* dwarf2.c (read_abbrevs): If bfd_realloc fails, free currently allocated memory
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static bfd_byte *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 bfd_byte *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 bfd_byte *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return NULL;
263
264 shstrtab = i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return (char *) shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
295 (*_bfd_error_handler)
296 (_("%B: invalid string offset %u >= %lu for section `%s'"),
297 abfd, strindex, (unsigned long) hdr->sh_size,
298 (shindex == shstrndx && strindex == hdr->sh_name
299 ? ".shstrtab"
300 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_sym_name (bfd *abfd,
409 Elf_Internal_Shdr *symtab_hdr,
410 Elf_Internal_Sym *isym,
411 asection *sym_sec)
412 {
413 const char *name;
414 unsigned int iname = isym->st_name;
415 unsigned int shindex = symtab_hdr->sh_link;
416
417 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
418 /* Check for a bogus st_shndx to avoid crashing. */
419 && isym->st_shndx < elf_numsections (abfd)
420 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
421 {
422 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
423 shindex = elf_elfheader (abfd)->e_shstrndx;
424 }
425
426 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
427 if (name == NULL)
428 name = "(null)";
429 else if (sym_sec && *name == '\0')
430 name = bfd_section_name (abfd, sym_sec);
431
432 return name;
433 }
434
435 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
436 sections. The first element is the flags, the rest are section
437 pointers. */
438
439 typedef union elf_internal_group {
440 Elf_Internal_Shdr *shdr;
441 unsigned int flags;
442 } Elf_Internal_Group;
443
444 /* Return the name of the group signature symbol. Why isn't the
445 signature just a string? */
446
447 static const char *
448 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
449 {
450 Elf_Internal_Shdr *hdr;
451 unsigned char esym[sizeof (Elf64_External_Sym)];
452 Elf_External_Sym_Shndx eshndx;
453 Elf_Internal_Sym isym;
454
455 /* First we need to ensure the symbol table is available. */
456 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
457 return NULL;
458
459 /* Go read the symbol. */
460 hdr = &elf_tdata (abfd)->symtab_hdr;
461 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
462 &isym, esym, &eshndx) == NULL)
463 return NULL;
464
465 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
466 }
467
468 /* Set next_in_group list pointer, and group name for NEWSECT. */
469
470 static bfd_boolean
471 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
472 {
473 unsigned int num_group = elf_tdata (abfd)->num_group;
474
475 /* If num_group is zero, read in all SHT_GROUP sections. The count
476 is set to -1 if there are no SHT_GROUP sections. */
477 if (num_group == 0)
478 {
479 unsigned int i, shnum;
480
481 /* First count the number of groups. If we have a SHT_GROUP
482 section with just a flag word (ie. sh_size is 4), ignore it. */
483 shnum = elf_numsections (abfd);
484 num_group = 0;
485 for (i = 0; i < shnum; i++)
486 {
487 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
488 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
489 num_group += 1;
490 }
491
492 if (num_group == 0)
493 {
494 num_group = (unsigned) -1;
495 elf_tdata (abfd)->num_group = num_group;
496 }
497 else
498 {
499 /* We keep a list of elf section headers for group sections,
500 so we can find them quickly. */
501 bfd_size_type amt;
502
503 elf_tdata (abfd)->num_group = num_group;
504 amt = num_group * sizeof (Elf_Internal_Shdr *);
505 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
506 if (elf_tdata (abfd)->group_sect_ptr == NULL)
507 return FALSE;
508
509 num_group = 0;
510 for (i = 0; i < shnum; i++)
511 {
512 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
513 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
514 {
515 unsigned char *src;
516 Elf_Internal_Group *dest;
517
518 /* Add to list of sections. */
519 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
520 num_group += 1;
521
522 /* Read the raw contents. */
523 BFD_ASSERT (sizeof (*dest) >= 4);
524 amt = shdr->sh_size * sizeof (*dest) / 4;
525 shdr->contents = bfd_alloc (abfd, amt);
526 if (shdr->contents == NULL
527 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
528 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
529 != shdr->sh_size))
530 return FALSE;
531
532 /* Translate raw contents, a flag word followed by an
533 array of elf section indices all in target byte order,
534 to the flag word followed by an array of elf section
535 pointers. */
536 src = shdr->contents + shdr->sh_size;
537 dest = (Elf_Internal_Group *) (shdr->contents + amt);
538 while (1)
539 {
540 unsigned int idx;
541
542 src -= 4;
543 --dest;
544 idx = H_GET_32 (abfd, src);
545 if (src == shdr->contents)
546 {
547 dest->flags = idx;
548 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
549 shdr->bfd_section->flags
550 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
551 break;
552 }
553 if (idx >= shnum)
554 {
555 ((*_bfd_error_handler)
556 (_("%B: invalid SHT_GROUP entry"), abfd));
557 idx = 0;
558 }
559 dest->shdr = elf_elfsections (abfd)[idx];
560 }
561 }
562 }
563 }
564 }
565
566 if (num_group != (unsigned) -1)
567 {
568 unsigned int i;
569
570 for (i = 0; i < num_group; i++)
571 {
572 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
573 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
574 unsigned int n_elt = shdr->sh_size / 4;
575
576 /* Look through this group's sections to see if current
577 section is a member. */
578 while (--n_elt != 0)
579 if ((++idx)->shdr == hdr)
580 {
581 asection *s = NULL;
582
583 /* We are a member of this group. Go looking through
584 other members to see if any others are linked via
585 next_in_group. */
586 idx = (Elf_Internal_Group *) shdr->contents;
587 n_elt = shdr->sh_size / 4;
588 while (--n_elt != 0)
589 if ((s = (++idx)->shdr->bfd_section) != NULL
590 && elf_next_in_group (s) != NULL)
591 break;
592 if (n_elt != 0)
593 {
594 /* Snarf the group name from other member, and
595 insert current section in circular list. */
596 elf_group_name (newsect) = elf_group_name (s);
597 elf_next_in_group (newsect) = elf_next_in_group (s);
598 elf_next_in_group (s) = newsect;
599 }
600 else
601 {
602 const char *gname;
603
604 gname = group_signature (abfd, shdr);
605 if (gname == NULL)
606 return FALSE;
607 elf_group_name (newsect) = gname;
608
609 /* Start a circular list with one element. */
610 elf_next_in_group (newsect) = newsect;
611 }
612
613 /* If the group section has been created, point to the
614 new member. */
615 if (shdr->bfd_section != NULL)
616 elf_next_in_group (shdr->bfd_section) = newsect;
617
618 i = num_group - 1;
619 break;
620 }
621 }
622 }
623
624 if (elf_group_name (newsect) == NULL)
625 {
626 (*_bfd_error_handler) (_("%B: no group info for section %A"),
627 abfd, newsect);
628 }
629 return TRUE;
630 }
631
632 bfd_boolean
633 _bfd_elf_setup_group_pointers (bfd *abfd)
634 {
635 unsigned int i;
636 unsigned int num_group = elf_tdata (abfd)->num_group;
637 bfd_boolean result = TRUE;
638
639 if (num_group == (unsigned) -1)
640 return result;
641
642 for (i = 0; i < num_group; i++)
643 {
644 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
645 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
646 unsigned int n_elt = shdr->sh_size / 4;
647
648 while (--n_elt != 0)
649 if ((++idx)->shdr->bfd_section)
650 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
651 else if (idx->shdr->sh_type == SHT_RELA
652 || idx->shdr->sh_type == SHT_REL)
653 /* We won't include relocation sections in section groups in
654 output object files. We adjust the group section size here
655 so that relocatable link will work correctly when
656 relocation sections are in section group in input object
657 files. */
658 shdr->bfd_section->size -= 4;
659 else
660 {
661 /* There are some unknown sections in the group. */
662 (*_bfd_error_handler)
663 (_("%B: unknown [%d] section `%s' in group [%s]"),
664 abfd,
665 (unsigned int) idx->shdr->sh_type,
666 bfd_elf_string_from_elf_section (abfd,
667 (elf_elfheader (abfd)
668 ->e_shstrndx),
669 idx->shdr->sh_name),
670 shdr->bfd_section->name);
671 result = FALSE;
672 }
673 }
674 return result;
675 }
676
677 bfd_boolean
678 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
679 {
680 return elf_next_in_group (sec) != NULL;
681 }
682
683 /* Make a BFD section from an ELF section. We store a pointer to the
684 BFD section in the bfd_section field of the header. */
685
686 bfd_boolean
687 _bfd_elf_make_section_from_shdr (bfd *abfd,
688 Elf_Internal_Shdr *hdr,
689 const char *name,
690 int shindex)
691 {
692 asection *newsect;
693 flagword flags;
694 const struct elf_backend_data *bed;
695
696 if (hdr->bfd_section != NULL)
697 {
698 BFD_ASSERT (strcmp (name,
699 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
700 return TRUE;
701 }
702
703 newsect = bfd_make_section_anyway (abfd, name);
704 if (newsect == NULL)
705 return FALSE;
706
707 hdr->bfd_section = newsect;
708 elf_section_data (newsect)->this_hdr = *hdr;
709 elf_section_data (newsect)->this_idx = shindex;
710
711 /* Always use the real type/flags. */
712 elf_section_type (newsect) = hdr->sh_type;
713 elf_section_flags (newsect) = hdr->sh_flags;
714
715 newsect->filepos = hdr->sh_offset;
716
717 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
718 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
719 || ! bfd_set_section_alignment (abfd, newsect,
720 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
721 return FALSE;
722
723 flags = SEC_NO_FLAGS;
724 if (hdr->sh_type != SHT_NOBITS)
725 flags |= SEC_HAS_CONTENTS;
726 if (hdr->sh_type == SHT_GROUP)
727 flags |= SEC_GROUP | SEC_EXCLUDE;
728 if ((hdr->sh_flags & SHF_ALLOC) != 0)
729 {
730 flags |= SEC_ALLOC;
731 if (hdr->sh_type != SHT_NOBITS)
732 flags |= SEC_LOAD;
733 }
734 if ((hdr->sh_flags & SHF_WRITE) == 0)
735 flags |= SEC_READONLY;
736 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
737 flags |= SEC_CODE;
738 else if ((flags & SEC_LOAD) != 0)
739 flags |= SEC_DATA;
740 if ((hdr->sh_flags & SHF_MERGE) != 0)
741 {
742 flags |= SEC_MERGE;
743 newsect->entsize = hdr->sh_entsize;
744 if ((hdr->sh_flags & SHF_STRINGS) != 0)
745 flags |= SEC_STRINGS;
746 }
747 if (hdr->sh_flags & SHF_GROUP)
748 if (!setup_group (abfd, hdr, newsect))
749 return FALSE;
750 if ((hdr->sh_flags & SHF_TLS) != 0)
751 flags |= SEC_THREAD_LOCAL;
752
753 /* The debugging sections appear to be recognized only by name, not
754 any sort of flag. */
755 {
756 static const char *debug_sec_names [] =
757 {
758 ".debug",
759 ".gnu.linkonce.wi.",
760 ".line",
761 ".stab"
762 };
763 int i;
764
765 for (i = ARRAY_SIZE (debug_sec_names); i--;)
766 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
767 break;
768
769 if (i >= 0)
770 flags |= SEC_DEBUGGING;
771 }
772
773 /* As a GNU extension, if the name begins with .gnu.linkonce, we
774 only link a single copy of the section. This is used to support
775 g++. g++ will emit each template expansion in its own section.
776 The symbols will be defined as weak, so that multiple definitions
777 are permitted. The GNU linker extension is to actually discard
778 all but one of the sections. */
779 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
780 && elf_next_in_group (newsect) == NULL)
781 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
782
783 bed = get_elf_backend_data (abfd);
784 if (bed->elf_backend_section_flags)
785 if (! bed->elf_backend_section_flags (&flags, hdr))
786 return FALSE;
787
788 if (! bfd_set_section_flags (abfd, newsect, flags))
789 return FALSE;
790
791 if ((flags & SEC_ALLOC) != 0)
792 {
793 Elf_Internal_Phdr *phdr;
794 unsigned int i;
795
796 /* Look through the phdrs to see if we need to adjust the lma.
797 If all the p_paddr fields are zero, we ignore them, since
798 some ELF linkers produce such output. */
799 phdr = elf_tdata (abfd)->phdr;
800 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
801 {
802 if (phdr->p_paddr != 0)
803 break;
804 }
805 if (i < elf_elfheader (abfd)->e_phnum)
806 {
807 phdr = elf_tdata (abfd)->phdr;
808 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
809 {
810 /* This section is part of this segment if its file
811 offset plus size lies within the segment's memory
812 span and, if the section is loaded, the extent of the
813 loaded data lies within the extent of the segment.
814
815 Note - we used to check the p_paddr field as well, and
816 refuse to set the LMA if it was 0. This is wrong
817 though, as a perfectly valid initialised segment can
818 have a p_paddr of zero. Some architectures, eg ARM,
819 place special significance on the address 0 and
820 executables need to be able to have a segment which
821 covers this address. */
822 if (phdr->p_type == PT_LOAD
823 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
824 && (hdr->sh_offset + hdr->sh_size
825 <= phdr->p_offset + phdr->p_memsz)
826 && ((flags & SEC_LOAD) == 0
827 || (hdr->sh_offset + hdr->sh_size
828 <= phdr->p_offset + phdr->p_filesz)))
829 {
830 if ((flags & SEC_LOAD) == 0)
831 newsect->lma = (phdr->p_paddr
832 + hdr->sh_addr - phdr->p_vaddr);
833 else
834 /* We used to use the same adjustment for SEC_LOAD
835 sections, but that doesn't work if the segment
836 is packed with code from multiple VMAs.
837 Instead we calculate the section LMA based on
838 the segment LMA. It is assumed that the
839 segment will contain sections with contiguous
840 LMAs, even if the VMAs are not. */
841 newsect->lma = (phdr->p_paddr
842 + hdr->sh_offset - phdr->p_offset);
843
844 /* With contiguous segments, we can't tell from file
845 offsets whether a section with zero size should
846 be placed at the end of one segment or the
847 beginning of the next. Decide based on vaddr. */
848 if (hdr->sh_addr >= phdr->p_vaddr
849 && (hdr->sh_addr + hdr->sh_size
850 <= phdr->p_vaddr + phdr->p_memsz))
851 break;
852 }
853 }
854 }
855 }
856
857 return TRUE;
858 }
859
860 /*
861 INTERNAL_FUNCTION
862 bfd_elf_find_section
863
864 SYNOPSIS
865 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
866
867 DESCRIPTION
868 Helper functions for GDB to locate the string tables.
869 Since BFD hides string tables from callers, GDB needs to use an
870 internal hook to find them. Sun's .stabstr, in particular,
871 isn't even pointed to by the .stab section, so ordinary
872 mechanisms wouldn't work to find it, even if we had some.
873 */
874
875 struct elf_internal_shdr *
876 bfd_elf_find_section (bfd *abfd, char *name)
877 {
878 Elf_Internal_Shdr **i_shdrp;
879 char *shstrtab;
880 unsigned int max;
881 unsigned int i;
882
883 i_shdrp = elf_elfsections (abfd);
884 if (i_shdrp != NULL)
885 {
886 shstrtab = bfd_elf_get_str_section (abfd,
887 elf_elfheader (abfd)->e_shstrndx);
888 if (shstrtab != NULL)
889 {
890 max = elf_numsections (abfd);
891 for (i = 1; i < max; i++)
892 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
893 return i_shdrp[i];
894 }
895 }
896 return 0;
897 }
898
899 const char *const bfd_elf_section_type_names[] = {
900 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
901 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
902 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
903 };
904
905 /* ELF relocs are against symbols. If we are producing relocatable
906 output, and the reloc is against an external symbol, and nothing
907 has given us any additional addend, the resulting reloc will also
908 be against the same symbol. In such a case, we don't want to
909 change anything about the way the reloc is handled, since it will
910 all be done at final link time. Rather than put special case code
911 into bfd_perform_relocation, all the reloc types use this howto
912 function. It just short circuits the reloc if producing
913 relocatable output against an external symbol. */
914
915 bfd_reloc_status_type
916 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
917 arelent *reloc_entry,
918 asymbol *symbol,
919 void *data ATTRIBUTE_UNUSED,
920 asection *input_section,
921 bfd *output_bfd,
922 char **error_message ATTRIBUTE_UNUSED)
923 {
924 if (output_bfd != NULL
925 && (symbol->flags & BSF_SECTION_SYM) == 0
926 && (! reloc_entry->howto->partial_inplace
927 || reloc_entry->addend == 0))
928 {
929 reloc_entry->address += input_section->output_offset;
930 return bfd_reloc_ok;
931 }
932
933 return bfd_reloc_continue;
934 }
935 \f
936 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
937
938 static void
939 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
940 asection *sec)
941 {
942 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
943 sec->sec_info_type = ELF_INFO_TYPE_NONE;
944 }
945
946 /* Finish SHF_MERGE section merging. */
947
948 bfd_boolean
949 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
950 {
951 bfd *ibfd;
952 asection *sec;
953
954 if (!is_elf_hash_table (info->hash))
955 return FALSE;
956
957 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
958 if ((ibfd->flags & DYNAMIC) == 0)
959 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
960 if ((sec->flags & SEC_MERGE) != 0
961 && !bfd_is_abs_section (sec->output_section))
962 {
963 struct bfd_elf_section_data *secdata;
964
965 secdata = elf_section_data (sec);
966 if (! _bfd_add_merge_section (abfd,
967 &elf_hash_table (info)->merge_info,
968 sec, &secdata->sec_info))
969 return FALSE;
970 else if (secdata->sec_info)
971 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
972 }
973
974 if (elf_hash_table (info)->merge_info != NULL)
975 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
976 merge_sections_remove_hook);
977 return TRUE;
978 }
979
980 void
981 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
982 {
983 sec->output_section = bfd_abs_section_ptr;
984 sec->output_offset = sec->vma;
985 if (!is_elf_hash_table (info->hash))
986 return;
987
988 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
989 }
990 \f
991 /* Copy the program header and other data from one object module to
992 another. */
993
994 bfd_boolean
995 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
996 {
997 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
998 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
999 return TRUE;
1000
1001 BFD_ASSERT (!elf_flags_init (obfd)
1002 || (elf_elfheader (obfd)->e_flags
1003 == elf_elfheader (ibfd)->e_flags));
1004
1005 elf_gp (obfd) = elf_gp (ibfd);
1006 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1007 elf_flags_init (obfd) = TRUE;
1008 return TRUE;
1009 }
1010
1011 /* Print out the program headers. */
1012
1013 bfd_boolean
1014 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1015 {
1016 FILE *f = farg;
1017 Elf_Internal_Phdr *p;
1018 asection *s;
1019 bfd_byte *dynbuf = NULL;
1020
1021 p = elf_tdata (abfd)->phdr;
1022 if (p != NULL)
1023 {
1024 unsigned int i, c;
1025
1026 fprintf (f, _("\nProgram Header:\n"));
1027 c = elf_elfheader (abfd)->e_phnum;
1028 for (i = 0; i < c; i++, p++)
1029 {
1030 const char *pt;
1031 char buf[20];
1032
1033 switch (p->p_type)
1034 {
1035 case PT_NULL: pt = "NULL"; break;
1036 case PT_LOAD: pt = "LOAD"; break;
1037 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1038 case PT_INTERP: pt = "INTERP"; break;
1039 case PT_NOTE: pt = "NOTE"; break;
1040 case PT_SHLIB: pt = "SHLIB"; break;
1041 case PT_PHDR: pt = "PHDR"; break;
1042 case PT_TLS: pt = "TLS"; break;
1043 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1044 case PT_GNU_STACK: pt = "STACK"; break;
1045 case PT_GNU_RELRO: pt = "RELRO"; break;
1046 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1047 }
1048 fprintf (f, "%8s off 0x", pt);
1049 bfd_fprintf_vma (abfd, f, p->p_offset);
1050 fprintf (f, " vaddr 0x");
1051 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1052 fprintf (f, " paddr 0x");
1053 bfd_fprintf_vma (abfd, f, p->p_paddr);
1054 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1055 fprintf (f, " filesz 0x");
1056 bfd_fprintf_vma (abfd, f, p->p_filesz);
1057 fprintf (f, " memsz 0x");
1058 bfd_fprintf_vma (abfd, f, p->p_memsz);
1059 fprintf (f, " flags %c%c%c",
1060 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1061 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1062 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1063 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1064 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1065 fprintf (f, "\n");
1066 }
1067 }
1068
1069 s = bfd_get_section_by_name (abfd, ".dynamic");
1070 if (s != NULL)
1071 {
1072 int elfsec;
1073 unsigned long shlink;
1074 bfd_byte *extdyn, *extdynend;
1075 size_t extdynsize;
1076 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1077
1078 fprintf (f, _("\nDynamic Section:\n"));
1079
1080 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1081 goto error_return;
1082
1083 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1084 if (elfsec == -1)
1085 goto error_return;
1086 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1087
1088 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1089 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1090
1091 extdyn = dynbuf;
1092 extdynend = extdyn + s->size;
1093 for (; extdyn < extdynend; extdyn += extdynsize)
1094 {
1095 Elf_Internal_Dyn dyn;
1096 const char *name;
1097 char ab[20];
1098 bfd_boolean stringp;
1099
1100 (*swap_dyn_in) (abfd, extdyn, &dyn);
1101
1102 if (dyn.d_tag == DT_NULL)
1103 break;
1104
1105 stringp = FALSE;
1106 switch (dyn.d_tag)
1107 {
1108 default:
1109 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1110 name = ab;
1111 break;
1112
1113 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1114 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1115 case DT_PLTGOT: name = "PLTGOT"; break;
1116 case DT_HASH: name = "HASH"; break;
1117 case DT_STRTAB: name = "STRTAB"; break;
1118 case DT_SYMTAB: name = "SYMTAB"; break;
1119 case DT_RELA: name = "RELA"; break;
1120 case DT_RELASZ: name = "RELASZ"; break;
1121 case DT_RELAENT: name = "RELAENT"; break;
1122 case DT_STRSZ: name = "STRSZ"; break;
1123 case DT_SYMENT: name = "SYMENT"; break;
1124 case DT_INIT: name = "INIT"; break;
1125 case DT_FINI: name = "FINI"; break;
1126 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1127 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1128 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1129 case DT_REL: name = "REL"; break;
1130 case DT_RELSZ: name = "RELSZ"; break;
1131 case DT_RELENT: name = "RELENT"; break;
1132 case DT_PLTREL: name = "PLTREL"; break;
1133 case DT_DEBUG: name = "DEBUG"; break;
1134 case DT_TEXTREL: name = "TEXTREL"; break;
1135 case DT_JMPREL: name = "JMPREL"; break;
1136 case DT_BIND_NOW: name = "BIND_NOW"; break;
1137 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1138 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1139 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1140 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1141 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1142 case DT_FLAGS: name = "FLAGS"; break;
1143 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1144 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1145 case DT_CHECKSUM: name = "CHECKSUM"; break;
1146 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1147 case DT_MOVEENT: name = "MOVEENT"; break;
1148 case DT_MOVESZ: name = "MOVESZ"; break;
1149 case DT_FEATURE: name = "FEATURE"; break;
1150 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1151 case DT_SYMINSZ: name = "SYMINSZ"; break;
1152 case DT_SYMINENT: name = "SYMINENT"; break;
1153 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1154 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1155 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1156 case DT_PLTPAD: name = "PLTPAD"; break;
1157 case DT_MOVETAB: name = "MOVETAB"; break;
1158 case DT_SYMINFO: name = "SYMINFO"; break;
1159 case DT_RELACOUNT: name = "RELACOUNT"; break;
1160 case DT_RELCOUNT: name = "RELCOUNT"; break;
1161 case DT_FLAGS_1: name = "FLAGS_1"; break;
1162 case DT_VERSYM: name = "VERSYM"; break;
1163 case DT_VERDEF: name = "VERDEF"; break;
1164 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1165 case DT_VERNEED: name = "VERNEED"; break;
1166 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1167 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1168 case DT_USED: name = "USED"; break;
1169 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1170 }
1171
1172 fprintf (f, " %-11s ", name);
1173 if (! stringp)
1174 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1175 else
1176 {
1177 const char *string;
1178 unsigned int tagv = dyn.d_un.d_val;
1179
1180 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1181 if (string == NULL)
1182 goto error_return;
1183 fprintf (f, "%s", string);
1184 }
1185 fprintf (f, "\n");
1186 }
1187
1188 free (dynbuf);
1189 dynbuf = NULL;
1190 }
1191
1192 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1193 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1194 {
1195 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1196 return FALSE;
1197 }
1198
1199 if (elf_dynverdef (abfd) != 0)
1200 {
1201 Elf_Internal_Verdef *t;
1202
1203 fprintf (f, _("\nVersion definitions:\n"));
1204 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1205 {
1206 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1207 t->vd_flags, t->vd_hash, t->vd_nodename);
1208 if (t->vd_auxptr->vda_nextptr != NULL)
1209 {
1210 Elf_Internal_Verdaux *a;
1211
1212 fprintf (f, "\t");
1213 for (a = t->vd_auxptr->vda_nextptr;
1214 a != NULL;
1215 a = a->vda_nextptr)
1216 fprintf (f, "%s ", a->vda_nodename);
1217 fprintf (f, "\n");
1218 }
1219 }
1220 }
1221
1222 if (elf_dynverref (abfd) != 0)
1223 {
1224 Elf_Internal_Verneed *t;
1225
1226 fprintf (f, _("\nVersion References:\n"));
1227 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1228 {
1229 Elf_Internal_Vernaux *a;
1230
1231 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1232 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1233 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1234 a->vna_flags, a->vna_other, a->vna_nodename);
1235 }
1236 }
1237
1238 return TRUE;
1239
1240 error_return:
1241 if (dynbuf != NULL)
1242 free (dynbuf);
1243 return FALSE;
1244 }
1245
1246 /* Display ELF-specific fields of a symbol. */
1247
1248 void
1249 bfd_elf_print_symbol (bfd *abfd,
1250 void *filep,
1251 asymbol *symbol,
1252 bfd_print_symbol_type how)
1253 {
1254 FILE *file = filep;
1255 switch (how)
1256 {
1257 case bfd_print_symbol_name:
1258 fprintf (file, "%s", symbol->name);
1259 break;
1260 case bfd_print_symbol_more:
1261 fprintf (file, "elf ");
1262 bfd_fprintf_vma (abfd, file, symbol->value);
1263 fprintf (file, " %lx", (long) symbol->flags);
1264 break;
1265 case bfd_print_symbol_all:
1266 {
1267 const char *section_name;
1268 const char *name = NULL;
1269 const struct elf_backend_data *bed;
1270 unsigned char st_other;
1271 bfd_vma val;
1272
1273 section_name = symbol->section ? symbol->section->name : "(*none*)";
1274
1275 bed = get_elf_backend_data (abfd);
1276 if (bed->elf_backend_print_symbol_all)
1277 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1278
1279 if (name == NULL)
1280 {
1281 name = symbol->name;
1282 bfd_print_symbol_vandf (abfd, file, symbol);
1283 }
1284
1285 fprintf (file, " %s\t", section_name);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol->section))
1291 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1292 else
1293 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1294 bfd_fprintf_vma (abfd, file, val);
1295
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd)->dynversym_section != 0
1298 && (elf_tdata (abfd)->dynverdef_section != 0
1299 || elf_tdata (abfd)->dynverref_section != 0))
1300 {
1301 unsigned int vernum;
1302 const char *version_string;
1303
1304 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1305
1306 if (vernum == 0)
1307 version_string = "";
1308 else if (vernum == 1)
1309 version_string = "Base";
1310 else if (vernum <= elf_tdata (abfd)->cverdefs)
1311 version_string =
1312 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1313 else
1314 {
1315 Elf_Internal_Verneed *t;
1316
1317 version_string = "";
1318 for (t = elf_tdata (abfd)->verref;
1319 t != NULL;
1320 t = t->vn_nextref)
1321 {
1322 Elf_Internal_Vernaux *a;
1323
1324 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1325 {
1326 if (a->vna_other == vernum)
1327 {
1328 version_string = a->vna_nodename;
1329 break;
1330 }
1331 }
1332 }
1333 }
1334
1335 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1336 fprintf (file, " %-11s", version_string);
1337 else
1338 {
1339 int i;
1340
1341 fprintf (file, " (%s)", version_string);
1342 for (i = 10 - strlen (version_string); i > 0; --i)
1343 putc (' ', file);
1344 }
1345 }
1346
1347 /* If the st_other field is not zero, print it. */
1348 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1349
1350 switch (st_other)
1351 {
1352 case 0: break;
1353 case STV_INTERNAL: fprintf (file, " .internal"); break;
1354 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1355 case STV_PROTECTED: fprintf (file, " .protected"); break;
1356 default:
1357 /* Some other non-defined flags are also present, so print
1358 everything hex. */
1359 fprintf (file, " 0x%02x", (unsigned int) st_other);
1360 }
1361
1362 fprintf (file, " %s", name);
1363 }
1364 break;
1365 }
1366 }
1367 \f
1368 /* Create an entry in an ELF linker hash table. */
1369
1370 struct bfd_hash_entry *
1371 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1372 struct bfd_hash_table *table,
1373 const char *string)
1374 {
1375 /* Allocate the structure if it has not already been allocated by a
1376 subclass. */
1377 if (entry == NULL)
1378 {
1379 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1380 if (entry == NULL)
1381 return entry;
1382 }
1383
1384 /* Call the allocation method of the superclass. */
1385 entry = _bfd_link_hash_newfunc (entry, table, string);
1386 if (entry != NULL)
1387 {
1388 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1389 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1390
1391 /* Set local fields. */
1392 ret->indx = -1;
1393 ret->dynindx = -1;
1394 ret->got = ret->plt = htab->init_refcount;
1395 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1396 - offsetof (struct elf_link_hash_entry, size)));
1397 /* Assume that we have been called by a non-ELF symbol reader.
