daily update
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
211
212 unsigned long
213 bfd_elf_gnu_hash (const char *namearg)
214 {
215 const unsigned char *name = (const unsigned char *) namearg;
216 unsigned long h = 5381;
217 unsigned char ch;
218
219 while ((ch = *name++) != '\0')
220 h = (h << 5) + h + ch;
221 return h & 0xffffffff;
222 }
223
224 bfd_boolean
225 bfd_elf_mkobject (bfd *abfd)
226 {
227 if (abfd->tdata.any == NULL)
228 {
229 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
230 if (abfd->tdata.any == NULL)
231 return FALSE;
232 }
233
234 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
235
236 return TRUE;
237 }
238
239 bfd_boolean
240 bfd_elf_mkcorefile (bfd *abfd)
241 {
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd);
244 }
245
246 char *
247 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
248 {
249 Elf_Internal_Shdr **i_shdrp;
250 bfd_byte *shstrtab = NULL;
251 file_ptr offset;
252 bfd_size_type shstrtabsize;
253
254 i_shdrp = elf_elfsections (abfd);
255 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
256 return NULL;
257
258 shstrtab = i_shdrp[shindex]->contents;
259 if (shstrtab == NULL)
260 {
261 /* No cached one, attempt to read, and cache what we read. */
262 offset = i_shdrp[shindex]->sh_offset;
263 shstrtabsize = i_shdrp[shindex]->sh_size;
264
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize + 1 == 0
268 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
269 || bfd_seek (abfd, offset, SEEK_SET) != 0)
270 shstrtab = NULL;
271 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
272 {
273 if (bfd_get_error () != bfd_error_system_call)
274 bfd_set_error (bfd_error_file_truncated);
275 shstrtab = NULL;
276 }
277 else
278 shstrtab[shstrtabsize] = '\0';
279 i_shdrp[shindex]->contents = shstrtab;
280 }
281 return (char *) shstrtab;
282 }
283
284 char *
285 bfd_elf_string_from_elf_section (bfd *abfd,
286 unsigned int shindex,
287 unsigned int strindex)
288 {
289 Elf_Internal_Shdr *hdr;
290
291 if (strindex == 0)
292 return "";
293
294 hdr = elf_elfsections (abfd)[shindex];
295
296 if (hdr->contents == NULL
297 && bfd_elf_get_str_section (abfd, shindex) == NULL)
298 return NULL;
299
300 if (strindex >= hdr->sh_size)
301 {
302 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
303 (*_bfd_error_handler)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd, strindex, (unsigned long) hdr->sh_size,
306 (shindex == shstrndx && strindex == hdr->sh_name
307 ? ".shstrtab"
308 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
309 return "";
310 }
311
312 return ((char *) hdr->contents) + strindex;
313 }
314
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
320
321 Elf_Internal_Sym *
322 bfd_elf_get_elf_syms (bfd *ibfd,
323 Elf_Internal_Shdr *symtab_hdr,
324 size_t symcount,
325 size_t symoffset,
326 Elf_Internal_Sym *intsym_buf,
327 void *extsym_buf,
328 Elf_External_Sym_Shndx *extshndx_buf)
329 {
330 Elf_Internal_Shdr *shndx_hdr;
331 void *alloc_ext;
332 const bfd_byte *esym;
333 Elf_External_Sym_Shndx *alloc_extshndx;
334 Elf_External_Sym_Shndx *shndx;
335 Elf_Internal_Sym *isym;
336 Elf_Internal_Sym *isymend;
337 const struct elf_backend_data *bed;
338 size_t extsym_size;
339 bfd_size_type amt;
340 file_ptr pos;
341
342 if (symcount == 0)
343 return intsym_buf;
344
345 /* Normal syms might have section extension entries. */
346 shndx_hdr = NULL;
347 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
348 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
349
350 /* Read the symbols. */
351 alloc_ext = NULL;
352 alloc_extshndx = NULL;
353 bed = get_elf_backend_data (ibfd);
354 extsym_size = bed->s->sizeof_sym;
355 amt = symcount * extsym_size;
356 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
357 if (extsym_buf == NULL)
358 {
359 alloc_ext = bfd_malloc2 (symcount, extsym_size);
360 extsym_buf = alloc_ext;
361 }
362 if (extsym_buf == NULL
363 || bfd_seek (ibfd, pos, SEEK_SET) != 0
364 || bfd_bread (extsym_buf, amt, ibfd) != amt)
365 {
366 intsym_buf = NULL;
367 goto out;
368 }
369
370 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
371 extshndx_buf = NULL;
372 else
373 {
374 amt = symcount * sizeof (Elf_External_Sym_Shndx);
375 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
376 if (extshndx_buf == NULL)
377 {
378 alloc_extshndx = bfd_malloc2 (symcount,
379 sizeof (Elf_External_Sym_Shndx));
380 extshndx_buf = alloc_extshndx;
381 }
382 if (extshndx_buf == NULL
383 || bfd_seek (ibfd, pos, SEEK_SET) != 0
384 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
385 {
386 intsym_buf = NULL;
387 goto out;
388 }
389 }
390
391 if (intsym_buf == NULL)
392 {
393 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
394 if (intsym_buf == NULL)
395 goto out;
396 }
397
398 /* Convert the symbols to internal form. */
399 isymend = intsym_buf + symcount;
400 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
401 isym < isymend;
402 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
403 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
404 {
405 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
406 (*_bfd_error_handler) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd, (unsigned long) symoffset);
409 intsym_buf = NULL;
410 goto out;
411 }
412
413 out:
414 if (alloc_ext != NULL)
415 free (alloc_ext);
416 if (alloc_extshndx != NULL)
417 free (alloc_extshndx);
418
419 return intsym_buf;
420 }
421
422 /* Look up a symbol name. */
423 const char *
424 bfd_elf_sym_name (bfd *abfd,
425 Elf_Internal_Shdr *symtab_hdr,
426 Elf_Internal_Sym *isym,
427 asection *sym_sec)
428 {
429 const char *name;
430 unsigned int iname = isym->st_name;
431 unsigned int shindex = symtab_hdr->sh_link;
432
433 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym->st_shndx < elf_numsections (abfd)
436 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
437 {
438 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
439 shindex = elf_elfheader (abfd)->e_shstrndx;
440 }
441
442 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
443 if (name == NULL)
444 name = "(null)";
445 else if (sym_sec && *name == '\0')
446 name = bfd_section_name (abfd, sym_sec);
447
448 return name;
449 }
450
451 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
453 pointers. */
454
455 typedef union elf_internal_group {
456 Elf_Internal_Shdr *shdr;
457 unsigned int flags;
458 } Elf_Internal_Group;
459
460 /* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
462
463 static const char *
464 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
465 {
466 Elf_Internal_Shdr *hdr;
467 unsigned char esym[sizeof (Elf64_External_Sym)];
468 Elf_External_Sym_Shndx eshndx;
469 Elf_Internal_Sym isym;
470
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr = elf_elfsections (abfd) [ghdr->sh_link];
474 if (hdr->sh_type != SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
476 return NULL;
477
478 /* Go read the symbol. */
479 hdr = &elf_tdata (abfd)->symtab_hdr;
480 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
481 &isym, esym, &eshndx) == NULL)
482 return NULL;
483
484 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
485 }
486
487 /* Set next_in_group list pointer, and group name for NEWSECT. */
488
489 static bfd_boolean
490 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
491 {
492 unsigned int num_group = elf_tdata (abfd)->num_group;
493
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
496 if (num_group == 0)
497 {
498 unsigned int i, shnum;
499
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum = elf_numsections (abfd);
503 num_group = 0;
504 for (i = 0; i < shnum; i++)
505 {
506 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
507 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
508 num_group += 1;
509 }
510
511 if (num_group == 0)
512 {
513 num_group = (unsigned) -1;
514 elf_tdata (abfd)->num_group = num_group;
515 }
516 else
517 {
518 /* We keep a list of elf section headers for group sections,
519 so we can find them quickly. */
520 bfd_size_type amt;
521
522 elf_tdata (abfd)->num_group = num_group;
523 elf_tdata (abfd)->group_sect_ptr
524 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
525 if (elf_tdata (abfd)->group_sect_ptr == NULL)
526 return FALSE;
527
528 num_group = 0;
529 for (i = 0; i < shnum; i++)
530 {
531 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
532 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
533 {
534 unsigned char *src;
535 Elf_Internal_Group *dest;
536
537 /* Add to list of sections. */
538 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
539 num_group += 1;
540
541 /* Read the raw contents. */
542 BFD_ASSERT (sizeof (*dest) >= 4);
543 amt = shdr->sh_size * sizeof (*dest) / 4;
544 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
545 sizeof (*dest) / 4);
546 if (shdr->contents == NULL
547 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
548 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
549 != shdr->sh_size))
550 return FALSE;
551
552 /* Translate raw contents, a flag word followed by an
553 array of elf section indices all in target byte order,
554 to the flag word followed by an array of elf section
555 pointers. */
556 src = shdr->contents + shdr->sh_size;
557 dest = (Elf_Internal_Group *) (shdr->contents + amt);
558 while (1)
559 {
560 unsigned int idx;
561
562 src -= 4;
563 --dest;
564 idx = H_GET_32 (abfd, src);
565 if (src == shdr->contents)
566 {
567 dest->flags = idx;
568 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
569 shdr->bfd_section->flags
570 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
571 break;
572 }
573 if (idx >= shnum)
574 {
575 ((*_bfd_error_handler)
576 (_("%B: invalid SHT_GROUP entry"), abfd));
577 idx = 0;
578 }
579 dest->shdr = elf_elfsections (abfd)[idx];
580 }
581 }
582 }
583 }
584 }
585
586 if (num_group != (unsigned) -1)
587 {
588 unsigned int i;
589
590 for (i = 0; i < num_group; i++)
591 {
592 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
593 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
594 unsigned int n_elt = shdr->sh_size / 4;
595
596 /* Look through this group's sections to see if current
597 section is a member. */
598 while (--n_elt != 0)
599 if ((++idx)->shdr == hdr)
600 {
601 asection *s = NULL;
602
603 /* We are a member of this group. Go looking through
604 other members to see if any others are linked via
605 next_in_group. */
606 idx = (Elf_Internal_Group *) shdr->contents;
607 n_elt = shdr->sh_size / 4;
608 while (--n_elt != 0)
609 if ((s = (++idx)->shdr->bfd_section) != NULL
610 && elf_next_in_group (s) != NULL)
611 break;
612 if (n_elt != 0)
613 {
614 /* Snarf the group name from other member, and
615 insert current section in circular list. */
616 elf_group_name (newsect) = elf_group_name (s);
617 elf_next_in_group (newsect) = elf_next_in_group (s);
618 elf_next_in_group (s) = newsect;
619 }
620 else
621 {
622 const char *gname;
623
624 gname = group_signature (abfd, shdr);
625 if (gname == NULL)
626 return FALSE;
627 elf_group_name (newsect) = gname;
628
629 /* Start a circular list with one element. */
630 elf_next_in_group (newsect) = newsect;
631 }
632
633 /* If the group section has been created, point to the
634 new member. */
635 if (shdr->bfd_section != NULL)
636 elf_next_in_group (shdr->bfd_section) = newsect;
637
638 i = num_group - 1;
639 break;
640 }
641 }
642 }
643
644 if (elf_group_name (newsect) == NULL)
645 {
646 (*_bfd_error_handler) (_("%B: no group info for section %A"),
647 abfd, newsect);
648 }
649 return TRUE;
650 }
651
652 bfd_boolean
653 _bfd_elf_setup_sections (bfd *abfd)
654 {
655 unsigned int i;
656 unsigned int num_group = elf_tdata (abfd)->num_group;
657 bfd_boolean result = TRUE;
658 asection *s;
659
660 /* Process SHF_LINK_ORDER. */
661 for (s = abfd->sections; s != NULL; s = s->next)
662 {
663 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
664 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
665 {
666 unsigned int elfsec = this_hdr->sh_link;
667 /* FIXME: The old Intel compiler and old strip/objcopy may
668 not set the sh_link or sh_info fields. Hence we could
669 get the situation where elfsec is 0. */
670 if (elfsec == 0)
671 {
672 const struct elf_backend_data *bed
673 = get_elf_backend_data (abfd);
674 if (bed->link_order_error_handler)
675 bed->link_order_error_handler
676 (_("%B: warning: sh_link not set for section `%A'"),
677 abfd, s);
678 }
679 else
680 {
681 asection *link;
682
683 this_hdr = elf_elfsections (abfd)[elfsec];
684
685 /* PR 1991, 2008:
686 Some strip/objcopy may leave an incorrect value in
687 sh_link. We don't want to proceed. */
688 link = this_hdr->bfd_section;
689 if (link == NULL)
690 {
691 (*_bfd_error_handler)
692 (_("%B: sh_link [%d] in section `%A' is incorrect"),
693 s->owner, s, elfsec);
694 result = FALSE;
695 }
696
697 elf_linked_to_section (s) = link;
698 }
699 }
700 }
701
702 /* Process section groups. */
703 if (num_group == (unsigned) -1)
704 return result;
705
706 for (i = 0; i < num_group; i++)
707 {
708 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
709 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
710 unsigned int n_elt = shdr->sh_size / 4;
711
712 while (--n_elt != 0)
713 if ((++idx)->shdr->bfd_section)
714 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
715 else if (idx->shdr->sh_type == SHT_RELA
716 || idx->shdr->sh_type == SHT_REL)
717 /* We won't include relocation sections in section groups in
718 output object files. We adjust the group section size here
719 so that relocatable link will work correctly when
720 relocation sections are in section group in input object
721 files. */
722 shdr->bfd_section->size -= 4;
723 else
724 {
725 /* There are some unknown sections in the group. */
726 (*_bfd_error_handler)
727 (_("%B: unknown [%d] section `%s' in group [%s]"),
728 abfd,
729 (unsigned int) idx->shdr->sh_type,
730 bfd_elf_string_from_elf_section (abfd,
731 (elf_elfheader (abfd)
732 ->e_shstrndx),
733 idx->shdr->sh_name),
734 shdr->bfd_section->name);
735 result = FALSE;
736 }
737 }
738 return result;
739 }
740
741 bfd_boolean
742 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
743 {
744 return elf_next_in_group (sec) != NULL;
745 }
746
747 /* Make a BFD section from an ELF section. We store a pointer to the
748 BFD section in the bfd_section field of the header. */
749
750 bfd_boolean
751 _bfd_elf_make_section_from_shdr (bfd *abfd,
752 Elf_Internal_Shdr *hdr,
753 const char *name,
754 int shindex)
755 {
756 asection *newsect;
757 flagword flags;
758 const struct elf_backend_data *bed;
759
760 if (hdr->bfd_section != NULL)
761 {
762 BFD_ASSERT (strcmp (name,
763 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
764 return TRUE;
765 }
766
767 newsect = bfd_make_section_anyway (abfd, name);
768 if (newsect == NULL)
769 return FALSE;
770
771 hdr->bfd_section = newsect;
772 elf_section_data (newsect)->this_hdr = *hdr;
773 elf_section_data (newsect)->this_idx = shindex;
774
775 /* Always use the real type/flags. */
776 elf_section_type (newsect) = hdr->sh_type;
777 elf_section_flags (newsect) = hdr->sh_flags;
778
779 newsect->filepos = hdr->sh_offset;
780
781 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
782 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
783 || ! bfd_set_section_alignment (abfd, newsect,
784 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
785 return FALSE;
786
787 flags = SEC_NO_FLAGS;
788 if (hdr->sh_type != SHT_NOBITS)
789 flags |= SEC_HAS_CONTENTS;
790 if (hdr->sh_type == SHT_GROUP)
791 flags |= SEC_GROUP | SEC_EXCLUDE;
792 if ((hdr->sh_flags & SHF_ALLOC) != 0)
793 {
794 flags |= SEC_ALLOC;
795 if (hdr->sh_type != SHT_NOBITS)
796 flags |= SEC_LOAD;
797 }
798 if ((hdr->sh_flags & SHF_WRITE) == 0)
799 flags |= SEC_READONLY;
800 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
801 flags |= SEC_CODE;
802 else if ((flags & SEC_LOAD) != 0)
803 flags |= SEC_DATA;
804 if ((hdr->sh_flags & SHF_MERGE) != 0)
805 {
806 flags |= SEC_MERGE;
807 newsect->entsize = hdr->sh_entsize;
808 if ((hdr->sh_flags & SHF_STRINGS) != 0)
809 flags |= SEC_STRINGS;
810 }
811 if (hdr->sh_flags & SHF_GROUP)
812 if (!setup_group (abfd, hdr, newsect))
813 return FALSE;
814 if ((hdr->sh_flags & SHF_TLS) != 0)
815 flags |= SEC_THREAD_LOCAL;
816
817 if ((flags & SEC_ALLOC) == 0)
818 {
819 /* The debugging sections appear to be recognized only by name,
820 not any sort of flag. Their SEC_ALLOC bits are cleared. */
821 static const struct
822 {
823 const char *name;
824 int len;
825 } debug_sections [] =
826 {
827 { STRING_COMMA_LEN ("debug") }, /* 'd' */
828 { NULL, 0 }, /* 'e' */
829 { NULL, 0 }, /* 'f' */
830 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
831 { NULL, 0 }, /* 'h' */
832 { NULL, 0 }, /* 'i' */
833 { NULL, 0 }, /* 'j' */
834 { NULL, 0 }, /* 'k' */
835 { STRING_COMMA_LEN ("line") }, /* 'l' */
836 { NULL, 0 }, /* 'm' */
837 { NULL, 0 }, /* 'n' */
838 { NULL, 0 }, /* 'o' */
839 { NULL, 0 }, /* 'p' */
840 { NULL, 0 }, /* 'q' */
841 { NULL, 0 }, /* 'r' */
842 { STRING_COMMA_LEN ("stab") } /* 's' */
843 };
844
845 if (name [0] == '.')
846 {
847 int i = name [1] - 'd';
848 if (i >= 0
849 && i < (int) ARRAY_SIZE (debug_sections)
850 && debug_sections [i].name != NULL
851 && strncmp (&name [1], debug_sections [i].name,
852 debug_sections [i].len) == 0)
853 flags |= SEC_DEBUGGING;
854 }
855 }
856
857 /* As a GNU extension, if the name begins with .gnu.linkonce, we
858 only link a single copy of the section. This is used to support
859 g++. g++ will emit each template expansion in its own section.
860 The symbols will be defined as weak, so that multiple definitions
861 are permitted. The GNU linker extension is to actually discard
862 all but one of the sections. */
863 if (CONST_STRNEQ (name, ".gnu.linkonce")
864 && elf_next_in_group (newsect) == NULL)
865 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
866
867 bed = get_elf_backend_data (abfd);
868 if (bed->elf_backend_section_flags)
869 if (! bed->elf_backend_section_flags (&flags, hdr))
870 return FALSE;
871
872 if (! bfd_set_section_flags (abfd, newsect, flags))
873 return FALSE;
874
875 if ((flags & SEC_ALLOC) != 0)
876 {
877 Elf_Internal_Phdr *phdr;
878 unsigned int i;
879
880 /* Look through the phdrs to see if we need to adjust the lma.
881 If all the p_paddr fields are zero, we ignore them, since
882 some ELF linkers produce such output. */
883 phdr = elf_tdata (abfd)->phdr;
884 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
885 {
886 if (phdr->p_paddr != 0)
887 break;
888 }
889 if (i < elf_elfheader (abfd)->e_phnum)
890 {
891 phdr = elf_tdata (abfd)->phdr;
892 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
893 {
894 /* This section is part of this segment if its file
895 offset plus size lies within the segment's memory
896 span and, if the section is loaded, the extent of the
897 loaded data lies within the extent of the segment.
898
899 Note - we used to check the p_paddr field as well, and
900 refuse to set the LMA if it was 0. This is wrong
901 though, as a perfectly valid initialised segment can
902 have a p_paddr of zero. Some architectures, eg ARM,
903 place special significance on the address 0 and
904 executables need to be able to have a segment which
905 covers this address. */
906 if (phdr->p_type == PT_LOAD
907 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
908 && (hdr->sh_offset + hdr->sh_size
909 <= phdr->p_offset + phdr->p_memsz)
910 && ((flags & SEC_LOAD) == 0
911 || (hdr->sh_offset + hdr->sh_size
912 <= phdr->p_offset + phdr->p_filesz)))
913 {
914 if ((flags & SEC_LOAD) == 0)
915 newsect->lma = (phdr->p_paddr
916 + hdr->sh_addr - phdr->p_vaddr);
917 else
918 /* We used to use the same adjustment for SEC_LOAD
919 sections, but that doesn't work if the segment
920 is packed with code from multiple VMAs.
921 Instead we calculate the section LMA based on
922 the segment LMA. It is assumed that the
923 segment will contain sections with contiguous
924 LMAs, even if the VMAs are not. */
925 newsect->lma = (phdr->p_paddr
926 + hdr->sh_offset - phdr->p_offset);
927
928 /* With contiguous segments, we can't tell from file
929 offsets whether a section with zero size should
930 be placed at the end of one segment or the
931 beginning of the next. Decide based on vaddr. */
932 if (hdr->sh_addr >= phdr->p_vaddr
933 && (hdr->sh_addr + hdr->sh_size
934 <= phdr->p_vaddr + phdr->p_memsz))
935 break;
936 }
937 }
938 }
939 }
940
941 return TRUE;
942 }
943
944 /*
945 INTERNAL_FUNCTION
946 bfd_elf_find_section
947
948 SYNOPSIS
949 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
950
951 DESCRIPTION
952 Helper functions for GDB to locate the string tables.
953 Since BFD hides string tables from callers, GDB needs to use an
954 internal hook to find them. Sun's .stabstr, in particular,
955 isn't even pointed to by the .stab section, so ordinary
956 mechanisms wouldn't work to find it, even if we had some.
957 */
958
959 struct elf_internal_shdr *
960 bfd_elf_find_section (bfd *abfd, char *name)
961 {
962 Elf_Internal_Shdr **i_shdrp;
963 char *shstrtab;
964 unsigned int max;
965 unsigned int i;
966
967 i_shdrp = elf_elfsections (abfd);
968 if (i_shdrp != NULL)
969 {
970 shstrtab = bfd_elf_get_str_section (abfd,
971 elf_elfheader (abfd)->e_shstrndx);
972 if (shstrtab != NULL)
973 {
974 max = elf_numsections (abfd);
975 for (i = 1; i < max; i++)
976 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
977 return i_shdrp[i];
978 }
979 }
980 return 0;
981 }
982
983 const char *const bfd_elf_section_type_names[] = {
984 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
985 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
986 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
987 };
988
989 /* ELF relocs are against symbols. If we are producing relocatable
990 output, and the reloc is against an external symbol, and nothing
991 has given us any additional addend, the resulting reloc will also
992 be against the same symbol. In such a case, we don't want to
993 change anything about the way the reloc is handled, since it will
994 all be done at final link time. Rather than put special case code
995 into bfd_perform_relocation, all the reloc types use this howto
996 function. It just short circuits the reloc if producing
997 relocatable output against an external symbol. */
998
999 bfd_reloc_status_type
1000 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1001 arelent *reloc_entry,
1002 asymbol *symbol,
1003 void *data ATTRIBUTE_UNUSED,
1004 asection *input_section,
1005 bfd *output_bfd,
1006 char **error_message ATTRIBUTE_UNUSED)
1007 {
1008 if (output_bfd != NULL
1009 && (symbol->flags & BSF_SECTION_SYM) == 0
1010 && (! reloc_entry->howto->partial_inplace
1011 || reloc_entry->addend == 0))
1012 {
1013 reloc_entry->address += input_section->output_offset;
1014 return bfd_reloc_ok;
1015 }
1016
1017 return bfd_reloc_continue;
1018 }
1019 \f
1020 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1021
1022 static void
1023 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1024 asection *sec)
1025 {
1026 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1027 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1028 }
1029
1030 /* Finish SHF_MERGE section merging. */
1031
1032 bfd_boolean
1033 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1034 {
1035 bfd *ibfd;
1036 asection *sec;
1037
1038 if (!is_elf_hash_table (info->hash))
1039 return FALSE;
1040
1041 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1042 if ((ibfd->flags & DYNAMIC) == 0)
1043 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1044 if ((sec->flags & SEC_MERGE) != 0
1045 && !bfd_is_abs_section (sec->output_section))
1046 {
1047 struct bfd_elf_section_data *secdata;
1048
1049 secdata = elf_section_data (sec);
1050 if (! _bfd_add_merge_section (abfd,
1051 &elf_hash_table (info)->merge_info,
1052 sec, &secdata->sec_info))
1053 return FALSE;
1054 else if (secdata->sec_info)
1055 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1056 }
1057
1058 if (elf_hash_table (info)->merge_info != NULL)
1059 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1060 merge_sections_remove_hook);
1061 return TRUE;
1062 }
1063
1064 void
1065 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1066 {
1067 sec->output_section = bfd_abs_section_ptr;
1068 sec->output_offset = sec->vma;
1069 if (!is_elf_hash_table (info->hash))
1070 return;
1071
1072 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1073 }
1074 \f
1075 /* Copy the program header and other data from one object module to
1076 another. */
1077
1078 bfd_boolean
1079 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1080 {
1081 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1082 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1083 return TRUE;
1084
1085 BFD_ASSERT (!elf_flags_init (obfd)
1086 || (elf_elfheader (obfd)->e_flags
1087 == elf_elfheader (ibfd)->e_flags));
1088
1089 elf_gp (obfd) = elf_gp (ibfd);
1090 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1091 elf_flags_init (obfd) = TRUE;
1092 return TRUE;
1093 }
1094
1095 static const char *
1096 get_segment_type (unsigned int p_type)
1097 {
1098 const char *pt;
1099 switch (p_type)
1100 {
1101 case PT_NULL: pt = "NULL"; break;
1102 case PT_LOAD: pt = "LOAD"; break;
1103 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1104 case PT_INTERP: pt = "INTERP"; break;
1105 case PT_NOTE: pt = "NOTE"; break;
1106 case PT_SHLIB: pt = "SHLIB"; break;
1107 case PT_PHDR: pt = "PHDR"; break;
1108 case PT_TLS: pt = "TLS"; break;
1109 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1110 case PT_GNU_STACK: pt = "STACK"; break;
1111 case PT_GNU_RELRO: pt = "RELRO"; break;
1112 default: pt = NULL; break;
1113 }
1114 return pt;
1115 }
1116
1117 /* Print out the program headers. */
1118
1119 bfd_boolean
1120 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1121 {
1122 FILE *f = farg;
1123 Elf_Internal_Phdr *p;
1124 asection *s;
1125 bfd_byte *dynbuf = NULL;
1126
1127 p = elf_tdata (abfd)->phdr;
1128 if (p != NULL)
1129 {
1130 unsigned int i, c;
1131
1132 fprintf (f, _("\nProgram Header:\n"));
1133 c = elf_elfheader (abfd)->e_phnum;
1134 for (i = 0; i < c; i++, p++)
1135 {
1136 const char *pt = get_segment_type (p->p_type);
1137 char buf[20];
1138
1139 if (pt == NULL)
1140 {
1141 sprintf (buf, "0x%lx", p->p_type);
1142 pt = buf;
1143 }
1144 fprintf (f, "%8s off 0x", pt);
1145 bfd_fprintf_vma (abfd, f, p->p_offset);
1146 fprintf (f, " vaddr 0x");
1147 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1148 fprintf (f, " paddr 0x");
1149 bfd_fprintf_vma (abfd, f, p->p_paddr);
1150 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1151 fprintf (f, " filesz 0x");
1152 bfd_fprintf_vma (abfd, f, p->p_filesz);
1153 fprintf (f, " memsz 0x");
1154 bfd_fprintf_vma (abfd, f, p->p_memsz);
1155 fprintf (f, " flags %c%c%c",
1156 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1157 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1158 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1159 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1160 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1161 fprintf (f, "\n");
1162 }
1163 }
1164
1165 s = bfd_get_section_by_name (abfd, ".dynamic");
1166 if (s != NULL)
1167 {
1168 int elfsec;
1169 unsigned long shlink;
1170 bfd_byte *extdyn, *extdynend;
1171 size_t extdynsize;
1172 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1173
1174 fprintf (f, _("\nDynamic Section:\n"));
1175
1176 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1177 goto error_return;
1178
1179 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1180 if (elfsec == -1)
1181 goto error_return;
1182 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1183
1184 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1185 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1186
1187 extdyn = dynbuf;
1188 extdynend = extdyn + s->size;
1189 for (; extdyn < extdynend; extdyn += extdynsize)
1190 {
1191 Elf_Internal_Dyn dyn;
1192 const char *name;
1193 char ab[20];
1194 bfd_boolean stringp;
1195
1196 (*swap_dyn_in) (abfd, extdyn, &dyn);
1197
1198 if (dyn.d_tag == DT_NULL)
1199 break;
1200
1201 stringp = FALSE;
1202 switch (dyn.d_tag)
1203 {
1204 default:
1205 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1206 name = ab;
1207 break;
1208
1209 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1210 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1211 case DT_PLTGOT: name = "PLTGOT"; break;
1212 case DT_HASH: name = "HASH"; break;
1213 case DT_STRTAB: name = "STRTAB"; break;
1214 case DT_SYMTAB: name = "SYMTAB"; break;
1215 case DT_RELA: name = "RELA"; break;
1216 case DT_RELASZ: name = "RELASZ"; break;
1217 case DT_RELAENT: name = "RELAENT"; break;
1218 case DT_STRSZ: name = "STRSZ"; break;
1219 case DT_SYMENT: name = "SYMENT"; break;
1220 case DT_INIT: name = "INIT"; break;
1221 case DT_FINI: name = "FINI"; break;
1222 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1223 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1224 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1225 case DT_REL: name = "REL"; break;
1226 case DT_RELSZ: name = "RELSZ"; break;
1227 case DT_RELENT: name = "RELENT"; break;
1228 case DT_PLTREL: name = "PLTREL"; break;
1229 case DT_DEBUG: name = "DEBUG"; break;
1230 case DT_TEXTREL: name = "TEXTREL"; break;
1231 case DT_JMPREL: name = "JMPREL"; break;
1232 case DT_BIND_NOW: name = "BIND_NOW"; break;
1233 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1238 case DT_FLAGS: name = "FLAGS"; break;
1239 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM: name = "CHECKSUM"; break;
1242 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1243 case DT_MOVEENT: name = "MOVEENT"; break;
1244 case DT_MOVESZ: name = "MOVESZ"; break;
1245 case DT_FEATURE: name = "FEATURE"; break;
1246 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1247 case DT_SYMINSZ: name = "SYMINSZ"; break;
1248 case DT_SYMINENT: name = "SYMINENT"; break;
1249 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1250 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1251 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1252 case DT_PLTPAD: name = "PLTPAD"; break;
1253 case DT_MOVETAB: name = "MOVETAB"; break;
1254 case DT_SYMINFO: name = "SYMINFO"; break;
1255 case DT_RELACOUNT: name = "RELACOUNT"; break;
1256 case DT_RELCOUNT: name = "RELCOUNT"; break;
1257 case DT_FLAGS_1: name = "FLAGS_1"; break;
1258 case DT_VERSYM: name = "VERSYM"; break;
1259 case DT_VERDEF: name = "VERDEF"; break;
1260 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1261 case DT_VERNEED: name = "VERNEED"; break;
1262 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1263 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1264 case DT_USED: name = "USED"; break;
1265 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1266 case DT_GNU_HASH: name = "GNU_HASH"; break;
1267 }
1268
1269 fprintf (f, " %-11s ", name);
1270 if (! stringp)
1271 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1272 else
1273 {
1274 const char *string;
1275 unsigned int tagv = dyn.d_un.d_val;
1276
1277 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1278 if (string == NULL)
1279 goto error_return;
1280 fprintf (f, "%s", string);
1281 }
1282 fprintf (f, "\n");
1283 }
1284
1285 free (dynbuf);
1286 dynbuf = NULL;
1287 }
1288
1289 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1290 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1291 {
1292 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1293 return FALSE;
1294 }
1295
1296 if (elf_dynverdef (abfd) != 0)
1297 {
1298 Elf_Internal_Verdef *t;
1299
1300 fprintf (f, _("\nVersion definitions:\n"));
1301 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1302 {
1303 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1304 t->vd_flags, t->vd_hash,
1305 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1306 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1307 {
1308 Elf_Internal_Verdaux *a;
1309
1310 fprintf (f, "\t");
1311 for (a = t->vd_auxptr->vda_nextptr;
1312 a != NULL;
1313 a = a->vda_nextptr)
1314 fprintf (f, "%s ",
1315 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1316 fprintf (f, "\n");
1317 }
1318 }
1319 }
1320
1321 if (elf_dynverref (abfd) != 0)
1322 {
1323 Elf_Internal_Verneed *t;
1324
1325 fprintf (f, _("\nVersion References:\n"));
1326 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1327 {
1328 Elf_Internal_Vernaux *a;
1329
1330 fprintf (f, _(" required from %s:\n"),
1331 t->vn_filename ? t->vn_filename : "<corrupt>");
1332 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1333 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1334 a->vna_flags, a->vna_other,
1335 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1336 }
1337 }
1338
1339 return TRUE;
1340
1341 error_return:
1342 if (dynbuf != NULL)
1343 free (dynbuf);
1344 return FALSE;
1345 }
1346
1347 /* Display ELF-specific fields of a symbol. */
1348
1349 void
1350 bfd_elf_print_symbol (bfd *abfd,
1351 void *filep,
1352 asymbol *symbol,
1353 bfd_print_symbol_type how)
1354 {
1355 FILE *file = filep;
1356 switch (how)
1357 {
1358 case bfd_print_symbol_name:
1359 fprintf (file, "%s", symbol->name);
1360 break;
1361 case bfd_print_symbol_more:
1362 fprintf (file, "elf ");
1363 bfd_fprintf_vma (abfd, file, symbol->value);
1364 fprintf (file, " %lx", (long) symbol->flags);
1365 break;
1366 case bfd_print_symbol_all:
1367 {
1368 const char *section_name;
1369 const char *name = NULL;
1370 const struct elf_backend_data *bed;
1371 unsigned char st_other;
1372 bfd_vma val;
1373
1374 section_name = symbol->section ? symbol->section->name : "(*none*)";
1375
1376 bed = get_elf_backend_data (abfd);
1377 if (bed->elf_backend_print_symbol_all)
1378 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1379
1380 if (name == NULL)
1381 {
1382 name = symbol->name;
1383 bfd_print_symbol_vandf (abfd, file, symbol);
1384 }
1385
1386 fprintf (file, " %s\t", section_name);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (bfd_is_com_section (symbol->section))
1392 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1393 else
1394 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1395 bfd_fprintf_vma (abfd, file, val);
1396
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd)->dynversym_section != 0
1399 && (elf_tdata (abfd)->dynverdef_section != 0
1400 || elf_tdata (abfd)->dynverref_section != 0))
1401 {
1402 unsigned int vernum;
1403 const char *version_string;
1404
1405 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1406
1407 if (vernum == 0)
1408 version_string = "";
1409 else if (vernum == 1)
1410 version_string = "Base";
1411 else if (vernum <= elf_tdata (abfd)->cverdefs)
1412 version_string =
1413 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1414 else
1415 {
1416 Elf_Internal_Verneed *t;
1417
1418 version_string = "";
1419 for (t = elf_tdata (abfd)->verref;
1420 t != NULL;
1421 t = t->vn_nextref)
1422 {
1423 Elf_Internal_Vernaux *a;
1424
1425 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1426 {
1427 if (a->vna_other == vernum)
1428 {
1429 version_string = a->vna_nodename;
1430 break;
1431 }
1432 }
1433 }
1434 }
1435
1436 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1437 fprintf (file, " %-11s", version_string);
1438 else
1439 {
1440 int i;
1441
1442 fprintf (file, " (%s)", version_string);
1443 for (i = 10 - strlen (version_string); i > 0; --i)
1444 putc (' ', file);
1445 }
1446 }
1447
1448 /* If the st_other field is not zero, print it. */
1449 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1450
1451 switch (st_other)
1452 {
1453 case 0: break;
1454 case STV_INTERNAL: fprintf (file, " .internal"); break;
1455 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1456 case STV_PROTECTED: fprintf (file, " .protected"); break;
1457 default:
1458 /* Some other non-defined flags are also present, so print
1459 everything hex. */
1460 fprintf (file, " 0x%02x", (unsigned int) st_other);
1461 }
1462
1463 fprintf (file, " %s", name);
1464 }
1465 break;
1466 }
1467 }
1468 \f
1469 /* Create an entry in an ELF linker hash table. */
1470
1471 struct bfd_hash_entry *
1472 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1473 struct bfd_hash_table *table,
1474 const char *string)
1475 {
1476 /* Allocate the structure if it has not already been allocated by a
1477 subclass. */
1478 if (entry == NULL)
1479 {
1480 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1481 if (entry == NULL)
1482 return entry;
1483 }
1484
1485 /* Call the allocation method of the superclass. */
1486 entry = _bfd_link_hash_newfunc (entry, table, string);
1487 if (entry != NULL)
1488 {
1489 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1490 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1491
1492 /* Set local fields. */
1493 ret->indx = -1;
1494 ret->dynindx = -1;
1495 ret->got = htab->init_got_refcount;
1496 ret->plt = htab->init_plt_refcount;
1497 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1498 - offsetof (struct elf_link_hash_entry, size)));
1499 /* Assume that we have been called by a non-ELF symbol reader.
