e8c6c239acb6c110aaa7b98e790ddbc6b298bad7
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /*
25 SECTION
26 ELF backends
27
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
31
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
35
36 /* For sparc64-cross-sparc32. */
37 #define _SYSCALL32
38 #include "sysdep.h"
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46
47 static int elf_sort_sections (const void *, const void *);
48 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
49 static bfd_boolean prep_headers (bfd *);
50 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
51 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
52 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
53 file_ptr offset);
54
55 /* Swap version information in and out. The version information is
56 currently size independent. If that ever changes, this code will
57 need to move into elfcode.h. */
58
59 /* Swap in a Verdef structure. */
60
61 void
62 _bfd_elf_swap_verdef_in (bfd *abfd,
63 const Elf_External_Verdef *src,
64 Elf_Internal_Verdef *dst)
65 {
66 dst->vd_version = H_GET_16 (abfd, src->vd_version);
67 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
68 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
69 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
70 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
71 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
72 dst->vd_next = H_GET_32 (abfd, src->vd_next);
73 }
74
75 /* Swap out a Verdef structure. */
76
77 void
78 _bfd_elf_swap_verdef_out (bfd *abfd,
79 const Elf_Internal_Verdef *src,
80 Elf_External_Verdef *dst)
81 {
82 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
83 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
84 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
85 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
86 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
87 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
88 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
89 }
90
91 /* Swap in a Verdaux structure. */
92
93 void
94 _bfd_elf_swap_verdaux_in (bfd *abfd,
95 const Elf_External_Verdaux *src,
96 Elf_Internal_Verdaux *dst)
97 {
98 dst->vda_name = H_GET_32 (abfd, src->vda_name);
99 dst->vda_next = H_GET_32 (abfd, src->vda_next);
100 }
101
102 /* Swap out a Verdaux structure. */
103
104 void
105 _bfd_elf_swap_verdaux_out (bfd *abfd,
106 const Elf_Internal_Verdaux *src,
107 Elf_External_Verdaux *dst)
108 {
109 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
110 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
111 }
112
113 /* Swap in a Verneed structure. */
114
115 void
116 _bfd_elf_swap_verneed_in (bfd *abfd,
117 const Elf_External_Verneed *src,
118 Elf_Internal_Verneed *dst)
119 {
120 dst->vn_version = H_GET_16 (abfd, src->vn_version);
121 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
122 dst->vn_file = H_GET_32 (abfd, src->vn_file);
123 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
124 dst->vn_next = H_GET_32 (abfd, src->vn_next);
125 }
126
127 /* Swap out a Verneed structure. */
128
129 void
130 _bfd_elf_swap_verneed_out (bfd *abfd,
131 const Elf_Internal_Verneed *src,
132 Elf_External_Verneed *dst)
133 {
134 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
135 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
136 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
137 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
138 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
139 }
140
141 /* Swap in a Vernaux structure. */
142
143 void
144 _bfd_elf_swap_vernaux_in (bfd *abfd,
145 const Elf_External_Vernaux *src,
146 Elf_Internal_Vernaux *dst)
147 {
148 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
149 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
150 dst->vna_other = H_GET_16 (abfd, src->vna_other);
151 dst->vna_name = H_GET_32 (abfd, src->vna_name);
152 dst->vna_next = H_GET_32 (abfd, src->vna_next);
153 }
154
155 /* Swap out a Vernaux structure. */
156
157 void
158 _bfd_elf_swap_vernaux_out (bfd *abfd,
159 const Elf_Internal_Vernaux *src,
160 Elf_External_Vernaux *dst)
161 {
162 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
163 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
164 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
165 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
166 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
167 }
168
169 /* Swap in a Versym structure. */
170
171 void
172 _bfd_elf_swap_versym_in (bfd *abfd,
173 const Elf_External_Versym *src,
174 Elf_Internal_Versym *dst)
175 {
176 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
177 }
178
179 /* Swap out a Versym structure. */
180
181 void
182 _bfd_elf_swap_versym_out (bfd *abfd,
183 const Elf_Internal_Versym *src,
184 Elf_External_Versym *dst)
185 {
186 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
187 }
188
189 /* Standard ELF hash function. Do not change this function; you will
190 cause invalid hash tables to be generated. */
191
192 unsigned long
193 bfd_elf_hash (const char *namearg)
194 {
195 const unsigned char *name = (const unsigned char *) namearg;
196 unsigned long h = 0;
197 unsigned long g;
198 int ch;
199
200 while ((ch = *name++) != '\0')
201 {
202 h = (h << 4) + ch;
203 if ((g = (h & 0xf0000000)) != 0)
204 {
205 h ^= g >> 24;
206 /* The ELF ABI says `h &= ~g', but this is equivalent in
207 this case and on some machines one insn instead of two. */
208 h ^= g;
209 }
210 }
211 return h & 0xffffffff;
212 }
213
214 /* DT_GNU_HASH hash function. Do not change this function; you will
215 cause invalid hash tables to be generated. */
216
217 unsigned long
218 bfd_elf_gnu_hash (const char *namearg)
219 {
220 const unsigned char *name = (const unsigned char *) namearg;
221 unsigned long h = 5381;
222 unsigned char ch;
223
224 while ((ch = *name++) != '\0')
225 h = (h << 5) + h + ch;
226 return h & 0xffffffff;
227 }
228
229 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
230 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
231 bfd_boolean
232 bfd_elf_allocate_object (bfd *abfd,
233 size_t object_size,
234 enum elf_object_id object_id)
235 {
236 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
237 abfd->tdata.any = bfd_zalloc (abfd, object_size);
238 if (abfd->tdata.any == NULL)
239 return FALSE;
240
241 elf_object_id (abfd) = object_id;
242 elf_program_header_size (abfd) = (bfd_size_type) -1;
243 return TRUE;
244 }
245
246
247 bfd_boolean
248 bfd_elf_make_generic_object (bfd *abfd)
249 {
250 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
251 GENERIC_ELF_TDATA);
252 }
253
254 bfd_boolean
255 bfd_elf_mkcorefile (bfd *abfd)
256 {
257 /* I think this can be done just like an object file. */
258 return bfd_elf_make_generic_object (abfd);
259 }
260
261 char *
262 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
263 {
264 Elf_Internal_Shdr **i_shdrp;
265 bfd_byte *shstrtab = NULL;
266 file_ptr offset;
267 bfd_size_type shstrtabsize;
268
269 i_shdrp = elf_elfsections (abfd);
270 if (i_shdrp == 0
271 || shindex >= elf_numsections (abfd)
272 || i_shdrp[shindex] == 0)
273 return NULL;
274
275 shstrtab = i_shdrp[shindex]->contents;
276 if (shstrtab == NULL)
277 {
278 /* No cached one, attempt to read, and cache what we read. */
279 offset = i_shdrp[shindex]->sh_offset;
280 shstrtabsize = i_shdrp[shindex]->sh_size;
281
282 /* Allocate and clear an extra byte at the end, to prevent crashes
283 in case the string table is not terminated. */
284 if (shstrtabsize + 1 <= 1
285 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
286 || bfd_seek (abfd, offset, SEEK_SET) != 0)
287 shstrtab = NULL;
288 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
289 {
290 if (bfd_get_error () != bfd_error_system_call)
291 bfd_set_error (bfd_error_file_truncated);
292 shstrtab = NULL;
293 /* Once we've failed to read it, make sure we don't keep
294 trying. Otherwise, we'll keep allocating space for
295 the string table over and over. */
296 i_shdrp[shindex]->sh_size = 0;
297 }
298 else
299 shstrtab[shstrtabsize] = '\0';
300 i_shdrp[shindex]->contents = shstrtab;
301 }
302 return (char *) shstrtab;
303 }
304
305 char *
306 bfd_elf_string_from_elf_section (bfd *abfd,
307 unsigned int shindex,
308 unsigned int strindex)
309 {
310 Elf_Internal_Shdr *hdr;
311
312 if (strindex == 0)
313 return "";
314
315 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
316 return NULL;
317
318 hdr = elf_elfsections (abfd)[shindex];
319
320 if (hdr->contents == NULL
321 && bfd_elf_get_str_section (abfd, shindex) == NULL)
322 return NULL;
323
324 if (strindex >= hdr->sh_size)
325 {
326 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
327 (*_bfd_error_handler)
328 (_("%B: invalid string offset %u >= %lu for section `%s'"),
329 abfd, strindex, (unsigned long) hdr->sh_size,
330 (shindex == shstrndx && strindex == hdr->sh_name
331 ? ".shstrtab"
332 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
333 return "";
334 }
335
336 return ((char *) hdr->contents) + strindex;
337 }
338
339 /* Read and convert symbols to internal format.
340 SYMCOUNT specifies the number of symbols to read, starting from
341 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
342 are non-NULL, they are used to store the internal symbols, external
343 symbols, and symbol section index extensions, respectively.
344 Returns a pointer to the internal symbol buffer (malloced if necessary)
345 or NULL if there were no symbols or some kind of problem. */
346
347 Elf_Internal_Sym *
348 bfd_elf_get_elf_syms (bfd *ibfd,
349 Elf_Internal_Shdr *symtab_hdr,
350 size_t symcount,
351 size_t symoffset,
352 Elf_Internal_Sym *intsym_buf,
353 void *extsym_buf,
354 Elf_External_Sym_Shndx *extshndx_buf)
355 {
356 Elf_Internal_Shdr *shndx_hdr;
357 void *alloc_ext;
358 const bfd_byte *esym;
359 Elf_External_Sym_Shndx *alloc_extshndx;
360 Elf_External_Sym_Shndx *shndx;
361 Elf_Internal_Sym *alloc_intsym;
362 Elf_Internal_Sym *isym;
363 Elf_Internal_Sym *isymend;
364 const struct elf_backend_data *bed;
365 size_t extsym_size;
366 bfd_size_type amt;
367 file_ptr pos;
368
369 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
370 abort ();
371
372 if (symcount == 0)
373 return intsym_buf;
374
375 /* Normal syms might have section extension entries. */
376 shndx_hdr = NULL;
377 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
378 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
379
380 /* Read the symbols. */
381 alloc_ext = NULL;
382 alloc_extshndx = NULL;
383 alloc_intsym = NULL;
384 bed = get_elf_backend_data (ibfd);
385 extsym_size = bed->s->sizeof_sym;
386 amt = symcount * extsym_size;
387 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
388 if (extsym_buf == NULL)
389 {
390 alloc_ext = bfd_malloc2 (symcount, extsym_size);
391 extsym_buf = alloc_ext;
392 }
393 if (extsym_buf == NULL
394 || bfd_seek (ibfd, pos, SEEK_SET) != 0
395 || bfd_bread (extsym_buf, amt, ibfd) != amt)
396 {
397 intsym_buf = NULL;
398 goto out;
399 }
400
401 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
402 extshndx_buf = NULL;
403 else
404 {
405 amt = symcount * sizeof (Elf_External_Sym_Shndx);
406 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
407 if (extshndx_buf == NULL)
408 {
409 alloc_extshndx = bfd_malloc2 (symcount,
410 sizeof (Elf_External_Sym_Shndx));
411 extshndx_buf = alloc_extshndx;
412 }
413 if (extshndx_buf == NULL
414 || bfd_seek (ibfd, pos, SEEK_SET) != 0
415 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
416 {
417 intsym_buf = NULL;
418 goto out;
419 }
420 }
421
422 if (intsym_buf == NULL)
423 {
424 alloc_intsym = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
425 intsym_buf = alloc_intsym;
426 if (intsym_buf == NULL)
427 goto out;
428 }
429
430 /* Convert the symbols to internal form. */
431 isymend = intsym_buf + symcount;
432 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
433 isym < isymend;
434 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
435 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
436 {
437 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
438 (*_bfd_error_handler) (_("%B symbol number %lu references "
439 "nonexistent SHT_SYMTAB_SHNDX section"),
440 ibfd, (unsigned long) symoffset);
441 if (alloc_intsym != NULL)
442 free (alloc_intsym);
443 intsym_buf = NULL;
444 goto out;
445 }
446
447 out:
448 if (alloc_ext != NULL)
449 free (alloc_ext);
450 if (alloc_extshndx != NULL)
451 free (alloc_extshndx);
452
453 return intsym_buf;
454 }
455
456 /* Look up a symbol name. */
457 const char *
458 bfd_elf_sym_name (bfd *abfd,
459 Elf_Internal_Shdr *symtab_hdr,
460 Elf_Internal_Sym *isym,
461 asection *sym_sec)
462 {
463 const char *name;
464 unsigned int iname = isym->st_name;
465 unsigned int shindex = symtab_hdr->sh_link;
466
467 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
468 /* Check for a bogus st_shndx to avoid crashing. */
469 && isym->st_shndx < elf_numsections (abfd))
470 {
471 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
472 shindex = elf_elfheader (abfd)->e_shstrndx;
473 }
474
475 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
476 if (name == NULL)
477 name = "(null)";
478 else if (sym_sec && *name == '\0')
479 name = bfd_section_name (abfd, sym_sec);
480
481 return name;
482 }
483
484 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
485 sections. The first element is the flags, the rest are section
486 pointers. */
487
488 typedef union elf_internal_group {
489 Elf_Internal_Shdr *shdr;
490 unsigned int flags;
491 } Elf_Internal_Group;
492
493 /* Return the name of the group signature symbol. Why isn't the
494 signature just a string? */
495
496 static const char *
497 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
498 {
499 Elf_Internal_Shdr *hdr;
500 unsigned char esym[sizeof (Elf64_External_Sym)];
501 Elf_External_Sym_Shndx eshndx;
502 Elf_Internal_Sym isym;
503
504 /* First we need to ensure the symbol table is available. Make sure
505 that it is a symbol table section. */
506 if (ghdr->sh_link >= elf_numsections (abfd))
507 return NULL;
508 hdr = elf_elfsections (abfd) [ghdr->sh_link];
509 if (hdr->sh_type != SHT_SYMTAB
510 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
511 return NULL;
512
513 /* Go read the symbol. */
514 hdr = &elf_tdata (abfd)->symtab_hdr;
515 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
516 &isym, esym, &eshndx) == NULL)
517 return NULL;
518
519 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
520 }
521
522 /* Set next_in_group list pointer, and group name for NEWSECT. */
523
524 static bfd_boolean
525 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
526 {
527 unsigned int num_group = elf_tdata (abfd)->num_group;
528
529 /* If num_group is zero, read in all SHT_GROUP sections. The count
530 is set to -1 if there are no SHT_GROUP sections. */
531 if (num_group == 0)
532 {
533 unsigned int i, shnum;
534
535 /* First count the number of groups. If we have a SHT_GROUP
536 section with just a flag word (ie. sh_size is 4), ignore it. */
537 shnum = elf_numsections (abfd);
538 num_group = 0;
539
540 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
541 ( (shdr)->sh_type == SHT_GROUP \
542 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
543 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
544 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
545
546 for (i = 0; i < shnum; i++)
547 {
548 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
549
550 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
551 num_group += 1;
552 }
553
554 if (num_group == 0)
555 {
556 num_group = (unsigned) -1;
557 elf_tdata (abfd)->num_group = num_group;
558 }
559 else
560 {
561 /* We keep a list of elf section headers for group sections,
562 so we can find them quickly. */
563 bfd_size_type amt;
564
565 elf_tdata (abfd)->num_group = num_group;
566 elf_tdata (abfd)->group_sect_ptr
567 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
568 if (elf_tdata (abfd)->group_sect_ptr == NULL)
569 return FALSE;
570
571 num_group = 0;
572 for (i = 0; i < shnum; i++)
573 {
574 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
575
576 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
577 {
578 unsigned char *src;
579 Elf_Internal_Group *dest;
580
581 /* Add to list of sections. */
582 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
583 num_group += 1;
584
585 /* Read the raw contents. */
586 BFD_ASSERT (sizeof (*dest) >= 4);
587 amt = shdr->sh_size * sizeof (*dest) / 4;
588 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
589 sizeof (*dest) / 4);
590 /* PR binutils/4110: Handle corrupt group headers. */
591 if (shdr->contents == NULL)
592 {
593 _bfd_error_handler
594 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
595 bfd_set_error (bfd_error_bad_value);
596 return FALSE;
597 }
598
599 memset (shdr->contents, 0, amt);
600
601 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
602 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
603 != shdr->sh_size))
604 return FALSE;
605
606 /* Translate raw contents, a flag word followed by an
607 array of elf section indices all in target byte order,
608 to the flag word followed by an array of elf section
609 pointers. */
610 src = shdr->contents + shdr->sh_size;
611 dest = (Elf_Internal_Group *) (shdr->contents + amt);
612 while (1)
613 {
614 unsigned int idx;
615
616 src -= 4;
617 --dest;
618 idx = H_GET_32 (abfd, src);
619 if (src == shdr->contents)
620 {
621 dest->flags = idx;
622 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
623 shdr->bfd_section->flags
624 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
625 break;
626 }
627 if (idx >= shnum)
628 {
629 ((*_bfd_error_handler)
630 (_("%B: invalid SHT_GROUP entry"), abfd));
631 idx = 0;
632 }
633 dest->shdr = elf_elfsections (abfd)[idx];
634 }
635 }
636 }
637 }
638 }
639
640 if (num_group != (unsigned) -1)
641 {
642 unsigned int i;
643
644 for (i = 0; i < num_group; i++)
645 {
646 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
647 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
648 unsigned int n_elt = shdr->sh_size / 4;
649
650 /* Look through this group's sections to see if current
651 section is a member. */
652 while (--n_elt != 0)
653 if ((++idx)->shdr == hdr)
654 {
655 asection *s = NULL;
656
657 /* We are a member of this group. Go looking through
658 other members to see if any others are linked via
659 next_in_group. */
660 idx = (Elf_Internal_Group *) shdr->contents;
661 n_elt = shdr->sh_size / 4;
662 while (--n_elt != 0)
663 if ((s = (++idx)->shdr->bfd_section) != NULL
664 && elf_next_in_group (s) != NULL)
665 break;
666 if (n_elt != 0)
667 {
668 /* Snarf the group name from other member, and
669 insert current section in circular list. */
670 elf_group_name (newsect) = elf_group_name (s);
671 elf_next_in_group (newsect) = elf_next_in_group (s);
672 elf_next_in_group (s) = newsect;
673 }
674 else
675 {
676 const char *gname;
677
678 gname = group_signature (abfd, shdr);
679 if (gname == NULL)
680 return FALSE;
681 elf_group_name (newsect) = gname;
682
683 /* Start a circular list with one element. */
684 elf_next_in_group (newsect) = newsect;
685 }
686
687 /* If the group section has been created, point to the
688 new member. */
689 if (shdr->bfd_section != NULL)
690 elf_next_in_group (shdr->bfd_section) = newsect;
691
692 i = num_group - 1;
693 break;
694 }
695 }
696 }
697
698 if (elf_group_name (newsect) == NULL)
699 {
700 (*_bfd_error_handler) (_("%B: no group info for section %A"),
701 abfd, newsect);
702 }
703 return TRUE;
704 }
705
706 bfd_boolean
707 _bfd_elf_setup_sections (bfd *abfd)
708 {
709 unsigned int i;
710 unsigned int num_group = elf_tdata (abfd)->num_group;
711 bfd_boolean result = TRUE;
712 asection *s;
713
714 /* Process SHF_LINK_ORDER. */
715 for (s = abfd->sections; s != NULL; s = s->next)
716 {
717 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
718 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
719 {
720 unsigned int elfsec = this_hdr->sh_link;
721 /* FIXME: The old Intel compiler and old strip/objcopy may
722 not set the sh_link or sh_info fields. Hence we could
723 get the situation where elfsec is 0. */
724 if (elfsec == 0)
725 {
726 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
727 if (bed->link_order_error_handler)
728 bed->link_order_error_handler
729 (_("%B: warning: sh_link not set for section `%A'"),
730 abfd, s);
731 }
732 else
733 {
734 asection *link = NULL;
735
736 if (elfsec < elf_numsections (abfd))
737 {
738 this_hdr = elf_elfsections (abfd)[elfsec];
739 link = this_hdr->bfd_section;
740 }
741
742 /* PR 1991, 2008:
743 Some strip/objcopy may leave an incorrect value in
744 sh_link. We don't want to proceed. */
745 if (link == NULL)
746 {
747 (*_bfd_error_handler)
748 (_("%B: sh_link [%d] in section `%A' is incorrect"),
749 s->owner, s, elfsec);
750 result = FALSE;
751 }
752
753 elf_linked_to_section (s) = link;
754 }
755 }
756 }
757
758 /* Process section groups. */
759 if (num_group == (unsigned) -1)
760 return result;
761
762 for (i = 0; i < num_group; i++)
763 {
764 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
765 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
766 unsigned int n_elt = shdr->sh_size / 4;
767
768 while (--n_elt != 0)
769 if ((++idx)->shdr->bfd_section)
770 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
771 else if (idx->shdr->sh_type == SHT_RELA
772 || idx->shdr->sh_type == SHT_REL)
773 /* We won't include relocation sections in section groups in
774 output object files. We adjust the group section size here
775 so that relocatable link will work correctly when
776 relocation sections are in section group in input object
777 files. */
778 shdr->bfd_section->size -= 4;
779 else
780 {
781 /* There are some unknown sections in the group. */
782 (*_bfd_error_handler)
783 (_("%B: unknown [%d] section `%s' in group [%s]"),
784 abfd,
785 (unsigned int) idx->shdr->sh_type,
786 bfd_elf_string_from_elf_section (abfd,
787 (elf_elfheader (abfd)
788 ->e_shstrndx),
789 idx->shdr->sh_name),
790 shdr->bfd_section->name);
791 result = FALSE;
792 }
793 }
794 return result;
795 }
796
797 bfd_boolean
798 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
799 {
800 return elf_next_in_group (sec) != NULL;
801 }
802
803 /* Make a BFD section from an ELF section. We store a pointer to the
804 BFD section in the bfd_section field of the header. */
805
806 bfd_boolean
807 _bfd_elf_make_section_from_shdr (bfd *abfd,
808 Elf_Internal_Shdr *hdr,
809 const char *name,
810 int shindex)
811 {
812 asection *newsect;
813 flagword flags;
814 const struct elf_backend_data *bed;
815
816 if (hdr->bfd_section != NULL)
817 {
818 BFD_ASSERT (strcmp (name,
819 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
820 return TRUE;
821 }
822
823 newsect = bfd_make_section_anyway (abfd, name);
824 if (newsect == NULL)
825 return FALSE;
826
827 hdr->bfd_section = newsect;
828 elf_section_data (newsect)->this_hdr = *hdr;
829 elf_section_data (newsect)->this_idx = shindex;
830
831 /* Always use the real type/flags. */
832 elf_section_type (newsect) = hdr->sh_type;
833 elf_section_flags (newsect) = hdr->sh_flags;
834
835 newsect->filepos = hdr->sh_offset;
836
837 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
838 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
839 || ! bfd_set_section_alignment (abfd, newsect,
840 bfd_log2 (hdr->sh_addralign)))
841 return FALSE;
842
843 flags = SEC_NO_FLAGS;
844 if (hdr->sh_type != SHT_NOBITS)
845 flags |= SEC_HAS_CONTENTS;
846 if (hdr->sh_type == SHT_GROUP)
847 flags |= SEC_GROUP | SEC_EXCLUDE;
848 if ((hdr->sh_flags & SHF_ALLOC) != 0)
849 {
850 flags |= SEC_ALLOC;
851 if (hdr->sh_type != SHT_NOBITS)
852 flags |= SEC_LOAD;
853 }
854 if ((hdr->sh_flags & SHF_WRITE) == 0)
855 flags |= SEC_READONLY;
856 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
857 flags |= SEC_CODE;
858 else if ((flags & SEC_LOAD) != 0)
859 flags |= SEC_DATA;
860 if ((hdr->sh_flags & SHF_MERGE) != 0)
861 {
862 flags |= SEC_MERGE;
863 newsect->entsize = hdr->sh_entsize;
864 if ((hdr->sh_flags & SHF_STRINGS) != 0)
865 flags |= SEC_STRINGS;
866 }
867 if (hdr->sh_flags & SHF_GROUP)
868 if (!setup_group (abfd, hdr, newsect))
869 return FALSE;
870 if ((hdr->sh_flags & SHF_TLS) != 0)
871 flags |= SEC_THREAD_LOCAL;
872
873 if ((flags & SEC_ALLOC) == 0)
874 {
875 /* The debugging sections appear to be recognized only by name,
876 not any sort of flag. Their SEC_ALLOC bits are cleared. */
877 static const struct
878 {
879 const char *name;
880 int len;
881 } debug_sections [] =
882 {
883 { STRING_COMMA_LEN ("debug") }, /* 'd' */
884 { NULL, 0 }, /* 'e' */
885 { NULL, 0 }, /* 'f' */
886 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
887 { NULL, 0 }, /* 'h' */
888 { NULL, 0 }, /* 'i' */
889 { NULL, 0 }, /* 'j' */
890 { NULL, 0 }, /* 'k' */
891 { STRING_COMMA_LEN ("line") }, /* 'l' */
892 { NULL, 0 }, /* 'm' */
893 { NULL, 0 }, /* 'n' */
894 { NULL, 0 }, /* 'o' */
895 { NULL, 0 }, /* 'p' */
896 { NULL, 0 }, /* 'q' */
897 { NULL, 0 }, /* 'r' */
898 { STRING_COMMA_LEN ("stab") }, /* 's' */
899 { NULL, 0 }, /* 't' */
900 { NULL, 0 }, /* 'u' */
901 { NULL, 0 }, /* 'v' */
902 { NULL, 0 }, /* 'w' */
903 { NULL, 0 }, /* 'x' */
904 { NULL, 0 }, /* 'y' */
905 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
906 };
907
908 if (name [0] == '.')
909 {
910 int i = name [1] - 'd';
911 if (i >= 0
912 && i < (int) ARRAY_SIZE (debug_sections)
913 && debug_sections [i].name != NULL
914 && strncmp (&name [1], debug_sections [i].name,
915 debug_sections [i].len) == 0)
916 flags |= SEC_DEBUGGING;
917 }
918 }
919
920 /* As a GNU extension, if the name begins with .gnu.linkonce, we
921 only link a single copy of the section. This is used to support
922 g++. g++ will emit each template expansion in its own section.
923 The symbols will be defined as weak, so that multiple definitions
924 are permitted. The GNU linker extension is to actually discard
925 all but one of the sections. */
926 if (CONST_STRNEQ (name, ".gnu.linkonce")
927 && elf_next_in_group (newsect) == NULL)
928 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
929
930 bed = get_elf_backend_data (abfd);
931 if (bed->elf_backend_section_flags)
932 if (! bed->elf_backend_section_flags (&flags, hdr))
933 return FALSE;
934
935 if (! bfd_set_section_flags (abfd, newsect, flags))
936 return FALSE;
937
938 /* We do not parse the PT_NOTE segments as we are interested even in the
939 separate debug info files which may have the segments offsets corrupted.
940 PT_NOTEs from the core files are currently not parsed using BFD. */
941 if (hdr->sh_type == SHT_NOTE)
942 {
943 bfd_byte *contents;
944
945 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
946 return FALSE;
947
948 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
949 free (contents);
950 }
951
952 if ((flags & SEC_ALLOC) != 0)
953 {
954 Elf_Internal_Phdr *phdr;
955 unsigned int i, nload;
956
957 /* Some ELF linkers produce binaries with all the program header
958 p_paddr fields zero. If we have such a binary with more than
959 one PT_LOAD header, then leave the section lma equal to vma
960 so that we don't create sections with overlapping lma. */
961 phdr = elf_tdata (abfd)->phdr;
962 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
963 if (phdr->p_paddr != 0)
964 break;
965 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
966 ++nload;
967 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
968 return TRUE;
969
970 phdr = elf_tdata (abfd)->phdr;
971 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
972 {
973 /* This section is part of this segment if its file
974 offset plus size lies within the segment's memory
975 span and, if the section is loaded, the extent of the
976 loaded data lies within the extent of the segment.
977
978 Note - we used to check the p_paddr field as well, and
979 refuse to set the LMA if it was 0. This is wrong
980 though, as a perfectly valid initialised segment can
981 have a p_paddr of zero. Some architectures, eg ARM,
982 place special significance on the address 0 and
983 executables need to be able to have a segment which
984 covers this address. */
985 if (phdr->p_type == PT_LOAD
986 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
987 && (hdr->sh_offset + hdr->sh_size
988 <= phdr->p_offset + phdr->p_memsz)
989 && ((flags & SEC_LOAD) == 0
990 || (hdr->sh_offset + hdr->sh_size
991 <= phdr->p_offset + phdr->p_filesz)))
992 {
993 if ((flags & SEC_LOAD) == 0)
994 newsect->lma = (phdr->p_paddr
995 + hdr->sh_addr - phdr->p_vaddr);
996 else
997 /* We used to use the same adjustment for SEC_LOAD
998 sections, but that doesn't work if the segment
999 is packed with code from multiple VMAs.
1000 Instead we calculate the section LMA based on
1001 the segment LMA. It is assumed that the
1002 segment will contain sections with contiguous
1003 LMAs, even if the VMAs are not. */
1004 newsect->lma = (phdr->p_paddr
1005 + hdr->sh_offset - phdr->p_offset);
1006
1007 /* With contiguous segments, we can't tell from file
1008 offsets whether a section with zero size should
1009 be placed at the end of one segment or the
1010 beginning of the next. Decide based on vaddr. */
1011 if (hdr->sh_addr >= phdr->p_vaddr
1012 && (hdr->sh_addr + hdr->sh_size
1013 <= phdr->p_vaddr + phdr->p_memsz))
1014 break;
1015 }
1016 }
1017 }
1018
1019 return TRUE;
1020 }
1021
1022 /*
1023 INTERNAL_FUNCTION
1024 bfd_elf_find_section
1025
1026 SYNOPSIS
1027 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
1028
1029 DESCRIPTION
1030 Helper functions for GDB to locate the string tables.
1031 Since BFD hides string tables from callers, GDB needs to use an
1032 internal hook to find them. Sun's .stabstr, in particular,
1033 isn't even pointed to by the .stab section, so ordinary
1034 mechanisms wouldn't work to find it, even if we had some.
