Set no file contents PT_LOAD p_offset to first page
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
56 file_ptr offset, size_t align);
57
58 /* Swap version information in and out. The version information is
59 currently size independent. If that ever changes, this code will
60 need to move into elfcode.h. */
61
62 /* Swap in a Verdef structure. */
63
64 void
65 _bfd_elf_swap_verdef_in (bfd *abfd,
66 const Elf_External_Verdef *src,
67 Elf_Internal_Verdef *dst)
68 {
69 dst->vd_version = H_GET_16 (abfd, src->vd_version);
70 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
71 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
72 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
73 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
74 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
75 dst->vd_next = H_GET_32 (abfd, src->vd_next);
76 }
77
78 /* Swap out a Verdef structure. */
79
80 void
81 _bfd_elf_swap_verdef_out (bfd *abfd,
82 const Elf_Internal_Verdef *src,
83 Elf_External_Verdef *dst)
84 {
85 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
86 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
87 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
88 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
89 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
90 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
91 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
92 }
93
94 /* Swap in a Verdaux structure. */
95
96 void
97 _bfd_elf_swap_verdaux_in (bfd *abfd,
98 const Elf_External_Verdaux *src,
99 Elf_Internal_Verdaux *dst)
100 {
101 dst->vda_name = H_GET_32 (abfd, src->vda_name);
102 dst->vda_next = H_GET_32 (abfd, src->vda_next);
103 }
104
105 /* Swap out a Verdaux structure. */
106
107 void
108 _bfd_elf_swap_verdaux_out (bfd *abfd,
109 const Elf_Internal_Verdaux *src,
110 Elf_External_Verdaux *dst)
111 {
112 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
113 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
114 }
115
116 /* Swap in a Verneed structure. */
117
118 void
119 _bfd_elf_swap_verneed_in (bfd *abfd,
120 const Elf_External_Verneed *src,
121 Elf_Internal_Verneed *dst)
122 {
123 dst->vn_version = H_GET_16 (abfd, src->vn_version);
124 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
125 dst->vn_file = H_GET_32 (abfd, src->vn_file);
126 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
127 dst->vn_next = H_GET_32 (abfd, src->vn_next);
128 }
129
130 /* Swap out a Verneed structure. */
131
132 void
133 _bfd_elf_swap_verneed_out (bfd *abfd,
134 const Elf_Internal_Verneed *src,
135 Elf_External_Verneed *dst)
136 {
137 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
138 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
139 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
140 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
141 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
142 }
143
144 /* Swap in a Vernaux structure. */
145
146 void
147 _bfd_elf_swap_vernaux_in (bfd *abfd,
148 const Elf_External_Vernaux *src,
149 Elf_Internal_Vernaux *dst)
150 {
151 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
152 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
153 dst->vna_other = H_GET_16 (abfd, src->vna_other);
154 dst->vna_name = H_GET_32 (abfd, src->vna_name);
155 dst->vna_next = H_GET_32 (abfd, src->vna_next);
156 }
157
158 /* Swap out a Vernaux structure. */
159
160 void
161 _bfd_elf_swap_vernaux_out (bfd *abfd,
162 const Elf_Internal_Vernaux *src,
163 Elf_External_Vernaux *dst)
164 {
165 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
166 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
167 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
168 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
169 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
170 }
171
172 /* Swap in a Versym structure. */
173
174 void
175 _bfd_elf_swap_versym_in (bfd *abfd,
176 const Elf_External_Versym *src,
177 Elf_Internal_Versym *dst)
178 {
179 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
180 }
181
182 /* Swap out a Versym structure. */
183
184 void
185 _bfd_elf_swap_versym_out (bfd *abfd,
186 const Elf_Internal_Versym *src,
187 Elf_External_Versym *dst)
188 {
189 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
190 }
191
192 /* Standard ELF hash function. Do not change this function; you will
193 cause invalid hash tables to be generated. */
194
195 unsigned long
196 bfd_elf_hash (const char *namearg)
197 {
198 const unsigned char *name = (const unsigned char *) namearg;
199 unsigned long h = 0;
200 unsigned long g;
201 int ch;
202
203 while ((ch = *name++) != '\0')
204 {
205 h = (h << 4) + ch;
206 if ((g = (h & 0xf0000000)) != 0)
207 {
208 h ^= g >> 24;
209 /* The ELF ABI says `h &= ~g', but this is equivalent in
210 this case and on some machines one insn instead of two. */
211 h ^= g;
212 }
213 }
214 return h & 0xffffffff;
215 }
216
217 /* DT_GNU_HASH hash function. Do not change this function; you will
218 cause invalid hash tables to be generated. */
219
220 unsigned long
221 bfd_elf_gnu_hash (const char *namearg)
222 {
223 const unsigned char *name = (const unsigned char *) namearg;
224 unsigned long h = 5381;
225 unsigned char ch;
226
227 while ((ch = *name++) != '\0')
228 h = (h << 5) + h + ch;
229 return h & 0xffffffff;
230 }
231
232 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
233 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
234 bfd_boolean
235 bfd_elf_allocate_object (bfd *abfd,
236 size_t object_size,
237 enum elf_target_id object_id)
238 {
239 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
240 abfd->tdata.any = bfd_zalloc (abfd, object_size);
241 if (abfd->tdata.any == NULL)
242 return FALSE;
243
244 elf_object_id (abfd) = object_id;
245 if (abfd->direction != read_direction)
246 {
247 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
248 if (o == NULL)
249 return FALSE;
250 elf_tdata (abfd)->o = o;
251 elf_program_header_size (abfd) = (bfd_size_type) -1;
252 }
253 return TRUE;
254 }
255
256
257 bfd_boolean
258 bfd_elf_make_object (bfd *abfd)
259 {
260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
261 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
262 bed->target_id);
263 }
264
265 bfd_boolean
266 bfd_elf_mkcorefile (bfd *abfd)
267 {
268 /* I think this can be done just like an object file. */
269 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
270 return FALSE;
271 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
272 return elf_tdata (abfd)->core != NULL;
273 }
274
275 char *
276 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
277 {
278 Elf_Internal_Shdr **i_shdrp;
279 bfd_byte *shstrtab = NULL;
280 file_ptr offset;
281 bfd_size_type shstrtabsize;
282
283 i_shdrp = elf_elfsections (abfd);
284 if (i_shdrp == 0
285 || shindex >= elf_numsections (abfd)
286 || i_shdrp[shindex] == 0)
287 return NULL;
288
289 shstrtab = i_shdrp[shindex]->contents;
290 if (shstrtab == NULL)
291 {
292 /* No cached one, attempt to read, and cache what we read. */
293 offset = i_shdrp[shindex]->sh_offset;
294 shstrtabsize = i_shdrp[shindex]->sh_size;
295
296 /* Allocate and clear an extra byte at the end, to prevent crashes
297 in case the string table is not terminated. */
298 if (shstrtabsize + 1 <= 1
299 || shstrtabsize > bfd_get_file_size (abfd)
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 /* xgettext:c-format */
342 _bfd_error_handler (_("%pB: attempt to load strings from"
343 " a non-string section (number %d)"),
344 abfd, shindex);
345 return NULL;
346 }
347
348 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
349 return NULL;
350 }
351 else
352 {
353 /* PR 24273: The string section's contents may have already
354 been loaded elsewhere, eg because a corrupt file has the
355 string section index in the ELF header pointing at a group
356 section. So be paranoid, and test that the last byte of
357 the section is zero. */
358 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
359 return NULL;
360 }
361
362 if (strindex >= hdr->sh_size)
363 {
364 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
365 _bfd_error_handler
366 /* xgettext:c-format */
367 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
368 abfd, strindex, (uint64_t) hdr->sh_size,
369 (shindex == shstrndx && strindex == hdr->sh_name
370 ? ".shstrtab"
371 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
372 return NULL;
373 }
374
375 return ((char *) hdr->contents) + strindex;
376 }
377
378 /* Read and convert symbols to internal format.
379 SYMCOUNT specifies the number of symbols to read, starting from
380 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
381 are non-NULL, they are used to store the internal symbols, external
382 symbols, and symbol section index extensions, respectively.
383 Returns a pointer to the internal symbol buffer (malloced if necessary)
384 or NULL if there were no symbols or some kind of problem. */
385
386 Elf_Internal_Sym *
387 bfd_elf_get_elf_syms (bfd *ibfd,
388 Elf_Internal_Shdr *symtab_hdr,
389 size_t symcount,
390 size_t symoffset,
391 Elf_Internal_Sym *intsym_buf,
392 void *extsym_buf,
393 Elf_External_Sym_Shndx *extshndx_buf)
394 {
395 Elf_Internal_Shdr *shndx_hdr;
396 void *alloc_ext;
397 const bfd_byte *esym;
398 Elf_External_Sym_Shndx *alloc_extshndx;
399 Elf_External_Sym_Shndx *shndx;
400 Elf_Internal_Sym *alloc_intsym;
401 Elf_Internal_Sym *isym;
402 Elf_Internal_Sym *isymend;
403 const struct elf_backend_data *bed;
404 size_t extsym_size;
405 bfd_size_type amt;
406 file_ptr pos;
407
408 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
409 abort ();
410
411 if (symcount == 0)
412 return intsym_buf;
413
414 /* Normal syms might have section extension entries. */
415 shndx_hdr = NULL;
416 if (elf_symtab_shndx_list (ibfd) != NULL)
417 {
418 elf_section_list * entry;
419 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
420
421 /* Find an index section that is linked to this symtab section. */
422 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
423 {
424 /* PR 20063. */
425 if (entry->hdr.sh_link >= elf_numsections (ibfd))
426 continue;
427
428 if (sections[entry->hdr.sh_link] == symtab_hdr)
429 {
430 shndx_hdr = & entry->hdr;
431 break;
432 };
433 }
434
435 if (shndx_hdr == NULL)
436 {
437 if (symtab_hdr == & elf_symtab_hdr (ibfd))
438 /* Not really accurate, but this was how the old code used to work. */
439 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
440 /* Otherwise we do nothing. The assumption is that
441 the index table will not be needed. */
442 }
443 }
444
445 /* Read the symbols. */
446 alloc_ext = NULL;
447 alloc_extshndx = NULL;
448 alloc_intsym = NULL;
449 bed = get_elf_backend_data (ibfd);
450 extsym_size = bed->s->sizeof_sym;
451 amt = (bfd_size_type) symcount * extsym_size;
452 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
453 if (extsym_buf == NULL)
454 {
455 alloc_ext = bfd_malloc2 (symcount, extsym_size);
456 extsym_buf = alloc_ext;
457 }
458 if (extsym_buf == NULL
459 || bfd_seek (ibfd, pos, SEEK_SET) != 0
460 || bfd_bread (extsym_buf, amt, ibfd) != amt)
461 {
462 intsym_buf = NULL;
463 goto out;
464 }
465
466 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
467 extshndx_buf = NULL;
468 else
469 {
470 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
471 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
472 if (extshndx_buf == NULL)
473 {
474 alloc_extshndx = (Elf_External_Sym_Shndx *)
475 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
476 extshndx_buf = alloc_extshndx;
477 }
478 if (extshndx_buf == NULL
479 || bfd_seek (ibfd, pos, SEEK_SET) != 0
480 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
481 {
482 intsym_buf = NULL;
483 goto out;
484 }
485 }
486
487 if (intsym_buf == NULL)
488 {
489 alloc_intsym = (Elf_Internal_Sym *)
490 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
491 intsym_buf = alloc_intsym;
492 if (intsym_buf == NULL)
493 goto out;
494 }
495
496 /* Convert the symbols to internal form. */
497 isymend = intsym_buf + symcount;
498 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
499 shndx = extshndx_buf;
500 isym < isymend;
501 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
502 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
503 {
504 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
505 /* xgettext:c-format */
506 _bfd_error_handler (_("%pB symbol number %lu references"
507 " nonexistent SHT_SYMTAB_SHNDX section"),
508 ibfd, (unsigned long) symoffset);
509 if (alloc_intsym != NULL)
510 free (alloc_intsym);
511 intsym_buf = NULL;
512 goto out;
513 }
514
515 out:
516 if (alloc_ext != NULL)
517 free (alloc_ext);
518 if (alloc_extshndx != NULL)
519 free (alloc_extshndx);
520
521 return intsym_buf;
522 }
523
524 /* Look up a symbol name. */
525 const char *
526 bfd_elf_sym_name (bfd *abfd,
527 Elf_Internal_Shdr *symtab_hdr,
528 Elf_Internal_Sym *isym,
529 asection *sym_sec)
530 {
531 const char *name;
532 unsigned int iname = isym->st_name;
533 unsigned int shindex = symtab_hdr->sh_link;
534
535 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
536 /* Check for a bogus st_shndx to avoid crashing. */
537 && isym->st_shndx < elf_numsections (abfd))
538 {
539 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
540 shindex = elf_elfheader (abfd)->e_shstrndx;
541 }
542
543 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
544 if (name == NULL)
545 name = "(null)";
546 else if (sym_sec && *name == '\0')
547 name = bfd_section_name (sym_sec);
548
549 return name;
550 }
551
552 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
553 sections. The first element is the flags, the rest are section
554 pointers. */
555
556 typedef union elf_internal_group {
557 Elf_Internal_Shdr *shdr;
558 unsigned int flags;
559 } Elf_Internal_Group;
560
561 /* Return the name of the group signature symbol. Why isn't the
562 signature just a string? */
563
564 static const char *
565 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
566 {
567 Elf_Internal_Shdr *hdr;
568 unsigned char esym[sizeof (Elf64_External_Sym)];
569 Elf_External_Sym_Shndx eshndx;
570 Elf_Internal_Sym isym;
571
572 /* First we need to ensure the symbol table is available. Make sure
573 that it is a symbol table section. */
574 if (ghdr->sh_link >= elf_numsections (abfd))
575 return NULL;
576 hdr = elf_elfsections (abfd) [ghdr->sh_link];
577 if (hdr->sh_type != SHT_SYMTAB
578 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
579 return NULL;
580
581 /* Go read the symbol. */
582 hdr = &elf_tdata (abfd)->symtab_hdr;
583 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
584 &isym, esym, &eshndx) == NULL)
585 return NULL;
586
587 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
588 }
589
590 /* Set next_in_group list pointer, and group name for NEWSECT. */
591
592 static bfd_boolean
593 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
594 {
595 unsigned int num_group = elf_tdata (abfd)->num_group;
596
597 /* If num_group is zero, read in all SHT_GROUP sections. The count
598 is set to -1 if there are no SHT_GROUP sections. */
599 if (num_group == 0)
600 {
601 unsigned int i, shnum;
602
603 /* First count the number of groups. If we have a SHT_GROUP
604 section with just a flag word (ie. sh_size is 4), ignore it. */
605 shnum = elf_numsections (abfd);
606 num_group = 0;
607
608 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
609 ( (shdr)->sh_type == SHT_GROUP \
610 && (shdr)->sh_size >= minsize \
611 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
612 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
613
614 for (i = 0; i < shnum; i++)
615 {
616 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
617
618 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
619 num_group += 1;
620 }
621
622 if (num_group == 0)
623 {
624 num_group = (unsigned) -1;
625 elf_tdata (abfd)->num_group = num_group;
626 elf_tdata (abfd)->group_sect_ptr = NULL;
627 }
628 else
629 {
630 /* We keep a list of elf section headers for group sections,
631 so we can find them quickly. */
632 bfd_size_type amt;
633
634 elf_tdata (abfd)->num_group = num_group;
635 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
636 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
637 if (elf_tdata (abfd)->group_sect_ptr == NULL)
638 return FALSE;
639 memset (elf_tdata (abfd)->group_sect_ptr, 0,
640 num_group * sizeof (Elf_Internal_Shdr *));
641 num_group = 0;
642
643 for (i = 0; i < shnum; i++)
644 {
645 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
646
647 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
648 {
649 unsigned char *src;
650 Elf_Internal_Group *dest;
651
652 /* Make sure the group section has a BFD section
653 attached to it. */
654 if (!bfd_section_from_shdr (abfd, i))
655 return FALSE;
656
657 /* Add to list of sections. */
658 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
659 num_group += 1;
660
661 /* Read the raw contents. */
662 BFD_ASSERT (sizeof (*dest) >= 4);
663 amt = shdr->sh_size * sizeof (*dest) / 4;
664 shdr->contents = (unsigned char *)
665 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
666 /* PR binutils/4110: Handle corrupt group headers. */
667 if (shdr->contents == NULL)
668 {
669 _bfd_error_handler
670 /* xgettext:c-format */
671 (_("%pB: corrupt size field in group section"
672 " header: %#" PRIx64),
673 abfd, (uint64_t) shdr->sh_size);
674 bfd_set_error (bfd_error_bad_value);
675 -- num_group;
676 continue;
677 }
678
679 memset (shdr->contents, 0, amt);
680
681 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
682 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
683 != shdr->sh_size))
684 {
685 _bfd_error_handler
686 /* xgettext:c-format */
687 (_("%pB: invalid size field in group section"
688 " header: %#" PRIx64 ""),
689 abfd, (uint64_t) shdr->sh_size);
690 bfd_set_error (bfd_error_bad_value);
691 -- num_group;
692 /* PR 17510: If the group contents are even
693 partially corrupt, do not allow any of the
694 contents to be used. */
695 memset (shdr->contents, 0, amt);
696 continue;
697 }
698
699 /* Translate raw contents, a flag word followed by an
700 array of elf section indices all in target byte order,
701 to the flag word followed by an array of elf section
702 pointers. */
703 src = shdr->contents + shdr->sh_size;
704 dest = (Elf_Internal_Group *) (shdr->contents + amt);
705
706 while (1)
707 {
708 unsigned int idx;
709
710 src -= 4;
711 --dest;
712 idx = H_GET_32 (abfd, src);
713 if (src == shdr->contents)
714 {
715 dest->flags = idx;
716 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
717 shdr->bfd_section->flags
718 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
719 break;
720 }
721 if (idx < shnum)
722 {
723 dest->shdr = elf_elfsections (abfd)[idx];
724 /* PR binutils/23199: All sections in a
725 section group should be marked with
726 SHF_GROUP. But some tools generate
727 broken objects without SHF_GROUP. Fix
728 them up here. */
729 dest->shdr->sh_flags |= SHF_GROUP;
730 }
731 if (idx >= shnum
732 || dest->shdr->sh_type == SHT_GROUP)
733 {
734 _bfd_error_handler
735 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
736 abfd, i);
737 dest->shdr = NULL;
738 }
739 }
740 }
741 }
742
743 /* PR 17510: Corrupt binaries might contain invalid groups. */
744 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
745 {
746 elf_tdata (abfd)->num_group = num_group;
747
748 /* If all groups are invalid then fail. */
749 if (num_group == 0)
750 {
751 elf_tdata (abfd)->group_sect_ptr = NULL;
752 elf_tdata (abfd)->num_group = num_group = -1;
753 _bfd_error_handler
754 (_("%pB: no valid group sections found"), abfd);
755 bfd_set_error (bfd_error_bad_value);
756 }
757 }
758 }
759 }
760
761 if (num_group != (unsigned) -1)
762 {
763 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
764 unsigned int j;
765
766 for (j = 0; j < num_group; j++)
767 {
768 /* Begin search from previous found group. */
769 unsigned i = (j + search_offset) % num_group;
770
771 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
772 Elf_Internal_Group *idx;
773 bfd_size_type n_elt;
774
775 if (shdr == NULL)
776 continue;
777
778 idx = (Elf_Internal_Group *) shdr->contents;
779 if (idx == NULL || shdr->sh_size < 4)
780 {
781 /* See PR 21957 for a reproducer. */
782 /* xgettext:c-format */
783 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
784 abfd, shdr->bfd_section);
785 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
786 bfd_set_error (bfd_error_bad_value);
787 return FALSE;
788 }
789 n_elt = shdr->sh_size / 4;
790
791 /* Look through this group's sections to see if current
792 section is a member. */
793 while (--n_elt != 0)
794 if ((++idx)->shdr == hdr)
795 {
796 asection *s = NULL;
797
798 /* We are a member of this group. Go looking through
799 other members to see if any others are linked via
800 next_in_group. */
801 idx = (Elf_Internal_Group *) shdr->contents;
802 n_elt = shdr->sh_size / 4;
803 while (--n_elt != 0)
804 if ((++idx)->shdr != NULL
805 && (s = idx->shdr->bfd_section) != NULL
806 && elf_next_in_group (s) != NULL)
807 break;
808 if (n_elt != 0)
809 {
810 /* Snarf the group name from other member, and
811 insert current section in circular list. */
812 elf_group_name (newsect) = elf_group_name (s);
813 elf_next_in_group (newsect) = elf_next_in_group (s);
814 elf_next_in_group (s) = newsect;
815 }
816 else
817 {
818 const char *gname;
819
820 gname = group_signature (abfd, shdr);
821 if (gname == NULL)
822 return FALSE;
823 elf_group_name (newsect) = gname;
824
825 /* Start a circular list with one element. */
826 elf_next_in_group (newsect) = newsect;
827 }
828
829 /* If the group section has been created, point to the
830 new member. */
831 if (shdr->bfd_section != NULL)
832 elf_next_in_group (shdr->bfd_section) = newsect;
833
834 elf_tdata (abfd)->group_search_offset = i;
835 j = num_group - 1;
836 break;
837 }
838 }
839 }
840
841 if (elf_group_name (newsect) == NULL)
842 {
843 /* xgettext:c-format */
844 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
845 abfd, newsect);
846 return FALSE;
847 }
848 return TRUE;
849 }
850
851 bfd_boolean
852 _bfd_elf_setup_sections (bfd *abfd)
853 {
854 unsigned int i;
855 unsigned int num_group = elf_tdata (abfd)->num_group;
856 bfd_boolean result = TRUE;
857 asection *s;
858
859 /* Process SHF_LINK_ORDER. */
860 for (s = abfd->sections; s != NULL; s = s->next)
861 {
862 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
863 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
864 {
865 unsigned int elfsec = this_hdr->sh_link;
866 /* FIXME: The old Intel compiler and old strip/objcopy may
867 not set the sh_link or sh_info fields. Hence we could
868 get the situation where elfsec is 0. */
869 if (elfsec == 0)
870 {
871 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
872 if (bed->link_order_error_handler)
873 bed->link_order_error_handler
874 /* xgettext:c-format */
875 (_("%pB: warning: sh_link not set for section `%pA'"),
876 abfd, s);
877 }
878 else
879 {
880 asection *linksec = NULL;
881
882 if (elfsec < elf_numsections (abfd))
883 {
884 this_hdr = elf_elfsections (abfd)[elfsec];
885 linksec = this_hdr->bfd_section;
886 }
887
888 /* PR 1991, 2008:
889 Some strip/objcopy may leave an incorrect value in
890 sh_link. We don't want to proceed. */
891 if (linksec == NULL)
892 {
893 _bfd_error_handler
894 /* xgettext:c-format */
895 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
896 s->owner, elfsec, s);
897 result = FALSE;
898 }
899
900 elf_linked_to_section (s) = linksec;
901 }
902 }
903 else if (this_hdr->sh_type == SHT_GROUP
904 && elf_next_in_group (s) == NULL)
905 {
906 _bfd_error_handler
907 /* xgettext:c-format */
908 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
909 abfd, elf_section_data (s)->this_idx);
910 result = FALSE;
911 }
912 }
913
914 /* Process section groups. */
915 if (num_group == (unsigned) -1)
916 return result;
917
918 for (i = 0; i < num_group; i++)
919 {
920 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
921 Elf_Internal_Group *idx;
922 unsigned int n_elt;
923
924 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
925 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
926 {
927 _bfd_error_handler
928 /* xgettext:c-format */
929 (_("%pB: section group entry number %u is corrupt"),
930 abfd, i);
931 result = FALSE;
932 continue;
933 }
934
935 idx = (Elf_Internal_Group *) shdr->contents;
936 n_elt = shdr->sh_size / 4;
937
938 while (--n_elt != 0)
939 {
940 ++ idx;
941
942 if (idx->shdr == NULL)
943 continue;
944 else if (idx->shdr->bfd_section)
945 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
946 else if (idx->shdr->sh_type != SHT_RELA
947 && idx->shdr->sh_type != SHT_REL)
948 {
949 /* There are some unknown sections in the group. */
950 _bfd_error_handler
951 /* xgettext:c-format */
952 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
953 abfd,
954 idx->shdr->sh_type,
955 bfd_elf_string_from_elf_section (abfd,
956 (elf_elfheader (abfd)
957 ->e_shstrndx),
958 idx->shdr->sh_name),
959 shdr->bfd_section);
960 result = FALSE;
961 }
962 }
963 }
964
965 return result;
966 }
967
968 bfd_boolean
969 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
970 {
971 return elf_next_in_group (sec) != NULL;
972 }
973
974 const char *
975 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
976 {
977 if (elf_sec_group (sec) != NULL)
978 return elf_group_name (sec);
979 return NULL;
980 }
981
982 static char *
983 convert_debug_to_zdebug (bfd *abfd, const char *name)
984 {
985 unsigned int len = strlen (name);
986 char *new_name = bfd_alloc (abfd, len + 2);
987 if (new_name == NULL)
988 return NULL;
989 new_name[0] = '.';
990 new_name[1] = 'z';
991 memcpy (new_name + 2, name + 1, len);
992 return new_name;
993 }
994
995 static char *
996 convert_zdebug_to_debug (bfd *abfd, const char *name)
997 {
998 unsigned int len = strlen (name);
999 char *new_name = bfd_alloc (abfd, len);
1000 if (new_name == NULL)
1001 return NULL;
1002 new_name[0] = '.';
1003 memcpy (new_name + 1, name + 2, len - 1);
1004 return new_name;
1005 }
1006
1007 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
1008
1009 struct lto_section
1010 {
1011 int16_t major_version;
1012 int16_t minor_version;
1013 unsigned char slim_object;
1014
1015 /* Flags is a private field that is not defined publicly. */
1016 uint16_t flags;
1017 };
1018
1019 /* Make a BFD section from an ELF section. We store a pointer to the
1020 BFD section in the bfd_section field of the header. */
1021
1022 bfd_boolean
1023 _bfd_elf_make_section_from_shdr (bfd *abfd,
1024 Elf_Internal_Shdr *hdr,
1025 const char *name,
1026 int shindex)
1027 {
1028 asection *newsect;
1029 flagword flags;
1030 const struct elf_backend_data *bed;
1031
1032 if (hdr->bfd_section != NULL)
1033 return TRUE;
1034
1035 newsect = bfd_make_section_anyway (abfd, name);
1036 if (newsect == NULL)
1037 return FALSE;
1038
1039 hdr->bfd_section = newsect;
1040 elf_section_data (newsect)->this_hdr = *hdr;
1041 elf_section_data (newsect)->this_idx = shindex;
1042
1043 /* Always use the real type/flags. */
1044 elf_section_type (newsect) = hdr->sh_type;
1045 elf_section_flags (newsect) = hdr->sh_flags;
1046
1047 newsect->filepos = hdr->sh_offset;
1048
1049 if (!bfd_set_section_vma (newsect, hdr->sh_addr)
1050 || !bfd_set_section_size (newsect, hdr->sh_size)
1051 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1052 return FALSE;
1053
1054 flags = SEC_NO_FLAGS;
1055 if (hdr->sh_type != SHT_NOBITS)
1056 flags |= SEC_HAS_CONTENTS;
1057 if (hdr->sh_type == SHT_GROUP)
1058 flags |= SEC_GROUP;
1059 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1060 {
1061 flags |= SEC_ALLOC;
1062 if (hdr->sh_type != SHT_NOBITS)
1063 flags |= SEC_LOAD;
1064 }
1065 if ((hdr->sh_flags & SHF_WRITE) == 0)
1066 flags |= SEC_READONLY;
1067 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1068 flags |= SEC_CODE;
1069 else if ((flags & SEC_LOAD) != 0)
1070 flags |= SEC_DATA;
1071 if ((hdr->sh_flags & SHF_MERGE) != 0)
1072 {
1073 flags |= SEC_MERGE;
1074 newsect->entsize = hdr->sh_entsize;
1075 }
1076 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1077 flags |= SEC_STRINGS;
1078 if (hdr->sh_flags & SHF_GROUP)
1079 if (!setup_group (abfd, hdr, newsect))
1080 return FALSE;
1081 if ((hdr->sh_flags & SHF_TLS) != 0)
1082 flags |= SEC_THREAD_LOCAL;
1083 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1084 flags |= SEC_EXCLUDE;
1085
1086 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1087 {
1088 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1089 but binutils as of 2019-07-23 did not set the EI_OSABI header
1090 byte. */
1091 case ELFOSABI_NONE:
1092 case ELFOSABI_GNU:
1093 case ELFOSABI_FREEBSD:
1094 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1095 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1096 break;
1097 }
1098
1099 if ((flags & SEC_ALLOC) == 0)
1100 {
1101 /* The debugging sections appear to be recognized only by name,
1102 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1103 if (name [0] == '.')
1104 {
1105 if (strncmp (name, ".debug", 6) == 0
1106 || strncmp (name, ".gnu.linkonce.wi.", 17) == 0
1107 || strncmp (name, ".zdebug", 7) == 0)
1108 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1109 else if (strncmp (name, GNU_BUILD_ATTRS_SECTION_NAME, 21) == 0
1110 || strncmp (name, ".note.gnu", 9) == 0)
1111 flags |= SEC_ELF_OCTETS;
1112 else if (strncmp (name, ".line", 5) == 0
1113 || strncmp (name, ".stab", 5) == 0
1114 || strcmp (name, ".gdb_index") == 0)
1115 flags |= SEC_DEBUGGING;
1116 }
1117 }
1118
1119 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1120 only link a single copy of the section. This is used to support
1121 g++. g++ will emit each template expansion in its own section.
1122 The symbols will be defined as weak, so that multiple definitions
1123 are permitted. The GNU linker extension is to actually discard
1124 all but one of the sections. */
1125 if (CONST_STRNEQ (name, ".gnu.linkonce")
1126 && elf_next_in_group (newsect) == NULL)
1127 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1128
1129 bed = get_elf_backend_data (abfd);
1130 if (bed->elf_backend_section_flags)
1131 if (! bed->elf_backend_section_flags (&flags, hdr))
1132 return FALSE;
1133
1134 if (!bfd_set_section_flags (newsect, flags))
1135 return FALSE;
1136
1137 /* We do not parse the PT_NOTE segments as we are interested even in the
1138 separate debug info files which may have the segments offsets corrupted.
1139 PT_NOTEs from the core files are currently not parsed using BFD. */
1140 if (hdr->sh_type == SHT_NOTE)
1141 {
1142 bfd_byte *contents;
1143
1144 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1145 return FALSE;
1146
1147 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1148 hdr->sh_offset, hdr->sh_addralign);
1149 free (contents);
1150 }
1151
1152 if ((flags & SEC_ALLOC) != 0)
1153 {
1154 Elf_Internal_Phdr *phdr;
1155 unsigned int i, nload;
1156
1157 /* Some ELF linkers produce binaries with all the program header
1158 p_paddr fields zero. If we have such a binary with more than
1159 one PT_LOAD header, then leave the section lma equal to vma
1160 so that we don't create sections with overlapping lma. */
1161 phdr = elf_tdata (abfd)->phdr;
1162 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1163 if (phdr->p_paddr != 0)
1164 break;
1165 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1166 ++nload;
1167 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1168 return TRUE;
1169
1170 phdr = elf_tdata (abfd)->phdr;
1171 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1172 {
1173 if (((phdr->p_type == PT_LOAD
1174 && (hdr->sh_flags & SHF_TLS) == 0)
1175 || phdr->p_type == PT_TLS)
1176 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1177 {
1178 if ((flags & SEC_LOAD) == 0)
1179 newsect->lma = (phdr->p_paddr
1180 + hdr->sh_addr - phdr->p_vaddr);
1181 else
1182 /* We used to use the same adjustment for SEC_LOAD
1183 sections, but that doesn't work if the segment
1184 is packed with code from multiple VMAs.
1185 Instead we calculate the section LMA based on
1186 the segment LMA. It is assumed that the
1187 segment will contain sections with contiguous
1188 LMAs, even if the VMAs are not. */
1189 newsect->lma = (phdr->p_paddr
1190 + hdr->sh_offset - phdr->p_offset);
1191
1192 /* With contiguous segments, we can't tell from file
1193 offsets whether a section with zero size should
1194 be placed at the end of one segment or the
1195 beginning of the next. Decide based on vaddr. */
1196 if (hdr->sh_addr >= phdr->p_vaddr
1197 && (hdr->sh_addr + hdr->sh_size
1198 <= phdr->p_vaddr + phdr->p_memsz))
1199 break;
1200 }
1201 }
1202 }
1203
1204 /* Compress/decompress DWARF debug sections with names: .debug_* and
1205 .zdebug_*, after the section flags is set. */
1206 if ((flags & SEC_DEBUGGING)
1207 && ((name[1] == 'd' && name[6] == '_')
1208 || (name[1] == 'z' && name[7] == '_')))
1209 {
1210 enum { nothing, compress, decompress } action = nothing;
1211 int compression_header_size;
1212 bfd_size_type uncompressed_size;
1213 unsigned int uncompressed_align_power;
1214 bfd_boolean compressed
1215 = bfd_is_section_compressed_with_header (abfd, newsect,
1216 &compression_header_size,
1217 &uncompressed_size,
1218 &uncompressed_align_power);
1219 if (compressed)
1220 {
1221 /* Compressed section. Check if we should decompress. */
1222 if ((abfd->flags & BFD_DECOMPRESS))
1223 action = decompress;
1224 }
1225
1226 /* Compress the uncompressed section or convert from/to .zdebug*
1227 section. Check if we should compress. */
1228 if (action == nothing)
1229 {
1230 if (newsect->size != 0
1231 && (abfd->flags & BFD_COMPRESS)
1232 && compression_header_size >= 0
1233 && uncompressed_size > 0
1234 && (!compressed
1235 || ((compression_header_size > 0)
1236 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1237 action = compress;
1238 else
1239 return TRUE;
1240 }
1241
1242 if (action == compress)
1243 {
1244 if (!bfd_init_section_compress_status (abfd, newsect))
1245 {
1246 _bfd_error_handler
1247 /* xgettext:c-format */
1248 (_("%pB: unable to initialize compress status for section %s"),
1249 abfd, name);
1250 return FALSE;
1251 }
1252 }
1253 else
1254 {
1255 if (!bfd_init_section_decompress_status (abfd, newsect))
1256 {
1257 _bfd_error_handler
1258 /* xgettext:c-format */
1259 (_("%pB: unable to initialize decompress status for section %s"),
1260 abfd, name);
1261 return FALSE;
1262 }
1263 }
1264
1265 if (abfd->is_linker_input)
1266 {
1267 if (name[1] == 'z'
1268 && (action == decompress
1269 || (action == compress
1270 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1271 {
1272 /* Convert section name from .zdebug_* to .debug_* so
1273 that linker will consider this section as a debug
1274 section. */
1275 char *new_name = convert_zdebug_to_debug (abfd, name);
1276 if (new_name == NULL)
1277 return FALSE;
1278 bfd_rename_section (newsect, new_name);
1279 }
1280 }
1281 else
1282 /* For objdump, don't rename the section. For objcopy, delay
1283 section rename to elf_fake_sections. */
1284 newsect->flags |= SEC_ELF_RENAME;
1285 }
1286
1287 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1288 section. */
1289 const char *lto_section_name = ".gnu.lto_.lto.";
1290 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1291 {
1292 struct lto_section lsection;
1293 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1294 sizeof (struct lto_section)))
1295 abfd->lto_slim_object = lsection.slim_object;
1296 }
1297
1298 return TRUE;
1299 }
1300
1301 const char *const bfd_elf_section_type_names[] =
1302 {
1303 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1304 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1305 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1306 };
1307
1308 /* ELF relocs are against symbols. If we are producing relocatable
1309 output, and the reloc is against an external symbol, and nothing
1310 has given us any additional addend, the resulting reloc will also
1311 be against the same symbol. In such a case, we don't want to
1312 change anything about the way the reloc is handled, since it will
1313 all be done at final link time. Rather than put special case code
1314 into bfd_perform_relocation, all the reloc types use this howto
1315 function. It just short circuits the reloc if producing
1316 relocatable output against an external symbol. */
1317
1318 bfd_reloc_status_type
1319 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1320 arelent *reloc_entry,
1321 asymbol *symbol,
1322 void *data ATTRIBUTE_UNUSED,
1323 asection *input_section,
1324 bfd *output_bfd,
1325 char **error_message ATTRIBUTE_UNUSED)
1326 {
1327 if (output_bfd != NULL
1328 && (symbol->flags & BSF_SECTION_SYM) == 0
1329 && (! reloc_entry->howto->partial_inplace
1330 || reloc_entry->addend == 0))
1331 {
1332 reloc_entry->address += input_section->output_offset;
1333 return bfd_reloc_ok;
1334 }
1335
1336 return bfd_reloc_continue;
1337 }
1338 \f
1339 /* Returns TRUE if section A matches section B.
1340 Names, addresses and links may be different, but everything else
1341 should be the same. */
1342
1343 static bfd_boolean
1344 section_match (const Elf_Internal_Shdr * a,
1345 const Elf_Internal_Shdr * b)
1346 {
1347 if (a->sh_type != b->sh_type
1348 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1349 || a->sh_addralign != b->sh_addralign
1350 || a->sh_entsize != b->sh_entsize)
1351 return FALSE;
1352 if (a->sh_type == SHT_SYMTAB
1353 || a->sh_type == SHT_STRTAB)
1354 return TRUE;
1355 return a->sh_size == b->sh_size;
1356 }
1357
1358 /* Find a section in OBFD that has the same characteristics
1359 as IHEADER. Return the index of this section or SHN_UNDEF if
1360 none can be found. Check's section HINT first, as this is likely
1361 to be the correct section. */
1362
1363 static unsigned int
1364 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1365 const unsigned int hint)
1366 {
1367 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1368 unsigned int i;
1369
1370 BFD_ASSERT (iheader != NULL);
1371
1372 /* See PR 20922 for a reproducer of the NULL test. */
1373 if (hint < elf_numsections (obfd)
1374 && oheaders[hint] != NULL
1375 && section_match (oheaders[hint], iheader))
1376 return hint;
1377
1378 for (i = 1; i < elf_numsections (obfd); i++)
1379 {
1380 Elf_Internal_Shdr * oheader = oheaders[i];
1381
1382 if (oheader == NULL)
1383 continue;
1384 if (section_match (oheader, iheader))
1385 /* FIXME: Do we care if there is a potential for
1386 multiple matches ? */
1387 return i;
1388 }
1389
1390 return SHN_UNDEF;
1391 }
1392
1393 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1394 Processor specific section, based upon a matching input section.
1395 Returns TRUE upon success, FALSE otherwise. */
1396
1397 static bfd_boolean
1398 copy_special_section_fields (const bfd *ibfd,
1399 bfd *obfd,
1400 const Elf_Internal_Shdr *iheader,
1401 Elf_Internal_Shdr *oheader,
1402 const unsigned int secnum)
1403 {
1404 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1405 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1406 bfd_boolean changed = FALSE;
1407 unsigned int sh_link;
1408
1409 if (oheader->sh_type == SHT_NOBITS)
1410 {
1411 /* This is a feature for objcopy --only-keep-debug:
1412 When a section's type is changed to NOBITS, we preserve
1413 the sh_link and sh_info fields so that they can be
1414 matched up with the original.
1415
1416 Note: Strictly speaking these assignments are wrong.
1417 The sh_link and sh_info fields should point to the
1418 relevent sections in the output BFD, which may not be in
1419 the same location as they were in the input BFD. But
1420 the whole point of this action is to preserve the
1421 original values of the sh_link and sh_info fields, so
1422 that they can be matched up with the section headers in
1423 the original file. So strictly speaking we may be
1424 creating an invalid ELF file, but it is only for a file
1425 that just contains debug info and only for sections
1426 without any contents. */
1427 if (oheader->sh_link == 0)
1428 oheader->sh_link = iheader->sh_link;
1429 if (oheader->sh_info == 0)
1430 oheader->sh_info = iheader->sh_info;
1431 return TRUE;
1432 }
1433
1434 /* Allow the target a chance to decide how these fields should be set. */
1435 if (bed->elf_backend_copy_special_section_fields != NULL
1436 && bed->elf_backend_copy_special_section_fields
1437 (ibfd, obfd, iheader, oheader))
1438 return TRUE;
1439
1440 /* We have an iheader which might match oheader, and which has non-zero
1441 sh_info and/or sh_link fields. Attempt to follow those links and find
1442 the section in the output bfd which corresponds to the linked section
1443 in the input bfd. */
1444 if (iheader->sh_link != SHN_UNDEF)
1445 {
1446 /* See PR 20931 for a reproducer. */
1447 if (iheader->sh_link >= elf_numsections (ibfd))
1448 {
1449 _bfd_error_handler
1450 /* xgettext:c-format */
1451 (_("%pB: invalid sh_link field (%d) in section number %d"),
1452 ibfd, iheader->sh_link, secnum);
1453 return FALSE;
1454 }
1455
1456 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1457 if (sh_link != SHN_UNDEF)
1458 {
1459 oheader->sh_link = sh_link;
1460 changed = TRUE;
1461 }
1462 else
1463 /* FIXME: Should we install iheader->sh_link
1464 if we could not find a match ? */
1465 _bfd_error_handler
1466 /* xgettext:c-format */
1467 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1468 }
1469
1470 if (iheader->sh_info)
1471 {
1472 /* The sh_info field can hold arbitrary information, but if the
1473 SHF_LINK_INFO flag is set then it should be interpreted as a
1474 section index. */
1475 if (iheader->sh_flags & SHF_INFO_LINK)
1476 {
1477 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1478 iheader->sh_info);
1479 if (sh_link != SHN_UNDEF)
1480 oheader->sh_flags |= SHF_INFO_LINK;
1481 }
1482 else
1483 /* No idea what it means - just copy it. */
1484 sh_link = iheader->sh_info;
1485
1486 if (sh_link != SHN_UNDEF)
1487 {
1488 oheader->sh_info = sh_link;
1489 changed = TRUE;
1490 }
1491 else
1492 _bfd_error_handler
1493 /* xgettext:c-format */
1494 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1495 }
1496
1497 return changed;
1498 }
1499
1500 /* Copy the program header and other data from one object module to
1501 another. */
1502
1503 bfd_boolean
1504 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1505 {
1506 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1507 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1508 const struct elf_backend_data *bed;
1509 unsigned int i;
1510
1511 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1512 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1513 return TRUE;
1514
1515 if (!elf_flags_init (obfd))
1516 {
1517 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1518 elf_flags_init (obfd) = TRUE;
1519 }
1520
1521 elf_gp (obfd) = elf_gp (ibfd);
1522
1523 /* Also copy the EI_OSABI field. */
1524 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1525 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1526
1527 /* If set, copy the EI_ABIVERSION field. */
1528 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1529 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1530 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1531
1532 /* Copy object attributes. */
1533 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1534
1535 if (iheaders == NULL || oheaders == NULL)
1536 return TRUE;
1537
1538 bed = get_elf_backend_data (obfd);
1539
1540 /* Possibly copy other fields in the section header. */
1541 for (i = 1; i < elf_numsections (obfd); i++)
1542 {
1543 unsigned int j;
1544 Elf_Internal_Shdr * oheader = oheaders[i];
1545
1546 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1547 because of a special case need for generating separate debug info
1548 files. See below for more details. */
1549 if (oheader == NULL
1550 || (oheader->sh_type != SHT_NOBITS
1551 && oheader->sh_type < SHT_LOOS))
1552 continue;
1553
1554 /* Ignore empty sections, and sections whose
1555 fields have already been initialised. */
1556 if (oheader->sh_size == 0
1557 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1558 continue;
1559
1560 /* Scan for the matching section in the input bfd.
1561 First we try for a direct mapping between the input and output sections. */
1562 for (j = 1; j < elf_numsections (ibfd); j++)
1563 {
1564 const Elf_Internal_Shdr * iheader = iheaders[j];
1565
1566 if (iheader == NULL)
1567 continue;
1568
1569 if (oheader->bfd_section != NULL
1570 && iheader->bfd_section != NULL
1571 && iheader->bfd_section->output_section != NULL
1572 && iheader->bfd_section->output_section == oheader->bfd_section)
1573 {
1574 /* We have found a connection from the input section to the
1575 output section. Attempt to copy the header fields. If
1576 this fails then do not try any further sections - there
1577 should only be a one-to-one mapping between input and output. */
1578 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1579 j = elf_numsections (ibfd);
1580 break;
1581 }
1582 }
1583
1584 if (j < elf_numsections (ibfd))
1585 continue;
1586
1587 /* That failed. So try to deduce the corresponding input section.
1588 Unfortunately we cannot compare names as the output string table
1589 is empty, so instead we check size, address and type. */
1590 for (j = 1; j < elf_numsections (ibfd); j++)
1591 {
1592 const Elf_Internal_Shdr * iheader = iheaders[j];
1593
1594 if (iheader == NULL)
1595 continue;
1596
1597 /* Try matching fields in the input section's header.