1500 This flag is then reset by the code which reads an ELF input
1501 file. This ensures that a symbol created by a non-ELF symbol
1502 reader will have the flag set correctly. */
1503 ret->non_elf = 1;
1504 }
1505
1506 return entry;
1507 }
1508
1509 /* Copy data from an indirect symbol to its direct symbol, hiding the
1510 old indirect symbol. Also used for copying flags to a weakdef. */
1511
1512 void
1513 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1514 struct elf_link_hash_entry *dir,
1515 struct elf_link_hash_entry *ind)
1516 {
1517 struct elf_link_hash_table *htab;
1518
1519 /* Copy down any references that we may have already seen to the
1520 symbol which just became indirect. */
1521
1522 dir->ref_dynamic |= ind->ref_dynamic;
1523 dir->ref_regular |= ind->ref_regular;
1524 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1525 dir->non_got_ref |= ind->non_got_ref;
1526 dir->needs_plt |= ind->needs_plt;
1527 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1528
1529 if (ind->root.type != bfd_link_hash_indirect)
1530 return;
1531
1532 /* Copy over the global and procedure linkage table refcount entries.
1533 These may have been already set up by a check_relocs routine. */
1534 htab = elf_hash_table (info);
1535 if (ind->got.refcount > htab->init_got_refcount.refcount)
1536 {
1537 if (dir->got.refcount < 0)
1538 dir->got.refcount = 0;
1539 dir->got.refcount += ind->got.refcount;
1540 ind->got.refcount = htab->init_got_refcount.refcount;
1541 }
1542
1543 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1544 {
1545 if (dir->plt.refcount < 0)
1546 dir->plt.refcount = 0;
1547 dir->plt.refcount += ind->plt.refcount;
1548 ind->plt.refcount = htab->init_plt_refcount.refcount;
1549 }
1550
1551 if (ind->dynindx != -1)
1552 {
1553 if (dir->dynindx != -1)
1554 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1555 dir->dynindx = ind->dynindx;
1556 dir->dynstr_index = ind->dynstr_index;
1557 ind->dynindx = -1;
1558 ind->dynstr_index = 0;
1559 }
1560 }
1561
1562 void
1563 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1564 struct elf_link_hash_entry *h,
1565 bfd_boolean force_local)
1566 {
1567 h->plt = elf_hash_table (info)->init_plt_offset;
1568 h->needs_plt = 0;
1569 if (force_local)
1570 {
1571 h->forced_local = 1;
1572 if (h->dynindx != -1)
1573 {
1574 h->dynindx = -1;
1575 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1576 h->dynstr_index);
1577 }
1578 }
1579 }
1580
1581 /* Initialize an ELF linker hash table. */
1582
1583 bfd_boolean
1584 _bfd_elf_link_hash_table_init
1585 (struct elf_link_hash_table *table,
1586 bfd *abfd,
1587 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1588 struct bfd_hash_table *,
1589 const char *),
1590 unsigned int entsize)
1591 {
1592 bfd_boolean ret;
1593 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1594
1595 table->dynamic_sections_created = FALSE;
1596 table->dynobj = NULL;
1597 table->init_got_refcount.refcount = can_refcount - 1;
1598 table->init_plt_refcount.refcount = can_refcount - 1;
1599 table->init_got_offset.offset = -(bfd_vma) 1;
1600 table->init_plt_offset.offset = -(bfd_vma) 1;
1601 /* The first dynamic symbol is a dummy. */
1602 table->dynsymcount = 1;
1603 table->dynstr = NULL;
1604 table->bucketcount = 0;
1605 table->needed = NULL;
1606 table->hgot = NULL;
1607 table->hplt = NULL;
1608 table->merge_info = NULL;
1609 memset (&table->stab_info, 0, sizeof (table->stab_info));
1610 memset (&table->eh_info, 0, sizeof (table->eh_info));
1611 table->dynlocal = NULL;
1612 table->runpath = NULL;
1613 table->tls_sec = NULL;
1614 table->tls_size = 0;
1615 table->loaded = NULL;
1616 table->is_relocatable_executable = FALSE;
1617
1618 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1619 table->root.type = bfd_link_elf_hash_table;
1620
1621 return ret;
1622 }
1623
1624 /* Create an ELF linker hash table. */
1625
1626 struct bfd_link_hash_table *
1627 _bfd_elf_link_hash_table_create (bfd *abfd)
1628 {
1629 struct elf_link_hash_table *ret;
1630 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1631
1632 ret = bfd_malloc (amt);
1633 if (ret == NULL)
1634 return NULL;
1635
1636 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1637 sizeof (struct elf_link_hash_entry)))
1638 {
1639 free (ret);
1640 return NULL;
1641 }
1642
1643 return &ret->root;
1644 }
1645
1646 /* This is a hook for the ELF emulation code in the generic linker to
1647 tell the backend linker what file name to use for the DT_NEEDED
1648 entry for a dynamic object. */
1649
1650 void
1651 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1652 {
1653 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1654 && bfd_get_format (abfd) == bfd_object)
1655 elf_dt_name (abfd) = name;
1656 }
1657
1658 int
1659 bfd_elf_get_dyn_lib_class (bfd *abfd)
1660 {
1661 int lib_class;
1662 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1663 && bfd_get_format (abfd) == bfd_object)
1664 lib_class = elf_dyn_lib_class (abfd);
1665 else
1666 lib_class = 0;
1667 return lib_class;
1668 }
1669
1670 void
1671 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
1672 {
1673 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1674 && bfd_get_format (abfd) == bfd_object)
1675 elf_dyn_lib_class (abfd) = lib_class;
1676 }
1677
1678 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1679 the linker ELF emulation code. */
1680
1681 struct bfd_link_needed_list *
1682 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1683 struct bfd_link_info *info)
1684 {
1685 if (! is_elf_hash_table (info->hash))
1686 return NULL;
1687 return elf_hash_table (info)->needed;
1688 }
1689
1690 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1691 hook for the linker ELF emulation code. */
1692
1693 struct bfd_link_needed_list *
1694 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1695 struct bfd_link_info *info)
1696 {
1697 if (! is_elf_hash_table (info->hash))
1698 return NULL;
1699 return elf_hash_table (info)->runpath;
1700 }
1701
1702 /* Get the name actually used for a dynamic object for a link. This
1703 is the SONAME entry if there is one. Otherwise, it is the string
1704 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1705
1706 const char *
1707 bfd_elf_get_dt_soname (bfd *abfd)
1708 {
1709 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1710 && bfd_get_format (abfd) == bfd_object)
1711 return elf_dt_name (abfd);
1712 return NULL;
1713 }
1714
1715 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1716 the ELF linker emulation code. */
1717
1718 bfd_boolean
1719 bfd_elf_get_bfd_needed_list (bfd *abfd,
1720 struct bfd_link_needed_list **pneeded)
1721 {
1722 asection *s;
1723 bfd_byte *dynbuf = NULL;
1724 int elfsec;
1725 unsigned long shlink;
1726 bfd_byte *extdyn, *extdynend;
1727 size_t extdynsize;
1728 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1729
1730 *pneeded = NULL;
1731
1732 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1733 || bfd_get_format (abfd) != bfd_object)
1734 return TRUE;
1735
1736 s = bfd_get_section_by_name (abfd, ".dynamic");
1737 if (s == NULL || s->size == 0)
1738 return TRUE;
1739
1740 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1741 goto error_return;
1742
1743 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1744 if (elfsec == -1)
1745 goto error_return;
1746
1747 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1748
1749 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1750 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1751
1752 extdyn = dynbuf;
1753 extdynend = extdyn + s->size;
1754 for (; extdyn < extdynend; extdyn += extdynsize)
1755 {
1756 Elf_Internal_Dyn dyn;
1757
1758 (*swap_dyn_in) (abfd, extdyn, &dyn);
1759
1760 if (dyn.d_tag == DT_NULL)
1761 break;
1762
1763 if (dyn.d_tag == DT_NEEDED)
1764 {
1765 const char *string;
1766 struct bfd_link_needed_list *l;
1767 unsigned int tagv = dyn.d_un.d_val;
1768 bfd_size_type amt;
1769
1770 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1771 if (string == NULL)
1772 goto error_return;
1773
1774 amt = sizeof *l;
1775 l = bfd_alloc (abfd, amt);
1776 if (l == NULL)
1777 goto error_return;
1778
1779 l->by = abfd;
1780 l->name = string;
1781 l->next = *pneeded;
1782 *pneeded = l;
1783 }
1784 }
1785
1786 free (dynbuf);
1787
1788 return TRUE;
1789
1790 error_return:
1791 if (dynbuf != NULL)
1792 free (dynbuf);
1793 return FALSE;
1794 }
1795 \f
1796 /* Allocate an ELF string table--force the first byte to be zero. */
1797
1798 struct bfd_strtab_hash *
1799 _bfd_elf_stringtab_init (void)
1800 {
1801 struct bfd_strtab_hash *ret;
1802
1803 ret = _bfd_stringtab_init ();
1804 if (ret != NULL)
1805 {
1806 bfd_size_type loc;
1807
1808 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1809 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1810 if (loc == (bfd_size_type) -1)
1811 {
1812 _bfd_stringtab_free (ret);
1813 ret = NULL;
1814 }
1815 }
1816 return ret;
1817 }
1818 \f
1819 /* ELF .o/exec file reading */
1820
1821 /* Create a new bfd section from an ELF section header. */
1822
1823 bfd_boolean
1824 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1825 {
1826 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1827 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1828 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1829 const char *name;
1830
1831 name = bfd_elf_string_from_elf_section (abfd,
1832 elf_elfheader (abfd)->e_shstrndx,
1833 hdr->sh_name);
1834 if (name == NULL)
1835 return FALSE;
1836
1837 switch (hdr->sh_type)
1838 {
1839 case SHT_NULL:
1840 /* Inactive section. Throw it away. */
1841 return TRUE;
1842
1843 case SHT_PROGBITS: /* Normal section with contents. */
1844 case SHT_NOBITS: /* .bss section. */
1845 case SHT_HASH: /* .hash section. */
1846 case SHT_NOTE: /* .note section. */
1847 case SHT_INIT_ARRAY: /* .init_array section. */
1848 case SHT_FINI_ARRAY: /* .fini_array section. */
1849 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1850 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1851 case SHT_GNU_HASH: /* .gnu.hash section. */
1852 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1853
1854 case SHT_DYNAMIC: /* Dynamic linking information. */
1855 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1856 return FALSE;
1857 if (hdr->sh_link > elf_numsections (abfd)
1858 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1859 return FALSE;
1860 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1861 {
1862 Elf_Internal_Shdr *dynsymhdr;
1863
1864 /* The shared libraries distributed with hpux11 have a bogus
1865 sh_link field for the ".dynamic" section. Find the
1866 string table for the ".dynsym" section instead. */
1867 if (elf_dynsymtab (abfd) != 0)
1868 {
1869 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1870 hdr->sh_link = dynsymhdr->sh_link;
1871 }
1872 else
1873 {
1874 unsigned int i, num_sec;
1875
1876 num_sec = elf_numsections (abfd);
1877 for (i = 1; i < num_sec; i++)
1878 {
1879 dynsymhdr = elf_elfsections (abfd)[i];
1880 if (dynsymhdr->sh_type == SHT_DYNSYM)
1881 {
1882 hdr->sh_link = dynsymhdr->sh_link;
1883 break;
1884 }
1885 }
1886 }
1887 }
1888 break;
1889
1890 case SHT_SYMTAB: /* A symbol table */
1891 if (elf_onesymtab (abfd) == shindex)
1892 return TRUE;
1893
1894 if (hdr->sh_entsize != bed->s->sizeof_sym)
1895 return FALSE;
1896 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1897 elf_onesymtab (abfd) = shindex;
1898 elf_tdata (abfd)->symtab_hdr = *hdr;
1899 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1900 abfd->flags |= HAS_SYMS;
1901
1902 /* Sometimes a shared object will map in the symbol table. If
1903 SHF_ALLOC is set, and this is a shared object, then we also
1904 treat this section as a BFD section. We can not base the
1905 decision purely on SHF_ALLOC, because that flag is sometimes
1906 set in a relocatable object file, which would confuse the
1907 linker. */
1908 if ((hdr->sh_flags & SHF_ALLOC) != 0
1909 && (abfd->flags & DYNAMIC) != 0
1910 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1911 shindex))
1912 return FALSE;
1913
1914 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1915 can't read symbols without that section loaded as well. It
1916 is most likely specified by the next section header. */
1917 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1918 {
1919 unsigned int i, num_sec;
1920
1921 num_sec = elf_numsections (abfd);
1922 for (i = shindex + 1; i < num_sec; i++)
1923 {
1924 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1925 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1926 && hdr2->sh_link == shindex)
1927 break;
1928 }
1929 if (i == num_sec)
1930 for (i = 1; i < shindex; i++)
1931 {
1932 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1933 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1934 && hdr2->sh_link == shindex)
1935 break;
1936 }
1937 if (i != shindex)
1938 return bfd_section_from_shdr (abfd, i);
1939 }
1940 return TRUE;
1941
1942 case SHT_DYNSYM: /* A dynamic symbol table */
1943 if (elf_dynsymtab (abfd) == shindex)
1944 return TRUE;
1945
1946 if (hdr->sh_entsize != bed->s->sizeof_sym)
1947 return FALSE;
1948 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1949 elf_dynsymtab (abfd) = shindex;
1950 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1951 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1952 abfd->flags |= HAS_SYMS;
1953
1954 /* Besides being a symbol table, we also treat this as a regular
1955 section, so that objcopy can handle it. */
1956 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1957
1958 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1959 if (elf_symtab_shndx (abfd) == shindex)
1960 return TRUE;
1961
1962 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1963 elf_symtab_shndx (abfd) = shindex;
1964 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1965 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1966 return TRUE;
1967
1968 case SHT_STRTAB: /* A string table */
1969 if (hdr->bfd_section != NULL)
1970 return TRUE;
1971 if (ehdr->e_shstrndx == shindex)
1972 {
1973 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1974 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1975 return TRUE;
1976 }
1977 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1978 {
1979 symtab_strtab:
1980 elf_tdata (abfd)->strtab_hdr = *hdr;
1981 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1982 return TRUE;
1983 }
1984 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1985 {
1986 dynsymtab_strtab:
1987 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1988 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1989 elf_elfsections (abfd)[shindex] = hdr;
1990 /* We also treat this as a regular section, so that objcopy
1991 can handle it. */
1992 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1993 shindex);
1994 }
1995
1996 /* If the string table isn't one of the above, then treat it as a
1997 regular section. We need to scan all the headers to be sure,
1998 just in case this strtab section appeared before the above. */
1999 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2000 {
2001 unsigned int i, num_sec;
2002
2003 num_sec = elf_numsections (abfd);
2004 for (i = 1; i < num_sec; i++)
2005 {
2006 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2007 if (hdr2->sh_link == shindex)
2008 {
2009 /* Prevent endless recursion on broken objects. */
2010 if (i == shindex)
2011 return FALSE;
2012 if (! bfd_section_from_shdr (abfd, i))
2013 return FALSE;
2014 if (elf_onesymtab (abfd) == i)
2015 goto symtab_strtab;
2016 if (elf_dynsymtab (abfd) == i)
2017 goto dynsymtab_strtab;
2018 }
2019 }
2020 }
2021 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2022
2023 case SHT_REL:
2024 case SHT_RELA:
2025 /* *These* do a lot of work -- but build no sections! */
2026 {
2027 asection *target_sect;
2028 Elf_Internal_Shdr *hdr2;
2029 unsigned int num_sec = elf_numsections (abfd);
2030
2031 if (hdr->sh_entsize
2032 != (bfd_size_type) (hdr->sh_type == SHT_REL
2033 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2034 return FALSE;
2035
2036 /* Check for a bogus link to avoid crashing. */
2037 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2038 || hdr->sh_link >= num_sec)
2039 {
2040 ((*_bfd_error_handler)
2041 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2042 abfd, hdr->sh_link, name, shindex));
2043 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2044 shindex);
2045 }
2046
2047 /* For some incomprehensible reason Oracle distributes
2048 libraries for Solaris in which some of the objects have
2049 bogus sh_link fields. It would be nice if we could just
2050 reject them, but, unfortunately, some people need to use
2051 them. We scan through the section headers; if we find only
2052 one suitable symbol table, we clobber the sh_link to point
2053 to it. I hope this doesn't break anything. */
2054 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2055 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2056 {
2057 unsigned int scan;
2058 int found;
2059
2060 found = 0;
2061 for (scan = 1; scan < num_sec; scan++)
2062 {
2063 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2064 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2065 {
2066 if (found != 0)
2067 {
2068 found = 0;
2069 break;
2070 }
2071 found = scan;
2072 }
2073 }
2074 if (found != 0)
2075 hdr->sh_link = found;
2076 }
2077
2078 /* Get the symbol table. */
2079 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2080 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2081 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2082 return FALSE;
2083
2084 /* If this reloc section does not use the main symbol table we
2085 don't treat it as a reloc section. BFD can't adequately
2086 represent such a section, so at least for now, we don't
2087 try. We just present it as a normal section. We also
2088 can't use it as a reloc section if it points to the null
2089 section, an invalid section, or another reloc section. */
2090 if (hdr->sh_link != elf_onesymtab (abfd)
2091 || hdr->sh_info == SHN_UNDEF
2092 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2093 || hdr->sh_info >= num_sec
2094 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2095 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2096 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2097 shindex);
2098
2099 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2100 return FALSE;
2101 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2102 if (target_sect == NULL)
2103 return FALSE;
2104
2105 if ((target_sect->flags & SEC_RELOC) == 0
2106 || target_sect->reloc_count == 0)
2107 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2108 else
2109 {
2110 bfd_size_type amt;
2111 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2112 amt = sizeof (*hdr2);
2113 hdr2 = bfd_alloc (abfd, amt);
2114 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2115 }
2116 *hdr2 = *hdr;
2117 elf_elfsections (abfd)[shindex] = hdr2;
2118 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2119 target_sect->flags |= SEC_RELOC;
2120 target_sect->relocation = NULL;
2121 target_sect->rel_filepos = hdr->sh_offset;
2122 /* In the section to which the relocations apply, mark whether
2123 its relocations are of the REL or RELA variety. */
2124 if (hdr->sh_size != 0)
2125 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2126 abfd->flags |= HAS_RELOC;
2127 return TRUE;
2128 }
2129
2130 case SHT_GNU_verdef:
2131 elf_dynverdef (abfd) = shindex;
2132 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2133 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2134
2135 case SHT_GNU_versym:
2136 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2137 return FALSE;
2138 elf_dynversym (abfd) = shindex;
2139 elf_tdata (abfd)->dynversym_hdr = *hdr;
2140 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2141
2142 case SHT_GNU_verneed:
2143 elf_dynverref (abfd) = shindex;
2144 elf_tdata (abfd)->dynverref_hdr = *hdr;
2145 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2146
2147 case SHT_SHLIB:
2148 return TRUE;
2149
2150 case SHT_GROUP:
2151 /* We need a BFD section for objcopy and relocatable linking,
2152 and it's handy to have the signature available as the section
2153 name. */
2154 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2155 return FALSE;
2156 name = group_signature (abfd, hdr);
2157 if (name == NULL)
2158 return FALSE;
2159 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2160 return FALSE;
2161 if (hdr->contents != NULL)
2162 {
2163 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2164 unsigned int n_elt = hdr->sh_size / 4;
2165 asection *s;
2166
2167 if (idx->flags & GRP_COMDAT)
2168 hdr->bfd_section->flags
2169 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2170
2171 /* We try to keep the same section order as it comes in. */
2172 idx += n_elt;
2173 while (--n_elt != 0)
2174 if ((s = (--idx)->shdr->bfd_section) != NULL
2175 && elf_next_in_group (s) != NULL)
2176 {
2177 elf_next_in_group (hdr->bfd_section) = s;
2178 break;
2179 }
2180 }
2181 break;
2182
2183 default:
2184 /* Check for any processor-specific section types. */
2185 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2186 return TRUE;
2187
2188 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2189 {
2190 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2191 /* FIXME: How to properly handle allocated section reserved
2192 for applications? */
2193 (*_bfd_error_handler)
2194 (_("%B: don't know how to handle allocated, application "
2195 "specific section `%s' [0x%8x]"),
2196 abfd, name, hdr->sh_type);
2197 else
2198 /* Allow sections reserved for applications. */
2199 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2200 shindex);
2201 }
2202 else if (hdr->sh_type >= SHT_LOPROC
2203 && hdr->sh_type <= SHT_HIPROC)
2204 /* FIXME: We should handle this section. */
2205 (*_bfd_error_handler)
2206 (_("%B: don't know how to handle processor specific section "
2207 "`%s' [0x%8x]"),
2208 abfd, name, hdr->sh_type);
2209 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2210 {
2211 /* Unrecognised OS-specific sections. */
2212 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2213 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2214 required to correctly process the section and the file should
2215 be rejected with an error message. */
2216 (*_bfd_error_handler)
2217 (_("%B: don't know how to handle OS specific section "
2218 "`%s' [0x%8x]"),
2219 abfd, name, hdr->sh_type);
2220 else
2221 /* Otherwise it should be processed. */
2222 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2223 }
2224 else
2225 /* FIXME: We should handle this section. */
2226 (*_bfd_error_handler)
2227 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2228 abfd, name, hdr->sh_type);
2229
2230 return FALSE;
2231 }
2232
2233 return TRUE;
2234 }
2235
2236 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2237 Return SEC for sections that have no elf section, and NULL on error. */
2238
2239 asection *
2240 bfd_section_from_r_symndx (bfd *abfd,
2241 struct sym_sec_cache *cache,
2242 asection *sec,
2243 unsigned long r_symndx)
2244 {
2245 Elf_Internal_Shdr *symtab_hdr;
2246 unsigned char esym[sizeof (Elf64_External_Sym)];
2247 Elf_External_Sym_Shndx eshndx;
2248 Elf_Internal_Sym isym;
2249 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2250
2251 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2252 return cache->sec[ent];
2253
2254 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2255 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2256 &isym, esym, &eshndx) == NULL)
2257 return NULL;
2258
2259 if (cache->abfd != abfd)
2260 {
2261 memset (cache->indx, -1, sizeof (cache->indx));
2262 cache->abfd = abfd;
2263 }
2264 cache->indx[ent] = r_symndx;
2265 cache->sec[ent] = sec;
2266 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2267 || isym.st_shndx > SHN_HIRESERVE)
2268 {
2269 asection *s;
2270 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2271 if (s != NULL)
2272 cache->sec[ent] = s;
2273 }
2274 return cache->sec[ent];
2275 }
2276
2277 /* Given an ELF section number, retrieve the corresponding BFD
2278 section. */
2279
2280 asection *
2281 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2282 {
2283 if (index >= elf_numsections (abfd))
2284 return NULL;
2285 return elf_elfsections (abfd)[index]->bfd_section;
2286 }
2287
2288 static const struct bfd_elf_special_section special_sections_b[] =
2289 {
2290 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2291 { NULL, 0, 0, 0, 0 }
2292 };
2293
2294 static const struct bfd_elf_special_section special_sections_c[] =
2295 {
2296 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2297 { NULL, 0, 0, 0, 0 }
2298 };
2299
2300 static const struct bfd_elf_special_section special_sections_d[] =
2301 {
2302 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2303 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2304 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2305 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2306 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2307 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2308 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2309 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2310 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2311 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2312 { NULL, 0, 0, 0, 0 }
2313 };
2314
2315 static const struct bfd_elf_special_section special_sections_f[] =
2316 {
2317 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2318 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2319 { NULL, 0, 0, 0, 0 }
2320 };
2321
2322 static const struct bfd_elf_special_section special_sections_g[] =
2323 {
2324 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2325 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2326 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2327 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2328 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2329 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2330 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2331 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2332 { NULL, 0, 0, 0, 0 }
2333 };
2334
2335 static const struct bfd_elf_special_section special_sections_h[] =
2336 {
2337 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2338 { NULL, 0, 0, 0, 0 }
2339 };
2340
2341 static const struct bfd_elf_special_section special_sections_i[] =
2342 {
2343 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2344 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2345 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2346 { NULL, 0, 0, 0, 0 }
2347 };
2348
2349 static const struct bfd_elf_special_section special_sections_l[] =
2350 {
2351 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2352 { NULL, 0, 0, 0, 0 }
2353 };
2354
2355 static const struct bfd_elf_special_section special_sections_n[] =
2356 {
2357 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2358 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2359 { NULL, 0, 0, 0, 0 }
2360 };
2361
2362 static const struct bfd_elf_special_section special_sections_p[] =
2363 {
2364 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2365 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2366 { NULL, 0, 0, 0, 0 }
2367 };
2368
2369 static const struct bfd_elf_special_section special_sections_r[] =
2370 {
2371 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2372 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2373 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2374 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2375 { NULL, 0, 0, 0, 0 }
2376 };
2377
2378 static const struct bfd_elf_special_section special_sections_s[] =
2379 {
2380 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2381 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2382 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2383 /* See struct bfd_elf_special_section declaration for the semantics of
2384 this special case where .prefix_length != strlen (.prefix). */
2385 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2386 { NULL, 0, 0, 0, 0 }
2387 };
2388
2389 static const struct bfd_elf_special_section special_sections_t[] =
2390 {
2391 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2392 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2393 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2394 { NULL, 0, 0, 0, 0 }
2395 };
2396
2397 static const struct bfd_elf_special_section *special_sections[] =
2398 {
2399 special_sections_b, /* 'b' */
2400 special_sections_c, /* 'b' */
2401 special_sections_d, /* 'd' */
2402 NULL, /* 'e' */
2403 special_sections_f, /* 'f' */
2404 special_sections_g, /* 'g' */
2405 special_sections_h, /* 'h' */
2406 special_sections_i, /* 'i' */
2407 NULL, /* 'j' */
2408 NULL, /* 'k' */
2409 special_sections_l, /* 'l' */
2410 NULL, /* 'm' */
2411 special_sections_n, /* 'n' */
2412 NULL, /* 'o' */
2413 special_sections_p, /* 'p' */
2414 NULL, /* 'q' */
2415 special_sections_r, /* 'r' */
2416 special_sections_s, /* 's' */
2417 special_sections_t, /* 't' */
2418 };
2419
2420 const struct bfd_elf_special_section *
2421 _bfd_elf_get_special_section (const char *name,
2422 const struct bfd_elf_special_section *spec,
2423 unsigned int rela)
2424 {
2425 int i;
2426 int len;
2427
2428 len = strlen (name);
2429
2430 for (i = 0; spec[i].prefix != NULL; i++)
2431 {
2432 int suffix_len;
2433 int prefix_len = spec[i].prefix_length;
2434
2435 if (len < prefix_len)
2436 continue;
2437 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2438 continue;
2439
2440 suffix_len = spec[i].suffix_length;
2441 if (suffix_len <= 0)
2442 {
2443 if (name[prefix_len] != 0)
2444 {
2445 if (suffix_len == 0)
2446 continue;
2447 if (name[prefix_len] != '.'