1035 */
1036
1037 struct elf_internal_shdr *
1038 bfd_elf_find_section (bfd *abfd, char *name)
1039 {
1040 Elf_Internal_Shdr **i_shdrp;
1041 char *shstrtab;
1042 unsigned int max;
1043 unsigned int i;
1044
1045 i_shdrp = elf_elfsections (abfd);
1046 if (i_shdrp != NULL)
1047 {
1048 shstrtab = bfd_elf_get_str_section (abfd,
1049 elf_elfheader (abfd)->e_shstrndx);
1050 if (shstrtab != NULL)
1051 {
1052 max = elf_numsections (abfd);
1053 for (i = 1; i < max; i++)
1054 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
1055 return i_shdrp[i];
1056 }
1057 }
1058 return 0;
1059 }
1060
1061 const char *const bfd_elf_section_type_names[] = {
1062 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1063 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1064 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1065 };
1066
1067 /* ELF relocs are against symbols. If we are producing relocatable
1068 output, and the reloc is against an external symbol, and nothing
1069 has given us any additional addend, the resulting reloc will also
1070 be against the same symbol. In such a case, we don't want to
1071 change anything about the way the reloc is handled, since it will
1072 all be done at final link time. Rather than put special case code
1073 into bfd_perform_relocation, all the reloc types use this howto
1074 function. It just short circuits the reloc if producing
1075 relocatable output against an external symbol. */
1076
1077 bfd_reloc_status_type
1078 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1079 arelent *reloc_entry,
1080 asymbol *symbol,
1081 void *data ATTRIBUTE_UNUSED,
1082 asection *input_section,
1083 bfd *output_bfd,
1084 char **error_message ATTRIBUTE_UNUSED)
1085 {
1086 if (output_bfd != NULL
1087 && (symbol->flags & BSF_SECTION_SYM) == 0
1088 && (! reloc_entry->howto->partial_inplace
1089 || reloc_entry->addend == 0))
1090 {
1091 reloc_entry->address += input_section->output_offset;
1092 return bfd_reloc_ok;
1093 }
1094
1095 return bfd_reloc_continue;
1096 }
1097 \f
1098 /* Copy the program header and other data from one object module to
1099 another. */
1100
1101 bfd_boolean
1102 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1103 {
1104 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1105 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1106 return TRUE;
1107
1108 BFD_ASSERT (!elf_flags_init (obfd)
1109 || (elf_elfheader (obfd)->e_flags
1110 == elf_elfheader (ibfd)->e_flags));
1111
1112 elf_gp (obfd) = elf_gp (ibfd);
1113 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1114 elf_flags_init (obfd) = TRUE;
1115
1116 /* Copy object attributes. */
1117 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1118
1119 return TRUE;
1120 }
1121
1122 static const char *
1123 get_segment_type (unsigned int p_type)
1124 {
1125 const char *pt;
1126 switch (p_type)
1127 {
1128 case PT_NULL: pt = "NULL"; break;
1129 case PT_LOAD: pt = "LOAD"; break;
1130 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1131 case PT_INTERP: pt = "INTERP"; break;
1132 case PT_NOTE: pt = "NOTE"; break;
1133 case PT_SHLIB: pt = "SHLIB"; break;
1134 case PT_PHDR: pt = "PHDR"; break;
1135 case PT_TLS: pt = "TLS"; break;
1136 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1137 case PT_GNU_STACK: pt = "STACK"; break;
1138 case PT_GNU_RELRO: pt = "RELRO"; break;
1139 default: pt = NULL; break;
1140 }
1141 return pt;
1142 }
1143
1144 /* Print out the program headers. */
1145
1146 bfd_boolean
1147 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1148 {
1149 FILE *f = farg;
1150 Elf_Internal_Phdr *p;
1151 asection *s;
1152 bfd_byte *dynbuf = NULL;
1153
1154 p = elf_tdata (abfd)->phdr;
1155 if (p != NULL)
1156 {
1157 unsigned int i, c;
1158
1159 fprintf (f, _("\nProgram Header:\n"));
1160 c = elf_elfheader (abfd)->e_phnum;
1161 for (i = 0; i < c; i++, p++)
1162 {
1163 const char *pt = get_segment_type (p->p_type);
1164 char buf[20];
1165
1166 if (pt == NULL)
1167 {
1168 sprintf (buf, "0x%lx", p->p_type);
1169 pt = buf;
1170 }
1171 fprintf (f, "%8s off 0x", pt);
1172 bfd_fprintf_vma (abfd, f, p->p_offset);
1173 fprintf (f, " vaddr 0x");
1174 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1175 fprintf (f, " paddr 0x");
1176 bfd_fprintf_vma (abfd, f, p->p_paddr);
1177 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1178 fprintf (f, " filesz 0x");
1179 bfd_fprintf_vma (abfd, f, p->p_filesz);
1180 fprintf (f, " memsz 0x");
1181 bfd_fprintf_vma (abfd, f, p->p_memsz);
1182 fprintf (f, " flags %c%c%c",
1183 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1184 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1185 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1186 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1187 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1188 fprintf (f, "\n");
1189 }
1190 }
1191
1192 s = bfd_get_section_by_name (abfd, ".dynamic");
1193 if (s != NULL)
1194 {
1195 unsigned int elfsec;
1196 unsigned long shlink;
1197 bfd_byte *extdyn, *extdynend;
1198 size_t extdynsize;
1199 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1200
1201 fprintf (f, _("\nDynamic Section:\n"));
1202
1203 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1204 goto error_return;
1205
1206 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1207 if (elfsec == SHN_BAD)
1208 goto error_return;
1209 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1210
1211 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1212 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1213
1214 extdyn = dynbuf;
1215 extdynend = extdyn + s->size;
1216 for (; extdyn < extdynend; extdyn += extdynsize)
1217 {
1218 Elf_Internal_Dyn dyn;
1219 const char *name = "";
1220 char ab[20];
1221 bfd_boolean stringp;
1222 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1223
1224 (*swap_dyn_in) (abfd, extdyn, &dyn);
1225
1226 if (dyn.d_tag == DT_NULL)
1227 break;
1228
1229 stringp = FALSE;
1230 switch (dyn.d_tag)
1231 {
1232 default:
1233 if (bed->elf_backend_get_target_dtag)
1234 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1235
1236 if (!strcmp (name, ""))
1237 {
1238 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1239 name = ab;
1240 }
1241 break;
1242
1243 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1244 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1245 case DT_PLTGOT: name = "PLTGOT"; break;
1246 case DT_HASH: name = "HASH"; break;
1247 case DT_STRTAB: name = "STRTAB"; break;
1248 case DT_SYMTAB: name = "SYMTAB"; break;
1249 case DT_RELA: name = "RELA"; break;
1250 case DT_RELASZ: name = "RELASZ"; break;
1251 case DT_RELAENT: name = "RELAENT"; break;
1252 case DT_STRSZ: name = "STRSZ"; break;
1253 case DT_SYMENT: name = "SYMENT"; break;
1254 case DT_INIT: name = "INIT"; break;
1255 case DT_FINI: name = "FINI"; break;
1256 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1257 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1258 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1259 case DT_REL: name = "REL"; break;
1260 case DT_RELSZ: name = "RELSZ"; break;
1261 case DT_RELENT: name = "RELENT"; break;
1262 case DT_PLTREL: name = "PLTREL"; break;
1263 case DT_DEBUG: name = "DEBUG"; break;
1264 case DT_TEXTREL: name = "TEXTREL"; break;
1265 case DT_JMPREL: name = "JMPREL"; break;
1266 case DT_BIND_NOW: name = "BIND_NOW"; break;
1267 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1268 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1269 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1270 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1271 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1272 case DT_FLAGS: name = "FLAGS"; break;
1273 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1274 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1275 case DT_CHECKSUM: name = "CHECKSUM"; break;
1276 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1277 case DT_MOVEENT: name = "MOVEENT"; break;
1278 case DT_MOVESZ: name = "MOVESZ"; break;
1279 case DT_FEATURE: name = "FEATURE"; break;
1280 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1281 case DT_SYMINSZ: name = "SYMINSZ"; break;
1282 case DT_SYMINENT: name = "SYMINENT"; break;
1283 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1284 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1285 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1286 case DT_PLTPAD: name = "PLTPAD"; break;
1287 case DT_MOVETAB: name = "MOVETAB"; break;
1288 case DT_SYMINFO: name = "SYMINFO"; break;
1289 case DT_RELACOUNT: name = "RELACOUNT"; break;
1290 case DT_RELCOUNT: name = "RELCOUNT"; break;
1291 case DT_FLAGS_1: name = "FLAGS_1"; break;
1292 case DT_VERSYM: name = "VERSYM"; break;
1293 case DT_VERDEF: name = "VERDEF"; break;
1294 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1295 case DT_VERNEED: name = "VERNEED"; break;
1296 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1297 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1298 case DT_USED: name = "USED"; break;
1299 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1300 case DT_GNU_HASH: name = "GNU_HASH"; break;
1301 }
1302
1303 fprintf (f, " %-20s ", name);
1304 if (! stringp)
1305 {
1306 fprintf (f, "0x");
1307 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1308 }
1309 else
1310 {
1311 const char *string;
1312 unsigned int tagv = dyn.d_un.d_val;
1313
1314 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1315 if (string == NULL)
1316 goto error_return;
1317 fprintf (f, "%s", string);
1318 }
1319 fprintf (f, "\n");
1320 }
1321
1322 free (dynbuf);
1323 dynbuf = NULL;
1324 }
1325
1326 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1327 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1328 {
1329 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1330 return FALSE;
1331 }
1332
1333 if (elf_dynverdef (abfd) != 0)
1334 {
1335 Elf_Internal_Verdef *t;
1336
1337 fprintf (f, _("\nVersion definitions:\n"));
1338 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1339 {
1340 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1341 t->vd_flags, t->vd_hash,
1342 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1343 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1344 {
1345 Elf_Internal_Verdaux *a;
1346
1347 fprintf (f, "\t");
1348 for (a = t->vd_auxptr->vda_nextptr;
1349 a != NULL;
1350 a = a->vda_nextptr)
1351 fprintf (f, "%s ",
1352 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1353 fprintf (f, "\n");
1354 }
1355 }
1356 }
1357
1358 if (elf_dynverref (abfd) != 0)
1359 {
1360 Elf_Internal_Verneed *t;
1361
1362 fprintf (f, _("\nVersion References:\n"));
1363 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1364 {
1365 Elf_Internal_Vernaux *a;
1366
1367 fprintf (f, _(" required from %s:\n"),
1368 t->vn_filename ? t->vn_filename : "<corrupt>");
1369 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1370 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1371 a->vna_flags, a->vna_other,
1372 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1373 }
1374 }
1375
1376 return TRUE;
1377
1378 error_return:
1379 if (dynbuf != NULL)
1380 free (dynbuf);
1381 return FALSE;
1382 }
1383
1384 /* Display ELF-specific fields of a symbol. */
1385
1386 void
1387 bfd_elf_print_symbol (bfd *abfd,
1388 void *filep,
1389 asymbol *symbol,
1390 bfd_print_symbol_type how)
1391 {
1392 FILE *file = filep;
1393 switch (how)
1394 {
1395 case bfd_print_symbol_name:
1396 fprintf (file, "%s", symbol->name);
1397 break;
1398 case bfd_print_symbol_more:
1399 fprintf (file, "elf ");
1400 bfd_fprintf_vma (abfd, file, symbol->value);
1401 fprintf (file, " %lx", (unsigned long) symbol->flags);
1402 break;
1403 case bfd_print_symbol_all:
1404 {
1405 const char *section_name;
1406 const char *name = NULL;
1407 const struct elf_backend_data *bed;
1408 unsigned char st_other;
1409 bfd_vma val;
1410
1411 section_name = symbol->section ? symbol->section->name : "(*none*)";
1412
1413 bed = get_elf_backend_data (abfd);
1414 if (bed->elf_backend_print_symbol_all)
1415 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1416
1417 if (name == NULL)
1418 {
1419 name = symbol->name;
1420 bfd_print_symbol_vandf (abfd, file, symbol);
1421 }
1422
1423 fprintf (file, " %s\t", section_name);
1424 /* Print the "other" value for a symbol. For common symbols,
1425 we've already printed the size; now print the alignment.
1426 For other symbols, we have no specified alignment, and
1427 we've printed the address; now print the size. */
1428 if (symbol->section && bfd_is_com_section (symbol->section))
1429 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1430 else
1431 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1432 bfd_fprintf_vma (abfd, file, val);
1433
1434 /* If we have version information, print it. */
1435 if (elf_tdata (abfd)->dynversym_section != 0
1436 && (elf_tdata (abfd)->dynverdef_section != 0
1437 || elf_tdata (abfd)->dynverref_section != 0))
1438 {
1439 unsigned int vernum;
1440 const char *version_string;
1441
1442 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1443
1444 if (vernum == 0)
1445 version_string = "";
1446 else if (vernum == 1)
1447 version_string = "Base";
1448 else if (vernum <= elf_tdata (abfd)->cverdefs)
1449 version_string =
1450 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1451 else
1452 {
1453 Elf_Internal_Verneed *t;
1454
1455 version_string = "";
1456 for (t = elf_tdata (abfd)->verref;
1457 t != NULL;
1458 t = t->vn_nextref)
1459 {
1460 Elf_Internal_Vernaux *a;
1461
1462 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1463 {
1464 if (a->vna_other == vernum)
1465 {
1466 version_string = a->vna_nodename;
1467 break;
1468 }
1469 }
1470 }
1471 }
1472
1473 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1474 fprintf (file, " %-11s", version_string);
1475 else
1476 {
1477 int i;
1478
1479 fprintf (file, " (%s)", version_string);
1480 for (i = 10 - strlen (version_string); i > 0; --i)
1481 putc (' ', file);
1482 }
1483 }
1484
1485 /* If the st_other field is not zero, print it. */
1486 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1487
1488 switch (st_other)
1489 {
1490 case 0: break;
1491 case STV_INTERNAL: fprintf (file, " .internal"); break;
1492 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1493 case STV_PROTECTED: fprintf (file, " .protected"); break;
1494 default:
1495 /* Some other non-defined flags are also present, so print
1496 everything hex. */
1497 fprintf (file, " 0x%02x", (unsigned int) st_other);
1498 }
1499
1500 fprintf (file, " %s", name);
1501 }
1502 break;
1503 }
1504 }
1505
1506 /* Allocate an ELF string table--force the first byte to be zero. */
1507
1508 struct bfd_strtab_hash *
1509 _bfd_elf_stringtab_init (void)
1510 {
1511 struct bfd_strtab_hash *ret;
1512
1513 ret = _bfd_stringtab_init ();
1514 if (ret != NULL)
1515 {
1516 bfd_size_type loc;
1517
1518 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1519 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1520 if (loc == (bfd_size_type) -1)
1521 {
1522 _bfd_stringtab_free (ret);
1523 ret = NULL;
1524 }
1525 }
1526 return ret;
1527 }
1528 \f
1529 /* ELF .o/exec file reading */
1530
1531 /* Create a new bfd section from an ELF section header. */
1532
1533 bfd_boolean
1534 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1535 {
1536 Elf_Internal_Shdr *hdr;
1537 Elf_Internal_Ehdr *ehdr;
1538 const struct elf_backend_data *bed;
1539 const char *name;
1540
1541 if (shindex >= elf_numsections (abfd))
1542 return FALSE;
1543
1544 hdr = elf_elfsections (abfd)[shindex];
1545 ehdr = elf_elfheader (abfd);
1546 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1547 hdr->sh_name);
1548 if (name == NULL)
1549 return FALSE;
1550
1551 bed = get_elf_backend_data (abfd);
1552 switch (hdr->sh_type)
1553 {
1554 case SHT_NULL:
1555 /* Inactive section. Throw it away. */
1556 return TRUE;
1557
1558 case SHT_PROGBITS: /* Normal section with contents. */
1559 case SHT_NOBITS: /* .bss section. */
1560 case SHT_HASH: /* .hash section. */
1561 case SHT_NOTE: /* .note section. */
1562 case SHT_INIT_ARRAY: /* .init_array section. */
1563 case SHT_FINI_ARRAY: /* .fini_array section. */
1564 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1565 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1566 case SHT_GNU_HASH: /* .gnu.hash section. */
1567 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1568
1569 case SHT_DYNAMIC: /* Dynamic linking information. */
1570 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1571 return FALSE;
1572 if (hdr->sh_link > elf_numsections (abfd)
1573 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1574 return FALSE;
1575 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1576 {
1577 Elf_Internal_Shdr *dynsymhdr;
1578
1579 /* The shared libraries distributed with hpux11 have a bogus
1580 sh_link field for the ".dynamic" section. Find the
1581 string table for the ".dynsym" section instead. */
1582 if (elf_dynsymtab (abfd) != 0)
1583 {
1584 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1585 hdr->sh_link = dynsymhdr->sh_link;
1586 }
1587 else
1588 {
1589 unsigned int i, num_sec;
1590
1591 num_sec = elf_numsections (abfd);
1592 for (i = 1; i < num_sec; i++)
1593 {
1594 dynsymhdr = elf_elfsections (abfd)[i];
1595 if (dynsymhdr->sh_type == SHT_DYNSYM)
1596 {
1597 hdr->sh_link = dynsymhdr->sh_link;
1598 break;
1599 }
1600 }
1601 }
1602 }
1603 break;
1604
1605 case SHT_SYMTAB: /* A symbol table */
1606 if (elf_onesymtab (abfd) == shindex)
1607 return TRUE;
1608
1609 if (hdr->sh_entsize != bed->s->sizeof_sym)
1610 return FALSE;
1611 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1612 elf_onesymtab (abfd) = shindex;
1613 elf_tdata (abfd)->symtab_hdr = *hdr;
1614 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1615 abfd->flags |= HAS_SYMS;
1616
1617 /* Sometimes a shared object will map in the symbol table. If
1618 SHF_ALLOC is set, and this is a shared object, then we also
1619 treat this section as a BFD section. We can not base the
1620 decision purely on SHF_ALLOC, because that flag is sometimes
1621 set in a relocatable object file, which would confuse the
1622 linker. */
1623 if ((hdr->sh_flags & SHF_ALLOC) != 0
1624 && (abfd->flags & DYNAMIC) != 0
1625 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1626 shindex))
1627 return FALSE;
1628
1629 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1630 can't read symbols without that section loaded as well. It
1631 is most likely specified by the next section header. */
1632 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1633 {
1634 unsigned int i, num_sec;
1635
1636 num_sec = elf_numsections (abfd);
1637 for (i = shindex + 1; i < num_sec; i++)
1638 {
1639 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1640 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1641 && hdr2->sh_link == shindex)
1642 break;
1643 }
1644 if (i == num_sec)
1645 for (i = 1; i < shindex; i++)
1646 {
1647 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1648 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1649 && hdr2->sh_link == shindex)
1650 break;
1651 }
1652 if (i != shindex)
1653 return bfd_section_from_shdr (abfd, i);
1654 }
1655 return TRUE;
1656
1657 case SHT_DYNSYM: /* A dynamic symbol table */
1658 if (elf_dynsymtab (abfd) == shindex)
1659 return TRUE;
1660
1661 if (hdr->sh_entsize != bed->s->sizeof_sym)
1662 return FALSE;
1663 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1664 elf_dynsymtab (abfd) = shindex;
1665 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1666 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1667 abfd->flags |= HAS_SYMS;
1668
1669 /* Besides being a symbol table, we also treat this as a regular
1670 section, so that objcopy can handle it. */
1671 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1672
1673 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1674 if (elf_symtab_shndx (abfd) == shindex)
1675 return TRUE;
1676
1677 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1678 elf_symtab_shndx (abfd) = shindex;
1679 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1680 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1681 return TRUE;
1682
1683 case SHT_STRTAB: /* A string table */
1684 if (hdr->bfd_section != NULL)
1685 return TRUE;
1686 if (ehdr->e_shstrndx == shindex)
1687 {
1688 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1689 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1690 return TRUE;
1691 }
1692 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1693 {
1694 symtab_strtab:
1695 elf_tdata (abfd)->strtab_hdr = *hdr;
1696 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1697 return TRUE;
1698 }
1699 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1700 {
1701 dynsymtab_strtab:
1702 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1703 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1704 elf_elfsections (abfd)[shindex] = hdr;
1705 /* We also treat this as a regular section, so that objcopy
1706 can handle it. */
1707 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1708 shindex);
1709 }
1710
1711 /* If the string table isn't one of the above, then treat it as a
1712 regular section. We need to scan all the headers to be sure,
1713 just in case this strtab section appeared before the above. */
1714 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1715 {
1716 unsigned int i, num_sec;
1717
1718 num_sec = elf_numsections (abfd);
1719 for (i = 1; i < num_sec; i++)
1720 {
1721 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1722 if (hdr2->sh_link == shindex)
1723 {
1724 /* Prevent endless recursion on broken objects. */
1725 if (i == shindex)
1726 return FALSE;
1727 if (! bfd_section_from_shdr (abfd, i))
1728 return FALSE;
1729 if (elf_onesymtab (abfd) == i)
1730 goto symtab_strtab;
1731 if (elf_dynsymtab (abfd) == i)
1732 goto dynsymtab_strtab;
1733 }
1734 }
1735 }
1736 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1737
1738 case SHT_REL:
1739 case SHT_RELA:
1740 /* *These* do a lot of work -- but build no sections! */
1741 {
1742 asection *target_sect;
1743 Elf_Internal_Shdr *hdr2;
1744 unsigned int num_sec = elf_numsections (abfd);
1745
1746 if (hdr->sh_entsize
1747 != (bfd_size_type) (hdr->sh_type == SHT_REL
1748 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1749 return FALSE;
1750
1751 /* Check for a bogus link to avoid crashing. */
1752 if (hdr->sh_link >= num_sec)
1753 {
1754 ((*_bfd_error_handler)
1755 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1756 abfd, hdr->sh_link, name, shindex));
1757 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1758 shindex);
1759 }
1760
1761 /* For some incomprehensible reason Oracle distributes
1762 libraries for Solaris in which some of the objects have
1763 bogus sh_link fields. It would be nice if we could just
1764 reject them, but, unfortunately, some people need to use
1765 them. We scan through the section headers; if we find only
1766 one suitable symbol table, we clobber the sh_link to point
1767 to it. I hope this doesn't break anything. */
1768 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1769 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1770 {
1771 unsigned int scan;
1772 int found;
1773
1774 found = 0;
1775 for (scan = 1; scan < num_sec; scan++)
1776 {
1777 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1778 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1779 {
1780 if (found != 0)
1781 {
1782 found = 0;
1783 break;
1784 }
1785 found = scan;
1786 }
1787 }
1788 if (found != 0)
1789 hdr->sh_link = found;
1790 }
1791
1792 /* Get the symbol table. */
1793 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1794 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1795 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1796 return FALSE;
1797
1798 /* If this reloc section does not use the main symbol table we
1799 don't treat it as a reloc section. BFD can't adequately
1800 represent such a section, so at least for now, we don't
1801 try. We just present it as a normal section. We also
1802 can't use it as a reloc section if it points to the null
1803 section, an invalid section, or another reloc section. */
1804 if (hdr->sh_link != elf_onesymtab (abfd)
1805 || hdr->sh_info == SHN_UNDEF
1806 || hdr->sh_info >= num_sec
1807 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1808 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1809 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1810 shindex);
1811
1812 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1813 return FALSE;
1814 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1815 if (target_sect == NULL)
1816 return FALSE;
1817
1818 if ((target_sect->flags & SEC_RELOC) == 0
1819 || target_sect->reloc_count == 0)
1820 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1821 else
1822 {
1823 bfd_size_type amt;
1824 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1825 amt = sizeof (*hdr2);
1826 hdr2 = bfd_alloc (abfd, amt);
1827 if (hdr2 == NULL)
1828 return FALSE;
1829 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1830 }
1831 *hdr2 = *hdr;
1832 elf_elfsections (abfd)[shindex] = hdr2;
1833 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1834 target_sect->flags |= SEC_RELOC;
1835 target_sect->relocation = NULL;
1836 target_sect->rel_filepos = hdr->sh_offset;
1837 /* In the section to which the relocations apply, mark whether
1838 its relocations are of the REL or RELA variety. */
1839 if (hdr->sh_size != 0)
1840 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1841 abfd->flags |= HAS_RELOC;
1842 return TRUE;
1843 }
1844
1845 case SHT_GNU_verdef:
1846 elf_dynverdef (abfd) = shindex;
1847 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1848 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1849
1850 case SHT_GNU_versym:
1851 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1852 return FALSE;
1853 elf_dynversym (abfd) = shindex;
1854 elf_tdata (abfd)->dynversym_hdr = *hdr;
1855 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1856
1857 case SHT_GNU_verneed:
1858 elf_dynverref (abfd) = shindex;
1859 elf_tdata (abfd)->dynverref_hdr = *hdr;
1860 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1861
1862 case SHT_SHLIB:
1863 return TRUE;
1864
1865 case SHT_GROUP:
1866 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1867 return FALSE;
1868 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1869 return FALSE;
1870 if (hdr->contents != NULL)
1871 {
1872 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1873 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1874 asection *s;
1875
1876 if (idx->flags & GRP_COMDAT)
1877 hdr->bfd_section->flags
1878 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1879
1880 /* We try to keep the same section order as it comes in. */
1881 idx += n_elt;
1882 while (--n_elt != 0)
1883 {
1884 --idx;
1885
1886 if (idx->shdr != NULL
1887 && (s = idx->shdr->bfd_section) != NULL
1888 && elf_next_in_group (s) != NULL)
1889 {
1890 elf_next_in_group (hdr->bfd_section) = s;
1891 break;
1892 }
1893 }
1894 }
1895 break;
1896
1897 default:
1898 /* Possibly an attributes section. */
1899 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1900 || hdr->sh_type == bed->obj_attrs_section_type)
1901 {
1902 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1903 return FALSE;
1904 _bfd_elf_parse_attributes (abfd, hdr);
1905 return TRUE;
1906 }
1907
1908 /* Check for any processor-specific section types. */
1909 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1910 return TRUE;
1911
1912 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1913 {
1914 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1915 /* FIXME: How to properly handle allocated section reserved
1916 for applications? */
1917 (*_bfd_error_handler)
1918 (_("%B: don't know how to handle allocated, application "
1919 "specific section `%s' [0x%8x]"),
1920 abfd, name, hdr->sh_type);
1921 else
1922 /* Allow sections reserved for applications. */
1923 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1924 shindex);
1925 }
1926 else if (hdr->sh_type >= SHT_LOPROC
1927 && hdr->sh_type <= SHT_HIPROC)
1928 /* FIXME: We should handle this section. */
1929 (*_bfd_error_handler)
1930 (_("%B: don't know how to handle processor specific section "
1931 "`%s' [0x%8x]"),
1932 abfd, name, hdr->sh_type);
1933 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1934 {
1935 /* Unrecognised OS-specific sections. */
1936 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1937 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1938 required to correctly process the section and the file should
1939 be rejected with an error message. */
1940 (*_bfd_error_handler)
1941 (_("%B: don't know how to handle OS specific section "
1942 "`%s' [0x%8x]"),
1943 abfd, name, hdr->sh_type);
1944 else
1945 /* Otherwise it should be processed. */
1946 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1947 }
1948 else
1949 /* FIXME: We should handle this section. */
1950 (*_bfd_error_handler)
1951 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1952 abfd, name, hdr->sh_type);
1953
1954 return FALSE;
1955 }
1956
1957 return TRUE;
1958 }
1959
1960 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1961 Return SEC for sections that have no elf section, and NULL on error. */
1962
1963 asection *
1964 bfd_section_from_r_symndx (bfd *abfd,
1965 struct sym_sec_cache *cache,
1966 asection *sec,
1967 unsigned long r_symndx)
1968 {
1969 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1970 asection *s;
1971
1972 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1973 {
1974 Elf_Internal_Shdr *symtab_hdr;
1975 unsigned char esym[sizeof (Elf64_External_Sym)];
1976 Elf_External_Sym_Shndx eshndx;
1977 Elf_Internal_Sym isym;
1978
1979 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1980 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1981 &isym, esym, &eshndx) == NULL)
1982 return NULL;
1983
1984 if (cache->abfd != abfd)
1985 {
1986 memset (cache->indx, -1, sizeof (cache->indx));
1987 cache->abfd = abfd;
1988 }
1989 cache->indx[ent] = r_symndx;
1990 cache->shndx[ent] = isym.st_shndx;
1991 }
1992
1993 s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
1994 if (s != NULL)
1995 return s;
1996
1997 return sec;
1998 }
1999
2000 /* Given an ELF section number, retrieve the corresponding BFD
2001 section. */
2002
2003 asection *
2004 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2005 {
2006 if (index >= elf_numsections (abfd))
2007 return NULL;
2008 return elf_elfsections (abfd)[index]->bfd_section;
2009 }
2010
2011 static const struct bfd_elf_special_section special_sections_b[] =
2012 {
2013 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2014 { NULL, 0, 0, 0, 0 }
2015 };
2016
2017 static const struct bfd_elf_special_section special_sections_c[] =
2018 {
2019 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2020 { NULL, 0, 0, 0, 0 }
2021 };
2022
2023 static const struct bfd_elf_special_section special_sections_d[] =
2024 {
2025 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2026 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2027 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2028 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2029 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2030 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2031 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2032 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2033 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2034 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2035 { NULL, 0, 0, 0, 0 }
2036 };
2037
2038 static const struct bfd_elf_special_section special_sections_f[] =
2039 {
2040 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2041 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2042 { NULL, 0, 0, 0, 0 }
2043 };
2044
2045 static const struct bfd_elf_special_section special_sections_g[] =
2046 {
2047 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2048 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2049 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2050 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2051 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2052 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2053 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2054 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2055 { NULL, 0, 0, 0, 0 }
2056 };
2057
2058 static const struct bfd_elf_special_section special_sections_h[] =
2059 {
2060 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2061 { NULL, 0, 0, 0, 0 }
2062 };
2063
2064 static const struct bfd_elf_special_section special_sections_i[] =
2065 {
2066 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2067 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2068 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2069 { NULL, 0, 0, 0, 0 }
2070 };
2071
2072 static const struct bfd_elf_special_section special_sections_l[] =
2073 {
2074 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2075 { NULL, 0, 0, 0, 0 }
2076 };
2077
2078 static const struct bfd_elf_special_section special_sections_n[] =
2079 {
2080 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2081 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2082 { NULL, 0, 0, 0, 0 }
2083 };
2084
2085 static const struct bfd_elf_special_section special_sections_p[] =
2086 {
2087 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2088 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2089 { NULL, 0, 0, 0, 0 }
2090 };
2091
2092 static const struct bfd_elf_special_section special_sections_r[] =
2093 {
2094 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2095 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2096 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2097 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2098 { NULL, 0, 0, 0, 0 }
2099 };
2100
2101 static const struct bfd_elf_special_section special_sections_s[] =
2102 {
2103 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2104 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2105 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2106 /* See struct bfd_elf_special_section declaration for the semantics of
2107 this special case where .prefix_length != strlen (.prefix). */
2108 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2109 { NULL, 0, 0, 0, 0 }
2110 };
2111
2112 static const struct bfd_elf_special_section special_sections_t[] =
2113 {
2114 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2115 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2116 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2117 { NULL, 0, 0, 0, 0 }
2118 };
2119
2120 static const struct bfd_elf_special_section special_sections_z[] =
2121 {
2122 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2123 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2124 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2125 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2126 { NULL, 0, 0, 0, 0 }
2127 };
2128
2129 static const struct bfd_elf_special_section *special_sections[] =
2130 {
2131 special_sections_b, /* 'b' */
2132 special_sections_c, /* 'c' */
2133 special_sections_d, /* 'd' */
2134 NULL, /* 'e' */
2135 special_sections_f, /* 'f' */
2136 special_sections_g, /* 'g' */
2137 special_sections_h, /* 'h' */
2138 special_sections_i, /* 'i' */
2139 NULL, /* 'j' */
2140 NULL, /* 'k' */
2141 special_sections_l, /* 'l' */
2142 NULL, /* 'm' */
2143 special_sections_n, /* 'n' */
2144 NULL, /* 'o' */
2145 special_sections_p, /* 'p' */
2146 NULL, /* 'q' */
2147 special_sections_r, /* 'r' */
2148 special_sections_s, /* 's' */
2149 special_sections_t, /* 't' */
2150 NULL, /* 'u' */
2151 NULL, /* 'v' */
2152 NULL, /* 'w' */
2153 NULL, /* 'x' */
2154 NULL, /* 'y' */
2155 special_sections_z /* 'z' */
2156 };
2157
2158 const struct bfd_elf_special_section *
2159 _bfd_elf_get_special_section (const char *name,
2160 const struct bfd_elf_special_section *spec,
2161 unsigned int rela)
2162 {
2163 int i;
2164 int len;
2165
2166 len = strlen (name);
2167
2168 for (i = 0; spec[i].prefix != NULL; i++)
2169 {
2170 int suffix_len;
2171 int prefix_len = spec[i].prefix_length;
2172
2173 if (len < prefix_len)
2174 continue;
2175 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2176 continue;
2177
2178 suffix_len = spec[i].suffix_length;
2179 if (suffix_len <= 0)
2180 {
2181 if (name[prefix_len] != 0)
2182 {
2183 if (suffix_len == 0)
2184 continue;
2185 if (name[prefix_len] != '.'
2186 && (suffix_len == -2
2187 || (rela && spec[i].type == SHT_REL)))
2188 continue;
2189 }
2190 }
2191 else
2192 {
2193 if (len < prefix_len + suffix_len)
2194 continue;
2195 if (memcmp (name + len - suffix_len,
2196 spec[i].prefix + prefix_len,
2197 suffix_len) != 0)
2198 continue;
2199 }
2200 return &spec[i];
2201 }
2202
2203 return NULL;
2204 }
2205
2206 const struct bfd_elf_special_section *
2207 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2208 {
2209 int i;
2210 const struct bfd_elf_special_section *spec;
2211 const struct elf_backend_data *bed;
2212
2213 /* See if this is one of the special sections. */
2214 if (sec->name == NULL)
2215 return NULL;
2216
2217 bed = get_elf_backend_data (abfd);
2218 spec = bed->special_sections;
2219 if (spec)
2220 {
2221 spec = _bfd_elf_get_special_section (sec->name,
2222 bed->special_sections,
2223 sec->use_rela_p);
2224 if (spec != NULL)
2225 return spec;
2226 }
2227
2228 if (sec->name[0] != '.')
2229 return NULL;
2230
2231 i = sec->name[1] - 'b';
2232 if (i < 0 || i > 'z' - 'b')
2233 return NULL;
2234
2235 spec = special_sections[i];
2236
2237 if (spec == NULL)
2238 return NULL;
2239
2240 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2241 }
2242
2243 bfd_boolean
2244 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2245 {
2246 struct bfd_elf_section_data *sdata;
2247 const struct elf_backend_data *bed;
2248 const struct bfd_elf_special_section *ssect;
2249
2250 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2251 if (sdata == NULL)
2252 {
2253 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2254 if (sdata == NULL)
2255 return FALSE;
2256 sec->used_by_bfd = sdata;
2257 }
2258
2259 /* Indicate whether or not this section should use RELA relocations. */
2260 bed = get_elf_backend_data (abfd);
2261 sec->use_rela_p = bed->default_use_rela_p;
2262
2263 /* When we read a file, we don't need to set ELF section type and
2264 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2265 anyway. We will set ELF section type and flags for all linker
2266 created sections. If user specifies BFD section flags, we will
2267 set ELF section type and flags based on BFD section flags in
2268 elf_fake_sections. */
2269 if ((!sec->flags && abfd->direction != read_direction)
2270 || (sec->flags & SEC_LINKER_CREATED) != 0)
2271 {
2272 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2273 if (ssect != NULL)
2274 {
2275 elf_section_type (sec) = ssect->type;
2276 elf_section_flags (sec) = ssect->attr;
2277 }
2278 }
2279
2280 return _bfd_generic_new_section_hook (abfd, sec);
2281 }
2282
2283 /* Create a new bfd section from an ELF program header.
