1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
214 elf_read (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
218 if ((buf
= bfd_alloc (abfd
, size
)) == NULL
)
220 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
222 if (bfd_bread (buf
, size
, abfd
) != size
)
224 if (bfd_get_error () != bfd_error_system_call
)
225 bfd_set_error (bfd_error_file_truncated
);
232 bfd_elf_mkobject (bfd
*abfd
)
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd
) = bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
237 if (elf_tdata (abfd
) == 0)
239 /* Since everything is done at close time, do we need any
246 bfd_elf_mkcorefile (bfd
*abfd
)
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd
);
253 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
255 Elf_Internal_Shdr
**i_shdrp
;
256 bfd_byte
*shstrtab
= NULL
;
258 bfd_size_type shstrtabsize
;
260 i_shdrp
= elf_elfsections (abfd
);
261 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
264 shstrtab
= i_shdrp
[shindex
]->contents
;
265 if (shstrtab
== NULL
)
267 /* No cached one, attempt to read, and cache what we read. */
268 offset
= i_shdrp
[shindex
]->sh_offset
;
269 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
270 shstrtab
= elf_read (abfd
, offset
, shstrtabsize
);
271 i_shdrp
[shindex
]->contents
= shstrtab
;
273 return (char *) shstrtab
;
277 bfd_elf_string_from_elf_section (bfd
*abfd
,
278 unsigned int shindex
,
279 unsigned int strindex
)
281 Elf_Internal_Shdr
*hdr
;
286 hdr
= elf_elfsections (abfd
)[shindex
];
288 if (hdr
->contents
== NULL
289 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
292 if (strindex
>= hdr
->sh_size
)
294 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
295 (*_bfd_error_handler
)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
298 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
300 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
304 return ((char *) hdr
->contents
) + strindex
;
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
314 bfd_elf_get_elf_syms (bfd
*ibfd
,
315 Elf_Internal_Shdr
*symtab_hdr
,
318 Elf_Internal_Sym
*intsym_buf
,
320 Elf_External_Sym_Shndx
*extshndx_buf
)
322 Elf_Internal_Shdr
*shndx_hdr
;
324 const bfd_byte
*esym
;
325 Elf_External_Sym_Shndx
*alloc_extshndx
;
326 Elf_External_Sym_Shndx
*shndx
;
327 Elf_Internal_Sym
*isym
;
328 Elf_Internal_Sym
*isymend
;
329 const struct elf_backend_data
*bed
;
337 /* Normal syms might have section extension entries. */
339 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
340 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
342 /* Read the symbols. */
344 alloc_extshndx
= NULL
;
345 bed
= get_elf_backend_data (ibfd
);
346 extsym_size
= bed
->s
->sizeof_sym
;
347 amt
= symcount
* extsym_size
;
348 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
349 if (extsym_buf
== NULL
)
351 alloc_ext
= bfd_malloc (amt
);
352 extsym_buf
= alloc_ext
;
354 if (extsym_buf
== NULL
355 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
356 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
362 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
366 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
367 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
368 if (extshndx_buf
== NULL
)
370 alloc_extshndx
= bfd_malloc (amt
);
371 extshndx_buf
= alloc_extshndx
;
373 if (extshndx_buf
== NULL
374 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
375 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
382 if (intsym_buf
== NULL
)
384 bfd_size_type amt
= symcount
* sizeof (Elf_Internal_Sym
);
385 intsym_buf
= bfd_malloc (amt
);
386 if (intsym_buf
== NULL
)
390 /* Convert the symbols to internal form. */
391 isymend
= intsym_buf
+ symcount
;
392 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
394 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
395 (*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
);
398 if (alloc_ext
!= NULL
)
400 if (alloc_extshndx
!= NULL
)
401 free (alloc_extshndx
);
406 /* Look up a symbol name. */
408 bfd_elf_sym_name (bfd
*abfd
,
409 Elf_Internal_Shdr
*symtab_hdr
,
410 Elf_Internal_Sym
*isym
,
414 unsigned int iname
= isym
->st_name
;
415 unsigned int shindex
= symtab_hdr
->sh_link
;
417 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
418 /* Check for a bogus st_shndx to avoid crashing. */
419 && isym
->st_shndx
< elf_numsections (abfd
)
420 && !(isym
->st_shndx
>= SHN_LORESERVE
&& isym
->st_shndx
<= SHN_HIRESERVE
))
422 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
423 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
426 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
429 else if (sym_sec
&& *name
== '\0')
430 name
= bfd_section_name (abfd
, sym_sec
);
435 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
436 sections. The first element is the flags, the rest are section
439 typedef union elf_internal_group
{
440 Elf_Internal_Shdr
*shdr
;
442 } Elf_Internal_Group
;
444 /* Return the name of the group signature symbol. Why isn't the
445 signature just a string? */
448 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
450 Elf_Internal_Shdr
*hdr
;
451 unsigned char esym
[sizeof (Elf64_External_Sym
)];
452 Elf_External_Sym_Shndx eshndx
;
453 Elf_Internal_Sym isym
;
455 /* First we need to ensure the symbol table is available. Make sure
456 that it is a symbol table section. */
457 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
458 if (hdr
->sh_type
!= SHT_SYMTAB
459 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
462 /* Go read the symbol. */
463 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
464 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
465 &isym
, esym
, &eshndx
) == NULL
)
468 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
471 /* Set next_in_group list pointer, and group name for NEWSECT. */
474 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
476 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
478 /* If num_group is zero, read in all SHT_GROUP sections. The count
479 is set to -1 if there are no SHT_GROUP sections. */
482 unsigned int i
, shnum
;
484 /* First count the number of groups. If we have a SHT_GROUP
485 section with just a flag word (ie. sh_size is 4), ignore it. */
486 shnum
= elf_numsections (abfd
);
488 for (i
= 0; i
< shnum
; i
++)
490 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
491 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
497 num_group
= (unsigned) -1;
498 elf_tdata (abfd
)->num_group
= num_group
;
502 /* We keep a list of elf section headers for group sections,
503 so we can find them quickly. */
506 elf_tdata (abfd
)->num_group
= num_group
;
507 amt
= num_group
* sizeof (Elf_Internal_Shdr
*);
508 elf_tdata (abfd
)->group_sect_ptr
= bfd_alloc (abfd
, amt
);
509 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
513 for (i
= 0; i
< shnum
; i
++)
515 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
516 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
519 Elf_Internal_Group
*dest
;
521 /* Add to list of sections. */
522 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
525 /* Read the raw contents. */
526 BFD_ASSERT (sizeof (*dest
) >= 4);
527 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
528 shdr
->contents
= bfd_alloc (abfd
, amt
);
529 if (shdr
->contents
== NULL
530 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
531 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
535 /* Translate raw contents, a flag word followed by an
536 array of elf section indices all in target byte order,
537 to the flag word followed by an array of elf section
539 src
= shdr
->contents
+ shdr
->sh_size
;
540 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
547 idx
= H_GET_32 (abfd
, src
);
548 if (src
== shdr
->contents
)
551 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
552 shdr
->bfd_section
->flags
553 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
558 ((*_bfd_error_handler
)
559 (_("%B: invalid SHT_GROUP entry"), abfd
));
562 dest
->shdr
= elf_elfsections (abfd
)[idx
];
569 if (num_group
!= (unsigned) -1)
573 for (i
= 0; i
< num_group
; i
++)
575 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
576 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
577 unsigned int n_elt
= shdr
->sh_size
/ 4;
579 /* Look through this group's sections to see if current
580 section is a member. */
582 if ((++idx
)->shdr
== hdr
)
586 /* We are a member of this group. Go looking through
587 other members to see if any others are linked via
589 idx
= (Elf_Internal_Group
*) shdr
->contents
;
590 n_elt
= shdr
->sh_size
/ 4;
592 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
593 && elf_next_in_group (s
) != NULL
)
597 /* Snarf the group name from other member, and
598 insert current section in circular list. */
599 elf_group_name (newsect
) = elf_group_name (s
);
600 elf_next_in_group (newsect
) = elf_next_in_group (s
);
601 elf_next_in_group (s
) = newsect
;
607 gname
= group_signature (abfd
, shdr
);
610 elf_group_name (newsect
) = gname
;
612 /* Start a circular list with one element. */
613 elf_next_in_group (newsect
) = newsect
;
616 /* If the group section has been created, point to the
618 if (shdr
->bfd_section
!= NULL
)
619 elf_next_in_group (shdr
->bfd_section
) = newsect
;
627 if (elf_group_name (newsect
) == NULL
)
629 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
636 _bfd_elf_setup_group_pointers (bfd
*abfd
)
639 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
640 bfd_boolean result
= TRUE
;
642 if (num_group
== (unsigned) -1)
645 for (i
= 0; i
< num_group
; i
++)
647 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
648 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
649 unsigned int n_elt
= shdr
->sh_size
/ 4;
652 if ((++idx
)->shdr
->bfd_section
)
653 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
654 else if (idx
->shdr
->sh_type
== SHT_RELA
655 || idx
->shdr
->sh_type
== SHT_REL
)
656 /* We won't include relocation sections in section groups in
657 output object files. We adjust the group section size here
658 so that relocatable link will work correctly when
659 relocation sections are in section group in input object
661 shdr
->bfd_section
->size
-= 4;
664 /* There are some unknown sections in the group. */
665 (*_bfd_error_handler
)
666 (_("%B: unknown [%d] section `%s' in group [%s]"),
668 (unsigned int) idx
->shdr
->sh_type
,
669 bfd_elf_string_from_elf_section (abfd
,
670 (elf_elfheader (abfd
)
673 shdr
->bfd_section
->name
);
681 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
683 return elf_next_in_group (sec
) != NULL
;
686 /* Make a BFD section from an ELF section. We store a pointer to the
687 BFD section in the bfd_section field of the header. */
690 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
691 Elf_Internal_Shdr
*hdr
,
697 const struct elf_backend_data
*bed
;
699 if (hdr
->bfd_section
!= NULL
)
701 BFD_ASSERT (strcmp (name
,
702 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
706 newsect
= bfd_make_section_anyway (abfd
, name
);
710 hdr
->bfd_section
= newsect
;
711 elf_section_data (newsect
)->this_hdr
= *hdr
;
712 elf_section_data (newsect
)->this_idx
= shindex
;
714 /* Always use the real type/flags. */
715 elf_section_type (newsect
) = hdr
->sh_type
;
716 elf_section_flags (newsect
) = hdr
->sh_flags
;
718 newsect
->filepos
= hdr
->sh_offset
;
720 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
721 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
722 || ! bfd_set_section_alignment (abfd
, newsect
,
723 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
726 flags
= SEC_NO_FLAGS
;
727 if (hdr
->sh_type
!= SHT_NOBITS
)
728 flags
|= SEC_HAS_CONTENTS
;
729 if (hdr
->sh_type
== SHT_GROUP
)
730 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
731 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
734 if (hdr
->sh_type
!= SHT_NOBITS
)
737 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
738 flags
|= SEC_READONLY
;
739 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
741 else if ((flags
& SEC_LOAD
) != 0)
743 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
746 newsect
->entsize
= hdr
->sh_entsize
;
747 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
748 flags
|= SEC_STRINGS
;
750 if (hdr
->sh_flags
& SHF_GROUP
)
751 if (!setup_group (abfd
, hdr
, newsect
))
753 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
754 flags
|= SEC_THREAD_LOCAL
;
756 if ((flags
& SEC_ALLOC
) == 0)
758 /* The debugging sections appear to be recognized only by name,
759 not any sort of flag. Their SEC_ALLOC bits are cleared. */
764 } debug_sections
[] =
766 { "debug", 5 }, /* 'd' */
767 { NULL
, 0 }, /* 'e' */
768 { NULL
, 0 }, /* 'f' */
769 { "gnu.linkonce.wi.", 17 }, /* 'g' */
770 { NULL
, 0 }, /* 'h' */
771 { NULL
, 0 }, /* 'i' */
772 { NULL
, 0 }, /* 'j' */
773 { NULL
, 0 }, /* 'k' */
774 { "line", 4 }, /* 'l' */
775 { NULL
, 0 }, /* 'm' */
776 { NULL
, 0 }, /* 'n' */
777 { NULL
, 0 }, /* 'o' */
778 { NULL
, 0 }, /* 'p' */
779 { NULL
, 0 }, /* 'q' */
780 { NULL
, 0 }, /* 'r' */
781 { "stab", 4 } /* 's' */
786 int i
= name
[1] - 'd';
788 && i
< (int) ARRAY_SIZE (debug_sections
)
789 && debug_sections
[i
].name
!= NULL
790 && strncmp (&name
[1], debug_sections
[i
].name
,
791 debug_sections
[i
].len
) == 0)
792 flags
|= SEC_DEBUGGING
;
796 /* As a GNU extension, if the name begins with .gnu.linkonce, we
797 only link a single copy of the section. This is used to support
798 g++. g++ will emit each template expansion in its own section.
799 The symbols will be defined as weak, so that multiple definitions
800 are permitted. The GNU linker extension is to actually discard
801 all but one of the sections. */
802 if (strncmp (name
, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
803 && elf_next_in_group (newsect
) == NULL
)
804 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
806 bed
= get_elf_backend_data (abfd
);
807 if (bed
->elf_backend_section_flags
)
808 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
811 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
814 if ((flags
& SEC_ALLOC
) != 0)
816 Elf_Internal_Phdr
*phdr
;
819 /* Look through the phdrs to see if we need to adjust the lma.
820 If all the p_paddr fields are zero, we ignore them, since
821 some ELF linkers produce such output. */
822 phdr
= elf_tdata (abfd
)->phdr
;
823 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
825 if (phdr
->p_paddr
!= 0)
828 if (i
< elf_elfheader (abfd
)->e_phnum
)
830 phdr
= elf_tdata (abfd
)->phdr
;
831 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
833 /* This section is part of this segment if its file
834 offset plus size lies within the segment's memory
835 span and, if the section is loaded, the extent of the
836 loaded data lies within the extent of the segment.
838 Note - we used to check the p_paddr field as well, and
839 refuse to set the LMA if it was 0. This is wrong
840 though, as a perfectly valid initialised segment can
841 have a p_paddr of zero. Some architectures, eg ARM,
842 place special significance on the address 0 and
843 executables need to be able to have a segment which
844 covers this address. */
845 if (phdr
->p_type
== PT_LOAD
846 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
847 && (hdr
->sh_offset
+ hdr
->sh_size
848 <= phdr
->p_offset
+ phdr
->p_memsz
)
849 && ((flags
& SEC_LOAD
) == 0
850 || (hdr
->sh_offset
+ hdr
->sh_size
851 <= phdr
->p_offset
+ phdr
->p_filesz
)))
853 if ((flags
& SEC_LOAD
) == 0)
854 newsect
->lma
= (phdr
->p_paddr
855 + hdr
->sh_addr
- phdr
->p_vaddr
);
857 /* We used to use the same adjustment for SEC_LOAD
858 sections, but that doesn't work if the segment
859 is packed with code from multiple VMAs.
860 Instead we calculate the section LMA based on
861 the segment LMA. It is assumed that the
862 segment will contain sections with contiguous
863 LMAs, even if the VMAs are not. */
864 newsect
->lma
= (phdr
->p_paddr
865 + hdr
->sh_offset
- phdr
->p_offset
);
867 /* With contiguous segments, we can't tell from file
868 offsets whether a section with zero size should
869 be placed at the end of one segment or the
870 beginning of the next. Decide based on vaddr. */
871 if (hdr
->sh_addr
>= phdr
->p_vaddr
872 && (hdr
->sh_addr
+ hdr
->sh_size
873 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
888 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
891 Helper functions for GDB to locate the string tables.
892 Since BFD hides string tables from callers, GDB needs to use an
893 internal hook to find them. Sun's .stabstr, in particular,
894 isn't even pointed to by the .stab section, so ordinary
895 mechanisms wouldn't work to find it, even if we had some.
898 struct elf_internal_shdr
*
899 bfd_elf_find_section (bfd
*abfd
, char *name
)
901 Elf_Internal_Shdr
**i_shdrp
;
906 i_shdrp
= elf_elfsections (abfd
);
909 shstrtab
= bfd_elf_get_str_section (abfd
,
910 elf_elfheader (abfd
)->e_shstrndx
);
911 if (shstrtab
!= NULL
)
913 max
= elf_numsections (abfd
);
914 for (i
= 1; i
< max
; i
++)
915 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
922 const char *const bfd_elf_section_type_names
[] = {
923 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
924 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
925 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
928 /* ELF relocs are against symbols. If we are producing relocatable
929 output, and the reloc is against an external symbol, and nothing
930 has given us any additional addend, the resulting reloc will also
931 be against the same symbol. In such a case, we don't want to
932 change anything about the way the reloc is handled, since it will
933 all be done at final link time. Rather than put special case code
934 into bfd_perform_relocation, all the reloc types use this howto
935 function. It just short circuits the reloc if producing
936 relocatable output against an external symbol. */
938 bfd_reloc_status_type
939 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
940 arelent
*reloc_entry
,
942 void *data ATTRIBUTE_UNUSED
,
943 asection
*input_section
,
945 char **error_message ATTRIBUTE_UNUSED
)
947 if (output_bfd
!= NULL
948 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
949 && (! reloc_entry
->howto
->partial_inplace
950 || reloc_entry
->addend
== 0))
952 reloc_entry
->address
+= input_section
->output_offset
;
956 return bfd_reloc_continue
;
959 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
962 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
965 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
966 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
969 /* Finish SHF_MERGE section merging. */
972 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
977 if (!is_elf_hash_table (info
->hash
))
980 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
981 if ((ibfd
->flags
& DYNAMIC
) == 0)
982 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
983 if ((sec
->flags
& SEC_MERGE
) != 0
984 && !bfd_is_abs_section (sec
->output_section
))
986 struct bfd_elf_section_data
*secdata
;
988 secdata
= elf_section_data (sec
);
989 if (! _bfd_add_merge_section (abfd
,
990 &elf_hash_table (info
)->merge_info
,
991 sec
, &secdata
->sec_info
))
993 else if (secdata
->sec_info
)
994 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
997 if (elf_hash_table (info
)->merge_info
!= NULL
)
998 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
999 merge_sections_remove_hook
);
1004 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
1006 sec
->output_section
= bfd_abs_section_ptr
;
1007 sec
->output_offset
= sec
->vma
;
1008 if (!is_elf_hash_table (info
->hash
))
1011 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
1014 /* Copy the program header and other data from one object module to
1018 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1020 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1021 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1024 BFD_ASSERT (!elf_flags_init (obfd
)
1025 || (elf_elfheader (obfd
)->e_flags
1026 == elf_elfheader (ibfd
)->e_flags
));
1028 elf_gp (obfd
) = elf_gp (ibfd
);
1029 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1030 elf_flags_init (obfd
) = TRUE
;
1034 /* Print out the program headers. */
1037 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1040 Elf_Internal_Phdr
*p
;
1042 bfd_byte
*dynbuf
= NULL
;
1044 p
= elf_tdata (abfd
)->phdr
;
1049 fprintf (f
, _("\nProgram Header:\n"));
1050 c
= elf_elfheader (abfd
)->e_phnum
;
1051 for (i
= 0; i
< c
; i
++, p
++)
1058 case PT_NULL
: pt
= "NULL"; break;
1059 case PT_LOAD
: pt
= "LOAD"; break;
1060 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1061 case PT_INTERP
: pt
= "INTERP"; break;
1062 case PT_NOTE
: pt
= "NOTE"; break;
1063 case PT_SHLIB
: pt
= "SHLIB"; break;
1064 case PT_PHDR
: pt
= "PHDR"; break;
1065 case PT_TLS
: pt
= "TLS"; break;
1066 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1067 case PT_GNU_STACK
: pt
= "STACK"; break;
1068 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1069 default: sprintf (buf
, "0x%lx", p
->p_type
); pt
= buf
; break;
1071 fprintf (f
, "%8s off 0x", pt
);
1072 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1073 fprintf (f
, " vaddr 0x");
1074 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1075 fprintf (f
, " paddr 0x");
1076 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1077 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1078 fprintf (f
, " filesz 0x");
1079 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1080 fprintf (f
, " memsz 0x");
1081 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1082 fprintf (f
, " flags %c%c%c",
1083 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1084 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1085 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1086 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1087 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1092 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1096 unsigned long shlink
;
1097 bfd_byte
*extdyn
, *extdynend
;
1099 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1101 fprintf (f
, _("\nDynamic Section:\n"));
1103 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1106 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1109 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1111 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1112 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1115 extdynend
= extdyn
+ s
->size
;
1116 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1118 Elf_Internal_Dyn dyn
;
1121 bfd_boolean stringp
;
1123 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1125 if (dyn
.d_tag
== DT_NULL
)
1132 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1136 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1137 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1138 case DT_PLTGOT
: name
= "PLTGOT"; break;
1139 case DT_HASH
: name
= "HASH"; break;
1140 case DT_STRTAB
: name
= "STRTAB"; break;
1141 case DT_SYMTAB
: name
= "SYMTAB"; break;
1142 case DT_RELA
: name
= "RELA"; break;
1143 case DT_RELASZ
: name
= "RELASZ"; break;
1144 case DT_RELAENT
: name
= "RELAENT"; break;
1145 case DT_STRSZ
: name
= "STRSZ"; break;
1146 case DT_SYMENT
: name
= "SYMENT"; break;
1147 case DT_INIT
: name
= "INIT"; break;
1148 case DT_FINI
: name
= "FINI"; break;
1149 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1150 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1151 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1152 case DT_REL
: name
= "REL"; break;
1153 case DT_RELSZ
: name
= "RELSZ"; break;
1154 case DT_RELENT
: name
= "RELENT"; break;
1155 case DT_PLTREL
: name
= "PLTREL"; break;
1156 case DT_DEBUG
: name
= "DEBUG"; break;
1157 case DT_TEXTREL
: name
= "TEXTREL"; break;
1158 case DT_JMPREL
: name
= "JMPREL"; break;
1159 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1160 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1161 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1162 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1163 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1164 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1165 case DT_FLAGS
: name
= "FLAGS"; break;
1166 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1167 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1168 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1169 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1170 case DT_MOVEENT
: name
= "MOVEENT"; break;
1171 case DT_MOVESZ
: name
= "MOVESZ"; break;
1172 case DT_FEATURE
: name
= "FEATURE"; break;
1173 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1174 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1175 case DT_SYMINENT
: name
= "SYMINENT"; break;
1176 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1177 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1178 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1179 case DT_PLTPAD
: name
= "PLTPAD"; break;
1180 case DT_MOVETAB
: name
= "MOVETAB"; break;
1181 case DT_SYMINFO
: name
= "SYMINFO"; break;
1182 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1183 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1184 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1185 case DT_VERSYM
: name
= "VERSYM"; break;
1186 case DT_VERDEF
: name
= "VERDEF"; break;
1187 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1188 case DT_VERNEED
: name
= "VERNEED"; break;
1189 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1190 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1191 case DT_USED
: name
= "USED"; break;
1192 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1195 fprintf (f
, " %-11s ", name
);
1197 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1201 unsigned int tagv
= dyn
.d_un
.d_val
;
1203 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1206 fprintf (f
, "%s", string
);
1215 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1216 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1218 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1222 if (elf_dynverdef (abfd
) != 0)
1224 Elf_Internal_Verdef
*t
;
1226 fprintf (f
, _("\nVersion definitions:\n"));
1227 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1229 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1230 t
->vd_flags
, t
->vd_hash
, t
->vd_nodename
);
1231 if (t
->vd_auxptr
->vda_nextptr
!= NULL
)
1233 Elf_Internal_Verdaux
*a
;
1236 for (a
= t
->vd_auxptr
->vda_nextptr
;
1239 fprintf (f
, "%s ", a
->vda_nodename
);
1245 if (elf_dynverref (abfd
) != 0)
1247 Elf_Internal_Verneed
*t
;
1249 fprintf (f
, _("\nVersion References:\n"));
1250 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1252 Elf_Internal_Vernaux
*a
;
1254 fprintf (f
, _(" required from %s:\n"), t
->vn_filename
);
1255 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1256 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1257 a
->vna_flags
, a
->vna_other
, a
->vna_nodename
);
1269 /* Display ELF-specific fields of a symbol. */
1272 bfd_elf_print_symbol (bfd
*abfd
,
1275 bfd_print_symbol_type how
)
1280 case bfd_print_symbol_name
:
1281 fprintf (file
, "%s", symbol
->name
);
1283 case bfd_print_symbol_more
:
1284 fprintf (file
, "elf ");
1285 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1286 fprintf (file
, " %lx", (long) symbol
->flags
);
1288 case bfd_print_symbol_all
:
1290 const char *section_name
;
1291 const char *name
= NULL
;
1292 const struct elf_backend_data
*bed
;
1293 unsigned char st_other
;
1296 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1298 bed
= get_elf_backend_data (abfd
);
1299 if (bed
->elf_backend_print_symbol_all
)
1300 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1304 name
= symbol
->name
;
1305 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1308 fprintf (file
, " %s\t", section_name
);
1309 /* Print the "other" value for a symbol. For common symbols,
1310 we've already printed the size; now print the alignment.