1598 Since --only-keep-debug turns all non-debug sections into
1599 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1600 input type. */
1601 if ((oheader->sh_type == SHT_NOBITS
1602 || iheader->sh_type == oheader->sh_type)
1603 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1604 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1605 && iheader->sh_addralign == oheader->sh_addralign
1606 && iheader->sh_entsize == oheader->sh_entsize
1607 && iheader->sh_size == oheader->sh_size
1608 && iheader->sh_addr == oheader->sh_addr
1609 && (iheader->sh_info != oheader->sh_info
1610 || iheader->sh_link != oheader->sh_link))
1611 {
1612 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1613 break;
1614 }
1615 }
1616
1617 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1618 {
1619 /* Final attempt. Call the backend copy function
1620 with a NULL input section. */
1621 if (bed->elf_backend_copy_special_section_fields != NULL)
1622 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1623 }
1624 }
1625
1626 return TRUE;
1627 }
1628
1629 static const char *
1630 get_segment_type (unsigned int p_type)
1631 {
1632 const char *pt;
1633 switch (p_type)
1634 {
1635 case PT_NULL: pt = "NULL"; break;
1636 case PT_LOAD: pt = "LOAD"; break;
1637 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1638 case PT_INTERP: pt = "INTERP"; break;
1639 case PT_NOTE: pt = "NOTE"; break;
1640 case PT_SHLIB: pt = "SHLIB"; break;
1641 case PT_PHDR: pt = "PHDR"; break;
1642 case PT_TLS: pt = "TLS"; break;
1643 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1644 case PT_GNU_STACK: pt = "STACK"; break;
1645 case PT_GNU_RELRO: pt = "RELRO"; break;
1646 default: pt = NULL; break;
1647 }
1648 return pt;
1649 }
1650
1651 /* Print out the program headers. */
1652
1653 bfd_boolean
1654 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1655 {
1656 FILE *f = (FILE *) farg;
1657 Elf_Internal_Phdr *p;
1658 asection *s;
1659 bfd_byte *dynbuf = NULL;
1660
1661 p = elf_tdata (abfd)->phdr;
1662 if (p != NULL)
1663 {
1664 unsigned int i, c;
1665
1666 fprintf (f, _("\nProgram Header:\n"));
1667 c = elf_elfheader (abfd)->e_phnum;
1668 for (i = 0; i < c; i++, p++)
1669 {
1670 const char *pt = get_segment_type (p->p_type);
1671 char buf[20];
1672
1673 if (pt == NULL)
1674 {
1675 sprintf (buf, "0x%lx", p->p_type);
1676 pt = buf;
1677 }
1678 fprintf (f, "%8s off 0x", pt);
1679 bfd_fprintf_vma (abfd, f, p->p_offset);
1680 fprintf (f, " vaddr 0x");
1681 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1682 fprintf (f, " paddr 0x");
1683 bfd_fprintf_vma (abfd, f, p->p_paddr);
1684 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1685 fprintf (f, " filesz 0x");
1686 bfd_fprintf_vma (abfd, f, p->p_filesz);
1687 fprintf (f, " memsz 0x");
1688 bfd_fprintf_vma (abfd, f, p->p_memsz);
1689 fprintf (f, " flags %c%c%c",
1690 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1691 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1692 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1693 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1694 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1695 fprintf (f, "\n");
1696 }
1697 }
1698
1699 s = bfd_get_section_by_name (abfd, ".dynamic");
1700 if (s != NULL)
1701 {
1702 unsigned int elfsec;
1703 unsigned long shlink;
1704 bfd_byte *extdyn, *extdynend;
1705 size_t extdynsize;
1706 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1707
1708 fprintf (f, _("\nDynamic Section:\n"));
1709
1710 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1711 goto error_return;
1712
1713 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1714 if (elfsec == SHN_BAD)
1715 goto error_return;
1716 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1717
1718 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1719 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1720
1721 extdyn = dynbuf;
1722 /* PR 17512: file: 6f427532. */
1723 if (s->size < extdynsize)
1724 goto error_return;
1725 extdynend = extdyn + s->size;
1726 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1727 Fix range check. */
1728 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1729 {
1730 Elf_Internal_Dyn dyn;
1731 const char *name = "";
1732 char ab[20];
1733 bfd_boolean stringp;
1734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1735
1736 (*swap_dyn_in) (abfd, extdyn, &dyn);
1737
1738 if (dyn.d_tag == DT_NULL)
1739 break;
1740
1741 stringp = FALSE;
1742 switch (dyn.d_tag)
1743 {
1744 default:
1745 if (bed->elf_backend_get_target_dtag)
1746 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1747
1748 if (!strcmp (name, ""))
1749 {
1750 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1751 name = ab;
1752 }
1753 break;
1754
1755 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1756 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1757 case DT_PLTGOT: name = "PLTGOT"; break;
1758 case DT_HASH: name = "HASH"; break;
1759 case DT_STRTAB: name = "STRTAB"; break;
1760 case DT_SYMTAB: name = "SYMTAB"; break;
1761 case DT_RELA: name = "RELA"; break;
1762 case DT_RELASZ: name = "RELASZ"; break;
1763 case DT_RELAENT: name = "RELAENT"; break;
1764 case DT_STRSZ: name = "STRSZ"; break;
1765 case DT_SYMENT: name = "SYMENT"; break;
1766 case DT_INIT: name = "INIT"; break;
1767 case DT_FINI: name = "FINI"; break;
1768 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1769 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1770 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1771 case DT_REL: name = "REL"; break;
1772 case DT_RELSZ: name = "RELSZ"; break;
1773 case DT_RELENT: name = "RELENT"; break;
1774 case DT_PLTREL: name = "PLTREL"; break;
1775 case DT_DEBUG: name = "DEBUG"; break;
1776 case DT_TEXTREL: name = "TEXTREL"; break;
1777 case DT_JMPREL: name = "JMPREL"; break;
1778 case DT_BIND_NOW: name = "BIND_NOW"; break;
1779 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1780 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1781 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1782 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1783 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1784 case DT_FLAGS: name = "FLAGS"; break;
1785 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1786 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1787 case DT_CHECKSUM: name = "CHECKSUM"; break;
1788 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1789 case DT_MOVEENT: name = "MOVEENT"; break;
1790 case DT_MOVESZ: name = "MOVESZ"; break;
1791 case DT_FEATURE: name = "FEATURE"; break;
1792 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1793 case DT_SYMINSZ: name = "SYMINSZ"; break;
1794 case DT_SYMINENT: name = "SYMINENT"; break;
1795 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1796 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1797 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1798 case DT_PLTPAD: name = "PLTPAD"; break;
1799 case DT_MOVETAB: name = "MOVETAB"; break;
1800 case DT_SYMINFO: name = "SYMINFO"; break;
1801 case DT_RELACOUNT: name = "RELACOUNT"; break;
1802 case DT_RELCOUNT: name = "RELCOUNT"; break;
1803 case DT_FLAGS_1: name = "FLAGS_1"; break;
1804 case DT_VERSYM: name = "VERSYM"; break;
1805 case DT_VERDEF: name = "VERDEF"; break;
1806 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1807 case DT_VERNEED: name = "VERNEED"; break;
1808 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1809 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1810 case DT_USED: name = "USED"; break;
1811 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1812 case DT_GNU_HASH: name = "GNU_HASH"; break;
1813 }
1814
1815 fprintf (f, " %-20s ", name);
1816 if (! stringp)
1817 {
1818 fprintf (f, "0x");
1819 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1820 }
1821 else
1822 {
1823 const char *string;
1824 unsigned int tagv = dyn.d_un.d_val;
1825
1826 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1827 if (string == NULL)
1828 goto error_return;
1829 fprintf (f, "%s", string);
1830 }
1831 fprintf (f, "\n");
1832 }
1833
1834 free (dynbuf);
1835 dynbuf = NULL;
1836 }
1837
1838 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1839 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1840 {
1841 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1842 return FALSE;
1843 }
1844
1845 if (elf_dynverdef (abfd) != 0)
1846 {
1847 Elf_Internal_Verdef *t;
1848
1849 fprintf (f, _("\nVersion definitions:\n"));
1850 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1851 {
1852 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1853 t->vd_flags, t->vd_hash,
1854 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1855 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1856 {
1857 Elf_Internal_Verdaux *a;
1858
1859 fprintf (f, "\t");
1860 for (a = t->vd_auxptr->vda_nextptr;
1861 a != NULL;
1862 a = a->vda_nextptr)
1863 fprintf (f, "%s ",
1864 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1865 fprintf (f, "\n");
1866 }
1867 }
1868 }
1869
1870 if (elf_dynverref (abfd) != 0)
1871 {
1872 Elf_Internal_Verneed *t;
1873
1874 fprintf (f, _("\nVersion References:\n"));
1875 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1876 {
1877 Elf_Internal_Vernaux *a;
1878
1879 fprintf (f, _(" required from %s:\n"),
1880 t->vn_filename ? t->vn_filename : "<corrupt>");
1881 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1882 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1883 a->vna_flags, a->vna_other,
1884 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1885 }
1886 }
1887
1888 return TRUE;
1889
1890 error_return:
1891 if (dynbuf != NULL)
1892 free (dynbuf);
1893 return FALSE;
1894 }
1895
1896 /* Get version string. */
1897
1898 const char *
1899 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1900 bfd_boolean *hidden)
1901 {
1902 const char *version_string = NULL;
1903 if (elf_dynversym (abfd) != 0
1904 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1905 {
1906 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1907
1908 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1909 vernum &= VERSYM_VERSION;
1910
1911 if (vernum == 0)
1912 version_string = "";
1913 else if (vernum == 1
1914 && (vernum > elf_tdata (abfd)->cverdefs
1915 || (elf_tdata (abfd)->verdef[0].vd_flags
1916 == VER_FLG_BASE)))
1917 version_string = "Base";
1918 else if (vernum <= elf_tdata (abfd)->cverdefs)
1919 version_string =
1920 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1921 else
1922 {
1923 Elf_Internal_Verneed *t;
1924
1925 version_string = _("<corrupt>");
1926 for (t = elf_tdata (abfd)->verref;
1927 t != NULL;
1928 t = t->vn_nextref)
1929 {
1930 Elf_Internal_Vernaux *a;
1931
1932 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1933 {
1934 if (a->vna_other == vernum)
1935 {
1936 version_string = a->vna_nodename;
1937 break;
1938 }
1939 }
1940 }
1941 }
1942 }
1943 return version_string;
1944 }
1945
1946 /* Display ELF-specific fields of a symbol. */
1947
1948 void
1949 bfd_elf_print_symbol (bfd *abfd,
1950 void *filep,
1951 asymbol *symbol,
1952 bfd_print_symbol_type how)
1953 {
1954 FILE *file = (FILE *) filep;
1955 switch (how)
1956 {
1957 case bfd_print_symbol_name:
1958 fprintf (file, "%s", symbol->name);
1959 break;
1960 case bfd_print_symbol_more:
1961 fprintf (file, "elf ");
1962 bfd_fprintf_vma (abfd, file, symbol->value);
1963 fprintf (file, " %x", symbol->flags);
1964 break;
1965 case bfd_print_symbol_all:
1966 {
1967 const char *section_name;
1968 const char *name = NULL;
1969 const struct elf_backend_data *bed;
1970 unsigned char st_other;
1971 bfd_vma val;
1972 const char *version_string;
1973 bfd_boolean hidden;
1974
1975 section_name = symbol->section ? symbol->section->name : "(*none*)";
1976
1977 bed = get_elf_backend_data (abfd);
1978 if (bed->elf_backend_print_symbol_all)
1979 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1980
1981 if (name == NULL)
1982 {
1983 name = symbol->name;
1984 bfd_print_symbol_vandf (abfd, file, symbol);
1985 }
1986
1987 fprintf (file, " %s\t", section_name);
1988 /* Print the "other" value for a symbol. For common symbols,
1989 we've already printed the size; now print the alignment.
1990 For other symbols, we have no specified alignment, and
1991 we've printed the address; now print the size. */
1992 if (symbol->section && bfd_is_com_section (symbol->section))
1993 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1994 else
1995 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1996 bfd_fprintf_vma (abfd, file, val);
1997
1998 /* If we have version information, print it. */
1999 version_string = _bfd_elf_get_symbol_version_string (abfd,
2000 symbol,
2001 &hidden);
2002 if (version_string)
2003 {
2004 if (!hidden)
2005 fprintf (file, " %-11s", version_string);
2006 else
2007 {
2008 int i;
2009
2010 fprintf (file, " (%s)", version_string);
2011 for (i = 10 - strlen (version_string); i > 0; --i)
2012 putc (' ', file);
2013 }
2014 }
2015
2016 /* If the st_other field is not zero, print it. */
2017 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2018
2019 switch (st_other)
2020 {
2021 case 0: break;
2022 case STV_INTERNAL: fprintf (file, " .internal"); break;
2023 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2024 case STV_PROTECTED: fprintf (file, " .protected"); break;
2025 default:
2026 /* Some other non-defined flags are also present, so print
2027 everything hex. */
2028 fprintf (file, " 0x%02x", (unsigned int) st_other);
2029 }
2030
2031 fprintf (file, " %s", name);
2032 }
2033 break;
2034 }
2035 }
2036 \f
2037 /* ELF .o/exec file reading */
2038
2039 /* Create a new bfd section from an ELF section header. */
2040
2041 bfd_boolean
2042 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2043 {
2044 Elf_Internal_Shdr *hdr;
2045 Elf_Internal_Ehdr *ehdr;
2046 const struct elf_backend_data *bed;
2047 const char *name;
2048 bfd_boolean ret = TRUE;
2049 static bfd_boolean * sections_being_created = NULL;
2050 static bfd * sections_being_created_abfd = NULL;
2051 static unsigned int nesting = 0;
2052
2053 if (shindex >= elf_numsections (abfd))
2054 return FALSE;
2055
2056 if (++ nesting > 3)
2057 {
2058 /* PR17512: A corrupt ELF binary might contain a recursive group of
2059 sections, with each the string indices pointing to the next in the
2060 loop. Detect this here, by refusing to load a section that we are
2061 already in the process of loading. We only trigger this test if
2062 we have nested at least three sections deep as normal ELF binaries
2063 can expect to recurse at least once.
2064
2065 FIXME: It would be better if this array was attached to the bfd,
2066 rather than being held in a static pointer. */
2067
2068 if (sections_being_created_abfd != abfd)
2069 sections_being_created = NULL;
2070 if (sections_being_created == NULL)
2071 {
2072 sections_being_created = (bfd_boolean *)
2073 bfd_zalloc2 (abfd, elf_numsections (abfd), sizeof (bfd_boolean));
2074 sections_being_created_abfd = abfd;
2075 }
2076 if (sections_being_created [shindex])
2077 {
2078 _bfd_error_handler
2079 (_("%pB: warning: loop in section dependencies detected"), abfd);
2080 return FALSE;
2081 }
2082 sections_being_created [shindex] = TRUE;
2083 }
2084
2085 hdr = elf_elfsections (abfd)[shindex];
2086 ehdr = elf_elfheader (abfd);
2087 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2088 hdr->sh_name);
2089 if (name == NULL)
2090 goto fail;
2091
2092 bed = get_elf_backend_data (abfd);
2093 switch (hdr->sh_type)
2094 {
2095 case SHT_NULL:
2096 /* Inactive section. Throw it away. */
2097 goto success;
2098
2099 case SHT_PROGBITS: /* Normal section with contents. */
2100 case SHT_NOBITS: /* .bss section. */
2101 case SHT_HASH: /* .hash section. */
2102 case SHT_NOTE: /* .note section. */
2103 case SHT_INIT_ARRAY: /* .init_array section. */
2104 case SHT_FINI_ARRAY: /* .fini_array section. */
2105 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2106 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2107 case SHT_GNU_HASH: /* .gnu.hash section. */
2108 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2109 goto success;
2110
2111 case SHT_DYNAMIC: /* Dynamic linking information. */
2112 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2113 goto fail;
2114
2115 if (hdr->sh_link > elf_numsections (abfd))
2116 {
2117 /* PR 10478: Accept Solaris binaries with a sh_link
2118 field set to SHN_BEFORE or SHN_AFTER. */
2119 switch (bfd_get_arch (abfd))
2120 {
2121 case bfd_arch_i386:
2122 case bfd_arch_sparc:
2123 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2124 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2125 break;
2126 /* Otherwise fall through. */
2127 default:
2128 goto fail;
2129 }
2130 }
2131 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2132 goto fail;
2133 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2134 {
2135 Elf_Internal_Shdr *dynsymhdr;
2136
2137 /* The shared libraries distributed with hpux11 have a bogus
2138 sh_link field for the ".dynamic" section. Find the
2139 string table for the ".dynsym" section instead. */
2140 if (elf_dynsymtab (abfd) != 0)
2141 {
2142 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2143 hdr->sh_link = dynsymhdr->sh_link;
2144 }
2145 else
2146 {
2147 unsigned int i, num_sec;
2148
2149 num_sec = elf_numsections (abfd);
2150 for (i = 1; i < num_sec; i++)
2151 {
2152 dynsymhdr = elf_elfsections (abfd)[i];
2153 if (dynsymhdr->sh_type == SHT_DYNSYM)
2154 {
2155 hdr->sh_link = dynsymhdr->sh_link;
2156 break;
2157 }
2158 }
2159 }
2160 }
2161 goto success;
2162
2163 case SHT_SYMTAB: /* A symbol table. */
2164 if (elf_onesymtab (abfd) == shindex)
2165 goto success;
2166
2167 if (hdr->sh_entsize != bed->s->sizeof_sym)
2168 goto fail;
2169
2170 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2171 {
2172 if (hdr->sh_size != 0)
2173 goto fail;
2174 /* Some assemblers erroneously set sh_info to one with a
2175 zero sh_size. ld sees this as a global symbol count
2176 of (unsigned) -1. Fix it here. */
2177 hdr->sh_info = 0;
2178 goto success;
2179 }
2180
2181 /* PR 18854: A binary might contain more than one symbol table.
2182 Unusual, but possible. Warn, but continue. */
2183 if (elf_onesymtab (abfd) != 0)
2184 {
2185 _bfd_error_handler
2186 /* xgettext:c-format */
2187 (_("%pB: warning: multiple symbol tables detected"
2188 " - ignoring the table in section %u"),
2189 abfd, shindex);
2190 goto success;
2191 }
2192 elf_onesymtab (abfd) = shindex;
2193 elf_symtab_hdr (abfd) = *hdr;
2194 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2195 abfd->flags |= HAS_SYMS;
2196
2197 /* Sometimes a shared object will map in the symbol table. If
2198 SHF_ALLOC is set, and this is a shared object, then we also
2199 treat this section as a BFD section. We can not base the
2200 decision purely on SHF_ALLOC, because that flag is sometimes
2201 set in a relocatable object file, which would confuse the
2202 linker. */
2203 if ((hdr->sh_flags & SHF_ALLOC) != 0
2204 && (abfd->flags & DYNAMIC) != 0
2205 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2206 shindex))
2207 goto fail;
2208
2209 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2210 can't read symbols without that section loaded as well. It
2211 is most likely specified by the next section header. */
2212 {
2213 elf_section_list * entry;
2214 unsigned int i, num_sec;
2215
2216 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2217 if (entry->hdr.sh_link == shindex)
2218 goto success;
2219
2220 num_sec = elf_numsections (abfd);
2221 for (i = shindex + 1; i < num_sec; i++)
2222 {
2223 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2224
2225 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2226 && hdr2->sh_link == shindex)
2227 break;
2228 }
2229
2230 if (i == num_sec)
2231 for (i = 1; i < shindex; i++)
2232 {
2233 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2234
2235 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2236 && hdr2->sh_link == shindex)
2237 break;
2238 }
2239
2240 if (i != shindex)
2241 ret = bfd_section_from_shdr (abfd, i);
2242 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2243 goto success;
2244 }
2245
2246 case SHT_DYNSYM: /* A dynamic symbol table. */
2247 if (elf_dynsymtab (abfd) == shindex)
2248 goto success;
2249
2250 if (hdr->sh_entsize != bed->s->sizeof_sym)
2251 goto fail;
2252
2253 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2254 {
2255 if (hdr->sh_size != 0)
2256 goto fail;
2257
2258 /* Some linkers erroneously set sh_info to one with a
2259 zero sh_size. ld sees this as a global symbol count
2260 of (unsigned) -1. Fix it here. */
2261 hdr->sh_info = 0;
2262 goto success;
2263 }
2264
2265 /* PR 18854: A binary might contain more than one dynamic symbol table.
2266 Unusual, but possible. Warn, but continue. */
2267 if (elf_dynsymtab (abfd) != 0)
2268 {
2269 _bfd_error_handler
2270 /* xgettext:c-format */
2271 (_("%pB: warning: multiple dynamic symbol tables detected"
2272 " - ignoring the table in section %u"),
2273 abfd, shindex);
2274 goto success;
2275 }
2276 elf_dynsymtab (abfd) = shindex;
2277 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2278 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2279 abfd->flags |= HAS_SYMS;
2280
2281 /* Besides being a symbol table, we also treat this as a regular
2282 section, so that objcopy can handle it. */
2283 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2284 goto success;
2285
2286 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2287 {
2288 elf_section_list * entry;
2289
2290 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2291 if (entry->ndx == shindex)
2292 goto success;
2293
2294 entry = bfd_alloc (abfd, sizeof (*entry));
2295 if (entry == NULL)
2296 goto fail;
2297 entry->ndx = shindex;
2298 entry->hdr = * hdr;
2299 entry->next = elf_symtab_shndx_list (abfd);
2300 elf_symtab_shndx_list (abfd) = entry;
2301 elf_elfsections (abfd)[shindex] = & entry->hdr;
2302 goto success;
2303 }
2304
2305 case SHT_STRTAB: /* A string table. */
2306 if (hdr->bfd_section != NULL)
2307 goto success;
2308
2309 if (ehdr->e_shstrndx == shindex)
2310 {
2311 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2312 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2313 goto success;
2314 }
2315
2316 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2317 {
2318 symtab_strtab:
2319 elf_tdata (abfd)->strtab_hdr = *hdr;
2320 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2321 goto success;
2322 }
2323
2324 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2325 {
2326 dynsymtab_strtab:
2327 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2328 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2329 elf_elfsections (abfd)[shindex] = hdr;
2330 /* We also treat this as a regular section, so that objcopy
2331 can handle it. */
2332 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2333 shindex);
2334 goto success;
2335 }
2336
2337 /* If the string table isn't one of the above, then treat it as a
2338 regular section. We need to scan all the headers to be sure,
2339 just in case this strtab section appeared before the above. */
2340 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2341 {
2342 unsigned int i, num_sec;
2343
2344 num_sec = elf_numsections (abfd);
2345 for (i = 1; i < num_sec; i++)
2346 {
2347 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2348 if (hdr2->sh_link == shindex)
2349 {
2350 /* Prevent endless recursion on broken objects. */
2351 if (i == shindex)
2352 goto fail;
2353 if (! bfd_section_from_shdr (abfd, i))
2354 goto fail;
2355 if (elf_onesymtab (abfd) == i)
2356 goto symtab_strtab;
2357 if (elf_dynsymtab (abfd) == i)
2358 goto dynsymtab_strtab;
2359 }
2360 }
2361 }
2362 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2363 goto success;
2364
2365 case SHT_REL:
2366 case SHT_RELA:
2367 /* *These* do a lot of work -- but build no sections! */
2368 {
2369 asection *target_sect;
2370 Elf_Internal_Shdr *hdr2, **p_hdr;
2371 unsigned int num_sec = elf_numsections (abfd);
2372 struct bfd_elf_section_data *esdt;
2373
2374 if (hdr->sh_entsize
2375 != (bfd_size_type) (hdr->sh_type == SHT_REL
2376 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2377 goto fail;
2378
2379 /* Check for a bogus link to avoid crashing. */
2380 if (hdr->sh_link >= num_sec)
2381 {
2382 _bfd_error_handler
2383 /* xgettext:c-format */
2384 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2385 abfd, hdr->sh_link, name, shindex);
2386 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2387 shindex);
2388 goto success;
2389 }
2390
2391 /* For some incomprehensible reason Oracle distributes
2392 libraries for Solaris in which some of the objects have
2393 bogus sh_link fields. It would be nice if we could just
2394 reject them, but, unfortunately, some people need to use
2395 them. We scan through the section headers; if we find only
2396 one suitable symbol table, we clobber the sh_link to point
2397 to it. I hope this doesn't break anything.
2398
2399 Don't do it on executable nor shared library. */
2400 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2401 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2402 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2403 {
2404 unsigned int scan;
2405 int found;
2406
2407 found = 0;
2408 for (scan = 1; scan < num_sec; scan++)
2409 {
2410 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2411 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2412 {
2413 if (found != 0)
2414 {
2415 found = 0;
2416 break;
2417 }
2418 found = scan;
2419 }
2420 }
2421 if (found != 0)
2422 hdr->sh_link = found;
2423 }
2424
2425 /* Get the symbol table. */
2426 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2427 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2428 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2429 goto fail;
2430
2431 /* If this is an alloc section in an executable or shared
2432 library, or the reloc section does not use the main symbol
2433 table we don't treat it as a reloc section. BFD can't
2434 adequately represent such a section, so at least for now,
2435 we don't try. We just present it as a normal section. We
2436 also can't use it as a reloc section if it points to the
2437 null section, an invalid section, another reloc section, or
2438 its sh_link points to the null section. */
2439 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2440 && (hdr->sh_flags & SHF_ALLOC) != 0)
2441 || hdr->sh_link == SHN_UNDEF
2442 || hdr->sh_link != elf_onesymtab (abfd)
2443 || hdr->sh_info == SHN_UNDEF
2444 || hdr->sh_info >= num_sec
2445 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2446 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2447 {
2448 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2449 shindex);
2450 goto success;
2451 }
2452
2453 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2454 goto fail;
2455
2456 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2457 if (target_sect == NULL)
2458 goto fail;
2459
2460 esdt = elf_section_data (target_sect);
2461 if (hdr->sh_type == SHT_RELA)
2462 p_hdr = &esdt->rela.hdr;
2463 else
2464 p_hdr = &esdt->rel.hdr;
2465
2466 /* PR 17512: file: 0b4f81b7.
2467 Also see PR 24456, for a file which deliberately has two reloc
2468 sections. */
2469 if (*p_hdr != NULL)
2470 {
2471 _bfd_error_handler
2472 /* xgettext:c-format */
2473 (_("%pB: warning: multiple relocation sections for section %pA \
2474 found - ignoring all but the first"),
2475 abfd, target_sect);
2476 goto success;
2477 }
2478 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2479 if (hdr2 == NULL)
2480 goto fail;
2481 *hdr2 = *hdr;
2482 *p_hdr = hdr2;
2483 elf_elfsections (abfd)[shindex] = hdr2;
2484 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2485 * bed->s->int_rels_per_ext_rel);
2486 target_sect->flags |= SEC_RELOC;
2487 target_sect->relocation = NULL;
2488 target_sect->rel_filepos = hdr->sh_offset;
2489 /* In the section to which the relocations apply, mark whether
2490 its relocations are of the REL or RELA variety. */
2491 if (hdr->sh_size != 0)
2492 {
2493 if (hdr->sh_type == SHT_RELA)
2494 target_sect->use_rela_p = 1;
2495 }
2496 abfd->flags |= HAS_RELOC;
2497 goto success;
2498 }
2499
2500 case SHT_GNU_verdef:
2501 elf_dynverdef (abfd) = shindex;
2502 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2503 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2504 goto success;
2505
2506 case SHT_GNU_versym:
2507 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2508 goto fail;
2509
2510 elf_dynversym (abfd) = shindex;
2511 elf_tdata (abfd)->dynversym_hdr = *hdr;
2512 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2513 goto success;
2514
2515 case SHT_GNU_verneed:
2516 elf_dynverref (abfd) = shindex;
2517 elf_tdata (abfd)->dynverref_hdr = *hdr;
2518 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2519 goto success;
2520
2521 case SHT_SHLIB:
2522 goto success;
2523
2524 case SHT_GROUP:
2525 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2526 goto fail;
2527
2528 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2529 goto fail;
2530
2531 goto success;
2532
2533 default:
2534 /* Possibly an attributes section. */
2535 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2536 || hdr->sh_type == bed->obj_attrs_section_type)
2537 {
2538 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2539 goto fail;
2540 _bfd_elf_parse_attributes (abfd, hdr);
2541 goto success;
2542 }
2543
2544 /* Check for any processor-specific section types. */
2545 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2546 goto success;
2547
2548 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2549 {
2550 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2551 /* FIXME: How to properly handle allocated section reserved
2552 for applications? */
2553 _bfd_error_handler
2554 /* xgettext:c-format */
2555 (_("%pB: unknown type [%#x] section `%s'"),
2556 abfd, hdr->sh_type, name);
2557 else
2558 {
2559 /* Allow sections reserved for applications. */
2560 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2561 shindex);
2562 goto success;
2563 }
2564 }
2565 else if (hdr->sh_type >= SHT_LOPROC
2566 && hdr->sh_type <= SHT_HIPROC)
2567 /* FIXME: We should handle this section. */
2568 _bfd_error_handler
2569 /* xgettext:c-format */
2570 (_("%pB: unknown type [%#x] section `%s'"),
2571 abfd, hdr->sh_type, name);
2572 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2573 {
2574 /* Unrecognised OS-specific sections. */
2575 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2576 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2577 required to correctly process the section and the file should
2578 be rejected with an error message. */
2579 _bfd_error_handler
2580 /* xgettext:c-format */
2581 (_("%pB: unknown type [%#x] section `%s'"),
2582 abfd, hdr->sh_type, name);
2583 else
2584 {
2585 /* Otherwise it should be processed. */
2586 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2587 goto success;
2588 }
2589 }
2590 else
2591 /* FIXME: We should handle this section. */
2592 _bfd_error_handler
2593 /* xgettext:c-format */
2594 (_("%pB: unknown type [%#x] section `%s'"),
2595 abfd, hdr->sh_type, name);
2596
2597 goto fail;
2598 }
2599
2600 fail:
2601 ret = FALSE;
2602 success:
2603 if (sections_being_created && sections_being_created_abfd == abfd)
2604 sections_being_created [shindex] = FALSE;
2605 if (-- nesting == 0)
2606 {
2607 sections_being_created = NULL;
2608 sections_being_created_abfd = abfd;
2609 }
2610 return ret;
2611 }
2612
2613 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2614
2615 Elf_Internal_Sym *
2616 bfd_sym_from_r_symndx (struct sym_cache *cache,
2617 bfd *abfd,
2618 unsigned long r_symndx)
2619 {
2620 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2621
2622 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2623 {
2624 Elf_Internal_Shdr *symtab_hdr;
2625 unsigned char esym[sizeof (Elf64_External_Sym)];
2626 Elf_External_Sym_Shndx eshndx;
2627
2628 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2629 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2630 &cache->sym[ent], esym, &eshndx) == NULL)
2631 return NULL;
2632
2633 if (cache->abfd != abfd)
2634 {
2635 memset (cache->indx, -1, sizeof (cache->indx));
2636 cache->abfd = abfd;
2637 }
2638 cache->indx[ent] = r_symndx;
2639 }
2640
2641 return &cache->sym[ent];
2642 }
2643
2644 /* Given an ELF section number, retrieve the corresponding BFD
2645 section. */
2646
2647 asection *
2648 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2649 {
2650 if (sec_index >= elf_numsections (abfd))
2651 return NULL;
2652 return elf_elfsections (abfd)[sec_index]->bfd_section;
2653 }
2654
2655 static const struct bfd_elf_special_section special_sections_b[] =
2656 {
2657 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2658 { NULL, 0, 0, 0, 0 }
2659 };
2660
2661 static const struct bfd_elf_special_section special_sections_c[] =
2662 {
2663 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2664 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2665 { NULL, 0, 0, 0, 0 }
2666 };
2667
2668 static const struct bfd_elf_special_section special_sections_d[] =
2669 {
2670 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2671 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2672 /* There are more DWARF sections than these, but they needn't be added here
2673 unless you have to cope with broken compilers that don't emit section
2674 attributes or you want to help the user writing assembler. */
2675 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2676 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2677 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2678 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2679 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2680 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2681 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2682 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2683 { NULL, 0, 0, 0, 0 }
2684 };
2685
2686 static const struct bfd_elf_special_section special_sections_f[] =
2687 {
2688 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2689 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2690 { NULL, 0 , 0, 0, 0 }
2691 };
2692
2693 static const struct bfd_elf_special_section special_sections_g[] =
2694 {
2695 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2696 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2697 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2698 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2699 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2700 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2701 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2702 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2703 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2704 { NULL, 0, 0, 0, 0 }
2705 };
2706
2707 static const struct bfd_elf_special_section special_sections_h[] =
2708 {
2709 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2710 { NULL, 0, 0, 0, 0 }
2711 };
2712
2713 static const struct bfd_elf_special_section special_sections_i[] =
2714 {
2715 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2716 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2717 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2718 { NULL, 0, 0, 0, 0 }
2719 };
2720
2721 static const struct bfd_elf_special_section special_sections_l[] =
2722 {
2723 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2724 { NULL, 0, 0, 0, 0 }
2725 };
2726
2727 static const struct bfd_elf_special_section special_sections_n[] =
2728 {
2729 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2730 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2731 { NULL, 0, 0, 0, 0 }
2732 };
2733
2734 static const struct bfd_elf_special_section special_sections_p[] =
2735 {
2736 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2737 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2738 { NULL, 0, 0, 0, 0 }
2739 };
2740
2741 static const struct bfd_elf_special_section special_sections_r[] =
2742 {
2743 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2744 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2745 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2746 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2747 { NULL, 0, 0, 0, 0 }
2748 };
2749
2750 static const struct bfd_elf_special_section special_sections_s[] =
2751 {
2752 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2753 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2754 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2755 /* See struct bfd_elf_special_section declaration for the semantics of
2756 this special case where .prefix_length != strlen (.prefix). */
2757 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2758 { NULL, 0, 0, 0, 0 }
2759 };
2760
2761 static const struct bfd_elf_special_section special_sections_t[] =
2762 {
2763 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2764 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2765 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2766 { NULL, 0, 0, 0, 0 }
2767 };
2768
2769 static const struct bfd_elf_special_section special_sections_z[] =
2770 {
2771 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2772 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2773 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2774 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2775 { NULL, 0, 0, 0, 0 }
2776 };
2777
2778 static const struct bfd_elf_special_section * const special_sections[] =
2779 {
2780 special_sections_b, /* 'b' */
2781 special_sections_c, /* 'c' */
2782 special_sections_d, /* 'd' */
2783 NULL, /* 'e' */
2784 special_sections_f, /* 'f' */
2785 special_sections_g, /* 'g' */
2786 special_sections_h, /* 'h' */
2787 special_sections_i, /* 'i' */
2788 NULL, /* 'j' */
2789 NULL, /* 'k' */
2790 special_sections_l, /* 'l' */
2791 NULL, /* 'm' */
2792 special_sections_n, /* 'n' */
2793 NULL, /* 'o' */
2794 special_sections_p, /* 'p' */
2795 NULL, /* 'q' */
2796 special_sections_r, /* 'r' */
2797 special_sections_s, /* 's' */
2798 special_sections_t, /* 't' */
2799 NULL, /* 'u' */
2800 NULL, /* 'v' */
2801 NULL, /* 'w' */
2802 NULL, /* 'x' */
2803 NULL, /* 'y' */
2804 special_sections_z /* 'z' */
2805 };
2806
2807 const struct bfd_elf_special_section *
2808 _bfd_elf_get_special_section (const char *name,
2809 const struct bfd_elf_special_section *spec,
2810 unsigned int rela)
2811 {
2812 int i;
2813 int len;
2814
2815 len = strlen (name);
2816
2817 for (i = 0; spec[i].prefix != NULL; i++)
2818 {
2819 int suffix_len;
2820 int prefix_len = spec[i].prefix_length;
2821
2822 if (len < prefix_len)
2823 continue;
2824 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2825 continue;
2826
2827 suffix_len = spec[i].suffix_length;
2828 if (suffix_len <= 0)
2829 {
2830 if (name[prefix_len] != 0)
2831 {
2832 if (suffix_len == 0)
2833 continue;
2834 if (name[prefix_len] != '.'
2835 && (suffix_len == -2
2836 || (rela && spec[i].type == SHT_REL)))
2837 continue;
2838 }
2839 }
2840 else
2841 {
2842 if (len < prefix_len + suffix_len)
2843 continue;
2844 if (memcmp (name + len - suffix_len,
2845 spec[i].prefix + prefix_len,
2846 suffix_len) != 0)
2847 continue;
2848 }
2849 return &spec[i];
2850 }
2851
2852 return NULL;
2853 }
2854
2855 const struct bfd_elf_special_section *
2856 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2857 {
2858 int i;
2859 const struct bfd_elf_special_section *spec;
2860 const struct elf_backend_data *bed;
2861
2862 /* See if this is one of the special sections. */
2863 if (sec->name == NULL)
2864 return NULL;
2865
2866 bed = get_elf_backend_data (abfd);
2867 spec = bed->special_sections;
2868 if (spec)
2869 {
2870 spec = _bfd_elf_get_special_section (sec->name,
2871 bed->special_sections,
2872 sec->use_rela_p);
2873 if (spec != NULL)
2874 return spec;
2875 }
2876
2877 if (sec->name[0] != '.')
2878 return NULL;
2879
2880 i = sec->name[1] - 'b';
2881 if (i < 0 || i > 'z' - 'b')
2882 return NULL;
2883
2884 spec = special_sections[i];
2885
2886 if (spec == NULL)
2887 return NULL;
2888
2889 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2890 }
2891
2892 bfd_boolean
2893 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2894 {
2895 struct bfd_elf_section_data *sdata;
2896 const struct elf_backend_data *bed;
2897 const struct bfd_elf_special_section *ssect;
2898
2899 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2900 if (sdata == NULL)
2901 {
2902 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2903 sizeof (*sdata));
2904 if (sdata == NULL)
2905 return FALSE;
2906 sec->used_by_bfd = sdata;
2907 }
2908
2909 /* Indicate whether or not this section should use RELA relocations. */
2910 bed = get_elf_backend_data (abfd);
2911 sec->use_rela_p = bed->default_use_rela_p;
2912
2913 /* When we read a file, we don't need to set ELF section type and
2914 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2915 anyway. We will set ELF section type and flags for all linker
2916 created sections. If user specifies BFD section flags, we will
2917 set ELF section type and flags based on BFD section flags in
2918 elf_fake_sections. Special handling for .init_array/.fini_array
2919 output sections since they may contain .ctors/.dtors input
2920 sections. We don't want _bfd_elf_init_private_section_data to
2921 copy ELF section type from .ctors/.dtors input sections. */
2922 if (abfd->direction != read_direction
2923 || (sec->flags & SEC_LINKER_CREATED) != 0)
2924 {
2925 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2926 if (ssect != NULL
2927 && (!sec->flags
2928 || (sec->flags & SEC_LINKER_CREATED) != 0
2929 || ssect->type == SHT_INIT_ARRAY
2930 || ssect->type == SHT_FINI_ARRAY))
2931 {
2932 elf_section_type (sec) = ssect->type;
2933 elf_section_flags (sec) = ssect->attr;
2934 }
2935 }
2936
2937 return _bfd_generic_new_section_hook (abfd, sec);
2938 }
2939
2940 /* Create a new bfd section from an ELF program header.
2941
2942 Since program segments have no names, we generate a synthetic name
2943 of the form segment<NUM>, where NUM is generally the index in the
2944 program header table. For segments that are split (see below) we
2945 generate the names segment<NUM>a and segment<NUM>b.
2946
2947 Note that some program segments may have a file size that is different than
2948 (less than) the memory size. All this means is that at execution the
2949 system must allocate the amount of memory specified by the memory size,
2950 but only initialize it with the first "file size" bytes read from the
2951 file. This would occur for example, with program segments consisting
2952 of combined data+bss.
2953
2954 To handle the above situation, this routine generates TWO bfd sections
2955 for the single program segment. The first has the length specified by
2956 the file size of the segment, and the second has the length specified
2957 by the difference between the two sizes. In effect, the segment is split
2958 into its initialized and uninitialized parts.