2284
2285 Since program segments have no names, we generate a synthetic name
2286 of the form segment<NUM>, where NUM is generally the index in the
2287 program header table. For segments that are split (see below) we
2288 generate the names segment<NUM>a and segment<NUM>b.
2289
2290 Note that some program segments may have a file size that is different than
2291 (less than) the memory size. All this means is that at execution the
2292 system must allocate the amount of memory specified by the memory size,
2293 but only initialize it with the first "file size" bytes read from the
2294 file. This would occur for example, with program segments consisting
2295 of combined data+bss.
2296
2297 To handle the above situation, this routine generates TWO bfd sections
2298 for the single program segment. The first has the length specified by
2299 the file size of the segment, and the second has the length specified
2300 by the difference between the two sizes. In effect, the segment is split
2301 into its initialized and uninitialized parts.
2302
2303 */
2304
2305 bfd_boolean
2306 _bfd_elf_make_section_from_phdr (bfd *abfd,
2307 Elf_Internal_Phdr *hdr,
2308 int index,
2309 const char *typename)
2310 {
2311 asection *newsect;
2312 char *name;
2313 char namebuf[64];
2314 size_t len;
2315 int split;
2316
2317 split = ((hdr->p_memsz > 0)
2318 && (hdr->p_filesz > 0)
2319 && (hdr->p_memsz > hdr->p_filesz));
2320
2321 if (hdr->p_filesz > 0)
2322 {
2323 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2324 len = strlen (namebuf) + 1;
2325 name = bfd_alloc (abfd, len);
2326 if (!name)
2327 return FALSE;
2328 memcpy (name, namebuf, len);
2329 newsect = bfd_make_section (abfd, name);
2330 if (newsect == NULL)
2331 return FALSE;
2332 newsect->vma = hdr->p_vaddr;
2333 newsect->lma = hdr->p_paddr;
2334 newsect->size = hdr->p_filesz;
2335 newsect->filepos = hdr->p_offset;
2336 newsect->flags |= SEC_HAS_CONTENTS;
2337 newsect->alignment_power = bfd_log2 (hdr->p_align);
2338 if (hdr->p_type == PT_LOAD)
2339 {
2340 newsect->flags |= SEC_ALLOC;
2341 newsect->flags |= SEC_LOAD;
2342 if (hdr->p_flags & PF_X)
2343 {
2344 /* FIXME: all we known is that it has execute PERMISSION,
2345 may be data. */
2346 newsect->flags |= SEC_CODE;
2347 }
2348 }
2349 if (!(hdr->p_flags & PF_W))
2350 {
2351 newsect->flags |= SEC_READONLY;
2352 }
2353 }
2354
2355 if (hdr->p_memsz > hdr->p_filesz)
2356 {
2357 bfd_vma align;
2358
2359 sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : "");
2360 len = strlen (namebuf) + 1;
2361 name = bfd_alloc (abfd, len);
2362 if (!name)
2363 return FALSE;
2364 memcpy (name, namebuf, len);
2365 newsect = bfd_make_section (abfd, name);
2366 if (newsect == NULL)
2367 return FALSE;
2368 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2369 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2370 newsect->size = hdr->p_memsz - hdr->p_filesz;
2371 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2372 align = newsect->vma & -newsect->vma;
2373 if (align == 0 || align > hdr->p_align)
2374 align = hdr->p_align;
2375 newsect->alignment_power = bfd_log2 (align);
2376 if (hdr->p_type == PT_LOAD)
2377 {
2378 /* Hack for gdb. Segments that have not been modified do
2379 not have their contents written to a core file, on the
2380 assumption that a debugger can find the contents in the
2381 executable. We flag this case by setting the fake
2382 section size to zero. Note that "real" bss sections will
2383 always have their contents dumped to the core file. */
2384 if (bfd_get_format (abfd) == bfd_core)
2385 newsect->size = 0;
2386 newsect->flags |= SEC_ALLOC;
2387 if (hdr->p_flags & PF_X)
2388 newsect->flags |= SEC_CODE;
2389 }
2390 if (!(hdr->p_flags & PF_W))
2391 newsect->flags |= SEC_READONLY;
2392 }
2393
2394 return TRUE;
2395 }
2396
2397 bfd_boolean
2398 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2399 {
2400 const struct elf_backend_data *bed;
2401
2402 switch (hdr->p_type)
2403 {
2404 case PT_NULL:
2405 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2406
2407 case PT_LOAD:
2408 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2409
2410 case PT_DYNAMIC:
2411 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2412
2413 case PT_INTERP:
2414 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2415
2416 case PT_NOTE:
2417 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2418 return FALSE;
2419 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2420 return FALSE;
2421 return TRUE;
2422
2423 case PT_SHLIB:
2424 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2425
2426 case PT_PHDR:
2427 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2428
2429 case PT_GNU_EH_FRAME:
2430 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2431 "eh_frame_hdr");
2432
2433 case PT_GNU_STACK:
2434 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2435
2436 case PT_GNU_RELRO:
2437 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2438
2439 default:
2440 /* Check for any processor-specific program segment types. */
2441 bed = get_elf_backend_data (abfd);
2442 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2443 }
2444 }
2445
2446 /* Initialize REL_HDR, the section-header for new section, containing
2447 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2448 relocations; otherwise, we use REL relocations. */
2449
2450 bfd_boolean
2451 _bfd_elf_init_reloc_shdr (bfd *abfd,
2452 Elf_Internal_Shdr *rel_hdr,
2453 asection *asect,
2454 bfd_boolean use_rela_p)
2455 {
2456 char *name;
2457 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2458 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2459
2460 name = bfd_alloc (abfd, amt);
2461 if (name == NULL)
2462 return FALSE;
2463 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2464 rel_hdr->sh_name =
2465 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2466 FALSE);
2467 if (rel_hdr->sh_name == (unsigned int) -1)
2468 return FALSE;
2469 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2470 rel_hdr->sh_entsize = (use_rela_p
2471 ? bed->s->sizeof_rela
2472 : bed->s->sizeof_rel);
2473 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2474 rel_hdr->sh_flags = 0;
2475 rel_hdr->sh_addr = 0;
2476 rel_hdr->sh_size = 0;
2477 rel_hdr->sh_offset = 0;
2478
2479 return TRUE;
2480 }
2481
2482 /* Set up an ELF internal section header for a section. */
2483
2484 static void
2485 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2486 {
2487 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2488 bfd_boolean *failedptr = failedptrarg;
2489 Elf_Internal_Shdr *this_hdr;
2490 unsigned int sh_type;
2491
2492 if (*failedptr)
2493 {
2494 /* We already failed; just get out of the bfd_map_over_sections
2495 loop. */
2496 return;
2497 }
2498
2499 this_hdr = &elf_section_data (asect)->this_hdr;
2500
2501 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2502 asect->name, FALSE);
2503 if (this_hdr->sh_name == (unsigned int) -1)
2504 {
2505 *failedptr = TRUE;
2506 return;
2507 }
2508
2509 /* Don't clear sh_flags. Assembler may set additional bits. */
2510
2511 if ((asect->flags & SEC_ALLOC) != 0
2512 || asect->user_set_vma)
2513 this_hdr->sh_addr = asect->vma;
2514 else
2515 this_hdr->sh_addr = 0;
2516
2517 this_hdr->sh_offset = 0;
2518 this_hdr->sh_size = asect->size;
2519 this_hdr->sh_link = 0;
2520 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2521 /* The sh_entsize and sh_info fields may have been set already by
2522 copy_private_section_data. */
2523
2524 this_hdr->bfd_section = asect;
2525 this_hdr->contents = NULL;
2526
2527 /* If the section type is unspecified, we set it based on
2528 asect->flags. */
2529 if ((asect->flags & SEC_GROUP) != 0)
2530 sh_type = SHT_GROUP;
2531 else if ((asect->flags & SEC_ALLOC) != 0
2532 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2533 || (asect->flags & SEC_NEVER_LOAD) != 0))
2534 sh_type = SHT_NOBITS;
2535 else
2536 sh_type = SHT_PROGBITS;
2537
2538 if (this_hdr->sh_type == SHT_NULL)
2539 this_hdr->sh_type = sh_type;
2540 else if (this_hdr->sh_type == SHT_NOBITS
2541 && sh_type == SHT_PROGBITS
2542 && (asect->flags & SEC_ALLOC) != 0)
2543 {
2544 /* Warn if we are changing a NOBITS section to PROGBITS, but
2545 allow the link to proceed. This can happen when users link
2546 non-bss input sections to bss output sections, or emit data
2547 to a bss output section via a linker script. */
2548 (*_bfd_error_handler)
2549 (_("warning: section `%A' type changed to PROGBITS"), asect);
2550 this_hdr->sh_type = sh_type;
2551 }
2552
2553 switch (this_hdr->sh_type)
2554 {
2555 default:
2556 break;
2557
2558 case SHT_STRTAB:
2559 case SHT_INIT_ARRAY:
2560 case SHT_FINI_ARRAY:
2561 case SHT_PREINIT_ARRAY:
2562 case SHT_NOTE:
2563 case SHT_NOBITS:
2564 case SHT_PROGBITS:
2565 break;
2566
2567 case SHT_HASH:
2568 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2569 break;
2570
2571 case SHT_DYNSYM:
2572 this_hdr->sh_entsize = bed->s->sizeof_sym;
2573 break;
2574
2575 case SHT_DYNAMIC:
2576 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2577 break;
2578
2579 case SHT_RELA:
2580 if (get_elf_backend_data (abfd)->may_use_rela_p)
2581 this_hdr->sh_entsize = bed->s->sizeof_rela;
2582 break;
2583
2584 case SHT_REL:
2585 if (get_elf_backend_data (abfd)->may_use_rel_p)
2586 this_hdr->sh_entsize = bed->s->sizeof_rel;
2587 break;
2588
2589 case SHT_GNU_versym:
2590 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2591 break;
2592
2593 case SHT_GNU_verdef:
2594 this_hdr->sh_entsize = 0;
2595 /* objcopy or strip will copy over sh_info, but may not set
2596 cverdefs. The linker will set cverdefs, but sh_info will be
2597 zero. */
2598 if (this_hdr->sh_info == 0)
2599 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2600 else
2601 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2602 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2603 break;
2604
2605 case SHT_GNU_verneed:
2606 this_hdr->sh_entsize = 0;
2607 /* objcopy or strip will copy over sh_info, but may not set
2608 cverrefs. The linker will set cverrefs, but sh_info will be
2609 zero. */
2610 if (this_hdr->sh_info == 0)
2611 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2612 else
2613 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2614 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2615 break;
2616
2617 case SHT_GROUP:
2618 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2619 break;
2620
2621 case SHT_GNU_HASH:
2622 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2623 break;
2624 }
2625
2626 if ((asect->flags & SEC_ALLOC) != 0)
2627 this_hdr->sh_flags |= SHF_ALLOC;
2628 if ((asect->flags & SEC_READONLY) == 0)
2629 this_hdr->sh_flags |= SHF_WRITE;
2630 if ((asect->flags & SEC_CODE) != 0)
2631 this_hdr->sh_flags |= SHF_EXECINSTR;
2632 if ((asect->flags & SEC_MERGE) != 0)
2633 {
2634 this_hdr->sh_flags |= SHF_MERGE;
2635 this_hdr->sh_entsize = asect->entsize;
2636 if ((asect->flags & SEC_STRINGS) != 0)
2637 this_hdr->sh_flags |= SHF_STRINGS;
2638 }
2639 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2640 this_hdr->sh_flags |= SHF_GROUP;
2641 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2642 {
2643 this_hdr->sh_flags |= SHF_TLS;
2644 if (asect->size == 0
2645 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2646 {
2647 struct bfd_link_order *o = asect->map_tail.link_order;
2648
2649 this_hdr->sh_size = 0;
2650 if (o != NULL)
2651 {
2652 this_hdr->sh_size = o->offset + o->size;
2653 if (this_hdr->sh_size != 0)
2654 this_hdr->sh_type = SHT_NOBITS;
2655 }
2656 }
2657 }
2658
2659 /* Check for processor-specific section types. */
2660 sh_type = this_hdr->sh_type;
2661 if (bed->elf_backend_fake_sections
2662 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2663 *failedptr = TRUE;
2664
2665 if (sh_type == SHT_NOBITS && asect->size != 0)
2666 {
2667 /* Don't change the header type from NOBITS if we are being
2668 called for objcopy --only-keep-debug. */
2669 this_hdr->sh_type = sh_type;
2670 }
2671
2672 /* If the section has relocs, set up a section header for the
2673 SHT_REL[A] section. If two relocation sections are required for
2674 this section, it is up to the processor-specific back-end to
2675 create the other. */
2676 if ((asect->flags & SEC_RELOC) != 0
2677 && !_bfd_elf_init_reloc_shdr (abfd,
2678 &elf_section_data (asect)->rel_hdr,
2679 asect,
2680 asect->use_rela_p))
2681 *failedptr = TRUE;
2682 }
2683
2684 /* Fill in the contents of a SHT_GROUP section. */
2685
2686 void
2687 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2688 {
2689 bfd_boolean *failedptr = failedptrarg;
2690 unsigned long symindx;
2691 asection *elt, *first;
2692 unsigned char *loc;
2693 bfd_boolean gas;
2694
2695 /* Ignore linker created group section. See elfNN_ia64_object_p in
2696 elfxx-ia64.c. */
2697 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2698 || *failedptr)
2699 return;
2700
2701 symindx = 0;
2702 if (elf_group_id (sec) != NULL)
2703 symindx = elf_group_id (sec)->udata.i;
2704
2705 if (symindx == 0)
2706 {
2707 /* If called from the assembler, swap_out_syms will have set up
2708 elf_section_syms; If called for "ld -r", use target_index. */
2709 if (elf_section_syms (abfd) != NULL)
2710 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2711 else
2712 symindx = sec->target_index;
2713 }
2714 elf_section_data (sec)->this_hdr.sh_info = symindx;
2715
2716 /* The contents won't be allocated for "ld -r" or objcopy. */
2717 gas = TRUE;
2718 if (sec->contents == NULL)
2719 {
2720 gas = FALSE;
2721 sec->contents = bfd_alloc (abfd, sec->size);
2722
2723 /* Arrange for the section to be written out. */
2724 elf_section_data (sec)->this_hdr.contents = sec->contents;
2725 if (sec->contents == NULL)
2726 {
2727 *failedptr = TRUE;
2728 return;
2729 }
2730 }
2731
2732 loc = sec->contents + sec->size;
2733
2734 /* Get the pointer to the first section in the group that gas
2735 squirreled away here. objcopy arranges for this to be set to the
2736 start of the input section group. */
2737 first = elt = elf_next_in_group (sec);
2738
2739 /* First element is a flag word. Rest of section is elf section
2740 indices for all the sections of the group. Write them backwards
2741 just to keep the group in the same order as given in .section
2742 directives, not that it matters. */
2743 while (elt != NULL)
2744 {
2745 asection *s;
2746 unsigned int idx;
2747
2748 loc -= 4;
2749 s = elt;
2750 if (!gas)
2751 s = s->output_section;
2752 idx = 0;
2753 if (s != NULL)
2754 idx = elf_section_data (s)->this_idx;
2755 H_PUT_32 (abfd, idx, loc);
2756 elt = elf_next_in_group (elt);
2757 if (elt == first)
2758 break;
2759 }
2760
2761 if ((loc -= 4) != sec->contents)
2762 abort ();
2763
2764 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2765 }
2766
2767 /* Assign all ELF section numbers. The dummy first section is handled here
2768 too. The link/info pointers for the standard section types are filled
2769 in here too, while we're at it. */
2770
2771 static bfd_boolean
2772 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2773 {
2774 struct elf_obj_tdata *t = elf_tdata (abfd);
2775 asection *sec;
2776 unsigned int section_number, secn;
2777 Elf_Internal_Shdr **i_shdrp;
2778 struct bfd_elf_section_data *d;
2779
2780 section_number = 1;
2781
2782 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2783
2784 /* SHT_GROUP sections are in relocatable files only. */
2785 if (link_info == NULL || link_info->relocatable)
2786 {
2787 /* Put SHT_GROUP sections first. */
2788 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2789 {
2790 d = elf_section_data (sec);
2791
2792 if (d->this_hdr.sh_type == SHT_GROUP)
2793 {
2794 if (sec->flags & SEC_LINKER_CREATED)
2795 {
2796 /* Remove the linker created SHT_GROUP sections. */
2797 bfd_section_list_remove (abfd, sec);
2798 abfd->section_count--;
2799 }
2800 else
2801 d->this_idx = section_number++;
2802 }
2803 }
2804 }
2805
2806 for (sec = abfd->sections; sec; sec = sec->next)
2807 {
2808 d = elf_section_data (sec);
2809
2810 if (d->this_hdr.sh_type != SHT_GROUP)
2811 d->this_idx = section_number++;
2812 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2813 if ((sec->flags & SEC_RELOC) == 0)
2814 d->rel_idx = 0;
2815 else
2816 {
2817 d->rel_idx = section_number++;
2818 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2819 }
2820
2821 if (d->rel_hdr2)
2822 {
2823 d->rel_idx2 = section_number++;
2824 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2825 }
2826 else
2827 d->rel_idx2 = 0;
2828 }
2829
2830 t->shstrtab_section = section_number++;
2831 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2832 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2833
2834 if (bfd_get_symcount (abfd) > 0)
2835 {
2836 t->symtab_section = section_number++;
2837 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2838 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2839 {
2840 t->symtab_shndx_section = section_number++;
2841 t->symtab_shndx_hdr.sh_name
2842 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2843 ".symtab_shndx", FALSE);
2844 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2845 return FALSE;
2846 }
2847 t->strtab_section = section_number++;
2848 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2849 }
2850
2851 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2852 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2853
2854 elf_numsections (abfd) = section_number;
2855 elf_elfheader (abfd)->e_shnum = section_number;
2856
2857 /* Set up the list of section header pointers, in agreement with the
2858 indices. */
2859 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2860 if (i_shdrp == NULL)
2861 return FALSE;
2862
2863 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2864 if (i_shdrp[0] == NULL)
2865 {
2866 bfd_release (abfd, i_shdrp);
2867 return FALSE;
2868 }
2869
2870 elf_elfsections (abfd) = i_shdrp;
2871
2872 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2873 if (bfd_get_symcount (abfd) > 0)
2874 {
2875 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2876 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
2877 {
2878 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2879 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2880 }
2881 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2882 t->symtab_hdr.sh_link = t->strtab_section;
2883 }
2884
2885 for (sec = abfd->sections; sec; sec = sec->next)
2886 {
2887 struct bfd_elf_section_data *d = elf_section_data (sec);
2888 asection *s;
2889 const char *name;
2890
2891 i_shdrp[d->this_idx] = &d->this_hdr;
2892 if (d->rel_idx != 0)
2893 i_shdrp[d->rel_idx] = &d->rel_hdr;
2894 if (d->rel_idx2 != 0)
2895 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2896
2897 /* Fill in the sh_link and sh_info fields while we're at it. */
2898
2899 /* sh_link of a reloc section is the section index of the symbol
2900 table. sh_info is the section index of the section to which
2901 the relocation entries apply. */
2902 if (d->rel_idx != 0)
2903 {
2904 d->rel_hdr.sh_link = t->symtab_section;
2905 d->rel_hdr.sh_info = d->this_idx;
2906 }
2907 if (d->rel_idx2 != 0)
2908 {
2909 d->rel_hdr2->sh_link = t->symtab_section;
2910 d->rel_hdr2->sh_info = d->this_idx;
2911 }
2912
2913 /* We need to set up sh_link for SHF_LINK_ORDER. */
2914 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2915 {
2916 s = elf_linked_to_section (sec);
2917 if (s)
2918 {
2919 /* elf_linked_to_section points to the input section. */
2920 if (link_info != NULL)
2921 {
2922 /* Check discarded linkonce section. */
2923 if (elf_discarded_section (s))
2924 {
2925 asection *kept;
2926 (*_bfd_error_handler)
2927 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2928 abfd, d->this_hdr.bfd_section,
2929 s, s->owner);
2930 /* Point to the kept section if it has the same
2931 size as the discarded one. */
2932 kept = _bfd_elf_check_kept_section (s, link_info);
2933 if (kept == NULL)
2934 {
2935 bfd_set_error (bfd_error_bad_value);
2936 return FALSE;
2937 }
2938 s = kept;
2939 }
2940
2941 s = s->output_section;
2942 BFD_ASSERT (s != NULL);
2943 }
2944 else
2945 {
2946 /* Handle objcopy. */
2947 if (s->output_section == NULL)
2948 {
2949 (*_bfd_error_handler)
2950 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2951 abfd, d->this_hdr.bfd_section, s, s->owner);
2952 bfd_set_error (bfd_error_bad_value);
2953 return FALSE;
2954 }
2955 s = s->output_section;
2956 }
2957 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2958 }
2959 else
2960 {
2961 /* PR 290:
2962 The Intel C compiler generates SHT_IA_64_UNWIND with
2963 SHF_LINK_ORDER. But it doesn't set the sh_link or
2964 sh_info fields. Hence we could get the situation
2965 where s is NULL. */
2966 const struct elf_backend_data *bed
2967 = get_elf_backend_data (abfd);
2968 if (bed->link_order_error_handler)
2969 bed->link_order_error_handler
2970 (_("%B: warning: sh_link not set for section `%A'"),
2971 abfd, sec);
2972 }
2973 }
2974
2975 switch (d->this_hdr.sh_type)
2976 {
2977 case SHT_REL:
2978 case SHT_RELA:
2979 /* A reloc section which we are treating as a normal BFD
2980 section. sh_link is the section index of the symbol
2981 table. sh_info is the section index of the section to
2982 which the relocation entries apply. We assume that an
2983 allocated reloc section uses the dynamic symbol table.
2984 FIXME: How can we be sure? */
2985 s = bfd_get_section_by_name (abfd, ".dynsym");
2986 if (s != NULL)
2987 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2988
2989 /* We look up the section the relocs apply to by name. */
2990 name = sec->name;
2991 if (d->this_hdr.sh_type == SHT_REL)
2992 name += 4;
2993 else
2994 name += 5;
2995 s = bfd_get_section_by_name (abfd, name);
2996 if (s != NULL)
2997 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2998 break;
2999
3000 case SHT_STRTAB:
3001 /* We assume that a section named .stab*str is a stabs
3002 string section. We look for a section with the same name
3003 but without the trailing ``str'', and set its sh_link
3004 field to point to this section. */
3005 if (CONST_STRNEQ (sec->name, ".stab")
3006 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3007 {
3008 size_t len;
3009 char *alc;
3010
3011 len = strlen (sec->name);
3012 alc = bfd_malloc (len - 2);
3013 if (alc == NULL)
3014 return FALSE;
3015 memcpy (alc, sec->name, len - 3);
3016 alc[len - 3] = '\0';
3017 s = bfd_get_section_by_name (abfd, alc);
3018 free (alc);
3019 if (s != NULL)
3020 {
3021 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3022
3023 /* This is a .stab section. */
3024 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3025 elf_section_data (s)->this_hdr.sh_entsize
3026 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3027 }
3028 }
3029 break;
3030
3031 case SHT_DYNAMIC:
3032 case SHT_DYNSYM:
3033 case SHT_GNU_verneed:
3034 case SHT_GNU_verdef:
3035 /* sh_link is the section header index of the string table
3036 used for the dynamic entries, or the symbol table, or the
3037 version strings. */
3038 s = bfd_get_section_by_name (abfd, ".dynstr");
3039 if (s != NULL)
3040 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3041 break;
3042
3043 case SHT_GNU_LIBLIST:
3044 /* sh_link is the section header index of the prelink library
3045 list used for the dynamic entries, or the symbol table, or
3046 the version strings. */
3047 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3048 ? ".dynstr" : ".gnu.libstr");
3049 if (s != NULL)
3050 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3051 break;
3052
3053 case SHT_HASH:
3054 case SHT_GNU_HASH:
3055 case SHT_GNU_versym:
3056 /* sh_link is the section header index of the symbol table
3057 this hash table or version table is for. */
3058 s = bfd_get_section_by_name (abfd, ".dynsym");
3059 if (s != NULL)
3060 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3061 break;
3062
3063 case SHT_GROUP:
3064 d->this_hdr.sh_link = t->symtab_section;
3065 }
3066 }
3067
3068 for (secn = 1; secn < section_number; ++secn)
3069 if (i_shdrp[secn] == NULL)
3070 i_shdrp[secn] = i_shdrp[0];
3071 else
3072 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3073 i_shdrp[secn]->sh_name);
3074 return TRUE;
3075 }
3076
3077 /* Map symbol from it's internal number to the external number, moving
3078 all local symbols to be at the head of the list. */
3079
3080 static bfd_boolean
3081 sym_is_global (bfd *abfd, asymbol *sym)
3082 {
3083 /* If the backend has a special mapping, use it. */
3084 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3085 if (bed->elf_backend_sym_is_global)
3086 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3087
3088 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3089 || bfd_is_und_section (bfd_get_section (sym))
3090 || bfd_is_com_section (bfd_get_section (sym)));
3091 }
3092
3093 /* Don't output section symbols for sections that are not going to be
3094 output. */
3095
3096 static bfd_boolean
3097 ignore_section_sym (bfd *abfd, asymbol *sym)
3098 {
3099 return ((sym->flags & BSF_SECTION_SYM) != 0
3100 && !(sym->section->owner == abfd
3101 || (sym->section->output_section->owner == abfd
3102 && sym->section->output_offset == 0)));
3103 }
3104
3105 static bfd_boolean
3106 elf_map_symbols (bfd *abfd)
3107 {
3108 unsigned int symcount = bfd_get_symcount (abfd);
3109 asymbol **syms = bfd_get_outsymbols (abfd);
3110 asymbol **sect_syms;
3111 unsigned int num_locals = 0;
3112 unsigned int num_globals = 0;
3113 unsigned int num_locals2 = 0;
3114 unsigned int num_globals2 = 0;
3115 int max_index = 0;
3116 unsigned int idx;
3117 asection *asect;
3118 asymbol **new_syms;
3119
3120 #ifdef DEBUG
3121 fprintf (stderr, "elf_map_symbols\n");
3122 fflush (stderr);
3123 #endif
3124
3125 for (asect = abfd->sections; asect; asect = asect->next)
3126 {
3127 if (max_index < asect->index)
3128 max_index = asect->index;
3129 }
3130
3131 max_index++;
3132 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3133 if (sect_syms == NULL)
3134 return FALSE;
3135 elf_section_syms (abfd) = sect_syms;
3136 elf_num_section_syms (abfd) = max_index;
3137
3138 /* Init sect_syms entries for any section symbols we have already
3139 decided to output. */
3140 for (idx = 0; idx < symcount; idx++)
3141 {
3142 asymbol *sym = syms[idx];
3143
3144 if ((sym->flags & BSF_SECTION_SYM) != 0
3145 && sym->value == 0
3146 && !ignore_section_sym (abfd, sym))
3147 {
3148 asection *sec = sym->section;
3149
3150 if (sec->owner != abfd)
3151 sec = sec->output_section;
3152
3153 sect_syms[sec->index] = syms[idx];
3154 }
3155 }
3156
3157 /* Classify all of the symbols. */
3158 for (idx = 0; idx < symcount; idx++)
3159 {
3160 if (ignore_section_sym (abfd, syms[idx]))
3161 continue;
3162 if (!sym_is_global (abfd, syms[idx]))
3163 num_locals++;
3164 else
3165 num_globals++;
3166 }
3167
3168 /* We will be adding a section symbol for each normal BFD section. Most
3169 sections will already have a section symbol in outsymbols, but
3170 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3171 at least in that case. */
3172 for (asect = abfd->sections; asect; asect = asect->next)
3173 {
3174 if (sect_syms[asect->index] == NULL)
3175 {
3176 if (!sym_is_global (abfd, asect->symbol))
3177 num_locals++;
3178 else
3179 num_globals++;
3180 }
3181 }
3182
3183 /* Now sort the symbols so the local symbols are first. */
3184 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3185
3186 if (new_syms == NULL)
3187 return FALSE;
3188
3189 for (idx = 0; idx < symcount; idx++)
3190 {
3191 asymbol *sym = syms[idx];
3192 unsigned int i;
3193
3194 if (ignore_section_sym (abfd, sym))
3195 continue;
3196 if (!sym_is_global (abfd, sym))
3197 i = num_locals2++;
3198 else
3199 i = num_locals + num_globals2++;
3200 new_syms[i] = sym;
3201 sym->udata.i = i + 1;
3202 }
3203 for (asect = abfd->sections; asect; asect = asect->next)
3204 {
3205 if (sect_syms[asect->index] == NULL)
3206 {
3207 asymbol *sym = asect->symbol;
3208 unsigned int i;
3209
3210 sect_syms[asect->index] = sym;
3211 if (!sym_is_global (abfd, sym))
3212 i = num_locals2++;
3213 else
3214 i = num_locals + num_globals2++;
3215 new_syms[i] = sym;
3216 sym->udata.i = i + 1;
3217 }
3218 }
3219
3220 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3221
3222 elf_num_locals (abfd) = num_locals;
3223 elf_num_globals (abfd) = num_globals;
3224 return TRUE;
3225 }
3226
3227 /* Align to the maximum file alignment that could be required for any
3228 ELF data structure. */
3229
3230 static inline file_ptr
3231 align_file_position (file_ptr off, int align)
3232 {
3233 return (off + align - 1) & ~(align - 1);
3234 }
3235
3236 /* Assign a file position to a section, optionally aligning to the
3237 required section alignment. */
3238
3239 file_ptr
3240 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3241 file_ptr offset,
3242 bfd_boolean align)
3243 {
3244 if (align && i_shdrp->sh_addralign > 1)
3245 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3246 i_shdrp->sh_offset = offset;
3247 if (i_shdrp->bfd_section != NULL)
3248 i_shdrp->bfd_section->filepos = offset;
3249 if (i_shdrp->sh_type != SHT_NOBITS)
3250 offset += i_shdrp->sh_size;
3251 return offset;
3252 }
3253
3254 /* Compute the file positions we are going to put the sections at, and
3255 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3256 is not NULL, this is being called by the ELF backend linker. */
3257
3258 bfd_boolean
3259 _bfd_elf_compute_section_file_positions (bfd *abfd,
3260 struct bfd_link_info *link_info)
3261 {
3262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3263 bfd_boolean failed;
3264 struct bfd_strtab_hash *strtab = NULL;
3265 Elf_Internal_Shdr *shstrtab_hdr;
3266
3267 if (abfd->output_has_begun)
3268 return TRUE;
3269
3270 /* Do any elf backend specific processing first. */
3271 if (bed->elf_backend_begin_write_processing)
3272 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3273
3274 if (! prep_headers (abfd))
3275 return FALSE;
3276
3277 /* Post process the headers if necessary. */
3278 if (bed->elf_backend_post_process_headers)
3279 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3280
3281 failed = FALSE;
3282 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3283 if (failed)
3284 return FALSE;
3285
3286 if (!assign_section_numbers (abfd, link_info))
3287 return FALSE;
3288
3289 /* The backend linker builds symbol table information itself. */
3290 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3291 {
3292 /* Non-zero if doing a relocatable link. */
3293 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3294
3295 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3296 return FALSE;
3297 }
3298
3299 if (link_info == NULL)
3300 {
3301 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3302 if (failed)
3303 return FALSE;
3304 }
3305
3306 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3307 /* sh_name was set in prep_headers. */
3308 shstrtab_hdr->sh_type = SHT_STRTAB;
3309 shstrtab_hdr->sh_flags = 0;
3310 shstrtab_hdr->sh_addr = 0;
3311 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3312 shstrtab_hdr->sh_entsize = 0;
3313 shstrtab_hdr->sh_link = 0;
3314 shstrtab_hdr->sh_info = 0;
3315 /* sh_offset is set in assign_file_positions_except_relocs. */
3316 shstrtab_hdr->sh_addralign = 1;
3317
3318 if (!assign_file_positions_except_relocs (abfd, link_info))
3319 return FALSE;
3320
3321 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3322 {
3323 file_ptr off;
3324 Elf_Internal_Shdr *hdr;
3325
3326 off = elf_tdata (abfd)->next_file_pos;
3327
3328 hdr = &elf_tdata (abfd)->symtab_hdr;
3329 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3330
3331 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3332 if (hdr->sh_size != 0)
3333 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3334
3335 hdr = &elf_tdata (abfd)->strtab_hdr;
3336 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3337
3338 elf_tdata (abfd)->next_file_pos = off;
3339
3340 /* Now that we know where the .strtab section goes, write it
3341 out. */
3342 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3343 || ! _bfd_stringtab_emit (abfd, strtab))
3344 return FALSE;
3345 _bfd_stringtab_free (strtab);
3346 }
3347
3348 abfd->output_has_begun = TRUE;
3349
3350 return TRUE;
3351 }
3352
3353 /* Make an initial estimate of the size of the program header. If we
3354 get the number wrong here, we'll redo section placement. */
3355
3356 static bfd_size_type
3357 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3358 {
3359 size_t segs;
3360 asection *s;
3361 const struct elf_backend_data *bed;
3362
3363 /* Assume we will need exactly two PT_LOAD segments: one for text
3364 and one for data. */
3365 segs = 2;
3366
3367 s = bfd_get_section_by_name (abfd, ".interp");
3368 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3369 {
3370 /* If we have a loadable interpreter section, we need a
3371 PT_INTERP segment. In this case, assume we also need a
3372 PT_PHDR segment, although that may not be true for all
3373 targets. */
3374 segs += 2;
3375 }
3376
3377 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3378 {
3379 /* We need a PT_DYNAMIC segment. */
3380 ++segs;
3381 }
3382
3383 if (info->relro)
3384 {
3385 /* We need a PT_GNU_RELRO segment. */
3386 ++segs;
3387 }
3388
3389 if (elf_tdata (abfd)->eh_frame_hdr)
3390 {
3391 /* We need a PT_GNU_EH_FRAME segment. */
3392 ++segs;
3393 }
3394
3395 if (elf_tdata (abfd)->stack_flags)
3396 {
3397 /* We need a PT_GNU_STACK segment. */
3398 ++segs;
3399 }
3400
3401 for (s = abfd->sections; s != NULL; s = s->next)
3402 {
3403 if ((s->flags & SEC_LOAD) != 0
3404 && CONST_STRNEQ (s->name, ".note"))
3405 {
3406 /* We need a PT_NOTE segment. */
3407 ++segs;
3408 /* Try to create just one PT_NOTE segment
3409 for all adjacent loadable .note* sections.
