2005-03-31 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static bfd_byte *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 bfd_byte *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 bfd_byte *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return NULL;
263
264 shstrtab = i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return (char *) shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
295 (*_bfd_error_handler)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd, strindex, (unsigned long) hdr->sh_size,
298 (shindex == shstrndx && strindex == hdr->sh_name
299 ? ".shstrtab"
300 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_sym_name (bfd *abfd,
409 Elf_Internal_Shdr *symtab_hdr,
410 Elf_Internal_Sym *isym)
411 {
412 unsigned int iname = isym->st_name;
413 unsigned int shindex = symtab_hdr->sh_link;
414 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
415 /* Check for a bogus st_shndx to avoid crashing. */
416 && isym->st_shndx < elf_numsections (abfd)
417 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
418 {
419 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
420 shindex = elf_elfheader (abfd)->e_shstrndx;
421 }
422
423 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
424 }
425
426 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
427 sections. The first element is the flags, the rest are section
428 pointers. */
429
430 typedef union elf_internal_group {
431 Elf_Internal_Shdr *shdr;
432 unsigned int flags;
433 } Elf_Internal_Group;
434
435 /* Return the name of the group signature symbol. Why isn't the
436 signature just a string? */
437
438 static const char *
439 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
440 {
441 Elf_Internal_Shdr *hdr;
442 unsigned char esym[sizeof (Elf64_External_Sym)];
443 Elf_External_Sym_Shndx eshndx;
444 Elf_Internal_Sym isym;
445
446 /* First we need to ensure the symbol table is available. */
447 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
448 return NULL;
449
450 /* Go read the symbol. */
451 hdr = &elf_tdata (abfd)->symtab_hdr;
452 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
453 &isym, esym, &eshndx) == NULL)
454 return NULL;
455
456 return bfd_elf_sym_name (abfd, hdr, &isym);
457 }
458
459 /* Set next_in_group list pointer, and group name for NEWSECT. */
460
461 static bfd_boolean
462 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
463 {
464 unsigned int num_group = elf_tdata (abfd)->num_group;
465
466 /* If num_group is zero, read in all SHT_GROUP sections. The count
467 is set to -1 if there are no SHT_GROUP sections. */
468 if (num_group == 0)
469 {
470 unsigned int i, shnum;
471
472 /* First count the number of groups. If we have a SHT_GROUP
473 section with just a flag word (ie. sh_size is 4), ignore it. */
474 shnum = elf_numsections (abfd);
475 num_group = 0;
476 for (i = 0; i < shnum; i++)
477 {
478 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
479 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
480 num_group += 1;
481 }
482
483 if (num_group == 0)
484 num_group = (unsigned) -1;
485 elf_tdata (abfd)->num_group = num_group;
486
487 if (num_group > 0)
488 {
489 /* We keep a list of elf section headers for group sections,
490 so we can find them quickly. */
491 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
492 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
493 if (elf_tdata (abfd)->group_sect_ptr == NULL)
494 return FALSE;
495
496 num_group = 0;
497 for (i = 0; i < shnum; i++)
498 {
499 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
500 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
501 {
502 unsigned char *src;
503 Elf_Internal_Group *dest;
504
505 /* Add to list of sections. */
506 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
507 num_group += 1;
508
509 /* Read the raw contents. */
510 BFD_ASSERT (sizeof (*dest) >= 4);
511 amt = shdr->sh_size * sizeof (*dest) / 4;
512 shdr->contents = bfd_alloc (abfd, amt);
513 if (shdr->contents == NULL
514 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
515 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
516 != shdr->sh_size))
517 return FALSE;
518
519 /* Translate raw contents, a flag word followed by an
520 array of elf section indices all in target byte order,
521 to the flag word followed by an array of elf section
522 pointers. */
523 src = shdr->contents + shdr->sh_size;
524 dest = (Elf_Internal_Group *) (shdr->contents + amt);
525 while (1)
526 {
527 unsigned int idx;
528
529 src -= 4;
530 --dest;
531 idx = H_GET_32 (abfd, src);
532 if (src == shdr->contents)
533 {
534 dest->flags = idx;
535 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
536 shdr->bfd_section->flags
537 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
538 break;
539 }
540 if (idx >= shnum)
541 {
542 ((*_bfd_error_handler)
543 (_("%B: invalid SHT_GROUP entry"), abfd));
544 idx = 0;
545 }
546 dest->shdr = elf_elfsections (abfd)[idx];
547 }
548 }
549 }
550 }
551 }
552
553 if (num_group != (unsigned) -1)
554 {
555 unsigned int i;
556
557 for (i = 0; i < num_group; i++)
558 {
559 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
560 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
561 unsigned int n_elt = shdr->sh_size / 4;
562
563 /* Look through this group's sections to see if current
564 section is a member. */
565 while (--n_elt != 0)
566 if ((++idx)->shdr == hdr)
567 {
568 asection *s = NULL;
569
570 /* We are a member of this group. Go looking through
571 other members to see if any others are linked via
572 next_in_group. */
573 idx = (Elf_Internal_Group *) shdr->contents;
574 n_elt = shdr->sh_size / 4;
575 while (--n_elt != 0)
576 if ((s = (++idx)->shdr->bfd_section) != NULL
577 && elf_next_in_group (s) != NULL)
578 break;
579 if (n_elt != 0)
580 {
581 /* Snarf the group name from other member, and
582 insert current section in circular list. */
583 elf_group_name (newsect) = elf_group_name (s);
584 elf_next_in_group (newsect) = elf_next_in_group (s);
585 elf_next_in_group (s) = newsect;
586 }
587 else
588 {
589 const char *gname;
590
591 gname = group_signature (abfd, shdr);
592 if (gname == NULL)
593 return FALSE;
594 elf_group_name (newsect) = gname;
595
596 /* Start a circular list with one element. */
597 elf_next_in_group (newsect) = newsect;
598 }
599
600 /* If the group section has been created, point to the
601 new member. */
602 if (shdr->bfd_section != NULL)
603 elf_next_in_group (shdr->bfd_section) = newsect;
604
605 i = num_group - 1;
606 break;
607 }
608 }
609 }
610
611 if (elf_group_name (newsect) == NULL)
612 {
613 (*_bfd_error_handler) (_("%B: no group info for section %A"),
614 abfd, newsect);
615 }
616 return TRUE;
617 }
618
619 bfd_boolean
620 _bfd_elf_setup_group_pointers (bfd *abfd)
621 {
622 unsigned int i;
623 unsigned int num_group = elf_tdata (abfd)->num_group;
624 bfd_boolean result = TRUE;
625
626 if (num_group == (unsigned) -1)
627 return result;
628
629 for (i = 0; i < num_group; i++)
630 {
631 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
632 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
633 unsigned int n_elt = shdr->sh_size / 4;
634
635 while (--n_elt != 0)
636 if ((++idx)->shdr->bfd_section)
637 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
638 else if (idx->shdr->sh_type == SHT_RELA
639 || idx->shdr->sh_type == SHT_REL)
640 /* We won't include relocation sections in section groups in
641 output object files. We adjust the group section size here
642 so that relocatable link will work correctly when
643 relocation sections are in section group in input object
644 files. */
645 shdr->bfd_section->size -= 4;
646 else
647 {
648 /* There are some unknown sections in the group. */
649 (*_bfd_error_handler)
650 (_("%B: unknown [%d] section `%s' in group [%s]"),
651 abfd,
652 (unsigned int) idx->shdr->sh_type,
653 bfd_elf_string_from_elf_section (abfd,
654 (elf_elfheader (abfd)
655 ->e_shstrndx),
656 idx->shdr->sh_name),
657 shdr->bfd_section->name);
658 result = FALSE;
659 }
660 }
661 return result;
662 }
663
664 bfd_boolean
665 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
666 {
667 return elf_next_in_group (sec) != NULL;
668 }
669
670 /* Make a BFD section from an ELF section. We store a pointer to the
671 BFD section in the bfd_section field of the header. */
672
673 bfd_boolean
674 _bfd_elf_make_section_from_shdr (bfd *abfd,
675 Elf_Internal_Shdr *hdr,
676 const char *name,
677 int shindex)
678 {
679 asection *newsect;
680 flagword flags;
681 const struct elf_backend_data *bed;
682
683 if (hdr->bfd_section != NULL)
684 {
685 BFD_ASSERT (strcmp (name,
686 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
687 return TRUE;
688 }
689
690 newsect = bfd_make_section_anyway (abfd, name);
691 if (newsect == NULL)
692 return FALSE;
693
694 hdr->bfd_section = newsect;
695 elf_section_data (newsect)->this_hdr = *hdr;
696 elf_section_data (newsect)->this_idx = shindex;
697
698 /* Always use the real type/flags. */
699 elf_section_type (newsect) = hdr->sh_type;
700 elf_section_flags (newsect) = hdr->sh_flags;
701
702 newsect->filepos = hdr->sh_offset;
703
704 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
705 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
706 || ! bfd_set_section_alignment (abfd, newsect,
707 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
708 return FALSE;
709
710 flags = SEC_NO_FLAGS;
711 if (hdr->sh_type != SHT_NOBITS)
712 flags |= SEC_HAS_CONTENTS;
713 if (hdr->sh_type == SHT_GROUP)
714 flags |= SEC_GROUP | SEC_EXCLUDE;
715 if ((hdr->sh_flags & SHF_ALLOC) != 0)
716 {
717 flags |= SEC_ALLOC;
718 if (hdr->sh_type != SHT_NOBITS)
719 flags |= SEC_LOAD;
720 }
721 if ((hdr->sh_flags & SHF_WRITE) == 0)
722 flags |= SEC_READONLY;
723 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
724 flags |= SEC_CODE;
725 else if ((flags & SEC_LOAD) != 0)
726 flags |= SEC_DATA;
727 if ((hdr->sh_flags & SHF_MERGE) != 0)
728 {
729 flags |= SEC_MERGE;
730 newsect->entsize = hdr->sh_entsize;
731 if ((hdr->sh_flags & SHF_STRINGS) != 0)
732 flags |= SEC_STRINGS;
733 }
734 if (hdr->sh_flags & SHF_GROUP)
735 if (!setup_group (abfd, hdr, newsect))
736 return FALSE;
737 if ((hdr->sh_flags & SHF_TLS) != 0)
738 flags |= SEC_THREAD_LOCAL;
739
740 /* The debugging sections appear to be recognized only by name, not
741 any sort of flag. */
742 {
743 static const char *debug_sec_names [] =
744 {
745 ".debug",
746 ".gnu.linkonce.wi.",
747 ".line",
748 ".stab"
749 };
750 int i;
751
752 for (i = ARRAY_SIZE (debug_sec_names); i--;)
753 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
754 break;
755
756 if (i >= 0)
757 flags |= SEC_DEBUGGING;
758 }
759
760 /* As a GNU extension, if the name begins with .gnu.linkonce, we
761 only link a single copy of the section. This is used to support
762 g++. g++ will emit each template expansion in its own section.
763 The symbols will be defined as weak, so that multiple definitions
764 are permitted. The GNU linker extension is to actually discard
765 all but one of the sections. */
766 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
767 && elf_next_in_group (newsect) == NULL)
768 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
769
770 bed = get_elf_backend_data (abfd);
771 if (bed->elf_backend_section_flags)
772 if (! bed->elf_backend_section_flags (&flags, hdr))
773 return FALSE;
774
775 if (! bfd_set_section_flags (abfd, newsect, flags))
776 return FALSE;
777
778 if ((flags & SEC_ALLOC) != 0)
779 {
780 Elf_Internal_Phdr *phdr;
781 unsigned int i;
782
783 /* Look through the phdrs to see if we need to adjust the lma.
784 If all the p_paddr fields are zero, we ignore them, since
785 some ELF linkers produce such output. */
786 phdr = elf_tdata (abfd)->phdr;
787 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
788 {
789 if (phdr->p_paddr != 0)
790 break;
791 }
792 if (i < elf_elfheader (abfd)->e_phnum)
793 {
794 phdr = elf_tdata (abfd)->phdr;
795 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
796 {
797 /* This section is part of this segment if its file
798 offset plus size lies within the segment's memory
799 span and, if the section is loaded, the extent of the
800 loaded data lies within the extent of the segment.
801
802 Note - we used to check the p_paddr field as well, and
803 refuse to set the LMA if it was 0. This is wrong
804 though, as a perfectly valid initialised segment can
805 have a p_paddr of zero. Some architectures, eg ARM,
806 place special significance on the address 0 and
807 executables need to be able to have a segment which
808 covers this address. */
809 if (phdr->p_type == PT_LOAD
810 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
811 && (hdr->sh_offset + hdr->sh_size
812 <= phdr->p_offset + phdr->p_memsz)
813 && ((flags & SEC_LOAD) == 0
814 || (hdr->sh_offset + hdr->sh_size
815 <= phdr->p_offset + phdr->p_filesz)))
816 {
817 if ((flags & SEC_LOAD) == 0)
818 newsect->lma = (phdr->p_paddr
819 + hdr->sh_addr - phdr->p_vaddr);
820 else
821 /* We used to use the same adjustment for SEC_LOAD
822 sections, but that doesn't work if the segment
823 is packed with code from multiple VMAs.
824 Instead we calculate the section LMA based on
825 the segment LMA. It is assumed that the
826 segment will contain sections with contiguous
827 LMAs, even if the VMAs are not. */
828 newsect->lma = (phdr->p_paddr
829 + hdr->sh_offset - phdr->p_offset);
830
831 /* With contiguous segments, we can't tell from file
832 offsets whether a section with zero size should
833 be placed at the end of one segment or the
834 beginning of the next. Decide based on vaddr. */
835 if (hdr->sh_addr >= phdr->p_vaddr
836 && (hdr->sh_addr + hdr->sh_size
837 <= phdr->p_vaddr + phdr->p_memsz))
838 break;
839 }
840 }
841 }
842 }
843
844 return TRUE;
845 }
846
847 /*
848 INTERNAL_FUNCTION
849 bfd_elf_find_section
850
851 SYNOPSIS
852 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
853
854 DESCRIPTION
855 Helper functions for GDB to locate the string tables.
856 Since BFD hides string tables from callers, GDB needs to use an
857 internal hook to find them. Sun's .stabstr, in particular,
858 isn't even pointed to by the .stab section, so ordinary
859 mechanisms wouldn't work to find it, even if we had some.
860 */
861
862 struct elf_internal_shdr *
863 bfd_elf_find_section (bfd *abfd, char *name)
864 {
865 Elf_Internal_Shdr **i_shdrp;
866 char *shstrtab;
867 unsigned int max;
868 unsigned int i;
869
870 i_shdrp = elf_elfsections (abfd);
871 if (i_shdrp != NULL)
872 {
873 shstrtab = bfd_elf_get_str_section (abfd,
874 elf_elfheader (abfd)->e_shstrndx);
875 if (shstrtab != NULL)
876 {
877 max = elf_numsections (abfd);
878 for (i = 1; i < max; i++)
879 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
880 return i_shdrp[i];
881 }
882 }
883 return 0;
884 }
885
886 const char *const bfd_elf_section_type_names[] = {
887 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
888 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
889 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
890 };
891
892 /* ELF relocs are against symbols. If we are producing relocatable
893 output, and the reloc is against an external symbol, and nothing
894 has given us any additional addend, the resulting reloc will also
895 be against the same symbol. In such a case, we don't want to
896 change anything about the way the reloc is handled, since it will
897 all be done at final link time. Rather than put special case code
898 into bfd_perform_relocation, all the reloc types use this howto
899 function. It just short circuits the reloc if producing
900 relocatable output against an external symbol. */
901
902 bfd_reloc_status_type
903 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
904 arelent *reloc_entry,
905 asymbol *symbol,
906 void *data ATTRIBUTE_UNUSED,
907 asection *input_section,
908 bfd *output_bfd,
909 char **error_message ATTRIBUTE_UNUSED)
910 {
911 if (output_bfd != NULL
912 && (symbol->flags & BSF_SECTION_SYM) == 0
913 && (! reloc_entry->howto->partial_inplace
914 || reloc_entry->addend == 0))
915 {
916 reloc_entry->address += input_section->output_offset;
917 return bfd_reloc_ok;
918 }
919
920 return bfd_reloc_continue;
921 }
922 \f
923 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
924
925 static void
926 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
927 asection *sec)
928 {
929 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
930 sec->sec_info_type = ELF_INFO_TYPE_NONE;
931 }
932
933 /* Finish SHF_MERGE section merging. */
934
935 bfd_boolean
936 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
937 {
938 bfd *ibfd;
939 asection *sec;
940
941 if (!is_elf_hash_table (info->hash))
942 return FALSE;
943
944 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
945 if ((ibfd->flags & DYNAMIC) == 0)
946 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
947 if ((sec->flags & SEC_MERGE) != 0
948 && !bfd_is_abs_section (sec->output_section))
949 {
950 struct bfd_elf_section_data *secdata;
951
952 secdata = elf_section_data (sec);
953 if (! _bfd_add_merge_section (abfd,
954 &elf_hash_table (info)->merge_info,
955 sec, &secdata->sec_info))
956 return FALSE;
957 else if (secdata->sec_info)
958 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
959 }
960
961 if (elf_hash_table (info)->merge_info != NULL)
962 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
963 merge_sections_remove_hook);
964 return TRUE;
965 }
966
967 void
968 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
969 {
970 sec->output_section = bfd_abs_section_ptr;
971 sec->output_offset = sec->vma;
972 if (!is_elf_hash_table (info->hash))
973 return;
974
975 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
976 }
977 \f
978 /* Copy the program header and other data from one object module to
979 another. */
980
981 bfd_boolean
982 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
983 {
984 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
985 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
986 return TRUE;
987
988 BFD_ASSERT (!elf_flags_init (obfd)
989 || (elf_elfheader (obfd)->e_flags
990 == elf_elfheader (ibfd)->e_flags));
991
992 elf_gp (obfd) = elf_gp (ibfd);
993 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
994 elf_flags_init (obfd) = TRUE;
995 return TRUE;
996 }
997
998 /* Print out the program headers. */
999
1000 bfd_boolean
1001 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1002 {
1003 FILE *f = farg;
1004 Elf_Internal_Phdr *p;
1005 asection *s;
1006 bfd_byte *dynbuf = NULL;
1007
1008 p = elf_tdata (abfd)->phdr;
1009 if (p != NULL)
1010 {
1011 unsigned int i, c;
1012
1013 fprintf (f, _("\nProgram Header:\n"));
1014 c = elf_elfheader (abfd)->e_phnum;
1015 for (i = 0; i < c; i++, p++)
1016 {
1017 const char *pt;
1018 char buf[20];
1019
1020 switch (p->p_type)
1021 {
1022 case PT_NULL: pt = "NULL"; break;
1023 case PT_LOAD: pt = "LOAD"; break;
1024 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1025 case PT_INTERP: pt = "INTERP"; break;
1026 case PT_NOTE: pt = "NOTE"; break;
1027 case PT_SHLIB: pt = "SHLIB"; break;
1028 case PT_PHDR: pt = "PHDR"; break;
1029 case PT_TLS: pt = "TLS"; break;
1030 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1031 case PT_GNU_STACK: pt = "STACK"; break;
1032 case PT_GNU_RELRO: pt = "RELRO"; break;
1033 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1034 }
1035 fprintf (f, "%8s off 0x", pt);
1036 bfd_fprintf_vma (abfd, f, p->p_offset);
1037 fprintf (f, " vaddr 0x");
1038 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1039 fprintf (f, " paddr 0x");
1040 bfd_fprintf_vma (abfd, f, p->p_paddr);
1041 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1042 fprintf (f, " filesz 0x");
1043 bfd_fprintf_vma (abfd, f, p->p_filesz);
1044 fprintf (f, " memsz 0x");
1045 bfd_fprintf_vma (abfd, f, p->p_memsz);
1046 fprintf (f, " flags %c%c%c",
1047 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1048 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1049 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1050 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1051 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1052 fprintf (f, "\n");
1053 }
1054 }
1055
1056 s = bfd_get_section_by_name (abfd, ".dynamic");
1057 if (s != NULL)
1058 {
1059 int elfsec;
1060 unsigned long shlink;
1061 bfd_byte *extdyn, *extdynend;
1062 size_t extdynsize;
1063 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1064
1065 fprintf (f, _("\nDynamic Section:\n"));
1066
1067 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1068 goto error_return;
1069
1070 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1071 if (elfsec == -1)
1072 goto error_return;
1073 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1074
1075 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1076 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1077
1078 extdyn = dynbuf;
1079 extdynend = extdyn + s->size;
1080 for (; extdyn < extdynend; extdyn += extdynsize)
1081 {
1082 Elf_Internal_Dyn dyn;
1083 const char *name;
1084 char ab[20];
1085 bfd_boolean stringp;
1086
1087 (*swap_dyn_in) (abfd, extdyn, &dyn);
1088
1089 if (dyn.d_tag == DT_NULL)
1090 break;
1091
1092 stringp = FALSE;
1093 switch (dyn.d_tag)
1094 {
1095 default:
1096 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1097 name = ab;
1098 break;
1099
1100 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1101 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1102 case DT_PLTGOT: name = "PLTGOT"; break;
1103 case DT_HASH: name = "HASH"; break;
1104 case DT_STRTAB: name = "STRTAB"; break;
1105 case DT_SYMTAB: name = "SYMTAB"; break;
1106 case DT_RELA: name = "RELA"; break;
1107 case DT_RELASZ: name = "RELASZ"; break;
1108 case DT_RELAENT: name = "RELAENT"; break;
1109 case DT_STRSZ: name = "STRSZ"; break;
1110 case DT_SYMENT: name = "SYMENT"; break;
1111 case DT_INIT: name = "INIT"; break;
1112 case DT_FINI: name = "FINI"; break;
1113 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1114 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1115 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1116 case DT_REL: name = "REL"; break;
1117 case DT_RELSZ: name = "RELSZ"; break;
1118 case DT_RELENT: name = "RELENT"; break;
1119 case DT_PLTREL: name = "PLTREL"; break;
1120 case DT_DEBUG: name = "DEBUG"; break;
1121 case DT_TEXTREL: name = "TEXTREL"; break;
1122 case DT_JMPREL: name = "JMPREL"; break;
1123 case DT_BIND_NOW: name = "BIND_NOW"; break;
1124 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1125 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1126 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1127 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1128 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1129 case DT_FLAGS: name = "FLAGS"; break;
1130 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1131 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1132 case DT_CHECKSUM: name = "CHECKSUM"; break;
1133 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1134 case DT_MOVEENT: name = "MOVEENT"; break;
1135 case DT_MOVESZ: name = "MOVESZ"; break;
1136 case DT_FEATURE: name = "FEATURE"; break;
1137 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1138 case DT_SYMINSZ: name = "SYMINSZ"; break;
1139 case DT_SYMINENT: name = "SYMINENT"; break;
1140 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1141 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1142 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1143 case DT_PLTPAD: name = "PLTPAD"; break;
1144 case DT_MOVETAB: name = "MOVETAB"; break;
1145 case DT_SYMINFO: name = "SYMINFO"; break;
1146 case DT_RELACOUNT: name = "RELACOUNT"; break;
1147 case DT_RELCOUNT: name = "RELCOUNT"; break;
1148 case DT_FLAGS_1: name = "FLAGS_1"; break;
1149 case DT_VERSYM: name = "VERSYM"; break;
1150 case DT_VERDEF: name = "VERDEF"; break;
1151 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1152 case DT_VERNEED: name = "VERNEED"; break;
1153 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1154 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1155 case DT_USED: name = "USED"; break;
1156 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1157 }
1158
1159 fprintf (f, " %-11s ", name);
1160 if (! stringp)
1161 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1162 else
1163 {
1164 const char *string;
1165 unsigned int tagv = dyn.d_un.d_val;
1166
1167 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1168 if (string == NULL)
1169 goto error_return;
1170 fprintf (f, "%s", string);
1171 }
1172 fprintf (f, "\n");
1173 }
1174
1175 free (dynbuf);
1176 dynbuf = NULL;
1177 }
1178
1179 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1180 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1181 {
1182 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1183 return FALSE;
1184 }
1185
1186 if (elf_dynverdef (abfd) != 0)
1187 {
1188 Elf_Internal_Verdef *t;
1189
1190 fprintf (f, _("\nVersion definitions:\n"));
1191 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1192 {
1193 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1194 t->vd_flags, t->vd_hash, t->vd_nodename);
1195 if (t->vd_auxptr->vda_nextptr != NULL)
1196 {
1197 Elf_Internal_Verdaux *a;
1198
1199 fprintf (f, "\t");
1200 for (a = t->vd_auxptr->vda_nextptr;
1201 a != NULL;
1202 a = a->vda_nextptr)
1203 fprintf (f, "%s ", a->vda_nodename);
1204 fprintf (f, "\n");
1205 }
1206 }
1207 }
1208
1209 if (elf_dynverref (abfd) != 0)
1210 {
1211 Elf_Internal_Verneed *t;
1212
1213 fprintf (f, _("\nVersion References:\n"));
1214 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1215 {
1216 Elf_Internal_Vernaux *a;
1217
1218 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1219 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1220 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1221 a->vna_flags, a->vna_other, a->vna_nodename);
1222 }
1223 }
1224
1225 return TRUE;
1226
1227 error_return:
1228 if (dynbuf != NULL)
1229 free (dynbuf);
1230 return FALSE;
1231 }
1232
1233 /* Display ELF-specific fields of a symbol. */
1234
1235 void
1236 bfd_elf_print_symbol (bfd *abfd,
1237 void *filep,
1238 asymbol *symbol,
1239 bfd_print_symbol_type how)
1240 {
1241 FILE *file = filep;
1242 switch (how)
1243 {
1244 case bfd_print_symbol_name:
1245 fprintf (file, "%s", symbol->name);
1246 break;
1247 case bfd_print_symbol_more:
1248 fprintf (file, "elf ");
1249 bfd_fprintf_vma (abfd, file, symbol->value);
1250 fprintf (file, " %lx", (long) symbol->flags);
1251 break;
1252 case bfd_print_symbol_all:
1253 {
1254 const char *section_name;
1255 const char *name = NULL;
1256 const struct elf_backend_data *bed;
1257 unsigned char st_other;
1258 bfd_vma val;
1259
1260 section_name = symbol->section ? symbol->section->name : "(*none*)";
1261
1262 bed = get_elf_backend_data (abfd);
1263 if (bed->elf_backend_print_symbol_all)
1264 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1265
1266 if (name == NULL)
1267 {
1268 name = symbol->name;
1269 bfd_print_symbol_vandf (abfd, file, symbol);
1270 }
1271
1272 fprintf (file, " %s\t", section_name);
1273 /* Print the "other" value for a symbol. For common symbols,
1274 we've already printed the size; now print the alignment.
1275 For other symbols, we have no specified alignment, and
1276 we've printed the address; now print the size. */
1277 if (bfd_is_com_section (symbol->section))
1278 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1279 else
1280 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1281 bfd_fprintf_vma (abfd, file, val);
1282
1283 /* If we have version information, print it. */
1284 if (elf_tdata (abfd)->dynversym_section != 0
1285 && (elf_tdata (abfd)->dynverdef_section != 0
1286 || elf_tdata (abfd)->dynverref_section != 0))
1287 {
1288 unsigned int vernum;
1289 const char *version_string;
1290
1291 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1292
1293 if (vernum == 0)
1294 version_string = "";
1295 else if (vernum == 1)
1296 version_string = "Base";
1297 else if (vernum <= elf_tdata (abfd)->cverdefs)
1298 version_string =
1299 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1300 else
1301 {
1302 Elf_Internal_Verneed *t;
1303
1304 version_string = "";
1305 for (t = elf_tdata (abfd)->verref;
1306 t != NULL;
1307 t = t->vn_nextref)
1308 {
1309 Elf_Internal_Vernaux *a;
1310
1311 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1312 {
1313 if (a->vna_other == vernum)
1314 {
1315 version_string = a->vna_nodename;
1316 break;
1317 }
1318 }
1319 }
1320 }
1321
1322 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1323 fprintf (file, " %-11s", version_string);
1324 else
1325 {
1326 int i;
1327
1328 fprintf (file, " (%s)", version_string);
1329 for (i = 10 - strlen (version_string); i > 0; --i)
1330 putc (' ', file);
1331 }
1332 }
1333
1334 /* If the st_other field is not zero, print it. */
1335 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1336
1337 switch (st_other)
1338 {
1339 case 0: break;
1340 case STV_INTERNAL: fprintf (file, " .internal"); break;
1341 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1342 case STV_PROTECTED: fprintf (file, " .protected"); break;
1343 default:
1344 /* Some other non-defined flags are also present, so print
1345 everything hex. */
1346 fprintf (file, " 0x%02x", (unsigned int) st_other);
1347 }
1348
1349 fprintf (file, " %s", name);
1350 }
1351 break;
1352 }
1353 }
1354 \f
1355 /* Create an entry in an ELF linker hash table. */
1356
1357 struct bfd_hash_entry *
1358 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1359 struct bfd_hash_table *table,
1360 const char *string)
1361 {
1362 /* Allocate the structure if it has not already been allocated by a
1363 subclass. */
1364 if (entry == NULL)
1365 {
1366 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1367 if (entry == NULL)
1368 return entry;
1369 }
1370
1371 /* Call the allocation method of the superclass. */
1372 entry = _bfd_link_hash_newfunc (entry, table, string);
1373 if (entry != NULL)
1374 {
1375 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1376 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1377
1378 /* Set local fields. */
1379 ret->indx = -1;
1380 ret->dynindx = -1;
1381 ret->got = ret->plt = htab->init_refcount;
1382 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1383 - offsetof (struct elf_link_hash_entry, size)));
1384 /* Assume that we have been called by a non-ELF symbol reader.
