Clear HAS_RELOC if there are no relocations
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"),
342 abfd, shindex);
343 return NULL;
344 }
345
346 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
347 return NULL;
348 }
349
350 if (strindex >= hdr->sh_size)
351 {
352 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
353 (*_bfd_error_handler)
354 (_("%B: invalid string offset %u >= %lu for section `%s'"),
355 abfd, strindex, (unsigned long) hdr->sh_size,
356 (shindex == shstrndx && strindex == hdr->sh_name
357 ? ".shstrtab"
358 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
359 return NULL;
360 }
361
362 return ((char *) hdr->contents) + strindex;
363 }
364
365 /* Read and convert symbols to internal format.
366 SYMCOUNT specifies the number of symbols to read, starting from
367 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
368 are non-NULL, they are used to store the internal symbols, external
369 symbols, and symbol section index extensions, respectively.
370 Returns a pointer to the internal symbol buffer (malloced if necessary)
371 or NULL if there were no symbols or some kind of problem. */
372
373 Elf_Internal_Sym *
374 bfd_elf_get_elf_syms (bfd *ibfd,
375 Elf_Internal_Shdr *symtab_hdr,
376 size_t symcount,
377 size_t symoffset,
378 Elf_Internal_Sym *intsym_buf,
379 void *extsym_buf,
380 Elf_External_Sym_Shndx *extshndx_buf)
381 {
382 Elf_Internal_Shdr *shndx_hdr;
383 void *alloc_ext;
384 const bfd_byte *esym;
385 Elf_External_Sym_Shndx *alloc_extshndx;
386 Elf_External_Sym_Shndx *shndx;
387 Elf_Internal_Sym *alloc_intsym;
388 Elf_Internal_Sym *isym;
389 Elf_Internal_Sym *isymend;
390 const struct elf_backend_data *bed;
391 size_t extsym_size;
392 bfd_size_type amt;
393 file_ptr pos;
394
395 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
396 abort ();
397
398 if (symcount == 0)
399 return intsym_buf;
400
401 /* Normal syms might have section extension entries. */
402 shndx_hdr = NULL;
403 if (elf_symtab_shndx_list (ibfd) != NULL)
404 {
405 elf_section_list * entry;
406 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
407
408 /* Find an index section that is linked to this symtab section. */
409 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
410 if (sections[entry->hdr.sh_link] == symtab_hdr)
411 {
412 shndx_hdr = & entry->hdr;
413 break;
414 };
415
416 if (shndx_hdr == NULL)
417 {
418 if (symtab_hdr == & elf_symtab_hdr (ibfd))
419 /* Not really accurate, but this was how the old code used to work. */
420 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
421 /* Otherwise we do nothing. The assumption is that
422 the index table will not be needed. */
423 }
424 }
425
426 /* Read the symbols. */
427 alloc_ext = NULL;
428 alloc_extshndx = NULL;
429 alloc_intsym = NULL;
430 bed = get_elf_backend_data (ibfd);
431 extsym_size = bed->s->sizeof_sym;
432 amt = symcount * extsym_size;
433 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
434 if (extsym_buf == NULL)
435 {
436 alloc_ext = bfd_malloc2 (symcount, extsym_size);
437 extsym_buf = alloc_ext;
438 }
439 if (extsym_buf == NULL
440 || bfd_seek (ibfd, pos, SEEK_SET) != 0
441 || bfd_bread (extsym_buf, amt, ibfd) != amt)
442 {
443 intsym_buf = NULL;
444 goto out;
445 }
446
447 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
448 extshndx_buf = NULL;
449 else
450 {
451 amt = symcount * sizeof (Elf_External_Sym_Shndx);
452 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
453 if (extshndx_buf == NULL)
454 {
455 alloc_extshndx = (Elf_External_Sym_Shndx *)
456 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
457 extshndx_buf = alloc_extshndx;
458 }
459 if (extshndx_buf == NULL
460 || bfd_seek (ibfd, pos, SEEK_SET) != 0
461 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
462 {
463 intsym_buf = NULL;
464 goto out;
465 }
466 }
467
468 if (intsym_buf == NULL)
469 {
470 alloc_intsym = (Elf_Internal_Sym *)
471 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
472 intsym_buf = alloc_intsym;
473 if (intsym_buf == NULL)
474 goto out;
475 }
476
477 /* Convert the symbols to internal form. */
478 isymend = intsym_buf + symcount;
479 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
480 shndx = extshndx_buf;
481 isym < isymend;
482 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
483 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
484 {
485 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
486 (*_bfd_error_handler) (_("%B symbol number %lu references "
487 "nonexistent SHT_SYMTAB_SHNDX section"),
488 ibfd, (unsigned long) symoffset);
489 if (alloc_intsym != NULL)
490 free (alloc_intsym);
491 intsym_buf = NULL;
492 goto out;
493 }
494
495 out:
496 if (alloc_ext != NULL)
497 free (alloc_ext);
498 if (alloc_extshndx != NULL)
499 free (alloc_extshndx);
500
501 return intsym_buf;
502 }
503
504 /* Look up a symbol name. */
505 const char *
506 bfd_elf_sym_name (bfd *abfd,
507 Elf_Internal_Shdr *symtab_hdr,
508 Elf_Internal_Sym *isym,
509 asection *sym_sec)
510 {
511 const char *name;
512 unsigned int iname = isym->st_name;
513 unsigned int shindex = symtab_hdr->sh_link;
514
515 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
516 /* Check for a bogus st_shndx to avoid crashing. */
517 && isym->st_shndx < elf_numsections (abfd))
518 {
519 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
520 shindex = elf_elfheader (abfd)->e_shstrndx;
521 }
522
523 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
524 if (name == NULL)
525 name = "(null)";
526 else if (sym_sec && *name == '\0')
527 name = bfd_section_name (abfd, sym_sec);
528
529 return name;
530 }
531
532 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
533 sections. The first element is the flags, the rest are section
534 pointers. */
535
536 typedef union elf_internal_group {
537 Elf_Internal_Shdr *shdr;
538 unsigned int flags;
539 } Elf_Internal_Group;
540
541 /* Return the name of the group signature symbol. Why isn't the
542 signature just a string? */
543
544 static const char *
545 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
546 {
547 Elf_Internal_Shdr *hdr;
548 unsigned char esym[sizeof (Elf64_External_Sym)];
549 Elf_External_Sym_Shndx eshndx;
550 Elf_Internal_Sym isym;
551
552 /* First we need to ensure the symbol table is available. Make sure
553 that it is a symbol table section. */
554 if (ghdr->sh_link >= elf_numsections (abfd))
555 return NULL;
556 hdr = elf_elfsections (abfd) [ghdr->sh_link];
557 if (hdr->sh_type != SHT_SYMTAB
558 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
559 return NULL;
560
561 /* Go read the symbol. */
562 hdr = &elf_tdata (abfd)->symtab_hdr;
563 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
564 &isym, esym, &eshndx) == NULL)
565 return NULL;
566
567 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
568 }
569
570 /* Set next_in_group list pointer, and group name for NEWSECT. */
571
572 static bfd_boolean
573 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
574 {
575 unsigned int num_group = elf_tdata (abfd)->num_group;
576
577 /* If num_group is zero, read in all SHT_GROUP sections. The count
578 is set to -1 if there are no SHT_GROUP sections. */
579 if (num_group == 0)
580 {
581 unsigned int i, shnum;
582
583 /* First count the number of groups. If we have a SHT_GROUP
584 section with just a flag word (ie. sh_size is 4), ignore it. */
585 shnum = elf_numsections (abfd);
586 num_group = 0;
587
588 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
589 ( (shdr)->sh_type == SHT_GROUP \
590 && (shdr)->sh_size >= minsize \
591 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
592 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
593
594 for (i = 0; i < shnum; i++)
595 {
596 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
597
598 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
599 num_group += 1;
600 }
601
602 if (num_group == 0)
603 {
604 num_group = (unsigned) -1;
605 elf_tdata (abfd)->num_group = num_group;
606 }
607 else
608 {
609 /* We keep a list of elf section headers for group sections,
610 so we can find them quickly. */
611 bfd_size_type amt;
612
613 elf_tdata (abfd)->num_group = num_group;
614 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
615 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
616 if (elf_tdata (abfd)->group_sect_ptr == NULL)
617 return FALSE;
618
619 num_group = 0;
620 for (i = 0; i < shnum; i++)
621 {
622 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
623
624 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
625 {
626 unsigned char *src;
627 Elf_Internal_Group *dest;
628
629 /* Add to list of sections. */
630 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
631 num_group += 1;
632
633 /* Read the raw contents. */
634 BFD_ASSERT (sizeof (*dest) >= 4);
635 amt = shdr->sh_size * sizeof (*dest) / 4;
636 shdr->contents = (unsigned char *)
637 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
638 /* PR binutils/4110: Handle corrupt group headers. */
639 if (shdr->contents == NULL)
640 {
641 _bfd_error_handler
642 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
643 bfd_set_error (bfd_error_bad_value);
644 -- num_group;
645 continue;
646 }
647
648 memset (shdr->contents, 0, amt);
649
650 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
651 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
652 != shdr->sh_size))
653 {
654 _bfd_error_handler
655 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size);
656 bfd_set_error (bfd_error_bad_value);
657 -- num_group;
658 /* PR 17510: If the group contents are even partially
659 corrupt, do not allow any of the contents to be used. */
660 memset (shdr->contents, 0, amt);
661 continue;
662 }
663
664 /* Translate raw contents, a flag word followed by an
665 array of elf section indices all in target byte order,
666 to the flag word followed by an array of elf section
667 pointers. */
668 src = shdr->contents + shdr->sh_size;
669 dest = (Elf_Internal_Group *) (shdr->contents + amt);
670
671 while (1)
672 {
673 unsigned int idx;
674
675 src -= 4;
676 --dest;
677 idx = H_GET_32 (abfd, src);
678 if (src == shdr->contents)
679 {
680 dest->flags = idx;
681 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
682 shdr->bfd_section->flags
683 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
684 break;
685 }
686 if (idx >= shnum)
687 {
688 ((*_bfd_error_handler)
689 (_("%B: invalid SHT_GROUP entry"), abfd));
690 idx = 0;
691 }
692 dest->shdr = elf_elfsections (abfd)[idx];
693 }
694 }
695 }
696
697 /* PR 17510: Corrupt binaries might contain invalid groups. */
698 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
699 {
700 elf_tdata (abfd)->num_group = num_group;
701
702 /* If all groups are invalid then fail. */
703 if (num_group == 0)
704 {
705 elf_tdata (abfd)->group_sect_ptr = NULL;
706 elf_tdata (abfd)->num_group = num_group = -1;
707 (*_bfd_error_handler) (_("%B: no valid group sections found"), abfd);
708 bfd_set_error (bfd_error_bad_value);
709 }
710 }
711 }
712 }
713
714 if (num_group != (unsigned) -1)
715 {
716 unsigned int i;
717
718 for (i = 0; i < num_group; i++)
719 {
720 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
721 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
722 unsigned int n_elt = shdr->sh_size / 4;
723
724 /* Look through this group's sections to see if current
725 section is a member. */
726 while (--n_elt != 0)
727 if ((++idx)->shdr == hdr)
728 {
729 asection *s = NULL;
730
731 /* We are a member of this group. Go looking through
732 other members to see if any others are linked via
733 next_in_group. */
734 idx = (Elf_Internal_Group *) shdr->contents;
735 n_elt = shdr->sh_size / 4;
736 while (--n_elt != 0)
737 if ((s = (++idx)->shdr->bfd_section) != NULL
738 && elf_next_in_group (s) != NULL)
739 break;
740 if (n_elt != 0)
741 {
742 /* Snarf the group name from other member, and
743 insert current section in circular list. */
744 elf_group_name (newsect) = elf_group_name (s);
745 elf_next_in_group (newsect) = elf_next_in_group (s);
746 elf_next_in_group (s) = newsect;
747 }
748 else
749 {
750 const char *gname;
751
752 gname = group_signature (abfd, shdr);
753 if (gname == NULL)
754 return FALSE;
755 elf_group_name (newsect) = gname;
756
757 /* Start a circular list with one element. */
758 elf_next_in_group (newsect) = newsect;
759 }
760
761 /* If the group section has been created, point to the
762 new member. */
763 if (shdr->bfd_section != NULL)
764 elf_next_in_group (shdr->bfd_section) = newsect;
765
766 i = num_group - 1;
767 break;
768 }
769 }
770 }
771
772 if (elf_group_name (newsect) == NULL)
773 {
774 (*_bfd_error_handler) (_("%B: no group info for section %A"),
775 abfd, newsect);
776 return FALSE;
777 }
778 return TRUE;
779 }
780
781 bfd_boolean
782 _bfd_elf_setup_sections (bfd *abfd)
783 {
784 unsigned int i;
785 unsigned int num_group = elf_tdata (abfd)->num_group;
786 bfd_boolean result = TRUE;
787 asection *s;
788
789 /* Process SHF_LINK_ORDER. */
790 for (s = abfd->sections; s != NULL; s = s->next)
791 {
792 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
793 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
794 {
795 unsigned int elfsec = this_hdr->sh_link;
796 /* FIXME: The old Intel compiler and old strip/objcopy may
797 not set the sh_link or sh_info fields. Hence we could
798 get the situation where elfsec is 0. */
799 if (elfsec == 0)
800 {
801 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
802 if (bed->link_order_error_handler)
803 bed->link_order_error_handler
804 (_("%B: warning: sh_link not set for section `%A'"),
805 abfd, s);
806 }
807 else
808 {
809 asection *linksec = NULL;
810
811 if (elfsec < elf_numsections (abfd))
812 {
813 this_hdr = elf_elfsections (abfd)[elfsec];
814 linksec = this_hdr->bfd_section;
815 }
816
817 /* PR 1991, 2008:
818 Some strip/objcopy may leave an incorrect value in
819 sh_link. We don't want to proceed. */
820 if (linksec == NULL)
821 {
822 (*_bfd_error_handler)
823 (_("%B: sh_link [%d] in section `%A' is incorrect"),
824 s->owner, s, elfsec);
825 result = FALSE;
826 }
827
828 elf_linked_to_section (s) = linksec;
829 }
830 }
831 }
832
833 /* Process section groups. */
834 if (num_group == (unsigned) -1)
835 return result;
836
837 for (i = 0; i < num_group; i++)
838 {
839 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
840 Elf_Internal_Group *idx;
841 unsigned int n_elt;
842
843 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
844 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
845 {
846 (*_bfd_error_handler)
847 (_("%B: section group entry number %u is corrupt"),
848 abfd, i);
849 result = FALSE;
850 continue;
851 }
852
853 idx = (Elf_Internal_Group *) shdr->contents;
854 n_elt = shdr->sh_size / 4;
855
856 while (--n_elt != 0)
857 if ((++idx)->shdr->bfd_section)
858 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
859 else if (idx->shdr->sh_type == SHT_RELA
860 || idx->shdr->sh_type == SHT_REL)
861 /* We won't include relocation sections in section groups in
862 output object files. We adjust the group section size here
863 so that relocatable link will work correctly when
864 relocation sections are in section group in input object
865 files. */
866 shdr->bfd_section->size -= 4;
867 else
868 {
869 /* There are some unknown sections in the group. */
870 (*_bfd_error_handler)
871 (_("%B: unknown [%d] section `%s' in group [%s]"),
872 abfd,
873 (unsigned int) idx->shdr->sh_type,
874 bfd_elf_string_from_elf_section (abfd,
875 (elf_elfheader (abfd)
876 ->e_shstrndx),
877 idx->shdr->sh_name),
878 shdr->bfd_section->name);
879 result = FALSE;
880 }
881 }
882 return result;
883 }
884
885 bfd_boolean
886 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
887 {
888 return elf_next_in_group (sec) != NULL;
889 }
890
891 static char *
892 convert_debug_to_zdebug (bfd *abfd, const char *name)
893 {
894 unsigned int len = strlen (name);
895 char *new_name = bfd_alloc (abfd, len + 2);
896 if (new_name == NULL)
897 return NULL;
898 new_name[0] = '.';
899 new_name[1] = 'z';
900 memcpy (new_name + 2, name + 1, len);
901 return new_name;
902 }
903
904 static char *
905 convert_zdebug_to_debug (bfd *abfd, const char *name)
906 {
907 unsigned int len = strlen (name);
908 char *new_name = bfd_alloc (abfd, len);
909 if (new_name == NULL)
910 return NULL;
911 new_name[0] = '.';
912 memcpy (new_name + 1, name + 2, len - 1);
913 return new_name;
914 }
915
916 /* Make a BFD section from an ELF section. We store a pointer to the
917 BFD section in the bfd_section field of the header. */
918
919 bfd_boolean
920 _bfd_elf_make_section_from_shdr (bfd *abfd,
921 Elf_Internal_Shdr *hdr,
922 const char *name,
923 int shindex)
924 {
925 asection *newsect;
926 flagword flags;
927 const struct elf_backend_data *bed;
928
929 if (hdr->bfd_section != NULL)
930 return TRUE;
931
932 newsect = bfd_make_section_anyway (abfd, name);
933 if (newsect == NULL)
934 return FALSE;
935
936 hdr->bfd_section = newsect;
937 elf_section_data (newsect)->this_hdr = *hdr;
938 elf_section_data (newsect)->this_idx = shindex;
939
940 /* Always use the real type/flags. */
941 elf_section_type (newsect) = hdr->sh_type;
942 elf_section_flags (newsect) = hdr->sh_flags;
943
944 newsect->filepos = hdr->sh_offset;
945
946 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
947 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
948 || ! bfd_set_section_alignment (abfd, newsect,
949 bfd_log2 (hdr->sh_addralign)))
950 return FALSE;
951
952 flags = SEC_NO_FLAGS;
953 if (hdr->sh_type != SHT_NOBITS)
954 flags |= SEC_HAS_CONTENTS;
955 if (hdr->sh_type == SHT_GROUP)
956 flags |= SEC_GROUP | SEC_EXCLUDE;
957 if ((hdr->sh_flags & SHF_ALLOC) != 0)
958 {
959 flags |= SEC_ALLOC;
960 if (hdr->sh_type != SHT_NOBITS)
961 flags |= SEC_LOAD;
962 }
963 if ((hdr->sh_flags & SHF_WRITE) == 0)
964 flags |= SEC_READONLY;
965 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
966 flags |= SEC_CODE;
967 else if ((flags & SEC_LOAD) != 0)
968 flags |= SEC_DATA;
969 if ((hdr->sh_flags & SHF_MERGE) != 0)
970 {
971 flags |= SEC_MERGE;
972 newsect->entsize = hdr->sh_entsize;
973 if ((hdr->sh_flags & SHF_STRINGS) != 0)
974 flags |= SEC_STRINGS;
975 }
976 if (hdr->sh_flags & SHF_GROUP)
977 if (!setup_group (abfd, hdr, newsect))
978 return FALSE;
979 if ((hdr->sh_flags & SHF_TLS) != 0)
980 flags |= SEC_THREAD_LOCAL;
981 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
982 flags |= SEC_EXCLUDE;
983
984 if ((flags & SEC_ALLOC) == 0)
985 {
986 /* The debugging sections appear to be recognized only by name,
987 not any sort of flag. Their SEC_ALLOC bits are cleared. */
988 if (name [0] == '.')
989 {
990 const char *p;
991 int n;
992 if (name[1] == 'd')
993 p = ".debug", n = 6;
994 else if (name[1] == 'g' && name[2] == 'n')
995 p = ".gnu.linkonce.wi.", n = 17;
996 else if (name[1] == 'g' && name[2] == 'd')
997 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
998 else if (name[1] == 'l')
999 p = ".line", n = 5;
1000 else if (name[1] == 's')
1001 p = ".stab", n = 5;
1002 else if (name[1] == 'z')
1003 p = ".zdebug", n = 7;
1004 else
1005 p = NULL, n = 0;
1006 if (p != NULL && strncmp (name, p, n) == 0)
1007 flags |= SEC_DEBUGGING;
1008 }
1009 }
1010
1011 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1012 only link a single copy of the section. This is used to support
1013 g++. g++ will emit each template expansion in its own section.
1014 The symbols will be defined as weak, so that multiple definitions
1015 are permitted. The GNU linker extension is to actually discard
1016 all but one of the sections. */
1017 if (CONST_STRNEQ (name, ".gnu.linkonce")
1018 && elf_next_in_group (newsect) == NULL)
1019 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1020
1021 bed = get_elf_backend_data (abfd);
1022 if (bed->elf_backend_section_flags)
1023 if (! bed->elf_backend_section_flags (&flags, hdr))
1024 return FALSE;
1025
1026 if (! bfd_set_section_flags (abfd, newsect, flags))
1027 return FALSE;
1028
1029 /* We do not parse the PT_NOTE segments as we are interested even in the
1030 separate debug info files which may have the segments offsets corrupted.
1031 PT_NOTEs from the core files are currently not parsed using BFD. */
1032 if (hdr->sh_type == SHT_NOTE)
1033 {
1034 bfd_byte *contents;
1035
1036 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1037 return FALSE;
1038
1039 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
1040 free (contents);
1041 }
1042
1043 if ((flags & SEC_ALLOC) != 0)
1044 {
1045 Elf_Internal_Phdr *phdr;
1046 unsigned int i, nload;
1047
1048 /* Some ELF linkers produce binaries with all the program header
1049 p_paddr fields zero. If we have such a binary with more than
1050 one PT_LOAD header, then leave the section lma equal to vma
1051 so that we don't create sections with overlapping lma. */
1052 phdr = elf_tdata (abfd)->phdr;
1053 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1054 if (phdr->p_paddr != 0)
1055 break;
1056 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1057 ++nload;
1058 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1059 return TRUE;
1060
1061 phdr = elf_tdata (abfd)->phdr;
1062 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1063 {
1064 if (((phdr->p_type == PT_LOAD
1065 && (hdr->sh_flags & SHF_TLS) == 0)
1066 || phdr->p_type == PT_TLS)
1067 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1068 {
1069 if ((flags & SEC_LOAD) == 0)
1070 newsect->lma = (phdr->p_paddr
1071 + hdr->sh_addr - phdr->p_vaddr);
1072 else
1073 /* We used to use the same adjustment for SEC_LOAD
1074 sections, but that doesn't work if the segment
1075 is packed with code from multiple VMAs.
1076 Instead we calculate the section LMA based on
1077 the segment LMA. It is assumed that the
1078 segment will contain sections with contiguous
1079 LMAs, even if the VMAs are not. */
1080 newsect->lma = (phdr->p_paddr
1081 + hdr->sh_offset - phdr->p_offset);
1082
1083 /* With contiguous segments, we can't tell from file
1084 offsets whether a section with zero size should
1085 be placed at the end of one segment or the
1086 beginning of the next. Decide based on vaddr. */
1087 if (hdr->sh_addr >= phdr->p_vaddr
1088 && (hdr->sh_addr + hdr->sh_size
1089 <= phdr->p_vaddr + phdr->p_memsz))
1090 break;
1091 }
1092 }
1093 }
1094
1095 /* Compress/decompress DWARF debug sections with names: .debug_* and
1096 .zdebug_*, after the section flags is set. */
1097 if ((flags & SEC_DEBUGGING)
1098 && ((name[1] == 'd' && name[6] == '_')
1099 || (name[1] == 'z' && name[7] == '_')))
1100 {
1101 enum { nothing, compress, decompress } action = nothing;
1102 int compression_header_size;
1103 bfd_size_type uncompressed_size;
1104 bfd_boolean compressed
1105 = bfd_is_section_compressed_with_header (abfd, newsect,
1106 &compression_header_size,
1107 &uncompressed_size);
1108
1109 if (compressed)
1110 {
1111 /* Compressed section. Check if we should decompress. */
1112 if ((abfd->flags & BFD_DECOMPRESS))
1113 action = decompress;
1114 }
1115
1116 /* Compress the uncompressed section or convert from/to .zdebug*
1117 section. Check if we should compress. */
1118 if (action == nothing)
1119 {
1120 if (newsect->size != 0
1121 && (abfd->flags & BFD_COMPRESS)
1122 && compression_header_size >= 0
1123 && uncompressed_size > 0
1124 && (!compressed
1125 || ((compression_header_size > 0)
1126 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1127 action = compress;
1128 else
1129 return TRUE;
1130 }
1131
1132 if (action == compress)
1133 {
1134 if (!bfd_init_section_compress_status (abfd, newsect))
1135 {
1136 (*_bfd_error_handler)
1137 (_("%B: unable to initialize compress status for section %s"),
1138 abfd, name);
1139 return FALSE;
1140 }
1141 }
1142 else
1143 {
1144 if (!bfd_init_section_decompress_status (abfd, newsect))
1145 {
1146 (*_bfd_error_handler)
1147 (_("%B: unable to initialize decompress status for section %s"),
1148 abfd, name);
1149 return FALSE;
1150 }
1151 }
1152
1153 if (abfd->is_linker_input)
1154 {
1155 if (name[1] == 'z'
1156 && (action == decompress
1157 || (action == compress
1158 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1159 {
1160 /* Convert section name from .zdebug_* to .debug_* so
1161 that linker will consider this section as a debug
1162 section. */
1163 char *new_name = convert_zdebug_to_debug (abfd, name);
1164 if (new_name == NULL)
1165 return FALSE;
1166 bfd_rename_section (abfd, newsect, new_name);
1167 }
1168 }
1169 else
1170 /* For objdump, don't rename the section. For objcopy, delay
1171 section rename to elf_fake_sections. */
1172 newsect->flags |= SEC_ELF_RENAME;
1173 }
1174
1175 return TRUE;
1176 }
1177
1178 const char *const bfd_elf_section_type_names[] = {
1179 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1180 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1181 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1182 };
1183
1184 /* ELF relocs are against symbols. If we are producing relocatable
1185 output, and the reloc is against an external symbol, and nothing
1186 has given us any additional addend, the resulting reloc will also
1187 be against the same symbol. In such a case, we don't want to
1188 change anything about the way the reloc is handled, since it will
1189 all be done at final link time. Rather than put special case code
1190 into bfd_perform_relocation, all the reloc types use this howto
1191 function. It just short circuits the reloc if producing
1192 relocatable output against an external symbol. */
1193
1194 bfd_reloc_status_type
1195 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1196 arelent *reloc_entry,
1197 asymbol *symbol,
1198 void *data ATTRIBUTE_UNUSED,
1199 asection *input_section,
1200 bfd *output_bfd,
1201 char **error_message ATTRIBUTE_UNUSED)
1202 {
1203 if (output_bfd != NULL
1204 && (symbol->flags & BSF_SECTION_SYM) == 0
1205 && (! reloc_entry->howto->partial_inplace
1206 || reloc_entry->addend == 0))
1207 {
1208 reloc_entry->address += input_section->output_offset;
1209 return bfd_reloc_ok;
1210 }
1211
1212 return bfd_reloc_continue;
1213 }
1214 \f
1215 /* Copy the program header and other data from one object module to
1216 another. */
1217
1218 bfd_boolean
1219 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1220 {
1221 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1222 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1223 return TRUE;
1224
1225 if (!elf_flags_init (obfd))
1226 {
1227 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1228 elf_flags_init (obfd) = TRUE;
1229 }
1230
1231 elf_gp (obfd) = elf_gp (ibfd);
1232
1233 /* Also copy the EI_OSABI field. */
1234 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1235 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1236
1237 /* Copy object attributes. */
1238 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1239
1240 /* This is an feature for objcopy --only-keep-debug: When a section's type
1241 is changed to NOBITS, we preserve the sh_link and sh_info fields so that
1242 they can be matched up with the original. */
1243 Elf_Internal_Shdr ** iheaders = elf_elfsections (ibfd);
1244 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1245
1246 if (iheaders != NULL && oheaders != NULL)
1247 {
1248 unsigned int i;
1249
1250 for (i = 0; i < elf_numsections (obfd); i++)
1251 {
1252 unsigned int j;
1253 Elf_Internal_Shdr * oheader = oheaders[i];
1254
1255 if (oheader == NULL
1256 || oheader->sh_type != SHT_NOBITS
1257 || oheader->sh_size == 0
1258 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1259 continue;
1260
1261 /* Scan for the matching section in the input bfd.
1262 FIXME: We could use something better than a linear scan here.
1263 Unfortunately we cannot compare names as the output string table
1264 is empty, so instead we check size, address and type. */
1265 for (j = 0; j < elf_numsections (ibfd); j++)
1266 {
1267 Elf_Internal_Shdr * iheader = iheaders[j];
1268
1269 /* Since --only-keep-debug turns all non-debug sections
1270 into SHT_NOBITS sections, the output SHT_NOBITS type
1271 matches any input type. */
1272 if ((oheader->sh_type == SHT_NOBITS
1273 || iheader->sh_type == oheader->sh_type)
1274 && iheader->sh_flags == oheader->sh_flags
1275 && iheader->sh_addralign == oheader->sh_addralign
1276 && iheader->sh_entsize == oheader->sh_entsize
1277 && iheader->sh_size == oheader->sh_size
1278 && iheader->sh_addr == oheader->sh_addr
1279 && (iheader->sh_info != oheader->sh_info
1280 || iheader->sh_link != oheader->sh_link))
1281 {
1282 /* Note: Strictly speaking these assignments are wrong.
1283 The sh_link and sh_info fields should point to the
1284 relevent sections in the output BFD, which may not be in
1285 the same location as they were in the input BFD. But the
1286 whole point of this action is to preserve the original
1287 values of the sh_link and sh_info fields, so that they
1288 can be matched up with the section headers in the
1289 original file. So strictly speaking we may be creating
1290 an invalid ELF file, but it is only for a file that just
1291 contains debug info and only for sections without any
1292 contents. */
1293 if (oheader->sh_link == 0)
1294 oheader->sh_link = iheader->sh_link;
1295 if (oheader->sh_info == 0)
1296 oheader->sh_info = iheader->sh_info;
1297 break;
1298 }
1299 }
1300 }
1301 }
1302
1303 return TRUE;
1304 }
1305
1306 static const char *
1307 get_segment_type (unsigned int p_type)
1308 {
1309 const char *pt;
1310 switch (p_type)
1311 {
1312 case PT_NULL: pt = "NULL"; break;
1313 case PT_LOAD: pt = "LOAD"; break;
1314 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1315 case PT_INTERP: pt = "INTERP"; break;
1316 case PT_NOTE: pt = "NOTE"; break;
1317 case PT_SHLIB: pt = "SHLIB"; break;
1318 case PT_PHDR: pt = "PHDR"; break;
1319 case PT_TLS: pt = "TLS"; break;
1320 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1321 case PT_GNU_STACK: pt = "STACK"; break;
1322 case PT_GNU_RELRO: pt = "RELRO"; break;
1323 default: pt = NULL; break;
1324 }
1325 return pt;
1326 }
1327
1328 /* Print out the program headers. */
1329
1330 bfd_boolean
1331 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1332 {
1333 FILE *f = (FILE *) farg;
1334 Elf_Internal_Phdr *p;
1335 asection *s;
1336 bfd_byte *dynbuf = NULL;
1337
1338 p = elf_tdata (abfd)->phdr;
1339 if (p != NULL)
1340 {
1341 unsigned int i, c;
1342
1343 fprintf (f, _("\nProgram Header:\n"));
1344 c = elf_elfheader (abfd)->e_phnum;
1345 for (i = 0; i < c; i++, p++)
1346 {
1347 const char *pt = get_segment_type (p->p_type);
1348 char buf[20];
1349
1350 if (pt == NULL)
1351 {
1352 sprintf (buf, "0x%lx", p->p_type);
1353 pt = buf;
1354 }
1355 fprintf (f, "%8s off 0x", pt);
1356 bfd_fprintf_vma (abfd, f, p->p_offset);
1357 fprintf (f, " vaddr 0x");
1358 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1359 fprintf (f, " paddr 0x");
1360 bfd_fprintf_vma (abfd, f, p->p_paddr);
1361 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1362 fprintf (f, " filesz 0x");
1363 bfd_fprintf_vma (abfd, f, p->p_filesz);
1364 fprintf (f, " memsz 0x");
1365 bfd_fprintf_vma (abfd, f, p->p_memsz);
1366 fprintf (f, " flags %c%c%c",
1367 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1368 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1369 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1370 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1371 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1372 fprintf (f, "\n");
1373 }
1374 }
1375
1376 s = bfd_get_section_by_name (abfd, ".dynamic");
1377 if (s != NULL)
1378 {
1379 unsigned int elfsec;
1380 unsigned long shlink;
1381 bfd_byte *extdyn, *extdynend;
1382 size_t extdynsize;
1383 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1384
1385 fprintf (f, _("\nDynamic Section:\n"));
1386
1387 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1388 goto error_return;
1389
1390 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1391 if (elfsec == SHN_BAD)
1392 goto error_return;
1393 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1394
1395 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1396 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1397
1398 extdyn = dynbuf;
1399 /* PR 17512: file: 6f427532. */
1400 if (s->size < extdynsize)
1401 goto error_return;
1402 extdynend = extdyn + s->size;
1403 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1404 Fix range check. */
1405 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1406 {
1407 Elf_Internal_Dyn dyn;
1408 const char *name = "";
1409 char ab[20];
1410 bfd_boolean stringp;
1411 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1412
1413 (*swap_dyn_in) (abfd, extdyn, &dyn);
1414
1415 if (dyn.d_tag == DT_NULL)
1416 break;
1417
1418 stringp = FALSE;
1419 switch (dyn.d_tag)
1420 {
1421 default:
1422 if (bed->elf_backend_get_target_dtag)
1423 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1424
1425 if (!strcmp (name, ""))
1426 {
1427 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1428 name = ab;
1429 }
1430 break;
1431
1432 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1433 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1434 case DT_PLTGOT: name = "PLTGOT"; break;
1435 case DT_HASH: name = "HASH"; break;
1436 case DT_STRTAB: name = "STRTAB"; break;
1437 case DT_SYMTAB: name = "SYMTAB"; break;
1438 case DT_RELA: name = "RELA"; break;
1439 case DT_RELASZ: name = "RELASZ"; break;
1440 case DT_RELAENT: name = "RELAENT"; break;
1441 case DT_STRSZ: name = "STRSZ"; break;
1442 case DT_SYMENT: name = "SYMENT"; break;
1443 case DT_INIT: name = "INIT"; break;
1444 case DT_FINI: name = "FINI"; break;
1445 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1446 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1447 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1448 case DT_REL: name = "REL"; break;
1449 case DT_RELSZ: name = "RELSZ"; break;
1450 case DT_RELENT: name = "RELENT"; break;
1451 case DT_PLTREL: name = "PLTREL"; break;
1452 case DT_DEBUG: name = "DEBUG"; break;
1453 case DT_TEXTREL: name = "TEXTREL"; break;
1454 case DT_JMPREL: name = "JMPREL"; break;
1455 case DT_BIND_NOW: name = "BIND_NOW"; break;
1456 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1457 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1458 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1459 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1460 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1461 case DT_FLAGS: name = "FLAGS"; break;
1462 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1463 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1464 case DT_CHECKSUM: name = "CHECKSUM"; break;
1465 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1466 case DT_MOVEENT: name = "MOVEENT"; break;
1467 case DT_MOVESZ: name = "MOVESZ"; break;
1468 case DT_FEATURE: name = "FEATURE"; break;
1469 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1470 case DT_SYMINSZ: name = "SYMINSZ"; break;
1471 case DT_SYMINENT: name = "SYMINENT"; break;
1472 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1473 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1474 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1475 case DT_PLTPAD: name = "PLTPAD"; break;
1476 case DT_MOVETAB: name = "MOVETAB"; break;
1477 case DT_SYMINFO: name = "SYMINFO"; break;
1478 case DT_RELACOUNT: name = "RELACOUNT"; break;
1479 case DT_RELCOUNT: name = "RELCOUNT"; break;
1480 case DT_FLAGS_1: name = "FLAGS_1"; break;
1481 case DT_VERSYM: name = "VERSYM"; break;
1482 case DT_VERDEF: name = "VERDEF"; break;
1483 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1484 case DT_VERNEED: name = "VERNEED"; break;
1485 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1486 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1487 case DT_USED: name = "USED"; break;
1488 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1489 case DT_GNU_HASH: name = "GNU_HASH"; break;
1490 }
1491
1492 fprintf (f, " %-20s ", name);
1493 if (! stringp)
1494 {
1495 fprintf (f, "0x");
1496 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1497 }
1498 else
1499 {
1500 const char *string;
1501 unsigned int tagv = dyn.d_un.d_val;
1502
1503 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1504 if (string == NULL)
1505 goto error_return;
1506 fprintf (f, "%s", string);
1507 }
1508 fprintf (f, "\n");
1509 }
1510
1511 free (dynbuf);
1512 dynbuf = NULL;
1513 }
1514
1515 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1516 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1517 {
1518 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1519 return FALSE;
1520 }
1521
1522 if (elf_dynverdef (abfd) != 0)
1523 {
1524 Elf_Internal_Verdef *t;
1525
1526 fprintf (f, _("\nVersion definitions:\n"));
1527 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1528 {
1529 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1530 t->vd_flags, t->vd_hash,
1531 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1532 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1533 {
1534 Elf_Internal_Verdaux *a;
1535
1536 fprintf (f, "\t");
1537 for (a = t->vd_auxptr->vda_nextptr;
1538 a != NULL;
1539 a = a->vda_nextptr)
1540 fprintf (f, "%s ",
1541 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1542 fprintf (f, "\n");
1543 }
1544 }
1545 }
1546
1547 if (elf_dynverref (abfd) != 0)
1548 {
1549 Elf_Internal_Verneed *t;
1550
1551 fprintf (f, _("\nVersion References:\n"));
1552 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1553 {
1554 Elf_Internal_Vernaux *a;
1555
1556 fprintf (f, _(" required from %s:\n"),
1557 t->vn_filename ? t->vn_filename : "<corrupt>");
1558 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1559 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1560 a->vna_flags, a->vna_other,
1561 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1562 }
1563 }
1564
1565 return TRUE;
1566
1567 error_return:
1568 if (dynbuf != NULL)
1569 free (dynbuf);
1570 return FALSE;
1571 }
1572
1573 /* Get version string. */
1574
1575 const char *
1576 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1577 bfd_boolean *hidden)
1578 {
1579 const char *version_string = NULL;
1580 if (elf_dynversym (abfd) != 0
1581 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1582 {
1583 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1584
1585 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1586 vernum &= VERSYM_VERSION;
1587
1588 if (vernum == 0)
1589 version_string = "";
1590 else if (vernum == 1)
1591 version_string = "Base";
1592 else if (vernum <= elf_tdata (abfd)->cverdefs)
1593 version_string =
1594 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1595 else
1596 {
1597 Elf_Internal_Verneed *t;
1598
1599 version_string = "";
1600 for (t = elf_tdata (abfd)->verref;
1601 t != NULL;
1602 t = t->vn_nextref)
1603 {
1604 Elf_Internal_Vernaux *a;
1605
1606 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1607 {
1608 if (a->vna_other == vernum)
1609 {
1610 version_string = a->vna_nodename;
1611 break;
1612 }
1613 }
1614 }
1615 }
1616 }
1617 return version_string;
1618 }
1619
1620 /* Display ELF-specific fields of a symbol. */
1621
1622 void
1623 bfd_elf_print_symbol (bfd *abfd,
1624 void *filep,
1625 asymbol *symbol,
1626 bfd_print_symbol_type how)
1627 {
1628 FILE *file = (FILE *) filep;
1629 switch (how)
1630 {
1631 case bfd_print_symbol_name:
1632 fprintf (file, "%s", symbol->name);
1633 break;
1634 case bfd_print_symbol_more:
1635 fprintf (file, "elf ");
1636 bfd_fprintf_vma (abfd, file, symbol->value);
1637 fprintf (file, " %lx", (unsigned long) symbol->flags);
1638 break;
1639 case bfd_print_symbol_all:
1640 {
1641 const char *section_name;
1642 const char *name = NULL;
1643 const struct elf_backend_data *bed;
1644 unsigned char st_other;
1645 bfd_vma val;
1646 const char *version_string;
1647 bfd_boolean hidden;
1648
1649 section_name = symbol->section ? symbol->section->name : "(*none*)";
1650
1651 bed = get_elf_backend_data (abfd);
1652 if (bed->elf_backend_print_symbol_all)
1653 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1654
1655 if (name == NULL)
1656 {
1657 name = symbol->name;
1658 bfd_print_symbol_vandf (abfd, file, symbol);
1659 }
1660
1661 fprintf (file, " %s\t", section_name);
1662 /* Print the "other" value for a symbol. For common symbols,
1663 we've already printed the size; now print the alignment.