1311 For other symbols, we have no specified alignment, and
1312 we've printed the address; now print the size. */
1313 if (bfd_is_com_section (symbol
->section
))
1314 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1316 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1317 bfd_fprintf_vma (abfd
, file
, val
);
1319 /* If we have version information, print it. */
1320 if (elf_tdata (abfd
)->dynversym_section
!= 0
1321 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1322 || elf_tdata (abfd
)->dynverref_section
!= 0))
1324 unsigned int vernum
;
1325 const char *version_string
;
1327 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1330 version_string
= "";
1331 else if (vernum
== 1)
1332 version_string
= "Base";
1333 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1335 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1338 Elf_Internal_Verneed
*t
;
1340 version_string
= "";
1341 for (t
= elf_tdata (abfd
)->verref
;
1345 Elf_Internal_Vernaux
*a
;
1347 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1349 if (a
->vna_other
== vernum
)
1351 version_string
= a
->vna_nodename
;
1358 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1359 fprintf (file
, " %-11s", version_string
);
1364 fprintf (file
, " (%s)", version_string
);
1365 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1370 /* If the st_other field is not zero, print it. */
1371 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1376 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1377 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1378 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1380 /* Some other non-defined flags are also present, so print
1382 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1385 fprintf (file
, " %s", name
);
1391 /* Create an entry in an ELF linker hash table. */
1393 struct bfd_hash_entry
*
1394 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1395 struct bfd_hash_table
*table
,
1398 /* Allocate the structure if it has not already been allocated by a
1402 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1407 /* Call the allocation method of the superclass. */
1408 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1411 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1412 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1414 /* Set local fields. */
1417 ret
->got
= htab
->init_got_refcount
;
1418 ret
->plt
= htab
->init_plt_refcount
;
1419 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1420 - offsetof (struct elf_link_hash_entry
, size
)));
1421 /* Assume that we have been called by a non-ELF symbol reader.
1422 This flag is then reset by the code which reads an ELF input
1423 file. This ensures that a symbol created by a non-ELF symbol
1424 reader will have the flag set correctly. */
1431 /* Copy data from an indirect symbol to its direct symbol, hiding the
1432 old indirect symbol. Also used for copying flags to a weakdef. */
1435 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data
*bed
,
1436 struct elf_link_hash_entry
*dir
,
1437 struct elf_link_hash_entry
*ind
)
1440 bfd_signed_vma lowest_valid
= bed
->can_refcount
;
1442 /* Copy down any references that we may have already seen to the
1443 symbol which just became indirect. */
1445 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1446 dir
->ref_regular
|= ind
->ref_regular
;
1447 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1448 dir
->non_got_ref
|= ind
->non_got_ref
;
1449 dir
->needs_plt
|= ind
->needs_plt
;
1450 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1452 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1455 /* Copy over the global and procedure linkage table refcount entries.
1456 These may have been already set up by a check_relocs routine. */
1457 tmp
= dir
->got
.refcount
;
1458 if (tmp
< lowest_valid
)
1460 dir
->got
.refcount
= ind
->got
.refcount
;
1461 ind
->got
.refcount
= tmp
;
1464 BFD_ASSERT (ind
->got
.refcount
< lowest_valid
);
1466 tmp
= dir
->plt
.refcount
;
1467 if (tmp
< lowest_valid
)
1469 dir
->plt
.refcount
= ind
->plt
.refcount
;
1470 ind
->plt
.refcount
= tmp
;
1473 BFD_ASSERT (ind
->plt
.refcount
< lowest_valid
);
1475 if (dir
->dynindx
== -1)
1477 dir
->dynindx
= ind
->dynindx
;
1478 dir
->dynstr_index
= ind
->dynstr_index
;
1480 ind
->dynstr_index
= 0;
1483 BFD_ASSERT (ind
->dynindx
== -1);
1487 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1488 struct elf_link_hash_entry
*h
,
1489 bfd_boolean force_local
)
1491 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
1495 h
->forced_local
= 1;
1496 if (h
->dynindx
!= -1)
1499 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1505 /* Initialize an ELF linker hash table. */
1508 _bfd_elf_link_hash_table_init
1509 (struct elf_link_hash_table
*table
,
1511 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1512 struct bfd_hash_table
*,
1516 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1518 table
->dynamic_sections_created
= FALSE
;
1519 table
->dynobj
= NULL
;
1520 table
->init_got_refcount
.refcount
= can_refcount
- 1;
1521 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
1522 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
1523 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
1524 /* The first dynamic symbol is a dummy. */
1525 table
->dynsymcount
= 1;
1526 table
->dynstr
= NULL
;
1527 table
->bucketcount
= 0;
1528 table
->needed
= NULL
;
1530 table
->merge_info
= NULL
;
1531 memset (&table
->stab_info
, 0, sizeof (table
->stab_info
));
1532 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1533 table
->dynlocal
= NULL
;
1534 table
->runpath
= NULL
;
1535 table
->tls_sec
= NULL
;
1536 table
->tls_size
= 0;
1537 table
->loaded
= NULL
;
1538 table
->is_relocatable_executable
= FALSE
;
1540 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
);
1541 table
->root
.type
= bfd_link_elf_hash_table
;
1546 /* Create an ELF linker hash table. */
1548 struct bfd_link_hash_table
*
1549 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1551 struct elf_link_hash_table
*ret
;
1552 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1554 ret
= bfd_malloc (amt
);
1558 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
))
1567 /* This is a hook for the ELF emulation code in the generic linker to
1568 tell the backend linker what file name to use for the DT_NEEDED
1569 entry for a dynamic object. */
1572 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1574 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1575 && bfd_get_format (abfd
) == bfd_object
)
1576 elf_dt_name (abfd
) = name
;
1580 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1583 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1584 && bfd_get_format (abfd
) == bfd_object
)
1585 lib_class
= elf_dyn_lib_class (abfd
);
1592 bfd_elf_set_dyn_lib_class (bfd
*abfd
, int lib_class
)
1594 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1595 && bfd_get_format (abfd
) == bfd_object
)
1596 elf_dyn_lib_class (abfd
) = lib_class
;
1599 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1600 the linker ELF emulation code. */
1602 struct bfd_link_needed_list
*
1603 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1604 struct bfd_link_info
*info
)
1606 if (! is_elf_hash_table (info
->hash
))
1608 return elf_hash_table (info
)->needed
;
1611 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1612 hook for the linker ELF emulation code. */
1614 struct bfd_link_needed_list
*
1615 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1616 struct bfd_link_info
*info
)
1618 if (! is_elf_hash_table (info
->hash
))
1620 return elf_hash_table (info
)->runpath
;
1623 /* Get the name actually used for a dynamic object for a link. This
1624 is the SONAME entry if there is one. Otherwise, it is the string
1625 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1628 bfd_elf_get_dt_soname (bfd
*abfd
)
1630 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1631 && bfd_get_format (abfd
) == bfd_object
)
1632 return elf_dt_name (abfd
);
1636 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1637 the ELF linker emulation code. */
1640 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1641 struct bfd_link_needed_list
**pneeded
)
1644 bfd_byte
*dynbuf
= NULL
;
1646 unsigned long shlink
;
1647 bfd_byte
*extdyn
, *extdynend
;
1649 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1653 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1654 || bfd_get_format (abfd
) != bfd_object
)
1657 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1658 if (s
== NULL
|| s
->size
== 0)
1661 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1664 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1668 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1670 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1671 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1674 extdynend
= extdyn
+ s
->size
;
1675 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1677 Elf_Internal_Dyn dyn
;
1679 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1681 if (dyn
.d_tag
== DT_NULL
)
1684 if (dyn
.d_tag
== DT_NEEDED
)
1687 struct bfd_link_needed_list
*l
;
1688 unsigned int tagv
= dyn
.d_un
.d_val
;
1691 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1696 l
= bfd_alloc (abfd
, amt
);
1717 /* Allocate an ELF string table--force the first byte to be zero. */
1719 struct bfd_strtab_hash
*
1720 _bfd_elf_stringtab_init (void)
1722 struct bfd_strtab_hash
*ret
;
1724 ret
= _bfd_stringtab_init ();
1729 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1730 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1731 if (loc
== (bfd_size_type
) -1)
1733 _bfd_stringtab_free (ret
);
1740 /* ELF .o/exec file reading */
1742 /* Create a new bfd section from an ELF section header. */
1745 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1747 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1748 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1749 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1752 name
= bfd_elf_string_from_elf_section (abfd
,
1753 elf_elfheader (abfd
)->e_shstrndx
,
1756 switch (hdr
->sh_type
)
1759 /* Inactive section. Throw it away. */
1762 case SHT_PROGBITS
: /* Normal section with contents. */
1763 case SHT_NOBITS
: /* .bss section. */
1764 case SHT_HASH
: /* .hash section. */
1765 case SHT_NOTE
: /* .note section. */
1766 case SHT_INIT_ARRAY
: /* .init_array section. */
1767 case SHT_FINI_ARRAY
: /* .fini_array section. */
1768 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1769 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1770 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1772 case SHT_DYNAMIC
: /* Dynamic linking information. */
1773 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1775 if (hdr
->sh_link
> elf_numsections (abfd
)
1776 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1778 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1780 Elf_Internal_Shdr
*dynsymhdr
;
1782 /* The shared libraries distributed with hpux11 have a bogus
1783 sh_link field for the ".dynamic" section. Find the
1784 string table for the ".dynsym" section instead. */
1785 if (elf_dynsymtab (abfd
) != 0)
1787 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1788 hdr
->sh_link
= dynsymhdr
->sh_link
;
1792 unsigned int i
, num_sec
;
1794 num_sec
= elf_numsections (abfd
);
1795 for (i
= 1; i
< num_sec
; i
++)
1797 dynsymhdr
= elf_elfsections (abfd
)[i
];
1798 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1800 hdr
->sh_link
= dynsymhdr
->sh_link
;
1808 case SHT_SYMTAB
: /* A symbol table */
1809 if (elf_onesymtab (abfd
) == shindex
)
1812 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1813 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1814 elf_onesymtab (abfd
) = shindex
;
1815 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1816 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1817 abfd
->flags
|= HAS_SYMS
;
1819 /* Sometimes a shared object will map in the symbol table. If
1820 SHF_ALLOC is set, and this is a shared object, then we also
1821 treat this section as a BFD section. We can not base the
1822 decision purely on SHF_ALLOC, because that flag is sometimes
1823 set in a relocatable object file, which would confuse the
1825 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1826 && (abfd
->flags
& DYNAMIC
) != 0
1827 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1831 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1832 can't read symbols without that section loaded as well. It
1833 is most likely specified by the next section header. */
1834 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1836 unsigned int i
, num_sec
;
1838 num_sec
= elf_numsections (abfd
);
1839 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1841 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1842 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1843 && hdr2
->sh_link
== shindex
)
1847 for (i
= 1; i
< shindex
; i
++)
1849 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1850 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1851 && hdr2
->sh_link
== shindex
)
1855 return bfd_section_from_shdr (abfd
, i
);
1859 case SHT_DYNSYM
: /* A dynamic symbol table */
1860 if (elf_dynsymtab (abfd
) == shindex
)
1863 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1864 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1865 elf_dynsymtab (abfd
) = shindex
;
1866 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1867 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1868 abfd
->flags
|= HAS_SYMS
;
1870 /* Besides being a symbol table, we also treat this as a regular
1871 section, so that objcopy can handle it. */
1872 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1874 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1875 if (elf_symtab_shndx (abfd
) == shindex
)
1878 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1879 elf_symtab_shndx (abfd
) = shindex
;
1880 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1881 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1884 case SHT_STRTAB
: /* A string table */
1885 if (hdr
->bfd_section
!= NULL
)
1887 if (ehdr
->e_shstrndx
== shindex
)
1889 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1890 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1893 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1896 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1897 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1900 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1903 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1904 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1905 elf_elfsections (abfd
)[shindex
] = hdr
;
1906 /* We also treat this as a regular section, so that objcopy
1908 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1912 /* If the string table isn't one of the above, then treat it as a
1913 regular section. We need to scan all the headers to be sure,
1914 just in case this strtab section appeared before the above. */
1915 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1917 unsigned int i
, num_sec
;
1919 num_sec
= elf_numsections (abfd
);
1920 for (i
= 1; i
< num_sec
; i
++)
1922 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1923 if (hdr2
->sh_link
== shindex
)
1925 if (! bfd_section_from_shdr (abfd
, i
))
1927 if (elf_onesymtab (abfd
) == i
)
1929 if (elf_dynsymtab (abfd
) == i
)
1930 goto dynsymtab_strtab
;
1934 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1938 /* *These* do a lot of work -- but build no sections! */
1940 asection
*target_sect
;
1941 Elf_Internal_Shdr
*hdr2
;
1942 unsigned int num_sec
= elf_numsections (abfd
);
1944 /* Check for a bogus link to avoid crashing. */
1945 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
1946 || hdr
->sh_link
>= num_sec
)
1948 ((*_bfd_error_handler
)
1949 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1950 abfd
, hdr
->sh_link
, name
, shindex
));
1951 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1955 /* For some incomprehensible reason Oracle distributes
1956 libraries for Solaris in which some of the objects have
1957 bogus sh_link fields. It would be nice if we could just
1958 reject them, but, unfortunately, some people need to use
1959 them. We scan through the section headers; if we find only
1960 one suitable symbol table, we clobber the sh_link to point
1961 to it. I hope this doesn't break anything. */
1962 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1963 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1969 for (scan
= 1; scan
< num_sec
; scan
++)
1971 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1972 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1983 hdr
->sh_link
= found
;
1986 /* Get the symbol table. */
1987 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1988 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
1989 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1992 /* If this reloc section does not use the main symbol table we
1993 don't treat it as a reloc section. BFD can't adequately
1994 represent such a section, so at least for now, we don't
1995 try. We just present it as a normal section. We also
1996 can't use it as a reloc section if it points to the null
1998 if (hdr
->sh_link
!= elf_onesymtab (abfd
) || hdr
->sh_info
== SHN_UNDEF
)
1999 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2002 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
2004 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
2005 if (target_sect
== NULL
)
2008 if ((target_sect
->flags
& SEC_RELOC
) == 0
2009 || target_sect
->reloc_count
== 0)
2010 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
2014 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
2015 amt
= sizeof (*hdr2
);
2016 hdr2
= bfd_alloc (abfd
, amt
);
2017 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
2020 elf_elfsections (abfd
)[shindex
] = hdr2
;
2021 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
2022 target_sect
->flags
|= SEC_RELOC
;
2023 target_sect
->relocation
= NULL
;
2024 target_sect
->rel_filepos
= hdr
->sh_offset
;
2025 /* In the section to which the relocations apply, mark whether
2026 its relocations are of the REL or RELA variety. */
2027 if (hdr
->sh_size
!= 0)
2028 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
2029 abfd
->flags
|= HAS_RELOC
;
2034 case SHT_GNU_verdef
:
2035 elf_dynverdef (abfd
) = shindex
;
2036 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
2037 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2040 case SHT_GNU_versym
:
2041 elf_dynversym (abfd
) = shindex
;
2042 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
2043 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2046 case SHT_GNU_verneed
:
2047 elf_dynverref (abfd
) = shindex
;
2048 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2049 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2056 /* We need a BFD section for objcopy and relocatable linking,
2057 and it's handy to have the signature available as the section
2059 name
= group_signature (abfd
, hdr
);
2062 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
2064 if (hdr
->contents
!= NULL
)
2066 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2067 unsigned int n_elt
= hdr
->sh_size
/ 4;
2070 if (idx
->flags
& GRP_COMDAT
)
2071 hdr
->bfd_section
->flags
2072 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2074 /* We try to keep the same section order as it comes in. */
2076 while (--n_elt
!= 0)
2077 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2078 && elf_next_in_group (s
) != NULL
)
2080 elf_next_in_group (hdr
->bfd_section
) = s
;
2087 /* Check for any processor-specific section types. */
2088 return bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
,
2095 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2096 Return SEC for sections that have no elf section, and NULL on error. */
2099 bfd_section_from_r_symndx (bfd
*abfd
,
2100 struct sym_sec_cache
*cache
,
2102 unsigned long r_symndx
)
2104 Elf_Internal_Shdr
*symtab_hdr
;
2105 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2106 Elf_External_Sym_Shndx eshndx
;
2107 Elf_Internal_Sym isym
;
2108 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2110 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2111 return cache
->sec
[ent
];
2113 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2114 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2115 &isym
, esym
, &eshndx
) == NULL
)
2118 if (cache
->abfd
!= abfd
)
2120 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2123 cache
->indx
[ent
] = r_symndx
;
2124 cache
->sec
[ent
] = sec
;
2125 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2126 || isym
.st_shndx
> SHN_HIRESERVE
)
2129 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2131 cache
->sec
[ent
] = s
;
2133 return cache
->sec
[ent
];
2136 /* Given an ELF section number, retrieve the corresponding BFD
2140 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2142 if (index
>= elf_numsections (abfd
))
2144 return elf_elfsections (abfd
)[index
]->bfd_section
;
2147 static struct bfd_elf_special_section
const special_sections_b
[] =
2149 { ".bss", 4, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2150 { NULL
, 0, 0, 0, 0 }
2153 static struct bfd_elf_special_section
const special_sections_c
[] =
2155 { ".comment", 8, 0, SHT_PROGBITS
, 0 },
2156 { NULL
, 0, 0, 0, 0 }
2159 static struct bfd_elf_special_section
const special_sections_d
[] =
2161 { ".data", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2162 { ".data1", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2163 { ".debug", 6, 0, SHT_PROGBITS
, 0 },
2164 { ".debug_line", 11, 0, SHT_PROGBITS
, 0 },
2165 { ".debug_info", 11, 0, SHT_PROGBITS
, 0 },
2166 { ".debug_abbrev", 13, 0, SHT_PROGBITS
, 0 },
2167 { ".debug_aranges", 14, 0, SHT_PROGBITS
, 0 },
2168 { ".dynamic", 8, 0, SHT_DYNAMIC
, SHF_ALLOC
},
2169 { ".dynstr", 7, 0, SHT_STRTAB
, SHF_ALLOC
},
2170 { ".dynsym", 7, 0, SHT_DYNSYM
, SHF_ALLOC
},
2171 { NULL
, 0, 0, 0, 0 }
2174 static struct bfd_elf_special_section
const special_sections_f
[] =
2176 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2177 { ".fini_array", 11, 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2178 { NULL
, 0, 0, 0, 0 }
2181 static struct bfd_elf_special_section
const special_sections_g
[] =
2183 { ".gnu.linkonce.b",15, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2184 { ".got", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2185 { ".gnu.version", 12, 0, SHT_GNU_versym
, 0 },
2186 { ".gnu.version_d", 14, 0, SHT_GNU_verdef
, 0 },
2187 { ".gnu.version_r", 14, 0, SHT_GNU_verneed
, 0 },
2188 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2189 { ".gnu.conflict", 13, 0, SHT_RELA
, SHF_ALLOC
},
2190 { NULL
, 0, 0, 0, 0 }
2193 static struct bfd_elf_special_section
const special_sections_h
[] =
2195 { ".hash", 5, 0, SHT_HASH
, SHF_ALLOC
},
2196 { NULL
, 0, 0, 0, 0 }
2199 static struct bfd_elf_special_section
const special_sections_i
[] =
2201 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2202 { ".init_array", 11, 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2203 { ".interp", 7, 0, SHT_PROGBITS
, 0 },
2204 { NULL
, 0, 0, 0, 0 }
2207 static struct bfd_elf_special_section
const special_sections_l
[] =
2209 { ".line", 5, 0, SHT_PROGBITS
, 0 },
2210 { NULL
, 0, 0, 0, 0 }
2213 static struct bfd_elf_special_section
const special_sections_n
[] =
2215 { ".note.GNU-stack",15, 0, SHT_PROGBITS
, 0 },
2216 { ".note", 5, -1, SHT_NOTE
, 0 },
2217 { NULL
, 0, 0, 0, 0 }
2220 static struct bfd_elf_special_section
const special_sections_p
[] =
2222 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2223 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2224 { NULL
, 0, 0, 0, 0 }
2227 static struct bfd_elf_special_section
const special_sections_r
[] =
2229 { ".rodata", 7, -2, SHT_PROGBITS
, SHF_ALLOC
},
2230 { ".rodata1", 8, 0, SHT_PROGBITS
, SHF_ALLOC
},
2231 { ".rela", 5, -1, SHT_RELA
, 0 },
2232 { ".rel", 4, -1, SHT_REL
, 0 },
2233 { NULL
, 0, 0, 0, 0 }
2236 static struct bfd_elf_special_section
const special_sections_s
[] =
2238 { ".shstrtab", 9, 0, SHT_STRTAB
, 0 },
2239 { ".strtab", 7, 0, SHT_STRTAB
, 0 },
2240 { ".symtab", 7, 0, SHT_SYMTAB
, 0 },
2241 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2242 { NULL
, 0, 0, 0, 0 }
2245 static struct bfd_elf_special_section
const special_sections_t
[] =
2247 { ".text", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2248 { ".tbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2249 { ".tdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2250 { NULL
, 0, 0, 0, 0 }
2253 static struct bfd_elf_special_section
const *special_sections
[27] =
2256 special_sections_b
, /* 'b' */
2257 special_sections_c
, /* 'b' */
2258 special_sections_d
, /* 'd' */
2260 special_sections_f
, /* 'f' */
2261 special_sections_g
, /* 'g' */
2262 special_sections_h
, /* 'h' */
2263 special_sections_i
, /* 'i' */
2266 special_sections_l
, /* 'l' */
2268 special_sections_n
, /* 'n' */
2270 special_sections_p
, /* 'p' */
2272 special_sections_r
, /* 'r' */
2273 special_sections_s
, /* 's' */
2274 special_sections_t
, /* 't' */
2284 static const struct bfd_elf_special_section
*
2285 get_special_section (const char *name
,
2286 const struct bfd_elf_special_section
**special_sections_p
,
2291 const struct bfd_elf_special_section
*special_sections
;
2293 if (name
[0] == '.')
