
3346 }
3347
3348 /* We will be adding a section symbol for each normal BFD section. Most
3349 sections will already have a section symbol in outsymbols, but
3350 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3351 at least in that case. */
3352 for (asect = abfd->sections; asect; asect = asect->next)
3353 {
3354 if (sect_syms[asect->index] == NULL)
3355 {
3356 if (!sym_is_global (abfd, asect->symbol))
3357 num_locals++;
3358 else
3359 num_globals++;
3360 }
3361 }
3362
3363 /* Now sort the symbols so the local symbols are first. */
3364 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3365 sizeof (asymbol *));
3366
3367 if (new_syms == NULL)
3368 return FALSE;
3369
3370 for (idx = 0; idx < symcount; idx++)
3371 {
3372 asymbol *sym = syms[idx];
3373 unsigned int i;
3374
3375 if (sym_is_global (abfd, sym))
3376 i = num_locals + num_globals2++;
3377 else if (!ignore_section_sym (abfd, sym))
3378 i = num_locals2++;
3379 else
3380 continue;
3381 new_syms[i] = sym;
3382 sym->udata.i = i + 1;
3383 }
3384 for (asect = abfd->sections; asect; asect = asect->next)
3385 {
3386 if (sect_syms[asect->index] == NULL)
3387 {
3388 asymbol *sym = asect->symbol;
3389 unsigned int i;
3390
3391 sect_syms[asect->index] = sym;
3392 if (!sym_is_global (abfd, sym))
3393 i = num_locals2++;
3394 else
3395 i = num_locals + num_globals2++;
3396 new_syms[i] = sym;
3397 sym->udata.i = i + 1;
3398 }
3399 }
3400
3401 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3402
3403 *pnum_locals = num_locals;
3404 return TRUE;
3405 }
3406
3407 /* Align to the maximum file alignment that could be required for any
3408 ELF data structure. */
3409
3410 static inline file_ptr
3411 align_file_position (file_ptr off, int align)
3412 {
3413 return (off + align - 1) & ~(align - 1);
3414 }
3415
3416 /* Assign a file position to a section, optionally aligning to the
3417 required section alignment. */
3418
3419 file_ptr
3420 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3421 file_ptr offset,
3422 bfd_boolean align)
3423 {
3424 if (align && i_shdrp->sh_addralign > 1)
3425 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3426 i_shdrp->sh_offset = offset;
3427 if (i_shdrp->bfd_section != NULL)
3428 i_shdrp->bfd_section->filepos = offset;
3429 if (i_shdrp->sh_type != SHT_NOBITS)
3430 offset += i_shdrp->sh_size;
3431 return offset;
3432 }
3433
3434 /* Compute the file positions we are going to put the sections at, and
3435 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3436 is not NULL, this is being called by the ELF backend linker. */
3437
3438 bfd_boolean
3439 _bfd_elf_compute_section_file_positions (bfd *abfd,
3440 struct bfd_link_info *link_info)
3441 {
3442 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3443 struct fake_section_arg fsargs;
3444 bfd_boolean failed;
3445 struct bfd_strtab_hash *strtab = NULL;
3446 Elf_Internal_Shdr *shstrtab_hdr;
3447 bfd_boolean need_symtab;
3448
3449 if (abfd->output_has_begun)
3450 return TRUE;
3451
3452 /* Do any elf backend specific processing first. */
3453 if (bed->elf_backend_begin_write_processing)
3454 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3455
3456 if (! prep_headers (abfd))
3457 return FALSE;
3458
3459 /* Post process the headers if necessary. */
3460 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3461
3462 fsargs.failed = FALSE;
3463 fsargs.link_info = link_info;
3464 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3465 if (fsargs.failed)
3466 return FALSE;
3467
3468 if (!assign_section_numbers (abfd, link_info))
3469 return FALSE;
3470
3471 /* The backend linker builds symbol table information itself. */
3472 need_symtab = (link_info == NULL
3473 && (bfd_get_symcount (abfd) > 0
3474 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3475 == HAS_RELOC)));
3476 if (need_symtab)
3477 {
3478 /* Non-zero if doing a relocatable link. */
3479 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3480
3481 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3482 return FALSE;
3483 }
3484
3485 failed = FALSE;
3486 if (link_info == NULL)
3487 {
3488 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3489 if (failed)
3490 return FALSE;
3491 }
3492
3493 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3494 /* sh_name was set in prep_headers. */
3495 shstrtab_hdr->sh_type = SHT_STRTAB;
3496 shstrtab_hdr->sh_flags = 0;
3497 shstrtab_hdr->sh_addr = 0;
3498 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3499 shstrtab_hdr->sh_entsize = 0;
3500 shstrtab_hdr->sh_link = 0;
3501 shstrtab_hdr->sh_info = 0;
3502 /* sh_offset is set in assign_file_positions_except_relocs. */
3503 shstrtab_hdr->sh_addralign = 1;
3504
3505 if (!assign_file_positions_except_relocs (abfd, link_info))
3506 return FALSE;
3507
3508 if (need_symtab)
3509 {
3510 file_ptr off;
3511 Elf_Internal_Shdr *hdr;
3512
3513 off = elf_next_file_pos (abfd);
3514
3515 hdr = &elf_tdata (abfd)->symtab_hdr;
3516 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3517
3518 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3519 if (hdr->sh_size != 0)
3520 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3521
3522 hdr = &elf_tdata (abfd)->strtab_hdr;
3523 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3524
3525 elf_next_file_pos (abfd) = off;
3526
3527 /* Now that we know where the .strtab section goes, write it
3528 out. */
3529 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3530 || ! _bfd_stringtab_emit (abfd, strtab))
3531 return FALSE;
3532 _bfd_stringtab_free (strtab);
3533 }
3534
3535 abfd->output_has_begun = TRUE;
3536
3537 return TRUE;
3538 }
3539
3540 /* Make an initial estimate of the size of the program header. If we
3541 get the number wrong here, we'll redo section placement. */
3542
3543 static bfd_size_type
3544 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3545 {
3546 size_t segs;
3547 asection *s;
3548 const struct elf_backend_data *bed;
3549
3550 /* Assume we will need exactly two PT_LOAD segments: one for text
3551 and one for data. */
3552 segs = 2;
3553
3554 s = bfd_get_section_by_name (abfd, ".interp");
3555 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3556 {
3557 /* If we have a loadable interpreter section, we need a
3558 PT_INTERP segment. In this case, assume we also need a
3559 PT_PHDR segment, although that may not be true for all
3560 targets. */
3561 segs += 2;
3562 }
3563
3564 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3565 {
3566 /* We need a PT_DYNAMIC segment. */
3567 ++segs;
3568 }
3569
3570 if (info != NULL && info->relro)
3571 {
3572 /* We need a PT_GNU_RELRO segment. */
3573 ++segs;
3574 }
3575
3576 if (elf_eh_frame_hdr (abfd))
3577 {
3578 /* We need a PT_GNU_EH_FRAME segment. */
3579 ++segs;
3580 }
3581
3582 if (elf_stack_flags (abfd))
3583 {
3584 /* We need a PT_GNU_STACK segment. */
3585 ++segs;
3586 }
3587
3588 for (s = abfd->sections; s != NULL; s = s->next)
3589 {
3590 if ((s->flags & SEC_LOAD) != 0
3591 && CONST_STRNEQ (s->name, ".note"))
3592 {
3593 /* We need a PT_NOTE segment. */
3594 ++segs;
3595 /* Try to create just one PT_NOTE segment
3596 for all adjacent loadable .note* sections.
3597 gABI requires that within a PT_NOTE segment
3598 (and also inside of each SHT_NOTE section)
3599 each note is padded to a multiple of 4 size,
3600 so we check whether the sections are correctly
3601 aligned. */
3602 if (s->alignment_power == 2)
3603 while (s->next != NULL
3604 && s->next->alignment_power == 2
3605 && (s->next->flags & SEC_LOAD) != 0
3606 && CONST_STRNEQ (s->next->name, ".note"))
3607 s = s->next;
3608 }
3609 }
3610
3611 for (s = abfd->sections; s != NULL; s = s->next)
3612 {
3613 if (s->flags & SEC_THREAD_LOCAL)
3614 {
3615 /* We need a PT_TLS segment. */
3616 ++segs;
3617 break;
3618 }
3619 }
3620
3621 /* Let the backend count up any program headers it might need. */
3622 bed = get_elf_backend_data (abfd);
3623 if (bed->elf_backend_additional_program_headers)
3624 {
3625 int a;
3626
3627 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3628 if (a == -1)
3629 abort ();
3630 segs += a;
3631 }
3632
3633 return segs * bed->s->sizeof_phdr;
3634 }
3635
3636 /* Find the segment that contains the output_section of section. */
3637
3638 Elf_Internal_Phdr *
3639 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3640 {
3641 struct elf_segment_map *m;
3642 Elf_Internal_Phdr *p;
3643
3644 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
3645 m != NULL;
3646 m = m->next, p++)
3647 {
3648 int i;
3649
3650 for (i = m->count - 1; i >= 0; i--)
3651 if (m->sections[i] == section)
3652 return p;
3653 }
3654
3655 return NULL;
3656 }
3657
3658 /* Create a mapping from a set of sections to a program segment. */
3659
3660 static struct elf_segment_map *
3661 make_mapping (bfd *abfd,
3662 asection **sections,
3663 unsigned int from,
3664 unsigned int to,
3665 bfd_boolean phdr)
3666 {
3667 struct elf_segment_map *m;
3668 unsigned int i;
3669 asection **hdrpp;
3670 bfd_size_type amt;
3671
3672 amt = sizeof (struct elf_segment_map);
3673 amt += (to - from - 1) * sizeof (asection *);
3674 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3675 if (m == NULL)
3676 return NULL;
3677 m->next = NULL;
3678 m->p_type = PT_LOAD;
3679 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3680 m->sections[i - from] = *hdrpp;
3681 m->count = to - from;
3682
3683 if (from == 0 && phdr)
3684 {
3685 /* Include the headers in the first PT_LOAD segment. */
3686 m->includes_filehdr = 1;
3687 m->includes_phdrs = 1;
3688 }
3689
3690 return m;
3691 }
3692
3693 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3694 on failure. */
3695
3696 struct elf_segment_map *
3697 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3698 {
3699 struct elf_segment_map *m;
3700
3701 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3702 sizeof (struct elf_segment_map));
3703 if (m == NULL)
3704 return NULL;
3705 m->next = NULL;
3706 m->p_type = PT_DYNAMIC;
3707 m->count = 1;
3708 m->sections[0] = dynsec;
3709
3710 return m;
3711 }
3712
3713 /* Possibly add or remove segments from the segment map. */
3714
3715 static bfd_boolean
3716 elf_modify_segment_map (bfd *abfd,
3717 struct bfd_link_info *info,
3718 bfd_boolean remove_empty_load)
3719 {
3720 struct elf_segment_map **m;
3721 const struct elf_backend_data *bed;
3722
3723 /* The placement algorithm assumes that non allocated sections are
3724 not in PT_LOAD segments. We ensure this here by removing such
3725 sections from the segment map. We also remove excluded
3726 sections. Finally, any PT_LOAD segment without sections is
3727 removed. */
3728 m = &elf_seg_map (abfd);
3729 while (*m)
3730 {
3731 unsigned int i, new_count;
3732
3733 for (new_count = 0, i = 0; i < (*m)->count; i++)
3734 {
3735 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3736 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3737 || (*m)->p_type != PT_LOAD))
3738 {
3739 (*m)->sections[new_count] = (*m)->sections[i];
3740 new_count++;
3741 }
3742 }
3743 (*m)->count = new_count;
3744
3745 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3746 *m = (*m)->next;
3747 else
3748 m = &(*m)->next;
3749 }
3750
3751 bed = get_elf_backend_data (abfd);
3752 if (bed->elf_backend_modify_segment_map != NULL)
3753 {
3754 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3755 return FALSE;
3756 }
3757
3758 return TRUE;
3759 }
3760
3761 /* Set up a mapping from BFD sections to program segments. */
3762
3763 bfd_boolean
3764 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3765 {
3766 unsigned int count;
3767 struct elf_segment_map *m;
3768 asection **sections = NULL;
3769 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3770 bfd_boolean no_user_phdrs;
3771
3772 no_user_phdrs = elf_seg_map (abfd) == NULL;
3773
3774 if (info != NULL)
3775 info->user_phdrs = !no_user_phdrs;
3776
3777 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3778 {
3779 asection *s;
3780 unsigned int i;
3781 struct elf_segment_map *mfirst;
3782 struct elf_segment_map **pm;
3783 asection *last_hdr;
3784 bfd_vma last_size;
3785 unsigned int phdr_index;
3786 bfd_vma maxpagesize;
3787 asection **hdrpp;
3788 bfd_boolean phdr_in_segment = TRUE;
3789 bfd_boolean writable;
3790 int tls_count = 0;
3791 asection *first_tls = NULL;
3792 asection *dynsec, *eh_frame_hdr;
3793 bfd_size_type amt;
3794 bfd_vma addr_mask, wrap_to = 0;
3795
3796 /* Select the allocated sections, and sort them. */
3797
3798 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3799 sizeof (asection *));
3800 if (sections == NULL)
3801 goto error_return;
3802
3803 /* Calculate top address, avoiding undefined behaviour of shift
3804 left operator when shift count is equal to size of type
3805 being shifted. */
3806 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3807 addr_mask = (addr_mask << 1) + 1;
3808
3809 i = 0;
3810 for (s = abfd->sections; s != NULL; s = s->next)
3811 {
3812 if ((s->flags & SEC_ALLOC) != 0)
3813 {
3814 sections[i] = s;
3815 ++i;
3816 /* A wrapping section potentially clashes with header. */
3817 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3818 wrap_to = (s->lma + s->size) & addr_mask;
3819 }
3820 }
3821 BFD_ASSERT (i <= bfd_count_sections (abfd));
3822 count = i;
3823
3824 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3825
3826 /* Build the mapping. */
3827
3828 mfirst = NULL;
3829 pm = &mfirst;
3830
3831 /* If we have a .interp section, then create a PT_PHDR segment for
3832 the program headers and a PT_INTERP segment for the .interp
3833 section. */
3834 s = bfd_get_section_by_name (abfd, ".interp");
3835 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3836 {
3837 amt = sizeof (struct elf_segment_map);
3838 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3839 if (m == NULL)
3840 goto error_return;
3841 m->next = NULL;
3842 m->p_type = PT_PHDR;
3843 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3844 m->p_flags = PF_R | PF_X;
3845 m->p_flags_valid = 1;
3846 m->includes_phdrs = 1;
3847
3848 *pm = m;
3849 pm = &m->next;
3850
3851 amt = sizeof (struct elf_segment_map);
3852 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3853 if (m == NULL)
3854 goto error_return;
3855 m->next = NULL;
3856 m->p_type = PT_INTERP;
3857 m->count = 1;
3858 m->sections[0] = s;
3859
3860 *pm = m;
3861 pm = &m->next;
3862 }
3863
3864 /* Look through the sections. We put sections in the same program
3865 segment when the start of the second section can be placed within
3866 a few bytes of the end of the first section. */
3867 last_hdr = NULL;
3868 last_size = 0;
3869 phdr_index = 0;
3870 maxpagesize = bed->maxpagesize;
3871 writable = FALSE;
3872 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3873 if (dynsec != NULL
3874 && (dynsec->flags & SEC_LOAD) == 0)
3875 dynsec = NULL;
3876
3877 /* Deal with -Ttext or something similar such that the first section
3878 is not adjacent to the program headers. This is an
3879 approximation, since at this point we don't know exactly how many
3880 program headers we will need. */
3881 if (count > 0)
3882 {
3883 bfd_size_type phdr_size = elf_program_header_size (abfd);
3884
3885 if (phdr_size == (bfd_size_type) -1)
3886 phdr_size = get_program_header_size (abfd, info);
3887 phdr_size += bed->s->sizeof_ehdr;
3888 if ((abfd->flags & D_PAGED) == 0
3889 || (sections[0]->lma & addr_mask) < phdr_size
3890 || ((sections[0]->lma & addr_mask) % maxpagesize
3891 < phdr_size % maxpagesize)
3892 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3893 phdr_in_segment = FALSE;
3894 }
3895
3896 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3897 {
3898 asection *hdr;
3899 bfd_boolean new_segment;
3900
3901 hdr = *hdrpp;
3902
3903 /* See if this section and the last one will fit in the same
3904 segment. */
3905
3906 if (last_hdr == NULL)
3907 {
3908 /* If we don't have a segment yet, then we don't need a new
3909 one (we build the last one after this loop). */
3910 new_segment = FALSE;
3911 }
3912 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3913 {
3914 /* If this section has a different relation between the
3915 virtual address and the load address, then we need a new
3916 segment. */
3917 new_segment = TRUE;
3918 }
3919 else if (hdr->lma < last_hdr->lma + last_size
3920 || last_hdr->lma + last_size < last_hdr->lma)
3921 {
3922 /* If this section has a load address that makes it overlap
3923 the previous section, then we need a new segment. */
3924 new_segment = TRUE;
3925 }
3926 /* In the next test we have to be careful when last_hdr->lma is close
3927 to the end of the address space. If the aligned address wraps
3928 around to the start of the address space, then there are no more
3929 pages left in memory and it is OK to assume that the current
3930 section can be included in the current segment. */
3931 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3932 > last_hdr->lma)
3933 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3934 <= hdr->lma))
3935 {
3936 /* If putting this section in this segment would force us to
3937 skip a page in the segment, then we need a new segment. */
3938 new_segment = TRUE;
3939 }
3940 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3941 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3942 {
3943 /* We don't want to put a loadable section after a
3944 nonloadable section in the same segment.
3945 Consider .tbss sections as loadable for this purpose. */
3946 new_segment = TRUE;
3947 }
3948 else if ((abfd->flags & D_PAGED) == 0)
3949 {
3950 /* If the file is not demand paged, which means that we
3951 don't require the sections to be correctly aligned in the
3952 file, then there is no other reason for a new segment. */
3953 new_segment = FALSE;
3954 }
3955 else if (! writable
3956 && (hdr->flags & SEC_READONLY) == 0
3957 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3958 != (hdr->lma & -maxpagesize)))
3959 {
3960 /* We don't want to put a writable section in a read only
3961 segment, unless they are on the same page in memory
3962 anyhow. We already know that the last section does not
3963 bring us past the current section on the page, so the
3964 only case in which the new section is not on the same
3965 page as the previous section is when the previous section
3966 ends precisely on a page boundary. */
3967 new_segment = TRUE;
3968 }
3969 else
3970 {
3971 /* Otherwise, we can use the same segment. */
3972 new_segment = FALSE;
3973 }
3974
3975 /* Allow interested parties a chance to override our decision. */
3976 if (last_hdr != NULL
3977 && info != NULL
3978 && info->callbacks->override_segment_assignment != NULL)
3979 new_segment
3980 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3981 last_hdr,
3982 new_segment);
3983
3984 if (! new_segment)
3985 {
3986 if ((hdr->flags & SEC_READONLY) == 0)
3987 writable = TRUE;
3988 last_hdr = hdr;
3989 /* .tbss sections effectively have zero size. */
3990 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3991 != SEC_THREAD_LOCAL)
3992 last_size = hdr->size;
3993 else
3994 last_size = 0;
3995 continue;
3996 }
3997
3998 /* We need a new program segment. We must create a new program
3999 header holding all the sections from phdr_index until hdr. */
4000
4001 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4002 if (m == NULL)
4003 goto error_return;
4004
4005 *pm = m;
4006 pm = &m->next;
4007
4008 if ((hdr->flags & SEC_READONLY) == 0)
4009 writable = TRUE;
4010 else
4011 writable = FALSE;
4012
4013 last_hdr = hdr;
4014 /* .tbss sections effectively have zero size. */
4015 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4016 last_size = hdr->size;
4017 else
4018 last_size = 0;
4019 phdr_index = i;
4020 phdr_in_segment = FALSE;
4021 }
4022
4023 /* Create a final PT_LOAD program segment, but not if it's just
4024 for .tbss. */
4025 if (last_hdr != NULL
4026 && (i - phdr_index != 1
4027 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4028 != SEC_THREAD_LOCAL)))
4029 {
4030 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4031 if (m == NULL)
4032 goto error_return;
4033
4034 *pm = m;
4035 pm = &m->next;
4036 }
4037
4038 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4039 if (dynsec != NULL)
4040 {
4041 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4042 if (m == NULL)
4043 goto error_return;
4044 *pm = m;
4045 pm = &m->next;
4046 }
4047
4048 /* For each batch of consecutive loadable .note sections,
4049 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4050 because if we link together nonloadable .note sections and
4051 loadable .note sections, we will generate two .note sections
4052 in the output file. FIXME: Using names for section types is
4053 bogus anyhow. */
4054 for (s = abfd->sections; s != NULL; s = s->next)
4055 {
4056 if ((s->flags & SEC_LOAD) != 0
4057 && CONST_STRNEQ (s->name, ".note"))
4058 {
4059 asection *s2;
4060
4061 count = 1;
4062 amt = sizeof (struct elf_segment_map);
4063 if (s->alignment_power == 2)
4064 for (s2 = s; s2->next != NULL; s2 = s2->next)
4065 {
4066 if (s2->next->alignment_power == 2
4067 && (s2->next->flags & SEC_LOAD) != 0
4068 && CONST_STRNEQ (s2->next->name, ".note")
4069 && align_power (s2->lma + s2->size, 2)
4070 == s2->next->lma)
4071 count++;
4072 else
4073 break;
4074 }
4075 amt += (count - 1) * sizeof (asection *);
4076 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4077 if (m == NULL)
4078 goto error_return;
4079 m->next = NULL;
4080 m->p_type = PT_NOTE;
4081 m->count = count;
4082 while (count > 1)
4083 {
4084 m->sections[m->count - count--] = s;
4085 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4086 s = s->next;
4087 }
4088 m->sections[m->count - 1] = s;
4089 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4090 *pm = m;
4091 pm = &m->next;
4092 }
4093 if (s->flags & SEC_THREAD_LOCAL)
4094 {
4095 if (! tls_count)
4096 first_tls = s;
4097 tls_count++;
4098 }
4099 }
4100
4101 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4102 if (tls_count > 0)
4103 {
4104 amt = sizeof (struct elf_segment_map);
4105 amt += (tls_count - 1) * sizeof (asection *);
4106 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4107 if (m == NULL)
4108 goto error_return;
4109 m->next = NULL;
4110 m->p_type = PT_TLS;
4111 m->count = tls_count;
4112 /* Mandated PF_R. */
4113 m->p_flags = PF_R;
4114 m->p_flags_valid = 1;
4115 for (i = 0; i < (unsigned int) tls_count; ++i)
4116 {
4117 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4118 m->sections[i] = first_tls;
4119 first_tls = first_tls->next;
4120 }
4121
4122 *pm = m;
4123 pm = &m->next;
4124 }
4125
4126 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4127 segment. */
4128 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4129 if (eh_frame_hdr != NULL
4130 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4131 {
4132 amt = sizeof (struct elf_segment_map);
4133 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4134 if (m == NULL)
4135 goto error_return;
4136 m->next = NULL;
4137 m->p_type = PT_GNU_EH_FRAME;
4138 m->count = 1;
4139 m->sections[0] = eh_frame_hdr->output_section;
4140
4141 *pm = m;
4142 pm = &m->next;
4143 }
4144
4145 if (elf_stack_flags (abfd))
4146 {
4147 amt = sizeof (struct elf_segment_map);
4148 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4149 if (m == NULL)
4150 goto error_return;
4151 m->next = NULL;
4152 m->p_type = PT_GNU_STACK;
4153 m->p_flags = elf_stack_flags (abfd);
4154 m->p_align = bed->stack_align;
4155 m->p_flags_valid = 1;
4156 m->p_align_valid = m->p_align != 0;
4157 if (info->stacksize > 0)
4158 {
4159 m->p_size = info->stacksize;
4160 m->p_size_valid = 1;
4161 }
4162
4163 *pm = m;
4164 pm = &m->next;
4165 }
4166
4167 if (info != NULL && info->relro)
4168 {
4169 for (m = mfirst; m != NULL; m = m->next)
4170 {
4171 if (m->p_type == PT_LOAD
4172 && m->count != 0
4173 && m->sections[0]->vma >= info->relro_start
4174 && m->sections[0]->vma < info->relro_end)
4175 {
4176 i = m->count;
4177 while (--i != (unsigned) -1)
4178 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4179 == (SEC_LOAD | SEC_HAS_CONTENTS))
4180 break;
4181
4182 if (i == (unsigned) -1)
4183 continue;
4184
4185 if (m->sections[i]->vma + m->sections[i]->size
4186 >= info->relro_end)
4187 break;
4188 }
4189 }
4190
4191 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4192 if (m != NULL)
4193 {
4194 amt = sizeof (struct elf_segment_map);
4195 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4196 if (m == NULL)
4197 goto error_return;
4198 m->next = NULL;
4199 m->p_type = PT_GNU_RELRO;
4200 m->p_flags = PF_R;
4201 m->p_flags_valid = 1;
4202
4203 *pm = m;
4204 pm = &m->next;
4205 }
4206 }
4207
4208 free (sections);
4209 elf_seg_map (abfd) = mfirst;
4210 }
4211
4212 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4213 return FALSE;
4214
4215 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4216 ++count;
4217 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4218
4219 return TRUE;
4220
4221 error_return:
4222 if (sections != NULL)
4223 free (sections);
4224 return FALSE;
4225 }
4226
4227 /* Sort sections by address. */
4228
4229 static int
4230 elf_sort_sections (const void *arg1, const void *arg2)
4231 {
4232 const asection *sec1 = *(const asection **) arg1;
4233 const asection *sec2 = *(const asection **) arg2;
4234 bfd_size_type size1, size2;
4235
4236 /* Sort by LMA first, since this is the address used to
4237 place the section into a segment. */
4238 if (sec1->lma < sec2->lma)
4239 return -1;
4240 else if (sec1->lma > sec2->lma)
4241 return 1;
4242
4243 /* Then sort by VMA. Normally the LMA and the VMA will be
4244 the same, and this will do nothing. */
4245 if (sec1->vma < sec2->vma)
4246 return -1;
4247 else if (sec1->vma > sec2->vma)
4248 return 1;
4249
4250 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4251
4252 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4253
4254 if (TOEND (sec1))
4255 {
4256 if (TOEND (sec2))
4257 {
4258 /* If the indicies are the same, do not return 0
4259 here, but continue to try the next comparison. */
4260 if (sec1->target_index - sec2->target_index != 0)
4261 return sec1->target_index - sec2->target_index;
4262 }
4263 else
4264 return 1;
4265 }
4266 else if (TOEND (sec2))
4267 return -1;
4268
4269 #undef TOEND
4270
4271 /* Sort by size, to put zero sized sections
4272 before others at the same address. */
4273
4274 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4275 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4276
4277 if (size1 < size2)
4278 return -1;
4279 if (size1 > size2)
4280 return 1;
4281
4282 return sec1->target_index - sec2->target_index;
4283 }
4284
4285 /* Ian Lance Taylor writes:
4286
4287 We shouldn't be using % with a negative signed number. That's just
4288 not good. We have to make sure either that the number is not
4289 negative, or that the number has an unsigned type. When the types
4290 are all the same size they wind up as unsigned. When file_ptr is a
4291 larger signed type, the arithmetic winds up as signed long long,
4292 which is wrong.