1664 For other symbols, we have no specified alignment, and
1665 we've printed the address; now print the size. */
1666 if (symbol->section && bfd_is_com_section (symbol->section))
1667 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1668 else
1669 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1670 bfd_fprintf_vma (abfd, file, val);
1671
1672 /* If we have version information, print it. */
1673 version_string = _bfd_elf_get_symbol_version_string (abfd,
1674 symbol,
1675 &hidden);
1676 if (version_string)
1677 {
1678 if (!hidden)
1679 fprintf (file, " %-11s", version_string);
1680 else
1681 {
1682 int i;
1683
1684 fprintf (file, " (%s)", version_string);
1685 for (i = 10 - strlen (version_string); i > 0; --i)
1686 putc (' ', file);
1687 }
1688 }
1689
1690 /* If the st_other field is not zero, print it. */
1691 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1692
1693 switch (st_other)
1694 {
1695 case 0: break;
1696 case STV_INTERNAL: fprintf (file, " .internal"); break;
1697 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1698 case STV_PROTECTED: fprintf (file, " .protected"); break;
1699 default:
1700 /* Some other non-defined flags are also present, so print
1701 everything hex. */
1702 fprintf (file, " 0x%02x", (unsigned int) st_other);
1703 }
1704
1705 fprintf (file, " %s", name);
1706 }
1707 break;
1708 }
1709 }
1710 \f
1711 /* ELF .o/exec file reading */
1712
1713 /* Create a new bfd section from an ELF section header. */
1714
1715 bfd_boolean
1716 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1717 {
1718 Elf_Internal_Shdr *hdr;
1719 Elf_Internal_Ehdr *ehdr;
1720 const struct elf_backend_data *bed;
1721 const char *name;
1722 bfd_boolean ret = TRUE;
1723 static bfd_boolean * sections_being_created = NULL;
1724 static bfd * sections_being_created_abfd = NULL;
1725 static unsigned int nesting = 0;
1726
1727 if (shindex >= elf_numsections (abfd))
1728 return FALSE;
1729
1730 if (++ nesting > 3)
1731 {
1732 /* PR17512: A corrupt ELF binary might contain a recursive group of
1733 sections, with each the string indicies pointing to the next in the
1734 loop. Detect this here, by refusing to load a section that we are
1735 already in the process of loading. We only trigger this test if
1736 we have nested at least three sections deep as normal ELF binaries
1737 can expect to recurse at least once.
1738
1739 FIXME: It would be better if this array was attached to the bfd,
1740 rather than being held in a static pointer. */
1741
1742 if (sections_being_created_abfd != abfd)
1743 sections_being_created = NULL;
1744 if (sections_being_created == NULL)
1745 {
1746 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1747 sections_being_created = (bfd_boolean *)
1748 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1749 sections_being_created_abfd = abfd;
1750 }
1751 if (sections_being_created [shindex])
1752 {
1753 (*_bfd_error_handler)
1754 (_("%B: warning: loop in section dependencies detected"), abfd);
1755 return FALSE;
1756 }
1757 sections_being_created [shindex] = TRUE;
1758 }
1759
1760 hdr = elf_elfsections (abfd)[shindex];
1761 ehdr = elf_elfheader (abfd);
1762 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1763 hdr->sh_name);
1764 if (name == NULL)
1765 goto fail;
1766
1767 bed = get_elf_backend_data (abfd);
1768 switch (hdr->sh_type)
1769 {
1770 case SHT_NULL:
1771 /* Inactive section. Throw it away. */
1772 goto success;
1773
1774 case SHT_PROGBITS: /* Normal section with contents. */
1775 case SHT_NOBITS: /* .bss section. */
1776 case SHT_HASH: /* .hash section. */
1777 case SHT_NOTE: /* .note section. */
1778 case SHT_INIT_ARRAY: /* .init_array section. */
1779 case SHT_FINI_ARRAY: /* .fini_array section. */
1780 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1781 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1782 case SHT_GNU_HASH: /* .gnu.hash section. */
1783 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1784 goto success;
1785
1786 case SHT_DYNAMIC: /* Dynamic linking information. */
1787 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1788 goto fail;
1789
1790 if (hdr->sh_link > elf_numsections (abfd))
1791 {
1792 /* PR 10478: Accept Solaris binaries with a sh_link
1793 field set to SHN_BEFORE or SHN_AFTER. */
1794 switch (bfd_get_arch (abfd))
1795 {
1796 case bfd_arch_i386:
1797 case bfd_arch_sparc:
1798 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1799 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1800 break;
1801 /* Otherwise fall through. */
1802 default:
1803 goto fail;
1804 }
1805 }
1806 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1807 goto fail;
1808 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1809 {
1810 Elf_Internal_Shdr *dynsymhdr;
1811
1812 /* The shared libraries distributed with hpux11 have a bogus
1813 sh_link field for the ".dynamic" section. Find the
1814 string table for the ".dynsym" section instead. */
1815 if (elf_dynsymtab (abfd) != 0)
1816 {
1817 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1818 hdr->sh_link = dynsymhdr->sh_link;
1819 }
1820 else
1821 {
1822 unsigned int i, num_sec;
1823
1824 num_sec = elf_numsections (abfd);
1825 for (i = 1; i < num_sec; i++)
1826 {
1827 dynsymhdr = elf_elfsections (abfd)[i];
1828 if (dynsymhdr->sh_type == SHT_DYNSYM)
1829 {
1830 hdr->sh_link = dynsymhdr->sh_link;
1831 break;
1832 }
1833 }
1834 }
1835 }
1836 goto success;
1837
1838 case SHT_SYMTAB: /* A symbol table. */
1839 if (elf_onesymtab (abfd) == shindex)
1840 goto success;
1841
1842 if (hdr->sh_entsize != bed->s->sizeof_sym)
1843 goto fail;
1844
1845 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1846 {
1847 if (hdr->sh_size != 0)
1848 goto fail;
1849 /* Some assemblers erroneously set sh_info to one with a
1850 zero sh_size. ld sees this as a global symbol count
1851 of (unsigned) -1. Fix it here. */
1852 hdr->sh_info = 0;
1853 goto success;
1854 }
1855
1856 /* PR 18854: A binary might contain more than one symbol table.
1857 Unusual, but possible. Warn, but continue. */
1858 if (elf_onesymtab (abfd) != 0)
1859 {
1860 (*_bfd_error_handler)
1861 (_("%B: warning: multiple symbol tables detected - ignoring the table in section %u"),
1862 abfd, shindex);
1863 goto success;
1864 }
1865 elf_onesymtab (abfd) = shindex;
1866 elf_symtab_hdr (abfd) = *hdr;
1867 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
1868 abfd->flags |= HAS_SYMS;
1869
1870 /* Sometimes a shared object will map in the symbol table. If
1871 SHF_ALLOC is set, and this is a shared object, then we also
1872 treat this section as a BFD section. We can not base the
1873 decision purely on SHF_ALLOC, because that flag is sometimes
1874 set in a relocatable object file, which would confuse the
1875 linker. */
1876 if ((hdr->sh_flags & SHF_ALLOC) != 0
1877 && (abfd->flags & DYNAMIC) != 0
1878 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1879 shindex))
1880 goto fail;
1881
1882 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1883 can't read symbols without that section loaded as well. It
1884 is most likely specified by the next section header. */
1885 {
1886 elf_section_list * entry;
1887 unsigned int i, num_sec;
1888
1889 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
1890 if (entry->hdr.sh_link == shindex)
1891 goto success;
1892
1893 num_sec = elf_numsections (abfd);
1894 for (i = shindex + 1; i < num_sec; i++)
1895 {
1896 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1897
1898 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1899 && hdr2->sh_link == shindex)
1900 break;
1901 }
1902
1903 if (i == num_sec)
1904 for (i = 1; i < shindex; i++)
1905 {
1906 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1907
1908 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1909 && hdr2->sh_link == shindex)
1910 break;
1911 }
1912
1913 if (i != shindex)
1914 ret = bfd_section_from_shdr (abfd, i);
1915 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
1916 goto success;
1917 }
1918
1919 case SHT_DYNSYM: /* A dynamic symbol table. */
1920 if (elf_dynsymtab (abfd) == shindex)
1921 goto success;
1922
1923 if (hdr->sh_entsize != bed->s->sizeof_sym)
1924 goto fail;
1925
1926 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1927 {
1928 if (hdr->sh_size != 0)
1929 goto fail;
1930
1931 /* Some linkers erroneously set sh_info to one with a
1932 zero sh_size. ld sees this as a global symbol count
1933 of (unsigned) -1. Fix it here. */
1934 hdr->sh_info = 0;
1935 goto success;
1936 }
1937
1938 /* PR 18854: A binary might contain more than one dynamic symbol table.
1939 Unusual, but possible. Warn, but continue. */
1940 if (elf_dynsymtab (abfd) != 0)
1941 {
1942 (*_bfd_error_handler)
1943 (_("%B: warning: multiple dynamic symbol tables detected - ignoring the table in section %u"),
1944 abfd, shindex);
1945 goto success;
1946 }
1947 elf_dynsymtab (abfd) = shindex;
1948 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1949 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1950 abfd->flags |= HAS_SYMS;
1951
1952 /* Besides being a symbol table, we also treat this as a regular
1953 section, so that objcopy can handle it. */
1954 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1955 goto success;
1956
1957 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
1958 {
1959 elf_section_list * entry;
1960
1961 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
1962 if (entry->ndx == shindex)
1963 goto success;
1964
1965 entry = bfd_alloc (abfd, sizeof * entry);
1966 if (entry == NULL)
1967 goto fail;
1968 entry->ndx = shindex;
1969 entry->hdr = * hdr;
1970 entry->next = elf_symtab_shndx_list (abfd);
1971 elf_symtab_shndx_list (abfd) = entry;
1972 elf_elfsections (abfd)[shindex] = & entry->hdr;
1973 goto success;
1974 }
1975
1976 case SHT_STRTAB: /* A string table. */
1977 if (hdr->bfd_section != NULL)
1978 goto success;
1979
1980 if (ehdr->e_shstrndx == shindex)
1981 {
1982 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1983 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1984 goto success;
1985 }
1986
1987 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1988 {
1989 symtab_strtab:
1990 elf_tdata (abfd)->strtab_hdr = *hdr;
1991 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1992 goto success;
1993 }
1994
1995 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1996 {
1997 dynsymtab_strtab:
1998 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1999 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2000 elf_elfsections (abfd)[shindex] = hdr;
2001 /* We also treat this as a regular section, so that objcopy
2002 can handle it. */
2003 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2004 shindex);
2005 goto success;
2006 }
2007
2008 /* If the string table isn't one of the above, then treat it as a
2009 regular section. We need to scan all the headers to be sure,
2010 just in case this strtab section appeared before the above. */
2011 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2012 {
2013 unsigned int i, num_sec;
2014
2015 num_sec = elf_numsections (abfd);
2016 for (i = 1; i < num_sec; i++)
2017 {
2018 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2019 if (hdr2->sh_link == shindex)
2020 {
2021 /* Prevent endless recursion on broken objects. */
2022 if (i == shindex)
2023 goto fail;
2024 if (! bfd_section_from_shdr (abfd, i))
2025 goto fail;
2026 if (elf_onesymtab (abfd) == i)
2027 goto symtab_strtab;
2028 if (elf_dynsymtab (abfd) == i)
2029 goto dynsymtab_strtab;
2030 }
2031 }
2032 }
2033 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2034 goto success;
2035
2036 case SHT_REL:
2037 case SHT_RELA:
2038 /* *These* do a lot of work -- but build no sections! */
2039 {
2040 asection *target_sect;
2041 Elf_Internal_Shdr *hdr2, **p_hdr;
2042 unsigned int num_sec = elf_numsections (abfd);
2043 struct bfd_elf_section_data *esdt;
2044 bfd_size_type amt;
2045
2046 if (hdr->sh_entsize
2047 != (bfd_size_type) (hdr->sh_type == SHT_REL
2048 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2049 goto fail;
2050
2051 /* Check for a bogus link to avoid crashing. */
2052 if (hdr->sh_link >= num_sec)
2053 {
2054 ((*_bfd_error_handler)
2055 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2056 abfd, hdr->sh_link, name, shindex));
2057 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2058 shindex);
2059 goto success;
2060 }
2061
2062 /* For some incomprehensible reason Oracle distributes
2063 libraries for Solaris in which some of the objects have
2064 bogus sh_link fields. It would be nice if we could just
2065 reject them, but, unfortunately, some people need to use
2066 them. We scan through the section headers; if we find only
2067 one suitable symbol table, we clobber the sh_link to point
2068 to it. I hope this doesn't break anything.
2069
2070 Don't do it on executable nor shared library. */
2071 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2072 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2073 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2074 {
2075 unsigned int scan;
2076 int found;
2077
2078 found = 0;
2079 for (scan = 1; scan < num_sec; scan++)
2080 {
2081 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2082 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2083 {
2084 if (found != 0)
2085 {
2086 found = 0;
2087 break;
2088 }
2089 found = scan;
2090 }
2091 }
2092 if (found != 0)
2093 hdr->sh_link = found;
2094 }
2095
2096 /* Get the symbol table. */
2097 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2098 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2099 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2100 goto fail;
2101
2102 /* If this reloc section does not use the main symbol table we
2103 don't treat it as a reloc section. BFD can't adequately
2104 represent such a section, so at least for now, we don't
2105 try. We just present it as a normal section. We also
2106 can't use it as a reloc section if it points to the null
2107 section, an invalid section, another reloc section, or its
2108 sh_link points to the null section. */
2109 if (hdr->sh_link != elf_onesymtab (abfd)
2110 || hdr->sh_link == SHN_UNDEF
2111 || hdr->sh_info == SHN_UNDEF
2112 || hdr->sh_info >= num_sec
2113 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2114 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2115 {
2116 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2117 shindex);
2118 goto success;
2119 }
2120
2121 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2122 goto fail;
2123
2124 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2125 if (target_sect == NULL)
2126 goto fail;
2127
2128 esdt = elf_section_data (target_sect);
2129 if (hdr->sh_type == SHT_RELA)
2130 p_hdr = &esdt->rela.hdr;
2131 else
2132 p_hdr = &esdt->rel.hdr;
2133
2134 /* PR 17512: file: 0b4f81b7. */
2135 if (*p_hdr != NULL)
2136 goto fail;
2137 amt = sizeof (*hdr2);
2138 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
2139 if (hdr2 == NULL)
2140 goto fail;
2141 *hdr2 = *hdr;
2142 *p_hdr = hdr2;
2143 elf_elfsections (abfd)[shindex] = hdr2;
2144 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2145 target_sect->flags |= SEC_RELOC;
2146 target_sect->relocation = NULL;
2147 target_sect->rel_filepos = hdr->sh_offset;
2148 /* In the section to which the relocations apply, mark whether
2149 its relocations are of the REL or RELA variety. */
2150 if (hdr->sh_size != 0)
2151 {
2152 if (hdr->sh_type == SHT_RELA)
2153 target_sect->use_rela_p = 1;
2154 }
2155 abfd->flags |= HAS_RELOC;
2156 goto success;
2157 }
2158
2159 case SHT_GNU_verdef:
2160 elf_dynverdef (abfd) = shindex;
2161 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2162 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2163 goto success;
2164
2165 case SHT_GNU_versym:
2166 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2167 goto fail;
2168
2169 elf_dynversym (abfd) = shindex;
2170 elf_tdata (abfd)->dynversym_hdr = *hdr;
2171 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2172 goto success;
2173
2174 case SHT_GNU_verneed:
2175 elf_dynverref (abfd) = shindex;
2176 elf_tdata (abfd)->dynverref_hdr = *hdr;
2177 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2178 goto success;
2179
2180 case SHT_SHLIB:
2181 goto success;
2182
2183 case SHT_GROUP:
2184 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2185 goto fail;
2186
2187 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2188 goto fail;
2189
2190 if (hdr->contents != NULL)
2191 {
2192 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2193 unsigned int n_elt = hdr->sh_size / sizeof (* idx);
2194 asection *s;
2195
2196 if (n_elt == 0)
2197 goto fail;
2198 if (idx->flags & GRP_COMDAT)
2199 hdr->bfd_section->flags
2200 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2201
2202 /* We try to keep the same section order as it comes in. */
2203 idx += n_elt;
2204
2205 while (--n_elt != 0)
2206 {
2207 --idx;
2208
2209 if (idx->shdr != NULL
2210 && (s = idx->shdr->bfd_section) != NULL
2211 && elf_next_in_group (s) != NULL)
2212 {
2213 elf_next_in_group (hdr->bfd_section) = s;
2214 break;
2215 }
2216 }
2217 }
2218 goto success;
2219
2220 default:
2221 /* Possibly an attributes section. */
2222 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2223 || hdr->sh_type == bed->obj_attrs_section_type)
2224 {
2225 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2226 goto fail;
2227 _bfd_elf_parse_attributes (abfd, hdr);
2228 goto success;
2229 }
2230
2231 /* Check for any processor-specific section types. */
2232 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2233 goto success;
2234
2235 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2236 {
2237 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2238 /* FIXME: How to properly handle allocated section reserved
2239 for applications? */
2240 (*_bfd_error_handler)
2241 (_("%B: don't know how to handle allocated, application "
2242 "specific section `%s' [0x%8x]"),
2243 abfd, name, hdr->sh_type);
2244 else
2245 {
2246 /* Allow sections reserved for applications. */
2247 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2248 shindex);
2249 goto success;
2250 }
2251 }
2252 else if (hdr->sh_type >= SHT_LOPROC
2253 && hdr->sh_type <= SHT_HIPROC)
2254 /* FIXME: We should handle this section. */
2255 (*_bfd_error_handler)
2256 (_("%B: don't know how to handle processor specific section "
2257 "`%s' [0x%8x]"),
2258 abfd, name, hdr->sh_type);
2259 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2260 {
2261 /* Unrecognised OS-specific sections. */
2262 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2263 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2264 required to correctly process the section and the file should
2265 be rejected with an error message. */
2266 (*_bfd_error_handler)
2267 (_("%B: don't know how to handle OS specific section "
2268 "`%s' [0x%8x]"),
2269 abfd, name, hdr->sh_type);
2270 else
2271 {
2272 /* Otherwise it should be processed. */
2273 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2274 goto success;
2275 }
2276 }
2277 else
2278 /* FIXME: We should handle this section. */
2279 (*_bfd_error_handler)
2280 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2281 abfd, name, hdr->sh_type);
2282
2283 goto fail;
2284 }
2285
2286 fail:
2287 ret = FALSE;
2288 success:
2289 if (sections_being_created && sections_being_created_abfd == abfd)
2290 sections_being_created [shindex] = FALSE;
2291 if (-- nesting == 0)
2292 {
2293 sections_being_created = NULL;
2294 sections_being_created_abfd = abfd;
2295 }
2296 return ret;
2297 }
2298
2299 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2300
2301 Elf_Internal_Sym *
2302 bfd_sym_from_r_symndx (struct sym_cache *cache,
2303 bfd *abfd,
2304 unsigned long r_symndx)
2305 {
2306 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2307
2308 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2309 {
2310 Elf_Internal_Shdr *symtab_hdr;
2311 unsigned char esym[sizeof (Elf64_External_Sym)];
2312 Elf_External_Sym_Shndx eshndx;
2313
2314 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2315 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2316 &cache->sym[ent], esym, &eshndx) == NULL)
2317 return NULL;
2318
2319 if (cache->abfd != abfd)
2320 {
2321 memset (cache->indx, -1, sizeof (cache->indx));
2322 cache->abfd = abfd;
2323 }
2324 cache->indx[ent] = r_symndx;
2325 }
2326
2327 return &cache->sym[ent];
2328 }
2329
2330 /* Given an ELF section number, retrieve the corresponding BFD
2331 section. */
2332
2333 asection *
2334 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2335 {
2336 if (sec_index >= elf_numsections (abfd))
2337 return NULL;
2338 return elf_elfsections (abfd)[sec_index]->bfd_section;
2339 }
2340
2341 static const struct bfd_elf_special_section special_sections_b[] =
2342 {
2343 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2344 { NULL, 0, 0, 0, 0 }
2345 };
2346
2347 static const struct bfd_elf_special_section special_sections_c[] =
2348 {
2349 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2350 { NULL, 0, 0, 0, 0 }
2351 };
2352
2353 static const struct bfd_elf_special_section special_sections_d[] =
2354 {
2355 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2356 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2357 /* There are more DWARF sections than these, but they needn't be added here
2358 unless you have to cope with broken compilers that don't emit section
2359 attributes or you want to help the user writing assembler. */
2360 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2361 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2362 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2363 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2364 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2365 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2366 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2367 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2368 { NULL, 0, 0, 0, 0 }
2369 };
2370
2371 static const struct bfd_elf_special_section special_sections_f[] =
2372 {
2373 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2374 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2375 { NULL, 0, 0, 0, 0 }
2376 };
2377
2378 static const struct bfd_elf_special_section special_sections_g[] =
2379 {
2380 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2381 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2382 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2383 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2384 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2385 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2386 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2387 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2388 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2389 { NULL, 0, 0, 0, 0 }
2390 };
2391
2392 static const struct bfd_elf_special_section special_sections_h[] =
2393 {
2394 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2395 { NULL, 0, 0, 0, 0 }
2396 };
2397
2398 static const struct bfd_elf_special_section special_sections_i[] =
2399 {
2400 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2401 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2402 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2403 { NULL, 0, 0, 0, 0 }
2404 };
2405
2406 static const struct bfd_elf_special_section special_sections_l[] =
2407 {
2408 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2409 { NULL, 0, 0, 0, 0 }
2410 };
2411
2412 static const struct bfd_elf_special_section special_sections_n[] =
2413 {
2414 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2415 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2416 { NULL, 0, 0, 0, 0 }
2417 };
2418
2419 static const struct bfd_elf_special_section special_sections_p[] =
2420 {
2421 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2422 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2423 { NULL, 0, 0, 0, 0 }
2424 };
2425
2426 static const struct bfd_elf_special_section special_sections_r[] =
2427 {
2428 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2429 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2430 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2431 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2432 { NULL, 0, 0, 0, 0 }
2433 };
2434
2435 static const struct bfd_elf_special_section special_sections_s[] =
2436 {
2437 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2438 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2439 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2440 /* See struct bfd_elf_special_section declaration for the semantics of
2441 this special case where .prefix_length != strlen (.prefix). */
2442 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2443 { NULL, 0, 0, 0, 0 }
2444 };
2445
2446 static const struct bfd_elf_special_section special_sections_t[] =
2447 {
2448 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2449 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2450 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2451 { NULL, 0, 0, 0, 0 }
2452 };
2453
2454 static const struct bfd_elf_special_section special_sections_z[] =
2455 {
2456 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2457 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2458 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2459 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2460 { NULL, 0, 0, 0, 0 }
2461 };
2462
2463 static const struct bfd_elf_special_section * const special_sections[] =
2464 {
2465 special_sections_b, /* 'b' */
2466 special_sections_c, /* 'c' */
2467 special_sections_d, /* 'd' */
2468 NULL, /* 'e' */
2469 special_sections_f, /* 'f' */
2470 special_sections_g, /* 'g' */
2471 special_sections_h, /* 'h' */
2472 special_sections_i, /* 'i' */
2473 NULL, /* 'j' */
2474 NULL, /* 'k' */
2475 special_sections_l, /* 'l' */
2476 NULL, /* 'm' */
2477 special_sections_n, /* 'n' */
2478 NULL, /* 'o' */
2479 special_sections_p, /* 'p' */
2480 NULL, /* 'q' */
2481 special_sections_r, /* 'r' */
2482 special_sections_s, /* 's' */
2483 special_sections_t, /* 't' */
2484 NULL, /* 'u' */
2485 NULL, /* 'v' */
2486 NULL, /* 'w' */
2487 NULL, /* 'x' */
2488 NULL, /* 'y' */
2489 special_sections_z /* 'z' */
2490 };
2491
2492 const struct bfd_elf_special_section *
2493 _bfd_elf_get_special_section (const char *name,
2494 const struct bfd_elf_special_section *spec,
2495 unsigned int rela)
2496 {
2497 int i;
2498 int len;
2499
2500 len = strlen (name);
2501
2502 for (i = 0; spec[i].prefix != NULL; i++)
2503 {
2504 int suffix_len;
2505 int prefix_len = spec[i].prefix_length;
2506
2507 if (len < prefix_len)
2508 continue;
2509 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2510 continue;
2511
2512 suffix_len = spec[i].suffix_length;
2513 if (suffix_len <= 0)
2514 {
2515 if (name[prefix_len] != 0)
2516 {
2517 if (suffix_len == 0)
2518 continue;
2519 if (name[prefix_len] != '.'
2520 && (suffix_len == -2
2521 || (rela && spec[i].type == SHT_REL)))
2522 continue;
2523 }
2524 }
2525 else
2526 {
2527 if (len < prefix_len + suffix_len)
2528 continue;
2529 if (memcmp (name + len - suffix_len,
2530 spec[i].prefix + prefix_len,
2531 suffix_len) != 0)
2532 continue;
2533 }
2534 return &spec[i];
2535 }
2536
2537 return NULL;
2538 }
2539
2540 const struct bfd_elf_special_section *
2541 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2542 {
2543 int i;
2544 const struct bfd_elf_special_section *spec;
2545 const struct elf_backend_data *bed;
2546
2547 /* See if this is one of the special sections. */
2548 if (sec->name == NULL)
2549 return NULL;
2550
2551 bed = get_elf_backend_data (abfd);
2552 spec = bed->special_sections;
2553 if (spec)
2554 {
2555 spec = _bfd_elf_get_special_section (sec->name,
2556 bed->special_sections,
2557 sec->use_rela_p);
2558 if (spec != NULL)
2559 return spec;
2560 }
2561
2562 if (sec->name[0] != '.')
2563 return NULL;
2564
2565 i = sec->name[1] - 'b';
2566 if (i < 0 || i > 'z' - 'b')
2567 return NULL;
2568
2569 spec = special_sections[i];
2570
2571 if (spec == NULL)
2572 return NULL;
2573
2574 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2575 }
2576
2577 bfd_boolean
2578 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2579 {
2580 struct bfd_elf_section_data *sdata;
2581 const struct elf_backend_data *bed;
2582 const struct bfd_elf_special_section *ssect;
2583
2584 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2585 if (sdata == NULL)
2586 {
2587 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2588 sizeof (*sdata));
2589 if (sdata == NULL)
2590 return FALSE;
2591 sec->used_by_bfd = sdata;
2592 }
2593
2594 /* Indicate whether or not this section should use RELA relocations. */
2595 bed = get_elf_backend_data (abfd);
2596 sec->use_rela_p = bed->default_use_rela_p;
2597
2598 /* When we read a file, we don't need to set ELF section type and
2599 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2600 anyway. We will set ELF section type and flags for all linker
2601 created sections. If user specifies BFD section flags, we will
2602 set ELF section type and flags based on BFD section flags in
2603 elf_fake_sections. Special handling for .init_array/.fini_array
2604 output sections since they may contain .ctors/.dtors input
2605 sections. We don't want _bfd_elf_init_private_section_data to
2606 copy ELF section type from .ctors/.dtors input sections. */
2607 if (abfd->direction != read_direction
2608 || (sec->flags & SEC_LINKER_CREATED) != 0)
2609 {
2610 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2611 if (ssect != NULL
2612 && (!sec->flags
2613 || (sec->flags & SEC_LINKER_CREATED) != 0
2614 || ssect->type == SHT_INIT_ARRAY
2615 || ssect->type == SHT_FINI_ARRAY))
2616 {
2617 elf_section_type (sec) = ssect->type;
2618 elf_section_flags (sec) = ssect->attr;
2619 }
2620 }
2621
2622 return _bfd_generic_new_section_hook (abfd, sec);
2623 }
2624
2625 /* Create a new bfd section from an ELF program header.
2626
2627 Since program segments have no names, we generate a synthetic name
2628 of the form segment<NUM>, where NUM is generally the index in the
2629 program header table. For segments that are split (see below) we
2630 generate the names segment<NUM>a and segment<NUM>b.
2631
2632 Note that some program segments may have a file size that is different than
2633 (less than) the memory size. All this means is that at execution the
2634 system must allocate the amount of memory specified by the memory size,
2635 but only initialize it with the first "file size" bytes read from the
2636 file. This would occur for example, with program segments consisting
2637 of combined data+bss.
2638
2639 To handle the above situation, this routine generates TWO bfd sections
2640 for the single program segment. The first has the length specified by
2641 the file size of the segment, and the second has the length specified
2642 by the difference between the two sizes. In effect, the segment is split
2643 into its initialized and uninitialized parts.
