* elf64-alpha.c (elf64_alpha_read_ecoff_info): Don't assign
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static char *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 char *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 char *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return 0;
263
264 shstrtab = (char *) i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 (*_bfd_error_handler)
295 (_("%s: invalid string offset %u >= %lu for section `%s'"),
296 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
297 ((shindex == elf_elfheader(abfd)->e_shstrndx
298 && strindex == hdr->sh_name)
299 ? ".shstrtab"
300 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
409 {
410 unsigned int iname = isym->st_name;
411 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
412 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 }
420
421 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
422 sections. The first element is the flags, the rest are section
423 pointers. */
424
425 typedef union elf_internal_group {
426 Elf_Internal_Shdr *shdr;
427 unsigned int flags;
428 } Elf_Internal_Group;
429
430 /* Return the name of the group signature symbol. Why isn't the
431 signature just a string? */
432
433 static const char *
434 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
435 {
436 Elf_Internal_Shdr *hdr;
437 unsigned char esym[sizeof (Elf64_External_Sym)];
438 Elf_External_Sym_Shndx eshndx;
439 Elf_Internal_Sym isym;
440
441 /* First we need to ensure the symbol table is available. */
442 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
443 return NULL;
444
445 /* Go read the symbol. */
446 hdr = &elf_tdata (abfd)->symtab_hdr;
447 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
448 &isym, esym, &eshndx) == NULL)
449 return NULL;
450
451 return bfd_elf_local_sym_name (abfd, &isym);
452 }
453
454 /* Set next_in_group list pointer, and group name for NEWSECT. */
455
456 static bfd_boolean
457 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
458 {
459 unsigned int num_group = elf_tdata (abfd)->num_group;
460
461 /* If num_group is zero, read in all SHT_GROUP sections. The count
462 is set to -1 if there are no SHT_GROUP sections. */
463 if (num_group == 0)
464 {
465 unsigned int i, shnum;
466
467 /* First count the number of groups. If we have a SHT_GROUP
468 section with just a flag word (ie. sh_size is 4), ignore it. */
469 shnum = elf_numsections (abfd);
470 num_group = 0;
471 for (i = 0; i < shnum; i++)
472 {
473 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
474 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
475 num_group += 1;
476 }
477
478 if (num_group == 0)
479 num_group = (unsigned) -1;
480 elf_tdata (abfd)->num_group = num_group;
481
482 if (num_group > 0)
483 {
484 /* We keep a list of elf section headers for group sections,
485 so we can find them quickly. */
486 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
487 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
488 if (elf_tdata (abfd)->group_sect_ptr == NULL)
489 return FALSE;
490
491 num_group = 0;
492 for (i = 0; i < shnum; i++)
493 {
494 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
495 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
496 {
497 unsigned char *src;
498 Elf_Internal_Group *dest;
499
500 /* Add to list of sections. */
501 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
502 num_group += 1;
503
504 /* Read the raw contents. */
505 BFD_ASSERT (sizeof (*dest) >= 4);
506 amt = shdr->sh_size * sizeof (*dest) / 4;
507 shdr->contents = bfd_alloc (abfd, amt);
508 if (shdr->contents == NULL
509 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
510 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
511 != shdr->sh_size))
512 return FALSE;
513
514 /* Translate raw contents, a flag word followed by an
515 array of elf section indices all in target byte order,
516 to the flag word followed by an array of elf section
517 pointers. */
518 src = shdr->contents + shdr->sh_size;
519 dest = (Elf_Internal_Group *) (shdr->contents + amt);
520 while (1)
521 {
522 unsigned int idx;
523
524 src -= 4;
525 --dest;
526 idx = H_GET_32 (abfd, src);
527 if (src == shdr->contents)
528 {
529 dest->flags = idx;
530 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
531 shdr->bfd_section->flags
532 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
533 break;
534 }
535 if (idx >= shnum)
536 {
537 ((*_bfd_error_handler)
538 (_("%s: invalid SHT_GROUP entry"),
539 bfd_archive_filename (abfd)));
540 idx = 0;
541 }
542 dest->shdr = elf_elfsections (abfd)[idx];
543 }
544 }
545 }
546 }
547 }
548
549 if (num_group != (unsigned) -1)
550 {
551 unsigned int i;
552
553 for (i = 0; i < num_group; i++)
554 {
555 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
556 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
557 unsigned int n_elt = shdr->sh_size / 4;
558
559 /* Look through this group's sections to see if current
560 section is a member. */
561 while (--n_elt != 0)
562 if ((++idx)->shdr == hdr)
563 {
564 asection *s = NULL;
565
566 /* We are a member of this group. Go looking through
567 other members to see if any others are linked via
568 next_in_group. */
569 idx = (Elf_Internal_Group *) shdr->contents;
570 n_elt = shdr->sh_size / 4;
571 while (--n_elt != 0)
572 if ((s = (++idx)->shdr->bfd_section) != NULL
573 && elf_next_in_group (s) != NULL)
574 break;
575 if (n_elt != 0)
576 {
577 /* Snarf the group name from other member, and
578 insert current section in circular list. */
579 elf_group_name (newsect) = elf_group_name (s);
580 elf_next_in_group (newsect) = elf_next_in_group (s);
581 elf_next_in_group (s) = newsect;
582 }
583 else
584 {
585 const char *gname;
586
587 gname = group_signature (abfd, shdr);
588 if (gname == NULL)
589 return FALSE;
590 elf_group_name (newsect) = gname;
591
592 /* Start a circular list with one element. */
593 elf_next_in_group (newsect) = newsect;
594 }
595
596 /* If the group section has been created, point to the
597 new member. */
598 if (shdr->bfd_section != NULL)
599 elf_next_in_group (shdr->bfd_section) = newsect;
600
601 i = num_group - 1;
602 break;
603 }
604 }
605 }
606
607 if (elf_group_name (newsect) == NULL)
608 {
609 (*_bfd_error_handler) (_("%s: no group info for section %s"),
610 bfd_archive_filename (abfd), newsect->name);
611 }
612 return TRUE;
613 }
614
615 bfd_boolean
616 bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED, asection *group)
617 {
618 asection *first = elf_next_in_group (group);
619 asection *s = first;
620
621 while (s != NULL)
622 {
623 s->output_section = bfd_abs_section_ptr;
624 s = elf_next_in_group (s);
625 /* These lists are circular. */
626 if (s == first)
627 break;
628 }
629 return TRUE;
630 }
631
632 /* Make a BFD section from an ELF section. We store a pointer to the
633 BFD section in the bfd_section field of the header. */
634
635 bfd_boolean
636 _bfd_elf_make_section_from_shdr (bfd *abfd,
637 Elf_Internal_Shdr *hdr,
638 const char *name)
639 {
640 asection *newsect;
641 flagword flags;
642 const struct elf_backend_data *bed;
643
644 if (hdr->bfd_section != NULL)
645 {
646 BFD_ASSERT (strcmp (name,
647 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
648 return TRUE;
649 }
650
651 newsect = bfd_make_section_anyway (abfd, name);
652 if (newsect == NULL)
653 return FALSE;
654
655 hdr->bfd_section = newsect;
656 elf_section_data (newsect)->this_hdr = *hdr;
657
658 /* Always use the real type/flags. */
659 elf_section_type (newsect) = hdr->sh_type;
660 elf_section_flags (newsect) = hdr->sh_flags;
661
662 newsect->filepos = hdr->sh_offset;
663
664 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
665 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
666 || ! bfd_set_section_alignment (abfd, newsect,
667 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
668 return FALSE;
669
670 flags = SEC_NO_FLAGS;
671 if (hdr->sh_type != SHT_NOBITS)
672 flags |= SEC_HAS_CONTENTS;
673 if (hdr->sh_type == SHT_GROUP)
674 flags |= SEC_GROUP | SEC_EXCLUDE;
675 if ((hdr->sh_flags & SHF_ALLOC) != 0)
676 {
677 flags |= SEC_ALLOC;
678 if (hdr->sh_type != SHT_NOBITS)
679 flags |= SEC_LOAD;
680 }
681 if ((hdr->sh_flags & SHF_WRITE) == 0)
682 flags |= SEC_READONLY;
683 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
684 flags |= SEC_CODE;
685 else if ((flags & SEC_LOAD) != 0)
686 flags |= SEC_DATA;
687 if ((hdr->sh_flags & SHF_MERGE) != 0)
688 {
689 flags |= SEC_MERGE;
690 newsect->entsize = hdr->sh_entsize;
691 if ((hdr->sh_flags & SHF_STRINGS) != 0)
692 flags |= SEC_STRINGS;
693 }
694 if (hdr->sh_flags & SHF_GROUP)
695 if (!setup_group (abfd, hdr, newsect))
696 return FALSE;
697 if ((hdr->sh_flags & SHF_TLS) != 0)
698 flags |= SEC_THREAD_LOCAL;
699
700 /* The debugging sections appear to be recognized only by name, not
701 any sort of flag. */
702 {
703 static const char *debug_sec_names [] =
704 {
705 ".debug",
706 ".gnu.linkonce.wi.",
707 ".line",
708 ".stab"
709 };
710 int i;
711
712 for (i = ARRAY_SIZE (debug_sec_names); i--;)
713 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
714 break;
715
716 if (i >= 0)
717 flags |= SEC_DEBUGGING;
718 }
719
720 /* As a GNU extension, if the name begins with .gnu.linkonce, we
721 only link a single copy of the section. This is used to support
722 g++. g++ will emit each template expansion in its own section.
723 The symbols will be defined as weak, so that multiple definitions
724 are permitted. The GNU linker extension is to actually discard
725 all but one of the sections. */
726 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
727 && elf_next_in_group (newsect) == NULL)
728 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
729
730 bed = get_elf_backend_data (abfd);
731 if (bed->elf_backend_section_flags)
732 if (! bed->elf_backend_section_flags (&flags, hdr))
733 return FALSE;
734
735 if (! bfd_set_section_flags (abfd, newsect, flags))
736 return FALSE;
737
738 if ((flags & SEC_ALLOC) != 0)
739 {
740 Elf_Internal_Phdr *phdr;
741 unsigned int i;
742
743 /* Look through the phdrs to see if we need to adjust the lma.
744 If all the p_paddr fields are zero, we ignore them, since
745 some ELF linkers produce such output. */
746 phdr = elf_tdata (abfd)->phdr;
747 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
748 {
749 if (phdr->p_paddr != 0)
750 break;
751 }
752 if (i < elf_elfheader (abfd)->e_phnum)
753 {
754 phdr = elf_tdata (abfd)->phdr;
755 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
756 {
757 /* This section is part of this segment if its file
758 offset plus size lies within the segment's memory
759 span and, if the section is loaded, the extent of the
760 loaded data lies within the extent of the segment.
761
762 Note - we used to check the p_paddr field as well, and
763 refuse to set the LMA if it was 0. This is wrong
764 though, as a perfectly valid initialised segment can
765 have a p_paddr of zero. Some architectures, eg ARM,
766 place special significance on the address 0 and
767 executables need to be able to have a segment which
768 covers this address. */
769 if (phdr->p_type == PT_LOAD
770 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
771 && (hdr->sh_offset + hdr->sh_size
772 <= phdr->p_offset + phdr->p_memsz)
773 && ((flags & SEC_LOAD) == 0
774 || (hdr->sh_offset + hdr->sh_size
775 <= phdr->p_offset + phdr->p_filesz)))
776 {
777 if ((flags & SEC_LOAD) == 0)
778 newsect->lma = (phdr->p_paddr
779 + hdr->sh_addr - phdr->p_vaddr);
780 else
781 /* We used to use the same adjustment for SEC_LOAD
782 sections, but that doesn't work if the segment
783 is packed with code from multiple VMAs.
784 Instead we calculate the section LMA based on
785 the segment LMA. It is assumed that the
786 segment will contain sections with contiguous
787 LMAs, even if the VMAs are not. */
788 newsect->lma = (phdr->p_paddr
789 + hdr->sh_offset - phdr->p_offset);
790
791 /* With contiguous segments, we can't tell from file
792 offsets whether a section with zero size should
793 be placed at the end of one segment or the
794 beginning of the next. Decide based on vaddr. */
795 if (hdr->sh_addr >= phdr->p_vaddr
796 && (hdr->sh_addr + hdr->sh_size
797 <= phdr->p_vaddr + phdr->p_memsz))
798 break;
799 }
800 }
801 }
802 }
803
804 return TRUE;
805 }
806
807 /*
808 INTERNAL_FUNCTION
809 bfd_elf_find_section
810
811 SYNOPSIS
812 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
813
814 DESCRIPTION
815 Helper functions for GDB to locate the string tables.
816 Since BFD hides string tables from callers, GDB needs to use an
817 internal hook to find them. Sun's .stabstr, in particular,
818 isn't even pointed to by the .stab section, so ordinary
819 mechanisms wouldn't work to find it, even if we had some.
820 */
821
822 struct elf_internal_shdr *
823 bfd_elf_find_section (bfd *abfd, char *name)
824 {
825 Elf_Internal_Shdr **i_shdrp;
826 char *shstrtab;
827 unsigned int max;
828 unsigned int i;
829
830 i_shdrp = elf_elfsections (abfd);
831 if (i_shdrp != NULL)
832 {
833 shstrtab = bfd_elf_get_str_section (abfd,
834 elf_elfheader (abfd)->e_shstrndx);
835 if (shstrtab != NULL)
836 {
837 max = elf_numsections (abfd);
838 for (i = 1; i < max; i++)
839 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
840 return i_shdrp[i];
841 }
842 }
843 return 0;
844 }
845
846 const char *const bfd_elf_section_type_names[] = {
847 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
848 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
849 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
850 };
851
852 /* ELF relocs are against symbols. If we are producing relocatable
853 output, and the reloc is against an external symbol, and nothing
854 has given us any additional addend, the resulting reloc will also
855 be against the same symbol. In such a case, we don't want to
856 change anything about the way the reloc is handled, since it will
857 all be done at final link time. Rather than put special case code
858 into bfd_perform_relocation, all the reloc types use this howto
859 function. It just short circuits the reloc if producing
860 relocatable output against an external symbol. */
861
862 bfd_reloc_status_type
863 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
864 arelent *reloc_entry,
865 asymbol *symbol,
866 void *data ATTRIBUTE_UNUSED,
867 asection *input_section,
868 bfd *output_bfd,
869 char **error_message ATTRIBUTE_UNUSED)
870 {
871 if (output_bfd != NULL
872 && (symbol->flags & BSF_SECTION_SYM) == 0
873 && (! reloc_entry->howto->partial_inplace
874 || reloc_entry->addend == 0))
875 {
876 reloc_entry->address += input_section->output_offset;
877 return bfd_reloc_ok;
878 }
879
880 return bfd_reloc_continue;
881 }
882 \f
883 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
884
885 static void
886 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
887 asection *sec)
888 {
889 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
890 sec->sec_info_type = ELF_INFO_TYPE_NONE;
891 }
892
893 /* Finish SHF_MERGE section merging. */
894
895 bfd_boolean
896 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
897 {
898 if (!is_elf_hash_table (info->hash))
899 return FALSE;
900 if (elf_hash_table (info)->merge_info)
901 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
902 merge_sections_remove_hook);
903 return TRUE;
904 }
905
906 void
907 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
908 {
909 sec->output_section = bfd_abs_section_ptr;
910 sec->output_offset = sec->vma;
911 if (!is_elf_hash_table (info->hash))
912 return;
913
914 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
915 }
916 \f
917 /* Copy the program header and other data from one object module to
918 another. */
919
920 bfd_boolean
921 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
922 {
923 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
924 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
925 return TRUE;
926
927 BFD_ASSERT (!elf_flags_init (obfd)
928 || (elf_elfheader (obfd)->e_flags
929 == elf_elfheader (ibfd)->e_flags));
930
931 elf_gp (obfd) = elf_gp (ibfd);
932 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
933 elf_flags_init (obfd) = TRUE;
934 return TRUE;
935 }
936
937 /* Print out the program headers. */
938
939 bfd_boolean
940 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
941 {
942 FILE *f = farg;
943 Elf_Internal_Phdr *p;
944 asection *s;
945 bfd_byte *dynbuf = NULL;
946
947 p = elf_tdata (abfd)->phdr;
948 if (p != NULL)
949 {
950 unsigned int i, c;
951
952 fprintf (f, _("\nProgram Header:\n"));
953 c = elf_elfheader (abfd)->e_phnum;
954 for (i = 0; i < c; i++, p++)
955 {
956 const char *pt;
957 char buf[20];
958
959 switch (p->p_type)
960 {
961 case PT_NULL: pt = "NULL"; break;
962 case PT_LOAD: pt = "LOAD"; break;
963 case PT_DYNAMIC: pt = "DYNAMIC"; break;
964 case PT_INTERP: pt = "INTERP"; break;
965 case PT_NOTE: pt = "NOTE"; break;
966 case PT_SHLIB: pt = "SHLIB"; break;
967 case PT_PHDR: pt = "PHDR"; break;
968 case PT_TLS: pt = "TLS"; break;
969 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
970 case PT_GNU_STACK: pt = "STACK"; break;
971 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
972 }
973 fprintf (f, "%8s off 0x", pt);
974 bfd_fprintf_vma (abfd, f, p->p_offset);
975 fprintf (f, " vaddr 0x");
976 bfd_fprintf_vma (abfd, f, p->p_vaddr);
977 fprintf (f, " paddr 0x");
978 bfd_fprintf_vma (abfd, f, p->p_paddr);
979 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
980 fprintf (f, " filesz 0x");
981 bfd_fprintf_vma (abfd, f, p->p_filesz);
982 fprintf (f, " memsz 0x");
983 bfd_fprintf_vma (abfd, f, p->p_memsz);
984 fprintf (f, " flags %c%c%c",
985 (p->p_flags & PF_R) != 0 ? 'r' : '-',
986 (p->p_flags & PF_W) != 0 ? 'w' : '-',
987 (p->p_flags & PF_X) != 0 ? 'x' : '-');
988 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
989 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
990 fprintf (f, "\n");
991 }
992 }
993
994 s = bfd_get_section_by_name (abfd, ".dynamic");
995 if (s != NULL)
996 {
997 int elfsec;
998 unsigned long shlink;
999 bfd_byte *extdyn, *extdynend;
1000 size_t extdynsize;
1001 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1002
1003 fprintf (f, _("\nDynamic Section:\n"));
1004
1005 dynbuf = bfd_malloc (s->_raw_size);
1006 if (dynbuf == NULL)
1007 goto error_return;
1008 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1009 goto error_return;
1010
1011 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1012 if (elfsec == -1)
1013 goto error_return;
1014 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1015
1016 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1017 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1018
1019 extdyn = dynbuf;
1020 extdynend = extdyn + s->_raw_size;
1021 for (; extdyn < extdynend; extdyn += extdynsize)
1022 {
1023 Elf_Internal_Dyn dyn;
1024 const char *name;
1025 char ab[20];
1026 bfd_boolean stringp;
1027
1028 (*swap_dyn_in) (abfd, extdyn, &dyn);
1029
1030 if (dyn.d_tag == DT_NULL)
1031 break;
1032
1033 stringp = FALSE;
1034 switch (dyn.d_tag)
1035 {
1036 default:
1037 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1038 name = ab;
1039 break;
1040
1041 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1042 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1043 case DT_PLTGOT: name = "PLTGOT"; break;
1044 case DT_HASH: name = "HASH"; break;
1045 case DT_STRTAB: name = "STRTAB"; break;
1046 case DT_SYMTAB: name = "SYMTAB"; break;
1047 case DT_RELA: name = "RELA"; break;
1048 case DT_RELASZ: name = "RELASZ"; break;
1049 case DT_RELAENT: name = "RELAENT"; break;
1050 case DT_STRSZ: name = "STRSZ"; break;
1051 case DT_SYMENT: name = "SYMENT"; break;
1052 case DT_INIT: name = "INIT"; break;
1053 case DT_FINI: name = "FINI"; break;
1054 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1055 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1056 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1057 case DT_REL: name = "REL"; break;
1058 case DT_RELSZ: name = "RELSZ"; break;
1059 case DT_RELENT: name = "RELENT"; break;
1060 case DT_PLTREL: name = "PLTREL"; break;
1061 case DT_DEBUG: name = "DEBUG"; break;
1062 case DT_TEXTREL: name = "TEXTREL"; break;
1063 case DT_JMPREL: name = "JMPREL"; break;
1064 case DT_BIND_NOW: name = "BIND_NOW"; break;
1065 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1066 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1067 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1068 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1069 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1070 case DT_FLAGS: name = "FLAGS"; break;
1071 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1072 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1073 case DT_CHECKSUM: name = "CHECKSUM"; break;
1074 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1075 case DT_MOVEENT: name = "MOVEENT"; break;
1076 case DT_MOVESZ: name = "MOVESZ"; break;
1077 case DT_FEATURE: name = "FEATURE"; break;
1078 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1079 case DT_SYMINSZ: name = "SYMINSZ"; break;
1080 case DT_SYMINENT: name = "SYMINENT"; break;
1081 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1082 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1083 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1084 case DT_PLTPAD: name = "PLTPAD"; break;
1085 case DT_MOVETAB: name = "MOVETAB"; break;
1086 case DT_SYMINFO: name = "SYMINFO"; break;
1087 case DT_RELACOUNT: name = "RELACOUNT"; break;
1088 case DT_RELCOUNT: name = "RELCOUNT"; break;
1089 case DT_FLAGS_1: name = "FLAGS_1"; break;
1090 case DT_VERSYM: name = "VERSYM"; break;
1091 case DT_VERDEF: name = "VERDEF"; break;
1092 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1093 case DT_VERNEED: name = "VERNEED"; break;
1094 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1095 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1096 case DT_USED: name = "USED"; break;
1097 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1098 }
1099
1100 fprintf (f, " %-11s ", name);
1101 if (! stringp)
1102 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1103 else
1104 {
1105 const char *string;
1106 unsigned int tagv = dyn.d_un.d_val;
1107
1108 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1109 if (string == NULL)
1110 goto error_return;
1111 fprintf (f, "%s", string);
1112 }
1113 fprintf (f, "\n");
1114 }
1115
1116 free (dynbuf);
1117 dynbuf = NULL;
1118 }
1119
1120 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1121 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1122 {
1123 if (! _bfd_elf_slurp_version_tables (abfd))
1124 return FALSE;
1125 }
1126
1127 if (elf_dynverdef (abfd) != 0)
1128 {
1129 Elf_Internal_Verdef *t;
1130
1131 fprintf (f, _("\nVersion definitions:\n"));
1132 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1133 {
1134 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1135 t->vd_flags, t->vd_hash, t->vd_nodename);
1136 if (t->vd_auxptr->vda_nextptr != NULL)
1137 {
1138 Elf_Internal_Verdaux *a;
1139
1140 fprintf (f, "\t");
1141 for (a = t->vd_auxptr->vda_nextptr;
1142 a != NULL;
1143 a = a->vda_nextptr)
1144 fprintf (f, "%s ", a->vda_nodename);
1145 fprintf (f, "\n");
1146 }
1147 }
1148 }
1149
1150 if (elf_dynverref (abfd) != 0)
1151 {
1152 Elf_Internal_Verneed *t;
1153
1154 fprintf (f, _("\nVersion References:\n"));
1155 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1156 {
1157 Elf_Internal_Vernaux *a;
1158
1159 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1160 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1161 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1162 a->vna_flags, a->vna_other, a->vna_nodename);
1163 }
1164 }
1165
1166 return TRUE;
1167
1168 error_return:
1169 if (dynbuf != NULL)
1170 free (dynbuf);
1171 return FALSE;
1172 }
1173
1174 /* Display ELF-specific fields of a symbol. */
1175
1176 void
1177 bfd_elf_print_symbol (bfd *abfd,
1178 void *filep,
1179 asymbol *symbol,
1180 bfd_print_symbol_type how)
1181 {
1182 FILE *file = filep;
1183 switch (how)
1184 {
1185 case bfd_print_symbol_name:
1186 fprintf (file, "%s", symbol->name);
1187 break;
1188 case bfd_print_symbol_more:
1189 fprintf (file, "elf ");
1190 bfd_fprintf_vma (abfd, file, symbol->value);
1191 fprintf (file, " %lx", (long) symbol->flags);
1192 break;
1193 case bfd_print_symbol_all:
1194 {
1195 const char *section_name;
1196 const char *name = NULL;
1197 const struct elf_backend_data *bed;
1198 unsigned char st_other;
1199 bfd_vma val;
1200
1201 section_name = symbol->section ? symbol->section->name : "(*none*)";
1202
1203 bed = get_elf_backend_data (abfd);
1204 if (bed->elf_backend_print_symbol_all)
1205 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1206
1207 if (name == NULL)
1208 {
1209 name = symbol->name;
1210 bfd_print_symbol_vandf (abfd, file, symbol);
1211 }
1212
1213 fprintf (file, " %s\t", section_name);
1214 /* Print the "other" value for a symbol. For common symbols,
1215 we've already printed the size; now print the alignment.
