daily update
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
211
212 unsigned long
213 bfd_elf_gnu_hash (const char *namearg)
214 {
215 const unsigned char *name = (const unsigned char *) namearg;
216 unsigned long h = 5381;
217 unsigned char ch;
218
219 while ((ch = *name++) != '\0')
220 h = (h << 5) + h + ch;
221 return h & 0xffffffff;
222 }
223
224 bfd_boolean
225 bfd_elf_mkobject (bfd *abfd)
226 {
227 if (abfd->tdata.any == NULL)
228 {
229 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
230 if (abfd->tdata.any == NULL)
231 return FALSE;
232 }
233
234 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
235
236 return TRUE;
237 }
238
239 bfd_boolean
240 bfd_elf_mkcorefile (bfd *abfd)
241 {
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd);
244 }
245
246 char *
247 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
248 {
249 Elf_Internal_Shdr **i_shdrp;
250 bfd_byte *shstrtab = NULL;
251 file_ptr offset;
252 bfd_size_type shstrtabsize;
253
254 i_shdrp = elf_elfsections (abfd);
255 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
256 return NULL;
257
258 shstrtab = i_shdrp[shindex]->contents;
259 if (shstrtab == NULL)
260 {
261 /* No cached one, attempt to read, and cache what we read. */
262 offset = i_shdrp[shindex]->sh_offset;
263 shstrtabsize = i_shdrp[shindex]->sh_size;
264
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize + 1 == 0
268 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
269 || bfd_seek (abfd, offset, SEEK_SET) != 0)
270 shstrtab = NULL;
271 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
272 {
273 if (bfd_get_error () != bfd_error_system_call)
274 bfd_set_error (bfd_error_file_truncated);
275 shstrtab = NULL;
276 }
277 else
278 shstrtab[shstrtabsize] = '\0';
279 i_shdrp[shindex]->contents = shstrtab;
280 }
281 return (char *) shstrtab;
282 }
283
284 char *
285 bfd_elf_string_from_elf_section (bfd *abfd,
286 unsigned int shindex,
287 unsigned int strindex)
288 {
289 Elf_Internal_Shdr *hdr;
290
291 if (strindex == 0)
292 return "";
293
294 hdr = elf_elfsections (abfd)[shindex];
295
296 if (hdr->contents == NULL
297 && bfd_elf_get_str_section (abfd, shindex) == NULL)
298 return NULL;
299
300 if (strindex >= hdr->sh_size)
301 {
302 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
303 (*_bfd_error_handler)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd, strindex, (unsigned long) hdr->sh_size,
306 (shindex == shstrndx && strindex == hdr->sh_name
307 ? ".shstrtab"
308 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
309 return "";
310 }
311
312 return ((char *) hdr->contents) + strindex;
313 }
314
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
320
321 Elf_Internal_Sym *
322 bfd_elf_get_elf_syms (bfd *ibfd,
323 Elf_Internal_Shdr *symtab_hdr,
324 size_t symcount,
325 size_t symoffset,
326 Elf_Internal_Sym *intsym_buf,
327 void *extsym_buf,
328 Elf_External_Sym_Shndx *extshndx_buf)
329 {
330 Elf_Internal_Shdr *shndx_hdr;
331 void *alloc_ext;
332 const bfd_byte *esym;
333 Elf_External_Sym_Shndx *alloc_extshndx;
334 Elf_External_Sym_Shndx *shndx;
335 Elf_Internal_Sym *isym;
336 Elf_Internal_Sym *isymend;
337 const struct elf_backend_data *bed;
338 size_t extsym_size;
339 bfd_size_type amt;
340 file_ptr pos;
341
342 if (symcount == 0)
343 return intsym_buf;
344
345 /* Normal syms might have section extension entries. */
346 shndx_hdr = NULL;
347 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
348 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
349
350 /* Read the symbols. */
351 alloc_ext = NULL;
352 alloc_extshndx = NULL;
353 bed = get_elf_backend_data (ibfd);
354 extsym_size = bed->s->sizeof_sym;
355 amt = symcount * extsym_size;
356 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
357 if (extsym_buf == NULL)
358 {
359 alloc_ext = bfd_malloc2 (symcount, extsym_size);
360 extsym_buf = alloc_ext;
361 }
362 if (extsym_buf == NULL
363 || bfd_seek (ibfd, pos, SEEK_SET) != 0
364 || bfd_bread (extsym_buf, amt, ibfd) != amt)
365 {
366 intsym_buf = NULL;
367 goto out;
368 }
369
370 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
371 extshndx_buf = NULL;
372 else
373 {
374 amt = symcount * sizeof (Elf_External_Sym_Shndx);
375 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
376 if (extshndx_buf == NULL)
377 {
378 alloc_extshndx = bfd_malloc2 (symcount,
379 sizeof (Elf_External_Sym_Shndx));
380 extshndx_buf = alloc_extshndx;
381 }
382 if (extshndx_buf == NULL
383 || bfd_seek (ibfd, pos, SEEK_SET) != 0
384 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
385 {
386 intsym_buf = NULL;
387 goto out;
388 }
389 }
390
391 if (intsym_buf == NULL)
392 {
393 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
394 if (intsym_buf == NULL)
395 goto out;
396 }
397
398 /* Convert the symbols to internal form. */
399 isymend = intsym_buf + symcount;
400 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
401 isym < isymend;
402 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
403 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
404 {
405 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
406 (*_bfd_error_handler) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd, (unsigned long) symoffset);
409 intsym_buf = NULL;
410 goto out;
411 }
412
413 out:
414 if (alloc_ext != NULL)
415 free (alloc_ext);
416 if (alloc_extshndx != NULL)
417 free (alloc_extshndx);
418
419 return intsym_buf;
420 }
421
422 /* Look up a symbol name. */
423 const char *
424 bfd_elf_sym_name (bfd *abfd,
425 Elf_Internal_Shdr *symtab_hdr,
426 Elf_Internal_Sym *isym,
427 asection *sym_sec)
428 {
429 const char *name;
430 unsigned int iname = isym->st_name;
431 unsigned int shindex = symtab_hdr->sh_link;
432
433 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym->st_shndx < elf_numsections (abfd)
436 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
437 {
438 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
439 shindex = elf_elfheader (abfd)->e_shstrndx;
440 }
441
442 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
443 if (name == NULL)
444 name = "(null)";
445 else if (sym_sec && *name == '\0')
446 name = bfd_section_name (abfd, sym_sec);
447
448 return name;
449 }
450
451 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
453 pointers. */
454
455 typedef union elf_internal_group {
456 Elf_Internal_Shdr *shdr;
457 unsigned int flags;
458 } Elf_Internal_Group;
459
460 /* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
462
463 static const char *
464 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
465 {
466 Elf_Internal_Shdr *hdr;
467 unsigned char esym[sizeof (Elf64_External_Sym)];
468 Elf_External_Sym_Shndx eshndx;
469 Elf_Internal_Sym isym;
470
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr = elf_elfsections (abfd) [ghdr->sh_link];
474 if (hdr->sh_type != SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
476 return NULL;
477
478 /* Go read the symbol. */
479 hdr = &elf_tdata (abfd)->symtab_hdr;
480 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
481 &isym, esym, &eshndx) == NULL)
482 return NULL;
483
484 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
485 }
486
487 /* Set next_in_group list pointer, and group name for NEWSECT. */
488
489 static bfd_boolean
490 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
491 {
492 unsigned int num_group = elf_tdata (abfd)->num_group;
493
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
496 if (num_group == 0)
497 {
498 unsigned int i, shnum;
499
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum = elf_numsections (abfd);
503 num_group = 0;
504 for (i = 0; i < shnum; i++)
505 {
506 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
507 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
508 num_group += 1;
509 }
510
511 if (num_group == 0)
512 {
513 num_group = (unsigned) -1;
514 elf_tdata (abfd)->num_group = num_group;
515 }
516 else
517 {
518 /* We keep a list of elf section headers for group sections,
519 so we can find them quickly. */
520 bfd_size_type amt;
521
522 elf_tdata (abfd)->num_group = num_group;
523 elf_tdata (abfd)->group_sect_ptr
524 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
525 if (elf_tdata (abfd)->group_sect_ptr == NULL)
526 return FALSE;
527
528 num_group = 0;
529 for (i = 0; i < shnum; i++)
530 {
531 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
532 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
533 {
534 unsigned char *src;
535 Elf_Internal_Group *dest;
536
537 /* Add to list of sections. */
538 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
539 num_group += 1;
540
541 /* Read the raw contents. */
542 BFD_ASSERT (sizeof (*dest) >= 4);
543 amt = shdr->sh_size * sizeof (*dest) / 4;
544 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
545 sizeof (*dest) / 4);
546 if (shdr->contents == NULL
547 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
548 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
549 != shdr->sh_size))
550 return FALSE;
551
552 /* Translate raw contents, a flag word followed by an
553 array of elf section indices all in target byte order,
554 to the flag word followed by an array of elf section
555 pointers. */
556 src = shdr->contents + shdr->sh_size;
557 dest = (Elf_Internal_Group *) (shdr->contents + amt);
558 while (1)
559 {
560 unsigned int idx;
561
562 src -= 4;
563 --dest;
564 idx = H_GET_32 (abfd, src);
565 if (src == shdr->contents)
566 {
567 dest->flags = idx;
568 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
569 shdr->bfd_section->flags
570 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
571 break;
572 }
573 if (idx >= shnum)
574 {
575 ((*_bfd_error_handler)
576 (_("%B: invalid SHT_GROUP entry"), abfd));
577 idx = 0;
578 }
579 dest->shdr = elf_elfsections (abfd)[idx];
580 }
581 }
582 }
583 }
584 }
585
586 if (num_group != (unsigned) -1)
587 {
588 unsigned int i;
589
590 for (i = 0; i < num_group; i++)
591 {
592 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
593 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
594 unsigned int n_elt = shdr->sh_size / 4;
595
596 /* Look through this group's sections to see if current
597 section is a member. */
598 while (--n_elt != 0)
599 if ((++idx)->shdr == hdr)
600 {
601 asection *s = NULL;
602
603 /* We are a member of this group. Go looking through
604 other members to see if any others are linked via
605 next_in_group. */
606 idx = (Elf_Internal_Group *) shdr->contents;
607 n_elt = shdr->sh_size / 4;
608 while (--n_elt != 0)
609 if ((s = (++idx)->shdr->bfd_section) != NULL
610 && elf_next_in_group (s) != NULL)
611 break;
612 if (n_elt != 0)
613 {
614 /* Snarf the group name from other member, and
615 insert current section in circular list. */
616 elf_group_name (newsect) = elf_group_name (s);
617 elf_next_in_group (newsect) = elf_next_in_group (s);
618 elf_next_in_group (s) = newsect;
619 }
620 else
621 {
622 const char *gname;
623
624 gname = group_signature (abfd, shdr);
625 if (gname == NULL)
626 return FALSE;
627 elf_group_name (newsect) = gname;
628
629 /* Start a circular list with one element. */
630 elf_next_in_group (newsect) = newsect;
631 }
632
633 /* If the group section has been created, point to the
634 new member. */
635 if (shdr->bfd_section != NULL)
636 elf_next_in_group (shdr->bfd_section) = newsect;
637
638 i = num_group - 1;
639 break;
640 }
641 }
642 }
643
644 if (elf_group_name (newsect) == NULL)
645 {
646 (*_bfd_error_handler) (_("%B: no group info for section %A"),
647 abfd, newsect);
648 }
649 return TRUE;
650 }
651
652 bfd_boolean
653 _bfd_elf_setup_sections (bfd *abfd)
654 {
655 unsigned int i;
656 unsigned int num_group = elf_tdata (abfd)->num_group;
657 bfd_boolean result = TRUE;
658 asection *s;
659
660 /* Process SHF_LINK_ORDER. */
661 for (s = abfd->sections; s != NULL; s = s->next)
662 {
663 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
664 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
665 {
666 unsigned int elfsec = this_hdr->sh_link;
667 /* FIXME: The old Intel compiler and old strip/objcopy may
668 not set the sh_link or sh_info fields. Hence we could
669 get the situation where elfsec is 0. */
670 if (elfsec == 0)
671 {
672 const struct elf_backend_data *bed
673 = get_elf_backend_data (abfd);
674 if (bed->link_order_error_handler)
675 bed->link_order_error_handler
676 (_("%B: warning: sh_link not set for section `%A'"),
677 abfd, s);
678 }
679 else
680 {
681 asection *link;
682
683 this_hdr = elf_elfsections (abfd)[elfsec];
684
685 /* PR 1991, 2008:
686 Some strip/objcopy may leave an incorrect value in
687 sh_link. We don't want to proceed. */
688 link = this_hdr->bfd_section;
689 if (link == NULL)
690 {
691 (*_bfd_error_handler)
692 (_("%B: sh_link [%d] in section `%A' is incorrect"),
693 s->owner, s, elfsec);
694 result = FALSE;
695 }
696
697 elf_linked_to_section (s) = link;
698 }
699 }
700 }
701
702 /* Process section groups. */
703 if (num_group == (unsigned) -1)
704 return result;
705
706 for (i = 0; i < num_group; i++)
707 {
708 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
709 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
710 unsigned int n_elt = shdr->sh_size / 4;
711
712 while (--n_elt != 0)
713 if ((++idx)->shdr->bfd_section)
714 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
715 else if (idx->shdr->sh_type == SHT_RELA
716 || idx->shdr->sh_type == SHT_REL)
717 /* We won't include relocation sections in section groups in
718 output object files. We adjust the group section size here
719 so that relocatable link will work correctly when
720 relocation sections are in section group in input object
721 files. */
722 shdr->bfd_section->size -= 4;
723 else
724 {
725 /* There are some unknown sections in the group. */
726 (*_bfd_error_handler)
727 (_("%B: unknown [%d] section `%s' in group [%s]"),
728 abfd,
729 (unsigned int) idx->shdr->sh_type,
730 bfd_elf_string_from_elf_section (abfd,
731 (elf_elfheader (abfd)
732 ->e_shstrndx),
733 idx->shdr->sh_name),
734 shdr->bfd_section->name);
735 result = FALSE;
736 }
737 }
738 return result;
739 }
740
741 bfd_boolean
742 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
743 {
744 return elf_next_in_group (sec) != NULL;
745 }
746
747 /* Make a BFD section from an ELF section. We store a pointer to the
748 BFD section in the bfd_section field of the header. */
749
750 bfd_boolean
751 _bfd_elf_make_section_from_shdr (bfd *abfd,
752 Elf_Internal_Shdr *hdr,
753 const char *name,
754 int shindex)
755 {
756 asection *newsect;
757 flagword flags;
758 const struct elf_backend_data *bed;
759
760 if (hdr->bfd_section != NULL)
761 {
762 BFD_ASSERT (strcmp (name,
763 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
764 return TRUE;
765 }
766
767 newsect = bfd_make_section_anyway (abfd, name);
768 if (newsect == NULL)
769 return FALSE;
770
771 hdr->bfd_section = newsect;
772 elf_section_data (newsect)->this_hdr = *hdr;
773 elf_section_data (newsect)->this_idx = shindex;
774
775 /* Always use the real type/flags. */
776 elf_section_type (newsect) = hdr->sh_type;
777 elf_section_flags (newsect) = hdr->sh_flags;
778
779 newsect->filepos = hdr->sh_offset;
780
781 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
782 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
783 || ! bfd_set_section_alignment (abfd, newsect,
784 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
785 return FALSE;
786
787 flags = SEC_NO_FLAGS;
788 if (hdr->sh_type != SHT_NOBITS)
789 flags |= SEC_HAS_CONTENTS;
790 if (hdr->sh_type == SHT_GROUP)
791 flags |= SEC_GROUP | SEC_EXCLUDE;
792 if ((hdr->sh_flags & SHF_ALLOC) != 0)
793 {
794 flags |= SEC_ALLOC;
795 if (hdr->sh_type != SHT_NOBITS)
796 flags |= SEC_LOAD;
797 }
798 if ((hdr->sh_flags & SHF_WRITE) == 0)
799 flags |= SEC_READONLY;
800 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
801 flags |= SEC_CODE;
802 else if ((flags & SEC_LOAD) != 0)
803 flags |= SEC_DATA;
804 if ((hdr->sh_flags & SHF_MERGE) != 0)
805 {
806 flags |= SEC_MERGE;
807 newsect->entsize = hdr->sh_entsize;
808 if ((hdr->sh_flags & SHF_STRINGS) != 0)
809 flags |= SEC_STRINGS;
810 }
811 if (hdr->sh_flags & SHF_GROUP)
812 if (!setup_group (abfd, hdr, newsect))
813 return FALSE;
814 if ((hdr->sh_flags & SHF_TLS) != 0)
815 flags |= SEC_THREAD_LOCAL;
816
817 if ((flags & SEC_ALLOC) == 0)
818 {
819 /* The debugging sections appear to be recognized only by name,
820 not any sort of flag. Their SEC_ALLOC bits are cleared. */
821 static const struct
822 {
823 const char *name;
824 int len;
825 } debug_sections [] =
826 {
827 { STRING_COMMA_LEN ("debug") }, /* 'd' */
828 { NULL, 0 }, /* 'e' */
829 { NULL, 0 }, /* 'f' */
830 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
831 { NULL, 0 }, /* 'h' */
832 { NULL, 0 }, /* 'i' */
833 { NULL, 0 }, /* 'j' */
834 { NULL, 0 }, /* 'k' */
835 { STRING_COMMA_LEN ("line") }, /* 'l' */
836 { NULL, 0 }, /* 'm' */
837 { NULL, 0 }, /* 'n' */
838 { NULL, 0 }, /* 'o' */
839 { NULL, 0 }, /* 'p' */
840 { NULL, 0 }, /* 'q' */
841 { NULL, 0 }, /* 'r' */
842 { STRING_COMMA_LEN ("stab") } /* 's' */
843 };
844
845 if (name [0] == '.')
846 {
847 int i = name [1] - 'd';
848 if (i >= 0
849 && i < (int) ARRAY_SIZE (debug_sections)
850 && debug_sections [i].name != NULL
851 && strncmp (&name [1], debug_sections [i].name,
852 debug_sections [i].len) == 0)
853 flags |= SEC_DEBUGGING;
854 }
855 }
856
857 /* As a GNU extension, if the name begins with .gnu.linkonce, we
858 only link a single copy of the section. This is used to support
859 g++. g++ will emit each template expansion in its own section.
860 The symbols will be defined as weak, so that multiple definitions
861 are permitted. The GNU linker extension is to actually discard
862 all but one of the sections. */
863 if (CONST_STRNEQ (name, ".gnu.linkonce")
864 && elf_next_in_group (newsect) == NULL)
865 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
866
867 bed = get_elf_backend_data (abfd);
868 if (bed->elf_backend_section_flags)
869 if (! bed->elf_backend_section_flags (&flags, hdr))
870 return FALSE;
871
872 if (! bfd_set_section_flags (abfd, newsect, flags))
873 return FALSE;
874
875 if ((flags & SEC_ALLOC) != 0)
876 {
877 Elf_Internal_Phdr *phdr;
878 unsigned int i;
879
880 /* Look through the phdrs to see if we need to adjust the lma.
881 If all the p_paddr fields are zero, we ignore them, since
882 some ELF linkers produce such output. */
883 phdr = elf_tdata (abfd)->phdr;
884 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
885 {
886 if (phdr->p_paddr != 0)
887 break;
888 }
889 if (i < elf_elfheader (abfd)->e_phnum)
890 {
891 phdr = elf_tdata (abfd)->phdr;
892 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
893 {
894 /* This section is part of this segment if its file
895 offset plus size lies within the segment's memory
896 span and, if the section is loaded, the extent of the
897 loaded data lies within the extent of the segment.
898
899 Note - we used to check the p_paddr field as well, and
900 refuse to set the LMA if it was 0. This is wrong
901 though, as a perfectly valid initialised segment can
902 have a p_paddr of zero. Some architectures, eg ARM,
903 place special significance on the address 0 and
904 executables need to be able to have a segment which
905 covers this address. */
906 if (phdr->p_type == PT_LOAD
907 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
908 && (hdr->sh_offset + hdr->sh_size
909 <= phdr->p_offset + phdr->p_memsz)
910 && ((flags & SEC_LOAD) == 0
911 || (hdr->sh_offset + hdr->sh_size
912 <= phdr->p_offset + phdr->p_filesz)))
913 {
914 if ((flags & SEC_LOAD) == 0)
915 newsect->lma = (phdr->p_paddr
916 + hdr->sh_addr - phdr->p_vaddr);
917 else
918 /* We used to use the same adjustment for SEC_LOAD
919 sections, but that doesn't work if the segment
920 is packed with code from multiple VMAs.
921 Instead we calculate the section LMA based on
922 the segment LMA. It is assumed that the
923 segment will contain sections with contiguous
924 LMAs, even if the VMAs are not. */
925 newsect->lma = (phdr->p_paddr
926 + hdr->sh_offset - phdr->p_offset);
927
928 /* With contiguous segments, we can't tell from file
929 offsets whether a section with zero size should
930 be placed at the end of one segment or the
931 beginning of the next. Decide based on vaddr. */
932 if (hdr->sh_addr >= phdr->p_vaddr
933 && (hdr->sh_addr + hdr->sh_size
934 <= phdr->p_vaddr + phdr->p_memsz))
935 break;
936 }
937 }
938 }
939 }
940
941 return TRUE;
942 }
943
944 /*
945 INTERNAL_FUNCTION
946 bfd_elf_find_section
947
948 SYNOPSIS
949 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
950
951 DESCRIPTION
952 Helper functions for GDB to locate the string tables.
953 Since BFD hides string tables from callers, GDB needs to use an
954 internal hook to find them. Sun's .stabstr, in particular,
955 isn't even pointed to by the .stab section, so ordinary
956 mechanisms wouldn't work to find it, even if we had some.
957 */
958
959 struct elf_internal_shdr *
960 bfd_elf_find_section (bfd *abfd, char *name)
961 {
962 Elf_Internal_Shdr **i_shdrp;
963 char *shstrtab;
964 unsigned int max;
965 unsigned int i;
966
967 i_shdrp = elf_elfsections (abfd);
968 if (i_shdrp != NULL)
969 {
970 shstrtab = bfd_elf_get_str_section (abfd,
971 elf_elfheader (abfd)->e_shstrndx);
972 if (shstrtab != NULL)
973 {
974 max = elf_numsections (abfd);
975 for (i = 1; i < max; i++)
976 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
977 return i_shdrp[i];
978 }
979 }
980 return 0;
981 }
982
983 const char *const bfd_elf_section_type_names[] = {
984 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
985 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
986 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
987 };
988
989 /* ELF relocs are against symbols. If we are producing relocatable
990 output, and the reloc is against an external symbol, and nothing
991 has given us any additional addend, the resulting reloc will also
992 be against the same symbol. In such a case, we don't want to
993 change anything about the way the reloc is handled, since it will
994 all be done at final link time. Rather than put special case code
995 into bfd_perform_relocation, all the reloc types use this howto
996 function. It just short circuits the reloc if producing
997 relocatable output against an external symbol. */
998
999 bfd_reloc_status_type
1000 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1001 arelent *reloc_entry,
1002 asymbol *symbol,
1003 void *data ATTRIBUTE_UNUSED,
1004 asection *input_section,
1005 bfd *output_bfd,
1006 char **error_message ATTRIBUTE_UNUSED)
1007 {
1008 if (output_bfd != NULL
1009 && (symbol->flags & BSF_SECTION_SYM) == 0
1010 && (! reloc_entry->howto->partial_inplace
1011 || reloc_entry->addend == 0))
1012 {
1013 reloc_entry->address += input_section->output_offset;
1014 return bfd_reloc_ok;
1015 }
1016
1017 return bfd_reloc_continue;
1018 }
1019 \f
1020 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1021
1022 static void
1023 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1024 asection *sec)
1025 {
1026 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1027 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1028 }
1029
1030 /* Finish SHF_MERGE section merging. */
1031
1032 bfd_boolean
1033 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1034 {
1035 bfd *ibfd;
1036 asection *sec;
1037
1038 if (!is_elf_hash_table (info->hash))
1039 return FALSE;
1040
1041 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1042 if ((ibfd->flags & DYNAMIC) == 0)
1043 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1044 if ((sec->flags & SEC_MERGE) != 0
1045 && !bfd_is_abs_section (sec->output_section))
1046 {
1047 struct bfd_elf_section_data *secdata;
1048
1049 secdata = elf_section_data (sec);
1050 if (! _bfd_add_merge_section (abfd,
1051 &elf_hash_table (info)->merge_info,
1052 sec, &secdata->sec_info))
1053 return FALSE;
1054 else if (secdata->sec_info)
1055 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1056 }
1057
1058 if (elf_hash_table (info)->merge_info != NULL)
1059 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1060 merge_sections_remove_hook);
1061 return TRUE;
1062 }
1063
1064 void
1065 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1066 {
1067 sec->output_section = bfd_abs_section_ptr;
1068 sec->output_offset = sec->vma;
1069 if (!is_elf_hash_table (info->hash))
1070 return;
1071
1072 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1073 }
1074 \f
1075 /* Copy the program header and other data from one object module to
1076 another. */
1077
1078 bfd_boolean
1079 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1080 {
1081 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1082 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1083 return TRUE;
1084
1085 BFD_ASSERT (!elf_flags_init (obfd)
1086 || (elf_elfheader (obfd)->e_flags
1087 == elf_elfheader (ibfd)->e_flags));
1088
1089 elf_gp (obfd) = elf_gp (ibfd);
1090 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1091 elf_flags_init (obfd) = TRUE;
1092 return TRUE;
1093 }
1094
1095 static const char *
1096 get_segment_type (unsigned int p_type)
1097 {
1098 const char *pt;
1099 switch (p_type)
1100 {
1101 case PT_NULL: pt = "NULL"; break;
1102 case PT_LOAD: pt = "LOAD"; break;
1103 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1104 case PT_INTERP: pt = "INTERP"; break;
1105 case PT_NOTE: pt = "NOTE"; break;
1106 case PT_SHLIB: pt = "SHLIB"; break;
1107 case PT_PHDR: pt = "PHDR"; break;
1108 case PT_TLS: pt = "TLS"; break;
1109 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1110 case PT_GNU_STACK: pt = "STACK"; break;
1111 case PT_GNU_RELRO: pt = "RELRO"; break;
1112 default: pt = NULL; break;
1113 }
1114 return pt;
1115 }
1116
1117 /* Print out the program headers. */
1118
1119 bfd_boolean
1120 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1121 {
1122 FILE *f = farg;
1123 Elf_Internal_Phdr *p;
1124 asection *s;
1125 bfd_byte *dynbuf = NULL;
1126
1127 p = elf_tdata (abfd)->phdr;
1128 if (p != NULL)
1129 {
1130 unsigned int i, c;
1131
1132 fprintf (f, _("\nProgram Header:\n"));
1133 c = elf_elfheader (abfd)->e_phnum;
1134 for (i = 0; i < c; i++, p++)
1135 {
1136 const char *pt = get_segment_type (p->p_type);
1137 char buf[20];
1138
1139 if (pt == NULL)
1140 {
1141 sprintf (buf, "0x%lx", p->p_type);
1142 pt = buf;
1143 }
1144 fprintf (f, "%8s off 0x", pt);
1145 bfd_fprintf_vma (abfd, f, p->p_offset);
1146 fprintf (f, " vaddr 0x");
1147 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1148 fprintf (f, " paddr 0x");
1149 bfd_fprintf_vma (abfd, f, p->p_paddr);
1150 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1151 fprintf (f, " filesz 0x");
1152 bfd_fprintf_vma (abfd, f, p->p_filesz);
1153 fprintf (f, " memsz 0x");
1154 bfd_fprintf_vma (abfd, f, p->p_memsz);
1155 fprintf (f, " flags %c%c%c",
1156 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1157 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1158 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1159 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1160 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1161 fprintf (f, "\n");
1162 }
1163 }
1164
1165 s = bfd_get_section_by_name (abfd, ".dynamic");
1166 if (s != NULL)
1167 {
1168 int elfsec;
1169 unsigned long shlink;
1170 bfd_byte *extdyn, *extdynend;
1171 size_t extdynsize;
1172 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1173
1174 fprintf (f, _("\nDynamic Section:\n"));
1175
1176 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1177 goto error_return;
1178
1179 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1180 if (elfsec == -1)
1181 goto error_return;
1182 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1183
1184 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1185 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1186
1187 extdyn = dynbuf;
1188 extdynend = extdyn + s->size;
1189 for (; extdyn < extdynend; extdyn += extdynsize)
1190 {
1191 Elf_Internal_Dyn dyn;
1192 const char *name;
1193 char ab[20];
1194 bfd_boolean stringp;
1195
1196 (*swap_dyn_in) (abfd, extdyn, &dyn);
1197
1198 if (dyn.d_tag == DT_NULL)
1199 break;
1200
1201 stringp = FALSE;
1202 switch (dyn.d_tag)
1203 {
1204 default:
1205 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1206 name = ab;
1207 break;
1208
1209 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1210 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1211 case DT_PLTGOT: name = "PLTGOT"; break;
1212 case DT_HASH: name = "HASH"; break;
1213 case DT_STRTAB: name = "STRTAB"; break;
1214 case DT_SYMTAB: name = "SYMTAB"; break;
1215 case DT_RELA: name = "RELA"; break;
1216 case DT_RELASZ: name = "RELASZ"; break;
1217 case DT_RELAENT: name = "RELAENT"; break;
1218 case DT_STRSZ: name = "STRSZ"; break;
1219 case DT_SYMENT: name = "SYMENT"; break;
1220 case DT_INIT: name = "INIT"; break;
1221 case DT_FINI: name = "FINI"; break;
1222 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1223 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1224 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1225 case DT_REL: name = "REL"; break;
1226 case DT_RELSZ: name = "RELSZ"; break;
1227 case DT_RELENT: name = "RELENT"; break;
1228 case DT_PLTREL: name = "PLTREL"; break;
1229 case DT_DEBUG: name = "DEBUG"; break;
1230 case DT_TEXTREL: name = "TEXTREL"; break;
1231 case DT_JMPREL: name = "JMPREL"; break;
1232 case DT_BIND_NOW: name = "BIND_NOW"; break;
1233 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1238 case DT_FLAGS: name = "FLAGS"; break;
1239 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM: name = "CHECKSUM"; break;
1242 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1243 case DT_MOVEENT: name = "MOVEENT"; break;
1244 case DT_MOVESZ: name = "MOVESZ"; break;
1245 case DT_FEATURE: name = "FEATURE"; break;
1246 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1247 case DT_SYMINSZ: name = "SYMINSZ"; break;
1248 case DT_SYMINENT: name = "SYMINENT"; break;
1249 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1250 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1251 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1252 case DT_PLTPAD: name = "PLTPAD"; break;
1253 case DT_MOVETAB: name = "MOVETAB"; break;
1254 case DT_SYMINFO: name = "SYMINFO"; break;
1255 case DT_RELACOUNT: name = "RELACOUNT"; break;
1256 case DT_RELCOUNT: name = "RELCOUNT"; break;
1257 case DT_FLAGS_1: name = "FLAGS_1"; break;
1258 case DT_VERSYM: name = "VERSYM"; break;
1259 case DT_VERDEF: name = "VERDEF"; break;
1260 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1261 case DT_VERNEED: name = "VERNEED"; break;
1262 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1263 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1264 case DT_USED: name = "USED"; break;
1265 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1266 case DT_GNU_HASH: name = "GNU_HASH"; break;
1267 }
1268
1269 fprintf (f, " %-11s ", name);
1270 if (! stringp)
1271 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1272 else
1273 {
1274 const char *string;
1275 unsigned int tagv = dyn.d_un.d_val;
1276
1277 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1278 if (string == NULL)
1279 goto error_return;
1280 fprintf (f, "%s", string);
1281 }
1282 fprintf (f, "\n");
1283 }
1284
1285 free (dynbuf);
1286 dynbuf = NULL;
1287 }
1288
1289 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1290 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1291 {
1292 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1293 return FALSE;
1294 }
1295
1296 if (elf_dynverdef (abfd) != 0)
1297 {
1298 Elf_Internal_Verdef *t;
1299
1300 fprintf (f, _("\nVersion definitions:\n"));
1301 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1302 {
1303 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1304 t->vd_flags, t->vd_hash,
1305 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1306 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1307 {
1308 Elf_Internal_Verdaux *a;
1309
1310 fprintf (f, "\t");
1311 for (a = t->vd_auxptr->vda_nextptr;
1312 a != NULL;
1313 a = a->vda_nextptr)
1314 fprintf (f, "%s ",
1315 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1316 fprintf (f, "\n");
1317 }
1318 }
1319 }
1320
1321 if (elf_dynverref (abfd) != 0)
1322 {
1323 Elf_Internal_Verneed *t;
1324
1325 fprintf (f, _("\nVersion References:\n"));
1326 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1327 {
1328 Elf_Internal_Vernaux *a;
1329
1330 fprintf (f, _(" required from %s:\n"),
1331 t->vn_filename ? t->vn_filename : "<corrupt>");
1332 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1333 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1334 a->vna_flags, a->vna_other,
1335 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1336 }
1337 }
1338
1339 return TRUE;
1340
1341 error_return:
1342 if (dynbuf != NULL)
1343 free (dynbuf);
1344 return FALSE;
1345 }
1346
1347 /* Display ELF-specific fields of a symbol. */
1348
1349 void
1350 bfd_elf_print_symbol (bfd *abfd,
1351 void *filep,
1352 asymbol *symbol,
1353 bfd_print_symbol_type how)
1354 {
1355 FILE *file = filep;
1356 switch (how)
1357 {
1358 case bfd_print_symbol_name:
1359 fprintf (file, "%s", symbol->name);
1360 break;
1361 case bfd_print_symbol_more:
1362 fprintf (file, "elf ");
1363 bfd_fprintf_vma (abfd, file, symbol->value);
1364 fprintf (file, " %lx", (long) symbol->flags);
1365 break;
1366 case bfd_print_symbol_all:
1367 {
1368 const char *section_name;
1369 const char *name = NULL;
1370 const struct elf_backend_data *bed;
1371 unsigned char st_other;
1372 bfd_vma val;
1373
1374 section_name = symbol->section ? symbol->section->name : "(*none*)";
1375
1376 bed = get_elf_backend_data (abfd);
1377 if (bed->elf_backend_print_symbol_all)
1378 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1379
1380 if (name == NULL)
1381 {
1382 name = symbol->name;
1383 bfd_print_symbol_vandf (abfd, file, symbol);
1384 }
1385
1386 fprintf (file, " %s\t", section_name);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (bfd_is_com_section (symbol->section))
1392 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1393 else
1394 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1395 bfd_fprintf_vma (abfd, file, val);
1396
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd)->dynversym_section != 0
1399 && (elf_tdata (abfd)->dynverdef_section != 0
1400 || elf_tdata (abfd)->dynverref_section != 0))
1401 {
1402 unsigned int vernum;
1403 const char *version_string;
1404
1405 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1406
1407 if (vernum == 0)
1408 version_string = "";
1409 else if (vernum == 1)
1410 version_string = "Base";
1411 else if (vernum <= elf_tdata (abfd)->cverdefs)
1412 version_string =
1413 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1414 else
1415 {
1416 Elf_Internal_Verneed *t;
1417
1418 version_string = "";
1419 for (t = elf_tdata (abfd)->verref;
1420 t != NULL;
1421 t = t->vn_nextref)
1422 {
1423 Elf_Internal_Vernaux *a;
1424
1425 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1426 {
1427 if (a->vna_other == vernum)
1428 {
1429 version_string = a->vna_nodename;
1430 break;
1431 }
1432 }
1433 }
1434 }
1435
1436 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1437 fprintf (file, " %-11s", version_string);
1438 else
1439 {
1440 int i;
1441
1442 fprintf (file, " (%s)", version_string);
1443 for (i = 10 - strlen (version_string); i > 0; --i)
1444 putc (' ', file);
1445 }
1446 }
1447
1448 /* If the st_other field is not zero, print it. */
1449 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1450
1451 switch (st_other)
1452 {
1453 case 0: break;
1454 case STV_INTERNAL: fprintf (file, " .internal"); break;
1455 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1456 case STV_PROTECTED: fprintf (file, " .protected"); break;
1457 default:
1458 /* Some other non-defined flags are also present, so print
1459 everything hex. */
1460 fprintf (file, " 0x%02x", (unsigned int) st_other);
1461 }
1462
1463 fprintf (file, " %s", name);
1464 }
1465 break;
1466 }
1467 }
1468 \f
1469 /* Create an entry in an ELF linker hash table. */
1470
1471 struct bfd_hash_entry *
1472 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1473 struct bfd_hash_table *table,
1474 const char *string)
1475 {
1476 /* Allocate the structure if it has not already been allocated by a
1477 subclass. */
1478 if (entry == NULL)
1479 {
1480 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1481 if (entry == NULL)
1482 return entry;
1483 }
1484
1485 /* Call the allocation method of the superclass. */
1486 entry = _bfd_link_hash_newfunc (entry, table, string);
1487 if (entry != NULL)
1488 {
1489 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1490 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1491
1492 /* Set local fields. */
1493 ret->indx = -1;
1494 ret->dynindx = -1;
1495 ret->got = htab->init_got_refcount;
1496 ret->plt = htab->init_plt_refcount;
1497 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1498 - offsetof (struct elf_link_hash_entry, size)));
1499 /* Assume that we have been called by a non-ELF symbol reader.