2296 if (i
< 0 || i
> 25)
2302 special_sections
= special_sections_p
[i
];
2304 if (!special_sections
)
2305 return special_sections
;
2309 for (i
= 0; special_sections
[i
].prefix
!= NULL
; i
++)
2312 int prefix_len
= special_sections
[i
].prefix_length
;
2314 if (len
< prefix_len
)
2316 if (memcmp (name
, special_sections
[i
].prefix
, prefix_len
) != 0)
2319 suffix_len
= special_sections
[i
].suffix_length
;
2320 if (suffix_len
<= 0)
2322 if (name
[prefix_len
] != 0)
2324 if (suffix_len
== 0)
2326 if (name
[prefix_len
] != '.'
2327 && (suffix_len
== -2
2328 || (rela
&& special_sections
[i
].type
== SHT_REL
)))
2334 if (len
< prefix_len
+ suffix_len
)
2336 if (memcmp (name
+ len
- suffix_len
,
2337 special_sections
[i
].prefix
+ prefix_len
,
2341 return &special_sections
[i
];
2347 const struct bfd_elf_special_section
*
2348 _bfd_elf_get_sec_type_attr (bfd
*abfd
, const char *name
)
2350 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2351 const struct bfd_elf_special_section
*ssect
= NULL
;
2353 /* See if this is one of the special sections. */
2356 unsigned int rela
= bed
->default_use_rela_p
;
2358 if (bed
->special_sections
)
2359 ssect
= get_special_section (name
, bed
->special_sections
, rela
);
2362 ssect
= get_special_section (name
, special_sections
, rela
);
2369 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2371 struct bfd_elf_section_data
*sdata
;
2372 const struct bfd_elf_special_section
*ssect
;
2374 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2377 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2380 sec
->used_by_bfd
= sdata
;
2383 /* When we read a file, we don't need section type and flags unless
2384 it is a linker created section. They will be overridden in
2385 _bfd_elf_make_section_from_shdr anyway. */
2386 if (abfd
->direction
!= read_direction
2387 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2389 ssect
= _bfd_elf_get_sec_type_attr (abfd
, sec
->name
);
2392 elf_section_type (sec
) = ssect
->type
;
2393 elf_section_flags (sec
) = ssect
->attr
;
2397 /* Indicate whether or not this section should use RELA relocations. */
2398 sec
->use_rela_p
= get_elf_backend_data (abfd
)->default_use_rela_p
;
2403 /* Create a new bfd section from an ELF program header.
2405 Since program segments have no names, we generate a synthetic name
2406 of the form segment<NUM>, where NUM is generally the index in the
2407 program header table. For segments that are split (see below) we
2408 generate the names segment<NUM>a and segment<NUM>b.
2410 Note that some program segments may have a file size that is different than
2411 (less than) the memory size. All this means is that at execution the
2412 system must allocate the amount of memory specified by the memory size,
2413 but only initialize it with the first "file size" bytes read from the
2414 file. This would occur for example, with program segments consisting
2415 of combined data+bss.
2417 To handle the above situation, this routine generates TWO bfd sections
2418 for the single program segment. The first has the length specified by
2419 the file size of the segment, and the second has the length specified
2420 by the difference between the two sizes. In effect, the segment is split
2421 into it's initialized and uninitialized parts.
2426 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2427 Elf_Internal_Phdr
*hdr
,
2429 const char *typename
)
2437 split
= ((hdr
->p_memsz
> 0)
2438 && (hdr
->p_filesz
> 0)
2439 && (hdr
->p_memsz
> hdr
->p_filesz
));
2440 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2441 len
= strlen (namebuf
) + 1;
2442 name
= bfd_alloc (abfd
, len
);
2445 memcpy (name
, namebuf
, len
);
2446 newsect
= bfd_make_section (abfd
, name
);
2447 if (newsect
== NULL
)
2449 newsect
->vma
= hdr
->p_vaddr
;
2450 newsect
->lma
= hdr
->p_paddr
;
2451 newsect
->size
= hdr
->p_filesz
;
2452 newsect
->filepos
= hdr
->p_offset
;
2453 newsect
->flags
|= SEC_HAS_CONTENTS
;
2454 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2455 if (hdr
->p_type
== PT_LOAD
)
2457 newsect
->flags
|= SEC_ALLOC
;
2458 newsect
->flags
|= SEC_LOAD
;
2459 if (hdr
->p_flags
& PF_X
)
2461 /* FIXME: all we known is that it has execute PERMISSION,
2463 newsect
->flags
|= SEC_CODE
;
2466 if (!(hdr
->p_flags
& PF_W
))
2468 newsect
->flags
|= SEC_READONLY
;
2473 sprintf (namebuf
, "%s%db", typename
, index
);
2474 len
= strlen (namebuf
) + 1;
2475 name
= bfd_alloc (abfd
, len
);
2478 memcpy (name
, namebuf
, len
);
2479 newsect
= bfd_make_section (abfd
, name
);
2480 if (newsect
== NULL
)
2482 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2483 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2484 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2485 if (hdr
->p_type
== PT_LOAD
)
2487 newsect
->flags
|= SEC_ALLOC
;
2488 if (hdr
->p_flags
& PF_X
)
2489 newsect
->flags
|= SEC_CODE
;
2491 if (!(hdr
->p_flags
& PF_W
))
2492 newsect
->flags
|= SEC_READONLY
;
2499 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2501 const struct elf_backend_data
*bed
;
2503 switch (hdr
->p_type
)
2506 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2509 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2512 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2515 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2518 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2520 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2525 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2528 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2530 case PT_GNU_EH_FRAME
:
2531 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2535 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2538 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2541 /* Check for any processor-specific program segment types. */
2542 bed
= get_elf_backend_data (abfd
);
2543 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2547 /* Initialize REL_HDR, the section-header for new section, containing
2548 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2549 relocations; otherwise, we use REL relocations. */
2552 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2553 Elf_Internal_Shdr
*rel_hdr
,
2555 bfd_boolean use_rela_p
)
2558 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2559 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2561 name
= bfd_alloc (abfd
, amt
);
2564 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2566 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2568 if (rel_hdr
->sh_name
== (unsigned int) -1)
2570 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2571 rel_hdr
->sh_entsize
= (use_rela_p
2572 ? bed
->s
->sizeof_rela
2573 : bed
->s
->sizeof_rel
);
2574 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2575 rel_hdr
->sh_flags
= 0;
2576 rel_hdr
->sh_addr
= 0;
2577 rel_hdr
->sh_size
= 0;
2578 rel_hdr
->sh_offset
= 0;
2583 /* Set up an ELF internal section header for a section. */
2586 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2588 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2589 bfd_boolean
*failedptr
= failedptrarg
;
2590 Elf_Internal_Shdr
*this_hdr
;
2594 /* We already failed; just get out of the bfd_map_over_sections
2599 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2601 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2602 asect
->name
, FALSE
);
2603 if (this_hdr
->sh_name
== (unsigned int) -1)
2609 this_hdr
->sh_flags
= 0;
2611 if ((asect
->flags
& SEC_ALLOC
) != 0
2612 || asect
->user_set_vma
)
2613 this_hdr
->sh_addr
= asect
->vma
;
2615 this_hdr
->sh_addr
= 0;
2617 this_hdr
->sh_offset
= 0;
2618 this_hdr
->sh_size
= asect
->size
;
2619 this_hdr
->sh_link
= 0;
2620 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2621 /* The sh_entsize and sh_info fields may have been set already by
2622 copy_private_section_data. */
2624 this_hdr
->bfd_section
= asect
;
2625 this_hdr
->contents
= NULL
;
2627 /* If the section type is unspecified, we set it based on
2629 if (this_hdr
->sh_type
== SHT_NULL
)
2631 if ((asect
->flags
& SEC_GROUP
) != 0)
2633 /* We also need to mark SHF_GROUP here for relocatable
2635 struct bfd_link_order
*l
;
2638 for (l
= asect
->map_head
.link_order
; l
!= NULL
; l
= l
->next
)
2639 if (l
->type
== bfd_indirect_link_order
2640 && (elt
= elf_next_in_group (l
->u
.indirect
.section
)) != NULL
)
2643 /* The name is not important. Anything will do. */
2644 elf_group_name (elt
->output_section
) = "G";
2645 elf_section_flags (elt
->output_section
) |= SHF_GROUP
;
2647 elt
= elf_next_in_group (elt
);
2648 /* During a relocatable link, the lists are
2651 while (elt
!= elf_next_in_group (l
->u
.indirect
.section
));
2653 this_hdr
->sh_type
= SHT_GROUP
;
2655 else if ((asect
->flags
& SEC_ALLOC
) != 0
2656 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2657 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2658 this_hdr
->sh_type
= SHT_NOBITS
;
2660 this_hdr
->sh_type
= SHT_PROGBITS
;
2663 switch (this_hdr
->sh_type
)
2669 case SHT_INIT_ARRAY
:
2670 case SHT_FINI_ARRAY
:
2671 case SHT_PREINIT_ARRAY
:
2678 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2682 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2686 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2690 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2691 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2695 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2696 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2699 case SHT_GNU_versym
:
2700 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2703 case SHT_GNU_verdef
:
2704 this_hdr
->sh_entsize
= 0;
2705 /* objcopy or strip will copy over sh_info, but may not set
2706 cverdefs. The linker will set cverdefs, but sh_info will be
2708 if (this_hdr
->sh_info
== 0)
2709 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2711 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2712 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2715 case SHT_GNU_verneed
:
2716 this_hdr
->sh_entsize
= 0;
2717 /* objcopy or strip will copy over sh_info, but may not set
2718 cverrefs. The linker will set cverrefs, but sh_info will be
2720 if (this_hdr
->sh_info
== 0)
2721 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2723 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2724 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2728 this_hdr
->sh_entsize
= 4;
2732 if ((asect
->flags
& SEC_ALLOC
) != 0)
2733 this_hdr
->sh_flags
|= SHF_ALLOC
;
2734 if ((asect
->flags
& SEC_READONLY
) == 0)
2735 this_hdr
->sh_flags
|= SHF_WRITE
;
2736 if ((asect
->flags
& SEC_CODE
) != 0)
2737 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2738 if ((asect
->flags
& SEC_MERGE
) != 0)
2740 this_hdr
->sh_flags
|= SHF_MERGE
;
2741 this_hdr
->sh_entsize
= asect
->entsize
;
2742 if ((asect
->flags
& SEC_STRINGS
) != 0)
2743 this_hdr
->sh_flags
|= SHF_STRINGS
;
2745 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2746 this_hdr
->sh_flags
|= SHF_GROUP
;
2747 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2749 this_hdr
->sh_flags
|= SHF_TLS
;
2750 if (asect
->size
== 0 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2752 struct bfd_link_order
*o
;
2754 this_hdr
->sh_size
= 0;
2755 for (o
= asect
->map_head
.link_order
; o
!= NULL
; o
= o
->next
)
2756 if (this_hdr
->sh_size
< o
->offset
+ o
->size
)
2757 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2758 if (this_hdr
->sh_size
)
2759 this_hdr
->sh_type
= SHT_NOBITS
;
2763 /* Check for processor-specific section types. */
2764 if (bed
->elf_backend_fake_sections
2765 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2768 /* If the section has relocs, set up a section header for the
2769 SHT_REL[A] section. If two relocation sections are required for
2770 this section, it is up to the processor-specific back-end to
2771 create the other. */
2772 if ((asect
->flags
& SEC_RELOC
) != 0
2773 && !_bfd_elf_init_reloc_shdr (abfd
,
2774 &elf_section_data (asect
)->rel_hdr
,
2780 /* Fill in the contents of a SHT_GROUP section. */
2783 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2785 bfd_boolean
*failedptr
= failedptrarg
;
2786 unsigned long symindx
;
2787 asection
*elt
, *first
;
2789 struct bfd_link_order
*l
;
2792 /* Ignore linker created group section. See elfNN_ia64_object_p in
2794 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2799 if (elf_group_id (sec
) != NULL
)
2800 symindx
= elf_group_id (sec
)->udata
.i
;
2804 /* If called from the assembler, swap_out_syms will have set up
2805 elf_section_syms; If called for "ld -r", use target_index. */
2806 if (elf_section_syms (abfd
) != NULL
)
2807 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2809 symindx
= sec
->target_index
;
2811 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2813 /* The contents won't be allocated for "ld -r" or objcopy. */
2815 if (sec
->contents
== NULL
)
2818 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2820 /* Arrange for the section to be written out. */
2821 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2822 if (sec
->contents
== NULL
)
2829 loc
= sec
->contents
+ sec
->size
;
2831 /* Get the pointer to the first section in the group that gas
2832 squirreled away here. objcopy arranges for this to be set to the
2833 start of the input section group. */
2834 first
= elt
= elf_next_in_group (sec
);
2836 /* First element is a flag word. Rest of section is elf section
2837 indices for all the sections of the group. Write them backwards
2838 just to keep the group in the same order as given in .section
2839 directives, not that it matters. */
2848 s
= s
->output_section
;
2851 idx
= elf_section_data (s
)->this_idx
;
2852 H_PUT_32 (abfd
, idx
, loc
);
2853 elt
= elf_next_in_group (elt
);
2858 /* If this is a relocatable link, then the above did nothing because
2859 SEC is the output section. Look through the input sections
2861 for (l
= sec
->map_head
.link_order
; l
!= NULL
; l
= l
->next
)
2862 if (l
->type
== bfd_indirect_link_order
2863 && (elt
= elf_next_in_group (l
->u
.indirect
.section
)) != NULL
)
2868 elf_section_data (elt
->output_section
)->this_idx
, loc
);
2869 elt
= elf_next_in_group (elt
);
2870 /* During a relocatable link, the lists are circular. */
2872 while (elt
!= elf_next_in_group (l
->u
.indirect
.section
));
2874 if ((loc
-= 4) != sec
->contents
)
2877 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2880 /* Assign all ELF section numbers. The dummy first section is handled here
2881 too. The link/info pointers for the standard section types are filled
2882 in here too, while we're at it. */
2885 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2887 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2889 unsigned int section_number
, secn
;
2890 Elf_Internal_Shdr
**i_shdrp
;
2892 struct bfd_elf_section_data
*d
;
2896 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2898 /* SHT_GROUP sections are in relocatable files only. */
2899 if (link_info
== NULL
|| link_info
->relocatable
)
2901 /* Put SHT_GROUP sections first. */
2902 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2904 d
= elf_section_data (sec
);
2906 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2908 if (sec
->flags
& SEC_LINKER_CREATED
)
2910 /* Remove the linker created SHT_GROUP sections. */
2911 bfd_section_list_remove (abfd
, sec
);
2912 abfd
->section_count
--;
2916 if (section_number
== SHN_LORESERVE
)
2917 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2918 d
->this_idx
= section_number
++;
2924 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2926 d
= elf_section_data (sec
);
2928 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2930 if (section_number
== SHN_LORESERVE
)
2931 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2932 d
->this_idx
= section_number
++;
2934 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2935 if ((sec
->flags
& SEC_RELOC
) == 0)
2939 if (section_number
== SHN_LORESERVE
)
2940 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2941 d
->rel_idx
= section_number
++;
2942 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2947 if (section_number
== SHN_LORESERVE
)
2948 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2949 d
->rel_idx2
= section_number
++;
2950 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2956 if (section_number
== SHN_LORESERVE
)
2957 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2958 t
->shstrtab_section
= section_number
++;
2959 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2960 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2962 if (bfd_get_symcount (abfd
) > 0)
2964 if (section_number
== SHN_LORESERVE
)
2965 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2966 t
->symtab_section
= section_number
++;
2967 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2968 if (section_number
> SHN_LORESERVE
- 2)
2970 if (section_number
== SHN_LORESERVE
)
2971 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2972 t
->symtab_shndx_section
= section_number
++;
2973 t
->symtab_shndx_hdr
.sh_name
2974 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2975 ".symtab_shndx", FALSE
);
2976 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2979 if (section_number
== SHN_LORESERVE
)
2980 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2981 t
->strtab_section
= section_number
++;
2982 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2985 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2986 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2988 elf_numsections (abfd
) = section_number
;
2989 elf_elfheader (abfd
)->e_shnum
= section_number
;
2990 if (section_number
> SHN_LORESERVE
)
2991 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2993 /* Set up the list of section header pointers, in agreement with the
2995 amt
= section_number
* sizeof (Elf_Internal_Shdr
*);
2996 i_shdrp
= bfd_zalloc (abfd
, amt
);
2997 if (i_shdrp
== NULL
)
3000 amt
= sizeof (Elf_Internal_Shdr
);
3001 i_shdrp
[0] = bfd_zalloc (abfd
, amt
);
3002 if (i_shdrp
[0] == NULL
)
3004 bfd_release (abfd
, i_shdrp
);
3008 elf_elfsections (abfd
) = i_shdrp
;
3010 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3011 if (bfd_get_symcount (abfd
) > 0)
3013 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3014 if (elf_numsections (abfd
) > SHN_LORESERVE
)
3016 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3017 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3019 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3020 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3023 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3025 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
3029 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3030 if (d
->rel_idx
!= 0)
3031 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
3032 if (d
->rel_idx2
!= 0)
3033 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
3035 /* Fill in the sh_link and sh_info fields while we're at it. */
3037 /* sh_link of a reloc section is the section index of the symbol
3038 table. sh_info is the section index of the section to which
3039 the relocation entries apply. */
3040 if (d
->rel_idx
!= 0)
3042 d
->rel_hdr
.sh_link
= t
->symtab_section
;
3043 d
->rel_hdr
.sh_info
= d
->this_idx
;
3045 if (d
->rel_idx2
!= 0)
3047 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
3048 d
->rel_hdr2
->sh_info
= d
->this_idx
;
3051 /* We need to set up sh_link for SHF_LINK_ORDER. */
3052 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3054 s
= elf_linked_to_section (sec
);
3056 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3059 struct bfd_link_order
*p
;
3061 /* Find out what the corresponding section in output
3063 for (p
= sec
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
3065 s
= p
->u
.indirect
.section
;
3066 if (p
->type
== bfd_indirect_link_order
3067 && (bfd_get_flavour (s
->owner
)
3068 == bfd_target_elf_flavour
))
3070 Elf_Internal_Shdr
** const elf_shdrp
3071 = elf_elfsections (s
->owner
);
3073 = _bfd_elf_section_from_bfd_section (s
->owner
, s
);
3074 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
3076 The Intel C compiler generates SHT_IA_64_UNWIND with
3077 SHF_LINK_ORDER. But it doesn't set the sh_link or
3078 sh_info fields. Hence we could get the situation
3079 where elfsec is 0. */
3082 const struct elf_backend_data
*bed
3083 = get_elf_backend_data (abfd
);
3084 if (bed
->link_order_error_handler
)
3085 bed
->link_order_error_handler
3086 (_("%B: warning: sh_link not set for section `%A'"),
3091 s
= elf_shdrp
[elfsec
]->bfd_section
;
3092 if (elf_discarded_section (s
))
3095 (*_bfd_error_handler
)
3096 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3097 abfd
, d
->this_hdr
.bfd_section
,
3099 /* Point to the kept section if it has
3100 the same size as the discarded
3102 kept
= _bfd_elf_check_kept_section (s
);
3105 bfd_set_error (bfd_error_bad_value
);
3110 s
= s
->output_section
;
3111 BFD_ASSERT (s
!= NULL
);
3112 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3120 switch (d
->this_hdr
.sh_type
)
3124 /* A reloc section which we are treating as a normal BFD
3125 section. sh_link is the section index of the symbol
3126 table. sh_info is the section index of the section to
3127 which the relocation entries apply. We assume that an
3128 allocated reloc section uses the dynamic symbol table.