2644
2645 */
2646
2647 bfd_boolean
2648 _bfd_elf_make_section_from_phdr (bfd *abfd,
2649 Elf_Internal_Phdr *hdr,
2650 int hdr_index,
2651 const char *type_name)
2652 {
2653 asection *newsect;
2654 char *name;
2655 char namebuf[64];
2656 size_t len;
2657 int split;
2658
2659 split = ((hdr->p_memsz > 0)
2660 && (hdr->p_filesz > 0)
2661 && (hdr->p_memsz > hdr->p_filesz));
2662
2663 if (hdr->p_filesz > 0)
2664 {
2665 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2666 len = strlen (namebuf) + 1;
2667 name = (char *) bfd_alloc (abfd, len);
2668 if (!name)
2669 return FALSE;
2670 memcpy (name, namebuf, len);
2671 newsect = bfd_make_section (abfd, name);
2672 if (newsect == NULL)
2673 return FALSE;
2674 newsect->vma = hdr->p_vaddr;
2675 newsect->lma = hdr->p_paddr;
2676 newsect->size = hdr->p_filesz;
2677 newsect->filepos = hdr->p_offset;
2678 newsect->flags |= SEC_HAS_CONTENTS;
2679 newsect->alignment_power = bfd_log2 (hdr->p_align);
2680 if (hdr->p_type == PT_LOAD)
2681 {
2682 newsect->flags |= SEC_ALLOC;
2683 newsect->flags |= SEC_LOAD;
2684 if (hdr->p_flags & PF_X)
2685 {
2686 /* FIXME: all we known is that it has execute PERMISSION,
2687 may be data. */
2688 newsect->flags |= SEC_CODE;
2689 }
2690 }
2691 if (!(hdr->p_flags & PF_W))
2692 {
2693 newsect->flags |= SEC_READONLY;
2694 }
2695 }
2696
2697 if (hdr->p_memsz > hdr->p_filesz)
2698 {
2699 bfd_vma align;
2700
2701 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2702 len = strlen (namebuf) + 1;
2703 name = (char *) bfd_alloc (abfd, len);
2704 if (!name)
2705 return FALSE;
2706 memcpy (name, namebuf, len);
2707 newsect = bfd_make_section (abfd, name);
2708 if (newsect == NULL)
2709 return FALSE;
2710 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2711 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2712 newsect->size = hdr->p_memsz - hdr->p_filesz;
2713 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2714 align = newsect->vma & -newsect->vma;
2715 if (align == 0 || align > hdr->p_align)
2716 align = hdr->p_align;
2717 newsect->alignment_power = bfd_log2 (align);
2718 if (hdr->p_type == PT_LOAD)
2719 {
2720 /* Hack for gdb. Segments that have not been modified do
2721 not have their contents written to a core file, on the
2722 assumption that a debugger can find the contents in the
2723 executable. We flag this case by setting the fake
2724 section size to zero. Note that "real" bss sections will
2725 always have their contents dumped to the core file. */
2726 if (bfd_get_format (abfd) == bfd_core)
2727 newsect->size = 0;
2728 newsect->flags |= SEC_ALLOC;
2729 if (hdr->p_flags & PF_X)
2730 newsect->flags |= SEC_CODE;
2731 }
2732 if (!(hdr->p_flags & PF_W))
2733 newsect->flags |= SEC_READONLY;
2734 }
2735
2736 return TRUE;
2737 }
2738
2739 bfd_boolean
2740 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2741 {
2742 const struct elf_backend_data *bed;
2743
2744 switch (hdr->p_type)
2745 {
2746 case PT_NULL:
2747 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2748
2749 case PT_LOAD:
2750 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2751
2752 case PT_DYNAMIC:
2753 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2754
2755 case PT_INTERP:
2756 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2757
2758 case PT_NOTE:
2759 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2760 return FALSE;
2761 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2762 return FALSE;
2763 return TRUE;
2764
2765 case PT_SHLIB:
2766 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2767
2768 case PT_PHDR:
2769 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2770
2771 case PT_GNU_EH_FRAME:
2772 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2773 "eh_frame_hdr");
2774
2775 case PT_GNU_STACK:
2776 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2777
2778 case PT_GNU_RELRO:
2779 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2780
2781 default:
2782 /* Check for any processor-specific program segment types. */
2783 bed = get_elf_backend_data (abfd);
2784 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2785 }
2786 }
2787
2788 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2789 REL or RELA. */
2790
2791 Elf_Internal_Shdr *
2792 _bfd_elf_single_rel_hdr (asection *sec)
2793 {
2794 if (elf_section_data (sec)->rel.hdr)
2795 {
2796 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2797 return elf_section_data (sec)->rel.hdr;
2798 }
2799 else
2800 return elf_section_data (sec)->rela.hdr;
2801 }
2802
2803 static bfd_boolean
2804 _bfd_elf_set_reloc_sh_name (bfd *abfd,
2805 Elf_Internal_Shdr *rel_hdr,
2806 const char *sec_name,
2807 bfd_boolean use_rela_p)
2808 {
2809 char *name = (char *) bfd_alloc (abfd,
2810 sizeof ".rela" + strlen (sec_name));
2811 if (name == NULL)
2812 return FALSE;
2813
2814 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
2815 rel_hdr->sh_name =
2816 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2817 FALSE);
2818 if (rel_hdr->sh_name == (unsigned int) -1)
2819 return FALSE;
2820
2821 return TRUE;
2822 }
2823
2824 /* Allocate and initialize a section-header for a new reloc section,
2825 containing relocations against ASECT. It is stored in RELDATA. If
2826 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2827 relocations. */
2828
2829 static bfd_boolean
2830 _bfd_elf_init_reloc_shdr (bfd *abfd,
2831 struct bfd_elf_section_reloc_data *reldata,
2832 const char *sec_name,
2833 bfd_boolean use_rela_p,
2834 bfd_boolean delay_st_name_p)
2835 {
2836 Elf_Internal_Shdr *rel_hdr;
2837 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2838 bfd_size_type amt;
2839
2840 amt = sizeof (Elf_Internal_Shdr);
2841 BFD_ASSERT (reldata->hdr == NULL);
2842 rel_hdr = bfd_zalloc (abfd, amt);
2843 reldata->hdr = rel_hdr;
2844
2845 if (delay_st_name_p)
2846 rel_hdr->sh_name = (unsigned int) -1;
2847 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
2848 use_rela_p))
2849 return FALSE;
2850 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2851 rel_hdr->sh_entsize = (use_rela_p
2852 ? bed->s->sizeof_rela
2853 : bed->s->sizeof_rel);
2854 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2855 rel_hdr->sh_flags = 0;
2856 rel_hdr->sh_addr = 0;
2857 rel_hdr->sh_size = 0;
2858 rel_hdr->sh_offset = 0;
2859
2860 return TRUE;
2861 }
2862
2863 /* Return the default section type based on the passed in section flags. */
2864
2865 int
2866 bfd_elf_get_default_section_type (flagword flags)
2867 {
2868 if ((flags & SEC_ALLOC) != 0
2869 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2870 return SHT_NOBITS;
2871 return SHT_PROGBITS;
2872 }
2873
2874 struct fake_section_arg
2875 {
2876 struct bfd_link_info *link_info;
2877 bfd_boolean failed;
2878 };
2879
2880 /* Set up an ELF internal section header for a section. */
2881
2882 static void
2883 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2884 {
2885 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2886 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2887 struct bfd_elf_section_data *esd = elf_section_data (asect);
2888 Elf_Internal_Shdr *this_hdr;
2889 unsigned int sh_type;
2890 const char *name = asect->name;
2891 bfd_boolean delay_st_name_p = FALSE;
2892
2893 if (arg->failed)
2894 {
2895 /* We already failed; just get out of the bfd_map_over_sections
2896 loop. */
2897 return;
2898 }
2899
2900 this_hdr = &esd->this_hdr;
2901
2902 if (arg->link_info)
2903 {
2904 /* ld: compress DWARF debug sections with names: .debug_*. */
2905 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
2906 && (asect->flags & SEC_DEBUGGING)
2907 && name[1] == 'd'
2908 && name[6] == '_')
2909 {
2910 /* Set SEC_ELF_COMPRESS to indicate this section should be
2911 compressed. */
2912 asect->flags |= SEC_ELF_COMPRESS;
2913
2914 /* If this section will be compressed, delay adding setion
2915 name to section name section after it is compressed in
2916 _bfd_elf_assign_file_positions_for_non_load. */
2917 delay_st_name_p = TRUE;
2918 }
2919 }
2920 else if ((asect->flags & SEC_ELF_RENAME))
2921 {
2922 /* objcopy: rename output DWARF debug section. */
2923 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
2924 {
2925 /* When we decompress or compress with SHF_COMPRESSED,
2926 convert section name from .zdebug_* to .debug_* if
2927 needed. */
2928 if (name[1] == 'z')
2929 {
2930 char *new_name = convert_zdebug_to_debug (abfd, name);
2931 if (new_name == NULL)
2932 {
2933 arg->failed = TRUE;
2934 return;
2935 }
2936 name = new_name;
2937 }
2938 }
2939 else if (asect->compress_status == COMPRESS_SECTION_DONE)
2940 {
2941 /* PR binutils/18087: Compression does not always make a
2942 section smaller. So only rename the section when
2943 compression has actually taken place. If input section
2944 name is .zdebug_*, we should never compress it again. */
2945 char *new_name = convert_debug_to_zdebug (abfd, name);
2946 if (new_name == NULL)
2947 {
2948 arg->failed = TRUE;
2949 return;
2950 }
2951 BFD_ASSERT (name[1] != 'z');
2952 name = new_name;
2953 }
2954 }
2955
2956 if (delay_st_name_p)
2957 this_hdr->sh_name = (unsigned int) -1;
2958 else
2959 {
2960 this_hdr->sh_name
2961 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2962 name, FALSE);
2963 if (this_hdr->sh_name == (unsigned int) -1)
2964 {
2965 arg->failed = TRUE;
2966 return;
2967 }
2968 }
2969
2970 /* Don't clear sh_flags. Assembler may set additional bits. */
2971
2972 if ((asect->flags & SEC_ALLOC) != 0
2973 || asect->user_set_vma)
2974 this_hdr->sh_addr = asect->vma;
2975 else
2976 this_hdr->sh_addr = 0;
2977
2978 this_hdr->sh_offset = 0;
2979 this_hdr->sh_size = asect->size;
2980 this_hdr->sh_link = 0;
2981 /* PR 17512: file: 0eb809fe, 8b0535ee. */
2982 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
2983 {
2984 (*_bfd_error_handler)
2985 (_("%B: error: Alignment power %d of section `%A' is too big"),
2986 abfd, asect, asect->alignment_power);
2987 arg->failed = TRUE;
2988 return;
2989 }
2990 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2991 /* The sh_entsize and sh_info fields may have been set already by
2992 copy_private_section_data. */
2993
2994 this_hdr->bfd_section = asect;
2995 this_hdr->contents = NULL;
2996
2997 /* If the section type is unspecified, we set it based on
2998 asect->flags. */
2999 if ((asect->flags & SEC_GROUP) != 0)
3000 sh_type = SHT_GROUP;
3001 else
3002 sh_type = bfd_elf_get_default_section_type (asect->flags);
3003
3004 if (this_hdr->sh_type == SHT_NULL)
3005 this_hdr->sh_type = sh_type;
3006 else if (this_hdr->sh_type == SHT_NOBITS
3007 && sh_type == SHT_PROGBITS
3008 && (asect->flags & SEC_ALLOC) != 0)
3009 {
3010 /* Warn if we are changing a NOBITS section to PROGBITS, but
3011 allow the link to proceed. This can happen when users link
3012 non-bss input sections to bss output sections, or emit data
3013 to a bss output section via a linker script. */
3014 (*_bfd_error_handler)
3015 (_("warning: section `%A' type changed to PROGBITS"), asect);
3016 this_hdr->sh_type = sh_type;
3017 }
3018
3019 switch (this_hdr->sh_type)
3020 {
3021 default:
3022 break;
3023
3024 case SHT_STRTAB:
3025 case SHT_INIT_ARRAY:
3026 case SHT_FINI_ARRAY:
3027 case SHT_PREINIT_ARRAY:
3028 case SHT_NOTE:
3029 case SHT_NOBITS:
3030 case SHT_PROGBITS:
3031 break;
3032
3033 case SHT_HASH:
3034 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3035 break;
3036
3037 case SHT_DYNSYM:
3038 this_hdr->sh_entsize = bed->s->sizeof_sym;
3039 break;
3040
3041 case SHT_DYNAMIC:
3042 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3043 break;
3044
3045 case SHT_RELA:
3046 if (get_elf_backend_data (abfd)->may_use_rela_p)
3047 this_hdr->sh_entsize = bed->s->sizeof_rela;
3048 break;
3049
3050 case SHT_REL:
3051 if (get_elf_backend_data (abfd)->may_use_rel_p)
3052 this_hdr->sh_entsize = bed->s->sizeof_rel;
3053 break;
3054
3055 case SHT_GNU_versym:
3056 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3057 break;
3058
3059 case SHT_GNU_verdef:
3060 this_hdr->sh_entsize = 0;
3061 /* objcopy or strip will copy over sh_info, but may not set
3062 cverdefs. The linker will set cverdefs, but sh_info will be
3063 zero. */
3064 if (this_hdr->sh_info == 0)
3065 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3066 else
3067 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3068 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3069 break;
3070
3071 case SHT_GNU_verneed:
3072 this_hdr->sh_entsize = 0;
3073 /* objcopy or strip will copy over sh_info, but may not set
3074 cverrefs. The linker will set cverrefs, but sh_info will be
3075 zero. */
3076 if (this_hdr->sh_info == 0)
3077 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3078 else
3079 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3080 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3081 break;
3082
3083 case SHT_GROUP:
3084 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3085 break;
3086
3087 case SHT_GNU_HASH:
3088 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3089 break;
3090 }
3091
3092 if ((asect->flags & SEC_ALLOC) != 0)
3093 this_hdr->sh_flags |= SHF_ALLOC;
3094 if ((asect->flags & SEC_READONLY) == 0)
3095 this_hdr->sh_flags |= SHF_WRITE;
3096 if ((asect->flags & SEC_CODE) != 0)
3097 this_hdr->sh_flags |= SHF_EXECINSTR;
3098 if ((asect->flags & SEC_MERGE) != 0)
3099 {
3100 this_hdr->sh_flags |= SHF_MERGE;
3101 this_hdr->sh_entsize = asect->entsize;
3102 if ((asect->flags & SEC_STRINGS) != 0)
3103 this_hdr->sh_flags |= SHF_STRINGS;
3104 }
3105 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3106 this_hdr->sh_flags |= SHF_GROUP;
3107 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3108 {
3109 this_hdr->sh_flags |= SHF_TLS;
3110 if (asect->size == 0
3111 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3112 {
3113 struct bfd_link_order *o = asect->map_tail.link_order;
3114
3115 this_hdr->sh_size = 0;
3116 if (o != NULL)
3117 {
3118 this_hdr->sh_size = o->offset + o->size;
3119 if (this_hdr->sh_size != 0)
3120 this_hdr->sh_type = SHT_NOBITS;
3121 }
3122 }
3123 }
3124 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3125 this_hdr->sh_flags |= SHF_EXCLUDE;
3126
3127 /* If the section has relocs, set up a section header for the
3128 SHT_REL[A] section. If two relocation sections are required for
3129 this section, it is up to the processor-specific back-end to
3130 create the other. */
3131 if ((asect->flags & SEC_RELOC) != 0)
3132 {
3133 /* When doing a relocatable link, create both REL and RELA sections if
3134 needed. */
3135 if (arg->link_info
3136 /* Do the normal setup if we wouldn't create any sections here. */
3137 && esd->rel.count + esd->rela.count > 0
3138 && (bfd_link_relocatable (arg->link_info)
3139 || arg->link_info->emitrelocations))
3140 {
3141 if (esd->rel.count && esd->rel.hdr == NULL
3142 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE,
3143 delay_st_name_p))
3144 {
3145 arg->failed = TRUE;
3146 return;
3147 }
3148 if (esd->rela.count && esd->rela.hdr == NULL
3149 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE,
3150 delay_st_name_p))
3151 {
3152 arg->failed = TRUE;
3153 return;
3154 }
3155 }
3156 else if (!_bfd_elf_init_reloc_shdr (abfd,
3157 (asect->use_rela_p
3158 ? &esd->rela : &esd->rel),
3159 name,
3160 asect->use_rela_p,
3161 delay_st_name_p))
3162 arg->failed = TRUE;
3163 }
3164
3165 /* Check for processor-specific section types. */
3166 sh_type = this_hdr->sh_type;
3167 if (bed->elf_backend_fake_sections
3168 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3169 arg->failed = TRUE;
3170
3171 if (sh_type == SHT_NOBITS && asect->size != 0)
3172 {
3173 /* Don't change the header type from NOBITS if we are being
3174 called for objcopy --only-keep-debug. */
3175 this_hdr->sh_type = sh_type;
3176 }
3177 }
3178
3179 /* Fill in the contents of a SHT_GROUP section. Called from
3180 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3181 when ELF targets use the generic linker, ld. Called for ld -r
3182 from bfd_elf_final_link. */
3183
3184 void
3185 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3186 {
3187 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3188 asection *elt, *first;
3189 unsigned char *loc;
3190 bfd_boolean gas;
3191
3192 /* Ignore linker created group section. See elfNN_ia64_object_p in
3193 elfxx-ia64.c. */
3194 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3195 || *failedptr)
3196 return;
3197
3198 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3199 {
3200 unsigned long symindx = 0;
3201
3202 /* elf_group_id will have been set up by objcopy and the
3203 generic linker. */
3204 if (elf_group_id (sec) != NULL)
3205 symindx = elf_group_id (sec)->udata.i;
3206
3207 if (symindx == 0)
3208 {
3209 /* If called from the assembler, swap_out_syms will have set up
3210 elf_section_syms. */
3211 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3212 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3213 }
3214 elf_section_data (sec)->this_hdr.sh_info = symindx;
3215 }
3216 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3217 {
3218 /* The ELF backend linker sets sh_info to -2 when the group
3219 signature symbol is global, and thus the index can't be
3220 set until all local symbols are output. */
3221 asection *igroup = elf_sec_group (elf_next_in_group (sec));
3222 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
3223 unsigned long symndx = sec_data->this_hdr.sh_info;
3224 unsigned long extsymoff = 0;
3225 struct elf_link_hash_entry *h;
3226
3227 if (!elf_bad_symtab (igroup->owner))
3228 {
3229 Elf_Internal_Shdr *symtab_hdr;
3230
3231 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3232 extsymoff = symtab_hdr->sh_info;
3233 }
3234 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3235 while (h->root.type == bfd_link_hash_indirect
3236 || h->root.type == bfd_link_hash_warning)
3237 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3238
3239 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3240 }
3241
3242 /* The contents won't be allocated for "ld -r" or objcopy. */
3243 gas = TRUE;
3244 if (sec->contents == NULL)
3245 {
3246 gas = FALSE;
3247 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3248
3249 /* Arrange for the section to be written out. */
3250 elf_section_data (sec)->this_hdr.contents = sec->contents;
3251 if (sec->contents == NULL)
3252 {
3253 *failedptr = TRUE;
3254 return;
3255 }
3256 }
3257
3258 loc = sec->contents + sec->size;
3259
3260 /* Get the pointer to the first section in the group that gas
3261 squirreled away here. objcopy arranges for this to be set to the
3262 start of the input section group. */
3263 first = elt = elf_next_in_group (sec);
3264
3265 /* First element is a flag word. Rest of section is elf section
3266 indices for all the sections of the group. Write them backwards
3267 just to keep the group in the same order as given in .section
3268 directives, not that it matters. */
3269 while (elt != NULL)
3270 {
3271 asection *s;
3272
3273 s = elt;
3274 if (!gas)
3275 s = s->output_section;
3276 if (s != NULL
3277 && !bfd_is_abs_section (s))
3278 {
3279 unsigned int idx = elf_section_data (s)->this_idx;
3280
3281 loc -= 4;
3282 H_PUT_32 (abfd, idx, loc);
3283 }
3284 elt = elf_next_in_group (elt);
3285 if (elt == first)
3286 break;
3287 }
3288
3289 if ((loc -= 4) != sec->contents)
3290 abort ();
3291
3292 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3293 }
3294
3295 /* Return the section which RELOC_SEC applies to. */
3296
3297 asection *
3298 _bfd_elf_get_reloc_section (asection *reloc_sec)
3299 {
3300 const char *name;
3301 unsigned int type;
3302 bfd *abfd;
3303
3304 if (reloc_sec == NULL)
3305 return NULL;
3306
3307 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3308 if (type != SHT_REL && type != SHT_RELA)
3309 return NULL;
3310
3311 /* We look up the section the relocs apply to by name. */
3312 name = reloc_sec->name;
3313 if (type == SHT_REL)
3314 name += 4;
3315 else
3316 name += 5;
3317
3318 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3319 section apply to .got.plt section. */
3320 abfd = reloc_sec->owner;
3321 if (get_elf_backend_data (abfd)->want_got_plt
3322 && strcmp (name, ".plt") == 0)
3323 {
3324 /* .got.plt is a linker created input section. It may be mapped
3325 to some other output section. Try two likely sections. */
3326 name = ".got.plt";
3327 reloc_sec = bfd_get_section_by_name (abfd, name);
3328 if (reloc_sec != NULL)
3329 return reloc_sec;
3330 name = ".got";
3331 }
3332
3333 reloc_sec = bfd_get_section_by_name (abfd, name);
3334 return reloc_sec;
3335 }
3336
3337 /* Assign all ELF section numbers. The dummy first section is handled here
3338 too. The link/info pointers for the standard section types are filled
3339 in here too, while we're at it. */
3340
3341 static bfd_boolean
3342 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3343 {
3344 struct elf_obj_tdata *t = elf_tdata (abfd);
3345 asection *sec;
3346 unsigned int section_number;
3347 Elf_Internal_Shdr **i_shdrp;
3348 struct bfd_elf_section_data *d;
3349 bfd_boolean need_symtab;
3350
3351 section_number = 1;
3352
3353 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3354
3355 /* SHT_GROUP sections are in relocatable files only. */
3356 if (link_info == NULL || bfd_link_relocatable (link_info))
3357 {
3358 bfd_size_type reloc_count = 0;
3359
3360 /* Put SHT_GROUP sections first. */
3361 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3362 {
3363 d = elf_section_data (sec);
3364
3365 if (d->this_hdr.sh_type == SHT_GROUP)
3366 {
3367 if (sec->flags & SEC_LINKER_CREATED)
3368 {
3369 /* Remove the linker created SHT_GROUP sections. */
3370 bfd_section_list_remove (abfd, sec);
3371 abfd->section_count--;
3372 }
3373 else
3374 d->this_idx = section_number++;
3375 }
3376
3377 /* Count relocations. */
3378 reloc_count += sec->reloc_count;
3379 }
3380
3381 /* Clear HAS_RELOC if there are no relocations. */
3382 if (reloc_count == 0)
3383 abfd->flags &= ~HAS_RELOC;
3384 }
3385
3386 for (sec = abfd->sections; sec; sec = sec->next)
3387 {
3388 d = elf_section_data (sec);
3389
3390 if (d->this_hdr.sh_type != SHT_GROUP)
3391 d->this_idx = section_number++;
3392 if (d->this_hdr.sh_name != (unsigned int) -1)
3393 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3394 if (d->rel.hdr)
3395 {
3396 d->rel.idx = section_number++;
3397 if (d->rel.hdr->sh_name != (unsigned int) -1)
3398 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3399 }
3400 else
3401 d->rel.idx = 0;
3402
3403 if (d->rela.hdr)
3404 {
3405 d->rela.idx = section_number++;
3406 if (d->rela.hdr->sh_name != (unsigned int) -1)
3407 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3408 }
3409 else
3410 d->rela.idx = 0;
3411 }
3412
3413 elf_shstrtab_sec (abfd) = section_number++;
3414 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3415 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3416
3417 need_symtab = (bfd_get_symcount (abfd) > 0
3418 || (link_info == NULL
3419 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3420 == HAS_RELOC)));
3421 if (need_symtab)
3422 {
3423 elf_onesymtab (abfd) = section_number++;
3424 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3425 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3426 {
3427 elf_section_list * entry;
3428
3429 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3430
3431 entry = bfd_zalloc (abfd, sizeof * entry);
3432 entry->ndx = section_number++;
3433 elf_symtab_shndx_list (abfd) = entry;
3434 entry->hdr.sh_name
3435 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3436 ".symtab_shndx", FALSE);
3437 if (entry->hdr.sh_name == (unsigned int) -1)
3438 return FALSE;
3439 }
3440 elf_strtab_sec (abfd) = section_number++;
3441 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3442 }
3443
3444 if (section_number >= SHN_LORESERVE)
3445 {
3446 _bfd_error_handler (_("%B: too many sections: %u"),
3447 abfd, section_number);
3448 return FALSE;
3449 }
3450
3451 elf_numsections (abfd) = section_number;
3452 elf_elfheader (abfd)->e_shnum = section_number;
3453
3454 /* Set up the list of section header pointers, in agreement with the
3455 indices. */
3456 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3457 sizeof (Elf_Internal_Shdr *));
3458 if (i_shdrp == NULL)
3459 return FALSE;
3460
3461 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3462 sizeof (Elf_Internal_Shdr));
3463 if (i_shdrp[0] == NULL)
3464 {
3465 bfd_release (abfd, i_shdrp);
3466 return FALSE;
3467 }
3468
3469 elf_elfsections (abfd) = i_shdrp;
3470
3471 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3472 if (need_symtab)
3473 {
3474 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3475 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3476 {
3477 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3478 BFD_ASSERT (entry != NULL);
3479 i_shdrp[entry->ndx] = & entry->hdr;
3480 entry->hdr.sh_link = elf_onesymtab (abfd);
3481 }
3482 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3483 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3484 }
3485
3486 for (sec = abfd->sections; sec; sec = sec->next)
3487 {
3488 asection *s;
3489
3490 d = elf_section_data (sec);
3491
3492 i_shdrp[d->this_idx] = &d->this_hdr;
3493 if (d->rel.idx != 0)
3494 i_shdrp[d->rel.idx] = d->rel.hdr;
3495 if (d->rela.idx != 0)
3496 i_shdrp[d->rela.idx] = d->rela.hdr;
3497
3498 /* Fill in the sh_link and sh_info fields while we're at it. */
3499
3500 /* sh_link of a reloc section is the section index of the symbol
3501 table. sh_info is the section index of the section to which
3502 the relocation entries apply. */
3503 if (d->rel.idx != 0)
3504 {
3505 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3506 d->rel.hdr->sh_info = d->this_idx;
3507 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3508 }
3509 if (d->rela.idx != 0)
3510 {
3511 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3512 d->rela.hdr->sh_info = d->this_idx;
3513 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3514 }
3515
3516 /* We need to set up sh_link for SHF_LINK_ORDER. */
3517 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3518 {
3519 s = elf_linked_to_section (sec);
3520 if (s)
3521 {
3522 /* elf_linked_to_section points to the input section. */
3523 if (link_info != NULL)
3524 {
3525 /* Check discarded linkonce section. */
3526 if (discarded_section (s))
3527 {
3528 asection *kept;
3529 (*_bfd_error_handler)
3530 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3531 abfd, d->this_hdr.bfd_section,
3532 s, s->owner);
3533 /* Point to the kept section if it has the same
3534 size as the discarded one. */
3535 kept = _bfd_elf_check_kept_section (s, link_info);
3536 if (kept == NULL)
3537 {
3538 bfd_set_error (bfd_error_bad_value);
3539 return FALSE;
3540 }
3541 s = kept;
3542 }
3543
3544 s = s->output_section;
3545 BFD_ASSERT (s != NULL);
3546 }
3547 else
3548 {
3549 /* Handle objcopy. */
3550 if (s->output_section == NULL)
3551 {
3552 (*_bfd_error_handler)
3553 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3554 abfd, d->this_hdr.bfd_section, s, s->owner);
3555 bfd_set_error (bfd_error_bad_value);
3556 return FALSE;
3557 }
3558 s = s->output_section;
3559 }
3560 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3561 }
3562 else
3563 {
3564 /* PR 290:
3565 The Intel C compiler generates SHT_IA_64_UNWIND with
3566 SHF_LINK_ORDER. But it doesn't set the sh_link or
3567 sh_info fields. Hence we could get the situation
3568 where s is NULL. */
3569 const struct elf_backend_data *bed
3570 = get_elf_backend_data (abfd);
3571 if (bed->link_order_error_handler)
3572 bed->link_order_error_handler
3573 (_("%B: warning: sh_link not set for section `%A'"),
3574 abfd, sec);
3575 }
3576 }
3577
3578 switch (d->this_hdr.sh_type)
3579 {
3580 case SHT_REL:
3581 case SHT_RELA:
3582 /* A reloc section which we are treating as a normal BFD
3583 section. sh_link is the section index of the symbol
3584 table. sh_info is the section index of the section to
3585 which the relocation entries apply. We assume that an
3586 allocated reloc section uses the dynamic symbol table.
3587 FIXME: How can we be sure? */
3588 s = bfd_get_section_by_name (abfd, ".dynsym");
3589 if (s != NULL)
3590 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3591
3592 s = get_elf_backend_data (abfd)->get_reloc_section (sec);
3593 if (s != NULL)
3594 {
3595 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3596 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3597 }
3598 break;
3599
3600 case SHT_STRTAB:
3601 /* We assume that a section named .stab*str is a stabs
3602 string section. We look for a section with the same name
3603 but without the trailing ``str'', and set its sh_link
3604 field to point to this section. */
3605 if (CONST_STRNEQ (sec->name, ".stab")
3606 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3607 {
3608 size_t len;
3609 char *alc;
3610
3611 len = strlen (sec->name);
3612 alc = (char *) bfd_malloc (len - 2);
3613 if (alc == NULL)
3614 return FALSE;
3615 memcpy (alc, sec->name, len - 3);
3616 alc[len - 3] = '\0';
3617 s = bfd_get_section_by_name (abfd, alc);
3618 free (alc);
3619 if (s != NULL)
3620 {
3621 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3622
3623 /* This is a .stab section. */
3624 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3625 elf_section_data (s)->this_hdr.sh_entsize
3626 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3627 }
3628 }
3629 break;
3630
3631 case SHT_DYNAMIC:
3632 case SHT_DYNSYM:
3633 case SHT_GNU_verneed:
3634 case SHT_GNU_verdef:
3635 /* sh_link is the section header index of the string table
3636 used for the dynamic entries, or the symbol table, or the
3637 version strings. */
3638 s = bfd_get_section_by_name (abfd, ".dynstr");
3639 if (s != NULL)
3640 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3641 break;
3642
3643 case SHT_GNU_LIBLIST:
3644 /* sh_link is the section header index of the prelink library
3645 list used for the dynamic entries, or the symbol table, or
3646 the version strings. */
3647 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3648 ? ".dynstr" : ".gnu.libstr");
3649 if (s != NULL)
3650 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3651 break;
3652
3653 case SHT_HASH:
3654 case SHT_GNU_HASH:
3655 case SHT_GNU_versym:
3656 /* sh_link is the section header index of the symbol table
3657 this hash table or version table is for. */
3658 s = bfd_get_section_by_name (abfd, ".dynsym");
3659 if (s != NULL)
3660 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3661 break;
3662
3663 case SHT_GROUP:
3664 d->this_hdr.sh_link = elf_onesymtab (abfd);
3665 }
3666 }
3667
3668 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3669 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3670 debug section name from .debug_* to .zdebug_* if needed. */
3671
3672 return TRUE;
3673 }
3674
3675 static bfd_boolean
3676 sym_is_global (bfd *abfd, asymbol *sym)
3677 {
3678 /* If the backend has a special mapping, use it. */
3679 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3680 if (bed->elf_backend_sym_is_global)
3681 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3682
3683 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3684 || bfd_is_und_section (bfd_get_section (sym))
3685 || bfd_is_com_section (bfd_get_section (sym)));
3686 }
3687
3688 /* Don't output section symbols for sections that are not going to be
3689 output, that are duplicates or there is no BFD section. */
3690
3691 static bfd_boolean
3692 ignore_section_sym (bfd *abfd, asymbol *sym)
3693 {
3694 elf_symbol_type *type_ptr;
3695
3696 if ((sym->flags & BSF_SECTION_SYM) == 0)
3697 return FALSE;
3698
3699 type_ptr = elf_symbol_from (abfd, sym);
3700 return ((type_ptr != NULL
3701 && type_ptr->internal_elf_sym.st_shndx != 0
3702 && bfd_is_abs_section (sym->section))
3703 || !(sym->section->owner == abfd
3704 || (sym->section->output_section->owner == abfd
3705 && sym->section->output_offset == 0)
3706 || bfd_is_abs_section (sym->section)));
3707 }
3708
3709 /* Map symbol from it's internal number to the external number, moving
3710 all local symbols to be at the head of the list. */
3711
3712 static bfd_boolean
3713 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3714 {
3715 unsigned int symcount = bfd_get_symcount (abfd);
3716 asymbol **syms = bfd_get_outsymbols (abfd);
3717 asymbol **sect_syms;
3718 unsigned int num_locals = 0;
3719 unsigned int num_globals = 0;
3720 unsigned int num_locals2 = 0;
3721 unsigned int num_globals2 = 0;
3722 unsigned int max_index = 0;
3723 unsigned int idx;
3724 asection *asect;
3725 asymbol **new_syms;
3726
3727 #ifdef DEBUG
3728 fprintf (stderr, "elf_map_symbols\n");
3729 fflush (stderr);
3730 #endif
3731
3732 for (asect = abfd->sections; asect; asect = asect->next)
3733 {
3734 if (max_index < asect->index)
3735 max_index = asect->index;
3736 }
3737
3738 max_index++;
3739 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3740 if (sect_syms == NULL)
3741 return FALSE;
3742 elf_section_syms (abfd) = sect_syms;
3743 elf_num_section_syms (abfd) = max_index;
3744
3745 /* Init sect_syms entries for any section symbols we have already
3746 decided to output. */
3747 for (idx = 0; idx < symcount; idx++)
3748 {
3749 asymbol *sym = syms[idx];
3750
3751 if ((sym->flags & BSF_SECTION_SYM) != 0
3752 && sym->value == 0
3753 && !ignore_section_sym (abfd, sym)
3754 && !bfd_is_abs_section (sym->section))
3755 {
3756 asection *sec = sym->section;
3757
3758 if (sec->owner != abfd)
3759 sec = sec->output_section;
3760
3761 sect_syms[sec->index] = syms[idx];
3762 }
3763 }
3764
3765 /* Classify all of the symbols. */
3766 for (idx = 0; idx < symcount; idx++)
3767 {
3768 if (sym_is_global (abfd, syms[idx]))
3769 num_globals++;
3770 else if (!ignore_section_sym (abfd, syms[idx]))
3771 num_locals++;
3772 }
3773
3774 /* We will be adding a section symbol for each normal BFD section. Most
3775 sections will already have a section symbol in outsymbols, but
3776 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3777 at least in that case. */
3778 for (asect = abfd->sections; asect; asect = asect->next)
3779 {
3780 if (sect_syms[asect->index] == NULL)
3781 {
3782 if (!sym_is_global (abfd, asect->symbol))
3783 num_locals++;
3784 else
3785 num_globals++;
3786 }
3787 }
3788
3789 /* Now sort the symbols so the local symbols are first. */
3790 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3791 sizeof (asymbol *));
3792
3793 if (new_syms == NULL)
3794 return FALSE;
3795
3796 for (idx = 0; idx < symcount; idx++)
3797 {
3798 asymbol *sym = syms[idx];
3799 unsigned int i;
3800
3801 if (sym_is_global (abfd, sym))
3802 i = num_locals + num_globals2++;
3803 else if (!ignore_section_sym (abfd, sym))
3804 i = num_locals2++;
3805 else
3806 continue;
3807 new_syms[i] = sym;
3808 sym->udata.i = i + 1;
3809 }
3810 for (asect = abfd->sections; asect; asect = asect->next)
3811 {
3812 if (sect_syms[asect->index] == NULL)
3813 {
3814 asymbol *sym = asect->symbol;
3815 unsigned int i;
3816
3817 sect_syms[asect->index] = sym;
3818 if (!sym_is_global (abfd, sym))
3819 i = num_locals2++;
3820 else
3821 i = num_locals + num_globals2++;
3822 new_syms[i] = sym;
3823 sym->udata.i = i + 1;
3824 }
3825 }
3826
3827 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3828
3829 *pnum_locals = num_locals;
3830 return TRUE;
3831 }
3832
3833 /* Align to the maximum file alignment that could be required for any
3834 ELF data structure. */
3835
3836 static inline file_ptr
3837 align_file_position (file_ptr off, int align)
3838 {
3839 return (off + align - 1) & ~(align - 1);
3840 }
3841
3842 /* Assign a file position to a section, optionally aligning to the
3843 required section alignment. */
3844
3845 file_ptr
3846 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3847 file_ptr offset,
3848 bfd_boolean align)
3849 {
3850 if (align && i_shdrp->sh_addralign > 1)
3851 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3852 i_shdrp->sh_offset = offset;
3853 if (i_shdrp->bfd_section != NULL)
3854 i_shdrp->bfd_section->filepos = offset;
3855 if (i_shdrp->sh_type != SHT_NOBITS)
3856 offset += i_shdrp->sh_size;
3857 return offset;
3858 }
3859
3860 /* Compute the file positions we are going to put the sections at, and
3861 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3862 is not NULL, this is being called by the ELF backend linker. */
3863
3864 bfd_boolean
3865 _bfd_elf_compute_section_file_positions (bfd *abfd,
3866 struct bfd_link_info *link_info)
3867 {
3868 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3869 struct fake_section_arg fsargs;
3870 bfd_boolean failed;
3871 struct elf_strtab_hash *strtab = NULL;
3872 Elf_Internal_Shdr *shstrtab_hdr;
3873 bfd_boolean need_symtab;
3874
3875 if (abfd->output_has_begun)
3876 return TRUE;
3877
3878 /* Do any elf backend specific processing first. */
3879 if (bed->elf_backend_begin_write_processing)
3880 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3881
3882 if (! prep_headers (abfd))
3883 return FALSE;
3884
3885 /* Post process the headers if necessary. */
3886 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3887
3888 fsargs.failed = FALSE;
3889 fsargs.link_info = link_info;
3890 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3891 if (fsargs.failed)
3892 return FALSE;
3893
3894 if (!assign_section_numbers (abfd, link_info))
3895 return FALSE;
3896
3897 /* The backend linker builds symbol table information itself. */
3898 need_symtab = (link_info == NULL
3899 && (bfd_get_symcount (abfd) > 0
3900 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3901 == HAS_RELOC)));
3902 if (need_symtab)
3903 {
3904 /* Non-zero if doing a relocatable link. */
3905 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3906
3907 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3908 return FALSE;
3909 }
3910
3911 failed = FALSE;
3912 if (link_info == NULL)
3913 {
3914 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3915 if (failed)
3916 return FALSE;
3917 }
3918
3919 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3920 /* sh_name was set in prep_headers. */
3921 shstrtab_hdr->sh_type = SHT_STRTAB;
3922 shstrtab_hdr->sh_flags = 0;
3923 shstrtab_hdr->sh_addr = 0;
3924 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
3925 shstrtab_hdr->sh_entsize = 0;
3926 shstrtab_hdr->sh_link = 0;
3927 shstrtab_hdr->sh_info = 0;
3928 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
3929 shstrtab_hdr->sh_addralign = 1;
3930
3931 if (!assign_file_positions_except_relocs (abfd, link_info))
3932 return FALSE;
3933
3934 if (need_symtab)
3935 {
3936 file_ptr off;
3937 Elf_Internal_Shdr *hdr;
3938
3939 off = elf_next_file_pos (abfd);
3940
3941 hdr = & elf_symtab_hdr (abfd);
3942 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3943
3944 if (elf_symtab_shndx_list (abfd) != NULL)
3945 {
3946 hdr = & elf_symtab_shndx_list (abfd)->hdr;
3947 if (hdr->sh_size != 0)
3948 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3949 /* FIXME: What about other symtab_shndx sections in the list ? */
3950 }
3951
3952 hdr = &elf_tdata (abfd)->strtab_hdr;
3953 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3954
3955 elf_next_file_pos (abfd) = off;
3956
3957 /* Now that we know where the .strtab section goes, write it
3958 out. */
3959 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3960 || ! _bfd_elf_strtab_emit (abfd, strtab))
3961 return FALSE;
3962 _bfd_elf_strtab_free (strtab);
3963 }
3964
3965 abfd->output_has_begun = TRUE;
3966
3967 return TRUE;
3968 }
3969
3970 /* Make an initial estimate of the size of the program header. If we
3971 get the number wrong here, we'll redo section placement. */
3972
3973 static bfd_size_type
3974 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3975 {
3976 size_t segs;
3977 asection *s;
3978 const struct elf_backend_data *bed;
3979
3980 /* Assume we will need exactly two PT_LOAD segments: one for text
3981 and one for data. */
3982 segs = 2;
3983
3984 s = bfd_get_section_by_name (abfd, ".interp");
3985 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3986 {
3987 /* If we have a loadable interpreter section, we need a
3988 PT_INTERP segment. In this case, assume we also need a
3989 PT_PHDR segment, although that may not be true for all
3990 targets. */
3991 segs += 2;
3992 }
3993
3994 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3995 {
3996 /* We need a PT_DYNAMIC segment. */
3997 ++segs;
3998 }
3999
4000 if (info != NULL && info->relro)
4001 {
4002 /* We need a PT_GNU_RELRO segment. */
4003 ++segs;
4004 }
4005
4006 if (elf_eh_frame_hdr (abfd))
4007 {
4008 /* We need a PT_GNU_EH_FRAME segment. */
4009 ++segs;
4010 }
4011
4012 if (elf_stack_flags (abfd))
4013 {
4014 /* We need a PT_GNU_STACK segment. */
4015 ++segs;
4016 }
4017
4018 for (s = abfd->sections; s != NULL; s = s->next)
4019 {
4020 if ((s->flags & SEC_LOAD) != 0
4021 && CONST_STRNEQ (s->name, ".note"))
4022 {
4023 /* We need a PT_NOTE segment. */
4024 ++segs;
4025 /* Try to create just one PT_NOTE segment
4026 for all adjacent loadable .note* sections.
4027 gABI requires that within a PT_NOTE segment
4028 (and also inside of each SHT_NOTE section)
4029 each note is padded to a multiple of 4 size,
4030 so we check whether the sections are correctly
4031 aligned. */
4032 if (s->alignment_power == 2)
4033 while (s->next != NULL
4034 && s->next->alignment_power == 2
4035 && (s->next->flags & SEC_LOAD) != 0
4036 && CONST_STRNEQ (s->next->name, ".note"))
4037 s = s->next;
4038 }
4039 }
4040
4041 for (s = abfd->sections; s != NULL; s = s->next)
4042 {
4043 if (s->flags & SEC_THREAD_LOCAL)
4044 {
4045 /* We need a PT_TLS segment. */
4046 ++segs;
4047 break;
4048 }
4049 }
4050
4051 /* Let the backend count up any program headers it might need. */
4052 bed = get_elf_backend_data (abfd);
4053 if (bed->elf_backend_additional_program_headers)
4054 {
4055 int a;
4056
4057 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4058 if (a == -1)
4059 abort ();
4060 segs += a;
4061 }
4062
4063 return segs * bed->s->sizeof_phdr;
4064 }
4065
4066 /* Find the segment that contains the output_section of section. */
4067
4068 Elf_Internal_Phdr *
4069 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4070 {
4071 struct elf_segment_map *m;
4072 Elf_Internal_Phdr *p;
4073
4074 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4075 m != NULL;
4076 m = m->next, p++)
4077 {
4078 int i;
4079
4080 for (i = m->count - 1; i >= 0; i--)
4081 if (m->sections[i] == section)
4082 return p;
4083 }
4084
4085 return NULL;
4086 }
4087
4088 /* Create a mapping from a set of sections to a program segment. */
4089
4090 static struct elf_segment_map *
4091 make_mapping (bfd *abfd,
4092 asection **sections,
4093 unsigned int from,
4094 unsigned int to,
4095 bfd_boolean phdr)
4096 {
4097 struct elf_segment_map *m;
4098 unsigned int i;
4099 asection **hdrpp;
4100 bfd_size_type amt;
4101
4102 amt = sizeof (struct elf_segment_map);
4103 amt += (to - from - 1) * sizeof (asection *);
4104 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4105 if (m == NULL)
4106 return NULL;
4107 m->next = NULL;
4108 m->p_type = PT_LOAD;
4109 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4110 m->sections[i - from] = *hdrpp;
4111 m->count = to - from;
4112
4113 if (from == 0 && phdr)
4114 {
4115 /* Include the headers in the first PT_LOAD segment. */
4116 m->includes_filehdr = 1;
4117 m->includes_phdrs = 1;
4118 }
4119
4120 return m;
4121 }
4122
4123 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4124 on failure. */
4125
4126 struct elf_segment_map *
4127 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4128 {
4129 struct elf_segment_map *m;
4130
4131 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4132 sizeof (struct elf_segment_map));
4133 if (m == NULL)
4134 return NULL;
4135 m->next = NULL;
4136 m->p_type = PT_DYNAMIC;
4137 m->count = 1;
4138 m->sections[0] = dynsec;
4139
4140 return m;
4141 }
4142
4143 /* Possibly add or remove segments from the segment map. */
4144
4145 static bfd_boolean
4146 elf_modify_segment_map (bfd *abfd,
4147 struct bfd_link_info *info,
4148 bfd_boolean remove_empty_load)
4149 {
4150 struct elf_segment_map **m;
4151 const struct elf_backend_data *bed;
4152
4153 /* The placement algorithm assumes that non allocated sections are
4154 not in PT_LOAD segments. We ensure this here by removing such
4155 sections from the segment map. We also remove excluded
4156 sections. Finally, any PT_LOAD segment without sections is
4157 removed. */
4158 m = &elf_seg_map (abfd);
4159 while (*m)
4160 {
4161 unsigned int i, new_count;
4162
4163 for (new_count = 0, i = 0; i < (*m)->count; i++)
4164 {
4165 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4166 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4167 || (*m)->p_type != PT_LOAD))
4168 {
4169 (*m)->sections[new_count] = (*m)->sections[i];
4170 new_count++;
4171 }
4172 }
4173 (*m)->count = new_count;
4174
4175 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
4176 *m = (*m)->next;
4177 else
4178 m = &(*m)->next;
4179 }
4180
4181 bed = get_elf_backend_data (abfd);
4182 if (bed->elf_backend_modify_segment_map != NULL)
4183 {
4184 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4185 return FALSE;
4186 }
4187
4188 return TRUE;
4189 }
4190
4191 /* Set up a mapping from BFD sections to program segments. */
4192
4193 bfd_boolean
4194 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4195 {
4196 unsigned int count;
4197 struct elf_segment_map *m;
4198 asection **sections = NULL;
4199 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4200 bfd_boolean no_user_phdrs;
4201
4202 no_user_phdrs = elf_seg_map (abfd) == NULL;
4203
4204 if (info != NULL)
4205 info->user_phdrs = !no_user_phdrs;
4206
4207 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4208 {
4209 asection *s;
4210 unsigned int i;
4211 struct elf_segment_map *mfirst;
4212 struct elf_segment_map **pm;
4213 asection *last_hdr;
4214 bfd_vma last_size;
4215 unsigned int phdr_index;
4216 bfd_vma maxpagesize;
4217 asection **hdrpp;
4218 bfd_boolean phdr_in_segment = TRUE;
4219 bfd_boolean writable;
4220 int tls_count = 0;
4221 asection *first_tls = NULL;
4222 asection *dynsec, *eh_frame_hdr;
4223 bfd_size_type amt;
4224 bfd_vma addr_mask, wrap_to = 0;
4225
4226 /* Select the allocated sections, and sort them. */
4227
4228 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4229 sizeof (asection *));
4230 if (sections == NULL)
4231 goto error_return;
4232
4233 /* Calculate top address, avoiding undefined behaviour of shift
4234 left operator when shift count is equal to size of type
4235 being shifted. */
4236 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4237 addr_mask = (addr_mask << 1) + 1;
4238
4239 i = 0;
4240 for (s = abfd->sections; s != NULL; s = s->next)
4241 {
4242 if ((s->flags & SEC_ALLOC) != 0)
4243 {
4244 sections[i] = s;
4245 ++i;
4246 /* A wrapping section potentially clashes with header. */
4247 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4248 wrap_to = (s->lma + s->size) & addr_mask;
4249 }
4250 }
4251 BFD_ASSERT (i <= bfd_count_sections (abfd));
4252 count = i;
4253
4254 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4255
4256 /* Build the mapping. */
4257
4258 mfirst = NULL;
4259 pm = &mfirst;
4260
4261 /* If we have a .interp section, then create a PT_PHDR segment for
4262 the program headers and a PT_INTERP segment for the .interp
4263 section. */
4264 s = bfd_get_section_by_name (abfd, ".interp");
4265 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4266 {
4267 amt = sizeof (struct elf_segment_map);
4268 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4269 if (m == NULL)
4270 goto error_return;
4271 m->next = NULL;
4272 m->p_type = PT_PHDR;
4273 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
4274 m->p_flags = PF_R | PF_X;
4275 m->p_flags_valid = 1;
4276 m->includes_phdrs = 1;
4277
4278 *pm = m;
4279 pm = &m->next;
4280
4281 amt = sizeof (struct elf_segment_map);
4282 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4283 if (m == NULL)
4284 goto error_return;
4285 m->next = NULL;
4286 m->p_type = PT_INTERP;
4287 m->count = 1;
4288 m->sections[0] = s;
4289
4290 *pm = m;
4291 pm = &m->next;
4292 }
4293
4294 /* Look through the sections. We put sections in the same program
4295 segment when the start of the second section can be placed within
4296 a few bytes of the end of the first section. */
4297 last_hdr = NULL;
4298 last_size = 0;
4299 phdr_index = 0;
4300 maxpagesize = bed->maxpagesize;
4301 /* PR 17512: file: c8455299.