1500 This flag is then reset by the code which reads an ELF input
1501 file. This ensures that a symbol created by a non-ELF symbol
1502 reader will have the flag set correctly. */
1503 ret->non_elf = 1;
1504 }
1505
1506 return entry;
1507 }
1508
1509 /* Copy data from an indirect symbol to its direct symbol, hiding the
1510 old indirect symbol. Also used for copying flags to a weakdef. */
1511
1512 void
1513 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1514 struct elf_link_hash_entry *dir,
1515 struct elf_link_hash_entry *ind)
1516 {
1517 struct elf_link_hash_table *htab;
1518
1519 /* Copy down any references that we may have already seen to the
1520 symbol which just became indirect. */
1521
1522 dir->ref_dynamic |= ind->ref_dynamic;
1523 dir->ref_regular |= ind->ref_regular;
1524 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1525 dir->non_got_ref |= ind->non_got_ref;
1526 dir->needs_plt |= ind->needs_plt;
1527 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1528
1529 if (ind->root.type != bfd_link_hash_indirect)
1530 return;
1531
1532 /* Copy over the global and procedure linkage table refcount entries.
1533 These may have been already set up by a check_relocs routine. */
1534 htab = elf_hash_table (info);
1535 if (ind->got.refcount > htab->init_got_refcount.refcount)
1536 {
1537 if (dir->got.refcount < 0)
1538 dir->got.refcount = 0;
1539 dir->got.refcount += ind->got.refcount;
1540 ind->got.refcount = htab->init_got_refcount.refcount;
1541 }
1542
1543 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1544 {
1545 if (dir->plt.refcount < 0)
1546 dir->plt.refcount = 0;
1547 dir->plt.refcount += ind->plt.refcount;
1548 ind->plt.refcount = htab->init_plt_refcount.refcount;
1549 }
1550
1551 if (ind->dynindx != -1)
1552 {
1553 if (dir->dynindx != -1)
1554 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1555 dir->dynindx = ind->dynindx;
1556 dir->dynstr_index = ind->dynstr_index;
1557 ind->dynindx = -1;
1558 ind->dynstr_index = 0;
1559 }
1560 }
1561
1562 void
1563 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1564 struct elf_link_hash_entry *h,
1565 bfd_boolean force_local)
1566 {
1567 h->plt = elf_hash_table (info)->init_plt_offset;
1568 h->needs_plt = 0;
1569 if (force_local)
1570 {
1571 h->forced_local = 1;
1572 if (h->dynindx != -1)
1573 {
1574 h->dynindx = -1;
1575 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1576 h->dynstr_index);
1577 }
1578 }
1579 }
1580
1581 /* Initialize an ELF linker hash table. */
1582
1583 bfd_boolean
1584 _bfd_elf_link_hash_table_init
1585 (struct elf_link_hash_table *table,
1586 bfd *abfd,
1587 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1588 struct bfd_hash_table *,
1589 const char *),
1590 unsigned int entsize)
1591 {
1592 bfd_boolean ret;
1593 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1594
1595 memset (table, 0, sizeof * table);
1596 table->init_got_refcount.refcount = can_refcount - 1;
1597 table->init_plt_refcount.refcount = can_refcount - 1;
1598 table->init_got_offset.offset = -(bfd_vma) 1;
1599 table->init_plt_offset.offset = -(bfd_vma) 1;
1600 /* The first dynamic symbol is a dummy. */
1601 table->dynsymcount = 1;
1602
1603 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1604 table->root.type = bfd_link_elf_hash_table;
1605
1606 return ret;
1607 }
1608
1609 /* Create an ELF linker hash table. */
1610
1611 struct bfd_link_hash_table *
1612 _bfd_elf_link_hash_table_create (bfd *abfd)
1613 {
1614 struct elf_link_hash_table *ret;
1615 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1616
1617 ret = bfd_malloc (amt);
1618 if (ret == NULL)
1619 return NULL;
1620
1621 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1622 sizeof (struct elf_link_hash_entry)))
1623 {
1624 free (ret);
1625 return NULL;
1626 }
1627
1628 return &ret->root;
1629 }
1630
1631 /* This is a hook for the ELF emulation code in the generic linker to
1632 tell the backend linker what file name to use for the DT_NEEDED
1633 entry for a dynamic object. */
1634
1635 void
1636 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1637 {
1638 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1639 && bfd_get_format (abfd) == bfd_object)
1640 elf_dt_name (abfd) = name;
1641 }
1642
1643 int
1644 bfd_elf_get_dyn_lib_class (bfd *abfd)
1645 {
1646 int lib_class;
1647 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd) == bfd_object)
1649 lib_class = elf_dyn_lib_class (abfd);
1650 else
1651 lib_class = 0;
1652 return lib_class;
1653 }
1654
1655 void
1656 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
1657 {
1658 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1659 && bfd_get_format (abfd) == bfd_object)
1660 elf_dyn_lib_class (abfd) = lib_class;
1661 }
1662
1663 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1664 the linker ELF emulation code. */
1665
1666 struct bfd_link_needed_list *
1667 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1668 struct bfd_link_info *info)
1669 {
1670 if (! is_elf_hash_table (info->hash))
1671 return NULL;
1672 return elf_hash_table (info)->needed;
1673 }
1674
1675 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1676 hook for the linker ELF emulation code. */
1677
1678 struct bfd_link_needed_list *
1679 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1680 struct bfd_link_info *info)
1681 {
1682 if (! is_elf_hash_table (info->hash))
1683 return NULL;
1684 return elf_hash_table (info)->runpath;
1685 }
1686
1687 /* Get the name actually used for a dynamic object for a link. This
1688 is the SONAME entry if there is one. Otherwise, it is the string
1689 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1690
1691 const char *
1692 bfd_elf_get_dt_soname (bfd *abfd)
1693 {
1694 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1695 && bfd_get_format (abfd) == bfd_object)
1696 return elf_dt_name (abfd);
1697 return NULL;
1698 }
1699
1700 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1701 the ELF linker emulation code. */
1702
1703 bfd_boolean
1704 bfd_elf_get_bfd_needed_list (bfd *abfd,
1705 struct bfd_link_needed_list **pneeded)
1706 {
1707 asection *s;
1708 bfd_byte *dynbuf = NULL;
1709 int elfsec;
1710 unsigned long shlink;
1711 bfd_byte *extdyn, *extdynend;
1712 size_t extdynsize;
1713 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1714
1715 *pneeded = NULL;
1716
1717 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1718 || bfd_get_format (abfd) != bfd_object)
1719 return TRUE;
1720
1721 s = bfd_get_section_by_name (abfd, ".dynamic");
1722 if (s == NULL || s->size == 0)
1723 return TRUE;
1724
1725 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1726 goto error_return;
1727
1728 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1729 if (elfsec == -1)
1730 goto error_return;
1731
1732 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1733
1734 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1735 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1736
1737 extdyn = dynbuf;
1738 extdynend = extdyn + s->size;
1739 for (; extdyn < extdynend; extdyn += extdynsize)
1740 {
1741 Elf_Internal_Dyn dyn;
1742
1743 (*swap_dyn_in) (abfd, extdyn, &dyn);
1744
1745 if (dyn.d_tag == DT_NULL)
1746 break;
1747
1748 if (dyn.d_tag == DT_NEEDED)
1749 {
1750 const char *string;
1751 struct bfd_link_needed_list *l;
1752 unsigned int tagv = dyn.d_un.d_val;
1753 bfd_size_type amt;
1754
1755 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1756 if (string == NULL)
1757 goto error_return;
1758
1759 amt = sizeof *l;
1760 l = bfd_alloc (abfd, amt);
1761 if (l == NULL)
1762 goto error_return;
1763
1764 l->by = abfd;
1765 l->name = string;
1766 l->next = *pneeded;
1767 *pneeded = l;
1768 }
1769 }
1770
1771 free (dynbuf);
1772
1773 return TRUE;
1774
1775 error_return:
1776 if (dynbuf != NULL)
1777 free (dynbuf);
1778 return FALSE;
1779 }
1780 \f
1781 /* Allocate an ELF string table--force the first byte to be zero. */
1782
1783 struct bfd_strtab_hash *
1784 _bfd_elf_stringtab_init (void)
1785 {
1786 struct bfd_strtab_hash *ret;
1787
1788 ret = _bfd_stringtab_init ();
1789 if (ret != NULL)
1790 {
1791 bfd_size_type loc;
1792
1793 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1794 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1795 if (loc == (bfd_size_type) -1)
1796 {
1797 _bfd_stringtab_free (ret);
1798 ret = NULL;
1799 }
1800 }
1801 return ret;
1802 }
1803 \f
1804 /* ELF .o/exec file reading */
1805
1806 /* Create a new bfd section from an ELF section header. */
1807
1808 bfd_boolean
1809 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1810 {
1811 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1812 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1813 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1814 const char *name;
1815
1816 name = bfd_elf_string_from_elf_section (abfd,
1817 elf_elfheader (abfd)->e_shstrndx,
1818 hdr->sh_name);
1819 if (name == NULL)
1820 return FALSE;
1821
1822 switch (hdr->sh_type)
1823 {
1824 case SHT_NULL:
1825 /* Inactive section. Throw it away. */
1826 return TRUE;
1827
1828 case SHT_PROGBITS: /* Normal section with contents. */
1829 case SHT_NOBITS: /* .bss section. */
1830 case SHT_HASH: /* .hash section. */
1831 case SHT_NOTE: /* .note section. */
1832 case SHT_INIT_ARRAY: /* .init_array section. */
1833 case SHT_FINI_ARRAY: /* .fini_array section. */
1834 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1835 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1836 case SHT_GNU_HASH: /* .gnu.hash section. */
1837 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1838
1839 case SHT_DYNAMIC: /* Dynamic linking information. */
1840 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1841 return FALSE;
1842 if (hdr->sh_link > elf_numsections (abfd)
1843 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1844 return FALSE;
1845 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1846 {
1847 Elf_Internal_Shdr *dynsymhdr;
1848
1849 /* The shared libraries distributed with hpux11 have a bogus
1850 sh_link field for the ".dynamic" section. Find the
1851 string table for the ".dynsym" section instead. */
1852 if (elf_dynsymtab (abfd) != 0)
1853 {
1854 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1855 hdr->sh_link = dynsymhdr->sh_link;
1856 }
1857 else
1858 {
1859 unsigned int i, num_sec;
1860
1861 num_sec = elf_numsections (abfd);
1862 for (i = 1; i < num_sec; i++)
1863 {
1864 dynsymhdr = elf_elfsections (abfd)[i];
1865 if (dynsymhdr->sh_type == SHT_DYNSYM)
1866 {
1867 hdr->sh_link = dynsymhdr->sh_link;
1868 break;
1869 }
1870 }
1871 }
1872 }
1873 break;
1874
1875 case SHT_SYMTAB: /* A symbol table */
1876 if (elf_onesymtab (abfd) == shindex)
1877 return TRUE;
1878
1879 if (hdr->sh_entsize != bed->s->sizeof_sym)
1880 return FALSE;
1881 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1882 elf_onesymtab (abfd) = shindex;
1883 elf_tdata (abfd)->symtab_hdr = *hdr;
1884 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1885 abfd->flags |= HAS_SYMS;
1886
1887 /* Sometimes a shared object will map in the symbol table. If
1888 SHF_ALLOC is set, and this is a shared object, then we also
1889 treat this section as a BFD section. We can not base the
1890 decision purely on SHF_ALLOC, because that flag is sometimes
1891 set in a relocatable object file, which would confuse the
1892 linker. */
1893 if ((hdr->sh_flags & SHF_ALLOC) != 0
1894 && (abfd->flags & DYNAMIC) != 0
1895 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1896 shindex))
1897 return FALSE;
1898
1899 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1900 can't read symbols without that section loaded as well. It
1901 is most likely specified by the next section header. */
1902 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1903 {
1904 unsigned int i, num_sec;
1905
1906 num_sec = elf_numsections (abfd);
1907 for (i = shindex + 1; i < num_sec; i++)
1908 {
1909 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1910 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1911 && hdr2->sh_link == shindex)
1912 break;
1913 }
1914 if (i == num_sec)
1915 for (i = 1; i < shindex; i++)
1916 {
1917 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1918 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1919 && hdr2->sh_link == shindex)
1920 break;
1921 }
1922 if (i != shindex)
1923 return bfd_section_from_shdr (abfd, i);
1924 }
1925 return TRUE;
1926
1927 case SHT_DYNSYM: /* A dynamic symbol table */
1928 if (elf_dynsymtab (abfd) == shindex)
1929 return TRUE;
1930
1931 if (hdr->sh_entsize != bed->s->sizeof_sym)
1932 return FALSE;
1933 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1934 elf_dynsymtab (abfd) = shindex;
1935 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1936 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1937 abfd->flags |= HAS_SYMS;
1938
1939 /* Besides being a symbol table, we also treat this as a regular
1940 section, so that objcopy can handle it. */
1941 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1942
1943 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1944 if (elf_symtab_shndx (abfd) == shindex)
1945 return TRUE;
1946
1947 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1948 elf_symtab_shndx (abfd) = shindex;
1949 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1950 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1951 return TRUE;
1952
1953 case SHT_STRTAB: /* A string table */
1954 if (hdr->bfd_section != NULL)
1955 return TRUE;
1956 if (ehdr->e_shstrndx == shindex)
1957 {
1958 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1959 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1960 return TRUE;
1961 }
1962 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1963 {
1964 symtab_strtab:
1965 elf_tdata (abfd)->strtab_hdr = *hdr;
1966 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1967 return TRUE;
1968 }
1969 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1970 {
1971 dynsymtab_strtab:
1972 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1973 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1974 elf_elfsections (abfd)[shindex] = hdr;
1975 /* We also treat this as a regular section, so that objcopy
1976 can handle it. */
1977 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1978 shindex);
1979 }
1980
1981 /* If the string table isn't one of the above, then treat it as a
1982 regular section. We need to scan all the headers to be sure,
1983 just in case this strtab section appeared before the above. */
1984 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1985 {
1986 unsigned int i, num_sec;
1987
1988 num_sec = elf_numsections (abfd);
1989 for (i = 1; i < num_sec; i++)
1990 {
1991 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1992 if (hdr2->sh_link == shindex)
1993 {
1994 /* Prevent endless recursion on broken objects. */
1995 if (i == shindex)
1996 return FALSE;
1997 if (! bfd_section_from_shdr (abfd, i))
1998 return FALSE;
1999 if (elf_onesymtab (abfd) == i)
2000 goto symtab_strtab;
2001 if (elf_dynsymtab (abfd) == i)
2002 goto dynsymtab_strtab;
2003 }
2004 }
2005 }
2006 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2007
2008 case SHT_REL:
2009 case SHT_RELA:
2010 /* *These* do a lot of work -- but build no sections! */
2011 {
2012 asection *target_sect;
2013 Elf_Internal_Shdr *hdr2;
2014 unsigned int num_sec = elf_numsections (abfd);
2015
2016 if (hdr->sh_entsize
2017 != (bfd_size_type) (hdr->sh_type == SHT_REL
2018 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2019 return FALSE;
2020
2021 /* Check for a bogus link to avoid crashing. */
2022 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2023 || hdr->sh_link >= num_sec)
2024 {
2025 ((*_bfd_error_handler)
2026 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2027 abfd, hdr->sh_link, name, shindex));
2028 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2029 shindex);
2030 }
2031
2032 /* For some incomprehensible reason Oracle distributes
2033 libraries for Solaris in which some of the objects have
2034 bogus sh_link fields. It would be nice if we could just
2035 reject them, but, unfortunately, some people need to use
2036 them. We scan through the section headers; if we find only
2037 one suitable symbol table, we clobber the sh_link to point
2038 to it. I hope this doesn't break anything. */
2039 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2040 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2041 {
2042 unsigned int scan;
2043 int found;
2044
2045 found = 0;
2046 for (scan = 1; scan < num_sec; scan++)
2047 {
2048 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2049 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2050 {
2051 if (found != 0)
2052 {
2053 found = 0;
2054 break;
2055 }
2056 found = scan;
2057 }
2058 }
2059 if (found != 0)
2060 hdr->sh_link = found;
2061 }
2062
2063 /* Get the symbol table. */
2064 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2065 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2066 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2067 return FALSE;
2068
2069 /* If this reloc section does not use the main symbol table we
2070 don't treat it as a reloc section. BFD can't adequately
2071 represent such a section, so at least for now, we don't
2072 try. We just present it as a normal section. We also
2073 can't use it as a reloc section if it points to the null
2074 section, an invalid section, or another reloc section. */
2075 if (hdr->sh_link != elf_onesymtab (abfd)
2076 || hdr->sh_info == SHN_UNDEF
2077 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2078 || hdr->sh_info >= num_sec
2079 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2080 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2081 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2082 shindex);
2083
2084 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2085 return FALSE;
2086 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2087 if (target_sect == NULL)
2088 return FALSE;
2089
2090 if ((target_sect->flags & SEC_RELOC) == 0
2091 || target_sect->reloc_count == 0)
2092 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2093 else
2094 {
2095 bfd_size_type amt;
2096 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2097 amt = sizeof (*hdr2);
2098 hdr2 = bfd_alloc (abfd, amt);
2099 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2100 }
2101 *hdr2 = *hdr;
2102 elf_elfsections (abfd)[shindex] = hdr2;
2103 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2104 target_sect->flags |= SEC_RELOC;
2105 target_sect->relocation = NULL;
2106 target_sect->rel_filepos = hdr->sh_offset;
2107 /* In the section to which the relocations apply, mark whether
2108 its relocations are of the REL or RELA variety. */
2109 if (hdr->sh_size != 0)
2110 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2111 abfd->flags |= HAS_RELOC;
2112 return TRUE;
2113 }
2114
2115 case SHT_GNU_verdef:
2116 elf_dynverdef (abfd) = shindex;
2117 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2118 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2119
2120 case SHT_GNU_versym:
2121 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2122 return FALSE;
2123 elf_dynversym (abfd) = shindex;
2124 elf_tdata (abfd)->dynversym_hdr = *hdr;
2125 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2126
2127 case SHT_GNU_verneed:
2128 elf_dynverref (abfd) = shindex;
2129 elf_tdata (abfd)->dynverref_hdr = *hdr;
2130 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2131
2132 case SHT_SHLIB:
2133 return TRUE;
2134
2135 case SHT_GROUP:
2136 /* We need a BFD section for objcopy and relocatable linking,
2137 and it's handy to have the signature available as the section
2138 name. */
2139 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2140 return FALSE;
2141 name = group_signature (abfd, hdr);
2142 if (name == NULL)
2143 return FALSE;
2144 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2145 return FALSE;
2146 if (hdr->contents != NULL)
2147 {
2148 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2149 unsigned int n_elt = hdr->sh_size / 4;
2150 asection *s;
2151
2152 if (idx->flags & GRP_COMDAT)
2153 hdr->bfd_section->flags
2154 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2155
2156 /* We try to keep the same section order as it comes in. */
2157 idx += n_elt;
2158 while (--n_elt != 0)
2159 if ((s = (--idx)->shdr->bfd_section) != NULL
2160 && elf_next_in_group (s) != NULL)
2161 {
2162 elf_next_in_group (hdr->bfd_section) = s;
2163 break;
2164 }
2165 }
2166 break;
2167
2168 default:
2169 /* Check for any processor-specific section types. */
2170 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2171 return TRUE;
2172
2173 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2174 {
2175 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2176 /* FIXME: How to properly handle allocated section reserved
2177 for applications? */
2178 (*_bfd_error_handler)
2179 (_("%B: don't know how to handle allocated, application "
2180 "specific section `%s' [0x%8x]"),
2181 abfd, name, hdr->sh_type);
2182 else
2183 /* Allow sections reserved for applications. */
2184 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2185 shindex);
2186 }
2187 else if (hdr->sh_type >= SHT_LOPROC
2188 && hdr->sh_type <= SHT_HIPROC)
2189 /* FIXME: We should handle this section. */
2190 (*_bfd_error_handler)
2191 (_("%B: don't know how to handle processor specific section "
2192 "`%s' [0x%8x]"),
2193 abfd, name, hdr->sh_type);
2194 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2195 {
2196 /* Unrecognised OS-specific sections. */
2197 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2198 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2199 required to correctly process the section and the file should
2200 be rejected with an error message. */
2201 (*_bfd_error_handler)
2202 (_("%B: don't know how to handle OS specific section "
2203 "`%s' [0x%8x]"),
2204 abfd, name, hdr->sh_type);
2205 else
2206 /* Otherwise it should be processed. */
2207 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2208 }
2209 else
2210 /* FIXME: We should handle this section. */
2211 (*_bfd_error_handler)
2212 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2213 abfd, name, hdr->sh_type);
2214
2215 return FALSE;
2216 }
2217
2218 return TRUE;
2219 }
2220
2221 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2222 Return SEC for sections that have no elf section, and NULL on error. */
2223
2224 asection *
2225 bfd_section_from_r_symndx (bfd *abfd,
2226 struct sym_sec_cache *cache,
2227 asection *sec,
2228 unsigned long r_symndx)
2229 {
2230 Elf_Internal_Shdr *symtab_hdr;
2231 unsigned char esym[sizeof (Elf64_External_Sym)];
2232 Elf_External_Sym_Shndx eshndx;
2233 Elf_Internal_Sym isym;
2234 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2235
2236 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2237 return cache->sec[ent];
2238
2239 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2240 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2241 &isym, esym, &eshndx) == NULL)
2242 return NULL;
2243
2244 if (cache->abfd != abfd)
2245 {
2246 memset (cache->indx, -1, sizeof (cache->indx));
2247 cache->abfd = abfd;
2248 }
2249 cache->indx[ent] = r_symndx;
2250 cache->sec[ent] = sec;
2251 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2252 || isym.st_shndx > SHN_HIRESERVE)
2253 {
2254 asection *s;
2255 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2256 if (s != NULL)
2257 cache->sec[ent] = s;
2258 }
2259 return cache->sec[ent];
2260 }
2261
2262 /* Given an ELF section number, retrieve the corresponding BFD
2263 section. */
2264
2265 asection *
2266 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2267 {
2268 if (index >= elf_numsections (abfd))
2269 return NULL;
2270 return elf_elfsections (abfd)[index]->bfd_section;
2271 }
2272
2273 static const struct bfd_elf_special_section special_sections_b[] =
2274 {
2275 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2276 { NULL, 0, 0, 0, 0 }
2277 };
2278
2279 static const struct bfd_elf_special_section special_sections_c[] =
2280 {
2281 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2282 { NULL, 0, 0, 0, 0 }
2283 };
2284
2285 static const struct bfd_elf_special_section special_sections_d[] =
2286 {
2287 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2288 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2289 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2290 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2291 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2292 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2293 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2294 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2295 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2296 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2297 { NULL, 0, 0, 0, 0 }
2298 };
2299
2300 static const struct bfd_elf_special_section special_sections_f[] =
2301 {
2302 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2303 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2304 { NULL, 0, 0, 0, 0 }
2305 };
2306
2307 static const struct bfd_elf_special_section special_sections_g[] =
2308 {
2309 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2310 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2311 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2312 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2313 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2314 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2315 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2316 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2317 { NULL, 0, 0, 0, 0 }
2318 };
2319
2320 static const struct bfd_elf_special_section special_sections_h[] =
2321 {
2322 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2323 { NULL, 0, 0, 0, 0 }
2324 };
2325
2326 static const struct bfd_elf_special_section special_sections_i[] =
2327 {
2328 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2329 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2330 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2331 { NULL, 0, 0, 0, 0 }
2332 };
2333
2334 static const struct bfd_elf_special_section special_sections_l[] =
2335 {
2336 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2337 { NULL, 0, 0, 0, 0 }
2338 };
2339
2340 static const struct bfd_elf_special_section special_sections_n[] =
2341 {
2342 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2343 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2344 { NULL, 0, 0, 0, 0 }
2345 };
2346
2347 static const struct bfd_elf_special_section special_sections_p[] =
2348 {
2349 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2350 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2351 { NULL, 0, 0, 0, 0 }
2352 };
2353
2354 static const struct bfd_elf_special_section special_sections_r[] =
2355 {
2356 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2357 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2358 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2359 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2360 { NULL, 0, 0, 0, 0 }
2361 };
2362
2363 static const struct bfd_elf_special_section special_sections_s[] =
2364 {
2365 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2366 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2367 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2368 /* See struct bfd_elf_special_section declaration for the semantics of
2369 this special case where .prefix_length != strlen (.prefix). */
2370 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2371 { NULL, 0, 0, 0, 0 }
2372 };
2373
2374 static const struct bfd_elf_special_section special_sections_t[] =
2375 {
2376 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2377 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2378 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2379 { NULL, 0, 0, 0, 0 }
2380 };
2381
2382 static const struct bfd_elf_special_section *special_sections[] =
2383 {
2384 special_sections_b, /* 'b' */
2385 special_sections_c, /* 'b' */
2386 special_sections_d, /* 'd' */
2387 NULL, /* 'e' */
2388 special_sections_f, /* 'f' */
2389 special_sections_g, /* 'g' */
2390 special_sections_h, /* 'h' */
2391 special_sections_i, /* 'i' */
2392 NULL, /* 'j' */
2393 NULL, /* 'k' */
2394 special_sections_l, /* 'l' */
2395 NULL, /* 'm' */
2396 special_sections_n, /* 'n' */
2397 NULL, /* 'o' */
2398 special_sections_p, /* 'p' */
2399 NULL, /* 'q' */
2400 special_sections_r, /* 'r' */
2401 special_sections_s, /* 's' */
2402 special_sections_t, /* 't' */
2403 };
2404
2405 const struct bfd_elf_special_section *
2406 _bfd_elf_get_special_section (const char *name,
2407 const struct bfd_elf_special_section *spec,
2408 unsigned int rela)
2409 {
2410 int i;
2411 int len;
2412
2413 len = strlen (name);
2414
2415 for (i = 0; spec[i].prefix != NULL; i++)
2416 {
2417 int suffix_len;
2418 int prefix_len = spec[i].prefix_length;
2419
2420 if (len < prefix_len)
2421 continue;
2422 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2423 continue;
2424
2425 suffix_len = spec[i].suffix_length;
2426 if (suffix_len <= 0)
2427 {
2428 if (name[prefix_len] != 0)
2429 {
2430 if (suffix_len == 0)
2431 continue;
2432 if (name[prefix_len] != '.'
2433 && (suffix_len == -2
2434 || (rela && spec[i].type == SHT_REL)))
2435 continue;
2436 }
2437 }
2438 else
2439 {
2440 if (len < prefix_len + suffix_len)
2441 continue;
2442 if (memcmp (name + len - suffix_len,
2443 spec[i].prefix + prefix_len,
2444 suffix_len) != 0)
2445 continue;
2446 }
2447 return &spec[i];
2448 }
2449
2450 return NULL;
2451 }
2452
2453 const struct bfd_elf_special_section *
2454 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2455 {
2456 int i;
2457 const struct bfd_elf_special_section *spec;
2458 const struct elf_backend_data *bed;
2459
2460 /* See if this is one of the special sections. */
2461 if (sec->name == NULL)
2462 return NULL;
2463
2464 bed = get_elf_backend_data (abfd);
2465 spec = bed->special_sections;
2466 if (spec)
2467 {
2468 spec = _bfd_elf_get_special_section (sec->name,
2469 bed->special_sections,
2470 sec->use_rela_p);
2471 if (spec != NULL)
2472 return spec;
2473 }
2474
2475 if (sec->name[0] != '.')