1385 This flag is then reset by the code which reads an ELF input
1386 file. This ensures that a symbol created by a non-ELF symbol
1387 reader will have the flag set correctly. */
1388 ret->non_elf = 1;
1389 }
1390
1391 return entry;
1392 }
1393
1394 /* Copy data from an indirect symbol to its direct symbol, hiding the
1395 old indirect symbol. Also used for copying flags to a weakdef. */
1396
1397 void
1398 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1399 struct elf_link_hash_entry *dir,
1400 struct elf_link_hash_entry *ind)
1401 {
1402 bfd_signed_vma tmp;
1403 bfd_signed_vma lowest_valid = bed->can_refcount;
1404
1405 /* Copy down any references that we may have already seen to the
1406 symbol which just became indirect. */
1407
1408 dir->ref_dynamic |= ind->ref_dynamic;
1409 dir->ref_regular |= ind->ref_regular;
1410 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1411 dir->non_got_ref |= ind->non_got_ref;
1412 dir->needs_plt |= ind->needs_plt;
1413 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1414
1415 if (ind->root.type != bfd_link_hash_indirect)
1416 return;
1417
1418 /* Copy over the global and procedure linkage table refcount entries.
1419 These may have been already set up by a check_relocs routine. */
1420 tmp = dir->got.refcount;
1421 if (tmp < lowest_valid)
1422 {
1423 dir->got.refcount = ind->got.refcount;
1424 ind->got.refcount = tmp;
1425 }
1426 else
1427 BFD_ASSERT (ind->got.refcount < lowest_valid);
1428
1429 tmp = dir->plt.refcount;
1430 if (tmp < lowest_valid)
1431 {
1432 dir->plt.refcount = ind->plt.refcount;
1433 ind->plt.refcount = tmp;
1434 }
1435 else
1436 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1437
1438 if (dir->dynindx == -1)
1439 {
1440 dir->dynindx = ind->dynindx;
1441 dir->dynstr_index = ind->dynstr_index;
1442 ind->dynindx = -1;
1443 ind->dynstr_index = 0;
1444 }
1445 else
1446 BFD_ASSERT (ind->dynindx == -1);
1447 }
1448
1449 void
1450 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1451 struct elf_link_hash_entry *h,
1452 bfd_boolean force_local)
1453 {
1454 h->plt = elf_hash_table (info)->init_offset;
1455 h->needs_plt = 0;
1456 if (force_local)
1457 {
1458 h->forced_local = 1;
1459 if (h->dynindx != -1)
1460 {
1461 h->dynindx = -1;
1462 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1463 h->dynstr_index);
1464 }
1465 }
1466 }
1467
1468 /* Initialize an ELF linker hash table. */
1469
1470 bfd_boolean
1471 _bfd_elf_link_hash_table_init
1472 (struct elf_link_hash_table *table,
1473 bfd *abfd,
1474 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1475 struct bfd_hash_table *,
1476 const char *))
1477 {
1478 bfd_boolean ret;
1479
1480 table->dynamic_sections_created = FALSE;
1481 table->dynobj = NULL;
1482 /* Make sure can_refcount is extended to the width and signedness of
1483 init_refcount before we subtract one from it. */
1484 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1485 table->init_refcount.refcount -= 1;
1486 table->init_offset.offset = -(bfd_vma) 1;
1487 /* The first dynamic symbol is a dummy. */
1488 table->dynsymcount = 1;
1489 table->dynstr = NULL;
1490 table->bucketcount = 0;
1491 table->needed = NULL;
1492 table->hgot = NULL;
1493 table->merge_info = NULL;
1494 memset (&table->stab_info, 0, sizeof (table->stab_info));
1495 memset (&table->eh_info, 0, sizeof (table->eh_info));
1496 table->dynlocal = NULL;
1497 table->runpath = NULL;
1498 table->tls_sec = NULL;
1499 table->tls_size = 0;
1500 table->loaded = NULL;
1501 table->is_relocatable_executable = FALSE;
1502
1503 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1504 table->root.type = bfd_link_elf_hash_table;
1505
1506 return ret;
1507 }
1508
1509 /* Create an ELF linker hash table. */
1510
1511 struct bfd_link_hash_table *
1512 _bfd_elf_link_hash_table_create (bfd *abfd)
1513 {
1514 struct elf_link_hash_table *ret;
1515 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1516
1517 ret = bfd_malloc (amt);
1518 if (ret == NULL)
1519 return NULL;
1520
1521 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1522 {
1523 free (ret);
1524 return NULL;
1525 }
1526
1527 return &ret->root;
1528 }
1529
1530 /* This is a hook for the ELF emulation code in the generic linker to
1531 tell the backend linker what file name to use for the DT_NEEDED
1532 entry for a dynamic object. */
1533
1534 void
1535 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1536 {
1537 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1538 && bfd_get_format (abfd) == bfd_object)
1539 elf_dt_name (abfd) = name;
1540 }
1541
1542 int
1543 bfd_elf_get_dyn_lib_class (bfd *abfd)
1544 {
1545 int lib_class;
1546 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1547 && bfd_get_format (abfd) == bfd_object)
1548 lib_class = elf_dyn_lib_class (abfd);
1549 else
1550 lib_class = 0;
1551 return lib_class;
1552 }
1553
1554 void
1555 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1556 {
1557 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1558 && bfd_get_format (abfd) == bfd_object)
1559 elf_dyn_lib_class (abfd) = lib_class;
1560 }
1561
1562 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1563 the linker ELF emulation code. */
1564
1565 struct bfd_link_needed_list *
1566 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1567 struct bfd_link_info *info)
1568 {
1569 if (! is_elf_hash_table (info->hash))
1570 return NULL;
1571 return elf_hash_table (info)->needed;
1572 }
1573
1574 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1575 hook for the linker ELF emulation code. */
1576
1577 struct bfd_link_needed_list *
1578 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1579 struct bfd_link_info *info)
1580 {
1581 if (! is_elf_hash_table (info->hash))
1582 return NULL;
1583 return elf_hash_table (info)->runpath;
1584 }
1585
1586 /* Get the name actually used for a dynamic object for a link. This
1587 is the SONAME entry if there is one. Otherwise, it is the string
1588 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1589
1590 const char *
1591 bfd_elf_get_dt_soname (bfd *abfd)
1592 {
1593 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1594 && bfd_get_format (abfd) == bfd_object)
1595 return elf_dt_name (abfd);
1596 return NULL;
1597 }
1598
1599 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1600 the ELF linker emulation code. */
1601
1602 bfd_boolean
1603 bfd_elf_get_bfd_needed_list (bfd *abfd,
1604 struct bfd_link_needed_list **pneeded)
1605 {
1606 asection *s;
1607 bfd_byte *dynbuf = NULL;
1608 int elfsec;
1609 unsigned long shlink;
1610 bfd_byte *extdyn, *extdynend;
1611 size_t extdynsize;
1612 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1613
1614 *pneeded = NULL;
1615
1616 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1617 || bfd_get_format (abfd) != bfd_object)
1618 return TRUE;
1619
1620 s = bfd_get_section_by_name (abfd, ".dynamic");
1621 if (s == NULL || s->size == 0)
1622 return TRUE;
1623
1624 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1625 goto error_return;
1626
1627 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1628 if (elfsec == -1)
1629 goto error_return;
1630
1631 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1632
1633 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1634 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1635
1636 extdyn = dynbuf;
1637 extdynend = extdyn + s->size;
1638 for (; extdyn < extdynend; extdyn += extdynsize)
1639 {
1640 Elf_Internal_Dyn dyn;
1641
1642 (*swap_dyn_in) (abfd, extdyn, &dyn);
1643
1644 if (dyn.d_tag == DT_NULL)
1645 break;
1646
1647 if (dyn.d_tag == DT_NEEDED)
1648 {
1649 const char *string;
1650 struct bfd_link_needed_list *l;
1651 unsigned int tagv = dyn.d_un.d_val;
1652 bfd_size_type amt;
1653
1654 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1655 if (string == NULL)
1656 goto error_return;
1657
1658 amt = sizeof *l;
1659 l = bfd_alloc (abfd, amt);
1660 if (l == NULL)
1661 goto error_return;
1662
1663 l->by = abfd;
1664 l->name = string;
1665 l->next = *pneeded;
1666 *pneeded = l;
1667 }
1668 }
1669
1670 free (dynbuf);
1671
1672 return TRUE;
1673
1674 error_return:
1675 if (dynbuf != NULL)
1676 free (dynbuf);
1677 return FALSE;
1678 }
1679 \f
1680 /* Allocate an ELF string table--force the first byte to be zero. */
1681
1682 struct bfd_strtab_hash *
1683 _bfd_elf_stringtab_init (void)
1684 {
1685 struct bfd_strtab_hash *ret;
1686
1687 ret = _bfd_stringtab_init ();
1688 if (ret != NULL)
1689 {
1690 bfd_size_type loc;
1691
1692 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1693 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1694 if (loc == (bfd_size_type) -1)
1695 {
1696 _bfd_stringtab_free (ret);
1697 ret = NULL;
1698 }
1699 }
1700 return ret;
1701 }
1702 \f
1703 /* ELF .o/exec file reading */
1704
1705 /* Create a new bfd section from an ELF section header. */
1706
1707 bfd_boolean
1708 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1709 {
1710 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1711 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1712 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1713 const char *name;
1714
1715 name = bfd_elf_string_from_elf_section (abfd,
1716 elf_elfheader (abfd)->e_shstrndx,
1717 hdr->sh_name);
1718
1719 switch (hdr->sh_type)
1720 {
1721 case SHT_NULL:
1722 /* Inactive section. Throw it away. */
1723 return TRUE;
1724
1725 case SHT_PROGBITS: /* Normal section with contents. */
1726 case SHT_NOBITS: /* .bss section. */
1727 case SHT_HASH: /* .hash section. */
1728 case SHT_NOTE: /* .note section. */
1729 case SHT_INIT_ARRAY: /* .init_array section. */
1730 case SHT_FINI_ARRAY: /* .fini_array section. */
1731 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1732 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1733 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1734
1735 case SHT_DYNAMIC: /* Dynamic linking information. */
1736 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1737 return FALSE;
1738 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1739 {
1740 Elf_Internal_Shdr *dynsymhdr;
1741
1742 /* The shared libraries distributed with hpux11 have a bogus
1743 sh_link field for the ".dynamic" section. Find the
1744 string table for the ".dynsym" section instead. */
1745 if (elf_dynsymtab (abfd) != 0)
1746 {
1747 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1748 hdr->sh_link = dynsymhdr->sh_link;
1749 }
1750 else
1751 {
1752 unsigned int i, num_sec;
1753
1754 num_sec = elf_numsections (abfd);
1755 for (i = 1; i < num_sec; i++)
1756 {
1757 dynsymhdr = elf_elfsections (abfd)[i];
1758 if (dynsymhdr->sh_type == SHT_DYNSYM)
1759 {
1760 hdr->sh_link = dynsymhdr->sh_link;
1761 break;
1762 }
1763 }
1764 }
1765 }
1766 break;
1767
1768 case SHT_SYMTAB: /* A symbol table */
1769 if (elf_onesymtab (abfd) == shindex)
1770 return TRUE;
1771
1772 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1773 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1774 elf_onesymtab (abfd) = shindex;
1775 elf_tdata (abfd)->symtab_hdr = *hdr;
1776 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1777 abfd->flags |= HAS_SYMS;
1778
1779 /* Sometimes a shared object will map in the symbol table. If
1780 SHF_ALLOC is set, and this is a shared object, then we also
1781 treat this section as a BFD section. We can not base the
1782 decision purely on SHF_ALLOC, because that flag is sometimes
1783 set in a relocatable object file, which would confuse the
1784 linker. */
1785 if ((hdr->sh_flags & SHF_ALLOC) != 0
1786 && (abfd->flags & DYNAMIC) != 0
1787 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1788 shindex))
1789 return FALSE;
1790
1791 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1792 can't read symbols without that section loaded as well. It
1793 is most likely specified by the next section header. */
1794 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1795 {
1796 unsigned int i, num_sec;
1797
1798 num_sec = elf_numsections (abfd);
1799 for (i = shindex + 1; i < num_sec; i++)
1800 {
1801 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1802 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1803 && hdr2->sh_link == shindex)
1804 break;
1805 }
1806 if (i == num_sec)
1807 for (i = 1; i < shindex; i++)
1808 {
1809 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1810 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1811 && hdr2->sh_link == shindex)
1812 break;
1813 }
1814 if (i != shindex)
1815 return bfd_section_from_shdr (abfd, i);
1816 }
1817 return TRUE;
1818
1819 case SHT_DYNSYM: /* A dynamic symbol table */
1820 if (elf_dynsymtab (abfd) == shindex)
1821 return TRUE;
1822
1823 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1824 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1825 elf_dynsymtab (abfd) = shindex;
1826 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1827 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1828 abfd->flags |= HAS_SYMS;
1829
1830 /* Besides being a symbol table, we also treat this as a regular
1831 section, so that objcopy can handle it. */
1832 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1833
1834 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1835 if (elf_symtab_shndx (abfd) == shindex)
1836 return TRUE;
1837
1838 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1839 elf_symtab_shndx (abfd) = shindex;
1840 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1841 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1842 return TRUE;
1843
1844 case SHT_STRTAB: /* A string table */
1845 if (hdr->bfd_section != NULL)
1846 return TRUE;
1847 if (ehdr->e_shstrndx == shindex)
1848 {
1849 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1850 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1851 return TRUE;
1852 }
1853 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1854 {
1855 symtab_strtab:
1856 elf_tdata (abfd)->strtab_hdr = *hdr;
1857 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1858 return TRUE;
1859 }
1860 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1861 {
1862 dynsymtab_strtab:
1863 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1864 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1865 elf_elfsections (abfd)[shindex] = hdr;
1866 /* We also treat this as a regular section, so that objcopy
1867 can handle it. */
1868 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1869 shindex);
1870 }
1871
1872 /* If the string table isn't one of the above, then treat it as a
1873 regular section. We need to scan all the headers to be sure,
1874 just in case this strtab section appeared before the above. */
1875 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1876 {
1877 unsigned int i, num_sec;
1878
1879 num_sec = elf_numsections (abfd);
1880 for (i = 1; i < num_sec; i++)
1881 {
1882 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1883 if (hdr2->sh_link == shindex)
1884 {
1885 if (! bfd_section_from_shdr (abfd, i))
1886 return FALSE;
1887 if (elf_onesymtab (abfd) == i)
1888 goto symtab_strtab;
1889 if (elf_dynsymtab (abfd) == i)
1890 goto dynsymtab_strtab;
1891 }
1892 }
1893 }
1894 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1895
1896 case SHT_REL:
1897 case SHT_RELA:
1898 /* *These* do a lot of work -- but build no sections! */
1899 {
1900 asection *target_sect;
1901 Elf_Internal_Shdr *hdr2;
1902 unsigned int num_sec = elf_numsections (abfd);
1903
1904 /* Check for a bogus link to avoid crashing. */
1905 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1906 || hdr->sh_link >= num_sec)
1907 {
1908 ((*_bfd_error_handler)
1909 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1910 abfd, hdr->sh_link, name, shindex));
1911 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1912 shindex);
1913 }
1914
1915 /* For some incomprehensible reason Oracle distributes
1916 libraries for Solaris in which some of the objects have
1917 bogus sh_link fields. It would be nice if we could just
1918 reject them, but, unfortunately, some people need to use
1919 them. We scan through the section headers; if we find only
1920 one suitable symbol table, we clobber the sh_link to point
1921 to it. I hope this doesn't break anything. */
1922 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1923 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1924 {
1925 unsigned int scan;
1926 int found;
1927
1928 found = 0;
1929 for (scan = 1; scan < num_sec; scan++)
1930 {
1931 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1932 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1933 {
1934 if (found != 0)
1935 {
1936 found = 0;
1937 break;
1938 }
1939 found = scan;
1940 }
1941 }
1942 if (found != 0)
1943 hdr->sh_link = found;
1944 }
1945
1946 /* Get the symbol table. */
1947 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1948 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1949 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1950 return FALSE;
1951
1952 /* If this reloc section does not use the main symbol table we
1953 don't treat it as a reloc section. BFD can't adequately
1954 represent such a section, so at least for now, we don't
1955 try. We just present it as a normal section. We also
1956 can't use it as a reloc section if it points to the null
1957 section. */
1958 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1959 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1960 shindex);
1961
1962 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1963 return FALSE;
1964 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1965 if (target_sect == NULL)
1966 return FALSE;
1967
1968 if ((target_sect->flags & SEC_RELOC) == 0
1969 || target_sect->reloc_count == 0)
1970 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1971 else
1972 {
1973 bfd_size_type amt;
1974 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1975 amt = sizeof (*hdr2);
1976 hdr2 = bfd_alloc (abfd, amt);
1977 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1978 }
1979 *hdr2 = *hdr;
1980 elf_elfsections (abfd)[shindex] = hdr2;
1981 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1982 target_sect->flags |= SEC_RELOC;
1983 target_sect->relocation = NULL;
1984 target_sect->rel_filepos = hdr->sh_offset;
1985 /* In the section to which the relocations apply, mark whether
1986 its relocations are of the REL or RELA variety. */
1987 if (hdr->sh_size != 0)
1988 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1989 abfd->flags |= HAS_RELOC;
1990 return TRUE;
1991 }
1992 break;
1993
1994 case SHT_GNU_verdef:
1995 elf_dynverdef (abfd) = shindex;
1996 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1997 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1998 break;
1999
2000 case SHT_GNU_versym:
2001 elf_dynversym (abfd) = shindex;
2002 elf_tdata (abfd)->dynversym_hdr = *hdr;
2003 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2004 break;
2005
2006 case SHT_GNU_verneed:
2007 elf_dynverref (abfd) = shindex;
2008 elf_tdata (abfd)->dynverref_hdr = *hdr;
2009 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2010 break;
2011
2012 case SHT_SHLIB:
2013 return TRUE;
2014
2015 case SHT_GROUP:
2016 /* We need a BFD section for objcopy and relocatable linking,
2017 and it's handy to have the signature available as the section
2018 name. */
2019 name = group_signature (abfd, hdr);
2020 if (name == NULL)
2021 return FALSE;
2022 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2023 return FALSE;
2024 if (hdr->contents != NULL)
2025 {
2026 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2027 unsigned int n_elt = hdr->sh_size / 4;
2028 asection *s;
2029
2030 if (idx->flags & GRP_COMDAT)
2031 hdr->bfd_section->flags
2032 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2033
2034 /* We try to keep the same section order as it comes in. */
2035 idx += n_elt;
2036 while (--n_elt != 0)
2037 if ((s = (--idx)->shdr->bfd_section) != NULL
2038 && elf_next_in_group (s) != NULL)
2039 {
2040 elf_next_in_group (hdr->bfd_section) = s;
2041 break;
2042 }
2043 }
2044 break;
2045
2046 default:
2047 /* Check for any processor-specific section types. */
2048 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2049 shindex);
2050 }
2051
2052 return TRUE;
2053 }
2054
2055 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2056 Return SEC for sections that have no elf section, and NULL on error. */
2057
2058 asection *
2059 bfd_section_from_r_symndx (bfd *abfd,
2060 struct sym_sec_cache *cache,
2061 asection *sec,
2062 unsigned long r_symndx)
2063 {
2064 Elf_Internal_Shdr *symtab_hdr;
2065 unsigned char esym[sizeof (Elf64_External_Sym)];
2066 Elf_External_Sym_Shndx eshndx;
2067 Elf_Internal_Sym isym;
2068 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2069
2070 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2071 return cache->sec[ent];
2072
2073 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2074 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2075 &isym, esym, &eshndx) == NULL)
2076 return NULL;
2077
2078 if (cache->abfd != abfd)
2079 {
2080 memset (cache->indx, -1, sizeof (cache->indx));
2081 cache->abfd = abfd;
2082 }
2083 cache->indx[ent] = r_symndx;
2084 cache->sec[ent] = sec;
2085 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2086 || isym.st_shndx > SHN_HIRESERVE)
2087 {
2088 asection *s;
2089 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2090 if (s != NULL)
2091 cache->sec[ent] = s;
2092 }
2093 return cache->sec[ent];
2094 }
2095
2096 /* Given an ELF section number, retrieve the corresponding BFD
2097 section. */
2098
2099 asection *
2100 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2101 {
2102 if (index >= elf_numsections (abfd))
2103 return NULL;
2104 return elf_elfsections (abfd)[index]->bfd_section;
2105 }
2106
2107 static struct bfd_elf_special_section const special_sections[] =
2108 {
2109 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2110 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2111 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2112 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2113 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2114 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2115 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2116 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2117 { ".line", 5, 0, SHT_PROGBITS, 0 },
2118 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2119 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2120 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2121 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2122 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2123 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2124 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2125 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2126 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2127 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2128 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2129 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2130 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2131 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2132 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2133 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2134 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2135 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2136 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2137 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2138 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2139 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2140 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2141 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2142 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2143 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2144 { ".note", 5, -1, SHT_NOTE, 0 },
2145 { ".rela", 5, -1, SHT_RELA, 0 },
2146 { ".rel", 4, -1, SHT_REL, 0 },
2147 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2148 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2149 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2150 { NULL, 0, 0, 0, 0 }
2151 };
2152
2153 static const struct bfd_elf_special_section *
2154 get_special_section (const char *name,
2155 const struct bfd_elf_special_section *special_sections,
2156 unsigned int rela)
2157 {
2158 int i;
2159 int len = strlen (name);
2160
2161 for (i = 0; special_sections[i].prefix != NULL; i++)
2162 {
2163 int suffix_len;
2164 int prefix_len = special_sections[i].prefix_length;
2165
2166 if (len < prefix_len)
2167 continue;
2168 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2169 continue;
2170
2171 suffix_len = special_sections[i].suffix_length;
2172 if (suffix_len <= 0)
2173 {
2174 if (name[prefix_len] != 0)
2175 {
2176 if (suffix_len == 0)
2177 continue;
2178 if (name[prefix_len] != '.'
2179 && (suffix_len == -2
2180 || (rela && special_sections[i].type == SHT_REL)))
2181 continue;
2182 }
2183 }
2184 else
2185 {
2186 if (len < prefix_len + suffix_len)
2187 continue;
2188 if (memcmp (name + len - suffix_len,
2189 special_sections[i].prefix + prefix_len,
2190 suffix_len) != 0)
2191 continue;
2192 }
2193 return &special_sections[i];
2194 }
2195
2196 return NULL;
2197 }
2198
2199 const struct bfd_elf_special_section *
2200 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2201 {
2202 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2203 const struct bfd_elf_special_section *ssect = NULL;
2204
2205 /* See if this is one of the special sections. */
2206 if (name)
2207 {
2208 unsigned int rela = bed->default_use_rela_p;
2209
2210 if (bed->special_sections)
2211 ssect = get_special_section (name, bed->special_sections, rela);
2212
2213 if (! ssect)
2214 ssect = get_special_section (name, special_sections, rela);
2215 }
2216
2217 return ssect;
2218 }
2219
2220 bfd_boolean
2221 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2222 {
2223 struct bfd_elf_section_data *sdata;
2224 const struct bfd_elf_special_section *ssect;
2225
2226 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2227 if (sdata == NULL)
2228 {
2229 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2230 if (sdata == NULL)
2231 return FALSE;
2232 sec->used_by_bfd = sdata;
2233 }
2234
2235 elf_section_type (sec) = SHT_NULL;
2236 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2237 if (ssect != NULL)
2238 {
2239 elf_section_type (sec) = ssect->type;
2240 elf_section_flags (sec) = ssect->attr;
2241 }
2242
2243 /* Indicate whether or not this section should use RELA relocations. */
2244 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2245
2246 return TRUE;
2247 }
2248
2249 /* Create a new bfd section from an ELF program header.
2250
2251 Since program segments have no names, we generate a synthetic name
2252 of the form segment<NUM>, where NUM is generally the index in the
2253 program header table. For segments that are split (see below) we
2254 generate the names segment<NUM>a and segment<NUM>b.
2255
2256 Note that some program segments may have a file size that is different than
2257 (less than) the memory size. All this means is that at execution the
2258 system must allocate the amount of memory specified by the memory size,
2259 but only initialize it with the first "file size" bytes read from the
2260 file. This would occur for example, with program segments consisting
2261 of combined data+bss.
2262
2263 To handle the above situation, this routine generates TWO bfd sections
2264 for the single program segment. The first has the length specified by
2265 the file size of the segment, and the second has the length specified
2266 by the difference between the two sizes. In effect, the segment is split
2267 into it's initialized and uninitialized parts.
