* elf.c (elfcore_grok_win32pstatus): Warning fixes.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static bfd_byte *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 bfd_byte *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 bfd_byte *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return NULL;
263
264 shstrtab = i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return (char *) shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
295 (*_bfd_error_handler)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd, strindex, (unsigned long) hdr->sh_size,
298 (shindex == shstrndx && strindex == hdr->sh_name
299 ? ".shstrtab"
300 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_sym_name (bfd *abfd,
409 Elf_Internal_Shdr *symtab_hdr,
410 Elf_Internal_Sym *isym)
411 {
412 unsigned int iname = isym->st_name;
413 unsigned int shindex = symtab_hdr->sh_link;
414 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
415 /* Check for a bogus st_shndx to avoid crashing. */
416 && isym->st_shndx < elf_numsections (abfd)
417 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
418 {
419 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
420 shindex = elf_elfheader (abfd)->e_shstrndx;
421 }
422
423 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
424 }
425
426 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
427 sections. The first element is the flags, the rest are section
428 pointers. */
429
430 typedef union elf_internal_group {
431 Elf_Internal_Shdr *shdr;
432 unsigned int flags;
433 } Elf_Internal_Group;
434
435 /* Return the name of the group signature symbol. Why isn't the
436 signature just a string? */
437
438 static const char *
439 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
440 {
441 Elf_Internal_Shdr *hdr;
442 unsigned char esym[sizeof (Elf64_External_Sym)];
443 Elf_External_Sym_Shndx eshndx;
444 Elf_Internal_Sym isym;
445
446 /* First we need to ensure the symbol table is available. */
447 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
448 return NULL;
449
450 /* Go read the symbol. */
451 hdr = &elf_tdata (abfd)->symtab_hdr;
452 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
453 &isym, esym, &eshndx) == NULL)
454 return NULL;
455
456 return bfd_elf_sym_name (abfd, hdr, &isym);
457 }
458
459 /* Set next_in_group list pointer, and group name for NEWSECT. */
460
461 static bfd_boolean
462 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
463 {
464 unsigned int num_group = elf_tdata (abfd)->num_group;
465
466 /* If num_group is zero, read in all SHT_GROUP sections. The count
467 is set to -1 if there are no SHT_GROUP sections. */
468 if (num_group == 0)
469 {
470 unsigned int i, shnum;
471
472 /* First count the number of groups. If we have a SHT_GROUP
473 section with just a flag word (ie. sh_size is 4), ignore it. */
474 shnum = elf_numsections (abfd);
475 num_group = 0;
476 for (i = 0; i < shnum; i++)
477 {
478 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
479 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
480 num_group += 1;
481 }
482
483 if (num_group == 0)
484 num_group = (unsigned) -1;
485 elf_tdata (abfd)->num_group = num_group;
486
487 if (num_group > 0)
488 {
489 /* We keep a list of elf section headers for group sections,
490 so we can find them quickly. */
491 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
492 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
493 if (elf_tdata (abfd)->group_sect_ptr == NULL)
494 return FALSE;
495
496 num_group = 0;
497 for (i = 0; i < shnum; i++)
498 {
499 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
500 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
501 {
502 unsigned char *src;
503 Elf_Internal_Group *dest;
504
505 /* Add to list of sections. */
506 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
507 num_group += 1;
508
509 /* Read the raw contents. */
510 BFD_ASSERT (sizeof (*dest) >= 4);
511 amt = shdr->sh_size * sizeof (*dest) / 4;
512 shdr->contents = bfd_alloc (abfd, amt);
513 if (shdr->contents == NULL
514 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
515 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
516 != shdr->sh_size))
517 return FALSE;
518
519 /* Translate raw contents, a flag word followed by an
520 array of elf section indices all in target byte order,
521 to the flag word followed by an array of elf section
522 pointers. */
523 src = shdr->contents + shdr->sh_size;
524 dest = (Elf_Internal_Group *) (shdr->contents + amt);
525 while (1)
526 {
527 unsigned int idx;
528
529 src -= 4;
530 --dest;
531 idx = H_GET_32 (abfd, src);
532 if (src == shdr->contents)
533 {
534 dest->flags = idx;
535 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
536 shdr->bfd_section->flags
537 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
538 break;
539 }
540 if (idx >= shnum)
541 {
542 ((*_bfd_error_handler)
543 (_("%B: invalid SHT_GROUP entry"), abfd));
544 idx = 0;
545 }
546 dest->shdr = elf_elfsections (abfd)[idx];
547 }
548 }
549 }
550 }
551 }
552
553 if (num_group != (unsigned) -1)
554 {
555 unsigned int i;
556
557 for (i = 0; i < num_group; i++)
558 {
559 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
560 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
561 unsigned int n_elt = shdr->sh_size / 4;
562
563 /* Look through this group's sections to see if current
564 section is a member. */
565 while (--n_elt != 0)
566 if ((++idx)->shdr == hdr)
567 {
568 asection *s = NULL;
569
570 /* We are a member of this group. Go looking through
571 other members to see if any others are linked via
572 next_in_group. */
573 idx = (Elf_Internal_Group *) shdr->contents;
574 n_elt = shdr->sh_size / 4;
575 while (--n_elt != 0)
576 if ((s = (++idx)->shdr->bfd_section) != NULL
577 && elf_next_in_group (s) != NULL)
578 break;
579 if (n_elt != 0)
580 {
581 /* Snarf the group name from other member, and
582 insert current section in circular list. */
583 elf_group_name (newsect) = elf_group_name (s);
584 elf_next_in_group (newsect) = elf_next_in_group (s);
585 elf_next_in_group (s) = newsect;
586 }
587 else
588 {
589 const char *gname;
590
591 gname = group_signature (abfd, shdr);
592 if (gname == NULL)
593 return FALSE;
594 elf_group_name (newsect) = gname;
595
596 /* Start a circular list with one element. */
597 elf_next_in_group (newsect) = newsect;
598 }
599
600 /* If the group section has been created, point to the
601 new member. */
602 if (shdr->bfd_section != NULL)
603 elf_next_in_group (shdr->bfd_section) = newsect;
604
605 i = num_group - 1;
606 break;
607 }
608 }
609 }
610
611 if (elf_group_name (newsect) == NULL)
612 {
613 (*_bfd_error_handler) (_("%B: no group info for section %A"),
614 abfd, newsect);
615 }
616 return TRUE;
617 }
618
619 bfd_boolean
620 _bfd_elf_setup_group_pointers (bfd *abfd)
621 {
622 unsigned int i;
623 unsigned int num_group = elf_tdata (abfd)->num_group;
624 bfd_boolean result = TRUE;
625
626 if (num_group == (unsigned) -1)
627 return result;
628
629 for (i = 0; i < num_group; i++)
630 {
631 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
632 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
633 unsigned int n_elt = shdr->sh_size / 4;
634
635 while (--n_elt != 0)
636 if ((++idx)->shdr->bfd_section)
637 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
638 else if (idx->shdr->sh_type == SHT_RELA
639 || idx->shdr->sh_type == SHT_REL)
640 /* We won't include relocation sections in section groups in
641 output object files. We adjust the group section size here
642 so that relocatable link will work correctly when
643 relocation sections are in section group in input object
644 files. */
645 shdr->bfd_section->size -= 4;
646 else
647 {
648 /* There are some unknown sections in the group. */
649 (*_bfd_error_handler)
650 (_("%B: unknown [%d] section `%s' in group [%s]"),
651 abfd,
652 (unsigned int) idx->shdr->sh_type,
653 bfd_elf_string_from_elf_section (abfd,
654 (elf_elfheader (abfd)
655 ->e_shstrndx),
656 idx->shdr->sh_name),
657 shdr->bfd_section->name);
658 result = FALSE;
659 }
660 }
661 return result;
662 }
663
664 bfd_boolean
665 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
666 {
667 return elf_next_in_group (sec) != NULL;
668 }
669
670 /* Make a BFD section from an ELF section. We store a pointer to the
671 BFD section in the bfd_section field of the header. */
672
673 bfd_boolean
674 _bfd_elf_make_section_from_shdr (bfd *abfd,
675 Elf_Internal_Shdr *hdr,
676 const char *name)
677 {
678 asection *newsect;
679 flagword flags;
680 const struct elf_backend_data *bed;
681
682 if (hdr->bfd_section != NULL)
683 {
684 BFD_ASSERT (strcmp (name,
685 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
686 return TRUE;
687 }
688
689 newsect = bfd_make_section_anyway (abfd, name);
690 if (newsect == NULL)
691 return FALSE;
692
693 hdr->bfd_section = newsect;
694 elf_section_data (newsect)->this_hdr = *hdr;
695
696 /* Always use the real type/flags. */
697 elf_section_type (newsect) = hdr->sh_type;
698 elf_section_flags (newsect) = hdr->sh_flags;
699
700 newsect->filepos = hdr->sh_offset;
701
702 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
703 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
704 || ! bfd_set_section_alignment (abfd, newsect,
705 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
706 return FALSE;
707
708 flags = SEC_NO_FLAGS;
709 if (hdr->sh_type != SHT_NOBITS)
710 flags |= SEC_HAS_CONTENTS;
711 if (hdr->sh_type == SHT_GROUP)
712 flags |= SEC_GROUP | SEC_EXCLUDE;
713 if ((hdr->sh_flags & SHF_ALLOC) != 0)
714 {
715 flags |= SEC_ALLOC;
716 if (hdr->sh_type != SHT_NOBITS)
717 flags |= SEC_LOAD;
718 }
719 if ((hdr->sh_flags & SHF_WRITE) == 0)
720 flags |= SEC_READONLY;
721 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
722 flags |= SEC_CODE;
723 else if ((flags & SEC_LOAD) != 0)
724 flags |= SEC_DATA;
725 if ((hdr->sh_flags & SHF_MERGE) != 0)
726 {
727 flags |= SEC_MERGE;
728 newsect->entsize = hdr->sh_entsize;
729 if ((hdr->sh_flags & SHF_STRINGS) != 0)
730 flags |= SEC_STRINGS;
731 }
732 if (hdr->sh_flags & SHF_GROUP)
733 if (!setup_group (abfd, hdr, newsect))
734 return FALSE;
735 if ((hdr->sh_flags & SHF_TLS) != 0)
736 flags |= SEC_THREAD_LOCAL;
737
738 /* The debugging sections appear to be recognized only by name, not
739 any sort of flag. */
740 {
741 static const char *debug_sec_names [] =
742 {
743 ".debug",
744 ".gnu.linkonce.wi.",
745 ".line",
746 ".stab"
747 };
748 int i;
749
750 for (i = ARRAY_SIZE (debug_sec_names); i--;)
751 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
752 break;
753
754 if (i >= 0)
755 flags |= SEC_DEBUGGING;
756 }
757
758 /* As a GNU extension, if the name begins with .gnu.linkonce, we
759 only link a single copy of the section. This is used to support
760 g++. g++ will emit each template expansion in its own section.
761 The symbols will be defined as weak, so that multiple definitions
762 are permitted. The GNU linker extension is to actually discard
763 all but one of the sections. */
764 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
765 && elf_next_in_group (newsect) == NULL)
766 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
767
768 bed = get_elf_backend_data (abfd);
769 if (bed->elf_backend_section_flags)
770 if (! bed->elf_backend_section_flags (&flags, hdr))
771 return FALSE;
772
773 if (! bfd_set_section_flags (abfd, newsect, flags))
774 return FALSE;
775
776 if ((flags & SEC_ALLOC) != 0)
777 {
778 Elf_Internal_Phdr *phdr;
779 unsigned int i;
780
781 /* Look through the phdrs to see if we need to adjust the lma.
782 If all the p_paddr fields are zero, we ignore them, since
783 some ELF linkers produce such output. */
784 phdr = elf_tdata (abfd)->phdr;
785 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
786 {
787 if (phdr->p_paddr != 0)
788 break;
789 }
790 if (i < elf_elfheader (abfd)->e_phnum)
791 {
792 phdr = elf_tdata (abfd)->phdr;
793 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
794 {
795 /* This section is part of this segment if its file
796 offset plus size lies within the segment's memory
797 span and, if the section is loaded, the extent of the
798 loaded data lies within the extent of the segment.
799
800 Note - we used to check the p_paddr field as well, and
801 refuse to set the LMA if it was 0. This is wrong
802 though, as a perfectly valid initialised segment can
803 have a p_paddr of zero. Some architectures, eg ARM,
804 place special significance on the address 0 and
805 executables need to be able to have a segment which
806 covers this address. */
807 if (phdr->p_type == PT_LOAD
808 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
809 && (hdr->sh_offset + hdr->sh_size
810 <= phdr->p_offset + phdr->p_memsz)
811 && ((flags & SEC_LOAD) == 0
812 || (hdr->sh_offset + hdr->sh_size
813 <= phdr->p_offset + phdr->p_filesz)))
814 {
815 if ((flags & SEC_LOAD) == 0)
816 newsect->lma = (phdr->p_paddr
817 + hdr->sh_addr - phdr->p_vaddr);
818 else
819 /* We used to use the same adjustment for SEC_LOAD
820 sections, but that doesn't work if the segment
821 is packed with code from multiple VMAs.
822 Instead we calculate the section LMA based on
823 the segment LMA. It is assumed that the
824 segment will contain sections with contiguous
825 LMAs, even if the VMAs are not. */
826 newsect->lma = (phdr->p_paddr
827 + hdr->sh_offset - phdr->p_offset);
828
829 /* With contiguous segments, we can't tell from file
830 offsets whether a section with zero size should
831 be placed at the end of one segment or the
832 beginning of the next. Decide based on vaddr. */
833 if (hdr->sh_addr >= phdr->p_vaddr
834 && (hdr->sh_addr + hdr->sh_size
835 <= phdr->p_vaddr + phdr->p_memsz))
836 break;
837 }
838 }
839 }
840 }
841
842 return TRUE;
843 }
844
845 /*
846 INTERNAL_FUNCTION
847 bfd_elf_find_section
848
849 SYNOPSIS
850 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
851
852 DESCRIPTION
853 Helper functions for GDB to locate the string tables.
854 Since BFD hides string tables from callers, GDB needs to use an
855 internal hook to find them. Sun's .stabstr, in particular,
856 isn't even pointed to by the .stab section, so ordinary
857 mechanisms wouldn't work to find it, even if we had some.
858 */
859
860 struct elf_internal_shdr *
861 bfd_elf_find_section (bfd *abfd, char *name)
862 {
863 Elf_Internal_Shdr **i_shdrp;
864 char *shstrtab;
865 unsigned int max;
866 unsigned int i;
867
868 i_shdrp = elf_elfsections (abfd);
869 if (i_shdrp != NULL)
870 {
871 shstrtab = bfd_elf_get_str_section (abfd,
872 elf_elfheader (abfd)->e_shstrndx);
873 if (shstrtab != NULL)
874 {
875 max = elf_numsections (abfd);
876 for (i = 1; i < max; i++)
877 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
878 return i_shdrp[i];
879 }
880 }
881 return 0;
882 }
883
884 const char *const bfd_elf_section_type_names[] = {
885 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
886 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
887 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
888 };
889
890 /* ELF relocs are against symbols. If we are producing relocatable
891 output, and the reloc is against an external symbol, and nothing
892 has given us any additional addend, the resulting reloc will also
893 be against the same symbol. In such a case, we don't want to
894 change anything about the way the reloc is handled, since it will
895 all be done at final link time. Rather than put special case code
896 into bfd_perform_relocation, all the reloc types use this howto
897 function. It just short circuits the reloc if producing
898 relocatable output against an external symbol. */
899
900 bfd_reloc_status_type
901 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
902 arelent *reloc_entry,
903 asymbol *symbol,
904 void *data ATTRIBUTE_UNUSED,
905 asection *input_section,
906 bfd *output_bfd,
907 char **error_message ATTRIBUTE_UNUSED)
908 {
909 if (output_bfd != NULL
910 && (symbol->flags & BSF_SECTION_SYM) == 0
911 && (! reloc_entry->howto->partial_inplace
912 || reloc_entry->addend == 0))
913 {
914 reloc_entry->address += input_section->output_offset;
915 return bfd_reloc_ok;
916 }
917
918 return bfd_reloc_continue;
919 }
920 \f
921 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
922
923 static void
924 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
925 asection *sec)
926 {
927 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
928 sec->sec_info_type = ELF_INFO_TYPE_NONE;
929 }
930
931 /* Finish SHF_MERGE section merging. */
932
933 bfd_boolean
934 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
935 {
936 bfd *ibfd;
937 asection *sec;
938
939 if (!is_elf_hash_table (info->hash))
940 return FALSE;
941
942 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
943 if ((ibfd->flags & DYNAMIC) == 0)
944 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
945 if ((sec->flags & SEC_MERGE) != 0
946 && !bfd_is_abs_section (sec->output_section))
947 {
948 struct bfd_elf_section_data *secdata;
949
950 secdata = elf_section_data (sec);
951 if (! _bfd_add_merge_section (abfd,
952 &elf_hash_table (info)->merge_info,
953 sec, &secdata->sec_info))
954 return FALSE;
955 else if (secdata->sec_info)
956 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
957 }
958
959 if (elf_hash_table (info)->merge_info != NULL)
960 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
961 merge_sections_remove_hook);
962 return TRUE;
963 }
964
965 void
966 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
967 {
968 sec->output_section = bfd_abs_section_ptr;
969 sec->output_offset = sec->vma;
970 if (!is_elf_hash_table (info->hash))
971 return;
972
973 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
974 }
975 \f
976 /* Copy the program header and other data from one object module to
977 another. */
978
979 bfd_boolean
980 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
981 {
982 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
983 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
984 return TRUE;
985
986 BFD_ASSERT (!elf_flags_init (obfd)
987 || (elf_elfheader (obfd)->e_flags
988 == elf_elfheader (ibfd)->e_flags));
989
990 elf_gp (obfd) = elf_gp (ibfd);
991 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
992 elf_flags_init (obfd) = TRUE;
993 return TRUE;
994 }
995
996 /* Print out the program headers. */
997
998 bfd_boolean
999 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1000 {
1001 FILE *f = farg;
1002 Elf_Internal_Phdr *p;
1003 asection *s;
1004 bfd_byte *dynbuf = NULL;
1005
1006 p = elf_tdata (abfd)->phdr;
1007 if (p != NULL)
1008 {
1009 unsigned int i, c;
1010
1011 fprintf (f, _("\nProgram Header:\n"));
1012 c = elf_elfheader (abfd)->e_phnum;
1013 for (i = 0; i < c; i++, p++)
1014 {
1015 const char *pt;
1016 char buf[20];
1017
1018 switch (p->p_type)
1019 {
1020 case PT_NULL: pt = "NULL"; break;
1021 case PT_LOAD: pt = "LOAD"; break;
1022 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1023 case PT_INTERP: pt = "INTERP"; break;
1024 case PT_NOTE: pt = "NOTE"; break;
1025 case PT_SHLIB: pt = "SHLIB"; break;
1026 case PT_PHDR: pt = "PHDR"; break;
1027 case PT_TLS: pt = "TLS"; break;
1028 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1029 case PT_GNU_STACK: pt = "STACK"; break;
1030 case PT_GNU_RELRO: pt = "RELRO"; break;
1031 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1032 }
1033 fprintf (f, "%8s off 0x", pt);
1034 bfd_fprintf_vma (abfd, f, p->p_offset);
1035 fprintf (f, " vaddr 0x");
1036 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1037 fprintf (f, " paddr 0x");
1038 bfd_fprintf_vma (abfd, f, p->p_paddr);
1039 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1040 fprintf (f, " filesz 0x");
1041 bfd_fprintf_vma (abfd, f, p->p_filesz);
1042 fprintf (f, " memsz 0x");
1043 bfd_fprintf_vma (abfd, f, p->p_memsz);
1044 fprintf (f, " flags %c%c%c",
1045 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1046 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1047 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1048 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1049 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1050 fprintf (f, "\n");
1051 }
1052 }
1053
1054 s = bfd_get_section_by_name (abfd, ".dynamic");
1055 if (s != NULL)
1056 {
1057 int elfsec;
1058 unsigned long shlink;
1059 bfd_byte *extdyn, *extdynend;
1060 size_t extdynsize;
1061 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1062
1063 fprintf (f, _("\nDynamic Section:\n"));
1064
1065 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1066 goto error_return;
1067
1068 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1069 if (elfsec == -1)
1070 goto error_return;
1071 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1072
1073 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1074 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1075
1076 extdyn = dynbuf;
1077 extdynend = extdyn + s->size;
1078 for (; extdyn < extdynend; extdyn += extdynsize)
1079 {
1080 Elf_Internal_Dyn dyn;
1081 const char *name;
1082 char ab[20];
1083 bfd_boolean stringp;
1084
1085 (*swap_dyn_in) (abfd, extdyn, &dyn);
1086
1087 if (dyn.d_tag == DT_NULL)
1088 break;
1089
1090 stringp = FALSE;
1091 switch (dyn.d_tag)
1092 {
1093 default:
1094 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1095 name = ab;
1096 break;
1097
1098 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1099 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1100 case DT_PLTGOT: name = "PLTGOT"; break;
1101 case DT_HASH: name = "HASH"; break;
1102 case DT_STRTAB: name = "STRTAB"; break;
1103 case DT_SYMTAB: name = "SYMTAB"; break;
1104 case DT_RELA: name = "RELA"; break;
1105 case DT_RELASZ: name = "RELASZ"; break;
1106 case DT_RELAENT: name = "RELAENT"; break;
1107 case DT_STRSZ: name = "STRSZ"; break;
1108 case DT_SYMENT: name = "SYMENT"; break;
1109 case DT_INIT: name = "INIT"; break;
1110 case DT_FINI: name = "FINI"; break;
1111 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1112 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1113 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1114 case DT_REL: name = "REL"; break;
1115 case DT_RELSZ: name = "RELSZ"; break;
1116 case DT_RELENT: name = "RELENT"; break;
1117 case DT_PLTREL: name = "PLTREL"; break;
1118 case DT_DEBUG: name = "DEBUG"; break;
1119 case DT_TEXTREL: name = "TEXTREL"; break;
1120 case DT_JMPREL: name = "JMPREL"; break;
1121 case DT_BIND_NOW: name = "BIND_NOW"; break;
1122 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1123 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1124 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1125 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1126 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1127 case DT_FLAGS: name = "FLAGS"; break;
1128 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1129 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1130 case DT_CHECKSUM: name = "CHECKSUM"; break;
1131 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1132 case DT_MOVEENT: name = "MOVEENT"; break;
1133 case DT_MOVESZ: name = "MOVESZ"; break;
1134 case DT_FEATURE: name = "FEATURE"; break;
1135 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1136 case DT_SYMINSZ: name = "SYMINSZ"; break;
1137 case DT_SYMINENT: name = "SYMINENT"; break;
1138 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1139 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1140 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1141 case DT_PLTPAD: name = "PLTPAD"; break;
1142 case DT_MOVETAB: name = "MOVETAB"; break;
1143 case DT_SYMINFO: name = "SYMINFO"; break;
1144 case DT_RELACOUNT: name = "RELACOUNT"; break;
1145 case DT_RELCOUNT: name = "RELCOUNT"; break;
1146 case DT_FLAGS_1: name = "FLAGS_1"; break;
1147 case DT_VERSYM: name = "VERSYM"; break;
1148 case DT_VERDEF: name = "VERDEF"; break;
1149 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1150 case DT_VERNEED: name = "VERNEED"; break;
1151 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1152 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1153 case DT_USED: name = "USED"; break;
1154 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1155 }
1156
1157 fprintf (f, " %-11s ", name);
1158 if (! stringp)
1159 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1160 else
1161 {
1162 const char *string;
1163 unsigned int tagv = dyn.d_un.d_val;
1164
1165 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1166 if (string == NULL)
1167 goto error_return;
1168 fprintf (f, "%s", string);
1169 }
1170 fprintf (f, "\n");
1171 }
1172
1173 free (dynbuf);
1174 dynbuf = NULL;
1175 }
1176
1177 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1178 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1179 {
1180 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1181 return FALSE;
1182 }
1183
1184 if (elf_dynverdef (abfd) != 0)
1185 {
1186 Elf_Internal_Verdef *t;
1187
1188 fprintf (f, _("\nVersion definitions:\n"));
1189 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1190 {
1191 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1192 t->vd_flags, t->vd_hash, t->vd_nodename);
1193 if (t->vd_auxptr->vda_nextptr != NULL)
1194 {
1195 Elf_Internal_Verdaux *a;
1196
1197 fprintf (f, "\t");
1198 for (a = t->vd_auxptr->vda_nextptr;
1199 a != NULL;
1200 a = a->vda_nextptr)
1201 fprintf (f, "%s ", a->vda_nodename);
1202 fprintf (f, "\n");
1203 }
1204 }
1205 }
1206
1207 if (elf_dynverref (abfd) != 0)
1208 {
1209 Elf_Internal_Verneed *t;
1210
1211 fprintf (f, _("\nVersion References:\n"));
1212 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1213 {
1214 Elf_Internal_Vernaux *a;
1215
1216 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1217 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1218 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1219 a->vna_flags, a->vna_other, a->vna_nodename);
1220 }
1221 }
1222
1223 return TRUE;
1224
1225 error_return:
1226 if (dynbuf != NULL)
1227 free (dynbuf);
1228 return FALSE;
1229 }
1230
1231 /* Display ELF-specific fields of a symbol. */
1232
1233 void
1234 bfd_elf_print_symbol (bfd *abfd,
1235 void *filep,
1236 asymbol *symbol,
1237 bfd_print_symbol_type how)
1238 {
1239 FILE *file = filep;
1240 switch (how)
1241 {
1242 case bfd_print_symbol_name:
1243 fprintf (file, "%s", symbol->name);
1244 break;
1245 case bfd_print_symbol_more:
1246 fprintf (file, "elf ");
1247 bfd_fprintf_vma (abfd, file, symbol->value);
1248 fprintf (file, " %lx", (long) symbol->flags);
1249 break;
1250 case bfd_print_symbol_all:
1251 {
1252 const char *section_name;
1253 const char *name = NULL;
1254 const struct elf_backend_data *bed;
1255 unsigned char st_other;
1256 bfd_vma val;
1257
1258 section_name = symbol->section ? symbol->section->name : "(*none*)";
1259
1260 bed = get_elf_backend_data (abfd);
1261 if (bed->elf_backend_print_symbol_all)
1262 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1263
1264 if (name == NULL)
1265 {
1266 name = symbol->name;
1267 bfd_print_symbol_vandf (abfd, file, symbol);
1268 }
1269
1270 fprintf (file, " %s\t", section_name);
1271 /* Print the "other" value for a symbol. For common symbols,
1272 we've already printed the size; now print the alignment.
1273 For other symbols, we have no specified alignment, and
1274 we've printed the address; now print the size. */
1275 if (bfd_is_com_section (symbol->section))
1276 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1277 else
1278 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1279 bfd_fprintf_vma (abfd, file, val);
1280
1281 /* If we have version information, print it. */
1282 if (elf_tdata (abfd)->dynversym_section != 0
1283 && (elf_tdata (abfd)->dynverdef_section != 0
1284 || elf_tdata (abfd)->dynverref_section != 0))
1285 {
1286 unsigned int vernum;
1287 const char *version_string;
1288
1289 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1290
1291 if (vernum == 0)
1292 version_string = "";
1293 else if (vernum == 1)
1294 version_string = "Base";
1295 else if (vernum <= elf_tdata (abfd)->cverdefs)
1296 version_string =
1297 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1298 else
1299 {
1300 Elf_Internal_Verneed *t;
1301
1302 version_string = "";
1303 for (t = elf_tdata (abfd)->verref;
1304 t != NULL;
1305 t = t->vn_nextref)
1306 {
1307 Elf_Internal_Vernaux *a;
1308
1309 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1310 {
1311 if (a->vna_other == vernum)
1312 {
1313 version_string = a->vna_nodename;
1314 break;
1315 }
1316 }
1317 }
1318 }
1319
1320 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1321 fprintf (file, " %-11s", version_string);
1322 else
1323 {
1324 int i;
1325
1326 fprintf (file, " (%s)", version_string);
1327 for (i = 10 - strlen (version_string); i > 0; --i)
1328 putc (' ', file);
1329 }
1330 }
1331
1332 /* If the st_other field is not zero, print it. */
1333 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1334
1335 switch (st_other)
1336 {
1337 case 0: break;
1338 case STV_INTERNAL: fprintf (file, " .internal"); break;
1339 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1340 case STV_PROTECTED: fprintf (file, " .protected"); break;
1341 default:
1342 /* Some other non-defined flags are also present, so print
1343 everything hex. */
1344 fprintf (file, " 0x%02x", (unsigned int) st_other);
1345 }
1346
1347 fprintf (file, " %s", name);
1348 }
1349 break;
1350 }
1351 }
1352 \f
1353 /* Create an entry in an ELF linker hash table. */
1354
1355 struct bfd_hash_entry *
1356 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1357 struct bfd_hash_table *table,
1358 const char *string)
1359 {
1360 /* Allocate the structure if it has not already been allocated by a
1361 subclass. */
1362 if (entry == NULL)
1363 {
1364 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1365 if (entry == NULL)
1366 return entry;
1367 }
1368
1369 /* Call the allocation method of the superclass. */
1370 entry = _bfd_link_hash_newfunc (entry, table, string);
1371 if (entry != NULL)
1372 {
1373 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1374 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1375
1376 /* Set local fields. */
1377 ret->indx = -1;
1378 ret->dynindx = -1;
1379 ret->got = ret->plt = htab->init_refcount;
1380 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1381 - offsetof (struct elf_link_hash_entry, size)));
1382 /* Assume that we have been called by a non-ELF symbol reader.