2476 return NULL;
2477
2478 i = sec->name[1] - 'b';
2479 if (i < 0 || i > 't' - 'b')
2480 return NULL;
2481
2482 spec = special_sections[i];
2483
2484 if (spec == NULL)
2485 return NULL;
2486
2487 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2488 }
2489
2490 bfd_boolean
2491 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2492 {
2493 struct bfd_elf_section_data *sdata;
2494 const struct elf_backend_data *bed;
2495 const struct bfd_elf_special_section *ssect;
2496
2497 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2498 if (sdata == NULL)
2499 {
2500 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2501 if (sdata == NULL)
2502 return FALSE;
2503 sec->used_by_bfd = sdata;
2504 }
2505
2506 /* Indicate whether or not this section should use RELA relocations. */
2507 bed = get_elf_backend_data (abfd);
2508 sec->use_rela_p = bed->default_use_rela_p;
2509
2510 /* When we read a file, we don't need to set ELF section type and
2511 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2512 anyway. We will set ELF section type and flags for all linker
2513 created sections. If user specifies BFD section flags, we will
2514 set ELF section type and flags based on BFD section flags in
2515 elf_fake_sections. */
2516 if ((!sec->flags && abfd->direction != read_direction)
2517 || (sec->flags & SEC_LINKER_CREATED) != 0)
2518 {
2519 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2520 if (ssect != NULL)
2521 {
2522 elf_section_type (sec) = ssect->type;
2523 elf_section_flags (sec) = ssect->attr;
2524 }
2525 }
2526
2527 return _bfd_generic_new_section_hook (abfd, sec);
2528 }
2529
2530 /* Create a new bfd section from an ELF program header.
2531
2532 Since program segments have no names, we generate a synthetic name
2533 of the form segment<NUM>, where NUM is generally the index in the
2534 program header table. For segments that are split (see below) we
2535 generate the names segment<NUM>a and segment<NUM>b.
2536
2537 Note that some program segments may have a file size that is different than
2538 (less than) the memory size. All this means is that at execution the
2539 system must allocate the amount of memory specified by the memory size,
2540 but only initialize it with the first "file size" bytes read from the
2541 file. This would occur for example, with program segments consisting
2542 of combined data+bss.
2543
2544 To handle the above situation, this routine generates TWO bfd sections
2545 for the single program segment. The first has the length specified by
2546 the file size of the segment, and the second has the length specified
2547 by the difference between the two sizes. In effect, the segment is split
2548 into it's initialized and uninitialized parts.
2549
2550 */
2551
2552 bfd_boolean
2553 _bfd_elf_make_section_from_phdr (bfd *abfd,
2554 Elf_Internal_Phdr *hdr,
2555 int index,
2556 const char *typename)
2557 {
2558 asection *newsect;
2559 char *name;
2560 char namebuf[64];
2561 size_t len;
2562 int split;
2563
2564 split = ((hdr->p_memsz > 0)
2565 && (hdr->p_filesz > 0)
2566 && (hdr->p_memsz > hdr->p_filesz));
2567 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2568 len = strlen (namebuf) + 1;
2569 name = bfd_alloc (abfd, len);
2570 if (!name)
2571 return FALSE;
2572 memcpy (name, namebuf, len);
2573 newsect = bfd_make_section (abfd, name);
2574 if (newsect == NULL)
2575 return FALSE;
2576 newsect->vma = hdr->p_vaddr;
2577 newsect->lma = hdr->p_paddr;
2578 newsect->size = hdr->p_filesz;
2579 newsect->filepos = hdr->p_offset;
2580 newsect->flags |= SEC_HAS_CONTENTS;
2581 newsect->alignment_power = bfd_log2 (hdr->p_align);
2582 if (hdr->p_type == PT_LOAD)
2583 {
2584 newsect->flags |= SEC_ALLOC;
2585 newsect->flags |= SEC_LOAD;
2586 if (hdr->p_flags & PF_X)
2587 {
2588 /* FIXME: all we known is that it has execute PERMISSION,
2589 may be data. */
2590 newsect->flags |= SEC_CODE;
2591 }
2592 }
2593 if (!(hdr->p_flags & PF_W))
2594 {
2595 newsect->flags |= SEC_READONLY;
2596 }
2597
2598 if (split)
2599 {
2600 sprintf (namebuf, "%s%db", typename, index);
2601 len = strlen (namebuf) + 1;
2602 name = bfd_alloc (abfd, len);
2603 if (!name)
2604 return FALSE;
2605 memcpy (name, namebuf, len);
2606 newsect = bfd_make_section (abfd, name);
2607 if (newsect == NULL)
2608 return FALSE;
2609 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2610 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2611 newsect->size = hdr->p_memsz - hdr->p_filesz;
2612 if (hdr->p_type == PT_LOAD)
2613 {
2614 newsect->flags |= SEC_ALLOC;
2615 if (hdr->p_flags & PF_X)
2616 newsect->flags |= SEC_CODE;
2617 }
2618 if (!(hdr->p_flags & PF_W))
2619 newsect->flags |= SEC_READONLY;
2620 }
2621
2622 return TRUE;
2623 }
2624
2625 bfd_boolean
2626 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2627 {
2628 const struct elf_backend_data *bed;
2629
2630 switch (hdr->p_type)
2631 {
2632 case PT_NULL:
2633 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2634
2635 case PT_LOAD:
2636 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2637
2638 case PT_DYNAMIC:
2639 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2640
2641 case PT_INTERP:
2642 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2643
2644 case PT_NOTE:
2645 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2646 return FALSE;
2647 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2648 return FALSE;
2649 return TRUE;
2650
2651 case PT_SHLIB:
2652 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2653
2654 case PT_PHDR:
2655 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2656
2657 case PT_GNU_EH_FRAME:
2658 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2659 "eh_frame_hdr");
2660
2661 case PT_GNU_STACK:
2662 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2663
2664 case PT_GNU_RELRO:
2665 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2666
2667 default:
2668 /* Check for any processor-specific program segment types. */
2669 bed = get_elf_backend_data (abfd);
2670 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2671 }
2672 }
2673
2674 /* Initialize REL_HDR, the section-header for new section, containing
2675 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2676 relocations; otherwise, we use REL relocations. */
2677
2678 bfd_boolean
2679 _bfd_elf_init_reloc_shdr (bfd *abfd,
2680 Elf_Internal_Shdr *rel_hdr,
2681 asection *asect,
2682 bfd_boolean use_rela_p)
2683 {
2684 char *name;
2685 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2686 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2687
2688 name = bfd_alloc (abfd, amt);
2689 if (name == NULL)
2690 return FALSE;
2691 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2692 rel_hdr->sh_name =
2693 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2694 FALSE);
2695 if (rel_hdr->sh_name == (unsigned int) -1)
2696 return FALSE;
2697 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2698 rel_hdr->sh_entsize = (use_rela_p
2699 ? bed->s->sizeof_rela
2700 : bed->s->sizeof_rel);
2701 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2702 rel_hdr->sh_flags = 0;
2703 rel_hdr->sh_addr = 0;
2704 rel_hdr->sh_size = 0;
2705 rel_hdr->sh_offset = 0;
2706
2707 return TRUE;
2708 }
2709
2710 /* Set up an ELF internal section header for a section. */
2711
2712 static void
2713 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2714 {
2715 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2716 bfd_boolean *failedptr = failedptrarg;
2717 Elf_Internal_Shdr *this_hdr;
2718
2719 if (*failedptr)
2720 {
2721 /* We already failed; just get out of the bfd_map_over_sections
2722 loop. */
2723 return;
2724 }
2725
2726 this_hdr = &elf_section_data (asect)->this_hdr;
2727
2728 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2729 asect->name, FALSE);
2730 if (this_hdr->sh_name == (unsigned int) -1)
2731 {
2732 *failedptr = TRUE;
2733 return;
2734 }
2735
2736 /* Don't clear sh_flags. Assembler may set additional bits. */
2737
2738 if ((asect->flags & SEC_ALLOC) != 0
2739 || asect->user_set_vma)
2740 this_hdr->sh_addr = asect->vma;
2741 else
2742 this_hdr->sh_addr = 0;
2743
2744 this_hdr->sh_offset = 0;
2745 this_hdr->sh_size = asect->size;
2746 this_hdr->sh_link = 0;
2747 this_hdr->sh_addralign = 1 << asect->alignment_power;
2748 /* The sh_entsize and sh_info fields may have been set already by
2749 copy_private_section_data. */
2750
2751 this_hdr->bfd_section = asect;
2752 this_hdr->contents = NULL;
2753
2754 /* If the section type is unspecified, we set it based on
2755 asect->flags. */
2756 if (this_hdr->sh_type == SHT_NULL)
2757 {
2758 if ((asect->flags & SEC_GROUP) != 0)
2759 this_hdr->sh_type = SHT_GROUP;
2760 else if ((asect->flags & SEC_ALLOC) != 0
2761 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2762 || (asect->flags & SEC_NEVER_LOAD) != 0))
2763 this_hdr->sh_type = SHT_NOBITS;
2764 else
2765 this_hdr->sh_type = SHT_PROGBITS;
2766 }
2767
2768 switch (this_hdr->sh_type)
2769 {
2770 default:
2771 break;
2772
2773 case SHT_STRTAB:
2774 case SHT_INIT_ARRAY:
2775 case SHT_FINI_ARRAY:
2776 case SHT_PREINIT_ARRAY:
2777 case SHT_NOTE:
2778 case SHT_NOBITS:
2779 case SHT_PROGBITS:
2780 break;
2781
2782 case SHT_HASH:
2783 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2784 break;
2785
2786 case SHT_DYNSYM:
2787 this_hdr->sh_entsize = bed->s->sizeof_sym;
2788 break;
2789
2790 case SHT_DYNAMIC:
2791 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2792 break;
2793
2794 case SHT_RELA:
2795 if (get_elf_backend_data (abfd)->may_use_rela_p)
2796 this_hdr->sh_entsize = bed->s->sizeof_rela;
2797 break;
2798
2799 case SHT_REL:
2800 if (get_elf_backend_data (abfd)->may_use_rel_p)
2801 this_hdr->sh_entsize = bed->s->sizeof_rel;
2802 break;
2803
2804 case SHT_GNU_versym:
2805 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2806 break;
2807
2808 case SHT_GNU_verdef:
2809 this_hdr->sh_entsize = 0;
2810 /* objcopy or strip will copy over sh_info, but may not set
2811 cverdefs. The linker will set cverdefs, but sh_info will be
2812 zero. */
2813 if (this_hdr->sh_info == 0)
2814 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2815 else
2816 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2817 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2818 break;
2819
2820 case SHT_GNU_verneed:
2821 this_hdr->sh_entsize = 0;
2822 /* objcopy or strip will copy over sh_info, but may not set
2823 cverrefs. The linker will set cverrefs, but sh_info will be
2824 zero. */
2825 if (this_hdr->sh_info == 0)
2826 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2827 else
2828 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2829 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2830 break;
2831
2832 case SHT_GROUP:
2833 this_hdr->sh_entsize = 4;
2834 break;
2835
2836 case SHT_GNU_HASH:
2837 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2838 break;
2839 }
2840
2841 if ((asect->flags & SEC_ALLOC) != 0)
2842 this_hdr->sh_flags |= SHF_ALLOC;
2843 if ((asect->flags & SEC_READONLY) == 0)
2844 this_hdr->sh_flags |= SHF_WRITE;
2845 if ((asect->flags & SEC_CODE) != 0)
2846 this_hdr->sh_flags |= SHF_EXECINSTR;
2847 if ((asect->flags & SEC_MERGE) != 0)
2848 {
2849 this_hdr->sh_flags |= SHF_MERGE;
2850 this_hdr->sh_entsize = asect->entsize;
2851 if ((asect->flags & SEC_STRINGS) != 0)
2852 this_hdr->sh_flags |= SHF_STRINGS;
2853 }
2854 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2855 this_hdr->sh_flags |= SHF_GROUP;
2856 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2857 {
2858 this_hdr->sh_flags |= SHF_TLS;
2859 if (asect->size == 0
2860 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2861 {
2862 struct bfd_link_order *o = asect->map_tail.link_order;
2863
2864 this_hdr->sh_size = 0;
2865 if (o != NULL)
2866 {
2867 this_hdr->sh_size = o->offset + o->size;
2868 if (this_hdr->sh_size != 0)
2869 this_hdr->sh_type = SHT_NOBITS;
2870 }
2871 }
2872 }
2873
2874 /* Check for processor-specific section types. */
2875 if (bed->elf_backend_fake_sections
2876 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2877 *failedptr = TRUE;
2878
2879 /* If the section has relocs, set up a section header for the
2880 SHT_REL[A] section. If two relocation sections are required for
2881 this section, it is up to the processor-specific back-end to
2882 create the other. */
2883 if ((asect->flags & SEC_RELOC) != 0
2884 && !_bfd_elf_init_reloc_shdr (abfd,
2885 &elf_section_data (asect)->rel_hdr,
2886 asect,
2887 asect->use_rela_p))
2888 *failedptr = TRUE;
2889 }
2890
2891 /* Fill in the contents of a SHT_GROUP section. */
2892
2893 void
2894 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2895 {
2896 bfd_boolean *failedptr = failedptrarg;
2897 unsigned long symindx;
2898 asection *elt, *first;
2899 unsigned char *loc;
2900 bfd_boolean gas;
2901
2902 /* Ignore linker created group section. See elfNN_ia64_object_p in
2903 elfxx-ia64.c. */
2904 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2905 || *failedptr)
2906 return;
2907
2908 symindx = 0;
2909 if (elf_group_id (sec) != NULL)
2910 symindx = elf_group_id (sec)->udata.i;
2911
2912 if (symindx == 0)
2913 {
2914 /* If called from the assembler, swap_out_syms will have set up
2915 elf_section_syms; If called for "ld -r", use target_index. */
2916 if (elf_section_syms (abfd) != NULL)
2917 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2918 else
2919 symindx = sec->target_index;
2920 }
2921 elf_section_data (sec)->this_hdr.sh_info = symindx;
2922
2923 /* The contents won't be allocated for "ld -r" or objcopy. */
2924 gas = TRUE;
2925 if (sec->contents == NULL)
2926 {
2927 gas = FALSE;
2928 sec->contents = bfd_alloc (abfd, sec->size);
2929
2930 /* Arrange for the section to be written out. */
2931 elf_section_data (sec)->this_hdr.contents = sec->contents;
2932 if (sec->contents == NULL)
2933 {
2934 *failedptr = TRUE;
2935 return;
2936 }
2937 }
2938
2939 loc = sec->contents + sec->size;
2940
2941 /* Get the pointer to the first section in the group that gas
2942 squirreled away here. objcopy arranges for this to be set to the
2943 start of the input section group. */
2944 first = elt = elf_next_in_group (sec);
2945
2946 /* First element is a flag word. Rest of section is elf section
2947 indices for all the sections of the group. Write them backwards
2948 just to keep the group in the same order as given in .section
2949 directives, not that it matters. */
2950 while (elt != NULL)
2951 {
2952 asection *s;
2953 unsigned int idx;
2954
2955 loc -= 4;
2956 s = elt;
2957 if (!gas)
2958 s = s->output_section;
2959 idx = 0;
2960 if (s != NULL)
2961 idx = elf_section_data (s)->this_idx;
2962 H_PUT_32 (abfd, idx, loc);
2963 elt = elf_next_in_group (elt);
2964 if (elt == first)
2965 break;
2966 }
2967
2968 if ((loc -= 4) != sec->contents)
2969 abort ();
2970
2971 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2972 }
2973
2974 /* Assign all ELF section numbers. The dummy first section is handled here
2975 too. The link/info pointers for the standard section types are filled
2976 in here too, while we're at it. */
2977
2978 static bfd_boolean
2979 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2980 {
2981 struct elf_obj_tdata *t = elf_tdata (abfd);
2982 asection *sec;
2983 unsigned int section_number, secn;
2984 Elf_Internal_Shdr **i_shdrp;
2985 struct bfd_elf_section_data *d;
2986
2987 section_number = 1;
2988
2989 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2990
2991 /* SHT_GROUP sections are in relocatable files only. */
2992 if (link_info == NULL || link_info->relocatable)
2993 {
2994 /* Put SHT_GROUP sections first. */
2995 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2996 {
2997 d = elf_section_data (sec);
2998
2999 if (d->this_hdr.sh_type == SHT_GROUP)
3000 {
3001 if (sec->flags & SEC_LINKER_CREATED)
3002 {
3003 /* Remove the linker created SHT_GROUP sections. */
3004 bfd_section_list_remove (abfd, sec);
3005 abfd->section_count--;
3006 }
3007 else
3008 {
3009 if (section_number == SHN_LORESERVE)
3010 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3011 d->this_idx = section_number++;
3012 }
3013 }
3014 }
3015 }
3016
3017 for (sec = abfd->sections; sec; sec = sec->next)
3018 {
3019 d = elf_section_data (sec);
3020
3021 if (d->this_hdr.sh_type != SHT_GROUP)
3022 {
3023 if (section_number == SHN_LORESERVE)
3024 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3025 d->this_idx = section_number++;
3026 }
3027 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3028 if ((sec->flags & SEC_RELOC) == 0)
3029 d->rel_idx = 0;
3030 else
3031 {
3032 if (section_number == SHN_LORESERVE)
3033 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3034 d->rel_idx = section_number++;
3035 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3036 }
3037
3038 if (d->rel_hdr2)
3039 {
3040 if (section_number == SHN_LORESERVE)
3041 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3042 d->rel_idx2 = section_number++;
3043 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3044 }
3045 else
3046 d->rel_idx2 = 0;
3047 }
3048
3049 if (section_number == SHN_LORESERVE)
3050 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3051 t->shstrtab_section = section_number++;
3052 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3053 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3054
3055 if (bfd_get_symcount (abfd) > 0)
3056 {
3057 if (section_number == SHN_LORESERVE)
3058 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3059 t->symtab_section = section_number++;
3060 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3061 if (section_number > SHN_LORESERVE - 2)
3062 {
3063 if (section_number == SHN_LORESERVE)
3064 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3065 t->symtab_shndx_section = section_number++;
3066 t->symtab_shndx_hdr.sh_name
3067 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3068 ".symtab_shndx", FALSE);
3069 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3070 return FALSE;
3071 }
3072 if (section_number == SHN_LORESERVE)
3073 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3074 t->strtab_section = section_number++;
3075 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3076 }
3077
3078 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3079 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3080
3081 elf_numsections (abfd) = section_number;
3082 elf_elfheader (abfd)->e_shnum = section_number;
3083 if (section_number > SHN_LORESERVE)
3084 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3085
3086 /* Set up the list of section header pointers, in agreement with the
3087 indices. */
3088 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3089 if (i_shdrp == NULL)
3090 return FALSE;
3091
3092 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3093 if (i_shdrp[0] == NULL)
3094 {
3095 bfd_release (abfd, i_shdrp);
3096 return FALSE;
3097 }
3098
3099 elf_elfsections (abfd) = i_shdrp;
3100
3101 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3102 if (bfd_get_symcount (abfd) > 0)
3103 {
3104 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3105 if (elf_numsections (abfd) > SHN_LORESERVE)
3106 {
3107 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3108 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3109 }
3110 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3111 t->symtab_hdr.sh_link = t->strtab_section;
3112 }
3113
3114 for (sec = abfd->sections; sec; sec = sec->next)
3115 {
3116 struct bfd_elf_section_data *d = elf_section_data (sec);
3117 asection *s;
3118 const char *name;
3119
3120 i_shdrp[d->this_idx] = &d->this_hdr;
3121 if (d->rel_idx != 0)
3122 i_shdrp[d->rel_idx] = &d->rel_hdr;
3123 if (d->rel_idx2 != 0)
3124 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3125
3126 /* Fill in the sh_link and sh_info fields while we're at it. */
3127
3128 /* sh_link of a reloc section is the section index of the symbol
3129 table. sh_info is the section index of the section to which
3130 the relocation entries apply. */
3131 if (d->rel_idx != 0)
3132 {
3133 d->rel_hdr.sh_link = t->symtab_section;
3134 d->rel_hdr.sh_info = d->this_idx;
3135 }
3136 if (d->rel_idx2 != 0)
3137 {
3138 d->rel_hdr2->sh_link = t->symtab_section;
3139 d->rel_hdr2->sh_info = d->this_idx;
3140 }
3141
3142 /* We need to set up sh_link for SHF_LINK_ORDER. */
3143 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3144 {
3145 s = elf_linked_to_section (sec);
3146 if (s)
3147 {
3148 /* elf_linked_to_section points to the input section. */
3149 if (link_info != NULL)
3150 {
3151 /* Check discarded linkonce section. */
3152 if (elf_discarded_section (s))
3153 {
3154 asection *kept;
3155 (*_bfd_error_handler)
3156 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3157 abfd, d->this_hdr.bfd_section,
3158 s, s->owner);
3159 /* Point to the kept section if it has the same
3160 size as the discarded one. */
3161 kept = _bfd_elf_check_kept_section (s, link_info);
3162 if (kept == NULL)
3163 {
3164 bfd_set_error (bfd_error_bad_value);
3165 return FALSE;
3166 }
3167 s = kept;
3168 }
3169
3170 s = s->output_section;
3171 BFD_ASSERT (s != NULL);
3172 }
3173 else
3174 {
3175 /* Handle objcopy. */
3176 if (s->output_section == NULL)
3177 {
3178 (*_bfd_error_handler)
3179 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3180 abfd, d->this_hdr.bfd_section, s, s->owner);
3181 bfd_set_error (bfd_error_bad_value);
3182 return FALSE;
3183 }
3184 s = s->output_section;
3185 }
3186 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3187 }
3188 else
3189 {
3190 /* PR 290:
3191 The Intel C compiler generates SHT_IA_64_UNWIND with
3192 SHF_LINK_ORDER. But it doesn't set the sh_link or
3193 sh_info fields. Hence we could get the situation
3194 where s is NULL. */
3195 const struct elf_backend_data *bed
3196 = get_elf_backend_data (abfd);
3197 if (bed->link_order_error_handler)
3198 bed->link_order_error_handler
3199 (_("%B: warning: sh_link not set for section `%A'"),
3200 abfd, sec);
3201 }
3202 }
3203
3204 switch (d->this_hdr.sh_type)
3205 {
3206 case SHT_REL:
3207 case SHT_RELA:
3208 /* A reloc section which we are treating as a normal BFD
3209 section. sh_link is the section index of the symbol
3210 table. sh_info is the section index of the section to
3211 which the relocation entries apply. We assume that an
3212 allocated reloc section uses the dynamic symbol table.
3213 FIXME: How can we be sure? */
3214 s = bfd_get_section_by_name (abfd, ".dynsym");
3215 if (s != NULL)
3216 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3217
3218 /* We look up the section the relocs apply to by name. */
3219 name = sec->name;
3220 if (d->this_hdr.sh_type == SHT_REL)
3221 name += 4;
3222 else
3223 name += 5;
3224 s = bfd_get_section_by_name (abfd, name);
3225 if (s != NULL)
3226 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3227 break;
3228
3229 case SHT_STRTAB:
3230 /* We assume that a section named .stab*str is a stabs
3231 string section. We look for a section with the same name
3232 but without the trailing ``str'', and set its sh_link
3233 field to point to this section. */
3234 if (CONST_STRNEQ (sec->name, ".stab")
3235 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3236 {
3237 size_t len;
3238 char *alc;
3239
3240 len = strlen (sec->name);
3241 alc = bfd_malloc (len - 2);
3242 if (alc == NULL)
3243 return FALSE;
3244 memcpy (alc, sec->name, len - 3);
3245 alc[len - 3] = '\0';
3246 s = bfd_get_section_by_name (abfd, alc);
3247 free (alc);
3248 if (s != NULL)
3249 {
3250 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3251
3252 /* This is a .stab section. */
3253 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3254 elf_section_data (s)->this_hdr.sh_entsize
3255 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3256 }
3257 }
3258 break;
3259
3260 case SHT_DYNAMIC:
3261 case SHT_DYNSYM:
3262 case SHT_GNU_verneed:
3263 case SHT_GNU_verdef:
3264 /* sh_link is the section header index of the string table
3265 used for the dynamic entries, or the symbol table, or the
3266 version strings. */
3267 s = bfd_get_section_by_name (abfd, ".dynstr");
3268 if (s != NULL)
3269 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3270 break;
3271
3272 case SHT_GNU_LIBLIST:
3273 /* sh_link is the section header index of the prelink library
3274 list
3275 used for the dynamic entries, or the symbol table, or the
3276 version strings. */
3277 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3278 ? ".dynstr" : ".gnu.libstr");
3279 if (s != NULL)
3280 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3281 break;
3282
3283 case SHT_HASH:
3284 case SHT_GNU_HASH:
3285 case SHT_GNU_versym:
3286 /* sh_link is the section header index of the symbol table
3287 this hash table or version table is for. */
3288 s = bfd_get_section_by_name (abfd, ".dynsym");
3289 if (s != NULL)
3290 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3291 break;
3292
3293 case SHT_GROUP:
3294 d->this_hdr.sh_link = t->symtab_section;
3295 }
3296 }
3297
3298 for (secn = 1; secn < section_number; ++secn)
3299 if (i_shdrp[secn] == NULL)
3300 i_shdrp[secn] = i_shdrp[0];
3301 else
3302 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3303 i_shdrp[secn]->sh_name);
3304 return TRUE;
3305 }
3306
3307 /* Map symbol from it's internal number to the external number, moving
3308 all local symbols to be at the head of the list. */
3309
3310 static bfd_boolean
3311 sym_is_global (bfd *abfd, asymbol *sym)
3312 {
3313 /* If the backend has a special mapping, use it. */
3314 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3315 if (bed->elf_backend_sym_is_global)
3316 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3317
3318 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3319 || bfd_is_und_section (bfd_get_section (sym))
3320 || bfd_is_com_section (bfd_get_section (sym)));
3321 }
3322
3323 /* Don't output section symbols for sections that are not going to be
3324 output. Also, don't output section symbols for reloc and other
3325 special sections. */
3326
3327 static bfd_boolean
3328 ignore_section_sym (bfd *abfd, asymbol *sym)
3329 {
3330 return ((sym->flags & BSF_SECTION_SYM) != 0
3331 && (sym->value != 0
3332 || (sym->section->owner != abfd
3333 && (sym->section->output_section->owner != abfd
3334 || sym->section->output_offset != 0))));
3335 }
3336
3337 static bfd_boolean
3338 elf_map_symbols (bfd *abfd)
3339 {
3340 unsigned int symcount = bfd_get_symcount (abfd);
3341 asymbol **syms = bfd_get_outsymbols (abfd);
3342 asymbol **sect_syms;
3343 unsigned int num_locals = 0;
3344 unsigned int num_globals = 0;
3345 unsigned int num_locals2 = 0;
3346 unsigned int num_globals2 = 0;
3347 int max_index = 0;
3348 unsigned int idx;
3349 asection *asect;
3350 asymbol **new_syms;
3351
3352 #ifdef DEBUG
3353 fprintf (stderr, "elf_map_symbols\n");
3354 fflush (stderr);
3355 #endif
3356
3357 for (asect = abfd->sections; asect; asect = asect->next)
3358 {
3359 if (max_index < asect->index)
3360 max_index = asect->index;
3361 }
3362
3363 max_index++;
3364 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3365 if (sect_syms == NULL)
3366 return FALSE;
3367 elf_section_syms (abfd) = sect_syms;
3368 elf_num_section_syms (abfd) = max_index;
3369
3370 /* Init sect_syms entries for any section symbols we have already
3371 decided to output. */
3372 for (idx = 0; idx < symcount; idx++)
3373 {
3374 asymbol *sym = syms[idx];
3375
3376 if ((sym->flags & BSF_SECTION_SYM) != 0
3377 && !ignore_section_sym (abfd, sym))
3378 {
3379 asection *sec = sym->section;
3380
3381 if (sec->owner != abfd)
3382 sec = sec->output_section;
3383
3384 sect_syms[sec->index] = syms[idx];
3385 }
3386 }
3387
3388 /* Classify all of the symbols. */
3389 for (idx = 0; idx < symcount; idx++)
3390 {
3391 if (ignore_section_sym (abfd, syms[idx]))
3392 continue;
3393 if (!sym_is_global (abfd, syms[idx]))
3394 num_locals++;
3395 else
3396 num_globals++;
3397 }
3398
3399 /* We will be adding a section symbol for each normal BFD section. Most
3400 sections will already have a section symbol in outsymbols, but
3401 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3402 at least in that case. */
3403 for (asect = abfd->sections; asect; asect = asect->next)
3404 {
3405 if (sect_syms[asect->index] == NULL)
3406 {
3407 if (!sym_is_global (abfd, asect->symbol))
3408 num_locals++;
3409 else
3410 num_globals++;
3411 }
3412 }
3413
3414 /* Now sort the symbols so the local symbols are first. */
3415 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3416
3417 if (new_syms == NULL)
3418 return FALSE;
3419
3420 for (idx = 0; idx < symcount; idx++)
3421 {
3422 asymbol *sym = syms[idx];
3423 unsigned int i;
3424
3425 if (ignore_section_sym (abfd, sym))
3426 continue;
3427 if (!sym_is_global (abfd, sym))
3428 i = num_locals2++;
3429 else
3430 i = num_locals + num_globals2++;
3431 new_syms[i] = sym;
3432 sym->udata.i = i + 1;
3433 }
3434 for (asect = abfd->sections; asect; asect = asect->next)
3435 {
3436 if (sect_syms[asect->index] == NULL)
3437 {
3438 asymbol *sym = asect->symbol;
3439 unsigned int i;
3440
3441 sect_syms[asect->index] = sym;
3442 if (!sym_is_global (abfd, sym))
3443 i = num_locals2++;
3444 else
3445 i = num_locals + num_globals2++;
3446 new_syms[i] = sym;
3447 sym->udata.i = i + 1;
3448 }
3449 }
3450
3451 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3452
3453 elf_num_locals (abfd) = num_locals;
3454 elf_num_globals (abfd) = num_globals;
3455 return TRUE;
3456 }
3457
3458 /* Align to the maximum file alignment that could be required for any
3459 ELF data structure. */
3460
3461 static inline file_ptr
3462 align_file_position (file_ptr off, int align)
3463 {
3464 return (off + align - 1) & ~(align - 1);
3465 }
3466
3467 /* Assign a file position to a section, optionally aligning to the
3468 required section alignment. */
3469
3470 file_ptr
3471 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3472 file_ptr offset,
3473 bfd_boolean align)
3474 {
3475 if (align)
3476 {
3477 unsigned int al;
3478
3479 al = i_shdrp->sh_addralign;
3480 if (al > 1)
3481 offset = BFD_ALIGN (offset, al);
3482 }
3483 i_shdrp->sh_offset = offset;
3484 if (i_shdrp->bfd_section != NULL)
3485 i_shdrp->bfd_section->filepos = offset;
3486 if (i_shdrp->sh_type != SHT_NOBITS)
3487 offset += i_shdrp->sh_size;
3488 return offset;
3489 }
3490
3491 /* Compute the file positions we are going to put the sections at, and
3492 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3493 is not NULL, this is being called by the ELF backend linker. */
3494
3495 bfd_boolean
3496 _bfd_elf_compute_section_file_positions (bfd *abfd,
3497 struct bfd_link_info *link_info)
3498 {
3499 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3500 bfd_boolean failed;
3501 struct bfd_strtab_hash *strtab = NULL;
3502 Elf_Internal_Shdr *shstrtab_hdr;
3503
3504 if (abfd->output_has_begun)
3505 return TRUE;
3506
3507 /* Do any elf backend specific processing first. */
3508 if (bed->elf_backend_begin_write_processing)
3509 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3510
3511 if (! prep_headers (abfd))
3512 return FALSE;
3513
3514 /* Post process the headers if necessary. */
3515 if (bed->elf_backend_post_process_headers)
3516 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3517
3518 failed = FALSE;
3519 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3520 if (failed)
3521 return FALSE;
3522
3523 if (!assign_section_numbers (abfd, link_info))
3524 return FALSE;
3525
3526 /* The backend linker builds symbol table information itself. */
3527 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3528 {
3529 /* Non-zero if doing a relocatable link. */
3530 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3531
3532 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3533 return FALSE;
3534 }
3535
3536 if (link_info == NULL)
3537 {
3538 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3539 if (failed)
3540 return FALSE;
3541 }
3542
3543 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3544 /* sh_name was set in prep_headers. */
3545 shstrtab_hdr->sh_type = SHT_STRTAB;
3546 shstrtab_hdr->sh_flags = 0;
3547 shstrtab_hdr->sh_addr = 0;
3548 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3549 shstrtab_hdr->sh_entsize = 0;
3550 shstrtab_hdr->sh_link = 0;
3551 shstrtab_hdr->sh_info = 0;
3552 /* sh_offset is set in assign_file_positions_except_relocs. */
3553 shstrtab_hdr->sh_addralign = 1;
3554
3555 if (!assign_file_positions_except_relocs (abfd, link_info))
3556 return FALSE;
3557
3558 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3559 {
3560 file_ptr off;
3561 Elf_Internal_Shdr *hdr;
3562
3563 off = elf_tdata (abfd)->next_file_pos;
3564
3565 hdr = &elf_tdata (abfd)->symtab_hdr;
3566 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3567
3568 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3569 if (hdr->sh_size != 0)
3570 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3571
3572 hdr = &elf_tdata (abfd)->strtab_hdr;
3573 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3574
3575 elf_tdata (abfd)->next_file_pos = off;
3576
3577 /* Now that we know where the .strtab section goes, write it
3578 out. */
3579 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3580 || ! _bfd_stringtab_emit (abfd, strtab))
3581 return FALSE;
3582 _bfd_stringtab_free (strtab);
3583 }
3584
3585 abfd->output_has_begun = TRUE;
3586
3587 return TRUE;
3588 }
3589
3590 /* Make an initial estimate of the size of the program header. If we
3591 get the number wrong here, we'll redo section placement. */
3592
3593 static bfd_size_type
3594 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3595 {
3596 size_t segs;
3597 asection *s;
3598 const struct elf_backend_data *bed;
3599
3600 /* Assume we will need exactly two PT_LOAD segments: one for text
3601 and one for data. */