4302 Avoid divide-by-zero errors later on.
4303 FIXME: Should we abort if the maxpagesize is zero ? */
4304 if (maxpagesize == 0)
4305 maxpagesize = 1;
4306 writable = FALSE;
4307 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4308 if (dynsec != NULL
4309 && (dynsec->flags & SEC_LOAD) == 0)
4310 dynsec = NULL;
4311
4312 /* Deal with -Ttext or something similar such that the first section
4313 is not adjacent to the program headers. This is an
4314 approximation, since at this point we don't know exactly how many
4315 program headers we will need. */
4316 if (count > 0)
4317 {
4318 bfd_size_type phdr_size = elf_program_header_size (abfd);
4319
4320 if (phdr_size == (bfd_size_type) -1)
4321 phdr_size = get_program_header_size (abfd, info);
4322 phdr_size += bed->s->sizeof_ehdr;
4323 if ((abfd->flags & D_PAGED) == 0
4324 || (sections[0]->lma & addr_mask) < phdr_size
4325 || ((sections[0]->lma & addr_mask) % maxpagesize
4326 < phdr_size % maxpagesize)
4327 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4328 phdr_in_segment = FALSE;
4329 }
4330
4331 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4332 {
4333 asection *hdr;
4334 bfd_boolean new_segment;
4335
4336 hdr = *hdrpp;
4337
4338 /* See if this section and the last one will fit in the same
4339 segment. */
4340
4341 if (last_hdr == NULL)
4342 {
4343 /* If we don't have a segment yet, then we don't need a new
4344 one (we build the last one after this loop). */
4345 new_segment = FALSE;
4346 }
4347 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4348 {
4349 /* If this section has a different relation between the
4350 virtual address and the load address, then we need a new
4351 segment. */
4352 new_segment = TRUE;
4353 }
4354 else if (hdr->lma < last_hdr->lma + last_size
4355 || last_hdr->lma + last_size < last_hdr->lma)
4356 {
4357 /* If this section has a load address that makes it overlap
4358 the previous section, then we need a new segment. */
4359 new_segment = TRUE;
4360 }
4361 /* In the next test we have to be careful when last_hdr->lma is close
4362 to the end of the address space. If the aligned address wraps
4363 around to the start of the address space, then there are no more
4364 pages left in memory and it is OK to assume that the current
4365 section can be included in the current segment. */
4366 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4367 > last_hdr->lma)
4368 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4369 <= hdr->lma))
4370 {
4371 /* If putting this section in this segment would force us to
4372 skip a page in the segment, then we need a new segment. */
4373 new_segment = TRUE;
4374 }
4375 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4376 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0
4377 && ((abfd->flags & D_PAGED) == 0
4378 || (((last_hdr->lma + last_size - 1) & -maxpagesize)
4379 != (hdr->lma & -maxpagesize))))
4380 {
4381 /* We don't want to put a loaded section after a
4382 nonloaded (ie. bss style) section in the same segment
4383 as that will force the non-loaded section to be loaded.
4384 Consider .tbss sections as loaded for this purpose.
4385 However, like the writable/non-writable case below,
4386 if they are on the same page then they must be put
4387 in the same segment. */
4388 new_segment = TRUE;
4389 }
4390 else if ((abfd->flags & D_PAGED) == 0)
4391 {
4392 /* If the file is not demand paged, which means that we
4393 don't require the sections to be correctly aligned in the
4394 file, then there is no other reason for a new segment. */
4395 new_segment = FALSE;
4396 }
4397 else if (! writable
4398 && (hdr->flags & SEC_READONLY) == 0
4399 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4400 != (hdr->lma & -maxpagesize)))
4401 {
4402 /* We don't want to put a writable section in a read only
4403 segment, unless they are on the same page in memory
4404 anyhow. We already know that the last section does not
4405 bring us past the current section on the page, so the
4406 only case in which the new section is not on the same
4407 page as the previous section is when the previous section
4408 ends precisely on a page boundary. */
4409 new_segment = TRUE;
4410 }
4411 else
4412 {
4413 /* Otherwise, we can use the same segment. */
4414 new_segment = FALSE;
4415 }
4416
4417 /* Allow interested parties a chance to override our decision. */
4418 if (last_hdr != NULL
4419 && info != NULL
4420 && info->callbacks->override_segment_assignment != NULL)
4421 new_segment
4422 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4423 last_hdr,
4424 new_segment);
4425
4426 if (! new_segment)
4427 {
4428 if ((hdr->flags & SEC_READONLY) == 0)
4429 writable = TRUE;
4430 last_hdr = hdr;
4431 /* .tbss sections effectively have zero size. */
4432 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4433 != SEC_THREAD_LOCAL)
4434 last_size = hdr->size;
4435 else
4436 last_size = 0;
4437 continue;
4438 }
4439
4440 /* We need a new program segment. We must create a new program
4441 header holding all the sections from phdr_index until hdr. */
4442
4443 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4444 if (m == NULL)
4445 goto error_return;
4446
4447 *pm = m;
4448 pm = &m->next;
4449
4450 if ((hdr->flags & SEC_READONLY) == 0)
4451 writable = TRUE;
4452 else
4453 writable = FALSE;
4454
4455 last_hdr = hdr;
4456 /* .tbss sections effectively have zero size. */
4457 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4458 last_size = hdr->size;
4459 else
4460 last_size = 0;
4461 phdr_index = i;
4462 phdr_in_segment = FALSE;
4463 }
4464
4465 /* Create a final PT_LOAD program segment, but not if it's just
4466 for .tbss. */
4467 if (last_hdr != NULL
4468 && (i - phdr_index != 1
4469 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4470 != SEC_THREAD_LOCAL)))
4471 {
4472 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4473 if (m == NULL)
4474 goto error_return;
4475
4476 *pm = m;
4477 pm = &m->next;
4478 }
4479
4480 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4481 if (dynsec != NULL)
4482 {
4483 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4484 if (m == NULL)
4485 goto error_return;
4486 *pm = m;
4487 pm = &m->next;
4488 }
4489
4490 /* For each batch of consecutive loadable .note sections,
4491 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4492 because if we link together nonloadable .note sections and
4493 loadable .note sections, we will generate two .note sections
4494 in the output file. FIXME: Using names for section types is
4495 bogus anyhow. */
4496 for (s = abfd->sections; s != NULL; s = s->next)
4497 {
4498 if ((s->flags & SEC_LOAD) != 0
4499 && CONST_STRNEQ (s->name, ".note"))
4500 {
4501 asection *s2;
4502
4503 count = 1;
4504 amt = sizeof (struct elf_segment_map);
4505 if (s->alignment_power == 2)
4506 for (s2 = s; s2->next != NULL; s2 = s2->next)
4507 {
4508 if (s2->next->alignment_power == 2
4509 && (s2->next->flags & SEC_LOAD) != 0
4510 && CONST_STRNEQ (s2->next->name, ".note")
4511 && align_power (s2->lma + s2->size, 2)
4512 == s2->next->lma)
4513 count++;
4514 else
4515 break;
4516 }
4517 amt += (count - 1) * sizeof (asection *);
4518 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4519 if (m == NULL)
4520 goto error_return;
4521 m->next = NULL;
4522 m->p_type = PT_NOTE;
4523 m->count = count;
4524 while (count > 1)
4525 {
4526 m->sections[m->count - count--] = s;
4527 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4528 s = s->next;
4529 }
4530 m->sections[m->count - 1] = s;
4531 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4532 *pm = m;
4533 pm = &m->next;
4534 }
4535 if (s->flags & SEC_THREAD_LOCAL)
4536 {
4537 if (! tls_count)
4538 first_tls = s;
4539 tls_count++;
4540 }
4541 }
4542
4543 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4544 if (tls_count > 0)
4545 {
4546 amt = sizeof (struct elf_segment_map);
4547 amt += (tls_count - 1) * sizeof (asection *);
4548 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4549 if (m == NULL)
4550 goto error_return;
4551 m->next = NULL;
4552 m->p_type = PT_TLS;
4553 m->count = tls_count;
4554 /* Mandated PF_R. */
4555 m->p_flags = PF_R;
4556 m->p_flags_valid = 1;
4557 s = first_tls;
4558 for (i = 0; i < (unsigned int) tls_count; ++i)
4559 {
4560 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4561 {
4562 _bfd_error_handler
4563 (_("%B: TLS sections are not adjacent:"), abfd);
4564 s = first_tls;
4565 i = 0;
4566 while (i < (unsigned int) tls_count)
4567 {
4568 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4569 {
4570 _bfd_error_handler (_(" TLS: %A"), s);
4571 i++;
4572 }
4573 else
4574 _bfd_error_handler (_(" non-TLS: %A"), s);
4575 s = s->next;
4576 }
4577 bfd_set_error (bfd_error_bad_value);
4578 goto error_return;
4579 }
4580 m->sections[i] = s;
4581 s = s->next;
4582 }
4583
4584 *pm = m;
4585 pm = &m->next;
4586 }
4587
4588 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4589 segment. */
4590 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4591 if (eh_frame_hdr != NULL
4592 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4593 {
4594 amt = sizeof (struct elf_segment_map);
4595 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4596 if (m == NULL)
4597 goto error_return;
4598 m->next = NULL;
4599 m->p_type = PT_GNU_EH_FRAME;
4600 m->count = 1;
4601 m->sections[0] = eh_frame_hdr->output_section;
4602
4603 *pm = m;
4604 pm = &m->next;
4605 }
4606
4607 if (elf_stack_flags (abfd))
4608 {
4609 amt = sizeof (struct elf_segment_map);
4610 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4611 if (m == NULL)
4612 goto error_return;
4613 m->next = NULL;
4614 m->p_type = PT_GNU_STACK;
4615 m->p_flags = elf_stack_flags (abfd);
4616 m->p_align = bed->stack_align;
4617 m->p_flags_valid = 1;
4618 m->p_align_valid = m->p_align != 0;
4619 if (info->stacksize > 0)
4620 {
4621 m->p_size = info->stacksize;
4622 m->p_size_valid = 1;
4623 }
4624
4625 *pm = m;
4626 pm = &m->next;
4627 }
4628
4629 if (info != NULL && info->relro)
4630 {
4631 for (m = mfirst; m != NULL; m = m->next)
4632 {
4633 if (m->p_type == PT_LOAD
4634 && m->count != 0
4635 && m->sections[0]->vma >= info->relro_start
4636 && m->sections[0]->vma < info->relro_end)
4637 {
4638 i = m->count;
4639 while (--i != (unsigned) -1)
4640 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4641 == (SEC_LOAD | SEC_HAS_CONTENTS))
4642 break;
4643
4644 if (i != (unsigned) -1)
4645 break;
4646 }
4647 }
4648
4649 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4650 if (m != NULL)
4651 {
4652 amt = sizeof (struct elf_segment_map);
4653 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4654 if (m == NULL)
4655 goto error_return;
4656 m->next = NULL;
4657 m->p_type = PT_GNU_RELRO;
4658 *pm = m;
4659 pm = &m->next;
4660 }
4661 }
4662
4663 free (sections);
4664 elf_seg_map (abfd) = mfirst;
4665 }
4666
4667 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4668 return FALSE;
4669
4670 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4671 ++count;
4672 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4673
4674 return TRUE;
4675
4676 error_return:
4677 if (sections != NULL)
4678 free (sections);
4679 return FALSE;
4680 }
4681
4682 /* Sort sections by address. */
4683
4684 static int
4685 elf_sort_sections (const void *arg1, const void *arg2)
4686 {
4687 const asection *sec1 = *(const asection **) arg1;
4688 const asection *sec2 = *(const asection **) arg2;
4689 bfd_size_type size1, size2;
4690
4691 /* Sort by LMA first, since this is the address used to
4692 place the section into a segment. */
4693 if (sec1->lma < sec2->lma)
4694 return -1;
4695 else if (sec1->lma > sec2->lma)
4696 return 1;
4697
4698 /* Then sort by VMA. Normally the LMA and the VMA will be
4699 the same, and this will do nothing. */
4700 if (sec1->vma < sec2->vma)
4701 return -1;
4702 else if (sec1->vma > sec2->vma)
4703 return 1;
4704
4705 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4706
4707 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4708
4709 if (TOEND (sec1))
4710 {
4711 if (TOEND (sec2))
4712 {
4713 /* If the indicies are the same, do not return 0
4714 here, but continue to try the next comparison. */
4715 if (sec1->target_index - sec2->target_index != 0)
4716 return sec1->target_index - sec2->target_index;
4717 }
4718 else
4719 return 1;
4720 }
4721 else if (TOEND (sec2))
4722 return -1;
4723
4724 #undef TOEND
4725
4726 /* Sort by size, to put zero sized sections
4727 before others at the same address. */
4728
4729 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4730 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4731
4732 if (size1 < size2)
4733 return -1;
4734 if (size1 > size2)
4735 return 1;
4736
4737 return sec1->target_index - sec2->target_index;
4738 }
4739
4740 /* Ian Lance Taylor writes:
4741
4742 We shouldn't be using % with a negative signed number. That's just
4743 not good. We have to make sure either that the number is not
4744 negative, or that the number has an unsigned type. When the types
4745 are all the same size they wind up as unsigned. When file_ptr is a
4746 larger signed type, the arithmetic winds up as signed long long,
4747 which is wrong.
4748
4749 What we're trying to say here is something like ``increase OFF by
4750 the least amount that will cause it to be equal to the VMA modulo
4751 the page size.'' */
4752 /* In other words, something like:
4753
4754 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4755 off_offset = off % bed->maxpagesize;
4756 if (vma_offset < off_offset)
4757 adjustment = vma_offset + bed->maxpagesize - off_offset;
4758 else
4759 adjustment = vma_offset - off_offset;
4760
4761 which can can be collapsed into the expression below. */
4762
4763 static file_ptr
4764 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4765 {
4766 /* PR binutils/16199: Handle an alignment of zero. */
4767 if (maxpagesize == 0)
4768 maxpagesize = 1;
4769 return ((vma - off) % maxpagesize);
4770 }
4771
4772 static void
4773 print_segment_map (const struct elf_segment_map *m)
4774 {
4775 unsigned int j;
4776 const char *pt = get_segment_type (m->p_type);
4777 char buf[32];
4778
4779 if (pt == NULL)
4780 {
4781 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4782 sprintf (buf, "LOPROC+%7.7x",
4783 (unsigned int) (m->p_type - PT_LOPROC));
4784 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4785 sprintf (buf, "LOOS+%7.7x",
4786 (unsigned int) (m->p_type - PT_LOOS));
4787 else
4788 snprintf (buf, sizeof (buf), "%8.8x",
4789 (unsigned int) m->p_type);
4790 pt = buf;
4791 }
4792 fflush (stdout);
4793 fprintf (stderr, "%s:", pt);
4794 for (j = 0; j < m->count; j++)
4795 fprintf (stderr, " %s", m->sections [j]->name);
4796 putc ('\n',stderr);
4797 fflush (stderr);
4798 }
4799
4800 static bfd_boolean
4801 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4802 {
4803 void *buf;
4804 bfd_boolean ret;
4805
4806 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4807 return FALSE;
4808 buf = bfd_zmalloc (len);
4809 if (buf == NULL)
4810 return FALSE;
4811 ret = bfd_bwrite (buf, len, abfd) == len;
4812 free (buf);
4813 return ret;
4814 }
4815
4816 /* Assign file positions to the sections based on the mapping from
4817 sections to segments. This function also sets up some fields in
4818 the file header. */
4819
4820 static bfd_boolean
4821 assign_file_positions_for_load_sections (bfd *abfd,
4822 struct bfd_link_info *link_info)
4823 {
4824 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4825 struct elf_segment_map *m;
4826 Elf_Internal_Phdr *phdrs;
4827 Elf_Internal_Phdr *p;
4828 file_ptr off;
4829 bfd_size_type maxpagesize;
4830 unsigned int alloc;
4831 unsigned int i, j;
4832 bfd_vma header_pad = 0;
4833
4834 if (link_info == NULL
4835 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4836 return FALSE;
4837
4838 alloc = 0;
4839 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4840 {
4841 ++alloc;
4842 if (m->header_size)
4843 header_pad = m->header_size;
4844 }
4845
4846 if (alloc)
4847 {
4848 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4849 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4850 }
4851 else
4852 {
4853 /* PR binutils/12467. */
4854 elf_elfheader (abfd)->e_phoff = 0;
4855 elf_elfheader (abfd)->e_phentsize = 0;
4856 }
4857
4858 elf_elfheader (abfd)->e_phnum = alloc;
4859
4860 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4861 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4862 else
4863 BFD_ASSERT (elf_program_header_size (abfd)
4864 >= alloc * bed->s->sizeof_phdr);
4865
4866 if (alloc == 0)
4867 {
4868 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4869 return TRUE;
4870 }
4871
4872 /* We're writing the size in elf_program_header_size (abfd),
4873 see assign_file_positions_except_relocs, so make sure we have
4874 that amount allocated, with trailing space cleared.
4875 The variable alloc contains the computed need, while
4876 elf_program_header_size (abfd) contains the size used for the
4877 layout.
4878 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4879 where the layout is forced to according to a larger size in the
4880 last iterations for the testcase ld-elf/header. */
4881 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
4882 == 0);
4883 phdrs = (Elf_Internal_Phdr *)
4884 bfd_zalloc2 (abfd,
4885 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
4886 sizeof (Elf_Internal_Phdr));
4887 elf_tdata (abfd)->phdr = phdrs;
4888 if (phdrs == NULL)
4889 return FALSE;
4890
4891 maxpagesize = 1;
4892 if ((abfd->flags & D_PAGED) != 0)
4893 maxpagesize = bed->maxpagesize;
4894
4895 off = bed->s->sizeof_ehdr;
4896 off += alloc * bed->s->sizeof_phdr;
4897 if (header_pad < (bfd_vma) off)
4898 header_pad = 0;
4899 else
4900 header_pad -= off;
4901 off += header_pad;
4902
4903 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
4904 m != NULL;
4905 m = m->next, p++, j++)
4906 {
4907 asection **secpp;
4908 bfd_vma off_adjust;
4909 bfd_boolean no_contents;
4910
4911 /* If elf_segment_map is not from map_sections_to_segments, the
4912 sections may not be correctly ordered. NOTE: sorting should
4913 not be done to the PT_NOTE section of a corefile, which may
4914 contain several pseudo-sections artificially created by bfd.
4915 Sorting these pseudo-sections breaks things badly. */
4916 if (m->count > 1
4917 && !(elf_elfheader (abfd)->e_type == ET_CORE
4918 && m->p_type == PT_NOTE))
4919 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4920 elf_sort_sections);
4921
4922 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4923 number of sections with contents contributing to both p_filesz
4924 and p_memsz, followed by a number of sections with no contents
4925 that just contribute to p_memsz. In this loop, OFF tracks next
4926 available file offset for PT_LOAD and PT_NOTE segments. */
4927 p->p_type = m->p_type;
4928 p->p_flags = m->p_flags;
4929
4930 if (m->count == 0)
4931 p->p_vaddr = 0;
4932 else
4933 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4934
4935 if (m->p_paddr_valid)
4936 p->p_paddr = m->p_paddr;
4937 else if (m->count == 0)
4938 p->p_paddr = 0;
4939 else
4940 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4941
4942 if (p->p_type == PT_LOAD
4943 && (abfd->flags & D_PAGED) != 0)
4944 {
4945 /* p_align in demand paged PT_LOAD segments effectively stores
4946 the maximum page size. When copying an executable with
4947 objcopy, we set m->p_align from the input file. Use this
4948 value for maxpagesize rather than bed->maxpagesize, which
4949 may be different. Note that we use maxpagesize for PT_TLS
4950 segment alignment later in this function, so we are relying
4951 on at least one PT_LOAD segment appearing before a PT_TLS
4952 segment. */
4953 if (m->p_align_valid)
4954 maxpagesize = m->p_align;
4955
4956 p->p_align = maxpagesize;
4957 }
4958 else if (m->p_align_valid)
4959 p->p_align = m->p_align;
4960 else if (m->count == 0)
4961 p->p_align = 1 << bed->s->log_file_align;
4962 else
4963 p->p_align = 0;
4964
4965 no_contents = FALSE;
4966 off_adjust = 0;
4967 if (p->p_type == PT_LOAD
4968 && m->count > 0)
4969 {
4970 bfd_size_type align;
4971 unsigned int align_power = 0;
4972
4973 if (m->p_align_valid)
4974 align = p->p_align;
4975 else
4976 {
4977 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4978 {
4979 unsigned int secalign;
4980
4981 secalign = bfd_get_section_alignment (abfd, *secpp);
4982 if (secalign > align_power)
4983 align_power = secalign;
4984 }
4985 align = (bfd_size_type) 1 << align_power;
4986 if (align < maxpagesize)
4987 align = maxpagesize;
4988 }
4989
4990 for (i = 0; i < m->count; i++)
4991 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4992 /* If we aren't making room for this section, then
4993 it must be SHT_NOBITS regardless of what we've
4994 set via struct bfd_elf_special_section. */
4995 elf_section_type (m->sections[i]) = SHT_NOBITS;
4996
4997 /* Find out whether this segment contains any loadable
4998 sections. */
4999 no_contents = TRUE;
5000 for (i = 0; i < m->count; i++)
5001 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5002 {
5003 no_contents = FALSE;
5004 break;
5005 }
5006
5007 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5008 off += off_adjust;
5009 if (no_contents)
5010 {
5011 /* We shouldn't need to align the segment on disk since
5012 the segment doesn't need file space, but the gABI
5013 arguably requires the alignment and glibc ld.so
5014 checks it. So to comply with the alignment
5015 requirement but not waste file space, we adjust
5016 p_offset for just this segment. (OFF_ADJUST is
5017 subtracted from OFF later.) This may put p_offset
5018 past the end of file, but that shouldn't matter. */
5019 }
5020 else
5021 off_adjust = 0;
5022 }
5023 /* Make sure the .dynamic section is the first section in the
5024 PT_DYNAMIC segment. */
5025 else if (p->p_type == PT_DYNAMIC
5026 && m->count > 1
5027 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5028 {
5029 _bfd_error_handler
5030 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
5031 abfd);
5032 bfd_set_error (bfd_error_bad_value);
5033 return FALSE;
5034 }
5035 /* Set the note section type to SHT_NOTE. */
5036 else if (p->p_type == PT_NOTE)
5037 for (i = 0; i < m->count; i++)
5038 elf_section_type (m->sections[i]) = SHT_NOTE;
5039
5040 p->p_offset = 0;
5041 p->p_filesz = 0;
5042 p->p_memsz = 0;
5043
5044 if (m->includes_filehdr)
5045 {
5046 if (!m->p_flags_valid)
5047 p->p_flags |= PF_R;
5048 p->p_filesz = bed->s->sizeof_ehdr;
5049 p->p_memsz = bed->s->sizeof_ehdr;
5050 if (m->count > 0)
5051 {
5052 if (p->p_vaddr < (bfd_vma) off)
5053 {
5054 (*_bfd_error_handler)
5055 (_("%B: Not enough room for program headers, try linking with -N"),
5056 abfd);
5057 bfd_set_error (bfd_error_bad_value);
5058 return FALSE;
5059 }
5060
5061 p->p_vaddr -= off;
5062 if (!m->p_paddr_valid)
5063 p->p_paddr -= off;
5064 }
5065 }
5066
5067 if (m->includes_phdrs)
5068 {
5069 if (!m->p_flags_valid)
5070 p->p_flags |= PF_R;
5071
5072 if (!m->includes_filehdr)
5073 {
5074 p->p_offset = bed->s->sizeof_ehdr;
5075
5076 if (m->count > 0)
5077 {
5078 p->p_vaddr -= off - p->p_offset;
5079 if (!m->p_paddr_valid)
5080 p->p_paddr -= off - p->p_offset;
5081 }
5082 }
5083
5084 p->p_filesz += alloc * bed->s->sizeof_phdr;
5085 p->p_memsz += alloc * bed->s->sizeof_phdr;
5086 if (m->count)
5087 {
5088 p->p_filesz += header_pad;
5089 p->p_memsz += header_pad;
5090 }
5091 }
5092
5093 if (p->p_type == PT_LOAD
5094 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5095 {
5096 if (!m->includes_filehdr && !m->includes_phdrs)
5097 p->p_offset = off;
5098 else
5099 {
5100 file_ptr adjust;
5101
5102 adjust = off - (p->p_offset + p->p_filesz);
5103 if (!no_contents)
5104 p->p_filesz += adjust;
5105 p->p_memsz += adjust;
5106 }
5107 }
5108
5109 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5110 maps. Set filepos for sections in PT_LOAD segments, and in
5111 core files, for sections in PT_NOTE segments.
5112 assign_file_positions_for_non_load_sections will set filepos
5113 for other sections and update p_filesz for other segments. */
5114 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5115 {
5116 asection *sec;
5117 bfd_size_type align;
5118 Elf_Internal_Shdr *this_hdr;
5119
5120 sec = *secpp;
5121 this_hdr = &elf_section_data (sec)->this_hdr;
5122 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5123
5124 if ((p->p_type == PT_LOAD
5125 || p->p_type == PT_TLS)
5126 && (this_hdr->sh_type != SHT_NOBITS
5127 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5128 && ((this_hdr->sh_flags & SHF_TLS) == 0
5129 || p->p_type == PT_TLS))))
5130 {
5131 bfd_vma p_start = p->p_paddr;
5132 bfd_vma p_end = p_start + p->p_memsz;
5133 bfd_vma s_start = sec->lma;
5134 bfd_vma adjust = s_start - p_end;
5135
5136 if (adjust != 0
5137 && (s_start < p_end
5138 || p_end < p_start))
5139 {
5140 (*_bfd_error_handler)
5141 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
5142 (unsigned long) s_start, (unsigned long) p_end);
5143 adjust = 0;
5144 sec->lma = p_end;
5145 }
5146 p->p_memsz += adjust;
5147
5148 if (this_hdr->sh_type != SHT_NOBITS)
5149 {
5150 if (p->p_filesz + adjust < p->p_memsz)
5151 {
5152 /* We have a PROGBITS section following NOBITS ones.
5153 Allocate file space for the NOBITS section(s) and
5154 zero it. */
5155 adjust = p->p_memsz - p->p_filesz;
5156 if (!write_zeros (abfd, off, adjust))
5157 return FALSE;
5158 }
5159 off += adjust;
5160 p->p_filesz += adjust;
5161 }
5162 }
5163
5164 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5165 {
5166 /* The section at i == 0 is the one that actually contains
5167 everything. */
5168 if (i == 0)
5169 {
5170 this_hdr->sh_offset = sec->filepos = off;
5171 off += this_hdr->sh_size;
5172 p->p_filesz = this_hdr->sh_size;
5173 p->p_memsz = 0;
5174 p->p_align = 1;
5175 }
5176 else
5177 {
5178 /* The rest are fake sections that shouldn't be written. */
5179 sec->filepos = 0;
5180 sec->size = 0;
5181 sec->flags = 0;
5182 continue;
5183 }
5184 }
5185 else
5186 {
5187 if (p->p_type == PT_LOAD)
5188 {
5189 this_hdr->sh_offset = sec->filepos = off;
5190 if (this_hdr->sh_type != SHT_NOBITS)
5191 off += this_hdr->sh_size;
5192 }
5193 else if (this_hdr->sh_type == SHT_NOBITS
5194 && (this_hdr->sh_flags & SHF_TLS) != 0
5195 && this_hdr->sh_offset == 0)
5196 {
5197 /* This is a .tbss section that didn't get a PT_LOAD.
5198 (See _bfd_elf_map_sections_to_segments "Create a
5199 final PT_LOAD".) Set sh_offset to the value it
5200 would have if we had created a zero p_filesz and
5201 p_memsz PT_LOAD header for the section. This
5202 also makes the PT_TLS header have the same
5203 p_offset value. */
5204 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5205 off, align);
5206 this_hdr->sh_offset = sec->filepos = off + adjust;
5207 }
5208
5209 if (this_hdr->sh_type != SHT_NOBITS)
5210 {
5211 p->p_filesz += this_hdr->sh_size;
5212 /* A load section without SHF_ALLOC is something like
5213 a note section in a PT_NOTE segment. These take
5214 file space but are not loaded into memory. */
5215 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5216 p->p_memsz += this_hdr->sh_size;
5217 }
5218 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5219 {
5220 if (p->p_type == PT_TLS)
5221 p->p_memsz += this_hdr->sh_size;
5222
5223 /* .tbss is special. It doesn't contribute to p_memsz of
5224 normal segments. */
5225 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5226 p->p_memsz += this_hdr->sh_size;
5227 }
5228
5229 if (align > p->p_align
5230 && !m->p_align_valid
5231 && (p->p_type != PT_LOAD
5232 || (abfd->flags & D_PAGED) == 0))
5233 p->p_align = align;
5234 }
5235
5236 if (!m->p_flags_valid)
5237 {
5238 p->p_flags |= PF_R;
5239 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5240 p->p_flags |= PF_X;
5241 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5242 p->p_flags |= PF_W;
5243 }
5244 }
5245
5246 off -= off_adjust;
5247
5248 /* Check that all sections are in a PT_LOAD segment.
5249 Don't check funky gdb generated core files. */
5250 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5251 {
5252 bfd_boolean check_vma = TRUE;
5253
5254 for (i = 1; i < m->count; i++)
5255 if (m->sections[i]->vma == m->sections[i - 1]->vma
5256 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5257 ->this_hdr), p) != 0
5258 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5259 ->this_hdr), p) != 0)
5260 {
5261 /* Looks like we have overlays packed into the segment. */
5262 check_vma = FALSE;
5263 break;
5264 }
5265
5266 for (i = 0; i < m->count; i++)
5267 {
5268 Elf_Internal_Shdr *this_hdr;
5269 asection *sec;
5270
5271 sec = m->sections[i];
5272 this_hdr = &(elf_section_data(sec)->this_hdr);
5273 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5274 && !ELF_TBSS_SPECIAL (this_hdr, p))
5275 {
5276 (*_bfd_error_handler)
5277 (_("%B: section `%A' can't be allocated in segment %d"),
5278 abfd, sec, j);
5279 print_segment_map (m);
5280 }
5281 }
5282 }
5283 }
5284
5285 elf_next_file_pos (abfd) = off;
5286 return TRUE;
5287 }
5288
5289 /* Assign file positions for the other sections. */
5290
5291 static bfd_boolean
5292 assign_file_positions_for_non_load_sections (bfd *abfd,
5293 struct bfd_link_info *link_info)
5294 {
5295 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5296 Elf_Internal_Shdr **i_shdrpp;
5297 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5298 Elf_Internal_Phdr *phdrs;
5299 Elf_Internal_Phdr *p;
5300 struct elf_segment_map *m;
5301 struct elf_segment_map *hdrs_segment;
5302 bfd_vma filehdr_vaddr, filehdr_paddr;
5303 bfd_vma phdrs_vaddr, phdrs_paddr;
5304 file_ptr off;
5305 unsigned int count;
5306
5307 i_shdrpp = elf_elfsections (abfd);
5308 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5309 off = elf_next_file_pos (abfd);
5310 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5311 {
5312 Elf_Internal_Shdr *hdr;
5313
5314 hdr = *hdrpp;
5315 if (hdr->bfd_section != NULL
5316 && (hdr->bfd_section->filepos != 0
5317 || (hdr->sh_type == SHT_NOBITS
5318 && hdr->contents == NULL)))
5319 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5320 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5321 {
5322 if (hdr->sh_size != 0)
5323 (*_bfd_error_handler)
5324 (_("%B: warning: allocated section `%s' not in segment"),
5325 abfd,
5326 (hdr->bfd_section == NULL
5327 ? "*unknown*"
5328 : hdr->bfd_section->name));
5329 /* We don't need to page align empty sections. */
5330 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5331 off += vma_page_aligned_bias (hdr->sh_addr, off,
5332 bed->maxpagesize);
5333 else
5334 off += vma_page_aligned_bias (hdr->sh_addr, off,
5335 hdr->sh_addralign);
5336 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5337 FALSE);
5338 }
5339 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5340 && hdr->bfd_section == NULL)
5341 || (hdr->bfd_section != NULL
5342 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5343 /* Compress DWARF debug sections. */
5344 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5345 || (elf_symtab_shndx_list (abfd) != NULL
5346 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5347 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5348 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5349 hdr->sh_offset = -1;
5350 else
5351 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5352 }
5353
5354 /* Now that we have set the section file positions, we can set up
5355 the file positions for the non PT_LOAD segments. */
5356 count = 0;
5357 filehdr_vaddr = 0;
5358 filehdr_paddr = 0;
5359 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5360 phdrs_paddr = 0;
5361 hdrs_segment = NULL;
5362 phdrs = elf_tdata (abfd)->phdr;
5363 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5364 {
5365 ++count;
5366 if (p->p_type != PT_LOAD)
5367 continue;
5368
5369 if (m->includes_filehdr)
5370 {
5371 filehdr_vaddr = p->p_vaddr;
5372 filehdr_paddr = p->p_paddr;
5373 }
5374 if (m->includes_phdrs)
5375 {
5376 phdrs_vaddr = p->p_vaddr;
5377 phdrs_paddr = p->p_paddr;
5378 if (m->includes_filehdr)
5379 {
5380 hdrs_segment = m;
5381 phdrs_vaddr += bed->s->sizeof_ehdr;
5382 phdrs_paddr += bed->s->sizeof_ehdr;
5383 }
5384 }
5385 }
5386
5387 if (hdrs_segment != NULL && link_info != NULL)
5388 {
5389 /* There is a segment that contains both the file headers and the
5390 program headers, so provide a symbol __ehdr_start pointing there.