1398 This flag is then reset by the code which reads an ELF input
1399 file. This ensures that a symbol created by a non-ELF symbol
1400 reader will have the flag set correctly. */
1401 ret->non_elf = 1;
1402 }
1403
1404 return entry;
1405 }
1406
1407 /* Copy data from an indirect symbol to its direct symbol, hiding the
1408 old indirect symbol. Also used for copying flags to a weakdef. */
1409
1410 void
1411 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1412 struct elf_link_hash_entry *dir,
1413 struct elf_link_hash_entry *ind)
1414 {
1415 bfd_signed_vma tmp;
1416 bfd_signed_vma lowest_valid = bed->can_refcount;
1417
1418 /* Copy down any references that we may have already seen to the
1419 symbol which just became indirect. */
1420
1421 dir->ref_dynamic |= ind->ref_dynamic;
1422 dir->ref_regular |= ind->ref_regular;
1423 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1424 dir->non_got_ref |= ind->non_got_ref;
1425 dir->needs_plt |= ind->needs_plt;
1426 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1427
1428 if (ind->root.type != bfd_link_hash_indirect)
1429 return;
1430
1431 /* Copy over the global and procedure linkage table refcount entries.
1432 These may have been already set up by a check_relocs routine. */
1433 tmp = dir->got.refcount;
1434 if (tmp < lowest_valid)
1435 {
1436 dir->got.refcount = ind->got.refcount;
1437 ind->got.refcount = tmp;
1438 }
1439 else
1440 BFD_ASSERT (ind->got.refcount < lowest_valid);
1441
1442 tmp = dir->plt.refcount;
1443 if (tmp < lowest_valid)
1444 {
1445 dir->plt.refcount = ind->plt.refcount;
1446 ind->plt.refcount = tmp;
1447 }
1448 else
1449 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1450
1451 if (dir->dynindx == -1)
1452 {
1453 dir->dynindx = ind->dynindx;
1454 dir->dynstr_index = ind->dynstr_index;
1455 ind->dynindx = -1;
1456 ind->dynstr_index = 0;
1457 }
1458 else
1459 BFD_ASSERT (ind->dynindx == -1);
1460 }
1461
1462 void
1463 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1464 struct elf_link_hash_entry *h,
1465 bfd_boolean force_local)
1466 {
1467 h->plt = elf_hash_table (info)->init_offset;
1468 h->needs_plt = 0;
1469 if (force_local)
1470 {
1471 h->forced_local = 1;
1472 if (h->dynindx != -1)
1473 {
1474 h->dynindx = -1;
1475 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1476 h->dynstr_index);
1477 }
1478 }
1479 }
1480
1481 /* Initialize an ELF linker hash table. */
1482
1483 bfd_boolean
1484 _bfd_elf_link_hash_table_init
1485 (struct elf_link_hash_table *table,
1486 bfd *abfd,
1487 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1488 struct bfd_hash_table *,
1489 const char *))
1490 {
1491 bfd_boolean ret;
1492
1493 table->dynamic_sections_created = FALSE;
1494 table->dynobj = NULL;
1495 /* Make sure can_refcount is extended to the width and signedness of
1496 init_refcount before we subtract one from it. */
1497 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1498 table->init_refcount.refcount -= 1;
1499 table->init_offset.offset = -(bfd_vma) 1;
1500 /* The first dynamic symbol is a dummy. */
1501 table->dynsymcount = 1;
1502 table->dynstr = NULL;
1503 table->bucketcount = 0;
1504 table->needed = NULL;
1505 table->hgot = NULL;
1506 table->merge_info = NULL;
1507 memset (&table->stab_info, 0, sizeof (table->stab_info));
1508 memset (&table->eh_info, 0, sizeof (table->eh_info));
1509 table->dynlocal = NULL;
1510 table->runpath = NULL;
1511 table->tls_sec = NULL;
1512 table->tls_size = 0;
1513 table->loaded = NULL;
1514 table->is_relocatable_executable = FALSE;
1515
1516 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1517 table->root.type = bfd_link_elf_hash_table;
1518
1519 return ret;
1520 }
1521
1522 /* Create an ELF linker hash table. */
1523
1524 struct bfd_link_hash_table *
1525 _bfd_elf_link_hash_table_create (bfd *abfd)
1526 {
1527 struct elf_link_hash_table *ret;
1528 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1529
1530 ret = bfd_malloc (amt);
1531 if (ret == NULL)
1532 return NULL;
1533
1534 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1535 {
1536 free (ret);
1537 return NULL;
1538 }
1539
1540 return &ret->root;
1541 }
1542
1543 /* This is a hook for the ELF emulation code in the generic linker to
1544 tell the backend linker what file name to use for the DT_NEEDED
1545 entry for a dynamic object. */
1546
1547 void
1548 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1549 {
1550 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1551 && bfd_get_format (abfd) == bfd_object)
1552 elf_dt_name (abfd) = name;
1553 }
1554
1555 int
1556 bfd_elf_get_dyn_lib_class (bfd *abfd)
1557 {
1558 int lib_class;
1559 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1560 && bfd_get_format (abfd) == bfd_object)
1561 lib_class = elf_dyn_lib_class (abfd);
1562 else
1563 lib_class = 0;
1564 return lib_class;
1565 }
1566
1567 void
1568 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1569 {
1570 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1571 && bfd_get_format (abfd) == bfd_object)
1572 elf_dyn_lib_class (abfd) = lib_class;
1573 }
1574
1575 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1576 the linker ELF emulation code. */
1577
1578 struct bfd_link_needed_list *
1579 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1580 struct bfd_link_info *info)
1581 {
1582 if (! is_elf_hash_table (info->hash))
1583 return NULL;
1584 return elf_hash_table (info)->needed;
1585 }
1586
1587 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1588 hook for the linker ELF emulation code. */
1589
1590 struct bfd_link_needed_list *
1591 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1592 struct bfd_link_info *info)
1593 {
1594 if (! is_elf_hash_table (info->hash))
1595 return NULL;
1596 return elf_hash_table (info)->runpath;
1597 }
1598
1599 /* Get the name actually used for a dynamic object for a link. This
1600 is the SONAME entry if there is one. Otherwise, it is the string
1601 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1602
1603 const char *
1604 bfd_elf_get_dt_soname (bfd *abfd)
1605 {
1606 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1607 && bfd_get_format (abfd) == bfd_object)
1608 return elf_dt_name (abfd);
1609 return NULL;
1610 }
1611
1612 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1613 the ELF linker emulation code. */
1614
1615 bfd_boolean
1616 bfd_elf_get_bfd_needed_list (bfd *abfd,
1617 struct bfd_link_needed_list **pneeded)
1618 {
1619 asection *s;
1620 bfd_byte *dynbuf = NULL;
1621 int elfsec;
1622 unsigned long shlink;
1623 bfd_byte *extdyn, *extdynend;
1624 size_t extdynsize;
1625 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1626
1627 *pneeded = NULL;
1628
1629 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1630 || bfd_get_format (abfd) != bfd_object)
1631 return TRUE;
1632
1633 s = bfd_get_section_by_name (abfd, ".dynamic");
1634 if (s == NULL || s->size == 0)
1635 return TRUE;
1636
1637 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1638 goto error_return;
1639
1640 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1641 if (elfsec == -1)
1642 goto error_return;
1643
1644 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1645
1646 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1647 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1648
1649 extdyn = dynbuf;
1650 extdynend = extdyn + s->size;
1651 for (; extdyn < extdynend; extdyn += extdynsize)
1652 {
1653 Elf_Internal_Dyn dyn;
1654
1655 (*swap_dyn_in) (abfd, extdyn, &dyn);
1656
1657 if (dyn.d_tag == DT_NULL)
1658 break;
1659
1660 if (dyn.d_tag == DT_NEEDED)
1661 {
1662 const char *string;
1663 struct bfd_link_needed_list *l;
1664 unsigned int tagv = dyn.d_un.d_val;
1665 bfd_size_type amt;
1666
1667 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1668 if (string == NULL)
1669 goto error_return;
1670
1671 amt = sizeof *l;
1672 l = bfd_alloc (abfd, amt);
1673 if (l == NULL)
1674 goto error_return;
1675
1676 l->by = abfd;
1677 l->name = string;
1678 l->next = *pneeded;
1679 *pneeded = l;
1680 }
1681 }
1682
1683 free (dynbuf);
1684
1685 return TRUE;
1686
1687 error_return:
1688 if (dynbuf != NULL)
1689 free (dynbuf);
1690 return FALSE;
1691 }
1692 \f
1693 /* Allocate an ELF string table--force the first byte to be zero. */
1694
1695 struct bfd_strtab_hash *
1696 _bfd_elf_stringtab_init (void)
1697 {
1698 struct bfd_strtab_hash *ret;
1699
1700 ret = _bfd_stringtab_init ();
1701 if (ret != NULL)
1702 {
1703 bfd_size_type loc;
1704
1705 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1706 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1707 if (loc == (bfd_size_type) -1)
1708 {
1709 _bfd_stringtab_free (ret);
1710 ret = NULL;
1711 }
1712 }
1713 return ret;
1714 }
1715 \f
1716 /* ELF .o/exec file reading */
1717
1718 /* Create a new bfd section from an ELF section header. */
1719
1720 bfd_boolean
1721 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1722 {
1723 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1724 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1725 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1726 const char *name;
1727
1728 name = bfd_elf_string_from_elf_section (abfd,
1729 elf_elfheader (abfd)->e_shstrndx,
1730 hdr->sh_name);
1731
1732 switch (hdr->sh_type)
1733 {
1734 case SHT_NULL:
1735 /* Inactive section. Throw it away. */
1736 return TRUE;
1737
1738 case SHT_PROGBITS: /* Normal section with contents. */
1739 case SHT_NOBITS: /* .bss section. */
1740 case SHT_HASH: /* .hash section. */
1741 case SHT_NOTE: /* .note section. */
1742 case SHT_INIT_ARRAY: /* .init_array section. */
1743 case SHT_FINI_ARRAY: /* .fini_array section. */
1744 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1745 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1746 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1747
1748 case SHT_DYNAMIC: /* Dynamic linking information. */
1749 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1750 return FALSE;
1751 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1752 {
1753 Elf_Internal_Shdr *dynsymhdr;
1754
1755 /* The shared libraries distributed with hpux11 have a bogus
1756 sh_link field for the ".dynamic" section. Find the
1757 string table for the ".dynsym" section instead. */
1758 if (elf_dynsymtab (abfd) != 0)
1759 {
1760 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1761 hdr->sh_link = dynsymhdr->sh_link;
1762 }
1763 else
1764 {
1765 unsigned int i, num_sec;
1766
1767 num_sec = elf_numsections (abfd);
1768 for (i = 1; i < num_sec; i++)
1769 {
1770 dynsymhdr = elf_elfsections (abfd)[i];
1771 if (dynsymhdr->sh_type == SHT_DYNSYM)
1772 {
1773 hdr->sh_link = dynsymhdr->sh_link;
1774 break;
1775 }
1776 }
1777 }
1778 }
1779 break;
1780
1781 case SHT_SYMTAB: /* A symbol table */
1782 if (elf_onesymtab (abfd) == shindex)
1783 return TRUE;
1784
1785 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1786 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1787 elf_onesymtab (abfd) = shindex;
1788 elf_tdata (abfd)->symtab_hdr = *hdr;
1789 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1790 abfd->flags |= HAS_SYMS;
1791
1792 /* Sometimes a shared object will map in the symbol table. If
1793 SHF_ALLOC is set, and this is a shared object, then we also
1794 treat this section as a BFD section. We can not base the
1795 decision purely on SHF_ALLOC, because that flag is sometimes
1796 set in a relocatable object file, which would confuse the
1797 linker. */
1798 if ((hdr->sh_flags & SHF_ALLOC) != 0
1799 && (abfd->flags & DYNAMIC) != 0
1800 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1801 shindex))
1802 return FALSE;
1803
1804 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1805 can't read symbols without that section loaded as well. It
1806 is most likely specified by the next section header. */
1807 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1808 {
1809 unsigned int i, num_sec;
1810
1811 num_sec = elf_numsections (abfd);
1812 for (i = shindex + 1; i < num_sec; i++)
1813 {
1814 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1815 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1816 && hdr2->sh_link == shindex)
1817 break;
1818 }
1819 if (i == num_sec)
1820 for (i = 1; i < shindex; i++)
1821 {
1822 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1823 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1824 && hdr2->sh_link == shindex)
1825 break;
1826 }
1827 if (i != shindex)
1828 return bfd_section_from_shdr (abfd, i);
1829 }
1830 return TRUE;
1831
1832 case SHT_DYNSYM: /* A dynamic symbol table */
1833 if (elf_dynsymtab (abfd) == shindex)
1834 return TRUE;
1835
1836 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1837 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1838 elf_dynsymtab (abfd) = shindex;
1839 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1840 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1841 abfd->flags |= HAS_SYMS;
1842
1843 /* Besides being a symbol table, we also treat this as a regular
1844 section, so that objcopy can handle it. */
1845 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1846
1847 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1848 if (elf_symtab_shndx (abfd) == shindex)
1849 return TRUE;
1850
1851 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1852 elf_symtab_shndx (abfd) = shindex;
1853 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1854 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1855 return TRUE;
1856
1857 case SHT_STRTAB: /* A string table */
1858 if (hdr->bfd_section != NULL)
1859 return TRUE;
1860 if (ehdr->e_shstrndx == shindex)
1861 {
1862 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1863 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1864 return TRUE;
1865 }
1866 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1867 {
1868 symtab_strtab:
1869 elf_tdata (abfd)->strtab_hdr = *hdr;
1870 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1871 return TRUE;
1872 }
1873 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1874 {
1875 dynsymtab_strtab:
1876 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1877 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1878 elf_elfsections (abfd)[shindex] = hdr;
1879 /* We also treat this as a regular section, so that objcopy
1880 can handle it. */
1881 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1882 shindex);
1883 }
1884
1885 /* If the string table isn't one of the above, then treat it as a
1886 regular section. We need to scan all the headers to be sure,
1887 just in case this strtab section appeared before the above. */
1888 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1889 {
1890 unsigned int i, num_sec;
1891
1892 num_sec = elf_numsections (abfd);
1893 for (i = 1; i < num_sec; i++)
1894 {
1895 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1896 if (hdr2->sh_link == shindex)
1897 {
1898 if (! bfd_section_from_shdr (abfd, i))
1899 return FALSE;
1900 if (elf_onesymtab (abfd) == i)
1901 goto symtab_strtab;
1902 if (elf_dynsymtab (abfd) == i)
1903 goto dynsymtab_strtab;
1904 }
1905 }
1906 }
1907 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1908
1909 case SHT_REL:
1910 case SHT_RELA:
1911 /* *These* do a lot of work -- but build no sections! */
1912 {
1913 asection *target_sect;
1914 Elf_Internal_Shdr *hdr2;
1915 unsigned int num_sec = elf_numsections (abfd);
1916
1917 /* Check for a bogus link to avoid crashing. */
1918 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1919 || hdr->sh_link >= num_sec)
1920 {
1921 ((*_bfd_error_handler)
1922 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1923 abfd, hdr->sh_link, name, shindex));
1924 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1925 shindex);
1926 }
1927
1928 /* For some incomprehensible reason Oracle distributes
1929 libraries for Solaris in which some of the objects have
1930 bogus sh_link fields. It would be nice if we could just
1931 reject them, but, unfortunately, some people need to use
1932 them. We scan through the section headers; if we find only
1933 one suitable symbol table, we clobber the sh_link to point
1934 to it. I hope this doesn't break anything. */
1935 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1936 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1937 {
1938 unsigned int scan;
1939 int found;
1940
1941 found = 0;
1942 for (scan = 1; scan < num_sec; scan++)
1943 {
1944 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1945 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1946 {
1947 if (found != 0)
1948 {
1949 found = 0;
1950 break;
1951 }
1952 found = scan;
1953 }
1954 }
1955 if (found != 0)
1956 hdr->sh_link = found;
1957 }
1958
1959 /* Get the symbol table. */
1960 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1961 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1962 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1963 return FALSE;
1964
1965 /* If this reloc section does not use the main symbol table we
1966 don't treat it as a reloc section. BFD can't adequately
1967 represent such a section, so at least for now, we don't
1968 try. We just present it as a normal section. We also
1969 can't use it as a reloc section if it points to the null
1970 section. */
1971 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1972 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1973 shindex);
1974
1975 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1976 return FALSE;
1977 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1978 if (target_sect == NULL)
1979 return FALSE;
1980
1981 if ((target_sect->flags & SEC_RELOC) == 0
1982 || target_sect->reloc_count == 0)
1983 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1984 else
1985 {
1986 bfd_size_type amt;
1987 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1988 amt = sizeof (*hdr2);
1989 hdr2 = bfd_alloc (abfd, amt);
1990 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1991 }
1992 *hdr2 = *hdr;
1993 elf_elfsections (abfd)[shindex] = hdr2;
1994 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1995 target_sect->flags |= SEC_RELOC;
1996 target_sect->relocation = NULL;
1997 target_sect->rel_filepos = hdr->sh_offset;
1998 /* In the section to which the relocations apply, mark whether
1999 its relocations are of the REL or RELA variety. */
2000 if (hdr->sh_size != 0)
2001 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2002 abfd->flags |= HAS_RELOC;
2003 return TRUE;
2004 }
2005 break;
2006
2007 case SHT_GNU_verdef:
2008 elf_dynverdef (abfd) = shindex;
2009 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2010 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2011 break;
2012
2013 case SHT_GNU_versym:
2014 elf_dynversym (abfd) = shindex;
2015 elf_tdata (abfd)->dynversym_hdr = *hdr;
2016 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2017 break;
2018
2019 case SHT_GNU_verneed:
2020 elf_dynverref (abfd) = shindex;
2021 elf_tdata (abfd)->dynverref_hdr = *hdr;
2022 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2023 break;
2024
2025 case SHT_SHLIB:
2026 return TRUE;
2027
2028 case SHT_GROUP:
2029 /* We need a BFD section for objcopy and relocatable linking,
2030 and it's handy to have the signature available as the section
2031 name. */
2032 name = group_signature (abfd, hdr);
2033 if (name == NULL)
2034 return FALSE;
2035 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2036 return FALSE;
2037 if (hdr->contents != NULL)
2038 {
2039 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2040 unsigned int n_elt = hdr->sh_size / 4;
2041 asection *s;
2042
2043 if (idx->flags & GRP_COMDAT)
2044 hdr->bfd_section->flags
2045 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2046
2047 /* We try to keep the same section order as it comes in. */
2048 idx += n_elt;
2049 while (--n_elt != 0)
2050 if ((s = (--idx)->shdr->bfd_section) != NULL
2051 && elf_next_in_group (s) != NULL)
2052 {
2053 elf_next_in_group (hdr->bfd_section) = s;
2054 break;
2055 }
2056 }
2057 break;
2058
2059 default:
2060 /* Check for any processor-specific section types. */
2061 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2062 shindex);
2063 }
2064
2065 return TRUE;
2066 }
2067
2068 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2069 Return SEC for sections that have no elf section, and NULL on error. */
2070
2071 asection *
2072 bfd_section_from_r_symndx (bfd *abfd,
2073 struct sym_sec_cache *cache,
2074 asection *sec,
2075 unsigned long r_symndx)
2076 {
2077 Elf_Internal_Shdr *symtab_hdr;
2078 unsigned char esym[sizeof (Elf64_External_Sym)];
2079 Elf_External_Sym_Shndx eshndx;
2080 Elf_Internal_Sym isym;
2081 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2082
2083 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2084 return cache->sec[ent];
2085
2086 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2087 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2088 &isym, esym, &eshndx) == NULL)
2089 return NULL;
2090
2091 if (cache->abfd != abfd)
2092 {
2093 memset (cache->indx, -1, sizeof (cache->indx));
2094 cache->abfd = abfd;
2095 }
2096 cache->indx[ent] = r_symndx;
2097 cache->sec[ent] = sec;
2098 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2099 || isym.st_shndx > SHN_HIRESERVE)
2100 {
2101 asection *s;
2102 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2103 if (s != NULL)
2104 cache->sec[ent] = s;
2105 }
2106 return cache->sec[ent];
2107 }
2108
2109 /* Given an ELF section number, retrieve the corresponding BFD
2110 section. */
2111
2112 asection *
2113 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2114 {
2115 if (index >= elf_numsections (abfd))
2116 return NULL;
2117 return elf_elfsections (abfd)[index]->bfd_section;
2118 }
2119
2120 static struct bfd_elf_special_section const special_sections[] =
2121 {
2122 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2123 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2124 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2125 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2126 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2127 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2128 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2129 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2130 { ".line", 5, 0, SHT_PROGBITS, 0 },
2131 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2132 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2133 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2134 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2135 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2136 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2137 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2138 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2139 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2140 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2141 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2142 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2143 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2144 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2145 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2146 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2147 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2148 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2149 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2150 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2151 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2152 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2153 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2154 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2155 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2156 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2157 { ".note", 5, -1, SHT_NOTE, 0 },
2158 { ".rela", 5, -1, SHT_RELA, 0 },
2159 { ".rel", 4, -1, SHT_REL, 0 },
2160 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2161 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2162 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2163 { NULL, 0, 0, 0, 0 }
2164 };
2165
2166 static const struct bfd_elf_special_section *
2167 get_special_section (const char *name,
2168 const struct bfd_elf_special_section *special_sections,
2169 unsigned int rela)
2170 {
2171 int i;
2172 int len = strlen (name);
2173
2174 for (i = 0; special_sections[i].prefix != NULL; i++)
2175 {
2176 int suffix_len;
2177 int prefix_len = special_sections[i].prefix_length;
2178
2179 if (len < prefix_len)
2180 continue;
2181 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2182 continue;
2183
2184 suffix_len = special_sections[i].suffix_length;
2185 if (suffix_len <= 0)
2186 {
2187 if (name[prefix_len] != 0)
2188 {
2189 if (suffix_len == 0)
2190 continue;
2191 if (name[prefix_len] != '.'
2192 && (suffix_len == -2
2193 || (rela && special_sections[i].type == SHT_REL)))
2194 continue;
2195 }
2196 }
2197 else
2198 {
2199 if (len < prefix_len + suffix_len)
2200 continue;
2201 if (memcmp (name + len - suffix_len,
2202 special_sections[i].prefix + prefix_len,
2203 suffix_len) != 0)
2204 continue;
2205 }
2206 return &special_sections[i];
2207 }
2208
2209 return NULL;
2210 }
2211
2212 const struct bfd_elf_special_section *
2213 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2214 {
2215 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2216 const struct bfd_elf_special_section *ssect = NULL;
2217
2218 /* See if this is one of the special sections. */
2219 if (name)
2220 {
2221 unsigned int rela = bed->default_use_rela_p;
2222
2223 if (bed->special_sections)
2224 ssect = get_special_section (name, bed->special_sections, rela);
2225
2226 if (! ssect)
2227 ssect = get_special_section (name, special_sections, rela);
2228 }
2229
2230 return ssect;
2231 }
2232
2233 bfd_boolean
2234 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2235 {
2236 struct bfd_elf_section_data *sdata;
2237 const struct bfd_elf_special_section *ssect;
2238
2239 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2240 if (sdata == NULL)
2241 {
2242 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2243 if (sdata == NULL)
2244 return FALSE;
2245 sec->used_by_bfd = sdata;
2246 }
2247
2248 /* When we read a file, we don't need section type and flags.
2249 They will be overridden in _bfd_elf_make_section_from_shdr
2250 anyway. */
2251 if (abfd->direction != read_direction)
2252 {
2253 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2254 if (ssect != NULL)
2255 {
2256 elf_section_type (sec) = ssect->type;
2257 elf_section_flags (sec) = ssect->attr;
2258 }
2259 }
2260
2261 /* Indicate whether or not this section should use RELA relocations. */
2262 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2263
2264 return TRUE;
2265 }
2266
2267 /* Create a new bfd section from an ELF program header.
2268
2269 Since program segments have no names, we generate a synthetic name
2270 of the form segment<NUM>, where NUM is generally the index in the
2271 program header table. For segments that are split (see below) we
2272 generate the names segment<NUM>a and segment<NUM>b.
2273
2274 Note that some program segments may have a file size that is different than
2275 (less than) the memory size. All this means is that at execution the
2276 system must allocate the amount of memory specified by the memory size,
2277 but only initialize it with the first "file size" bytes read from the
2278 file. This would occur for example, with program segments consisting
2279 of combined data+bss.
2280
2281 To handle the above situation, this routine generates TWO bfd sections
2282 for the single program segment. The first has the length specified by
2283 the file size of the segment, and the second has the length specified
2284 by the difference between the two sizes. In effect, the segment is split
2285 into it's initialized and uninitialized parts.