2959
2960 */
2961
2962 bfd_boolean
2963 _bfd_elf_make_section_from_phdr (bfd *abfd,
2964 Elf_Internal_Phdr *hdr,
2965 int hdr_index,
2966 const char *type_name)
2967 {
2968 asection *newsect;
2969 char *name;
2970 char namebuf[64];
2971 size_t len;
2972 int split;
2973
2974 split = ((hdr->p_memsz > 0)
2975 && (hdr->p_filesz > 0)
2976 && (hdr->p_memsz > hdr->p_filesz));
2977
2978 if (hdr->p_filesz > 0)
2979 {
2980 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2981 len = strlen (namebuf) + 1;
2982 name = (char *) bfd_alloc (abfd, len);
2983 if (!name)
2984 return FALSE;
2985 memcpy (name, namebuf, len);
2986 newsect = bfd_make_section (abfd, name);
2987 if (newsect == NULL)
2988 return FALSE;
2989 newsect->vma = hdr->p_vaddr;
2990 newsect->lma = hdr->p_paddr;
2991 newsect->size = hdr->p_filesz;
2992 newsect->filepos = hdr->p_offset;
2993 newsect->flags |= SEC_HAS_CONTENTS;
2994 newsect->alignment_power = bfd_log2 (hdr->p_align);
2995 if (hdr->p_type == PT_LOAD)
2996 {
2997 newsect->flags |= SEC_ALLOC;
2998 newsect->flags |= SEC_LOAD;
2999 if (hdr->p_flags & PF_X)
3000 {
3001 /* FIXME: all we known is that it has execute PERMISSION,
3002 may be data. */
3003 newsect->flags |= SEC_CODE;
3004 }
3005 }
3006 if (!(hdr->p_flags & PF_W))
3007 {
3008 newsect->flags |= SEC_READONLY;
3009 }
3010 }
3011
3012 if (hdr->p_memsz > hdr->p_filesz)
3013 {
3014 bfd_vma align;
3015
3016 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3017 len = strlen (namebuf) + 1;
3018 name = (char *) bfd_alloc (abfd, len);
3019 if (!name)
3020 return FALSE;
3021 memcpy (name, namebuf, len);
3022 newsect = bfd_make_section (abfd, name);
3023 if (newsect == NULL)
3024 return FALSE;
3025 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
3026 newsect->lma = hdr->p_paddr + hdr->p_filesz;
3027 newsect->size = hdr->p_memsz - hdr->p_filesz;
3028 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3029 align = newsect->vma & -newsect->vma;
3030 if (align == 0 || align > hdr->p_align)
3031 align = hdr->p_align;
3032 newsect->alignment_power = bfd_log2 (align);
3033 if (hdr->p_type == PT_LOAD)
3034 {
3035 /* Hack for gdb. Segments that have not been modified do
3036 not have their contents written to a core file, on the
3037 assumption that a debugger can find the contents in the
3038 executable. We flag this case by setting the fake
3039 section size to zero. Note that "real" bss sections will
3040 always have their contents dumped to the core file. */
3041 if (bfd_get_format (abfd) == bfd_core)
3042 newsect->size = 0;
3043 newsect->flags |= SEC_ALLOC;
3044 if (hdr->p_flags & PF_X)
3045 newsect->flags |= SEC_CODE;
3046 }
3047 if (!(hdr->p_flags & PF_W))
3048 newsect->flags |= SEC_READONLY;
3049 }
3050
3051 return TRUE;
3052 }
3053
3054 static bfd_boolean
3055 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3056 {
3057 /* The return value is ignored. Build-ids are considered optional. */
3058 if (templ->xvec->flavour == bfd_target_elf_flavour)
3059 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3060 (templ, offset);
3061 return FALSE;
3062 }
3063
3064 bfd_boolean
3065 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3066 {
3067 const struct elf_backend_data *bed;
3068
3069 switch (hdr->p_type)
3070 {
3071 case PT_NULL:
3072 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3073
3074 case PT_LOAD:
3075 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3076 return FALSE;
3077 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3078 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3079 return TRUE;
3080
3081 case PT_DYNAMIC:
3082 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3083
3084 case PT_INTERP:
3085 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3086
3087 case PT_NOTE:
3088 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3089 return FALSE;
3090 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3091 hdr->p_align))
3092 return FALSE;
3093 return TRUE;
3094
3095 case PT_SHLIB:
3096 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3097
3098 case PT_PHDR:
3099 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3100
3101 case PT_GNU_EH_FRAME:
3102 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3103 "eh_frame_hdr");
3104
3105 case PT_GNU_STACK:
3106 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3107
3108 case PT_GNU_RELRO:
3109 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3110
3111 default:
3112 /* Check for any processor-specific program segment types. */
3113 bed = get_elf_backend_data (abfd);
3114 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3115 }
3116 }
3117
3118 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3119 REL or RELA. */
3120
3121 Elf_Internal_Shdr *
3122 _bfd_elf_single_rel_hdr (asection *sec)
3123 {
3124 if (elf_section_data (sec)->rel.hdr)
3125 {
3126 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3127 return elf_section_data (sec)->rel.hdr;
3128 }
3129 else
3130 return elf_section_data (sec)->rela.hdr;
3131 }
3132
3133 static bfd_boolean
3134 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3135 Elf_Internal_Shdr *rel_hdr,
3136 const char *sec_name,
3137 bfd_boolean use_rela_p)
3138 {
3139 char *name = (char *) bfd_alloc (abfd,
3140 sizeof ".rela" + strlen (sec_name));
3141 if (name == NULL)
3142 return FALSE;
3143
3144 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3145 rel_hdr->sh_name =
3146 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3147 FALSE);
3148 if (rel_hdr->sh_name == (unsigned int) -1)
3149 return FALSE;
3150
3151 return TRUE;
3152 }
3153
3154 /* Allocate and initialize a section-header for a new reloc section,
3155 containing relocations against ASECT. It is stored in RELDATA. If
3156 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3157 relocations. */
3158
3159 static bfd_boolean
3160 _bfd_elf_init_reloc_shdr (bfd *abfd,
3161 struct bfd_elf_section_reloc_data *reldata,
3162 const char *sec_name,
3163 bfd_boolean use_rela_p,
3164 bfd_boolean delay_st_name_p)
3165 {
3166 Elf_Internal_Shdr *rel_hdr;
3167 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3168
3169 BFD_ASSERT (reldata->hdr == NULL);
3170 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3171 reldata->hdr = rel_hdr;
3172
3173 if (delay_st_name_p)
3174 rel_hdr->sh_name = (unsigned int) -1;
3175 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3176 use_rela_p))
3177 return FALSE;
3178 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3179 rel_hdr->sh_entsize = (use_rela_p
3180 ? bed->s->sizeof_rela
3181 : bed->s->sizeof_rel);
3182 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3183 rel_hdr->sh_flags = 0;
3184 rel_hdr->sh_addr = 0;
3185 rel_hdr->sh_size = 0;
3186 rel_hdr->sh_offset = 0;
3187
3188 return TRUE;
3189 }
3190
3191 /* Return the default section type based on the passed in section flags. */
3192
3193 int
3194 bfd_elf_get_default_section_type (flagword flags)
3195 {
3196 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3197 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3198 return SHT_NOBITS;
3199 return SHT_PROGBITS;
3200 }
3201
3202 struct fake_section_arg
3203 {
3204 struct bfd_link_info *link_info;
3205 bfd_boolean failed;
3206 };
3207
3208 /* Set up an ELF internal section header for a section. */
3209
3210 static void
3211 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3212 {
3213 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3214 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3215 struct bfd_elf_section_data *esd = elf_section_data (asect);
3216 Elf_Internal_Shdr *this_hdr;
3217 unsigned int sh_type;
3218 const char *name = asect->name;
3219 bfd_boolean delay_st_name_p = FALSE;
3220
3221 if (arg->failed)
3222 {
3223 /* We already failed; just get out of the bfd_map_over_sections
3224 loop. */
3225 return;
3226 }
3227
3228 this_hdr = &esd->this_hdr;
3229
3230 if (arg->link_info)
3231 {
3232 /* ld: compress DWARF debug sections with names: .debug_*. */
3233 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3234 && (asect->flags & SEC_DEBUGGING)
3235 && name[1] == 'd'
3236 && name[6] == '_')
3237 {
3238 /* Set SEC_ELF_COMPRESS to indicate this section should be
3239 compressed. */
3240 asect->flags |= SEC_ELF_COMPRESS;
3241
3242 /* If this section will be compressed, delay adding section
3243 name to section name section after it is compressed in
3244 _bfd_elf_assign_file_positions_for_non_load. */
3245 delay_st_name_p = TRUE;
3246 }
3247 }
3248 else if ((asect->flags & SEC_ELF_RENAME))
3249 {
3250 /* objcopy: rename output DWARF debug section. */
3251 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3252 {
3253 /* When we decompress or compress with SHF_COMPRESSED,
3254 convert section name from .zdebug_* to .debug_* if
3255 needed. */
3256 if (name[1] == 'z')
3257 {
3258 char *new_name = convert_zdebug_to_debug (abfd, name);
3259 if (new_name == NULL)
3260 {
3261 arg->failed = TRUE;
3262 return;
3263 }
3264 name = new_name;
3265 }
3266 }
3267 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3268 {
3269 /* PR binutils/18087: Compression does not always make a
3270 section smaller. So only rename the section when
3271 compression has actually taken place. If input section
3272 name is .zdebug_*, we should never compress it again. */
3273 char *new_name = convert_debug_to_zdebug (abfd, name);
3274 if (new_name == NULL)
3275 {
3276 arg->failed = TRUE;
3277 return;
3278 }
3279 BFD_ASSERT (name[1] != 'z');
3280 name = new_name;
3281 }
3282 }
3283
3284 if (delay_st_name_p)
3285 this_hdr->sh_name = (unsigned int) -1;
3286 else
3287 {
3288 this_hdr->sh_name
3289 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3290 name, FALSE);
3291 if (this_hdr->sh_name == (unsigned int) -1)
3292 {
3293 arg->failed = TRUE;
3294 return;
3295 }
3296 }
3297
3298 /* Don't clear sh_flags. Assembler may set additional bits. */
3299
3300 if ((asect->flags & SEC_ALLOC) != 0
3301 || asect->user_set_vma)
3302 this_hdr->sh_addr = asect->vma;
3303 else
3304 this_hdr->sh_addr = 0;
3305
3306 this_hdr->sh_offset = 0;
3307 this_hdr->sh_size = asect->size;
3308 this_hdr->sh_link = 0;
3309 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3310 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3311 {
3312 _bfd_error_handler
3313 /* xgettext:c-format */
3314 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3315 abfd, asect->alignment_power, asect);
3316 arg->failed = TRUE;
3317 return;
3318 }
3319 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3320 /* The sh_entsize and sh_info fields may have been set already by
3321 copy_private_section_data. */
3322
3323 this_hdr->bfd_section = asect;
3324 this_hdr->contents = NULL;
3325
3326 /* If the section type is unspecified, we set it based on
3327 asect->flags. */
3328 if ((asect->flags & SEC_GROUP) != 0)
3329 sh_type = SHT_GROUP;
3330 else
3331 sh_type = bfd_elf_get_default_section_type (asect->flags);
3332
3333 if (this_hdr->sh_type == SHT_NULL)
3334 this_hdr->sh_type = sh_type;
3335 else if (this_hdr->sh_type == SHT_NOBITS
3336 && sh_type == SHT_PROGBITS
3337 && (asect->flags & SEC_ALLOC) != 0)
3338 {
3339 /* Warn if we are changing a NOBITS section to PROGBITS, but
3340 allow the link to proceed. This can happen when users link
3341 non-bss input sections to bss output sections, or emit data
3342 to a bss output section via a linker script. */
3343 _bfd_error_handler
3344 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3345 this_hdr->sh_type = sh_type;
3346 }
3347
3348 switch (this_hdr->sh_type)
3349 {
3350 default:
3351 break;
3352
3353 case SHT_STRTAB:
3354 case SHT_NOTE:
3355 case SHT_NOBITS:
3356 case SHT_PROGBITS:
3357 break;
3358
3359 case SHT_INIT_ARRAY:
3360 case SHT_FINI_ARRAY:
3361 case SHT_PREINIT_ARRAY:
3362 this_hdr->sh_entsize = bed->s->arch_size / 8;
3363 break;
3364
3365 case SHT_HASH:
3366 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3367 break;
3368
3369 case SHT_DYNSYM:
3370 this_hdr->sh_entsize = bed->s->sizeof_sym;
3371 break;
3372
3373 case SHT_DYNAMIC:
3374 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3375 break;
3376
3377 case SHT_RELA:
3378 if (get_elf_backend_data (abfd)->may_use_rela_p)
3379 this_hdr->sh_entsize = bed->s->sizeof_rela;
3380 break;
3381
3382 case SHT_REL:
3383 if (get_elf_backend_data (abfd)->may_use_rel_p)
3384 this_hdr->sh_entsize = bed->s->sizeof_rel;
3385 break;
3386
3387 case SHT_GNU_versym:
3388 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3389 break;
3390
3391 case SHT_GNU_verdef:
3392 this_hdr->sh_entsize = 0;
3393 /* objcopy or strip will copy over sh_info, but may not set
3394 cverdefs. The linker will set cverdefs, but sh_info will be
3395 zero. */
3396 if (this_hdr->sh_info == 0)
3397 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3398 else
3399 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3400 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3401 break;
3402
3403 case SHT_GNU_verneed:
3404 this_hdr->sh_entsize = 0;
3405 /* objcopy or strip will copy over sh_info, but may not set
3406 cverrefs. The linker will set cverrefs, but sh_info will be
3407 zero. */
3408 if (this_hdr->sh_info == 0)
3409 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3410 else
3411 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3412 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3413 break;
3414
3415 case SHT_GROUP:
3416 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3417 break;
3418
3419 case SHT_GNU_HASH:
3420 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3421 break;
3422 }
3423
3424 if ((asect->flags & SEC_ALLOC) != 0)
3425 this_hdr->sh_flags |= SHF_ALLOC;
3426 if ((asect->flags & SEC_READONLY) == 0)
3427 this_hdr->sh_flags |= SHF_WRITE;
3428 if ((asect->flags & SEC_CODE) != 0)
3429 this_hdr->sh_flags |= SHF_EXECINSTR;
3430 if ((asect->flags & SEC_MERGE) != 0)
3431 {
3432 this_hdr->sh_flags |= SHF_MERGE;
3433 this_hdr->sh_entsize = asect->entsize;
3434 }
3435 if ((asect->flags & SEC_STRINGS) != 0)
3436 this_hdr->sh_flags |= SHF_STRINGS;
3437 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3438 this_hdr->sh_flags |= SHF_GROUP;
3439 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3440 {
3441 this_hdr->sh_flags |= SHF_TLS;
3442 if (asect->size == 0
3443 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3444 {
3445 struct bfd_link_order *o = asect->map_tail.link_order;
3446
3447 this_hdr->sh_size = 0;
3448 if (o != NULL)
3449 {
3450 this_hdr->sh_size = o->offset + o->size;
3451 if (this_hdr->sh_size != 0)
3452 this_hdr->sh_type = SHT_NOBITS;
3453 }
3454 }
3455 }
3456 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3457 this_hdr->sh_flags |= SHF_EXCLUDE;
3458
3459 /* If the section has relocs, set up a section header for the
3460 SHT_REL[A] section. If two relocation sections are required for
3461 this section, it is up to the processor-specific back-end to
3462 create the other. */
3463 if ((asect->flags & SEC_RELOC) != 0)
3464 {
3465 /* When doing a relocatable link, create both REL and RELA sections if
3466 needed. */
3467 if (arg->link_info
3468 /* Do the normal setup if we wouldn't create any sections here. */
3469 && esd->rel.count + esd->rela.count > 0
3470 && (bfd_link_relocatable (arg->link_info)
3471 || arg->link_info->emitrelocations))
3472 {
3473 if (esd->rel.count && esd->rel.hdr == NULL
3474 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3475 FALSE, delay_st_name_p))
3476 {
3477 arg->failed = TRUE;
3478 return;
3479 }
3480 if (esd->rela.count && esd->rela.hdr == NULL
3481 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3482 TRUE, delay_st_name_p))
3483 {
3484 arg->failed = TRUE;
3485 return;
3486 }
3487 }
3488 else if (!_bfd_elf_init_reloc_shdr (abfd,
3489 (asect->use_rela_p
3490 ? &esd->rela : &esd->rel),
3491 name,
3492 asect->use_rela_p,
3493 delay_st_name_p))
3494 {
3495 arg->failed = TRUE;
3496 return;
3497 }
3498 }
3499
3500 /* Check for processor-specific section types. */
3501 sh_type = this_hdr->sh_type;
3502 if (bed->elf_backend_fake_sections
3503 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3504 {
3505 arg->failed = TRUE;
3506 return;
3507 }
3508
3509 if (sh_type == SHT_NOBITS && asect->size != 0)
3510 {
3511 /* Don't change the header type from NOBITS if we are being
3512 called for objcopy --only-keep-debug. */
3513 this_hdr->sh_type = sh_type;
3514 }
3515 }
3516
3517 /* Fill in the contents of a SHT_GROUP section. Called from
3518 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3519 when ELF targets use the generic linker, ld. Called for ld -r
3520 from bfd_elf_final_link. */
3521
3522 void
3523 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3524 {
3525 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3526 asection *elt, *first;
3527 unsigned char *loc;
3528 bfd_boolean gas;
3529
3530 /* Ignore linker created group section. See elfNN_ia64_object_p in
3531 elfxx-ia64.c. */
3532 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3533 || sec->size == 0
3534 || *failedptr)
3535 return;
3536
3537 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3538 {
3539 unsigned long symindx = 0;
3540
3541 /* elf_group_id will have been set up by objcopy and the
3542 generic linker. */
3543 if (elf_group_id (sec) != NULL)
3544 symindx = elf_group_id (sec)->udata.i;
3545
3546 if (symindx == 0)
3547 {
3548 /* If called from the assembler, swap_out_syms will have set up
3549 elf_section_syms. */
3550 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3551 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3552 }
3553 elf_section_data (sec)->this_hdr.sh_info = symindx;
3554 }
3555 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3556 {
3557 /* The ELF backend linker sets sh_info to -2 when the group
3558 signature symbol is global, and thus the index can't be
3559 set until all local symbols are output. */
3560 asection *igroup;
3561 struct bfd_elf_section_data *sec_data;
3562 unsigned long symndx;
3563 unsigned long extsymoff;
3564 struct elf_link_hash_entry *h;
3565
3566 /* The point of this little dance to the first SHF_GROUP section
3567 then back to the SHT_GROUP section is that this gets us to
3568 the SHT_GROUP in the input object. */
3569 igroup = elf_sec_group (elf_next_in_group (sec));
3570 sec_data = elf_section_data (igroup);
3571 symndx = sec_data->this_hdr.sh_info;
3572 extsymoff = 0;
3573 if (!elf_bad_symtab (igroup->owner))
3574 {
3575 Elf_Internal_Shdr *symtab_hdr;
3576
3577 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3578 extsymoff = symtab_hdr->sh_info;
3579 }
3580 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3581 while (h->root.type == bfd_link_hash_indirect
3582 || h->root.type == bfd_link_hash_warning)
3583 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3584
3585 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3586 }
3587
3588 /* The contents won't be allocated for "ld -r" or objcopy. */
3589 gas = TRUE;
3590 if (sec->contents == NULL)
3591 {
3592 gas = FALSE;
3593 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3594
3595 /* Arrange for the section to be written out. */
3596 elf_section_data (sec)->this_hdr.contents = sec->contents;
3597 if (sec->contents == NULL)
3598 {
3599 *failedptr = TRUE;
3600 return;
3601 }
3602 }
3603
3604 loc = sec->contents + sec->size;
3605
3606 /* Get the pointer to the first section in the group that gas
3607 squirreled away here. objcopy arranges for this to be set to the
3608 start of the input section group. */
3609 first = elt = elf_next_in_group (sec);
3610
3611 /* First element is a flag word. Rest of section is elf section
3612 indices for all the sections of the group. Write them backwards
3613 just to keep the group in the same order as given in .section
3614 directives, not that it matters. */
3615 while (elt != NULL)
3616 {
3617 asection *s;
3618
3619 s = elt;
3620 if (!gas)
3621 s = s->output_section;
3622 if (s != NULL
3623 && !bfd_is_abs_section (s))
3624 {
3625 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3626 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3627
3628 if (elf_sec->rel.hdr != NULL
3629 && (gas
3630 || (input_elf_sec->rel.hdr != NULL
3631 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3632 {
3633 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3634 loc -= 4;
3635 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3636 }
3637 if (elf_sec->rela.hdr != NULL
3638 && (gas
3639 || (input_elf_sec->rela.hdr != NULL
3640 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3641 {
3642 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3643 loc -= 4;
3644 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3645 }
3646 loc -= 4;
3647 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3648 }
3649 elt = elf_next_in_group (elt);
3650 if (elt == first)
3651 break;
3652 }
3653
3654 loc -= 4;
3655 BFD_ASSERT (loc == sec->contents);
3656
3657 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3658 }
3659
3660 /* Given NAME, the name of a relocation section stripped of its
3661 .rel/.rela prefix, return the section in ABFD to which the
3662 relocations apply. */
3663
3664 asection *
3665 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3666 {
3667 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3668 section likely apply to .got.plt or .got section. */
3669 if (get_elf_backend_data (abfd)->want_got_plt
3670 && strcmp (name, ".plt") == 0)
3671 {
3672 asection *sec;
3673
3674 name = ".got.plt";
3675 sec = bfd_get_section_by_name (abfd, name);
3676 if (sec != NULL)
3677 return sec;
3678 name = ".got";
3679 }
3680
3681 return bfd_get_section_by_name (abfd, name);
3682 }
3683
3684 /* Return the section to which RELOC_SEC applies. */
3685
3686 static asection *
3687 elf_get_reloc_section (asection *reloc_sec)
3688 {
3689 const char *name;
3690 unsigned int type;
3691 bfd *abfd;
3692 const struct elf_backend_data *bed;
3693
3694 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3695 if (type != SHT_REL && type != SHT_RELA)
3696 return NULL;
3697
3698 /* We look up the section the relocs apply to by name. */
3699 name = reloc_sec->name;
3700 if (strncmp (name, ".rel", 4) != 0)
3701 return NULL;
3702 name += 4;
3703 if (type == SHT_RELA && *name++ != 'a')
3704 return NULL;
3705
3706 abfd = reloc_sec->owner;
3707 bed = get_elf_backend_data (abfd);
3708 return bed->get_reloc_section (abfd, name);
3709 }
3710
3711 /* Assign all ELF section numbers. The dummy first section is handled here
3712 too. The link/info pointers for the standard section types are filled
3713 in here too, while we're at it. */
3714
3715 static bfd_boolean
3716 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3717 {
3718 struct elf_obj_tdata *t = elf_tdata (abfd);
3719 asection *sec;
3720 unsigned int section_number;
3721 Elf_Internal_Shdr **i_shdrp;
3722 struct bfd_elf_section_data *d;
3723 bfd_boolean need_symtab;
3724
3725 section_number = 1;
3726
3727 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3728
3729 /* SHT_GROUP sections are in relocatable files only. */
3730 if (link_info == NULL || !link_info->resolve_section_groups)
3731 {
3732 size_t reloc_count = 0;
3733
3734 /* Put SHT_GROUP sections first. */
3735 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3736 {
3737 d = elf_section_data (sec);
3738
3739 if (d->this_hdr.sh_type == SHT_GROUP)
3740 {
3741 if (sec->flags & SEC_LINKER_CREATED)
3742 {
3743 /* Remove the linker created SHT_GROUP sections. */
3744 bfd_section_list_remove (abfd, sec);
3745 abfd->section_count--;
3746 }
3747 else
3748 d->this_idx = section_number++;
3749 }
3750
3751 /* Count relocations. */
3752 reloc_count += sec->reloc_count;
3753 }
3754
3755 /* Clear HAS_RELOC if there are no relocations. */
3756 if (reloc_count == 0)
3757 abfd->flags &= ~HAS_RELOC;
3758 }
3759
3760 for (sec = abfd->sections; sec; sec = sec->next)
3761 {
3762 d = elf_section_data (sec);
3763
3764 if (d->this_hdr.sh_type != SHT_GROUP)
3765 d->this_idx = section_number++;
3766 if (d->this_hdr.sh_name != (unsigned int) -1)
3767 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3768 if (d->rel.hdr)
3769 {
3770 d->rel.idx = section_number++;
3771 if (d->rel.hdr->sh_name != (unsigned int) -1)
3772 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3773 }
3774 else
3775 d->rel.idx = 0;
3776
3777 if (d->rela.hdr)
3778 {
3779 d->rela.idx = section_number++;
3780 if (d->rela.hdr->sh_name != (unsigned int) -1)
3781 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3782 }
3783 else
3784 d->rela.idx = 0;
3785 }
3786
3787 need_symtab = (bfd_get_symcount (abfd) > 0
3788 || (link_info == NULL
3789 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3790 == HAS_RELOC)));
3791 if (need_symtab)
3792 {
3793 elf_onesymtab (abfd) = section_number++;
3794 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3795 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3796 {
3797 elf_section_list *entry;
3798
3799 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3800
3801 entry = bfd_zalloc (abfd, sizeof (*entry));
3802 entry->ndx = section_number++;
3803 elf_symtab_shndx_list (abfd) = entry;
3804 entry->hdr.sh_name
3805 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3806 ".symtab_shndx", FALSE);
3807 if (entry->hdr.sh_name == (unsigned int) -1)
3808 return FALSE;
3809 }
3810 elf_strtab_sec (abfd) = section_number++;
3811 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3812 }
3813
3814 elf_shstrtab_sec (abfd) = section_number++;
3815 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3816 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3817
3818 if (section_number >= SHN_LORESERVE)
3819 {
3820 /* xgettext:c-format */
3821 _bfd_error_handler (_("%pB: too many sections: %u"),
3822 abfd, section_number);
3823 return FALSE;
3824 }
3825
3826 elf_numsections (abfd) = section_number;
3827 elf_elfheader (abfd)->e_shnum = section_number;
3828
3829 /* Set up the list of section header pointers, in agreement with the
3830 indices. */
3831 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3832 sizeof (Elf_Internal_Shdr *));
3833 if (i_shdrp == NULL)
3834 return FALSE;
3835
3836 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3837 sizeof (Elf_Internal_Shdr));
3838 if (i_shdrp[0] == NULL)
3839 {
3840 bfd_release (abfd, i_shdrp);
3841 return FALSE;
3842 }
3843
3844 elf_elfsections (abfd) = i_shdrp;
3845
3846 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3847 if (need_symtab)
3848 {
3849 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3850 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3851 {
3852 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3853 BFD_ASSERT (entry != NULL);
3854 i_shdrp[entry->ndx] = & entry->hdr;
3855 entry->hdr.sh_link = elf_onesymtab (abfd);
3856 }
3857 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3858 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3859 }
3860
3861 for (sec = abfd->sections; sec; sec = sec->next)
3862 {
3863 asection *s;
3864
3865 d = elf_section_data (sec);
3866
3867 i_shdrp[d->this_idx] = &d->this_hdr;
3868 if (d->rel.idx != 0)
3869 i_shdrp[d->rel.idx] = d->rel.hdr;
3870 if (d->rela.idx != 0)
3871 i_shdrp[d->rela.idx] = d->rela.hdr;
3872
3873 /* Fill in the sh_link and sh_info fields while we're at it. */
3874
3875 /* sh_link of a reloc section is the section index of the symbol
3876 table. sh_info is the section index of the section to which
3877 the relocation entries apply. */
3878 if (d->rel.idx != 0)
3879 {
3880 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3881 d->rel.hdr->sh_info = d->this_idx;
3882 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3883 }
3884 if (d->rela.idx != 0)
3885 {
3886 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3887 d->rela.hdr->sh_info = d->this_idx;
3888 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3889 }
3890
3891 /* We need to set up sh_link for SHF_LINK_ORDER. */
3892 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3893 {
3894 s = elf_linked_to_section (sec);
3895 if (s)
3896 {
3897 /* elf_linked_to_section points to the input section. */
3898 if (link_info != NULL)
3899 {
3900 /* Check discarded linkonce section. */
3901 if (discarded_section (s))
3902 {
3903 asection *kept;
3904 _bfd_error_handler
3905 /* xgettext:c-format */
3906 (_("%pB: sh_link of section `%pA' points to"
3907 " discarded section `%pA' of `%pB'"),
3908 abfd, d->this_hdr.bfd_section,
3909 s, s->owner);
3910 /* Point to the kept section if it has the same
3911 size as the discarded one. */
3912 kept = _bfd_elf_check_kept_section (s, link_info);
3913 if (kept == NULL)
3914 {
3915 bfd_set_error (bfd_error_bad_value);
3916 return FALSE;
3917 }
3918 s = kept;
3919 }
3920
3921 s = s->output_section;
3922 BFD_ASSERT (s != NULL);
3923 }
3924 else
3925 {
3926 /* Handle objcopy. */
3927 if (s->output_section == NULL)
3928 {
3929 _bfd_error_handler
3930 /* xgettext:c-format */
3931 (_("%pB: sh_link of section `%pA' points to"
3932 " removed section `%pA' of `%pB'"),
3933 abfd, d->this_hdr.bfd_section, s, s->owner);
3934 bfd_set_error (bfd_error_bad_value);
3935 return FALSE;
3936 }
3937 s = s->output_section;
3938 }
3939 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3940 }
3941 else
3942 {
3943 /* PR 290:
3944 The Intel C compiler generates SHT_IA_64_UNWIND with
3945 SHF_LINK_ORDER. But it doesn't set the sh_link or
3946 sh_info fields. Hence we could get the situation
3947 where s is NULL. */
3948 const struct elf_backend_data *bed
3949 = get_elf_backend_data (abfd);
3950 if (bed->link_order_error_handler)
3951 bed->link_order_error_handler
3952 /* xgettext:c-format */
3953 (_("%pB: warning: sh_link not set for section `%pA'"),
3954 abfd, sec);
3955 }
3956 }
3957
3958 switch (d->this_hdr.sh_type)
3959 {
3960 case SHT_REL:
3961 case SHT_RELA:
3962 /* A reloc section which we are treating as a normal BFD
3963 section. sh_link is the section index of the symbol
3964 table. sh_info is the section index of the section to
3965 which the relocation entries apply. We assume that an
3966 allocated reloc section uses the dynamic symbol table.
3967 FIXME: How can we be sure? */
3968 s = bfd_get_section_by_name (abfd, ".dynsym");
3969 if (s != NULL)
3970 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3971
3972 s = elf_get_reloc_section (sec);
3973 if (s != NULL)
3974 {
3975 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3976 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3977 }
3978 break;
3979
3980 case SHT_STRTAB:
3981 /* We assume that a section named .stab*str is a stabs
3982 string section. We look for a section with the same name
3983 but without the trailing ``str'', and set its sh_link
3984 field to point to this section. */
3985 if (CONST_STRNEQ (sec->name, ".stab")
3986 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3987 {
3988 size_t len;
3989 char *alc;
3990
3991 len = strlen (sec->name);
3992 alc = (char *) bfd_malloc (len - 2);
3993 if (alc == NULL)
3994 return FALSE;
3995 memcpy (alc, sec->name, len - 3);
3996 alc[len - 3] = '\0';
3997 s = bfd_get_section_by_name (abfd, alc);
3998 free (alc);
3999 if (s != NULL)
4000 {
4001 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
4002
4003 /* This is a .stab section. */
4004 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
4005 elf_section_data (s)->this_hdr.sh_entsize
4006 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
4007 }
4008 }
4009 break;
4010
4011 case SHT_DYNAMIC:
4012 case SHT_DYNSYM:
4013 case SHT_GNU_verneed:
4014 case SHT_GNU_verdef:
4015 /* sh_link is the section header index of the string table
4016 used for the dynamic entries, or the symbol table, or the
4017 version strings. */
4018 s = bfd_get_section_by_name (abfd, ".dynstr");
4019 if (s != NULL)
4020 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4021 break;
4022
4023 case SHT_GNU_LIBLIST:
4024 /* sh_link is the section header index of the prelink library
4025 list used for the dynamic entries, or the symbol table, or
4026 the version strings. */
4027 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4028 ? ".dynstr" : ".gnu.libstr");
4029 if (s != NULL)
4030 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4031 break;
4032
4033 case SHT_HASH:
4034 case SHT_GNU_HASH:
4035 case SHT_GNU_versym:
4036 /* sh_link is the section header index of the symbol table
4037 this hash table or version table is for. */
4038 s = bfd_get_section_by_name (abfd, ".dynsym");
4039 if (s != NULL)
4040 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4041 break;
4042
4043 case SHT_GROUP:
4044 d->this_hdr.sh_link = elf_onesymtab (abfd);
4045 }
4046 }
4047
4048 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4049 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4050 debug section name from .debug_* to .zdebug_* if needed. */
4051
4052 return TRUE;
4053 }
4054
4055 static bfd_boolean
4056 sym_is_global (bfd *abfd, asymbol *sym)
4057 {
4058 /* If the backend has a special mapping, use it. */
4059 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4060 if (bed->elf_backend_sym_is_global)
4061 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4062
4063 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4064 || bfd_is_und_section (bfd_asymbol_section (sym))
4065 || bfd_is_com_section (bfd_asymbol_section (sym)));
4066 }
4067
4068 /* Filter global symbols of ABFD to include in the import library. All
4069 SYMCOUNT symbols of ABFD can be examined from their pointers in
4070 SYMS. Pointers of symbols to keep should be stored contiguously at
4071 the beginning of that array.
4072
4073 Returns the number of symbols to keep. */
4074
4075 unsigned int
4076 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4077 asymbol **syms, long symcount)
4078 {
4079 long src_count, dst_count = 0;
4080
4081 for (src_count = 0; src_count < symcount; src_count++)
4082 {
4083 asymbol *sym = syms[src_count];
4084 char *name = (char *) bfd_asymbol_name (sym);
4085 struct bfd_link_hash_entry *h;
4086
4087 if (!sym_is_global (abfd, sym))
4088 continue;
4089
4090 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4091 if (h == NULL)
4092 continue;
4093 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4094 continue;
4095 if (h->linker_def || h->ldscript_def)
4096 continue;
4097
4098 syms[dst_count++] = sym;
4099 }
4100
4101 syms[dst_count] = NULL;
4102
4103 return dst_count;
4104 }
4105
4106 /* Don't output section symbols for sections that are not going to be
4107 output, that are duplicates or there is no BFD section. */
4108
4109 static bfd_boolean
4110 ignore_section_sym (bfd *abfd, asymbol *sym)
4111 {
4112 elf_symbol_type *type_ptr;
4113
4114 if (sym == NULL)
4115 return FALSE;
4116
4117 if ((sym->flags & BSF_SECTION_SYM) == 0)
4118 return FALSE;
4119
4120 if (sym->section == NULL)
4121 return TRUE;
4122
4123 type_ptr = elf_symbol_from (abfd, sym);
4124 return ((type_ptr != NULL
4125 && type_ptr->internal_elf_sym.st_shndx != 0
4126 && bfd_is_abs_section (sym->section))
4127 || !(sym->section->owner == abfd
4128 || (sym->section->output_section != NULL
4129 && sym->section->output_section->owner == abfd
4130 && sym->section->output_offset == 0)
4131 || bfd_is_abs_section (sym->section)));
4132 }
4133
4134 /* Map symbol from it's internal number to the external number, moving
4135 all local symbols to be at the head of the list. */
4136
4137 static bfd_boolean
4138 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4139 {
4140 unsigned int symcount = bfd_get_symcount (abfd);
4141 asymbol **syms = bfd_get_outsymbols (abfd);
4142 asymbol **sect_syms;
4143 unsigned int num_locals = 0;
4144 unsigned int num_globals = 0;
4145 unsigned int num_locals2 = 0;
4146 unsigned int num_globals2 = 0;
4147 unsigned int max_index = 0;
4148 unsigned int idx;
4149 asection *asect;
4150 asymbol **new_syms;
4151
4152 #ifdef DEBUG
4153 fprintf (stderr, "elf_map_symbols\n");
4154 fflush (stderr);
4155 #endif
4156
4157 for (asect = abfd->sections; asect; asect = asect->next)
4158 {
4159 if (max_index < asect->index)
4160 max_index = asect->index;
4161 }
4162
4163 max_index++;
4164 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4165 if (sect_syms == NULL)
4166 return FALSE;
4167 elf_section_syms (abfd) = sect_syms;
4168 elf_num_section_syms (abfd) = max_index;
4169
4170 /* Init sect_syms entries for any section symbols we have already
4171 decided to output. */
4172 for (idx = 0; idx < symcount; idx++)
4173 {
4174 asymbol *sym = syms[idx];
4175
4176 if ((sym->flags & BSF_SECTION_SYM) != 0
4177 && sym->value == 0
4178 && !ignore_section_sym (abfd, sym)
4179 && !bfd_is_abs_section (sym->section))
4180 {
4181 asection *sec = sym->section;
4182
4183 if (sec->owner != abfd)
4184 sec = sec->output_section;
4185
4186 sect_syms[sec->index] = syms[idx];
4187 }
4188 }
4189
4190 /* Classify all of the symbols. */
4191 for (idx = 0; idx < symcount; idx++)
4192 {
4193 if (sym_is_global (abfd, syms[idx]))
4194 num_globals++;
4195 else if (!ignore_section_sym (abfd, syms[idx]))
4196 num_locals++;
4197 }
4198
4199 /* We will be adding a section symbol for each normal BFD section. Most
4200 sections will already have a section symbol in outsymbols, but
4201 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4202 at least in that case. */
4203 for (asect = abfd->sections; asect; asect = asect->next)
4204 {
4205 if (sect_syms[asect->index] == NULL)
4206 {
4207 if (!sym_is_global (abfd, asect->symbol))
4208 num_locals++;
4209 else
4210 num_globals++;
4211 }
4212 }
4213
4214 /* Now sort the symbols so the local symbols are first. */
4215 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4216 sizeof (asymbol *));
4217
4218 if (new_syms == NULL)
4219 return FALSE;
4220
4221 for (idx = 0; idx < symcount; idx++)
4222 {
4223 asymbol *sym = syms[idx];
4224 unsigned int i;
4225
4226 if (sym_is_global (abfd, sym))
4227 i = num_locals + num_globals2++;
4228 else if (!ignore_section_sym (abfd, sym))
4229 i = num_locals2++;
4230 else
4231 continue;
4232 new_syms[i] = sym;
4233 sym->udata.i = i + 1;
4234 }
4235 for (asect = abfd->sections; asect; asect = asect->next)
4236 {
4237 if (sect_syms[asect->index] == NULL)
4238 {
4239 asymbol *sym = asect->symbol;
4240 unsigned int i;
4241
4242 sect_syms[asect->index] = sym;
4243 if (!sym_is_global (abfd, sym))
4244 i = num_locals2++;
4245 else
4246 i = num_locals + num_globals2++;
4247 new_syms[i] = sym;
4248 sym->udata.i = i + 1;
4249 }
4250 }
4251
4252 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4253
4254 *pnum_locals = num_locals;
4255 return TRUE;
4256 }
4257
4258 /* Align to the maximum file alignment that could be required for any
4259 ELF data structure. */
4260
4261 static inline file_ptr
4262 align_file_position (file_ptr off, int align)
4263 {
4264 return (off + align - 1) & ~(align - 1);
4265 }
4266
4267 /* Assign a file position to a section, optionally aligning to the
4268 required section alignment. */
4269
4270 file_ptr
4271 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4272 file_ptr offset,
4273 bfd_boolean align)
4274 {
4275 if (align && i_shdrp->sh_addralign > 1)
4276 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4277 i_shdrp->sh_offset = offset;
4278 if (i_shdrp->bfd_section != NULL)
4279 i_shdrp->bfd_section->filepos = offset;
4280 if (i_shdrp->sh_type != SHT_NOBITS)
4281 offset += i_shdrp->sh_size;
4282 return offset;
4283 }
4284
4285 /* Compute the file positions we are going to put the sections at, and
4286 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4287 is not NULL, this is being called by the ELF backend linker. */
4288
4289 bfd_boolean
4290 _bfd_elf_compute_section_file_positions (bfd *abfd,
4291 struct bfd_link_info *link_info)
4292 {
4293 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4294 struct fake_section_arg fsargs;
4295 bfd_boolean failed;
4296 struct elf_strtab_hash *strtab = NULL;
4297 Elf_Internal_Shdr *shstrtab_hdr;
4298 bfd_boolean need_symtab;
4299
4300 if (abfd->output_has_begun)
4301 return TRUE;
4302
4303 /* Do any elf backend specific processing first. */
4304 if (bed->elf_backend_begin_write_processing)
4305 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4306
4307 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4308 return FALSE;
4309
4310 fsargs.failed = FALSE;
4311 fsargs.link_info = link_info;
4312 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4313 if (fsargs.failed)
4314 return FALSE;
4315
4316 if (!assign_section_numbers (abfd, link_info))
4317 return FALSE;
4318
4319 /* The backend linker builds symbol table information itself. */
4320 need_symtab = (link_info == NULL
4321 && (bfd_get_symcount (abfd) > 0
4322 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4323 == HAS_RELOC)));
4324 if (need_symtab)
4325 {
4326 /* Non-zero if doing a relocatable link. */
4327 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4328
4329 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4330 return FALSE;
4331 }
4332
4333 failed = FALSE;
4334 if (link_info == NULL)
4335 {
4336 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4337 if (failed)
4338 return FALSE;
4339 }
4340
4341 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4342 /* sh_name was set in init_file_header. */
4343 shstrtab_hdr->sh_type = SHT_STRTAB;
4344 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4345 shstrtab_hdr->sh_addr = 0;
4346 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4347 shstrtab_hdr->sh_entsize = 0;
4348 shstrtab_hdr->sh_link = 0;
4349 shstrtab_hdr->sh_info = 0;
4350 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4351 shstrtab_hdr->sh_addralign = 1;
4352
4353 if (!assign_file_positions_except_relocs (abfd, link_info))
4354 return FALSE;
4355
4356 if (need_symtab)
4357 {
4358 file_ptr off;
4359 Elf_Internal_Shdr *hdr;
4360
4361 off = elf_next_file_pos (abfd);
4362
4363 hdr = & elf_symtab_hdr (abfd);
4364 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4365
4366 if (elf_symtab_shndx_list (abfd) != NULL)
4367 {
4368 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4369 if (hdr->sh_size != 0)
4370 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4371 /* FIXME: What about other symtab_shndx sections in the list ? */
4372 }
4373
4374 hdr = &elf_tdata (abfd)->strtab_hdr;
4375 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4376
4377 elf_next_file_pos (abfd) = off;
4378
4379 /* Now that we know where the .strtab section goes, write it
4380 out. */
4381 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4382 || ! _bfd_elf_strtab_emit (abfd, strtab))
4383 return FALSE;
4384 _bfd_elf_strtab_free (strtab);
4385 }
4386
4387 abfd->output_has_begun = TRUE;
4388
4389 return TRUE;
4390 }
4391
4392 /* Make an initial estimate of the size of the program header. If we
4393 get the number wrong here, we'll redo section placement. */
4394
4395 static bfd_size_type
4396 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4397 {
4398 size_t segs;
4399 asection *s;
4400 const struct elf_backend_data *bed;
4401
4402 /* Assume we will need exactly two PT_LOAD segments: one for text
4403 and one for data. */
4404 segs = 2;
4405
4406 s = bfd_get_section_by_name (abfd, ".interp");
4407 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4408 {
4409 /* If we have a loadable interpreter section, we need a
4410 PT_INTERP segment. In this case, assume we also need a
4411 PT_PHDR segment, although that may not be true for all
4412 targets. */
4413 segs += 2;
4414 }
4415
4416 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4417 {
4418 /* We need a PT_DYNAMIC segment. */
4419 ++segs;
4420 }
4421
4422 if (info != NULL && info->relro)
4423 {
4424 /* We need a PT_GNU_RELRO segment. */
4425 ++segs;
4426 }
4427
4428 if (elf_eh_frame_hdr (abfd))
4429 {
4430 /* We need a PT_GNU_EH_FRAME segment. */
4431 ++segs;
4432 }
4433
4434 if (elf_stack_flags (abfd))
4435 {
4436 /* We need a PT_GNU_STACK segment. */
4437 ++segs;
4438 }
4439
4440 s = bfd_get_section_by_name (abfd,
4441 NOTE_GNU_PROPERTY_SECTION_NAME);
4442 if (s != NULL && s->size != 0)
4443 {
4444 /* We need a PT_GNU_PROPERTY segment. */
4445 ++segs;
4446 }
4447
4448 for (s = abfd->sections; s != NULL; s = s->next)
4449 {
4450 if ((s->flags & SEC_LOAD) != 0
4451 && elf_section_type (s) == SHT_NOTE)
4452 {
4453 unsigned int alignment_power;
4454 /* We need a PT_NOTE segment. */
4455 ++segs;
4456 /* Try to create just one PT_NOTE segment for all adjacent
4457 loadable SHT_NOTE sections. gABI requires that within a
4458 PT_NOTE segment (and also inside of each SHT_NOTE section)
4459 each note should have the same alignment. So we check
4460 whether the sections are correctly aligned. */
4461 alignment_power = s->alignment_power;
4462 while (s->next != NULL
4463 && s->next->alignment_power == alignment_power
4464 && (s->next->flags & SEC_LOAD) != 0
4465 && elf_section_type (s->next) == SHT_NOTE)
4466 s = s->next;
4467 }
4468 }
4469
4470 for (s = abfd->sections; s != NULL; s = s->next)
4471 {
4472 if (s->flags & SEC_THREAD_LOCAL)
4473 {
4474 /* We need a PT_TLS segment. */
4475 ++segs;
4476 break;
4477 }
4478 }
4479
4480 bed = get_elf_backend_data (abfd);
4481
4482 if ((abfd->flags & D_PAGED) != 0
4483 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4484 {
4485 /* Add a PT_GNU_MBIND segment for each mbind section. */
4486 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4487 for (s = abfd->sections; s != NULL; s = s->next)
4488 if (elf_section_flags (s) & SHF_GNU_MBIND)
4489 {
4490 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4491 {
4492 _bfd_error_handler
4493 /* xgettext:c-format */
4494 (_("%pB: GNU_MBIND section `%pA' has invalid "
4495 "sh_info field: %d"),
4496 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4497 continue;
4498 }
4499 /* Align mbind section to page size. */
4500 if (s->alignment_power < page_align_power)
4501 s->alignment_power = page_align_power;
4502 segs ++;
4503 }
4504 }
4505
4506 /* Let the backend count up any program headers it might need. */
4507 if (bed->elf_backend_additional_program_headers)
4508 {
4509 int a;
4510
4511 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4512 if (a == -1)
4513 abort ();
4514 segs += a;
4515 }
4516
4517 return segs * bed->s->sizeof_phdr;
4518 }
4519
4520 /* Find the segment that contains the output_section of section. */
4521
4522 Elf_Internal_Phdr *
4523 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4524 {
4525 struct elf_segment_map *m;
4526 Elf_Internal_Phdr *p;
4527
4528 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4529 m != NULL;
4530 m = m->next, p++)
4531 {
4532 int i;
4533
4534 for (i = m->count - 1; i >= 0; i--)
4535 if (m->sections[i] == section)
4536 return p;
4537 }
4538
4539 return NULL;
4540 }
4541
4542 /* Create a mapping from a set of sections to a program segment. */
4543
4544 static struct elf_segment_map *
4545 make_mapping (bfd *abfd,
4546 asection **sections,
4547 unsigned int from,
4548 unsigned int to,
4549 bfd_boolean phdr)
4550 {
4551 struct elf_segment_map *m;
4552 unsigned int i;
4553 asection **hdrpp;
4554 bfd_size_type amt;
4555
4556 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4557 amt += (to - from) * sizeof (asection *);
4558 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4559 if (m == NULL)
4560 return NULL;
4561 m->next = NULL;
4562 m->p_type = PT_LOAD;
4563 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4564 m->sections[i - from] = *hdrpp;
4565 m->count = to - from;
4566
4567 if (from == 0 && phdr)
4568 {
4569 /* Include the headers in the first PT_LOAD segment. */
4570 m->includes_filehdr = 1;
4571 m->includes_phdrs = 1;
4572 }
4573
4574 return m;
4575 }
4576
4577 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4578 on failure. */
4579
4580 struct elf_segment_map *
4581 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4582 {
4583 struct elf_segment_map *m;
4584
4585 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4586 sizeof (struct elf_segment_map));
4587 if (m == NULL)
4588 return NULL;
4589 m->next = NULL;
4590 m->p_type = PT_DYNAMIC;
4591 m->count = 1;
4592 m->sections[0] = dynsec;
4593
4594 return m;
4595 }
4596
4597 /* Possibly add or remove segments from the segment map. */
4598
4599 static bfd_boolean
4600 elf_modify_segment_map (bfd *abfd,
4601 struct bfd_link_info *info,
4602 bfd_boolean remove_empty_load)
4603 {
4604 struct elf_segment_map **m;
4605 const struct elf_backend_data *bed;
4606
4607 /* The placement algorithm assumes that non allocated sections are
4608 not in PT_LOAD segments. We ensure this here by removing such
4609 sections from the segment map. We also remove excluded
4610 sections. Finally, any PT_LOAD segment without sections is
4611 removed. */
4612 m = &elf_seg_map (abfd);
4613 while (*m)
4614 {
4615 unsigned int i, new_count;
4616
4617 for (new_count = 0, i = 0; i < (*m)->count; i++)
4618 {
4619 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4620 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4621 || (*m)->p_type != PT_LOAD))
4622 {
4623 (*m)->sections[new_count] = (*m)->sections[i];
4624 new_count++;
4625 }
4626 }
4627 (*m)->count = new_count;
4628
4629 if (remove_empty_load
4630 && (*m)->p_type == PT_LOAD
4631 && (*m)->count == 0
4632 && !(*m)->includes_phdrs)
4633 *m = (*m)->next;
4634 else
4635 m = &(*m)->next;
4636 }
4637
4638 bed = get_elf_backend_data (abfd);
4639 if (bed->elf_backend_modify_segment_map != NULL)
4640 {
4641 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4642 return FALSE;
4643 }
4644
4645 return TRUE;
4646 }
4647
4648 #define IS_TBSS(s) \
4649 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4650
4651 /* Set up a mapping from BFD sections to program segments. */
4652
4653 bfd_boolean
4654 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4655 {
4656 unsigned int count;
4657 struct elf_segment_map *m;
4658 asection **sections = NULL;
4659 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4660 bfd_boolean no_user_phdrs;
4661
4662 no_user_phdrs = elf_seg_map (abfd) == NULL;
4663
4664 if (info != NULL)
4665 info->user_phdrs = !no_user_phdrs;
4666
4667 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4668 {
4669 asection *s;
4670 unsigned int i;
4671 struct elf_segment_map *mfirst;
4672 struct elf_segment_map **pm;
4673 asection *last_hdr;
4674 bfd_vma last_size;
4675 unsigned int hdr_index;
4676 bfd_vma maxpagesize;
4677 asection **hdrpp;
4678 bfd_boolean phdr_in_segment;
4679 bfd_boolean writable;
4680 bfd_boolean executable;
4681 int tls_count = 0;
4682 asection *first_tls = NULL;
4683 asection *first_mbind = NULL;
4684 asection *dynsec, *eh_frame_hdr;
4685 bfd_size_type amt;
4686 bfd_vma addr_mask, wrap_to = 0;
4687 bfd_size_type phdr_size;
4688
4689 /* Select the allocated sections, and sort them. */
4690
4691 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4692 sizeof (asection *));
4693 if (sections == NULL)
4694 goto error_return;
4695
4696 /* Calculate top address, avoiding undefined behaviour of shift
4697 left operator when shift count is equal to size of type
4698 being shifted. */
4699 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4700 addr_mask = (addr_mask << 1) + 1;
4701
4702 i = 0;
4703 for (s = abfd->sections; s != NULL; s = s->next)
4704 {
4705 if ((s->flags & SEC_ALLOC) != 0)
4706 {
4707 /* target_index is unused until bfd_elf_final_link
4708 starts output of section symbols. Use it to make
4709 qsort stable. */
4710 s->target_index = i;
4711 sections[i] = s;
4712 ++i;
4713 /* A wrapping section potentially clashes with header. */
4714 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4715 wrap_to = (s->lma + s->size) & addr_mask;
4716 }
4717 }
4718 BFD_ASSERT (i <= bfd_count_sections (abfd));
4719 count = i;
4720
4721 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4722
4723 phdr_size = elf_program_header_size (abfd);
4724 if (phdr_size == (bfd_size_type) -1)
4725 phdr_size = get_program_header_size (abfd, info);
4726 phdr_size += bed->s->sizeof_ehdr;
4727 maxpagesize = bed->maxpagesize;
4728 if (maxpagesize == 0)
4729 maxpagesize = 1;
4730 phdr_in_segment = info != NULL && info->load_phdrs;
4731 if (count != 0
4732 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4733 >= (phdr_size & (maxpagesize - 1))))
4734 /* For compatibility with old scripts that may not be using
4735 SIZEOF_HEADERS, add headers when it looks like space has
4736 been left for them. */
4737 phdr_in_segment = TRUE;
4738
4739 /* Build the mapping. */
4740 mfirst = NULL;
4741 pm = &mfirst;
4742
4743 /* If we have a .interp section, then create a PT_PHDR segment for
4744 the program headers and a PT_INTERP segment for the .interp
4745 section. */
4746 s = bfd_get_section_by_name (abfd, ".interp");
4747 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4748 {
4749 amt = sizeof (struct elf_segment_map);
4750 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4751 if (m == NULL)
4752 goto error_return;
4753 m->next = NULL;
4754 m->p_type = PT_PHDR;
4755 m->p_flags = PF_R;
4756 m->p_flags_valid = 1;
4757 m->includes_phdrs = 1;
4758 phdr_in_segment = TRUE;
4759 *pm = m;
4760 pm = &m->next;
4761
4762 amt = sizeof (struct elf_segment_map);
4763 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4764 if (m == NULL)
4765 goto error_return;
4766 m->next = NULL;
4767 m->p_type = PT_INTERP;
4768 m->count = 1;
4769 m->sections[0] = s;
4770
4771 *pm = m;
4772 pm = &m->next;
4773 }
4774
4775 /* Look through the sections. We put sections in the same program
4776 segment when the start of the second section can be placed within
4777 a few bytes of the end of the first section. */
4778 last_hdr = NULL;
4779 last_size = 0;
4780 hdr_index = 0;
4781 writable = FALSE;
4782 executable = FALSE;
4783 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4784 if (dynsec != NULL
4785 && (dynsec->flags & SEC_LOAD) == 0)
4786 dynsec = NULL;
4787
4788 if ((abfd->flags & D_PAGED) == 0)
4789 phdr_in_segment = FALSE;
4790
4791 /* Deal with -Ttext or something similar such that the first section
4792 is not adjacent to the program headers. This is an
4793 approximation, since at this point we don't know exactly how many
4794 program headers we will need. */
4795 if (phdr_in_segment && count > 0)
4796 {
4797 bfd_vma phdr_lma;
4798 bfd_boolean separate_phdr = FALSE;
4799
4800 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4801 if (info != NULL
4802 && info->separate_code
4803 && (sections[0]->flags & SEC_CODE) != 0)
4804 {
4805 /* If data sections should be separate from code and
4806 thus not executable, and the first section is
4807 executable then put the file and program headers in
4808 their own PT_LOAD. */
4809 separate_phdr = TRUE;
4810 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4811 == (sections[0]->lma & addr_mask & -maxpagesize)))
4812 {
4813 /* The file and program headers are currently on the
4814 same page as the first section. Put them on the
4815 previous page if we can. */
4816 if (phdr_lma >= maxpagesize)
4817 phdr_lma -= maxpagesize;
4818 else
4819 separate_phdr = FALSE;
4820 }
4821 }
4822 if ((sections[0]->lma & addr_mask) < phdr_lma
4823 || (sections[0]->lma & addr_mask) < phdr_size)
4824 /* If file and program headers would be placed at the end
4825 of memory then it's probably better to omit them. */
4826 phdr_in_segment = FALSE;
4827 else if (phdr_lma < wrap_to)
4828 /* If a section wraps around to where we'll be placing
4829 file and program headers, then the headers will be
4830 overwritten. */
4831 phdr_in_segment = FALSE;
4832 else if (separate_phdr)
4833 {
4834 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4835 if (m == NULL)
4836 goto error_return;
4837 m->p_paddr = phdr_lma;
4838 m->p_vaddr_offset
4839 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4840 m->p_paddr_valid = 1;
4841 *pm = m;
4842 pm = &m->next;
4843 phdr_in_segment = FALSE;
4844 }
4845 }
4846
4847 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4848 {
4849 asection *hdr;
4850 bfd_boolean new_segment;
4851
4852 hdr = *hdrpp;
4853
4854 /* See if this section and the last one will fit in the same
4855 segment. */
4856
4857 if (last_hdr == NULL)
4858 {
4859 /* If we don't have a segment yet, then we don't need a new
4860 one (we build the last one after this loop). */
4861 new_segment = FALSE;
4862 }
4863 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4864 {
4865 /* If this section has a different relation between the
4866 virtual address and the load address, then we need a new
4867 segment. */
4868 new_segment = TRUE;
4869 }
4870 else if (hdr->lma < last_hdr->lma + last_size
4871 || last_hdr->lma + last_size < last_hdr->lma)
4872 {
4873 /* If this section has a load address that makes it overlap
4874 the previous section, then we need a new segment. */
4875 new_segment = TRUE;
4876 }
4877 else if ((abfd->flags & D_PAGED) != 0
4878 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4879 == (hdr->lma & -maxpagesize)))
4880 {
4881 /* If we are demand paged then we can't map two disk
4882 pages onto the same memory page. */
4883 new_segment = FALSE;
4884 }
4885 /* In the next test we have to be careful when last_hdr->lma is close
4886 to the end of the address space. If the aligned address wraps
4887 around to the start of the address space, then there are no more
4888 pages left in memory and it is OK to assume that the current
4889 section can be included in the current segment. */
4890 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4891 + maxpagesize > last_hdr->lma)
4892 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4893 + maxpagesize <= hdr->lma))
4894 {
4895 /* If putting this section in this segment would force us to
4896 skip a page in the segment, then we need a new segment. */
4897 new_segment = TRUE;
4898 }
4899 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4900 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4901 {
4902 /* We don't want to put a loaded section after a
4903 nonloaded (ie. bss style) section in the same segment
4904 as that will force the non-loaded section to be loaded.