1383 This flag is then reset by the code which reads an ELF input
1384 file. This ensures that a symbol created by a non-ELF symbol
1385 reader will have the flag set correctly. */
1386 ret->non_elf = 1;
1387 }
1388
1389 return entry;
1390 }
1391
1392 /* Copy data from an indirect symbol to its direct symbol, hiding the
1393 old indirect symbol. Also used for copying flags to a weakdef. */
1394
1395 void
1396 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1397 struct elf_link_hash_entry *dir,
1398 struct elf_link_hash_entry *ind)
1399 {
1400 bfd_signed_vma tmp;
1401 bfd_signed_vma lowest_valid = bed->can_refcount;
1402
1403 /* Copy down any references that we may have already seen to the
1404 symbol which just became indirect. */
1405
1406 dir->ref_dynamic |= ind->ref_dynamic;
1407 dir->ref_regular |= ind->ref_regular;
1408 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1409 dir->non_got_ref |= ind->non_got_ref;
1410 dir->needs_plt |= ind->needs_plt;
1411 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1412
1413 if (ind->root.type != bfd_link_hash_indirect)
1414 return;
1415
1416 /* Copy over the global and procedure linkage table refcount entries.
1417 These may have been already set up by a check_relocs routine. */
1418 tmp = dir->got.refcount;
1419 if (tmp < lowest_valid)
1420 {
1421 dir->got.refcount = ind->got.refcount;
1422 ind->got.refcount = tmp;
1423 }
1424 else
1425 BFD_ASSERT (ind->got.refcount < lowest_valid);
1426
1427 tmp = dir->plt.refcount;
1428 if (tmp < lowest_valid)
1429 {
1430 dir->plt.refcount = ind->plt.refcount;
1431 ind->plt.refcount = tmp;
1432 }
1433 else
1434 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1435
1436 if (dir->dynindx == -1)
1437 {
1438 dir->dynindx = ind->dynindx;
1439 dir->dynstr_index = ind->dynstr_index;
1440 ind->dynindx = -1;
1441 ind->dynstr_index = 0;
1442 }
1443 else
1444 BFD_ASSERT (ind->dynindx == -1);
1445 }
1446
1447 void
1448 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1449 struct elf_link_hash_entry *h,
1450 bfd_boolean force_local)
1451 {
1452 h->plt = elf_hash_table (info)->init_offset;
1453 h->needs_plt = 0;
1454 if (force_local)
1455 {
1456 h->forced_local = 1;
1457 if (h->dynindx != -1)
1458 {
1459 h->dynindx = -1;
1460 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1461 h->dynstr_index);
1462 }
1463 }
1464 }
1465
1466 /* Initialize an ELF linker hash table. */
1467
1468 bfd_boolean
1469 _bfd_elf_link_hash_table_init
1470 (struct elf_link_hash_table *table,
1471 bfd *abfd,
1472 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1473 struct bfd_hash_table *,
1474 const char *))
1475 {
1476 bfd_boolean ret;
1477
1478 table->dynamic_sections_created = FALSE;
1479 table->dynobj = NULL;
1480 /* Make sure can_refcount is extended to the width and signedness of
1481 init_refcount before we subtract one from it. */
1482 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1483 table->init_refcount.refcount -= 1;
1484 table->init_offset.offset = -(bfd_vma) 1;
1485 /* The first dynamic symbol is a dummy. */
1486 table->dynsymcount = 1;
1487 table->dynstr = NULL;
1488 table->bucketcount = 0;
1489 table->needed = NULL;
1490 table->hgot = NULL;
1491 table->merge_info = NULL;
1492 memset (&table->stab_info, 0, sizeof (table->stab_info));
1493 memset (&table->eh_info, 0, sizeof (table->eh_info));
1494 table->dynlocal = NULL;
1495 table->runpath = NULL;
1496 table->tls_sec = NULL;
1497 table->tls_size = 0;
1498 table->loaded = NULL;
1499 table->is_relocatable_executable = FALSE;
1500
1501 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1502 table->root.type = bfd_link_elf_hash_table;
1503
1504 return ret;
1505 }
1506
1507 /* Create an ELF linker hash table. */
1508
1509 struct bfd_link_hash_table *
1510 _bfd_elf_link_hash_table_create (bfd *abfd)
1511 {
1512 struct elf_link_hash_table *ret;
1513 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1514
1515 ret = bfd_malloc (amt);
1516 if (ret == NULL)
1517 return NULL;
1518
1519 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1520 {
1521 free (ret);
1522 return NULL;
1523 }
1524
1525 return &ret->root;
1526 }
1527
1528 /* This is a hook for the ELF emulation code in the generic linker to
1529 tell the backend linker what file name to use for the DT_NEEDED
1530 entry for a dynamic object. */
1531
1532 void
1533 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1534 {
1535 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1536 && bfd_get_format (abfd) == bfd_object)
1537 elf_dt_name (abfd) = name;
1538 }
1539
1540 int
1541 bfd_elf_get_dyn_lib_class (bfd *abfd)
1542 {
1543 int lib_class;
1544 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1545 && bfd_get_format (abfd) == bfd_object)
1546 lib_class = elf_dyn_lib_class (abfd);
1547 else
1548 lib_class = 0;
1549 return lib_class;
1550 }
1551
1552 void
1553 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1554 {
1555 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1556 && bfd_get_format (abfd) == bfd_object)
1557 elf_dyn_lib_class (abfd) = lib_class;
1558 }
1559
1560 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1561 the linker ELF emulation code. */
1562
1563 struct bfd_link_needed_list *
1564 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1565 struct bfd_link_info *info)
1566 {
1567 if (! is_elf_hash_table (info->hash))
1568 return NULL;
1569 return elf_hash_table (info)->needed;
1570 }
1571
1572 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1573 hook for the linker ELF emulation code. */
1574
1575 struct bfd_link_needed_list *
1576 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1577 struct bfd_link_info *info)
1578 {
1579 if (! is_elf_hash_table (info->hash))
1580 return NULL;
1581 return elf_hash_table (info)->runpath;
1582 }
1583
1584 /* Get the name actually used for a dynamic object for a link. This
1585 is the SONAME entry if there is one. Otherwise, it is the string
1586 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1587
1588 const char *
1589 bfd_elf_get_dt_soname (bfd *abfd)
1590 {
1591 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1592 && bfd_get_format (abfd) == bfd_object)
1593 return elf_dt_name (abfd);
1594 return NULL;
1595 }
1596
1597 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1598 the ELF linker emulation code. */
1599
1600 bfd_boolean
1601 bfd_elf_get_bfd_needed_list (bfd *abfd,
1602 struct bfd_link_needed_list **pneeded)
1603 {
1604 asection *s;
1605 bfd_byte *dynbuf = NULL;
1606 int elfsec;
1607 unsigned long shlink;
1608 bfd_byte *extdyn, *extdynend;
1609 size_t extdynsize;
1610 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1611
1612 *pneeded = NULL;
1613
1614 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1615 || bfd_get_format (abfd) != bfd_object)
1616 return TRUE;
1617
1618 s = bfd_get_section_by_name (abfd, ".dynamic");
1619 if (s == NULL || s->size == 0)
1620 return TRUE;
1621
1622 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1623 goto error_return;
1624
1625 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1626 if (elfsec == -1)
1627 goto error_return;
1628
1629 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1630
1631 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1632 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1633
1634 extdyn = dynbuf;
1635 extdynend = extdyn + s->size;
1636 for (; extdyn < extdynend; extdyn += extdynsize)
1637 {
1638 Elf_Internal_Dyn dyn;
1639
1640 (*swap_dyn_in) (abfd, extdyn, &dyn);
1641
1642 if (dyn.d_tag == DT_NULL)
1643 break;
1644
1645 if (dyn.d_tag == DT_NEEDED)
1646 {
1647 const char *string;
1648 struct bfd_link_needed_list *l;
1649 unsigned int tagv = dyn.d_un.d_val;
1650 bfd_size_type amt;
1651
1652 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1653 if (string == NULL)
1654 goto error_return;
1655
1656 amt = sizeof *l;
1657 l = bfd_alloc (abfd, amt);
1658 if (l == NULL)
1659 goto error_return;
1660
1661 l->by = abfd;
1662 l->name = string;
1663 l->next = *pneeded;
1664 *pneeded = l;
1665 }
1666 }
1667
1668 free (dynbuf);
1669
1670 return TRUE;
1671
1672 error_return:
1673 if (dynbuf != NULL)
1674 free (dynbuf);
1675 return FALSE;
1676 }
1677 \f
1678 /* Allocate an ELF string table--force the first byte to be zero. */
1679
1680 struct bfd_strtab_hash *
1681 _bfd_elf_stringtab_init (void)
1682 {
1683 struct bfd_strtab_hash *ret;
1684
1685 ret = _bfd_stringtab_init ();
1686 if (ret != NULL)
1687 {
1688 bfd_size_type loc;
1689
1690 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1691 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1692 if (loc == (bfd_size_type) -1)
1693 {
1694 _bfd_stringtab_free (ret);
1695 ret = NULL;
1696 }
1697 }
1698 return ret;
1699 }
1700 \f
1701 /* ELF .o/exec file reading */
1702
1703 /* Create a new bfd section from an ELF section header. */
1704
1705 bfd_boolean
1706 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1707 {
1708 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1709 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1710 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1711 const char *name;
1712
1713 name = bfd_elf_string_from_elf_section (abfd,
1714 elf_elfheader (abfd)->e_shstrndx,
1715 hdr->sh_name);
1716
1717 switch (hdr->sh_type)
1718 {
1719 case SHT_NULL:
1720 /* Inactive section. Throw it away. */
1721 return TRUE;
1722
1723 case SHT_PROGBITS: /* Normal section with contents. */
1724 case SHT_NOBITS: /* .bss section. */
1725 case SHT_HASH: /* .hash section. */
1726 case SHT_NOTE: /* .note section. */
1727 case SHT_INIT_ARRAY: /* .init_array section. */
1728 case SHT_FINI_ARRAY: /* .fini_array section. */
1729 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1730 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1731 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1732
1733 case SHT_DYNAMIC: /* Dynamic linking information. */
1734 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1735 return FALSE;
1736 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1737 {
1738 Elf_Internal_Shdr *dynsymhdr;
1739
1740 /* The shared libraries distributed with hpux11 have a bogus
1741 sh_link field for the ".dynamic" section. Find the
1742 string table for the ".dynsym" section instead. */
1743 if (elf_dynsymtab (abfd) != 0)
1744 {
1745 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1746 hdr->sh_link = dynsymhdr->sh_link;
1747 }
1748 else
1749 {
1750 unsigned int i, num_sec;
1751
1752 num_sec = elf_numsections (abfd);
1753 for (i = 1; i < num_sec; i++)
1754 {
1755 dynsymhdr = elf_elfsections (abfd)[i];
1756 if (dynsymhdr->sh_type == SHT_DYNSYM)
1757 {
1758 hdr->sh_link = dynsymhdr->sh_link;
1759 break;
1760 }
1761 }
1762 }
1763 }
1764 break;
1765
1766 case SHT_SYMTAB: /* A symbol table */
1767 if (elf_onesymtab (abfd) == shindex)
1768 return TRUE;
1769
1770 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1771 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1772 elf_onesymtab (abfd) = shindex;
1773 elf_tdata (abfd)->symtab_hdr = *hdr;
1774 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1775 abfd->flags |= HAS_SYMS;
1776
1777 /* Sometimes a shared object will map in the symbol table. If
1778 SHF_ALLOC is set, and this is a shared object, then we also
1779 treat this section as a BFD section. We can not base the
1780 decision purely on SHF_ALLOC, because that flag is sometimes
1781 set in a relocatable object file, which would confuse the
1782 linker. */
1783 if ((hdr->sh_flags & SHF_ALLOC) != 0
1784 && (abfd->flags & DYNAMIC) != 0
1785 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1786 return FALSE;
1787
1788 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1789 can't read symbols without that section loaded as well. It
1790 is most likely specified by the next section header. */
1791 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1792 {
1793 unsigned int i, num_sec;
1794
1795 num_sec = elf_numsections (abfd);
1796 for (i = shindex + 1; i < num_sec; i++)
1797 {
1798 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1799 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1800 && hdr2->sh_link == shindex)
1801 break;
1802 }
1803 if (i == num_sec)
1804 for (i = 1; i < shindex; i++)
1805 {
1806 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1807 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1808 && hdr2->sh_link == shindex)
1809 break;
1810 }
1811 if (i != shindex)
1812 return bfd_section_from_shdr (abfd, i);
1813 }
1814 return TRUE;
1815
1816 case SHT_DYNSYM: /* A dynamic symbol table */
1817 if (elf_dynsymtab (abfd) == shindex)
1818 return TRUE;
1819
1820 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1821 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1822 elf_dynsymtab (abfd) = shindex;
1823 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1824 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1825 abfd->flags |= HAS_SYMS;
1826
1827 /* Besides being a symbol table, we also treat this as a regular
1828 section, so that objcopy can handle it. */
1829 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1830
1831 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1832 if (elf_symtab_shndx (abfd) == shindex)
1833 return TRUE;
1834
1835 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1836 elf_symtab_shndx (abfd) = shindex;
1837 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1838 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1839 return TRUE;
1840
1841 case SHT_STRTAB: /* A string table */
1842 if (hdr->bfd_section != NULL)
1843 return TRUE;
1844 if (ehdr->e_shstrndx == shindex)
1845 {
1846 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1847 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1848 return TRUE;
1849 }
1850 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1851 {
1852 symtab_strtab:
1853 elf_tdata (abfd)->strtab_hdr = *hdr;
1854 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1855 return TRUE;
1856 }
1857 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1858 {
1859 dynsymtab_strtab:
1860 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1861 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1862 elf_elfsections (abfd)[shindex] = hdr;
1863 /* We also treat this as a regular section, so that objcopy
1864 can handle it. */
1865 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1866 }
1867
1868 /* If the string table isn't one of the above, then treat it as a
1869 regular section. We need to scan all the headers to be sure,
1870 just in case this strtab section appeared before the above. */
1871 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1872 {
1873 unsigned int i, num_sec;
1874
1875 num_sec = elf_numsections (abfd);
1876 for (i = 1; i < num_sec; i++)
1877 {
1878 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1879 if (hdr2->sh_link == shindex)
1880 {
1881 if (! bfd_section_from_shdr (abfd, i))
1882 return FALSE;
1883 if (elf_onesymtab (abfd) == i)
1884 goto symtab_strtab;
1885 if (elf_dynsymtab (abfd) == i)
1886 goto dynsymtab_strtab;
1887 }
1888 }
1889 }
1890 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1891
1892 case SHT_REL:
1893 case SHT_RELA:
1894 /* *These* do a lot of work -- but build no sections! */
1895 {
1896 asection *target_sect;
1897 Elf_Internal_Shdr *hdr2;
1898 unsigned int num_sec = elf_numsections (abfd);
1899
1900 /* Check for a bogus link to avoid crashing. */
1901 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1902 || hdr->sh_link >= num_sec)
1903 {
1904 ((*_bfd_error_handler)
1905 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1906 abfd, hdr->sh_link, name, shindex));
1907 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1908 }
1909
1910 /* For some incomprehensible reason Oracle distributes
1911 libraries for Solaris in which some of the objects have
1912 bogus sh_link fields. It would be nice if we could just
1913 reject them, but, unfortunately, some people need to use
1914 them. We scan through the section headers; if we find only
1915 one suitable symbol table, we clobber the sh_link to point
1916 to it. I hope this doesn't break anything. */
1917 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1918 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1919 {
1920 unsigned int scan;
1921 int found;
1922
1923 found = 0;
1924 for (scan = 1; scan < num_sec; scan++)
1925 {
1926 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1927 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1928 {
1929 if (found != 0)
1930 {
1931 found = 0;
1932 break;
1933 }
1934 found = scan;
1935 }
1936 }
1937 if (found != 0)
1938 hdr->sh_link = found;
1939 }
1940
1941 /* Get the symbol table. */
1942 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1943 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1944 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1945 return FALSE;
1946
1947 /* If this reloc section does not use the main symbol table we
1948 don't treat it as a reloc section. BFD can't adequately
1949 represent such a section, so at least for now, we don't
1950 try. We just present it as a normal section. We also
1951 can't use it as a reloc section if it points to the null
1952 section. */
1953 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1954 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1955
1956 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1957 return FALSE;
1958 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1959 if (target_sect == NULL)
1960 return FALSE;
1961
1962 if ((target_sect->flags & SEC_RELOC) == 0
1963 || target_sect->reloc_count == 0)
1964 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1965 else
1966 {
1967 bfd_size_type amt;
1968 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1969 amt = sizeof (*hdr2);
1970 hdr2 = bfd_alloc (abfd, amt);
1971 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1972 }
1973 *hdr2 = *hdr;
1974 elf_elfsections (abfd)[shindex] = hdr2;
1975 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1976 target_sect->flags |= SEC_RELOC;
1977 target_sect->relocation = NULL;
1978 target_sect->rel_filepos = hdr->sh_offset;
1979 /* In the section to which the relocations apply, mark whether
1980 its relocations are of the REL or RELA variety. */
1981 if (hdr->sh_size != 0)
1982 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1983 abfd->flags |= HAS_RELOC;
1984 return TRUE;
1985 }
1986 break;
1987
1988 case SHT_GNU_verdef:
1989 elf_dynverdef (abfd) = shindex;
1990 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1991 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1992 break;
1993
1994 case SHT_GNU_versym:
1995 elf_dynversym (abfd) = shindex;
1996 elf_tdata (abfd)->dynversym_hdr = *hdr;
1997 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1998 break;
1999
2000 case SHT_GNU_verneed:
2001 elf_dynverref (abfd) = shindex;
2002 elf_tdata (abfd)->dynverref_hdr = *hdr;
2003 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
2004 break;
2005
2006 case SHT_SHLIB:
2007 return TRUE;
2008
2009 case SHT_GROUP:
2010 /* We need a BFD section for objcopy and relocatable linking,
2011 and it's handy to have the signature available as the section
2012 name. */
2013 name = group_signature (abfd, hdr);
2014 if (name == NULL)
2015 return FALSE;
2016 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
2017 return FALSE;
2018 if (hdr->contents != NULL)
2019 {
2020 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2021 unsigned int n_elt = hdr->sh_size / 4;
2022 asection *s;
2023
2024 if (idx->flags & GRP_COMDAT)
2025 hdr->bfd_section->flags
2026 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2027
2028 /* We try to keep the same section order as it comes in. */
2029 idx += n_elt;
2030 while (--n_elt != 0)
2031 if ((s = (--idx)->shdr->bfd_section) != NULL
2032 && elf_next_in_group (s) != NULL)
2033 {
2034 elf_next_in_group (hdr->bfd_section) = s;
2035 break;
2036 }
2037 }
2038 break;
2039
2040 default:
2041 /* Check for any processor-specific section types. */
2042 return bed->elf_backend_section_from_shdr (abfd, hdr, name);
2043 }
2044
2045 return TRUE;
2046 }
2047
2048 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2049 Return SEC for sections that have no elf section, and NULL on error. */
2050
2051 asection *
2052 bfd_section_from_r_symndx (bfd *abfd,
2053 struct sym_sec_cache *cache,
2054 asection *sec,
2055 unsigned long r_symndx)
2056 {
2057 Elf_Internal_Shdr *symtab_hdr;
2058 unsigned char esym[sizeof (Elf64_External_Sym)];
2059 Elf_External_Sym_Shndx eshndx;
2060 Elf_Internal_Sym isym;
2061 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2062
2063 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2064 return cache->sec[ent];
2065
2066 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2067 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2068 &isym, esym, &eshndx) == NULL)
2069 return NULL;
2070
2071 if (cache->abfd != abfd)
2072 {
2073 memset (cache->indx, -1, sizeof (cache->indx));
2074 cache->abfd = abfd;
2075 }
2076 cache->indx[ent] = r_symndx;
2077 cache->sec[ent] = sec;
2078 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2079 || isym.st_shndx > SHN_HIRESERVE)
2080 {
2081 asection *s;
2082 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2083 if (s != NULL)
2084 cache->sec[ent] = s;
2085 }
2086 return cache->sec[ent];
2087 }
2088
2089 /* Given an ELF section number, retrieve the corresponding BFD
2090 section. */
2091
2092 asection *
2093 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2094 {
2095 if (index >= elf_numsections (abfd))
2096 return NULL;
2097 return elf_elfsections (abfd)[index]->bfd_section;
2098 }
2099
2100 static struct bfd_elf_special_section const special_sections[] =
2101 {
2102 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2103 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2104 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2105 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2106 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2107 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2108 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2109 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2110 { ".line", 5, 0, SHT_PROGBITS, 0 },
2111 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2112 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2113 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2114 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2115 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2116 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2117 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2118 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2119 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2120 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2121 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2122 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2123 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2124 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2125 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2126 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2127 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2128 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2129 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2130 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2131 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2132 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2133 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2134 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2135 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2136 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2137 { ".note", 5, -1, SHT_NOTE, 0 },
2138 { ".rela", 5, -1, SHT_RELA, 0 },
2139 { ".rel", 4, -1, SHT_REL, 0 },
2140 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2141 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2142 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2143 { NULL, 0, 0, 0, 0 }
2144 };
2145
2146 static const struct bfd_elf_special_section *
2147 get_special_section (const char *name,
2148 const struct bfd_elf_special_section *special_sections,
2149 unsigned int rela)
2150 {
2151 int i;
2152 int len = strlen (name);
2153
2154 for (i = 0; special_sections[i].prefix != NULL; i++)
2155 {
2156 int suffix_len;
2157 int prefix_len = special_sections[i].prefix_length;
2158
2159 if (len < prefix_len)
2160 continue;
2161 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2162 continue;
2163
2164 suffix_len = special_sections[i].suffix_length;
2165 if (suffix_len <= 0)
2166 {
2167 if (name[prefix_len] != 0)
2168 {
2169 if (suffix_len == 0)
2170 continue;
2171 if (name[prefix_len] != '.'
2172 && (suffix_len == -2
2173 || (rela && special_sections[i].type == SHT_REL)))
2174 continue;
2175 }
2176 }
2177 else
2178 {
2179 if (len < prefix_len + suffix_len)
2180 continue;
2181 if (memcmp (name + len - suffix_len,
2182 special_sections[i].prefix + prefix_len,
2183 suffix_len) != 0)
2184 continue;
2185 }
2186 return &special_sections[i];
2187 }
2188
2189 return NULL;
2190 }
2191
2192 const struct bfd_elf_special_section *
2193 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2194 {
2195 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2196 const struct bfd_elf_special_section *ssect = NULL;
2197
2198 /* See if this is one of the special sections. */
2199 if (name)
2200 {
2201 unsigned int rela = bed->default_use_rela_p;
2202
2203 if (bed->special_sections)
2204 ssect = get_special_section (name, bed->special_sections, rela);
2205
2206 if (! ssect)
2207 ssect = get_special_section (name, special_sections, rela);
2208 }
2209
2210 return ssect;
2211 }
2212
2213 bfd_boolean
2214 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2215 {
2216 struct bfd_elf_section_data *sdata;
2217 const struct bfd_elf_special_section *ssect;
2218
2219 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2220 if (sdata == NULL)
2221 {
2222 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2223 if (sdata == NULL)
2224 return FALSE;
2225 sec->used_by_bfd = sdata;
2226 }
2227
2228 elf_section_type (sec) = SHT_NULL;
2229 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2230 if (ssect != NULL)
2231 {
2232 elf_section_type (sec) = ssect->type;
2233 elf_section_flags (sec) = ssect->attr;
2234 }
2235
2236 /* Indicate whether or not this section should use RELA relocations. */
2237 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2238
2239 return TRUE;
2240 }
2241
2242 /* Create a new bfd section from an ELF program header.
2243
2244 Since program segments have no names, we generate a synthetic name
2245 of the form segment<NUM>, where NUM is generally the index in the
2246 program header table. For segments that are split (see below) we
2247 generate the names segment<NUM>a and segment<NUM>b.
2248
2249 Note that some program segments may have a file size that is different than
2250 (less than) the memory size. All this means is that at execution the
2251 system must allocate the amount of memory specified by the memory size,
2252 but only initialize it with the first "file size" bytes read from the
2253 file. This would occur for example, with program segments consisting
2254 of combined data+bss.
2255
2256 To handle the above situation, this routine generates TWO bfd sections
2257 for the single program segment. The first has the length specified by
2258 the file size of the segment, and the second has the length specified
2259 by the difference between the two sizes. In effect, the segment is split
2260 into it's initialized and uninitialized parts.