2286
2287 */
2288
2289 bfd_boolean
2290 _bfd_elf_make_section_from_phdr (bfd *abfd,
2291 Elf_Internal_Phdr *hdr,
2292 int index,
2293 const char *typename)
2294 {
2295 asection *newsect;
2296 char *name;
2297 char namebuf[64];
2298 size_t len;
2299 int split;
2300
2301 split = ((hdr->p_memsz > 0)
2302 && (hdr->p_filesz > 0)
2303 && (hdr->p_memsz > hdr->p_filesz));
2304 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2305 len = strlen (namebuf) + 1;
2306 name = bfd_alloc (abfd, len);
2307 if (!name)
2308 return FALSE;
2309 memcpy (name, namebuf, len);
2310 newsect = bfd_make_section (abfd, name);
2311 if (newsect == NULL)
2312 return FALSE;
2313 newsect->vma = hdr->p_vaddr;
2314 newsect->lma = hdr->p_paddr;
2315 newsect->size = hdr->p_filesz;
2316 newsect->filepos = hdr->p_offset;
2317 newsect->flags |= SEC_HAS_CONTENTS;
2318 newsect->alignment_power = bfd_log2 (hdr->p_align);
2319 if (hdr->p_type == PT_LOAD)
2320 {
2321 newsect->flags |= SEC_ALLOC;
2322 newsect->flags |= SEC_LOAD;
2323 if (hdr->p_flags & PF_X)
2324 {
2325 /* FIXME: all we known is that it has execute PERMISSION,
2326 may be data. */
2327 newsect->flags |= SEC_CODE;
2328 }
2329 }
2330 if (!(hdr->p_flags & PF_W))
2331 {
2332 newsect->flags |= SEC_READONLY;
2333 }
2334
2335 if (split)
2336 {
2337 sprintf (namebuf, "%s%db", typename, index);
2338 len = strlen (namebuf) + 1;
2339 name = bfd_alloc (abfd, len);
2340 if (!name)
2341 return FALSE;
2342 memcpy (name, namebuf, len);
2343 newsect = bfd_make_section (abfd, name);
2344 if (newsect == NULL)
2345 return FALSE;
2346 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2347 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2348 newsect->size = hdr->p_memsz - hdr->p_filesz;
2349 if (hdr->p_type == PT_LOAD)
2350 {
2351 newsect->flags |= SEC_ALLOC;
2352 if (hdr->p_flags & PF_X)
2353 newsect->flags |= SEC_CODE;
2354 }
2355 if (!(hdr->p_flags & PF_W))
2356 newsect->flags |= SEC_READONLY;
2357 }
2358
2359 return TRUE;
2360 }
2361
2362 bfd_boolean
2363 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2364 {
2365 const struct elf_backend_data *bed;
2366
2367 switch (hdr->p_type)
2368 {
2369 case PT_NULL:
2370 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2371
2372 case PT_LOAD:
2373 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2374
2375 case PT_DYNAMIC:
2376 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2377
2378 case PT_INTERP:
2379 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2380
2381 case PT_NOTE:
2382 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2383 return FALSE;
2384 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2385 return FALSE;
2386 return TRUE;
2387
2388 case PT_SHLIB:
2389 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2390
2391 case PT_PHDR:
2392 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2393
2394 case PT_GNU_EH_FRAME:
2395 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2396 "eh_frame_hdr");
2397
2398 case PT_GNU_STACK:
2399 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2400
2401 case PT_GNU_RELRO:
2402 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2403
2404 default:
2405 /* Check for any processor-specific program segment types. */
2406 bed = get_elf_backend_data (abfd);
2407 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2408 }
2409 }
2410
2411 /* Initialize REL_HDR, the section-header for new section, containing
2412 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2413 relocations; otherwise, we use REL relocations. */
2414
2415 bfd_boolean
2416 _bfd_elf_init_reloc_shdr (bfd *abfd,
2417 Elf_Internal_Shdr *rel_hdr,
2418 asection *asect,
2419 bfd_boolean use_rela_p)
2420 {
2421 char *name;
2422 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2423 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2424
2425 name = bfd_alloc (abfd, amt);
2426 if (name == NULL)
2427 return FALSE;
2428 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2429 rel_hdr->sh_name =
2430 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2431 FALSE);
2432 if (rel_hdr->sh_name == (unsigned int) -1)
2433 return FALSE;
2434 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2435 rel_hdr->sh_entsize = (use_rela_p
2436 ? bed->s->sizeof_rela
2437 : bed->s->sizeof_rel);
2438 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2439 rel_hdr->sh_flags = 0;
2440 rel_hdr->sh_addr = 0;
2441 rel_hdr->sh_size = 0;
2442 rel_hdr->sh_offset = 0;
2443
2444 return TRUE;
2445 }
2446
2447 /* Set up an ELF internal section header for a section. */
2448
2449 static void
2450 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2451 {
2452 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2453 bfd_boolean *failedptr = failedptrarg;
2454 Elf_Internal_Shdr *this_hdr;
2455
2456 if (*failedptr)
2457 {
2458 /* We already failed; just get out of the bfd_map_over_sections
2459 loop. */
2460 return;
2461 }
2462
2463 this_hdr = &elf_section_data (asect)->this_hdr;
2464
2465 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2466 asect->name, FALSE);
2467 if (this_hdr->sh_name == (unsigned int) -1)
2468 {
2469 *failedptr = TRUE;
2470 return;
2471 }
2472
2473 this_hdr->sh_flags = 0;
2474
2475 if ((asect->flags & SEC_ALLOC) != 0
2476 || asect->user_set_vma)
2477 this_hdr->sh_addr = asect->vma;
2478 else
2479 this_hdr->sh_addr = 0;
2480
2481 this_hdr->sh_offset = 0;
2482 this_hdr->sh_size = asect->size;
2483 this_hdr->sh_link = 0;
2484 this_hdr->sh_addralign = 1 << asect->alignment_power;
2485 /* The sh_entsize and sh_info fields may have been set already by
2486 copy_private_section_data. */
2487
2488 this_hdr->bfd_section = asect;
2489 this_hdr->contents = NULL;
2490
2491 /* If the section type is unspecified, we set it based on
2492 asect->flags. */
2493 if (this_hdr->sh_type == SHT_NULL)
2494 {
2495 if ((asect->flags & SEC_GROUP) != 0)
2496 {
2497 /* We also need to mark SHF_GROUP here for relocatable
2498 link. */
2499 struct bfd_link_order *l;
2500 asection *elt;
2501
2502 for (l = asect->map_head.link_order; l != NULL; l = l->next)
2503 if (l->type == bfd_indirect_link_order
2504 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2505 do
2506 {
2507 /* The name is not important. Anything will do. */
2508 elf_group_name (elt->output_section) = "G";
2509 elf_section_flags (elt->output_section) |= SHF_GROUP;
2510
2511 elt = elf_next_in_group (elt);
2512 /* During a relocatable link, the lists are
2513 circular. */
2514 }
2515 while (elt != elf_next_in_group (l->u.indirect.section));
2516
2517 this_hdr->sh_type = SHT_GROUP;
2518 }
2519 else if ((asect->flags & SEC_ALLOC) != 0
2520 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2521 || (asect->flags & SEC_NEVER_LOAD) != 0))
2522 this_hdr->sh_type = SHT_NOBITS;
2523 else
2524 this_hdr->sh_type = SHT_PROGBITS;
2525 }
2526
2527 switch (this_hdr->sh_type)
2528 {
2529 default:
2530 break;
2531
2532 case SHT_STRTAB:
2533 case SHT_INIT_ARRAY:
2534 case SHT_FINI_ARRAY:
2535 case SHT_PREINIT_ARRAY:
2536 case SHT_NOTE:
2537 case SHT_NOBITS:
2538 case SHT_PROGBITS:
2539 break;
2540
2541 case SHT_HASH:
2542 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2543 break;
2544
2545 case SHT_DYNSYM:
2546 this_hdr->sh_entsize = bed->s->sizeof_sym;
2547 break;
2548
2549 case SHT_DYNAMIC:
2550 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2551 break;
2552
2553 case SHT_RELA:
2554 if (get_elf_backend_data (abfd)->may_use_rela_p)
2555 this_hdr->sh_entsize = bed->s->sizeof_rela;
2556 break;
2557
2558 case SHT_REL:
2559 if (get_elf_backend_data (abfd)->may_use_rel_p)
2560 this_hdr->sh_entsize = bed->s->sizeof_rel;
2561 break;
2562
2563 case SHT_GNU_versym:
2564 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2565 break;
2566
2567 case SHT_GNU_verdef:
2568 this_hdr->sh_entsize = 0;
2569 /* objcopy or strip will copy over sh_info, but may not set
2570 cverdefs. The linker will set cverdefs, but sh_info will be
2571 zero. */
2572 if (this_hdr->sh_info == 0)
2573 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2574 else
2575 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2576 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2577 break;
2578
2579 case SHT_GNU_verneed:
2580 this_hdr->sh_entsize = 0;
2581 /* objcopy or strip will copy over sh_info, but may not set
2582 cverrefs. The linker will set cverrefs, but sh_info will be
2583 zero. */
2584 if (this_hdr->sh_info == 0)
2585 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2586 else
2587 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2588 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2589 break;
2590
2591 case SHT_GROUP:
2592 this_hdr->sh_entsize = 4;
2593 break;
2594 }
2595
2596 if ((asect->flags & SEC_ALLOC) != 0)
2597 this_hdr->sh_flags |= SHF_ALLOC;
2598 if ((asect->flags & SEC_READONLY) == 0)
2599 this_hdr->sh_flags |= SHF_WRITE;
2600 if ((asect->flags & SEC_CODE) != 0)
2601 this_hdr->sh_flags |= SHF_EXECINSTR;
2602 if ((asect->flags & SEC_MERGE) != 0)
2603 {
2604 this_hdr->sh_flags |= SHF_MERGE;
2605 this_hdr->sh_entsize = asect->entsize;
2606 if ((asect->flags & SEC_STRINGS) != 0)
2607 this_hdr->sh_flags |= SHF_STRINGS;
2608 }
2609 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2610 this_hdr->sh_flags |= SHF_GROUP;
2611 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2612 {
2613 this_hdr->sh_flags |= SHF_TLS;
2614 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2615 {
2616 struct bfd_link_order *o;
2617
2618 this_hdr->sh_size = 0;
2619 for (o = asect->map_head.link_order; o != NULL; o = o->next)
2620 if (this_hdr->sh_size < o->offset + o->size)
2621 this_hdr->sh_size = o->offset + o->size;
2622 if (this_hdr->sh_size)
2623 this_hdr->sh_type = SHT_NOBITS;
2624 }
2625 }
2626
2627 /* Check for processor-specific section types. */
2628 if (bed->elf_backend_fake_sections
2629 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2630 *failedptr = TRUE;
2631
2632 /* If the section has relocs, set up a section header for the
2633 SHT_REL[A] section. If two relocation sections are required for
2634 this section, it is up to the processor-specific back-end to
2635 create the other. */
2636 if ((asect->flags & SEC_RELOC) != 0
2637 && !_bfd_elf_init_reloc_shdr (abfd,
2638 &elf_section_data (asect)->rel_hdr,
2639 asect,
2640 asect->use_rela_p))
2641 *failedptr = TRUE;
2642 }
2643
2644 /* Fill in the contents of a SHT_GROUP section. */
2645
2646 void
2647 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2648 {
2649 bfd_boolean *failedptr = failedptrarg;
2650 unsigned long symindx;
2651 asection *elt, *first;
2652 unsigned char *loc;
2653 struct bfd_link_order *l;
2654 bfd_boolean gas;
2655
2656 /* Ignore linker created group section. See elfNN_ia64_object_p in
2657 elfxx-ia64.c. */
2658 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2659 || *failedptr)
2660 return;
2661
2662 symindx = 0;
2663 if (elf_group_id (sec) != NULL)
2664 symindx = elf_group_id (sec)->udata.i;
2665
2666 if (symindx == 0)
2667 {
2668 /* If called from the assembler, swap_out_syms will have set up
2669 elf_section_syms; If called for "ld -r", use target_index. */
2670 if (elf_section_syms (abfd) != NULL)
2671 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2672 else
2673 symindx = sec->target_index;
2674 }
2675 elf_section_data (sec)->this_hdr.sh_info = symindx;
2676
2677 /* The contents won't be allocated for "ld -r" or objcopy. */
2678 gas = TRUE;
2679 if (sec->contents == NULL)
2680 {
2681 gas = FALSE;
2682 sec->contents = bfd_alloc (abfd, sec->size);
2683
2684 /* Arrange for the section to be written out. */
2685 elf_section_data (sec)->this_hdr.contents = sec->contents;
2686 if (sec->contents == NULL)
2687 {
2688 *failedptr = TRUE;
2689 return;
2690 }
2691 }
2692
2693 loc = sec->contents + sec->size;
2694
2695 /* Get the pointer to the first section in the group that gas
2696 squirreled away here. objcopy arranges for this to be set to the
2697 start of the input section group. */
2698 first = elt = elf_next_in_group (sec);
2699
2700 /* First element is a flag word. Rest of section is elf section
2701 indices for all the sections of the group. Write them backwards
2702 just to keep the group in the same order as given in .section
2703 directives, not that it matters. */
2704 while (elt != NULL)
2705 {
2706 asection *s;
2707 unsigned int idx;
2708
2709 loc -= 4;
2710 s = elt;
2711 if (!gas)
2712 s = s->output_section;
2713 idx = 0;
2714 if (s != NULL)
2715 idx = elf_section_data (s)->this_idx;
2716 H_PUT_32 (abfd, idx, loc);
2717 elt = elf_next_in_group (elt);
2718 if (elt == first)
2719 break;
2720 }
2721
2722 /* If this is a relocatable link, then the above did nothing because
2723 SEC is the output section. Look through the input sections
2724 instead. */
2725 for (l = sec->map_head.link_order; l != NULL; l = l->next)
2726 if (l->type == bfd_indirect_link_order
2727 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2728 do
2729 {
2730 loc -= 4;
2731 H_PUT_32 (abfd,
2732 elf_section_data (elt->output_section)->this_idx, loc);
2733 elt = elf_next_in_group (elt);
2734 /* During a relocatable link, the lists are circular. */
2735 }
2736 while (elt != elf_next_in_group (l->u.indirect.section));
2737
2738 if ((loc -= 4) != sec->contents)
2739 abort ();
2740
2741 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2742 }
2743
2744 /* Assign all ELF section numbers. The dummy first section is handled here
2745 too. The link/info pointers for the standard section types are filled
2746 in here too, while we're at it. */
2747
2748 static bfd_boolean
2749 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2750 {
2751 struct elf_obj_tdata *t = elf_tdata (abfd);
2752 asection *sec;
2753 unsigned int section_number, secn;
2754 Elf_Internal_Shdr **i_shdrp;
2755 bfd_size_type amt;
2756 struct bfd_elf_section_data *d;
2757
2758 section_number = 1;
2759
2760 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2761
2762 /* SHT_GROUP sections are in relocatable files only. */
2763 if (link_info == NULL || link_info->relocatable)
2764 {
2765 /* Put SHT_GROUP sections first. */
2766 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2767 {
2768 d = elf_section_data (sec);
2769
2770 if (d->this_hdr.sh_type == SHT_GROUP)
2771 {
2772 if (sec->flags & SEC_LINKER_CREATED)
2773 {
2774 /* Remove the linker created SHT_GROUP sections. */
2775 bfd_section_list_remove (abfd, sec);
2776 abfd->section_count--;
2777 }
2778 else
2779 {
2780 if (section_number == SHN_LORESERVE)
2781 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2782 d->this_idx = section_number++;
2783 }
2784 }
2785 }
2786 }
2787
2788 for (sec = abfd->sections; sec; sec = sec->next)
2789 {
2790 d = elf_section_data (sec);
2791
2792 if (d->this_hdr.sh_type != SHT_GROUP)
2793 {
2794 if (section_number == SHN_LORESERVE)
2795 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2796 d->this_idx = section_number++;
2797 }
2798 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2799 if ((sec->flags & SEC_RELOC) == 0)
2800 d->rel_idx = 0;
2801 else
2802 {
2803 if (section_number == SHN_LORESERVE)
2804 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2805 d->rel_idx = section_number++;
2806 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2807 }
2808
2809 if (d->rel_hdr2)
2810 {
2811 if (section_number == SHN_LORESERVE)
2812 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2813 d->rel_idx2 = section_number++;
2814 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2815 }
2816 else
2817 d->rel_idx2 = 0;
2818 }
2819
2820 if (section_number == SHN_LORESERVE)
2821 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2822 t->shstrtab_section = section_number++;
2823 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2824 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2825
2826 if (bfd_get_symcount (abfd) > 0)
2827 {
2828 if (section_number == SHN_LORESERVE)
2829 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2830 t->symtab_section = section_number++;
2831 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2832 if (section_number > SHN_LORESERVE - 2)
2833 {
2834 if (section_number == SHN_LORESERVE)
2835 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2836 t->symtab_shndx_section = section_number++;
2837 t->symtab_shndx_hdr.sh_name
2838 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2839 ".symtab_shndx", FALSE);
2840 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2841 return FALSE;
2842 }
2843 if (section_number == SHN_LORESERVE)
2844 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2845 t->strtab_section = section_number++;
2846 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2847 }
2848
2849 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2850 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2851
2852 elf_numsections (abfd) = section_number;
2853 elf_elfheader (abfd)->e_shnum = section_number;
2854 if (section_number > SHN_LORESERVE)
2855 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2856
2857 /* Set up the list of section header pointers, in agreement with the
2858 indices. */
2859 amt = section_number * sizeof (Elf_Internal_Shdr *);
2860 i_shdrp = bfd_zalloc (abfd, amt);
2861 if (i_shdrp == NULL)
2862 return FALSE;
2863
2864 amt = sizeof (Elf_Internal_Shdr);
2865 i_shdrp[0] = bfd_zalloc (abfd, amt);
2866 if (i_shdrp[0] == NULL)
2867 {
2868 bfd_release (abfd, i_shdrp);
2869 return FALSE;
2870 }
2871
2872 elf_elfsections (abfd) = i_shdrp;
2873
2874 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2875 if (bfd_get_symcount (abfd) > 0)
2876 {
2877 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2878 if (elf_numsections (abfd) > SHN_LORESERVE)
2879 {
2880 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2881 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2882 }
2883 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2884 t->symtab_hdr.sh_link = t->strtab_section;
2885 }
2886
2887 for (sec = abfd->sections; sec; sec = sec->next)
2888 {
2889 struct bfd_elf_section_data *d = elf_section_data (sec);
2890 asection *s;
2891 const char *name;
2892
2893 i_shdrp[d->this_idx] = &d->this_hdr;
2894 if (d->rel_idx != 0)
2895 i_shdrp[d->rel_idx] = &d->rel_hdr;
2896 if (d->rel_idx2 != 0)
2897 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2898
2899 /* Fill in the sh_link and sh_info fields while we're at it. */
2900
2901 /* sh_link of a reloc section is the section index of the symbol
2902 table. sh_info is the section index of the section to which
2903 the relocation entries apply. */
2904 if (d->rel_idx != 0)
2905 {
2906 d->rel_hdr.sh_link = t->symtab_section;
2907 d->rel_hdr.sh_info = d->this_idx;
2908 }
2909 if (d->rel_idx2 != 0)
2910 {
2911 d->rel_hdr2->sh_link = t->symtab_section;
2912 d->rel_hdr2->sh_info = d->this_idx;
2913 }
2914
2915 /* We need to set up sh_link for SHF_LINK_ORDER. */
2916 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2917 {
2918 s = elf_linked_to_section (sec);
2919 if (s)
2920 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2921 else
2922 {
2923 struct bfd_link_order *p;
2924
2925 /* Find out what the corresponding section in output
2926 is. */
2927 for (p = sec->map_head.link_order; p != NULL; p = p->next)
2928 {
2929 s = p->u.indirect.section;
2930 if (p->type == bfd_indirect_link_order
2931 && (bfd_get_flavour (s->owner)
2932 == bfd_target_elf_flavour))
2933 {
2934 Elf_Internal_Shdr ** const elf_shdrp
2935 = elf_elfsections (s->owner);
2936 int elfsec
2937 = _bfd_elf_section_from_bfd_section (s->owner, s);
2938 elfsec = elf_shdrp[elfsec]->sh_link;
2939 /* PR 290:
2940 The Intel C compiler generates SHT_IA_64_UNWIND with
2941 SHF_LINK_ORDER. But it doesn't set the sh_link or
2942 sh_info fields. Hence we could get the situation
2943 where elfsec is 0. */
2944 if (elfsec == 0)
2945 {
2946 const struct elf_backend_data *bed
2947 = get_elf_backend_data (abfd);
2948 if (bed->link_order_error_handler)
2949 bed->link_order_error_handler
2950 (_("%B: warning: sh_link not set for section `%A'"),
2951 abfd, s);
2952 }
2953 else
2954 {
2955 s = elf_shdrp[elfsec]->bfd_section;
2956 if (elf_discarded_section (s))
2957 {
2958 asection *kept;
2959 (*_bfd_error_handler)
2960 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2961 abfd, d->this_hdr.bfd_section,
2962 s, s->owner);
2963 /* Point to the kept section if it has
2964 the same size as the discarded
2965 one. */
2966 kept = _bfd_elf_check_kept_section (s);
2967 if (kept == NULL)
2968 {
2969 bfd_set_error (bfd_error_bad_value);
2970 return FALSE;
2971 }
2972 s = kept;
2973 }
2974 s = s->output_section;
2975 BFD_ASSERT (s != NULL);
2976 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2977 }
2978 break;
2979 }
2980 }
2981 }
2982 }
2983
2984 switch (d->this_hdr.sh_type)
2985 {
2986 case SHT_REL:
2987 case SHT_RELA:
2988 /* A reloc section which we are treating as a normal BFD
2989 section. sh_link is the section index of the symbol
2990 table. sh_info is the section index of the section to
2991 which the relocation entries apply. We assume that an
2992 allocated reloc section uses the dynamic symbol table.
2993 FIXME: How can we be sure? */
2994 s = bfd_get_section_by_name (abfd, ".dynsym");
2995 if (s != NULL)
2996 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2997
2998 /* We look up the section the relocs apply to by name. */
2999 name = sec->name;
3000 if (d->this_hdr.sh_type == SHT_REL)
3001 name += 4;
3002 else
3003 name += 5;
3004 s = bfd_get_section_by_name (abfd, name);
3005 if (s != NULL)
3006 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3007 break;
3008
3009 case SHT_STRTAB:
3010 /* We assume that a section named .stab*str is a stabs
3011 string section. We look for a section with the same name
3012 but without the trailing ``str'', and set its sh_link
3013 field to point to this section. */
3014 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3015 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3016 {
3017 size_t len;
3018 char *alc;
3019
3020 len = strlen (sec->name);
3021 alc = bfd_malloc (len - 2);
3022 if (alc == NULL)
3023 return FALSE;
3024 memcpy (alc, sec->name, len - 3);
3025 alc[len - 3] = '\0';
3026 s = bfd_get_section_by_name (abfd, alc);
3027 free (alc);
3028 if (s != NULL)
3029 {
3030 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3031
3032 /* This is a .stab section. */
3033 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3034 elf_section_data (s)->this_hdr.sh_entsize
3035 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3036 }
3037 }
3038 break;
3039
3040 case SHT_DYNAMIC:
3041 case SHT_DYNSYM:
3042 case SHT_GNU_verneed:
3043 case SHT_GNU_verdef:
3044 /* sh_link is the section header index of the string table
3045 used for the dynamic entries, or the symbol table, or the
3046 version strings. */
3047 s = bfd_get_section_by_name (abfd, ".dynstr");
3048 if (s != NULL)
3049 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3050 break;
3051
3052 case SHT_GNU_LIBLIST:
3053 /* sh_link is the section header index of the prelink library
3054 list
3055 used for the dynamic entries, or the symbol table, or the
3056 version strings. */
3057 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3058 ? ".dynstr" : ".gnu.libstr");
3059 if (s != NULL)
3060 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3061 break;
3062
3063 case SHT_HASH:
3064 case SHT_GNU_versym:
3065 /* sh_link is the section header index of the symbol table
3066 this hash table or version table is for. */
3067 s = bfd_get_section_by_name (abfd, ".dynsym");
3068 if (s != NULL)
3069 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3070 break;
3071
3072 case SHT_GROUP:
3073 d->this_hdr.sh_link = t->symtab_section;
3074 }
3075 }
3076
3077 for (secn = 1; secn < section_number; ++secn)
3078 if (i_shdrp[secn] == NULL)
3079 i_shdrp[secn] = i_shdrp[0];
3080 else
3081 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3082 i_shdrp[secn]->sh_name);
3083 return TRUE;
3084 }
3085
3086 /* Map symbol from it's internal number to the external number, moving
3087 all local symbols to be at the head of the list. */
3088
3089 static int
3090 sym_is_global (bfd *abfd, asymbol *sym)
3091 {
3092 /* If the backend has a special mapping, use it. */
3093 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3094 if (bed->elf_backend_sym_is_global)
3095 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3096
3097 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3098 || bfd_is_und_section (bfd_get_section (sym))
3099 || bfd_is_com_section (bfd_get_section (sym)));
3100 }
3101
3102 static bfd_boolean
3103 elf_map_symbols (bfd *abfd)
3104 {
3105 unsigned int symcount = bfd_get_symcount (abfd);
3106 asymbol **syms = bfd_get_outsymbols (abfd);
3107 asymbol **sect_syms;
3108 unsigned int num_locals = 0;
3109 unsigned int num_globals = 0;
3110 unsigned int num_locals2 = 0;
3111 unsigned int num_globals2 = 0;
3112 int max_index = 0;
3113 unsigned int idx;
3114 asection *asect;
3115 asymbol **new_syms;
3116 bfd_size_type amt;
3117
3118 #ifdef DEBUG
3119 fprintf (stderr, "elf_map_symbols\n");
3120 fflush (stderr);
3121 #endif
3122
3123 for (asect = abfd->sections; asect; asect = asect->next)
3124 {
3125 if (max_index < asect->index)
3126 max_index = asect->index;
3127 }
3128
3129 max_index++;
3130 amt = max_index * sizeof (asymbol *);
3131 sect_syms = bfd_zalloc (abfd, amt);
3132 if (sect_syms == NULL)
3133 return FALSE;
3134 elf_section_syms (abfd) = sect_syms;
3135 elf_num_section_syms (abfd) = max_index;
3136
3137 /* Init sect_syms entries for any section symbols we have already
3138 decided to output. */
3139 for (idx = 0; idx < symcount; idx++)
3140 {
3141 asymbol *sym = syms[idx];
3142
3143 if ((sym->flags & BSF_SECTION_SYM) != 0
3144 && sym->value == 0)
3145 {
3146 asection *sec;
3147
3148 sec = sym->section;
3149
3150 if (sec->owner != NULL)
3151 {
3152 if (sec->owner != abfd)
3153 {
3154 if (sec->output_offset != 0)
3155 continue;
3156
3157 sec = sec->output_section;
3158
3159 /* Empty sections in the input files may have had a
3160 section symbol created for them. (See the comment
3161 near the end of _bfd_generic_link_output_symbols in
3162 linker.c). If the linker script discards such
3163 sections then we will reach this point. Since we know
3164 that we cannot avoid this case, we detect it and skip
3165 the abort and the assignment to the sect_syms array.