2268
2269 */
2270
2271 bfd_boolean
2272 _bfd_elf_make_section_from_phdr (bfd *abfd,
2273 Elf_Internal_Phdr *hdr,
2274 int index,
2275 const char *typename)
2276 {
2277 asection *newsect;
2278 char *name;
2279 char namebuf[64];
2280 size_t len;
2281 int split;
2282
2283 split = ((hdr->p_memsz > 0)
2284 && (hdr->p_filesz > 0)
2285 && (hdr->p_memsz > hdr->p_filesz));
2286 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2287 len = strlen (namebuf) + 1;
2288 name = bfd_alloc (abfd, len);
2289 if (!name)
2290 return FALSE;
2291 memcpy (name, namebuf, len);
2292 newsect = bfd_make_section (abfd, name);
2293 if (newsect == NULL)
2294 return FALSE;
2295 newsect->vma = hdr->p_vaddr;
2296 newsect->lma = hdr->p_paddr;
2297 newsect->size = hdr->p_filesz;
2298 newsect->filepos = hdr->p_offset;
2299 newsect->flags |= SEC_HAS_CONTENTS;
2300 newsect->alignment_power = bfd_log2 (hdr->p_align);
2301 if (hdr->p_type == PT_LOAD)
2302 {
2303 newsect->flags |= SEC_ALLOC;
2304 newsect->flags |= SEC_LOAD;
2305 if (hdr->p_flags & PF_X)
2306 {
2307 /* FIXME: all we known is that it has execute PERMISSION,
2308 may be data. */
2309 newsect->flags |= SEC_CODE;
2310 }
2311 }
2312 if (!(hdr->p_flags & PF_W))
2313 {
2314 newsect->flags |= SEC_READONLY;
2315 }
2316
2317 if (split)
2318 {
2319 sprintf (namebuf, "%s%db", typename, index);
2320 len = strlen (namebuf) + 1;
2321 name = bfd_alloc (abfd, len);
2322 if (!name)
2323 return FALSE;
2324 memcpy (name, namebuf, len);
2325 newsect = bfd_make_section (abfd, name);
2326 if (newsect == NULL)
2327 return FALSE;
2328 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2329 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2330 newsect->size = hdr->p_memsz - hdr->p_filesz;
2331 if (hdr->p_type == PT_LOAD)
2332 {
2333 newsect->flags |= SEC_ALLOC;
2334 if (hdr->p_flags & PF_X)
2335 newsect->flags |= SEC_CODE;
2336 }
2337 if (!(hdr->p_flags & PF_W))
2338 newsect->flags |= SEC_READONLY;
2339 }
2340
2341 return TRUE;
2342 }
2343
2344 bfd_boolean
2345 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2346 {
2347 const struct elf_backend_data *bed;
2348
2349 switch (hdr->p_type)
2350 {
2351 case PT_NULL:
2352 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2353
2354 case PT_LOAD:
2355 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2356
2357 case PT_DYNAMIC:
2358 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2359
2360 case PT_INTERP:
2361 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2362
2363 case PT_NOTE:
2364 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2365 return FALSE;
2366 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2367 return FALSE;
2368 return TRUE;
2369
2370 case PT_SHLIB:
2371 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2372
2373 case PT_PHDR:
2374 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2375
2376 case PT_GNU_EH_FRAME:
2377 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2378 "eh_frame_hdr");
2379
2380 case PT_GNU_STACK:
2381 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2382
2383 case PT_GNU_RELRO:
2384 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2385
2386 default:
2387 /* Check for any processor-specific program segment types. */
2388 bed = get_elf_backend_data (abfd);
2389 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2390 }
2391 }
2392
2393 /* Initialize REL_HDR, the section-header for new section, containing
2394 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2395 relocations; otherwise, we use REL relocations. */
2396
2397 bfd_boolean
2398 _bfd_elf_init_reloc_shdr (bfd *abfd,
2399 Elf_Internal_Shdr *rel_hdr,
2400 asection *asect,
2401 bfd_boolean use_rela_p)
2402 {
2403 char *name;
2404 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2405 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2406
2407 name = bfd_alloc (abfd, amt);
2408 if (name == NULL)
2409 return FALSE;
2410 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2411 rel_hdr->sh_name =
2412 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2413 FALSE);
2414 if (rel_hdr->sh_name == (unsigned int) -1)
2415 return FALSE;
2416 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2417 rel_hdr->sh_entsize = (use_rela_p
2418 ? bed->s->sizeof_rela
2419 : bed->s->sizeof_rel);
2420 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2421 rel_hdr->sh_flags = 0;
2422 rel_hdr->sh_addr = 0;
2423 rel_hdr->sh_size = 0;
2424 rel_hdr->sh_offset = 0;
2425
2426 return TRUE;
2427 }
2428
2429 /* Set up an ELF internal section header for a section. */
2430
2431 static void
2432 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2433 {
2434 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2435 bfd_boolean *failedptr = failedptrarg;
2436 Elf_Internal_Shdr *this_hdr;
2437
2438 if (*failedptr)
2439 {
2440 /* We already failed; just get out of the bfd_map_over_sections
2441 loop. */
2442 return;
2443 }
2444
2445 this_hdr = &elf_section_data (asect)->this_hdr;
2446
2447 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2448 asect->name, FALSE);
2449 if (this_hdr->sh_name == (unsigned int) -1)
2450 {
2451 *failedptr = TRUE;
2452 return;
2453 }
2454
2455 this_hdr->sh_flags = 0;
2456
2457 if ((asect->flags & SEC_ALLOC) != 0
2458 || asect->user_set_vma)
2459 this_hdr->sh_addr = asect->vma;
2460 else
2461 this_hdr->sh_addr = 0;
2462
2463 this_hdr->sh_offset = 0;
2464 this_hdr->sh_size = asect->size;
2465 this_hdr->sh_link = 0;
2466 this_hdr->sh_addralign = 1 << asect->alignment_power;
2467 /* The sh_entsize and sh_info fields may have been set already by
2468 copy_private_section_data. */
2469
2470 this_hdr->bfd_section = asect;
2471 this_hdr->contents = NULL;
2472
2473 /* If the section type is unspecified, we set it based on
2474 asect->flags. */
2475 if (this_hdr->sh_type == SHT_NULL)
2476 {
2477 if ((asect->flags & SEC_GROUP) != 0)
2478 {
2479 /* We also need to mark SHF_GROUP here for relocatable
2480 link. */
2481 struct bfd_link_order *l;
2482 asection *elt;
2483
2484 for (l = asect->link_order_head; l != NULL; l = l->next)
2485 if (l->type == bfd_indirect_link_order
2486 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2487 do
2488 {
2489 /* The name is not important. Anything will do. */
2490 elf_group_name (elt->output_section) = "G";
2491 elf_section_flags (elt->output_section) |= SHF_GROUP;
2492
2493 elt = elf_next_in_group (elt);
2494 /* During a relocatable link, the lists are
2495 circular. */
2496 }
2497 while (elt != elf_next_in_group (l->u.indirect.section));
2498
2499 this_hdr->sh_type = SHT_GROUP;
2500 }
2501 else if ((asect->flags & SEC_ALLOC) != 0
2502 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2503 || (asect->flags & SEC_NEVER_LOAD) != 0))
2504 this_hdr->sh_type = SHT_NOBITS;
2505 else
2506 this_hdr->sh_type = SHT_PROGBITS;
2507 }
2508
2509 switch (this_hdr->sh_type)
2510 {
2511 default:
2512 break;
2513
2514 case SHT_STRTAB:
2515 case SHT_INIT_ARRAY:
2516 case SHT_FINI_ARRAY:
2517 case SHT_PREINIT_ARRAY:
2518 case SHT_NOTE:
2519 case SHT_NOBITS:
2520 case SHT_PROGBITS:
2521 break;
2522
2523 case SHT_HASH:
2524 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2525 break;
2526
2527 case SHT_DYNSYM:
2528 this_hdr->sh_entsize = bed->s->sizeof_sym;
2529 break;
2530
2531 case SHT_DYNAMIC:
2532 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2533 break;
2534
2535 case SHT_RELA:
2536 if (get_elf_backend_data (abfd)->may_use_rela_p)
2537 this_hdr->sh_entsize = bed->s->sizeof_rela;
2538 break;
2539
2540 case SHT_REL:
2541 if (get_elf_backend_data (abfd)->may_use_rel_p)
2542 this_hdr->sh_entsize = bed->s->sizeof_rel;
2543 break;
2544
2545 case SHT_GNU_versym:
2546 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2547 break;
2548
2549 case SHT_GNU_verdef:
2550 this_hdr->sh_entsize = 0;
2551 /* objcopy or strip will copy over sh_info, but may not set
2552 cverdefs. The linker will set cverdefs, but sh_info will be
2553 zero. */
2554 if (this_hdr->sh_info == 0)
2555 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2556 else
2557 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2558 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2559 break;
2560
2561 case SHT_GNU_verneed:
2562 this_hdr->sh_entsize = 0;
2563 /* objcopy or strip will copy over sh_info, but may not set
2564 cverrefs. The linker will set cverrefs, but sh_info will be
2565 zero. */
2566 if (this_hdr->sh_info == 0)
2567 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2568 else
2569 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2570 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2571 break;
2572
2573 case SHT_GROUP:
2574 this_hdr->sh_entsize = 4;
2575 break;
2576 }
2577
2578 if ((asect->flags & SEC_ALLOC) != 0)
2579 this_hdr->sh_flags |= SHF_ALLOC;
2580 if ((asect->flags & SEC_READONLY) == 0)
2581 this_hdr->sh_flags |= SHF_WRITE;
2582 if ((asect->flags & SEC_CODE) != 0)
2583 this_hdr->sh_flags |= SHF_EXECINSTR;
2584 if ((asect->flags & SEC_MERGE) != 0)
2585 {
2586 this_hdr->sh_flags |= SHF_MERGE;
2587 this_hdr->sh_entsize = asect->entsize;
2588 if ((asect->flags & SEC_STRINGS) != 0)
2589 this_hdr->sh_flags |= SHF_STRINGS;
2590 }
2591 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2592 this_hdr->sh_flags |= SHF_GROUP;
2593 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2594 {
2595 this_hdr->sh_flags |= SHF_TLS;
2596 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2597 {
2598 struct bfd_link_order *o;
2599
2600 this_hdr->sh_size = 0;
2601 for (o = asect->link_order_head; o != NULL; o = o->next)
2602 if (this_hdr->sh_size < o->offset + o->size)
2603 this_hdr->sh_size = o->offset + o->size;
2604 if (this_hdr->sh_size)
2605 this_hdr->sh_type = SHT_NOBITS;
2606 }
2607 }
2608
2609 /* Check for processor-specific section types. */
2610 if (bed->elf_backend_fake_sections
2611 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2612 *failedptr = TRUE;
2613
2614 /* If the section has relocs, set up a section header for the
2615 SHT_REL[A] section. If two relocation sections are required for
2616 this section, it is up to the processor-specific back-end to
2617 create the other. */
2618 if ((asect->flags & SEC_RELOC) != 0
2619 && !_bfd_elf_init_reloc_shdr (abfd,
2620 &elf_section_data (asect)->rel_hdr,
2621 asect,
2622 asect->use_rela_p))
2623 *failedptr = TRUE;
2624 }
2625
2626 /* Fill in the contents of a SHT_GROUP section. */
2627
2628 void
2629 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2630 {
2631 bfd_boolean *failedptr = failedptrarg;
2632 unsigned long symindx;
2633 asection *elt, *first;
2634 unsigned char *loc;
2635 struct bfd_link_order *l;
2636 bfd_boolean gas;
2637
2638 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2639 || *failedptr)
2640 return;
2641
2642 symindx = 0;
2643 if (elf_group_id (sec) != NULL)
2644 symindx = elf_group_id (sec)->udata.i;
2645
2646 if (symindx == 0)
2647 {
2648 /* If called from the assembler, swap_out_syms will have set up
2649 elf_section_syms; If called for "ld -r", use target_index. */
2650 if (elf_section_syms (abfd) != NULL)
2651 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2652 else
2653 symindx = sec->target_index;
2654 }
2655 elf_section_data (sec)->this_hdr.sh_info = symindx;
2656
2657 /* The contents won't be allocated for "ld -r" or objcopy. */
2658 gas = TRUE;
2659 if (sec->contents == NULL)
2660 {
2661 gas = FALSE;
2662 sec->contents = bfd_alloc (abfd, sec->size);
2663
2664 /* Arrange for the section to be written out. */
2665 elf_section_data (sec)->this_hdr.contents = sec->contents;
2666 if (sec->contents == NULL)
2667 {
2668 *failedptr = TRUE;
2669 return;
2670 }
2671 }
2672
2673 loc = sec->contents + sec->size;
2674
2675 /* Get the pointer to the first section in the group that gas
2676 squirreled away here. objcopy arranges for this to be set to the
2677 start of the input section group. */
2678 first = elt = elf_next_in_group (sec);
2679
2680 /* First element is a flag word. Rest of section is elf section
2681 indices for all the sections of the group. Write them backwards
2682 just to keep the group in the same order as given in .section
2683 directives, not that it matters. */
2684 while (elt != NULL)
2685 {
2686 asection *s;
2687 unsigned int idx;
2688
2689 loc -= 4;
2690 s = elt;
2691 if (!gas)
2692 s = s->output_section;
2693 idx = 0;
2694 if (s != NULL)
2695 idx = elf_section_data (s)->this_idx;
2696 H_PUT_32 (abfd, idx, loc);
2697 elt = elf_next_in_group (elt);
2698 if (elt == first)
2699 break;
2700 }
2701
2702 /* If this is a relocatable link, then the above did nothing because
2703 SEC is the output section. Look through the input sections
2704 instead. */
2705 for (l = sec->link_order_head; l != NULL; l = l->next)
2706 if (l->type == bfd_indirect_link_order
2707 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2708 do
2709 {
2710 loc -= 4;
2711 H_PUT_32 (abfd,
2712 elf_section_data (elt->output_section)->this_idx, loc);
2713 elt = elf_next_in_group (elt);
2714 /* During a relocatable link, the lists are circular. */
2715 }
2716 while (elt != elf_next_in_group (l->u.indirect.section));
2717
2718 if ((loc -= 4) != sec->contents)
2719 abort ();
2720
2721 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2722 }
2723
2724 /* Assign all ELF section numbers. The dummy first section is handled here
2725 too. The link/info pointers for the standard section types are filled
2726 in here too, while we're at it. */
2727
2728 static bfd_boolean
2729 assign_section_numbers (bfd *abfd)
2730 {
2731 struct elf_obj_tdata *t = elf_tdata (abfd);
2732 asection *sec;
2733 unsigned int section_number, secn;
2734 Elf_Internal_Shdr **i_shdrp;
2735 bfd_size_type amt;
2736 struct bfd_elf_section_data *d;
2737
2738 section_number = 1;
2739
2740 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2741
2742 /* Put SHT_GROUP sections first. */
2743 for (sec = abfd->sections; sec; sec = sec->next)
2744 {
2745 d = elf_section_data (sec);
2746
2747 if (d->this_hdr.sh_type == SHT_GROUP)
2748 {
2749 if (section_number == SHN_LORESERVE)
2750 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2751 d->this_idx = section_number++;
2752 }
2753 }
2754
2755 for (sec = abfd->sections; sec; sec = sec->next)
2756 {
2757 d = elf_section_data (sec);
2758
2759 if (d->this_hdr.sh_type != SHT_GROUP)
2760 {
2761 if (section_number == SHN_LORESERVE)
2762 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2763 d->this_idx = section_number++;
2764 }
2765 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2766 if ((sec->flags & SEC_RELOC) == 0)
2767 d->rel_idx = 0;
2768 else
2769 {
2770 if (section_number == SHN_LORESERVE)
2771 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2772 d->rel_idx = section_number++;
2773 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2774 }
2775
2776 if (d->rel_hdr2)
2777 {
2778 if (section_number == SHN_LORESERVE)
2779 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2780 d->rel_idx2 = section_number++;
2781 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2782 }
2783 else
2784 d->rel_idx2 = 0;
2785 }
2786
2787 if (section_number == SHN_LORESERVE)
2788 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2789 t->shstrtab_section = section_number++;
2790 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2791 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2792
2793 if (bfd_get_symcount (abfd) > 0)
2794 {
2795 if (section_number == SHN_LORESERVE)
2796 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2797 t->symtab_section = section_number++;
2798 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2799 if (section_number > SHN_LORESERVE - 2)
2800 {
2801 if (section_number == SHN_LORESERVE)
2802 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2803 t->symtab_shndx_section = section_number++;
2804 t->symtab_shndx_hdr.sh_name
2805 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2806 ".symtab_shndx", FALSE);
2807 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2808 return FALSE;
2809 }
2810 if (section_number == SHN_LORESERVE)
2811 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2812 t->strtab_section = section_number++;
2813 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2814 }
2815
2816 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2817 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2818
2819 elf_numsections (abfd) = section_number;
2820 elf_elfheader (abfd)->e_shnum = section_number;
2821 if (section_number > SHN_LORESERVE)
2822 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2823
2824 /* Set up the list of section header pointers, in agreement with the
2825 indices. */
2826 amt = section_number * sizeof (Elf_Internal_Shdr *);
2827 i_shdrp = bfd_zalloc (abfd, amt);
2828 if (i_shdrp == NULL)
2829 return FALSE;
2830
2831 amt = sizeof (Elf_Internal_Shdr);
2832 i_shdrp[0] = bfd_zalloc (abfd, amt);
2833 if (i_shdrp[0] == NULL)
2834 {
2835 bfd_release (abfd, i_shdrp);
2836 return FALSE;
2837 }
2838
2839 elf_elfsections (abfd) = i_shdrp;
2840
2841 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2842 if (bfd_get_symcount (abfd) > 0)
2843 {
2844 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2845 if (elf_numsections (abfd) > SHN_LORESERVE)
2846 {
2847 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2848 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2849 }
2850 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2851 t->symtab_hdr.sh_link = t->strtab_section;
2852 }
2853
2854 for (sec = abfd->sections; sec; sec = sec->next)
2855 {
2856 struct bfd_elf_section_data *d = elf_section_data (sec);
2857 asection *s;
2858 const char *name;
2859
2860 i_shdrp[d->this_idx] = &d->this_hdr;
2861 if (d->rel_idx != 0)
2862 i_shdrp[d->rel_idx] = &d->rel_hdr;
2863 if (d->rel_idx2 != 0)
2864 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2865
2866 /* Fill in the sh_link and sh_info fields while we're at it. */
2867
2868 /* sh_link of a reloc section is the section index of the symbol
2869 table. sh_info is the section index of the section to which
2870 the relocation entries apply. */
2871 if (d->rel_idx != 0)
2872 {
2873 d->rel_hdr.sh_link = t->symtab_section;
2874 d->rel_hdr.sh_info = d->this_idx;
2875 }
2876 if (d->rel_idx2 != 0)
2877 {
2878 d->rel_hdr2->sh_link = t->symtab_section;
2879 d->rel_hdr2->sh_info = d->this_idx;
2880 }
2881
2882 /* We need to set up sh_link for SHF_LINK_ORDER. */
2883 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2884 {
2885 s = elf_linked_to_section (sec);
2886 if (s)
2887 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2888 else
2889 {
2890 struct bfd_link_order *p;
2891
2892 /* Find out what the corresponding section in output
2893 is. */
2894 for (p = sec->link_order_head; p != NULL; p = p->next)
2895 {
2896 s = p->u.indirect.section;
2897 if (p->type == bfd_indirect_link_order
2898 && (bfd_get_flavour (s->owner)
2899 == bfd_target_elf_flavour))
2900 {
2901 Elf_Internal_Shdr ** const elf_shdrp
2902 = elf_elfsections (s->owner);
2903 int elfsec
2904 = _bfd_elf_section_from_bfd_section (s->owner, s);
2905 elfsec = elf_shdrp[elfsec]->sh_link;
2906 /* PR 290:
2907 The Intel C compiler generates SHT_IA_64_UNWIND with
2908 SHF_LINK_ORDER. But it doesn't set theh sh_link or
2909 sh_info fields. Hence we could get the situation
2910 where elfsec is 0. */
2911 if (elfsec == 0)
2912 {
2913 const struct elf_backend_data *bed
2914 = get_elf_backend_data (abfd);
2915 if (bed->link_order_error_handler)
2916 bed->link_order_error_handler
2917 (_("%B: warning: sh_link not set for section `%A'"),
2918 abfd, s);
2919 }
2920 else
2921 {
2922 s = elf_shdrp[elfsec]->bfd_section->output_section;
2923 BFD_ASSERT (s != NULL);
2924 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2925 }
2926 break;
2927 }
2928 }
2929 }
2930 }
2931
2932 switch (d->this_hdr.sh_type)
2933 {
2934 case SHT_REL:
2935 case SHT_RELA:
2936 /* A reloc section which we are treating as a normal BFD
2937 section. sh_link is the section index of the symbol
2938 table. sh_info is the section index of the section to
2939 which the relocation entries apply. We assume that an
2940 allocated reloc section uses the dynamic symbol table.
2941 FIXME: How can we be sure? */
2942 s = bfd_get_section_by_name (abfd, ".dynsym");
2943 if (s != NULL)
2944 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2945
2946 /* We look up the section the relocs apply to by name. */
2947 name = sec->name;
2948 if (d->this_hdr.sh_type == SHT_REL)
2949 name += 4;
2950 else
2951 name += 5;
2952 s = bfd_get_section_by_name (abfd, name);
2953 if (s != NULL)
2954 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2955 break;
2956
2957 case SHT_STRTAB:
2958 /* We assume that a section named .stab*str is a stabs
2959 string section. We look for a section with the same name
2960 but without the trailing ``str'', and set its sh_link
2961 field to point to this section. */
2962 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2963 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2964 {
2965 size_t len;
2966 char *alc;
2967
2968 len = strlen (sec->name);
2969 alc = bfd_malloc (len - 2);
2970 if (alc == NULL)
2971 return FALSE;
2972 memcpy (alc, sec->name, len - 3);
2973 alc[len - 3] = '\0';
2974 s = bfd_get_section_by_name (abfd, alc);
2975 free (alc);
2976 if (s != NULL)
2977 {
2978 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2979
2980 /* This is a .stab section. */
2981 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2982 elf_section_data (s)->this_hdr.sh_entsize
2983 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2984 }
2985 }
2986 break;
2987
2988 case SHT_DYNAMIC:
2989 case SHT_DYNSYM:
2990 case SHT_GNU_verneed:
2991 case SHT_GNU_verdef:
2992 /* sh_link is the section header index of the string table
2993 used for the dynamic entries, or the symbol table, or the
2994 version strings. */
2995 s = bfd_get_section_by_name (abfd, ".dynstr");
2996 if (s != NULL)
2997 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2998 break;
2999
3000 case SHT_GNU_LIBLIST:
3001 /* sh_link is the section header index of the prelink library
3002 list
3003 used for the dynamic entries, or the symbol table, or the
3004 version strings. */
3005 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3006 ? ".dynstr" : ".gnu.libstr");
3007 if (s != NULL)
3008 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3009 break;
3010
3011 case SHT_HASH:
3012 case SHT_GNU_versym:
3013 /* sh_link is the section header index of the symbol table
3014 this hash table or version table is for. */
3015 s = bfd_get_section_by_name (abfd, ".dynsym");
3016 if (s != NULL)
3017 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3018 break;
3019
3020 case SHT_GROUP:
3021 d->this_hdr.sh_link = t->symtab_section;
3022 }
3023 }
3024
3025 for (secn = 1; secn < section_number; ++secn)
3026 if (i_shdrp[secn] == NULL)
3027 i_shdrp[secn] = i_shdrp[0];
3028 else
3029 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3030 i_shdrp[secn]->sh_name);
3031 return TRUE;
3032 }
3033
3034 /* Map symbol from it's internal number to the external number, moving
3035 all local symbols to be at the head of the list. */
3036
3037 static int
3038 sym_is_global (bfd *abfd, asymbol *sym)
3039 {
3040 /* If the backend has a special mapping, use it. */
3041 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3042 if (bed->elf_backend_sym_is_global)
3043 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3044
3045 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3046 || bfd_is_und_section (bfd_get_section (sym))
3047 || bfd_is_com_section (bfd_get_section (sym)));
3048 }
3049
3050 static bfd_boolean
3051 elf_map_symbols (bfd *abfd)
3052 {
3053 unsigned int symcount = bfd_get_symcount (abfd);
3054 asymbol **syms = bfd_get_outsymbols (abfd);
3055 asymbol **sect_syms;
3056 unsigned int num_locals = 0;
3057 unsigned int num_globals = 0;
3058 unsigned int num_locals2 = 0;
3059 unsigned int num_globals2 = 0;
3060 int max_index = 0;
3061 unsigned int idx;
3062 asection *asect;
3063 asymbol **new_syms;
3064 bfd_size_type amt;
3065
3066 #ifdef DEBUG
3067 fprintf (stderr, "elf_map_symbols\n");
3068 fflush (stderr);
3069 #endif
3070
3071 for (asect = abfd->sections; asect; asect = asect->next)
3072 {
3073 if (max_index < asect->index)
3074 max_index = asect->index;
3075 }
3076
3077 max_index++;
3078 amt = max_index * sizeof (asymbol *);
3079 sect_syms = bfd_zalloc (abfd, amt);
3080 if (sect_syms == NULL)
3081 return FALSE;
3082 elf_section_syms (abfd) = sect_syms;
3083 elf_num_section_syms (abfd) = max_index;
3084
3085 /* Init sect_syms entries for any section symbols we have already
3086 decided to output. */
3087 for (idx = 0; idx < symcount; idx++)
3088 {
3089 asymbol *sym = syms[idx];
3090
3091 if ((sym->flags & BSF_SECTION_SYM) != 0
3092 && sym->value == 0)
3093 {
3094 asection *sec;
3095
3096 sec = sym->section;
3097
3098 if (sec->owner != NULL)
3099 {
3100 if (sec->owner != abfd)
3101 {
3102 if (sec->output_offset != 0)
3103 continue;
3104
3105 sec = sec->output_section;
3106
3107 /* Empty sections in the input files may have had a
3108 section symbol created for them. (See the comment
3109 near the end of _bfd_generic_link_output_symbols in
3110 linker.c). If the linker script discards such
3111 sections then we will reach this point. Since we know
3112 that we cannot avoid this case, we detect it and skip
3113 the abort and the assignment to the sect_syms array.