2448 && (suffix_len == -2
2449 || (rela && spec[i].type == SHT_REL)))
2450 continue;
2451 }
2452 }
2453 else
2454 {
2455 if (len < prefix_len + suffix_len)
2456 continue;
2457 if (memcmp (name + len - suffix_len,
2458 spec[i].prefix + prefix_len,
2459 suffix_len) != 0)
2460 continue;
2461 }
2462 return &spec[i];
2463 }
2464
2465 return NULL;
2466 }
2467
2468 const struct bfd_elf_special_section *
2469 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2470 {
2471 int i;
2472 const struct bfd_elf_special_section *spec;
2473 const struct elf_backend_data *bed;
2474
2475 /* See if this is one of the special sections. */
2476 if (sec->name == NULL)
2477 return NULL;
2478
2479 bed = get_elf_backend_data (abfd);
2480 spec = bed->special_sections;
2481 if (spec)
2482 {
2483 spec = _bfd_elf_get_special_section (sec->name,
2484 bed->special_sections,
2485 sec->use_rela_p);
2486 if (spec != NULL)
2487 return spec;
2488 }
2489
2490 if (sec->name[0] != '.')
2491 return NULL;
2492
2493 i = sec->name[1] - 'b';
2494 if (i < 0 || i > 't' - 'b')
2495 return NULL;
2496
2497 spec = special_sections[i];
2498
2499 if (spec == NULL)
2500 return NULL;
2501
2502 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2503 }
2504
2505 bfd_boolean
2506 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2507 {
2508 struct bfd_elf_section_data *sdata;
2509 const struct elf_backend_data *bed;
2510 const struct bfd_elf_special_section *ssect;
2511
2512 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2513 if (sdata == NULL)
2514 {
2515 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2516 if (sdata == NULL)
2517 return FALSE;
2518 sec->used_by_bfd = sdata;
2519 }
2520
2521 /* Indicate whether or not this section should use RELA relocations. */
2522 bed = get_elf_backend_data (abfd);
2523 sec->use_rela_p = bed->default_use_rela_p;
2524
2525 /* When we read a file, we don't need to set ELF section type and
2526 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2527 anyway. We will set ELF section type and flags for all linker
2528 created sections. If user specifies BFD section flags, we will
2529 set ELF section type and flags based on BFD section flags in
2530 elf_fake_sections. */
2531 if ((!sec->flags && abfd->direction != read_direction)
2532 || (sec->flags & SEC_LINKER_CREATED) != 0)
2533 {
2534 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2535 if (ssect != NULL)
2536 {
2537 elf_section_type (sec) = ssect->type;
2538 elf_section_flags (sec) = ssect->attr;
2539 }
2540 }
2541
2542 return _bfd_generic_new_section_hook (abfd, sec);
2543 }
2544
2545 /* Create a new bfd section from an ELF program header.
2546
2547 Since program segments have no names, we generate a synthetic name
2548 of the form segment<NUM>, where NUM is generally the index in the
2549 program header table. For segments that are split (see below) we
2550 generate the names segment<NUM>a and segment<NUM>b.
2551
2552 Note that some program segments may have a file size that is different than
2553 (less than) the memory size. All this means is that at execution the
2554 system must allocate the amount of memory specified by the memory size,
2555 but only initialize it with the first "file size" bytes read from the
2556 file. This would occur for example, with program segments consisting
2557 of combined data+bss.
2558
2559 To handle the above situation, this routine generates TWO bfd sections
2560 for the single program segment. The first has the length specified by
2561 the file size of the segment, and the second has the length specified
2562 by the difference between the two sizes. In effect, the segment is split
2563 into it's initialized and uninitialized parts.
2564
2565 */
2566
2567 bfd_boolean
2568 _bfd_elf_make_section_from_phdr (bfd *abfd,
2569 Elf_Internal_Phdr *hdr,
2570 int index,
2571 const char *typename)
2572 {
2573 asection *newsect;
2574 char *name;
2575 char namebuf[64];
2576 size_t len;
2577 int split;
2578
2579 split = ((hdr->p_memsz > 0)
2580 && (hdr->p_filesz > 0)
2581 && (hdr->p_memsz > hdr->p_filesz));
2582 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2583 len = strlen (namebuf) + 1;
2584 name = bfd_alloc (abfd, len);
2585 if (!name)
2586 return FALSE;
2587 memcpy (name, namebuf, len);
2588 newsect = bfd_make_section (abfd, name);
2589 if (newsect == NULL)
2590 return FALSE;
2591 newsect->vma = hdr->p_vaddr;
2592 newsect->lma = hdr->p_paddr;
2593 newsect->size = hdr->p_filesz;
2594 newsect->filepos = hdr->p_offset;
2595 newsect->flags |= SEC_HAS_CONTENTS;
2596 newsect->alignment_power = bfd_log2 (hdr->p_align);
2597 if (hdr->p_type == PT_LOAD)
2598 {
2599 newsect->flags |= SEC_ALLOC;
2600 newsect->flags |= SEC_LOAD;
2601 if (hdr->p_flags & PF_X)
2602 {
2603 /* FIXME: all we known is that it has execute PERMISSION,
2604 may be data. */
2605 newsect->flags |= SEC_CODE;
2606 }
2607 }
2608 if (!(hdr->p_flags & PF_W))
2609 {
2610 newsect->flags |= SEC_READONLY;
2611 }
2612
2613 if (split)
2614 {
2615 sprintf (namebuf, "%s%db", typename, index);
2616 len = strlen (namebuf) + 1;
2617 name = bfd_alloc (abfd, len);
2618 if (!name)
2619 return FALSE;
2620 memcpy (name, namebuf, len);
2621 newsect = bfd_make_section (abfd, name);
2622 if (newsect == NULL)
2623 return FALSE;
2624 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2625 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2626 newsect->size = hdr->p_memsz - hdr->p_filesz;
2627 if (hdr->p_type == PT_LOAD)
2628 {
2629 newsect->flags |= SEC_ALLOC;
2630 if (hdr->p_flags & PF_X)
2631 newsect->flags |= SEC_CODE;
2632 }
2633 if (!(hdr->p_flags & PF_W))
2634 newsect->flags |= SEC_READONLY;
2635 }
2636
2637 return TRUE;
2638 }
2639
2640 bfd_boolean
2641 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2642 {
2643 const struct elf_backend_data *bed;
2644
2645 switch (hdr->p_type)
2646 {
2647 case PT_NULL:
2648 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2649
2650 case PT_LOAD:
2651 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2652
2653 case PT_DYNAMIC:
2654 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2655
2656 case PT_INTERP:
2657 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2658
2659 case PT_NOTE:
2660 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2661 return FALSE;
2662 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2663 return FALSE;
2664 return TRUE;
2665
2666 case PT_SHLIB:
2667 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2668
2669 case PT_PHDR:
2670 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2671
2672 case PT_GNU_EH_FRAME:
2673 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2674 "eh_frame_hdr");
2675
2676 case PT_GNU_STACK:
2677 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2678
2679 case PT_GNU_RELRO:
2680 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2681
2682 default:
2683 /* Check for any processor-specific program segment types. */
2684 bed = get_elf_backend_data (abfd);
2685 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2686 }
2687 }
2688
2689 /* Initialize REL_HDR, the section-header for new section, containing
2690 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2691 relocations; otherwise, we use REL relocations. */
2692
2693 bfd_boolean
2694 _bfd_elf_init_reloc_shdr (bfd *abfd,
2695 Elf_Internal_Shdr *rel_hdr,
2696 asection *asect,
2697 bfd_boolean use_rela_p)
2698 {
2699 char *name;
2700 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2701 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2702
2703 name = bfd_alloc (abfd, amt);
2704 if (name == NULL)
2705 return FALSE;
2706 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2707 rel_hdr->sh_name =
2708 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2709 FALSE);
2710 if (rel_hdr->sh_name == (unsigned int) -1)
2711 return FALSE;
2712 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2713 rel_hdr->sh_entsize = (use_rela_p
2714 ? bed->s->sizeof_rela
2715 : bed->s->sizeof_rel);
2716 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2717 rel_hdr->sh_flags = 0;
2718 rel_hdr->sh_addr = 0;
2719 rel_hdr->sh_size = 0;
2720 rel_hdr->sh_offset = 0;
2721
2722 return TRUE;
2723 }
2724
2725 /* Set up an ELF internal section header for a section. */
2726
2727 static void
2728 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2729 {
2730 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2731 bfd_boolean *failedptr = failedptrarg;
2732 Elf_Internal_Shdr *this_hdr;
2733
2734 if (*failedptr)
2735 {
2736 /* We already failed; just get out of the bfd_map_over_sections
2737 loop. */
2738 return;
2739 }
2740
2741 this_hdr = &elf_section_data (asect)->this_hdr;
2742
2743 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2744 asect->name, FALSE);
2745 if (this_hdr->sh_name == (unsigned int) -1)
2746 {
2747 *failedptr = TRUE;
2748 return;
2749 }
2750
2751 /* Don't clear sh_flags. Assembler may set additional bits. */
2752
2753 if ((asect->flags & SEC_ALLOC) != 0
2754 || asect->user_set_vma)
2755 this_hdr->sh_addr = asect->vma;
2756 else
2757 this_hdr->sh_addr = 0;
2758
2759 this_hdr->sh_offset = 0;
2760 this_hdr->sh_size = asect->size;
2761 this_hdr->sh_link = 0;
2762 this_hdr->sh_addralign = 1 << asect->alignment_power;
2763 /* The sh_entsize and sh_info fields may have been set already by
2764 copy_private_section_data. */
2765
2766 this_hdr->bfd_section = asect;
2767 this_hdr->contents = NULL;
2768
2769 /* If the section type is unspecified, we set it based on
2770 asect->flags. */
2771 if (this_hdr->sh_type == SHT_NULL)
2772 {
2773 if ((asect->flags & SEC_GROUP) != 0)
2774 this_hdr->sh_type = SHT_GROUP;
2775 else if ((asect->flags & SEC_ALLOC) != 0
2776 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2777 || (asect->flags & SEC_NEVER_LOAD) != 0))
2778 this_hdr->sh_type = SHT_NOBITS;
2779 else
2780 this_hdr->sh_type = SHT_PROGBITS;
2781 }
2782
2783 switch (this_hdr->sh_type)
2784 {
2785 default:
2786 break;
2787
2788 case SHT_STRTAB:
2789 case SHT_INIT_ARRAY:
2790 case SHT_FINI_ARRAY:
2791 case SHT_PREINIT_ARRAY:
2792 case SHT_NOTE:
2793 case SHT_NOBITS:
2794 case SHT_PROGBITS:
2795 break;
2796
2797 case SHT_HASH:
2798 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2799 break;
2800
2801 case SHT_DYNSYM:
2802 this_hdr->sh_entsize = bed->s->sizeof_sym;
2803 break;
2804
2805 case SHT_DYNAMIC:
2806 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2807 break;
2808
2809 case SHT_RELA:
2810 if (get_elf_backend_data (abfd)->may_use_rela_p)
2811 this_hdr->sh_entsize = bed->s->sizeof_rela;
2812 break;
2813
2814 case SHT_REL:
2815 if (get_elf_backend_data (abfd)->may_use_rel_p)
2816 this_hdr->sh_entsize = bed->s->sizeof_rel;
2817 break;
2818
2819 case SHT_GNU_versym:
2820 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2821 break;
2822
2823 case SHT_GNU_verdef:
2824 this_hdr->sh_entsize = 0;
2825 /* objcopy or strip will copy over sh_info, but may not set
2826 cverdefs. The linker will set cverdefs, but sh_info will be
2827 zero. */
2828 if (this_hdr->sh_info == 0)
2829 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2830 else
2831 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2832 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2833 break;
2834
2835 case SHT_GNU_verneed:
2836 this_hdr->sh_entsize = 0;
2837 /* objcopy or strip will copy over sh_info, but may not set
2838 cverrefs. The linker will set cverrefs, but sh_info will be
2839 zero. */
2840 if (this_hdr->sh_info == 0)
2841 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2842 else
2843 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2844 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2845 break;
2846
2847 case SHT_GROUP:
2848 this_hdr->sh_entsize = 4;
2849 break;
2850
2851 case SHT_GNU_HASH:
2852 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2853 break;
2854 }
2855
2856 if ((asect->flags & SEC_ALLOC) != 0)
2857 this_hdr->sh_flags |= SHF_ALLOC;
2858 if ((asect->flags & SEC_READONLY) == 0)
2859 this_hdr->sh_flags |= SHF_WRITE;
2860 if ((asect->flags & SEC_CODE) != 0)
2861 this_hdr->sh_flags |= SHF_EXECINSTR;
2862 if ((asect->flags & SEC_MERGE) != 0)
2863 {
2864 this_hdr->sh_flags |= SHF_MERGE;
2865 this_hdr->sh_entsize = asect->entsize;
2866 if ((asect->flags & SEC_STRINGS) != 0)
2867 this_hdr->sh_flags |= SHF_STRINGS;
2868 }
2869 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2870 this_hdr->sh_flags |= SHF_GROUP;
2871 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2872 {
2873 this_hdr->sh_flags |= SHF_TLS;
2874 if (asect->size == 0
2875 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2876 {
2877 struct bfd_link_order *o = asect->map_tail.link_order;
2878
2879 this_hdr->sh_size = 0;
2880 if (o != NULL)
2881 {
2882 this_hdr->sh_size = o->offset + o->size;
2883 if (this_hdr->sh_size != 0)
2884 this_hdr->sh_type = SHT_NOBITS;
2885 }
2886 }
2887 }
2888
2889 /* Check for processor-specific section types. */
2890 if (bed->elf_backend_fake_sections
2891 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2892 *failedptr = TRUE;
2893
2894 /* If the section has relocs, set up a section header for the
2895 SHT_REL[A] section. If two relocation sections are required for
2896 this section, it is up to the processor-specific back-end to
2897 create the other. */
2898 if ((asect->flags & SEC_RELOC) != 0
2899 && !_bfd_elf_init_reloc_shdr (abfd,
2900 &elf_section_data (asect)->rel_hdr,
2901 asect,
2902 asect->use_rela_p))
2903 *failedptr = TRUE;
2904 }
2905
2906 /* Fill in the contents of a SHT_GROUP section. */
2907
2908 void
2909 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2910 {
2911 bfd_boolean *failedptr = failedptrarg;
2912 unsigned long symindx;
2913 asection *elt, *first;
2914 unsigned char *loc;
2915 bfd_boolean gas;
2916
2917 /* Ignore linker created group section. See elfNN_ia64_object_p in
2918 elfxx-ia64.c. */
2919 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2920 || *failedptr)
2921 return;
2922
2923 symindx = 0;
2924 if (elf_group_id (sec) != NULL)
2925 symindx = elf_group_id (sec)->udata.i;
2926
2927 if (symindx == 0)
2928 {
2929 /* If called from the assembler, swap_out_syms will have set up
2930 elf_section_syms; If called for "ld -r", use target_index. */
2931 if (elf_section_syms (abfd) != NULL)
2932 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2933 else
2934 symindx = sec->target_index;
2935 }
2936 elf_section_data (sec)->this_hdr.sh_info = symindx;
2937
2938 /* The contents won't be allocated for "ld -r" or objcopy. */
2939 gas = TRUE;
2940 if (sec->contents == NULL)
2941 {
2942 gas = FALSE;
2943 sec->contents = bfd_alloc (abfd, sec->size);
2944
2945 /* Arrange for the section to be written out. */
2946 elf_section_data (sec)->this_hdr.contents = sec->contents;
2947 if (sec->contents == NULL)
2948 {
2949 *failedptr = TRUE;
2950 return;
2951 }
2952 }
2953
2954 loc = sec->contents + sec->size;
2955
2956 /* Get the pointer to the first section in the group that gas
2957 squirreled away here. objcopy arranges for this to be set to the
2958 start of the input section group. */
2959 first = elt = elf_next_in_group (sec);
2960
2961 /* First element is a flag word. Rest of section is elf section
2962 indices for all the sections of the group. Write them backwards
2963 just to keep the group in the same order as given in .section
2964 directives, not that it matters. */
2965 while (elt != NULL)
2966 {
2967 asection *s;
2968 unsigned int idx;
2969
2970 loc -= 4;
2971 s = elt;
2972 if (!gas)
2973 s = s->output_section;
2974 idx = 0;
2975 if (s != NULL)
2976 idx = elf_section_data (s)->this_idx;
2977 H_PUT_32 (abfd, idx, loc);
2978 elt = elf_next_in_group (elt);
2979 if (elt == first)
2980 break;
2981 }
2982
2983 if ((loc -= 4) != sec->contents)
2984 abort ();
2985
2986 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2987 }
2988
2989 /* Assign all ELF section numbers. The dummy first section is handled here
2990 too. The link/info pointers for the standard section types are filled
2991 in here too, while we're at it. */
2992
2993 static bfd_boolean
2994 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2995 {
2996 struct elf_obj_tdata *t = elf_tdata (abfd);
2997 asection *sec;
2998 unsigned int section_number, secn;
2999 Elf_Internal_Shdr **i_shdrp;
3000 struct bfd_elf_section_data *d;
3001
3002 section_number = 1;
3003
3004 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3005
3006 /* SHT_GROUP sections are in relocatable files only. */
3007 if (link_info == NULL || link_info->relocatable)
3008 {
3009 /* Put SHT_GROUP sections first. */
3010 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3011 {
3012 d = elf_section_data (sec);
3013
3014 if (d->this_hdr.sh_type == SHT_GROUP)
3015 {
3016 if (sec->flags & SEC_LINKER_CREATED)
3017 {
3018 /* Remove the linker created SHT_GROUP sections. */
3019 bfd_section_list_remove (abfd, sec);
3020 abfd->section_count--;
3021 }
3022 else
3023 {
3024 if (section_number == SHN_LORESERVE)
3025 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3026 d->this_idx = section_number++;
3027 }
3028 }
3029 }
3030 }
3031
3032 for (sec = abfd->sections; sec; sec = sec->next)
3033 {
3034 d = elf_section_data (sec);
3035
3036 if (d->this_hdr.sh_type != SHT_GROUP)
3037 {
3038 if (section_number == SHN_LORESERVE)
3039 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3040 d->this_idx = section_number++;
3041 }
3042 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3043 if ((sec->flags & SEC_RELOC) == 0)
3044 d->rel_idx = 0;
3045 else
3046 {
3047 if (section_number == SHN_LORESERVE)
3048 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3049 d->rel_idx = section_number++;
3050 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3051 }
3052
3053 if (d->rel_hdr2)
3054 {
3055 if (section_number == SHN_LORESERVE)
3056 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3057 d->rel_idx2 = section_number++;
3058 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3059 }
3060 else
3061 d->rel_idx2 = 0;
3062 }
3063
3064 if (section_number == SHN_LORESERVE)
3065 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3066 t->shstrtab_section = section_number++;
3067 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3068 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3069
3070 if (bfd_get_symcount (abfd) > 0)
3071 {
3072 if (section_number == SHN_LORESERVE)
3073 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3074 t->symtab_section = section_number++;
3075 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3076 if (section_number > SHN_LORESERVE - 2)
3077 {
3078 if (section_number == SHN_LORESERVE)
3079 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3080 t->symtab_shndx_section = section_number++;
3081 t->symtab_shndx_hdr.sh_name
3082 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3083 ".symtab_shndx", FALSE);
3084 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3085 return FALSE;
3086 }
3087 if (section_number == SHN_LORESERVE)
3088 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3089 t->strtab_section = section_number++;
3090 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3091 }
3092
3093 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3094 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3095
3096 elf_numsections (abfd) = section_number;
3097 elf_elfheader (abfd)->e_shnum = section_number;
3098 if (section_number > SHN_LORESERVE)
3099 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3100
3101 /* Set up the list of section header pointers, in agreement with the
3102 indices. */
3103 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3104 if (i_shdrp == NULL)
3105 return FALSE;
3106
3107 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3108 if (i_shdrp[0] == NULL)
3109 {
3110 bfd_release (abfd, i_shdrp);
3111 return FALSE;
3112 }
3113
3114 elf_elfsections (abfd) = i_shdrp;
3115
3116 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3117 if (bfd_get_symcount (abfd) > 0)
3118 {
3119 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3120 if (elf_numsections (abfd) > SHN_LORESERVE)
3121 {
3122 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3123 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3124 }
3125 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3126 t->symtab_hdr.sh_link = t->strtab_section;
3127 }
3128
3129 for (sec = abfd->sections; sec; sec = sec->next)
3130 {
3131 struct bfd_elf_section_data *d = elf_section_data (sec);
3132 asection *s;
3133 const char *name;
3134
3135 i_shdrp[d->this_idx] = &d->this_hdr;
3136 if (d->rel_idx != 0)
3137 i_shdrp[d->rel_idx] = &d->rel_hdr;
3138 if (d->rel_idx2 != 0)
3139 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3140
3141 /* Fill in the sh_link and sh_info fields while we're at it. */
3142
3143 /* sh_link of a reloc section is the section index of the symbol
3144 table. sh_info is the section index of the section to which
3145 the relocation entries apply. */
3146 if (d->rel_idx != 0)
3147 {
3148 d->rel_hdr.sh_link = t->symtab_section;
3149 d->rel_hdr.sh_info = d->this_idx;
3150 }
3151 if (d->rel_idx2 != 0)
3152 {
3153 d->rel_hdr2->sh_link = t->symtab_section;
3154 d->rel_hdr2->sh_info = d->this_idx;
3155 }
3156
3157 /* We need to set up sh_link for SHF_LINK_ORDER. */
3158 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3159 {
3160 s = elf_linked_to_section (sec);
3161 if (s)
3162 {
3163 /* elf_linked_to_section points to the input section. */
3164 if (link_info != NULL)
3165 {
3166 /* Check discarded linkonce section. */
3167 if (elf_discarded_section (s))
3168 {
3169 asection *kept;
3170 (*_bfd_error_handler)
3171 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3172 abfd, d->this_hdr.bfd_section,
3173 s, s->owner);
3174 /* Point to the kept section if it has the same
3175 size as the discarded one. */
3176 kept = _bfd_elf_check_kept_section (s, link_info);
3177 if (kept == NULL)
3178 {
3179 bfd_set_error (bfd_error_bad_value);
3180 return FALSE;
3181 }
3182 s = kept;
3183 }
3184
3185 s = s->output_section;
3186 BFD_ASSERT (s != NULL);
3187 }
3188 else
3189 {
3190 /* Handle objcopy. */
3191 if (s->output_section == NULL)
3192 {
3193 (*_bfd_error_handler)
3194 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3195 abfd, d->this_hdr.bfd_section, s, s->owner);
3196 bfd_set_error (bfd_error_bad_value);
3197 return FALSE;
3198 }
3199 s = s->output_section;
3200 }
3201 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3202 }
3203 else
3204 {
3205 /* PR 290:
3206 The Intel C compiler generates SHT_IA_64_UNWIND with
3207 SHF_LINK_ORDER. But it doesn't set the sh_link or
3208 sh_info fields. Hence we could get the situation
3209 where s is NULL. */
3210 const struct elf_backend_data *bed
3211 = get_elf_backend_data (abfd);
3212 if (bed->link_order_error_handler)
3213 bed->link_order_error_handler
3214 (_("%B: warning: sh_link not set for section `%A'"),
3215 abfd, sec);
3216 }
3217 }
3218
3219 switch (d->this_hdr.sh_type)
3220 {
3221 case SHT_REL:
3222 case SHT_RELA:
3223 /* A reloc section which we are treating as a normal BFD
3224 section. sh_link is the section index of the symbol
3225 table. sh_info is the section index of the section to
3226 which the relocation entries apply. We assume that an
3227 allocated reloc section uses the dynamic symbol table.