3129 FIXME: How can we be sure? */
3130 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3132 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3134 /* We look up the section the relocs apply to by name. */
3136 if (d
->this_hdr
.sh_type
== SHT_REL
)
3140 s
= bfd_get_section_by_name (abfd
, name
);
3142 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3146 /* We assume that a section named .stab*str is a stabs
3147 string section. We look for a section with the same name
3148 but without the trailing ``str'', and set its sh_link
3149 field to point to this section. */
3150 if (strncmp (sec
->name
, ".stab", sizeof ".stab" - 1) == 0
3151 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3156 len
= strlen (sec
->name
);
3157 alc
= bfd_malloc (len
- 2);
3160 memcpy (alc
, sec
->name
, len
- 3);
3161 alc
[len
- 3] = '\0';
3162 s
= bfd_get_section_by_name (abfd
, alc
);
3166 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3168 /* This is a .stab section. */
3169 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3170 elf_section_data (s
)->this_hdr
.sh_entsize
3171 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3178 case SHT_GNU_verneed
:
3179 case SHT_GNU_verdef
:
3180 /* sh_link is the section header index of the string table
3181 used for the dynamic entries, or the symbol table, or the
3183 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3185 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3188 case SHT_GNU_LIBLIST
:
3189 /* sh_link is the section header index of the prelink library
3191 used for the dynamic entries, or the symbol table, or the
3193 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3194 ? ".dynstr" : ".gnu.libstr");
3196 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3200 case SHT_GNU_versym
:
3201 /* sh_link is the section header index of the symbol table
3202 this hash table or version table is for. */
3203 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3205 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3209 d
->this_hdr
.sh_link
= t
->symtab_section
;
3213 for (secn
= 1; secn
< section_number
; ++secn
)
3214 if (i_shdrp
[secn
] == NULL
)
3215 i_shdrp
[secn
] = i_shdrp
[0];
3217 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3218 i_shdrp
[secn
]->sh_name
);
3222 /* Map symbol from it's internal number to the external number, moving
3223 all local symbols to be at the head of the list. */
3226 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3228 /* If the backend has a special mapping, use it. */
3229 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3230 if (bed
->elf_backend_sym_is_global
)
3231 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3233 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3234 || bfd_is_und_section (bfd_get_section (sym
))
3235 || bfd_is_com_section (bfd_get_section (sym
)));
3239 elf_map_symbols (bfd
*abfd
)
3241 unsigned int symcount
= bfd_get_symcount (abfd
);
3242 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3243 asymbol
**sect_syms
;
3244 unsigned int num_locals
= 0;
3245 unsigned int num_globals
= 0;
3246 unsigned int num_locals2
= 0;
3247 unsigned int num_globals2
= 0;
3255 fprintf (stderr
, "elf_map_symbols\n");
3259 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3261 if (max_index
< asect
->index
)
3262 max_index
= asect
->index
;
3266 amt
= max_index
* sizeof (asymbol
*);
3267 sect_syms
= bfd_zalloc (abfd
, amt
);
3268 if (sect_syms
== NULL
)
3270 elf_section_syms (abfd
) = sect_syms
;
3271 elf_num_section_syms (abfd
) = max_index
;
3273 /* Init sect_syms entries for any section symbols we have already
3274 decided to output. */
3275 for (idx
= 0; idx
< symcount
; idx
++)
3277 asymbol
*sym
= syms
[idx
];
3279 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3286 if (sec
->owner
!= NULL
)
3288 if (sec
->owner
!= abfd
)
3290 if (sec
->output_offset
!= 0)
3293 sec
= sec
->output_section
;
3295 /* Empty sections in the input files may have had a
3296 section symbol created for them. (See the comment
3297 near the end of _bfd_generic_link_output_symbols in
3298 linker.c). If the linker script discards such
3299 sections then we will reach this point. Since we know
3300 that we cannot avoid this case, we detect it and skip
3301 the abort and the assignment to the sect_syms array.
3302 To reproduce this particular case try running the
3303 linker testsuite test ld-scripts/weak.exp for an ELF
3304 port that uses the generic linker. */
3305 if (sec
->owner
== NULL
)
3308 BFD_ASSERT (sec
->owner
== abfd
);
3310 sect_syms
[sec
->index
] = syms
[idx
];
3315 /* Classify all of the symbols. */
3316 for (idx
= 0; idx
< symcount
; idx
++)
3318 if (!sym_is_global (abfd
, syms
[idx
]))
3324 /* We will be adding a section symbol for each BFD section. Most normal
3325 sections will already have a section symbol in outsymbols, but
3326 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3327 at least in that case. */
3328 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3330 if (sect_syms
[asect
->index
] == NULL
)
3332 if (!sym_is_global (abfd
, asect
->symbol
))
3339 /* Now sort the symbols so the local symbols are first. */
3340 amt
= (num_locals
+ num_globals
) * sizeof (asymbol
*);
3341 new_syms
= bfd_alloc (abfd
, amt
);
3343 if (new_syms
== NULL
)
3346 for (idx
= 0; idx
< symcount
; idx
++)
3348 asymbol
*sym
= syms
[idx
];
3351 if (!sym_is_global (abfd
, sym
))
3354 i
= num_locals
+ num_globals2
++;
3356 sym
->udata
.i
= i
+ 1;
3358 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3360 if (sect_syms
[asect
->index
] == NULL
)
3362 asymbol
*sym
= asect
->symbol
;
3365 sect_syms
[asect
->index
] = sym
;
3366 if (!sym_is_global (abfd
, sym
))
3369 i
= num_locals
+ num_globals2
++;
3371 sym
->udata
.i
= i
+ 1;
3375 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3377 elf_num_locals (abfd
) = num_locals
;
3378 elf_num_globals (abfd
) = num_globals
;
3382 /* Align to the maximum file alignment that could be required for any
3383 ELF data structure. */
3385 static inline file_ptr
3386 align_file_position (file_ptr off
, int align
)
3388 return (off
+ align
- 1) & ~(align
- 1);
3391 /* Assign a file position to a section, optionally aligning to the
3392 required section alignment. */
3395 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3403 al
= i_shdrp
->sh_addralign
;
3405 offset
= BFD_ALIGN (offset
, al
);
3407 i_shdrp
->sh_offset
= offset
;
3408 if (i_shdrp
->bfd_section
!= NULL
)
3409 i_shdrp
->bfd_section
->filepos
= offset
;
3410 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3411 offset
+= i_shdrp
->sh_size
;
3415 /* Compute the file positions we are going to put the sections at, and
3416 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3417 is not NULL, this is being called by the ELF backend linker. */
3420 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3421 struct bfd_link_info
*link_info
)
3423 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3425 struct bfd_strtab_hash
*strtab
= NULL
;
3426 Elf_Internal_Shdr
*shstrtab_hdr
;
3428 if (abfd
->output_has_begun
)
3431 /* Do any elf backend specific processing first. */
3432 if (bed
->elf_backend_begin_write_processing
)
3433 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3435 if (! prep_headers (abfd
))
3438 /* Post process the headers if necessary. */
3439 if (bed
->elf_backend_post_process_headers
)
3440 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3443 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3447 if (!assign_section_numbers (abfd
, link_info
))
3450 /* The backend linker builds symbol table information itself. */
3451 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3453 /* Non-zero if doing a relocatable link. */
3454 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3456 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3460 if (link_info
== NULL
)
3462 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3467 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3468 /* sh_name was set in prep_headers. */
3469 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3470 shstrtab_hdr
->sh_flags
= 0;
3471 shstrtab_hdr
->sh_addr
= 0;
3472 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3473 shstrtab_hdr
->sh_entsize
= 0;
3474 shstrtab_hdr
->sh_link
= 0;
3475 shstrtab_hdr
->sh_info
= 0;
3476 /* sh_offset is set in assign_file_positions_except_relocs. */
3477 shstrtab_hdr
->sh_addralign
= 1;
3479 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3482 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3485 Elf_Internal_Shdr
*hdr
;
3487 off
= elf_tdata (abfd
)->next_file_pos
;
3489 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3490 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3492 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3493 if (hdr
->sh_size
!= 0)
3494 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3496 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3497 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3499 elf_tdata (abfd
)->next_file_pos
= off
;
3501 /* Now that we know where the .strtab section goes, write it
3503 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3504 || ! _bfd_stringtab_emit (abfd
, strtab
))
3506 _bfd_stringtab_free (strtab
);
3509 abfd
->output_has_begun
= TRUE
;
3514 /* Create a mapping from a set of sections to a program segment. */
3516 static struct elf_segment_map
*
3517 make_mapping (bfd
*abfd
,
3518 asection
**sections
,
3523 struct elf_segment_map
*m
;
3528 amt
= sizeof (struct elf_segment_map
);
3529 amt
+= (to
- from
- 1) * sizeof (asection
*);
3530 m
= bfd_zalloc (abfd
, amt
);
3534 m
->p_type
= PT_LOAD
;
3535 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3536 m
->sections
[i
- from
] = *hdrpp
;
3537 m
->count
= to
- from
;
3539 if (from
== 0 && phdr
)
3541 /* Include the headers in the first PT_LOAD segment. */
3542 m
->includes_filehdr
= 1;
3543 m
->includes_phdrs
= 1;
3549 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3552 struct elf_segment_map
*
3553 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3555 struct elf_segment_map
*m
;
3557 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3561 m
->p_type
= PT_DYNAMIC
;
3563 m
->sections
[0] = dynsec
;
3568 /* Set up a mapping from BFD sections to program segments. */
3571 map_sections_to_segments (bfd
*abfd
)
3573 asection
**sections
= NULL
;
3577 struct elf_segment_map
*mfirst
;
3578 struct elf_segment_map
**pm
;
3579 struct elf_segment_map
*m
;
3582 unsigned int phdr_index
;
3583 bfd_vma maxpagesize
;
3585 bfd_boolean phdr_in_segment
= TRUE
;
3586 bfd_boolean writable
;
3588 asection
*first_tls
= NULL
;
3589 asection
*dynsec
, *eh_frame_hdr
;
3592 if (elf_tdata (abfd
)->segment_map
!= NULL
)
3595 if (bfd_count_sections (abfd
) == 0)
3598 /* Select the allocated sections, and sort them. */
3600 amt
= bfd_count_sections (abfd
) * sizeof (asection
*);
3601 sections
= bfd_malloc (amt
);
3602 if (sections
== NULL
)
3606 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3608 if ((s
->flags
& SEC_ALLOC
) != 0)
3614 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3617 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3619 /* Build the mapping. */
3624 /* If we have a .interp section, then create a PT_PHDR segment for
3625 the program headers and a PT_INTERP segment for the .interp
3627 s
= bfd_get_section_by_name (abfd
, ".interp");
3628 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3630 amt
= sizeof (struct elf_segment_map
);
3631 m
= bfd_zalloc (abfd
, amt
);
3635 m
->p_type
= PT_PHDR
;
3636 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3637 m
->p_flags
= PF_R
| PF_X
;
3638 m
->p_flags_valid
= 1;
3639 m
->includes_phdrs
= 1;
3644 amt
= sizeof (struct elf_segment_map
);
3645 m
= bfd_zalloc (abfd
, amt
);
3649 m
->p_type
= PT_INTERP
;
3657 /* Look through the sections. We put sections in the same program
3658 segment when the start of the second section can be placed within
3659 a few bytes of the end of the first section. */
3663 maxpagesize
= get_elf_backend_data (abfd
)->maxpagesize
;
3665 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3667 && (dynsec
->flags
& SEC_LOAD
) == 0)
3670 /* Deal with -Ttext or something similar such that the first section
3671 is not adjacent to the program headers. This is an
3672 approximation, since at this point we don't know exactly how many
3673 program headers we will need. */
3676 bfd_size_type phdr_size
;
3678 phdr_size
= elf_tdata (abfd
)->program_header_size
;
3680 phdr_size
= get_elf_backend_data (abfd
)->s
->sizeof_phdr
;
3681 if ((abfd
->flags
& D_PAGED
) == 0
3682 || sections
[0]->lma
< phdr_size
3683 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3684 phdr_in_segment
= FALSE
;
3687 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3690 bfd_boolean new_segment
;
3694 /* See if this section and the last one will fit in the same
3697 if (last_hdr
== NULL
)
3699 /* If we don't have a segment yet, then we don't need a new
3700 one (we build the last one after this loop). */
3701 new_segment
= FALSE
;
3703 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3705 /* If this section has a different relation between the
3706 virtual address and the load address, then we need a new
3710 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3711 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3713 /* If putting this section in this segment would force us to
3714 skip a page in the segment, then we need a new segment. */
3717 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3718 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3720 /* We don't want to put a loadable section after a
3721 nonloadable section in the same segment.
3722 Consider .tbss sections as loadable for this purpose. */
3725 else if ((abfd
->flags
& D_PAGED
) == 0)
3727 /* If the file is not demand paged, which means that we
3728 don't require the sections to be correctly aligned in the
3729 file, then there is no other reason for a new segment. */
3730 new_segment
= FALSE
;
3733 && (hdr
->flags
& SEC_READONLY
) == 0
3734 && (((last_hdr
->lma
+ last_size
- 1)
3735 & ~(maxpagesize
- 1))
3736 != (hdr
->lma
& ~(maxpagesize
- 1))))
3738 /* We don't want to put a writable section in a read only
3739 segment, unless they are on the same page in memory
3740 anyhow. We already know that the last section does not
3741 bring us past the current section on the page, so the
3742 only case in which the new section is not on the same
3743 page as the previous section is when the previous section
3744 ends precisely on a page boundary. */
3749 /* Otherwise, we can use the same segment. */
3750 new_segment
= FALSE
;
3755 if ((hdr
->flags
& SEC_READONLY
) == 0)
3758 /* .tbss sections effectively have zero size. */
3759 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3760 last_size
= hdr
->size
;
3766 /* We need a new program segment. We must create a new program
3767 header holding all the sections from phdr_index until hdr. */
3769 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3776 if ((hdr
->flags
& SEC_READONLY
) == 0)
3782 /* .tbss sections effectively have zero size. */
3783 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3784 last_size
= hdr
->size
;
3788 phdr_in_segment
= FALSE
;
3791 /* Create a final PT_LOAD program segment. */
3792 if (last_hdr
!= NULL
)
3794 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3802 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3805 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3812 /* For each loadable .note section, add a PT_NOTE segment. We don't
3813 use bfd_get_section_by_name, because if we link together
3814 nonloadable .note sections and loadable .note sections, we will
3815 generate two .note sections in the output file. FIXME: Using
3816 names for section types is bogus anyhow. */
3817 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3819 if ((s
->flags
& SEC_LOAD
) != 0
3820 && strncmp (s
->name
, ".note", 5) == 0)
3822 amt
= sizeof (struct elf_segment_map
);
3823 m
= bfd_zalloc (abfd
, amt
);
3827 m
->p_type
= PT_NOTE
;
3834 if (s
->flags
& SEC_THREAD_LOCAL
)
3842 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3847 amt
= sizeof (struct elf_segment_map
);
3848 amt
+= (tls_count
- 1) * sizeof (asection
*);
3849 m
= bfd_zalloc (abfd
, amt
);
3854 m
->count
= tls_count
;
3855 /* Mandated PF_R. */
3857 m
->p_flags_valid
= 1;
3858 for (i
= 0; i
< tls_count
; ++i
)
3860 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3861 m
->sections
[i
] = first_tls
;
3862 first_tls
= first_tls
->next
;
3869 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3871 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3872 if (eh_frame_hdr
!= NULL
3873 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3875 amt
= sizeof (struct elf_segment_map
);
3876 m
= bfd_zalloc (abfd
, amt
);
3880 m
->p_type
= PT_GNU_EH_FRAME
;
3882 m
->sections
[0] = eh_frame_hdr
->output_section
;
3888 if (elf_tdata (abfd
)->stack_flags
)
3890 amt
= sizeof (struct elf_segment_map
);
3891 m
= bfd_zalloc (abfd
, amt
);
3895 m
->p_type
= PT_GNU_STACK
;
3896 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3897 m
->p_flags_valid
= 1;
3903 if (elf_tdata (abfd
)->relro
)
3905 amt
= sizeof (struct elf_segment_map
);
3906 m
= bfd_zalloc (abfd
, amt
);
3910 m
->p_type
= PT_GNU_RELRO
;
3912 m
->p_flags_valid
= 1;
3921 elf_tdata (abfd
)->segment_map
= mfirst
;
3925 if (sections
!= NULL
)
3930 /* Sort sections by address. */
3933 elf_sort_sections (const void *arg1
, const void *arg2
)
3935 const asection
*sec1
= *(const asection
**) arg1
;
3936 const asection
*sec2
= *(const asection
**) arg2
;
3937 bfd_size_type size1
, size2
;
3939 /* Sort by LMA first, since this is the address used to
3940 place the section into a segment. */
3941 if (sec1
->lma
< sec2
->lma
)
3943 else if (sec1
->lma
> sec2
->lma
)
3946 /* Then sort by VMA. Normally the LMA and the VMA will be
3947 the same, and this will do nothing. */
3948 if (sec1
->vma
< sec2
->vma
)
3950 else if (sec1
->vma
> sec2
->vma
)
3953 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3955 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3961 /* If the indicies are the same, do not return 0
3962 here, but continue to try the next comparison. */
3963 if (sec1
->target_index
- sec2
->target_index
!= 0)
3964 return sec1
->target_index
- sec2
->target_index
;
3969 else if (TOEND (sec2
))
3974 /* Sort by size, to put zero sized sections
3975 before others at the same address. */
3977 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
3978 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
3985 return sec1
->target_index
- sec2
->target_index
;
3988 /* Ian Lance Taylor writes:
3990 We shouldn't be using % with a negative signed number. That's just
3991 not good. We have to make sure either that the number is not
3992 negative, or that the number has an unsigned type. When the types
3993 are all the same size they wind up as unsigned. When file_ptr is a
3994 larger signed type, the arithmetic winds up as signed long long,
3997 What we're trying to say here is something like ``increase OFF by
3998 the least amount that will cause it to be equal to the VMA modulo
4000 /* In other words, something like:
4002 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4003 off_offset = off % bed->maxpagesize;
4004 if (vma_offset < off_offset)
4005 adjustment = vma_offset + bed->maxpagesize - off_offset;
4007 adjustment = vma_offset - off_offset;
4009 which can can be collapsed into the expression below. */
4012 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4014 return ((vma
- off
) % maxpagesize
);
4017 /* Assign file positions to the sections based on the mapping from
4018 sections to segments. This function also sets up some fields in
4019 the file header, and writes out the program headers. */
4022 assign_file_positions_for_segments (bfd
*abfd
, struct bfd_link_info
*link_info
)
4024 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4026 struct elf_segment_map
*m
;
4028 Elf_Internal_Phdr
*phdrs
;
4030 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4031 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4032 Elf_Internal_Phdr
*p
;
4035 if (elf_tdata (abfd
)->segment_map
== NULL
)
4037 if (! map_sections_to_segments (abfd
))
4042 /* The placement algorithm assumes that non allocated sections are
4043 not in PT_LOAD segments. We ensure this here by removing such
4044 sections from the segment map. */
4045 for (m
= elf_tdata (abfd
)->segment_map
;
4049 unsigned int new_count
;
4052 if (m
->p_type
!= PT_LOAD
)
4056 for (i
= 0; i
< m
->count
; i
++)
4058 if ((m
->sections
[i
]->flags
& SEC_ALLOC
) != 0)
4061 m
->sections
[new_count
] = m
->sections
[i
];
4067 if (new_count
!= m
->count
)
4068 m
->count
= new_count
;
4072 if (bed
->elf_backend_modify_segment_map
)
4074 if (! (*bed
->elf_backend_modify_segment_map
) (abfd
, link_info
))
4079 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4082 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4083 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4084 elf_elfheader (abfd
)->e_phnum
= count
;
4088 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4092 /* If we already counted the number of program segments, make sure
4093 that we allocated enough space. This happens when SIZEOF_HEADERS
4094 is used in a linker script. */
4095 alloc
= elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
;
4096 if (alloc
!= 0 && count
> alloc
)
4098 ((*_bfd_error_handler
)
4099 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4100 abfd
, alloc
, count
));
4101 bfd_set_error (bfd_error_bad_value
);
4108 amt
= alloc
* sizeof (Elf_Internal_Phdr
);
4109 phdrs
= bfd_alloc (abfd
, amt
);
4113 off
= bed
->s
->sizeof_ehdr
;
4114 off
+= alloc
* bed
->s
->sizeof_phdr
;
4121 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4128 /* If elf_segment_map is not from map_sections_to_segments, the
4129 sections may not be correctly ordered. NOTE: sorting should
4130 not be done to the PT_NOTE section of a corefile, which may
4131 contain several pseudo-sections artificially created by bfd.
4132 Sorting these pseudo-sections breaks things badly. */
4134 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4135 && m
->p_type
== PT_NOTE
))
4136 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4139 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4140 number of sections with contents contributing to both p_filesz
4141 and p_memsz, followed by a number of sections with no contents
4142 that just contribute to p_memsz. In this loop, OFF tracks next
4143 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4144 an adjustment we use for segments that have no file contents
4145 but need zero filled memory allocation. */
4147 p
->p_type
= m
->p_type
;
4148 p
->p_flags
= m
->p_flags
;
4150 if (p
->p_type
== PT_LOAD
4153 bfd_size_type align
;
4155 unsigned int align_power
= 0;
4157 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4159 unsigned int secalign
;
4161 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4162 if (secalign
> align_power
)
4163 align_power
= secalign
;
4165 align
= (bfd_size_type
) 1 << align_power
;
4167 if ((abfd
->flags
& D_PAGED
) != 0 && bed
->maxpagesize
> align
)
4168 align
= bed
->maxpagesize
;
4170 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4173 && !m
->includes_filehdr
4174 && !m
->includes_phdrs
4175 && (ufile_ptr
) off
>= align
)
4177 /* If the first section isn't loadable, the same holds for
4178 any other sections. Since the segment won't need file
4179 space, we can make p_offset overlap some prior segment.