4293
4294 What we're trying to say here is something like ``increase OFF by
4295 the least amount that will cause it to be equal to the VMA modulo
4296 the page size.'' */
4297 /* In other words, something like:
4298
4299 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4300 off_offset = off % bed->maxpagesize;
4301 if (vma_offset < off_offset)
4302 adjustment = vma_offset + bed->maxpagesize - off_offset;
4303 else
4304 adjustment = vma_offset - off_offset;
4305
4306 which can can be collapsed into the expression below. */
4307
4308 static file_ptr
4309 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4310 {
4311 return ((vma - off) % maxpagesize);
4312 }
4313
4314 static void
4315 print_segment_map (const struct elf_segment_map *m)
4316 {
4317 unsigned int j;
4318 const char *pt = get_segment_type (m->p_type);
4319 char buf[32];
4320
4321 if (pt == NULL)
4322 {
4323 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4324 sprintf (buf, "LOPROC+%7.7x",
4325 (unsigned int) (m->p_type - PT_LOPROC));
4326 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4327 sprintf (buf, "LOOS+%7.7x",
4328 (unsigned int) (m->p_type - PT_LOOS));
4329 else
4330 snprintf (buf, sizeof (buf), "%8.8x",
4331 (unsigned int) m->p_type);
4332 pt = buf;
4333 }
4334 fflush (stdout);
4335 fprintf (stderr, "%s:", pt);
4336 for (j = 0; j < m->count; j++)
4337 fprintf (stderr, " %s", m->sections [j]->name);
4338 putc ('\n',stderr);
4339 fflush (stderr);
4340 }
4341
4342 static bfd_boolean
4343 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4344 {
4345 void *buf;
4346 bfd_boolean ret;
4347
4348 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4349 return FALSE;
4350 buf = bfd_zmalloc (len);
4351 if (buf == NULL)
4352 return FALSE;
4353 ret = bfd_bwrite (buf, len, abfd) == len;
4354 free (buf);
4355 return ret;
4356 }
4357
4358 /* Assign file positions to the sections based on the mapping from
4359 sections to segments. This function also sets up some fields in
4360 the file header. */
4361
4362 static bfd_boolean
4363 assign_file_positions_for_load_sections (bfd *abfd,
4364 struct bfd_link_info *link_info)
4365 {
4366 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4367 struct elf_segment_map *m;
4368 Elf_Internal_Phdr *phdrs;
4369 Elf_Internal_Phdr *p;
4370 file_ptr off;
4371 bfd_size_type maxpagesize;
4372 unsigned int alloc;
4373 unsigned int i, j;
4374 bfd_vma header_pad = 0;
4375
4376 if (link_info == NULL
4377 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4378 return FALSE;
4379
4380 alloc = 0;
4381 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4382 {
4383 ++alloc;
4384 if (m->header_size)
4385 header_pad = m->header_size;
4386 }
4387
4388 if (alloc)
4389 {
4390 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4391 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4392 }
4393 else
4394 {
4395 /* PR binutils/12467. */
4396 elf_elfheader (abfd)->e_phoff = 0;
4397 elf_elfheader (abfd)->e_phentsize = 0;
4398 }
4399
4400 elf_elfheader (abfd)->e_phnum = alloc;
4401
4402 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4403 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4404 else
4405 BFD_ASSERT (elf_program_header_size (abfd)
4406 >= alloc * bed->s->sizeof_phdr);
4407
4408 if (alloc == 0)
4409 {
4410 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4411 return TRUE;
4412 }
4413
4414 /* We're writing the size in elf_program_header_size (abfd),
4415 see assign_file_positions_except_relocs, so make sure we have
4416 that amount allocated, with trailing space cleared.
4417 The variable alloc contains the computed need, while
4418 elf_program_header_size (abfd) contains the size used for the
4419 layout.
4420 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4421 where the layout is forced to according to a larger size in the
4422 last iterations for the testcase ld-elf/header. */
4423 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4424 == 0);
4425 phdrs = (Elf_Internal_Phdr *)
4426 bfd_zalloc2 (abfd,
4427 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4428 sizeof (Elf_Internal_Phdr));
4429 elf_tdata (abfd)->phdr = phdrs;
4430 if (phdrs == NULL)
4431 return FALSE;
4432
4433 maxpagesize = 1;
4434 if ((abfd->flags & D_PAGED) != 0)
4435 maxpagesize = bed->maxpagesize;
4436
4437 off = bed->s->sizeof_ehdr;
4438 off += alloc * bed->s->sizeof_phdr;
4439 if (header_pad < (bfd_vma) off)
4440 header_pad = 0;
4441 else
4442 header_pad -= off;
4443 off += header_pad;
4444
4445 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4446 m != NULL;
4447 m = m->next, p++, j++)
4448 {
4449 asection **secpp;
4450 bfd_vma off_adjust;
4451 bfd_boolean no_contents;
4452
4453 /* If elf_segment_map is not from map_sections_to_segments, the
4454 sections may not be correctly ordered. NOTE: sorting should
4455 not be done to the PT_NOTE section of a corefile, which may
4456 contain several pseudo-sections artificially created by bfd.
4457 Sorting these pseudo-sections breaks things badly. */
4458 if (m->count > 1
4459 && !(elf_elfheader (abfd)->e_type == ET_CORE
4460 && m->p_type == PT_NOTE))
4461 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4462 elf_sort_sections);
4463
4464 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4465 number of sections with contents contributing to both p_filesz
4466 and p_memsz, followed by a number of sections with no contents
4467 that just contribute to p_memsz. In this loop, OFF tracks next
4468 available file offset for PT_LOAD and PT_NOTE segments. */
4469 p->p_type = m->p_type;
4470 p->p_flags = m->p_flags;
4471
4472 if (m->count == 0)
4473 p->p_vaddr = 0;
4474 else
4475 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4476
4477 if (m->p_paddr_valid)
4478 p->p_paddr = m->p_paddr;
4479 else if (m->count == 0)
4480 p->p_paddr = 0;
4481 else
4482 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4483
4484 if (p->p_type == PT_LOAD
4485 && (abfd->flags & D_PAGED) != 0)
4486 {
4487 /* p_align in demand paged PT_LOAD segments effectively stores
4488 the maximum page size. When copying an executable with
4489 objcopy, we set m->p_align from the input file. Use this
4490 value for maxpagesize rather than bed->maxpagesize, which
4491 may be different. Note that we use maxpagesize for PT_TLS
4492 segment alignment later in this function, so we are relying
4493 on at least one PT_LOAD segment appearing before a PT_TLS
4494 segment. */
4495 if (m->p_align_valid)
4496 maxpagesize = m->p_align;
4497
4498 p->p_align = maxpagesize;
4499 }
4500 else if (m->p_align_valid)
4501 p->p_align = m->p_align;
4502 else if (m->count == 0)
4503 p->p_align = 1 << bed->s->log_file_align;
4504 else
4505 p->p_align = 0;
4506
4507 no_contents = FALSE;
4508 off_adjust = 0;
4509 if (p->p_type == PT_LOAD
4510 && m->count > 0)
4511 {
4512 bfd_size_type align;
4513 unsigned int align_power = 0;
4514
4515 if (m->p_align_valid)
4516 align = p->p_align;
4517 else
4518 {
4519 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4520 {
4521 unsigned int secalign;
4522
4523 secalign = bfd_get_section_alignment (abfd, *secpp);
4524 if (secalign > align_power)
4525 align_power = secalign;
4526 }
4527 align = (bfd_size_type) 1 << align_power;
4528 if (align < maxpagesize)
4529 align = maxpagesize;
4530 }
4531
4532 for (i = 0; i < m->count; i++)
4533 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4534 /* If we aren't making room for this section, then
4535 it must be SHT_NOBITS regardless of what we've
4536 set via struct bfd_elf_special_section. */
4537 elf_section_type (m->sections[i]) = SHT_NOBITS;
4538
4539 /* Find out whether this segment contains any loadable
4540 sections. */
4541 no_contents = TRUE;
4542 for (i = 0; i < m->count; i++)
4543 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4544 {
4545 no_contents = FALSE;
4546 break;
4547 }
4548
4549 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4550 off += off_adjust;
4551 if (no_contents)
4552 {
4553 /* We shouldn't need to align the segment on disk since
4554 the segment doesn't need file space, but the gABI
4555 arguably requires the alignment and glibc ld.so
4556 checks it. So to comply with the alignment
4557 requirement but not waste file space, we adjust
4558 p_offset for just this segment. (OFF_ADJUST is
4559 subtracted from OFF later.) This may put p_offset
4560 past the end of file, but that shouldn't matter. */
4561 }
4562 else
4563 off_adjust = 0;
4564 }
4565 /* Make sure the .dynamic section is the first section in the
4566 PT_DYNAMIC segment. */
4567 else if (p->p_type == PT_DYNAMIC
4568 && m->count > 1
4569 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4570 {
4571 _bfd_error_handler
4572 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4573 abfd);
4574 bfd_set_error (bfd_error_bad_value);
4575 return FALSE;
4576 }
4577 /* Set the note section type to SHT_NOTE. */
4578 else if (p->p_type == PT_NOTE)
4579 for (i = 0; i < m->count; i++)
4580 elf_section_type (m->sections[i]) = SHT_NOTE;
4581
4582 p->p_offset = 0;
4583 p->p_filesz = 0;
4584 p->p_memsz = 0;
4585
4586 if (m->includes_filehdr)
4587 {
4588 if (!m->p_flags_valid)
4589 p->p_flags |= PF_R;
4590 p->p_filesz = bed->s->sizeof_ehdr;
4591 p->p_memsz = bed->s->sizeof_ehdr;
4592 if (m->count > 0)
4593 {
4594 if (p->p_vaddr < (bfd_vma) off)
4595 {
4596 (*_bfd_error_handler)
4597 (_("%B: Not enough room for program headers, try linking with -N"),
4598 abfd);
4599 bfd_set_error (bfd_error_bad_value);
4600 return FALSE;
4601 }
4602
4603 p->p_vaddr -= off;
4604 if (!m->p_paddr_valid)
4605 p->p_paddr -= off;
4606 }
4607 }
4608
4609 if (m->includes_phdrs)
4610 {
4611 if (!m->p_flags_valid)
4612 p->p_flags |= PF_R;
4613
4614 if (!m->includes_filehdr)
4615 {
4616 p->p_offset = bed->s->sizeof_ehdr;
4617
4618 if (m->count > 0)
4619 {
4620 p->p_vaddr -= off - p->p_offset;
4621 if (!m->p_paddr_valid)
4622 p->p_paddr -= off - p->p_offset;
4623 }
4624 }
4625
4626 p->p_filesz += alloc * bed->s->sizeof_phdr;
4627 p->p_memsz += alloc * bed->s->sizeof_phdr;
4628 if (m->count)
4629 {
4630 p->p_filesz += header_pad;
4631 p->p_memsz += header_pad;
4632 }
4633 }
4634
4635 if (p->p_type == PT_LOAD
4636 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4637 {
4638 if (!m->includes_filehdr && !m->includes_phdrs)
4639 p->p_offset = off;
4640 else
4641 {
4642 file_ptr adjust;
4643
4644 adjust = off - (p->p_offset + p->p_filesz);
4645 if (!no_contents)
4646 p->p_filesz += adjust;
4647 p->p_memsz += adjust;
4648 }
4649 }
4650
4651 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4652 maps. Set filepos for sections in PT_LOAD segments, and in
4653 core files, for sections in PT_NOTE segments.
4654 assign_file_positions_for_non_load_sections will set filepos
4655 for other sections and update p_filesz for other segments. */
4656 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4657 {
4658 asection *sec;
4659 bfd_size_type align;
4660 Elf_Internal_Shdr *this_hdr;
4661
4662 sec = *secpp;
4663 this_hdr = &elf_section_data (sec)->this_hdr;
4664 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4665
4666 if ((p->p_type == PT_LOAD
4667 || p->p_type == PT_TLS)
4668 && (this_hdr->sh_type != SHT_NOBITS
4669 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4670 && ((this_hdr->sh_flags & SHF_TLS) == 0
4671 || p->p_type == PT_TLS))))
4672 {
4673 bfd_vma p_start = p->p_paddr;
4674 bfd_vma p_end = p_start + p->p_memsz;
4675 bfd_vma s_start = sec->lma;
4676 bfd_vma adjust = s_start - p_end;
4677
4678 if (adjust != 0
4679 && (s_start < p_end
4680 || p_end < p_start))
4681 {
4682 (*_bfd_error_handler)
4683 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4684 (unsigned long) s_start, (unsigned long) p_end);
4685 adjust = 0;
4686 sec->lma = p_end;
4687 }
4688 p->p_memsz += adjust;
4689
4690 if (this_hdr->sh_type != SHT_NOBITS)
4691 {
4692 if (p->p_filesz + adjust < p->p_memsz)
4693 {
4694 /* We have a PROGBITS section following NOBITS ones.
4695 Allocate file space for the NOBITS section(s) and
4696 zero it. */
4697 adjust = p->p_memsz - p->p_filesz;
4698 if (!write_zeros (abfd, off, adjust))
4699 return FALSE;
4700 }
4701 off += adjust;
4702 p->p_filesz += adjust;
4703 }
4704 }
4705
4706 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4707 {
4708 /* The section at i == 0 is the one that actually contains
4709 everything. */
4710 if (i == 0)
4711 {
4712 this_hdr->sh_offset = sec->filepos = off;
4713 off += this_hdr->sh_size;
4714 p->p_filesz = this_hdr->sh_size;
4715 p->p_memsz = 0;
4716 p->p_align = 1;
4717 }
4718 else
4719 {
4720 /* The rest are fake sections that shouldn't be written. */
4721 sec->filepos = 0;
4722 sec->size = 0;
4723 sec->flags = 0;
4724 continue;
4725 }
4726 }
4727 else
4728 {
4729 if (p->p_type == PT_LOAD)
4730 {
4731 this_hdr->sh_offset = sec->filepos = off;
4732 if (this_hdr->sh_type != SHT_NOBITS)
4733 off += this_hdr->sh_size;
4734 }
4735 else if (this_hdr->sh_type == SHT_NOBITS
4736 && (this_hdr->sh_flags & SHF_TLS) != 0
4737 && this_hdr->sh_offset == 0)
4738 {
4739 /* This is a .tbss section that didn't get a PT_LOAD.
4740 (See _bfd_elf_map_sections_to_segments "Create a
4741 final PT_LOAD".) Set sh_offset to the value it
4742 would have if we had created a zero p_filesz and
4743 p_memsz PT_LOAD header for the section. This
4744 also makes the PT_TLS header have the same
4745 p_offset value. */
4746 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4747 off, align);
4748 this_hdr->sh_offset = sec->filepos = off + adjust;
4749 }
4750
4751 if (this_hdr->sh_type != SHT_NOBITS)
4752 {
4753 p->p_filesz += this_hdr->sh_size;
4754 /* A load section without SHF_ALLOC is something like
4755 a note section in a PT_NOTE segment. These take
4756 file space but are not loaded into memory. */
4757 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4758 p->p_memsz += this_hdr->sh_size;
4759 }
4760 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4761 {
4762 if (p->p_type == PT_TLS)
4763 p->p_memsz += this_hdr->sh_size;
4764
4765 /* .tbss is special. It doesn't contribute to p_memsz of
4766 normal segments. */
4767 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4768 p->p_memsz += this_hdr->sh_size;
4769 }
4770
4771 if (align > p->p_align
4772 && !m->p_align_valid
4773 && (p->p_type != PT_LOAD
4774 || (abfd->flags & D_PAGED) == 0))
4775 p->p_align = align;
4776 }
4777
4778 if (!m->p_flags_valid)
4779 {
4780 p->p_flags |= PF_R;
4781 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4782 p->p_flags |= PF_X;
4783 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4784 p->p_flags |= PF_W;
4785 }
4786 }
4787 off -= off_adjust;
4788
4789 /* Check that all sections are in a PT_LOAD segment.
4790 Don't check funky gdb generated core files. */
4791 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4792 {
4793 bfd_boolean check_vma = TRUE;
4794
4795 for (i = 1; i < m->count; i++)
4796 if (m->sections[i]->vma == m->sections[i - 1]->vma
4797 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4798 ->this_hdr), p) != 0
4799 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4800 ->this_hdr), p) != 0)
4801 {
4802 /* Looks like we have overlays packed into the segment. */
4803 check_vma = FALSE;
4804 break;
4805 }
4806
4807 for (i = 0; i < m->count; i++)
4808 {
4809 Elf_Internal_Shdr *this_hdr;
4810 asection *sec;
4811
4812 sec = m->sections[i];
4813 this_hdr = &(elf_section_data(sec)->this_hdr);
4814 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4815 && !ELF_TBSS_SPECIAL (this_hdr, p))
4816 {
4817 (*_bfd_error_handler)
4818 (_("%B: section `%A' can't be allocated in segment %d"),
4819 abfd, sec, j);
4820 print_segment_map (m);
4821 }
4822 }
4823 }
4824 }
4825
4826 elf_next_file_pos (abfd) = off;
4827 return TRUE;
4828 }
4829
4830 /* Assign file positions for the other sections. */
4831
4832 static bfd_boolean
4833 assign_file_positions_for_non_load_sections (bfd *abfd,
4834 struct bfd_link_info *link_info)
4835 {
4836 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4837 Elf_Internal_Shdr **i_shdrpp;
4838 Elf_Internal_Shdr **hdrpp;
4839 Elf_Internal_Phdr *phdrs;
4840 Elf_Internal_Phdr *p;
4841 struct elf_segment_map *m;
4842 struct elf_segment_map *hdrs_segment;
4843 bfd_vma filehdr_vaddr, filehdr_paddr;
4844 bfd_vma phdrs_vaddr, phdrs_paddr;
4845 file_ptr off;
4846 unsigned int num_sec;
4847 unsigned int i;
4848 unsigned int count;
4849
4850 i_shdrpp = elf_elfsections (abfd);
4851 num_sec = elf_numsections (abfd);
4852 off = elf_next_file_pos (abfd);
4853 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4854 {
4855 Elf_Internal_Shdr *hdr;
4856
4857 hdr = *hdrpp;
4858 if (hdr->bfd_section != NULL
4859 && (hdr->bfd_section->filepos != 0
4860 || (hdr->sh_type == SHT_NOBITS
4861 && hdr->contents == NULL)))
4862 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4863 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4864 {
4865 if (hdr->sh_size != 0)
4866 (*_bfd_error_handler)
4867 (_("%B: warning: allocated section `%s' not in segment"),
4868 abfd,
4869 (hdr->bfd_section == NULL
4870 ? "*unknown*"
4871 : hdr->bfd_section->name));
4872 /* We don't need to page align empty sections. */
4873 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4874 off += vma_page_aligned_bias (hdr->sh_addr, off,
4875 bed->maxpagesize);
4876 else
4877 off += vma_page_aligned_bias (hdr->sh_addr, off,
4878 hdr->sh_addralign);
4879 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4880 FALSE);
4881 }
4882 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4883 && hdr->bfd_section == NULL)
4884 || hdr == i_shdrpp[elf_onesymtab (abfd)]
4885 || hdr == i_shdrpp[elf_symtab_shndx (abfd)]
4886 || hdr == i_shdrpp[elf_strtab_sec (abfd)])
4887 hdr->sh_offset = -1;
4888 else
4889 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4890 }
4891
4892 /* Now that we have set the section file positions, we can set up
4893 the file positions for the non PT_LOAD segments. */
4894 count = 0;
4895 filehdr_vaddr = 0;
4896 filehdr_paddr = 0;
4897 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4898 phdrs_paddr = 0;
4899 hdrs_segment = NULL;
4900 phdrs = elf_tdata (abfd)->phdr;
4901 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4902 {
4903 ++count;
4904 if (p->p_type != PT_LOAD)
4905 continue;
4906
4907 if (m->includes_filehdr)
4908 {
4909 filehdr_vaddr = p->p_vaddr;
4910 filehdr_paddr = p->p_paddr;
4911 }
4912 if (m->includes_phdrs)
4913 {
4914 phdrs_vaddr = p->p_vaddr;
4915 phdrs_paddr = p->p_paddr;
4916 if (m->includes_filehdr)
4917 {
4918 hdrs_segment = m;
4919 phdrs_vaddr += bed->s->sizeof_ehdr;
4920 phdrs_paddr += bed->s->sizeof_ehdr;
4921 }
4922 }
4923 }
4924
4925 if (hdrs_segment != NULL && link_info != NULL)
4926 {
4927 /* There is a segment that contains both the file headers and the
4928 program headers, so provide a symbol __ehdr_start pointing there.