1216 For other symbols, we have no specified alignment, and
1217 we've printed the address; now print the size. */
1218 if (bfd_is_com_section (symbol->section))
1219 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1220 else
1221 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1222 bfd_fprintf_vma (abfd, file, val);
1223
1224 /* If we have version information, print it. */
1225 if (elf_tdata (abfd)->dynversym_section != 0
1226 && (elf_tdata (abfd)->dynverdef_section != 0
1227 || elf_tdata (abfd)->dynverref_section != 0))
1228 {
1229 unsigned int vernum;
1230 const char *version_string;
1231
1232 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1233
1234 if (vernum == 0)
1235 version_string = "";
1236 else if (vernum == 1)
1237 version_string = "Base";
1238 else if (vernum <= elf_tdata (abfd)->cverdefs)
1239 version_string =
1240 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1241 else
1242 {
1243 Elf_Internal_Verneed *t;
1244
1245 version_string = "";
1246 for (t = elf_tdata (abfd)->verref;
1247 t != NULL;
1248 t = t->vn_nextref)
1249 {
1250 Elf_Internal_Vernaux *a;
1251
1252 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1253 {
1254 if (a->vna_other == vernum)
1255 {
1256 version_string = a->vna_nodename;
1257 break;
1258 }
1259 }
1260 }
1261 }
1262
1263 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1264 fprintf (file, " %-11s", version_string);
1265 else
1266 {
1267 int i;
1268
1269 fprintf (file, " (%s)", version_string);
1270 for (i = 10 - strlen (version_string); i > 0; --i)
1271 putc (' ', file);
1272 }
1273 }
1274
1275 /* If the st_other field is not zero, print it. */
1276 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1277
1278 switch (st_other)
1279 {
1280 case 0: break;
1281 case STV_INTERNAL: fprintf (file, " .internal"); break;
1282 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1283 case STV_PROTECTED: fprintf (file, " .protected"); break;
1284 default:
1285 /* Some other non-defined flags are also present, so print
1286 everything hex. */
1287 fprintf (file, " 0x%02x", (unsigned int) st_other);
1288 }
1289
1290 fprintf (file, " %s", name);
1291 }
1292 break;
1293 }
1294 }
1295 \f
1296 /* Create an entry in an ELF linker hash table. */
1297
1298 struct bfd_hash_entry *
1299 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1300 struct bfd_hash_table *table,
1301 const char *string)
1302 {
1303 /* Allocate the structure if it has not already been allocated by a
1304 subclass. */
1305 if (entry == NULL)
1306 {
1307 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1308 if (entry == NULL)
1309 return entry;
1310 }
1311
1312 /* Call the allocation method of the superclass. */
1313 entry = _bfd_link_hash_newfunc (entry, table, string);
1314 if (entry != NULL)
1315 {
1316 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1317 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1318
1319 /* Set local fields. */
1320 ret->indx = -1;
1321 ret->dynindx = -1;
1322 ret->dynstr_index = 0;
1323 ret->elf_hash_value = 0;
1324 ret->weakdef = NULL;
1325 ret->verinfo.verdef = NULL;
1326 ret->vtable_entries_size = 0;
1327 ret->vtable_entries_used = NULL;
1328 ret->vtable_parent = NULL;
1329 ret->got = htab->init_refcount;
1330 ret->plt = htab->init_refcount;
1331 ret->size = 0;
1332 ret->type = STT_NOTYPE;
1333 ret->other = 0;
1334 /* Assume that we have been called by a non-ELF symbol reader.
1335 This flag is then reset by the code which reads an ELF input
1336 file. This ensures that a symbol created by a non-ELF symbol
1337 reader will have the flag set correctly. */
1338 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1339 }
1340
1341 return entry;
1342 }
1343
1344 /* Copy data from an indirect symbol to its direct symbol, hiding the
1345 old indirect symbol. Also used for copying flags to a weakdef. */
1346
1347 void
1348 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1349 struct elf_link_hash_entry *dir,
1350 struct elf_link_hash_entry *ind)
1351 {
1352 bfd_signed_vma tmp;
1353 bfd_signed_vma lowest_valid = bed->can_refcount;
1354
1355 /* Copy down any references that we may have already seen to the
1356 symbol which just became indirect. */
1357
1358 dir->elf_link_hash_flags
1359 |= ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1360 | ELF_LINK_HASH_REF_REGULAR
1361 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1362 | ELF_LINK_NON_GOT_REF
1363 | ELF_LINK_HASH_NEEDS_PLT
1364 | ELF_LINK_POINTER_EQUALITY_NEEDED);
1365
1366 if (ind->root.type != bfd_link_hash_indirect)
1367 return;
1368
1369 /* Copy over the global and procedure linkage table refcount entries.
1370 These may have been already set up by a check_relocs routine. */
1371 tmp = dir->got.refcount;
1372 if (tmp < lowest_valid)
1373 {
1374 dir->got.refcount = ind->got.refcount;
1375 ind->got.refcount = tmp;
1376 }
1377 else
1378 BFD_ASSERT (ind->got.refcount < lowest_valid);
1379
1380 tmp = dir->plt.refcount;
1381 if (tmp < lowest_valid)
1382 {
1383 dir->plt.refcount = ind->plt.refcount;
1384 ind->plt.refcount = tmp;
1385 }
1386 else
1387 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1388
1389 if (dir->dynindx == -1)
1390 {
1391 dir->dynindx = ind->dynindx;
1392 dir->dynstr_index = ind->dynstr_index;
1393 ind->dynindx = -1;
1394 ind->dynstr_index = 0;
1395 }
1396 else
1397 BFD_ASSERT (ind->dynindx == -1);
1398 }
1399
1400 void
1401 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1402 struct elf_link_hash_entry *h,
1403 bfd_boolean force_local)
1404 {
1405 h->plt = elf_hash_table (info)->init_offset;
1406 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1407 if (force_local)
1408 {
1409 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1410 if (h->dynindx != -1)
1411 {
1412 h->dynindx = -1;
1413 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1414 h->dynstr_index);
1415 }
1416 }
1417 }
1418
1419 /* Initialize an ELF linker hash table. */
1420
1421 bfd_boolean
1422 _bfd_elf_link_hash_table_init
1423 (struct elf_link_hash_table *table,
1424 bfd *abfd,
1425 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1426 struct bfd_hash_table *,
1427 const char *))
1428 {
1429 bfd_boolean ret;
1430
1431 table->dynamic_sections_created = FALSE;
1432 table->dynobj = NULL;
1433 /* Make sure can_refcount is extended to the width and signedness of
1434 init_refcount before we subtract one from it. */
1435 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1436 table->init_refcount.refcount -= 1;
1437 table->init_offset.offset = -(bfd_vma) 1;
1438 /* The first dynamic symbol is a dummy. */
1439 table->dynsymcount = 1;
1440 table->dynstr = NULL;
1441 table->bucketcount = 0;
1442 table->needed = NULL;
1443 table->hgot = NULL;
1444 table->stab_info = NULL;
1445 table->merge_info = NULL;
1446 memset (&table->eh_info, 0, sizeof (table->eh_info));
1447 table->dynlocal = NULL;
1448 table->runpath = NULL;
1449 table->tls_sec = NULL;
1450 table->tls_size = 0;
1451 table->loaded = NULL;
1452
1453 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1454 table->root.type = bfd_link_elf_hash_table;
1455
1456 return ret;
1457 }
1458
1459 /* Create an ELF linker hash table. */
1460
1461 struct bfd_link_hash_table *
1462 _bfd_elf_link_hash_table_create (bfd *abfd)
1463 {
1464 struct elf_link_hash_table *ret;
1465 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1466
1467 ret = bfd_malloc (amt);
1468 if (ret == NULL)
1469 return NULL;
1470
1471 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1472 {
1473 free (ret);
1474 return NULL;
1475 }
1476
1477 return &ret->root;
1478 }
1479
1480 /* This is a hook for the ELF emulation code in the generic linker to
1481 tell the backend linker what file name to use for the DT_NEEDED
1482 entry for a dynamic object. */
1483
1484 void
1485 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1486 {
1487 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1488 && bfd_get_format (abfd) == bfd_object)
1489 elf_dt_name (abfd) = name;
1490 }
1491
1492 void
1493 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1494 {
1495 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1496 && bfd_get_format (abfd) == bfd_object)
1497 elf_dyn_lib_class (abfd) = lib_class;
1498 }
1499
1500 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1501 the linker ELF emulation code. */
1502
1503 struct bfd_link_needed_list *
1504 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1505 struct bfd_link_info *info)
1506 {
1507 if (! is_elf_hash_table (info->hash))
1508 return NULL;
1509 return elf_hash_table (info)->needed;
1510 }
1511
1512 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1513 hook for the linker ELF emulation code. */
1514
1515 struct bfd_link_needed_list *
1516 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1517 struct bfd_link_info *info)
1518 {
1519 if (! is_elf_hash_table (info->hash))
1520 return NULL;
1521 return elf_hash_table (info)->runpath;
1522 }
1523
1524 /* Get the name actually used for a dynamic object for a link. This
1525 is the SONAME entry if there is one. Otherwise, it is the string
1526 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1527
1528 const char *
1529 bfd_elf_get_dt_soname (bfd *abfd)
1530 {
1531 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1532 && bfd_get_format (abfd) == bfd_object)
1533 return elf_dt_name (abfd);
1534 return NULL;
1535 }
1536
1537 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1538 the ELF linker emulation code. */
1539
1540 bfd_boolean
1541 bfd_elf_get_bfd_needed_list (bfd *abfd,
1542 struct bfd_link_needed_list **pneeded)
1543 {
1544 asection *s;
1545 bfd_byte *dynbuf = NULL;
1546 int elfsec;
1547 unsigned long shlink;
1548 bfd_byte *extdyn, *extdynend;
1549 size_t extdynsize;
1550 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1551
1552 *pneeded = NULL;
1553
1554 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1555 || bfd_get_format (abfd) != bfd_object)
1556 return TRUE;
1557
1558 s = bfd_get_section_by_name (abfd, ".dynamic");
1559 if (s == NULL || s->_raw_size == 0)
1560 return TRUE;
1561
1562 dynbuf = bfd_malloc (s->_raw_size);
1563 if (dynbuf == NULL)
1564 goto error_return;
1565
1566 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1567 goto error_return;
1568
1569 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1570 if (elfsec == -1)
1571 goto error_return;
1572
1573 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1574
1575 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1576 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1577
1578 extdyn = dynbuf;
1579 extdynend = extdyn + s->_raw_size;
1580 for (; extdyn < extdynend; extdyn += extdynsize)
1581 {
1582 Elf_Internal_Dyn dyn;
1583
1584 (*swap_dyn_in) (abfd, extdyn, &dyn);
1585
1586 if (dyn.d_tag == DT_NULL)
1587 break;
1588
1589 if (dyn.d_tag == DT_NEEDED)
1590 {
1591 const char *string;
1592 struct bfd_link_needed_list *l;
1593 unsigned int tagv = dyn.d_un.d_val;
1594 bfd_size_type amt;
1595
1596 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1597 if (string == NULL)
1598 goto error_return;
1599
1600 amt = sizeof *l;
1601 l = bfd_alloc (abfd, amt);
1602 if (l == NULL)
1603 goto error_return;
1604
1605 l->by = abfd;
1606 l->name = string;
1607 l->next = *pneeded;
1608 *pneeded = l;
1609 }
1610 }
1611
1612 free (dynbuf);
1613
1614 return TRUE;
1615
1616 error_return:
1617 if (dynbuf != NULL)
1618 free (dynbuf);
1619 return FALSE;
1620 }
1621 \f
1622 /* Allocate an ELF string table--force the first byte to be zero. */
1623
1624 struct bfd_strtab_hash *
1625 _bfd_elf_stringtab_init (void)
1626 {
1627 struct bfd_strtab_hash *ret;
1628
1629 ret = _bfd_stringtab_init ();
1630 if (ret != NULL)
1631 {
1632 bfd_size_type loc;
1633
1634 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1635 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1636 if (loc == (bfd_size_type) -1)
1637 {
1638 _bfd_stringtab_free (ret);
1639 ret = NULL;
1640 }
1641 }
1642 return ret;
1643 }
1644 \f
1645 /* ELF .o/exec file reading */
1646
1647 /* Create a new bfd section from an ELF section header. */
1648
1649 bfd_boolean
1650 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1651 {
1652 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1653 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1654 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1655 const char *name;
1656
1657 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1658
1659 switch (hdr->sh_type)
1660 {
1661 case SHT_NULL:
1662 /* Inactive section. Throw it away. */
1663 return TRUE;
1664
1665 case SHT_PROGBITS: /* Normal section with contents. */
1666 case SHT_NOBITS: /* .bss section. */
1667 case SHT_HASH: /* .hash section. */
1668 case SHT_NOTE: /* .note section. */
1669 case SHT_INIT_ARRAY: /* .init_array section. */
1670 case SHT_FINI_ARRAY: /* .fini_array section. */
1671 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1672 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1673
1674 case SHT_DYNAMIC: /* Dynamic linking information. */
1675 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1676 return FALSE;
1677 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1678 {
1679 Elf_Internal_Shdr *dynsymhdr;
1680
1681 /* The shared libraries distributed with hpux11 have a bogus
1682 sh_link field for the ".dynamic" section. Find the
1683 string table for the ".dynsym" section instead. */
1684 if (elf_dynsymtab (abfd) != 0)
1685 {
1686 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1687 hdr->sh_link = dynsymhdr->sh_link;
1688 }
1689 else
1690 {
1691 unsigned int i, num_sec;
1692
1693 num_sec = elf_numsections (abfd);
1694 for (i = 1; i < num_sec; i++)
1695 {
1696 dynsymhdr = elf_elfsections (abfd)[i];
1697 if (dynsymhdr->sh_type == SHT_DYNSYM)
1698 {
1699 hdr->sh_link = dynsymhdr->sh_link;
1700 break;
1701 }
1702 }
1703 }
1704 }
1705 break;
1706
1707 case SHT_SYMTAB: /* A symbol table */
1708 if (elf_onesymtab (abfd) == shindex)
1709 return TRUE;
1710
1711 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1712 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1713 elf_onesymtab (abfd) = shindex;
1714 elf_tdata (abfd)->symtab_hdr = *hdr;
1715 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1716 abfd->flags |= HAS_SYMS;
1717
1718 /* Sometimes a shared object will map in the symbol table. If
1719 SHF_ALLOC is set, and this is a shared object, then we also
1720 treat this section as a BFD section. We can not base the
1721 decision purely on SHF_ALLOC, because that flag is sometimes
1722 set in a relocatable object file, which would confuse the
1723 linker. */
1724 if ((hdr->sh_flags & SHF_ALLOC) != 0
1725 && (abfd->flags & DYNAMIC) != 0
1726 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1727 return FALSE;
1728
1729 return TRUE;
1730
1731 case SHT_DYNSYM: /* A dynamic symbol table */
1732 if (elf_dynsymtab (abfd) == shindex)
1733 return TRUE;
1734
1735 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1736 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1737 elf_dynsymtab (abfd) = shindex;
1738 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1739 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1740 abfd->flags |= HAS_SYMS;
1741
1742 /* Besides being a symbol table, we also treat this as a regular
1743 section, so that objcopy can handle it. */
1744 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1745
1746 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1747 if (elf_symtab_shndx (abfd) == shindex)
1748 return TRUE;
1749
1750 /* Get the associated symbol table. */
1751 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1752 || hdr->sh_link != elf_onesymtab (abfd))
1753 return FALSE;
1754
1755 elf_symtab_shndx (abfd) = shindex;
1756 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1757 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1758 return TRUE;
1759
1760 case SHT_STRTAB: /* A string table */
1761 if (hdr->bfd_section != NULL)
1762 return TRUE;
1763 if (ehdr->e_shstrndx == shindex)
1764 {
1765 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1766 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1767 return TRUE;
1768 }
1769 {
1770 unsigned int i, num_sec;
1771
1772 num_sec = elf_numsections (abfd);
1773 for (i = 1; i < num_sec; i++)
1774 {
1775 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1776 if (hdr2->sh_link == shindex)
1777 {
1778 if (! bfd_section_from_shdr (abfd, i))
1779 return FALSE;
1780 if (elf_onesymtab (abfd) == i)
1781 {
1782 elf_tdata (abfd)->strtab_hdr = *hdr;
1783 elf_elfsections (abfd)[shindex] =
1784 &elf_tdata (abfd)->strtab_hdr;
1785 return TRUE;
1786 }
1787 if (elf_dynsymtab (abfd) == i)
1788 {
1789 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1790 elf_elfsections (abfd)[shindex] = hdr =
1791 &elf_tdata (abfd)->dynstrtab_hdr;
1792 /* We also treat this as a regular section, so
1793 that objcopy can handle it. */
1794 break;
1795 }
1796 #if 0 /* Not handling other string tables specially right now. */
1797 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1798 /* We have a strtab for some random other section. */
1799 newsect = (asection *) hdr2->bfd_section;
1800 if (!newsect)
1801 break;
1802 hdr->bfd_section = newsect;
1803 hdr2 = &elf_section_data (newsect)->str_hdr;
1804 *hdr2 = *hdr;
1805 elf_elfsections (abfd)[shindex] = hdr2;
1806 #endif
1807 }
1808 }
1809 }
1810
1811 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1812
1813 case SHT_REL:
1814 case SHT_RELA:
1815 /* *These* do a lot of work -- but build no sections! */
1816 {
1817 asection *target_sect;
1818 Elf_Internal_Shdr *hdr2;
1819 unsigned int num_sec = elf_numsections (abfd);
1820
1821 /* Check for a bogus link to avoid crashing. */
1822 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1823 || hdr->sh_link >= num_sec)
1824 {
1825 ((*_bfd_error_handler)
1826 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1827 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1828 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1829 }
1830
1831 /* For some incomprehensible reason Oracle distributes
1832 libraries for Solaris in which some of the objects have
1833 bogus sh_link fields. It would be nice if we could just
1834 reject them, but, unfortunately, some people need to use
1835 them. We scan through the section headers; if we find only
1836 one suitable symbol table, we clobber the sh_link to point
1837 to it. I hope this doesn't break anything. */
1838 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1839 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1840 {
1841 unsigned int scan;
1842 int found;
1843
1844 found = 0;
1845 for (scan = 1; scan < num_sec; scan++)
1846 {
1847 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1848 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1849 {
1850 if (found != 0)
1851 {
1852 found = 0;
1853 break;
1854 }
1855 found = scan;
1856 }
1857 }
1858 if (found != 0)
1859 hdr->sh_link = found;
1860 }
1861
1862 /* Get the symbol table. */
1863 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1864 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1865 return FALSE;
1866
1867 /* If this reloc section does not use the main symbol table we
1868 don't treat it as a reloc section. BFD can't adequately
1869 represent such a section, so at least for now, we don't
1870 try. We just present it as a normal section. We also
1871 can't use it as a reloc section if it points to the null
1872 section. */
1873 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1874 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1875
1876 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1877 return FALSE;
1878 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1879 if (target_sect == NULL)
1880 return FALSE;
1881
1882 if ((target_sect->flags & SEC_RELOC) == 0
1883 || target_sect->reloc_count == 0)
1884 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1885 else
1886 {
1887 bfd_size_type amt;
1888 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1889 amt = sizeof (*hdr2);
1890 hdr2 = bfd_alloc (abfd, amt);
1891 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1892 }
1893 *hdr2 = *hdr;
1894 elf_elfsections (abfd)[shindex] = hdr2;
1895 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1896 target_sect->flags |= SEC_RELOC;
1897 target_sect->relocation = NULL;
1898 target_sect->rel_filepos = hdr->sh_offset;
1899 /* In the section to which the relocations apply, mark whether
1900 its relocations are of the REL or RELA variety. */
1901 if (hdr->sh_size != 0)
1902 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1903 abfd->flags |= HAS_RELOC;
1904 return TRUE;
1905 }
1906 break;
1907
1908 case SHT_GNU_verdef:
1909 elf_dynverdef (abfd) = shindex;
1910 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1911 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1912 break;
1913
1914 case SHT_GNU_versym:
1915 elf_dynversym (abfd) = shindex;
1916 elf_tdata (abfd)->dynversym_hdr = *hdr;
1917 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1918 break;
1919
1920 case SHT_GNU_verneed:
1921 elf_dynverref (abfd) = shindex;
1922 elf_tdata (abfd)->dynverref_hdr = *hdr;
1923 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1924 break;
1925
1926 case SHT_SHLIB:
1927 return TRUE;
1928
1929 case SHT_GROUP:
1930 /* We need a BFD section for objcopy and relocatable linking,
1931 and it's handy to have the signature available as the section
1932 name. */
1933 name = group_signature (abfd, hdr);
1934 if (name == NULL)
1935 return FALSE;
1936 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
1937 return FALSE;
1938 if (hdr->contents != NULL)
1939 {
1940 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1941 unsigned int n_elt = hdr->sh_size / 4;
1942 asection *s;
1943
1944 if (idx->flags & GRP_COMDAT)
1945 hdr->bfd_section->flags
1946 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1947
1948 while (--n_elt != 0)
1949 if ((s = (++idx)->shdr->bfd_section) != NULL
1950 && elf_next_in_group (s) != NULL)
1951 {
1952 elf_next_in_group (hdr->bfd_section) = s;
1953 break;
1954 }
1955 }
1956 break;
1957
1958 default:
1959 /* Check for any processor-specific section types. */
1960 {
1961 if (bed->elf_backend_section_from_shdr)
1962 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
1963 }
1964 break;
1965 }
1966
1967 return TRUE;
1968 }
1969
1970 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1971 Return SEC for sections that have no elf section, and NULL on error. */
1972
1973 asection *
1974 bfd_section_from_r_symndx (bfd *abfd,
1975 struct sym_sec_cache *cache,
1976 asection *sec,
1977 unsigned long r_symndx)
1978 {
1979 Elf_Internal_Shdr *symtab_hdr;
1980 unsigned char esym[sizeof (Elf64_External_Sym)];
1981 Elf_External_Sym_Shndx eshndx;
1982 Elf_Internal_Sym isym;
1983 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1984
1985 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
1986 return cache->sec[ent];
1987
1988 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1989 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1990 &isym, esym, &eshndx) == NULL)
1991 return NULL;
1992
1993 if (cache->abfd != abfd)
1994 {
1995 memset (cache->indx, -1, sizeof (cache->indx));
1996 cache->abfd = abfd;
1997 }
1998 cache->indx[ent] = r_symndx;
1999 cache->sec[ent] = sec;
2000 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2001 || isym.st_shndx > SHN_HIRESERVE)
2002 {
2003 asection *s;
2004 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2005 if (s != NULL)
2006 cache->sec[ent] = s;
2007 }
2008 return cache->sec[ent];
2009 }
2010
2011 /* Given an ELF section number, retrieve the corresponding BFD
2012 section. */
2013
2014 asection *
2015 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2016 {
2017 if (index >= elf_numsections (abfd))
2018 return NULL;
2019 return elf_elfsections (abfd)[index]->bfd_section;
2020 }
2021
2022 static struct bfd_elf_special_section const special_sections[] =
2023 {
2024 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2025 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2026 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2027 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2028 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2029 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2030 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2031 { ".line", 5, 0, SHT_PROGBITS, 0 },
2032 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2033 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2034 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2035 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2036 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2037 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2038 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2039 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2040 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2041 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2042 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2043 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2044 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2045 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2046 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2047 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2048 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2049 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2050 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2051 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2052 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2053 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2054 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2055 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2056 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2057 { ".note", 5, -1, SHT_NOTE, 0 },
2058 { ".rela", 5, -1, SHT_RELA, 0 },
2059 { ".rel", 4, -1, SHT_REL, 0 },
2060 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2061 { NULL, 0, 0, 0, 0 }
2062 };
2063
2064 static const struct bfd_elf_special_section *
2065 get_special_section (const char *name,
2066 const struct bfd_elf_special_section *special_sections,
2067 unsigned int rela)
2068 {
2069 int i;
2070 int len = strlen (name);
2071
2072 for (i = 0; special_sections[i].prefix != NULL; i++)
2073 {
2074 int suffix_len;
2075 int prefix_len = special_sections[i].prefix_length;
2076
2077 if (len < prefix_len)
2078 continue;
2079 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2080 continue;
2081
2082 suffix_len = special_sections[i].suffix_length;
2083 if (suffix_len <= 0)
2084 {
2085 if (name[prefix_len] != 0)
2086 {
2087 if (suffix_len == 0)
2088 continue;
2089 if (name[prefix_len] != '.'
2090 && (suffix_len == -2
2091 || (rela && special_sections[i].type == SHT_REL)))
2092 continue;
2093 }
2094 }
2095 else
2096 {
2097 if (len < prefix_len + suffix_len)
2098 continue;
2099 if (memcmp (name + len - suffix_len,
2100 special_sections[i].prefix + prefix_len,
2101 suffix_len) != 0)
2102 continue;
2103 }
2104 return &special_sections[i];
2105 }
2106
2107 return NULL;
2108 }
2109
2110 const struct bfd_elf_special_section *
2111 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2112 {
2113 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2114 const struct bfd_elf_special_section *ssect = NULL;
2115
2116 /* See if this is one of the special sections. */
2117 if (name)
2118 {
2119 unsigned int rela = bed->default_use_rela_p;
2120
2121 if (bed->special_sections)
2122 ssect = get_special_section (name, bed->special_sections, rela);
2123
2124 if (! ssect)
2125 ssect = get_special_section (name, special_sections, rela);
2126 }
2127
2128 return ssect;
2129 }
2130
2131 bfd_boolean
2132 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2133 {
2134 struct bfd_elf_section_data *sdata;
2135 const struct bfd_elf_special_section *ssect;
2136
2137 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2138 if (sdata == NULL)
2139 {
2140 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2141 if (sdata == NULL)
2142 return FALSE;
2143 sec->used_by_bfd = sdata;
2144 }
2145
2146 elf_section_type (sec) = SHT_NULL;
2147 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2148 if (ssect != NULL)
2149 {
2150 elf_section_type (sec) = ssect->type;
2151 elf_section_flags (sec) = ssect->attr;
2152 }
2153
2154 /* Indicate whether or not this section should use RELA relocations. */
2155 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2156
2157 return TRUE;
2158 }
2159
2160 /* Create a new bfd section from an ELF program header.
2161
2162 Since program segments have no names, we generate a synthetic name
2163 of the form segment<NUM>, where NUM is generally the index in the
2164 program header table. For segments that are split (see below) we
2165 generate the names segment<NUM>a and segment<NUM>b.
2166
2167 Note that some program segments may have a file size that is different than
2168 (less than) the memory size. All this means is that at execution the
2169 system must allocate the amount of memory specified by the memory size,
2170 but only initialize it with the first "file size" bytes read from the
2171 file. This would occur for example, with program segments consisting
2172 of combined data+bss.
2173
2174 To handle the above situation, this routine generates TWO bfd sections
2175 for the single program segment. The first has the length specified by
2176 the file size of the segment, and the second has the length specified
2177 by the difference between the two sizes. In effect, the segment is split
2178 into it's initialized and uninitialized parts.