3410 gABI requires that within a PT_NOTE segment
3411 (and also inside of each SHT_NOTE section)
3412 each note is padded to a multiple of 4 size,
3413 so we check whether the sections are correctly
3414 aligned. */
3415 if (s->alignment_power == 2)
3416 while (s->next != NULL
3417 && s->next->alignment_power == 2
3418 && (s->next->flags & SEC_LOAD) != 0
3419 && CONST_STRNEQ (s->next->name, ".note"))
3420 s = s->next;
3421 }
3422 }
3423
3424 for (s = abfd->sections; s != NULL; s = s->next)
3425 {
3426 if (s->flags & SEC_THREAD_LOCAL)
3427 {
3428 /* We need a PT_TLS segment. */
3429 ++segs;
3430 break;
3431 }
3432 }
3433
3434 /* Let the backend count up any program headers it might need. */
3435 bed = get_elf_backend_data (abfd);
3436 if (bed->elf_backend_additional_program_headers)
3437 {
3438 int a;
3439
3440 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3441 if (a == -1)
3442 abort ();
3443 segs += a;
3444 }
3445
3446 return segs * bed->s->sizeof_phdr;
3447 }
3448
3449 /* Find the segment that contains the output_section of section. */
3450
3451 Elf_Internal_Phdr *
3452 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3453 {
3454 struct elf_segment_map *m;
3455 Elf_Internal_Phdr *p;
3456
3457 for (m = elf_tdata (abfd)->segment_map,
3458 p = elf_tdata (abfd)->phdr;
3459 m != NULL;
3460 m = m->next, p++)
3461 {
3462 int i;
3463
3464 for (i = m->count - 1; i >= 0; i--)
3465 if (m->sections[i] == section)
3466 return p;
3467 }
3468
3469 return NULL;
3470 }
3471
3472 /* Create a mapping from a set of sections to a program segment. */
3473
3474 static struct elf_segment_map *
3475 make_mapping (bfd *abfd,
3476 asection **sections,
3477 unsigned int from,
3478 unsigned int to,
3479 bfd_boolean phdr)
3480 {
3481 struct elf_segment_map *m;
3482 unsigned int i;
3483 asection **hdrpp;
3484 bfd_size_type amt;
3485
3486 amt = sizeof (struct elf_segment_map);
3487 amt += (to - from - 1) * sizeof (asection *);
3488 m = bfd_zalloc (abfd, amt);
3489 if (m == NULL)
3490 return NULL;
3491 m->next = NULL;
3492 m->p_type = PT_LOAD;
3493 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3494 m->sections[i - from] = *hdrpp;
3495 m->count = to - from;
3496
3497 if (from == 0 && phdr)
3498 {
3499 /* Include the headers in the first PT_LOAD segment. */
3500 m->includes_filehdr = 1;
3501 m->includes_phdrs = 1;
3502 }
3503
3504 return m;
3505 }
3506
3507 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3508 on failure. */
3509
3510 struct elf_segment_map *
3511 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3512 {
3513 struct elf_segment_map *m;
3514
3515 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3516 if (m == NULL)
3517 return NULL;
3518 m->next = NULL;
3519 m->p_type = PT_DYNAMIC;
3520 m->count = 1;
3521 m->sections[0] = dynsec;
3522
3523 return m;
3524 }
3525
3526 /* Possibly add or remove segments from the segment map. */
3527
3528 static bfd_boolean
3529 elf_modify_segment_map (bfd *abfd,
3530 struct bfd_link_info *info,
3531 bfd_boolean remove_empty_load)
3532 {
3533 struct elf_segment_map **m;
3534 const struct elf_backend_data *bed;
3535
3536 /* The placement algorithm assumes that non allocated sections are
3537 not in PT_LOAD segments. We ensure this here by removing such
3538 sections from the segment map. We also remove excluded
3539 sections. Finally, any PT_LOAD segment without sections is
3540 removed. */
3541 m = &elf_tdata (abfd)->segment_map;
3542 while (*m)
3543 {
3544 unsigned int i, new_count;
3545
3546 for (new_count = 0, i = 0; i < (*m)->count; i++)
3547 {
3548 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3549 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3550 || (*m)->p_type != PT_LOAD))
3551 {
3552 (*m)->sections[new_count] = (*m)->sections[i];
3553 new_count++;
3554 }
3555 }
3556 (*m)->count = new_count;
3557
3558 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3559 *m = (*m)->next;
3560 else
3561 m = &(*m)->next;
3562 }
3563
3564 bed = get_elf_backend_data (abfd);
3565 if (bed->elf_backend_modify_segment_map != NULL)
3566 {
3567 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3568 return FALSE;
3569 }
3570
3571 return TRUE;
3572 }
3573
3574 /* Set up a mapping from BFD sections to program segments. */
3575
3576 bfd_boolean
3577 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3578 {
3579 unsigned int count;
3580 struct elf_segment_map *m;
3581 asection **sections = NULL;
3582 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3583 bfd_boolean no_user_phdrs;
3584
3585 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3586 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3587 {
3588 asection *s;
3589 unsigned int i;
3590 struct elf_segment_map *mfirst;
3591 struct elf_segment_map **pm;
3592 asection *last_hdr;
3593 bfd_vma last_size;
3594 unsigned int phdr_index;
3595 bfd_vma maxpagesize;
3596 asection **hdrpp;
3597 bfd_boolean phdr_in_segment = TRUE;
3598 bfd_boolean writable;
3599 int tls_count = 0;
3600 asection *first_tls = NULL;
3601 asection *dynsec, *eh_frame_hdr;
3602 bfd_size_type amt;
3603
3604 /* Select the allocated sections, and sort them. */
3605
3606 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3607 if (sections == NULL)
3608 goto error_return;
3609
3610 i = 0;
3611 for (s = abfd->sections; s != NULL; s = s->next)
3612 {
3613 if ((s->flags & SEC_ALLOC) != 0)
3614 {
3615 sections[i] = s;
3616 ++i;
3617 }
3618 }
3619 BFD_ASSERT (i <= bfd_count_sections (abfd));
3620 count = i;
3621
3622 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3623
3624 /* Build the mapping. */
3625
3626 mfirst = NULL;
3627 pm = &mfirst;
3628
3629 /* If we have a .interp section, then create a PT_PHDR segment for
3630 the program headers and a PT_INTERP segment for the .interp
3631 section. */
3632 s = bfd_get_section_by_name (abfd, ".interp");
3633 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3634 {
3635 amt = sizeof (struct elf_segment_map);
3636 m = bfd_zalloc (abfd, amt);
3637 if (m == NULL)
3638 goto error_return;
3639 m->next = NULL;
3640 m->p_type = PT_PHDR;
3641 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3642 m->p_flags = PF_R | PF_X;
3643 m->p_flags_valid = 1;
3644 m->includes_phdrs = 1;
3645
3646 *pm = m;
3647 pm = &m->next;
3648
3649 amt = sizeof (struct elf_segment_map);
3650 m = bfd_zalloc (abfd, amt);
3651 if (m == NULL)
3652 goto error_return;
3653 m->next = NULL;
3654 m->p_type = PT_INTERP;
3655 m->count = 1;
3656 m->sections[0] = s;
3657
3658 *pm = m;
3659 pm = &m->next;
3660 }
3661
3662 /* Look through the sections. We put sections in the same program
3663 segment when the start of the second section can be placed within
3664 a few bytes of the end of the first section. */
3665 last_hdr = NULL;
3666 last_size = 0;
3667 phdr_index = 0;
3668 maxpagesize = bed->maxpagesize;
3669 writable = FALSE;
3670 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3671 if (dynsec != NULL
3672 && (dynsec->flags & SEC_LOAD) == 0)
3673 dynsec = NULL;
3674
3675 /* Deal with -Ttext or something similar such that the first section
3676 is not adjacent to the program headers. This is an
3677 approximation, since at this point we don't know exactly how many
3678 program headers we will need. */
3679 if (count > 0)
3680 {
3681 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3682
3683 if (phdr_size == (bfd_size_type) -1)
3684 phdr_size = get_program_header_size (abfd, info);
3685 if ((abfd->flags & D_PAGED) == 0
3686 || sections[0]->lma < phdr_size
3687 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3688 phdr_in_segment = FALSE;
3689 }
3690
3691 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3692 {
3693 asection *hdr;
3694 bfd_boolean new_segment;
3695
3696 hdr = *hdrpp;
3697
3698 /* See if this section and the last one will fit in the same
3699 segment. */
3700
3701 if (last_hdr == NULL)
3702 {
3703 /* If we don't have a segment yet, then we don't need a new
3704 one (we build the last one after this loop). */
3705 new_segment = FALSE;
3706 }
3707 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3708 {
3709 /* If this section has a different relation between the
3710 virtual address and the load address, then we need a new
3711 segment. */
3712 new_segment = TRUE;
3713 }
3714 /* In the next test we have to be careful when last_hdr->lma is close
3715 to the end of the address space. If the aligned address wraps
3716 around to the start of the address space, then there are no more
3717 pages left in memory and it is OK to assume that the current
3718 section can be included in the current segment. */
3719 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3720 > last_hdr->lma)
3721 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3722 <= hdr->lma))
3723 {
3724 /* If putting this section in this segment would force us to
3725 skip a page in the segment, then we need a new segment. */
3726 new_segment = TRUE;
3727 }
3728 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3729 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3730 {
3731 /* We don't want to put a loadable section after a
3732 nonloadable section in the same segment.
3733 Consider .tbss sections as loadable for this purpose. */
3734 new_segment = TRUE;
3735 }
3736 else if ((abfd->flags & D_PAGED) == 0)
3737 {
3738 /* If the file is not demand paged, which means that we
3739 don't require the sections to be correctly aligned in the
3740 file, then there is no other reason for a new segment. */
3741 new_segment = FALSE;
3742 }
3743 else if (! writable
3744 && (hdr->flags & SEC_READONLY) == 0
3745 && (((last_hdr->lma + last_size - 1)
3746 & ~(maxpagesize - 1))
3747 != (hdr->lma & ~(maxpagesize - 1))))
3748 {
3749 /* We don't want to put a writable section in a read only
3750 segment, unless they are on the same page in memory
3751 anyhow. We already know that the last section does not
3752 bring us past the current section on the page, so the
3753 only case in which the new section is not on the same
3754 page as the previous section is when the previous section
3755 ends precisely on a page boundary. */
3756 new_segment = TRUE;
3757 }
3758 else
3759 {
3760 /* Otherwise, we can use the same segment. */
3761 new_segment = FALSE;
3762 }
3763
3764 /* Allow interested parties a chance to override our decision. */
3765 if (last_hdr && info->callbacks->override_segment_assignment)
3766 new_segment = info->callbacks->override_segment_assignment (info, abfd, hdr, last_hdr, new_segment);
3767
3768 if (! new_segment)
3769 {
3770 if ((hdr->flags & SEC_READONLY) == 0)
3771 writable = TRUE;
3772 last_hdr = hdr;
3773 /* .tbss sections effectively have zero size. */
3774 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3775 != SEC_THREAD_LOCAL)
3776 last_size = hdr->size;
3777 else
3778 last_size = 0;
3779 continue;
3780 }
3781
3782 /* We need a new program segment. We must create a new program
3783 header holding all the sections from phdr_index until hdr. */
3784
3785 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3786 if (m == NULL)
3787 goto error_return;
3788
3789 *pm = m;
3790 pm = &m->next;
3791
3792 if ((hdr->flags & SEC_READONLY) == 0)
3793 writable = TRUE;
3794 else
3795 writable = FALSE;
3796
3797 last_hdr = hdr;
3798 /* .tbss sections effectively have zero size. */
3799 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3800 last_size = hdr->size;
3801 else
3802 last_size = 0;
3803 phdr_index = i;
3804 phdr_in_segment = FALSE;
3805 }
3806
3807 /* Create a final PT_LOAD program segment. */
3808 if (last_hdr != NULL)
3809 {
3810 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3811 if (m == NULL)
3812 goto error_return;
3813
3814 *pm = m;
3815 pm = &m->next;
3816 }
3817
3818 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3819 if (dynsec != NULL)
3820 {
3821 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3822 if (m == NULL)
3823 goto error_return;
3824 *pm = m;
3825 pm = &m->next;
3826 }
3827
3828 /* For each batch of consecutive loadable .note sections,
3829 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3830 because if we link together nonloadable .note sections and
3831 loadable .note sections, we will generate two .note sections
3832 in the output file. FIXME: Using names for section types is
3833 bogus anyhow. */
3834 for (s = abfd->sections; s != NULL; s = s->next)
3835 {
3836 if ((s->flags & SEC_LOAD) != 0
3837 && CONST_STRNEQ (s->name, ".note"))
3838 {
3839 asection *s2;
3840 unsigned count = 1;
3841 amt = sizeof (struct elf_segment_map);
3842 if (s->alignment_power == 2)
3843 for (s2 = s; s2->next != NULL; s2 = s2->next)
3844 {
3845 if (s2->next->alignment_power == 2
3846 && (s2->next->flags & SEC_LOAD) != 0
3847 && CONST_STRNEQ (s2->next->name, ".note")
3848 && align_power (s2->vma + s2->size, 2)
3849 == s2->next->vma)
3850 count++;
3851 else
3852 break;
3853 }
3854 amt += (count - 1) * sizeof (asection *);
3855 m = bfd_zalloc (abfd, amt);
3856 if (m == NULL)
3857 goto error_return;
3858 m->next = NULL;
3859 m->p_type = PT_NOTE;
3860 m->count = count;
3861 while (count > 1)
3862 {
3863 m->sections[m->count - count--] = s;
3864 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3865 s = s->next;
3866 }
3867 m->sections[m->count - 1] = s;
3868 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3869 *pm = m;
3870 pm = &m->next;
3871 }
3872 if (s->flags & SEC_THREAD_LOCAL)
3873 {
3874 if (! tls_count)
3875 first_tls = s;
3876 tls_count++;
3877 }
3878 }
3879
3880 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3881 if (tls_count > 0)
3882 {
3883 int i;
3884
3885 amt = sizeof (struct elf_segment_map);
3886 amt += (tls_count - 1) * sizeof (asection *);
3887 m = bfd_zalloc (abfd, amt);
3888 if (m == NULL)
3889 goto error_return;
3890 m->next = NULL;
3891 m->p_type = PT_TLS;
3892 m->count = tls_count;
3893 /* Mandated PF_R. */
3894 m->p_flags = PF_R;
3895 m->p_flags_valid = 1;
3896 for (i = 0; i < tls_count; ++i)
3897 {
3898 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3899 m->sections[i] = first_tls;
3900 first_tls = first_tls->next;
3901 }
3902
3903 *pm = m;
3904 pm = &m->next;
3905 }
3906
3907 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3908 segment. */
3909 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3910 if (eh_frame_hdr != NULL
3911 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3912 {
3913 amt = sizeof (struct elf_segment_map);
3914 m = bfd_zalloc (abfd, amt);
3915 if (m == NULL)
3916 goto error_return;
3917 m->next = NULL;
3918 m->p_type = PT_GNU_EH_FRAME;
3919 m->count = 1;
3920 m->sections[0] = eh_frame_hdr->output_section;
3921
3922 *pm = m;
3923 pm = &m->next;
3924 }
3925
3926 if (elf_tdata (abfd)->stack_flags)
3927 {
3928 amt = sizeof (struct elf_segment_map);
3929 m = bfd_zalloc (abfd, amt);
3930 if (m == NULL)
3931 goto error_return;
3932 m->next = NULL;
3933 m->p_type = PT_GNU_STACK;
3934 m->p_flags = elf_tdata (abfd)->stack_flags;
3935 m->p_flags_valid = 1;
3936
3937 *pm = m;
3938 pm = &m->next;
3939 }
3940
3941 if (info->relro)
3942 {
3943 for (m = mfirst; m != NULL; m = m->next)
3944 {
3945 if (m->p_type == PT_LOAD)
3946 {
3947 asection *last = m->sections[m->count - 1];
3948 bfd_vma vaddr = m->sections[0]->vma;
3949 bfd_vma filesz = last->vma - vaddr + last->size;
3950
3951 if (vaddr < info->relro_end
3952 && vaddr >= info->relro_start
3953 && (vaddr + filesz) >= info->relro_end)
3954 break;
3955 }
3956 }
3957
3958 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3959 if (m != NULL)
3960 {
3961 amt = sizeof (struct elf_segment_map);
3962 m = bfd_zalloc (abfd, amt);
3963 if (m == NULL)
3964 goto error_return;
3965 m->next = NULL;
3966 m->p_type = PT_GNU_RELRO;
3967 m->p_flags = PF_R;
3968 m->p_flags_valid = 1;
3969
3970 *pm = m;
3971 pm = &m->next;
3972 }
3973 }
3974
3975 free (sections);
3976 elf_tdata (abfd)->segment_map = mfirst;
3977 }
3978
3979 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
3980 return FALSE;
3981
3982 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3983 ++count;
3984 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
3985
3986 return TRUE;
3987
3988 error_return:
3989 if (sections != NULL)
3990 free (sections);
3991 return FALSE;
3992 }
3993
3994 /* Sort sections by address. */
3995
3996 static int
3997 elf_sort_sections (const void *arg1, const void *arg2)
3998 {
3999 const asection *sec1 = *(const asection **) arg1;
4000 const asection *sec2 = *(const asection **) arg2;
4001 bfd_size_type size1, size2;
4002
4003 /* Sort by LMA first, since this is the address used to
4004 place the section into a segment. */
4005 if (sec1->lma < sec2->lma)
4006 return -1;
4007 else if (sec1->lma > sec2->lma)
4008 return 1;
4009
4010 /* Then sort by VMA. Normally the LMA and the VMA will be
4011 the same, and this will do nothing. */
4012 if (sec1->vma < sec2->vma)
4013 return -1;
4014 else if (sec1->vma > sec2->vma)
4015 return 1;
4016
4017 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4018
4019 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4020
4021 if (TOEND (sec1))
4022 {
4023 if (TOEND (sec2))
4024 {
4025 /* If the indicies are the same, do not return 0
4026 here, but continue to try the next comparison. */
4027 if (sec1->target_index - sec2->target_index != 0)
4028 return sec1->target_index - sec2->target_index;
4029 }
4030 else
4031 return 1;
4032 }
4033 else if (TOEND (sec2))
4034 return -1;
4035
4036 #undef TOEND
4037
4038 /* Sort by size, to put zero sized sections
4039 before others at the same address. */
4040
4041 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4042 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4043
4044 if (size1 < size2)
4045 return -1;
4046 if (size1 > size2)
4047 return 1;
4048
4049 return sec1->target_index - sec2->target_index;
4050 }
4051
4052 /* Ian Lance Taylor writes:
4053
4054 We shouldn't be using % with a negative signed number. That's just
4055 not good. We have to make sure either that the number is not
4056 negative, or that the number has an unsigned type. When the types
4057 are all the same size they wind up as unsigned. When file_ptr is a
4058 larger signed type, the arithmetic winds up as signed long long,
4059 which is wrong.
4060
4061 What we're trying to say here is something like ``increase OFF by
4062 the least amount that will cause it to be equal to the VMA modulo
4063 the page size.'' */
4064 /* In other words, something like:
4065
4066 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4067 off_offset = off % bed->maxpagesize;
4068 if (vma_offset < off_offset)
4069 adjustment = vma_offset + bed->maxpagesize - off_offset;
4070 else
4071 adjustment = vma_offset - off_offset;
4072
4073 which can can be collapsed into the expression below. */
4074
4075 static file_ptr
4076 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4077 {
4078 return ((vma - off) % maxpagesize);
4079 }
4080
4081 static void
4082 print_segment_map (const struct elf_segment_map *m)
4083 {
4084 unsigned int j;
4085 const char *pt = get_segment_type (m->p_type);
4086 char buf[32];
4087
4088 if (pt == NULL)
4089 {
4090 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4091 sprintf (buf, "LOPROC+%7.7x",
4092 (unsigned int) (m->p_type - PT_LOPROC));
4093 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4094 sprintf (buf, "LOOS+%7.7x",
4095 (unsigned int) (m->p_type - PT_LOOS));
4096 else
4097 snprintf (buf, sizeof (buf), "%8.8x",
4098 (unsigned int) m->p_type);
4099 pt = buf;
4100 }
4101 fprintf (stderr, "%s:", pt);
4102 for (j = 0; j < m->count; j++)
4103 fprintf (stderr, " %s", m->sections [j]->name);
4104 putc ('\n',stderr);
4105 }
4106
4107 /* Assign file positions to the sections based on the mapping from
4108 sections to segments. This function also sets up some fields in
4109 the file header. */
4110
4111 static bfd_boolean
4112 assign_file_positions_for_load_sections (bfd *abfd,
4113 struct bfd_link_info *link_info)
4114 {
4115 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4116 struct elf_segment_map *m;
4117 Elf_Internal_Phdr *phdrs;
4118 Elf_Internal_Phdr *p;
4119 file_ptr off;
4120 bfd_size_type maxpagesize;
4121 unsigned int alloc;
4122 unsigned int i, j;
4123
4124 if (link_info == NULL
4125 && !elf_modify_segment_map (abfd, link_info, FALSE))
4126 return FALSE;
4127
4128 alloc = 0;
4129 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4130 ++alloc;
4131
4132 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4133 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4134 elf_elfheader (abfd)->e_phnum = alloc;
4135
4136 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4137 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4138 else
4139 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4140 >= alloc * bed->s->sizeof_phdr);
4141
4142 if (alloc == 0)
4143 {
4144 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4145 return TRUE;
4146 }
4147
4148 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4149 elf_tdata (abfd)->phdr = phdrs;
4150 if (phdrs == NULL)
4151 return FALSE;
4152
4153 maxpagesize = 1;
4154 if ((abfd->flags & D_PAGED) != 0)
4155 maxpagesize = bed->maxpagesize;
4156
4157 off = bed->s->sizeof_ehdr;
4158 off += alloc * bed->s->sizeof_phdr;
4159
4160 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4161 m != NULL;
4162 m = m->next, p++, j++)
4163 {
4164 asection **secpp;
4165 bfd_vma off_adjust;
4166 bfd_boolean no_contents;
4167
4168 /* If elf_segment_map is not from map_sections_to_segments, the
4169 sections may not be correctly ordered. NOTE: sorting should
4170 not be done to the PT_NOTE section of a corefile, which may
4171 contain several pseudo-sections artificially created by bfd.
4172 Sorting these pseudo-sections breaks things badly. */
4173 if (m->count > 1
4174 && !(elf_elfheader (abfd)->e_type == ET_CORE
4175 && m->p_type == PT_NOTE))
4176 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4177 elf_sort_sections);
4178
4179 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4180 number of sections with contents contributing to both p_filesz
4181 and p_memsz, followed by a number of sections with no contents
4182 that just contribute to p_memsz. In this loop, OFF tracks next
4183 available file offset for PT_LOAD and PT_NOTE segments. */
4184 p->p_type = m->p_type;
4185 p->p_flags = m->p_flags;
4186
4187 if (m->count == 0)
4188 p->p_vaddr = 0;
4189 else
4190 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4191
4192 if (m->p_paddr_valid)
4193 p->p_paddr = m->p_paddr;
4194 else if (m->count == 0)
4195 p->p_paddr = 0;
4196 else
4197 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4198
4199 if (p->p_type == PT_LOAD
4200 && (abfd->flags & D_PAGED) != 0)
4201 {
4202 /* p_align in demand paged PT_LOAD segments effectively stores
4203 the maximum page size. When copying an executable with
4204 objcopy, we set m->p_align from the input file. Use this
4205 value for maxpagesize rather than bed->maxpagesize, which
4206 may be different. Note that we use maxpagesize for PT_TLS
4207 segment alignment later in this function, so we are relying
4208 on at least one PT_LOAD segment appearing before a PT_TLS
4209 segment. */
4210 if (m->p_align_valid)
4211 maxpagesize = m->p_align;
4212
4213 p->p_align = maxpagesize;
4214 }
4215 else if (m->p_align_valid)
4216 p->p_align = m->p_align;
4217 else if (m->count == 0)
4218 p->p_align = 1 << bed->s->log_file_align;
4219 else
4220 p->p_align = 0;
4221
4222 no_contents = FALSE;
4223 off_adjust = 0;
4224 if (p->p_type == PT_LOAD
4225 && m->count > 0)
4226 {
4227 bfd_size_type align;
4228 unsigned int align_power = 0;
4229
4230 if (m->p_align_valid)
4231 align = p->p_align;
4232 else
4233 {
4234 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4235 {
4236 unsigned int secalign;
4237
4238 secalign = bfd_get_section_alignment (abfd, *secpp);
4239 if (secalign > align_power)
4240 align_power = secalign;
4241 }
4242 align = (bfd_size_type) 1 << align_power;
4243 if (align < maxpagesize)
4244 align = maxpagesize;
4245 }
4246
4247 for (i = 0; i < m->count; i++)
4248 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4249 /* If we aren't making room for this section, then
4250 it must be SHT_NOBITS regardless of what we've
4251 set via struct bfd_elf_special_section. */
4252 elf_section_type (m->sections[i]) = SHT_NOBITS;
4253
4254 /* Find out whether this segment contains any loadable
4255 sections. If the first section isn't loadable, the same
4256 holds for any other sections. */
4257 i = 0;
4258 while (elf_section_type (m->sections[i]) == SHT_NOBITS)
4259 {
4260 /* If a segment starts with .tbss, we need to look
4261 at the next section to decide whether the segment
4262 has any loadable sections. */
4263 if ((elf_section_flags (m->sections[i]) & SHF_TLS) == 0
4264 || ++i >= m->count)
4265 {
4266 no_contents = TRUE;
4267 break;
4268 }
4269 }
4270
4271 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4272 off += off_adjust;
4273 if (no_contents)
4274 {
4275 /* We shouldn't need to align the segment on disk since
4276 the segment doesn't need file space, but the gABI
4277 arguably requires the alignment and glibc ld.so
4278 checks it. So to comply with the alignment
4279 requirement but not waste file space, we adjust
4280 p_offset for just this segment. (OFF_ADJUST is
4281 subtracted from OFF later.) This may put p_offset
4282 past the end of file, but that shouldn't matter. */
4283 }
4284 else
4285 off_adjust = 0;
4286 }
4287 /* Make sure the .dynamic section is the first section in the
4288 PT_DYNAMIC segment. */
4289 else if (p->p_type == PT_DYNAMIC
4290 && m->count > 1
4291 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4292 {
4293 _bfd_error_handler
4294 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4295 abfd);
4296 bfd_set_error (bfd_error_bad_value);
4297 return FALSE;
4298 }
4299 /* Set the note section type to SHT_NOTE. */
4300 else if (p->p_type == PT_NOTE)
4301 for (i = 0; i < m->count; i++)
4302 elf_section_type (m->sections[i]) = SHT_NOTE;
4303
4304 p->p_offset = 0;
4305 p->p_filesz = 0;
4306 p->p_memsz = 0;
4307
4308 if (m->includes_filehdr)
4309 {
4310 if (!m->p_flags_valid)
4311 p->p_flags |= PF_R;
4312 p->p_filesz = bed->s->sizeof_ehdr;
4313 p->p_memsz = bed->s->sizeof_ehdr;
4314 if (m->count > 0)
4315 {
4316 BFD_ASSERT (p->p_type == PT_LOAD);
4317
4318 if (p->p_vaddr < (bfd_vma) off)
4319 {
4320 (*_bfd_error_handler)
4321 (_("%B: Not enough room for program headers, try linking with -N"),
4322 abfd);
4323 bfd_set_error (bfd_error_bad_value);
4324 return FALSE;
4325 }
4326
4327 p->p_vaddr -= off;
4328 if (!m->p_paddr_valid)
4329 p->p_paddr -= off;
4330 }
4331 }
4332
4333 if (m->includes_phdrs)
4334 {
4335 if (!m->p_flags_valid)
4336 p->p_flags |= PF_R;
4337
4338 if (!m->includes_filehdr)
4339 {
4340 p->p_offset = bed->s->sizeof_ehdr;
4341
4342 if (m->count > 0)
4343 {
4344 BFD_ASSERT (p->p_type == PT_LOAD);
4345 p->p_vaddr -= off - p->p_offset;
4346 if (!m->p_paddr_valid)
4347 p->p_paddr -= off - p->p_offset;
4348 }
4349 }
4350
4351 p->p_filesz += alloc * bed->s->sizeof_phdr;
4352 p->p_memsz += alloc * bed->s->sizeof_phdr;
4353 }
4354
4355 if (p->p_type == PT_LOAD
4356 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4357 {
4358 if (!m->includes_filehdr && !m->includes_phdrs)
4359 p->p_offset = off;
4360 else
4361 {
4362 file_ptr adjust;
4363
4364 adjust = off - (p->p_offset + p->p_filesz);
4365 if (!no_contents)
4366 p->p_filesz += adjust;
4367 p->p_memsz += adjust;
4368 }
4369 }
4370
4371 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4372 maps. Set filepos for sections in PT_LOAD segments, and in
4373 core files, for sections in PT_NOTE segments.