3166 To reproduce this particular case try running the
3167 linker testsuite test ld-scripts/weak.exp for an ELF
3168 port that uses the generic linker. */
3169 if (sec->owner == NULL)
3170 continue;
3171
3172 BFD_ASSERT (sec->owner == abfd);
3173 }
3174 sect_syms[sec->index] = syms[idx];
3175 }
3176 }
3177 }
3178
3179 /* Classify all of the symbols. */
3180 for (idx = 0; idx < symcount; idx++)
3181 {
3182 if (!sym_is_global (abfd, syms[idx]))
3183 num_locals++;
3184 else
3185 num_globals++;
3186 }
3187
3188 /* We will be adding a section symbol for each BFD section. Most normal
3189 sections will already have a section symbol in outsymbols, but
3190 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3191 at least in that case. */
3192 for (asect = abfd->sections; asect; asect = asect->next)
3193 {
3194 if (sect_syms[asect->index] == NULL)
3195 {
3196 if (!sym_is_global (abfd, asect->symbol))
3197 num_locals++;
3198 else
3199 num_globals++;
3200 }
3201 }
3202
3203 /* Now sort the symbols so the local symbols are first. */
3204 amt = (num_locals + num_globals) * sizeof (asymbol *);
3205 new_syms = bfd_alloc (abfd, amt);
3206
3207 if (new_syms == NULL)
3208 return FALSE;
3209
3210 for (idx = 0; idx < symcount; idx++)
3211 {
3212 asymbol *sym = syms[idx];
3213 unsigned int i;
3214
3215 if (!sym_is_global (abfd, sym))
3216 i = num_locals2++;
3217 else
3218 i = num_locals + num_globals2++;
3219 new_syms[i] = sym;
3220 sym->udata.i = i + 1;
3221 }
3222 for (asect = abfd->sections; asect; asect = asect->next)
3223 {
3224 if (sect_syms[asect->index] == NULL)
3225 {
3226 asymbol *sym = asect->symbol;
3227 unsigned int i;
3228
3229 sect_syms[asect->index] = sym;
3230 if (!sym_is_global (abfd, sym))
3231 i = num_locals2++;
3232 else
3233 i = num_locals + num_globals2++;
3234 new_syms[i] = sym;
3235 sym->udata.i = i + 1;
3236 }
3237 }
3238
3239 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3240
3241 elf_num_locals (abfd) = num_locals;
3242 elf_num_globals (abfd) = num_globals;
3243 return TRUE;
3244 }
3245
3246 /* Align to the maximum file alignment that could be required for any
3247 ELF data structure. */
3248
3249 static inline file_ptr
3250 align_file_position (file_ptr off, int align)
3251 {
3252 return (off + align - 1) & ~(align - 1);
3253 }
3254
3255 /* Assign a file position to a section, optionally aligning to the
3256 required section alignment. */
3257
3258 file_ptr
3259 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3260 file_ptr offset,
3261 bfd_boolean align)
3262 {
3263 if (align)
3264 {
3265 unsigned int al;
3266
3267 al = i_shdrp->sh_addralign;
3268 if (al > 1)
3269 offset = BFD_ALIGN (offset, al);
3270 }
3271 i_shdrp->sh_offset = offset;
3272 if (i_shdrp->bfd_section != NULL)
3273 i_shdrp->bfd_section->filepos = offset;
3274 if (i_shdrp->sh_type != SHT_NOBITS)
3275 offset += i_shdrp->sh_size;
3276 return offset;
3277 }
3278
3279 /* Compute the file positions we are going to put the sections at, and
3280 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3281 is not NULL, this is being called by the ELF backend linker. */
3282
3283 bfd_boolean
3284 _bfd_elf_compute_section_file_positions (bfd *abfd,
3285 struct bfd_link_info *link_info)
3286 {
3287 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3288 bfd_boolean failed;
3289 struct bfd_strtab_hash *strtab = NULL;
3290 Elf_Internal_Shdr *shstrtab_hdr;
3291
3292 if (abfd->output_has_begun)
3293 return TRUE;
3294
3295 /* Do any elf backend specific processing first. */
3296 if (bed->elf_backend_begin_write_processing)
3297 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3298
3299 if (! prep_headers (abfd))
3300 return FALSE;
3301
3302 /* Post process the headers if necessary. */
3303 if (bed->elf_backend_post_process_headers)
3304 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3305
3306 failed = FALSE;
3307 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3308 if (failed)
3309 return FALSE;
3310
3311 if (!assign_section_numbers (abfd, link_info))
3312 return FALSE;
3313
3314 /* The backend linker builds symbol table information itself. */
3315 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3316 {
3317 /* Non-zero if doing a relocatable link. */
3318 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3319
3320 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3321 return FALSE;
3322 }
3323
3324 if (link_info == NULL)
3325 {
3326 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3327 if (failed)
3328 return FALSE;
3329 }
3330
3331 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3332 /* sh_name was set in prep_headers. */
3333 shstrtab_hdr->sh_type = SHT_STRTAB;
3334 shstrtab_hdr->sh_flags = 0;
3335 shstrtab_hdr->sh_addr = 0;
3336 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3337 shstrtab_hdr->sh_entsize = 0;
3338 shstrtab_hdr->sh_link = 0;
3339 shstrtab_hdr->sh_info = 0;
3340 /* sh_offset is set in assign_file_positions_except_relocs. */
3341 shstrtab_hdr->sh_addralign = 1;
3342
3343 if (!assign_file_positions_except_relocs (abfd, link_info))
3344 return FALSE;
3345
3346 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3347 {
3348 file_ptr off;
3349 Elf_Internal_Shdr *hdr;
3350
3351 off = elf_tdata (abfd)->next_file_pos;
3352
3353 hdr = &elf_tdata (abfd)->symtab_hdr;
3354 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3355
3356 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3357 if (hdr->sh_size != 0)
3358 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3359
3360 hdr = &elf_tdata (abfd)->strtab_hdr;
3361 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3362
3363 elf_tdata (abfd)->next_file_pos = off;
3364
3365 /* Now that we know where the .strtab section goes, write it
3366 out. */
3367 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3368 || ! _bfd_stringtab_emit (abfd, strtab))
3369 return FALSE;
3370 _bfd_stringtab_free (strtab);
3371 }
3372
3373 abfd->output_has_begun = TRUE;
3374
3375 return TRUE;
3376 }
3377
3378 /* Create a mapping from a set of sections to a program segment. */
3379
3380 static struct elf_segment_map *
3381 make_mapping (bfd *abfd,
3382 asection **sections,
3383 unsigned int from,
3384 unsigned int to,
3385 bfd_boolean phdr)
3386 {
3387 struct elf_segment_map *m;
3388 unsigned int i;
3389 asection **hdrpp;
3390 bfd_size_type amt;
3391
3392 amt = sizeof (struct elf_segment_map);
3393 amt += (to - from - 1) * sizeof (asection *);
3394 m = bfd_zalloc (abfd, amt);
3395 if (m == NULL)
3396 return NULL;
3397 m->next = NULL;
3398 m->p_type = PT_LOAD;
3399 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3400 m->sections[i - from] = *hdrpp;
3401 m->count = to - from;
3402
3403 if (from == 0 && phdr)
3404 {
3405 /* Include the headers in the first PT_LOAD segment. */
3406 m->includes_filehdr = 1;
3407 m->includes_phdrs = 1;
3408 }
3409
3410 return m;
3411 }
3412
3413 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3414 on failure. */
3415
3416 struct elf_segment_map *
3417 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3418 {
3419 struct elf_segment_map *m;
3420
3421 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3422 if (m == NULL)
3423 return NULL;
3424 m->next = NULL;
3425 m->p_type = PT_DYNAMIC;
3426 m->count = 1;
3427 m->sections[0] = dynsec;
3428
3429 return m;
3430 }
3431
3432 /* Set up a mapping from BFD sections to program segments. */
3433
3434 static bfd_boolean
3435 map_sections_to_segments (bfd *abfd)
3436 {
3437 asection **sections = NULL;
3438 asection *s;
3439 unsigned int i;
3440 unsigned int count;
3441 struct elf_segment_map *mfirst;
3442 struct elf_segment_map **pm;
3443 struct elf_segment_map *m;
3444 asection *last_hdr;
3445 bfd_vma last_size;
3446 unsigned int phdr_index;
3447 bfd_vma maxpagesize;
3448 asection **hdrpp;
3449 bfd_boolean phdr_in_segment = TRUE;
3450 bfd_boolean writable;
3451 int tls_count = 0;
3452 asection *first_tls = NULL;
3453 asection *dynsec, *eh_frame_hdr;
3454 bfd_size_type amt;
3455
3456 if (elf_tdata (abfd)->segment_map != NULL)
3457 return TRUE;
3458
3459 if (bfd_count_sections (abfd) == 0)
3460 return TRUE;
3461
3462 /* Select the allocated sections, and sort them. */
3463
3464 amt = bfd_count_sections (abfd) * sizeof (asection *);
3465 sections = bfd_malloc (amt);
3466 if (sections == NULL)
3467 goto error_return;
3468
3469 i = 0;
3470 for (s = abfd->sections; s != NULL; s = s->next)
3471 {
3472 if ((s->flags & SEC_ALLOC) != 0)
3473 {
3474 sections[i] = s;
3475 ++i;
3476 }
3477 }
3478 BFD_ASSERT (i <= bfd_count_sections (abfd));
3479 count = i;
3480
3481 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3482
3483 /* Build the mapping. */
3484
3485 mfirst = NULL;
3486 pm = &mfirst;
3487
3488 /* If we have a .interp section, then create a PT_PHDR segment for
3489 the program headers and a PT_INTERP segment for the .interp
3490 section. */
3491 s = bfd_get_section_by_name (abfd, ".interp");
3492 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3493 {
3494 amt = sizeof (struct elf_segment_map);
3495 m = bfd_zalloc (abfd, amt);
3496 if (m == NULL)
3497 goto error_return;
3498 m->next = NULL;
3499 m->p_type = PT_PHDR;
3500 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3501 m->p_flags = PF_R | PF_X;
3502 m->p_flags_valid = 1;
3503 m->includes_phdrs = 1;
3504
3505 *pm = m;
3506 pm = &m->next;
3507
3508 amt = sizeof (struct elf_segment_map);
3509 m = bfd_zalloc (abfd, amt);
3510 if (m == NULL)
3511 goto error_return;
3512 m->next = NULL;
3513 m->p_type = PT_INTERP;
3514 m->count = 1;
3515 m->sections[0] = s;
3516
3517 *pm = m;
3518 pm = &m->next;
3519 }
3520
3521 /* Look through the sections. We put sections in the same program
3522 segment when the start of the second section can be placed within
3523 a few bytes of the end of the first section. */
3524 last_hdr = NULL;
3525 last_size = 0;
3526 phdr_index = 0;
3527 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3528 writable = FALSE;
3529 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3530 if (dynsec != NULL
3531 && (dynsec->flags & SEC_LOAD) == 0)
3532 dynsec = NULL;
3533
3534 /* Deal with -Ttext or something similar such that the first section
3535 is not adjacent to the program headers. This is an
3536 approximation, since at this point we don't know exactly how many
3537 program headers we will need. */
3538 if (count > 0)
3539 {
3540 bfd_size_type phdr_size;
3541
3542 phdr_size = elf_tdata (abfd)->program_header_size;
3543 if (phdr_size == 0)
3544 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3545 if ((abfd->flags & D_PAGED) == 0
3546 || sections[0]->lma < phdr_size
3547 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3548 phdr_in_segment = FALSE;
3549 }
3550
3551 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3552 {
3553 asection *hdr;
3554 bfd_boolean new_segment;
3555
3556 hdr = *hdrpp;
3557
3558 /* See if this section and the last one will fit in the same
3559 segment. */
3560
3561 if (last_hdr == NULL)
3562 {
3563 /* If we don't have a segment yet, then we don't need a new
3564 one (we build the last one after this loop). */
3565 new_segment = FALSE;
3566 }
3567 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3568 {
3569 /* If this section has a different relation between the
3570 virtual address and the load address, then we need a new
3571 segment. */
3572 new_segment = TRUE;
3573 }
3574 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3575 < BFD_ALIGN (hdr->lma, maxpagesize))
3576 {
3577 /* If putting this section in this segment would force us to
3578 skip a page in the segment, then we need a new segment. */
3579 new_segment = TRUE;
3580 }
3581 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3582 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3583 {
3584 /* We don't want to put a loadable section after a
3585 nonloadable section in the same segment.
3586 Consider .tbss sections as loadable for this purpose. */
3587 new_segment = TRUE;
3588 }
3589 else if ((abfd->flags & D_PAGED) == 0)
3590 {
3591 /* If the file is not demand paged, which means that we
3592 don't require the sections to be correctly aligned in the
3593 file, then there is no other reason for a new segment. */
3594 new_segment = FALSE;
3595 }
3596 else if (! writable
3597 && (hdr->flags & SEC_READONLY) == 0
3598 && (((last_hdr->lma + last_size - 1)
3599 & ~(maxpagesize - 1))
3600 != (hdr->lma & ~(maxpagesize - 1))))
3601 {
3602 /* We don't want to put a writable section in a read only
3603 segment, unless they are on the same page in memory
3604 anyhow. We already know that the last section does not
3605 bring us past the current section on the page, so the
3606 only case in which the new section is not on the same
3607 page as the previous section is when the previous section
3608 ends precisely on a page boundary. */
3609 new_segment = TRUE;
3610 }
3611 else
3612 {
3613 /* Otherwise, we can use the same segment. */
3614 new_segment = FALSE;
3615 }
3616
3617 if (! new_segment)
3618 {
3619 if ((hdr->flags & SEC_READONLY) == 0)
3620 writable = TRUE;
3621 last_hdr = hdr;
3622 /* .tbss sections effectively have zero size. */
3623 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3624 last_size = hdr->size;
3625 else
3626 last_size = 0;
3627 continue;
3628 }
3629
3630 /* We need a new program segment. We must create a new program
3631 header holding all the sections from phdr_index until hdr. */
3632
3633 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3634 if (m == NULL)
3635 goto error_return;
3636
3637 *pm = m;
3638 pm = &m->next;
3639
3640 if ((hdr->flags & SEC_READONLY) == 0)
3641 writable = TRUE;
3642 else
3643 writable = FALSE;
3644
3645 last_hdr = hdr;
3646 /* .tbss sections effectively have zero size. */
3647 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3648 last_size = hdr->size;
3649 else
3650 last_size = 0;
3651 phdr_index = i;
3652 phdr_in_segment = FALSE;
3653 }
3654
3655 /* Create a final PT_LOAD program segment. */
3656 if (last_hdr != NULL)
3657 {
3658 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3659 if (m == NULL)
3660 goto error_return;
3661
3662 *pm = m;
3663 pm = &m->next;
3664 }
3665
3666 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3667 if (dynsec != NULL)
3668 {
3669 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3670 if (m == NULL)
3671 goto error_return;
3672 *pm = m;
3673 pm = &m->next;
3674 }
3675
3676 /* For each loadable .note section, add a PT_NOTE segment. We don't
3677 use bfd_get_section_by_name, because if we link together
3678 nonloadable .note sections and loadable .note sections, we will
3679 generate two .note sections in the output file. FIXME: Using
3680 names for section types is bogus anyhow. */
3681 for (s = abfd->sections; s != NULL; s = s->next)
3682 {
3683 if ((s->flags & SEC_LOAD) != 0
3684 && strncmp (s->name, ".note", 5) == 0)
3685 {
3686 amt = sizeof (struct elf_segment_map);
3687 m = bfd_zalloc (abfd, amt);
3688 if (m == NULL)
3689 goto error_return;
3690 m->next = NULL;
3691 m->p_type = PT_NOTE;
3692 m->count = 1;
3693 m->sections[0] = s;
3694
3695 *pm = m;
3696 pm = &m->next;
3697 }
3698 if (s->flags & SEC_THREAD_LOCAL)
3699 {
3700 if (! tls_count)
3701 first_tls = s;
3702 tls_count++;
3703 }
3704 }
3705
3706 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3707 if (tls_count > 0)
3708 {
3709 int i;
3710
3711 amt = sizeof (struct elf_segment_map);
3712 amt += (tls_count - 1) * sizeof (asection *);
3713 m = bfd_zalloc (abfd, amt);
3714 if (m == NULL)
3715 goto error_return;
3716 m->next = NULL;
3717 m->p_type = PT_TLS;
3718 m->count = tls_count;
3719 /* Mandated PF_R. */
3720 m->p_flags = PF_R;
3721 m->p_flags_valid = 1;
3722 for (i = 0; i < tls_count; ++i)
3723 {
3724 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3725 m->sections[i] = first_tls;
3726 first_tls = first_tls->next;
3727 }
3728
3729 *pm = m;
3730 pm = &m->next;
3731 }
3732
3733 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3734 segment. */
3735 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3736 if (eh_frame_hdr != NULL
3737 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3738 {
3739 amt = sizeof (struct elf_segment_map);
3740 m = bfd_zalloc (abfd, amt);
3741 if (m == NULL)
3742 goto error_return;
3743 m->next = NULL;
3744 m->p_type = PT_GNU_EH_FRAME;
3745 m->count = 1;
3746 m->sections[0] = eh_frame_hdr->output_section;
3747
3748 *pm = m;
3749 pm = &m->next;
3750 }
3751
3752 if (elf_tdata (abfd)->stack_flags)
3753 {
3754 amt = sizeof (struct elf_segment_map);
3755 m = bfd_zalloc (abfd, amt);
3756 if (m == NULL)
3757 goto error_return;
3758 m->next = NULL;
3759 m->p_type = PT_GNU_STACK;
3760 m->p_flags = elf_tdata (abfd)->stack_flags;
3761 m->p_flags_valid = 1;
3762
3763 *pm = m;
3764 pm = &m->next;
3765 }
3766
3767 if (elf_tdata (abfd)->relro)
3768 {
3769 amt = sizeof (struct elf_segment_map);
3770 m = bfd_zalloc (abfd, amt);
3771 if (m == NULL)
3772 goto error_return;
3773 m->next = NULL;
3774 m->p_type = PT_GNU_RELRO;
3775 m->p_flags = PF_R;
3776 m->p_flags_valid = 1;
3777
3778 *pm = m;
3779 pm = &m->next;
3780 }
3781
3782 free (sections);
3783 sections = NULL;
3784
3785 elf_tdata (abfd)->segment_map = mfirst;
3786 return TRUE;
3787
3788 error_return:
3789 if (sections != NULL)
3790 free (sections);
3791 return FALSE;
3792 }
3793
3794 /* Sort sections by address. */
3795
3796 static int
3797 elf_sort_sections (const void *arg1, const void *arg2)
3798 {
3799 const asection *sec1 = *(const asection **) arg1;
3800 const asection *sec2 = *(const asection **) arg2;
3801 bfd_size_type size1, size2;
3802
3803 /* Sort by LMA first, since this is the address used to
3804 place the section into a segment. */
3805 if (sec1->lma < sec2->lma)
3806 return -1;
3807 else if (sec1->lma > sec2->lma)
3808 return 1;
3809
3810 /* Then sort by VMA. Normally the LMA and the VMA will be
3811 the same, and this will do nothing. */
3812 if (sec1->vma < sec2->vma)
3813 return -1;
3814 else if (sec1->vma > sec2->vma)
3815 return 1;
3816
3817 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3818
3819 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3820
3821 if (TOEND (sec1))
3822 {
3823 if (TOEND (sec2))
3824 {
3825 /* If the indicies are the same, do not return 0
3826 here, but continue to try the next comparison. */
3827 if (sec1->target_index - sec2->target_index != 0)
3828 return sec1->target_index - sec2->target_index;
3829 }
3830 else
3831 return 1;
3832 }
3833 else if (TOEND (sec2))
3834 return -1;
3835
3836 #undef TOEND
3837
3838 /* Sort by size, to put zero sized sections
3839 before others at the same address. */
3840
3841 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3842 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3843
3844 if (size1 < size2)
3845 return -1;
3846 if (size1 > size2)
3847 return 1;
3848
3849 return sec1->target_index - sec2->target_index;
3850 }
3851
3852 /* Ian Lance Taylor writes:
3853
3854 We shouldn't be using % with a negative signed number. That's just
3855 not good. We have to make sure either that the number is not
3856 negative, or that the number has an unsigned type. When the types
3857 are all the same size they wind up as unsigned. When file_ptr is a
3858 larger signed type, the arithmetic winds up as signed long long,
3859 which is wrong.
3860
3861 What we're trying to say here is something like ``increase OFF by
3862 the least amount that will cause it to be equal to the VMA modulo
3863 the page size.'' */
3864 /* In other words, something like:
3865
3866 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3867 off_offset = off % bed->maxpagesize;
3868 if (vma_offset < off_offset)
3869 adjustment = vma_offset + bed->maxpagesize - off_offset;
3870 else
3871 adjustment = vma_offset - off_offset;
3872
3873 which can can be collapsed into the expression below. */
3874
3875 static file_ptr
3876 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3877 {
3878 return ((vma - off) % maxpagesize);
3879 }
3880
3881 /* Assign file positions to the sections based on the mapping from
3882 sections to segments. This function also sets up some fields in
3883 the file header, and writes out the program headers. */
3884
3885 static bfd_boolean
3886 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3887 {
3888 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3889 unsigned int count;
3890 struct elf_segment_map *m;
3891 unsigned int alloc;
3892 Elf_Internal_Phdr *phdrs;
3893 file_ptr off, voff;
3894 bfd_vma filehdr_vaddr, filehdr_paddr;
3895 bfd_vma phdrs_vaddr, phdrs_paddr;
3896 Elf_Internal_Phdr *p;
3897 bfd_size_type amt;
3898
3899 if (elf_tdata (abfd)->segment_map == NULL)
3900 {
3901 if (! map_sections_to_segments (abfd))
3902 return FALSE;
3903 }
3904 else
3905 {
3906 /* The placement algorithm assumes that non allocated sections are
3907 not in PT_LOAD segments. We ensure this here by removing such
3908 sections from the segment map. */
3909 for (m = elf_tdata (abfd)->segment_map;
3910 m != NULL;
3911 m = m->next)
3912 {
3913 unsigned int new_count;
3914 unsigned int i;
3915
3916 if (m->p_type != PT_LOAD)
3917 continue;
3918
3919 new_count = 0;
3920 for (i = 0; i < m->count; i ++)
3921 {
3922 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3923 {
3924 if (i != new_count)
3925 m->sections[new_count] = m->sections[i];
3926
3927 new_count ++;
3928 }
3929 }
3930
3931 if (new_count != m->count)
3932 m->count = new_count;
3933 }
3934 }
3935
3936 if (bed->elf_backend_modify_segment_map)
3937 {
3938 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3939 return FALSE;
3940 }
3941
3942 count = 0;
3943 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3944 ++count;
3945
3946 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3947 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3948 elf_elfheader (abfd)->e_phnum = count;
3949
3950 if (count == 0)
3951 {
3952 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
3953 return TRUE;
3954 }
3955
3956 /* If we already counted the number of program segments, make sure
3957 that we allocated enough space. This happens when SIZEOF_HEADERS
3958 is used in a linker script. */
3959 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3960 if (alloc != 0 && count > alloc)
3961 {
3962 ((*_bfd_error_handler)
3963 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
3964 abfd, alloc, count));
3965 bfd_set_error (bfd_error_bad_value);
3966 return FALSE;
3967 }
3968
3969 if (alloc == 0)
3970 alloc = count;
3971
3972 amt = alloc * sizeof (Elf_Internal_Phdr);
3973 phdrs = bfd_alloc (abfd, amt);
3974 if (phdrs == NULL)
3975 return FALSE;
3976
3977 off = bed->s->sizeof_ehdr;
3978 off += alloc * bed->s->sizeof_phdr;
3979
3980 filehdr_vaddr = 0;
3981 filehdr_paddr = 0;
3982 phdrs_vaddr = 0;
3983 phdrs_paddr = 0;
3984
3985 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3986 m != NULL;
3987 m = m->next, p++)
3988 {
3989 unsigned int i;
3990 asection **secpp;
3991
3992 /* If elf_segment_map is not from map_sections_to_segments, the
3993 sections may not be correctly ordered. NOTE: sorting should
3994 not be done to the PT_NOTE section of a corefile, which may
3995 contain several pseudo-sections artificially created by bfd.
3996 Sorting these pseudo-sections breaks things badly. */
3997 if (m->count > 1
3998 && !(elf_elfheader (abfd)->e_type == ET_CORE
3999 && m->p_type == PT_NOTE))
4000 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4001 elf_sort_sections);
4002
4003 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4004 number of sections with contents contributing to both p_filesz
4005 and p_memsz, followed by a number of sections with no contents
4006 that just contribute to p_memsz. In this loop, OFF tracks next
4007 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4008 an adjustment we use for segments that have no file contents
4009 but need zero filled memory allocation. */
4010 voff = 0;
4011 p->p_type = m->p_type;
4012 p->p_flags = m->p_flags;
4013
4014 if (p->p_type == PT_LOAD
4015 && m->count > 0)
4016 {
4017 bfd_size_type align;
4018 bfd_vma adjust;
4019
4020 if ((abfd->flags & D_PAGED) != 0)
4021 align = bed->maxpagesize;
4022 else
4023 {
4024 unsigned int align_power = 0;
4025 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4026 {
4027 unsigned int secalign;
4028
4029 secalign = bfd_get_section_alignment (abfd, *secpp);
4030 if (secalign > align_power)
4031 align_power = secalign;
4032 }
4033 align = (bfd_size_type) 1 << align_power;
4034 }
4035
4036 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4037 off += adjust;
4038 if (adjust != 0
4039 && !m->includes_filehdr
4040 && !m->includes_phdrs
4041 && (ufile_ptr) off >= align)
4042 {
4043 /* If the first section isn't loadable, the same holds for
4044 any other sections. Since the segment won't need file
4045 space, we can make p_offset overlap some prior segment.
4046 However, .tbss is special. If a segment starts with
4047 .tbss, we need to look at the next section to decide
4048 whether the segment has any loadable sections. */
4049 i = 0;
4050 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4051 {
4052 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4053 || ++i >= m->count)
4054 {
4055 off -= adjust;
4056 voff = adjust - align;
4057 break;
4058 }
4059 }
4060 }
4061 }
4062 /* Make sure the .dynamic section is the first section in the
4063 PT_DYNAMIC segment. */
4064 else if (p->p_type == PT_DYNAMIC
4065 && m->count > 1
4066 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4067 {
4068 _bfd_error_handler
4069 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4070 abfd);
4071 bfd_set_error (bfd_error_bad_value);
4072 return FALSE;
4073 }
4074
4075 if (m->count == 0)
4076 p->p_vaddr = 0;
4077 else
4078 p->p_vaddr = m->sections[0]->vma;
4079
4080 if (m->p_paddr_valid)
4081 p->p_paddr = m->p_paddr;
4082 else if (m->count == 0)
4083 p->p_paddr = 0;
4084 else
4085 p->p_paddr = m->sections[0]->lma;
4086
4087 if (p->p_type == PT_LOAD
4088 && (abfd->flags & D_PAGED) != 0)
4089 p->p_align = bed->maxpagesize;
4090 else if (m->count == 0)
4091 p->p_align = 1 << bed->s->log_file_align;
4092 else
4093 p->p_align = 0;
4094
4095 p->p_offset = 0;
4096 p->p_filesz = 0;
4097 p->p_memsz = 0;
4098
4099 if (m->includes_filehdr)
4100 {
4101 if (! m->p_flags_valid)
4102 p->p_flags |= PF_R;
4103 p->p_offset = 0;
4104 p->p_filesz = bed->s->sizeof_ehdr;
4105 p->p_memsz = bed->s->sizeof_ehdr;
4106 if (m->count > 0)
4107 {
4108 BFD_ASSERT (p->p_type == PT_LOAD);
4109
4110 if (p->p_vaddr < (bfd_vma) off)
4111 {
4112 (*_bfd_error_handler)
4113 (_("%B: Not enough room for program headers, try linking with -N"),
4114 abfd);
4115 bfd_set_error (bfd_error_bad_value);
4116 return FALSE;
4117 }
4118
4119 p->p_vaddr -= off;
4120 if (! m->p_paddr_valid)
4121 p->p_paddr -= off;
4122 }
4123 if (p->p_type == PT_LOAD)
4124 {
4125 filehdr_vaddr = p->p_vaddr;
4126 filehdr_paddr = p->p_paddr;
4127 }
4128 }
4129
4130 if (m->includes_phdrs)
4131 {
4132 if (! m->p_flags_valid)
4133 p->p_flags |= PF_R;
4134
4135 if (m->includes_filehdr)
4136 {
4137 if (p->p_type == PT_LOAD)
4138 {
4139 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4140 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4141 }
4142 }
4143 else
4144 {
4145 p->p_offset = bed->s->sizeof_ehdr;
4146
4147 if (m->count > 0)
4148 {
4149 BFD_ASSERT (p->p_type == PT_LOAD);
4150 p->p_vaddr -= off - p->p_offset;
4151 if (! m->p_paddr_valid)
4152 p->p_paddr -= off - p->p_offset;
4153 }
4154
4155 if (p->p_type == PT_LOAD)
4156 {
4157 phdrs_vaddr = p->p_vaddr;
4158 phdrs_paddr = p->p_paddr;
4159 }
4160 else
4161 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4162 }
4163
4164 p->p_filesz += alloc * bed->s->sizeof_phdr;
4165 p->p_memsz += alloc * bed->s->sizeof_phdr;
4166 }
4167
4168 if (p->p_type == PT_LOAD
4169 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4170 {
4171 if (! m->includes_filehdr && ! m->includes_phdrs)
4172 p->p_offset = off + voff;
4173 else
4174 {
4175 file_ptr adjust;
4176
4177 adjust = off - (p->p_offset + p->p_filesz);
4178 p->p_filesz += adjust;
4179 p->p_memsz += adjust;
4180 }
4181 }
4182
4183 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4184 {
4185 asection *sec;
4186 flagword flags;
4187 bfd_size_type align;
4188
4189 sec = *secpp;
4190 flags = sec->flags;
4191 align = 1 << bfd_get_section_alignment (abfd, sec);
4192
4193 if (p->p_type == PT_LOAD
4194 || p->p_type == PT_TLS)
4195 {
4196 bfd_signed_vma adjust;
4197
4198 if ((flags & SEC_LOAD) != 0)
4199 {
4200 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4201 if (adjust < 0)
4202 {
4203 (*_bfd_error_handler)
4204 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4205 abfd, sec, (unsigned long) sec->lma);
4206 adjust = 0;
4207 }
4208 off += adjust;
4209 p->p_filesz += adjust;
4210 p->p_memsz += adjust;
4211 }
4212 /* .tbss is special. It doesn't contribute to p_memsz of
4213 normal segments. */
4214 else if ((flags & SEC_THREAD_LOCAL) == 0
4215 || p->p_type == PT_TLS)
4216 {
4217 /* The section VMA must equal the file position
4218 modulo the page size. */
4219 bfd_size_type page = align;
4220 if ((abfd->flags & D_PAGED) != 0)
4221 page = bed->maxpagesize;
4222 adjust = vma_page_aligned_bias (sec->vma,
4223 p->p_vaddr + p->p_memsz,
4224 page);
4225 p->p_memsz += adjust;
4226 }
4227 }
4228
4229 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4230 {
4231 /* The section at i == 0 is the one that actually contains
4232 everything. */
4233 if (i == 0)
4234 {
4235 sec->filepos = off;
4236 off += sec->size;
4237 p->p_filesz = sec->size;
4238 p->p_memsz = 0;
4239 p->p_align = 1;
4240 }
4241 else
4242 {
4243 /* The rest are fake sections that shouldn't be written. */
4244 sec->filepos = 0;
4245 sec->size = 0;
4246 sec->flags = 0;
4247 continue;
4248 }
4249 }
4250 else
4251 {
4252 if (p->p_type == PT_LOAD)
4253 {
4254 sec->filepos = off;
4255 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4256 1997, and the exact reason for it isn't clear. One
4257 plausible explanation is that it is to work around
4258 a problem we have with linker scripts using data
4259 statements in NOLOAD sections. I don't think it
4260 makes a great deal of sense to have such a section
4261 assigned to a PT_LOAD segment, but apparently
4262 people do this. The data statement results in a
4263 bfd_data_link_order being built, and these need
4264 section contents to write into. Eventually, we get
4265 to _bfd_elf_write_object_contents which writes any
4266 section with contents to the output. Make room
4267 here for the write, so that following segments are
4268 not trashed. */
4269 if ((flags & SEC_LOAD) != 0
4270 || (flags & SEC_HAS_CONTENTS) != 0)
4271 off += sec->size;
4272 }
4273
4274 if ((flags & SEC_LOAD) != 0)
4275 {
4276 p->p_filesz += sec->size;
4277 p->p_memsz += sec->size;
4278 }
4279 /* PR ld/594: Sections in note segments which are not loaded
4280 contribute to the file size but not the in-memory size. */
4281 else if (p->p_type == PT_NOTE
4282 && (flags & SEC_HAS_CONTENTS) != 0)
4283 p->p_filesz += sec->size;
4284
4285 /* .tbss is special. It doesn't contribute to p_memsz of
4286 normal segments. */
4287 else if ((flags & SEC_THREAD_LOCAL) == 0
4288 || p->p_type == PT_TLS)
4289 p->p_memsz += sec->size;
4290
4291 if (p->p_type == PT_TLS
4292 && sec->size == 0
4293 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4294 {
4295 struct bfd_link_order *o;
4296 bfd_vma tbss_size = 0;
4297
4298 for (o = sec->map_head.link_order; o != NULL; o = o->next)
4299 if (tbss_size < o->offset + o->size)
4300 tbss_size = o->offset + o->size;
4301
4302 p->p_memsz += tbss_size;
4303 }
4304
4305 if (align > p->p_align
4306 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4307 p->p_align = align;
4308 }
4309
4310 if (! m->p_flags_valid)
4311 {
4312 p->p_flags |= PF_R;
4313 if ((flags & SEC_CODE) != 0)
4314 p->p_flags |= PF_X;
4315 if ((flags & SEC_READONLY) == 0)
4316 p->p_flags |= PF_W;
4317 }
4318 }
4319 }
4320
4321 /* Now that we have set the section file positions, we can set up
4322 the file positions for the non PT_LOAD segments. */
4323 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4324 m != NULL;
4325 m = m->next, p++)
4326 {
4327 if (p->p_type != PT_LOAD && m->count > 0)
4328 {
4329 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4330 /* If the section has not yet been assigned a file position,
4331 do so now. The ARM BPABI requires that .dynamic section
4332 not be marked SEC_ALLOC because it is not part of any
4333 PT_LOAD segment, so it will not be processed above. */
4334 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4335 {
4336 unsigned int i;
4337 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4338
4339 i = 1;
4340 while (i_shdrpp[i]->bfd_section != m->sections[0])
4341 ++i;
4342 off = (_bfd_elf_assign_file_position_for_section
4343 (i_shdrpp[i], off, TRUE));
4344 p->p_filesz = m->sections[0]->size;
4345 }
4346 p->p_offset = m->sections[0]->filepos;
4347 }
4348 if (m->count == 0)
4349 {
4350 if (m->includes_filehdr)
4351 {
4352 p->p_vaddr = filehdr_vaddr;
4353 if (! m->p_paddr_valid)
4354 p->p_paddr = filehdr_paddr;
4355 }
4356 else if (m->includes_phdrs)
4357 {
4358 p->p_vaddr = phdrs_vaddr;
4359 if (! m->p_paddr_valid)
4360 p->p_paddr = phdrs_paddr;
4361 }
4362 else if (p->p_type == PT_GNU_RELRO)
4363 {
4364 Elf_Internal_Phdr *lp;
4365
4366 for (lp = phdrs; lp < phdrs + count; ++lp)
4367 {
4368 if (lp->p_type == PT_LOAD
4369 && lp->p_vaddr <= link_info->relro_end
4370 && lp->p_vaddr >= link_info->relro_start
4371 && lp->p_vaddr + lp->p_filesz
4372 >= link_info->relro_end)
4373 break;
4374 }
4375
4376 if (lp < phdrs + count
4377 && link_info->relro_end > lp->p_vaddr)
4378 {
4379 p->p_vaddr = lp->p_vaddr;
4380 p->p_paddr = lp->p_paddr;
4381 p->p_offset = lp->p_offset;
4382 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4383 p->p_memsz = p->p_filesz;
4384 p->p_align = 1;
4385 p->p_flags = (lp->p_flags & ~PF_W);
4386 }
4387 else
4388 {
4389 memset (p, 0, sizeof *p);
4390 p->p_type = PT_NULL;
4391 }
4392 }
4393 }
4394 }
4395
4396 /* Clear out any program headers we allocated but did not use. */
4397 for (; count < alloc; count++, p++)
4398 {
4399 memset (p, 0, sizeof *p);
4400 p->p_type = PT_NULL;
4401 }
4402
4403 elf_tdata (abfd)->phdr = phdrs;
4404
4405 elf_tdata (abfd)->next_file_pos = off;
4406
4407 /* Write out the program headers. */
4408 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4409 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4410 return FALSE;
4411
4412 return TRUE;
4413 }
4414
4415 /* Get the size of the program header.