3114 To reproduce this particular case try running the
3115 linker testsuite test ld-scripts/weak.exp for an ELF
3116 port that uses the generic linker. */
3117 if (sec->owner == NULL)
3118 continue;
3119
3120 BFD_ASSERT (sec->owner == abfd);
3121 }
3122 sect_syms[sec->index] = syms[idx];
3123 }
3124 }
3125 }
3126
3127 /* Classify all of the symbols. */
3128 for (idx = 0; idx < symcount; idx++)
3129 {
3130 if (!sym_is_global (abfd, syms[idx]))
3131 num_locals++;
3132 else
3133 num_globals++;
3134 }
3135
3136 /* We will be adding a section symbol for each BFD section. Most normal
3137 sections will already have a section symbol in outsymbols, but
3138 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3139 at least in that case. */
3140 for (asect = abfd->sections; asect; asect = asect->next)
3141 {
3142 if (sect_syms[asect->index] == NULL)
3143 {
3144 if (!sym_is_global (abfd, asect->symbol))
3145 num_locals++;
3146 else
3147 num_globals++;
3148 }
3149 }
3150
3151 /* Now sort the symbols so the local symbols are first. */
3152 amt = (num_locals + num_globals) * sizeof (asymbol *);
3153 new_syms = bfd_alloc (abfd, amt);
3154
3155 if (new_syms == NULL)
3156 return FALSE;
3157
3158 for (idx = 0; idx < symcount; idx++)
3159 {
3160 asymbol *sym = syms[idx];
3161 unsigned int i;
3162
3163 if (!sym_is_global (abfd, sym))
3164 i = num_locals2++;
3165 else
3166 i = num_locals + num_globals2++;
3167 new_syms[i] = sym;
3168 sym->udata.i = i + 1;
3169 }
3170 for (asect = abfd->sections; asect; asect = asect->next)
3171 {
3172 if (sect_syms[asect->index] == NULL)
3173 {
3174 asymbol *sym = asect->symbol;
3175 unsigned int i;
3176
3177 sect_syms[asect->index] = sym;
3178 if (!sym_is_global (abfd, sym))
3179 i = num_locals2++;
3180 else
3181 i = num_locals + num_globals2++;
3182 new_syms[i] = sym;
3183 sym->udata.i = i + 1;
3184 }
3185 }
3186
3187 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3188
3189 elf_num_locals (abfd) = num_locals;
3190 elf_num_globals (abfd) = num_globals;
3191 return TRUE;
3192 }
3193
3194 /* Align to the maximum file alignment that could be required for any
3195 ELF data structure. */
3196
3197 static inline file_ptr
3198 align_file_position (file_ptr off, int align)
3199 {
3200 return (off + align - 1) & ~(align - 1);
3201 }
3202
3203 /* Assign a file position to a section, optionally aligning to the
3204 required section alignment. */
3205
3206 file_ptr
3207 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3208 file_ptr offset,
3209 bfd_boolean align)
3210 {
3211 if (align)
3212 {
3213 unsigned int al;
3214
3215 al = i_shdrp->sh_addralign;
3216 if (al > 1)
3217 offset = BFD_ALIGN (offset, al);
3218 }
3219 i_shdrp->sh_offset = offset;
3220 if (i_shdrp->bfd_section != NULL)
3221 i_shdrp->bfd_section->filepos = offset;
3222 if (i_shdrp->sh_type != SHT_NOBITS)
3223 offset += i_shdrp->sh_size;
3224 return offset;
3225 }
3226
3227 /* Compute the file positions we are going to put the sections at, and
3228 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3229 is not NULL, this is being called by the ELF backend linker. */
3230
3231 bfd_boolean
3232 _bfd_elf_compute_section_file_positions (bfd *abfd,
3233 struct bfd_link_info *link_info)
3234 {
3235 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3236 bfd_boolean failed;
3237 struct bfd_strtab_hash *strtab = NULL;
3238 Elf_Internal_Shdr *shstrtab_hdr;
3239
3240 if (abfd->output_has_begun)
3241 return TRUE;
3242
3243 /* Do any elf backend specific processing first. */
3244 if (bed->elf_backend_begin_write_processing)
3245 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3246
3247 if (! prep_headers (abfd))
3248 return FALSE;
3249
3250 /* Post process the headers if necessary. */
3251 if (bed->elf_backend_post_process_headers)
3252 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3253
3254 failed = FALSE;
3255 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3256 if (failed)
3257 return FALSE;
3258
3259 if (!assign_section_numbers (abfd))
3260 return FALSE;
3261
3262 /* The backend linker builds symbol table information itself. */
3263 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3264 {
3265 /* Non-zero if doing a relocatable link. */
3266 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3267
3268 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3269 return FALSE;
3270 }
3271
3272 if (link_info == NULL)
3273 {
3274 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3275 if (failed)
3276 return FALSE;
3277 }
3278
3279 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3280 /* sh_name was set in prep_headers. */
3281 shstrtab_hdr->sh_type = SHT_STRTAB;
3282 shstrtab_hdr->sh_flags = 0;
3283 shstrtab_hdr->sh_addr = 0;
3284 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3285 shstrtab_hdr->sh_entsize = 0;
3286 shstrtab_hdr->sh_link = 0;
3287 shstrtab_hdr->sh_info = 0;
3288 /* sh_offset is set in assign_file_positions_except_relocs. */
3289 shstrtab_hdr->sh_addralign = 1;
3290
3291 if (!assign_file_positions_except_relocs (abfd, link_info))
3292 return FALSE;
3293
3294 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3295 {
3296 file_ptr off;
3297 Elf_Internal_Shdr *hdr;
3298
3299 off = elf_tdata (abfd)->next_file_pos;
3300
3301 hdr = &elf_tdata (abfd)->symtab_hdr;
3302 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3303
3304 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3305 if (hdr->sh_size != 0)
3306 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3307
3308 hdr = &elf_tdata (abfd)->strtab_hdr;
3309 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3310
3311 elf_tdata (abfd)->next_file_pos = off;
3312
3313 /* Now that we know where the .strtab section goes, write it
3314 out. */
3315 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3316 || ! _bfd_stringtab_emit (abfd, strtab))
3317 return FALSE;
3318 _bfd_stringtab_free (strtab);
3319 }
3320
3321 abfd->output_has_begun = TRUE;
3322
3323 return TRUE;
3324 }
3325
3326 /* Create a mapping from a set of sections to a program segment. */
3327
3328 static struct elf_segment_map *
3329 make_mapping (bfd *abfd,
3330 asection **sections,
3331 unsigned int from,
3332 unsigned int to,
3333 bfd_boolean phdr)
3334 {
3335 struct elf_segment_map *m;
3336 unsigned int i;
3337 asection **hdrpp;
3338 bfd_size_type amt;
3339
3340 amt = sizeof (struct elf_segment_map);
3341 amt += (to - from - 1) * sizeof (asection *);
3342 m = bfd_zalloc (abfd, amt);
3343 if (m == NULL)
3344 return NULL;
3345 m->next = NULL;
3346 m->p_type = PT_LOAD;
3347 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3348 m->sections[i - from] = *hdrpp;
3349 m->count = to - from;
3350
3351 if (from == 0 && phdr)
3352 {
3353 /* Include the headers in the first PT_LOAD segment. */
3354 m->includes_filehdr = 1;
3355 m->includes_phdrs = 1;
3356 }
3357
3358 return m;
3359 }
3360
3361 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3362 on failure. */
3363
3364 struct elf_segment_map *
3365 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3366 {
3367 struct elf_segment_map *m;
3368
3369 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3370 if (m == NULL)
3371 return NULL;
3372 m->next = NULL;
3373 m->p_type = PT_DYNAMIC;
3374 m->count = 1;
3375 m->sections[0] = dynsec;
3376
3377 return m;
3378 }
3379
3380 /* Set up a mapping from BFD sections to program segments. */
3381
3382 static bfd_boolean
3383 map_sections_to_segments (bfd *abfd)
3384 {
3385 asection **sections = NULL;
3386 asection *s;
3387 unsigned int i;
3388 unsigned int count;
3389 struct elf_segment_map *mfirst;
3390 struct elf_segment_map **pm;
3391 struct elf_segment_map *m;
3392 asection *last_hdr;
3393 bfd_vma last_size;
3394 unsigned int phdr_index;
3395 bfd_vma maxpagesize;
3396 asection **hdrpp;
3397 bfd_boolean phdr_in_segment = TRUE;
3398 bfd_boolean writable;
3399 int tls_count = 0;
3400 asection *first_tls = NULL;
3401 asection *dynsec, *eh_frame_hdr;
3402 bfd_size_type amt;
3403
3404 if (elf_tdata (abfd)->segment_map != NULL)
3405 return TRUE;
3406
3407 if (bfd_count_sections (abfd) == 0)
3408 return TRUE;
3409
3410 /* Select the allocated sections, and sort them. */
3411
3412 amt = bfd_count_sections (abfd) * sizeof (asection *);
3413 sections = bfd_malloc (amt);
3414 if (sections == NULL)
3415 goto error_return;
3416
3417 i = 0;
3418 for (s = abfd->sections; s != NULL; s = s->next)
3419 {
3420 if ((s->flags & SEC_ALLOC) != 0)
3421 {
3422 sections[i] = s;
3423 ++i;
3424 }
3425 }
3426 BFD_ASSERT (i <= bfd_count_sections (abfd));
3427 count = i;
3428
3429 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3430
3431 /* Build the mapping. */
3432
3433 mfirst = NULL;
3434 pm = &mfirst;
3435
3436 /* If we have a .interp section, then create a PT_PHDR segment for
3437 the program headers and a PT_INTERP segment for the .interp
3438 section. */
3439 s = bfd_get_section_by_name (abfd, ".interp");
3440 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3441 {
3442 amt = sizeof (struct elf_segment_map);
3443 m = bfd_zalloc (abfd, amt);
3444 if (m == NULL)
3445 goto error_return;
3446 m->next = NULL;
3447 m->p_type = PT_PHDR;
3448 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3449 m->p_flags = PF_R | PF_X;
3450 m->p_flags_valid = 1;
3451 m->includes_phdrs = 1;
3452
3453 *pm = m;
3454 pm = &m->next;
3455
3456 amt = sizeof (struct elf_segment_map);
3457 m = bfd_zalloc (abfd, amt);
3458 if (m == NULL)
3459 goto error_return;
3460 m->next = NULL;
3461 m->p_type = PT_INTERP;
3462 m->count = 1;
3463 m->sections[0] = s;
3464
3465 *pm = m;
3466 pm = &m->next;
3467 }
3468
3469 /* Look through the sections. We put sections in the same program
3470 segment when the start of the second section can be placed within
3471 a few bytes of the end of the first section. */
3472 last_hdr = NULL;
3473 last_size = 0;
3474 phdr_index = 0;
3475 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3476 writable = FALSE;
3477 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3478 if (dynsec != NULL
3479 && (dynsec->flags & SEC_LOAD) == 0)
3480 dynsec = NULL;
3481
3482 /* Deal with -Ttext or something similar such that the first section
3483 is not adjacent to the program headers. This is an
3484 approximation, since at this point we don't know exactly how many
3485 program headers we will need. */
3486 if (count > 0)
3487 {
3488 bfd_size_type phdr_size;
3489
3490 phdr_size = elf_tdata (abfd)->program_header_size;
3491 if (phdr_size == 0)
3492 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3493 if ((abfd->flags & D_PAGED) == 0
3494 || sections[0]->lma < phdr_size
3495 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3496 phdr_in_segment = FALSE;
3497 }
3498
3499 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3500 {
3501 asection *hdr;
3502 bfd_boolean new_segment;
3503
3504 hdr = *hdrpp;
3505
3506 /* See if this section and the last one will fit in the same
3507 segment. */
3508
3509 if (last_hdr == NULL)
3510 {
3511 /* If we don't have a segment yet, then we don't need a new
3512 one (we build the last one after this loop). */
3513 new_segment = FALSE;
3514 }
3515 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3516 {
3517 /* If this section has a different relation between the
3518 virtual address and the load address, then we need a new
3519 segment. */
3520 new_segment = TRUE;
3521 }
3522 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3523 < BFD_ALIGN (hdr->lma, maxpagesize))
3524 {
3525 /* If putting this section in this segment would force us to
3526 skip a page in the segment, then we need a new segment. */
3527 new_segment = TRUE;
3528 }
3529 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3530 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3531 {
3532 /* We don't want to put a loadable section after a
3533 nonloadable section in the same segment.
3534 Consider .tbss sections as loadable for this purpose. */
3535 new_segment = TRUE;
3536 }
3537 else if ((abfd->flags & D_PAGED) == 0)
3538 {
3539 /* If the file is not demand paged, which means that we
3540 don't require the sections to be correctly aligned in the
3541 file, then there is no other reason for a new segment. */
3542 new_segment = FALSE;
3543 }
3544 else if (! writable
3545 && (hdr->flags & SEC_READONLY) == 0
3546 && (((last_hdr->lma + last_size - 1)
3547 & ~(maxpagesize - 1))
3548 != (hdr->lma & ~(maxpagesize - 1))))
3549 {
3550 /* We don't want to put a writable section in a read only
3551 segment, unless they are on the same page in memory
3552 anyhow. We already know that the last section does not
3553 bring us past the current section on the page, so the
3554 only case in which the new section is not on the same
3555 page as the previous section is when the previous section
3556 ends precisely on a page boundary. */
3557 new_segment = TRUE;
3558 }
3559 else
3560 {
3561 /* Otherwise, we can use the same segment. */
3562 new_segment = FALSE;
3563 }
3564
3565 if (! new_segment)
3566 {
3567 if ((hdr->flags & SEC_READONLY) == 0)
3568 writable = TRUE;
3569 last_hdr = hdr;
3570 /* .tbss sections effectively have zero size. */
3571 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3572 last_size = hdr->size;
3573 else
3574 last_size = 0;
3575 continue;
3576 }
3577
3578 /* We need a new program segment. We must create a new program
3579 header holding all the sections from phdr_index until hdr. */
3580
3581 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3582 if (m == NULL)
3583 goto error_return;
3584
3585 *pm = m;
3586 pm = &m->next;
3587
3588 if ((hdr->flags & SEC_READONLY) == 0)
3589 writable = TRUE;
3590 else
3591 writable = FALSE;
3592
3593 last_hdr = hdr;
3594 /* .tbss sections effectively have zero size. */
3595 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3596 last_size = hdr->size;
3597 else
3598 last_size = 0;
3599 phdr_index = i;
3600 phdr_in_segment = FALSE;
3601 }
3602
3603 /* Create a final PT_LOAD program segment. */
3604 if (last_hdr != NULL)
3605 {
3606 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3607 if (m == NULL)
3608 goto error_return;
3609
3610 *pm = m;
3611 pm = &m->next;
3612 }
3613
3614 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3615 if (dynsec != NULL)
3616 {
3617 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3618 if (m == NULL)
3619 goto error_return;
3620 *pm = m;
3621 pm = &m->next;
3622 }
3623
3624 /* For each loadable .note section, add a PT_NOTE segment. We don't
3625 use bfd_get_section_by_name, because if we link together
3626 nonloadable .note sections and loadable .note sections, we will
3627 generate two .note sections in the output file. FIXME: Using
3628 names for section types is bogus anyhow. */
3629 for (s = abfd->sections; s != NULL; s = s->next)
3630 {
3631 if ((s->flags & SEC_LOAD) != 0
3632 && strncmp (s->name, ".note", 5) == 0)
3633 {
3634 amt = sizeof (struct elf_segment_map);
3635 m = bfd_zalloc (abfd, amt);
3636 if (m == NULL)
3637 goto error_return;
3638 m->next = NULL;
3639 m->p_type = PT_NOTE;
3640 m->count = 1;
3641 m->sections[0] = s;
3642
3643 *pm = m;
3644 pm = &m->next;
3645 }
3646 if (s->flags & SEC_THREAD_LOCAL)
3647 {
3648 if (! tls_count)
3649 first_tls = s;
3650 tls_count++;
3651 }
3652 }
3653
3654 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3655 if (tls_count > 0)
3656 {
3657 int i;
3658
3659 amt = sizeof (struct elf_segment_map);
3660 amt += (tls_count - 1) * sizeof (asection *);
3661 m = bfd_zalloc (abfd, amt);
3662 if (m == NULL)
3663 goto error_return;
3664 m->next = NULL;
3665 m->p_type = PT_TLS;
3666 m->count = tls_count;
3667 /* Mandated PF_R. */
3668 m->p_flags = PF_R;
3669 m->p_flags_valid = 1;
3670 for (i = 0; i < tls_count; ++i)
3671 {
3672 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3673 m->sections[i] = first_tls;
3674 first_tls = first_tls->next;
3675 }
3676
3677 *pm = m;
3678 pm = &m->next;
3679 }
3680
3681 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3682 segment. */
3683 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3684 if (eh_frame_hdr != NULL
3685 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3686 {
3687 amt = sizeof (struct elf_segment_map);
3688 m = bfd_zalloc (abfd, amt);
3689 if (m == NULL)
3690 goto error_return;
3691 m->next = NULL;
3692 m->p_type = PT_GNU_EH_FRAME;
3693 m->count = 1;
3694 m->sections[0] = eh_frame_hdr->output_section;
3695
3696 *pm = m;
3697 pm = &m->next;
3698 }
3699
3700 if (elf_tdata (abfd)->stack_flags)
3701 {
3702 amt = sizeof (struct elf_segment_map);
3703 m = bfd_zalloc (abfd, amt);
3704 if (m == NULL)
3705 goto error_return;
3706 m->next = NULL;
3707 m->p_type = PT_GNU_STACK;
3708 m->p_flags = elf_tdata (abfd)->stack_flags;
3709 m->p_flags_valid = 1;
3710
3711 *pm = m;
3712 pm = &m->next;
3713 }
3714
3715 if (elf_tdata (abfd)->relro)
3716 {
3717 amt = sizeof (struct elf_segment_map);
3718 m = bfd_zalloc (abfd, amt);
3719 if (m == NULL)
3720 goto error_return;
3721 m->next = NULL;
3722 m->p_type = PT_GNU_RELRO;
3723 m->p_flags = PF_R;
3724 m->p_flags_valid = 1;
3725
3726 *pm = m;
3727 pm = &m->next;
3728 }
3729
3730 free (sections);
3731 sections = NULL;
3732
3733 elf_tdata (abfd)->segment_map = mfirst;
3734 return TRUE;
3735
3736 error_return:
3737 if (sections != NULL)
3738 free (sections);
3739 return FALSE;
3740 }
3741
3742 /* Sort sections by address. */
3743
3744 static int
3745 elf_sort_sections (const void *arg1, const void *arg2)
3746 {
3747 const asection *sec1 = *(const asection **) arg1;
3748 const asection *sec2 = *(const asection **) arg2;
3749 bfd_size_type size1, size2;
3750
3751 /* Sort by LMA first, since this is the address used to
3752 place the section into a segment. */
3753 if (sec1->lma < sec2->lma)
3754 return -1;
3755 else if (sec1->lma > sec2->lma)
3756 return 1;
3757
3758 /* Then sort by VMA. Normally the LMA and the VMA will be
3759 the same, and this will do nothing. */
3760 if (sec1->vma < sec2->vma)
3761 return -1;
3762 else if (sec1->vma > sec2->vma)
3763 return 1;
3764
3765 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3766
3767 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3768
3769 if (TOEND (sec1))
3770 {
3771 if (TOEND (sec2))
3772 {
3773 /* If the indicies are the same, do not return 0
3774 here, but continue to try the next comparison. */
3775 if (sec1->target_index - sec2->target_index != 0)
3776 return sec1->target_index - sec2->target_index;
3777 }
3778 else
3779 return 1;
3780 }
3781 else if (TOEND (sec2))
3782 return -1;
3783
3784 #undef TOEND
3785
3786 /* Sort by size, to put zero sized sections
3787 before others at the same address. */
3788
3789 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3790 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3791
3792 if (size1 < size2)
3793 return -1;
3794 if (size1 > size2)
3795 return 1;
3796
3797 return sec1->target_index - sec2->target_index;
3798 }
3799
3800 /* Ian Lance Taylor writes:
3801
3802 We shouldn't be using % with a negative signed number. That's just
3803 not good. We have to make sure either that the number is not
3804 negative, or that the number has an unsigned type. When the types
3805 are all the same size they wind up as unsigned. When file_ptr is a
3806 larger signed type, the arithmetic winds up as signed long long,
3807 which is wrong.
3808
3809 What we're trying to say here is something like ``increase OFF by
3810 the least amount that will cause it to be equal to the VMA modulo
3811 the page size.'' */
3812 /* In other words, something like:
3813
3814 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3815 off_offset = off % bed->maxpagesize;
3816 if (vma_offset < off_offset)
3817 adjustment = vma_offset + bed->maxpagesize - off_offset;
3818 else
3819 adjustment = vma_offset - off_offset;
3820
3821 which can can be collapsed into the expression below. */
3822
3823 static file_ptr
3824 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3825 {
3826 return ((vma - off) % maxpagesize);
3827 }
3828
3829 /* Assign file positions to the sections based on the mapping from
3830 sections to segments. This function also sets up some fields in
3831 the file header, and writes out the program headers. */
3832
3833 static bfd_boolean
3834 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3835 {
3836 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3837 unsigned int count;
3838 struct elf_segment_map *m;
3839 unsigned int alloc;
3840 Elf_Internal_Phdr *phdrs;
3841 file_ptr off, voff;
3842 bfd_vma filehdr_vaddr, filehdr_paddr;
3843 bfd_vma phdrs_vaddr, phdrs_paddr;
3844 Elf_Internal_Phdr *p;
3845 bfd_size_type amt;
3846
3847 if (elf_tdata (abfd)->segment_map == NULL)
3848 {
3849 if (! map_sections_to_segments (abfd))
3850 return FALSE;
3851 }
3852 else
3853 {
3854 /* The placement algorithm assumes that non allocated sections are
3855 not in PT_LOAD segments. We ensure this here by removing such
3856 sections from the segment map. */
3857 for (m = elf_tdata (abfd)->segment_map;
3858 m != NULL;
3859 m = m->next)
3860 {
3861 unsigned int new_count;
3862 unsigned int i;
3863
3864 if (m->p_type != PT_LOAD)
3865 continue;
3866
3867 new_count = 0;
3868 for (i = 0; i < m->count; i ++)
3869 {
3870 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3871 {
3872 if (i != new_count)
3873 m->sections[new_count] = m->sections[i];
3874
3875 new_count ++;
3876 }
3877 }
3878
3879 if (new_count != m->count)
3880 m->count = new_count;
3881 }
3882 }
3883
3884 if (bed->elf_backend_modify_segment_map)
3885 {
3886 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3887 return FALSE;
3888 }
3889
3890 count = 0;
3891 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3892 ++count;
3893
3894 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3895 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3896 elf_elfheader (abfd)->e_phnum = count;
3897
3898 if (count == 0)
3899 {
3900 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
3901 return TRUE;
3902 }
3903
3904 /* If we already counted the number of program segments, make sure
3905 that we allocated enough space. This happens when SIZEOF_HEADERS
3906 is used in a linker script. */
3907 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3908 if (alloc != 0 && count > alloc)
3909 {
3910 ((*_bfd_error_handler)
3911 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
3912 abfd, alloc, count));
3913 bfd_set_error (bfd_error_bad_value);
3914 return FALSE;
3915 }
3916
3917 if (alloc == 0)
3918 alloc = count;
3919
3920 amt = alloc * sizeof (Elf_Internal_Phdr);
3921 phdrs = bfd_alloc (abfd, amt);
3922 if (phdrs == NULL)
3923 return FALSE;
3924
3925 off = bed->s->sizeof_ehdr;
3926 off += alloc * bed->s->sizeof_phdr;
3927
3928 filehdr_vaddr = 0;
3929 filehdr_paddr = 0;
3930 phdrs_vaddr = 0;
3931 phdrs_paddr = 0;
3932
3933 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3934 m != NULL;
3935 m = m->next, p++)
3936 {
3937 unsigned int i;
3938 asection **secpp;
3939
3940 /* If elf_segment_map is not from map_sections_to_segments, the
3941 sections may not be correctly ordered. NOTE: sorting should
3942 not be done to the PT_NOTE section of a corefile, which may
3943 contain several pseudo-sections artificially created by bfd.
3944 Sorting these pseudo-sections breaks things badly. */
3945 if (m->count > 1
3946 && !(elf_elfheader (abfd)->e_type == ET_CORE
3947 && m->p_type == PT_NOTE))
3948 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3949 elf_sort_sections);
3950
3951 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
3952 number of sections with contents contributing to both p_filesz
3953 and p_memsz, followed by a number of sections with no contents
3954 that just contribute to p_memsz. In this loop, OFF tracks next
3955 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
3956 an adjustment we use for segments that have no file contents
3957 but need zero filled memory allocation. */
3958 voff = 0;
3959 p->p_type = m->p_type;
3960 p->p_flags = m->p_flags;
3961
3962 if (p->p_type == PT_LOAD
3963 && m->count > 0)
3964 {
3965 bfd_size_type align;
3966 bfd_vma adjust;
3967
3968 if ((abfd->flags & D_PAGED) != 0)
3969 align = bed->maxpagesize;
3970 else
3971 {
3972 unsigned int align_power = 0;
3973 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3974 {
3975 unsigned int secalign;
3976
3977 secalign = bfd_get_section_alignment (abfd, *secpp);
3978 if (secalign > align_power)
3979 align_power = secalign;
3980 }
3981 align = (bfd_size_type) 1 << align_power;
3982 }
3983
3984 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
3985 off += adjust;
3986 if (adjust != 0
3987 && !m->includes_filehdr
3988 && !m->includes_phdrs
3989 && (ufile_ptr) off >= align)
3990 {
3991 /* If the first section isn't loadable, the same holds for
3992 any other sections. Since the segment won't need file
3993 space, we can make p_offset overlap some prior segment.
3994 However, .tbss is special. If a segment starts with
3995 .tbss, we need to look at the next section to decide
3996 whether the segment has any loadable sections. */
3997 i = 0;
3998 while ((m->sections[i]->flags & SEC_LOAD) == 0)
3999 {
4000 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4001 || ++i >= m->count)
4002 {
4003 off -= adjust;
4004 voff = adjust - align;
4005 break;
4006 }
4007 }
4008 }
4009 }
4010 /* Make sure the .dynamic section is the first section in the
4011 PT_DYNAMIC segment. */
4012 else if (p->p_type == PT_DYNAMIC
4013 && m->count > 1
4014 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4015 {
4016 _bfd_error_handler
4017 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4018 abfd);
4019 bfd_set_error (bfd_error_bad_value);
4020 return FALSE;
4021 }
4022
4023 if (m->count == 0)
4024 p->p_vaddr = 0;
4025 else
4026 p->p_vaddr = m->sections[0]->vma;
4027
4028 if (m->p_paddr_valid)
4029 p->p_paddr = m->p_paddr;
4030 else if (m->count == 0)
4031 p->p_paddr = 0;
4032 else
4033 p->p_paddr = m->sections[0]->lma;
4034
4035 if (p->p_type == PT_LOAD
4036 && (abfd->flags & D_PAGED) != 0)
4037 p->p_align = bed->maxpagesize;
4038 else if (m->count == 0)
4039 p->p_align = 1 << bed->s->log_file_align;
4040 else
4041 p->p_align = 0;
4042
4043 p->p_offset = 0;
4044 p->p_filesz = 0;
4045 p->p_memsz = 0;
4046
4047 if (m->includes_filehdr)
4048 {
4049 if (! m->p_flags_valid)
4050 p->p_flags |= PF_R;
4051 p->p_offset = 0;
4052 p->p_filesz = bed->s->sizeof_ehdr;
4053 p->p_memsz = bed->s->sizeof_ehdr;
4054 if (m->count > 0)
4055 {
4056 BFD_ASSERT (p->p_type == PT_LOAD);
4057
4058 if (p->p_vaddr < (bfd_vma) off)
4059 {
4060 (*_bfd_error_handler)
4061 (_("%B: Not enough room for program headers, try linking with -N"),
4062 abfd);
4063 bfd_set_error (bfd_error_bad_value);
4064 return FALSE;
4065 }
4066
4067 p->p_vaddr -= off;
4068 if (! m->p_paddr_valid)
4069 p->p_paddr -= off;
4070 }
4071 if (p->p_type == PT_LOAD)
4072 {
4073 filehdr_vaddr = p->p_vaddr;
4074 filehdr_paddr = p->p_paddr;
4075 }
4076 }
4077
4078 if (m->includes_phdrs)
4079 {
4080 if (! m->p_flags_valid)
4081 p->p_flags |= PF_R;
4082
4083 if (m->includes_filehdr)
4084 {
4085 if (p->p_type == PT_LOAD)
4086 {
4087 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4088 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4089 }
4090 }
4091 else
4092 {
4093 p->p_offset = bed->s->sizeof_ehdr;
4094
4095 if (m->count > 0)
4096 {
4097 BFD_ASSERT (p->p_type == PT_LOAD);
4098 p->p_vaddr -= off - p->p_offset;
4099 if (! m->p_paddr_valid)
4100 p->p_paddr -= off - p->p_offset;
4101 }
4102
4103 if (p->p_type == PT_LOAD)
4104 {
4105 phdrs_vaddr = p->p_vaddr;
4106 phdrs_paddr = p->p_paddr;
4107 }
4108 else
4109 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4110 }
4111
4112 p->p_filesz += alloc * bed->s->sizeof_phdr;
4113 p->p_memsz += alloc * bed->s->sizeof_phdr;
4114 }
4115
4116 if (p->p_type == PT_LOAD
4117 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4118 {
4119 if (! m->includes_filehdr && ! m->includes_phdrs)
4120 p->p_offset = off + voff;
4121 else
4122 {
4123 file_ptr adjust;
4124
4125 adjust = off - (p->p_offset + p->p_filesz);
4126 p->p_filesz += adjust;
4127 p->p_memsz += adjust;
4128 }
4129 }
4130
4131 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4132 {
4133 asection *sec;
4134 flagword flags;
4135 bfd_size_type align;
4136
4137 sec = *secpp;
4138 flags = sec->flags;
4139 align = 1 << bfd_get_section_alignment (abfd, sec);
4140
4141 if (p->p_type == PT_LOAD
4142 || p->p_type == PT_TLS)
4143 {
4144 bfd_signed_vma adjust;
4145
4146 if ((flags & SEC_LOAD) != 0)
4147 {
4148 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4149 if (adjust < 0)
4150 {
4151 (*_bfd_error_handler)
4152 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4153 abfd, sec, (unsigned long) sec->lma);
4154 adjust = 0;
4155 }
4156 off += adjust;
4157 p->p_filesz += adjust;
4158 p->p_memsz += adjust;
4159 }
4160 /* .tbss is special. It doesn't contribute to p_memsz of
4161 normal segments. */
4162 else if ((flags & SEC_THREAD_LOCAL) == 0
4163 || p->p_type == PT_TLS)
4164 {
4165 /* The section VMA must equal the file position
4166 modulo the page size. */
4167 bfd_size_type page = align;
4168 if ((abfd->flags & D_PAGED) != 0)
4169 page = bed->maxpagesize;
4170 adjust = vma_page_aligned_bias (sec->vma,
4171 p->p_vaddr + p->p_memsz,
4172 page);
4173 p->p_memsz += adjust;
4174 }
4175 }
4176
4177 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4178 {
4179 /* The section at i == 0 is the one that actually contains
4180 everything. */
4181 if (i == 0)
4182 {
4183 sec->filepos = off;
4184 off += sec->size;
4185 p->p_filesz = sec->size;
4186 p->p_memsz = 0;
4187 p->p_align = 1;
4188 }
4189 else
4190 {
4191 /* The rest are fake sections that shouldn't be written. */
4192 sec->filepos = 0;
4193 sec->size = 0;
4194 sec->flags = 0;
4195 continue;
4196 }
4197 }
4198 else
4199 {
4200 if (p->p_type == PT_LOAD)
4201 {
4202 sec->filepos = off;
4203 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4204 1997, and the exact reason for it isn't clear. One
4205 plausible explanation is that it is to work around
4206 a problem we have with linker scripts using data
4207 statements in NOLOAD sections. I don't think it
4208 makes a great deal of sense to have such a section
4209 assigned to a PT_LOAD segment, but apparently
4210 people do this. The data statement results in a
4211 bfd_data_link_order being built, and these need
4212 section contents to write into. Eventually, we get
4213 to _bfd_elf_write_object_contents which writes any
4214 section with contents to the output. Make room
4215 here for the write, so that following segments are
4216 not trashed. */
4217 if ((flags & SEC_LOAD) != 0
4218 || (flags & SEC_HAS_CONTENTS) != 0)
4219 off += sec->size;
4220 }
4221
4222 if ((flags & SEC_LOAD) != 0)
4223 {
4224 p->p_filesz += sec->size;
4225 p->p_memsz += sec->size;
4226 }
4227 /* PR ld/594: Sections in note segments which are not loaded
4228 contribute to the file size but not the in-memory size. */
4229 else if (p->p_type == PT_NOTE
4230 && (flags & SEC_HAS_CONTENTS) != 0)
4231 p->p_filesz += sec->size;
4232
4233 /* .tbss is special. It doesn't contribute to p_memsz of
4234 normal segments. */
4235 else if ((flags & SEC_THREAD_LOCAL) == 0
4236 || p->p_type == PT_TLS)
4237 p->p_memsz += sec->size;
4238
4239 if (p->p_type == PT_TLS
4240 && sec->size == 0
4241 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4242 {
4243 struct bfd_link_order *o;
4244 bfd_vma tbss_size = 0;
4245
4246 for (o = sec->link_order_head; o != NULL; o = o->next)
4247 if (tbss_size < o->offset + o->size)
4248 tbss_size = o->offset + o->size;
4249
4250 p->p_memsz += tbss_size;
4251 }
4252
4253 if (align > p->p_align
4254 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4255 p->p_align = align;
4256 }
4257
4258 if (! m->p_flags_valid)
4259 {
4260 p->p_flags |= PF_R;
4261 if ((flags & SEC_CODE) != 0)
4262 p->p_flags |= PF_X;
4263 if ((flags & SEC_READONLY) == 0)
4264 p->p_flags |= PF_W;
4265 }
4266 }
4267 }
4268
4269 /* Now that we have set the section file positions, we can set up
4270 the file positions for the non PT_LOAD segments. */
4271 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4272 m != NULL;
4273 m = m->next, p++)
4274 {
4275 if (p->p_type != PT_LOAD && m->count > 0)
4276 {
4277 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4278 /* If the section has not yet been assigned a file position,
4279 do so now. The ARM BPABI requires that .dynamic section
4280 not be marked SEC_ALLOC because it is not part of any
4281 PT_LOAD segment, so it will not be processed above. */
4282 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4283 {
4284 unsigned int i;
4285 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4286
4287 i = 1;
4288 while (i_shdrpp[i]->bfd_section != m->sections[0])
4289 ++i;
4290 off = (_bfd_elf_assign_file_position_for_section
4291 (i_shdrpp[i], off, TRUE));
4292 p->p_filesz = m->sections[0]->size;
4293 }
4294 p->p_offset = m->sections[0]->filepos;
4295 }
4296 if (m->count == 0)
4297 {
4298 if (m->includes_filehdr)
4299 {
4300 p->p_vaddr = filehdr_vaddr;
4301 if (! m->p_paddr_valid)
4302 p->p_paddr = filehdr_paddr;
4303 }
4304 else if (m->includes_phdrs)
4305 {
4306 p->p_vaddr = phdrs_vaddr;
4307 if (! m->p_paddr_valid)
4308 p->p_paddr = phdrs_paddr;
4309 }
4310 else if (p->p_type == PT_GNU_RELRO)
4311 {
4312 Elf_Internal_Phdr *lp;
4313
4314 for (lp = phdrs; lp < phdrs + count; ++lp)
4315 {
4316 if (lp->p_type == PT_LOAD
4317 && lp->p_vaddr <= link_info->relro_end
4318 && lp->p_vaddr >= link_info->relro_start
4319 && lp->p_vaddr + lp->p_filesz
4320 >= link_info->relro_end)
4321 break;
4322 }
4323
4324 if (lp < phdrs + count
4325 && link_info->relro_end > lp->p_vaddr)
4326 {
4327 p->p_vaddr = lp->p_vaddr;
4328 p->p_paddr = lp->p_paddr;
4329 p->p_offset = lp->p_offset;
4330 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4331 p->p_memsz = p->p_filesz;
4332 p->p_align = 1;
4333 p->p_flags = (lp->p_flags & ~PF_W);
4334 }
4335 else
4336 {
4337 memset (p, 0, sizeof *p);
4338 p->p_type = PT_NULL;
4339 }
4340 }
4341 }
4342 }
4343
4344 /* Clear out any program headers we allocated but did not use. */
4345 for (; count < alloc; count++, p++)
4346 {
4347 memset (p, 0, sizeof *p);
4348 p->p_type = PT_NULL;
4349 }
4350
4351 elf_tdata (abfd)->phdr = phdrs;
4352
4353 elf_tdata (abfd)->next_file_pos = off;
4354
4355 /* Write out the program headers. */
4356 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4357 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4358 return FALSE;
4359
4360 return TRUE;
4361 }
4362
4363 /* Get the size of the program header.