3228 FIXME: How can we be sure? */
3229 s = bfd_get_section_by_name (abfd, ".dynsym");
3230 if (s != NULL)
3231 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3232
3233 /* We look up the section the relocs apply to by name. */
3234 name = sec->name;
3235 if (d->this_hdr.sh_type == SHT_REL)
3236 name += 4;
3237 else
3238 name += 5;
3239 s = bfd_get_section_by_name (abfd, name);
3240 if (s != NULL)
3241 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3242 break;
3243
3244 case SHT_STRTAB:
3245 /* We assume that a section named .stab*str is a stabs
3246 string section. We look for a section with the same name
3247 but without the trailing ``str'', and set its sh_link
3248 field to point to this section. */
3249 if (CONST_STRNEQ (sec->name, ".stab")
3250 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3251 {
3252 size_t len;
3253 char *alc;
3254
3255 len = strlen (sec->name);
3256 alc = bfd_malloc (len - 2);
3257 if (alc == NULL)
3258 return FALSE;
3259 memcpy (alc, sec->name, len - 3);
3260 alc[len - 3] = '\0';
3261 s = bfd_get_section_by_name (abfd, alc);
3262 free (alc);
3263 if (s != NULL)
3264 {
3265 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3266
3267 /* This is a .stab section. */
3268 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3269 elf_section_data (s)->this_hdr.sh_entsize
3270 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3271 }
3272 }
3273 break;
3274
3275 case SHT_DYNAMIC:
3276 case SHT_DYNSYM:
3277 case SHT_GNU_verneed:
3278 case SHT_GNU_verdef:
3279 /* sh_link is the section header index of the string table
3280 used for the dynamic entries, or the symbol table, or the
3281 version strings. */
3282 s = bfd_get_section_by_name (abfd, ".dynstr");
3283 if (s != NULL)
3284 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3285 break;
3286
3287 case SHT_GNU_LIBLIST:
3288 /* sh_link is the section header index of the prelink library
3289 list
3290 used for the dynamic entries, or the symbol table, or the
3291 version strings. */
3292 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3293 ? ".dynstr" : ".gnu.libstr");
3294 if (s != NULL)
3295 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3296 break;
3297
3298 case SHT_HASH:
3299 case SHT_GNU_HASH:
3300 case SHT_GNU_versym:
3301 /* sh_link is the section header index of the symbol table
3302 this hash table or version table is for. */
3303 s = bfd_get_section_by_name (abfd, ".dynsym");
3304 if (s != NULL)
3305 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3306 break;
3307
3308 case SHT_GROUP:
3309 d->this_hdr.sh_link = t->symtab_section;
3310 }
3311 }
3312
3313 for (secn = 1; secn < section_number; ++secn)
3314 if (i_shdrp[secn] == NULL)
3315 i_shdrp[secn] = i_shdrp[0];
3316 else
3317 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3318 i_shdrp[secn]->sh_name);
3319 return TRUE;
3320 }
3321
3322 /* Map symbol from it's internal number to the external number, moving
3323 all local symbols to be at the head of the list. */
3324
3325 static bfd_boolean
3326 sym_is_global (bfd *abfd, asymbol *sym)
3327 {
3328 /* If the backend has a special mapping, use it. */
3329 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3330 if (bed->elf_backend_sym_is_global)
3331 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3332
3333 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3334 || bfd_is_und_section (bfd_get_section (sym))
3335 || bfd_is_com_section (bfd_get_section (sym)));
3336 }
3337
3338 /* Don't output section symbols for sections that are not going to be
3339 output. Also, don't output section symbols for reloc and other
3340 special sections. */
3341
3342 static bfd_boolean
3343 ignore_section_sym (bfd *abfd, asymbol *sym)
3344 {
3345 return ((sym->flags & BSF_SECTION_SYM) != 0
3346 && (sym->value != 0
3347 || (sym->section->owner != abfd
3348 && (sym->section->output_section->owner != abfd
3349 || sym->section->output_offset != 0))));
3350 }
3351
3352 static bfd_boolean
3353 elf_map_symbols (bfd *abfd)
3354 {
3355 unsigned int symcount = bfd_get_symcount (abfd);
3356 asymbol **syms = bfd_get_outsymbols (abfd);
3357 asymbol **sect_syms;
3358 unsigned int num_locals = 0;
3359 unsigned int num_globals = 0;
3360 unsigned int num_locals2 = 0;
3361 unsigned int num_globals2 = 0;
3362 int max_index = 0;
3363 unsigned int idx;
3364 asection *asect;
3365 asymbol **new_syms;
3366
3367 #ifdef DEBUG
3368 fprintf (stderr, "elf_map_symbols\n");
3369 fflush (stderr);
3370 #endif
3371
3372 for (asect = abfd->sections; asect; asect = asect->next)
3373 {
3374 if (max_index < asect->index)
3375 max_index = asect->index;
3376 }
3377
3378 max_index++;
3379 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3380 if (sect_syms == NULL)
3381 return FALSE;
3382 elf_section_syms (abfd) = sect_syms;
3383 elf_num_section_syms (abfd) = max_index;
3384
3385 /* Init sect_syms entries for any section symbols we have already
3386 decided to output. */
3387 for (idx = 0; idx < symcount; idx++)
3388 {
3389 asymbol *sym = syms[idx];
3390
3391 if ((sym->flags & BSF_SECTION_SYM) != 0
3392 && !ignore_section_sym (abfd, sym))
3393 {
3394 asection *sec = sym->section;
3395
3396 if (sec->owner != abfd)
3397 sec = sec->output_section;
3398
3399 sect_syms[sec->index] = syms[idx];
3400 }
3401 }
3402
3403 /* Classify all of the symbols. */
3404 for (idx = 0; idx < symcount; idx++)
3405 {
3406 if (ignore_section_sym (abfd, syms[idx]))
3407 continue;
3408 if (!sym_is_global (abfd, syms[idx]))
3409 num_locals++;
3410 else
3411 num_globals++;
3412 }
3413
3414 /* We will be adding a section symbol for each normal BFD section. Most
3415 sections will already have a section symbol in outsymbols, but
3416 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3417 at least in that case. */
3418 for (asect = abfd->sections; asect; asect = asect->next)
3419 {
3420 if (sect_syms[asect->index] == NULL)
3421 {
3422 if (!sym_is_global (abfd, asect->symbol))
3423 num_locals++;
3424 else
3425 num_globals++;
3426 }
3427 }
3428
3429 /* Now sort the symbols so the local symbols are first. */
3430 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3431
3432 if (new_syms == NULL)
3433 return FALSE;
3434
3435 for (idx = 0; idx < symcount; idx++)
3436 {
3437 asymbol *sym = syms[idx];
3438 unsigned int i;
3439
3440 if (ignore_section_sym (abfd, sym))
3441 continue;
3442 if (!sym_is_global (abfd, sym))
3443 i = num_locals2++;
3444 else
3445 i = num_locals + num_globals2++;
3446 new_syms[i] = sym;
3447 sym->udata.i = i + 1;
3448 }
3449 for (asect = abfd->sections; asect; asect = asect->next)
3450 {
3451 if (sect_syms[asect->index] == NULL)
3452 {
3453 asymbol *sym = asect->symbol;
3454 unsigned int i;
3455
3456 sect_syms[asect->index] = sym;
3457 if (!sym_is_global (abfd, sym))
3458 i = num_locals2++;
3459 else
3460 i = num_locals + num_globals2++;
3461 new_syms[i] = sym;
3462 sym->udata.i = i + 1;
3463 }
3464 }
3465
3466 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3467
3468 elf_num_locals (abfd) = num_locals;
3469 elf_num_globals (abfd) = num_globals;
3470 return TRUE;
3471 }
3472
3473 /* Align to the maximum file alignment that could be required for any
3474 ELF data structure. */
3475
3476 static inline file_ptr
3477 align_file_position (file_ptr off, int align)
3478 {
3479 return (off + align - 1) & ~(align - 1);
3480 }
3481
3482 /* Assign a file position to a section, optionally aligning to the
3483 required section alignment. */
3484
3485 file_ptr
3486 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3487 file_ptr offset,
3488 bfd_boolean align)
3489 {
3490 if (align)
3491 {
3492 unsigned int al;
3493
3494 al = i_shdrp->sh_addralign;
3495 if (al > 1)
3496 offset = BFD_ALIGN (offset, al);
3497 }
3498 i_shdrp->sh_offset = offset;
3499 if (i_shdrp->bfd_section != NULL)
3500 i_shdrp->bfd_section->filepos = offset;
3501 if (i_shdrp->sh_type != SHT_NOBITS)
3502 offset += i_shdrp->sh_size;
3503 return offset;
3504 }
3505
3506 /* Compute the file positions we are going to put the sections at, and
3507 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3508 is not NULL, this is being called by the ELF backend linker. */
3509
3510 bfd_boolean
3511 _bfd_elf_compute_section_file_positions (bfd *abfd,
3512 struct bfd_link_info *link_info)
3513 {
3514 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3515 bfd_boolean failed;
3516 struct bfd_strtab_hash *strtab = NULL;
3517 Elf_Internal_Shdr *shstrtab_hdr;
3518
3519 if (abfd->output_has_begun)
3520 return TRUE;
3521
3522 /* Do any elf backend specific processing first. */
3523 if (bed->elf_backend_begin_write_processing)
3524 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3525
3526 if (! prep_headers (abfd))
3527 return FALSE;
3528
3529 /* Post process the headers if necessary. */
3530 if (bed->elf_backend_post_process_headers)
3531 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3532
3533 failed = FALSE;
3534 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3535 if (failed)
3536 return FALSE;
3537
3538 if (!assign_section_numbers (abfd, link_info))
3539 return FALSE;
3540
3541 /* The backend linker builds symbol table information itself. */
3542 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3543 {
3544 /* Non-zero if doing a relocatable link. */
3545 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3546
3547 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3548 return FALSE;
3549 }
3550
3551 if (link_info == NULL)
3552 {
3553 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3554 if (failed)
3555 return FALSE;
3556 }
3557
3558 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3559 /* sh_name was set in prep_headers. */
3560 shstrtab_hdr->sh_type = SHT_STRTAB;
3561 shstrtab_hdr->sh_flags = 0;
3562 shstrtab_hdr->sh_addr = 0;
3563 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3564 shstrtab_hdr->sh_entsize = 0;
3565 shstrtab_hdr->sh_link = 0;
3566 shstrtab_hdr->sh_info = 0;
3567 /* sh_offset is set in assign_file_positions_except_relocs. */
3568 shstrtab_hdr->sh_addralign = 1;
3569
3570 if (!assign_file_positions_except_relocs (abfd, link_info))
3571 return FALSE;
3572
3573 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3574 {
3575 file_ptr off;
3576 Elf_Internal_Shdr *hdr;
3577
3578 off = elf_tdata (abfd)->next_file_pos;
3579
3580 hdr = &elf_tdata (abfd)->symtab_hdr;
3581 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3582
3583 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3584 if (hdr->sh_size != 0)
3585 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3586
3587 hdr = &elf_tdata (abfd)->strtab_hdr;
3588 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3589
3590 elf_tdata (abfd)->next_file_pos = off;
3591
3592 /* Now that we know where the .strtab section goes, write it
3593 out. */
3594 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3595 || ! _bfd_stringtab_emit (abfd, strtab))
3596 return FALSE;
3597 _bfd_stringtab_free (strtab);
3598 }
3599
3600 abfd->output_has_begun = TRUE;
3601
3602 return TRUE;
3603 }
3604
3605 /* Make an initial estimate of the size of the program header. If we
3606 get the number wrong here, we'll redo section placement. */
3607
3608 static bfd_size_type
3609 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3610 {
3611 size_t segs;
3612 asection *s;
3613 const struct elf_backend_data *bed;
3614
3615 /* Assume we will need exactly two PT_LOAD segments: one for text
3616 and one for data. */
3617 segs = 2;
3618
3619 s = bfd_get_section_by_name (abfd, ".interp");
3620 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3621 {
3622 /* If we have a loadable interpreter section, we need a
3623 PT_INTERP segment. In this case, assume we also need a
3624 PT_PHDR segment, although that may not be true for all
3625 targets. */
3626 segs += 2;
3627 }
3628
3629 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3630 {
3631 /* We need a PT_DYNAMIC segment. */
3632 ++segs;
3633
3634 if (elf_tdata (abfd)->relro)
3635 {
3636 /* We need a PT_GNU_RELRO segment only when there is a
3637 PT_DYNAMIC segment. */
3638 ++segs;
3639 }
3640 }
3641
3642 if (elf_tdata (abfd)->eh_frame_hdr)
3643 {
3644 /* We need a PT_GNU_EH_FRAME segment. */
3645 ++segs;
3646 }
3647
3648 if (elf_tdata (abfd)->stack_flags)
3649 {
3650 /* We need a PT_GNU_STACK segment. */
3651 ++segs;
3652 }
3653
3654 for (s = abfd->sections; s != NULL; s = s->next)
3655 {
3656 if ((s->flags & SEC_LOAD) != 0
3657 && CONST_STRNEQ (s->name, ".note"))
3658 {
3659 /* We need a PT_NOTE segment. */
3660 ++segs;
3661 }
3662 }
3663
3664 for (s = abfd->sections; s != NULL; s = s->next)
3665 {
3666 if (s->flags & SEC_THREAD_LOCAL)
3667 {
3668 /* We need a PT_TLS segment. */
3669 ++segs;
3670 break;
3671 }
3672 }
3673
3674 /* Let the backend count up any program headers it might need. */
3675 bed = get_elf_backend_data (abfd);
3676 if (bed->elf_backend_additional_program_headers)
3677 {
3678 int a;
3679
3680 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3681 if (a == -1)
3682 abort ();
3683 segs += a;
3684 }
3685
3686 return segs * bed->s->sizeof_phdr;
3687 }
3688
3689 /* Create a mapping from a set of sections to a program segment. */
3690
3691 static struct elf_segment_map *
3692 make_mapping (bfd *abfd,
3693 asection **sections,
3694 unsigned int from,
3695 unsigned int to,
3696 bfd_boolean phdr)
3697 {
3698 struct elf_segment_map *m;
3699 unsigned int i;
3700 asection **hdrpp;
3701 bfd_size_type amt;
3702
3703 amt = sizeof (struct elf_segment_map);
3704 amt += (to - from - 1) * sizeof (asection *);
3705 m = bfd_zalloc (abfd, amt);
3706 if (m == NULL)
3707 return NULL;
3708 m->next = NULL;
3709 m->p_type = PT_LOAD;
3710 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3711 m->sections[i - from] = *hdrpp;
3712 m->count = to - from;
3713
3714 if (from == 0 && phdr)
3715 {
3716 /* Include the headers in the first PT_LOAD segment. */
3717 m->includes_filehdr = 1;
3718 m->includes_phdrs = 1;
3719 }
3720
3721 return m;
3722 }
3723
3724 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3725 on failure. */
3726
3727 struct elf_segment_map *
3728 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3729 {
3730 struct elf_segment_map *m;
3731
3732 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3733 if (m == NULL)
3734 return NULL;
3735 m->next = NULL;
3736 m->p_type = PT_DYNAMIC;
3737 m->count = 1;
3738 m->sections[0] = dynsec;
3739
3740 return m;
3741 }
3742
3743 /* Possibly add or remove segments from the segment map. */
3744
3745 static bfd_boolean
3746 elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3747 {
3748 struct elf_segment_map **m;
3749 const struct elf_backend_data *bed;
3750
3751 /* The placement algorithm assumes that non allocated sections are
3752 not in PT_LOAD segments. We ensure this here by removing such
3753 sections from the segment map. We also remove excluded
3754 sections. Finally, any PT_LOAD segment without sections is
3755 removed. */
3756 m = &elf_tdata (abfd)->segment_map;
3757 while (*m)
3758 {
3759 unsigned int i, new_count;
3760
3761 for (new_count = 0, i = 0; i < (*m)->count; i++)
3762 {
3763 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3764 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3765 || (*m)->p_type != PT_LOAD))
3766 {
3767 (*m)->sections[new_count] = (*m)->sections[i];
3768 new_count++;
3769 }
3770 }
3771 (*m)->count = new_count;
3772
3773 if ((*m)->p_type == PT_LOAD && (*m)->count == 0)
3774 *m = (*m)->next;
3775 else
3776 m = &(*m)->next;
3777 }
3778
3779 bed = get_elf_backend_data (abfd);
3780 if (bed->elf_backend_modify_segment_map != NULL)
3781 {
3782 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3783 return FALSE;
3784 }
3785
3786 return TRUE;
3787 }
3788
3789 /* Set up a mapping from BFD sections to program segments. */
3790
3791 bfd_boolean
3792 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3793 {
3794 unsigned int count;
3795 struct elf_segment_map *m;
3796 asection **sections = NULL;
3797 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3798
3799 if (elf_tdata (abfd)->segment_map == NULL
3800 && bfd_count_sections (abfd) != 0)
3801 {
3802 asection *s;
3803 unsigned int i;
3804 struct elf_segment_map *mfirst;
3805 struct elf_segment_map **pm;
3806 asection *last_hdr;
3807 bfd_vma last_size;
3808 unsigned int phdr_index;
3809 bfd_vma maxpagesize;
3810 asection **hdrpp;
3811 bfd_boolean phdr_in_segment = TRUE;
3812 bfd_boolean writable;
3813 int tls_count = 0;
3814 asection *first_tls = NULL;
3815 asection *dynsec, *eh_frame_hdr;
3816 bfd_size_type amt;
3817
3818 /* Select the allocated sections, and sort them. */
3819
3820 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3821 if (sections == NULL)
3822 goto error_return;
3823
3824 i = 0;
3825 for (s = abfd->sections; s != NULL; s = s->next)
3826 {
3827 if ((s->flags & SEC_ALLOC) != 0)
3828 {
3829 sections[i] = s;
3830 ++i;
3831 }
3832 }
3833 BFD_ASSERT (i <= bfd_count_sections (abfd));
3834 count = i;
3835
3836 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3837
3838 /* Build the mapping. */
3839
3840 mfirst = NULL;
3841 pm = &mfirst;
3842
3843 /* If we have a .interp section, then create a PT_PHDR segment for
3844 the program headers and a PT_INTERP segment for the .interp
3845 section. */
3846 s = bfd_get_section_by_name (abfd, ".interp");
3847 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3848 {
3849 amt = sizeof (struct elf_segment_map);
3850 m = bfd_zalloc (abfd, amt);
3851 if (m == NULL)
3852 goto error_return;
3853 m->next = NULL;
3854 m->p_type = PT_PHDR;
3855 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3856 m->p_flags = PF_R | PF_X;
3857 m->p_flags_valid = 1;
3858 m->includes_phdrs = 1;
3859
3860 *pm = m;
3861 pm = &m->next;
3862
3863 amt = sizeof (struct elf_segment_map);
3864 m = bfd_zalloc (abfd, amt);
3865 if (m == NULL)
3866 goto error_return;
3867 m->next = NULL;
3868 m->p_type = PT_INTERP;
3869 m->count = 1;
3870 m->sections[0] = s;
3871
3872 *pm = m;
3873 pm = &m->next;
3874 }
3875
3876 /* Look through the sections. We put sections in the same program
3877 segment when the start of the second section can be placed within
3878 a few bytes of the end of the first section. */
3879 last_hdr = NULL;
3880 last_size = 0;
3881 phdr_index = 0;
3882 maxpagesize = bed->maxpagesize;
3883 writable = FALSE;
3884 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3885 if (dynsec != NULL
3886 && (dynsec->flags & SEC_LOAD) == 0)
3887 dynsec = NULL;
3888
3889 /* Deal with -Ttext or something similar such that the first section
3890 is not adjacent to the program headers. This is an
3891 approximation, since at this point we don't know exactly how many
3892 program headers we will need. */
3893 if (count > 0)
3894 {
3895 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3896
3897 if (phdr_size == (bfd_size_type) -1)
3898 phdr_size = get_program_header_size (abfd, info);
3899 if ((abfd->flags & D_PAGED) == 0
3900 || sections[0]->lma < phdr_size
3901 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3902 phdr_in_segment = FALSE;
3903 }
3904
3905 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3906 {
3907 asection *hdr;
3908 bfd_boolean new_segment;
3909
3910 hdr = *hdrpp;
3911
3912 /* See if this section and the last one will fit in the same
3913 segment. */
3914
3915 if (last_hdr == NULL)
3916 {
3917 /* If we don't have a segment yet, then we don't need a new
3918 one (we build the last one after this loop). */
3919 new_segment = FALSE;
3920 }
3921 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3922 {
3923 /* If this section has a different relation between the
3924 virtual address and the load address, then we need a new
3925 segment. */
3926 new_segment = TRUE;
3927 }
3928 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3929 < BFD_ALIGN (hdr->lma, maxpagesize))
3930 {
3931 /* If putting this section in this segment would force us to
3932 skip a page in the segment, then we need a new segment. */
3933 new_segment = TRUE;
3934 }
3935 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3936 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3937 {
3938 /* We don't want to put a loadable section after a
3939 nonloadable section in the same segment.
3940 Consider .tbss sections as loadable for this purpose. */
3941 new_segment = TRUE;
3942 }
3943 else if ((abfd->flags & D_PAGED) == 0)
3944 {
3945 /* If the file is not demand paged, which means that we
3946 don't require the sections to be correctly aligned in the
3947 file, then there is no other reason for a new segment. */
3948 new_segment = FALSE;
3949 }
3950 else if (! writable
3951 && (hdr->flags & SEC_READONLY) == 0
3952 && (((last_hdr->lma + last_size - 1)
3953 & ~(maxpagesize - 1))
3954 != (hdr->lma & ~(maxpagesize - 1))))
3955 {
3956 /* We don't want to put a writable section in a read only
3957 segment, unless they are on the same page in memory
3958 anyhow. We already know that the last section does not
3959 bring us past the current section on the page, so the
3960 only case in which the new section is not on the same
3961 page as the previous section is when the previous section
3962 ends precisely on a page boundary. */
3963 new_segment = TRUE;
3964 }
3965 else
3966 {
3967 /* Otherwise, we can use the same segment. */
3968 new_segment = FALSE;
3969 }
3970
3971 if (! new_segment)
3972 {
3973 if ((hdr->flags & SEC_READONLY) == 0)
3974 writable = TRUE;
3975 last_hdr = hdr;
3976 /* .tbss sections effectively have zero size. */
3977 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3978 != SEC_THREAD_LOCAL)
3979 last_size = hdr->size;
3980 else
3981 last_size = 0;
3982 continue;
3983 }
3984
3985 /* We need a new program segment. We must create a new program
3986 header holding all the sections from phdr_index until hdr. */
3987
3988 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3989 if (m == NULL)
3990 goto error_return;
3991
3992 *pm = m;
3993 pm = &m->next;
3994
3995 if ((hdr->flags & SEC_READONLY) == 0)
3996 writable = TRUE;
3997 else
3998 writable = FALSE;
3999
4000 last_hdr = hdr;
4001 /* .tbss sections effectively have zero size. */
4002 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4003 last_size = hdr->size;
4004 else
4005 last_size = 0;
4006 phdr_index = i;
4007 phdr_in_segment = FALSE;
4008 }
4009
4010 /* Create a final PT_LOAD program segment. */
4011 if (last_hdr != NULL)
4012 {
4013 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4014 if (m == NULL)
4015 goto error_return;
4016
4017 *pm = m;
4018 pm = &m->next;
4019 }
4020
4021 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4022 if (dynsec != NULL)
4023 {
4024 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4025 if (m == NULL)
4026 goto error_return;
4027 *pm = m;
4028 pm = &m->next;
4029 }
4030
4031 /* For each loadable .note section, add a PT_NOTE segment. We don't
4032 use bfd_get_section_by_name, because if we link together
4033 nonloadable .note sections and loadable .note sections, we will
4034 generate two .note sections in the output file. FIXME: Using
4035 names for section types is bogus anyhow. */
4036 for (s = abfd->sections; s != NULL; s = s->next)
4037 {
4038 if ((s->flags & SEC_LOAD) != 0
4039 && CONST_STRNEQ (s->name, ".note"))
4040 {
4041 amt = sizeof (struct elf_segment_map);
4042 m = bfd_zalloc (abfd, amt);
4043 if (m == NULL)
4044 goto error_return;
4045 m->next = NULL;
4046 m->p_type = PT_NOTE;
4047 m->count = 1;
4048 m->sections[0] = s;
4049
4050 *pm = m;
4051 pm = &m->next;
4052 }
4053 if (s->flags & SEC_THREAD_LOCAL)
4054 {
4055 if (! tls_count)
4056 first_tls = s;
4057 tls_count++;
4058 }
4059 }
4060
4061 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4062 if (tls_count > 0)
4063 {
4064 int i;
4065
4066 amt = sizeof (struct elf_segment_map);
4067 amt += (tls_count - 1) * sizeof (asection *);
4068 m = bfd_zalloc (abfd, amt);
4069 if (m == NULL)
4070 goto error_return;
4071 m->next = NULL;
4072 m->p_type = PT_TLS;
4073 m->count = tls_count;
4074 /* Mandated PF_R. */
4075 m->p_flags = PF_R;
4076 m->p_flags_valid = 1;
4077 for (i = 0; i < tls_count; ++i)
4078 {
4079 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4080 m->sections[i] = first_tls;
4081 first_tls = first_tls->next;
4082 }
4083
4084 *pm = m;
4085 pm = &m->next;
4086 }
4087
4088 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4089 segment. */
4090 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4091 if (eh_frame_hdr != NULL
4092 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4093 {
4094 amt = sizeof (struct elf_segment_map);
4095 m = bfd_zalloc (abfd, amt);
4096 if (m == NULL)
4097 goto error_return;
4098 m->next = NULL;
4099 m->p_type = PT_GNU_EH_FRAME;
4100 m->count = 1;
4101 m->sections[0] = eh_frame_hdr->output_section;
4102
4103 *pm = m;
4104 pm = &m->next;
4105 }
4106
4107 if (elf_tdata (abfd)->stack_flags)
4108 {
4109 amt = sizeof (struct elf_segment_map);
4110 m = bfd_zalloc (abfd, amt);
4111 if (m == NULL)
4112 goto error_return;
4113 m->next = NULL;
4114 m->p_type = PT_GNU_STACK;
4115 m->p_flags = elf_tdata (abfd)->stack_flags;
4116 m->p_flags_valid = 1;
4117
4118 *pm = m;
4119 pm = &m->next;
4120 }
4121
4122 if (dynsec != NULL && elf_tdata (abfd)->relro)
4123 {
4124 /* We make a PT_GNU_RELRO segment only when there is a
4125 PT_DYNAMIC segment. */
4126 amt = sizeof (struct elf_segment_map);
4127 m = bfd_zalloc (abfd, amt);
4128 if (m == NULL)
4129 goto error_return;
4130 m->next = NULL;
4131 m->p_type = PT_GNU_RELRO;
4132 m->p_flags = PF_R;
4133 m->p_flags_valid = 1;
4134
4135 *pm = m;
4136 pm = &m->next;
4137 }
4138
4139 free (sections);
4140 elf_tdata (abfd)->segment_map = mfirst;
4141 }
4142
4143 if (!elf_modify_segment_map (abfd, info))
4144 return FALSE;
4145
4146 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4147 ++count;
4148 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4149
4150 return TRUE;
4151
4152 error_return:
4153 if (sections != NULL)
4154 free (sections);
4155 return FALSE;
4156 }
4157
4158 /* Sort sections by address. */
4159
4160 static int
4161 elf_sort_sections (const void *arg1, const void *arg2)
4162 {
4163 const asection *sec1 = *(const asection **) arg1;
4164 const asection *sec2 = *(const asection **) arg2;
4165 bfd_size_type size1, size2;
4166
4167 /* Sort by LMA first, since this is the address used to
4168 place the section into a segment. */
4169 if (sec1->lma < sec2->lma)
4170 return -1;
4171 else if (sec1->lma > sec2->lma)
4172 return 1;
4173
4174 /* Then sort by VMA. Normally the LMA and the VMA will be
4175 the same, and this will do nothing. */
4176 if (sec1->vma < sec2->vma)
4177 return -1;
4178 else if (sec1->vma > sec2->vma)
4179 return 1;
4180
4181 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4182
4183 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4184
4185 if (TOEND (sec1))
4186 {
4187 if (TOEND (sec2))
4188 {
4189 /* If the indicies are the same, do not return 0
4190 here, but continue to try the next comparison. */
4191 if (sec1->target_index - sec2->target_index != 0)
4192 return sec1->target_index - sec2->target_index;
4193 }
4194 else
4195 return 1;
4196 }
4197 else if (TOEND (sec2))
4198 return -1;
4199
4200 #undef TOEND
4201
4202 /* Sort by size, to put zero sized sections
4203 before others at the same address. */
4204
4205 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4206 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4207
4208 if (size1 < size2)
4209 return -1;
4210 if (size1 > size2)
4211 return 1;
4212
4213 return sec1->target_index - sec2->target_index;
4214 }
4215
4216 /* Ian Lance Taylor writes:
4217
4218 We shouldn't be using % with a negative signed number. That's just
4219 not good. We have to make sure either that the number is not
4220 negative, or that the number has an unsigned type. When the types
4221 are all the same size they wind up as unsigned. When file_ptr is a
4222 larger signed type, the arithmetic winds up as signed long long,
4223 which is wrong.
4224
4225 What we're trying to say here is something like ``increase OFF by
4226 the least amount that will cause it to be equal to the VMA modulo
4227 the page size.'' */
4228 /* In other words, something like:
4229
4230 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4231 off_offset = off % bed->maxpagesize;
4232 if (vma_offset < off_offset)
4233 adjustment = vma_offset + bed->maxpagesize - off_offset;
4234 else
4235 adjustment = vma_offset - off_offset;
4236
4237 which can can be collapsed into the expression below. */
4238
4239 static file_ptr
4240 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4241 {
4242 return ((vma - off) % maxpagesize);
4243 }
4244
4245 /* Assign file positions to the sections based on the mapping from
4246 sections to segments. This function also sets up some fields in
4247 the file header. */
4248
4249 static bfd_boolean
4250 assign_file_positions_for_load_sections (bfd *abfd,
4251 struct bfd_link_info *link_info)
4252 {
4253 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4254 struct elf_segment_map *m;
4255 Elf_Internal_Phdr *phdrs;
4256 Elf_Internal_Phdr *p;
4257 file_ptr off, voff;
4258 bfd_size_type maxpagesize;
4259 unsigned int alloc;
4260 unsigned int i;
4261
4262 if (link_info == NULL
4263 && !elf_modify_segment_map (abfd, link_info))
4264 return FALSE;
4265
4266 alloc = 0;
4267 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4268 ++alloc;
4269
4270 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4271 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4272 elf_elfheader (abfd)->e_phnum = alloc;
4273
4274 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4275 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4276 else
4277 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4278 == alloc * bed->s->sizeof_phdr);
4279
4280 if (alloc == 0)
4281 {
4282 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4283 return TRUE;
4284 }
4285
4286 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4287 elf_tdata (abfd)->phdr = phdrs;
4288 if (phdrs == NULL)
4289 return FALSE;
4290
4291 maxpagesize = 1;
4292 if ((abfd->flags & D_PAGED) != 0)
4293 maxpagesize = bed->maxpagesize;
4294
4295 off = bed->s->sizeof_ehdr;
4296 off += alloc * bed->s->sizeof_phdr;
4297
4298 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4299 m != NULL;
4300 m = m->next, p++)
4301 {
4302 asection **secpp;
4303
4304 /* If elf_segment_map is not from map_sections_to_segments, the
4305 sections may not be correctly ordered. NOTE: sorting should
4306 not be done to the PT_NOTE section of a corefile, which may
4307 contain several pseudo-sections artificially created by bfd.
4308 Sorting these pseudo-sections breaks things badly. */
4309 if (m->count > 1
4310 && !(elf_elfheader (abfd)->e_type == ET_CORE
4311 && m->p_type == PT_NOTE))
4312 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4313 elf_sort_sections);
4314
4315 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4316 number of sections with contents contributing to both p_filesz
4317 and p_memsz, followed by a number of sections with no contents
4318 that just contribute to p_memsz. In this loop, OFF tracks next
4319 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4320 an adjustment we use for segments that have no file contents
4321 but need zero filled memory allocation. */
4322 voff = 0;
4323 p->p_type = m->p_type;
4324 p->p_flags = m->p_flags;
4325
4326 if (m->count == 0)
4327 p->p_vaddr = 0;
4328 else
4329 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4330
4331 if (m->p_paddr_valid)
4332 p->p_paddr = m->p_paddr;
4333 else if (m->count == 0)
4334 p->p_paddr = 0;
4335 else
4336 p->p_paddr = m->sections[0]->lma;
4337
4338 if (p->p_type == PT_LOAD
4339 && (abfd->flags & D_PAGED) != 0)
4340 {
4341 /* p_align in demand paged PT_LOAD segments effectively stores
4342 the maximum page size. When copying an executable with
4343 objcopy, we set m->p_align from the input file. Use this
4344 value for maxpagesize rather than bed->maxpagesize, which
4345 may be different. Note that we use maxpagesize for PT_TLS
4346 segment alignment later in this function, so we are relying
4347 on at least one PT_LOAD segment appearing before a PT_TLS
4348 segment. */
4349 if (m->p_align_valid)
4350 maxpagesize = m->p_align;
4351
4352 p->p_align = maxpagesize;
4353 }
4354 else if (m->count == 0)
4355 p->p_align = 1 << bed->s->log_file_align;
4356 else if (m->p_align_valid)
4357 p->p_align = m->p_align;
4358 else
4359 p->p_align = 0;
4360
4361 if (p->p_type == PT_LOAD
4362 && m->count > 0)
4363 {
4364 bfd_size_type align;
4365 bfd_vma adjust;
4366 unsigned int align_power = 0;
4367
4368 if (m->p_align_valid)
4369 align = p->p_align;
4370 else
4371 {
4372 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4373 {
4374 unsigned int secalign;
4375
4376 secalign = bfd_get_section_alignment (abfd, *secpp);
4377 if (secalign > align_power)
4378 align_power = secalign;
4379 }
4380 align = (bfd_size_type) 1 << align_power;
4381 if (align < maxpagesize)
4382 align = maxpagesize;
4383 }
4384
4385 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4386 off += adjust;
4387 if (adjust != 0
4388 && !m->includes_filehdr
4389 && !m->includes_phdrs
4390 && (ufile_ptr) off >= align)
4391 {
4392 /* If the first section isn't loadable, the same holds for
4393 any other sections. Since the segment won't need file
4394 space, we can make p_offset overlap some prior segment.
4395 However, .tbss is special. If a segment starts with
4396 .tbss, we need to look at the next section to decide
4397 whether the segment has any loadable sections. */
4398 i = 0;
4399 while ((m->sections[i]->flags & SEC_LOAD) == 0
4400 && (m->sections[i]->flags & SEC_HAS_CONTENTS) == 0)
4401 {
4402 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4403 || ++i >= m->count)
4404 {
4405 off -= adjust;
4406 voff = adjust - align;
4407 break;
4408 }
4409 }
4410 }
4411 }
4412 /* Make sure the .dynamic section is the first section in the
4413 PT_DYNAMIC segment. */
4414 else if (p->p_type == PT_DYNAMIC
4415 && m->count > 1
4416 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4417 {
4418 _bfd_error_handler
4419 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4420 abfd);
4421 bfd_set_error (bfd_error_bad_value);
4422 return FALSE;
4423 }
4424
4425 p->p_offset = 0;
4426 p->p_filesz = 0;
4427 p->p_memsz = 0;
4428
4429 if (m->includes_filehdr)
4430 {
4431 if (! m->p_flags_valid)
4432 p->p_flags |= PF_R;
4433 p->p_offset = 0;
4434 p->p_filesz = bed->s->sizeof_ehdr;
4435 p->p_memsz = bed->s->sizeof_ehdr;
4436 if (m->count > 0)
4437 {
4438 BFD_ASSERT (p->p_type == PT_LOAD);
4439
4440 if (p->p_vaddr < (bfd_vma) off)
4441 {
4442 (*_bfd_error_handler)
4443 (_("%B: Not enough room for program headers, try linking with -N"),
4444 abfd);
4445 bfd_set_error (bfd_error_bad_value);
4446 return FALSE;
4447 }
4448
4449 p->p_vaddr -= off;
4450 if (! m->p_paddr_valid)
4451 p->p_paddr -= off;
4452 }
4453 }
4454
4455 if (m->includes_phdrs)
4456 {
4457 if (! m->p_flags_valid)
4458 p->p_flags |= PF_R;
4459
4460 if (!m->includes_filehdr)
4461 {
4462 p->p_offset = bed->s->sizeof_ehdr;
4463
4464 if (m->count > 0)
4465 {
4466 BFD_ASSERT (p->p_type == PT_LOAD);
4467 p->p_vaddr -= off - p->p_offset;
4468 if (! m->p_paddr_valid)
4469 p->p_paddr -= off - p->p_offset;
4470 }
4471 }
4472
4473 p->p_filesz += alloc * bed->s->sizeof_phdr;
4474 p->p_memsz += alloc * bed->s->sizeof_phdr;
4475 }
4476
4477 if (p->p_type == PT_LOAD
4478 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4479 {
4480 if (! m->includes_filehdr && ! m->includes_phdrs)
4481 p->p_offset = off + voff;
4482 else
4483 {
4484 file_ptr adjust;
4485
4486 adjust = off - (p->p_offset + p->p_filesz);
4487 p->p_filesz += adjust;
4488 p->p_memsz += adjust;
4489 }
4490 }
4491
4492 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4493 maps. Set filepos for sections in PT_LOAD segments, and in
4494 core files, for sections in PT_NOTE segments.