2179
2180 */
2181
2182 bfd_boolean
2183 _bfd_elf_make_section_from_phdr (bfd *abfd,
2184 Elf_Internal_Phdr *hdr,
2185 int index,
2186 const char *typename)
2187 {
2188 asection *newsect;
2189 char *name;
2190 char namebuf[64];
2191 size_t len;
2192 int split;
2193
2194 split = ((hdr->p_memsz > 0)
2195 && (hdr->p_filesz > 0)
2196 && (hdr->p_memsz > hdr->p_filesz));
2197 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2198 len = strlen (namebuf) + 1;
2199 name = bfd_alloc (abfd, len);
2200 if (!name)
2201 return FALSE;
2202 memcpy (name, namebuf, len);
2203 newsect = bfd_make_section (abfd, name);
2204 if (newsect == NULL)
2205 return FALSE;
2206 newsect->vma = hdr->p_vaddr;
2207 newsect->lma = hdr->p_paddr;
2208 newsect->_raw_size = hdr->p_filesz;
2209 newsect->filepos = hdr->p_offset;
2210 newsect->flags |= SEC_HAS_CONTENTS;
2211 newsect->alignment_power = bfd_log2 (hdr->p_align);
2212 if (hdr->p_type == PT_LOAD)
2213 {
2214 newsect->flags |= SEC_ALLOC;
2215 newsect->flags |= SEC_LOAD;
2216 if (hdr->p_flags & PF_X)
2217 {
2218 /* FIXME: all we known is that it has execute PERMISSION,
2219 may be data. */
2220 newsect->flags |= SEC_CODE;
2221 }
2222 }
2223 if (!(hdr->p_flags & PF_W))
2224 {
2225 newsect->flags |= SEC_READONLY;
2226 }
2227
2228 if (split)
2229 {
2230 sprintf (namebuf, "%s%db", typename, index);
2231 len = strlen (namebuf) + 1;
2232 name = bfd_alloc (abfd, len);
2233 if (!name)
2234 return FALSE;
2235 memcpy (name, namebuf, len);
2236 newsect = bfd_make_section (abfd, name);
2237 if (newsect == NULL)
2238 return FALSE;
2239 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2240 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2241 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2242 if (hdr->p_type == PT_LOAD)
2243 {
2244 newsect->flags |= SEC_ALLOC;
2245 if (hdr->p_flags & PF_X)
2246 newsect->flags |= SEC_CODE;
2247 }
2248 if (!(hdr->p_flags & PF_W))
2249 newsect->flags |= SEC_READONLY;
2250 }
2251
2252 return TRUE;
2253 }
2254
2255 bfd_boolean
2256 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2257 {
2258 const struct elf_backend_data *bed;
2259
2260 switch (hdr->p_type)
2261 {
2262 case PT_NULL:
2263 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2264
2265 case PT_LOAD:
2266 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2267
2268 case PT_DYNAMIC:
2269 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2270
2271 case PT_INTERP:
2272 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2273
2274 case PT_NOTE:
2275 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2276 return FALSE;
2277 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2278 return FALSE;
2279 return TRUE;
2280
2281 case PT_SHLIB:
2282 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2283
2284 case PT_PHDR:
2285 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2286
2287 case PT_GNU_EH_FRAME:
2288 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2289 "eh_frame_hdr");
2290
2291 case PT_GNU_STACK:
2292 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2293
2294 default:
2295 /* Check for any processor-specific program segment types.
2296 If no handler for them, default to making "segment" sections. */
2297 bed = get_elf_backend_data (abfd);
2298 if (bed->elf_backend_section_from_phdr)
2299 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2300 else
2301 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2302 }
2303 }
2304
2305 /* Initialize REL_HDR, the section-header for new section, containing
2306 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2307 relocations; otherwise, we use REL relocations. */
2308
2309 bfd_boolean
2310 _bfd_elf_init_reloc_shdr (bfd *abfd,
2311 Elf_Internal_Shdr *rel_hdr,
2312 asection *asect,
2313 bfd_boolean use_rela_p)
2314 {
2315 char *name;
2316 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2317 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2318
2319 name = bfd_alloc (abfd, amt);
2320 if (name == NULL)
2321 return FALSE;
2322 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2323 rel_hdr->sh_name =
2324 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2325 FALSE);
2326 if (rel_hdr->sh_name == (unsigned int) -1)
2327 return FALSE;
2328 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2329 rel_hdr->sh_entsize = (use_rela_p
2330 ? bed->s->sizeof_rela
2331 : bed->s->sizeof_rel);
2332 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2333 rel_hdr->sh_flags = 0;
2334 rel_hdr->sh_addr = 0;
2335 rel_hdr->sh_size = 0;
2336 rel_hdr->sh_offset = 0;
2337
2338 return TRUE;
2339 }
2340
2341 /* Set up an ELF internal section header for a section. */
2342
2343 static void
2344 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2345 {
2346 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2347 bfd_boolean *failedptr = failedptrarg;
2348 Elf_Internal_Shdr *this_hdr;
2349
2350 if (*failedptr)
2351 {
2352 /* We already failed; just get out of the bfd_map_over_sections
2353 loop. */
2354 return;
2355 }
2356
2357 this_hdr = &elf_section_data (asect)->this_hdr;
2358
2359 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2360 asect->name, FALSE);
2361 if (this_hdr->sh_name == (unsigned int) -1)
2362 {
2363 *failedptr = TRUE;
2364 return;
2365 }
2366
2367 this_hdr->sh_flags = 0;
2368
2369 if ((asect->flags & SEC_ALLOC) != 0
2370 || asect->user_set_vma)
2371 this_hdr->sh_addr = asect->vma;
2372 else
2373 this_hdr->sh_addr = 0;
2374
2375 this_hdr->sh_offset = 0;
2376 this_hdr->sh_size = asect->_raw_size;
2377 this_hdr->sh_link = 0;
2378 this_hdr->sh_addralign = 1 << asect->alignment_power;
2379 /* The sh_entsize and sh_info fields may have been set already by
2380 copy_private_section_data. */
2381
2382 this_hdr->bfd_section = asect;
2383 this_hdr->contents = NULL;
2384
2385 /* If the section type is unspecified, we set it based on
2386 asect->flags. */
2387 if (this_hdr->sh_type == SHT_NULL)
2388 {
2389 if ((asect->flags & SEC_ALLOC) != 0
2390 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2391 || (asect->flags & SEC_NEVER_LOAD) != 0))
2392 this_hdr->sh_type = SHT_NOBITS;
2393 else
2394 this_hdr->sh_type = SHT_PROGBITS;
2395 }
2396
2397 switch (this_hdr->sh_type)
2398 {
2399 default:
2400 break;
2401
2402 case SHT_STRTAB:
2403 case SHT_INIT_ARRAY:
2404 case SHT_FINI_ARRAY:
2405 case SHT_PREINIT_ARRAY:
2406 case SHT_NOTE:
2407 case SHT_NOBITS:
2408 case SHT_PROGBITS:
2409 break;
2410
2411 case SHT_HASH:
2412 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2413 break;
2414
2415 case SHT_DYNSYM:
2416 this_hdr->sh_entsize = bed->s->sizeof_sym;
2417 break;
2418
2419 case SHT_DYNAMIC:
2420 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2421 break;
2422
2423 case SHT_RELA:
2424 if (get_elf_backend_data (abfd)->may_use_rela_p)
2425 this_hdr->sh_entsize = bed->s->sizeof_rela;
2426 break;
2427
2428 case SHT_REL:
2429 if (get_elf_backend_data (abfd)->may_use_rel_p)
2430 this_hdr->sh_entsize = bed->s->sizeof_rel;
2431 break;
2432
2433 case SHT_GNU_versym:
2434 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2435 break;
2436
2437 case SHT_GNU_verdef:
2438 this_hdr->sh_entsize = 0;
2439 /* objcopy or strip will copy over sh_info, but may not set
2440 cverdefs. The linker will set cverdefs, but sh_info will be
2441 zero. */
2442 if (this_hdr->sh_info == 0)
2443 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2444 else
2445 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2446 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2447 break;
2448
2449 case SHT_GNU_verneed:
2450 this_hdr->sh_entsize = 0;
2451 /* objcopy or strip will copy over sh_info, but may not set
2452 cverrefs. The linker will set cverrefs, but sh_info will be
2453 zero. */
2454 if (this_hdr->sh_info == 0)
2455 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2456 else
2457 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2458 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2459 break;
2460
2461 case SHT_GROUP:
2462 this_hdr->sh_entsize = 4;
2463 break;
2464 }
2465
2466 if ((asect->flags & SEC_ALLOC) != 0)
2467 this_hdr->sh_flags |= SHF_ALLOC;
2468 if ((asect->flags & SEC_READONLY) == 0)
2469 this_hdr->sh_flags |= SHF_WRITE;
2470 if ((asect->flags & SEC_CODE) != 0)
2471 this_hdr->sh_flags |= SHF_EXECINSTR;
2472 if ((asect->flags & SEC_MERGE) != 0)
2473 {
2474 this_hdr->sh_flags |= SHF_MERGE;
2475 this_hdr->sh_entsize = asect->entsize;
2476 if ((asect->flags & SEC_STRINGS) != 0)
2477 this_hdr->sh_flags |= SHF_STRINGS;
2478 }
2479 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2480 this_hdr->sh_flags |= SHF_GROUP;
2481 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2482 {
2483 this_hdr->sh_flags |= SHF_TLS;
2484 if (asect->_raw_size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2485 {
2486 struct bfd_link_order *o;
2487
2488 this_hdr->sh_size = 0;
2489 for (o = asect->link_order_head; o != NULL; o = o->next)
2490 if (this_hdr->sh_size < o->offset + o->size)
2491 this_hdr->sh_size = o->offset + o->size;
2492 if (this_hdr->sh_size)
2493 this_hdr->sh_type = SHT_NOBITS;
2494 }
2495 }
2496
2497 /* Check for processor-specific section types. */
2498 if (bed->elf_backend_fake_sections
2499 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2500 *failedptr = TRUE;
2501
2502 /* If the section has relocs, set up a section header for the
2503 SHT_REL[A] section. If two relocation sections are required for
2504 this section, it is up to the processor-specific back-end to
2505 create the other. */
2506 if ((asect->flags & SEC_RELOC) != 0
2507 && !_bfd_elf_init_reloc_shdr (abfd,
2508 &elf_section_data (asect)->rel_hdr,
2509 asect,
2510 asect->use_rela_p))
2511 *failedptr = TRUE;
2512 }
2513
2514 /* Fill in the contents of a SHT_GROUP section. */
2515
2516 void
2517 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2518 {
2519 bfd_boolean *failedptr = failedptrarg;
2520 unsigned long symindx;
2521 asection *elt, *first;
2522 unsigned char *loc;
2523 struct bfd_link_order *l;
2524 bfd_boolean gas;
2525
2526 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2527 || *failedptr)
2528 return;
2529
2530 symindx = 0;
2531 if (elf_group_id (sec) != NULL)
2532 symindx = elf_group_id (sec)->udata.i;
2533
2534 if (symindx == 0)
2535 {
2536 /* If called from the assembler, swap_out_syms will have set up
2537 elf_section_syms; If called for "ld -r", use target_index. */
2538 if (elf_section_syms (abfd) != NULL)
2539 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2540 else
2541 symindx = sec->target_index;
2542 }
2543 elf_section_data (sec)->this_hdr.sh_info = symindx;
2544
2545 /* The contents won't be allocated for "ld -r" or objcopy. */
2546 gas = TRUE;
2547 if (sec->contents == NULL)
2548 {
2549 gas = FALSE;
2550 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2551
2552 /* Arrange for the section to be written out. */
2553 elf_section_data (sec)->this_hdr.contents = sec->contents;
2554 if (sec->contents == NULL)
2555 {
2556 *failedptr = TRUE;
2557 return;
2558 }
2559 }
2560
2561 loc = sec->contents + sec->_raw_size;
2562
2563 /* Get the pointer to the first section in the group that gas
2564 squirreled away here. objcopy arranges for this to be set to the
2565 start of the input section group. */
2566 first = elt = elf_next_in_group (sec);
2567
2568 /* First element is a flag word. Rest of section is elf section
2569 indices for all the sections of the group. Write them backwards
2570 just to keep the group in the same order as given in .section
2571 directives, not that it matters. */
2572 while (elt != NULL)
2573 {
2574 asection *s;
2575 unsigned int idx;
2576
2577 loc -= 4;
2578 s = elt;
2579 if (!gas)
2580 s = s->output_section;
2581 idx = 0;
2582 if (s != NULL)
2583 idx = elf_section_data (s)->this_idx;
2584 H_PUT_32 (abfd, idx, loc);
2585 elt = elf_next_in_group (elt);
2586 if (elt == first)
2587 break;
2588 }
2589
2590 /* If this is a relocatable link, then the above did nothing because
2591 SEC is the output section. Look through the input sections
2592 instead. */
2593 for (l = sec->link_order_head; l != NULL; l = l->next)
2594 if (l->type == bfd_indirect_link_order
2595 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2596 do
2597 {
2598 loc -= 4;
2599 H_PUT_32 (abfd,
2600 elf_section_data (elt->output_section)->this_idx, loc);
2601 elt = elf_next_in_group (elt);
2602 /* During a relocatable link, the lists are circular. */
2603 }
2604 while (elt != elf_next_in_group (l->u.indirect.section));
2605
2606 /* With ld -r, merging SHT_GROUP sections results in wasted space
2607 due to allowing for the flag word on each input. We may well
2608 duplicate entries too. */
2609 while ((loc -= 4) > sec->contents)
2610 H_PUT_32 (abfd, 0, loc);
2611
2612 if (loc != sec->contents)
2613 abort ();
2614
2615 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2616 }
2617
2618 /* Assign all ELF section numbers. The dummy first section is handled here
2619 too. The link/info pointers for the standard section types are filled
2620 in here too, while we're at it. */
2621
2622 static bfd_boolean
2623 assign_section_numbers (bfd *abfd)
2624 {
2625 struct elf_obj_tdata *t = elf_tdata (abfd);
2626 asection *sec;
2627 unsigned int section_number, secn;
2628 Elf_Internal_Shdr **i_shdrp;
2629 bfd_size_type amt;
2630
2631 section_number = 1;
2632
2633 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2634
2635 for (sec = abfd->sections; sec; sec = sec->next)
2636 {
2637 struct bfd_elf_section_data *d = elf_section_data (sec);
2638
2639 if (section_number == SHN_LORESERVE)
2640 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2641 d->this_idx = section_number++;
2642 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2643 if ((sec->flags & SEC_RELOC) == 0)
2644 d->rel_idx = 0;
2645 else
2646 {
2647 if (section_number == SHN_LORESERVE)
2648 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2649 d->rel_idx = section_number++;
2650 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2651 }
2652
2653 if (d->rel_hdr2)
2654 {
2655 if (section_number == SHN_LORESERVE)
2656 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2657 d->rel_idx2 = section_number++;
2658 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2659 }
2660 else
2661 d->rel_idx2 = 0;
2662 }
2663
2664 if (section_number == SHN_LORESERVE)
2665 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2666 t->shstrtab_section = section_number++;
2667 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2668 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2669
2670 if (bfd_get_symcount (abfd) > 0)
2671 {
2672 if (section_number == SHN_LORESERVE)
2673 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2674 t->symtab_section = section_number++;
2675 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2676 if (section_number > SHN_LORESERVE - 2)
2677 {
2678 if (section_number == SHN_LORESERVE)
2679 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2680 t->symtab_shndx_section = section_number++;
2681 t->symtab_shndx_hdr.sh_name
2682 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2683 ".symtab_shndx", FALSE);
2684 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2685 return FALSE;
2686 }
2687 if (section_number == SHN_LORESERVE)
2688 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2689 t->strtab_section = section_number++;
2690 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2691 }
2692
2693 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2694 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2695
2696 elf_numsections (abfd) = section_number;
2697 elf_elfheader (abfd)->e_shnum = section_number;
2698 if (section_number > SHN_LORESERVE)
2699 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2700
2701 /* Set up the list of section header pointers, in agreement with the
2702 indices. */
2703 amt = section_number * sizeof (Elf_Internal_Shdr *);
2704 i_shdrp = bfd_zalloc (abfd, amt);
2705 if (i_shdrp == NULL)
2706 return FALSE;
2707
2708 amt = sizeof (Elf_Internal_Shdr);
2709 i_shdrp[0] = bfd_zalloc (abfd, amt);
2710 if (i_shdrp[0] == NULL)
2711 {
2712 bfd_release (abfd, i_shdrp);
2713 return FALSE;
2714 }
2715
2716 elf_elfsections (abfd) = i_shdrp;
2717
2718 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2719 if (bfd_get_symcount (abfd) > 0)
2720 {
2721 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2722 if (elf_numsections (abfd) > SHN_LORESERVE)
2723 {
2724 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2725 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2726 }
2727 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2728 t->symtab_hdr.sh_link = t->strtab_section;
2729 }
2730 for (sec = abfd->sections; sec; sec = sec->next)
2731 {
2732 struct bfd_elf_section_data *d = elf_section_data (sec);
2733 asection *s;
2734 const char *name;
2735
2736 i_shdrp[d->this_idx] = &d->this_hdr;
2737 if (d->rel_idx != 0)
2738 i_shdrp[d->rel_idx] = &d->rel_hdr;
2739 if (d->rel_idx2 != 0)
2740 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2741
2742 /* Fill in the sh_link and sh_info fields while we're at it. */
2743
2744 /* sh_link of a reloc section is the section index of the symbol
2745 table. sh_info is the section index of the section to which
2746 the relocation entries apply. */
2747 if (d->rel_idx != 0)
2748 {
2749 d->rel_hdr.sh_link = t->symtab_section;
2750 d->rel_hdr.sh_info = d->this_idx;
2751 }
2752 if (d->rel_idx2 != 0)
2753 {
2754 d->rel_hdr2->sh_link = t->symtab_section;
2755 d->rel_hdr2->sh_info = d->this_idx;
2756 }
2757
2758 switch (d->this_hdr.sh_type)
2759 {
2760 case SHT_REL:
2761 case SHT_RELA:
2762 /* A reloc section which we are treating as a normal BFD
2763 section. sh_link is the section index of the symbol
2764 table. sh_info is the section index of the section to
2765 which the relocation entries apply. We assume that an
2766 allocated reloc section uses the dynamic symbol table.
2767 FIXME: How can we be sure? */
2768 s = bfd_get_section_by_name (abfd, ".dynsym");
2769 if (s != NULL)
2770 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2771
2772 /* We look up the section the relocs apply to by name. */
2773 name = sec->name;
2774 if (d->this_hdr.sh_type == SHT_REL)
2775 name += 4;
2776 else
2777 name += 5;
2778 s = bfd_get_section_by_name (abfd, name);
2779 if (s != NULL)
2780 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2781 break;
2782
2783 case SHT_STRTAB:
2784 /* We assume that a section named .stab*str is a stabs
2785 string section. We look for a section with the same name
2786 but without the trailing ``str'', and set its sh_link
2787 field to point to this section. */
2788 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2789 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2790 {
2791 size_t len;
2792 char *alc;
2793
2794 len = strlen (sec->name);
2795 alc = bfd_malloc (len - 2);
2796 if (alc == NULL)
2797 return FALSE;
2798 memcpy (alc, sec->name, len - 3);
2799 alc[len - 3] = '\0';
2800 s = bfd_get_section_by_name (abfd, alc);
2801 free (alc);
2802 if (s != NULL)
2803 {
2804 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2805
2806 /* This is a .stab section. */
2807 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2808 elf_section_data (s)->this_hdr.sh_entsize
2809 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2810 }
2811 }
2812 break;
2813
2814 case SHT_DYNAMIC:
2815 case SHT_DYNSYM:
2816 case SHT_GNU_verneed:
2817 case SHT_GNU_verdef:
2818 /* sh_link is the section header index of the string table
2819 used for the dynamic entries, or the symbol table, or the
2820 version strings. */
2821 s = bfd_get_section_by_name (abfd, ".dynstr");
2822 if (s != NULL)
2823 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2824 break;
2825
2826 case SHT_HASH:
2827 case SHT_GNU_versym:
2828 /* sh_link is the section header index of the symbol table
2829 this hash table or version table is for. */
2830 s = bfd_get_section_by_name (abfd, ".dynsym");
2831 if (s != NULL)
2832 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2833 break;
2834
2835 case SHT_GROUP:
2836 d->this_hdr.sh_link = t->symtab_section;
2837 }
2838 }
2839
2840 for (secn = 1; secn < section_number; ++secn)
2841 if (i_shdrp[secn] == NULL)
2842 i_shdrp[secn] = i_shdrp[0];
2843 else
2844 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2845 i_shdrp[secn]->sh_name);
2846 return TRUE;
2847 }
2848
2849 /* Map symbol from it's internal number to the external number, moving
2850 all local symbols to be at the head of the list. */
2851
2852 static int
2853 sym_is_global (bfd *abfd, asymbol *sym)
2854 {
2855 /* If the backend has a special mapping, use it. */
2856 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2857 if (bed->elf_backend_sym_is_global)
2858 return (*bed->elf_backend_sym_is_global) (abfd, sym);
2859
2860 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2861 || bfd_is_und_section (bfd_get_section (sym))
2862 || bfd_is_com_section (bfd_get_section (sym)));
2863 }
2864
2865 static bfd_boolean
2866 elf_map_symbols (bfd *abfd)
2867 {
2868 unsigned int symcount = bfd_get_symcount (abfd);
2869 asymbol **syms = bfd_get_outsymbols (abfd);
2870 asymbol **sect_syms;
2871 unsigned int num_locals = 0;
2872 unsigned int num_globals = 0;
2873 unsigned int num_locals2 = 0;
2874 unsigned int num_globals2 = 0;
2875 int max_index = 0;
2876 unsigned int idx;
2877 asection *asect;
2878 asymbol **new_syms;
2879 bfd_size_type amt;
2880
2881 #ifdef DEBUG
2882 fprintf (stderr, "elf_map_symbols\n");
2883 fflush (stderr);
2884 #endif
2885
2886 for (asect = abfd->sections; asect; asect = asect->next)
2887 {
2888 if (max_index < asect->index)
2889 max_index = asect->index;
2890 }
2891
2892 max_index++;
2893 amt = max_index * sizeof (asymbol *);
2894 sect_syms = bfd_zalloc (abfd, amt);
2895 if (sect_syms == NULL)
2896 return FALSE;
2897 elf_section_syms (abfd) = sect_syms;
2898 elf_num_section_syms (abfd) = max_index;
2899
2900 /* Init sect_syms entries for any section symbols we have already
2901 decided to output. */
2902 for (idx = 0; idx < symcount; idx++)
2903 {
2904 asymbol *sym = syms[idx];
2905
2906 if ((sym->flags & BSF_SECTION_SYM) != 0
2907 && sym->value == 0)
2908 {
2909 asection *sec;
2910
2911 sec = sym->section;
2912
2913 if (sec->owner != NULL)
2914 {
2915 if (sec->owner != abfd)
2916 {
2917 if (sec->output_offset != 0)
2918 continue;
2919
2920 sec = sec->output_section;
2921
2922 /* Empty sections in the input files may have had a
2923 section symbol created for them. (See the comment
2924 near the end of _bfd_generic_link_output_symbols in
2925 linker.c). If the linker script discards such
2926 sections then we will reach this point. Since we know
2927 that we cannot avoid this case, we detect it and skip
2928 the abort and the assignment to the sect_syms array.