4374 assign_file_positions_for_non_load_sections will set filepos
4375 for other sections and update p_filesz for other segments. */
4376 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4377 {
4378 asection *sec;
4379 bfd_size_type align;
4380 Elf_Internal_Shdr *this_hdr;
4381
4382 sec = *secpp;
4383 this_hdr = &elf_section_data (sec)->this_hdr;
4384 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4385
4386 if ((p->p_type == PT_LOAD
4387 || p->p_type == PT_TLS)
4388 && (this_hdr->sh_type != SHT_NOBITS
4389 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4390 && ((this_hdr->sh_flags & SHF_TLS) == 0
4391 || p->p_type == PT_TLS))))
4392 {
4393 bfd_signed_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
4394
4395 if (adjust < 0)
4396 {
4397 (*_bfd_error_handler)
4398 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4399 abfd, sec, (unsigned long) sec->vma);
4400 adjust = 0;
4401 }
4402 p->p_memsz += adjust;
4403
4404 if (this_hdr->sh_type != SHT_NOBITS)
4405 {
4406 off += adjust;
4407 p->p_filesz += adjust;
4408 }
4409 }
4410
4411 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4412 {
4413 /* The section at i == 0 is the one that actually contains
4414 everything. */
4415 if (i == 0)
4416 {
4417 this_hdr->sh_offset = sec->filepos = off;
4418 off += this_hdr->sh_size;
4419 p->p_filesz = this_hdr->sh_size;
4420 p->p_memsz = 0;
4421 p->p_align = 1;
4422 }
4423 else
4424 {
4425 /* The rest are fake sections that shouldn't be written. */
4426 sec->filepos = 0;
4427 sec->size = 0;
4428 sec->flags = 0;
4429 continue;
4430 }
4431 }
4432 else
4433 {
4434 if (p->p_type == PT_LOAD)
4435 {
4436 this_hdr->sh_offset = sec->filepos = off;
4437 if (this_hdr->sh_type != SHT_NOBITS)
4438 off += this_hdr->sh_size;
4439 }
4440
4441 if (this_hdr->sh_type != SHT_NOBITS)
4442 {
4443 p->p_filesz += this_hdr->sh_size;
4444 /* A load section without SHF_ALLOC is something like
4445 a note section in a PT_NOTE segment. These take
4446 file space but are not loaded into memory. */
4447 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4448 p->p_memsz += this_hdr->sh_size;
4449 }
4450 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4451 {
4452 if (p->p_type == PT_TLS)
4453 p->p_memsz += this_hdr->sh_size;
4454
4455 /* .tbss is special. It doesn't contribute to p_memsz of
4456 normal segments. */
4457 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4458 p->p_memsz += this_hdr->sh_size;
4459 }
4460
4461 if (align > p->p_align
4462 && !m->p_align_valid
4463 && (p->p_type != PT_LOAD
4464 || (abfd->flags & D_PAGED) == 0))
4465 p->p_align = align;
4466 }
4467
4468 if (!m->p_flags_valid)
4469 {
4470 p->p_flags |= PF_R;
4471 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4472 p->p_flags |= PF_X;
4473 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4474 p->p_flags |= PF_W;
4475 }
4476 }
4477 off -= off_adjust;
4478
4479 /* Check that all sections are in a PT_LOAD segment.
4480 Don't check funky gdb generated core files. */
4481 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4482 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4483 {
4484 Elf_Internal_Shdr *this_hdr;
4485 asection *sec;
4486
4487 sec = *secpp;
4488 this_hdr = &(elf_section_data(sec)->this_hdr);
4489 if (this_hdr->sh_size != 0
4490 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4491 {
4492 (*_bfd_error_handler)
4493 (_("%B: section `%A' can't be allocated in segment %d"),
4494 abfd, sec, j);
4495 print_segment_map (m);
4496 bfd_set_error (bfd_error_bad_value);
4497 return FALSE;
4498 }
4499 }
4500 }
4501
4502 elf_tdata (abfd)->next_file_pos = off;
4503 return TRUE;
4504 }
4505
4506 /* Assign file positions for the other sections. */
4507
4508 static bfd_boolean
4509 assign_file_positions_for_non_load_sections (bfd *abfd,
4510 struct bfd_link_info *link_info)
4511 {
4512 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4513 Elf_Internal_Shdr **i_shdrpp;
4514 Elf_Internal_Shdr **hdrpp;
4515 Elf_Internal_Phdr *phdrs;
4516 Elf_Internal_Phdr *p;
4517 struct elf_segment_map *m;
4518 bfd_vma filehdr_vaddr, filehdr_paddr;
4519 bfd_vma phdrs_vaddr, phdrs_paddr;
4520 file_ptr off;
4521 unsigned int num_sec;
4522 unsigned int i;
4523 unsigned int count;
4524
4525 i_shdrpp = elf_elfsections (abfd);
4526 num_sec = elf_numsections (abfd);
4527 off = elf_tdata (abfd)->next_file_pos;
4528 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4529 {
4530 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4531 Elf_Internal_Shdr *hdr;
4532
4533 hdr = *hdrpp;
4534 if (hdr->bfd_section != NULL
4535 && (hdr->bfd_section->filepos != 0
4536 || (hdr->sh_type == SHT_NOBITS
4537 && hdr->contents == NULL)))
4538 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4539 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4540 {
4541 if (hdr->sh_size != 0)
4542 ((*_bfd_error_handler)
4543 (_("%B: warning: allocated section `%s' not in segment"),
4544 abfd,
4545 (hdr->bfd_section == NULL
4546 ? "*unknown*"
4547 : hdr->bfd_section->name)));
4548 /* We don't need to page align empty sections. */
4549 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4550 off += vma_page_aligned_bias (hdr->sh_addr, off,
4551 bed->maxpagesize);
4552 else
4553 off += vma_page_aligned_bias (hdr->sh_addr, off,
4554 hdr->sh_addralign);
4555 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4556 FALSE);
4557 }
4558 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4559 && hdr->bfd_section == NULL)
4560 || hdr == i_shdrpp[tdata->symtab_section]
4561 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4562 || hdr == i_shdrpp[tdata->strtab_section])
4563 hdr->sh_offset = -1;
4564 else
4565 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4566 }
4567
4568 /* Now that we have set the section file positions, we can set up
4569 the file positions for the non PT_LOAD segments. */
4570 count = 0;
4571 filehdr_vaddr = 0;
4572 filehdr_paddr = 0;
4573 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4574 phdrs_paddr = 0;
4575 phdrs = elf_tdata (abfd)->phdr;
4576 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4577 m != NULL;
4578 m = m->next, p++)
4579 {
4580 ++count;
4581 if (p->p_type != PT_LOAD)
4582 continue;
4583
4584 if (m->includes_filehdr)
4585 {
4586 filehdr_vaddr = p->p_vaddr;
4587 filehdr_paddr = p->p_paddr;
4588 }
4589 if (m->includes_phdrs)
4590 {
4591 phdrs_vaddr = p->p_vaddr;
4592 phdrs_paddr = p->p_paddr;
4593 if (m->includes_filehdr)
4594 {
4595 phdrs_vaddr += bed->s->sizeof_ehdr;
4596 phdrs_paddr += bed->s->sizeof_ehdr;
4597 }
4598 }
4599 }
4600
4601 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4602 m != NULL;
4603 m = m->next, p++)
4604 {
4605 if (m->count != 0)
4606 {
4607 if (p->p_type != PT_LOAD
4608 && (p->p_type != PT_NOTE
4609 || bfd_get_format (abfd) != bfd_core))
4610 {
4611 Elf_Internal_Shdr *hdr;
4612 asection *sect;
4613
4614 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4615
4616 sect = m->sections[m->count - 1];
4617 hdr = &elf_section_data (sect)->this_hdr;
4618 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4619 if (hdr->sh_type != SHT_NOBITS)
4620 p->p_filesz += hdr->sh_size;
4621
4622 if (p->p_type == PT_GNU_RELRO)
4623 {
4624 /* When we get here, we are copying executable
4625 or shared library. But we need to use the same
4626 linker logic. */
4627 Elf_Internal_Phdr *lp;
4628
4629 for (lp = phdrs; lp < phdrs + count; ++lp)
4630 {
4631 if (lp->p_type == PT_LOAD
4632 && lp->p_paddr == p->p_paddr)
4633 break;
4634 }
4635
4636 if (lp < phdrs + count)
4637 {
4638 /* We should use p_size if it is valid since it
4639 may contain the first few bytes of the next
4640 SEC_ALLOC section. */
4641 if (m->p_size_valid)
4642 p->p_filesz = m->p_size;
4643 else
4644 abort ();
4645 p->p_vaddr = lp->p_vaddr;
4646 p->p_offset = lp->p_offset;
4647 p->p_memsz = p->p_filesz;
4648 p->p_align = 1;
4649 }
4650 else
4651 abort ();
4652 }
4653 else
4654 p->p_offset = m->sections[0]->filepos;
4655 }
4656 }
4657 else
4658 {
4659 if (m->includes_filehdr)
4660 {
4661 p->p_vaddr = filehdr_vaddr;
4662 if (! m->p_paddr_valid)
4663 p->p_paddr = filehdr_paddr;
4664 }
4665 else if (m->includes_phdrs)
4666 {
4667 p->p_vaddr = phdrs_vaddr;
4668 if (! m->p_paddr_valid)
4669 p->p_paddr = phdrs_paddr;
4670 }
4671 else if (p->p_type == PT_GNU_RELRO)
4672 {
4673 Elf_Internal_Phdr *lp;
4674
4675 for (lp = phdrs; lp < phdrs + count; ++lp)
4676 {
4677 if (lp->p_type == PT_LOAD
4678 && lp->p_vaddr <= link_info->relro_end
4679 && lp->p_vaddr >= link_info->relro_start
4680 && (lp->p_vaddr + lp->p_filesz
4681 >= link_info->relro_end))
4682 break;
4683 }
4684
4685 if (lp < phdrs + count
4686 && link_info->relro_end > lp->p_vaddr)
4687 {
4688 p->p_vaddr = lp->p_vaddr;
4689 p->p_paddr = lp->p_paddr;
4690 p->p_offset = lp->p_offset;
4691 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4692 p->p_memsz = p->p_filesz;
4693 p->p_align = 1;
4694 p->p_flags = (lp->p_flags & ~PF_W);
4695 }
4696 else
4697 {
4698 memset (p, 0, sizeof *p);
4699 p->p_type = PT_NULL;
4700 }
4701 }
4702 }
4703 }
4704
4705 elf_tdata (abfd)->next_file_pos = off;
4706
4707 return TRUE;
4708 }
4709
4710 /* Work out the file positions of all the sections. This is called by
4711 _bfd_elf_compute_section_file_positions. All the section sizes and
4712 VMAs must be known before this is called.
4713
4714 Reloc sections come in two flavours: Those processed specially as
4715 "side-channel" data attached to a section to which they apply, and
4716 those that bfd doesn't process as relocations. The latter sort are
4717 stored in a normal bfd section by bfd_section_from_shdr. We don't
4718 consider the former sort here, unless they form part of the loadable
4719 image. Reloc sections not assigned here will be handled later by
4720 assign_file_positions_for_relocs.
4721
4722 We also don't set the positions of the .symtab and .strtab here. */
4723
4724 static bfd_boolean
4725 assign_file_positions_except_relocs (bfd *abfd,
4726 struct bfd_link_info *link_info)
4727 {
4728 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4729 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4730 file_ptr off;
4731 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4732
4733 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4734 && bfd_get_format (abfd) != bfd_core)
4735 {
4736 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4737 unsigned int num_sec = elf_numsections (abfd);
4738 Elf_Internal_Shdr **hdrpp;
4739 unsigned int i;
4740
4741 /* Start after the ELF header. */
4742 off = i_ehdrp->e_ehsize;
4743
4744 /* We are not creating an executable, which means that we are
4745 not creating a program header, and that the actual order of
4746 the sections in the file is unimportant. */
4747 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4748 {
4749 Elf_Internal_Shdr *hdr;
4750
4751 hdr = *hdrpp;
4752 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4753 && hdr->bfd_section == NULL)
4754 || i == tdata->symtab_section
4755 || i == tdata->symtab_shndx_section
4756 || i == tdata->strtab_section)
4757 {
4758 hdr->sh_offset = -1;
4759 }
4760 else
4761 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4762 }
4763 }
4764 else
4765 {
4766 unsigned int alloc;
4767
4768 /* Assign file positions for the loaded sections based on the
4769 assignment of sections to segments. */
4770 if (!assign_file_positions_for_load_sections (abfd, link_info))
4771 return FALSE;
4772
4773 /* And for non-load sections. */
4774 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4775 return FALSE;
4776
4777 if (bed->elf_backend_modify_program_headers != NULL)
4778 {
4779 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4780 return FALSE;
4781 }
4782
4783 /* Write out the program headers. */
4784 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4785 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4786 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4787 return FALSE;
4788
4789 off = tdata->next_file_pos;
4790 }
4791
4792 /* Place the section headers. */
4793 off = align_file_position (off, 1 << bed->s->log_file_align);
4794 i_ehdrp->e_shoff = off;
4795 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4796
4797 tdata->next_file_pos = off;
4798
4799 return TRUE;
4800 }
4801
4802 static bfd_boolean
4803 prep_headers (bfd *abfd)
4804 {
4805 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4806 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4807 struct elf_strtab_hash *shstrtab;
4808 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4809
4810 i_ehdrp = elf_elfheader (abfd);
4811
4812 shstrtab = _bfd_elf_strtab_init ();
4813 if (shstrtab == NULL)
4814 return FALSE;
4815
4816 elf_shstrtab (abfd) = shstrtab;
4817
4818 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4819 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4820 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4821 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4822
4823 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4824 i_ehdrp->e_ident[EI_DATA] =
4825 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4826 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4827
4828 if ((abfd->flags & DYNAMIC) != 0)
4829 i_ehdrp->e_type = ET_DYN;
4830 else if ((abfd->flags & EXEC_P) != 0)
4831 i_ehdrp->e_type = ET_EXEC;
4832 else if (bfd_get_format (abfd) == bfd_core)
4833 i_ehdrp->e_type = ET_CORE;
4834 else
4835 i_ehdrp->e_type = ET_REL;
4836
4837 switch (bfd_get_arch (abfd))
4838 {
4839 case bfd_arch_unknown:
4840 i_ehdrp->e_machine = EM_NONE;
4841 break;
4842
4843 /* There used to be a long list of cases here, each one setting
4844 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4845 in the corresponding bfd definition. To avoid duplication,
4846 the switch was removed. Machines that need special handling
4847 can generally do it in elf_backend_final_write_processing(),
4848 unless they need the information earlier than the final write.
4849 Such need can generally be supplied by replacing the tests for
4850 e_machine with the conditions used to determine it. */
4851 default:
4852 i_ehdrp->e_machine = bed->elf_machine_code;
4853 }
4854
4855 i_ehdrp->e_version = bed->s->ev_current;
4856 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4857
4858 /* No program header, for now. */
4859 i_ehdrp->e_phoff = 0;
4860 i_ehdrp->e_phentsize = 0;
4861 i_ehdrp->e_phnum = 0;
4862
4863 /* Each bfd section is section header entry. */
4864 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4865 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4866
4867 /* If we're building an executable, we'll need a program header table. */
4868 if (abfd->flags & EXEC_P)
4869 /* It all happens later. */
4870 ;
4871 else
4872 {
4873 i_ehdrp->e_phentsize = 0;
4874 i_phdrp = 0;
4875 i_ehdrp->e_phoff = 0;
4876 }
4877
4878 elf_tdata (abfd)->symtab_hdr.sh_name =
4879 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4880 elf_tdata (abfd)->strtab_hdr.sh_name =
4881 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4882 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4883 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4884 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4885 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4886 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4887 return FALSE;
4888
4889 return TRUE;
4890 }
4891
4892 /* Assign file positions for all the reloc sections which are not part
4893 of the loadable file image. */
4894
4895 void
4896 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4897 {
4898 file_ptr off;
4899 unsigned int i, num_sec;
4900 Elf_Internal_Shdr **shdrpp;
4901
4902 off = elf_tdata (abfd)->next_file_pos;
4903
4904 num_sec = elf_numsections (abfd);
4905 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4906 {
4907 Elf_Internal_Shdr *shdrp;
4908
4909 shdrp = *shdrpp;
4910 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4911 && shdrp->sh_offset == -1)
4912 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4913 }
4914
4915 elf_tdata (abfd)->next_file_pos = off;
4916 }
4917
4918 bfd_boolean
4919 _bfd_elf_write_object_contents (bfd *abfd)
4920 {
4921 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4922 Elf_Internal_Ehdr *i_ehdrp;
4923 Elf_Internal_Shdr **i_shdrp;
4924 bfd_boolean failed;
4925 unsigned int count, num_sec;
4926
4927 if (! abfd->output_has_begun
4928 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4929 return FALSE;
4930
4931 i_shdrp = elf_elfsections (abfd);
4932 i_ehdrp = elf_elfheader (abfd);
4933
4934 failed = FALSE;
4935 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4936 if (failed)
4937 return FALSE;
4938
4939 _bfd_elf_assign_file_positions_for_relocs (abfd);
4940
4941 /* After writing the headers, we need to write the sections too... */
4942 num_sec = elf_numsections (abfd);
4943 for (count = 1; count < num_sec; count++)
4944 {
4945 if (bed->elf_backend_section_processing)
4946 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4947 if (i_shdrp[count]->contents)
4948 {
4949 bfd_size_type amt = i_shdrp[count]->sh_size;
4950
4951 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4952 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4953 return FALSE;
4954 }
4955 }
4956
4957 /* Write out the section header names. */
4958 if (elf_shstrtab (abfd) != NULL
4959 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4960 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4961 return FALSE;
4962
4963 if (bed->elf_backend_final_write_processing)
4964 (*bed->elf_backend_final_write_processing) (abfd,
4965 elf_tdata (abfd)->linker);
4966
4967 if (!bed->s->write_shdrs_and_ehdr (abfd))
4968 return FALSE;
4969
4970 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
4971 if (elf_tdata (abfd)->after_write_object_contents)
4972 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
4973
4974 return TRUE;
4975 }
4976
4977 bfd_boolean
4978 _bfd_elf_write_corefile_contents (bfd *abfd)
4979 {
4980 /* Hopefully this can be done just like an object file. */
4981 return _bfd_elf_write_object_contents (abfd);
4982 }
4983
4984 /* Given a section, search the header to find them. */
4985
4986 unsigned int
4987 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4988 {
4989 const struct elf_backend_data *bed;
4990 unsigned int index;
4991
4992 if (elf_section_data (asect) != NULL
4993 && elf_section_data (asect)->this_idx != 0)
4994 return elf_section_data (asect)->this_idx;
4995
4996 if (bfd_is_abs_section (asect))
4997 index = SHN_ABS;
4998 else if (bfd_is_com_section (asect))
4999 index = SHN_COMMON;
5000 else if (bfd_is_und_section (asect))
5001 index = SHN_UNDEF;
5002 else
5003 index = SHN_BAD;
5004
5005 bed = get_elf_backend_data (abfd);
5006 if (bed->elf_backend_section_from_bfd_section)
5007 {
5008 int retval = index;
5009
5010 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5011 return retval;
5012 }
5013
5014 if (index == SHN_BAD)
5015 bfd_set_error (bfd_error_nonrepresentable_section);
5016
5017 return index;
5018 }
5019
5020 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5021 on error. */
5022
5023 int
5024 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5025 {
5026 asymbol *asym_ptr = *asym_ptr_ptr;
5027 int idx;
5028 flagword flags = asym_ptr->flags;
5029
5030 /* When gas creates relocations against local labels, it creates its
5031 own symbol for the section, but does put the symbol into the
5032 symbol chain, so udata is 0. When the linker is generating
5033 relocatable output, this section symbol may be for one of the
5034 input sections rather than the output section. */
5035 if (asym_ptr->udata.i == 0
5036 && (flags & BSF_SECTION_SYM)
5037 && asym_ptr->section)
5038 {
5039 asection *sec;
5040 int indx;
5041
5042 sec = asym_ptr->section;
5043 if (sec->owner != abfd && sec->output_section != NULL)
5044 sec = sec->output_section;
5045 if (sec->owner == abfd
5046 && (indx = sec->index) < elf_num_section_syms (abfd)
5047 && elf_section_syms (abfd)[indx] != NULL)
5048 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5049 }
5050
5051 idx = asym_ptr->udata.i;
5052
5053 if (idx == 0)
5054 {
5055 /* This case can occur when using --strip-symbol on a symbol
5056 which is used in a relocation entry. */
5057 (*_bfd_error_handler)
5058 (_("%B: symbol `%s' required but not present"),
5059 abfd, bfd_asymbol_name (asym_ptr));
5060 bfd_set_error (bfd_error_no_symbols);
5061 return -1;
5062 }
5063
5064 #if DEBUG & 4
5065 {
5066 fprintf (stderr,
5067 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5068 (long) asym_ptr, asym_ptr->name, idx, flags,
5069 elf_symbol_flags (flags));
5070 fflush (stderr);
5071 }
5072 #endif
5073
5074 return idx;
5075 }
5076
5077 /* Rewrite program header information. */
5078
5079 static bfd_boolean
5080 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5081 {
5082 Elf_Internal_Ehdr *iehdr;
5083 struct elf_segment_map *map;
5084 struct elf_segment_map *map_first;
5085 struct elf_segment_map **pointer_to_map;
5086 Elf_Internal_Phdr *segment;
5087 asection *section;
5088 unsigned int i;
5089 unsigned int num_segments;
5090 bfd_boolean phdr_included = FALSE;
5091 bfd_boolean p_paddr_valid;
5092 bfd_vma maxpagesize;
5093 struct elf_segment_map *phdr_adjust_seg = NULL;
5094 unsigned int phdr_adjust_num = 0;
5095 const struct elf_backend_data *bed;
5096
5097 bed = get_elf_backend_data (ibfd);
5098 iehdr = elf_elfheader (ibfd);
5099
5100 map_first = NULL;
5101 pointer_to_map = &map_first;
5102
5103 num_segments = elf_elfheader (ibfd)->e_phnum;
5104 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5105
5106 /* Returns the end address of the segment + 1. */
5107 #define SEGMENT_END(segment, start) \
5108 (start + (segment->p_memsz > segment->p_filesz \
5109 ? segment->p_memsz : segment->p_filesz))
5110
5111 #define SECTION_SIZE(section, segment) \
5112 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5113 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5114 ? section->size : 0)
5115
5116 /* Returns TRUE if the given section is contained within
5117 the given segment. VMA addresses are compared. */
5118 #define IS_CONTAINED_BY_VMA(section, segment) \
5119 (section->vma >= segment->p_vaddr \
5120 && (section->vma + SECTION_SIZE (section, segment) \
5121 <= (SEGMENT_END (segment, segment->p_vaddr))))
5122
5123 /* Returns TRUE if the given section is contained within
5124 the given segment. LMA addresses are compared. */
5125 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5126 (section->lma >= base \
5127 && (section->lma + SECTION_SIZE (section, segment) \
5128 <= SEGMENT_END (segment, base)))
5129
5130 /* Handle PT_NOTE segment. */
5131 #define IS_NOTE(p, s) \
5132 (p->p_type == PT_NOTE \
5133 && elf_section_type (s) == SHT_NOTE \
5134 && (bfd_vma) s->filepos >= p->p_offset \
5135 && ((bfd_vma) s->filepos + s->size \
5136 <= p->p_offset + p->p_filesz))
5137
5138 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5139 etc. */
5140 #define IS_COREFILE_NOTE(p, s) \
5141 (IS_NOTE (p, s) \
5142 && bfd_get_format (ibfd) == bfd_core \
5143 && s->vma == 0 \
5144 && s->lma == 0)
5145
5146 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5147 linker, which generates a PT_INTERP section with p_vaddr and
5148 p_memsz set to 0. */
5149 #define IS_SOLARIS_PT_INTERP(p, s) \
5150 (p->p_vaddr == 0 \
5151 && p->p_paddr == 0 \
5152 && p->p_memsz == 0 \
5153 && p->p_filesz > 0 \
5154 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5155 && s->size > 0 \
5156 && (bfd_vma) s->filepos >= p->p_offset \
5157 && ((bfd_vma) s->filepos + s->size \
5158 <= p->p_offset + p->p_filesz))
5159
5160 /* Decide if the given section should be included in the given segment.
5161 A section will be included if:
5162 1. It is within the address space of the segment -- we use the LMA
5163 if that is set for the segment and the VMA otherwise,
5164 2. It is an allocated section or a NOTE section in a PT_NOTE
5165 segment.
5166 3. There is an output section associated with it,
5167 4. The section has not already been allocated to a previous segment.
5168 5. PT_GNU_STACK segments do not include any sections.
5169 6. PT_TLS segment includes only SHF_TLS sections.
5170 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5171 8. PT_DYNAMIC should not contain empty sections at the beginning
5172 (with the possible exception of .dynamic). */
5173 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5174 ((((segment->p_paddr \
5175 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5176 : IS_CONTAINED_BY_VMA (section, segment)) \
5177 && (section->flags & SEC_ALLOC) != 0) \
5178 || IS_NOTE (segment, section)) \
5179 && segment->p_type != PT_GNU_STACK \
5180 && (segment->p_type != PT_TLS \
5181 || (section->flags & SEC_THREAD_LOCAL)) \
5182 && (segment->p_type == PT_LOAD \
5183 || segment->p_type == PT_TLS \
5184 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5185 && (segment->p_type != PT_DYNAMIC \
5186 || SECTION_SIZE (section, segment) > 0 \
5187 || (segment->p_paddr \
5188 ? segment->p_paddr != section->lma \
5189 : segment->p_vaddr != section->vma) \
5190 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5191 == 0)) \
5192 && !section->segment_mark)
5193
5194 /* If the output section of a section in the input segment is NULL,
5195 it is removed from the corresponding output segment. */
5196 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5197 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5198 && section->output_section != NULL)
5199
5200 /* Returns TRUE iff seg1 starts after the end of seg2. */
5201 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5202 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5203
5204 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5205 their VMA address ranges and their LMA address ranges overlap.
5206 It is possible to have overlapping VMA ranges without overlapping LMA
5207 ranges. RedBoot images for example can have both .data and .bss mapped
5208 to the same VMA range, but with the .data section mapped to a different
5209 LMA. */
5210 #define SEGMENT_OVERLAPS(seg1, seg2) \
5211 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5212 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5213 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5214 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5215
5216 /* Initialise the segment mark field. */
5217 for (section = ibfd->sections; section != NULL; section = section->next)
5218 section->segment_mark = FALSE;
5219
5220 /* The Solaris linker creates program headers in which all the
5221 p_paddr fields are zero. When we try to objcopy or strip such a
5222 file, we get confused. Check for this case, and if we find it
5223 don't set the p_paddr_valid fields. */
5224 p_paddr_valid = FALSE;
5225 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5226 i < num_segments;
5227 i++, segment++)
5228 if (segment->p_paddr != 0)
5229 {
5230 p_paddr_valid = TRUE;
5231 break;
5232 }
5233
5234 /* Scan through the segments specified in the program header
5235 of the input BFD. For this first scan we look for overlaps
5236 in the loadable segments. These can be created by weird
5237 parameters to objcopy. Also, fix some solaris weirdness. */
5238 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5239 i < num_segments;
5240 i++, segment++)
5241 {
5242 unsigned int j;
5243 Elf_Internal_Phdr *segment2;
5244
5245 if (segment->p_type == PT_INTERP)
5246 for (section = ibfd->sections; section; section = section->next)
5247 if (IS_SOLARIS_PT_INTERP (segment, section))
5248 {
5249 /* Mininal change so that the normal section to segment
5250 assignment code will work. */
5251 segment->p_vaddr = section->vma;
5252 break;
5253 }
5254
5255 if (segment->p_type != PT_LOAD)
5256 {
5257 /* Remove PT_GNU_RELRO segment. */
5258 if (segment->p_type == PT_GNU_RELRO)
5259 segment->p_type = PT_NULL;
5260 continue;
5261 }
5262
5263 /* Determine if this segment overlaps any previous segments. */
5264 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5265 {
5266 bfd_signed_vma extra_length;
5267
5268 if (segment2->p_type != PT_LOAD
5269 || !SEGMENT_OVERLAPS (segment, segment2))
5270 continue;
5271
5272 /* Merge the two segments together. */
5273 if (segment2->p_vaddr < segment->p_vaddr)
5274 {
5275 /* Extend SEGMENT2 to include SEGMENT and then delete
5276 SEGMENT. */
5277 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5278 - SEGMENT_END (segment2, segment2->p_vaddr));
5279
5280 if (extra_length > 0)
5281 {
5282 segment2->p_memsz += extra_length;
5283 segment2->p_filesz += extra_length;
5284 }
5285
5286 segment->p_type = PT_NULL;
5287
5288 /* Since we have deleted P we must restart the outer loop. */
5289 i = 0;
5290 segment = elf_tdata (ibfd)->phdr;
5291 break;
5292 }
5293 else
5294 {
5295 /* Extend SEGMENT to include SEGMENT2 and then delete
5296 SEGMENT2. */
5297 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5298 - SEGMENT_END (segment, segment->p_vaddr));
5299
5300 if (extra_length > 0)
5301 {
5302 segment->p_memsz += extra_length;
5303 segment->p_filesz += extra_length;
5304 }
5305
5306 segment2->p_type = PT_NULL;
5307 }
5308 }
5309 }
5310
5311 /* The second scan attempts to assign sections to segments. */
5312 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5313 i < num_segments;
5314 i++, segment++)
5315 {
5316 unsigned int section_count;
5317 asection **sections;
5318 asection *output_section;
5319 unsigned int isec;
5320 bfd_vma matching_lma;
5321 bfd_vma suggested_lma;
5322 unsigned int j;
5323 bfd_size_type amt;
5324 asection *first_section;
5325 bfd_boolean first_matching_lma;
5326 bfd_boolean first_suggested_lma;
5327
5328 if (segment->p_type == PT_NULL)
5329 continue;
5330
5331 first_section = NULL;
5332 /* Compute how many sections might be placed into this segment. */
5333 for (section = ibfd->sections, section_count = 0;
5334 section != NULL;
5335 section = section->next)
5336 {
5337 /* Find the first section in the input segment, which may be
5338 removed from the corresponding output segment. */
5339 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5340 {
5341 if (first_section == NULL)
5342 first_section = section;
5343 if (section->output_section != NULL)
5344 ++section_count;
5345 }
5346 }
5347
5348 /* Allocate a segment map big enough to contain
5349 all of the sections we have selected. */
5350 amt = sizeof (struct elf_segment_map);
5351 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5352 map = bfd_zalloc (obfd, amt);
5353 if (map == NULL)
5354 return FALSE;
5355
5356 /* Initialise the fields of the segment map. Default to
5357 using the physical address of the segment in the input BFD. */
5358 map->next = NULL;
5359 map->p_type = segment->p_type;
5360 map->p_flags = segment->p_flags;
5361 map->p_flags_valid = 1;
5362
5363 /* If the first section in the input segment is removed, there is
5364 no need to preserve segment physical address in the corresponding
5365 output segment. */
5366 if (!first_section || first_section->output_section != NULL)
5367 {
5368 map->p_paddr = segment->p_paddr;
5369 map->p_paddr_valid = p_paddr_valid;
5370 }
5371
5372 /* Determine if this segment contains the ELF file header
5373 and if it contains the program headers themselves. */
5374 map->includes_filehdr = (segment->p_offset == 0
5375 && segment->p_filesz >= iehdr->e_ehsize);
5376 map->includes_phdrs = 0;
5377
5378 if (!phdr_included || segment->p_type != PT_LOAD)
5379 {
5380 map->includes_phdrs =
5381 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5382 && (segment->p_offset + segment->p_filesz
5383 >= ((bfd_vma) iehdr->e_phoff
5384 + iehdr->e_phnum * iehdr->e_phentsize)));
5385
5386 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5387 phdr_included = TRUE;
5388 }
5389
5390 if (section_count == 0)
5391 {
5392 /* Special segments, such as the PT_PHDR segment, may contain
5393 no sections, but ordinary, loadable segments should contain
5394 something. They are allowed by the ELF spec however, so only
5395 a warning is produced. */
5396 if (segment->p_type == PT_LOAD)
5397 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5398 " detected, is this intentional ?\n"),
5399 ibfd);
5400
5401 map->count = 0;
5402 *pointer_to_map = map;
5403 pointer_to_map = &map->next;
5404
5405 continue;
5406 }
5407
5408 /* Now scan the sections in the input BFD again and attempt
5409 to add their corresponding output sections to the segment map.
5410 The problem here is how to handle an output section which has
5411 been moved (ie had its LMA changed). There are four possibilities:
5412
5413 1. None of the sections have been moved.
5414 In this case we can continue to use the segment LMA from the
5415 input BFD.
5416
5417 2. All of the sections have been moved by the same amount.
5418 In this case we can change the segment's LMA to match the LMA
5419 of the first section.
5420
5421 3. Some of the sections have been moved, others have not.
5422 In this case those sections which have not been moved can be
5423 placed in the current segment which will have to have its size,
5424 and possibly its LMA changed, and a new segment or segments will
5425 have to be created to contain the other sections.
5426
5427 4. The sections have been moved, but not by the same amount.
5428 In this case we can change the segment's LMA to match the LMA
5429 of the first section and we will have to create a new segment
5430 or segments to contain the other sections.
5431
5432 In order to save time, we allocate an array to hold the section
5433 pointers that we are interested in. As these sections get assigned
5434 to a segment, they are removed from this array. */
5435
5436 sections = bfd_malloc2 (section_count, sizeof (asection *));
5437 if (sections == NULL)
5438 return FALSE;
5439
5440 /* Step One: Scan for segment vs section LMA conflicts.
5441 Also add the sections to the section array allocated above.
5442 Also add the sections to the current segment. In the common
5443 case, where the sections have not been moved, this means that
5444 we have completely filled the segment, and there is nothing
5445 more to do. */
5446 isec = 0;
5447 matching_lma = 0;
5448 suggested_lma = 0;
5449 first_matching_lma = TRUE;
5450 first_suggested_lma = TRUE;
5451
5452 for (section = ibfd->sections;
5453 section != NULL;
5454 section = section->next)
5455 if (section == first_section)
5456 break;
5457
5458 for (j = 0; section != NULL; section = section->next)
5459 {
5460 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5461 {
5462 output_section = section->output_section;
5463
5464 sections[j++] = section;
5465
5466 /* The Solaris native linker always sets p_paddr to 0.