5391 A program can use this to examine itself robustly. */
5392
5393 struct elf_link_hash_entry *hash
5394 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5395 FALSE, FALSE, TRUE);
5396 /* If the symbol was referenced and not defined, define it. */
5397 if (hash != NULL
5398 && (hash->root.type == bfd_link_hash_new
5399 || hash->root.type == bfd_link_hash_undefined
5400 || hash->root.type == bfd_link_hash_undefweak
5401 || hash->root.type == bfd_link_hash_common))
5402 {
5403 asection *s = NULL;
5404 if (hdrs_segment->count != 0)
5405 /* The segment contains sections, so use the first one. */
5406 s = hdrs_segment->sections[0];
5407 else
5408 /* Use the first (i.e. lowest-addressed) section in any segment. */
5409 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5410 if (m->count != 0)
5411 {
5412 s = m->sections[0];
5413 break;
5414 }
5415
5416 if (s != NULL)
5417 {
5418 hash->root.u.def.value = filehdr_vaddr - s->vma;
5419 hash->root.u.def.section = s;
5420 }
5421 else
5422 {
5423 hash->root.u.def.value = filehdr_vaddr;
5424 hash->root.u.def.section = bfd_abs_section_ptr;
5425 }
5426
5427 hash->root.type = bfd_link_hash_defined;
5428 hash->def_regular = 1;
5429 hash->non_elf = 0;
5430 }
5431 }
5432
5433 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5434 {
5435 if (p->p_type == PT_GNU_RELRO)
5436 {
5437 const Elf_Internal_Phdr *lp;
5438 struct elf_segment_map *lm;
5439
5440 if (link_info != NULL)
5441 {
5442 /* During linking the range of the RELRO segment is passed
5443 in link_info. */
5444 for (lm = elf_seg_map (abfd), lp = phdrs;
5445 lm != NULL;
5446 lm = lm->next, lp++)
5447 {
5448 if (lp->p_type == PT_LOAD
5449 && lp->p_vaddr < link_info->relro_end
5450 && lm->count != 0
5451 && lm->sections[0]->vma >= link_info->relro_start)
5452 break;
5453 }
5454
5455 BFD_ASSERT (lm != NULL);
5456 }
5457 else
5458 {
5459 /* Otherwise we are copying an executable or shared
5460 library, but we need to use the same linker logic. */
5461 for (lp = phdrs; lp < phdrs + count; ++lp)
5462 {
5463 if (lp->p_type == PT_LOAD
5464 && lp->p_paddr == p->p_paddr)
5465 break;
5466 }
5467 }
5468
5469 if (lp < phdrs + count)
5470 {
5471 p->p_vaddr = lp->p_vaddr;
5472 p->p_paddr = lp->p_paddr;
5473 p->p_offset = lp->p_offset;
5474 if (link_info != NULL)
5475 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5476 else if (m->p_size_valid)
5477 p->p_filesz = m->p_size;
5478 else
5479 abort ();
5480 p->p_memsz = p->p_filesz;
5481 /* Preserve the alignment and flags if they are valid. The
5482 gold linker generates RW/4 for the PT_GNU_RELRO section.
5483 It is better for objcopy/strip to honor these attributes
5484 otherwise gdb will choke when using separate debug files.
5485 */
5486 if (!m->p_align_valid)
5487 p->p_align = 1;
5488 if (!m->p_flags_valid)
5489 p->p_flags = PF_R;
5490 }
5491 else
5492 {
5493 memset (p, 0, sizeof *p);
5494 p->p_type = PT_NULL;
5495 }
5496 }
5497 else if (p->p_type == PT_GNU_STACK)
5498 {
5499 if (m->p_size_valid)
5500 p->p_memsz = m->p_size;
5501 }
5502 else if (m->count != 0)
5503 {
5504 unsigned int i;
5505 if (p->p_type != PT_LOAD
5506 && (p->p_type != PT_NOTE
5507 || bfd_get_format (abfd) != bfd_core))
5508 {
5509 if (m->includes_filehdr || m->includes_phdrs)
5510 {
5511 /* PR 17512: file: 2195325e. */
5512 (*_bfd_error_handler)
5513 (_("%B: warning: non-load segment includes file header and/or program header"),
5514 abfd);
5515 return FALSE;
5516 }
5517
5518 p->p_filesz = 0;
5519 p->p_offset = m->sections[0]->filepos;
5520 for (i = m->count; i-- != 0;)
5521 {
5522 asection *sect = m->sections[i];
5523 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5524 if (hdr->sh_type != SHT_NOBITS)
5525 {
5526 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5527 + hdr->sh_size);
5528 break;
5529 }
5530 }
5531 }
5532 }
5533 else if (m->includes_filehdr)
5534 {
5535 p->p_vaddr = filehdr_vaddr;
5536 if (! m->p_paddr_valid)
5537 p->p_paddr = filehdr_paddr;
5538 }
5539 else if (m->includes_phdrs)
5540 {
5541 p->p_vaddr = phdrs_vaddr;
5542 if (! m->p_paddr_valid)
5543 p->p_paddr = phdrs_paddr;
5544 }
5545 }
5546
5547 elf_next_file_pos (abfd) = off;
5548
5549 return TRUE;
5550 }
5551
5552 static elf_section_list *
5553 find_section_in_list (unsigned int i, elf_section_list * list)
5554 {
5555 for (;list != NULL; list = list->next)
5556 if (list->ndx == i)
5557 break;
5558 return list;
5559 }
5560
5561 /* Work out the file positions of all the sections. This is called by
5562 _bfd_elf_compute_section_file_positions. All the section sizes and
5563 VMAs must be known before this is called.
5564
5565 Reloc sections come in two flavours: Those processed specially as
5566 "side-channel" data attached to a section to which they apply, and
5567 those that bfd doesn't process as relocations. The latter sort are
5568 stored in a normal bfd section by bfd_section_from_shdr. We don't
5569 consider the former sort here, unless they form part of the loadable
5570 image. Reloc sections not assigned here will be handled later by
5571 assign_file_positions_for_relocs.
5572
5573 We also don't set the positions of the .symtab and .strtab here. */
5574
5575 static bfd_boolean
5576 assign_file_positions_except_relocs (bfd *abfd,
5577 struct bfd_link_info *link_info)
5578 {
5579 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5580 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5581 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5582
5583 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5584 && bfd_get_format (abfd) != bfd_core)
5585 {
5586 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5587 unsigned int num_sec = elf_numsections (abfd);
5588 Elf_Internal_Shdr **hdrpp;
5589 unsigned int i;
5590 file_ptr off;
5591
5592 /* Start after the ELF header. */
5593 off = i_ehdrp->e_ehsize;
5594
5595 /* We are not creating an executable, which means that we are
5596 not creating a program header, and that the actual order of
5597 the sections in the file is unimportant. */
5598 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5599 {
5600 Elf_Internal_Shdr *hdr;
5601
5602 hdr = *hdrpp;
5603 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5604 && hdr->bfd_section == NULL)
5605 || (hdr->bfd_section != NULL
5606 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5607 /* Compress DWARF debug sections. */
5608 || i == elf_onesymtab (abfd)
5609 || (elf_symtab_shndx_list (abfd) != NULL
5610 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5611 || i == elf_strtab_sec (abfd)
5612 || i == elf_shstrtab_sec (abfd))
5613 {
5614 hdr->sh_offset = -1;
5615 }
5616 else
5617 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5618 }
5619
5620 elf_next_file_pos (abfd) = off;
5621 }
5622 else
5623 {
5624 unsigned int alloc;
5625
5626 /* Assign file positions for the loaded sections based on the
5627 assignment of sections to segments. */
5628 if (!assign_file_positions_for_load_sections (abfd, link_info))
5629 return FALSE;
5630
5631 /* And for non-load sections. */
5632 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5633 return FALSE;
5634
5635 if (bed->elf_backend_modify_program_headers != NULL)
5636 {
5637 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5638 return FALSE;
5639 }
5640
5641 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5642 if (link_info != NULL && bfd_link_pie (link_info))
5643 {
5644 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5645 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5646 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5647
5648 /* Find the lowest p_vaddr in PT_LOAD segments. */
5649 bfd_vma p_vaddr = (bfd_vma) -1;
5650 for (; segment < end_segment; segment++)
5651 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5652 p_vaddr = segment->p_vaddr;
5653
5654 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5655 segments is non-zero. */
5656 if (p_vaddr)
5657 i_ehdrp->e_type = ET_EXEC;
5658 }
5659
5660 /* Write out the program headers. */
5661 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5662 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5663 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5664 return FALSE;
5665 }
5666
5667 return TRUE;
5668 }
5669
5670 static bfd_boolean
5671 prep_headers (bfd *abfd)
5672 {
5673 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5674 struct elf_strtab_hash *shstrtab;
5675 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5676
5677 i_ehdrp = elf_elfheader (abfd);
5678
5679 shstrtab = _bfd_elf_strtab_init ();
5680 if (shstrtab == NULL)
5681 return FALSE;
5682
5683 elf_shstrtab (abfd) = shstrtab;
5684
5685 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5686 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5687 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5688 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5689
5690 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5691 i_ehdrp->e_ident[EI_DATA] =
5692 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5693 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5694
5695 if ((abfd->flags & DYNAMIC) != 0)
5696 i_ehdrp->e_type = ET_DYN;
5697 else if ((abfd->flags & EXEC_P) != 0)
5698 i_ehdrp->e_type = ET_EXEC;
5699 else if (bfd_get_format (abfd) == bfd_core)
5700 i_ehdrp->e_type = ET_CORE;
5701 else
5702 i_ehdrp->e_type = ET_REL;
5703
5704 switch (bfd_get_arch (abfd))
5705 {
5706 case bfd_arch_unknown:
5707 i_ehdrp->e_machine = EM_NONE;
5708 break;
5709
5710 /* There used to be a long list of cases here, each one setting
5711 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5712 in the corresponding bfd definition. To avoid duplication,
5713 the switch was removed. Machines that need special handling
5714 can generally do it in elf_backend_final_write_processing(),
5715 unless they need the information earlier than the final write.
5716 Such need can generally be supplied by replacing the tests for
5717 e_machine with the conditions used to determine it. */
5718 default:
5719 i_ehdrp->e_machine = bed->elf_machine_code;
5720 }
5721
5722 i_ehdrp->e_version = bed->s->ev_current;
5723 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5724
5725 /* No program header, for now. */
5726 i_ehdrp->e_phoff = 0;
5727 i_ehdrp->e_phentsize = 0;
5728 i_ehdrp->e_phnum = 0;
5729
5730 /* Each bfd section is section header entry. */
5731 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5732 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5733
5734 /* If we're building an executable, we'll need a program header table. */
5735 if (abfd->flags & EXEC_P)
5736 /* It all happens later. */
5737 ;
5738 else
5739 {
5740 i_ehdrp->e_phentsize = 0;
5741 i_ehdrp->e_phoff = 0;
5742 }
5743
5744 elf_tdata (abfd)->symtab_hdr.sh_name =
5745 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5746 elf_tdata (abfd)->strtab_hdr.sh_name =
5747 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5748 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5749 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5750 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5751 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
5752 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5753 return FALSE;
5754
5755 return TRUE;
5756 }
5757
5758 /* Assign file positions for all the reloc sections which are not part
5759 of the loadable file image, and the file position of section headers. */
5760
5761 static bfd_boolean
5762 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
5763 {
5764 file_ptr off;
5765 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
5766 Elf_Internal_Shdr *shdrp;
5767 Elf_Internal_Ehdr *i_ehdrp;
5768 const struct elf_backend_data *bed;
5769
5770 off = elf_next_file_pos (abfd);
5771
5772 shdrpp = elf_elfsections (abfd);
5773 end_shdrpp = shdrpp + elf_numsections (abfd);
5774 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
5775 {
5776 shdrp = *shdrpp;
5777 if (shdrp->sh_offset == -1)
5778 {
5779 asection *sec = shdrp->bfd_section;
5780 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
5781 || shdrp->sh_type == SHT_RELA);
5782 if (is_rel
5783 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
5784 {
5785 if (!is_rel)
5786 {
5787 const char *name = sec->name;
5788 struct bfd_elf_section_data *d;
5789
5790 /* Compress DWARF debug sections. */
5791 if (!bfd_compress_section (abfd, sec,
5792 shdrp->contents))
5793 return FALSE;
5794
5795 if (sec->compress_status == COMPRESS_SECTION_DONE
5796 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
5797 {
5798 /* If section is compressed with zlib-gnu, convert
5799 section name from .debug_* to .zdebug_*. */
5800 char *new_name
5801 = convert_debug_to_zdebug (abfd, name);
5802 if (new_name == NULL)
5803 return FALSE;
5804 name = new_name;
5805 }
5806 /* Add setion name to section name section. */
5807 if (shdrp->sh_name != (unsigned int) -1)
5808 abort ();
5809 shdrp->sh_name
5810 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
5811 name, FALSE);
5812 d = elf_section_data (sec);
5813
5814 /* Add reloc setion name to section name section. */
5815 if (d->rel.hdr
5816 && !_bfd_elf_set_reloc_sh_name (abfd,
5817 d->rel.hdr,
5818 name, FALSE))
5819 return FALSE;
5820 if (d->rela.hdr
5821 && !_bfd_elf_set_reloc_sh_name (abfd,
5822 d->rela.hdr,
5823 name, TRUE))
5824 return FALSE;
5825
5826 /* Update section size and contents. */
5827 shdrp->sh_size = sec->size;
5828 shdrp->contents = sec->contents;
5829 shdrp->bfd_section->contents = NULL;
5830 }
5831 off = _bfd_elf_assign_file_position_for_section (shdrp,
5832 off,
5833 TRUE);
5834 }
5835 }
5836 }
5837
5838 /* Place section name section after DWARF debug sections have been
5839 compressed. */
5840 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
5841 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
5842 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
5843 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5844
5845 /* Place the section headers. */
5846 i_ehdrp = elf_elfheader (abfd);
5847 bed = get_elf_backend_data (abfd);
5848 off = align_file_position (off, 1 << bed->s->log_file_align);
5849 i_ehdrp->e_shoff = off;
5850 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5851 elf_next_file_pos (abfd) = off;
5852
5853 return TRUE;
5854 }
5855
5856 bfd_boolean
5857 _bfd_elf_write_object_contents (bfd *abfd)
5858 {
5859 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5860 Elf_Internal_Shdr **i_shdrp;
5861 bfd_boolean failed;
5862 unsigned int count, num_sec;
5863 struct elf_obj_tdata *t;
5864
5865 if (! abfd->output_has_begun
5866 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5867 return FALSE;
5868
5869 i_shdrp = elf_elfsections (abfd);
5870
5871 failed = FALSE;
5872 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5873 if (failed)
5874 return FALSE;
5875
5876 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
5877 return FALSE;
5878
5879 /* After writing the headers, we need to write the sections too... */
5880 num_sec = elf_numsections (abfd);
5881 for (count = 1; count < num_sec; count++)
5882 {
5883 i_shdrp[count]->sh_name
5884 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
5885 i_shdrp[count]->sh_name);
5886 if (bed->elf_backend_section_processing)
5887 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5888 if (i_shdrp[count]->contents)
5889 {
5890 bfd_size_type amt = i_shdrp[count]->sh_size;
5891
5892 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5893 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5894 return FALSE;
5895 }
5896 }
5897
5898 /* Write out the section header names. */
5899 t = elf_tdata (abfd);
5900 if (elf_shstrtab (abfd) != NULL
5901 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5902 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5903 return FALSE;
5904
5905 if (bed->elf_backend_final_write_processing)
5906 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
5907
5908 if (!bed->s->write_shdrs_and_ehdr (abfd))
5909 return FALSE;
5910
5911 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5912 if (t->o->build_id.after_write_object_contents != NULL)
5913 return (*t->o->build_id.after_write_object_contents) (abfd);
5914
5915 return TRUE;
5916 }
5917
5918 bfd_boolean
5919 _bfd_elf_write_corefile_contents (bfd *abfd)
5920 {
5921 /* Hopefully this can be done just like an object file. */
5922 return _bfd_elf_write_object_contents (abfd);
5923 }
5924
5925 /* Given a section, search the header to find them. */
5926
5927 unsigned int
5928 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5929 {
5930 const struct elf_backend_data *bed;
5931 unsigned int sec_index;
5932
5933 if (elf_section_data (asect) != NULL
5934 && elf_section_data (asect)->this_idx != 0)
5935 return elf_section_data (asect)->this_idx;
5936
5937 if (bfd_is_abs_section (asect))
5938 sec_index = SHN_ABS;
5939 else if (bfd_is_com_section (asect))
5940 sec_index = SHN_COMMON;
5941 else if (bfd_is_und_section (asect))
5942 sec_index = SHN_UNDEF;
5943 else
5944 sec_index = SHN_BAD;
5945
5946 bed = get_elf_backend_data (abfd);
5947 if (bed->elf_backend_section_from_bfd_section)
5948 {
5949 int retval = sec_index;
5950
5951 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5952 return retval;
5953 }
5954
5955 if (sec_index == SHN_BAD)
5956 bfd_set_error (bfd_error_nonrepresentable_section);
5957
5958 return sec_index;
5959 }
5960
5961 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5962 on error. */
5963
5964 int
5965 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5966 {
5967 asymbol *asym_ptr = *asym_ptr_ptr;
5968 int idx;
5969 flagword flags = asym_ptr->flags;
5970
5971 /* When gas creates relocations against local labels, it creates its
5972 own symbol for the section, but does put the symbol into the
5973 symbol chain, so udata is 0. When the linker is generating
5974 relocatable output, this section symbol may be for one of the
5975 input sections rather than the output section. */
5976 if (asym_ptr->udata.i == 0
5977 && (flags & BSF_SECTION_SYM)
5978 && asym_ptr->section)
5979 {
5980 asection *sec;
5981 int indx;
5982
5983 sec = asym_ptr->section;
5984 if (sec->owner != abfd && sec->output_section != NULL)
5985 sec = sec->output_section;
5986 if (sec->owner == abfd
5987 && (indx = sec->index) < elf_num_section_syms (abfd)
5988 && elf_section_syms (abfd)[indx] != NULL)
5989 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5990 }
5991
5992 idx = asym_ptr->udata.i;
5993
5994 if (idx == 0)
5995 {
5996 /* This case can occur when using --strip-symbol on a symbol
5997 which is used in a relocation entry. */
5998 (*_bfd_error_handler)
5999 (_("%B: symbol `%s' required but not present"),
6000 abfd, bfd_asymbol_name (asym_ptr));
6001 bfd_set_error (bfd_error_no_symbols);
6002 return -1;
6003 }
6004
6005 #if DEBUG & 4
6006 {
6007 fprintf (stderr,
6008 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
6009 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
6010 fflush (stderr);
6011 }
6012 #endif
6013
6014 return idx;
6015 }
6016
6017 /* Rewrite program header information. */
6018
6019 static bfd_boolean
6020 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6021 {
6022 Elf_Internal_Ehdr *iehdr;
6023 struct elf_segment_map *map;
6024 struct elf_segment_map *map_first;
6025 struct elf_segment_map **pointer_to_map;
6026 Elf_Internal_Phdr *segment;
6027 asection *section;
6028 unsigned int i;
6029 unsigned int num_segments;
6030 bfd_boolean phdr_included = FALSE;
6031 bfd_boolean p_paddr_valid;
6032 bfd_vma maxpagesize;
6033 struct elf_segment_map *phdr_adjust_seg = NULL;
6034 unsigned int phdr_adjust_num = 0;
6035 const struct elf_backend_data *bed;
6036
6037 bed = get_elf_backend_data (ibfd);
6038 iehdr = elf_elfheader (ibfd);
6039
6040 map_first = NULL;
6041 pointer_to_map = &map_first;
6042
6043 num_segments = elf_elfheader (ibfd)->e_phnum;
6044 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6045
6046 /* Returns the end address of the segment + 1. */
6047 #define SEGMENT_END(segment, start) \
6048 (start + (segment->p_memsz > segment->p_filesz \
6049 ? segment->p_memsz : segment->p_filesz))
6050
6051 #define SECTION_SIZE(section, segment) \
6052 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6053 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6054 ? section->size : 0)
6055
6056 /* Returns TRUE if the given section is contained within
6057 the given segment. VMA addresses are compared. */
6058 #define IS_CONTAINED_BY_VMA(section, segment) \
6059 (section->vma >= segment->p_vaddr \
6060 && (section->vma + SECTION_SIZE (section, segment) \
6061 <= (SEGMENT_END (segment, segment->p_vaddr))))
6062
6063 /* Returns TRUE if the given section is contained within
6064 the given segment. LMA addresses are compared. */
6065 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6066 (section->lma >= base \
6067 && (section->lma + SECTION_SIZE (section, segment) \
6068 <= SEGMENT_END (segment, base)))
6069
6070 /* Handle PT_NOTE segment. */
6071 #define IS_NOTE(p, s) \
6072 (p->p_type == PT_NOTE \
6073 && elf_section_type (s) == SHT_NOTE \
6074 && (bfd_vma) s->filepos >= p->p_offset \
6075 && ((bfd_vma) s->filepos + s->size \
6076 <= p->p_offset + p->p_filesz))
6077
6078 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6079 etc. */
6080 #define IS_COREFILE_NOTE(p, s) \
6081 (IS_NOTE (p, s) \
6082 && bfd_get_format (ibfd) == bfd_core \
6083 && s->vma == 0 \
6084 && s->lma == 0)
6085
6086 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6087 linker, which generates a PT_INTERP section with p_vaddr and
6088 p_memsz set to 0. */
6089 #define IS_SOLARIS_PT_INTERP(p, s) \
6090 (p->p_vaddr == 0 \
6091 && p->p_paddr == 0 \
6092 && p->p_memsz == 0 \
6093 && p->p_filesz > 0 \
6094 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6095 && s->size > 0 \
6096 && (bfd_vma) s->filepos >= p->p_offset \
6097 && ((bfd_vma) s->filepos + s->size \
6098 <= p->p_offset + p->p_filesz))
6099
6100 /* Decide if the given section should be included in the given segment.
6101 A section will be included if:
6102 1. It is within the address space of the segment -- we use the LMA
6103 if that is set for the segment and the VMA otherwise,
6104 2. It is an allocated section or a NOTE section in a PT_NOTE
6105 segment.
6106 3. There is an output section associated with it,
6107 4. The section has not already been allocated to a previous segment.
6108 5. PT_GNU_STACK segments do not include any sections.
6109 6. PT_TLS segment includes only SHF_TLS sections.
6110 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6111 8. PT_DYNAMIC should not contain empty sections at the beginning
6112 (with the possible exception of .dynamic). */
6113 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6114 ((((segment->p_paddr \
6115 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6116 : IS_CONTAINED_BY_VMA (section, segment)) \
6117 && (section->flags & SEC_ALLOC) != 0) \
6118 || IS_NOTE (segment, section)) \
6119 && segment->p_type != PT_GNU_STACK \
6120 && (segment->p_type != PT_TLS \
6121 || (section->flags & SEC_THREAD_LOCAL)) \
6122 && (segment->p_type == PT_LOAD \
6123 || segment->p_type == PT_TLS \
6124 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6125 && (segment->p_type != PT_DYNAMIC \
6126 || SECTION_SIZE (section, segment) > 0 \
6127 || (segment->p_paddr \
6128 ? segment->p_paddr != section->lma \
6129 : segment->p_vaddr != section->vma) \
6130 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6131 == 0)) \
6132 && !section->segment_mark)
6133
6134 /* If the output section of a section in the input segment is NULL,
6135 it is removed from the corresponding output segment. */
6136 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6137 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6138 && section->output_section != NULL)
6139
6140 /* Returns TRUE iff seg1 starts after the end of seg2. */
6141 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6142 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6143
6144 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6145 their VMA address ranges and their LMA address ranges overlap.
6146 It is possible to have overlapping VMA ranges without overlapping LMA
6147 ranges. RedBoot images for example can have both .data and .bss mapped
6148 to the same VMA range, but with the .data section mapped to a different
6149 LMA. */
6150 #define SEGMENT_OVERLAPS(seg1, seg2) \
6151 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6152 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6153 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6154 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6155
6156 /* Initialise the segment mark field. */
6157 for (section = ibfd->sections; section != NULL; section = section->next)
6158 section->segment_mark = FALSE;
6159
6160 /* The Solaris linker creates program headers in which all the
6161 p_paddr fields are zero. When we try to objcopy or strip such a
6162 file, we get confused. Check for this case, and if we find it
6163 don't set the p_paddr_valid fields. */
6164 p_paddr_valid = FALSE;
6165 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6166 i < num_segments;
6167 i++, segment++)
6168 if (segment->p_paddr != 0)
6169 {
6170 p_paddr_valid = TRUE;
6171 break;
6172 }
6173
6174 /* Scan through the segments specified in the program header
6175 of the input BFD. For this first scan we look for overlaps
6176 in the loadable segments. These can be created by weird
6177 parameters to objcopy. Also, fix some solaris weirdness. */
6178 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6179 i < num_segments;
6180 i++, segment++)
6181 {
6182 unsigned int j;
6183 Elf_Internal_Phdr *segment2;
6184
6185 if (segment->p_type == PT_INTERP)
6186 for (section = ibfd->sections; section; section = section->next)
6187 if (IS_SOLARIS_PT_INTERP (segment, section))
6188 {
6189 /* Mininal change so that the normal section to segment
6190 assignment code will work. */
6191 segment->p_vaddr = section->vma;
6192 break;
6193 }
6194
6195 if (segment->p_type != PT_LOAD)
6196 {
6197 /* Remove PT_GNU_RELRO segment. */
6198 if (segment->p_type == PT_GNU_RELRO)
6199 segment->p_type = PT_NULL;
6200 continue;
6201 }
6202
6203 /* Determine if this segment overlaps any previous segments. */
6204 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6205 {
6206 bfd_signed_vma extra_length;
6207
6208 if (segment2->p_type != PT_LOAD
6209 || !SEGMENT_OVERLAPS (segment, segment2))
6210 continue;
6211
6212 /* Merge the two segments together. */
6213 if (segment2->p_vaddr < segment->p_vaddr)
6214 {
6215 /* Extend SEGMENT2 to include SEGMENT and then delete
6216 SEGMENT. */
6217 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6218 - SEGMENT_END (segment2, segment2->p_vaddr));
6219
6220 if (extra_length > 0)
6221 {
6222 segment2->p_memsz += extra_length;
6223 segment2->p_filesz += extra_length;
6224 }
6225
6226 segment->p_type = PT_NULL;
6227
6228 /* Since we have deleted P we must restart the outer loop. */
6229 i = 0;
6230 segment = elf_tdata (ibfd)->phdr;
6231 break;
6232 }
6233 else
6234 {
6235 /* Extend SEGMENT to include SEGMENT2 and then delete
6236 SEGMENT2. */
6237 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6238 - SEGMENT_END (segment, segment->p_vaddr));
6239
6240 if (extra_length > 0)
6241 {
6242 segment->p_memsz += extra_length;
6243 segment->p_filesz += extra_length;
6244 }
6245
6246 segment2->p_type = PT_NULL;
6247 }
6248 }
6249 }
6250
6251 /* The second scan attempts to assign sections to segments. */
6252 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6253 i < num_segments;
6254 i++, segment++)
6255 {
6256 unsigned int section_count;
6257 asection **sections;
6258 asection *output_section;
6259 unsigned int isec;
6260 bfd_vma matching_lma;
6261 bfd_vma suggested_lma;
6262 unsigned int j;
6263 bfd_size_type amt;
6264 asection *first_section;
6265 bfd_boolean first_matching_lma;
6266 bfd_boolean first_suggested_lma;
6267
6268 if (segment->p_type == PT_NULL)
6269 continue;
6270
6271 first_section = NULL;
6272 /* Compute how many sections might be placed into this segment. */
6273 for (section = ibfd->sections, section_count = 0;
6274 section != NULL;
6275 section = section->next)
6276 {
6277 /* Find the first section in the input segment, which may be
6278 removed from the corresponding output segment. */
6279 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6280 {
6281 if (first_section == NULL)
6282 first_section = section;
6283 if (section->output_section != NULL)
6284 ++section_count;
6285 }
6286 }
6287
6288 /* Allocate a segment map big enough to contain
6289 all of the sections we have selected. */
6290 amt = sizeof (struct elf_segment_map);
6291 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6292 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6293 if (map == NULL)
6294 return FALSE;
6295
6296 /* Initialise the fields of the segment map. Default to
6297 using the physical address of the segment in the input BFD. */
6298 map->next = NULL;
6299 map->p_type = segment->p_type;
6300 map->p_flags = segment->p_flags;
6301 map->p_flags_valid = 1;
6302
6303 /* If the first section in the input segment is removed, there is
6304 no need to preserve segment physical address in the corresponding
6305 output segment. */
6306 if (!first_section || first_section->output_section != NULL)
6307 {
6308 map->p_paddr = segment->p_paddr;
6309 map->p_paddr_valid = p_paddr_valid;
6310 }
6311
6312 /* Determine if this segment contains the ELF file header
6313 and if it contains the program headers themselves. */
6314 map->includes_filehdr = (segment->p_offset == 0
6315 && segment->p_filesz >= iehdr->e_ehsize);
6316 map->includes_phdrs = 0;
6317
6318 if (!phdr_included || segment->p_type != PT_LOAD)
6319 {
6320 map->includes_phdrs =
6321 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6322 && (segment->p_offset + segment->p_filesz
6323 >= ((bfd_vma) iehdr->e_phoff
6324 + iehdr->e_phnum * iehdr->e_phentsize)));
6325
6326 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6327 phdr_included = TRUE;
6328 }
6329
6330 if (section_count == 0)
6331 {
6332 /* Special segments, such as the PT_PHDR segment, may contain
6333 no sections, but ordinary, loadable segments should contain
6334 something. They are allowed by the ELF spec however, so only
6335 a warning is produced. */
6336 if (segment->p_type == PT_LOAD)
6337 (*_bfd_error_handler) (_("\
6338 %B: warning: Empty loadable segment detected, is this intentional ?"),
6339 ibfd);
6340
6341 map->count = 0;
6342 *pointer_to_map = map;
6343 pointer_to_map = &map->next;
6344
6345 continue;
6346 }
6347
6348 /* Now scan the sections in the input BFD again and attempt
6349 to add their corresponding output sections to the segment map.
6350 The problem here is how to handle an output section which has
6351 been moved (ie had its LMA changed). There are four possibilities:
6352
6353 1. None of the sections have been moved.
6354 In this case we can continue to use the segment LMA from the
6355 input BFD.
6356
6357 2. All of the sections have been moved by the same amount.
6358 In this case we can change the segment's LMA to match the LMA
6359 of the first section.
6360
6361 3. Some of the sections have been moved, others have not.
6362 In this case those sections which have not been moved can be
6363 placed in the current segment which will have to have its size,
6364 and possibly its LMA changed, and a new segment or segments will
6365 have to be created to contain the other sections.
6366
6367 4. The sections have been moved, but not by the same amount.
6368 In this case we can change the segment's LMA to match the LMA
6369 of the first section and we will have to create a new segment
6370 or segments to contain the other sections.
6371
6372 In order to save time, we allocate an array to hold the section
6373 pointers that we are interested in. As these sections get assigned
6374 to a segment, they are removed from this array. */
6375
6376 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6377 if (sections == NULL)
6378 return FALSE;
6379
6380 /* Step One: Scan for segment vs section LMA conflicts.
6381 Also add the sections to the section array allocated above.
6382 Also add the sections to the current segment. In the common
6383 case, where the sections have not been moved, this means that
6384 we have completely filled the segment, and there is nothing
6385 more to do. */
6386 isec = 0;
6387 matching_lma = 0;
6388 suggested_lma = 0;
6389 first_matching_lma = TRUE;
6390 first_suggested_lma = TRUE;
6391
6392 for (section = first_section, j = 0;
6393 section != NULL;
6394 section = section->next)
6395 {
6396 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6397 {
6398 output_section = section->output_section;
6399
6400 sections[j++] = section;
6401
6402 /* The Solaris native linker always sets p_paddr to 0.
6403 We try to catch that case here, and set it to the
6404 correct value. Note - some backends require that
6405 p_paddr be left as zero. */
6406 if (!p_paddr_valid
6407 && segment->p_vaddr != 0
6408 && !bed->want_p_paddr_set_to_zero
6409 && isec == 0
6410 && output_section->lma != 0
6411 && output_section->vma == (segment->p_vaddr
6412 + (map->includes_filehdr
6413 ? iehdr->e_ehsize
6414 : 0)
6415 + (map->includes_phdrs
6416 ? (iehdr->e_phnum
6417 * iehdr->e_phentsize)
6418 : 0)))
6419 map->p_paddr = segment->p_vaddr;
6420
6421 /* Match up the physical address of the segment with the
6422 LMA address of the output section. */
6423 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6424 || IS_COREFILE_NOTE (segment, section)
6425 || (bed->want_p_paddr_set_to_zero
6426 && IS_CONTAINED_BY_VMA (output_section, segment)))
6427 {
6428 if (first_matching_lma || output_section->lma < matching_lma)
6429 {
6430 matching_lma = output_section->lma;
6431 first_matching_lma = FALSE;
6432 }
6433
6434 /* We assume that if the section fits within the segment
6435 then it does not overlap any other section within that
6436 segment. */
6437 map->sections[isec++] = output_section;
6438 }
6439 else if (first_suggested_lma)
6440 {
6441 suggested_lma = output_section->lma;
6442 first_suggested_lma = FALSE;
6443 }
6444
6445 if (j == section_count)
6446 break;
6447 }
6448 }
6449
6450 BFD_ASSERT (j == section_count);
6451
6452 /* Step Two: Adjust the physical address of the current segment,
6453 if necessary. */
6454 if (isec == section_count)
6455 {
6456 /* All of the sections fitted within the segment as currently
6457 specified. This is the default case. Add the segment to
6458 the list of built segments and carry on to process the next
6459 program header in the input BFD. */
6460 map->count = section_count;
6461 *pointer_to_map = map;
6462 pointer_to_map = &map->next;
6463
6464 if (p_paddr_valid
6465 && !bed->want_p_paddr_set_to_zero
6466 && matching_lma != map->p_paddr
6467 && !map->includes_filehdr
6468 && !map->includes_phdrs)
6469 /* There is some padding before the first section in the
6470 segment. So, we must account for that in the output
6471 segment's vma. */
6472 map->p_vaddr_offset = matching_lma - map->p_paddr;
6473
6474 free (sections);
6475 continue;
6476 }
6477 else
6478 {
6479 if (!first_matching_lma)
6480 {
6481 /* At least one section fits inside the current segment.
6482 Keep it, but modify its physical address to match the
6483 LMA of the first section that fitted. */
6484 map->p_paddr = matching_lma;
6485 }
6486 else
6487 {
6488 /* None of the sections fitted inside the current segment.
6489 Change the current segment's physical address to match
6490 the LMA of the first section. */
6491 map->p_paddr = suggested_lma;
6492 }
6493
6494 /* Offset the segment physical address from the lma
6495 to allow for space taken up by elf headers. */
6496 if (map->includes_filehdr)
6497 {
6498 if (map->p_paddr >= iehdr->e_ehsize)
6499 map->p_paddr -= iehdr->e_ehsize;
6500 else
6501 {
6502 map->includes_filehdr = FALSE;
6503 map->includes_phdrs = FALSE;
6504 }
6505 }
6506
6507 if (map->includes_phdrs)
6508 {
6509 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6510 {
6511 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6512
6513 /* iehdr->e_phnum is just an estimate of the number
6514 of program headers that we will need. Make a note
6515 here of the number we used and the segment we chose
6516 to hold these headers, so that we can adjust the
6517 offset when we know the correct value. */
6518 phdr_adjust_num = iehdr->e_phnum;
6519 phdr_adjust_seg = map;
6520 }
6521 else
6522 map->includes_phdrs = FALSE;
6523 }
6524 }
6525
6526 /* Step Three: Loop over the sections again, this time assigning
6527 those that fit to the current segment and removing them from the
6528 sections array; but making sure not to leave large gaps. Once all
6529 possible sections have been assigned to the current segment it is
6530 added to the list of built segments and if sections still remain
6531 to be assigned, a new segment is constructed before repeating
6532 the loop. */
6533 isec = 0;
6534 do
6535 {
6536 map->count = 0;
6537 suggested_lma = 0;
6538 first_suggested_lma = TRUE;
6539
6540 /* Fill the current segment with sections that fit. */
6541 for (j = 0; j < section_count; j++)
6542 {
6543 section = sections[j];
6544
6545 if (section == NULL)
6546 continue;
6547
6548 output_section = section->output_section;
6549
6550 BFD_ASSERT (output_section != NULL);
6551
6552 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6553 || IS_COREFILE_NOTE (segment, section))
6554 {
6555 if (map->count == 0)
6556 {
6557 /* If the first section in a segment does not start at
6558 the beginning of the segment, then something is
6559 wrong. */
6560 if (output_section->lma
6561 != (map->p_paddr
6562 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6563 + (map->includes_phdrs
6564 ? iehdr->e_phnum * iehdr->e_phentsize
6565 : 0)))
6566 abort ();
6567 }
6568 else
6569 {
6570 asection *prev_sec;
6571
6572 prev_sec = map->sections[map->count - 1];
6573
6574 /* If the gap between the end of the previous section
6575 and the start of this section is more than
6576 maxpagesize then we need to start a new segment. */
6577 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6578 maxpagesize)
6579 < BFD_ALIGN (output_section->lma, maxpagesize))
6580 || (prev_sec->lma + prev_sec->size
6581 > output_section->lma))
6582 {
6583 if (first_suggested_lma)
6584 {
6585 suggested_lma = output_section->lma;
6586 first_suggested_lma = FALSE;
6587 }
6588
6589 continue;
6590 }
6591 }
6592
6593 map->sections[map->count++] = output_section;
6594 ++isec;
6595 sections[j] = NULL;
6596 section->segment_mark = TRUE;
6597 }
6598 else if (first_suggested_lma)
6599 {
6600 suggested_lma = output_section->lma;
6601 first_suggested_lma = FALSE;
6602 }
6603 }
6604
6605 BFD_ASSERT (map->count > 0);
6606
6607 /* Add the current segment to the list of built segments. */
6608 *pointer_to_map = map;
6609 pointer_to_map = &map->next;
6610
6611 if (isec < section_count)
6612 {
6613 /* We still have not allocated all of the sections to
6614 segments. Create a new segment here, initialise it
6615 and carry on looping. */
6616 amt = sizeof (struct elf_segment_map);
6617 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6618 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6619 if (map == NULL)
6620 {
6621 free (sections);
6622 return FALSE;
6623 }
6624
6625 /* Initialise the fields of the segment map. Set the physical
6626 physical address to the LMA of the first section that has
6627 not yet been assigned. */
6628 map->next = NULL;
6629 map->p_type = segment->p_type;
6630 map->p_flags = segment->p_flags;
6631 map->p_flags_valid = 1;
6632 map->p_paddr = suggested_lma;
6633 map->p_paddr_valid = p_paddr_valid;
6634 map->includes_filehdr = 0;
6635 map->includes_phdrs = 0;
6636 }
6637 }
6638 while (isec < section_count);
6639
6640 free (sections);
6641 }
6642
6643 elf_seg_map (obfd) = map_first;
6644
6645 /* If we had to estimate the number of program headers that were
6646 going to be needed, then check our estimate now and adjust
6647 the offset if necessary. */
6648 if (phdr_adjust_seg != NULL)
6649 {
6650 unsigned int count;
6651
6652 for (count = 0, map = map_first; map != NULL; map = map->next)
6653 count++;
6654
6655 if (count > phdr_adjust_num)
6656 phdr_adjust_seg->p_paddr
6657 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6658 }
6659
6660 #undef SEGMENT_END
6661 #undef SECTION_SIZE
6662 #undef IS_CONTAINED_BY_VMA
6663 #undef IS_CONTAINED_BY_LMA
6664 #undef IS_NOTE
6665 #undef IS_COREFILE_NOTE
6666 #undef IS_SOLARIS_PT_INTERP
6667 #undef IS_SECTION_IN_INPUT_SEGMENT
6668 #undef INCLUDE_SECTION_IN_SEGMENT
6669 #undef SEGMENT_AFTER_SEGMENT
6670 #undef SEGMENT_OVERLAPS
6671 return TRUE;
6672 }
6673
6674 /* Copy ELF program header information. */
6675
6676 static bfd_boolean
6677 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6678 {
6679 Elf_Internal_Ehdr *iehdr;
6680 struct elf_segment_map *map;
6681 struct elf_segment_map *map_first;
6682 struct elf_segment_map **pointer_to_map;
6683 Elf_Internal_Phdr *segment;
6684 unsigned int i;
6685 unsigned int num_segments;
6686 bfd_boolean phdr_included = FALSE;
6687 bfd_boolean p_paddr_valid;
6688
6689 iehdr = elf_elfheader (ibfd);
6690
6691 map_first = NULL;
6692 pointer_to_map = &map_first;
6693
6694 /* If all the segment p_paddr fields are zero, don't set
6695 map->p_paddr_valid. */
6696 p_paddr_valid = FALSE;
6697 num_segments = elf_elfheader (ibfd)->e_phnum;
6698 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6699 i < num_segments;
6700 i++, segment++)
6701 if (segment->p_paddr != 0)
6702 {
6703 p_paddr_valid = TRUE;
6704 break;
6705 }
6706
6707 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6708 i < num_segments;
6709 i++, segment++)
6710 {
6711 asection *section;
6712 unsigned int section_count;
6713 bfd_size_type amt;
6714 Elf_Internal_Shdr *this_hdr;
6715 asection *first_section = NULL;
6716 asection *lowest_section;
6717
6718 /* Compute how many sections are in this segment. */
6719 for (section = ibfd->sections, section_count = 0;
6720 section != NULL;
6721 section = section->next)
6722 {
6723 this_hdr = &(elf_section_data(section)->this_hdr);
6724 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6725 {
6726 if (first_section == NULL)
6727 first_section = section;
6728 section_count++;
6729 }
6730 }
6731
6732 /* Allocate a segment map big enough to contain
6733 all of the sections we have selected. */
6734 amt = sizeof (struct elf_segment_map);
6735 if (section_count != 0)
6736 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6737 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6738 if (map == NULL)
6739 return FALSE;
6740
6741 /* Initialize the fields of the output segment map with the
6742 input segment. */
6743 map->next = NULL;
6744 map->p_type = segment->p_type;
6745 map->p_flags = segment->p_flags;
6746 map->p_flags_valid = 1;
6747 map->p_paddr = segment->p_paddr;
6748 map->p_paddr_valid = p_paddr_valid;
6749 map->p_align = segment->p_align;
6750 map->p_align_valid = 1;
6751 map->p_vaddr_offset = 0;
6752
6753 if (map->p_type == PT_GNU_RELRO
6754 || map->p_type == PT_GNU_STACK)
6755 {
6756 /* The PT_GNU_RELRO segment may contain the first a few
6757 bytes in the .got.plt section even if the whole .got.plt
6758 section isn't in the PT_GNU_RELRO segment. We won't
6759 change the size of the PT_GNU_RELRO segment.