2261
2262 */
2263
2264 bfd_boolean
2265 _bfd_elf_make_section_from_phdr (bfd *abfd,
2266 Elf_Internal_Phdr *hdr,
2267 int index,
2268 const char *typename)
2269 {
2270 asection *newsect;
2271 char *name;
2272 char namebuf[64];
2273 size_t len;
2274 int split;
2275
2276 split = ((hdr->p_memsz > 0)
2277 && (hdr->p_filesz > 0)
2278 && (hdr->p_memsz > hdr->p_filesz));
2279 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2280 len = strlen (namebuf) + 1;
2281 name = bfd_alloc (abfd, len);
2282 if (!name)
2283 return FALSE;
2284 memcpy (name, namebuf, len);
2285 newsect = bfd_make_section (abfd, name);
2286 if (newsect == NULL)
2287 return FALSE;
2288 newsect->vma = hdr->p_vaddr;
2289 newsect->lma = hdr->p_paddr;
2290 newsect->size = hdr->p_filesz;
2291 newsect->filepos = hdr->p_offset;
2292 newsect->flags |= SEC_HAS_CONTENTS;
2293 newsect->alignment_power = bfd_log2 (hdr->p_align);
2294 if (hdr->p_type == PT_LOAD)
2295 {
2296 newsect->flags |= SEC_ALLOC;
2297 newsect->flags |= SEC_LOAD;
2298 if (hdr->p_flags & PF_X)
2299 {
2300 /* FIXME: all we known is that it has execute PERMISSION,
2301 may be data. */
2302 newsect->flags |= SEC_CODE;
2303 }
2304 }
2305 if (!(hdr->p_flags & PF_W))
2306 {
2307 newsect->flags |= SEC_READONLY;
2308 }
2309
2310 if (split)
2311 {
2312 sprintf (namebuf, "%s%db", typename, index);
2313 len = strlen (namebuf) + 1;
2314 name = bfd_alloc (abfd, len);
2315 if (!name)
2316 return FALSE;
2317 memcpy (name, namebuf, len);
2318 newsect = bfd_make_section (abfd, name);
2319 if (newsect == NULL)
2320 return FALSE;
2321 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2322 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2323 newsect->size = hdr->p_memsz - hdr->p_filesz;
2324 if (hdr->p_type == PT_LOAD)
2325 {
2326 newsect->flags |= SEC_ALLOC;
2327 if (hdr->p_flags & PF_X)
2328 newsect->flags |= SEC_CODE;
2329 }
2330 if (!(hdr->p_flags & PF_W))
2331 newsect->flags |= SEC_READONLY;
2332 }
2333
2334 return TRUE;
2335 }
2336
2337 bfd_boolean
2338 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2339 {
2340 const struct elf_backend_data *bed;
2341
2342 switch (hdr->p_type)
2343 {
2344 case PT_NULL:
2345 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2346
2347 case PT_LOAD:
2348 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2349
2350 case PT_DYNAMIC:
2351 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2352
2353 case PT_INTERP:
2354 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2355
2356 case PT_NOTE:
2357 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2358 return FALSE;
2359 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2360 return FALSE;
2361 return TRUE;
2362
2363 case PT_SHLIB:
2364 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2365
2366 case PT_PHDR:
2367 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2368
2369 case PT_GNU_EH_FRAME:
2370 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2371 "eh_frame_hdr");
2372
2373 case PT_GNU_STACK:
2374 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2375
2376 case PT_GNU_RELRO:
2377 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2378
2379 default:
2380 /* Check for any processor-specific program segment types. */
2381 bed = get_elf_backend_data (abfd);
2382 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2383 }
2384 }
2385
2386 /* Initialize REL_HDR, the section-header for new section, containing
2387 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2388 relocations; otherwise, we use REL relocations. */
2389
2390 bfd_boolean
2391 _bfd_elf_init_reloc_shdr (bfd *abfd,
2392 Elf_Internal_Shdr *rel_hdr,
2393 asection *asect,
2394 bfd_boolean use_rela_p)
2395 {
2396 char *name;
2397 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2398 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2399
2400 name = bfd_alloc (abfd, amt);
2401 if (name == NULL)
2402 return FALSE;
2403 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2404 rel_hdr->sh_name =
2405 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2406 FALSE);
2407 if (rel_hdr->sh_name == (unsigned int) -1)
2408 return FALSE;
2409 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2410 rel_hdr->sh_entsize = (use_rela_p
2411 ? bed->s->sizeof_rela
2412 : bed->s->sizeof_rel);
2413 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2414 rel_hdr->sh_flags = 0;
2415 rel_hdr->sh_addr = 0;
2416 rel_hdr->sh_size = 0;
2417 rel_hdr->sh_offset = 0;
2418
2419 return TRUE;
2420 }
2421
2422 /* Set up an ELF internal section header for a section. */
2423
2424 static void
2425 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2426 {
2427 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2428 bfd_boolean *failedptr = failedptrarg;
2429 Elf_Internal_Shdr *this_hdr;
2430
2431 if (*failedptr)
2432 {
2433 /* We already failed; just get out of the bfd_map_over_sections
2434 loop. */
2435 return;
2436 }
2437
2438 this_hdr = &elf_section_data (asect)->this_hdr;
2439
2440 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2441 asect->name, FALSE);
2442 if (this_hdr->sh_name == (unsigned int) -1)
2443 {
2444 *failedptr = TRUE;
2445 return;
2446 }
2447
2448 this_hdr->sh_flags = 0;
2449
2450 if ((asect->flags & SEC_ALLOC) != 0
2451 || asect->user_set_vma)
2452 this_hdr->sh_addr = asect->vma;
2453 else
2454 this_hdr->sh_addr = 0;
2455
2456 this_hdr->sh_offset = 0;
2457 this_hdr->sh_size = asect->size;
2458 this_hdr->sh_link = 0;
2459 this_hdr->sh_addralign = 1 << asect->alignment_power;
2460 /* The sh_entsize and sh_info fields may have been set already by
2461 copy_private_section_data. */
2462
2463 this_hdr->bfd_section = asect;
2464 this_hdr->contents = NULL;
2465
2466 /* If the section type is unspecified, we set it based on
2467 asect->flags. */
2468 if (this_hdr->sh_type == SHT_NULL)
2469 {
2470 if ((asect->flags & SEC_GROUP) != 0)
2471 {
2472 /* We also need to mark SHF_GROUP here for relocatable
2473 link. */
2474 struct bfd_link_order *l;
2475 asection *elt;
2476
2477 for (l = asect->link_order_head; l != NULL; l = l->next)
2478 if (l->type == bfd_indirect_link_order
2479 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2480 do
2481 {
2482 /* The name is not important. Anything will do. */
2483 elf_group_name (elt->output_section) = "G";
2484 elf_section_flags (elt->output_section) |= SHF_GROUP;
2485
2486 elt = elf_next_in_group (elt);
2487 /* During a relocatable link, the lists are
2488 circular. */
2489 }
2490 while (elt != elf_next_in_group (l->u.indirect.section));
2491
2492 this_hdr->sh_type = SHT_GROUP;
2493 }
2494 else if ((asect->flags & SEC_ALLOC) != 0
2495 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2496 || (asect->flags & SEC_NEVER_LOAD) != 0))
2497 this_hdr->sh_type = SHT_NOBITS;
2498 else
2499 this_hdr->sh_type = SHT_PROGBITS;
2500 }
2501
2502 switch (this_hdr->sh_type)
2503 {
2504 default:
2505 break;
2506
2507 case SHT_STRTAB:
2508 case SHT_INIT_ARRAY:
2509 case SHT_FINI_ARRAY:
2510 case SHT_PREINIT_ARRAY:
2511 case SHT_NOTE:
2512 case SHT_NOBITS:
2513 case SHT_PROGBITS:
2514 break;
2515
2516 case SHT_HASH:
2517 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2518 break;
2519
2520 case SHT_DYNSYM:
2521 this_hdr->sh_entsize = bed->s->sizeof_sym;
2522 break;
2523
2524 case SHT_DYNAMIC:
2525 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2526 break;
2527
2528 case SHT_RELA:
2529 if (get_elf_backend_data (abfd)->may_use_rela_p)
2530 this_hdr->sh_entsize = bed->s->sizeof_rela;
2531 break;
2532
2533 case SHT_REL:
2534 if (get_elf_backend_data (abfd)->may_use_rel_p)
2535 this_hdr->sh_entsize = bed->s->sizeof_rel;
2536 break;
2537
2538 case SHT_GNU_versym:
2539 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2540 break;
2541
2542 case SHT_GNU_verdef:
2543 this_hdr->sh_entsize = 0;
2544 /* objcopy or strip will copy over sh_info, but may not set
2545 cverdefs. The linker will set cverdefs, but sh_info will be
2546 zero. */
2547 if (this_hdr->sh_info == 0)
2548 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2549 else
2550 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2551 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2552 break;
2553
2554 case SHT_GNU_verneed:
2555 this_hdr->sh_entsize = 0;
2556 /* objcopy or strip will copy over sh_info, but may not set
2557 cverrefs. The linker will set cverrefs, but sh_info will be
2558 zero. */
2559 if (this_hdr->sh_info == 0)
2560 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2561 else
2562 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2563 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2564 break;
2565
2566 case SHT_GROUP:
2567 this_hdr->sh_entsize = 4;
2568 break;
2569 }
2570
2571 if ((asect->flags & SEC_ALLOC) != 0)
2572 this_hdr->sh_flags |= SHF_ALLOC;
2573 if ((asect->flags & SEC_READONLY) == 0)
2574 this_hdr->sh_flags |= SHF_WRITE;
2575 if ((asect->flags & SEC_CODE) != 0)
2576 this_hdr->sh_flags |= SHF_EXECINSTR;
2577 if ((asect->flags & SEC_MERGE) != 0)
2578 {
2579 this_hdr->sh_flags |= SHF_MERGE;
2580 this_hdr->sh_entsize = asect->entsize;
2581 if ((asect->flags & SEC_STRINGS) != 0)
2582 this_hdr->sh_flags |= SHF_STRINGS;
2583 }
2584 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2585 this_hdr->sh_flags |= SHF_GROUP;
2586 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2587 {
2588 this_hdr->sh_flags |= SHF_TLS;
2589 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2590 {
2591 struct bfd_link_order *o;
2592
2593 this_hdr->sh_size = 0;
2594 for (o = asect->link_order_head; o != NULL; o = o->next)
2595 if (this_hdr->sh_size < o->offset + o->size)
2596 this_hdr->sh_size = o->offset + o->size;
2597 if (this_hdr->sh_size)
2598 this_hdr->sh_type = SHT_NOBITS;
2599 }
2600 }
2601
2602 /* Check for processor-specific section types. */
2603 if (bed->elf_backend_fake_sections
2604 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2605 *failedptr = TRUE;
2606
2607 /* If the section has relocs, set up a section header for the
2608 SHT_REL[A] section. If two relocation sections are required for
2609 this section, it is up to the processor-specific back-end to
2610 create the other. */
2611 if ((asect->flags & SEC_RELOC) != 0
2612 && !_bfd_elf_init_reloc_shdr (abfd,
2613 &elf_section_data (asect)->rel_hdr,
2614 asect,
2615 asect->use_rela_p))
2616 *failedptr = TRUE;
2617 }
2618
2619 /* Fill in the contents of a SHT_GROUP section. */
2620
2621 void
2622 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2623 {
2624 bfd_boolean *failedptr = failedptrarg;
2625 unsigned long symindx;
2626 asection *elt, *first;
2627 unsigned char *loc;
2628 struct bfd_link_order *l;
2629 bfd_boolean gas;
2630
2631 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2632 || *failedptr)
2633 return;
2634
2635 symindx = 0;
2636 if (elf_group_id (sec) != NULL)
2637 symindx = elf_group_id (sec)->udata.i;
2638
2639 if (symindx == 0)
2640 {
2641 /* If called from the assembler, swap_out_syms will have set up
2642 elf_section_syms; If called for "ld -r", use target_index. */
2643 if (elf_section_syms (abfd) != NULL)
2644 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2645 else
2646 symindx = sec->target_index;
2647 }
2648 elf_section_data (sec)->this_hdr.sh_info = symindx;
2649
2650 /* The contents won't be allocated for "ld -r" or objcopy. */
2651 gas = TRUE;
2652 if (sec->contents == NULL)
2653 {
2654 gas = FALSE;
2655 sec->contents = bfd_alloc (abfd, sec->size);
2656
2657 /* Arrange for the section to be written out. */
2658 elf_section_data (sec)->this_hdr.contents = sec->contents;
2659 if (sec->contents == NULL)
2660 {
2661 *failedptr = TRUE;
2662 return;
2663 }
2664 }
2665
2666 loc = sec->contents + sec->size;
2667
2668 /* Get the pointer to the first section in the group that gas
2669 squirreled away here. objcopy arranges for this to be set to the
2670 start of the input section group. */
2671 first = elt = elf_next_in_group (sec);
2672
2673 /* First element is a flag word. Rest of section is elf section
2674 indices for all the sections of the group. Write them backwards
2675 just to keep the group in the same order as given in .section
2676 directives, not that it matters. */
2677 while (elt != NULL)
2678 {
2679 asection *s;
2680 unsigned int idx;
2681
2682 loc -= 4;
2683 s = elt;
2684 if (!gas)
2685 s = s->output_section;
2686 idx = 0;
2687 if (s != NULL)
2688 idx = elf_section_data (s)->this_idx;
2689 H_PUT_32 (abfd, idx, loc);
2690 elt = elf_next_in_group (elt);
2691 if (elt == first)
2692 break;
2693 }
2694
2695 /* If this is a relocatable link, then the above did nothing because
2696 SEC is the output section. Look through the input sections
2697 instead. */
2698 for (l = sec->link_order_head; l != NULL; l = l->next)
2699 if (l->type == bfd_indirect_link_order
2700 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2701 do
2702 {
2703 loc -= 4;
2704 H_PUT_32 (abfd,
2705 elf_section_data (elt->output_section)->this_idx, loc);
2706 elt = elf_next_in_group (elt);
2707 /* During a relocatable link, the lists are circular. */
2708 }
2709 while (elt != elf_next_in_group (l->u.indirect.section));
2710
2711 if ((loc -= 4) != sec->contents)
2712 abort ();
2713
2714 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2715 }
2716
2717 /* Assign all ELF section numbers. The dummy first section is handled here
2718 too. The link/info pointers for the standard section types are filled
2719 in here too, while we're at it. */
2720
2721 static bfd_boolean
2722 assign_section_numbers (bfd *abfd)
2723 {
2724 struct elf_obj_tdata *t = elf_tdata (abfd);
2725 asection *sec;
2726 unsigned int section_number, secn;
2727 Elf_Internal_Shdr **i_shdrp;
2728 bfd_size_type amt;
2729 struct bfd_elf_section_data *d;
2730
2731 section_number = 1;
2732
2733 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2734
2735 /* Put SHT_GROUP sections first. */
2736 for (sec = abfd->sections; sec; sec = sec->next)
2737 {
2738 d = elf_section_data (sec);
2739
2740 if (d->this_hdr.sh_type == SHT_GROUP)
2741 {
2742 if (section_number == SHN_LORESERVE)
2743 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2744 d->this_idx = section_number++;
2745 }
2746 }
2747
2748 for (sec = abfd->sections; sec; sec = sec->next)
2749 {
2750 d = elf_section_data (sec);
2751
2752 if (d->this_hdr.sh_type != SHT_GROUP)
2753 {
2754 if (section_number == SHN_LORESERVE)
2755 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2756 d->this_idx = section_number++;
2757 }
2758 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2759 if ((sec->flags & SEC_RELOC) == 0)
2760 d->rel_idx = 0;
2761 else
2762 {
2763 if (section_number == SHN_LORESERVE)
2764 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2765 d->rel_idx = section_number++;
2766 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2767 }
2768
2769 if (d->rel_hdr2)
2770 {
2771 if (section_number == SHN_LORESERVE)
2772 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2773 d->rel_idx2 = section_number++;
2774 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2775 }
2776 else
2777 d->rel_idx2 = 0;
2778 }
2779
2780 if (section_number == SHN_LORESERVE)
2781 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2782 t->shstrtab_section = section_number++;
2783 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2784 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2785
2786 if (bfd_get_symcount (abfd) > 0)
2787 {
2788 if (section_number == SHN_LORESERVE)
2789 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2790 t->symtab_section = section_number++;
2791 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2792 if (section_number > SHN_LORESERVE - 2)
2793 {
2794 if (section_number == SHN_LORESERVE)
2795 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2796 t->symtab_shndx_section = section_number++;
2797 t->symtab_shndx_hdr.sh_name
2798 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2799 ".symtab_shndx", FALSE);
2800 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2801 return FALSE;
2802 }
2803 if (section_number == SHN_LORESERVE)
2804 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2805 t->strtab_section = section_number++;
2806 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2807 }
2808
2809 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2810 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2811
2812 elf_numsections (abfd) = section_number;
2813 elf_elfheader (abfd)->e_shnum = section_number;
2814 if (section_number > SHN_LORESERVE)
2815 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2816
2817 /* Set up the list of section header pointers, in agreement with the
2818 indices. */
2819 amt = section_number * sizeof (Elf_Internal_Shdr *);
2820 i_shdrp = bfd_zalloc (abfd, amt);
2821 if (i_shdrp == NULL)
2822 return FALSE;
2823
2824 amt = sizeof (Elf_Internal_Shdr);
2825 i_shdrp[0] = bfd_zalloc (abfd, amt);
2826 if (i_shdrp[0] == NULL)
2827 {
2828 bfd_release (abfd, i_shdrp);
2829 return FALSE;
2830 }
2831
2832 elf_elfsections (abfd) = i_shdrp;
2833
2834 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2835 if (bfd_get_symcount (abfd) > 0)
2836 {
2837 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2838 if (elf_numsections (abfd) > SHN_LORESERVE)
2839 {
2840 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2841 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2842 }
2843 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2844 t->symtab_hdr.sh_link = t->strtab_section;
2845 }
2846
2847 for (sec = abfd->sections; sec; sec = sec->next)
2848 {
2849 struct bfd_elf_section_data *d = elf_section_data (sec);
2850 asection *s;
2851 const char *name;
2852
2853 i_shdrp[d->this_idx] = &d->this_hdr;
2854 if (d->rel_idx != 0)
2855 i_shdrp[d->rel_idx] = &d->rel_hdr;
2856 if (d->rel_idx2 != 0)
2857 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2858
2859 /* Fill in the sh_link and sh_info fields while we're at it. */
2860
2861 /* sh_link of a reloc section is the section index of the symbol
2862 table. sh_info is the section index of the section to which
2863 the relocation entries apply. */
2864 if (d->rel_idx != 0)
2865 {
2866 d->rel_hdr.sh_link = t->symtab_section;
2867 d->rel_hdr.sh_info = d->this_idx;
2868 }
2869 if (d->rel_idx2 != 0)
2870 {
2871 d->rel_hdr2->sh_link = t->symtab_section;
2872 d->rel_hdr2->sh_info = d->this_idx;
2873 }
2874
2875 /* We need to set up sh_link for SHF_LINK_ORDER. */
2876 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2877 {
2878 s = elf_linked_to_section (sec);
2879 if (s)
2880 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2881 else
2882 {
2883 struct bfd_link_order *p;
2884
2885 /* Find out what the corresponding section in output
2886 is. */
2887 for (p = sec->link_order_head; p != NULL; p = p->next)
2888 {
2889 s = p->u.indirect.section;
2890 if (p->type == bfd_indirect_link_order
2891 && (bfd_get_flavour (s->owner)
2892 == bfd_target_elf_flavour))
2893 {
2894 Elf_Internal_Shdr ** const elf_shdrp
2895 = elf_elfsections (s->owner);
2896 int elfsec
2897 = _bfd_elf_section_from_bfd_section (s->owner, s);
2898 elfsec = elf_shdrp[elfsec]->sh_link;
2899 /* PR 290:
2900 The Intel C compiler generates SHT_IA_64_UNWIND with
2901 SHF_LINK_ORDER. But it doesn't set theh sh_link or
2902 sh_info fields. Hence we could get the situation
2903 where elfsec is 0. */
2904 if (elfsec == 0)
2905 {
2906 const struct elf_backend_data *bed
2907 = get_elf_backend_data (abfd);
2908 if (bed->link_order_error_handler)
2909 bed->link_order_error_handler
2910 (_("%B: warning: sh_link not set for section `%S'"),
2911 abfd, s);
2912 }
2913 else
2914 {
2915 s = elf_shdrp[elfsec]->bfd_section->output_section;
2916 BFD_ASSERT (s != NULL);
2917 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2918 }
2919 break;
2920 }
2921 }
2922 }
2923 }
2924
2925 switch (d->this_hdr.sh_type)
2926 {
2927 case SHT_REL:
2928 case SHT_RELA:
2929 /* A reloc section which we are treating as a normal BFD
2930 section. sh_link is the section index of the symbol
2931 table. sh_info is the section index of the section to
2932 which the relocation entries apply. We assume that an
2933 allocated reloc section uses the dynamic symbol table.
2934 FIXME: How can we be sure? */
2935 s = bfd_get_section_by_name (abfd, ".dynsym");
2936 if (s != NULL)
2937 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2938
2939 /* We look up the section the relocs apply to by name. */
2940 name = sec->name;
2941 if (d->this_hdr.sh_type == SHT_REL)
2942 name += 4;
2943 else
2944 name += 5;
2945 s = bfd_get_section_by_name (abfd, name);
2946 if (s != NULL)
2947 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2948 break;
2949
2950 case SHT_STRTAB:
2951 /* We assume that a section named .stab*str is a stabs
2952 string section. We look for a section with the same name
2953 but without the trailing ``str'', and set its sh_link
2954 field to point to this section. */
2955 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2956 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2957 {
2958 size_t len;
2959 char *alc;
2960
2961 len = strlen (sec->name);
2962 alc = bfd_malloc (len - 2);
2963 if (alc == NULL)
2964 return FALSE;
2965 memcpy (alc, sec->name, len - 3);
2966 alc[len - 3] = '\0';
2967 s = bfd_get_section_by_name (abfd, alc);
2968 free (alc);
2969 if (s != NULL)
2970 {
2971 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2972
2973 /* This is a .stab section. */
2974 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2975 elf_section_data (s)->this_hdr.sh_entsize
2976 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2977 }
2978 }
2979 break;
2980
2981 case SHT_DYNAMIC:
2982 case SHT_DYNSYM:
2983 case SHT_GNU_verneed:
2984 case SHT_GNU_verdef:
2985 /* sh_link is the section header index of the string table
2986 used for the dynamic entries, or the symbol table, or the
2987 version strings. */
2988 s = bfd_get_section_by_name (abfd, ".dynstr");
2989 if (s != NULL)
2990 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2991 break;
2992
2993 case SHT_GNU_LIBLIST:
2994 /* sh_link is the section header index of the prelink library
2995 list
2996 used for the dynamic entries, or the symbol table, or the
2997 version strings. */
2998 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
2999 ? ".dynstr" : ".gnu.libstr");
3000 if (s != NULL)
3001 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3002 break;
3003
3004 case SHT_HASH:
3005 case SHT_GNU_versym:
3006 /* sh_link is the section header index of the symbol table
3007 this hash table or version table is for. */
3008 s = bfd_get_section_by_name (abfd, ".dynsym");
3009 if (s != NULL)
3010 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3011 break;
3012
3013 case SHT_GROUP:
3014 d->this_hdr.sh_link = t->symtab_section;
3015 }
3016 }
3017
3018 for (secn = 1; secn < section_number; ++secn)
3019 if (i_shdrp[secn] == NULL)
3020 i_shdrp[secn] = i_shdrp[0];
3021 else
3022 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3023 i_shdrp[secn]->sh_name);
3024 return TRUE;
3025 }
3026
3027 /* Map symbol from it's internal number to the external number, moving
3028 all local symbols to be at the head of the list. */
3029
3030 static int
3031 sym_is_global (bfd *abfd, asymbol *sym)
3032 {
3033 /* If the backend has a special mapping, use it. */
3034 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3035 if (bed->elf_backend_sym_is_global)
3036 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3037
3038 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3039 || bfd_is_und_section (bfd_get_section (sym))
3040 || bfd_is_com_section (bfd_get_section (sym)));
3041 }
3042
3043 static bfd_boolean
3044 elf_map_symbols (bfd *abfd)
3045 {
3046 unsigned int symcount = bfd_get_symcount (abfd);
3047 asymbol **syms = bfd_get_outsymbols (abfd);
3048 asymbol **sect_syms;
3049 unsigned int num_locals = 0;
3050 unsigned int num_globals = 0;
3051 unsigned int num_locals2 = 0;
3052 unsigned int num_globals2 = 0;
3053 int max_index = 0;
3054 unsigned int idx;
3055 asection *asect;
3056 asymbol **new_syms;
3057 bfd_size_type amt;
3058
3059 #ifdef DEBUG
3060 fprintf (stderr, "elf_map_symbols\n");
3061 fflush (stderr);
3062 #endif
3063
3064 for (asect = abfd->sections; asect; asect = asect->next)
3065 {
3066 if (max_index < asect->index)
3067 max_index = asect->index;
3068 }
3069
3070 max_index++;
3071 amt = max_index * sizeof (asymbol *);
3072 sect_syms = bfd_zalloc (abfd, amt);
3073 if (sect_syms == NULL)
3074 return FALSE;
3075 elf_section_syms (abfd) = sect_syms;
3076 elf_num_section_syms (abfd) = max_index;
3077
3078 /* Init sect_syms entries for any section symbols we have already
3079 decided to output. */
3080 for (idx = 0; idx < symcount; idx++)
3081 {
3082 asymbol *sym = syms[idx];
3083
3084 if ((sym->flags & BSF_SECTION_SYM) != 0
3085 && sym->value == 0)
3086 {
3087 asection *sec;
3088
3089 sec = sym->section;
3090
3091 if (sec->owner != NULL)
3092 {
3093 if (sec->owner != abfd)
3094 {
3095 if (sec->output_offset != 0)
3096 continue;
3097
3098 sec = sec->output_section;
3099
3100 /* Empty sections in the input files may have had a
3101 section symbol created for them. (See the comment
3102 near the end of _bfd_generic_link_output_symbols in
3103 linker.c). If the linker script discards such
3104 sections then we will reach this point. Since we know
3105 that we cannot avoid this case, we detect it and skip
3106 the abort and the assignment to the sect_syms array.