2929 To reproduce this particular case try running the
2930 linker testsuite test ld-scripts/weak.exp for an ELF
2931 port that uses the generic linker. */
2932 if (sec->owner == NULL)
2933 continue;
2934
2935 BFD_ASSERT (sec->owner == abfd);
2936 }
2937 sect_syms[sec->index] = syms[idx];
2938 }
2939 }
2940 }
2941
2942 /* Classify all of the symbols. */
2943 for (idx = 0; idx < symcount; idx++)
2944 {
2945 if (!sym_is_global (abfd, syms[idx]))
2946 num_locals++;
2947 else
2948 num_globals++;
2949 }
2950
2951 /* We will be adding a section symbol for each BFD section. Most normal
2952 sections will already have a section symbol in outsymbols, but
2953 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2954 at least in that case. */
2955 for (asect = abfd->sections; asect; asect = asect->next)
2956 {
2957 if (sect_syms[asect->index] == NULL)
2958 {
2959 if (!sym_is_global (abfd, asect->symbol))
2960 num_locals++;
2961 else
2962 num_globals++;
2963 }
2964 }
2965
2966 /* Now sort the symbols so the local symbols are first. */
2967 amt = (num_locals + num_globals) * sizeof (asymbol *);
2968 new_syms = bfd_alloc (abfd, amt);
2969
2970 if (new_syms == NULL)
2971 return FALSE;
2972
2973 for (idx = 0; idx < symcount; idx++)
2974 {
2975 asymbol *sym = syms[idx];
2976 unsigned int i;
2977
2978 if (!sym_is_global (abfd, sym))
2979 i = num_locals2++;
2980 else
2981 i = num_locals + num_globals2++;
2982 new_syms[i] = sym;
2983 sym->udata.i = i + 1;
2984 }
2985 for (asect = abfd->sections; asect; asect = asect->next)
2986 {
2987 if (sect_syms[asect->index] == NULL)
2988 {
2989 asymbol *sym = asect->symbol;
2990 unsigned int i;
2991
2992 sect_syms[asect->index] = sym;
2993 if (!sym_is_global (abfd, sym))
2994 i = num_locals2++;
2995 else
2996 i = num_locals + num_globals2++;
2997 new_syms[i] = sym;
2998 sym->udata.i = i + 1;
2999 }
3000 }
3001
3002 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3003
3004 elf_num_locals (abfd) = num_locals;
3005 elf_num_globals (abfd) = num_globals;
3006 return TRUE;
3007 }
3008
3009 /* Align to the maximum file alignment that could be required for any
3010 ELF data structure. */
3011
3012 static inline file_ptr
3013 align_file_position (file_ptr off, int align)
3014 {
3015 return (off + align - 1) & ~(align - 1);
3016 }
3017
3018 /* Assign a file position to a section, optionally aligning to the
3019 required section alignment. */
3020
3021 file_ptr
3022 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3023 file_ptr offset,
3024 bfd_boolean align)
3025 {
3026 if (align)
3027 {
3028 unsigned int al;
3029
3030 al = i_shdrp->sh_addralign;
3031 if (al > 1)
3032 offset = BFD_ALIGN (offset, al);
3033 }
3034 i_shdrp->sh_offset = offset;
3035 if (i_shdrp->bfd_section != NULL)
3036 i_shdrp->bfd_section->filepos = offset;
3037 if (i_shdrp->sh_type != SHT_NOBITS)
3038 offset += i_shdrp->sh_size;
3039 return offset;
3040 }
3041
3042 /* Compute the file positions we are going to put the sections at, and
3043 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3044 is not NULL, this is being called by the ELF backend linker. */
3045
3046 bfd_boolean
3047 _bfd_elf_compute_section_file_positions (bfd *abfd,
3048 struct bfd_link_info *link_info)
3049 {
3050 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3051 bfd_boolean failed;
3052 struct bfd_strtab_hash *strtab;
3053 Elf_Internal_Shdr *shstrtab_hdr;
3054
3055 if (abfd->output_has_begun)
3056 return TRUE;
3057
3058 /* Do any elf backend specific processing first. */
3059 if (bed->elf_backend_begin_write_processing)
3060 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3061
3062 if (! prep_headers (abfd))
3063 return FALSE;
3064
3065 /* Post process the headers if necessary. */
3066 if (bed->elf_backend_post_process_headers)
3067 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3068
3069 failed = FALSE;
3070 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3071 if (failed)
3072 return FALSE;
3073
3074 if (!assign_section_numbers (abfd))
3075 return FALSE;
3076
3077 /* The backend linker builds symbol table information itself. */
3078 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3079 {
3080 /* Non-zero if doing a relocatable link. */
3081 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3082
3083 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3084 return FALSE;
3085 }
3086
3087 if (link_info == NULL)
3088 {
3089 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3090 if (failed)
3091 return FALSE;
3092 }
3093
3094 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3095 /* sh_name was set in prep_headers. */
3096 shstrtab_hdr->sh_type = SHT_STRTAB;
3097 shstrtab_hdr->sh_flags = 0;
3098 shstrtab_hdr->sh_addr = 0;
3099 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3100 shstrtab_hdr->sh_entsize = 0;
3101 shstrtab_hdr->sh_link = 0;
3102 shstrtab_hdr->sh_info = 0;
3103 /* sh_offset is set in assign_file_positions_except_relocs. */
3104 shstrtab_hdr->sh_addralign = 1;
3105
3106 if (!assign_file_positions_except_relocs (abfd, link_info))
3107 return FALSE;
3108
3109 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3110 {
3111 file_ptr off;
3112 Elf_Internal_Shdr *hdr;
3113
3114 off = elf_tdata (abfd)->next_file_pos;
3115
3116 hdr = &elf_tdata (abfd)->symtab_hdr;
3117 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3118
3119 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3120 if (hdr->sh_size != 0)
3121 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3122
3123 hdr = &elf_tdata (abfd)->strtab_hdr;
3124 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3125
3126 elf_tdata (abfd)->next_file_pos = off;
3127
3128 /* Now that we know where the .strtab section goes, write it
3129 out. */
3130 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3131 || ! _bfd_stringtab_emit (abfd, strtab))
3132 return FALSE;
3133 _bfd_stringtab_free (strtab);
3134 }
3135
3136 abfd->output_has_begun = TRUE;
3137
3138 return TRUE;
3139 }
3140
3141 /* Create a mapping from a set of sections to a program segment. */
3142
3143 static struct elf_segment_map *
3144 make_mapping (bfd *abfd,
3145 asection **sections,
3146 unsigned int from,
3147 unsigned int to,
3148 bfd_boolean phdr)
3149 {
3150 struct elf_segment_map *m;
3151 unsigned int i;
3152 asection **hdrpp;
3153 bfd_size_type amt;
3154
3155 amt = sizeof (struct elf_segment_map);
3156 amt += (to - from - 1) * sizeof (asection *);
3157 m = bfd_zalloc (abfd, amt);
3158 if (m == NULL)
3159 return NULL;
3160 m->next = NULL;
3161 m->p_type = PT_LOAD;
3162 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3163 m->sections[i - from] = *hdrpp;
3164 m->count = to - from;
3165
3166 if (from == 0 && phdr)
3167 {
3168 /* Include the headers in the first PT_LOAD segment. */
3169 m->includes_filehdr = 1;
3170 m->includes_phdrs = 1;
3171 }
3172
3173 return m;
3174 }
3175
3176 /* Set up a mapping from BFD sections to program segments. */
3177
3178 static bfd_boolean
3179 map_sections_to_segments (bfd *abfd)
3180 {
3181 asection **sections = NULL;
3182 asection *s;
3183 unsigned int i;
3184 unsigned int count;
3185 struct elf_segment_map *mfirst;
3186 struct elf_segment_map **pm;
3187 struct elf_segment_map *m;
3188 asection *last_hdr;
3189 bfd_vma last_size;
3190 unsigned int phdr_index;
3191 bfd_vma maxpagesize;
3192 asection **hdrpp;
3193 bfd_boolean phdr_in_segment = TRUE;
3194 bfd_boolean writable;
3195 int tls_count = 0;
3196 asection *first_tls = NULL;
3197 asection *dynsec, *eh_frame_hdr;
3198 bfd_size_type amt;
3199
3200 if (elf_tdata (abfd)->segment_map != NULL)
3201 return TRUE;
3202
3203 if (bfd_count_sections (abfd) == 0)
3204 return TRUE;
3205
3206 /* Select the allocated sections, and sort them. */
3207
3208 amt = bfd_count_sections (abfd) * sizeof (asection *);
3209 sections = bfd_malloc (amt);
3210 if (sections == NULL)
3211 goto error_return;
3212
3213 i = 0;
3214 for (s = abfd->sections; s != NULL; s = s->next)
3215 {
3216 if ((s->flags & SEC_ALLOC) != 0)
3217 {
3218 sections[i] = s;
3219 ++i;
3220 }
3221 }
3222 BFD_ASSERT (i <= bfd_count_sections (abfd));
3223 count = i;
3224
3225 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3226
3227 /* Build the mapping. */
3228
3229 mfirst = NULL;
3230 pm = &mfirst;
3231
3232 /* If we have a .interp section, then create a PT_PHDR segment for
3233 the program headers and a PT_INTERP segment for the .interp
3234 section. */
3235 s = bfd_get_section_by_name (abfd, ".interp");
3236 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3237 {
3238 amt = sizeof (struct elf_segment_map);
3239 m = bfd_zalloc (abfd, amt);
3240 if (m == NULL)
3241 goto error_return;
3242 m->next = NULL;
3243 m->p_type = PT_PHDR;
3244 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3245 m->p_flags = PF_R | PF_X;
3246 m->p_flags_valid = 1;
3247 m->includes_phdrs = 1;
3248
3249 *pm = m;
3250 pm = &m->next;
3251
3252 amt = sizeof (struct elf_segment_map);
3253 m = bfd_zalloc (abfd, amt);
3254 if (m == NULL)
3255 goto error_return;
3256 m->next = NULL;
3257 m->p_type = PT_INTERP;
3258 m->count = 1;
3259 m->sections[0] = s;
3260
3261 *pm = m;
3262 pm = &m->next;
3263 }
3264
3265 /* Look through the sections. We put sections in the same program
3266 segment when the start of the second section can be placed within
3267 a few bytes of the end of the first section. */
3268 last_hdr = NULL;
3269 last_size = 0;
3270 phdr_index = 0;
3271 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3272 writable = FALSE;
3273 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3274 if (dynsec != NULL
3275 && (dynsec->flags & SEC_LOAD) == 0)
3276 dynsec = NULL;
3277
3278 /* Deal with -Ttext or something similar such that the first section
3279 is not adjacent to the program headers. This is an
3280 approximation, since at this point we don't know exactly how many
3281 program headers we will need. */
3282 if (count > 0)
3283 {
3284 bfd_size_type phdr_size;
3285
3286 phdr_size = elf_tdata (abfd)->program_header_size;
3287 if (phdr_size == 0)
3288 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3289 if ((abfd->flags & D_PAGED) == 0
3290 || sections[0]->lma < phdr_size
3291 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3292 phdr_in_segment = FALSE;
3293 }
3294
3295 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3296 {
3297 asection *hdr;
3298 bfd_boolean new_segment;
3299
3300 hdr = *hdrpp;
3301
3302 /* See if this section and the last one will fit in the same
3303 segment. */
3304
3305 if (last_hdr == NULL)
3306 {
3307 /* If we don't have a segment yet, then we don't need a new
3308 one (we build the last one after this loop). */
3309 new_segment = FALSE;
3310 }
3311 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3312 {
3313 /* If this section has a different relation between the
3314 virtual address and the load address, then we need a new
3315 segment. */
3316 new_segment = TRUE;
3317 }
3318 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3319 < BFD_ALIGN (hdr->lma, maxpagesize))
3320 {
3321 /* If putting this section in this segment would force us to
3322 skip a page in the segment, then we need a new segment. */
3323 new_segment = TRUE;
3324 }
3325 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3326 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3327 {
3328 /* We don't want to put a loadable section after a
3329 nonloadable section in the same segment.
3330 Consider .tbss sections as loadable for this purpose. */
3331 new_segment = TRUE;
3332 }
3333 else if ((abfd->flags & D_PAGED) == 0)
3334 {
3335 /* If the file is not demand paged, which means that we
3336 don't require the sections to be correctly aligned in the
3337 file, then there is no other reason for a new segment. */
3338 new_segment = FALSE;
3339 }
3340 else if (! writable
3341 && (hdr->flags & SEC_READONLY) == 0
3342 && (((last_hdr->lma + last_size - 1)
3343 & ~(maxpagesize - 1))
3344 != (hdr->lma & ~(maxpagesize - 1))))
3345 {
3346 /* We don't want to put a writable section in a read only
3347 segment, unless they are on the same page in memory
3348 anyhow. We already know that the last section does not
3349 bring us past the current section on the page, so the
3350 only case in which the new section is not on the same
3351 page as the previous section is when the previous section
3352 ends precisely on a page boundary. */
3353 new_segment = TRUE;
3354 }
3355 else
3356 {
3357 /* Otherwise, we can use the same segment. */
3358 new_segment = FALSE;
3359 }
3360
3361 if (! new_segment)
3362 {
3363 if ((hdr->flags & SEC_READONLY) == 0)
3364 writable = TRUE;
3365 last_hdr = hdr;
3366 /* .tbss sections effectively have zero size. */
3367 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3368 last_size = hdr->_raw_size;
3369 else
3370 last_size = 0;
3371 continue;
3372 }
3373
3374 /* We need a new program segment. We must create a new program
3375 header holding all the sections from phdr_index until hdr. */
3376
3377 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3378 if (m == NULL)
3379 goto error_return;
3380
3381 *pm = m;
3382 pm = &m->next;
3383
3384 if ((hdr->flags & SEC_READONLY) == 0)
3385 writable = TRUE;
3386 else
3387 writable = FALSE;
3388
3389 last_hdr = hdr;
3390 /* .tbss sections effectively have zero size. */
3391 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3392 last_size = hdr->_raw_size;
3393 else
3394 last_size = 0;
3395 phdr_index = i;
3396 phdr_in_segment = FALSE;
3397 }
3398
3399 /* Create a final PT_LOAD program segment. */
3400 if (last_hdr != NULL)
3401 {
3402 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3403 if (m == NULL)
3404 goto error_return;
3405
3406 *pm = m;
3407 pm = &m->next;
3408 }
3409
3410 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3411 if (dynsec != NULL)
3412 {
3413 amt = sizeof (struct elf_segment_map);
3414 m = bfd_zalloc (abfd, amt);
3415 if (m == NULL)
3416 goto error_return;
3417 m->next = NULL;
3418 m->p_type = PT_DYNAMIC;
3419 m->count = 1;
3420 m->sections[0] = dynsec;
3421
3422 *pm = m;
3423 pm = &m->next;
3424 }
3425
3426 /* For each loadable .note section, add a PT_NOTE segment. We don't
3427 use bfd_get_section_by_name, because if we link together
3428 nonloadable .note sections and loadable .note sections, we will
3429 generate two .note sections in the output file. FIXME: Using
3430 names for section types is bogus anyhow. */
3431 for (s = abfd->sections; s != NULL; s = s->next)
3432 {
3433 if ((s->flags & SEC_LOAD) != 0
3434 && strncmp (s->name, ".note", 5) == 0)
3435 {
3436 amt = sizeof (struct elf_segment_map);
3437 m = bfd_zalloc (abfd, amt);
3438 if (m == NULL)
3439 goto error_return;
3440 m->next = NULL;
3441 m->p_type = PT_NOTE;
3442 m->count = 1;
3443 m->sections[0] = s;
3444
3445 *pm = m;
3446 pm = &m->next;
3447 }
3448 if (s->flags & SEC_THREAD_LOCAL)
3449 {
3450 if (! tls_count)
3451 first_tls = s;
3452 tls_count++;
3453 }
3454 }
3455
3456 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3457 if (tls_count > 0)
3458 {
3459 int i;
3460
3461 amt = sizeof (struct elf_segment_map);
3462 amt += (tls_count - 1) * sizeof (asection *);
3463 m = bfd_zalloc (abfd, amt);
3464 if (m == NULL)
3465 goto error_return;
3466 m->next = NULL;
3467 m->p_type = PT_TLS;
3468 m->count = tls_count;
3469 /* Mandated PF_R. */
3470 m->p_flags = PF_R;
3471 m->p_flags_valid = 1;
3472 for (i = 0; i < tls_count; ++i)
3473 {
3474 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3475 m->sections[i] = first_tls;
3476 first_tls = first_tls->next;
3477 }
3478
3479 *pm = m;
3480 pm = &m->next;
3481 }
3482
3483 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3484 segment. */
3485 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3486 if (eh_frame_hdr != NULL
3487 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3488 {
3489 amt = sizeof (struct elf_segment_map);
3490 m = bfd_zalloc (abfd, amt);
3491 if (m == NULL)
3492 goto error_return;
3493 m->next = NULL;
3494 m->p_type = PT_GNU_EH_FRAME;
3495 m->count = 1;
3496 m->sections[0] = eh_frame_hdr->output_section;
3497
3498 *pm = m;
3499 pm = &m->next;
3500 }
3501
3502 if (elf_tdata (abfd)->stack_flags)
3503 {
3504 amt = sizeof (struct elf_segment_map);
3505 m = bfd_zalloc (abfd, amt);
3506 if (m == NULL)
3507 goto error_return;
3508 m->next = NULL;
3509 m->p_type = PT_GNU_STACK;
3510 m->p_flags = elf_tdata (abfd)->stack_flags;
3511 m->p_flags_valid = 1;
3512
3513 *pm = m;
3514 pm = &m->next;
3515 }
3516
3517 free (sections);
3518 sections = NULL;
3519
3520 elf_tdata (abfd)->segment_map = mfirst;
3521 return TRUE;
3522
3523 error_return:
3524 if (sections != NULL)
3525 free (sections);
3526 return FALSE;
3527 }
3528
3529 /* Sort sections by address. */
3530
3531 static int
3532 elf_sort_sections (const void *arg1, const void *arg2)
3533 {
3534 const asection *sec1 = *(const asection **) arg1;
3535 const asection *sec2 = *(const asection **) arg2;
3536 bfd_size_type size1, size2;
3537
3538 /* Sort by LMA first, since this is the address used to
3539 place the section into a segment. */
3540 if (sec1->lma < sec2->lma)
3541 return -1;
3542 else if (sec1->lma > sec2->lma)
3543 return 1;
3544
3545 /* Then sort by VMA. Normally the LMA and the VMA will be
3546 the same, and this will do nothing. */
3547 if (sec1->vma < sec2->vma)
3548 return -1;
3549 else if (sec1->vma > sec2->vma)
3550 return 1;
3551
3552 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3553
3554 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3555
3556 if (TOEND (sec1))
3557 {
3558 if (TOEND (sec2))
3559 {
3560 /* If the indicies are the same, do not return 0
3561 here, but continue to try the next comparison. */
3562 if (sec1->target_index - sec2->target_index != 0)
3563 return sec1->target_index - sec2->target_index;
3564 }
3565 else
3566 return 1;
3567 }
3568 else if (TOEND (sec2))
3569 return -1;
3570
3571 #undef TOEND
3572
3573 /* Sort by size, to put zero sized sections
3574 before others at the same address. */
3575
3576 size1 = (sec1->flags & SEC_LOAD) ? sec1->_raw_size : 0;
3577 size2 = (sec2->flags & SEC_LOAD) ? sec2->_raw_size : 0;
3578
3579 if (size1 < size2)
3580 return -1;
3581 if (size1 > size2)
3582 return 1;
3583
3584 return sec1->target_index - sec2->target_index;
3585 }
3586
3587 /* Ian Lance Taylor writes:
3588
3589 We shouldn't be using % with a negative signed number. That's just
3590 not good. We have to make sure either that the number is not
3591 negative, or that the number has an unsigned type. When the types
3592 are all the same size they wind up as unsigned. When file_ptr is a
3593 larger signed type, the arithmetic winds up as signed long long,
3594 which is wrong.
3595
3596 What we're trying to say here is something like ``increase OFF by
3597 the least amount that will cause it to be equal to the VMA modulo
3598 the page size.'' */
3599 /* In other words, something like:
3600
3601 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3602 off_offset = off % bed->maxpagesize;
3603 if (vma_offset < off_offset)
3604 adjustment = vma_offset + bed->maxpagesize - off_offset;
3605 else
3606 adjustment = vma_offset - off_offset;
3607
3608 which can can be collapsed into the expression below. */
3609
3610 static file_ptr
3611 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3612 {
3613 return ((vma - off) % maxpagesize);
3614 }
3615
3616 /* Assign file positions to the sections based on the mapping from
3617 sections to segments. This function also sets up some fields in
3618 the file header, and writes out the program headers. */
3619
3620 static bfd_boolean
3621 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3622 {
3623 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3624 unsigned int count;
3625 struct elf_segment_map *m;
3626 unsigned int alloc;
3627 Elf_Internal_Phdr *phdrs;
3628 file_ptr off, voff;
3629 bfd_vma filehdr_vaddr, filehdr_paddr;
3630 bfd_vma phdrs_vaddr, phdrs_paddr;
3631 Elf_Internal_Phdr *p;
3632 bfd_size_type amt;
3633
3634 if (elf_tdata (abfd)->segment_map == NULL)
3635 {
3636 if (! map_sections_to_segments (abfd))
3637 return FALSE;
3638 }
3639 else
3640 {
3641 /* The placement algorithm assumes that non allocated sections are
3642 not in PT_LOAD segments. We ensure this here by removing such
3643 sections from the segment map. */
3644 for (m = elf_tdata (abfd)->segment_map;
3645 m != NULL;
3646 m = m->next)
3647 {
3648 unsigned int new_count;
3649 unsigned int i;
3650
3651 if (m->p_type != PT_LOAD)
3652 continue;
3653
3654 new_count = 0;
3655 for (i = 0; i < m->count; i ++)
3656 {
3657 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3658 {
3659 if (i != new_count)
3660 m->sections[new_count] = m->sections[i];
3661
3662 new_count ++;
3663 }
3664 }
3665
3666 if (new_count != m->count)
3667 m->count = new_count;
3668 }
3669 }
3670
3671 if (bed->elf_backend_modify_segment_map)
3672 {
3673 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3674 return FALSE;
3675 }
3676
3677 count = 0;
3678 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3679 ++count;
3680
3681 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3682 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3683 elf_elfheader (abfd)->e_phnum = count;
3684
3685 if (count == 0)
3686 return TRUE;
3687
3688 /* If we already counted the number of program segments, make sure
3689 that we allocated enough space. This happens when SIZEOF_HEADERS
3690 is used in a linker script. */
3691 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3692 if (alloc != 0 && count > alloc)
3693 {
3694 ((*_bfd_error_handler)
3695 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3696 bfd_get_filename (abfd), alloc, count));
3697 bfd_set_error (bfd_error_bad_value);
3698 return FALSE;
3699 }
3700
3701 if (alloc == 0)
3702 alloc = count;
3703
3704 amt = alloc * sizeof (Elf_Internal_Phdr);
3705 phdrs = bfd_alloc (abfd, amt);
3706 if (phdrs == NULL)
3707 return FALSE;
3708
3709 off = bed->s->sizeof_ehdr;
3710 off += alloc * bed->s->sizeof_phdr;
3711
3712 filehdr_vaddr = 0;
3713 filehdr_paddr = 0;
3714 phdrs_vaddr = 0;
3715 phdrs_paddr = 0;
3716
3717 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3718 m != NULL;
3719 m = m->next, p++)
3720 {
3721 unsigned int i;
3722 asection **secpp;
3723
3724 /* If elf_segment_map is not from map_sections_to_segments, the
3725 sections may not be correctly ordered. NOTE: sorting should
3726 not be done to the PT_NOTE section of a corefile, which may
3727 contain several pseudo-sections artificially created by bfd.
3728 Sorting these pseudo-sections breaks things badly. */
3729 if (m->count > 1
3730 && !(elf_elfheader (abfd)->e_type == ET_CORE
3731 && m->p_type == PT_NOTE))
3732 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3733 elf_sort_sections);
3734
3735 p->p_type = m->p_type;
3736 p->p_flags = m->p_flags;
3737
3738 if (p->p_type == PT_LOAD
3739 && m->count > 0
3740 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3741 {
3742 if ((abfd->flags & D_PAGED) != 0)
3743 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3744 bed->maxpagesize);
3745 else
3746 {
3747 bfd_size_type align;
3748
3749 align = 0;
3750 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3751 {
3752 bfd_size_type secalign;
3753
3754 secalign = bfd_get_section_alignment (abfd, *secpp);
3755 if (secalign > align)
3756 align = secalign;
3757 }
3758
3759 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3760 1 << align);
3761 }
3762 }
3763
3764 if (m->count == 0)
3765 p->p_vaddr = 0;
3766 else
3767 p->p_vaddr = m->sections[0]->vma;
3768
3769 if (m->p_paddr_valid)
3770 p->p_paddr = m->p_paddr;
3771 else if (m->count == 0)
3772 p->p_paddr = 0;
3773 else
3774 p->p_paddr = m->sections[0]->lma;
3775
3776 if (p->p_type == PT_LOAD
3777 && (abfd->flags & D_PAGED) != 0)
3778 p->p_align = bed->maxpagesize;
3779 else if (m->count == 0)
3780 p->p_align = 1 << bed->s->log_file_align;
3781 else
3782 p->p_align = 0;
3783
3784 p->p_offset = 0;
3785 p->p_filesz = 0;
3786 p->p_memsz = 0;
3787
3788 if (m->includes_filehdr)
3789 {
3790 if (! m->p_flags_valid)
3791 p->p_flags |= PF_R;
3792 p->p_offset = 0;
3793 p->p_filesz = bed->s->sizeof_ehdr;
3794 p->p_memsz = bed->s->sizeof_ehdr;
3795 if (m->count > 0)
3796 {
3797 BFD_ASSERT (p->p_type == PT_LOAD);
3798
3799 if (p->p_vaddr < (bfd_vma) off)
3800 {
3801 (*_bfd_error_handler)
3802 (_("%s: Not enough room for program headers, try linking with -N"),
3803 bfd_get_filename (abfd));
3804 bfd_set_error (bfd_error_bad_value);
3805 return FALSE;
3806 }
3807
3808 p->p_vaddr -= off;
3809 if (! m->p_paddr_valid)
3810 p->p_paddr -= off;
3811 }
3812 if (p->p_type == PT_LOAD)
3813 {
3814 filehdr_vaddr = p->p_vaddr;
3815 filehdr_paddr = p->p_paddr;
3816 }
3817 }
3818
3819 if (m->includes_phdrs)
3820 {
3821 if (! m->p_flags_valid)
3822 p->p_flags |= PF_R;
3823
3824 if (m->includes_filehdr)
3825 {
3826 if (p->p_type == PT_LOAD)
3827 {
3828 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3829 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3830 }
3831 }
3832 else
3833 {
3834 p->p_offset = bed->s->sizeof_ehdr;
3835
3836 if (m->count > 0)
3837 {
3838 BFD_ASSERT (p->p_type == PT_LOAD);
3839 p->p_vaddr -= off - p->p_offset;
3840 if (! m->p_paddr_valid)
3841 p->p_paddr -= off - p->p_offset;
3842 }
3843
3844 if (p->p_type == PT_LOAD)
3845 {
3846 phdrs_vaddr = p->p_vaddr;
3847 phdrs_paddr = p->p_paddr;
3848 }
3849 else
3850 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3851 }
3852
3853 p->p_filesz += alloc * bed->s->sizeof_phdr;
3854 p->p_memsz += alloc * bed->s->sizeof_phdr;
3855 }
3856
3857 if (p->p_type == PT_LOAD
3858 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3859 {
3860 if (! m->includes_filehdr && ! m->includes_phdrs)
3861 p->p_offset = off;
3862 else
3863 {
3864 file_ptr adjust;
3865
3866 adjust = off - (p->p_offset + p->p_filesz);
3867 p->p_filesz += adjust;
3868 p->p_memsz += adjust;
3869 }
3870 }
3871
3872 voff = off;
3873
3874 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3875 {
3876 asection *sec;
3877 flagword flags;
3878 bfd_size_type align;
3879
3880 sec = *secpp;
3881 flags = sec->flags;
3882 align = 1 << bfd_get_section_alignment (abfd, sec);
3883
3884 /* The section may have artificial alignment forced by a
3885 link script. Notice this case by the gap between the
3886 cumulative phdr lma and the section's lma. */
3887 if (p->p_paddr + p->p_memsz < sec->lma)
3888 {
3889 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3890
3891 p->p_memsz += adjust;
3892 if (p->p_type == PT_LOAD
3893 || (p->p_type == PT_NOTE
3894 && bfd_get_format (abfd) == bfd_core))
3895 {
3896 off += adjust;
3897 voff += adjust;
3898 }
3899 if ((flags & SEC_LOAD) != 0
3900 || (flags & SEC_THREAD_LOCAL) != 0)
3901 p->p_filesz += adjust;
3902 }
3903
3904 if (p->p_type == PT_LOAD)
3905 {
3906 bfd_signed_vma adjust;
3907
3908 if ((flags & SEC_LOAD) != 0)
3909 {
3910 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3911 if (adjust < 0)
3912 adjust = 0;
3913 }
3914 else if ((flags & SEC_ALLOC) != 0)
3915 {
3916 /* The section VMA must equal the file position
3917 modulo the page size. FIXME: I'm not sure if
3918 this adjustment is really necessary. We used to
3919 not have the SEC_LOAD case just above, and then
3920 this was necessary, but now I'm not sure. */
3921 if ((abfd->flags & D_PAGED) != 0)
3922 adjust = vma_page_aligned_bias (sec->vma, voff,
3923 bed->maxpagesize);
3924 else
3925 adjust = vma_page_aligned_bias (sec->vma, voff,
3926 align);
3927 }
3928 else
3929 adjust = 0;
3930
3931 if (adjust != 0)
3932 {
3933 if (i == 0)
3934 {
3935 (* _bfd_error_handler) (_("\
3936 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3937 bfd_section_name (abfd, sec),
3938 sec->lma,
3939 p->p_paddr);
3940 return FALSE;
3941 }
3942 p->p_memsz += adjust;
3943 off += adjust;
3944 voff += adjust;
3945 if ((flags & SEC_LOAD) != 0)
3946 p->p_filesz += adjust;
3947 }
3948
3949 sec->filepos = off;
3950
3951 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3952 used in a linker script we may have a section with
3953 SEC_LOAD clear but which is supposed to have
3954 contents. */
3955 if ((flags & SEC_LOAD) != 0
3956 || (flags & SEC_HAS_CONTENTS) != 0)
3957 off += sec->_raw_size;
3958
3959 if ((flags & SEC_ALLOC) != 0
3960 && ((flags & SEC_LOAD) != 0
3961 || (flags & SEC_THREAD_LOCAL) == 0))
3962 voff += sec->_raw_size;
3963 }
3964
3965 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3966 {
3967 /* The actual "note" segment has i == 0.