4416
4417 If this is called by the linker before any of the section VMA's are set, it
4418 can't calculate the correct value for a strange memory layout. This only
4419 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4420 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4421 data segment (exclusive of .interp and .dynamic).
4422
4423 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4424 will be two segments. */
4425
4426 static bfd_size_type
4427 get_program_header_size (bfd *abfd)
4428 {
4429 size_t segs;
4430 asection *s;
4431 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4432
4433 /* We can't return a different result each time we're called. */
4434 if (elf_tdata (abfd)->program_header_size != 0)
4435 return elf_tdata (abfd)->program_header_size;
4436
4437 if (elf_tdata (abfd)->segment_map != NULL)
4438 {
4439 struct elf_segment_map *m;
4440
4441 segs = 0;
4442 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4443 ++segs;
4444 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4445 return elf_tdata (abfd)->program_header_size;
4446 }
4447
4448 /* Assume we will need exactly two PT_LOAD segments: one for text
4449 and one for data. */
4450 segs = 2;
4451
4452 s = bfd_get_section_by_name (abfd, ".interp");
4453 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4454 {
4455 /* If we have a loadable interpreter section, we need a
4456 PT_INTERP segment. In this case, assume we also need a
4457 PT_PHDR segment, although that may not be true for all
4458 targets. */
4459 segs += 2;
4460 }
4461
4462 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4463 {
4464 /* We need a PT_DYNAMIC segment. */
4465 ++segs;
4466 }
4467
4468 if (elf_tdata (abfd)->eh_frame_hdr)
4469 {
4470 /* We need a PT_GNU_EH_FRAME segment. */
4471 ++segs;
4472 }
4473
4474 if (elf_tdata (abfd)->stack_flags)
4475 {
4476 /* We need a PT_GNU_STACK segment. */
4477 ++segs;
4478 }
4479
4480 if (elf_tdata (abfd)->relro)
4481 {
4482 /* We need a PT_GNU_RELRO segment. */
4483 ++segs;
4484 }
4485
4486 for (s = abfd->sections; s != NULL; s = s->next)
4487 {
4488 if ((s->flags & SEC_LOAD) != 0
4489 && strncmp (s->name, ".note", 5) == 0)
4490 {
4491 /* We need a PT_NOTE segment. */
4492 ++segs;
4493 }
4494 }
4495
4496 for (s = abfd->sections; s != NULL; s = s->next)
4497 {
4498 if (s->flags & SEC_THREAD_LOCAL)
4499 {
4500 /* We need a PT_TLS segment. */
4501 ++segs;
4502 break;
4503 }
4504 }
4505
4506 /* Let the backend count up any program headers it might need. */
4507 if (bed->elf_backend_additional_program_headers)
4508 {
4509 int a;
4510
4511 a = (*bed->elf_backend_additional_program_headers) (abfd);
4512 if (a == -1)
4513 abort ();
4514 segs += a;
4515 }
4516
4517 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4518 return elf_tdata (abfd)->program_header_size;
4519 }
4520
4521 /* Work out the file positions of all the sections. This is called by
4522 _bfd_elf_compute_section_file_positions. All the section sizes and
4523 VMAs must be known before this is called.
4524
4525 Reloc sections come in two flavours: Those processed specially as
4526 "side-channel" data attached to a section to which they apply, and
4527 those that bfd doesn't process as relocations. The latter sort are
4528 stored in a normal bfd section by bfd_section_from_shdr. We don't
4529 consider the former sort here, unless they form part of the loadable
4530 image. Reloc sections not assigned here will be handled later by
4531 assign_file_positions_for_relocs.
4532
4533 We also don't set the positions of the .symtab and .strtab here. */
4534
4535 static bfd_boolean
4536 assign_file_positions_except_relocs (bfd *abfd,
4537 struct bfd_link_info *link_info)
4538 {
4539 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4540 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4541 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4542 unsigned int num_sec = elf_numsections (abfd);
4543 file_ptr off;
4544 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4545
4546 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4547 && bfd_get_format (abfd) != bfd_core)
4548 {
4549 Elf_Internal_Shdr **hdrpp;
4550 unsigned int i;
4551
4552 /* Start after the ELF header. */
4553 off = i_ehdrp->e_ehsize;
4554
4555 /* We are not creating an executable, which means that we are
4556 not creating a program header, and that the actual order of
4557 the sections in the file is unimportant. */
4558 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4559 {
4560 Elf_Internal_Shdr *hdr;
4561
4562 hdr = *hdrpp;
4563 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4564 && hdr->bfd_section == NULL)
4565 || i == tdata->symtab_section
4566 || i == tdata->symtab_shndx_section
4567 || i == tdata->strtab_section)
4568 {
4569 hdr->sh_offset = -1;
4570 }
4571 else
4572 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4573
4574 if (i == SHN_LORESERVE - 1)
4575 {
4576 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4577 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4578 }
4579 }
4580 }
4581 else
4582 {
4583 unsigned int i;
4584 Elf_Internal_Shdr **hdrpp;
4585
4586 /* Assign file positions for the loaded sections based on the
4587 assignment of sections to segments. */
4588 if (! assign_file_positions_for_segments (abfd, link_info))
4589 return FALSE;
4590
4591 /* Assign file positions for the other sections. */
4592
4593 off = elf_tdata (abfd)->next_file_pos;
4594 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4595 {
4596 Elf_Internal_Shdr *hdr;
4597
4598 hdr = *hdrpp;
4599 if (hdr->bfd_section != NULL
4600 && hdr->bfd_section->filepos != 0)
4601 hdr->sh_offset = hdr->bfd_section->filepos;
4602 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4603 {
4604 ((*_bfd_error_handler)
4605 (_("%B: warning: allocated section `%s' not in segment"),
4606 abfd,
4607 (hdr->bfd_section == NULL
4608 ? "*unknown*"
4609 : hdr->bfd_section->name)));
4610 if ((abfd->flags & D_PAGED) != 0)
4611 off += vma_page_aligned_bias (hdr->sh_addr, off,
4612 bed->maxpagesize);
4613 else
4614 off += vma_page_aligned_bias (hdr->sh_addr, off,
4615 hdr->sh_addralign);
4616 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4617 FALSE);
4618 }
4619 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4620 && hdr->bfd_section == NULL)
4621 || hdr == i_shdrpp[tdata->symtab_section]
4622 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4623 || hdr == i_shdrpp[tdata->strtab_section])
4624 hdr->sh_offset = -1;
4625 else
4626 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4627
4628 if (i == SHN_LORESERVE - 1)
4629 {
4630 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4631 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4632 }
4633 }
4634 }
4635
4636 /* Place the section headers. */
4637 off = align_file_position (off, 1 << bed->s->log_file_align);
4638 i_ehdrp->e_shoff = off;
4639 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4640
4641 elf_tdata (abfd)->next_file_pos = off;
4642
4643 return TRUE;
4644 }
4645
4646 static bfd_boolean
4647 prep_headers (bfd *abfd)
4648 {
4649 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4650 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4651 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4652 struct elf_strtab_hash *shstrtab;
4653 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4654
4655 i_ehdrp = elf_elfheader (abfd);
4656 i_shdrp = elf_elfsections (abfd);
4657
4658 shstrtab = _bfd_elf_strtab_init ();
4659 if (shstrtab == NULL)
4660 return FALSE;
4661
4662 elf_shstrtab (abfd) = shstrtab;
4663
4664 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4665 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4666 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4667 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4668
4669 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4670 i_ehdrp->e_ident[EI_DATA] =
4671 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4672 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4673
4674 if ((abfd->flags & DYNAMIC) != 0)
4675 i_ehdrp->e_type = ET_DYN;
4676 else if ((abfd->flags & EXEC_P) != 0)
4677 i_ehdrp->e_type = ET_EXEC;
4678 else if (bfd_get_format (abfd) == bfd_core)
4679 i_ehdrp->e_type = ET_CORE;
4680 else
4681 i_ehdrp->e_type = ET_REL;
4682
4683 switch (bfd_get_arch (abfd))
4684 {
4685 case bfd_arch_unknown:
4686 i_ehdrp->e_machine = EM_NONE;
4687 break;
4688
4689 /* There used to be a long list of cases here, each one setting
4690 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4691 in the corresponding bfd definition. To avoid duplication,
4692 the switch was removed. Machines that need special handling
4693 can generally do it in elf_backend_final_write_processing(),
4694 unless they need the information earlier than the final write.
4695 Such need can generally be supplied by replacing the tests for
4696 e_machine with the conditions used to determine it. */
4697 default:
4698 i_ehdrp->e_machine = bed->elf_machine_code;
4699 }
4700
4701 i_ehdrp->e_version = bed->s->ev_current;
4702 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4703
4704 /* No program header, for now. */
4705 i_ehdrp->e_phoff = 0;
4706 i_ehdrp->e_phentsize = 0;
4707 i_ehdrp->e_phnum = 0;
4708
4709 /* Each bfd section is section header entry. */
4710 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4711 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4712
4713 /* If we're building an executable, we'll need a program header table. */
4714 if (abfd->flags & EXEC_P)
4715 /* It all happens later. */
4716 ;
4717 else
4718 {
4719 i_ehdrp->e_phentsize = 0;
4720 i_phdrp = 0;
4721 i_ehdrp->e_phoff = 0;
4722 }
4723
4724 elf_tdata (abfd)->symtab_hdr.sh_name =
4725 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4726 elf_tdata (abfd)->strtab_hdr.sh_name =
4727 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4728 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4729 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4730 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4731 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4732 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4733 return FALSE;
4734
4735 return TRUE;
4736 }
4737
4738 /* Assign file positions for all the reloc sections which are not part
4739 of the loadable file image. */
4740
4741 void
4742 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4743 {
4744 file_ptr off;
4745 unsigned int i, num_sec;
4746 Elf_Internal_Shdr **shdrpp;
4747
4748 off = elf_tdata (abfd)->next_file_pos;
4749
4750 num_sec = elf_numsections (abfd);
4751 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4752 {
4753 Elf_Internal_Shdr *shdrp;
4754
4755 shdrp = *shdrpp;
4756 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4757 && shdrp->sh_offset == -1)
4758 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4759 }
4760
4761 elf_tdata (abfd)->next_file_pos = off;
4762 }
4763
4764 bfd_boolean
4765 _bfd_elf_write_object_contents (bfd *abfd)
4766 {
4767 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4768 Elf_Internal_Ehdr *i_ehdrp;
4769 Elf_Internal_Shdr **i_shdrp;
4770 bfd_boolean failed;
4771 unsigned int count, num_sec;
4772
4773 if (! abfd->output_has_begun
4774 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4775 return FALSE;
4776
4777 i_shdrp = elf_elfsections (abfd);
4778 i_ehdrp = elf_elfheader (abfd);
4779
4780 failed = FALSE;
4781 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4782 if (failed)
4783 return FALSE;
4784
4785 _bfd_elf_assign_file_positions_for_relocs (abfd);
4786
4787 /* After writing the headers, we need to write the sections too... */
4788 num_sec = elf_numsections (abfd);
4789 for (count = 1; count < num_sec; count++)
4790 {
4791 if (bed->elf_backend_section_processing)
4792 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4793 if (i_shdrp[count]->contents)
4794 {
4795 bfd_size_type amt = i_shdrp[count]->sh_size;
4796
4797 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4798 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4799 return FALSE;
4800 }
4801 if (count == SHN_LORESERVE - 1)
4802 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4803 }
4804
4805 /* Write out the section header names. */
4806 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4807 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4808 return FALSE;
4809
4810 if (bed->elf_backend_final_write_processing)
4811 (*bed->elf_backend_final_write_processing) (abfd,
4812 elf_tdata (abfd)->linker);
4813
4814 return bed->s->write_shdrs_and_ehdr (abfd);
4815 }
4816
4817 bfd_boolean
4818 _bfd_elf_write_corefile_contents (bfd *abfd)
4819 {
4820 /* Hopefully this can be done just like an object file. */
4821 return _bfd_elf_write_object_contents (abfd);
4822 }
4823
4824 /* Given a section, search the header to find them. */
4825
4826 int
4827 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4828 {
4829 const struct elf_backend_data *bed;
4830 int index;
4831
4832 if (elf_section_data (asect) != NULL
4833 && elf_section_data (asect)->this_idx != 0)
4834 return elf_section_data (asect)->this_idx;
4835
4836 if (bfd_is_abs_section (asect))
4837 index = SHN_ABS;
4838 else if (bfd_is_com_section (asect))
4839 index = SHN_COMMON;
4840 else if (bfd_is_und_section (asect))
4841 index = SHN_UNDEF;
4842 else
4843 index = -1;
4844
4845 bed = get_elf_backend_data (abfd);
4846 if (bed->elf_backend_section_from_bfd_section)
4847 {
4848 int retval = index;
4849
4850 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4851 return retval;
4852 }
4853
4854 if (index == -1)
4855 bfd_set_error (bfd_error_nonrepresentable_section);
4856
4857 return index;
4858 }
4859
4860 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4861 on error. */
4862
4863 int
4864 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4865 {
4866 asymbol *asym_ptr = *asym_ptr_ptr;
4867 int idx;
4868 flagword flags = asym_ptr->flags;
4869
4870 /* When gas creates relocations against local labels, it creates its
4871 own symbol for the section, but does put the symbol into the
4872 symbol chain, so udata is 0. When the linker is generating
4873 relocatable output, this section symbol may be for one of the
4874 input sections rather than the output section. */
4875 if (asym_ptr->udata.i == 0
4876 && (flags & BSF_SECTION_SYM)
4877 && asym_ptr->section)
4878 {
4879 int indx;
4880
4881 if (asym_ptr->section->output_section != NULL)
4882 indx = asym_ptr->section->output_section->index;
4883 else
4884 indx = asym_ptr->section->index;
4885 if (indx < elf_num_section_syms (abfd)
4886 && elf_section_syms (abfd)[indx] != NULL)
4887 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4888 }
4889
4890 idx = asym_ptr->udata.i;
4891
4892 if (idx == 0)
4893 {
4894 /* This case can occur when using --strip-symbol on a symbol
4895 which is used in a relocation entry. */
4896 (*_bfd_error_handler)
4897 (_("%B: symbol `%s' required but not present"),
4898 abfd, bfd_asymbol_name (asym_ptr));
4899 bfd_set_error (bfd_error_no_symbols);
4900 return -1;
4901 }
4902
4903 #if DEBUG & 4
4904 {
4905 fprintf (stderr,
4906 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4907 (long) asym_ptr, asym_ptr->name, idx, flags,
4908 elf_symbol_flags (flags));
4909 fflush (stderr);
4910 }
4911 #endif
4912
4913 return idx;
4914 }
4915
4916 /* Copy private BFD data. This copies any program header information. */
4917
4918 static bfd_boolean
4919 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4920 {
4921 Elf_Internal_Ehdr *iehdr;
4922 struct elf_segment_map *map;
4923 struct elf_segment_map *map_first;
4924 struct elf_segment_map **pointer_to_map;
4925 Elf_Internal_Phdr *segment;
4926 asection *section;
4927 unsigned int i;
4928 unsigned int num_segments;
4929 bfd_boolean phdr_included = FALSE;
4930 bfd_vma maxpagesize;
4931 struct elf_segment_map *phdr_adjust_seg = NULL;
4932 unsigned int phdr_adjust_num = 0;
4933 const struct elf_backend_data *bed;
4934
4935 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4936 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4937 return TRUE;
4938
4939 if (elf_tdata (ibfd)->phdr == NULL)
4940 return TRUE;
4941
4942 bed = get_elf_backend_data (ibfd);
4943 iehdr = elf_elfheader (ibfd);
4944
4945 map_first = NULL;
4946 pointer_to_map = &map_first;
4947
4948 num_segments = elf_elfheader (ibfd)->e_phnum;
4949 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4950
4951 /* Returns the end address of the segment + 1. */
4952 #define SEGMENT_END(segment, start) \
4953 (start + (segment->p_memsz > segment->p_filesz \
4954 ? segment->p_memsz : segment->p_filesz))
4955
4956 #define SECTION_SIZE(section, segment) \
4957 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4958 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4959 ? section->size : 0)
4960
4961 /* Returns TRUE if the given section is contained within
4962 the given segment. VMA addresses are compared. */
4963 #define IS_CONTAINED_BY_VMA(section, segment) \
4964 (section->vma >= segment->p_vaddr \
4965 && (section->vma + SECTION_SIZE (section, segment) \
4966 <= (SEGMENT_END (segment, segment->p_vaddr))))
4967
4968 /* Returns TRUE if the given section is contained within
4969 the given segment. LMA addresses are compared. */
4970 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4971 (section->lma >= base \
4972 && (section->lma + SECTION_SIZE (section, segment) \
4973 <= SEGMENT_END (segment, base)))
4974
4975 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4976 #define IS_COREFILE_NOTE(p, s) \
4977 (p->p_type == PT_NOTE \
4978 && bfd_get_format (ibfd) == bfd_core \
4979 && s->vma == 0 && s->lma == 0 \
4980 && (bfd_vma) s->filepos >= p->p_offset \
4981 && ((bfd_vma) s->filepos + s->size \
4982 <= p->p_offset + p->p_filesz))
4983
4984 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4985 linker, which generates a PT_INTERP section with p_vaddr and
4986 p_memsz set to 0. */
4987 #define IS_SOLARIS_PT_INTERP(p, s) \
4988 (p->p_vaddr == 0 \
4989 && p->p_paddr == 0 \
4990 && p->p_memsz == 0 \
4991 && p->p_filesz > 0 \
4992 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4993 && s->size > 0 \
4994 && (bfd_vma) s->filepos >= p->p_offset \
4995 && ((bfd_vma) s->filepos + s->size \
4996 <= p->p_offset + p->p_filesz))
4997
4998 /* Decide if the given section should be included in the given segment.
4999 A section will be included if:
5000 1. It is within the address space of the segment -- we use the LMA
5001 if that is set for the segment and the VMA otherwise,
5002 2. It is an allocated segment,
5003 3. There is an output section associated with it,
5004 4. The section has not already been allocated to a previous segment.
5005 5. PT_GNU_STACK segments do not include any sections.
5006 6. PT_TLS segment includes only SHF_TLS sections.
5007 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5008 8. PT_DYNAMIC should not contain empty sections at the beginning
5009 (with the possible exception of .dynamic). */
5010 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5011 ((((segment->p_paddr \
5012 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5013 : IS_CONTAINED_BY_VMA (section, segment)) \
5014 && (section->flags & SEC_ALLOC) != 0) \
5015 || IS_COREFILE_NOTE (segment, section)) \
5016 && section->output_section != NULL \
5017 && segment->p_type != PT_GNU_STACK \
5018 && (segment->p_type != PT_TLS \
5019 || (section->flags & SEC_THREAD_LOCAL)) \
5020 && (segment->p_type == PT_LOAD \
5021 || segment->p_type == PT_TLS \
5022 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5023 && (segment->p_type != PT_DYNAMIC \
5024 || SECTION_SIZE (section, segment) > 0 \
5025 || (segment->p_paddr \
5026 ? segment->p_paddr != section->lma \
5027 : segment->p_vaddr != section->vma) \
5028 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5029 == 0)) \
5030 && ! section->segment_mark)
5031
5032 /* Returns TRUE iff seg1 starts after the end of seg2. */
5033 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5034 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5035
5036 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5037 their VMA address ranges and their LMA address ranges overlap.
5038 It is possible to have overlapping VMA ranges without overlapping LMA
5039 ranges. RedBoot images for example can have both .data and .bss mapped
5040 to the same VMA range, but with the .data section mapped to a different
5041 LMA. */
5042 #define SEGMENT_OVERLAPS(seg1, seg2) \
5043 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5044 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5045 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5046 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5047
5048 /* Initialise the segment mark field. */
5049 for (section = ibfd->sections; section != NULL; section = section->next)
5050 section->segment_mark = FALSE;
5051
5052 /* Scan through the segments specified in the program header
5053 of the input BFD. For this first scan we look for overlaps
5054 in the loadable segments. These can be created by weird
5055 parameters to objcopy. Also, fix some solaris weirdness. */
5056 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5057 i < num_segments;
5058 i++, segment++)
5059 {
5060 unsigned int j;
5061 Elf_Internal_Phdr *segment2;
5062
5063 if (segment->p_type == PT_INTERP)
5064 for (section = ibfd->sections; section; section = section->next)
5065 if (IS_SOLARIS_PT_INTERP (segment, section))
5066 {
5067 /* Mininal change so that the normal section to segment
5068 assignment code will work. */
5069 segment->p_vaddr = section->vma;
5070 break;
5071 }
5072
5073 if (segment->p_type != PT_LOAD)
5074 continue;
5075
5076 /* Determine if this segment overlaps any previous segments. */
5077 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5078 {
5079 bfd_signed_vma extra_length;
5080
5081 if (segment2->p_type != PT_LOAD
5082 || ! SEGMENT_OVERLAPS (segment, segment2))
5083 continue;
5084
5085 /* Merge the two segments together. */
5086 if (segment2->p_vaddr < segment->p_vaddr)
5087 {
5088 /* Extend SEGMENT2 to include SEGMENT and then delete
5089 SEGMENT. */
5090 extra_length =
5091 SEGMENT_END (segment, segment->p_vaddr)
5092 - SEGMENT_END (segment2, segment2->p_vaddr);
5093
5094 if (extra_length > 0)
5095 {
5096 segment2->p_memsz += extra_length;
5097 segment2->p_filesz += extra_length;
5098 }
5099
5100 segment->p_type = PT_NULL;
5101
5102 /* Since we have deleted P we must restart the outer loop. */
5103 i = 0;
5104 segment = elf_tdata (ibfd)->phdr;
5105 break;
5106 }
5107 else
5108 {
5109 /* Extend SEGMENT to include SEGMENT2 and then delete
5110 SEGMENT2. */
5111 extra_length =
5112 SEGMENT_END (segment2, segment2->p_vaddr)
5113 - SEGMENT_END (segment, segment->p_vaddr);
5114
5115 if (extra_length > 0)
5116 {
5117 segment->p_memsz += extra_length;
5118 segment->p_filesz += extra_length;
5119 }
5120
5121 segment2->p_type = PT_NULL;
5122 }
5123 }
5124 }
5125
5126 /* The second scan attempts to assign sections to segments. */
5127 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5128 i < num_segments;
5129 i ++, segment ++)
5130 {
5131 unsigned int section_count;
5132 asection ** sections;
5133 asection * output_section;
5134 unsigned int isec;
5135 bfd_vma matching_lma;
5136 bfd_vma suggested_lma;
5137 unsigned int j;
5138 bfd_size_type amt;
5139
5140 if (segment->p_type == PT_NULL)
5141 continue;
5142
5143 /* Compute how many sections might be placed into this segment. */
5144 for (section = ibfd->sections, section_count = 0;
5145 section != NULL;
5146 section = section->next)
5147 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5148 ++section_count;
5149
5150 /* Allocate a segment map big enough to contain
5151 all of the sections we have selected. */
5152 amt = sizeof (struct elf_segment_map);
5153 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5154 map = bfd_alloc (obfd, amt);
5155 if (map == NULL)
5156 return FALSE;
5157
5158 /* Initialise the fields of the segment map. Default to
5159 using the physical address of the segment in the input BFD. */
5160 map->next = NULL;
5161 map->p_type = segment->p_type;
5162 map->p_flags = segment->p_flags;
5163 map->p_flags_valid = 1;
5164 map->p_paddr = segment->p_paddr;
5165 map->p_paddr_valid = 1;
5166
5167 /* Determine if this segment contains the ELF file header
5168 and if it contains the program headers themselves. */
5169 map->includes_filehdr = (segment->p_offset == 0
5170 && segment->p_filesz >= iehdr->e_ehsize);
5171
5172 map->includes_phdrs = 0;
5173
5174 if (! phdr_included || segment->p_type != PT_LOAD)
5175 {
5176 map->includes_phdrs =
5177 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5178 && (segment->p_offset + segment->p_filesz
5179 >= ((bfd_vma) iehdr->e_phoff
5180 + iehdr->e_phnum * iehdr->e_phentsize)));
5181
5182 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5183 phdr_included = TRUE;
5184 }
5185
5186 if (section_count == 0)
5187 {
5188 /* Special segments, such as the PT_PHDR segment, may contain
5189 no sections, but ordinary, loadable segments should contain
5190 something. They are allowed by the ELF spec however, so only
5191 a warning is produced. */
5192 if (segment->p_type == PT_LOAD)
5193 (*_bfd_error_handler)
5194 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5195 ibfd);
5196
5197 map->count = 0;
5198 *pointer_to_map = map;
5199 pointer_to_map = &map->next;
5200
5201 continue;
5202 }
5203
5204 /* Now scan the sections in the input BFD again and attempt
5205 to add their corresponding output sections to the segment map.