6760 Similarly, PT_GNU_STACK size is significant on uclinux
6761 systems. */
6762 map->p_size = segment->p_memsz;
6763 map->p_size_valid = 1;
6764 }
6765
6766 /* Determine if this segment contains the ELF file header
6767 and if it contains the program headers themselves. */
6768 map->includes_filehdr = (segment->p_offset == 0
6769 && segment->p_filesz >= iehdr->e_ehsize);
6770
6771 map->includes_phdrs = 0;
6772 if (! phdr_included || segment->p_type != PT_LOAD)
6773 {
6774 map->includes_phdrs =
6775 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6776 && (segment->p_offset + segment->p_filesz
6777 >= ((bfd_vma) iehdr->e_phoff
6778 + iehdr->e_phnum * iehdr->e_phentsize)));
6779
6780 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6781 phdr_included = TRUE;
6782 }
6783
6784 lowest_section = NULL;
6785 if (section_count != 0)
6786 {
6787 unsigned int isec = 0;
6788
6789 for (section = first_section;
6790 section != NULL;
6791 section = section->next)
6792 {
6793 this_hdr = &(elf_section_data(section)->this_hdr);
6794 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6795 {
6796 map->sections[isec++] = section->output_section;
6797 if ((section->flags & SEC_ALLOC) != 0)
6798 {
6799 bfd_vma seg_off;
6800
6801 if (lowest_section == NULL
6802 || section->lma < lowest_section->lma)
6803 lowest_section = section;
6804
6805 /* Section lmas are set up from PT_LOAD header
6806 p_paddr in _bfd_elf_make_section_from_shdr.
6807 If this header has a p_paddr that disagrees
6808 with the section lma, flag the p_paddr as
6809 invalid. */
6810 if ((section->flags & SEC_LOAD) != 0)
6811 seg_off = this_hdr->sh_offset - segment->p_offset;
6812 else
6813 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6814 if (section->lma - segment->p_paddr != seg_off)
6815 map->p_paddr_valid = FALSE;
6816 }
6817 if (isec == section_count)
6818 break;
6819 }
6820 }
6821 }
6822
6823 if (map->includes_filehdr && lowest_section != NULL)
6824 /* We need to keep the space used by the headers fixed. */
6825 map->header_size = lowest_section->vma - segment->p_vaddr;
6826
6827 if (!map->includes_phdrs
6828 && !map->includes_filehdr
6829 && map->p_paddr_valid)
6830 /* There is some other padding before the first section. */
6831 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6832 - segment->p_paddr);
6833
6834 map->count = section_count;
6835 *pointer_to_map = map;
6836 pointer_to_map = &map->next;
6837 }
6838
6839 elf_seg_map (obfd) = map_first;
6840 return TRUE;
6841 }
6842
6843 /* Copy private BFD data. This copies or rewrites ELF program header
6844 information. */
6845
6846 static bfd_boolean
6847 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6848 {
6849 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6850 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6851 return TRUE;
6852
6853 if (elf_tdata (ibfd)->phdr == NULL)
6854 return TRUE;
6855
6856 if (ibfd->xvec == obfd->xvec)
6857 {
6858 /* Check to see if any sections in the input BFD
6859 covered by ELF program header have changed. */
6860 Elf_Internal_Phdr *segment;
6861 asection *section, *osec;
6862 unsigned int i, num_segments;
6863 Elf_Internal_Shdr *this_hdr;
6864 const struct elf_backend_data *bed;
6865
6866 bed = get_elf_backend_data (ibfd);
6867
6868 /* Regenerate the segment map if p_paddr is set to 0. */
6869 if (bed->want_p_paddr_set_to_zero)
6870 goto rewrite;
6871
6872 /* Initialize the segment mark field. */
6873 for (section = obfd->sections; section != NULL;
6874 section = section->next)
6875 section->segment_mark = FALSE;
6876
6877 num_segments = elf_elfheader (ibfd)->e_phnum;
6878 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6879 i < num_segments;
6880 i++, segment++)
6881 {
6882 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6883 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6884 which severly confuses things, so always regenerate the segment
6885 map in this case. */
6886 if (segment->p_paddr == 0
6887 && segment->p_memsz == 0
6888 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6889 goto rewrite;
6890
6891 for (section = ibfd->sections;
6892 section != NULL; section = section->next)
6893 {
6894 /* We mark the output section so that we know it comes
6895 from the input BFD. */
6896 osec = section->output_section;
6897 if (osec)
6898 osec->segment_mark = TRUE;
6899
6900 /* Check if this section is covered by the segment. */
6901 this_hdr = &(elf_section_data(section)->this_hdr);
6902 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6903 {
6904 /* FIXME: Check if its output section is changed or
6905 removed. What else do we need to check? */
6906 if (osec == NULL
6907 || section->flags != osec->flags
6908 || section->lma != osec->lma
6909 || section->vma != osec->vma
6910 || section->size != osec->size
6911 || section->rawsize != osec->rawsize
6912 || section->alignment_power != osec->alignment_power)
6913 goto rewrite;
6914 }
6915 }
6916 }
6917
6918 /* Check to see if any output section do not come from the
6919 input BFD. */
6920 for (section = obfd->sections; section != NULL;
6921 section = section->next)
6922 {
6923 if (section->segment_mark == FALSE)
6924 goto rewrite;
6925 else
6926 section->segment_mark = FALSE;
6927 }
6928
6929 return copy_elf_program_header (ibfd, obfd);
6930 }
6931
6932 rewrite:
6933 if (ibfd->xvec == obfd->xvec)
6934 {
6935 /* When rewriting program header, set the output maxpagesize to
6936 the maximum alignment of input PT_LOAD segments. */
6937 Elf_Internal_Phdr *segment;
6938 unsigned int i;
6939 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
6940 bfd_vma maxpagesize = 0;
6941
6942 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6943 i < num_segments;
6944 i++, segment++)
6945 if (segment->p_type == PT_LOAD
6946 && maxpagesize < segment->p_align)
6947 {
6948 /* PR 17512: file: f17299af. */
6949 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
6950 (*_bfd_error_handler) (_("\
6951 %B: warning: segment alignment of 0x%llx is too large"),
6952 ibfd, (long long) segment->p_align);
6953 else
6954 maxpagesize = segment->p_align;
6955 }
6956
6957 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
6958 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
6959 }
6960
6961 return rewrite_elf_program_header (ibfd, obfd);
6962 }
6963
6964 /* Initialize private output section information from input section. */
6965
6966 bfd_boolean
6967 _bfd_elf_init_private_section_data (bfd *ibfd,
6968 asection *isec,
6969 bfd *obfd,
6970 asection *osec,
6971 struct bfd_link_info *link_info)
6972
6973 {
6974 Elf_Internal_Shdr *ihdr, *ohdr;
6975 bfd_boolean final_link = (link_info != NULL
6976 && !bfd_link_relocatable (link_info));
6977
6978 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6979 || obfd->xvec->flavour != bfd_target_elf_flavour)
6980 return TRUE;
6981
6982 BFD_ASSERT (elf_section_data (osec) != NULL);
6983
6984 /* For objcopy and relocatable link, don't copy the output ELF
6985 section type from input if the output BFD section flags have been
6986 set to something different. For a final link allow some flags
6987 that the linker clears to differ. */
6988 if (elf_section_type (osec) == SHT_NULL
6989 && (osec->flags == isec->flags
6990 || (final_link
6991 && ((osec->flags ^ isec->flags)
6992 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6993 elf_section_type (osec) = elf_section_type (isec);
6994
6995 /* FIXME: Is this correct for all OS/PROC specific flags? */
6996 elf_section_flags (osec) |= (elf_section_flags (isec)
6997 & (SHF_MASKOS | SHF_MASKPROC));
6998
6999 /* Set things up for objcopy and relocatable link. The output
7000 SHT_GROUP section will have its elf_next_in_group pointing back
7001 to the input group members. Ignore linker created group section.
7002 See elfNN_ia64_object_p in elfxx-ia64.c. */
7003 if (!final_link)
7004 {
7005 if (elf_sec_group (isec) == NULL
7006 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
7007 {
7008 if (elf_section_flags (isec) & SHF_GROUP)
7009 elf_section_flags (osec) |= SHF_GROUP;
7010 elf_next_in_group (osec) = elf_next_in_group (isec);
7011 elf_section_data (osec)->group = elf_section_data (isec)->group;
7012 }
7013
7014 /* If not decompress, preserve SHF_COMPRESSED. */
7015 if ((ibfd->flags & BFD_DECOMPRESS) == 0)
7016 elf_section_flags (osec) |= (elf_section_flags (isec)
7017 & SHF_COMPRESSED);
7018 }
7019
7020 ihdr = &elf_section_data (isec)->this_hdr;
7021
7022 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7023 don't use the output section of the linked-to section since it
7024 may be NULL at this point. */
7025 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7026 {
7027 ohdr = &elf_section_data (osec)->this_hdr;
7028 ohdr->sh_flags |= SHF_LINK_ORDER;
7029 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7030 }
7031
7032 osec->use_rela_p = isec->use_rela_p;
7033
7034 return TRUE;
7035 }
7036
7037 /* Copy private section information. This copies over the entsize
7038 field, and sometimes the info field. */
7039
7040 bfd_boolean
7041 _bfd_elf_copy_private_section_data (bfd *ibfd,
7042 asection *isec,
7043 bfd *obfd,
7044 asection *osec)
7045 {
7046 Elf_Internal_Shdr *ihdr, *ohdr;
7047
7048 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7049 || obfd->xvec->flavour != bfd_target_elf_flavour)
7050 return TRUE;
7051
7052 ihdr = &elf_section_data (isec)->this_hdr;
7053 ohdr = &elf_section_data (osec)->this_hdr;
7054
7055 ohdr->sh_entsize = ihdr->sh_entsize;
7056
7057 if (ihdr->sh_type == SHT_SYMTAB
7058 || ihdr->sh_type == SHT_DYNSYM
7059 || ihdr->sh_type == SHT_GNU_verneed
7060 || ihdr->sh_type == SHT_GNU_verdef)
7061 ohdr->sh_info = ihdr->sh_info;
7062
7063 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7064 NULL);
7065 }
7066
7067 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7068 necessary if we are removing either the SHT_GROUP section or any of
7069 the group member sections. DISCARDED is the value that a section's
7070 output_section has if the section will be discarded, NULL when this
7071 function is called from objcopy, bfd_abs_section_ptr when called
7072 from the linker. */
7073
7074 bfd_boolean
7075 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7076 {
7077 asection *isec;
7078
7079 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7080 if (elf_section_type (isec) == SHT_GROUP)
7081 {
7082 asection *first = elf_next_in_group (isec);
7083 asection *s = first;
7084 bfd_size_type removed = 0;
7085
7086 while (s != NULL)
7087 {
7088 /* If this member section is being output but the
7089 SHT_GROUP section is not, then clear the group info
7090 set up by _bfd_elf_copy_private_section_data. */
7091 if (s->output_section != discarded
7092 && isec->output_section == discarded)
7093 {
7094 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7095 elf_group_name (s->output_section) = NULL;
7096 }
7097 /* Conversely, if the member section is not being output
7098 but the SHT_GROUP section is, then adjust its size. */
7099 else if (s->output_section == discarded
7100 && isec->output_section != discarded)
7101 removed += 4;
7102 s = elf_next_in_group (s);
7103 if (s == first)
7104 break;
7105 }
7106 if (removed != 0)
7107 {
7108 if (discarded != NULL)
7109 {
7110 /* If we've been called for ld -r, then we need to
7111 adjust the input section size. This function may
7112 be called multiple times, so save the original
7113 size. */
7114 if (isec->rawsize == 0)
7115 isec->rawsize = isec->size;
7116 isec->size = isec->rawsize - removed;
7117 }
7118 else
7119 {
7120 /* Adjust the output section size when called from
7121 objcopy. */
7122 isec->output_section->size -= removed;
7123 }
7124 }
7125 }
7126
7127 return TRUE;
7128 }
7129
7130 /* Copy private header information. */
7131
7132 bfd_boolean
7133 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7134 {
7135 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7136 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7137 return TRUE;
7138
7139 /* Copy over private BFD data if it has not already been copied.
7140 This must be done here, rather than in the copy_private_bfd_data
7141 entry point, because the latter is called after the section
7142 contents have been set, which means that the program headers have
7143 already been worked out. */
7144 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7145 {
7146 if (! copy_private_bfd_data (ibfd, obfd))
7147 return FALSE;
7148 }
7149
7150 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7151 }
7152
7153 /* Copy private symbol information. If this symbol is in a section
7154 which we did not map into a BFD section, try to map the section
7155 index correctly. We use special macro definitions for the mapped
7156 section indices; these definitions are interpreted by the
7157 swap_out_syms function. */
7158
7159 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7160 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7161 #define MAP_STRTAB (SHN_HIOS + 3)
7162 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7163 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7164
7165 bfd_boolean
7166 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7167 asymbol *isymarg,
7168 bfd *obfd,
7169 asymbol *osymarg)
7170 {
7171 elf_symbol_type *isym, *osym;
7172
7173 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7174 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7175 return TRUE;
7176
7177 isym = elf_symbol_from (ibfd, isymarg);
7178 osym = elf_symbol_from (obfd, osymarg);
7179
7180 if (isym != NULL
7181 && isym->internal_elf_sym.st_shndx != 0
7182 && osym != NULL
7183 && bfd_is_abs_section (isym->symbol.section))
7184 {
7185 unsigned int shndx;
7186
7187 shndx = isym->internal_elf_sym.st_shndx;
7188 if (shndx == elf_onesymtab (ibfd))
7189 shndx = MAP_ONESYMTAB;
7190 else if (shndx == elf_dynsymtab (ibfd))
7191 shndx = MAP_DYNSYMTAB;
7192 else if (shndx == elf_strtab_sec (ibfd))
7193 shndx = MAP_STRTAB;
7194 else if (shndx == elf_shstrtab_sec (ibfd))
7195 shndx = MAP_SHSTRTAB;
7196 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7197 shndx = MAP_SYM_SHNDX;
7198 osym->internal_elf_sym.st_shndx = shndx;
7199 }
7200
7201 return TRUE;
7202 }
7203
7204 /* Swap out the symbols. */
7205
7206 static bfd_boolean
7207 swap_out_syms (bfd *abfd,
7208 struct elf_strtab_hash **sttp,
7209 int relocatable_p)
7210 {
7211 const struct elf_backend_data *bed;
7212 int symcount;
7213 asymbol **syms;
7214 struct elf_strtab_hash *stt;
7215 Elf_Internal_Shdr *symtab_hdr;
7216 Elf_Internal_Shdr *symtab_shndx_hdr;
7217 Elf_Internal_Shdr *symstrtab_hdr;
7218 struct elf_sym_strtab *symstrtab;
7219 bfd_byte *outbound_syms;
7220 bfd_byte *outbound_shndx;
7221 unsigned long outbound_syms_index;
7222 unsigned long outbound_shndx_index;
7223 int idx;
7224 unsigned int num_locals;
7225 bfd_size_type amt;
7226 bfd_boolean name_local_sections;
7227
7228 if (!elf_map_symbols (abfd, &num_locals))
7229 return FALSE;
7230
7231 /* Dump out the symtabs. */
7232 stt = _bfd_elf_strtab_init ();
7233 if (stt == NULL)
7234 return FALSE;
7235
7236 bed = get_elf_backend_data (abfd);
7237 symcount = bfd_get_symcount (abfd);
7238 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7239 symtab_hdr->sh_type = SHT_SYMTAB;
7240 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7241 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7242 symtab_hdr->sh_info = num_locals + 1;
7243 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7244
7245 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7246 symstrtab_hdr->sh_type = SHT_STRTAB;
7247
7248 /* Allocate buffer to swap out the .strtab section. */
7249 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7250 * sizeof (*symstrtab));
7251 if (symstrtab == NULL)
7252 {
7253 _bfd_elf_strtab_free (stt);
7254 return FALSE;
7255 }
7256
7257 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7258 bed->s->sizeof_sym);
7259 if (outbound_syms == NULL)
7260 {
7261 error_return:
7262 _bfd_elf_strtab_free (stt);
7263 free (symstrtab);
7264 return FALSE;
7265 }
7266 symtab_hdr->contents = outbound_syms;
7267 outbound_syms_index = 0;
7268
7269 outbound_shndx = NULL;
7270 outbound_shndx_index = 0;
7271
7272 if (elf_symtab_shndx_list (abfd))
7273 {
7274 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7275 if (symtab_shndx_hdr->sh_name != 0)
7276 {
7277 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7278 outbound_shndx = (bfd_byte *)
7279 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7280 if (outbound_shndx == NULL)
7281 goto error_return;
7282
7283 symtab_shndx_hdr->contents = outbound_shndx;
7284 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7285 symtab_shndx_hdr->sh_size = amt;
7286 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7287 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7288 }
7289 /* FIXME: What about any other headers in the list ? */
7290 }
7291
7292 /* Now generate the data (for "contents"). */
7293 {
7294 /* Fill in zeroth symbol and swap it out. */
7295 Elf_Internal_Sym sym;
7296 sym.st_name = 0;
7297 sym.st_value = 0;
7298 sym.st_size = 0;
7299 sym.st_info = 0;
7300 sym.st_other = 0;
7301 sym.st_shndx = SHN_UNDEF;
7302 sym.st_target_internal = 0;
7303 symstrtab[0].sym = sym;
7304 symstrtab[0].dest_index = outbound_syms_index;
7305 symstrtab[0].destshndx_index = outbound_shndx_index;
7306 outbound_syms_index++;
7307 if (outbound_shndx != NULL)
7308 outbound_shndx_index++;
7309 }
7310
7311 name_local_sections
7312 = (bed->elf_backend_name_local_section_symbols
7313 && bed->elf_backend_name_local_section_symbols (abfd));
7314
7315 syms = bfd_get_outsymbols (abfd);
7316 for (idx = 0; idx < symcount;)
7317 {
7318 Elf_Internal_Sym sym;
7319 bfd_vma value = syms[idx]->value;
7320 elf_symbol_type *type_ptr;
7321 flagword flags = syms[idx]->flags;
7322 int type;
7323
7324 if (!name_local_sections
7325 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7326 {
7327 /* Local section symbols have no name. */
7328 sym.st_name = (unsigned long) -1;
7329 }
7330 else
7331 {
7332 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7333 to get the final offset for st_name. */
7334 sym.st_name
7335 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7336 FALSE);
7337 if (sym.st_name == (unsigned long) -1)
7338 goto error_return;
7339 }
7340
7341 type_ptr = elf_symbol_from (abfd, syms[idx]);
7342
7343 if ((flags & BSF_SECTION_SYM) == 0
7344 && bfd_is_com_section (syms[idx]->section))
7345 {
7346 /* ELF common symbols put the alignment into the `value' field,
7347 and the size into the `size' field. This is backwards from
7348 how BFD handles it, so reverse it here. */
7349 sym.st_size = value;
7350 if (type_ptr == NULL
7351 || type_ptr->internal_elf_sym.st_value == 0)
7352 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7353 else
7354 sym.st_value = type_ptr->internal_elf_sym.st_value;
7355 sym.st_shndx = _bfd_elf_section_from_bfd_section
7356 (abfd, syms[idx]->section);
7357 }
7358 else
7359 {
7360 asection *sec = syms[idx]->section;
7361 unsigned int shndx;
7362
7363 if (sec->output_section)
7364 {
7365 value += sec->output_offset;
7366 sec = sec->output_section;
7367 }
7368
7369 /* Don't add in the section vma for relocatable output. */
7370 if (! relocatable_p)
7371 value += sec->vma;
7372 sym.st_value = value;
7373 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7374
7375 if (bfd_is_abs_section (sec)
7376 && type_ptr != NULL
7377 && type_ptr->internal_elf_sym.st_shndx != 0)
7378 {
7379 /* This symbol is in a real ELF section which we did
7380 not create as a BFD section. Undo the mapping done
7381 by copy_private_symbol_data. */
7382 shndx = type_ptr->internal_elf_sym.st_shndx;
7383 switch (shndx)
7384 {
7385 case MAP_ONESYMTAB:
7386 shndx = elf_onesymtab (abfd);
7387 break;
7388 case MAP_DYNSYMTAB:
7389 shndx = elf_dynsymtab (abfd);
7390 break;
7391 case MAP_STRTAB:
7392 shndx = elf_strtab_sec (abfd);
7393 break;
7394 case MAP_SHSTRTAB:
7395 shndx = elf_shstrtab_sec (abfd);
7396 break;
7397 case MAP_SYM_SHNDX:
7398 if (elf_symtab_shndx_list (abfd))
7399 shndx = elf_symtab_shndx_list (abfd)->ndx;
7400 break;
7401 default:
7402 shndx = SHN_ABS;
7403 break;
7404 }
7405 }
7406 else
7407 {
7408 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7409
7410 if (shndx == SHN_BAD)
7411 {
7412 asection *sec2;
7413
7414 /* Writing this would be a hell of a lot easier if
7415 we had some decent documentation on bfd, and
7416 knew what to expect of the library, and what to
7417 demand of applications. For example, it
7418 appears that `objcopy' might not set the
7419 section of a symbol to be a section that is
7420 actually in the output file. */
7421 sec2 = bfd_get_section_by_name (abfd, sec->name);
7422 if (sec2 == NULL)
7423 {
7424 _bfd_error_handler (_("\
7425 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7426 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7427 sec->name);
7428 bfd_set_error (bfd_error_invalid_operation);
7429 goto error_return;
7430 }
7431
7432 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7433 BFD_ASSERT (shndx != SHN_BAD);
7434 }
7435 }
7436
7437 sym.st_shndx = shndx;
7438 }
7439
7440 if ((flags & BSF_THREAD_LOCAL) != 0)
7441 type = STT_TLS;
7442 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7443 type = STT_GNU_IFUNC;
7444 else if ((flags & BSF_FUNCTION) != 0)
7445 type = STT_FUNC;
7446 else if ((flags & BSF_OBJECT) != 0)
7447 type = STT_OBJECT;
7448 else if ((flags & BSF_RELC) != 0)
7449 type = STT_RELC;
7450 else if ((flags & BSF_SRELC) != 0)
7451 type = STT_SRELC;
7452 else
7453 type = STT_NOTYPE;
7454
7455 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7456 type = STT_TLS;
7457
7458 /* Processor-specific types. */
7459 if (type_ptr != NULL
7460 && bed->elf_backend_get_symbol_type)
7461 type = ((*bed->elf_backend_get_symbol_type)
7462 (&type_ptr->internal_elf_sym, type));
7463
7464 if (flags & BSF_SECTION_SYM)
7465 {
7466 if (flags & BSF_GLOBAL)
7467 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7468 else
7469 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7470 }
7471 else if (bfd_is_com_section (syms[idx]->section))
7472 {
7473 #ifdef USE_STT_COMMON
7474 if (type == STT_OBJECT)
7475 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
7476 else
7477 #endif
7478 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7479 }
7480 else if (bfd_is_und_section (syms[idx]->section))
7481 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7482 ? STB_WEAK
7483 : STB_GLOBAL),
7484 type);
7485 else if (flags & BSF_FILE)
7486 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7487 else
7488 {
7489 int bind = STB_LOCAL;
7490
7491 if (flags & BSF_LOCAL)
7492 bind = STB_LOCAL;
7493 else if (flags & BSF_GNU_UNIQUE)
7494 bind = STB_GNU_UNIQUE;
7495 else if (flags & BSF_WEAK)
7496 bind = STB_WEAK;
7497 else if (flags & BSF_GLOBAL)
7498 bind = STB_GLOBAL;
7499
7500 sym.st_info = ELF_ST_INFO (bind, type);
7501 }
7502
7503 if (type_ptr != NULL)
7504 {
7505 sym.st_other = type_ptr->internal_elf_sym.st_other;
7506 sym.st_target_internal
7507 = type_ptr->internal_elf_sym.st_target_internal;
7508 }
7509 else
7510 {
7511 sym.st_other = 0;
7512 sym.st_target_internal = 0;
7513 }
7514
7515 idx++;
7516 symstrtab[idx].sym = sym;
7517 symstrtab[idx].dest_index = outbound_syms_index;
7518 symstrtab[idx].destshndx_index = outbound_shndx_index;
7519
7520 outbound_syms_index++;
7521 if (outbound_shndx != NULL)
7522 outbound_shndx_index++;
7523 }
7524
7525 /* Finalize the .strtab section. */
7526 _bfd_elf_strtab_finalize (stt);
7527
7528 /* Swap out the .strtab section. */
7529 for (idx = 0; idx <= symcount; idx++)
7530 {
7531 struct elf_sym_strtab *elfsym = &symstrtab[idx];
7532 if (elfsym->sym.st_name == (unsigned long) -1)
7533 elfsym->sym.st_name = 0;
7534 else
7535 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
7536 elfsym->sym.st_name);
7537 bed->s->swap_symbol_out (abfd, &elfsym->sym,
7538 (outbound_syms
7539 + (elfsym->dest_index
7540 * bed->s->sizeof_sym)),
7541 (outbound_shndx
7542 + (elfsym->destshndx_index
7543 * sizeof (Elf_External_Sym_Shndx))));
7544 }
7545 free (symstrtab);
7546
7547 *sttp = stt;
7548 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
7549 symstrtab_hdr->sh_type = SHT_STRTAB;
7550
7551 symstrtab_hdr->sh_flags = 0;
7552 symstrtab_hdr->sh_addr = 0;
7553 symstrtab_hdr->sh_entsize = 0;
7554 symstrtab_hdr->sh_link = 0;
7555 symstrtab_hdr->sh_info = 0;
7556 symstrtab_hdr->sh_addralign = 1;
7557
7558 return TRUE;
7559 }
7560
7561 /* Return the number of bytes required to hold the symtab vector.
7562
7563 Note that we base it on the count plus 1, since we will null terminate
7564 the vector allocated based on this size. However, the ELF symbol table
7565 always has a dummy entry as symbol #0, so it ends up even. */
7566
7567 long
7568 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7569 {
7570 long symcount;
7571 long symtab_size;
7572 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7573
7574 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7575 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7576 if (symcount > 0)
7577 symtab_size -= sizeof (asymbol *);
7578
7579 return symtab_size;
7580 }
7581
7582 long
7583 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7584 {
7585 long symcount;
7586 long symtab_size;
7587 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7588
7589 if (elf_dynsymtab (abfd) == 0)
7590 {
7591 bfd_set_error (bfd_error_invalid_operation);
7592 return -1;
7593 }
7594
7595 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7596 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7597 if (symcount > 0)
7598 symtab_size -= sizeof (asymbol *);
7599
7600 return symtab_size;
7601 }
7602
7603 long
7604 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7605 sec_ptr asect)
7606 {
7607 return (asect->reloc_count + 1) * sizeof (arelent *);
7608 }
7609
7610 /* Canonicalize the relocs. */
7611
7612 long
7613 _bfd_elf_canonicalize_reloc (bfd *abfd,
7614 sec_ptr section,
7615 arelent **relptr,
7616 asymbol **symbols)
7617 {
7618 arelent *tblptr;
7619 unsigned int i;
7620 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7621
7622 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7623 return -1;
7624
7625 tblptr = section->relocation;
7626 for (i = 0; i < section->reloc_count; i++)
7627 *relptr++ = tblptr++;
7628
7629 *relptr = NULL;
7630
7631 return section->reloc_count;
7632 }
7633
7634 long
7635 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7636 {
7637 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7638 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7639
7640 if (symcount >= 0)
7641 bfd_get_symcount (abfd) = symcount;
7642 return symcount;
7643 }
7644
7645 long
7646 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7647 asymbol **allocation)
7648 {
7649 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7650 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7651
7652 if (symcount >= 0)
7653 bfd_get_dynamic_symcount (abfd) = symcount;
7654 return symcount;
7655 }
7656
7657 /* Return the size required for the dynamic reloc entries. Any loadable
7658 section that was actually installed in the BFD, and has type SHT_REL
7659 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7660 dynamic reloc section. */
7661
7662 long
7663 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7664 {
7665 long ret;
7666 asection *s;
7667
7668 if (elf_dynsymtab (abfd) == 0)
7669 {
7670 bfd_set_error (bfd_error_invalid_operation);
7671 return -1;
7672 }
7673
7674 ret = sizeof (arelent *);
7675 for (s = abfd->sections; s != NULL; s = s->next)
7676 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7677 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7678 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7679 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7680 * sizeof (arelent *));
7681
7682 return ret;
7683 }
7684
7685 /* Canonicalize the dynamic relocation entries. Note that we return the
7686 dynamic relocations as a single block, although they are actually
7687 associated with particular sections; the interface, which was
7688 designed for SunOS style shared libraries, expects that there is only
7689 one set of dynamic relocs. Any loadable section that was actually
7690 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7691 dynamic symbol table, is considered to be a dynamic reloc section. */
7692
7693 long
7694 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7695 arelent **storage,
7696 asymbol **syms)
7697 {
7698 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7699 asection *s;
7700 long ret;
7701
7702 if (elf_dynsymtab (abfd) == 0)
7703 {
7704 bfd_set_error (bfd_error_invalid_operation);
7705 return -1;
7706 }
7707
7708 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7709 ret = 0;
7710 for (s = abfd->sections; s != NULL; s = s->next)
7711 {
7712 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7713 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7714 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7715 {
7716 arelent *p;
7717 long count, i;
7718
7719 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7720 return -1;
7721 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7722 p = s->relocation;
7723 for (i = 0; i < count; i++)
7724 *storage++ = p++;
7725 ret += count;
7726 }
7727 }
7728
7729 *storage = NULL;
7730
7731 return ret;
7732 }
7733 \f
7734 /* Read in the version information. */
7735
7736 bfd_boolean
7737 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7738 {
7739 bfd_byte *contents = NULL;
7740 unsigned int freeidx = 0;
7741
7742 if (elf_dynverref (abfd) != 0)
7743 {
7744 Elf_Internal_Shdr *hdr;
7745 Elf_External_Verneed *everneed;
7746 Elf_Internal_Verneed *iverneed;
7747 unsigned int i;
7748 bfd_byte *contents_end;
7749
7750 hdr = &elf_tdata (abfd)->dynverref_hdr;
7751
7752 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
7753 {
7754 error_return_bad_verref:
7755 (*_bfd_error_handler)
7756 (_("%B: .gnu.version_r invalid entry"), abfd);
7757 bfd_set_error (bfd_error_bad_value);
7758 error_return_verref:
7759 elf_tdata (abfd)->verref = NULL;
7760 elf_tdata (abfd)->cverrefs = 0;
7761 goto error_return;
7762 }
7763
7764 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7765 if (contents == NULL)
7766 goto error_return_verref;
7767
7768 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7769 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7770 goto error_return_verref;
7771
7772 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7773 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7774
7775 if (elf_tdata (abfd)->verref == NULL)
7776 goto error_return_verref;
7777
7778 BFD_ASSERT (sizeof (Elf_External_Verneed)
7779 == sizeof (Elf_External_Vernaux));
7780 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7781 everneed = (Elf_External_Verneed *) contents;
7782 iverneed = elf_tdata (abfd)->verref;
7783 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7784 {
7785 Elf_External_Vernaux *evernaux;
7786 Elf_Internal_Vernaux *ivernaux;
7787 unsigned int j;
7788
7789 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7790
7791 iverneed->vn_bfd = abfd;
7792
7793 iverneed->vn_filename =
7794 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7795 iverneed->vn_file);
7796 if (iverneed->vn_filename == NULL)
7797 goto error_return_bad_verref;
7798
7799 if (iverneed->vn_cnt == 0)
7800 iverneed->vn_auxptr = NULL;
7801 else
7802 {
7803 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7804 bfd_alloc2 (abfd, iverneed->vn_cnt,
7805 sizeof (Elf_Internal_Vernaux));
7806 if (iverneed->vn_auxptr == NULL)
7807 goto error_return_verref;
7808 }
7809
7810 if (iverneed->vn_aux
7811 > (size_t) (contents_end - (bfd_byte *) everneed))
7812 goto error_return_bad_verref;
7813
7814 evernaux = ((Elf_External_Vernaux *)
7815 ((bfd_byte *) everneed + iverneed->vn_aux));
7816 ivernaux = iverneed->vn_auxptr;
7817 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7818 {
7819 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7820
7821 ivernaux->vna_nodename =
7822 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7823 ivernaux->vna_name);
7824 if (ivernaux->vna_nodename == NULL)
7825 goto error_return_bad_verref;
7826
7827 if (ivernaux->vna_other > freeidx)
7828 freeidx = ivernaux->vna_other;
7829
7830 ivernaux->vna_nextptr = NULL;
7831 if (ivernaux->vna_next == 0)
7832 {
7833 iverneed->vn_cnt = j + 1;
7834 break;
7835 }
7836 if (j + 1 < iverneed->vn_cnt)
7837 ivernaux->vna_nextptr = ivernaux + 1;
7838
7839 if (ivernaux->vna_next
7840 > (size_t) (contents_end - (bfd_byte *) evernaux))
7841 goto error_return_bad_verref;
7842
7843 evernaux = ((Elf_External_Vernaux *)
7844 ((bfd_byte *) evernaux + ivernaux->vna_next));
7845 }
7846
7847 iverneed->vn_nextref = NULL;
7848 if (iverneed->vn_next == 0)
7849 break;
7850 if (i + 1 < hdr->sh_info)
7851 iverneed->vn_nextref = iverneed + 1;
7852
7853 if (iverneed->vn_next
7854 > (size_t) (contents_end - (bfd_byte *) everneed))
7855 goto error_return_bad_verref;
7856
7857 everneed = ((Elf_External_Verneed *)
7858 ((bfd_byte *) everneed + iverneed->vn_next));
7859 }
7860 elf_tdata (abfd)->cverrefs = i;
7861
7862 free (contents);
7863 contents = NULL;
7864 }
7865
7866 if (elf_dynverdef (abfd) != 0)
7867 {
7868 Elf_Internal_Shdr *hdr;
7869 Elf_External_Verdef *everdef;
7870 Elf_Internal_Verdef *iverdef;
7871 Elf_Internal_Verdef *iverdefarr;
7872 Elf_Internal_Verdef iverdefmem;
7873 unsigned int i;
7874 unsigned int maxidx;
7875 bfd_byte *contents_end_def, *contents_end_aux;
7876
7877 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7878
7879 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
7880 {
7881 error_return_bad_verdef:
7882 (*_bfd_error_handler)
7883 (_("%B: .gnu.version_d invalid entry"), abfd);
7884 bfd_set_error (bfd_error_bad_value);
7885 error_return_verdef:
7886 elf_tdata (abfd)->verdef = NULL;
7887 elf_tdata (abfd)->cverdefs = 0;
7888 goto error_return;
7889 }
7890
7891 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7892 if (contents == NULL)
7893 goto error_return_verdef;
7894 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7895 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7896 goto error_return_verdef;
7897
7898 BFD_ASSERT (sizeof (Elf_External_Verdef)
7899 >= sizeof (Elf_External_Verdaux));
7900 contents_end_def = contents + hdr->sh_size
7901 - sizeof (Elf_External_Verdef);
7902 contents_end_aux = contents + hdr->sh_size
7903 - sizeof (Elf_External_Verdaux);
7904
7905 /* We know the number of entries in the section but not the maximum
7906 index. Therefore we have to run through all entries and find
7907 the maximum. */
7908 everdef = (Elf_External_Verdef *) contents;
7909 maxidx = 0;
7910 for (i = 0; i < hdr->sh_info; ++i)
7911 {
7912 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7913
7914 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
7915 goto error_return_bad_verdef;
7916 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7917 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7918
7919 if (iverdefmem.vd_next == 0)
7920 break;
7921
7922 if (iverdefmem.vd_next
7923 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7924 goto error_return_bad_verdef;
7925
7926 everdef = ((Elf_External_Verdef *)
7927 ((bfd_byte *) everdef + iverdefmem.vd_next));
7928 }
7929
7930 if (default_imported_symver)
7931 {
7932 if (freeidx > maxidx)
7933 maxidx = ++freeidx;
7934 else
7935 freeidx = ++maxidx;
7936 }
7937
7938 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7939 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7940 if (elf_tdata (abfd)->verdef == NULL)
7941 goto error_return_verdef;
7942
7943 elf_tdata (abfd)->cverdefs = maxidx;
7944
7945 everdef = (Elf_External_Verdef *) contents;
7946 iverdefarr = elf_tdata (abfd)->verdef;
7947 for (i = 0; i < hdr->sh_info; i++)
7948 {
7949 Elf_External_Verdaux *everdaux;
7950 Elf_Internal_Verdaux *iverdaux;
7951 unsigned int j;
7952
7953 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7954
7955 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7956 goto error_return_bad_verdef;
7957
7958 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7959 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
7960
7961 iverdef->vd_bfd = abfd;
7962
7963 if (iverdef->vd_cnt == 0)
7964 iverdef->vd_auxptr = NULL;
7965 else
7966 {
7967 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7968 bfd_alloc2 (abfd, iverdef->vd_cnt,
7969 sizeof (Elf_Internal_Verdaux));
7970 if (iverdef->vd_auxptr == NULL)
7971 goto error_return_verdef;
7972 }
7973
7974 if (iverdef->vd_aux
7975 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7976 goto error_return_bad_verdef;
7977
7978 everdaux = ((Elf_External_Verdaux *)
7979 ((bfd_byte *) everdef + iverdef->vd_aux));
7980 iverdaux = iverdef->vd_auxptr;
7981 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7982 {
7983 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7984
7985 iverdaux->vda_nodename =
7986 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7987 iverdaux->vda_name);
7988 if (iverdaux->vda_nodename == NULL)
7989 goto error_return_bad_verdef;
7990
7991 iverdaux->vda_nextptr = NULL;
7992 if (iverdaux->vda_next == 0)
7993 {
7994 iverdef->vd_cnt = j + 1;
7995 break;
7996 }
7997 if (j + 1 < iverdef->vd_cnt)
7998 iverdaux->vda_nextptr = iverdaux + 1;
7999
8000 if (iverdaux->vda_next
8001 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8002 goto error_return_bad_verdef;
8003
8004 everdaux = ((Elf_External_Verdaux *)
8005 ((bfd_byte *) everdaux + iverdaux->vda_next));
8006 }
8007
8008 iverdef->vd_nodename = NULL;
8009 if (iverdef->vd_cnt)
8010 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8011
8012 iverdef->vd_nextdef = NULL;
8013 if (iverdef->vd_next == 0)
8014 break;
8015 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8016 iverdef->vd_nextdef = iverdef + 1;
8017
8018 everdef = ((Elf_External_Verdef *)
8019 ((bfd_byte *) everdef + iverdef->vd_next));
8020 }
8021
8022 free (contents);
8023 contents = NULL;
8024 }
8025 else if (default_imported_symver)
8026 {
8027 if (freeidx < 3)
8028 freeidx = 3;
8029 else
8030 freeidx++;
8031
8032 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8033 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8034 if (elf_tdata (abfd)->verdef == NULL)
8035 goto error_return;
8036
8037 elf_tdata (abfd)->cverdefs = freeidx;
8038 }
8039
8040 /* Create a default version based on the soname. */
8041 if (default_imported_symver)
8042 {
8043 Elf_Internal_Verdef *iverdef;
8044 Elf_Internal_Verdaux *iverdaux;
8045
8046 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8047
8048 iverdef->vd_version = VER_DEF_CURRENT;
8049 iverdef->vd_flags = 0;
8050 iverdef->vd_ndx = freeidx;
8051 iverdef->vd_cnt = 1;
8052
8053 iverdef->vd_bfd = abfd;
8054
8055 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8056 if (iverdef->vd_nodename == NULL)
8057 goto error_return_verdef;
8058 iverdef->vd_nextdef = NULL;
8059 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8060 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8061 if (iverdef->vd_auxptr == NULL)
8062 goto error_return_verdef;
8063
8064 iverdaux = iverdef->vd_auxptr;
8065 iverdaux->vda_nodename = iverdef->vd_nodename;
8066 }
8067
8068 return TRUE;
8069
8070 error_return:
8071 if (contents != NULL)
8072 free (contents);
8073 return FALSE;
8074 }
8075 \f
8076 asymbol *
8077 _bfd_elf_make_empty_symbol (bfd *abfd)
8078 {
8079 elf_symbol_type *newsym;
8080
8081 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8082 if (!newsym)
8083 return NULL;
8084 newsym->symbol.the_bfd = abfd;
8085 return &newsym->symbol;
8086 }
8087
8088 void
8089 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8090 asymbol *symbol,
8091 symbol_info *ret)
8092 {
8093 bfd_symbol_info (symbol, ret);
8094 }
8095
8096 /* Return whether a symbol name implies a local symbol. Most targets
8097 use this function for the is_local_label_name entry point, but some
8098 override it. */
8099
8100 bfd_boolean
8101 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8102 const char *name)
8103 {
8104 /* Normal local symbols start with ``.L''. */
8105 if (name[0] == '.' && name[1] == 'L')
8106 return TRUE;
8107
8108 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8109 DWARF debugging symbols starting with ``..''. */
8110 if (name[0] == '.' && name[1] == '.')