3968 This is the one that actually contains everything. */
3969 if (i == 0)
3970 {
3971 sec->filepos = off;
3972 p->p_filesz = sec->_raw_size;
3973 off += sec->_raw_size;
3974 voff = off;
3975 }
3976 else
3977 {
3978 /* Fake sections -- don't need to be written. */
3979 sec->filepos = 0;
3980 sec->_raw_size = 0;
3981 flags = sec->flags = 0;
3982 }
3983 p->p_memsz = 0;
3984 p->p_align = 1;
3985 }
3986 else
3987 {
3988 if ((sec->flags & SEC_LOAD) != 0
3989 || (sec->flags & SEC_THREAD_LOCAL) == 0
3990 || p->p_type == PT_TLS)
3991 p->p_memsz += sec->_raw_size;
3992
3993 if ((flags & SEC_LOAD) != 0)
3994 p->p_filesz += sec->_raw_size;
3995
3996 if (p->p_type == PT_TLS
3997 && sec->_raw_size == 0
3998 && (sec->flags & SEC_HAS_CONTENTS) == 0)
3999 {
4000 struct bfd_link_order *o;
4001 bfd_vma tbss_size = 0;
4002
4003 for (o = sec->link_order_head; o != NULL; o = o->next)
4004 if (tbss_size < o->offset + o->size)
4005 tbss_size = o->offset + o->size;
4006
4007 p->p_memsz += tbss_size;
4008 }
4009
4010 if (align > p->p_align
4011 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4012 p->p_align = align;
4013 }
4014
4015 if (! m->p_flags_valid)
4016 {
4017 p->p_flags |= PF_R;
4018 if ((flags & SEC_CODE) != 0)
4019 p->p_flags |= PF_X;
4020 if ((flags & SEC_READONLY) == 0)
4021 p->p_flags |= PF_W;
4022 }
4023 }
4024 }
4025
4026 /* Now that we have set the section file positions, we can set up
4027 the file positions for the non PT_LOAD segments. */
4028 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4029 m != NULL;
4030 m = m->next, p++)
4031 {
4032 if (p->p_type != PT_LOAD && m->count > 0)
4033 {
4034 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4035 p->p_offset = m->sections[0]->filepos;
4036 }
4037 if (m->count == 0)
4038 {
4039 if (m->includes_filehdr)
4040 {
4041 p->p_vaddr = filehdr_vaddr;
4042 if (! m->p_paddr_valid)
4043 p->p_paddr = filehdr_paddr;
4044 }
4045 else if (m->includes_phdrs)
4046 {
4047 p->p_vaddr = phdrs_vaddr;
4048 if (! m->p_paddr_valid)
4049 p->p_paddr = phdrs_paddr;
4050 }
4051 }
4052 }
4053
4054 /* Clear out any program headers we allocated but did not use. */
4055 for (; count < alloc; count++, p++)
4056 {
4057 memset (p, 0, sizeof *p);
4058 p->p_type = PT_NULL;
4059 }
4060
4061 elf_tdata (abfd)->phdr = phdrs;
4062
4063 elf_tdata (abfd)->next_file_pos = off;
4064
4065 /* Write out the program headers. */
4066 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4067 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4068 return FALSE;
4069
4070 return TRUE;
4071 }
4072
4073 /* Get the size of the program header.
4074
4075 If this is called by the linker before any of the section VMA's are set, it
4076 can't calculate the correct value for a strange memory layout. This only
4077 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4078 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4079 data segment (exclusive of .interp and .dynamic).
4080
4081 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4082 will be two segments. */
4083
4084 static bfd_size_type
4085 get_program_header_size (bfd *abfd)
4086 {
4087 size_t segs;
4088 asection *s;
4089 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4090
4091 /* We can't return a different result each time we're called. */
4092 if (elf_tdata (abfd)->program_header_size != 0)
4093 return elf_tdata (abfd)->program_header_size;
4094
4095 if (elf_tdata (abfd)->segment_map != NULL)
4096 {
4097 struct elf_segment_map *m;
4098
4099 segs = 0;
4100 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4101 ++segs;
4102 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4103 return elf_tdata (abfd)->program_header_size;
4104 }
4105
4106 /* Assume we will need exactly two PT_LOAD segments: one for text
4107 and one for data. */
4108 segs = 2;
4109
4110 s = bfd_get_section_by_name (abfd, ".interp");
4111 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4112 {
4113 /* If we have a loadable interpreter section, we need a
4114 PT_INTERP segment. In this case, assume we also need a
4115 PT_PHDR segment, although that may not be true for all
4116 targets. */
4117 segs += 2;
4118 }
4119
4120 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4121 {
4122 /* We need a PT_DYNAMIC segment. */
4123 ++segs;
4124 }
4125
4126 if (elf_tdata (abfd)->eh_frame_hdr)
4127 {
4128 /* We need a PT_GNU_EH_FRAME segment. */
4129 ++segs;
4130 }
4131
4132 if (elf_tdata (abfd)->stack_flags)
4133 {
4134 /* We need a PT_GNU_STACK segment. */
4135 ++segs;
4136 }
4137
4138 for (s = abfd->sections; s != NULL; s = s->next)
4139 {
4140 if ((s->flags & SEC_LOAD) != 0
4141 && strncmp (s->name, ".note", 5) == 0)
4142 {
4143 /* We need a PT_NOTE segment. */
4144 ++segs;
4145 }
4146 }
4147
4148 for (s = abfd->sections; s != NULL; s = s->next)
4149 {
4150 if (s->flags & SEC_THREAD_LOCAL)
4151 {
4152 /* We need a PT_TLS segment. */
4153 ++segs;
4154 break;
4155 }
4156 }
4157
4158 /* Let the backend count up any program headers it might need. */
4159 if (bed->elf_backend_additional_program_headers)
4160 {
4161 int a;
4162
4163 a = (*bed->elf_backend_additional_program_headers) (abfd);
4164 if (a == -1)
4165 abort ();
4166 segs += a;
4167 }
4168
4169 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4170 return elf_tdata (abfd)->program_header_size;
4171 }
4172
4173 /* Work out the file positions of all the sections. This is called by
4174 _bfd_elf_compute_section_file_positions. All the section sizes and
4175 VMAs must be known before this is called.
4176
4177 We do not consider reloc sections at this point, unless they form
4178 part of the loadable image. Reloc sections are assigned file
4179 positions in assign_file_positions_for_relocs, which is called by
4180 write_object_contents and final_link.
4181
4182 We also don't set the positions of the .symtab and .strtab here. */
4183
4184 static bfd_boolean
4185 assign_file_positions_except_relocs (bfd *abfd,
4186 struct bfd_link_info *link_info)
4187 {
4188 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4189 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4190 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4191 unsigned int num_sec = elf_numsections (abfd);
4192 file_ptr off;
4193 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4194
4195 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4196 && bfd_get_format (abfd) != bfd_core)
4197 {
4198 Elf_Internal_Shdr **hdrpp;
4199 unsigned int i;
4200
4201 /* Start after the ELF header. */
4202 off = i_ehdrp->e_ehsize;
4203
4204 /* We are not creating an executable, which means that we are
4205 not creating a program header, and that the actual order of
4206 the sections in the file is unimportant. */
4207 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4208 {
4209 Elf_Internal_Shdr *hdr;
4210
4211 hdr = *hdrpp;
4212 if (hdr->sh_type == SHT_REL
4213 || hdr->sh_type == SHT_RELA
4214 || i == tdata->symtab_section
4215 || i == tdata->symtab_shndx_section
4216 || i == tdata->strtab_section)
4217 {
4218 hdr->sh_offset = -1;
4219 }
4220 else
4221 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4222
4223 if (i == SHN_LORESERVE - 1)
4224 {
4225 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4226 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4227 }
4228 }
4229 }
4230 else
4231 {
4232 unsigned int i;
4233 Elf_Internal_Shdr **hdrpp;
4234
4235 /* Assign file positions for the loaded sections based on the
4236 assignment of sections to segments. */
4237 if (! assign_file_positions_for_segments (abfd, link_info))
4238 return FALSE;
4239
4240 /* Assign file positions for the other sections. */
4241
4242 off = elf_tdata (abfd)->next_file_pos;
4243 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4244 {
4245 Elf_Internal_Shdr *hdr;
4246
4247 hdr = *hdrpp;
4248 if (hdr->bfd_section != NULL
4249 && hdr->bfd_section->filepos != 0)
4250 hdr->sh_offset = hdr->bfd_section->filepos;
4251 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4252 {
4253 ((*_bfd_error_handler)
4254 (_("%s: warning: allocated section `%s' not in segment"),
4255 bfd_get_filename (abfd),
4256 (hdr->bfd_section == NULL
4257 ? "*unknown*"
4258 : hdr->bfd_section->name)));
4259 if ((abfd->flags & D_PAGED) != 0)
4260 off += vma_page_aligned_bias (hdr->sh_addr, off,
4261 bed->maxpagesize);
4262 else
4263 off += vma_page_aligned_bias (hdr->sh_addr, off,
4264 hdr->sh_addralign);
4265 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4266 FALSE);
4267 }
4268 else if (hdr->sh_type == SHT_REL
4269 || hdr->sh_type == SHT_RELA
4270 || hdr == i_shdrpp[tdata->symtab_section]
4271 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4272 || hdr == i_shdrpp[tdata->strtab_section])
4273 hdr->sh_offset = -1;
4274 else
4275 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4276
4277 if (i == SHN_LORESERVE - 1)
4278 {
4279 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4280 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4281 }
4282 }
4283 }
4284
4285 /* Place the section headers. */
4286 off = align_file_position (off, 1 << bed->s->log_file_align);
4287 i_ehdrp->e_shoff = off;
4288 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4289
4290 elf_tdata (abfd)->next_file_pos = off;
4291
4292 return TRUE;
4293 }
4294
4295 static bfd_boolean
4296 prep_headers (bfd *abfd)
4297 {
4298 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4299 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4300 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4301 struct elf_strtab_hash *shstrtab;
4302 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4303
4304 i_ehdrp = elf_elfheader (abfd);
4305 i_shdrp = elf_elfsections (abfd);
4306
4307 shstrtab = _bfd_elf_strtab_init ();
4308 if (shstrtab == NULL)
4309 return FALSE;
4310
4311 elf_shstrtab (abfd) = shstrtab;
4312
4313 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4314 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4315 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4316 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4317
4318 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4319 i_ehdrp->e_ident[EI_DATA] =
4320 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4321 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4322
4323 if ((abfd->flags & DYNAMIC) != 0)
4324 i_ehdrp->e_type = ET_DYN;
4325 else if ((abfd->flags & EXEC_P) != 0)
4326 i_ehdrp->e_type = ET_EXEC;
4327 else if (bfd_get_format (abfd) == bfd_core)
4328 i_ehdrp->e_type = ET_CORE;
4329 else
4330 i_ehdrp->e_type = ET_REL;
4331
4332 switch (bfd_get_arch (abfd))
4333 {
4334 case bfd_arch_unknown:
4335 i_ehdrp->e_machine = EM_NONE;
4336 break;
4337
4338 /* There used to be a long list of cases here, each one setting
4339 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4340 in the corresponding bfd definition. To avoid duplication,
4341 the switch was removed. Machines that need special handling
4342 can generally do it in elf_backend_final_write_processing(),
4343 unless they need the information earlier than the final write.
4344 Such need can generally be supplied by replacing the tests for
4345 e_machine with the conditions used to determine it. */
4346 default:
4347 i_ehdrp->e_machine = bed->elf_machine_code;
4348 }
4349
4350 i_ehdrp->e_version = bed->s->ev_current;
4351 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4352
4353 /* No program header, for now. */
4354 i_ehdrp->e_phoff = 0;
4355 i_ehdrp->e_phentsize = 0;
4356 i_ehdrp->e_phnum = 0;
4357
4358 /* Each bfd section is section header entry. */
4359 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4360 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4361
4362 /* If we're building an executable, we'll need a program header table. */
4363 if (abfd->flags & EXEC_P)
4364 {
4365 /* It all happens later. */
4366 #if 0
4367 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4368
4369 /* elf_build_phdrs() returns a (NULL-terminated) array of
4370 Elf_Internal_Phdrs. */
4371 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4372 i_ehdrp->e_phoff = outbase;
4373 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4374 #endif
4375 }
4376 else
4377 {
4378 i_ehdrp->e_phentsize = 0;
4379 i_phdrp = 0;
4380 i_ehdrp->e_phoff = 0;
4381 }
4382
4383 elf_tdata (abfd)->symtab_hdr.sh_name =
4384 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4385 elf_tdata (abfd)->strtab_hdr.sh_name =
4386 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4387 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4388 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4389 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4390 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4391 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4392 return FALSE;
4393
4394 return TRUE;
4395 }
4396
4397 /* Assign file positions for all the reloc sections which are not part
4398 of the loadable file image. */
4399
4400 void
4401 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4402 {
4403 file_ptr off;
4404 unsigned int i, num_sec;
4405 Elf_Internal_Shdr **shdrpp;
4406
4407 off = elf_tdata (abfd)->next_file_pos;
4408
4409 num_sec = elf_numsections (abfd);
4410 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4411 {
4412 Elf_Internal_Shdr *shdrp;
4413
4414 shdrp = *shdrpp;
4415 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4416 && shdrp->sh_offset == -1)
4417 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4418 }
4419
4420 elf_tdata (abfd)->next_file_pos = off;
4421 }
4422
4423 bfd_boolean
4424 _bfd_elf_write_object_contents (bfd *abfd)
4425 {
4426 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4427 Elf_Internal_Ehdr *i_ehdrp;
4428 Elf_Internal_Shdr **i_shdrp;
4429 bfd_boolean failed;
4430 unsigned int count, num_sec;
4431
4432 if (! abfd->output_has_begun
4433 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4434 return FALSE;
4435
4436 i_shdrp = elf_elfsections (abfd);
4437 i_ehdrp = elf_elfheader (abfd);
4438
4439 failed = FALSE;
4440 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4441 if (failed)
4442 return FALSE;
4443
4444 _bfd_elf_assign_file_positions_for_relocs (abfd);
4445
4446 /* After writing the headers, we need to write the sections too... */
4447 num_sec = elf_numsections (abfd);
4448 for (count = 1; count < num_sec; count++)
4449 {
4450 if (bed->elf_backend_section_processing)
4451 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4452 if (i_shdrp[count]->contents)
4453 {
4454 bfd_size_type amt = i_shdrp[count]->sh_size;
4455
4456 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4457 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4458 return FALSE;
4459 }
4460 if (count == SHN_LORESERVE - 1)
4461 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4462 }
4463
4464 /* Write out the section header names. */
4465 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4466 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4467 return FALSE;
4468
4469 if (bed->elf_backend_final_write_processing)
4470 (*bed->elf_backend_final_write_processing) (abfd,
4471 elf_tdata (abfd)->linker);
4472
4473 return bed->s->write_shdrs_and_ehdr (abfd);
4474 }
4475
4476 bfd_boolean
4477 _bfd_elf_write_corefile_contents (bfd *abfd)
4478 {
4479 /* Hopefully this can be done just like an object file. */
4480 return _bfd_elf_write_object_contents (abfd);
4481 }
4482
4483 /* Given a section, search the header to find them. */
4484
4485 int
4486 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4487 {
4488 const struct elf_backend_data *bed;
4489 int index;
4490
4491 if (elf_section_data (asect) != NULL
4492 && elf_section_data (asect)->this_idx != 0)
4493 return elf_section_data (asect)->this_idx;
4494
4495 if (bfd_is_abs_section (asect))
4496 index = SHN_ABS;
4497 else if (bfd_is_com_section (asect))
4498 index = SHN_COMMON;
4499 else if (bfd_is_und_section (asect))
4500 index = SHN_UNDEF;
4501 else
4502 {
4503 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4504 int maxindex = elf_numsections (abfd);
4505
4506 for (index = 1; index < maxindex; index++)
4507 {
4508 Elf_Internal_Shdr *hdr = i_shdrp[index];
4509
4510 if (hdr != NULL && hdr->bfd_section == asect)
4511 return index;
4512 }
4513 index = -1;
4514 }
4515
4516 bed = get_elf_backend_data (abfd);
4517 if (bed->elf_backend_section_from_bfd_section)
4518 {
4519 int retval = index;
4520
4521 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4522 return retval;
4523 }
4524
4525 if (index == -1)
4526 bfd_set_error (bfd_error_nonrepresentable_section);
4527
4528 return index;
4529 }
4530
4531 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4532 on error. */
4533
4534 int
4535 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4536 {
4537 asymbol *asym_ptr = *asym_ptr_ptr;
4538 int idx;
4539 flagword flags = asym_ptr->flags;
4540
4541 /* When gas creates relocations against local labels, it creates its
4542 own symbol for the section, but does put the symbol into the
4543 symbol chain, so udata is 0. When the linker is generating
4544 relocatable output, this section symbol may be for one of the
4545 input sections rather than the output section. */
4546 if (asym_ptr->udata.i == 0
4547 && (flags & BSF_SECTION_SYM)
4548 && asym_ptr->section)
4549 {
4550 int indx;
4551
4552 if (asym_ptr->section->output_section != NULL)
4553 indx = asym_ptr->section->output_section->index;
4554 else
4555 indx = asym_ptr->section->index;
4556 if (indx < elf_num_section_syms (abfd)
4557 && elf_section_syms (abfd)[indx] != NULL)
4558 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4559 }
4560
4561 idx = asym_ptr->udata.i;
4562
4563 if (idx == 0)
4564 {
4565 /* This case can occur when using --strip-symbol on a symbol
4566 which is used in a relocation entry. */
4567 (*_bfd_error_handler)
4568 (_("%s: symbol `%s' required but not present"),
4569 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4570 bfd_set_error (bfd_error_no_symbols);
4571 return -1;
4572 }
4573
4574 #if DEBUG & 4
4575 {
4576 fprintf (stderr,
4577 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4578 (long) asym_ptr, asym_ptr->name, idx, flags,
4579 elf_symbol_flags (flags));
4580 fflush (stderr);
4581 }
4582 #endif
4583
4584 return idx;
4585 }
4586
4587 /* Copy private BFD data. This copies any program header information. */
4588
4589 static bfd_boolean
4590 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4591 {
4592 Elf_Internal_Ehdr *iehdr;
4593 struct elf_segment_map *map;
4594 struct elf_segment_map *map_first;
4595 struct elf_segment_map **pointer_to_map;
4596 Elf_Internal_Phdr *segment;
4597 asection *section;
4598 unsigned int i;
4599 unsigned int num_segments;
4600 bfd_boolean phdr_included = FALSE;
4601 bfd_vma maxpagesize;
4602 struct elf_segment_map *phdr_adjust_seg = NULL;
4603 unsigned int phdr_adjust_num = 0;
4604 const struct elf_backend_data *bed;
4605
4606 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4607 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4608 return TRUE;
4609
4610 if (elf_tdata (ibfd)->phdr == NULL)
4611 return TRUE;
4612
4613 bed = get_elf_backend_data (ibfd);
4614 iehdr = elf_elfheader (ibfd);
4615
4616 map_first = NULL;
4617 pointer_to_map = &map_first;
4618
4619 num_segments = elf_elfheader (ibfd)->e_phnum;
4620 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4621
4622 /* Returns the end address of the segment + 1. */
4623 #define SEGMENT_END(segment, start) \
4624 (start + (segment->p_memsz > segment->p_filesz \
4625 ? segment->p_memsz : segment->p_filesz))
4626
4627 #define SECTION_SIZE(section, segment) \
4628 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4629 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4630 ? section->_raw_size : 0)
4631
4632 /* Returns TRUE if the given section is contained within
4633 the given segment. VMA addresses are compared. */
4634 #define IS_CONTAINED_BY_VMA(section, segment) \
4635 (section->vma >= segment->p_vaddr \
4636 && (section->vma + SECTION_SIZE (section, segment) \
4637 <= (SEGMENT_END (segment, segment->p_vaddr))))
4638
4639 /* Returns TRUE if the given section is contained within
4640 the given segment. LMA addresses are compared. */
4641 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4642 (section->lma >= base \
4643 && (section->lma + SECTION_SIZE (section, segment) \
4644 <= SEGMENT_END (segment, base)))
4645
4646 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4647 #define IS_COREFILE_NOTE(p, s) \
4648 (p->p_type == PT_NOTE \
4649 && bfd_get_format (ibfd) == bfd_core \
4650 && s->vma == 0 && s->lma == 0 \
4651 && (bfd_vma) s->filepos >= p->p_offset \
4652 && ((bfd_vma) s->filepos + s->_raw_size \
4653 <= p->p_offset + p->p_filesz))
4654
4655 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4656 linker, which generates a PT_INTERP section with p_vaddr and
4657 p_memsz set to 0. */
4658 #define IS_SOLARIS_PT_INTERP(p, s) \
4659 (p->p_vaddr == 0 \
4660 && p->p_paddr == 0 \
4661 && p->p_memsz == 0 \
4662 && p->p_filesz > 0 \
4663 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4664 && s->_raw_size > 0 \
4665 && (bfd_vma) s->filepos >= p->p_offset \
4666 && ((bfd_vma) s->filepos + s->_raw_size \
4667 <= p->p_offset + p->p_filesz))
4668
4669 /* Decide if the given section should be included in the given segment.
4670 A section will be included if:
4671 1. It is within the address space of the segment -- we use the LMA
4672 if that is set for the segment and the VMA otherwise,
4673 2. It is an allocated segment,
4674 3. There is an output section associated with it,
4675 4. The section has not already been allocated to a previous segment.
4676 5. PT_GNU_STACK segments do not include any sections.
4677 6. PT_TLS segment includes only SHF_TLS sections.
4678 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4679 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4680 ((((segment->p_paddr \
4681 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4682 : IS_CONTAINED_BY_VMA (section, segment)) \
4683 && (section->flags & SEC_ALLOC) != 0) \
4684 || IS_COREFILE_NOTE (segment, section)) \
4685 && section->output_section != NULL \
4686 && segment->p_type != PT_GNU_STACK \
4687 && (segment->p_type != PT_TLS \
4688 || (section->flags & SEC_THREAD_LOCAL)) \
4689 && (segment->p_type == PT_LOAD \
4690 || segment->p_type == PT_TLS \
4691 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4692 && ! section->segment_mark)
4693
4694 /* Returns TRUE iff seg1 starts after the end of seg2. */
4695 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4696 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4697
4698 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4699 their VMA address ranges and their LMA address ranges overlap.
4700 It is possible to have overlapping VMA ranges without overlapping LMA
4701 ranges. RedBoot images for example can have both .data and .bss mapped
4702 to the same VMA range, but with the .data section mapped to a different
4703 LMA. */
4704 #define SEGMENT_OVERLAPS(seg1, seg2) \
4705 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4706 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4707 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4708 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4709
4710 /* Initialise the segment mark field. */
4711 for (section = ibfd->sections; section != NULL; section = section->next)
4712 section->segment_mark = FALSE;
4713
4714 /* Scan through the segments specified in the program header
4715 of the input BFD. For this first scan we look for overlaps
4716 in the loadable segments. These can be created by weird
4717 parameters to objcopy. Also, fix some solaris weirdness. */
4718 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4719 i < num_segments;
4720 i++, segment++)
4721 {
4722 unsigned int j;
4723 Elf_Internal_Phdr *segment2;
4724
4725 if (segment->p_type == PT_INTERP)
4726 for (section = ibfd->sections; section; section = section->next)
4727 if (IS_SOLARIS_PT_INTERP (segment, section))
4728 {
4729 /* Mininal change so that the normal section to segment
4730 assignment code will work. */
4731 segment->p_vaddr = section->vma;
4732 break;
4733 }
4734
4735 if (segment->p_type != PT_LOAD)
4736 continue;
4737
4738 /* Determine if this segment overlaps any previous segments. */
4739 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4740 {
4741 bfd_signed_vma extra_length;
4742
4743 if (segment2->p_type != PT_LOAD
4744 || ! SEGMENT_OVERLAPS (segment, segment2))
4745 continue;
4746
4747 /* Merge the two segments together. */
4748 if (segment2->p_vaddr < segment->p_vaddr)
4749 {
4750 /* Extend SEGMENT2 to include SEGMENT and then delete
4751 SEGMENT. */
4752 extra_length =
4753 SEGMENT_END (segment, segment->p_vaddr)
4754 - SEGMENT_END (segment2, segment2->p_vaddr);
4755
4756 if (extra_length > 0)
4757 {
4758 segment2->p_memsz += extra_length;
4759 segment2->p_filesz += extra_length;
4760 }
4761
4762 segment->p_type = PT_NULL;
4763
4764 /* Since we have deleted P we must restart the outer loop. */
4765 i = 0;
4766 segment = elf_tdata (ibfd)->phdr;
4767 break;
4768 }
4769 else
4770 {
4771 /* Extend SEGMENT to include SEGMENT2 and then delete
4772 SEGMENT2. */
4773 extra_length =
4774 SEGMENT_END (segment2, segment2->p_vaddr)
4775 - SEGMENT_END (segment, segment->p_vaddr);
4776
4777 if (extra_length > 0)
4778 {
4779 segment->p_memsz += extra_length;
4780 segment->p_filesz += extra_length;
4781 }
4782
4783 segment2->p_type = PT_NULL;
4784 }
4785 }
4786 }
4787
4788 /* The second scan attempts to assign sections to segments. */
4789 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4790 i < num_segments;
4791 i ++, segment ++)
4792 {
4793 unsigned int section_count;
4794 asection ** sections;
4795 asection * output_section;
4796 unsigned int isec;
4797 bfd_vma matching_lma;
4798 bfd_vma suggested_lma;
4799 unsigned int j;
4800 bfd_size_type amt;
4801
4802 if (segment->p_type == PT_NULL)
4803 continue;
4804
4805 /* Compute how many sections might be placed into this segment. */
4806 for (section = ibfd->sections, section_count = 0;
4807 section != NULL;
4808 section = section->next)
4809 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4810 ++section_count;
4811
4812 /* Allocate a segment map big enough to contain
4813 all of the sections we have selected. */
4814 amt = sizeof (struct elf_segment_map);
4815 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4816 map = bfd_alloc (obfd, amt);
4817 if (map == NULL)
4818 return FALSE;
4819
4820 /* Initialise the fields of the segment map. Default to
4821 using the physical address of the segment in the input BFD. */
4822 map->next = NULL;
4823 map->p_type = segment->p_type;
4824 map->p_flags = segment->p_flags;
4825 map->p_flags_valid = 1;
4826 map->p_paddr = segment->p_paddr;
4827 map->p_paddr_valid = 1;
4828
4829 /* Determine if this segment contains the ELF file header
4830 and if it contains the program headers themselves. */
4831 map->includes_filehdr = (segment->p_offset == 0
4832 && segment->p_filesz >= iehdr->e_ehsize);
4833
4834 map->includes_phdrs = 0;
4835
4836 if (! phdr_included || segment->p_type != PT_LOAD)
4837 {
4838 map->includes_phdrs =
4839 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4840 && (segment->p_offset + segment->p_filesz
4841 >= ((bfd_vma) iehdr->e_phoff
4842 + iehdr->e_phnum * iehdr->e_phentsize)));
4843
4844 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4845 phdr_included = TRUE;
4846 }
4847
4848 if (section_count == 0)
4849 {
4850 /* Special segments, such as the PT_PHDR segment, may contain
4851 no sections, but ordinary, loadable segments should contain
4852 something. They are allowed by the ELF spec however, so only
4853 a warning is produced. */
4854 if (segment->p_type == PT_LOAD)
4855 (*_bfd_error_handler)
4856 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4857 bfd_archive_filename (ibfd));
4858
4859 map->count = 0;
4860 *pointer_to_map = map;
4861 pointer_to_map = &map->next;
4862
4863 continue;
4864 }
4865
4866 /* Now scan the sections in the input BFD again and attempt
4867 to add their corresponding output sections to the segment map.