3107 To reproduce this particular case try running the
3108 linker testsuite test ld-scripts/weak.exp for an ELF
3109 port that uses the generic linker. */
3110 if (sec->owner == NULL)
3111 continue;
3112
3113 BFD_ASSERT (sec->owner == abfd);
3114 }
3115 sect_syms[sec->index] = syms[idx];
3116 }
3117 }
3118 }
3119
3120 /* Classify all of the symbols. */
3121 for (idx = 0; idx < symcount; idx++)
3122 {
3123 if (!sym_is_global (abfd, syms[idx]))
3124 num_locals++;
3125 else
3126 num_globals++;
3127 }
3128
3129 /* We will be adding a section symbol for each BFD section. Most normal
3130 sections will already have a section symbol in outsymbols, but
3131 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3132 at least in that case. */
3133 for (asect = abfd->sections; asect; asect = asect->next)
3134 {
3135 if (sect_syms[asect->index] == NULL)
3136 {
3137 if (!sym_is_global (abfd, asect->symbol))
3138 num_locals++;
3139 else
3140 num_globals++;
3141 }
3142 }
3143
3144 /* Now sort the symbols so the local symbols are first. */
3145 amt = (num_locals + num_globals) * sizeof (asymbol *);
3146 new_syms = bfd_alloc (abfd, amt);
3147
3148 if (new_syms == NULL)
3149 return FALSE;
3150
3151 for (idx = 0; idx < symcount; idx++)
3152 {
3153 asymbol *sym = syms[idx];
3154 unsigned int i;
3155
3156 if (!sym_is_global (abfd, sym))
3157 i = num_locals2++;
3158 else
3159 i = num_locals + num_globals2++;
3160 new_syms[i] = sym;
3161 sym->udata.i = i + 1;
3162 }
3163 for (asect = abfd->sections; asect; asect = asect->next)
3164 {
3165 if (sect_syms[asect->index] == NULL)
3166 {
3167 asymbol *sym = asect->symbol;
3168 unsigned int i;
3169
3170 sect_syms[asect->index] = sym;
3171 if (!sym_is_global (abfd, sym))
3172 i = num_locals2++;
3173 else
3174 i = num_locals + num_globals2++;
3175 new_syms[i] = sym;
3176 sym->udata.i = i + 1;
3177 }
3178 }
3179
3180 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3181
3182 elf_num_locals (abfd) = num_locals;
3183 elf_num_globals (abfd) = num_globals;
3184 return TRUE;
3185 }
3186
3187 /* Align to the maximum file alignment that could be required for any
3188 ELF data structure. */
3189
3190 static inline file_ptr
3191 align_file_position (file_ptr off, int align)
3192 {
3193 return (off + align - 1) & ~(align - 1);
3194 }
3195
3196 /* Assign a file position to a section, optionally aligning to the
3197 required section alignment. */
3198
3199 file_ptr
3200 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3201 file_ptr offset,
3202 bfd_boolean align)
3203 {
3204 if (align)
3205 {
3206 unsigned int al;
3207
3208 al = i_shdrp->sh_addralign;
3209 if (al > 1)
3210 offset = BFD_ALIGN (offset, al);
3211 }
3212 i_shdrp->sh_offset = offset;
3213 if (i_shdrp->bfd_section != NULL)
3214 i_shdrp->bfd_section->filepos = offset;
3215 if (i_shdrp->sh_type != SHT_NOBITS)
3216 offset += i_shdrp->sh_size;
3217 return offset;
3218 }
3219
3220 /* Compute the file positions we are going to put the sections at, and
3221 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3222 is not NULL, this is being called by the ELF backend linker. */
3223
3224 bfd_boolean
3225 _bfd_elf_compute_section_file_positions (bfd *abfd,
3226 struct bfd_link_info *link_info)
3227 {
3228 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3229 bfd_boolean failed;
3230 struct bfd_strtab_hash *strtab = NULL;
3231 Elf_Internal_Shdr *shstrtab_hdr;
3232
3233 if (abfd->output_has_begun)
3234 return TRUE;
3235
3236 /* Do any elf backend specific processing first. */
3237 if (bed->elf_backend_begin_write_processing)
3238 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3239
3240 if (! prep_headers (abfd))
3241 return FALSE;
3242
3243 /* Post process the headers if necessary. */
3244 if (bed->elf_backend_post_process_headers)
3245 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3246
3247 failed = FALSE;
3248 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3249 if (failed)
3250 return FALSE;
3251
3252 if (!assign_section_numbers (abfd))
3253 return FALSE;
3254
3255 /* The backend linker builds symbol table information itself. */
3256 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3257 {
3258 /* Non-zero if doing a relocatable link. */
3259 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3260
3261 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3262 return FALSE;
3263 }
3264
3265 if (link_info == NULL)
3266 {
3267 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3268 if (failed)
3269 return FALSE;
3270 }
3271
3272 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3273 /* sh_name was set in prep_headers. */
3274 shstrtab_hdr->sh_type = SHT_STRTAB;
3275 shstrtab_hdr->sh_flags = 0;
3276 shstrtab_hdr->sh_addr = 0;
3277 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3278 shstrtab_hdr->sh_entsize = 0;
3279 shstrtab_hdr->sh_link = 0;
3280 shstrtab_hdr->sh_info = 0;
3281 /* sh_offset is set in assign_file_positions_except_relocs. */
3282 shstrtab_hdr->sh_addralign = 1;
3283
3284 if (!assign_file_positions_except_relocs (abfd, link_info))
3285 return FALSE;
3286
3287 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3288 {
3289 file_ptr off;
3290 Elf_Internal_Shdr *hdr;
3291
3292 off = elf_tdata (abfd)->next_file_pos;
3293
3294 hdr = &elf_tdata (abfd)->symtab_hdr;
3295 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3296
3297 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3298 if (hdr->sh_size != 0)
3299 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3300
3301 hdr = &elf_tdata (abfd)->strtab_hdr;
3302 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3303
3304 elf_tdata (abfd)->next_file_pos = off;
3305
3306 /* Now that we know where the .strtab section goes, write it
3307 out. */
3308 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3309 || ! _bfd_stringtab_emit (abfd, strtab))
3310 return FALSE;
3311 _bfd_stringtab_free (strtab);
3312 }
3313
3314 abfd->output_has_begun = TRUE;
3315
3316 return TRUE;
3317 }
3318
3319 /* Create a mapping from a set of sections to a program segment. */
3320
3321 static struct elf_segment_map *
3322 make_mapping (bfd *abfd,
3323 asection **sections,
3324 unsigned int from,
3325 unsigned int to,
3326 bfd_boolean phdr)
3327 {
3328 struct elf_segment_map *m;
3329 unsigned int i;
3330 asection **hdrpp;
3331 bfd_size_type amt;
3332
3333 amt = sizeof (struct elf_segment_map);
3334 amt += (to - from - 1) * sizeof (asection *);
3335 m = bfd_zalloc (abfd, amt);
3336 if (m == NULL)
3337 return NULL;
3338 m->next = NULL;
3339 m->p_type = PT_LOAD;
3340 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3341 m->sections[i - from] = *hdrpp;
3342 m->count = to - from;
3343
3344 if (from == 0 && phdr)
3345 {
3346 /* Include the headers in the first PT_LOAD segment. */
3347 m->includes_filehdr = 1;
3348 m->includes_phdrs = 1;
3349 }
3350
3351 return m;
3352 }
3353
3354 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3355 on failure. */
3356
3357 struct elf_segment_map *
3358 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3359 {
3360 struct elf_segment_map *m;
3361
3362 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3363 if (m == NULL)
3364 return NULL;
3365 m->next = NULL;
3366 m->p_type = PT_DYNAMIC;
3367 m->count = 1;
3368 m->sections[0] = dynsec;
3369
3370 return m;
3371 }
3372
3373 /* Set up a mapping from BFD sections to program segments. */
3374
3375 static bfd_boolean
3376 map_sections_to_segments (bfd *abfd)
3377 {
3378 asection **sections = NULL;
3379 asection *s;
3380 unsigned int i;
3381 unsigned int count;
3382 struct elf_segment_map *mfirst;
3383 struct elf_segment_map **pm;
3384 struct elf_segment_map *m;
3385 asection *last_hdr;
3386 bfd_vma last_size;
3387 unsigned int phdr_index;
3388 bfd_vma maxpagesize;
3389 asection **hdrpp;
3390 bfd_boolean phdr_in_segment = TRUE;
3391 bfd_boolean writable;
3392 int tls_count = 0;
3393 asection *first_tls = NULL;
3394 asection *dynsec, *eh_frame_hdr;
3395 bfd_size_type amt;
3396
3397 if (elf_tdata (abfd)->segment_map != NULL)
3398 return TRUE;
3399
3400 if (bfd_count_sections (abfd) == 0)
3401 return TRUE;
3402
3403 /* Select the allocated sections, and sort them. */
3404
3405 amt = bfd_count_sections (abfd) * sizeof (asection *);
3406 sections = bfd_malloc (amt);
3407 if (sections == NULL)
3408 goto error_return;
3409
3410 i = 0;
3411 for (s = abfd->sections; s != NULL; s = s->next)
3412 {
3413 if ((s->flags & SEC_ALLOC) != 0)
3414 {
3415 sections[i] = s;
3416 ++i;
3417 }
3418 }
3419 BFD_ASSERT (i <= bfd_count_sections (abfd));
3420 count = i;
3421
3422 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3423
3424 /* Build the mapping. */
3425
3426 mfirst = NULL;
3427 pm = &mfirst;
3428
3429 /* If we have a .interp section, then create a PT_PHDR segment for
3430 the program headers and a PT_INTERP segment for the .interp
3431 section. */
3432 s = bfd_get_section_by_name (abfd, ".interp");
3433 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3434 {
3435 amt = sizeof (struct elf_segment_map);
3436 m = bfd_zalloc (abfd, amt);
3437 if (m == NULL)
3438 goto error_return;
3439 m->next = NULL;
3440 m->p_type = PT_PHDR;
3441 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3442 m->p_flags = PF_R | PF_X;
3443 m->p_flags_valid = 1;
3444 m->includes_phdrs = 1;
3445
3446 *pm = m;
3447 pm = &m->next;
3448
3449 amt = sizeof (struct elf_segment_map);
3450 m = bfd_zalloc (abfd, amt);
3451 if (m == NULL)
3452 goto error_return;
3453 m->next = NULL;
3454 m->p_type = PT_INTERP;
3455 m->count = 1;
3456 m->sections[0] = s;
3457
3458 *pm = m;
3459 pm = &m->next;
3460 }
3461
3462 /* Look through the sections. We put sections in the same program
3463 segment when the start of the second section can be placed within
3464 a few bytes of the end of the first section. */
3465 last_hdr = NULL;
3466 last_size = 0;
3467 phdr_index = 0;
3468 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3469 writable = FALSE;
3470 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3471 if (dynsec != NULL
3472 && (dynsec->flags & SEC_LOAD) == 0)
3473 dynsec = NULL;
3474
3475 /* Deal with -Ttext or something similar such that the first section
3476 is not adjacent to the program headers. This is an
3477 approximation, since at this point we don't know exactly how many
3478 program headers we will need. */
3479 if (count > 0)
3480 {
3481 bfd_size_type phdr_size;
3482
3483 phdr_size = elf_tdata (abfd)->program_header_size;
3484 if (phdr_size == 0)
3485 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3486 if ((abfd->flags & D_PAGED) == 0
3487 || sections[0]->lma < phdr_size
3488 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3489 phdr_in_segment = FALSE;
3490 }
3491
3492 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3493 {
3494 asection *hdr;
3495 bfd_boolean new_segment;
3496
3497 hdr = *hdrpp;
3498
3499 /* See if this section and the last one will fit in the same
3500 segment. */
3501
3502 if (last_hdr == NULL)
3503 {
3504 /* If we don't have a segment yet, then we don't need a new
3505 one (we build the last one after this loop). */
3506 new_segment = FALSE;
3507 }
3508 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3509 {
3510 /* If this section has a different relation between the
3511 virtual address and the load address, then we need a new
3512 segment. */
3513 new_segment = TRUE;
3514 }
3515 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3516 < BFD_ALIGN (hdr->lma, maxpagesize))
3517 {
3518 /* If putting this section in this segment would force us to
3519 skip a page in the segment, then we need a new segment. */
3520 new_segment = TRUE;
3521 }
3522 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3523 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3524 {
3525 /* We don't want to put a loadable section after a
3526 nonloadable section in the same segment.
3527 Consider .tbss sections as loadable for this purpose. */
3528 new_segment = TRUE;
3529 }
3530 else if ((abfd->flags & D_PAGED) == 0)
3531 {
3532 /* If the file is not demand paged, which means that we
3533 don't require the sections to be correctly aligned in the
3534 file, then there is no other reason for a new segment. */
3535 new_segment = FALSE;
3536 }
3537 else if (! writable
3538 && (hdr->flags & SEC_READONLY) == 0
3539 && (((last_hdr->lma + last_size - 1)
3540 & ~(maxpagesize - 1))
3541 != (hdr->lma & ~(maxpagesize - 1))))
3542 {
3543 /* We don't want to put a writable section in a read only
3544 segment, unless they are on the same page in memory
3545 anyhow. We already know that the last section does not
3546 bring us past the current section on the page, so the
3547 only case in which the new section is not on the same
3548 page as the previous section is when the previous section
3549 ends precisely on a page boundary. */
3550 new_segment = TRUE;
3551 }
3552 else
3553 {
3554 /* Otherwise, we can use the same segment. */
3555 new_segment = FALSE;
3556 }
3557
3558 if (! new_segment)
3559 {
3560 if ((hdr->flags & SEC_READONLY) == 0)
3561 writable = TRUE;
3562 last_hdr = hdr;
3563 /* .tbss sections effectively have zero size. */
3564 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3565 last_size = hdr->size;
3566 else
3567 last_size = 0;
3568 continue;
3569 }
3570
3571 /* We need a new program segment. We must create a new program
3572 header holding all the sections from phdr_index until hdr. */
3573
3574 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3575 if (m == NULL)
3576 goto error_return;
3577
3578 *pm = m;
3579 pm = &m->next;
3580
3581 if ((hdr->flags & SEC_READONLY) == 0)
3582 writable = TRUE;
3583 else
3584 writable = FALSE;
3585
3586 last_hdr = hdr;
3587 /* .tbss sections effectively have zero size. */
3588 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3589 last_size = hdr->size;
3590 else
3591 last_size = 0;
3592 phdr_index = i;
3593 phdr_in_segment = FALSE;
3594 }
3595
3596 /* Create a final PT_LOAD program segment. */
3597 if (last_hdr != NULL)
3598 {
3599 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3600 if (m == NULL)
3601 goto error_return;
3602
3603 *pm = m;
3604 pm = &m->next;
3605 }
3606
3607 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3608 if (dynsec != NULL)
3609 {
3610 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3611 if (m == NULL)
3612 goto error_return;
3613 *pm = m;
3614 pm = &m->next;
3615 }
3616
3617 /* For each loadable .note section, add a PT_NOTE segment. We don't
3618 use bfd_get_section_by_name, because if we link together
3619 nonloadable .note sections and loadable .note sections, we will
3620 generate two .note sections in the output file. FIXME: Using
3621 names for section types is bogus anyhow. */
3622 for (s = abfd->sections; s != NULL; s = s->next)
3623 {
3624 if ((s->flags & SEC_LOAD) != 0
3625 && strncmp (s->name, ".note", 5) == 0)
3626 {
3627 amt = sizeof (struct elf_segment_map);
3628 m = bfd_zalloc (abfd, amt);
3629 if (m == NULL)
3630 goto error_return;
3631 m->next = NULL;
3632 m->p_type = PT_NOTE;
3633 m->count = 1;
3634 m->sections[0] = s;
3635
3636 *pm = m;
3637 pm = &m->next;
3638 }
3639 if (s->flags & SEC_THREAD_LOCAL)
3640 {
3641 if (! tls_count)
3642 first_tls = s;
3643 tls_count++;
3644 }
3645 }
3646
3647 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3648 if (tls_count > 0)
3649 {
3650 int i;
3651
3652 amt = sizeof (struct elf_segment_map);
3653 amt += (tls_count - 1) * sizeof (asection *);
3654 m = bfd_zalloc (abfd, amt);
3655 if (m == NULL)
3656 goto error_return;
3657 m->next = NULL;
3658 m->p_type = PT_TLS;
3659 m->count = tls_count;
3660 /* Mandated PF_R. */
3661 m->p_flags = PF_R;
3662 m->p_flags_valid = 1;
3663 for (i = 0; i < tls_count; ++i)
3664 {
3665 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3666 m->sections[i] = first_tls;
3667 first_tls = first_tls->next;
3668 }
3669
3670 *pm = m;
3671 pm = &m->next;
3672 }
3673
3674 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3675 segment. */
3676 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3677 if (eh_frame_hdr != NULL
3678 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3679 {
3680 amt = sizeof (struct elf_segment_map);
3681 m = bfd_zalloc (abfd, amt);
3682 if (m == NULL)
3683 goto error_return;
3684 m->next = NULL;
3685 m->p_type = PT_GNU_EH_FRAME;
3686 m->count = 1;
3687 m->sections[0] = eh_frame_hdr->output_section;
3688
3689 *pm = m;
3690 pm = &m->next;
3691 }
3692
3693 if (elf_tdata (abfd)->stack_flags)
3694 {
3695 amt = sizeof (struct elf_segment_map);
3696 m = bfd_zalloc (abfd, amt);
3697 if (m == NULL)
3698 goto error_return;
3699 m->next = NULL;
3700 m->p_type = PT_GNU_STACK;
3701 m->p_flags = elf_tdata (abfd)->stack_flags;
3702 m->p_flags_valid = 1;
3703
3704 *pm = m;
3705 pm = &m->next;
3706 }
3707
3708 if (elf_tdata (abfd)->relro)
3709 {
3710 amt = sizeof (struct elf_segment_map);
3711 m = bfd_zalloc (abfd, amt);
3712 if (m == NULL)
3713 goto error_return;
3714 m->next = NULL;
3715 m->p_type = PT_GNU_RELRO;
3716 m->p_flags = PF_R;
3717 m->p_flags_valid = 1;
3718
3719 *pm = m;
3720 pm = &m->next;
3721 }
3722
3723 free (sections);
3724 sections = NULL;
3725
3726 elf_tdata (abfd)->segment_map = mfirst;
3727 return TRUE;
3728
3729 error_return:
3730 if (sections != NULL)
3731 free (sections);
3732 return FALSE;
3733 }
3734
3735 /* Sort sections by address. */
3736
3737 static int
3738 elf_sort_sections (const void *arg1, const void *arg2)
3739 {
3740 const asection *sec1 = *(const asection **) arg1;
3741 const asection *sec2 = *(const asection **) arg2;
3742 bfd_size_type size1, size2;
3743
3744 /* Sort by LMA first, since this is the address used to
3745 place the section into a segment. */
3746 if (sec1->lma < sec2->lma)
3747 return -1;
3748 else if (sec1->lma > sec2->lma)
3749 return 1;
3750
3751 /* Then sort by VMA. Normally the LMA and the VMA will be
3752 the same, and this will do nothing. */
3753 if (sec1->vma < sec2->vma)
3754 return -1;
3755 else if (sec1->vma > sec2->vma)
3756 return 1;
3757
3758 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3759
3760 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3761
3762 if (TOEND (sec1))
3763 {
3764 if (TOEND (sec2))
3765 {
3766 /* If the indicies are the same, do not return 0
3767 here, but continue to try the next comparison. */
3768 if (sec1->target_index - sec2->target_index != 0)
3769 return sec1->target_index - sec2->target_index;
3770 }
3771 else
3772 return 1;
3773 }
3774 else if (TOEND (sec2))
3775 return -1;
3776
3777 #undef TOEND
3778
3779 /* Sort by size, to put zero sized sections
3780 before others at the same address. */
3781
3782 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3783 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3784
3785 if (size1 < size2)
3786 return -1;
3787 if (size1 > size2)
3788 return 1;
3789
3790 return sec1->target_index - sec2->target_index;
3791 }
3792
3793 /* Ian Lance Taylor writes:
3794
3795 We shouldn't be using % with a negative signed number. That's just
3796 not good. We have to make sure either that the number is not
3797 negative, or that the number has an unsigned type. When the types
3798 are all the same size they wind up as unsigned. When file_ptr is a
3799 larger signed type, the arithmetic winds up as signed long long,
3800 which is wrong.
3801
3802 What we're trying to say here is something like ``increase OFF by
3803 the least amount that will cause it to be equal to the VMA modulo
3804 the page size.'' */
3805 /* In other words, something like:
3806
3807 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3808 off_offset = off % bed->maxpagesize;
3809 if (vma_offset < off_offset)
3810 adjustment = vma_offset + bed->maxpagesize - off_offset;
3811 else
3812 adjustment = vma_offset - off_offset;
3813
3814 which can can be collapsed into the expression below. */
3815
3816 static file_ptr
3817 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3818 {
3819 return ((vma - off) % maxpagesize);
3820 }
3821
3822 /* Assign file positions to the sections based on the mapping from
3823 sections to segments. This function also sets up some fields in
3824 the file header, and writes out the program headers. */
3825
3826 static bfd_boolean
3827 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3828 {
3829 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3830 unsigned int count;
3831 struct elf_segment_map *m;
3832 unsigned int alloc;
3833 Elf_Internal_Phdr *phdrs;
3834 file_ptr off, voff;
3835 bfd_vma filehdr_vaddr, filehdr_paddr;
3836 bfd_vma phdrs_vaddr, phdrs_paddr;
3837 Elf_Internal_Phdr *p;
3838 bfd_size_type amt;
3839
3840 if (elf_tdata (abfd)->segment_map == NULL)
3841 {
3842 if (! map_sections_to_segments (abfd))
3843 return FALSE;
3844 }
3845 else
3846 {
3847 /* The placement algorithm assumes that non allocated sections are
3848 not in PT_LOAD segments. We ensure this here by removing such
3849 sections from the segment map. */
3850 for (m = elf_tdata (abfd)->segment_map;
3851 m != NULL;
3852 m = m->next)
3853 {
3854 unsigned int new_count;
3855 unsigned int i;
3856
3857 if (m->p_type != PT_LOAD)
3858 continue;
3859
3860 new_count = 0;
3861 for (i = 0; i < m->count; i ++)
3862 {
3863 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3864 {
3865 if (i != new_count)
3866 m->sections[new_count] = m->sections[i];
3867
3868 new_count ++;
3869 }
3870 }
3871
3872 if (new_count != m->count)
3873 m->count = new_count;
3874 }
3875 }
3876
3877 if (bed->elf_backend_modify_segment_map)
3878 {
3879 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3880 return FALSE;
3881 }
3882
3883 count = 0;
3884 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3885 ++count;
3886
3887 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3888 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3889 elf_elfheader (abfd)->e_phnum = count;
3890
3891 if (count == 0)
3892 {
3893 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
3894 return TRUE;
3895 }
3896
3897 /* If we already counted the number of program segments, make sure
3898 that we allocated enough space. This happens when SIZEOF_HEADERS
3899 is used in a linker script. */
3900 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3901 if (alloc != 0 && count > alloc)
3902 {
3903 ((*_bfd_error_handler)
3904 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
3905 abfd, alloc, count));
3906 bfd_set_error (bfd_error_bad_value);
3907 return FALSE;
3908 }
3909
3910 if (alloc == 0)
3911 alloc = count;
3912
3913 amt = alloc * sizeof (Elf_Internal_Phdr);
3914 phdrs = bfd_alloc (abfd, amt);
3915 if (phdrs == NULL)
3916 return FALSE;
3917
3918 off = bed->s->sizeof_ehdr;
3919 off += alloc * bed->s->sizeof_phdr;
3920
3921 filehdr_vaddr = 0;
3922 filehdr_paddr = 0;
3923 phdrs_vaddr = 0;
3924 phdrs_paddr = 0;
3925
3926 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3927 m != NULL;
3928 m = m->next, p++)
3929 {
3930 unsigned int i;
3931 asection **secpp;
3932
3933 /* If elf_segment_map is not from map_sections_to_segments, the
3934 sections may not be correctly ordered. NOTE: sorting should
3935 not be done to the PT_NOTE section of a corefile, which may
3936 contain several pseudo-sections artificially created by bfd.
3937 Sorting these pseudo-sections breaks things badly. */
3938 if (m->count > 1
3939 && !(elf_elfheader (abfd)->e_type == ET_CORE
3940 && m->p_type == PT_NOTE))
3941 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3942 elf_sort_sections);
3943
3944 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
3945 number of sections with contents contributing to both p_filesz
3946 and p_memsz, followed by a number of sections with no contents
3947 that just contribute to p_memsz. In this loop, OFF tracks next
3948 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
3949 an adjustment we use for segments that have no file contents
3950 but need zero filled memory allocation. */
3951 voff = 0;
3952 p->p_type = m->p_type;
3953 p->p_flags = m->p_flags;
3954
3955 if (p->p_type == PT_LOAD
3956 && m->count > 0)
3957 {
3958 bfd_size_type align;
3959 bfd_vma adjust;
3960
3961 if ((abfd->flags & D_PAGED) != 0)
3962 align = bed->maxpagesize;
3963 else
3964 {
3965 unsigned int align_power = 0;
3966 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3967 {
3968 unsigned int secalign;
3969
3970 secalign = bfd_get_section_alignment (abfd, *secpp);
3971 if (secalign > align_power)
3972 align_power = secalign;
3973 }
3974 align = (bfd_size_type) 1 << align_power;
3975 }
3976
3977 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
3978 off += adjust;
3979 if (adjust != 0
3980 && !m->includes_filehdr
3981 && !m->includes_phdrs
3982 && (ufile_ptr) off >= align)
3983 {
3984 /* If the first section isn't loadable, the same holds for
3985 any other sections. Since the segment won't need file
3986 space, we can make p_offset overlap some prior segment.
3987 However, .tbss is special. If a segment starts with
3988 .tbss, we need to look at the next section to decide
3989 whether the segment has any loadable sections. */
3990 i = 0;
3991 while ((m->sections[i]->flags & SEC_LOAD) == 0)
3992 {
3993 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
3994 || ++i >= m->count)
3995 {
3996 off -= adjust;
3997 voff = adjust - align;
3998 break;
3999 }
4000 }
4001 }
4002 }
4003 /* Make sure the .dynamic section is the first section in the
4004 PT_DYNAMIC segment. */
4005 else if (p->p_type == PT_DYNAMIC
4006 && m->count > 1
4007 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4008 {
4009 _bfd_error_handler
4010 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4011 abfd);
4012 bfd_set_error (bfd_error_bad_value);
4013 return FALSE;
4014 }
4015
4016 if (m->count == 0)
4017 p->p_vaddr = 0;
4018 else
4019 p->p_vaddr = m->sections[0]->vma;
4020
4021 if (m->p_paddr_valid)
4022 p->p_paddr = m->p_paddr;
4023 else if (m->count == 0)
4024 p->p_paddr = 0;
4025 else
4026 p->p_paddr = m->sections[0]->lma;
4027
4028 if (p->p_type == PT_LOAD
4029 && (abfd->flags & D_PAGED) != 0)
4030 p->p_align = bed->maxpagesize;
4031 else if (m->count == 0)
4032 p->p_align = 1 << bed->s->log_file_align;
4033 else
4034 p->p_align = 0;
4035
4036 p->p_offset = 0;
4037 p->p_filesz = 0;
4038 p->p_memsz = 0;
4039
4040 if (m->includes_filehdr)
4041 {
4042 if (! m->p_flags_valid)
4043 p->p_flags |= PF_R;
4044 p->p_offset = 0;
4045 p->p_filesz = bed->s->sizeof_ehdr;
4046 p->p_memsz = bed->s->sizeof_ehdr;
4047 if (m->count > 0)
4048 {
4049 BFD_ASSERT (p->p_type == PT_LOAD);
4050
4051 if (p->p_vaddr < (bfd_vma) off)
4052 {
4053 (*_bfd_error_handler)
4054 (_("%B: Not enough room for program headers, try linking with -N"),
4055 abfd);
4056 bfd_set_error (bfd_error_bad_value);
4057 return FALSE;
4058 }
4059
4060 p->p_vaddr -= off;
4061 if (! m->p_paddr_valid)
4062 p->p_paddr -= off;
4063 }
4064 if (p->p_type == PT_LOAD)
4065 {
4066 filehdr_vaddr = p->p_vaddr;
4067 filehdr_paddr = p->p_paddr;
4068 }
4069 }
4070
4071 if (m->includes_phdrs)
4072 {
4073 if (! m->p_flags_valid)
4074 p->p_flags |= PF_R;
4075
4076 if (m->includes_filehdr)
4077 {
4078 if (p->p_type == PT_LOAD)
4079 {
4080 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4081 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4082 }
4083 }
4084 else
4085 {
4086 p->p_offset = bed->s->sizeof_ehdr;
4087
4088 if (m->count > 0)
4089 {
4090 BFD_ASSERT (p->p_type == PT_LOAD);
4091 p->p_vaddr -= off - p->p_offset;
4092 if (! m->p_paddr_valid)
4093 p->p_paddr -= off - p->p_offset;
4094 }
4095
4096 if (p->p_type == PT_LOAD)
4097 {
4098 phdrs_vaddr = p->p_vaddr;
4099 phdrs_paddr = p->p_paddr;
4100 }
4101 else
4102 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4103 }
4104
4105 p->p_filesz += alloc * bed->s->sizeof_phdr;
4106 p->p_memsz += alloc * bed->s->sizeof_phdr;
4107 }
4108
4109 if (p->p_type == PT_LOAD
4110 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4111 {
4112 if (! m->includes_filehdr && ! m->includes_phdrs)
4113 p->p_offset = off + voff;
4114 else
4115 {
4116 file_ptr adjust;
4117
4118 adjust = off - (p->p_offset + p->p_filesz);
4119 p->p_filesz += adjust;
4120 p->p_memsz += adjust;
4121 }
4122 }
4123
4124 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4125 {
4126 asection *sec;
4127 flagword flags;
4128 bfd_size_type align;
4129
4130 sec = *secpp;
4131 flags = sec->flags;
4132 align = 1 << bfd_get_section_alignment (abfd, sec);
4133
4134 if (p->p_type == PT_LOAD
4135 || p->p_type == PT_TLS)
4136 {
4137 bfd_signed_vma adjust;
4138
4139 if ((flags & SEC_LOAD) != 0)
4140 {
4141 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4142 if (adjust < 0)
4143 {
4144 (*_bfd_error_handler)
4145 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4146 abfd, sec, (unsigned long) sec->lma);
4147 adjust = 0;
4148 }
4149 off += adjust;
4150 p->p_filesz += adjust;
4151 p->p_memsz += adjust;
4152 }
4153 /* .tbss is special. It doesn't contribute to p_memsz of
4154 normal segments. */
4155 else if ((flags & SEC_THREAD_LOCAL) == 0
4156 || p->p_type == PT_TLS)
4157 {
4158 /* The section VMA must equal the file position
4159 modulo the page size. */
4160 bfd_size_type page = align;
4161 if ((abfd->flags & D_PAGED) != 0)
4162 page = bed->maxpagesize;
4163 adjust = vma_page_aligned_bias (sec->vma,
4164 p->p_vaddr + p->p_memsz,
4165 page);
4166 p->p_memsz += adjust;
4167 }
4168 }
4169
4170 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4171 {
4172 /* The section at i == 0 is the one that actually contains
4173 everything. */
4174 if (i == 0)
4175 {
4176 sec->filepos = off;
4177 off += sec->size;
4178 p->p_filesz = sec->size;
4179 p->p_memsz = 0;
4180 p->p_align = 1;
4181 }
4182 else
4183 {
4184 /* The rest are fake sections that shouldn't be written. */
4185 sec->filepos = 0;
4186 sec->size = 0;
4187 sec->flags = 0;
4188 continue;
4189 }
4190 }
4191 else
4192 {
4193 if (p->p_type == PT_LOAD)
4194 {
4195 sec->filepos = off;
4196 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4197 1997, and the exact reason for it isn't clear. One
4198 plausible explanation is that it is to work around
4199 a problem we have with linker scripts using data
4200 statements in NOLOAD sections. I don't think it
4201 makes a great deal of sense to have such a section
4202 assigned to a PT_LOAD segment, but apparently
4203 people do this. The data statement results in a
4204 bfd_data_link_order being built, and these need
4205 section contents to write into. Eventually, we get
4206 to _bfd_elf_write_object_contents which writes any
4207 section with contents to the output. Make room
4208 here for the write, so that following segments are
4209 not trashed. */
4210 if ((flags & SEC_LOAD) != 0
4211 || (flags & SEC_HAS_CONTENTS) != 0)
4212 off += sec->size;
4213 }
4214
4215 if ((flags & SEC_LOAD) != 0)
4216 {
4217 p->p_filesz += sec->size;
4218 p->p_memsz += sec->size;
4219 }
4220 /* PR ld/594: Sections in note segments which are not loaded
4221 contribute to the file size but not the in-memory size. */
4222 else if (p->p_type == PT_NOTE
4223 && (flags & SEC_HAS_CONTENTS) != 0)
4224 p->p_filesz += sec->size;
4225
4226 /* .tbss is special. It doesn't contribute to p_memsz of
4227 normal segments. */
4228 else if ((flags & SEC_THREAD_LOCAL) == 0
4229 || p->p_type == PT_TLS)
4230 p->p_memsz += sec->size;
4231
4232 if (p->p_type == PT_TLS
4233 && sec->size == 0
4234 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4235 {
4236 struct bfd_link_order *o;
4237 bfd_vma tbss_size = 0;
4238
4239 for (o = sec->link_order_head; o != NULL; o = o->next)
4240 if (tbss_size < o->offset + o->size)
4241 tbss_size = o->offset + o->size;
4242
4243 p->p_memsz += tbss_size;
4244 }
4245
4246 if (align > p->p_align
4247 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4248 p->p_align = align;
4249 }
4250
4251 if (! m->p_flags_valid)
4252 {
4253 p->p_flags |= PF_R;
4254 if ((flags & SEC_CODE) != 0)
4255 p->p_flags |= PF_X;
4256 if ((flags & SEC_READONLY) == 0)
4257 p->p_flags |= PF_W;
4258 }
4259 }
4260 }
4261
4262 /* Now that we have set the section file positions, we can set up
4263 the file positions for the non PT_LOAD segments. */
4264 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4265 m != NULL;
4266 m = m->next, p++)
4267 {
4268 if (p->p_type != PT_LOAD && m->count > 0)
4269 {
4270 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4271 /* If the section has not yet been assigned a file position,
4272 do so now. The ARM BPABI requires that .dynamic section
4273 not be marked SEC_ALLOC because it is not part of any
4274 PT_LOAD segment, so it will not be processed above. */
4275 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4276 {
4277 unsigned int i;
4278 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4279
4280 i = 1;
4281 while (i_shdrpp[i]->bfd_section != m->sections[0])
4282 ++i;
4283 off = (_bfd_elf_assign_file_position_for_section
4284 (i_shdrpp[i], off, TRUE));
4285 p->p_filesz = m->sections[0]->size;
4286 }
4287 p->p_offset = m->sections[0]->filepos;
4288 }
4289 if (m->count == 0)
4290 {
4291 if (m->includes_filehdr)
4292 {
4293 p->p_vaddr = filehdr_vaddr;
4294 if (! m->p_paddr_valid)
4295 p->p_paddr = filehdr_paddr;
4296 }
4297 else if (m->includes_phdrs)
4298 {
4299 p->p_vaddr = phdrs_vaddr;
4300 if (! m->p_paddr_valid)
4301 p->p_paddr = phdrs_paddr;
4302 }
4303 else if (p->p_type == PT_GNU_RELRO)
4304 {
4305 Elf_Internal_Phdr *lp;
4306
4307 for (lp = phdrs; lp < phdrs + count; ++lp)
4308 {
4309 if (lp->p_type == PT_LOAD
4310 && lp->p_vaddr <= link_info->relro_end
4311 && lp->p_vaddr >= link_info->relro_start
4312 && lp->p_vaddr + lp->p_filesz
4313 >= link_info->relro_end)
4314 break;
4315 }
4316
4317 if (lp < phdrs + count
4318 && link_info->relro_end > lp->p_vaddr)
4319 {
4320 p->p_vaddr = lp->p_vaddr;
4321 p->p_paddr = lp->p_paddr;
4322 p->p_offset = lp->p_offset;
4323 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4324 p->p_memsz = p->p_filesz;
4325 p->p_align = 1;
4326 p->p_flags = (lp->p_flags & ~PF_W);
4327 }
4328 else
4329 {
4330 memset (p, 0, sizeof *p);
4331 p->p_type = PT_NULL;
4332 }
4333 }
4334 }
4335 }
4336
4337 /* Clear out any program headers we allocated but did not use. */
4338 for (; count < alloc; count++, p++)
4339 {
4340 memset (p, 0, sizeof *p);
4341 p->p_type = PT_NULL;
4342 }
4343
4344 elf_tdata (abfd)->phdr = phdrs;
4345
4346 elf_tdata (abfd)->next_file_pos = off;
4347
4348 /* Write out the program headers. */
4349 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4350 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4351 return FALSE;
4352
4353 return TRUE;
4354 }
4355
4356 /* Get the size of the program header.