3602 segs = 2;
3603
3604 s = bfd_get_section_by_name (abfd, ".interp");
3605 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3606 {
3607 /* If we have a loadable interpreter section, we need a
3608 PT_INTERP segment. In this case, assume we also need a
3609 PT_PHDR segment, although that may not be true for all
3610 targets. */
3611 segs += 2;
3612 }
3613
3614 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3615 {
3616 /* We need a PT_DYNAMIC segment. */
3617 ++segs;
3618
3619 if (elf_tdata (abfd)->relro)
3620 {
3621 /* We need a PT_GNU_RELRO segment only when there is a
3622 PT_DYNAMIC segment. */
3623 ++segs;
3624 }
3625 }
3626
3627 if (elf_tdata (abfd)->eh_frame_hdr)
3628 {
3629 /* We need a PT_GNU_EH_FRAME segment. */
3630 ++segs;
3631 }
3632
3633 if (elf_tdata (abfd)->stack_flags)
3634 {
3635 /* We need a PT_GNU_STACK segment. */
3636 ++segs;
3637 }
3638
3639 for (s = abfd->sections; s != NULL; s = s->next)
3640 {
3641 if ((s->flags & SEC_LOAD) != 0
3642 && CONST_STRNEQ (s->name, ".note"))
3643 {
3644 /* We need a PT_NOTE segment. */
3645 ++segs;
3646 }
3647 }
3648
3649 for (s = abfd->sections; s != NULL; s = s->next)
3650 {
3651 if (s->flags & SEC_THREAD_LOCAL)
3652 {
3653 /* We need a PT_TLS segment. */
3654 ++segs;
3655 break;
3656 }
3657 }
3658
3659 /* Let the backend count up any program headers it might need. */
3660 bed = get_elf_backend_data (abfd);
3661 if (bed->elf_backend_additional_program_headers)
3662 {
3663 int a;
3664
3665 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3666 if (a == -1)
3667 abort ();
3668 segs += a;
3669 }
3670
3671 return segs * bed->s->sizeof_phdr;
3672 }
3673
3674 /* Create a mapping from a set of sections to a program segment. */
3675
3676 static struct elf_segment_map *
3677 make_mapping (bfd *abfd,
3678 asection **sections,
3679 unsigned int from,
3680 unsigned int to,
3681 bfd_boolean phdr)
3682 {
3683 struct elf_segment_map *m;
3684 unsigned int i;
3685 asection **hdrpp;
3686 bfd_size_type amt;
3687
3688 amt = sizeof (struct elf_segment_map);
3689 amt += (to - from - 1) * sizeof (asection *);
3690 m = bfd_zalloc (abfd, amt);
3691 if (m == NULL)
3692 return NULL;
3693 m->next = NULL;
3694 m->p_type = PT_LOAD;
3695 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3696 m->sections[i - from] = *hdrpp;
3697 m->count = to - from;
3698
3699 if (from == 0 && phdr)
3700 {
3701 /* Include the headers in the first PT_LOAD segment. */
3702 m->includes_filehdr = 1;
3703 m->includes_phdrs = 1;
3704 }
3705
3706 return m;
3707 }
3708
3709 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3710 on failure. */
3711
3712 struct elf_segment_map *
3713 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3714 {
3715 struct elf_segment_map *m;
3716
3717 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3718 if (m == NULL)
3719 return NULL;
3720 m->next = NULL;
3721 m->p_type = PT_DYNAMIC;
3722 m->count = 1;
3723 m->sections[0] = dynsec;
3724
3725 return m;
3726 }
3727
3728 /* Possibly add or remove segments from the segment map. */
3729
3730 static bfd_boolean
3731 elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3732 {
3733 struct elf_segment_map **m;
3734 const struct elf_backend_data *bed;
3735
3736 /* The placement algorithm assumes that non allocated sections are
3737 not in PT_LOAD segments. We ensure this here by removing such
3738 sections from the segment map. We also remove excluded
3739 sections. Finally, any PT_LOAD segment without sections is
3740 removed. */
3741 m = &elf_tdata (abfd)->segment_map;
3742 while (*m)
3743 {
3744 unsigned int i, new_count;
3745
3746 for (new_count = 0, i = 0; i < (*m)->count; i++)
3747 {
3748 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3749 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3750 || (*m)->p_type != PT_LOAD))
3751 {
3752 (*m)->sections[new_count] = (*m)->sections[i];
3753 new_count++;
3754 }
3755 }
3756 (*m)->count = new_count;
3757
3758 if ((*m)->p_type == PT_LOAD && (*m)->count == 0)
3759 *m = (*m)->next;
3760 else
3761 m = &(*m)->next;
3762 }
3763
3764 bed = get_elf_backend_data (abfd);
3765 if (bed->elf_backend_modify_segment_map != NULL)
3766 {
3767 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3768 return FALSE;
3769 }
3770
3771 return TRUE;
3772 }
3773
3774 /* Set up a mapping from BFD sections to program segments. */
3775
3776 bfd_boolean
3777 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3778 {
3779 unsigned int count;
3780 struct elf_segment_map *m;
3781 asection **sections = NULL;
3782 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3783
3784 if (elf_tdata (abfd)->segment_map == NULL
3785 && bfd_count_sections (abfd) != 0)
3786 {
3787 asection *s;
3788 unsigned int i;
3789 struct elf_segment_map *mfirst;
3790 struct elf_segment_map **pm;
3791 asection *last_hdr;
3792 bfd_vma last_size;
3793 unsigned int phdr_index;
3794 bfd_vma maxpagesize;
3795 asection **hdrpp;
3796 bfd_boolean phdr_in_segment = TRUE;
3797 bfd_boolean writable;
3798 int tls_count = 0;
3799 asection *first_tls = NULL;
3800 asection *dynsec, *eh_frame_hdr;
3801 bfd_size_type amt;
3802
3803 /* Select the allocated sections, and sort them. */
3804
3805 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3806 if (sections == NULL)
3807 goto error_return;
3808
3809 i = 0;
3810 for (s = abfd->sections; s != NULL; s = s->next)
3811 {
3812 if ((s->flags & SEC_ALLOC) != 0)
3813 {
3814 sections[i] = s;
3815 ++i;
3816 }
3817 }
3818 BFD_ASSERT (i <= bfd_count_sections (abfd));
3819 count = i;
3820
3821 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3822
3823 /* Build the mapping. */
3824
3825 mfirst = NULL;
3826 pm = &mfirst;
3827
3828 /* If we have a .interp section, then create a PT_PHDR segment for
3829 the program headers and a PT_INTERP segment for the .interp
3830 section. */
3831 s = bfd_get_section_by_name (abfd, ".interp");
3832 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3833 {
3834 amt = sizeof (struct elf_segment_map);
3835 m = bfd_zalloc (abfd, amt);
3836 if (m == NULL)
3837 goto error_return;
3838 m->next = NULL;
3839 m->p_type = PT_PHDR;
3840 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3841 m->p_flags = PF_R | PF_X;
3842 m->p_flags_valid = 1;
3843 m->includes_phdrs = 1;
3844
3845 *pm = m;
3846 pm = &m->next;
3847
3848 amt = sizeof (struct elf_segment_map);
3849 m = bfd_zalloc (abfd, amt);
3850 if (m == NULL)
3851 goto error_return;
3852 m->next = NULL;
3853 m->p_type = PT_INTERP;
3854 m->count = 1;
3855 m->sections[0] = s;
3856
3857 *pm = m;
3858 pm = &m->next;
3859 }
3860
3861 /* Look through the sections. We put sections in the same program
3862 segment when the start of the second section can be placed within
3863 a few bytes of the end of the first section. */
3864 last_hdr = NULL;
3865 last_size = 0;
3866 phdr_index = 0;
3867 maxpagesize = bed->maxpagesize;
3868 writable = FALSE;
3869 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3870 if (dynsec != NULL
3871 && (dynsec->flags & SEC_LOAD) == 0)
3872 dynsec = NULL;
3873
3874 /* Deal with -Ttext or something similar such that the first section
3875 is not adjacent to the program headers. This is an
3876 approximation, since at this point we don't know exactly how many
3877 program headers we will need. */
3878 if (count > 0)
3879 {
3880 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3881
3882 if (phdr_size == (bfd_size_type) -1)
3883 phdr_size = get_program_header_size (abfd, info);
3884 if ((abfd->flags & D_PAGED) == 0
3885 || sections[0]->lma < phdr_size
3886 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3887 phdr_in_segment = FALSE;
3888 }
3889
3890 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3891 {
3892 asection *hdr;
3893 bfd_boolean new_segment;
3894
3895 hdr = *hdrpp;
3896
3897 /* See if this section and the last one will fit in the same
3898 segment. */
3899
3900 if (last_hdr == NULL)
3901 {
3902 /* If we don't have a segment yet, then we don't need a new
3903 one (we build the last one after this loop). */
3904 new_segment = FALSE;
3905 }
3906 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3907 {
3908 /* If this section has a different relation between the
3909 virtual address and the load address, then we need a new
3910 segment. */
3911 new_segment = TRUE;
3912 }
3913 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3914 < BFD_ALIGN (hdr->lma, maxpagesize))
3915 {
3916 /* If putting this section in this segment would force us to
3917 skip a page in the segment, then we need a new segment. */
3918 new_segment = TRUE;
3919 }
3920 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3921 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3922 {
3923 /* We don't want to put a loadable section after a
3924 nonloadable section in the same segment.
3925 Consider .tbss sections as loadable for this purpose. */
3926 new_segment = TRUE;
3927 }
3928 else if ((abfd->flags & D_PAGED) == 0)
3929 {
3930 /* If the file is not demand paged, which means that we
3931 don't require the sections to be correctly aligned in the
3932 file, then there is no other reason for a new segment. */
3933 new_segment = FALSE;
3934 }
3935 else if (! writable
3936 && (hdr->flags & SEC_READONLY) == 0
3937 && (((last_hdr->lma + last_size - 1)
3938 & ~(maxpagesize - 1))
3939 != (hdr->lma & ~(maxpagesize - 1))))
3940 {
3941 /* We don't want to put a writable section in a read only
3942 segment, unless they are on the same page in memory
3943 anyhow. We already know that the last section does not
3944 bring us past the current section on the page, so the
3945 only case in which the new section is not on the same
3946 page as the previous section is when the previous section
3947 ends precisely on a page boundary. */
3948 new_segment = TRUE;
3949 }
3950 else
3951 {
3952 /* Otherwise, we can use the same segment. */
3953 new_segment = FALSE;
3954 }
3955
3956 /* Allow interested parties a chance to override our decision. */
3957 if (last_hdr && info->callbacks->override_segment_assignment)
3958 new_segment = info->callbacks->override_segment_assignment (info, abfd, hdr, last_hdr, new_segment);
3959
3960 if (! new_segment)
3961 {
3962 if ((hdr->flags & SEC_READONLY) == 0)
3963 writable = TRUE;
3964 last_hdr = hdr;
3965 /* .tbss sections effectively have zero size. */
3966 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3967 != SEC_THREAD_LOCAL)
3968 last_size = hdr->size;
3969 else
3970 last_size = 0;
3971 continue;
3972 }
3973
3974 /* We need a new program segment. We must create a new program
3975 header holding all the sections from phdr_index until hdr. */
3976
3977 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3978 if (m == NULL)
3979 goto error_return;
3980
3981 *pm = m;
3982 pm = &m->next;
3983
3984 if ((hdr->flags & SEC_READONLY) == 0)
3985 writable = TRUE;
3986 else
3987 writable = FALSE;
3988
3989 last_hdr = hdr;
3990 /* .tbss sections effectively have zero size. */
3991 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3992 last_size = hdr->size;
3993 else
3994 last_size = 0;
3995 phdr_index = i;
3996 phdr_in_segment = FALSE;
3997 }
3998
3999 /* Create a final PT_LOAD program segment. */
4000 if (last_hdr != NULL)
4001 {
4002 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4003 if (m == NULL)
4004 goto error_return;
4005
4006 *pm = m;
4007 pm = &m->next;
4008 }
4009
4010 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4011 if (dynsec != NULL)
4012 {
4013 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4014 if (m == NULL)
4015 goto error_return;
4016 *pm = m;
4017 pm = &m->next;
4018 }
4019
4020 /* For each loadable .note section, add a PT_NOTE segment. We don't
4021 use bfd_get_section_by_name, because if we link together
4022 nonloadable .note sections and loadable .note sections, we will
4023 generate two .note sections in the output file. FIXME: Using
4024 names for section types is bogus anyhow. */
4025 for (s = abfd->sections; s != NULL; s = s->next)
4026 {
4027 if ((s->flags & SEC_LOAD) != 0
4028 && CONST_STRNEQ (s->name, ".note"))
4029 {
4030 amt = sizeof (struct elf_segment_map);
4031 m = bfd_zalloc (abfd, amt);
4032 if (m == NULL)
4033 goto error_return;
4034 m->next = NULL;
4035 m->p_type = PT_NOTE;
4036 m->count = 1;
4037 m->sections[0] = s;
4038
4039 *pm = m;
4040 pm = &m->next;
4041 }
4042 if (s->flags & SEC_THREAD_LOCAL)
4043 {
4044 if (! tls_count)
4045 first_tls = s;
4046 tls_count++;
4047 }
4048 }
4049
4050 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4051 if (tls_count > 0)
4052 {
4053 int i;
4054
4055 amt = sizeof (struct elf_segment_map);
4056 amt += (tls_count - 1) * sizeof (asection *);
4057 m = bfd_zalloc (abfd, amt);
4058 if (m == NULL)
4059 goto error_return;
4060 m->next = NULL;
4061 m->p_type = PT_TLS;
4062 m->count = tls_count;
4063 /* Mandated PF_R. */
4064 m->p_flags = PF_R;
4065 m->p_flags_valid = 1;
4066 for (i = 0; i < tls_count; ++i)
4067 {
4068 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4069 m->sections[i] = first_tls;
4070 first_tls = first_tls->next;
4071 }
4072
4073 *pm = m;
4074 pm = &m->next;
4075 }
4076
4077 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4078 segment. */
4079 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4080 if (eh_frame_hdr != NULL
4081 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4082 {
4083 amt = sizeof (struct elf_segment_map);
4084 m = bfd_zalloc (abfd, amt);
4085 if (m == NULL)
4086 goto error_return;
4087 m->next = NULL;
4088 m->p_type = PT_GNU_EH_FRAME;
4089 m->count = 1;
4090 m->sections[0] = eh_frame_hdr->output_section;
4091
4092 *pm = m;
4093 pm = &m->next;
4094 }
4095
4096 if (elf_tdata (abfd)->stack_flags)
4097 {
4098 amt = sizeof (struct elf_segment_map);
4099 m = bfd_zalloc (abfd, amt);
4100 if (m == NULL)
4101 goto error_return;
4102 m->next = NULL;
4103 m->p_type = PT_GNU_STACK;
4104 m->p_flags = elf_tdata (abfd)->stack_flags;
4105 m->p_flags_valid = 1;
4106
4107 *pm = m;
4108 pm = &m->next;
4109 }
4110
4111 if (dynsec != NULL && elf_tdata (abfd)->relro)
4112 {
4113 /* We make a PT_GNU_RELRO segment only when there is a
4114 PT_DYNAMIC segment. */
4115 amt = sizeof (struct elf_segment_map);
4116 m = bfd_zalloc (abfd, amt);
4117 if (m == NULL)
4118 goto error_return;
4119 m->next = NULL;
4120 m->p_type = PT_GNU_RELRO;
4121 m->p_flags = PF_R;
4122 m->p_flags_valid = 1;
4123
4124 *pm = m;
4125 pm = &m->next;
4126 }
4127
4128 free (sections);
4129 elf_tdata (abfd)->segment_map = mfirst;
4130 }
4131
4132 if (!elf_modify_segment_map (abfd, info))
4133 return FALSE;
4134
4135 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4136 ++count;
4137 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4138
4139 return TRUE;
4140
4141 error_return:
4142 if (sections != NULL)
4143 free (sections);
4144 return FALSE;
4145 }
4146
4147 /* Sort sections by address. */
4148
4149 static int
4150 elf_sort_sections (const void *arg1, const void *arg2)
4151 {
4152 const asection *sec1 = *(const asection **) arg1;
4153 const asection *sec2 = *(const asection **) arg2;
4154 bfd_size_type size1, size2;
4155
4156 /* Sort by LMA first, since this is the address used to
4157 place the section into a segment. */
4158 if (sec1->lma < sec2->lma)
4159 return -1;
4160 else if (sec1->lma > sec2->lma)
4161 return 1;
4162
4163 /* Then sort by VMA. Normally the LMA and the VMA will be
4164 the same, and this will do nothing. */
4165 if (sec1->vma < sec2->vma)
4166 return -1;
4167 else if (sec1->vma > sec2->vma)
4168 return 1;
4169
4170 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4171
4172 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4173
4174 if (TOEND (sec1))
4175 {
4176 if (TOEND (sec2))
4177 {
4178 /* If the indicies are the same, do not return 0
4179 here, but continue to try the next comparison. */
4180 if (sec1->target_index - sec2->target_index != 0)
4181 return sec1->target_index - sec2->target_index;
4182 }
4183 else
4184 return 1;
4185 }
4186 else if (TOEND (sec2))
4187 return -1;
4188
4189 #undef TOEND
4190
4191 /* Sort by size, to put zero sized sections
4192 before others at the same address. */
4193
4194 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4195 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4196
4197 if (size1 < size2)
4198 return -1;
4199 if (size1 > size2)
4200 return 1;
4201
4202 return sec1->target_index - sec2->target_index;
4203 }
4204
4205 /* Ian Lance Taylor writes:
4206
4207 We shouldn't be using % with a negative signed number. That's just
4208 not good. We have to make sure either that the number is not
4209 negative, or that the number has an unsigned type. When the types
4210 are all the same size they wind up as unsigned. When file_ptr is a
4211 larger signed type, the arithmetic winds up as signed long long,
4212 which is wrong.
4213
4214 What we're trying to say here is something like ``increase OFF by
4215 the least amount that will cause it to be equal to the VMA modulo
4216 the page size.'' */
4217 /* In other words, something like:
4218
4219 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4220 off_offset = off % bed->maxpagesize;
4221 if (vma_offset < off_offset)
4222 adjustment = vma_offset + bed->maxpagesize - off_offset;
4223 else
4224 adjustment = vma_offset - off_offset;
4225
4226 which can can be collapsed into the expression below. */
4227
4228 static file_ptr
4229 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4230 {
4231 return ((vma - off) % maxpagesize);
4232 }
4233
4234 /* Assign file positions to the sections based on the mapping from
4235 sections to segments. This function also sets up some fields in
4236 the file header. */
4237
4238 static bfd_boolean
4239 assign_file_positions_for_load_sections (bfd *abfd,
4240 struct bfd_link_info *link_info)
4241 {
4242 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4243 struct elf_segment_map *m;
4244 Elf_Internal_Phdr *phdrs;
4245 Elf_Internal_Phdr *p;
4246 file_ptr off, voff;
4247 bfd_size_type maxpagesize;
4248 unsigned int alloc;
4249 unsigned int i;
4250
4251 if (link_info == NULL
4252 && !elf_modify_segment_map (abfd, link_info))
4253 return FALSE;
4254
4255 alloc = 0;
4256 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4257 ++alloc;
4258
4259 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4260 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4261 elf_elfheader (abfd)->e_phnum = alloc;
4262
4263 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4264 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4265 else
4266 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4267 >= alloc * bed->s->sizeof_phdr);
4268
4269 if (alloc == 0)
4270 {
4271 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4272 return TRUE;
4273 }
4274
4275 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4276 elf_tdata (abfd)->phdr = phdrs;
4277 if (phdrs == NULL)
4278 return FALSE;
4279
4280 maxpagesize = 1;
4281 if ((abfd->flags & D_PAGED) != 0)
4282 maxpagesize = bed->maxpagesize;
4283
4284 off = bed->s->sizeof_ehdr;
4285 off += alloc * bed->s->sizeof_phdr;
4286
4287 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4288 m != NULL;
4289 m = m->next, p++)
4290 {
4291 asection **secpp;
4292
4293 /* If elf_segment_map is not from map_sections_to_segments, the
4294 sections may not be correctly ordered. NOTE: sorting should
4295 not be done to the PT_NOTE section of a corefile, which may
4296 contain several pseudo-sections artificially created by bfd.
4297 Sorting these pseudo-sections breaks things badly. */
4298 if (m->count > 1
4299 && !(elf_elfheader (abfd)->e_type == ET_CORE
4300 && m->p_type == PT_NOTE))
4301 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4302 elf_sort_sections);
4303
4304 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4305 number of sections with contents contributing to both p_filesz
4306 and p_memsz, followed by a number of sections with no contents
4307 that just contribute to p_memsz. In this loop, OFF tracks next
4308 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4309 an adjustment we use for segments that have no file contents
4310 but need zero filled memory allocation. */
4311 voff = 0;
4312 p->p_type = m->p_type;
4313 p->p_flags = m->p_flags;
4314
4315 if (m->count == 0)
4316 p->p_vaddr = 0;
4317 else
4318 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4319
4320 if (m->p_paddr_valid)
4321 p->p_paddr = m->p_paddr;
4322 else if (m->count == 0)
4323 p->p_paddr = 0;
4324 else
4325 p->p_paddr = m->sections[0]->lma;
4326
4327 if (p->p_type == PT_LOAD
4328 && (abfd->flags & D_PAGED) != 0)
4329 {
4330 /* p_align in demand paged PT_LOAD segments effectively stores
4331 the maximum page size. When copying an executable with
4332 objcopy, we set m->p_align from the input file. Use this
4333 value for maxpagesize rather than bed->maxpagesize, which
4334 may be different. Note that we use maxpagesize for PT_TLS
4335 segment alignment later in this function, so we are relying
4336 on at least one PT_LOAD segment appearing before a PT_TLS
4337 segment. */
4338 if (m->p_align_valid)
4339 maxpagesize = m->p_align;
4340
4341 p->p_align = maxpagesize;
4342 }
4343 else if (m->count == 0)
4344 p->p_align = 1 << bed->s->log_file_align;
4345 else if (m->p_align_valid)
4346 p->p_align = m->p_align;
4347 else
4348 p->p_align = 0;
4349
4350 if (p->p_type == PT_LOAD
4351 && m->count > 0)
4352 {
4353 bfd_size_type align;
4354 bfd_vma adjust;
4355 unsigned int align_power = 0;
4356
4357 if (m->p_align_valid)
4358 align = p->p_align;
4359 else
4360 {
4361 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4362 {
4363 unsigned int secalign;
4364
4365 secalign = bfd_get_section_alignment (abfd, *secpp);
4366 if (secalign > align_power)
4367 align_power = secalign;
4368 }
4369 align = (bfd_size_type) 1 << align_power;
4370 if (align < maxpagesize)
4371 align = maxpagesize;
4372 }
4373
4374 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4375 off += adjust;
4376 if (adjust != 0
4377 && !m->includes_filehdr
4378 && !m->includes_phdrs
4379 && (ufile_ptr) off >= align)
4380 {
4381 /* If the first section isn't loadable, the same holds for
4382 any other sections. Since the segment won't need file
4383 space, we can make p_offset overlap some prior segment.
4384 However, .tbss is special. If a segment starts with
4385 .tbss, we need to look at the next section to decide
4386 whether the segment has any loadable sections. */
4387 i = 0;
4388 while ((m->sections[i]->flags & SEC_LOAD) == 0
4389 && (m->sections[i]->flags & SEC_HAS_CONTENTS) == 0)
4390 {
4391 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4392 || ++i >= m->count)
4393 {
4394 off -= adjust;
4395 voff = adjust - align;
4396 break;
4397 }
4398 }
4399 }
4400 }
4401 /* Make sure the .dynamic section is the first section in the
4402 PT_DYNAMIC segment. */
4403 else if (p->p_type == PT_DYNAMIC
4404 && m->count > 1
4405 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4406 {
4407 _bfd_error_handler
4408 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4409 abfd);
4410 bfd_set_error (bfd_error_bad_value);
4411 return FALSE;
4412 }
4413
4414 p->p_offset = 0;
4415 p->p_filesz = 0;
4416 p->p_memsz = 0;
4417
4418 if (m->includes_filehdr)
4419 {
4420 if (! m->p_flags_valid)
4421 p->p_flags |= PF_R;
4422 p->p_filesz = bed->s->sizeof_ehdr;
4423 p->p_memsz = bed->s->sizeof_ehdr;
4424 if (m->count > 0)
4425 {
4426 BFD_ASSERT (p->p_type == PT_LOAD);
4427
4428 if (p->p_vaddr < (bfd_vma) off)
4429 {
4430 (*_bfd_error_handler)
4431 (_("%B: Not enough room for program headers, try linking with -N"),
4432 abfd);
4433 bfd_set_error (bfd_error_bad_value);
4434 return FALSE;
4435 }
4436
4437 p->p_vaddr -= off;
4438 if (! m->p_paddr_valid)
4439 p->p_paddr -= off;
4440 }
4441 }
4442
4443 if (m->includes_phdrs)
4444 {
4445 if (! m->p_flags_valid)
4446 p->p_flags |= PF_R;
4447
4448 if (!m->includes_filehdr)
4449 {
4450 p->p_offset = bed->s->sizeof_ehdr;
4451
4452 if (m->count > 0)
4453 {
4454 BFD_ASSERT (p->p_type == PT_LOAD);
4455 p->p_vaddr -= off - p->p_offset;
4456 if (! m->p_paddr_valid)
4457 p->p_paddr -= off - p->p_offset;
4458 }
4459 }
4460
4461 p->p_filesz += alloc * bed->s->sizeof_phdr;
4462 p->p_memsz += alloc * bed->s->sizeof_phdr;
4463 }
4464
4465 if (p->p_type == PT_LOAD
4466 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4467 {
4468 if (! m->includes_filehdr && ! m->includes_phdrs)
4469 p->p_offset = off + voff;
4470 else
4471 {
4472 file_ptr adjust;
4473
4474 adjust = off - (p->p_offset + p->p_filesz);
4475 p->p_filesz += adjust;
4476 p->p_memsz += adjust;
4477 }
4478 }
4479
4480 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4481 maps. Set filepos for sections in PT_LOAD segments, and in
4482 core files, for sections in PT_NOTE segments.
4483 assign_file_positions_for_non_load_sections will set filepos
4484 for other sections and update p_filesz for other segments. */
4485 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4486 {
4487 asection *sec;
4488 flagword flags;
4489 bfd_size_type align;
4490
4491 sec = *secpp;
4492 flags = sec->flags;
4493 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4494
4495 if (p->p_type == PT_LOAD
4496 || p->p_type == PT_TLS)
4497 {
4498 bfd_signed_vma adjust = sec->lma - (p->p_paddr + p->p_filesz);
4499
4500 if ((flags & SEC_LOAD) != 0
4501 || ((flags & SEC_ALLOC) != 0
4502 && ((flags & SEC_THREAD_LOCAL) == 0
4503 || p->p_type == PT_TLS)))
4504 {
4505 if (adjust < 0)
4506 {
4507 (*_bfd_error_handler)
4508 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4509 abfd, sec, (unsigned long) sec->lma);
4510 adjust = 0;
4511 }
4512 p->p_memsz += adjust;
4513
4514 if ((flags & SEC_LOAD) != 0)
4515 {
4516 off += adjust;
4517 p->p_filesz += adjust;
4518 }
4519 }
4520 }
4521
4522 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4523 {
4524 /* The section at i == 0 is the one that actually contains
4525 everything. */
4526 if (i == 0)
4527 {
4528 sec->filepos = off;
4529 off += sec->size;
4530 p->p_filesz = sec->size;
4531 p->p_memsz = 0;
4532 p->p_align = 1;
4533 }
4534 else
4535 {
4536 /* The rest are fake sections that shouldn't be written. */
4537 sec->filepos = 0;
4538 sec->size = 0;
4539 sec->flags = 0;
4540 continue;
4541 }
4542 }
4543 else
4544 {
4545 if (p->p_type == PT_LOAD)
4546 {
4547 sec->filepos = off + voff;
4548 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4549 1997, and the exact reason for it isn't clear. One
4550 plausible explanation is that it is to work around
4551 a problem we have with linker scripts using data
4552 statements in NOLOAD sections. I don't think it
4553 makes a great deal of sense to have such a section
4554 assigned to a PT_LOAD segment, but apparently
4555 people do this. The data statement results in a
4556 bfd_data_link_order being built, and these need
4557 section contents to write into. Eventually, we get
4558 to _bfd_elf_write_object_contents which writes any
4559 section with contents to the output. Make room
4560 here for the write, so that following segments are
4561 not trashed. */
4562 if ((flags & SEC_LOAD) != 0
4563 || (flags & SEC_HAS_CONTENTS) != 0)
4564 off += sec->size;
4565 }
4566
4567 if ((flags & SEC_LOAD) != 0)
4568 {
4569 p->p_filesz += sec->size;
4570 p->p_memsz += sec->size;
4571 }
4572
4573 /* .tbss is special. It doesn't contribute to p_memsz of
4574 normal segments. */
4575 else if ((flags & SEC_ALLOC) != 0
4576 && ((flags & SEC_THREAD_LOCAL) == 0
4577 || p->p_type == PT_TLS))
4578 p->p_memsz += sec->size;
4579
4580 if (p->p_type == PT_TLS
4581 && sec->size == 0
4582 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4583 {
4584 struct bfd_link_order *o = sec->map_tail.link_order;
4585 if (o != NULL)
4586 p->p_memsz += o->offset + o->size;
4587 }
4588
4589 if (p->p_type == PT_GNU_RELRO)
4590 p->p_align = 1;
4591 else if (align > p->p_align
4592 && !m->p_align_valid
4593 && (p->p_type != PT_LOAD
4594 || (abfd->flags & D_PAGED) == 0))
4595 p->p_align = align;
4596 }
4597
4598 if (! m->p_flags_valid)
4599 {
4600 p->p_flags |= PF_R;
4601 if ((flags & SEC_CODE) != 0)
4602 p->p_flags |= PF_X;
4603 if ((flags & SEC_READONLY) == 0)
4604 p->p_flags |= PF_W;
4605 }
4606 }
4607 }
4608
4609 elf_tdata (abfd)->next_file_pos = off;
4610 return TRUE;
4611 }
4612
4613 /* Assign file positions for the other sections. */
4614
4615 static bfd_boolean
4616 assign_file_positions_for_non_load_sections (bfd *abfd,
4617 struct bfd_link_info *link_info)
4618 {
4619 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4620 Elf_Internal_Shdr **i_shdrpp;
4621 Elf_Internal_Shdr **hdrpp;
4622 Elf_Internal_Phdr *phdrs;
4623 Elf_Internal_Phdr *p;
4624 struct elf_segment_map *m;
4625 bfd_vma filehdr_vaddr, filehdr_paddr;
4626 bfd_vma phdrs_vaddr, phdrs_paddr;
4627 file_ptr off;
4628 unsigned int num_sec;
4629 unsigned int i;
4630 unsigned int count;
4631
4632 i_shdrpp = elf_elfsections (abfd);
4633 num_sec = elf_numsections (abfd);
4634 off = elf_tdata (abfd)->next_file_pos;
4635 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4636 {
4637 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4638 Elf_Internal_Shdr *hdr;
4639
4640 hdr = *hdrpp;
4641 if (hdr->bfd_section != NULL
4642 && (hdr->bfd_section->filepos != 0
4643 || (hdr->sh_type == SHT_NOBITS
4644 && hdr->contents == NULL)))
4645 hdr->sh_offset = hdr->bfd_section->filepos;
4646 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4647 {
4648 if (hdr->sh_size != 0)
4649 ((*_bfd_error_handler)
4650 (_("%B: warning: allocated section `%s' not in segment"),
4651 abfd,
4652 (hdr->bfd_section == NULL
4653 ? "*unknown*"
4654 : hdr->bfd_section->name)));
4655 /* We don't need to page align empty sections. */
4656 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4657 off += vma_page_aligned_bias (hdr->sh_addr, off,
4658 bed->maxpagesize);
4659 else
4660 off += vma_page_aligned_bias (hdr->sh_addr, off,
4661 hdr->sh_addralign);
4662 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4663 FALSE);
4664 }
4665 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4666 && hdr->bfd_section == NULL)
4667 || hdr == i_shdrpp[tdata->symtab_section]
4668 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4669 || hdr == i_shdrpp[tdata->strtab_section])
4670 hdr->sh_offset = -1;
4671 else
4672 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4673
4674 if (i == SHN_LORESERVE - 1)
4675 {
4676 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4677 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4678 }
4679 }
4680
4681 /* Now that we have set the section file positions, we can set up
4682 the file positions for the non PT_LOAD segments. */
4683 count = 0;
4684 filehdr_vaddr = 0;
4685 filehdr_paddr = 0;
4686 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4687 phdrs_paddr = 0;
4688 phdrs = elf_tdata (abfd)->phdr;
4689 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4690 m != NULL;
4691 m = m->next, p++)
4692 {
4693 ++count;
4694 if (p->p_type != PT_LOAD)
4695 continue;
4696
4697 if (m->includes_filehdr)
4698 {
4699 filehdr_vaddr = p->p_vaddr;
4700 filehdr_paddr = p->p_paddr;
4701 }
4702 if (m->includes_phdrs)
4703 {
4704 phdrs_vaddr = p->p_vaddr;
4705 phdrs_paddr = p->p_paddr;
4706 if (m->includes_filehdr)
4707 {
4708 phdrs_vaddr += bed->s->sizeof_ehdr;
4709 phdrs_paddr += bed->s->sizeof_ehdr;
4710 }
4711 }
4712 }
4713
4714 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4715 m != NULL;
4716 m = m->next, p++)
4717 {
4718 if (m->count != 0)
4719 {
4720 if (p->p_type != PT_LOAD
4721 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4722 {
4723 Elf_Internal_Shdr *hdr;
4724 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4725
4726 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4727 p->p_filesz = (m->sections[m->count - 1]->filepos
4728 - m->sections[0]->filepos);
4729 if (hdr->sh_type != SHT_NOBITS)
4730 p->p_filesz += hdr->sh_size;
4731
4732 p->p_offset = m->sections[0]->filepos;
4733 }
4734 }
4735 else
4736 {
4737 if (m->includes_filehdr)
4738 {
4739 p->p_vaddr = filehdr_vaddr;
4740 if (! m->p_paddr_valid)
4741 p->p_paddr = filehdr_paddr;
4742 }
4743 else if (m->includes_phdrs)
4744 {
4745 p->p_vaddr = phdrs_vaddr;
4746 if (! m->p_paddr_valid)
4747 p->p_paddr = phdrs_paddr;
4748 }
4749 else if (p->p_type == PT_GNU_RELRO)
4750 {
4751 Elf_Internal_Phdr *lp;
4752
4753 for (lp = phdrs; lp < phdrs + count; ++lp)
4754 {
4755 if (lp->p_type == PT_LOAD
4756 && lp->p_vaddr <= link_info->relro_end
4757 && lp->p_vaddr >= link_info->relro_start
4758 && (lp->p_vaddr + lp->p_filesz
4759 >= link_info->relro_end))
4760 break;
4761 }
4762
4763 if (lp < phdrs + count
4764 && link_info->relro_end > lp->p_vaddr)
4765 {
4766 p->p_vaddr = lp->p_vaddr;
4767 p->p_paddr = lp->p_paddr;
4768 p->p_offset = lp->p_offset;
4769 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4770 p->p_memsz = p->p_filesz;
4771 p->p_align = 1;
4772 p->p_flags = (lp->p_flags & ~PF_W);
4773 }
4774 else
4775 {
4776 memset (p, 0, sizeof *p);
4777 p->p_type = PT_NULL;
4778 }
4779 }
4780 }
4781 }
4782
4783 elf_tdata (abfd)->next_file_pos = off;
4784
4785 return TRUE;
4786 }
4787
4788 /* Work out the file positions of all the sections. This is called by
4789 _bfd_elf_compute_section_file_positions. All the section sizes and
4790 VMAs must be known before this is called.
4791
4792 Reloc sections come in two flavours: Those processed specially as
4793 "side-channel" data attached to a section to which they apply, and
4794 those that bfd doesn't process as relocations. The latter sort are
4795 stored in a normal bfd section by bfd_section_from_shdr. We don't
4796 consider the former sort here, unless they form part of the loadable
4797 image. Reloc sections not assigned here will be handled later by
4798 assign_file_positions_for_relocs.