5467 We try to catch that case here, and set it to the
5468 correct value. Note - some backends require that
5469 p_paddr be left as zero. */
5470 if (!p_paddr_valid
5471 && segment->p_vaddr != 0
5472 && !bed->want_p_paddr_set_to_zero
5473 && isec == 0
5474 && output_section->lma != 0
5475 && output_section->vma == (segment->p_vaddr
5476 + (map->includes_filehdr
5477 ? iehdr->e_ehsize
5478 : 0)
5479 + (map->includes_phdrs
5480 ? (iehdr->e_phnum
5481 * iehdr->e_phentsize)
5482 : 0)))
5483 map->p_paddr = segment->p_vaddr;
5484
5485 /* Match up the physical address of the segment with the
5486 LMA address of the output section. */
5487 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5488 || IS_COREFILE_NOTE (segment, section)
5489 || (bed->want_p_paddr_set_to_zero
5490 && IS_CONTAINED_BY_VMA (output_section, segment)))
5491 {
5492 if (first_matching_lma || output_section->lma < matching_lma)
5493 {
5494 matching_lma = output_section->lma;
5495 first_matching_lma = FALSE;
5496 }
5497
5498 /* We assume that if the section fits within the segment
5499 then it does not overlap any other section within that
5500 segment. */
5501 map->sections[isec++] = output_section;
5502 }
5503 else if (first_suggested_lma)
5504 {
5505 suggested_lma = output_section->lma;
5506 first_suggested_lma = FALSE;
5507 }
5508
5509 if (j == section_count)
5510 break;
5511 }
5512 }
5513
5514 BFD_ASSERT (j == section_count);
5515
5516 /* Step Two: Adjust the physical address of the current segment,
5517 if necessary. */
5518 if (isec == section_count)
5519 {
5520 /* All of the sections fitted within the segment as currently
5521 specified. This is the default case. Add the segment to
5522 the list of built segments and carry on to process the next
5523 program header in the input BFD. */
5524 map->count = section_count;
5525 *pointer_to_map = map;
5526 pointer_to_map = &map->next;
5527
5528 if (p_paddr_valid
5529 && !bed->want_p_paddr_set_to_zero
5530 && matching_lma != map->p_paddr
5531 && !map->includes_filehdr
5532 && !map->includes_phdrs)
5533 /* There is some padding before the first section in the
5534 segment. So, we must account for that in the output
5535 segment's vma. */
5536 map->p_vaddr_offset = matching_lma - map->p_paddr;
5537
5538 free (sections);
5539 continue;
5540 }
5541 else
5542 {
5543 if (!first_matching_lma)
5544 {
5545 /* At least one section fits inside the current segment.
5546 Keep it, but modify its physical address to match the
5547 LMA of the first section that fitted. */
5548 map->p_paddr = matching_lma;
5549 }
5550 else
5551 {
5552 /* None of the sections fitted inside the current segment.
5553 Change the current segment's physical address to match
5554 the LMA of the first section. */
5555 map->p_paddr = suggested_lma;
5556 }
5557
5558 /* Offset the segment physical address from the lma
5559 to allow for space taken up by elf headers. */
5560 if (map->includes_filehdr)
5561 {
5562 if (map->p_paddr >= iehdr->e_ehsize)
5563 map->p_paddr -= iehdr->e_ehsize;
5564 else
5565 {
5566 map->includes_filehdr = FALSE;
5567 map->includes_phdrs = FALSE;
5568 }
5569 }
5570
5571 if (map->includes_phdrs)
5572 {
5573 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5574 {
5575 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5576
5577 /* iehdr->e_phnum is just an estimate of the number
5578 of program headers that we will need. Make a note
5579 here of the number we used and the segment we chose
5580 to hold these headers, so that we can adjust the
5581 offset when we know the correct value. */
5582 phdr_adjust_num = iehdr->e_phnum;
5583 phdr_adjust_seg = map;
5584 }
5585 else
5586 map->includes_phdrs = FALSE;
5587 }
5588 }
5589
5590 /* Step Three: Loop over the sections again, this time assigning
5591 those that fit to the current segment and removing them from the
5592 sections array; but making sure not to leave large gaps. Once all
5593 possible sections have been assigned to the current segment it is
5594 added to the list of built segments and if sections still remain
5595 to be assigned, a new segment is constructed before repeating
5596 the loop. */
5597 isec = 0;
5598 do
5599 {
5600 map->count = 0;
5601 suggested_lma = 0;
5602 first_suggested_lma = TRUE;
5603
5604 /* Fill the current segment with sections that fit. */
5605 for (j = 0; j < section_count; j++)
5606 {
5607 section = sections[j];
5608
5609 if (section == NULL)
5610 continue;
5611
5612 output_section = section->output_section;
5613
5614 BFD_ASSERT (output_section != NULL);
5615
5616 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5617 || IS_COREFILE_NOTE (segment, section))
5618 {
5619 if (map->count == 0)
5620 {
5621 /* If the first section in a segment does not start at
5622 the beginning of the segment, then something is
5623 wrong. */
5624 if (output_section->lma
5625 != (map->p_paddr
5626 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5627 + (map->includes_phdrs
5628 ? iehdr->e_phnum * iehdr->e_phentsize
5629 : 0)))
5630 abort ();
5631 }
5632 else
5633 {
5634 asection *prev_sec;
5635
5636 prev_sec = map->sections[map->count - 1];
5637
5638 /* If the gap between the end of the previous section
5639 and the start of this section is more than
5640 maxpagesize then we need to start a new segment. */
5641 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5642 maxpagesize)
5643 < BFD_ALIGN (output_section->lma, maxpagesize))
5644 || (prev_sec->lma + prev_sec->size
5645 > output_section->lma))
5646 {
5647 if (first_suggested_lma)
5648 {
5649 suggested_lma = output_section->lma;
5650 first_suggested_lma = FALSE;
5651 }
5652
5653 continue;
5654 }
5655 }
5656
5657 map->sections[map->count++] = output_section;
5658 ++isec;
5659 sections[j] = NULL;
5660 section->segment_mark = TRUE;
5661 }
5662 else if (first_suggested_lma)
5663 {
5664 suggested_lma = output_section->lma;
5665 first_suggested_lma = FALSE;
5666 }
5667 }
5668
5669 BFD_ASSERT (map->count > 0);
5670
5671 /* Add the current segment to the list of built segments. */
5672 *pointer_to_map = map;
5673 pointer_to_map = &map->next;
5674
5675 if (isec < section_count)
5676 {
5677 /* We still have not allocated all of the sections to
5678 segments. Create a new segment here, initialise it
5679 and carry on looping. */
5680 amt = sizeof (struct elf_segment_map);
5681 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5682 map = bfd_alloc (obfd, amt);
5683 if (map == NULL)
5684 {
5685 free (sections);
5686 return FALSE;
5687 }
5688
5689 /* Initialise the fields of the segment map. Set the physical
5690 physical address to the LMA of the first section that has
5691 not yet been assigned. */
5692 map->next = NULL;
5693 map->p_type = segment->p_type;
5694 map->p_flags = segment->p_flags;
5695 map->p_flags_valid = 1;
5696 map->p_paddr = suggested_lma;
5697 map->p_paddr_valid = p_paddr_valid;
5698 map->includes_filehdr = 0;
5699 map->includes_phdrs = 0;
5700 }
5701 }
5702 while (isec < section_count);
5703
5704 free (sections);
5705 }
5706
5707 elf_tdata (obfd)->segment_map = map_first;
5708
5709 /* If we had to estimate the number of program headers that were
5710 going to be needed, then check our estimate now and adjust
5711 the offset if necessary. */
5712 if (phdr_adjust_seg != NULL)
5713 {
5714 unsigned int count;
5715
5716 for (count = 0, map = map_first; map != NULL; map = map->next)
5717 count++;
5718
5719 if (count > phdr_adjust_num)
5720 phdr_adjust_seg->p_paddr
5721 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5722 }
5723
5724 #undef SEGMENT_END
5725 #undef SECTION_SIZE
5726 #undef IS_CONTAINED_BY_VMA
5727 #undef IS_CONTAINED_BY_LMA
5728 #undef IS_NOTE
5729 #undef IS_COREFILE_NOTE
5730 #undef IS_SOLARIS_PT_INTERP
5731 #undef IS_SECTION_IN_INPUT_SEGMENT
5732 #undef INCLUDE_SECTION_IN_SEGMENT
5733 #undef SEGMENT_AFTER_SEGMENT
5734 #undef SEGMENT_OVERLAPS
5735 return TRUE;
5736 }
5737
5738 /* Copy ELF program header information. */
5739
5740 static bfd_boolean
5741 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5742 {
5743 Elf_Internal_Ehdr *iehdr;
5744 struct elf_segment_map *map;
5745 struct elf_segment_map *map_first;
5746 struct elf_segment_map **pointer_to_map;
5747 Elf_Internal_Phdr *segment;
5748 unsigned int i;
5749 unsigned int num_segments;
5750 bfd_boolean phdr_included = FALSE;
5751 bfd_boolean p_paddr_valid;
5752
5753 iehdr = elf_elfheader (ibfd);
5754
5755 map_first = NULL;
5756 pointer_to_map = &map_first;
5757
5758 /* If all the segment p_paddr fields are zero, don't set
5759 map->p_paddr_valid. */
5760 p_paddr_valid = FALSE;
5761 num_segments = elf_elfheader (ibfd)->e_phnum;
5762 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5763 i < num_segments;
5764 i++, segment++)
5765 if (segment->p_paddr != 0)
5766 {
5767 p_paddr_valid = TRUE;
5768 break;
5769 }
5770
5771 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5772 i < num_segments;
5773 i++, segment++)
5774 {
5775 asection *section;
5776 unsigned int section_count;
5777 bfd_size_type amt;
5778 Elf_Internal_Shdr *this_hdr;
5779 asection *first_section = NULL;
5780 asection *lowest_section = NULL;
5781
5782 /* Compute how many sections are in this segment. */
5783 for (section = ibfd->sections, section_count = 0;
5784 section != NULL;
5785 section = section->next)
5786 {
5787 this_hdr = &(elf_section_data(section)->this_hdr);
5788 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5789 {
5790 if (!first_section)
5791 first_section = lowest_section = section;
5792 if (section->lma < lowest_section->lma)
5793 lowest_section = section;
5794 section_count++;
5795 }
5796 }
5797
5798 /* Allocate a segment map big enough to contain
5799 all of the sections we have selected. */
5800 amt = sizeof (struct elf_segment_map);
5801 if (section_count != 0)
5802 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5803 map = bfd_zalloc (obfd, amt);
5804 if (map == NULL)
5805 return FALSE;
5806
5807 /* Initialize the fields of the output segment map with the
5808 input segment. */
5809 map->next = NULL;
5810 map->p_type = segment->p_type;
5811 map->p_flags = segment->p_flags;
5812 map->p_flags_valid = 1;
5813 map->p_paddr = segment->p_paddr;
5814 map->p_paddr_valid = p_paddr_valid;
5815 map->p_align = segment->p_align;
5816 map->p_align_valid = 1;
5817 map->p_vaddr_offset = 0;
5818
5819 if (map->p_type == PT_GNU_RELRO
5820 && segment->p_filesz == segment->p_memsz)
5821 {
5822 /* The PT_GNU_RELRO segment may contain the first a few
5823 bytes in the .got.plt section even if the whole .got.plt
5824 section isn't in the PT_GNU_RELRO segment. We won't
5825 change the size of the PT_GNU_RELRO segment. */
5826 map->p_size = segment->p_filesz;
5827 map->p_size_valid = 1;
5828 }
5829
5830 /* Determine if this segment contains the ELF file header
5831 and if it contains the program headers themselves. */
5832 map->includes_filehdr = (segment->p_offset == 0
5833 && segment->p_filesz >= iehdr->e_ehsize);
5834
5835 map->includes_phdrs = 0;
5836 if (! phdr_included || segment->p_type != PT_LOAD)
5837 {
5838 map->includes_phdrs =
5839 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5840 && (segment->p_offset + segment->p_filesz
5841 >= ((bfd_vma) iehdr->e_phoff
5842 + iehdr->e_phnum * iehdr->e_phentsize)));
5843
5844 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5845 phdr_included = TRUE;
5846 }
5847
5848 if (!map->includes_phdrs
5849 && !map->includes_filehdr
5850 && map->p_paddr_valid)
5851 /* There is some other padding before the first section. */
5852 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5853 - segment->p_paddr);
5854
5855 if (section_count != 0)
5856 {
5857 unsigned int isec = 0;
5858
5859 for (section = first_section;
5860 section != NULL;
5861 section = section->next)
5862 {
5863 this_hdr = &(elf_section_data(section)->this_hdr);
5864 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5865 {
5866 map->sections[isec++] = section->output_section;
5867 if (isec == section_count)
5868 break;
5869 }
5870 }
5871 }
5872
5873 map->count = section_count;
5874 *pointer_to_map = map;
5875 pointer_to_map = &map->next;
5876 }
5877
5878 elf_tdata (obfd)->segment_map = map_first;
5879 return TRUE;
5880 }
5881
5882 /* Copy private BFD data. This copies or rewrites ELF program header
5883 information. */
5884
5885 static bfd_boolean
5886 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5887 {
5888 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5889 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5890 return TRUE;
5891
5892 if (elf_tdata (ibfd)->phdr == NULL)
5893 return TRUE;
5894
5895 if (ibfd->xvec == obfd->xvec)
5896 {
5897 /* Check to see if any sections in the input BFD
5898 covered by ELF program header have changed. */
5899 Elf_Internal_Phdr *segment;
5900 asection *section, *osec;
5901 unsigned int i, num_segments;
5902 Elf_Internal_Shdr *this_hdr;
5903 const struct elf_backend_data *bed;
5904
5905 bed = get_elf_backend_data (ibfd);
5906
5907 /* Regenerate the segment map if p_paddr is set to 0. */
5908 if (bed->want_p_paddr_set_to_zero)
5909 goto rewrite;
5910
5911 /* Initialize the segment mark field. */
5912 for (section = obfd->sections; section != NULL;
5913 section = section->next)
5914 section->segment_mark = FALSE;
5915
5916 num_segments = elf_elfheader (ibfd)->e_phnum;
5917 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5918 i < num_segments;
5919 i++, segment++)
5920 {
5921 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5922 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5923 which severly confuses things, so always regenerate the segment
5924 map in this case. */
5925 if (segment->p_paddr == 0
5926 && segment->p_memsz == 0
5927 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5928 goto rewrite;
5929
5930 for (section = ibfd->sections;
5931 section != NULL; section = section->next)
5932 {
5933 /* We mark the output section so that we know it comes
5934 from the input BFD. */
5935 osec = section->output_section;
5936 if (osec)
5937 osec->segment_mark = TRUE;
5938
5939 /* Check if this section is covered by the segment. */
5940 this_hdr = &(elf_section_data(section)->this_hdr);
5941 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5942 {
5943 /* FIXME: Check if its output section is changed or
5944 removed. What else do we need to check? */
5945 if (osec == NULL
5946 || section->flags != osec->flags
5947 || section->lma != osec->lma
5948 || section->vma != osec->vma
5949 || section->size != osec->size
5950 || section->rawsize != osec->rawsize
5951 || section->alignment_power != osec->alignment_power)
5952 goto rewrite;
5953 }
5954 }
5955 }
5956
5957 /* Check to see if any output section do not come from the
5958 input BFD. */
5959 for (section = obfd->sections; section != NULL;
5960 section = section->next)
5961 {
5962 if (section->segment_mark == FALSE)
5963 goto rewrite;
5964 else
5965 section->segment_mark = FALSE;
5966 }
5967
5968 return copy_elf_program_header (ibfd, obfd);
5969 }
5970
5971 rewrite:
5972 return rewrite_elf_program_header (ibfd, obfd);
5973 }
5974
5975 /* Initialize private output section information from input section. */
5976
5977 bfd_boolean
5978 _bfd_elf_init_private_section_data (bfd *ibfd,
5979 asection *isec,
5980 bfd *obfd,
5981 asection *osec,
5982 struct bfd_link_info *link_info)
5983
5984 {
5985 Elf_Internal_Shdr *ihdr, *ohdr;
5986 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5987
5988 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5989 || obfd->xvec->flavour != bfd_target_elf_flavour)
5990 return TRUE;
5991
5992 /* Don't copy the output ELF section type from input if the
5993 output BFD section flags have been set to something different.
5994 elf_fake_sections will set ELF section type based on BFD
5995 section flags. */
5996 if (elf_section_type (osec) == SHT_NULL
5997 && (osec->flags == isec->flags || !osec->flags))
5998 elf_section_type (osec) = elf_section_type (isec);
5999
6000 /* FIXME: Is this correct for all OS/PROC specific flags? */
6001 elf_section_flags (osec) |= (elf_section_flags (isec)
6002 & (SHF_MASKOS | SHF_MASKPROC));
6003
6004 /* Set things up for objcopy and relocatable link. The output
6005 SHT_GROUP section will have its elf_next_in_group pointing back
6006 to the input group members. Ignore linker created group section.
6007 See elfNN_ia64_object_p in elfxx-ia64.c. */
6008 if (need_group)
6009 {
6010 if (elf_sec_group (isec) == NULL
6011 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6012 {
6013 if (elf_section_flags (isec) & SHF_GROUP)
6014 elf_section_flags (osec) |= SHF_GROUP;
6015 elf_next_in_group (osec) = elf_next_in_group (isec);
6016 elf_section_data (osec)->group = elf_section_data (isec)->group;
6017 }
6018 }
6019
6020 ihdr = &elf_section_data (isec)->this_hdr;
6021
6022 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6023 don't use the output section of the linked-to section since it
6024 may be NULL at this point. */
6025 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6026 {
6027 ohdr = &elf_section_data (osec)->this_hdr;
6028 ohdr->sh_flags |= SHF_LINK_ORDER;
6029 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6030 }
6031
6032 osec->use_rela_p = isec->use_rela_p;
6033
6034 return TRUE;
6035 }
6036
6037 /* Copy private section information. This copies over the entsize
6038 field, and sometimes the info field. */
6039
6040 bfd_boolean
6041 _bfd_elf_copy_private_section_data (bfd *ibfd,
6042 asection *isec,
6043 bfd *obfd,
6044 asection *osec)
6045 {
6046 Elf_Internal_Shdr *ihdr, *ohdr;
6047
6048 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6049 || obfd->xvec->flavour != bfd_target_elf_flavour)
6050 return TRUE;
6051
6052 ihdr = &elf_section_data (isec)->this_hdr;
6053 ohdr = &elf_section_data (osec)->this_hdr;
6054
6055 ohdr->sh_entsize = ihdr->sh_entsize;
6056
6057 if (ihdr->sh_type == SHT_SYMTAB
6058 || ihdr->sh_type == SHT_DYNSYM
6059 || ihdr->sh_type == SHT_GNU_verneed
6060 || ihdr->sh_type == SHT_GNU_verdef)
6061 ohdr->sh_info = ihdr->sh_info;
6062
6063 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6064 NULL);
6065 }
6066
6067 /* Copy private header information. */
6068
6069 bfd_boolean
6070 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6071 {
6072 asection *isec;
6073
6074 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6075 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6076 return TRUE;
6077
6078 /* Copy over private BFD data if it has not already been copied.
6079 This must be done here, rather than in the copy_private_bfd_data
6080 entry point, because the latter is called after the section
6081 contents have been set, which means that the program headers have
6082 already been worked out. */
6083 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6084 {
6085 if (! copy_private_bfd_data (ibfd, obfd))
6086 return FALSE;
6087 }
6088
6089 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6090 but this might be wrong if we deleted the group section. */
6091 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6092 if (elf_section_type (isec) == SHT_GROUP
6093 && isec->output_section == NULL)
6094 {
6095 asection *first = elf_next_in_group (isec);
6096 asection *s = first;
6097 while (s != NULL)
6098 {
6099 if (s->output_section != NULL)
6100 {
6101 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6102 elf_group_name (s->output_section) = NULL;
6103 }
6104 s = elf_next_in_group (s);
6105 if (s == first)
6106 break;
6107 }
6108 }
6109
6110 return TRUE;
6111 }
6112
6113 /* Copy private symbol information. If this symbol is in a section
6114 which we did not map into a BFD section, try to map the section
6115 index correctly. We use special macro definitions for the mapped
6116 section indices; these definitions are interpreted by the
6117 swap_out_syms function. */
6118
6119 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6120 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6121 #define MAP_STRTAB (SHN_HIOS + 3)
6122 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6123 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6124
6125 bfd_boolean
6126 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6127 asymbol *isymarg,
6128 bfd *obfd,
6129 asymbol *osymarg)
6130 {
6131 elf_symbol_type *isym, *osym;
6132
6133 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6134 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6135 return TRUE;
6136
6137 isym = elf_symbol_from (ibfd, isymarg);
6138 osym = elf_symbol_from (obfd, osymarg);
6139
6140 if (isym != NULL
6141 && isym->internal_elf_sym.st_shndx != 0
6142 && osym != NULL
6143 && bfd_is_abs_section (isym->symbol.section))
6144 {
6145 unsigned int shndx;
6146
6147 shndx = isym->internal_elf_sym.st_shndx;
6148 if (shndx == elf_onesymtab (ibfd))
6149 shndx = MAP_ONESYMTAB;
6150 else if (shndx == elf_dynsymtab (ibfd))
6151 shndx = MAP_DYNSYMTAB;
6152 else if (shndx == elf_tdata (ibfd)->strtab_section)
6153 shndx = MAP_STRTAB;
6154 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6155 shndx = MAP_SHSTRTAB;
6156 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6157 shndx = MAP_SYM_SHNDX;
6158 osym->internal_elf_sym.st_shndx = shndx;
6159 }
6160
6161 return TRUE;
6162 }
6163
6164 /* Swap out the symbols. */
6165
6166 static bfd_boolean
6167 swap_out_syms (bfd *abfd,
6168 struct bfd_strtab_hash **sttp,
6169 int relocatable_p)
6170 {
6171 const struct elf_backend_data *bed;
6172 int symcount;
6173 asymbol **syms;
6174 struct bfd_strtab_hash *stt;
6175 Elf_Internal_Shdr *symtab_hdr;
6176 Elf_Internal_Shdr *symtab_shndx_hdr;
6177 Elf_Internal_Shdr *symstrtab_hdr;
6178 bfd_byte *outbound_syms;
6179 bfd_byte *outbound_shndx;
6180 int idx;
6181 bfd_size_type amt;
6182 bfd_boolean name_local_sections;
6183
6184 if (!elf_map_symbols (abfd))
6185 return FALSE;
6186
6187 /* Dump out the symtabs. */
6188 stt = _bfd_elf_stringtab_init ();
6189 if (stt == NULL)
6190 return FALSE;
6191
6192 bed = get_elf_backend_data (abfd);
6193 symcount = bfd_get_symcount (abfd);
6194 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6195 symtab_hdr->sh_type = SHT_SYMTAB;
6196 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6197 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6198 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6199 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6200
6201 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6202 symstrtab_hdr->sh_type = SHT_STRTAB;
6203
6204 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6205 if (outbound_syms == NULL)
6206 {
6207 _bfd_stringtab_free (stt);
6208 return FALSE;
6209 }
6210 symtab_hdr->contents = outbound_syms;
6211
6212 outbound_shndx = NULL;
6213 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6214 if (symtab_shndx_hdr->sh_name != 0)
6215 {
6216 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6217 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6218 sizeof (Elf_External_Sym_Shndx));
6219 if (outbound_shndx == NULL)
6220 {
6221 _bfd_stringtab_free (stt);
6222 return FALSE;
6223 }
6224
6225 symtab_shndx_hdr->contents = outbound_shndx;
6226 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6227 symtab_shndx_hdr->sh_size = amt;
6228 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6229 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6230 }
6231
6232 /* Now generate the data (for "contents"). */
6233 {
6234 /* Fill in zeroth symbol and swap it out. */
6235 Elf_Internal_Sym sym;
6236 sym.st_name = 0;
6237 sym.st_value = 0;
6238 sym.st_size = 0;
6239 sym.st_info = 0;
6240 sym.st_other = 0;
6241 sym.st_shndx = SHN_UNDEF;
6242 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6243 outbound_syms += bed->s->sizeof_sym;
6244 if (outbound_shndx != NULL)
6245 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6246 }
6247
6248 name_local_sections
6249 = (bed->elf_backend_name_local_section_symbols
6250 && bed->elf_backend_name_local_section_symbols (abfd));
6251
6252 syms = bfd_get_outsymbols (abfd);
6253 for (idx = 0; idx < symcount; idx++)
6254 {
6255 Elf_Internal_Sym sym;
6256 bfd_vma value = syms[idx]->value;
6257 elf_symbol_type *type_ptr;
6258 flagword flags = syms[idx]->flags;
6259 int type;
6260
6261 if (!name_local_sections
6262 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6263 {
6264 /* Local section symbols have no name. */
6265 sym.st_name = 0;
6266 }
6267 else
6268 {
6269 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6270 syms[idx]->name,
6271 TRUE, FALSE);
6272 if (sym.st_name == (unsigned long) -1)
6273 {
6274 _bfd_stringtab_free (stt);
6275 return FALSE;
6276 }
6277 }
6278
6279 type_ptr = elf_symbol_from (abfd, syms[idx]);
6280
6281 if ((flags & BSF_SECTION_SYM) == 0
6282 && bfd_is_com_section (syms[idx]->section))
6283 {
6284 /* ELF common symbols put the alignment into the `value' field,
6285 and the size into the `size' field. This is backwards from
6286 how BFD handles it, so reverse it here. */
6287 sym.st_size = value;
6288 if (type_ptr == NULL
6289 || type_ptr->internal_elf_sym.st_value == 0)
6290 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6291 else
6292 sym.st_value = type_ptr->internal_elf_sym.st_value;
6293 sym.st_shndx = _bfd_elf_section_from_bfd_section
6294 (abfd, syms[idx]->section);
6295 }
6296 else
6297 {
6298 asection *sec = syms[idx]->section;
6299 unsigned int shndx;
6300
6301 if (sec->output_section)
6302 {
6303 value += sec->output_offset;
6304 sec = sec->output_section;
6305 }
6306
6307 /* Don't add in the section vma for relocatable output. */
6308 if (! relocatable_p)
6309 value += sec->vma;
6310 sym.st_value = value;
6311 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6312
6313 if (bfd_is_abs_section (sec)
6314 && type_ptr != NULL
6315 && type_ptr->internal_elf_sym.st_shndx != 0)
6316 {
6317 /* This symbol is in a real ELF section which we did
6318 not create as a BFD section. Undo the mapping done
6319 by copy_private_symbol_data. */
6320 shndx = type_ptr->internal_elf_sym.st_shndx;
6321 switch (shndx)
6322 {
6323 case MAP_ONESYMTAB:
6324 shndx = elf_onesymtab (abfd);
6325 break;
6326 case MAP_DYNSYMTAB:
6327 shndx = elf_dynsymtab (abfd);
6328 break;
6329 case MAP_STRTAB:
6330 shndx = elf_tdata (abfd)->strtab_section;
6331 break;
6332 case MAP_SHSTRTAB:
6333 shndx = elf_tdata (abfd)->shstrtab_section;
6334 break;
6335 case MAP_SYM_SHNDX:
6336 shndx = elf_tdata (abfd)->symtab_shndx_section;
6337 break;
6338 default:
6339 break;
6340 }
6341 }
6342 else
6343 {
6344 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6345
6346 if (shndx == SHN_BAD)
6347 {
6348 asection *sec2;
6349
6350 /* Writing this would be a hell of a lot easier if
6351 we had some decent documentation on bfd, and
6352 knew what to expect of the library, and what to
6353 demand of applications. For example, it
6354 appears that `objcopy' might not set the
6355 section of a symbol to be a section that is
6356 actually in the output file. */
6357 sec2 = bfd_get_section_by_name (abfd, sec->name);
6358 if (sec2 == NULL)
6359 {
6360 _bfd_error_handler (_("\
6361 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6362 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6363 sec->name);
6364 bfd_set_error (bfd_error_invalid_operation);
6365 _bfd_stringtab_free (stt);
6366 return FALSE;
6367 }
6368
6369 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6370 BFD_ASSERT (shndx != SHN_BAD);
6371 }
6372 }
6373
6374 sym.st_shndx = shndx;
6375 }
6376
6377 if ((flags & BSF_THREAD_LOCAL) != 0)
6378 type = STT_TLS;
6379 else if ((flags & BSF_FUNCTION) != 0)
6380 type = STT_FUNC;
6381 else if ((flags & BSF_OBJECT) != 0)
6382 type = STT_OBJECT;
6383 else if ((flags & BSF_RELC) != 0)
6384 type = STT_RELC;
6385 else if ((flags & BSF_SRELC) != 0)
6386 type = STT_SRELC;
6387 else
6388 type = STT_NOTYPE;
6389
6390 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6391 type = STT_TLS;
6392
6393 /* Processor-specific types. */
6394 if (type_ptr != NULL
6395 && bed->elf_backend_get_symbol_type)
6396 type = ((*bed->elf_backend_get_symbol_type)
6397 (&type_ptr->internal_elf_sym, type));
6398
6399 if (flags & BSF_SECTION_SYM)
6400 {
6401 if (flags & BSF_GLOBAL)
6402 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6403 else
6404 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6405 }
6406 else if (bfd_is_com_section (syms[idx]->section))
6407 {
6408 #ifdef USE_STT_COMMON
6409 if (type == STT_OBJECT)
6410 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6411 else
6412 #else
6413 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6414 #endif
6415 }
6416 else if (bfd_is_und_section (syms[idx]->section))
6417 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6418 ? STB_WEAK
6419 : STB_GLOBAL),
6420 type);
6421 else if (flags & BSF_FILE)
6422 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6423 else
6424 {
6425 int bind = STB_LOCAL;
6426
6427 if (flags & BSF_LOCAL)
6428 bind = STB_LOCAL;
6429 else if (flags & BSF_WEAK)
6430 bind = STB_WEAK;
6431 else if (flags & BSF_GLOBAL)
6432 bind = STB_GLOBAL;
6433
6434 sym.st_info = ELF_ST_INFO (bind, type);
6435 }
6436
6437 if (type_ptr != NULL)
6438 sym.st_other = type_ptr->internal_elf_sym.st_other;
6439 else
6440 sym.st_other = 0;
6441
6442 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6443 outbound_syms += bed->s->sizeof_sym;
6444 if (outbound_shndx != NULL)
6445 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6446 }
6447
6448 *sttp = stt;
6449 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6450 symstrtab_hdr->sh_type = SHT_STRTAB;
6451
6452 symstrtab_hdr->sh_flags = 0;
6453 symstrtab_hdr->sh_addr = 0;
6454 symstrtab_hdr->sh_entsize = 0;
6455 symstrtab_hdr->sh_link = 0;
6456 symstrtab_hdr->sh_info = 0;
6457 symstrtab_hdr->sh_addralign = 1;
6458
6459 return TRUE;
6460 }
6461
6462 /* Return the number of bytes required to hold the symtab vector.