4929 A program can use this to examine itself robustly. */
4930
4931 struct elf_link_hash_entry *hash
4932 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4933 FALSE, FALSE, TRUE);
4934 /* If the symbol was referenced and not defined, define it. */
4935 if (hash != NULL
4936 && (hash->root.type == bfd_link_hash_new
4937 || hash->root.type == bfd_link_hash_undefined
4938 || hash->root.type == bfd_link_hash_undefweak
4939 || hash->root.type == bfd_link_hash_common))
4940 {
4941 asection *s = NULL;
4942 if (hdrs_segment->count != 0)
4943 /* The segment contains sections, so use the first one. */
4944 s = hdrs_segment->sections[0];
4945 else
4946 /* Use the first (i.e. lowest-addressed) section in any segment. */
4947 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4948 if (m->count != 0)
4949 {
4950 s = m->sections[0];
4951 break;
4952 }
4953
4954 if (s != NULL)
4955 {
4956 hash->root.u.def.value = filehdr_vaddr - s->vma;
4957 hash->root.u.def.section = s;
4958 }
4959 else
4960 {
4961 hash->root.u.def.value = filehdr_vaddr;
4962 hash->root.u.def.section = bfd_abs_section_ptr;
4963 }
4964
4965 hash->root.type = bfd_link_hash_defined;
4966 hash->def_regular = 1;
4967 hash->non_elf = 0;
4968 }
4969 }
4970
4971 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
4972 {
4973 if (p->p_type == PT_GNU_RELRO)
4974 {
4975 const Elf_Internal_Phdr *lp;
4976 struct elf_segment_map *lm;
4977
4978 if (link_info != NULL)
4979 {
4980 /* During linking the range of the RELRO segment is passed
4981 in link_info. */
4982 for (lm = elf_seg_map (abfd), lp = phdrs;
4983 lm != NULL;
4984 lm = lm->next, lp++)
4985 {
4986 if (lp->p_type == PT_LOAD
4987 && lp->p_vaddr < link_info->relro_end
4988 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end
4989 && lm->count != 0
4990 && lm->sections[0]->vma >= link_info->relro_start)
4991 break;
4992 }
4993
4994 /* PR ld/14207. If the RELRO segment doesn't fit in the
4995 LOAD segment, it should be removed. */
4996 BFD_ASSERT (lm != NULL);
4997 }
4998 else
4999 {
5000 /* Otherwise we are copying an executable or shared
5001 library, but we need to use the same linker logic. */
5002 for (lp = phdrs; lp < phdrs + count; ++lp)
5003 {
5004 if (lp->p_type == PT_LOAD
5005 && lp->p_paddr == p->p_paddr)
5006 break;
5007 }
5008 }
5009
5010 if (lp < phdrs + count)
5011 {
5012 p->p_vaddr = lp->p_vaddr;
5013 p->p_paddr = lp->p_paddr;
5014 p->p_offset = lp->p_offset;
5015 if (link_info != NULL)
5016 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5017 else if (m->p_size_valid)
5018 p->p_filesz = m->p_size;
5019 else
5020 abort ();
5021 p->p_memsz = p->p_filesz;
5022 /* Preserve the alignment and flags if they are valid. The
5023 gold linker generates RW/4 for the PT_GNU_RELRO section.
5024 It is better for objcopy/strip to honor these attributes
5025 otherwise gdb will choke when using separate debug files.
5026 */
5027 if (!m->p_align_valid)
5028 p->p_align = 1;
5029 if (!m->p_flags_valid)
5030 p->p_flags = (lp->p_flags & ~PF_W);
5031 }
5032 else
5033 {
5034 memset (p, 0, sizeof *p);
5035 p->p_type = PT_NULL;
5036 }
5037 }
5038 else if (p->p_type == PT_GNU_STACK)
5039 {
5040 if (m->p_size_valid)
5041 p->p_memsz = m->p_size;
5042 }
5043 else if (m->count != 0)
5044 {
5045 if (p->p_type != PT_LOAD
5046 && (p->p_type != PT_NOTE
5047 || bfd_get_format (abfd) != bfd_core))
5048 {
5049 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5050
5051 p->p_filesz = 0;
5052 p->p_offset = m->sections[0]->filepos;
5053 for (i = m->count; i-- != 0;)
5054 {
5055 asection *sect = m->sections[i];
5056 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5057 if (hdr->sh_type != SHT_NOBITS)
5058 {
5059 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5060 + hdr->sh_size);
5061 break;
5062 }
5063 }
5064 }
5065 }
5066 else if (m->includes_filehdr)
5067 {
5068 p->p_vaddr = filehdr_vaddr;
5069 if (! m->p_paddr_valid)
5070 p->p_paddr = filehdr_paddr;
5071 }
5072 else if (m->includes_phdrs)
5073 {
5074 p->p_vaddr = phdrs_vaddr;
5075 if (! m->p_paddr_valid)
5076 p->p_paddr = phdrs_paddr;
5077 }
5078 }
5079
5080 elf_next_file_pos (abfd) = off;
5081
5082 return TRUE;
5083 }
5084
5085 /* Work out the file positions of all the sections. This is called by
5086 _bfd_elf_compute_section_file_positions. All the section sizes and
5087 VMAs must be known before this is called.
5088
5089 Reloc sections come in two flavours: Those processed specially as
5090 "side-channel" data attached to a section to which they apply, and
5091 those that bfd doesn't process as relocations. The latter sort are
5092 stored in a normal bfd section by bfd_section_from_shdr. We don't
5093 consider the former sort here, unless they form part of the loadable
5094 image. Reloc sections not assigned here will be handled later by
5095 assign_file_positions_for_relocs.
5096
5097 We also don't set the positions of the .symtab and .strtab here. */
5098
5099 static bfd_boolean
5100 assign_file_positions_except_relocs (bfd *abfd,
5101 struct bfd_link_info *link_info)
5102 {
5103 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5104 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5105 file_ptr off;
5106 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5107
5108 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5109 && bfd_get_format (abfd) != bfd_core)
5110 {
5111 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5112 unsigned int num_sec = elf_numsections (abfd);
5113 Elf_Internal_Shdr **hdrpp;
5114 unsigned int i;
5115
5116 /* Start after the ELF header. */
5117 off = i_ehdrp->e_ehsize;
5118
5119 /* We are not creating an executable, which means that we are
5120 not creating a program header, and that the actual order of
5121 the sections in the file is unimportant. */
5122 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5123 {
5124 Elf_Internal_Shdr *hdr;
5125
5126 hdr = *hdrpp;
5127 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5128 && hdr->bfd_section == NULL)
5129 || i == elf_onesymtab (abfd)
5130 || i == elf_symtab_shndx (abfd)
5131 || i == elf_strtab_sec (abfd))
5132 {
5133 hdr->sh_offset = -1;
5134 }
5135 else
5136 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5137 }
5138 }
5139 else
5140 {
5141 unsigned int alloc;
5142
5143 /* Assign file positions for the loaded sections based on the
5144 assignment of sections to segments. */
5145 if (!assign_file_positions_for_load_sections (abfd, link_info))
5146 return FALSE;
5147
5148 /* And for non-load sections. */
5149 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5150 return FALSE;
5151
5152 if (bed->elf_backend_modify_program_headers != NULL)
5153 {
5154 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5155 return FALSE;
5156 }
5157
5158 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5159 if (link_info != NULL
5160 && link_info->executable
5161 && link_info->shared)
5162 {
5163 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5164 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5165 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5166
5167 /* Find the lowest p_vaddr in PT_LOAD segments. */
5168 bfd_vma p_vaddr = (bfd_vma) -1;
5169 for (; segment < end_segment; segment++)
5170 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5171 p_vaddr = segment->p_vaddr;
5172
5173 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5174 segments is non-zero. */
5175 if (p_vaddr)
5176 i_ehdrp->e_type = ET_EXEC;
5177 }
5178
5179 /* Write out the program headers. */
5180 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5181 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5182 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5183 return FALSE;
5184
5185 off = elf_next_file_pos (abfd);
5186 }
5187
5188 /* Place the section headers. */
5189 off = align_file_position (off, 1 << bed->s->log_file_align);
5190 i_ehdrp->e_shoff = off;
5191 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5192
5193 elf_next_file_pos (abfd) = off;
5194
5195 return TRUE;
5196 }
5197
5198 static bfd_boolean
5199 prep_headers (bfd *abfd)
5200 {
5201 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5202 struct elf_strtab_hash *shstrtab;
5203 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5204
5205 i_ehdrp = elf_elfheader (abfd);
5206
5207 shstrtab = _bfd_elf_strtab_init ();
5208 if (shstrtab == NULL)
5209 return FALSE;
5210
5211 elf_shstrtab (abfd) = shstrtab;
5212
5213 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5214 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5215 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5216 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5217
5218 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5219 i_ehdrp->e_ident[EI_DATA] =
5220 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5221 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5222
5223 if ((abfd->flags & DYNAMIC) != 0)
5224 i_ehdrp->e_type = ET_DYN;
5225 else if ((abfd->flags & EXEC_P) != 0)
5226 i_ehdrp->e_type = ET_EXEC;
5227 else if (bfd_get_format (abfd) == bfd_core)
5228 i_ehdrp->e_type = ET_CORE;
5229 else
5230 i_ehdrp->e_type = ET_REL;
5231
5232 switch (bfd_get_arch (abfd))
5233 {
5234 case bfd_arch_unknown:
5235 i_ehdrp->e_machine = EM_NONE;
5236 break;
5237
5238 /* There used to be a long list of cases here, each one setting
5239 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5240 in the corresponding bfd definition. To avoid duplication,
5241 the switch was removed. Machines that need special handling
5242 can generally do it in elf_backend_final_write_processing(),
5243 unless they need the information earlier than the final write.
5244 Such need can generally be supplied by replacing the tests for
5245 e_machine with the conditions used to determine it. */
5246 default:
5247 i_ehdrp->e_machine = bed->elf_machine_code;
5248 }
5249
5250 i_ehdrp->e_version = bed->s->ev_current;
5251 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5252
5253 /* No program header, for now. */
5254 i_ehdrp->e_phoff = 0;
5255 i_ehdrp->e_phentsize = 0;
5256 i_ehdrp->e_phnum = 0;
5257
5258 /* Each bfd section is section header entry. */
5259 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5260 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5261
5262 /* If we're building an executable, we'll need a program header table. */
5263 if (abfd->flags & EXEC_P)
5264 /* It all happens later. */
5265 ;
5266 else
5267 {
5268 i_ehdrp->e_phentsize = 0;
5269 i_ehdrp->e_phoff = 0;
5270 }
5271
5272 elf_tdata (abfd)->symtab_hdr.sh_name =
5273 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5274 elf_tdata (abfd)->strtab_hdr.sh_name =
5275 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5276 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5277 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5278 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5279 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5280 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5281 return FALSE;
5282
5283 return TRUE;
5284 }
5285
5286 /* Assign file positions for all the reloc sections which are not part
5287 of the loadable file image. */
5288
5289 void
5290 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5291 {
5292 file_ptr off;
5293 unsigned int i, num_sec;
5294 Elf_Internal_Shdr **shdrpp;
5295
5296 off = elf_next_file_pos (abfd);
5297
5298 num_sec = elf_numsections (abfd);
5299 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5300 {
5301 Elf_Internal_Shdr *shdrp;
5302
5303 shdrp = *shdrpp;
5304 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5305 && shdrp->sh_offset == -1)
5306 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5307 }
5308
5309 elf_next_file_pos (abfd) = off;
5310 }
5311
5312 bfd_boolean
5313 _bfd_elf_write_object_contents (bfd *abfd)
5314 {
5315 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5316 Elf_Internal_Shdr **i_shdrp;
5317 bfd_boolean failed;
5318 unsigned int count, num_sec;
5319 struct elf_obj_tdata *t;
5320
5321 if (! abfd->output_has_begun
5322 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5323 return FALSE;
5324
5325 i_shdrp = elf_elfsections (abfd);
5326
5327 failed = FALSE;
5328 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5329 if (failed)
5330 return FALSE;
5331
5332 _bfd_elf_assign_file_positions_for_relocs (abfd);
5333
5334 /* After writing the headers, we need to write the sections too... */
5335 num_sec = elf_numsections (abfd);
5336 for (count = 1; count < num_sec; count++)
5337 {
5338 if (bed->elf_backend_section_processing)
5339 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5340 if (i_shdrp[count]->contents)
5341 {
5342 bfd_size_type amt = i_shdrp[count]->sh_size;
5343
5344 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5345 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5346 return FALSE;
5347 }
5348 }
5349
5350 /* Write out the section header names. */
5351 t = elf_tdata (abfd);
5352 if (elf_shstrtab (abfd) != NULL
5353 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5354 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5355 return FALSE;
5356
5357 if (bed->elf_backend_final_write_processing)
5358 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5359
5360 if (!bed->s->write_shdrs_and_ehdr (abfd))
5361 return FALSE;
5362
5363 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5364 if (t->o->build_id.after_write_object_contents != NULL)
5365 return (*t->o->build_id.after_write_object_contents) (abfd);
5366
5367 return TRUE;
5368 }
5369
5370 bfd_boolean
5371 _bfd_elf_write_corefile_contents (bfd *abfd)
5372 {
5373 /* Hopefully this can be done just like an object file. */
5374 return _bfd_elf_write_object_contents (abfd);
5375 }
5376
5377 /* Given a section, search the header to find them. */
5378
5379 unsigned int
5380 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5381 {
5382 const struct elf_backend_data *bed;
5383 unsigned int sec_index;
5384
5385 if (elf_section_data (asect) != NULL
5386 && elf_section_data (asect)->this_idx != 0)
5387 return elf_section_data (asect)->this_idx;
5388
5389 if (bfd_is_abs_section (asect))
5390 sec_index = SHN_ABS;
5391 else if (bfd_is_com_section (asect))
5392 sec_index = SHN_COMMON;
5393 else if (bfd_is_und_section (asect))
5394 sec_index = SHN_UNDEF;
5395 else
5396 sec_index = SHN_BAD;
5397
5398 bed = get_elf_backend_data (abfd);
5399 if (bed->elf_backend_section_from_bfd_section)
5400 {
5401 int retval = sec_index;
5402
5403 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5404 return retval;
5405 }
5406
5407 if (sec_index == SHN_BAD)
5408 bfd_set_error (bfd_error_nonrepresentable_section);
5409
5410 return sec_index;
5411 }
5412
5413 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5414 on error. */
5415
5416 int
5417 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5418 {
5419 asymbol *asym_ptr = *asym_ptr_ptr;
5420 int idx;
5421 flagword flags = asym_ptr->flags;
5422
5423 /* When gas creates relocations against local labels, it creates its
5424 own symbol for the section, but does put the symbol into the
5425 symbol chain, so udata is 0. When the linker is generating
5426 relocatable output, this section symbol may be for one of the
5427 input sections rather than the output section. */
5428 if (asym_ptr->udata.i == 0
5429 && (flags & BSF_SECTION_SYM)
5430 && asym_ptr->section)
5431 {
5432 asection *sec;
5433 int indx;
5434
5435 sec = asym_ptr->section;
5436 if (sec->owner != abfd && sec->output_section != NULL)
5437 sec = sec->output_section;
5438 if (sec->owner == abfd
5439 && (indx = sec->index) < elf_num_section_syms (abfd)
5440 && elf_section_syms (abfd)[indx] != NULL)
5441 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5442 }
5443
5444 idx = asym_ptr->udata.i;
5445
5446 if (idx == 0)
5447 {
5448 /* This case can occur when using --strip-symbol on a symbol
5449 which is used in a relocation entry. */
5450 (*_bfd_error_handler)
5451 (_("%B: symbol `%s' required but not present"),
5452 abfd, bfd_asymbol_name (asym_ptr));
5453 bfd_set_error (bfd_error_no_symbols);
5454 return -1;
5455 }
5456
5457 #if DEBUG & 4
5458 {
5459 fprintf (stderr,
5460 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5461 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5462 fflush (stderr);
5463 }
5464 #endif
5465
5466 return idx;
5467 }
5468
5469 /* Rewrite program header information. */
5470
5471 static bfd_boolean
5472 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5473 {
5474 Elf_Internal_Ehdr *iehdr;
5475 struct elf_segment_map *map;
5476 struct elf_segment_map *map_first;
5477 struct elf_segment_map **pointer_to_map;
5478 Elf_Internal_Phdr *segment;
5479 asection *section;
5480 unsigned int i;
5481 unsigned int num_segments;
5482 bfd_boolean phdr_included = FALSE;
5483 bfd_boolean p_paddr_valid;
5484 bfd_vma maxpagesize;
5485 struct elf_segment_map *phdr_adjust_seg = NULL;
5486 unsigned int phdr_adjust_num = 0;
5487 const struct elf_backend_data *bed;
5488
5489 bed = get_elf_backend_data (ibfd);
5490 iehdr = elf_elfheader (ibfd);
5491
5492 map_first = NULL;
5493 pointer_to_map = &map_first;
5494
5495 num_segments = elf_elfheader (ibfd)->e_phnum;
5496 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5497
5498 /* Returns the end address of the segment + 1. */
5499 #define SEGMENT_END(segment, start) \
5500 (start + (segment->p_memsz > segment->p_filesz \
5501 ? segment->p_memsz : segment->p_filesz))
5502
5503 #define SECTION_SIZE(section, segment) \
5504 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5505 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5506 ? section->size : 0)
5507
5508 /* Returns TRUE if the given section is contained within
5509 the given segment. VMA addresses are compared. */
5510 #define IS_CONTAINED_BY_VMA(section, segment) \
5511 (section->vma >= segment->p_vaddr \
5512 && (section->vma + SECTION_SIZE (section, segment) \
5513 <= (SEGMENT_END (segment, segment->p_vaddr))))
5514
5515 /* Returns TRUE if the given section is contained within
5516 the given segment. LMA addresses are compared. */
5517 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5518 (section->lma >= base \
5519 && (section->lma + SECTION_SIZE (section, segment) \
5520 <= SEGMENT_END (segment, base)))
5521
5522 /* Handle PT_NOTE segment. */
5523 #define IS_NOTE(p, s) \
5524 (p->p_type == PT_NOTE \
5525 && elf_section_type (s) == SHT_NOTE \
5526 && (bfd_vma) s->filepos >= p->p_offset \
5527 && ((bfd_vma) s->filepos + s->size \
5528 <= p->p_offset + p->p_filesz))
5529
5530 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5531 etc. */
5532 #define IS_COREFILE_NOTE(p, s) \
5533 (IS_NOTE (p, s) \
5534 && bfd_get_format (ibfd) == bfd_core \
5535 && s->vma == 0 \
5536 && s->lma == 0)
5537
5538 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5539 linker, which generates a PT_INTERP section with p_vaddr and
5540 p_memsz set to 0. */
5541 #define IS_SOLARIS_PT_INTERP(p, s) \
5542 (p->p_vaddr == 0 \
5543 && p->p_paddr == 0 \
5544 && p->p_memsz == 0 \
5545 && p->p_filesz > 0 \
5546 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5547 && s->size > 0 \
5548 && (bfd_vma) s->filepos >= p->p_offset \
5549 && ((bfd_vma) s->filepos + s->size \
5550 <= p->p_offset + p->p_filesz))
5551
5552 /* Decide if the given section should be included in the given segment.
5553 A section will be included if:
5554 1. It is within the address space of the segment -- we use the LMA
5555 if that is set for the segment and the VMA otherwise,
5556 2. It is an allocated section or a NOTE section in a PT_NOTE
5557 segment.
5558 3. There is an output section associated with it,
5559 4. The section has not already been allocated to a previous segment.
5560 5. PT_GNU_STACK segments do not include any sections.
5561 6. PT_TLS segment includes only SHF_TLS sections.
5562 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5563 8. PT_DYNAMIC should not contain empty sections at the beginning
5564 (with the possible exception of .dynamic). */
5565 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5566 ((((segment->p_paddr \
5567 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5568 : IS_CONTAINED_BY_VMA (section, segment)) \
5569 && (section->flags & SEC_ALLOC) != 0) \
5570 || IS_NOTE (segment, section)) \
5571 && segment->p_type != PT_GNU_STACK \
5572 && (segment->p_type != PT_TLS \
5573 || (section->flags & SEC_THREAD_LOCAL)) \
5574 && (segment->p_type == PT_LOAD \
5575 || segment->p_type == PT_TLS \
5576 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5577 && (segment->p_type != PT_DYNAMIC \
5578 || SECTION_SIZE (section, segment) > 0 \
5579 || (segment->p_paddr \
5580 ? segment->p_paddr != section->lma \
5581 : segment->p_vaddr != section->vma) \
5582 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5583 == 0)) \
5584 && !section->segment_mark)
5585
5586 /* If the output section of a section in the input segment is NULL,
5587 it is removed from the corresponding output segment. */
5588 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5589 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5590 && section->output_section != NULL)
5591
5592 /* Returns TRUE iff seg1 starts after the end of seg2. */
5593 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5594 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5595
5596 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5597 their VMA address ranges and their LMA address ranges overlap.
5598 It is possible to have overlapping VMA ranges without overlapping LMA
5599 ranges. RedBoot images for example can have both .data and .bss mapped
5600 to the same VMA range, but with the .data section mapped to a different
5601 LMA. */
5602 #define SEGMENT_OVERLAPS(seg1, seg2) \
5603 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5604 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5605 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5606 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5607
5608 /* Initialise the segment mark field. */
5609 for (section = ibfd->sections; section != NULL; section = section->next)
5610 section->segment_mark = FALSE;
5611
5612 /* The Solaris linker creates program headers in which all the
5613 p_paddr fields are zero. When we try to objcopy or strip such a
5614 file, we get confused. Check for this case, and if we find it
5615 don't set the p_paddr_valid fields. */
5616 p_paddr_valid = FALSE;
5617 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5618 i < num_segments;
5619 i++, segment++)
5620 if (segment->p_paddr != 0)
5621 {
5622 p_paddr_valid = TRUE;
5623 break;
5624 }
5625
5626 /* Scan through the segments specified in the program header
5627 of the input BFD. For this first scan we look for overlaps
5628 in the loadable segments. These can be created by weird
5629 parameters to objcopy. Also, fix some solaris weirdness. */
5630 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5631 i < num_segments;
5632 i++, segment++)
5633 {
5634 unsigned int j;
5635 Elf_Internal_Phdr *segment2;
5636
5637 if (segment->p_type == PT_INTERP)
5638 for (section = ibfd->sections; section; section = section->next)
5639 if (IS_SOLARIS_PT_INTERP (segment, section))
5640 {
5641 /* Mininal change so that the normal section to segment
5642 assignment code will work. */
5643 segment->p_vaddr = section->vma;
5644 break;
5645 }
5646
5647 if (segment->p_type != PT_LOAD)
5648 {
5649 /* Remove PT_GNU_RELRO segment. */
5650 if (segment->p_type == PT_GNU_RELRO)
5651 segment->p_type = PT_NULL;
5652 continue;
5653 }
5654
5655 /* Determine if this segment overlaps any previous segments. */
5656 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5657 {
5658 bfd_signed_vma extra_length;
5659
5660 if (segment2->p_type != PT_LOAD
5661 || !SEGMENT_OVERLAPS (segment, segment2))
5662 continue;
5663
5664 /* Merge the two segments together. */
5665 if (segment2->p_vaddr < segment->p_vaddr)
5666 {
5667 /* Extend SEGMENT2 to include SEGMENT and then delete
5668 SEGMENT. */
5669 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5670 - SEGMENT_END (segment2, segment2->p_vaddr));
5671
5672 if (extra_length > 0)
5673 {
5674 segment2->p_memsz += extra_length;
5675 segment2->p_filesz += extra_length;
5676 }
5677
5678 segment->p_type = PT_NULL;
5679
5680 /* Since we have deleted P we must restart the outer loop. */
5681 i = 0;
5682 segment = elf_tdata (ibfd)->phdr;
5683 break;
5684 }
5685 else
5686 {
5687 /* Extend SEGMENT to include SEGMENT2 and then delete
5688 SEGMENT2. */
5689 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5690 - SEGMENT_END (segment, segment->p_vaddr));
5691
5692 if (extra_length > 0)
5693 {
5694 segment->p_memsz += extra_length;
5695 segment->p_filesz += extra_length;
5696 }
5697
5698 segment2->p_type = PT_NULL;
5699 }
5700 }
5701 }
5702
5703 /* The second scan attempts to assign sections to segments. */
5704 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5705 i < num_segments;
5706 i++, segment++)
5707 {
5708 unsigned int section_count;
5709 asection **sections;
5710 asection *output_section;
5711 unsigned int isec;
5712 bfd_vma matching_lma;
5713 bfd_vma suggested_lma;
5714 unsigned int j;
5715 bfd_size_type amt;
5716 asection *first_section;
5717 bfd_boolean first_matching_lma;
5718 bfd_boolean first_suggested_lma;
5719
5720 if (segment->p_type == PT_NULL)
5721 continue;
5722
5723 first_section = NULL;
5724 /* Compute how many sections might be placed into this segment. */
5725 for (section = ibfd->sections, section_count = 0;
5726 section != NULL;
5727 section = section->next)
5728 {
5729 /* Find the first section in the input segment, which may be
5730 removed from the corresponding output segment. */
5731 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5732 {
5733 if (first_section == NULL)
5734 first_section = section;
5735 if (section->output_section != NULL)
5736 ++section_count;
5737 }
5738 }
5739
5740 /* Allocate a segment map big enough to contain
5741 all of the sections we have selected. */
5742 amt = sizeof (struct elf_segment_map);
5743 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5744 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5745 if (map == NULL)
5746 return FALSE;
5747
5748 /* Initialise the fields of the segment map. Default to
5749 using the physical address of the segment in the input BFD. */
5750 map->next = NULL;
5751 map->p_type = segment->p_type;
5752 map->p_flags = segment->p_flags;
5753 map->p_flags_valid = 1;
5754
5755 /* If the first section in the input segment is removed, there is
5756 no need to preserve segment physical address in the corresponding
5757 output segment. */
5758 if (!first_section || first_section->output_section != NULL)
5759 {
5760 map->p_paddr = segment->p_paddr;
5761 map->p_paddr_valid = p_paddr_valid;
5762 }
5763
5764 /* Determine if this segment contains the ELF file header
5765 and if it contains the program headers themselves. */
5766 map->includes_filehdr = (segment->p_offset == 0
5767 && segment->p_filesz >= iehdr->e_ehsize);
5768 map->includes_phdrs = 0;
5769
5770 if (!phdr_included || segment->p_type != PT_LOAD)
5771 {
5772 map->includes_phdrs =
5773 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5774 && (segment->p_offset + segment->p_filesz
5775 >= ((bfd_vma) iehdr->e_phoff
5776 + iehdr->e_phnum * iehdr->e_phentsize)));
5777
5778 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5779 phdr_included = TRUE;
5780 }
5781
5782 if (section_count == 0)
5783 {
5784 /* Special segments, such as the PT_PHDR segment, may contain
5785 no sections, but ordinary, loadable segments should contain
5786 something. They are allowed by the ELF spec however, so only
5787 a warning is produced. */
5788 if (segment->p_type == PT_LOAD)
5789 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5790 " detected, is this intentional ?\n"),
5791 ibfd);
5792
5793 map->count = 0;
5794 *pointer_to_map = map;
5795 pointer_to_map = &map->next;
5796
5797 continue;
5798 }
5799
5800 /* Now scan the sections in the input BFD again and attempt
5801 to add their corresponding output sections to the segment map.