4180 However, .tbss is special. If a segment starts with
4181 .tbss, we need to look at the next section to decide
4182 whether the segment has any loadable sections. */
4184 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0)
4186 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
4190 voff
= adjust
- align
;
4196 /* Make sure the .dynamic section is the first section in the
4197 PT_DYNAMIC segment. */
4198 else if (p
->p_type
== PT_DYNAMIC
4200 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4203 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4205 bfd_set_error (bfd_error_bad_value
);
4212 p
->p_vaddr
= m
->sections
[0]->vma
;
4214 if (m
->p_paddr_valid
)
4215 p
->p_paddr
= m
->p_paddr
;
4216 else if (m
->count
== 0)
4219 p
->p_paddr
= m
->sections
[0]->lma
;
4221 if (p
->p_type
== PT_LOAD
4222 && (abfd
->flags
& D_PAGED
) != 0)
4223 p
->p_align
= bed
->maxpagesize
;
4224 else if (m
->count
== 0)
4225 p
->p_align
= 1 << bed
->s
->log_file_align
;
4233 if (m
->includes_filehdr
)
4235 if (! m
->p_flags_valid
)
4238 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4239 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4242 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4244 if (p
->p_vaddr
< (bfd_vma
) off
)
4246 (*_bfd_error_handler
)
4247 (_("%B: Not enough room for program headers, try linking with -N"),
4249 bfd_set_error (bfd_error_bad_value
);
4254 if (! m
->p_paddr_valid
)
4257 if (p
->p_type
== PT_LOAD
)
4259 filehdr_vaddr
= p
->p_vaddr
;
4260 filehdr_paddr
= p
->p_paddr
;
4264 if (m
->includes_phdrs
)
4266 if (! m
->p_flags_valid
)
4269 if (m
->includes_filehdr
)
4271 if (p
->p_type
== PT_LOAD
)
4273 phdrs_vaddr
= p
->p_vaddr
+ bed
->s
->sizeof_ehdr
;
4274 phdrs_paddr
= p
->p_paddr
+ bed
->s
->sizeof_ehdr
;
4279 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4283 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4284 p
->p_vaddr
-= off
- p
->p_offset
;
4285 if (! m
->p_paddr_valid
)
4286 p
->p_paddr
-= off
- p
->p_offset
;
4289 if (p
->p_type
== PT_LOAD
)
4291 phdrs_vaddr
= p
->p_vaddr
;
4292 phdrs_paddr
= p
->p_paddr
;
4295 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4298 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4299 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4302 if (p
->p_type
== PT_LOAD
4303 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4305 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4306 p
->p_offset
= off
+ voff
;
4311 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4312 p
->p_filesz
+= adjust
;
4313 p
->p_memsz
+= adjust
;
4317 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4321 bfd_size_type align
;
4325 align
= 1 << bfd_get_section_alignment (abfd
, sec
);
4327 if (p
->p_type
== PT_LOAD
4328 || p
->p_type
== PT_TLS
)
4330 bfd_signed_vma adjust
;
4332 if ((flags
& SEC_LOAD
) != 0)
4334 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4337 (*_bfd_error_handler
)
4338 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4339 abfd
, sec
, (unsigned long) sec
->lma
);
4343 p
->p_filesz
+= adjust
;
4344 p
->p_memsz
+= adjust
;
4346 /* .tbss is special. It doesn't contribute to p_memsz of
4348 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4349 || p
->p_type
== PT_TLS
)
4351 /* The section VMA must equal the file position
4352 modulo the page size. */
4353 bfd_size_type page
= align
;
4354 if ((abfd
->flags
& D_PAGED
) != 0 && bed
->maxpagesize
> page
)
4355 page
= bed
->maxpagesize
;
4356 adjust
= vma_page_aligned_bias (sec
->vma
,
4357 p
->p_vaddr
+ p
->p_memsz
,
4359 p
->p_memsz
+= adjust
;
4363 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4365 /* The section at i == 0 is the one that actually contains
4371 p
->p_filesz
= sec
->size
;
4377 /* The rest are fake sections that shouldn't be written. */
4386 if (p
->p_type
== PT_LOAD
)
4389 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4390 1997, and the exact reason for it isn't clear. One
4391 plausible explanation is that it is to work around
4392 a problem we have with linker scripts using data
4393 statements in NOLOAD sections. I don't think it
4394 makes a great deal of sense to have such a section
4395 assigned to a PT_LOAD segment, but apparently
4396 people do this. The data statement results in a
4397 bfd_data_link_order being built, and these need
4398 section contents to write into. Eventually, we get
4399 to _bfd_elf_write_object_contents which writes any
4400 section with contents to the output. Make room
4401 here for the write, so that following segments are
4403 if ((flags
& SEC_LOAD
) != 0
4404 || (flags
& SEC_HAS_CONTENTS
) != 0)
4408 if ((flags
& SEC_LOAD
) != 0)
4410 p
->p_filesz
+= sec
->size
;
4411 p
->p_memsz
+= sec
->size
;
4413 /* PR ld/594: Sections in note segments which are not loaded
4414 contribute to the file size but not the in-memory size. */
4415 else if (p
->p_type
== PT_NOTE
4416 && (flags
& SEC_HAS_CONTENTS
) != 0)
4417 p
->p_filesz
+= sec
->size
;
4419 /* .tbss is special. It doesn't contribute to p_memsz of
4421 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4422 || p
->p_type
== PT_TLS
)
4423 p
->p_memsz
+= sec
->size
;
4425 if (p
->p_type
== PT_TLS
4427 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4429 struct bfd_link_order
*o
;
4430 bfd_vma tbss_size
= 0;
4432 for (o
= sec
->map_head
.link_order
; o
!= NULL
; o
= o
->next
)
4433 if (tbss_size
< o
->offset
+ o
->size
)
4434 tbss_size
= o
->offset
+ o
->size
;
4436 p
->p_memsz
+= tbss_size
;
4439 if (align
> p
->p_align
4440 && (p
->p_type
!= PT_LOAD
|| (abfd
->flags
& D_PAGED
) == 0))
4444 if (! m
->p_flags_valid
)
4447 if ((flags
& SEC_CODE
) != 0)
4449 if ((flags
& SEC_READONLY
) == 0)
4455 /* Now that we have set the section file positions, we can set up
4456 the file positions for the non PT_LOAD segments. */
4457 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4461 if (p
->p_type
!= PT_LOAD
&& m
->count
> 0)
4463 BFD_ASSERT (! m
->includes_filehdr
&& ! m
->includes_phdrs
);
4464 /* If the section has not yet been assigned a file position,
4465 do so now. The ARM BPABI requires that .dynamic section
4466 not be marked SEC_ALLOC because it is not part of any
4467 PT_LOAD segment, so it will not be processed above. */
4468 if (p
->p_type
== PT_DYNAMIC
&& m
->sections
[0]->filepos
== 0)
4471 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4474 while (i_shdrpp
[i
]->bfd_section
!= m
->sections
[0])
4476 off
= (_bfd_elf_assign_file_position_for_section
4477 (i_shdrpp
[i
], off
, TRUE
));
4478 p
->p_filesz
= m
->sections
[0]->size
;
4480 p
->p_offset
= m
->sections
[0]->filepos
;
4484 if (m
->includes_filehdr
)
4486 p
->p_vaddr
= filehdr_vaddr
;
4487 if (! m
->p_paddr_valid
)
4488 p
->p_paddr
= filehdr_paddr
;
4490 else if (m
->includes_phdrs
)
4492 p
->p_vaddr
= phdrs_vaddr
;
4493 if (! m
->p_paddr_valid
)
4494 p
->p_paddr
= phdrs_paddr
;
4496 else if (p
->p_type
== PT_GNU_RELRO
)
4498 Elf_Internal_Phdr
*lp
;
4500 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4502 if (lp
->p_type
== PT_LOAD
4503 && lp
->p_vaddr
<= link_info
->relro_end
4504 && lp
->p_vaddr
>= link_info
->relro_start
4505 && lp
->p_vaddr
+ lp
->p_filesz
4506 >= link_info
->relro_end
)
4510 if (lp
< phdrs
+ count
4511 && link_info
->relro_end
> lp
->p_vaddr
)
4513 p
->p_vaddr
= lp
->p_vaddr
;
4514 p
->p_paddr
= lp
->p_paddr
;
4515 p
->p_offset
= lp
->p_offset
;
4516 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4517 p
->p_memsz
= p
->p_filesz
;
4519 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4523 memset (p
, 0, sizeof *p
);
4524 p
->p_type
= PT_NULL
;
4530 /* Clear out any program headers we allocated but did not use. */
4531 for (; count
< alloc
; count
++, p
++)
4533 memset (p
, 0, sizeof *p
);
4534 p
->p_type
= PT_NULL
;
4537 elf_tdata (abfd
)->phdr
= phdrs
;
4539 elf_tdata (abfd
)->next_file_pos
= off
;
4541 /* Write out the program headers. */
4542 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4543 || bed
->s
->write_out_phdrs (abfd
, phdrs
, alloc
) != 0)
4549 /* Get the size of the program header.
4551 If this is called by the linker before any of the section VMA's are set, it
4552 can't calculate the correct value for a strange memory layout. This only
4553 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4554 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4555 data segment (exclusive of .interp and .dynamic).
4557 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4558 will be two segments. */
4560 static bfd_size_type
4561 get_program_header_size (bfd
*abfd
)
4565 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4567 /* We can't return a different result each time we're called. */
4568 if (elf_tdata (abfd
)->program_header_size
!= 0)
4569 return elf_tdata (abfd
)->program_header_size
;
4571 if (elf_tdata (abfd
)->segment_map
!= NULL
)
4573 struct elf_segment_map
*m
;
4576 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4578 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4579 return elf_tdata (abfd
)->program_header_size
;
4582 /* Assume we will need exactly two PT_LOAD segments: one for text
4583 and one for data. */
4586 s
= bfd_get_section_by_name (abfd
, ".interp");
4587 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
4589 /* If we have a loadable interpreter section, we need a
4590 PT_INTERP segment. In this case, assume we also need a
4591 PT_PHDR segment, although that may not be true for all
4596 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
4598 /* We need a PT_DYNAMIC segment. */
4602 if (elf_tdata (abfd
)->eh_frame_hdr
)
4604 /* We need a PT_GNU_EH_FRAME segment. */
4608 if (elf_tdata (abfd
)->stack_flags
)
4610 /* We need a PT_GNU_STACK segment. */
4614 if (elf_tdata (abfd
)->relro
)
4616 /* We need a PT_GNU_RELRO segment. */
4620 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4622 if ((s
->flags
& SEC_LOAD
) != 0
4623 && strncmp (s
->name
, ".note", 5) == 0)
4625 /* We need a PT_NOTE segment. */
4630 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4632 if (s
->flags
& SEC_THREAD_LOCAL
)
4634 /* We need a PT_TLS segment. */
4640 /* Let the backend count up any program headers it might need. */
4641 if (bed
->elf_backend_additional_program_headers
)
4645 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
);
4651 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4652 return elf_tdata (abfd
)->program_header_size
;
4655 /* Work out the file positions of all the sections. This is called by
4656 _bfd_elf_compute_section_file_positions. All the section sizes and
4657 VMAs must be known before this is called.
4659 Reloc sections come in two flavours: Those processed specially as
4660 "side-channel" data attached to a section to which they apply, and
4661 those that bfd doesn't process as relocations. The latter sort are
4662 stored in a normal bfd section by bfd_section_from_shdr. We don't
4663 consider the former sort here, unless they form part of the loadable
4664 image. Reloc sections not assigned here will be handled later by
4665 assign_file_positions_for_relocs.
4667 We also don't set the positions of the .symtab and .strtab here. */
4670 assign_file_positions_except_relocs (bfd
*abfd
,
4671 struct bfd_link_info
*link_info
)
4673 struct elf_obj_tdata
* const tdata
= elf_tdata (abfd
);
4674 Elf_Internal_Ehdr
* const i_ehdrp
= elf_elfheader (abfd
);
4675 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4676 unsigned int num_sec
= elf_numsections (abfd
);
4678 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4680 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4681 && bfd_get_format (abfd
) != bfd_core
)
4683 Elf_Internal_Shdr
**hdrpp
;
4686 /* Start after the ELF header. */
4687 off
= i_ehdrp
->e_ehsize
;
4689 /* We are not creating an executable, which means that we are
4690 not creating a program header, and that the actual order of
4691 the sections in the file is unimportant. */
4692 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4694 Elf_Internal_Shdr
*hdr
;
4697 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4698 && hdr
->bfd_section
== NULL
)
4699 || i
== tdata
->symtab_section
4700 || i
== tdata
->symtab_shndx_section
4701 || i
== tdata
->strtab_section
)
4703 hdr
->sh_offset
= -1;
4706 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4708 if (i
== SHN_LORESERVE
- 1)
4710 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4711 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4718 Elf_Internal_Shdr
**hdrpp
;
4720 /* Assign file positions for the loaded sections based on the
4721 assignment of sections to segments. */
4722 if (! assign_file_positions_for_segments (abfd
, link_info
))
4725 /* Assign file positions for the other sections. */
4727 off
= elf_tdata (abfd
)->next_file_pos
;
4728 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4730 Elf_Internal_Shdr
*hdr
;
4733 if (hdr
->bfd_section
!= NULL
4734 && hdr
->bfd_section
->filepos
!= 0)
4735 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4736 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4738 ((*_bfd_error_handler
)
4739 (_("%B: warning: allocated section `%s' not in segment"),
4741 (hdr
->bfd_section
== NULL
4743 : hdr
->bfd_section
->name
)));
4744 if ((abfd
->flags
& D_PAGED
) != 0)
4745 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4748 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4750 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4753 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4754 && hdr
->bfd_section
== NULL
)
4755 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4756 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4757 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4758 hdr
->sh_offset
= -1;
4760 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4762 if (i
== SHN_LORESERVE
- 1)
4764 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4765 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4770 /* Place the section headers. */
4771 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4772 i_ehdrp
->e_shoff
= off
;
4773 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4775 elf_tdata (abfd
)->next_file_pos
= off
;
4781 prep_headers (bfd
*abfd
)
4783 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4784 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4785 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4786 struct elf_strtab_hash
*shstrtab
;
4787 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4789 i_ehdrp
= elf_elfheader (abfd
);
4790 i_shdrp
= elf_elfsections (abfd
);
4792 shstrtab
= _bfd_elf_strtab_init ();
4793 if (shstrtab
== NULL
)
4796 elf_shstrtab (abfd
) = shstrtab
;
4798 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4799 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4800 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4801 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4803 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4804 i_ehdrp
->e_ident
[EI_DATA
] =
4805 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4806 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4808 if ((abfd
->flags
& DYNAMIC
) != 0)
4809 i_ehdrp
->e_type
= ET_DYN
;
4810 else if ((abfd
->flags
& EXEC_P
) != 0)
4811 i_ehdrp
->e_type
= ET_EXEC
;
4812 else if (bfd_get_format (abfd
) == bfd_core
)
4813 i_ehdrp
->e_type
= ET_CORE
;
4815 i_ehdrp
->e_type
= ET_REL
;
4817 switch (bfd_get_arch (abfd
))
4819 case bfd_arch_unknown
:
4820 i_ehdrp
->e_machine
= EM_NONE
;
4823 /* There used to be a long list of cases here, each one setting
4824 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4825 in the corresponding bfd definition. To avoid duplication,
4826 the switch was removed. Machines that need special handling
4827 can generally do it in elf_backend_final_write_processing(),
4828 unless they need the information earlier than the final write.
4829 Such need can generally be supplied by replacing the tests for
4830 e_machine with the conditions used to determine it. */
4832 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4835 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4836 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4838 /* No program header, for now. */
4839 i_ehdrp
->e_phoff
= 0;
4840 i_ehdrp
->e_phentsize
= 0;
4841 i_ehdrp
->e_phnum
= 0;
4843 /* Each bfd section is section header entry. */
4844 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4845 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4847 /* If we're building an executable, we'll need a program header table. */
4848 if (abfd
->flags
& EXEC_P
)
4849 /* It all happens later. */
4853 i_ehdrp
->e_phentsize
= 0;
4855 i_ehdrp
->e_phoff
= 0;
4858 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4859 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4860 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4861 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4862 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4863 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4864 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4865 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4866 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4872 /* Assign file positions for all the reloc sections which are not part
4873 of the loadable file image. */
4876 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4879 unsigned int i
, num_sec
;
4880 Elf_Internal_Shdr
**shdrpp
;
4882 off
= elf_tdata (abfd
)->next_file_pos
;
4884 num_sec
= elf_numsections (abfd
);
4885 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4887 Elf_Internal_Shdr
*shdrp
;
4890 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4891 && shdrp
->sh_offset
== -1)
4892 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4895 elf_tdata (abfd
)->next_file_pos
= off
;
4899 _bfd_elf_write_object_contents (bfd
*abfd
)
4901 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4902 Elf_Internal_Ehdr
*i_ehdrp
;
4903 Elf_Internal_Shdr
**i_shdrp
;
4905 unsigned int count
, num_sec
;
4907 if (! abfd
->output_has_begun
4908 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4911 i_shdrp
= elf_elfsections (abfd
);
4912 i_ehdrp
= elf_elfheader (abfd
);
4915 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4919 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4921 /* After writing the headers, we need to write the sections too... */
4922 num_sec
= elf_numsections (abfd
);
4923 for (count
= 1; count
< num_sec
; count
++)
4925 if (bed
->elf_backend_section_processing
)
4926 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4927 if (i_shdrp
[count
]->contents
)
4929 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4931 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4932 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4935 if (count
== SHN_LORESERVE
- 1)
4936 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4939 /* Write out the section header names. */
4940 if (elf_shstrtab (abfd
) != NULL
4941 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4942 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
4945 if (bed
->elf_backend_final_write_processing
)
4946 (*bed
->elf_backend_final_write_processing
) (abfd
,
4947 elf_tdata (abfd
)->linker
);
4949 return bed
->s
->write_shdrs_and_ehdr (abfd
);
4953 _bfd_elf_write_corefile_contents (bfd
*abfd
)
4955 /* Hopefully this can be done just like an object file. */
4956 return _bfd_elf_write_object_contents (abfd
);
4959 /* Given a section, search the header to find them. */
4962 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
4964 const struct elf_backend_data
*bed
;
4967 if (elf_section_data (asect
) != NULL
4968 && elf_section_data (asect
)->this_idx
!= 0)
4969 return elf_section_data (asect
)->this_idx
;
4971 if (bfd_is_abs_section (asect
))
4973 else if (bfd_is_com_section (asect
))
4975 else if (bfd_is_und_section (asect
))
4980 bed
= get_elf_backend_data (abfd
);
4981 if (bed
->elf_backend_section_from_bfd_section
)
4985 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
4990 bfd_set_error (bfd_error_nonrepresentable_section
);
4995 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4999 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5001 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5003 flagword flags
= asym_ptr
->flags
;
5005 /* When gas creates relocations against local labels, it creates its
5006 own symbol for the section, but does put the symbol into the
5007 symbol chain, so udata is 0. When the linker is generating
5008 relocatable output, this section symbol may be for one of the
5009 input sections rather than the output section. */
5010 if (asym_ptr
->udata
.i
== 0
5011 && (flags
& BSF_SECTION_SYM
)
5012 && asym_ptr
->section
)
5016 if (asym_ptr
->section
->output_section
!= NULL
)
5017 indx
= asym_ptr
->section
->output_section
->index
;
5019 indx
= asym_ptr
->section
->index
;
5020 if (indx
< elf_num_section_syms (abfd
)
5021 && elf_section_syms (abfd
)[indx
] != NULL
)
5022 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5025 idx
= asym_ptr
->udata
.i
;
5029 /* This case can occur when using --strip-symbol on a symbol
5030 which is used in a relocation entry. */
5031 (*_bfd_error_handler
)
5032 (_("%B: symbol `%s' required but not present"),
5033 abfd
, bfd_asymbol_name (asym_ptr
));
5034 bfd_set_error (bfd_error_no_symbols
);
5041 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5042 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5043 elf_symbol_flags (flags
));
5051 /* Copy private BFD data. This copies any program header information. */
5054 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5056 Elf_Internal_Ehdr
*iehdr
;
5057 struct elf_segment_map
*map
;
5058 struct elf_segment_map
*map_first
;
5059 struct elf_segment_map
**pointer_to_map
;
5060 Elf_Internal_Phdr
*segment
;
5063 unsigned int num_segments
;
5064 bfd_boolean phdr_included
= FALSE
;
5065 bfd_vma maxpagesize
;
5066 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5067 unsigned int phdr_adjust_num
= 0;
5068 const struct elf_backend_data
*bed
;
5070 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5071 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5074 if (elf_tdata (ibfd
)->phdr
== NULL
)
5077 bed
= get_elf_backend_data (ibfd
);
5078 iehdr
= elf_elfheader (ibfd
);
5081 pointer_to_map
= &map_first
;
5083 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5084 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5086 /* Returns the end address of the segment + 1. */
5087 #define SEGMENT_END(segment, start) \
5088 (start + (segment->p_memsz > segment->p_filesz \
5089 ? segment->p_memsz : segment->p_filesz))
5091 #define SECTION_SIZE(section, segment) \
5092 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5093 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5094 ? section->size : 0)
5096 /* Returns TRUE if the given section is contained within
5097 the given segment. VMA addresses are compared. */
5098 #define IS_CONTAINED_BY_VMA(section, segment) \
5099 (section->vma >= segment->p_vaddr \
5100 && (section->vma + SECTION_SIZE (section, segment) \
5101 <= (SEGMENT_END (segment, segment->p_vaddr))))
5103 /* Returns TRUE if the given section is contained within
5104 the given segment. LMA addresses are compared. */
5105 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5106 (section->lma >= base \
5107 && (section->lma + SECTION_SIZE (section, segment) \
5108 <= SEGMENT_END (segment, base)))
5110 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5111 #define IS_COREFILE_NOTE(p, s) \
5112 (p->p_type == PT_NOTE \
5113 && bfd_get_format (ibfd) == bfd_core \
5114 && s->vma == 0 && s->lma == 0 \
5115 && (bfd_vma) s->filepos >= p->p_offset \
5116 && ((bfd_vma) s->filepos + s->size \
5117 <= p->p_offset + p->p_filesz))
5119 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5120 linker, which generates a PT_INTERP section with p_vaddr and
5121 p_memsz set to 0. */
5122 #define IS_SOLARIS_PT_INTERP(p, s) \
5124 && p->p_paddr == 0 \
5125 && p->p_memsz == 0 \
5126 && p->p_filesz > 0 \
5127 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5129 && (bfd_vma) s->filepos >= p->p_offset \
5130 && ((bfd_vma) s->filepos + s->size \
5131 <= p->p_offset + p->p_filesz))
5133 /* Decide if the given section should be included in the given segment.
5134 A section will be included if:
5135 1. It is within the address space of the segment -- we use the LMA
5136 if that is set for the segment and the VMA otherwise,
5137 2. It is an allocated segment,
5138 3. There is an output section associated with it,
5139 4. The section has not already been allocated to a previous segment.
5140 5. PT_GNU_STACK segments do not include any sections.
5141 6. PT_TLS segment includes only SHF_TLS sections.