8111 return TRUE;
8112
8113 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8114 emitting DWARF debugging output. I suspect this is actually a
8115 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8116 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8117 underscore to be emitted on some ELF targets). For ease of use,
8118 we treat such symbols as local. */
8119 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8120 return TRUE;
8121
8122 /* Treat assembler generated fake symbols, dollar local labels and
8123 forward-backward labels (aka local labels) as locals.
8124 These labels have the form:
8125
8126 L0^A.* (fake symbols)
8127
8128 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8129
8130 Versions which start with .L will have already been matched above,
8131 so we only need to match the rest. */
8132 if (name[0] == 'L' && ISDIGIT (name[1]))
8133 {
8134 bfd_boolean ret = FALSE;
8135 const char * p;
8136 char c;
8137
8138 for (p = name + 2; (c = *p); p++)
8139 {
8140 if (c == 1 || c == 2)
8141 {
8142 if (c == 1 && p == name + 2)
8143 /* A fake symbol. */
8144 return TRUE;
8145
8146 /* FIXME: We are being paranoid here and treating symbols like
8147 L0^Bfoo as if there were non-local, on the grounds that the
8148 assembler will never generate them. But can any symbol
8149 containing an ASCII value in the range 1-31 ever be anything
8150 other than some kind of local ? */
8151 ret = TRUE;
8152 }
8153
8154 if (! ISDIGIT (c))
8155 {
8156 ret = FALSE;
8157 break;
8158 }
8159 }
8160 return ret;
8161 }
8162
8163 return FALSE;
8164 }
8165
8166 alent *
8167 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8168 asymbol *symbol ATTRIBUTE_UNUSED)
8169 {
8170 abort ();
8171 return NULL;
8172 }
8173
8174 bfd_boolean
8175 _bfd_elf_set_arch_mach (bfd *abfd,
8176 enum bfd_architecture arch,
8177 unsigned long machine)
8178 {
8179 /* If this isn't the right architecture for this backend, and this
8180 isn't the generic backend, fail. */
8181 if (arch != get_elf_backend_data (abfd)->arch
8182 && arch != bfd_arch_unknown
8183 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8184 return FALSE;
8185
8186 return bfd_default_set_arch_mach (abfd, arch, machine);
8187 }
8188
8189 /* Find the nearest line to a particular section and offset,
8190 for error reporting. */
8191
8192 bfd_boolean
8193 _bfd_elf_find_nearest_line (bfd *abfd,
8194 asymbol **symbols,
8195 asection *section,
8196 bfd_vma offset,
8197 const char **filename_ptr,
8198 const char **functionname_ptr,
8199 unsigned int *line_ptr,
8200 unsigned int *discriminator_ptr)
8201 {
8202 bfd_boolean found;
8203
8204 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8205 filename_ptr, functionname_ptr,
8206 line_ptr, discriminator_ptr,
8207 dwarf_debug_sections, 0,
8208 &elf_tdata (abfd)->dwarf2_find_line_info)
8209 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8210 filename_ptr, functionname_ptr,
8211 line_ptr))
8212 {
8213 if (!*functionname_ptr)
8214 _bfd_elf_find_function (abfd, symbols, section, offset,
8215 *filename_ptr ? NULL : filename_ptr,
8216 functionname_ptr);
8217 return TRUE;
8218 }
8219
8220 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8221 &found, filename_ptr,
8222 functionname_ptr, line_ptr,
8223 &elf_tdata (abfd)->line_info))
8224 return FALSE;
8225 if (found && (*functionname_ptr || *line_ptr))
8226 return TRUE;
8227
8228 if (symbols == NULL)
8229 return FALSE;
8230
8231 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8232 filename_ptr, functionname_ptr))
8233 return FALSE;
8234
8235 *line_ptr = 0;
8236 return TRUE;
8237 }
8238
8239 /* Find the line for a symbol. */
8240
8241 bfd_boolean
8242 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8243 const char **filename_ptr, unsigned int *line_ptr)
8244 {
8245 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8246 filename_ptr, NULL, line_ptr, NULL,
8247 dwarf_debug_sections, 0,
8248 &elf_tdata (abfd)->dwarf2_find_line_info);
8249 }
8250
8251 /* After a call to bfd_find_nearest_line, successive calls to
8252 bfd_find_inliner_info can be used to get source information about
8253 each level of function inlining that terminated at the address
8254 passed to bfd_find_nearest_line. Currently this is only supported
8255 for DWARF2 with appropriate DWARF3 extensions. */
8256
8257 bfd_boolean
8258 _bfd_elf_find_inliner_info (bfd *abfd,
8259 const char **filename_ptr,
8260 const char **functionname_ptr,
8261 unsigned int *line_ptr)
8262 {
8263 bfd_boolean found;
8264 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8265 functionname_ptr, line_ptr,
8266 & elf_tdata (abfd)->dwarf2_find_line_info);
8267 return found;
8268 }
8269
8270 int
8271 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8272 {
8273 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8274 int ret = bed->s->sizeof_ehdr;
8275
8276 if (!bfd_link_relocatable (info))
8277 {
8278 bfd_size_type phdr_size = elf_program_header_size (abfd);
8279
8280 if (phdr_size == (bfd_size_type) -1)
8281 {
8282 struct elf_segment_map *m;
8283
8284 phdr_size = 0;
8285 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8286 phdr_size += bed->s->sizeof_phdr;
8287
8288 if (phdr_size == 0)
8289 phdr_size = get_program_header_size (abfd, info);
8290 }
8291
8292 elf_program_header_size (abfd) = phdr_size;
8293 ret += phdr_size;
8294 }
8295
8296 return ret;
8297 }
8298
8299 bfd_boolean
8300 _bfd_elf_set_section_contents (bfd *abfd,
8301 sec_ptr section,
8302 const void *location,
8303 file_ptr offset,
8304 bfd_size_type count)
8305 {
8306 Elf_Internal_Shdr *hdr;
8307 file_ptr pos;
8308
8309 if (! abfd->output_has_begun
8310 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8311 return FALSE;
8312
8313 if (!count)
8314 return TRUE;
8315
8316 hdr = &elf_section_data (section)->this_hdr;
8317 if (hdr->sh_offset == (file_ptr) -1)
8318 {
8319 /* We must compress this section. Write output to the buffer. */
8320 unsigned char *contents = hdr->contents;
8321 if ((offset + count) > hdr->sh_size
8322 || (section->flags & SEC_ELF_COMPRESS) == 0
8323 || contents == NULL)
8324 abort ();
8325 memcpy (contents + offset, location, count);
8326 return TRUE;
8327 }
8328 pos = hdr->sh_offset + offset;
8329 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8330 || bfd_bwrite (location, count, abfd) != count)
8331 return FALSE;
8332
8333 return TRUE;
8334 }
8335
8336 void
8337 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8338 arelent *cache_ptr ATTRIBUTE_UNUSED,
8339 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8340 {
8341 abort ();
8342 }
8343
8344 /* Try to convert a non-ELF reloc into an ELF one. */
8345
8346 bfd_boolean
8347 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8348 {
8349 /* Check whether we really have an ELF howto. */
8350
8351 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8352 {
8353 bfd_reloc_code_real_type code;
8354 reloc_howto_type *howto;
8355
8356 /* Alien reloc: Try to determine its type to replace it with an
8357 equivalent ELF reloc. */
8358
8359 if (areloc->howto->pc_relative)
8360 {
8361 switch (areloc->howto->bitsize)
8362 {
8363 case 8:
8364 code = BFD_RELOC_8_PCREL;
8365 break;
8366 case 12:
8367 code = BFD_RELOC_12_PCREL;
8368 break;
8369 case 16:
8370 code = BFD_RELOC_16_PCREL;
8371 break;
8372 case 24:
8373 code = BFD_RELOC_24_PCREL;
8374 break;
8375 case 32:
8376 code = BFD_RELOC_32_PCREL;
8377 break;
8378 case 64:
8379 code = BFD_RELOC_64_PCREL;
8380 break;
8381 default:
8382 goto fail;
8383 }
8384
8385 howto = bfd_reloc_type_lookup (abfd, code);
8386
8387 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8388 {
8389 if (howto->pcrel_offset)
8390 areloc->addend += areloc->address;
8391 else
8392 areloc->addend -= areloc->address; /* addend is unsigned!! */
8393 }
8394 }
8395 else
8396 {
8397 switch (areloc->howto->bitsize)
8398 {
8399 case 8:
8400 code = BFD_RELOC_8;
8401 break;
8402 case 14:
8403 code = BFD_RELOC_14;
8404 break;
8405 case 16:
8406 code = BFD_RELOC_16;
8407 break;
8408 case 26:
8409 code = BFD_RELOC_26;
8410 break;
8411 case 32:
8412 code = BFD_RELOC_32;
8413 break;
8414 case 64:
8415 code = BFD_RELOC_64;
8416 break;
8417 default:
8418 goto fail;
8419 }
8420
8421 howto = bfd_reloc_type_lookup (abfd, code);
8422 }
8423
8424 if (howto)
8425 areloc->howto = howto;
8426 else
8427 goto fail;
8428 }
8429
8430 return TRUE;
8431
8432 fail:
8433 (*_bfd_error_handler)
8434 (_("%B: unsupported relocation type %s"),
8435 abfd, areloc->howto->name);
8436 bfd_set_error (bfd_error_bad_value);
8437 return FALSE;
8438 }
8439
8440 bfd_boolean
8441 _bfd_elf_close_and_cleanup (bfd *abfd)
8442 {
8443 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8444 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8445 {
8446 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8447 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8448 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8449 }
8450
8451 return _bfd_generic_close_and_cleanup (abfd);
8452 }
8453
8454 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8455 in the relocation's offset. Thus we cannot allow any sort of sanity
8456 range-checking to interfere. There is nothing else to do in processing
8457 this reloc. */
8458
8459 bfd_reloc_status_type
8460 _bfd_elf_rel_vtable_reloc_fn
8461 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8462 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8463 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8464 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8465 {
8466 return bfd_reloc_ok;
8467 }
8468 \f
8469 /* Elf core file support. Much of this only works on native
8470 toolchains, since we rely on knowing the
8471 machine-dependent procfs structure in order to pick
8472 out details about the corefile. */
8473
8474 #ifdef HAVE_SYS_PROCFS_H
8475 /* Needed for new procfs interface on sparc-solaris. */
8476 # define _STRUCTURED_PROC 1
8477 # include <sys/procfs.h>
8478 #endif
8479
8480 /* Return a PID that identifies a "thread" for threaded cores, or the
8481 PID of the main process for non-threaded cores. */
8482
8483 static int
8484 elfcore_make_pid (bfd *abfd)
8485 {
8486 int pid;
8487
8488 pid = elf_tdata (abfd)->core->lwpid;
8489 if (pid == 0)
8490 pid = elf_tdata (abfd)->core->pid;
8491
8492 return pid;
8493 }
8494
8495 /* If there isn't a section called NAME, make one, using
8496 data from SECT. Note, this function will generate a
8497 reference to NAME, so you shouldn't deallocate or
8498 overwrite it. */
8499
8500 static bfd_boolean
8501 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8502 {
8503 asection *sect2;
8504
8505 if (bfd_get_section_by_name (abfd, name) != NULL)
8506 return TRUE;
8507
8508 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8509 if (sect2 == NULL)
8510 return FALSE;
8511
8512 sect2->size = sect->size;
8513 sect2->filepos = sect->filepos;
8514 sect2->alignment_power = sect->alignment_power;
8515 return TRUE;
8516 }
8517
8518 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8519 actually creates up to two pseudosections:
8520 - For the single-threaded case, a section named NAME, unless
8521 such a section already exists.
8522 - For the multi-threaded case, a section named "NAME/PID", where
8523 PID is elfcore_make_pid (abfd).
8524 Both pseudosections have identical contents. */
8525 bfd_boolean
8526 _bfd_elfcore_make_pseudosection (bfd *abfd,
8527 char *name,
8528 size_t size,
8529 ufile_ptr filepos)
8530 {
8531 char buf[100];
8532 char *threaded_name;
8533 size_t len;
8534 asection *sect;
8535
8536 /* Build the section name. */
8537
8538 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8539 len = strlen (buf) + 1;
8540 threaded_name = (char *) bfd_alloc (abfd, len);
8541 if (threaded_name == NULL)
8542 return FALSE;
8543 memcpy (threaded_name, buf, len);
8544
8545 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8546 SEC_HAS_CONTENTS);
8547 if (sect == NULL)
8548 return FALSE;
8549 sect->size = size;
8550 sect->filepos = filepos;
8551 sect->alignment_power = 2;
8552
8553 return elfcore_maybe_make_sect (abfd, name, sect);
8554 }
8555
8556 /* prstatus_t exists on:
8557 solaris 2.5+
8558 linux 2.[01] + glibc
8559 unixware 4.2
8560 */
8561
8562 #if defined (HAVE_PRSTATUS_T)
8563
8564 static bfd_boolean
8565 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8566 {
8567 size_t size;
8568 int offset;
8569
8570 if (note->descsz == sizeof (prstatus_t))
8571 {
8572 prstatus_t prstat;
8573
8574 size = sizeof (prstat.pr_reg);
8575 offset = offsetof (prstatus_t, pr_reg);
8576 memcpy (&prstat, note->descdata, sizeof (prstat));
8577
8578 /* Do not overwrite the core signal if it
8579 has already been set by another thread. */
8580 if (elf_tdata (abfd)->core->signal == 0)
8581 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8582 if (elf_tdata (abfd)->core->pid == 0)
8583 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8584
8585 /* pr_who exists on:
8586 solaris 2.5+
8587 unixware 4.2
8588 pr_who doesn't exist on:
8589 linux 2.[01]
8590 */
8591 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8592 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8593 #else
8594 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8595 #endif
8596 }
8597 #if defined (HAVE_PRSTATUS32_T)
8598 else if (note->descsz == sizeof (prstatus32_t))
8599 {
8600 /* 64-bit host, 32-bit corefile */
8601 prstatus32_t prstat;
8602
8603 size = sizeof (prstat.pr_reg);
8604 offset = offsetof (prstatus32_t, pr_reg);
8605 memcpy (&prstat, note->descdata, sizeof (prstat));
8606
8607 /* Do not overwrite the core signal if it
8608 has already been set by another thread. */
8609 if (elf_tdata (abfd)->core->signal == 0)
8610 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8611 if (elf_tdata (abfd)->core->pid == 0)
8612 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8613
8614 /* pr_who exists on:
8615 solaris 2.5+
8616 unixware 4.2
8617 pr_who doesn't exist on:
8618 linux 2.[01]
8619 */
8620 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8621 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8622 #else
8623 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8624 #endif
8625 }
8626 #endif /* HAVE_PRSTATUS32_T */
8627 else
8628 {
8629 /* Fail - we don't know how to handle any other
8630 note size (ie. data object type). */
8631 return TRUE;
8632 }
8633
8634 /* Make a ".reg/999" section and a ".reg" section. */
8635 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8636 size, note->descpos + offset);
8637 }
8638 #endif /* defined (HAVE_PRSTATUS_T) */
8639
8640 /* Create a pseudosection containing the exact contents of NOTE. */
8641 static bfd_boolean
8642 elfcore_make_note_pseudosection (bfd *abfd,
8643 char *name,
8644 Elf_Internal_Note *note)
8645 {
8646 return _bfd_elfcore_make_pseudosection (abfd, name,
8647 note->descsz, note->descpos);
8648 }
8649
8650 /* There isn't a consistent prfpregset_t across platforms,
8651 but it doesn't matter, because we don't have to pick this
8652 data structure apart. */
8653
8654 static bfd_boolean
8655 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8656 {
8657 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8658 }
8659
8660 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8661 type of NT_PRXFPREG. Just include the whole note's contents
8662 literally. */
8663
8664 static bfd_boolean
8665 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8666 {
8667 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8668 }
8669
8670 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8671 with a note type of NT_X86_XSTATE. Just include the whole note's
8672 contents literally. */
8673
8674 static bfd_boolean
8675 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8676 {
8677 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8678 }
8679
8680 static bfd_boolean
8681 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8682 {
8683 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8684 }
8685
8686 static bfd_boolean
8687 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8688 {
8689 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8690 }
8691
8692 static bfd_boolean
8693 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8694 {
8695 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8696 }
8697
8698 static bfd_boolean
8699 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8700 {
8701 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8702 }
8703
8704 static bfd_boolean
8705 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8706 {
8707 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8708 }
8709
8710 static bfd_boolean
8711 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8712 {
8713 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8714 }
8715
8716 static bfd_boolean
8717 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8718 {
8719 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8720 }
8721
8722 static bfd_boolean
8723 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8724 {
8725 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8726 }
8727
8728 static bfd_boolean
8729 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8730 {
8731 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8732 }
8733
8734 static bfd_boolean
8735 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8736 {
8737 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8738 }
8739
8740 static bfd_boolean
8741 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8742 {
8743 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8744 }
8745
8746 static bfd_boolean
8747 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
8748 {
8749 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
8750 }
8751
8752 static bfd_boolean
8753 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
8754 {
8755 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
8756 }
8757
8758 static bfd_boolean
8759 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8760 {
8761 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8762 }
8763
8764 static bfd_boolean
8765 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8766 {
8767 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8768 }
8769
8770 static bfd_boolean
8771 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8772 {
8773 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8774 }
8775
8776 static bfd_boolean
8777 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8778 {
8779 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8780 }
8781
8782 #if defined (HAVE_PRPSINFO_T)
8783 typedef prpsinfo_t elfcore_psinfo_t;
8784 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8785 typedef prpsinfo32_t elfcore_psinfo32_t;
8786 #endif
8787 #endif
8788
8789 #if defined (HAVE_PSINFO_T)
8790 typedef psinfo_t elfcore_psinfo_t;
8791 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8792 typedef psinfo32_t elfcore_psinfo32_t;
8793 #endif
8794 #endif
8795
8796 /* return a malloc'ed copy of a string at START which is at
8797 most MAX bytes long, possibly without a terminating '\0'.
8798 the copy will always have a terminating '\0'. */
8799
8800 char *
8801 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8802 {
8803 char *dups;
8804 char *end = (char *) memchr (start, '\0', max);
8805 size_t len;
8806
8807 if (end == NULL)
8808 len = max;
8809 else
8810 len = end - start;
8811
8812 dups = (char *) bfd_alloc (abfd, len + 1);
8813 if (dups == NULL)
8814 return NULL;
8815
8816 memcpy (dups, start, len);
8817 dups[len] = '\0';
8818
8819 return dups;
8820 }
8821
8822 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8823 static bfd_boolean
8824 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8825 {
8826 if (note->descsz == sizeof (elfcore_psinfo_t))
8827 {
8828 elfcore_psinfo_t psinfo;
8829
8830 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8831
8832 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8833 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8834 #endif
8835 elf_tdata (abfd)->core->program
8836 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8837 sizeof (psinfo.pr_fname));
8838
8839 elf_tdata (abfd)->core->command
8840 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8841 sizeof (psinfo.pr_psargs));
8842 }
8843 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8844 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8845 {
8846 /* 64-bit host, 32-bit corefile */
8847 elfcore_psinfo32_t psinfo;
8848
8849 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8850
8851 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8852 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8853 #endif
8854 elf_tdata (abfd)->core->program
8855 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8856 sizeof (psinfo.pr_fname));
8857
8858 elf_tdata (abfd)->core->command
8859 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8860 sizeof (psinfo.pr_psargs));
8861 }
8862 #endif
8863
8864 else
8865 {
8866 /* Fail - we don't know how to handle any other
8867 note size (ie. data object type). */
8868 return TRUE;
8869 }
8870
8871 /* Note that for some reason, a spurious space is tacked
8872 onto the end of the args in some (at least one anyway)
8873 implementations, so strip it off if it exists. */
8874
8875 {
8876 char *command = elf_tdata (abfd)->core->command;
8877 int n = strlen (command);
8878
8879 if (0 < n && command[n - 1] == ' ')
8880 command[n - 1] = '\0';
8881 }
8882
8883 return TRUE;
8884 }
8885 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8886
8887 #if defined (HAVE_PSTATUS_T)
8888 static bfd_boolean
8889 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8890 {
8891 if (note->descsz == sizeof (pstatus_t)
8892 #if defined (HAVE_PXSTATUS_T)
8893 || note->descsz == sizeof (pxstatus_t)
8894 #endif
8895 )
8896 {
8897 pstatus_t pstat;
8898
8899 memcpy (&pstat, note->descdata, sizeof (pstat));
8900
8901 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8902 }
8903 #if defined (HAVE_PSTATUS32_T)
8904 else if (note->descsz == sizeof (pstatus32_t))
8905 {
8906 /* 64-bit host, 32-bit corefile */
8907 pstatus32_t pstat;
8908
8909 memcpy (&pstat, note->descdata, sizeof (pstat));
8910
8911 elf_tdata (abfd)->core->pid = pstat.pr_pid;
8912 }
8913 #endif
8914 /* Could grab some more details from the "representative"
8915 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8916 NT_LWPSTATUS note, presumably. */
8917
8918 return TRUE;
8919 }
8920 #endif /* defined (HAVE_PSTATUS_T) */
8921
8922 #if defined (HAVE_LWPSTATUS_T)
8923 static bfd_boolean
8924 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8925 {
8926 lwpstatus_t lwpstat;
8927 char buf[100];
8928 char *name;
8929 size_t len;
8930 asection *sect;
8931
8932 if (note->descsz != sizeof (lwpstat)
8933 #if defined (HAVE_LWPXSTATUS_T)
8934 && note->descsz != sizeof (lwpxstatus_t)
8935 #endif
8936 )
8937 return TRUE;
8938
8939 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8940
8941 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
8942 /* Do not overwrite the core signal if it has already been set by
8943 another thread. */
8944 if (elf_tdata (abfd)->core->signal == 0)
8945 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
8946
8947 /* Make a ".reg/999" section. */
8948
8949 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8950 len = strlen (buf) + 1;
8951 name = bfd_alloc (abfd, len);
8952 if (name == NULL)
8953 return FALSE;
8954 memcpy (name, buf, len);
8955
8956 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8957 if (sect == NULL)
8958 return FALSE;
8959
8960 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8961 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8962 sect->filepos = note->descpos
8963 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8964 #endif
8965
8966 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8967 sect->size = sizeof (lwpstat.pr_reg);
8968 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8969 #endif
8970
8971 sect->alignment_power = 2;
8972
8973 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8974 return FALSE;
8975
8976 /* Make a ".reg2/999" section */
8977
8978 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8979 len = strlen (buf) + 1;
8980 name = bfd_alloc (abfd, len);
8981 if (name == NULL)
8982 return FALSE;
8983 memcpy (name, buf, len);
8984
8985 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8986 if (sect == NULL)
8987 return FALSE;
8988
8989 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8990 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8991 sect->filepos = note->descpos
8992 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8993 #endif
8994
8995 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8996 sect->size = sizeof (lwpstat.pr_fpreg);
8997 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8998 #endif
8999
9000 sect->alignment_power = 2;
9001
9002 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9003 }
9004 #endif /* defined (HAVE_LWPSTATUS_T) */
9005
9006 static bfd_boolean
9007 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9008 {
9009 char buf[30];
9010 char *name;
9011 size_t len;
9012 asection *sect;
9013 int type;
9014 int is_active_thread;
9015 bfd_vma base_addr;
9016
9017 if (note->descsz < 728)
9018 return TRUE;
9019
9020 if (! CONST_STRNEQ (note->namedata, "win32"))
9021 return TRUE;
9022
9023 type = bfd_get_32 (abfd, note->descdata);
9024
9025 switch (type)
9026 {
9027 case 1 /* NOTE_INFO_PROCESS */:
9028 /* FIXME: need to add ->core->command. */
9029 /* process_info.pid */
9030 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9031 /* process_info.signal */
9032 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9033 break;
9034
9035 case 2 /* NOTE_INFO_THREAD */:
9036 /* Make a ".reg/999" section. */
9037 /* thread_info.tid */
9038 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9039
9040 len = strlen (buf) + 1;
9041 name = (char *) bfd_alloc (abfd, len);
9042 if (name == NULL)
9043 return FALSE;
9044
9045 memcpy (name, buf, len);
9046
9047 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9048 if (sect == NULL)
9049 return FALSE;
9050
9051 /* sizeof (thread_info.thread_context) */
9052 sect->size = 716;
9053 /* offsetof (thread_info.thread_context) */
9054 sect->filepos = note->descpos + 12;
9055 sect->alignment_power = 2;
9056
9057 /* thread_info.is_active_thread */
9058 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9059
9060 if (is_active_thread)
9061 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9062 return FALSE;
9063 break;
9064
9065 case 3 /* NOTE_INFO_MODULE */:
9066 /* Make a ".module/xxxxxxxx" section. */
9067 /* module_info.base_address */
9068 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9069 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9070
9071 len = strlen (buf) + 1;
9072 name = (char *) bfd_alloc (abfd, len);
9073 if (name == NULL)
9074 return FALSE;
9075
9076 memcpy (name, buf, len);
9077
9078 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9079
9080 if (sect == NULL)
9081 return FALSE;
9082
9083 sect->size = note->descsz;
9084 sect->filepos = note->descpos;
9085 sect->alignment_power = 2;
9086 break;
9087
9088 default:
9089 return TRUE;
9090 }
9091
9092 return TRUE;
9093 }
9094
9095 static bfd_boolean
9096 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9097 {
9098 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9099
9100 switch (note->type)
9101 {
9102 default:
9103 return TRUE;
9104
9105 case NT_PRSTATUS:
9106 if (bed->elf_backend_grok_prstatus)
9107 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9108 return TRUE;
9109 #if defined (HAVE_PRSTATUS_T)
9110 return elfcore_grok_prstatus (abfd, note);
9111 #else
9112 return TRUE;
9113 #endif
9114
9115 #if defined (HAVE_PSTATUS_T)
9116 case NT_PSTATUS:
9117 return elfcore_grok_pstatus (abfd, note);
9118 #endif
9119
9120 #if defined (HAVE_LWPSTATUS_T)
9121 case NT_LWPSTATUS:
9122 return elfcore_grok_lwpstatus (abfd, note);
9123 #endif
9124
9125 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9126 return elfcore_grok_prfpreg (abfd, note);
9127
9128 case NT_WIN32PSTATUS:
9129 return elfcore_grok_win32pstatus (abfd, note);
9130
9131 case NT_PRXFPREG: /* Linux SSE extension */
9132 if (note->namesz == 6
9133 && strcmp (note->namedata, "LINUX") == 0)
9134 return elfcore_grok_prxfpreg (abfd, note);
9135 else
9136 return TRUE;
9137
9138 case NT_X86_XSTATE: /* Linux XSAVE extension */
9139 if (note->namesz == 6
9140 && strcmp (note->namedata, "LINUX") == 0)
9141 return elfcore_grok_xstatereg (abfd, note);
9142 else if (note->namesz == 8
9143 && strcmp (note->namedata, "FreeBSD") == 0)
9144 return elfcore_grok_xstatereg (abfd, note);
9145 else
9146 return TRUE;
9147
9148 case NT_PPC_VMX:
9149 if (note->namesz == 6
9150 && strcmp (note->namedata, "LINUX") == 0)
9151 return elfcore_grok_ppc_vmx (abfd, note);
9152 else
9153 return TRUE;
9154
9155 case NT_PPC_VSX:
9156 if (note->namesz == 6
9157 && strcmp (note->namedata, "LINUX") == 0)
9158 return elfcore_grok_ppc_vsx (abfd, note);
9159 else
9160 return TRUE;
9161
9162 case NT_S390_HIGH_GPRS:
9163 if (note->namesz == 6
9164 && strcmp (note->namedata, "LINUX") == 0)
9165 return elfcore_grok_s390_high_gprs (abfd, note);
9166 else
9167 return TRUE;
9168
9169 case NT_S390_TIMER:
9170 if (note->namesz == 6
9171 && strcmp (note->namedata, "LINUX") == 0)
9172 return elfcore_grok_s390_timer (abfd, note);
9173 else
9174 return TRUE;
9175
9176 case NT_S390_TODCMP:
9177 if (note->namesz == 6
9178 && strcmp (note->namedata, "LINUX") == 0)
9179 return elfcore_grok_s390_todcmp (abfd, note);
9180 else
9181 return TRUE;
9182
9183 case NT_S390_TODPREG:
9184 if (note->namesz == 6
9185 && strcmp (note->namedata, "LINUX") == 0)
9186 return elfcore_grok_s390_todpreg (abfd, note);
9187 else
9188 return TRUE;
9189
9190 case NT_S390_CTRS:
9191 if (note->namesz == 6
9192 && strcmp (note->namedata, "LINUX") == 0)
9193 return elfcore_grok_s390_ctrs (abfd, note);
9194 else
9195 return TRUE;
9196
9197 case NT_S390_PREFIX:
9198 if (note->namesz == 6
9199 && strcmp (note->namedata, "LINUX") == 0)
9200 return elfcore_grok_s390_prefix (abfd, note);
9201 else
9202 return TRUE;
9203
9204 case NT_S390_LAST_BREAK:
9205 if (note->namesz == 6
9206 && strcmp (note->namedata, "LINUX") == 0)
9207 return elfcore_grok_s390_last_break (abfd, note);
9208 else
9209 return TRUE;
9210
9211 case NT_S390_SYSTEM_CALL:
9212 if (note->namesz == 6
9213 && strcmp (note->namedata, "LINUX") == 0)
9214 return elfcore_grok_s390_system_call (abfd, note);
9215 else
9216 return TRUE;
9217
9218 case NT_S390_TDB:
9219 if (note->namesz == 6
9220 && strcmp (note->namedata, "LINUX") == 0)
9221 return elfcore_grok_s390_tdb (abfd, note);
9222 else
9223 return TRUE;
9224
9225 case NT_S390_VXRS_LOW:
9226 if (note->namesz == 6
9227 && strcmp (note->namedata, "LINUX") == 0)
9228 return elfcore_grok_s390_vxrs_low (abfd, note);
9229 else
9230 return TRUE;
9231
9232 case NT_S390_VXRS_HIGH:
9233 if (note->namesz == 6
9234 && strcmp (note->namedata, "LINUX") == 0)
9235 return elfcore_grok_s390_vxrs_high (abfd, note);
9236 else
9237 return TRUE;
9238
9239 case NT_ARM_VFP:
9240 if (note->namesz == 6
9241 && strcmp (note->namedata, "LINUX") == 0)
9242 return elfcore_grok_arm_vfp (abfd, note);
9243 else
9244 return TRUE;
9245
9246 case NT_ARM_TLS:
9247 if (note->namesz == 6
9248 && strcmp (note->namedata, "LINUX") == 0)
9249 return elfcore_grok_aarch_tls (abfd, note);
9250 else
9251 return TRUE;
9252
9253 case NT_ARM_HW_BREAK:
9254 if (note->namesz == 6
9255 && strcmp (note->namedata, "LINUX") == 0)
9256 return elfcore_grok_aarch_hw_break (abfd, note);
9257 else
9258 return TRUE;
9259
9260 case NT_ARM_HW_WATCH:
9261 if (note->namesz == 6
9262 && strcmp (note->namedata, "LINUX") == 0)
9263 return elfcore_grok_aarch_hw_watch (abfd, note);
9264 else
9265 return TRUE;
9266
9267 case NT_PRPSINFO:
9268 case NT_PSINFO:
9269 if (bed->elf_backend_grok_psinfo)
9270 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9271 return TRUE;
9272 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9273 return elfcore_grok_psinfo (abfd, note);
9274 #else
9275 return TRUE;
9276 #endif
9277
9278 case NT_AUXV:
9279 {
9280 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9281 SEC_HAS_CONTENTS);
9282
9283 if (sect == NULL)
9284 return FALSE;
9285 sect->size = note->descsz;
9286 sect->filepos = note->descpos;
9287 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9288
9289 return TRUE;
9290 }
9291
9292 case NT_FILE:
9293 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9294 note);
9295
9296 case NT_SIGINFO:
9297 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9298 note);
9299
9300 case NT_FREEBSD_THRMISC:
9301 if (note->namesz == 8
9302 && strcmp (note->namedata, "FreeBSD") == 0)
9303 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
9304 else
9305 return TRUE;
9306 }
9307 }
9308
9309 static bfd_boolean
9310 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9311 {
9312 struct bfd_build_id* build_id;
9313
9314 if (note->descsz == 0)
9315 return FALSE;
9316
9317 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9318 if (build_id == NULL)
9319 return FALSE;
9320
9321 build_id->size = note->descsz;
9322 memcpy (build_id->data, note->descdata, note->descsz);
9323 abfd->build_id = build_id;
9324
9325 return TRUE;
9326 }
9327
9328 static bfd_boolean
9329 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9330 {
9331 switch (note->type)
9332 {
9333 default:
9334 return TRUE;
9335
9336 case NT_GNU_BUILD_ID:
9337 return elfobj_grok_gnu_build_id (abfd, note);
9338 }
9339 }
9340
9341 static bfd_boolean
9342 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9343 {
9344 struct sdt_note *cur =
9345 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9346 + note->descsz);
9347
9348 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9349 cur->size = (bfd_size_type) note->descsz;
9350 memcpy (cur->data, note->descdata, note->descsz);
9351
9352 elf_tdata (abfd)->sdt_note_head = cur;
9353
9354 return TRUE;
9355 }
9356
9357 static bfd_boolean
9358 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9359 {
9360 switch (note->type)
9361 {
9362 case NT_STAPSDT:
9363 return elfobj_grok_stapsdt_note_1 (abfd, note);
9364
9365 default:
9366 return TRUE;
9367 }
9368 }
9369
9370 static bfd_boolean
9371 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
9372 {
9373 char *cp;
9374
9375 cp = strchr (note->namedata, '@');
9376 if (cp != NULL)
9377 {
9378 *lwpidp = atoi(cp + 1);
9379 return TRUE;
9380 }
9381 return FALSE;
9382 }
9383
9384 static bfd_boolean
9385 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9386 {
9387 /* Signal number at offset 0x08. */
9388 elf_tdata (abfd)->core->signal
9389 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9390
9391 /* Process ID at offset 0x50. */
9392 elf_tdata (abfd)->core->pid
9393 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
9394
9395 /* Command name at 0x7c (max 32 bytes, including nul). */
9396 elf_tdata (abfd)->core->command
9397 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
9398
9399 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
9400 note);
9401 }
9402
9403 static bfd_boolean
9404 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
9405 {
9406 int lwp;
9407
9408 if (elfcore_netbsd_get_lwpid (note, &lwp))
9409 elf_tdata (abfd)->core->lwpid = lwp;
9410
9411 if (note->type == NT_NETBSDCORE_PROCINFO)
9412 {
9413 /* NetBSD-specific core "procinfo". Note that we expect to
9414 find this note before any of the others, which is fine,
9415 since the kernel writes this note out first when it
9416 creates a core file. */
9417
9418 return elfcore_grok_netbsd_procinfo (abfd, note);
9419 }
9420
9421 /* As of Jan 2002 there are no other machine-independent notes