4799
4800 We also don't set the positions of the .symtab and .strtab here. */
4801
4802 static bfd_boolean
4803 assign_file_positions_except_relocs (bfd *abfd,
4804 struct bfd_link_info *link_info)
4805 {
4806 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4807 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4808 file_ptr off;
4809 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4810
4811 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4812 && bfd_get_format (abfd) != bfd_core)
4813 {
4814 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4815 unsigned int num_sec = elf_numsections (abfd);
4816 Elf_Internal_Shdr **hdrpp;
4817 unsigned int i;
4818
4819 /* Start after the ELF header. */
4820 off = i_ehdrp->e_ehsize;
4821
4822 /* We are not creating an executable, which means that we are
4823 not creating a program header, and that the actual order of
4824 the sections in the file is unimportant. */
4825 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4826 {
4827 Elf_Internal_Shdr *hdr;
4828
4829 hdr = *hdrpp;
4830 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4831 && hdr->bfd_section == NULL)
4832 || i == tdata->symtab_section
4833 || i == tdata->symtab_shndx_section
4834 || i == tdata->strtab_section)
4835 {
4836 hdr->sh_offset = -1;
4837 }
4838 else
4839 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4840
4841 if (i == SHN_LORESERVE - 1)
4842 {
4843 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4844 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4845 }
4846 }
4847 }
4848 else
4849 {
4850 unsigned int alloc;
4851
4852 /* Assign file positions for the loaded sections based on the
4853 assignment of sections to segments. */
4854 if (!assign_file_positions_for_load_sections (abfd, link_info))
4855 return FALSE;
4856
4857 /* And for non-load sections. */
4858 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4859 return FALSE;
4860
4861 if (bed->elf_backend_modify_program_headers != NULL)
4862 {
4863 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4864 return FALSE;
4865 }
4866
4867 /* Write out the program headers. */
4868 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4869 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4870 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4871 return FALSE;
4872
4873 off = tdata->next_file_pos;
4874 }
4875
4876 /* Place the section headers. */
4877 off = align_file_position (off, 1 << bed->s->log_file_align);
4878 i_ehdrp->e_shoff = off;
4879 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4880
4881 tdata->next_file_pos = off;
4882
4883 return TRUE;
4884 }
4885
4886 static bfd_boolean
4887 prep_headers (bfd *abfd)
4888 {
4889 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4890 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4891 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4892 struct elf_strtab_hash *shstrtab;
4893 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4894
4895 i_ehdrp = elf_elfheader (abfd);
4896 i_shdrp = elf_elfsections (abfd);
4897
4898 shstrtab = _bfd_elf_strtab_init ();
4899 if (shstrtab == NULL)
4900 return FALSE;
4901
4902 elf_shstrtab (abfd) = shstrtab;
4903
4904 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4905 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4906 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4907 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4908
4909 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4910 i_ehdrp->e_ident[EI_DATA] =
4911 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4912 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4913
4914 if ((abfd->flags & DYNAMIC) != 0)
4915 i_ehdrp->e_type = ET_DYN;
4916 else if ((abfd->flags & EXEC_P) != 0)
4917 i_ehdrp->e_type = ET_EXEC;
4918 else if (bfd_get_format (abfd) == bfd_core)
4919 i_ehdrp->e_type = ET_CORE;
4920 else
4921 i_ehdrp->e_type = ET_REL;
4922
4923 switch (bfd_get_arch (abfd))
4924 {
4925 case bfd_arch_unknown:
4926 i_ehdrp->e_machine = EM_NONE;
4927 break;
4928
4929 /* There used to be a long list of cases here, each one setting
4930 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4931 in the corresponding bfd definition. To avoid duplication,
4932 the switch was removed. Machines that need special handling
4933 can generally do it in elf_backend_final_write_processing(),
4934 unless they need the information earlier than the final write.
4935 Such need can generally be supplied by replacing the tests for
4936 e_machine with the conditions used to determine it. */
4937 default:
4938 i_ehdrp->e_machine = bed->elf_machine_code;
4939 }
4940
4941 i_ehdrp->e_version = bed->s->ev_current;
4942 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4943
4944 /* No program header, for now. */
4945 i_ehdrp->e_phoff = 0;
4946 i_ehdrp->e_phentsize = 0;
4947 i_ehdrp->e_phnum = 0;
4948
4949 /* Each bfd section is section header entry. */
4950 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4951 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4952
4953 /* If we're building an executable, we'll need a program header table. */
4954 if (abfd->flags & EXEC_P)
4955 /* It all happens later. */
4956 ;
4957 else
4958 {
4959 i_ehdrp->e_phentsize = 0;
4960 i_phdrp = 0;
4961 i_ehdrp->e_phoff = 0;
4962 }
4963
4964 elf_tdata (abfd)->symtab_hdr.sh_name =
4965 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4966 elf_tdata (abfd)->strtab_hdr.sh_name =
4967 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4968 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4969 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4970 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4971 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4972 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4973 return FALSE;
4974
4975 return TRUE;
4976 }
4977
4978 /* Assign file positions for all the reloc sections which are not part
4979 of the loadable file image. */
4980
4981 void
4982 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4983 {
4984 file_ptr off;
4985 unsigned int i, num_sec;
4986 Elf_Internal_Shdr **shdrpp;
4987
4988 off = elf_tdata (abfd)->next_file_pos;
4989
4990 num_sec = elf_numsections (abfd);
4991 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4992 {
4993 Elf_Internal_Shdr *shdrp;
4994
4995 shdrp = *shdrpp;
4996 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4997 && shdrp->sh_offset == -1)
4998 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4999 }
5000
5001 elf_tdata (abfd)->next_file_pos = off;
5002 }
5003
5004 bfd_boolean
5005 _bfd_elf_write_object_contents (bfd *abfd)
5006 {
5007 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5008 Elf_Internal_Ehdr *i_ehdrp;
5009 Elf_Internal_Shdr **i_shdrp;
5010 bfd_boolean failed;
5011 unsigned int count, num_sec;
5012
5013 if (! abfd->output_has_begun
5014 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5015 return FALSE;
5016
5017 i_shdrp = elf_elfsections (abfd);
5018 i_ehdrp = elf_elfheader (abfd);
5019
5020 failed = FALSE;
5021 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5022 if (failed)
5023 return FALSE;
5024
5025 _bfd_elf_assign_file_positions_for_relocs (abfd);
5026
5027 /* After writing the headers, we need to write the sections too... */
5028 num_sec = elf_numsections (abfd);
5029 for (count = 1; count < num_sec; count++)
5030 {
5031 if (bed->elf_backend_section_processing)
5032 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5033 if (i_shdrp[count]->contents)
5034 {
5035 bfd_size_type amt = i_shdrp[count]->sh_size;
5036
5037 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5038 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5039 return FALSE;
5040 }
5041 if (count == SHN_LORESERVE - 1)
5042 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5043 }
5044
5045 /* Write out the section header names. */
5046 if (elf_shstrtab (abfd) != NULL
5047 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5048 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5049 return FALSE;
5050
5051 if (bed->elf_backend_final_write_processing)
5052 (*bed->elf_backend_final_write_processing) (abfd,
5053 elf_tdata (abfd)->linker);
5054
5055 return bed->s->write_shdrs_and_ehdr (abfd);
5056 }
5057
5058 bfd_boolean
5059 _bfd_elf_write_corefile_contents (bfd *abfd)
5060 {
5061 /* Hopefully this can be done just like an object file. */
5062 return _bfd_elf_write_object_contents (abfd);
5063 }
5064
5065 /* Given a section, search the header to find them. */
5066
5067 int
5068 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5069 {
5070 const struct elf_backend_data *bed;
5071 int index;
5072
5073 if (elf_section_data (asect) != NULL
5074 && elf_section_data (asect)->this_idx != 0)
5075 return elf_section_data (asect)->this_idx;
5076
5077 if (bfd_is_abs_section (asect))
5078 index = SHN_ABS;
5079 else if (bfd_is_com_section (asect))
5080 index = SHN_COMMON;
5081 else if (bfd_is_und_section (asect))
5082 index = SHN_UNDEF;
5083 else
5084 index = -1;
5085
5086 bed = get_elf_backend_data (abfd);
5087 if (bed->elf_backend_section_from_bfd_section)
5088 {
5089 int retval = index;
5090
5091 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5092 return retval;
5093 }
5094
5095 if (index == -1)
5096 bfd_set_error (bfd_error_nonrepresentable_section);
5097
5098 return index;
5099 }
5100
5101 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5102 on error. */
5103
5104 int
5105 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5106 {
5107 asymbol *asym_ptr = *asym_ptr_ptr;
5108 int idx;
5109 flagword flags = asym_ptr->flags;
5110
5111 /* When gas creates relocations against local labels, it creates its
5112 own symbol for the section, but does put the symbol into the
5113 symbol chain, so udata is 0. When the linker is generating
5114 relocatable output, this section symbol may be for one of the
5115 input sections rather than the output section. */
5116 if (asym_ptr->udata.i == 0
5117 && (flags & BSF_SECTION_SYM)
5118 && asym_ptr->section)
5119 {
5120 asection *sec;
5121 int indx;
5122
5123 sec = asym_ptr->section;
5124 if (sec->owner != abfd && sec->output_section != NULL)
5125 sec = sec->output_section;
5126 if (sec->owner == abfd
5127 && (indx = sec->index) < elf_num_section_syms (abfd)
5128 && elf_section_syms (abfd)[indx] != NULL)
5129 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5130 }
5131
5132 idx = asym_ptr->udata.i;
5133
5134 if (idx == 0)
5135 {
5136 /* This case can occur when using --strip-symbol on a symbol
5137 which is used in a relocation entry. */
5138 (*_bfd_error_handler)
5139 (_("%B: symbol `%s' required but not present"),
5140 abfd, bfd_asymbol_name (asym_ptr));
5141 bfd_set_error (bfd_error_no_symbols);
5142 return -1;
5143 }
5144
5145 #if DEBUG & 4
5146 {
5147 fprintf (stderr,
5148 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5149 (long) asym_ptr, asym_ptr->name, idx, flags,
5150 elf_symbol_flags (flags));
5151 fflush (stderr);
5152 }
5153 #endif
5154
5155 return idx;
5156 }
5157
5158 /* Rewrite program header information. */
5159
5160 static bfd_boolean
5161 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5162 {
5163 Elf_Internal_Ehdr *iehdr;
5164 struct elf_segment_map *map;
5165 struct elf_segment_map *map_first;
5166 struct elf_segment_map **pointer_to_map;
5167 Elf_Internal_Phdr *segment;
5168 asection *section;
5169 unsigned int i;
5170 unsigned int num_segments;
5171 bfd_boolean phdr_included = FALSE;
5172 bfd_vma maxpagesize;
5173 struct elf_segment_map *phdr_adjust_seg = NULL;
5174 unsigned int phdr_adjust_num = 0;
5175 const struct elf_backend_data *bed;
5176
5177 bed = get_elf_backend_data (ibfd);
5178 iehdr = elf_elfheader (ibfd);
5179
5180 map_first = NULL;
5181 pointer_to_map = &map_first;
5182
5183 num_segments = elf_elfheader (ibfd)->e_phnum;
5184 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5185
5186 /* Returns the end address of the segment + 1. */
5187 #define SEGMENT_END(segment, start) \
5188 (start + (segment->p_memsz > segment->p_filesz \
5189 ? segment->p_memsz : segment->p_filesz))
5190
5191 #define SECTION_SIZE(section, segment) \
5192 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5193 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5194 ? section->size : 0)
5195
5196 /* Returns TRUE if the given section is contained within
5197 the given segment. VMA addresses are compared. */
5198 #define IS_CONTAINED_BY_VMA(section, segment) \
5199 (section->vma >= segment->p_vaddr \
5200 && (section->vma + SECTION_SIZE (section, segment) \
5201 <= (SEGMENT_END (segment, segment->p_vaddr))))
5202
5203 /* Returns TRUE if the given section is contained within
5204 the given segment. LMA addresses are compared. */
5205 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5206 (section->lma >= base \
5207 && (section->lma + SECTION_SIZE (section, segment) \
5208 <= SEGMENT_END (segment, base)))
5209
5210 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5211 #define IS_COREFILE_NOTE(p, s) \
5212 (p->p_type == PT_NOTE \
5213 && bfd_get_format (ibfd) == bfd_core \
5214 && s->vma == 0 && s->lma == 0 \
5215 && (bfd_vma) s->filepos >= p->p_offset \
5216 && ((bfd_vma) s->filepos + s->size \
5217 <= p->p_offset + p->p_filesz))
5218
5219 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5220 linker, which generates a PT_INTERP section with p_vaddr and
5221 p_memsz set to 0. */
5222 #define IS_SOLARIS_PT_INTERP(p, s) \
5223 (p->p_vaddr == 0 \
5224 && p->p_paddr == 0 \
5225 && p->p_memsz == 0 \
5226 && p->p_filesz > 0 \
5227 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5228 && s->size > 0 \
5229 && (bfd_vma) s->filepos >= p->p_offset \
5230 && ((bfd_vma) s->filepos + s->size \
5231 <= p->p_offset + p->p_filesz))
5232
5233 /* Decide if the given section should be included in the given segment.
5234 A section will be included if:
5235 1. It is within the address space of the segment -- we use the LMA
5236 if that is set for the segment and the VMA otherwise,
5237 2. It is an allocated segment,
5238 3. There is an output section associated with it,
5239 4. The section has not already been allocated to a previous segment.
5240 5. PT_GNU_STACK segments do not include any sections.
5241 6. PT_TLS segment includes only SHF_TLS sections.
5242 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5243 8. PT_DYNAMIC should not contain empty sections at the beginning
5244 (with the possible exception of .dynamic). */
5245 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5246 ((((segment->p_paddr \
5247 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5248 : IS_CONTAINED_BY_VMA (section, segment)) \
5249 && (section->flags & SEC_ALLOC) != 0) \
5250 || IS_COREFILE_NOTE (segment, section)) \
5251 && segment->p_type != PT_GNU_STACK \
5252 && (segment->p_type != PT_TLS \
5253 || (section->flags & SEC_THREAD_LOCAL)) \
5254 && (segment->p_type == PT_LOAD \
5255 || segment->p_type == PT_TLS \
5256 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5257 && (segment->p_type != PT_DYNAMIC \
5258 || SECTION_SIZE (section, segment) > 0 \
5259 || (segment->p_paddr \
5260 ? segment->p_paddr != section->lma \
5261 : segment->p_vaddr != section->vma) \
5262 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5263 == 0)) \
5264 && ! section->segment_mark)
5265
5266 /* If the output section of a section in the input segment is NULL,
5267 it is removed from the corresponding output segment. */
5268 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5269 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5270 && section->output_section != NULL)
5271
5272 /* Returns TRUE iff seg1 starts after the end of seg2. */
5273 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5274 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5275
5276 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5277 their VMA address ranges and their LMA address ranges overlap.
5278 It is possible to have overlapping VMA ranges without overlapping LMA
5279 ranges. RedBoot images for example can have both .data and .bss mapped
5280 to the same VMA range, but with the .data section mapped to a different
5281 LMA. */
5282 #define SEGMENT_OVERLAPS(seg1, seg2) \
5283 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5284 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5285 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5286 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5287
5288 /* Initialise the segment mark field. */
5289 for (section = ibfd->sections; section != NULL; section = section->next)
5290 section->segment_mark = FALSE;
5291
5292 /* Scan through the segments specified in the program header
5293 of the input BFD. For this first scan we look for overlaps
5294 in the loadable segments. These can be created by weird
5295 parameters to objcopy. Also, fix some solaris weirdness. */
5296 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5297 i < num_segments;
5298 i++, segment++)
5299 {
5300 unsigned int j;
5301 Elf_Internal_Phdr *segment2;
5302
5303 if (segment->p_type == PT_INTERP)
5304 for (section = ibfd->sections; section; section = section->next)
5305 if (IS_SOLARIS_PT_INTERP (segment, section))
5306 {
5307 /* Mininal change so that the normal section to segment
5308 assignment code will work. */
5309 segment->p_vaddr = section->vma;
5310 break;
5311 }
5312
5313 if (segment->p_type != PT_LOAD)
5314 continue;
5315
5316 /* Determine if this segment overlaps any previous segments. */
5317 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5318 {
5319 bfd_signed_vma extra_length;
5320
5321 if (segment2->p_type != PT_LOAD
5322 || ! SEGMENT_OVERLAPS (segment, segment2))
5323 continue;
5324
5325 /* Merge the two segments together. */
5326 if (segment2->p_vaddr < segment->p_vaddr)
5327 {
5328 /* Extend SEGMENT2 to include SEGMENT and then delete
5329 SEGMENT. */
5330 extra_length =
5331 SEGMENT_END (segment, segment->p_vaddr)
5332 - SEGMENT_END (segment2, segment2->p_vaddr);
5333
5334 if (extra_length > 0)
5335 {
5336 segment2->p_memsz += extra_length;
5337 segment2->p_filesz += extra_length;
5338 }
5339
5340 segment->p_type = PT_NULL;
5341
5342 /* Since we have deleted P we must restart the outer loop. */
5343 i = 0;
5344 segment = elf_tdata (ibfd)->phdr;
5345 break;
5346 }
5347 else
5348 {
5349 /* Extend SEGMENT to include SEGMENT2 and then delete
5350 SEGMENT2. */
5351 extra_length =
5352 SEGMENT_END (segment2, segment2->p_vaddr)
5353 - SEGMENT_END (segment, segment->p_vaddr);
5354
5355 if (extra_length > 0)
5356 {
5357 segment->p_memsz += extra_length;
5358 segment->p_filesz += extra_length;
5359 }
5360
5361 segment2->p_type = PT_NULL;
5362 }
5363 }
5364 }
5365
5366 /* The second scan attempts to assign sections to segments. */
5367 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5368 i < num_segments;
5369 i ++, segment ++)
5370 {
5371 unsigned int section_count;
5372 asection ** sections;
5373 asection * output_section;
5374 unsigned int isec;
5375 bfd_vma matching_lma;
5376 bfd_vma suggested_lma;
5377 unsigned int j;
5378 bfd_size_type amt;
5379 asection * first_section;
5380
5381 if (segment->p_type == PT_NULL)
5382 continue;
5383
5384 first_section = NULL;
5385 /* Compute how many sections might be placed into this segment. */
5386 for (section = ibfd->sections, section_count = 0;
5387 section != NULL;
5388 section = section->next)
5389 {
5390 /* Find the first section in the input segment, which may be
5391 removed from the corresponding output segment. */
5392 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5393 {
5394 if (first_section == NULL)
5395 first_section = section;
5396 if (section->output_section != NULL)
5397 ++section_count;
5398 }
5399 }
5400
5401 /* Allocate a segment map big enough to contain
5402 all of the sections we have selected. */
5403 amt = sizeof (struct elf_segment_map);
5404 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5405 map = bfd_zalloc (obfd, amt);
5406 if (map == NULL)
5407 return FALSE;
5408
5409 /* Initialise the fields of the segment map. Default to
5410 using the physical address of the segment in the input BFD. */
5411 map->next = NULL;
5412 map->p_type = segment->p_type;
5413 map->p_flags = segment->p_flags;
5414 map->p_flags_valid = 1;
5415
5416 /* If the first section in the input segment is removed, there is
5417 no need to preserve segment physical address in the corresponding
5418 output segment. */
5419 if (!first_section || first_section->output_section != NULL)
5420 {
5421 map->p_paddr = segment->p_paddr;
5422 map->p_paddr_valid = 1;
5423 }
5424
5425 /* Determine if this segment contains the ELF file header
5426 and if it contains the program headers themselves. */
5427 map->includes_filehdr = (segment->p_offset == 0
5428 && segment->p_filesz >= iehdr->e_ehsize);
5429
5430 map->includes_phdrs = 0;
5431
5432 if (! phdr_included || segment->p_type != PT_LOAD)
5433 {
5434 map->includes_phdrs =
5435 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5436 && (segment->p_offset + segment->p_filesz
5437 >= ((bfd_vma) iehdr->e_phoff
5438 + iehdr->e_phnum * iehdr->e_phentsize)));
5439
5440 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5441 phdr_included = TRUE;
5442 }
5443
5444 if (section_count == 0)
5445 {
5446 /* Special segments, such as the PT_PHDR segment, may contain
5447 no sections, but ordinary, loadable segments should contain
5448 something. They are allowed by the ELF spec however, so only
5449 a warning is produced. */
5450 if (segment->p_type == PT_LOAD)
5451 (*_bfd_error_handler)
5452 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5453 ibfd);
5454
5455 map->count = 0;
5456 *pointer_to_map = map;
5457 pointer_to_map = &map->next;
5458
5459 continue;
5460 }
5461
5462 /* Now scan the sections in the input BFD again and attempt
5463 to add their corresponding output sections to the segment map.
5464 The problem here is how to handle an output section which has
5465 been moved (ie had its LMA changed). There are four possibilities:
5466
5467 1. None of the sections have been moved.
5468 In this case we can continue to use the segment LMA from the
5469 input BFD.
5470
5471 2. All of the sections have been moved by the same amount.
5472 In this case we can change the segment's LMA to match the LMA
5473 of the first section.
5474
5475 3. Some of the sections have been moved, others have not.
5476 In this case those sections which have not been moved can be
5477 placed in the current segment which will have to have its size,
5478 and possibly its LMA changed, and a new segment or segments will
5479 have to be created to contain the other sections.
5480
5481 4. The sections have been moved, but not by the same amount.
5482 In this case we can change the segment's LMA to match the LMA
5483 of the first section and we will have to create a new segment
5484 or segments to contain the other sections.
5485
5486 In order to save time, we allocate an array to hold the section
5487 pointers that we are interested in. As these sections get assigned
5488 to a segment, they are removed from this array. */
5489
5490 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5491 to work around this long long bug. */
5492 sections = bfd_malloc2 (section_count, sizeof (asection *));
5493 if (sections == NULL)
5494 return FALSE;
5495
5496 /* Step One: Scan for segment vs section LMA conflicts.
5497 Also add the sections to the section array allocated above.
5498 Also add the sections to the current segment. In the common
5499 case, where the sections have not been moved, this means that
5500 we have completely filled the segment, and there is nothing
5501 more to do. */
5502 isec = 0;
5503 matching_lma = 0;
5504 suggested_lma = 0;
5505
5506 for (j = 0, section = ibfd->sections;
5507 section != NULL;
5508 section = section->next)
5509 {
5510 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5511 {
5512 output_section = section->output_section;
5513
5514 sections[j ++] = section;
5515
5516 /* The Solaris native linker always sets p_paddr to 0.
5517 We try to catch that case here, and set it to the
5518 correct value. Note - some backends require that
5519 p_paddr be left as zero. */
5520 if (segment->p_paddr == 0
5521 && segment->p_vaddr != 0
5522 && (! bed->want_p_paddr_set_to_zero)
5523 && isec == 0
5524 && output_section->lma != 0
5525 && (output_section->vma == (segment->p_vaddr
5526 + (map->includes_filehdr
5527 ? iehdr->e_ehsize
5528 : 0)
5529 + (map->includes_phdrs
5530 ? (iehdr->e_phnum
5531 * iehdr->e_phentsize)
5532 : 0))))
5533 map->p_paddr = segment->p_vaddr;
5534
5535 /* Match up the physical address of the segment with the
5536 LMA address of the output section. */
5537 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5538 || IS_COREFILE_NOTE (segment, section)
5539 || (bed->want_p_paddr_set_to_zero &&
5540 IS_CONTAINED_BY_VMA (output_section, segment))
5541 )
5542 {
5543 if (matching_lma == 0)
5544 matching_lma = output_section->lma;
5545
5546 /* We assume that if the section fits within the segment
5547 then it does not overlap any other section within that
5548 segment. */
5549 map->sections[isec ++] = output_section;
5550 }
5551 else if (suggested_lma == 0)
5552 suggested_lma = output_section->lma;
5553 }
5554 }
5555
5556 BFD_ASSERT (j == section_count);
5557
5558 /* Step Two: Adjust the physical address of the current segment,
5559 if necessary. */
5560 if (isec == section_count)
5561 {
5562 /* All of the sections fitted within the segment as currently
5563 specified. This is the default case. Add the segment to
5564 the list of built segments and carry on to process the next
5565 program header in the input BFD. */
5566 map->count = section_count;
5567 *pointer_to_map = map;
5568 pointer_to_map = &map->next;
5569
5570 if (matching_lma != map->p_paddr
5571 && !map->includes_filehdr && !map->includes_phdrs)
5572 /* There is some padding before the first section in the
5573 segment. So, we must account for that in the output
5574 segment's vma. */
5575 map->p_vaddr_offset = matching_lma - map->p_paddr;
5576
5577 free (sections);
5578 continue;
5579 }
5580 else
5581 {
5582 if (matching_lma != 0)
5583 {
5584 /* At least one section fits inside the current segment.
5585 Keep it, but modify its physical address to match the
5586 LMA of the first section that fitted. */
5587 map->p_paddr = matching_lma;
5588 }
5589 else
5590 {
5591 /* None of the sections fitted inside the current segment.