4495 assign_file_positions_for_non_load_sections will set filepos
4496 for other sections and update p_filesz for other segments. */
4497 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4498 {
4499 asection *sec;
4500 flagword flags;
4501 bfd_size_type align;
4502
4503 sec = *secpp;
4504 flags = sec->flags;
4505 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4506
4507 if (p->p_type == PT_LOAD
4508 || p->p_type == PT_TLS)
4509 {
4510 bfd_signed_vma adjust;
4511
4512 if ((flags & SEC_LOAD) != 0)
4513 {
4514 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4515 if (adjust < 0)
4516 {
4517 (*_bfd_error_handler)
4518 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4519 abfd, sec, (unsigned long) sec->lma);
4520 adjust = 0;
4521 }
4522 off += adjust;
4523 p->p_filesz += adjust;
4524 p->p_memsz += adjust;
4525 }
4526 /* .tbss is special. It doesn't contribute to p_memsz of
4527 normal segments. */
4528 else if ((flags & SEC_ALLOC) != 0
4529 && ((flags & SEC_THREAD_LOCAL) == 0
4530 || p->p_type == PT_TLS))
4531 {
4532 /* The section VMA must equal the file position
4533 modulo the page size. */
4534 bfd_size_type page = align;
4535 if (page < maxpagesize)
4536 page = maxpagesize;
4537 adjust = vma_page_aligned_bias (sec->vma,
4538 p->p_vaddr + p->p_memsz,
4539 page);
4540 p->p_memsz += adjust;
4541 }
4542 }
4543
4544 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4545 {
4546 /* The section at i == 0 is the one that actually contains
4547 everything. */
4548 if (i == 0)
4549 {
4550 sec->filepos = off;
4551 off += sec->size;
4552 p->p_filesz = sec->size;
4553 p->p_memsz = 0;
4554 p->p_align = 1;
4555 }
4556 else
4557 {
4558 /* The rest are fake sections that shouldn't be written. */
4559 sec->filepos = 0;
4560 sec->size = 0;
4561 sec->flags = 0;
4562 continue;
4563 }
4564 }
4565 else
4566 {
4567 if (p->p_type == PT_LOAD)
4568 {
4569 sec->filepos = off + voff;
4570 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4571 1997, and the exact reason for it isn't clear. One
4572 plausible explanation is that it is to work around
4573 a problem we have with linker scripts using data
4574 statements in NOLOAD sections. I don't think it
4575 makes a great deal of sense to have such a section
4576 assigned to a PT_LOAD segment, but apparently
4577 people do this. The data statement results in a
4578 bfd_data_link_order being built, and these need
4579 section contents to write into. Eventually, we get
4580 to _bfd_elf_write_object_contents which writes any
4581 section with contents to the output. Make room
4582 here for the write, so that following segments are
4583 not trashed. */
4584 if ((flags & SEC_LOAD) != 0
4585 || (flags & SEC_HAS_CONTENTS) != 0)
4586 off += sec->size;
4587 }
4588
4589 if ((flags & SEC_LOAD) != 0)
4590 {
4591 p->p_filesz += sec->size;
4592 p->p_memsz += sec->size;
4593 }
4594
4595 /* .tbss is special. It doesn't contribute to p_memsz of
4596 normal segments. */
4597 else if ((flags & SEC_ALLOC) != 0
4598 && ((flags & SEC_THREAD_LOCAL) == 0
4599 || p->p_type == PT_TLS))
4600 p->p_memsz += sec->size;
4601
4602 if (p->p_type == PT_TLS
4603 && sec->size == 0
4604 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4605 {
4606 struct bfd_link_order *o = sec->map_tail.link_order;
4607 if (o != NULL)
4608 p->p_memsz += o->offset + o->size;
4609 }
4610
4611 if (p->p_type == PT_GNU_RELRO)
4612 p->p_align = 1;
4613 else if (align > p->p_align
4614 && !m->p_align_valid
4615 && (p->p_type != PT_LOAD
4616 || (abfd->flags & D_PAGED) == 0))
4617 p->p_align = align;
4618 }
4619
4620 if (! m->p_flags_valid)
4621 {
4622 p->p_flags |= PF_R;
4623 if ((flags & SEC_CODE) != 0)
4624 p->p_flags |= PF_X;
4625 if ((flags & SEC_READONLY) == 0)
4626 p->p_flags |= PF_W;
4627 }
4628 }
4629 }
4630
4631 elf_tdata (abfd)->next_file_pos = off;
4632 return TRUE;
4633 }
4634
4635 /* Assign file positions for the other sections. */
4636
4637 static bfd_boolean
4638 assign_file_positions_for_non_load_sections (bfd *abfd,
4639 struct bfd_link_info *link_info)
4640 {
4641 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4642 Elf_Internal_Shdr **i_shdrpp;
4643 Elf_Internal_Shdr **hdrpp;
4644 Elf_Internal_Phdr *phdrs;
4645 Elf_Internal_Phdr *p;
4646 struct elf_segment_map *m;
4647 bfd_vma filehdr_vaddr, filehdr_paddr;
4648 bfd_vma phdrs_vaddr, phdrs_paddr;
4649 file_ptr off;
4650 unsigned int num_sec;
4651 unsigned int i;
4652 unsigned int count;
4653
4654 i_shdrpp = elf_elfsections (abfd);
4655 num_sec = elf_numsections (abfd);
4656 off = elf_tdata (abfd)->next_file_pos;
4657 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4658 {
4659 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4660 Elf_Internal_Shdr *hdr;
4661
4662 hdr = *hdrpp;
4663 if (hdr->bfd_section != NULL
4664 && (hdr->bfd_section->filepos != 0
4665 || (hdr->sh_type == SHT_NOBITS
4666 && hdr->contents == NULL)))
4667 hdr->sh_offset = hdr->bfd_section->filepos;
4668 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4669 {
4670 if (hdr->sh_size != 0)
4671 ((*_bfd_error_handler)
4672 (_("%B: warning: allocated section `%s' not in segment"),
4673 abfd,
4674 (hdr->bfd_section == NULL
4675 ? "*unknown*"
4676 : hdr->bfd_section->name)));
4677 /* We don't need to page align empty sections. */
4678 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4679 off += vma_page_aligned_bias (hdr->sh_addr, off,
4680 bed->maxpagesize);
4681 else
4682 off += vma_page_aligned_bias (hdr->sh_addr, off,
4683 hdr->sh_addralign);
4684 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4685 FALSE);
4686 }
4687 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4688 && hdr->bfd_section == NULL)
4689 || hdr == i_shdrpp[tdata->symtab_section]
4690 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4691 || hdr == i_shdrpp[tdata->strtab_section])
4692 hdr->sh_offset = -1;
4693 else
4694 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4695
4696 if (i == SHN_LORESERVE - 1)
4697 {
4698 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4699 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4700 }
4701 }
4702
4703 /* Now that we have set the section file positions, we can set up
4704 the file positions for the non PT_LOAD segments. */
4705 count = 0;
4706 filehdr_vaddr = 0;
4707 filehdr_paddr = 0;
4708 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4709 phdrs_paddr = 0;
4710 phdrs = elf_tdata (abfd)->phdr;
4711 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4712 m != NULL;
4713 m = m->next, p++)
4714 {
4715 ++count;
4716 if (p->p_type != PT_LOAD)
4717 continue;
4718
4719 if (m->includes_filehdr)
4720 {
4721 filehdr_vaddr = p->p_vaddr;
4722 filehdr_paddr = p->p_paddr;
4723 }
4724 if (m->includes_phdrs)
4725 {
4726 phdrs_vaddr = p->p_vaddr;
4727 phdrs_paddr = p->p_paddr;
4728 if (m->includes_filehdr)
4729 {
4730 phdrs_vaddr += bed->s->sizeof_ehdr;
4731 phdrs_paddr += bed->s->sizeof_ehdr;
4732 }
4733 }
4734 }
4735
4736 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4737 m != NULL;
4738 m = m->next, p++)
4739 {
4740 if (m->count != 0)
4741 {
4742 if (p->p_type != PT_LOAD
4743 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4744 {
4745 Elf_Internal_Shdr *hdr;
4746 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4747
4748 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4749 p->p_filesz = (m->sections[m->count - 1]->filepos
4750 - m->sections[0]->filepos);
4751 if (hdr->sh_type != SHT_NOBITS)
4752 p->p_filesz += hdr->sh_size;
4753
4754 p->p_offset = m->sections[0]->filepos;
4755 }
4756 }
4757 else
4758 {
4759 if (m->includes_filehdr)
4760 {
4761 p->p_vaddr = filehdr_vaddr;
4762 if (! m->p_paddr_valid)
4763 p->p_paddr = filehdr_paddr;
4764 }
4765 else if (m->includes_phdrs)
4766 {
4767 p->p_vaddr = phdrs_vaddr;
4768 if (! m->p_paddr_valid)
4769 p->p_paddr = phdrs_paddr;
4770 }
4771 else if (p->p_type == PT_GNU_RELRO)
4772 {
4773 Elf_Internal_Phdr *lp;
4774
4775 for (lp = phdrs; lp < phdrs + count; ++lp)
4776 {
4777 if (lp->p_type == PT_LOAD
4778 && lp->p_vaddr <= link_info->relro_end
4779 && lp->p_vaddr >= link_info->relro_start
4780 && (lp->p_vaddr + lp->p_filesz
4781 >= link_info->relro_end))
4782 break;
4783 }
4784
4785 if (lp < phdrs + count
4786 && link_info->relro_end > lp->p_vaddr)
4787 {
4788 p->p_vaddr = lp->p_vaddr;
4789 p->p_paddr = lp->p_paddr;
4790 p->p_offset = lp->p_offset;
4791 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4792 p->p_memsz = p->p_filesz;
4793 p->p_align = 1;
4794 p->p_flags = (lp->p_flags & ~PF_W);
4795 }
4796 else
4797 {
4798 memset (p, 0, sizeof *p);
4799 p->p_type = PT_NULL;
4800 }
4801 }
4802 }
4803 }
4804
4805 elf_tdata (abfd)->next_file_pos = off;
4806
4807 return TRUE;
4808 }
4809
4810 /* Work out the file positions of all the sections. This is called by
4811 _bfd_elf_compute_section_file_positions. All the section sizes and
4812 VMAs must be known before this is called.
4813
4814 Reloc sections come in two flavours: Those processed specially as
4815 "side-channel" data attached to a section to which they apply, and
4816 those that bfd doesn't process as relocations. The latter sort are
4817 stored in a normal bfd section by bfd_section_from_shdr. We don't
4818 consider the former sort here, unless they form part of the loadable
4819 image. Reloc sections not assigned here will be handled later by
4820 assign_file_positions_for_relocs.
4821
4822 We also don't set the positions of the .symtab and .strtab here. */
4823
4824 static bfd_boolean
4825 assign_file_positions_except_relocs (bfd *abfd,
4826 struct bfd_link_info *link_info)
4827 {
4828 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4829 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4830 file_ptr off;
4831 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4832
4833 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4834 && bfd_get_format (abfd) != bfd_core)
4835 {
4836 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4837 unsigned int num_sec = elf_numsections (abfd);
4838 Elf_Internal_Shdr **hdrpp;
4839 unsigned int i;
4840
4841 /* Start after the ELF header. */
4842 off = i_ehdrp->e_ehsize;
4843
4844 /* We are not creating an executable, which means that we are
4845 not creating a program header, and that the actual order of
4846 the sections in the file is unimportant. */
4847 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4848 {
4849 Elf_Internal_Shdr *hdr;
4850
4851 hdr = *hdrpp;
4852 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4853 && hdr->bfd_section == NULL)
4854 || i == tdata->symtab_section
4855 || i == tdata->symtab_shndx_section
4856 || i == tdata->strtab_section)
4857 {
4858 hdr->sh_offset = -1;
4859 }
4860 else
4861 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4862
4863 if (i == SHN_LORESERVE - 1)
4864 {
4865 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4866 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4867 }
4868 }
4869 }
4870 else
4871 {
4872 unsigned int alloc;
4873
4874 /* Assign file positions for the loaded sections based on the
4875 assignment of sections to segments. */
4876 if (!assign_file_positions_for_load_sections (abfd, link_info))
4877 return FALSE;
4878
4879 /* And for non-load sections. */
4880 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4881 return FALSE;
4882
4883 if (bed->elf_backend_modify_program_headers != NULL)
4884 {
4885 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4886 return FALSE;
4887 }
4888
4889 /* Write out the program headers. */
4890 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4891 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4892 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4893 return FALSE;
4894
4895 off = tdata->next_file_pos;
4896 }
4897
4898 /* Place the section headers. */
4899 off = align_file_position (off, 1 << bed->s->log_file_align);
4900 i_ehdrp->e_shoff = off;
4901 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4902
4903 tdata->next_file_pos = off;
4904
4905 return TRUE;
4906 }
4907
4908 static bfd_boolean
4909 prep_headers (bfd *abfd)
4910 {
4911 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4912 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4913 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4914 struct elf_strtab_hash *shstrtab;
4915 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4916
4917 i_ehdrp = elf_elfheader (abfd);
4918 i_shdrp = elf_elfsections (abfd);
4919
4920 shstrtab = _bfd_elf_strtab_init ();
4921 if (shstrtab == NULL)
4922 return FALSE;
4923
4924 elf_shstrtab (abfd) = shstrtab;
4925
4926 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4927 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4928 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4929 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4930
4931 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4932 i_ehdrp->e_ident[EI_DATA] =
4933 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4934 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4935
4936 if ((abfd->flags & DYNAMIC) != 0)
4937 i_ehdrp->e_type = ET_DYN;
4938 else if ((abfd->flags & EXEC_P) != 0)
4939 i_ehdrp->e_type = ET_EXEC;
4940 else if (bfd_get_format (abfd) == bfd_core)
4941 i_ehdrp->e_type = ET_CORE;
4942 else
4943 i_ehdrp->e_type = ET_REL;
4944
4945 switch (bfd_get_arch (abfd))
4946 {
4947 case bfd_arch_unknown:
4948 i_ehdrp->e_machine = EM_NONE;
4949 break;
4950
4951 /* There used to be a long list of cases here, each one setting
4952 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4953 in the corresponding bfd definition. To avoid duplication,
4954 the switch was removed. Machines that need special handling
4955 can generally do it in elf_backend_final_write_processing(),
4956 unless they need the information earlier than the final write.
4957 Such need can generally be supplied by replacing the tests for
4958 e_machine with the conditions used to determine it. */
4959 default:
4960 i_ehdrp->e_machine = bed->elf_machine_code;
4961 }
4962
4963 i_ehdrp->e_version = bed->s->ev_current;
4964 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4965
4966 /* No program header, for now. */
4967 i_ehdrp->e_phoff = 0;
4968 i_ehdrp->e_phentsize = 0;
4969 i_ehdrp->e_phnum = 0;
4970
4971 /* Each bfd section is section header entry. */
4972 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4973 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4974
4975 /* If we're building an executable, we'll need a program header table. */
4976 if (abfd->flags & EXEC_P)
4977 /* It all happens later. */
4978 ;
4979 else
4980 {
4981 i_ehdrp->e_phentsize = 0;
4982 i_phdrp = 0;
4983 i_ehdrp->e_phoff = 0;
4984 }
4985
4986 elf_tdata (abfd)->symtab_hdr.sh_name =
4987 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4988 elf_tdata (abfd)->strtab_hdr.sh_name =
4989 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4990 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4991 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4992 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4993 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4994 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4995 return FALSE;
4996
4997 return TRUE;
4998 }
4999
5000 /* Assign file positions for all the reloc sections which are not part
5001 of the loadable file image. */
5002
5003 void
5004 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5005 {
5006 file_ptr off;
5007 unsigned int i, num_sec;
5008 Elf_Internal_Shdr **shdrpp;
5009
5010 off = elf_tdata (abfd)->next_file_pos;
5011
5012 num_sec = elf_numsections (abfd);
5013 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5014 {
5015 Elf_Internal_Shdr *shdrp;
5016
5017 shdrp = *shdrpp;
5018 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5019 && shdrp->sh_offset == -1)
5020 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5021 }
5022
5023 elf_tdata (abfd)->next_file_pos = off;
5024 }
5025
5026 bfd_boolean
5027 _bfd_elf_write_object_contents (bfd *abfd)
5028 {
5029 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5030 Elf_Internal_Ehdr *i_ehdrp;
5031 Elf_Internal_Shdr **i_shdrp;
5032 bfd_boolean failed;
5033 unsigned int count, num_sec;
5034
5035 if (! abfd->output_has_begun
5036 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5037 return FALSE;
5038
5039 i_shdrp = elf_elfsections (abfd);
5040 i_ehdrp = elf_elfheader (abfd);
5041
5042 failed = FALSE;
5043 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5044 if (failed)
5045 return FALSE;
5046
5047 _bfd_elf_assign_file_positions_for_relocs (abfd);
5048
5049 /* After writing the headers, we need to write the sections too... */
5050 num_sec = elf_numsections (abfd);
5051 for (count = 1; count < num_sec; count++)
5052 {
5053 if (bed->elf_backend_section_processing)
5054 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5055 if (i_shdrp[count]->contents)
5056 {
5057 bfd_size_type amt = i_shdrp[count]->sh_size;
5058
5059 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5060 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5061 return FALSE;
5062 }
5063 if (count == SHN_LORESERVE - 1)
5064 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5065 }
5066
5067 /* Write out the section header names. */
5068 if (elf_shstrtab (abfd) != NULL
5069 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5070 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5071 return FALSE;
5072
5073 if (bed->elf_backend_final_write_processing)
5074 (*bed->elf_backend_final_write_processing) (abfd,
5075 elf_tdata (abfd)->linker);
5076
5077 return bed->s->write_shdrs_and_ehdr (abfd);
5078 }
5079
5080 bfd_boolean
5081 _bfd_elf_write_corefile_contents (bfd *abfd)
5082 {
5083 /* Hopefully this can be done just like an object file. */
5084 return _bfd_elf_write_object_contents (abfd);
5085 }
5086
5087 /* Given a section, search the header to find them. */
5088
5089 int
5090 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5091 {
5092 const struct elf_backend_data *bed;
5093 int index;
5094
5095 if (elf_section_data (asect) != NULL
5096 && elf_section_data (asect)->this_idx != 0)
5097 return elf_section_data (asect)->this_idx;
5098
5099 if (bfd_is_abs_section (asect))
5100 index = SHN_ABS;
5101 else if (bfd_is_com_section (asect))
5102 index = SHN_COMMON;
5103 else if (bfd_is_und_section (asect))
5104 index = SHN_UNDEF;
5105 else
5106 index = -1;
5107
5108 bed = get_elf_backend_data (abfd);
5109 if (bed->elf_backend_section_from_bfd_section)
5110 {
5111 int retval = index;
5112
5113 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5114 return retval;
5115 }
5116
5117 if (index == -1)
5118 bfd_set_error (bfd_error_nonrepresentable_section);
5119
5120 return index;
5121 }
5122
5123 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5124 on error. */
5125
5126 int
5127 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5128 {
5129 asymbol *asym_ptr = *asym_ptr_ptr;
5130 int idx;
5131 flagword flags = asym_ptr->flags;
5132
5133 /* When gas creates relocations against local labels, it creates its
5134 own symbol for the section, but does put the symbol into the
5135 symbol chain, so udata is 0. When the linker is generating
5136 relocatable output, this section symbol may be for one of the
5137 input sections rather than the output section. */
5138 if (asym_ptr->udata.i == 0
5139 && (flags & BSF_SECTION_SYM)
5140 && asym_ptr->section)
5141 {
5142 asection *sec;
5143 int indx;
5144
5145 sec = asym_ptr->section;
5146 if (sec->owner != abfd && sec->output_section != NULL)
5147 sec = sec->output_section;
5148 if (sec->owner == abfd
5149 && (indx = sec->index) < elf_num_section_syms (abfd)
5150 && elf_section_syms (abfd)[indx] != NULL)
5151 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5152 }
5153
5154 idx = asym_ptr->udata.i;
5155
5156 if (idx == 0)
5157 {
5158 /* This case can occur when using --strip-symbol on a symbol
5159 which is used in a relocation entry. */
5160 (*_bfd_error_handler)
5161 (_("%B: symbol `%s' required but not present"),
5162 abfd, bfd_asymbol_name (asym_ptr));
5163 bfd_set_error (bfd_error_no_symbols);
5164 return -1;
5165 }
5166
5167 #if DEBUG & 4
5168 {
5169 fprintf (stderr,
5170 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5171 (long) asym_ptr, asym_ptr->name, idx, flags,
5172 elf_symbol_flags (flags));
5173 fflush (stderr);
5174 }
5175 #endif
5176
5177 return idx;
5178 }
5179
5180 /* Rewrite program header information. */
5181
5182 static bfd_boolean
5183 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5184 {
5185 Elf_Internal_Ehdr *iehdr;
5186 struct elf_segment_map *map;
5187 struct elf_segment_map *map_first;
5188 struct elf_segment_map **pointer_to_map;
5189 Elf_Internal_Phdr *segment;
5190 asection *section;
5191 unsigned int i;
5192 unsigned int num_segments;
5193 bfd_boolean phdr_included = FALSE;
5194 bfd_vma maxpagesize;
5195 struct elf_segment_map *phdr_adjust_seg = NULL;
5196 unsigned int phdr_adjust_num = 0;
5197 const struct elf_backend_data *bed;
5198
5199 bed = get_elf_backend_data (ibfd);
5200 iehdr = elf_elfheader (ibfd);
5201
5202 map_first = NULL;
5203 pointer_to_map = &map_first;
5204
5205 num_segments = elf_elfheader (ibfd)->e_phnum;
5206 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5207
5208 /* Returns the end address of the segment + 1. */
5209 #define SEGMENT_END(segment, start) \
5210 (start + (segment->p_memsz > segment->p_filesz \
5211 ? segment->p_memsz : segment->p_filesz))
5212
5213 #define SECTION_SIZE(section, segment) \
5214 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5215 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5216 ? section->size : 0)
5217
5218 /* Returns TRUE if the given section is contained within
5219 the given segment. VMA addresses are compared. */
5220 #define IS_CONTAINED_BY_VMA(section, segment) \
5221 (section->vma >= segment->p_vaddr \
5222 && (section->vma + SECTION_SIZE (section, segment) \
5223 <= (SEGMENT_END (segment, segment->p_vaddr))))
5224
5225 /* Returns TRUE if the given section is contained within
5226 the given segment. LMA addresses are compared. */
5227 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5228 (section->lma >= base \
5229 && (section->lma + SECTION_SIZE (section, segment) \
5230 <= SEGMENT_END (segment, base)))
5231
5232 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5233 #define IS_COREFILE_NOTE(p, s) \
5234 (p->p_type == PT_NOTE \
5235 && bfd_get_format (ibfd) == bfd_core \
5236 && s->vma == 0 && s->lma == 0 \
5237 && (bfd_vma) s->filepos >= p->p_offset \
5238 && ((bfd_vma) s->filepos + s->size \
5239 <= p->p_offset + p->p_filesz))
5240
5241 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5242 linker, which generates a PT_INTERP section with p_vaddr and
5243 p_memsz set to 0. */
5244 #define IS_SOLARIS_PT_INTERP(p, s) \
5245 (p->p_vaddr == 0 \
5246 && p->p_paddr == 0 \
5247 && p->p_memsz == 0 \
5248 && p->p_filesz > 0 \
5249 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5250 && s->size > 0 \
5251 && (bfd_vma) s->filepos >= p->p_offset \
5252 && ((bfd_vma) s->filepos + s->size \
5253 <= p->p_offset + p->p_filesz))
5254
5255 /* Decide if the given section should be included in the given segment.
5256 A section will be included if:
5257 1. It is within the address space of the segment -- we use the LMA
5258 if that is set for the segment and the VMA otherwise,
5259 2. It is an allocated segment,
5260 3. There is an output section associated with it,
5261 4. The section has not already been allocated to a previous segment.
5262 5. PT_GNU_STACK segments do not include any sections.
5263 6. PT_TLS segment includes only SHF_TLS sections.
5264 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5265 8. PT_DYNAMIC should not contain empty sections at the beginning
5266 (with the possible exception of .dynamic). */
5267 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5268 ((((segment->p_paddr \
5269 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5270 : IS_CONTAINED_BY_VMA (section, segment)) \
5271 && (section->flags & SEC_ALLOC) != 0) \
5272 || IS_COREFILE_NOTE (segment, section)) \
5273 && segment->p_type != PT_GNU_STACK \
5274 && (segment->p_type != PT_TLS \
5275 || (section->flags & SEC_THREAD_LOCAL)) \
5276 && (segment->p_type == PT_LOAD \
5277 || segment->p_type == PT_TLS \
5278 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5279 && (segment->p_type != PT_DYNAMIC \
5280 || SECTION_SIZE (section, segment) > 0 \
5281 || (segment->p_paddr \
5282 ? segment->p_paddr != section->lma \
5283 : segment->p_vaddr != section->vma) \
5284 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5285 == 0)) \
5286 && ! section->segment_mark)
5287
5288 /* If the output section of a section in the input segment is NULL,
5289 it is removed from the corresponding output segment. */
5290 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5291 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5292 && section->output_section != NULL)
5293
5294 /* Returns TRUE iff seg1 starts after the end of seg2. */
5295 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5296 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5297
5298 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5299 their VMA address ranges and their LMA address ranges overlap.
5300 It is possible to have overlapping VMA ranges without overlapping LMA
5301 ranges. RedBoot images for example can have both .data and .bss mapped
5302 to the same VMA range, but with the .data section mapped to a different
5303 LMA. */
5304 #define SEGMENT_OVERLAPS(seg1, seg2) \
5305 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5306 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5307 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5308 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5309
5310 /* Initialise the segment mark field. */
5311 for (section = ibfd->sections; section != NULL; section = section->next)
5312 section->segment_mark = FALSE;
5313
5314 /* Scan through the segments specified in the program header
5315 of the input BFD. For this first scan we look for overlaps
5316 in the loadable segments. These can be created by weird
5317 parameters to objcopy. Also, fix some solaris weirdness. */
5318 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5319 i < num_segments;
5320 i++, segment++)
5321 {
5322 unsigned int j;
5323 Elf_Internal_Phdr *segment2;
5324
5325 if (segment->p_type == PT_INTERP)
5326 for (section = ibfd->sections; section; section = section->next)
5327 if (IS_SOLARIS_PT_INTERP (segment, section))
5328 {
5329 /* Mininal change so that the normal section to segment
5330 assignment code will work. */
5331 segment->p_vaddr = section->vma;
5332 break;
5333 }
5334
5335 if (segment->p_type != PT_LOAD)
5336 continue;
5337
5338 /* Determine if this segment overlaps any previous segments. */
5339 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5340 {
5341 bfd_signed_vma extra_length;
5342
5343 if (segment2->p_type != PT_LOAD
5344 || ! SEGMENT_OVERLAPS (segment, segment2))
5345 continue;
5346
5347 /* Merge the two segments together. */
5348 if (segment2->p_vaddr < segment->p_vaddr)
5349 {
5350 /* Extend SEGMENT2 to include SEGMENT and then delete
5351 SEGMENT. */
5352 extra_length =
5353 SEGMENT_END (segment, segment->p_vaddr)
5354 - SEGMENT_END (segment2, segment2->p_vaddr);
5355
5356 if (extra_length > 0)
5357 {
5358 segment2->p_memsz += extra_length;
5359 segment2->p_filesz += extra_length;
5360 }
5361
5362 segment->p_type = PT_NULL;
5363
5364 /* Since we have deleted P we must restart the outer loop. */
5365 i = 0;
5366 segment = elf_tdata (ibfd)->phdr;
5367 break;
5368 }
5369 else
5370 {
5371 /* Extend SEGMENT to include SEGMENT2 and then delete
5372 SEGMENT2. */
5373 extra_length =
5374 SEGMENT_END (segment2, segment2->p_vaddr)
5375 - SEGMENT_END (segment, segment->p_vaddr);
5376
5377 if (extra_length > 0)
5378 {
5379 segment->p_memsz += extra_length;
5380 segment->p_filesz += extra_length;
5381 }
5382
5383 segment2->p_type = PT_NULL;
5384 }
5385 }
5386 }
5387
5388 /* The second scan attempts to assign sections to segments. */
5389 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5390 i < num_segments;
5391 i ++, segment ++)
5392 {
5393 unsigned int section_count;
5394 asection ** sections;
5395 asection * output_section;
5396 unsigned int isec;
5397 bfd_vma matching_lma;
5398 bfd_vma suggested_lma;
5399 unsigned int j;
5400 bfd_size_type amt;
5401 asection * first_section;
5402
5403 if (segment->p_type == PT_NULL)
5404 continue;
5405
5406 first_section = NULL;
5407 /* Compute how many sections might be placed into this segment. */
5408 for (section = ibfd->sections, section_count = 0;
5409 section != NULL;
5410 section = section->next)
5411 {
5412 /* Find the first section in the input segment, which may be
5413 removed from the corresponding output segment. */
5414 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5415 {
5416 if (first_section == NULL)
5417 first_section = section;
5418 if (section->output_section != NULL)
5419 ++section_count;
5420 }
5421 }
5422
5423 /* Allocate a segment map big enough to contain
5424 all of the sections we have selected. */
5425 amt = sizeof (struct elf_segment_map);
5426 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5427 map = bfd_zalloc (obfd, amt);
5428 if (map == NULL)
5429 return FALSE;
5430
5431 /* Initialise the fields of the segment map. Default to
5432 using the physical address of the segment in the input BFD. */
5433 map->next = NULL;
5434 map->p_type = segment->p_type;
5435 map->p_flags = segment->p_flags;
5436 map->p_flags_valid = 1;
5437
5438 /* If the first section in the input segment is removed, there is
5439 no need to preserve segment physical address in the corresponding
5440 output segment. */
5441 if (!first_section || first_section->output_section != NULL)
5442 {
5443 map->p_paddr = segment->p_paddr;
5444 map->p_paddr_valid = 1;
5445 }
5446
5447 /* Determine if this segment contains the ELF file header
5448 and if it contains the program headers themselves. */
5449 map->includes_filehdr = (segment->p_offset == 0
5450 && segment->p_filesz >= iehdr->e_ehsize);
5451
5452 map->includes_phdrs = 0;
5453
5454 if (! phdr_included || segment->p_type != PT_LOAD)
5455 {
5456 map->includes_phdrs =
5457 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5458 && (segment->p_offset + segment->p_filesz
5459 >= ((bfd_vma) iehdr->e_phoff
5460 + iehdr->e_phnum * iehdr->e_phentsize)));
5461
5462 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5463 phdr_included = TRUE;
5464 }
5465
5466 if (section_count == 0)
5467 {
5468 /* Special segments, such as the PT_PHDR segment, may contain
5469 no sections, but ordinary, loadable segments should contain
5470 something. They are allowed by the ELF spec however, so only
5471 a warning is produced. */
5472 if (segment->p_type == PT_LOAD)
5473 (*_bfd_error_handler)
5474 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5475 ibfd);
5476
5477 map->count = 0;
5478 *pointer_to_map = map;
5479 pointer_to_map = &map->next;
5480
5481 continue;
5482 }
5483
5484 /* Now scan the sections in the input BFD again and attempt
5485 to add their corresponding output sections to the segment map.
5486 The problem here is how to handle an output section which has
5487 been moved (ie had its LMA changed). There are four possibilities:
5488
5489 1. None of the sections have been moved.
5490 In this case we can continue to use the segment LMA from the
5491 input BFD.
5492
5493 2. All of the sections have been moved by the same amount.
5494 In this case we can change the segment's LMA to match the LMA
5495 of the first section.
5496
5497 3. Some of the sections have been moved, others have not.
5498 In this case those sections which have not been moved can be
5499 placed in the current segment which will have to have its size,
5500 and possibly its LMA changed, and a new segment or segments will
5501 have to be created to contain the other sections.
5502
5503 4. The sections have been moved, but not by the same amount.
5504 In this case we can change the segment's LMA to match the LMA
5505 of the first section and we will have to create a new segment
5506 or segments to contain the other sections.
5507
5508 In order to save time, we allocate an array to hold the section
5509 pointers that we are interested in. As these sections get assigned
5510 to a segment, they are removed from this array. */
5511
5512 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5513 to work around this long long bug. */
5514 sections = bfd_malloc2 (section_count, sizeof (asection *));
5515 if (sections == NULL)
5516 return FALSE;
5517
5518 /* Step One: Scan for segment vs section LMA conflicts.
5519 Also add the sections to the section array allocated above.
5520 Also add the sections to the current segment. In the common
5521 case, where the sections have not been moved, this means that
5522 we have completely filled the segment, and there is nothing
5523 more to do. */
5524 isec = 0;
5525 matching_lma = 0;
5526 suggested_lma = 0;
5527
5528 for (j = 0, section = ibfd->sections;
5529 section != NULL;
5530 section = section->next)
5531 {
5532 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5533 {
5534 output_section = section->output_section;
5535
5536 sections[j ++] = section;
5537
5538 /* The Solaris native linker always sets p_paddr to 0.
5539 We try to catch that case here, and set it to the
5540 correct value. Note - some backends require that
5541 p_paddr be left as zero. */
5542 if (segment->p_paddr == 0
5543 && segment->p_vaddr != 0
5544 && (! bed->want_p_paddr_set_to_zero)
5545 && isec == 0
5546 && output_section->lma != 0
5547 && (output_section->vma == (segment->p_vaddr
5548 + (map->includes_filehdr
5549 ? iehdr->e_ehsize
5550 : 0)
5551 + (map->includes_phdrs
5552 ? (iehdr->e_phnum
5553 * iehdr->e_phentsize)
5554 : 0))))
5555 map->p_paddr = segment->p_vaddr;
5556
5557 /* Match up the physical address of the segment with the
5558 LMA address of the output section. */
5559 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5560 || IS_COREFILE_NOTE (segment, section)
5561 || (bed->want_p_paddr_set_to_zero &&
5562 IS_CONTAINED_BY_VMA (output_section, segment))
5563 )
5564 {
5565 if (matching_lma == 0)
5566 matching_lma = output_section->lma;
5567
5568 /* We assume that if the section fits within the segment
5569 then it does not overlap any other section within that
5570 segment. */
5571 map->sections[isec ++] = output_section;
5572 }
5573 else if (suggested_lma == 0)
5574 suggested_lma = output_section->lma;
5575 }
5576 }
5577
5578 BFD_ASSERT (j == section_count);
5579
5580 /* Step Two: Adjust the physical address of the current segment,
5581 if necessary. */
5582 if (isec == section_count)
5583 {
5584 /* All of the sections fitted within the segment as currently
5585 specified. This is the default case. Add the segment to
5586 the list of built segments and carry on to process the next
5587 program header in the input BFD. */
5588 map->count = section_count;
5589 *pointer_to_map = map;
5590 pointer_to_map = &map->next;
5591
5592 if (matching_lma != map->p_paddr
5593 && !map->includes_filehdr && !map->includes_phdrs)
5594 /* There is some padding before the first section in the
5595 segment. So, we must account for that in the output
5596 segment's vma. */
5597 map->p_vaddr_offset = matching_lma - map->p_paddr;
5598
5599 free (sections);
5600 continue;
5601 }
5602 else
5603 {
5604 if (matching_lma != 0)
5605 {
5606 /* At least one section fits inside the current segment.