4905 Consider .tbss sections as loaded for this purpose. */
4906 new_segment = TRUE;
4907 }
4908 else if ((abfd->flags & D_PAGED) == 0)
4909 {
4910 /* If the file is not demand paged, which means that we
4911 don't require the sections to be correctly aligned in the
4912 file, then there is no other reason for a new segment. */
4913 new_segment = FALSE;
4914 }
4915 else if (info != NULL
4916 && info->separate_code
4917 && executable != ((hdr->flags & SEC_CODE) != 0))
4918 {
4919 new_segment = TRUE;
4920 }
4921 else if (! writable
4922 && (hdr->flags & SEC_READONLY) == 0)
4923 {
4924 /* We don't want to put a writable section in a read only
4925 segment. */
4926 new_segment = TRUE;
4927 }
4928 else
4929 {
4930 /* Otherwise, we can use the same segment. */
4931 new_segment = FALSE;
4932 }
4933
4934 /* Allow interested parties a chance to override our decision. */
4935 if (last_hdr != NULL
4936 && info != NULL
4937 && info->callbacks->override_segment_assignment != NULL)
4938 new_segment
4939 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4940 last_hdr,
4941 new_segment);
4942
4943 if (! new_segment)
4944 {
4945 if ((hdr->flags & SEC_READONLY) == 0)
4946 writable = TRUE;
4947 if ((hdr->flags & SEC_CODE) != 0)
4948 executable = TRUE;
4949 last_hdr = hdr;
4950 /* .tbss sections effectively have zero size. */
4951 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4952 continue;
4953 }
4954
4955 /* We need a new program segment. We must create a new program
4956 header holding all the sections from hdr_index until hdr. */
4957
4958 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4959 if (m == NULL)
4960 goto error_return;
4961
4962 *pm = m;
4963 pm = &m->next;
4964
4965 if ((hdr->flags & SEC_READONLY) == 0)
4966 writable = TRUE;
4967 else
4968 writable = FALSE;
4969
4970 if ((hdr->flags & SEC_CODE) == 0)
4971 executable = FALSE;
4972 else
4973 executable = TRUE;
4974
4975 last_hdr = hdr;
4976 /* .tbss sections effectively have zero size. */
4977 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4978 hdr_index = i;
4979 phdr_in_segment = FALSE;
4980 }
4981
4982 /* Create a final PT_LOAD program segment, but not if it's just
4983 for .tbss. */
4984 if (last_hdr != NULL
4985 && (i - hdr_index != 1
4986 || !IS_TBSS (last_hdr)))
4987 {
4988 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4989 if (m == NULL)
4990 goto error_return;
4991
4992 *pm = m;
4993 pm = &m->next;
4994 }
4995
4996 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4997 if (dynsec != NULL)
4998 {
4999 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
5000 if (m == NULL)
5001 goto error_return;
5002 *pm = m;
5003 pm = &m->next;
5004 }
5005
5006 /* For each batch of consecutive loadable SHT_NOTE sections,
5007 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5008 because if we link together nonloadable .note sections and
5009 loadable .note sections, we will generate two .note sections
5010 in the output file. */
5011 for (s = abfd->sections; s != NULL; s = s->next)
5012 {
5013 if ((s->flags & SEC_LOAD) != 0
5014 && elf_section_type (s) == SHT_NOTE)
5015 {
5016 asection *s2;
5017 unsigned int alignment_power = s->alignment_power;
5018
5019 count = 1;
5020 for (s2 = s; s2->next != NULL; s2 = s2->next)
5021 {
5022 if (s2->next->alignment_power == alignment_power
5023 && (s2->next->flags & SEC_LOAD) != 0
5024 && elf_section_type (s2->next) == SHT_NOTE
5025 && align_power (s2->lma + s2->size,
5026 alignment_power)
5027 == s2->next->lma)
5028 count++;
5029 else
5030 break;
5031 }
5032 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5033 amt += count * sizeof (asection *);
5034 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5035 if (m == NULL)
5036 goto error_return;
5037 m->next = NULL;
5038 m->p_type = PT_NOTE;
5039 m->count = count;
5040 while (count > 1)
5041 {
5042 m->sections[m->count - count--] = s;
5043 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5044 s = s->next;
5045 }
5046 m->sections[m->count - 1] = s;
5047 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5048 *pm = m;
5049 pm = &m->next;
5050 }
5051 if (s->flags & SEC_THREAD_LOCAL)
5052 {
5053 if (! tls_count)
5054 first_tls = s;
5055 tls_count++;
5056 }
5057 if (first_mbind == NULL
5058 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5059 first_mbind = s;
5060 }
5061
5062 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5063 if (tls_count > 0)
5064 {
5065 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5066 amt += tls_count * sizeof (asection *);
5067 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5068 if (m == NULL)
5069 goto error_return;
5070 m->next = NULL;
5071 m->p_type = PT_TLS;
5072 m->count = tls_count;
5073 /* Mandated PF_R. */
5074 m->p_flags = PF_R;
5075 m->p_flags_valid = 1;
5076 s = first_tls;
5077 for (i = 0; i < (unsigned int) tls_count; ++i)
5078 {
5079 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5080 {
5081 _bfd_error_handler
5082 (_("%pB: TLS sections are not adjacent:"), abfd);
5083 s = first_tls;
5084 i = 0;
5085 while (i < (unsigned int) tls_count)
5086 {
5087 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5088 {
5089 _bfd_error_handler (_(" TLS: %pA"), s);
5090 i++;
5091 }
5092 else
5093 _bfd_error_handler (_(" non-TLS: %pA"), s);
5094 s = s->next;
5095 }
5096 bfd_set_error (bfd_error_bad_value);
5097 goto error_return;
5098 }
5099 m->sections[i] = s;
5100 s = s->next;
5101 }
5102
5103 *pm = m;
5104 pm = &m->next;
5105 }
5106
5107 if (first_mbind
5108 && (abfd->flags & D_PAGED) != 0
5109 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5110 for (s = first_mbind; s != NULL; s = s->next)
5111 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5112 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5113 {
5114 /* Mandated PF_R. */
5115 unsigned long p_flags = PF_R;
5116 if ((s->flags & SEC_READONLY) == 0)
5117 p_flags |= PF_W;
5118 if ((s->flags & SEC_CODE) != 0)
5119 p_flags |= PF_X;
5120
5121 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5122 m = bfd_zalloc (abfd, amt);
5123 if (m == NULL)
5124 goto error_return;
5125 m->next = NULL;
5126 m->p_type = (PT_GNU_MBIND_LO
5127 + elf_section_data (s)->this_hdr.sh_info);
5128 m->count = 1;
5129 m->p_flags_valid = 1;
5130 m->sections[0] = s;
5131 m->p_flags = p_flags;
5132
5133 *pm = m;
5134 pm = &m->next;
5135 }
5136
5137 s = bfd_get_section_by_name (abfd,
5138 NOTE_GNU_PROPERTY_SECTION_NAME);
5139 if (s != NULL && s->size != 0)
5140 {
5141 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5142 m = bfd_zalloc (abfd, amt);
5143 if (m == NULL)
5144 goto error_return;
5145 m->next = NULL;
5146 m->p_type = PT_GNU_PROPERTY;
5147 m->count = 1;
5148 m->p_flags_valid = 1;
5149 m->sections[0] = s;
5150 m->p_flags = PF_R;
5151 *pm = m;
5152 pm = &m->next;
5153 }
5154
5155 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5156 segment. */
5157 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5158 if (eh_frame_hdr != NULL
5159 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5160 {
5161 amt = sizeof (struct elf_segment_map);
5162 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5163 if (m == NULL)
5164 goto error_return;
5165 m->next = NULL;
5166 m->p_type = PT_GNU_EH_FRAME;
5167 m->count = 1;
5168 m->sections[0] = eh_frame_hdr->output_section;
5169
5170 *pm = m;
5171 pm = &m->next;
5172 }
5173
5174 if (elf_stack_flags (abfd))
5175 {
5176 amt = sizeof (struct elf_segment_map);
5177 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5178 if (m == NULL)
5179 goto error_return;
5180 m->next = NULL;
5181 m->p_type = PT_GNU_STACK;
5182 m->p_flags = elf_stack_flags (abfd);
5183 m->p_align = bed->stack_align;
5184 m->p_flags_valid = 1;
5185 m->p_align_valid = m->p_align != 0;
5186 if (info->stacksize > 0)
5187 {
5188 m->p_size = info->stacksize;
5189 m->p_size_valid = 1;
5190 }
5191
5192 *pm = m;
5193 pm = &m->next;
5194 }
5195
5196 if (info != NULL && info->relro)
5197 {
5198 for (m = mfirst; m != NULL; m = m->next)
5199 {
5200 if (m->p_type == PT_LOAD
5201 && m->count != 0
5202 && m->sections[0]->vma >= info->relro_start
5203 && m->sections[0]->vma < info->relro_end)
5204 {
5205 i = m->count;
5206 while (--i != (unsigned) -1)
5207 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5208 == (SEC_LOAD | SEC_HAS_CONTENTS))
5209 break;
5210
5211 if (i != (unsigned) -1)
5212 break;
5213 }
5214 }
5215
5216 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5217 if (m != NULL)
5218 {
5219 amt = sizeof (struct elf_segment_map);
5220 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5221 if (m == NULL)
5222 goto error_return;
5223 m->next = NULL;
5224 m->p_type = PT_GNU_RELRO;
5225 *pm = m;
5226 pm = &m->next;
5227 }
5228 }
5229
5230 free (sections);
5231 elf_seg_map (abfd) = mfirst;
5232 }
5233
5234 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5235 return FALSE;
5236
5237 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5238 ++count;
5239 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5240
5241 return TRUE;
5242
5243 error_return:
5244 if (sections != NULL)
5245 free (sections);
5246 return FALSE;
5247 }
5248
5249 /* Sort sections by address. */
5250
5251 static int
5252 elf_sort_sections (const void *arg1, const void *arg2)
5253 {
5254 const asection *sec1 = *(const asection **) arg1;
5255 const asection *sec2 = *(const asection **) arg2;
5256 bfd_size_type size1, size2;
5257
5258 /* Sort by LMA first, since this is the address used to
5259 place the section into a segment. */
5260 if (sec1->lma < sec2->lma)
5261 return -1;
5262 else if (sec1->lma > sec2->lma)
5263 return 1;
5264
5265 /* Then sort by VMA. Normally the LMA and the VMA will be
5266 the same, and this will do nothing. */
5267 if (sec1->vma < sec2->vma)
5268 return -1;
5269 else if (sec1->vma > sec2->vma)
5270 return 1;
5271
5272 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5273
5274 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5275
5276 if (TOEND (sec1))
5277 {
5278 if (!TOEND (sec2))
5279 return 1;
5280 }
5281 else if (TOEND (sec2))
5282 return -1;
5283
5284 #undef TOEND
5285
5286 /* Sort by size, to put zero sized sections
5287 before others at the same address. */
5288
5289 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5290 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5291
5292 if (size1 < size2)
5293 return -1;
5294 if (size1 > size2)
5295 return 1;
5296
5297 return sec1->target_index - sec2->target_index;
5298 }
5299
5300 /* This qsort comparison functions sorts PT_LOAD segments first and
5301 by p_paddr, for assign_file_positions_for_load_sections. */
5302
5303 static int
5304 elf_sort_segments (const void *arg1, const void *arg2)
5305 {
5306 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5307 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5308
5309 if (m1->p_type != m2->p_type)
5310 {
5311 if (m1->p_type == PT_NULL)
5312 return 1;
5313 if (m2->p_type == PT_NULL)
5314 return -1;
5315 return m1->p_type < m2->p_type ? -1 : 1;
5316 }
5317 if (m1->includes_filehdr != m2->includes_filehdr)
5318 return m1->includes_filehdr ? -1 : 1;
5319 if (m1->no_sort_lma != m2->no_sort_lma)
5320 return m1->no_sort_lma ? -1 : 1;
5321 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5322 {
5323 bfd_vma lma1, lma2;
5324 lma1 = 0;
5325 if (m1->p_paddr_valid)
5326 lma1 = m1->p_paddr;
5327 else if (m1->count != 0)
5328 lma1 = m1->sections[0]->lma + m1->p_vaddr_offset;
5329 lma2 = 0;
5330 if (m2->p_paddr_valid)
5331 lma2 = m2->p_paddr;
5332 else if (m2->count != 0)
5333 lma2 = m2->sections[0]->lma + m2->p_vaddr_offset;
5334 if (lma1 != lma2)
5335 return lma1 < lma2 ? -1 : 1;
5336 }
5337 if (m1->idx != m2->idx)
5338 return m1->idx < m2->idx ? -1 : 1;
5339 return 0;
5340 }
5341
5342 /* Ian Lance Taylor writes:
5343
5344 We shouldn't be using % with a negative signed number. That's just
5345 not good. We have to make sure either that the number is not
5346 negative, or that the number has an unsigned type. When the types
5347 are all the same size they wind up as unsigned. When file_ptr is a
5348 larger signed type, the arithmetic winds up as signed long long,
5349 which is wrong.
5350
5351 What we're trying to say here is something like ``increase OFF by
5352 the least amount that will cause it to be equal to the VMA modulo
5353 the page size.'' */
5354 /* In other words, something like:
5355
5356 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5357 off_offset = off % bed->maxpagesize;
5358 if (vma_offset < off_offset)
5359 adjustment = vma_offset + bed->maxpagesize - off_offset;
5360 else
5361 adjustment = vma_offset - off_offset;
5362
5363 which can be collapsed into the expression below. */
5364
5365 static file_ptr
5366 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5367 {
5368 /* PR binutils/16199: Handle an alignment of zero. */
5369 if (maxpagesize == 0)
5370 maxpagesize = 1;
5371 return ((vma - off) % maxpagesize);
5372 }
5373
5374 static void
5375 print_segment_map (const struct elf_segment_map *m)
5376 {
5377 unsigned int j;
5378 const char *pt = get_segment_type (m->p_type);
5379 char buf[32];
5380
5381 if (pt == NULL)
5382 {
5383 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5384 sprintf (buf, "LOPROC+%7.7x",
5385 (unsigned int) (m->p_type - PT_LOPROC));
5386 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5387 sprintf (buf, "LOOS+%7.7x",
5388 (unsigned int) (m->p_type - PT_LOOS));
5389 else
5390 snprintf (buf, sizeof (buf), "%8.8x",
5391 (unsigned int) m->p_type);
5392 pt = buf;
5393 }
5394 fflush (stdout);
5395 fprintf (stderr, "%s:", pt);
5396 for (j = 0; j < m->count; j++)
5397 fprintf (stderr, " %s", m->sections [j]->name);
5398 putc ('\n',stderr);
5399 fflush (stderr);
5400 }
5401
5402 static bfd_boolean
5403 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5404 {
5405 void *buf;
5406 bfd_boolean ret;
5407
5408 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5409 return FALSE;
5410 buf = bfd_zmalloc (len);
5411 if (buf == NULL)
5412 return FALSE;
5413 ret = bfd_bwrite (buf, len, abfd) == len;
5414 free (buf);
5415 return ret;
5416 }
5417
5418 /* Assign file positions to the sections based on the mapping from
5419 sections to segments. This function also sets up some fields in
5420 the file header. */
5421
5422 static bfd_boolean
5423 assign_file_positions_for_load_sections (bfd *abfd,
5424 struct bfd_link_info *link_info)
5425 {
5426 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5427 struct elf_segment_map *m;
5428 struct elf_segment_map *phdr_load_seg;
5429 Elf_Internal_Phdr *phdrs;
5430 Elf_Internal_Phdr *p;
5431 file_ptr off;
5432 bfd_size_type maxpagesize;
5433 unsigned int alloc, actual;
5434 unsigned int i, j;
5435 struct elf_segment_map **sorted_seg_map;
5436
5437 if (link_info == NULL
5438 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5439 return FALSE;
5440
5441 alloc = 0;
5442 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5443 m->idx = alloc++;
5444
5445 if (alloc)
5446 {
5447 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5448 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5449 }
5450 else
5451 {
5452 /* PR binutils/12467. */
5453 elf_elfheader (abfd)->e_phoff = 0;
5454 elf_elfheader (abfd)->e_phentsize = 0;
5455 }
5456
5457 elf_elfheader (abfd)->e_phnum = alloc;
5458
5459 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5460 {
5461 actual = alloc;
5462 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5463 }
5464 else
5465 {
5466 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5467 BFD_ASSERT (elf_program_header_size (abfd)
5468 == actual * bed->s->sizeof_phdr);
5469 BFD_ASSERT (actual >= alloc);
5470 }
5471
5472 if (alloc == 0)
5473 {
5474 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5475 return TRUE;
5476 }
5477
5478 /* We're writing the size in elf_program_header_size (abfd),
5479 see assign_file_positions_except_relocs, so make sure we have
5480 that amount allocated, with trailing space cleared.
5481 The variable alloc contains the computed need, while
5482 elf_program_header_size (abfd) contains the size used for the
5483 layout.
5484 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5485 where the layout is forced to according to a larger size in the
5486 last iterations for the testcase ld-elf/header. */
5487 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5488 + alloc * sizeof (*sorted_seg_map)));
5489 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5490 elf_tdata (abfd)->phdr = phdrs;
5491 if (phdrs == NULL)
5492 return FALSE;
5493
5494 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5495 {
5496 sorted_seg_map[j] = m;
5497 /* If elf_segment_map is not from map_sections_to_segments, the
5498 sections may not be correctly ordered. NOTE: sorting should
5499 not be done to the PT_NOTE section of a corefile, which may
5500 contain several pseudo-sections artificially created by bfd.
5501 Sorting these pseudo-sections breaks things badly. */
5502 if (m->count > 1
5503 && !(elf_elfheader (abfd)->e_type == ET_CORE
5504 && m->p_type == PT_NOTE))
5505 {
5506 for (i = 0; i < m->count; i++)
5507 m->sections[i]->target_index = i;
5508 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5509 elf_sort_sections);
5510 }
5511 }
5512 if (alloc > 1)
5513 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5514 elf_sort_segments);
5515
5516 maxpagesize = 1;
5517 if ((abfd->flags & D_PAGED) != 0)
5518 maxpagesize = bed->maxpagesize;
5519
5520 /* Sections must map to file offsets past the ELF file header. */
5521 off = bed->s->sizeof_ehdr;
5522 /* And if one of the PT_LOAD headers doesn't include the program
5523 headers then we'll be mapping program headers in the usual
5524 position after the ELF file header. */
5525 phdr_load_seg = NULL;
5526 for (j = 0; j < alloc; j++)
5527 {
5528 m = sorted_seg_map[j];
5529 if (m->p_type != PT_LOAD)
5530 break;
5531 if (m->includes_phdrs)
5532 {
5533 phdr_load_seg = m;
5534 break;
5535 }
5536 }
5537 if (phdr_load_seg == NULL)
5538 off += actual * bed->s->sizeof_phdr;
5539
5540 for (j = 0; j < alloc; j++)
5541 {
5542 asection **secpp;
5543 bfd_vma off_adjust;
5544 bfd_boolean no_contents;
5545
5546 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5547 number of sections with contents contributing to both p_filesz
5548 and p_memsz, followed by a number of sections with no contents
5549 that just contribute to p_memsz. In this loop, OFF tracks next
5550 available file offset for PT_LOAD and PT_NOTE segments. */
5551 m = sorted_seg_map[j];
5552 p = phdrs + m->idx;
5553 p->p_type = m->p_type;
5554 p->p_flags = m->p_flags;
5555
5556 if (m->count == 0)
5557 p->p_vaddr = m->p_vaddr_offset;
5558 else
5559 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5560
5561 if (m->p_paddr_valid)
5562 p->p_paddr = m->p_paddr;
5563 else if (m->count == 0)
5564 p->p_paddr = 0;
5565 else
5566 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5567
5568 if (p->p_type == PT_LOAD
5569 && (abfd->flags & D_PAGED) != 0)
5570 {
5571 /* p_align in demand paged PT_LOAD segments effectively stores
5572 the maximum page size. When copying an executable with
5573 objcopy, we set m->p_align from the input file. Use this
5574 value for maxpagesize rather than bed->maxpagesize, which
5575 may be different. Note that we use maxpagesize for PT_TLS
5576 segment alignment later in this function, so we are relying
5577 on at least one PT_LOAD segment appearing before a PT_TLS
5578 segment. */
5579 if (m->p_align_valid)
5580 maxpagesize = m->p_align;
5581
5582 p->p_align = maxpagesize;
5583 }
5584 else if (m->p_align_valid)
5585 p->p_align = m->p_align;
5586 else if (m->count == 0)
5587 p->p_align = 1 << bed->s->log_file_align;
5588
5589 if (m == phdr_load_seg)
5590 {
5591 if (!m->includes_filehdr)
5592 p->p_offset = off;
5593 off += actual * bed->s->sizeof_phdr;
5594 }
5595
5596 no_contents = FALSE;
5597 off_adjust = 0;
5598 if (p->p_type == PT_LOAD
5599 && m->count > 0)
5600 {
5601 bfd_size_type align;
5602 unsigned int align_power = 0;
5603
5604 if (m->p_align_valid)
5605 align = p->p_align;
5606 else
5607 {
5608 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5609 {
5610 unsigned int secalign;
5611
5612 secalign = bfd_section_alignment (*secpp);
5613 if (secalign > align_power)
5614 align_power = secalign;
5615 }
5616 align = (bfd_size_type) 1 << align_power;
5617 if (align < maxpagesize)
5618 align = maxpagesize;
5619 }
5620
5621 for (i = 0; i < m->count; i++)
5622 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5623 /* If we aren't making room for this section, then
5624 it must be SHT_NOBITS regardless of what we've
5625 set via struct bfd_elf_special_section. */
5626 elf_section_type (m->sections[i]) = SHT_NOBITS;
5627
5628 /* Find out whether this segment contains any loadable
5629 sections. */
5630 no_contents = TRUE;
5631 for (i = 0; i < m->count; i++)
5632 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5633 {
5634 no_contents = FALSE;
5635 break;
5636 }
5637
5638 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5639
5640 /* Broken hardware and/or kernel require that files do not
5641 map the same page with different permissions on some hppa
5642 processors. */
5643 if (j != 0
5644 && (abfd->flags & D_PAGED) != 0
5645 && bed->no_page_alias
5646 && (off & (maxpagesize - 1)) != 0
5647 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5648 off_adjust += maxpagesize;
5649 off += off_adjust;
5650 if (no_contents)
5651 {
5652 /* We shouldn't need to align the segment on disk since
5653 the segment doesn't need file space, but the gABI
5654 arguably requires the alignment and glibc ld.so
5655 checks it. So to comply with the alignment
5656 requirement but not waste file space, we adjust
5657 p_offset for just this segment. (OFF_ADJUST is
5658 subtracted from OFF later.) This may put p_offset
5659 past the end of file, but that shouldn't matter. */
5660 }
5661 else
5662 off_adjust = 0;
5663 }
5664 /* Make sure the .dynamic section is the first section in the
5665 PT_DYNAMIC segment. */
5666 else if (p->p_type == PT_DYNAMIC
5667 && m->count > 1
5668 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5669 {
5670 _bfd_error_handler
5671 (_("%pB: The first section in the PT_DYNAMIC segment"
5672 " is not the .dynamic section"),
5673 abfd);
5674 bfd_set_error (bfd_error_bad_value);
5675 return FALSE;
5676 }
5677 /* Set the note section type to SHT_NOTE. */
5678 else if (p->p_type == PT_NOTE)
5679 for (i = 0; i < m->count; i++)
5680 elf_section_type (m->sections[i]) = SHT_NOTE;
5681
5682 if (m->includes_filehdr)
5683 {
5684 if (!m->p_flags_valid)
5685 p->p_flags |= PF_R;
5686 p->p_filesz = bed->s->sizeof_ehdr;
5687 p->p_memsz = bed->s->sizeof_ehdr;
5688 if (p->p_type == PT_LOAD)
5689 {
5690 if (m->count > 0)
5691 {
5692 if (p->p_vaddr < (bfd_vma) off
5693 || (!m->p_paddr_valid
5694 && p->p_paddr < (bfd_vma) off))
5695 {
5696 _bfd_error_handler
5697 (_("%pB: not enough room for program headers,"
5698 " try linking with -N"),
5699 abfd);
5700 bfd_set_error (bfd_error_bad_value);
5701 return FALSE;
5702 }
5703 p->p_vaddr -= off;
5704 if (!m->p_paddr_valid)
5705 p->p_paddr -= off;
5706 }
5707 }
5708 else if (sorted_seg_map[0]->includes_filehdr)
5709 {
5710 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5711 p->p_vaddr = filehdr->p_vaddr;
5712 if (!m->p_paddr_valid)
5713 p->p_paddr = filehdr->p_paddr;
5714 }
5715 }
5716
5717 if (m->includes_phdrs)
5718 {
5719 if (!m->p_flags_valid)
5720 p->p_flags |= PF_R;
5721 p->p_filesz += actual * bed->s->sizeof_phdr;
5722 p->p_memsz += actual * bed->s->sizeof_phdr;
5723 if (!m->includes_filehdr)
5724 {
5725 if (p->p_type == PT_LOAD)
5726 {
5727 elf_elfheader (abfd)->e_phoff = p->p_offset;
5728 if (m->count > 0)
5729 {
5730 p->p_vaddr -= off - p->p_offset;
5731 if (!m->p_paddr_valid)
5732 p->p_paddr -= off - p->p_offset;
5733 }
5734 }
5735 else if (phdr_load_seg != NULL)
5736 {
5737 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5738 bfd_vma phdr_off = 0;
5739 if (phdr_load_seg->includes_filehdr)
5740 phdr_off = bed->s->sizeof_ehdr;
5741 p->p_vaddr = phdr->p_vaddr + phdr_off;
5742 if (!m->p_paddr_valid)
5743 p->p_paddr = phdr->p_paddr + phdr_off;
5744 p->p_offset = phdr->p_offset + phdr_off;
5745 }
5746 else
5747 p->p_offset = bed->s->sizeof_ehdr;
5748 }
5749 }
5750
5751 if (p->p_type == PT_LOAD
5752 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5753 {
5754 if (!m->includes_filehdr && !m->includes_phdrs)
5755 {
5756 p->p_offset = off;
5757 if (no_contents)
5758 /* Put meaningless p_offset for PT_LOAD segments
5759 without file contents somewhere within the first
5760 page, in an attempt to not point past EOF. */
5761 p->p_offset = off % (p->p_align > maxpagesize
5762 ? p->p_align : maxpagesize);
5763 }
5764 else
5765 {
5766 file_ptr adjust;
5767
5768 adjust = off - (p->p_offset + p->p_filesz);
5769 if (!no_contents)
5770 p->p_filesz += adjust;
5771 p->p_memsz += adjust;
5772 }
5773 }
5774
5775 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5776 maps. Set filepos for sections in PT_LOAD segments, and in
5777 core files, for sections in PT_NOTE segments.
5778 assign_file_positions_for_non_load_sections will set filepos
5779 for other sections and update p_filesz for other segments. */
5780 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5781 {
5782 asection *sec;
5783 bfd_size_type align;
5784 Elf_Internal_Shdr *this_hdr;
5785
5786 sec = *secpp;
5787 this_hdr = &elf_section_data (sec)->this_hdr;
5788 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5789
5790 if ((p->p_type == PT_LOAD
5791 || p->p_type == PT_TLS)
5792 && (this_hdr->sh_type != SHT_NOBITS
5793 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5794 && ((this_hdr->sh_flags & SHF_TLS) == 0
5795 || p->p_type == PT_TLS))))
5796 {
5797 bfd_vma p_start = p->p_paddr;
5798 bfd_vma p_end = p_start + p->p_memsz;
5799 bfd_vma s_start = sec->lma;
5800 bfd_vma adjust = s_start - p_end;
5801
5802 if (adjust != 0
5803 && (s_start < p_end
5804 || p_end < p_start))
5805 {
5806 _bfd_error_handler
5807 /* xgettext:c-format */
5808 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5809 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5810 adjust = 0;
5811 sec->lma = p_end;
5812 }
5813 p->p_memsz += adjust;
5814
5815 if (this_hdr->sh_type != SHT_NOBITS)
5816 {
5817 if (p->p_type == PT_LOAD)
5818 {
5819 if (p->p_filesz + adjust < p->p_memsz)
5820 {
5821 /* We have a PROGBITS section following NOBITS ones.
5822 Allocate file space for the NOBITS section(s) and
5823 zero it. */
5824 adjust = p->p_memsz - p->p_filesz;
5825 if (!write_zeros (abfd, off, adjust))
5826 return FALSE;
5827 }
5828 off += adjust;
5829 }
5830 p->p_filesz += adjust;
5831 }
5832 }
5833
5834 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5835 {
5836 /* The section at i == 0 is the one that actually contains
5837 everything. */
5838 if (i == 0)
5839 {
5840 this_hdr->sh_offset = sec->filepos = off;
5841 off += this_hdr->sh_size;
5842 p->p_filesz = this_hdr->sh_size;
5843 p->p_memsz = 0;
5844 p->p_align = 1;
5845 }
5846 else
5847 {
5848 /* The rest are fake sections that shouldn't be written. */
5849 sec->filepos = 0;
5850 sec->size = 0;
5851 sec->flags = 0;
5852 continue;
5853 }
5854 }
5855 else
5856 {
5857 if (p->p_type == PT_LOAD)
5858 {
5859 this_hdr->sh_offset = sec->filepos = off;
5860 if (this_hdr->sh_type != SHT_NOBITS)
5861 off += this_hdr->sh_size;
5862 }
5863 else if (this_hdr->sh_type == SHT_NOBITS
5864 && (this_hdr->sh_flags & SHF_TLS) != 0
5865 && this_hdr->sh_offset == 0)
5866 {
5867 /* This is a .tbss section that didn't get a PT_LOAD.
5868 (See _bfd_elf_map_sections_to_segments "Create a
5869 final PT_LOAD".) Set sh_offset to the value it
5870 would have if we had created a zero p_filesz and
5871 p_memsz PT_LOAD header for the section. This
5872 also makes the PT_TLS header have the same
5873 p_offset value. */
5874 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5875 off, align);
5876 this_hdr->sh_offset = sec->filepos = off + adjust;
5877 }
5878
5879 if (this_hdr->sh_type != SHT_NOBITS)
5880 {
5881 p->p_filesz += this_hdr->sh_size;
5882 /* A load section without SHF_ALLOC is something like
5883 a note section in a PT_NOTE segment. These take
5884 file space but are not loaded into memory. */
5885 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5886 p->p_memsz += this_hdr->sh_size;
5887 }
5888 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5889 {
5890 if (p->p_type == PT_TLS)
5891 p->p_memsz += this_hdr->sh_size;
5892
5893 /* .tbss is special. It doesn't contribute to p_memsz of
5894 normal segments. */
5895 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5896 p->p_memsz += this_hdr->sh_size;
5897 }
5898
5899 if (align > p->p_align
5900 && !m->p_align_valid
5901 && (p->p_type != PT_LOAD
5902 || (abfd->flags & D_PAGED) == 0))
5903 p->p_align = align;
5904 }
5905
5906 if (!m->p_flags_valid)
5907 {
5908 p->p_flags |= PF_R;
5909 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5910 p->p_flags |= PF_X;
5911 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5912 p->p_flags |= PF_W;
5913 }
5914 }
5915
5916 off -= off_adjust;
5917
5918 /* PR ld/20815 - Check that the program header segment, if
5919 present, will be loaded into memory. */
5920 if (p->p_type == PT_PHDR
5921 && phdr_load_seg == NULL
5922 && !(bed->elf_backend_allow_non_load_phdr != NULL
5923 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5924 {
5925 /* The fix for this error is usually to edit the linker script being
5926 used and set up the program headers manually. Either that or
5927 leave room for the headers at the start of the SECTIONS. */
5928 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5929 " by LOAD segment"),
5930 abfd);
5931 return FALSE;
5932 }
5933
5934 /* Check that all sections are in a PT_LOAD segment.
5935 Don't check funky gdb generated core files. */
5936 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5937 {
5938 bfd_boolean check_vma = TRUE;
5939
5940 for (i = 1; i < m->count; i++)
5941 if (m->sections[i]->vma == m->sections[i - 1]->vma
5942 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5943 ->this_hdr), p) != 0
5944 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5945 ->this_hdr), p) != 0)
5946 {
5947 /* Looks like we have overlays packed into the segment. */
5948 check_vma = FALSE;
5949 break;
5950 }
5951
5952 for (i = 0; i < m->count; i++)
5953 {
5954 Elf_Internal_Shdr *this_hdr;
5955 asection *sec;
5956
5957 sec = m->sections[i];
5958 this_hdr = &(elf_section_data(sec)->this_hdr);
5959 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5960 && !ELF_TBSS_SPECIAL (this_hdr, p))
5961 {
5962 _bfd_error_handler
5963 /* xgettext:c-format */
5964 (_("%pB: section `%pA' can't be allocated in segment %d"),
5965 abfd, sec, j);
5966 print_segment_map (m);
5967 }
5968 }
5969 }
5970 }
5971
5972 elf_next_file_pos (abfd) = off;
5973
5974 if (link_info != NULL
5975 && phdr_load_seg != NULL
5976 && phdr_load_seg->includes_filehdr)
5977 {
5978 /* There is a segment that contains both the file headers and the
5979 program headers, so provide a symbol __ehdr_start pointing there.