9422 defined for NetBSD core files. If the note type is less
9423 than the start of the machine-dependent note types, we don't
9424 understand it. */
9425
9426 if (note->type < NT_NETBSDCORE_FIRSTMACH)
9427 return TRUE;
9428
9429
9430 switch (bfd_get_arch (abfd))
9431 {
9432 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
9433 PT_GETFPREGS == mach+2. */
9434
9435 case bfd_arch_alpha:
9436 case bfd_arch_sparc:
9437 switch (note->type)
9438 {
9439 case NT_NETBSDCORE_FIRSTMACH+0:
9440 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9441
9442 case NT_NETBSDCORE_FIRSTMACH+2:
9443 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9444
9445 default:
9446 return TRUE;
9447 }
9448
9449 /* On all other arch's, PT_GETREGS == mach+1 and
9450 PT_GETFPREGS == mach+3. */
9451
9452 default:
9453 switch (note->type)
9454 {
9455 case NT_NETBSDCORE_FIRSTMACH+1:
9456 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9457
9458 case NT_NETBSDCORE_FIRSTMACH+3:
9459 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9460
9461 default:
9462 return TRUE;
9463 }
9464 }
9465 /* NOTREACHED */
9466 }
9467
9468 static bfd_boolean
9469 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9470 {
9471 /* Signal number at offset 0x08. */
9472 elf_tdata (abfd)->core->signal
9473 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9474
9475 /* Process ID at offset 0x20. */
9476 elf_tdata (abfd)->core->pid
9477 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
9478
9479 /* Command name at 0x48 (max 32 bytes, including nul). */
9480 elf_tdata (abfd)->core->command
9481 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
9482
9483 return TRUE;
9484 }
9485
9486 static bfd_boolean
9487 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
9488 {
9489 if (note->type == NT_OPENBSD_PROCINFO)
9490 return elfcore_grok_openbsd_procinfo (abfd, note);
9491
9492 if (note->type == NT_OPENBSD_REGS)
9493 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9494
9495 if (note->type == NT_OPENBSD_FPREGS)
9496 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9497
9498 if (note->type == NT_OPENBSD_XFPREGS)
9499 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9500
9501 if (note->type == NT_OPENBSD_AUXV)
9502 {
9503 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9504 SEC_HAS_CONTENTS);
9505
9506 if (sect == NULL)
9507 return FALSE;
9508 sect->size = note->descsz;
9509 sect->filepos = note->descpos;
9510 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9511
9512 return TRUE;
9513 }
9514
9515 if (note->type == NT_OPENBSD_WCOOKIE)
9516 {
9517 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
9518 SEC_HAS_CONTENTS);
9519
9520 if (sect == NULL)
9521 return FALSE;
9522 sect->size = note->descsz;
9523 sect->filepos = note->descpos;
9524 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9525
9526 return TRUE;
9527 }
9528
9529 return TRUE;
9530 }
9531
9532 static bfd_boolean
9533 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
9534 {
9535 void *ddata = note->descdata;
9536 char buf[100];
9537 char *name;
9538 asection *sect;
9539 short sig;
9540 unsigned flags;
9541
9542 /* nto_procfs_status 'pid' field is at offset 0. */
9543 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
9544
9545 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
9546 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
9547
9548 /* nto_procfs_status 'flags' field is at offset 8. */
9549 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
9550
9551 /* nto_procfs_status 'what' field is at offset 14. */
9552 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
9553 {
9554 elf_tdata (abfd)->core->signal = sig;
9555 elf_tdata (abfd)->core->lwpid = *tid;
9556 }
9557
9558 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
9559 do not come from signals so we make sure we set the current
9560 thread just in case. */
9561 if (flags & 0x00000080)
9562 elf_tdata (abfd)->core->lwpid = *tid;
9563
9564 /* Make a ".qnx_core_status/%d" section. */
9565 sprintf (buf, ".qnx_core_status/%ld", *tid);
9566
9567 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9568 if (name == NULL)
9569 return FALSE;
9570 strcpy (name, buf);
9571
9572 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9573 if (sect == NULL)
9574 return FALSE;
9575
9576 sect->size = note->descsz;
9577 sect->filepos = note->descpos;
9578 sect->alignment_power = 2;
9579
9580 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9581 }
9582
9583 static bfd_boolean
9584 elfcore_grok_nto_regs (bfd *abfd,
9585 Elf_Internal_Note *note,
9586 long tid,
9587 char *base)
9588 {
9589 char buf[100];
9590 char *name;
9591 asection *sect;
9592
9593 /* Make a "(base)/%d" section. */
9594 sprintf (buf, "%s/%ld", base, tid);
9595
9596 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9597 if (name == NULL)
9598 return FALSE;
9599 strcpy (name, buf);
9600
9601 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9602 if (sect == NULL)
9603 return FALSE;
9604
9605 sect->size = note->descsz;
9606 sect->filepos = note->descpos;
9607 sect->alignment_power = 2;
9608
9609 /* This is the current thread. */
9610 if (elf_tdata (abfd)->core->lwpid == tid)
9611 return elfcore_maybe_make_sect (abfd, base, sect);
9612
9613 return TRUE;
9614 }
9615
9616 #define BFD_QNT_CORE_INFO 7
9617 #define BFD_QNT_CORE_STATUS 8
9618 #define BFD_QNT_CORE_GREG 9
9619 #define BFD_QNT_CORE_FPREG 10
9620
9621 static bfd_boolean
9622 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9623 {
9624 /* Every GREG section has a STATUS section before it. Store the
9625 tid from the previous call to pass down to the next gregs
9626 function. */
9627 static long tid = 1;
9628
9629 switch (note->type)
9630 {
9631 case BFD_QNT_CORE_INFO:
9632 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9633 case BFD_QNT_CORE_STATUS:
9634 return elfcore_grok_nto_status (abfd, note, &tid);
9635 case BFD_QNT_CORE_GREG:
9636 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9637 case BFD_QNT_CORE_FPREG:
9638 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9639 default:
9640 return TRUE;
9641 }
9642 }
9643
9644 static bfd_boolean
9645 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9646 {
9647 char *name;
9648 asection *sect;
9649 size_t len;
9650
9651 /* Use note name as section name. */
9652 len = note->namesz;
9653 name = (char *) bfd_alloc (abfd, len);
9654 if (name == NULL)
9655 return FALSE;
9656 memcpy (name, note->namedata, len);
9657 name[len - 1] = '\0';
9658
9659 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9660 if (sect == NULL)
9661 return FALSE;
9662
9663 sect->size = note->descsz;
9664 sect->filepos = note->descpos;
9665 sect->alignment_power = 1;
9666
9667 return TRUE;
9668 }
9669
9670 /* Function: elfcore_write_note
9671
9672 Inputs:
9673 buffer to hold note, and current size of buffer
9674 name of note
9675 type of note
9676 data for note
9677 size of data for note
9678
9679 Writes note to end of buffer. ELF64 notes are written exactly as
9680 for ELF32, despite the current (as of 2006) ELF gabi specifying
9681 that they ought to have 8-byte namesz and descsz field, and have
9682 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9683
9684 Return:
9685 Pointer to realloc'd buffer, *BUFSIZ updated. */
9686
9687 char *
9688 elfcore_write_note (bfd *abfd,
9689 char *buf,
9690 int *bufsiz,
9691 const char *name,
9692 int type,
9693 const void *input,
9694 int size)
9695 {
9696 Elf_External_Note *xnp;
9697 size_t namesz;
9698 size_t newspace;
9699 char *dest;
9700
9701 namesz = 0;
9702 if (name != NULL)
9703 namesz = strlen (name) + 1;
9704
9705 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9706
9707 buf = (char *) realloc (buf, *bufsiz + newspace);
9708 if (buf == NULL)
9709 return buf;
9710 dest = buf + *bufsiz;
9711 *bufsiz += newspace;
9712 xnp = (Elf_External_Note *) dest;
9713 H_PUT_32 (abfd, namesz, xnp->namesz);
9714 H_PUT_32 (abfd, size, xnp->descsz);
9715 H_PUT_32 (abfd, type, xnp->type);
9716 dest = xnp->name;
9717 if (name != NULL)
9718 {
9719 memcpy (dest, name, namesz);
9720 dest += namesz;
9721 while (namesz & 3)
9722 {
9723 *dest++ = '\0';
9724 ++namesz;
9725 }
9726 }
9727 memcpy (dest, input, size);
9728 dest += size;
9729 while (size & 3)
9730 {
9731 *dest++ = '\0';
9732 ++size;
9733 }
9734 return buf;
9735 }
9736
9737 char *
9738 elfcore_write_prpsinfo (bfd *abfd,
9739 char *buf,
9740 int *bufsiz,
9741 const char *fname,
9742 const char *psargs)
9743 {
9744 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9745
9746 if (bed->elf_backend_write_core_note != NULL)
9747 {
9748 char *ret;
9749 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9750 NT_PRPSINFO, fname, psargs);
9751 if (ret != NULL)
9752 return ret;
9753 }
9754
9755 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9756 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9757 if (bed->s->elfclass == ELFCLASS32)
9758 {
9759 #if defined (HAVE_PSINFO32_T)
9760 psinfo32_t data;
9761 int note_type = NT_PSINFO;
9762 #else
9763 prpsinfo32_t data;
9764 int note_type = NT_PRPSINFO;
9765 #endif
9766
9767 memset (&data, 0, sizeof (data));
9768 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9769 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9770 return elfcore_write_note (abfd, buf, bufsiz,
9771 "CORE", note_type, &data, sizeof (data));
9772 }
9773 else
9774 #endif
9775 {
9776 #if defined (HAVE_PSINFO_T)
9777 psinfo_t data;
9778 int note_type = NT_PSINFO;
9779 #else
9780 prpsinfo_t data;
9781 int note_type = NT_PRPSINFO;
9782 #endif
9783
9784 memset (&data, 0, sizeof (data));
9785 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9786 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9787 return elfcore_write_note (abfd, buf, bufsiz,
9788 "CORE", note_type, &data, sizeof (data));
9789 }
9790 #endif /* PSINFO_T or PRPSINFO_T */
9791
9792 free (buf);
9793 return NULL;
9794 }
9795
9796 char *
9797 elfcore_write_linux_prpsinfo32
9798 (bfd *abfd, char *buf, int *bufsiz,
9799 const struct elf_internal_linux_prpsinfo *prpsinfo)
9800 {
9801 struct elf_external_linux_prpsinfo32 data;
9802
9803 swap_linux_prpsinfo32_out (abfd, prpsinfo, &data);
9804 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9805 &data, sizeof (data));
9806 }
9807
9808 char *
9809 elfcore_write_linux_prpsinfo64
9810 (bfd *abfd, char *buf, int *bufsiz,
9811 const struct elf_internal_linux_prpsinfo *prpsinfo)
9812 {
9813 struct elf_external_linux_prpsinfo64 data;
9814
9815 swap_linux_prpsinfo64_out (abfd, prpsinfo, &data);
9816 return elfcore_write_note (abfd, buf, bufsiz,
9817 "CORE", NT_PRPSINFO, &data, sizeof (data));
9818 }
9819
9820 char *
9821 elfcore_write_prstatus (bfd *abfd,
9822 char *buf,
9823 int *bufsiz,
9824 long pid,
9825 int cursig,
9826 const void *gregs)
9827 {
9828 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9829
9830 if (bed->elf_backend_write_core_note != NULL)
9831 {
9832 char *ret;
9833 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9834 NT_PRSTATUS,
9835 pid, cursig, gregs);
9836 if (ret != NULL)
9837 return ret;
9838 }
9839
9840 #if defined (HAVE_PRSTATUS_T)
9841 #if defined (HAVE_PRSTATUS32_T)
9842 if (bed->s->elfclass == ELFCLASS32)
9843 {
9844 prstatus32_t prstat;
9845
9846 memset (&prstat, 0, sizeof (prstat));
9847 prstat.pr_pid = pid;
9848 prstat.pr_cursig = cursig;
9849 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9850 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9851 NT_PRSTATUS, &prstat, sizeof (prstat));
9852 }
9853 else
9854 #endif
9855 {
9856 prstatus_t prstat;
9857
9858 memset (&prstat, 0, sizeof (prstat));
9859 prstat.pr_pid = pid;
9860 prstat.pr_cursig = cursig;
9861 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9862 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9863 NT_PRSTATUS, &prstat, sizeof (prstat));
9864 }
9865 #endif /* HAVE_PRSTATUS_T */
9866
9867 free (buf);
9868 return NULL;
9869 }
9870
9871 #if defined (HAVE_LWPSTATUS_T)
9872 char *
9873 elfcore_write_lwpstatus (bfd *abfd,
9874 char *buf,
9875 int *bufsiz,
9876 long pid,
9877 int cursig,
9878 const void *gregs)
9879 {
9880 lwpstatus_t lwpstat;
9881 const char *note_name = "CORE";
9882
9883 memset (&lwpstat, 0, sizeof (lwpstat));
9884 lwpstat.pr_lwpid = pid >> 16;
9885 lwpstat.pr_cursig = cursig;
9886 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9887 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9888 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9889 #if !defined(gregs)
9890 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9891 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9892 #else
9893 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9894 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9895 #endif
9896 #endif
9897 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9898 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9899 }
9900 #endif /* HAVE_LWPSTATUS_T */
9901
9902 #if defined (HAVE_PSTATUS_T)
9903 char *
9904 elfcore_write_pstatus (bfd *abfd,
9905 char *buf,
9906 int *bufsiz,
9907 long pid,
9908 int cursig ATTRIBUTE_UNUSED,
9909 const void *gregs ATTRIBUTE_UNUSED)
9910 {
9911 const char *note_name = "CORE";
9912 #if defined (HAVE_PSTATUS32_T)
9913 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9914
9915 if (bed->s->elfclass == ELFCLASS32)
9916 {
9917 pstatus32_t pstat;
9918
9919 memset (&pstat, 0, sizeof (pstat));
9920 pstat.pr_pid = pid & 0xffff;
9921 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9922 NT_PSTATUS, &pstat, sizeof (pstat));
9923 return buf;
9924 }
9925 else
9926 #endif
9927 {
9928 pstatus_t pstat;
9929
9930 memset (&pstat, 0, sizeof (pstat));
9931 pstat.pr_pid = pid & 0xffff;
9932 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9933 NT_PSTATUS, &pstat, sizeof (pstat));
9934 return buf;
9935 }
9936 }
9937 #endif /* HAVE_PSTATUS_T */
9938
9939 char *
9940 elfcore_write_prfpreg (bfd *abfd,
9941 char *buf,
9942 int *bufsiz,
9943 const void *fpregs,
9944 int size)
9945 {
9946 const char *note_name = "CORE";
9947 return elfcore_write_note (abfd, buf, bufsiz,
9948 note_name, NT_FPREGSET, fpregs, size);
9949 }
9950
9951 char *
9952 elfcore_write_prxfpreg (bfd *abfd,
9953 char *buf,
9954 int *bufsiz,
9955 const void *xfpregs,
9956 int size)
9957 {
9958 char *note_name = "LINUX";
9959 return elfcore_write_note (abfd, buf, bufsiz,
9960 note_name, NT_PRXFPREG, xfpregs, size);
9961 }
9962
9963 char *
9964 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9965 const void *xfpregs, int size)
9966 {
9967 char *note_name;
9968 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
9969 note_name = "FreeBSD";
9970 else
9971 note_name = "LINUX";
9972 return elfcore_write_note (abfd, buf, bufsiz,
9973 note_name, NT_X86_XSTATE, xfpregs, size);
9974 }
9975
9976 char *
9977 elfcore_write_ppc_vmx (bfd *abfd,
9978 char *buf,
9979 int *bufsiz,
9980 const void *ppc_vmx,
9981 int size)
9982 {
9983 char *note_name = "LINUX";
9984 return elfcore_write_note (abfd, buf, bufsiz,
9985 note_name, NT_PPC_VMX, ppc_vmx, size);
9986 }
9987
9988 char *
9989 elfcore_write_ppc_vsx (bfd *abfd,
9990 char *buf,
9991 int *bufsiz,
9992 const void *ppc_vsx,
9993 int size)
9994 {
9995 char *note_name = "LINUX";
9996 return elfcore_write_note (abfd, buf, bufsiz,
9997 note_name, NT_PPC_VSX, ppc_vsx, size);
9998 }
9999
10000 static char *
10001 elfcore_write_s390_high_gprs (bfd *abfd,
10002 char *buf,
10003 int *bufsiz,
10004 const void *s390_high_gprs,
10005 int size)
10006 {
10007 char *note_name = "LINUX";
10008 return elfcore_write_note (abfd, buf, bufsiz,
10009 note_name, NT_S390_HIGH_GPRS,
10010 s390_high_gprs, size);
10011 }
10012
10013 char *
10014 elfcore_write_s390_timer (bfd *abfd,
10015 char *buf,
10016 int *bufsiz,
10017 const void *s390_timer,
10018 int size)
10019 {
10020 char *note_name = "LINUX";
10021 return elfcore_write_note (abfd, buf, bufsiz,
10022 note_name, NT_S390_TIMER, s390_timer, size);
10023 }
10024
10025 char *
10026 elfcore_write_s390_todcmp (bfd *abfd,
10027 char *buf,
10028 int *bufsiz,
10029 const void *s390_todcmp,
10030 int size)
10031 {
10032 char *note_name = "LINUX";
10033 return elfcore_write_note (abfd, buf, bufsiz,
10034 note_name, NT_S390_TODCMP, s390_todcmp, size);
10035 }
10036
10037 char *
10038 elfcore_write_s390_todpreg (bfd *abfd,
10039 char *buf,
10040 int *bufsiz,
10041 const void *s390_todpreg,
10042 int size)
10043 {
10044 char *note_name = "LINUX";
10045 return elfcore_write_note (abfd, buf, bufsiz,
10046 note_name, NT_S390_TODPREG, s390_todpreg, size);
10047 }
10048
10049 char *
10050 elfcore_write_s390_ctrs (bfd *abfd,
10051 char *buf,
10052 int *bufsiz,
10053 const void *s390_ctrs,
10054 int size)
10055 {
10056 char *note_name = "LINUX";
10057 return elfcore_write_note (abfd, buf, bufsiz,
10058 note_name, NT_S390_CTRS, s390_ctrs, size);
10059 }
10060
10061 char *
10062 elfcore_write_s390_prefix (bfd *abfd,
10063 char *buf,
10064 int *bufsiz,
10065 const void *s390_prefix,
10066 int size)
10067 {
10068 char *note_name = "LINUX";
10069 return elfcore_write_note (abfd, buf, bufsiz,
10070 note_name, NT_S390_PREFIX, s390_prefix, size);
10071 }
10072
10073 char *
10074 elfcore_write_s390_last_break (bfd *abfd,
10075 char *buf,
10076 int *bufsiz,
10077 const void *s390_last_break,
10078 int size)
10079 {
10080 char *note_name = "LINUX";
10081 return elfcore_write_note (abfd, buf, bufsiz,
10082 note_name, NT_S390_LAST_BREAK,
10083 s390_last_break, size);
10084 }
10085
10086 char *
10087 elfcore_write_s390_system_call (bfd *abfd,
10088 char *buf,
10089 int *bufsiz,
10090 const void *s390_system_call,
10091 int size)
10092 {
10093 char *note_name = "LINUX";
10094 return elfcore_write_note (abfd, buf, bufsiz,
10095 note_name, NT_S390_SYSTEM_CALL,
10096 s390_system_call, size);
10097 }
10098
10099 char *
10100 elfcore_write_s390_tdb (bfd *abfd,
10101 char *buf,
10102 int *bufsiz,
10103 const void *s390_tdb,
10104 int size)
10105 {
10106 char *note_name = "LINUX";
10107 return elfcore_write_note (abfd, buf, bufsiz,
10108 note_name, NT_S390_TDB, s390_tdb, size);
10109 }
10110
10111 char *
10112 elfcore_write_s390_vxrs_low (bfd *abfd,
10113 char *buf,
10114 int *bufsiz,
10115 const void *s390_vxrs_low,
10116 int size)
10117 {
10118 char *note_name = "LINUX";
10119 return elfcore_write_note (abfd, buf, bufsiz,
10120 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10121 }
10122
10123 char *
10124 elfcore_write_s390_vxrs_high (bfd *abfd,
10125 char *buf,
10126 int *bufsiz,
10127 const void *s390_vxrs_high,
10128 int size)
10129 {
10130 char *note_name = "LINUX";
10131 return elfcore_write_note (abfd, buf, bufsiz,
10132 note_name, NT_S390_VXRS_HIGH,
10133 s390_vxrs_high, size);
10134 }
10135
10136 char *
10137 elfcore_write_arm_vfp (bfd *abfd,
10138 char *buf,
10139 int *bufsiz,
10140 const void *arm_vfp,
10141 int size)
10142 {
10143 char *note_name = "LINUX";
10144 return elfcore_write_note (abfd, buf, bufsiz,
10145 note_name, NT_ARM_VFP, arm_vfp, size);
10146 }
10147
10148 char *
10149 elfcore_write_aarch_tls (bfd *abfd,
10150 char *buf,
10151 int *bufsiz,
10152 const void *aarch_tls,
10153 int size)
10154 {
10155 char *note_name = "LINUX";
10156 return elfcore_write_note (abfd, buf, bufsiz,
10157 note_name, NT_ARM_TLS, aarch_tls, size);
10158 }
10159
10160 char *
10161 elfcore_write_aarch_hw_break (bfd *abfd,
10162 char *buf,
10163 int *bufsiz,
10164 const void *aarch_hw_break,
10165 int size)
10166 {
10167 char *note_name = "LINUX";
10168 return elfcore_write_note (abfd, buf, bufsiz,
10169 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10170 }
10171
10172 char *
10173 elfcore_write_aarch_hw_watch (bfd *abfd,
10174 char *buf,
10175 int *bufsiz,
10176 const void *aarch_hw_watch,
10177 int size)
10178 {
10179 char *note_name = "LINUX";
10180 return elfcore_write_note (abfd, buf, bufsiz,
10181 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10182 }
10183
10184 char *
10185 elfcore_write_register_note (bfd *abfd,
10186 char *buf,
10187 int *bufsiz,
10188 const char *section,
10189 const void *data,
10190 int size)
10191 {
10192 if (strcmp (section, ".reg2") == 0)
10193 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10194 if (strcmp (section, ".reg-xfp") == 0)
10195 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
10196 if (strcmp (section, ".reg-xstate") == 0)
10197 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
10198 if (strcmp (section, ".reg-ppc-vmx") == 0)
10199 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
10200 if (strcmp (section, ".reg-ppc-vsx") == 0)
10201 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
10202 if (strcmp (section, ".reg-s390-high-gprs") == 0)
10203 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
10204 if (strcmp (section, ".reg-s390-timer") == 0)
10205 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
10206 if (strcmp (section, ".reg-s390-todcmp") == 0)
10207 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
10208 if (strcmp (section, ".reg-s390-todpreg") == 0)
10209 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
10210 if (strcmp (section, ".reg-s390-ctrs") == 0)
10211 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
10212 if (strcmp (section, ".reg-s390-prefix") == 0)
10213 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
10214 if (strcmp (section, ".reg-s390-last-break") == 0)
10215 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
10216 if (strcmp (section, ".reg-s390-system-call") == 0)
10217 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
10218 if (strcmp (section, ".reg-s390-tdb") == 0)
10219 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
10220 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
10221 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
10222 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
10223 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
10224 if (strcmp (section, ".reg-arm-vfp") == 0)
10225 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
10226 if (strcmp (section, ".reg-aarch-tls") == 0)
10227 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
10228 if (strcmp (section, ".reg-aarch-hw-break") == 0)
10229 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
10230 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
10231 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
10232 return NULL;
10233 }
10234
10235 static bfd_boolean
10236 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
10237 {
10238 char *p;
10239
10240 p = buf;
10241 while (p < buf + size)
10242 {
10243 /* FIXME: bad alignment assumption. */
10244 Elf_External_Note *xnp = (Elf_External_Note *) p;
10245 Elf_Internal_Note in;
10246
10247 if (offsetof (Elf_External_Note, name) > buf - p + size)
10248 return FALSE;
10249
10250 in.type = H_GET_32 (abfd, xnp->type);
10251
10252 in.namesz = H_GET_32 (abfd, xnp->namesz);
10253 in.namedata = xnp->name;
10254 if (in.namesz > buf - in.namedata + size)
10255 return FALSE;
10256
10257 in.descsz = H_GET_32 (abfd, xnp->descsz);
10258 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
10259 in.descpos = offset + (in.descdata - buf);
10260 if (in.descsz != 0
10261 && (in.descdata >= buf + size
10262 || in.descsz > buf - in.descdata + size))
10263 return FALSE;
10264
10265 switch (bfd_get_format (abfd))
10266 {
10267 default:
10268 return TRUE;
10269
10270 case bfd_core:
10271 {
10272 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
10273 struct
10274 {
10275 const char * string;
10276 size_t len;
10277 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
10278 }
10279 grokers[] =
10280 {
10281 GROKER_ELEMENT ("", elfcore_grok_note),
10282 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
10283 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
10284 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
10285 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
10286 };
10287 #undef GROKER_ELEMENT
10288 int i;
10289
10290 for (i = ARRAY_SIZE (grokers); i--;)
10291 {
10292 if (in.namesz >= grokers[i].len
10293 && strncmp (in.namedata, grokers[i].string,
10294 grokers[i].len) == 0)
10295 {
10296 if (! grokers[i].func (abfd, & in))
10297 return FALSE;
10298 break;
10299 }
10300 }
10301 break;
10302 }
10303
10304 case bfd_object:
10305 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
10306 {
10307 if (! elfobj_grok_gnu_note (abfd, &in))
10308 return FALSE;
10309 }
10310 else if (in.namesz == sizeof "stapsdt"
10311 && strcmp (in.namedata, "stapsdt") == 0)
10312 {
10313 if (! elfobj_grok_stapsdt_note (abfd, &in))
10314 return FALSE;
10315 }
10316 break;
10317 }
10318
10319 p = in.descdata + BFD_ALIGN (in.descsz, 4);
10320 }
10321
10322 return TRUE;
10323 }
10324
10325 static bfd_boolean
10326 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
10327 {
10328 char *buf;
10329
10330 if (size <= 0)
10331 return TRUE;
10332
10333 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
10334 return FALSE;
10335
10336 buf = (char *) bfd_malloc (size + 1);
10337 if (buf == NULL)
10338 return FALSE;
10339
10340 /* PR 17512: file: ec08f814
10341 0-termintate the buffer so that string searches will not overflow. */
10342 buf[size] = 0;
10343
10344 if (bfd_bread (buf, size, abfd) != size
10345 || !elf_parse_notes (abfd, buf, size, offset))
10346 {
10347 free (buf);
10348 return FALSE;
10349 }
10350
10351 free (buf);
10352 return TRUE;
10353 }
10354 \f
10355 /* Providing external access to the ELF program header table. */
10356
10357 /* Return an upper bound on the number of bytes required to store a
10358 copy of ABFD's program header table entries. Return -1 if an error
10359 occurs; bfd_get_error will return an appropriate code. */
10360
10361 long
10362 bfd_get_elf_phdr_upper_bound (bfd *abfd)
10363 {
10364 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10365 {
10366 bfd_set_error (bfd_error_wrong_format);
10367 return -1;
10368 }
10369
10370 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
10371 }
10372
10373 /* Copy ABFD's program header table entries to *PHDRS. The entries
10374 will be stored as an array of Elf_Internal_Phdr structures, as
10375 defined in include/elf/internal.h. To find out how large the
10376 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
10377
10378 Return the number of program header table entries read, or -1 if an
10379 error occurs; bfd_get_error will return an appropriate code. */
10380
10381 int
10382 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
10383 {
10384 int num_phdrs;
10385
10386 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10387 {
10388 bfd_set_error (bfd_error_wrong_format);
10389 return -1;
10390 }
10391
10392 num_phdrs = elf_elfheader (abfd)->e_phnum;
10393 memcpy (phdrs, elf_tdata (abfd)->phdr,
10394 num_phdrs * sizeof (Elf_Internal_Phdr));
10395
10396 return num_phdrs;
10397 }
10398
10399 enum elf_reloc_type_class
10400 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
10401 const asection *rel_sec ATTRIBUTE_UNUSED,
10402 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
10403 {
10404 return reloc_class_normal;
10405 }
10406
10407 /* For RELA architectures, return the relocation value for a
10408 relocation against a local symbol. */
10409
10410 bfd_vma
10411 _bfd_elf_rela_local_sym (bfd *abfd,
10412 Elf_Internal_Sym *sym,
10413 asection **psec,
10414 Elf_Internal_Rela *rel)
10415 {
10416 asection *sec = *psec;
10417 bfd_vma relocation;
10418
10419 relocation = (sec->output_section->vma
10420 + sec->output_offset
10421 + sym->st_value);
10422 if ((sec->flags & SEC_MERGE)
10423 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
10424 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
10425 {
10426 rel->r_addend =
10427 _bfd_merged_section_offset (abfd, psec,
10428 elf_section_data (sec)->sec_info,
10429 sym->st_value + rel->r_addend);
10430 if (sec != *psec)
10431 {
10432 /* If we have changed the section, and our original section is
10433 marked with SEC_EXCLUDE, it means that the original
10434 SEC_MERGE section has been completely subsumed in some
10435 other SEC_MERGE section. In this case, we need to leave
10436 some info around for --emit-relocs. */
10437 if ((sec->flags & SEC_EXCLUDE) != 0)
10438 sec->kept_section = *psec;
10439 sec = *psec;
10440 }
10441 rel->r_addend -= relocation;
10442 rel->r_addend += sec->output_section->vma + sec->output_offset;
10443 }
10444 return relocation;
10445 }
10446
10447 bfd_vma
10448 _bfd_elf_rel_local_sym (bfd *abfd,
10449 Elf_Internal_Sym *sym,
10450 asection **psec,
10451 bfd_vma addend)
10452 {
10453 asection *sec = *psec;
10454
10455 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
10456 return sym->st_value + addend;
10457
10458 return _bfd_merged_section_offset (abfd, psec,
10459 elf_section_data (sec)->sec_info,
10460 sym->st_value + addend);
10461 }
10462
10463 bfd_vma
10464 _bfd_elf_section_offset (bfd *abfd,
10465 struct bfd_link_info *info,
10466 asection *sec,
10467 bfd_vma offset)
10468 {
10469 switch (sec->sec_info_type)
10470 {
10471 case SEC_INFO_TYPE_STABS:
10472 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
10473 offset);
10474 case SEC_INFO_TYPE_EH_FRAME:
10475 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
10476 default:
10477 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
10478 {
10479 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10480 bfd_size_type address_size = bed->s->arch_size / 8;
10481 offset = sec->size - offset - address_size;
10482 }
10483 return offset;
10484 }
10485 }
10486 \f
10487 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
10488 reconstruct an ELF file by reading the segments out of remote memory
10489 based on the ELF file header at EHDR_VMA and the ELF program headers it
10490 points to. If not null, *LOADBASEP is filled in with the difference
10491 between the VMAs from which the segments were read, and the VMAs the
10492 file headers (and hence BFD's idea of each section's VMA) put them at.
10493
10494 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
10495 remote memory at target address VMA into the local buffer at MYADDR; it
10496 should return zero on success or an `errno' code on failure. TEMPL must
10497 be a BFD for an ELF target with the word size and byte order found in
10498 the remote memory. */
10499
10500 bfd *
10501 bfd_elf_bfd_from_remote_memory
10502 (bfd *templ,
10503 bfd_vma ehdr_vma,
10504 bfd_size_type size,
10505 bfd_vma *loadbasep,
10506 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
10507 {
10508 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
10509 (templ, ehdr_vma, size, loadbasep, target_read_memory);
10510 }
10511 \f
10512 long
10513 _bfd_elf_get_synthetic_symtab (bfd *abfd,
10514 long symcount ATTRIBUTE_UNUSED,
10515 asymbol **syms ATTRIBUTE_UNUSED,
10516 long dynsymcount,
10517 asymbol **dynsyms,
10518 asymbol **ret)
10519 {
10520 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10521 asection *relplt;
10522 asymbol *s;
10523 const char *relplt_name;
10524 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
10525 arelent *p;
10526 long count, i, n;
10527 size_t size;
10528 Elf_Internal_Shdr *hdr;
10529 char *names;
10530 asection *plt;
10531
10532 *ret = NULL;
10533
10534 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
10535 return 0;
10536
10537 if (dynsymcount <= 0)
10538 return 0;
10539
10540 if (!bed->plt_sym_val)
10541 return 0;
10542
10543 relplt_name = bed->relplt_name;
10544 if (relplt_name == NULL)
10545 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
10546 relplt = bfd_get_section_by_name (abfd, relplt_name);
10547 if (relplt == NULL)
10548 return 0;
10549
10550 hdr = &elf_section_data (relplt)->this_hdr;
10551 if (hdr->sh_link != elf_dynsymtab (abfd)
10552 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
10553 return 0;
10554
10555 plt = bfd_get_section_by_name (abfd, ".plt");
10556 if (plt == NULL)
10557 return 0;
10558
10559 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
10560 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
10561 return -1;
10562
10563 count = relplt->size / hdr->sh_entsize;
10564 size = count * sizeof (asymbol);
10565 p = relplt->relocation;
10566 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10567 {
10568 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
10569 if (p->addend != 0)
10570 {
10571 #ifdef BFD64
10572 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
10573 #else
10574 size += sizeof ("+0x") - 1 + 8;
10575 #endif
10576 }
10577 }
10578
10579 s = *ret = (asymbol *) bfd_malloc (size);
10580 if (s == NULL)
10581 return -1;
10582
10583 names = (char *) (s + count);
10584 p = relplt->relocation;
10585 n = 0;
10586 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10587 {
10588 size_t len;
10589 bfd_vma addr;
10590
10591 addr = bed->plt_sym_val (i, plt, p);
10592 if (addr == (bfd_vma) -1)
10593 continue;
10594
10595 *s = **p->sym_ptr_ptr;
10596 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
10597 we are defining a symbol, ensure one of them is set. */
10598 if ((s->flags & BSF_LOCAL) == 0)
10599 s->flags |= BSF_GLOBAL;
10600 s->flags |= BSF_SYNTHETIC;
10601 s->section = plt;
10602 s->value = addr - plt->vma;
10603 s->name = names;
10604 s->udata.p = NULL;
10605 len = strlen ((*p->sym_ptr_ptr)->name);
10606 memcpy (names, (*p->sym_ptr_ptr)->name, len);
10607 names += len;
10608 if (p->addend != 0)
10609 {
10610 char buf[30], *a;
10611
10612 memcpy (names, "+0x", sizeof ("+0x") - 1);
10613 names += sizeof ("+0x") - 1;
10614 bfd_sprintf_vma (abfd, buf, p->addend);
10615 for (a = buf; *a == '0'; ++a)
10616 ;
10617 len = strlen (a);
10618 memcpy (names, a, len);
10619 names += len;
10620 }
10621 memcpy (names, "@plt", sizeof ("@plt"));
10622 names += sizeof ("@plt");
10623 ++s, ++n;
10624 }
10625
10626 return n;
10627 }
10628
10629 /* It is only used by x86-64 so far. */
10630 asection _bfd_elf_large_com_section
10631 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10632 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10633
10634 void
10635 _bfd_elf_post_process_headers (bfd * abfd,
10636 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10637 {
10638 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10639
10640 i_ehdrp = elf_elfheader (abfd);
10641
10642 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10643
10644 /* To make things simpler for the loader on Linux systems we set the
10645 osabi field to ELFOSABI_GNU if the binary contains symbols of
10646 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10647 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10648 && elf_tdata (abfd)->has_gnu_symbols)
10649 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10650 }
10651
10652
10653 /* Return TRUE for ELF symbol types that represent functions.
10654 This is the default version of this function, which is sufficient for
10655 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10656
10657 bfd_boolean
10658 _bfd_elf_is_function_type (unsigned int type)
10659 {
10660 return (type == STT_FUNC
10661 || type == STT_GNU_IFUNC);
10662 }
10663
10664 /* If the ELF symbol SYM might be a function in SEC, return the
10665 function size and set *CODE_OFF to the function's entry point,
10666 otherwise return zero. */
10667
10668 bfd_size_type
10669 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10670 bfd_vma *code_off)
10671 {
10672 bfd_size_type size;
10673
10674 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10675 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10676 || sym->section != sec)
10677 return 0;
10678
10679 *code_off = sym->value;
10680 size = 0;
10681 if (!(sym->flags & BSF_SYNTHETIC))
10682 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10683 if (size == 0)
10684 size = 1;
10685 return size;
10686 }
This page took 0.265277 seconds and 5 git commands to generate.