5607 Keep it, but modify its physical address to match the
5608 LMA of the first section that fitted. */
5609 map->p_paddr = matching_lma;
5610 }
5611 else
5612 {
5613 /* None of the sections fitted inside the current segment.
5614 Change the current segment's physical address to match
5615 the LMA of the first section. */
5616 map->p_paddr = suggested_lma;
5617 }
5618
5619 /* Offset the segment physical address from the lma
5620 to allow for space taken up by elf headers. */
5621 if (map->includes_filehdr)
5622 map->p_paddr -= iehdr->e_ehsize;
5623
5624 if (map->includes_phdrs)
5625 {
5626 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5627
5628 /* iehdr->e_phnum is just an estimate of the number
5629 of program headers that we will need. Make a note
5630 here of the number we used and the segment we chose
5631 to hold these headers, so that we can adjust the
5632 offset when we know the correct value. */
5633 phdr_adjust_num = iehdr->e_phnum;
5634 phdr_adjust_seg = map;
5635 }
5636 }
5637
5638 /* Step Three: Loop over the sections again, this time assigning
5639 those that fit to the current segment and removing them from the
5640 sections array; but making sure not to leave large gaps. Once all
5641 possible sections have been assigned to the current segment it is
5642 added to the list of built segments and if sections still remain
5643 to be assigned, a new segment is constructed before repeating
5644 the loop. */
5645 isec = 0;
5646 do
5647 {
5648 map->count = 0;
5649 suggested_lma = 0;
5650
5651 /* Fill the current segment with sections that fit. */
5652 for (j = 0; j < section_count; j++)
5653 {
5654 section = sections[j];
5655
5656 if (section == NULL)
5657 continue;
5658
5659 output_section = section->output_section;
5660
5661 BFD_ASSERT (output_section != NULL);
5662
5663 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5664 || IS_COREFILE_NOTE (segment, section))
5665 {
5666 if (map->count == 0)
5667 {
5668 /* If the first section in a segment does not start at
5669 the beginning of the segment, then something is
5670 wrong. */
5671 if (output_section->lma !=
5672 (map->p_paddr
5673 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5674 + (map->includes_phdrs
5675 ? iehdr->e_phnum * iehdr->e_phentsize
5676 : 0)))
5677 abort ();
5678 }
5679 else
5680 {
5681 asection * prev_sec;
5682
5683 prev_sec = map->sections[map->count - 1];
5684
5685 /* If the gap between the end of the previous section
5686 and the start of this section is more than
5687 maxpagesize then we need to start a new segment. */
5688 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5689 maxpagesize)
5690 < BFD_ALIGN (output_section->lma, maxpagesize))
5691 || ((prev_sec->lma + prev_sec->size)
5692 > output_section->lma))
5693 {
5694 if (suggested_lma == 0)
5695 suggested_lma = output_section->lma;
5696
5697 continue;
5698 }
5699 }
5700
5701 map->sections[map->count++] = output_section;
5702 ++isec;
5703 sections[j] = NULL;
5704 section->segment_mark = TRUE;
5705 }
5706 else if (suggested_lma == 0)
5707 suggested_lma = output_section->lma;
5708 }
5709
5710 BFD_ASSERT (map->count > 0);
5711
5712 /* Add the current segment to the list of built segments. */
5713 *pointer_to_map = map;
5714 pointer_to_map = &map->next;
5715
5716 if (isec < section_count)
5717 {
5718 /* We still have not allocated all of the sections to
5719 segments. Create a new segment here, initialise it
5720 and carry on looping. */
5721 amt = sizeof (struct elf_segment_map);
5722 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5723 map = bfd_alloc (obfd, amt);
5724 if (map == NULL)
5725 {
5726 free (sections);
5727 return FALSE;
5728 }
5729
5730 /* Initialise the fields of the segment map. Set the physical
5731 physical address to the LMA of the first section that has
5732 not yet been assigned. */
5733 map->next = NULL;
5734 map->p_type = segment->p_type;
5735 map->p_flags = segment->p_flags;
5736 map->p_flags_valid = 1;
5737 map->p_paddr = suggested_lma;
5738 map->p_paddr_valid = 1;
5739 map->includes_filehdr = 0;
5740 map->includes_phdrs = 0;
5741 }
5742 }
5743 while (isec < section_count);
5744
5745 free (sections);
5746 }
5747
5748 /* The Solaris linker creates program headers in which all the
5749 p_paddr fields are zero. When we try to objcopy or strip such a
5750 file, we get confused. Check for this case, and if we find it
5751 reset the p_paddr_valid fields. */
5752 for (map = map_first; map != NULL; map = map->next)
5753 if (map->p_paddr != 0)
5754 break;
5755 if (map == NULL)
5756 for (map = map_first; map != NULL; map = map->next)
5757 map->p_paddr_valid = 0;
5758
5759 elf_tdata (obfd)->segment_map = map_first;
5760
5761 /* If we had to estimate the number of program headers that were
5762 going to be needed, then check our estimate now and adjust
5763 the offset if necessary. */
5764 if (phdr_adjust_seg != NULL)
5765 {
5766 unsigned int count;
5767
5768 for (count = 0, map = map_first; map != NULL; map = map->next)
5769 count++;
5770
5771 if (count > phdr_adjust_num)
5772 phdr_adjust_seg->p_paddr
5773 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5774 }
5775
5776 #undef SEGMENT_END
5777 #undef SECTION_SIZE
5778 #undef IS_CONTAINED_BY_VMA
5779 #undef IS_CONTAINED_BY_LMA
5780 #undef IS_COREFILE_NOTE
5781 #undef IS_SOLARIS_PT_INTERP
5782 #undef IS_SECTION_IN_INPUT_SEGMENT
5783 #undef INCLUDE_SECTION_IN_SEGMENT
5784 #undef SEGMENT_AFTER_SEGMENT
5785 #undef SEGMENT_OVERLAPS
5786 return TRUE;
5787 }
5788
5789 /* Copy ELF program header information. */
5790
5791 static bfd_boolean
5792 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5793 {
5794 Elf_Internal_Ehdr *iehdr;
5795 struct elf_segment_map *map;
5796 struct elf_segment_map *map_first;
5797 struct elf_segment_map **pointer_to_map;
5798 Elf_Internal_Phdr *segment;
5799 unsigned int i;
5800 unsigned int num_segments;
5801 bfd_boolean phdr_included = FALSE;
5802
5803 iehdr = elf_elfheader (ibfd);
5804
5805 map_first = NULL;
5806 pointer_to_map = &map_first;
5807
5808 num_segments = elf_elfheader (ibfd)->e_phnum;
5809 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5810 i < num_segments;
5811 i++, segment++)
5812 {
5813 asection *section;
5814 unsigned int section_count;
5815 bfd_size_type amt;
5816 Elf_Internal_Shdr *this_hdr;
5817 bfd_vma first_lma = 0;
5818
5819 /* FIXME: Do we need to copy PT_NULL segment? */
5820 if (segment->p_type == PT_NULL)
5821 continue;
5822
5823 /* Compute how many sections are in this segment. */
5824 for (section = ibfd->sections, section_count = 0;
5825 section != NULL;
5826 section = section->next)
5827 {
5828 this_hdr = &(elf_section_data(section)->this_hdr);
5829 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5830 {
5831 if (!section_count || section->lma < first_lma)
5832 first_lma = section->lma;
5833 section_count++;
5834 }
5835 }
5836
5837 /* Allocate a segment map big enough to contain
5838 all of the sections we have selected. */
5839 amt = sizeof (struct elf_segment_map);
5840 if (section_count != 0)
5841 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5842 map = bfd_zalloc (obfd, amt);
5843 if (map == NULL)
5844 return FALSE;
5845
5846 /* Initialize the fields of the output segment map with the
5847 input segment. */
5848 map->next = NULL;
5849 map->p_type = segment->p_type;
5850 map->p_flags = segment->p_flags;
5851 map->p_flags_valid = 1;
5852 map->p_paddr = segment->p_paddr;
5853 map->p_paddr_valid = 1;
5854 map->p_align = segment->p_align;
5855 map->p_align_valid = 1;
5856 map->p_vaddr_offset = 0;
5857
5858 /* Determine if this segment contains the ELF file header
5859 and if it contains the program headers themselves. */
5860 map->includes_filehdr = (segment->p_offset == 0
5861 && segment->p_filesz >= iehdr->e_ehsize);
5862
5863 map->includes_phdrs = 0;
5864 if (! phdr_included || segment->p_type != PT_LOAD)
5865 {
5866 map->includes_phdrs =
5867 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5868 && (segment->p_offset + segment->p_filesz
5869 >= ((bfd_vma) iehdr->e_phoff
5870 + iehdr->e_phnum * iehdr->e_phentsize)));
5871
5872 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5873 phdr_included = TRUE;
5874 }
5875
5876 if (!map->includes_phdrs && !map->includes_filehdr)
5877 /* There is some other padding before the first section. */
5878 map->p_vaddr_offset = first_lma - segment->p_paddr;
5879
5880 if (section_count != 0)
5881 {
5882 unsigned int isec = 0;
5883
5884 for (section = ibfd->sections;
5885 section != NULL;
5886 section = section->next)
5887 {
5888 this_hdr = &(elf_section_data(section)->this_hdr);
5889 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5890 map->sections[isec++] = section->output_section;
5891 }
5892 }
5893
5894 map->count = section_count;
5895 *pointer_to_map = map;
5896 pointer_to_map = &map->next;
5897 }
5898
5899 elf_tdata (obfd)->segment_map = map_first;
5900 return TRUE;
5901 }
5902
5903 /* Copy private BFD data. This copies or rewrites ELF program header
5904 information. */
5905
5906 static bfd_boolean
5907 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5908 {
5909 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5910 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5911 return TRUE;
5912
5913 if (elf_tdata (ibfd)->phdr == NULL)
5914 return TRUE;
5915
5916 if (ibfd->xvec == obfd->xvec)
5917 {
5918 /* Check if any sections in the input BFD covered by ELF program
5919 header are changed. */
5920 Elf_Internal_Phdr *segment;
5921 asection *section, *osec;
5922 unsigned int i, num_segments;
5923 Elf_Internal_Shdr *this_hdr;
5924
5925 /* Initialize the segment mark field. */
5926 for (section = obfd->sections; section != NULL;
5927 section = section->next)
5928 section->segment_mark = FALSE;
5929
5930 num_segments = elf_elfheader (ibfd)->e_phnum;
5931 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5932 i < num_segments;
5933 i++, segment++)
5934 {
5935 for (section = ibfd->sections;
5936 section != NULL; section = section->next)
5937 {
5938 /* We mark the output section so that we know it comes
5939 from the input BFD. */
5940 osec = section->output_section;
5941 if (osec)
5942 osec->segment_mark = TRUE;
5943
5944 /* Check if this section is covered by the segment. */
5945 this_hdr = &(elf_section_data(section)->this_hdr);
5946 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5947 {
5948 /* FIXME: Check if its output section is changed or
5949 removed. What else do we need to check? */
5950 if (osec == NULL
5951 || section->flags != osec->flags
5952 || section->lma != osec->lma
5953 || section->vma != osec->vma
5954 || section->size != osec->size
5955 || section->rawsize != osec->rawsize
5956 || section->alignment_power != osec->alignment_power)
5957 goto rewrite;
5958 }
5959 }
5960 }
5961
5962 /* Check to see if any output section doesn't come from the
5963 input BFD. */
5964 for (section = obfd->sections; section != NULL;
5965 section = section->next)
5966 {
5967 if (section->segment_mark == FALSE)
5968 goto rewrite;
5969 else
5970 section->segment_mark = FALSE;
5971 }
5972
5973 return copy_elf_program_header (ibfd, obfd);
5974 }
5975
5976 rewrite:
5977 return rewrite_elf_program_header (ibfd, obfd);
5978 }
5979
5980 /* Initialize private output section information from input section. */
5981
5982 bfd_boolean
5983 _bfd_elf_init_private_section_data (bfd *ibfd,
5984 asection *isec,
5985 bfd *obfd,
5986 asection *osec,
5987 struct bfd_link_info *link_info)
5988
5989 {
5990 Elf_Internal_Shdr *ihdr, *ohdr;
5991 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5992
5993 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5994 || obfd->xvec->flavour != bfd_target_elf_flavour)
5995 return TRUE;
5996
5997 /* Don't copy the output ELF section type from input if the
5998 output BFD section flags have been set to something different.
5999 elf_fake_sections will set ELF section type based on BFD
6000 section flags. */
6001 if (osec->flags == isec->flags || !osec->flags)
6002 {
6003 BFD_ASSERT (osec->flags == isec->flags
6004 || (!osec->flags
6005 && elf_section_type (osec) == SHT_NULL));
6006 elf_section_type (osec) = elf_section_type (isec);
6007 }
6008
6009 /* FIXME: Is this correct for all OS/PROC specific flags? */
6010 elf_section_flags (osec) |= (elf_section_flags (isec)
6011 & (SHF_MASKOS | SHF_MASKPROC));
6012
6013 /* Set things up for objcopy and relocatable link. The output
6014 SHT_GROUP section will have its elf_next_in_group pointing back
6015 to the input group members. Ignore linker created group section.
6016 See elfNN_ia64_object_p in elfxx-ia64.c. */
6017 if (need_group)
6018 {
6019 if (elf_sec_group (isec) == NULL
6020 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6021 {
6022 if (elf_section_flags (isec) & SHF_GROUP)
6023 elf_section_flags (osec) |= SHF_GROUP;
6024 elf_next_in_group (osec) = elf_next_in_group (isec);
6025 elf_group_name (osec) = elf_group_name (isec);
6026 }
6027 }
6028
6029 ihdr = &elf_section_data (isec)->this_hdr;
6030
6031 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6032 don't use the output section of the linked-to section since it
6033 may be NULL at this point. */
6034 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6035 {
6036 ohdr = &elf_section_data (osec)->this_hdr;
6037 ohdr->sh_flags |= SHF_LINK_ORDER;
6038 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6039 }
6040
6041 osec->use_rela_p = isec->use_rela_p;
6042
6043 return TRUE;
6044 }
6045
6046 /* Copy private section information. This copies over the entsize
6047 field, and sometimes the info field. */
6048
6049 bfd_boolean
6050 _bfd_elf_copy_private_section_data (bfd *ibfd,
6051 asection *isec,
6052 bfd *obfd,
6053 asection *osec)
6054 {
6055 Elf_Internal_Shdr *ihdr, *ohdr;
6056
6057 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6058 || obfd->xvec->flavour != bfd_target_elf_flavour)
6059 return TRUE;
6060
6061 ihdr = &elf_section_data (isec)->this_hdr;
6062 ohdr = &elf_section_data (osec)->this_hdr;
6063
6064 ohdr->sh_entsize = ihdr->sh_entsize;
6065
6066 if (ihdr->sh_type == SHT_SYMTAB
6067 || ihdr->sh_type == SHT_DYNSYM
6068 || ihdr->sh_type == SHT_GNU_verneed
6069 || ihdr->sh_type == SHT_GNU_verdef)
6070 ohdr->sh_info = ihdr->sh_info;
6071
6072 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6073 NULL);
6074 }
6075
6076 /* Copy private header information. */
6077
6078 bfd_boolean
6079 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6080 {
6081 asection *isec;
6082
6083 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6084 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6085 return TRUE;
6086
6087 /* Copy over private BFD data if it has not already been copied.
6088 This must be done here, rather than in the copy_private_bfd_data
6089 entry point, because the latter is called after the section
6090 contents have been set, which means that the program headers have
6091 already been worked out. */
6092 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6093 {
6094 if (! copy_private_bfd_data (ibfd, obfd))
6095 return FALSE;
6096 }
6097
6098 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6099 but this might be wrong if we deleted the group section. */
6100 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6101 if (elf_section_type (isec) == SHT_GROUP
6102 && isec->output_section == NULL)
6103 {
6104 asection *first = elf_next_in_group (isec);
6105 asection *s = first;
6106 while (s != NULL)
6107 {
6108 if (s->output_section != NULL)
6109 {
6110 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6111 elf_group_name (s->output_section) = NULL;
6112 }
6113 s = elf_next_in_group (s);
6114 if (s == first)
6115 break;
6116 }
6117 }
6118
6119 return TRUE;
6120 }
6121
6122 /* Copy private symbol information. If this symbol is in a section
6123 which we did not map into a BFD section, try to map the section
6124 index correctly. We use special macro definitions for the mapped
6125 section indices; these definitions are interpreted by the
6126 swap_out_syms function. */
6127
6128 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6129 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6130 #define MAP_STRTAB (SHN_HIOS + 3)
6131 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6132 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6133
6134 bfd_boolean
6135 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6136 asymbol *isymarg,
6137 bfd *obfd,
6138 asymbol *osymarg)
6139 {
6140 elf_symbol_type *isym, *osym;
6141
6142 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6143 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6144 return TRUE;
6145
6146 isym = elf_symbol_from (ibfd, isymarg);
6147 osym = elf_symbol_from (obfd, osymarg);
6148
6149 if (isym != NULL
6150 && osym != NULL
6151 && bfd_is_abs_section (isym->symbol.section))
6152 {
6153 unsigned int shndx;
6154
6155 shndx = isym->internal_elf_sym.st_shndx;
6156 if (shndx == elf_onesymtab (ibfd))
6157 shndx = MAP_ONESYMTAB;
6158 else if (shndx == elf_dynsymtab (ibfd))
6159 shndx = MAP_DYNSYMTAB;
6160 else if (shndx == elf_tdata (ibfd)->strtab_section)
6161 shndx = MAP_STRTAB;
6162 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6163 shndx = MAP_SHSTRTAB;
6164 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6165 shndx = MAP_SYM_SHNDX;
6166 osym->internal_elf_sym.st_shndx = shndx;
6167 }
6168
6169 return TRUE;
6170 }
6171
6172 /* Swap out the symbols. */
6173
6174 static bfd_boolean
6175 swap_out_syms (bfd *abfd,
6176 struct bfd_strtab_hash **sttp,
6177 int relocatable_p)
6178 {
6179 const struct elf_backend_data *bed;
6180 int symcount;
6181 asymbol **syms;
6182 struct bfd_strtab_hash *stt;
6183 Elf_Internal_Shdr *symtab_hdr;
6184 Elf_Internal_Shdr *symtab_shndx_hdr;
6185 Elf_Internal_Shdr *symstrtab_hdr;
6186 bfd_byte *outbound_syms;
6187 bfd_byte *outbound_shndx;
6188 int idx;
6189 bfd_size_type amt;
6190 bfd_boolean name_local_sections;
6191
6192 if (!elf_map_symbols (abfd))
6193 return FALSE;
6194
6195 /* Dump out the symtabs. */
6196 stt = _bfd_elf_stringtab_init ();
6197 if (stt == NULL)
6198 return FALSE;
6199
6200 bed = get_elf_backend_data (abfd);
6201 symcount = bfd_get_symcount (abfd);
6202 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6203 symtab_hdr->sh_type = SHT_SYMTAB;
6204 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6205 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6206 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6207 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6208
6209 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6210 symstrtab_hdr->sh_type = SHT_STRTAB;
6211
6212 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6213 if (outbound_syms == NULL)
6214 {
6215 _bfd_stringtab_free (stt);
6216 return FALSE;
6217 }
6218 symtab_hdr->contents = outbound_syms;
6219
6220 outbound_shndx = NULL;
6221 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6222 if (symtab_shndx_hdr->sh_name != 0)
6223 {
6224 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6225 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6226 sizeof (Elf_External_Sym_Shndx));
6227 if (outbound_shndx == NULL)
6228 {
6229 _bfd_stringtab_free (stt);
6230 return FALSE;
6231 }
6232
6233 symtab_shndx_hdr->contents = outbound_shndx;
6234 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6235 symtab_shndx_hdr->sh_size = amt;
6236 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6237 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6238 }
6239
6240 /* Now generate the data (for "contents"). */
6241 {
6242 /* Fill in zeroth symbol and swap it out. */
6243 Elf_Internal_Sym sym;
6244 sym.st_name = 0;
6245 sym.st_value = 0;
6246 sym.st_size = 0;
6247 sym.st_info = 0;
6248 sym.st_other = 0;
6249 sym.st_shndx = SHN_UNDEF;
6250 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6251 outbound_syms += bed->s->sizeof_sym;
6252 if (outbound_shndx != NULL)
6253 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6254 }
6255
6256 name_local_sections
6257 = (bed->elf_backend_name_local_section_symbols
6258 && bed->elf_backend_name_local_section_symbols (abfd));
6259
6260 syms = bfd_get_outsymbols (abfd);
6261 for (idx = 0; idx < symcount; idx++)
6262 {
6263 Elf_Internal_Sym sym;
6264 bfd_vma value = syms[idx]->value;
6265 elf_symbol_type *type_ptr;
6266 flagword flags = syms[idx]->flags;
6267 int type;
6268
6269 if (!name_local_sections
6270 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6271 {
6272 /* Local section symbols have no name. */
6273 sym.st_name = 0;
6274 }
6275 else
6276 {
6277 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6278 syms[idx]->name,
6279 TRUE, FALSE);
6280 if (sym.st_name == (unsigned long) -1)
6281 {
6282 _bfd_stringtab_free (stt);
6283 return FALSE;
6284 }
6285 }
6286
6287 type_ptr = elf_symbol_from (abfd, syms[idx]);
6288
6289 if ((flags & BSF_SECTION_SYM) == 0
6290 && bfd_is_com_section (syms[idx]->section))
6291 {
6292 /* ELF common symbols put the alignment into the `value' field,
6293 and the size into the `size' field. This is backwards from
6294 how BFD handles it, so reverse it here. */
6295 sym.st_size = value;
6296 if (type_ptr == NULL
6297 || type_ptr->internal_elf_sym.st_value == 0)
6298 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6299 else
6300 sym.st_value = type_ptr->internal_elf_sym.st_value;
6301 sym.st_shndx = _bfd_elf_section_from_bfd_section
6302 (abfd, syms[idx]->section);
6303 }
6304 else
6305 {
6306 asection *sec = syms[idx]->section;
6307 int shndx;
6308
6309 if (sec->output_section)
6310 {
6311 value += sec->output_offset;
6312 sec = sec->output_section;
6313 }
6314
6315 /* Don't add in the section vma for relocatable output. */
6316 if (! relocatable_p)
6317 value += sec->vma;
6318 sym.st_value = value;
6319 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6320
6321 if (bfd_is_abs_section (sec)
6322 && type_ptr != NULL
6323 && type_ptr->internal_elf_sym.st_shndx != 0)
6324 {
6325 /* This symbol is in a real ELF section which we did
6326 not create as a BFD section. Undo the mapping done
6327 by copy_private_symbol_data. */
6328 shndx = type_ptr->internal_elf_sym.st_shndx;
6329 switch (shndx)
6330 {
6331 case MAP_ONESYMTAB:
6332 shndx = elf_onesymtab (abfd);
6333 break;
6334 case MAP_DYNSYMTAB:
6335 shndx = elf_dynsymtab (abfd);
6336 break;
6337 case MAP_STRTAB:
6338 shndx = elf_tdata (abfd)->strtab_section;
6339 break;
6340 case MAP_SHSTRTAB:
6341 shndx = elf_tdata (abfd)->shstrtab_section;
6342 break;
6343 case MAP_SYM_SHNDX:
6344 shndx = elf_tdata (abfd)->symtab_shndx_section;
6345 break;
6346 default:
6347 break;
6348 }
6349 }
6350 else
6351 {
6352 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6353
6354 if (shndx == -1)
6355 {
6356 asection *sec2;
6357
6358 /* Writing this would be a hell of a lot easier if
6359 we had some decent documentation on bfd, and
6360 knew what to expect of the library, and what to
6361 demand of applications. For example, it
6362 appears that `objcopy' might not set the
6363 section of a symbol to be a section that is
6364 actually in the output file. */
6365 sec2 = bfd_get_section_by_name (abfd, sec->name);
6366 if (sec2 == NULL)
6367 {
6368 _bfd_error_handler (_("\
6369 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6370 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6371 sec->name);
6372 bfd_set_error (bfd_error_invalid_operation);
6373 _bfd_stringtab_free (stt);
6374 return FALSE;
6375 }
6376
6377 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6378 BFD_ASSERT (shndx != -1);
6379 }
6380 }
6381
6382 sym.st_shndx = shndx;
6383 }
6384
6385 if ((flags & BSF_THREAD_LOCAL) != 0)
6386 type = STT_TLS;
6387 else if ((flags & BSF_FUNCTION) != 0)
6388 type = STT_FUNC;
6389 else if ((flags & BSF_OBJECT) != 0)
6390 type = STT_OBJECT;
6391 else
6392 type = STT_NOTYPE;
6393
6394 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6395 type = STT_TLS;
6396
6397 /* Processor-specific types. */
6398 if (type_ptr != NULL
6399 && bed->elf_backend_get_symbol_type)
6400 type = ((*bed->elf_backend_get_symbol_type)
6401 (&type_ptr->internal_elf_sym, type));
6402
6403 if (flags & BSF_SECTION_SYM)
6404 {
6405 if (flags & BSF_GLOBAL)
6406 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6407 else
6408 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6409 }
6410 else if (bfd_is_com_section (syms[idx]->section))
6411 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6412 else if (bfd_is_und_section (syms[idx]->section))
6413 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6414 ? STB_WEAK
6415 : STB_GLOBAL),
6416 type);
6417 else if (flags & BSF_FILE)
6418 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6419 else
6420 {
6421 int bind = STB_LOCAL;
6422
6423 if (flags & BSF_LOCAL)
6424 bind = STB_LOCAL;
6425 else if (flags & BSF_WEAK)
6426 bind = STB_WEAK;
6427 else if (flags & BSF_GLOBAL)
6428 bind = STB_GLOBAL;
6429
6430 sym.st_info = ELF_ST_INFO (bind, type);
6431 }
6432
6433 if (type_ptr != NULL)
6434 sym.st_other = type_ptr->internal_elf_sym.st_other;
6435 else
6436 sym.st_other = 0;
6437
6438 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6439 outbound_syms += bed->s->sizeof_sym;
6440 if (outbound_shndx != NULL)
6441 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6442 }
6443
6444 *sttp = stt;
6445 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6446 symstrtab_hdr->sh_type = SHT_STRTAB;
6447
6448 symstrtab_hdr->sh_flags = 0;
6449 symstrtab_hdr->sh_addr = 0;
6450 symstrtab_hdr->sh_entsize = 0;
6451 symstrtab_hdr->sh_link = 0;
6452 symstrtab_hdr->sh_info = 0;
6453 symstrtab_hdr->sh_addralign = 1;
6454
6455 return TRUE;
6456 }
6457
6458 /* Return the number of bytes required to hold the symtab vector.