6463
6464 Note that we base it on the count plus 1, since we will null terminate
6465 the vector allocated based on this size. However, the ELF symbol table
6466 always has a dummy entry as symbol #0, so it ends up even. */
6467
6468 long
6469 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6470 {
6471 long symcount;
6472 long symtab_size;
6473 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6474
6475 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6476 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6477 if (symcount > 0)
6478 symtab_size -= sizeof (asymbol *);
6479
6480 return symtab_size;
6481 }
6482
6483 long
6484 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6485 {
6486 long symcount;
6487 long symtab_size;
6488 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6489
6490 if (elf_dynsymtab (abfd) == 0)
6491 {
6492 bfd_set_error (bfd_error_invalid_operation);
6493 return -1;
6494 }
6495
6496 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6497 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6498 if (symcount > 0)
6499 symtab_size -= sizeof (asymbol *);
6500
6501 return symtab_size;
6502 }
6503
6504 long
6505 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6506 sec_ptr asect)
6507 {
6508 return (asect->reloc_count + 1) * sizeof (arelent *);
6509 }
6510
6511 /* Canonicalize the relocs. */
6512
6513 long
6514 _bfd_elf_canonicalize_reloc (bfd *abfd,
6515 sec_ptr section,
6516 arelent **relptr,
6517 asymbol **symbols)
6518 {
6519 arelent *tblptr;
6520 unsigned int i;
6521 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6522
6523 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6524 return -1;
6525
6526 tblptr = section->relocation;
6527 for (i = 0; i < section->reloc_count; i++)
6528 *relptr++ = tblptr++;
6529
6530 *relptr = NULL;
6531
6532 return section->reloc_count;
6533 }
6534
6535 long
6536 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6537 {
6538 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6539 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6540
6541 if (symcount >= 0)
6542 bfd_get_symcount (abfd) = symcount;
6543 return symcount;
6544 }
6545
6546 long
6547 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6548 asymbol **allocation)
6549 {
6550 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6551 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6552
6553 if (symcount >= 0)
6554 bfd_get_dynamic_symcount (abfd) = symcount;
6555 return symcount;
6556 }
6557
6558 /* Return the size required for the dynamic reloc entries. Any loadable
6559 section that was actually installed in the BFD, and has type SHT_REL
6560 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6561 dynamic reloc section. */
6562
6563 long
6564 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6565 {
6566 long ret;
6567 asection *s;
6568
6569 if (elf_dynsymtab (abfd) == 0)
6570 {
6571 bfd_set_error (bfd_error_invalid_operation);
6572 return -1;
6573 }
6574
6575 ret = sizeof (arelent *);
6576 for (s = abfd->sections; s != NULL; s = s->next)
6577 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6578 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6579 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6580 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6581 * sizeof (arelent *));
6582
6583 return ret;
6584 }
6585
6586 /* Canonicalize the dynamic relocation entries. Note that we return the
6587 dynamic relocations as a single block, although they are actually
6588 associated with particular sections; the interface, which was
6589 designed for SunOS style shared libraries, expects that there is only
6590 one set of dynamic relocs. Any loadable section that was actually
6591 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6592 dynamic symbol table, is considered to be a dynamic reloc section. */
6593
6594 long
6595 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6596 arelent **storage,
6597 asymbol **syms)
6598 {
6599 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6600 asection *s;
6601 long ret;
6602
6603 if (elf_dynsymtab (abfd) == 0)
6604 {
6605 bfd_set_error (bfd_error_invalid_operation);
6606 return -1;
6607 }
6608
6609 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6610 ret = 0;
6611 for (s = abfd->sections; s != NULL; s = s->next)
6612 {
6613 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6614 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6615 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6616 {
6617 arelent *p;
6618 long count, i;
6619
6620 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6621 return -1;
6622 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6623 p = s->relocation;
6624 for (i = 0; i < count; i++)
6625 *storage++ = p++;
6626 ret += count;
6627 }
6628 }
6629
6630 *storage = NULL;
6631
6632 return ret;
6633 }
6634 \f
6635 /* Read in the version information. */
6636
6637 bfd_boolean
6638 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6639 {
6640 bfd_byte *contents = NULL;
6641 unsigned int freeidx = 0;
6642
6643 if (elf_dynverref (abfd) != 0)
6644 {
6645 Elf_Internal_Shdr *hdr;
6646 Elf_External_Verneed *everneed;
6647 Elf_Internal_Verneed *iverneed;
6648 unsigned int i;
6649 bfd_byte *contents_end;
6650
6651 hdr = &elf_tdata (abfd)->dynverref_hdr;
6652
6653 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6654 sizeof (Elf_Internal_Verneed));
6655 if (elf_tdata (abfd)->verref == NULL)
6656 goto error_return;
6657
6658 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6659
6660 contents = bfd_malloc (hdr->sh_size);
6661 if (contents == NULL)
6662 {
6663 error_return_verref:
6664 elf_tdata (abfd)->verref = NULL;
6665 elf_tdata (abfd)->cverrefs = 0;
6666 goto error_return;
6667 }
6668 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6669 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6670 goto error_return_verref;
6671
6672 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6673 goto error_return_verref;
6674
6675 BFD_ASSERT (sizeof (Elf_External_Verneed)
6676 == sizeof (Elf_External_Vernaux));
6677 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6678 everneed = (Elf_External_Verneed *) contents;
6679 iverneed = elf_tdata (abfd)->verref;
6680 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6681 {
6682 Elf_External_Vernaux *evernaux;
6683 Elf_Internal_Vernaux *ivernaux;
6684 unsigned int j;
6685
6686 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6687
6688 iverneed->vn_bfd = abfd;
6689
6690 iverneed->vn_filename =
6691 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6692 iverneed->vn_file);
6693 if (iverneed->vn_filename == NULL)
6694 goto error_return_verref;
6695
6696 if (iverneed->vn_cnt == 0)
6697 iverneed->vn_auxptr = NULL;
6698 else
6699 {
6700 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6701 sizeof (Elf_Internal_Vernaux));
6702 if (iverneed->vn_auxptr == NULL)
6703 goto error_return_verref;
6704 }
6705
6706 if (iverneed->vn_aux
6707 > (size_t) (contents_end - (bfd_byte *) everneed))
6708 goto error_return_verref;
6709
6710 evernaux = ((Elf_External_Vernaux *)
6711 ((bfd_byte *) everneed + iverneed->vn_aux));
6712 ivernaux = iverneed->vn_auxptr;
6713 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6714 {
6715 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6716
6717 ivernaux->vna_nodename =
6718 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6719 ivernaux->vna_name);
6720 if (ivernaux->vna_nodename == NULL)
6721 goto error_return_verref;
6722
6723 if (j + 1 < iverneed->vn_cnt)
6724 ivernaux->vna_nextptr = ivernaux + 1;
6725 else
6726 ivernaux->vna_nextptr = NULL;
6727
6728 if (ivernaux->vna_next
6729 > (size_t) (contents_end - (bfd_byte *) evernaux))
6730 goto error_return_verref;
6731
6732 evernaux = ((Elf_External_Vernaux *)
6733 ((bfd_byte *) evernaux + ivernaux->vna_next));
6734
6735 if (ivernaux->vna_other > freeidx)
6736 freeidx = ivernaux->vna_other;
6737 }
6738
6739 if (i + 1 < hdr->sh_info)
6740 iverneed->vn_nextref = iverneed + 1;
6741 else
6742 iverneed->vn_nextref = NULL;
6743
6744 if (iverneed->vn_next
6745 > (size_t) (contents_end - (bfd_byte *) everneed))
6746 goto error_return_verref;
6747
6748 everneed = ((Elf_External_Verneed *)
6749 ((bfd_byte *) everneed + iverneed->vn_next));
6750 }
6751
6752 free (contents);
6753 contents = NULL;
6754 }
6755
6756 if (elf_dynverdef (abfd) != 0)
6757 {
6758 Elf_Internal_Shdr *hdr;
6759 Elf_External_Verdef *everdef;
6760 Elf_Internal_Verdef *iverdef;
6761 Elf_Internal_Verdef *iverdefarr;
6762 Elf_Internal_Verdef iverdefmem;
6763 unsigned int i;
6764 unsigned int maxidx;
6765 bfd_byte *contents_end_def, *contents_end_aux;
6766
6767 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6768
6769 contents = bfd_malloc (hdr->sh_size);
6770 if (contents == NULL)
6771 goto error_return;
6772 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6773 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6774 goto error_return;
6775
6776 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6777 goto error_return;
6778
6779 BFD_ASSERT (sizeof (Elf_External_Verdef)
6780 >= sizeof (Elf_External_Verdaux));
6781 contents_end_def = contents + hdr->sh_size
6782 - sizeof (Elf_External_Verdef);
6783 contents_end_aux = contents + hdr->sh_size
6784 - sizeof (Elf_External_Verdaux);
6785
6786 /* We know the number of entries in the section but not the maximum
6787 index. Therefore we have to run through all entries and find
6788 the maximum. */
6789 everdef = (Elf_External_Verdef *) contents;
6790 maxidx = 0;
6791 for (i = 0; i < hdr->sh_info; ++i)
6792 {
6793 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6794
6795 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6796 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6797
6798 if (iverdefmem.vd_next
6799 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6800 goto error_return;
6801
6802 everdef = ((Elf_External_Verdef *)
6803 ((bfd_byte *) everdef + iverdefmem.vd_next));
6804 }
6805
6806 if (default_imported_symver)
6807 {
6808 if (freeidx > maxidx)
6809 maxidx = ++freeidx;
6810 else
6811 freeidx = ++maxidx;
6812 }
6813 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6814 sizeof (Elf_Internal_Verdef));
6815 if (elf_tdata (abfd)->verdef == NULL)
6816 goto error_return;
6817
6818 elf_tdata (abfd)->cverdefs = maxidx;
6819
6820 everdef = (Elf_External_Verdef *) contents;
6821 iverdefarr = elf_tdata (abfd)->verdef;
6822 for (i = 0; i < hdr->sh_info; i++)
6823 {
6824 Elf_External_Verdaux *everdaux;
6825 Elf_Internal_Verdaux *iverdaux;
6826 unsigned int j;
6827
6828 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6829
6830 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6831 {
6832 error_return_verdef:
6833 elf_tdata (abfd)->verdef = NULL;
6834 elf_tdata (abfd)->cverdefs = 0;
6835 goto error_return;
6836 }
6837
6838 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6839 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6840
6841 iverdef->vd_bfd = abfd;
6842
6843 if (iverdef->vd_cnt == 0)
6844 iverdef->vd_auxptr = NULL;
6845 else
6846 {
6847 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6848 sizeof (Elf_Internal_Verdaux));
6849 if (iverdef->vd_auxptr == NULL)
6850 goto error_return_verdef;
6851 }
6852
6853 if (iverdef->vd_aux
6854 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6855 goto error_return_verdef;
6856
6857 everdaux = ((Elf_External_Verdaux *)
6858 ((bfd_byte *) everdef + iverdef->vd_aux));
6859 iverdaux = iverdef->vd_auxptr;
6860 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6861 {
6862 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6863
6864 iverdaux->vda_nodename =
6865 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6866 iverdaux->vda_name);
6867 if (iverdaux->vda_nodename == NULL)
6868 goto error_return_verdef;
6869
6870 if (j + 1 < iverdef->vd_cnt)
6871 iverdaux->vda_nextptr = iverdaux + 1;
6872 else
6873 iverdaux->vda_nextptr = NULL;
6874
6875 if (iverdaux->vda_next
6876 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6877 goto error_return_verdef;
6878
6879 everdaux = ((Elf_External_Verdaux *)
6880 ((bfd_byte *) everdaux + iverdaux->vda_next));
6881 }
6882
6883 if (iverdef->vd_cnt)
6884 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6885
6886 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6887 iverdef->vd_nextdef = iverdef + 1;
6888 else
6889 iverdef->vd_nextdef = NULL;
6890
6891 everdef = ((Elf_External_Verdef *)
6892 ((bfd_byte *) everdef + iverdef->vd_next));
6893 }
6894
6895 free (contents);
6896 contents = NULL;
6897 }
6898 else if (default_imported_symver)
6899 {
6900 if (freeidx < 3)
6901 freeidx = 3;
6902 else
6903 freeidx++;
6904
6905 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6906 sizeof (Elf_Internal_Verdef));
6907 if (elf_tdata (abfd)->verdef == NULL)
6908 goto error_return;
6909
6910 elf_tdata (abfd)->cverdefs = freeidx;
6911 }
6912
6913 /* Create a default version based on the soname. */
6914 if (default_imported_symver)
6915 {
6916 Elf_Internal_Verdef *iverdef;
6917 Elf_Internal_Verdaux *iverdaux;
6918
6919 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6920
6921 iverdef->vd_version = VER_DEF_CURRENT;
6922 iverdef->vd_flags = 0;
6923 iverdef->vd_ndx = freeidx;
6924 iverdef->vd_cnt = 1;
6925
6926 iverdef->vd_bfd = abfd;
6927
6928 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6929 if (iverdef->vd_nodename == NULL)
6930 goto error_return_verdef;
6931 iverdef->vd_nextdef = NULL;
6932 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6933 if (iverdef->vd_auxptr == NULL)
6934 goto error_return_verdef;
6935
6936 iverdaux = iverdef->vd_auxptr;
6937 iverdaux->vda_nodename = iverdef->vd_nodename;
6938 iverdaux->vda_nextptr = NULL;
6939 }
6940
6941 return TRUE;
6942
6943 error_return:
6944 if (contents != NULL)
6945 free (contents);
6946 return FALSE;
6947 }
6948 \f
6949 asymbol *
6950 _bfd_elf_make_empty_symbol (bfd *abfd)
6951 {
6952 elf_symbol_type *newsym;
6953 bfd_size_type amt = sizeof (elf_symbol_type);
6954
6955 newsym = bfd_zalloc (abfd, amt);
6956 if (!newsym)
6957 return NULL;
6958 else
6959 {
6960 newsym->symbol.the_bfd = abfd;
6961 return &newsym->symbol;
6962 }
6963 }
6964
6965 void
6966 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6967 asymbol *symbol,
6968 symbol_info *ret)
6969 {
6970 bfd_symbol_info (symbol, ret);
6971 }
6972
6973 /* Return whether a symbol name implies a local symbol. Most targets
6974 use this function for the is_local_label_name entry point, but some
6975 override it. */
6976
6977 bfd_boolean
6978 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6979 const char *name)
6980 {
6981 /* Normal local symbols start with ``.L''. */
6982 if (name[0] == '.' && name[1] == 'L')
6983 return TRUE;
6984
6985 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6986 DWARF debugging symbols starting with ``..''. */
6987 if (name[0] == '.' && name[1] == '.')
6988 return TRUE;
6989
6990 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6991 emitting DWARF debugging output. I suspect this is actually a
6992 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6993 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6994 underscore to be emitted on some ELF targets). For ease of use,
6995 we treat such symbols as local. */
6996 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6997 return TRUE;
6998
6999 return FALSE;
7000 }
7001
7002 alent *
7003 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7004 asymbol *symbol ATTRIBUTE_UNUSED)
7005 {
7006 abort ();
7007 return NULL;
7008 }
7009
7010 bfd_boolean
7011 _bfd_elf_set_arch_mach (bfd *abfd,
7012 enum bfd_architecture arch,
7013 unsigned long machine)
7014 {
7015 /* If this isn't the right architecture for this backend, and this
7016 isn't the generic backend, fail. */
7017 if (arch != get_elf_backend_data (abfd)->arch
7018 && arch != bfd_arch_unknown
7019 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7020 return FALSE;
7021
7022 return bfd_default_set_arch_mach (abfd, arch, machine);
7023 }
7024
7025 /* Find the function to a particular section and offset,
7026 for error reporting. */
7027
7028 static bfd_boolean
7029 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7030 asection *section,
7031 asymbol **symbols,
7032 bfd_vma offset,
7033 const char **filename_ptr,
7034 const char **functionname_ptr)
7035 {
7036 const char *filename;
7037 asymbol *func, *file;
7038 bfd_vma low_func;
7039 asymbol **p;
7040 /* ??? Given multiple file symbols, it is impossible to reliably
7041 choose the right file name for global symbols. File symbols are
7042 local symbols, and thus all file symbols must sort before any
7043 global symbols. The ELF spec may be interpreted to say that a
7044 file symbol must sort before other local symbols, but currently
7045 ld -r doesn't do this. So, for ld -r output, it is possible to
7046 make a better choice of file name for local symbols by ignoring
7047 file symbols appearing after a given local symbol. */
7048 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7049
7050 filename = NULL;
7051 func = NULL;
7052 file = NULL;
7053 low_func = 0;
7054 state = nothing_seen;
7055
7056 for (p = symbols; *p != NULL; p++)
7057 {
7058 elf_symbol_type *q;
7059
7060 q = (elf_symbol_type *) *p;
7061
7062 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7063 {
7064 default:
7065 break;
7066 case STT_FILE:
7067 file = &q->symbol;
7068 if (state == symbol_seen)
7069 state = file_after_symbol_seen;
7070 continue;
7071 case STT_NOTYPE:
7072 case STT_FUNC:
7073 if (bfd_get_section (&q->symbol) == section
7074 && q->symbol.value >= low_func
7075 && q->symbol.value <= offset)
7076 {
7077 func = (asymbol *) q;
7078 low_func = q->symbol.value;
7079 filename = NULL;
7080 if (file != NULL
7081 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7082 || state != file_after_symbol_seen))
7083 filename = bfd_asymbol_name (file);
7084 }
7085 break;
7086 }
7087 if (state == nothing_seen)
7088 state = symbol_seen;
7089 }
7090
7091 if (func == NULL)
7092 return FALSE;
7093
7094 if (filename_ptr)
7095 *filename_ptr = filename;
7096 if (functionname_ptr)
7097 *functionname_ptr = bfd_asymbol_name (func);
7098
7099 return TRUE;
7100 }
7101
7102 /* Find the nearest line to a particular section and offset,
7103 for error reporting. */
7104
7105 bfd_boolean
7106 _bfd_elf_find_nearest_line (bfd *abfd,
7107 asection *section,
7108 asymbol **symbols,
7109 bfd_vma offset,
7110 const char **filename_ptr,
7111 const char **functionname_ptr,
7112 unsigned int *line_ptr)
7113 {
7114 bfd_boolean found;
7115
7116 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7117 filename_ptr, functionname_ptr,
7118 line_ptr))
7119 {
7120 if (!*functionname_ptr)
7121 elf_find_function (abfd, section, symbols, offset,
7122 *filename_ptr ? NULL : filename_ptr,
7123 functionname_ptr);
7124
7125 return TRUE;
7126 }
7127
7128 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7129 filename_ptr, functionname_ptr,
7130 line_ptr, 0,
7131 &elf_tdata (abfd)->dwarf2_find_line_info))
7132 {
7133 if (!*functionname_ptr)
7134 elf_find_function (abfd, section, symbols, offset,
7135 *filename_ptr ? NULL : filename_ptr,
7136 functionname_ptr);
7137
7138 return TRUE;
7139 }
7140
7141 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7142 &found, filename_ptr,
7143 functionname_ptr, line_ptr,
7144 &elf_tdata (abfd)->line_info))
7145 return FALSE;
7146 if (found && (*functionname_ptr || *line_ptr))
7147 return TRUE;
7148
7149 if (symbols == NULL)
7150 return FALSE;
7151
7152 if (! elf_find_function (abfd, section, symbols, offset,
7153 filename_ptr, functionname_ptr))
7154 return FALSE;
7155
7156 *line_ptr = 0;
7157 return TRUE;
7158 }
7159
7160 /* Find the line for a symbol. */
7161
7162 bfd_boolean
7163 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7164 const char **filename_ptr, unsigned int *line_ptr)
7165 {
7166 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7167 filename_ptr, line_ptr, 0,
7168 &elf_tdata (abfd)->dwarf2_find_line_info);
7169 }
7170
7171 /* After a call to bfd_find_nearest_line, successive calls to
7172 bfd_find_inliner_info can be used to get source information about
7173 each level of function inlining that terminated at the address
7174 passed to bfd_find_nearest_line. Currently this is only supported
7175 for DWARF2 with appropriate DWARF3 extensions. */
7176
7177 bfd_boolean
7178 _bfd_elf_find_inliner_info (bfd *abfd,
7179 const char **filename_ptr,
7180 const char **functionname_ptr,
7181 unsigned int *line_ptr)
7182 {
7183 bfd_boolean found;
7184 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7185 functionname_ptr, line_ptr,
7186 & elf_tdata (abfd)->dwarf2_find_line_info);
7187 return found;
7188 }
7189
7190 int
7191 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7192 {
7193 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7194 int ret = bed->s->sizeof_ehdr;
7195
7196 if (!info->relocatable)
7197 {
7198 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7199
7200 if (phdr_size == (bfd_size_type) -1)
7201 {
7202 struct elf_segment_map *m;
7203
7204 phdr_size = 0;
7205 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7206 phdr_size += bed->s->sizeof_phdr;
7207
7208 if (phdr_size == 0)
7209 phdr_size = get_program_header_size (abfd, info);
7210 }
7211
7212 elf_tdata (abfd)->program_header_size = phdr_size;
7213 ret += phdr_size;
7214 }
7215
7216 return ret;
7217 }
7218
7219 bfd_boolean
7220 _bfd_elf_set_section_contents (bfd *abfd,
7221 sec_ptr section,
7222 const void *location,
7223 file_ptr offset,
7224 bfd_size_type count)
7225 {
7226 Elf_Internal_Shdr *hdr;
7227 bfd_signed_vma pos;
7228
7229 if (! abfd->output_has_begun
7230 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7231 return FALSE;
7232
7233 hdr = &elf_section_data (section)->this_hdr;
7234 pos = hdr->sh_offset + offset;
7235 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7236 || bfd_bwrite (location, count, abfd) != count)
7237 return FALSE;
7238
7239 return TRUE;
7240 }
7241
7242 void
7243 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7244 arelent *cache_ptr ATTRIBUTE_UNUSED,
7245 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7246 {
7247 abort ();
7248 }
7249
7250 /* Try to convert a non-ELF reloc into an ELF one. */
7251
7252 bfd_boolean
7253 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7254 {
7255 /* Check whether we really have an ELF howto. */
7256
7257 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7258 {
7259 bfd_reloc_code_real_type code;
7260 reloc_howto_type *howto;
7261
7262 /* Alien reloc: Try to determine its type to replace it with an
7263 equivalent ELF reloc. */
7264
7265 if (areloc->howto->pc_relative)
7266 {
7267 switch (areloc->howto->bitsize)
7268 {
7269 case 8:
7270 code = BFD_RELOC_8_PCREL;
7271 break;
7272 case 12:
7273 code = BFD_RELOC_12_PCREL;
7274 break;
7275 case 16:
7276 code = BFD_RELOC_16_PCREL;
7277 break;
7278 case 24:
7279 code = BFD_RELOC_24_PCREL;
7280 break;
7281 case 32:
7282 code = BFD_RELOC_32_PCREL;
7283 break;
7284 case 64:
7285 code = BFD_RELOC_64_PCREL;
7286 break;
7287 default:
7288 goto fail;
7289 }
7290
7291 howto = bfd_reloc_type_lookup (abfd, code);
7292
7293 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7294 {
7295 if (howto->pcrel_offset)
7296 areloc->addend += areloc->address;
7297 else
7298 areloc->addend -= areloc->address; /* addend is unsigned!! */
7299 }
7300 }
7301 else
7302 {
7303 switch (areloc->howto->bitsize)
7304 {
7305 case 8:
7306 code = BFD_RELOC_8;
7307 break;
7308 case 14:
7309 code = BFD_RELOC_14;
7310 break;
7311 case 16:
7312 code = BFD_RELOC_16;
7313 break;
7314 case 26:
7315 code = BFD_RELOC_26;
7316 break;
7317 case 32:
7318 code = BFD_RELOC_32;
7319 break;
7320 case 64:
7321 code = BFD_RELOC_64;
7322 break;
7323 default:
7324 goto fail;
7325 }
7326
7327 howto = bfd_reloc_type_lookup (abfd, code);
7328 }
7329
7330 if (howto)
7331 areloc->howto = howto;
7332 else
7333 goto fail;
7334 }
7335
7336 return TRUE;
7337
7338 fail:
7339 (*_bfd_error_handler)
7340 (_("%B: unsupported relocation type %s"),
7341 abfd, areloc->howto->name);
7342 bfd_set_error (bfd_error_bad_value);
7343 return FALSE;
7344 }
7345
7346 bfd_boolean
7347 _bfd_elf_close_and_cleanup (bfd *abfd)
7348 {
7349 if (bfd_get_format (abfd) == bfd_object)
7350 {
7351 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7352 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7353 _bfd_dwarf2_cleanup_debug_info (abfd);
7354 }
7355
7356 return _bfd_generic_close_and_cleanup (abfd);
7357 }
7358
7359 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7360 in the relocation's offset. Thus we cannot allow any sort of sanity
7361 range-checking to interfere. There is nothing else to do in processing
7362 this reloc. */
7363
7364 bfd_reloc_status_type
7365 _bfd_elf_rel_vtable_reloc_fn
7366 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7367 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7368 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7369 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7370 {
7371 return bfd_reloc_ok;
7372 }
7373 \f
7374 /* Elf core file support. Much of this only works on native
7375 toolchains, since we rely on knowing the
7376 machine-dependent procfs structure in order to pick
7377 out details about the corefile. */
7378
7379 #ifdef HAVE_SYS_PROCFS_H
7380 # include <sys/procfs.h>
7381 #endif
7382
7383 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7384
7385 static int
7386 elfcore_make_pid (bfd *abfd)
7387 {
7388 return ((elf_tdata (abfd)->core_lwpid << 16)
7389 + (elf_tdata (abfd)->core_pid));
7390 }
7391
7392 /* If there isn't a section called NAME, make one, using
7393 data from SECT. Note, this function will generate a
7394 reference to NAME, so you shouldn't deallocate or
7395 overwrite it. */
7396
7397 static bfd_boolean
7398 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7399 {
7400 asection *sect2;
7401
7402 if (bfd_get_section_by_name (abfd, name) != NULL)
7403 return TRUE;
7404
7405 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7406 if (sect2 == NULL)
7407 return FALSE;
7408
7409 sect2->size = sect->size;
7410 sect2->filepos = sect->filepos;
7411 sect2->alignment_power = sect->alignment_power;
7412 return TRUE;
7413 }
7414
7415 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7416 actually creates up to two pseudosections:
7417 - For the single-threaded case, a section named NAME, unless
7418 such a section already exists.
7419 - For the multi-threaded case, a section named "NAME/PID", where
7420 PID is elfcore_make_pid (abfd).
7421 Both pseudosections have identical contents. */
7422 bfd_boolean
7423 _bfd_elfcore_make_pseudosection (bfd *abfd,
7424 char *name,
7425 size_t size,
7426 ufile_ptr filepos)
7427 {
7428 char buf[100];
7429 char *threaded_name;
7430 size_t len;
7431 asection *sect;
7432
7433 /* Build the section name. */
7434
7435 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7436 len = strlen (buf) + 1;
7437 threaded_name = bfd_alloc (abfd, len);
7438 if (threaded_name == NULL)
7439 return FALSE;
7440 memcpy (threaded_name, buf, len);
7441
7442 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7443 SEC_HAS_CONTENTS);
7444 if (sect == NULL)
7445 return FALSE;
7446 sect->size = size;
7447 sect->filepos = filepos;
7448 sect->alignment_power = 2;
7449
7450 return elfcore_maybe_make_sect (abfd, name, sect);
7451 }
7452
7453 /* prstatus_t exists on:
7454 solaris 2.5+
7455 linux 2.[01] + glibc
7456 unixware 4.2
7457 */
7458
7459 #if defined (HAVE_PRSTATUS_T)
7460
7461 static bfd_boolean
7462 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7463 {
7464 size_t size;
7465 int offset;
7466
7467 if (note->descsz == sizeof (prstatus_t))
7468 {
7469 prstatus_t prstat;
7470
7471 size = sizeof (prstat.pr_reg);
7472 offset = offsetof (prstatus_t, pr_reg);
7473 memcpy (&prstat, note->descdata, sizeof (prstat));
7474
7475 /* Do not overwrite the core signal if it
7476 has already been set by another thread. */
7477 if (elf_tdata (abfd)->core_signal == 0)
7478 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7479 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7480
7481 /* pr_who exists on:
7482 solaris 2.5+
7483 unixware 4.2
7484 pr_who doesn't exist on:
7485 linux 2.[01]
7486 */
7487 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7488 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7489 #endif
7490 }
7491 #if defined (HAVE_PRSTATUS32_T)
7492 else if (note->descsz == sizeof (prstatus32_t))
7493 {
7494 /* 64-bit host, 32-bit corefile */
7495 prstatus32_t prstat;
7496
7497 size = sizeof (prstat.pr_reg);
7498 offset = offsetof (prstatus32_t, pr_reg);
7499 memcpy (&prstat, note->descdata, sizeof (prstat));
7500
7501 /* Do not overwrite the core signal if it
7502 has already been set by another thread. */
7503 if (elf_tdata (abfd)->core_signal == 0)
7504 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7505 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7506
7507 /* pr_who exists on:
7508 solaris 2.5+
7509 unixware 4.2
7510 pr_who doesn't exist on:
7511 linux 2.[01]
7512 */
7513 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7514 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7515 #endif
7516 }
7517 #endif /* HAVE_PRSTATUS32_T */
7518 else
7519 {
7520 /* Fail - we don't know how to handle any other
7521 note size (ie. data object type). */
7522 return TRUE;
7523 }
7524
7525 /* Make a ".reg/999" section and a ".reg" section. */
7526 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7527 size, note->descpos + offset);
7528 }
7529 #endif /* defined (HAVE_PRSTATUS_T) */
7530
7531 /* Create a pseudosection containing the exact contents of NOTE. */
7532 static bfd_boolean
7533 elfcore_make_note_pseudosection (bfd *abfd,
7534 char *name,
7535 Elf_Internal_Note *note)
7536 {
7537 return _bfd_elfcore_make_pseudosection (abfd, name,
7538 note->descsz, note->descpos);
7539 }
7540
7541 /* There isn't a consistent prfpregset_t across platforms,
7542 but it doesn't matter, because we don't have to pick this
7543 data structure apart. */
7544
7545 static bfd_boolean
7546 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7547 {
7548 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7549 }
7550
7551 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7552 type of NT_PRXFPREG. Just include the whole note's contents
7553 literally. */
7554
7555 static bfd_boolean
7556 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7557 {
7558 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7559 }
7560
7561 static bfd_boolean
7562 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7563 {
7564 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7565 }
7566
7567 static bfd_boolean
7568 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7569 {
7570 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7571 }
7572
7573 #if defined (HAVE_PRPSINFO_T)
7574 typedef prpsinfo_t elfcore_psinfo_t;
7575 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7576 typedef prpsinfo32_t elfcore_psinfo32_t;
7577 #endif
7578 #endif
7579
7580 #if defined (HAVE_PSINFO_T)
7581 typedef psinfo_t elfcore_psinfo_t;
7582 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7583 typedef psinfo32_t elfcore_psinfo32_t;
7584 #endif
7585 #endif
7586
7587 /* return a malloc'ed copy of a string at START which is at
7588 most MAX bytes long, possibly without a terminating '\0'.