5206 The problem here is how to handle an output section which has
5207 been moved (ie had its LMA changed). There are four possibilities:
5208
5209 1. None of the sections have been moved.
5210 In this case we can continue to use the segment LMA from the
5211 input BFD.
5212
5213 2. All of the sections have been moved by the same amount.
5214 In this case we can change the segment's LMA to match the LMA
5215 of the first section.
5216
5217 3. Some of the sections have been moved, others have not.
5218 In this case those sections which have not been moved can be
5219 placed in the current segment which will have to have its size,
5220 and possibly its LMA changed, and a new segment or segments will
5221 have to be created to contain the other sections.
5222
5223 4. The sections have been moved, but not by the same amount.
5224 In this case we can change the segment's LMA to match the LMA
5225 of the first section and we will have to create a new segment
5226 or segments to contain the other sections.
5227
5228 In order to save time, we allocate an array to hold the section
5229 pointers that we are interested in. As these sections get assigned
5230 to a segment, they are removed from this array. */
5231
5232 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5233 to work around this long long bug. */
5234 amt = section_count * sizeof (asection *);
5235 sections = bfd_malloc (amt);
5236 if (sections == NULL)
5237 return FALSE;
5238
5239 /* Step One: Scan for segment vs section LMA conflicts.
5240 Also add the sections to the section array allocated above.
5241 Also add the sections to the current segment. In the common
5242 case, where the sections have not been moved, this means that
5243 we have completely filled the segment, and there is nothing
5244 more to do. */
5245 isec = 0;
5246 matching_lma = 0;
5247 suggested_lma = 0;
5248
5249 for (j = 0, section = ibfd->sections;
5250 section != NULL;
5251 section = section->next)
5252 {
5253 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5254 {
5255 output_section = section->output_section;
5256
5257 sections[j ++] = section;
5258
5259 /* The Solaris native linker always sets p_paddr to 0.
5260 We try to catch that case here, and set it to the
5261 correct value. Note - some backends require that
5262 p_paddr be left as zero. */
5263 if (segment->p_paddr == 0
5264 && segment->p_vaddr != 0
5265 && (! bed->want_p_paddr_set_to_zero)
5266 && isec == 0
5267 && output_section->lma != 0
5268 && (output_section->vma == (segment->p_vaddr
5269 + (map->includes_filehdr
5270 ? iehdr->e_ehsize
5271 : 0)
5272 + (map->includes_phdrs
5273 ? (iehdr->e_phnum
5274 * iehdr->e_phentsize)
5275 : 0))))
5276 map->p_paddr = segment->p_vaddr;
5277
5278 /* Match up the physical address of the segment with the
5279 LMA address of the output section. */
5280 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5281 || IS_COREFILE_NOTE (segment, section)
5282 || (bed->want_p_paddr_set_to_zero &&
5283 IS_CONTAINED_BY_VMA (output_section, segment))
5284 )
5285 {
5286 if (matching_lma == 0)
5287 matching_lma = output_section->lma;
5288
5289 /* We assume that if the section fits within the segment
5290 then it does not overlap any other section within that
5291 segment. */
5292 map->sections[isec ++] = output_section;
5293 }
5294 else if (suggested_lma == 0)
5295 suggested_lma = output_section->lma;
5296 }
5297 }
5298
5299 BFD_ASSERT (j == section_count);
5300
5301 /* Step Two: Adjust the physical address of the current segment,
5302 if necessary. */
5303 if (isec == section_count)
5304 {
5305 /* All of the sections fitted within the segment as currently
5306 specified. This is the default case. Add the segment to
5307 the list of built segments and carry on to process the next
5308 program header in the input BFD. */
5309 map->count = section_count;
5310 *pointer_to_map = map;
5311 pointer_to_map = &map->next;
5312
5313 free (sections);
5314 continue;
5315 }
5316 else
5317 {
5318 if (matching_lma != 0)
5319 {
5320 /* At least one section fits inside the current segment.
5321 Keep it, but modify its physical address to match the
5322 LMA of the first section that fitted. */
5323 map->p_paddr = matching_lma;
5324 }
5325 else
5326 {
5327 /* None of the sections fitted inside the current segment.
5328 Change the current segment's physical address to match
5329 the LMA of the first section. */
5330 map->p_paddr = suggested_lma;
5331 }
5332
5333 /* Offset the segment physical address from the lma
5334 to allow for space taken up by elf headers. */
5335 if (map->includes_filehdr)
5336 map->p_paddr -= iehdr->e_ehsize;
5337
5338 if (map->includes_phdrs)
5339 {
5340 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5341
5342 /* iehdr->e_phnum is just an estimate of the number
5343 of program headers that we will need. Make a note
5344 here of the number we used and the segment we chose
5345 to hold these headers, so that we can adjust the
5346 offset when we know the correct value. */
5347 phdr_adjust_num = iehdr->e_phnum;
5348 phdr_adjust_seg = map;
5349 }
5350 }
5351
5352 /* Step Three: Loop over the sections again, this time assigning
5353 those that fit to the current segment and removing them from the
5354 sections array; but making sure not to leave large gaps. Once all
5355 possible sections have been assigned to the current segment it is
5356 added to the list of built segments and if sections still remain
5357 to be assigned, a new segment is constructed before repeating
5358 the loop. */
5359 isec = 0;
5360 do
5361 {
5362 map->count = 0;
5363 suggested_lma = 0;
5364
5365 /* Fill the current segment with sections that fit. */
5366 for (j = 0; j < section_count; j++)
5367 {
5368 section = sections[j];
5369
5370 if (section == NULL)
5371 continue;
5372
5373 output_section = section->output_section;
5374
5375 BFD_ASSERT (output_section != NULL);
5376
5377 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5378 || IS_COREFILE_NOTE (segment, section))
5379 {
5380 if (map->count == 0)
5381 {
5382 /* If the first section in a segment does not start at
5383 the beginning of the segment, then something is
5384 wrong. */
5385 if (output_section->lma !=
5386 (map->p_paddr
5387 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5388 + (map->includes_phdrs
5389 ? iehdr->e_phnum * iehdr->e_phentsize
5390 : 0)))
5391 abort ();
5392 }
5393 else
5394 {
5395 asection * prev_sec;
5396
5397 prev_sec = map->sections[map->count - 1];
5398
5399 /* If the gap between the end of the previous section
5400 and the start of this section is more than
5401 maxpagesize then we need to start a new segment. */
5402 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5403 maxpagesize)
5404 < BFD_ALIGN (output_section->lma, maxpagesize))
5405 || ((prev_sec->lma + prev_sec->size)
5406 > output_section->lma))
5407 {
5408 if (suggested_lma == 0)
5409 suggested_lma = output_section->lma;
5410
5411 continue;
5412 }
5413 }
5414
5415 map->sections[map->count++] = output_section;
5416 ++isec;
5417 sections[j] = NULL;
5418 section->segment_mark = TRUE;
5419 }
5420 else if (suggested_lma == 0)
5421 suggested_lma = output_section->lma;
5422 }
5423
5424 BFD_ASSERT (map->count > 0);
5425
5426 /* Add the current segment to the list of built segments. */
5427 *pointer_to_map = map;
5428 pointer_to_map = &map->next;
5429
5430 if (isec < section_count)
5431 {
5432 /* We still have not allocated all of the sections to
5433 segments. Create a new segment here, initialise it
5434 and carry on looping. */
5435 amt = sizeof (struct elf_segment_map);
5436 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5437 map = bfd_alloc (obfd, amt);
5438 if (map == NULL)
5439 {
5440 free (sections);
5441 return FALSE;
5442 }
5443
5444 /* Initialise the fields of the segment map. Set the physical
5445 physical address to the LMA of the first section that has
5446 not yet been assigned. */
5447 map->next = NULL;
5448 map->p_type = segment->p_type;
5449 map->p_flags = segment->p_flags;
5450 map->p_flags_valid = 1;
5451 map->p_paddr = suggested_lma;
5452 map->p_paddr_valid = 1;
5453 map->includes_filehdr = 0;
5454 map->includes_phdrs = 0;
5455 }
5456 }
5457 while (isec < section_count);
5458
5459 free (sections);
5460 }
5461
5462 /* The Solaris linker creates program headers in which all the
5463 p_paddr fields are zero. When we try to objcopy or strip such a
5464 file, we get confused. Check for this case, and if we find it
5465 reset the p_paddr_valid fields. */
5466 for (map = map_first; map != NULL; map = map->next)
5467 if (map->p_paddr != 0)
5468 break;
5469 if (map == NULL)
5470 for (map = map_first; map != NULL; map = map->next)
5471 map->p_paddr_valid = 0;
5472
5473 elf_tdata (obfd)->segment_map = map_first;
5474
5475 /* If we had to estimate the number of program headers that were
5476 going to be needed, then check our estimate now and adjust
5477 the offset if necessary. */
5478 if (phdr_adjust_seg != NULL)
5479 {
5480 unsigned int count;
5481
5482 for (count = 0, map = map_first; map != NULL; map = map->next)
5483 count++;
5484
5485 if (count > phdr_adjust_num)
5486 phdr_adjust_seg->p_paddr
5487 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5488 }
5489
5490 #undef SEGMENT_END
5491 #undef SECTION_SIZE
5492 #undef IS_CONTAINED_BY_VMA
5493 #undef IS_CONTAINED_BY_LMA
5494 #undef IS_COREFILE_NOTE
5495 #undef IS_SOLARIS_PT_INTERP
5496 #undef INCLUDE_SECTION_IN_SEGMENT
5497 #undef SEGMENT_AFTER_SEGMENT
5498 #undef SEGMENT_OVERLAPS
5499 return TRUE;
5500 }
5501
5502 /* Copy private section information. This copies over the entsize
5503 field, and sometimes the info field. */
5504
5505 bfd_boolean
5506 _bfd_elf_copy_private_section_data (bfd *ibfd,
5507 asection *isec,
5508 bfd *obfd,
5509 asection *osec)
5510 {
5511 Elf_Internal_Shdr *ihdr, *ohdr;
5512
5513 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5514 || obfd->xvec->flavour != bfd_target_elf_flavour)
5515 return TRUE;
5516
5517 ihdr = &elf_section_data (isec)->this_hdr;
5518 ohdr = &elf_section_data (osec)->this_hdr;
5519
5520 ohdr->sh_entsize = ihdr->sh_entsize;
5521
5522 if (ihdr->sh_type == SHT_SYMTAB
5523 || ihdr->sh_type == SHT_DYNSYM
5524 || ihdr->sh_type == SHT_GNU_verneed
5525 || ihdr->sh_type == SHT_GNU_verdef)
5526 ohdr->sh_info = ihdr->sh_info;
5527
5528 /* Set things up for objcopy. The output SHT_GROUP section will
5529 have its elf_next_in_group pointing back to the input group
5530 members. Ignore linker created group section. See
5531 elfNN_ia64_object_p in elfxx-ia64.c. */
5532 if (elf_sec_group (isec) == NULL
5533 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5534 {
5535 elf_next_in_group (osec) = elf_next_in_group (isec);
5536 elf_group_name (osec) = elf_group_name (isec);
5537 }
5538
5539 osec->use_rela_p = isec->use_rela_p;
5540
5541 return TRUE;
5542 }
5543
5544 /* Copy private header information. */
5545
5546 bfd_boolean
5547 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5548 {
5549 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5550 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5551 return TRUE;
5552
5553 /* Copy over private BFD data if it has not already been copied.
5554 This must be done here, rather than in the copy_private_bfd_data
5555 entry point, because the latter is called after the section
5556 contents have been set, which means that the program headers have
5557 already been worked out. */
5558 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5559 {
5560 if (! copy_private_bfd_data (ibfd, obfd))
5561 return FALSE;
5562 }
5563
5564 return TRUE;
5565 }
5566
5567 /* Copy private symbol information. If this symbol is in a section
5568 which we did not map into a BFD section, try to map the section
5569 index correctly. We use special macro definitions for the mapped
5570 section indices; these definitions are interpreted by the
5571 swap_out_syms function. */
5572
5573 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5574 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5575 #define MAP_STRTAB (SHN_HIOS + 3)
5576 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5577 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5578
5579 bfd_boolean
5580 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5581 asymbol *isymarg,
5582 bfd *obfd,
5583 asymbol *osymarg)
5584 {
5585 elf_symbol_type *isym, *osym;
5586
5587 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5588 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5589 return TRUE;
5590
5591 isym = elf_symbol_from (ibfd, isymarg);
5592 osym = elf_symbol_from (obfd, osymarg);
5593
5594 if (isym != NULL
5595 && osym != NULL
5596 && bfd_is_abs_section (isym->symbol.section))
5597 {
5598 unsigned int shndx;
5599
5600 shndx = isym->internal_elf_sym.st_shndx;
5601 if (shndx == elf_onesymtab (ibfd))
5602 shndx = MAP_ONESYMTAB;
5603 else if (shndx == elf_dynsymtab (ibfd))
5604 shndx = MAP_DYNSYMTAB;
5605 else if (shndx == elf_tdata (ibfd)->strtab_section)
5606 shndx = MAP_STRTAB;
5607 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5608 shndx = MAP_SHSTRTAB;
5609 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5610 shndx = MAP_SYM_SHNDX;
5611 osym->internal_elf_sym.st_shndx = shndx;
5612 }
5613
5614 return TRUE;
5615 }
5616
5617 /* Swap out the symbols. */
5618
5619 static bfd_boolean
5620 swap_out_syms (bfd *abfd,
5621 struct bfd_strtab_hash **sttp,
5622 int relocatable_p)
5623 {
5624 const struct elf_backend_data *bed;
5625 int symcount;
5626 asymbol **syms;
5627 struct bfd_strtab_hash *stt;
5628 Elf_Internal_Shdr *symtab_hdr;
5629 Elf_Internal_Shdr *symtab_shndx_hdr;
5630 Elf_Internal_Shdr *symstrtab_hdr;
5631 bfd_byte *outbound_syms;
5632 bfd_byte *outbound_shndx;
5633 int idx;
5634 bfd_size_type amt;
5635 bfd_boolean name_local_sections;
5636
5637 if (!elf_map_symbols (abfd))
5638 return FALSE;
5639
5640 /* Dump out the symtabs. */
5641 stt = _bfd_elf_stringtab_init ();
5642 if (stt == NULL)
5643 return FALSE;
5644
5645 bed = get_elf_backend_data (abfd);
5646 symcount = bfd_get_symcount (abfd);
5647 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5648 symtab_hdr->sh_type = SHT_SYMTAB;
5649 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5650 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5651 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5652 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5653
5654 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5655 symstrtab_hdr->sh_type = SHT_STRTAB;
5656
5657 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5658 outbound_syms = bfd_alloc (abfd, amt);
5659 if (outbound_syms == NULL)
5660 {
5661 _bfd_stringtab_free (stt);
5662 return FALSE;
5663 }
5664 symtab_hdr->contents = outbound_syms;
5665
5666 outbound_shndx = NULL;
5667 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5668 if (symtab_shndx_hdr->sh_name != 0)
5669 {
5670 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5671 outbound_shndx = bfd_zalloc (abfd, amt);
5672 if (outbound_shndx == NULL)
5673 {
5674 _bfd_stringtab_free (stt);
5675 return FALSE;
5676 }
5677
5678 symtab_shndx_hdr->contents = outbound_shndx;
5679 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5680 symtab_shndx_hdr->sh_size = amt;
5681 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5682 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5683 }
5684
5685 /* Now generate the data (for "contents"). */
5686 {
5687 /* Fill in zeroth symbol and swap it out. */
5688 Elf_Internal_Sym sym;
5689 sym.st_name = 0;
5690 sym.st_value = 0;
5691 sym.st_size = 0;
5692 sym.st_info = 0;
5693 sym.st_other = 0;
5694 sym.st_shndx = SHN_UNDEF;
5695 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5696 outbound_syms += bed->s->sizeof_sym;
5697 if (outbound_shndx != NULL)
5698 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5699 }
5700
5701 name_local_sections
5702 = (bed->elf_backend_name_local_section_symbols
5703 && bed->elf_backend_name_local_section_symbols (abfd));
5704
5705 syms = bfd_get_outsymbols (abfd);
5706 for (idx = 0; idx < symcount; idx++)
5707 {
5708 Elf_Internal_Sym sym;
5709 bfd_vma value = syms[idx]->value;
5710 elf_symbol_type *type_ptr;
5711 flagword flags = syms[idx]->flags;
5712 int type;
5713
5714 if (!name_local_sections
5715 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5716 {
5717 /* Local section symbols have no name. */
5718 sym.st_name = 0;
5719 }
5720 else
5721 {
5722 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5723 syms[idx]->name,
5724 TRUE, FALSE);
5725 if (sym.st_name == (unsigned long) -1)
5726 {
5727 _bfd_stringtab_free (stt);
5728 return FALSE;
5729 }
5730 }
5731
5732 type_ptr = elf_symbol_from (abfd, syms[idx]);
5733
5734 if ((flags & BSF_SECTION_SYM) == 0
5735 && bfd_is_com_section (syms[idx]->section))
5736 {
5737 /* ELF common symbols put the alignment into the `value' field,
5738 and the size into the `size' field. This is backwards from
5739 how BFD handles it, so reverse it here. */
5740 sym.st_size = value;
5741 if (type_ptr == NULL
5742 || type_ptr->internal_elf_sym.st_value == 0)
5743 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5744 else
5745 sym.st_value = type_ptr->internal_elf_sym.st_value;
5746 sym.st_shndx = _bfd_elf_section_from_bfd_section
5747 (abfd, syms[idx]->section);
5748 }
5749 else
5750 {
5751 asection *sec = syms[idx]->section;
5752 int shndx;
5753
5754 if (sec->output_section)
5755 {
5756 value += sec->output_offset;
5757 sec = sec->output_section;
5758 }
5759
5760 /* Don't add in the section vma for relocatable output. */
5761 if (! relocatable_p)
5762 value += sec->vma;
5763 sym.st_value = value;
5764 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5765
5766 if (bfd_is_abs_section (sec)
5767 && type_ptr != NULL
5768 && type_ptr->internal_elf_sym.st_shndx != 0)
5769 {
5770 /* This symbol is in a real ELF section which we did
5771 not create as a BFD section. Undo the mapping done
5772 by copy_private_symbol_data. */
5773 shndx = type_ptr->internal_elf_sym.st_shndx;
5774 switch (shndx)
5775 {
5776 case MAP_ONESYMTAB:
5777 shndx = elf_onesymtab (abfd);
5778 break;
5779 case MAP_DYNSYMTAB:
5780 shndx = elf_dynsymtab (abfd);
5781 break;
5782 case MAP_STRTAB:
5783 shndx = elf_tdata (abfd)->strtab_section;
5784 break;
5785 case MAP_SHSTRTAB:
5786 shndx = elf_tdata (abfd)->shstrtab_section;
5787 break;
5788 case MAP_SYM_SHNDX:
5789 shndx = elf_tdata (abfd)->symtab_shndx_section;
5790 break;
5791 default:
5792 break;
5793 }
5794 }
5795 else
5796 {
5797 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5798
5799 if (shndx == -1)
5800 {
5801 asection *sec2;
5802
5803 /* Writing this would be a hell of a lot easier if
5804 we had some decent documentation on bfd, and
5805 knew what to expect of the library, and what to
5806 demand of applications. For example, it
5807 appears that `objcopy' might not set the
5808 section of a symbol to be a section that is
5809 actually in the output file. */
5810 sec2 = bfd_get_section_by_name (abfd, sec->name);
5811 if (sec2 == NULL)
5812 {
5813 _bfd_error_handler (_("\
5814 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5815 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5816 sec->name);
5817 bfd_set_error (bfd_error_invalid_operation);
5818 _bfd_stringtab_free (stt);
5819 return FALSE;
5820 }
5821
5822 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5823 BFD_ASSERT (shndx != -1);
5824 }
5825 }
5826
5827 sym.st_shndx = shndx;
5828 }
5829
5830 if ((flags & BSF_THREAD_LOCAL) != 0)
5831 type = STT_TLS;
5832 else if ((flags & BSF_FUNCTION) != 0)
5833 type = STT_FUNC;
5834 else if ((flags & BSF_OBJECT) != 0)
5835 type = STT_OBJECT;
5836 else
5837 type = STT_NOTYPE;
5838
5839 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5840 type = STT_TLS;
5841
5842 /* Processor-specific types. */
5843 if (type_ptr != NULL
5844 && bed->elf_backend_get_symbol_type)
5845 type = ((*bed->elf_backend_get_symbol_type)
5846 (&type_ptr->internal_elf_sym, type));
5847
5848 if (flags & BSF_SECTION_SYM)
5849 {
5850 if (flags & BSF_GLOBAL)
5851 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5852 else
5853 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5854 }
5855 else if (bfd_is_com_section (syms[idx]->section))
5856 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5857 else if (bfd_is_und_section (syms[idx]->section))
5858 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5859 ? STB_WEAK
5860 : STB_GLOBAL),
5861 type);
5862 else if (flags & BSF_FILE)
5863 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5864 else
5865 {
5866 int bind = STB_LOCAL;
5867
5868 if (flags & BSF_LOCAL)
5869 bind = STB_LOCAL;
5870 else if (flags & BSF_WEAK)
5871 bind = STB_WEAK;
5872 else if (flags & BSF_GLOBAL)
5873 bind = STB_GLOBAL;
5874
5875 sym.st_info = ELF_ST_INFO (bind, type);
5876 }
5877
5878 if (type_ptr != NULL)
5879 sym.st_other = type_ptr->internal_elf_sym.st_other;
5880 else
5881 sym.st_other = 0;
5882
5883 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5884 outbound_syms += bed->s->sizeof_sym;
5885 if (outbound_shndx != NULL)
5886 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5887 }
5888
5889 *sttp = stt;
5890 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5891 symstrtab_hdr->sh_type = SHT_STRTAB;
5892
5893 symstrtab_hdr->sh_flags = 0;
5894 symstrtab_hdr->sh_addr = 0;
5895 symstrtab_hdr->sh_entsize = 0;
5896 symstrtab_hdr->sh_link = 0;
5897 symstrtab_hdr->sh_info = 0;
5898 symstrtab_hdr->sh_addralign = 1;
5899
5900 return TRUE;
5901 }
5902
5903 /* Return the number of bytes required to hold the symtab vector.
5904
5905 Note that we base it on the count plus 1, since we will null terminate
5906 the vector allocated based on this size. However, the ELF symbol table
5907 always has a dummy entry as symbol #0, so it ends up even. */
5908
5909 long
5910 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5911 {
5912 long symcount;
5913 long symtab_size;
5914 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5915
5916 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5917 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5918 if (symcount > 0)
5919 symtab_size -= sizeof (asymbol *);
5920
5921 return symtab_size;
5922 }
5923
5924 long
5925 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5926 {
5927 long symcount;
5928 long symtab_size;
5929 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5930
5931 if (elf_dynsymtab (abfd) == 0)
5932 {
5933 bfd_set_error (bfd_error_invalid_operation);
5934 return -1;
5935 }
5936
5937 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5938 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5939 if (symcount > 0)
5940 symtab_size -= sizeof (asymbol *);
5941
5942 return symtab_size;
5943 }
5944
5945 long
5946 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5947 sec_ptr asect)
5948 {
5949 return (asect->reloc_count + 1) * sizeof (arelent *);
5950 }
5951
5952 /* Canonicalize the relocs. */
5953
5954 long
5955 _bfd_elf_canonicalize_reloc (bfd *abfd,
5956 sec_ptr section,
5957 arelent **relptr,
5958 asymbol **symbols)
5959 {
5960 arelent *tblptr;
5961 unsigned int i;
5962 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5963
5964 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5965 return -1;
5966
5967 tblptr = section->relocation;
5968 for (i = 0; i < section->reloc_count; i++)
5969 *relptr++ = tblptr++;
5970
5971 *relptr = NULL;
5972
5973 return section->reloc_count;
5974 }
5975
5976 long
5977 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5978 {
5979 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5980 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5981
5982 if (symcount >= 0)
5983 bfd_get_symcount (abfd) = symcount;
5984 return symcount;
5985 }
5986
5987 long
5988 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5989 asymbol **allocation)
5990 {
5991 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5992 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5993
5994 if (symcount >= 0)
5995 bfd_get_dynamic_symcount (abfd) = symcount;
5996 return symcount;
5997 }
5998
5999 /* Return the size required for the dynamic reloc entries. Any loadable
6000 section that was actually installed in the BFD, and has type SHT_REL
6001 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6002 dynamic reloc section. */
6003
6004 long
6005 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6006 {
6007 long ret;
6008 asection *s;
6009
6010 if (elf_dynsymtab (abfd) == 0)
6011 {
6012 bfd_set_error (bfd_error_invalid_operation);
6013 return -1;
6014 }
6015
6016 ret = sizeof (arelent *);
6017 for (s = abfd->sections; s != NULL; s = s->next)
6018 if ((s->flags & SEC_LOAD) != 0
6019 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6020 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6021 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6022 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6023 * sizeof (arelent *));
6024
6025 return ret;
6026 }
6027
6028 /* Canonicalize the dynamic relocation entries. Note that we return the
6029 dynamic relocations as a single block, although they are actually
6030 associated with particular sections; the interface, which was
6031 designed for SunOS style shared libraries, expects that there is only
6032 one set of dynamic relocs. Any loadable section that was actually
6033 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6034 dynamic symbol table, is considered to be a dynamic reloc section. */
6035
6036 long
6037 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6038 arelent **storage,
6039 asymbol **syms)
6040 {
6041 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6042 asection *s;
6043 long ret;
6044
6045 if (elf_dynsymtab (abfd) == 0)
6046 {
6047 bfd_set_error (bfd_error_invalid_operation);
6048 return -1;
6049 }
6050
6051 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6052 ret = 0;
6053 for (s = abfd->sections; s != NULL; s = s->next)
6054 {
6055 if ((s->flags & SEC_LOAD) != 0
6056 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6057 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6058 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6059 {
6060 arelent *p;
6061 long count, i;
6062
6063 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6064 return -1;
6065 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6066 p = s->relocation;
6067 for (i = 0; i < count; i++)
6068 *storage++ = p++;
6069 ret += count;
6070 }
6071 }
6072
6073 *storage = NULL;
6074
6075 return ret;
6076 }
6077 \f
6078 /* Read in the version information. */
6079
6080 bfd_boolean
6081 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6082 {
6083 bfd_byte *contents = NULL;
6084 bfd_size_type amt;
6085 unsigned int freeidx = 0;
6086
6087 if (elf_dynverref (abfd) != 0)
6088 {
6089 Elf_Internal_Shdr *hdr;
6090 Elf_External_Verneed *everneed;
6091 Elf_Internal_Verneed *iverneed;
6092 unsigned int i;
6093
6094 hdr = &elf_tdata (abfd)->dynverref_hdr;
6095
6096 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6097 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6098 if (elf_tdata (abfd)->verref == NULL)
6099 goto error_return;
6100
6101 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6102
6103 contents = bfd_malloc (hdr->sh_size);
6104 if (contents == NULL)
6105 goto error_return;
6106 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6107 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6108 goto error_return;
6109
6110 everneed = (Elf_External_Verneed *) contents;
6111 iverneed = elf_tdata (abfd)->verref;
6112 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6113 {
6114 Elf_External_Vernaux *evernaux;
6115 Elf_Internal_Vernaux *ivernaux;
6116 unsigned int j;
6117
6118 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6119
6120 iverneed->vn_bfd = abfd;
6121
6122 iverneed->vn_filename =
6123 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6124 iverneed->vn_file);
6125 if (iverneed->vn_filename == NULL)
6126 goto error_return;
6127
6128 amt = iverneed->vn_cnt;
6129 amt *= sizeof (Elf_Internal_Vernaux);
6130 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6131
6132 evernaux = ((Elf_External_Vernaux *)
6133 ((bfd_byte *) everneed + iverneed->vn_aux));
6134 ivernaux = iverneed->vn_auxptr;
6135 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6136 {
6137 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6138
6139 ivernaux->vna_nodename =
6140 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6141 ivernaux->vna_name);
6142 if (ivernaux->vna_nodename == NULL)
6143 goto error_return;
6144
6145 if (j + 1 < iverneed->vn_cnt)
6146 ivernaux->vna_nextptr = ivernaux + 1;
6147 else
6148 ivernaux->vna_nextptr = NULL;
6149
6150 evernaux = ((Elf_External_Vernaux *)
6151 ((bfd_byte *) evernaux + ivernaux->vna_next));
6152
6153 if (ivernaux->vna_other > freeidx)
6154 freeidx = ivernaux->vna_other;
6155 }
6156
6157 if (i + 1 < hdr->sh_info)
6158 iverneed->vn_nextref = iverneed + 1;
6159 else
6160 iverneed->vn_nextref = NULL;
6161
6162 everneed = ((Elf_External_Verneed *)
6163 ((bfd_byte *) everneed + iverneed->vn_next));
6164 }
6165
6166 free (contents);
6167 contents = NULL;
6168 }
6169
6170 if (elf_dynverdef (abfd) != 0)
6171 {
6172 Elf_Internal_Shdr *hdr;
6173 Elf_External_Verdef *everdef;
6174 Elf_Internal_Verdef *iverdef;
6175 Elf_Internal_Verdef *iverdefarr;
6176 Elf_Internal_Verdef iverdefmem;
6177 unsigned int i;
6178 unsigned int maxidx;
6179
6180 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6181
6182 contents = bfd_malloc (hdr->sh_size);
6183 if (contents == NULL)
6184 goto error_return;
6185 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6186 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6187 goto error_return;
6188
6189 /* We know the number of entries in the section but not the maximum
6190 index. Therefore we have to run through all entries and find
6191 the maximum. */
6192 everdef = (Elf_External_Verdef *) contents;
6193 maxidx = 0;
6194 for (i = 0; i < hdr->sh_info; ++i)
6195 {
6196 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6197
6198 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6199 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6200
6201 everdef = ((Elf_External_Verdef *)
6202 ((bfd_byte *) everdef + iverdefmem.vd_next));
6203 }
6204
6205 if (default_imported_symver)
6206 {
6207 if (freeidx > maxidx)
6208 maxidx = ++freeidx;
6209 else
6210 freeidx = ++maxidx;
6211 }
6212 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6213 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6214 if (elf_tdata (abfd)->verdef == NULL)
6215 goto error_return;
6216
6217 elf_tdata (abfd)->cverdefs = maxidx;
6218
6219 everdef = (Elf_External_Verdef *) contents;
6220 iverdefarr = elf_tdata (abfd)->verdef;
6221 for (i = 0; i < hdr->sh_info; i++)
6222 {
6223 Elf_External_Verdaux *everdaux;
6224 Elf_Internal_Verdaux *iverdaux;
6225 unsigned int j;
6226
6227 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6228
6229 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6230 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6231
6232 iverdef->vd_bfd = abfd;
6233
6234 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6235 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6236 if (iverdef->vd_auxptr == NULL)
6237 goto error_return;
6238
6239 everdaux = ((Elf_External_Verdaux *)
6240 ((bfd_byte *) everdef + iverdef->vd_aux));
6241 iverdaux = iverdef->vd_auxptr;
6242 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6243 {
6244 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6245
6246 iverdaux->vda_nodename =
6247 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6248 iverdaux->vda_name);
6249 if (iverdaux->vda_nodename == NULL)
6250 goto error_return;
6251
6252 if (j + 1 < iverdef->vd_cnt)
6253 iverdaux->vda_nextptr = iverdaux + 1;
6254 else
6255 iverdaux->vda_nextptr = NULL;
6256
6257 everdaux = ((Elf_External_Verdaux *)
6258 ((bfd_byte *) everdaux + iverdaux->vda_next));
6259 }
6260
6261 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6262
6263 if (i + 1 < hdr->sh_info)
6264 iverdef->vd_nextdef = iverdef + 1;
6265 else
6266 iverdef->vd_nextdef = NULL;
6267
6268 everdef = ((Elf_External_Verdef *)
6269 ((bfd_byte *) everdef + iverdef->vd_next));
6270 }
6271
6272 free (contents);
6273 contents = NULL;
6274 }
6275 else if (default_imported_symver)
6276 {
6277 if (freeidx < 3)
6278 freeidx = 3;
6279 else
6280 freeidx++;
6281
6282 amt = (bfd_size_type) freeidx * sizeof (Elf_Internal_Verdef);
6283 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6284 if (elf_tdata (abfd)->verdef == NULL)
6285 goto error_return;
6286
6287 elf_tdata (abfd)->cverdefs = freeidx;
6288 }
6289
6290 /* Create a default version based on the soname. */
6291 if (default_imported_symver)
6292 {
6293 Elf_Internal_Verdef *iverdef;
6294 Elf_Internal_Verdaux *iverdaux;
6295
6296 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6297
6298 iverdef->vd_version = VER_DEF_CURRENT;
6299 iverdef->vd_flags = 0;
6300 iverdef->vd_ndx = freeidx;
6301 iverdef->vd_cnt = 1;
6302
6303 iverdef->vd_bfd = abfd;
6304
6305 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6306 if (iverdef->vd_nodename == NULL)
6307 goto error_return;
6308 iverdef->vd_nextdef = NULL;
6309 amt = (bfd_size_type) sizeof (Elf_Internal_Verdaux);
6310 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6311
6312 iverdaux = iverdef->vd_auxptr;
6313 iverdaux->vda_nodename = iverdef->vd_nodename;
6314 iverdaux->vda_nextptr = NULL;
6315 }
6316
6317 return TRUE;
6318
6319 error_return:
6320 if (contents != NULL)
6321 free (contents);
6322 return FALSE;
6323 }
6324 \f
6325 asymbol *
6326 _bfd_elf_make_empty_symbol (bfd *abfd)
6327 {
6328 elf_symbol_type *newsym;
6329 bfd_size_type amt = sizeof (elf_symbol_type);
6330
6331 newsym = bfd_zalloc (abfd, amt);
6332 if (!newsym)
6333 return NULL;
6334 else
6335 {
6336 newsym->symbol.the_bfd = abfd;
6337 return &newsym->symbol;
6338 }
6339 }
6340
6341 void
6342 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6343 asymbol *symbol,
6344 symbol_info *ret)
6345 {
6346 bfd_symbol_info (symbol, ret);
6347 }
6348
6349 /* Return whether a symbol name implies a local symbol. Most targets
6350 use this function for the is_local_label_name entry point, but some
6351 override it. */
6352
6353 bfd_boolean
6354 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6355 const char *name)
6356 {
6357 /* Normal local symbols start with ``.L''. */
6358 if (name[0] == '.' && name[1] == 'L')
6359 return TRUE;
6360
6361 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6362 DWARF debugging symbols starting with ``..''. */
6363 if (name[0] == '.' && name[1] == '.')