5142 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5143 8. PT_DYNAMIC should not contain empty sections at the beginning
5144 (with the possible exception of .dynamic). */
5145 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5146 ((((segment->p_paddr \
5147 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5148 : IS_CONTAINED_BY_VMA (section, segment)) \
5149 && (section->flags & SEC_ALLOC) != 0) \
5150 || IS_COREFILE_NOTE (segment, section)) \
5151 && section->output_section != NULL \
5152 && segment->p_type != PT_GNU_STACK \
5153 && (segment->p_type != PT_TLS \
5154 || (section->flags & SEC_THREAD_LOCAL)) \
5155 && (segment->p_type == PT_LOAD \
5156 || segment->p_type == PT_TLS \
5157 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5158 && (segment->p_type != PT_DYNAMIC \
5159 || SECTION_SIZE (section, segment) > 0 \
5160 || (segment->p_paddr \
5161 ? segment->p_paddr != section->lma \
5162 : segment->p_vaddr != section->vma) \
5163 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5165 && ! section->segment_mark)
5167 /* Returns TRUE iff seg1 starts after the end of seg2. */
5168 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5169 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5171 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5172 their VMA address ranges and their LMA address ranges overlap.
5173 It is possible to have overlapping VMA ranges without overlapping LMA
5174 ranges. RedBoot images for example can have both .data and .bss mapped
5175 to the same VMA range, but with the .data section mapped to a different
5177 #define SEGMENT_OVERLAPS(seg1, seg2) \
5178 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5179 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5180 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5181 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5183 /* Initialise the segment mark field. */
5184 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5185 section
->segment_mark
= FALSE
;
5187 /* Scan through the segments specified in the program header
5188 of the input BFD. For this first scan we look for overlaps
5189 in the loadable segments. These can be created by weird
5190 parameters to objcopy. Also, fix some solaris weirdness. */
5191 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5196 Elf_Internal_Phdr
*segment2
;
5198 if (segment
->p_type
== PT_INTERP
)
5199 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5200 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5202 /* Mininal change so that the normal section to segment
5203 assignment code will work. */
5204 segment
->p_vaddr
= section
->vma
;
5208 if (segment
->p_type
!= PT_LOAD
)
5211 /* Determine if this segment overlaps any previous segments. */
5212 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5214 bfd_signed_vma extra_length
;
5216 if (segment2
->p_type
!= PT_LOAD
5217 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5220 /* Merge the two segments together. */
5221 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5223 /* Extend SEGMENT2 to include SEGMENT and then delete
5226 SEGMENT_END (segment
, segment
->p_vaddr
)
5227 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5229 if (extra_length
> 0)
5231 segment2
->p_memsz
+= extra_length
;
5232 segment2
->p_filesz
+= extra_length
;
5235 segment
->p_type
= PT_NULL
;
5237 /* Since we have deleted P we must restart the outer loop. */
5239 segment
= elf_tdata (ibfd
)->phdr
;
5244 /* Extend SEGMENT to include SEGMENT2 and then delete
5247 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5248 - SEGMENT_END (segment
, segment
->p_vaddr
);
5250 if (extra_length
> 0)
5252 segment
->p_memsz
+= extra_length
;
5253 segment
->p_filesz
+= extra_length
;
5256 segment2
->p_type
= PT_NULL
;
5261 /* The second scan attempts to assign sections to segments. */
5262 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5266 unsigned int section_count
;
5267 asection
** sections
;
5268 asection
* output_section
;
5270 bfd_vma matching_lma
;
5271 bfd_vma suggested_lma
;
5275 if (segment
->p_type
== PT_NULL
)
5278 /* Compute how many sections might be placed into this segment. */
5279 for (section
= ibfd
->sections
, section_count
= 0;
5281 section
= section
->next
)
5282 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5285 /* Allocate a segment map big enough to contain
5286 all of the sections we have selected. */
5287 amt
= sizeof (struct elf_segment_map
);
5288 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5289 map
= bfd_alloc (obfd
, amt
);
5293 /* Initialise the fields of the segment map. Default to
5294 using the physical address of the segment in the input BFD. */
5296 map
->p_type
= segment
->p_type
;
5297 map
->p_flags
= segment
->p_flags
;
5298 map
->p_flags_valid
= 1;
5299 map
->p_paddr
= segment
->p_paddr
;
5300 map
->p_paddr_valid
= 1;
5302 /* Determine if this segment contains the ELF file header
5303 and if it contains the program headers themselves. */
5304 map
->includes_filehdr
= (segment
->p_offset
== 0
5305 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5307 map
->includes_phdrs
= 0;
5309 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5311 map
->includes_phdrs
=
5312 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5313 && (segment
->p_offset
+ segment
->p_filesz
5314 >= ((bfd_vma
) iehdr
->e_phoff
5315 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5317 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5318 phdr_included
= TRUE
;
5321 if (section_count
== 0)
5323 /* Special segments, such as the PT_PHDR segment, may contain
5324 no sections, but ordinary, loadable segments should contain
5325 something. They are allowed by the ELF spec however, so only
5326 a warning is produced. */
5327 if (segment
->p_type
== PT_LOAD
)
5328 (*_bfd_error_handler
)
5329 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5333 *pointer_to_map
= map
;
5334 pointer_to_map
= &map
->next
;
5339 /* Now scan the sections in the input BFD again and attempt
5340 to add their corresponding output sections to the segment map.
5341 The problem here is how to handle an output section which has
5342 been moved (ie had its LMA changed). There are four possibilities:
5344 1. None of the sections have been moved.
5345 In this case we can continue to use the segment LMA from the
5348 2. All of the sections have been moved by the same amount.
5349 In this case we can change the segment's LMA to match the LMA
5350 of the first section.
5352 3. Some of the sections have been moved, others have not.
5353 In this case those sections which have not been moved can be
5354 placed in the current segment which will have to have its size,
5355 and possibly its LMA changed, and a new segment or segments will
5356 have to be created to contain the other sections.
5358 4. The sections have been moved, but not by the same amount.
5359 In this case we can change the segment's LMA to match the LMA
5360 of the first section and we will have to create a new segment
5361 or segments to contain the other sections.
5363 In order to save time, we allocate an array to hold the section
5364 pointers that we are interested in. As these sections get assigned
5365 to a segment, they are removed from this array. */
5367 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5368 to work around this long long bug. */
5369 amt
= section_count
* sizeof (asection
*);
5370 sections
= bfd_malloc (amt
);
5371 if (sections
== NULL
)
5374 /* Step One: Scan for segment vs section LMA conflicts.
5375 Also add the sections to the section array allocated above.
5376 Also add the sections to the current segment. In the common
5377 case, where the sections have not been moved, this means that
5378 we have completely filled the segment, and there is nothing
5384 for (j
= 0, section
= ibfd
->sections
;
5386 section
= section
->next
)
5388 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5390 output_section
= section
->output_section
;
5392 sections
[j
++] = section
;
5394 /* The Solaris native linker always sets p_paddr to 0.
5395 We try to catch that case here, and set it to the
5396 correct value. Note - some backends require that
5397 p_paddr be left as zero. */
5398 if (segment
->p_paddr
== 0
5399 && segment
->p_vaddr
!= 0
5400 && (! bed
->want_p_paddr_set_to_zero
)
5402 && output_section
->lma
!= 0
5403 && (output_section
->vma
== (segment
->p_vaddr
5404 + (map
->includes_filehdr
5407 + (map
->includes_phdrs
5409 * iehdr
->e_phentsize
)
5411 map
->p_paddr
= segment
->p_vaddr
;
5413 /* Match up the physical address of the segment with the
5414 LMA address of the output section. */
5415 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5416 || IS_COREFILE_NOTE (segment
, section
)
5417 || (bed
->want_p_paddr_set_to_zero
&&
5418 IS_CONTAINED_BY_VMA (output_section
, segment
))
5421 if (matching_lma
== 0)
5422 matching_lma
= output_section
->lma
;
5424 /* We assume that if the section fits within the segment
5425 then it does not overlap any other section within that
5427 map
->sections
[isec
++] = output_section
;
5429 else if (suggested_lma
== 0)
5430 suggested_lma
= output_section
->lma
;
5434 BFD_ASSERT (j
== section_count
);
5436 /* Step Two: Adjust the physical address of the current segment,
5438 if (isec
== section_count
)
5440 /* All of the sections fitted within the segment as currently
5441 specified. This is the default case. Add the segment to
5442 the list of built segments and carry on to process the next
5443 program header in the input BFD. */
5444 map
->count
= section_count
;
5445 *pointer_to_map
= map
;
5446 pointer_to_map
= &map
->next
;
5453 if (matching_lma
!= 0)
5455 /* At least one section fits inside the current segment.
5456 Keep it, but modify its physical address to match the
5457 LMA of the first section that fitted. */
5458 map
->p_paddr
= matching_lma
;
5462 /* None of the sections fitted inside the current segment.
5463 Change the current segment's physical address to match
5464 the LMA of the first section. */
5465 map
->p_paddr
= suggested_lma
;
5468 /* Offset the segment physical address from the lma
5469 to allow for space taken up by elf headers. */
5470 if (map
->includes_filehdr
)
5471 map
->p_paddr
-= iehdr
->e_ehsize
;
5473 if (map
->includes_phdrs
)
5475 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5477 /* iehdr->e_phnum is just an estimate of the number
5478 of program headers that we will need. Make a note
5479 here of the number we used and the segment we chose
5480 to hold these headers, so that we can adjust the
5481 offset when we know the correct value. */
5482 phdr_adjust_num
= iehdr
->e_phnum
;
5483 phdr_adjust_seg
= map
;
5487 /* Step Three: Loop over the sections again, this time assigning
5488 those that fit to the current segment and removing them from the
5489 sections array; but making sure not to leave large gaps. Once all
5490 possible sections have been assigned to the current segment it is
5491 added to the list of built segments and if sections still remain
5492 to be assigned, a new segment is constructed before repeating
5500 /* Fill the current segment with sections that fit. */
5501 for (j
= 0; j
< section_count
; j
++)
5503 section
= sections
[j
];
5505 if (section
== NULL
)
5508 output_section
= section
->output_section
;
5510 BFD_ASSERT (output_section
!= NULL
);
5512 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5513 || IS_COREFILE_NOTE (segment
, section
))
5515 if (map
->count
== 0)
5517 /* If the first section in a segment does not start at
5518 the beginning of the segment, then something is
5520 if (output_section
->lma
!=
5522 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5523 + (map
->includes_phdrs
5524 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5530 asection
* prev_sec
;
5532 prev_sec
= map
->sections
[map
->count
- 1];
5534 /* If the gap between the end of the previous section
5535 and the start of this section is more than
5536 maxpagesize then we need to start a new segment. */
5537 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5539 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5540 || ((prev_sec
->lma
+ prev_sec
->size
)
5541 > output_section
->lma
))
5543 if (suggested_lma
== 0)
5544 suggested_lma
= output_section
->lma
;
5550 map
->sections
[map
->count
++] = output_section
;
5553 section
->segment_mark
= TRUE
;
5555 else if (suggested_lma
== 0)
5556 suggested_lma
= output_section
->lma
;
5559 BFD_ASSERT (map
->count
> 0);
5561 /* Add the current segment to the list of built segments. */
5562 *pointer_to_map
= map
;
5563 pointer_to_map
= &map
->next
;
5565 if (isec
< section_count
)
5567 /* We still have not allocated all of the sections to
5568 segments. Create a new segment here, initialise it
5569 and carry on looping. */
5570 amt
= sizeof (struct elf_segment_map
);
5571 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5572 map
= bfd_alloc (obfd
, amt
);
5579 /* Initialise the fields of the segment map. Set the physical
5580 physical address to the LMA of the first section that has
5581 not yet been assigned. */
5583 map
->p_type
= segment
->p_type
;
5584 map
->p_flags
= segment
->p_flags
;
5585 map
->p_flags_valid
= 1;
5586 map
->p_paddr
= suggested_lma
;
5587 map
->p_paddr_valid
= 1;
5588 map
->includes_filehdr
= 0;
5589 map
->includes_phdrs
= 0;
5592 while (isec
< section_count
);
5597 /* The Solaris linker creates program headers in which all the
5598 p_paddr fields are zero. When we try to objcopy or strip such a
5599 file, we get confused. Check for this case, and if we find it
5600 reset the p_paddr_valid fields. */
5601 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5602 if (map
->p_paddr
!= 0)
5605 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5606 map
->p_paddr_valid
= 0;
5608 elf_tdata (obfd
)->segment_map
= map_first
;
5610 /* If we had to estimate the number of program headers that were
5611 going to be needed, then check our estimate now and adjust
5612 the offset if necessary. */
5613 if (phdr_adjust_seg
!= NULL
)
5617 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5620 if (count
> phdr_adjust_num
)
5621 phdr_adjust_seg
->p_paddr
5622 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5627 #undef IS_CONTAINED_BY_VMA
5628 #undef IS_CONTAINED_BY_LMA
5629 #undef IS_COREFILE_NOTE
5630 #undef IS_SOLARIS_PT_INTERP
5631 #undef INCLUDE_SECTION_IN_SEGMENT
5632 #undef SEGMENT_AFTER_SEGMENT
5633 #undef SEGMENT_OVERLAPS
5637 /* Copy private section information. This copies over the entsize
5638 field, and sometimes the info field. */
5641 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
5646 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5648 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5649 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5652 ihdr
= &elf_section_data (isec
)->this_hdr
;
5653 ohdr
= &elf_section_data (osec
)->this_hdr
;
5655 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
5657 if (ihdr
->sh_type
== SHT_SYMTAB
5658 || ihdr
->sh_type
== SHT_DYNSYM
5659 || ihdr
->sh_type
== SHT_GNU_verneed
5660 || ihdr
->sh_type
== SHT_GNU_verdef
)
5661 ohdr
->sh_info
= ihdr
->sh_info
;
5663 /* Set things up for objcopy. The output SHT_GROUP section will
5664 have its elf_next_in_group pointing back to the input group
5665 members. Ignore linker created group section. See
5666 elfNN_ia64_object_p in elfxx-ia64.c. */
5667 if (elf_sec_group (isec
) == NULL
5668 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
5670 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5671 elf_group_name (osec
) = elf_group_name (isec
);
5674 osec
->use_rela_p
= isec
->use_rela_p
;
5679 /* Copy private header information. */
5682 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
5684 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5685 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5688 /* Copy over private BFD data if it has not already been copied.
5689 This must be done here, rather than in the copy_private_bfd_data
5690 entry point, because the latter is called after the section
5691 contents have been set, which means that the program headers have
5692 already been worked out. */
5693 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
5695 if (! copy_private_bfd_data (ibfd
, obfd
))
5702 /* Copy private symbol information. If this symbol is in a section
5703 which we did not map into a BFD section, try to map the section
5704 index correctly. We use special macro definitions for the mapped
5705 section indices; these definitions are interpreted by the
5706 swap_out_syms function. */
5708 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5709 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5710 #define MAP_STRTAB (SHN_HIOS + 3)
5711 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5712 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5715 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
5720 elf_symbol_type
*isym
, *osym
;
5722 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5723 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5726 isym
= elf_symbol_from (ibfd
, isymarg
);
5727 osym
= elf_symbol_from (obfd
, osymarg
);
5731 && bfd_is_abs_section (isym
->symbol
.section
))
5735 shndx
= isym
->internal_elf_sym
.st_shndx
;
5736 if (shndx
== elf_onesymtab (ibfd
))
5737 shndx
= MAP_ONESYMTAB
;
5738 else if (shndx
== elf_dynsymtab (ibfd
))
5739 shndx
= MAP_DYNSYMTAB
;
5740 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
5742 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
5743 shndx
= MAP_SHSTRTAB
;
5744 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
5745 shndx
= MAP_SYM_SHNDX
;
5746 osym
->internal_elf_sym
.st_shndx
= shndx
;
5752 /* Swap out the symbols. */
5755 swap_out_syms (bfd
*abfd
,
5756 struct bfd_strtab_hash
**sttp
,
5759 const struct elf_backend_data
*bed
;
5762 struct bfd_strtab_hash
*stt
;
5763 Elf_Internal_Shdr
*symtab_hdr
;
5764 Elf_Internal_Shdr
*symtab_shndx_hdr
;
5765 Elf_Internal_Shdr
*symstrtab_hdr
;
5766 bfd_byte
*outbound_syms
;
5767 bfd_byte
*outbound_shndx
;
5770 bfd_boolean name_local_sections
;
5772 if (!elf_map_symbols (abfd
))
5775 /* Dump out the symtabs. */
5776 stt
= _bfd_elf_stringtab_init ();
5780 bed
= get_elf_backend_data (abfd
);
5781 symcount
= bfd_get_symcount (abfd
);
5782 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5783 symtab_hdr
->sh_type
= SHT_SYMTAB
;
5784 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
5785 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
5786 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
5787 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
5789 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
5790 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5792 amt
= (bfd_size_type
) (1 + symcount
) * bed
->s
->sizeof_sym
;
5793 outbound_syms
= bfd_alloc (abfd
, amt
);
5794 if (outbound_syms
== NULL
)
5796 _bfd_stringtab_free (stt
);
5799 symtab_hdr
->contents
= outbound_syms
;
5801 outbound_shndx
= NULL
;
5802 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
5803 if (symtab_shndx_hdr
->sh_name
!= 0)
5805 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
5806 outbound_shndx
= bfd_zalloc (abfd
, amt
);
5807 if (outbound_shndx
== NULL
)
5809 _bfd_stringtab_free (stt
);
5813 symtab_shndx_hdr
->contents
= outbound_shndx
;
5814 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
5815 symtab_shndx_hdr
->sh_size
= amt
;
5816 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
5817 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
5820 /* Now generate the data (for "contents"). */
5822 /* Fill in zeroth symbol and swap it out. */
5823 Elf_Internal_Sym sym
;
5829 sym
.st_shndx
= SHN_UNDEF
;
5830 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5831 outbound_syms
+= bed
->s
->sizeof_sym
;
5832 if (outbound_shndx
!= NULL
)
5833 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5837 = (bed
->elf_backend_name_local_section_symbols
5838 && bed
->elf_backend_name_local_section_symbols (abfd
));
5840 syms
= bfd_get_outsymbols (abfd
);
5841 for (idx
= 0; idx
< symcount
; idx
++)
5843 Elf_Internal_Sym sym
;
5844 bfd_vma value
= syms
[idx
]->value
;
5845 elf_symbol_type
*type_ptr
;
5846 flagword flags
= syms
[idx
]->flags
;
5849 if (!name_local_sections
5850 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
5852 /* Local section symbols have no name. */
5857 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
5860 if (sym
.st_name
== (unsigned long) -1)
5862 _bfd_stringtab_free (stt
);
5867 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
5869 if ((flags
& BSF_SECTION_SYM
) == 0
5870 && bfd_is_com_section (syms
[idx
]->section
))
5872 /* ELF common symbols put the alignment into the `value' field,
5873 and the size into the `size' field. This is backwards from
5874 how BFD handles it, so reverse it here. */
5875 sym
.st_size
= value
;
5876 if (type_ptr
== NULL
5877 || type_ptr
->internal_elf_sym
.st_value
== 0)
5878 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
5880 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
5881 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
5882 (abfd
, syms
[idx
]->section
);
5886 asection
*sec
= syms
[idx
]->section
;
5889 if (sec
->output_section
)
5891 value
+= sec
->output_offset
;
5892 sec
= sec
->output_section
;
5895 /* Don't add in the section vma for relocatable output. */
5896 if (! relocatable_p
)
5898 sym
.st_value
= value
;
5899 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
5901 if (bfd_is_abs_section (sec
)
5903 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
5905 /* This symbol is in a real ELF section which we did
5906 not create as a BFD section. Undo the mapping done
5907 by copy_private_symbol_data. */
5908 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
5912 shndx
= elf_onesymtab (abfd
);
5915 shndx
= elf_dynsymtab (abfd
);
5918 shndx
= elf_tdata (abfd
)->strtab_section
;
5921 shndx
= elf_tdata (abfd
)->shstrtab_section
;
5924 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
5932 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
5938 /* Writing this would be a hell of a lot easier if
5939 we had some decent documentation on bfd, and
5940 knew what to expect of the library, and what to
5941 demand of applications. For example, it
5942 appears that `objcopy' might not set the
5943 section of a symbol to be a section that is
5944 actually in the output file. */
5945 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
5948 _bfd_error_handler (_("\
5949 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5950 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
5952 bfd_set_error (bfd_error_invalid_operation
);
5953 _bfd_stringtab_free (stt
);
5957 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
5958 BFD_ASSERT (shndx
!= -1);
5962 sym
.st_shndx
= shndx
;
5965 if ((flags
& BSF_THREAD_LOCAL
) != 0)
5967 else if ((flags
& BSF_FUNCTION
) != 0)
5969 else if ((flags
& BSF_OBJECT
) != 0)
5974 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
5977 /* Processor-specific types. */
5978 if (type_ptr
!= NULL
5979 && bed
->elf_backend_get_symbol_type
)
5980 type
= ((*bed
->elf_backend_get_symbol_type
)
5981 (&type_ptr
->internal_elf_sym
, type
));
5983 if (flags
& BSF_SECTION_SYM
)
5985 if (flags
& BSF_GLOBAL
)
5986 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
5988 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5990 else if (bfd_is_com_section (syms
[idx
]->section
))
5991 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
5992 else if (bfd_is_und_section (syms
[idx
]->section
))
5993 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
5997 else if (flags
& BSF_FILE
)
5998 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6001 int bind
= STB_LOCAL
;
6003 if (flags
& BSF_LOCAL
)
6005 else if (flags
& BSF_WEAK
)
6007 else if (flags
& BSF_GLOBAL
)
6010 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6013 if (type_ptr
!= NULL
)
6014 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6018 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6019 outbound_syms
+= bed
->s
->sizeof_sym
;
6020 if (outbound_shndx
!= NULL
)
6021 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6025 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6026 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6028 symstrtab_hdr
->sh_flags
= 0;
6029 symstrtab_hdr
->sh_addr
= 0;
6030 symstrtab_hdr
->sh_entsize
= 0;
6031 symstrtab_hdr
->sh_link
= 0;
6032 symstrtab_hdr
->sh_info
= 0;
6033 symstrtab_hdr
->sh_addralign
= 1;
6038 /* Return the number of bytes required to hold the symtab vector.