4364
4365 If this is called by the linker before any of the section VMA's are set, it
4366 can't calculate the correct value for a strange memory layout. This only
4367 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4368 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4369 data segment (exclusive of .interp and .dynamic).
4370
4371 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4372 will be two segments. */
4373
4374 static bfd_size_type
4375 get_program_header_size (bfd *abfd)
4376 {
4377 size_t segs;
4378 asection *s;
4379 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4380
4381 /* We can't return a different result each time we're called. */
4382 if (elf_tdata (abfd)->program_header_size != 0)
4383 return elf_tdata (abfd)->program_header_size;
4384
4385 if (elf_tdata (abfd)->segment_map != NULL)
4386 {
4387 struct elf_segment_map *m;
4388
4389 segs = 0;
4390 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4391 ++segs;
4392 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4393 return elf_tdata (abfd)->program_header_size;
4394 }
4395
4396 /* Assume we will need exactly two PT_LOAD segments: one for text
4397 and one for data. */
4398 segs = 2;
4399
4400 s = bfd_get_section_by_name (abfd, ".interp");
4401 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4402 {
4403 /* If we have a loadable interpreter section, we need a
4404 PT_INTERP segment. In this case, assume we also need a
4405 PT_PHDR segment, although that may not be true for all
4406 targets. */
4407 segs += 2;
4408 }
4409
4410 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4411 {
4412 /* We need a PT_DYNAMIC segment. */
4413 ++segs;
4414 }
4415
4416 if (elf_tdata (abfd)->eh_frame_hdr)
4417 {
4418 /* We need a PT_GNU_EH_FRAME segment. */
4419 ++segs;
4420 }
4421
4422 if (elf_tdata (abfd)->stack_flags)
4423 {
4424 /* We need a PT_GNU_STACK segment. */
4425 ++segs;
4426 }
4427
4428 if (elf_tdata (abfd)->relro)
4429 {
4430 /* We need a PT_GNU_RELRO segment. */
4431 ++segs;
4432 }
4433
4434 for (s = abfd->sections; s != NULL; s = s->next)
4435 {
4436 if ((s->flags & SEC_LOAD) != 0
4437 && strncmp (s->name, ".note", 5) == 0)
4438 {
4439 /* We need a PT_NOTE segment. */
4440 ++segs;
4441 }
4442 }
4443
4444 for (s = abfd->sections; s != NULL; s = s->next)
4445 {
4446 if (s->flags & SEC_THREAD_LOCAL)
4447 {
4448 /* We need a PT_TLS segment. */
4449 ++segs;
4450 break;
4451 }
4452 }
4453
4454 /* Let the backend count up any program headers it might need. */
4455 if (bed->elf_backend_additional_program_headers)
4456 {
4457 int a;
4458
4459 a = (*bed->elf_backend_additional_program_headers) (abfd);
4460 if (a == -1)
4461 abort ();
4462 segs += a;
4463 }
4464
4465 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4466 return elf_tdata (abfd)->program_header_size;
4467 }
4468
4469 /* Work out the file positions of all the sections. This is called by
4470 _bfd_elf_compute_section_file_positions. All the section sizes and
4471 VMAs must be known before this is called.
4472
4473 Reloc sections come in two flavours: Those processed specially as
4474 "side-channel" data attached to a section to which they apply, and
4475 those that bfd doesn't process as relocations. The latter sort are
4476 stored in a normal bfd section by bfd_section_from_shdr. We don't
4477 consider the former sort here, unless they form part of the loadable
4478 image. Reloc sections not assigned here will be handled later by
4479 assign_file_positions_for_relocs.
4480
4481 We also don't set the positions of the .symtab and .strtab here. */
4482
4483 static bfd_boolean
4484 assign_file_positions_except_relocs (bfd *abfd,
4485 struct bfd_link_info *link_info)
4486 {
4487 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4488 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4489 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4490 unsigned int num_sec = elf_numsections (abfd);
4491 file_ptr off;
4492 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4493
4494 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4495 && bfd_get_format (abfd) != bfd_core)
4496 {
4497 Elf_Internal_Shdr **hdrpp;
4498 unsigned int i;
4499
4500 /* Start after the ELF header. */
4501 off = i_ehdrp->e_ehsize;
4502
4503 /* We are not creating an executable, which means that we are
4504 not creating a program header, and that the actual order of
4505 the sections in the file is unimportant. */
4506 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4507 {
4508 Elf_Internal_Shdr *hdr;
4509
4510 hdr = *hdrpp;
4511 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4512 && hdr->bfd_section == NULL)
4513 || i == tdata->symtab_section
4514 || i == tdata->symtab_shndx_section
4515 || i == tdata->strtab_section)
4516 {
4517 hdr->sh_offset = -1;
4518 }
4519 else
4520 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4521
4522 if (i == SHN_LORESERVE - 1)
4523 {
4524 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4525 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4526 }
4527 }
4528 }
4529 else
4530 {
4531 unsigned int i;
4532 Elf_Internal_Shdr **hdrpp;
4533
4534 /* Assign file positions for the loaded sections based on the
4535 assignment of sections to segments. */
4536 if (! assign_file_positions_for_segments (abfd, link_info))
4537 return FALSE;
4538
4539 /* Assign file positions for the other sections. */
4540
4541 off = elf_tdata (abfd)->next_file_pos;
4542 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4543 {
4544 Elf_Internal_Shdr *hdr;
4545
4546 hdr = *hdrpp;
4547 if (hdr->bfd_section != NULL
4548 && hdr->bfd_section->filepos != 0)
4549 hdr->sh_offset = hdr->bfd_section->filepos;
4550 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4551 {
4552 ((*_bfd_error_handler)
4553 (_("%B: warning: allocated section `%s' not in segment"),
4554 abfd,
4555 (hdr->bfd_section == NULL
4556 ? "*unknown*"
4557 : hdr->bfd_section->name)));
4558 if ((abfd->flags & D_PAGED) != 0)
4559 off += vma_page_aligned_bias (hdr->sh_addr, off,
4560 bed->maxpagesize);
4561 else
4562 off += vma_page_aligned_bias (hdr->sh_addr, off,
4563 hdr->sh_addralign);
4564 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4565 FALSE);
4566 }
4567 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4568 && hdr->bfd_section == NULL)
4569 || hdr == i_shdrpp[tdata->symtab_section]
4570 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4571 || hdr == i_shdrpp[tdata->strtab_section])
4572 hdr->sh_offset = -1;
4573 else
4574 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4575
4576 if (i == SHN_LORESERVE - 1)
4577 {
4578 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4579 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4580 }
4581 }
4582 }
4583
4584 /* Place the section headers. */
4585 off = align_file_position (off, 1 << bed->s->log_file_align);
4586 i_ehdrp->e_shoff = off;
4587 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4588
4589 elf_tdata (abfd)->next_file_pos = off;
4590
4591 return TRUE;
4592 }
4593
4594 static bfd_boolean
4595 prep_headers (bfd *abfd)
4596 {
4597 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4598 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4599 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4600 struct elf_strtab_hash *shstrtab;
4601 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4602
4603 i_ehdrp = elf_elfheader (abfd);
4604 i_shdrp = elf_elfsections (abfd);
4605
4606 shstrtab = _bfd_elf_strtab_init ();
4607 if (shstrtab == NULL)
4608 return FALSE;
4609
4610 elf_shstrtab (abfd) = shstrtab;
4611
4612 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4613 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4614 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4615 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4616
4617 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4618 i_ehdrp->e_ident[EI_DATA] =
4619 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4620 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4621
4622 if ((abfd->flags & DYNAMIC) != 0)
4623 i_ehdrp->e_type = ET_DYN;
4624 else if ((abfd->flags & EXEC_P) != 0)
4625 i_ehdrp->e_type = ET_EXEC;
4626 else if (bfd_get_format (abfd) == bfd_core)
4627 i_ehdrp->e_type = ET_CORE;
4628 else
4629 i_ehdrp->e_type = ET_REL;
4630
4631 switch (bfd_get_arch (abfd))
4632 {
4633 case bfd_arch_unknown:
4634 i_ehdrp->e_machine = EM_NONE;
4635 break;
4636
4637 /* There used to be a long list of cases here, each one setting
4638 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4639 in the corresponding bfd definition. To avoid duplication,
4640 the switch was removed. Machines that need special handling
4641 can generally do it in elf_backend_final_write_processing(),
4642 unless they need the information earlier than the final write.
4643 Such need can generally be supplied by replacing the tests for
4644 e_machine with the conditions used to determine it. */
4645 default:
4646 i_ehdrp->e_machine = bed->elf_machine_code;
4647 }
4648
4649 i_ehdrp->e_version = bed->s->ev_current;
4650 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4651
4652 /* No program header, for now. */
4653 i_ehdrp->e_phoff = 0;
4654 i_ehdrp->e_phentsize = 0;
4655 i_ehdrp->e_phnum = 0;
4656
4657 /* Each bfd section is section header entry. */
4658 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4659 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4660
4661 /* If we're building an executable, we'll need a program header table. */
4662 if (abfd->flags & EXEC_P)
4663 /* It all happens later. */
4664 ;
4665 else
4666 {
4667 i_ehdrp->e_phentsize = 0;
4668 i_phdrp = 0;
4669 i_ehdrp->e_phoff = 0;
4670 }
4671
4672 elf_tdata (abfd)->symtab_hdr.sh_name =
4673 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4674 elf_tdata (abfd)->strtab_hdr.sh_name =
4675 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4676 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4677 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4678 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4679 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4680 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4681 return FALSE;
4682
4683 return TRUE;
4684 }
4685
4686 /* Assign file positions for all the reloc sections which are not part
4687 of the loadable file image. */
4688
4689 void
4690 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4691 {
4692 file_ptr off;
4693 unsigned int i, num_sec;
4694 Elf_Internal_Shdr **shdrpp;
4695
4696 off = elf_tdata (abfd)->next_file_pos;
4697
4698 num_sec = elf_numsections (abfd);
4699 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4700 {
4701 Elf_Internal_Shdr *shdrp;
4702
4703 shdrp = *shdrpp;
4704 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4705 && shdrp->sh_offset == -1)
4706 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4707 }
4708
4709 elf_tdata (abfd)->next_file_pos = off;
4710 }
4711
4712 bfd_boolean
4713 _bfd_elf_write_object_contents (bfd *abfd)
4714 {
4715 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4716 Elf_Internal_Ehdr *i_ehdrp;
4717 Elf_Internal_Shdr **i_shdrp;
4718 bfd_boolean failed;
4719 unsigned int count, num_sec;
4720
4721 if (! abfd->output_has_begun
4722 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4723 return FALSE;
4724
4725 i_shdrp = elf_elfsections (abfd);
4726 i_ehdrp = elf_elfheader (abfd);
4727
4728 failed = FALSE;
4729 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4730 if (failed)
4731 return FALSE;
4732
4733 _bfd_elf_assign_file_positions_for_relocs (abfd);
4734
4735 /* After writing the headers, we need to write the sections too... */
4736 num_sec = elf_numsections (abfd);
4737 for (count = 1; count < num_sec; count++)
4738 {
4739 if (bed->elf_backend_section_processing)
4740 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4741 if (i_shdrp[count]->contents)
4742 {
4743 bfd_size_type amt = i_shdrp[count]->sh_size;
4744
4745 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4746 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4747 return FALSE;
4748 }
4749 if (count == SHN_LORESERVE - 1)
4750 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4751 }
4752
4753 /* Write out the section header names. */
4754 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4755 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4756 return FALSE;
4757
4758 if (bed->elf_backend_final_write_processing)
4759 (*bed->elf_backend_final_write_processing) (abfd,
4760 elf_tdata (abfd)->linker);
4761
4762 return bed->s->write_shdrs_and_ehdr (abfd);
4763 }
4764
4765 bfd_boolean
4766 _bfd_elf_write_corefile_contents (bfd *abfd)
4767 {
4768 /* Hopefully this can be done just like an object file. */
4769 return _bfd_elf_write_object_contents (abfd);
4770 }
4771
4772 /* Given a section, search the header to find them. */
4773
4774 int
4775 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4776 {
4777 const struct elf_backend_data *bed;
4778 int index;
4779
4780 if (elf_section_data (asect) != NULL
4781 && elf_section_data (asect)->this_idx != 0)
4782 return elf_section_data (asect)->this_idx;
4783
4784 if (bfd_is_abs_section (asect))
4785 index = SHN_ABS;
4786 else if (bfd_is_com_section (asect))
4787 index = SHN_COMMON;
4788 else if (bfd_is_und_section (asect))
4789 index = SHN_UNDEF;
4790 else
4791 index = -1;
4792
4793 bed = get_elf_backend_data (abfd);
4794 if (bed->elf_backend_section_from_bfd_section)
4795 {
4796 int retval = index;
4797
4798 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4799 return retval;
4800 }
4801
4802 if (index == -1)
4803 bfd_set_error (bfd_error_nonrepresentable_section);
4804
4805 return index;
4806 }
4807
4808 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4809 on error. */
4810
4811 int
4812 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4813 {
4814 asymbol *asym_ptr = *asym_ptr_ptr;
4815 int idx;
4816 flagword flags = asym_ptr->flags;
4817
4818 /* When gas creates relocations against local labels, it creates its
4819 own symbol for the section, but does put the symbol into the
4820 symbol chain, so udata is 0. When the linker is generating
4821 relocatable output, this section symbol may be for one of the
4822 input sections rather than the output section. */
4823 if (asym_ptr->udata.i == 0
4824 && (flags & BSF_SECTION_SYM)
4825 && asym_ptr->section)
4826 {
4827 int indx;
4828
4829 if (asym_ptr->section->output_section != NULL)
4830 indx = asym_ptr->section->output_section->index;
4831 else
4832 indx = asym_ptr->section->index;
4833 if (indx < elf_num_section_syms (abfd)
4834 && elf_section_syms (abfd)[indx] != NULL)
4835 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4836 }
4837
4838 idx = asym_ptr->udata.i;
4839
4840 if (idx == 0)
4841 {
4842 /* This case can occur when using --strip-symbol on a symbol
4843 which is used in a relocation entry. */
4844 (*_bfd_error_handler)
4845 (_("%B: symbol `%s' required but not present"),
4846 abfd, bfd_asymbol_name (asym_ptr));
4847 bfd_set_error (bfd_error_no_symbols);
4848 return -1;
4849 }
4850
4851 #if DEBUG & 4
4852 {
4853 fprintf (stderr,
4854 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4855 (long) asym_ptr, asym_ptr->name, idx, flags,
4856 elf_symbol_flags (flags));
4857 fflush (stderr);
4858 }
4859 #endif
4860
4861 return idx;
4862 }
4863
4864 /* Copy private BFD data. This copies any program header information. */
4865
4866 static bfd_boolean
4867 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4868 {
4869 Elf_Internal_Ehdr *iehdr;
4870 struct elf_segment_map *map;
4871 struct elf_segment_map *map_first;
4872 struct elf_segment_map **pointer_to_map;
4873 Elf_Internal_Phdr *segment;
4874 asection *section;
4875 unsigned int i;
4876 unsigned int num_segments;
4877 bfd_boolean phdr_included = FALSE;
4878 bfd_vma maxpagesize;
4879 struct elf_segment_map *phdr_adjust_seg = NULL;
4880 unsigned int phdr_adjust_num = 0;
4881 const struct elf_backend_data *bed;
4882
4883 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4884 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4885 return TRUE;
4886
4887 if (elf_tdata (ibfd)->phdr == NULL)
4888 return TRUE;
4889
4890 bed = get_elf_backend_data (ibfd);
4891 iehdr = elf_elfheader (ibfd);
4892
4893 map_first = NULL;
4894 pointer_to_map = &map_first;
4895
4896 num_segments = elf_elfheader (ibfd)->e_phnum;
4897 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4898
4899 /* Returns the end address of the segment + 1. */
4900 #define SEGMENT_END(segment, start) \
4901 (start + (segment->p_memsz > segment->p_filesz \
4902 ? segment->p_memsz : segment->p_filesz))
4903
4904 #define SECTION_SIZE(section, segment) \
4905 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4906 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4907 ? section->size : 0)
4908
4909 /* Returns TRUE if the given section is contained within
4910 the given segment. VMA addresses are compared. */
4911 #define IS_CONTAINED_BY_VMA(section, segment) \
4912 (section->vma >= segment->p_vaddr \
4913 && (section->vma + SECTION_SIZE (section, segment) \
4914 <= (SEGMENT_END (segment, segment->p_vaddr))))
4915
4916 /* Returns TRUE if the given section is contained within
4917 the given segment. LMA addresses are compared. */
4918 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4919 (section->lma >= base \
4920 && (section->lma + SECTION_SIZE (section, segment) \
4921 <= SEGMENT_END (segment, base)))
4922
4923 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4924 #define IS_COREFILE_NOTE(p, s) \
4925 (p->p_type == PT_NOTE \
4926 && bfd_get_format (ibfd) == bfd_core \
4927 && s->vma == 0 && s->lma == 0 \
4928 && (bfd_vma) s->filepos >= p->p_offset \
4929 && ((bfd_vma) s->filepos + s->size \
4930 <= p->p_offset + p->p_filesz))
4931
4932 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4933 linker, which generates a PT_INTERP section with p_vaddr and
4934 p_memsz set to 0. */
4935 #define IS_SOLARIS_PT_INTERP(p, s) \
4936 (p->p_vaddr == 0 \
4937 && p->p_paddr == 0 \
4938 && p->p_memsz == 0 \
4939 && p->p_filesz > 0 \
4940 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4941 && s->size > 0 \
4942 && (bfd_vma) s->filepos >= p->p_offset \
4943 && ((bfd_vma) s->filepos + s->size \
4944 <= p->p_offset + p->p_filesz))
4945
4946 /* Decide if the given section should be included in the given segment.
4947 A section will be included if:
4948 1. It is within the address space of the segment -- we use the LMA
4949 if that is set for the segment and the VMA otherwise,
4950 2. It is an allocated segment,
4951 3. There is an output section associated with it,
4952 4. The section has not already been allocated to a previous segment.
4953 5. PT_GNU_STACK segments do not include any sections.
4954 6. PT_TLS segment includes only SHF_TLS sections.
4955 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
4956 8. PT_DYNAMIC should not contain empty sections at the beginning
4957 (with the possible exception of .dynamic). */
4958 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4959 ((((segment->p_paddr \
4960 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4961 : IS_CONTAINED_BY_VMA (section, segment)) \
4962 && (section->flags & SEC_ALLOC) != 0) \
4963 || IS_COREFILE_NOTE (segment, section)) \
4964 && section->output_section != NULL \
4965 && segment->p_type != PT_GNU_STACK \
4966 && (segment->p_type != PT_TLS \
4967 || (section->flags & SEC_THREAD_LOCAL)) \
4968 && (segment->p_type == PT_LOAD \
4969 || segment->p_type == PT_TLS \
4970 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4971 && (segment->p_type != PT_DYNAMIC \
4972 || SECTION_SIZE (section, segment) > 0 \
4973 || (segment->p_paddr \
4974 ? segment->p_paddr != section->lma \
4975 : segment->p_vaddr != section->vma) \
4976 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
4977 == 0)) \
4978 && ! section->segment_mark)
4979
4980 /* Returns TRUE iff seg1 starts after the end of seg2. */
4981 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4982 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4983
4984 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4985 their VMA address ranges and their LMA address ranges overlap.
4986 It is possible to have overlapping VMA ranges without overlapping LMA
4987 ranges. RedBoot images for example can have both .data and .bss mapped
4988 to the same VMA range, but with the .data section mapped to a different
4989 LMA. */
4990 #define SEGMENT_OVERLAPS(seg1, seg2) \
4991 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4992 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4993 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4994 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4995
4996 /* Initialise the segment mark field. */
4997 for (section = ibfd->sections; section != NULL; section = section->next)
4998 section->segment_mark = FALSE;
4999
5000 /* Scan through the segments specified in the program header
5001 of the input BFD. For this first scan we look for overlaps
5002 in the loadable segments. These can be created by weird
5003 parameters to objcopy. Also, fix some solaris weirdness. */
5004 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5005 i < num_segments;
5006 i++, segment++)
5007 {
5008 unsigned int j;
5009 Elf_Internal_Phdr *segment2;
5010
5011 if (segment->p_type == PT_INTERP)
5012 for (section = ibfd->sections; section; section = section->next)
5013 if (IS_SOLARIS_PT_INTERP (segment, section))
5014 {
5015 /* Mininal change so that the normal section to segment
5016 assignment code will work. */
5017 segment->p_vaddr = section->vma;
5018 break;
5019 }
5020
5021 if (segment->p_type != PT_LOAD)
5022 continue;
5023
5024 /* Determine if this segment overlaps any previous segments. */
5025 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5026 {
5027 bfd_signed_vma extra_length;
5028
5029 if (segment2->p_type != PT_LOAD
5030 || ! SEGMENT_OVERLAPS (segment, segment2))
5031 continue;
5032
5033 /* Merge the two segments together. */
5034 if (segment2->p_vaddr < segment->p_vaddr)
5035 {
5036 /* Extend SEGMENT2 to include SEGMENT and then delete
5037 SEGMENT. */
5038 extra_length =
5039 SEGMENT_END (segment, segment->p_vaddr)
5040 - SEGMENT_END (segment2, segment2->p_vaddr);
5041
5042 if (extra_length > 0)
5043 {
5044 segment2->p_memsz += extra_length;
5045 segment2->p_filesz += extra_length;
5046 }
5047
5048 segment->p_type = PT_NULL;
5049
5050 /* Since we have deleted P we must restart the outer loop. */
5051 i = 0;
5052 segment = elf_tdata (ibfd)->phdr;
5053 break;
5054 }
5055 else
5056 {
5057 /* Extend SEGMENT to include SEGMENT2 and then delete
5058 SEGMENT2. */
5059 extra_length =
5060 SEGMENT_END (segment2, segment2->p_vaddr)
5061 - SEGMENT_END (segment, segment->p_vaddr);
5062
5063 if (extra_length > 0)
5064 {
5065 segment->p_memsz += extra_length;
5066 segment->p_filesz += extra_length;
5067 }
5068
5069 segment2->p_type = PT_NULL;
5070 }
5071 }
5072 }
5073
5074 /* The second scan attempts to assign sections to segments. */
5075 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5076 i < num_segments;
5077 i ++, segment ++)
5078 {
5079 unsigned int section_count;
5080 asection ** sections;
5081 asection * output_section;
5082 unsigned int isec;
5083 bfd_vma matching_lma;
5084 bfd_vma suggested_lma;
5085 unsigned int j;
5086 bfd_size_type amt;
5087
5088 if (segment->p_type == PT_NULL)
5089 continue;
5090
5091 /* Compute how many sections might be placed into this segment. */
5092 for (section = ibfd->sections, section_count = 0;
5093 section != NULL;
5094 section = section->next)
5095 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5096 ++section_count;
5097
5098 /* Allocate a segment map big enough to contain
5099 all of the sections we have selected. */
5100 amt = sizeof (struct elf_segment_map);
5101 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5102 map = bfd_alloc (obfd, amt);
5103 if (map == NULL)
5104 return FALSE;
5105
5106 /* Initialise the fields of the segment map. Default to
5107 using the physical address of the segment in the input BFD. */
5108 map->next = NULL;
5109 map->p_type = segment->p_type;
5110 map->p_flags = segment->p_flags;
5111 map->p_flags_valid = 1;
5112 map->p_paddr = segment->p_paddr;
5113 map->p_paddr_valid = 1;
5114
5115 /* Determine if this segment contains the ELF file header
5116 and if it contains the program headers themselves. */
5117 map->includes_filehdr = (segment->p_offset == 0
5118 && segment->p_filesz >= iehdr->e_ehsize);
5119
5120 map->includes_phdrs = 0;
5121
5122 if (! phdr_included || segment->p_type != PT_LOAD)
5123 {
5124 map->includes_phdrs =
5125 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5126 && (segment->p_offset + segment->p_filesz
5127 >= ((bfd_vma) iehdr->e_phoff
5128 + iehdr->e_phnum * iehdr->e_phentsize)));
5129
5130 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5131 phdr_included = TRUE;
5132 }
5133
5134 if (section_count == 0)
5135 {
5136 /* Special segments, such as the PT_PHDR segment, may contain
5137 no sections, but ordinary, loadable segments should contain
5138 something. They are allowed by the ELF spec however, so only
5139 a warning is produced. */
5140 if (segment->p_type == PT_LOAD)
5141 (*_bfd_error_handler)
5142 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5143 ibfd);
5144
5145 map->count = 0;
5146 *pointer_to_map = map;
5147 pointer_to_map = &map->next;
5148
5149 continue;
5150 }
5151
5152 /* Now scan the sections in the input BFD again and attempt
5153 to add their corresponding output sections to the segment map.
5154 The problem here is how to handle an output section which has
5155 been moved (ie had its LMA changed). There are four possibilities:
5156
5157 1. None of the sections have been moved.
5158 In this case we can continue to use the segment LMA from the
5159 input BFD.
5160
5161 2. All of the sections have been moved by the same amount.
5162 In this case we can change the segment's LMA to match the LMA
5163 of the first section.