6364 return TRUE;
6365
6366 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6367 emitting DWARF debugging output. I suspect this is actually a
6368 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6369 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6370 underscore to be emitted on some ELF targets). For ease of use,
6371 we treat such symbols as local. */
6372 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6373 return TRUE;
6374
6375 return FALSE;
6376 }
6377
6378 alent *
6379 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6380 asymbol *symbol ATTRIBUTE_UNUSED)
6381 {
6382 abort ();
6383 return NULL;
6384 }
6385
6386 bfd_boolean
6387 _bfd_elf_set_arch_mach (bfd *abfd,
6388 enum bfd_architecture arch,
6389 unsigned long machine)
6390 {
6391 /* If this isn't the right architecture for this backend, and this
6392 isn't the generic backend, fail. */
6393 if (arch != get_elf_backend_data (abfd)->arch
6394 && arch != bfd_arch_unknown
6395 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6396 return FALSE;
6397
6398 return bfd_default_set_arch_mach (abfd, arch, machine);
6399 }
6400
6401 /* Find the function to a particular section and offset,
6402 for error reporting. */
6403
6404 static bfd_boolean
6405 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6406 asection *section,
6407 asymbol **symbols,
6408 bfd_vma offset,
6409 const char **filename_ptr,
6410 const char **functionname_ptr)
6411 {
6412 const char *filename;
6413 asymbol *func, *file;
6414 bfd_vma low_func;
6415 asymbol **p;
6416 /* ??? Given multiple file symbols, it is impossible to reliably
6417 choose the right file name for global symbols. File symbols are
6418 local symbols, and thus all file symbols must sort before any
6419 global symbols. The ELF spec may be interpreted to say that a
6420 file symbol must sort before other local symbols, but currently
6421 ld -r doesn't do this. So, for ld -r output, it is possible to
6422 make a better choice of file name for local symbols by ignoring
6423 file symbols appearing after a given local symbol. */
6424 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6425
6426 filename = NULL;
6427 func = NULL;
6428 file = NULL;
6429 low_func = 0;
6430 state = nothing_seen;
6431
6432 for (p = symbols; *p != NULL; p++)
6433 {
6434 elf_symbol_type *q;
6435
6436 q = (elf_symbol_type *) *p;
6437
6438 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6439 {
6440 default:
6441 break;
6442 case STT_FILE:
6443 file = &q->symbol;
6444 if (state == symbol_seen)
6445 state = file_after_symbol_seen;
6446 continue;
6447 case STT_SECTION:
6448 continue;
6449 case STT_NOTYPE:
6450 case STT_FUNC:
6451 if (bfd_get_section (&q->symbol) == section
6452 && q->symbol.value >= low_func
6453 && q->symbol.value <= offset)
6454 {
6455 func = (asymbol *) q;
6456 low_func = q->symbol.value;
6457 if (file == NULL)
6458 filename = NULL;
6459 else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
6460 && state == file_after_symbol_seen)
6461 filename = NULL;
6462 else
6463 filename = bfd_asymbol_name (file);
6464 }
6465 break;
6466 }
6467 if (state == nothing_seen)
6468 state = symbol_seen;
6469 }
6470
6471 if (func == NULL)
6472 return FALSE;
6473
6474 if (filename_ptr)
6475 *filename_ptr = filename;
6476 if (functionname_ptr)
6477 *functionname_ptr = bfd_asymbol_name (func);
6478
6479 return TRUE;
6480 }
6481
6482 /* Find the nearest line to a particular section and offset,
6483 for error reporting. */
6484
6485 bfd_boolean
6486 _bfd_elf_find_nearest_line (bfd *abfd,
6487 asection *section,
6488 asymbol **symbols,
6489 bfd_vma offset,
6490 const char **filename_ptr,
6491 const char **functionname_ptr,
6492 unsigned int *line_ptr)
6493 {
6494 bfd_boolean found;
6495
6496 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6497 filename_ptr, functionname_ptr,
6498 line_ptr))
6499 {
6500 if (!*functionname_ptr)
6501 elf_find_function (abfd, section, symbols, offset,
6502 *filename_ptr ? NULL : filename_ptr,
6503 functionname_ptr);
6504
6505 return TRUE;
6506 }
6507
6508 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6509 filename_ptr, functionname_ptr,
6510 line_ptr, 0,
6511 &elf_tdata (abfd)->dwarf2_find_line_info))
6512 {
6513 if (!*functionname_ptr)
6514 elf_find_function (abfd, section, symbols, offset,
6515 *filename_ptr ? NULL : filename_ptr,
6516 functionname_ptr);
6517
6518 return TRUE;
6519 }
6520
6521 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6522 &found, filename_ptr,
6523 functionname_ptr, line_ptr,
6524 &elf_tdata (abfd)->line_info))
6525 return FALSE;
6526 if (found && (*functionname_ptr || *line_ptr))
6527 return TRUE;
6528
6529 if (symbols == NULL)
6530 return FALSE;
6531
6532 if (! elf_find_function (abfd, section, symbols, offset,
6533 filename_ptr, functionname_ptr))
6534 return FALSE;
6535
6536 *line_ptr = 0;
6537 return TRUE;
6538 }
6539
6540 int
6541 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6542 {
6543 int ret;
6544
6545 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6546 if (! reloc)
6547 ret += get_program_header_size (abfd);
6548 return ret;
6549 }
6550
6551 bfd_boolean
6552 _bfd_elf_set_section_contents (bfd *abfd,
6553 sec_ptr section,
6554 const void *location,
6555 file_ptr offset,
6556 bfd_size_type count)
6557 {
6558 Elf_Internal_Shdr *hdr;
6559 bfd_signed_vma pos;
6560
6561 if (! abfd->output_has_begun
6562 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6563 return FALSE;
6564
6565 hdr = &elf_section_data (section)->this_hdr;
6566 pos = hdr->sh_offset + offset;
6567 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6568 || bfd_bwrite (location, count, abfd) != count)
6569 return FALSE;
6570
6571 return TRUE;
6572 }
6573
6574 void
6575 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6576 arelent *cache_ptr ATTRIBUTE_UNUSED,
6577 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6578 {
6579 abort ();
6580 }
6581
6582 /* Try to convert a non-ELF reloc into an ELF one. */
6583
6584 bfd_boolean
6585 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6586 {
6587 /* Check whether we really have an ELF howto. */
6588
6589 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6590 {
6591 bfd_reloc_code_real_type code;
6592 reloc_howto_type *howto;
6593
6594 /* Alien reloc: Try to determine its type to replace it with an
6595 equivalent ELF reloc. */
6596
6597 if (areloc->howto->pc_relative)
6598 {
6599 switch (areloc->howto->bitsize)
6600 {
6601 case 8:
6602 code = BFD_RELOC_8_PCREL;
6603 break;
6604 case 12:
6605 code = BFD_RELOC_12_PCREL;
6606 break;
6607 case 16:
6608 code = BFD_RELOC_16_PCREL;
6609 break;
6610 case 24:
6611 code = BFD_RELOC_24_PCREL;
6612 break;
6613 case 32:
6614 code = BFD_RELOC_32_PCREL;
6615 break;
6616 case 64:
6617 code = BFD_RELOC_64_PCREL;
6618 break;
6619 default:
6620 goto fail;
6621 }
6622
6623 howto = bfd_reloc_type_lookup (abfd, code);
6624
6625 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6626 {
6627 if (howto->pcrel_offset)
6628 areloc->addend += areloc->address;
6629 else
6630 areloc->addend -= areloc->address; /* addend is unsigned!! */
6631 }
6632 }
6633 else
6634 {
6635 switch (areloc->howto->bitsize)
6636 {
6637 case 8:
6638 code = BFD_RELOC_8;
6639 break;
6640 case 14:
6641 code = BFD_RELOC_14;
6642 break;
6643 case 16:
6644 code = BFD_RELOC_16;
6645 break;
6646 case 26:
6647 code = BFD_RELOC_26;
6648 break;
6649 case 32:
6650 code = BFD_RELOC_32;
6651 break;
6652 case 64:
6653 code = BFD_RELOC_64;
6654 break;
6655 default:
6656 goto fail;
6657 }
6658
6659 howto = bfd_reloc_type_lookup (abfd, code);
6660 }
6661
6662 if (howto)
6663 areloc->howto = howto;
6664 else
6665 goto fail;
6666 }
6667
6668 return TRUE;
6669
6670 fail:
6671 (*_bfd_error_handler)
6672 (_("%B: unsupported relocation type %s"),
6673 abfd, areloc->howto->name);
6674 bfd_set_error (bfd_error_bad_value);
6675 return FALSE;
6676 }
6677
6678 bfd_boolean
6679 _bfd_elf_close_and_cleanup (bfd *abfd)
6680 {
6681 if (bfd_get_format (abfd) == bfd_object)
6682 {
6683 if (elf_shstrtab (abfd) != NULL)
6684 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6685 }
6686
6687 _bfd_dwarf2_cleanup_debug_info (abfd);
6688
6689 return _bfd_generic_close_and_cleanup (abfd);
6690 }
6691
6692 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6693 in the relocation's offset. Thus we cannot allow any sort of sanity
6694 range-checking to interfere. There is nothing else to do in processing
6695 this reloc. */
6696
6697 bfd_reloc_status_type
6698 _bfd_elf_rel_vtable_reloc_fn
6699 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6700 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6701 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6702 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6703 {
6704 return bfd_reloc_ok;
6705 }
6706 \f
6707 /* Elf core file support. Much of this only works on native
6708 toolchains, since we rely on knowing the
6709 machine-dependent procfs structure in order to pick
6710 out details about the corefile. */
6711
6712 #ifdef HAVE_SYS_PROCFS_H
6713 # include <sys/procfs.h>
6714 #endif
6715
6716 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6717
6718 static int
6719 elfcore_make_pid (bfd *abfd)
6720 {
6721 return ((elf_tdata (abfd)->core_lwpid << 16)
6722 + (elf_tdata (abfd)->core_pid));
6723 }
6724
6725 /* If there isn't a section called NAME, make one, using
6726 data from SECT. Note, this function will generate a
6727 reference to NAME, so you shouldn't deallocate or
6728 overwrite it. */
6729
6730 static bfd_boolean
6731 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6732 {
6733 asection *sect2;
6734
6735 if (bfd_get_section_by_name (abfd, name) != NULL)
6736 return TRUE;
6737
6738 sect2 = bfd_make_section (abfd, name);
6739 if (sect2 == NULL)
6740 return FALSE;
6741
6742 sect2->size = sect->size;
6743 sect2->filepos = sect->filepos;
6744 sect2->flags = sect->flags;
6745 sect2->alignment_power = sect->alignment_power;
6746 return TRUE;
6747 }
6748
6749 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6750 actually creates up to two pseudosections:
6751 - For the single-threaded case, a section named NAME, unless
6752 such a section already exists.
6753 - For the multi-threaded case, a section named "NAME/PID", where
6754 PID is elfcore_make_pid (abfd).
6755 Both pseudosections have identical contents. */
6756 bfd_boolean
6757 _bfd_elfcore_make_pseudosection (bfd *abfd,
6758 char *name,
6759 size_t size,
6760 ufile_ptr filepos)
6761 {
6762 char buf[100];
6763 char *threaded_name;
6764 size_t len;
6765 asection *sect;
6766
6767 /* Build the section name. */
6768
6769 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6770 len = strlen (buf) + 1;
6771 threaded_name = bfd_alloc (abfd, len);
6772 if (threaded_name == NULL)
6773 return FALSE;
6774 memcpy (threaded_name, buf, len);
6775
6776 sect = bfd_make_section_anyway (abfd, threaded_name);
6777 if (sect == NULL)
6778 return FALSE;
6779 sect->size = size;
6780 sect->filepos = filepos;
6781 sect->flags = SEC_HAS_CONTENTS;
6782 sect->alignment_power = 2;
6783
6784 return elfcore_maybe_make_sect (abfd, name, sect);
6785 }
6786
6787 /* prstatus_t exists on:
6788 solaris 2.5+
6789 linux 2.[01] + glibc
6790 unixware 4.2
6791 */
6792
6793 #if defined (HAVE_PRSTATUS_T)
6794
6795 static bfd_boolean
6796 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6797 {
6798 size_t size;
6799 int offset;
6800
6801 if (note->descsz == sizeof (prstatus_t))
6802 {
6803 prstatus_t prstat;
6804
6805 size = sizeof (prstat.pr_reg);
6806 offset = offsetof (prstatus_t, pr_reg);
6807 memcpy (&prstat, note->descdata, sizeof (prstat));
6808
6809 /* Do not overwrite the core signal if it
6810 has already been set by another thread. */
6811 if (elf_tdata (abfd)->core_signal == 0)
6812 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6813 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6814
6815 /* pr_who exists on:
6816 solaris 2.5+
6817 unixware 4.2
6818 pr_who doesn't exist on:
6819 linux 2.[01]
6820 */
6821 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6822 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6823 #endif
6824 }
6825 #if defined (HAVE_PRSTATUS32_T)
6826 else if (note->descsz == sizeof (prstatus32_t))
6827 {
6828 /* 64-bit host, 32-bit corefile */
6829 prstatus32_t prstat;
6830
6831 size = sizeof (prstat.pr_reg);
6832 offset = offsetof (prstatus32_t, pr_reg);
6833 memcpy (&prstat, note->descdata, sizeof (prstat));
6834
6835 /* Do not overwrite the core signal if it
6836 has already been set by another thread. */
6837 if (elf_tdata (abfd)->core_signal == 0)
6838 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6839 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6840
6841 /* pr_who exists on:
6842 solaris 2.5+
6843 unixware 4.2
6844 pr_who doesn't exist on:
6845 linux 2.[01]
6846 */
6847 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6848 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6849 #endif
6850 }
6851 #endif /* HAVE_PRSTATUS32_T */
6852 else
6853 {
6854 /* Fail - we don't know how to handle any other
6855 note size (ie. data object type). */
6856 return TRUE;
6857 }
6858
6859 /* Make a ".reg/999" section and a ".reg" section. */
6860 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6861 size, note->descpos + offset);
6862 }
6863 #endif /* defined (HAVE_PRSTATUS_T) */
6864
6865 /* Create a pseudosection containing the exact contents of NOTE. */
6866 static bfd_boolean
6867 elfcore_make_note_pseudosection (bfd *abfd,
6868 char *name,
6869 Elf_Internal_Note *note)
6870 {
6871 return _bfd_elfcore_make_pseudosection (abfd, name,
6872 note->descsz, note->descpos);
6873 }
6874
6875 /* There isn't a consistent prfpregset_t across platforms,
6876 but it doesn't matter, because we don't have to pick this
6877 data structure apart. */
6878
6879 static bfd_boolean
6880 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6881 {
6882 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6883 }
6884
6885 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6886 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6887 literally. */
6888
6889 static bfd_boolean
6890 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6891 {
6892 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6893 }
6894
6895 #if defined (HAVE_PRPSINFO_T)
6896 typedef prpsinfo_t elfcore_psinfo_t;
6897 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6898 typedef prpsinfo32_t elfcore_psinfo32_t;
6899 #endif
6900 #endif
6901
6902 #if defined (HAVE_PSINFO_T)
6903 typedef psinfo_t elfcore_psinfo_t;
6904 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6905 typedef psinfo32_t elfcore_psinfo32_t;
6906 #endif
6907 #endif
6908
6909 /* return a malloc'ed copy of a string at START which is at
6910 most MAX bytes long, possibly without a terminating '\0'.