4357
4358 If this is called by the linker before any of the section VMA's are set, it
4359 can't calculate the correct value for a strange memory layout. This only
4360 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4361 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4362 data segment (exclusive of .interp and .dynamic).
4363
4364 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4365 will be two segments. */
4366
4367 static bfd_size_type
4368 get_program_header_size (bfd *abfd)
4369 {
4370 size_t segs;
4371 asection *s;
4372 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4373
4374 /* We can't return a different result each time we're called. */
4375 if (elf_tdata (abfd)->program_header_size != 0)
4376 return elf_tdata (abfd)->program_header_size;
4377
4378 if (elf_tdata (abfd)->segment_map != NULL)
4379 {
4380 struct elf_segment_map *m;
4381
4382 segs = 0;
4383 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4384 ++segs;
4385 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4386 return elf_tdata (abfd)->program_header_size;
4387 }
4388
4389 /* Assume we will need exactly two PT_LOAD segments: one for text
4390 and one for data. */
4391 segs = 2;
4392
4393 s = bfd_get_section_by_name (abfd, ".interp");
4394 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4395 {
4396 /* If we have a loadable interpreter section, we need a
4397 PT_INTERP segment. In this case, assume we also need a
4398 PT_PHDR segment, although that may not be true for all
4399 targets. */
4400 segs += 2;
4401 }
4402
4403 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4404 {
4405 /* We need a PT_DYNAMIC segment. */
4406 ++segs;
4407 }
4408
4409 if (elf_tdata (abfd)->eh_frame_hdr)
4410 {
4411 /* We need a PT_GNU_EH_FRAME segment. */
4412 ++segs;
4413 }
4414
4415 if (elf_tdata (abfd)->stack_flags)
4416 {
4417 /* We need a PT_GNU_STACK segment. */
4418 ++segs;
4419 }
4420
4421 if (elf_tdata (abfd)->relro)
4422 {
4423 /* We need a PT_GNU_RELRO segment. */
4424 ++segs;
4425 }
4426
4427 for (s = abfd->sections; s != NULL; s = s->next)
4428 {
4429 if ((s->flags & SEC_LOAD) != 0
4430 && strncmp (s->name, ".note", 5) == 0)
4431 {
4432 /* We need a PT_NOTE segment. */
4433 ++segs;
4434 }
4435 }
4436
4437 for (s = abfd->sections; s != NULL; s = s->next)
4438 {
4439 if (s->flags & SEC_THREAD_LOCAL)
4440 {
4441 /* We need a PT_TLS segment. */
4442 ++segs;
4443 break;
4444 }
4445 }
4446
4447 /* Let the backend count up any program headers it might need. */
4448 if (bed->elf_backend_additional_program_headers)
4449 {
4450 int a;
4451
4452 a = (*bed->elf_backend_additional_program_headers) (abfd);
4453 if (a == -1)
4454 abort ();
4455 segs += a;
4456 }
4457
4458 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4459 return elf_tdata (abfd)->program_header_size;
4460 }
4461
4462 /* Work out the file positions of all the sections. This is called by
4463 _bfd_elf_compute_section_file_positions. All the section sizes and
4464 VMAs must be known before this is called.
4465
4466 Reloc sections come in two flavours: Those processed specially as
4467 "side-channel" data attached to a section to which they apply, and
4468 those that bfd doesn't process as relocations. The latter sort are
4469 stored in a normal bfd section by bfd_section_from_shdr. We don't
4470 consider the former sort here, unless they form part of the loadable
4471 image. Reloc sections not assigned here will be handled later by
4472 assign_file_positions_for_relocs.
4473
4474 We also don't set the positions of the .symtab and .strtab here. */
4475
4476 static bfd_boolean
4477 assign_file_positions_except_relocs (bfd *abfd,
4478 struct bfd_link_info *link_info)
4479 {
4480 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4481 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4482 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4483 unsigned int num_sec = elf_numsections (abfd);
4484 file_ptr off;
4485 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4486
4487 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4488 && bfd_get_format (abfd) != bfd_core)
4489 {
4490 Elf_Internal_Shdr **hdrpp;
4491 unsigned int i;
4492
4493 /* Start after the ELF header. */
4494 off = i_ehdrp->e_ehsize;
4495
4496 /* We are not creating an executable, which means that we are
4497 not creating a program header, and that the actual order of
4498 the sections in the file is unimportant. */
4499 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4500 {
4501 Elf_Internal_Shdr *hdr;
4502
4503 hdr = *hdrpp;
4504 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4505 && hdr->bfd_section == NULL)
4506 || i == tdata->symtab_section
4507 || i == tdata->symtab_shndx_section
4508 || i == tdata->strtab_section)
4509 {
4510 hdr->sh_offset = -1;
4511 }
4512 else
4513 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4514
4515 if (i == SHN_LORESERVE - 1)
4516 {
4517 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4518 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4519 }
4520 }
4521 }
4522 else
4523 {
4524 unsigned int i;
4525 Elf_Internal_Shdr **hdrpp;
4526
4527 /* Assign file positions for the loaded sections based on the
4528 assignment of sections to segments. */
4529 if (! assign_file_positions_for_segments (abfd, link_info))
4530 return FALSE;
4531
4532 /* Assign file positions for the other sections. */
4533
4534 off = elf_tdata (abfd)->next_file_pos;
4535 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4536 {
4537 Elf_Internal_Shdr *hdr;
4538
4539 hdr = *hdrpp;
4540 if (hdr->bfd_section != NULL
4541 && hdr->bfd_section->filepos != 0)
4542 hdr->sh_offset = hdr->bfd_section->filepos;
4543 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4544 {
4545 ((*_bfd_error_handler)
4546 (_("%B: warning: allocated section `%s' not in segment"),
4547 abfd,
4548 (hdr->bfd_section == NULL
4549 ? "*unknown*"
4550 : hdr->bfd_section->name)));
4551 if ((abfd->flags & D_PAGED) != 0)
4552 off += vma_page_aligned_bias (hdr->sh_addr, off,
4553 bed->maxpagesize);
4554 else
4555 off += vma_page_aligned_bias (hdr->sh_addr, off,
4556 hdr->sh_addralign);
4557 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4558 FALSE);
4559 }
4560 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4561 && hdr->bfd_section == NULL)
4562 || hdr == i_shdrpp[tdata->symtab_section]
4563 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4564 || hdr == i_shdrpp[tdata->strtab_section])
4565 hdr->sh_offset = -1;
4566 else
4567 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4568
4569 if (i == SHN_LORESERVE - 1)
4570 {
4571 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4572 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4573 }
4574 }
4575 }
4576
4577 /* Place the section headers. */
4578 off = align_file_position (off, 1 << bed->s->log_file_align);
4579 i_ehdrp->e_shoff = off;
4580 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4581
4582 elf_tdata (abfd)->next_file_pos = off;
4583
4584 return TRUE;
4585 }
4586
4587 static bfd_boolean
4588 prep_headers (bfd *abfd)
4589 {
4590 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4591 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4592 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4593 struct elf_strtab_hash *shstrtab;
4594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4595
4596 i_ehdrp = elf_elfheader (abfd);
4597 i_shdrp = elf_elfsections (abfd);
4598
4599 shstrtab = _bfd_elf_strtab_init ();
4600 if (shstrtab == NULL)
4601 return FALSE;
4602
4603 elf_shstrtab (abfd) = shstrtab;
4604
4605 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4606 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4607 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4608 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4609
4610 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4611 i_ehdrp->e_ident[EI_DATA] =
4612 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4613 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4614
4615 if ((abfd->flags & DYNAMIC) != 0)
4616 i_ehdrp->e_type = ET_DYN;
4617 else if ((abfd->flags & EXEC_P) != 0)
4618 i_ehdrp->e_type = ET_EXEC;
4619 else if (bfd_get_format (abfd) == bfd_core)
4620 i_ehdrp->e_type = ET_CORE;
4621 else
4622 i_ehdrp->e_type = ET_REL;
4623
4624 switch (bfd_get_arch (abfd))
4625 {
4626 case bfd_arch_unknown:
4627 i_ehdrp->e_machine = EM_NONE;
4628 break;
4629
4630 /* There used to be a long list of cases here, each one setting
4631 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4632 in the corresponding bfd definition. To avoid duplication,
4633 the switch was removed. Machines that need special handling
4634 can generally do it in elf_backend_final_write_processing(),
4635 unless they need the information earlier than the final write.
4636 Such need can generally be supplied by replacing the tests for
4637 e_machine with the conditions used to determine it. */
4638 default:
4639 i_ehdrp->e_machine = bed->elf_machine_code;
4640 }
4641
4642 i_ehdrp->e_version = bed->s->ev_current;
4643 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4644
4645 /* No program header, for now. */
4646 i_ehdrp->e_phoff = 0;
4647 i_ehdrp->e_phentsize = 0;
4648 i_ehdrp->e_phnum = 0;
4649
4650 /* Each bfd section is section header entry. */
4651 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4652 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4653
4654 /* If we're building an executable, we'll need a program header table. */
4655 if (abfd->flags & EXEC_P)
4656 /* It all happens later. */
4657 ;
4658 else
4659 {
4660 i_ehdrp->e_phentsize = 0;
4661 i_phdrp = 0;
4662 i_ehdrp->e_phoff = 0;
4663 }
4664
4665 elf_tdata (abfd)->symtab_hdr.sh_name =
4666 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4667 elf_tdata (abfd)->strtab_hdr.sh_name =
4668 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4669 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4670 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4671 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4672 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4673 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4674 return FALSE;
4675
4676 return TRUE;
4677 }
4678
4679 /* Assign file positions for all the reloc sections which are not part
4680 of the loadable file image. */
4681
4682 void
4683 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4684 {
4685 file_ptr off;
4686 unsigned int i, num_sec;
4687 Elf_Internal_Shdr **shdrpp;
4688
4689 off = elf_tdata (abfd)->next_file_pos;
4690
4691 num_sec = elf_numsections (abfd);
4692 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4693 {
4694 Elf_Internal_Shdr *shdrp;
4695
4696 shdrp = *shdrpp;
4697 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4698 && shdrp->sh_offset == -1)
4699 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4700 }
4701
4702 elf_tdata (abfd)->next_file_pos = off;
4703 }
4704
4705 bfd_boolean
4706 _bfd_elf_write_object_contents (bfd *abfd)
4707 {
4708 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4709 Elf_Internal_Ehdr *i_ehdrp;
4710 Elf_Internal_Shdr **i_shdrp;
4711 bfd_boolean failed;
4712 unsigned int count, num_sec;
4713
4714 if (! abfd->output_has_begun
4715 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4716 return FALSE;
4717
4718 i_shdrp = elf_elfsections (abfd);
4719 i_ehdrp = elf_elfheader (abfd);
4720
4721 failed = FALSE;
4722 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4723 if (failed)
4724 return FALSE;
4725
4726 _bfd_elf_assign_file_positions_for_relocs (abfd);
4727
4728 /* After writing the headers, we need to write the sections too... */
4729 num_sec = elf_numsections (abfd);
4730 for (count = 1; count < num_sec; count++)
4731 {
4732 if (bed->elf_backend_section_processing)
4733 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4734 if (i_shdrp[count]->contents)
4735 {
4736 bfd_size_type amt = i_shdrp[count]->sh_size;
4737
4738 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4739 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4740 return FALSE;
4741 }
4742 if (count == SHN_LORESERVE - 1)
4743 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4744 }
4745
4746 /* Write out the section header names. */
4747 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4748 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4749 return FALSE;
4750
4751 if (bed->elf_backend_final_write_processing)
4752 (*bed->elf_backend_final_write_processing) (abfd,
4753 elf_tdata (abfd)->linker);
4754
4755 return bed->s->write_shdrs_and_ehdr (abfd);
4756 }
4757
4758 bfd_boolean
4759 _bfd_elf_write_corefile_contents (bfd *abfd)
4760 {
4761 /* Hopefully this can be done just like an object file. */
4762 return _bfd_elf_write_object_contents (abfd);
4763 }
4764
4765 /* Given a section, search the header to find them. */
4766
4767 int
4768 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4769 {
4770 const struct elf_backend_data *bed;
4771 int index;
4772
4773 if (elf_section_data (asect) != NULL
4774 && elf_section_data (asect)->this_idx != 0)
4775 return elf_section_data (asect)->this_idx;
4776
4777 if (bfd_is_abs_section (asect))
4778 index = SHN_ABS;
4779 else if (bfd_is_com_section (asect))
4780 index = SHN_COMMON;
4781 else if (bfd_is_und_section (asect))
4782 index = SHN_UNDEF;
4783 else
4784 {
4785 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4786 int maxindex = elf_numsections (abfd);
4787
4788 for (index = 1; index < maxindex; index++)
4789 {
4790 Elf_Internal_Shdr *hdr = i_shdrp[index];
4791
4792 if (hdr != NULL && hdr->bfd_section == asect)
4793 return index;
4794 }
4795 index = -1;
4796 }
4797
4798 bed = get_elf_backend_data (abfd);
4799 if (bed->elf_backend_section_from_bfd_section)
4800 {
4801 int retval = index;
4802
4803 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4804 return retval;
4805 }
4806
4807 if (index == -1)
4808 bfd_set_error (bfd_error_nonrepresentable_section);
4809
4810 return index;
4811 }
4812
4813 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4814 on error. */
4815
4816 int
4817 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4818 {
4819 asymbol *asym_ptr = *asym_ptr_ptr;
4820 int idx;
4821 flagword flags = asym_ptr->flags;
4822
4823 /* When gas creates relocations against local labels, it creates its
4824 own symbol for the section, but does put the symbol into the
4825 symbol chain, so udata is 0. When the linker is generating
4826 relocatable output, this section symbol may be for one of the
4827 input sections rather than the output section. */
4828 if (asym_ptr->udata.i == 0
4829 && (flags & BSF_SECTION_SYM)
4830 && asym_ptr->section)
4831 {
4832 int indx;
4833
4834 if (asym_ptr->section->output_section != NULL)
4835 indx = asym_ptr->section->output_section->index;
4836 else
4837 indx = asym_ptr->section->index;
4838 if (indx < elf_num_section_syms (abfd)
4839 && elf_section_syms (abfd)[indx] != NULL)
4840 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4841 }
4842
4843 idx = asym_ptr->udata.i;
4844
4845 if (idx == 0)
4846 {
4847 /* This case can occur when using --strip-symbol on a symbol
4848 which is used in a relocation entry. */
4849 (*_bfd_error_handler)
4850 (_("%B: symbol `%s' required but not present"),
4851 abfd, bfd_asymbol_name (asym_ptr));
4852 bfd_set_error (bfd_error_no_symbols);
4853 return -1;
4854 }
4855
4856 #if DEBUG & 4
4857 {
4858 fprintf (stderr,
4859 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4860 (long) asym_ptr, asym_ptr->name, idx, flags,
4861 elf_symbol_flags (flags));
4862 fflush (stderr);
4863 }
4864 #endif
4865
4866 return idx;
4867 }
4868
4869 /* Copy private BFD data. This copies any program header information. */
4870
4871 static bfd_boolean
4872 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4873 {
4874 Elf_Internal_Ehdr *iehdr;
4875 struct elf_segment_map *map;
4876 struct elf_segment_map *map_first;
4877 struct elf_segment_map **pointer_to_map;
4878 Elf_Internal_Phdr *segment;
4879 asection *section;
4880 unsigned int i;
4881 unsigned int num_segments;
4882 bfd_boolean phdr_included = FALSE;
4883 bfd_vma maxpagesize;
4884 struct elf_segment_map *phdr_adjust_seg = NULL;
4885 unsigned int phdr_adjust_num = 0;
4886 const struct elf_backend_data *bed;
4887
4888 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4889 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4890 return TRUE;
4891
4892 if (elf_tdata (ibfd)->phdr == NULL)
4893 return TRUE;
4894
4895 bed = get_elf_backend_data (ibfd);
4896 iehdr = elf_elfheader (ibfd);
4897
4898 map_first = NULL;
4899 pointer_to_map = &map_first;
4900
4901 num_segments = elf_elfheader (ibfd)->e_phnum;
4902 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4903
4904 /* Returns the end address of the segment + 1. */
4905 #define SEGMENT_END(segment, start) \
4906 (start + (segment->p_memsz > segment->p_filesz \
4907 ? segment->p_memsz : segment->p_filesz))
4908
4909 #define SECTION_SIZE(section, segment) \
4910 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4911 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4912 ? section->size : 0)
4913
4914 /* Returns TRUE if the given section is contained within
4915 the given segment. VMA addresses are compared. */
4916 #define IS_CONTAINED_BY_VMA(section, segment) \
4917 (section->vma >= segment->p_vaddr \
4918 && (section->vma + SECTION_SIZE (section, segment) \
4919 <= (SEGMENT_END (segment, segment->p_vaddr))))
4920
4921 /* Returns TRUE if the given section is contained within
4922 the given segment. LMA addresses are compared. */
4923 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4924 (section->lma >= base \
4925 && (section->lma + SECTION_SIZE (section, segment) \
4926 <= SEGMENT_END (segment, base)))
4927
4928 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4929 #define IS_COREFILE_NOTE(p, s) \
4930 (p->p_type == PT_NOTE \
4931 && bfd_get_format (ibfd) == bfd_core \
4932 && s->vma == 0 && s->lma == 0 \
4933 && (bfd_vma) s->filepos >= p->p_offset \
4934 && ((bfd_vma) s->filepos + s->size \
4935 <= p->p_offset + p->p_filesz))
4936
4937 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4938 linker, which generates a PT_INTERP section with p_vaddr and
4939 p_memsz set to 0. */
4940 #define IS_SOLARIS_PT_INTERP(p, s) \
4941 (p->p_vaddr == 0 \
4942 && p->p_paddr == 0 \
4943 && p->p_memsz == 0 \
4944 && p->p_filesz > 0 \
4945 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4946 && s->size > 0 \
4947 && (bfd_vma) s->filepos >= p->p_offset \
4948 && ((bfd_vma) s->filepos + s->size \
4949 <= p->p_offset + p->p_filesz))
4950
4951 /* Decide if the given section should be included in the given segment.
4952 A section will be included if:
4953 1. It is within the address space of the segment -- we use the LMA
4954 if that is set for the segment and the VMA otherwise,
4955 2. It is an allocated segment,
4956 3. There is an output section associated with it,
4957 4. The section has not already been allocated to a previous segment.
4958 5. PT_GNU_STACK segments do not include any sections.
4959 6. PT_TLS segment includes only SHF_TLS sections.
4960 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
4961 8. PT_DYNAMIC should not contain empty sections at the beginning
4962 (with the possible exception of .dynamic). */
4963 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4964 ((((segment->p_paddr \
4965 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4966 : IS_CONTAINED_BY_VMA (section, segment)) \
4967 && (section->flags & SEC_ALLOC) != 0) \
4968 || IS_COREFILE_NOTE (segment, section)) \
4969 && section->output_section != NULL \
4970 && segment->p_type != PT_GNU_STACK \
4971 && (segment->p_type != PT_TLS \
4972 || (section->flags & SEC_THREAD_LOCAL)) \
4973 && (segment->p_type == PT_LOAD \
4974 || segment->p_type == PT_TLS \
4975 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4976 && (segment->p_type != PT_DYNAMIC \
4977 || SECTION_SIZE (section, segment) > 0 \
4978 || (segment->p_paddr \
4979 ? segment->p_paddr != section->lma \
4980 : segment->p_vaddr != section->vma) \
4981 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
4982 == 0)) \
4983 && ! section->segment_mark)
4984
4985 /* Returns TRUE iff seg1 starts after the end of seg2. */
4986 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4987 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4988
4989 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4990 their VMA address ranges and their LMA address ranges overlap.
4991 It is possible to have overlapping VMA ranges without overlapping LMA
4992 ranges. RedBoot images for example can have both .data and .bss mapped
4993 to the same VMA range, but with the .data section mapped to a different
4994 LMA. */
4995 #define SEGMENT_OVERLAPS(seg1, seg2) \
4996 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4997 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4998 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4999 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5000
5001 /* Initialise the segment mark field. */
5002 for (section = ibfd->sections; section != NULL; section = section->next)
5003 section->segment_mark = FALSE;
5004
5005 /* Scan through the segments specified in the program header
5006 of the input BFD. For this first scan we look for overlaps
5007 in the loadable segments. These can be created by weird
5008 parameters to objcopy. Also, fix some solaris weirdness. */
5009 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5010 i < num_segments;
5011 i++, segment++)
5012 {
5013 unsigned int j;
5014 Elf_Internal_Phdr *segment2;
5015
5016 if (segment->p_type == PT_INTERP)
5017 for (section = ibfd->sections; section; section = section->next)
5018 if (IS_SOLARIS_PT_INTERP (segment, section))
5019 {
5020 /* Mininal change so that the normal section to segment
5021 assignment code will work. */
5022 segment->p_vaddr = section->vma;
5023 break;
5024 }
5025
5026 if (segment->p_type != PT_LOAD)
5027 continue;
5028
5029 /* Determine if this segment overlaps any previous segments. */
5030 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5031 {
5032 bfd_signed_vma extra_length;
5033
5034 if (segment2->p_type != PT_LOAD
5035 || ! SEGMENT_OVERLAPS (segment, segment2))
5036 continue;
5037
5038 /* Merge the two segments together. */
5039 if (segment2->p_vaddr < segment->p_vaddr)
5040 {
5041 /* Extend SEGMENT2 to include SEGMENT and then delete
5042 SEGMENT. */
5043 extra_length =
5044 SEGMENT_END (segment, segment->p_vaddr)
5045 - SEGMENT_END (segment2, segment2->p_vaddr);
5046
5047 if (extra_length > 0)
5048 {
5049 segment2->p_memsz += extra_length;
5050 segment2->p_filesz += extra_length;
5051 }
5052
5053 segment->p_type = PT_NULL;
5054
5055 /* Since we have deleted P we must restart the outer loop. */
5056 i = 0;
5057 segment = elf_tdata (ibfd)->phdr;
5058 break;
5059 }
5060 else
5061 {
5062 /* Extend SEGMENT to include SEGMENT2 and then delete
5063 SEGMENT2. */
5064 extra_length =
5065 SEGMENT_END (segment2, segment2->p_vaddr)
5066 - SEGMENT_END (segment, segment->p_vaddr);
5067
5068 if (extra_length > 0)
5069 {
5070 segment->p_memsz += extra_length;
5071 segment->p_filesz += extra_length;
5072 }
5073
5074 segment2->p_type = PT_NULL;
5075 }
5076 }
5077 }
5078
5079 /* The second scan attempts to assign sections to segments. */
5080 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5081 i < num_segments;
5082 i ++, segment ++)
5083 {
5084 unsigned int section_count;
5085 asection ** sections;
5086 asection * output_section;
5087 unsigned int isec;
5088 bfd_vma matching_lma;
5089 bfd_vma suggested_lma;
5090 unsigned int j;
5091 bfd_size_type amt;
5092
5093 if (segment->p_type == PT_NULL)
5094 continue;
5095
5096 /* Compute how many sections might be placed into this segment. */
5097 for (section = ibfd->sections, section_count = 0;
5098 section != NULL;
5099 section = section->next)
5100 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5101 ++section_count;
5102
5103 /* Allocate a segment map big enough to contain
5104 all of the sections we have selected. */
5105 amt = sizeof (struct elf_segment_map);
5106 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5107 map = bfd_alloc (obfd, amt);
5108 if (map == NULL)
5109 return FALSE;
5110
5111 /* Initialise the fields of the segment map. Default to
5112 using the physical address of the segment in the input BFD. */
5113 map->next = NULL;
5114 map->p_type = segment->p_type;
5115 map->p_flags = segment->p_flags;
5116 map->p_flags_valid = 1;
5117 map->p_paddr = segment->p_paddr;
5118 map->p_paddr_valid = 1;
5119
5120 /* Determine if this segment contains the ELF file header
5121 and if it contains the program headers themselves. */
5122 map->includes_filehdr = (segment->p_offset == 0
5123 && segment->p_filesz >= iehdr->e_ehsize);
5124
5125 map->includes_phdrs = 0;
5126
5127 if (! phdr_included || segment->p_type != PT_LOAD)
5128 {
5129 map->includes_phdrs =
5130 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5131 && (segment->p_offset + segment->p_filesz
5132 >= ((bfd_vma) iehdr->e_phoff
5133 + iehdr->e_phnum * iehdr->e_phentsize)));
5134
5135 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5136 phdr_included = TRUE;
5137 }
5138
5139 if (section_count == 0)
5140 {
5141 /* Special segments, such as the PT_PHDR segment, may contain
5142 no sections, but ordinary, loadable segments should contain
5143 something. They are allowed by the ELF spec however, so only
5144 a warning is produced. */
5145 if (segment->p_type == PT_LOAD)
5146 (*_bfd_error_handler)
5147 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5148 ibfd);
5149
5150 map->count = 0;
5151 *pointer_to_map = map;
5152 pointer_to_map = &map->next;
5153
5154 continue;
5155 }
5156
5157 /* Now scan the sections in the input BFD again and attempt
5158 to add their corresponding output sections to the segment map.
5159 The problem here is how to handle an output section which has
5160 been moved (ie had its LMA changed). There are four possibilities:
5161
5162 1. None of the sections have been moved.
5163 In this case we can continue to use the segment LMA from the
5164 input BFD.
5165
5166 2. All of the sections have been moved by the same amount.