6459
6460 Note that we base it on the count plus 1, since we will null terminate
6461 the vector allocated based on this size. However, the ELF symbol table
6462 always has a dummy entry as symbol #0, so it ends up even. */
6463
6464 long
6465 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6466 {
6467 long symcount;
6468 long symtab_size;
6469 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6470
6471 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6472 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6473 if (symcount > 0)
6474 symtab_size -= sizeof (asymbol *);
6475
6476 return symtab_size;
6477 }
6478
6479 long
6480 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6481 {
6482 long symcount;
6483 long symtab_size;
6484 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6485
6486 if (elf_dynsymtab (abfd) == 0)
6487 {
6488 bfd_set_error (bfd_error_invalid_operation);
6489 return -1;
6490 }
6491
6492 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6493 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6494 if (symcount > 0)
6495 symtab_size -= sizeof (asymbol *);
6496
6497 return symtab_size;
6498 }
6499
6500 long
6501 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6502 sec_ptr asect)
6503 {
6504 return (asect->reloc_count + 1) * sizeof (arelent *);
6505 }
6506
6507 /* Canonicalize the relocs. */
6508
6509 long
6510 _bfd_elf_canonicalize_reloc (bfd *abfd,
6511 sec_ptr section,
6512 arelent **relptr,
6513 asymbol **symbols)
6514 {
6515 arelent *tblptr;
6516 unsigned int i;
6517 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6518
6519 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6520 return -1;
6521
6522 tblptr = section->relocation;
6523 for (i = 0; i < section->reloc_count; i++)
6524 *relptr++ = tblptr++;
6525
6526 *relptr = NULL;
6527
6528 return section->reloc_count;
6529 }
6530
6531 long
6532 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6533 {
6534 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6535 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6536
6537 if (symcount >= 0)
6538 bfd_get_symcount (abfd) = symcount;
6539 return symcount;
6540 }
6541
6542 long
6543 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6544 asymbol **allocation)
6545 {
6546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6547 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6548
6549 if (symcount >= 0)
6550 bfd_get_dynamic_symcount (abfd) = symcount;
6551 return symcount;
6552 }
6553
6554 /* Return the size required for the dynamic reloc entries. Any loadable
6555 section that was actually installed in the BFD, and has type SHT_REL
6556 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6557 dynamic reloc section. */
6558
6559 long
6560 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6561 {
6562 long ret;
6563 asection *s;
6564
6565 if (elf_dynsymtab (abfd) == 0)
6566 {
6567 bfd_set_error (bfd_error_invalid_operation);
6568 return -1;
6569 }
6570
6571 ret = sizeof (arelent *);
6572 for (s = abfd->sections; s != NULL; s = s->next)
6573 if ((s->flags & SEC_LOAD) != 0
6574 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6575 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6576 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6577 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6578 * sizeof (arelent *));
6579
6580 return ret;
6581 }
6582
6583 /* Canonicalize the dynamic relocation entries. Note that we return the
6584 dynamic relocations as a single block, although they are actually
6585 associated with particular sections; the interface, which was
6586 designed for SunOS style shared libraries, expects that there is only
6587 one set of dynamic relocs. Any loadable section that was actually
6588 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6589 dynamic symbol table, is considered to be a dynamic reloc section. */
6590
6591 long
6592 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6593 arelent **storage,
6594 asymbol **syms)
6595 {
6596 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6597 asection *s;
6598 long ret;
6599
6600 if (elf_dynsymtab (abfd) == 0)
6601 {
6602 bfd_set_error (bfd_error_invalid_operation);
6603 return -1;
6604 }
6605
6606 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6607 ret = 0;
6608 for (s = abfd->sections; s != NULL; s = s->next)
6609 {
6610 if ((s->flags & SEC_LOAD) != 0
6611 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6612 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6613 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6614 {
6615 arelent *p;
6616 long count, i;
6617
6618 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6619 return -1;
6620 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6621 p = s->relocation;
6622 for (i = 0; i < count; i++)
6623 *storage++ = p++;
6624 ret += count;
6625 }
6626 }
6627
6628 *storage = NULL;
6629
6630 return ret;
6631 }
6632 \f
6633 /* Read in the version information. */
6634
6635 bfd_boolean
6636 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6637 {
6638 bfd_byte *contents = NULL;
6639 unsigned int freeidx = 0;
6640
6641 if (elf_dynverref (abfd) != 0)
6642 {
6643 Elf_Internal_Shdr *hdr;
6644 Elf_External_Verneed *everneed;
6645 Elf_Internal_Verneed *iverneed;
6646 unsigned int i;
6647 bfd_byte *contents_end;
6648
6649 hdr = &elf_tdata (abfd)->dynverref_hdr;
6650
6651 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6652 sizeof (Elf_Internal_Verneed));
6653 if (elf_tdata (abfd)->verref == NULL)
6654 goto error_return;
6655
6656 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6657
6658 contents = bfd_malloc (hdr->sh_size);
6659 if (contents == NULL)
6660 {
6661 error_return_verref:
6662 elf_tdata (abfd)->verref = NULL;
6663 elf_tdata (abfd)->cverrefs = 0;
6664 goto error_return;
6665 }
6666 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6667 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6668 goto error_return_verref;
6669
6670 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6671 goto error_return_verref;
6672
6673 BFD_ASSERT (sizeof (Elf_External_Verneed)
6674 == sizeof (Elf_External_Vernaux));
6675 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6676 everneed = (Elf_External_Verneed *) contents;
6677 iverneed = elf_tdata (abfd)->verref;
6678 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6679 {
6680 Elf_External_Vernaux *evernaux;
6681 Elf_Internal_Vernaux *ivernaux;
6682 unsigned int j;
6683
6684 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6685
6686 iverneed->vn_bfd = abfd;
6687
6688 iverneed->vn_filename =
6689 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6690 iverneed->vn_file);
6691 if (iverneed->vn_filename == NULL)
6692 goto error_return_verref;
6693
6694 if (iverneed->vn_cnt == 0)
6695 iverneed->vn_auxptr = NULL;
6696 else
6697 {
6698 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6699 sizeof (Elf_Internal_Vernaux));
6700 if (iverneed->vn_auxptr == NULL)
6701 goto error_return_verref;
6702 }
6703
6704 if (iverneed->vn_aux
6705 > (size_t) (contents_end - (bfd_byte *) everneed))
6706 goto error_return_verref;
6707
6708 evernaux = ((Elf_External_Vernaux *)
6709 ((bfd_byte *) everneed + iverneed->vn_aux));
6710 ivernaux = iverneed->vn_auxptr;
6711 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6712 {
6713 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6714
6715 ivernaux->vna_nodename =
6716 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6717 ivernaux->vna_name);
6718 if (ivernaux->vna_nodename == NULL)
6719 goto error_return_verref;
6720
6721 if (j + 1 < iverneed->vn_cnt)
6722 ivernaux->vna_nextptr = ivernaux + 1;
6723 else
6724 ivernaux->vna_nextptr = NULL;
6725
6726 if (ivernaux->vna_next
6727 > (size_t) (contents_end - (bfd_byte *) evernaux))
6728 goto error_return_verref;
6729
6730 evernaux = ((Elf_External_Vernaux *)
6731 ((bfd_byte *) evernaux + ivernaux->vna_next));
6732
6733 if (ivernaux->vna_other > freeidx)
6734 freeidx = ivernaux->vna_other;
6735 }
6736
6737 if (i + 1 < hdr->sh_info)
6738 iverneed->vn_nextref = iverneed + 1;
6739 else
6740 iverneed->vn_nextref = NULL;
6741
6742 if (iverneed->vn_next
6743 > (size_t) (contents_end - (bfd_byte *) everneed))
6744 goto error_return_verref;
6745
6746 everneed = ((Elf_External_Verneed *)
6747 ((bfd_byte *) everneed + iverneed->vn_next));
6748 }
6749
6750 free (contents);
6751 contents = NULL;
6752 }
6753
6754 if (elf_dynverdef (abfd) != 0)
6755 {
6756 Elf_Internal_Shdr *hdr;
6757 Elf_External_Verdef *everdef;
6758 Elf_Internal_Verdef *iverdef;
6759 Elf_Internal_Verdef *iverdefarr;
6760 Elf_Internal_Verdef iverdefmem;
6761 unsigned int i;
6762 unsigned int maxidx;
6763 bfd_byte *contents_end_def, *contents_end_aux;
6764
6765 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6766
6767 contents = bfd_malloc (hdr->sh_size);
6768 if (contents == NULL)
6769 goto error_return;
6770 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6771 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6772 goto error_return;
6773
6774 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6775 goto error_return;
6776
6777 BFD_ASSERT (sizeof (Elf_External_Verdef)
6778 >= sizeof (Elf_External_Verdaux));
6779 contents_end_def = contents + hdr->sh_size
6780 - sizeof (Elf_External_Verdef);
6781 contents_end_aux = contents + hdr->sh_size
6782 - sizeof (Elf_External_Verdaux);
6783
6784 /* We know the number of entries in the section but not the maximum
6785 index. Therefore we have to run through all entries and find
6786 the maximum. */
6787 everdef = (Elf_External_Verdef *) contents;
6788 maxidx = 0;
6789 for (i = 0; i < hdr->sh_info; ++i)
6790 {
6791 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6792
6793 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6794 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6795
6796 if (iverdefmem.vd_next
6797 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6798 goto error_return;
6799
6800 everdef = ((Elf_External_Verdef *)
6801 ((bfd_byte *) everdef + iverdefmem.vd_next));
6802 }
6803
6804 if (default_imported_symver)
6805 {
6806 if (freeidx > maxidx)
6807 maxidx = ++freeidx;
6808 else
6809 freeidx = ++maxidx;
6810 }
6811 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6812 sizeof (Elf_Internal_Verdef));
6813 if (elf_tdata (abfd)->verdef == NULL)
6814 goto error_return;
6815
6816 elf_tdata (abfd)->cverdefs = maxidx;
6817
6818 everdef = (Elf_External_Verdef *) contents;
6819 iverdefarr = elf_tdata (abfd)->verdef;
6820 for (i = 0; i < hdr->sh_info; i++)
6821 {
6822 Elf_External_Verdaux *everdaux;
6823 Elf_Internal_Verdaux *iverdaux;
6824 unsigned int j;
6825
6826 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6827
6828 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6829 {
6830 error_return_verdef:
6831 elf_tdata (abfd)->verdef = NULL;
6832 elf_tdata (abfd)->cverdefs = 0;
6833 goto error_return;
6834 }
6835
6836 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6837 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6838
6839 iverdef->vd_bfd = abfd;
6840
6841 if (iverdef->vd_cnt == 0)
6842 iverdef->vd_auxptr = NULL;
6843 else
6844 {
6845 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6846 sizeof (Elf_Internal_Verdaux));
6847 if (iverdef->vd_auxptr == NULL)
6848 goto error_return_verdef;
6849 }
6850
6851 if (iverdef->vd_aux
6852 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6853 goto error_return_verdef;
6854
6855 everdaux = ((Elf_External_Verdaux *)
6856 ((bfd_byte *) everdef + iverdef->vd_aux));
6857 iverdaux = iverdef->vd_auxptr;
6858 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6859 {
6860 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6861
6862 iverdaux->vda_nodename =
6863 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6864 iverdaux->vda_name);
6865 if (iverdaux->vda_nodename == NULL)
6866 goto error_return_verdef;
6867
6868 if (j + 1 < iverdef->vd_cnt)
6869 iverdaux->vda_nextptr = iverdaux + 1;
6870 else
6871 iverdaux->vda_nextptr = NULL;
6872
6873 if (iverdaux->vda_next
6874 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6875 goto error_return_verdef;
6876
6877 everdaux = ((Elf_External_Verdaux *)
6878 ((bfd_byte *) everdaux + iverdaux->vda_next));
6879 }
6880
6881 if (iverdef->vd_cnt)
6882 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6883
6884 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6885 iverdef->vd_nextdef = iverdef + 1;
6886 else
6887 iverdef->vd_nextdef = NULL;
6888
6889 everdef = ((Elf_External_Verdef *)
6890 ((bfd_byte *) everdef + iverdef->vd_next));
6891 }
6892
6893 free (contents);
6894 contents = NULL;
6895 }
6896 else if (default_imported_symver)
6897 {
6898 if (freeidx < 3)
6899 freeidx = 3;
6900 else
6901 freeidx++;
6902
6903 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6904 sizeof (Elf_Internal_Verdef));
6905 if (elf_tdata (abfd)->verdef == NULL)
6906 goto error_return;
6907
6908 elf_tdata (abfd)->cverdefs = freeidx;
6909 }
6910
6911 /* Create a default version based on the soname. */
6912 if (default_imported_symver)
6913 {
6914 Elf_Internal_Verdef *iverdef;
6915 Elf_Internal_Verdaux *iverdaux;
6916
6917 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6918
6919 iverdef->vd_version = VER_DEF_CURRENT;
6920 iverdef->vd_flags = 0;
6921 iverdef->vd_ndx = freeidx;
6922 iverdef->vd_cnt = 1;
6923
6924 iverdef->vd_bfd = abfd;
6925
6926 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6927 if (iverdef->vd_nodename == NULL)
6928 goto error_return_verdef;
6929 iverdef->vd_nextdef = NULL;
6930 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6931 if (iverdef->vd_auxptr == NULL)
6932 goto error_return_verdef;
6933
6934 iverdaux = iverdef->vd_auxptr;
6935 iverdaux->vda_nodename = iverdef->vd_nodename;
6936 iverdaux->vda_nextptr = NULL;
6937 }
6938
6939 return TRUE;
6940
6941 error_return:
6942 if (contents != NULL)
6943 free (contents);
6944 return FALSE;
6945 }
6946 \f
6947 asymbol *
6948 _bfd_elf_make_empty_symbol (bfd *abfd)
6949 {
6950 elf_symbol_type *newsym;
6951 bfd_size_type amt = sizeof (elf_symbol_type);
6952
6953 newsym = bfd_zalloc (abfd, amt);
6954 if (!newsym)
6955 return NULL;
6956 else
6957 {
6958 newsym->symbol.the_bfd = abfd;
6959 return &newsym->symbol;
6960 }
6961 }
6962
6963 void
6964 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6965 asymbol *symbol,
6966 symbol_info *ret)
6967 {
6968 bfd_symbol_info (symbol, ret);
6969 }
6970
6971 /* Return whether a symbol name implies a local symbol. Most targets
6972 use this function for the is_local_label_name entry point, but some
6973 override it. */
6974
6975 bfd_boolean
6976 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6977 const char *name)
6978 {
6979 /* Normal local symbols start with ``.L''. */
6980 if (name[0] == '.' && name[1] == 'L')
6981 return TRUE;
6982
6983 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6984 DWARF debugging symbols starting with ``..''. */
6985 if (name[0] == '.' && name[1] == '.')
6986 return TRUE;
6987
6988 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6989 emitting DWARF debugging output. I suspect this is actually a
6990 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6991 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6992 underscore to be emitted on some ELF targets). For ease of use,
6993 we treat such symbols as local. */
6994 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6995 return TRUE;
6996
6997 return FALSE;
6998 }
6999
7000 alent *
7001 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7002 asymbol *symbol ATTRIBUTE_UNUSED)
7003 {
7004 abort ();
7005 return NULL;
7006 }
7007
7008 bfd_boolean
7009 _bfd_elf_set_arch_mach (bfd *abfd,
7010 enum bfd_architecture arch,
7011 unsigned long machine)
7012 {
7013 /* If this isn't the right architecture for this backend, and this
7014 isn't the generic backend, fail. */
7015 if (arch != get_elf_backend_data (abfd)->arch
7016 && arch != bfd_arch_unknown
7017 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7018 return FALSE;
7019
7020 return bfd_default_set_arch_mach (abfd, arch, machine);
7021 }
7022
7023 /* Find the function to a particular section and offset,
7024 for error reporting. */
7025
7026 static bfd_boolean
7027 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7028 asection *section,
7029 asymbol **symbols,
7030 bfd_vma offset,
7031 const char **filename_ptr,
7032 const char **functionname_ptr)
7033 {
7034 const char *filename;
7035 asymbol *func, *file;
7036 bfd_vma low_func;
7037 asymbol **p;
7038 /* ??? Given multiple file symbols, it is impossible to reliably
7039 choose the right file name for global symbols. File symbols are
7040 local symbols, and thus all file symbols must sort before any
7041 global symbols. The ELF spec may be interpreted to say that a
7042 file symbol must sort before other local symbols, but currently
7043 ld -r doesn't do this. So, for ld -r output, it is possible to
7044 make a better choice of file name for local symbols by ignoring
7045 file symbols appearing after a given local symbol. */
7046 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7047
7048 filename = NULL;
7049 func = NULL;
7050 file = NULL;
7051 low_func = 0;
7052 state = nothing_seen;
7053
7054 for (p = symbols; *p != NULL; p++)
7055 {
7056 elf_symbol_type *q;
7057
7058 q = (elf_symbol_type *) *p;
7059
7060 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7061 {
7062 default:
7063 break;
7064 case STT_FILE:
7065 file = &q->symbol;
7066 if (state == symbol_seen)
7067 state = file_after_symbol_seen;
7068 continue;
7069 case STT_NOTYPE:
7070 case STT_FUNC:
7071 if (bfd_get_section (&q->symbol) == section
7072 && q->symbol.value >= low_func
7073 && q->symbol.value <= offset)
7074 {
7075 func = (asymbol *) q;
7076 low_func = q->symbol.value;
7077 filename = NULL;
7078 if (file != NULL
7079 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7080 || state != file_after_symbol_seen))
7081 filename = bfd_asymbol_name (file);
7082 }
7083 break;
7084 }
7085 if (state == nothing_seen)
7086 state = symbol_seen;
7087 }
7088
7089 if (func == NULL)
7090 return FALSE;
7091
7092 if (filename_ptr)
7093 *filename_ptr = filename;
7094 if (functionname_ptr)
7095 *functionname_ptr = bfd_asymbol_name (func);
7096
7097 return TRUE;
7098 }
7099
7100 /* Find the nearest line to a particular section and offset,
7101 for error reporting. */
7102
7103 bfd_boolean
7104 _bfd_elf_find_nearest_line (bfd *abfd,
7105 asection *section,
7106 asymbol **symbols,
7107 bfd_vma offset,
7108 const char **filename_ptr,
7109 const char **functionname_ptr,
7110 unsigned int *line_ptr)
7111 {
7112 bfd_boolean found;
7113
7114 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7115 filename_ptr, functionname_ptr,
7116 line_ptr))
7117 {
7118 if (!*functionname_ptr)
7119 elf_find_function (abfd, section, symbols, offset,
7120 *filename_ptr ? NULL : filename_ptr,
7121 functionname_ptr);
7122
7123 return TRUE;
7124 }
7125
7126 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7127 filename_ptr, functionname_ptr,
7128 line_ptr, 0,
7129 &elf_tdata (abfd)->dwarf2_find_line_info))
7130 {
7131 if (!*functionname_ptr)
7132 elf_find_function (abfd, section, symbols, offset,
7133 *filename_ptr ? NULL : filename_ptr,
7134 functionname_ptr);
7135
7136 return TRUE;
7137 }
7138
7139 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7140 &found, filename_ptr,
7141 functionname_ptr, line_ptr,
7142 &elf_tdata (abfd)->line_info))
7143 return FALSE;
7144 if (found && (*functionname_ptr || *line_ptr))
7145 return TRUE;
7146
7147 if (symbols == NULL)
7148 return FALSE;
7149
7150 if (! elf_find_function (abfd, section, symbols, offset,
7151 filename_ptr, functionname_ptr))
7152 return FALSE;
7153
7154 *line_ptr = 0;
7155 return TRUE;
7156 }
7157
7158 /* Find the line for a symbol. */
7159
7160 bfd_boolean
7161 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7162 const char **filename_ptr, unsigned int *line_ptr)
7163 {
7164 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7165 filename_ptr, line_ptr, 0,
7166 &elf_tdata (abfd)->dwarf2_find_line_info);
7167 }
7168
7169 /* After a call to bfd_find_nearest_line, successive calls to
7170 bfd_find_inliner_info can be used to get source information about
7171 each level of function inlining that terminated at the address
7172 passed to bfd_find_nearest_line. Currently this is only supported
7173 for DWARF2 with appropriate DWARF3 extensions. */
7174
7175 bfd_boolean
7176 _bfd_elf_find_inliner_info (bfd *abfd,
7177 const char **filename_ptr,
7178 const char **functionname_ptr,
7179 unsigned int *line_ptr)
7180 {
7181 bfd_boolean found;
7182 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7183 functionname_ptr, line_ptr,
7184 & elf_tdata (abfd)->dwarf2_find_line_info);
7185 return found;
7186 }
7187
7188 int
7189 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7190 {
7191 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7192 int ret = bed->s->sizeof_ehdr;
7193
7194 if (!info->relocatable)
7195 {
7196 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7197
7198 if (phdr_size == (bfd_size_type) -1)
7199 {
7200 struct elf_segment_map *m;
7201
7202 phdr_size = 0;
7203 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7204 phdr_size += bed->s->sizeof_phdr;
7205
7206 if (phdr_size == 0)
7207 phdr_size = get_program_header_size (abfd, info);
7208 }
7209
7210 elf_tdata (abfd)->program_header_size = phdr_size;
7211 ret += phdr_size;
7212 }
7213
7214 return ret;
7215 }
7216
7217 bfd_boolean
7218 _bfd_elf_set_section_contents (bfd *abfd,
7219 sec_ptr section,
7220 const void *location,
7221 file_ptr offset,
7222 bfd_size_type count)
7223 {
7224 Elf_Internal_Shdr *hdr;
7225 bfd_signed_vma pos;
7226
7227 if (! abfd->output_has_begun
7228 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7229 return FALSE;
7230
7231 hdr = &elf_section_data (section)->this_hdr;
7232 pos = hdr->sh_offset + offset;
7233 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7234 || bfd_bwrite (location, count, abfd) != count)
7235 return FALSE;
7236
7237 return TRUE;
7238 }
7239
7240 void
7241 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7242 arelent *cache_ptr ATTRIBUTE_UNUSED,
7243 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7244 {
7245 abort ();
7246 }
7247
7248 /* Try to convert a non-ELF reloc into an ELF one. */
7249
7250 bfd_boolean
7251 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7252 {
7253 /* Check whether we really have an ELF howto. */
7254
7255 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7256 {
7257 bfd_reloc_code_real_type code;
7258 reloc_howto_type *howto;
7259
7260 /* Alien reloc: Try to determine its type to replace it with an
7261 equivalent ELF reloc. */
7262
7263 if (areloc->howto->pc_relative)
7264 {
7265 switch (areloc->howto->bitsize)
7266 {
7267 case 8:
7268 code = BFD_RELOC_8_PCREL;
7269 break;
7270 case 12:
7271 code = BFD_RELOC_12_PCREL;
7272 break;
7273 case 16:
7274 code = BFD_RELOC_16_PCREL;
7275 break;
7276 case 24:
7277 code = BFD_RELOC_24_PCREL;
7278 break;
7279 case 32:
7280 code = BFD_RELOC_32_PCREL;
7281 break;
7282 case 64:
7283 code = BFD_RELOC_64_PCREL;
7284 break;
7285 default:
7286 goto fail;
7287 }
7288
7289 howto = bfd_reloc_type_lookup (abfd, code);
7290
7291 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7292 {
7293 if (howto->pcrel_offset)
7294 areloc->addend += areloc->address;
7295 else
7296 areloc->addend -= areloc->address; /* addend is unsigned!! */
7297 }
7298 }
7299 else
7300 {
7301 switch (areloc->howto->bitsize)
7302 {
7303 case 8:
7304 code = BFD_RELOC_8;
7305 break;
7306 case 14:
7307 code = BFD_RELOC_14;
7308 break;
7309 case 16:
7310 code = BFD_RELOC_16;
7311 break;
7312 case 26:
7313 code = BFD_RELOC_26;
7314 break;
7315 case 32:
7316 code = BFD_RELOC_32;
7317 break;
7318 case 64:
7319 code = BFD_RELOC_64;
7320 break;
7321 default:
7322 goto fail;
7323 }
7324
7325 howto = bfd_reloc_type_lookup (abfd, code);
7326 }
7327
7328 if (howto)
7329 areloc->howto = howto;
7330 else
7331 goto fail;
7332 }
7333
7334 return TRUE;
7335
7336 fail:
7337 (*_bfd_error_handler)
7338 (_("%B: unsupported relocation type %s"),
7339 abfd, areloc->howto->name);
7340 bfd_set_error (bfd_error_bad_value);
7341 return FALSE;
7342 }
7343
7344 bfd_boolean
7345 _bfd_elf_close_and_cleanup (bfd *abfd)
7346 {
7347 if (bfd_get_format (abfd) == bfd_object)
7348 {
7349 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7350 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7351 _bfd_dwarf2_cleanup_debug_info (abfd);
7352 }
7353
7354 return _bfd_generic_close_and_cleanup (abfd);
7355 }
7356
7357 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7358 in the relocation's offset. Thus we cannot allow any sort of sanity
7359 range-checking to interfere. There is nothing else to do in processing
7360 this reloc. */
7361
7362 bfd_reloc_status_type
7363 _bfd_elf_rel_vtable_reloc_fn
7364 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7365 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7366 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7367 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7368 {
7369 return bfd_reloc_ok;
7370 }
7371 \f
7372 /* Elf core file support. Much of this only works on native
7373 toolchains, since we rely on knowing the
7374 machine-dependent procfs structure in order to pick
7375 out details about the corefile. */
7376
7377 #ifdef HAVE_SYS_PROCFS_H
7378 # include <sys/procfs.h>
7379 #endif
7380
7381 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7382
7383 static int
7384 elfcore_make_pid (bfd *abfd)
7385 {
7386 return ((elf_tdata (abfd)->core_lwpid << 16)
7387 + (elf_tdata (abfd)->core_pid));
7388 }
7389
7390 /* If there isn't a section called NAME, make one, using
7391 data from SECT. Note, this function will generate a
7392 reference to NAME, so you shouldn't deallocate or
7393 overwrite it. */
7394
7395 static bfd_boolean
7396 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7397 {
7398 asection *sect2;
7399
7400 if (bfd_get_section_by_name (abfd, name) != NULL)
7401 return TRUE;
7402
7403 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7404 if (sect2 == NULL)
7405 return FALSE;
7406
7407 sect2->size = sect->size;
7408 sect2->filepos = sect->filepos;
7409 sect2->alignment_power = sect->alignment_power;
7410 return TRUE;
7411 }
7412
7413 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7414 actually creates up to two pseudosections:
7415 - For the single-threaded case, a section named NAME, unless
7416 such a section already exists.
7417 - For the multi-threaded case, a section named "NAME/PID", where
7418 PID is elfcore_make_pid (abfd).
7419 Both pseudosections have identical contents. */
7420 bfd_boolean
7421 _bfd_elfcore_make_pseudosection (bfd *abfd,
7422 char *name,
7423 size_t size,
7424 ufile_ptr filepos)
7425 {
7426 char buf[100];
7427 char *threaded_name;
7428 size_t len;
7429 asection *sect;
7430
7431 /* Build the section name. */
7432
7433 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7434 len = strlen (buf) + 1;
7435 threaded_name = bfd_alloc (abfd, len);
7436 if (threaded_name == NULL)
7437 return FALSE;
7438 memcpy (threaded_name, buf, len);
7439
7440 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7441 SEC_HAS_CONTENTS);
7442 if (sect == NULL)
7443 return FALSE;
7444 sect->size = size;
7445 sect->filepos = filepos;
7446 sect->alignment_power = 2;
7447
7448 return elfcore_maybe_make_sect (abfd, name, sect);
7449 }
7450
7451 /* prstatus_t exists on:
7452 solaris 2.5+
7453 linux 2.[01] + glibc
7454 unixware 4.2
7455 */
7456
7457 #if defined (HAVE_PRSTATUS_T)
7458
7459 static bfd_boolean
7460 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7461 {
7462 size_t size;
7463 int offset;
7464
7465 if (note->descsz == sizeof (prstatus_t))
7466 {
7467 prstatus_t prstat;
7468
7469 size = sizeof (prstat.pr_reg);
7470 offset = offsetof (prstatus_t, pr_reg);
7471 memcpy (&prstat, note->descdata, sizeof (prstat));
7472
7473 /* Do not overwrite the core signal if it
7474 has already been set by another thread. */
7475 if (elf_tdata (abfd)->core_signal == 0)
7476 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7477 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7478
7479 /* pr_who exists on:
7480 solaris 2.5+
7481 unixware 4.2
7482 pr_who doesn't exist on:
7483 linux 2.[01]
7484 */
7485 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7486 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7487 #endif
7488 }
7489 #if defined (HAVE_PRSTATUS32_T)
7490 else if (note->descsz == sizeof (prstatus32_t))
7491 {
7492 /* 64-bit host, 32-bit corefile */
7493 prstatus32_t prstat;
7494
7495 size = sizeof (prstat.pr_reg);
7496 offset = offsetof (prstatus32_t, pr_reg);
7497 memcpy (&prstat, note->descdata, sizeof (prstat));
7498
7499 /* Do not overwrite the core signal if it
7500 has already been set by another thread. */
7501 if (elf_tdata (abfd)->core_signal == 0)
7502 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7503 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7504
7505 /* pr_who exists on:
7506 solaris 2.5+
7507 unixware 4.2
7508 pr_who doesn't exist on:
7509 linux 2.[01]
7510 */
7511 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7512 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7513 #endif
7514 }
7515 #endif /* HAVE_PRSTATUS32_T */
7516 else
7517 {
7518 /* Fail - we don't know how to handle any other
7519 note size (ie. data object type). */
7520 return TRUE;
7521 }
7522
7523 /* Make a ".reg/999" section and a ".reg" section. */
7524 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7525 size, note->descpos + offset);
7526 }
7527 #endif /* defined (HAVE_PRSTATUS_T) */
7528
7529 /* Create a pseudosection containing the exact contents of NOTE. */
7530 static bfd_boolean
7531 elfcore_make_note_pseudosection (bfd *abfd,
7532 char *name,
7533 Elf_Internal_Note *note)
7534 {
7535 return _bfd_elfcore_make_pseudosection (abfd, name,
7536 note->descsz, note->descpos);
7537 }
7538
7539 /* There isn't a consistent prfpregset_t across platforms,
7540 but it doesn't matter, because we don't have to pick this
7541 data structure apart. */
7542
7543 static bfd_boolean
7544 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7545 {
7546 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7547 }
7548
7549 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7550 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7551 literally. */
7552
7553 static bfd_boolean
7554 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7555 {
7556 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7557 }
7558
7559 #if defined (HAVE_PRPSINFO_T)
7560 typedef prpsinfo_t elfcore_psinfo_t;
7561 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7562 typedef prpsinfo32_t elfcore_psinfo32_t;
7563 #endif
7564 #endif
7565
7566 #if defined (HAVE_PSINFO_T)
7567 typedef psinfo_t elfcore_psinfo_t;
7568 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7569 typedef psinfo32_t elfcore_psinfo32_t;
7570 #endif
7571 #endif
7572
7573 /* return a malloc'ed copy of a string at START which is at
7574 most MAX bytes long, possibly without a terminating '\0'.