6911 the copy will always have a terminating '\0'. */
6912
6913 char *
6914 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6915 {
6916 char *dups;
6917 char *end = memchr (start, '\0', max);
6918 size_t len;
6919
6920 if (end == NULL)
6921 len = max;
6922 else
6923 len = end - start;
6924
6925 dups = bfd_alloc (abfd, len + 1);
6926 if (dups == NULL)
6927 return NULL;
6928
6929 memcpy (dups, start, len);
6930 dups[len] = '\0';
6931
6932 return dups;
6933 }
6934
6935 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6936 static bfd_boolean
6937 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6938 {
6939 if (note->descsz == sizeof (elfcore_psinfo_t))
6940 {
6941 elfcore_psinfo_t psinfo;
6942
6943 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6944
6945 elf_tdata (abfd)->core_program
6946 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6947 sizeof (psinfo.pr_fname));
6948
6949 elf_tdata (abfd)->core_command
6950 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6951 sizeof (psinfo.pr_psargs));
6952 }
6953 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6954 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6955 {
6956 /* 64-bit host, 32-bit corefile */
6957 elfcore_psinfo32_t psinfo;
6958
6959 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6960
6961 elf_tdata (abfd)->core_program
6962 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6963 sizeof (psinfo.pr_fname));
6964
6965 elf_tdata (abfd)->core_command
6966 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6967 sizeof (psinfo.pr_psargs));
6968 }
6969 #endif
6970
6971 else
6972 {
6973 /* Fail - we don't know how to handle any other
6974 note size (ie. data object type). */
6975 return TRUE;
6976 }
6977
6978 /* Note that for some reason, a spurious space is tacked
6979 onto the end of the args in some (at least one anyway)
6980 implementations, so strip it off if it exists. */
6981
6982 {
6983 char *command = elf_tdata (abfd)->core_command;
6984 int n = strlen (command);
6985
6986 if (0 < n && command[n - 1] == ' ')
6987 command[n - 1] = '\0';
6988 }
6989
6990 return TRUE;
6991 }
6992 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6993
6994 #if defined (HAVE_PSTATUS_T)
6995 static bfd_boolean
6996 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6997 {
6998 if (note->descsz == sizeof (pstatus_t)
6999 #if defined (HAVE_PXSTATUS_T)
7000 || note->descsz == sizeof (pxstatus_t)
7001 #endif
7002 )
7003 {
7004 pstatus_t pstat;
7005
7006 memcpy (&pstat, note->descdata, sizeof (pstat));
7007
7008 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7009 }
7010 #if defined (HAVE_PSTATUS32_T)
7011 else if (note->descsz == sizeof (pstatus32_t))
7012 {
7013 /* 64-bit host, 32-bit corefile */
7014 pstatus32_t pstat;
7015
7016 memcpy (&pstat, note->descdata, sizeof (pstat));
7017
7018 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7019 }
7020 #endif
7021 /* Could grab some more details from the "representative"
7022 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7023 NT_LWPSTATUS note, presumably. */
7024
7025 return TRUE;
7026 }
7027 #endif /* defined (HAVE_PSTATUS_T) */
7028
7029 #if defined (HAVE_LWPSTATUS_T)
7030 static bfd_boolean
7031 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7032 {
7033 lwpstatus_t lwpstat;
7034 char buf[100];
7035 char *name;
7036 size_t len;
7037 asection *sect;
7038
7039 if (note->descsz != sizeof (lwpstat)
7040 #if defined (HAVE_LWPXSTATUS_T)
7041 && note->descsz != sizeof (lwpxstatus_t)
7042 #endif
7043 )
7044 return TRUE;
7045
7046 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7047
7048 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7049 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7050
7051 /* Make a ".reg/999" section. */
7052
7053 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7054 len = strlen (buf) + 1;
7055 name = bfd_alloc (abfd, len);
7056 if (name == NULL)
7057 return FALSE;
7058 memcpy (name, buf, len);
7059
7060 sect = bfd_make_section_anyway (abfd, name);
7061 if (sect == NULL)
7062 return FALSE;
7063
7064 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7065 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7066 sect->filepos = note->descpos
7067 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7068 #endif
7069
7070 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7071 sect->size = sizeof (lwpstat.pr_reg);
7072 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7073 #endif
7074
7075 sect->flags = SEC_HAS_CONTENTS;
7076 sect->alignment_power = 2;
7077
7078 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7079 return FALSE;
7080
7081 /* Make a ".reg2/999" section */
7082
7083 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7084 len = strlen (buf) + 1;
7085 name = bfd_alloc (abfd, len);
7086 if (name == NULL)
7087 return FALSE;
7088 memcpy (name, buf, len);
7089
7090 sect = bfd_make_section_anyway (abfd, name);
7091 if (sect == NULL)
7092 return FALSE;
7093
7094 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7095 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7096 sect->filepos = note->descpos
7097 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7098 #endif
7099
7100 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7101 sect->size = sizeof (lwpstat.pr_fpreg);
7102 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7103 #endif
7104
7105 sect->flags = SEC_HAS_CONTENTS;
7106 sect->alignment_power = 2;
7107
7108 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7109 }
7110 #endif /* defined (HAVE_LWPSTATUS_T) */
7111
7112 #if defined (HAVE_WIN32_PSTATUS_T)
7113 static bfd_boolean
7114 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7115 {
7116 char buf[30];
7117 char *name;
7118 size_t len;
7119 asection *sect;
7120 win32_pstatus_t pstatus;
7121
7122 if (note->descsz < sizeof (pstatus))
7123 return TRUE;
7124
7125 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7126
7127 switch (pstatus.data_type)
7128 {
7129 case NOTE_INFO_PROCESS:
7130 /* FIXME: need to add ->core_command. */
7131 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7132 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7133 break;
7134
7135 case NOTE_INFO_THREAD:
7136 /* Make a ".reg/999" section. */
7137 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7138
7139 len = strlen (buf) + 1;
7140 name = bfd_alloc (abfd, len);
7141 if (name == NULL)
7142 return FALSE;
7143
7144 memcpy (name, buf, len);
7145
7146 sect = bfd_make_section_anyway (abfd, name);
7147 if (sect == NULL)
7148 return FALSE;
7149
7150 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7151 sect->filepos = (note->descpos
7152 + offsetof (struct win32_pstatus,
7153 data.thread_info.thread_context));
7154 sect->flags = SEC_HAS_CONTENTS;
7155 sect->alignment_power = 2;
7156
7157 if (pstatus.data.thread_info.is_active_thread)
7158 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7159 return FALSE;
7160 break;
7161
7162 case NOTE_INFO_MODULE:
7163 /* Make a ".module/xxxxxxxx" section. */
7164 sprintf (buf, ".module/%08lx",
7165 (long) pstatus.data.module_info.base_address);
7166
7167 len = strlen (buf) + 1;
7168 name = bfd_alloc (abfd, len);
7169 if (name == NULL)
7170 return FALSE;
7171
7172 memcpy (name, buf, len);
7173
7174 sect = bfd_make_section_anyway (abfd, name);
7175
7176 if (sect == NULL)
7177 return FALSE;
7178
7179 sect->size = note->descsz;
7180 sect->filepos = note->descpos;
7181 sect->flags = SEC_HAS_CONTENTS;
7182 sect->alignment_power = 2;
7183 break;
7184
7185 default:
7186 return TRUE;
7187 }
7188
7189 return TRUE;
7190 }
7191 #endif /* HAVE_WIN32_PSTATUS_T */
7192
7193 static bfd_boolean
7194 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7195 {
7196 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7197
7198 switch (note->type)
7199 {
7200 default:
7201 return TRUE;
7202
7203 case NT_PRSTATUS:
7204 if (bed->elf_backend_grok_prstatus)
7205 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7206 return TRUE;
7207 #if defined (HAVE_PRSTATUS_T)
7208 return elfcore_grok_prstatus (abfd, note);
7209 #else
7210 return TRUE;
7211 #endif
7212
7213 #if defined (HAVE_PSTATUS_T)
7214 case NT_PSTATUS:
7215 return elfcore_grok_pstatus (abfd, note);
7216 #endif
7217
7218 #if defined (HAVE_LWPSTATUS_T)
7219 case NT_LWPSTATUS:
7220 return elfcore_grok_lwpstatus (abfd, note);
7221 #endif
7222
7223 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7224 return elfcore_grok_prfpreg (abfd, note);
7225
7226 #if defined (HAVE_WIN32_PSTATUS_T)
7227 case NT_WIN32PSTATUS:
7228 return elfcore_grok_win32pstatus (abfd, note);
7229 #endif
7230
7231 case NT_PRXFPREG: /* Linux SSE extension */
7232 if (note->namesz == 6
7233 && strcmp (note->namedata, "LINUX") == 0)
7234 return elfcore_grok_prxfpreg (abfd, note);
7235 else
7236 return TRUE;
7237
7238 case NT_PRPSINFO:
7239 case NT_PSINFO:
7240 if (bed->elf_backend_grok_psinfo)
7241 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7242 return TRUE;
7243 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7244 return elfcore_grok_psinfo (abfd, note);
7245 #else
7246 return TRUE;
7247 #endif
7248
7249 case NT_AUXV:
7250 {
7251 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7252
7253 if (sect == NULL)
7254 return FALSE;
7255 sect->size = note->descsz;
7256 sect->filepos = note->descpos;
7257 sect->flags = SEC_HAS_CONTENTS;
7258 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7259
7260 return TRUE;
7261 }
7262 }
7263 }
7264
7265 static bfd_boolean
7266 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7267 {
7268 char *cp;
7269
7270 cp = strchr (note->namedata, '@');
7271 if (cp != NULL)
7272 {
7273 *lwpidp = atoi(cp + 1);
7274 return TRUE;
7275 }
7276 return FALSE;
7277 }
7278
7279 static bfd_boolean
7280 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7281 {
7282
7283 /* Signal number at offset 0x08. */
7284 elf_tdata (abfd)->core_signal
7285 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7286
7287 /* Process ID at offset 0x50. */
7288 elf_tdata (abfd)->core_pid
7289 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7290
7291 /* Command name at 0x7c (max 32 bytes, including nul). */
7292 elf_tdata (abfd)->core_command
7293 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7294
7295 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7296 note);
7297 }
7298
7299 static bfd_boolean
7300 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7301 {
7302 int lwp;
7303
7304 if (elfcore_netbsd_get_lwpid (note, &lwp))
7305 elf_tdata (abfd)->core_lwpid = lwp;
7306
7307 if (note->type == NT_NETBSDCORE_PROCINFO)
7308 {
7309 /* NetBSD-specific core "procinfo". Note that we expect to
7310 find this note before any of the others, which is fine,
7311 since the kernel writes this note out first when it
7312 creates a core file. */
7313
7314 return elfcore_grok_netbsd_procinfo (abfd, note);
7315 }
7316
7317 /* As of Jan 2002 there are no other machine-independent notes
7318 defined for NetBSD core files. If the note type is less
7319 than the start of the machine-dependent note types, we don't
7320 understand it. */
7321
7322 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7323 return TRUE;
7324
7325
7326 switch (bfd_get_arch (abfd))
7327 {
7328 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7329 PT_GETFPREGS == mach+2. */
7330
7331 case bfd_arch_alpha:
7332 case bfd_arch_sparc:
7333 switch (note->type)
7334 {
7335 case NT_NETBSDCORE_FIRSTMACH+0:
7336 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7337
7338 case NT_NETBSDCORE_FIRSTMACH+2:
7339 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7340
7341 default:
7342 return TRUE;
7343 }
7344
7345 /* On all other arch's, PT_GETREGS == mach+1 and
7346 PT_GETFPREGS == mach+3. */
7347
7348 default:
7349 switch (note->type)
7350 {
7351 case NT_NETBSDCORE_FIRSTMACH+1:
7352 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7353
7354 case NT_NETBSDCORE_FIRSTMACH+3:
7355 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7356
7357 default:
7358 return TRUE;
7359 }
7360 }
7361 /* NOTREACHED */
7362 }
7363
7364 static bfd_boolean
7365 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7366 {
7367 void *ddata = note->descdata;
7368 char buf[100];
7369 char *name;
7370 asection *sect;
7371 short sig;
7372 unsigned flags;
7373
7374 /* nto_procfs_status 'pid' field is at offset 0. */
7375 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7376
7377 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7378 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7379
7380 /* nto_procfs_status 'flags' field is at offset 8. */
7381 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7382
7383 /* nto_procfs_status 'what' field is at offset 14. */
7384 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7385 {
7386 elf_tdata (abfd)->core_signal = sig;
7387 elf_tdata (abfd)->core_lwpid = *tid;
7388 }
7389
7390 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7391 do not come from signals so we make sure we set the current
7392 thread just in case. */
7393 if (flags & 0x00000080)
7394 elf_tdata (abfd)->core_lwpid = *tid;
7395
7396 /* Make a ".qnx_core_status/%d" section. */
7397 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7398
7399 name = bfd_alloc (abfd, strlen (buf) + 1);
7400 if (name == NULL)
7401 return FALSE;
7402 strcpy (name, buf);
7403
7404 sect = bfd_make_section_anyway (abfd, name);
7405 if (sect == NULL)
7406 return FALSE;
7407
7408 sect->size = note->descsz;
7409 sect->filepos = note->descpos;
7410 sect->flags = SEC_HAS_CONTENTS;
7411 sect->alignment_power = 2;
7412
7413 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7414 }
7415
7416 static bfd_boolean
7417 elfcore_grok_nto_regs (bfd *abfd,
7418 Elf_Internal_Note *note,
7419 pid_t tid,
7420 char *base)
7421 {
7422 char buf[100];
7423 char *name;
7424 asection *sect;
7425
7426 /* Make a "(base)/%d" section. */
7427 sprintf (buf, "%s/%ld", base, (long) tid);
7428
7429 name = bfd_alloc (abfd, strlen (buf) + 1);
7430 if (name == NULL)
7431 return FALSE;
7432 strcpy (name, buf);
7433
7434 sect = bfd_make_section_anyway (abfd, name);
7435 if (sect == NULL)
7436 return FALSE;
7437
7438 sect->size = note->descsz;
7439 sect->filepos = note->descpos;
7440 sect->flags = SEC_HAS_CONTENTS;
7441 sect->alignment_power = 2;
7442
7443 /* This is the current thread. */
7444 if (elf_tdata (abfd)->core_lwpid == tid)
7445 return elfcore_maybe_make_sect (abfd, base, sect);
7446
7447 return TRUE;
7448 }
7449
7450 #define BFD_QNT_CORE_INFO 7
7451 #define BFD_QNT_CORE_STATUS 8
7452 #define BFD_QNT_CORE_GREG 9
7453 #define BFD_QNT_CORE_FPREG 10
7454
7455 static bfd_boolean
7456 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7457 {
7458 /* Every GREG section has a STATUS section before it. Store the
7459 tid from the previous call to pass down to the next gregs
7460 function. */
7461 static pid_t tid = 1;
7462
7463 switch (note->type)
7464 {
7465 case BFD_QNT_CORE_INFO:
7466 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7467 case BFD_QNT_CORE_STATUS:
7468 return elfcore_grok_nto_status (abfd, note, &tid);
7469 case BFD_QNT_CORE_GREG:
7470 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7471 case BFD_QNT_CORE_FPREG:
7472 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7473 default:
7474 return TRUE;
7475 }
7476 }
7477
7478 /* Function: elfcore_write_note
7479
7480 Inputs:
7481 buffer to hold note
7482 name of note
7483 type of note
7484 data for note
7485 size of data for note
7486
7487 Return:
7488 End of buffer containing note. */
7489
7490 char *
7491 elfcore_write_note (bfd *abfd,
7492 char *buf,
7493 int *bufsiz,
7494 const char *name,
7495 int type,
7496 const void *input,
7497 int size)
7498 {
7499 Elf_External_Note *xnp;
7500 size_t namesz;
7501 size_t pad;
7502 size_t newspace;
7503 char *p, *dest;
7504
7505 namesz = 0;
7506 pad = 0;
7507 if (name != NULL)
7508 {
7509 const struct elf_backend_data *bed;
7510
7511 namesz = strlen (name) + 1;
7512 bed = get_elf_backend_data (abfd);
7513 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7514 }
7515
7516 newspace = 12 + namesz + pad + size;
7517
7518 p = realloc (buf, *bufsiz + newspace);
7519 dest = p + *bufsiz;
7520 *bufsiz += newspace;
7521 xnp = (Elf_External_Note *) dest;
7522 H_PUT_32 (abfd, namesz, xnp->namesz);
7523 H_PUT_32 (abfd, size, xnp->descsz);
7524 H_PUT_32 (abfd, type, xnp->type);
7525 dest = xnp->name;
7526 if (name != NULL)
7527 {
7528 memcpy (dest, name, namesz);
7529 dest += namesz;
7530 while (pad != 0)
7531 {
7532 *dest++ = '\0';
7533 --pad;
7534 }
7535 }
7536 memcpy (dest, input, size);
7537 return p;
7538 }
7539
7540 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7541 char *
7542 elfcore_write_prpsinfo (bfd *abfd,
7543 char *buf,
7544 int *bufsiz,
7545 const char *fname,
7546 const char *psargs)
7547 {
7548 int note_type;
7549 char *note_name = "CORE";
7550
7551 #if defined (HAVE_PSINFO_T)
7552 psinfo_t data;
7553 note_type = NT_PSINFO;
7554 #else
7555 prpsinfo_t data;
7556 note_type = NT_PRPSINFO;
7557 #endif
7558
7559 memset (&data, 0, sizeof (data));
7560 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7561 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7562 return elfcore_write_note (abfd, buf, bufsiz,
7563 note_name, note_type, &data, sizeof (data));
7564 }
7565 #endif /* PSINFO_T or PRPSINFO_T */
7566
7567 #if defined (HAVE_PRSTATUS_T)
7568 char *
7569 elfcore_write_prstatus (bfd *abfd,
7570 char *buf,
7571 int *bufsiz,
7572 long pid,
7573 int cursig,
7574 const void *gregs)
7575 {
7576 prstatus_t prstat;
7577 char *note_name = "CORE";
7578
7579 memset (&prstat, 0, sizeof (prstat));
7580 prstat.pr_pid = pid;
7581 prstat.pr_cursig = cursig;
7582 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7583 return elfcore_write_note (abfd, buf, bufsiz,
7584 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7585 }
7586 #endif /* HAVE_PRSTATUS_T */
7587
7588 #if defined (HAVE_LWPSTATUS_T)
7589 char *
7590 elfcore_write_lwpstatus (bfd *abfd,
7591 char *buf,
7592 int *bufsiz,
7593 long pid,
7594 int cursig,
7595 const void *gregs)
7596 {
7597 lwpstatus_t lwpstat;
7598 char *note_name = "CORE";
7599
7600 memset (&lwpstat, 0, sizeof (lwpstat));
7601 lwpstat.pr_lwpid = pid >> 16;
7602 lwpstat.pr_cursig = cursig;
7603 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7604 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7605 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7606 #if !defined(gregs)
7607 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7608 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7609 #else
7610 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7611 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7612 #endif
7613 #endif
7614 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7615 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7616 }
7617 #endif /* HAVE_LWPSTATUS_T */
7618
7619 #if defined (HAVE_PSTATUS_T)
7620 char *
7621 elfcore_write_pstatus (bfd *abfd,
7622 char *buf,
7623 int *bufsiz,
7624 long pid,
7625 int cursig,
7626 const void *gregs)
7627 {
7628 pstatus_t pstat;
7629 char *note_name = "CORE";
7630
7631 memset (&pstat, 0, sizeof (pstat));
7632 pstat.pr_pid = pid & 0xffff;
7633 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7634 NT_PSTATUS, &pstat, sizeof (pstat));
7635 return buf;
7636 }
7637 #endif /* HAVE_PSTATUS_T */
7638
7639 char *
7640 elfcore_write_prfpreg (bfd *abfd,
7641 char *buf,
7642 int *bufsiz,
7643 const void *fpregs,
7644 int size)
7645 {
7646 char *note_name = "CORE";
7647 return elfcore_write_note (abfd, buf, bufsiz,
7648 note_name, NT_FPREGSET, fpregs, size);
7649 }
7650
7651 char *
7652 elfcore_write_prxfpreg (bfd *abfd,
7653 char *buf,
7654 int *bufsiz,
7655 const void *xfpregs,
7656 int size)
7657 {
7658 char *note_name = "LINUX";
7659 return elfcore_write_note (abfd, buf, bufsiz,
7660 note_name, NT_PRXFPREG, xfpregs, size);
7661 }
7662
7663 static bfd_boolean
7664 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7665 {
7666 char *buf;
7667 char *p;
7668
7669 if (size <= 0)
7670 return TRUE;
7671
7672 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7673 return FALSE;
7674
7675 buf = bfd_malloc (size);
7676 if (buf == NULL)
7677 return FALSE;
7678
7679 if (bfd_bread (buf, size, abfd) != size)
7680 {
7681 error:
7682 free (buf);
7683 return FALSE;
7684 }
7685
7686 p = buf;
7687 while (p < buf + size)
7688 {
7689 /* FIXME: bad alignment assumption. */
7690 Elf_External_Note *xnp = (Elf_External_Note *) p;
7691 Elf_Internal_Note in;
7692
7693 in.type = H_GET_32 (abfd, xnp->type);
7694
7695 in.namesz = H_GET_32 (abfd, xnp->namesz);
7696 in.namedata = xnp->name;
7697
7698 in.descsz = H_GET_32 (abfd, xnp->descsz);
7699 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7700 in.descpos = offset + (in.descdata - buf);
7701
7702 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7703 {
7704 if (! elfcore_grok_netbsd_note (abfd, &in))
7705 goto error;
7706 }
7707 else if (strncmp (in.namedata, "QNX", 3) == 0)
7708 {
7709 if (! elfcore_grok_nto_note (abfd, &in))
7710 goto error;
7711 }
7712 else
7713 {
7714 if (! elfcore_grok_note (abfd, &in))
7715 goto error;
7716 }
7717
7718 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7719 }
7720
7721 free (buf);
7722 return TRUE;
7723 }
7724 \f
7725 /* Providing external access to the ELF program header table. */
7726
7727 /* Return an upper bound on the number of bytes required to store a
7728 copy of ABFD's program header table entries. Return -1 if an error
7729 occurs; bfd_get_error will return an appropriate code. */
7730
7731 long
7732 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7733 {
7734 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7735 {
7736 bfd_set_error (bfd_error_wrong_format);
7737 return -1;
7738 }
7739
7740 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7741 }
7742
7743 /* Copy ABFD's program header table entries to *PHDRS. The entries
7744 will be stored as an array of Elf_Internal_Phdr structures, as
7745 defined in include/elf/internal.h. To find out how large the
7746 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7747
7748 Return the number of program header table entries read, or -1 if an
7749 error occurs; bfd_get_error will return an appropriate code. */
7750
7751 int
7752 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7753 {
7754 int num_phdrs;
7755
7756 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7757 {
7758 bfd_set_error (bfd_error_wrong_format);
7759 return -1;
7760 }
7761
7762 num_phdrs = elf_elfheader (abfd)->e_phnum;
7763 memcpy (phdrs, elf_tdata (abfd)->phdr,
7764 num_phdrs * sizeof (Elf_Internal_Phdr));
7765
7766 return num_phdrs;
7767 }
7768
7769 void
7770 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7771 {
7772 #ifdef BFD64
7773 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7774
7775 i_ehdrp = elf_elfheader (abfd);
7776 if (i_ehdrp == NULL)
7777 sprintf_vma (buf, value);
7778 else
7779 {
7780 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7781 {
7782 #if BFD_HOST_64BIT_LONG
7783 sprintf (buf, "%016lx", value);
7784 #else
7785 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7786 _bfd_int64_low (value));
7787 #endif
7788 }
7789 else
7790 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7791 }
7792 #else
7793 sprintf_vma (buf, value);
7794 #endif
7795 }
7796
7797 void
7798 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7799 {
7800 #ifdef BFD64
7801 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7802
7803 i_ehdrp = elf_elfheader (abfd);
7804 if (i_ehdrp == NULL)
7805 fprintf_vma ((FILE *) stream, value);
7806 else
7807 {
7808 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7809 {
7810 #if BFD_HOST_64BIT_LONG
7811 fprintf ((FILE *) stream, "%016lx", value);
7812 #else
7813 fprintf ((FILE *) stream, "%08lx%08lx",
7814 _bfd_int64_high (value), _bfd_int64_low (value));
7815 #endif
7816 }
7817 else
7818 fprintf ((FILE *) stream, "%08lx",
7819 (unsigned long) (value & 0xffffffff));
7820 }
7821 #else
7822 fprintf_vma ((FILE *) stream, value);
7823 #endif
7824 }
7825
7826 enum elf_reloc_type_class
7827 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7828 {
7829 return reloc_class_normal;
7830 }
7831
7832 /* For RELA architectures, return the relocation value for a
7833 relocation against a local symbol. */
7834
7835 bfd_vma
7836 _bfd_elf_rela_local_sym (bfd *abfd,
7837 Elf_Internal_Sym *sym,
7838 asection **psec,
7839 Elf_Internal_Rela *rel)
7840 {
7841 asection *sec = *psec;
7842 bfd_vma relocation;
7843
7844 relocation = (sec->output_section->vma
7845 + sec->output_offset
7846 + sym->st_value);
7847 if ((sec->flags & SEC_MERGE)
7848 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7849 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7850 {
7851 rel->r_addend =
7852 _bfd_merged_section_offset (abfd, psec,
7853 elf_section_data (sec)->sec_info,
7854 sym->st_value + rel->r_addend);
7855 if (sec != *psec)
7856 {
7857 /* If we have changed the section, and our original section is
7858 marked with SEC_EXCLUDE, it means that the original
7859 SEC_MERGE section has been completely subsumed in some
7860 other SEC_MERGE section. In this case, we need to leave
7861 some info around for --emit-relocs. */
7862 if ((sec->flags & SEC_EXCLUDE) != 0)
7863 sec->kept_section = *psec;
7864 sec = *psec;
7865 }
7866 rel->r_addend -= relocation;
7867 rel->r_addend += sec->output_section->vma + sec->output_offset;
7868 }
7869 return relocation;
7870 }
7871
7872 bfd_vma
7873 _bfd_elf_rel_local_sym (bfd *abfd,
7874 Elf_Internal_Sym *sym,
7875 asection **psec,
7876 bfd_vma addend)
7877 {
7878 asection *sec = *psec;
7879
7880 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7881 return sym->st_value + addend;
7882
7883 return _bfd_merged_section_offset (abfd, psec,
7884 elf_section_data (sec)->sec_info,
7885 sym->st_value + addend);
7886 }
7887
7888 bfd_vma
7889 _bfd_elf_section_offset (bfd *abfd,
7890 struct bfd_link_info *info,
7891 asection *sec,
7892 bfd_vma offset)
7893 {
7894 switch (sec->sec_info_type)
7895 {
7896 case ELF_INFO_TYPE_STABS:
7897 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
7898 offset);
7899 case ELF_INFO_TYPE_EH_FRAME:
7900 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
7901 default:
7902 return offset;
7903 }
7904 }
7905 \f
7906 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7907 reconstruct an ELF file by reading the segments out of remote memory
7908 based on the ELF file header at EHDR_VMA and the ELF program headers it
7909 points to. If not null, *LOADBASEP is filled in with the difference
7910 between the VMAs from which the segments were read, and the VMAs the
7911 file headers (and hence BFD's idea of each section's VMA) put them at.
7912
7913 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7914 remote memory at target address VMA into the local buffer at MYADDR; it
7915 should return zero on success or an `errno' code on failure. TEMPL must
7916 be a BFD for an ELF target with the word size and byte order found in
7917 the remote memory. */
7918
7919 bfd *
7920 bfd_elf_bfd_from_remote_memory
7921 (bfd *templ,
7922 bfd_vma ehdr_vma,
7923 bfd_vma *loadbasep,
7924 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
7925 {
7926 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7927 (templ, ehdr_vma, loadbasep, target_read_memory);
7928 }
7929 \f
7930 long
7931 _bfd_elf_get_synthetic_symtab (bfd *abfd,
7932 long symcount ATTRIBUTE_UNUSED,
7933 asymbol **syms ATTRIBUTE_UNUSED,
7934 long dynsymcount,
7935 asymbol **dynsyms,
7936 asymbol **ret)
7937 {
7938 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7939 asection *relplt;
7940 asymbol *s;
7941 const char *relplt_name;
7942 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7943 arelent *p;
7944 long count, i, n;
7945 size_t size;
7946 Elf_Internal_Shdr *hdr;
7947 char *names;
7948 asection *plt;
7949
7950 *ret = NULL;
7951
7952 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
7953 return 0;
7954
7955 if (dynsymcount <= 0)
7956 return 0;
7957
7958 if (!bed->plt_sym_val)
7959 return 0;
7960
7961 relplt_name = bed->relplt_name;
7962 if (relplt_name == NULL)
7963 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7964 relplt = bfd_get_section_by_name (abfd, relplt_name);
7965 if (relplt == NULL)
7966 return 0;
7967
7968 hdr = &elf_section_data (relplt)->this_hdr;
7969 if (hdr->sh_link != elf_dynsymtab (abfd)
7970 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7971 return 0;
7972
7973 plt = bfd_get_section_by_name (abfd, ".plt");
7974 if (plt == NULL)
7975 return 0;
7976
7977 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7978 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7979 return -1;
7980
7981 count = relplt->size / hdr->sh_entsize;
7982 size = count * sizeof (asymbol);
7983 p = relplt->relocation;
7984 for (i = 0; i < count; i++, s++, p++)
7985 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7986
7987 s = *ret = bfd_malloc (size);
7988 if (s == NULL)
7989 return -1;
7990
7991 names = (char *) (s + count);
7992 p = relplt->relocation;
7993 n = 0;
7994 for (i = 0; i < count; i++, s++, p++)
7995 {
7996 size_t len;
7997 bfd_vma addr;
7998
7999 addr = bed->plt_sym_val (i, plt, p);
8000 if (addr == (bfd_vma) -1)
8001 continue;
8002
8003 *s = **p->sym_ptr_ptr;
8004 s->section = plt;
8005 s->value = addr - plt->vma;
8006 s->name = names;
8007 len = strlen ((*p->sym_ptr_ptr)->name);
8008 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8009 names += len;
8010 memcpy (names, "@plt", sizeof ("@plt"));
8011 names += sizeof ("@plt");
8012 ++n;
8013 }
8014
8015 return n;
8016 }
8017
8018 /* Sort symbol by binding and section. We want to put definitions
8019 sorted by section at the beginning. */
8020
8021 static int
8022 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8023 {
8024 const Elf_Internal_Sym *s1;
8025 const Elf_Internal_Sym *s2;
8026 int shndx;
8027
8028 /* Make sure that undefined symbols are at the end. */
8029 s1 = (const Elf_Internal_Sym *) arg1;
8030 if (s1->st_shndx == SHN_UNDEF)
8031 return 1;
8032 s2 = (const Elf_Internal_Sym *) arg2;
8033 if (s2->st_shndx == SHN_UNDEF)
8034 return -1;
8035
8036 /* Sorted by section index. */
8037 shndx = s1->st_shndx - s2->st_shndx;
8038 if (shndx != 0)
8039 return shndx;
8040
8041 /* Sorted by binding. */
8042 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8043 }
8044
8045 struct elf_symbol
8046 {
8047 Elf_Internal_Sym *sym;
8048 const char *name;
8049 };
8050
8051 static int
8052 elf_sym_name_compare (const void *arg1, const void *arg2)
8053 {
8054 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8055 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8056 return strcmp (s1->name, s2->name);
8057 }
8058
8059 /* Check if 2 sections define the same set of local and global
8060 symbols. */
8061
8062 bfd_boolean
8063 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8064 {
8065 bfd *bfd1, *bfd2;
8066 const struct elf_backend_data *bed1, *bed2;
8067 Elf_Internal_Shdr *hdr1, *hdr2;
8068 bfd_size_type symcount1, symcount2;
8069 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8070 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8071 Elf_Internal_Sym *isymend;
8072 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8073 bfd_size_type count1, count2, i;
8074 int shndx1, shndx2;
8075 bfd_boolean result;
8076
8077 bfd1 = sec1->owner;
8078 bfd2 = sec2->owner;
8079
8080 /* If both are .gnu.linkonce sections, they have to have the same
8081 section name. */
8082 if (strncmp (sec1->name, ".gnu.linkonce",
8083 sizeof ".gnu.linkonce" - 1) == 0
8084 && strncmp (sec2->name, ".gnu.linkonce",
8085 sizeof ".gnu.linkonce" - 1) == 0)
8086 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8087 sec2->name + sizeof ".gnu.linkonce") == 0;
8088
8089 /* Both sections have to be in ELF. */
8090 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8091 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8092 return FALSE;
8093
8094 if (elf_section_type (sec1) != elf_section_type (sec2))
8095 return FALSE;
8096
8097 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8098 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8099 {
8100 /* If both are members of section groups, they have to have the
8101 same group name. */
8102 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8103 return FALSE;
8104 }
8105
8106 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8107 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8108 if (shndx1 == -1 || shndx2 == -1)
8109 return FALSE;
8110
8111 bed1 = get_elf_backend_data (bfd1);
8112 bed2 = get_elf_backend_data (bfd2);
8113 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8114 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8115 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8116 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8117
8118 if (symcount1 == 0 || symcount2 == 0)
8119 return FALSE;
8120
8121 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8122 NULL, NULL, NULL);
8123 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8124 NULL, NULL, NULL);
8125
8126 result = FALSE;
8127 if (isymbuf1 == NULL || isymbuf2 == NULL)
8128 goto done;
8129
8130 /* Sort symbols by binding and section. Global definitions are at
8131 the beginning. */
8132 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8133 elf_sort_elf_symbol);
8134 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8135 elf_sort_elf_symbol);
8136
8137 /* Count definitions in the section. */
8138 count1 = 0;
8139 for (isym = isymbuf1, isymend = isym + symcount1;
8140 isym < isymend; isym++)
8141 {
8142 if (isym->st_shndx == (unsigned int) shndx1)
8143 {
8144 if (count1 == 0)
8145 isymstart1 = isym;
8146 count1++;
8147 }
8148
8149 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8150 break;
8151 }
8152
8153 count2 = 0;
8154 for (isym = isymbuf2, isymend = isym + symcount2;
8155 isym < isymend; isym++)
8156 {
8157 if (isym->st_shndx == (unsigned int) shndx2)
8158 {
8159 if (count2 == 0)
8160 isymstart2 = isym;
8161 count2++;
8162 }
8163
8164 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8165 break;
8166 }
8167
8168 if (count1 == 0 || count2 == 0 || count1 != count2)
8169 goto done;
8170
8171 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8172 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8173
8174 if (symtable1 == NULL || symtable2 == NULL)
8175 goto done;
8176
8177 symp = symtable1;
8178 for (isym = isymstart1, isymend = isym + count1;
8179 isym < isymend; isym++)
8180 {
8181 symp->sym = isym;
8182 symp->name = bfd_elf_string_from_elf_section (bfd1,
8183 hdr1->sh_link,
8184 isym->st_name);
8185 symp++;
8186 }
8187
8188 symp = symtable2;
8189 for (isym = isymstart2, isymend = isym + count1;
8190 isym < isymend; isym++)
8191 {
8192 symp->sym = isym;
8193 symp->name = bfd_elf_string_from_elf_section (bfd2,
8194 hdr2->sh_link,
8195 isym->st_name);
8196 symp++;
8197 }
8198
8199 /* Sort symbol by name. */
8200 qsort (symtable1, count1, sizeof (struct elf_symbol),
8201 elf_sym_name_compare);
8202 qsort (symtable2, count1, sizeof (struct elf_symbol),
8203 elf_sym_name_compare);
8204
8205 for (i = 0; i < count1; i++)
8206 /* Two symbols must have the same binding, type and name. */
8207 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8208 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8209 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8210 goto done;
8211
8212 result = TRUE;
8213
8214 done:
8215 if (symtable1)
8216 free (symtable1);
8217 if (symtable2)
8218 free (symtable2);
8219 if (isymbuf1)
8220 free (isymbuf1);
8221 if (isymbuf2)
8222 free (isymbuf2);
8223
8224 return result;
8225 }
This page took 0.221462 seconds and 5 git commands to generate.