5164
5165 3. Some of the sections have been moved, others have not.
5166 In this case those sections which have not been moved can be
5167 placed in the current segment which will have to have its size,
5168 and possibly its LMA changed, and a new segment or segments will
5169 have to be created to contain the other sections.
5170
5171 4. The sections have been moved, but not by the same amount.
5172 In this case we can change the segment's LMA to match the LMA
5173 of the first section and we will have to create a new segment
5174 or segments to contain the other sections.
5175
5176 In order to save time, we allocate an array to hold the section
5177 pointers that we are interested in. As these sections get assigned
5178 to a segment, they are removed from this array. */
5179
5180 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5181 to work around this long long bug. */
5182 amt = section_count * sizeof (asection *);
5183 sections = bfd_malloc (amt);
5184 if (sections == NULL)
5185 return FALSE;
5186
5187 /* Step One: Scan for segment vs section LMA conflicts.
5188 Also add the sections to the section array allocated above.
5189 Also add the sections to the current segment. In the common
5190 case, where the sections have not been moved, this means that
5191 we have completely filled the segment, and there is nothing
5192 more to do. */
5193 isec = 0;
5194 matching_lma = 0;
5195 suggested_lma = 0;
5196
5197 for (j = 0, section = ibfd->sections;
5198 section != NULL;
5199 section = section->next)
5200 {
5201 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5202 {
5203 output_section = section->output_section;
5204
5205 sections[j ++] = section;
5206
5207 /* The Solaris native linker always sets p_paddr to 0.
5208 We try to catch that case here, and set it to the
5209 correct value. Note - some backends require that
5210 p_paddr be left as zero. */
5211 if (segment->p_paddr == 0
5212 && segment->p_vaddr != 0
5213 && (! bed->want_p_paddr_set_to_zero)
5214 && isec == 0
5215 && output_section->lma != 0
5216 && (output_section->vma == (segment->p_vaddr
5217 + (map->includes_filehdr
5218 ? iehdr->e_ehsize
5219 : 0)
5220 + (map->includes_phdrs
5221 ? (iehdr->e_phnum
5222 * iehdr->e_phentsize)
5223 : 0))))
5224 map->p_paddr = segment->p_vaddr;
5225
5226 /* Match up the physical address of the segment with the
5227 LMA address of the output section. */
5228 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5229 || IS_COREFILE_NOTE (segment, section)
5230 || (bed->want_p_paddr_set_to_zero &&
5231 IS_CONTAINED_BY_VMA (output_section, segment))
5232 )
5233 {
5234 if (matching_lma == 0)
5235 matching_lma = output_section->lma;
5236
5237 /* We assume that if the section fits within the segment
5238 then it does not overlap any other section within that
5239 segment. */
5240 map->sections[isec ++] = output_section;
5241 }
5242 else if (suggested_lma == 0)
5243 suggested_lma = output_section->lma;
5244 }
5245 }
5246
5247 BFD_ASSERT (j == section_count);
5248
5249 /* Step Two: Adjust the physical address of the current segment,
5250 if necessary. */
5251 if (isec == section_count)
5252 {
5253 /* All of the sections fitted within the segment as currently
5254 specified. This is the default case. Add the segment to
5255 the list of built segments and carry on to process the next
5256 program header in the input BFD. */
5257 map->count = section_count;
5258 *pointer_to_map = map;
5259 pointer_to_map = &map->next;
5260
5261 free (sections);
5262 continue;
5263 }
5264 else
5265 {
5266 if (matching_lma != 0)
5267 {
5268 /* At least one section fits inside the current segment.
5269 Keep it, but modify its physical address to match the
5270 LMA of the first section that fitted. */
5271 map->p_paddr = matching_lma;
5272 }
5273 else
5274 {
5275 /* None of the sections fitted inside the current segment.
5276 Change the current segment's physical address to match
5277 the LMA of the first section. */
5278 map->p_paddr = suggested_lma;
5279 }
5280
5281 /* Offset the segment physical address from the lma
5282 to allow for space taken up by elf headers. */
5283 if (map->includes_filehdr)
5284 map->p_paddr -= iehdr->e_ehsize;
5285
5286 if (map->includes_phdrs)
5287 {
5288 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5289
5290 /* iehdr->e_phnum is just an estimate of the number
5291 of program headers that we will need. Make a note
5292 here of the number we used and the segment we chose
5293 to hold these headers, so that we can adjust the
5294 offset when we know the correct value. */
5295 phdr_adjust_num = iehdr->e_phnum;
5296 phdr_adjust_seg = map;
5297 }
5298 }
5299
5300 /* Step Three: Loop over the sections again, this time assigning
5301 those that fit to the current segment and removing them from the
5302 sections array; but making sure not to leave large gaps. Once all
5303 possible sections have been assigned to the current segment it is
5304 added to the list of built segments and if sections still remain
5305 to be assigned, a new segment is constructed before repeating
5306 the loop. */
5307 isec = 0;
5308 do
5309 {
5310 map->count = 0;
5311 suggested_lma = 0;
5312
5313 /* Fill the current segment with sections that fit. */
5314 for (j = 0; j < section_count; j++)
5315 {
5316 section = sections[j];
5317
5318 if (section == NULL)
5319 continue;
5320
5321 output_section = section->output_section;
5322
5323 BFD_ASSERT (output_section != NULL);
5324
5325 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5326 || IS_COREFILE_NOTE (segment, section))
5327 {
5328 if (map->count == 0)
5329 {
5330 /* If the first section in a segment does not start at
5331 the beginning of the segment, then something is
5332 wrong. */
5333 if (output_section->lma !=
5334 (map->p_paddr
5335 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5336 + (map->includes_phdrs
5337 ? iehdr->e_phnum * iehdr->e_phentsize
5338 : 0)))
5339 abort ();
5340 }
5341 else
5342 {
5343 asection * prev_sec;
5344
5345 prev_sec = map->sections[map->count - 1];
5346
5347 /* If the gap between the end of the previous section
5348 and the start of this section is more than
5349 maxpagesize then we need to start a new segment. */
5350 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5351 maxpagesize)
5352 < BFD_ALIGN (output_section->lma, maxpagesize))
5353 || ((prev_sec->lma + prev_sec->size)
5354 > output_section->lma))
5355 {
5356 if (suggested_lma == 0)
5357 suggested_lma = output_section->lma;
5358
5359 continue;
5360 }
5361 }
5362
5363 map->sections[map->count++] = output_section;
5364 ++isec;
5365 sections[j] = NULL;
5366 section->segment_mark = TRUE;
5367 }
5368 else if (suggested_lma == 0)
5369 suggested_lma = output_section->lma;
5370 }
5371
5372 BFD_ASSERT (map->count > 0);
5373
5374 /* Add the current segment to the list of built segments. */
5375 *pointer_to_map = map;
5376 pointer_to_map = &map->next;
5377
5378 if (isec < section_count)
5379 {
5380 /* We still have not allocated all of the sections to
5381 segments. Create a new segment here, initialise it
5382 and carry on looping. */
5383 amt = sizeof (struct elf_segment_map);
5384 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5385 map = bfd_alloc (obfd, amt);
5386 if (map == NULL)
5387 {
5388 free (sections);
5389 return FALSE;
5390 }
5391
5392 /* Initialise the fields of the segment map. Set the physical
5393 physical address to the LMA of the first section that has
5394 not yet been assigned. */
5395 map->next = NULL;
5396 map->p_type = segment->p_type;
5397 map->p_flags = segment->p_flags;
5398 map->p_flags_valid = 1;
5399 map->p_paddr = suggested_lma;
5400 map->p_paddr_valid = 1;
5401 map->includes_filehdr = 0;
5402 map->includes_phdrs = 0;
5403 }
5404 }
5405 while (isec < section_count);
5406
5407 free (sections);
5408 }
5409
5410 /* The Solaris linker creates program headers in which all the
5411 p_paddr fields are zero. When we try to objcopy or strip such a
5412 file, we get confused. Check for this case, and if we find it
5413 reset the p_paddr_valid fields. */
5414 for (map = map_first; map != NULL; map = map->next)
5415 if (map->p_paddr != 0)
5416 break;
5417 if (map == NULL)
5418 for (map = map_first; map != NULL; map = map->next)
5419 map->p_paddr_valid = 0;
5420
5421 elf_tdata (obfd)->segment_map = map_first;
5422
5423 /* If we had to estimate the number of program headers that were
5424 going to be needed, then check our estimate now and adjust
5425 the offset if necessary. */
5426 if (phdr_adjust_seg != NULL)
5427 {
5428 unsigned int count;
5429
5430 for (count = 0, map = map_first; map != NULL; map = map->next)
5431 count++;
5432
5433 if (count > phdr_adjust_num)
5434 phdr_adjust_seg->p_paddr
5435 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5436 }
5437
5438 #undef SEGMENT_END
5439 #undef SECTION_SIZE
5440 #undef IS_CONTAINED_BY_VMA
5441 #undef IS_CONTAINED_BY_LMA
5442 #undef IS_COREFILE_NOTE
5443 #undef IS_SOLARIS_PT_INTERP
5444 #undef INCLUDE_SECTION_IN_SEGMENT
5445 #undef SEGMENT_AFTER_SEGMENT
5446 #undef SEGMENT_OVERLAPS
5447 return TRUE;
5448 }
5449
5450 /* Copy private section information. This copies over the entsize
5451 field, and sometimes the info field. */
5452
5453 bfd_boolean
5454 _bfd_elf_copy_private_section_data (bfd *ibfd,
5455 asection *isec,
5456 bfd *obfd,
5457 asection *osec)
5458 {
5459 Elf_Internal_Shdr *ihdr, *ohdr;
5460
5461 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5462 || obfd->xvec->flavour != bfd_target_elf_flavour)
5463 return TRUE;
5464
5465 ihdr = &elf_section_data (isec)->this_hdr;
5466 ohdr = &elf_section_data (osec)->this_hdr;
5467
5468 ohdr->sh_entsize = ihdr->sh_entsize;
5469
5470 if (ihdr->sh_type == SHT_SYMTAB
5471 || ihdr->sh_type == SHT_DYNSYM
5472 || ihdr->sh_type == SHT_GNU_verneed
5473 || ihdr->sh_type == SHT_GNU_verdef)
5474 ohdr->sh_info = ihdr->sh_info;
5475
5476 /* Set things up for objcopy. The output SHT_GROUP section will
5477 have its elf_next_in_group pointing back to the input group
5478 members. */
5479 elf_next_in_group (osec) = elf_next_in_group (isec);
5480 elf_group_name (osec) = elf_group_name (isec);
5481
5482 osec->use_rela_p = isec->use_rela_p;
5483
5484 return TRUE;
5485 }
5486
5487 /* Copy private header information. */
5488
5489 bfd_boolean
5490 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5491 {
5492 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5493 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5494 return TRUE;
5495
5496 /* Copy over private BFD data if it has not already been copied.
5497 This must be done here, rather than in the copy_private_bfd_data
5498 entry point, because the latter is called after the section
5499 contents have been set, which means that the program headers have
5500 already been worked out. */
5501 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5502 {
5503 if (! copy_private_bfd_data (ibfd, obfd))
5504 return FALSE;
5505 }
5506
5507 return TRUE;
5508 }
5509
5510 /* Copy private symbol information. If this symbol is in a section
5511 which we did not map into a BFD section, try to map the section
5512 index correctly. We use special macro definitions for the mapped
5513 section indices; these definitions are interpreted by the
5514 swap_out_syms function. */
5515
5516 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5517 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5518 #define MAP_STRTAB (SHN_HIOS + 3)
5519 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5520 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5521
5522 bfd_boolean
5523 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5524 asymbol *isymarg,
5525 bfd *obfd,
5526 asymbol *osymarg)
5527 {
5528 elf_symbol_type *isym, *osym;
5529
5530 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5531 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5532 return TRUE;
5533
5534 isym = elf_symbol_from (ibfd, isymarg);
5535 osym = elf_symbol_from (obfd, osymarg);
5536
5537 if (isym != NULL
5538 && osym != NULL
5539 && bfd_is_abs_section (isym->symbol.section))
5540 {
5541 unsigned int shndx;
5542
5543 shndx = isym->internal_elf_sym.st_shndx;
5544 if (shndx == elf_onesymtab (ibfd))
5545 shndx = MAP_ONESYMTAB;
5546 else if (shndx == elf_dynsymtab (ibfd))
5547 shndx = MAP_DYNSYMTAB;
5548 else if (shndx == elf_tdata (ibfd)->strtab_section)
5549 shndx = MAP_STRTAB;
5550 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5551 shndx = MAP_SHSTRTAB;
5552 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5553 shndx = MAP_SYM_SHNDX;
5554 osym->internal_elf_sym.st_shndx = shndx;
5555 }
5556
5557 return TRUE;
5558 }
5559
5560 /* Swap out the symbols. */
5561
5562 static bfd_boolean
5563 swap_out_syms (bfd *abfd,
5564 struct bfd_strtab_hash **sttp,
5565 int relocatable_p)
5566 {
5567 const struct elf_backend_data *bed;
5568 int symcount;
5569 asymbol **syms;
5570 struct bfd_strtab_hash *stt;
5571 Elf_Internal_Shdr *symtab_hdr;
5572 Elf_Internal_Shdr *symtab_shndx_hdr;
5573 Elf_Internal_Shdr *symstrtab_hdr;
5574 bfd_byte *outbound_syms;
5575 bfd_byte *outbound_shndx;
5576 int idx;
5577 bfd_size_type amt;
5578 bfd_boolean name_local_sections;
5579
5580 if (!elf_map_symbols (abfd))
5581 return FALSE;
5582
5583 /* Dump out the symtabs. */
5584 stt = _bfd_elf_stringtab_init ();
5585 if (stt == NULL)
5586 return FALSE;
5587
5588 bed = get_elf_backend_data (abfd);
5589 symcount = bfd_get_symcount (abfd);
5590 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5591 symtab_hdr->sh_type = SHT_SYMTAB;
5592 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5593 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5594 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5595 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5596
5597 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5598 symstrtab_hdr->sh_type = SHT_STRTAB;
5599
5600 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5601 outbound_syms = bfd_alloc (abfd, amt);
5602 if (outbound_syms == NULL)
5603 {
5604 _bfd_stringtab_free (stt);
5605 return FALSE;
5606 }
5607 symtab_hdr->contents = outbound_syms;
5608
5609 outbound_shndx = NULL;
5610 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5611 if (symtab_shndx_hdr->sh_name != 0)
5612 {
5613 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5614 outbound_shndx = bfd_zalloc (abfd, amt);
5615 if (outbound_shndx == NULL)
5616 {
5617 _bfd_stringtab_free (stt);
5618 return FALSE;
5619 }
5620
5621 symtab_shndx_hdr->contents = outbound_shndx;
5622 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5623 symtab_shndx_hdr->sh_size = amt;
5624 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5625 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5626 }
5627
5628 /* Now generate the data (for "contents"). */
5629 {
5630 /* Fill in zeroth symbol and swap it out. */
5631 Elf_Internal_Sym sym;
5632 sym.st_name = 0;
5633 sym.st_value = 0;
5634 sym.st_size = 0;
5635 sym.st_info = 0;
5636 sym.st_other = 0;
5637 sym.st_shndx = SHN_UNDEF;
5638 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5639 outbound_syms += bed->s->sizeof_sym;
5640 if (outbound_shndx != NULL)
5641 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5642 }
5643
5644 name_local_sections
5645 = (bed->elf_backend_name_local_section_symbols
5646 && bed->elf_backend_name_local_section_symbols (abfd));
5647
5648 syms = bfd_get_outsymbols (abfd);
5649 for (idx = 0; idx < symcount; idx++)
5650 {
5651 Elf_Internal_Sym sym;
5652 bfd_vma value = syms[idx]->value;
5653 elf_symbol_type *type_ptr;
5654 flagword flags = syms[idx]->flags;
5655 int type;
5656
5657 if (!name_local_sections
5658 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5659 {
5660 /* Local section symbols have no name. */
5661 sym.st_name = 0;
5662 }
5663 else
5664 {
5665 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5666 syms[idx]->name,
5667 TRUE, FALSE);
5668 if (sym.st_name == (unsigned long) -1)
5669 {
5670 _bfd_stringtab_free (stt);
5671 return FALSE;
5672 }
5673 }
5674
5675 type_ptr = elf_symbol_from (abfd, syms[idx]);
5676
5677 if ((flags & BSF_SECTION_SYM) == 0
5678 && bfd_is_com_section (syms[idx]->section))
5679 {
5680 /* ELF common symbols put the alignment into the `value' field,
5681 and the size into the `size' field. This is backwards from
5682 how BFD handles it, so reverse it here. */
5683 sym.st_size = value;
5684 if (type_ptr == NULL
5685 || type_ptr->internal_elf_sym.st_value == 0)
5686 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5687 else
5688 sym.st_value = type_ptr->internal_elf_sym.st_value;
5689 sym.st_shndx = _bfd_elf_section_from_bfd_section
5690 (abfd, syms[idx]->section);
5691 }
5692 else
5693 {
5694 asection *sec = syms[idx]->section;
5695 int shndx;
5696
5697 if (sec->output_section)
5698 {
5699 value += sec->output_offset;
5700 sec = sec->output_section;
5701 }
5702
5703 /* Don't add in the section vma for relocatable output. */
5704 if (! relocatable_p)
5705 value += sec->vma;
5706 sym.st_value = value;
5707 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5708
5709 if (bfd_is_abs_section (sec)
5710 && type_ptr != NULL
5711 && type_ptr->internal_elf_sym.st_shndx != 0)
5712 {
5713 /* This symbol is in a real ELF section which we did
5714 not create as a BFD section. Undo the mapping done
5715 by copy_private_symbol_data. */
5716 shndx = type_ptr->internal_elf_sym.st_shndx;
5717 switch (shndx)
5718 {
5719 case MAP_ONESYMTAB:
5720 shndx = elf_onesymtab (abfd);
5721 break;
5722 case MAP_DYNSYMTAB:
5723 shndx = elf_dynsymtab (abfd);
5724 break;
5725 case MAP_STRTAB:
5726 shndx = elf_tdata (abfd)->strtab_section;
5727 break;
5728 case MAP_SHSTRTAB:
5729 shndx = elf_tdata (abfd)->shstrtab_section;
5730 break;
5731 case MAP_SYM_SHNDX:
5732 shndx = elf_tdata (abfd)->symtab_shndx_section;
5733 break;
5734 default:
5735 break;
5736 }
5737 }
5738 else
5739 {
5740 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5741
5742 if (shndx == -1)
5743 {
5744 asection *sec2;
5745
5746 /* Writing this would be a hell of a lot easier if
5747 we had some decent documentation on bfd, and
5748 knew what to expect of the library, and what to
5749 demand of applications. For example, it
5750 appears that `objcopy' might not set the
5751 section of a symbol to be a section that is
5752 actually in the output file. */
5753 sec2 = bfd_get_section_by_name (abfd, sec->name);
5754 if (sec2 == NULL)
5755 {
5756 _bfd_error_handler (_("\
5757 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5758 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5759 sec->name);
5760 bfd_set_error (bfd_error_invalid_operation);
5761 _bfd_stringtab_free (stt);
5762 return FALSE;
5763 }
5764
5765 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5766 BFD_ASSERT (shndx != -1);
5767 }
5768 }
5769
5770 sym.st_shndx = shndx;
5771 }
5772
5773 if ((flags & BSF_THREAD_LOCAL) != 0)
5774 type = STT_TLS;
5775 else if ((flags & BSF_FUNCTION) != 0)
5776 type = STT_FUNC;
5777 else if ((flags & BSF_OBJECT) != 0)
5778 type = STT_OBJECT;
5779 else
5780 type = STT_NOTYPE;
5781
5782 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5783 type = STT_TLS;
5784
5785 /* Processor-specific types. */
5786 if (type_ptr != NULL
5787 && bed->elf_backend_get_symbol_type)
5788 type = ((*bed->elf_backend_get_symbol_type)
5789 (&type_ptr->internal_elf_sym, type));
5790
5791 if (flags & BSF_SECTION_SYM)
5792 {
5793 if (flags & BSF_GLOBAL)
5794 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5795 else
5796 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5797 }
5798 else if (bfd_is_com_section (syms[idx]->section))
5799 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5800 else if (bfd_is_und_section (syms[idx]->section))
5801 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5802 ? STB_WEAK
5803 : STB_GLOBAL),
5804 type);
5805 else if (flags & BSF_FILE)
5806 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5807 else
5808 {
5809 int bind = STB_LOCAL;
5810
5811 if (flags & BSF_LOCAL)
5812 bind = STB_LOCAL;
5813 else if (flags & BSF_WEAK)
5814 bind = STB_WEAK;
5815 else if (flags & BSF_GLOBAL)
5816 bind = STB_GLOBAL;
5817
5818 sym.st_info = ELF_ST_INFO (bind, type);
5819 }
5820
5821 if (type_ptr != NULL)
5822 sym.st_other = type_ptr->internal_elf_sym.st_other;
5823 else
5824 sym.st_other = 0;
5825
5826 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5827 outbound_syms += bed->s->sizeof_sym;
5828 if (outbound_shndx != NULL)
5829 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5830 }
5831
5832 *sttp = stt;
5833 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5834 symstrtab_hdr->sh_type = SHT_STRTAB;
5835
5836 symstrtab_hdr->sh_flags = 0;
5837 symstrtab_hdr->sh_addr = 0;
5838 symstrtab_hdr->sh_entsize = 0;
5839 symstrtab_hdr->sh_link = 0;
5840 symstrtab_hdr->sh_info = 0;
5841 symstrtab_hdr->sh_addralign = 1;
5842
5843 return TRUE;
5844 }
5845
5846 /* Return the number of bytes required to hold the symtab vector.
5847
5848 Note that we base it on the count plus 1, since we will null terminate
5849 the vector allocated based on this size. However, the ELF symbol table
5850 always has a dummy entry as symbol #0, so it ends up even. */
5851
5852 long
5853 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5854 {
5855 long symcount;
5856 long symtab_size;
5857 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5858
5859 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5860 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5861 if (symcount > 0)
5862 symtab_size -= sizeof (asymbol *);
5863
5864 return symtab_size;
5865 }
5866
5867 long
5868 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5869 {
5870 long symcount;
5871 long symtab_size;
5872 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5873
5874 if (elf_dynsymtab (abfd) == 0)
5875 {
5876 bfd_set_error (bfd_error_invalid_operation);
5877 return -1;
5878 }
5879
5880 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5881 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5882 if (symcount > 0)
5883 symtab_size -= sizeof (asymbol *);
5884
5885 return symtab_size;
5886 }
5887
5888 long
5889 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5890 sec_ptr asect)
5891 {
5892 return (asect->reloc_count + 1) * sizeof (arelent *);
5893 }
5894
5895 /* Canonicalize the relocs. */
5896
5897 long
5898 _bfd_elf_canonicalize_reloc (bfd *abfd,
5899 sec_ptr section,
5900 arelent **relptr,
5901 asymbol **symbols)
5902 {
5903 arelent *tblptr;
5904 unsigned int i;
5905 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5906
5907 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5908 return -1;
5909
5910 tblptr = section->relocation;
5911 for (i = 0; i < section->reloc_count; i++)
5912 *relptr++ = tblptr++;
5913
5914 *relptr = NULL;
5915
5916 return section->reloc_count;
5917 }
5918
5919 long
5920 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5921 {
5922 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5923 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5924
5925 if (symcount >= 0)
5926 bfd_get_symcount (abfd) = symcount;
5927 return symcount;
5928 }
5929
5930 long
5931 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5932 asymbol **allocation)
5933 {
5934 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5935 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5936
5937 if (symcount >= 0)
5938 bfd_get_dynamic_symcount (abfd) = symcount;
5939 return symcount;
5940 }
5941
5942 /* Return the size required for the dynamic reloc entries. Any loadable
5943 section that was actually installed in the BFD, and has type SHT_REL
5944 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
5945 dynamic reloc section. */
5946
5947 long
5948 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5949 {
5950 long ret;
5951 asection *s;
5952
5953 if (elf_dynsymtab (abfd) == 0)
5954 {
5955 bfd_set_error (bfd_error_invalid_operation);
5956 return -1;
5957 }
5958
5959 ret = sizeof (arelent *);
5960 for (s = abfd->sections; s != NULL; s = s->next)
5961 if ((s->flags & SEC_LOAD) != 0
5962 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5963 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5964 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5965 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
5966 * sizeof (arelent *));
5967
5968 return ret;
5969 }
5970
5971 /* Canonicalize the dynamic relocation entries. Note that we return the
5972 dynamic relocations as a single block, although they are actually
5973 associated with particular sections; the interface, which was
5974 designed for SunOS style shared libraries, expects that there is only
5975 one set of dynamic relocs. Any loadable section that was actually
5976 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
5977 dynamic symbol table, is considered to be a dynamic reloc section. */
5978
5979 long
5980 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5981 arelent **storage,
5982 asymbol **syms)
5983 {
5984 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5985 asection *s;
5986 long ret;
5987
5988 if (elf_dynsymtab (abfd) == 0)
5989 {
5990 bfd_set_error (bfd_error_invalid_operation);
5991 return -1;
5992 }
5993
5994 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5995 ret = 0;
5996 for (s = abfd->sections; s != NULL; s = s->next)
5997 {
5998 if ((s->flags & SEC_LOAD) != 0
5999 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6000 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6001 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6002 {
6003 arelent *p;
6004 long count, i;
6005
6006 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6007 return -1;
6008 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6009 p = s->relocation;
6010 for (i = 0; i < count; i++)
6011 *storage++ = p++;
6012 ret += count;
6013 }
6014 }
6015
6016 *storage = NULL;
6017
6018 return ret;
6019 }
6020 \f
6021 /* Read in the version information. */
6022
6023 bfd_boolean
6024 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6025 {
6026 bfd_byte *contents = NULL;
6027 bfd_size_type amt;
6028 unsigned int freeidx = 0;
6029
6030 if (elf_dynverref (abfd) != 0)
6031 {
6032 Elf_Internal_Shdr *hdr;
6033 Elf_External_Verneed *everneed;
6034 Elf_Internal_Verneed *iverneed;
6035 unsigned int i;
6036
6037 hdr = &elf_tdata (abfd)->dynverref_hdr;
6038
6039 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6040 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6041 if (elf_tdata (abfd)->verref == NULL)
6042 goto error_return;
6043
6044 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6045
6046 contents = bfd_malloc (hdr->sh_size);
6047 if (contents == NULL)
6048 goto error_return;
6049 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6050 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6051 goto error_return;
6052
6053 everneed = (Elf_External_Verneed *) contents;
6054 iverneed = elf_tdata (abfd)->verref;
6055 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6056 {
6057 Elf_External_Vernaux *evernaux;
6058 Elf_Internal_Vernaux *ivernaux;
6059 unsigned int j;
6060
6061 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6062
6063 iverneed->vn_bfd = abfd;
6064
6065 iverneed->vn_filename =
6066 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6067 iverneed->vn_file);
6068 if (iverneed->vn_filename == NULL)
6069 goto error_return;
6070
6071 amt = iverneed->vn_cnt;
6072 amt *= sizeof (Elf_Internal_Vernaux);
6073 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6074
6075 evernaux = ((Elf_External_Vernaux *)
6076 ((bfd_byte *) everneed + iverneed->vn_aux));
6077 ivernaux = iverneed->vn_auxptr;
6078 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6079 {
6080 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6081
6082 ivernaux->vna_nodename =
6083 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6084 ivernaux->vna_name);
6085 if (ivernaux->vna_nodename == NULL)
6086 goto error_return;
6087
6088 if (j + 1 < iverneed->vn_cnt)
6089 ivernaux->vna_nextptr = ivernaux + 1;
6090 else
6091 ivernaux->vna_nextptr = NULL;
6092
6093 evernaux = ((Elf_External_Vernaux *)
6094 ((bfd_byte *) evernaux + ivernaux->vna_next));
6095
6096 if (ivernaux->vna_other > freeidx)
6097 freeidx = ivernaux->vna_other;
6098 }
6099
6100 if (i + 1 < hdr->sh_info)
6101 iverneed->vn_nextref = iverneed + 1;
6102 else
6103 iverneed->vn_nextref = NULL;
6104
6105 everneed = ((Elf_External_Verneed *)
6106 ((bfd_byte *) everneed + iverneed->vn_next));
6107 }
6108
6109 free (contents);
6110 contents = NULL;
6111 }
6112
6113 if (elf_dynverdef (abfd) != 0)
6114 {
6115 Elf_Internal_Shdr *hdr;
6116 Elf_External_Verdef *everdef;
6117 Elf_Internal_Verdef *iverdef;
6118 Elf_Internal_Verdef *iverdefarr;
6119 Elf_Internal_Verdef iverdefmem;
6120 unsigned int i;
6121 unsigned int maxidx;
6122
6123 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6124
6125 contents = bfd_malloc (hdr->sh_size);
6126 if (contents == NULL)
6127 goto error_return;
6128 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6129 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6130 goto error_return;
6131
6132 /* We know the number of entries in the section but not the maximum
6133 index. Therefore we have to run through all entries and find
6134 the maximum. */
6135 everdef = (Elf_External_Verdef *) contents;
6136 maxidx = 0;
6137 for (i = 0; i < hdr->sh_info; ++i)
6138 {
6139 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6140
6141 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6142 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6143
6144 everdef = ((Elf_External_Verdef *)
6145 ((bfd_byte *) everdef + iverdefmem.vd_next));
6146 }
6147
6148 if (default_imported_symver)
6149 {
6150 if (freeidx > maxidx)
6151 maxidx = ++freeidx;
6152 else
6153 freeidx = ++maxidx;
6154 }
6155 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6156 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6157 if (elf_tdata (abfd)->verdef == NULL)
6158 goto error_return;
6159
6160 elf_tdata (abfd)->cverdefs = maxidx;
6161
6162 everdef = (Elf_External_Verdef *) contents;
6163 iverdefarr = elf_tdata (abfd)->verdef;
6164 for (i = 0; i < hdr->sh_info; i++)
6165 {
6166 Elf_External_Verdaux *everdaux;
6167 Elf_Internal_Verdaux *iverdaux;
6168 unsigned int j;
6169
6170 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6171
6172 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6173 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6174
6175 iverdef->vd_bfd = abfd;
6176
6177 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6178 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6179 if (iverdef->vd_auxptr == NULL)
6180 goto error_return;
6181
6182 everdaux = ((Elf_External_Verdaux *)
6183 ((bfd_byte *) everdef + iverdef->vd_aux));
6184 iverdaux = iverdef->vd_auxptr;
6185 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6186 {
6187 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6188
6189 iverdaux->vda_nodename =
6190 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6191 iverdaux->vda_name);
6192 if (iverdaux->vda_nodename == NULL)
6193 goto error_return;
6194
6195 if (j + 1 < iverdef->vd_cnt)
6196 iverdaux->vda_nextptr = iverdaux + 1;
6197 else
6198 iverdaux->vda_nextptr = NULL;
6199
6200 everdaux = ((Elf_External_Verdaux *)
6201 ((bfd_byte *) everdaux + iverdaux->vda_next));
6202 }
6203
6204 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6205
6206 if (i + 1 < hdr->sh_info)
6207 iverdef->vd_nextdef = iverdef + 1;
6208 else
6209 iverdef->vd_nextdef = NULL;
6210
6211 everdef = ((Elf_External_Verdef *)
6212 ((bfd_byte *) everdef + iverdef->vd_next));
6213 }
6214
6215 free (contents);
6216 contents = NULL;
6217 }
6218 else if (default_imported_symver)
6219 {
6220 if (freeidx < 3)
6221 freeidx = 3;
6222 else
6223 freeidx++;
6224
6225 amt = (bfd_size_type) freeidx * sizeof (Elf_Internal_Verdef);
6226 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6227 if (elf_tdata (abfd)->verdef == NULL)
6228 goto error_return;
6229
6230 elf_tdata (abfd)->cverdefs = freeidx;
6231 }
6232
6233 /* Create a default version based on the soname. */
6234 if (default_imported_symver)
6235 {
6236 Elf_Internal_Verdef *iverdef;
6237 Elf_Internal_Verdaux *iverdaux;
6238
6239 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6240
6241 iverdef->vd_version = VER_DEF_CURRENT;
6242 iverdef->vd_flags = 0;
6243 iverdef->vd_ndx = freeidx;
6244 iverdef->vd_cnt = 1;
6245
6246 iverdef->vd_bfd = abfd;
6247
6248 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6249 if (iverdef->vd_nodename == NULL)
6250 goto error_return;
6251 iverdef->vd_nextdef = NULL;
6252 amt = (bfd_size_type) sizeof (Elf_Internal_Verdaux);
6253 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6254
6255 iverdaux = iverdef->vd_auxptr;
6256 iverdaux->vda_nodename = iverdef->vd_nodename;
6257 iverdaux->vda_nextptr = NULL;
6258 }
6259
6260 return TRUE;
6261
6262 error_return:
6263 if (contents != NULL)
6264 free (contents);
6265 return FALSE;
6266 }
6267 \f
6268 asymbol *
6269 _bfd_elf_make_empty_symbol (bfd *abfd)
6270 {
6271 elf_symbol_type *newsym;
6272 bfd_size_type amt = sizeof (elf_symbol_type);
6273
6274 newsym = bfd_zalloc (abfd, amt);
6275 if (!newsym)
6276 return NULL;
6277 else
6278 {
6279 newsym->symbol.the_bfd = abfd;
6280 return &newsym->symbol;
6281 }
6282 }
6283
6284 void
6285 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6286 asymbol *symbol,
6287 symbol_info *ret)
6288 {
6289 bfd_symbol_info (symbol, ret);
6290 }
6291
6292 /* Return whether a symbol name implies a local symbol. Most targets
6293 use this function for the is_local_label_name entry point, but some
6294 override it. */
6295
6296 bfd_boolean
6297 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6298 const char *name)
6299 {
6300 /* Normal local symbols start with ``.L''. */
6301 if (name[0] == '.' && name[1] == 'L')
6302 return TRUE;
6303
6304 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6305 DWARF debugging symbols starting with ``..''. */
6306 if (name[0] == '.' && name[1] == '.')