5980 A program can use this to examine itself robustly. */
5981
5982 struct elf_link_hash_entry *hash
5983 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5984 FALSE, FALSE, TRUE);
5985 /* If the symbol was referenced and not defined, define it. */
5986 if (hash != NULL
5987 && (hash->root.type == bfd_link_hash_new
5988 || hash->root.type == bfd_link_hash_undefined
5989 || hash->root.type == bfd_link_hash_undefweak
5990 || hash->root.type == bfd_link_hash_common))
5991 {
5992 asection *s = NULL;
5993 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr;
5994
5995 if (phdr_load_seg->count != 0)
5996 /* The segment contains sections, so use the first one. */
5997 s = phdr_load_seg->sections[0];
5998 else
5999 /* Use the first (i.e. lowest-addressed) section in any segment. */
6000 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6001 if (m->p_type == PT_LOAD && m->count != 0)
6002 {
6003 s = m->sections[0];
6004 break;
6005 }
6006
6007 if (s != NULL)
6008 {
6009 hash->root.u.def.value = filehdr_vaddr - s->vma;
6010 hash->root.u.def.section = s;
6011 }
6012 else
6013 {
6014 hash->root.u.def.value = filehdr_vaddr;
6015 hash->root.u.def.section = bfd_abs_section_ptr;
6016 }
6017
6018 hash->root.type = bfd_link_hash_defined;
6019 hash->def_regular = 1;
6020 hash->non_elf = 0;
6021 }
6022 }
6023
6024 return TRUE;
6025 }
6026
6027 /* Determine if a bfd is a debuginfo file. Unfortunately there
6028 is no defined method for detecting such files, so we have to
6029 use heuristics instead. */
6030
6031 bfd_boolean
6032 is_debuginfo_file (bfd *abfd)
6033 {
6034 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6035 return FALSE;
6036
6037 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6038 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6039 Elf_Internal_Shdr **headerp;
6040
6041 for (headerp = start_headers; headerp < end_headers; headerp ++)
6042 {
6043 Elf_Internal_Shdr *header = * headerp;
6044
6045 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6046 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6047 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6048 && header->sh_type != SHT_NOBITS
6049 && header->sh_type != SHT_NOTE)
6050 return FALSE;
6051 }
6052
6053 return TRUE;
6054 }
6055
6056 /* Assign file positions for the other sections, except for compressed debugging
6057 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6058
6059 static bfd_boolean
6060 assign_file_positions_for_non_load_sections (bfd *abfd,
6061 struct bfd_link_info *link_info)
6062 {
6063 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6064 Elf_Internal_Shdr **i_shdrpp;
6065 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6066 Elf_Internal_Phdr *phdrs;
6067 Elf_Internal_Phdr *p;
6068 struct elf_segment_map *m;
6069 file_ptr off;
6070
6071 i_shdrpp = elf_elfsections (abfd);
6072 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6073 off = elf_next_file_pos (abfd);
6074 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6075 {
6076 Elf_Internal_Shdr *hdr;
6077
6078 hdr = *hdrpp;
6079 if (hdr->bfd_section != NULL
6080 && (hdr->bfd_section->filepos != 0
6081 || (hdr->sh_type == SHT_NOBITS
6082 && hdr->contents == NULL)))
6083 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6084 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6085 {
6086 if (hdr->sh_size != 0
6087 /* PR 24717 - debuginfo files are known to be not strictly
6088 compliant with the ELF standard. In particular they often
6089 have .note.gnu.property sections that are outside of any
6090 loadable segment. This is not a problem for such files,
6091 so do not warn about them. */
6092 && ! is_debuginfo_file (abfd))
6093 _bfd_error_handler
6094 /* xgettext:c-format */
6095 (_("%pB: warning: allocated section `%s' not in segment"),
6096 abfd,
6097 (hdr->bfd_section == NULL
6098 ? "*unknown*"
6099 : hdr->bfd_section->name));
6100 /* We don't need to page align empty sections. */
6101 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6102 off += vma_page_aligned_bias (hdr->sh_addr, off,
6103 bed->maxpagesize);
6104 else
6105 off += vma_page_aligned_bias (hdr->sh_addr, off,
6106 hdr->sh_addralign);
6107 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6108 FALSE);
6109 }
6110 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6111 && hdr->bfd_section == NULL)
6112 /* We don't know the offset of these sections yet: their size has
6113 not been decided. */
6114 || (hdr->bfd_section != NULL
6115 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6116 || (bfd_section_is_ctf (hdr->bfd_section)
6117 && abfd->is_linker_output)))
6118 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6119 || (elf_symtab_shndx_list (abfd) != NULL
6120 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6121 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6122 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6123 hdr->sh_offset = -1;
6124 else
6125 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6126 }
6127 elf_next_file_pos (abfd) = off;
6128
6129 /* Now that we have set the section file positions, we can set up
6130 the file positions for the non PT_LOAD segments. */
6131 phdrs = elf_tdata (abfd)->phdr;
6132 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6133 {
6134 if (p->p_type == PT_GNU_RELRO)
6135 {
6136 bfd_vma start, end;
6137 bfd_boolean ok;
6138
6139 if (link_info != NULL)
6140 {
6141 /* During linking the range of the RELRO segment is passed
6142 in link_info. Note that there may be padding between
6143 relro_start and the first RELRO section. */
6144 start = link_info->relro_start;
6145 end = link_info->relro_end;
6146 }
6147 else if (m->count != 0)
6148 {
6149 if (!m->p_size_valid)
6150 abort ();
6151 start = m->sections[0]->vma;
6152 end = start + m->p_size;
6153 }
6154 else
6155 {
6156 start = 0;
6157 end = 0;
6158 }
6159
6160 ok = FALSE;
6161 if (start < end)
6162 {
6163 struct elf_segment_map *lm;
6164 const Elf_Internal_Phdr *lp;
6165 unsigned int i;
6166
6167 /* Find a LOAD segment containing a section in the RELRO
6168 segment. */
6169 for (lm = elf_seg_map (abfd), lp = phdrs;
6170 lm != NULL;
6171 lm = lm->next, lp++)
6172 {
6173 if (lp->p_type == PT_LOAD
6174 && lm->count != 0
6175 && (lm->sections[lm->count - 1]->vma
6176 + (!IS_TBSS (lm->sections[lm->count - 1])
6177 ? lm->sections[lm->count - 1]->size
6178 : 0)) > start
6179 && lm->sections[0]->vma < end)
6180 break;
6181 }
6182
6183 if (lm != NULL)
6184 {
6185 /* Find the section starting the RELRO segment. */
6186 for (i = 0; i < lm->count; i++)
6187 {
6188 asection *s = lm->sections[i];
6189 if (s->vma >= start
6190 && s->vma < end
6191 && s->size != 0)
6192 break;
6193 }
6194
6195 if (i < lm->count)
6196 {
6197 p->p_vaddr = lm->sections[i]->vma;
6198 p->p_paddr = lm->sections[i]->lma;
6199 p->p_offset = lm->sections[i]->filepos;
6200 p->p_memsz = end - p->p_vaddr;
6201 p->p_filesz = p->p_memsz;
6202
6203 /* The RELRO segment typically ends a few bytes
6204 into .got.plt but other layouts are possible.
6205 In cases where the end does not match any
6206 loaded section (for instance is in file
6207 padding), trim p_filesz back to correspond to
6208 the end of loaded section contents. */
6209 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6210 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6211
6212 /* Preserve the alignment and flags if they are
6213 valid. The gold linker generates RW/4 for
6214 the PT_GNU_RELRO section. It is better for
6215 objcopy/strip to honor these attributes
6216 otherwise gdb will choke when using separate
6217 debug files. */
6218 if (!m->p_align_valid)
6219 p->p_align = 1;
6220 if (!m->p_flags_valid)
6221 p->p_flags = PF_R;
6222 ok = TRUE;
6223 }
6224 }
6225 }
6226 if (link_info != NULL)
6227 BFD_ASSERT (ok);
6228 if (!ok)
6229 memset (p, 0, sizeof *p);
6230 }
6231 else if (p->p_type == PT_GNU_STACK)
6232 {
6233 if (m->p_size_valid)
6234 p->p_memsz = m->p_size;
6235 }
6236 else if (m->count != 0)
6237 {
6238 unsigned int i;
6239
6240 if (p->p_type != PT_LOAD
6241 && (p->p_type != PT_NOTE
6242 || bfd_get_format (abfd) != bfd_core))
6243 {
6244 /* A user specified segment layout may include a PHDR
6245 segment that overlaps with a LOAD segment... */
6246 if (p->p_type == PT_PHDR)
6247 {
6248 m->count = 0;
6249 continue;
6250 }
6251
6252 if (m->includes_filehdr || m->includes_phdrs)
6253 {
6254 /* PR 17512: file: 2195325e. */
6255 _bfd_error_handler
6256 (_("%pB: error: non-load segment %d includes file header "
6257 "and/or program header"),
6258 abfd, (int) (p - phdrs));
6259 return FALSE;
6260 }
6261
6262 p->p_filesz = 0;
6263 p->p_offset = m->sections[0]->filepos;
6264 for (i = m->count; i-- != 0;)
6265 {
6266 asection *sect = m->sections[i];
6267 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6268 if (hdr->sh_type != SHT_NOBITS)
6269 {
6270 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6271 + hdr->sh_size);
6272 break;
6273 }
6274 }
6275 }
6276 }
6277 }
6278
6279 return TRUE;
6280 }
6281
6282 static elf_section_list *
6283 find_section_in_list (unsigned int i, elf_section_list * list)
6284 {
6285 for (;list != NULL; list = list->next)
6286 if (list->ndx == i)
6287 break;
6288 return list;
6289 }
6290
6291 /* Work out the file positions of all the sections. This is called by
6292 _bfd_elf_compute_section_file_positions. All the section sizes and
6293 VMAs must be known before this is called.
6294
6295 Reloc sections come in two flavours: Those processed specially as
6296 "side-channel" data attached to a section to which they apply, and those that
6297 bfd doesn't process as relocations. The latter sort are stored in a normal
6298 bfd section by bfd_section_from_shdr. We don't consider the former sort
6299 here, unless they form part of the loadable image. Reloc sections not
6300 assigned here (and compressed debugging sections and CTF sections which
6301 nothing else in the file can rely upon) will be handled later by
6302 assign_file_positions_for_relocs.
6303
6304 We also don't set the positions of the .symtab and .strtab here. */
6305
6306 static bfd_boolean
6307 assign_file_positions_except_relocs (bfd *abfd,
6308 struct bfd_link_info *link_info)
6309 {
6310 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6311 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6312 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6313 unsigned int alloc;
6314
6315 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6316 && bfd_get_format (abfd) != bfd_core)
6317 {
6318 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6319 unsigned int num_sec = elf_numsections (abfd);
6320 Elf_Internal_Shdr **hdrpp;
6321 unsigned int i;
6322 file_ptr off;
6323
6324 /* Start after the ELF header. */
6325 off = i_ehdrp->e_ehsize;
6326
6327 /* We are not creating an executable, which means that we are
6328 not creating a program header, and that the actual order of
6329 the sections in the file is unimportant. */
6330 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6331 {
6332 Elf_Internal_Shdr *hdr;
6333
6334 hdr = *hdrpp;
6335 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6336 && hdr->bfd_section == NULL)
6337 /* Do not assign offsets for these sections yet: we don't know
6338 their sizes. */
6339 || (hdr->bfd_section != NULL
6340 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6341 || (bfd_section_is_ctf (hdr->bfd_section)
6342 && abfd->is_linker_output)))
6343 || i == elf_onesymtab (abfd)
6344 || (elf_symtab_shndx_list (abfd) != NULL
6345 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6346 || i == elf_strtab_sec (abfd)
6347 || i == elf_shstrtab_sec (abfd))
6348 {
6349 hdr->sh_offset = -1;
6350 }
6351 else
6352 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6353 }
6354
6355 elf_next_file_pos (abfd) = off;
6356 elf_program_header_size (abfd) = 0;
6357 }
6358 else
6359 {
6360 /* Assign file positions for the loaded sections based on the
6361 assignment of sections to segments. */
6362 if (!assign_file_positions_for_load_sections (abfd, link_info))
6363 return FALSE;
6364
6365 /* And for non-load sections. */
6366 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6367 return FALSE;
6368 }
6369
6370 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6371 return FALSE;
6372
6373 /* Write out the program headers. */
6374 alloc = i_ehdrp->e_phnum;
6375 if (alloc != 0)
6376 {
6377 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6378 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6379 return FALSE;
6380 }
6381
6382 return TRUE;
6383 }
6384
6385 bfd_boolean
6386 _bfd_elf_init_file_header (bfd *abfd,
6387 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6388 {
6389 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6390 struct elf_strtab_hash *shstrtab;
6391 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6392
6393 i_ehdrp = elf_elfheader (abfd);
6394
6395 shstrtab = _bfd_elf_strtab_init ();
6396 if (shstrtab == NULL)
6397 return FALSE;
6398
6399 elf_shstrtab (abfd) = shstrtab;
6400
6401 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6402 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6403 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6404 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6405
6406 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6407 i_ehdrp->e_ident[EI_DATA] =
6408 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6409 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6410
6411 if ((abfd->flags & DYNAMIC) != 0)
6412 i_ehdrp->e_type = ET_DYN;
6413 else if ((abfd->flags & EXEC_P) != 0)
6414 i_ehdrp->e_type = ET_EXEC;
6415 else if (bfd_get_format (abfd) == bfd_core)
6416 i_ehdrp->e_type = ET_CORE;
6417 else
6418 i_ehdrp->e_type = ET_REL;
6419
6420 switch (bfd_get_arch (abfd))
6421 {
6422 case bfd_arch_unknown:
6423 i_ehdrp->e_machine = EM_NONE;
6424 break;
6425
6426 /* There used to be a long list of cases here, each one setting
6427 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6428 in the corresponding bfd definition. To avoid duplication,
6429 the switch was removed. Machines that need special handling
6430 can generally do it in elf_backend_final_write_processing(),
6431 unless they need the information earlier than the final write.
6432 Such need can generally be supplied by replacing the tests for
6433 e_machine with the conditions used to determine it. */
6434 default:
6435 i_ehdrp->e_machine = bed->elf_machine_code;
6436 }
6437
6438 i_ehdrp->e_version = bed->s->ev_current;
6439 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6440
6441 /* No program header, for now. */
6442 i_ehdrp->e_phoff = 0;
6443 i_ehdrp->e_phentsize = 0;
6444 i_ehdrp->e_phnum = 0;
6445
6446 /* Each bfd section is section header entry. */
6447 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6448 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6449
6450 elf_tdata (abfd)->symtab_hdr.sh_name =
6451 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6452 elf_tdata (abfd)->strtab_hdr.sh_name =
6453 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6454 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6455 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6456 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6457 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6458 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6459 return FALSE;
6460
6461 return TRUE;
6462 }
6463
6464 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6465
6466 FIXME: We used to have code here to sort the PT_LOAD segments into
6467 ascending order, as per the ELF spec. But this breaks some programs,
6468 including the Linux kernel. But really either the spec should be
6469 changed or the programs updated. */
6470
6471 bfd_boolean
6472 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6473 {
6474 if (link_info != NULL && bfd_link_pie (link_info))
6475 {
6476 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6477 unsigned int num_segments = i_ehdrp->e_phnum;
6478 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6479 Elf_Internal_Phdr *segment = tdata->phdr;
6480 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6481
6482 /* Find the lowest p_vaddr in PT_LOAD segments. */
6483 bfd_vma p_vaddr = (bfd_vma) -1;
6484 for (; segment < end_segment; segment++)
6485 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6486 p_vaddr = segment->p_vaddr;
6487
6488 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6489 segments is non-zero. */
6490 if (p_vaddr)
6491 i_ehdrp->e_type = ET_EXEC;
6492 }
6493 return TRUE;
6494 }
6495
6496 /* Assign file positions for all the reloc sections which are not part
6497 of the loadable file image, and the file position of section headers. */
6498
6499 static bfd_boolean
6500 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6501 {
6502 file_ptr off;
6503 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6504 Elf_Internal_Shdr *shdrp;
6505 Elf_Internal_Ehdr *i_ehdrp;
6506 const struct elf_backend_data *bed;
6507
6508 off = elf_next_file_pos (abfd);
6509
6510 shdrpp = elf_elfsections (abfd);
6511 end_shdrpp = shdrpp + elf_numsections (abfd);
6512 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6513 {
6514 shdrp = *shdrpp;
6515 if (shdrp->sh_offset == -1)
6516 {
6517 asection *sec = shdrp->bfd_section;
6518 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6519 || shdrp->sh_type == SHT_RELA);
6520 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6521 if (is_rel
6522 || is_ctf
6523 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6524 {
6525 if (!is_rel && !is_ctf)
6526 {
6527 const char *name = sec->name;
6528 struct bfd_elf_section_data *d;
6529
6530 /* Compress DWARF debug sections. */
6531 if (!bfd_compress_section (abfd, sec,
6532 shdrp->contents))
6533 return FALSE;
6534
6535 if (sec->compress_status == COMPRESS_SECTION_DONE
6536 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6537 {
6538 /* If section is compressed with zlib-gnu, convert
6539 section name from .debug_* to .zdebug_*. */
6540 char *new_name
6541 = convert_debug_to_zdebug (abfd, name);
6542 if (new_name == NULL)
6543 return FALSE;
6544 name = new_name;
6545 }
6546 /* Add section name to section name section. */
6547 if (shdrp->sh_name != (unsigned int) -1)
6548 abort ();
6549 shdrp->sh_name
6550 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6551 name, FALSE);
6552 d = elf_section_data (sec);
6553
6554 /* Add reloc section name to section name section. */
6555 if (d->rel.hdr
6556 && !_bfd_elf_set_reloc_sh_name (abfd,
6557 d->rel.hdr,
6558 name, FALSE))
6559 return FALSE;
6560 if (d->rela.hdr
6561 && !_bfd_elf_set_reloc_sh_name (abfd,
6562 d->rela.hdr,
6563 name, TRUE))
6564 return FALSE;
6565
6566 /* Update section size and contents. */
6567 shdrp->sh_size = sec->size;
6568 shdrp->contents = sec->contents;
6569 shdrp->bfd_section->contents = NULL;
6570 }
6571 else if (is_ctf)
6572 {
6573 /* Update section size and contents. */
6574 shdrp->sh_size = sec->size;
6575 shdrp->contents = sec->contents;
6576 }
6577
6578 off = _bfd_elf_assign_file_position_for_section (shdrp,
6579 off,
6580 TRUE);
6581 }
6582 }
6583 }
6584
6585 /* Place section name section after DWARF debug sections have been
6586 compressed. */
6587 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6588 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6589 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6590 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6591
6592 /* Place the section headers. */
6593 i_ehdrp = elf_elfheader (abfd);
6594 bed = get_elf_backend_data (abfd);
6595 off = align_file_position (off, 1 << bed->s->log_file_align);
6596 i_ehdrp->e_shoff = off;
6597 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6598 elf_next_file_pos (abfd) = off;
6599
6600 return TRUE;
6601 }
6602
6603 bfd_boolean
6604 _bfd_elf_write_object_contents (bfd *abfd)
6605 {
6606 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6607 Elf_Internal_Shdr **i_shdrp;
6608 bfd_boolean failed;
6609 unsigned int count, num_sec;
6610 struct elf_obj_tdata *t;
6611
6612 if (! abfd->output_has_begun
6613 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6614 return FALSE;
6615 /* Do not rewrite ELF data when the BFD has been opened for update.
6616 abfd->output_has_begun was set to TRUE on opening, so creation of new
6617 sections, and modification of existing section sizes was restricted.
6618 This means the ELF header, program headers and section headers can't have
6619 changed.
6620 If the contents of any sections has been modified, then those changes have
6621 already been written to the BFD. */
6622 else if (abfd->direction == both_direction)
6623 {
6624 BFD_ASSERT (abfd->output_has_begun);
6625 return TRUE;
6626 }
6627
6628 i_shdrp = elf_elfsections (abfd);
6629
6630 failed = FALSE;
6631 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6632 if (failed)
6633 return FALSE;
6634
6635 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6636 return FALSE;
6637
6638 /* After writing the headers, we need to write the sections too... */
6639 num_sec = elf_numsections (abfd);
6640 for (count = 1; count < num_sec; count++)
6641 {
6642 i_shdrp[count]->sh_name
6643 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6644 i_shdrp[count]->sh_name);
6645 if (bed->elf_backend_section_processing)
6646 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6647 return FALSE;
6648 if (i_shdrp[count]->contents)
6649 {
6650 bfd_size_type amt = i_shdrp[count]->sh_size;
6651
6652 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6653 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6654 return FALSE;
6655 }
6656 }
6657
6658 /* Write out the section header names. */
6659 t = elf_tdata (abfd);
6660 if (elf_shstrtab (abfd) != NULL
6661 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6662 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6663 return FALSE;
6664
6665 if (!(*bed->elf_backend_final_write_processing) (abfd))
6666 return FALSE;
6667
6668 if (!bed->s->write_shdrs_and_ehdr (abfd))
6669 return FALSE;
6670
6671 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6672 if (t->o->build_id.after_write_object_contents != NULL)
6673 return (*t->o->build_id.after_write_object_contents) (abfd);
6674
6675 return TRUE;
6676 }
6677
6678 bfd_boolean
6679 _bfd_elf_write_corefile_contents (bfd *abfd)
6680 {
6681 /* Hopefully this can be done just like an object file. */
6682 return _bfd_elf_write_object_contents (abfd);
6683 }
6684
6685 /* Given a section, search the header to find them. */
6686
6687 unsigned int
6688 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6689 {
6690 const struct elf_backend_data *bed;
6691 unsigned int sec_index;
6692
6693 if (elf_section_data (asect) != NULL
6694 && elf_section_data (asect)->this_idx != 0)
6695 return elf_section_data (asect)->this_idx;
6696
6697 if (bfd_is_abs_section (asect))
6698 sec_index = SHN_ABS;
6699 else if (bfd_is_com_section (asect))
6700 sec_index = SHN_COMMON;
6701 else if (bfd_is_und_section (asect))
6702 sec_index = SHN_UNDEF;
6703 else
6704 sec_index = SHN_BAD;
6705
6706 bed = get_elf_backend_data (abfd);
6707 if (bed->elf_backend_section_from_bfd_section)
6708 {
6709 int retval = sec_index;
6710
6711 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6712 return retval;
6713 }
6714
6715 if (sec_index == SHN_BAD)
6716 bfd_set_error (bfd_error_nonrepresentable_section);
6717
6718 return sec_index;
6719 }
6720
6721 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6722 on error. */
6723
6724 int
6725 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6726 {
6727 asymbol *asym_ptr = *asym_ptr_ptr;
6728 int idx;
6729 flagword flags = asym_ptr->flags;
6730
6731 /* When gas creates relocations against local labels, it creates its
6732 own symbol for the section, but does put the symbol into the
6733 symbol chain, so udata is 0. When the linker is generating
6734 relocatable output, this section symbol may be for one of the
6735 input sections rather than the output section. */
6736 if (asym_ptr->udata.i == 0
6737 && (flags & BSF_SECTION_SYM)
6738 && asym_ptr->section)
6739 {
6740 asection *sec;
6741 int indx;
6742
6743 sec = asym_ptr->section;
6744 if (sec->owner != abfd && sec->output_section != NULL)
6745 sec = sec->output_section;
6746 if (sec->owner == abfd
6747 && (indx = sec->index) < elf_num_section_syms (abfd)
6748 && elf_section_syms (abfd)[indx] != NULL)
6749 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6750 }
6751
6752 idx = asym_ptr->udata.i;
6753
6754 if (idx == 0)
6755 {
6756 /* This case can occur when using --strip-symbol on a symbol
6757 which is used in a relocation entry. */
6758 _bfd_error_handler
6759 /* xgettext:c-format */
6760 (_("%pB: symbol `%s' required but not present"),
6761 abfd, bfd_asymbol_name (asym_ptr));
6762 bfd_set_error (bfd_error_no_symbols);
6763 return -1;
6764 }
6765
6766 #if DEBUG & 4
6767 {
6768 fprintf (stderr,
6769 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6770 (long) asym_ptr, asym_ptr->name, idx, flags);
6771 fflush (stderr);
6772 }
6773 #endif
6774
6775 return idx;
6776 }
6777
6778 /* Rewrite program header information. */
6779
6780 static bfd_boolean
6781 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6782 {
6783 Elf_Internal_Ehdr *iehdr;
6784 struct elf_segment_map *map;
6785 struct elf_segment_map *map_first;
6786 struct elf_segment_map **pointer_to_map;
6787 Elf_Internal_Phdr *segment;
6788 asection *section;
6789 unsigned int i;
6790 unsigned int num_segments;
6791 bfd_boolean phdr_included = FALSE;
6792 bfd_boolean p_paddr_valid;
6793 bfd_vma maxpagesize;
6794 struct elf_segment_map *phdr_adjust_seg = NULL;
6795 unsigned int phdr_adjust_num = 0;
6796 const struct elf_backend_data *bed;
6797
6798 bed = get_elf_backend_data (ibfd);
6799 iehdr = elf_elfheader (ibfd);
6800
6801 map_first = NULL;
6802 pointer_to_map = &map_first;
6803
6804 num_segments = elf_elfheader (ibfd)->e_phnum;
6805 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6806
6807 /* Returns the end address of the segment + 1. */
6808 #define SEGMENT_END(segment, start) \
6809 (start + (segment->p_memsz > segment->p_filesz \
6810 ? segment->p_memsz : segment->p_filesz))
6811
6812 #define SECTION_SIZE(section, segment) \
6813 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6814 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6815 ? section->size : 0)
6816
6817 /* Returns TRUE if the given section is contained within
6818 the given segment. VMA addresses are compared. */
6819 #define IS_CONTAINED_BY_VMA(section, segment) \
6820 (section->vma >= segment->p_vaddr \
6821 && (section->vma + SECTION_SIZE (section, segment) \
6822 <= (SEGMENT_END (segment, segment->p_vaddr))))
6823
6824 /* Returns TRUE if the given section is contained within
6825 the given segment. LMA addresses are compared. */
6826 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6827 (section->lma >= base \
6828 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6829 && (section->lma + SECTION_SIZE (section, segment) \
6830 <= SEGMENT_END (segment, base)))
6831
6832 /* Handle PT_NOTE segment. */
6833 #define IS_NOTE(p, s) \
6834 (p->p_type == PT_NOTE \
6835 && elf_section_type (s) == SHT_NOTE \
6836 && (bfd_vma) s->filepos >= p->p_offset \
6837 && ((bfd_vma) s->filepos + s->size \
6838 <= p->p_offset + p->p_filesz))
6839
6840 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6841 etc. */
6842 #define IS_COREFILE_NOTE(p, s) \
6843 (IS_NOTE (p, s) \
6844 && bfd_get_format (ibfd) == bfd_core \
6845 && s->vma == 0 \
6846 && s->lma == 0)
6847
6848 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6849 linker, which generates a PT_INTERP section with p_vaddr and
6850 p_memsz set to 0. */
6851 #define IS_SOLARIS_PT_INTERP(p, s) \
6852 (p->p_vaddr == 0 \
6853 && p->p_paddr == 0 \
6854 && p->p_memsz == 0 \
6855 && p->p_filesz > 0 \
6856 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6857 && s->size > 0 \
6858 && (bfd_vma) s->filepos >= p->p_offset \
6859 && ((bfd_vma) s->filepos + s->size \
6860 <= p->p_offset + p->p_filesz))
6861
6862 /* Decide if the given section should be included in the given segment.
6863 A section will be included if:
6864 1. It is within the address space of the segment -- we use the LMA
6865 if that is set for the segment and the VMA otherwise,
6866 2. It is an allocated section or a NOTE section in a PT_NOTE
6867 segment.
6868 3. There is an output section associated with it,
6869 4. The section has not already been allocated to a previous segment.
6870 5. PT_GNU_STACK segments do not include any sections.
6871 6. PT_TLS segment includes only SHF_TLS sections.
6872 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6873 8. PT_DYNAMIC should not contain empty sections at the beginning
6874 (with the possible exception of .dynamic). */
6875 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6876 ((((segment->p_paddr \
6877 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6878 : IS_CONTAINED_BY_VMA (section, segment)) \
6879 && (section->flags & SEC_ALLOC) != 0) \
6880 || IS_NOTE (segment, section)) \
6881 && segment->p_type != PT_GNU_STACK \
6882 && (segment->p_type != PT_TLS \
6883 || (section->flags & SEC_THREAD_LOCAL)) \
6884 && (segment->p_type == PT_LOAD \
6885 || segment->p_type == PT_TLS \
6886 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6887 && (segment->p_type != PT_DYNAMIC \
6888 || SECTION_SIZE (section, segment) > 0 \
6889 || (segment->p_paddr \
6890 ? segment->p_paddr != section->lma \
6891 : segment->p_vaddr != section->vma) \
6892 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6893 && (segment->p_type != PT_LOAD || !section->segment_mark))
6894
6895 /* If the output section of a section in the input segment is NULL,
6896 it is removed from the corresponding output segment. */
6897 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6898 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6899 && section->output_section != NULL)
6900
6901 /* Returns TRUE iff seg1 starts after the end of seg2. */
6902 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6903 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6904
6905 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6906 their VMA address ranges and their LMA address ranges overlap.
6907 It is possible to have overlapping VMA ranges without overlapping LMA
6908 ranges. RedBoot images for example can have both .data and .bss mapped
6909 to the same VMA range, but with the .data section mapped to a different
6910 LMA. */
6911 #define SEGMENT_OVERLAPS(seg1, seg2) \
6912 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6913 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6914 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6915 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6916
6917 /* Initialise the segment mark field. */
6918 for (section = ibfd->sections; section != NULL; section = section->next)
6919 section->segment_mark = FALSE;
6920
6921 /* The Solaris linker creates program headers in which all the
6922 p_paddr fields are zero. When we try to objcopy or strip such a
6923 file, we get confused. Check for this case, and if we find it
6924 don't set the p_paddr_valid fields. */
6925 p_paddr_valid = FALSE;
6926 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6927 i < num_segments;
6928 i++, segment++)
6929 if (segment->p_paddr != 0)
6930 {
6931 p_paddr_valid = TRUE;
6932 break;
6933 }
6934
6935 /* Scan through the segments specified in the program header
6936 of the input BFD. For this first scan we look for overlaps
6937 in the loadable segments. These can be created by weird
6938 parameters to objcopy. Also, fix some solaris weirdness. */
6939 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6940 i < num_segments;
6941 i++, segment++)
6942 {
6943 unsigned int j;
6944 Elf_Internal_Phdr *segment2;
6945
6946 if (segment->p_type == PT_INTERP)
6947 for (section = ibfd->sections; section; section = section->next)
6948 if (IS_SOLARIS_PT_INTERP (segment, section))
6949 {
6950 /* Mininal change so that the normal section to segment
6951 assignment code will work. */
6952 segment->p_vaddr = section->vma;
6953 break;
6954 }
6955
6956 if (segment->p_type != PT_LOAD)
6957 {
6958 /* Remove PT_GNU_RELRO segment. */
6959 if (segment->p_type == PT_GNU_RELRO)
6960 segment->p_type = PT_NULL;
6961 continue;
6962 }
6963
6964 /* Determine if this segment overlaps any previous segments. */
6965 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6966 {
6967 bfd_signed_vma extra_length;
6968
6969 if (segment2->p_type != PT_LOAD
6970 || !SEGMENT_OVERLAPS (segment, segment2))
6971 continue;
6972
6973 /* Merge the two segments together. */
6974 if (segment2->p_vaddr < segment->p_vaddr)
6975 {
6976 /* Extend SEGMENT2 to include SEGMENT and then delete
6977 SEGMENT. */
6978 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6979 - SEGMENT_END (segment2, segment2->p_vaddr));
6980
6981 if (extra_length > 0)
6982 {
6983 segment2->p_memsz += extra_length;
6984 segment2->p_filesz += extra_length;
6985 }
6986
6987 segment->p_type = PT_NULL;
6988
6989 /* Since we have deleted P we must restart the outer loop. */
6990 i = 0;
6991 segment = elf_tdata (ibfd)->phdr;
6992 break;
6993 }
6994 else
6995 {
6996 /* Extend SEGMENT to include SEGMENT2 and then delete
6997 SEGMENT2. */
6998 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6999 - SEGMENT_END (segment, segment->p_vaddr));
7000
7001 if (extra_length > 0)
7002 {
7003 segment->p_memsz += extra_length;
7004 segment->p_filesz += extra_length;
7005 }
7006
7007 segment2->p_type = PT_NULL;
7008 }
7009 }
7010 }
7011
7012 /* The second scan attempts to assign sections to segments. */
7013 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7014 i < num_segments;
7015 i++, segment++)
7016 {
7017 unsigned int section_count;
7018 asection **sections;
7019 asection *output_section;
7020 unsigned int isec;
7021 asection *matching_lma;
7022 asection *suggested_lma;
7023 unsigned int j;
7024 bfd_size_type amt;
7025 asection *first_section;
7026
7027 if (segment->p_type == PT_NULL)
7028 continue;
7029
7030 first_section = NULL;
7031 /* Compute how many sections might be placed into this segment. */
7032 for (section = ibfd->sections, section_count = 0;
7033 section != NULL;
7034 section = section->next)
7035 {
7036 /* Find the first section in the input segment, which may be
7037 removed from the corresponding output segment. */
7038 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
7039 {
7040 if (first_section == NULL)
7041 first_section = section;
7042 if (section->output_section != NULL)
7043 ++section_count;
7044 }
7045 }
7046
7047 /* Allocate a segment map big enough to contain
7048 all of the sections we have selected. */
7049 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7050 amt += (bfd_size_type) section_count * sizeof (asection *);
7051 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7052 if (map == NULL)
7053 return FALSE;
7054
7055 /* Initialise the fields of the segment map. Default to
7056 using the physical address of the segment in the input BFD. */
7057 map->next = NULL;
7058 map->p_type = segment->p_type;
7059 map->p_flags = segment->p_flags;
7060 map->p_flags_valid = 1;
7061
7062 /* If the first section in the input segment is removed, there is
7063 no need to preserve segment physical address in the corresponding
7064 output segment. */
7065 if (!first_section || first_section->output_section != NULL)
7066 {
7067 map->p_paddr = segment->p_paddr;
7068 map->p_paddr_valid = p_paddr_valid;
7069 }
7070
7071 /* Determine if this segment contains the ELF file header
7072 and if it contains the program headers themselves. */
7073 map->includes_filehdr = (segment->p_offset == 0
7074 && segment->p_filesz >= iehdr->e_ehsize);
7075 map->includes_phdrs = 0;
7076
7077 if (!phdr_included || segment->p_type != PT_LOAD)
7078 {
7079 map->includes_phdrs =
7080 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7081 && (segment->p_offset + segment->p_filesz
7082 >= ((bfd_vma) iehdr->e_phoff
7083 + iehdr->e_phnum * iehdr->e_phentsize)));
7084
7085 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7086 phdr_included = TRUE;
7087 }
7088
7089 if (section_count == 0)
7090 {
7091 /* Special segments, such as the PT_PHDR segment, may contain
7092 no sections, but ordinary, loadable segments should contain
7093 something. They are allowed by the ELF spec however, so only
7094 a warning is produced.
7095 There is however the valid use case of embedded systems which
7096 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7097 flash memory with zeros. No warning is shown for that case. */
7098 if (segment->p_type == PT_LOAD
7099 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7100 /* xgettext:c-format */
7101 _bfd_error_handler
7102 (_("%pB: warning: empty loadable segment detected"
7103 " at vaddr=%#" PRIx64 ", is this intentional?"),
7104 ibfd, (uint64_t) segment->p_vaddr);
7105
7106 map->p_vaddr_offset = segment->p_vaddr;
7107 map->count = 0;
7108 *pointer_to_map = map;
7109 pointer_to_map = &map->next;
7110
7111 continue;
7112 }
7113
7114 /* Now scan the sections in the input BFD again and attempt
7115 to add their corresponding output sections to the segment map.
7116 The problem here is how to handle an output section which has
7117 been moved (ie had its LMA changed). There are four possibilities:
7118
7119 1. None of the sections have been moved.
7120 In this case we can continue to use the segment LMA from the
7121 input BFD.
7122
7123 2. All of the sections have been moved by the same amount.
7124 In this case we can change the segment's LMA to match the LMA
7125 of the first section.
7126
7127 3. Some of the sections have been moved, others have not.
7128 In this case those sections which have not been moved can be
7129 placed in the current segment which will have to have its size,
7130 and possibly its LMA changed, and a new segment or segments will
7131 have to be created to contain the other sections.
7132
7133 4. The sections have been moved, but not by the same amount.
7134 In this case we can change the segment's LMA to match the LMA
7135 of the first section and we will have to create a new segment
7136 or segments to contain the other sections.
7137
7138 In order to save time, we allocate an array to hold the section
7139 pointers that we are interested in. As these sections get assigned
7140 to a segment, they are removed from this array. */
7141
7142 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
7143 if (sections == NULL)
7144 return FALSE;
7145
7146 /* Step One: Scan for segment vs section LMA conflicts.
7147 Also add the sections to the section array allocated above.
7148 Also add the sections to the current segment. In the common
7149 case, where the sections have not been moved, this means that
7150 we have completely filled the segment, and there is nothing
7151 more to do. */
7152 isec = 0;
7153 matching_lma = NULL;
7154 suggested_lma = NULL;
7155
7156 for (section = first_section, j = 0;
7157 section != NULL;
7158 section = section->next)
7159 {
7160 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7161 {
7162 output_section = section->output_section;
7163
7164 sections[j++] = section;
7165
7166 /* The Solaris native linker always sets p_paddr to 0.
7167 We try to catch that case here, and set it to the
7168 correct value. Note - some backends require that
7169 p_paddr be left as zero. */
7170 if (!p_paddr_valid
7171 && segment->p_vaddr != 0
7172 && !bed->want_p_paddr_set_to_zero
7173 && isec == 0
7174 && output_section->lma != 0
7175 && (align_power (segment->p_vaddr
7176 + (map->includes_filehdr
7177 ? iehdr->e_ehsize : 0)
7178 + (map->includes_phdrs
7179 ? iehdr->e_phnum * iehdr->e_phentsize
7180 : 0),
7181 output_section->alignment_power)
7182 == output_section->vma))
7183 map->p_paddr = segment->p_vaddr;
7184
7185 /* Match up the physical address of the segment with the
7186 LMA address of the output section. */
7187 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7188 || IS_COREFILE_NOTE (segment, section)
7189 || (bed->want_p_paddr_set_to_zero
7190 && IS_CONTAINED_BY_VMA (output_section, segment)))
7191 {
7192 if (matching_lma == NULL
7193 || output_section->lma < matching_lma->lma)
7194 matching_lma = output_section;
7195
7196 /* We assume that if the section fits within the segment
7197 then it does not overlap any other section within that
7198 segment. */
7199 map->sections[isec++] = output_section;
7200 }
7201 else if (suggested_lma == NULL)
7202 suggested_lma = output_section;
7203
7204 if (j == section_count)
7205 break;
7206 }
7207 }
7208
7209 BFD_ASSERT (j == section_count);
7210
7211 /* Step Two: Adjust the physical address of the current segment,
7212 if necessary. */
7213 if (isec == section_count)
7214 {
7215 /* All of the sections fitted within the segment as currently
7216 specified. This is the default case. Add the segment to
7217 the list of built segments and carry on to process the next
7218 program header in the input BFD. */
7219 map->count = section_count;
7220 *pointer_to_map = map;
7221 pointer_to_map = &map->next;
7222
7223 if (p_paddr_valid
7224 && !bed->want_p_paddr_set_to_zero)
7225 {
7226 bfd_vma hdr_size = 0;
7227 if (map->includes_filehdr)
7228 hdr_size = iehdr->e_ehsize;
7229 if (map->includes_phdrs)
7230 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7231
7232 /* Account for padding before the first section in the
7233 segment. */
7234 map->p_vaddr_offset = map->p_paddr + hdr_size - matching_lma->lma;
7235 }
7236
7237 free (sections);
7238 continue;
7239 }
7240 else
7241 {
7242 /* Change the current segment's physical address to match
7243 the LMA of the first section that fitted, or if no
7244 section fitted, the first section. */
7245 if (matching_lma == NULL)
7246 matching_lma = suggested_lma;
7247
7248 map->p_paddr = matching_lma->lma;
7249
7250 /* Offset the segment physical address from the lma
7251 to allow for space taken up by elf headers. */
7252 if (map->includes_phdrs)
7253 {
7254 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7255
7256 /* iehdr->e_phnum is just an estimate of the number
7257 of program headers that we will need. Make a note
7258 here of the number we used and the segment we chose
7259 to hold these headers, so that we can adjust the
7260 offset when we know the correct value. */
7261 phdr_adjust_num = iehdr->e_phnum;
7262 phdr_adjust_seg = map;
7263 }
7264
7265 if (map->includes_filehdr)
7266 {
7267 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7268 map->p_paddr -= iehdr->e_ehsize;
7269 /* We've subtracted off the size of headers from the
7270 first section lma, but there may have been some
7271 alignment padding before that section too. Try to
7272 account for that by adjusting the segment lma down to
7273 the same alignment. */
7274 if (segment->p_align != 0 && segment->p_align < align)
7275 align = segment->p_align;
7276 map->p_paddr &= -align;
7277 }
7278 }
7279
7280 /* Step Three: Loop over the sections again, this time assigning
7281 those that fit to the current segment and removing them from the
7282 sections array; but making sure not to leave large gaps. Once all
7283 possible sections have been assigned to the current segment it is
7284 added to the list of built segments and if sections still remain
7285 to be assigned, a new segment is constructed before repeating
7286 the loop. */
7287 isec = 0;
7288 do
7289 {
7290 map->count = 0;
7291 suggested_lma = NULL;
7292
7293 /* Fill the current segment with sections that fit. */
7294 for (j = 0; j < section_count; j++)
7295 {
7296 section = sections[j];
7297
7298 if (section == NULL)
7299 continue;
7300
7301 output_section = section->output_section;
7302
7303 BFD_ASSERT (output_section != NULL);
7304
7305 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7306 || IS_COREFILE_NOTE (segment, section))
7307 {
7308 if (map->count == 0)
7309 {
7310 /* If the first section in a segment does not start at
7311 the beginning of the segment, then something is
7312 wrong. */
7313 if (align_power (map->p_paddr
7314 + (map->includes_filehdr
7315 ? iehdr->e_ehsize : 0)
7316 + (map->includes_phdrs
7317 ? iehdr->e_phnum * iehdr->e_phentsize
7318 : 0),
7319 output_section->alignment_power)
7320 != output_section->lma)
7321 goto sorry;
7322 }
7323 else
7324 {
7325 asection *prev_sec;
7326
7327 prev_sec = map->sections[map->count - 1];
7328
7329 /* If the gap between the end of the previous section
7330 and the start of this section is more than
7331 maxpagesize then we need to start a new segment. */
7332 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7333 maxpagesize)
7334 < BFD_ALIGN (output_section->lma, maxpagesize))
7335 || (prev_sec->lma + prev_sec->size
7336 > output_section->lma))
7337 {
7338 if (suggested_lma == NULL)
7339 suggested_lma = output_section;
7340
7341 continue;
7342 }
7343 }
7344
7345 map->sections[map->count++] = output_section;
7346 ++isec;
7347 sections[j] = NULL;
7348 if (segment->p_type == PT_LOAD)
7349 section->segment_mark = TRUE;
7350 }
7351 else if (suggested_lma == NULL)
7352 suggested_lma = output_section;
7353 }
7354
7355 /* PR 23932. A corrupt input file may contain sections that cannot
7356 be assigned to any segment - because for example they have a
7357 negative size - or segments that do not contain any sections. */
7358 if (map->count == 0)
7359 {
7360 sorry:
7361 bfd_set_error (bfd_error_sorry);
7362 free (sections);
7363 return FALSE;
7364 }
7365
7366 /* Add the current segment to the list of built segments. */
7367 *pointer_to_map = map;
7368 pointer_to_map = &map->next;
7369
7370 if (isec < section_count)
7371 {
7372 /* We still have not allocated all of the sections to
7373 segments. Create a new segment here, initialise it
7374 and carry on looping. */
7375 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7376 amt += (bfd_size_type) section_count * sizeof (asection *);
7377 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7378 if (map == NULL)
7379 {
7380 free (sections);
7381 return FALSE;
7382 }
7383
7384 /* Initialise the fields of the segment map. Set the physical
7385 physical address to the LMA of the first section that has
7386 not yet been assigned. */
7387 map->next = NULL;
7388 map->p_type = segment->p_type;
7389 map->p_flags = segment->p_flags;
7390 map->p_flags_valid = 1;
7391 map->p_paddr = suggested_lma->lma;
7392 map->p_paddr_valid = p_paddr_valid;
7393 map->includes_filehdr = 0;
7394 map->includes_phdrs = 0;
7395 }
7396 }
7397 while (isec < section_count);
7398
7399 free (sections);
7400 }
7401
7402 elf_seg_map (obfd) = map_first;
7403
7404 /* If we had to estimate the number of program headers that were
7405 going to be needed, then check our estimate now and adjust
7406 the offset if necessary. */
7407 if (phdr_adjust_seg != NULL)
7408 {
7409 unsigned int count;
7410
7411 for (count = 0, map = map_first; map != NULL; map = map->next)
7412 count++;
7413
7414 if (count > phdr_adjust_num)
7415 phdr_adjust_seg->p_paddr
7416 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7417
7418 for (map = map_first; map != NULL; map = map->next)
7419 if (map->p_type == PT_PHDR)
7420 {
7421 bfd_vma adjust
7422 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7423 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7424 break;
7425 }
7426 }
7427
7428 #undef SEGMENT_END
7429 #undef SECTION_SIZE
7430 #undef IS_CONTAINED_BY_VMA
7431 #undef IS_CONTAINED_BY_LMA
7432 #undef IS_NOTE
7433 #undef IS_COREFILE_NOTE
7434 #undef IS_SOLARIS_PT_INTERP
7435 #undef IS_SECTION_IN_INPUT_SEGMENT
7436 #undef INCLUDE_SECTION_IN_SEGMENT
7437 #undef SEGMENT_AFTER_SEGMENT
7438 #undef SEGMENT_OVERLAPS
7439 return TRUE;
7440 }
7441
7442 /* Copy ELF program header information. */
7443
7444 static bfd_boolean
7445 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7446 {
7447 Elf_Internal_Ehdr *iehdr;
7448 struct elf_segment_map *map;
7449 struct elf_segment_map *map_first;
7450 struct elf_segment_map **pointer_to_map;
7451 Elf_Internal_Phdr *segment;
7452 unsigned int i;
7453 unsigned int num_segments;
7454 bfd_boolean phdr_included = FALSE;
7455 bfd_boolean p_paddr_valid;
7456
7457 iehdr = elf_elfheader (ibfd);
7458
7459 map_first = NULL;
7460 pointer_to_map = &map_first;
7461
7462 /* If all the segment p_paddr fields are zero, don't set
7463 map->p_paddr_valid. */
7464 p_paddr_valid = FALSE;
7465 num_segments = elf_elfheader (ibfd)->e_phnum;
7466 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7467 i < num_segments;
7468 i++, segment++)
7469 if (segment->p_paddr != 0)
7470 {
7471 p_paddr_valid = TRUE;
7472 break;
7473 }
7474
7475 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7476 i < num_segments;
7477 i++, segment++)
7478 {
7479 asection *section;
7480 unsigned int section_count;
7481 bfd_size_type amt;
7482 Elf_Internal_Shdr *this_hdr;
7483 asection *first_section = NULL;
7484 asection *lowest_section;
7485
7486 /* Compute how many sections are in this segment. */
7487 for (section = ibfd->sections, section_count = 0;
7488 section != NULL;
7489 section = section->next)
7490 {
7491 this_hdr = &(elf_section_data(section)->this_hdr);
7492 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7493 {
7494 if (first_section == NULL)
7495 first_section = section;
7496 section_count++;
7497 }
7498 }
7499
7500 /* Allocate a segment map big enough to contain
7501 all of the sections we have selected. */
7502 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7503 amt += (bfd_size_type) section_count * sizeof (asection *);
7504 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7505 if (map == NULL)
7506 return FALSE;
7507
7508 /* Initialize the fields of the output segment map with the
7509 input segment. */
7510 map->next = NULL;
7511 map->p_type = segment->p_type;
7512 map->p_flags = segment->p_flags;
7513 map->p_flags_valid = 1;
7514 map->p_paddr = segment->p_paddr;
7515 map->p_paddr_valid = p_paddr_valid;
7516 map->p_align = segment->p_align;
7517 map->p_align_valid = 1;
7518 map->p_vaddr_offset = 0;
7519
7520 if (map->p_type == PT_GNU_RELRO
7521 || map->p_type == PT_GNU_STACK)
7522 {
7523 /* The PT_GNU_RELRO segment may contain the first a few
7524 bytes in the .got.plt section even if the whole .got.plt
7525 section isn't in the PT_GNU_RELRO segment. We won't
7526 change the size of the PT_GNU_RELRO segment.