5592 Change the current segment's physical address to match
5593 the LMA of the first section. */
5594 map->p_paddr = suggested_lma;
5595 }
5596
5597 /* Offset the segment physical address from the lma
5598 to allow for space taken up by elf headers. */
5599 if (map->includes_filehdr)
5600 map->p_paddr -= iehdr->e_ehsize;
5601
5602 if (map->includes_phdrs)
5603 {
5604 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5605
5606 /* iehdr->e_phnum is just an estimate of the number
5607 of program headers that we will need. Make a note
5608 here of the number we used and the segment we chose
5609 to hold these headers, so that we can adjust the
5610 offset when we know the correct value. */
5611 phdr_adjust_num = iehdr->e_phnum;
5612 phdr_adjust_seg = map;
5613 }
5614 }
5615
5616 /* Step Three: Loop over the sections again, this time assigning
5617 those that fit to the current segment and removing them from the
5618 sections array; but making sure not to leave large gaps. Once all
5619 possible sections have been assigned to the current segment it is
5620 added to the list of built segments and if sections still remain
5621 to be assigned, a new segment is constructed before repeating
5622 the loop. */
5623 isec = 0;
5624 do
5625 {
5626 map->count = 0;
5627 suggested_lma = 0;
5628
5629 /* Fill the current segment with sections that fit. */
5630 for (j = 0; j < section_count; j++)
5631 {
5632 section = sections[j];
5633
5634 if (section == NULL)
5635 continue;
5636
5637 output_section = section->output_section;
5638
5639 BFD_ASSERT (output_section != NULL);
5640
5641 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5642 || IS_COREFILE_NOTE (segment, section))
5643 {
5644 if (map->count == 0)
5645 {
5646 /* If the first section in a segment does not start at
5647 the beginning of the segment, then something is
5648 wrong. */
5649 if (output_section->lma !=
5650 (map->p_paddr
5651 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5652 + (map->includes_phdrs
5653 ? iehdr->e_phnum * iehdr->e_phentsize
5654 : 0)))
5655 abort ();
5656 }
5657 else
5658 {
5659 asection * prev_sec;
5660
5661 prev_sec = map->sections[map->count - 1];
5662
5663 /* If the gap between the end of the previous section
5664 and the start of this section is more than
5665 maxpagesize then we need to start a new segment. */
5666 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5667 maxpagesize)
5668 < BFD_ALIGN (output_section->lma, maxpagesize))
5669 || ((prev_sec->lma + prev_sec->size)
5670 > output_section->lma))
5671 {
5672 if (suggested_lma == 0)
5673 suggested_lma = output_section->lma;
5674
5675 continue;
5676 }
5677 }
5678
5679 map->sections[map->count++] = output_section;
5680 ++isec;
5681 sections[j] = NULL;
5682 section->segment_mark = TRUE;
5683 }
5684 else if (suggested_lma == 0)
5685 suggested_lma = output_section->lma;
5686 }
5687
5688 BFD_ASSERT (map->count > 0);
5689
5690 /* Add the current segment to the list of built segments. */
5691 *pointer_to_map = map;
5692 pointer_to_map = &map->next;
5693
5694 if (isec < section_count)
5695 {
5696 /* We still have not allocated all of the sections to
5697 segments. Create a new segment here, initialise it
5698 and carry on looping. */
5699 amt = sizeof (struct elf_segment_map);
5700 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5701 map = bfd_alloc (obfd, amt);
5702 if (map == NULL)
5703 {
5704 free (sections);
5705 return FALSE;
5706 }
5707
5708 /* Initialise the fields of the segment map. Set the physical
5709 physical address to the LMA of the first section that has
5710 not yet been assigned. */
5711 map->next = NULL;
5712 map->p_type = segment->p_type;
5713 map->p_flags = segment->p_flags;
5714 map->p_flags_valid = 1;
5715 map->p_paddr = suggested_lma;
5716 map->p_paddr_valid = 1;
5717 map->includes_filehdr = 0;
5718 map->includes_phdrs = 0;
5719 }
5720 }
5721 while (isec < section_count);
5722
5723 free (sections);
5724 }
5725
5726 /* The Solaris linker creates program headers in which all the
5727 p_paddr fields are zero. When we try to objcopy or strip such a
5728 file, we get confused. Check for this case, and if we find it
5729 reset the p_paddr_valid fields. */
5730 for (map = map_first; map != NULL; map = map->next)
5731 if (map->p_paddr != 0)
5732 break;
5733 if (map == NULL)
5734 for (map = map_first; map != NULL; map = map->next)
5735 map->p_paddr_valid = 0;
5736
5737 elf_tdata (obfd)->segment_map = map_first;
5738
5739 /* If we had to estimate the number of program headers that were
5740 going to be needed, then check our estimate now and adjust
5741 the offset if necessary. */
5742 if (phdr_adjust_seg != NULL)
5743 {
5744 unsigned int count;
5745
5746 for (count = 0, map = map_first; map != NULL; map = map->next)
5747 count++;
5748
5749 if (count > phdr_adjust_num)
5750 phdr_adjust_seg->p_paddr
5751 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5752 }
5753
5754 #undef SEGMENT_END
5755 #undef SECTION_SIZE
5756 #undef IS_CONTAINED_BY_VMA
5757 #undef IS_CONTAINED_BY_LMA
5758 #undef IS_COREFILE_NOTE
5759 #undef IS_SOLARIS_PT_INTERP
5760 #undef IS_SECTION_IN_INPUT_SEGMENT
5761 #undef INCLUDE_SECTION_IN_SEGMENT
5762 #undef SEGMENT_AFTER_SEGMENT
5763 #undef SEGMENT_OVERLAPS
5764 return TRUE;
5765 }
5766
5767 /* Copy ELF program header information. */
5768
5769 static bfd_boolean
5770 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5771 {
5772 Elf_Internal_Ehdr *iehdr;
5773 struct elf_segment_map *map;
5774 struct elf_segment_map *map_first;
5775 struct elf_segment_map **pointer_to_map;
5776 Elf_Internal_Phdr *segment;
5777 unsigned int i;
5778 unsigned int num_segments;
5779 bfd_boolean phdr_included = FALSE;
5780
5781 iehdr = elf_elfheader (ibfd);
5782
5783 map_first = NULL;
5784 pointer_to_map = &map_first;
5785
5786 num_segments = elf_elfheader (ibfd)->e_phnum;
5787 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5788 i < num_segments;
5789 i++, segment++)
5790 {
5791 asection *section;
5792 unsigned int section_count;
5793 bfd_size_type amt;
5794 Elf_Internal_Shdr *this_hdr;
5795 asection *first_section = NULL;
5796
5797 /* FIXME: Do we need to copy PT_NULL segment? */
5798 if (segment->p_type == PT_NULL)
5799 continue;
5800
5801 /* Compute how many sections are in this segment. */
5802 for (section = ibfd->sections, section_count = 0;
5803 section != NULL;
5804 section = section->next)
5805 {
5806 this_hdr = &(elf_section_data(section)->this_hdr);
5807 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5808 {
5809 if (!first_section)
5810 first_section = section;
5811 section_count++;
5812 }
5813 }
5814
5815 /* Allocate a segment map big enough to contain
5816 all of the sections we have selected. */
5817 amt = sizeof (struct elf_segment_map);
5818 if (section_count != 0)
5819 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5820 map = bfd_zalloc (obfd, amt);
5821 if (map == NULL)
5822 return FALSE;
5823
5824 /* Initialize the fields of the output segment map with the
5825 input segment. */
5826 map->next = NULL;
5827 map->p_type = segment->p_type;
5828 map->p_flags = segment->p_flags;
5829 map->p_flags_valid = 1;
5830 map->p_paddr = segment->p_paddr;
5831 map->p_paddr_valid = 1;
5832 map->p_align = segment->p_align;
5833 map->p_align_valid = 1;
5834 map->p_vaddr_offset = 0;
5835
5836 /* Determine if this segment contains the ELF file header
5837 and if it contains the program headers themselves. */
5838 map->includes_filehdr = (segment->p_offset == 0
5839 && segment->p_filesz >= iehdr->e_ehsize);
5840
5841 map->includes_phdrs = 0;
5842 if (! phdr_included || segment->p_type != PT_LOAD)
5843 {
5844 map->includes_phdrs =
5845 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5846 && (segment->p_offset + segment->p_filesz
5847 >= ((bfd_vma) iehdr->e_phoff
5848 + iehdr->e_phnum * iehdr->e_phentsize)));
5849
5850 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5851 phdr_included = TRUE;
5852 }
5853
5854 if (!map->includes_phdrs && !map->includes_filehdr)
5855 /* There is some other padding before the first section. */
5856 map->p_vaddr_offset = ((first_section ? first_section->lma : 0)
5857 - segment->p_paddr);
5858
5859 if (section_count != 0)
5860 {
5861 unsigned int isec = 0;
5862
5863 for (section = first_section;
5864 section != NULL;
5865 section = section->next)
5866 {
5867 this_hdr = &(elf_section_data(section)->this_hdr);
5868 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5869 {
5870 map->sections[isec++] = section->output_section;
5871 if (isec == section_count)
5872 break;
5873 }
5874 }
5875 }
5876
5877 map->count = section_count;
5878 *pointer_to_map = map;
5879 pointer_to_map = &map->next;
5880 }
5881
5882 elf_tdata (obfd)->segment_map = map_first;
5883 return TRUE;
5884 }
5885
5886 /* Copy private BFD data. This copies or rewrites ELF program header
5887 information. */
5888
5889 static bfd_boolean
5890 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5891 {
5892 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5893 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5894 return TRUE;
5895
5896 if (elf_tdata (ibfd)->phdr == NULL)
5897 return TRUE;
5898
5899 if (ibfd->xvec == obfd->xvec)
5900 {
5901 /* Check to see if any sections in the input BFD
5902 covered by ELF program header have changed. */
5903 Elf_Internal_Phdr *segment;
5904 asection *section, *osec;
5905 unsigned int i, num_segments;
5906 Elf_Internal_Shdr *this_hdr;
5907
5908 /* Initialize the segment mark field. */
5909 for (section = obfd->sections; section != NULL;
5910 section = section->next)
5911 section->segment_mark = FALSE;
5912
5913 num_segments = elf_elfheader (ibfd)->e_phnum;
5914 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5915 i < num_segments;
5916 i++, segment++)
5917 {
5918 /* This is a different version of the IS_SOLARIS_PT_INTERP
5919 macro to the one defined in rewrite_elf_program_header(). */
5920 #define IS_SOLARIS_PT_INTERP(p) \
5921 (p->p_type == PT_INTERP \
5922 && p->p_vaddr == 0 \
5923 && p->p_paddr == 0 \
5924 && p->p_memsz == 0 \
5925 && p->p_filesz > 0)
5926
5927 /* PR binutils/3535. The Solaris interpreter program header
5928 needs special treatment, so we always rewrite the headers
5929 when one is detected. */
5930 if (IS_SOLARIS_PT_INTERP (segment))
5931 goto rewrite;
5932
5933 for (section = ibfd->sections;
5934 section != NULL; section = section->next)
5935 {
5936 /* We mark the output section so that we know it comes
5937 from the input BFD. */
5938 osec = section->output_section;
5939 if (osec)
5940 osec->segment_mark = TRUE;
5941
5942 /* Check if this section is covered by the segment. */
5943 this_hdr = &(elf_section_data(section)->this_hdr);
5944 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5945 {
5946 /* FIXME: Check if its output section is changed or
5947 removed. What else do we need to check? */
5948 if (osec == NULL
5949 || section->flags != osec->flags
5950 || section->lma != osec->lma
5951 || section->vma != osec->vma
5952 || section->size != osec->size
5953 || section->rawsize != osec->rawsize
5954 || section->alignment_power != osec->alignment_power)
5955 goto rewrite;
5956 }
5957 }
5958 }
5959
5960 /* Check to see if any output section do not come from the
5961 input BFD. */
5962 for (section = obfd->sections; section != NULL;
5963 section = section->next)
5964 {
5965 if (section->segment_mark == FALSE)
5966 goto rewrite;
5967 else
5968 section->segment_mark = FALSE;
5969 }
5970
5971 return copy_elf_program_header (ibfd, obfd);
5972 }
5973
5974 rewrite:
5975 return rewrite_elf_program_header (ibfd, obfd);
5976 }
5977
5978 /* Initialize private output section information from input section. */
5979
5980 bfd_boolean
5981 _bfd_elf_init_private_section_data (bfd *ibfd,
5982 asection *isec,
5983 bfd *obfd,
5984 asection *osec,
5985 struct bfd_link_info *link_info)
5986
5987 {
5988 Elf_Internal_Shdr *ihdr, *ohdr;
5989 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5990
5991 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5992 || obfd->xvec->flavour != bfd_target_elf_flavour)
5993 return TRUE;
5994
5995 /* Don't copy the output ELF section type from input if the
5996 output BFD section flags have been set to something different.
5997 elf_fake_sections will set ELF section type based on BFD
5998 section flags. */
5999 if (osec->flags == isec->flags || !osec->flags)
6000 {
6001 BFD_ASSERT (osec->flags == isec->flags
6002 || (!osec->flags
6003 && elf_section_type (osec) == SHT_NULL));
6004 elf_section_type (osec) = elf_section_type (isec);
6005 }
6006
6007 /* FIXME: Is this correct for all OS/PROC specific flags? */
6008 elf_section_flags (osec) |= (elf_section_flags (isec)
6009 & (SHF_MASKOS | SHF_MASKPROC));
6010
6011 /* Set things up for objcopy and relocatable link. The output
6012 SHT_GROUP section will have its elf_next_in_group pointing back
6013 to the input group members. Ignore linker created group section.
6014 See elfNN_ia64_object_p in elfxx-ia64.c. */
6015 if (need_group)
6016 {
6017 if (elf_sec_group (isec) == NULL
6018 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6019 {
6020 if (elf_section_flags (isec) & SHF_GROUP)
6021 elf_section_flags (osec) |= SHF_GROUP;
6022 elf_next_in_group (osec) = elf_next_in_group (isec);
6023 elf_group_name (osec) = elf_group_name (isec);
6024 }
6025 }
6026
6027 ihdr = &elf_section_data (isec)->this_hdr;
6028
6029 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6030 don't use the output section of the linked-to section since it
6031 may be NULL at this point. */
6032 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6033 {
6034 ohdr = &elf_section_data (osec)->this_hdr;
6035 ohdr->sh_flags |= SHF_LINK_ORDER;
6036 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6037 }
6038
6039 osec->use_rela_p = isec->use_rela_p;
6040
6041 return TRUE;
6042 }
6043
6044 /* Copy private section information. This copies over the entsize
6045 field, and sometimes the info field. */
6046
6047 bfd_boolean
6048 _bfd_elf_copy_private_section_data (bfd *ibfd,
6049 asection *isec,
6050 bfd *obfd,
6051 asection *osec)
6052 {
6053 Elf_Internal_Shdr *ihdr, *ohdr;
6054
6055 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6056 || obfd->xvec->flavour != bfd_target_elf_flavour)
6057 return TRUE;
6058
6059 ihdr = &elf_section_data (isec)->this_hdr;
6060 ohdr = &elf_section_data (osec)->this_hdr;
6061
6062 ohdr->sh_entsize = ihdr->sh_entsize;
6063
6064 if (ihdr->sh_type == SHT_SYMTAB
6065 || ihdr->sh_type == SHT_DYNSYM
6066 || ihdr->sh_type == SHT_GNU_verneed
6067 || ihdr->sh_type == SHT_GNU_verdef)
6068 ohdr->sh_info = ihdr->sh_info;
6069
6070 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6071 NULL);
6072 }
6073
6074 /* Copy private header information. */
6075
6076 bfd_boolean
6077 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6078 {
6079 asection *isec;
6080
6081 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6082 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6083 return TRUE;
6084
6085 /* Copy over private BFD data if it has not already been copied.
6086 This must be done here, rather than in the copy_private_bfd_data
6087 entry point, because the latter is called after the section
6088 contents have been set, which means that the program headers have
6089 already been worked out. */
6090 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6091 {
6092 if (! copy_private_bfd_data (ibfd, obfd))
6093 return FALSE;
6094 }
6095
6096 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6097 but this might be wrong if we deleted the group section. */
6098 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6099 if (elf_section_type (isec) == SHT_GROUP
6100 && isec->output_section == NULL)
6101 {
6102 asection *first = elf_next_in_group (isec);
6103 asection *s = first;
6104 while (s != NULL)
6105 {
6106 if (s->output_section != NULL)
6107 {
6108 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6109 elf_group_name (s->output_section) = NULL;
6110 }
6111 s = elf_next_in_group (s);
6112 if (s == first)
6113 break;
6114 }
6115 }
6116
6117 return TRUE;
6118 }
6119
6120 /* Copy private symbol information. If this symbol is in a section
6121 which we did not map into a BFD section, try to map the section
6122 index correctly. We use special macro definitions for the mapped
6123 section indices; these definitions are interpreted by the
6124 swap_out_syms function. */
6125
6126 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6127 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6128 #define MAP_STRTAB (SHN_HIOS + 3)
6129 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6130 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6131
6132 bfd_boolean
6133 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6134 asymbol *isymarg,
6135 bfd *obfd,
6136 asymbol *osymarg)
6137 {
6138 elf_symbol_type *isym, *osym;
6139
6140 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6141 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6142 return TRUE;
6143
6144 isym = elf_symbol_from (ibfd, isymarg);
6145 osym = elf_symbol_from (obfd, osymarg);
6146
6147 if (isym != NULL
6148 && osym != NULL
6149 && bfd_is_abs_section (isym->symbol.section))
6150 {
6151 unsigned int shndx;
6152
6153 shndx = isym->internal_elf_sym.st_shndx;
6154 if (shndx == elf_onesymtab (ibfd))
6155 shndx = MAP_ONESYMTAB;
6156 else if (shndx == elf_dynsymtab (ibfd))
6157 shndx = MAP_DYNSYMTAB;
6158 else if (shndx == elf_tdata (ibfd)->strtab_section)
6159 shndx = MAP_STRTAB;
6160 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6161 shndx = MAP_SHSTRTAB;
6162 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6163 shndx = MAP_SYM_SHNDX;
6164 osym->internal_elf_sym.st_shndx = shndx;
6165 }
6166
6167 return TRUE;
6168 }
6169
6170 /* Swap out the symbols. */
6171
6172 static bfd_boolean
6173 swap_out_syms (bfd *abfd,
6174 struct bfd_strtab_hash **sttp,
6175 int relocatable_p)
6176 {
6177 const struct elf_backend_data *bed;
6178 int symcount;
6179 asymbol **syms;
6180 struct bfd_strtab_hash *stt;
6181 Elf_Internal_Shdr *symtab_hdr;
6182 Elf_Internal_Shdr *symtab_shndx_hdr;
6183 Elf_Internal_Shdr *symstrtab_hdr;
6184 bfd_byte *outbound_syms;
6185 bfd_byte *outbound_shndx;
6186 int idx;
6187 bfd_size_type amt;
6188 bfd_boolean name_local_sections;
6189
6190 if (!elf_map_symbols (abfd))
6191 return FALSE;
6192
6193 /* Dump out the symtabs. */
6194 stt = _bfd_elf_stringtab_init ();
6195 if (stt == NULL)
6196 return FALSE;
6197
6198 bed = get_elf_backend_data (abfd);
6199 symcount = bfd_get_symcount (abfd);
6200 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6201 symtab_hdr->sh_type = SHT_SYMTAB;
6202 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6203 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6204 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6205 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6206
6207 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6208 symstrtab_hdr->sh_type = SHT_STRTAB;
6209
6210 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6211 if (outbound_syms == NULL)
6212 {
6213 _bfd_stringtab_free (stt);
6214 return FALSE;
6215 }
6216 symtab_hdr->contents = outbound_syms;
6217
6218 outbound_shndx = NULL;
6219 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6220 if (symtab_shndx_hdr->sh_name != 0)
6221 {
6222 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6223 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6224 sizeof (Elf_External_Sym_Shndx));
6225 if (outbound_shndx == NULL)
6226 {
6227 _bfd_stringtab_free (stt);
6228 return FALSE;
6229 }
6230
6231 symtab_shndx_hdr->contents = outbound_shndx;
6232 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6233 symtab_shndx_hdr->sh_size = amt;
6234 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6235 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6236 }
6237
6238 /* Now generate the data (for "contents"). */
6239 {
6240 /* Fill in zeroth symbol and swap it out. */
6241 Elf_Internal_Sym sym;
6242 sym.st_name = 0;
6243 sym.st_value = 0;
6244 sym.st_size = 0;
6245 sym.st_info = 0;
6246 sym.st_other = 0;
6247 sym.st_shndx = SHN_UNDEF;
6248 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6249 outbound_syms += bed->s->sizeof_sym;
6250 if (outbound_shndx != NULL)
6251 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6252 }
6253
6254 name_local_sections
6255 = (bed->elf_backend_name_local_section_symbols
6256 && bed->elf_backend_name_local_section_symbols (abfd));
6257
6258 syms = bfd_get_outsymbols (abfd);
6259 for (idx = 0; idx < symcount; idx++)
6260 {
6261 Elf_Internal_Sym sym;
6262 bfd_vma value = syms[idx]->value;
6263 elf_symbol_type *type_ptr;
6264 flagword flags = syms[idx]->flags;
6265 int type;
6266
6267 if (!name_local_sections
6268 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6269 {
6270 /* Local section symbols have no name. */
6271 sym.st_name = 0;
6272 }
6273 else
6274 {
6275 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6276 syms[idx]->name,
6277 TRUE, FALSE);
6278 if (sym.st_name == (unsigned long) -1)
6279 {
6280 _bfd_stringtab_free (stt);
6281 return FALSE;
6282 }
6283 }
6284
6285 type_ptr = elf_symbol_from (abfd, syms[idx]);
6286
6287 if ((flags & BSF_SECTION_SYM) == 0
6288 && bfd_is_com_section (syms[idx]->section))
6289 {
6290 /* ELF common symbols put the alignment into the `value' field,
6291 and the size into the `size' field. This is backwards from
6292 how BFD handles it, so reverse it here. */
6293 sym.st_size = value;
6294 if (type_ptr == NULL
6295 || type_ptr->internal_elf_sym.st_value == 0)
6296 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6297 else
6298 sym.st_value = type_ptr->internal_elf_sym.st_value;
6299 sym.st_shndx = _bfd_elf_section_from_bfd_section
6300 (abfd, syms[idx]->section);
6301 }
6302 else
6303 {
6304 asection *sec = syms[idx]->section;
6305 int shndx;
6306
6307 if (sec->output_section)
6308 {
6309 value += sec->output_offset;
6310 sec = sec->output_section;
6311 }
6312
6313 /* Don't add in the section vma for relocatable output. */
6314 if (! relocatable_p)
6315 value += sec->vma;
6316 sym.st_value = value;
6317 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6318
6319 if (bfd_is_abs_section (sec)
6320 && type_ptr != NULL
6321 && type_ptr->internal_elf_sym.st_shndx != 0)
6322 {
6323 /* This symbol is in a real ELF section which we did
6324 not create as a BFD section. Undo the mapping done
6325 by copy_private_symbol_data. */
6326 shndx = type_ptr->internal_elf_sym.st_shndx;
6327 switch (shndx)
6328 {
6329 case MAP_ONESYMTAB:
6330 shndx = elf_onesymtab (abfd);
6331 break;
6332 case MAP_DYNSYMTAB:
6333 shndx = elf_dynsymtab (abfd);
6334 break;
6335 case MAP_STRTAB:
6336 shndx = elf_tdata (abfd)->strtab_section;
6337 break;
6338 case MAP_SHSTRTAB:
6339 shndx = elf_tdata (abfd)->shstrtab_section;
6340 break;
6341 case MAP_SYM_SHNDX:
6342 shndx = elf_tdata (abfd)->symtab_shndx_section;
6343 break;
6344 default:
6345 break;
6346 }
6347 }
6348 else
6349 {
6350 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6351
6352 if (shndx == -1)
6353 {
6354 asection *sec2;
6355
6356 /* Writing this would be a hell of a lot easier if
6357 we had some decent documentation on bfd, and
6358 knew what to expect of the library, and what to
6359 demand of applications. For example, it
6360 appears that `objcopy' might not set the
6361 section of a symbol to be a section that is
6362 actually in the output file. */
6363 sec2 = bfd_get_section_by_name (abfd, sec->name);
6364 if (sec2 == NULL)
6365 {
6366 _bfd_error_handler (_("\
6367 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6368 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6369 sec->name);
6370 bfd_set_error (bfd_error_invalid_operation);
6371 _bfd_stringtab_free (stt);
6372 return FALSE;
6373 }
6374
6375 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6376 BFD_ASSERT (shndx != -1);
6377 }
6378 }
6379
6380 sym.st_shndx = shndx;
6381 }
6382
6383 if ((flags & BSF_THREAD_LOCAL) != 0)
6384 type = STT_TLS;
6385 else if ((flags & BSF_FUNCTION) != 0)
6386 type = STT_FUNC;
6387 else if ((flags & BSF_OBJECT) != 0)
6388 type = STT_OBJECT;
6389 else if ((flags & BSF_RELC) != 0)
6390 type = STT_RELC;
6391 else if ((flags & BSF_SRELC) != 0)
6392 type = STT_SRELC;
6393 else
6394 type = STT_NOTYPE;
6395
6396 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6397 type = STT_TLS;
6398
6399 /* Processor-specific types. */
6400 if (type_ptr != NULL
6401 && bed->elf_backend_get_symbol_type)
6402 type = ((*bed->elf_backend_get_symbol_type)
6403 (&type_ptr->internal_elf_sym, type));
6404
6405 if (flags & BSF_SECTION_SYM)
6406 {
6407 if (flags & BSF_GLOBAL)
6408 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6409 else
6410 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6411 }
6412 else if (bfd_is_com_section (syms[idx]->section))
6413 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6414 else if (bfd_is_und_section (syms[idx]->section))
6415 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6416 ? STB_WEAK
6417 : STB_GLOBAL),
6418 type);
6419 else if (flags & BSF_FILE)
6420 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6421 else
6422 {
6423 int bind = STB_LOCAL;
6424
6425 if (flags & BSF_LOCAL)
6426 bind = STB_LOCAL;
6427 else if (flags & BSF_WEAK)
6428 bind = STB_WEAK;
6429 else if (flags & BSF_GLOBAL)
6430 bind = STB_GLOBAL;
6431
6432 sym.st_info = ELF_ST_INFO (bind, type);
6433 }
6434
6435 if (type_ptr != NULL)
6436 sym.st_other = type_ptr->internal_elf_sym.st_other;
6437 else
6438 sym.st_other = 0;
6439
6440 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6441 outbound_syms += bed->s->sizeof_sym;
6442 if (outbound_shndx != NULL)
6443 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6444 }
6445
6446 *sttp = stt;
6447 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6448 symstrtab_hdr->sh_type = SHT_STRTAB;
6449
6450 symstrtab_hdr->sh_flags = 0;
6451 symstrtab_hdr->sh_addr = 0;
6452 symstrtab_hdr->sh_entsize = 0;
6453 symstrtab_hdr->sh_link = 0;
6454 symstrtab_hdr->sh_info = 0;
6455 symstrtab_hdr->sh_addralign = 1;
6456
6457 return TRUE;
6458 }
6459
6460 /* Return the number of bytes required to hold the symtab vector.
6461
6462 Note that we base it on the count plus 1, since we will null terminate
6463 the vector allocated based on this size. However, the ELF symbol table
6464 always has a dummy entry as symbol #0, so it ends up even. */
6465
6466 long
6467 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6468 {
6469 long symcount;
6470 long symtab_size;
6471 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6472
6473 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6474 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6475 if (symcount > 0)
6476 symtab_size -= sizeof (asymbol *);
6477
6478 return symtab_size;
6479 }
6480
6481 long
6482 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6483 {
6484 long symcount;
6485 long symtab_size;
6486 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6487
6488 if (elf_dynsymtab (abfd) == 0)
6489 {
6490 bfd_set_error (bfd_error_invalid_operation);
6491 return -1;
6492 }
6493
6494 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6495 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6496 if (symcount > 0)
6497 symtab_size -= sizeof (asymbol *);
6498
6499 return symtab_size;
6500 }
6501
6502 long
6503 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6504 sec_ptr asect)
6505 {
6506 return (asect->reloc_count + 1) * sizeof (arelent *);
6507 }
6508
6509 /* Canonicalize the relocs. */
6510
6511 long
6512 _bfd_elf_canonicalize_reloc (bfd *abfd,
6513 sec_ptr section,
6514 arelent **relptr,
6515 asymbol **symbols)
6516 {
6517 arelent *tblptr;
6518 unsigned int i;
6519 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6520
6521 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6522 return -1;
6523
6524 tblptr = section->relocation;
6525 for (i = 0; i < section->reloc_count; i++)
6526 *relptr++ = tblptr++;
6527
6528 *relptr = NULL;
6529
6530 return section->reloc_count;
6531 }
6532
6533 long
6534 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6535 {
6536 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6537 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6538
6539 if (symcount >= 0)
6540 bfd_get_symcount (abfd) = symcount;
6541 return symcount;
6542 }
6543
6544 long
6545 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6546 asymbol **allocation)
6547 {
6548 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6549 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6550
6551 if (symcount >= 0)
6552 bfd_get_dynamic_symcount (abfd) = symcount;
6553 return symcount;
6554 }
6555
6556 /* Return the size required for the dynamic reloc entries. Any loadable
6557 section that was actually installed in the BFD, and has type SHT_REL
6558 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6559 dynamic reloc section. */
6560
6561 long
6562 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6563 {
6564 long ret;
6565 asection *s;
6566
6567 if (elf_dynsymtab (abfd) == 0)
6568 {
6569 bfd_set_error (bfd_error_invalid_operation);
6570 return -1;
6571 }
6572
6573 ret = sizeof (arelent *);
6574 for (s = abfd->sections; s != NULL; s = s->next)
6575 if ((s->flags & SEC_LOAD) != 0
6576 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6577 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6578 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6579 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6580 * sizeof (arelent *));
6581
6582 return ret;
6583 }
6584
6585 /* Canonicalize the dynamic relocation entries. Note that we return the
6586 dynamic relocations as a single block, although they are actually
6587 associated with particular sections; the interface, which was
6588 designed for SunOS style shared libraries, expects that there is only
6589 one set of dynamic relocs. Any loadable section that was actually
6590 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6591 dynamic symbol table, is considered to be a dynamic reloc section. */
6592
6593 long
6594 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6595 arelent **storage,
6596 asymbol **syms)
6597 {
6598 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6599 asection *s;
6600 long ret;
6601
6602 if (elf_dynsymtab (abfd) == 0)
6603 {
6604 bfd_set_error (bfd_error_invalid_operation);
6605 return -1;
6606 }
6607
6608 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6609 ret = 0;
6610 for (s = abfd->sections; s != NULL; s = s->next)
6611 {
6612 if ((s->flags & SEC_LOAD) != 0
6613 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6614 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6615 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6616 {
6617 arelent *p;
6618 long count, i;
6619
6620 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6621 return -1;
6622 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6623 p = s->relocation;
6624 for (i = 0; i < count; i++)
6625 *storage++ = p++;
6626 ret += count;
6627 }
6628 }
6629
6630 *storage = NULL;
6631
6632 return ret;
6633 }
6634 \f
6635 /* Read in the version information. */
6636
6637 bfd_boolean
6638 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6639 {
6640 bfd_byte *contents = NULL;
6641 unsigned int freeidx = 0;
6642
6643 if (elf_dynverref (abfd) != 0)
6644 {
6645 Elf_Internal_Shdr *hdr;
6646 Elf_External_Verneed *everneed;
6647 Elf_Internal_Verneed *iverneed;
6648 unsigned int i;
6649 bfd_byte *contents_end;
6650
6651 hdr = &elf_tdata (abfd)->dynverref_hdr;
6652
6653 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6654 sizeof (Elf_Internal_Verneed));
6655 if (elf_tdata (abfd)->verref == NULL)
6656 goto error_return;
6657
6658 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6659
6660 contents = bfd_malloc (hdr->sh_size);
6661 if (contents == NULL)
6662 {
6663 error_return_verref:
6664 elf_tdata (abfd)->verref = NULL;
6665 elf_tdata (abfd)->cverrefs = 0;
6666 goto error_return;
6667 }
6668 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6669 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6670 goto error_return_verref;
6671
6672 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6673 goto error_return_verref;
6674
6675 BFD_ASSERT (sizeof (Elf_External_Verneed)
6676 == sizeof (Elf_External_Vernaux));
6677 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6678 everneed = (Elf_External_Verneed *) contents;
6679 iverneed = elf_tdata (abfd)->verref;
6680 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6681 {
6682 Elf_External_Vernaux *evernaux;
6683 Elf_Internal_Vernaux *ivernaux;
6684 unsigned int j;
6685
6686 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6687
6688 iverneed->vn_bfd = abfd;
6689
6690 iverneed->vn_filename =
6691 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6692 iverneed->vn_file);
6693 if (iverneed->vn_filename == NULL)
6694 goto error_return_verref;
6695
6696 if (iverneed->vn_cnt == 0)
6697 iverneed->vn_auxptr = NULL;
6698 else
6699 {
6700 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6701 sizeof (Elf_Internal_Vernaux));
6702 if (iverneed->vn_auxptr == NULL)
6703 goto error_return_verref;
6704 }
6705
6706 if (iverneed->vn_aux
6707 > (size_t) (contents_end - (bfd_byte *) everneed))
6708 goto error_return_verref;
6709
6710 evernaux = ((Elf_External_Vernaux *)
6711 ((bfd_byte *) everneed + iverneed->vn_aux));
6712 ivernaux = iverneed->vn_auxptr;
6713 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6714 {
6715 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6716
6717 ivernaux->vna_nodename =
6718 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6719 ivernaux->vna_name);
6720 if (ivernaux->vna_nodename == NULL)
6721 goto error_return_verref;
6722
6723 if (j + 1 < iverneed->vn_cnt)
6724 ivernaux->vna_nextptr = ivernaux + 1;
6725 else
6726 ivernaux->vna_nextptr = NULL;
6727
6728 if (ivernaux->vna_next
6729 > (size_t) (contents_end - (bfd_byte *) evernaux))
6730 goto error_return_verref;
6731
6732 evernaux = ((Elf_External_Vernaux *)
6733 ((bfd_byte *) evernaux + ivernaux->vna_next));
6734
6735 if (ivernaux->vna_other > freeidx)
6736 freeidx = ivernaux->vna_other;
6737 }
6738
6739 if (i + 1 < hdr->sh_info)
6740 iverneed->vn_nextref = iverneed + 1;
6741 else
6742 iverneed->vn_nextref = NULL;
6743
6744 if (iverneed->vn_next
6745 > (size_t) (contents_end - (bfd_byte *) everneed))
6746 goto error_return_verref;
6747
6748 everneed = ((Elf_External_Verneed *)
6749 ((bfd_byte *) everneed + iverneed->vn_next));
6750 }
6751
6752 free (contents);
6753 contents = NULL;
6754 }
6755
6756 if (elf_dynverdef (abfd) != 0)
6757 {
6758 Elf_Internal_Shdr *hdr;
6759 Elf_External_Verdef *everdef;
6760 Elf_Internal_Verdef *iverdef;
6761 Elf_Internal_Verdef *iverdefarr;
6762 Elf_Internal_Verdef iverdefmem;
6763 unsigned int i;
6764 unsigned int maxidx;
6765 bfd_byte *contents_end_def, *contents_end_aux;
6766
6767 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6768
6769 contents = bfd_malloc (hdr->sh_size);
6770 if (contents == NULL)
6771 goto error_return;
6772 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6773 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6774 goto error_return;
6775
6776 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6777 goto error_return;
6778
6779 BFD_ASSERT (sizeof (Elf_External_Verdef)
6780 >= sizeof (Elf_External_Verdaux));
6781 contents_end_def = contents + hdr->sh_size
6782 - sizeof (Elf_External_Verdef);
6783 contents_end_aux = contents + hdr->sh_size
6784 - sizeof (Elf_External_Verdaux);
6785
6786 /* We know the number of entries in the section but not the maximum
6787 index. Therefore we have to run through all entries and find
6788 the maximum. */
6789 everdef = (Elf_External_Verdef *) contents;
6790 maxidx = 0;
6791 for (i = 0; i < hdr->sh_info; ++i)
6792 {
6793 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6794
6795 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6796 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6797
6798 if (iverdefmem.vd_next
6799 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6800 goto error_return;
6801
6802 everdef = ((Elf_External_Verdef *)
6803 ((bfd_byte *) everdef + iverdefmem.vd_next));
6804 }
6805
6806 if (default_imported_symver)
6807 {
6808 if (freeidx > maxidx)
6809 maxidx = ++freeidx;
6810 else
6811 freeidx = ++maxidx;
6812 }
6813 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6814 sizeof (Elf_Internal_Verdef));
6815 if (elf_tdata (abfd)->verdef == NULL)
6816 goto error_return;
6817
6818 elf_tdata (abfd)->cverdefs = maxidx;
6819
6820 everdef = (Elf_External_Verdef *) contents;
6821 iverdefarr = elf_tdata (abfd)->verdef;
6822 for (i = 0; i < hdr->sh_info; i++)
6823 {
6824 Elf_External_Verdaux *everdaux;
6825 Elf_Internal_Verdaux *iverdaux;
6826 unsigned int j;
6827
6828 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6829
6830 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6831 {
6832 error_return_verdef:
6833 elf_tdata (abfd)->verdef = NULL;
6834 elf_tdata (abfd)->cverdefs = 0;
6835 goto error_return;
6836 }
6837
6838 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6839 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6840
6841 iverdef->vd_bfd = abfd;
6842
6843 if (iverdef->vd_cnt == 0)
6844 iverdef->vd_auxptr = NULL;
6845 else
6846 {
6847 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6848 sizeof (Elf_Internal_Verdaux));
6849 if (iverdef->vd_auxptr == NULL)
6850 goto error_return_verdef;
6851 }
6852
6853 if (iverdef->vd_aux
6854 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6855 goto error_return_verdef;
6856
6857 everdaux = ((Elf_External_Verdaux *)
6858 ((bfd_byte *) everdef + iverdef->vd_aux));
6859 iverdaux = iverdef->vd_auxptr;
6860 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6861 {
6862 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6863
6864 iverdaux->vda_nodename =
6865 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6866 iverdaux->vda_name);
6867 if (iverdaux->vda_nodename == NULL)
6868 goto error_return_verdef;
6869
6870 if (j + 1 < iverdef->vd_cnt)
6871 iverdaux->vda_nextptr = iverdaux + 1;
6872 else
6873 iverdaux->vda_nextptr = NULL;
6874
6875 if (iverdaux->vda_next
6876 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6877 goto error_return_verdef;
6878
6879 everdaux = ((Elf_External_Verdaux *)
6880 ((bfd_byte *) everdaux + iverdaux->vda_next));
6881 }
6882
6883 if (iverdef->vd_cnt)
6884 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6885
6886 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6887 iverdef->vd_nextdef = iverdef + 1;
6888 else
6889 iverdef->vd_nextdef = NULL;
6890
6891 everdef = ((Elf_External_Verdef *)
6892 ((bfd_byte *) everdef + iverdef->vd_next));
6893 }
6894
6895 free (contents);
6896 contents = NULL;
6897 }
6898 else if (default_imported_symver)
6899 {
6900 if (freeidx < 3)
6901 freeidx = 3;
6902 else
6903 freeidx++;
6904
6905 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6906 sizeof (Elf_Internal_Verdef));
6907 if (elf_tdata (abfd)->verdef == NULL)
6908 goto error_return;
6909
6910 elf_tdata (abfd)->cverdefs = freeidx;
6911 }
6912
6913 /* Create a default version based on the soname. */
6914 if (default_imported_symver)
6915 {
6916 Elf_Internal_Verdef *iverdef;
6917 Elf_Internal_Verdaux *iverdaux;
6918
6919 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6920
6921 iverdef->vd_version = VER_DEF_CURRENT;
6922 iverdef->vd_flags = 0;
6923 iverdef->vd_ndx = freeidx;
6924 iverdef->vd_cnt = 1;
6925
6926 iverdef->vd_bfd = abfd;
6927
6928 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6929 if (iverdef->vd_nodename == NULL)
6930 goto error_return_verdef;
6931 iverdef->vd_nextdef = NULL;
6932 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6933 if (iverdef->vd_auxptr == NULL)
6934 goto error_return_verdef;
6935
6936 iverdaux = iverdef->vd_auxptr;
6937 iverdaux->vda_nodename = iverdef->vd_nodename;
6938 iverdaux->vda_nextptr = NULL;
6939 }
6940
6941 return TRUE;
6942
6943 error_return:
6944 if (contents != NULL)
6945 free (contents);
6946 return FALSE;
6947 }
6948 \f
6949 asymbol *
6950 _bfd_elf_make_empty_symbol (bfd *abfd)
6951 {
6952 elf_symbol_type *newsym;
6953 bfd_size_type amt = sizeof (elf_symbol_type);
6954
6955 newsym = bfd_zalloc (abfd, amt);
6956 if (!newsym)
6957 return NULL;
6958 else
6959 {
6960 newsym->symbol.the_bfd = abfd;
6961 return &newsym->symbol;
6962 }
6963 }
6964
6965 void
6966 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6967 asymbol *symbol,
6968 symbol_info *ret)
6969 {
6970 bfd_symbol_info (symbol, ret);
6971 }
6972
6973 /* Return whether a symbol name implies a local symbol. Most targets
6974 use this function for the is_local_label_name entry point, but some
6975 override it. */
6976
6977 bfd_boolean
6978 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6979 const char *name)
6980 {
6981 /* Normal local symbols start with ``.L''. */
6982 if (name[0] == '.' && name[1] == 'L')
6983 return TRUE;
6984
6985 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6986 DWARF debugging symbols starting with ``..''. */
6987 if (name[0] == '.' && name[1] == '.')