6307 return TRUE;
6308
6309 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6310 emitting DWARF debugging output. I suspect this is actually a
6311 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6312 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6313 underscore to be emitted on some ELF targets). For ease of use,
6314 we treat such symbols as local. */
6315 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6316 return TRUE;
6317
6318 return FALSE;
6319 }
6320
6321 alent *
6322 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6323 asymbol *symbol ATTRIBUTE_UNUSED)
6324 {
6325 abort ();
6326 return NULL;
6327 }
6328
6329 bfd_boolean
6330 _bfd_elf_set_arch_mach (bfd *abfd,
6331 enum bfd_architecture arch,
6332 unsigned long machine)
6333 {
6334 /* If this isn't the right architecture for this backend, and this
6335 isn't the generic backend, fail. */
6336 if (arch != get_elf_backend_data (abfd)->arch
6337 && arch != bfd_arch_unknown
6338 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6339 return FALSE;
6340
6341 return bfd_default_set_arch_mach (abfd, arch, machine);
6342 }
6343
6344 /* Find the function to a particular section and offset,
6345 for error reporting. */
6346
6347 static bfd_boolean
6348 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6349 asection *section,
6350 asymbol **symbols,
6351 bfd_vma offset,
6352 const char **filename_ptr,
6353 const char **functionname_ptr)
6354 {
6355 const char *filename;
6356 asymbol *func, *file;
6357 bfd_vma low_func;
6358 asymbol **p;
6359 /* ??? Given multiple file symbols, it is impossible to reliably
6360 choose the right file name for global symbols. File symbols are
6361 local symbols, and thus all file symbols must sort before any
6362 global symbols. The ELF spec may be interpreted to say that a
6363 file symbol must sort before other local symbols, but currently
6364 ld -r doesn't do this. So, for ld -r output, it is possible to
6365 make a better choice of file name for local symbols by ignoring
6366 file symbols appearing after a given local symbol. */
6367 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6368
6369 filename = NULL;
6370 func = NULL;
6371 file = NULL;
6372 low_func = 0;
6373 state = nothing_seen;
6374
6375 for (p = symbols; *p != NULL; p++)
6376 {
6377 elf_symbol_type *q;
6378
6379 q = (elf_symbol_type *) *p;
6380
6381 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6382 {
6383 default:
6384 break;
6385 case STT_FILE:
6386 file = &q->symbol;
6387 if (state == symbol_seen)
6388 state = file_after_symbol_seen;
6389 continue;
6390 case STT_SECTION:
6391 continue;
6392 case STT_NOTYPE:
6393 case STT_FUNC:
6394 if (bfd_get_section (&q->symbol) == section
6395 && q->symbol.value >= low_func
6396 && q->symbol.value <= offset)
6397 {
6398 func = (asymbol *) q;
6399 low_func = q->symbol.value;
6400 if (file == NULL)
6401 filename = NULL;
6402 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6403 && state == file_after_symbol_seen)
6404 filename = NULL;
6405 else
6406 filename = bfd_asymbol_name (file);
6407 }
6408 break;
6409 }
6410 if (state == nothing_seen)
6411 state = symbol_seen;
6412 }
6413
6414 if (func == NULL)
6415 return FALSE;
6416
6417 if (filename_ptr)
6418 *filename_ptr = filename;
6419 if (functionname_ptr)
6420 *functionname_ptr = bfd_asymbol_name (func);
6421
6422 return TRUE;
6423 }
6424
6425 /* Find the nearest line to a particular section and offset,
6426 for error reporting. */
6427
6428 bfd_boolean
6429 _bfd_elf_find_nearest_line (bfd *abfd,
6430 asection *section,
6431 asymbol **symbols,
6432 bfd_vma offset,
6433 const char **filename_ptr,
6434 const char **functionname_ptr,
6435 unsigned int *line_ptr)
6436 {
6437 bfd_boolean found;
6438
6439 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6440 filename_ptr, functionname_ptr,
6441 line_ptr))
6442 {
6443 if (!*functionname_ptr)
6444 elf_find_function (abfd, section, symbols, offset,
6445 *filename_ptr ? NULL : filename_ptr,
6446 functionname_ptr);
6447
6448 return TRUE;
6449 }
6450
6451 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6452 filename_ptr, functionname_ptr,
6453 line_ptr, 0,
6454 &elf_tdata (abfd)->dwarf2_find_line_info))
6455 {
6456 if (!*functionname_ptr)
6457 elf_find_function (abfd, section, symbols, offset,
6458 *filename_ptr ? NULL : filename_ptr,
6459 functionname_ptr);
6460
6461 return TRUE;
6462 }
6463
6464 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6465 &found, filename_ptr,
6466 functionname_ptr, line_ptr,
6467 &elf_tdata (abfd)->line_info))
6468 return FALSE;
6469 if (found && (*functionname_ptr || *line_ptr))
6470 return TRUE;
6471
6472 if (symbols == NULL)
6473 return FALSE;
6474
6475 if (! elf_find_function (abfd, section, symbols, offset,
6476 filename_ptr, functionname_ptr))
6477 return FALSE;
6478
6479 *line_ptr = 0;
6480 return TRUE;
6481 }
6482
6483 int
6484 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6485 {
6486 int ret;
6487
6488 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6489 if (! reloc)
6490 ret += get_program_header_size (abfd);
6491 return ret;
6492 }
6493
6494 bfd_boolean
6495 _bfd_elf_set_section_contents (bfd *abfd,
6496 sec_ptr section,
6497 const void *location,
6498 file_ptr offset,
6499 bfd_size_type count)
6500 {
6501 Elf_Internal_Shdr *hdr;
6502 bfd_signed_vma pos;
6503
6504 if (! abfd->output_has_begun
6505 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6506 return FALSE;
6507
6508 hdr = &elf_section_data (section)->this_hdr;
6509 pos = hdr->sh_offset + offset;
6510 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6511 || bfd_bwrite (location, count, abfd) != count)
6512 return FALSE;
6513
6514 return TRUE;
6515 }
6516
6517 void
6518 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6519 arelent *cache_ptr ATTRIBUTE_UNUSED,
6520 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6521 {
6522 abort ();
6523 }
6524
6525 /* Try to convert a non-ELF reloc into an ELF one. */
6526
6527 bfd_boolean
6528 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6529 {
6530 /* Check whether we really have an ELF howto. */
6531
6532 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6533 {
6534 bfd_reloc_code_real_type code;
6535 reloc_howto_type *howto;
6536
6537 /* Alien reloc: Try to determine its type to replace it with an
6538 equivalent ELF reloc. */
6539
6540 if (areloc->howto->pc_relative)
6541 {
6542 switch (areloc->howto->bitsize)
6543 {
6544 case 8:
6545 code = BFD_RELOC_8_PCREL;
6546 break;
6547 case 12:
6548 code = BFD_RELOC_12_PCREL;
6549 break;
6550 case 16:
6551 code = BFD_RELOC_16_PCREL;
6552 break;
6553 case 24:
6554 code = BFD_RELOC_24_PCREL;
6555 break;
6556 case 32:
6557 code = BFD_RELOC_32_PCREL;
6558 break;
6559 case 64:
6560 code = BFD_RELOC_64_PCREL;
6561 break;
6562 default:
6563 goto fail;
6564 }
6565
6566 howto = bfd_reloc_type_lookup (abfd, code);
6567
6568 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6569 {
6570 if (howto->pcrel_offset)
6571 areloc->addend += areloc->address;
6572 else
6573 areloc->addend -= areloc->address; /* addend is unsigned!! */
6574 }
6575 }
6576 else
6577 {
6578 switch (areloc->howto->bitsize)
6579 {
6580 case 8:
6581 code = BFD_RELOC_8;
6582 break;
6583 case 14:
6584 code = BFD_RELOC_14;
6585 break;
6586 case 16:
6587 code = BFD_RELOC_16;
6588 break;
6589 case 26:
6590 code = BFD_RELOC_26;
6591 break;
6592 case 32:
6593 code = BFD_RELOC_32;
6594 break;
6595 case 64:
6596 code = BFD_RELOC_64;
6597 break;
6598 default:
6599 goto fail;
6600 }
6601
6602 howto = bfd_reloc_type_lookup (abfd, code);
6603 }
6604
6605 if (howto)
6606 areloc->howto = howto;
6607 else
6608 goto fail;
6609 }
6610
6611 return TRUE;
6612
6613 fail:
6614 (*_bfd_error_handler)
6615 (_("%B: unsupported relocation type %s"),
6616 abfd, areloc->howto->name);
6617 bfd_set_error (bfd_error_bad_value);
6618 return FALSE;
6619 }
6620
6621 bfd_boolean
6622 _bfd_elf_close_and_cleanup (bfd *abfd)
6623 {
6624 if (bfd_get_format (abfd) == bfd_object)
6625 {
6626 if (elf_shstrtab (abfd) != NULL)
6627 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6628 }
6629
6630 return _bfd_generic_close_and_cleanup (abfd);
6631 }
6632
6633 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6634 in the relocation's offset. Thus we cannot allow any sort of sanity
6635 range-checking to interfere. There is nothing else to do in processing
6636 this reloc. */
6637
6638 bfd_reloc_status_type
6639 _bfd_elf_rel_vtable_reloc_fn
6640 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6641 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6642 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6643 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6644 {
6645 return bfd_reloc_ok;
6646 }
6647 \f
6648 /* Elf core file support. Much of this only works on native
6649 toolchains, since we rely on knowing the
6650 machine-dependent procfs structure in order to pick
6651 out details about the corefile. */
6652
6653 #ifdef HAVE_SYS_PROCFS_H
6654 # include <sys/procfs.h>
6655 #endif
6656
6657 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6658
6659 static int
6660 elfcore_make_pid (bfd *abfd)
6661 {
6662 return ((elf_tdata (abfd)->core_lwpid << 16)
6663 + (elf_tdata (abfd)->core_pid));
6664 }
6665
6666 /* If there isn't a section called NAME, make one, using
6667 data from SECT. Note, this function will generate a
6668 reference to NAME, so you shouldn't deallocate or
6669 overwrite it. */
6670
6671 static bfd_boolean
6672 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6673 {
6674 asection *sect2;
6675
6676 if (bfd_get_section_by_name (abfd, name) != NULL)
6677 return TRUE;
6678
6679 sect2 = bfd_make_section (abfd, name);
6680 if (sect2 == NULL)
6681 return FALSE;
6682
6683 sect2->size = sect->size;
6684 sect2->filepos = sect->filepos;
6685 sect2->flags = sect->flags;
6686 sect2->alignment_power = sect->alignment_power;
6687 return TRUE;
6688 }
6689
6690 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6691 actually creates up to two pseudosections:
6692 - For the single-threaded case, a section named NAME, unless
6693 such a section already exists.
6694 - For the multi-threaded case, a section named "NAME/PID", where
6695 PID is elfcore_make_pid (abfd).
6696 Both pseudosections have identical contents. */
6697 bfd_boolean
6698 _bfd_elfcore_make_pseudosection (bfd *abfd,
6699 char *name,
6700 size_t size,
6701 ufile_ptr filepos)
6702 {
6703 char buf[100];
6704 char *threaded_name;
6705 size_t len;
6706 asection *sect;
6707
6708 /* Build the section name. */
6709
6710 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6711 len = strlen (buf) + 1;
6712 threaded_name = bfd_alloc (abfd, len);
6713 if (threaded_name == NULL)
6714 return FALSE;
6715 memcpy (threaded_name, buf, len);
6716
6717 sect = bfd_make_section_anyway (abfd, threaded_name);
6718 if (sect == NULL)
6719 return FALSE;
6720 sect->size = size;
6721 sect->filepos = filepos;
6722 sect->flags = SEC_HAS_CONTENTS;
6723 sect->alignment_power = 2;
6724
6725 return elfcore_maybe_make_sect (abfd, name, sect);
6726 }
6727
6728 /* prstatus_t exists on:
6729 solaris 2.5+
6730 linux 2.[01] + glibc
6731 unixware 4.2
6732 */
6733
6734 #if defined (HAVE_PRSTATUS_T)
6735
6736 static bfd_boolean
6737 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6738 {
6739 size_t size;
6740 int offset;
6741
6742 if (note->descsz == sizeof (prstatus_t))
6743 {
6744 prstatus_t prstat;
6745
6746 size = sizeof (prstat.pr_reg);
6747 offset = offsetof (prstatus_t, pr_reg);
6748 memcpy (&prstat, note->descdata, sizeof (prstat));
6749
6750 /* Do not overwrite the core signal if it
6751 has already been set by another thread. */
6752 if (elf_tdata (abfd)->core_signal == 0)
6753 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6754 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6755
6756 /* pr_who exists on:
6757 solaris 2.5+
6758 unixware 4.2
6759 pr_who doesn't exist on:
6760 linux 2.[01]
6761 */
6762 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6763 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6764 #endif
6765 }
6766 #if defined (HAVE_PRSTATUS32_T)
6767 else if (note->descsz == sizeof (prstatus32_t))
6768 {
6769 /* 64-bit host, 32-bit corefile */
6770 prstatus32_t prstat;
6771
6772 size = sizeof (prstat.pr_reg);
6773 offset = offsetof (prstatus32_t, pr_reg);
6774 memcpy (&prstat, note->descdata, sizeof (prstat));
6775
6776 /* Do not overwrite the core signal if it
6777 has already been set by another thread. */
6778 if (elf_tdata (abfd)->core_signal == 0)
6779 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6780 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6781
6782 /* pr_who exists on:
6783 solaris 2.5+
6784 unixware 4.2
6785 pr_who doesn't exist on:
6786 linux 2.[01]
6787 */
6788 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6789 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6790 #endif
6791 }
6792 #endif /* HAVE_PRSTATUS32_T */
6793 else
6794 {
6795 /* Fail - we don't know how to handle any other
6796 note size (ie. data object type). */
6797 return TRUE;
6798 }
6799
6800 /* Make a ".reg/999" section and a ".reg" section. */
6801 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6802 size, note->descpos + offset);
6803 }
6804 #endif /* defined (HAVE_PRSTATUS_T) */
6805
6806 /* Create a pseudosection containing the exact contents of NOTE. */
6807 static bfd_boolean
6808 elfcore_make_note_pseudosection (bfd *abfd,
6809 char *name,
6810 Elf_Internal_Note *note)
6811 {
6812 return _bfd_elfcore_make_pseudosection (abfd, name,
6813 note->descsz, note->descpos);
6814 }
6815
6816 /* There isn't a consistent prfpregset_t across platforms,
6817 but it doesn't matter, because we don't have to pick this
6818 data structure apart. */
6819
6820 static bfd_boolean
6821 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6822 {
6823 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6824 }
6825
6826 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6827 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6828 literally. */
6829
6830 static bfd_boolean
6831 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6832 {
6833 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6834 }
6835
6836 #if defined (HAVE_PRPSINFO_T)
6837 typedef prpsinfo_t elfcore_psinfo_t;
6838 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6839 typedef prpsinfo32_t elfcore_psinfo32_t;
6840 #endif
6841 #endif
6842
6843 #if defined (HAVE_PSINFO_T)
6844 typedef psinfo_t elfcore_psinfo_t;
6845 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6846 typedef psinfo32_t elfcore_psinfo32_t;
6847 #endif
6848 #endif
6849
6850 /* return a malloc'ed copy of a string at START which is at
6851 most MAX bytes long, possibly without a terminating '\0'.