5802 The problem here is how to handle an output section which has
5803 been moved (ie had its LMA changed). There are four possibilities:
5804
5805 1. None of the sections have been moved.
5806 In this case we can continue to use the segment LMA from the
5807 input BFD.
5808
5809 2. All of the sections have been moved by the same amount.
5810 In this case we can change the segment's LMA to match the LMA
5811 of the first section.
5812
5813 3. Some of the sections have been moved, others have not.
5814 In this case those sections which have not been moved can be
5815 placed in the current segment which will have to have its size,
5816 and possibly its LMA changed, and a new segment or segments will
5817 have to be created to contain the other sections.
5818
5819 4. The sections have been moved, but not by the same amount.
5820 In this case we can change the segment's LMA to match the LMA
5821 of the first section and we will have to create a new segment
5822 or segments to contain the other sections.
5823
5824 In order to save time, we allocate an array to hold the section
5825 pointers that we are interested in. As these sections get assigned
5826 to a segment, they are removed from this array. */
5827
5828 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5829 if (sections == NULL)
5830 return FALSE;
5831
5832 /* Step One: Scan for segment vs section LMA conflicts.
5833 Also add the sections to the section array allocated above.
5834 Also add the sections to the current segment. In the common
5835 case, where the sections have not been moved, this means that
5836 we have completely filled the segment, and there is nothing
5837 more to do. */
5838 isec = 0;
5839 matching_lma = 0;
5840 suggested_lma = 0;
5841 first_matching_lma = TRUE;
5842 first_suggested_lma = TRUE;
5843
5844 for (section = ibfd->sections;
5845 section != NULL;
5846 section = section->next)
5847 if (section == first_section)
5848 break;
5849
5850 for (j = 0; section != NULL; section = section->next)
5851 {
5852 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5853 {
5854 output_section = section->output_section;
5855
5856 sections[j++] = section;
5857
5858 /* The Solaris native linker always sets p_paddr to 0.
5859 We try to catch that case here, and set it to the
5860 correct value. Note - some backends require that
5861 p_paddr be left as zero. */
5862 if (!p_paddr_valid
5863 && segment->p_vaddr != 0
5864 && !bed->want_p_paddr_set_to_zero
5865 && isec == 0
5866 && output_section->lma != 0
5867 && output_section->vma == (segment->p_vaddr
5868 + (map->includes_filehdr
5869 ? iehdr->e_ehsize
5870 : 0)
5871 + (map->includes_phdrs
5872 ? (iehdr->e_phnum
5873 * iehdr->e_phentsize)
5874 : 0)))
5875 map->p_paddr = segment->p_vaddr;
5876
5877 /* Match up the physical address of the segment with the
5878 LMA address of the output section. */
5879 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5880 || IS_COREFILE_NOTE (segment, section)
5881 || (bed->want_p_paddr_set_to_zero
5882 && IS_CONTAINED_BY_VMA (output_section, segment)))
5883 {
5884 if (first_matching_lma || output_section->lma < matching_lma)
5885 {
5886 matching_lma = output_section->lma;
5887 first_matching_lma = FALSE;
5888 }
5889
5890 /* We assume that if the section fits within the segment
5891 then it does not overlap any other section within that
5892 segment. */
5893 map->sections[isec++] = output_section;
5894 }
5895 else if (first_suggested_lma)
5896 {
5897 suggested_lma = output_section->lma;
5898 first_suggested_lma = FALSE;
5899 }
5900
5901 if (j == section_count)
5902 break;
5903 }
5904 }
5905
5906 BFD_ASSERT (j == section_count);
5907
5908 /* Step Two: Adjust the physical address of the current segment,
5909 if necessary. */
5910 if (isec == section_count)
5911 {
5912 /* All of the sections fitted within the segment as currently
5913 specified. This is the default case. Add the segment to
5914 the list of built segments and carry on to process the next
5915 program header in the input BFD. */
5916 map->count = section_count;
5917 *pointer_to_map = map;
5918 pointer_to_map = &map->next;
5919
5920 if (p_paddr_valid
5921 && !bed->want_p_paddr_set_to_zero
5922 && matching_lma != map->p_paddr
5923 && !map->includes_filehdr
5924 && !map->includes_phdrs)
5925 /* There is some padding before the first section in the
5926 segment. So, we must account for that in the output
5927 segment's vma. */
5928 map->p_vaddr_offset = matching_lma - map->p_paddr;
5929
5930 free (sections);
5931 continue;
5932 }
5933 else
5934 {
5935 if (!first_matching_lma)
5936 {
5937 /* At least one section fits inside the current segment.
5938 Keep it, but modify its physical address to match the
5939 LMA of the first section that fitted. */
5940 map->p_paddr = matching_lma;
5941 }
5942 else
5943 {
5944 /* None of the sections fitted inside the current segment.
5945 Change the current segment's physical address to match
5946 the LMA of the first section. */
5947 map->p_paddr = suggested_lma;
5948 }
5949
5950 /* Offset the segment physical address from the lma
5951 to allow for space taken up by elf headers. */
5952 if (map->includes_filehdr)
5953 {
5954 if (map->p_paddr >= iehdr->e_ehsize)
5955 map->p_paddr -= iehdr->e_ehsize;
5956 else
5957 {
5958 map->includes_filehdr = FALSE;
5959 map->includes_phdrs = FALSE;
5960 }
5961 }
5962
5963 if (map->includes_phdrs)
5964 {
5965 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5966 {
5967 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5968
5969 /* iehdr->e_phnum is just an estimate of the number
5970 of program headers that we will need. Make a note
5971 here of the number we used and the segment we chose
5972 to hold these headers, so that we can adjust the
5973 offset when we know the correct value. */
5974 phdr_adjust_num = iehdr->e_phnum;
5975 phdr_adjust_seg = map;
5976 }
5977 else
5978 map->includes_phdrs = FALSE;
5979 }
5980 }
5981
5982 /* Step Three: Loop over the sections again, this time assigning
5983 those that fit to the current segment and removing them from the
5984 sections array; but making sure not to leave large gaps. Once all
5985 possible sections have been assigned to the current segment it is
5986 added to the list of built segments and if sections still remain
5987 to be assigned, a new segment is constructed before repeating
5988 the loop. */
5989 isec = 0;
5990 do
5991 {
5992 map->count = 0;
5993 suggested_lma = 0;
5994 first_suggested_lma = TRUE;
5995
5996 /* Fill the current segment with sections that fit. */
5997 for (j = 0; j < section_count; j++)
5998 {
5999 section = sections[j];
6000
6001 if (section == NULL)
6002 continue;
6003
6004 output_section = section->output_section;
6005
6006 BFD_ASSERT (output_section != NULL);
6007
6008 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6009 || IS_COREFILE_NOTE (segment, section))
6010 {
6011 if (map->count == 0)
6012 {
6013 /* If the first section in a segment does not start at
6014 the beginning of the segment, then something is
6015 wrong. */
6016 if (output_section->lma
6017 != (map->p_paddr
6018 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6019 + (map->includes_phdrs
6020 ? iehdr->e_phnum * iehdr->e_phentsize
6021 : 0)))
6022 abort ();
6023 }
6024 else
6025 {
6026 asection *prev_sec;
6027
6028 prev_sec = map->sections[map->count - 1];
6029
6030 /* If the gap between the end of the previous section
6031 and the start of this section is more than
6032 maxpagesize then we need to start a new segment. */
6033 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6034 maxpagesize)
6035 < BFD_ALIGN (output_section->lma, maxpagesize))
6036 || (prev_sec->lma + prev_sec->size
6037 > output_section->lma))
6038 {
6039 if (first_suggested_lma)
6040 {
6041 suggested_lma = output_section->lma;
6042 first_suggested_lma = FALSE;
6043 }
6044
6045 continue;
6046 }
6047 }
6048
6049 map->sections[map->count++] = output_section;
6050 ++isec;
6051 sections[j] = NULL;
6052 section->segment_mark = TRUE;
6053 }
6054 else if (first_suggested_lma)
6055 {
6056 suggested_lma = output_section->lma;
6057 first_suggested_lma = FALSE;
6058 }
6059 }
6060
6061 BFD_ASSERT (map->count > 0);
6062
6063 /* Add the current segment to the list of built segments. */
6064 *pointer_to_map = map;
6065 pointer_to_map = &map->next;
6066
6067 if (isec < section_count)
6068 {
6069 /* We still have not allocated all of the sections to
6070 segments. Create a new segment here, initialise it
6071 and carry on looping. */
6072 amt = sizeof (struct elf_segment_map);
6073 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6074 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6075 if (map == NULL)
6076 {
6077 free (sections);
6078 return FALSE;
6079 }
6080
6081 /* Initialise the fields of the segment map. Set the physical
6082 physical address to the LMA of the first section that has
6083 not yet been assigned. */
6084 map->next = NULL;
6085 map->p_type = segment->p_type;
6086 map->p_flags = segment->p_flags;
6087 map->p_flags_valid = 1;
6088 map->p_paddr = suggested_lma;
6089 map->p_paddr_valid = p_paddr_valid;
6090 map->includes_filehdr = 0;
6091 map->includes_phdrs = 0;
6092 }
6093 }
6094 while (isec < section_count);
6095
6096 free (sections);
6097 }
6098
6099 elf_seg_map (obfd) = map_first;
6100
6101 /* If we had to estimate the number of program headers that were
6102 going to be needed, then check our estimate now and adjust
6103 the offset if necessary. */
6104 if (phdr_adjust_seg != NULL)
6105 {
6106 unsigned int count;
6107
6108 for (count = 0, map = map_first; map != NULL; map = map->next)
6109 count++;
6110
6111 if (count > phdr_adjust_num)
6112 phdr_adjust_seg->p_paddr
6113 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6114 }
6115
6116 #undef SEGMENT_END
6117 #undef SECTION_SIZE
6118 #undef IS_CONTAINED_BY_VMA
6119 #undef IS_CONTAINED_BY_LMA
6120 #undef IS_NOTE
6121 #undef IS_COREFILE_NOTE
6122 #undef IS_SOLARIS_PT_INTERP
6123 #undef IS_SECTION_IN_INPUT_SEGMENT
6124 #undef INCLUDE_SECTION_IN_SEGMENT
6125 #undef SEGMENT_AFTER_SEGMENT
6126 #undef SEGMENT_OVERLAPS
6127 return TRUE;
6128 }
6129
6130 /* Copy ELF program header information. */
6131
6132 static bfd_boolean
6133 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6134 {
6135 Elf_Internal_Ehdr *iehdr;
6136 struct elf_segment_map *map;
6137 struct elf_segment_map *map_first;
6138 struct elf_segment_map **pointer_to_map;
6139 Elf_Internal_Phdr *segment;
6140 unsigned int i;
6141 unsigned int num_segments;
6142 bfd_boolean phdr_included = FALSE;
6143 bfd_boolean p_paddr_valid;
6144
6145 iehdr = elf_elfheader (ibfd);
6146
6147 map_first = NULL;
6148 pointer_to_map = &map_first;
6149
6150 /* If all the segment p_paddr fields are zero, don't set
6151 map->p_paddr_valid. */
6152 p_paddr_valid = FALSE;
6153 num_segments = elf_elfheader (ibfd)->e_phnum;
6154 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6155 i < num_segments;
6156 i++, segment++)
6157 if (segment->p_paddr != 0)
6158 {
6159 p_paddr_valid = TRUE;
6160 break;
6161 }
6162
6163 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6164 i < num_segments;
6165 i++, segment++)
6166 {
6167 asection *section;
6168 unsigned int section_count;
6169 bfd_size_type amt;
6170 Elf_Internal_Shdr *this_hdr;
6171 asection *first_section = NULL;
6172 asection *lowest_section;
6173
6174 /* Compute how many sections are in this segment. */
6175 for (section = ibfd->sections, section_count = 0;
6176 section != NULL;
6177 section = section->next)
6178 {
6179 this_hdr = &(elf_section_data(section)->this_hdr);
6180 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6181 {
6182 if (first_section == NULL)
6183 first_section = section;
6184 section_count++;
6185 }
6186 }
6187
6188 /* Allocate a segment map big enough to contain
6189 all of the sections we have selected. */
6190 amt = sizeof (struct elf_segment_map);
6191 if (section_count != 0)
6192 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6193 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6194 if (map == NULL)
6195 return FALSE;
6196
6197 /* Initialize the fields of the output segment map with the
6198 input segment. */
6199 map->next = NULL;
6200 map->p_type = segment->p_type;
6201 map->p_flags = segment->p_flags;
6202 map->p_flags_valid = 1;
6203 map->p_paddr = segment->p_paddr;
6204 map->p_paddr_valid = p_paddr_valid;
6205 map->p_align = segment->p_align;
6206 map->p_align_valid = 1;
6207 map->p_vaddr_offset = 0;
6208
6209 if (map->p_type == PT_GNU_RELRO
6210 || map->p_type == PT_GNU_STACK)
6211 {
6212 /* The PT_GNU_RELRO segment may contain the first a few
6213 bytes in the .got.plt section even if the whole .got.plt
6214 section isn't in the PT_GNU_RELRO segment. We won't
6215 change the size of the PT_GNU_RELRO segment.
6216 Similarly, PT_GNU_STACK size is significant on uclinux
6217 systems. */
6218 map->p_size = segment->p_memsz;
6219 map->p_size_valid = 1;
6220 }
6221
6222 /* Determine if this segment contains the ELF file header
6223 and if it contains the program headers themselves. */
6224 map->includes_filehdr = (segment->p_offset == 0
6225 && segment->p_filesz >= iehdr->e_ehsize);
6226
6227 map->includes_phdrs = 0;
6228 if (! phdr_included || segment->p_type != PT_LOAD)
6229 {
6230 map->includes_phdrs =
6231 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6232 && (segment->p_offset + segment->p_filesz
6233 >= ((bfd_vma) iehdr->e_phoff
6234 + iehdr->e_phnum * iehdr->e_phentsize)));
6235
6236 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6237 phdr_included = TRUE;
6238 }
6239
6240 lowest_section = first_section;
6241 if (section_count != 0)
6242 {
6243 unsigned int isec = 0;
6244
6245 for (section = first_section;
6246 section != NULL;
6247 section = section->next)
6248 {
6249 this_hdr = &(elf_section_data(section)->this_hdr);
6250 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6251 {
6252 map->sections[isec++] = section->output_section;
6253 if ((section->flags & SEC_ALLOC) != 0)
6254 {
6255 bfd_vma seg_off;
6256
6257 if (section->lma < lowest_section->lma)
6258 lowest_section = section;
6259
6260 /* Section lmas are set up from PT_LOAD header
6261 p_paddr in _bfd_elf_make_section_from_shdr.
6262 If this header has a p_paddr that disagrees
6263 with the section lma, flag the p_paddr as
6264 invalid. */
6265 if ((section->flags & SEC_LOAD) != 0)
6266 seg_off = this_hdr->sh_offset - segment->p_offset;
6267 else
6268 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6269 if (section->lma - segment->p_paddr != seg_off)
6270 map->p_paddr_valid = FALSE;
6271 }
6272 if (isec == section_count)
6273 break;
6274 }
6275 }
6276 }
6277
6278 if (map->includes_filehdr && lowest_section != NULL)
6279 /* We need to keep the space used by the headers fixed. */
6280 map->header_size = lowest_section->vma - segment->p_vaddr;
6281
6282 if (!map->includes_phdrs
6283 && !map->includes_filehdr
6284 && map->p_paddr_valid)
6285 /* There is some other padding before the first section. */
6286 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6287 - segment->p_paddr);
6288
6289 map->count = section_count;
6290 *pointer_to_map = map;
6291 pointer_to_map = &map->next;
6292 }
6293
6294 elf_seg_map (obfd) = map_first;
6295 return TRUE;
6296 }
6297
6298 /* Copy private BFD data. This copies or rewrites ELF program header
6299 information. */
6300
6301 static bfd_boolean
6302 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6303 {
6304 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6305 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6306 return TRUE;
6307
6308 if (elf_tdata (ibfd)->phdr == NULL)
6309 return TRUE;
6310
6311 if (ibfd->xvec == obfd->xvec)
6312 {
6313 /* Check to see if any sections in the input BFD
6314 covered by ELF program header have changed. */
6315 Elf_Internal_Phdr *segment;
6316 asection *section, *osec;
6317 unsigned int i, num_segments;
6318 Elf_Internal_Shdr *this_hdr;
6319 const struct elf_backend_data *bed;
6320
6321 bed = get_elf_backend_data (ibfd);
6322
6323 /* Regenerate the segment map if p_paddr is set to 0. */
6324 if (bed->want_p_paddr_set_to_zero)
6325 goto rewrite;
6326
6327 /* Initialize the segment mark field. */
6328 for (section = obfd->sections; section != NULL;
6329 section = section->next)
6330 section->segment_mark = FALSE;
6331
6332 num_segments = elf_elfheader (ibfd)->e_phnum;
6333 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6334 i < num_segments;
6335 i++, segment++)
6336 {
6337 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6338 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6339 which severly confuses things, so always regenerate the segment
6340 map in this case. */
6341 if (segment->p_paddr == 0
6342 && segment->p_memsz == 0
6343 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6344 goto rewrite;
6345
6346 for (section = ibfd->sections;
6347 section != NULL; section = section->next)
6348 {
6349 /* We mark the output section so that we know it comes
6350 from the input BFD. */
6351 osec = section->output_section;
6352 if (osec)
6353 osec->segment_mark = TRUE;
6354
6355 /* Check if this section is covered by the segment. */
6356 this_hdr = &(elf_section_data(section)->this_hdr);
6357 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6358 {
6359 /* FIXME: Check if its output section is changed or
6360 removed. What else do we need to check? */
6361 if (osec == NULL
6362 || section->flags != osec->flags
6363 || section->lma != osec->lma
6364 || section->vma != osec->vma
6365 || section->size != osec->size
6366 || section->rawsize != osec->rawsize
6367 || section->alignment_power != osec->alignment_power)
6368 goto rewrite;
6369 }
6370 }
6371 }
6372
6373 /* Check to see if any output section do not come from the
6374 input BFD. */
6375 for (section = obfd->sections; section != NULL;
6376 section = section->next)
6377 {
6378 if (section->segment_mark == FALSE)
6379 goto rewrite;
6380 else
6381 section->segment_mark = FALSE;
6382 }
6383
6384 return copy_elf_program_header (ibfd, obfd);
6385 }
6386
6387 rewrite:
6388 if (ibfd->xvec == obfd->xvec)
6389 {
6390 /* When rewriting program header, set the output maxpagesize to
6391 the maximum alignment of input PT_LOAD segments. */
6392 Elf_Internal_Phdr *segment;
6393 unsigned int i;
6394 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6395 bfd_vma maxpagesize = 0;
6396
6397 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6398 i < num_segments;
6399 i++, segment++)
6400 if (segment->p_type == PT_LOAD
6401 && maxpagesize < segment->p_align)
6402 maxpagesize = segment->p_align;
6403
6404 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6405 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6406 }
6407
6408 return rewrite_elf_program_header (ibfd, obfd);
6409 }
6410
6411 /* Initialize private output section information from input section. */
6412
6413 bfd_boolean
6414 _bfd_elf_init_private_section_data (bfd *ibfd,
6415 asection *isec,
6416 bfd *obfd,
6417 asection *osec,
6418 struct bfd_link_info *link_info)
6419
6420 {
6421 Elf_Internal_Shdr *ihdr, *ohdr;
6422 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6423
6424 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6425 || obfd->xvec->flavour != bfd_target_elf_flavour)
6426 return TRUE;
6427
6428 BFD_ASSERT (elf_section_data (osec) != NULL);
6429
6430 /* For objcopy and relocatable link, don't copy the output ELF
6431 section type from input if the output BFD section flags have been
6432 set to something different. For a final link allow some flags
6433 that the linker clears to differ. */
6434 if (elf_section_type (osec) == SHT_NULL
6435 && (osec->flags == isec->flags
6436 || (final_link
6437 && ((osec->flags ^ isec->flags)
6438 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6439 elf_section_type (osec) = elf_section_type (isec);
6440
6441 /* FIXME: Is this correct for all OS/PROC specific flags? */
6442 elf_section_flags (osec) |= (elf_section_flags (isec)
6443 & (SHF_MASKOS | SHF_MASKPROC));
6444
6445 /* Set things up for objcopy and relocatable link. The output
6446 SHT_GROUP section will have its elf_next_in_group pointing back
6447 to the input group members. Ignore linker created group section.
6448 See elfNN_ia64_object_p in elfxx-ia64.c. */
6449 if (!final_link)
6450 {
6451 if (elf_sec_group (isec) == NULL
6452 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6453 {
6454 if (elf_section_flags (isec) & SHF_GROUP)
6455 elf_section_flags (osec) |= SHF_GROUP;
6456 elf_next_in_group (osec) = elf_next_in_group (isec);
6457 elf_section_data (osec)->group = elf_section_data (isec)->group;
6458 }
6459 }
6460
6461 ihdr = &elf_section_data (isec)->this_hdr;
6462
6463 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6464 don't use the output section of the linked-to section since it
6465 may be NULL at this point. */
6466 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6467 {
6468 ohdr = &elf_section_data (osec)->this_hdr;
6469 ohdr->sh_flags |= SHF_LINK_ORDER;
6470 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6471 }
6472
6473 osec->use_rela_p = isec->use_rela_p;
6474
6475 return TRUE;
6476 }
6477
6478 /* Copy private section information. This copies over the entsize
6479 field, and sometimes the info field. */
6480
6481 bfd_boolean
6482 _bfd_elf_copy_private_section_data (bfd *ibfd,
6483 asection *isec,
6484 bfd *obfd,
6485 asection *osec)
6486 {
6487 Elf_Internal_Shdr *ihdr, *ohdr;
6488
6489 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6490 || obfd->xvec->flavour != bfd_target_elf_flavour)
6491 return TRUE;
6492
6493 ihdr = &elf_section_data (isec)->this_hdr;
6494 ohdr = &elf_section_data (osec)->this_hdr;
6495
6496 ohdr->sh_entsize = ihdr->sh_entsize;
6497
6498 if (ihdr->sh_type == SHT_SYMTAB
6499 || ihdr->sh_type == SHT_DYNSYM
6500 || ihdr->sh_type == SHT_GNU_verneed
6501 || ihdr->sh_type == SHT_GNU_verdef)
6502 ohdr->sh_info = ihdr->sh_info;
6503
6504 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6505 NULL);
6506 }
6507
6508 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6509 necessary if we are removing either the SHT_GROUP section or any of
6510 the group member sections. DISCARDED is the value that a section's
6511 output_section has if the section will be discarded, NULL when this
6512 function is called from objcopy, bfd_abs_section_ptr when called
6513 from the linker. */
6514
6515 bfd_boolean
6516 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6517 {
6518 asection *isec;
6519
6520 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6521 if (elf_section_type (isec) == SHT_GROUP)
6522 {
6523 asection *first = elf_next_in_group (isec);
6524 asection *s = first;
6525 bfd_size_type removed = 0;
6526
6527 while (s != NULL)
6528 {
6529 /* If this member section is being output but the
6530 SHT_GROUP section is not, then clear the group info
6531 set up by _bfd_elf_copy_private_section_data. */
6532 if (s->output_section != discarded
6533 && isec->output_section == discarded)
6534 {
6535 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6536 elf_group_name (s->output_section) = NULL;
6537 }
6538 /* Conversely, if the member section is not being output
6539 but the SHT_GROUP section is, then adjust its size. */
6540 else if (s->output_section == discarded
6541 && isec->output_section != discarded)
6542 removed += 4;
6543 s = elf_next_in_group (s);
6544 if (s == first)
6545 break;
6546 }
6547 if (removed != 0)
6548 {
6549 if (discarded != NULL)
6550 {
6551 /* If we've been called for ld -r, then we need to
6552 adjust the input section size. This function may
6553 be called multiple times, so save the original
6554 size. */
6555 if (isec->rawsize == 0)
6556 isec->rawsize = isec->size;
6557 isec->size = isec->rawsize - removed;
6558 }
6559 else
6560 {
6561 /* Adjust the output section size when called from
6562 objcopy. */
6563 isec->output_section->size -= removed;
6564 }
6565 }
6566 }
6567
6568 return TRUE;
6569 }
6570
6571 /* Copy private header information. */
6572
6573 bfd_boolean
6574 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6575 {
6576 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6577 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6578 return TRUE;
6579
6580 /* Copy over private BFD data if it has not already been copied.