7527 Similarly, PT_GNU_STACK size is significant on uclinux
7528 systems. */
7529 map->p_size = segment->p_memsz;
7530 map->p_size_valid = 1;
7531 }
7532
7533 /* Determine if this segment contains the ELF file header
7534 and if it contains the program headers themselves. */
7535 map->includes_filehdr = (segment->p_offset == 0
7536 && segment->p_filesz >= iehdr->e_ehsize);
7537
7538 map->includes_phdrs = 0;
7539 if (! phdr_included || segment->p_type != PT_LOAD)
7540 {
7541 map->includes_phdrs =
7542 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7543 && (segment->p_offset + segment->p_filesz
7544 >= ((bfd_vma) iehdr->e_phoff
7545 + iehdr->e_phnum * iehdr->e_phentsize)));
7546
7547 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7548 phdr_included = TRUE;
7549 }
7550
7551 lowest_section = NULL;
7552 if (section_count != 0)
7553 {
7554 unsigned int isec = 0;
7555
7556 for (section = first_section;
7557 section != NULL;
7558 section = section->next)
7559 {
7560 this_hdr = &(elf_section_data(section)->this_hdr);
7561 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7562 {
7563 map->sections[isec++] = section->output_section;
7564 if ((section->flags & SEC_ALLOC) != 0)
7565 {
7566 bfd_vma seg_off;
7567
7568 if (lowest_section == NULL
7569 || section->lma < lowest_section->lma)
7570 lowest_section = section;
7571
7572 /* Section lmas are set up from PT_LOAD header
7573 p_paddr in _bfd_elf_make_section_from_shdr.
7574 If this header has a p_paddr that disagrees
7575 with the section lma, flag the p_paddr as
7576 invalid. */
7577 if ((section->flags & SEC_LOAD) != 0)
7578 seg_off = this_hdr->sh_offset - segment->p_offset;
7579 else
7580 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7581 if (section->lma - segment->p_paddr != seg_off)
7582 map->p_paddr_valid = FALSE;
7583 }
7584 if (isec == section_count)
7585 break;
7586 }
7587 }
7588 }
7589
7590 if (section_count == 0)
7591 map->p_vaddr_offset = segment->p_vaddr;
7592 else if (map->p_paddr_valid)
7593 {
7594 /* Account for padding before the first section in the segment. */
7595 bfd_vma hdr_size = 0;
7596 if (map->includes_filehdr)
7597 hdr_size = iehdr->e_ehsize;
7598 if (map->includes_phdrs)
7599 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7600
7601 map->p_vaddr_offset = (map->p_paddr + hdr_size
7602 - (lowest_section ? lowest_section->lma : 0));
7603 }
7604
7605 map->count = section_count;
7606 *pointer_to_map = map;
7607 pointer_to_map = &map->next;
7608 }
7609
7610 elf_seg_map (obfd) = map_first;
7611 return TRUE;
7612 }
7613
7614 /* Copy private BFD data. This copies or rewrites ELF program header
7615 information. */
7616
7617 static bfd_boolean
7618 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7619 {
7620 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7621 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7622 return TRUE;
7623
7624 if (elf_tdata (ibfd)->phdr == NULL)
7625 return TRUE;
7626
7627 if (ibfd->xvec == obfd->xvec)
7628 {
7629 /* Check to see if any sections in the input BFD
7630 covered by ELF program header have changed. */
7631 Elf_Internal_Phdr *segment;
7632 asection *section, *osec;
7633 unsigned int i, num_segments;
7634 Elf_Internal_Shdr *this_hdr;
7635 const struct elf_backend_data *bed;
7636
7637 bed = get_elf_backend_data (ibfd);
7638
7639 /* Regenerate the segment map if p_paddr is set to 0. */
7640 if (bed->want_p_paddr_set_to_zero)
7641 goto rewrite;
7642
7643 /* Initialize the segment mark field. */
7644 for (section = obfd->sections; section != NULL;
7645 section = section->next)
7646 section->segment_mark = FALSE;
7647
7648 num_segments = elf_elfheader (ibfd)->e_phnum;
7649 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7650 i < num_segments;
7651 i++, segment++)
7652 {
7653 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7654 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7655 which severly confuses things, so always regenerate the segment
7656 map in this case. */
7657 if (segment->p_paddr == 0
7658 && segment->p_memsz == 0
7659 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7660 goto rewrite;
7661
7662 for (section = ibfd->sections;
7663 section != NULL; section = section->next)
7664 {
7665 /* We mark the output section so that we know it comes
7666 from the input BFD. */
7667 osec = section->output_section;
7668 if (osec)
7669 osec->segment_mark = TRUE;
7670
7671 /* Check if this section is covered by the segment. */
7672 this_hdr = &(elf_section_data(section)->this_hdr);
7673 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7674 {
7675 /* FIXME: Check if its output section is changed or
7676 removed. What else do we need to check? */
7677 if (osec == NULL
7678 || section->flags != osec->flags
7679 || section->lma != osec->lma
7680 || section->vma != osec->vma
7681 || section->size != osec->size
7682 || section->rawsize != osec->rawsize
7683 || section->alignment_power != osec->alignment_power)
7684 goto rewrite;
7685 }
7686 }
7687 }
7688
7689 /* Check to see if any output section do not come from the
7690 input BFD. */
7691 for (section = obfd->sections; section != NULL;
7692 section = section->next)
7693 {
7694 if (!section->segment_mark)
7695 goto rewrite;
7696 else
7697 section->segment_mark = FALSE;
7698 }
7699
7700 return copy_elf_program_header (ibfd, obfd);
7701 }
7702
7703 rewrite:
7704 if (ibfd->xvec == obfd->xvec)
7705 {
7706 /* When rewriting program header, set the output maxpagesize to
7707 the maximum alignment of input PT_LOAD segments. */
7708 Elf_Internal_Phdr *segment;
7709 unsigned int i;
7710 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7711 bfd_vma maxpagesize = 0;
7712
7713 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7714 i < num_segments;
7715 i++, segment++)
7716 if (segment->p_type == PT_LOAD
7717 && maxpagesize < segment->p_align)
7718 {
7719 /* PR 17512: file: f17299af. */
7720 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7721 /* xgettext:c-format */
7722 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7723 PRIx64 " is too large"),
7724 ibfd, (uint64_t) segment->p_align);
7725 else
7726 maxpagesize = segment->p_align;
7727 }
7728
7729 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7730 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7731 }
7732
7733 return rewrite_elf_program_header (ibfd, obfd);
7734 }
7735
7736 /* Initialize private output section information from input section. */
7737
7738 bfd_boolean
7739 _bfd_elf_init_private_section_data (bfd *ibfd,
7740 asection *isec,
7741 bfd *obfd,
7742 asection *osec,
7743 struct bfd_link_info *link_info)
7744
7745 {
7746 Elf_Internal_Shdr *ihdr, *ohdr;
7747 bfd_boolean final_link = (link_info != NULL
7748 && !bfd_link_relocatable (link_info));
7749
7750 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7751 || obfd->xvec->flavour != bfd_target_elf_flavour)
7752 return TRUE;
7753
7754 BFD_ASSERT (elf_section_data (osec) != NULL);
7755
7756 /* For objcopy and relocatable link, don't copy the output ELF
7757 section type from input if the output BFD section flags have been
7758 set to something different. For a final link allow some flags
7759 that the linker clears to differ. */
7760 if (elf_section_type (osec) == SHT_NULL
7761 && (osec->flags == isec->flags
7762 || (final_link
7763 && ((osec->flags ^ isec->flags)
7764 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7765 elf_section_type (osec) = elf_section_type (isec);
7766
7767 /* FIXME: Is this correct for all OS/PROC specific flags? */
7768 elf_section_flags (osec) |= (elf_section_flags (isec)
7769 & (SHF_MASKOS | SHF_MASKPROC));
7770
7771 /* Copy sh_info from input for mbind section. */
7772 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7773 && elf_section_flags (isec) & SHF_GNU_MBIND)
7774 elf_section_data (osec)->this_hdr.sh_info
7775 = elf_section_data (isec)->this_hdr.sh_info;
7776
7777 /* Set things up for objcopy and relocatable link. The output
7778 SHT_GROUP section will have its elf_next_in_group pointing back
7779 to the input group members. Ignore linker created group section.
7780 See elfNN_ia64_object_p in elfxx-ia64.c. */
7781 if ((link_info == NULL
7782 || !link_info->resolve_section_groups)
7783 && (elf_sec_group (isec) == NULL
7784 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7785 {
7786 if (elf_section_flags (isec) & SHF_GROUP)
7787 elf_section_flags (osec) |= SHF_GROUP;
7788 elf_next_in_group (osec) = elf_next_in_group (isec);
7789 elf_section_data (osec)->group = elf_section_data (isec)->group;
7790 }
7791
7792 /* If not decompress, preserve SHF_COMPRESSED. */
7793 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7794 elf_section_flags (osec) |= (elf_section_flags (isec)
7795 & SHF_COMPRESSED);
7796
7797 ihdr = &elf_section_data (isec)->this_hdr;
7798
7799 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7800 don't use the output section of the linked-to section since it
7801 may be NULL at this point. */
7802 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7803 {
7804 ohdr = &elf_section_data (osec)->this_hdr;
7805 ohdr->sh_flags |= SHF_LINK_ORDER;
7806 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7807 }
7808
7809 osec->use_rela_p = isec->use_rela_p;
7810
7811 return TRUE;
7812 }
7813
7814 /* Copy private section information. This copies over the entsize
7815 field, and sometimes the info field. */
7816
7817 bfd_boolean
7818 _bfd_elf_copy_private_section_data (bfd *ibfd,
7819 asection *isec,
7820 bfd *obfd,
7821 asection *osec)
7822 {
7823 Elf_Internal_Shdr *ihdr, *ohdr;
7824
7825 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7826 || obfd->xvec->flavour != bfd_target_elf_flavour)
7827 return TRUE;
7828
7829 ihdr = &elf_section_data (isec)->this_hdr;
7830 ohdr = &elf_section_data (osec)->this_hdr;
7831
7832 ohdr->sh_entsize = ihdr->sh_entsize;
7833
7834 if (ihdr->sh_type == SHT_SYMTAB
7835 || ihdr->sh_type == SHT_DYNSYM
7836 || ihdr->sh_type == SHT_GNU_verneed
7837 || ihdr->sh_type == SHT_GNU_verdef)
7838 ohdr->sh_info = ihdr->sh_info;
7839
7840 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7841 NULL);
7842 }
7843
7844 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7845 necessary if we are removing either the SHT_GROUP section or any of
7846 the group member sections. DISCARDED is the value that a section's
7847 output_section has if the section will be discarded, NULL when this
7848 function is called from objcopy, bfd_abs_section_ptr when called
7849 from the linker. */
7850
7851 bfd_boolean
7852 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7853 {
7854 asection *isec;
7855
7856 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7857 if (elf_section_type (isec) == SHT_GROUP)
7858 {
7859 asection *first = elf_next_in_group (isec);
7860 asection *s = first;
7861 bfd_size_type removed = 0;
7862
7863 while (s != NULL)
7864 {
7865 /* If this member section is being output but the
7866 SHT_GROUP section is not, then clear the group info
7867 set up by _bfd_elf_copy_private_section_data. */
7868 if (s->output_section != discarded
7869 && isec->output_section == discarded)
7870 {
7871 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7872 elf_group_name (s->output_section) = NULL;
7873 }
7874 /* Conversely, if the member section is not being output
7875 but the SHT_GROUP section is, then adjust its size. */
7876 else if (s->output_section == discarded
7877 && isec->output_section != discarded)
7878 {
7879 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7880 removed += 4;
7881 if (elf_sec->rel.hdr != NULL
7882 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7883 removed += 4;
7884 if (elf_sec->rela.hdr != NULL
7885 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7886 removed += 4;
7887 }
7888 s = elf_next_in_group (s);
7889 if (s == first)
7890 break;
7891 }
7892 if (removed != 0)
7893 {
7894 if (discarded != NULL)
7895 {
7896 /* If we've been called for ld -r, then we need to
7897 adjust the input section size. */
7898 if (isec->rawsize == 0)
7899 isec->rawsize = isec->size;
7900 isec->size = isec->rawsize - removed;
7901 if (isec->size <= 4)
7902 {
7903 isec->size = 0;
7904 isec->flags |= SEC_EXCLUDE;
7905 }
7906 }
7907 else
7908 {
7909 /* Adjust the output section size when called from
7910 objcopy. */
7911 isec->output_section->size -= removed;
7912 if (isec->output_section->size <= 4)
7913 {
7914 isec->output_section->size = 0;
7915 isec->output_section->flags |= SEC_EXCLUDE;
7916 }
7917 }
7918 }
7919 }
7920
7921 return TRUE;
7922 }
7923
7924 /* Copy private header information. */
7925
7926 bfd_boolean
7927 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7928 {
7929 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7930 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7931 return TRUE;
7932
7933 /* Copy over private BFD data if it has not already been copied.
7934 This must be done here, rather than in the copy_private_bfd_data
7935 entry point, because the latter is called after the section
7936 contents have been set, which means that the program headers have
7937 already been worked out. */
7938 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7939 {
7940 if (! copy_private_bfd_data (ibfd, obfd))
7941 return FALSE;
7942 }
7943
7944 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7945 }
7946
7947 /* Copy private symbol information. If this symbol is in a section
7948 which we did not map into a BFD section, try to map the section
7949 index correctly. We use special macro definitions for the mapped
7950 section indices; these definitions are interpreted by the
7951 swap_out_syms function. */
7952
7953 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7954 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7955 #define MAP_STRTAB (SHN_HIOS + 3)
7956 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7957 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7958
7959 bfd_boolean
7960 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7961 asymbol *isymarg,
7962 bfd *obfd,
7963 asymbol *osymarg)
7964 {
7965 elf_symbol_type *isym, *osym;
7966
7967 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7968 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7969 return TRUE;
7970
7971 isym = elf_symbol_from (ibfd, isymarg);
7972 osym = elf_symbol_from (obfd, osymarg);
7973
7974 if (isym != NULL
7975 && isym->internal_elf_sym.st_shndx != 0
7976 && osym != NULL
7977 && bfd_is_abs_section (isym->symbol.section))
7978 {
7979 unsigned int shndx;
7980
7981 shndx = isym->internal_elf_sym.st_shndx;
7982 if (shndx == elf_onesymtab (ibfd))
7983 shndx = MAP_ONESYMTAB;
7984 else if (shndx == elf_dynsymtab (ibfd))
7985 shndx = MAP_DYNSYMTAB;
7986 else if (shndx == elf_strtab_sec (ibfd))
7987 shndx = MAP_STRTAB;
7988 else if (shndx == elf_shstrtab_sec (ibfd))
7989 shndx = MAP_SHSTRTAB;
7990 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7991 shndx = MAP_SYM_SHNDX;
7992 osym->internal_elf_sym.st_shndx = shndx;
7993 }
7994
7995 return TRUE;
7996 }
7997
7998 /* Swap out the symbols. */
7999
8000 static bfd_boolean
8001 swap_out_syms (bfd *abfd,
8002 struct elf_strtab_hash **sttp,
8003 int relocatable_p)
8004 {
8005 const struct elf_backend_data *bed;
8006 int symcount;
8007 asymbol **syms;
8008 struct elf_strtab_hash *stt;
8009 Elf_Internal_Shdr *symtab_hdr;
8010 Elf_Internal_Shdr *symtab_shndx_hdr;
8011 Elf_Internal_Shdr *symstrtab_hdr;
8012 struct elf_sym_strtab *symstrtab;
8013 bfd_byte *outbound_syms;
8014 bfd_byte *outbound_shndx;
8015 unsigned long outbound_syms_index;
8016 unsigned long outbound_shndx_index;
8017 int idx;
8018 unsigned int num_locals;
8019 bfd_size_type amt;
8020 bfd_boolean name_local_sections;
8021
8022 if (!elf_map_symbols (abfd, &num_locals))
8023 return FALSE;
8024
8025 /* Dump out the symtabs. */
8026 stt = _bfd_elf_strtab_init ();
8027 if (stt == NULL)
8028 return FALSE;
8029
8030 bed = get_elf_backend_data (abfd);
8031 symcount = bfd_get_symcount (abfd);
8032 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8033 symtab_hdr->sh_type = SHT_SYMTAB;
8034 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8035 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8036 symtab_hdr->sh_info = num_locals + 1;
8037 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8038
8039 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8040 symstrtab_hdr->sh_type = SHT_STRTAB;
8041
8042 /* Allocate buffer to swap out the .strtab section. */
8043 symstrtab = (struct elf_sym_strtab *) bfd_malloc2 (symcount + 1,
8044 sizeof (*symstrtab));
8045 if (symstrtab == NULL)
8046 {
8047 _bfd_elf_strtab_free (stt);
8048 return FALSE;
8049 }
8050
8051 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
8052 bed->s->sizeof_sym);
8053 if (outbound_syms == NULL)
8054 {
8055 error_return:
8056 _bfd_elf_strtab_free (stt);
8057 free (symstrtab);
8058 return FALSE;
8059 }
8060 symtab_hdr->contents = outbound_syms;
8061 outbound_syms_index = 0;
8062
8063 outbound_shndx = NULL;
8064 outbound_shndx_index = 0;
8065
8066 if (elf_symtab_shndx_list (abfd))
8067 {
8068 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8069 if (symtab_shndx_hdr->sh_name != 0)
8070 {
8071 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
8072 outbound_shndx = (bfd_byte *)
8073 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
8074 if (outbound_shndx == NULL)
8075 goto error_return;
8076
8077 symtab_shndx_hdr->contents = outbound_shndx;
8078 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8079 symtab_shndx_hdr->sh_size = amt;
8080 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8081 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8082 }
8083 /* FIXME: What about any other headers in the list ? */
8084 }
8085
8086 /* Now generate the data (for "contents"). */
8087 {
8088 /* Fill in zeroth symbol and swap it out. */
8089 Elf_Internal_Sym sym;
8090 sym.st_name = 0;
8091 sym.st_value = 0;
8092 sym.st_size = 0;
8093 sym.st_info = 0;
8094 sym.st_other = 0;
8095 sym.st_shndx = SHN_UNDEF;
8096 sym.st_target_internal = 0;
8097 symstrtab[0].sym = sym;
8098 symstrtab[0].dest_index = outbound_syms_index;
8099 symstrtab[0].destshndx_index = outbound_shndx_index;
8100 outbound_syms_index++;
8101 if (outbound_shndx != NULL)
8102 outbound_shndx_index++;
8103 }
8104
8105 name_local_sections
8106 = (bed->elf_backend_name_local_section_symbols
8107 && bed->elf_backend_name_local_section_symbols (abfd));
8108
8109 syms = bfd_get_outsymbols (abfd);
8110 for (idx = 0; idx < symcount;)
8111 {
8112 Elf_Internal_Sym sym;
8113 bfd_vma value = syms[idx]->value;
8114 elf_symbol_type *type_ptr;
8115 flagword flags = syms[idx]->flags;
8116 int type;
8117
8118 if (!name_local_sections
8119 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8120 {
8121 /* Local section symbols have no name. */
8122 sym.st_name = (unsigned long) -1;
8123 }
8124 else
8125 {
8126 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8127 to get the final offset for st_name. */
8128 sym.st_name
8129 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8130 FALSE);
8131 if (sym.st_name == (unsigned long) -1)
8132 goto error_return;
8133 }
8134
8135 type_ptr = elf_symbol_from (abfd, syms[idx]);
8136
8137 if ((flags & BSF_SECTION_SYM) == 0
8138 && bfd_is_com_section (syms[idx]->section))
8139 {
8140 /* ELF common symbols put the alignment into the `value' field,
8141 and the size into the `size' field. This is backwards from
8142 how BFD handles it, so reverse it here. */
8143 sym.st_size = value;
8144 if (type_ptr == NULL
8145 || type_ptr->internal_elf_sym.st_value == 0)
8146 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8147 else
8148 sym.st_value = type_ptr->internal_elf_sym.st_value;
8149 sym.st_shndx = _bfd_elf_section_from_bfd_section
8150 (abfd, syms[idx]->section);
8151 }
8152 else
8153 {
8154 asection *sec = syms[idx]->section;
8155 unsigned int shndx;
8156
8157 if (sec->output_section)
8158 {
8159 value += sec->output_offset;
8160 sec = sec->output_section;
8161 }
8162
8163 /* Don't add in the section vma for relocatable output. */
8164 if (! relocatable_p)
8165 value += sec->vma;
8166 sym.st_value = value;
8167 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8168
8169 if (bfd_is_abs_section (sec)
8170 && type_ptr != NULL
8171 && type_ptr->internal_elf_sym.st_shndx != 0)
8172 {
8173 /* This symbol is in a real ELF section which we did
8174 not create as a BFD section. Undo the mapping done
8175 by copy_private_symbol_data. */
8176 shndx = type_ptr->internal_elf_sym.st_shndx;
8177 switch (shndx)
8178 {
8179 case MAP_ONESYMTAB:
8180 shndx = elf_onesymtab (abfd);
8181 break;
8182 case MAP_DYNSYMTAB:
8183 shndx = elf_dynsymtab (abfd);
8184 break;
8185 case MAP_STRTAB:
8186 shndx = elf_strtab_sec (abfd);
8187 break;
8188 case MAP_SHSTRTAB:
8189 shndx = elf_shstrtab_sec (abfd);
8190 break;
8191 case MAP_SYM_SHNDX:
8192 if (elf_symtab_shndx_list (abfd))
8193 shndx = elf_symtab_shndx_list (abfd)->ndx;
8194 break;
8195 default:
8196 shndx = SHN_ABS;
8197 break;
8198 }
8199 }
8200 else
8201 {
8202 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8203
8204 if (shndx == SHN_BAD)
8205 {
8206 asection *sec2;
8207
8208 /* Writing this would be a hell of a lot easier if
8209 we had some decent documentation on bfd, and
8210 knew what to expect of the library, and what to
8211 demand of applications. For example, it
8212 appears that `objcopy' might not set the
8213 section of a symbol to be a section that is
8214 actually in the output file. */
8215 sec2 = bfd_get_section_by_name (abfd, sec->name);
8216 if (sec2 != NULL)
8217 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8218 if (shndx == SHN_BAD)
8219 {
8220 /* xgettext:c-format */
8221 _bfd_error_handler
8222 (_("unable to find equivalent output section"
8223 " for symbol '%s' from section '%s'"),
8224 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8225 sec->name);
8226 bfd_set_error (bfd_error_invalid_operation);
8227 goto error_return;
8228 }
8229 }
8230 }
8231
8232 sym.st_shndx = shndx;
8233 }
8234
8235 if ((flags & BSF_THREAD_LOCAL) != 0)
8236 type = STT_TLS;
8237 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8238 type = STT_GNU_IFUNC;
8239 else if ((flags & BSF_FUNCTION) != 0)
8240 type = STT_FUNC;
8241 else if ((flags & BSF_OBJECT) != 0)
8242 type = STT_OBJECT;
8243 else if ((flags & BSF_RELC) != 0)
8244 type = STT_RELC;
8245 else if ((flags & BSF_SRELC) != 0)
8246 type = STT_SRELC;
8247 else
8248 type = STT_NOTYPE;
8249
8250 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8251 type = STT_TLS;
8252
8253 /* Processor-specific types. */
8254 if (type_ptr != NULL
8255 && bed->elf_backend_get_symbol_type)
8256 type = ((*bed->elf_backend_get_symbol_type)
8257 (&type_ptr->internal_elf_sym, type));
8258
8259 if (flags & BSF_SECTION_SYM)
8260 {
8261 if (flags & BSF_GLOBAL)
8262 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8263 else
8264 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8265 }
8266 else if (bfd_is_com_section (syms[idx]->section))
8267 {
8268 if (type != STT_TLS)
8269 {
8270 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8271 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8272 ? STT_COMMON : STT_OBJECT);
8273 else
8274 type = ((flags & BSF_ELF_COMMON) != 0
8275 ? STT_COMMON : STT_OBJECT);
8276 }
8277 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8278 }
8279 else if (bfd_is_und_section (syms[idx]->section))
8280 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8281 ? STB_WEAK
8282 : STB_GLOBAL),
8283 type);
8284 else if (flags & BSF_FILE)
8285 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8286 else
8287 {
8288 int bind = STB_LOCAL;
8289
8290 if (flags & BSF_LOCAL)
8291 bind = STB_LOCAL;
8292 else if (flags & BSF_GNU_UNIQUE)
8293 bind = STB_GNU_UNIQUE;
8294 else if (flags & BSF_WEAK)
8295 bind = STB_WEAK;
8296 else if (flags & BSF_GLOBAL)
8297 bind = STB_GLOBAL;
8298
8299 sym.st_info = ELF_ST_INFO (bind, type);
8300 }
8301
8302 if (type_ptr != NULL)
8303 {
8304 sym.st_other = type_ptr->internal_elf_sym.st_other;
8305 sym.st_target_internal
8306 = type_ptr->internal_elf_sym.st_target_internal;
8307 }
8308 else
8309 {
8310 sym.st_other = 0;
8311 sym.st_target_internal = 0;
8312 }
8313
8314 idx++;
8315 symstrtab[idx].sym = sym;
8316 symstrtab[idx].dest_index = outbound_syms_index;
8317 symstrtab[idx].destshndx_index = outbound_shndx_index;
8318
8319 outbound_syms_index++;
8320 if (outbound_shndx != NULL)
8321 outbound_shndx_index++;
8322 }
8323
8324 /* Finalize the .strtab section. */
8325 _bfd_elf_strtab_finalize (stt);
8326
8327 /* Swap out the .strtab section. */
8328 for (idx = 0; idx <= symcount; idx++)
8329 {
8330 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8331 if (elfsym->sym.st_name == (unsigned long) -1)
8332 elfsym->sym.st_name = 0;
8333 else
8334 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8335 elfsym->sym.st_name);
8336 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8337 (outbound_syms
8338 + (elfsym->dest_index
8339 * bed->s->sizeof_sym)),
8340 (outbound_shndx
8341 + (elfsym->destshndx_index
8342 * sizeof (Elf_External_Sym_Shndx))));
8343 }
8344 free (symstrtab);
8345
8346 *sttp = stt;
8347 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8348 symstrtab_hdr->sh_type = SHT_STRTAB;
8349 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8350 symstrtab_hdr->sh_addr = 0;
8351 symstrtab_hdr->sh_entsize = 0;
8352 symstrtab_hdr->sh_link = 0;
8353 symstrtab_hdr->sh_info = 0;
8354 symstrtab_hdr->sh_addralign = 1;
8355
8356 return TRUE;
8357 }
8358
8359 /* Return the number of bytes required to hold the symtab vector.
8360
8361 Note that we base it on the count plus 1, since we will null terminate
8362 the vector allocated based on this size. However, the ELF symbol table
8363 always has a dummy entry as symbol #0, so it ends up even. */
8364
8365 long
8366 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8367 {
8368 bfd_size_type symcount;
8369 long symtab_size;
8370 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8371
8372 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8373 if (symcount >= LONG_MAX / sizeof (asymbol *))
8374 {
8375 bfd_set_error (bfd_error_file_too_big);
8376 return -1;
8377 }
8378 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8379 if (symcount > 0)
8380 symtab_size -= sizeof (asymbol *);
8381
8382 return symtab_size;
8383 }
8384
8385 long
8386 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8387 {
8388 bfd_size_type symcount;
8389 long symtab_size;
8390 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8391
8392 if (elf_dynsymtab (abfd) == 0)
8393 {
8394 bfd_set_error (bfd_error_invalid_operation);
8395 return -1;
8396 }
8397
8398 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8399 if (symcount >= LONG_MAX / sizeof (asymbol *))
8400 {
8401 bfd_set_error (bfd_error_file_too_big);
8402 return -1;
8403 }
8404 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8405 if (symcount > 0)
8406 symtab_size -= sizeof (asymbol *);
8407
8408 return symtab_size;
8409 }
8410
8411 long
8412 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8413 sec_ptr asect)
8414 {
8415 #if SIZEOF_LONG == SIZEOF_INT
8416 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8417 {
8418 bfd_set_error (bfd_error_file_too_big);
8419 return -1;
8420 }
8421 #endif
8422 return (asect->reloc_count + 1) * sizeof (arelent *);
8423 }
8424
8425 /* Canonicalize the relocs. */
8426
8427 long
8428 _bfd_elf_canonicalize_reloc (bfd *abfd,
8429 sec_ptr section,
8430 arelent **relptr,
8431 asymbol **symbols)
8432 {
8433 arelent *tblptr;
8434 unsigned int i;
8435 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8436
8437 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8438 return -1;
8439
8440 tblptr = section->relocation;
8441 for (i = 0; i < section->reloc_count; i++)
8442 *relptr++ = tblptr++;
8443
8444 *relptr = NULL;
8445
8446 return section->reloc_count;
8447 }
8448
8449 long
8450 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8451 {
8452 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8453 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8454
8455 if (symcount >= 0)
8456 abfd->symcount = symcount;
8457 return symcount;
8458 }
8459
8460 long
8461 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8462 asymbol **allocation)
8463 {
8464 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8465 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8466
8467 if (symcount >= 0)
8468 abfd->dynsymcount = symcount;
8469 return symcount;
8470 }
8471
8472 /* Return the size required for the dynamic reloc entries. Any loadable
8473 section that was actually installed in the BFD, and has type SHT_REL
8474 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8475 dynamic reloc section. */
8476
8477 long
8478 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8479 {
8480 bfd_size_type count;
8481 asection *s;
8482
8483 if (elf_dynsymtab (abfd) == 0)
8484 {
8485 bfd_set_error (bfd_error_invalid_operation);
8486 return -1;
8487 }
8488
8489 count = 1;
8490 for (s = abfd->sections; s != NULL; s = s->next)
8491 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8492 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8493 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8494 {
8495 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8496 if (count > LONG_MAX / sizeof (arelent *))
8497 {
8498 bfd_set_error (bfd_error_file_too_big);
8499 return -1;
8500 }
8501 }
8502 return count * sizeof (arelent *);
8503 }
8504
8505 /* Canonicalize the dynamic relocation entries. Note that we return the
8506 dynamic relocations as a single block, although they are actually
8507 associated with particular sections; the interface, which was
8508 designed for SunOS style shared libraries, expects that there is only
8509 one set of dynamic relocs. Any loadable section that was actually
8510 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8511 dynamic symbol table, is considered to be a dynamic reloc section. */
8512
8513 long
8514 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8515 arelent **storage,
8516 asymbol **syms)
8517 {
8518 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8519 asection *s;
8520 long ret;
8521
8522 if (elf_dynsymtab (abfd) == 0)
8523 {
8524 bfd_set_error (bfd_error_invalid_operation);
8525 return -1;
8526 }
8527
8528 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8529 ret = 0;
8530 for (s = abfd->sections; s != NULL; s = s->next)
8531 {
8532 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8533 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8534 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8535 {
8536 arelent *p;
8537 long count, i;
8538
8539 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8540 return -1;
8541 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8542 p = s->relocation;
8543 for (i = 0; i < count; i++)
8544 *storage++ = p++;
8545 ret += count;
8546 }
8547 }
8548
8549 *storage = NULL;
8550
8551 return ret;
8552 }
8553 \f
8554 /* Read in the version information. */
8555
8556 bfd_boolean
8557 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8558 {
8559 bfd_byte *contents = NULL;
8560 unsigned int freeidx = 0;
8561
8562 if (elf_dynverref (abfd) != 0)
8563 {
8564 Elf_Internal_Shdr *hdr;
8565 Elf_External_Verneed *everneed;
8566 Elf_Internal_Verneed *iverneed;
8567 unsigned int i;
8568 bfd_byte *contents_end;
8569
8570 hdr = &elf_tdata (abfd)->dynverref_hdr;
8571
8572 if (hdr->sh_info == 0
8573 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8574 {
8575 error_return_bad_verref:
8576 _bfd_error_handler
8577 (_("%pB: .gnu.version_r invalid entry"), abfd);
8578 bfd_set_error (bfd_error_bad_value);
8579 error_return_verref:
8580 elf_tdata (abfd)->verref = NULL;
8581 elf_tdata (abfd)->cverrefs = 0;
8582 goto error_return;
8583 }
8584
8585 ufile_ptr filesize = bfd_get_file_size (abfd);
8586 if (filesize > 0 && filesize < hdr->sh_size)
8587 {
8588 /* PR 24708: Avoid attempts to allocate a ridiculous amount
8589 of memory. */
8590 bfd_set_error (bfd_error_no_memory);
8591 _bfd_error_handler
8592 /* xgettext:c-format */
8593 (_("error: %pB version reference section is too large (%#" PRIx64 " bytes)"),
8594 abfd, (uint64_t) hdr->sh_size);
8595 goto error_return_verref;
8596 }
8597 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8598 if (contents == NULL)
8599 goto error_return_verref;
8600
8601 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8602 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8603 goto error_return_verref;
8604
8605 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8606 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8607
8608 if (elf_tdata (abfd)->verref == NULL)
8609 goto error_return_verref;
8610
8611 BFD_ASSERT (sizeof (Elf_External_Verneed)
8612 == sizeof (Elf_External_Vernaux));
8613 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8614 everneed = (Elf_External_Verneed *) contents;
8615 iverneed = elf_tdata (abfd)->verref;
8616 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8617 {
8618 Elf_External_Vernaux *evernaux;
8619 Elf_Internal_Vernaux *ivernaux;
8620 unsigned int j;
8621
8622 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8623
8624 iverneed->vn_bfd = abfd;
8625
8626 iverneed->vn_filename =
8627 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8628 iverneed->vn_file);
8629 if (iverneed->vn_filename == NULL)
8630 goto error_return_bad_verref;
8631
8632 if (iverneed->vn_cnt == 0)
8633 iverneed->vn_auxptr = NULL;
8634 else
8635 {
8636 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8637 bfd_alloc2 (abfd, iverneed->vn_cnt,
8638 sizeof (Elf_Internal_Vernaux));
8639 if (iverneed->vn_auxptr == NULL)
8640 goto error_return_verref;
8641 }
8642
8643 if (iverneed->vn_aux
8644 > (size_t) (contents_end - (bfd_byte *) everneed))
8645 goto error_return_bad_verref;
8646
8647 evernaux = ((Elf_External_Vernaux *)
8648 ((bfd_byte *) everneed + iverneed->vn_aux));
8649 ivernaux = iverneed->vn_auxptr;
8650 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8651 {
8652 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8653
8654 ivernaux->vna_nodename =
8655 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8656 ivernaux->vna_name);
8657 if (ivernaux->vna_nodename == NULL)
8658 goto error_return_bad_verref;
8659
8660 if (ivernaux->vna_other > freeidx)
8661 freeidx = ivernaux->vna_other;
8662
8663 ivernaux->vna_nextptr = NULL;
8664 if (ivernaux->vna_next == 0)
8665 {
8666 iverneed->vn_cnt = j + 1;
8667 break;
8668 }
8669 if (j + 1 < iverneed->vn_cnt)
8670 ivernaux->vna_nextptr = ivernaux + 1;
8671
8672 if (ivernaux->vna_next
8673 > (size_t) (contents_end - (bfd_byte *) evernaux))
8674 goto error_return_bad_verref;
8675
8676 evernaux = ((Elf_External_Vernaux *)
8677 ((bfd_byte *) evernaux + ivernaux->vna_next));
8678 }
8679
8680 iverneed->vn_nextref = NULL;
8681 if (iverneed->vn_next == 0)
8682 break;
8683 if (i + 1 < hdr->sh_info)
8684 iverneed->vn_nextref = iverneed + 1;
8685
8686 if (iverneed->vn_next
8687 > (size_t) (contents_end - (bfd_byte *) everneed))
8688 goto error_return_bad_verref;
8689
8690 everneed = ((Elf_External_Verneed *)
8691 ((bfd_byte *) everneed + iverneed->vn_next));
8692 }
8693 elf_tdata (abfd)->cverrefs = i;
8694
8695 free (contents);
8696 contents = NULL;
8697 }
8698
8699 if (elf_dynverdef (abfd) != 0)
8700 {
8701 Elf_Internal_Shdr *hdr;
8702 Elf_External_Verdef *everdef;
8703 Elf_Internal_Verdef *iverdef;
8704 Elf_Internal_Verdef *iverdefarr;
8705 Elf_Internal_Verdef iverdefmem;
8706 unsigned int i;
8707 unsigned int maxidx;
8708 bfd_byte *contents_end_def, *contents_end_aux;
8709
8710 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8711
8712 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8713 {
8714 error_return_bad_verdef:
8715 _bfd_error_handler
8716 (_("%pB: .gnu.version_d invalid entry"), abfd);
8717 bfd_set_error (bfd_error_bad_value);
8718 error_return_verdef:
8719 elf_tdata (abfd)->verdef = NULL;
8720 elf_tdata (abfd)->cverdefs = 0;
8721 goto error_return;
8722 }
8723
8724 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8725 if (contents == NULL)
8726 goto error_return_verdef;
8727 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8728 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8729 goto error_return_verdef;
8730
8731 BFD_ASSERT (sizeof (Elf_External_Verdef)
8732 >= sizeof (Elf_External_Verdaux));
8733 contents_end_def = contents + hdr->sh_size
8734 - sizeof (Elf_External_Verdef);
8735 contents_end_aux = contents + hdr->sh_size
8736 - sizeof (Elf_External_Verdaux);
8737
8738 /* We know the number of entries in the section but not the maximum
8739 index. Therefore we have to run through all entries and find
8740 the maximum. */
8741 everdef = (Elf_External_Verdef *) contents;
8742 maxidx = 0;
8743 for (i = 0; i < hdr->sh_info; ++i)
8744 {
8745 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8746
8747 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8748 goto error_return_bad_verdef;
8749 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8750 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8751
8752 if (iverdefmem.vd_next == 0)
8753 break;
8754
8755 if (iverdefmem.vd_next
8756 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8757 goto error_return_bad_verdef;
8758
8759 everdef = ((Elf_External_Verdef *)
8760 ((bfd_byte *) everdef + iverdefmem.vd_next));
8761 }
8762
8763 if (default_imported_symver)
8764 {
8765 if (freeidx > maxidx)
8766 maxidx = ++freeidx;
8767 else
8768 freeidx = ++maxidx;
8769 }
8770
8771 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8772 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8773 if (elf_tdata (abfd)->verdef == NULL)
8774 goto error_return_verdef;
8775
8776 elf_tdata (abfd)->cverdefs = maxidx;
8777
8778 everdef = (Elf_External_Verdef *) contents;
8779 iverdefarr = elf_tdata (abfd)->verdef;
8780 for (i = 0; i < hdr->sh_info; i++)
8781 {
8782 Elf_External_Verdaux *everdaux;
8783 Elf_Internal_Verdaux *iverdaux;
8784 unsigned int j;
8785
8786 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8787
8788 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8789 goto error_return_bad_verdef;
8790
8791 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8792 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8793
8794 iverdef->vd_bfd = abfd;
8795
8796 if (iverdef->vd_cnt == 0)
8797 iverdef->vd_auxptr = NULL;
8798 else
8799 {
8800 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8801 bfd_alloc2 (abfd, iverdef->vd_cnt,
8802 sizeof (Elf_Internal_Verdaux));
8803 if (iverdef->vd_auxptr == NULL)
8804 goto error_return_verdef;
8805 }
8806
8807 if (iverdef->vd_aux
8808 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8809 goto error_return_bad_verdef;
8810
8811 everdaux = ((Elf_External_Verdaux *)
8812 ((bfd_byte *) everdef + iverdef->vd_aux));
8813 iverdaux = iverdef->vd_auxptr;
8814 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8815 {
8816 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8817
8818 iverdaux->vda_nodename =
8819 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8820 iverdaux->vda_name);
8821 if (iverdaux->vda_nodename == NULL)
8822 goto error_return_bad_verdef;
8823
8824 iverdaux->vda_nextptr = NULL;
8825 if (iverdaux->vda_next == 0)
8826 {
8827 iverdef->vd_cnt = j + 1;
8828 break;
8829 }
8830 if (j + 1 < iverdef->vd_cnt)
8831 iverdaux->vda_nextptr = iverdaux + 1;
8832
8833 if (iverdaux->vda_next
8834 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8835 goto error_return_bad_verdef;
8836
8837 everdaux = ((Elf_External_Verdaux *)
8838 ((bfd_byte *) everdaux + iverdaux->vda_next));
8839 }
8840
8841 iverdef->vd_nodename = NULL;
8842 if (iverdef->vd_cnt)
8843 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8844
8845 iverdef->vd_nextdef = NULL;
8846 if (iverdef->vd_next == 0)
8847 break;
8848 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8849 iverdef->vd_nextdef = iverdef + 1;
8850
8851 everdef = ((Elf_External_Verdef *)
8852 ((bfd_byte *) everdef + iverdef->vd_next));
8853 }
8854
8855 free (contents);
8856 contents = NULL;
8857 }
8858 else if (default_imported_symver)
8859 {
8860 if (freeidx < 3)
8861 freeidx = 3;
8862 else
8863 freeidx++;
8864
8865 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8866 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8867 if (elf_tdata (abfd)->verdef == NULL)
8868 goto error_return;
8869
8870 elf_tdata (abfd)->cverdefs = freeidx;
8871 }
8872
8873 /* Create a default version based on the soname. */
8874 if (default_imported_symver)
8875 {
8876 Elf_Internal_Verdef *iverdef;
8877 Elf_Internal_Verdaux *iverdaux;
8878
8879 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8880
8881 iverdef->vd_version = VER_DEF_CURRENT;
8882 iverdef->vd_flags = 0;
8883 iverdef->vd_ndx = freeidx;
8884 iverdef->vd_cnt = 1;
8885
8886 iverdef->vd_bfd = abfd;
8887
8888 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8889 if (iverdef->vd_nodename == NULL)
8890 goto error_return_verdef;
8891 iverdef->vd_nextdef = NULL;
8892 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8893 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8894 if (iverdef->vd_auxptr == NULL)
8895 goto error_return_verdef;
8896
8897 iverdaux = iverdef->vd_auxptr;
8898 iverdaux->vda_nodename = iverdef->vd_nodename;
8899 }
8900
8901 return TRUE;
8902
8903 error_return:
8904 if (contents != NULL)
8905 free (contents);
8906 return FALSE;
8907 }
8908 \f
8909 asymbol *
8910 _bfd_elf_make_empty_symbol (bfd *abfd)
8911 {
8912 elf_symbol_type *newsym;
8913
8914 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8915 if (!newsym)
8916 return NULL;
8917 newsym->symbol.the_bfd = abfd;
8918 return &newsym->symbol;
8919 }
8920
8921 void
8922 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8923 asymbol *symbol,
8924 symbol_info *ret)
8925 {
8926 bfd_symbol_info (symbol, ret);
8927 }
8928
8929 /* Return whether a symbol name implies a local symbol. Most targets
8930 use this function for the is_local_label_name entry point, but some
8931 override it. */
8932
8933 bfd_boolean
8934 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8935 const char *name)
8936 {
8937 /* Normal local symbols start with ``.L''. */
8938 if (name[0] == '.' && name[1] == 'L')
8939 return TRUE;
8940
8941 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8942 DWARF debugging symbols starting with ``..''. */
8943 if (name[0] == '.' && name[1] == '.')
8944 return TRUE;
8945
8946 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8947 emitting DWARF debugging output. I suspect this is actually a
8948 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8949 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8950 underscore to be emitted on some ELF targets). For ease of use,
8951 we treat such symbols as local. */
8952 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8953 return TRUE;
8954
8955 /* Treat assembler generated fake symbols, dollar local labels and
8956 forward-backward labels (aka local labels) as locals.