4868 The problem here is how to handle an output section which has
4869 been moved (ie had its LMA changed). There are four possibilities:
4870
4871 1. None of the sections have been moved.
4872 In this case we can continue to use the segment LMA from the
4873 input BFD.
4874
4875 2. All of the sections have been moved by the same amount.
4876 In this case we can change the segment's LMA to match the LMA
4877 of the first section.
4878
4879 3. Some of the sections have been moved, others have not.
4880 In this case those sections which have not been moved can be
4881 placed in the current segment which will have to have its size,
4882 and possibly its LMA changed, and a new segment or segments will
4883 have to be created to contain the other sections.
4884
4885 4. The sections have been moved, but not by the same amount.
4886 In this case we can change the segment's LMA to match the LMA
4887 of the first section and we will have to create a new segment
4888 or segments to contain the other sections.
4889
4890 In order to save time, we allocate an array to hold the section
4891 pointers that we are interested in. As these sections get assigned
4892 to a segment, they are removed from this array. */
4893
4894 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4895 to work around this long long bug. */
4896 amt = section_count * sizeof (asection *);
4897 sections = bfd_malloc (amt);
4898 if (sections == NULL)
4899 return FALSE;
4900
4901 /* Step One: Scan for segment vs section LMA conflicts.
4902 Also add the sections to the section array allocated above.
4903 Also add the sections to the current segment. In the common
4904 case, where the sections have not been moved, this means that
4905 we have completely filled the segment, and there is nothing
4906 more to do. */
4907 isec = 0;
4908 matching_lma = 0;
4909 suggested_lma = 0;
4910
4911 for (j = 0, section = ibfd->sections;
4912 section != NULL;
4913 section = section->next)
4914 {
4915 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4916 {
4917 output_section = section->output_section;
4918
4919 sections[j ++] = section;
4920
4921 /* The Solaris native linker always sets p_paddr to 0.
4922 We try to catch that case here, and set it to the
4923 correct value. Note - some backends require that
4924 p_paddr be left as zero. */
4925 if (segment->p_paddr == 0
4926 && segment->p_vaddr != 0
4927 && (! bed->want_p_paddr_set_to_zero)
4928 && isec == 0
4929 && output_section->lma != 0
4930 && (output_section->vma == (segment->p_vaddr
4931 + (map->includes_filehdr
4932 ? iehdr->e_ehsize
4933 : 0)
4934 + (map->includes_phdrs
4935 ? (iehdr->e_phnum
4936 * iehdr->e_phentsize)
4937 : 0))))
4938 map->p_paddr = segment->p_vaddr;
4939
4940 /* Match up the physical address of the segment with the
4941 LMA address of the output section. */
4942 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4943 || IS_COREFILE_NOTE (segment, section)
4944 || (bed->want_p_paddr_set_to_zero &&
4945 IS_CONTAINED_BY_VMA (output_section, segment))
4946 )
4947 {
4948 if (matching_lma == 0)
4949 matching_lma = output_section->lma;
4950
4951 /* We assume that if the section fits within the segment
4952 then it does not overlap any other section within that
4953 segment. */
4954 map->sections[isec ++] = output_section;
4955 }
4956 else if (suggested_lma == 0)
4957 suggested_lma = output_section->lma;
4958 }
4959 }
4960
4961 BFD_ASSERT (j == section_count);
4962
4963 /* Step Two: Adjust the physical address of the current segment,
4964 if necessary. */
4965 if (isec == section_count)
4966 {
4967 /* All of the sections fitted within the segment as currently
4968 specified. This is the default case. Add the segment to
4969 the list of built segments and carry on to process the next
4970 program header in the input BFD. */
4971 map->count = section_count;
4972 *pointer_to_map = map;
4973 pointer_to_map = &map->next;
4974
4975 free (sections);
4976 continue;
4977 }
4978 else
4979 {
4980 if (matching_lma != 0)
4981 {
4982 /* At least one section fits inside the current segment.
4983 Keep it, but modify its physical address to match the
4984 LMA of the first section that fitted. */
4985 map->p_paddr = matching_lma;
4986 }
4987 else
4988 {
4989 /* None of the sections fitted inside the current segment.
4990 Change the current segment's physical address to match
4991 the LMA of the first section. */
4992 map->p_paddr = suggested_lma;
4993 }
4994
4995 /* Offset the segment physical address from the lma
4996 to allow for space taken up by elf headers. */
4997 if (map->includes_filehdr)
4998 map->p_paddr -= iehdr->e_ehsize;
4999
5000 if (map->includes_phdrs)
5001 {
5002 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5003
5004 /* iehdr->e_phnum is just an estimate of the number
5005 of program headers that we will need. Make a note
5006 here of the number we used and the segment we chose
5007 to hold these headers, so that we can adjust the
5008 offset when we know the correct value. */
5009 phdr_adjust_num = iehdr->e_phnum;
5010 phdr_adjust_seg = map;
5011 }
5012 }
5013
5014 /* Step Three: Loop over the sections again, this time assigning
5015 those that fit to the current segment and removing them from the
5016 sections array; but making sure not to leave large gaps. Once all
5017 possible sections have been assigned to the current segment it is
5018 added to the list of built segments and if sections still remain
5019 to be assigned, a new segment is constructed before repeating
5020 the loop. */
5021 isec = 0;
5022 do
5023 {
5024 map->count = 0;
5025 suggested_lma = 0;
5026
5027 /* Fill the current segment with sections that fit. */
5028 for (j = 0; j < section_count; j++)
5029 {
5030 section = sections[j];
5031
5032 if (section == NULL)
5033 continue;
5034
5035 output_section = section->output_section;
5036
5037 BFD_ASSERT (output_section != NULL);
5038
5039 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5040 || IS_COREFILE_NOTE (segment, section))
5041 {
5042 if (map->count == 0)
5043 {
5044 /* If the first section in a segment does not start at
5045 the beginning of the segment, then something is
5046 wrong. */
5047 if (output_section->lma !=
5048 (map->p_paddr
5049 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5050 + (map->includes_phdrs
5051 ? iehdr->e_phnum * iehdr->e_phentsize
5052 : 0)))
5053 abort ();
5054 }
5055 else
5056 {
5057 asection * prev_sec;
5058
5059 prev_sec = map->sections[map->count - 1];
5060
5061 /* If the gap between the end of the previous section
5062 and the start of this section is more than
5063 maxpagesize then we need to start a new segment. */
5064 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
5065 maxpagesize)
5066 < BFD_ALIGN (output_section->lma, maxpagesize))
5067 || ((prev_sec->lma + prev_sec->_raw_size)
5068 > output_section->lma))
5069 {
5070 if (suggested_lma == 0)
5071 suggested_lma = output_section->lma;
5072
5073 continue;
5074 }
5075 }
5076
5077 map->sections[map->count++] = output_section;
5078 ++isec;
5079 sections[j] = NULL;
5080 section->segment_mark = TRUE;
5081 }
5082 else if (suggested_lma == 0)
5083 suggested_lma = output_section->lma;
5084 }
5085
5086 BFD_ASSERT (map->count > 0);
5087
5088 /* Add the current segment to the list of built segments. */
5089 *pointer_to_map = map;
5090 pointer_to_map = &map->next;
5091
5092 if (isec < section_count)
5093 {
5094 /* We still have not allocated all of the sections to
5095 segments. Create a new segment here, initialise it
5096 and carry on looping. */
5097 amt = sizeof (struct elf_segment_map);
5098 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5099 map = bfd_alloc (obfd, amt);
5100 if (map == NULL)
5101 {
5102 free (sections);
5103 return FALSE;
5104 }
5105
5106 /* Initialise the fields of the segment map. Set the physical
5107 physical address to the LMA of the first section that has
5108 not yet been assigned. */
5109 map->next = NULL;
5110 map->p_type = segment->p_type;
5111 map->p_flags = segment->p_flags;
5112 map->p_flags_valid = 1;
5113 map->p_paddr = suggested_lma;
5114 map->p_paddr_valid = 1;
5115 map->includes_filehdr = 0;
5116 map->includes_phdrs = 0;
5117 }
5118 }
5119 while (isec < section_count);
5120
5121 free (sections);
5122 }
5123
5124 /* The Solaris linker creates program headers in which all the
5125 p_paddr fields are zero. When we try to objcopy or strip such a
5126 file, we get confused. Check for this case, and if we find it
5127 reset the p_paddr_valid fields. */
5128 for (map = map_first; map != NULL; map = map->next)
5129 if (map->p_paddr != 0)
5130 break;
5131 if (map == NULL)
5132 for (map = map_first; map != NULL; map = map->next)
5133 map->p_paddr_valid = 0;
5134
5135 elf_tdata (obfd)->segment_map = map_first;
5136
5137 /* If we had to estimate the number of program headers that were
5138 going to be needed, then check our estimate now and adjust
5139 the offset if necessary. */
5140 if (phdr_adjust_seg != NULL)
5141 {
5142 unsigned int count;
5143
5144 for (count = 0, map = map_first; map != NULL; map = map->next)
5145 count++;
5146
5147 if (count > phdr_adjust_num)
5148 phdr_adjust_seg->p_paddr
5149 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5150 }
5151
5152 #if 0
5153 /* Final Step: Sort the segments into ascending order of physical
5154 address. */
5155 if (map_first != NULL)
5156 {
5157 struct elf_segment_map *prev;
5158
5159 prev = map_first;
5160 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5161 {
5162 /* Yes I know - its a bubble sort.... */
5163 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5164 {
5165 /* Swap map and map->next. */
5166 prev->next = map->next;
5167 map->next = map->next->next;
5168 prev->next->next = map;
5169
5170 /* Restart loop. */
5171 map = map_first;
5172 }
5173 }
5174 }
5175 #endif
5176
5177 #undef SEGMENT_END
5178 #undef SECTION_SIZE
5179 #undef IS_CONTAINED_BY_VMA
5180 #undef IS_CONTAINED_BY_LMA
5181 #undef IS_COREFILE_NOTE
5182 #undef IS_SOLARIS_PT_INTERP
5183 #undef INCLUDE_SECTION_IN_SEGMENT
5184 #undef SEGMENT_AFTER_SEGMENT
5185 #undef SEGMENT_OVERLAPS
5186 return TRUE;
5187 }
5188
5189 /* Copy private section information. This copies over the entsize
5190 field, and sometimes the info field. */
5191
5192 bfd_boolean
5193 _bfd_elf_copy_private_section_data (bfd *ibfd,
5194 asection *isec,
5195 bfd *obfd,
5196 asection *osec)
5197 {
5198 Elf_Internal_Shdr *ihdr, *ohdr;
5199
5200 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5201 || obfd->xvec->flavour != bfd_target_elf_flavour)
5202 return TRUE;
5203
5204 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5205 {
5206 asection *s;
5207
5208 /* Only set up the segments if there are no more SEC_ALLOC
5209 sections. FIXME: This won't do the right thing if objcopy is
5210 used to remove the last SEC_ALLOC section, since objcopy
5211 won't call this routine in that case. */
5212 for (s = isec->next; s != NULL; s = s->next)
5213 if ((s->flags & SEC_ALLOC) != 0)
5214 break;
5215 if (s == NULL)
5216 {
5217 if (! copy_private_bfd_data (ibfd, obfd))
5218 return FALSE;
5219 }
5220 }
5221
5222 ihdr = &elf_section_data (isec)->this_hdr;
5223 ohdr = &elf_section_data (osec)->this_hdr;
5224
5225 ohdr->sh_entsize = ihdr->sh_entsize;
5226
5227 if (ihdr->sh_type == SHT_SYMTAB
5228 || ihdr->sh_type == SHT_DYNSYM
5229 || ihdr->sh_type == SHT_GNU_verneed
5230 || ihdr->sh_type == SHT_GNU_verdef)
5231 ohdr->sh_info = ihdr->sh_info;
5232
5233 /* Set things up for objcopy. The output SHT_GROUP section will
5234 have its elf_next_in_group pointing back to the input group
5235 members. */
5236 elf_next_in_group (osec) = elf_next_in_group (isec);
5237 elf_group_name (osec) = elf_group_name (isec);
5238
5239 osec->use_rela_p = isec->use_rela_p;
5240
5241 return TRUE;
5242 }
5243
5244 /* Copy private symbol information. If this symbol is in a section
5245 which we did not map into a BFD section, try to map the section
5246 index correctly. We use special macro definitions for the mapped
5247 section indices; these definitions are interpreted by the
5248 swap_out_syms function. */
5249
5250 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5251 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5252 #define MAP_STRTAB (SHN_HIOS + 3)
5253 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5254 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5255
5256 bfd_boolean
5257 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5258 asymbol *isymarg,
5259 bfd *obfd,
5260 asymbol *osymarg)
5261 {
5262 elf_symbol_type *isym, *osym;
5263
5264 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5265 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5266 return TRUE;
5267
5268 isym = elf_symbol_from (ibfd, isymarg);
5269 osym = elf_symbol_from (obfd, osymarg);
5270
5271 if (isym != NULL
5272 && osym != NULL
5273 && bfd_is_abs_section (isym->symbol.section))
5274 {
5275 unsigned int shndx;
5276
5277 shndx = isym->internal_elf_sym.st_shndx;
5278 if (shndx == elf_onesymtab (ibfd))
5279 shndx = MAP_ONESYMTAB;
5280 else if (shndx == elf_dynsymtab (ibfd))
5281 shndx = MAP_DYNSYMTAB;
5282 else if (shndx == elf_tdata (ibfd)->strtab_section)
5283 shndx = MAP_STRTAB;
5284 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5285 shndx = MAP_SHSTRTAB;
5286 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5287 shndx = MAP_SYM_SHNDX;
5288 osym->internal_elf_sym.st_shndx = shndx;
5289 }
5290
5291 return TRUE;
5292 }
5293
5294 /* Swap out the symbols. */
5295
5296 static bfd_boolean
5297 swap_out_syms (bfd *abfd,
5298 struct bfd_strtab_hash **sttp,
5299 int relocatable_p)
5300 {
5301 const struct elf_backend_data *bed;
5302 int symcount;
5303 asymbol **syms;
5304 struct bfd_strtab_hash *stt;
5305 Elf_Internal_Shdr *symtab_hdr;
5306 Elf_Internal_Shdr *symtab_shndx_hdr;
5307 Elf_Internal_Shdr *symstrtab_hdr;
5308 char *outbound_syms;
5309 char *outbound_shndx;
5310 int idx;
5311 bfd_size_type amt;
5312 bfd_boolean name_local_sections;
5313
5314 if (!elf_map_symbols (abfd))
5315 return FALSE;
5316
5317 /* Dump out the symtabs. */
5318 stt = _bfd_elf_stringtab_init ();
5319 if (stt == NULL)
5320 return FALSE;
5321
5322 bed = get_elf_backend_data (abfd);
5323 symcount = bfd_get_symcount (abfd);
5324 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5325 symtab_hdr->sh_type = SHT_SYMTAB;
5326 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5327 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5328 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5329 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5330
5331 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5332 symstrtab_hdr->sh_type = SHT_STRTAB;
5333
5334 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5335 outbound_syms = bfd_alloc (abfd, amt);
5336 if (outbound_syms == NULL)
5337 {
5338 _bfd_stringtab_free (stt);
5339 return FALSE;
5340 }
5341 symtab_hdr->contents = outbound_syms;
5342
5343 outbound_shndx = NULL;
5344 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5345 if (symtab_shndx_hdr->sh_name != 0)
5346 {
5347 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5348 outbound_shndx = bfd_zalloc (abfd, amt);
5349 if (outbound_shndx == NULL)
5350 {
5351 _bfd_stringtab_free (stt);
5352 return FALSE;
5353 }
5354
5355 symtab_shndx_hdr->contents = outbound_shndx;
5356 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5357 symtab_shndx_hdr->sh_size = amt;
5358 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5359 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5360 }
5361
5362 /* Now generate the data (for "contents"). */
5363 {
5364 /* Fill in zeroth symbol and swap it out. */
5365 Elf_Internal_Sym sym;
5366 sym.st_name = 0;
5367 sym.st_value = 0;
5368 sym.st_size = 0;
5369 sym.st_info = 0;
5370 sym.st_other = 0;
5371 sym.st_shndx = SHN_UNDEF;
5372 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5373 outbound_syms += bed->s->sizeof_sym;
5374 if (outbound_shndx != NULL)
5375 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5376 }
5377
5378 name_local_sections
5379 = (bed->elf_backend_name_local_section_symbols
5380 && bed->elf_backend_name_local_section_symbols (abfd));
5381
5382 syms = bfd_get_outsymbols (abfd);
5383 for (idx = 0; idx < symcount; idx++)
5384 {
5385 Elf_Internal_Sym sym;
5386 bfd_vma value = syms[idx]->value;
5387 elf_symbol_type *type_ptr;
5388 flagword flags = syms[idx]->flags;
5389 int type;
5390
5391 if (!name_local_sections
5392 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5393 {
5394 /* Local section symbols have no name. */
5395 sym.st_name = 0;
5396 }
5397 else
5398 {
5399 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5400 syms[idx]->name,
5401 TRUE, FALSE);
5402 if (sym.st_name == (unsigned long) -1)
5403 {
5404 _bfd_stringtab_free (stt);
5405 return FALSE;
5406 }
5407 }
5408
5409 type_ptr = elf_symbol_from (abfd, syms[idx]);
5410
5411 if ((flags & BSF_SECTION_SYM) == 0
5412 && bfd_is_com_section (syms[idx]->section))
5413 {
5414 /* ELF common symbols put the alignment into the `value' field,
5415 and the size into the `size' field. This is backwards from
5416 how BFD handles it, so reverse it here. */
5417 sym.st_size = value;
5418 if (type_ptr == NULL
5419 || type_ptr->internal_elf_sym.st_value == 0)
5420 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5421 else
5422 sym.st_value = type_ptr->internal_elf_sym.st_value;
5423 sym.st_shndx = _bfd_elf_section_from_bfd_section
5424 (abfd, syms[idx]->section);
5425 }
5426 else
5427 {
5428 asection *sec = syms[idx]->section;
5429 int shndx;
5430
5431 if (sec->output_section)
5432 {
5433 value += sec->output_offset;
5434 sec = sec->output_section;
5435 }
5436
5437 /* Don't add in the section vma for relocatable output. */
5438 if (! relocatable_p)
5439 value += sec->vma;
5440 sym.st_value = value;
5441 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5442
5443 if (bfd_is_abs_section (sec)
5444 && type_ptr != NULL
5445 && type_ptr->internal_elf_sym.st_shndx != 0)
5446 {
5447 /* This symbol is in a real ELF section which we did
5448 not create as a BFD section. Undo the mapping done
5449 by copy_private_symbol_data. */
5450 shndx = type_ptr->internal_elf_sym.st_shndx;
5451 switch (shndx)
5452 {
5453 case MAP_ONESYMTAB:
5454 shndx = elf_onesymtab (abfd);
5455 break;
5456 case MAP_DYNSYMTAB:
5457 shndx = elf_dynsymtab (abfd);
5458 break;
5459 case MAP_STRTAB:
5460 shndx = elf_tdata (abfd)->strtab_section;
5461 break;
5462 case MAP_SHSTRTAB:
5463 shndx = elf_tdata (abfd)->shstrtab_section;
5464 break;
5465 case MAP_SYM_SHNDX:
5466 shndx = elf_tdata (abfd)->symtab_shndx_section;
5467 break;
5468 default:
5469 break;
5470 }
5471 }
5472 else
5473 {
5474 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5475
5476 if (shndx == -1)
5477 {
5478 asection *sec2;
5479
5480 /* Writing this would be a hell of a lot easier if
5481 we had some decent documentation on bfd, and
5482 knew what to expect of the library, and what to
5483 demand of applications. For example, it
5484 appears that `objcopy' might not set the
5485 section of a symbol to be a section that is
5486 actually in the output file. */
5487 sec2 = bfd_get_section_by_name (abfd, sec->name);
5488 if (sec2 == NULL)
5489 {
5490 _bfd_error_handler (_("\
5491 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5492 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5493 sec->name);
5494 bfd_set_error (bfd_error_invalid_operation);
5495 _bfd_stringtab_free (stt);
5496 return FALSE;
5497 }
5498
5499 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5500 BFD_ASSERT (shndx != -1);
5501 }
5502 }
5503
5504 sym.st_shndx = shndx;
5505 }
5506
5507 if ((flags & BSF_THREAD_LOCAL) != 0)
5508 type = STT_TLS;
5509 else if ((flags & BSF_FUNCTION) != 0)
5510 type = STT_FUNC;
5511 else if ((flags & BSF_OBJECT) != 0)
5512 type = STT_OBJECT;
5513 else
5514 type = STT_NOTYPE;
5515
5516 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5517 type = STT_TLS;
5518
5519 /* Processor-specific types. */
5520 if (type_ptr != NULL
5521 && bed->elf_backend_get_symbol_type)
5522 type = ((*bed->elf_backend_get_symbol_type)
5523 (&type_ptr->internal_elf_sym, type));
5524
5525 if (flags & BSF_SECTION_SYM)
5526 {
5527 if (flags & BSF_GLOBAL)
5528 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5529 else
5530 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5531 }
5532 else if (bfd_is_com_section (syms[idx]->section))
5533 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5534 else if (bfd_is_und_section (syms[idx]->section))
5535 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5536 ? STB_WEAK
5537 : STB_GLOBAL),
5538 type);
5539 else if (flags & BSF_FILE)
5540 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5541 else
5542 {
5543 int bind = STB_LOCAL;
5544
5545 if (flags & BSF_LOCAL)
5546 bind = STB_LOCAL;
5547 else if (flags & BSF_WEAK)
5548 bind = STB_WEAK;
5549 else if (flags & BSF_GLOBAL)
5550 bind = STB_GLOBAL;
5551
5552 sym.st_info = ELF_ST_INFO (bind, type);
5553 }
5554
5555 if (type_ptr != NULL)
5556 sym.st_other = type_ptr->internal_elf_sym.st_other;
5557 else
5558 sym.st_other = 0;
5559
5560 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5561 outbound_syms += bed->s->sizeof_sym;
5562 if (outbound_shndx != NULL)
5563 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5564 }
5565
5566 *sttp = stt;
5567 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5568 symstrtab_hdr->sh_type = SHT_STRTAB;
5569
5570 symstrtab_hdr->sh_flags = 0;
5571 symstrtab_hdr->sh_addr = 0;
5572 symstrtab_hdr->sh_entsize = 0;
5573 symstrtab_hdr->sh_link = 0;
5574 symstrtab_hdr->sh_info = 0;
5575 symstrtab_hdr->sh_addralign = 1;
5576
5577 return TRUE;
5578 }
5579
5580 /* Return the number of bytes required to hold the symtab vector.