6581 This must be done here, rather than in the copy_private_bfd_data
6582 entry point, because the latter is called after the section
6583 contents have been set, which means that the program headers have
6584 already been worked out. */
6585 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
6586 {
6587 if (! copy_private_bfd_data (ibfd, obfd))
6588 return FALSE;
6589 }
6590
6591 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6592 }
6593
6594 /* Copy private symbol information. If this symbol is in a section
6595 which we did not map into a BFD section, try to map the section
6596 index correctly. We use special macro definitions for the mapped
6597 section indices; these definitions are interpreted by the
6598 swap_out_syms function. */
6599
6600 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6601 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6602 #define MAP_STRTAB (SHN_HIOS + 3)
6603 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6604 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6605
6606 bfd_boolean
6607 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6608 asymbol *isymarg,
6609 bfd *obfd,
6610 asymbol *osymarg)
6611 {
6612 elf_symbol_type *isym, *osym;
6613
6614 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6615 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6616 return TRUE;
6617
6618 isym = elf_symbol_from (ibfd, isymarg);
6619 osym = elf_symbol_from (obfd, osymarg);
6620
6621 if (isym != NULL
6622 && isym->internal_elf_sym.st_shndx != 0
6623 && osym != NULL
6624 && bfd_is_abs_section (isym->symbol.section))
6625 {
6626 unsigned int shndx;
6627
6628 shndx = isym->internal_elf_sym.st_shndx;
6629 if (shndx == elf_onesymtab (ibfd))
6630 shndx = MAP_ONESYMTAB;
6631 else if (shndx == elf_dynsymtab (ibfd))
6632 shndx = MAP_DYNSYMTAB;
6633 else if (shndx == elf_strtab_sec (ibfd))
6634 shndx = MAP_STRTAB;
6635 else if (shndx == elf_shstrtab_sec (ibfd))
6636 shndx = MAP_SHSTRTAB;
6637 else if (shndx == elf_symtab_shndx (ibfd))
6638 shndx = MAP_SYM_SHNDX;
6639 osym->internal_elf_sym.st_shndx = shndx;
6640 }
6641
6642 return TRUE;
6643 }
6644
6645 /* Swap out the symbols. */
6646
6647 static bfd_boolean
6648 swap_out_syms (bfd *abfd,
6649 struct bfd_strtab_hash **sttp,
6650 int relocatable_p)
6651 {
6652 const struct elf_backend_data *bed;
6653 int symcount;
6654 asymbol **syms;
6655 struct bfd_strtab_hash *stt;
6656 Elf_Internal_Shdr *symtab_hdr;
6657 Elf_Internal_Shdr *symtab_shndx_hdr;
6658 Elf_Internal_Shdr *symstrtab_hdr;
6659 bfd_byte *outbound_syms;
6660 bfd_byte *outbound_shndx;
6661 int idx;
6662 unsigned int num_locals;
6663 bfd_size_type amt;
6664 bfd_boolean name_local_sections;
6665
6666 if (!elf_map_symbols (abfd, &num_locals))
6667 return FALSE;
6668
6669 /* Dump out the symtabs. */
6670 stt = _bfd_elf_stringtab_init ();
6671 if (stt == NULL)
6672 return FALSE;
6673
6674 bed = get_elf_backend_data (abfd);
6675 symcount = bfd_get_symcount (abfd);
6676 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6677 symtab_hdr->sh_type = SHT_SYMTAB;
6678 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6679 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6680 symtab_hdr->sh_info = num_locals + 1;
6681 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6682
6683 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6684 symstrtab_hdr->sh_type = SHT_STRTAB;
6685
6686 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6687 bed->s->sizeof_sym);
6688 if (outbound_syms == NULL)
6689 {
6690 _bfd_stringtab_free (stt);
6691 return FALSE;
6692 }
6693 symtab_hdr->contents = outbound_syms;
6694
6695 outbound_shndx = NULL;
6696 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6697 if (symtab_shndx_hdr->sh_name != 0)
6698 {
6699 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6700 outbound_shndx = (bfd_byte *)
6701 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6702 if (outbound_shndx == NULL)
6703 {
6704 _bfd_stringtab_free (stt);
6705 return FALSE;
6706 }
6707
6708 symtab_shndx_hdr->contents = outbound_shndx;
6709 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6710 symtab_shndx_hdr->sh_size = amt;
6711 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6712 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6713 }
6714
6715 /* Now generate the data (for "contents"). */
6716 {
6717 /* Fill in zeroth symbol and swap it out. */
6718 Elf_Internal_Sym sym;
6719 sym.st_name = 0;
6720 sym.st_value = 0;
6721 sym.st_size = 0;
6722 sym.st_info = 0;
6723 sym.st_other = 0;
6724 sym.st_shndx = SHN_UNDEF;
6725 sym.st_target_internal = 0;
6726 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6727 outbound_syms += bed->s->sizeof_sym;
6728 if (outbound_shndx != NULL)
6729 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6730 }
6731
6732 name_local_sections
6733 = (bed->elf_backend_name_local_section_symbols
6734 && bed->elf_backend_name_local_section_symbols (abfd));
6735
6736 syms = bfd_get_outsymbols (abfd);
6737 for (idx = 0; idx < symcount; idx++)
6738 {
6739 Elf_Internal_Sym sym;
6740 bfd_vma value = syms[idx]->value;
6741 elf_symbol_type *type_ptr;
6742 flagword flags = syms[idx]->flags;
6743 int type;
6744
6745 if (!name_local_sections
6746 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6747 {
6748 /* Local section symbols have no name. */
6749 sym.st_name = 0;
6750 }
6751 else
6752 {
6753 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6754 syms[idx]->name,
6755 TRUE, FALSE);
6756 if (sym.st_name == (unsigned long) -1)
6757 {
6758 _bfd_stringtab_free (stt);
6759 return FALSE;
6760 }
6761 }
6762
6763 type_ptr = elf_symbol_from (abfd, syms[idx]);
6764
6765 if ((flags & BSF_SECTION_SYM) == 0
6766 && bfd_is_com_section (syms[idx]->section))
6767 {
6768 /* ELF common symbols put the alignment into the `value' field,
6769 and the size into the `size' field. This is backwards from
6770 how BFD handles it, so reverse it here. */
6771 sym.st_size = value;
6772 if (type_ptr == NULL
6773 || type_ptr->internal_elf_sym.st_value == 0)
6774 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6775 else
6776 sym.st_value = type_ptr->internal_elf_sym.st_value;
6777 sym.st_shndx = _bfd_elf_section_from_bfd_section
6778 (abfd, syms[idx]->section);
6779 }
6780 else
6781 {
6782 asection *sec = syms[idx]->section;
6783 unsigned int shndx;
6784
6785 if (sec->output_section)
6786 {
6787 value += sec->output_offset;
6788 sec = sec->output_section;
6789 }
6790
6791 /* Don't add in the section vma for relocatable output. */
6792 if (! relocatable_p)
6793 value += sec->vma;
6794 sym.st_value = value;
6795 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6796
6797 if (bfd_is_abs_section (sec)
6798 && type_ptr != NULL
6799 && type_ptr->internal_elf_sym.st_shndx != 0)
6800 {
6801 /* This symbol is in a real ELF section which we did
6802 not create as a BFD section. Undo the mapping done
6803 by copy_private_symbol_data. */
6804 shndx = type_ptr->internal_elf_sym.st_shndx;
6805 switch (shndx)
6806 {
6807 case MAP_ONESYMTAB:
6808 shndx = elf_onesymtab (abfd);
6809 break;
6810 case MAP_DYNSYMTAB:
6811 shndx = elf_dynsymtab (abfd);
6812 break;
6813 case MAP_STRTAB:
6814 shndx = elf_strtab_sec (abfd);
6815 break;
6816 case MAP_SHSTRTAB:
6817 shndx = elf_shstrtab_sec (abfd);
6818 break;
6819 case MAP_SYM_SHNDX:
6820 shndx = elf_symtab_shndx (abfd);
6821 break;
6822 default:
6823 shndx = SHN_ABS;
6824 break;
6825 }
6826 }
6827 else
6828 {
6829 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6830
6831 if (shndx == SHN_BAD)
6832 {
6833 asection *sec2;
6834
6835 /* Writing this would be a hell of a lot easier if
6836 we had some decent documentation on bfd, and
6837 knew what to expect of the library, and what to
6838 demand of applications. For example, it
6839 appears that `objcopy' might not set the
6840 section of a symbol to be a section that is
6841 actually in the output file. */
6842 sec2 = bfd_get_section_by_name (abfd, sec->name);
6843 if (sec2 == NULL)
6844 {
6845 _bfd_error_handler (_("\
6846 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6847 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6848 sec->name);
6849 bfd_set_error (bfd_error_invalid_operation);
6850 _bfd_stringtab_free (stt);
6851 return FALSE;
6852 }
6853
6854 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6855 BFD_ASSERT (shndx != SHN_BAD);
6856 }
6857 }
6858
6859 sym.st_shndx = shndx;
6860 }
6861
6862 if ((flags & BSF_THREAD_LOCAL) != 0)
6863 type = STT_TLS;
6864 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6865 type = STT_GNU_IFUNC;
6866 else if ((flags & BSF_FUNCTION) != 0)
6867 type = STT_FUNC;
6868 else if ((flags & BSF_OBJECT) != 0)
6869 type = STT_OBJECT;
6870 else if ((flags & BSF_RELC) != 0)
6871 type = STT_RELC;
6872 else if ((flags & BSF_SRELC) != 0)
6873 type = STT_SRELC;
6874 else
6875 type = STT_NOTYPE;
6876
6877 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6878 type = STT_TLS;
6879
6880 /* Processor-specific types. */
6881 if (type_ptr != NULL
6882 && bed->elf_backend_get_symbol_type)
6883 type = ((*bed->elf_backend_get_symbol_type)
6884 (&type_ptr->internal_elf_sym, type));
6885
6886 if (flags & BSF_SECTION_SYM)
6887 {
6888 if (flags & BSF_GLOBAL)
6889 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6890 else
6891 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6892 }
6893 else if (bfd_is_com_section (syms[idx]->section))
6894 {
6895 #ifdef USE_STT_COMMON
6896 if (type == STT_OBJECT)
6897 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6898 else
6899 #endif
6900 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6901 }
6902 else if (bfd_is_und_section (syms[idx]->section))
6903 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6904 ? STB_WEAK
6905 : STB_GLOBAL),
6906 type);
6907 else if (flags & BSF_FILE)
6908 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6909 else
6910 {
6911 int bind = STB_LOCAL;
6912
6913 if (flags & BSF_LOCAL)
6914 bind = STB_LOCAL;
6915 else if (flags & BSF_GNU_UNIQUE)
6916 bind = STB_GNU_UNIQUE;
6917 else if (flags & BSF_WEAK)
6918 bind = STB_WEAK;
6919 else if (flags & BSF_GLOBAL)
6920 bind = STB_GLOBAL;
6921
6922 sym.st_info = ELF_ST_INFO (bind, type);
6923 }
6924
6925 if (type_ptr != NULL)
6926 {
6927 sym.st_other = type_ptr->internal_elf_sym.st_other;
6928 sym.st_target_internal
6929 = type_ptr->internal_elf_sym.st_target_internal;
6930 }
6931 else
6932 {
6933 sym.st_other = 0;
6934 sym.st_target_internal = 0;
6935 }
6936
6937 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6938 outbound_syms += bed->s->sizeof_sym;
6939 if (outbound_shndx != NULL)
6940 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6941 }
6942
6943 *sttp = stt;
6944 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6945 symstrtab_hdr->sh_type = SHT_STRTAB;
6946
6947 symstrtab_hdr->sh_flags = 0;
6948 symstrtab_hdr->sh_addr = 0;
6949 symstrtab_hdr->sh_entsize = 0;
6950 symstrtab_hdr->sh_link = 0;
6951 symstrtab_hdr->sh_info = 0;
6952 symstrtab_hdr->sh_addralign = 1;
6953
6954 return TRUE;
6955 }
6956
6957 /* Return the number of bytes required to hold the symtab vector.
6958
6959 Note that we base it on the count plus 1, since we will null terminate
6960 the vector allocated based on this size. However, the ELF symbol table
6961 always has a dummy entry as symbol #0, so it ends up even. */
6962
6963 long
6964 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6965 {
6966 long symcount;
6967 long symtab_size;
6968 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6969
6970 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6971 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6972 if (symcount > 0)
6973 symtab_size -= sizeof (asymbol *);
6974
6975 return symtab_size;
6976 }
6977
6978 long
6979 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6980 {
6981 long symcount;
6982 long symtab_size;
6983 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6984
6985 if (elf_dynsymtab (abfd) == 0)
6986 {
6987 bfd_set_error (bfd_error_invalid_operation);
6988 return -1;
6989 }
6990
6991 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6992 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6993 if (symcount > 0)
6994 symtab_size -= sizeof (asymbol *);
6995
6996 return symtab_size;
6997 }
6998
6999 long
7000 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7001 sec_ptr asect)
7002 {
7003 return (asect->reloc_count + 1) * sizeof (arelent *);
7004 }
7005
7006 /* Canonicalize the relocs. */
7007
7008 long
7009 _bfd_elf_canonicalize_reloc (bfd *abfd,
7010 sec_ptr section,
7011 arelent **relptr,
7012 asymbol **symbols)
7013 {
7014 arelent *tblptr;
7015 unsigned int i;
7016 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7017
7018 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7019 return -1;
7020
7021 tblptr = section->relocation;
7022 for (i = 0; i < section->reloc_count; i++)
7023 *relptr++ = tblptr++;
7024
7025 *relptr = NULL;
7026
7027 return section->reloc_count;
7028 }
7029
7030 long
7031 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7032 {
7033 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7034 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7035
7036 if (symcount >= 0)
7037 bfd_get_symcount (abfd) = symcount;
7038 return symcount;
7039 }
7040
7041 long
7042 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7043 asymbol **allocation)
7044 {
7045 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7046 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7047
7048 if (symcount >= 0)
7049 bfd_get_dynamic_symcount (abfd) = symcount;
7050 return symcount;
7051 }
7052
7053 /* Return the size required for the dynamic reloc entries. Any loadable
7054 section that was actually installed in the BFD, and has type SHT_REL
7055 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7056 dynamic reloc section. */
7057
7058 long
7059 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7060 {
7061 long ret;
7062 asection *s;
7063
7064 if (elf_dynsymtab (abfd) == 0)
7065 {
7066 bfd_set_error (bfd_error_invalid_operation);
7067 return -1;
7068 }
7069
7070 ret = sizeof (arelent *);
7071 for (s = abfd->sections; s != NULL; s = s->next)
7072 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7073 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7074 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7075 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7076 * sizeof (arelent *));
7077
7078 return ret;
7079 }
7080
7081 /* Canonicalize the dynamic relocation entries. Note that we return the
7082 dynamic relocations as a single block, although they are actually
7083 associated with particular sections; the interface, which was
7084 designed for SunOS style shared libraries, expects that there is only
7085 one set of dynamic relocs. Any loadable section that was actually
7086 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7087 dynamic symbol table, is considered to be a dynamic reloc section. */
7088
7089 long
7090 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7091 arelent **storage,
7092 asymbol **syms)
7093 {
7094 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7095 asection *s;
7096 long ret;
7097
7098 if (elf_dynsymtab (abfd) == 0)
7099 {
7100 bfd_set_error (bfd_error_invalid_operation);
7101 return -1;
7102 }
7103
7104 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7105 ret = 0;
7106 for (s = abfd->sections; s != NULL; s = s->next)
7107 {
7108 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7109 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7110 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7111 {
7112 arelent *p;
7113 long count, i;
7114
7115 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7116 return -1;
7117 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7118 p = s->relocation;
7119 for (i = 0; i < count; i++)
7120 *storage++ = p++;
7121 ret += count;
7122 }
7123 }
7124
7125 *storage = NULL;
7126
7127 return ret;
7128 }
7129 \f
7130 /* Read in the version information. */
7131
7132 bfd_boolean
7133 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7134 {
7135 bfd_byte *contents = NULL;
7136 unsigned int freeidx = 0;
7137
7138 if (elf_dynverref (abfd) != 0)
7139 {
7140 Elf_Internal_Shdr *hdr;
7141 Elf_External_Verneed *everneed;
7142 Elf_Internal_Verneed *iverneed;
7143 unsigned int i;
7144 bfd_byte *contents_end;
7145
7146 hdr = &elf_tdata (abfd)->dynverref_hdr;
7147
7148 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7149 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7150 if (elf_tdata (abfd)->verref == NULL)
7151 goto error_return;
7152
7153 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7154
7155 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7156 if (contents == NULL)
7157 {
7158 error_return_verref:
7159 elf_tdata (abfd)->verref = NULL;
7160 elf_tdata (abfd)->cverrefs = 0;
7161 goto error_return;
7162 }
7163 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7164 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7165 goto error_return_verref;
7166
7167 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7168 goto error_return_verref;
7169
7170 BFD_ASSERT (sizeof (Elf_External_Verneed)
7171 == sizeof (Elf_External_Vernaux));
7172 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7173 everneed = (Elf_External_Verneed *) contents;
7174 iverneed = elf_tdata (abfd)->verref;
7175 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7176 {
7177 Elf_External_Vernaux *evernaux;
7178 Elf_Internal_Vernaux *ivernaux;
7179 unsigned int j;
7180
7181 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7182
7183 iverneed->vn_bfd = abfd;
7184
7185 iverneed->vn_filename =
7186 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7187 iverneed->vn_file);
7188 if (iverneed->vn_filename == NULL)
7189 goto error_return_verref;
7190
7191 if (iverneed->vn_cnt == 0)
7192 iverneed->vn_auxptr = NULL;
7193 else
7194 {
7195 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7196 bfd_alloc2 (abfd, iverneed->vn_cnt,
7197 sizeof (Elf_Internal_Vernaux));
7198 if (iverneed->vn_auxptr == NULL)
7199 goto error_return_verref;
7200 }
7201
7202 if (iverneed->vn_aux
7203 > (size_t) (contents_end - (bfd_byte *) everneed))
7204 goto error_return_verref;
7205
7206 evernaux = ((Elf_External_Vernaux *)
7207 ((bfd_byte *) everneed + iverneed->vn_aux));
7208 ivernaux = iverneed->vn_auxptr;
7209 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7210 {
7211 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7212
7213 ivernaux->vna_nodename =
7214 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7215 ivernaux->vna_name);
7216 if (ivernaux->vna_nodename == NULL)
7217 goto error_return_verref;
7218
7219 if (j + 1 < iverneed->vn_cnt)
7220 ivernaux->vna_nextptr = ivernaux + 1;
7221 else
7222 ivernaux->vna_nextptr = NULL;
7223
7224 if (ivernaux->vna_next
7225 > (size_t) (contents_end - (bfd_byte *) evernaux))
7226 goto error_return_verref;
7227
7228 evernaux = ((Elf_External_Vernaux *)
7229 ((bfd_byte *) evernaux + ivernaux->vna_next));
7230
7231 if (ivernaux->vna_other > freeidx)
7232 freeidx = ivernaux->vna_other;
7233 }
7234
7235 if (i + 1 < hdr->sh_info)
7236 iverneed->vn_nextref = iverneed + 1;
7237 else
7238 iverneed->vn_nextref = NULL;
7239
7240 if (iverneed->vn_next
7241 > (size_t) (contents_end - (bfd_byte *) everneed))
7242 goto error_return_verref;
7243
7244 everneed = ((Elf_External_Verneed *)
7245 ((bfd_byte *) everneed + iverneed->vn_next));
7246 }
7247
7248 free (contents);
7249 contents = NULL;
7250 }
7251
7252 if (elf_dynverdef (abfd) != 0)
7253 {
7254 Elf_Internal_Shdr *hdr;
7255 Elf_External_Verdef *everdef;
7256 Elf_Internal_Verdef *iverdef;
7257 Elf_Internal_Verdef *iverdefarr;
7258 Elf_Internal_Verdef iverdefmem;
7259 unsigned int i;
7260 unsigned int maxidx;
7261 bfd_byte *contents_end_def, *contents_end_aux;
7262
7263 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7264
7265 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7266 if (contents == NULL)
7267 goto error_return;
7268 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7269 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7270 goto error_return;
7271
7272 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7273 goto error_return;
7274
7275 BFD_ASSERT (sizeof (Elf_External_Verdef)
7276 >= sizeof (Elf_External_Verdaux));
7277 contents_end_def = contents + hdr->sh_size
7278 - sizeof (Elf_External_Verdef);
7279 contents_end_aux = contents + hdr->sh_size
7280 - sizeof (Elf_External_Verdaux);
7281
7282 /* We know the number of entries in the section but not the maximum
7283 index. Therefore we have to run through all entries and find
7284 the maximum. */
7285 everdef = (Elf_External_Verdef *) contents;
7286 maxidx = 0;
7287 for (i = 0; i < hdr->sh_info; ++i)
7288 {
7289 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7290
7291 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7292 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7293
7294 if (iverdefmem.vd_next
7295 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7296 goto error_return;
7297
7298 everdef = ((Elf_External_Verdef *)
7299 ((bfd_byte *) everdef + iverdefmem.vd_next));
7300 }
7301
7302 if (default_imported_symver)
7303 {
7304 if (freeidx > maxidx)
7305 maxidx = ++freeidx;
7306 else
7307 freeidx = ++maxidx;
7308 }
7309 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7310 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7311 if (elf_tdata (abfd)->verdef == NULL)
7312 goto error_return;
7313
7314 elf_tdata (abfd)->cverdefs = maxidx;
7315
7316 everdef = (Elf_External_Verdef *) contents;
7317 iverdefarr = elf_tdata (abfd)->verdef;
7318 for (i = 0; i < hdr->sh_info; i++)
7319 {
7320 Elf_External_Verdaux *everdaux;
7321 Elf_Internal_Verdaux *iverdaux;
7322 unsigned int j;
7323
7324 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7325
7326 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7327 {
7328 error_return_verdef:
7329 elf_tdata (abfd)->verdef = NULL;
7330 elf_tdata (abfd)->cverdefs = 0;
7331 goto error_return;
7332 }
7333
7334 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7335 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7336
7337 iverdef->vd_bfd = abfd;
7338
7339 if (iverdef->vd_cnt == 0)
7340 iverdef->vd_auxptr = NULL;
7341 else
7342 {
7343 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7344 bfd_alloc2 (abfd, iverdef->vd_cnt,
7345 sizeof (Elf_Internal_Verdaux));
7346 if (iverdef->vd_auxptr == NULL)
7347 goto error_return_verdef;
7348 }
7349
7350 if (iverdef->vd_aux
7351 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7352 goto error_return_verdef;
7353
7354 everdaux = ((Elf_External_Verdaux *)
7355 ((bfd_byte *) everdef + iverdef->vd_aux));
7356 iverdaux = iverdef->vd_auxptr;
7357 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7358 {
7359 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7360
7361 iverdaux->vda_nodename =
7362 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7363 iverdaux->vda_name);
7364 if (iverdaux->vda_nodename == NULL)
7365 goto error_return_verdef;
7366
7367 if (j + 1 < iverdef->vd_cnt)
7368 iverdaux->vda_nextptr = iverdaux + 1;
7369 else
7370 iverdaux->vda_nextptr = NULL;
7371
7372 if (iverdaux->vda_next
7373 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7374 goto error_return_verdef;
7375
7376 everdaux = ((Elf_External_Verdaux *)
7377 ((bfd_byte *) everdaux + iverdaux->vda_next));
7378 }
7379
7380 if (iverdef->vd_cnt)
7381 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7382
7383 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7384 iverdef->vd_nextdef = iverdef + 1;
7385 else
7386 iverdef->vd_nextdef = NULL;
7387
7388 everdef = ((Elf_External_Verdef *)
7389 ((bfd_byte *) everdef + iverdef->vd_next));
7390 }
7391
7392 free (contents);
7393 contents = NULL;
7394 }
7395 else if (default_imported_symver)
7396 {
7397 if (freeidx < 3)
7398 freeidx = 3;
7399 else
7400 freeidx++;
7401
7402 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7403 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7404 if (elf_tdata (abfd)->verdef == NULL)
7405 goto error_return;
7406
7407 elf_tdata (abfd)->cverdefs = freeidx;
7408 }
7409
7410 /* Create a default version based on the soname. */
7411 if (default_imported_symver)
7412 {
7413 Elf_Internal_Verdef *iverdef;
7414 Elf_Internal_Verdaux *iverdaux;
7415
7416 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
7417
7418 iverdef->vd_version = VER_DEF_CURRENT;
7419 iverdef->vd_flags = 0;
7420 iverdef->vd_ndx = freeidx;
7421 iverdef->vd_cnt = 1;
7422
7423 iverdef->vd_bfd = abfd;
7424
7425 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7426 if (iverdef->vd_nodename == NULL)
7427 goto error_return_verdef;
7428 iverdef->vd_nextdef = NULL;
7429 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7430 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7431 if (iverdef->vd_auxptr == NULL)
7432 goto error_return_verdef;
7433
7434 iverdaux = iverdef->vd_auxptr;
7435 iverdaux->vda_nodename = iverdef->vd_nodename;
7436 iverdaux->vda_nextptr = NULL;
7437 }
7438
7439 return TRUE;
7440
7441 error_return:
7442 if (contents != NULL)
7443 free (contents);
7444 return FALSE;
7445 }
7446 \f
7447 asymbol *
7448 _bfd_elf_make_empty_symbol (bfd *abfd)
7449 {
7450 elf_symbol_type *newsym;
7451 bfd_size_type amt = sizeof (elf_symbol_type);
7452
7453 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7454 if (!newsym)
7455 return NULL;
7456 else
7457 {
7458 newsym->symbol.the_bfd = abfd;
7459 return &newsym->symbol;
7460 }
7461 }
7462
7463 void
7464 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7465 asymbol *symbol,
7466 symbol_info *ret)
7467 {
7468 bfd_symbol_info (symbol, ret);
7469 }
7470
7471 /* Return whether a symbol name implies a local symbol. Most targets
7472 use this function for the is_local_label_name entry point, but some
7473 override it. */
7474
7475 bfd_boolean
7476 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7477 const char *name)
7478 {
7479 /* Normal local symbols start with ``.L''. */
7480 if (name[0] == '.' && name[1] == 'L')
7481 return TRUE;
7482
7483 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7484 DWARF debugging symbols starting with ``..''. */
7485 if (name[0] == '.' && name[1] == '.')