6852 the copy will always have a terminating '\0'. */
6853
6854 char *
6855 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6856 {
6857 char *dups;
6858 char *end = memchr (start, '\0', max);
6859 size_t len;
6860
6861 if (end == NULL)
6862 len = max;
6863 else
6864 len = end - start;
6865
6866 dups = bfd_alloc (abfd, len + 1);
6867 if (dups == NULL)
6868 return NULL;
6869
6870 memcpy (dups, start, len);
6871 dups[len] = '\0';
6872
6873 return dups;
6874 }
6875
6876 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6877 static bfd_boolean
6878 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6879 {
6880 if (note->descsz == sizeof (elfcore_psinfo_t))
6881 {
6882 elfcore_psinfo_t psinfo;
6883
6884 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6885
6886 elf_tdata (abfd)->core_program
6887 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6888 sizeof (psinfo.pr_fname));
6889
6890 elf_tdata (abfd)->core_command
6891 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6892 sizeof (psinfo.pr_psargs));
6893 }
6894 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6895 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6896 {
6897 /* 64-bit host, 32-bit corefile */
6898 elfcore_psinfo32_t psinfo;
6899
6900 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6901
6902 elf_tdata (abfd)->core_program
6903 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6904 sizeof (psinfo.pr_fname));
6905
6906 elf_tdata (abfd)->core_command
6907 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6908 sizeof (psinfo.pr_psargs));
6909 }
6910 #endif
6911
6912 else
6913 {
6914 /* Fail - we don't know how to handle any other
6915 note size (ie. data object type). */
6916 return TRUE;
6917 }
6918
6919 /* Note that for some reason, a spurious space is tacked
6920 onto the end of the args in some (at least one anyway)
6921 implementations, so strip it off if it exists. */
6922
6923 {
6924 char *command = elf_tdata (abfd)->core_command;
6925 int n = strlen (command);
6926
6927 if (0 < n && command[n - 1] == ' ')
6928 command[n - 1] = '\0';
6929 }
6930
6931 return TRUE;
6932 }
6933 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6934
6935 #if defined (HAVE_PSTATUS_T)
6936 static bfd_boolean
6937 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6938 {
6939 if (note->descsz == sizeof (pstatus_t)
6940 #if defined (HAVE_PXSTATUS_T)
6941 || note->descsz == sizeof (pxstatus_t)
6942 #endif
6943 )
6944 {
6945 pstatus_t pstat;
6946
6947 memcpy (&pstat, note->descdata, sizeof (pstat));
6948
6949 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6950 }
6951 #if defined (HAVE_PSTATUS32_T)
6952 else if (note->descsz == sizeof (pstatus32_t))
6953 {
6954 /* 64-bit host, 32-bit corefile */
6955 pstatus32_t pstat;
6956
6957 memcpy (&pstat, note->descdata, sizeof (pstat));
6958
6959 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6960 }
6961 #endif
6962 /* Could grab some more details from the "representative"
6963 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6964 NT_LWPSTATUS note, presumably. */
6965
6966 return TRUE;
6967 }
6968 #endif /* defined (HAVE_PSTATUS_T) */
6969
6970 #if defined (HAVE_LWPSTATUS_T)
6971 static bfd_boolean
6972 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6973 {
6974 lwpstatus_t lwpstat;
6975 char buf[100];
6976 char *name;
6977 size_t len;
6978 asection *sect;
6979
6980 if (note->descsz != sizeof (lwpstat)
6981 #if defined (HAVE_LWPXSTATUS_T)
6982 && note->descsz != sizeof (lwpxstatus_t)
6983 #endif
6984 )
6985 return TRUE;
6986
6987 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6988
6989 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6990 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6991
6992 /* Make a ".reg/999" section. */
6993
6994 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6995 len = strlen (buf) + 1;
6996 name = bfd_alloc (abfd, len);
6997 if (name == NULL)
6998 return FALSE;
6999 memcpy (name, buf, len);
7000
7001 sect = bfd_make_section_anyway (abfd, name);
7002 if (sect == NULL)
7003 return FALSE;
7004
7005 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7006 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7007 sect->filepos = note->descpos
7008 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7009 #endif
7010
7011 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7012 sect->size = sizeof (lwpstat.pr_reg);
7013 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7014 #endif
7015
7016 sect->flags = SEC_HAS_CONTENTS;
7017 sect->alignment_power = 2;
7018
7019 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7020 return FALSE;
7021
7022 /* Make a ".reg2/999" section */
7023
7024 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7025 len = strlen (buf) + 1;
7026 name = bfd_alloc (abfd, len);
7027 if (name == NULL)
7028 return FALSE;
7029 memcpy (name, buf, len);
7030
7031 sect = bfd_make_section_anyway (abfd, name);
7032 if (sect == NULL)
7033 return FALSE;
7034
7035 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7036 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7037 sect->filepos = note->descpos
7038 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7039 #endif
7040
7041 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7042 sect->size = sizeof (lwpstat.pr_fpreg);
7043 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7044 #endif
7045
7046 sect->flags = SEC_HAS_CONTENTS;
7047 sect->alignment_power = 2;
7048
7049 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7050 }
7051 #endif /* defined (HAVE_LWPSTATUS_T) */
7052
7053 #if defined (HAVE_WIN32_PSTATUS_T)
7054 static bfd_boolean
7055 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7056 {
7057 char buf[30];
7058 char *name;
7059 size_t len;
7060 asection *sect;
7061 win32_pstatus_t pstatus;
7062
7063 if (note->descsz < sizeof (pstatus))
7064 return TRUE;
7065
7066 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7067
7068 switch (pstatus.data_type)
7069 {
7070 case NOTE_INFO_PROCESS:
7071 /* FIXME: need to add ->core_command. */
7072 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7073 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7074 break;
7075
7076 case NOTE_INFO_THREAD:
7077 /* Make a ".reg/999" section. */
7078 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7079
7080 len = strlen (buf) + 1;
7081 name = bfd_alloc (abfd, len);
7082 if (name == NULL)
7083 return FALSE;
7084
7085 memcpy (name, buf, len);
7086
7087 sect = bfd_make_section_anyway (abfd, name);
7088 if (sect == NULL)
7089 return FALSE;
7090
7091 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7092 sect->filepos = (note->descpos
7093 + offsetof (struct win32_pstatus,
7094 data.thread_info.thread_context));
7095 sect->flags = SEC_HAS_CONTENTS;
7096 sect->alignment_power = 2;
7097
7098 if (pstatus.data.thread_info.is_active_thread)
7099 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7100 return FALSE;
7101 break;
7102
7103 case NOTE_INFO_MODULE:
7104 /* Make a ".module/xxxxxxxx" section. */
7105 sprintf (buf, ".module/%08lx",
7106 (long) pstatus.data.module_info.base_address);
7107
7108 len = strlen (buf) + 1;
7109 name = bfd_alloc (abfd, len);
7110 if (name == NULL)
7111 return FALSE;
7112
7113 memcpy (name, buf, len);
7114
7115 sect = bfd_make_section_anyway (abfd, name);
7116
7117 if (sect == NULL)
7118 return FALSE;
7119
7120 sect->size = note->descsz;
7121 sect->filepos = note->descpos;
7122 sect->flags = SEC_HAS_CONTENTS;
7123 sect->alignment_power = 2;
7124 break;
7125
7126 default:
7127 return TRUE;
7128 }
7129
7130 return TRUE;
7131 }
7132 #endif /* HAVE_WIN32_PSTATUS_T */
7133
7134 static bfd_boolean
7135 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7136 {
7137 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7138
7139 switch (note->type)
7140 {
7141 default:
7142 return TRUE;
7143
7144 case NT_PRSTATUS:
7145 if (bed->elf_backend_grok_prstatus)
7146 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7147 return TRUE;
7148 #if defined (HAVE_PRSTATUS_T)
7149 return elfcore_grok_prstatus (abfd, note);
7150 #else
7151 return TRUE;
7152 #endif
7153
7154 #if defined (HAVE_PSTATUS_T)
7155 case NT_PSTATUS:
7156 return elfcore_grok_pstatus (abfd, note);
7157 #endif
7158
7159 #if defined (HAVE_LWPSTATUS_T)
7160 case NT_LWPSTATUS:
7161 return elfcore_grok_lwpstatus (abfd, note);
7162 #endif
7163
7164 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7165 return elfcore_grok_prfpreg (abfd, note);
7166
7167 #if defined (HAVE_WIN32_PSTATUS_T)
7168 case NT_WIN32PSTATUS:
7169 return elfcore_grok_win32pstatus (abfd, note);
7170 #endif
7171
7172 case NT_PRXFPREG: /* Linux SSE extension */
7173 if (note->namesz == 6
7174 && strcmp (note->namedata, "LINUX") == 0)
7175 return elfcore_grok_prxfpreg (abfd, note);
7176 else
7177 return TRUE;
7178
7179 case NT_PRPSINFO:
7180 case NT_PSINFO:
7181 if (bed->elf_backend_grok_psinfo)
7182 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7183 return TRUE;
7184 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7185 return elfcore_grok_psinfo (abfd, note);
7186 #else
7187 return TRUE;
7188 #endif
7189
7190 case NT_AUXV:
7191 {
7192 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7193
7194 if (sect == NULL)
7195 return FALSE;
7196 sect->size = note->descsz;
7197 sect->filepos = note->descpos;
7198 sect->flags = SEC_HAS_CONTENTS;
7199 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7200
7201 return TRUE;
7202 }
7203 }
7204 }
7205
7206 static bfd_boolean
7207 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7208 {
7209 char *cp;
7210
7211 cp = strchr (note->namedata, '@');
7212 if (cp != NULL)
7213 {
7214 *lwpidp = atoi(cp + 1);
7215 return TRUE;
7216 }
7217 return FALSE;
7218 }
7219
7220 static bfd_boolean
7221 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7222 {
7223
7224 /* Signal number at offset 0x08. */
7225 elf_tdata (abfd)->core_signal
7226 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7227
7228 /* Process ID at offset 0x50. */
7229 elf_tdata (abfd)->core_pid
7230 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7231
7232 /* Command name at 0x7c (max 32 bytes, including nul). */
7233 elf_tdata (abfd)->core_command
7234 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7235
7236 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7237 note);
7238 }
7239
7240 static bfd_boolean
7241 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7242 {
7243 int lwp;
7244
7245 if (elfcore_netbsd_get_lwpid (note, &lwp))
7246 elf_tdata (abfd)->core_lwpid = lwp;
7247
7248 if (note->type == NT_NETBSDCORE_PROCINFO)
7249 {
7250 /* NetBSD-specific core "procinfo". Note that we expect to
7251 find this note before any of the others, which is fine,
7252 since the kernel writes this note out first when it
7253 creates a core file. */
7254
7255 return elfcore_grok_netbsd_procinfo (abfd, note);
7256 }
7257
7258 /* As of Jan 2002 there are no other machine-independent notes
7259 defined for NetBSD core files. If the note type is less
7260 than the start of the machine-dependent note types, we don't
7261 understand it. */
7262
7263 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7264 return TRUE;
7265
7266
7267 switch (bfd_get_arch (abfd))
7268 {
7269 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7270 PT_GETFPREGS == mach+2. */
7271
7272 case bfd_arch_alpha:
7273 case bfd_arch_sparc:
7274 switch (note->type)
7275 {
7276 case NT_NETBSDCORE_FIRSTMACH+0:
7277 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7278
7279 case NT_NETBSDCORE_FIRSTMACH+2:
7280 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7281
7282 default:
7283 return TRUE;
7284 }
7285
7286 /* On all other arch's, PT_GETREGS == mach+1 and
7287 PT_GETFPREGS == mach+3. */
7288
7289 default:
7290 switch (note->type)
7291 {
7292 case NT_NETBSDCORE_FIRSTMACH+1:
7293 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7294
7295 case NT_NETBSDCORE_FIRSTMACH+3:
7296 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7297
7298 default:
7299 return TRUE;
7300 }
7301 }
7302 /* NOTREACHED */
7303 }
7304
7305 static bfd_boolean
7306 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7307 {
7308 void *ddata = note->descdata;
7309 char buf[100];
7310 char *name;
7311 asection *sect;
7312 short sig;
7313 unsigned flags;
7314
7315 /* nto_procfs_status 'pid' field is at offset 0. */
7316 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7317
7318 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7319 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7320
7321 /* nto_procfs_status 'flags' field is at offset 8. */
7322 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7323
7324 /* nto_procfs_status 'what' field is at offset 14. */
7325 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7326 {
7327 elf_tdata (abfd)->core_signal = sig;
7328 elf_tdata (abfd)->core_lwpid = *tid;
7329 }
7330
7331 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7332 do not come from signals so we make sure we set the current
7333 thread just in case. */
7334 if (flags & 0x00000080)
7335 elf_tdata (abfd)->core_lwpid = *tid;
7336
7337 /* Make a ".qnx_core_status/%d" section. */
7338 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7339
7340 name = bfd_alloc (abfd, strlen (buf) + 1);
7341 if (name == NULL)
7342 return FALSE;
7343 strcpy (name, buf);
7344
7345 sect = bfd_make_section_anyway (abfd, name);
7346 if (sect == NULL)
7347 return FALSE;
7348
7349 sect->size = note->descsz;
7350 sect->filepos = note->descpos;
7351 sect->flags = SEC_HAS_CONTENTS;
7352 sect->alignment_power = 2;
7353
7354 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7355 }
7356
7357 static bfd_boolean
7358 elfcore_grok_nto_regs (bfd *abfd,
7359 Elf_Internal_Note *note,
7360 pid_t tid,
7361 char *base)
7362 {
7363 char buf[100];
7364 char *name;
7365 asection *sect;
7366
7367 /* Make a "(base)/%d" section. */
7368 sprintf (buf, "%s/%ld", base, (long) tid);
7369
7370 name = bfd_alloc (abfd, strlen (buf) + 1);
7371 if (name == NULL)
7372 return FALSE;
7373 strcpy (name, buf);
7374
7375 sect = bfd_make_section_anyway (abfd, name);
7376 if (sect == NULL)
7377 return FALSE;
7378
7379 sect->size = note->descsz;
7380 sect->filepos = note->descpos;
7381 sect->flags = SEC_HAS_CONTENTS;
7382 sect->alignment_power = 2;
7383
7384 /* This is the current thread. */
7385 if (elf_tdata (abfd)->core_lwpid == tid)
7386 return elfcore_maybe_make_sect (abfd, base, sect);
7387
7388 return TRUE;
7389 }
7390
7391 #define BFD_QNT_CORE_INFO 7
7392 #define BFD_QNT_CORE_STATUS 8
7393 #define BFD_QNT_CORE_GREG 9
7394 #define BFD_QNT_CORE_FPREG 10
7395
7396 static bfd_boolean
7397 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7398 {
7399 /* Every GREG section has a STATUS section before it. Store the
7400 tid from the previous call to pass down to the next gregs
7401 function. */
7402 static pid_t tid = 1;
7403
7404 switch (note->type)
7405 {
7406 case BFD_QNT_CORE_INFO:
7407 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7408 case BFD_QNT_CORE_STATUS:
7409 return elfcore_grok_nto_status (abfd, note, &tid);
7410 case BFD_QNT_CORE_GREG:
7411 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7412 case BFD_QNT_CORE_FPREG:
7413 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7414 default:
7415 return TRUE;
7416 }
7417 }
7418
7419 /* Function: elfcore_write_note
7420
7421 Inputs:
7422 buffer to hold note
7423 name of note
7424 type of note
7425 data for note
7426 size of data for note
7427
7428 Return:
7429 End of buffer containing note. */
7430
7431 char *
7432 elfcore_write_note (bfd *abfd,
7433 char *buf,
7434 int *bufsiz,
7435 const char *name,
7436 int type,
7437 const void *input,
7438 int size)
7439 {
7440 Elf_External_Note *xnp;
7441 size_t namesz;
7442 size_t pad;
7443 size_t newspace;
7444 char *p, *dest;
7445
7446 namesz = 0;
7447 pad = 0;
7448 if (name != NULL)
7449 {
7450 const struct elf_backend_data *bed;
7451
7452 namesz = strlen (name) + 1;
7453 bed = get_elf_backend_data (abfd);
7454 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7455 }
7456
7457 newspace = 12 + namesz + pad + size;
7458
7459 p = realloc (buf, *bufsiz + newspace);
7460 dest = p + *bufsiz;
7461 *bufsiz += newspace;
7462 xnp = (Elf_External_Note *) dest;
7463 H_PUT_32 (abfd, namesz, xnp->namesz);
7464 H_PUT_32 (abfd, size, xnp->descsz);
7465 H_PUT_32 (abfd, type, xnp->type);
7466 dest = xnp->name;
7467 if (name != NULL)
7468 {
7469 memcpy (dest, name, namesz);
7470 dest += namesz;
7471 while (pad != 0)
7472 {
7473 *dest++ = '\0';
7474 --pad;
7475 }
7476 }
7477 memcpy (dest, input, size);
7478 return p;
7479 }
7480
7481 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7482 char *
7483 elfcore_write_prpsinfo (bfd *abfd,
7484 char *buf,
7485 int *bufsiz,
7486 const char *fname,
7487 const char *psargs)
7488 {
7489 int note_type;
7490 char *note_name = "CORE";
7491
7492 #if defined (HAVE_PSINFO_T)
7493 psinfo_t data;
7494 note_type = NT_PSINFO;
7495 #else
7496 prpsinfo_t data;
7497 note_type = NT_PRPSINFO;
7498 #endif
7499
7500 memset (&data, 0, sizeof (data));
7501 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7502 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7503 return elfcore_write_note (abfd, buf, bufsiz,
7504 note_name, note_type, &data, sizeof (data));
7505 }
7506 #endif /* PSINFO_T or PRPSINFO_T */
7507
7508 #if defined (HAVE_PRSTATUS_T)
7509 char *
7510 elfcore_write_prstatus (bfd *abfd,
7511 char *buf,
7512 int *bufsiz,
7513 long pid,
7514 int cursig,
7515 const void *gregs)
7516 {
7517 prstatus_t prstat;
7518 char *note_name = "CORE";
7519
7520 memset (&prstat, 0, sizeof (prstat));
7521 prstat.pr_pid = pid;
7522 prstat.pr_cursig = cursig;
7523 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7524 return elfcore_write_note (abfd, buf, bufsiz,
7525 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7526 }
7527 #endif /* HAVE_PRSTATUS_T */
7528
7529 #if defined (HAVE_LWPSTATUS_T)
7530 char *
7531 elfcore_write_lwpstatus (bfd *abfd,
7532 char *buf,
7533 int *bufsiz,
7534 long pid,
7535 int cursig,
7536 const void *gregs)
7537 {
7538 lwpstatus_t lwpstat;
7539 char *note_name = "CORE";
7540
7541 memset (&lwpstat, 0, sizeof (lwpstat));
7542 lwpstat.pr_lwpid = pid >> 16;
7543 lwpstat.pr_cursig = cursig;
7544 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7545 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7546 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7547 #if !defined(gregs)
7548 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7549 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7550 #else
7551 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7552 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7553 #endif
7554 #endif
7555 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7556 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7557 }
7558 #endif /* HAVE_LWPSTATUS_T */
7559
7560 #if defined (HAVE_PSTATUS_T)
7561 char *
7562 elfcore_write_pstatus (bfd *abfd,
7563 char *buf,
7564 int *bufsiz,
7565 long pid,
7566 int cursig,
7567 const void *gregs)
7568 {
7569 pstatus_t pstat;
7570 char *note_name = "CORE";
7571
7572 memset (&pstat, 0, sizeof (pstat));
7573 pstat.pr_pid = pid & 0xffff;
7574 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7575 NT_PSTATUS, &pstat, sizeof (pstat));
7576 return buf;
7577 }
7578 #endif /* HAVE_PSTATUS_T */
7579
7580 char *
7581 elfcore_write_prfpreg (bfd *abfd,
7582 char *buf,
7583 int *bufsiz,
7584 const void *fpregs,
7585 int size)
7586 {
7587 char *note_name = "CORE";
7588 return elfcore_write_note (abfd, buf, bufsiz,
7589 note_name, NT_FPREGSET, fpregs, size);
7590 }
7591
7592 char *
7593 elfcore_write_prxfpreg (bfd *abfd,
7594 char *buf,
7595 int *bufsiz,
7596 const void *xfpregs,
7597 int size)
7598 {
7599 char *note_name = "LINUX";
7600 return elfcore_write_note (abfd, buf, bufsiz,
7601 note_name, NT_PRXFPREG, xfpregs, size);
7602 }
7603
7604 static bfd_boolean
7605 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7606 {
7607 char *buf;
7608 char *p;
7609
7610 if (size <= 0)
7611 return TRUE;
7612
7613 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7614 return FALSE;
7615
7616 buf = bfd_malloc (size);
7617 if (buf == NULL)
7618 return FALSE;
7619
7620 if (bfd_bread (buf, size, abfd) != size)
7621 {
7622 error:
7623 free (buf);
7624 return FALSE;
7625 }
7626
7627 p = buf;
7628 while (p < buf + size)
7629 {
7630 /* FIXME: bad alignment assumption. */
7631 Elf_External_Note *xnp = (Elf_External_Note *) p;
7632 Elf_Internal_Note in;
7633
7634 in.type = H_GET_32 (abfd, xnp->type);
7635
7636 in.namesz = H_GET_32 (abfd, xnp->namesz);
7637 in.namedata = xnp->name;
7638
7639 in.descsz = H_GET_32 (abfd, xnp->descsz);
7640 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7641 in.descpos = offset + (in.descdata - buf);
7642
7643 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7644 {
7645 if (! elfcore_grok_netbsd_note (abfd, &in))
7646 goto error;
7647 }
7648 else if (strncmp (in.namedata, "QNX", 3) == 0)
7649 {
7650 if (! elfcore_grok_nto_note (abfd, &in))
7651 goto error;
7652 }
7653 else
7654 {
7655 if (! elfcore_grok_note (abfd, &in))
7656 goto error;
7657 }
7658
7659 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7660 }
7661
7662 free (buf);
7663 return TRUE;
7664 }
7665 \f
7666 /* Providing external access to the ELF program header table. */
7667
7668 /* Return an upper bound on the number of bytes required to store a
7669 copy of ABFD's program header table entries. Return -1 if an error
7670 occurs; bfd_get_error will return an appropriate code. */
7671
7672 long
7673 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7674 {
7675 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7676 {
7677 bfd_set_error (bfd_error_wrong_format);
7678 return -1;
7679 }
7680
7681 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7682 }
7683
7684 /* Copy ABFD's program header table entries to *PHDRS. The entries
7685 will be stored as an array of Elf_Internal_Phdr structures, as
7686 defined in include/elf/internal.h. To find out how large the
7687 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7688
7689 Return the number of program header table entries read, or -1 if an
7690 error occurs; bfd_get_error will return an appropriate code. */
7691
7692 int
7693 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7694 {
7695 int num_phdrs;
7696
7697 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7698 {
7699 bfd_set_error (bfd_error_wrong_format);
7700 return -1;
7701 }
7702
7703 num_phdrs = elf_elfheader (abfd)->e_phnum;
7704 memcpy (phdrs, elf_tdata (abfd)->phdr,
7705 num_phdrs * sizeof (Elf_Internal_Phdr));
7706
7707 return num_phdrs;
7708 }
7709
7710 void
7711 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7712 {
7713 #ifdef BFD64
7714 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7715
7716 i_ehdrp = elf_elfheader (abfd);
7717 if (i_ehdrp == NULL)
7718 sprintf_vma (buf, value);
7719 else
7720 {
7721 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7722 {
7723 #if BFD_HOST_64BIT_LONG
7724 sprintf (buf, "%016lx", value);
7725 #else
7726 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7727 _bfd_int64_low (value));
7728 #endif
7729 }
7730 else
7731 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7732 }
7733 #else
7734 sprintf_vma (buf, value);
7735 #endif
7736 }
7737
7738 void
7739 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7740 {
7741 #ifdef BFD64
7742 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7743
7744 i_ehdrp = elf_elfheader (abfd);
7745 if (i_ehdrp == NULL)
7746 fprintf_vma ((FILE *) stream, value);
7747 else
7748 {
7749 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7750 {
7751 #if BFD_HOST_64BIT_LONG
7752 fprintf ((FILE *) stream, "%016lx", value);
7753 #else
7754 fprintf ((FILE *) stream, "%08lx%08lx",
7755 _bfd_int64_high (value), _bfd_int64_low (value));
7756 #endif
7757 }
7758 else
7759 fprintf ((FILE *) stream, "%08lx",
7760 (unsigned long) (value & 0xffffffff));
7761 }
7762 #else
7763 fprintf_vma ((FILE *) stream, value);
7764 #endif
7765 }
7766
7767 enum elf_reloc_type_class
7768 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7769 {
7770 return reloc_class_normal;
7771 }
7772
7773 /* For RELA architectures, return the relocation value for a
7774 relocation against a local symbol. */
7775
7776 bfd_vma
7777 _bfd_elf_rela_local_sym (bfd *abfd,
7778 Elf_Internal_Sym *sym,
7779 asection **psec,
7780 Elf_Internal_Rela *rel)
7781 {
7782 asection *sec = *psec;
7783 bfd_vma relocation;
7784
7785 relocation = (sec->output_section->vma
7786 + sec->output_offset
7787 + sym->st_value);
7788 if ((sec->flags & SEC_MERGE)
7789 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7790 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7791 {
7792 rel->r_addend =
7793 _bfd_merged_section_offset (abfd, psec,
7794 elf_section_data (sec)->sec_info,
7795 sym->st_value + rel->r_addend);
7796 if (sec != *psec)
7797 {
7798 /* If we have changed the section, and our original section is
7799 marked with SEC_EXCLUDE, it means that the original
7800 SEC_MERGE section has been completely subsumed in some
7801 other SEC_MERGE section. In this case, we need to leave
7802 some info around for --emit-relocs. */
7803 if ((sec->flags & SEC_EXCLUDE) != 0)
7804 sec->kept_section = *psec;
7805 sec = *psec;
7806 }
7807 rel->r_addend -= relocation;
7808 rel->r_addend += sec->output_section->vma + sec->output_offset;
7809 }
7810 return relocation;
7811 }
7812
7813 bfd_vma
7814 _bfd_elf_rel_local_sym (bfd *abfd,
7815 Elf_Internal_Sym *sym,
7816 asection **psec,
7817 bfd_vma addend)
7818 {
7819 asection *sec = *psec;
7820
7821 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7822 return sym->st_value + addend;
7823
7824 return _bfd_merged_section_offset (abfd, psec,
7825 elf_section_data (sec)->sec_info,
7826 sym->st_value + addend);
7827 }
7828
7829 bfd_vma
7830 _bfd_elf_section_offset (bfd *abfd,
7831 struct bfd_link_info *info,
7832 asection *sec,
7833 bfd_vma offset)
7834 {
7835 switch (sec->sec_info_type)
7836 {
7837 case ELF_INFO_TYPE_STABS:
7838 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
7839 offset);
7840 case ELF_INFO_TYPE_EH_FRAME:
7841 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
7842 default:
7843 return offset;
7844 }
7845 }
7846 \f
7847 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7848 reconstruct an ELF file by reading the segments out of remote memory
7849 based on the ELF file header at EHDR_VMA and the ELF program headers it
7850 points to. If not null, *LOADBASEP is filled in with the difference
7851 between the VMAs from which the segments were read, and the VMAs the
7852 file headers (and hence BFD's idea of each section's VMA) put them at.
7853
7854 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7855 remote memory at target address VMA into the local buffer at MYADDR; it
7856 should return zero on success or an `errno' code on failure. TEMPL must
7857 be a BFD for an ELF target with the word size and byte order found in
7858 the remote memory. */
7859
7860 bfd *
7861 bfd_elf_bfd_from_remote_memory
7862 (bfd *templ,
7863 bfd_vma ehdr_vma,
7864 bfd_vma *loadbasep,
7865 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
7866 {
7867 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7868 (templ, ehdr_vma, loadbasep, target_read_memory);
7869 }
7870 \f
7871 long
7872 _bfd_elf_get_synthetic_symtab (bfd *abfd,
7873 long symcount ATTRIBUTE_UNUSED,
7874 asymbol **syms ATTRIBUTE_UNUSED,
7875 long dynsymcount,
7876 asymbol **dynsyms,
7877 asymbol **ret)
7878 {
7879 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7880 asection *relplt;
7881 asymbol *s;
7882 const char *relplt_name;
7883 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7884 arelent *p;
7885 long count, i, n;
7886 size_t size;
7887 Elf_Internal_Shdr *hdr;
7888 char *names;
7889 asection *plt;
7890
7891 *ret = NULL;
7892
7893 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
7894 return 0;
7895
7896 if (dynsymcount <= 0)
7897 return 0;
7898
7899 if (!bed->plt_sym_val)
7900 return 0;
7901
7902 relplt_name = bed->relplt_name;
7903 if (relplt_name == NULL)
7904 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7905 relplt = bfd_get_section_by_name (abfd, relplt_name);
7906 if (relplt == NULL)
7907 return 0;
7908
7909 hdr = &elf_section_data (relplt)->this_hdr;
7910 if (hdr->sh_link != elf_dynsymtab (abfd)
7911 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7912 return 0;
7913
7914 plt = bfd_get_section_by_name (abfd, ".plt");
7915 if (plt == NULL)
7916 return 0;
7917
7918 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7919 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7920 return -1;
7921
7922 count = relplt->size / hdr->sh_entsize;
7923 size = count * sizeof (asymbol);
7924 p = relplt->relocation;
7925 for (i = 0; i < count; i++, s++, p++)
7926 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7927
7928 s = *ret = bfd_malloc (size);
7929 if (s == NULL)
7930 return -1;
7931
7932 names = (char *) (s + count);
7933 p = relplt->relocation;
7934 n = 0;
7935 for (i = 0; i < count; i++, s++, p++)
7936 {
7937 size_t len;
7938 bfd_vma addr;
7939
7940 addr = bed->plt_sym_val (i, plt, p);
7941 if (addr == (bfd_vma) -1)
7942 continue;
7943
7944 *s = **p->sym_ptr_ptr;
7945 s->section = plt;
7946 s->value = addr - plt->vma;
7947 s->name = names;
7948 len = strlen ((*p->sym_ptr_ptr)->name);
7949 memcpy (names, (*p->sym_ptr_ptr)->name, len);
7950 names += len;
7951 memcpy (names, "@plt", sizeof ("@plt"));
7952 names += sizeof ("@plt");
7953 ++n;
7954 }
7955
7956 return n;
7957 }
7958
7959 /* Sort symbol by binding and section. We want to put definitions
7960 sorted by section at the beginning. */
7961
7962 static int
7963 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7964 {
7965 const Elf_Internal_Sym *s1;
7966 const Elf_Internal_Sym *s2;
7967 int shndx;
7968
7969 /* Make sure that undefined symbols are at the end. */
7970 s1 = (const Elf_Internal_Sym *) arg1;
7971 if (s1->st_shndx == SHN_UNDEF)
7972 return 1;
7973 s2 = (const Elf_Internal_Sym *) arg2;
7974 if (s2->st_shndx == SHN_UNDEF)
7975 return -1;
7976
7977 /* Sorted by section index. */
7978 shndx = s1->st_shndx - s2->st_shndx;
7979 if (shndx != 0)
7980 return shndx;
7981
7982 /* Sorted by binding. */
7983 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
7984 }
7985
7986 struct elf_symbol
7987 {
7988 Elf_Internal_Sym *sym;
7989 const char *name;
7990 };
7991
7992 static int
7993 elf_sym_name_compare (const void *arg1, const void *arg2)
7994 {
7995 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7996 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7997 return strcmp (s1->name, s2->name);
7998 }
7999
8000 /* Check if 2 sections define the same set of local and global
8001 symbols. */
8002
8003 bfd_boolean
8004 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8005 {
8006 bfd *bfd1, *bfd2;
8007 const struct elf_backend_data *bed1, *bed2;
8008 Elf_Internal_Shdr *hdr1, *hdr2;
8009 bfd_size_type symcount1, symcount2;
8010 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8011 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8012 Elf_Internal_Sym *isymend;
8013 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8014 bfd_size_type count1, count2, i;
8015 int shndx1, shndx2;
8016 bfd_boolean result;
8017
8018 bfd1 = sec1->owner;
8019 bfd2 = sec2->owner;
8020
8021 /* If both are .gnu.linkonce sections, they have to have the same
8022 section name. */
8023 if (strncmp (sec1->name, ".gnu.linkonce",
8024 sizeof ".gnu.linkonce" - 1) == 0
8025 && strncmp (sec2->name, ".gnu.linkonce",
8026 sizeof ".gnu.linkonce" - 1) == 0)
8027 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8028 sec2->name + sizeof ".gnu.linkonce") == 0;
8029
8030 /* Both sections have to be in ELF. */
8031 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8032 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8033 return FALSE;
8034
8035 if (elf_section_type (sec1) != elf_section_type (sec2))
8036 return FALSE;
8037
8038 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8039 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8040 {
8041 /* If both are members of section groups, they have to have the
8042 same group name. */
8043 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8044 return FALSE;
8045 }
8046
8047 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8048 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8049 if (shndx1 == -1 || shndx2 == -1)
8050 return FALSE;
8051
8052 bed1 = get_elf_backend_data (bfd1);
8053 bed2 = get_elf_backend_data (bfd2);
8054 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8055 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8056 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8057 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8058
8059 if (symcount1 == 0 || symcount2 == 0)
8060 return FALSE;
8061
8062 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8063 NULL, NULL, NULL);
8064 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8065 NULL, NULL, NULL);
8066
8067 result = FALSE;
8068 if (isymbuf1 == NULL || isymbuf2 == NULL)
8069 goto done;
8070
8071 /* Sort symbols by binding and section. Global definitions are at
8072 the beginning. */
8073 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8074 elf_sort_elf_symbol);
8075 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8076 elf_sort_elf_symbol);
8077
8078 /* Count definitions in the section. */
8079 count1 = 0;
8080 for (isym = isymbuf1, isymend = isym + symcount1;
8081 isym < isymend; isym++)
8082 {
8083 if (isym->st_shndx == (unsigned int) shndx1)
8084 {
8085 if (count1 == 0)
8086 isymstart1 = isym;
8087 count1++;
8088 }
8089
8090 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8091 break;
8092 }
8093
8094 count2 = 0;
8095 for (isym = isymbuf2, isymend = isym + symcount2;
8096 isym < isymend; isym++)
8097 {
8098 if (isym->st_shndx == (unsigned int) shndx2)
8099 {
8100 if (count2 == 0)
8101 isymstart2 = isym;
8102 count2++;
8103 }
8104
8105 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8106 break;
8107 }
8108
8109 if (count1 == 0 || count2 == 0 || count1 != count2)
8110 goto done;
8111
8112 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8113 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8114
8115 if (symtable1 == NULL || symtable2 == NULL)
8116 goto done;
8117
8118 symp = symtable1;
8119 for (isym = isymstart1, isymend = isym + count1;
8120 isym < isymend; isym++)
8121 {
8122 symp->sym = isym;
8123 symp->name = bfd_elf_string_from_elf_section (bfd1,
8124 hdr1->sh_link,
8125 isym->st_name);
8126 symp++;
8127 }
8128
8129 symp = symtable2;
8130 for (isym = isymstart2, isymend = isym + count1;
8131 isym < isymend; isym++)
8132 {
8133 symp->sym = isym;
8134 symp->name = bfd_elf_string_from_elf_section (bfd2,
8135 hdr2->sh_link,
8136 isym->st_name);
8137 symp++;
8138 }
8139
8140 /* Sort symbol by name. */
8141 qsort (symtable1, count1, sizeof (struct elf_symbol),
8142 elf_sym_name_compare);
8143 qsort (symtable2, count1, sizeof (struct elf_symbol),
8144 elf_sym_name_compare);
8145
8146 for (i = 0; i < count1; i++)
8147 /* Two symbols must have the same binding, type and name. */
8148 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8149 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8150 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8151 goto done;
8152
8153 result = TRUE;
8154
8155 done:
8156 if (symtable1)
8157 free (symtable1);
8158 if (symtable2)
8159 free (symtable2);
8160 if (isymbuf1)
8161 free (isymbuf1);
8162 if (isymbuf2)
8163 free (isymbuf2);
8164
8165 return result;
8166 }
This page took 0.214071 seconds and 5 git commands to generate.