5167 In this case we can change the segment's LMA to match the LMA
5168 of the first section.
5169
5170 3. Some of the sections have been moved, others have not.
5171 In this case those sections which have not been moved can be
5172 placed in the current segment which will have to have its size,
5173 and possibly its LMA changed, and a new segment or segments will
5174 have to be created to contain the other sections.
5175
5176 4. The sections have been moved, but not by the same amount.
5177 In this case we can change the segment's LMA to match the LMA
5178 of the first section and we will have to create a new segment
5179 or segments to contain the other sections.
5180
5181 In order to save time, we allocate an array to hold the section
5182 pointers that we are interested in. As these sections get assigned
5183 to a segment, they are removed from this array. */
5184
5185 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5186 to work around this long long bug. */
5187 amt = section_count * sizeof (asection *);
5188 sections = bfd_malloc (amt);
5189 if (sections == NULL)
5190 return FALSE;
5191
5192 /* Step One: Scan for segment vs section LMA conflicts.
5193 Also add the sections to the section array allocated above.
5194 Also add the sections to the current segment. In the common
5195 case, where the sections have not been moved, this means that
5196 we have completely filled the segment, and there is nothing
5197 more to do. */
5198 isec = 0;
5199 matching_lma = 0;
5200 suggested_lma = 0;
5201
5202 for (j = 0, section = ibfd->sections;
5203 section != NULL;
5204 section = section->next)
5205 {
5206 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5207 {
5208 output_section = section->output_section;
5209
5210 sections[j ++] = section;
5211
5212 /* The Solaris native linker always sets p_paddr to 0.
5213 We try to catch that case here, and set it to the
5214 correct value. Note - some backends require that
5215 p_paddr be left as zero. */
5216 if (segment->p_paddr == 0
5217 && segment->p_vaddr != 0
5218 && (! bed->want_p_paddr_set_to_zero)
5219 && isec == 0
5220 && output_section->lma != 0
5221 && (output_section->vma == (segment->p_vaddr
5222 + (map->includes_filehdr
5223 ? iehdr->e_ehsize
5224 : 0)
5225 + (map->includes_phdrs
5226 ? (iehdr->e_phnum
5227 * iehdr->e_phentsize)
5228 : 0))))
5229 map->p_paddr = segment->p_vaddr;
5230
5231 /* Match up the physical address of the segment with the
5232 LMA address of the output section. */
5233 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5234 || IS_COREFILE_NOTE (segment, section)
5235 || (bed->want_p_paddr_set_to_zero &&
5236 IS_CONTAINED_BY_VMA (output_section, segment))
5237 )
5238 {
5239 if (matching_lma == 0)
5240 matching_lma = output_section->lma;
5241
5242 /* We assume that if the section fits within the segment
5243 then it does not overlap any other section within that
5244 segment. */
5245 map->sections[isec ++] = output_section;
5246 }
5247 else if (suggested_lma == 0)
5248 suggested_lma = output_section->lma;
5249 }
5250 }
5251
5252 BFD_ASSERT (j == section_count);
5253
5254 /* Step Two: Adjust the physical address of the current segment,
5255 if necessary. */
5256 if (isec == section_count)
5257 {
5258 /* All of the sections fitted within the segment as currently
5259 specified. This is the default case. Add the segment to
5260 the list of built segments and carry on to process the next
5261 program header in the input BFD. */
5262 map->count = section_count;
5263 *pointer_to_map = map;
5264 pointer_to_map = &map->next;
5265
5266 free (sections);
5267 continue;
5268 }
5269 else
5270 {
5271 if (matching_lma != 0)
5272 {
5273 /* At least one section fits inside the current segment.
5274 Keep it, but modify its physical address to match the
5275 LMA of the first section that fitted. */
5276 map->p_paddr = matching_lma;
5277 }
5278 else
5279 {
5280 /* None of the sections fitted inside the current segment.
5281 Change the current segment's physical address to match
5282 the LMA of the first section. */
5283 map->p_paddr = suggested_lma;
5284 }
5285
5286 /* Offset the segment physical address from the lma
5287 to allow for space taken up by elf headers. */
5288 if (map->includes_filehdr)
5289 map->p_paddr -= iehdr->e_ehsize;
5290
5291 if (map->includes_phdrs)
5292 {
5293 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5294
5295 /* iehdr->e_phnum is just an estimate of the number
5296 of program headers that we will need. Make a note
5297 here of the number we used and the segment we chose
5298 to hold these headers, so that we can adjust the
5299 offset when we know the correct value. */
5300 phdr_adjust_num = iehdr->e_phnum;
5301 phdr_adjust_seg = map;
5302 }
5303 }
5304
5305 /* Step Three: Loop over the sections again, this time assigning
5306 those that fit to the current segment and removing them from the
5307 sections array; but making sure not to leave large gaps. Once all
5308 possible sections have been assigned to the current segment it is
5309 added to the list of built segments and if sections still remain
5310 to be assigned, a new segment is constructed before repeating
5311 the loop. */
5312 isec = 0;
5313 do
5314 {
5315 map->count = 0;
5316 suggested_lma = 0;
5317
5318 /* Fill the current segment with sections that fit. */
5319 for (j = 0; j < section_count; j++)
5320 {
5321 section = sections[j];
5322
5323 if (section == NULL)
5324 continue;
5325
5326 output_section = section->output_section;
5327
5328 BFD_ASSERT (output_section != NULL);
5329
5330 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5331 || IS_COREFILE_NOTE (segment, section))
5332 {
5333 if (map->count == 0)
5334 {
5335 /* If the first section in a segment does not start at
5336 the beginning of the segment, then something is
5337 wrong. */
5338 if (output_section->lma !=
5339 (map->p_paddr
5340 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5341 + (map->includes_phdrs
5342 ? iehdr->e_phnum * iehdr->e_phentsize
5343 : 0)))
5344 abort ();
5345 }
5346 else
5347 {
5348 asection * prev_sec;
5349
5350 prev_sec = map->sections[map->count - 1];
5351
5352 /* If the gap between the end of the previous section
5353 and the start of this section is more than
5354 maxpagesize then we need to start a new segment. */
5355 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5356 maxpagesize)
5357 < BFD_ALIGN (output_section->lma, maxpagesize))
5358 || ((prev_sec->lma + prev_sec->size)
5359 > output_section->lma))
5360 {
5361 if (suggested_lma == 0)
5362 suggested_lma = output_section->lma;
5363
5364 continue;
5365 }
5366 }
5367
5368 map->sections[map->count++] = output_section;
5369 ++isec;
5370 sections[j] = NULL;
5371 section->segment_mark = TRUE;
5372 }
5373 else if (suggested_lma == 0)
5374 suggested_lma = output_section->lma;
5375 }
5376
5377 BFD_ASSERT (map->count > 0);
5378
5379 /* Add the current segment to the list of built segments. */
5380 *pointer_to_map = map;
5381 pointer_to_map = &map->next;
5382
5383 if (isec < section_count)
5384 {
5385 /* We still have not allocated all of the sections to
5386 segments. Create a new segment here, initialise it
5387 and carry on looping. */
5388 amt = sizeof (struct elf_segment_map);
5389 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5390 map = bfd_alloc (obfd, amt);
5391 if (map == NULL)
5392 {
5393 free (sections);
5394 return FALSE;
5395 }
5396
5397 /* Initialise the fields of the segment map. Set the physical
5398 physical address to the LMA of the first section that has
5399 not yet been assigned. */
5400 map->next = NULL;
5401 map->p_type = segment->p_type;
5402 map->p_flags = segment->p_flags;
5403 map->p_flags_valid = 1;
5404 map->p_paddr = suggested_lma;
5405 map->p_paddr_valid = 1;
5406 map->includes_filehdr = 0;
5407 map->includes_phdrs = 0;
5408 }
5409 }
5410 while (isec < section_count);
5411
5412 free (sections);
5413 }
5414
5415 /* The Solaris linker creates program headers in which all the
5416 p_paddr fields are zero. When we try to objcopy or strip such a
5417 file, we get confused. Check for this case, and if we find it
5418 reset the p_paddr_valid fields. */
5419 for (map = map_first; map != NULL; map = map->next)
5420 if (map->p_paddr != 0)
5421 break;
5422 if (map == NULL)
5423 for (map = map_first; map != NULL; map = map->next)
5424 map->p_paddr_valid = 0;
5425
5426 elf_tdata (obfd)->segment_map = map_first;
5427
5428 /* If we had to estimate the number of program headers that were
5429 going to be needed, then check our estimate now and adjust
5430 the offset if necessary. */
5431 if (phdr_adjust_seg != NULL)
5432 {
5433 unsigned int count;
5434
5435 for (count = 0, map = map_first; map != NULL; map = map->next)
5436 count++;
5437
5438 if (count > phdr_adjust_num)
5439 phdr_adjust_seg->p_paddr
5440 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5441 }
5442
5443 #undef SEGMENT_END
5444 #undef SECTION_SIZE
5445 #undef IS_CONTAINED_BY_VMA
5446 #undef IS_CONTAINED_BY_LMA
5447 #undef IS_COREFILE_NOTE
5448 #undef IS_SOLARIS_PT_INTERP
5449 #undef INCLUDE_SECTION_IN_SEGMENT
5450 #undef SEGMENT_AFTER_SEGMENT
5451 #undef SEGMENT_OVERLAPS
5452 return TRUE;
5453 }
5454
5455 /* Copy private section information. This copies over the entsize
5456 field, and sometimes the info field. */
5457
5458 bfd_boolean
5459 _bfd_elf_copy_private_section_data (bfd *ibfd,
5460 asection *isec,
5461 bfd *obfd,
5462 asection *osec)
5463 {
5464 Elf_Internal_Shdr *ihdr, *ohdr;
5465
5466 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5467 || obfd->xvec->flavour != bfd_target_elf_flavour)
5468 return TRUE;
5469
5470 ihdr = &elf_section_data (isec)->this_hdr;
5471 ohdr = &elf_section_data (osec)->this_hdr;
5472
5473 ohdr->sh_entsize = ihdr->sh_entsize;
5474
5475 if (ihdr->sh_type == SHT_SYMTAB
5476 || ihdr->sh_type == SHT_DYNSYM
5477 || ihdr->sh_type == SHT_GNU_verneed
5478 || ihdr->sh_type == SHT_GNU_verdef)
5479 ohdr->sh_info = ihdr->sh_info;
5480
5481 /* Set things up for objcopy. The output SHT_GROUP section will
5482 have its elf_next_in_group pointing back to the input group
5483 members. */
5484 elf_next_in_group (osec) = elf_next_in_group (isec);
5485 elf_group_name (osec) = elf_group_name (isec);
5486
5487 osec->use_rela_p = isec->use_rela_p;
5488
5489 return TRUE;
5490 }
5491
5492 /* Copy private header information. */
5493
5494 bfd_boolean
5495 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5496 {
5497 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5498 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5499 return TRUE;
5500
5501 /* Copy over private BFD data if it has not already been copied.
5502 This must be done here, rather than in the copy_private_bfd_data
5503 entry point, because the latter is called after the section
5504 contents have been set, which means that the program headers have
5505 already been worked out. */
5506 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5507 {
5508 if (! copy_private_bfd_data (ibfd, obfd))
5509 return FALSE;
5510 }
5511
5512 return TRUE;
5513 }
5514
5515 /* Copy private symbol information. If this symbol is in a section
5516 which we did not map into a BFD section, try to map the section
5517 index correctly. We use special macro definitions for the mapped
5518 section indices; these definitions are interpreted by the
5519 swap_out_syms function. */
5520
5521 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5522 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5523 #define MAP_STRTAB (SHN_HIOS + 3)
5524 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5525 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5526
5527 bfd_boolean
5528 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5529 asymbol *isymarg,
5530 bfd *obfd,
5531 asymbol *osymarg)
5532 {
5533 elf_symbol_type *isym, *osym;
5534
5535 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5536 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5537 return TRUE;
5538
5539 isym = elf_symbol_from (ibfd, isymarg);
5540 osym = elf_symbol_from (obfd, osymarg);
5541
5542 if (isym != NULL
5543 && osym != NULL
5544 && bfd_is_abs_section (isym->symbol.section))
5545 {
5546 unsigned int shndx;
5547
5548 shndx = isym->internal_elf_sym.st_shndx;
5549 if (shndx == elf_onesymtab (ibfd))
5550 shndx = MAP_ONESYMTAB;
5551 else if (shndx == elf_dynsymtab (ibfd))
5552 shndx = MAP_DYNSYMTAB;
5553 else if (shndx == elf_tdata (ibfd)->strtab_section)
5554 shndx = MAP_STRTAB;
5555 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5556 shndx = MAP_SHSTRTAB;
5557 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5558 shndx = MAP_SYM_SHNDX;
5559 osym->internal_elf_sym.st_shndx = shndx;
5560 }
5561
5562 return TRUE;
5563 }
5564
5565 /* Swap out the symbols. */
5566
5567 static bfd_boolean
5568 swap_out_syms (bfd *abfd,
5569 struct bfd_strtab_hash **sttp,
5570 int relocatable_p)
5571 {
5572 const struct elf_backend_data *bed;
5573 int symcount;
5574 asymbol **syms;
5575 struct bfd_strtab_hash *stt;
5576 Elf_Internal_Shdr *symtab_hdr;
5577 Elf_Internal_Shdr *symtab_shndx_hdr;
5578 Elf_Internal_Shdr *symstrtab_hdr;
5579 bfd_byte *outbound_syms;
5580 bfd_byte *outbound_shndx;
5581 int idx;
5582 bfd_size_type amt;
5583 bfd_boolean name_local_sections;
5584
5585 if (!elf_map_symbols (abfd))
5586 return FALSE;
5587
5588 /* Dump out the symtabs. */
5589 stt = _bfd_elf_stringtab_init ();
5590 if (stt == NULL)
5591 return FALSE;
5592
5593 bed = get_elf_backend_data (abfd);
5594 symcount = bfd_get_symcount (abfd);
5595 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5596 symtab_hdr->sh_type = SHT_SYMTAB;
5597 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5598 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5599 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5600 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5601
5602 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5603 symstrtab_hdr->sh_type = SHT_STRTAB;
5604
5605 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5606 outbound_syms = bfd_alloc (abfd, amt);
5607 if (outbound_syms == NULL)
5608 {
5609 _bfd_stringtab_free (stt);
5610 return FALSE;
5611 }
5612 symtab_hdr->contents = outbound_syms;
5613
5614 outbound_shndx = NULL;
5615 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5616 if (symtab_shndx_hdr->sh_name != 0)
5617 {
5618 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5619 outbound_shndx = bfd_zalloc (abfd, amt);
5620 if (outbound_shndx == NULL)
5621 {
5622 _bfd_stringtab_free (stt);
5623 return FALSE;
5624 }
5625
5626 symtab_shndx_hdr->contents = outbound_shndx;
5627 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5628 symtab_shndx_hdr->sh_size = amt;
5629 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5630 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5631 }
5632
5633 /* Now generate the data (for "contents"). */
5634 {
5635 /* Fill in zeroth symbol and swap it out. */
5636 Elf_Internal_Sym sym;
5637 sym.st_name = 0;
5638 sym.st_value = 0;
5639 sym.st_size = 0;
5640 sym.st_info = 0;
5641 sym.st_other = 0;
5642 sym.st_shndx = SHN_UNDEF;
5643 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5644 outbound_syms += bed->s->sizeof_sym;
5645 if (outbound_shndx != NULL)
5646 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5647 }
5648
5649 name_local_sections
5650 = (bed->elf_backend_name_local_section_symbols
5651 && bed->elf_backend_name_local_section_symbols (abfd));
5652
5653 syms = bfd_get_outsymbols (abfd);
5654 for (idx = 0; idx < symcount; idx++)
5655 {
5656 Elf_Internal_Sym sym;
5657 bfd_vma value = syms[idx]->value;
5658 elf_symbol_type *type_ptr;
5659 flagword flags = syms[idx]->flags;
5660 int type;
5661
5662 if (!name_local_sections
5663 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5664 {
5665 /* Local section symbols have no name. */
5666 sym.st_name = 0;
5667 }
5668 else
5669 {
5670 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5671 syms[idx]->name,
5672 TRUE, FALSE);
5673 if (sym.st_name == (unsigned long) -1)
5674 {
5675 _bfd_stringtab_free (stt);
5676 return FALSE;
5677 }
5678 }
5679
5680 type_ptr = elf_symbol_from (abfd, syms[idx]);
5681
5682 if ((flags & BSF_SECTION_SYM) == 0
5683 && bfd_is_com_section (syms[idx]->section))
5684 {
5685 /* ELF common symbols put the alignment into the `value' field,
5686 and the size into the `size' field. This is backwards from
5687 how BFD handles it, so reverse it here. */
5688 sym.st_size = value;
5689 if (type_ptr == NULL
5690 || type_ptr->internal_elf_sym.st_value == 0)
5691 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5692 else
5693 sym.st_value = type_ptr->internal_elf_sym.st_value;
5694 sym.st_shndx = _bfd_elf_section_from_bfd_section
5695 (abfd, syms[idx]->section);
5696 }
5697 else
5698 {
5699 asection *sec = syms[idx]->section;
5700 int shndx;
5701
5702 if (sec->output_section)
5703 {
5704 value += sec->output_offset;
5705 sec = sec->output_section;
5706 }
5707
5708 /* Don't add in the section vma for relocatable output. */
5709 if (! relocatable_p)
5710 value += sec->vma;
5711 sym.st_value = value;
5712 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5713
5714 if (bfd_is_abs_section (sec)
5715 && type_ptr != NULL
5716 && type_ptr->internal_elf_sym.st_shndx != 0)
5717 {
5718 /* This symbol is in a real ELF section which we did
5719 not create as a BFD section. Undo the mapping done
5720 by copy_private_symbol_data. */
5721 shndx = type_ptr->internal_elf_sym.st_shndx;
5722 switch (shndx)
5723 {
5724 case MAP_ONESYMTAB:
5725 shndx = elf_onesymtab (abfd);
5726 break;
5727 case MAP_DYNSYMTAB:
5728 shndx = elf_dynsymtab (abfd);
5729 break;
5730 case MAP_STRTAB:
5731 shndx = elf_tdata (abfd)->strtab_section;
5732 break;
5733 case MAP_SHSTRTAB:
5734 shndx = elf_tdata (abfd)->shstrtab_section;
5735 break;
5736 case MAP_SYM_SHNDX:
5737 shndx = elf_tdata (abfd)->symtab_shndx_section;
5738 break;
5739 default:
5740 break;
5741 }
5742 }
5743 else
5744 {
5745 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5746
5747 if (shndx == -1)
5748 {
5749 asection *sec2;
5750
5751 /* Writing this would be a hell of a lot easier if
5752 we had some decent documentation on bfd, and
5753 knew what to expect of the library, and what to
5754 demand of applications. For example, it
5755 appears that `objcopy' might not set the
5756 section of a symbol to be a section that is
5757 actually in the output file. */
5758 sec2 = bfd_get_section_by_name (abfd, sec->name);
5759 if (sec2 == NULL)
5760 {
5761 _bfd_error_handler (_("\
5762 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5763 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5764 sec->name);
5765 bfd_set_error (bfd_error_invalid_operation);
5766 _bfd_stringtab_free (stt);
5767 return FALSE;
5768 }
5769
5770 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5771 BFD_ASSERT (shndx != -1);
5772 }
5773 }
5774
5775 sym.st_shndx = shndx;
5776 }
5777
5778 if ((flags & BSF_THREAD_LOCAL) != 0)
5779 type = STT_TLS;
5780 else if ((flags & BSF_FUNCTION) != 0)
5781 type = STT_FUNC;
5782 else if ((flags & BSF_OBJECT) != 0)
5783 type = STT_OBJECT;
5784 else
5785 type = STT_NOTYPE;
5786
5787 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5788 type = STT_TLS;
5789
5790 /* Processor-specific types. */
5791 if (type_ptr != NULL
5792 && bed->elf_backend_get_symbol_type)
5793 type = ((*bed->elf_backend_get_symbol_type)
5794 (&type_ptr->internal_elf_sym, type));
5795
5796 if (flags & BSF_SECTION_SYM)
5797 {
5798 if (flags & BSF_GLOBAL)
5799 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5800 else
5801 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5802 }
5803 else if (bfd_is_com_section (syms[idx]->section))
5804 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5805 else if (bfd_is_und_section (syms[idx]->section))
5806 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5807 ? STB_WEAK
5808 : STB_GLOBAL),
5809 type);
5810 else if (flags & BSF_FILE)
5811 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5812 else
5813 {
5814 int bind = STB_LOCAL;
5815
5816 if (flags & BSF_LOCAL)
5817 bind = STB_LOCAL;
5818 else if (flags & BSF_WEAK)
5819 bind = STB_WEAK;
5820 else if (flags & BSF_GLOBAL)
5821 bind = STB_GLOBAL;
5822
5823 sym.st_info = ELF_ST_INFO (bind, type);
5824 }
5825
5826 if (type_ptr != NULL)
5827 sym.st_other = type_ptr->internal_elf_sym.st_other;
5828 else
5829 sym.st_other = 0;
5830
5831 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5832 outbound_syms += bed->s->sizeof_sym;
5833 if (outbound_shndx != NULL)
5834 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5835 }
5836
5837 *sttp = stt;
5838 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5839 symstrtab_hdr->sh_type = SHT_STRTAB;
5840
5841 symstrtab_hdr->sh_flags = 0;
5842 symstrtab_hdr->sh_addr = 0;
5843 symstrtab_hdr->sh_entsize = 0;
5844 symstrtab_hdr->sh_link = 0;
5845 symstrtab_hdr->sh_info = 0;
5846 symstrtab_hdr->sh_addralign = 1;
5847
5848 return TRUE;
5849 }
5850
5851 /* Return the number of bytes required to hold the symtab vector.
5852
5853 Note that we base it on the count plus 1, since we will null terminate
5854 the vector allocated based on this size. However, the ELF symbol table
5855 always has a dummy entry as symbol #0, so it ends up even. */
5856
5857 long
5858 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5859 {
5860 long symcount;
5861 long symtab_size;
5862 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5863
5864 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5865 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5866 if (symcount > 0)
5867 symtab_size -= sizeof (asymbol *);
5868
5869 return symtab_size;
5870 }
5871
5872 long
5873 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5874 {
5875 long symcount;
5876 long symtab_size;
5877 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5878
5879 if (elf_dynsymtab (abfd) == 0)
5880 {
5881 bfd_set_error (bfd_error_invalid_operation);
5882 return -1;
5883 }
5884
5885 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5886 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5887 if (symcount > 0)
5888 symtab_size -= sizeof (asymbol *);
5889
5890 return symtab_size;
5891 }
5892
5893 long
5894 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5895 sec_ptr asect)
5896 {
5897 return (asect->reloc_count + 1) * sizeof (arelent *);
5898 }
5899
5900 /* Canonicalize the relocs. */
5901
5902 long
5903 _bfd_elf_canonicalize_reloc (bfd *abfd,
5904 sec_ptr section,
5905 arelent **relptr,
5906 asymbol **symbols)
5907 {
5908 arelent *tblptr;
5909 unsigned int i;
5910 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5911
5912 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5913 return -1;
5914
5915 tblptr = section->relocation;
5916 for (i = 0; i < section->reloc_count; i++)
5917 *relptr++ = tblptr++;
5918
5919 *relptr = NULL;
5920
5921 return section->reloc_count;
5922 }
5923
5924 long
5925 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5926 {
5927 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5928 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5929
5930 if (symcount >= 0)
5931 bfd_get_symcount (abfd) = symcount;
5932 return symcount;
5933 }
5934
5935 long
5936 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5937 asymbol **allocation)
5938 {
5939 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5940 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5941
5942 if (symcount >= 0)
5943 bfd_get_dynamic_symcount (abfd) = symcount;
5944 return symcount;
5945 }
5946
5947 /* Return the size required for the dynamic reloc entries. Any loadable
5948 section that was actually installed in the BFD, and has type SHT_REL
5949 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
5950 dynamic reloc section. */
5951
5952 long
5953 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5954 {
5955 long ret;
5956 asection *s;
5957
5958 if (elf_dynsymtab (abfd) == 0)
5959 {
5960 bfd_set_error (bfd_error_invalid_operation);
5961 return -1;
5962 }
5963
5964 ret = sizeof (arelent *);
5965 for (s = abfd->sections; s != NULL; s = s->next)
5966 if ((s->flags & SEC_LOAD) != 0
5967 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5968 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5969 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5970 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
5971 * sizeof (arelent *));
5972
5973 return ret;
5974 }
5975
5976 /* Canonicalize the dynamic relocation entries. Note that we return the
5977 dynamic relocations as a single block, although they are actually
5978 associated with particular sections; the interface, which was
5979 designed for SunOS style shared libraries, expects that there is only
5980 one set of dynamic relocs. Any loadable section that was actually
5981 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
5982 dynamic symbol table, is considered to be a dynamic reloc section. */
5983
5984 long
5985 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5986 arelent **storage,
5987 asymbol **syms)
5988 {
5989 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5990 asection *s;
5991 long ret;
5992
5993 if (elf_dynsymtab (abfd) == 0)
5994 {
5995 bfd_set_error (bfd_error_invalid_operation);
5996 return -1;
5997 }
5998
5999 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6000 ret = 0;
6001 for (s = abfd->sections; s != NULL; s = s->next)
6002 {
6003 if ((s->flags & SEC_LOAD) != 0
6004 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6005 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6006 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6007 {
6008 arelent *p;
6009 long count, i;
6010
6011 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6012 return -1;
6013 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6014 p = s->relocation;
6015 for (i = 0; i < count; i++)
6016 *storage++ = p++;
6017 ret += count;
6018 }
6019 }
6020
6021 *storage = NULL;
6022
6023 return ret;
6024 }
6025 \f
6026 /* Read in the version information. */
6027
6028 bfd_boolean
6029 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6030 {
6031 bfd_byte *contents = NULL;
6032 bfd_size_type amt;
6033 unsigned int freeidx = 0;
6034
6035 if (elf_dynverref (abfd) != 0)
6036 {
6037 Elf_Internal_Shdr *hdr;
6038 Elf_External_Verneed *everneed;
6039 Elf_Internal_Verneed *iverneed;
6040 unsigned int i;
6041
6042 hdr = &elf_tdata (abfd)->dynverref_hdr;
6043
6044 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6045 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6046 if (elf_tdata (abfd)->verref == NULL)
6047 goto error_return;
6048
6049 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6050
6051 contents = bfd_malloc (hdr->sh_size);
6052 if (contents == NULL)
6053 goto error_return;
6054 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6055 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6056 goto error_return;
6057
6058 everneed = (Elf_External_Verneed *) contents;
6059 iverneed = elf_tdata (abfd)->verref;
6060 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6061 {
6062 Elf_External_Vernaux *evernaux;
6063 Elf_Internal_Vernaux *ivernaux;
6064 unsigned int j;
6065
6066 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6067
6068 iverneed->vn_bfd = abfd;
6069
6070 iverneed->vn_filename =
6071 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6072 iverneed->vn_file);
6073 if (iverneed->vn_filename == NULL)
6074 goto error_return;
6075
6076 amt = iverneed->vn_cnt;
6077 amt *= sizeof (Elf_Internal_Vernaux);
6078 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6079
6080 evernaux = ((Elf_External_Vernaux *)
6081 ((bfd_byte *) everneed + iverneed->vn_aux));
6082 ivernaux = iverneed->vn_auxptr;
6083 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6084 {
6085 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6086
6087 ivernaux->vna_nodename =
6088 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6089 ivernaux->vna_name);
6090 if (ivernaux->vna_nodename == NULL)
6091 goto error_return;
6092
6093 if (j + 1 < iverneed->vn_cnt)
6094 ivernaux->vna_nextptr = ivernaux + 1;
6095 else
6096 ivernaux->vna_nextptr = NULL;
6097
6098 evernaux = ((Elf_External_Vernaux *)
6099 ((bfd_byte *) evernaux + ivernaux->vna_next));
6100
6101 if (ivernaux->vna_other > freeidx)
6102 freeidx = ivernaux->vna_other;
6103 }
6104
6105 if (i + 1 < hdr->sh_info)
6106 iverneed->vn_nextref = iverneed + 1;
6107 else
6108 iverneed->vn_nextref = NULL;
6109
6110 everneed = ((Elf_External_Verneed *)
6111 ((bfd_byte *) everneed + iverneed->vn_next));
6112 }
6113
6114 free (contents);
6115 contents = NULL;
6116 }
6117
6118 if (elf_dynverdef (abfd) != 0)
6119 {
6120 Elf_Internal_Shdr *hdr;
6121 Elf_External_Verdef *everdef;
6122 Elf_Internal_Verdef *iverdef;
6123 Elf_Internal_Verdef *iverdefarr;
6124 Elf_Internal_Verdef iverdefmem;
6125 unsigned int i;
6126 unsigned int maxidx;
6127
6128 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6129
6130 contents = bfd_malloc (hdr->sh_size);
6131 if (contents == NULL)
6132 goto error_return;
6133 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6134 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6135 goto error_return;
6136
6137 /* We know the number of entries in the section but not the maximum
6138 index. Therefore we have to run through all entries and find
6139 the maximum. */
6140 everdef = (Elf_External_Verdef *) contents;
6141 maxidx = 0;
6142 for (i = 0; i < hdr->sh_info; ++i)
6143 {
6144 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6145
6146 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6147 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6148
6149 everdef = ((Elf_External_Verdef *)
6150 ((bfd_byte *) everdef + iverdefmem.vd_next));
6151 }
6152
6153 if (default_imported_symver)
6154 {
6155 if (freeidx > maxidx)
6156 maxidx = ++freeidx;
6157 else
6158 freeidx = ++maxidx;
6159 }
6160 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6161 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6162 if (elf_tdata (abfd)->verdef == NULL)
6163 goto error_return;
6164
6165 elf_tdata (abfd)->cverdefs = maxidx;
6166
6167 everdef = (Elf_External_Verdef *) contents;
6168 iverdefarr = elf_tdata (abfd)->verdef;
6169 for (i = 0; i < hdr->sh_info; i++)
6170 {
6171 Elf_External_Verdaux *everdaux;
6172 Elf_Internal_Verdaux *iverdaux;
6173 unsigned int j;
6174
6175 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6176
6177 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6178 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6179
6180 iverdef->vd_bfd = abfd;
6181
6182 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6183 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6184 if (iverdef->vd_auxptr == NULL)
6185 goto error_return;
6186
6187 everdaux = ((Elf_External_Verdaux *)
6188 ((bfd_byte *) everdef + iverdef->vd_aux));
6189 iverdaux = iverdef->vd_auxptr;
6190 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6191 {
6192 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6193
6194 iverdaux->vda_nodename =
6195 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6196 iverdaux->vda_name);
6197 if (iverdaux->vda_nodename == NULL)
6198 goto error_return;
6199
6200 if (j + 1 < iverdef->vd_cnt)
6201 iverdaux->vda_nextptr = iverdaux + 1;
6202 else
6203 iverdaux->vda_nextptr = NULL;
6204
6205 everdaux = ((Elf_External_Verdaux *)
6206 ((bfd_byte *) everdaux + iverdaux->vda_next));
6207 }
6208
6209 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6210
6211 if (i + 1 < hdr->sh_info)
6212 iverdef->vd_nextdef = iverdef + 1;
6213 else
6214 iverdef->vd_nextdef = NULL;
6215
6216 everdef = ((Elf_External_Verdef *)
6217 ((bfd_byte *) everdef + iverdef->vd_next));
6218 }
6219
6220 free (contents);
6221 contents = NULL;
6222 }
6223 else if (default_imported_symver)
6224 {
6225 if (freeidx < 3)
6226 freeidx = 3;
6227 else
6228 freeidx++;
6229
6230 amt = (bfd_size_type) freeidx * sizeof (Elf_Internal_Verdef);
6231 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6232 if (elf_tdata (abfd)->verdef == NULL)
6233 goto error_return;
6234
6235 elf_tdata (abfd)->cverdefs = freeidx;
6236 }
6237
6238 /* Create a default version based on the soname. */
6239 if (default_imported_symver)
6240 {
6241 Elf_Internal_Verdef *iverdef;
6242 Elf_Internal_Verdaux *iverdaux;
6243
6244 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6245
6246 iverdef->vd_version = VER_DEF_CURRENT;
6247 iverdef->vd_flags = 0;
6248 iverdef->vd_ndx = freeidx;
6249 iverdef->vd_cnt = 1;
6250
6251 iverdef->vd_bfd = abfd;
6252
6253 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6254 if (iverdef->vd_nodename == NULL)
6255 goto error_return;
6256 iverdef->vd_nextdef = NULL;
6257 amt = (bfd_size_type) sizeof (Elf_Internal_Verdaux);
6258 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6259
6260 iverdaux = iverdef->vd_auxptr;
6261 iverdaux->vda_nodename = iverdef->vd_nodename;
6262 iverdaux->vda_nextptr = NULL;
6263 }
6264
6265 return TRUE;
6266
6267 error_return:
6268 if (contents != NULL)
6269 free (contents);
6270 return FALSE;
6271 }
6272 \f
6273 asymbol *
6274 _bfd_elf_make_empty_symbol (bfd *abfd)
6275 {
6276 elf_symbol_type *newsym;
6277 bfd_size_type amt = sizeof (elf_symbol_type);
6278
6279 newsym = bfd_zalloc (abfd, amt);
6280 if (!newsym)
6281 return NULL;
6282 else
6283 {
6284 newsym->symbol.the_bfd = abfd;
6285 return &newsym->symbol;
6286 }
6287 }
6288
6289 void
6290 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6291 asymbol *symbol,
6292 symbol_info *ret)
6293 {
6294 bfd_symbol_info (symbol, ret);
6295 }
6296
6297 /* Return whether a symbol name implies a local symbol. Most targets
6298 use this function for the is_local_label_name entry point, but some
6299 override it. */
6300
6301 bfd_boolean
6302 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6303 const char *name)
6304 {
6305 /* Normal local symbols start with ``.L''. */
6306 if (name[0] == '.' && name[1] == 'L')
6307 return TRUE;
6308
6309 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6310 DWARF debugging symbols starting with ``..''. */
6311 if (name[0] == '.' && name[1] == '.')