7575 the copy will always have a terminating '\0'. */
7576
7577 char *
7578 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7579 {
7580 char *dups;
7581 char *end = memchr (start, '\0', max);
7582 size_t len;
7583
7584 if (end == NULL)
7585 len = max;
7586 else
7587 len = end - start;
7588
7589 dups = bfd_alloc (abfd, len + 1);
7590 if (dups == NULL)
7591 return NULL;
7592
7593 memcpy (dups, start, len);
7594 dups[len] = '\0';
7595
7596 return dups;
7597 }
7598
7599 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7600 static bfd_boolean
7601 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7602 {
7603 if (note->descsz == sizeof (elfcore_psinfo_t))
7604 {
7605 elfcore_psinfo_t psinfo;
7606
7607 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7608
7609 elf_tdata (abfd)->core_program
7610 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7611 sizeof (psinfo.pr_fname));
7612
7613 elf_tdata (abfd)->core_command
7614 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7615 sizeof (psinfo.pr_psargs));
7616 }
7617 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7618 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7619 {
7620 /* 64-bit host, 32-bit corefile */
7621 elfcore_psinfo32_t psinfo;
7622
7623 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7624
7625 elf_tdata (abfd)->core_program
7626 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7627 sizeof (psinfo.pr_fname));
7628
7629 elf_tdata (abfd)->core_command
7630 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7631 sizeof (psinfo.pr_psargs));
7632 }
7633 #endif
7634
7635 else
7636 {
7637 /* Fail - we don't know how to handle any other
7638 note size (ie. data object type). */
7639 return TRUE;
7640 }
7641
7642 /* Note that for some reason, a spurious space is tacked
7643 onto the end of the args in some (at least one anyway)
7644 implementations, so strip it off if it exists. */
7645
7646 {
7647 char *command = elf_tdata (abfd)->core_command;
7648 int n = strlen (command);
7649
7650 if (0 < n && command[n - 1] == ' ')
7651 command[n - 1] = '\0';
7652 }
7653
7654 return TRUE;
7655 }
7656 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7657
7658 #if defined (HAVE_PSTATUS_T)
7659 static bfd_boolean
7660 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7661 {
7662 if (note->descsz == sizeof (pstatus_t)
7663 #if defined (HAVE_PXSTATUS_T)
7664 || note->descsz == sizeof (pxstatus_t)
7665 #endif
7666 )
7667 {
7668 pstatus_t pstat;
7669
7670 memcpy (&pstat, note->descdata, sizeof (pstat));
7671
7672 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7673 }
7674 #if defined (HAVE_PSTATUS32_T)
7675 else if (note->descsz == sizeof (pstatus32_t))
7676 {
7677 /* 64-bit host, 32-bit corefile */
7678 pstatus32_t pstat;
7679
7680 memcpy (&pstat, note->descdata, sizeof (pstat));
7681
7682 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7683 }
7684 #endif
7685 /* Could grab some more details from the "representative"
7686 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7687 NT_LWPSTATUS note, presumably. */
7688
7689 return TRUE;
7690 }
7691 #endif /* defined (HAVE_PSTATUS_T) */
7692
7693 #if defined (HAVE_LWPSTATUS_T)
7694 static bfd_boolean
7695 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7696 {
7697 lwpstatus_t lwpstat;
7698 char buf[100];
7699 char *name;
7700 size_t len;
7701 asection *sect;
7702
7703 if (note->descsz != sizeof (lwpstat)
7704 #if defined (HAVE_LWPXSTATUS_T)
7705 && note->descsz != sizeof (lwpxstatus_t)
7706 #endif
7707 )
7708 return TRUE;
7709
7710 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7711
7712 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7713 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7714
7715 /* Make a ".reg/999" section. */
7716
7717 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7718 len = strlen (buf) + 1;
7719 name = bfd_alloc (abfd, len);
7720 if (name == NULL)
7721 return FALSE;
7722 memcpy (name, buf, len);
7723
7724 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7725 if (sect == NULL)
7726 return FALSE;
7727
7728 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7729 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7730 sect->filepos = note->descpos
7731 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7732 #endif
7733
7734 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7735 sect->size = sizeof (lwpstat.pr_reg);
7736 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7737 #endif
7738
7739 sect->alignment_power = 2;
7740
7741 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7742 return FALSE;
7743
7744 /* Make a ".reg2/999" section */
7745
7746 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7747 len = strlen (buf) + 1;
7748 name = bfd_alloc (abfd, len);
7749 if (name == NULL)
7750 return FALSE;
7751 memcpy (name, buf, len);
7752
7753 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7754 if (sect == NULL)
7755 return FALSE;
7756
7757 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7758 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7759 sect->filepos = note->descpos
7760 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7761 #endif
7762
7763 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7764 sect->size = sizeof (lwpstat.pr_fpreg);
7765 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7766 #endif
7767
7768 sect->alignment_power = 2;
7769
7770 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7771 }
7772 #endif /* defined (HAVE_LWPSTATUS_T) */
7773
7774 #if defined (HAVE_WIN32_PSTATUS_T)
7775 static bfd_boolean
7776 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7777 {
7778 char buf[30];
7779 char *name;
7780 size_t len;
7781 asection *sect;
7782 win32_pstatus_t pstatus;
7783
7784 if (note->descsz < sizeof (pstatus))
7785 return TRUE;
7786
7787 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7788
7789 switch (pstatus.data_type)
7790 {
7791 case NOTE_INFO_PROCESS:
7792 /* FIXME: need to add ->core_command. */
7793 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7794 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7795 break;
7796
7797 case NOTE_INFO_THREAD:
7798 /* Make a ".reg/999" section. */
7799 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7800
7801 len = strlen (buf) + 1;
7802 name = bfd_alloc (abfd, len);
7803 if (name == NULL)
7804 return FALSE;
7805
7806 memcpy (name, buf, len);
7807
7808 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7809 if (sect == NULL)
7810 return FALSE;
7811
7812 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7813 sect->filepos = (note->descpos
7814 + offsetof (struct win32_pstatus,
7815 data.thread_info.thread_context));
7816 sect->alignment_power = 2;
7817
7818 if (pstatus.data.thread_info.is_active_thread)
7819 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7820 return FALSE;
7821 break;
7822
7823 case NOTE_INFO_MODULE:
7824 /* Make a ".module/xxxxxxxx" section. */
7825 sprintf (buf, ".module/%08lx",
7826 (long) pstatus.data.module_info.base_address);
7827
7828 len = strlen (buf) + 1;
7829 name = bfd_alloc (abfd, len);
7830 if (name == NULL)
7831 return FALSE;
7832
7833 memcpy (name, buf, len);
7834
7835 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7836
7837 if (sect == NULL)
7838 return FALSE;
7839
7840 sect->size = note->descsz;
7841 sect->filepos = note->descpos;
7842 sect->alignment_power = 2;
7843 break;
7844
7845 default:
7846 return TRUE;
7847 }
7848
7849 return TRUE;
7850 }
7851 #endif /* HAVE_WIN32_PSTATUS_T */
7852
7853 static bfd_boolean
7854 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7855 {
7856 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7857
7858 switch (note->type)
7859 {
7860 default:
7861 return TRUE;
7862
7863 case NT_PRSTATUS:
7864 if (bed->elf_backend_grok_prstatus)
7865 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7866 return TRUE;
7867 #if defined (HAVE_PRSTATUS_T)
7868 return elfcore_grok_prstatus (abfd, note);
7869 #else
7870 return TRUE;
7871 #endif
7872
7873 #if defined (HAVE_PSTATUS_T)
7874 case NT_PSTATUS:
7875 return elfcore_grok_pstatus (abfd, note);
7876 #endif
7877
7878 #if defined (HAVE_LWPSTATUS_T)
7879 case NT_LWPSTATUS:
7880 return elfcore_grok_lwpstatus (abfd, note);
7881 #endif
7882
7883 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7884 return elfcore_grok_prfpreg (abfd, note);
7885
7886 #if defined (HAVE_WIN32_PSTATUS_T)
7887 case NT_WIN32PSTATUS:
7888 return elfcore_grok_win32pstatus (abfd, note);
7889 #endif
7890
7891 case NT_PRXFPREG: /* Linux SSE extension */
7892 if (note->namesz == 6
7893 && strcmp (note->namedata, "LINUX") == 0)
7894 return elfcore_grok_prxfpreg (abfd, note);
7895 else
7896 return TRUE;
7897
7898 case NT_PRPSINFO:
7899 case NT_PSINFO:
7900 if (bed->elf_backend_grok_psinfo)
7901 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7902 return TRUE;
7903 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7904 return elfcore_grok_psinfo (abfd, note);
7905 #else
7906 return TRUE;
7907 #endif
7908
7909 case NT_AUXV:
7910 {
7911 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7912 SEC_HAS_CONTENTS);
7913
7914 if (sect == NULL)
7915 return FALSE;
7916 sect->size = note->descsz;
7917 sect->filepos = note->descpos;
7918 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7919
7920 return TRUE;
7921 }
7922 }
7923 }
7924
7925 static bfd_boolean
7926 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7927 {
7928 char *cp;
7929
7930 cp = strchr (note->namedata, '@');
7931 if (cp != NULL)
7932 {
7933 *lwpidp = atoi(cp + 1);
7934 return TRUE;
7935 }
7936 return FALSE;
7937 }
7938
7939 static bfd_boolean
7940 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7941 {
7942
7943 /* Signal number at offset 0x08. */
7944 elf_tdata (abfd)->core_signal
7945 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7946
7947 /* Process ID at offset 0x50. */
7948 elf_tdata (abfd)->core_pid
7949 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7950
7951 /* Command name at 0x7c (max 32 bytes, including nul). */
7952 elf_tdata (abfd)->core_command
7953 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7954
7955 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7956 note);
7957 }
7958
7959 static bfd_boolean
7960 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7961 {
7962 int lwp;
7963
7964 if (elfcore_netbsd_get_lwpid (note, &lwp))
7965 elf_tdata (abfd)->core_lwpid = lwp;
7966
7967 if (note->type == NT_NETBSDCORE_PROCINFO)
7968 {
7969 /* NetBSD-specific core "procinfo". Note that we expect to
7970 find this note before any of the others, which is fine,
7971 since the kernel writes this note out first when it
7972 creates a core file. */
7973
7974 return elfcore_grok_netbsd_procinfo (abfd, note);
7975 }
7976
7977 /* As of Jan 2002 there are no other machine-independent notes
7978 defined for NetBSD core files. If the note type is less
7979 than the start of the machine-dependent note types, we don't
7980 understand it. */
7981
7982 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7983 return TRUE;
7984
7985
7986 switch (bfd_get_arch (abfd))
7987 {
7988 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7989 PT_GETFPREGS == mach+2. */
7990
7991 case bfd_arch_alpha:
7992 case bfd_arch_sparc:
7993 switch (note->type)
7994 {
7995 case NT_NETBSDCORE_FIRSTMACH+0:
7996 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7997
7998 case NT_NETBSDCORE_FIRSTMACH+2:
7999 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8000
8001 default:
8002 return TRUE;
8003 }
8004
8005 /* On all other arch's, PT_GETREGS == mach+1 and
8006 PT_GETFPREGS == mach+3. */
8007
8008 default:
8009 switch (note->type)
8010 {
8011 case NT_NETBSDCORE_FIRSTMACH+1:
8012 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8013
8014 case NT_NETBSDCORE_FIRSTMACH+3:
8015 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8016
8017 default:
8018 return TRUE;
8019 }
8020 }
8021 /* NOTREACHED */
8022 }
8023
8024 static bfd_boolean
8025 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8026 {
8027 void *ddata = note->descdata;
8028 char buf[100];
8029 char *name;
8030 asection *sect;
8031 short sig;
8032 unsigned flags;
8033
8034 /* nto_procfs_status 'pid' field is at offset 0. */
8035 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8036
8037 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8038 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8039
8040 /* nto_procfs_status 'flags' field is at offset 8. */
8041 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8042
8043 /* nto_procfs_status 'what' field is at offset 14. */
8044 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8045 {
8046 elf_tdata (abfd)->core_signal = sig;
8047 elf_tdata (abfd)->core_lwpid = *tid;
8048 }
8049
8050 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8051 do not come from signals so we make sure we set the current
8052 thread just in case. */
8053 if (flags & 0x00000080)
8054 elf_tdata (abfd)->core_lwpid = *tid;
8055
8056 /* Make a ".qnx_core_status/%d" section. */
8057 sprintf (buf, ".qnx_core_status/%ld", *tid);
8058
8059 name = bfd_alloc (abfd, strlen (buf) + 1);
8060 if (name == NULL)
8061 return FALSE;
8062 strcpy (name, buf);
8063
8064 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8065 if (sect == NULL)
8066 return FALSE;
8067
8068 sect->size = note->descsz;
8069 sect->filepos = note->descpos;
8070 sect->alignment_power = 2;
8071
8072 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8073 }
8074
8075 static bfd_boolean
8076 elfcore_grok_nto_regs (bfd *abfd,
8077 Elf_Internal_Note *note,
8078 long tid,
8079 char *base)
8080 {
8081 char buf[100];
8082 char *name;
8083 asection *sect;
8084
8085 /* Make a "(base)/%d" section. */
8086 sprintf (buf, "%s/%ld", base, tid);
8087
8088 name = bfd_alloc (abfd, strlen (buf) + 1);
8089 if (name == NULL)
8090 return FALSE;
8091 strcpy (name, buf);
8092
8093 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8094 if (sect == NULL)
8095 return FALSE;
8096
8097 sect->size = note->descsz;
8098 sect->filepos = note->descpos;
8099 sect->alignment_power = 2;
8100
8101 /* This is the current thread. */
8102 if (elf_tdata (abfd)->core_lwpid == tid)
8103 return elfcore_maybe_make_sect (abfd, base, sect);
8104
8105 return TRUE;
8106 }
8107
8108 #define BFD_QNT_CORE_INFO 7
8109 #define BFD_QNT_CORE_STATUS 8
8110 #define BFD_QNT_CORE_GREG 9
8111 #define BFD_QNT_CORE_FPREG 10
8112
8113 static bfd_boolean
8114 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8115 {
8116 /* Every GREG section has a STATUS section before it. Store the
8117 tid from the previous call to pass down to the next gregs
8118 function. */
8119 static long tid = 1;
8120
8121 switch (note->type)
8122 {
8123 case BFD_QNT_CORE_INFO:
8124 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8125 case BFD_QNT_CORE_STATUS:
8126 return elfcore_grok_nto_status (abfd, note, &tid);
8127 case BFD_QNT_CORE_GREG:
8128 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8129 case BFD_QNT_CORE_FPREG:
8130 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8131 default:
8132 return TRUE;
8133 }
8134 }
8135
8136 /* Function: elfcore_write_note
8137
8138 Inputs:
8139 buffer to hold note, and current size of buffer
8140 name of note
8141 type of note
8142 data for note
8143 size of data for note
8144
8145 Writes note to end of buffer. ELF64 notes are written exactly as
8146 for ELF32, despite the current (as of 2006) ELF gabi specifying
8147 that they ought to have 8-byte namesz and descsz field, and have
8148 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8149
8150 Return:
8151 Pointer to realloc'd buffer, *BUFSIZ updated. */
8152
8153 char *
8154 elfcore_write_note (bfd *abfd,
8155 char *buf,
8156 int *bufsiz,
8157 const char *name,
8158 int type,
8159 const void *input,
8160 int size)
8161 {
8162 Elf_External_Note *xnp;
8163 size_t namesz;
8164 size_t newspace;
8165 char *dest;
8166
8167 namesz = 0;
8168 if (name != NULL)
8169 namesz = strlen (name) + 1;
8170
8171 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8172
8173 buf = realloc (buf, *bufsiz + newspace);
8174 dest = buf + *bufsiz;
8175 *bufsiz += newspace;
8176 xnp = (Elf_External_Note *) dest;
8177 H_PUT_32 (abfd, namesz, xnp->namesz);
8178 H_PUT_32 (abfd, size, xnp->descsz);
8179 H_PUT_32 (abfd, type, xnp->type);
8180 dest = xnp->name;
8181 if (name != NULL)
8182 {
8183 memcpy (dest, name, namesz);
8184 dest += namesz;
8185 while (namesz & 3)
8186 {
8187 *dest++ = '\0';
8188 ++namesz;
8189 }
8190 }
8191 memcpy (dest, input, size);
8192 dest += size;
8193 while (size & 3)
8194 {
8195 *dest++ = '\0';
8196 ++size;
8197 }
8198 return buf;
8199 }
8200
8201 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8202 char *
8203 elfcore_write_prpsinfo (bfd *abfd,
8204 char *buf,
8205 int *bufsiz,
8206 const char *fname,
8207 const char *psargs)
8208 {
8209 int note_type;
8210 char *note_name = "CORE";
8211
8212 #if defined (HAVE_PSINFO_T)
8213 psinfo_t data;
8214 note_type = NT_PSINFO;
8215 #else
8216 prpsinfo_t data;
8217 note_type = NT_PRPSINFO;
8218 #endif
8219
8220 memset (&data, 0, sizeof (data));
8221 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8222 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8223 return elfcore_write_note (abfd, buf, bufsiz,
8224 note_name, note_type, &data, sizeof (data));
8225 }
8226 #endif /* PSINFO_T or PRPSINFO_T */
8227
8228 #if defined (HAVE_PRSTATUS_T)
8229 char *
8230 elfcore_write_prstatus (bfd *abfd,
8231 char *buf,
8232 int *bufsiz,
8233 long pid,
8234 int cursig,
8235 const void *gregs)
8236 {
8237 prstatus_t prstat;
8238 char *note_name = "CORE";
8239
8240 memset (&prstat, 0, sizeof (prstat));
8241 prstat.pr_pid = pid;
8242 prstat.pr_cursig = cursig;
8243 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8244 return elfcore_write_note (abfd, buf, bufsiz,
8245 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8246 }
8247 #endif /* HAVE_PRSTATUS_T */
8248
8249 #if defined (HAVE_LWPSTATUS_T)
8250 char *
8251 elfcore_write_lwpstatus (bfd *abfd,
8252 char *buf,
8253 int *bufsiz,
8254 long pid,
8255 int cursig,
8256 const void *gregs)
8257 {
8258 lwpstatus_t lwpstat;
8259 char *note_name = "CORE";
8260
8261 memset (&lwpstat, 0, sizeof (lwpstat));
8262 lwpstat.pr_lwpid = pid >> 16;
8263 lwpstat.pr_cursig = cursig;
8264 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8265 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8266 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8267 #if !defined(gregs)
8268 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8269 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8270 #else
8271 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8272 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8273 #endif
8274 #endif
8275 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8276 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8277 }
8278 #endif /* HAVE_LWPSTATUS_T */
8279
8280 #if defined (HAVE_PSTATUS_T)
8281 char *
8282 elfcore_write_pstatus (bfd *abfd,
8283 char *buf,
8284 int *bufsiz,
8285 long pid,
8286 int cursig ATTRIBUTE_UNUSED,
8287 const void *gregs ATTRIBUTE_UNUSED)
8288 {
8289 pstatus_t pstat;
8290 char *note_name = "CORE";
8291
8292 memset (&pstat, 0, sizeof (pstat));
8293 pstat.pr_pid = pid & 0xffff;
8294 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8295 NT_PSTATUS, &pstat, sizeof (pstat));
8296 return buf;
8297 }
8298 #endif /* HAVE_PSTATUS_T */
8299
8300 char *
8301 elfcore_write_prfpreg (bfd *abfd,
8302 char *buf,
8303 int *bufsiz,
8304 const void *fpregs,
8305 int size)
8306 {
8307 char *note_name = "CORE";
8308 return elfcore_write_note (abfd, buf, bufsiz,
8309 note_name, NT_FPREGSET, fpregs, size);
8310 }
8311
8312 char *
8313 elfcore_write_prxfpreg (bfd *abfd,
8314 char *buf,
8315 int *bufsiz,
8316 const void *xfpregs,
8317 int size)
8318 {
8319 char *note_name = "LINUX";
8320 return elfcore_write_note (abfd, buf, bufsiz,
8321 note_name, NT_PRXFPREG, xfpregs, size);
8322 }
8323
8324 static bfd_boolean
8325 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8326 {
8327 char *buf;
8328 char *p;
8329
8330 if (size <= 0)
8331 return TRUE;
8332
8333 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8334 return FALSE;
8335
8336 buf = bfd_malloc (size);
8337 if (buf == NULL)
8338 return FALSE;
8339
8340 if (bfd_bread (buf, size, abfd) != size)
8341 {
8342 error:
8343 free (buf);
8344 return FALSE;
8345 }
8346
8347 p = buf;
8348 while (p < buf + size)
8349 {
8350 /* FIXME: bad alignment assumption. */
8351 Elf_External_Note *xnp = (Elf_External_Note *) p;
8352 Elf_Internal_Note in;
8353
8354 in.type = H_GET_32 (abfd, xnp->type);
8355
8356 in.namesz = H_GET_32 (abfd, xnp->namesz);
8357 in.namedata = xnp->name;
8358
8359 in.descsz = H_GET_32 (abfd, xnp->descsz);
8360 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8361 in.descpos = offset + (in.descdata - buf);
8362
8363 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8364 {
8365 if (! elfcore_grok_netbsd_note (abfd, &in))
8366 goto error;
8367 }
8368 else if (CONST_STRNEQ (in.namedata, "QNX"))
8369 {
8370 if (! elfcore_grok_nto_note (abfd, &in))
8371 goto error;
8372 }
8373 else
8374 {
8375 if (! elfcore_grok_note (abfd, &in))
8376 goto error;
8377 }
8378
8379 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8380 }
8381
8382 free (buf);
8383 return TRUE;
8384 }
8385 \f
8386 /* Providing external access to the ELF program header table. */
8387
8388 /* Return an upper bound on the number of bytes required to store a
8389 copy of ABFD's program header table entries. Return -1 if an error
8390 occurs; bfd_get_error will return an appropriate code. */
8391
8392 long
8393 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8394 {
8395 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8396 {
8397 bfd_set_error (bfd_error_wrong_format);
8398 return -1;
8399 }
8400
8401 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8402 }
8403
8404 /* Copy ABFD's program header table entries to *PHDRS. The entries
8405 will be stored as an array of Elf_Internal_Phdr structures, as
8406 defined in include/elf/internal.h. To find out how large the
8407 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8408
8409 Return the number of program header table entries read, or -1 if an
8410 error occurs; bfd_get_error will return an appropriate code. */
8411
8412 int
8413 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8414 {
8415 int num_phdrs;
8416
8417 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8418 {
8419 bfd_set_error (bfd_error_wrong_format);
8420 return -1;
8421 }
8422
8423 num_phdrs = elf_elfheader (abfd)->e_phnum;
8424 memcpy (phdrs, elf_tdata (abfd)->phdr,
8425 num_phdrs * sizeof (Elf_Internal_Phdr));
8426
8427 return num_phdrs;
8428 }
8429
8430 void
8431 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8432 {
8433 #ifdef BFD64
8434 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8435
8436 i_ehdrp = elf_elfheader (abfd);
8437 if (i_ehdrp == NULL)
8438 sprintf_vma (buf, value);
8439 else
8440 {
8441 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8442 {
8443 #if BFD_HOST_64BIT_LONG
8444 sprintf (buf, "%016lx", value);
8445 #else
8446 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8447 _bfd_int64_low (value));
8448 #endif
8449 }
8450 else
8451 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8452 }
8453 #else
8454 sprintf_vma (buf, value);
8455 #endif
8456 }
8457
8458 void
8459 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8460 {
8461 #ifdef BFD64
8462 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8463
8464 i_ehdrp = elf_elfheader (abfd);
8465 if (i_ehdrp == NULL)
8466 fprintf_vma ((FILE *) stream, value);
8467 else
8468 {
8469 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8470 {
8471 #if BFD_HOST_64BIT_LONG
8472 fprintf ((FILE *) stream, "%016lx", value);
8473 #else
8474 fprintf ((FILE *) stream, "%08lx%08lx",
8475 _bfd_int64_high (value), _bfd_int64_low (value));
8476 #endif
8477 }
8478 else
8479 fprintf ((FILE *) stream, "%08lx",
8480 (unsigned long) (value & 0xffffffff));
8481 }
8482 #else
8483 fprintf_vma ((FILE *) stream, value);
8484 #endif
8485 }
8486
8487 enum elf_reloc_type_class
8488 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8489 {
8490 return reloc_class_normal;
8491 }
8492
8493 /* For RELA architectures, return the relocation value for a
8494 relocation against a local symbol. */
8495
8496 bfd_vma
8497 _bfd_elf_rela_local_sym (bfd *abfd,
8498 Elf_Internal_Sym *sym,
8499 asection **psec,
8500 Elf_Internal_Rela *rel)
8501 {
8502 asection *sec = *psec;
8503 bfd_vma relocation;
8504
8505 relocation = (sec->output_section->vma
8506 + sec->output_offset
8507 + sym->st_value);
8508 if ((sec->flags & SEC_MERGE)
8509 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8510 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8511 {
8512 rel->r_addend =
8513 _bfd_merged_section_offset (abfd, psec,
8514 elf_section_data (sec)->sec_info,
8515 sym->st_value + rel->r_addend);
8516 if (sec != *psec)
8517 {
8518 /* If we have changed the section, and our original section is
8519 marked with SEC_EXCLUDE, it means that the original
8520 SEC_MERGE section has been completely subsumed in some
8521 other SEC_MERGE section. In this case, we need to leave
8522 some info around for --emit-relocs. */
8523 if ((sec->flags & SEC_EXCLUDE) != 0)
8524 sec->kept_section = *psec;
8525 sec = *psec;
8526 }
8527 rel->r_addend -= relocation;
8528 rel->r_addend += sec->output_section->vma + sec->output_offset;
8529 }
8530 return relocation;
8531 }
8532
8533 bfd_vma
8534 _bfd_elf_rel_local_sym (bfd *abfd,
8535 Elf_Internal_Sym *sym,
8536 asection **psec,
8537 bfd_vma addend)
8538 {
8539 asection *sec = *psec;
8540
8541 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8542 return sym->st_value + addend;
8543
8544 return _bfd_merged_section_offset (abfd, psec,
8545 elf_section_data (sec)->sec_info,
8546 sym->st_value + addend);
8547 }
8548
8549 bfd_vma
8550 _bfd_elf_section_offset (bfd *abfd,
8551 struct bfd_link_info *info,
8552 asection *sec,
8553 bfd_vma offset)
8554 {
8555 switch (sec->sec_info_type)
8556 {
8557 case ELF_INFO_TYPE_STABS:
8558 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8559 offset);
8560 case ELF_INFO_TYPE_EH_FRAME:
8561 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8562 default:
8563 return offset;
8564 }
8565 }
8566 \f
8567 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8568 reconstruct an ELF file by reading the segments out of remote memory
8569 based on the ELF file header at EHDR_VMA and the ELF program headers it
8570 points to. If not null, *LOADBASEP is filled in with the difference
8571 between the VMAs from which the segments were read, and the VMAs the
8572 file headers (and hence BFD's idea of each section's VMA) put them at.
8573
8574 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8575 remote memory at target address VMA into the local buffer at MYADDR; it
8576 should return zero on success or an `errno' code on failure. TEMPL must
8577 be a BFD for an ELF target with the word size and byte order found in
8578 the remote memory. */
8579
8580 bfd *
8581 bfd_elf_bfd_from_remote_memory
8582 (bfd *templ,
8583 bfd_vma ehdr_vma,
8584 bfd_vma *loadbasep,
8585 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8586 {
8587 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8588 (templ, ehdr_vma, loadbasep, target_read_memory);
8589 }
8590 \f
8591 long
8592 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8593 long symcount ATTRIBUTE_UNUSED,
8594 asymbol **syms ATTRIBUTE_UNUSED,
8595 long dynsymcount,
8596 asymbol **dynsyms,
8597 asymbol **ret)
8598 {
8599 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8600 asection *relplt;
8601 asymbol *s;
8602 const char *relplt_name;
8603 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8604 arelent *p;
8605 long count, i, n;
8606 size_t size;
8607 Elf_Internal_Shdr *hdr;
8608 char *names;
8609 asection *plt;
8610
8611 *ret = NULL;
8612
8613 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8614 return 0;
8615
8616 if (dynsymcount <= 0)
8617 return 0;
8618
8619 if (!bed->plt_sym_val)
8620 return 0;
8621
8622 relplt_name = bed->relplt_name;
8623 if (relplt_name == NULL)
8624 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8625 relplt = bfd_get_section_by_name (abfd, relplt_name);
8626 if (relplt == NULL)
8627 return 0;
8628
8629 hdr = &elf_section_data (relplt)->this_hdr;
8630 if (hdr->sh_link != elf_dynsymtab (abfd)
8631 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8632 return 0;
8633
8634 plt = bfd_get_section_by_name (abfd, ".plt");
8635 if (plt == NULL)
8636 return 0;
8637
8638 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8639 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8640 return -1;
8641
8642 count = relplt->size / hdr->sh_entsize;
8643 size = count * sizeof (asymbol);
8644 p = relplt->relocation;
8645 for (i = 0; i < count; i++, s++, p++)
8646 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8647
8648 s = *ret = bfd_malloc (size);
8649 if (s == NULL)
8650 return -1;
8651
8652 names = (char *) (s + count);
8653 p = relplt->relocation;
8654 n = 0;
8655 for (i = 0; i < count; i++, s++, p++)
8656 {
8657 size_t len;
8658 bfd_vma addr;
8659
8660 addr = bed->plt_sym_val (i, plt, p);
8661 if (addr == (bfd_vma) -1)
8662 continue;
8663
8664 *s = **p->sym_ptr_ptr;
8665 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8666 we are defining a symbol, ensure one of them is set. */
8667 if ((s->flags & BSF_LOCAL) == 0)
8668 s->flags |= BSF_GLOBAL;
8669 s->section = plt;
8670 s->value = addr - plt->vma;
8671 s->name = names;
8672 len = strlen ((*p->sym_ptr_ptr)->name);
8673 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8674 names += len;
8675 memcpy (names, "@plt", sizeof ("@plt"));
8676 names += sizeof ("@plt");
8677 ++n;
8678 }
8679
8680 return n;
8681 }
8682
8683 /* Sort symbol by binding and section. We want to put definitions
8684 sorted by section at the beginning. */
8685
8686 static int
8687 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8688 {
8689 const Elf_Internal_Sym *s1;
8690 const Elf_Internal_Sym *s2;
8691 int shndx;
8692
8693 /* Make sure that undefined symbols are at the end. */
8694 s1 = (const Elf_Internal_Sym *) arg1;
8695 if (s1->st_shndx == SHN_UNDEF)
8696 return 1;
8697 s2 = (const Elf_Internal_Sym *) arg2;
8698 if (s2->st_shndx == SHN_UNDEF)
8699 return -1;
8700
8701 /* Sorted by section index. */
8702 shndx = s1->st_shndx - s2->st_shndx;
8703 if (shndx != 0)
8704 return shndx;
8705
8706 /* Sorted by binding. */
8707 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8708 }
8709
8710 struct elf_symbol
8711 {
8712 Elf_Internal_Sym *sym;
8713 const char *name;
8714 };
8715
8716 static int
8717 elf_sym_name_compare (const void *arg1, const void *arg2)
8718 {
8719 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8720 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8721 return strcmp (s1->name, s2->name);
8722 }
8723
8724 /* Check if 2 sections define the same set of local and global
8725 symbols. */
8726
8727 bfd_boolean
8728 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8729 struct bfd_link_info *info)
8730 {
8731 bfd *bfd1, *bfd2;
8732 const struct elf_backend_data *bed1, *bed2;
8733 Elf_Internal_Shdr *hdr1, *hdr2;
8734 bfd_size_type symcount1, symcount2;
8735 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8736 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8737 Elf_Internal_Sym *isymend;
8738 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8739 bfd_size_type count1, count2, i;
8740 int shndx1, shndx2;
8741 bfd_boolean result;
8742
8743 bfd1 = sec1->owner;
8744 bfd2 = sec2->owner;
8745
8746 /* If both are .gnu.linkonce sections, they have to have the same
8747 section name. */
8748 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
8749 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
8750 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8751 sec2->name + sizeof ".gnu.linkonce") == 0;
8752
8753 /* Both sections have to be in ELF. */
8754 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8755 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8756 return FALSE;
8757
8758 if (elf_section_type (sec1) != elf_section_type (sec2))
8759 return FALSE;
8760
8761 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8762 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8763 {
8764 /* If both are members of section groups, they have to have the
8765 same group name. */
8766 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8767 return FALSE;
8768 }
8769
8770 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8771 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8772 if (shndx1 == -1 || shndx2 == -1)
8773 return FALSE;
8774
8775 bed1 = get_elf_backend_data (bfd1);
8776 bed2 = get_elf_backend_data (bfd2);
8777 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8778 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8779 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8780 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8781
8782 if (symcount1 == 0 || symcount2 == 0)
8783 return FALSE;
8784
8785 result = FALSE;
8786 isymbuf1 = elf_tdata (bfd1)->symbuf;
8787 isymbuf2 = elf_tdata (bfd2)->symbuf;
8788
8789 if (isymbuf1 == NULL)
8790 {
8791 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8792 NULL, NULL, NULL);
8793 if (isymbuf1 == NULL)
8794 goto done;
8795 /* Sort symbols by binding and section. Global definitions are at
8796 the beginning. */
8797 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8798 elf_sort_elf_symbol);
8799 if (!info->reduce_memory_overheads)
8800 elf_tdata (bfd1)->symbuf = isymbuf1;
8801 }
8802
8803 if (isymbuf2 == NULL)
8804 {
8805 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8806 NULL, NULL, NULL);
8807 if (isymbuf2 == NULL)
8808 goto done;
8809 /* Sort symbols by binding and section. Global definitions are at
8810 the beginning. */
8811 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8812 elf_sort_elf_symbol);
8813 if (!info->reduce_memory_overheads)
8814 elf_tdata (bfd2)->symbuf = isymbuf2;
8815 }
8816
8817 /* Count definitions in the section. */
8818 count1 = 0;
8819 for (isym = isymbuf1, isymend = isym + symcount1;
8820 isym < isymend; isym++)
8821 {
8822 if (isym->st_shndx == (unsigned int) shndx1)
8823 {
8824 if (count1 == 0)
8825 isymstart1 = isym;
8826 count1++;
8827 }
8828
8829 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8830 break;
8831 }
8832
8833 count2 = 0;
8834 for (isym = isymbuf2, isymend = isym + symcount2;
8835 isym < isymend; isym++)
8836 {
8837 if (isym->st_shndx == (unsigned int) shndx2)
8838 {
8839 if (count2 == 0)
8840 isymstart2 = isym;
8841 count2++;
8842 }
8843
8844 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8845 break;
8846 }
8847
8848 if (count1 == 0 || count2 == 0 || count1 != count2)
8849 goto done;
8850
8851 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8852 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8853
8854 if (symtable1 == NULL || symtable2 == NULL)
8855 goto done;
8856
8857 symp = symtable1;
8858 for (isym = isymstart1, isymend = isym + count1;
8859 isym < isymend; isym++)
8860 {
8861 symp->sym = isym;
8862 symp->name = bfd_elf_string_from_elf_section (bfd1,
8863 hdr1->sh_link,
8864 isym->st_name);
8865 symp++;
8866 }
8867
8868 symp = symtable2;
8869 for (isym = isymstart2, isymend = isym + count1;
8870 isym < isymend; isym++)
8871 {
8872 symp->sym = isym;
8873 symp->name = bfd_elf_string_from_elf_section (bfd2,
8874 hdr2->sh_link,
8875 isym->st_name);
8876 symp++;
8877 }
8878
8879 /* Sort symbol by name. */
8880 qsort (symtable1, count1, sizeof (struct elf_symbol),
8881 elf_sym_name_compare);
8882 qsort (symtable2, count1, sizeof (struct elf_symbol),
8883 elf_sym_name_compare);
8884
8885 for (i = 0; i < count1; i++)
8886 /* Two symbols must have the same binding, type and name. */
8887 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8888 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8889 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8890 goto done;
8891
8892 result = TRUE;
8893
8894 done:
8895 if (symtable1)
8896 free (symtable1);
8897 if (symtable2)
8898 free (symtable2);
8899 if (info->reduce_memory_overheads)
8900 {
8901 if (isymbuf1)
8902 free (isymbuf1);
8903 if (isymbuf2)
8904 free (isymbuf2);
8905 }
8906
8907 return result;
8908 }
8909
8910 /* It is only used by x86-64 so far. */
8911 asection _bfd_elf_large_com_section
8912 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8913 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8914
8915 /* Return TRUE if 2 section types are compatible. */
8916
8917 bfd_boolean
8918 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8919 bfd *bbfd, const asection *bsec)
8920 {
8921 if (asec == NULL
8922 || bsec == NULL
8923 || abfd->xvec->flavour != bfd_target_elf_flavour
8924 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8925 return TRUE;
8926
8927 return elf_section_type (asec) == elf_section_type (bsec);
8928 }
This page took 0.237604 seconds and 4 git commands to generate.