5581
5582 Note that we base it on the count plus 1, since we will null terminate
5583 the vector allocated based on this size. However, the ELF symbol table
5584 always has a dummy entry as symbol #0, so it ends up even. */
5585
5586 long
5587 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5588 {
5589 long symcount;
5590 long symtab_size;
5591 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5592
5593 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5594 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5595 if (symcount > 0)
5596 symtab_size -= sizeof (asymbol *);
5597
5598 return symtab_size;
5599 }
5600
5601 long
5602 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5603 {
5604 long symcount;
5605 long symtab_size;
5606 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5607
5608 if (elf_dynsymtab (abfd) == 0)
5609 {
5610 bfd_set_error (bfd_error_invalid_operation);
5611 return -1;
5612 }
5613
5614 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5615 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5616 if (symcount > 0)
5617 symtab_size -= sizeof (asymbol *);
5618
5619 return symtab_size;
5620 }
5621
5622 long
5623 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5624 sec_ptr asect)
5625 {
5626 return (asect->reloc_count + 1) * sizeof (arelent *);
5627 }
5628
5629 /* Canonicalize the relocs. */
5630
5631 long
5632 _bfd_elf_canonicalize_reloc (bfd *abfd,
5633 sec_ptr section,
5634 arelent **relptr,
5635 asymbol **symbols)
5636 {
5637 arelent *tblptr;
5638 unsigned int i;
5639 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5640
5641 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5642 return -1;
5643
5644 tblptr = section->relocation;
5645 for (i = 0; i < section->reloc_count; i++)
5646 *relptr++ = tblptr++;
5647
5648 *relptr = NULL;
5649
5650 return section->reloc_count;
5651 }
5652
5653 long
5654 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5655 {
5656 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5657 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5658
5659 if (symcount >= 0)
5660 bfd_get_symcount (abfd) = symcount;
5661 return symcount;
5662 }
5663
5664 long
5665 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5666 asymbol **allocation)
5667 {
5668 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5669 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5670
5671 if (symcount >= 0)
5672 bfd_get_dynamic_symcount (abfd) = symcount;
5673 return symcount;
5674 }
5675
5676 /* Return the size required for the dynamic reloc entries. Any
5677 section that was actually installed in the BFD, and has type
5678 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5679 considered to be a dynamic reloc section. */
5680
5681 long
5682 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5683 {
5684 long ret;
5685 asection *s;
5686
5687 if (elf_dynsymtab (abfd) == 0)
5688 {
5689 bfd_set_error (bfd_error_invalid_operation);
5690 return -1;
5691 }
5692
5693 ret = sizeof (arelent *);
5694 for (s = abfd->sections; s != NULL; s = s->next)
5695 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5696 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5697 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5698 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5699 * sizeof (arelent *));
5700
5701 return ret;
5702 }
5703
5704 /* Canonicalize the dynamic relocation entries. Note that we return
5705 the dynamic relocations as a single block, although they are
5706 actually associated with particular sections; the interface, which
5707 was designed for SunOS style shared libraries, expects that there
5708 is only one set of dynamic relocs. Any section that was actually
5709 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5710 the dynamic symbol table, is considered to be a dynamic reloc
5711 section. */
5712
5713 long
5714 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5715 arelent **storage,
5716 asymbol **syms)
5717 {
5718 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5719 asection *s;
5720 long ret;
5721
5722 if (elf_dynsymtab (abfd) == 0)
5723 {
5724 bfd_set_error (bfd_error_invalid_operation);
5725 return -1;
5726 }
5727
5728 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5729 ret = 0;
5730 for (s = abfd->sections; s != NULL; s = s->next)
5731 {
5732 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5733 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5734 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5735 {
5736 arelent *p;
5737 long count, i;
5738
5739 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
5740 return -1;
5741 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5742 p = s->relocation;
5743 for (i = 0; i < count; i++)
5744 *storage++ = p++;
5745 ret += count;
5746 }
5747 }
5748
5749 *storage = NULL;
5750
5751 return ret;
5752 }
5753 \f
5754 /* Read in the version information. */
5755
5756 bfd_boolean
5757 _bfd_elf_slurp_version_tables (bfd *abfd)
5758 {
5759 bfd_byte *contents = NULL;
5760 bfd_size_type amt;
5761
5762 if (elf_dynverdef (abfd) != 0)
5763 {
5764 Elf_Internal_Shdr *hdr;
5765 Elf_External_Verdef *everdef;
5766 Elf_Internal_Verdef *iverdef;
5767 Elf_Internal_Verdef *iverdefarr;
5768 Elf_Internal_Verdef iverdefmem;
5769 unsigned int i;
5770 unsigned int maxidx;
5771
5772 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5773
5774 contents = bfd_malloc (hdr->sh_size);
5775 if (contents == NULL)
5776 goto error_return;
5777 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5778 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5779 goto error_return;
5780
5781 /* We know the number of entries in the section but not the maximum
5782 index. Therefore we have to run through all entries and find
5783 the maximum. */
5784 everdef = (Elf_External_Verdef *) contents;
5785 maxidx = 0;
5786 for (i = 0; i < hdr->sh_info; ++i)
5787 {
5788 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5789
5790 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5791 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5792
5793 everdef = ((Elf_External_Verdef *)
5794 ((bfd_byte *) everdef + iverdefmem.vd_next));
5795 }
5796
5797 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5798 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
5799 if (elf_tdata (abfd)->verdef == NULL)
5800 goto error_return;
5801
5802 elf_tdata (abfd)->cverdefs = maxidx;
5803
5804 everdef = (Elf_External_Verdef *) contents;
5805 iverdefarr = elf_tdata (abfd)->verdef;
5806 for (i = 0; i < hdr->sh_info; i++)
5807 {
5808 Elf_External_Verdaux *everdaux;
5809 Elf_Internal_Verdaux *iverdaux;
5810 unsigned int j;
5811
5812 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5813
5814 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5815 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5816
5817 iverdef->vd_bfd = abfd;
5818
5819 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5820 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
5821 if (iverdef->vd_auxptr == NULL)
5822 goto error_return;
5823
5824 everdaux = ((Elf_External_Verdaux *)
5825 ((bfd_byte *) everdef + iverdef->vd_aux));
5826 iverdaux = iverdef->vd_auxptr;
5827 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5828 {
5829 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5830
5831 iverdaux->vda_nodename =
5832 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5833 iverdaux->vda_name);
5834 if (iverdaux->vda_nodename == NULL)
5835 goto error_return;
5836
5837 if (j + 1 < iverdef->vd_cnt)
5838 iverdaux->vda_nextptr = iverdaux + 1;
5839 else
5840 iverdaux->vda_nextptr = NULL;
5841
5842 everdaux = ((Elf_External_Verdaux *)
5843 ((bfd_byte *) everdaux + iverdaux->vda_next));
5844 }
5845
5846 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5847
5848 if (i + 1 < hdr->sh_info)
5849 iverdef->vd_nextdef = iverdef + 1;
5850 else
5851 iverdef->vd_nextdef = NULL;
5852
5853 everdef = ((Elf_External_Verdef *)
5854 ((bfd_byte *) everdef + iverdef->vd_next));
5855 }
5856
5857 free (contents);
5858 contents = NULL;
5859 }
5860
5861 if (elf_dynverref (abfd) != 0)
5862 {
5863 Elf_Internal_Shdr *hdr;
5864 Elf_External_Verneed *everneed;
5865 Elf_Internal_Verneed *iverneed;
5866 unsigned int i;
5867
5868 hdr = &elf_tdata (abfd)->dynverref_hdr;
5869
5870 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5871 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
5872 if (elf_tdata (abfd)->verref == NULL)
5873 goto error_return;
5874
5875 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5876
5877 contents = bfd_malloc (hdr->sh_size);
5878 if (contents == NULL)
5879 goto error_return;
5880 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5881 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5882 goto error_return;
5883
5884 everneed = (Elf_External_Verneed *) contents;
5885 iverneed = elf_tdata (abfd)->verref;
5886 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5887 {
5888 Elf_External_Vernaux *evernaux;
5889 Elf_Internal_Vernaux *ivernaux;
5890 unsigned int j;
5891
5892 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5893
5894 iverneed->vn_bfd = abfd;
5895
5896 iverneed->vn_filename =
5897 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5898 iverneed->vn_file);
5899 if (iverneed->vn_filename == NULL)
5900 goto error_return;
5901
5902 amt = iverneed->vn_cnt;
5903 amt *= sizeof (Elf_Internal_Vernaux);
5904 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
5905
5906 evernaux = ((Elf_External_Vernaux *)
5907 ((bfd_byte *) everneed + iverneed->vn_aux));
5908 ivernaux = iverneed->vn_auxptr;
5909 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5910 {
5911 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5912
5913 ivernaux->vna_nodename =
5914 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5915 ivernaux->vna_name);
5916 if (ivernaux->vna_nodename == NULL)
5917 goto error_return;
5918
5919 if (j + 1 < iverneed->vn_cnt)
5920 ivernaux->vna_nextptr = ivernaux + 1;
5921 else
5922 ivernaux->vna_nextptr = NULL;
5923
5924 evernaux = ((Elf_External_Vernaux *)
5925 ((bfd_byte *) evernaux + ivernaux->vna_next));
5926 }
5927
5928 if (i + 1 < hdr->sh_info)
5929 iverneed->vn_nextref = iverneed + 1;
5930 else
5931 iverneed->vn_nextref = NULL;
5932
5933 everneed = ((Elf_External_Verneed *)
5934 ((bfd_byte *) everneed + iverneed->vn_next));
5935 }
5936
5937 free (contents);
5938 contents = NULL;
5939 }
5940
5941 return TRUE;
5942
5943 error_return:
5944 if (contents != NULL)
5945 free (contents);
5946 return FALSE;
5947 }
5948 \f
5949 asymbol *
5950 _bfd_elf_make_empty_symbol (bfd *abfd)
5951 {
5952 elf_symbol_type *newsym;
5953 bfd_size_type amt = sizeof (elf_symbol_type);
5954
5955 newsym = bfd_zalloc (abfd, amt);
5956 if (!newsym)
5957 return NULL;
5958 else
5959 {
5960 newsym->symbol.the_bfd = abfd;
5961 return &newsym->symbol;
5962 }
5963 }
5964
5965 void
5966 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
5967 asymbol *symbol,
5968 symbol_info *ret)
5969 {
5970 bfd_symbol_info (symbol, ret);
5971 }
5972
5973 /* Return whether a symbol name implies a local symbol. Most targets
5974 use this function for the is_local_label_name entry point, but some
5975 override it. */
5976
5977 bfd_boolean
5978 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
5979 const char *name)
5980 {
5981 /* Normal local symbols start with ``.L''. */
5982 if (name[0] == '.' && name[1] == 'L')
5983 return TRUE;
5984
5985 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5986 DWARF debugging symbols starting with ``..''. */
5987 if (name[0] == '.' && name[1] == '.')
5988 return TRUE;
5989
5990 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5991 emitting DWARF debugging output. I suspect this is actually a
5992 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5993 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5994 underscore to be emitted on some ELF targets). For ease of use,
5995 we treat such symbols as local. */
5996 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
5997 return TRUE;
5998
5999 return FALSE;
6000 }
6001
6002 alent *
6003 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6004 asymbol *symbol ATTRIBUTE_UNUSED)
6005 {
6006 abort ();
6007 return NULL;
6008 }
6009
6010 bfd_boolean
6011 _bfd_elf_set_arch_mach (bfd *abfd,
6012 enum bfd_architecture arch,
6013 unsigned long machine)
6014 {
6015 /* If this isn't the right architecture for this backend, and this
6016 isn't the generic backend, fail. */
6017 if (arch != get_elf_backend_data (abfd)->arch
6018 && arch != bfd_arch_unknown
6019 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6020 return FALSE;
6021
6022 return bfd_default_set_arch_mach (abfd, arch, machine);
6023 }
6024
6025 /* Find the function to a particular section and offset,
6026 for error reporting. */
6027
6028 static bfd_boolean
6029 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6030 asection *section,
6031 asymbol **symbols,
6032 bfd_vma offset,
6033 const char **filename_ptr,
6034 const char **functionname_ptr)
6035 {
6036 const char *filename;
6037 asymbol *func;
6038 bfd_vma low_func;
6039 asymbol **p;
6040
6041 filename = NULL;
6042 func = NULL;
6043 low_func = 0;
6044
6045 for (p = symbols; *p != NULL; p++)
6046 {
6047 elf_symbol_type *q;
6048
6049 q = (elf_symbol_type *) *p;
6050
6051 if (bfd_get_section (&q->symbol) != section)
6052 continue;
6053
6054 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6055 {
6056 default:
6057 break;
6058 case STT_FILE:
6059 filename = bfd_asymbol_name (&q->symbol);
6060 break;
6061 case STT_NOTYPE:
6062 case STT_FUNC:
6063 if (q->symbol.section == section
6064 && q->symbol.value >= low_func
6065 && q->symbol.value <= offset)
6066 {
6067 func = (asymbol *) q;
6068 low_func = q->symbol.value;
6069 }
6070 break;
6071 }
6072 }
6073
6074 if (func == NULL)
6075 return FALSE;
6076
6077 if (filename_ptr)
6078 *filename_ptr = filename;
6079 if (functionname_ptr)
6080 *functionname_ptr = bfd_asymbol_name (func);
6081
6082 return TRUE;
6083 }
6084
6085 /* Find the nearest line to a particular section and offset,
6086 for error reporting. */
6087
6088 bfd_boolean
6089 _bfd_elf_find_nearest_line (bfd *abfd,
6090 asection *section,
6091 asymbol **symbols,
6092 bfd_vma offset,
6093 const char **filename_ptr,
6094 const char **functionname_ptr,
6095 unsigned int *line_ptr)
6096 {
6097 bfd_boolean found;
6098
6099 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6100 filename_ptr, functionname_ptr,
6101 line_ptr))
6102 {
6103 if (!*functionname_ptr)
6104 elf_find_function (abfd, section, symbols, offset,
6105 *filename_ptr ? NULL : filename_ptr,
6106 functionname_ptr);
6107
6108 return TRUE;
6109 }
6110
6111 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6112 filename_ptr, functionname_ptr,
6113 line_ptr, 0,
6114 &elf_tdata (abfd)->dwarf2_find_line_info))
6115 {
6116 if (!*functionname_ptr)
6117 elf_find_function (abfd, section, symbols, offset,
6118 *filename_ptr ? NULL : filename_ptr,
6119 functionname_ptr);
6120
6121 return TRUE;
6122 }
6123
6124 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6125 &found, filename_ptr,
6126 functionname_ptr, line_ptr,
6127 &elf_tdata (abfd)->line_info))
6128 return FALSE;
6129 if (found && (*functionname_ptr || *line_ptr))
6130 return TRUE;
6131
6132 if (symbols == NULL)
6133 return FALSE;
6134
6135 if (! elf_find_function (abfd, section, symbols, offset,
6136 filename_ptr, functionname_ptr))
6137 return FALSE;
6138
6139 *line_ptr = 0;
6140 return TRUE;
6141 }
6142
6143 int
6144 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6145 {
6146 int ret;
6147
6148 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6149 if (! reloc)
6150 ret += get_program_header_size (abfd);
6151 return ret;
6152 }
6153
6154 bfd_boolean
6155 _bfd_elf_set_section_contents (bfd *abfd,
6156 sec_ptr section,
6157 const void *location,
6158 file_ptr offset,
6159 bfd_size_type count)
6160 {
6161 Elf_Internal_Shdr *hdr;
6162 bfd_signed_vma pos;
6163
6164 if (! abfd->output_has_begun
6165 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6166 return FALSE;
6167
6168 hdr = &elf_section_data (section)->this_hdr;
6169 pos = hdr->sh_offset + offset;
6170 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6171 || bfd_bwrite (location, count, abfd) != count)
6172 return FALSE;
6173
6174 return TRUE;
6175 }
6176
6177 void
6178 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6179 arelent *cache_ptr ATTRIBUTE_UNUSED,
6180 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6181 {
6182 abort ();
6183 }
6184
6185 /* Try to convert a non-ELF reloc into an ELF one. */
6186
6187 bfd_boolean
6188 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6189 {
6190 /* Check whether we really have an ELF howto. */
6191
6192 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6193 {
6194 bfd_reloc_code_real_type code;
6195 reloc_howto_type *howto;
6196
6197 /* Alien reloc: Try to determine its type to replace it with an
6198 equivalent ELF reloc. */
6199
6200 if (areloc->howto->pc_relative)
6201 {
6202 switch (areloc->howto->bitsize)
6203 {
6204 case 8:
6205 code = BFD_RELOC_8_PCREL;
6206 break;
6207 case 12:
6208 code = BFD_RELOC_12_PCREL;
6209 break;
6210 case 16:
6211 code = BFD_RELOC_16_PCREL;
6212 break;
6213 case 24:
6214 code = BFD_RELOC_24_PCREL;
6215 break;
6216 case 32:
6217 code = BFD_RELOC_32_PCREL;
6218 break;
6219 case 64:
6220 code = BFD_RELOC_64_PCREL;
6221 break;
6222 default:
6223 goto fail;
6224 }
6225
6226 howto = bfd_reloc_type_lookup (abfd, code);
6227
6228 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6229 {
6230 if (howto->pcrel_offset)
6231 areloc->addend += areloc->address;
6232 else
6233 areloc->addend -= areloc->address; /* addend is unsigned!! */
6234 }
6235 }
6236 else
6237 {
6238 switch (areloc->howto->bitsize)
6239 {
6240 case 8:
6241 code = BFD_RELOC_8;
6242 break;
6243 case 14:
6244 code = BFD_RELOC_14;
6245 break;
6246 case 16:
6247 code = BFD_RELOC_16;
6248 break;
6249 case 26:
6250 code = BFD_RELOC_26;
6251 break;
6252 case 32:
6253 code = BFD_RELOC_32;
6254 break;
6255 case 64:
6256 code = BFD_RELOC_64;
6257 break;
6258 default:
6259 goto fail;
6260 }
6261
6262 howto = bfd_reloc_type_lookup (abfd, code);
6263 }
6264
6265 if (howto)
6266 areloc->howto = howto;
6267 else
6268 goto fail;
6269 }
6270
6271 return TRUE;
6272
6273 fail:
6274 (*_bfd_error_handler)
6275 (_("%s: unsupported relocation type %s"),
6276 bfd_archive_filename (abfd), areloc->howto->name);
6277 bfd_set_error (bfd_error_bad_value);
6278 return FALSE;
6279 }
6280
6281 bfd_boolean
6282 _bfd_elf_close_and_cleanup (bfd *abfd)
6283 {
6284 if (bfd_get_format (abfd) == bfd_object)
6285 {
6286 if (elf_shstrtab (abfd) != NULL)
6287 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6288 }
6289
6290 return _bfd_generic_close_and_cleanup (abfd);
6291 }
6292
6293 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6294 in the relocation's offset. Thus we cannot allow any sort of sanity
6295 range-checking to interfere. There is nothing else to do in processing
6296 this reloc. */
6297
6298 bfd_reloc_status_type
6299 _bfd_elf_rel_vtable_reloc_fn
6300 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6301 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6302 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6303 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6304 {
6305 return bfd_reloc_ok;
6306 }
6307 \f
6308 /* Elf core file support. Much of this only works on native
6309 toolchains, since we rely on knowing the
6310 machine-dependent procfs structure in order to pick
6311 out details about the corefile. */
6312
6313 #ifdef HAVE_SYS_PROCFS_H
6314 # include <sys/procfs.h>
6315 #endif
6316
6317 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6318
6319 static int
6320 elfcore_make_pid (bfd *abfd)
6321 {
6322 return ((elf_tdata (abfd)->core_lwpid << 16)
6323 + (elf_tdata (abfd)->core_pid));
6324 }
6325
6326 /* If there isn't a section called NAME, make one, using
6327 data from SECT. Note, this function will generate a
6328 reference to NAME, so you shouldn't deallocate or
6329 overwrite it. */
6330
6331 static bfd_boolean
6332 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6333 {
6334 asection *sect2;
6335
6336 if (bfd_get_section_by_name (abfd, name) != NULL)
6337 return TRUE;
6338
6339 sect2 = bfd_make_section (abfd, name);
6340 if (sect2 == NULL)
6341 return FALSE;
6342
6343 sect2->_raw_size = sect->_raw_size;
6344 sect2->filepos = sect->filepos;
6345 sect2->flags = sect->flags;
6346 sect2->alignment_power = sect->alignment_power;
6347 return TRUE;
6348 }
6349
6350 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6351 actually creates up to two pseudosections:
6352 - For the single-threaded case, a section named NAME, unless
6353 such a section already exists.
6354 - For the multi-threaded case, a section named "NAME/PID", where
6355 PID is elfcore_make_pid (abfd).
6356 Both pseudosections have identical contents. */
6357 bfd_boolean
6358 _bfd_elfcore_make_pseudosection (bfd *abfd,
6359 char *name,
6360 size_t size,
6361 ufile_ptr filepos)
6362 {
6363 char buf[100];
6364 char *threaded_name;
6365 size_t len;
6366 asection *sect;
6367
6368 /* Build the section name. */
6369
6370 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6371 len = strlen (buf) + 1;
6372 threaded_name = bfd_alloc (abfd, len);
6373 if (threaded_name == NULL)
6374 return FALSE;
6375 memcpy (threaded_name, buf, len);
6376
6377 sect = bfd_make_section_anyway (abfd, threaded_name);
6378 if (sect == NULL)
6379 return FALSE;
6380 sect->_raw_size = size;
6381 sect->filepos = filepos;
6382 sect->flags = SEC_HAS_CONTENTS;
6383 sect->alignment_power = 2;
6384
6385 return elfcore_maybe_make_sect (abfd, name, sect);
6386 }
6387
6388 /* prstatus_t exists on:
6389 solaris 2.5+
6390 linux 2.[01] + glibc
6391 unixware 4.2
6392 */
6393
6394 #if defined (HAVE_PRSTATUS_T)
6395
6396 static bfd_boolean
6397 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6398 {
6399 size_t raw_size;
6400 int offset;
6401
6402 if (note->descsz == sizeof (prstatus_t))
6403 {
6404 prstatus_t prstat;
6405
6406 raw_size = sizeof (prstat.pr_reg);
6407 offset = offsetof (prstatus_t, pr_reg);
6408 memcpy (&prstat, note->descdata, sizeof (prstat));
6409
6410 /* Do not overwrite the core signal if it
6411 has already been set by another thread. */
6412 if (elf_tdata (abfd)->core_signal == 0)
6413 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6414 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6415
6416 /* pr_who exists on:
6417 solaris 2.5+
6418 unixware 4.2
6419 pr_who doesn't exist on:
6420 linux 2.[01]
6421 */
6422 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6423 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6424 #endif
6425 }
6426 #if defined (HAVE_PRSTATUS32_T)
6427 else if (note->descsz == sizeof (prstatus32_t))
6428 {
6429 /* 64-bit host, 32-bit corefile */
6430 prstatus32_t prstat;
6431
6432 raw_size = sizeof (prstat.pr_reg);
6433 offset = offsetof (prstatus32_t, pr_reg);
6434 memcpy (&prstat, note->descdata, sizeof (prstat));
6435
6436 /* Do not overwrite the core signal if it
6437 has already been set by another thread. */
6438 if (elf_tdata (abfd)->core_signal == 0)
6439 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6440 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6441
6442 /* pr_who exists on:
6443 solaris 2.5+
6444 unixware 4.2
6445 pr_who doesn't exist on:
6446 linux 2.[01]
6447 */
6448 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6449 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6450 #endif
6451 }
6452 #endif /* HAVE_PRSTATUS32_T */
6453 else
6454 {
6455 /* Fail - we don't know how to handle any other
6456 note size (ie. data object type). */
6457 return TRUE;
6458 }
6459
6460 /* Make a ".reg/999" section and a ".reg" section. */
6461 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6462 raw_size, note->descpos + offset);
6463 }
6464 #endif /* defined (HAVE_PRSTATUS_T) */
6465
6466 /* Create a pseudosection containing the exact contents of NOTE. */
6467 static bfd_boolean
6468 elfcore_make_note_pseudosection (bfd *abfd,
6469 char *name,
6470 Elf_Internal_Note *note)
6471 {
6472 return _bfd_elfcore_make_pseudosection (abfd, name,
6473 note->descsz, note->descpos);
6474 }
6475
6476 /* There isn't a consistent prfpregset_t across platforms,
6477 but it doesn't matter, because we don't have to pick this
6478 data structure apart. */
6479
6480 static bfd_boolean
6481 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6482 {
6483 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6484 }
6485
6486 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6487 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6488 literally. */
6489
6490 static bfd_boolean
6491 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6492 {
6493 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6494 }
6495
6496 #if defined (HAVE_PRPSINFO_T)
6497 typedef prpsinfo_t elfcore_psinfo_t;
6498 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6499 typedef prpsinfo32_t elfcore_psinfo32_t;
6500 #endif
6501 #endif
6502
6503 #if defined (HAVE_PSINFO_T)
6504 typedef psinfo_t elfcore_psinfo_t;
6505 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6506 typedef psinfo32_t elfcore_psinfo32_t;
6507 #endif
6508 #endif
6509
6510 /* return a malloc'ed copy of a string at START which is at
6511 most MAX bytes long, possibly without a terminating '\0'.