6312 return TRUE;
6313
6314 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6315 emitting DWARF debugging output. I suspect this is actually a
6316 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6317 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6318 underscore to be emitted on some ELF targets). For ease of use,
6319 we treat such symbols as local. */
6320 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6321 return TRUE;
6322
6323 return FALSE;
6324 }
6325
6326 alent *
6327 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6328 asymbol *symbol ATTRIBUTE_UNUSED)
6329 {
6330 abort ();
6331 return NULL;
6332 }
6333
6334 bfd_boolean
6335 _bfd_elf_set_arch_mach (bfd *abfd,
6336 enum bfd_architecture arch,
6337 unsigned long machine)
6338 {
6339 /* If this isn't the right architecture for this backend, and this
6340 isn't the generic backend, fail. */
6341 if (arch != get_elf_backend_data (abfd)->arch
6342 && arch != bfd_arch_unknown
6343 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6344 return FALSE;
6345
6346 return bfd_default_set_arch_mach (abfd, arch, machine);
6347 }
6348
6349 /* Find the function to a particular section and offset,
6350 for error reporting. */
6351
6352 static bfd_boolean
6353 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6354 asection *section,
6355 asymbol **symbols,
6356 bfd_vma offset,
6357 const char **filename_ptr,
6358 const char **functionname_ptr)
6359 {
6360 const char *filename;
6361 asymbol *func, *file;
6362 bfd_vma low_func;
6363 asymbol **p;
6364 /* ??? Given multiple file symbols, it is impossible to reliably
6365 choose the right file name for global symbols. File symbols are
6366 local symbols, and thus all file symbols must sort before any
6367 global symbols. The ELF spec may be interpreted to say that a
6368 file symbol must sort before other local symbols, but currently
6369 ld -r doesn't do this. So, for ld -r output, it is possible to
6370 make a better choice of file name for local symbols by ignoring
6371 file symbols appearing after a given local symbol. */
6372 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6373
6374 filename = NULL;
6375 func = NULL;
6376 file = NULL;
6377 low_func = 0;
6378 state = nothing_seen;
6379
6380 for (p = symbols; *p != NULL; p++)
6381 {
6382 elf_symbol_type *q;
6383
6384 q = (elf_symbol_type *) *p;
6385
6386 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6387 {
6388 default:
6389 break;
6390 case STT_FILE:
6391 file = &q->symbol;
6392 if (state == symbol_seen)
6393 state = file_after_symbol_seen;
6394 continue;
6395 case STT_SECTION:
6396 continue;
6397 case STT_NOTYPE:
6398 case STT_FUNC:
6399 if (bfd_get_section (&q->symbol) == section
6400 && q->symbol.value >= low_func
6401 && q->symbol.value <= offset)
6402 {
6403 func = (asymbol *) q;
6404 low_func = q->symbol.value;
6405 if (file == NULL)
6406 filename = NULL;
6407 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6408 && state == file_after_symbol_seen)
6409 filename = NULL;
6410 else
6411 filename = bfd_asymbol_name (file);
6412 }
6413 break;
6414 }
6415 if (state == nothing_seen)
6416 state = symbol_seen;
6417 }
6418
6419 if (func == NULL)
6420 return FALSE;
6421
6422 if (filename_ptr)
6423 *filename_ptr = filename;
6424 if (functionname_ptr)
6425 *functionname_ptr = bfd_asymbol_name (func);
6426
6427 return TRUE;
6428 }
6429
6430 /* Find the nearest line to a particular section and offset,
6431 for error reporting. */
6432
6433 bfd_boolean
6434 _bfd_elf_find_nearest_line (bfd *abfd,
6435 asection *section,
6436 asymbol **symbols,
6437 bfd_vma offset,
6438 const char **filename_ptr,
6439 const char **functionname_ptr,
6440 unsigned int *line_ptr)
6441 {
6442 bfd_boolean found;
6443
6444 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6445 filename_ptr, functionname_ptr,
6446 line_ptr))
6447 {
6448 if (!*functionname_ptr)
6449 elf_find_function (abfd, section, symbols, offset,
6450 *filename_ptr ? NULL : filename_ptr,
6451 functionname_ptr);
6452
6453 return TRUE;
6454 }
6455
6456 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6457 filename_ptr, functionname_ptr,
6458 line_ptr, 0,
6459 &elf_tdata (abfd)->dwarf2_find_line_info))
6460 {
6461 if (!*functionname_ptr)
6462 elf_find_function (abfd, section, symbols, offset,
6463 *filename_ptr ? NULL : filename_ptr,
6464 functionname_ptr);
6465
6466 return TRUE;
6467 }
6468
6469 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6470 &found, filename_ptr,
6471 functionname_ptr, line_ptr,
6472 &elf_tdata (abfd)->line_info))
6473 return FALSE;
6474 if (found && (*functionname_ptr || *line_ptr))
6475 return TRUE;
6476
6477 if (symbols == NULL)
6478 return FALSE;
6479
6480 if (! elf_find_function (abfd, section, symbols, offset,
6481 filename_ptr, functionname_ptr))
6482 return FALSE;
6483
6484 *line_ptr = 0;
6485 return TRUE;
6486 }
6487
6488 int
6489 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6490 {
6491 int ret;
6492
6493 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6494 if (! reloc)
6495 ret += get_program_header_size (abfd);
6496 return ret;
6497 }
6498
6499 bfd_boolean
6500 _bfd_elf_set_section_contents (bfd *abfd,
6501 sec_ptr section,
6502 const void *location,
6503 file_ptr offset,
6504 bfd_size_type count)
6505 {
6506 Elf_Internal_Shdr *hdr;
6507 bfd_signed_vma pos;
6508
6509 if (! abfd->output_has_begun
6510 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6511 return FALSE;
6512
6513 hdr = &elf_section_data (section)->this_hdr;
6514 pos = hdr->sh_offset + offset;
6515 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6516 || bfd_bwrite (location, count, abfd) != count)
6517 return FALSE;
6518
6519 return TRUE;
6520 }
6521
6522 void
6523 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6524 arelent *cache_ptr ATTRIBUTE_UNUSED,
6525 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6526 {
6527 abort ();
6528 }
6529
6530 /* Try to convert a non-ELF reloc into an ELF one. */
6531
6532 bfd_boolean
6533 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6534 {
6535 /* Check whether we really have an ELF howto. */
6536
6537 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6538 {
6539 bfd_reloc_code_real_type code;
6540 reloc_howto_type *howto;
6541
6542 /* Alien reloc: Try to determine its type to replace it with an
6543 equivalent ELF reloc. */
6544
6545 if (areloc->howto->pc_relative)
6546 {
6547 switch (areloc->howto->bitsize)
6548 {
6549 case 8:
6550 code = BFD_RELOC_8_PCREL;
6551 break;
6552 case 12:
6553 code = BFD_RELOC_12_PCREL;
6554 break;
6555 case 16:
6556 code = BFD_RELOC_16_PCREL;
6557 break;
6558 case 24:
6559 code = BFD_RELOC_24_PCREL;
6560 break;
6561 case 32:
6562 code = BFD_RELOC_32_PCREL;
6563 break;
6564 case 64:
6565 code = BFD_RELOC_64_PCREL;
6566 break;
6567 default:
6568 goto fail;
6569 }
6570
6571 howto = bfd_reloc_type_lookup (abfd, code);
6572
6573 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6574 {
6575 if (howto->pcrel_offset)
6576 areloc->addend += areloc->address;
6577 else
6578 areloc->addend -= areloc->address; /* addend is unsigned!! */
6579 }
6580 }
6581 else
6582 {
6583 switch (areloc->howto->bitsize)
6584 {
6585 case 8:
6586 code = BFD_RELOC_8;
6587 break;
6588 case 14:
6589 code = BFD_RELOC_14;
6590 break;
6591 case 16:
6592 code = BFD_RELOC_16;
6593 break;
6594 case 26:
6595 code = BFD_RELOC_26;
6596 break;
6597 case 32:
6598 code = BFD_RELOC_32;
6599 break;
6600 case 64:
6601 code = BFD_RELOC_64;
6602 break;
6603 default:
6604 goto fail;
6605 }
6606
6607 howto = bfd_reloc_type_lookup (abfd, code);
6608 }
6609
6610 if (howto)
6611 areloc->howto = howto;
6612 else
6613 goto fail;
6614 }
6615
6616 return TRUE;
6617
6618 fail:
6619 (*_bfd_error_handler)
6620 (_("%B: unsupported relocation type %s"),
6621 abfd, areloc->howto->name);
6622 bfd_set_error (bfd_error_bad_value);
6623 return FALSE;
6624 }
6625
6626 bfd_boolean
6627 _bfd_elf_close_and_cleanup (bfd *abfd)
6628 {
6629 if (bfd_get_format (abfd) == bfd_object)
6630 {
6631 if (elf_shstrtab (abfd) != NULL)
6632 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6633 }
6634
6635 return _bfd_generic_close_and_cleanup (abfd);
6636 }
6637
6638 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6639 in the relocation's offset. Thus we cannot allow any sort of sanity
6640 range-checking to interfere. There is nothing else to do in processing
6641 this reloc. */
6642
6643 bfd_reloc_status_type
6644 _bfd_elf_rel_vtable_reloc_fn
6645 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6646 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6647 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6648 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6649 {
6650 return bfd_reloc_ok;
6651 }
6652 \f
6653 /* Elf core file support. Much of this only works on native
6654 toolchains, since we rely on knowing the
6655 machine-dependent procfs structure in order to pick
6656 out details about the corefile. */
6657
6658 #ifdef HAVE_SYS_PROCFS_H
6659 # include <sys/procfs.h>
6660 #endif
6661
6662 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6663
6664 static int
6665 elfcore_make_pid (bfd *abfd)
6666 {
6667 return ((elf_tdata (abfd)->core_lwpid << 16)
6668 + (elf_tdata (abfd)->core_pid));
6669 }
6670
6671 /* If there isn't a section called NAME, make one, using
6672 data from SECT. Note, this function will generate a
6673 reference to NAME, so you shouldn't deallocate or
6674 overwrite it. */
6675
6676 static bfd_boolean
6677 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6678 {
6679 asection *sect2;
6680
6681 if (bfd_get_section_by_name (abfd, name) != NULL)
6682 return TRUE;
6683
6684 sect2 = bfd_make_section (abfd, name);
6685 if (sect2 == NULL)
6686 return FALSE;
6687
6688 sect2->size = sect->size;
6689 sect2->filepos = sect->filepos;
6690 sect2->flags = sect->flags;
6691 sect2->alignment_power = sect->alignment_power;
6692 return TRUE;
6693 }
6694
6695 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6696 actually creates up to two pseudosections:
6697 - For the single-threaded case, a section named NAME, unless
6698 such a section already exists.
6699 - For the multi-threaded case, a section named "NAME/PID", where
6700 PID is elfcore_make_pid (abfd).
6701 Both pseudosections have identical contents. */
6702 bfd_boolean
6703 _bfd_elfcore_make_pseudosection (bfd *abfd,
6704 char *name,
6705 size_t size,
6706 ufile_ptr filepos)
6707 {
6708 char buf[100];
6709 char *threaded_name;
6710 size_t len;
6711 asection *sect;
6712
6713 /* Build the section name. */
6714
6715 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6716 len = strlen (buf) + 1;
6717 threaded_name = bfd_alloc (abfd, len);
6718 if (threaded_name == NULL)
6719 return FALSE;
6720 memcpy (threaded_name, buf, len);
6721
6722 sect = bfd_make_section_anyway (abfd, threaded_name);
6723 if (sect == NULL)
6724 return FALSE;
6725 sect->size = size;
6726 sect->filepos = filepos;
6727 sect->flags = SEC_HAS_CONTENTS;
6728 sect->alignment_power = 2;
6729
6730 return elfcore_maybe_make_sect (abfd, name, sect);
6731 }
6732
6733 /* prstatus_t exists on:
6734 solaris 2.5+
6735 linux 2.[01] + glibc
6736 unixware 4.2
6737 */
6738
6739 #if defined (HAVE_PRSTATUS_T)
6740
6741 static bfd_boolean
6742 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6743 {
6744 size_t size;
6745 int offset;
6746
6747 if (note->descsz == sizeof (prstatus_t))
6748 {
6749 prstatus_t prstat;
6750
6751 size = sizeof (prstat.pr_reg);
6752 offset = offsetof (prstatus_t, pr_reg);
6753 memcpy (&prstat, note->descdata, sizeof (prstat));
6754
6755 /* Do not overwrite the core signal if it
6756 has already been set by another thread. */
6757 if (elf_tdata (abfd)->core_signal == 0)
6758 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6759 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6760
6761 /* pr_who exists on:
6762 solaris 2.5+
6763 unixware 4.2
6764 pr_who doesn't exist on:
6765 linux 2.[01]
6766 */
6767 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6768 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6769 #endif
6770 }
6771 #if defined (HAVE_PRSTATUS32_T)
6772 else if (note->descsz == sizeof (prstatus32_t))
6773 {
6774 /* 64-bit host, 32-bit corefile */
6775 prstatus32_t prstat;
6776
6777 size = sizeof (prstat.pr_reg);
6778 offset = offsetof (prstatus32_t, pr_reg);
6779 memcpy (&prstat, note->descdata, sizeof (prstat));
6780
6781 /* Do not overwrite the core signal if it
6782 has already been set by another thread. */
6783 if (elf_tdata (abfd)->core_signal == 0)
6784 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6785 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6786
6787 /* pr_who exists on:
6788 solaris 2.5+
6789 unixware 4.2
6790 pr_who doesn't exist on:
6791 linux 2.[01]
6792 */
6793 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6794 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6795 #endif
6796 }
6797 #endif /* HAVE_PRSTATUS32_T */
6798 else
6799 {
6800 /* Fail - we don't know how to handle any other
6801 note size (ie. data object type). */
6802 return TRUE;
6803 }
6804
6805 /* Make a ".reg/999" section and a ".reg" section. */
6806 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6807 size, note->descpos + offset);
6808 }
6809 #endif /* defined (HAVE_PRSTATUS_T) */
6810
6811 /* Create a pseudosection containing the exact contents of NOTE. */
6812 static bfd_boolean
6813 elfcore_make_note_pseudosection (bfd *abfd,
6814 char *name,
6815 Elf_Internal_Note *note)
6816 {
6817 return _bfd_elfcore_make_pseudosection (abfd, name,
6818 note->descsz, note->descpos);
6819 }
6820
6821 /* There isn't a consistent prfpregset_t across platforms,
6822 but it doesn't matter, because we don't have to pick this
6823 data structure apart. */
6824
6825 static bfd_boolean
6826 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6827 {
6828 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6829 }
6830
6831 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6832 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6833 literally. */
6834
6835 static bfd_boolean
6836 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6837 {
6838 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6839 }
6840
6841 #if defined (HAVE_PRPSINFO_T)
6842 typedef prpsinfo_t elfcore_psinfo_t;
6843 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6844 typedef prpsinfo32_t elfcore_psinfo32_t;
6845 #endif
6846 #endif
6847
6848 #if defined (HAVE_PSINFO_T)
6849 typedef psinfo_t elfcore_psinfo_t;
6850 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6851 typedef psinfo32_t elfcore_psinfo32_t;
6852 #endif
6853 #endif
6854
6855 /* return a malloc'ed copy of a string at START which is at
6856 most MAX bytes long, possibly without a terminating '\0'.