6040 Note that we base it on the count plus 1, since we will null terminate
6041 the vector allocated based on this size. However, the ELF symbol table
6042 always has a dummy entry as symbol #0, so it ends up even. */
6045 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6049 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6051 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6052 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6054 symtab_size
-= sizeof (asymbol
*);
6060 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6064 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6066 if (elf_dynsymtab (abfd
) == 0)
6068 bfd_set_error (bfd_error_invalid_operation
);
6072 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6073 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6075 symtab_size
-= sizeof (asymbol
*);
6081 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6084 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6087 /* Canonicalize the relocs. */
6090 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6097 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6099 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6102 tblptr
= section
->relocation
;
6103 for (i
= 0; i
< section
->reloc_count
; i
++)
6104 *relptr
++ = tblptr
++;
6108 return section
->reloc_count
;
6112 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6114 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6115 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6118 bfd_get_symcount (abfd
) = symcount
;
6123 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6124 asymbol
**allocation
)
6126 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6127 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6130 bfd_get_dynamic_symcount (abfd
) = symcount
;
6134 /* Return the size required for the dynamic reloc entries. Any loadable
6135 section that was actually installed in the BFD, and has type SHT_REL
6136 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6137 dynamic reloc section. */
6140 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6145 if (elf_dynsymtab (abfd
) == 0)
6147 bfd_set_error (bfd_error_invalid_operation
);
6151 ret
= sizeof (arelent
*);
6152 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6153 if ((s
->flags
& SEC_LOAD
) != 0
6154 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6155 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6156 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6157 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6158 * sizeof (arelent
*));
6163 /* Canonicalize the dynamic relocation entries. Note that we return the
6164 dynamic relocations as a single block, although they are actually
6165 associated with particular sections; the interface, which was
6166 designed for SunOS style shared libraries, expects that there is only
6167 one set of dynamic relocs. Any loadable section that was actually
6168 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6169 dynamic symbol table, is considered to be a dynamic reloc section. */
6172 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6176 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6180 if (elf_dynsymtab (abfd
) == 0)
6182 bfd_set_error (bfd_error_invalid_operation
);
6186 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6188 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6190 if ((s
->flags
& SEC_LOAD
) != 0
6191 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6192 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6193 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6198 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6200 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6202 for (i
= 0; i
< count
; i
++)
6213 /* Read in the version information. */
6216 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6218 bfd_byte
*contents
= NULL
;
6220 unsigned int freeidx
= 0;
6222 if (elf_dynverref (abfd
) != 0)
6224 Elf_Internal_Shdr
*hdr
;
6225 Elf_External_Verneed
*everneed
;
6226 Elf_Internal_Verneed
*iverneed
;
6229 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6231 amt
= (bfd_size_type
) hdr
->sh_info
* sizeof (Elf_Internal_Verneed
);
6232 elf_tdata (abfd
)->verref
= bfd_zalloc (abfd
, amt
);
6233 if (elf_tdata (abfd
)->verref
== NULL
)
6236 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6238 contents
= bfd_malloc (hdr
->sh_size
);
6239 if (contents
== NULL
)
6241 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6242 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6245 everneed
= (Elf_External_Verneed
*) contents
;
6246 iverneed
= elf_tdata (abfd
)->verref
;
6247 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6249 Elf_External_Vernaux
*evernaux
;
6250 Elf_Internal_Vernaux
*ivernaux
;
6253 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6255 iverneed
->vn_bfd
= abfd
;
6257 iverneed
->vn_filename
=
6258 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6260 if (iverneed
->vn_filename
== NULL
)
6263 amt
= iverneed
->vn_cnt
;
6264 amt
*= sizeof (Elf_Internal_Vernaux
);
6265 iverneed
->vn_auxptr
= bfd_alloc (abfd
, amt
);
6267 evernaux
= ((Elf_External_Vernaux
*)
6268 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6269 ivernaux
= iverneed
->vn_auxptr
;
6270 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6272 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6274 ivernaux
->vna_nodename
=
6275 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6276 ivernaux
->vna_name
);
6277 if (ivernaux
->vna_nodename
== NULL
)
6280 if (j
+ 1 < iverneed
->vn_cnt
)
6281 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6283 ivernaux
->vna_nextptr
= NULL
;
6285 evernaux
= ((Elf_External_Vernaux
*)
6286 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6288 if (ivernaux
->vna_other
> freeidx
)
6289 freeidx
= ivernaux
->vna_other
;
6292 if (i
+ 1 < hdr
->sh_info
)
6293 iverneed
->vn_nextref
= iverneed
+ 1;
6295 iverneed
->vn_nextref
= NULL
;
6297 everneed
= ((Elf_External_Verneed
*)
6298 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6305 if (elf_dynverdef (abfd
) != 0)
6307 Elf_Internal_Shdr
*hdr
;
6308 Elf_External_Verdef
*everdef
;
6309 Elf_Internal_Verdef
*iverdef
;
6310 Elf_Internal_Verdef
*iverdefarr
;
6311 Elf_Internal_Verdef iverdefmem
;
6313 unsigned int maxidx
;
6315 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6317 contents
= bfd_malloc (hdr
->sh_size
);
6318 if (contents
== NULL
)
6320 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6321 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6324 /* We know the number of entries in the section but not the maximum
6325 index. Therefore we have to run through all entries and find
6327 everdef
= (Elf_External_Verdef
*) contents
;
6329 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6331 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6333 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6334 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6336 everdef
= ((Elf_External_Verdef
*)
6337 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6340 if (default_imported_symver
)
6342 if (freeidx
> maxidx
)
6347 amt
= (bfd_size_type
) maxidx
* sizeof (Elf_Internal_Verdef
);
6348 elf_tdata (abfd
)->verdef
= bfd_zalloc (abfd
, amt
);
6349 if (elf_tdata (abfd
)->verdef
== NULL
)
6352 elf_tdata (abfd
)->cverdefs
= maxidx
;
6354 everdef
= (Elf_External_Verdef
*) contents
;
6355 iverdefarr
= elf_tdata (abfd
)->verdef
;
6356 for (i
= 0; i
< hdr
->sh_info
; i
++)
6358 Elf_External_Verdaux
*everdaux
;
6359 Elf_Internal_Verdaux
*iverdaux
;
6362 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6364 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6365 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6367 iverdef
->vd_bfd
= abfd
;
6369 amt
= (bfd_size_type
) iverdef
->vd_cnt
* sizeof (Elf_Internal_Verdaux
);
6370 iverdef
->vd_auxptr
= bfd_alloc (abfd
, amt
);
6371 if (iverdef
->vd_auxptr
== NULL
)
6374 everdaux
= ((Elf_External_Verdaux
*)
6375 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6376 iverdaux
= iverdef
->vd_auxptr
;
6377 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6379 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6381 iverdaux
->vda_nodename
=
6382 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6383 iverdaux
->vda_name
);
6384 if (iverdaux
->vda_nodename
== NULL
)
6387 if (j
+ 1 < iverdef
->vd_cnt
)
6388 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6390 iverdaux
->vda_nextptr
= NULL
;
6392 everdaux
= ((Elf_External_Verdaux
*)
6393 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6396 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6398 if (i
+ 1 < hdr
->sh_info
)
6399 iverdef
->vd_nextdef
= iverdef
+ 1;
6401 iverdef
->vd_nextdef
= NULL
;
6403 everdef
= ((Elf_External_Verdef
*)
6404 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6410 else if (default_imported_symver
)
6417 amt
= (bfd_size_type
) freeidx
* sizeof (Elf_Internal_Verdef
);
6418 elf_tdata (abfd
)->verdef
= bfd_zalloc (abfd
, amt
);
6419 if (elf_tdata (abfd
)->verdef
== NULL
)
6422 elf_tdata (abfd
)->cverdefs
= freeidx
;
6425 /* Create a default version based on the soname. */
6426 if (default_imported_symver
)
6428 Elf_Internal_Verdef
*iverdef
;
6429 Elf_Internal_Verdaux
*iverdaux
;
6431 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6433 iverdef
->vd_version
= VER_DEF_CURRENT
;
6434 iverdef
->vd_flags
= 0;
6435 iverdef
->vd_ndx
= freeidx
;
6436 iverdef
->vd_cnt
= 1;
6438 iverdef
->vd_bfd
= abfd
;
6440 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6441 if (iverdef
->vd_nodename
== NULL
)
6443 iverdef
->vd_nextdef
= NULL
;
6444 amt
= (bfd_size_type
) sizeof (Elf_Internal_Verdaux
);
6445 iverdef
->vd_auxptr
= bfd_alloc (abfd
, amt
);
6447 iverdaux
= iverdef
->vd_auxptr
;
6448 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6449 iverdaux
->vda_nextptr
= NULL
;
6455 if (contents
!= NULL
)
6461 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6463 elf_symbol_type
*newsym
;
6464 bfd_size_type amt
= sizeof (elf_symbol_type
);
6466 newsym
= bfd_zalloc (abfd
, amt
);
6471 newsym
->symbol
.the_bfd
= abfd
;
6472 return &newsym
->symbol
;
6477 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6481 bfd_symbol_info (symbol
, ret
);
6484 /* Return whether a symbol name implies a local symbol. Most targets
6485 use this function for the is_local_label_name entry point, but some
6489 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6492 /* Normal local symbols start with ``.L''. */
6493 if (name
[0] == '.' && name
[1] == 'L')
6496 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6497 DWARF debugging symbols starting with ``..''. */
6498 if (name
[0] == '.' && name
[1] == '.')
6501 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6502 emitting DWARF debugging output. I suspect this is actually a
6503 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6504 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6505 underscore to be emitted on some ELF targets). For ease of use,
6506 we treat such symbols as local. */
6507 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6514 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6515 asymbol
*symbol ATTRIBUTE_UNUSED
)
6522 _bfd_elf_set_arch_mach (bfd
*abfd
,
6523 enum bfd_architecture arch
,
6524 unsigned long machine
)
6526 /* If this isn't the right architecture for this backend, and this
6527 isn't the generic backend, fail. */
6528 if (arch
!= get_elf_backend_data (abfd
)->arch
6529 && arch
!= bfd_arch_unknown
6530 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6533 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6536 /* Find the function to a particular section and offset,
6537 for error reporting. */
6540 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
6544 const char **filename_ptr
,
6545 const char **functionname_ptr
)
6547 const char *filename
;
6548 asymbol
*func
, *file
;
6551 /* ??? Given multiple file symbols, it is impossible to reliably
6552 choose the right file name for global symbols. File symbols are
6553 local symbols, and thus all file symbols must sort before any
6554 global symbols. The ELF spec may be interpreted to say that a
6555 file symbol must sort before other local symbols, but currently
6556 ld -r doesn't do this. So, for ld -r output, it is possible to
6557 make a better choice of file name for local symbols by ignoring
6558 file symbols appearing after a given local symbol. */
6559 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
6565 state
= nothing_seen
;
6567 for (p
= symbols
; *p
!= NULL
; p
++)
6571 q
= (elf_symbol_type
*) *p
;
6573 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
6579 if (state
== symbol_seen
)
6580 state
= file_after_symbol_seen
;
6586 if (bfd_get_section (&q
->symbol
) == section
6587 && q
->symbol
.value
>= low_func
6588 && q
->symbol
.value
<= offset
)
6590 func
= (asymbol
*) q
;
6591 low_func
= q
->symbol
.value
;
6594 else if (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) != STB_LOCAL
6595 && state
== file_after_symbol_seen
)
6598 filename
= bfd_asymbol_name (file
);
6602 if (state
== nothing_seen
)
6603 state
= symbol_seen
;
6610 *filename_ptr
= filename
;
6611 if (functionname_ptr
)
6612 *functionname_ptr
= bfd_asymbol_name (func
);
6617 /* Find the nearest line to a particular section and offset,
6618 for error reporting. */
6621 _bfd_elf_find_nearest_line (bfd
*abfd
,
6625 const char **filename_ptr
,
6626 const char **functionname_ptr
,
6627 unsigned int *line_ptr
)
6631 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
6632 filename_ptr
, functionname_ptr
,
6635 if (!*functionname_ptr
)
6636 elf_find_function (abfd
, section
, symbols
, offset
,
6637 *filename_ptr
? NULL
: filename_ptr
,
6643 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
6644 filename_ptr
, functionname_ptr
,
6646 &elf_tdata (abfd
)->dwarf2_find_line_info
))
6648 if (!*functionname_ptr
)
6649 elf_find_function (abfd
, section
, symbols
, offset
,
6650 *filename_ptr
? NULL
: filename_ptr
,
6656 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
6657 &found
, filename_ptr
,
6658 functionname_ptr
, line_ptr
,
6659 &elf_tdata (abfd
)->line_info
))
6661 if (found
&& (*functionname_ptr
|| *line_ptr
))
6664 if (symbols
== NULL
)
6667 if (! elf_find_function (abfd
, section
, symbols
, offset
,
6668 filename_ptr
, functionname_ptr
))
6676 _bfd_elf_sizeof_headers (bfd
*abfd
, bfd_boolean reloc
)
6680 ret
= get_elf_backend_data (abfd
)->s
->sizeof_ehdr
;
6682 ret
+= get_program_header_size (abfd
);
6687 _bfd_elf_set_section_contents (bfd
*abfd
,
6689 const void *location
,
6691 bfd_size_type count
)
6693 Elf_Internal_Shdr
*hdr
;
6696 if (! abfd
->output_has_begun
6697 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
6700 hdr
= &elf_section_data (section
)->this_hdr
;
6701 pos
= hdr
->sh_offset
+ offset
;
6702 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
6703 || bfd_bwrite (location
, count
, abfd
) != count
)
6710 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
6711 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
6712 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
6717 /* Try to convert a non-ELF reloc into an ELF one. */
6720 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
6722 /* Check whether we really have an ELF howto. */
6724 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
6726 bfd_reloc_code_real_type code
;
6727 reloc_howto_type
*howto
;
6729 /* Alien reloc: Try to determine its type to replace it with an
6730 equivalent ELF reloc. */
6732 if (areloc
->howto
->pc_relative
)
6734 switch (areloc
->howto
->bitsize
)
6737 code
= BFD_RELOC_8_PCREL
;
6740 code
= BFD_RELOC_12_PCREL
;
6743 code
= BFD_RELOC_16_PCREL
;
6746 code
= BFD_RELOC_24_PCREL
;
6749 code
= BFD_RELOC_32_PCREL
;
6752 code
= BFD_RELOC_64_PCREL
;
6758 howto
= bfd_reloc_type_lookup (abfd
, code
);
6760 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
6762 if (howto
->pcrel_offset
)
6763 areloc
->addend
+= areloc
->address
;
6765 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
6770 switch (areloc
->howto
->bitsize
)
6776 code
= BFD_RELOC_14
;
6779 code
= BFD_RELOC_16
;
6782 code
= BFD_RELOC_26
;
6785 code
= BFD_RELOC_32
;
6788 code
= BFD_RELOC_64
;
6794 howto
= bfd_reloc_type_lookup (abfd
, code
);
6798 areloc
->howto
= howto
;
6806 (*_bfd_error_handler
)
6807 (_("%B: unsupported relocation type %s"),
6808 abfd
, areloc
->howto
->name
);
6809 bfd_set_error (bfd_error_bad_value
);
6814 _bfd_elf_close_and_cleanup (bfd
*abfd
)
6816 if (bfd_get_format (abfd
) == bfd_object
)
6818 if (elf_shstrtab (abfd
) != NULL
)
6819 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
6820 _bfd_dwarf2_cleanup_debug_info (abfd
);
6823 return _bfd_generic_close_and_cleanup (abfd
);
6826 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6827 in the relocation's offset. Thus we cannot allow any sort of sanity
6828 range-checking to interfere. There is nothing else to do in processing
6831 bfd_reloc_status_type
6832 _bfd_elf_rel_vtable_reloc_fn
6833 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
6834 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
6835 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
6836 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
6838 return bfd_reloc_ok
;
6841 /* Elf core file support. Much of this only works on native
6842 toolchains, since we rely on knowing the
6843 machine-dependent procfs structure in order to pick
6844 out details about the corefile. */
6846 #ifdef HAVE_SYS_PROCFS_H
6847 # include <sys/procfs.h>
6850 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6853 elfcore_make_pid (bfd
*abfd
)
6855 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
6856 + (elf_tdata (abfd
)->core_pid
));
6859 /* If there isn't a section called NAME, make one, using
6860 data from SECT. Note, this function will generate a
6861 reference to NAME, so you shouldn't deallocate or
6865 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
6869 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
6872 sect2
= bfd_make_section (abfd
, name
);
6876 sect2
->size
= sect
->size
;
6877 sect2
->filepos
= sect
->filepos
;
6878 sect2
->flags
= sect
->flags
;
6879 sect2
->alignment_power
= sect
->alignment_power
;
6883 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6884 actually creates up to two pseudosections:
6885 - For the single-threaded case, a section named NAME, unless
6886 such a section already exists.
6887 - For the multi-threaded case, a section named "NAME/PID", where
6888 PID is elfcore_make_pid (abfd).
6889 Both pseudosections have identical contents. */
6891 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
6897 char *threaded_name
;
6901 /* Build the section name. */
6903 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
6904 len
= strlen (buf
) + 1;
6905 threaded_name
= bfd_alloc (abfd
, len
);
6906 if (threaded_name
== NULL
)
6908 memcpy (threaded_name
, buf
, len
);
6910 sect
= bfd_make_section_anyway (abfd
, threaded_name
);
6914 sect
->filepos
= filepos
;
6915 sect
->flags
= SEC_HAS_CONTENTS
;
6916 sect
->alignment_power
= 2;
6918 return elfcore_maybe_make_sect (abfd
, name
, sect
);
6921 /* prstatus_t exists on:
6923 linux 2.[01] + glibc
6927 #if defined (HAVE_PRSTATUS_T)
6930 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6935 if (note
->descsz
== sizeof (prstatus_t
))
6939 size
= sizeof (prstat
.pr_reg
);
6940 offset
= offsetof (prstatus_t
, pr_reg
);
6941 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6943 /* Do not overwrite the core signal if it
6944 has already been set by another thread. */
6945 if (elf_tdata (abfd
)->core_signal
== 0)
6946 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6947 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6949 /* pr_who exists on:
6952 pr_who doesn't exist on:
6955 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6956 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6959 #if defined (HAVE_PRSTATUS32_T)
6960 else if (note
->descsz
== sizeof (prstatus32_t
))
6962 /* 64-bit host, 32-bit corefile */
6963 prstatus32_t prstat
;
6965 size
= sizeof (prstat
.pr_reg
);
6966 offset
= offsetof (prstatus32_t
, pr_reg
);
6967 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6969 /* Do not overwrite the core signal if it
6970 has already been set by another thread. */
6971 if (elf_tdata (abfd
)->core_signal
== 0)
6972 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6973 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6975 /* pr_who exists on:
6978 pr_who doesn't exist on:
6981 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6982 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6985 #endif /* HAVE_PRSTATUS32_T */
6988 /* Fail - we don't know how to handle any other
6989 note size (ie. data object type). */
6993 /* Make a ".reg/999" section and a ".reg" section. */
6994 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
6995 size
, note
->descpos
+ offset
);
6997 #endif /* defined (HAVE_PRSTATUS_T) */
6999 /* Create a pseudosection containing the exact contents of NOTE. */
7001 elfcore_make_note_pseudosection (bfd
*abfd
,
7003 Elf_Internal_Note
*note
)
7005 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7006 note
->descsz
, note
->descpos
);
7009 /* There isn't a consistent prfpregset_t across platforms,
7010 but it doesn't matter, because we don't have to pick this
7011 data structure apart. */
7014 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7016 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7019 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7020 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7024 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7026 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7029 #if defined (HAVE_PRPSINFO_T)
7030 typedef prpsinfo_t elfcore_psinfo_t
;
7031 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7032 typedef prpsinfo32_t elfcore_psinfo32_t
;
7036 #if defined (HAVE_PSINFO_T)
7037 typedef psinfo_t elfcore_psinfo_t
;
7038 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7039 typedef psinfo32_t elfcore_psinfo32_t
;
7043 /* return a malloc'ed copy of a string at START which is at
7044 most MAX bytes long, possibly without a terminating '\0'.