7486 return TRUE;
7487
7488 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7489 emitting DWARF debugging output. I suspect this is actually a
7490 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7491 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7492 underscore to be emitted on some ELF targets). For ease of use,
7493 we treat such symbols as local. */
7494 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7495 return TRUE;
7496
7497 return FALSE;
7498 }
7499
7500 alent *
7501 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7502 asymbol *symbol ATTRIBUTE_UNUSED)
7503 {
7504 abort ();
7505 return NULL;
7506 }
7507
7508 bfd_boolean
7509 _bfd_elf_set_arch_mach (bfd *abfd,
7510 enum bfd_architecture arch,
7511 unsigned long machine)
7512 {
7513 /* If this isn't the right architecture for this backend, and this
7514 isn't the generic backend, fail. */
7515 if (arch != get_elf_backend_data (abfd)->arch
7516 && arch != bfd_arch_unknown
7517 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7518 return FALSE;
7519
7520 return bfd_default_set_arch_mach (abfd, arch, machine);
7521 }
7522
7523 /* Find the function to a particular section and offset,
7524 for error reporting. */
7525
7526 static bfd_boolean
7527 elf_find_function (bfd *abfd,
7528 asection *section,
7529 asymbol **symbols,
7530 bfd_vma offset,
7531 const char **filename_ptr,
7532 const char **functionname_ptr)
7533 {
7534 struct elf_find_function_cache
7535 {
7536 asection *last_section;
7537 asymbol *func;
7538 const char *filename;
7539 bfd_size_type func_size;
7540 } *cache;
7541
7542 if (symbols == NULL)
7543 return FALSE;
7544
7545 cache = elf_tdata (abfd)->elf_find_function_cache;
7546 if (cache == NULL)
7547 {
7548 cache = bfd_zalloc (abfd, sizeof (*cache));
7549 elf_tdata (abfd)->elf_find_function_cache = cache;
7550 if (cache == NULL)
7551 return FALSE;
7552 }
7553 if (cache->last_section != section
7554 || cache->func == NULL
7555 || offset < cache->func->value
7556 || offset >= cache->func->value + cache->func_size)
7557 {
7558 asymbol *file;
7559 bfd_vma low_func;
7560 asymbol **p;
7561 /* ??? Given multiple file symbols, it is impossible to reliably
7562 choose the right file name for global symbols. File symbols are
7563 local symbols, and thus all file symbols must sort before any
7564 global symbols. The ELF spec may be interpreted to say that a
7565 file symbol must sort before other local symbols, but currently
7566 ld -r doesn't do this. So, for ld -r output, it is possible to
7567 make a better choice of file name for local symbols by ignoring
7568 file symbols appearing after a given local symbol. */
7569 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7570 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7571
7572 file = NULL;
7573 low_func = 0;
7574 state = nothing_seen;
7575 cache->filename = NULL;
7576 cache->func = NULL;
7577 cache->func_size = 0;
7578 cache->last_section = section;
7579
7580 for (p = symbols; *p != NULL; p++)
7581 {
7582 asymbol *sym = *p;
7583 bfd_vma code_off;
7584 bfd_size_type size;
7585
7586 if ((sym->flags & BSF_FILE) != 0)
7587 {
7588 file = sym;
7589 if (state == symbol_seen)
7590 state = file_after_symbol_seen;
7591 continue;
7592 }
7593
7594 size = bed->maybe_function_sym (sym, section, &code_off);
7595 if (size != 0
7596 && code_off <= offset
7597 && (code_off > low_func
7598 || (code_off == low_func
7599 && size > cache->func_size)))
7600 {
7601 cache->func = sym;
7602 cache->func_size = size;
7603 cache->filename = NULL;
7604 low_func = code_off;
7605 if (file != NULL
7606 && ((sym->flags & BSF_LOCAL) != 0
7607 || state != file_after_symbol_seen))
7608 cache->filename = bfd_asymbol_name (file);
7609 }
7610 if (state == nothing_seen)
7611 state = symbol_seen;
7612 }
7613 }
7614
7615 if (cache->func == NULL)
7616 return FALSE;
7617
7618 if (filename_ptr)
7619 *filename_ptr = cache->filename;
7620 if (functionname_ptr)
7621 *functionname_ptr = bfd_asymbol_name (cache->func);
7622
7623 return TRUE;
7624 }
7625
7626 /* Find the nearest line to a particular section and offset,
7627 for error reporting. */
7628
7629 bfd_boolean
7630 _bfd_elf_find_nearest_line (bfd *abfd,
7631 asection *section,
7632 asymbol **symbols,
7633 bfd_vma offset,
7634 const char **filename_ptr,
7635 const char **functionname_ptr,
7636 unsigned int *line_ptr)
7637 {
7638 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7639 offset, filename_ptr,
7640 functionname_ptr,
7641 line_ptr,
7642 NULL);
7643 }
7644
7645 bfd_boolean
7646 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7647 asection *section,
7648 asymbol **symbols,
7649 bfd_vma offset,
7650 const char **filename_ptr,
7651 const char **functionname_ptr,
7652 unsigned int *line_ptr,
7653 unsigned int *discriminator_ptr)
7654 {
7655 bfd_boolean found;
7656
7657 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7658 filename_ptr, functionname_ptr,
7659 line_ptr))
7660 {
7661 if (!*functionname_ptr)
7662 elf_find_function (abfd, section, symbols, offset,
7663 *filename_ptr ? NULL : filename_ptr,
7664 functionname_ptr);
7665
7666 return TRUE;
7667 }
7668
7669 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7670 section, symbols, offset,
7671 filename_ptr, functionname_ptr,
7672 line_ptr, discriminator_ptr, 0,
7673 &elf_tdata (abfd)->dwarf2_find_line_info))
7674 {
7675 if (!*functionname_ptr)
7676 elf_find_function (abfd, section, symbols, offset,
7677 *filename_ptr ? NULL : filename_ptr,
7678 functionname_ptr);
7679
7680 return TRUE;
7681 }
7682
7683 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7684 &found, filename_ptr,
7685 functionname_ptr, line_ptr,
7686 &elf_tdata (abfd)->line_info))
7687 return FALSE;
7688 if (found && (*functionname_ptr || *line_ptr))
7689 return TRUE;
7690
7691 if (symbols == NULL)
7692 return FALSE;
7693
7694 if (! elf_find_function (abfd, section, symbols, offset,
7695 filename_ptr, functionname_ptr))
7696 return FALSE;
7697
7698 *line_ptr = 0;
7699 return TRUE;
7700 }
7701
7702 /* Find the line for a symbol. */
7703
7704 bfd_boolean
7705 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7706 const char **filename_ptr, unsigned int *line_ptr)
7707 {
7708 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7709 filename_ptr, line_ptr,
7710 NULL);
7711 }
7712
7713 bfd_boolean
7714 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7715 const char **filename_ptr,
7716 unsigned int *line_ptr,
7717 unsigned int *discriminator_ptr)
7718 {
7719 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7720 filename_ptr, line_ptr, discriminator_ptr, 0,
7721 &elf_tdata (abfd)->dwarf2_find_line_info);
7722 }
7723
7724 /* After a call to bfd_find_nearest_line, successive calls to
7725 bfd_find_inliner_info can be used to get source information about
7726 each level of function inlining that terminated at the address
7727 passed to bfd_find_nearest_line. Currently this is only supported
7728 for DWARF2 with appropriate DWARF3 extensions. */
7729
7730 bfd_boolean
7731 _bfd_elf_find_inliner_info (bfd *abfd,
7732 const char **filename_ptr,
7733 const char **functionname_ptr,
7734 unsigned int *line_ptr)
7735 {
7736 bfd_boolean found;
7737 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7738 functionname_ptr, line_ptr,
7739 & elf_tdata (abfd)->dwarf2_find_line_info);
7740 return found;
7741 }
7742
7743 int
7744 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7745 {
7746 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7747 int ret = bed->s->sizeof_ehdr;
7748
7749 if (!info->relocatable)
7750 {
7751 bfd_size_type phdr_size = elf_program_header_size (abfd);
7752
7753 if (phdr_size == (bfd_size_type) -1)
7754 {
7755 struct elf_segment_map *m;
7756
7757 phdr_size = 0;
7758 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
7759 phdr_size += bed->s->sizeof_phdr;
7760
7761 if (phdr_size == 0)
7762 phdr_size = get_program_header_size (abfd, info);
7763 }
7764
7765 elf_program_header_size (abfd) = phdr_size;
7766 ret += phdr_size;
7767 }
7768
7769 return ret;
7770 }
7771
7772 bfd_boolean
7773 _bfd_elf_set_section_contents (bfd *abfd,
7774 sec_ptr section,
7775 const void *location,
7776 file_ptr offset,
7777 bfd_size_type count)
7778 {
7779 Elf_Internal_Shdr *hdr;
7780 bfd_signed_vma pos;
7781
7782 if (! abfd->output_has_begun
7783 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7784 return FALSE;
7785
7786 hdr = &elf_section_data (section)->this_hdr;
7787 pos = hdr->sh_offset + offset;
7788 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7789 || bfd_bwrite (location, count, abfd) != count)
7790 return FALSE;
7791
7792 return TRUE;
7793 }
7794
7795 void
7796 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7797 arelent *cache_ptr ATTRIBUTE_UNUSED,
7798 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7799 {
7800 abort ();
7801 }
7802
7803 /* Try to convert a non-ELF reloc into an ELF one. */
7804
7805 bfd_boolean
7806 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7807 {
7808 /* Check whether we really have an ELF howto. */
7809
7810 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7811 {
7812 bfd_reloc_code_real_type code;
7813 reloc_howto_type *howto;
7814
7815 /* Alien reloc: Try to determine its type to replace it with an
7816 equivalent ELF reloc. */
7817
7818 if (areloc->howto->pc_relative)
7819 {
7820 switch (areloc->howto->bitsize)
7821 {
7822 case 8:
7823 code = BFD_RELOC_8_PCREL;
7824 break;
7825 case 12:
7826 code = BFD_RELOC_12_PCREL;
7827 break;
7828 case 16:
7829 code = BFD_RELOC_16_PCREL;
7830 break;
7831 case 24:
7832 code = BFD_RELOC_24_PCREL;
7833 break;
7834 case 32:
7835 code = BFD_RELOC_32_PCREL;
7836 break;
7837 case 64:
7838 code = BFD_RELOC_64_PCREL;
7839 break;
7840 default:
7841 goto fail;
7842 }
7843
7844 howto = bfd_reloc_type_lookup (abfd, code);
7845
7846 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7847 {
7848 if (howto->pcrel_offset)
7849 areloc->addend += areloc->address;
7850 else
7851 areloc->addend -= areloc->address; /* addend is unsigned!! */
7852 }
7853 }
7854 else
7855 {
7856 switch (areloc->howto->bitsize)
7857 {
7858 case 8:
7859 code = BFD_RELOC_8;
7860 break;
7861 case 14:
7862 code = BFD_RELOC_14;
7863 break;
7864 case 16:
7865 code = BFD_RELOC_16;
7866 break;
7867 case 26:
7868 code = BFD_RELOC_26;
7869 break;
7870 case 32:
7871 code = BFD_RELOC_32;
7872 break;
7873 case 64:
7874 code = BFD_RELOC_64;
7875 break;
7876 default:
7877 goto fail;
7878 }
7879
7880 howto = bfd_reloc_type_lookup (abfd, code);
7881 }
7882
7883 if (howto)
7884 areloc->howto = howto;
7885 else
7886 goto fail;
7887 }
7888
7889 return TRUE;
7890
7891 fail:
7892 (*_bfd_error_handler)
7893 (_("%B: unsupported relocation type %s"),
7894 abfd, areloc->howto->name);
7895 bfd_set_error (bfd_error_bad_value);
7896 return FALSE;
7897 }
7898
7899 bfd_boolean
7900 _bfd_elf_close_and_cleanup (bfd *abfd)
7901 {
7902 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7903 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7904 {
7905 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
7906 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7907 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7908 }
7909
7910 return _bfd_generic_close_and_cleanup (abfd);
7911 }
7912
7913 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7914 in the relocation's offset. Thus we cannot allow any sort of sanity
7915 range-checking to interfere. There is nothing else to do in processing
7916 this reloc. */
7917
7918 bfd_reloc_status_type
7919 _bfd_elf_rel_vtable_reloc_fn
7920 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7921 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7922 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7923 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7924 {
7925 return bfd_reloc_ok;
7926 }
7927 \f
7928 /* Elf core file support. Much of this only works on native
7929 toolchains, since we rely on knowing the
7930 machine-dependent procfs structure in order to pick
7931 out details about the corefile. */
7932
7933 #ifdef HAVE_SYS_PROCFS_H
7934 /* Needed for new procfs interface on sparc-solaris. */
7935 # define _STRUCTURED_PROC 1
7936 # include <sys/procfs.h>
7937 #endif
7938
7939 /* Return a PID that identifies a "thread" for threaded cores, or the
7940 PID of the main process for non-threaded cores. */
7941
7942 static int
7943 elfcore_make_pid (bfd *abfd)
7944 {
7945 int pid;
7946
7947 pid = elf_tdata (abfd)->core->lwpid;
7948 if (pid == 0)
7949 pid = elf_tdata (abfd)->core->pid;
7950
7951 return pid;
7952 }
7953
7954 /* If there isn't a section called NAME, make one, using
7955 data from SECT. Note, this function will generate a
7956 reference to NAME, so you shouldn't deallocate or
7957 overwrite it. */
7958
7959 static bfd_boolean
7960 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7961 {
7962 asection *sect2;
7963
7964 if (bfd_get_section_by_name (abfd, name) != NULL)
7965 return TRUE;
7966
7967 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7968 if (sect2 == NULL)
7969 return FALSE;
7970
7971 sect2->size = sect->size;
7972 sect2->filepos = sect->filepos;
7973 sect2->alignment_power = sect->alignment_power;
7974 return TRUE;
7975 }
7976
7977 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7978 actually creates up to two pseudosections:
7979 - For the single-threaded case, a section named NAME, unless
7980 such a section already exists.
7981 - For the multi-threaded case, a section named "NAME/PID", where
7982 PID is elfcore_make_pid (abfd).
7983 Both pseudosections have identical contents. */
7984 bfd_boolean
7985 _bfd_elfcore_make_pseudosection (bfd *abfd,
7986 char *name,
7987 size_t size,
7988 ufile_ptr filepos)
7989 {
7990 char buf[100];
7991 char *threaded_name;
7992 size_t len;
7993 asection *sect;
7994
7995 /* Build the section name. */
7996
7997 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7998 len = strlen (buf) + 1;
7999 threaded_name = (char *) bfd_alloc (abfd, len);
8000 if (threaded_name == NULL)
8001 return FALSE;
8002 memcpy (threaded_name, buf, len);
8003
8004 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8005 SEC_HAS_CONTENTS);
8006 if (sect == NULL)
8007 return FALSE;
8008 sect->size = size;
8009 sect->filepos = filepos;
8010 sect->alignment_power = 2;
8011
8012 return elfcore_maybe_make_sect (abfd, name, sect);
8013 }
8014
8015 /* prstatus_t exists on:
8016 solaris 2.5+
8017 linux 2.[01] + glibc
8018 unixware 4.2
8019 */
8020
8021 #if defined (HAVE_PRSTATUS_T)
8022
8023 static bfd_boolean
8024 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8025 {
8026 size_t size;
8027 int offset;
8028
8029 if (note->descsz == sizeof (prstatus_t))
8030 {
8031 prstatus_t prstat;
8032
8033 size = sizeof (prstat.pr_reg);
8034 offset = offsetof (prstatus_t, pr_reg);
8035 memcpy (&prstat, note->descdata, sizeof (prstat));
8036
8037 /* Do not overwrite the core signal if it
8038 has already been set by another thread. */
8039 if (elf_tdata (abfd)->core->signal == 0)
8040 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8041 if (elf_tdata (abfd)->core->pid == 0)
8042 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8043
8044 /* pr_who exists on:
8045 solaris 2.5+
8046 unixware 4.2
8047 pr_who doesn't exist on:
8048 linux 2.[01]
8049 */
8050 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8051 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8052 #else
8053 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8054 #endif
8055 }
8056 #if defined (HAVE_PRSTATUS32_T)
8057 else if (note->descsz == sizeof (prstatus32_t))
8058 {
8059 /* 64-bit host, 32-bit corefile */
8060 prstatus32_t prstat;
8061
8062 size = sizeof (prstat.pr_reg);
8063 offset = offsetof (prstatus32_t, pr_reg);
8064 memcpy (&prstat, note->descdata, sizeof (prstat));
8065
8066 /* Do not overwrite the core signal if it
8067 has already been set by another thread. */
8068 if (elf_tdata (abfd)->core->signal == 0)
8069 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8070 if (elf_tdata (abfd)->core->pid == 0)
8071 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8072
8073 /* pr_who exists on:
8074 solaris 2.5+
8075 unixware 4.2
8076 pr_who doesn't exist on:
8077 linux 2.[01]
8078 */
8079 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8080 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8081 #else
8082 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8083 #endif
8084 }
8085 #endif /* HAVE_PRSTATUS32_T */
8086 else
8087 {
8088 /* Fail - we don't know how to handle any other
8089 note size (ie. data object type). */
8090 return TRUE;
8091 }
8092
8093 /* Make a ".reg/999" section and a ".reg" section. */
8094 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8095 size, note->descpos + offset);
8096 }
8097 #endif /* defined (HAVE_PRSTATUS_T) */
8098
8099 /* Create a pseudosection containing the exact contents of NOTE. */
8100 static bfd_boolean
8101 elfcore_make_note_pseudosection (bfd *abfd,
8102 char *name,
8103 Elf_Internal_Note *note)
8104 {
8105 return _bfd_elfcore_make_pseudosection (abfd, name,
8106 note->descsz, note->descpos);
8107 }
8108
8109 /* There isn't a consistent prfpregset_t across platforms,
8110 but it doesn't matter, because we don't have to pick this
8111 data structure apart. */
8112
8113 static bfd_boolean
8114 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8115 {
8116 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8117 }
8118
8119 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8120 type of NT_PRXFPREG. Just include the whole note's contents
8121 literally. */
8122
8123 static bfd_boolean
8124 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8125 {
8126 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8127 }
8128
8129 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8130 with a note type of NT_X86_XSTATE. Just include the whole note's
8131 contents literally. */
8132
8133 static bfd_boolean
8134 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8135 {
8136 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8137 }
8138
8139 static bfd_boolean
8140 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8141 {
8142 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8143 }
8144
8145 static bfd_boolean
8146 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8147 {
8148 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8149 }
8150
8151 static bfd_boolean
8152 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8153 {
8154 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8155 }
8156
8157 static bfd_boolean
8158 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8159 {
8160 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8161 }
8162
8163 static bfd_boolean
8164 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8165 {
8166 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8167 }
8168
8169 static bfd_boolean
8170 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8171 {
8172 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8173 }
8174
8175 static bfd_boolean
8176 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8177 {
8178 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8179 }
8180
8181 static bfd_boolean
8182 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8183 {
8184 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8185 }
8186
8187 static bfd_boolean
8188 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8189 {
8190 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8191 }
8192
8193 static bfd_boolean
8194 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8195 {
8196 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8197 }
8198
8199 static bfd_boolean
8200 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8201 {
8202 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8203 }
8204
8205 static bfd_boolean
8206 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8207 {
8208 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8209 }
8210
8211 static bfd_boolean
8212 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8213 {
8214 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8215 }
8216
8217 static bfd_boolean
8218 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8219 {
8220 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8221 }
8222
8223 static bfd_boolean
8224 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8225 {
8226 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8227 }
8228
8229 #if defined (HAVE_PRPSINFO_T)
8230 typedef prpsinfo_t elfcore_psinfo_t;
8231 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8232 typedef prpsinfo32_t elfcore_psinfo32_t;
8233 #endif
8234 #endif
8235
8236 #if defined (HAVE_PSINFO_T)
8237 typedef psinfo_t elfcore_psinfo_t;
8238 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8239 typedef psinfo32_t elfcore_psinfo32_t;
8240 #endif
8241 #endif
8242
8243 /* return a malloc'ed copy of a string at START which is at
8244 most MAX bytes long, possibly without a terminating '\0'.