6857 the copy will always have a terminating '\0'. */
6858
6859 char *
6860 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6861 {
6862 char *dups;
6863 char *end = memchr (start, '\0', max);
6864 size_t len;
6865
6866 if (end == NULL)
6867 len = max;
6868 else
6869 len = end - start;
6870
6871 dups = bfd_alloc (abfd, len + 1);
6872 if (dups == NULL)
6873 return NULL;
6874
6875 memcpy (dups, start, len);
6876 dups[len] = '\0';
6877
6878 return dups;
6879 }
6880
6881 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6882 static bfd_boolean
6883 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6884 {
6885 if (note->descsz == sizeof (elfcore_psinfo_t))
6886 {
6887 elfcore_psinfo_t psinfo;
6888
6889 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6890
6891 elf_tdata (abfd)->core_program
6892 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6893 sizeof (psinfo.pr_fname));
6894
6895 elf_tdata (abfd)->core_command
6896 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6897 sizeof (psinfo.pr_psargs));
6898 }
6899 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6900 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6901 {
6902 /* 64-bit host, 32-bit corefile */
6903 elfcore_psinfo32_t psinfo;
6904
6905 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6906
6907 elf_tdata (abfd)->core_program
6908 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6909 sizeof (psinfo.pr_fname));
6910
6911 elf_tdata (abfd)->core_command
6912 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6913 sizeof (psinfo.pr_psargs));
6914 }
6915 #endif
6916
6917 else
6918 {
6919 /* Fail - we don't know how to handle any other
6920 note size (ie. data object type). */
6921 return TRUE;
6922 }
6923
6924 /* Note that for some reason, a spurious space is tacked
6925 onto the end of the args in some (at least one anyway)
6926 implementations, so strip it off if it exists. */
6927
6928 {
6929 char *command = elf_tdata (abfd)->core_command;
6930 int n = strlen (command);
6931
6932 if (0 < n && command[n - 1] == ' ')
6933 command[n - 1] = '\0';
6934 }
6935
6936 return TRUE;
6937 }
6938 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6939
6940 #if defined (HAVE_PSTATUS_T)
6941 static bfd_boolean
6942 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6943 {
6944 if (note->descsz == sizeof (pstatus_t)
6945 #if defined (HAVE_PXSTATUS_T)
6946 || note->descsz == sizeof (pxstatus_t)
6947 #endif
6948 )
6949 {
6950 pstatus_t pstat;
6951
6952 memcpy (&pstat, note->descdata, sizeof (pstat));
6953
6954 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6955 }
6956 #if defined (HAVE_PSTATUS32_T)
6957 else if (note->descsz == sizeof (pstatus32_t))
6958 {
6959 /* 64-bit host, 32-bit corefile */
6960 pstatus32_t pstat;
6961
6962 memcpy (&pstat, note->descdata, sizeof (pstat));
6963
6964 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6965 }
6966 #endif
6967 /* Could grab some more details from the "representative"
6968 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6969 NT_LWPSTATUS note, presumably. */
6970
6971 return TRUE;
6972 }
6973 #endif /* defined (HAVE_PSTATUS_T) */
6974
6975 #if defined (HAVE_LWPSTATUS_T)
6976 static bfd_boolean
6977 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6978 {
6979 lwpstatus_t lwpstat;
6980 char buf[100];
6981 char *name;
6982 size_t len;
6983 asection *sect;
6984
6985 if (note->descsz != sizeof (lwpstat)
6986 #if defined (HAVE_LWPXSTATUS_T)
6987 && note->descsz != sizeof (lwpxstatus_t)
6988 #endif
6989 )
6990 return TRUE;
6991
6992 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6993
6994 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6995 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6996
6997 /* Make a ".reg/999" section. */
6998
6999 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7000 len = strlen (buf) + 1;
7001 name = bfd_alloc (abfd, len);
7002 if (name == NULL)
7003 return FALSE;
7004 memcpy (name, buf, len);
7005
7006 sect = bfd_make_section_anyway (abfd, name);
7007 if (sect == NULL)
7008 return FALSE;
7009
7010 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7011 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7012 sect->filepos = note->descpos
7013 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7014 #endif
7015
7016 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7017 sect->size = sizeof (lwpstat.pr_reg);
7018 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7019 #endif
7020
7021 sect->flags = SEC_HAS_CONTENTS;
7022 sect->alignment_power = 2;
7023
7024 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7025 return FALSE;
7026
7027 /* Make a ".reg2/999" section */
7028
7029 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7030 len = strlen (buf) + 1;
7031 name = bfd_alloc (abfd, len);
7032 if (name == NULL)
7033 return FALSE;
7034 memcpy (name, buf, len);
7035
7036 sect = bfd_make_section_anyway (abfd, name);
7037 if (sect == NULL)
7038 return FALSE;
7039
7040 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7041 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7042 sect->filepos = note->descpos
7043 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7044 #endif
7045
7046 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7047 sect->size = sizeof (lwpstat.pr_fpreg);
7048 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7049 #endif
7050
7051 sect->flags = SEC_HAS_CONTENTS;
7052 sect->alignment_power = 2;
7053
7054 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7055 }
7056 #endif /* defined (HAVE_LWPSTATUS_T) */
7057
7058 #if defined (HAVE_WIN32_PSTATUS_T)
7059 static bfd_boolean
7060 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7061 {
7062 char buf[30];
7063 char *name;
7064 size_t len;
7065 asection *sect;
7066 win32_pstatus_t pstatus;
7067
7068 if (note->descsz < sizeof (pstatus))
7069 return TRUE;
7070
7071 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7072
7073 switch (pstatus.data_type)
7074 {
7075 case NOTE_INFO_PROCESS:
7076 /* FIXME: need to add ->core_command. */
7077 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7078 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7079 break;
7080
7081 case NOTE_INFO_THREAD:
7082 /* Make a ".reg/999" section. */
7083 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7084
7085 len = strlen (buf) + 1;
7086 name = bfd_alloc (abfd, len);
7087 if (name == NULL)
7088 return FALSE;
7089
7090 memcpy (name, buf, len);
7091
7092 sect = bfd_make_section_anyway (abfd, name);
7093 if (sect == NULL)
7094 return FALSE;
7095
7096 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7097 sect->filepos = (note->descpos
7098 + offsetof (struct win32_pstatus,
7099 data.thread_info.thread_context));
7100 sect->flags = SEC_HAS_CONTENTS;
7101 sect->alignment_power = 2;
7102
7103 if (pstatus.data.thread_info.is_active_thread)
7104 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7105 return FALSE;
7106 break;
7107
7108 case NOTE_INFO_MODULE:
7109 /* Make a ".module/xxxxxxxx" section. */
7110 sprintf (buf, ".module/%08lx",
7111 (long) pstatus.data.module_info.base_address);
7112
7113 len = strlen (buf) + 1;
7114 name = bfd_alloc (abfd, len);
7115 if (name == NULL)
7116 return FALSE;
7117
7118 memcpy (name, buf, len);
7119
7120 sect = bfd_make_section_anyway (abfd, name);
7121
7122 if (sect == NULL)
7123 return FALSE;
7124
7125 sect->size = note->descsz;
7126 sect->filepos = note->descpos;
7127 sect->flags = SEC_HAS_CONTENTS;
7128 sect->alignment_power = 2;
7129 break;
7130
7131 default:
7132 return TRUE;
7133 }
7134
7135 return TRUE;
7136 }
7137 #endif /* HAVE_WIN32_PSTATUS_T */
7138
7139 static bfd_boolean
7140 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7141 {
7142 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7143
7144 switch (note->type)
7145 {
7146 default:
7147 return TRUE;
7148
7149 case NT_PRSTATUS:
7150 if (bed->elf_backend_grok_prstatus)
7151 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7152 return TRUE;
7153 #if defined (HAVE_PRSTATUS_T)
7154 return elfcore_grok_prstatus (abfd, note);
7155 #else
7156 return TRUE;
7157 #endif
7158
7159 #if defined (HAVE_PSTATUS_T)
7160 case NT_PSTATUS:
7161 return elfcore_grok_pstatus (abfd, note);
7162 #endif
7163
7164 #if defined (HAVE_LWPSTATUS_T)
7165 case NT_LWPSTATUS:
7166 return elfcore_grok_lwpstatus (abfd, note);
7167 #endif
7168
7169 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7170 return elfcore_grok_prfpreg (abfd, note);
7171
7172 #if defined (HAVE_WIN32_PSTATUS_T)
7173 case NT_WIN32PSTATUS:
7174 return elfcore_grok_win32pstatus (abfd, note);
7175 #endif
7176
7177 case NT_PRXFPREG: /* Linux SSE extension */
7178 if (note->namesz == 6
7179 && strcmp (note->namedata, "LINUX") == 0)
7180 return elfcore_grok_prxfpreg (abfd, note);
7181 else
7182 return TRUE;
7183
7184 case NT_PRPSINFO:
7185 case NT_PSINFO:
7186 if (bed->elf_backend_grok_psinfo)
7187 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7188 return TRUE;
7189 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7190 return elfcore_grok_psinfo (abfd, note);
7191 #else
7192 return TRUE;
7193 #endif
7194
7195 case NT_AUXV:
7196 {
7197 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7198
7199 if (sect == NULL)
7200 return FALSE;
7201 sect->size = note->descsz;
7202 sect->filepos = note->descpos;
7203 sect->flags = SEC_HAS_CONTENTS;
7204 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7205
7206 return TRUE;
7207 }
7208 }
7209 }
7210
7211 static bfd_boolean
7212 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7213 {
7214 char *cp;
7215
7216 cp = strchr (note->namedata, '@');
7217 if (cp != NULL)
7218 {
7219 *lwpidp = atoi(cp + 1);
7220 return TRUE;
7221 }
7222 return FALSE;
7223 }
7224
7225 static bfd_boolean
7226 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7227 {
7228
7229 /* Signal number at offset 0x08. */
7230 elf_tdata (abfd)->core_signal
7231 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7232
7233 /* Process ID at offset 0x50. */
7234 elf_tdata (abfd)->core_pid
7235 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7236
7237 /* Command name at 0x7c (max 32 bytes, including nul). */
7238 elf_tdata (abfd)->core_command
7239 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7240
7241 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7242 note);
7243 }
7244
7245 static bfd_boolean
7246 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7247 {
7248 int lwp;
7249
7250 if (elfcore_netbsd_get_lwpid (note, &lwp))
7251 elf_tdata (abfd)->core_lwpid = lwp;
7252
7253 if (note->type == NT_NETBSDCORE_PROCINFO)
7254 {
7255 /* NetBSD-specific core "procinfo". Note that we expect to
7256 find this note before any of the others, which is fine,
7257 since the kernel writes this note out first when it
7258 creates a core file. */
7259
7260 return elfcore_grok_netbsd_procinfo (abfd, note);
7261 }
7262
7263 /* As of Jan 2002 there are no other machine-independent notes
7264 defined for NetBSD core files. If the note type is less
7265 than the start of the machine-dependent note types, we don't
7266 understand it. */
7267
7268 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7269 return TRUE;
7270
7271
7272 switch (bfd_get_arch (abfd))
7273 {
7274 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7275 PT_GETFPREGS == mach+2. */
7276
7277 case bfd_arch_alpha:
7278 case bfd_arch_sparc:
7279 switch (note->type)
7280 {
7281 case NT_NETBSDCORE_FIRSTMACH+0:
7282 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7283
7284 case NT_NETBSDCORE_FIRSTMACH+2:
7285 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7286
7287 default:
7288 return TRUE;
7289 }
7290
7291 /* On all other arch's, PT_GETREGS == mach+1 and
7292 PT_GETFPREGS == mach+3. */
7293
7294 default:
7295 switch (note->type)
7296 {
7297 case NT_NETBSDCORE_FIRSTMACH+1:
7298 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7299
7300 case NT_NETBSDCORE_FIRSTMACH+3:
7301 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7302
7303 default:
7304 return TRUE;
7305 }
7306 }
7307 /* NOTREACHED */
7308 }
7309
7310 static bfd_boolean
7311 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7312 {
7313 void *ddata = note->descdata;
7314 char buf[100];
7315 char *name;
7316 asection *sect;
7317 short sig;
7318 unsigned flags;
7319
7320 /* nto_procfs_status 'pid' field is at offset 0. */
7321 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7322
7323 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7324 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7325
7326 /* nto_procfs_status 'flags' field is at offset 8. */
7327 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7328
7329 /* nto_procfs_status 'what' field is at offset 14. */
7330 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7331 {
7332 elf_tdata (abfd)->core_signal = sig;
7333 elf_tdata (abfd)->core_lwpid = *tid;
7334 }
7335
7336 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7337 do not come from signals so we make sure we set the current
7338 thread just in case. */
7339 if (flags & 0x00000080)
7340 elf_tdata (abfd)->core_lwpid = *tid;
7341
7342 /* Make a ".qnx_core_status/%d" section. */
7343 sprintf (buf, ".qnx_core_status/%d", *tid);
7344
7345 name = bfd_alloc (abfd, strlen (buf) + 1);
7346 if (name == NULL)
7347 return FALSE;
7348 strcpy (name, buf);
7349
7350 sect = bfd_make_section_anyway (abfd, name);
7351 if (sect == NULL)
7352 return FALSE;
7353
7354 sect->size = note->descsz;
7355 sect->filepos = note->descpos;
7356 sect->flags = SEC_HAS_CONTENTS;
7357 sect->alignment_power = 2;
7358
7359 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7360 }
7361
7362 static bfd_boolean
7363 elfcore_grok_nto_regs (bfd *abfd,
7364 Elf_Internal_Note *note,
7365 pid_t tid,
7366 char *base)
7367 {
7368 char buf[100];
7369 char *name;
7370 asection *sect;
7371
7372 /* Make a "(base)/%d" section. */
7373 sprintf (buf, "%s/%d", base, tid);
7374
7375 name = bfd_alloc (abfd, strlen (buf) + 1);
7376 if (name == NULL)
7377 return FALSE;
7378 strcpy (name, buf);
7379
7380 sect = bfd_make_section_anyway (abfd, name);
7381 if (sect == NULL)
7382 return FALSE;
7383
7384 sect->size = note->descsz;
7385 sect->filepos = note->descpos;
7386 sect->flags = SEC_HAS_CONTENTS;
7387 sect->alignment_power = 2;
7388
7389 /* This is the current thread. */
7390 if (elf_tdata (abfd)->core_lwpid == tid)
7391 return elfcore_maybe_make_sect (abfd, base, sect);
7392
7393 return TRUE;
7394 }
7395
7396 #define BFD_QNT_CORE_INFO 7
7397 #define BFD_QNT_CORE_STATUS 8
7398 #define BFD_QNT_CORE_GREG 9
7399 #define BFD_QNT_CORE_FPREG 10
7400
7401 static bfd_boolean
7402 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7403 {
7404 /* Every GREG section has a STATUS section before it. Store the
7405 tid from the previous call to pass down to the next gregs
7406 function. */
7407 static pid_t tid = 1;
7408
7409 switch (note->type)
7410 {
7411 case BFD_QNT_CORE_INFO:
7412 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7413 case BFD_QNT_CORE_STATUS:
7414 return elfcore_grok_nto_status (abfd, note, &tid);
7415 case BFD_QNT_CORE_GREG:
7416 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7417 case BFD_QNT_CORE_FPREG:
7418 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7419 default:
7420 return TRUE;
7421 }
7422 }
7423
7424 /* Function: elfcore_write_note
7425
7426 Inputs:
7427 buffer to hold note
7428 name of note
7429 type of note
7430 data for note
7431 size of data for note
7432
7433 Return:
7434 End of buffer containing note. */
7435
7436 char *
7437 elfcore_write_note (bfd *abfd,
7438 char *buf,
7439 int *bufsiz,
7440 const char *name,
7441 int type,
7442 const void *input,
7443 int size)
7444 {
7445 Elf_External_Note *xnp;
7446 size_t namesz;
7447 size_t pad;
7448 size_t newspace;
7449 char *p, *dest;
7450
7451 namesz = 0;
7452 pad = 0;
7453 if (name != NULL)
7454 {
7455 const struct elf_backend_data *bed;
7456
7457 namesz = strlen (name) + 1;
7458 bed = get_elf_backend_data (abfd);
7459 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7460 }
7461
7462 newspace = 12 + namesz + pad + size;
7463
7464 p = realloc (buf, *bufsiz + newspace);
7465 dest = p + *bufsiz;
7466 *bufsiz += newspace;
7467 xnp = (Elf_External_Note *) dest;
7468 H_PUT_32 (abfd, namesz, xnp->namesz);
7469 H_PUT_32 (abfd, size, xnp->descsz);
7470 H_PUT_32 (abfd, type, xnp->type);
7471 dest = xnp->name;
7472 if (name != NULL)
7473 {
7474 memcpy (dest, name, namesz);
7475 dest += namesz;
7476 while (pad != 0)
7477 {
7478 *dest++ = '\0';
7479 --pad;
7480 }
7481 }
7482 memcpy (dest, input, size);
7483 return p;
7484 }
7485
7486 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7487 char *
7488 elfcore_write_prpsinfo (bfd *abfd,
7489 char *buf,
7490 int *bufsiz,
7491 const char *fname,
7492 const char *psargs)
7493 {
7494 int note_type;
7495 char *note_name = "CORE";
7496
7497 #if defined (HAVE_PSINFO_T)
7498 psinfo_t data;
7499 note_type = NT_PSINFO;
7500 #else
7501 prpsinfo_t data;
7502 note_type = NT_PRPSINFO;
7503 #endif
7504
7505 memset (&data, 0, sizeof (data));
7506 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7507 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7508 return elfcore_write_note (abfd, buf, bufsiz,
7509 note_name, note_type, &data, sizeof (data));
7510 }
7511 #endif /* PSINFO_T or PRPSINFO_T */
7512
7513 #if defined (HAVE_PRSTATUS_T)
7514 char *
7515 elfcore_write_prstatus (bfd *abfd,
7516 char *buf,
7517 int *bufsiz,
7518 long pid,
7519 int cursig,
7520 const void *gregs)
7521 {
7522 prstatus_t prstat;
7523 char *note_name = "CORE";
7524
7525 memset (&prstat, 0, sizeof (prstat));
7526 prstat.pr_pid = pid;
7527 prstat.pr_cursig = cursig;
7528 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7529 return elfcore_write_note (abfd, buf, bufsiz,
7530 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7531 }
7532 #endif /* HAVE_PRSTATUS_T */
7533
7534 #if defined (HAVE_LWPSTATUS_T)
7535 char *
7536 elfcore_write_lwpstatus (bfd *abfd,
7537 char *buf,
7538 int *bufsiz,
7539 long pid,
7540 int cursig,
7541 const void *gregs)
7542 {
7543 lwpstatus_t lwpstat;
7544 char *note_name = "CORE";
7545
7546 memset (&lwpstat, 0, sizeof (lwpstat));
7547 lwpstat.pr_lwpid = pid >> 16;
7548 lwpstat.pr_cursig = cursig;
7549 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7550 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7551 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7552 #if !defined(gregs)
7553 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7554 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7555 #else
7556 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7557 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7558 #endif
7559 #endif
7560 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7561 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7562 }
7563 #endif /* HAVE_LWPSTATUS_T */
7564
7565 #if defined (HAVE_PSTATUS_T)
7566 char *
7567 elfcore_write_pstatus (bfd *abfd,
7568 char *buf,
7569 int *bufsiz,
7570 long pid,
7571 int cursig,
7572 const void *gregs)
7573 {
7574 pstatus_t pstat;
7575 char *note_name = "CORE";
7576
7577 memset (&pstat, 0, sizeof (pstat));
7578 pstat.pr_pid = pid & 0xffff;
7579 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7580 NT_PSTATUS, &pstat, sizeof (pstat));
7581 return buf;
7582 }
7583 #endif /* HAVE_PSTATUS_T */
7584
7585 char *
7586 elfcore_write_prfpreg (bfd *abfd,
7587 char *buf,
7588 int *bufsiz,
7589 const void *fpregs,
7590 int size)
7591 {
7592 char *note_name = "CORE";
7593 return elfcore_write_note (abfd, buf, bufsiz,
7594 note_name, NT_FPREGSET, fpregs, size);
7595 }
7596
7597 char *
7598 elfcore_write_prxfpreg (bfd *abfd,
7599 char *buf,
7600 int *bufsiz,
7601 const void *xfpregs,
7602 int size)
7603 {
7604 char *note_name = "LINUX";
7605 return elfcore_write_note (abfd, buf, bufsiz,
7606 note_name, NT_PRXFPREG, xfpregs, size);
7607 }
7608
7609 static bfd_boolean
7610 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7611 {
7612 char *buf;
7613 char *p;
7614
7615 if (size <= 0)
7616 return TRUE;
7617
7618 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7619 return FALSE;
7620
7621 buf = bfd_malloc (size);
7622 if (buf == NULL)
7623 return FALSE;
7624
7625 if (bfd_bread (buf, size, abfd) != size)
7626 {
7627 error:
7628 free (buf);
7629 return FALSE;
7630 }
7631
7632 p = buf;
7633 while (p < buf + size)
7634 {
7635 /* FIXME: bad alignment assumption. */
7636 Elf_External_Note *xnp = (Elf_External_Note *) p;
7637 Elf_Internal_Note in;
7638
7639 in.type = H_GET_32 (abfd, xnp->type);
7640
7641 in.namesz = H_GET_32 (abfd, xnp->namesz);
7642 in.namedata = xnp->name;
7643
7644 in.descsz = H_GET_32 (abfd, xnp->descsz);
7645 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7646 in.descpos = offset + (in.descdata - buf);
7647
7648 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7649 {
7650 if (! elfcore_grok_netbsd_note (abfd, &in))
7651 goto error;
7652 }
7653 else if (strncmp (in.namedata, "QNX", 3) == 0)
7654 {
7655 if (! elfcore_grok_nto_note (abfd, &in))
7656 goto error;
7657 }
7658 else
7659 {
7660 if (! elfcore_grok_note (abfd, &in))
7661 goto error;
7662 }
7663
7664 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7665 }
7666
7667 free (buf);
7668 return TRUE;
7669 }
7670 \f
7671 /* Providing external access to the ELF program header table. */
7672
7673 /* Return an upper bound on the number of bytes required to store a
7674 copy of ABFD's program header table entries. Return -1 if an error
7675 occurs; bfd_get_error will return an appropriate code. */
7676
7677 long
7678 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7679 {
7680 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7681 {
7682 bfd_set_error (bfd_error_wrong_format);
7683 return -1;
7684 }
7685
7686 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7687 }
7688
7689 /* Copy ABFD's program header table entries to *PHDRS. The entries
7690 will be stored as an array of Elf_Internal_Phdr structures, as
7691 defined in include/elf/internal.h. To find out how large the
7692 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7693
7694 Return the number of program header table entries read, or -1 if an
7695 error occurs; bfd_get_error will return an appropriate code. */
7696
7697 int
7698 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7699 {
7700 int num_phdrs;
7701
7702 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7703 {
7704 bfd_set_error (bfd_error_wrong_format);
7705 return -1;
7706 }
7707
7708 num_phdrs = elf_elfheader (abfd)->e_phnum;
7709 memcpy (phdrs, elf_tdata (abfd)->phdr,
7710 num_phdrs * sizeof (Elf_Internal_Phdr));
7711
7712 return num_phdrs;
7713 }
7714
7715 void
7716 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7717 {
7718 #ifdef BFD64
7719 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7720
7721 i_ehdrp = elf_elfheader (abfd);
7722 if (i_ehdrp == NULL)
7723 sprintf_vma (buf, value);
7724 else
7725 {
7726 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7727 {
7728 #if BFD_HOST_64BIT_LONG
7729 sprintf (buf, "%016lx", value);
7730 #else
7731 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7732 _bfd_int64_low (value));
7733 #endif
7734 }
7735 else
7736 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7737 }
7738 #else
7739 sprintf_vma (buf, value);
7740 #endif
7741 }
7742
7743 void
7744 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7745 {
7746 #ifdef BFD64
7747 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7748
7749 i_ehdrp = elf_elfheader (abfd);
7750 if (i_ehdrp == NULL)
7751 fprintf_vma ((FILE *) stream, value);
7752 else
7753 {
7754 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7755 {
7756 #if BFD_HOST_64BIT_LONG
7757 fprintf ((FILE *) stream, "%016lx", value);
7758 #else
7759 fprintf ((FILE *) stream, "%08lx%08lx",
7760 _bfd_int64_high (value), _bfd_int64_low (value));
7761 #endif
7762 }
7763 else
7764 fprintf ((FILE *) stream, "%08lx",
7765 (unsigned long) (value & 0xffffffff));
7766 }
7767 #else
7768 fprintf_vma ((FILE *) stream, value);
7769 #endif
7770 }
7771
7772 enum elf_reloc_type_class
7773 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7774 {
7775 return reloc_class_normal;
7776 }
7777
7778 /* For RELA architectures, return the relocation value for a
7779 relocation against a local symbol. */
7780
7781 bfd_vma
7782 _bfd_elf_rela_local_sym (bfd *abfd,
7783 Elf_Internal_Sym *sym,
7784 asection **psec,
7785 Elf_Internal_Rela *rel)
7786 {
7787 asection *sec = *psec;
7788 bfd_vma relocation;
7789
7790 relocation = (sec->output_section->vma
7791 + sec->output_offset
7792 + sym->st_value);
7793 if ((sec->flags & SEC_MERGE)
7794 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7795 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7796 {
7797 rel->r_addend =
7798 _bfd_merged_section_offset (abfd, psec,
7799 elf_section_data (sec)->sec_info,
7800 sym->st_value + rel->r_addend);
7801 if (sec != *psec)
7802 {
7803 /* If we have changed the section, and our original section is
7804 marked with SEC_EXCLUDE, it means that the original
7805 SEC_MERGE section has been completely subsumed in some
7806 other SEC_MERGE section. In this case, we need to leave
7807 some info around for --emit-relocs. */
7808 if ((sec->flags & SEC_EXCLUDE) != 0)
7809 sec->kept_section = *psec;
7810 sec = *psec;
7811 }
7812 rel->r_addend -= relocation;
7813 rel->r_addend += sec->output_section->vma + sec->output_offset;
7814 }
7815 return relocation;
7816 }
7817
7818 bfd_vma
7819 _bfd_elf_rel_local_sym (bfd *abfd,
7820 Elf_Internal_Sym *sym,
7821 asection **psec,
7822 bfd_vma addend)
7823 {
7824 asection *sec = *psec;
7825
7826 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7827 return sym->st_value + addend;
7828
7829 return _bfd_merged_section_offset (abfd, psec,
7830 elf_section_data (sec)->sec_info,
7831 sym->st_value + addend);
7832 }
7833
7834 bfd_vma
7835 _bfd_elf_section_offset (bfd *abfd,
7836 struct bfd_link_info *info,
7837 asection *sec,
7838 bfd_vma offset)
7839 {
7840 switch (sec->sec_info_type)
7841 {
7842 case ELF_INFO_TYPE_STABS:
7843 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
7844 offset);
7845 case ELF_INFO_TYPE_EH_FRAME:
7846 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
7847 default:
7848 return offset;
7849 }
7850 }
7851 \f
7852 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7853 reconstruct an ELF file by reading the segments out of remote memory
7854 based on the ELF file header at EHDR_VMA and the ELF program headers it
7855 points to. If not null, *LOADBASEP is filled in with the difference
7856 between the VMAs from which the segments were read, and the VMAs the
7857 file headers (and hence BFD's idea of each section's VMA) put them at.
7858
7859 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7860 remote memory at target address VMA into the local buffer at MYADDR; it
7861 should return zero on success or an `errno' code on failure. TEMPL must
7862 be a BFD for an ELF target with the word size and byte order found in
7863 the remote memory. */
7864
7865 bfd *
7866 bfd_elf_bfd_from_remote_memory
7867 (bfd *templ,
7868 bfd_vma ehdr_vma,
7869 bfd_vma *loadbasep,
7870 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
7871 {
7872 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7873 (templ, ehdr_vma, loadbasep, target_read_memory);
7874 }
7875 \f
7876 long
7877 _bfd_elf_get_synthetic_symtab (bfd *abfd,
7878 long symcount ATTRIBUTE_UNUSED,
7879 asymbol **syms ATTRIBUTE_UNUSED,
7880 long dynsymcount,
7881 asymbol **dynsyms,
7882 asymbol **ret)
7883 {
7884 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7885 asection *relplt;
7886 asymbol *s;
7887 const char *relplt_name;
7888 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7889 arelent *p;
7890 long count, i, n;
7891 size_t size;
7892 Elf_Internal_Shdr *hdr;
7893 char *names;
7894 asection *plt;
7895
7896 *ret = NULL;
7897
7898 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
7899 return 0;
7900
7901 if (dynsymcount <= 0)
7902 return 0;
7903
7904 if (!bed->plt_sym_val)
7905 return 0;
7906
7907 relplt_name = bed->relplt_name;
7908 if (relplt_name == NULL)
7909 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7910 relplt = bfd_get_section_by_name (abfd, relplt_name);
7911 if (relplt == NULL)
7912 return 0;
7913
7914 hdr = &elf_section_data (relplt)->this_hdr;
7915 if (hdr->sh_link != elf_dynsymtab (abfd)
7916 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7917 return 0;
7918
7919 plt = bfd_get_section_by_name (abfd, ".plt");
7920 if (plt == NULL)
7921 return 0;
7922
7923 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7924 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7925 return -1;
7926
7927 count = relplt->size / hdr->sh_entsize;
7928 size = count * sizeof (asymbol);
7929 p = relplt->relocation;
7930 for (i = 0; i < count; i++, s++, p++)
7931 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7932
7933 s = *ret = bfd_malloc (size);
7934 if (s == NULL)
7935 return -1;
7936
7937 names = (char *) (s + count);
7938 p = relplt->relocation;
7939 n = 0;
7940 for (i = 0; i < count; i++, s++, p++)
7941 {
7942 size_t len;
7943 bfd_vma addr;
7944
7945 addr = bed->plt_sym_val (i, plt, p);
7946 if (addr == (bfd_vma) -1)
7947 continue;
7948
7949 *s = **p->sym_ptr_ptr;
7950 s->section = plt;
7951 s->value = addr - plt->vma;
7952 s->name = names;
7953 len = strlen ((*p->sym_ptr_ptr)->name);
7954 memcpy (names, (*p->sym_ptr_ptr)->name, len);
7955 names += len;
7956 memcpy (names, "@plt", sizeof ("@plt"));
7957 names += sizeof ("@plt");
7958 ++n;
7959 }
7960
7961 return n;
7962 }
7963
7964 /* Sort symbol by binding and section. We want to put definitions
7965 sorted by section at the beginning. */
7966
7967 static int
7968 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7969 {
7970 const Elf_Internal_Sym *s1;
7971 const Elf_Internal_Sym *s2;
7972 int shndx;
7973
7974 /* Make sure that undefined symbols are at the end. */
7975 s1 = (const Elf_Internal_Sym *) arg1;
7976 if (s1->st_shndx == SHN_UNDEF)
7977 return 1;
7978 s2 = (const Elf_Internal_Sym *) arg2;
7979 if (s2->st_shndx == SHN_UNDEF)
7980 return -1;
7981
7982 /* Sorted by section index. */
7983 shndx = s1->st_shndx - s2->st_shndx;
7984 if (shndx != 0)
7985 return shndx;
7986
7987 /* Sorted by binding. */
7988 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
7989 }
7990
7991 struct elf_symbol
7992 {
7993 Elf_Internal_Sym *sym;
7994 const char *name;
7995 };
7996
7997 static int
7998 elf_sym_name_compare (const void *arg1, const void *arg2)
7999 {
8000 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8001 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8002 return strcmp (s1->name, s2->name);
8003 }
8004
8005 /* Check if 2 sections define the same set of local and global
8006 symbols. */
8007
8008 bfd_boolean
8009 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8010 {
8011 bfd *bfd1, *bfd2;
8012 const struct elf_backend_data *bed1, *bed2;
8013 Elf_Internal_Shdr *hdr1, *hdr2;
8014 bfd_size_type symcount1, symcount2;
8015 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8016 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8017 Elf_Internal_Sym *isymend;
8018 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8019 bfd_size_type count1, count2, i;
8020 int shndx1, shndx2;
8021 bfd_boolean result;
8022
8023 bfd1 = sec1->owner;
8024 bfd2 = sec2->owner;
8025
8026 /* If both are .gnu.linkonce sections, they have to have the same
8027 section name. */
8028 if (strncmp (sec1->name, ".gnu.linkonce",
8029 sizeof ".gnu.linkonce" - 1) == 0
8030 && strncmp (sec2->name, ".gnu.linkonce",
8031 sizeof ".gnu.linkonce" - 1) == 0)
8032 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8033 sec2->name + sizeof ".gnu.linkonce") == 0;
8034
8035 /* Both sections have to be in ELF. */
8036 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8037 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8038 return FALSE;
8039
8040 if (elf_section_type (sec1) != elf_section_type (sec2))
8041 return FALSE;
8042
8043 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8044 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8045 {
8046 /* If both are members of section groups, they have to have the
8047 same group name. */
8048 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8049 return FALSE;
8050 }
8051
8052 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8053 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8054 if (shndx1 == -1 || shndx2 == -1)
8055 return FALSE;
8056
8057 bed1 = get_elf_backend_data (bfd1);
8058 bed2 = get_elf_backend_data (bfd2);
8059 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8060 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8061 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8062 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8063
8064 if (symcount1 == 0 || symcount2 == 0)
8065 return FALSE;
8066
8067 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8068 NULL, NULL, NULL);
8069 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8070 NULL, NULL, NULL);
8071
8072 result = FALSE;
8073 if (isymbuf1 == NULL || isymbuf2 == NULL)
8074 goto done;
8075
8076 /* Sort symbols by binding and section. Global definitions are at
8077 the beginning. */
8078 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8079 elf_sort_elf_symbol);
8080 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8081 elf_sort_elf_symbol);
8082
8083 /* Count definitions in the section. */
8084 count1 = 0;
8085 for (isym = isymbuf1, isymend = isym + symcount1;
8086 isym < isymend; isym++)
8087 {
8088 if (isym->st_shndx == (unsigned int) shndx1)
8089 {
8090 if (count1 == 0)
8091 isymstart1 = isym;
8092 count1++;
8093 }
8094
8095 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8096 break;
8097 }
8098
8099 count2 = 0;
8100 for (isym = isymbuf2, isymend = isym + symcount2;
8101 isym < isymend; isym++)
8102 {
8103 if (isym->st_shndx == (unsigned int) shndx2)
8104 {
8105 if (count2 == 0)
8106 isymstart2 = isym;
8107 count2++;
8108 }
8109
8110 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8111 break;
8112 }
8113
8114 if (count1 == 0 || count2 == 0 || count1 != count2)
8115 goto done;
8116
8117 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8118 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8119
8120 if (symtable1 == NULL || symtable2 == NULL)
8121 goto done;
8122
8123 symp = symtable1;
8124 for (isym = isymstart1, isymend = isym + count1;
8125 isym < isymend; isym++)
8126 {
8127 symp->sym = isym;
8128 symp->name = bfd_elf_string_from_elf_section (bfd1,
8129 hdr1->sh_link,
8130 isym->st_name);
8131 symp++;
8132 }
8133
8134 symp = symtable2;
8135 for (isym = isymstart2, isymend = isym + count1;
8136 isym < isymend; isym++)
8137 {
8138 symp->sym = isym;
8139 symp->name = bfd_elf_string_from_elf_section (bfd2,
8140 hdr2->sh_link,
8141 isym->st_name);
8142 symp++;
8143 }
8144
8145 /* Sort symbol by name. */
8146 qsort (symtable1, count1, sizeof (struct elf_symbol),
8147 elf_sym_name_compare);
8148 qsort (symtable2, count1, sizeof (struct elf_symbol),
8149 elf_sym_name_compare);
8150
8151 for (i = 0; i < count1; i++)
8152 /* Two symbols must have the same binding, type and name. */
8153 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8154 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8155 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8156 goto done;
8157
8158 result = TRUE;
8159
8160 done:
8161 if (symtable1)
8162 free (symtable1);
8163 if (symtable2)
8164 free (symtable2);
8165 if (isymbuf1)
8166 free (isymbuf1);
8167 if (isymbuf2)
8168 free (isymbuf2);
8169
8170 return result;
8171 }
This page took 0.196721 seconds and 5 git commands to generate.