6988 return TRUE;
6989
6990 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6991 emitting DWARF debugging output. I suspect this is actually a
6992 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6993 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6994 underscore to be emitted on some ELF targets). For ease of use,
6995 we treat such symbols as local. */
6996 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6997 return TRUE;
6998
6999 return FALSE;
7000 }
7001
7002 alent *
7003 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7004 asymbol *symbol ATTRIBUTE_UNUSED)
7005 {
7006 abort ();
7007 return NULL;
7008 }
7009
7010 bfd_boolean
7011 _bfd_elf_set_arch_mach (bfd *abfd,
7012 enum bfd_architecture arch,
7013 unsigned long machine)
7014 {
7015 /* If this isn't the right architecture for this backend, and this
7016 isn't the generic backend, fail. */
7017 if (arch != get_elf_backend_data (abfd)->arch
7018 && arch != bfd_arch_unknown
7019 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7020 return FALSE;
7021
7022 return bfd_default_set_arch_mach (abfd, arch, machine);
7023 }
7024
7025 /* Find the function to a particular section and offset,
7026 for error reporting. */
7027
7028 static bfd_boolean
7029 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7030 asection *section,
7031 asymbol **symbols,
7032 bfd_vma offset,
7033 const char **filename_ptr,
7034 const char **functionname_ptr)
7035 {
7036 const char *filename;
7037 asymbol *func, *file;
7038 bfd_vma low_func;
7039 asymbol **p;
7040 /* ??? Given multiple file symbols, it is impossible to reliably
7041 choose the right file name for global symbols. File symbols are
7042 local symbols, and thus all file symbols must sort before any
7043 global symbols. The ELF spec may be interpreted to say that a
7044 file symbol must sort before other local symbols, but currently
7045 ld -r doesn't do this. So, for ld -r output, it is possible to
7046 make a better choice of file name for local symbols by ignoring
7047 file symbols appearing after a given local symbol. */
7048 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7049
7050 filename = NULL;
7051 func = NULL;
7052 file = NULL;
7053 low_func = 0;
7054 state = nothing_seen;
7055
7056 for (p = symbols; *p != NULL; p++)
7057 {
7058 elf_symbol_type *q;
7059
7060 q = (elf_symbol_type *) *p;
7061
7062 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7063 {
7064 default:
7065 break;
7066 case STT_FILE:
7067 file = &q->symbol;
7068 if (state == symbol_seen)
7069 state = file_after_symbol_seen;
7070 continue;
7071 case STT_NOTYPE:
7072 case STT_FUNC:
7073 if (bfd_get_section (&q->symbol) == section
7074 && q->symbol.value >= low_func
7075 && q->symbol.value <= offset)
7076 {
7077 func = (asymbol *) q;
7078 low_func = q->symbol.value;
7079 filename = NULL;
7080 if (file != NULL
7081 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7082 || state != file_after_symbol_seen))
7083 filename = bfd_asymbol_name (file);
7084 }
7085 break;
7086 }
7087 if (state == nothing_seen)
7088 state = symbol_seen;
7089 }
7090
7091 if (func == NULL)
7092 return FALSE;
7093
7094 if (filename_ptr)
7095 *filename_ptr = filename;
7096 if (functionname_ptr)
7097 *functionname_ptr = bfd_asymbol_name (func);
7098
7099 return TRUE;
7100 }
7101
7102 /* Find the nearest line to a particular section and offset,
7103 for error reporting. */
7104
7105 bfd_boolean
7106 _bfd_elf_find_nearest_line (bfd *abfd,
7107 asection *section,
7108 asymbol **symbols,
7109 bfd_vma offset,
7110 const char **filename_ptr,
7111 const char **functionname_ptr,
7112 unsigned int *line_ptr)
7113 {
7114 bfd_boolean found;
7115
7116 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7117 filename_ptr, functionname_ptr,
7118 line_ptr))
7119 {
7120 if (!*functionname_ptr)
7121 elf_find_function (abfd, section, symbols, offset,
7122 *filename_ptr ? NULL : filename_ptr,
7123 functionname_ptr);
7124
7125 return TRUE;
7126 }
7127
7128 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7129 filename_ptr, functionname_ptr,
7130 line_ptr, 0,
7131 &elf_tdata (abfd)->dwarf2_find_line_info))
7132 {
7133 if (!*functionname_ptr)
7134 elf_find_function (abfd, section, symbols, offset,
7135 *filename_ptr ? NULL : filename_ptr,
7136 functionname_ptr);
7137
7138 return TRUE;
7139 }
7140
7141 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7142 &found, filename_ptr,
7143 functionname_ptr, line_ptr,
7144 &elf_tdata (abfd)->line_info))
7145 return FALSE;
7146 if (found && (*functionname_ptr || *line_ptr))
7147 return TRUE;
7148
7149 if (symbols == NULL)
7150 return FALSE;
7151
7152 if (! elf_find_function (abfd, section, symbols, offset,
7153 filename_ptr, functionname_ptr))
7154 return FALSE;
7155
7156 *line_ptr = 0;
7157 return TRUE;
7158 }
7159
7160 /* Find the line for a symbol. */
7161
7162 bfd_boolean
7163 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7164 const char **filename_ptr, unsigned int *line_ptr)
7165 {
7166 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7167 filename_ptr, line_ptr, 0,
7168 &elf_tdata (abfd)->dwarf2_find_line_info);
7169 }
7170
7171 /* After a call to bfd_find_nearest_line, successive calls to
7172 bfd_find_inliner_info can be used to get source information about
7173 each level of function inlining that terminated at the address
7174 passed to bfd_find_nearest_line. Currently this is only supported
7175 for DWARF2 with appropriate DWARF3 extensions. */
7176
7177 bfd_boolean
7178 _bfd_elf_find_inliner_info (bfd *abfd,
7179 const char **filename_ptr,
7180 const char **functionname_ptr,
7181 unsigned int *line_ptr)
7182 {
7183 bfd_boolean found;
7184 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7185 functionname_ptr, line_ptr,
7186 & elf_tdata (abfd)->dwarf2_find_line_info);
7187 return found;
7188 }
7189
7190 int
7191 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7192 {
7193 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7194 int ret = bed->s->sizeof_ehdr;
7195
7196 if (!info->relocatable)
7197 {
7198 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7199
7200 if (phdr_size == (bfd_size_type) -1)
7201 {
7202 struct elf_segment_map *m;
7203
7204 phdr_size = 0;
7205 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7206 phdr_size += bed->s->sizeof_phdr;
7207
7208 if (phdr_size == 0)
7209 phdr_size = get_program_header_size (abfd, info);
7210 }
7211
7212 elf_tdata (abfd)->program_header_size = phdr_size;
7213 ret += phdr_size;
7214 }
7215
7216 return ret;
7217 }
7218
7219 bfd_boolean
7220 _bfd_elf_set_section_contents (bfd *abfd,
7221 sec_ptr section,
7222 const void *location,
7223 file_ptr offset,
7224 bfd_size_type count)
7225 {
7226 Elf_Internal_Shdr *hdr;
7227 bfd_signed_vma pos;
7228
7229 if (! abfd->output_has_begun
7230 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7231 return FALSE;
7232
7233 hdr = &elf_section_data (section)->this_hdr;
7234 pos = hdr->sh_offset + offset;
7235 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7236 || bfd_bwrite (location, count, abfd) != count)
7237 return FALSE;
7238
7239 return TRUE;
7240 }
7241
7242 void
7243 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7244 arelent *cache_ptr ATTRIBUTE_UNUSED,
7245 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7246 {
7247 abort ();
7248 }
7249
7250 /* Try to convert a non-ELF reloc into an ELF one. */
7251
7252 bfd_boolean
7253 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7254 {
7255 /* Check whether we really have an ELF howto. */
7256
7257 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7258 {
7259 bfd_reloc_code_real_type code;
7260 reloc_howto_type *howto;
7261
7262 /* Alien reloc: Try to determine its type to replace it with an
7263 equivalent ELF reloc. */
7264
7265 if (areloc->howto->pc_relative)
7266 {
7267 switch (areloc->howto->bitsize)
7268 {
7269 case 8:
7270 code = BFD_RELOC_8_PCREL;
7271 break;
7272 case 12:
7273 code = BFD_RELOC_12_PCREL;
7274 break;
7275 case 16:
7276 code = BFD_RELOC_16_PCREL;
7277 break;
7278 case 24:
7279 code = BFD_RELOC_24_PCREL;
7280 break;
7281 case 32:
7282 code = BFD_RELOC_32_PCREL;
7283 break;
7284 case 64:
7285 code = BFD_RELOC_64_PCREL;
7286 break;
7287 default:
7288 goto fail;
7289 }
7290
7291 howto = bfd_reloc_type_lookup (abfd, code);
7292
7293 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7294 {
7295 if (howto->pcrel_offset)
7296 areloc->addend += areloc->address;
7297 else
7298 areloc->addend -= areloc->address; /* addend is unsigned!! */
7299 }
7300 }
7301 else
7302 {
7303 switch (areloc->howto->bitsize)
7304 {
7305 case 8:
7306 code = BFD_RELOC_8;
7307 break;
7308 case 14:
7309 code = BFD_RELOC_14;
7310 break;
7311 case 16:
7312 code = BFD_RELOC_16;
7313 break;
7314 case 26:
7315 code = BFD_RELOC_26;
7316 break;
7317 case 32:
7318 code = BFD_RELOC_32;
7319 break;
7320 case 64:
7321 code = BFD_RELOC_64;
7322 break;
7323 default:
7324 goto fail;
7325 }
7326
7327 howto = bfd_reloc_type_lookup (abfd, code);
7328 }
7329
7330 if (howto)
7331 areloc->howto = howto;
7332 else
7333 goto fail;
7334 }
7335
7336 return TRUE;
7337
7338 fail:
7339 (*_bfd_error_handler)
7340 (_("%B: unsupported relocation type %s"),
7341 abfd, areloc->howto->name);
7342 bfd_set_error (bfd_error_bad_value);
7343 return FALSE;
7344 }
7345
7346 bfd_boolean
7347 _bfd_elf_close_and_cleanup (bfd *abfd)
7348 {
7349 if (bfd_get_format (abfd) == bfd_object)
7350 {
7351 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7352 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7353 _bfd_dwarf2_cleanup_debug_info (abfd);
7354 }
7355
7356 return _bfd_generic_close_and_cleanup (abfd);
7357 }
7358
7359 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7360 in the relocation's offset. Thus we cannot allow any sort of sanity
7361 range-checking to interfere. There is nothing else to do in processing
7362 this reloc. */
7363
7364 bfd_reloc_status_type
7365 _bfd_elf_rel_vtable_reloc_fn
7366 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7367 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7368 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7369 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7370 {
7371 return bfd_reloc_ok;
7372 }
7373 \f
7374 /* Elf core file support. Much of this only works on native
7375 toolchains, since we rely on knowing the
7376 machine-dependent procfs structure in order to pick
7377 out details about the corefile. */
7378
7379 #ifdef HAVE_SYS_PROCFS_H
7380 # include <sys/procfs.h>
7381 #endif
7382
7383 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7384
7385 static int
7386 elfcore_make_pid (bfd *abfd)
7387 {
7388 return ((elf_tdata (abfd)->core_lwpid << 16)
7389 + (elf_tdata (abfd)->core_pid));
7390 }
7391
7392 /* If there isn't a section called NAME, make one, using
7393 data from SECT. Note, this function will generate a
7394 reference to NAME, so you shouldn't deallocate or
7395 overwrite it. */
7396
7397 static bfd_boolean
7398 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7399 {
7400 asection *sect2;
7401
7402 if (bfd_get_section_by_name (abfd, name) != NULL)
7403 return TRUE;
7404
7405 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7406 if (sect2 == NULL)
7407 return FALSE;
7408
7409 sect2->size = sect->size;
7410 sect2->filepos = sect->filepos;
7411 sect2->alignment_power = sect->alignment_power;
7412 return TRUE;
7413 }
7414
7415 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7416 actually creates up to two pseudosections:
7417 - For the single-threaded case, a section named NAME, unless
7418 such a section already exists.
7419 - For the multi-threaded case, a section named "NAME/PID", where
7420 PID is elfcore_make_pid (abfd).
7421 Both pseudosections have identical contents. */
7422 bfd_boolean
7423 _bfd_elfcore_make_pseudosection (bfd *abfd,
7424 char *name,
7425 size_t size,
7426 ufile_ptr filepos)
7427 {
7428 char buf[100];
7429 char *threaded_name;
7430 size_t len;
7431 asection *sect;
7432
7433 /* Build the section name. */
7434
7435 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7436 len = strlen (buf) + 1;
7437 threaded_name = bfd_alloc (abfd, len);
7438 if (threaded_name == NULL)
7439 return FALSE;
7440 memcpy (threaded_name, buf, len);
7441
7442 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7443 SEC_HAS_CONTENTS);
7444 if (sect == NULL)
7445 return FALSE;
7446 sect->size = size;
7447 sect->filepos = filepos;
7448 sect->alignment_power = 2;
7449
7450 return elfcore_maybe_make_sect (abfd, name, sect);
7451 }
7452
7453 /* prstatus_t exists on:
7454 solaris 2.5+
7455 linux 2.[01] + glibc
7456 unixware 4.2
7457 */
7458
7459 #if defined (HAVE_PRSTATUS_T)
7460
7461 static bfd_boolean
7462 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7463 {
7464 size_t size;
7465 int offset;
7466
7467 if (note->descsz == sizeof (prstatus_t))
7468 {
7469 prstatus_t prstat;
7470
7471 size = sizeof (prstat.pr_reg);
7472 offset = offsetof (prstatus_t, pr_reg);
7473 memcpy (&prstat, note->descdata, sizeof (prstat));
7474
7475 /* Do not overwrite the core signal if it
7476 has already been set by another thread. */
7477 if (elf_tdata (abfd)->core_signal == 0)
7478 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7479 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7480
7481 /* pr_who exists on:
7482 solaris 2.5+
7483 unixware 4.2
7484 pr_who doesn't exist on:
7485 linux 2.[01]
7486 */
7487 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7488 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7489 #endif
7490 }
7491 #if defined (HAVE_PRSTATUS32_T)
7492 else if (note->descsz == sizeof (prstatus32_t))
7493 {
7494 /* 64-bit host, 32-bit corefile */
7495 prstatus32_t prstat;
7496
7497 size = sizeof (prstat.pr_reg);
7498 offset = offsetof (prstatus32_t, pr_reg);
7499 memcpy (&prstat, note->descdata, sizeof (prstat));
7500
7501 /* Do not overwrite the core signal if it
7502 has already been set by another thread. */
7503 if (elf_tdata (abfd)->core_signal == 0)
7504 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7505 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7506
7507 /* pr_who exists on:
7508 solaris 2.5+
7509 unixware 4.2
7510 pr_who doesn't exist on:
7511 linux 2.[01]
7512 */
7513 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7514 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7515 #endif
7516 }
7517 #endif /* HAVE_PRSTATUS32_T */
7518 else
7519 {
7520 /* Fail - we don't know how to handle any other
7521 note size (ie. data object type). */
7522 return TRUE;
7523 }
7524
7525 /* Make a ".reg/999" section and a ".reg" section. */
7526 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7527 size, note->descpos + offset);
7528 }
7529 #endif /* defined (HAVE_PRSTATUS_T) */
7530
7531 /* Create a pseudosection containing the exact contents of NOTE. */
7532 static bfd_boolean
7533 elfcore_make_note_pseudosection (bfd *abfd,
7534 char *name,
7535 Elf_Internal_Note *note)
7536 {
7537 return _bfd_elfcore_make_pseudosection (abfd, name,
7538 note->descsz, note->descpos);
7539 }
7540
7541 /* There isn't a consistent prfpregset_t across platforms,
7542 but it doesn't matter, because we don't have to pick this
7543 data structure apart. */
7544
7545 static bfd_boolean
7546 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7547 {
7548 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7549 }
7550
7551 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7552 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7553 literally. */
7554
7555 static bfd_boolean
7556 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7557 {
7558 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7559 }
7560
7561 #if defined (HAVE_PRPSINFO_T)
7562 typedef prpsinfo_t elfcore_psinfo_t;
7563 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7564 typedef prpsinfo32_t elfcore_psinfo32_t;
7565 #endif
7566 #endif
7567
7568 #if defined (HAVE_PSINFO_T)
7569 typedef psinfo_t elfcore_psinfo_t;
7570 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7571 typedef psinfo32_t elfcore_psinfo32_t;
7572 #endif
7573 #endif
7574
7575 /* return a malloc'ed copy of a string at START which is at
7576 most MAX bytes long, possibly without a terminating '\0'.
7577 the copy will always have a terminating '\0'. */
7578
7579 char *
7580 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7581 {
7582 char *dups;
7583 char *end = memchr (start, '\0', max);
7584 size_t len;
7585
7586 if (end == NULL)
7587 len = max;
7588 else
7589 len = end - start;
7590
7591 dups = bfd_alloc (abfd, len + 1);
7592 if (dups == NULL)
7593 return NULL;
7594
7595 memcpy (dups, start, len);
7596 dups[len] = '\0';
7597
7598 return dups;
7599 }
7600
7601 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7602 static bfd_boolean
7603 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7604 {
7605 if (note->descsz == sizeof (elfcore_psinfo_t))
7606 {
7607 elfcore_psinfo_t psinfo;
7608
7609 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7610
7611 elf_tdata (abfd)->core_program
7612 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7613 sizeof (psinfo.pr_fname));
7614
7615 elf_tdata (abfd)->core_command
7616 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7617 sizeof (psinfo.pr_psargs));
7618 }
7619 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7620 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7621 {
7622 /* 64-bit host, 32-bit corefile */
7623 elfcore_psinfo32_t psinfo;
7624
7625 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7626
7627 elf_tdata (abfd)->core_program
7628 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7629 sizeof (psinfo.pr_fname));
7630
7631 elf_tdata (abfd)->core_command
7632 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7633 sizeof (psinfo.pr_psargs));
7634 }
7635 #endif
7636
7637 else
7638 {
7639 /* Fail - we don't know how to handle any other
7640 note size (ie. data object type). */
7641 return TRUE;
7642 }
7643
7644 /* Note that for some reason, a spurious space is tacked
7645 onto the end of the args in some (at least one anyway)
7646 implementations, so strip it off if it exists. */
7647
7648 {
7649 char *command = elf_tdata (abfd)->core_command;
7650 int n = strlen (command);
7651
7652 if (0 < n && command[n - 1] == ' ')
7653 command[n - 1] = '\0';
7654 }
7655
7656 return TRUE;
7657 }
7658 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7659
7660 #if defined (HAVE_PSTATUS_T)
7661 static bfd_boolean
7662 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7663 {
7664 if (note->descsz == sizeof (pstatus_t)
7665 #if defined (HAVE_PXSTATUS_T)
7666 || note->descsz == sizeof (pxstatus_t)
7667 #endif
7668 )
7669 {
7670 pstatus_t pstat;
7671
7672 memcpy (&pstat, note->descdata, sizeof (pstat));
7673
7674 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7675 }
7676 #if defined (HAVE_PSTATUS32_T)
7677 else if (note->descsz == sizeof (pstatus32_t))
7678 {
7679 /* 64-bit host, 32-bit corefile */
7680 pstatus32_t pstat;
7681
7682 memcpy (&pstat, note->descdata, sizeof (pstat));
7683
7684 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7685 }
7686 #endif
7687 /* Could grab some more details from the "representative"
7688 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7689 NT_LWPSTATUS note, presumably. */
7690
7691 return TRUE;
7692 }
7693 #endif /* defined (HAVE_PSTATUS_T) */
7694
7695 #if defined (HAVE_LWPSTATUS_T)
7696 static bfd_boolean
7697 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7698 {
7699 lwpstatus_t lwpstat;
7700 char buf[100];
7701 char *name;
7702 size_t len;
7703 asection *sect;
7704
7705 if (note->descsz != sizeof (lwpstat)
7706 #if defined (HAVE_LWPXSTATUS_T)
7707 && note->descsz != sizeof (lwpxstatus_t)
7708 #endif
7709 )
7710 return TRUE;
7711
7712 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7713
7714 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7715 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7716
7717 /* Make a ".reg/999" section. */
7718
7719 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7720 len = strlen (buf) + 1;
7721 name = bfd_alloc (abfd, len);
7722 if (name == NULL)
7723 return FALSE;
7724 memcpy (name, buf, len);
7725
7726 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7727 if (sect == NULL)
7728 return FALSE;
7729
7730 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7731 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7732 sect->filepos = note->descpos
7733 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7734 #endif
7735
7736 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7737 sect->size = sizeof (lwpstat.pr_reg);
7738 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7739 #endif
7740
7741 sect->alignment_power = 2;
7742
7743 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7744 return FALSE;
7745
7746 /* Make a ".reg2/999" section */
7747
7748 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7749 len = strlen (buf) + 1;
7750 name = bfd_alloc (abfd, len);
7751 if (name == NULL)
7752 return FALSE;
7753 memcpy (name, buf, len);
7754
7755 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7756 if (sect == NULL)
7757 return FALSE;
7758
7759 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7760 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7761 sect->filepos = note->descpos
7762 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7763 #endif
7764
7765 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7766 sect->size = sizeof (lwpstat.pr_fpreg);
7767 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7768 #endif
7769
7770 sect->alignment_power = 2;
7771
7772 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7773 }
7774 #endif /* defined (HAVE_LWPSTATUS_T) */
7775
7776 #if defined (HAVE_WIN32_PSTATUS_T)
7777 static bfd_boolean
7778 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7779 {
7780 char buf[30];
7781 char *name;
7782 size_t len;
7783 asection *sect;
7784 win32_pstatus_t pstatus;
7785
7786 if (note->descsz < sizeof (pstatus))
7787 return TRUE;
7788
7789 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7790
7791 switch (pstatus.data_type)
7792 {
7793 case NOTE_INFO_PROCESS:
7794 /* FIXME: need to add ->core_command. */
7795 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7796 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7797 break;
7798
7799 case NOTE_INFO_THREAD:
7800 /* Make a ".reg/999" section. */
7801 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7802
7803 len = strlen (buf) + 1;
7804 name = bfd_alloc (abfd, len);
7805 if (name == NULL)
7806 return FALSE;
7807
7808 memcpy (name, buf, len);
7809
7810 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7811 if (sect == NULL)
7812 return FALSE;
7813
7814 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7815 sect->filepos = (note->descpos
7816 + offsetof (struct win32_pstatus,
7817 data.thread_info.thread_context));
7818 sect->alignment_power = 2;
7819
7820 if (pstatus.data.thread_info.is_active_thread)
7821 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7822 return FALSE;
7823 break;
7824
7825 case NOTE_INFO_MODULE:
7826 /* Make a ".module/xxxxxxxx" section. */
7827 sprintf (buf, ".module/%08lx",
7828 (long) pstatus.data.module_info.base_address);
7829
7830 len = strlen (buf) + 1;
7831 name = bfd_alloc (abfd, len);
7832 if (name == NULL)
7833 return FALSE;
7834
7835 memcpy (name, buf, len);
7836
7837 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7838
7839 if (sect == NULL)
7840 return FALSE;
7841
7842 sect->size = note->descsz;
7843 sect->filepos = note->descpos;
7844 sect->alignment_power = 2;
7845 break;
7846
7847 default:
7848 return TRUE;
7849 }
7850
7851 return TRUE;
7852 }
7853 #endif /* HAVE_WIN32_PSTATUS_T */
7854
7855 static bfd_boolean
7856 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7857 {
7858 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7859
7860 switch (note->type)
7861 {
7862 default:
7863 return TRUE;
7864
7865 case NT_PRSTATUS:
7866 if (bed->elf_backend_grok_prstatus)
7867 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7868 return TRUE;
7869 #if defined (HAVE_PRSTATUS_T)
7870 return elfcore_grok_prstatus (abfd, note);
7871 #else
7872 return TRUE;
7873 #endif
7874
7875 #if defined (HAVE_PSTATUS_T)
7876 case NT_PSTATUS:
7877 return elfcore_grok_pstatus (abfd, note);
7878 #endif
7879
7880 #if defined (HAVE_LWPSTATUS_T)
7881 case NT_LWPSTATUS:
7882 return elfcore_grok_lwpstatus (abfd, note);
7883 #endif
7884
7885 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7886 return elfcore_grok_prfpreg (abfd, note);
7887
7888 #if defined (HAVE_WIN32_PSTATUS_T)
7889 case NT_WIN32PSTATUS:
7890 return elfcore_grok_win32pstatus (abfd, note);
7891 #endif
7892
7893 case NT_PRXFPREG: /* Linux SSE extension */
7894 if (note->namesz == 6
7895 && strcmp (note->namedata, "LINUX") == 0)
7896 return elfcore_grok_prxfpreg (abfd, note);
7897 else
7898 return TRUE;
7899
7900 case NT_PRPSINFO:
7901 case NT_PSINFO:
7902 if (bed->elf_backend_grok_psinfo)
7903 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7904 return TRUE;
7905 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7906 return elfcore_grok_psinfo (abfd, note);
7907 #else
7908 return TRUE;
7909 #endif
7910
7911 case NT_AUXV:
7912 {
7913 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7914 SEC_HAS_CONTENTS);
7915
7916 if (sect == NULL)
7917 return FALSE;
7918 sect->size = note->descsz;
7919 sect->filepos = note->descpos;
7920 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7921
7922 return TRUE;
7923 }
7924 }
7925 }
7926
7927 static bfd_boolean
7928 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7929 {
7930 char *cp;
7931
7932 cp = strchr (note->namedata, '@');
7933 if (cp != NULL)
7934 {
7935 *lwpidp = atoi(cp + 1);
7936 return TRUE;
7937 }
7938 return FALSE;
7939 }
7940
7941 static bfd_boolean
7942 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7943 {
7944
7945 /* Signal number at offset 0x08. */
7946 elf_tdata (abfd)->core_signal
7947 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7948
7949 /* Process ID at offset 0x50. */
7950 elf_tdata (abfd)->core_pid
7951 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7952
7953 /* Command name at 0x7c (max 32 bytes, including nul). */
7954 elf_tdata (abfd)->core_command
7955 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7956
7957 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7958 note);
7959 }
7960
7961 static bfd_boolean
7962 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7963 {
7964 int lwp;
7965
7966 if (elfcore_netbsd_get_lwpid (note, &lwp))
7967 elf_tdata (abfd)->core_lwpid = lwp;
7968
7969 if (note->type == NT_NETBSDCORE_PROCINFO)
7970 {
7971 /* NetBSD-specific core "procinfo". Note that we expect to
7972 find this note before any of the others, which is fine,
7973 since the kernel writes this note out first when it
7974 creates a core file. */
7975
7976 return elfcore_grok_netbsd_procinfo (abfd, note);
7977 }
7978
7979 /* As of Jan 2002 there are no other machine-independent notes
7980 defined for NetBSD core files. If the note type is less
7981 than the start of the machine-dependent note types, we don't
7982 understand it. */
7983
7984 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7985 return TRUE;
7986
7987
7988 switch (bfd_get_arch (abfd))
7989 {
7990 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7991 PT_GETFPREGS == mach+2. */
7992
7993 case bfd_arch_alpha:
7994 case bfd_arch_sparc:
7995 switch (note->type)
7996 {
7997 case NT_NETBSDCORE_FIRSTMACH+0:
7998 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7999
8000 case NT_NETBSDCORE_FIRSTMACH+2:
8001 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8002
8003 default:
8004 return TRUE;
8005 }
8006
8007 /* On all other arch's, PT_GETREGS == mach+1 and
8008 PT_GETFPREGS == mach+3. */
8009
8010 default:
8011 switch (note->type)
8012 {
8013 case NT_NETBSDCORE_FIRSTMACH+1:
8014 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8015
8016 case NT_NETBSDCORE_FIRSTMACH+3:
8017 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8018
8019 default:
8020 return TRUE;
8021 }
8022 }
8023 /* NOTREACHED */
8024 }
8025
8026 static bfd_boolean
8027 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8028 {
8029 void *ddata = note->descdata;
8030 char buf[100];
8031 char *name;
8032 asection *sect;
8033 short sig;
8034 unsigned flags;
8035
8036 /* nto_procfs_status 'pid' field is at offset 0. */
8037 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8038
8039 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8040 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8041
8042 /* nto_procfs_status 'flags' field is at offset 8. */
8043 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8044
8045 /* nto_procfs_status 'what' field is at offset 14. */
8046 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8047 {
8048 elf_tdata (abfd)->core_signal = sig;
8049 elf_tdata (abfd)->core_lwpid = *tid;
8050 }
8051
8052 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8053 do not come from signals so we make sure we set the current
8054 thread just in case. */
8055 if (flags & 0x00000080)
8056 elf_tdata (abfd)->core_lwpid = *tid;
8057
8058 /* Make a ".qnx_core_status/%d" section. */
8059 sprintf (buf, ".qnx_core_status/%ld", *tid);
8060
8061 name = bfd_alloc (abfd, strlen (buf) + 1);