8245 the copy will always have a terminating '\0'. */
8246
8247 char *
8248 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8249 {
8250 char *dups;
8251 char *end = (char *) memchr (start, '\0', max);
8252 size_t len;
8253
8254 if (end == NULL)
8255 len = max;
8256 else
8257 len = end - start;
8258
8259 dups = (char *) bfd_alloc (abfd, len + 1);
8260 if (dups == NULL)
8261 return NULL;
8262
8263 memcpy (dups, start, len);
8264 dups[len] = '\0';
8265
8266 return dups;
8267 }
8268
8269 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8270 static bfd_boolean
8271 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8272 {
8273 if (note->descsz == sizeof (elfcore_psinfo_t))
8274 {
8275 elfcore_psinfo_t psinfo;
8276
8277 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8278
8279 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8280 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8281 #endif
8282 elf_tdata (abfd)->core->program
8283 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8284 sizeof (psinfo.pr_fname));
8285
8286 elf_tdata (abfd)->core->command
8287 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8288 sizeof (psinfo.pr_psargs));
8289 }
8290 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8291 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8292 {
8293 /* 64-bit host, 32-bit corefile */
8294 elfcore_psinfo32_t psinfo;
8295
8296 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8297
8298 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8299 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8300 #endif
8301 elf_tdata (abfd)->core->program
8302 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8303 sizeof (psinfo.pr_fname));
8304
8305 elf_tdata (abfd)->core->command
8306 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8307 sizeof (psinfo.pr_psargs));
8308 }
8309 #endif
8310
8311 else
8312 {
8313 /* Fail - we don't know how to handle any other
8314 note size (ie. data object type). */
8315 return TRUE;
8316 }
8317
8318 /* Note that for some reason, a spurious space is tacked
8319 onto the end of the args in some (at least one anyway)
8320 implementations, so strip it off if it exists. */
8321
8322 {
8323 char *command = elf_tdata (abfd)->core->command;
8324 int n = strlen (command);
8325
8326 if (0 < n && command[n - 1] == ' ')
8327 command[n - 1] = '\0';
8328 }
8329
8330 return TRUE;
8331 }
8332 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8333
8334 #if defined (HAVE_PSTATUS_T)
8335 static bfd_boolean
8336 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8337 {
8338 if (note->descsz == sizeof (pstatus_t)
8339 #if defined (HAVE_PXSTATUS_T)
8340 || note->descsz == sizeof (pxstatus_t)
8341 #endif
8342 )
8343 {
8344 pstatus_t pstat;
8345
8346 memcpy (&pstat, note->descdata, sizeof (pstat));
8347
8348 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8349 }
8350 #if defined (HAVE_PSTATUS32_T)
8351 else if (note->descsz == sizeof (pstatus32_t))
8352 {
8353 /* 64-bit host, 32-bit corefile */
8354 pstatus32_t pstat;
8355
8356 memcpy (&pstat, note->descdata, sizeof (pstat));
8357
8358 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8359 }
8360 #endif
8361 /* Could grab some more details from the "representative"
8362 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8363 NT_LWPSTATUS note, presumably. */
8364
8365 return TRUE;
8366 }
8367 #endif /* defined (HAVE_PSTATUS_T) */
8368
8369 #if defined (HAVE_LWPSTATUS_T)
8370 static bfd_boolean
8371 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8372 {
8373 lwpstatus_t lwpstat;
8374 char buf[100];
8375 char *name;
8376 size_t len;
8377 asection *sect;
8378
8379 if (note->descsz != sizeof (lwpstat)
8380 #if defined (HAVE_LWPXSTATUS_T)
8381 && note->descsz != sizeof (lwpxstatus_t)
8382 #endif
8383 )
8384 return TRUE;
8385
8386 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8387
8388 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8389 /* Do not overwrite the core signal if it has already been set by
8390 another thread. */
8391 if (elf_tdata (abfd)->core->signal == 0)
8392 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8393
8394 /* Make a ".reg/999" section. */
8395
8396 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8397 len = strlen (buf) + 1;
8398 name = bfd_alloc (abfd, len);
8399 if (name == NULL)
8400 return FALSE;
8401 memcpy (name, buf, len);
8402
8403 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8404 if (sect == NULL)
8405 return FALSE;
8406
8407 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8408 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8409 sect->filepos = note->descpos
8410 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8411 #endif
8412
8413 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8414 sect->size = sizeof (lwpstat.pr_reg);
8415 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8416 #endif
8417
8418 sect->alignment_power = 2;
8419
8420 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8421 return FALSE;
8422
8423 /* Make a ".reg2/999" section */
8424
8425 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8426 len = strlen (buf) + 1;
8427 name = bfd_alloc (abfd, len);
8428 if (name == NULL)
8429 return FALSE;
8430 memcpy (name, buf, len);
8431
8432 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8433 if (sect == NULL)
8434 return FALSE;
8435
8436 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8437 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8438 sect->filepos = note->descpos
8439 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8440 #endif
8441
8442 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8443 sect->size = sizeof (lwpstat.pr_fpreg);
8444 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8445 #endif
8446
8447 sect->alignment_power = 2;
8448
8449 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8450 }
8451 #endif /* defined (HAVE_LWPSTATUS_T) */
8452
8453 static bfd_boolean
8454 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8455 {
8456 char buf[30];
8457 char *name;
8458 size_t len;
8459 asection *sect;
8460 int type;
8461 int is_active_thread;
8462 bfd_vma base_addr;
8463
8464 if (note->descsz < 728)
8465 return TRUE;
8466
8467 if (! CONST_STRNEQ (note->namedata, "win32"))
8468 return TRUE;
8469
8470 type = bfd_get_32 (abfd, note->descdata);
8471
8472 switch (type)
8473 {
8474 case 1 /* NOTE_INFO_PROCESS */:
8475 /* FIXME: need to add ->core->command. */
8476 /* process_info.pid */
8477 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
8478 /* process_info.signal */
8479 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
8480 break;
8481
8482 case 2 /* NOTE_INFO_THREAD */:
8483 /* Make a ".reg/999" section. */
8484 /* thread_info.tid */
8485 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8486
8487 len = strlen (buf) + 1;
8488 name = (char *) bfd_alloc (abfd, len);
8489 if (name == NULL)
8490 return FALSE;
8491
8492 memcpy (name, buf, len);
8493
8494 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8495 if (sect == NULL)
8496 return FALSE;
8497
8498 /* sizeof (thread_info.thread_context) */
8499 sect->size = 716;
8500 /* offsetof (thread_info.thread_context) */
8501 sect->filepos = note->descpos + 12;
8502 sect->alignment_power = 2;
8503
8504 /* thread_info.is_active_thread */
8505 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8506
8507 if (is_active_thread)
8508 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8509 return FALSE;
8510 break;
8511
8512 case 3 /* NOTE_INFO_MODULE */:
8513 /* Make a ".module/xxxxxxxx" section. */
8514 /* module_info.base_address */
8515 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8516 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8517
8518 len = strlen (buf) + 1;
8519 name = (char *) bfd_alloc (abfd, len);
8520 if (name == NULL)
8521 return FALSE;
8522
8523 memcpy (name, buf, len);
8524
8525 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8526
8527 if (sect == NULL)
8528 return FALSE;
8529
8530 sect->size = note->descsz;
8531 sect->filepos = note->descpos;
8532 sect->alignment_power = 2;
8533 break;
8534
8535 default:
8536 return TRUE;
8537 }
8538
8539 return TRUE;
8540 }
8541
8542 static bfd_boolean
8543 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8544 {
8545 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8546
8547 switch (note->type)
8548 {
8549 default:
8550 return TRUE;
8551
8552 case NT_PRSTATUS:
8553 if (bed->elf_backend_grok_prstatus)
8554 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8555 return TRUE;
8556 #if defined (HAVE_PRSTATUS_T)
8557 return elfcore_grok_prstatus (abfd, note);
8558 #else
8559 return TRUE;
8560 #endif
8561
8562 #if defined (HAVE_PSTATUS_T)
8563 case NT_PSTATUS:
8564 return elfcore_grok_pstatus (abfd, note);
8565 #endif
8566
8567 #if defined (HAVE_LWPSTATUS_T)
8568 case NT_LWPSTATUS:
8569 return elfcore_grok_lwpstatus (abfd, note);
8570 #endif
8571
8572 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8573 return elfcore_grok_prfpreg (abfd, note);
8574
8575 case NT_WIN32PSTATUS:
8576 return elfcore_grok_win32pstatus (abfd, note);
8577
8578 case NT_PRXFPREG: /* Linux SSE extension */
8579 if (note->namesz == 6
8580 && strcmp (note->namedata, "LINUX") == 0)
8581 return elfcore_grok_prxfpreg (abfd, note);
8582 else
8583 return TRUE;
8584
8585 case NT_X86_XSTATE: /* Linux XSAVE extension */
8586 if (note->namesz == 6
8587 && strcmp (note->namedata, "LINUX") == 0)
8588 return elfcore_grok_xstatereg (abfd, note);
8589 else
8590 return TRUE;
8591
8592 case NT_PPC_VMX:
8593 if (note->namesz == 6
8594 && strcmp (note->namedata, "LINUX") == 0)
8595 return elfcore_grok_ppc_vmx (abfd, note);
8596 else
8597 return TRUE;
8598
8599 case NT_PPC_VSX:
8600 if (note->namesz == 6
8601 && strcmp (note->namedata, "LINUX") == 0)
8602 return elfcore_grok_ppc_vsx (abfd, note);
8603 else
8604 return TRUE;
8605
8606 case NT_S390_HIGH_GPRS:
8607 if (note->namesz == 6
8608 && strcmp (note->namedata, "LINUX") == 0)
8609 return elfcore_grok_s390_high_gprs (abfd, note);
8610 else
8611 return TRUE;
8612
8613 case NT_S390_TIMER:
8614 if (note->namesz == 6
8615 && strcmp (note->namedata, "LINUX") == 0)
8616 return elfcore_grok_s390_timer (abfd, note);
8617 else
8618 return TRUE;
8619
8620 case NT_S390_TODCMP:
8621 if (note->namesz == 6
8622 && strcmp (note->namedata, "LINUX") == 0)
8623 return elfcore_grok_s390_todcmp (abfd, note);
8624 else
8625 return TRUE;
8626
8627 case NT_S390_TODPREG:
8628 if (note->namesz == 6
8629 && strcmp (note->namedata, "LINUX") == 0)
8630 return elfcore_grok_s390_todpreg (abfd, note);
8631 else
8632 return TRUE;
8633
8634 case NT_S390_CTRS:
8635 if (note->namesz == 6
8636 && strcmp (note->namedata, "LINUX") == 0)
8637 return elfcore_grok_s390_ctrs (abfd, note);
8638 else
8639 return TRUE;
8640
8641 case NT_S390_PREFIX:
8642 if (note->namesz == 6
8643 && strcmp (note->namedata, "LINUX") == 0)
8644 return elfcore_grok_s390_prefix (abfd, note);
8645 else
8646 return TRUE;
8647
8648 case NT_S390_LAST_BREAK:
8649 if (note->namesz == 6
8650 && strcmp (note->namedata, "LINUX") == 0)
8651 return elfcore_grok_s390_last_break (abfd, note);
8652 else
8653 return TRUE;
8654
8655 case NT_S390_SYSTEM_CALL:
8656 if (note->namesz == 6
8657 && strcmp (note->namedata, "LINUX") == 0)
8658 return elfcore_grok_s390_system_call (abfd, note);
8659 else
8660 return TRUE;
8661
8662 case NT_S390_TDB:
8663 if (note->namesz == 6
8664 && strcmp (note->namedata, "LINUX") == 0)
8665 return elfcore_grok_s390_tdb (abfd, note);
8666 else
8667 return TRUE;
8668
8669 case NT_ARM_VFP:
8670 if (note->namesz == 6
8671 && strcmp (note->namedata, "LINUX") == 0)
8672 return elfcore_grok_arm_vfp (abfd, note);
8673 else
8674 return TRUE;
8675
8676 case NT_ARM_TLS:
8677 if (note->namesz == 6
8678 && strcmp (note->namedata, "LINUX") == 0)
8679 return elfcore_grok_aarch_tls (abfd, note);
8680 else
8681 return TRUE;
8682
8683 case NT_ARM_HW_BREAK:
8684 if (note->namesz == 6
8685 && strcmp (note->namedata, "LINUX") == 0)
8686 return elfcore_grok_aarch_hw_break (abfd, note);
8687 else
8688 return TRUE;
8689
8690 case NT_ARM_HW_WATCH:
8691 if (note->namesz == 6
8692 && strcmp (note->namedata, "LINUX") == 0)
8693 return elfcore_grok_aarch_hw_watch (abfd, note);
8694 else
8695 return TRUE;
8696
8697 case NT_PRPSINFO:
8698 case NT_PSINFO:
8699 if (bed->elf_backend_grok_psinfo)
8700 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8701 return TRUE;
8702 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8703 return elfcore_grok_psinfo (abfd, note);
8704 #else
8705 return TRUE;
8706 #endif
8707
8708 case NT_AUXV:
8709 {
8710 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8711 SEC_HAS_CONTENTS);
8712
8713 if (sect == NULL)
8714 return FALSE;
8715 sect->size = note->descsz;
8716 sect->filepos = note->descpos;
8717 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8718
8719 return TRUE;
8720 }
8721
8722 case NT_FILE:
8723 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
8724 note);
8725
8726 case NT_SIGINFO:
8727 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
8728 note);
8729 }
8730 }
8731
8732 static bfd_boolean
8733 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8734 {
8735 struct elf_obj_tdata *t;
8736
8737 if (note->descsz == 0)
8738 return FALSE;
8739
8740 t = elf_tdata (abfd);
8741 t->build_id = bfd_alloc (abfd, sizeof (*t->build_id) - 1 + note->descsz);
8742 if (t->build_id == NULL)
8743 return FALSE;
8744
8745 t->build_id->size = note->descsz;
8746 memcpy (t->build_id->data, note->descdata, note->descsz);
8747
8748 return TRUE;
8749 }
8750
8751 static bfd_boolean
8752 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8753 {
8754 switch (note->type)
8755 {
8756 default:
8757 return TRUE;
8758
8759 case NT_GNU_BUILD_ID:
8760 return elfobj_grok_gnu_build_id (abfd, note);
8761 }
8762 }
8763
8764 static bfd_boolean
8765 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8766 {
8767 struct sdt_note *cur =
8768 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8769 + note->descsz);
8770
8771 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8772 cur->size = (bfd_size_type) note->descsz;
8773 memcpy (cur->data, note->descdata, note->descsz);
8774
8775 elf_tdata (abfd)->sdt_note_head = cur;
8776
8777 return TRUE;
8778 }
8779
8780 static bfd_boolean
8781 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8782 {
8783 switch (note->type)
8784 {
8785 case NT_STAPSDT:
8786 return elfobj_grok_stapsdt_note_1 (abfd, note);
8787
8788 default:
8789 return TRUE;
8790 }
8791 }
8792
8793 static bfd_boolean
8794 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8795 {
8796 char *cp;
8797
8798 cp = strchr (note->namedata, '@');
8799 if (cp != NULL)
8800 {
8801 *lwpidp = atoi(cp + 1);
8802 return TRUE;
8803 }
8804 return FALSE;
8805 }
8806
8807 static bfd_boolean
8808 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8809 {
8810 /* Signal number at offset 0x08. */
8811 elf_tdata (abfd)->core->signal
8812 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8813
8814 /* Process ID at offset 0x50. */
8815 elf_tdata (abfd)->core->pid
8816 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8817
8818 /* Command name at 0x7c (max 32 bytes, including nul). */
8819 elf_tdata (abfd)->core->command
8820 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8821
8822 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8823 note);
8824 }
8825
8826 static bfd_boolean
8827 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8828 {
8829 int lwp;
8830
8831 if (elfcore_netbsd_get_lwpid (note, &lwp))
8832 elf_tdata (abfd)->core->lwpid = lwp;
8833
8834 if (note->type == NT_NETBSDCORE_PROCINFO)
8835 {
8836 /* NetBSD-specific core "procinfo". Note that we expect to
8837 find this note before any of the others, which is fine,
8838 since the kernel writes this note out first when it
8839 creates a core file. */
8840
8841 return elfcore_grok_netbsd_procinfo (abfd, note);
8842 }
8843
8844 /* As of Jan 2002 there are no other machine-independent notes
8845 defined for NetBSD core files. If the note type is less
8846 than the start of the machine-dependent note types, we don't
8847 understand it. */
8848
8849 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8850 return TRUE;
8851
8852
8853 switch (bfd_get_arch (abfd))
8854 {
8855 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8856 PT_GETFPREGS == mach+2. */
8857
8858 case bfd_arch_alpha:
8859 case bfd_arch_sparc:
8860 switch (note->type)
8861 {
8862 case NT_NETBSDCORE_FIRSTMACH+0:
8863 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8864
8865 case NT_NETBSDCORE_FIRSTMACH+2:
8866 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8867
8868 default:
8869 return TRUE;
8870 }
8871
8872 /* On all other arch's, PT_GETREGS == mach+1 and
8873 PT_GETFPREGS == mach+3. */
8874
8875 default:
8876 switch (note->type)
8877 {
8878 case NT_NETBSDCORE_FIRSTMACH+1:
8879 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8880
8881 case NT_NETBSDCORE_FIRSTMACH+3:
8882 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8883
8884 default:
8885 return TRUE;
8886 }
8887 }
8888 /* NOTREACHED */
8889 }
8890
8891 static bfd_boolean
8892 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8893 {
8894 /* Signal number at offset 0x08. */
8895 elf_tdata (abfd)->core->signal
8896 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8897
8898 /* Process ID at offset 0x20. */
8899 elf_tdata (abfd)->core->pid
8900 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8901
8902 /* Command name at 0x48 (max 32 bytes, including nul). */
8903 elf_tdata (abfd)->core->command
8904 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8905
8906 return TRUE;
8907 }
8908
8909 static bfd_boolean
8910 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8911 {
8912 if (note->type == NT_OPENBSD_PROCINFO)
8913 return elfcore_grok_openbsd_procinfo (abfd, note);
8914
8915 if (note->type == NT_OPENBSD_REGS)
8916 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8917
8918 if (note->type == NT_OPENBSD_FPREGS)
8919 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8920
8921 if (note->type == NT_OPENBSD_XFPREGS)
8922 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8923
8924 if (note->type == NT_OPENBSD_AUXV)
8925 {
8926 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8927 SEC_HAS_CONTENTS);
8928
8929 if (sect == NULL)
8930 return FALSE;
8931 sect->size = note->descsz;
8932 sect->filepos = note->descpos;
8933 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8934
8935 return TRUE;
8936 }
8937
8938 if (note->type == NT_OPENBSD_WCOOKIE)
8939 {
8940 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8941 SEC_HAS_CONTENTS);
8942
8943 if (sect == NULL)
8944 return FALSE;
8945 sect->size = note->descsz;
8946 sect->filepos = note->descpos;
8947 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8948
8949 return TRUE;
8950 }
8951
8952 return TRUE;
8953 }
8954
8955 static bfd_boolean
8956 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8957 {
8958 void *ddata = note->descdata;
8959 char buf[100];
8960 char *name;
8961 asection *sect;
8962 short sig;
8963 unsigned flags;
8964
8965 /* nto_procfs_status 'pid' field is at offset 0. */
8966 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8967
8968 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8969 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8970
8971 /* nto_procfs_status 'flags' field is at offset 8. */
8972 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8973
8974 /* nto_procfs_status 'what' field is at offset 14. */
8975 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8976 {
8977 elf_tdata (abfd)->core->signal = sig;
8978 elf_tdata (abfd)->core->lwpid = *tid;
8979 }
8980
8981 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8982 do not come from signals so we make sure we set the current
8983 thread just in case. */
8984 if (flags & 0x00000080)
8985 elf_tdata (abfd)->core->lwpid = *tid;
8986
8987 /* Make a ".qnx_core_status/%d" section. */
8988 sprintf (buf, ".qnx_core_status/%ld", *tid);
8989
8990 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8991 if (name == NULL)
8992 return FALSE;
8993 strcpy (name, buf);
8994
8995 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8996 if (sect == NULL)
8997 return FALSE;
8998
8999 sect->size = note->descsz;
9000 sect->filepos = note->descpos;
9001 sect->alignment_power = 2;
9002
9003 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9004 }
9005
9006 static bfd_boolean
9007 elfcore_grok_nto_regs (bfd *abfd,
9008 Elf_Internal_Note *note,
9009 long tid,
9010 char *base)
9011 {
9012 char buf[100];
9013 char *name;
9014 asection *sect;
9015
9016 /* Make a "(base)/%d" section. */
9017 sprintf (buf, "%s/%ld", base, tid);
9018
9019 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9020 if (name == NULL)
9021 return FALSE;
9022 strcpy (name, buf);
9023
9024 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9025 if (sect == NULL)
9026 return FALSE;
9027
9028 sect->size = note->descsz;
9029 sect->filepos = note->descpos;
9030 sect->alignment_power = 2;
9031
9032 /* This is the current thread. */
9033 if (elf_tdata (abfd)->core->lwpid == tid)
9034 return elfcore_maybe_make_sect (abfd, base, sect);
9035
9036 return TRUE;
9037 }
9038
9039 #define BFD_QNT_CORE_INFO 7
9040 #define BFD_QNT_CORE_STATUS 8
9041 #define BFD_QNT_CORE_GREG 9
9042 #define BFD_QNT_CORE_FPREG 10
9043
9044 static bfd_boolean
9045 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9046 {
9047 /* Every GREG section has a STATUS section before it. Store the
9048 tid from the previous call to pass down to the next gregs
9049 function. */
9050 static long tid = 1;
9051
9052 switch (note->type)
9053 {
9054 case BFD_QNT_CORE_INFO:
9055 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9056 case BFD_QNT_CORE_STATUS:
9057 return elfcore_grok_nto_status (abfd, note, &tid);
9058 case BFD_QNT_CORE_GREG:
9059 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9060 case BFD_QNT_CORE_FPREG:
9061 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9062 default:
9063 return TRUE;
9064 }
9065 }
9066
9067 static bfd_boolean
9068 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9069 {
9070 char *name;
9071 asection *sect;
9072 size_t len;
9073
9074 /* Use note name as section name. */
9075 len = note->namesz;
9076 name = (char *) bfd_alloc (abfd, len);
9077 if (name == NULL)
9078 return FALSE;
9079 memcpy (name, note->namedata, len);
9080 name[len - 1] = '\0';
9081
9082 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9083 if (sect == NULL)
9084 return FALSE;
9085
9086 sect->size = note->descsz;
9087 sect->filepos = note->descpos;
9088 sect->alignment_power = 1;
9089
9090 return TRUE;
9091 }
9092
9093 /* Function: elfcore_write_note
9094
9095 Inputs:
9096 buffer to hold note, and current size of buffer
9097 name of note
9098 type of note
9099 data for note
9100 size of data for note
9101
9102 Writes note to end of buffer. ELF64 notes are written exactly as
9103 for ELF32, despite the current (as of 2006) ELF gabi specifying
9104 that they ought to have 8-byte namesz and descsz field, and have
9105 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9106
9107 Return:
9108 Pointer to realloc'd buffer, *BUFSIZ updated. */
9109
9110 char *
9111 elfcore_write_note (bfd *abfd,
9112 char *buf,
9113 int *bufsiz,
9114 const char *name,
9115 int type,
9116 const void *input,
9117 int size)
9118 {
9119 Elf_External_Note *xnp;
9120 size_t namesz;
9121 size_t newspace;
9122 char *dest;
9123
9124 namesz = 0;
9125 if (name != NULL)
9126 namesz = strlen (name) + 1;
9127
9128 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9129
9130 buf = (char *) realloc (buf, *bufsiz + newspace);
9131 if (buf == NULL)
9132 return buf;
9133 dest = buf + *bufsiz;
9134 *bufsiz += newspace;
9135 xnp = (Elf_External_Note *) dest;
9136 H_PUT_32 (abfd, namesz, xnp->namesz);
9137 H_PUT_32 (abfd, size, xnp->descsz);
9138 H_PUT_32 (abfd, type, xnp->type);
9139 dest = xnp->name;
9140 if (name != NULL)
9141 {
9142 memcpy (dest, name, namesz);
9143 dest += namesz;
9144 while (namesz & 3)
9145 {
9146 *dest++ = '\0';
9147 ++namesz;
9148 }
9149 }
9150 memcpy (dest, input, size);
9151 dest += size;
9152 while (size & 3)
9153 {
9154 *dest++ = '\0';
9155 ++size;
9156 }
9157 return buf;
9158 }
9159
9160 char *
9161 elfcore_write_prpsinfo (bfd *abfd,
9162 char *buf,
9163 int *bufsiz,
9164 const char *fname,
9165 const char *psargs)
9166 {
9167 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9168
9169 if (bed->elf_backend_write_core_note != NULL)
9170 {
9171 char *ret;
9172 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9173 NT_PRPSINFO, fname, psargs);
9174 if (ret != NULL)
9175 return ret;
9176 }
9177
9178 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9179 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9180 if (bed->s->elfclass == ELFCLASS32)
9181 {
9182 #if defined (HAVE_PSINFO32_T)
9183 psinfo32_t data;