6512 the copy will always have a terminating '\0'. */
6513
6514 char *
6515 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6516 {
6517 char *dups;
6518 char *end = memchr (start, '\0', max);
6519 size_t len;
6520
6521 if (end == NULL)
6522 len = max;
6523 else
6524 len = end - start;
6525
6526 dups = bfd_alloc (abfd, len + 1);
6527 if (dups == NULL)
6528 return NULL;
6529
6530 memcpy (dups, start, len);
6531 dups[len] = '\0';
6532
6533 return dups;
6534 }
6535
6536 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6537 static bfd_boolean
6538 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6539 {
6540 if (note->descsz == sizeof (elfcore_psinfo_t))
6541 {
6542 elfcore_psinfo_t psinfo;
6543
6544 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6545
6546 elf_tdata (abfd)->core_program
6547 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6548 sizeof (psinfo.pr_fname));
6549
6550 elf_tdata (abfd)->core_command
6551 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6552 sizeof (psinfo.pr_psargs));
6553 }
6554 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6555 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6556 {
6557 /* 64-bit host, 32-bit corefile */
6558 elfcore_psinfo32_t psinfo;
6559
6560 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6561
6562 elf_tdata (abfd)->core_program
6563 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6564 sizeof (psinfo.pr_fname));
6565
6566 elf_tdata (abfd)->core_command
6567 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6568 sizeof (psinfo.pr_psargs));
6569 }
6570 #endif
6571
6572 else
6573 {
6574 /* Fail - we don't know how to handle any other
6575 note size (ie. data object type). */
6576 return TRUE;
6577 }
6578
6579 /* Note that for some reason, a spurious space is tacked
6580 onto the end of the args in some (at least one anyway)
6581 implementations, so strip it off if it exists. */
6582
6583 {
6584 char *command = elf_tdata (abfd)->core_command;
6585 int n = strlen (command);
6586
6587 if (0 < n && command[n - 1] == ' ')
6588 command[n - 1] = '\0';
6589 }
6590
6591 return TRUE;
6592 }
6593 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6594
6595 #if defined (HAVE_PSTATUS_T)
6596 static bfd_boolean
6597 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6598 {
6599 if (note->descsz == sizeof (pstatus_t)
6600 #if defined (HAVE_PXSTATUS_T)
6601 || note->descsz == sizeof (pxstatus_t)
6602 #endif
6603 )
6604 {
6605 pstatus_t pstat;
6606
6607 memcpy (&pstat, note->descdata, sizeof (pstat));
6608
6609 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6610 }
6611 #if defined (HAVE_PSTATUS32_T)
6612 else if (note->descsz == sizeof (pstatus32_t))
6613 {
6614 /* 64-bit host, 32-bit corefile */
6615 pstatus32_t pstat;
6616
6617 memcpy (&pstat, note->descdata, sizeof (pstat));
6618
6619 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6620 }
6621 #endif
6622 /* Could grab some more details from the "representative"
6623 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6624 NT_LWPSTATUS note, presumably. */
6625
6626 return TRUE;
6627 }
6628 #endif /* defined (HAVE_PSTATUS_T) */
6629
6630 #if defined (HAVE_LWPSTATUS_T)
6631 static bfd_boolean
6632 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6633 {
6634 lwpstatus_t lwpstat;
6635 char buf[100];
6636 char *name;
6637 size_t len;
6638 asection *sect;
6639
6640 if (note->descsz != sizeof (lwpstat)
6641 #if defined (HAVE_LWPXSTATUS_T)
6642 && note->descsz != sizeof (lwpxstatus_t)
6643 #endif
6644 )
6645 return TRUE;
6646
6647 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6648
6649 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6650 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6651
6652 /* Make a ".reg/999" section. */
6653
6654 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6655 len = strlen (buf) + 1;
6656 name = bfd_alloc (abfd, len);
6657 if (name == NULL)
6658 return FALSE;
6659 memcpy (name, buf, len);
6660
6661 sect = bfd_make_section_anyway (abfd, name);
6662 if (sect == NULL)
6663 return FALSE;
6664
6665 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6666 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6667 sect->filepos = note->descpos
6668 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6669 #endif
6670
6671 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6672 sect->_raw_size = sizeof (lwpstat.pr_reg);
6673 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6674 #endif
6675
6676 sect->flags = SEC_HAS_CONTENTS;
6677 sect->alignment_power = 2;
6678
6679 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6680 return FALSE;
6681
6682 /* Make a ".reg2/999" section */
6683
6684 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6685 len = strlen (buf) + 1;
6686 name = bfd_alloc (abfd, len);
6687 if (name == NULL)
6688 return FALSE;
6689 memcpy (name, buf, len);
6690
6691 sect = bfd_make_section_anyway (abfd, name);
6692 if (sect == NULL)
6693 return FALSE;
6694
6695 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6696 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6697 sect->filepos = note->descpos
6698 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6699 #endif
6700
6701 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6702 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6703 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6704 #endif
6705
6706 sect->flags = SEC_HAS_CONTENTS;
6707 sect->alignment_power = 2;
6708
6709 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6710 }
6711 #endif /* defined (HAVE_LWPSTATUS_T) */
6712
6713 #if defined (HAVE_WIN32_PSTATUS_T)
6714 static bfd_boolean
6715 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
6716 {
6717 char buf[30];
6718 char *name;
6719 size_t len;
6720 asection *sect;
6721 win32_pstatus_t pstatus;
6722
6723 if (note->descsz < sizeof (pstatus))
6724 return TRUE;
6725
6726 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6727
6728 switch (pstatus.data_type)
6729 {
6730 case NOTE_INFO_PROCESS:
6731 /* FIXME: need to add ->core_command. */
6732 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6733 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6734 break;
6735
6736 case NOTE_INFO_THREAD:
6737 /* Make a ".reg/999" section. */
6738 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6739
6740 len = strlen (buf) + 1;
6741 name = bfd_alloc (abfd, len);
6742 if (name == NULL)
6743 return FALSE;
6744
6745 memcpy (name, buf, len);
6746
6747 sect = bfd_make_section_anyway (abfd, name);
6748 if (sect == NULL)
6749 return FALSE;
6750
6751 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6752 sect->filepos = (note->descpos
6753 + offsetof (struct win32_pstatus,
6754 data.thread_info.thread_context));
6755 sect->flags = SEC_HAS_CONTENTS;
6756 sect->alignment_power = 2;
6757
6758 if (pstatus.data.thread_info.is_active_thread)
6759 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6760 return FALSE;
6761 break;
6762
6763 case NOTE_INFO_MODULE:
6764 /* Make a ".module/xxxxxxxx" section. */
6765 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6766
6767 len = strlen (buf) + 1;
6768 name = bfd_alloc (abfd, len);
6769 if (name == NULL)
6770 return FALSE;
6771
6772 memcpy (name, buf, len);
6773
6774 sect = bfd_make_section_anyway (abfd, name);
6775
6776 if (sect == NULL)
6777 return FALSE;
6778
6779 sect->_raw_size = note->descsz;
6780 sect->filepos = note->descpos;
6781 sect->flags = SEC_HAS_CONTENTS;
6782 sect->alignment_power = 2;
6783 break;
6784
6785 default:
6786 return TRUE;
6787 }
6788
6789 return TRUE;
6790 }
6791 #endif /* HAVE_WIN32_PSTATUS_T */
6792
6793 static bfd_boolean
6794 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
6795 {
6796 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6797
6798 switch (note->type)
6799 {
6800 default:
6801 return TRUE;
6802
6803 case NT_PRSTATUS:
6804 if (bed->elf_backend_grok_prstatus)
6805 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6806 return TRUE;
6807 #if defined (HAVE_PRSTATUS_T)
6808 return elfcore_grok_prstatus (abfd, note);
6809 #else
6810 return TRUE;
6811 #endif
6812
6813 #if defined (HAVE_PSTATUS_T)
6814 case NT_PSTATUS:
6815 return elfcore_grok_pstatus (abfd, note);
6816 #endif
6817
6818 #if defined (HAVE_LWPSTATUS_T)
6819 case NT_LWPSTATUS:
6820 return elfcore_grok_lwpstatus (abfd, note);
6821 #endif
6822
6823 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6824 return elfcore_grok_prfpreg (abfd, note);
6825
6826 #if defined (HAVE_WIN32_PSTATUS_T)
6827 case NT_WIN32PSTATUS:
6828 return elfcore_grok_win32pstatus (abfd, note);
6829 #endif
6830
6831 case NT_PRXFPREG: /* Linux SSE extension */
6832 if (note->namesz == 6
6833 && strcmp (note->namedata, "LINUX") == 0)
6834 return elfcore_grok_prxfpreg (abfd, note);
6835 else
6836 return TRUE;
6837
6838 case NT_PRPSINFO:
6839 case NT_PSINFO:
6840 if (bed->elf_backend_grok_psinfo)
6841 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6842 return TRUE;
6843 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6844 return elfcore_grok_psinfo (abfd, note);
6845 #else
6846 return TRUE;
6847 #endif
6848
6849 case NT_AUXV:
6850 {
6851 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
6852
6853 if (sect == NULL)
6854 return FALSE;
6855 sect->_raw_size = note->descsz;
6856 sect->filepos = note->descpos;
6857 sect->flags = SEC_HAS_CONTENTS;
6858 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
6859
6860 return TRUE;
6861 }
6862 }
6863 }
6864
6865 static bfd_boolean
6866 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
6867 {
6868 char *cp;
6869
6870 cp = strchr (note->namedata, '@');
6871 if (cp != NULL)
6872 {
6873 *lwpidp = atoi(cp + 1);
6874 return TRUE;
6875 }
6876 return FALSE;
6877 }
6878
6879 static bfd_boolean
6880 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
6881 {
6882
6883 /* Signal number at offset 0x08. */
6884 elf_tdata (abfd)->core_signal
6885 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6886
6887 /* Process ID at offset 0x50. */
6888 elf_tdata (abfd)->core_pid
6889 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6890
6891 /* Command name at 0x7c (max 32 bytes, including nul). */
6892 elf_tdata (abfd)->core_command
6893 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6894
6895 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
6896 note);
6897 }
6898
6899 static bfd_boolean
6900 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
6901 {
6902 int lwp;
6903
6904 if (elfcore_netbsd_get_lwpid (note, &lwp))
6905 elf_tdata (abfd)->core_lwpid = lwp;
6906
6907 if (note->type == NT_NETBSDCORE_PROCINFO)
6908 {
6909 /* NetBSD-specific core "procinfo". Note that we expect to
6910 find this note before any of the others, which is fine,
6911 since the kernel writes this note out first when it
6912 creates a core file. */
6913
6914 return elfcore_grok_netbsd_procinfo (abfd, note);
6915 }
6916
6917 /* As of Jan 2002 there are no other machine-independent notes
6918 defined for NetBSD core files. If the note type is less
6919 than the start of the machine-dependent note types, we don't
6920 understand it. */
6921
6922 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6923 return TRUE;
6924
6925
6926 switch (bfd_get_arch (abfd))
6927 {
6928 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6929 PT_GETFPREGS == mach+2. */
6930
6931 case bfd_arch_alpha:
6932 case bfd_arch_sparc:
6933 switch (note->type)
6934 {
6935 case NT_NETBSDCORE_FIRSTMACH+0:
6936 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6937
6938 case NT_NETBSDCORE_FIRSTMACH+2:
6939 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6940
6941 default:
6942 return TRUE;
6943 }
6944
6945 /* On all other arch's, PT_GETREGS == mach+1 and
6946 PT_GETFPREGS == mach+3. */
6947
6948 default:
6949 switch (note->type)
6950 {
6951 case NT_NETBSDCORE_FIRSTMACH+1:
6952 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6953
6954 case NT_NETBSDCORE_FIRSTMACH+3:
6955 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6956
6957 default:
6958 return TRUE;
6959 }
6960 }
6961 /* NOTREACHED */
6962 }
6963
6964 static bfd_boolean
6965 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
6966 {
6967 void *ddata = note->descdata;
6968 char buf[100];
6969 char *name;
6970 asection *sect;
6971 short sig;
6972 unsigned flags;
6973
6974 /* nto_procfs_status 'pid' field is at offset 0. */
6975 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
6976
6977 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
6978 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
6979
6980 /* nto_procfs_status 'flags' field is at offset 8. */
6981 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
6982
6983 /* nto_procfs_status 'what' field is at offset 14. */
6984 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
6985 {
6986 elf_tdata (abfd)->core_signal = sig;
6987 elf_tdata (abfd)->core_lwpid = *tid;
6988 }
6989
6990 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
6991 do not come from signals so we make sure we set the current
6992 thread just in case. */
6993 if (flags & 0x00000080)
6994 elf_tdata (abfd)->core_lwpid = *tid;
6995
6996 /* Make a ".qnx_core_status/%d" section. */
6997 sprintf (buf, ".qnx_core_status/%d", *tid);
6998
6999 name = bfd_alloc (abfd, strlen (buf) + 1);
7000 if (name == NULL)
7001 return FALSE;
7002 strcpy (name, buf);
7003
7004 sect = bfd_make_section_anyway (abfd, name);
7005 if (sect == NULL)
7006 return FALSE;
7007
7008 sect->_raw_size = note->descsz;
7009 sect->filepos = note->descpos;
7010 sect->flags = SEC_HAS_CONTENTS;
7011 sect->alignment_power = 2;
7012
7013 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7014 }
7015
7016 static bfd_boolean
7017 elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
7018 {
7019 char buf[100];
7020 char *name;
7021 asection *sect;
7022
7023 /* Make a ".reg/%d" section. */
7024 sprintf (buf, ".reg/%d", tid);
7025
7026 name = bfd_alloc (abfd, strlen (buf) + 1);
7027 if (name == NULL)
7028 return FALSE;
7029 strcpy (name, buf);
7030
7031 sect = bfd_make_section_anyway (abfd, name);
7032 if (sect == NULL)
7033 return FALSE;
7034
7035 sect->_raw_size = note->descsz;
7036 sect->filepos = note->descpos;
7037 sect->flags = SEC_HAS_CONTENTS;
7038 sect->alignment_power = 2;
7039
7040 /* This is the current thread. */
7041 if (elf_tdata (abfd)->core_lwpid == tid)
7042 return elfcore_maybe_make_sect (abfd, ".reg", sect);
7043
7044 return TRUE;
7045 }
7046
7047 #define BFD_QNT_CORE_INFO 7
7048 #define BFD_QNT_CORE_STATUS 8
7049 #define BFD_QNT_CORE_GREG 9
7050 #define BFD_QNT_CORE_FPREG 10
7051
7052 static bfd_boolean
7053 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7054 {
7055 /* Every GREG section has a STATUS section before it. Store the
7056 tid from the previous call to pass down to the next gregs
7057 function. */
7058 static pid_t tid = 1;
7059
7060 switch (note->type)
7061 {
7062 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7063 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7064 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7065 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7066 default: return TRUE;
7067 }
7068 }
7069
7070 /* Function: elfcore_write_note
7071
7072 Inputs:
7073 buffer to hold note
7074 name of note
7075 type of note
7076 data for note
7077 size of data for note
7078
7079 Return:
7080 End of buffer containing note. */
7081
7082 char *
7083 elfcore_write_note (bfd *abfd,
7084 char *buf,
7085 int *bufsiz,
7086 const char *name,
7087 int type,
7088 const void *input,
7089 int size)
7090 {
7091 Elf_External_Note *xnp;
7092 size_t namesz;
7093 size_t pad;
7094 size_t newspace;
7095 char *p, *dest;
7096
7097 namesz = 0;
7098 pad = 0;
7099 if (name != NULL)
7100 {
7101 const struct elf_backend_data *bed;
7102
7103 namesz = strlen (name) + 1;
7104 bed = get_elf_backend_data (abfd);
7105 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7106 }
7107
7108 newspace = 12 + namesz + pad + size;
7109
7110 p = realloc (buf, *bufsiz + newspace);
7111 dest = p + *bufsiz;
7112 *bufsiz += newspace;
7113 xnp = (Elf_External_Note *) dest;
7114 H_PUT_32 (abfd, namesz, xnp->namesz);
7115 H_PUT_32 (abfd, size, xnp->descsz);
7116 H_PUT_32 (abfd, type, xnp->type);
7117 dest = xnp->name;
7118 if (name != NULL)
7119 {
7120 memcpy (dest, name, namesz);
7121 dest += namesz;
7122 while (pad != 0)
7123 {
7124 *dest++ = '\0';
7125 --pad;
7126 }
7127 }
7128 memcpy (dest, input, size);
7129 return p;
7130 }
7131
7132 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7133 char *
7134 elfcore_write_prpsinfo (bfd *abfd,
7135 char *buf,
7136 int *bufsiz,
7137 const char *fname,
7138 const char *psargs)
7139 {
7140 int note_type;
7141 char *note_name = "CORE";
7142
7143 #if defined (HAVE_PSINFO_T)
7144 psinfo_t data;
7145 note_type = NT_PSINFO;
7146 #else
7147 prpsinfo_t data;
7148 note_type = NT_PRPSINFO;
7149 #endif
7150
7151 memset (&data, 0, sizeof (data));
7152 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7153 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7154 return elfcore_write_note (abfd, buf, bufsiz,
7155 note_name, note_type, &data, sizeof (data));
7156 }
7157 #endif /* PSINFO_T or PRPSINFO_T */
7158
7159 #if defined (HAVE_PRSTATUS_T)
7160 char *
7161 elfcore_write_prstatus (bfd *abfd,
7162 char *buf,
7163 int *bufsiz,
7164 long pid,
7165 int cursig,
7166 const void *gregs)
7167 {
7168 prstatus_t prstat;
7169 char *note_name = "CORE";
7170
7171 memset (&prstat, 0, sizeof (prstat));
7172 prstat.pr_pid = pid;
7173 prstat.pr_cursig = cursig;
7174 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7175 return elfcore_write_note (abfd, buf, bufsiz,
7176 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7177 }
7178 #endif /* HAVE_PRSTATUS_T */
7179
7180 #if defined (HAVE_LWPSTATUS_T)
7181 char *
7182 elfcore_write_lwpstatus (bfd *abfd,
7183 char *buf,
7184 int *bufsiz,
7185 long pid,
7186 int cursig,
7187 const void *gregs)
7188 {
7189 lwpstatus_t lwpstat;
7190 char *note_name = "CORE";
7191
7192 memset (&lwpstat, 0, sizeof (lwpstat));
7193 lwpstat.pr_lwpid = pid >> 16;
7194 lwpstat.pr_cursig = cursig;
7195 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7196 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7197 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7198 #if !defined(gregs)
7199 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7200 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7201 #else
7202 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7203 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7204 #endif
7205 #endif
7206 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7207 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7208 }
7209 #endif /* HAVE_LWPSTATUS_T */
7210
7211 #if defined (HAVE_PSTATUS_T)
7212 char *
7213 elfcore_write_pstatus (bfd *abfd,
7214 char *buf,
7215 int *bufsiz,
7216 long pid,
7217 int cursig,
7218 const void *gregs)
7219 {
7220 pstatus_t pstat;
7221 char *note_name = "CORE";
7222
7223 memset (&pstat, 0, sizeof (pstat));
7224 pstat.pr_pid = pid & 0xffff;
7225 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7226 NT_PSTATUS, &pstat, sizeof (pstat));
7227 return buf;
7228 }
7229 #endif /* HAVE_PSTATUS_T */
7230
7231 char *
7232 elfcore_write_prfpreg (bfd *abfd,
7233 char *buf,
7234 int *bufsiz,
7235 const void *fpregs,
7236 int size)
7237 {
7238 char *note_name = "CORE";
7239 return elfcore_write_note (abfd, buf, bufsiz,
7240 note_name, NT_FPREGSET, fpregs, size);
7241 }
7242
7243 char *
7244 elfcore_write_prxfpreg (bfd *abfd,
7245 char *buf,
7246 int *bufsiz,
7247 const void *xfpregs,
7248 int size)
7249 {
7250 char *note_name = "LINUX";
7251 return elfcore_write_note (abfd, buf, bufsiz,
7252 note_name, NT_PRXFPREG, xfpregs, size);
7253 }
7254
7255 static bfd_boolean
7256 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7257 {
7258 char *buf;
7259 char *p;
7260
7261 if (size <= 0)
7262 return TRUE;
7263
7264 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7265 return FALSE;
7266
7267 buf = bfd_malloc (size);
7268 if (buf == NULL)
7269 return FALSE;
7270
7271 if (bfd_bread (buf, size, abfd) != size)
7272 {
7273 error:
7274 free (buf);
7275 return FALSE;
7276 }
7277
7278 p = buf;
7279 while (p < buf + size)
7280 {
7281 /* FIXME: bad alignment assumption. */
7282 Elf_External_Note *xnp = (Elf_External_Note *) p;
7283 Elf_Internal_Note in;
7284
7285 in.type = H_GET_32 (abfd, xnp->type);
7286
7287 in.namesz = H_GET_32 (abfd, xnp->namesz);
7288 in.namedata = xnp->name;
7289
7290 in.descsz = H_GET_32 (abfd, xnp->descsz);
7291 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7292 in.descpos = offset + (in.descdata - buf);
7293
7294 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7295 {
7296 if (! elfcore_grok_netbsd_note (abfd, &in))
7297 goto error;
7298 }
7299 else if (strncmp (in.namedata, "QNX", 3) == 0)
7300 {
7301 if (! elfcore_grok_nto_note (abfd, &in))
7302 goto error;
7303 }
7304 else
7305 {
7306 if (! elfcore_grok_note (abfd, &in))
7307 goto error;
7308 }
7309
7310 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7311 }
7312
7313 free (buf);
7314 return TRUE;
7315 }
7316 \f
7317 /* Providing external access to the ELF program header table. */
7318
7319 /* Return an upper bound on the number of bytes required to store a
7320 copy of ABFD's program header table entries. Return -1 if an error
7321 occurs; bfd_get_error will return an appropriate code. */
7322
7323 long
7324 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7325 {
7326 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7327 {
7328 bfd_set_error (bfd_error_wrong_format);
7329 return -1;
7330 }
7331
7332 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7333 }
7334
7335 /* Copy ABFD's program header table entries to *PHDRS. The entries
7336 will be stored as an array of Elf_Internal_Phdr structures, as
7337 defined in include/elf/internal.h. To find out how large the
7338 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7339
7340 Return the number of program header table entries read, or -1 if an
7341 error occurs; bfd_get_error will return an appropriate code. */
7342
7343 int
7344 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7345 {
7346 int num_phdrs;
7347
7348 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7349 {
7350 bfd_set_error (bfd_error_wrong_format);
7351 return -1;
7352 }
7353
7354 num_phdrs = elf_elfheader (abfd)->e_phnum;
7355 memcpy (phdrs, elf_tdata (abfd)->phdr,
7356 num_phdrs * sizeof (Elf_Internal_Phdr));
7357
7358 return num_phdrs;
7359 }
7360
7361 void
7362 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7363 {
7364 #ifdef BFD64
7365 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7366
7367 i_ehdrp = elf_elfheader (abfd);
7368 if (i_ehdrp == NULL)
7369 sprintf_vma (buf, value);
7370 else
7371 {
7372 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7373 {
7374 #if BFD_HOST_64BIT_LONG
7375 sprintf (buf, "%016lx", value);
7376 #else
7377 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7378 _bfd_int64_low (value));
7379 #endif
7380 }
7381 else
7382 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7383 }
7384 #else
7385 sprintf_vma (buf, value);
7386 #endif
7387 }
7388
7389 void
7390 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7391 {
7392 #ifdef BFD64
7393 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7394
7395 i_ehdrp = elf_elfheader (abfd);
7396 if (i_ehdrp == NULL)
7397 fprintf_vma ((FILE *) stream, value);
7398 else
7399 {
7400 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7401 {
7402 #if BFD_HOST_64BIT_LONG
7403 fprintf ((FILE *) stream, "%016lx", value);
7404 #else
7405 fprintf ((FILE *) stream, "%08lx%08lx",
7406 _bfd_int64_high (value), _bfd_int64_low (value));
7407 #endif
7408 }
7409 else
7410 fprintf ((FILE *) stream, "%08lx",
7411 (unsigned long) (value & 0xffffffff));
7412 }
7413 #else
7414 fprintf_vma ((FILE *) stream, value);
7415 #endif
7416 }
7417
7418 enum elf_reloc_type_class
7419 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7420 {
7421 return reloc_class_normal;
7422 }
7423
7424 /* For RELA architectures, return the relocation value for a
7425 relocation against a local symbol. */
7426
7427 bfd_vma
7428 _bfd_elf_rela_local_sym (bfd *abfd,
7429 Elf_Internal_Sym *sym,
7430 asection **psec,
7431 Elf_Internal_Rela *rel)
7432 {
7433 asection *sec = *psec;
7434 bfd_vma relocation;
7435
7436 relocation = (sec->output_section->vma
7437 + sec->output_offset
7438 + sym->st_value);
7439 if ((sec->flags & SEC_MERGE)
7440 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7441 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7442 {
7443 rel->r_addend =
7444 _bfd_merged_section_offset (abfd, psec,
7445 elf_section_data (sec)->sec_info,
7446 sym->st_value + rel->r_addend,
7447 0);
7448 sec = *psec;
7449 rel->r_addend -= relocation;
7450 rel->r_addend += sec->output_section->vma + sec->output_offset;
7451 }
7452 return relocation;
7453 }
7454
7455 bfd_vma
7456 _bfd_elf_rel_local_sym (bfd *abfd,
7457 Elf_Internal_Sym *sym,
7458 asection **psec,
7459 bfd_vma addend)
7460 {
7461 asection *sec = *psec;
7462
7463 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7464 return sym->st_value + addend;
7465
7466 return _bfd_merged_section_offset (abfd, psec,
7467 elf_section_data (sec)->sec_info,
7468 sym->st_value + addend, 0);
7469 }
7470
7471 bfd_vma
7472 _bfd_elf_section_offset (bfd *abfd,
7473 struct bfd_link_info *info,
7474 asection *sec,
7475 bfd_vma offset)
7476 {
7477 struct bfd_elf_section_data *sec_data;
7478
7479 sec_data = elf_section_data (sec);
7480 switch (sec->sec_info_type)
7481 {
7482 case ELF_INFO_TYPE_STABS:
7483 return _bfd_stab_section_offset (abfd,
7484 &elf_hash_table (info)->merge_info,
7485 sec, &sec_data->sec_info, offset);
7486 case ELF_INFO_TYPE_EH_FRAME:
7487 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7488 default:
7489 return offset;
7490 }
7491 }
7492 \f
7493 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7494 reconstruct an ELF file by reading the segments out of remote memory
7495 based on the ELF file header at EHDR_VMA and the ELF program headers it
7496 points to. If not null, *LOADBASEP is filled in with the difference
7497 between the VMAs from which the segments were read, and the VMAs the
7498 file headers (and hence BFD's idea of each section's VMA) put them at.
7499
7500 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7501 remote memory at target address VMA into the local buffer at MYADDR; it
7502 should return zero on success or an `errno' code on failure. TEMPL must
7503 be a BFD for an ELF target with the word size and byte order found in
7504 the remote memory. */
7505
7506 bfd *
7507 bfd_elf_bfd_from_remote_memory
7508 (bfd *templ,
7509 bfd_vma ehdr_vma,
7510 bfd_vma *loadbasep,
7511 int (*target_read_memory) (bfd_vma, char *, int))
7512 {
7513 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7514 (templ, ehdr_vma, loadbasep, target_read_memory);
7515 }
7516 \f
7517 long
7518 _bfd_elf_get_synthetic_symtab (bfd *abfd, asymbol **dynsyms, asymbol **ret)
7519 {
7520 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7521 asection *relplt;
7522 asymbol *s;
7523 const char *relplt_name;
7524 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7525 arelent *p;
7526 long count, i, n;
7527 size_t size;
7528 Elf_Internal_Shdr *hdr;
7529 char *names;
7530 asection *plt;
7531
7532 *ret = NULL;
7533 if (!bed->plt_sym_val)
7534 return 0;
7535
7536 relplt_name = bed->relplt_name;
7537 if (relplt_name == NULL)
7538 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7539 relplt = bfd_get_section_by_name (abfd, relplt_name);
7540 if (relplt == NULL)
7541 return 0;
7542
7543 hdr = &elf_section_data (relplt)->this_hdr;
7544 if (hdr->sh_link != elf_dynsymtab (abfd)
7545 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7546 return 0;
7547
7548 plt = bfd_get_section_by_name (abfd, ".plt");
7549 if (plt == NULL)
7550 return 0;
7551
7552 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7553 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7554 return -1;
7555
7556 count = relplt->_raw_size / hdr->sh_entsize;
7557 size = count * sizeof (asymbol);
7558 p = relplt->relocation;
7559 for (i = 0; i < count; i++, s++, p++)
7560 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7561
7562 s = *ret = bfd_malloc (size);
7563 if (s == NULL)
7564 return -1;
7565
7566 names = (char *) (s + count);
7567 p = relplt->relocation;
7568 n = 0;
7569 for (i = 0; i < count; i++, s++, p++)
7570 {
7571 size_t len;
7572 bfd_vma addr;
7573
7574 addr = bed->plt_sym_val (i, plt, p);
7575 if (addr == (bfd_vma) -1)
7576 continue;
7577
7578 *s = **p->sym_ptr_ptr;
7579 s->section = plt;
7580 s->value = addr - plt->vma;
7581 s->name = names;
7582 len = strlen ((*p->sym_ptr_ptr)->name);
7583 memcpy (names, (*p->sym_ptr_ptr)->name, len);
7584 names += len;
7585 memcpy (names, "@plt", sizeof ("@plt"));
7586 names += sizeof ("@plt");
7587 ++n;
7588 }
7589
7590 return n;
7591 }
This page took 0.1803 seconds and 5 git commands to generate.