8062 if (name == NULL)
8063 return FALSE;
8064 strcpy (name, buf);
8065
8066 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8067 if (sect == NULL)
8068 return FALSE;
8069
8070 sect->size = note->descsz;
8071 sect->filepos = note->descpos;
8072 sect->alignment_power = 2;
8073
8074 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8075 }
8076
8077 static bfd_boolean
8078 elfcore_grok_nto_regs (bfd *abfd,
8079 Elf_Internal_Note *note,
8080 long tid,
8081 char *base)
8082 {
8083 char buf[100];
8084 char *name;
8085 asection *sect;
8086
8087 /* Make a "(base)/%d" section. */
8088 sprintf (buf, "%s/%ld", base, tid);
8089
8090 name = bfd_alloc (abfd, strlen (buf) + 1);
8091 if (name == NULL)
8092 return FALSE;
8093 strcpy (name, buf);
8094
8095 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8096 if (sect == NULL)
8097 return FALSE;
8098
8099 sect->size = note->descsz;
8100 sect->filepos = note->descpos;
8101 sect->alignment_power = 2;
8102
8103 /* This is the current thread. */
8104 if (elf_tdata (abfd)->core_lwpid == tid)
8105 return elfcore_maybe_make_sect (abfd, base, sect);
8106
8107 return TRUE;
8108 }
8109
8110 #define BFD_QNT_CORE_INFO 7
8111 #define BFD_QNT_CORE_STATUS 8
8112 #define BFD_QNT_CORE_GREG 9
8113 #define BFD_QNT_CORE_FPREG 10
8114
8115 static bfd_boolean
8116 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8117 {
8118 /* Every GREG section has a STATUS section before it. Store the
8119 tid from the previous call to pass down to the next gregs
8120 function. */
8121 static long tid = 1;
8122
8123 switch (note->type)
8124 {
8125 case BFD_QNT_CORE_INFO:
8126 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8127 case BFD_QNT_CORE_STATUS:
8128 return elfcore_grok_nto_status (abfd, note, &tid);
8129 case BFD_QNT_CORE_GREG:
8130 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8131 case BFD_QNT_CORE_FPREG:
8132 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8133 default:
8134 return TRUE;
8135 }
8136 }
8137
8138 /* Function: elfcore_write_note
8139
8140 Inputs:
8141 buffer to hold note, and current size of buffer
8142 name of note
8143 type of note
8144 data for note
8145 size of data for note
8146
8147 Writes note to end of buffer. ELF64 notes are written exactly as
8148 for ELF32, despite the current (as of 2006) ELF gabi specifying
8149 that they ought to have 8-byte namesz and descsz field, and have
8150 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8151
8152 Return:
8153 Pointer to realloc'd buffer, *BUFSIZ updated. */
8154
8155 char *
8156 elfcore_write_note (bfd *abfd,
8157 char *buf,
8158 int *bufsiz,
8159 const char *name,
8160 int type,
8161 const void *input,
8162 int size)
8163 {
8164 Elf_External_Note *xnp;
8165 size_t namesz;
8166 size_t newspace;
8167 char *dest;
8168
8169 namesz = 0;
8170 if (name != NULL)
8171 namesz = strlen (name) + 1;
8172
8173 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8174
8175 buf = realloc (buf, *bufsiz + newspace);
8176 dest = buf + *bufsiz;
8177 *bufsiz += newspace;
8178 xnp = (Elf_External_Note *) dest;
8179 H_PUT_32 (abfd, namesz, xnp->namesz);
8180 H_PUT_32 (abfd, size, xnp->descsz);
8181 H_PUT_32 (abfd, type, xnp->type);
8182 dest = xnp->name;
8183 if (name != NULL)
8184 {
8185 memcpy (dest, name, namesz);
8186 dest += namesz;
8187 while (namesz & 3)
8188 {
8189 *dest++ = '\0';
8190 ++namesz;
8191 }
8192 }
8193 memcpy (dest, input, size);
8194 dest += size;
8195 while (size & 3)
8196 {
8197 *dest++ = '\0';
8198 ++size;
8199 }
8200 return buf;
8201 }
8202
8203 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8204 char *
8205 elfcore_write_prpsinfo (bfd *abfd,
8206 char *buf,
8207 int *bufsiz,
8208 const char *fname,
8209 const char *psargs)
8210 {
8211 const char *note_name = "CORE";
8212 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8213
8214 if (bed->elf_backend_write_core_note != NULL)
8215 {
8216 char *ret;
8217 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8218 NT_PRPSINFO, fname, psargs);
8219 if (ret != NULL)
8220 return ret;
8221 }
8222
8223 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8224 if (bed->s->elfclass == ELFCLASS32)
8225 {
8226 #if defined (HAVE_PSINFO32_T)
8227 psinfo32_t data;
8228 int note_type = NT_PSINFO;
8229 #else
8230 prpsinfo32_t data;
8231 int note_type = NT_PRPSINFO;
8232 #endif
8233
8234 memset (&data, 0, sizeof (data));
8235 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8236 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8237 return elfcore_write_note (abfd, buf, bufsiz,
8238 note_name, note_type, &data, sizeof (data));
8239 }
8240 else
8241 #endif
8242 {
8243 #if defined (HAVE_PSINFO_T)
8244 psinfo_t data;
8245 int note_type = NT_PSINFO;
8246 #else
8247 prpsinfo_t data;
8248 int note_type = NT_PRPSINFO;
8249 #endif
8250
8251 memset (&data, 0, sizeof (data));
8252 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8253 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8254 return elfcore_write_note (abfd, buf, bufsiz,
8255 note_name, note_type, &data, sizeof (data));
8256 }
8257 }
8258 #endif /* PSINFO_T or PRPSINFO_T */
8259
8260 #if defined (HAVE_PRSTATUS_T)
8261 char *
8262 elfcore_write_prstatus (bfd *abfd,
8263 char *buf,
8264 int *bufsiz,
8265 long pid,
8266 int cursig,
8267 const void *gregs)
8268 {
8269 const char *note_name = "CORE";
8270 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8271
8272 if (bed->elf_backend_write_core_note != NULL)
8273 {
8274 char *ret;
8275 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8276 NT_PRSTATUS,
8277 pid, cursig, gregs);
8278 if (ret != NULL)
8279 return ret;
8280 }
8281
8282 #if defined (HAVE_PRSTATUS32_T)
8283 if (bed->s->elfclass == ELFCLASS32)
8284 {
8285 prstatus32_t prstat;
8286
8287 memset (&prstat, 0, sizeof (prstat));
8288 prstat.pr_pid = pid;
8289 prstat.pr_cursig = cursig;
8290 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8291 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8292 NT_PRSTATUS, &prstat, sizeof (prstat));
8293 }
8294 else
8295 #endif
8296 {
8297 prstatus_t prstat;
8298
8299 memset (&prstat, 0, sizeof (prstat));
8300 prstat.pr_pid = pid;
8301 prstat.pr_cursig = cursig;
8302 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8303 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8304 NT_PRSTATUS, &prstat, sizeof (prstat));
8305 }
8306 }
8307 #endif /* HAVE_PRSTATUS_T */
8308
8309 #if defined (HAVE_LWPSTATUS_T)
8310 char *
8311 elfcore_write_lwpstatus (bfd *abfd,
8312 char *buf,
8313 int *bufsiz,
8314 long pid,
8315 int cursig,
8316 const void *gregs)
8317 {
8318 lwpstatus_t lwpstat;
8319 const char *note_name = "CORE";
8320
8321 memset (&lwpstat, 0, sizeof (lwpstat));
8322 lwpstat.pr_lwpid = pid >> 16;
8323 lwpstat.pr_cursig = cursig;
8324 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8325 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8326 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8327 #if !defined(gregs)
8328 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8329 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8330 #else
8331 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8332 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8333 #endif
8334 #endif
8335 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8336 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8337 }
8338 #endif /* HAVE_LWPSTATUS_T */
8339
8340 #if defined (HAVE_PSTATUS_T)
8341 char *
8342 elfcore_write_pstatus (bfd *abfd,
8343 char *buf,
8344 int *bufsiz,
8345 long pid,
8346 int cursig ATTRIBUTE_UNUSED,
8347 const void *gregs ATTRIBUTE_UNUSED)
8348 {
8349 const char *note_name = "CORE";
8350 #if defined (HAVE_PSTATUS32_T)
8351 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8352
8353 if (bed->s->elfclass == ELFCLASS32)
8354 {
8355 pstatus32_t pstat;
8356
8357 memset (&pstat, 0, sizeof (pstat));
8358 pstat.pr_pid = pid & 0xffff;
8359 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8360 NT_PSTATUS, &pstat, sizeof (pstat));
8361 return buf;
8362 }
8363 else
8364 #endif
8365 {
8366 pstatus_t pstat;
8367
8368 memset (&pstat, 0, sizeof (pstat));
8369 pstat.pr_pid = pid & 0xffff;
8370 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8371 NT_PSTATUS, &pstat, sizeof (pstat));
8372 return buf;
8373 }
8374 }
8375 #endif /* HAVE_PSTATUS_T */
8376
8377 char *
8378 elfcore_write_prfpreg (bfd *abfd,
8379 char *buf,
8380 int *bufsiz,
8381 const void *fpregs,
8382 int size)
8383 {
8384 const char *note_name = "CORE";
8385 return elfcore_write_note (abfd, buf, bufsiz,
8386 note_name, NT_FPREGSET, fpregs, size);
8387 }
8388
8389 char *
8390 elfcore_write_prxfpreg (bfd *abfd,
8391 char *buf,
8392 int *bufsiz,
8393 const void *xfpregs,
8394 int size)
8395 {
8396 char *note_name = "LINUX";
8397 return elfcore_write_note (abfd, buf, bufsiz,
8398 note_name, NT_PRXFPREG, xfpregs, size);
8399 }
8400
8401 static bfd_boolean
8402 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8403 {
8404 char *buf;
8405 char *p;
8406
8407 if (size <= 0)
8408 return TRUE;
8409
8410 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8411 return FALSE;
8412
8413 buf = bfd_malloc (size);
8414 if (buf == NULL)
8415 return FALSE;
8416
8417 if (bfd_bread (buf, size, abfd) != size)
8418 {
8419 error:
8420 free (buf);
8421 return FALSE;
8422 }
8423
8424 p = buf;
8425 while (p < buf + size)
8426 {
8427 /* FIXME: bad alignment assumption. */
8428 Elf_External_Note *xnp = (Elf_External_Note *) p;
8429 Elf_Internal_Note in;
8430
8431 in.type = H_GET_32 (abfd, xnp->type);
8432
8433 in.namesz = H_GET_32 (abfd, xnp->namesz);
8434 in.namedata = xnp->name;
8435
8436 in.descsz = H_GET_32 (abfd, xnp->descsz);
8437 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8438 in.descpos = offset + (in.descdata - buf);
8439
8440 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8441 {
8442 if (! elfcore_grok_netbsd_note (abfd, &in))
8443 goto error;
8444 }
8445 else if (CONST_STRNEQ (in.namedata, "QNX"))
8446 {
8447 if (! elfcore_grok_nto_note (abfd, &in))
8448 goto error;
8449 }
8450 else
8451 {
8452 if (! elfcore_grok_note (abfd, &in))
8453 goto error;
8454 }
8455
8456 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8457 }
8458
8459 free (buf);
8460 return TRUE;
8461 }
8462 \f
8463 /* Providing external access to the ELF program header table. */
8464
8465 /* Return an upper bound on the number of bytes required to store a
8466 copy of ABFD's program header table entries. Return -1 if an error
8467 occurs; bfd_get_error will return an appropriate code. */
8468
8469 long
8470 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8471 {
8472 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8473 {
8474 bfd_set_error (bfd_error_wrong_format);
8475 return -1;
8476 }
8477
8478 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8479 }
8480
8481 /* Copy ABFD's program header table entries to *PHDRS. The entries
8482 will be stored as an array of Elf_Internal_Phdr structures, as
8483 defined in include/elf/internal.h. To find out how large the
8484 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8485
8486 Return the number of program header table entries read, or -1 if an
8487 error occurs; bfd_get_error will return an appropriate code. */
8488
8489 int
8490 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8491 {
8492 int num_phdrs;
8493
8494 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8495 {
8496 bfd_set_error (bfd_error_wrong_format);
8497 return -1;
8498 }
8499
8500 num_phdrs = elf_elfheader (abfd)->e_phnum;
8501 memcpy (phdrs, elf_tdata (abfd)->phdr,
8502 num_phdrs * sizeof (Elf_Internal_Phdr));
8503
8504 return num_phdrs;
8505 }
8506
8507 void
8508 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8509 {
8510 #ifdef BFD64
8511 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8512
8513 i_ehdrp = elf_elfheader (abfd);
8514 if (i_ehdrp == NULL)
8515 sprintf_vma (buf, value);
8516 else
8517 {
8518 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8519 {
8520 #if BFD_HOST_64BIT_LONG
8521 sprintf (buf, "%016lx", value);
8522 #else
8523 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8524 _bfd_int64_low (value));
8525 #endif
8526 }
8527 else
8528 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8529 }
8530 #else
8531 sprintf_vma (buf, value);
8532 #endif
8533 }
8534
8535 void
8536 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8537 {
8538 #ifdef BFD64
8539 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8540
8541 i_ehdrp = elf_elfheader (abfd);
8542 if (i_ehdrp == NULL)
8543 fprintf_vma ((FILE *) stream, value);
8544 else
8545 {
8546 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8547 {
8548 #if BFD_HOST_64BIT_LONG
8549 fprintf ((FILE *) stream, "%016lx", value);
8550 #else
8551 fprintf ((FILE *) stream, "%08lx%08lx",
8552 _bfd_int64_high (value), _bfd_int64_low (value));
8553 #endif
8554 }
8555 else
8556 fprintf ((FILE *) stream, "%08lx",
8557 (unsigned long) (value & 0xffffffff));
8558 }
8559 #else
8560 fprintf_vma ((FILE *) stream, value);
8561 #endif
8562 }
8563
8564 enum elf_reloc_type_class
8565 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8566 {
8567 return reloc_class_normal;
8568 }
8569
8570 /* For RELA architectures, return the relocation value for a
8571 relocation against a local symbol. */
8572
8573 bfd_vma
8574 _bfd_elf_rela_local_sym (bfd *abfd,
8575 Elf_Internal_Sym *sym,
8576 asection **psec,
8577 Elf_Internal_Rela *rel)
8578 {
8579 asection *sec = *psec;
8580 bfd_vma relocation;
8581
8582 relocation = (sec->output_section->vma
8583 + sec->output_offset
8584 + sym->st_value);
8585 if ((sec->flags & SEC_MERGE)
8586 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8587 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8588 {
8589 rel->r_addend =
8590 _bfd_merged_section_offset (abfd, psec,
8591 elf_section_data (sec)->sec_info,
8592 sym->st_value + rel->r_addend);
8593 if (sec != *psec)
8594 {
8595 /* If we have changed the section, and our original section is
8596 marked with SEC_EXCLUDE, it means that the original
8597 SEC_MERGE section has been completely subsumed in some
8598 other SEC_MERGE section. In this case, we need to leave
8599 some info around for --emit-relocs. */
8600 if ((sec->flags & SEC_EXCLUDE) != 0)
8601 sec->kept_section = *psec;
8602 sec = *psec;
8603 }
8604 rel->r_addend -= relocation;
8605 rel->r_addend += sec->output_section->vma + sec->output_offset;
8606 }
8607 return relocation;
8608 }
8609
8610 bfd_vma
8611 _bfd_elf_rel_local_sym (bfd *abfd,
8612 Elf_Internal_Sym *sym,
8613 asection **psec,
8614 bfd_vma addend)
8615 {
8616 asection *sec = *psec;
8617
8618 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8619 return sym->st_value + addend;
8620
8621 return _bfd_merged_section_offset (abfd, psec,
8622 elf_section_data (sec)->sec_info,
8623 sym->st_value + addend);
8624 }
8625
8626 bfd_vma
8627 _bfd_elf_section_offset (bfd *abfd,
8628 struct bfd_link_info *info,
8629 asection *sec,
8630 bfd_vma offset)
8631 {
8632 switch (sec->sec_info_type)
8633 {
8634 case ELF_INFO_TYPE_STABS:
8635 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8636 offset);
8637 case ELF_INFO_TYPE_EH_FRAME:
8638 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8639 default:
8640 return offset;
8641 }
8642 }
8643 \f
8644 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8645 reconstruct an ELF file by reading the segments out of remote memory
8646 based on the ELF file header at EHDR_VMA and the ELF program headers it
8647 points to. If not null, *LOADBASEP is filled in with the difference
8648 between the VMAs from which the segments were read, and the VMAs the
8649 file headers (and hence BFD's idea of each section's VMA) put them at.
8650
8651 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8652 remote memory at target address VMA into the local buffer at MYADDR; it
8653 should return zero on success or an `errno' code on failure. TEMPL must
8654 be a BFD for an ELF target with the word size and byte order found in
8655 the remote memory. */
8656
8657 bfd *
8658 bfd_elf_bfd_from_remote_memory
8659 (bfd *templ,
8660 bfd_vma ehdr_vma,
8661 bfd_vma *loadbasep,
8662 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8663 {
8664 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8665 (templ, ehdr_vma, loadbasep, target_read_memory);
8666 }
8667 \f
8668 long
8669 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8670 long symcount ATTRIBUTE_UNUSED,
8671 asymbol **syms ATTRIBUTE_UNUSED,
8672 long dynsymcount,
8673 asymbol **dynsyms,
8674 asymbol **ret)
8675 {
8676 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8677 asection *relplt;
8678 asymbol *s;
8679 const char *relplt_name;
8680 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8681 arelent *p;
8682 long count, i, n;
8683 size_t size;
8684 Elf_Internal_Shdr *hdr;
8685 char *names;
8686 asection *plt;
8687
8688 *ret = NULL;
8689
8690 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8691 return 0;
8692
8693 if (dynsymcount <= 0)
8694 return 0;
8695
8696 if (!bed->plt_sym_val)
8697 return 0;
8698
8699 relplt_name = bed->relplt_name;
8700 if (relplt_name == NULL)
8701 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8702 relplt = bfd_get_section_by_name (abfd, relplt_name);
8703 if (relplt == NULL)
8704 return 0;
8705
8706 hdr = &elf_section_data (relplt)->this_hdr;
8707 if (hdr->sh_link != elf_dynsymtab (abfd)
8708 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8709 return 0;
8710
8711 plt = bfd_get_section_by_name (abfd, ".plt");
8712 if (plt == NULL)
8713 return 0;
8714
8715 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8716 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8717 return -1;
8718
8719 count = relplt->size / hdr->sh_entsize;
8720 size = count * sizeof (asymbol);
8721 p = relplt->relocation;
8722 for (i = 0; i < count; i++, s++, p++)
8723 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8724
8725 s = *ret = bfd_malloc (size);
8726 if (s == NULL)
8727 return -1;
8728
8729 names = (char *) (s + count);
8730 p = relplt->relocation;
8731 n = 0;
8732 for (i = 0; i < count; i++, s++, p++)
8733 {
8734 size_t len;
8735 bfd_vma addr;
8736
8737 addr = bed->plt_sym_val (i, plt, p);
8738 if (addr == (bfd_vma) -1)
8739 continue;
8740
8741 *s = **p->sym_ptr_ptr;
8742 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8743 we are defining a symbol, ensure one of them is set. */
8744 if ((s->flags & BSF_LOCAL) == 0)
8745 s->flags |= BSF_GLOBAL;
8746 s->section = plt;
8747 s->value = addr - plt->vma;
8748 s->name = names;
8749 len = strlen ((*p->sym_ptr_ptr)->name);
8750 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8751 names += len;
8752 memcpy (names, "@plt", sizeof ("@plt"));
8753 names += sizeof ("@plt");
8754 ++n;
8755 }
8756
8757 return n;
8758 }
8759
8760 struct elf_symbuf_symbol
8761 {
8762 unsigned long st_name; /* Symbol name, index in string tbl */
8763 unsigned char st_info; /* Type and binding attributes */
8764 unsigned char st_other; /* Visibilty, and target specific */
8765 };
8766
8767 struct elf_symbuf_head
8768 {
8769 struct elf_symbuf_symbol *ssym;
8770 bfd_size_type count;
8771 unsigned int st_shndx;
8772 };
8773
8774 struct elf_symbol
8775 {
8776 union
8777 {
8778 Elf_Internal_Sym *isym;
8779 struct elf_symbuf_symbol *ssym;
8780 } u;
8781 const char *name;
8782 };
8783
8784 /* Sort references to symbols by ascending section number. */
8785
8786 static int
8787 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8788 {
8789 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8790 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8791
8792 return s1->st_shndx - s2->st_shndx;
8793 }
8794
8795 static int
8796 elf_sym_name_compare (const void *arg1, const void *arg2)
8797 {
8798 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8799 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8800 return strcmp (s1->name, s2->name);
8801 }
8802
8803 static struct elf_symbuf_head *
8804 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
8805 {
8806 Elf_Internal_Sym **ind, **indbufend, **indbuf
8807 = bfd_malloc2 (symcount, sizeof (*indbuf));
8808 struct elf_symbuf_symbol *ssym;
8809 struct elf_symbuf_head *ssymbuf, *ssymhead;
8810 bfd_size_type i, shndx_count;
8811
8812 if (indbuf == NULL)
8813 return NULL;
8814
8815 for (ind = indbuf, i = 0; i < symcount; i++)
8816 if (isymbuf[i].st_shndx != SHN_UNDEF)
8817 *ind++ = &isymbuf[i];
8818 indbufend = ind;
8819
8820 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8821 elf_sort_elf_symbol);
8822
8823 shndx_count = 0;
8824 if (indbufend > indbuf)
8825 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8826 if (ind[0]->st_shndx != ind[1]->st_shndx)
8827 shndx_count++;
8828
8829 ssymbuf = bfd_malloc ((shndx_count + 1) * sizeof (*ssymbuf)
8830 + (indbufend - indbuf) * sizeof (*ssymbuf));
8831 if (ssymbuf == NULL)
8832 {
8833 free (indbuf);
8834 return NULL;
8835 }
8836
8837 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count);
8838 ssymbuf->ssym = NULL;
8839 ssymbuf->count = shndx_count;
8840 ssymbuf->st_shndx = 0;
8841 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8842 {
8843 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8844 {
8845 ssymhead++;
8846 ssymhead->ssym = ssym;
8847 ssymhead->count = 0;
8848 ssymhead->st_shndx = (*ind)->st_shndx;
8849 }
8850 ssym->st_name = (*ind)->st_name;
8851 ssym->st_info = (*ind)->st_info;
8852 ssym->st_other = (*ind)->st_other;
8853 ssymhead->count++;
8854 }
8855 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count);
8856
8857 free (indbuf);
8858 return ssymbuf;
8859 }
8860
8861 /* Check if 2 sections define the same set of local and global
8862 symbols. */
8863
8864 bfd_boolean
8865 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8866 struct bfd_link_info *info)
8867 {
8868 bfd *bfd1, *bfd2;
8869 const struct elf_backend_data *bed1, *bed2;
8870 Elf_Internal_Shdr *hdr1, *hdr2;
8871 bfd_size_type symcount1, symcount2;
8872 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8873 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8874 Elf_Internal_Sym *isym, *isymend;
8875 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8876 bfd_size_type count1, count2, i;
8877 int shndx1, shndx2;
8878 bfd_boolean result;
8879
8880 bfd1 = sec1->owner;
8881 bfd2 = sec2->owner;
8882
8883 /* If both are .gnu.linkonce sections, they have to have the same
8884 section name. */
8885 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
8886 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
8887 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8888 sec2->name + sizeof ".gnu.linkonce") == 0;
8889
8890 /* Both sections have to be in ELF. */
8891 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8892 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8893 return FALSE;
8894
8895 if (elf_section_type (sec1) != elf_section_type (sec2))
8896 return FALSE;
8897
8898 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8899 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8900 {
8901 /* If both are members of section groups, they have to have the
8902 same group name. */
8903 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8904 return FALSE;
8905 }
8906
8907 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8908 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8909 if (shndx1 == -1 || shndx2 == -1)
8910 return FALSE;
8911
8912 bed1 = get_elf_backend_data (bfd1);
8913 bed2 = get_elf_backend_data (bfd2);
8914 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8915 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8916 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8917 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8918
8919 if (symcount1 == 0 || symcount2 == 0)
8920 return FALSE;
8921
8922 result = FALSE;
8923 isymbuf1 = NULL;
8924 isymbuf2 = NULL;
8925 ssymbuf1 = elf_tdata (bfd1)->symbuf;
8926 ssymbuf2 = elf_tdata (bfd2)->symbuf;
8927
8928 if (ssymbuf1 == NULL)
8929 {
8930 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8931 NULL, NULL, NULL);
8932 if (isymbuf1 == NULL)
8933 goto done;
8934
8935 if (!info->reduce_memory_overheads)
8936 elf_tdata (bfd1)->symbuf = ssymbuf1
8937 = elf_create_symbuf (symcount1, isymbuf1);
8938 }
8939
8940 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8941 {
8942 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8943 NULL, NULL, NULL);
8944 if (isymbuf2 == NULL)
8945 goto done;
8946
8947 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8948 elf_tdata (bfd2)->symbuf = ssymbuf2
8949 = elf_create_symbuf (symcount2, isymbuf2);
8950 }
8951
8952 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8953 {
8954 /* Optimized faster version. */
8955 bfd_size_type lo, hi, mid;
8956 struct elf_symbol *symp;
8957 struct elf_symbuf_symbol *ssym, *ssymend;
8958
8959 lo = 0;
8960 hi = ssymbuf1->count;
8961 ssymbuf1++;
8962 count1 = 0;
8963 while (lo < hi)
8964 {
8965 mid = (lo + hi) / 2;
8966 if ((unsigned int) shndx1 < ssymbuf1[mid].st_shndx)
8967 hi = mid;
8968 else if ((unsigned int) shndx1 > ssymbuf1[mid].st_shndx)
8969 lo = mid + 1;
8970 else
8971 {
8972 count1 = ssymbuf1[mid].count;
8973 ssymbuf1 += mid;
8974 break;
8975 }
8976 }
8977
8978 lo = 0;
8979 hi = ssymbuf2->count;
8980 ssymbuf2++;
8981 count2 = 0;
8982 while (lo < hi)
8983 {
8984 mid = (lo + hi) / 2;
8985 if ((unsigned int) shndx2 < ssymbuf2[mid].st_shndx)
8986 hi = mid;
8987 else if ((unsigned int) shndx2 > ssymbuf2[mid].st_shndx)
8988 lo = mid + 1;
8989 else
8990 {
8991 count2 = ssymbuf2[mid].count;
8992 ssymbuf2 += mid;
8993 break;
8994 }
8995 }
8996
8997 if (count1 == 0 || count2 == 0 || count1 != count2)
8998 goto done;
8999
9000 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
9001 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
9002 if (symtable1 == NULL || symtable2 == NULL)
9003 goto done;
9004
9005 symp = symtable1;
9006 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
9007 ssym < ssymend; ssym++, symp++)
9008 {
9009 symp->u.ssym = ssym;
9010 symp->name = bfd_elf_string_from_elf_section (bfd1,
9011 hdr1->sh_link,
9012 ssym->st_name);
9013 }
9014
9015 symp = symtable2;
9016 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
9017 ssym < ssymend; ssym++, symp++)
9018 {
9019 symp->u.ssym = ssym;
9020 symp->name = bfd_elf_string_from_elf_section (bfd2,
9021 hdr2->sh_link,
9022 ssym->st_name);
9023 }
9024
9025 /* Sort symbol by name. */
9026 qsort (symtable1, count1, sizeof (struct elf_symbol),
9027 elf_sym_name_compare);
9028 qsort (symtable2, count1, sizeof (struct elf_symbol),
9029 elf_sym_name_compare);
9030
9031 for (i = 0; i < count1; i++)
9032 /* Two symbols must have the same binding, type and name. */
9033 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
9034 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
9035 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
9036 goto done;
9037
9038 result = TRUE;
9039 goto done;
9040 }
9041
9042 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
9043 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
9044 if (symtable1 == NULL || symtable2 == NULL)
9045 goto done;
9046
9047 /* Count definitions in the section. */
9048 count1 = 0;
9049 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
9050 if (isym->st_shndx == (unsigned int) shndx1)
9051 symtable1[count1++].u.isym = isym;
9052
9053 count2 = 0;
9054 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
9055 if (isym->st_shndx == (unsigned int) shndx2)
9056 symtable2[count2++].u.isym = isym;
9057
9058 if (count1 == 0 || count2 == 0 || count1 != count2)
9059 goto done;
9060
9061 for (i = 0; i < count1; i++)
9062 symtable1[i].name
9063 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
9064 symtable1[i].u.isym->st_name);
9065
9066 for (i = 0; i < count2; i++)
9067 symtable2[i].name
9068 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
9069 symtable2[i].u.isym->st_name);
9070
9071 /* Sort symbol by name. */
9072 qsort (symtable1, count1, sizeof (struct elf_symbol),
9073 elf_sym_name_compare);
9074 qsort (symtable2, count1, sizeof (struct elf_symbol),
9075 elf_sym_name_compare);
9076
9077 for (i = 0; i < count1; i++)
9078 /* Two symbols must have the same binding, type and name. */
9079 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
9080 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
9081 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
9082 goto done;
9083
9084 result = TRUE;
9085
9086 done:
9087 if (symtable1)
9088 free (symtable1);
9089 if (symtable2)
9090 free (symtable2);
9091 if (isymbuf1)
9092 free (isymbuf1);
9093 if (isymbuf2)
9094 free (isymbuf2);
9095
9096 return result;
9097 }
9098
9099 /* It is only used by x86-64 so far. */
9100 asection _bfd_elf_large_com_section
9101 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9102 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9103
9104 /* Return TRUE if 2 section types are compatible. */
9105
9106 bfd_boolean
9107 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
9108 bfd *bbfd, const asection *bsec)
9109 {
9110 if (asec == NULL
9111 || bsec == NULL
9112 || abfd->xvec->flavour != bfd_target_elf_flavour
9113 || bbfd->xvec->flavour != bfd_target_elf_flavour)
9114 return TRUE;
9115
9116 return elf_section_type (asec) == elf_section_type (bsec);
9117 }
This page took 0.217842 seconds and 4 git commands to generate.