7589 the copy will always have a terminating '\0'. */
7590
7591 char *
7592 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7593 {
7594 char *dups;
7595 char *end = memchr (start, '\0', max);
7596 size_t len;
7597
7598 if (end == NULL)
7599 len = max;
7600 else
7601 len = end - start;
7602
7603 dups = bfd_alloc (abfd, len + 1);
7604 if (dups == NULL)
7605 return NULL;
7606
7607 memcpy (dups, start, len);
7608 dups[len] = '\0';
7609
7610 return dups;
7611 }
7612
7613 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7614 static bfd_boolean
7615 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7616 {
7617 if (note->descsz == sizeof (elfcore_psinfo_t))
7618 {
7619 elfcore_psinfo_t psinfo;
7620
7621 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7622
7623 elf_tdata (abfd)->core_program
7624 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7625 sizeof (psinfo.pr_fname));
7626
7627 elf_tdata (abfd)->core_command
7628 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7629 sizeof (psinfo.pr_psargs));
7630 }
7631 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7632 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7633 {
7634 /* 64-bit host, 32-bit corefile */
7635 elfcore_psinfo32_t psinfo;
7636
7637 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7638
7639 elf_tdata (abfd)->core_program
7640 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7641 sizeof (psinfo.pr_fname));
7642
7643 elf_tdata (abfd)->core_command
7644 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7645 sizeof (psinfo.pr_psargs));
7646 }
7647 #endif
7648
7649 else
7650 {
7651 /* Fail - we don't know how to handle any other
7652 note size (ie. data object type). */
7653 return TRUE;
7654 }
7655
7656 /* Note that for some reason, a spurious space is tacked
7657 onto the end of the args in some (at least one anyway)
7658 implementations, so strip it off if it exists. */
7659
7660 {
7661 char *command = elf_tdata (abfd)->core_command;
7662 int n = strlen (command);
7663
7664 if (0 < n && command[n - 1] == ' ')
7665 command[n - 1] = '\0';
7666 }
7667
7668 return TRUE;
7669 }
7670 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7671
7672 #if defined (HAVE_PSTATUS_T)
7673 static bfd_boolean
7674 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7675 {
7676 if (note->descsz == sizeof (pstatus_t)
7677 #if defined (HAVE_PXSTATUS_T)
7678 || note->descsz == sizeof (pxstatus_t)
7679 #endif
7680 )
7681 {
7682 pstatus_t pstat;
7683
7684 memcpy (&pstat, note->descdata, sizeof (pstat));
7685
7686 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7687 }
7688 #if defined (HAVE_PSTATUS32_T)
7689 else if (note->descsz == sizeof (pstatus32_t))
7690 {
7691 /* 64-bit host, 32-bit corefile */
7692 pstatus32_t pstat;
7693
7694 memcpy (&pstat, note->descdata, sizeof (pstat));
7695
7696 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7697 }
7698 #endif
7699 /* Could grab some more details from the "representative"
7700 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7701 NT_LWPSTATUS note, presumably. */
7702
7703 return TRUE;
7704 }
7705 #endif /* defined (HAVE_PSTATUS_T) */
7706
7707 #if defined (HAVE_LWPSTATUS_T)
7708 static bfd_boolean
7709 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7710 {
7711 lwpstatus_t lwpstat;
7712 char buf[100];
7713 char *name;
7714 size_t len;
7715 asection *sect;
7716
7717 if (note->descsz != sizeof (lwpstat)
7718 #if defined (HAVE_LWPXSTATUS_T)
7719 && note->descsz != sizeof (lwpxstatus_t)
7720 #endif
7721 )
7722 return TRUE;
7723
7724 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7725
7726 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7727 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7728
7729 /* Make a ".reg/999" section. */
7730
7731 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7732 len = strlen (buf) + 1;
7733 name = bfd_alloc (abfd, len);
7734 if (name == NULL)
7735 return FALSE;
7736 memcpy (name, buf, len);
7737
7738 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7739 if (sect == NULL)
7740 return FALSE;
7741
7742 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7743 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7744 sect->filepos = note->descpos
7745 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7746 #endif
7747
7748 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7749 sect->size = sizeof (lwpstat.pr_reg);
7750 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7751 #endif
7752
7753 sect->alignment_power = 2;
7754
7755 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7756 return FALSE;
7757
7758 /* Make a ".reg2/999" section */
7759
7760 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7761 len = strlen (buf) + 1;
7762 name = bfd_alloc (abfd, len);
7763 if (name == NULL)
7764 return FALSE;
7765 memcpy (name, buf, len);
7766
7767 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7768 if (sect == NULL)
7769 return FALSE;
7770
7771 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7772 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7773 sect->filepos = note->descpos
7774 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7775 #endif
7776
7777 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7778 sect->size = sizeof (lwpstat.pr_fpreg);
7779 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7780 #endif
7781
7782 sect->alignment_power = 2;
7783
7784 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7785 }
7786 #endif /* defined (HAVE_LWPSTATUS_T) */
7787
7788 static bfd_boolean
7789 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7790 {
7791 char buf[30];
7792 char *name;
7793 size_t len;
7794 asection *sect;
7795 int type;
7796 int is_active_thread;
7797 bfd_vma base_addr;
7798
7799 if (note->descsz < 728)
7800 return TRUE;
7801
7802 if (! CONST_STRNEQ (note->namedata, "win32"))
7803 return TRUE;
7804
7805 type = bfd_get_32 (abfd, note->descdata);
7806
7807 switch (type)
7808 {
7809 case 1 /* NOTE_INFO_PROCESS */:
7810 /* FIXME: need to add ->core_command. */
7811 /* process_info.pid */
7812 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7813 /* process_info.signal */
7814 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7815 break;
7816
7817 case 2 /* NOTE_INFO_THREAD */:
7818 /* Make a ".reg/999" section. */
7819 /* thread_info.tid */
7820 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7821
7822 len = strlen (buf) + 1;
7823 name = bfd_alloc (abfd, len);
7824 if (name == NULL)
7825 return FALSE;
7826
7827 memcpy (name, buf, len);
7828
7829 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7830 if (sect == NULL)
7831 return FALSE;
7832
7833 /* sizeof (thread_info.thread_context) */
7834 sect->size = 716;
7835 /* offsetof (thread_info.thread_context) */
7836 sect->filepos = note->descpos + 12;
7837 sect->alignment_power = 2;
7838
7839 /* thread_info.is_active_thread */
7840 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
7841
7842 if (is_active_thread)
7843 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7844 return FALSE;
7845 break;
7846
7847 case 3 /* NOTE_INFO_MODULE */:
7848 /* Make a ".module/xxxxxxxx" section. */
7849 /* module_info.base_address */
7850 base_addr = bfd_get_32 (abfd, note->descdata + 4);
7851 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
7852
7853 len = strlen (buf) + 1;
7854 name = bfd_alloc (abfd, len);
7855 if (name == NULL)
7856 return FALSE;
7857
7858 memcpy (name, buf, len);
7859
7860 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7861
7862 if (sect == NULL)
7863 return FALSE;
7864
7865 sect->size = note->descsz;
7866 sect->filepos = note->descpos;
7867 sect->alignment_power = 2;
7868 break;
7869
7870 default:
7871 return TRUE;
7872 }
7873
7874 return TRUE;
7875 }
7876
7877 static bfd_boolean
7878 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7879 {
7880 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7881
7882 switch (note->type)
7883 {
7884 default:
7885 return TRUE;
7886
7887 case NT_PRSTATUS:
7888 if (bed->elf_backend_grok_prstatus)
7889 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7890 return TRUE;
7891 #if defined (HAVE_PRSTATUS_T)
7892 return elfcore_grok_prstatus (abfd, note);
7893 #else
7894 return TRUE;
7895 #endif
7896
7897 #if defined (HAVE_PSTATUS_T)
7898 case NT_PSTATUS:
7899 return elfcore_grok_pstatus (abfd, note);
7900 #endif
7901
7902 #if defined (HAVE_LWPSTATUS_T)
7903 case NT_LWPSTATUS:
7904 return elfcore_grok_lwpstatus (abfd, note);
7905 #endif
7906
7907 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7908 return elfcore_grok_prfpreg (abfd, note);
7909
7910 case NT_WIN32PSTATUS:
7911 return elfcore_grok_win32pstatus (abfd, note);
7912
7913 case NT_PRXFPREG: /* Linux SSE extension */
7914 if (note->namesz == 6
7915 && strcmp (note->namedata, "LINUX") == 0)
7916 return elfcore_grok_prxfpreg (abfd, note);
7917 else
7918 return TRUE;
7919
7920 case NT_PPC_VMX:
7921 if (note->namesz == 6
7922 && strcmp (note->namedata, "LINUX") == 0)
7923 return elfcore_grok_ppc_vmx (abfd, note);
7924 else
7925 return TRUE;
7926
7927 case NT_PPC_VSX:
7928 if (note->namesz == 6
7929 && strcmp (note->namedata, "LINUX") == 0)
7930 return elfcore_grok_ppc_vsx (abfd, note);
7931 else
7932 return TRUE;
7933
7934 case NT_PRPSINFO:
7935 case NT_PSINFO:
7936 if (bed->elf_backend_grok_psinfo)
7937 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7938 return TRUE;
7939 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7940 return elfcore_grok_psinfo (abfd, note);
7941 #else
7942 return TRUE;
7943 #endif
7944
7945 case NT_AUXV:
7946 {
7947 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7948 SEC_HAS_CONTENTS);
7949
7950 if (sect == NULL)
7951 return FALSE;
7952 sect->size = note->descsz;
7953 sect->filepos = note->descpos;
7954 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7955
7956 return TRUE;
7957 }
7958 }
7959 }
7960
7961 static bfd_boolean
7962 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
7963 {
7964 elf_tdata (abfd)->build_id_size = note->descsz;
7965 elf_tdata (abfd)->build_id = bfd_alloc (abfd, note->descsz);
7966 if (elf_tdata (abfd)->build_id == NULL)
7967 return FALSE;
7968
7969 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
7970
7971 return TRUE;
7972 }
7973
7974 static bfd_boolean
7975 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
7976 {
7977 switch (note->type)
7978 {
7979 default:
7980 return TRUE;
7981
7982 case NT_GNU_BUILD_ID:
7983 return elfobj_grok_gnu_build_id (abfd, note);
7984 }
7985 }
7986
7987 static bfd_boolean
7988 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7989 {
7990 char *cp;
7991
7992 cp = strchr (note->namedata, '@');
7993 if (cp != NULL)
7994 {
7995 *lwpidp = atoi(cp + 1);
7996 return TRUE;
7997 }
7998 return FALSE;
7999 }
8000
8001 static bfd_boolean
8002 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8003 {
8004 /* Signal number at offset 0x08. */
8005 elf_tdata (abfd)->core_signal
8006 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8007
8008 /* Process ID at offset 0x50. */
8009 elf_tdata (abfd)->core_pid
8010 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8011
8012 /* Command name at 0x7c (max 32 bytes, including nul). */
8013 elf_tdata (abfd)->core_command
8014 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8015
8016 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8017 note);
8018 }
8019
8020 static bfd_boolean
8021 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8022 {
8023 int lwp;
8024
8025 if (elfcore_netbsd_get_lwpid (note, &lwp))
8026 elf_tdata (abfd)->core_lwpid = lwp;
8027
8028 if (note->type == NT_NETBSDCORE_PROCINFO)
8029 {
8030 /* NetBSD-specific core "procinfo". Note that we expect to
8031 find this note before any of the others, which is fine,
8032 since the kernel writes this note out first when it
8033 creates a core file. */
8034
8035 return elfcore_grok_netbsd_procinfo (abfd, note);
8036 }
8037
8038 /* As of Jan 2002 there are no other machine-independent notes
8039 defined for NetBSD core files. If the note type is less
8040 than the start of the machine-dependent note types, we don't
8041 understand it. */
8042
8043 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8044 return TRUE;
8045
8046
8047 switch (bfd_get_arch (abfd))
8048 {
8049 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8050 PT_GETFPREGS == mach+2. */
8051
8052 case bfd_arch_alpha:
8053 case bfd_arch_sparc:
8054 switch (note->type)
8055 {
8056 case NT_NETBSDCORE_FIRSTMACH+0:
8057 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8058
8059 case NT_NETBSDCORE_FIRSTMACH+2:
8060 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8061
8062 default:
8063 return TRUE;
8064 }
8065
8066 /* On all other arch's, PT_GETREGS == mach+1 and
8067 PT_GETFPREGS == mach+3. */
8068
8069 default:
8070 switch (note->type)
8071 {
8072 case NT_NETBSDCORE_FIRSTMACH+1:
8073 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8074
8075 case NT_NETBSDCORE_FIRSTMACH+3:
8076 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8077
8078 default:
8079 return TRUE;
8080 }
8081 }
8082 /* NOTREACHED */
8083 }
8084
8085 static bfd_boolean
8086 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8087 {
8088 void *ddata = note->descdata;
8089 char buf[100];
8090 char *name;
8091 asection *sect;
8092 short sig;
8093 unsigned flags;
8094
8095 /* nto_procfs_status 'pid' field is at offset 0. */
8096 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8097
8098 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8099 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8100
8101 /* nto_procfs_status 'flags' field is at offset 8. */
8102 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8103
8104 /* nto_procfs_status 'what' field is at offset 14. */
8105 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8106 {
8107 elf_tdata (abfd)->core_signal = sig;
8108 elf_tdata (abfd)->core_lwpid = *tid;
8109 }
8110
8111 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8112 do not come from signals so we make sure we set the current
8113 thread just in case. */
8114 if (flags & 0x00000080)
8115 elf_tdata (abfd)->core_lwpid = *tid;
8116
8117 /* Make a ".qnx_core_status/%d" section. */
8118 sprintf (buf, ".qnx_core_status/%ld", *tid);
8119
8120 name = bfd_alloc (abfd, strlen (buf) + 1);
8121 if (name == NULL)
8122 return FALSE;
8123 strcpy (name, buf);
8124
8125 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8126 if (sect == NULL)
8127 return FALSE;
8128
8129 sect->size = note->descsz;
8130 sect->filepos = note->descpos;
8131 sect->alignment_power = 2;
8132
8133 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8134 }
8135
8136 static bfd_boolean
8137 elfcore_grok_nto_regs (bfd *abfd,
8138 Elf_Internal_Note *note,
8139 long tid,
8140 char *base)
8141 {
8142 char buf[100];
8143 char *name;
8144 asection *sect;
8145
8146 /* Make a "(base)/%d" section. */
8147 sprintf (buf, "%s/%ld", base, tid);
8148
8149 name = bfd_alloc (abfd, strlen (buf) + 1);
8150 if (name == NULL)
8151 return FALSE;
8152 strcpy (name, buf);
8153
8154 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8155 if (sect == NULL)
8156 return FALSE;
8157
8158 sect->size = note->descsz;
8159 sect->filepos = note->descpos;
8160 sect->alignment_power = 2;
8161
8162 /* This is the current thread. */
8163 if (elf_tdata (abfd)->core_lwpid == tid)
8164 return elfcore_maybe_make_sect (abfd, base, sect);
8165
8166 return TRUE;
8167 }
8168
8169 #define BFD_QNT_CORE_INFO 7
8170 #define BFD_QNT_CORE_STATUS 8
8171 #define BFD_QNT_CORE_GREG 9
8172 #define BFD_QNT_CORE_FPREG 10
8173
8174 static bfd_boolean
8175 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8176 {
8177 /* Every GREG section has a STATUS section before it. Store the
8178 tid from the previous call to pass down to the next gregs
8179 function. */
8180 static long tid = 1;
8181
8182 switch (note->type)
8183 {
8184 case BFD_QNT_CORE_INFO:
8185 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8186 case BFD_QNT_CORE_STATUS:
8187 return elfcore_grok_nto_status (abfd, note, &tid);
8188 case BFD_QNT_CORE_GREG:
8189 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8190 case BFD_QNT_CORE_FPREG:
8191 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8192 default:
8193 return TRUE;
8194 }
8195 }
8196
8197 static bfd_boolean
8198 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8199 {
8200 char *name;
8201 asection *sect;
8202 size_t len;
8203
8204 /* Use note name as section name. */
8205 len = note->namesz;
8206 name = bfd_alloc (abfd, len);
8207 if (name == NULL)
8208 return FALSE;
8209 memcpy (name, note->namedata, len);
8210 name[len - 1] = '\0';
8211
8212 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8213 if (sect == NULL)
8214 return FALSE;
8215
8216 sect->size = note->descsz;
8217 sect->filepos = note->descpos;
8218 sect->alignment_power = 1;
8219
8220 return TRUE;
8221 }
8222
8223 /* Function: elfcore_write_note
8224
8225 Inputs:
8226 buffer to hold note, and current size of buffer
8227 name of note
8228 type of note
8229 data for note
8230 size of data for note
8231
8232 Writes note to end of buffer. ELF64 notes are written exactly as
8233 for ELF32, despite the current (as of 2006) ELF gabi specifying
8234 that they ought to have 8-byte namesz and descsz field, and have
8235 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8236
8237 Return:
8238 Pointer to realloc'd buffer, *BUFSIZ updated. */
8239
8240 char *
8241 elfcore_write_note (bfd *abfd,
8242 char *buf,
8243 int *bufsiz,
8244 const char *name,
8245 int type,
8246 const void *input,
8247 int size)
8248 {
8249 Elf_External_Note *xnp;
8250 size_t namesz;
8251 size_t newspace;
8252 char *dest;
8253
8254 namesz = 0;
8255 if (name != NULL)
8256 namesz = strlen (name) + 1;
8257
8258 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8259
8260 buf = realloc (buf, *bufsiz + newspace);
8261 if (buf == NULL)
8262 return buf;
8263 dest = buf + *bufsiz;
8264 *bufsiz += newspace;
8265 xnp = (Elf_External_Note *) dest;
8266 H_PUT_32 (abfd, namesz, xnp->namesz);
8267 H_PUT_32 (abfd, size, xnp->descsz);
8268 H_PUT_32 (abfd, type, xnp->type);
8269 dest = xnp->name;
8270 if (name != NULL)
8271 {
8272 memcpy (dest, name, namesz);
8273 dest += namesz;
8274 while (namesz & 3)
8275 {
8276 *dest++ = '\0';
8277 ++namesz;
8278 }
8279 }
8280 memcpy (dest, input, size);
8281 dest += size;
8282 while (size & 3)
8283 {
8284 *dest++ = '\0';
8285 ++size;
8286 }
8287 return buf;
8288 }
8289
8290 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8291 char *
8292 elfcore_write_prpsinfo (bfd *abfd,
8293 char *buf,
8294 int *bufsiz,
8295 const char *fname,
8296 const char *psargs)
8297 {
8298 const char *note_name = "CORE";
8299 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8300
8301 if (bed->elf_backend_write_core_note != NULL)
8302 {
8303 char *ret;
8304 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8305 NT_PRPSINFO, fname, psargs);
8306 if (ret != NULL)
8307 return ret;
8308 }
8309
8310 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8311 if (bed->s->elfclass == ELFCLASS32)
8312 {
8313 #if defined (HAVE_PSINFO32_T)
8314 psinfo32_t data;
8315 int note_type = NT_PSINFO;
8316 #else
8317 prpsinfo32_t data;
8318 int note_type = NT_PRPSINFO;
8319 #endif
8320
8321 memset (&data, 0, sizeof (data));
8322 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8323 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8324 return elfcore_write_note (abfd, buf, bufsiz,
8325 note_name, note_type, &data, sizeof (data));
8326 }
8327 else
8328 #endif
8329 {
8330 #if defined (HAVE_PSINFO_T)
8331 psinfo_t data;
8332 int note_type = NT_PSINFO;
8333 #else
8334 prpsinfo_t data;
8335 int note_type = NT_PRPSINFO;
8336 #endif
8337
8338 memset (&data, 0, sizeof (data));
8339 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8340 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8341 return elfcore_write_note (abfd, buf, bufsiz,
8342 note_name, note_type, &data, sizeof (data));
8343 }
8344 }
8345 #endif /* PSINFO_T or PRPSINFO_T */
8346
8347 #if defined (HAVE_PRSTATUS_T)
8348 char *
8349 elfcore_write_prstatus (bfd *abfd,
8350 char *buf,
8351 int *bufsiz,
8352 long pid,
8353 int cursig,
8354 const void *gregs)
8355 {
8356 const char *note_name = "CORE";
8357 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8358
8359 if (bed->elf_backend_write_core_note != NULL)
8360 {
8361 char *ret;
8362 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8363 NT_PRSTATUS,
8364 pid, cursig, gregs);
8365 if (ret != NULL)
8366 return ret;
8367 }
8368
8369 #if defined (HAVE_PRSTATUS32_T)
8370 if (bed->s->elfclass == ELFCLASS32)
8371 {
8372 prstatus32_t prstat;
8373
8374 memset (&prstat, 0, sizeof (prstat));
8375 prstat.pr_pid = pid;
8376 prstat.pr_cursig = cursig;
8377 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8378 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8379 NT_PRSTATUS, &prstat, sizeof (prstat));
8380 }
8381 else
8382 #endif
8383 {
8384 prstatus_t prstat;
8385
8386 memset (&prstat, 0, sizeof (prstat));
8387 prstat.pr_pid = pid;
8388 prstat.pr_cursig = cursig;
8389 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8390 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8391 NT_PRSTATUS, &prstat, sizeof (prstat));
8392 }
8393 }
8394 #endif /* HAVE_PRSTATUS_T */
8395
8396 #if defined (HAVE_LWPSTATUS_T)
8397 char *
8398 elfcore_write_lwpstatus (bfd *abfd,
8399 char *buf,
8400 int *bufsiz,
8401 long pid,
8402 int cursig,
8403 const void *gregs)
8404 {
8405 lwpstatus_t lwpstat;
8406 const char *note_name = "CORE";
8407
8408 memset (&lwpstat, 0, sizeof (lwpstat));
8409 lwpstat.pr_lwpid = pid >> 16;
8410 lwpstat.pr_cursig = cursig;
8411 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8412 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8413 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8414 #if !defined(gregs)
8415 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8416 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8417 #else
8418 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8419 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8420 #endif
8421 #endif
8422 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8423 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8424 }
8425 #endif /* HAVE_LWPSTATUS_T */
8426
8427 #if defined (HAVE_PSTATUS_T)
8428 char *
8429 elfcore_write_pstatus (bfd *abfd,
8430 char *buf,
8431 int *bufsiz,
8432 long pid,
8433 int cursig ATTRIBUTE_UNUSED,
8434 const void *gregs ATTRIBUTE_UNUSED)
8435 {
8436 const char *note_name = "CORE";
8437 #if defined (HAVE_PSTATUS32_T)
8438 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8439
8440 if (bed->s->elfclass == ELFCLASS32)
8441 {
8442 pstatus32_t pstat;
8443
8444 memset (&pstat, 0, sizeof (pstat));
8445 pstat.pr_pid = pid & 0xffff;
8446 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8447 NT_PSTATUS, &pstat, sizeof (pstat));
8448 return buf;
8449 }
8450 else
8451 #endif
8452 {
8453 pstatus_t pstat;
8454
8455 memset (&pstat, 0, sizeof (pstat));
8456 pstat.pr_pid = pid & 0xffff;
8457 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8458 NT_PSTATUS, &pstat, sizeof (pstat));
8459 return buf;
8460 }
8461 }
8462 #endif /* HAVE_PSTATUS_T */
8463
8464 char *
8465 elfcore_write_prfpreg (bfd *abfd,
8466 char *buf,
8467 int *bufsiz,
8468 const void *fpregs,
8469 int size)
8470 {
8471 const char *note_name = "CORE";
8472 return elfcore_write_note (abfd, buf, bufsiz,
8473 note_name, NT_FPREGSET, fpregs, size);
8474 }
8475
8476 char *
8477 elfcore_write_prxfpreg (bfd *abfd,
8478 char *buf,
8479 int *bufsiz,
8480 const void *xfpregs,
8481 int size)
8482 {
8483 char *note_name = "LINUX";
8484 return elfcore_write_note (abfd, buf, bufsiz,
8485 note_name, NT_PRXFPREG, xfpregs, size);
8486 }
8487
8488 char *
8489 elfcore_write_ppc_vmx (bfd *abfd,
8490 char *buf,
8491 int *bufsiz,
8492 const void *ppc_vmx,
8493 int size)
8494 {
8495 char *note_name = "LINUX";
8496 return elfcore_write_note (abfd, buf, bufsiz,
8497 note_name, NT_PPC_VMX, ppc_vmx, size);
8498 }
8499
8500 char *
8501 elfcore_write_ppc_vsx (bfd *abfd,
8502 char *buf,
8503 int *bufsiz,
8504 const void *ppc_vsx,
8505 int size)
8506 {
8507 char *note_name = "LINUX";
8508 return elfcore_write_note (abfd, buf, bufsiz,
8509 note_name, NT_PPC_VSX, ppc_vsx, size);
8510 }
8511
8512 char *
8513 elfcore_write_register_note (bfd *abfd,
8514 char *buf,
8515 int *bufsiz,
8516 const char *section,
8517 const void *data,
8518 int size)
8519 {
8520 if (strcmp (section, ".reg2") == 0)
8521 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
8522 if (strcmp (section, ".reg-xfp") == 0)
8523 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
8524 if (strcmp (section, ".reg-ppc-vmx") == 0)
8525 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
8526 if (strcmp (section, ".reg-ppc-vsx") == 0)
8527 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
8528 return NULL;
8529 }
8530
8531 static bfd_boolean
8532 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8533 {
8534 char *p;
8535
8536 p = buf;
8537 while (p < buf + size)
8538 {
8539 /* FIXME: bad alignment assumption. */
8540 Elf_External_Note *xnp = (Elf_External_Note *) p;
8541 Elf_Internal_Note in;
8542
8543 if (offsetof (Elf_External_Note, name) > buf - p + size)
8544 return FALSE;
8545
8546 in.type = H_GET_32 (abfd, xnp->type);
8547
8548 in.namesz = H_GET_32 (abfd, xnp->namesz);
8549 in.namedata = xnp->name;
8550 if (in.namesz > buf - in.namedata + size)
8551 return FALSE;
8552
8553 in.descsz = H_GET_32 (abfd, xnp->descsz);
8554 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8555 in.descpos = offset + (in.descdata - buf);
8556 if (in.descsz != 0
8557 && (in.descdata >= buf + size
8558 || in.descsz > buf - in.descdata + size))
8559 return FALSE;
8560
8561 switch (bfd_get_format (abfd))
8562 {
8563 default:
8564 return TRUE;
8565
8566 case bfd_core:
8567 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8568 {
8569 if (! elfcore_grok_netbsd_note (abfd, &in))
8570 return FALSE;
8571 }
8572 else if (CONST_STRNEQ (in.namedata, "QNX"))
8573 {
8574 if (! elfcore_grok_nto_note (abfd, &in))
8575 return FALSE;
8576 }
8577 else if (CONST_STRNEQ (in.namedata, "SPU/"))
8578 {
8579 if (! elfcore_grok_spu_note (abfd, &in))
8580 return FALSE;
8581 }
8582 else
8583 {
8584 if (! elfcore_grok_note (abfd, &in))
8585 return FALSE;
8586 }
8587 break;
8588
8589 case bfd_object:
8590 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8591 {
8592 if (! elfobj_grok_gnu_note (abfd, &in))
8593 return FALSE;
8594 }
8595 break;
8596 }
8597
8598 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8599 }
8600
8601 return TRUE;
8602 }
8603
8604 static bfd_boolean
8605 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8606 {
8607 char *buf;
8608
8609 if (size <= 0)
8610 return TRUE;
8611
8612 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8613 return FALSE;
8614
8615 buf = bfd_malloc (size);
8616 if (buf == NULL)
8617 return FALSE;
8618
8619 if (bfd_bread (buf, size, abfd) != size
8620 || !elf_parse_notes (abfd, buf, size, offset))
8621 {
8622 free (buf);
8623 return FALSE;
8624 }
8625
8626 free (buf);
8627 return TRUE;
8628 }
8629 \f
8630 /* Providing external access to the ELF program header table. */
8631
8632 /* Return an upper bound on the number of bytes required to store a
8633 copy of ABFD's program header table entries. Return -1 if an error
8634 occurs; bfd_get_error will return an appropriate code. */
8635
8636 long
8637 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8638 {
8639 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8640 {
8641 bfd_set_error (bfd_error_wrong_format);
8642 return -1;
8643 }
8644
8645 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8646 }
8647
8648 /* Copy ABFD's program header table entries to *PHDRS. The entries
8649 will be stored as an array of Elf_Internal_Phdr structures, as
8650 defined in include/elf/internal.h. To find out how large the
8651 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8652
8653 Return the number of program header table entries read, or -1 if an
8654 error occurs; bfd_get_error will return an appropriate code. */
8655
8656 int
8657 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8658 {
8659 int num_phdrs;
8660
8661 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8662 {
8663 bfd_set_error (bfd_error_wrong_format);
8664 return -1;
8665 }
8666
8667 num_phdrs = elf_elfheader (abfd)->e_phnum;
8668 memcpy (phdrs, elf_tdata (abfd)->phdr,
8669 num_phdrs * sizeof (Elf_Internal_Phdr));
8670
8671 return num_phdrs;
8672 }
8673
8674 enum elf_reloc_type_class
8675 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8676 {
8677 return reloc_class_normal;
8678 }
8679
8680 /* For RELA architectures, return the relocation value for a
8681 relocation against a local symbol. */
8682
8683 bfd_vma
8684 _bfd_elf_rela_local_sym (bfd *abfd,
8685 Elf_Internal_Sym *sym,
8686 asection **psec,
8687 Elf_Internal_Rela *rel)
8688 {
8689 asection *sec = *psec;
8690 bfd_vma relocation;
8691
8692 relocation = (sec->output_section->vma
8693 + sec->output_offset
8694 + sym->st_value);
8695 if ((sec->flags & SEC_MERGE)
8696 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8697 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8698 {
8699 rel->r_addend =
8700 _bfd_merged_section_offset (abfd, psec,
8701 elf_section_data (sec)->sec_info,
8702 sym->st_value + rel->r_addend);
8703 if (sec != *psec)
8704 {
8705 /* If we have changed the section, and our original section is
8706 marked with SEC_EXCLUDE, it means that the original
8707 SEC_MERGE section has been completely subsumed in some
8708 other SEC_MERGE section. In this case, we need to leave
8709 some info around for --emit-relocs. */
8710 if ((sec->flags & SEC_EXCLUDE) != 0)
8711 sec->kept_section = *psec;
8712 sec = *psec;
8713 }
8714 rel->r_addend -= relocation;
8715 rel->r_addend += sec->output_section->vma + sec->output_offset;
8716 }
8717 return relocation;
8718 }
8719
8720 bfd_vma
8721 _bfd_elf_rel_local_sym (bfd *abfd,
8722 Elf_Internal_Sym *sym,
8723 asection **psec,
8724 bfd_vma addend)
8725 {
8726 asection *sec = *psec;
8727
8728 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8729 return sym->st_value + addend;
8730
8731 return _bfd_merged_section_offset (abfd, psec,
8732 elf_section_data (sec)->sec_info,
8733 sym->st_value + addend);
8734 }
8735
8736 bfd_vma
8737 _bfd_elf_section_offset (bfd *abfd,
8738 struct bfd_link_info *info,
8739 asection *sec,
8740 bfd_vma offset)
8741 {
8742 switch (sec->sec_info_type)
8743 {
8744 case ELF_INFO_TYPE_STABS:
8745 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8746 offset);
8747 case ELF_INFO_TYPE_EH_FRAME:
8748 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8749 default:
8750 return offset;
8751 }
8752 }
8753 \f
8754 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8755 reconstruct an ELF file by reading the segments out of remote memory
8756 based on the ELF file header at EHDR_VMA and the ELF program headers it
8757 points to. If not null, *LOADBASEP is filled in with the difference
8758 between the VMAs from which the segments were read, and the VMAs the
8759 file headers (and hence BFD's idea of each section's VMA) put them at.
8760
8761 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8762 remote memory at target address VMA into the local buffer at MYADDR; it
8763 should return zero on success or an `errno' code on failure. TEMPL must
8764 be a BFD for an ELF target with the word size and byte order found in
8765 the remote memory. */
8766
8767 bfd *
8768 bfd_elf_bfd_from_remote_memory
8769 (bfd *templ,
8770 bfd_vma ehdr_vma,
8771 bfd_vma *loadbasep,
8772 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8773 {
8774 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8775 (templ, ehdr_vma, loadbasep, target_read_memory);
8776 }
8777 \f
8778 long
8779 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8780 long symcount ATTRIBUTE_UNUSED,
8781 asymbol **syms ATTRIBUTE_UNUSED,
8782 long dynsymcount,
8783 asymbol **dynsyms,
8784 asymbol **ret)
8785 {
8786 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8787 asection *relplt;
8788 asymbol *s;
8789 const char *relplt_name;
8790 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8791 arelent *p;
8792 long count, i, n;
8793 size_t size;
8794 Elf_Internal_Shdr *hdr;
8795 char *names;
8796 asection *plt;
8797
8798 *ret = NULL;
8799
8800 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8801 return 0;
8802
8803 if (dynsymcount <= 0)
8804 return 0;
8805
8806 if (!bed->plt_sym_val)
8807 return 0;
8808
8809 relplt_name = bed->relplt_name;
8810 if (relplt_name == NULL)
8811 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
8812 relplt = bfd_get_section_by_name (abfd, relplt_name);
8813 if (relplt == NULL)
8814 return 0;
8815
8816 hdr = &elf_section_data (relplt)->this_hdr;
8817 if (hdr->sh_link != elf_dynsymtab (abfd)
8818 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8819 return 0;
8820
8821 plt = bfd_get_section_by_name (abfd, ".plt");
8822 if (plt == NULL)
8823 return 0;
8824
8825 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8826 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8827 return -1;
8828
8829 count = relplt->size / hdr->sh_entsize;
8830 size = count * sizeof (asymbol);
8831 p = relplt->relocation;
8832 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
8833 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8834
8835 s = *ret = bfd_malloc (size);
8836 if (s == NULL)
8837 return -1;
8838
8839 names = (char *) (s + count);
8840 p = relplt->relocation;
8841 n = 0;
8842 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
8843 {
8844 size_t len;
8845 bfd_vma addr;
8846
8847 addr = bed->plt_sym_val (i, plt, p);
8848 if (addr == (bfd_vma) -1)
8849 continue;
8850
8851 *s = **p->sym_ptr_ptr;
8852 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8853 we are defining a symbol, ensure one of them is set. */
8854 if ((s->flags & BSF_LOCAL) == 0)
8855 s->flags |= BSF_GLOBAL;
8856 s->flags |= BSF_SYNTHETIC;
8857 s->section = plt;
8858 s->value = addr - plt->vma;
8859 s->name = names;
8860 s->udata.p = NULL;
8861 len = strlen ((*p->sym_ptr_ptr)->name);
8862 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8863 names += len;
8864 memcpy (names, "@plt", sizeof ("@plt"));
8865 names += sizeof ("@plt");
8866 ++s, ++n;
8867 }
8868
8869 return n;
8870 }
8871
8872 /* It is only used by x86-64 so far. */
8873 asection _bfd_elf_large_com_section
8874 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8875 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8876
8877 void
8878 _bfd_elf_set_osabi (bfd * abfd,
8879 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
8880 {
8881 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
8882
8883 i_ehdrp = elf_elfheader (abfd);
8884
8885 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
8886 }
8887
8888
8889 /* Return TRUE for ELF symbol types that represent functions.
8890 This is the default version of this function, which is sufficient for
8891 most targets. It returns true if TYPE is STT_FUNC. */
8892
8893 bfd_boolean
8894 _bfd_elf_is_function_type (unsigned int type)
8895 {
8896 return (type == STT_FUNC);
8897 }
This page took 0.225283 seconds and 4 git commands to generate.