9184 int note_type = NT_PSINFO;
9185 #else
9186 prpsinfo32_t data;
9187 int note_type = NT_PRPSINFO;
9188 #endif
9189
9190 memset (&data, 0, sizeof (data));
9191 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9192 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9193 return elfcore_write_note (abfd, buf, bufsiz,
9194 "CORE", note_type, &data, sizeof (data));
9195 }
9196 else
9197 #endif
9198 {
9199 #if defined (HAVE_PSINFO_T)
9200 psinfo_t data;
9201 int note_type = NT_PSINFO;
9202 #else
9203 prpsinfo_t data;
9204 int note_type = NT_PRPSINFO;
9205 #endif
9206
9207 memset (&data, 0, sizeof (data));
9208 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9209 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9210 return elfcore_write_note (abfd, buf, bufsiz,
9211 "CORE", note_type, &data, sizeof (data));
9212 }
9213 #endif /* PSINFO_T or PRPSINFO_T */
9214
9215 free (buf);
9216 return NULL;
9217 }
9218
9219 char *
9220 elfcore_write_linux_prpsinfo32
9221 (bfd *abfd, char *buf, int *bufsiz,
9222 const struct elf_internal_linux_prpsinfo *prpsinfo)
9223 {
9224 struct elf_external_linux_prpsinfo32 data;
9225
9226 memset (&data, 0, sizeof (data));
9227 LINUX_PRPSINFO32_SWAP_FIELDS (abfd, prpsinfo, data);
9228
9229 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9230 &data, sizeof (data));
9231 }
9232
9233 char *
9234 elfcore_write_linux_prpsinfo64
9235 (bfd *abfd, char *buf, int *bufsiz,
9236 const struct elf_internal_linux_prpsinfo *prpsinfo)
9237 {
9238 struct elf_external_linux_prpsinfo64 data;
9239
9240 memset (&data, 0, sizeof (data));
9241 LINUX_PRPSINFO64_SWAP_FIELDS (abfd, prpsinfo, data);
9242
9243 return elfcore_write_note (abfd, buf, bufsiz,
9244 "CORE", NT_PRPSINFO, &data, sizeof (data));
9245 }
9246
9247 char *
9248 elfcore_write_prstatus (bfd *abfd,
9249 char *buf,
9250 int *bufsiz,
9251 long pid,
9252 int cursig,
9253 const void *gregs)
9254 {
9255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9256
9257 if (bed->elf_backend_write_core_note != NULL)
9258 {
9259 char *ret;
9260 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9261 NT_PRSTATUS,
9262 pid, cursig, gregs);
9263 if (ret != NULL)
9264 return ret;
9265 }
9266
9267 #if defined (HAVE_PRSTATUS_T)
9268 #if defined (HAVE_PRSTATUS32_T)
9269 if (bed->s->elfclass == ELFCLASS32)
9270 {
9271 prstatus32_t prstat;
9272
9273 memset (&prstat, 0, sizeof (prstat));
9274 prstat.pr_pid = pid;
9275 prstat.pr_cursig = cursig;
9276 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9277 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9278 NT_PRSTATUS, &prstat, sizeof (prstat));
9279 }
9280 else
9281 #endif
9282 {
9283 prstatus_t prstat;
9284
9285 memset (&prstat, 0, sizeof (prstat));
9286 prstat.pr_pid = pid;
9287 prstat.pr_cursig = cursig;
9288 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9289 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9290 NT_PRSTATUS, &prstat, sizeof (prstat));
9291 }
9292 #endif /* HAVE_PRSTATUS_T */
9293
9294 free (buf);
9295 return NULL;
9296 }
9297
9298 #if defined (HAVE_LWPSTATUS_T)
9299 char *
9300 elfcore_write_lwpstatus (bfd *abfd,
9301 char *buf,
9302 int *bufsiz,
9303 long pid,
9304 int cursig,
9305 const void *gregs)
9306 {
9307 lwpstatus_t lwpstat;
9308 const char *note_name = "CORE";
9309
9310 memset (&lwpstat, 0, sizeof (lwpstat));
9311 lwpstat.pr_lwpid = pid >> 16;
9312 lwpstat.pr_cursig = cursig;
9313 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9314 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9315 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9316 #if !defined(gregs)
9317 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9318 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9319 #else
9320 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9321 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9322 #endif
9323 #endif
9324 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9325 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9326 }
9327 #endif /* HAVE_LWPSTATUS_T */
9328
9329 #if defined (HAVE_PSTATUS_T)
9330 char *
9331 elfcore_write_pstatus (bfd *abfd,
9332 char *buf,
9333 int *bufsiz,
9334 long pid,
9335 int cursig ATTRIBUTE_UNUSED,
9336 const void *gregs ATTRIBUTE_UNUSED)
9337 {
9338 const char *note_name = "CORE";
9339 #if defined (HAVE_PSTATUS32_T)
9340 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9341
9342 if (bed->s->elfclass == ELFCLASS32)
9343 {
9344 pstatus32_t pstat;
9345
9346 memset (&pstat, 0, sizeof (pstat));
9347 pstat.pr_pid = pid & 0xffff;
9348 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9349 NT_PSTATUS, &pstat, sizeof (pstat));
9350 return buf;
9351 }
9352 else
9353 #endif
9354 {
9355 pstatus_t pstat;
9356
9357 memset (&pstat, 0, sizeof (pstat));
9358 pstat.pr_pid = pid & 0xffff;
9359 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9360 NT_PSTATUS, &pstat, sizeof (pstat));
9361 return buf;
9362 }
9363 }
9364 #endif /* HAVE_PSTATUS_T */
9365
9366 char *
9367 elfcore_write_prfpreg (bfd *abfd,
9368 char *buf,
9369 int *bufsiz,
9370 const void *fpregs,
9371 int size)
9372 {
9373 const char *note_name = "CORE";
9374 return elfcore_write_note (abfd, buf, bufsiz,
9375 note_name, NT_FPREGSET, fpregs, size);
9376 }
9377
9378 char *
9379 elfcore_write_prxfpreg (bfd *abfd,
9380 char *buf,
9381 int *bufsiz,
9382 const void *xfpregs,
9383 int size)
9384 {
9385 char *note_name = "LINUX";
9386 return elfcore_write_note (abfd, buf, bufsiz,
9387 note_name, NT_PRXFPREG, xfpregs, size);
9388 }
9389
9390 char *
9391 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9392 const void *xfpregs, int size)
9393 {
9394 char *note_name = "LINUX";
9395 return elfcore_write_note (abfd, buf, bufsiz,
9396 note_name, NT_X86_XSTATE, xfpregs, size);
9397 }
9398
9399 char *
9400 elfcore_write_ppc_vmx (bfd *abfd,
9401 char *buf,
9402 int *bufsiz,
9403 const void *ppc_vmx,
9404 int size)
9405 {
9406 char *note_name = "LINUX";
9407 return elfcore_write_note (abfd, buf, bufsiz,
9408 note_name, NT_PPC_VMX, ppc_vmx, size);
9409 }
9410
9411 char *
9412 elfcore_write_ppc_vsx (bfd *abfd,
9413 char *buf,
9414 int *bufsiz,
9415 const void *ppc_vsx,
9416 int size)
9417 {
9418 char *note_name = "LINUX";
9419 return elfcore_write_note (abfd, buf, bufsiz,
9420 note_name, NT_PPC_VSX, ppc_vsx, size);
9421 }
9422
9423 static char *
9424 elfcore_write_s390_high_gprs (bfd *abfd,
9425 char *buf,
9426 int *bufsiz,
9427 const void *s390_high_gprs,
9428 int size)
9429 {
9430 char *note_name = "LINUX";
9431 return elfcore_write_note (abfd, buf, bufsiz,
9432 note_name, NT_S390_HIGH_GPRS,
9433 s390_high_gprs, size);
9434 }
9435
9436 char *
9437 elfcore_write_s390_timer (bfd *abfd,
9438 char *buf,
9439 int *bufsiz,
9440 const void *s390_timer,
9441 int size)
9442 {
9443 char *note_name = "LINUX";
9444 return elfcore_write_note (abfd, buf, bufsiz,
9445 note_name, NT_S390_TIMER, s390_timer, size);
9446 }
9447
9448 char *
9449 elfcore_write_s390_todcmp (bfd *abfd,
9450 char *buf,
9451 int *bufsiz,
9452 const void *s390_todcmp,
9453 int size)
9454 {
9455 char *note_name = "LINUX";
9456 return elfcore_write_note (abfd, buf, bufsiz,
9457 note_name, NT_S390_TODCMP, s390_todcmp, size);
9458 }
9459
9460 char *
9461 elfcore_write_s390_todpreg (bfd *abfd,
9462 char *buf,
9463 int *bufsiz,
9464 const void *s390_todpreg,
9465 int size)
9466 {
9467 char *note_name = "LINUX";
9468 return elfcore_write_note (abfd, buf, bufsiz,
9469 note_name, NT_S390_TODPREG, s390_todpreg, size);
9470 }
9471
9472 char *
9473 elfcore_write_s390_ctrs (bfd *abfd,
9474 char *buf,
9475 int *bufsiz,
9476 const void *s390_ctrs,
9477 int size)
9478 {
9479 char *note_name = "LINUX";
9480 return elfcore_write_note (abfd, buf, bufsiz,
9481 note_name, NT_S390_CTRS, s390_ctrs, size);
9482 }
9483
9484 char *
9485 elfcore_write_s390_prefix (bfd *abfd,
9486 char *buf,
9487 int *bufsiz,
9488 const void *s390_prefix,
9489 int size)
9490 {
9491 char *note_name = "LINUX";
9492 return elfcore_write_note (abfd, buf, bufsiz,
9493 note_name, NT_S390_PREFIX, s390_prefix, size);
9494 }
9495
9496 char *
9497 elfcore_write_s390_last_break (bfd *abfd,
9498 char *buf,
9499 int *bufsiz,
9500 const void *s390_last_break,
9501 int size)
9502 {
9503 char *note_name = "LINUX";
9504 return elfcore_write_note (abfd, buf, bufsiz,
9505 note_name, NT_S390_LAST_BREAK,
9506 s390_last_break, size);
9507 }
9508
9509 char *
9510 elfcore_write_s390_system_call (bfd *abfd,
9511 char *buf,
9512 int *bufsiz,
9513 const void *s390_system_call,
9514 int size)
9515 {
9516 char *note_name = "LINUX";
9517 return elfcore_write_note (abfd, buf, bufsiz,
9518 note_name, NT_S390_SYSTEM_CALL,
9519 s390_system_call, size);
9520 }
9521
9522 char *
9523 elfcore_write_s390_tdb (bfd *abfd,
9524 char *buf,
9525 int *bufsiz,
9526 const void *s390_tdb,
9527 int size)
9528 {
9529 char *note_name = "LINUX";
9530 return elfcore_write_note (abfd, buf, bufsiz,
9531 note_name, NT_S390_TDB, s390_tdb, size);
9532 }
9533
9534 char *
9535 elfcore_write_arm_vfp (bfd *abfd,
9536 char *buf,
9537 int *bufsiz,
9538 const void *arm_vfp,
9539 int size)
9540 {
9541 char *note_name = "LINUX";
9542 return elfcore_write_note (abfd, buf, bufsiz,
9543 note_name, NT_ARM_VFP, arm_vfp, size);
9544 }
9545
9546 char *
9547 elfcore_write_aarch_tls (bfd *abfd,
9548 char *buf,
9549 int *bufsiz,
9550 const void *aarch_tls,
9551 int size)
9552 {
9553 char *note_name = "LINUX";
9554 return elfcore_write_note (abfd, buf, bufsiz,
9555 note_name, NT_ARM_TLS, aarch_tls, size);
9556 }
9557
9558 char *
9559 elfcore_write_aarch_hw_break (bfd *abfd,
9560 char *buf,
9561 int *bufsiz,
9562 const void *aarch_hw_break,
9563 int size)
9564 {
9565 char *note_name = "LINUX";
9566 return elfcore_write_note (abfd, buf, bufsiz,
9567 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
9568 }
9569
9570 char *
9571 elfcore_write_aarch_hw_watch (bfd *abfd,
9572 char *buf,
9573 int *bufsiz,
9574 const void *aarch_hw_watch,
9575 int size)
9576 {
9577 char *note_name = "LINUX";
9578 return elfcore_write_note (abfd, buf, bufsiz,
9579 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
9580 }
9581
9582 char *
9583 elfcore_write_register_note (bfd *abfd,
9584 char *buf,
9585 int *bufsiz,
9586 const char *section,
9587 const void *data,
9588 int size)
9589 {
9590 if (strcmp (section, ".reg2") == 0)
9591 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9592 if (strcmp (section, ".reg-xfp") == 0)
9593 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9594 if (strcmp (section, ".reg-xstate") == 0)
9595 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9596 if (strcmp (section, ".reg-ppc-vmx") == 0)
9597 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9598 if (strcmp (section, ".reg-ppc-vsx") == 0)
9599 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9600 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9601 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9602 if (strcmp (section, ".reg-s390-timer") == 0)
9603 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9604 if (strcmp (section, ".reg-s390-todcmp") == 0)
9605 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9606 if (strcmp (section, ".reg-s390-todpreg") == 0)
9607 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9608 if (strcmp (section, ".reg-s390-ctrs") == 0)
9609 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9610 if (strcmp (section, ".reg-s390-prefix") == 0)
9611 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9612 if (strcmp (section, ".reg-s390-last-break") == 0)
9613 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9614 if (strcmp (section, ".reg-s390-system-call") == 0)
9615 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9616 if (strcmp (section, ".reg-s390-tdb") == 0)
9617 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
9618 if (strcmp (section, ".reg-arm-vfp") == 0)
9619 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9620 if (strcmp (section, ".reg-aarch-tls") == 0)
9621 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
9622 if (strcmp (section, ".reg-aarch-hw-break") == 0)
9623 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
9624 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
9625 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
9626 return NULL;
9627 }
9628
9629 static bfd_boolean
9630 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9631 {
9632 char *p;
9633
9634 p = buf;
9635 while (p < buf + size)
9636 {
9637 /* FIXME: bad alignment assumption. */
9638 Elf_External_Note *xnp = (Elf_External_Note *) p;
9639 Elf_Internal_Note in;
9640
9641 if (offsetof (Elf_External_Note, name) > buf - p + size)
9642 return FALSE;
9643
9644 in.type = H_GET_32 (abfd, xnp->type);
9645
9646 in.namesz = H_GET_32 (abfd, xnp->namesz);
9647 in.namedata = xnp->name;
9648 if (in.namesz > buf - in.namedata + size)
9649 return FALSE;
9650
9651 in.descsz = H_GET_32 (abfd, xnp->descsz);
9652 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9653 in.descpos = offset + (in.descdata - buf);
9654 if (in.descsz != 0
9655 && (in.descdata >= buf + size
9656 || in.descsz > buf - in.descdata + size))
9657 return FALSE;
9658
9659 switch (bfd_get_format (abfd))
9660 {
9661 default:
9662 return TRUE;
9663
9664 case bfd_core:
9665 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9666 {
9667 if (! elfcore_grok_netbsd_note (abfd, &in))
9668 return FALSE;
9669 }
9670 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9671 {
9672 if (! elfcore_grok_openbsd_note (abfd, &in))
9673 return FALSE;
9674 }
9675 else if (CONST_STRNEQ (in.namedata, "QNX"))
9676 {
9677 if (! elfcore_grok_nto_note (abfd, &in))
9678 return FALSE;
9679 }
9680 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9681 {
9682 if (! elfcore_grok_spu_note (abfd, &in))
9683 return FALSE;
9684 }
9685 else
9686 {
9687 if (! elfcore_grok_note (abfd, &in))
9688 return FALSE;
9689 }
9690 break;
9691
9692 case bfd_object:
9693 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9694 {
9695 if (! elfobj_grok_gnu_note (abfd, &in))
9696 return FALSE;
9697 }
9698 else if (in.namesz == sizeof "stapsdt"
9699 && strcmp (in.namedata, "stapsdt") == 0)
9700 {
9701 if (! elfobj_grok_stapsdt_note (abfd, &in))
9702 return FALSE;
9703 }
9704 break;
9705 }
9706
9707 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9708 }
9709
9710 return TRUE;
9711 }
9712
9713 static bfd_boolean
9714 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9715 {
9716 char *buf;
9717
9718 if (size <= 0)
9719 return TRUE;
9720
9721 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9722 return FALSE;
9723
9724 buf = (char *) bfd_malloc (size);
9725 if (buf == NULL)
9726 return FALSE;
9727
9728 if (bfd_bread (buf, size, abfd) != size
9729 || !elf_parse_notes (abfd, buf, size, offset))
9730 {
9731 free (buf);
9732 return FALSE;
9733 }
9734
9735 free (buf);
9736 return TRUE;
9737 }
9738 \f
9739 /* Providing external access to the ELF program header table. */
9740
9741 /* Return an upper bound on the number of bytes required to store a
9742 copy of ABFD's program header table entries. Return -1 if an error
9743 occurs; bfd_get_error will return an appropriate code. */
9744
9745 long
9746 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9747 {
9748 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9749 {
9750 bfd_set_error (bfd_error_wrong_format);
9751 return -1;
9752 }
9753
9754 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9755 }
9756
9757 /* Copy ABFD's program header table entries to *PHDRS. The entries
9758 will be stored as an array of Elf_Internal_Phdr structures, as
9759 defined in include/elf/internal.h. To find out how large the
9760 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9761
9762 Return the number of program header table entries read, or -1 if an
9763 error occurs; bfd_get_error will return an appropriate code. */
9764
9765 int
9766 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9767 {
9768 int num_phdrs;
9769
9770 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9771 {
9772 bfd_set_error (bfd_error_wrong_format);
9773 return -1;
9774 }
9775
9776 num_phdrs = elf_elfheader (abfd)->e_phnum;
9777 memcpy (phdrs, elf_tdata (abfd)->phdr,
9778 num_phdrs * sizeof (Elf_Internal_Phdr));
9779
9780 return num_phdrs;
9781 }
9782
9783 enum elf_reloc_type_class
9784 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
9785 const asection *rel_sec ATTRIBUTE_UNUSED,
9786 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9787 {
9788 return reloc_class_normal;
9789 }
9790
9791 /* For RELA architectures, return the relocation value for a
9792 relocation against a local symbol. */
9793
9794 bfd_vma
9795 _bfd_elf_rela_local_sym (bfd *abfd,
9796 Elf_Internal_Sym *sym,
9797 asection **psec,
9798 Elf_Internal_Rela *rel)
9799 {
9800 asection *sec = *psec;
9801 bfd_vma relocation;
9802
9803 relocation = (sec->output_section->vma
9804 + sec->output_offset
9805 + sym->st_value);
9806 if ((sec->flags & SEC_MERGE)
9807 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9808 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9809 {
9810 rel->r_addend =
9811 _bfd_merged_section_offset (abfd, psec,
9812 elf_section_data (sec)->sec_info,
9813 sym->st_value + rel->r_addend);
9814 if (sec != *psec)
9815 {
9816 /* If we have changed the section, and our original section is
9817 marked with SEC_EXCLUDE, it means that the original
9818 SEC_MERGE section has been completely subsumed in some
9819 other SEC_MERGE section. In this case, we need to leave
9820 some info around for --emit-relocs. */
9821 if ((sec->flags & SEC_EXCLUDE) != 0)
9822 sec->kept_section = *psec;
9823 sec = *psec;
9824 }
9825 rel->r_addend -= relocation;
9826 rel->r_addend += sec->output_section->vma + sec->output_offset;
9827 }
9828 return relocation;
9829 }
9830
9831 bfd_vma
9832 _bfd_elf_rel_local_sym (bfd *abfd,
9833 Elf_Internal_Sym *sym,
9834 asection **psec,
9835 bfd_vma addend)
9836 {
9837 asection *sec = *psec;
9838
9839 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9840 return sym->st_value + addend;
9841
9842 return _bfd_merged_section_offset (abfd, psec,
9843 elf_section_data (sec)->sec_info,
9844 sym->st_value + addend);
9845 }
9846
9847 bfd_vma
9848 _bfd_elf_section_offset (bfd *abfd,
9849 struct bfd_link_info *info,
9850 asection *sec,
9851 bfd_vma offset)
9852 {
9853 switch (sec->sec_info_type)
9854 {
9855 case SEC_INFO_TYPE_STABS:
9856 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9857 offset);
9858 case SEC_INFO_TYPE_EH_FRAME:
9859 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9860 default:
9861 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9862 {
9863 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9864 bfd_size_type address_size = bed->s->arch_size / 8;
9865 offset = sec->size - offset - address_size;
9866 }
9867 return offset;
9868 }
9869 }
9870 \f
9871 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9872 reconstruct an ELF file by reading the segments out of remote memory
9873 based on the ELF file header at EHDR_VMA and the ELF program headers it
9874 points to. If not null, *LOADBASEP is filled in with the difference
9875 between the VMAs from which the segments were read, and the VMAs the
9876 file headers (and hence BFD's idea of each section's VMA) put them at.
9877
9878 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9879 remote memory at target address VMA into the local buffer at MYADDR; it
9880 should return zero on success or an `errno' code on failure. TEMPL must
9881 be a BFD for an ELF target with the word size and byte order found in
9882 the remote memory. */
9883
9884 bfd *
9885 bfd_elf_bfd_from_remote_memory
9886 (bfd *templ,
9887 bfd_vma ehdr_vma,
9888 bfd_vma *loadbasep,
9889 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9890 {
9891 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9892 (templ, ehdr_vma, loadbasep, target_read_memory);
9893 }
9894 \f
9895 long
9896 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9897 long symcount ATTRIBUTE_UNUSED,
9898 asymbol **syms ATTRIBUTE_UNUSED,
9899 long dynsymcount,
9900 asymbol **dynsyms,
9901 asymbol **ret)
9902 {
9903 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9904 asection *relplt;
9905 asymbol *s;
9906 const char *relplt_name;
9907 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9908 arelent *p;
9909 long count, i, n;
9910 size_t size;
9911 Elf_Internal_Shdr *hdr;
9912 char *names;
9913 asection *plt;
9914
9915 *ret = NULL;
9916
9917 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9918 return 0;
9919
9920 if (dynsymcount <= 0)
9921 return 0;
9922
9923 if (!bed->plt_sym_val)
9924 return 0;
9925
9926 relplt_name = bed->relplt_name;
9927 if (relplt_name == NULL)
9928 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9929 relplt = bfd_get_section_by_name (abfd, relplt_name);
9930 if (relplt == NULL)
9931 return 0;
9932
9933 hdr = &elf_section_data (relplt)->this_hdr;
9934 if (hdr->sh_link != elf_dynsymtab (abfd)
9935 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9936 return 0;
9937
9938 plt = bfd_get_section_by_name (abfd, ".plt");
9939 if (plt == NULL)
9940 return 0;
9941
9942 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9943 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9944 return -1;
9945
9946 count = relplt->size / hdr->sh_entsize;
9947 size = count * sizeof (asymbol);
9948 p = relplt->relocation;
9949 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9950 {
9951 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9952 if (p->addend != 0)
9953 {
9954 #ifdef BFD64
9955 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9956 #else
9957 size += sizeof ("+0x") - 1 + 8;
9958 #endif
9959 }
9960 }
9961
9962 s = *ret = (asymbol *) bfd_malloc (size);
9963 if (s == NULL)
9964 return -1;
9965
9966 names = (char *) (s + count);
9967 p = relplt->relocation;
9968 n = 0;
9969 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9970 {
9971 size_t len;
9972 bfd_vma addr;
9973
9974 addr = bed->plt_sym_val (i, plt, p);
9975 if (addr == (bfd_vma) -1)
9976 continue;
9977
9978 *s = **p->sym_ptr_ptr;
9979 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9980 we are defining a symbol, ensure one of them is set. */
9981 if ((s->flags & BSF_LOCAL) == 0)
9982 s->flags |= BSF_GLOBAL;
9983 s->flags |= BSF_SYNTHETIC;
9984 s->section = plt;
9985 s->value = addr - plt->vma;
9986 s->name = names;
9987 s->udata.p = NULL;
9988 len = strlen ((*p->sym_ptr_ptr)->name);
9989 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9990 names += len;
9991 if (p->addend != 0)
9992 {
9993 char buf[30], *a;
9994
9995 memcpy (names, "+0x", sizeof ("+0x") - 1);
9996 names += sizeof ("+0x") - 1;
9997 bfd_sprintf_vma (abfd, buf, p->addend);
9998 for (a = buf; *a == '0'; ++a)
9999 ;
10000 len = strlen (a);
10001 memcpy (names, a, len);
10002 names += len;
10003 }
10004 memcpy (names, "@plt", sizeof ("@plt"));
10005 names += sizeof ("@plt");
10006 ++s, ++n;
10007 }
10008
10009 return n;
10010 }
10011
10012 /* It is only used by x86-64 so far. */
10013 asection _bfd_elf_large_com_section
10014 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10015 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10016
10017 void
10018 _bfd_elf_post_process_headers (bfd * abfd,
10019 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10020 {
10021 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10022
10023 i_ehdrp = elf_elfheader (abfd);
10024
10025 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10026
10027 /* To make things simpler for the loader on Linux systems we set the
10028 osabi field to ELFOSABI_GNU if the binary contains symbols of
10029 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10030 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10031 && elf_tdata (abfd)->has_gnu_symbols)
10032 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10033 }
10034
10035
10036 /* Return TRUE for ELF symbol types that represent functions.
10037 This is the default version of this function, which is sufficient for
10038 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10039
10040 bfd_boolean
10041 _bfd_elf_is_function_type (unsigned int type)
10042 {
10043 return (type == STT_FUNC
10044 || type == STT_GNU_IFUNC);
10045 }
10046
10047 /* If the ELF symbol SYM might be a function in SEC, return the
10048 function size and set *CODE_OFF to the function's entry point,
10049 otherwise return zero. */
10050
10051 bfd_size_type
10052 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10053 bfd_vma *code_off)
10054 {
10055 bfd_size_type size;
10056
10057 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10058 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10059 || sym->section != sec)
10060 return 0;
10061
10062 *code_off = sym->value;
10063 size = 0;
10064 if (!(sym->flags & BSF_SYNTHETIC))
10065 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10066 if (size == 0)
10067 size = 1;
10068 return size;
10069 }
This page took 0.275495 seconds and 4 git commands to generate.