8957 These labels have the form:
8958
8959 L0^A.* (fake symbols)
8960
8961 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8962
8963 Versions which start with .L will have already been matched above,
8964 so we only need to match the rest. */
8965 if (name[0] == 'L' && ISDIGIT (name[1]))
8966 {
8967 bfd_boolean ret = FALSE;
8968 const char * p;
8969 char c;
8970
8971 for (p = name + 2; (c = *p); p++)
8972 {
8973 if (c == 1 || c == 2)
8974 {
8975 if (c == 1 && p == name + 2)
8976 /* A fake symbol. */
8977 return TRUE;
8978
8979 /* FIXME: We are being paranoid here and treating symbols like
8980 L0^Bfoo as if there were non-local, on the grounds that the
8981 assembler will never generate them. But can any symbol
8982 containing an ASCII value in the range 1-31 ever be anything
8983 other than some kind of local ? */
8984 ret = TRUE;
8985 }
8986
8987 if (! ISDIGIT (c))
8988 {
8989 ret = FALSE;
8990 break;
8991 }
8992 }
8993 return ret;
8994 }
8995
8996 return FALSE;
8997 }
8998
8999 alent *
9000 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9001 asymbol *symbol ATTRIBUTE_UNUSED)
9002 {
9003 abort ();
9004 return NULL;
9005 }
9006
9007 bfd_boolean
9008 _bfd_elf_set_arch_mach (bfd *abfd,
9009 enum bfd_architecture arch,
9010 unsigned long machine)
9011 {
9012 /* If this isn't the right architecture for this backend, and this
9013 isn't the generic backend, fail. */
9014 if (arch != get_elf_backend_data (abfd)->arch
9015 && arch != bfd_arch_unknown
9016 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9017 return FALSE;
9018
9019 return bfd_default_set_arch_mach (abfd, arch, machine);
9020 }
9021
9022 /* Find the nearest line to a particular section and offset,
9023 for error reporting. */
9024
9025 bfd_boolean
9026 _bfd_elf_find_nearest_line (bfd *abfd,
9027 asymbol **symbols,
9028 asection *section,
9029 bfd_vma offset,
9030 const char **filename_ptr,
9031 const char **functionname_ptr,
9032 unsigned int *line_ptr,
9033 unsigned int *discriminator_ptr)
9034 {
9035 bfd_boolean found;
9036
9037 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9038 filename_ptr, functionname_ptr,
9039 line_ptr, discriminator_ptr,
9040 dwarf_debug_sections,
9041 &elf_tdata (abfd)->dwarf2_find_line_info))
9042 return TRUE;
9043
9044 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9045 filename_ptr, functionname_ptr, line_ptr))
9046 {
9047 if (!*functionname_ptr)
9048 _bfd_elf_find_function (abfd, symbols, section, offset,
9049 *filename_ptr ? NULL : filename_ptr,
9050 functionname_ptr);
9051 return TRUE;
9052 }
9053
9054 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9055 &found, filename_ptr,
9056 functionname_ptr, line_ptr,
9057 &elf_tdata (abfd)->line_info))
9058 return FALSE;
9059 if (found && (*functionname_ptr || *line_ptr))
9060 return TRUE;
9061
9062 if (symbols == NULL)
9063 return FALSE;
9064
9065 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9066 filename_ptr, functionname_ptr))
9067 return FALSE;
9068
9069 *line_ptr = 0;
9070 return TRUE;
9071 }
9072
9073 /* Find the line for a symbol. */
9074
9075 bfd_boolean
9076 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9077 const char **filename_ptr, unsigned int *line_ptr)
9078 {
9079 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9080 filename_ptr, NULL, line_ptr, NULL,
9081 dwarf_debug_sections,
9082 &elf_tdata (abfd)->dwarf2_find_line_info);
9083 }
9084
9085 /* After a call to bfd_find_nearest_line, successive calls to
9086 bfd_find_inliner_info can be used to get source information about
9087 each level of function inlining that terminated at the address
9088 passed to bfd_find_nearest_line. Currently this is only supported
9089 for DWARF2 with appropriate DWARF3 extensions. */
9090
9091 bfd_boolean
9092 _bfd_elf_find_inliner_info (bfd *abfd,
9093 const char **filename_ptr,
9094 const char **functionname_ptr,
9095 unsigned int *line_ptr)
9096 {
9097 bfd_boolean found;
9098 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9099 functionname_ptr, line_ptr,
9100 & elf_tdata (abfd)->dwarf2_find_line_info);
9101 return found;
9102 }
9103
9104 int
9105 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9106 {
9107 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9108 int ret = bed->s->sizeof_ehdr;
9109
9110 if (!bfd_link_relocatable (info))
9111 {
9112 bfd_size_type phdr_size = elf_program_header_size (abfd);
9113
9114 if (phdr_size == (bfd_size_type) -1)
9115 {
9116 struct elf_segment_map *m;
9117
9118 phdr_size = 0;
9119 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9120 phdr_size += bed->s->sizeof_phdr;
9121
9122 if (phdr_size == 0)
9123 phdr_size = get_program_header_size (abfd, info);
9124 }
9125
9126 elf_program_header_size (abfd) = phdr_size;
9127 ret += phdr_size;
9128 }
9129
9130 return ret;
9131 }
9132
9133 bfd_boolean
9134 _bfd_elf_set_section_contents (bfd *abfd,
9135 sec_ptr section,
9136 const void *location,
9137 file_ptr offset,
9138 bfd_size_type count)
9139 {
9140 Elf_Internal_Shdr *hdr;
9141 file_ptr pos;
9142
9143 if (! abfd->output_has_begun
9144 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9145 return FALSE;
9146
9147 if (!count)
9148 return TRUE;
9149
9150 hdr = &elf_section_data (section)->this_hdr;
9151 if (hdr->sh_offset == (file_ptr) -1)
9152 {
9153 if (bfd_section_is_ctf (section))
9154 /* Nothing to do with this section: the contents are generated
9155 later. */
9156 return TRUE;
9157
9158 /* We must compress this section. Write output to the buffer. */
9159 unsigned char *contents = hdr->contents;
9160 if ((offset + count) > hdr->sh_size
9161 || (section->flags & SEC_ELF_COMPRESS) == 0
9162 || contents == NULL)
9163 abort ();
9164 memcpy (contents + offset, location, count);
9165 return TRUE;
9166 }
9167 pos = hdr->sh_offset + offset;
9168 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9169 || bfd_bwrite (location, count, abfd) != count)
9170 return FALSE;
9171
9172 return TRUE;
9173 }
9174
9175 bfd_boolean
9176 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9177 arelent *cache_ptr ATTRIBUTE_UNUSED,
9178 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9179 {
9180 abort ();
9181 return FALSE;
9182 }
9183
9184 /* Try to convert a non-ELF reloc into an ELF one. */
9185
9186 bfd_boolean
9187 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9188 {
9189 /* Check whether we really have an ELF howto. */
9190
9191 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9192 {
9193 bfd_reloc_code_real_type code;
9194 reloc_howto_type *howto;
9195
9196 /* Alien reloc: Try to determine its type to replace it with an
9197 equivalent ELF reloc. */
9198
9199 if (areloc->howto->pc_relative)
9200 {
9201 switch (areloc->howto->bitsize)
9202 {
9203 case 8:
9204 code = BFD_RELOC_8_PCREL;
9205 break;
9206 case 12:
9207 code = BFD_RELOC_12_PCREL;
9208 break;
9209 case 16:
9210 code = BFD_RELOC_16_PCREL;
9211 break;
9212 case 24:
9213 code = BFD_RELOC_24_PCREL;
9214 break;
9215 case 32:
9216 code = BFD_RELOC_32_PCREL;
9217 break;
9218 case 64:
9219 code = BFD_RELOC_64_PCREL;
9220 break;
9221 default:
9222 goto fail;
9223 }
9224
9225 howto = bfd_reloc_type_lookup (abfd, code);
9226
9227 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9228 {
9229 if (howto->pcrel_offset)
9230 areloc->addend += areloc->address;
9231 else
9232 areloc->addend -= areloc->address; /* addend is unsigned!! */
9233 }
9234 }
9235 else
9236 {
9237 switch (areloc->howto->bitsize)
9238 {
9239 case 8:
9240 code = BFD_RELOC_8;
9241 break;
9242 case 14:
9243 code = BFD_RELOC_14;
9244 break;
9245 case 16:
9246 code = BFD_RELOC_16;
9247 break;
9248 case 26:
9249 code = BFD_RELOC_26;
9250 break;
9251 case 32:
9252 code = BFD_RELOC_32;
9253 break;
9254 case 64:
9255 code = BFD_RELOC_64;
9256 break;
9257 default:
9258 goto fail;
9259 }
9260
9261 howto = bfd_reloc_type_lookup (abfd, code);
9262 }
9263
9264 if (howto)
9265 areloc->howto = howto;
9266 else
9267 goto fail;
9268 }
9269
9270 return TRUE;
9271
9272 fail:
9273 /* xgettext:c-format */
9274 _bfd_error_handler (_("%pB: %s unsupported"),
9275 abfd, areloc->howto->name);
9276 bfd_set_error (bfd_error_sorry);
9277 return FALSE;
9278 }
9279
9280 bfd_boolean
9281 _bfd_elf_close_and_cleanup (bfd *abfd)
9282 {
9283 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9284 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9285 {
9286 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9287 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9288 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9289 }
9290
9291 return _bfd_generic_close_and_cleanup (abfd);
9292 }
9293
9294 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9295 in the relocation's offset. Thus we cannot allow any sort of sanity
9296 range-checking to interfere. There is nothing else to do in processing
9297 this reloc. */
9298
9299 bfd_reloc_status_type
9300 _bfd_elf_rel_vtable_reloc_fn
9301 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9302 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9303 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9304 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9305 {
9306 return bfd_reloc_ok;
9307 }
9308 \f
9309 /* Elf core file support. Much of this only works on native
9310 toolchains, since we rely on knowing the
9311 machine-dependent procfs structure in order to pick
9312 out details about the corefile. */
9313
9314 #ifdef HAVE_SYS_PROCFS_H
9315 /* Needed for new procfs interface on sparc-solaris. */
9316 # define _STRUCTURED_PROC 1
9317 # include <sys/procfs.h>
9318 #endif
9319
9320 /* Return a PID that identifies a "thread" for threaded cores, or the
9321 PID of the main process for non-threaded cores. */
9322
9323 static int
9324 elfcore_make_pid (bfd *abfd)
9325 {
9326 int pid;
9327
9328 pid = elf_tdata (abfd)->core->lwpid;
9329 if (pid == 0)
9330 pid = elf_tdata (abfd)->core->pid;
9331
9332 return pid;
9333 }
9334
9335 /* If there isn't a section called NAME, make one, using
9336 data from SECT. Note, this function will generate a
9337 reference to NAME, so you shouldn't deallocate or
9338 overwrite it. */
9339
9340 static bfd_boolean
9341 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9342 {
9343 asection *sect2;
9344
9345 if (bfd_get_section_by_name (abfd, name) != NULL)
9346 return TRUE;
9347
9348 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9349 if (sect2 == NULL)
9350 return FALSE;
9351
9352 sect2->size = sect->size;
9353 sect2->filepos = sect->filepos;
9354 sect2->alignment_power = sect->alignment_power;
9355 return TRUE;
9356 }
9357
9358 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9359 actually creates up to two pseudosections:
9360 - For the single-threaded case, a section named NAME, unless
9361 such a section already exists.
9362 - For the multi-threaded case, a section named "NAME/PID", where
9363 PID is elfcore_make_pid (abfd).
9364 Both pseudosections have identical contents. */
9365 bfd_boolean
9366 _bfd_elfcore_make_pseudosection (bfd *abfd,
9367 char *name,
9368 size_t size,
9369 ufile_ptr filepos)
9370 {
9371 char buf[100];
9372 char *threaded_name;
9373 size_t len;
9374 asection *sect;
9375
9376 /* Build the section name. */
9377
9378 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9379 len = strlen (buf) + 1;
9380 threaded_name = (char *) bfd_alloc (abfd, len);
9381 if (threaded_name == NULL)
9382 return FALSE;
9383 memcpy (threaded_name, buf, len);
9384
9385 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9386 SEC_HAS_CONTENTS);
9387 if (sect == NULL)
9388 return FALSE;
9389 sect->size = size;
9390 sect->filepos = filepos;
9391 sect->alignment_power = 2;
9392
9393 return elfcore_maybe_make_sect (abfd, name, sect);
9394 }
9395
9396 static bfd_boolean
9397 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9398 size_t offs)
9399 {
9400 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9401 SEC_HAS_CONTENTS);
9402
9403 if (sect == NULL)
9404 return FALSE;
9405
9406 sect->size = note->descsz - offs;
9407 sect->filepos = note->descpos + offs;
9408 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9409
9410 return TRUE;
9411 }
9412
9413 /* prstatus_t exists on:
9414 solaris 2.5+
9415 linux 2.[01] + glibc
9416 unixware 4.2
9417 */
9418
9419 #if defined (HAVE_PRSTATUS_T)
9420
9421 static bfd_boolean
9422 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9423 {
9424 size_t size;
9425 int offset;
9426
9427 if (note->descsz == sizeof (prstatus_t))
9428 {
9429 prstatus_t prstat;
9430
9431 size = sizeof (prstat.pr_reg);
9432 offset = offsetof (prstatus_t, pr_reg);
9433 memcpy (&prstat, note->descdata, sizeof (prstat));
9434
9435 /* Do not overwrite the core signal if it
9436 has already been set by another thread. */
9437 if (elf_tdata (abfd)->core->signal == 0)
9438 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9439 if (elf_tdata (abfd)->core->pid == 0)
9440 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9441
9442 /* pr_who exists on:
9443 solaris 2.5+
9444 unixware 4.2
9445 pr_who doesn't exist on:
9446 linux 2.[01]
9447 */
9448 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9449 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9450 #else
9451 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9452 #endif
9453 }
9454 #if defined (HAVE_PRSTATUS32_T)
9455 else if (note->descsz == sizeof (prstatus32_t))
9456 {
9457 /* 64-bit host, 32-bit corefile */
9458 prstatus32_t prstat;
9459
9460 size = sizeof (prstat.pr_reg);
9461 offset = offsetof (prstatus32_t, pr_reg);
9462 memcpy (&prstat, note->descdata, sizeof (prstat));
9463
9464 /* Do not overwrite the core signal if it
9465 has already been set by another thread. */
9466 if (elf_tdata (abfd)->core->signal == 0)
9467 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9468 if (elf_tdata (abfd)->core->pid == 0)
9469 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9470
9471 /* pr_who exists on:
9472 solaris 2.5+
9473 unixware 4.2
9474 pr_who doesn't exist on:
9475 linux 2.[01]
9476 */
9477 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9478 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9479 #else
9480 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9481 #endif
9482 }
9483 #endif /* HAVE_PRSTATUS32_T */
9484 else
9485 {
9486 /* Fail - we don't know how to handle any other
9487 note size (ie. data object type). */
9488 return TRUE;
9489 }
9490
9491 /* Make a ".reg/999" section and a ".reg" section. */
9492 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9493 size, note->descpos + offset);
9494 }
9495 #endif /* defined (HAVE_PRSTATUS_T) */
9496
9497 /* Create a pseudosection containing the exact contents of NOTE. */
9498 static bfd_boolean
9499 elfcore_make_note_pseudosection (bfd *abfd,
9500 char *name,
9501 Elf_Internal_Note *note)
9502 {
9503 return _bfd_elfcore_make_pseudosection (abfd, name,
9504 note->descsz, note->descpos);
9505 }
9506
9507 /* There isn't a consistent prfpregset_t across platforms,
9508 but it doesn't matter, because we don't have to pick this
9509 data structure apart. */
9510
9511 static bfd_boolean
9512 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9513 {
9514 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9515 }
9516
9517 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9518 type of NT_PRXFPREG. Just include the whole note's contents
9519 literally. */
9520
9521 static bfd_boolean
9522 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9523 {
9524 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9525 }
9526
9527 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9528 with a note type of NT_X86_XSTATE. Just include the whole note's
9529 contents literally. */
9530
9531 static bfd_boolean
9532 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9533 {
9534 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9535 }
9536
9537 static bfd_boolean
9538 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9539 {
9540 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9541 }
9542
9543 static bfd_boolean
9544 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9545 {
9546 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9547 }
9548
9549 static bfd_boolean
9550 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9551 {
9552 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9553 }
9554
9555 static bfd_boolean
9556 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9557 {
9558 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9559 }
9560
9561 static bfd_boolean
9562 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9563 {
9564 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9565 }
9566
9567 static bfd_boolean
9568 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9569 {
9570 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9571 }
9572
9573 static bfd_boolean
9574 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9575 {
9576 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9577 }
9578
9579 static bfd_boolean
9580 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9581 {
9582 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9583 }
9584
9585 static bfd_boolean
9586 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9587 {
9588 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9589 }
9590
9591 static bfd_boolean
9592 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9593 {
9594 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9595 }
9596
9597 static bfd_boolean
9598 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9599 {
9600 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9601 }
9602
9603 static bfd_boolean
9604 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9605 {
9606 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9607 }
9608
9609 static bfd_boolean
9610 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9611 {
9612 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9613 }
9614
9615 static bfd_boolean
9616 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9617 {
9618 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9619 }
9620
9621 static bfd_boolean
9622 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9623 {
9624 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9625 }
9626
9627 static bfd_boolean
9628 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9629 {
9630 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9631 }
9632
9633 static bfd_boolean
9634 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9635 {
9636 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9637 }
9638
9639 static bfd_boolean
9640 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9641 {
9642 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9643 }
9644
9645 static bfd_boolean
9646 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9647 {
9648 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9649 }
9650
9651 static bfd_boolean
9652 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9653 {
9654 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9655 }
9656
9657 static bfd_boolean
9658 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9659 {
9660 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9661 }
9662
9663 static bfd_boolean
9664 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9665 {
9666 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9667 }
9668
9669 static bfd_boolean
9670 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9671 {
9672 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9673 }
9674
9675 static bfd_boolean
9676 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9677 {
9678 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9679 }
9680
9681 static bfd_boolean
9682 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9683 {
9684 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9685 }
9686
9687 static bfd_boolean
9688 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9689 {
9690 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9691 }
9692
9693 static bfd_boolean
9694 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9695 {
9696 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9697 }
9698
9699 static bfd_boolean
9700 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9701 {
9702 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9703 }
9704
9705 static bfd_boolean
9706 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9707 {
9708 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9709 }
9710
9711 static bfd_boolean
9712 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9713 {
9714 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9715 }
9716
9717 static bfd_boolean
9718 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9719 {
9720 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9721 }
9722
9723 static bfd_boolean
9724 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9725 {
9726 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9727 }
9728
9729 static bfd_boolean
9730 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9731 {
9732 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9733 }
9734
9735 static bfd_boolean
9736 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9737 {
9738 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9739 }
9740
9741 #if defined (HAVE_PRPSINFO_T)
9742 typedef prpsinfo_t elfcore_psinfo_t;
9743 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9744 typedef prpsinfo32_t elfcore_psinfo32_t;
9745 #endif
9746 #endif
9747
9748 #if defined (HAVE_PSINFO_T)
9749 typedef psinfo_t elfcore_psinfo_t;
9750 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9751 typedef psinfo32_t elfcore_psinfo32_t;
9752 #endif
9753 #endif
9754
9755 /* return a malloc'ed copy of a string at START which is at
9756 most MAX bytes long, possibly without a terminating '\0'.
9757 the copy will always have a terminating '\0'. */
9758
9759 char *
9760 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9761 {
9762 char *dups;
9763 char *end = (char *) memchr (start, '\0', max);
9764 size_t len;
9765
9766 if (end == NULL)
9767 len = max;
9768 else
9769 len = end - start;
9770
9771 dups = (char *) bfd_alloc (abfd, len + 1);
9772 if (dups == NULL)
9773 return NULL;
9774
9775 memcpy (dups, start, len);
9776 dups[len] = '\0';
9777
9778 return dups;
9779 }
9780
9781 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9782 static bfd_boolean
9783 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9784 {
9785 if (note->descsz == sizeof (elfcore_psinfo_t))
9786 {
9787 elfcore_psinfo_t psinfo;
9788
9789 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9790
9791 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9792 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9793 #endif
9794 elf_tdata (abfd)->core->program
9795 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9796 sizeof (psinfo.pr_fname));
9797
9798 elf_tdata (abfd)->core->command
9799 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9800 sizeof (psinfo.pr_psargs));
9801 }
9802 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9803 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9804 {
9805 /* 64-bit host, 32-bit corefile */
9806 elfcore_psinfo32_t psinfo;
9807
9808 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9809
9810 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9811 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9812 #endif
9813 elf_tdata (abfd)->core->program
9814 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9815 sizeof (psinfo.pr_fname));
9816
9817 elf_tdata (abfd)->core->command
9818 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9819 sizeof (psinfo.pr_psargs));
9820 }
9821 #endif
9822
9823 else
9824 {
9825 /* Fail - we don't know how to handle any other
9826 note size (ie. data object type). */
9827 return TRUE;
9828 }
9829
9830 /* Note that for some reason, a spurious space is tacked
9831 onto the end of the args in some (at least one anyway)
9832 implementations, so strip it off if it exists. */
9833
9834 {
9835 char *command = elf_tdata (abfd)->core->command;
9836 int n = strlen (command);
9837
9838 if (0 < n && command[n - 1] == ' ')
9839 command[n - 1] = '\0';
9840 }
9841
9842 return TRUE;
9843 }
9844 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9845
9846 #if defined (HAVE_PSTATUS_T)
9847 static bfd_boolean
9848 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9849 {
9850 if (note->descsz == sizeof (pstatus_t)
9851 #if defined (HAVE_PXSTATUS_T)
9852 || note->descsz == sizeof (pxstatus_t)
9853 #endif
9854 )
9855 {
9856 pstatus_t pstat;
9857
9858 memcpy (&pstat, note->descdata, sizeof (pstat));
9859
9860 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9861 }
9862 #if defined (HAVE_PSTATUS32_T)
9863 else if (note->descsz == sizeof (pstatus32_t))
9864 {
9865 /* 64-bit host, 32-bit corefile */
9866 pstatus32_t pstat;
9867
9868 memcpy (&pstat, note->descdata, sizeof (pstat));
9869
9870 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9871 }
9872 #endif
9873 /* Could grab some more details from the "representative"
9874 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9875 NT_LWPSTATUS note, presumably. */
9876
9877 return TRUE;
9878 }
9879 #endif /* defined (HAVE_PSTATUS_T) */
9880
9881 #if defined (HAVE_LWPSTATUS_T)
9882 static bfd_boolean
9883 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9884 {
9885 lwpstatus_t lwpstat;
9886 char buf[100];
9887 char *name;
9888 size_t len;
9889 asection *sect;
9890
9891 if (note->descsz != sizeof (lwpstat)
9892 #if defined (HAVE_LWPXSTATUS_T)
9893 && note->descsz != sizeof (lwpxstatus_t)
9894 #endif
9895 )
9896 return TRUE;
9897
9898 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9899
9900 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9901 /* Do not overwrite the core signal if it has already been set by
9902 another thread. */
9903 if (elf_tdata (abfd)->core->signal == 0)
9904 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9905
9906 /* Make a ".reg/999" section. */
9907
9908 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9909 len = strlen (buf) + 1;
9910 name = bfd_alloc (abfd, len);
9911 if (name == NULL)
9912 return FALSE;
9913 memcpy (name, buf, len);
9914
9915 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9916 if (sect == NULL)
9917 return FALSE;
9918
9919 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9920 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9921 sect->filepos = note->descpos
9922 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9923 #endif
9924
9925 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9926 sect->size = sizeof (lwpstat.pr_reg);
9927 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9928 #endif
9929
9930 sect->alignment_power = 2;
9931
9932 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9933 return FALSE;
9934
9935 /* Make a ".reg2/999" section */
9936
9937 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9938 len = strlen (buf) + 1;
9939 name = bfd_alloc (abfd, len);
9940 if (name == NULL)
9941 return FALSE;
9942 memcpy (name, buf, len);
9943
9944 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9945 if (sect == NULL)
9946 return FALSE;
9947
9948 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9949 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9950 sect->filepos = note->descpos
9951 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9952 #endif
9953
9954 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9955 sect->size = sizeof (lwpstat.pr_fpreg);
9956 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9957 #endif
9958
9959 sect->alignment_power = 2;
9960
9961 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9962 }
9963 #endif /* defined (HAVE_LWPSTATUS_T) */
9964
9965 static bfd_boolean
9966 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9967 {
9968 char buf[30];
9969 char *name;
9970 size_t len;
9971 asection *sect;
9972 int type;
9973 int is_active_thread;
9974 bfd_vma base_addr;
9975
9976 if (note->descsz < 728)
9977 return TRUE;
9978
9979 if (! CONST_STRNEQ (note->namedata, "win32"))
9980 return TRUE;
9981
9982 type = bfd_get_32 (abfd, note->descdata);
9983
9984 switch (type)
9985 {
9986 case 1 /* NOTE_INFO_PROCESS */:
9987 /* FIXME: need to add ->core->command. */
9988 /* process_info.pid */
9989 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9990 /* process_info.signal */
9991 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9992 break;
9993
9994 case 2 /* NOTE_INFO_THREAD */:
9995 /* Make a ".reg/999" section. */
9996 /* thread_info.tid */
9997 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9998
9999 len = strlen (buf) + 1;
10000 name = (char *) bfd_alloc (abfd, len);
10001 if (name == NULL)
10002 return FALSE;
10003
10004 memcpy (name, buf, len);
10005
10006 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10007 if (sect == NULL)
10008 return FALSE;
10009
10010 /* sizeof (thread_info.thread_context) */
10011 sect->size = 716;
10012 /* offsetof (thread_info.thread_context) */
10013 sect->filepos = note->descpos + 12;
10014 sect->alignment_power = 2;
10015
10016 /* thread_info.is_active_thread */
10017 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10018
10019 if (is_active_thread)
10020 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10021 return FALSE;
10022 break;
10023
10024 case 3 /* NOTE_INFO_MODULE */:
10025 /* Make a ".module/xxxxxxxx" section. */
10026 /* module_info.base_address */
10027 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10028 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10029
10030 len = strlen (buf) + 1;
10031 name = (char *) bfd_alloc (abfd, len);
10032 if (name == NULL)
10033 return FALSE;
10034
10035 memcpy (name, buf, len);
10036
10037 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10038
10039 if (sect == NULL)
10040 return FALSE;
10041
10042 sect->size = note->descsz;
10043 sect->filepos = note->descpos;
10044 sect->alignment_power = 2;
10045 break;
10046
10047 default:
10048 return TRUE;
10049 }
10050
10051 return TRUE;
10052 }
10053
10054 static bfd_boolean
10055 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10056 {
10057 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10058
10059 switch (note->type)
10060 {
10061 default:
10062 return TRUE;
10063
10064 case NT_PRSTATUS:
10065 if (bed->elf_backend_grok_prstatus)
10066 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10067 return TRUE;
10068 #if defined (HAVE_PRSTATUS_T)
10069 return elfcore_grok_prstatus (abfd, note);
10070 #else
10071 return TRUE;
10072 #endif
10073
10074 #if defined (HAVE_PSTATUS_T)
10075 case NT_PSTATUS:
10076 return elfcore_grok_pstatus (abfd, note);
10077 #endif
10078
10079 #if defined (HAVE_LWPSTATUS_T)
10080 case NT_LWPSTATUS:
10081 return elfcore_grok_lwpstatus (abfd, note);
10082 #endif
10083
10084 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10085 return elfcore_grok_prfpreg (abfd, note);
10086
10087 case NT_WIN32PSTATUS:
10088 return elfcore_grok_win32pstatus (abfd, note);
10089
10090 case NT_PRXFPREG: /* Linux SSE extension */
10091 if (note->namesz == 6
10092 && strcmp (note->namedata, "LINUX") == 0)
10093 return elfcore_grok_prxfpreg (abfd, note);
10094 else
10095 return TRUE;
10096
10097 case NT_X86_XSTATE: /* Linux XSAVE extension */
10098 if (note->namesz == 6
10099 && strcmp (note->namedata, "LINUX") == 0)
10100 return elfcore_grok_xstatereg (abfd, note);
10101 else
10102 return TRUE;
10103
10104 case NT_PPC_VMX:
10105 if (note->namesz == 6
10106 && strcmp (note->namedata, "LINUX") == 0)
10107 return elfcore_grok_ppc_vmx (abfd, note);
10108 else
10109 return TRUE;
10110
10111 case NT_PPC_VSX:
10112 if (note->namesz == 6
10113 && strcmp (note->namedata, "LINUX") == 0)
10114 return elfcore_grok_ppc_vsx (abfd, note);
10115 else
10116 return TRUE;
10117
10118 case NT_PPC_TAR:
10119 if (note->namesz == 6
10120 && strcmp (note->namedata, "LINUX") == 0)
10121 return elfcore_grok_ppc_tar (abfd, note);
10122 else
10123 return TRUE;
10124
10125 case NT_PPC_PPR:
10126 if (note->namesz == 6
10127 && strcmp (note->namedata, "LINUX") == 0)
10128 return elfcore_grok_ppc_ppr (abfd, note);
10129 else
10130 return TRUE;
10131
10132 case NT_PPC_DSCR:
10133 if (note->namesz == 6
10134 && strcmp (note->namedata, "LINUX") == 0)
10135 return elfcore_grok_ppc_dscr (abfd, note);
10136 else
10137 return TRUE;
10138
10139 case NT_PPC_EBB:
10140 if (note->namesz == 6
10141 && strcmp (note->namedata, "LINUX") == 0)
10142 return elfcore_grok_ppc_ebb (abfd, note);
10143 else
10144 return TRUE;
10145
10146 case NT_PPC_PMU:
10147 if (note->namesz == 6
10148 && strcmp (note->namedata, "LINUX") == 0)
10149 return elfcore_grok_ppc_pmu (abfd, note);
10150 else
10151 return TRUE;
10152
10153 case NT_PPC_TM_CGPR:
10154 if (note->namesz == 6
10155 && strcmp (note->namedata, "LINUX") == 0)
10156 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10157 else
10158 return TRUE;
10159
10160 case NT_PPC_TM_CFPR:
10161 if (note->namesz == 6
10162 && strcmp (note->namedata, "LINUX") == 0)
10163 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10164 else
10165 return TRUE;
10166
10167 case NT_PPC_TM_CVMX:
10168 if (note->namesz == 6
10169 && strcmp (note->namedata, "LINUX") == 0)
10170 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10171 else
10172 return TRUE;
10173
10174 case NT_PPC_TM_CVSX:
10175 if (note->namesz == 6
10176 && strcmp (note->namedata, "LINUX") == 0)
10177 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10178 else
10179 return TRUE;
10180
10181 case NT_PPC_TM_SPR:
10182 if (note->namesz == 6
10183 && strcmp (note->namedata, "LINUX") == 0)
10184 return elfcore_grok_ppc_tm_spr (abfd, note);
10185 else
10186 return TRUE;
10187
10188 case NT_PPC_TM_CTAR:
10189 if (note->namesz == 6
10190 && strcmp (note->namedata, "LINUX") == 0)
10191 return elfcore_grok_ppc_tm_ctar (abfd, note);
10192 else
10193 return TRUE;
10194
10195 case NT_PPC_TM_CPPR:
10196 if (note->namesz == 6
10197 && strcmp (note->namedata, "LINUX") == 0)
10198 return elfcore_grok_ppc_tm_cppr (abfd, note);
10199 else
10200 return TRUE;
10201
10202 case NT_PPC_TM_CDSCR:
10203 if (note->namesz == 6
10204 && strcmp (note->namedata, "LINUX") == 0)
10205 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10206 else
10207 return TRUE;
10208
10209 case NT_S390_HIGH_GPRS:
10210 if (note->namesz == 6
10211 && strcmp (note->namedata, "LINUX") == 0)
10212 return elfcore_grok_s390_high_gprs (abfd, note);
10213 else
10214 return TRUE;
10215
10216 case NT_S390_TIMER:
10217 if (note->namesz == 6
10218 && strcmp (note->namedata, "LINUX") == 0)
10219 return elfcore_grok_s390_timer (abfd, note);
10220 else
10221 return TRUE;
10222
10223 case NT_S390_TODCMP:
10224 if (note->namesz == 6
10225 && strcmp (note->namedata, "LINUX") == 0)
10226 return elfcore_grok_s390_todcmp (abfd, note);
10227 else
10228 return TRUE;
10229
10230 case NT_S390_TODPREG:
10231 if (note->namesz == 6
10232 && strcmp (note->namedata, "LINUX") == 0)
10233 return elfcore_grok_s390_todpreg (abfd, note);
10234 else
10235 return TRUE;
10236
10237 case NT_S390_CTRS:
10238 if (note->namesz == 6
10239 && strcmp (note->namedata, "LINUX") == 0)
10240 return elfcore_grok_s390_ctrs (abfd, note);
10241 else
10242 return TRUE;
10243
10244 case NT_S390_PREFIX:
10245 if (note->namesz == 6
10246 && strcmp (note->namedata, "LINUX") == 0)
10247 return elfcore_grok_s390_prefix (abfd, note);
10248 else
10249 return TRUE;
10250
10251 case NT_S390_LAST_BREAK:
10252 if (note->namesz == 6
10253 && strcmp (note->namedata, "LINUX") == 0)
10254 return elfcore_grok_s390_last_break (abfd, note);
10255 else
10256 return TRUE;
10257
10258 case NT_S390_SYSTEM_CALL:
10259 if (note->namesz == 6
10260 && strcmp (note->namedata, "LINUX") == 0)
10261 return elfcore_grok_s390_system_call (abfd, note);
10262 else
10263 return TRUE;
10264
10265 case NT_S390_TDB:
10266 if (note->namesz == 6
10267 && strcmp (note->namedata, "LINUX") == 0)
10268 return elfcore_grok_s390_tdb (abfd, note);
10269 else
10270 return TRUE;
10271
10272 case NT_S390_VXRS_LOW:
10273 if (note->namesz == 6
10274 && strcmp (note->namedata, "LINUX") == 0)
10275 return elfcore_grok_s390_vxrs_low (abfd, note);
10276 else
10277 return TRUE;
10278
10279 case NT_S390_VXRS_HIGH:
10280 if (note->namesz == 6
10281 && strcmp (note->namedata, "LINUX") == 0)
10282 return elfcore_grok_s390_vxrs_high (abfd, note);
10283 else
10284 return TRUE;
10285
10286 case NT_S390_GS_CB:
10287 if (note->namesz == 6
10288 && strcmp (note->namedata, "LINUX") == 0)
10289 return elfcore_grok_s390_gs_cb (abfd, note);
10290 else
10291 return TRUE;
10292
10293 case NT_S390_GS_BC:
10294 if (note->namesz == 6
10295 && strcmp (note->namedata, "LINUX") == 0)
10296 return elfcore_grok_s390_gs_bc (abfd, note);
10297 else
10298 return TRUE;
10299
10300 case NT_ARM_VFP:
10301 if (note->namesz == 6
10302 && strcmp (note->namedata, "LINUX") == 0)
10303 return elfcore_grok_arm_vfp (abfd, note);
10304 else
10305 return TRUE;
10306
10307 case NT_ARM_TLS:
10308 if (note->namesz == 6
10309 && strcmp (note->namedata, "LINUX") == 0)
10310 return elfcore_grok_aarch_tls (abfd, note);
10311 else
10312 return TRUE;
10313
10314 case NT_ARM_HW_BREAK:
10315 if (note->namesz == 6
10316 && strcmp (note->namedata, "LINUX") == 0)
10317 return elfcore_grok_aarch_hw_break (abfd, note);
10318 else
10319 return TRUE;
10320
10321 case NT_ARM_HW_WATCH:
10322 if (note->namesz == 6
10323 && strcmp (note->namedata, "LINUX") == 0)
10324 return elfcore_grok_aarch_hw_watch (abfd, note);
10325 else
10326 return TRUE;
10327
10328 case NT_ARM_SVE:
10329 if (note->namesz == 6
10330 && strcmp (note->namedata, "LINUX") == 0)
10331 return elfcore_grok_aarch_sve (abfd, note);
10332 else
10333 return TRUE;
10334
10335 case NT_ARM_PAC_MASK:
10336 if (note->namesz == 6
10337 && strcmp (note->namedata, "LINUX") == 0)
10338 return elfcore_grok_aarch_pauth (abfd, note);
10339 else
10340 return TRUE;
10341
10342 case NT_PRPSINFO:
10343 case NT_PSINFO:
10344 if (bed->elf_backend_grok_psinfo)
10345 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10346 return TRUE;
10347 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10348 return elfcore_grok_psinfo (abfd, note);
10349 #else
10350 return TRUE;
10351 #endif
10352
10353 case NT_AUXV:
10354 return elfcore_make_auxv_note_section (abfd, note, 0);
10355
10356 case NT_FILE:
10357 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10358 note);
10359
10360 case NT_SIGINFO:
10361 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10362 note);
10363
10364 }
10365 }
10366
10367 static bfd_boolean
10368 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10369 {
10370 struct bfd_build_id* build_id;
10371
10372 if (note->descsz == 0)
10373 return FALSE;
10374
10375 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10376 if (build_id == NULL)
10377 return FALSE;
10378
10379 build_id->size = note->descsz;
10380 memcpy (build_id->data, note->descdata, note->descsz);
10381 abfd->build_id = build_id;
10382
10383 return TRUE;
10384 }
10385
10386 static bfd_boolean
10387 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10388 {
10389 switch (note->type)
10390 {
10391 default:
10392 return TRUE;
10393
10394 case NT_GNU_PROPERTY_TYPE_0:
10395 return _bfd_elf_parse_gnu_properties (abfd, note);
10396
10397 case NT_GNU_BUILD_ID:
10398 return elfobj_grok_gnu_build_id (abfd, note);
10399 }
10400 }
10401
10402 static bfd_boolean
10403 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10404 {
10405 struct sdt_note *cur =
10406 (struct sdt_note *) bfd_alloc (abfd,
10407 sizeof (struct sdt_note) + note->descsz);
10408
10409 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10410 cur->size = (bfd_size_type) note->descsz;
10411 memcpy (cur->data, note->descdata, note->descsz);
10412
10413 elf_tdata (abfd)->sdt_note_head = cur;
10414
10415 return TRUE;
10416 }
10417
10418 static bfd_boolean
10419 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10420 {
10421 switch (note->type)
10422 {
10423 case NT_STAPSDT:
10424 return elfobj_grok_stapsdt_note_1 (abfd, note);
10425
10426 default:
10427 return TRUE;
10428 }
10429 }
10430
10431 static bfd_boolean
10432 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10433 {
10434 size_t offset;
10435
10436 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10437 {
10438 case ELFCLASS32:
10439 if (note->descsz < 108)
10440 return FALSE;
10441 break;
10442
10443 case ELFCLASS64:
10444 if (note->descsz < 120)
10445 return FALSE;
10446 break;
10447
10448 default:
10449 return FALSE;
10450 }
10451
10452 /* Check for version 1 in pr_version. */
10453 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10454 return FALSE;
10455
10456 offset = 4;
10457
10458 /* Skip over pr_psinfosz. */
10459 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10460 offset += 4;
10461 else
10462 {
10463 offset += 4; /* Padding before pr_psinfosz. */
10464 offset += 8;
10465 }
10466
10467 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10468 elf_tdata (abfd)->core->program
10469 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10470 offset += 17;
10471
10472 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10473 elf_tdata (abfd)->core->command
10474 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10475 offset += 81;
10476
10477 /* Padding before pr_pid. */
10478 offset += 2;
10479
10480 /* The pr_pid field was added in version "1a". */
10481 if (note->descsz < offset + 4)
10482 return TRUE;
10483
10484 elf_tdata (abfd)->core->pid
10485 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10486
10487 return TRUE;
10488 }
10489
10490 static bfd_boolean
10491 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10492 {
10493 size_t offset;
10494 size_t size;
10495 size_t min_size;
10496
10497 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10498 Also compute minimum size of this note. */
10499 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10500 {
10501 case ELFCLASS32:
10502 offset = 4 + 4;
10503 min_size = offset + (4 * 2) + 4 + 4 + 4;
10504 break;
10505
10506 case ELFCLASS64:
10507 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10508 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10509 break;
10510
10511 default:
10512 return FALSE;
10513 }
10514
10515 if (note->descsz < min_size)
10516 return FALSE;
10517
10518 /* Check for version 1 in pr_version. */
10519 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10520 return FALSE;
10521
10522 /* Extract size of pr_reg from pr_gregsetsz. */
10523 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10524 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10525 {
10526 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10527 offset += 4 * 2;
10528 }
10529 else
10530 {
10531 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10532 offset += 8 * 2;
10533 }
10534
10535 /* Skip over pr_osreldate. */
10536 offset += 4;
10537
10538 /* Read signal from pr_cursig. */
10539 if (elf_tdata (abfd)->core->signal == 0)
10540 elf_tdata (abfd)->core->signal
10541 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10542 offset += 4;
10543
10544 /* Read TID from pr_pid. */
10545 elf_tdata (abfd)->core->lwpid
10546 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10547 offset += 4;
10548
10549 /* Padding before pr_reg. */
10550 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10551 offset += 4;
10552
10553 /* Make sure that there is enough data remaining in the note. */
10554 if ((note->descsz - offset) < size)
10555 return FALSE;
10556
10557 /* Make a ".reg/999" section and a ".reg" section. */
10558 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10559 size, note->descpos + offset);
10560 }
10561
10562 static bfd_boolean
10563 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10564 {
10565 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10566
10567 switch (note->type)
10568 {
10569 case NT_PRSTATUS:
10570 if (bed->elf_backend_grok_freebsd_prstatus)
10571 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10572 return TRUE;
10573 return elfcore_grok_freebsd_prstatus (abfd, note);
10574
10575 case NT_FPREGSET:
10576 return elfcore_grok_prfpreg (abfd, note);
10577
10578 case NT_PRPSINFO:
10579 return elfcore_grok_freebsd_psinfo (abfd, note);
10580
10581 case NT_FREEBSD_THRMISC:
10582 if (note->namesz == 8)
10583 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10584 else
10585 return TRUE;
10586
10587 case NT_FREEBSD_PROCSTAT_PROC:
10588 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10589 note);
10590
10591 case NT_FREEBSD_PROCSTAT_FILES:
10592 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10593 note);
10594
10595 case NT_FREEBSD_PROCSTAT_VMMAP:
10596 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10597 note);
10598
10599 case NT_FREEBSD_PROCSTAT_AUXV:
10600 return elfcore_make_auxv_note_section (abfd, note, 4);
10601
10602 case NT_X86_XSTATE:
10603 if (note->namesz == 8)
10604 return elfcore_grok_xstatereg (abfd, note);
10605 else
10606 return TRUE;
10607
10608 case NT_FREEBSD_PTLWPINFO:
10609 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10610 note);
10611
10612 case NT_ARM_VFP:
10613 return elfcore_grok_arm_vfp (abfd, note);
10614
10615 default:
10616 return TRUE;
10617 }
10618 }
10619
10620 static bfd_boolean
10621 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10622 {
10623 char *cp;
10624
10625 cp = strchr (note->namedata, '@');
10626 if (cp != NULL)
10627 {
10628 *lwpidp = atoi(cp + 1);
10629 return TRUE;
10630 }
10631 return FALSE;
10632 }
10633
10634 static bfd_boolean
10635 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10636 {
10637 if (note->descsz <= 0x7c + 31)
10638 return FALSE;
10639
10640 /* Signal number at offset 0x08. */
10641 elf_tdata (abfd)->core->signal
10642 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10643
10644 /* Process ID at offset 0x50. */
10645 elf_tdata (abfd)->core->pid
10646 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10647
10648 /* Command name at 0x7c (max 32 bytes, including nul). */
10649 elf_tdata (abfd)->core->command
10650 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10651
10652 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10653 note);
10654 }
10655
10656 static bfd_boolean
10657 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10658 {
10659 int lwp;
10660
10661 if (elfcore_netbsd_get_lwpid (note, &lwp))
10662 elf_tdata (abfd)->core->lwpid = lwp;
10663
10664 switch (note->type)
10665 {
10666 case NT_NETBSDCORE_PROCINFO:
10667 /* NetBSD-specific core "procinfo". Note that we expect to
10668 find this note before any of the others, which is fine,
10669 since the kernel writes this note out first when it
10670 creates a core file. */
10671 return elfcore_grok_netbsd_procinfo (abfd, note);
10672 #ifdef NT_NETBSDCORE_AUXV
10673 case NT_NETBSDCORE_AUXV:
10674 /* NetBSD-specific Elf Auxiliary Vector data. */
10675 return elfcore_make_auxv_note_section (abfd, note, 4);
10676 #endif
10677 default:
10678 break;
10679 }
10680
10681 /* As of March 2017 there are no other machine-independent notes
10682 defined for NetBSD core files. If the note type is less
10683 than the start of the machine-dependent note types, we don't
10684 understand it. */
10685
10686 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10687 return TRUE;
10688
10689
10690 switch (bfd_get_arch (abfd))
10691 {
10692 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10693 PT_GETFPREGS == mach+2. */
10694
10695 case bfd_arch_alpha:
10696 case bfd_arch_sparc:
10697 switch (note->type)
10698 {
10699 case NT_NETBSDCORE_FIRSTMACH+0:
10700 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10701
10702 case NT_NETBSDCORE_FIRSTMACH+2:
10703 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10704
10705 default:
10706 return TRUE;
10707 }
10708
10709 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10710 There's also old PT___GETREGS40 == mach + 1 for old reg
10711 structure which lacks GBR. */
10712
10713 case bfd_arch_sh:
10714 switch (note->type)
10715 {
10716 case NT_NETBSDCORE_FIRSTMACH+3:
10717 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10718
10719 case NT_NETBSDCORE_FIRSTMACH+5:
10720 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10721
10722 default:
10723 return TRUE;
10724 }
10725
10726 /* On all other arch's, PT_GETREGS == mach+1 and
10727 PT_GETFPREGS == mach+3. */
10728
10729 default:
10730 switch (note->type)
10731 {
10732 case NT_NETBSDCORE_FIRSTMACH+1:
10733 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10734
10735 case NT_NETBSDCORE_FIRSTMACH+3:
10736 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10737
10738 default:
10739 return TRUE;
10740 }
10741 }
10742 /* NOTREACHED */
10743 }
10744
10745 static bfd_boolean
10746 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10747 {
10748 if (note->descsz <= 0x48 + 31)
10749 return FALSE;
10750
10751 /* Signal number at offset 0x08. */
10752 elf_tdata (abfd)->core->signal
10753 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10754
10755 /* Process ID at offset 0x20. */
10756 elf_tdata (abfd)->core->pid
10757 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10758
10759 /* Command name at 0x48 (max 32 bytes, including nul). */
10760 elf_tdata (abfd)->core->command
10761 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10762
10763 return TRUE;
10764 }
10765
10766 static bfd_boolean
10767 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10768 {
10769 if (note->type == NT_OPENBSD_PROCINFO)
10770 return elfcore_grok_openbsd_procinfo (abfd, note);
10771
10772 if (note->type == NT_OPENBSD_REGS)
10773 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10774
10775 if (note->type == NT_OPENBSD_FPREGS)
10776 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10777
10778 if (note->type == NT_OPENBSD_XFPREGS)
10779 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10780
10781 if (note->type == NT_OPENBSD_AUXV)
10782 return elfcore_make_auxv_note_section (abfd, note, 0);
10783
10784 if (note->type == NT_OPENBSD_WCOOKIE)
10785 {
10786 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10787 SEC_HAS_CONTENTS);
10788
10789 if (sect == NULL)
10790 return FALSE;
10791 sect->size = note->descsz;
10792 sect->filepos = note->descpos;
10793 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10794
10795 return TRUE;
10796 }
10797
10798 return TRUE;
10799 }
10800
10801 static bfd_boolean
10802 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10803 {
10804 void *ddata = note->descdata;
10805 char buf[100];
10806 char *name;
10807 asection *sect;
10808 short sig;
10809 unsigned flags;
10810
10811 if (note->descsz < 16)
10812 return FALSE;
10813
10814 /* nto_procfs_status 'pid' field is at offset 0. */
10815 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10816
10817 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10818 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10819
10820 /* nto_procfs_status 'flags' field is at offset 8. */
10821 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10822
10823 /* nto_procfs_status 'what' field is at offset 14. */
10824 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10825 {
10826 elf_tdata (abfd)->core->signal = sig;
10827 elf_tdata (abfd)->core->lwpid = *tid;
10828 }
10829
10830 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10831 do not come from signals so we make sure we set the current
10832 thread just in case. */
10833 if (flags & 0x00000080)
10834 elf_tdata (abfd)->core->lwpid = *tid;
10835
10836 /* Make a ".qnx_core_status/%d" section. */
10837 sprintf (buf, ".qnx_core_status/%ld", *tid);
10838
10839 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10840 if (name == NULL)
10841 return FALSE;
10842 strcpy (name, buf);
10843
10844 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10845 if (sect == NULL)
10846 return FALSE;
10847
10848 sect->size = note->descsz;
10849 sect->filepos = note->descpos;
10850 sect->alignment_power = 2;
10851
10852 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10853 }
10854
10855 static bfd_boolean
10856 elfcore_grok_nto_regs (bfd *abfd,
10857 Elf_Internal_Note *note,
10858 long tid,
10859 char *base)
10860 {
10861 char buf[100];
10862 char *name;
10863 asection *sect;
10864
10865 /* Make a "(base)/%d" section. */
10866 sprintf (buf, "%s/%ld", base, tid);
10867
10868 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10869 if (name == NULL)
10870 return FALSE;
10871 strcpy (name, buf);
10872
10873 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10874 if (sect == NULL)
10875 return FALSE;
10876
10877 sect->size = note->descsz;
10878 sect->filepos = note->descpos;
10879 sect->alignment_power = 2;
10880
10881 /* This is the current thread. */
10882 if (elf_tdata (abfd)->core->lwpid == tid)
10883 return elfcore_maybe_make_sect (abfd, base, sect);
10884
10885 return TRUE;
10886 }
10887
10888 #define BFD_QNT_CORE_INFO 7
10889 #define BFD_QNT_CORE_STATUS 8
10890 #define BFD_QNT_CORE_GREG 9
10891 #define BFD_QNT_CORE_FPREG 10
10892
10893 static bfd_boolean
10894 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10895 {
10896 /* Every GREG section has a STATUS section before it. Store the
10897 tid from the previous call to pass down to the next gregs
10898 function. */
10899 static long tid = 1;
10900
10901 switch (note->type)
10902 {
10903 case BFD_QNT_CORE_INFO:
10904 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10905 case BFD_QNT_CORE_STATUS:
10906 return elfcore_grok_nto_status (abfd, note, &tid);
10907 case BFD_QNT_CORE_GREG:
10908 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10909 case BFD_QNT_CORE_FPREG:
10910 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10911 default:
10912 return TRUE;
10913 }
10914 }
10915
10916 static bfd_boolean
10917 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10918 {
10919 char *name;
10920 asection *sect;
10921 size_t len;
10922
10923 /* Use note name as section name. */
10924 len = note->namesz;
10925 name = (char *) bfd_alloc (abfd, len);
10926 if (name == NULL)
10927 return FALSE;
10928 memcpy (name, note->namedata, len);
10929 name[len - 1] = '\0';
10930
10931 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10932 if (sect == NULL)
10933 return FALSE;
10934
10935 sect->size = note->descsz;
10936 sect->filepos = note->descpos;
10937 sect->alignment_power = 1;
10938
10939 return TRUE;
10940 }
10941
10942 /* Function: elfcore_write_note
10943
10944 Inputs:
10945 buffer to hold note, and current size of buffer
10946 name of note
10947 type of note
10948 data for note
10949 size of data for note
10950
10951 Writes note to end of buffer. ELF64 notes are written exactly as
10952 for ELF32, despite the current (as of 2006) ELF gabi specifying
10953 that they ought to have 8-byte namesz and descsz field, and have
10954 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10955
10956 Return:
10957 Pointer to realloc'd buffer, *BUFSIZ updated. */
10958
10959 char *
10960 elfcore_write_note (bfd *abfd,
10961 char *buf,
10962 int *bufsiz,
10963 const char *name,
10964 int type,
10965 const void *input,
10966 int size)
10967 {
10968 Elf_External_Note *xnp;
10969 size_t namesz;
10970 size_t newspace;
10971 char *dest;
10972
10973 namesz = 0;
10974 if (name != NULL)
10975 namesz = strlen (name) + 1;
10976
10977 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10978
10979 buf = (char *) realloc (buf, *bufsiz + newspace);
10980 if (buf == NULL)
10981 return buf;
10982 dest = buf + *bufsiz;
10983 *bufsiz += newspace;
10984 xnp = (Elf_External_Note *) dest;
10985 H_PUT_32 (abfd, namesz, xnp->namesz);
10986 H_PUT_32 (abfd, size, xnp->descsz);
10987 H_PUT_32 (abfd, type, xnp->type);
10988 dest = xnp->name;
10989 if (name != NULL)
10990 {
10991 memcpy (dest, name, namesz);
10992 dest += namesz;
10993 while (namesz & 3)
10994 {
10995 *dest++ = '\0';
10996 ++namesz;
10997 }
10998 }
10999 memcpy (dest, input, size);
11000 dest += size;
11001 while (size & 3)
11002 {
11003 *dest++ = '\0';
11004 ++size;
11005 }
11006 return buf;
11007 }
11008
11009 /* gcc-8 warns (*) on all the strncpy calls in this function about
11010 possible string truncation. The "truncation" is not a bug. We
11011 have an external representation of structs with fields that are not
11012 necessarily NULL terminated and corresponding internal
11013 representation fields that are one larger so that they can always
11014 be NULL terminated.