7045 the copy will always have a terminating '\0'. */
7048 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7051 char *end
= memchr (start
, '\0', max
);
7059 dups
= bfd_alloc (abfd
, len
+ 1);
7063 memcpy (dups
, start
, len
);
7069 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7071 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7073 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7075 elfcore_psinfo_t psinfo
;
7077 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7079 elf_tdata (abfd
)->core_program
7080 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7081 sizeof (psinfo
.pr_fname
));
7083 elf_tdata (abfd
)->core_command
7084 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7085 sizeof (psinfo
.pr_psargs
));
7087 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7088 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7090 /* 64-bit host, 32-bit corefile */
7091 elfcore_psinfo32_t psinfo
;
7093 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7095 elf_tdata (abfd
)->core_program
7096 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7097 sizeof (psinfo
.pr_fname
));
7099 elf_tdata (abfd
)->core_command
7100 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7101 sizeof (psinfo
.pr_psargs
));
7107 /* Fail - we don't know how to handle any other
7108 note size (ie. data object type). */
7112 /* Note that for some reason, a spurious space is tacked
7113 onto the end of the args in some (at least one anyway)
7114 implementations, so strip it off if it exists. */
7117 char *command
= elf_tdata (abfd
)->core_command
;
7118 int n
= strlen (command
);
7120 if (0 < n
&& command
[n
- 1] == ' ')
7121 command
[n
- 1] = '\0';
7126 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7128 #if defined (HAVE_PSTATUS_T)
7130 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7132 if (note
->descsz
== sizeof (pstatus_t
)
7133 #if defined (HAVE_PXSTATUS_T)
7134 || note
->descsz
== sizeof (pxstatus_t
)
7140 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7142 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7144 #if defined (HAVE_PSTATUS32_T)
7145 else if (note
->descsz
== sizeof (pstatus32_t
))
7147 /* 64-bit host, 32-bit corefile */
7150 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7152 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7155 /* Could grab some more details from the "representative"
7156 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7157 NT_LWPSTATUS note, presumably. */
7161 #endif /* defined (HAVE_PSTATUS_T) */
7163 #if defined (HAVE_LWPSTATUS_T)
7165 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7167 lwpstatus_t lwpstat
;
7173 if (note
->descsz
!= sizeof (lwpstat
)
7174 #if defined (HAVE_LWPXSTATUS_T)
7175 && note
->descsz
!= sizeof (lwpxstatus_t
)
7180 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7182 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7183 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7185 /* Make a ".reg/999" section. */
7187 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7188 len
= strlen (buf
) + 1;
7189 name
= bfd_alloc (abfd
, len
);
7192 memcpy (name
, buf
, len
);
7194 sect
= bfd_make_section_anyway (abfd
, name
);
7198 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7199 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7200 sect
->filepos
= note
->descpos
7201 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7204 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7205 sect
->size
= sizeof (lwpstat
.pr_reg
);
7206 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7209 sect
->flags
= SEC_HAS_CONTENTS
;
7210 sect
->alignment_power
= 2;
7212 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7215 /* Make a ".reg2/999" section */
7217 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7218 len
= strlen (buf
) + 1;
7219 name
= bfd_alloc (abfd
, len
);
7222 memcpy (name
, buf
, len
);
7224 sect
= bfd_make_section_anyway (abfd
, name
);
7228 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7229 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7230 sect
->filepos
= note
->descpos
7231 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7234 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7235 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7236 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7239 sect
->flags
= SEC_HAS_CONTENTS
;
7240 sect
->alignment_power
= 2;
7242 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7244 #endif /* defined (HAVE_LWPSTATUS_T) */
7246 #if defined (HAVE_WIN32_PSTATUS_T)
7248 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7254 win32_pstatus_t pstatus
;
7256 if (note
->descsz
< sizeof (pstatus
))
7259 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
7261 switch (pstatus
.data_type
)
7263 case NOTE_INFO_PROCESS
:
7264 /* FIXME: need to add ->core_command. */
7265 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7266 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7269 case NOTE_INFO_THREAD
:
7270 /* Make a ".reg/999" section. */
7271 sprintf (buf
, ".reg/%ld", (long) pstatus
.data
.thread_info
.tid
);
7273 len
= strlen (buf
) + 1;
7274 name
= bfd_alloc (abfd
, len
);
7278 memcpy (name
, buf
, len
);
7280 sect
= bfd_make_section_anyway (abfd
, name
);
7284 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7285 sect
->filepos
= (note
->descpos
7286 + offsetof (struct win32_pstatus
,
7287 data
.thread_info
.thread_context
));
7288 sect
->flags
= SEC_HAS_CONTENTS
;
7289 sect
->alignment_power
= 2;
7291 if (pstatus
.data
.thread_info
.is_active_thread
)
7292 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7296 case NOTE_INFO_MODULE
:
7297 /* Make a ".module/xxxxxxxx" section. */
7298 sprintf (buf
, ".module/%08lx",
7299 (long) pstatus
.data
.module_info
.base_address
);
7301 len
= strlen (buf
) + 1;
7302 name
= bfd_alloc (abfd
, len
);
7306 memcpy (name
, buf
, len
);
7308 sect
= bfd_make_section_anyway (abfd
, name
);
7313 sect
->size
= note
->descsz
;
7314 sect
->filepos
= note
->descpos
;
7315 sect
->flags
= SEC_HAS_CONTENTS
;
7316 sect
->alignment_power
= 2;
7325 #endif /* HAVE_WIN32_PSTATUS_T */
7328 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7330 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7338 if (bed
->elf_backend_grok_prstatus
)
7339 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7341 #if defined (HAVE_PRSTATUS_T)
7342 return elfcore_grok_prstatus (abfd
, note
);
7347 #if defined (HAVE_PSTATUS_T)
7349 return elfcore_grok_pstatus (abfd
, note
);
7352 #if defined (HAVE_LWPSTATUS_T)
7354 return elfcore_grok_lwpstatus (abfd
, note
);
7357 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7358 return elfcore_grok_prfpreg (abfd
, note
);
7360 #if defined (HAVE_WIN32_PSTATUS_T)
7361 case NT_WIN32PSTATUS
:
7362 return elfcore_grok_win32pstatus (abfd
, note
);
7365 case NT_PRXFPREG
: /* Linux SSE extension */
7366 if (note
->namesz
== 6
7367 && strcmp (note
->namedata
, "LINUX") == 0)
7368 return elfcore_grok_prxfpreg (abfd
, note
);
7374 if (bed
->elf_backend_grok_psinfo
)
7375 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7377 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7378 return elfcore_grok_psinfo (abfd
, note
);
7385 asection
*sect
= bfd_make_section_anyway (abfd
, ".auxv");
7389 sect
->size
= note
->descsz
;
7390 sect
->filepos
= note
->descpos
;
7391 sect
->flags
= SEC_HAS_CONTENTS
;
7392 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7400 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7404 cp
= strchr (note
->namedata
, '@');
7407 *lwpidp
= atoi(cp
+ 1);
7414 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7417 /* Signal number at offset 0x08. */
7418 elf_tdata (abfd
)->core_signal
7419 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7421 /* Process ID at offset 0x50. */
7422 elf_tdata (abfd
)->core_pid
7423 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7425 /* Command name at 0x7c (max 32 bytes, including nul). */
7426 elf_tdata (abfd
)->core_command
7427 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7429 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7434 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7438 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7439 elf_tdata (abfd
)->core_lwpid
= lwp
;
7441 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7443 /* NetBSD-specific core "procinfo". Note that we expect to
7444 find this note before any of the others, which is fine,
7445 since the kernel writes this note out first when it
7446 creates a core file. */
7448 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7451 /* As of Jan 2002 there are no other machine-independent notes
7452 defined for NetBSD core files. If the note type is less
7453 than the start of the machine-dependent note types, we don't
7456 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7460 switch (bfd_get_arch (abfd
))
7462 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7463 PT_GETFPREGS == mach+2. */
7465 case bfd_arch_alpha
:
7466 case bfd_arch_sparc
:
7469 case NT_NETBSDCORE_FIRSTMACH
+0:
7470 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7472 case NT_NETBSDCORE_FIRSTMACH
+2:
7473 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7479 /* On all other arch's, PT_GETREGS == mach+1 and
7480 PT_GETFPREGS == mach+3. */
7485 case NT_NETBSDCORE_FIRSTMACH
+1:
7486 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7488 case NT_NETBSDCORE_FIRSTMACH
+3:
7489 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7499 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t
*tid
)
7501 void *ddata
= note
->descdata
;
7508 /* nto_procfs_status 'pid' field is at offset 0. */
7509 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
7511 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7512 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
7514 /* nto_procfs_status 'flags' field is at offset 8. */
7515 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
7517 /* nto_procfs_status 'what' field is at offset 14. */
7518 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
7520 elf_tdata (abfd
)->core_signal
= sig
;
7521 elf_tdata (abfd
)->core_lwpid
= *tid
;
7524 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7525 do not come from signals so we make sure we set the current
7526 thread just in case. */
7527 if (flags
& 0x00000080)
7528 elf_tdata (abfd
)->core_lwpid
= *tid
;
7530 /* Make a ".qnx_core_status/%d" section. */
7531 sprintf (buf
, ".qnx_core_status/%ld", (long) *tid
);
7533 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7538 sect
= bfd_make_section_anyway (abfd
, name
);
7542 sect
->size
= note
->descsz
;
7543 sect
->filepos
= note
->descpos
;
7544 sect
->flags
= SEC_HAS_CONTENTS
;
7545 sect
->alignment_power
= 2;
7547 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
7551 elfcore_grok_nto_regs (bfd
*abfd
,
7552 Elf_Internal_Note
*note
,
7560 /* Make a "(base)/%d" section. */
7561 sprintf (buf
, "%s/%ld", base
, (long) tid
);
7563 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7568 sect
= bfd_make_section_anyway (abfd
, name
);
7572 sect
->size
= note
->descsz
;
7573 sect
->filepos
= note
->descpos
;
7574 sect
->flags
= SEC_HAS_CONTENTS
;
7575 sect
->alignment_power
= 2;
7577 /* This is the current thread. */
7578 if (elf_tdata (abfd
)->core_lwpid
== tid
)
7579 return elfcore_maybe_make_sect (abfd
, base
, sect
);
7584 #define BFD_QNT_CORE_INFO 7
7585 #define BFD_QNT_CORE_STATUS 8
7586 #define BFD_QNT_CORE_GREG 9
7587 #define BFD_QNT_CORE_FPREG 10
7590 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7592 /* Every GREG section has a STATUS section before it. Store the
7593 tid from the previous call to pass down to the next gregs
7595 static pid_t tid
= 1;
7599 case BFD_QNT_CORE_INFO
:
7600 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
7601 case BFD_QNT_CORE_STATUS
:
7602 return elfcore_grok_nto_status (abfd
, note
, &tid
);
7603 case BFD_QNT_CORE_GREG
:
7604 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
7605 case BFD_QNT_CORE_FPREG
:
7606 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
7612 /* Function: elfcore_write_note
7619 size of data for note
7622 End of buffer containing note. */
7625 elfcore_write_note (bfd
*abfd
,
7633 Elf_External_Note
*xnp
;
7643 const struct elf_backend_data
*bed
;
7645 namesz
= strlen (name
) + 1;
7646 bed
= get_elf_backend_data (abfd
);
7647 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
7650 newspace
= 12 + namesz
+ pad
+ size
;
7652 p
= realloc (buf
, *bufsiz
+ newspace
);
7654 *bufsiz
+= newspace
;
7655 xnp
= (Elf_External_Note
*) dest
;
7656 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
7657 H_PUT_32 (abfd
, size
, xnp
->descsz
);
7658 H_PUT_32 (abfd
, type
, xnp
->type
);
7662 memcpy (dest
, name
, namesz
);
7670 memcpy (dest
, input
, size
);
7674 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7676 elfcore_write_prpsinfo (bfd
*abfd
,
7683 char *note_name
= "CORE";
7685 #if defined (HAVE_PSINFO_T)
7687 note_type
= NT_PSINFO
;
7690 note_type
= NT_PRPSINFO
;
7693 memset (&data
, 0, sizeof (data
));
7694 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
7695 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
7696 return elfcore_write_note (abfd
, buf
, bufsiz
,
7697 note_name
, note_type
, &data
, sizeof (data
));
7699 #endif /* PSINFO_T or PRPSINFO_T */
7701 #if defined (HAVE_PRSTATUS_T)
7703 elfcore_write_prstatus (bfd
*abfd
,
7711 char *note_name
= "CORE";
7713 memset (&prstat
, 0, sizeof (prstat
));
7714 prstat
.pr_pid
= pid
;
7715 prstat
.pr_cursig
= cursig
;
7716 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
7717 return elfcore_write_note (abfd
, buf
, bufsiz
,
7718 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
7720 #endif /* HAVE_PRSTATUS_T */
7722 #if defined (HAVE_LWPSTATUS_T)
7724 elfcore_write_lwpstatus (bfd
*abfd
,
7731 lwpstatus_t lwpstat
;
7732 char *note_name
= "CORE";
7734 memset (&lwpstat
, 0, sizeof (lwpstat
));
7735 lwpstat
.pr_lwpid
= pid
>> 16;
7736 lwpstat
.pr_cursig
= cursig
;
7737 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7738 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
7739 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7741 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
7742 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
7744 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
7745 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
7748 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7749 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
7751 #endif /* HAVE_LWPSTATUS_T */
7753 #if defined (HAVE_PSTATUS_T)
7755 elfcore_write_pstatus (bfd
*abfd
,
7763 char *note_name
= "CORE";
7765 memset (&pstat
, 0, sizeof (pstat
));
7766 pstat
.pr_pid
= pid
& 0xffff;
7767 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7768 NT_PSTATUS
, &pstat
, sizeof (pstat
));
7771 #endif /* HAVE_PSTATUS_T */
7774 elfcore_write_prfpreg (bfd
*abfd
,
7780 char *note_name
= "CORE";
7781 return elfcore_write_note (abfd
, buf
, bufsiz
,
7782 note_name
, NT_FPREGSET
, fpregs
, size
);
7786 elfcore_write_prxfpreg (bfd
*abfd
,
7789 const void *xfpregs
,
7792 char *note_name
= "LINUX";
7793 return elfcore_write_note (abfd
, buf
, bufsiz
,
7794 note_name
, NT_PRXFPREG
, xfpregs
, size
);
7798 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
7806 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
7809 buf
= bfd_malloc (size
);
7813 if (bfd_bread (buf
, size
, abfd
) != size
)
7821 while (p
< buf
+ size
)
7823 /* FIXME: bad alignment assumption. */
7824 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
7825 Elf_Internal_Note in
;
7827 in
.type
= H_GET_32 (abfd
, xnp
->type
);
7829 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
7830 in
.namedata
= xnp
->name
;
7832 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
7833 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
7834 in
.descpos
= offset
+ (in
.descdata
- buf
);
7836 if (strncmp (in
.namedata
, "NetBSD-CORE", 11) == 0)
7838 if (! elfcore_grok_netbsd_note (abfd
, &in
))
7841 else if (strncmp (in
.namedata
, "QNX", 3) == 0)
7843 if (! elfcore_grok_nto_note (abfd
, &in
))
7848 if (! elfcore_grok_note (abfd
, &in
))
7852 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
7859 /* Providing external access to the ELF program header table. */
7861 /* Return an upper bound on the number of bytes required to store a
7862 copy of ABFD's program header table entries. Return -1 if an error
7863 occurs; bfd_get_error will return an appropriate code. */
7866 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
7868 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7870 bfd_set_error (bfd_error_wrong_format
);
7874 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
7877 /* Copy ABFD's program header table entries to *PHDRS. The entries
7878 will be stored as an array of Elf_Internal_Phdr structures, as
7879 defined in include/elf/internal.h. To find out how large the
7880 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7882 Return the number of program header table entries read, or -1 if an
7883 error occurs; bfd_get_error will return an appropriate code. */
7886 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
7890 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7892 bfd_set_error (bfd_error_wrong_format
);
7896 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
7897 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
7898 num_phdrs
* sizeof (Elf_Internal_Phdr
));
7904 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
7907 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7909 i_ehdrp
= elf_elfheader (abfd
);
7910 if (i_ehdrp
== NULL
)
7911 sprintf_vma (buf
, value
);
7914 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7916 #if BFD_HOST_64BIT_LONG
7917 sprintf (buf
, "%016lx", value
);
7919 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
7920 _bfd_int64_low (value
));
7924 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
7927 sprintf_vma (buf
, value
);
7932 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
7935 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7937 i_ehdrp
= elf_elfheader (abfd
);
7938 if (i_ehdrp
== NULL
)
7939 fprintf_vma ((FILE *) stream
, value
);
7942 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7944 #if BFD_HOST_64BIT_LONG
7945 fprintf ((FILE *) stream
, "%016lx", value
);
7947 fprintf ((FILE *) stream
, "%08lx%08lx",
7948 _bfd_int64_high (value
), _bfd_int64_low (value
));
7952 fprintf ((FILE *) stream
, "%08lx",
7953 (unsigned long) (value
& 0xffffffff));
7956 fprintf_vma ((FILE *) stream
, value
);
7960 enum elf_reloc_type_class
7961 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
7963 return reloc_class_normal
;
7966 /* For RELA architectures, return the relocation value for a
7967 relocation against a local symbol. */
7970 _bfd_elf_rela_local_sym (bfd
*abfd
,
7971 Elf_Internal_Sym
*sym
,
7973 Elf_Internal_Rela
*rel
)
7975 asection
*sec
= *psec
;
7978 relocation
= (sec
->output_section
->vma
7979 + sec
->output_offset
7981 if ((sec
->flags
& SEC_MERGE
)
7982 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
7983 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
7986 _bfd_merged_section_offset (abfd
, psec
,
7987 elf_section_data (sec
)->sec_info
,
7988 sym
->st_value
+ rel
->r_addend
);
7991 /* If we have changed the section, and our original section is
7992 marked with SEC_EXCLUDE, it means that the original
7993 SEC_MERGE section has been completely subsumed in some
7994 other SEC_MERGE section. In this case, we need to leave
7995 some info around for --emit-relocs. */
7996 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
7997 sec
->kept_section
= *psec
;
8000 rel
->r_addend
-= relocation
;
8001 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8007 _bfd_elf_rel_local_sym (bfd
*abfd
,
8008 Elf_Internal_Sym
*sym
,
8012 asection
*sec
= *psec
;
8014 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8015 return sym
->st_value
+ addend
;
8017 return _bfd_merged_section_offset (abfd
, psec
,
8018 elf_section_data (sec
)->sec_info
,
8019 sym
->st_value
+ addend
);
8023 _bfd_elf_section_offset (bfd
*abfd
,
8024 struct bfd_link_info
*info
,
8028 switch (sec
->sec_info_type
)
8030 case ELF_INFO_TYPE_STABS
:
8031 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8033 case ELF_INFO_TYPE_EH_FRAME
:
8034 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8040 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8041 reconstruct an ELF file by reading the segments out of remote memory
8042 based on the ELF file header at EHDR_VMA and the ELF program headers it
8043 points to. If not null, *LOADBASEP is filled in with the difference
8044 between the VMAs from which the segments were read, and the VMAs the
8045 file headers (and hence BFD's idea of each section's VMA) put them at.
8047 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8048 remote memory at target address VMA into the local buffer at MYADDR; it
8049 should return zero on success or an `errno' code on failure. TEMPL must
8050 be a BFD for an ELF target with the word size and byte order found in
8051 the remote memory. */
8054 bfd_elf_bfd_from_remote_memory
8058 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8060 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8061 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8065 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8066 long symcount ATTRIBUTE_UNUSED
,
8067 asymbol
**syms ATTRIBUTE_UNUSED
,
8072 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8075 const char *relplt_name
;
8076 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8080 Elf_Internal_Shdr
*hdr
;
8086 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8089 if (dynsymcount
<= 0)
8092 if (!bed
->plt_sym_val
)
8095 relplt_name
= bed
->relplt_name
;
8096 if (relplt_name
== NULL
)
8097 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
8098 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8102 hdr
= &elf_section_data (relplt
)->this_hdr
;
8103 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8104 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8107 plt
= bfd_get_section_by_name (abfd
, ".plt");
8111 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8112 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8115 count
= relplt
->size
/ hdr
->sh_entsize
;
8116 size
= count
* sizeof (asymbol
);
8117 p
= relplt
->relocation
;
8118 for (i
= 0; i
< count
; i
++, s
++, p
++)
8119 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8121 s
= *ret
= bfd_malloc (size
);
8125 names
= (char *) (s
+ count
);
8126 p
= relplt
->relocation
;
8128 for (i
= 0; i
< count
; i
++, s
++, p
++)
8133 addr
= bed
->plt_sym_val (i
, plt
, p
);
8134 if (addr
== (bfd_vma
) -1)
8137 *s
= **p
->sym_ptr_ptr
;
8139 s
->value
= addr
- plt
->vma
;
8141 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8142 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8144 memcpy (names
, "@plt", sizeof ("@plt"));
8145 names
+= sizeof ("@plt");
8152 /* Sort symbol by binding and section. We want to put definitions
8153 sorted by section at the beginning. */
8156 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
8158 const Elf_Internal_Sym
*s1
;
8159 const Elf_Internal_Sym
*s2
;
8162 /* Make sure that undefined symbols are at the end. */
8163 s1
= (const Elf_Internal_Sym
*) arg1
;
8164 if (s1
->st_shndx
== SHN_UNDEF
)
8166 s2
= (const Elf_Internal_Sym
*) arg2
;
8167 if (s2
->st_shndx
== SHN_UNDEF
)
8170 /* Sorted by section index. */
8171 shndx
= s1
->st_shndx
- s2
->st_shndx
;
8175 /* Sorted by binding. */
8176 return ELF_ST_BIND (s1
->st_info
) - ELF_ST_BIND (s2
->st_info
);
8181 Elf_Internal_Sym
*sym
;
8186 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8188 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8189 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8190 return strcmp (s1
->name
, s2
->name
);
8193 /* Check if 2 sections define the same set of local and global
8197 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
)
8200 const struct elf_backend_data
*bed1
, *bed2
;
8201 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8202 bfd_size_type symcount1
, symcount2
;
8203 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8204 Elf_Internal_Sym
*isymstart1
= NULL
, *isymstart2
= NULL
, *isym
;
8205 Elf_Internal_Sym
*isymend
;
8206 struct elf_symbol
*symp
, *symtable1
= NULL
, *symtable2
= NULL
;
8207 bfd_size_type count1
, count2
, i
;
8214 /* If both are .gnu.linkonce sections, they have to have the same
8216 if (strncmp (sec1
->name
, ".gnu.linkonce",
8217 sizeof ".gnu.linkonce" - 1) == 0
8218 && strncmp (sec2
->name
, ".gnu.linkonce",
8219 sizeof ".gnu.linkonce" - 1) == 0)
8220 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
8221 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
8223 /* Both sections have to be in ELF. */
8224 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8225 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8228 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8231 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
8232 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
8234 /* If both are members of section groups, they have to have the
8236 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
8240 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8241 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8242 if (shndx1
== -1 || shndx2
== -1)
8245 bed1
= get_elf_backend_data (bfd1
);
8246 bed2
= get_elf_backend_data (bfd2
);
8247 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8248 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8249 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8250 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8252 if (symcount1
== 0 || symcount2
== 0)
8255 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8257 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8261 if (isymbuf1
== NULL
|| isymbuf2
== NULL
)
8264 /* Sort symbols by binding and section. Global definitions are at
8266 qsort (isymbuf1
, symcount1
, sizeof (Elf_Internal_Sym
),
8267 elf_sort_elf_symbol
);
8268 qsort (isymbuf2
, symcount2
, sizeof (Elf_Internal_Sym
),
8269 elf_sort_elf_symbol
);
8271 /* Count definitions in the section. */
8273 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
;
8274 isym
< isymend
; isym
++)
8276 if (isym
->st_shndx
== (unsigned int) shndx1
)
8283 if (count1
&& isym
->st_shndx
!= (unsigned int) shndx1
)
8288 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
;
8289 isym
< isymend
; isym
++)
8291 if (isym
->st_shndx
== (unsigned int) shndx2
)
8298 if (count2
&& isym
->st_shndx
!= (unsigned int) shndx2
)
8302 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8305 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8306 symtable2
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8308 if (symtable1
== NULL
|| symtable2
== NULL
)
8312 for (isym
= isymstart1
, isymend
= isym
+ count1
;
8313 isym
< isymend
; isym
++)
8316 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8323 for (isym
= isymstart2
, isymend
= isym
+ count1
;
8324 isym
< isymend
; isym
++)
8327 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8333 /* Sort symbol by name. */
8334 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8335 elf_sym_name_compare
);
8336 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8337 elf_sym_name_compare
);
8339 for (i
= 0; i
< count1
; i
++)
8340 /* Two symbols must have the same binding, type and name. */
8341 if (symtable1
[i
].sym
->st_info
!= symtable2
[i
].sym
->st_info
8342 || symtable1
[i
].sym
->st_other
!= symtable2
[i
].sym
->st_other
8343 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)