11015 gcc versions between 4.2 and 4.6 do not allow pragma control of
11016 diagnostics inside functions, giving a hard error if you try to use
11017 the finer control available with later versions.
11018 gcc prior to 4.2 warns about diagnostic push and pop.
11019 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11020 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11021 (*) Depending on your system header files! */
11022 #if GCC_VERSION >= 8000
11023 # pragma GCC diagnostic push
11024 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11025 #endif
11026 char *
11027 elfcore_write_prpsinfo (bfd *abfd,
11028 char *buf,
11029 int *bufsiz,
11030 const char *fname,
11031 const char *psargs)
11032 {
11033 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11034
11035 if (bed->elf_backend_write_core_note != NULL)
11036 {
11037 char *ret;
11038 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11039 NT_PRPSINFO, fname, psargs);
11040 if (ret != NULL)
11041 return ret;
11042 }
11043
11044 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11045 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11046 if (bed->s->elfclass == ELFCLASS32)
11047 {
11048 # if defined (HAVE_PSINFO32_T)
11049 psinfo32_t data;
11050 int note_type = NT_PSINFO;
11051 # else
11052 prpsinfo32_t data;
11053 int note_type = NT_PRPSINFO;
11054 # endif
11055
11056 memset (&data, 0, sizeof (data));
11057 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11058 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11059 return elfcore_write_note (abfd, buf, bufsiz,
11060 "CORE", note_type, &data, sizeof (data));
11061 }
11062 else
11063 # endif
11064 {
11065 # if defined (HAVE_PSINFO_T)
11066 psinfo_t data;
11067 int note_type = NT_PSINFO;
11068 # else
11069 prpsinfo_t data;
11070 int note_type = NT_PRPSINFO;
11071 # endif
11072
11073 memset (&data, 0, sizeof (data));
11074 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11075 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11076 return elfcore_write_note (abfd, buf, bufsiz,
11077 "CORE", note_type, &data, sizeof (data));
11078 }
11079 #endif /* PSINFO_T or PRPSINFO_T */
11080
11081 free (buf);
11082 return NULL;
11083 }
11084 #if GCC_VERSION >= 8000
11085 # pragma GCC diagnostic pop
11086 #endif
11087
11088 char *
11089 elfcore_write_linux_prpsinfo32
11090 (bfd *abfd, char *buf, int *bufsiz,
11091 const struct elf_internal_linux_prpsinfo *prpsinfo)
11092 {
11093 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11094 {
11095 struct elf_external_linux_prpsinfo32_ugid16 data;
11096
11097 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11098 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11099 &data, sizeof (data));
11100 }
11101 else
11102 {
11103 struct elf_external_linux_prpsinfo32_ugid32 data;
11104
11105 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11106 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11107 &data, sizeof (data));
11108 }
11109 }
11110
11111 char *
11112 elfcore_write_linux_prpsinfo64
11113 (bfd *abfd, char *buf, int *bufsiz,
11114 const struct elf_internal_linux_prpsinfo *prpsinfo)
11115 {
11116 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11117 {
11118 struct elf_external_linux_prpsinfo64_ugid16 data;
11119
11120 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11121 return elfcore_write_note (abfd, buf, bufsiz,
11122 "CORE", NT_PRPSINFO, &data, sizeof (data));
11123 }
11124 else
11125 {
11126 struct elf_external_linux_prpsinfo64_ugid32 data;
11127
11128 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11129 return elfcore_write_note (abfd, buf, bufsiz,
11130 "CORE", NT_PRPSINFO, &data, sizeof (data));
11131 }
11132 }
11133
11134 char *
11135 elfcore_write_prstatus (bfd *abfd,
11136 char *buf,
11137 int *bufsiz,
11138 long pid,
11139 int cursig,
11140 const void *gregs)
11141 {
11142 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11143
11144 if (bed->elf_backend_write_core_note != NULL)
11145 {
11146 char *ret;
11147 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11148 NT_PRSTATUS,
11149 pid, cursig, gregs);
11150 if (ret != NULL)
11151 return ret;
11152 }
11153
11154 #if defined (HAVE_PRSTATUS_T)
11155 #if defined (HAVE_PRSTATUS32_T)
11156 if (bed->s->elfclass == ELFCLASS32)
11157 {
11158 prstatus32_t prstat;
11159
11160 memset (&prstat, 0, sizeof (prstat));
11161 prstat.pr_pid = pid;
11162 prstat.pr_cursig = cursig;
11163 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11164 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11165 NT_PRSTATUS, &prstat, sizeof (prstat));
11166 }
11167 else
11168 #endif
11169 {
11170 prstatus_t prstat;
11171
11172 memset (&prstat, 0, sizeof (prstat));
11173 prstat.pr_pid = pid;
11174 prstat.pr_cursig = cursig;
11175 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11176 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11177 NT_PRSTATUS, &prstat, sizeof (prstat));
11178 }
11179 #endif /* HAVE_PRSTATUS_T */
11180
11181 free (buf);
11182 return NULL;
11183 }
11184
11185 #if defined (HAVE_LWPSTATUS_T)
11186 char *
11187 elfcore_write_lwpstatus (bfd *abfd,
11188 char *buf,
11189 int *bufsiz,
11190 long pid,
11191 int cursig,
11192 const void *gregs)
11193 {
11194 lwpstatus_t lwpstat;
11195 const char *note_name = "CORE";
11196
11197 memset (&lwpstat, 0, sizeof (lwpstat));
11198 lwpstat.pr_lwpid = pid >> 16;
11199 lwpstat.pr_cursig = cursig;
11200 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11201 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11202 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11203 #if !defined(gregs)
11204 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11205 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11206 #else
11207 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11208 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11209 #endif
11210 #endif
11211 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11212 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11213 }
11214 #endif /* HAVE_LWPSTATUS_T */
11215
11216 #if defined (HAVE_PSTATUS_T)
11217 char *
11218 elfcore_write_pstatus (bfd *abfd,
11219 char *buf,
11220 int *bufsiz,
11221 long pid,
11222 int cursig ATTRIBUTE_UNUSED,
11223 const void *gregs ATTRIBUTE_UNUSED)
11224 {
11225 const char *note_name = "CORE";
11226 #if defined (HAVE_PSTATUS32_T)
11227 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11228
11229 if (bed->s->elfclass == ELFCLASS32)
11230 {
11231 pstatus32_t pstat;
11232
11233 memset (&pstat, 0, sizeof (pstat));
11234 pstat.pr_pid = pid & 0xffff;
11235 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11236 NT_PSTATUS, &pstat, sizeof (pstat));
11237 return buf;
11238 }
11239 else
11240 #endif
11241 {
11242 pstatus_t pstat;
11243
11244 memset (&pstat, 0, sizeof (pstat));
11245 pstat.pr_pid = pid & 0xffff;
11246 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11247 NT_PSTATUS, &pstat, sizeof (pstat));
11248 return buf;
11249 }
11250 }
11251 #endif /* HAVE_PSTATUS_T */
11252
11253 char *
11254 elfcore_write_prfpreg (bfd *abfd,
11255 char *buf,
11256 int *bufsiz,
11257 const void *fpregs,
11258 int size)
11259 {
11260 const char *note_name = "CORE";
11261 return elfcore_write_note (abfd, buf, bufsiz,
11262 note_name, NT_FPREGSET, fpregs, size);
11263 }
11264
11265 char *
11266 elfcore_write_prxfpreg (bfd *abfd,
11267 char *buf,
11268 int *bufsiz,
11269 const void *xfpregs,
11270 int size)
11271 {
11272 char *note_name = "LINUX";
11273 return elfcore_write_note (abfd, buf, bufsiz,
11274 note_name, NT_PRXFPREG, xfpregs, size);
11275 }
11276
11277 char *
11278 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11279 const void *xfpregs, int size)
11280 {
11281 char *note_name;
11282 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11283 note_name = "FreeBSD";
11284 else
11285 note_name = "LINUX";
11286 return elfcore_write_note (abfd, buf, bufsiz,
11287 note_name, NT_X86_XSTATE, xfpregs, size);
11288 }
11289
11290 char *
11291 elfcore_write_ppc_vmx (bfd *abfd,
11292 char *buf,
11293 int *bufsiz,
11294 const void *ppc_vmx,
11295 int size)
11296 {
11297 char *note_name = "LINUX";
11298 return elfcore_write_note (abfd, buf, bufsiz,
11299 note_name, NT_PPC_VMX, ppc_vmx, size);
11300 }
11301
11302 char *
11303 elfcore_write_ppc_vsx (bfd *abfd,
11304 char *buf,
11305 int *bufsiz,
11306 const void *ppc_vsx,
11307 int size)
11308 {
11309 char *note_name = "LINUX";
11310 return elfcore_write_note (abfd, buf, bufsiz,
11311 note_name, NT_PPC_VSX, ppc_vsx, size);
11312 }
11313
11314 char *
11315 elfcore_write_ppc_tar (bfd *abfd,
11316 char *buf,
11317 int *bufsiz,
11318 const void *ppc_tar,
11319 int size)
11320 {
11321 char *note_name = "LINUX";
11322 return elfcore_write_note (abfd, buf, bufsiz,
11323 note_name, NT_PPC_TAR, ppc_tar, size);
11324 }
11325
11326 char *
11327 elfcore_write_ppc_ppr (bfd *abfd,
11328 char *buf,
11329 int *bufsiz,
11330 const void *ppc_ppr,
11331 int size)
11332 {
11333 char *note_name = "LINUX";
11334 return elfcore_write_note (abfd, buf, bufsiz,
11335 note_name, NT_PPC_PPR, ppc_ppr, size);
11336 }
11337
11338 char *
11339 elfcore_write_ppc_dscr (bfd *abfd,
11340 char *buf,
11341 int *bufsiz,
11342 const void *ppc_dscr,
11343 int size)
11344 {
11345 char *note_name = "LINUX";
11346 return elfcore_write_note (abfd, buf, bufsiz,
11347 note_name, NT_PPC_DSCR, ppc_dscr, size);
11348 }
11349
11350 char *
11351 elfcore_write_ppc_ebb (bfd *abfd,
11352 char *buf,
11353 int *bufsiz,
11354 const void *ppc_ebb,
11355 int size)
11356 {
11357 char *note_name = "LINUX";
11358 return elfcore_write_note (abfd, buf, bufsiz,
11359 note_name, NT_PPC_EBB, ppc_ebb, size);
11360 }
11361
11362 char *
11363 elfcore_write_ppc_pmu (bfd *abfd,
11364 char *buf,
11365 int *bufsiz,
11366 const void *ppc_pmu,
11367 int size)
11368 {
11369 char *note_name = "LINUX";
11370 return elfcore_write_note (abfd, buf, bufsiz,
11371 note_name, NT_PPC_PMU, ppc_pmu, size);
11372 }
11373
11374 char *
11375 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11376 char *buf,
11377 int *bufsiz,
11378 const void *ppc_tm_cgpr,
11379 int size)
11380 {
11381 char *note_name = "LINUX";
11382 return elfcore_write_note (abfd, buf, bufsiz,
11383 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11384 }
11385
11386 char *
11387 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11388 char *buf,
11389 int *bufsiz,
11390 const void *ppc_tm_cfpr,
11391 int size)
11392 {
11393 char *note_name = "LINUX";
11394 return elfcore_write_note (abfd, buf, bufsiz,
11395 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11396 }
11397
11398 char *
11399 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11400 char *buf,
11401 int *bufsiz,
11402 const void *ppc_tm_cvmx,
11403 int size)
11404 {
11405 char *note_name = "LINUX";
11406 return elfcore_write_note (abfd, buf, bufsiz,
11407 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11408 }
11409
11410 char *
11411 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11412 char *buf,
11413 int *bufsiz,
11414 const void *ppc_tm_cvsx,
11415 int size)
11416 {
11417 char *note_name = "LINUX";
11418 return elfcore_write_note (abfd, buf, bufsiz,
11419 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11420 }
11421
11422 char *
11423 elfcore_write_ppc_tm_spr (bfd *abfd,
11424 char *buf,
11425 int *bufsiz,
11426 const void *ppc_tm_spr,
11427 int size)
11428 {
11429 char *note_name = "LINUX";
11430 return elfcore_write_note (abfd, buf, bufsiz,
11431 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11432 }
11433
11434 char *
11435 elfcore_write_ppc_tm_ctar (bfd *abfd,
11436 char *buf,
11437 int *bufsiz,
11438 const void *ppc_tm_ctar,
11439 int size)
11440 {
11441 char *note_name = "LINUX";
11442 return elfcore_write_note (abfd, buf, bufsiz,
11443 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11444 }
11445
11446 char *
11447 elfcore_write_ppc_tm_cppr (bfd *abfd,
11448 char *buf,
11449 int *bufsiz,
11450 const void *ppc_tm_cppr,
11451 int size)
11452 {
11453 char *note_name = "LINUX";
11454 return elfcore_write_note (abfd, buf, bufsiz,
11455 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11456 }
11457
11458 char *
11459 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11460 char *buf,
11461 int *bufsiz,
11462 const void *ppc_tm_cdscr,
11463 int size)
11464 {
11465 char *note_name = "LINUX";
11466 return elfcore_write_note (abfd, buf, bufsiz,
11467 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11468 }
11469
11470 static char *
11471 elfcore_write_s390_high_gprs (bfd *abfd,
11472 char *buf,
11473 int *bufsiz,
11474 const void *s390_high_gprs,
11475 int size)
11476 {
11477 char *note_name = "LINUX";
11478 return elfcore_write_note (abfd, buf, bufsiz,
11479 note_name, NT_S390_HIGH_GPRS,
11480 s390_high_gprs, size);
11481 }
11482
11483 char *
11484 elfcore_write_s390_timer (bfd *abfd,
11485 char *buf,
11486 int *bufsiz,
11487 const void *s390_timer,
11488 int size)
11489 {
11490 char *note_name = "LINUX";
11491 return elfcore_write_note (abfd, buf, bufsiz,
11492 note_name, NT_S390_TIMER, s390_timer, size);
11493 }
11494
11495 char *
11496 elfcore_write_s390_todcmp (bfd *abfd,
11497 char *buf,
11498 int *bufsiz,
11499 const void *s390_todcmp,
11500 int size)
11501 {
11502 char *note_name = "LINUX";
11503 return elfcore_write_note (abfd, buf, bufsiz,
11504 note_name, NT_S390_TODCMP, s390_todcmp, size);
11505 }
11506
11507 char *
11508 elfcore_write_s390_todpreg (bfd *abfd,
11509 char *buf,
11510 int *bufsiz,
11511 const void *s390_todpreg,
11512 int size)
11513 {
11514 char *note_name = "LINUX";
11515 return elfcore_write_note (abfd, buf, bufsiz,
11516 note_name, NT_S390_TODPREG, s390_todpreg, size);
11517 }
11518
11519 char *
11520 elfcore_write_s390_ctrs (bfd *abfd,
11521 char *buf,
11522 int *bufsiz,
11523 const void *s390_ctrs,
11524 int size)
11525 {
11526 char *note_name = "LINUX";
11527 return elfcore_write_note (abfd, buf, bufsiz,
11528 note_name, NT_S390_CTRS, s390_ctrs, size);
11529 }
11530
11531 char *
11532 elfcore_write_s390_prefix (bfd *abfd,
11533 char *buf,
11534 int *bufsiz,
11535 const void *s390_prefix,
11536 int size)
11537 {
11538 char *note_name = "LINUX";
11539 return elfcore_write_note (abfd, buf, bufsiz,
11540 note_name, NT_S390_PREFIX, s390_prefix, size);
11541 }
11542
11543 char *
11544 elfcore_write_s390_last_break (bfd *abfd,
11545 char *buf,
11546 int *bufsiz,
11547 const void *s390_last_break,
11548 int size)
11549 {
11550 char *note_name = "LINUX";
11551 return elfcore_write_note (abfd, buf, bufsiz,
11552 note_name, NT_S390_LAST_BREAK,
11553 s390_last_break, size);
11554 }
11555
11556 char *
11557 elfcore_write_s390_system_call (bfd *abfd,
11558 char *buf,
11559 int *bufsiz,
11560 const void *s390_system_call,
11561 int size)
11562 {
11563 char *note_name = "LINUX";
11564 return elfcore_write_note (abfd, buf, bufsiz,
11565 note_name, NT_S390_SYSTEM_CALL,
11566 s390_system_call, size);
11567 }
11568
11569 char *
11570 elfcore_write_s390_tdb (bfd *abfd,
11571 char *buf,
11572 int *bufsiz,
11573 const void *s390_tdb,
11574 int size)
11575 {
11576 char *note_name = "LINUX";
11577 return elfcore_write_note (abfd, buf, bufsiz,
11578 note_name, NT_S390_TDB, s390_tdb, size);
11579 }
11580
11581 char *
11582 elfcore_write_s390_vxrs_low (bfd *abfd,
11583 char *buf,
11584 int *bufsiz,
11585 const void *s390_vxrs_low,
11586 int size)
11587 {
11588 char *note_name = "LINUX";
11589 return elfcore_write_note (abfd, buf, bufsiz,
11590 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11591 }
11592
11593 char *
11594 elfcore_write_s390_vxrs_high (bfd *abfd,
11595 char *buf,
11596 int *bufsiz,
11597 const void *s390_vxrs_high,
11598 int size)
11599 {
11600 char *note_name = "LINUX";
11601 return elfcore_write_note (abfd, buf, bufsiz,
11602 note_name, NT_S390_VXRS_HIGH,
11603 s390_vxrs_high, size);
11604 }
11605
11606 char *
11607 elfcore_write_s390_gs_cb (bfd *abfd,
11608 char *buf,
11609 int *bufsiz,
11610 const void *s390_gs_cb,
11611 int size)
11612 {
11613 char *note_name = "LINUX";
11614 return elfcore_write_note (abfd, buf, bufsiz,
11615 note_name, NT_S390_GS_CB,
11616 s390_gs_cb, size);
11617 }
11618
11619 char *
11620 elfcore_write_s390_gs_bc (bfd *abfd,
11621 char *buf,
11622 int *bufsiz,
11623 const void *s390_gs_bc,
11624 int size)
11625 {
11626 char *note_name = "LINUX";
11627 return elfcore_write_note (abfd, buf, bufsiz,
11628 note_name, NT_S390_GS_BC,
11629 s390_gs_bc, size);
11630 }
11631
11632 char *
11633 elfcore_write_arm_vfp (bfd *abfd,
11634 char *buf,
11635 int *bufsiz,
11636 const void *arm_vfp,
11637 int size)
11638 {
11639 char *note_name = "LINUX";
11640 return elfcore_write_note (abfd, buf, bufsiz,
11641 note_name, NT_ARM_VFP, arm_vfp, size);
11642 }
11643
11644 char *
11645 elfcore_write_aarch_tls (bfd *abfd,
11646 char *buf,
11647 int *bufsiz,
11648 const void *aarch_tls,
11649 int size)
11650 {
11651 char *note_name = "LINUX";
11652 return elfcore_write_note (abfd, buf, bufsiz,
11653 note_name, NT_ARM_TLS, aarch_tls, size);
11654 }
11655
11656 char *
11657 elfcore_write_aarch_hw_break (bfd *abfd,
11658 char *buf,
11659 int *bufsiz,
11660 const void *aarch_hw_break,
11661 int size)
11662 {
11663 char *note_name = "LINUX";
11664 return elfcore_write_note (abfd, buf, bufsiz,
11665 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11666 }
11667
11668 char *
11669 elfcore_write_aarch_hw_watch (bfd *abfd,
11670 char *buf,
11671 int *bufsiz,
11672 const void *aarch_hw_watch,
11673 int size)
11674 {
11675 char *note_name = "LINUX";
11676 return elfcore_write_note (abfd, buf, bufsiz,
11677 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11678 }
11679
11680 char *
11681 elfcore_write_aarch_sve (bfd *abfd,
11682 char *buf,
11683 int *bufsiz,
11684 const void *aarch_sve,
11685 int size)
11686 {
11687 char *note_name = "LINUX";
11688 return elfcore_write_note (abfd, buf, bufsiz,
11689 note_name, NT_ARM_SVE, aarch_sve, size);
11690 }
11691
11692 char *
11693 elfcore_write_aarch_pauth (bfd *abfd,
11694 char *buf,
11695 int *bufsiz,
11696 const void *aarch_pauth,
11697 int size)
11698 {
11699 char *note_name = "LINUX";
11700 return elfcore_write_note (abfd, buf, bufsiz,
11701 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11702 }
11703
11704 char *
11705 elfcore_write_register_note (bfd *abfd,
11706 char *buf,
11707 int *bufsiz,
11708 const char *section,
11709 const void *data,
11710 int size)
11711 {
11712 if (strcmp (section, ".reg2") == 0)
11713 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11714 if (strcmp (section, ".reg-xfp") == 0)
11715 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11716 if (strcmp (section, ".reg-xstate") == 0)
11717 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11718 if (strcmp (section, ".reg-ppc-vmx") == 0)
11719 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11720 if (strcmp (section, ".reg-ppc-vsx") == 0)
11721 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11722 if (strcmp (section, ".reg-ppc-tar") == 0)
11723 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11724 if (strcmp (section, ".reg-ppc-ppr") == 0)
11725 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11726 if (strcmp (section, ".reg-ppc-dscr") == 0)
11727 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11728 if (strcmp (section, ".reg-ppc-ebb") == 0)
11729 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11730 if (strcmp (section, ".reg-ppc-pmu") == 0)
11731 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11732 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11733 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11734 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11735 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11736 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11737 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11738 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11739 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11740 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11741 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11742 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11743 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11744 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11745 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11746 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11747 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11748 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11749 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11750 if (strcmp (section, ".reg-s390-timer") == 0)
11751 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11752 if (strcmp (section, ".reg-s390-todcmp") == 0)
11753 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11754 if (strcmp (section, ".reg-s390-todpreg") == 0)
11755 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11756 if (strcmp (section, ".reg-s390-ctrs") == 0)
11757 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11758 if (strcmp (section, ".reg-s390-prefix") == 0)
11759 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11760 if (strcmp (section, ".reg-s390-last-break") == 0)
11761 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11762 if (strcmp (section, ".reg-s390-system-call") == 0)
11763 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11764 if (strcmp (section, ".reg-s390-tdb") == 0)
11765 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11766 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11767 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11768 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11769 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11770 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11771 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11772 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11773 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11774 if (strcmp (section, ".reg-arm-vfp") == 0)
11775 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11776 if (strcmp (section, ".reg-aarch-tls") == 0)
11777 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11778 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11779 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11780 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11781 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11782 if (strcmp (section, ".reg-aarch-sve") == 0)
11783 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11784 if (strcmp (section, ".reg-aarch-pauth") == 0)
11785 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11786 return NULL;
11787 }
11788
11789 static bfd_boolean
11790 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11791 size_t align)
11792 {
11793 char *p;
11794
11795 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11796 gABI specifies that PT_NOTE alignment should be aligned to 4
11797 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11798 align is less than 4, we use 4 byte alignment. */
11799 if (align < 4)
11800 align = 4;
11801 if (align != 4 && align != 8)
11802 return FALSE;
11803
11804 p = buf;
11805 while (p < buf + size)
11806 {
11807 Elf_External_Note *xnp = (Elf_External_Note *) p;
11808 Elf_Internal_Note in;
11809
11810 if (offsetof (Elf_External_Note, name) > buf - p + size)
11811 return FALSE;
11812
11813 in.type = H_GET_32 (abfd, xnp->type);
11814
11815 in.namesz = H_GET_32 (abfd, xnp->namesz);
11816 in.namedata = xnp->name;
11817 if (in.namesz > buf - in.namedata + size)
11818 return FALSE;
11819
11820 in.descsz = H_GET_32 (abfd, xnp->descsz);
11821 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11822 in.descpos = offset + (in.descdata - buf);
11823 if (in.descsz != 0
11824 && (in.descdata >= buf + size
11825 || in.descsz > buf - in.descdata + size))
11826 return FALSE;
11827
11828 switch (bfd_get_format (abfd))
11829 {
11830 default:
11831 return TRUE;
11832
11833 case bfd_core:
11834 {
11835 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11836 struct
11837 {
11838 const char * string;
11839 size_t len;
11840 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11841 }
11842 grokers[] =
11843 {
11844 GROKER_ELEMENT ("", elfcore_grok_note),
11845 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11846 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11847 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11848 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11849 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
11850 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
11851 };
11852 #undef GROKER_ELEMENT
11853 int i;
11854
11855 for (i = ARRAY_SIZE (grokers); i--;)
11856 {
11857 if (in.namesz >= grokers[i].len
11858 && strncmp (in.namedata, grokers[i].string,
11859 grokers[i].len) == 0)
11860 {
11861 if (! grokers[i].func (abfd, & in))
11862 return FALSE;
11863 break;
11864 }
11865 }
11866 break;
11867 }
11868
11869 case bfd_object:
11870 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11871 {
11872 if (! elfobj_grok_gnu_note (abfd, &in))
11873 return FALSE;
11874 }
11875 else if (in.namesz == sizeof "stapsdt"
11876 && strcmp (in.namedata, "stapsdt") == 0)
11877 {
11878 if (! elfobj_grok_stapsdt_note (abfd, &in))
11879 return FALSE;
11880 }
11881 break;
11882 }
11883
11884 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11885 }
11886
11887 return TRUE;
11888 }
11889
11890 bfd_boolean
11891 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11892 size_t align)
11893 {
11894 char *buf;
11895
11896 if (size == 0 || (size + 1) == 0)
11897 return TRUE;
11898
11899 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11900 return FALSE;
11901
11902 buf = (char *) bfd_malloc (size + 1);
11903 if (buf == NULL)
11904 return FALSE;
11905
11906 /* PR 17512: file: ec08f814
11907 0-termintate the buffer so that string searches will not overflow. */
11908 buf[size] = 0;
11909
11910 if (bfd_bread (buf, size, abfd) != size
11911 || !elf_parse_notes (abfd, buf, size, offset, align))
11912 {
11913 free (buf);
11914 return FALSE;
11915 }
11916
11917 free (buf);
11918 return TRUE;
11919 }
11920 \f
11921 /* Providing external access to the ELF program header table. */
11922
11923 /* Return an upper bound on the number of bytes required to store a
11924 copy of ABFD's program header table entries. Return -1 if an error
11925 occurs; bfd_get_error will return an appropriate code. */
11926
11927 long
11928 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11929 {
11930 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11931 {
11932 bfd_set_error (bfd_error_wrong_format);
11933 return -1;
11934 }
11935
11936 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11937 }
11938
11939 /* Copy ABFD's program header table entries to *PHDRS. The entries
11940 will be stored as an array of Elf_Internal_Phdr structures, as
11941 defined in include/elf/internal.h. To find out how large the
11942 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11943
11944 Return the number of program header table entries read, or -1 if an
11945 error occurs; bfd_get_error will return an appropriate code. */
11946
11947 int
11948 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11949 {
11950 int num_phdrs;
11951
11952 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11953 {
11954 bfd_set_error (bfd_error_wrong_format);
11955 return -1;
11956 }
11957
11958 num_phdrs = elf_elfheader (abfd)->e_phnum;
11959 if (num_phdrs != 0)
11960 memcpy (phdrs, elf_tdata (abfd)->phdr,
11961 num_phdrs * sizeof (Elf_Internal_Phdr));
11962
11963 return num_phdrs;
11964 }
11965
11966 enum elf_reloc_type_class
11967 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11968 const asection *rel_sec ATTRIBUTE_UNUSED,
11969 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11970 {
11971 return reloc_class_normal;
11972 }
11973
11974 /* For RELA architectures, return the relocation value for a
11975 relocation against a local symbol. */
11976
11977 bfd_vma
11978 _bfd_elf_rela_local_sym (bfd *abfd,
11979 Elf_Internal_Sym *sym,
11980 asection **psec,
11981 Elf_Internal_Rela *rel)
11982 {
11983 asection *sec = *psec;
11984 bfd_vma relocation;
11985
11986 relocation = (sec->output_section->vma
11987 + sec->output_offset
11988 + sym->st_value);
11989 if ((sec->flags & SEC_MERGE)
11990 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11991 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11992 {
11993 rel->r_addend =
11994 _bfd_merged_section_offset (abfd, psec,
11995 elf_section_data (sec)->sec_info,
11996 sym->st_value + rel->r_addend);
11997 if (sec != *psec)
11998 {
11999 /* If we have changed the section, and our original section is
12000 marked with SEC_EXCLUDE, it means that the original
12001 SEC_MERGE section has been completely subsumed in some
12002 other SEC_MERGE section. In this case, we need to leave
12003 some info around for --emit-relocs. */
12004 if ((sec->flags & SEC_EXCLUDE) != 0)
12005 sec->kept_section = *psec;
12006 sec = *psec;
12007 }
12008 rel->r_addend -= relocation;
12009 rel->r_addend += sec->output_section->vma + sec->output_offset;
12010 }
12011 return relocation;
12012 }
12013
12014 bfd_vma
12015 _bfd_elf_rel_local_sym (bfd *abfd,
12016 Elf_Internal_Sym *sym,
12017 asection **psec,
12018 bfd_vma addend)
12019 {
12020 asection *sec = *psec;
12021
12022 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12023 return sym->st_value + addend;
12024
12025 return _bfd_merged_section_offset (abfd, psec,
12026 elf_section_data (sec)->sec_info,
12027 sym->st_value + addend);
12028 }
12029
12030 /* Adjust an address within a section. Given OFFSET within SEC, return
12031 the new offset within the section, based upon changes made to the
12032 section. Returns -1 if the offset is now invalid.
12033 The offset (in abnd out) is in target sized bytes, however big a
12034 byte may be. */
12035
12036 bfd_vma
12037 _bfd_elf_section_offset (bfd *abfd,
12038 struct bfd_link_info *info,
12039 asection *sec,
12040 bfd_vma offset)
12041 {
12042 switch (sec->sec_info_type)
12043 {
12044 case SEC_INFO_TYPE_STABS:
12045 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12046 offset);
12047 case SEC_INFO_TYPE_EH_FRAME:
12048 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12049
12050 default:
12051 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12052 {
12053 /* Reverse the offset. */
12054 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12055 bfd_size_type address_size = bed->s->arch_size / 8;
12056
12057 /* address_size and sec->size are in octets. Convert
12058 to bytes before subtracting the original offset. */
12059 offset = ((sec->size - address_size)
12060 / bfd_octets_per_byte (abfd, sec) - offset);
12061 }
12062 return offset;
12063 }
12064 }
12065 \f
12066 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12067 reconstruct an ELF file by reading the segments out of remote memory
12068 based on the ELF file header at EHDR_VMA and the ELF program headers it
12069 points to. If not null, *LOADBASEP is filled in with the difference
12070 between the VMAs from which the segments were read, and the VMAs the
12071 file headers (and hence BFD's idea of each section's VMA) put them at.
12072
12073 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12074 remote memory at target address VMA into the local buffer at MYADDR; it
12075 should return zero on success or an `errno' code on failure. TEMPL must
12076 be a BFD for an ELF target with the word size and byte order found in
12077 the remote memory. */
12078
12079 bfd *
12080 bfd_elf_bfd_from_remote_memory
12081 (bfd *templ,
12082 bfd_vma ehdr_vma,
12083 bfd_size_type size,
12084 bfd_vma *loadbasep,
12085 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12086 {
12087 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12088 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12089 }
12090 \f
12091 long
12092 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12093 long symcount ATTRIBUTE_UNUSED,
12094 asymbol **syms ATTRIBUTE_UNUSED,
12095 long dynsymcount,
12096 asymbol **dynsyms,
12097 asymbol **ret)
12098 {
12099 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12100 asection *relplt;
12101 asymbol *s;
12102 const char *relplt_name;
12103 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12104 arelent *p;
12105 long count, i, n;
12106 size_t size;
12107 Elf_Internal_Shdr *hdr;
12108 char *names;
12109 asection *plt;
12110
12111 *ret = NULL;
12112
12113 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12114 return 0;
12115
12116 if (dynsymcount <= 0)
12117 return 0;
12118
12119 if (!bed->plt_sym_val)
12120 return 0;
12121
12122 relplt_name = bed->relplt_name;
12123 if (relplt_name == NULL)
12124 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12125 relplt = bfd_get_section_by_name (abfd, relplt_name);
12126 if (relplt == NULL)
12127 return 0;
12128
12129 hdr = &elf_section_data (relplt)->this_hdr;
12130 if (hdr->sh_link != elf_dynsymtab (abfd)
12131 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12132 return 0;
12133
12134 plt = bfd_get_section_by_name (abfd, ".plt");
12135 if (plt == NULL)
12136 return 0;
12137
12138 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12139 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12140 return -1;
12141
12142 count = relplt->size / hdr->sh_entsize;
12143 size = count * sizeof (asymbol);
12144 p = relplt->relocation;
12145 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12146 {
12147 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12148 if (p->addend != 0)
12149 {
12150 #ifdef BFD64
12151 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12152 #else
12153 size += sizeof ("+0x") - 1 + 8;
12154 #endif
12155 }
12156 }
12157
12158 s = *ret = (asymbol *) bfd_malloc (size);
12159 if (s == NULL)
12160 return -1;
12161
12162 names = (char *) (s + count);
12163 p = relplt->relocation;
12164 n = 0;
12165 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12166 {
12167 size_t len;
12168 bfd_vma addr;
12169
12170 addr = bed->plt_sym_val (i, plt, p);
12171 if (addr == (bfd_vma) -1)
12172 continue;
12173
12174 *s = **p->sym_ptr_ptr;
12175 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12176 we are defining a symbol, ensure one of them is set. */
12177 if ((s->flags & BSF_LOCAL) == 0)
12178 s->flags |= BSF_GLOBAL;
12179 s->flags |= BSF_SYNTHETIC;
12180 s->section = plt;
12181 s->value = addr - plt->vma;
12182 s->name = names;
12183 s->udata.p = NULL;
12184 len = strlen ((*p->sym_ptr_ptr)->name);
12185 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12186 names += len;
12187 if (p->addend != 0)
12188 {
12189 char buf[30], *a;
12190
12191 memcpy (names, "+0x", sizeof ("+0x") - 1);
12192 names += sizeof ("+0x") - 1;
12193 bfd_sprintf_vma (abfd, buf, p->addend);
12194 for (a = buf; *a == '0'; ++a)
12195 ;
12196 len = strlen (a);
12197 memcpy (names, a, len);
12198 names += len;
12199 }
12200 memcpy (names, "@plt", sizeof ("@plt"));
12201 names += sizeof ("@plt");
12202 ++s, ++n;
12203 }
12204
12205 return n;
12206 }
12207
12208 /* It is only used by x86-64 so far.
12209 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12210 but current usage would allow all of _bfd_std_section to be zero. */
12211 static const asymbol lcomm_sym
12212 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12213 asection _bfd_elf_large_com_section
12214 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12215 "LARGE_COMMON", 0, SEC_IS_COMMON);
12216
12217 bfd_boolean
12218 _bfd_elf_final_write_processing (bfd *abfd)
12219 {
12220 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12221
12222 i_ehdrp = elf_elfheader (abfd);
12223
12224 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12225 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12226
12227 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12228 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12229 STB_GNU_UNIQUE binding. */
12230 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12231 {
12232 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12233 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12234 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12235 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12236 {
12237 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12238 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12239 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12240 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12241 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12242 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12243 bfd_set_error (bfd_error_sorry);
12244 return FALSE;
12245 }
12246 }
12247 return TRUE;
12248 }
12249
12250
12251 /* Return TRUE for ELF symbol types that represent functions.
12252 This is the default version of this function, which is sufficient for
12253 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12254
12255 bfd_boolean
12256 _bfd_elf_is_function_type (unsigned int type)
12257 {
12258 return (type == STT_FUNC
12259 || type == STT_GNU_IFUNC);
12260 }
12261
12262 /* If the ELF symbol SYM might be a function in SEC, return the
12263 function size and set *CODE_OFF to the function's entry point,
12264 otherwise return zero. */
12265
12266 bfd_size_type
12267 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12268 bfd_vma *code_off)
12269 {
12270 bfd_size_type size;
12271
12272 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12273 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12274 || sym->section != sec)
12275 return 0;
12276
12277 *code_off = sym->value;
12278 size = 0;
12279 if (!(sym->flags & BSF_SYNTHETIC))
12280 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12281 if (size == 0)
12282 size = 1;
12283 return size;
12284 }
This page took 0.289425 seconds and 4 git commands to generate.